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Abstract

For any given uncountable cardinal  with <

= , we present a

forcing that is <-directed closed, has the +

-cc and introduces a lightface

definable well-order of H(+

). We use this to define a global iteration

that adds such a well-order for all such  simultaneously and is capable

of preserving the existence of many large cardinals in the universe.
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1 Introduction

If  is an infinite cardinal, a lightface definable wellorder of H(+) is a well-
order of H(+) that is definable over hH(+),2i without parameters. In [2]
and [3], Sy Friedman and the first author show that given any uncountable
cardinal  that satisfies < =  (note that this implies that  is regular) and
2 = +, there is a <-directed closed, +-cc partial order of size 2 which
yields a lightface definable well-order of H(+)V [G] whenever G is generic for
that forcing. They use this to define a class sized iteration which, assuming the
GCH, introduces a lightface definable well-order of H(+) for every uncountable
cardinal , preserving the GCH and all cofinalities, and show that whenever  is
�-supercompact for � regular, then the �-supercompactness of  is preserved by
the iteration. Moreover they show that introducing those well-orders by a vari-
ant of the above class sized iteration also allows for preserving many instances
of n-hugeness.

We generalize those results to a non-GCH context as follows. First we show
that even if 2 > +, there is a very nice forcing to introduce a lightface definable
well-order of H(+). The key new ingredient will be a new coding forcing (that
we call Club Coding) which will be introduced in Section 3.

Theorem 1.1. Suppose  is an uncountable cardinal such that < = . Then
there is a partial order Q with the following properties.

1. Q has a <-directed closed dense subset.

2. Q has the +-chain condition.
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3. Q ✓ H(+)

4. Q forces the existence of a lightface definable wellorder of H(+).

Using the properties of those single-step forcings, it is straightforward (see
Section 6) to iterate this for all uncountable cardinals  that satisfy < = 
which are not counterexamples to the SCH and obtain the following.

Theorem 1.2. There is a ZFC-preserving class forcing P so that

• P preserves cofinality  whenever  is not a counterexample to the SCH,
which means there is no singular strong limit cardinal � with �+ <   2�.

• P preserves the value of 2 whenever neither  nor 2 are counterexamples
to the SCH.

• P introduces a lightface definable well-order of H(+) whenever  � !1 is
such that < =  and  is not a counterexample to the SCH.

Under the assumption of SCH, the above turns into the following, much
nicer form.

Theorem 1.3. Assume SCH. There is a ZFC-preserving class forcing P so
that

• P preserves cofinalities and the continuum function (i.e. the value of 2↵

for every ↵).

• P introduces a lightface definable well-order of H(+) whenever  � !1 is
such that < = .

The role of the SCH in the above is very similar to the situation in [5]. We
refer the reader to the first chapter of that paper (or also to [6]) for a more
detailed discussion.

In Section 7, we will show that forcing with P allows for various forms of large
cardinal preservation. Supercompactness preservation seems to be a di�cult
issue in a non-GCH setting and we only obtain a partial result (originating from
[2]) that relies on instances of the GCH to hold. Using sparser iterations, one
may use supercompactness preservation arguments for a non-GCH context that
were developed in [6] and given a simplified presentation in a somewhat di↵erent
context in [5]. We give a sample result of this in Section 8. Back in Section 7,
we also present stronger results on large cardinal preservation for other types of
large cardinals: hyperstrong and n-superstrong cardinals for 2  n  !.

2 More on related Results

In this short section, we want to comment on the results of this paper and their
relationship with other recent results on introducing locally lightface definable
well-orders by forcing. In [5], Sy Friedman together with the second and third
author provides a class sized iteration that introduces a lightface definable well-
order of H(+) whenever  is inaccessible (see Section 8 of the present article for
the exact statement of their theorem). It is fairly simple to introduce a lightface
definable well-order of H(+) for a single inaccessible cardinal , so that paper
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is mainly concerned with finding a su�ciently uniform way of building a class
sized forcing that does this for all inaccessibles  and allows for large cardinal
preservation. In the present article, we improve on this by providing a much
more well-behaved forcing to introduce a lightface definable well-order of H(+)
that works both for (suitable) successor cardinals and for inaccessibles. This
actually allows us to give (as a sample result) a di↵erent proof (which we will
only hint towards) of the main result of [5] in Section 8.

In [8], the second and third author show that given an uncountable cardinal
 that satisfies < = , �<� <  for any � <  and 2 regular, under an addi-
tional anti-large cardinal hypothesis1 it is possible to introduce a ⌃1-definable
well-order of H(+) that only uses  as parameter (and is thus ⌃3-definable
over H(+) without parameters) by <-closed forcing that preserves all cofinal-
ities  2 and the value of 2. In particular, this shows that it is consistent to
have 2 large while having a lightface definable well-order of H(+). While the
complexity of the well-orders introduced by the forcing provided in the present
article is certainly higher than ⌃3, our forcings are cofinality-preserving, they
work for a larger class of cardinals and they lend themselves well to large car-
dinal preservation (see Section 7). Most importantly however, we do not need
to assume any kind of anti-large cardinal hypothesis to hold.

3 Club Coding (relative to a stationary set)

In this section we will introduce a coding forcing that could be seen as combining
ideas from Solovay’s almost disjoint coding ([10]) and the canonical function
coding introduced by Sy Friedman and the first author in [2] and [3]. Although
we will never explicitly make use of this coding forcing, it will be woven into
our main forcing construction in Section 5 and later proofs will be variations of
the arguments given in this section. Moreover the forcing itself might prove to
be interesting (in fact it has already been made use of in [7] and [8]). We will
call the coding we want to introduce club coding (relative to a stationary set S).
Given an uncountable cardinal  that satisfies < = , we will present a notion
of forcing with nice properties that will allow us to make a subset of H(+)
definable by a generically added subset of . Under the above assumptions on
, both the almost disjoint coding forcing at  and canonical function coding at 
are capable of making a subset of H(+) definable by a generically added subset
of , however canonical function coding requires the additional assumption that
2 = + and almost disjoint coding does not possess the crucial property (for
our present purposes) that we will verify for club coding in Lemma 3.7 (see the
paragraph following its proof).

Throughout this section we fix a regular uncountable cardinal  with  =
<, a stationary set S ✓  \ cof(!), and a non-empty subset A of . We
will first recall the definition of almost disjoint coding at  (see [8] for a more
detailed account and a collection of its basic properties).

Definition 3.1. Assume that ~s = hs
↵

| ↵ < i is an enumeration of < with
the property that every element of < is enumerated -many times. We define
a partial order Q(A) by the following clauses.

1Namely that fat stationary subsets of  in L remain fat stationary in V.
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• A condition in Q(A) is a pair p = ht
p

, a
p

i with t
p

: ↵
p

! 2 for some ↵
p

< 
and a

p

2 [A]<.

• We have q Q(A) p if and only if t
p

✓ t
q

, a
p

✓ a
q

and

s
�

✓ x �! t(�) = 0

for every x 2 a
p

and ↵
p

 � < ↵
q

.

Now we want to introduce the definition of club coding (relative to a sta-
tionary set S). The important di↵erences when compared to the almost disjoint
coding forcing are that the enumeration of < is added generically and (and
that’s the main point) whenever x 2 A, this is reflected correctly only on a club
(relative to S) and not (as is the case with the almost disjoint coding) on a final
segment of the generically added coding subset of  (if G is generic for either
the almost disjoint coding forcing Q(A) or the club coding forcing Q⇤(A,S),
this coding subset of  is equal to

S
p2G

t
p

).

Definition 3.2. We define Q⇤(A,S) to be the partial order whose conditions
are tuples

p = hs
p

, t
p

, hcp
x

| x 2 a
p

ii

such that the following statements hold for some successor ordinal �
p

< .

• s
p

: �
p

�! <, t
p

: �
p

�! 2 and a
p

2 [A]<.

• If x 2 a
p

, then cp
x

is a closed subset of �
p

and

s
p

(↵) ✓ x �! t
p

(↵) = 0

for all ↵ 2 cp
x

\ S.

We define q  p to hold if s
p

= s
q

� �
p

, t
p

= t
q

� �
p

, a
p

✓ a
q

and cp
x

= cq
x

\ �
p

for every x 2 a
p

.

Lemma 3.3. The partial order Q⇤(A,S) is <-closed, +-Knaster and has
cardinality at most 2.

Proof. Let � <  and hp
↵

| ↵ < �i be a descending sequence in Q⇤(A,S). If
there is an ↵̄ < � with �

p↵ = �
p↵̄ for all ↵̄  ↵ < �, then

p =

*
s
p↵̄ , tp↵̄ , h

[

x2ap↵

cp↵
x

| x 2
[

↵<�

a
p↵i
+

is a condition in Q⇤(A,S) with p  p
↵

for all ↵ < �. Now define � = sup
↵<�

�
p↵

and assume that � > �
p↵ for all ↵ < �. Define

• s = {(�, ;)} [
S
{s

p↵ | ↵ < �}.

• t = {(�, 0)} [
S
{t

p↵ | ↵ < �}.

• a =
S
{a

p↵ | ↵ < �}.

• c
x

= {�} [
S
{cp↵

x

| ↵ < �, x 2 a
p↵} for all x 2 a.

• p = hs, t, hc
x

| x 2 aii.
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Then p is a condition in Q⇤(A,S) with p  p
↵

for all ↵ < �.
To show that Q⇤(A,S) is +-Knaster, let hp

↵

| ↵ < +i be an injective

sequence of conditions in Q⇤(A,S). Then there is an X 2 [+]
+

and an r 2
[A]< such that s

p↵ = s
p↵̄ , tp↵ = t

p↵̄ , r = a
p↵ \ a

p↵̄ and cp↵
x

= cp↵̄
x

for all
↵, ↵̄ 2 X with ↵ 6= ↵̄ and x 2 r. Given ↵, ↵̄ 2 X the tuple

hs
p↵ , tp↵ , hcp↵

x

| x 2 ap↵
x

i [ hcp↵̄
x

| x 2 ap↵̄
x

ii

is a condition in Q⇤(A,S) that extends both p
↵

and p
↵̄

.
The last claim of the lemma follows from a simple counting argument.

It follows from Lemma 3.3 that forcing with Q⇤(A,S) preserves cofinalities
as well as the stationarity of S.

Proposition 3.4. If x 2 A and ↵ < , then the set

D
x,↵

= {p 2 Q⇤(A,S) | x 2 a
p

, cp
x

\ ↵ 6= ;}

is dense in Q⇤(A,S).

Proof. Pick a condition p in Q⇤(A,S). We may assume x 2 a
p

, because other-
wise we work with the condition

p0 = hs
p

, t
p

, hcp
y

| y 2 a
p

i [ {(x, ;)}i

Pick � > �
p

and define

• s = s
p

[ {(�, ;) | �
p

 �  �}.

• t = t
p

[ {(�, 0) | �
p

 �  �}.

• p⇤ = hs, t, hcp
y

[ [�
p

, �] | y 2 a
p

ii.

Then p⇤ is a condition in D
x,↵

with p⇤  p.

Let ṡ and ṫ denote the canonical Q⇤(A,S)-names such that

ṡG =
[

{s
p

| p 2 G}

and
ṫG =

[
{t

p

| p 2 G}

whenever G is Q⇤(A,S)-generic over V.

Theorem 3.5. If G is Q⇤(A,S)-generic over V, then ṡG :  �! <, ṫG :
 �! 2 and A is equal to the set of all x 2 ()V[G] with the property that

8↵ 2 C \ S [ṡG(↵) ✓ x �! ṫG(↵) = 0] (1)

holds for some club subset C of  in V[G].
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Proof. The first two statements follow directly from the above proposition. Pick
x 2 A and define C =

S
{cp

x

| p 2 G, x 2 a
p

}. Then the definition of Q⇤(A,S)
implies that C is a closed subset of  that satisfies (1) and the above proposition
shows that C is unbounded in .

Now work in the ground model V, pick a Q⇤(A,S)-name ẏ for an element
of  and a Q⇤(A,S)-name Ċ for a club subset of  and assume, towards a
contradiction, that there is a condition p0 in Q⇤(A,S) with

p0 � ẏ /2 Ǎ ^ 8↵ 2 Ċ \ S [ṡ(↵) ✓ ẏ �! ṫ(↵) = 0]. (2)

Let N be a countable elementary substructure of some large enough H(✓)
containing Q⇤(A,S), ẏ, Ċ and p0 and such that � := N\ 2 S. Let hp

n

| n < !i
be a descending hN,Q⇤(A,S)i-generic sequence of conditions extending p0. By
the above proposition together with the genericity of hp

n

| n < !i,

(i) sup
n

�
pn = �, and

(ii) there is some u : � �!  such that for every n < ! there is some m � n
such that p

m

forces

• ẏ��
pn = u��

pn and such that

• x��
pn 6= u��

pn for all x 2 a
pn .

Now we define

• s = {(�, u)} [
S
{s

pn | n < !}.

• t = {(�, 1)} [
S
{t

pn | n < !}.

• a =
S
{a

pn | n < !}.

• c
x

= {�} [
S
{cpn

x

| n < !, x 2 a
pn} for all x 2 a.

Then the tuple p = hs, t, hc
x

| x 2 aii is a condition in Q⇤(A,S), because u * x
for all x 2 a. But p  p0 and

p � �̌ 2 Ċ ^ ṡ(�̌) ✓ ẏ ^ ṫ(�̌) = 1,

contradicting (2).

