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Abstract 

 

Cell migration involves dynamic and spatially regulated changes to the 

cytoskeleton. During avian gastrulation, cells ingress through the primitive 

streak. Previous characterisation of microtubule organisation during this 

process revealed the distribution of cells with polarised and radial arrays 

across different regions of the embryo. Interestingly, many cells organised 

into groups arranged in rosette-like structures. As the primitive streak 

regresses and the neural folds gather at the centre of the embryo, bands of 

paraxial mesoderm that lie either side of the neural tube separate into 

somites. As new somites form caudally, the more rostral somites undergo a 

process of morphogenesis. Each somite divides into two regions: the 

dermomyotome and the sclerotome. Little is known about the cytoskeleton 

during this process. 

Signalling by the Wnt family of secreted proteins influences the fate of cells 

during early embryonic patterning, cell movement, and cell polarity, 

processes in which the cytoskeleton is noticeably modified. The microtubule 

and actin crosslinking factor-1/actin crosslinking factor-7 (MACF1/ACF7) 

protein has been implicated in Wnt signalling and, additionally, its regulation 

has been shown to be important in cell migration. 

This thesis concentrates on cellular dynamics and organisation (and the 

associated cytoskeleton) during chick gastrulation and somitogenesis. The 

aims of this project were to a) further characterise the cytoskeleton in cells 

that ingress into the avian primitive streak. b) Establish a published 

electroporation technique, which permits the targeting of different regions of 

the somite and subsequently observe cells (and their associated 

cytoskeleton) in real time. c) Determine the expression pattern for 

MACF1/ACF7 in chick. d) To ascertain if there is a direct role for canonical 

Wnt signalling in somitic myofibre orientation/organisation. 
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Chapter 1: Introduction 

 

1.1. Cell Migration and the Cytoskeleton 

Cell migration is an integrated multistep process that contributes to tissue 

repair, angiogenesis, and the functioning of the immune system; it drives 

disease progression and is fundamental to the development of multicellular 

organisms (Affolter & Weijer, 2005; Bai et al, 2011; Dormann & Weijer, 2003; 

Ridley et al, 2003). Migration involves dynamic and spatially regulated 

changes to the cells cytoskeleton (composed primarily of actin, microtubules 

and intermediate filaments), cell-substrate adhesions and the extracellular 

matrix (ECM). It is typically initiated in response to extracellular cues. These 

cues, which can be diffusible factors (chemokines and growth factors for 

example), signals from neighbouring cells, and/or signals from the ECM, 

stimulate transmembrane receptors to initiate intracellular signalling (Ridley, 

2001). An example of the many different intracellular molecules that have 

been implicated in cell migration includes the small guanosine-5’-

triphosphatases (GTPases), in particular Rac1, RhoA and Cdc42 of the Rho-

family, known principally for their pivotal role in regulating the actin 

cytoskeleton (Bai et al, 2011; Etienne-Manneville & Hall, 2002). Rho-family 

GTPases cycle between an inactive, GDP-bound, and an active GTP-bound 

conformation. In the GTP-bound form, they interact with downstream target 

proteins (effectors) to induce cellular responses. Effectors of Cdc42 include 

p21-activated kinase (PAK), Wiskott-Aldrich syndrome protein 

(WASP)/neuronal WASP, Ras GTPase-activating-like protein (IQGAP1), 

Par6 and myotonic-dystrophy kinase related Cdc42-binding kinase (MRCK). 

Rac1 effectors include p140Sra-1, IRSp53, PAK, and IQGAP1; the latter two 

are also effectors of Cdc42 as aforementioned. Examples of Rho effectors 

include Rho kinase (ROCK), the myosin-binding subunit of myosin 

phosphatase, protein kinase N (PKN), mDia, citron kinase, and rhoketin. The 

majority of these effectors perform their physiological functions during actin 

organisation. Accumulating evidence has shown that some of these effectors, 
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PAK, IQGAP1, Par6 and, mDia for example, are also involved in the 

regulation of microtubule dynamics and organisation during cell polarisation 

(Fukata et al, 2003; Ridley, 2001; Watanabe et al, 2005).  

 

Ultimately, extracellular signals instigate the polarisation and extension of a 

protrusion in the direction of the cells movement (the so-called ‘leading 

edge’). Different cell types generate different types of protrusive structures, 

including lamellipodia, filopodia and pseudopodia (differing primarily in the 

way the actin is organised). The protrusion attaches to the substratum on 

which the cell is migrating via the formation of adhesions, which serve as 

traction points. The cell body moves forward by way of contraction and 

attachments at the rear are released as the cell retracts. Thus, migration can 

be divided into four mechanistically separate steps: protrusion extension, 

formation of new adhesions, cell body contraction, and tail detachment (see 

figure 1.1; Alberts et al, 2002; Horwitz & Webb, 2003; Ridley, 2001; Ridley, 

2011).  

 

 

Figure 1.1.  
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Protrusive structures, like lamellipodia, extend owing to both the 

polymerisation of localised actin at the leading edge, and the loosening of the 

myosin thick filament network in the cell cortex (which allows expansion to 

occur). Rac1 and Cdc42 regulate actin polymerisation, while RhoA regulates 

the assembly of contractile actin and myosin, which leads to contraction at 

the rear of migrating cells (figure 1.1). Traction, which may involve 

microtubule function (see Small & Kaverina, 2003), is gained via attachment 

to the substrate; new contacts are made at the leading edge, while contacts 

are broken at the trailing edge (rear of the cell; Dormann & Weijer, 2003; 

Hollenbeck, 2001; Lauffenburger & Horwitz, 1996; Watanabe et al, 2005).  

In addition to affecting the actin cytoskeleton and cell adhesion, recent 

evidence has shown that the Rho GTPases also affect microtubule function 

(for an extensive review see Watanabe et al, 2005). Microtubules are hollow 

tubes composed of thirteen protofilaments of α- and β-tubulin dimers 

organised in a head-to-tail fashion. They are essential for vesicle transport, 

cell division, cell polarisation, and cell migration (Etienne-Manneville, 2010). 

In most cells they are nucleated at their minus ends, which predominantly 

localise at the microtubule-organising centre (MTOC; also called the 

centrosome), and their plus-ends extend toward the cell periphery. In order to 

explore intracellular space their plus-ends alternate between two phases of 

growth and shrinkage in a manner known as dynamic instability (Mitchison 

and Kirschner, 1984). It is through this ‘searching’ process that the plus-ends 

are captured and stabilised at their target destinations, kinetochores on the 

mitotic spindle and the cell cortex, for example (Gunderson & Cook, 1999; 

Watanabe et al, 2005). Microtubule dynamics are highly regulated by multiple 

factors: tubulin post-translational modifications (acetylation or detyrosination 

for example) and microtubule-associated proteins (MAPs) such as plus-end 

tracking proteins. In migrating cells, selective stabilisation of the plus-ends of 

microtubules (i.e. at the cell cortex within the advancing lamellipodium) 

enables the MTOC to reorient towards the leading edge resulting in polarised 

microtubule arrays. Conversely, non-migrating cells have radial microtubule 

arrays that are anchored at a centrally located MTOC. Microtubule plus-end 

proteins (+TIPS), such as end-binding 1 (EB1), cytoplasmic linker associated 
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proteins (CLASPs), adenomatous polyposis coli (APC; a tumour suppressor), 

and microtubule and actin crosslinking factor-1/actin crosslinking factor-7 

(MACF1/ACF7), and cortical receptors such as IQ motif containing GTPase 

activating protein 1 (IQGAP1) and Discs large 1 (Dlg1), also appear to be 

important for establishing cortical contact (Fukata et al, 2003; Watanabe et 

al, 2005; Wittmann & Waterman-Storer, 2001).  

   

1.2. Gastrulation 

At present, the majority of studies are still concerned with the investigation of 

the behaviour of individual cells. Many cell types migrate as solitary entities, 

lymphocytes, fibroblasts and neuronal cells for example. Yet, during 

angiogenesis, wound healing, and development, epithelial and endothelial 

cells often move as sheets or groups (Ridley, 2001; Rørth, 2007). 

Unsurprisingly, regulatory mechanisms and signalling pathways can differ 

considerably between individual- and collective-guidance modes (Rørth, 

2007). A prime example of collective movement occurs during gastrulation. 

Gastrulation is the highly coordinated morphogenetic process in embryos by 

which the presumptive mesoderm and endoderm move inside the ectoderm 

to form a three-layered embryo. The ectoderm, which will later form the adult 

integument and nervous system, surrounds both the endoderm (innermost) 

and mesoderm, which themselves become the future lining of the gut and the 

middle layer of the adult body plan respectively (Keller, 2005). In frog 

(Xenopus) embryos, gastrulation is driven by radial intercalation of cells in 

the animal cap. This underlies the epiboly of the ectoderm and convergence 

and extension of the mesoderm (and overlying neuroectoderm), resulting in 

the elongation of the embryo (Keller et al, 2000). Xenopus gastrulation is, 

consequently, a result of the rearrangement of coherent cells that are 

embedded in epithelial sheets. In contrast, gastrulating mouse and chick 

embryos show large-scale epithelial-to-mesenchymal transitions (EMT; a 

morphogenetic process in which cells lose their epithelial characteristics and 

gain mesenchymal properties), whereby cells ingress from the epiblast to 
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form the mesoderm (see figure 1.2; Bellairs 1986, Nakaya & Sheng, 2009; 

Wallingford & Harland, 2007; Yang et al, 2002).  

 

Figure 1.2.  
 
 

 

 

The early avian embryo consists of two layers, the hypoblast and the 

epiblast. The hypoblast gives rise to extraembryonic structures only, while 

the epiblast produces extraembryonic structures and all the structures of the 

embryo proper (Wolpert et al, 2007). Structurally, the epiblast resembles a 

typical epithelial sheet. The apical end of each cell is in contact with other 

cells through E-cadherin (containing both adherens and tight junctions) and 

the basal side of each cell makes contact with a basal lamina (Andries et al, 

1985; Chuai & Weijer, 2008). Interestingly, in 2008 Nakaya et al provided 

evidence that controlled basement membrane breakdown is the first step, 

and a crucial component of, gastrulation EMT. They propose that basal 

microtubule stability is vital to this process. Their model suggests that in 

lateral cells, neuroepithelial-transforming-protein 1 (Net1) activates basal 

RhoA, which locally stabilises microtubules through an unknown post-

translational modification. While, in medial cells, at the onset of EMT, the 

disappearance of Net1 stops basal RhoA activity and as a consequence 

destabilises microtubules. It is this loss of microtubules that eventually drives 
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basement membrane disassembly (Levayer & Lecuit, 2008; Nakaya et al, 

2008).  

Unfortunately, little is known about how cells in the epiblast move. Several 

mechanisms have been implicated: the cells could move on a basal lamina 

substrate, they could move by pushing and pulling on each other, or the cells 

could use both mechanisms simultaneously. Epiblast cells produce a basal 

lamina, which is anchored in the surrounding Area Opaca. The cells could 

move by walking on this membrane using lamellipodia that extend in the 

direction of migration. It is possible that the cells exert traction on each other, 

involving filopodia formation. At their apical sides the cells stick together by 

way of well-developed adherens junctions. In addition to contributing to cell 

movement lamellipodia could potentially detect and interpret gradients of 

signalling molecules such as growth factors and Wnts associated with the 

ECM. Pushing and pulling, mediated via junctional contacts, would require 

extensive modulation of cell-cell adhesion. When guided by a signalling 

system, this mechanism, if active in a graded manner, could result in 

intercalation. In Xenopus, intercalation is controlled through the Wnt planar 

polarity pathway (first discovered in Drosophila). Wnt5 and Wnt11 signal 

through frizzled receptors (Frizzled 7 [Fzd7] in particular), which then via 

dishevelled activate small GTPases (Rac, Rho and CDC42), which as 

previously mentioned signal to downstream regulatory components of the 

actin-myosin cytoskeleton (Chuai et al, 2006; Chuai & Weijer, 2008; Cui et al, 

2005; Keller et al, 2000; Keller, 2005).     