Remark 3.6. (i) The above theorem shows that the set A is definable over
the structure hH(+)V[G],2i by a ⌃1-formula with parameters S, ṡG and
ṫG whenever G is Q⇤(A,S)-generic over the ground model V.

(ii) A small variation of the above proof shows that this coding has nice persis-
tence properties - the set A is still defined by the formula (1) after further
forcing with a �-strategically closed partial order that preserves the regu-
larity of . The next lemma however provides the crucial, for our present
purposes, property that club coding (relative to S) satisfies in contrast to
the classical almost disjoint coding.

Lemma 3.7. If A0 ✓ A, then Q⇤(A0, S) is a complete subforcing of Q⇤(A,S).
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Proof. By the definition of Q⇤(A,S), it su�ces to show that every maximal
antichain A in Q⇤(A0, S) is predense in Q⇤(A,S). Then A is a a maximal
antichain in Q⇤(A,S). Pick a condition p in Q⇤(A,S) and define

p̄ = hs
p

, t
p

, hcp
x

| x 2 a
p

\A0ii.

Then p̄ is a condition in Q⇤(A0, S) and there are conditions q and r in Q⇤(A0, S)
such that q 2 A and r is a common extension of p̄ and q in Q⇤(A0, S). Define

p⇤ = hs
r

, t
r

, hcr
x

| x 2 a
r

i [ hcp
x

| x 2 a
p

\A0ii.

Then p⇤ is a condition in Q⇤(A,S) and it is a common extension of p and q in
Q⇤(A,S).

Remark 3.8. It is easy to see that the almost disjoint coding forcing does not
possess the property stated in the above lemma: Assume, towards a contradic-
tion, that Q(A) is a complete subforcing of Q() for every A ✓  and let G be
Q()-generic over V. For each A ✓ , the generic filter in Q(A) induced by
G yields a function t

A

2 2 coding A. It is easy to see that the resulting func-
tion [A 7! t

A

] is an injection of P()V into (2)V[G] that is definable in V[G].
Since forcing with Q(A) preserves cardinalities and the value of 2, this yields
a contradiction. This consideration does not apply if we work with Q⇤(A,S)
instead: Suppose A0 ✓ A, G is generic for Q⇤(A,S), and G0 is the restriction
of G to Q⇤(A0, S). Then G0 adds t

A0 2 2 coding A0 in V[G0]. However, the
same code t

A0 will code A in V[G]. The reason is that in moving from V[G0]
to V[G] we are adding new club subsets of  that ensure this to be the case.

4 More Preliminaries

Let �·, ·� : Ord⇥Ord ! Ord denote Gödel’s pairing function.2 We also let
�·, ·, ·� : Ord3 ! Ord be �·,�·, ·��.

It will be convenient to define the following notion of rank of an ordinal with
respect to a set of ordinals and the corresponding notion of perfect ordinal (see
for example [2] or [3]).

Definition 4.1. Let X be a set of ordinals and let ⌘, µ be ordinals. We define
the relation rank

X

(⌘) � µ by recursion as follows:

• rank
X

(⌘) > 0 if and only if there is a nonempty X 0 ✓ X such that
sup(X 0) = ⌘.

• If µ > 0, then rank
X

(⌘) > µ if and only if ⌘ is a limit of ordinals ⇠ such
that rank

X

(⇠) � µ.

We say that an ordinal ⌘ is perfect if and only if rank
⌘

(⌘) = ⌘.

Note that the first nonzero perfect ordinal is ✏0 = sup{!,!!,!(!!), . . .}.
Note also that rank

�

(�)  � for every ordinal � and that, given any uncountable
cardinal �, the set of perfect ordinals below � forms a club subset of � of order

2That is, �↵,�� is the order type of {h�, �i 2 Ord⇥Ord | h�, �i < h↵,�i}, where
h�, �i < h↵,�i if and only if either max{�, �} < max{↵,�}, or max{�, �} = max{↵,�} and
� < ↵, or max{�, �} = max{↵,�}, � = ↵ and � < � (see for example [9], p. 30).
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type �. Let (⌘
⇠

)
⇠2Ord be the strictly increasing enumeration of all nonzero

perfect ordinals of cofinality !.
The notions defined in the following two paragraphs appear in [2] and [3].
Given two sets of ordinals X and Y , let X \⇤ Y be the collection of all � 2

X\Y such that � is not a limit point of X.3 A sequence ~C = hC
�

| � 2 dom( ~C)i
is a club-sequence if dom( ~C) is a set of ordinals and C

�

is a club subset of �
for each � 2 dom( ~C). We will say that ~C is coherent if there is a club-sequence
~D = hD

�

| � 2 dom( ~D)i such that

• ~C ✓ ~D and

• for every � 2 dom( ~D) and every limit point � of D
�

, � 2 dom( ~D) and
D

�

= D
�

\ �.

If ~C = hC
�

| � 2 dom( ~C)i is a club-sequence, we denote
S

�2dom(~C) C�

by

range( ~C). Also, we will say that an ordinal ⌧ is the height of ~C, and will
write ht( ~C) = ⌧ , if ot(C

�

) = ⌧ for all � 2 dom( ~C).4 A club-sequence is
called a ladder system if it has height !. We will say that a club-sequence
~C = hC

�

| � 2 dom( ~C)i with stationary domain such that sup(dom( ~C)) = � is
strongly type-guessing if for every club subset C ✓ � there is a club D ✓ � such
that ot(C

�

\⇤ C) = ot(C
�

) for every � 2 dom( ~C) \D.
The following related form of club-guessing will also be used:5 A ladder

system hC
�

| � 2 Si, where S is a stationary subset of some , is strongly
guessing if for every club C ✓  there is a club D ✓  such that C

�

\ C is
bounded in � for every � 2 D \ S.

The following notion of closure for partial orders will be useful: Let P be a
partial order,  a cardinal, �P : P �! Ord a function, and S a set of ordinals.
We will say that a partial order P is uniformly <-closed relative to �P outside
S if for every cardinal ✓ > |P|, ✓ > sup(range(�P)), and every well-order �
of H(✓) there is a function F : <P �! P, F definable over the structure
hH(✓),2,�,P,�Pi without parameters, such that for every � <  and every
decreasing sequence hp

i

| i < �i of conditions in P, if sup(�P“{pi | i < �}) /2 S,
then F (hp

i

| i < �i) is a condition in P extending all p
i

. If S = ;, then we will
simply say that P is uniformly <-closed.

Finally, it will also be convenient to define the following notion of hered-
itary internal approachability (see [2]). Let ✓ be an infinite cardinal and �
a well-order of H(✓). Given x 2 H(✓) we define, by recursion on the car-
dinals less than ✓, the notion of being a hereditarily internally approachable
(HIA) elementary substructure of hH(✓),2,�i containing x as follows: A struc-
ture N �hH(✓),2,�i such that x 2 N is HIA if N =

S
i<cf(|N |) Ni

for a ✓-
continuous 2-chain hN

i

| i < cf(|N |)i of sets of size less than |N | such that N
i

is an HIA elementary substructure of hH(✓),2,�i containing x whenever N
i

is
infinite and i is not a nonzero limit ordinal. It is easy to see that the set of HIA
elementary substructures of hH(✓),2,�i containing x of size µ is a stationary
subset of [H(✓)]µ whenever µ  |H(✓)| is an infinite cardinal.

The following lemma is easy.

3Note that \⇤ is not commutative. For example, {!}\⇤(!+1) = {!} but (!+1)\⇤{!} = ;.
4The height of a club-sequence may of course not be defined.
5This notion is rather standard; see for example [1].
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Lemma 4.2. Let  be a cardinal and let P be a partial order which is uniformly
<-closed. If ✓ > |P| is a cardinal, � is a well-order of H(✓) and N is an HIA
elementary substructure of hH(✓),2,�i containing P and of size at most  with
p 2 P \N , then there is an hN,Pi-generic sequence of conditions extending p.

We will also need the following technical lemma in the next section.

Lemma 4.3. Assume  is regular and uncountable, S ✓  \ cof ! is station-
ary, (cof ! \ ) \ S is stationary and ✓ is large enough and regular. For every
countable X ✓ H(✓), there is an 2-chain hN

n

| n < !i of countable elementary
substructures of hH(✓),2i such that X ✓ N0, �n := sup(N

n

) \  /2 S for any
n < ! and sup

n<!

�
n

2 S.

Proof. Let hM
i

| i < i be a continuous 2-chain of elementary substructures
of H(✓) of size less than  such that X ✓ M0 and such that sup(M

i

\ ) 2
(cof ! \ ) \ S whenever i is a successor ordinal. Let Lim2 := lim(lim()).
{sup(M

i

) \  | i 2 Lim2} is a club subset of . Choose i 2 Lim2 least possible
such that sup(M

i

\ ) 2 S. Note that cof(i) = !. Pick a sequence hi
n

| n < !i
with supremum i, consisting only of limit ordinals of cofinality !. This is possible
for i 2 Lim2.

First assume that there is n < ! such that sup(M
in \) 2 S. By minimality

of i, i
n

/2 Lim2. But this means that i
n

= k + ! for some limit ordinal k. For
n < !, let N⇤

n

:= M
k+n+1.

Now assume sup(M
in\) /2 S for any n < ! and letN⇤

n

:= M
in for any n < !

in this case. In both cases, we have that sup(N⇤
n

\ ) 2 (cof ! \ ) \ S for any
n < !. Now we inductively construct hN

n

| n < !i as follows. Inside of N⇤
1 , let

N0 be a countable elementary substructure ofN⇤
0 with sup(N0\) = sup(N⇤

0\)
and X ✓ N0. Given N

i

for i < !, work inside of N⇤
i+2 to choose a countable

elementary substructure N
i+1 of N⇤

i+1 with N
i

2 N
i+1 and sup(N

i+1 \ ) =
sup(N⇤

i+1 \ ). Then sup
n<!

(sup(N
n

) \ ) 2 S, as desired.

5 The single-step forcing

In this section we prove Theorem 1.1.

Proof of Theorem 1.1. Let us fix a regular uncountable cardinal  such that
< = . Q will consist of tuples of the form hp, qi where p 2 ~S and p�

~

S

q̌ 2 Ṗ,
for ~S a notion of forcing in V described below and Ṗ an ~S-name for a notion of

forcing P in V

~

S described below, such that 1�
~

S

Ṗ ✓ V.6

For any ordinal �, ��+� denotes the least ordinal greater than � that is
closed under Gödel pairing. Let C�+� denote the closed unbounded subset of
 consisting of 0 and all limit ordinals closed under Gödel pairing.

Conditions in ~S will be pairs hs,�i such that s : � ! 2 for some ordinal
� < , {� < � | s(�) = 1} ✓ C�+� \ cof(!) and, letting s̃ = {� | s(�) = 1},
� is a function � : s̃ ! < (in a slight abuse of notation, we will sometimes
identify s and s̃ later on). A condition hs1,�1i extends a condition hs0,�0i in ~S

6What we basically want to do here is to let Q be the two-step iteration of ~S ⇤ Ṗ. However
for technical reasons, we choose it to be a dense subset of this two-step iteration. Since
conditions in ~S will be elements of H(+) and 1

~

S

forces conditions in Ṗ to be elements of

H(+)V, the above will in particular help us to obtain that Q ✓ H(+).

9



if s0 ✓ s1 and �0 ✓ �1. Forcing with ~S adds a stationary subset S of \ cof(!)
such that ( \ cof(!)) \ S is also stationary, and adds a generic enumeration
~s of < with domain S and with the property that every element of < is
enumerated stationarily often. Let Ṡ and ṡ be the canonical ~S-names for S and
~s respectively.

Let � := 2. Let W̄ be a well-order of  of order-type � with smallest
element ~0. We want to use W̄ to construct a very specific well-order W of  of
order-type �+ 1. If x 2 <! and y 2 , we let x_y denote the concatenation
of x and y, i.e. if x = hx

i

| i < ni we let (x_y)(i) = x
i

if i < n and we let
(x_y)(n+ ↵) = y(↵) for ↵ < . W will be made up of �-many -blocks with ~0
atop of them. Assuming that x, y 2  are both not equal to ~0, x = h↵i_x̄ and
y = h�i_ȳ, we set

xWy $ [(x̄ = ȳ ^ ↵ < �) _ x̄W̄ ȳ].

We will need this well-order W in our coding construction in order for every
x̄ 2  to be canonically connected to a -block of W-consecutive elements.
Having ~0 as its largest element will just be notationally convenient.

Let F̄ : � ! H(+) be a bookkeeping function for H(+) (i.e., for every
x 2 H(+), F̄�1(x) is unbounded in �) and let F : \{~0} ! H(+) be defined
by F (x) = F̄ (ot{y | yWx}).

Work in an ~S-generic extensionW ofV until further notice and letG0 denote
the ~S-generic filter. We want to construct by recursion along W a collection of
partial orders P

x

for x 2 ()V and set P = P
~0. P and the P

x

will depend on S
and ~s and we write P(S,~s) instead of P when we want to emphasize this fact.
Each P

x

will have a canonical ~S-name in V, denoted by Ṗ
x

. Conditions in P
x

will be of the form

p =
D
t,~e, hh ~Ci, ~Dii | i < �i, hc

x̄

| x̄ 2 ai
E
.

We will set tp = t and similarly for any other object appearing within p as
above. Suppose now that p is a tuple as above such that

(1) � 2 C�+�,

(2) t 2 �+12,

(3) ~e is a ladder system on S \ (� + 1),

(4) for i < �, ~Ci and ~Di are club-sequences with domains included in � + 1,

(5) a 2 [()V \ {~0}]< and

(6) for every x̄ 2 a, c
x̄

is a subset of � + 1.