In the chick, gastrulation begins with extensive rearrangements of cells in the 

epiblast resulting in the establishment of the primitive streak in the midline. 

During its formation the streak elongates in both anterior and posterior 

directions and prospective mesoderm cells begin to ingress (Chuai et al, 

2006; Chuai & Weijer, 2008; Wagstaff et al, 2008; Wallingford & Harland, 

2007). This formation and elongation gives rise to two of the three germ 

layers: the endoderm, which replaces the hypoblast, and the mesoderm. 

Cells remaining in the epiblast form the third germ layer, the ectoderm 

(Lopez-Sanchez et al, 2005). The anterior most part of the streak is known as 

Hensen’s node, which acts as the organising centre for avian gastrulation 
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(Boettger et al, 2001; Mikawa et al, 2004). When the streak reaches half-

maximal extension epiblast cells, within the streak, undergo EMT and move 

into the space between the epiblast and hypoblast to form axial and lateral 

mesoderm and the definitive endoderm (Lawson & Schoenwolf, 2001a; Yang 

et al, 2002).  

 

Formation of the streak is initiated at Hamburger and Hamilton (HH) Stage 2 

(Hamburger & Hamilton, 1951; Lawson & Schoenwolf, 2001a) and fate-

mapping experiments show that it derives mainly from epiblast cells overlying 

Koller’s sickle (Bachvarova et al, 1998; Lawson and Schoenwolf, 2001b). 

Early observations found directed cell movements into the forming streak; 

cells from the lateral posterior marginal zone move towards the posterior 

centre of the marginal zone where they merge, change direction and extend 

anteriorly in so-called polonaise movements. More recent evidence shows 

the existence of two counter-rotating streams in the epiblast that merge at the 

site of streak formation during streak initiation (Chuai et al, 2006; Cui et al, 

2005; Graper, 1929). Interestingly, cells overlying Koller’s sickle express 

many genes important in later development, fibroblast growth factor (FGF) 

signalling molecules and members of the Wnt family, for example (Chapman 

et al, 2004; Lawson & Schoenwolf, 2001a). The expression domain of these 

genes, during streak development, co-ordinately transforms from a sickle-

shaped domain via an intermediate triangular shape into an elongated streak 

(stretching posterior-anteriorly) along the midline of the embryo (Chuai et al, 

2006; Cui et al, 2005). Unfortunately, the cellular mechanisms responsible for 

streak formation and the signals that control them are far from understood. 

Numerous suggestions have been put forward; these include cell-cell 

intercalation (Lawson & Schoenwolf, 2001a; Lawson & Schoenwolf, 2001b; 

Voiculescu et al, 2007), oriented cell division (Wei & Mikawa, 2000), and 

chemotaxis (Mikawa et al, 2004). Chemotaxis would imply the secretion of an 

attractant by cells belonging to the epiblast or as proposed by Yang et al 

(2002) a combination of attractants and repellents. Their model suggests that 

cell movement is directed by repulsion from the streak by FGF8 and 

attraction toward the midline in response to FGF4. Both of these growth 
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factors previously established to be expressed in the primitive streak (Yang 

et al, 2002).  

 

1.3. Somite Morphogenesis 

One of the main tasks of gastrulation is to create a mesodermal layer 

between the endoderm and ectoderm. In avian embryos, the mesoderm 

arises from cells of Hensen’s node and the primitive streak. It generates all 

the organs between the ectodermal wall and endodermal tissues. In a 

neurula-stage embryo, the trunk mesoderm can be divided into four areas: 

the axial (or chordamesoderm: which gives rise to the notochord, an organ 

that induces neural tube formation and establishes the anterior-posterior 

body axis), paraxial (or somitic), intermediate and lateral plate mesoderm. As 

the primitive streak regresses during gastrulation and the neural folds begin 

to gather at the centre of the embryo, the thick bands of paraxial mesoderm 

that lie between the intermediate mesoderm and the axial structures (referred 

to as the segmental plate in avian embryos and unsegmented mesoderm in 

other vertebrate embryos) separate into transient aggregates of cells, on 

either side of the neural tube, termed somites (Bellairs, 1963, 1979; Christ et 

al 1972, 1973; Christ and Ordahl, 1995; Gilbert, 2006; Packard, 1978). The 

total number of somites formed is characteristic of a species: 50 in chicks, 65 

in mice, and some snakes form approximately 500 (Gilbert, 2006). As 

individual chick embryos can develop at slightly different rates (especially if 

they are incubated at slightly different temperatures), the number of somites 

present can provide a useful method for staging embryos between HH Stage 

6 and 14. Stage 10 embryos have 10 somites and, generally, the embryo 

gains 3 somites during each additional stage (for example, Stage 11 and 12 

embryos have 13 and 16 somites respectively). However, it is better to rely 

on other markers beyond 22 somites (HH Stage 14; Hamburger and 

Hamilton, 1951).  

Somites, which give rise to all skeletal muscles in the vertebrate trunk, form 

in pairs in a rostral-caudal progression. Formation occurs periodically and 

regularly in time and space, depending on a ‘clock and wave’ mechanism 
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suggested by Cooke and Zeeman (1976): the Wnt and Notch pathways 

provide an oscillating signal (the ‘clock’) and a rostral-caudal gradient 

provides a moving ‘wave’ of FGF that sets somite boundaries (Dubrulle et al, 

2001; Gilbert, 2006; Maroto and Pourquié, 2001; Palmeirim et al, 1997; 

Pourquié, 2003, 2004; Takahashi and Sato, 2008). Segmental organisation 

of the paraxial mesoderm occurs as somites pinch off from the anterior end 

of the paraxial mesoderm (or pre-somitic mesoderm, PSM) becoming newly 

formed separate structures. The mesenchymal cells making up the immature 

somite then undergo mesenchymal-epithelial transitions (MET) resulting in a 

spherical structure in which an internal mesenchyme is encapsulated by an 

epithelium (see figure 1.3; Duband et al, 1987; Gilbert, 2006; Nakaya et al, 

2004; Yusuf and Brand-Saberi, 2006). Interestingly, using somitic MET as an 

in vivo model, Nakaya et al (2004) have shown that Cdc42 negatively acts on 

cell epithelialisation; activation of Cdc42 prevents MET, while its 

downregulation strongly promotes MET (Nakaya et al, 2004). 

 

 

Figure 1.3.  
 
 
 
 
 
 

 

The positional identity of paraxial mesoderm is determined by its location 

along the rostral-caudal axis before somitogenesis. If, for example, the 
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mesoderm region that gives rise to a thoracic somite is transplanted into the 

cervical region of a younger embryo, the host embryo will develop ribs in its 

neck (on the side of transplantation only; Kieny et al, 1972). In contrast, 

ectopically grafted or rotated tissue of newly formed somites will generate the 

same pattern of normal derivatives (Aoyama and Asamoto, 1988; Christ et al, 

1992). When the somite matures, however, it will become committed to 

forming certain cell types. As new somites form caudally, the more rostral 

somites (in response to extrinsic signals from their surrounding structures, 

see figure 1.6) undergo maturation and differentiation in a dorsomedial and 

ventrolateral orientation. Each somite divides into two main regions: the 

dorsolateral epithelial dermomyotome (consisting of both the dermatome, 

which generates the dermis of the back, and the myotome, which forms the 

musculature of the back, ribs and limbs) and a ventral mesenchymal region 

called the sclerotome (which generates the vertebrae and rib cartilage; see 

figure 1.4; Brand-Saberi et al, 1996; Gilbert, 2006; Kahane et al, 1998).  

 

Figure 1.4. 
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It is also worth noting that in 2003, Brent et al discovered a further region, the 

syndetome, which arises from cells within the sclerotome and generates the 

tendons (see figure 1.5). 

 

Figure 1.5.  
 
 
 

   

 

The sclerotome is formed as the ventromedial epithelial cells of the somite 

undergo mitosis, lose their epithelial characteristics, and become 

mesenchymal again (EMT). The remaining epithelial portion of the somite, 

the dermomyotome, is formed as a consequence of dorsoventral patterning 

(see figure 1.4; Brand-Saberi et al, 1996; Gilbert, 2006; Ordahl and Le 

Douarin, 1992; Yusuf and Brand-Saberi, 2006). The dermomyotome is a 

transient structure that successively contributes cells to the dermis and the 

primary myotome (specifically the epaxial and hypaxial myotome). 
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1.4. Somite Morphogenesis and Signalling 

Somite specification (maturation) is accomplished through a complex array of 

signals, which as previously mentioned, emanate from surrounding tissues 

(see figure 1.6). Ablation of dorsal tissues (ectoderm and dorsal neural tube), 

for example, results in defective dermomyotome development, while ablation 

of ventral tissues (notochord and floor plate) detrimentally affects sclerotome 

formation (Brand-Saberi et al, 1993; Brauner et al, 2010; Dietrich et al, 1997).  

The paracrine factors Sonic hedgehog (Shh) and Noggin, produced and 

secreted by the notochord (and Shh also by the floor plate of the neural 

tube), are necessary for induction (and maintenance) of the sclerotome 

(Brand-Saberi et al, 1993; Borycki et al, 1998; Christ et al, 1992; Dietrich et 

al, 1997; Dockter and Ordahl, 2000; Fan and Tessier-Lavigne, 1994). 

Sclerotome cells express Paired box protein (Pax1), a transcription factor 

that is required for their differentiation into cartilage and whose presence is 

required for vertebrae formation (Smith and Tuan, 1996). The dermatome 

differentiates in response to neurotrophin-3 (NT3) and Wnt1, both secreted 

by the neural tube. The myotome, in addition, is induced by distinct signals. 

The formation of the medial half is attributed to Wnt1 and Wnt3a signalling 

from the dorsal region of the neural tube and low levels of Shh from the 

ventral region. While the lateral half is influenced by a combination of Wnt 

proteins from the epidermis (ectodermal Wnt4, Wnt6, and Wnt7a) and bone 

morphogenetic protein-4 (BMP4) from the lateral plate mesoderm (see figure 

1.6; Christ et al, 1992; Dietrich et al, 1998; Gilbert, 2006; Olivera-Martinez et 

al, 2001; Münsterberg et al, 1995a, 1995b; Pourquié et al, 1996; Stern et al, 

1995; Yusuf and Brand-Saberi, 2006).  
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Figure 1.6.  
 
 
 
 
 
 
 
 

 

 

1.5. Wnt Signalling 

The Wnt family of secreted lipoproteins (signalling proteins) participates in 

multiple developmental events during embryogenesis and in adult tissue 

homeostasis (Clevers, 2006; Logan and Nusse, 2004). The Wnt family, in 

mammals, comprises 19 members that share homologies in their sequence 

but often have fundamentally distinct signalling properties (Logan and Nusse, 

2004). Wnt proteins are defined based on sequence homology to the original 

Wnt members: mouse Wnt1 (originally called Int-1; Nusse and Varmus, 

1982) and Drosophila melanogaster Wingless (Wg; Sharma, 1973). Typically, 

Wnt proteins bind to Frizzled receptors (Fzd) that are located in the plasma 

membrane of the target cell. Fzd receptors are seven-‘pass’-transmembrane 

proteins (which contain a large cysteine-rich domain that is implicated in Wnt 

binding) and they are known to interact with Dishevelled (Dvl; a cytoplasmic 

scaffold protein) and heterotrimeric G proteins, which are required for 

downstream signalling (reviewed by Clevers, 2006 and von Maltzahn et al, 
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2012). Wnt-receptor interactions can stimulate numerous intracellular 

responses. The most understood is the activation of β-catenin/TCF 

transcriptional complexes, known as canonical Wnt signalling (also referred 

to as classical Wnt signalling or Wnt/β-catenin signalling; review by von 

Maltzahn et al, 2012).  

In the canonical signalling pathway, Wnt ligands such as Wnt1, Wnt3a, and 

Wnt8 bind to Fzd receptors, which in association with the Low-density 

lipoprotein receptor-related protein (LRP5/6) coreceptor initiate a signalling 

cascade that leads to the activation of Dvl, whose activation consequently 

results in the stabilisation of β-catenin (figure 1.7). The stability of β-catenin is 

regulated at various levels. In the absence of Wnt proteins, a so-called β-

catenin destruction complex composed of the scaffold proteins Axin, 

adenomatous polyposis coli (APC), casein kinase-I (CKIα), and glycogen 

synthase kinase 3β (GSK3β) associates with β-catenin. β-catenin is, in turn, 

phosphorylated by CKIα and GSK3β. Hyperphosphorylated β-catenin is then 

subjected to ubiquitylation by the SKP1-cullin1-F-box (SCFβ-TRCP) E3 ligase 

complex, followed by degradation via the 26S proteasome (figure 1.7; review 

by Clevers, 2006). Conversely, when Wnts bind the cell surface receptors 

Fzd and LRP5/6, GSK3β-dependent β-catenin phosphorylation is 

suppressed via a mechanism that involves Dvl, and β-catenin is stabilised. 

Stabilised β-catenin enters the nucleus where it interacts with transcriptional 

regulators, including lymphoid enhancing factor-1 (LEF1) and T cell factors 

(TCFs) to activate gene transcription (reviews by Salinas, 2007; von 

Maltzahn et al, 2012; Wu and Pan, 2010).  
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Figure 1.7.  
 

 
 
 
 
 
 
 
 
 
 
 

  
 

 

Studies by Davidson et al (2005) and Zeng et al (2005) illustrated that 

dissociation of the destruction complex is also triggered by the recruitment of 

Axin to the plasma membrane, where Axin binds to the LRP5/6 receptors 

intracellular domain. Surprisingly, LRP5/6 receptor phosphorylation by CKIγ 

and GSK3β is required for Axin binding. Two different isoforms of CKI (α and 

γ) are therefore implicated in this pathway. These studies imply that while 

Wnt signalling in the cytoplasm inactivates GSK3β, active GSK3β is 

necessary at the plasma membrane to recruit Axin away from the destruction 

complex (Davidson, et al, 2005; Salinas, 2007[review]; Zeng et al, 2005). The 

sequence of these events is not completely understood. In 2006, Chen et al 
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demonstrated that Axin is recruited to the plasma membrane by microtubule 

and actin crosslinking factor-1/actin crosslinking factor-7 (MACF1/ACF7; see 

Chapter 5). MACF1/ACF7 is present in the destruction complex and is 

needed for the translocation of Axin to the membrane and binding to LRP5/6 

(Chen et al, 2006). 

Non-canonical Wnt signalling pathways are less understood, although they 

have been reported to contribute to developmental processes such as planar 

cell polarity (PCP) in Drosophila and convergent extension movements 

during gastrulation in Xenopus. In contrast to canonical Wnt signalling they 

do not require the transcriptional activity of β-catenin: they signal 

independently of β-catenin via Fzd receptors. Fzd-independent non-

canonical Wnt signalling pathways have additionally been suggested. Non-

canonical family members include Wnt4, Wnt5a and Wnt11 and non-

canonical pathways include the PCP, the Wnt/Ca2+, and the 

PI3K/AKT/mTOR cascades (figure 1.8; reviewed by von Maltzahn et al, 

2012). First discovered in Drosophila the PCP pathway has been shown to 

be essential for epithelial and mesenchymal cell polarity in various organisms 

(Dale et al, 2009). Wnt/PCP signalling regulates changes in cytoskeletal 

organisation that are a requirement for cell polarisation and migration: 

controlling the hair cells in the inner ear for example (Montcouquiol et al, 

2003). Fzd, Dvl, Prickle, and Vangl (Vang-like) are all core components of the 

Wnt/PCP pathway (Vladar et al, 2009). The interaction between these factors 

on Wnt signalling can lead to the activation of Rho and Rac, which leads to 

remodelling of the cytoskeleton and/or induction of Jun target genes (James 

et al, 2008).  
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Figure 1.8.  
 
 

 
 
 
 
 
 
 

   
 
 
 

   

 

The Wnt/Ca2+ cascade has also been implicated in numerous functions, 

which include cell adhesion and cell movements during gastrulation. In this 

pathway, binding of Wnt to Fzd leads to the release of intracellular Ca2+. This 

process is regulated by heterotrimeric G proteins, phospholipase C (PLC), 
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and calcium–calmodulin-dependent kinase II (CamKII), in addition to protein 

kinase C (PKC; Habas and Dawid, 2003; Kuhl, 2004). The increased 

intracellular Ca2+ concentration also stimulates calcineurin phosphatase, 

which results in activation of the transcription factor NFAT (nuclear factor of 

activated T cell; Hogan et al, 2003; reviewed by von Maltzahn et al, 2012). 

Interestingly, GSK3β is one of the few signalling mediators that have a 

central part in a distinct range of signalling pathways, which include those 

activated by Wnts, hedgehog, growth factors, cytokines, and G protein-

coupled ligands (reviewed by Wu and Pan, 2010). GSK3β was first linked 

with the canonical Wnt pathway due to the induction of a dorsal-ventral axis 

duplication phenotype by its dominant negative form in Xenopus laevis 

embryos (Dominguez et al, 1995; He et al, 1995; Pierce and Kimelman, 

1995). β-catenin was successively identified as a GSK3β substrate: GSK3-

mediated phosphorylation triggers the destabilisation of β-catenin (Peifer et 

al, 1994; Yost et al, 1996). This established a role for GSK3β in canonical 

Wnt signalling. Multifaceted roles for this kinase in Wnt signal transduction 

have since been demonstrated. However, the mechanisms for the regulation 

of GSK3β during Wnt signal transduction remain to be completely elucidated. 

Though it is evident that Wnt-mediated GSK3β does not utilise the 

phosphorylation events as in AKT signalling (AKT, itself activated by the PI3K 

pathway, inhibits GSK3β kinase activity via phosphorylation of Ser-9 (Buttrick 

and Wakefield, 2008). 

 

1.6. Spectraplakins 

The cytoskeleton, composed primarily of actin, microtubules and intermediate 

filaments, is highly dynamic. As aforementioned, it provides mechanical 

strength to the cell and regulates many other cellular events, including cell 

division, intracellular trafficking, and locomotion. The identification of proteins 

that can associate with the cytoskeleton is, therefore, of great importance. 

Spectraplakins are evolutionary conserved giant (>500kD), multifunctional 

cytoskeletal linker proteins that act as master coordinators between different 
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types of cytoskeletal filaments. They are able to bind to all three types of 

cytoskeletal filaments and, as their name implies, they contain domains found 

in two cytoskeletal families, the spectrins and plakins (Röper et al, 2002). The 

spectrin superfamily of linker proteins connects the actin-based cortical 

network to the plasma membrane (Hartwig, 1995), while plakins are a family 

of linker proteins that interact with all types of cytoskeletal elements 

connecting them to cellular junctions and the extracellular matrix (Leonova 

and Lomax, 2002). Spectraplakins display their most essential functions in 

muscle, neurons and skin epithelium, i.e. tissues that maintain complex yet 

dynamic cytoskeletal networks (Jefferson et al, 2004; Röper et al, 2002; Wu 

et al, 2008).  

Spectraplakins evolved from the spectrin family of proteins, the most ancient 

of which is α-actinin. Defining features of α-actinin, and other spectrin 

superfamily members, include a calponin homology (CH) domain for calcium 

regulation, an EF-hand domain for direct calcium sensing/binding, and a 

series of spectrin repeats (Suozzi et al, 2012). Presently, the spectraplakin 

family consists of only two mammalian genes MACF1/ACF7, encoding 

microtubule-actin cross-linking factor 1/actin cross-linking factor 7, and 

BPAG1/Dst, encoding bullous pemphigoid antigen 1 (BPAG1)/dystonin. 

Additionally, the family comprises a single gene in zebrafish, Magellan, a 

single gene in Drosophila melanogaster, short stop (shot)/Kakapo, and a 

single Caenorhabditis elegans gene, vab-10 (reviewed by Suozzi et al, 

2012). The number of spectrin family genes in the genome is limited. 

Spectraplakins generate diversity via differential promoter usage and 

differential splicing. Different spectraplakins, therefore, contain combinations 

of various protein domains that bind to different filament types and filament-

associated proteins. This awards the proteins with a diverse range of 

functions in cytoskeletal regulation. Spectraplakins, as a consequence, are 

very large proteins and remarkably, the activities of their protein domains are 

coordinated in spite of their separation along the length of the protein (Brown, 

2008; Röper et al, 2002; Suozzi et al, 2012).  

Spectraplakins have unique domain structures, including an actin-binding 

domain, spectrin repeats, EF-hand and GAR (glycine/arginine-rich) domain, 
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and a plakin domain. Most spectraplakin isoforms encompass a conserved 

sequence motif in their N-terminal domain (also found in the spectrins), which 

enables them to directly associate with actin. The F-actin binding domain 

comprises two CH domains, CH1 and CH2. CH1 alone can bind F-actin but 

affinity is increased with the addition of CH2 (Jefferson et al, 2004). 

Spectraplakins are classified as members of the spectrin superfamily owing 

to the existence of a large number of spectrin repeats. These repeats are 

believed to provide the proteins with flexibility and, in addition, act as spacer 

regions that separate the functional domains at the N and C termini. The EF-

hand and GAR domain is situated within the C-terminal. Unlike EF-hand 

motifs, which are found in numerous members of the spectrin superfamily, 

the GAR domain is restricted to the spectraplakins and is not found in other 

spectrin family members (Röper et al, 2002). The GAR domain associates 

with and stabilises microtubules, suggesting that it evolved as a mechanism 

for spectraplakins to interact with microtubules and link microtubules to other 

cytoskeletal components (Leung et al, 1999; Sun et al, 2001; Suozzi et al, 

2012). Furthermore, the GAR domain that is encoded by the Drosophila 

melanogaster, short stop (shot)/Kakapo gene can interact with end-binding 1 

(EB1), a microtubule plus-end tracking protein (+TIP), which binds to the 

growing ends of cytoplasmic microtubules (Subramanian et al, 2003). The 

plakin domain, another signifying feature of the spectraplakins, is composed 

of six-nine spectrinlike repeats, suggesting that these domains are derived 

from spectrins. Typically, proteins containing plakin domains bind to 

membrane-associated juctional proteins (Jefferson et al, 2004). 