Note that any such tuple is an element of V for ~S is <-closed. We want
to associate to p a certain set C(p) ✓ ()V which canonically codes p.7 Given
x, y 2 , let |x, y| 2  be defined by setting |x, y|(↵) = � i↵ ↵ = 2 · ↵̄ and

7In fact we will not be able to read o↵ from C(p) whether x̄ 2 a in case c
x̄

= ;. So one may
rather say that C(p) only codes partial information about p. This minor point will however
be irrelevant.
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x(↵̄) = � or ↵ = 2 · ↵̄+ 1 and y(↵̄) = �. We set |x, y|(↵) = 0 whenever it is not
given a value by the above.

We code t, ~e and hh ~Ci, ~Dii | i < �i by b 2 ()V as follows. For � < , let
b(2 · �) = 1 i↵ t(�) = 1, let b(6 · � +1) = 1 i↵ �0 2 E

�1 where � = ��0, �1� and
~e = hE

⇠

| ⇠ 2 S \ (� + 1)i, b(6 · � + 3) = 1 i↵ �0 2 Ci

�1
where � = ��0, �1, i�,8

and let b(6 · � + 5) = 1 i↵ �0 2 Di

�1
, where again � = ��0, �1, i�.

Now we want to define C(p) ✓ ()V \ {~0} coding b and hc
x̄

| x̄ 2 ai. For
x 2 , we let x 2 C(p) i↵ one of the following holds.

• There is ↵ <  such that x = h1 + ↵i_~0 and ↵ 2 b.

• There is ↵ <  and x̄ 2 a such that x = h↵, 1i_x̄ and ↵ 2 c
x̄

.

We code F by F ⇤ ✓ ()V as follows. Set z 2 F ⇤ i↵ there is (x, y) such that
x 2 ()V, y ✓  codes y⇤ 2 H(+)V,9 F (x) = y⇤ and z = |x, y|, where we
identify y with its characteristic function in the latter. Let W⇤ ✓ ()V code
W by letting z 2 W⇤ i↵ there is (x, y) 2 W such that z = |x, y|.

Now we define Ap ✓ ()V \ {~0} coding C(p), F ⇤ and W⇤ by letting, for
every x 2 , x 2 Ap i↵ one of the following holds.

• x 2 C(p).

• There is x̄ 2  such that x = h0, 2i_x̄ and x̄ 2 F ⇤.

• There is x̄ 2  such that x = h0, 3i_x̄ and x̄ 2 W⇤.

Let s⇤ 2 ()W be a canonical code for ~s, say if  > ↵ = ��, �� we set

s⇤(↵) =

8
<

:

0 if ~s(�)(�) = 0
1 if ~s(�)(�) = 1
2 if � /2 dom(~s) _ � � dom(~s(�))

.

If x 2 , let x� be defined by x�(↵) = x(1 + ↵) for every ↵ < .10 Let C
be the set of all x 2 ()V such that either x = ~0 or whenever yWx then both
y�Wx and for every ↵ < , h↵i_yWx.11 Since cof(�) > , C \ {y | yW~0} is
a closed and unbounded (w.r.t. W) subset of {y | yW~0}. P

x

will be defined i↵
x 2 C .

For x 2 ()V and p =
D
t,~e, hh ~Ci, ~Dii | i < �i, hc

x̄

| x̄ 2 ai
E
as above, let

p�x =
D
t,~e, hh ~Ci, ~Dii | i < �i, hc

x̄

| x̄ 2 a \ {y | yWx}i
E
.

The next claim follows by the properties of C .

Claim 5.1. Let p be a tuple for which Ap is defined and let x 2 C . Then for
every yWx, y 2 Ap i↵ y 2 Ap�x.

8If ~Ci is a club-sequence and j 2 dom( ~Ci), we write Ci

j

to abbreviate ~Ci(j).
9In the usual way of subsets of  coding elements of H(+).

10Thus when passing from x to x�, we just throw away the first component of x.
11Note that in particular h1i_~0, the W-least element of ()V, is an element of C .
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Proof. Assume p is such that Ap is defined. Note that Ap�x ✓ Ap for any
x 2 ()V. Now assume x 2 C , yWx and y 2 Ap. We want to show that
y 2 Ap�x. Clearly the only nontrivial case is when y is of the form h↵, 1i_ȳ,
i.e. y codes the property that ↵ 2 c

ȳ

for some ↵ <  and ȳ 2 ()V \ {~0}.
Using the fact that x 2 C , it follows that ȳWx. But this obviously implies that
y 2 Ap�x.

Given x 2 C and assuming that P
y

has been defined for all yWx with y 2 C ,
conditions in P

x

are tuples of the form

p =
D
t,~e, hh ~Ci, ~Dii | i < �i, hc

x̄

| x̄ 2 ai
E

satisfying the following properties (which imply properties (1)-(6) above).

(i) � 2 C�+�.

(ii) t 2 �+12

(iii) ~e = (E
�

| � 2 S \ (� + 1)) is a ladder system.

(iv) a is a subset of W (��+�)\{y | yWx} of size less than , where for ⇠ < ,

W (⇠) =
h
h1i_~0, h⇠i_~0

⌘
[

[

x̄2()V\{~0}

h
h0i_x̄, h⇠i_x̄

⌘W

and for any x0, x1 2 ()V, [x0, x1)W denotes the interval [x0, x1) w.r.t.
W, i.e. [x0, x1)W = {z 2  | z = x0 _ x0WzWx1}.

(v) For each x̄ 2 a, c
x̄

is a closed subset of � + 1.

(vi) 8x̄ 2 a \Ap 8↵ 2 c
x̄

\ S [s
↵

✓ x̄ ! t(↵) = 0]

(vii) For every i < �, ~Ci and ~Di are club-sequences with domain included in
�+1, ht( ~Ci) is defined and is a perfect ordinal of countable cofinality, and
~Ci is coherent as witnessed by ~Di. Moreover, for every ⇠ < �,

(a) if ⇠ = 2 · ⇠̄, then

⇠̄ 2 S $ 9i < � ht( ~Ci) = ⌘
⇠

.

(b) if ⇠ = 4 · ⇠̄ + 1 and ⇠̄ = �⇠0, ⇠1�, then

(⇠0, ⇠1) 2 s⇤ $ 9i < � ht( ~Ci) = ⌘
⇠

.

(c) if ⇠ = 4 · ⇠̄ + 3 and s
⇠̄

6= s
⇣

for all ⇣ < ⇠̄, then

s
⇠̄

✓ t $ 9i < � ht( ~Ci) = ⌘
⇠

.

(viii) For every i < �,

(a) every successor point of every member of the range of ~Ci has count-
able cofinality,
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(b) dom( ~Di) \ (i+ 1) = ;,
(c) (dom( ~Di) [ range( ~Di)) \ S = ;, and
(d) dom( ~Ci) \ range( ~Cj) = ; for all j < �,

(e) dom( ~Di) \ dom( ~Dj) = ; for all j 6= i.

(ix) Let x̄ 2 a be given and suppose there is a W-least zWx̄ with z 2 C such
that F (x̄) is a Q \ (~S ⇤ Ṗ

z

)-name in V for a club subset of , let F (x̄)G0

denote its partial evaluation by the ~S-generic filter G0.12 Then p�z is a
condition in P

z

and for every ⌫ < max(c
x̄

), p�z either forces ⌫ 2 F (x̄)G0

or forces ⌫ 2| F (x̄)G0 . Let C
x̄

be the set of all ⌫ < max(c
x̄

) such that
p�z�

Pz ⌫ 2 F (x̄)G0 . Then

(a) E
�

\ C
x̄

is finite for every � 2 c
x̄

\ S, and

(b) ot(Ci

�

\⇤ C
x̄

) = ht(~Ci) for every i < � and � 2 c
x̄

\ dom( ~Ci).

Given conditions p
✏

= ht✏,~e ✏, hh ~Ci,✏, ~Di,✏i | i < �✏i, hc✏
x̄

| x̄ 2 a✏ii for ✏ 2 {0, 1},
we order P

x

by setting p1 
x

p0 i↵

(i) �0  �1, t0 ✓ t1, ~e 0 ✓ ~e 1, a0 ✓ a1,

(ii) for all x̄ 2 a0, c0
x̄

= c1
x̄

\ (�0 + 1), and

(iii) ~Ci,0 = ~Ci,1�(�0 + 1) and ~Di,0 = ~Di,1�(�0 + 1) for all i < �0.

Note that p1 
x

p0 implies that C(p1) ◆ C(p0) and therefore Ap1 ◆ Ap0 . We
go down to V for a moment to observe that our definitions yield the following.

Lemma 5.2. Q ✓ H(+).

Back in W, note that if p1  p0 are conditions in P, then Ap1 ◆ Ap0 . The
following is immediate by Claim 5.1 and noting (for the proof that (ix) holds
for p�z) that if yWzWx and p 2 P

x

, then p�y = (p�z)�y.
Claim 5.3. If x 2 C , p 2 P

x

and zWx with z 2 C , then p�z 2 P
z

. If p, q are
both in P

x

and q  p, then q�z  p�z.

It is immediate (using Claim 5.1) that if zWx and z, x 2 C , then P
z

✓ P
x

.
In fact, the following holds.

Claim 5.4. If zWx and z, x 2 C , then P
z

is a complete suborder of P
x

.

Proof. First note that if p ?
z

q, then p ?
x

q. To see this, assume r 
x

p, q.
Then r�z 2 P

z

and r�z 
z

p, q by Claim 5.3. To see that P
z

is a complete
suborder of P

x

, let B be a maximal antichain of P
z

. Let q 2 P
x

. There is b 2 B
which is compatible to q�z. Let p 2 P

z

be stronger than both b and q�z. Let c⇤
x̄

be cp
x̄

if x̄ 2 ap and let it be cq
x̄

if x̄ 2 aq \ ap. Let

q⇤ = htp,~e p, hh ~Ci,p, ~Di,pi | i < �pi, hc⇤
x̄

| x̄ 2 ap [ aqii.

It su�ces to show that q⇤ is a condition in P
x

extending q and p. Given the
former, the latter will be obvious considering the nature of the extension relation

12F (x̄)G0 will be a P
z

-name in W for the same club subset of .
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of P
x

(which is end-extension). We will show, by induction on tWx, that q⇤�t is
a condition in P

t

whenever t 2 C . For simplicity of notation, let us assume that
t = x and that q⇤�z is a condition in P

z

for zWx whenever z 2 C . We want to
show that q⇤ is a condition in P

x

by showing that it satisfies conditions (i)-(ix)
above. Conditions (i)-(v), (vii) and (viii) in the definition of P

x

are immediate.
For (vi), note that Aq

⇤
= Aq [Ap. We thus have to show that

8x̄ 2 (ap [ aq) \ (Ap [Aq) 8↵ 2 c⇤
x̄

\ S [s
↵

✓ x̄ ! tp(↵) = 0].

If x̄Wz, then x̄ 2 ap\Ap and the above follows for x̄ from (vi) for p. Otherwise
x̄ 2 aq \Aq and the above follows for x̄ from (vi) for q.

We still need to verify (ix) - let x̄ 2 ap [ aq be given. If x̄ 2 ap, then (ix)
follows from (ix) for p as c⇤

x̄

= cp
x̄

, q⇤�z 2 P
z

by induction hypothesis, and
q⇤�z  p. So assume that x̄ 2 aq \ ap. Then x̄ 2 aq \ {y | yWz}. Suppose
there is a W-least yWx̄ with y 2 C such that F (x̄)G0 is a P

y

-name for a club
subset of . As, by induction hypothesis, q⇤�y is a condition in P

y

stronger
than q�y, and as c⇤

x̄

= cq
x̄

, it follows that for every ⌫ < max c⇤
x̄

, q⇤�y either forces
⌫ 2 F (x̄)G0 or forces ⌫ 2| F (x̄)G0 . Let C

x̄

be the set of all ⌫ < max(c⇤
x̄

) such
that q⇤�y� ⌫ 2 F (x̄)G0 , which of course coincides with the set of ⌫ < max(cq

x̄

)
such that q�y� ⌫ 2 F (x̄)G0 . We have to show that

(a) E
�

\ C
x̄

is finite for every � 2 cq
x̄

\ S, and

(b) ot(Ci,p

�

\⇤ C
x̄

) = ht(~Ci,p) for every i < � and � 2 c⇤
x̄

\ dom( ~Ci,p).

Condition (a) follows immediately from (ix) for q. For (b) fix some i < �p

and � 2 c⇤
x̄

\ dom( ~Ci,p) = cq
x̄

\ dom( ~Ci,p). It follows that i < �  �q, as
dom( ~Ci,p) \ (i + 1) = ; by condition (viii). Therefore Ci,p

�

= Ci,q

�

and thus

ot(Ci,p

�

\⇤ C
x̄

) = ot(Ci,q

�

\⇤ C
x̄

) = ht(~Ci,q) = ht(~Ci,p).

Next we show that P has the +-chain condition. In fact we show that
P is +-Knaster where, for a cardinal ✓, a poset Q is ✓-Knaster if for every
{q

⇠

| ⇠ < ✓} ✓ Q there is I ✓ ✓ of size ✓ such that q
⇠

and q
⇠

0 are compatible
conditions for all ⇠, ⇠0 in I. We first need the following.