 

Given that the following chapters cover different, albeit related, topics 
of research this introduction is somewhat brief and intended only to 
introduce the contents of this thesis. The beginning of each chapter, 
therefore, will encompass a more detailed introduction to its related 
subject. 
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Overall Aims 

 

This thesis concentrates on cellular dynamics and organisation during chick 

gastrulation and somitogenesis, with a particular focus on the associated 

cytoskeleton. The aims of this project, therefore, were: 

 

§ To further characterise the cytoskeleton in cells that ingress into the 

avian primitive streak during gastrulation. 

 

§ To establish a previously published electroporation method (Scaal et 

al, 2004), which permits the targeting of different regions of the somite 

and, if possible, subsequently observe cells (and their associated 

cytoskeleton) migrating from the dorsomedial lip of the somite to the 

myotome in real time. Additionally, to immunostain somites with 

antibodies against cytoskeletal proteins to corroborate what might be 

seen in these electroporation experiments.  

 

§ To determine the expression pattern for the microtubule and actin 

crosslinking factor-1/actin crosslinking factor-7 (MACF1/ACF7) gene in 

the chick and explore its function during somitogenesis. 

 

§ To determine if there is a direct role for canonical Wnt signalling in 

somitic myofibre orientation/organisation and, if so, investigate if 

MACF1/ACF7 is involved. 
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Chapter 2: Materials and Methods 

  
 
2.1. Frequently Used Solutions: 
  
PBS (Phosphate Buffered Saline): 104mM NaCl, 2.5mM KCL, 6.5mM 
Na2HPO4, pH 7.4 
  
PBST: PBS with the addition of 0.1% Tween-20 
  
TBS (Tris Buffered Saline): 140mM NaCl, 2.5mM KCI, 25mM Tris, pH 8.0 
  
TBST: TBS with the addition of 0.1% Tween-20 
  
PFA: 4% Paraformaldehyde in PBS 
  
SSC (20x): 3M NaCl, 0.3M Na3C6H5O7.2H2O (Na Citrate), pH 7.0 with citric 
acid 
  
TAE: 40mM Tris, 1% Acetic acid, 1mM EDTA 
  
MABT: 100mM Maleic acid, 150mM NaCl, 0.1% Tween-20, pH 7.5 
  
NTM: 100mM NaCl, 100 mM Tris-HCL pH 9.5, 50mM MgCl2 
  
NTMT: NTM with the addition of 0.1% Tween-20 
  
Simple Saline: 7.19M NaCl 
 
PHEMO fix: 68mM PIPES, 25mM HEPES, 15mM EGTA, 3 mM MgCl2, 3.7% 
PFA, 0.05% Glutaraldehyde, 0.5% TritonX-100 
 
Methanol-MES: Methanol, 10% 0.5M MES (2-[N-morpholino]ethanesulfonic 
acid) buffer 
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2.2. Molecular Biology 

 

Solutions and Reagents:  

Antibodies for immunohistochemistry/immunocytochemistry and restriction 

enzymes were purchased from Roche (Roche Applied Science, UK) or 

Promega (Promega UK, Southampton UK). All other reagents were 

purchased from Sigma (Sigma-Aldrich Co. LLC.), Invitrogen (Life 

Technologies Corporation), or Fisher Scientific (Fisher Scientific UK Ltd) 

unless otherwise stated. 

 

Bacterial Culture Media, Antibiotics and PFA preparation: 
  
LB Medium: 1% Bacto-tryptone, 1.5% Yeast extract, 1% NaCl, pH 7.5 

  

LB Agar: 1.5% Bacto-agar in LB medium 

   

Ampicillin: Stock: 100mg/ml, Working concentration: 10mg/ml 

  

Kanamycin: Stock: 100mg/ml, Working concentration: 5mg/ml 

  
Preparation of 4% paraformaldehyde: 

PBS containing one crystal of sodium hydroxide (NaOH) (Fisher Scientific) 

was first heated to 55°C. The addition of NaOH raises the pH of the PBS, so 

the PFA can dissolve quickly. PFA was subsequently added and dissolved 

with the aid of a magnetic stirring bead. When PFA was dissolved, the pH of 

the solution was corrected to pH7.4. PFA-PBS was stored at -20°C.   
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2.3. Cell Culture 

Chick DF-1 fibroblast cells were cultured in Dulbecco’s modified Eagle 

medium (DMEM) containing 1g/ml of glucose, 10% fetal bovine serum (FBS) 

(Gibco, Invitrogen) and 1% penicillin-streptomycin. The cells were passaged 

1:5 every other day.  

Mouse C2C12 myoblast cells were cultured in growth medium (GM): DMEM 

containing 4.5g/ml of glucose, 10% fetal bovine serum (FBS) (Gibco, 

Invitrogen) and 1% penicillin-streptomycin. The cells were passaged 1:5 after 

reaching ~ 70% confluence. C2C12 cells were differentiated via switching 

from growth medium to differentiation medium (DM): DMEM containing 2% 

horse serum when the cells were ~ 80% confluent. The myotubes started to 

appear after about 3 days, and by day 5 myotubes constituted most of the 

cell population. 

Rat fibroblast cells expressing Wnt3a, Wnt11 and the control cell line LNCX2 

were cultured in D-MEM tissue culture media with the addition of 10% 

inactivated foetal calf serum with G418 at 250µg/ml for selection. 

All cells were cultured in a humidified cell culture incubator and maintained at 

37°C and 5% CO2.  

Cell passaging was performed as follows: after removal of culture medium, 

cells were rinsed in sterile 1X phosphate buffered saline (PBS, prepared from 

tablets; Oxoid, Unipath Ltd., Basingstoke, UK). Next, cells were treated with 

enough (0.025%) trypsin-ethylendiamineteraacetic acid (EDTA) to cover the 

base of the flask for ~1 minute. The trypsin was then removed from the cells 

and flasks were returned to the incubator until the cells had become 

dissociated from the flask. Cells were then resuspended in an appropriate 

volume of fresh culture medium and passaged. Cells were counted using a 

haemocytometer to calculate required cell density for transfection/injection 

experiments. 
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2.4. DF1, ARPE-19, and C2C12 Immunofluorescence Staining  

Chicken embryo fibroblasts (DF-1s), human retinal pigment epithelial (ARPE-

19), and murine C2C12 myoblast cells were grown overnight, at 37°C, onto 

small gelatine coated glass cover slips. Cells, before becoming too confluent, 

were then rinsed in DEPC-PBS and fixed in either Methanol/10% MES, 4% 

PFA with 0.1% TritonX-100, or PHEMO-fix ready for immunofluorescence 

staining.  

Cells fixed with methanol/10% MES or 4% PFA (with 0.1% TritonX-100) were 

removed from media and fixed at -20°C for 5 min or 20 min at RT 

respectively. Next, they were washed 3 times with 1% goat serum in PBS, 

incubated with 1% NP40 detergent for 3 min, washed again 3 times with 1% 

goat serum in PBS and then blocked with 10% goat serum in PBS for 30 min 

at room temperature (RT).  

DF-1 cells fixed with PHEMO were removed from media, washed in PBS for 

10 min at 37°C before fixing with PHEMO-fix solution (68mM PIPES, 25mM 

HEPES, 15mM EGTA, 3 mM MgCl2, 3.7% PFA, 0.05% Glutaraldehyde, 0.5% 

TritonX-100). Cells were rinsed twice in PHEMO buffered solution (68 mM 

PIPES, 25 mM HEPES, 15 mM EGTA, 3 mM MgCl2, 10% DMSO pH 6.9, 

with 10M KOH) for 10 min at 37°C. Subsequently, cells were washed twice 

with PBS for 5 min at room temperature (RT), incubated with 50 mM 

NH4Cl/PBS for 10 min, washed three times with PBS (RT for 5 min), and then 

blocked with 10% goat serum in PBS for 30 min at RT.  

For all cells, following fixation (either methanol/10% MES, 4% PFA with 0.1% 

TritonX-100 or PHEMO) and blocking, primary antibody, diluted in 1% goat 

serum in PBS, was applied for 1-2 h (see table 2.1). After washing 4 times for 

15 min with 1% goat serum in PBS, secondary antibody (also diluted in 1% 

goat serum in PBS; see table 2.1) was applied and cells were incubated in a 

humidified chamber in the dark for 30 min. Following incubation, cells were 

washed 3 times for 10 min with 1% goat serum in PBS and cover slips (cells 

uppermost) were mounted onto slides. A drop of hydromount (with Dapco) 

was added and cells were covered with a large cover slip and stored at 4°C 

for up to 1 month.   
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Table 2.1. Antibodies, both primary and secondary, used to immunostain DF1-s, 
ARPE-19, and C2C12 cells (dilution factor and supplier also shown).   

Primary Antibody and Dilution              

(in 1% goat serum in PBS)                   
Primary Antibody Supplier, 
Product Number, Clone Number (if 
known) and Host 

Secondary Antibody* 

 

α- tubulin (1:1000)  AbD Serotec, MCA77D680, clone 
YL1/2 (monoclonal), Rat 

Anti-rat Alexa fluor 488 (green) 

γ- tubulin (1:1000) Abcam, ab11316, clone GLU-88, 
mouse 

Anti-mouse Alexa fluor 488 (green) 

APC (1:1000) Abcam, ab58, clone Ali12-28, mouse Anti-mouse Alexa fluor 488 (green) 

EB1 (1:500) BD biosciences, 610535, clone 5, 
mouse 

Anti-mouse Alexa fluor 488 (green) 

MACF1/ACF7 (1:1000) Sigma, HPA013713, lot number 
A81498, rabbit 

Anti-rabbit Alexa fluor 488 (green) or 
anti-rabbit Alexa fluor 568 (red) 

α- tubulin (1:1000) & EB1 
(1:500) 

See above for α- tubulin and for EB1: 
abcam, ab50188, polyclonal, rabbit 

Anti-rat Alexa fluor 488 (green) and 
anti-rabbit 568 (red) respectively 

α- tubulin (1:1000) & γ-tubulin 
(1:1000) 
 
-no primary- 
 
-no primary- 

See above α- tubulin and for γ-
tubulin: sigma, T5192, polyclonal, 
rabbit 

 

Anti-rat Alexa fluor 488 (green) and 
anti-rabbit 568 (red) respectively 
 
Alexa fluor 488 phalloidin 
 
DAPI (1:10,000) 

          *all secondary antibodies were diluted 1:1000 (antibody:1% goat serum in PBS)    

 

 

2.5. Harvesting and Culturing Avian Embryos 

White leghorn chicken eggs (Henry Stewart & Co. Ltd., UK) were stored at 

16°C prior to incubation at 37°C. According to desired Hamburger-Hamilton 

(HH) stage (Hamburger and Hamilton, 1951), embryos were removed from 

eggs following appropriate incubation at 37°C. Embryos were either 

dissected directly (harvested) from the egg or cultured in Early Chick (EC) 

culture (Chapman et al, 2001). For EC culture, eggs were cracked/opened at 

their broad end and thick albumin was removed and discarded. Thin albumin 

was also removed but retained for media preparation (for EC culture). The 

yolk, with blastoderm positioned on top, was poured into a 10 cm Petri dish 

and any remaining albumin was carefully removed with tissue paper. Once 

the area of the vitelline membranes was cleared, a filter paper carrier (piece 
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of autoclaved filter paper with a central aperture) was gently placed onto the 

membranes framing the embryo accordingly. Using scissors, the membranes 

around the filter paper were cut and the filter paper (now holding the 

blastoderm) was lifted with forceps in an oblique direction. The filter paper 

was gently washed in autoclaved saline (to remove any yolk), an edge was 

dabbed onto tissue paper to absorb excess liquid, and the filter paper was 

placed with the blastoderm ventral side up onto an agar-albumin culture dish. 

Dish lids were replaced and cultures were put to 37°C, for appropriate time, 

in a storage container lined with moistened tissue. To prepare agar-albumin 

media, 0.3 g agar was added to 50 ml autoclaved saline (7.19 g NaCl /1 litre 

distilled water) and dissolved in the microwave. The solution was put to 50°C 

and once this temperature was reached 50 ml of thin albumin was added. 

Solution was mixed and kept at 50°C for a further minute. Carbenicillin, 10 

µg/ml, was added and 1.5 ml aliquots were dispensed into 35 mm Petri 

dishes. Media was cooled and allowed to set at RT for 2 hours (Chapman et 

al, 2001).  

Embryonic membranes were removed (in phosphate buffered saline [PBS]) 

from harvested (older) embryos, to avoid probe trapping when performing in 

situ experiments. Embryos were then fixed overnight in 4% 

paraformaldehyde (PFA)/PBS at 4°C. Following fixation, embryos were 

washed twice in PBST (PBS with 0.1% Tween-20) for 5 min at RT and then 

dehydrated in ascending concentrations of methanol/ PBS (25%, 50%, 75% 

and twice in 100%, 5 min each). Embryos were preserved and stored in 

100% methanol at -20°C ready for future use.  

Note: if subsequent microtubule immunostaining was required embryos were 

harvested and fixed as quickly as possible to avoid microtubule 

depolymerisation (see Somite Wholemount Immunostaining).     

 

2.6. Cryosectioning 

Previously fixed (and some already hybridised) embryos were washed twice 

in 1% PBS for 5 min at RT, then subjected to 30% sucrose/PBS solution for 
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3-4 h with gentle rotation. Next, embryos were embedded (following 

adjustment to appropriate position for plane of sectioning) in OCT (Miles, 

Inc.) overnight at -20°C. Embryos were sectioned at 15-20 µm using a Leica 

Cryostat at -20°C. Sections were transferred to Tespa treated slides and 

dried at RT. Sections were subsequently washed twice in 1% PBS (to 

remove OCT residue), rinsed in distilled water, (immunostained if necessary) 

then mounted in hydromount and covered with cover slides. Subsequent 

microscopy was performed using an upright microscope (Zeiss). Images 

were captured and analysed using AxioVision software.  

 

2.7. Embryo Section Immunofluorescence Staining  

Embryos were incubated in microtubule assembly buffer (BRB: 80 mM 

KPipes, pH 6.8; 5 mM EGTA; 1mM MgCl2) containing 3.7% formaldehyde, 

0.25% glutaraldehyde and 0.2% TritonX-100) for 2-4 h, followed by 

postfixation in absolute methanol at -20°C overnight. Embryos were then 

rehydrated in PBS and incubated for 6-10 h at RT in PBS containing 100mM 

NABH4. Embryos were rised extensively in Tris-buffered saline (TBS: 155mM 

NaCl, 10mM Tris-Cl, pH 7.4, 0.1% NP-40), and then cryosectioned as 

described above. 

Following sectioning, slides were washed 6 x 5min in PBS, washed in 

PBS/0.1% TritonX-100 for 10 min, and blocked in PBS, 5% BSA, 5% goat 

serum for 1 h. Next, primary antibody (α-tubulin) was applied (1:100) in block 

o/n at 4°C. Sections were washed 3 x 10 min in PBS, secondary antibody 

was applied (anti-rat Alexa fluor 488 1:500) for 1 h at RT, slides were washed 

again 3 x 10 min in PBS, and finally DAPI staining (1:10,000) and a 5 min 

PBS rinse. Sections were then mounted in hydromount with Dapco. 

 

2.8. Somite Wholemount Immunostaining 

To keep microtubule integrity intact, embryos were harvested individually 

(while remaining eggs were kept at 37°C) and put straight into fix (9ml 

methanol: 800µl formaldehyde) without removing membranes. Following 
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30min- 1h in fix, embryos were washed in PBS, 0.1%TritonX-100, and 1% 

goat serum. Next, using fine scalpels, somites were carefully excised from 

embryos and put into block PBS, 0.1%TritonX-100, and 10% goat serum for 

2 h. Following block, somites were incubated o/n in primary antibody (α-

tubulin, 1:100) at 4°C. Subsequently somites were washed for 2 h in PBS/1% 

goat serum and then incubated in secondary antibody (1:500) and, in some 

instances, propidium iodide (1:1000) for 2 h. More washing followed, PBS/1% 

goat serum for 1 h. Somites were then put in to ‘slice culture’ for microscopy 

(see below). 

 

2.9. Somite Slice Cultures (Preparation for Microscopy)  

Following electroporation and appropriate incubation at 37-39°C, embryos 

were harvested in Glutamax F12 media and injected somite(s) were 

dissected using fine scalpels. Agarose/media was simultaneously prepared. 

Low melting point agarose (0.2 g) was added to 17ml Glutamax F12 media 

and heated to 60°C (using a sterile thermometer to assess temperature) with 

continuous stirring. When 60°C was reached agarose/media was placed in 

60°C water bath for 5 min to ensure agarose had completely dissolved. Once 

dissolved, solution was removed from water bath and allowed to cool to 40°C 

again with stirring.  Foetal calf serum (3 ml), 500 µl penicillin:streptomycin 

and 200µl sodium pyruvate were then added when solution reached 40°C. 

The dissected tissue (somites) was positioned, dorsal side down, onto a 

Willco well (glass-bottomed dish) and warm agarose/media was gently 

dropped around and onto somite(s) until well was filled. The dish was then 

put on ice for 2 min to facilitate setting of agarose. Once set, sample was 

placed inside the microscope heat chamber (37°C) for 2-3 hrs to equilibrate 

ready for microscopy. If microscopy was not being performed within the next 

few hours Willco wells were placed into a sealed Petri dish, containing wet 

tissue, for up to 10hrs at 16°C. 
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Note: the same ‘slice-culture’ procedure was used for somites that were fixed 

and immunostained, however, PBS was used instead of F12 Glutamax 

media and no Foetal calf serum or sodium pyruvate was added. 

 

2.10. Microinjection  

Egg Preparation 

Eggs were horizontally incubated at 37-39°C to the required embryonic 

stage. The upper side of the eggshell was reinforced with sellotape and 3-4 

ml of albumen was withdrawn through the broad end of the egg using a 

syringe. Eggs were windowed; ink (diluted 1:10 with 1% PBS containing 

penicillin-streptomycin) was injected into the yolk underneath the embryo to 

increase its visibility. The vitellin membrane was removed at the site of 

manipulation. 

Glass capillaries were drawn (1.0 mm O.D. x 0.78 mm I.D.; Harvard 

apparatus, UK) on a Vertical micropipette puller (P-30, Sutter Instrument Co., 

CA). To obtain an opening, the capillary tip was broken with tweezers (so it 

was fine as possible). The capillary was attached to a rubber tube with a 

mouth-piece (Sigma), and the DNA solution was aspired in the capillary and 

injected into the somite(s) by mouth. The capillary was inserted parallel to the 

neural tube through the tail bud, and carefully pushed into the somites I 

through IV (or V). DNA (~1µg/µl, mixed 1:1 with fast green) was injected into 

the somitocoele of somite IV (or V) by blowing, the capillary was retracted 

injecting each somite in turn (i.e. IV, III, II, I). DNA volume injected varied 

according to each experiment. Electroporation followed very soon after 

injection (no longer than 30 seconds). 

Note 1: DNA constructs injected (and subsequently electroporated into developing 

somites) included pCAβ-GFP-tubulin, pCAGGs-GFP-GPI, and pCS2-Axin2 (kind gift 

from Prof. Andrea Streit, King’s College, London).  

Note 2: MACF1 transl. MO sequence: TCTCCTCGTCGGAGGACGACATGGC 3’ 

Fluorescein (Supplied by Gene Tools, LLC). Control Morpholino was a generic 

control provided by Genetools, which they designed. 
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2.11. Electroporation  

A total of 500 µl of 1% PBS containing penicillin-streptomycin was dropped 

onto the newly injected site and electrodes were positioned left and right of 

the embryo (flanking injected somites) at a distance slightly wider than the 

embryo itself. The anode was pressed carefully onto the surface of the 

extraembryonic membrane while the cathode was positioned slightly lower 

(into the yolk). Four square pulses of 65 V, 10-msec width were applied. As 

parameters, particularly voltage, can vary, they must be optimised for each 

experimental setup. To avoid coagulation of yolk/albumen, which can insulate 

electrodes, electrodes were gently washed in water/PBS between 

electroporations. The egg was then resealed with sellotape and re-incubated 

for required time (normally 12-16 h). 

Electrodes were self-made both consisting of platinum wire. The wire on both 

electrodes was bent at a right angle to the tip (approximately 4mm in length) 

and insulated by nail polish on the underside of the tip. Insulation of the lower 

side prevented burning of the embryonic tissue. The electrodes were held in 

commercially available needle holders (Fine Science Tools for e.g.), which 

were insulated with thermoretractable plastic and connected to the pulse 

generator, which was equipped with a foot pedal to ease technique.   

 

2.12. Expressed Sequence Tag (EST; MACF1/ACF7) 

Clone (MACF1/ACF7: ChEST16M13), supplied by ARK-Genomics 

(http://www.ark-genomics.org), was provided as a stab in LB agar containing 

50 µg/ml Ampicillin (Boardman et al, 2002). Stab was inoculated into a liquid 

culture of LB with 50 µg/ml Ampicillin and grown overnight at 37°C. To allow 

selection of individual clones, overnight culture was streaked onto LB agar 

containing 50 µg/ml Ampicillin and grown overnight at 37°C. Ten individual 

clones were selected and grown in LB, again containing 50 µg/ml Ampicillin, 

overnight at 37°C. Plasmid DNA was isolated (see small scale DNA 

preparations), diagnostic digests were performed and DNA was sent for 
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sequencing. Once verified, RNA riboprobe was synthesised and whole mount 

in situ hybridisation was performed. 

 

2.13. Agarose Gel Electrophoresis 

DNA and RNA samples, with the addition of the appropriate volume of 10x 

loading dye (4M Urea, 40% (w/v) sucrose, 120 mM Tris-HCl pH7.5, 30 mM 

EDTA, 0.25% (w/v) orange dye), were loaded onto agarose (Sigma) gels 

containing ethidium bromide (1 µg/ml). The gels were prepared and run in 

1xTAE buffer. Electrophoresis was performed at 60 volts for 40 min. The 

concentration of agarose was 0.7%, except when expected fragments were 

small then agarose concentration was increased to 1%. DNA ladders, 100 bp 

and 1 kb, were used as a molecular weight markers.   