Claim 5.5. If x 2 C and p 2 P
x

, then C(p) ✓ W ((�p)�+�) \ {z | zWx} and
is of size less than .

Proof. Assume y 2 C(p). We will only treat the case when y is of the form
y = h↵, 1i_ȳ for some ↵ <  and ȳ 2 ()V, i.e. y codes the fact that ↵ 2 cp

ȳ

.
But the latter implies that ↵  �p and thus y 2 W (�p + 2) ✓ W ((�p)�+�),
and it implies that ȳWx and hence by the closure properties of elements of C ,
this implies that yWx. The case that y is of the form y = h1 + ↵i_~0 is similar.
That C(p) is of size less than  is obvious from its definition and the definition
of conditions in P

x

.

Lemma 5.6. P is +-Knaster.

Proof. Let {p
✏

| ✏ < +} be a set of conditions in P. We want to show that
there is B ✓ + of size + such that p✏ and p✏

0
are compatible whenever both

✏ and ✏0 are in B. Let

p
✏

= ht✏,~e ✏, hh ~C✏,i, ~D✏,ii | i < �✏i, hc✏
x̄

| x̄ 2 a✏ii.
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By possibly strengthening the p✏, we may assume that a✏ ◆ C(p✏) for every

✏ < +, using Claim 5.5. This implies that if ✏ 6= ✏0 then Ap

✏0 \ Ap

✏ ✓ a✏
0
and

hence (a✏ \ a✏
0
) \ (Ap

✏0 \ Ap

✏
) = ;. By a �-system argument using 2< = ,

there are �, t, ~e = hE
�

| � 2 S \ (� + 1)i, a, hh ~Ci, ~Dii | i < �i and hc
x̄

| x̄ 2 ai
such that we may assume that for all distinct ✏, ✏0 < +,

(i) t✏ = t, ~e ✏ = ~e, hh ~C✏,i, ~D✏,ii | i < �✏i = hh ~Ci, ~Dii | i < �i,

(ii) a✏ \ a✏
0
= a, and

(iii) c✏
x̄

= c
x̄

for all x̄ 2 a.

We claim that any two such conditions are compatible, as

p
✏,✏

0 = ht,~e, hh ~Ci, ~Dii | i < �i, hc✏̄
x̄

| ✏̄ 2 {✏, ✏0}, x̄ 2 a✏̄ii

is a condition in P stronger than both p
✏

and p
✏

0 : It su�ces to show, by induction
along W, that p

✏,✏

0�x is a condition in P
x

whenever x 2 C . Thus assume that
x 2 C and inductively that p

✏,✏

0�z is a condition in P
z

whenever zWx and z 2 C .
We want to show that p

✏,✏

0�x is a condition in P
x

. As in the proof of Claim
5.4, conditions (i)-(v), (vii) and (viii) are immediate. For (vi), by symmetry it
su�ces to show that

8x̄ 2 a✏ \ (Ap

✏

[Ap

✏0

) 8↵ 2 c✏
x̄

\ S [s
↵

✓ x̄ ! t(↵) = 0].

Now this follows from (vi) for p✏ in case x̄ 2 a✏ \ Ap

✏
or from (vi) for p✏

0
if

x̄ 2 a✏
0 \ Ap

✏0
and thus we may assume that x̄ 2 (a✏ \ a✏0) \ (Ap

✏0 \ Ap

✏
). But

the latter set is empty by our above assumption.

We are left with proving that (ix) holds for p
✏,✏

0�x. Given x̄ 2 a✏[a✏0 , we may
assume (by symmetry) that x̄ 2 a✏. Suppose there is a W-least zWx̄ such that
z 2 C and F (x̄)G0 is a P

z

-name for a club subset of . As, by induction, p
✏,✏

0�z
is a condition in P

z

stronger than p
✏

�z, it follows that for every ⌫ < max(c✏
x̄

),
p
✏,✏

0�z either forces ⌫ 2 F (x̄)G0 or forces ⌫ 2| F (x̄)G0 . Let C
x̄

be the set of all
⌫ < max(c✏

x̄

) such that p
✏,✏

0�z� ⌫ 2 F (x̄)G0 . We have to show that

(a) E
�

\ C
x̄

is finite for every � 2 c✏
x̄

\ S, and

(b) ot(Ci,p

�

\⇤ C
x̄

) = ht(~Ci,p) for every i < � and � 2 c✏
x̄

\ dom( ~Ci,p).

But this is immediate from (ix) for p
✏

.

Let �P be the function with domain P mapping a condition p to �p.

Lemma 5.7. P is uniformly <-closed relative to �P outside S.

Proof. Given � <  and a decreasing sequence of conditions hpk | k < �i in P
with

pk = htk,~e k, hh ~Ck,i, ~Dk,ii | i < �ki, hck
x̄

| x̄ 2 akii,

let � :=
S

k<�

�k, t =
S

k<�

tk, ~e =
S

k<�

~e k, ~Ci =
S

k<�

~Ck,i and ~Di =
S

k<�

~Dk,i for every i < �, a =
S

k<�

ak and c
x̄

=
S
{ck

x̄

| k < �, c̄ 2 ak}
for every x̄ 2 a. If there is �̄ < � such that �k is the same for all k � �̄,
then ht,~e, hh ~Ci, ~Dii | i < �i, hc

x̄

| x̄ 2 aii is a condition stronger than each pk.
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Otherwise, we may assume that � /2 S and let p be defined by setting �p = �,
tp = t [ (�, 0), ~e p = ~e, ~Ci,p = ~Ci and ~Di,p = ~Di for every i < �, ap = a and
cp
x̄

= c
x̄

[ {sup(c
x̄

)} for every x̄ 2 a.
We claim that p is a condition in P. We will show by induction along W that

for every x 2 C , p�x 2 P
x

. By the particular specification of p, this will show
that P is uniformly <-closed relative to �P outside S. Thus assume x 2 C and
for every yWx with y 2 C , p�y 2 P

y

. We want to check that conditions (i)-(ix)
in the definition of P

x

hold for p�x and thus p�x 2 P
x

. Conditions (i), (ii), (v),
(vii) and (viii) are immediate. Condition (iii) holds since � /2 S. Using that (iv)
holds for the pk and that �p > (�k)�+� for every k < �, we obtain

(⇤) ap ✓ W (�p)

and thus (iv) holds for p. For (vi), we have to check that

8x̄ 2 ap \Ap 8↵ 2 cp
x̄

\ S [s
↵

✓ x̄ ! tp(↵) = 0.]

If x̄ 2
S

k<�

Ap

k
, this is immediate from (vi) for pk for some su�ciently large

k < � if ↵ < �p and, if ↵ = �p, because we set tp(�p) = 0. If x̄ 2 Ap \
S

k<�

Ap

k
,

it is easily checked using the definition of C(p) that f(x̄) is of the form  · �+ ⇠
for some � < � and ⇠ � �p. But by (⇤) this means that x̄2| ap and therefore
this case is vacuous.

It remains to show that (ix) holds for p�x. Let x̄ 2 ap be given and suppose
there is a W-least zWx̄ with z 2 C such that F (x̄)G0 is a P

z

-name for a
club subset of . As p�z is a condition in P

z

by induction hypothesis and
p�z  pk�z for every k < �, we have that for every ⌫ < max(cp

x̄

), p�z either
forces ⌫ 2 F (x̄)G0 or forces ⌫ 2| F (x̄)G0 . Let C

x̄

be the set of all ⌫ < max(cp
x̄

)
such that p�z� ⌫ 2 F (x̄)G0 . It remains to show that

(a) E
�

\ C
x̄

is finite for every � 2 c
x̄

\ S, and

(b) ot(Ci

�

\⇤ C
x̄

) = ht(~Ci) for every i < � and � 2 c
x̄

\ dom( ~Ci).

Condition (a) holds since, as � /2 S, every � 2 c
x̄

\ S is such that � 2 ck
x̄

for
some k. For condition (b), fix some i < �p and � 2 c

x̄

\ dom( ~Ci). Let k < �

be such that x̄ 2 ak, i < �k and � 2 ck
x̄

\ dom( ~Ck,i). But then ot(Ci

�

\⇤ C
x̄

) =

ot(Ck,i

�

\⇤ C
x̄

) = ht( ~Ci) = ht(~Ci,p), where the middle equation holds as pk is a
condition in P.

Lemma 5.8. Let p = ht,~e, hh ~Ci, ~Dii | i < �i, hc
x̄

| x̄ 2 aii be a condition in P.
Then 8�0 <  9p0  p

h
�p

0
> �0 and hcp

0

x̄

| x̄ 2 ap
0i = hc

x̄

| x̄ 2 ai
i
.

Proof. Pick �⇤ 2 C�+� such that �⇤ > �0,�, �⇤ = ⌘
�

⇤ and such that for every
� < �⇤, �⇤ \ S contains a closed subset of order-type � + 1. The latter is easily
possible for S was added generically. We construct

p0 = ht⇤,~e ⇤, hh ~Ci

⇤, ~D
i

⇤i | i < �⇤i, hc
x̄

| x̄ 2 aii  p

as follows. First we choose t⇤ of length �⇤ + 1 extending t and such that
t⇤�[� + 1,�⇤] = ~0. Let ~e ⇤ = hE⇤

⇠

| ⇠ 2 S \ (�⇤ + 1)i be any ladder system

on (�⇤+1)\S extending ~e. Let h ~Ci

⇤, ~D
i

⇤i = h ~Ci, ~Dii if i < � and for i 2 [�,�⇤),
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let ~Ci

⇤ = {hsup(X
i

), X
i

i} and ~Di

⇤ = {h�, X
i

\ �i | � a limit point of X
i

}, where
X

i

✓ �⇤\(��+�[(i+1)) has order-type ⌘
⇢i , has all its non-accumulation points

of cofinality !, and is closed in sup(X
i

), for h⇢
i

| i 2 [�,�⇤)i as determined by S,
s⇤ and t⇤ (up to permutation of the indices) via condition (vii) in the definition
of P. We also make sure that for i 6= i0, (X

i

[{sup(X
i

)})\(X
i

0[{sup(X
i

0)}) = ;
and (X

i

[ {sup(X
i

)}) \ S = ;.13 We have to check that p0 is a condition in P.
It is then obvious that p0 is as desired. Conditions (i)-(v) in the definition of P
are immediate, (vii) and (viii) are ensured by our above choice of ~Ci

⇤ and ~Di

⇤
for i < �⇤, and (ix) is shown as usual.

Finally, condition (vi) in the definition of P follows if we can show that
a \ Ap

0
= a \ Ap, since (vi) holds for p. To show this is the case, assume

x 2 a \ Ap

0
. Now if x 2 F ⇤ or x 2 W⇤ then trivially x 2 Ap. Thus assume

x 2 C(p0). Assume first that there is ↵ <  such that x = h1 + ↵i_~0. We
distinguish several cases.

• If ↵ = 2 · �, x 2 Ap

0
codes the fact that t⇤(�) = 1. But having set

t⇤�[� + 1,�⇤] = ~0, this means that �  � and thus x 2 Ap.

• If ↵ = 6 · �+1 and � = ��0, �1�, x 2 Ap

0
codes the fact that �0 2 E⇤

�1
. If

�1  �, x 2 Ap as in the preceding case. �1 > � implies that �1 � ��+�

and thus ↵ > ��+�. But then by condition (iv) for p, x could not have
been an element of a.

• If ↵ = 6 ·�+3 and � = ��0, �1, i�, x 2 Ap

0
codes the fact that �0 2 Ci,�1

⇤ .
If i < �, x 2 Ap as in the preceding cases. If i � �, by our choice of Ci

⇤
it follows that �0 and �1 are both � ��+�, which in turn implies that
↵ > ��+� and again by condition (iv) for p, x thus could not have been
an element of a.

• The case that ↵ = 6 · � + 5 is handled just like the previous case.

Now assume that there is ↵ <  and x̄ 2  such that x = h↵, 1i_x̄. Then
x 2 Ap

0
codes the fact that ↵ 2 c

x̄

. But of course then x 2 Ap.

Let us go down to V for a moment. The following lemma follows from the
proof of Lemma 5.7 and from Lemma 5.8.

Lemma 5.9. Q has a dense subset which is uniformly <-closed and <-
directed closed in V.

Proof. We will only verify the first part of the statement of the lemma; its
second part follows by essentially the same argument and will only be needed
for large cardinal preservation arguments in Section 7. Let Q̄ = {hhs,�i, pi 2
Q | dom(s) = �p +1}. It is straightforward to see from the definition of P that
whenever hhs,�i, pi 2 Q and dom(s) > �p+1, then in fact hhs�(�p+1),��(�p+
1)i, pi 2 Q. This together with Lemma 5.8 implies that Q̄ is a dense subset
of Q. Now assume hpk | k < �i is a decreasing sequence of conditions in Q̄ for
some � <  with

pk =
D
hsk,�ki, htk,~e k, hh ~Ck,i, ~Dk,ii | i < �ki, hck

x̄

| x̄ 2 akii
E
.

13This is easy to arrange by our requirements on �⇤.
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If h�p

k | k < �i is eventually constant we can (uniformly) obtain a lower bound
of hpk | k < �i as in the first part of the proof of Lemma 5.7. Otherwise, let
� :=

S
k<�

�k, let s := {(�, 0)} [
S

k<�

sk and let � :=
S

k<�

�k. Define t, ~e,

hh ~Ci, ~Dii | i < �i, a and hc
x̄

| x̄ 2 ai as in the proof of Lemma 5.7. Since hs,�i
forces (in ~S) that � /2 Ṡ,

p =
D
hs,�i, ht,~e, hh ~Ci, ~Dii | i < �i, hc

x̄

| x̄ 2 aii
E

is seen to be a condition in Q (and thus in Q̄) as in the proof of Lemma 5.7.