 

2.14. Preparation of DH5α Escherichia coli competent cells 

A 5 ml culture of bacterial strain, DH5α E.coli, in Luria Broth (LB) media was 

grown overnight at 37°C with constant shaking. The next day, 1 ml of 

bacterial culture was added to 200ml of LB in a sterile flask and grown again 

at 37°C with constant shaking till the optical density (OD) at 600 nm reached 

0.3 – 0.4 (approximately 2 to 3 hours). Once desired OD was reached, the 

culture was divided into 4 x 50 ml falcon tubes and incubated on ice for 15 

minutes. The cells were kept on ice from this step onwards. Following 

incubation, the cells were centrifuged at 4°C at 2000 rpm for 10 min. The 

supernatant was discarded and the pellet was resuspended in 16 ml TBI. The 

cells were further incubated on ice for 15 minutes and then centrifuged at 

2000 rpm at 4°C for 10 min. The supernatant was discarded and the pellet 

was resuspended in 4 ml TBI. 200 µl aliquots were stored at -80°C. 

 

2.15. Heat Shock Transformation 

Plasmid DNA (~0.5-1µg/µl) was added to 100-200 µl competent DH5α 

Escherichia coli cells, mixed, put on ice for 15 min, subjected to 37°C for 
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exactly 5 min, and then returned to the ice for 2 min. Liquid broth (LB), 500 

µl, was added, cells were gently inverted and incubated at 37°C for 1 h 

(inverting every 15 min). Cells were centrifuged for 2 min at 6500 rpm and 

500-600 µl supernatant was removed and discarded. Pellet was 

resuspended in remaining 100 µl supernatant, plated onto LB agar plates 

with appropriate antibiotic in a sterile environment and then incubated 

overnight at 37°C. 

 

2.16. Small Scale DNA Preparations (Mini Preps) 

Desired E. coli (transformed with plasmid) were grown overnight on a shaker 

in 5 ml LB (supplemented with appropriate antibiotic) at 37°C. Cells from 1.5 

ml overnight culture were collected by centrifugation (2 min at 14000 rpm) 

and resuspended in 100 µl of QIAgen solution I (50mM Tris/HCl pH 8; 10mM 

EDTA pH 8). Two hundred µl QIAgen solution II (200 mM NaOH, 1% SDS) 

was added and cells were inverted 4-6 times. QIAgen solution III (3M 

potassium acetate pH5.5), 200 µl, was subsequently added, cells were mixed 

immediately and collected by centrifugation (10 min at 14000 rpm). To 

precipitate DNA, supernatant was transferred to a fresh tube containing both 

1 ml 100% ethanol and 50 µl 3M pH 5.2 sodium acetate. Following 1 h 

incubation at -20°C DNA was collected via centrifugation (10 min at 14000 

rpm), supernatant was discarded and DNA pellet was washed in 1 ml 70% 

ethanol. To remove ethanol, pellet was centrifuged for a final time (1 min at 

14000 rpm), ethanol was discarded, pellet was air dried for 10 min and then 

resuspended in 50 µl Sigma water. 

 

2.17. Diagnostic Restriction Digests 

Digests were carried out in 20 µl reactions. DNA volume depended on 

concentration following elution. Appropriate restriction enzymes (1 µl of each) 

and buffer (1/10 of the final volume) were added and final digest volume was 

attained via the addition of sterile water. Reaction was mixed and incubated 
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at 37°C for 2-3 h. Loading dye (10X), 2 µl, was added, and reaction was 

assessed using agarose gel electrophoresis.  

 

2.18. Sequencing 

Constructs, 15 µl mini prep with 15 µl Sigma water, were sent for sequencing 

(The Sequencing Service, University of Dundee, Dundee, Scotland, DD1 

5EH) to facilitate verification of the correct gene (gene fragment). Returned 

sequences were subjected to BLAST searches (available at 

http://www.ncbi.nlm.nih.gov/BLAST/) and, in addition, EST sequence was 

matched to EST library (available at www.chick.manchester.ac.uk).  

 

2.19. RNA Probe Synthesis 

The plasmid containing the EST (gene fragment) was linearised by restriction 

digest, using an appropriate downstream restriction enzyme (see table 2.2). 

The digest, consisting of approximately 5 µg DNA, 5 µl 10X buffer, 1 µl 

restriction enzyme, and made up to a final volume of 50 µl with Sigma water, 

was incubated at 37°C for 2-3 h and analysed via gel electrophoresis. 

Phenol/chloroform extraction was then performed to purify linearised DNA. 

Sigma water was added to DNA to increase volume to 100 µl. 

Phenol/chloroform (100 µl) was added; DNA was thoroughly vortexed and 

centrifuged at 14000 rpm for 5 min. The upper aqueous layer was transferred 

to an Eppendorf containing an equal volume of chloroform with isoamyl 

alcohol. This was again vortexed and centrifuged for 5 min at 14000 rpm. 

Upper aqueous phase was transferred to a new Eppendorf. One tenth 

volume of 3M sodium acetate (pH 5.2) and 3 volumes of 100% ethanol were 

added and 1 h incubation at -20°C followed to allow precipitation of DNA. 

Following incubation, DNA was collected by centrifugation at 14000 rpm for 

30 min, supernatant was removed, and pellet was washed in 500 µl 70% 

ethanol and centrifuged again to allow complete removal of ethanol. Pellet 

was air dried for 10 min and resuspended in 30 - 50 µl Sigma water. DNA 

concentration was assessed via gel electrophoresis and synthesised into 
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probe according to the following conditions: 4 µl transcription buffer, 1 µl DIG 

mix (labelled UTPs), 2 µl Dithio threitol (DTT), approximately 1 µg linearised 

and purified DNA template, 1 µl RNase inhibitor and 1 µl of appropriate RNA 

polymerase (T3, T7 or SP6 depending on orientation in plasmid- see table 

2.2), and made up to 20 µl with Sigma water. Following brief centrifugation 

mixture was incubated for 2-3 h at 37°C, analysed via gel electrophoresis 

and diluted with 30 µl RNase free H2O. Unincorporated UTPs were removed 

by G50 column centrifugation, according to manufacturer’s protocol. Finally, 

transcription efficiency and probe quality was assessed by gel 

electrophoresis and 5 µl of probe was added to hybridisation buffer (see In 

Situ Hybridisation) for long-term storage at -20°C.      

    

Table 2.2. Summary of constructs including enzymes used for linearisation and 
polymerases used for anti-sense probe transcription.  

Construct Plasmid Restriction enzymes to 
linearise plasmid 

Primer used for 
sequencing 

Polymerase used to 
transcribe anti-sense 
probe 

Construct  
source 

Wnt3a 

 

Wnt11 

 

pGem 

 

pGem 

BamHI 

 

- 

 

- 

 

- 

 

SP6 

 

- 

ISH probe supplied by D. 

Sweetman, UEA, Norwich 

ISH probe supplied by M. Abu-

Elmagd, UEA, Norwich 

MACF1/ACF7 

chEST16M13  

pBluescript II  

KS+ 

 

SacI T7 T3 EST (Boardman et al, 

2002) 

• - unknown 

 

 

2.20. In Situ Hybridisation 

For hybridisation, (stored) embryos were rehydrated in descending 

concentrations of methanol/PBS (75%, 50%, 25%, 5 min each) and then 

washed twice in PBST for 5 min at RT. Most embryos did not require 

proteinase K treatment owing to their HH stage. However, embryos between 

Stage HH25 – HH31 were treated with 10-20 µg Proteinase K for 25-40 min, 

depending on the Stage. These particular embryos were then fixed in 4% 
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PFA with 0.1% glutaldehyde for 20 minutes and rinsed in PBT with rocking. 

Following washing, all embryos (including those not treated and those treated 

with Proteinase K) were put in 1:1 PBST/hybridisation buffer (50% 

formamide, 1.3X SSC [pH 5], 0.5% CHAPS, 0.2% Tween-20, 5mM EDTA 

[pH 8], 100 µg/ ml heparin, 50 µg/ ml yeast tRNA, made up to required 

volume with DEPC-H2O) and allowed to settle. Embryos were transferred to 

hybridisation buffer and again allowed to settle. Hybridisation buffer was 

changed again and embryos were incubated at 65°C for 1 h. Hybridisation 

buffer was replaced for a final time with pre-warmed hybridisation buffer 

containing desired RNA probe (1µg RNA probe/ 1 ml hybridisation buffer- 

see 2.19. RNA probe synthesis) and embryos were incubated overnight at 

65°C. Probe was removed (and stored for future use) and embryos were 

washed twice in hybridisation buffer for 10 min at 65°C, four times in wash 

buffer (50% formamide, 1X SSC, 0.1% Tween-20, made up to required 

volume with DEPC-H2O) for 30 min at 65°C, once in 1:1 wash buffer/ MABT 

(100mM maleic acid, 150mM NaCl [pH 7.5]) for 10 min at 65°C and twice in 

MABT for 10 min at RT. To prevent non-specific antibody binding embryos 

were then incubated in MABT/ 2% BBR (blocking reagent) for 1 h at RT and 

MABT/ 2% BBR & 20% goat serum for 2.5 h at RT. Subsequently, embryos 

were incubated overnight in MABT/ 2% BBR/ 20% goat serum & anti-DIG-AP 

antibody (1:2000) at 4°C with rocking. 

Antibody solution was discarded but to ensure complete elimination of 

excess antibody embryos were washed five times in MABT for 1 h at RT with 

rocking and then in MABT overnight at 4°C with rocking. Embryos were then 

washed twice in NTMT buffer (0.1M Tris[HCl] pH 9.5, 50mM MgCl2, 0.1M 

NaCl, 1% Tween-20, made up to required volume with distilled H2O) for 10 

min at RT. Finally, for colour development embryos were incubated in the 

dark in NTMT buffer containing 7µl/ ml BCIP (50 mg/ ml in dimethyle 

formamide [DMF]) and 9µl/ ml NBT (75mg/ ml in 70% DMF) until desired 

colour was reached. Colour reaction was stopped via 2 PBST washes for 5 

min at RT and embryos were stored in 4% PFA/ PBS ready for analysis and 

sectioning. If background colour was present after colour development 

embryos were washed overnight in 5X TBST (for 500 ml 10X: 40 g NaCl, 1 g 
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KCl, 125 ml 1M Tris[HCl] pH 7.5, 50 ml Tween-20, made up to 500 ml with 

distilled H2O) and either fixed or further developed. Embryos were imaged 

with an upright microscope (Leica MZ 16F). 

 

2.21. Cell Transfection 

Cells were split into 75 ml flasks. Lipofectamine 2000, 10 µl, was added to 

DMEM and incubated at room temperature. siRNA (50nmol) was added to 

500 µl DMEM and then added to Lipofectamine 2000 solution. Following 

incubation at room temperature for 20 minutes, cells were washed twice with 

1 ml DMEM, which was then replaced with 10 ml DMEM per flask. 

Transfection mix was added to the cells, drop by drop, and they were 

incubated for 5 hours. Next, the DMEM with the transfection mix was 

replaced with 10 ml DMEM containing 10% FBS and penicillin-streptomycin 

solution.  

 

Table 2.3. Pre-designed siRNAs against mouse MACF1/ACF7 supplied from 
Applied Biosystems, LifeTechnologies. 

siRNA ID ♯ Sense Antisense 

MACF1/ACF7 

siRNA1 

s232033 GCAGAUUGCAAACAAGAUAtt UAUCUUGUUUGCAAUCUGCag 

MACF1/ACF7 

siRNA2 

s232031 GGAUAGUAUGCAUAAGGGAtt UCCCUUAUGCAUACUAUCCag 

 

 

2.22. Cell Protein Isolation and Quantification 

C2C12 cells were washed twice in PBS and harvested with a scraper. Next, 

the cells were centrifuged for 5 min at 1000 rpm; the resulting pellet was 

resuspended in 1ml PBS, and then centrifuged again for 5 min at 1000 rpm. 