From Lemma 5.9 we immediately obtain the following corollary, which will
be used repeatedly.

Corollary 5.10. Q is <-distributive in V and Ṗ is <-distributive in V

~

S.

Let us go back to W now. The following is another corollary of Lemma 5.9.

Corollary 5.11. For every p 2 P, every collection X of size <  of P-names
for unbounded subsets of  and every � <  there is p0 2 P stronger than p such
that for every Ẋ 2 X there is some � > � such that p0 forces � 2 Ẋ. 2

Lemma 5.12. Let p = ht,~e, hh ~Ci, ~Dii | i < �i, hc
x̄

| x̄ 2 aii 2 P.

(i) 8x̄ 2 ()V \ {~0} 9p0  p x̄ 2 ap
0
.

(ii) 8x̄ 2 a 8⌫ <  9p0  p
h
⌫ < max(cp

0

x̄

) and cp
0

x̄

\ ⌫ = c
x̄

\ ⌫
i
.

Proof. For (i), let x̄ 2 ()V\(a[{~0}) be given. By Lemma 5.8, we may assume
x̄ 2 W (��+�). Let c⇤

z

be equal to c
z

for z 2 a and let c⇤
x̄

= ;. If we set

p0 = ht,~e, hh ~Ci, ~Dii | i < �i, hc⇤
z

| z 2 a [ {x̄}ii,

then p0 is easily seen to be a condition in P for Ap

0
= Ap, and p0 is as desired.

For (ii), let x̄ 2 a be given. Using Lemma 5.8, we may assume that � > ⌫.
Pick a countable elementary substructure N of some H(✓) containing P, p, x̄, F
and G0 with ✓ su�ciently large, and such that ⌫0 := sup(N \)2| S. We build a
decreasing hN,Pi-generic sequence of conditions hp

n

| n 2 !i with p0 = p. Note
that hsup(cpn

x̄

) | n < !i is either eventually constant or has supremum ⌫0 by
genericity, Lemma 5.8 and clause (ii) in the definition of the extension relation
of P. We build a condition q extending all p

n

as in the proof of Lemma 5.7,
except that we set cq

x̄

=
S

n2!

cpn
x̄

[ {⌫0}, which is a closed subset of  by the
above. To argue that q is a condition, we only need to show that if zWx̄ is such
that z 2 C and z is W-least such that F (x̄)G0 is a P

z

-name for a club subset
of  and ⌫00 < ⌫0, then there is n < ! such that p

n

�z decides whether or not
⌫00 2 F (x̄)G0 . But ⌫00 < ⌫⇤ for some ⌫⇤ 2 N \  and, by Claim 5.4 together
with Corollary 5.10, there is a dense set D 2 N of conditions in P

z

deciding
F (x̄)G0 \ ⌫⇤. It then follows from the genericity of hp

n

| n < !i that there is
some n such that p

n

�z decides for every ⇠ 2 ⌫⇤ whether or not ⇠ 2 F (x̄)G0 . But
of course ⌫00 is one such ⇠.
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Now let G be Q-generic over V, G = G0 ⇤ G1, where G1 is P(S,~s)-generic
over W := V[G0]. Work in V[G]. Let tG =

S
p2G1

tp and ~EG =
S

p2G1
~e p. For

each i < , let ~Ci,G =
S
{~Ci,p | p 2 G1, i < �p} and ~Di,G =

S
{ ~Di,p | p 2

G1, i < �p}. By the definition of Q and its extension relation and by Lemma
5.8, ~EG is a ladder system defined on all of S and each ~Ci,G is a coherent club-
sequence (which is witnessed by ~Di,G) with nonempty domain disjoint from
S and such that every successor point of every member of range( ~Ci,G) has
countable cofinality.

Write ~EG as ~EG = hE
�

| � 2 Si and let cG
x̄

=
S
{cp

x̄

| p 2 G1, x̄ 2 ap} for all
x̄ 2 ()V \ {~0}. By Lemma 5.12, each cG

x̄

is a club subset of  in V[G]. Also,
by condition (ix) (a) in the definition of P, for every � 2 cG

x̄

\ S, if there is a
W-least zWx̄ with z 2 C such that F (x̄)G0 is a P

z

-name Ċ for a club subset of 
and C is the G1-interpretation of Ċ, then EG

�

\C is finite. Let AG =
S

p2G1
Ap.

tG will have a canonical Q-name in V which we will denote by ṫ. The partial
evaluation of ṫ by G0 will be denoted by ṫG0 and is a P-name for tG in W. We
will do the same for the other objects defined in V[G] above.

Lemma 5.13. In V[G], S is stationary.

Proof. We go back to working in V[G0] = W. Let p 2 P and let Ċ be a P-name
for a club subset of . We want to find an extension p⇤ of p and some � 2 S
such that p⇤ �P � 2 Ċ. For this, let hN

n

| n < !i be an 2-chain of countable
elementary substructures of some large enough H(✓) containing P, Ċ, p, F and
G0 such that �

n

:= sup(N
n

\) /2 S for all n and � := sup
n

�
n

2 S. This can be
done using Lemma 4.3. Let hp

n

| n < !i be a decreasing sequence of conditions
in P extending p such that for all n, p

n

2 N
n+1 is a lower bound of a decreasing

hN
n

,Pi-generic sequence of conditions in N
n

extending p and extending p
n�1 if

n > 0. By Lemma 5.7, these lower bounds exist. For each n, p
n+1 forces

(i) �
n

2 Ċ and

(ii) �
n

2 F (x̄)G0 for all x̄ 2 apn for which there is some zWx̄ such that z 2 C
and F (x̄)G0 is a P

z

-name for a club subset of .

This is true by Corollary 5.11 since p
n+1 is a lower bound of an hN

n

,Pi-generic
sequence. Let

• � =
S

n<!

�pn = �,

• t = (
S

n<!

tpn) [ {h�, 0i},

• ~e = (
S

n<!

~e pn) [ {h�, {�
n

| n < !}i},

• ~Ci =
S
{~Cpn,i | n < !, i < �pn} and ~Di =

S
{ ~Dpn,i | n < !, i < �pn} for

every i < �,

• a =
S

n<!

apn , and

• c
x̄

= {�} [
S
{cpn

x̄

| n < !, x̄ 2 apn} for every x̄ 2 a.

It is easy to check that p⇤ = ht,~e, hh ~Ci, ~Dii | i < �i, hc
x̄

| x̄ 2 aii is a condition
extending p and forcing that � 2 Ċ by condition (i) above. The proof of this is
by induction on W as usual, i.e., one proves by induction on x that p⇤�x is in
P
x

whenever x 2 C . The only nontrivial point is the verification of condition
(ix) in the definition of P

x

. But (ix) follows now thanks to (ii) above.
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One could have verified the preceding lemma arguing in V instead of W and
thus avoiding use of Lemma 4.3. We will perform this kind of argument in the
proof of Claim 5.15 below. The following lemma is now easy.

Lemma 5.14. In V[G], ~EG is a strongly guessing ladder system defined on the
stationary set S.

Proof. We have just seen that S is stationary. To see that ~EG is strongly
guessing, let Ċ 2 W be a nice P-name for a club subset of . By the +-c.c.
of P together with cof(�) > , we know that there is some zW~0 in C such
that Ċ is in fact a P

z

-name for a club subset of , and of course we also have
Ċ 2 H(+). Suppose also that z isW-minimal with the above property. Since F
is a book-keeping function, we can find x̄ 6= z such that zWx̄ and F (x̄)G0 = Ċ.
Let C = ĊG1 . By the paragraph just before Lemma 5.13, for every � in the
intersection of the club cG

x̄

with S, EG

�

\C is finite, which finishes the proof.

Claim 5.15. AG is definable over H(+)V[G] using S, ~s and tG as parameters.

Proof. We claim that in V[G],

AG = {y 2  \ {~0} | 9C ✓  club 8↵ 2 C \ S [~s(↵) ✓ y ! tG(↵) = 0]}.

Now if y 2 AG, cG
y

is a club subset of  and witnesses that y is an element of
the set on the right hand side of the above equation. For the other direction,
we need to combine the proofs of Theorem 3.5 and Lemma 5.13. Work in V.
Similar to the proof of Theorem 3.5, pick a Q-name ẏ for an element of  \ {~0}
and a Q-name Ċ for a club subset of  and assume, towards a contradiction,
that there is p 2 Q with

p� ẏ /2 Ȧ ^ 8↵ 2 Ċ \ Ṡ [ṡ(↵) ✓ ẏ ! ṫ(↵) = 0]. (3)

Let hN
n

| n < !i be an 2-chain of countable elementary substructures of some
large enough H(✓) containing Q, ẏ, Ċ, F and p. Let N =

S
n<!

N
n

, let �
n

=
sup(N

n

\ ) for every n < ! and let � = sup(N \ ) =
S

n<!

�
n

. From Lemma
5.9 and its proof, we can obtain a sequence hp

n

| n < !i of conditions in Q below
p such that for all n, p

n

2 N
n+1 is a lower bound of a decreasing (N

n

,Q)-generic
sequence of conditions in N

n

extending p
n�1 if n > 0, such that spn(�

n

) = 0.
As in the proof of Theorem 3.5, there is u : � !  such that for every n < !,
p
n+1 forces

• ẏ��
n

= u��
n

and such that

• x��
n

6= u��
n

for all x 2 a
pn .

Moreover, as in the proof of Lemma 5.13, p
n+1 forces

• �
n

2 Ċ and

• �
n

2 F (x̄) for all x̄ 2 apn for which there is some zWx̄ such that z 2 C
and F (x̄) is a Q \ (~S ⇤ Ṗ

z

)-name for a club subset of .

Now we define

• s = {h�, 1i} [
S

n<!

sn.
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• � = {h�, ui} [
S

n<!

�pn .

• � =
S

n<!

�pn = �.

• t = {h�, 1i} [
S

n<!

tpn .

• ~e = {h�, {�
n

| n < !}i} [
S

n<!

~e pn .

• ~Ci =
S

n<!

~Cpn,i and ~Di =
S

n<!

~Dpn,i for every i < �.

• a =
S

n<!

apn .

• c
x

= {�} [
S

n<!

cpn
x

for all x 2 a.

Then q = hhs,�i, ht,~e, hh ~Ci, ~Dii | i < �i, hc
x̄

| x̄ 2 aiii is a condition in Q, be-
cause u * x for all x 2 a and the other requirements on q can be verified as in
the proof of Lemma 5.13. But q  p and

q � �̌ 2 Ċ \ Ṡ ^ ṡ(�̌) ✓ ẏ ^ ṫ(�̌) = 1,

contradicting (3).

Claim 5.16. G is definable over H(+)V[G] using S, ~s and tG as parameters.

Proof. By Claim 5.15, AG is definable over H(+)V[G] using S, ~s and tG. As
a first step, we show that using AG as a predicate, we can define tG, ~EG, ~Ci,G

and ~Di,G for every i <  and cG
x̄

for every x̄ 2 ()V \ {~0} over H(+)V[G], for
the following is ensured by forcing with Q.

• tG = {� <  | h1 + 2 · �i_~0 2 AG}.

• �0 2 EG

�1
i↵ h1 + 6 ·��0, �1�+ 1i_~0 2 AG.

• �0 2 CG,i

�1
i↵ h1 + 6 ·��0, �1, i�+ 3i_~0 2 AG.

• �0 2 DG,i

�1
i↵ h1 + 6 ·��0, �1, i�+ 5i_~0 2 AG.

• ↵ 2 c
x̄

i↵ h↵, 1i_x̄ 2 AG.

Furthermore we can define F ⇤ and W⇤, and thus F and W over H(+)V[G], for

• x̄ 2 F ⇤ i↵ h0, 2i_x̄ 2 AG and

• x̄ 2 W⇤ i↵ h0, 3i_x̄ 2 AG.

This allows us to define H(+)V = dom(W)[ range(W) over H(+)V[G]. Thus
by the definition of Q, it is straightforward to see that Q is definable over
H(+)V[G] using the above parameters. Now assume that

p =
D
hs,�i, ht,~e, hh ~Ci, ~Dii | i < �i, hc

x̄

| x̄ 2 aii
E

is a condition in Q. p 2 G i↵ s = S�� and � = ~s �� for some � < , � < ,
t = tG�(� + 1), ~e = ~EG�(� + 1), ~Ci = ~Ci,G and ~Di = ~Di,G for every i < �,
a ✓ AG\W (��+�) is of size less than  and c

x̄

= cG
x̄

�(�+1) for every x̄ 2 a.
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Lemma 5.17. In V[G] there is a well-order R of H(+)V[G] that is definable
over hH(+),2iV[G] by a formula using S, ~s and tG as parameters.

Proof. By the proof of Claim 5.16, W, Q and H(+)V are each definable over
H(+)V[G] using parameters S, ~s and tG. But now we can obtain a well-order
R of H(+)V[G] by setting xRy i↵ x̃W ỹ where x̃ is the W-least characteristic
function of a subset of  in V coding a collection ẋ of pairs of the form ha, ⌫i
with a 2 H(+)V and ⌫ <  and such that {⌫ <  | (9a 2 G)(ha, ⌫i 2 ẋ)} is a
subset of  coding x (and analogously for ỹ and y). By Claim 5.16, it follows
that the relation R, which is clearly a well-order of H(+)V[G], is definable over
H(+)V[G] using S, ~s and tG as parameters.