The pellet was resuspended in the equal volume of NP-40 lysis buffer*, 
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vortexed, left on ice for 30 minutes, and then centrifuged for 30 minutes at 

4500 rpm. The supernatant containing protein was transferred into a fresh 

Eppendorf tube. Protein quantification was performed using a 

spectrophotometer and BioRad Assay Bradford Reagent. 

* NP-40 lysis buffer: 150 mM NaCl, 1% NP-40 (IGEPAL), 50 mM Tris-HCl pH 8.0, Sigma water (up to 100ml), 1 
tablet of Protease Inhibitor Coctail Complete (Roche) was also added to 1 ml of the lysis buffer.  

 

2.23. Western Blot Protocol 

20 µg of cell lysate was added to loading buffer and denatured at 85°C for 5 

minutes. Next, samples were loaded on 8% polyacrylamide gels and run at 

100V for ~ 2 hours. Following electrophoresis, samples were blotted onto 

nitrocellulose using a semidry blotter (Biorad). Membrane was blocked in 

10% normal goat serum (GS) for 1 hour at room temperature. Primary 

antibody diluted 1:500 in 10% GS was applied for one hour at room 

temperature, the excess was washed off and secondary antibodies coupled 

to HRP (Jackson Laboratories) were applied (1:1000) for one hour at room 

temperature. Primary antibody used: MACF1/ACF7. Protein expression was 

detected via chemiluminescence, the membrane was incubated with 250 mM 

ECL (Sigma) and 90 mM β-coumaric acid (Sigma) in Tris-HCl pH 8.5 and 

imaged on a Fujifilm LAS 3000 imager (Fuji Photo Film Co., Ltd).  

 

2.24. Embryo Wholemount Immunostaining (MF20)  

Embryos were harvested as previously described and during an ISH or mock 

ISH experiment, MF20 immunostaining was performed. That is, at the end of 

day 2 of an ISH experiment (i.e. when embryos are incubated overnight in 

MABT/ 2% BBR/ 20% goat serum & anti-DIG-AP antibody) MF20 antibody 

(1:50) or MF20 supernatant (1:8) was added. ISH proceeded and then 

consequent to fixing (i.e. when the ISH was finished) embryos were put into 

secondary antibody overnight in PBST.  
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2.25. Preparation of Cells for Subsequent Microinjection into 
Embryos 

Mouse Wnt3a-expressing (supplied by Dr. Jan Kitajewski, Columbia 

University, New York, 10032; Münsterberg, et al, 1995b) and mouse Wnt11-

expressing (supplied by Dr. Chen-Ming Fan, Carnegie Institution of 

Washington, Baltimore, MD 21218) rat fibroblasts were isolated with trypsin 

and allowed to recover for 1 h at RT in 20% FBS-containing medium. They 

were centrifuged and resuspended in a solution comprising of 10% sucrose, 

10% CM-DiI (Molecular Probes) and 10% ethanol. Following 15 min 

incubation at 37°C, the cells were resuspended in a large volume 

(approximately 10ml) of PBS and then pelleted. Cells were then resuspended 

in as little as 10µl PBS and then injected into somites or between two 

somites using a pressure injector (Microinjector, Eppendorf FemtoJet). In 

each experiment empty vector-containing parent cells (LNCX2 lentiviral 

backbone) were also injected. 

Note: When fibroblasts were injected simultaneous to electroporation, injection of DNA 

construct was as described above (i.e. with a mouth pipette), followed by electroporation and 

finally by cell injection with the pressure injector.  

 

2.26. Microscopy 

Widefield inverted microscopy was performed using a Zeiss Axiovert 200M 

with AxioCam MRm CCD camera. Using AxioVision software. 

§ Green channel: Excitation = 469 ± 17.5 nm; Emission = 525 ± 19.5 nm  

§ Red channel: Excitation = 559 ± 17 nm; Emission = 630 ± 34.5 nm 

 

Inverted confocal two-photon (multi-photon) microscopy* was performed 

using a LaVision Biotec TriM Scope II with Coherent Vision II Ti:Sapphire 

pulsed laser. Using LaVision's ImSpector software. 
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§ GFP somite time-lapse experiments: Excitation = 840nm; Emission = 

525 ± 25 nm 

§ Somite Z stack with propidium iodide: Excitation = 870nm; Emission = 

525 ± 25 nm and 620 ± 30 nm 

 

* All multi-photon microscopy was performed by Dr. Paul Thomas. 
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Chapter 3: Cytoskeletal Arrangement in 
Primitive Streak Cells 

 

Introduction 

3.1. The Cytoskeleton 

The cytoskeleton, which extends throughout the cell, is a complex network of 

protein filaments. It is composed of three distinct elements: actin, 

microtubules and intermediate filaments. Intermediate filaments are thought 

to be the most rigid component of the cell and are responsible for maintaining 

the cells overall shape. The actin cytoskeleton is known to provide protrusive 

and contractile forces, whereas microtubules form polarised networks that 

allow protein and organelle movement throughout the cell (Etienne-

Manneville, 2004). The cytoskeleton is highly dynamic and undergoes 

continuous reorganisation. This reorganisation allows the cell to change 

shape, to divide, and to participate in directed migration. To achieve such 

complex cellular functions cytoskeletal elements must be co-ordinately 

regulated. Co-ordination is accomplished via signalling pathways that, as 

previously stated (see 1.1. Cell Migration and the Cytoskeleton), involve 

common regulators such as the Rho GTPases (Etienne-Manneville & Hall, 

2002; Etienne-Manneville, 2004). Accruing evidence demonstrates that the 

cytoskeletal elements themselves can also directly affect these signalling 

pathways (see Watanabe et al, 2005) and furthermore these elements can 

regulate each other. Thus their functions are in fact overlapping, with actin 

involved in membrane trafficking and microtubules playing a role in the 

control of protrusive and contractile forces (Etienne-Manneville, 2004). 

  

3.2. Actin and Microtubule Structure and Functions  

Actin is the most abundant protein in many eukaryotic cells (Pollard and 
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Borisy, 2003). It is a globular multi-functional protein that can exist as either a 

free monomer, so-called G-actin, or as part of a microfilament named F-actin 

(Alberts et al, 2002). Actin filaments comprise of double helical polymers of 

globular subunits (G-actin monomers) all arranged head-to-tail. They are 

intrinsically polarised with fast-growing ‘barbed’ ends and slow-growing 

‘pointed’ ends. This polarity is fundamental to the mechanism of actin 

assembly (Pollard and Borisy, 2003) and is used to drive cell membrane 

protrusion (Ridley et al, 2003). The organisation of actin filaments, however, 

depends on the type of membrane protrusion: in filopodia filaments are 

organised into long parallel bundles, while in lamellipodia they form a 

branching network (Ridley et al, 2003).  

Filopodia protrusion occurs by a filament ‘treadmilling’ mechanism, wherein 

actin filaments within a bundle elongate at their ‘barbed’ ends and liberate 

actin monomers from their ‘pointed’ ends. In lamellipodia, however, the 

Arp2/3 complex mediates actin polymerisation. It is a seven-subunit 

assembly and two of its subunits, the Actin-Related Proteins ARP2 and 

ARP3, serve as nucleation sites for new actin filaments (Gournier et al, 

2001). The complex binds to the sides or the tip of a pre-existing filament and 

induces the formation of a new filament, which braches from the pre-existing 

filament (Pollard and Borisy, 2003; Ridley et al, 2003). Intrinsically inactive, 

the Arp2/3 complex relies on nucleation promoting factors for activation. 

Activation is localised by Wiskott-Aldrich syndrome protein (WASP) family 

members (WASPs and WAVES/SCAR), which are well-known cellular 

nucleation promoting factors (Higgs and Pollard, 2001; Pollitt and Insall, 

2009). These WASP/WAVE activators are themselves the main targets of 

Rac and Cdc42, Rho GTPases that are required for the protrusion of 

lamellipodia (and filopodia; see 1.1. Cell Migration and the Cytoskeleton). In 

protrusions, numerous actin-binding proteins regulate the rate and 

organisation of actin polymerisation by altering the pool of available 

monomers and free ends. Profilin, for example, prevents self-nucleation by 

binding to actin monomers and also acts to selectively target monomers to 

‘barbed’ ends. Capping proteins terminate filament elongation thus restricting 

polymerisation to new filaments close to the plasma membrane. Additionally, 
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proteins of the actin-depolymerising factor (ADF)/cofilin family sever filaments 

and promote actin dissociation from the ‘pointed’ end. The disassembly of 

older filaments is required to generate actin monomers for polymerisation at 

the front end (dos Remedios et al, 2003; Ridley et al, 2003). 

Microtubules are highly dynamic structures that are ubiquitously present in all 

eukaryotic cells. In dividing cells they are the core components of the mitotic 

spindle. In interphase and terminally differentiated cells they form a scaffold 

crucial for the maintenance of cell morphology, distribution, intracellular 

transport, cell polarisation and motility. Microtubules are stiff, cylindrical 

hollow tubes composed of thirteen protofilaments of α- and β-tubulin 

heterodimers organised in a head-to-tail fashion. The polarised arrangement 

of the tubulin dimers gives the microtubule a molecular polarity with a fast 

growing ‘plus’ (β-tubulin) end and a slow growing ‘minus’ (α-tubulin) end 

(Etienne-Manneville, 2010; Jaworski et al, 2008; Watanabe et al, 2005). 

Microtubule polymerisation occurs by head-to-tail addition of α-β tubulin 

heterodimers. Each heterodimer includes an α-tubulin that is constitutively 

associated to a stable guanosine-5’-triphosphate (GTP) and a β-tubulin that 

cycles between a GTP-bound form and a guanosine diphosphate (GDP)-

bound form (Etienne-Manneville, 2010; Mitchison and Kirschner, 1984). The 

hydrolysis of GTP to GDP at this site has an important effect on microtubule 

dynamics (see figure 3.1). Binding of GTP to β-tubulin and then integration to 

the protofilament straightens the dimer, which facilitates extension (Wang 

and Nogales, 2005). The tubulin dimer further straightens subsequent to 

association with the microtubule wall (Rice et al, 2008). Thus, growing 

microtubule plus-ends are formed of GTP-bound dimers included in straight 

protofilaments that organise as a sheet before making a hollow tube 

(Gardner et al, 2008). Hydrolysis of the GTP occurs after polymerisation (and 

usually when the dimer is incorporated within the microtubule). 

Protofilaments are more prone to depolymerisation when dimers are bound 

by GDP as they exhibit increased curvature. The protofilaments, in the 

absence of GTP-bound tubulin at the end of the microtubule, curve outwards 

and depolymerise rapidly (Etienne-Manneville, 2010). Delayed hydrolysis of 

the GTP, when the microtubule is growing rapidly, results in the existence of 
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a ‘GTP-cap’. It is believed that the GTP-cap stabilises the open sheet 

formation of the growing plus-ends and prevents microtubule shrinkage and 

catastrophe (Chretien et al, 1999). 

 

Figure 3.1.  
 