Let XG ✓  be defined by setting ⇠ 2 XG i↵ one of the following holds.

(i) ⇠ = 2 · ⇠̄ and ⇠̄ 2 S.

(ii) ⇠ = 4 · ⇠̄ + 1, ⇠̄ = �⇠0, ⇠1� and (⇠0, ⇠1) 2 s⇤.

(iii) ⇠ = 4 · ⇠̄ + 3, s
⇠̄

6= s
⇣

for all ⇣ < ⇠̄ and s
⇠̄

✓ tG.

S, s⇤ and tG (and therefore also ~s) are obviously definable inH(+)V[G] from
XG. Also, by the definition of Q together with Lemma 5.8 we have that for
every ⇠ < , ⇠ 2 XG if and only if there is some i <  such that ht( ~Ci,G) = ⌘

⇠

.
Let [S] be the class of S in P()/NS



, i.e., the collection of all S0 ✓  such
that the symmetric di↵erence S0�S is non-stationary.

Lemma 5.18 is the final ingredient in the proof of Theorem 1.1. Its proof is
essentially a copy of the proof of [3, Lemma 3.2].14 We reproduce that proof
here for the reader’s benefit (with the appropriate notational changes).

Lemma 5.18. [S] and XG are lightface definable in H(+)V[G]. In fact,

(i) [S] can be defined as the unique class K in P()/NS


such that for every
S0 2 K there is a strongly guessing ladder system defined on S0,15 and

(ii) XG can be defined in V[G] as the set of all ⇠ <  such that there is a
coherent strongly type-guessing club-sequence ~C of height ⌘

⇠

, with dom( ~C)
a stationary subset of  disjoint from S0 for some S0 2 [S], and such that
every successor point of every member of range( ~C) has countable cofinality.

Proof. We start by showing the following.

Claim 5.19. In V[G], every ~Ci,G is a coherent strongly type-guessing club-se-
quence with dom( ~Ci,G) a stationary subset of  disjoint from S, and such that
every successor point of every member of range( ~Ci,G) has countable cofinality.

Proof. We have already argued that ~Ci,G is a coherent club-sequence and it is
immediate from the definition of P that its domain is disjoint from S and that
every successor point of every member of its range has countable cofinality. To
see that the domain of ~Ci,G is, in V[G], a stationary subset of , let us move

14[3, Lemma 3.2] is stated in the context of the construction in that paper. In particular, 
is !

1

in that lemma. However, the same proof works for general  with almost no changes.
15Note that ‘x belongs to the unique class K 2 P()/NS



such that ... ’ is indeed first
order expressible in hH(+),2i despite the fact that an equivalence class in P()/NS



is a
proper class in H(+).
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back to V once again, let Ċ 2 V be a Q-name for a club subset of  and let
r = hhs,�i, pi 2 Q with i < �p. It will su�ce to see that there is a condition
r̄ = hhs̄, �̄i, p̄i 2 Q extending r and forcing dom( ~Ci,p̄) \ Ċ 6= ;.

Let ⌘ = ht( ~Ci,p) and let us fix a ✓-continuous chain hN
⇠

| ⇠  ⌘i of HIA
elementary substructures of hH(✓),2,�i of size less than , for some large
enough ✓ and some well-order � of H(✓), containing Q, Ċ, F and p, and such
that N

⇠

\ ⇠ 2  and hN
⇠

0 | ⇠0  ⇠i 2 N
⇠+1 for all ⇠ < ⌘. Let �

⇠

= N
⇠

\  for all
⇠. We make sure in addition that cof(�

⇠+1) = ! for every ⇠. We aim to build
a decreasing sequence hr

⇠

| ⇠  ⌘i of conditions extending r in such a way that
for all ⇠, letting r

⇠

= hhs
⇠

,�
⇠

i, p
⇠

i,

(i) r
⇠

2 N
⇠+1 is an hN

⇠

,Qi-generic condition and �p⇠ = �
⇠

,

(ii) if ⇠ < ⌘ is a limit ordinal, then �
⇠

2 dom( ~Di,p⇠) andD
i,p⇠

�⇠
= {�

⇠

0 | ⇠0 < ⇠},

(iii) �
⌘

2 dom( ~Ci,p⌘ ) and C
i,p⌘

�⌘
= D

i,p⌘

�⌘
= {�

⇠

| ⇠ < ⌘}.

This is enough: Since r
⌘

is hN
⌘

,Qi-generic, it forces �
⌘

2 Ċ. Hence, r
⌘

is

a condition extending r and forces Ċ \ dom( ~Ci,p⌘ ) 6= ;. The construction of
hr

⇠

| ⇠  ⌘i is quite standard. Given ⇠ and assuming r
⇠

0 has been built for all
⇠0 < ⇠, we can find r

⇠

in the following way.
Suppose ⇠ is 0 or a successor ordinal. Let hr0

⇠

| ⇠ < |N
⇠

|i be the �-least
hN

⇠

,Qi-generic sequence of length |N
⇠

| of conditions extending r (if ⇠ = 0) or
r
⇠0 (if ⇠ = ⇠0 + 1). This generic sequence exists thanks to Lemma 5.9 together
with Lemma 4.2. Let r

⇠

be obtained from hr
⇠

0 | ⇠0 < |N
⇠

|i by another application
of Lemma 5.9. Certainly this r

⇠

is in N
⇠+1 and is an hN

⇠

,Qi-generic condition.
Furthermore, by Lemma 5.8 we have that �p⇠ = �

⇠

.
If ⇠ < ⌘ is a nonzero limit ordinal, we can let r

⇠

be obtained from hr
⇠

0 | ⇠0 < ⇠i
as in the proof of Lemma 5.9 and put �

⇠

into dom( ~Di,p⇠), but not into dom( ~Ci,p⇠),

and let D
i,p⇠

�⇠
= {�

⇠

0 | ⇠0 < ⇠}. Again, �p⇠ = �
⇠

. In this case, the verification

that r
⇠

is a condition in Q and that it extends r
⇠

0 for all ⇠0 < ⇠ is exactly as

in the proof of Lemma 5.9, using the fact that �
⇠

/2 dom( ~Ci

0
,p⇠) for all i0 < �

⇠

.
r
⇠

2 N
⇠+1 and it is hN

⇠

,Qi-generic because N
⇠

=
S

⇠

0
<⇠

N
⇠

0 and because each
r
⇠

0 is hN
⇠

0 ,Qi-generic.
If ⇠ = ⌘, we again build r

⌘

from hr
⇠

| ⇠ < ⌘i as in the proof of Lemma 5.9,

but this time putting �
⌘

into both dom( ~Di,p⌘ ) and dom( ~Ci,p⌘ ), and making

C
i,p⌘

�⌘
= D

i,p⌘

�⌘
= {�

⇠

| ⇠ < ⌘}.
Let us momentarily work in an ~S-generic extension of V for some ~S-generic

G0 containing hs
⌘

,�
⌘

i. As usual we prove by induction along W that p
⌘

�x is
a P

x

-condition extending all p
⇠

�x for ⇠ < ⌘. We proceed as in the proof of
Lemma 5.7. The only problem could come up in the verification of property
(ix) for p

⌘

. For this, suppose x̄ 2 ap⌘�x and suppose zWx̄ is W-minimal with
z 2 C such that F (x̄)G0 is a P

z

-name for a club subset of . By the construction
of hr

⇠

| ⇠  ⌘i as a generic sequence of conditions it is clear that p
⌘

�z, which by
induction hypothesis is a condition in P

z

extending all p
⇠

�z, decides whether or
not ⌫ is in F (x̄)G0 for every ⌫ < sup(c

p⌘
x̄

). Hence we are left with checking that
if C

x̄

is the collection of all ⌫ < sup(c
p⌘
x̄

) such that p
⌘

�z �
Pz ⌫ 2 F (x̄)G0 , then

ot(C
i

0
,p⌘

�

\⇤C
x̄

) = ht(~Ci

0
,p⌘ ) for every i0 < �p⌘ and every � 2 c

p⌘
x̄

\dom( ~Ci

0
,p⌘ ).
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The proof of this in the case when either there is some ⇠ < ⌘ such that � 2 c
p⇠
x̄

or i0 6= i goes through easily from the way we have built hr
⇠

| ⇠  ⌘i.
The only nontrivial case is when i0 = i and � = �

⌘

. We want to prove that

ot(C
i,p⌘

�⌘
\⇤ C

x̄

) = ⌘. In this case we argue that, since F (x̄)G0 is a P
z

-name

for a club subset of  and each r
⇠

(for ⇠ < ⌘) is (N
⇠

,Q)-generic, p
⌘

�z forces
�
⇠

2 F (x̄)G0 for all ⇠ < ⌘ such that z, x̄ 2 ap⇠ ✓ N
⇠

. Hence, we have in fact

that a final segment of C
i,p⌘

�⌘
is contained in C

x̄

. Now that we have that r
⌘

is a
condition in Q, checking that it extends all r

⇠

for ⇠ < ⌘, is straightforward.

We still need to check that ~Ci,G is strongly type-guessing in V[G]. For this
we argue very much as in the proof of Lemma 5.14: Let us go back to W. Let Ċ
be a nice P-name for a club subset of  and let p 2 P. As in the proof of Lemma
5.14, we know that there is some zW~0 such that z 2 C and Ċ 2 H(+) is a
P
z

-name for a club subset of . Now suppose z is W-minimal with the above
property and find x̄, zWx̄, such that F (x̄) = Ċ. Let C = ĊG1 .

By Lemma 5.12 (i) we may extend p to a condition p⇤ such that x̄ 2 ap
⇤
.

But by condition (ix) in the definition of P we know that every p0 2 P extending

p⇤ is such that p0�z decides, for every ⌫ < max(cp
0

x̄

), whether or not ⌫ is in

Ċ. Furthermore, for every such p0, letting C
x̄

be the set of ⌫ < max(cp
0

x̄

) such

that p0�z �
Pz ⌫ 2 Ċ, we know that every � 2 cp

0

x̄

\ dom( ~Ci,p

0
) is such that

ot(Ci,p

0

�

\⇤ C
x̄

) = ⌘. That is, p0 forces ot(Ci,Ġ

�

\⇤ Ċ) = ⌘ for every such �. This

shows that, in V[G], ot(Ci,G

�

\⇤ C) = ⌘ for all � 2 cG
x̄

\ dom( ~Ci,G). Hence, cG
x̄

is a witness for C to the fact that ~Ci,G is strongly type-guessing.

We have already seen that ~EG is a strongly guessing ladder system. It
remains to see that there is no strongly guessing ladder system whose domain
is a stationary subset of  disjoint from S (this is shown in Claim 5.20 below
in its case ⌘ = !) and that if ⇠ <  is such that ⇠ /2 XG, then in V[G] there is
no coherent strongly type-guessing club-sequence of height ⌘

⇠

whose domain is
a stationary subset of  disjoint from S and such that every successor point of
every member of its range has countable cofinality (this is shown in Claim 5.20
below in its case ⌘ > !). This will finish the proof of Lemma 5.18.

Claim 5.20. In V[G], let ~C = hC
�

| � 2 dom( ~C)i be a coherent club-sequence
with dom( ~C) a stationary subset of  \ S. Let ⌘ = ht( ~C). Suppose either

(i) ⌘ = !, or else

(ii) ⌘ is a perfect ordinal of countable cofinality such that ⇠ /2 XG if ⌘
⇠

= ⌘ and

every successor point of every member of range( ~C) has countable cofinality.

Then there is some z 2 ()V \ {~0} such that in V[G],

{� 2 dom( ~C) | ot(C
�

\⇤ cG
x

) < ⌘}

is a stationary subset of  for all x 2 ()V \ {~0} such that zWx.16

16The proof also shows, for ~C as in the hypothesis, that if the set

dom( ~C)\
[

{dom( ~Ci,G) | i < , ht( ~Ci,G) < ⌘}

is in V[G] a stationary subset of , then in fact {� 2 dom( ~C) | sup(C
�

\⇤ cG
x

) < ⌘} is
stationary in V[G] for W-cofinally many x in ()V below ~0.
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Proof. Let us work in W. Using the +-chain condition of P we may fix some
z 2 C \ {~0} such that ~C = ⌧G1 , where ⌧ 2 H(+) is a P

z

-name for a coherent
club-sequence of height ⌘, and some p̄ 2 P

z

\G1 forcing (in P) that ⇠ /2 ẊG0 if ⌘
is a perfect ordinal of countable cofinality and ⌘ = ⌘

⇠

- where ẊG0 is a P-name
in W for XG - and that dom(⌧) is a stationary subset of  disjoint from S.

Let x 2 ()V \ {~0} be such that zWx and let Ċ be a P-name for a club
subset of . Let p0 be a condition extending p̄ in P. By Lemma 5.12 (i) we may
assume that x 2 ap

0
. It will su�ce to find a condition q  p0 and some � 2 cq

x

such that q �P � 2 Ċ \ dom(⌧) and such that q �P ot(⌧
�

\⇤ cq
x

) < ⌘ (where ⌧
�

is a name for ⌧(�)).
Let G⇤ be P

x

-generic over W with p0�x 2 G⇤. Note that, since P
x

is a
complete suborder of P, every generic filter G0 for P/G⇤ over W[G⇤] - where
P/G⇤ is the suborder of P consisting of those conditions q such that q�x 2 G⇤
- is such that G0 \ P

x

= G⇤ and is P-generic over W as a filter of P, and that,
conversely, every P-generic filter G0 over W with G0 \ P

x

= G⇤ is P/G⇤-generic
over W[G⇤].

We will temporarily work in W[G⇤]. Let ~C⇤ = ⌧G⇤ and let

~C⇤ i =
[

{~Ci,p | p 2 G⇤, i < �p}

for all i < . Let ✓ be a su�ciently large regular cardinal and let � be a well-
order of H(✓)W[G⇤]. Let hN

⇠

| ⇠ < i be a ✓-continuous chain of elementary
substructures of hH(✓)W[G⇤],2,�i of size less than  containing everything
relevant such that N

⇠

\  2  and hN
⇠

0 | ⇠0  ⇠i 2 N
⇠+1 for all ⇠ < .17 Let

�
⇠

= N
⇠

\  for all ⇠ <  and let D0 = {�
⇠

| ⇠ < }.

Subclaim 5.21. There is a limit ordinal ⇠̄ <  with �
⇠̄

2 dom( ~C⇤), ⌘ <

�
⇠̄

, with (D0 \ �
⇠̄

)\(C⇤
�⇠̄

[
S

i<

dom( ~C⇤ i) [ S) unbounded in �
⇠̄

, and such that

ot(C⇤ i

�⇠̄
\⇤ D0) = ot(C⇤ i

�⇠̄
) in case i <  is such that �

⇠̄

2 dom( ~C⇤ i).18

Proof. Note that, by Claim 5.19,

Y := {� <  | (8i) (� 2 dom( ~C⇤ i) ! ot(C⇤ i

�

\⇤ D0) = ot(C⇤ i

�

))}

is forced by P/G⇤ to contain a club subset of . This is true because dom( ~C⇤ i)\
(i+ 1) = ; for all i - for every i there is, in W

P/G⇤ , a club

C
i

✓ {� <  | � 2 dom( ~C⇤ i) ! ot(C⇤ i

�

\⇤ D0) = ot(C⇤ i

�

)}.

Now the required club can be taken to be the diagonal intersection �
i<

C
i

.
Z := D0\(S [

S
i<

dom( ~C⇤ i)) is unbounded in  (for example by an argument
as in the proof of Lemma 5.7), and therefore D1 = {� 2 D0 | rank

Z

(�) > ⌘} is a
club subset of . Since dom( ~C⇤) is forced by P/G⇤ to be a stationary subset of
, it must have stationary intersection with Y \D1. Pick ⇠̄ s.t. �

⇠̄

> ⌘ is in this

intersection. This is enough since then (D0 \ �
⇠̄

)\(C⇤
�⇠̄

[
S

i<

dom( ~C⇤ i) [ S)

must be unbounded in �
⇠̄

as rank
Z

(�
⇠̄

) > ⌘ and ot(C⇤
�⇠̄
) = ⌘.19

17For this proof we do not need that the structures be HIA.
18There may or may not be such an i. If there is such an i, then of course it is unique.
19Note that Z\Y is unbounded in sup(Z) whenever Z and Y are sets of ordinals with

rank
Z

(sup(Z)) > ot(Y ).
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Let ⇠̄ be as given by Subclaim 5.21. We will find, in W, a condition q
extending p0 and forcing both �

⇠̄

2 Ċ \ dom(⌧) and ot(⌧
�⇠̄

\⇤ cq
x

) < ⌘.
The proof of the following subclaim is standard.

Subclaim 5.22. For every dense set D ✓ P/G⇤, q 2 P/G⇤, and every u 2 aq

with either u = x or xWu, there is a club C ✓  with the property that for every
� 2 C and every �0 < � there is a condition q0 2 D extending q with �q

0
< � and

such that cq
0

u

\cq
u

✓ (�0, �).

Proof. We may take this club to be {M
j

\ | j < } for an 2-chain hM
j

| j < i
of elementary substructures of H(�) (for some large enough �) of size less than
, containing D and q, and such that M

j

\  2  for all j. The subclaim
then follows from an application of Clause (ii) of Lemma 5.12 within a relevant
M

j

.

In order to find the desired q extending p0 we distinguish three cases.

Case 1: There is (a unique) i such that �
⇠̄

2 dom( ~C⇤ i) and ⌘ < ht( ~C⇤ i).

Let E be the set of ordinals in C⇤
�⇠̄

above min(C⇤
�⇠̄
) which are not limit points

of C⇤
�⇠̄

and let ht
k

| k < !i be an increasing sequence converging to the height

of ~C⇤ i. Since i 2 N
⇠̄

(because i < �
⇠̄

using Clause (viii) in the definition
of conditions), and therefore N

⇠̄

can be assumed to contain ht
k

| k < !i, by
disregarding an initial segment of hN

⇠

| ⇠ < i if necessary we may, and will,

assume that ht
k

| k < !i is in N0. Note that, since ht(~C⇤ i) is a perfect ordinal
above ⌘, for every k there are unboundedly many ordinals � in E such that
ot((C⇤ i

�⇠̄
\⇤D0)\J

�

) � t
k

, where J
�

is the interval (max(C⇤
�⇠̄
\�), �). Otherwise

ht( ~C⇤ i) = ot(C⇤ i

�⇠̄
\⇤ D0) would be bounded by t

k

·⌘ for some k, which would

contradict the fact that ht( ~C⇤ i) is perfect and that t
k

and ⌘ are less than
ht( ~C⇤ i). Since every ordinal in C⇤ i

�⇠̄
\⇤ D0 is of the form �

⇠

for some ⇠ < ⇠̄, it

follows that we may find a strictly increasing sequence (⇠
k

)
k<!

converging to ⇠̄
such that �

⇠0 > i and such that

ot((C⇤ i

�⇠̄
\⇤ D0) \ (max(C⇤

�⇠̄
\ �̄

k

), �̄
k

)) > t
k+1

for �̄
k

:= min(E\�
⇠k) (for all k). It follows that there is a function h defined on

E such that max(C⇤
�⇠̄

\ �)  h(�) < � for every � 2 E and such that

ot((C⇤ i

�⇠̄
\⇤ D0) \

[

�

02E\�

(max(C⇤
�⇠̄

\ �0), h(�0))) � t
k

whenever k < !, � 2 E and �
⇠k  �. We may assume that h is defined inductively

as follows. If k < ! is minimal such that � 2 E \ �
⇠k , let h(�) be the least ✏ in

(max(C⇤
�⇠̄

\ �), �) such that

ot

 
(C⇤ i

�⇠̄
\⇤ D0) \

 
[

�

02E\�

(max(C⇤
�⇠̄

\ �0), h(�0)) [ (max(C⇤
�⇠̄

\ �), ✏)

!!
� t̄,
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where t̄ is the maximal member t of the set {0}[ {t
k

0 | k0  k} for which there
is some ✏, max(C⇤

�⇠̄
\ �) < ✏ < �, such that

ot

 
(C⇤ i

�⇠̄
\⇤ D0) \

 
[

�

02E\�

(max(C⇤
�⇠̄

\ �0), h(�0)) [ (max(C⇤
�⇠̄

\ �), ✏)

!!
� t.

Note that, since ~C⇤ i and ~C⇤ are coherent sequences, h�(E\�
⇠

) 2 N
⇠+1 for every

⇠ < ⇠̄. The reason is that N
⇠+1 contains all initial segments of ~C⇤ i and of ~C⇤

of length less than �
⇠+1 and the sequences hN

⇠

0 | ⇠0  ⇠i and ht
k

| k < !i. Let

⌃ = {⇠ < ⇠̄ | �
⇠

2 (C⇤ i

�⇠̄
\⇤ D0) \

[

�2E
(max(C⇤

�⇠̄
\ �), h(�))}

and let ⌃̄ be the closure of ⌃. Note that ot(⌃) = ht( ~C⇤ i) and that ⌃ does not
contain any of its accumulation points. In fact, if ⇠ 2 ⌃, then �

⇠

is a member
of C⇤ i

�⇠̄
which is not a limit point of C⇤ i

�⇠̄
(by the definition of \⇤). Note also

that max(⌃̄) = ⇠̄, that �
⇠

2| S for any ⇠ 2 ⌃̄ and that �
⇠

2| dom( ~C⇤ j) for any
⇠ 2 ⌃̄ \ �

⇠̄

and j < , using Clause (viii) in the definition of conditions.
Now we can inductively build a decreasing sequence hp

⇠

| ⇠ 2 ⌃̄i of conditions
in P/G⇤ extending p0 such that the following hold for each ⇠ 2 ⌃̄.

(i) p
⇠

2 N
⇠+1.

(ii) If ⇠ 2 ⌃̄\⌃, then p
⇠

is a lower bound of hp
⇠

0 | ⇠0 2 ⌃ \ ⇠i.

(iii) If ⇠ 2 ⌃, then p
⇠

is a lower bound of a certain decreasing !-sequence

hq⇠
k

| k < !i of conditions in N
⇠

(see below) and forces �
⇠

2 Ċ.

(iv) Given any two ⇠0 < ⇠1 in ⌃̄ and any x̄ 2 ap⇠0 , if there is a minimal z̄Wx̄
in C such that F (x̄)G0 is a P

z̄

-name for a club subset of , then p
⇠1�z̄

forces �
⇠1 2 F (x̄)G0 .

(v) If ⇠ 2 ⌃ and � 2 E is such that �
⇠

2 (max(C⇤
�⇠̄

\ �), h(�)), then

max(C⇤
�⇠̄

\ �) < min(c
p⇠
x

\(cp
0

x

[ (sup{�
⇠

0 | ⇠0 2 ⌃ \ ⇠}+ 1))).

We want to show first, given any ⇠ 2 ⌃ and assuming p
⇠

0 has been built for
all ⇠0 2 ⌃̄ \ ⇠, how to find p

⇠

in N
⇠+1 so that (iii) and (v) hold about p

⇠

, and if
⇠0 = max(⌃̄ \ ⇠), so that (iv) holds about the pair (⇠0, ⇠). Moreover we want to
show how to perform the construction in a uniformly definable way.

p
⇠

can be built as a lower bound in N
⇠+1 \ P/G⇤ of a decreasing sequence

hq⇠
k

| k < !i of P/G⇤-conditions in N
⇠

extending pmax(⌃̄\⇠) (if ⌃̄ \ ⇠ 6= ;) or
extending p0 (if ⇠ is the first member of ⌃) such that, for a suitable sequence
hD

k

| k < !i of dense subsets of P/G⇤, all of them belonging to N
⇠

,

(a) q⇠
k

2 D
k

for all k,

(b) sup
k

0�k

max(c
q

⇠
k0

u

) = �
⇠

for every k and every u 2 aq
⇠
k , and
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(c) if � 2 E is such that �
⇠

2 (max(C⇤
�⇠̄

\ �), h(�)), then q⇠0 puts some ordinal

above max(C⇤
�⇠̄

\ �), but no new ordinal below max(C⇤
�⇠̄

\ �) + 1, inside

c
q

⇠
0

x

.20

Since �
⇠

2| S and �
⇠

2| ~C⇤ j for any j < , the sequence hq⇠
k

| k < !i has a
definable lower bound r such that r�x 2 G⇤, by the arguments in the proof of
Lemma 5.7. Conditions (a)-(c) can be met simultaneously once D

k

has been
fixed since, by correctness, N

⇠

contains a club as given by Subclaim 5.22 for
D = D0 and for q being either pmax(⌃̄\⇠) or p0 and since �

⇠

, being a non-

accumulation point of C⇤ i

�⇠
, has countable cofinality.

Let h✏
k

| k < !i 2 N
⇠+1 be the �-first !-sequence of ordinals in N

⇠

converg-
ing to �

⇠

. We take each D
k

to be the set of conditions q0 forcing some ordinal

above ✏
k

to be in F (x̄)G0 \Ċ\cq
0

x̄

whenever x̄ 2 aq (for the right choice of q) and
there exists ū 2 C with ūWx̄ such that F (x̄)G0 is a P

ū

-name for a club subset
of . All choices can be made in a uniform way using � to pick all relevant
objects to be �-least possible with the desired properties.

The sequence of conditions hp
⇠

| ⇠ 2 ⌃̄i can now be built in a uniform way,
again by the usual argument involving the well-order �. At limit stages ⇠ < ⇠̄ of
the construction, we extend all conditions built up to that point by considering
a lower bound p

⇠

of the sequence with p
⇠

�x 2 G⇤. This lower bound exists by

the proof of Lemma 5.7 because �
⇠

2| S and �
⇠

2| dom( ~C⇤ j) for any j < . The
fact that h�(E \ �

⇠

) 2 N
⇠+1 for every ⇠ ensures that the choice of p

⇠

takes place
inside N

⇠+1.
Now if � 2 E \ c

p⇠̄
x

, consider the least ⇠ 2 ⌃̄\{⇠̄} such that � 2 E \ c
p⇠
x

. Then
if �⇤ is the successor of � in E , ⇠ is also least in ⌃̄\{⇠̄} such that �

⇠

2 (�, �⇤). But
then by condition (v) in the construction of the p

⇠

, it follows that � 2 E \ cp
0

x

.
Considering that E is the set of successor points of C⇤

�⇠̄
, it follows that there is

�̄ < �
⇠̄

such that

(?) C⇤
�⇠̄

\⇤ c
p⇠
x

✓ �̄ for each ⇠.

Also, given any x0 2 ()V\{~0} such that xWx0 and any ⇠0 2 ⌃, if x0 2 ap⇠0 ,
then x0 2 N

⇠0+1. Hence, if z̄Wx0 is minimal such that z̄ 2 C and F (x0)G0 is a
P
z̄

-name for a club subset of , then each �
⇠

(for ⇠ 2 ⌃, ⇠ > ⇠0) is a member
of C⇤ i

�⇠̄
which is not a limit point of C⇤ i

�⇠̄
and which is forced by p

⇠

to be in

F (x0)G0 . This allows us to obtain p
⇠̄

21 and extend it to a condition q such that
q�x 2 G⇤ and such that q forces ⌧

�⇠̄
= C⇤

�⇠̄
. This finishes the proof in this case,

since q �P �
⇠̄

2 Ċ and since q �P ⌧
�⇠̄

\⇤ cq
z

✓ �̄ (by (?)).

Case 2: There is (a unique) i such that �
⇠̄

2 dom( ~C⇤ i) and ⌘ > ht( ~C⇤ i).

Let ⌃ = {⇠ < ⇠̄ | �
⇠

2 C⇤ i

�⇠̄
, ⌘ < �

⇠

}. This time we build a decreasing sequence

hp
⇠

| ⇠ 2 ⌃i of conditions in P/G⇤ extending p0 and satisfying the following.

20This means that c
q

⇠
0

x

\(cr
x

[ (max(C⇤
�⇠̄

\ �) + 1)) 6= ; and c
q

⇠
0

x

\ (max(C⇤
�⇠̄

\ �) + 1) =

cr
x

\ (max(C⇤
�⇠̄

\ �) + 1), where r = p
max(

¯

⌃\⇠)

if ⌃̄ \ ⇠ 6= ; and r = p0 if ⇠ = min(⌃).
21The crucial point here is that by the above, (b) in Condition (ix) in the definition of P

holds for p
¯

⇠

. (a) in Condition (ix) and (vi) in the definition of P hold trivially, for �
¯

⇠

2| S.
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(i) p
⇠

2 N
⇠+1 for every ⇠.

(ii) For every limit point ⇠ of ⌃, p
⇠

is a lower bound of hp
⇠

0 | ⇠0 2 ⌃ \ ⇠i.

(iii) Given any successor point ⇠ of ⌃, p
⇠

is a lower bound of a certain decreasing

!-sequence hq⇠
k

| k < !i of conditions in N
⇠

and forces �
⇠

2 Ċ.

(iv) Given any ⇠0 < ⇠1 in ⌃ and any x0 2 ap⇠0 , if z̄Wx0 is W-minimal in C
such that F (x0)G0 is a P

z̄

-name for a club subset of , then p
⇠1 forces

�
⇠1 2 F (x0)G0 .

(v) Given any successor point ⇠ of ⌃,

c
p⇠
x

\ (sup{�
⇠

0 | ⇠0 2 ⌃ \ ⇠}, �
⇠

) \ C⇤
�⇠̄

= ;.

For any successor point ⇠ of ⌃, assuming p
⇠

0 for all ⇠0 2 ⌃ \ ⇠ has been
defined, the choice of p

⇠

2 N
⇠+1 can be made as in the previous case: p

⇠

can be

taken to be a lower bound of a decreasing sequence hq⇠
k

| k < !i of conditions
in N

⇠

meeting the members of a suitably chosen sequence hD
k

| k < !i of dense
subsets of P/G⇤ in N

⇠

. This lower bound will exist exactly by the same reasons

as in the previous case. This time we pick the conditions q⇠
k

in such a way that,
for all k,

(a) q⇠
k

2 D
k

,

(b) sup
k

0�k

max(c
q

⇠
k0

u

) = �
⇠

for every u 2 aq
⇠
k , and

(c) q⇠
k

does not put any ordinal in C⇤
�⇠̄
\(sup{�

⇠

0 | ⇠0 2 ⌃ \ ⇠}+ 1) inside c
q

⇠
k

x

.

We again use that cof(�
⇠

) = !. Conditions (a)-(c) can be met, once D
k

has

been fixed, since ht( ~C⇤) < �
⇠

= N
⇠

\ and since N
⇠

contains a club as given by

Subclaim 5.22 for D = D
k

and for q being p
j

or q⇠
k�1 if k > 0. The intersection

of this club with �
⇠

has order type �
⇠

> ht( ~C⇤), so there are unboundedly
many points � in it such that [⌫, �) \ C⇤

�⇠̄
= ; for some ⌫ < �. The choice of

hD
k

| k < !i is as in Case 1.
This is enough since then, by the same reasons as before, hp

⇠

| ⇠ 2 ⌃i has a
lower bound p

⇠̄

in P/G⇤ (using (iv) as in Case 1) such that (c
p⇠̄
x

\C⇤
�⇠̄
)\(�

⇠0+1) ✓
{�

⇠j | 0 < j < ht( ~C⇤ i)} (by (v)), and forcing �
⇠̄

2 Ċ (by (iii)). As in the previ-
ous case, we can extend p

⇠̄

to a condition q, with q�x 2 G⇤, forcing ⌧
�⇠̄

= C⇤
�⇠̄
.

This is enough, since then q forces ot(⌧
�⇠̄

\⇤ cq
x

)  ht( ~C⇤ i) < ⌘.22

Case 3: �
⇠̄

/2
S

i<

dom( ~C⇤ i).

The proof is now easier than in the previous two cases. Let h⇠
k

| k < !i be a
strictly increasing sequence converging to ⇠̄ and with {�

⇠k | k < !} disjoint from

C⇤
�⇠̄

[
S

i<

dom( ~C⇤ i).

We can now build by recursion a decreasing sequence hp
k

| k < !i of condi-
tions in P/G⇤ extending p0 such that, for each k,

22In fact, q forces ot((⌧
�⇠̄
\(�

⇠0 + 1)) \ cq
z

)  ht( ~C⇤ i) < ⌘.
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(i) p
k

2 N
⇠k+1,

(ii) p
k

forces ⇢ 2 Ċ for some ⇢ > �
⇠k�1 , and

(iii) if k > 0, then min(cpk
x

\(�
⇠k�1 + 1)) > max(C⇤

�⇠̄
\ �

⇠k).

Finally, since �
⇠̄

/2 S[
S

i<

dom( ~C⇤ i), hp
k

| k < !i has a lower bound q̃ with

q̃�x 2 G⇤ and forcing that �
⇠̄

is in Ċ. Again, we can extend q̃ to a condition q
such that q�x 2 G⇤ and forcing ⌧

�⇠̄
= C⇤

�⇠̄
. It follows that q forces that ⌧

�⇠̄
\⇤ cq

x

(and in fact ⌧
�⇠̄

\ cq
x

) is bounded in �
⇠̄

.
The construction in this last case finishes the proof of Claim 5.20.

This completes the proof of Lemma 5.18.

It follows now, from Lemmas 5.17 and 5.18, that in V[G] there is a lightface
definable well-order ofH(+)V[G]. This concludes the proof of Theorem 1.1.

6 The global iteration

In Section 5, given  � !1 with < = , we obtained a partial order Q which
has a <-directed closed dense subset, the +-cc, is a subset of H(+) and
forces the existence of a lightface definable well-order of H(+). Note that the
definition of Q actually depended on the choice of an arbitrary well-order W̄
of  and an arbitrary bookkeeping function F̄ for H(+). Let us denote by
Q



(W̄, F̄ ) the forcing Q at  relative to a particular choice of well-order W̄ and
bookkeeping function F̄ . We may also assume that Q



(W̄, F̄ ) is <-directed
closed (by passing to its <-directed closed dense subset). Now let Q



be the
two-step iteration which in the first step performs a lottery of all well-orders of
 and all bookkeeping functions for H(+) and thus chooses some particular
W̄



and F̄


, and in the second step forces with Q


(W̄


, F̄


).

We are now ready to give the definition of the global iteration P that will serve
as a witness for Theorem 1.2 and Theorem 1.3. For either theorem, the forcing
P is defined as follows.

Definition 6.1. Let P be the reverse Easton iteration which is trivial at stage
 unless  is an uncountable cardinal satisfying < =  that is not a coun-
terexample to the SCH, in which case we force with Q



at stage .

Proof of Theorem 1.2 and Theorem 1.3. That P preserves ZFC, cofinalities and
the continuum function under the assumption of SCH are standard arguments.
That P introduces the relevant lightface definable well-orders follows by Theo-
rem 1.1 and the fact that tails of P are su�ciently closed. The slightly more
complicated statements when one doesn’t assume the SCH follow by the same
arguments (except that they may now fail at counterexamples to the SCH).

7 Large Cardinal Preservation

Various large cardinals can be preserved using (sometimes slight variations of)
arguments to be found in the literature. We will state some of the resulting
lemmas and mostly refer to the relevant articles for the proofs. Note that it is
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immediate that P preserves the strong inaccessibility of all strongly inaccessible
cardinals.

Lemma 7.1. Assume  is �-supercompact,   �, �<� = �, 2� = �+ and
� is not a counterexample to the SCH. Then forcing with P preserves the �-
supercompactness of .

Proof-Sketch: The proof of this lemma is essentially as for [2, Theorem 4.1].
The only additional argument needed is that below any condition p 2 P, there
is q  p such that q chooses W̄

⌫

and F̄
⌫

for every ⌫ with ✓  ⌫  �. This
implies that P(q)

�

has a dense subset of size � and also Q
�

(q(�)) is su�ciently
small (in a sense specified in (1) in the statement of [2, Theorem 4.1]) for
the proof of [2, Theorem 4.1] to go through. Moreover one has to verify (in a
straightforward way) that a suitable adaption of (2) from [2, Theorem 4.1] holds
for Q

�

(W̄
�

, F̄
�

).23

Under su�cient GCH hypothesis, this shows that P preserves all supercom-
pact cardinals as in [2]. Note however that one may well be in a situation where
no � as above exists. Thus we do not know whether it can be shown that P
preserves supercompact cardinals in general. Our below results however will
show (under stronger large cardinal assumptions) that it is consistent for super-
compact cardinals to exist after forcing with P. The next two lemmas are based
on large cardinal preservation results presented in [4].

Lemma 7.2. Given a hyperstrong cardinal , there is a condition in P forcing
that the hyperstrength of  is preserved. The same is true with hyperstrength
replaced (in both the assumption and conclusion of the above statement) by n-
superstrength for any n with 2  n < !.

Proof. Exactly as in the proof of [4, Theorem 9] (note that no GCH assumption
is either made or needed there).

Lemma 7.3. Given an !-superstrong cardinal , there is a condition in P
forcing that the !-superstrength of  is preserved.

Proof. Essentially as in the proof of [4, Theorem 2]. Let j : V ! M be the
embedding witnessing that  is !-superstrong. Note that P is trivial at the
singular cardinal j!() and therefore the tail of the iteration starting from j!()
is (j!())+-closed (and therefore one can use the argument of [4, Lemma 3] to
generate the tail of the generic starting from j!()). However for the proof of [4,
Lemma 4] to go through, one needs to choose (slightly di↵erent to the proof in
[4], letting G

j

!() denote the P
j

!()-generic filter as in [4]) p 2 G
j

!() such that
p reduces f(ā) below jn+1() whenever ā belongs to V

j

n() and f(ā) is open
dense on P

j

!().
24 That such p exists is a standard reduction argument using

that V
j

n() has size jn(), that P
j

n+1() is jn+1()-cc and that the iteration P
starting from jn+1() is jn+1()-closed.25

23Since we consider the present lemma to be rather weak (it requires instances of the GCH
to hold while our interest here is to work in a non-GCH context), we do not want to go into
any further details of its proof but rather concentrate on other notions of large cardinals in
the following.

24This means that for every relevant ā, there is an open dense subset f⇤(ā) of P
j

n+1
()

such

that whenever q  p is such that q�jn+1() 2 f⇤(ā), then q 2 f(ā).
25For example such a reduction argument is performed, in a somewhat more complicated

context, in [5, Claim 23].
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Note that starting with a proper class of large cardinals of any of the above
kinds (i.e. hyperstrong or n-superstrong for 2  n  !) the arguments in [4] in
fact show that the relevant large cardinal property is preserved for class-many
of the given large cardinals by an easy density argument.26

The above leaves out one type of large cardinal treated in [4] for which
the corresponding arguments seem not to work in our present context, namely
superstrong cardinals. As is the case with supercompacts, we do not know
whether superstrong cardinals can be preserved by the forcing in general.

8 Other global Iterations

In Section 6, we provided a class sized iteration that introduces a lightface de-
finable well-order of H(+) whenever this is possible by the methods developed
in Section 5. We could however define sparser iterations that only introduce
lightface definable well-orders of H(+) for certain . This can of course allow
for better results concerning preservation of large cardinals. For example, one
could use this to give an alternative proof of the main result of [5] (using the
large cardinal preservation techniques of [5]) by using the reverse Easton itera-
tion P that only forces with Q



at stage  if  is inaccessible. We will restate
this result here.

Theorem 8.1 (Friedman-Holy-Lücke, [5]). Assume SCH holds at singular fixed
points of the i-function. There is a class sized notion of forcing P such that the
following hold.

(i) Forcing with P introduces a lightface definable well-order of H(+) for
every inaccessible .

(ii) P is cofinality-preserving and preserves the continuum function.

(iii) P preserves the supercompactness of all supercompact cardinals.

(iv) If  is !-superstrong then there is a condition in P that forces  to remain
!-superstrong.
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