 
 
 
 
 
 
 
 

        
 
 
 
 

        
 
 

 

In interphase animal cells, the microtubule network usually extends as a 

radial array from the microtubule-organising centre (MTOC), where 

microtubule minus-ends are predominantly anchored and plus-ends extend 
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toward the cell periphery. To facilitate frequent exploration of the cytoplasm 

microtubule plus-ends display dynamic instability. This is an essential 

process that encompasses a succession of slow polymerisation and rapid 

depolymerisation phases that are separated by transitions. The transition 

between polymerisation and shortening of the microtubule is known as a 

catastrophe, while the transition between depolymerisation and growth is 

termed a rescue. Dynamic instability enables microtubules to search and find 

various architectural elements of the cell. It is through this process that 

microtubule plus-ends are captured and stabilised at target destinations 

(Etienne-Manneville, 2010; Gunderson & Cook, 1999; Howard and Hyman, 

2003; Mitchison and Kirschner, 1984; Watanabe et al, 2005). Transiently 

stabilised microtubules may function as markers for cell polarity or act to 

stabilise a cellular protrusion or extension (Siegrist and Doe, 2007). Serving 

as preferential tracks for intracellular transport, stabilised microtubules may 

also allow localised delivery within the cell (Jaworski et al, 2008). 

Microtubules that are locally captured may transmit a force between the cell 

cortex and the MTOC, which in turn might facilitate cell polarisation (Levy and 

Holzbaur, 2007). 

Microtubule search and capture is fundamental for generating an 

asymmetrical microtubule array and maintaining cell shape (Kirschner and 

Mitchison, 1986; Mimori-Kiyosue and Tsukita, 2003). Non-migrating cells, as 

previously stated, have radial microtubule arrays that are anchored at a 

centrally located MTOC. Migrating cells, however, exhibit selective 

stabilisation of the plus-ends of microtubules (i.e. at the cell cortex within the 

advancing lamellipodium). This enables the MTOC to reorient towards the 

leading edge, which results in a polarised microtubule array that facilitates 

cell migration.  

 

3.3. Cell Migration  

(See 1.1. Cell Migration and the Cytoskeleton) 
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3.4. Microtubule End Binding Molecules 

The polarised organisation, dynamics, and functions of microtubules are 

likely to reflect a differential distribution of microtubule-associated proteins 

(MAPs), predominantly microtubule end binding molecules (Eteinne-

Manneville, 2004). Microtubule end binding proteins can be divided into 

microtubule plus-end tracking proteins (+TIPs) and microtubule destabilising 

factors, Kin I kinesins for example (Akhmanova and Hoogenraad, 2005). 

Kinesins, a large superfamily of microtubule motor proteins, use energy from 

adenosine-5'-triphosphate (ATP) hydrolysis to produce force. Kin I kinesins 

function as microtubule depolymerases that disassemble microtubules in an 

ATP-dependent fashion. They have the ability to target (and consequently 

depolymerise) microtubule ends. Interestingly Kin N and Kin C kinesins, 

however, have a higher affinity for the microtubule lattice and translocate 

toward the plus-ends and minus-ends of microtubules, respectively 

(Ovechkina and Wordeman, 2003).  

 

3.5. Microtubule Plus-End Tracking Proteins (+TIPs) 

In short, +TIPs are evolutionarily conserved proteins that mediate the 

interaction between microtubules and numerous subcellular structures  

(actin, organelles, and the cell cortex for example) and can help to locally 

concentrate regulatory molecules (Eteinne-Manneville, 2010). They 

encompass structurally unrelated proteins including microtubule motors, 

motor-cargo adaptors and non-motor MAPs. When compared to other MAPs, 

their distinguishing feature is their specific accumulation at the plus-ends of 

growing microtubules: in mammalian cells +TIPs form transient comet-like 

accumulations at the growing, but not depolymerising plus-ends of 

microtubules (Akhmanova and Hoogenraad, 2005; Lansbergen and 

Akhmanova, 2006a). This dynamic localisation was originally discovered via 

the live observation of the behaviour of the cytoplasmic linker protein-170 - 

green fluorescent protein (CLIP-170 - GFP) fusions, which appeared as 

comet-like structures coinciding with the tips of polymerising microtubules 
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(Perez et al, 1999). Most +TIPs can bind directly to microtubules, but the 

mechanism of their dynamic plus-end localisation remains to be fully 

elucidated.  Numerous microtubule plus-end binding factors, yeast CLIP-170 

homologues for example, are delivered to the tip of the microtubule by 

kinesin motors (Busch et al, 2004; Carvalho et al, 2004). Yet the mammalian 

CLIP-170 (Folker et al, 2005; Komarova et al, 2005; Perez et al, 1999), and 

many of the known +TIPs, seems to be stationary regarding the microtubule 

lattice: data collected using fluorescent speckle microscopy indicates that 

+TIPs attach to the freshly polymerised microtubule end and then detach 

gradually from the older part of the microtubule. This suggests that +TIPs 

either co-polymerise with tubulin (and consequently incorporate at the 

growing microtubule plus-ends), or that they have an increased affinity for the 

plus-end owing to its distinct biochemical and/or structural state (Dixit et al, 

2009; Lansbergen and Akhmanova, 2006a). Through binding to the 

microtubule ends, +TIPs can alter the microtubules structure and 

accessibility for interaction with other proteins. Many +TIPs function to 

stabilise microtubules: dynamically (via reduction of the number of 

catastophes or promotion of repeated rescues), or by being captured in a 

paused state (Akhmanova and Hoogenraad, 2005). Proteins of the CLIP-170 

family can act as anti-catastrophe (Brunner and Nurse, 2000) or rescue 

factors (Komarova et al, 2002) and, therefore, are implicated in microtubule 

stabilisation (Carvalho et al, 2004). Furthermore, CLIP-170 and its 

homologues are capable of promoting microtubule capture at cortical sites 

via direct interaction with dynein-dynactin (Goodson et al, 2003; Lansbergen 

et al, 2004).  

CLIP-170 was the first +TIP identified (Perez et al, 1999; Pierre, et al, 1992). 

More than twenty structurally unrelated +TIP proteins have since been 

recognised, some of which have been shown to interact with one another and 

may even form higher order plus-end complexes (Akhmanova and 

Hoogenraad, 2005; Akhmanova and Steinmetz, 2010). End-binding (EB) 

proteins represent the key components of +TIP networks as, unlike most 

+TIPs, they can track microtubule plus-ends in an autonomous manner 

independently of any binding partners (Bieling et al, 2007; Dixit et al, 2009). 
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Furthermore, EB proteins directly interact with the majority of all other known 

+TIPs and, by doing so, target them to growing microtubule plus-ends (see 

Akhmanova and Steinmetz, 2010). In cells, EB proteins typically promote 

microtubule dynamics and growth, and suppress catastrophes (Komarova et 

al, 2009). There are three mammalian EB proteins: EB1, EB2, and EB3. To 

date, most functional analyses have focused on EB1. EB1 directly stimulates 

microtubule nucleation and growth by assisting the integration of tubulin 

dimers and promotes microtubule sheet closure through strengthening the 

lateral interactions between straight adjacent protofilaments (Vitre et al, 

2008). In mouse fibroblasts, depletion of EB1 promotes microtubule pausing 

and decreases the time microtubules spend in growth (Kita et al, 2006). EB1, 

additionally, acts as a loading factor of other +TIPs (Dixit et al, 2009; Etienne-

Manneville, 2010). Less is known about EB2 and EB3, although analysis in 

differentiating muscle cells has illustrated a specific function of EB3 (Straube 

and Merdes, 2007, see Chapter 4 Discussion). 

Synonymous to CLIP-170 other +TIPs (cytoplasmic linker associated 

proteins [CLASPs], adenomatous polyposis coli [APC], and microtubule and 

actin crosslinking factor-1/actin crosslinking factor-7 [MACF1/ACF7]) 

participate in cortical capture and microtubule stabilisation, possibly via 

interactions with the actin cytoskeleton or the plasma membrane 

(Akhmanova and Hoogenraad, 2005). For example, CLASP1/2, APC (maybe 

in a complex with EB1 and mDia), MACF1/ACF7 and CLIP-170 (in a complex 

with IQGAP [a Rac1/Cdc42 effector]) were shown to stabilise microtubules at 

the leading edges of motile cells (Akhmanova et al, 2001; Fukata et al, 2002; 

Kodama et al, 2003; Wen et al, 2004). Both CLASP/Orbit/MAST and APC 

stabilise microtubules in axonal growth cones (Lee et al, 2004; Zhou et al, 

2004) and in mitotic spindles (Dikovskaya et al, 2004; Inoue et al, 2004). 

CLASPs attach microtubule plus-ends to the cell cortex through a complex 

with LL5ß (Lansbergen et al, 2006b). Other +TIPs can interact with actin 

fibres: either directly, spectraplakins like MACF1/ACF7 for example 

(Applewhite et al, 2010; Kodama et al, 2003), or with the requirement of 

intermediary factors (Fukata et al, 2002). Finally, Short stop (the Drosophila 

homologue of MACF1/ACF7) and Orbit/MAST regulate the interactions 
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between microtubules and the fusome (a specialised membranous structure) 

during oogenesis (Mathe et al, 2003; Röper and Brown, 2004).  

To highlight the importance of +TIPs, further examples of their functions 

include (but are not limited to), a role in coordinating microtubule attachment 

and dynamics at kinetochores (CLIP-170, CLASPs, dynein and Dam1 for 

example; see Maiato et al, 2004), they contribute to loading cargo for minus-

end directed microtubule transport (dynactin, CLIP-170; Lomakin et al, 2009) 

and many accumulate at MTOCs where they may play a role in microtubule 

nucleation and anchoring (see Bettencourt-Dias and Glover, 2007 

[Akhmanova and Steinmetz, 2010]).  

In conclusion, accruing evidence demonstrates that +TIPs play important 

roles in several aspects of cell functioning. They can regulate microtubule 

dynamic instability either by promoting microtubule growth, stabilisation and 

pausing, or by inducing switches from depolymerisation to rescues or the 

reverse. They provide an interface for the interaction of microtubules with the 

cell cortex or the actin cytoskeleton, and are vital for intracellular transport 

and cellular structure positioning. Lastly and significantly, owing to their 

localisation, +TIPs can be used as tools for visualising microtubule dynamics 

in cells and tissues (Jaworski et al, 2008). 

 

3.6. Avian Gastrulation and the Cytoskeleton 

Recently, distinct patterns of cellular organisation have been demonstrated in 

different regions of the early chick embryo (Wagstaff et al, 2008). Following 

the establishment of a fixation and staining protocol that allowed the 

examination of microtubule arrays in primitive streak stage chick embryos 

(early to late Hamburger-Hamilton Stage 3; Hamburger & Hamilton, 1951), 

Wagstaff et al (2008) investigated cytoskeletal organisation in gastrulating 

embryos. Microtubule organisation, in cells along the length and width of the 

primitive streak and cells in the neighbouring epiblast, was characterised via 

confocal microscopy (figure 3.2A). At the tip of the streak cells were densely 

packed with disorganised microtubule networks. Many lacked central focus 
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and displayed non-radial arrays, which suggests most of the microtubules 

were not anchored at the MTOC (figure 3.2B and C). Posterior to the tip, 

various microtubule organisations were observed. Typical of migrating cells, 

the majority of cells in this region demonstrated polarised microtubule arrays, 

with microtubules organised in bundles that stretched along the full length of 

the cell (figure 3.2D, F, and G). Interspersed within the polarised cells, a few 

cells illustrated radial arrays with microtubules presumed to be anchored at a 

centrally located MTOC and their plus-ends projecting towards the cell 

periphery (figure 3.2E). Intriguingly, many of the cells demonstrating 

polarised microtubule networks were organised into groups of six or more 

cells. These groups of cells were arranged in a rosette-like structure, 

resulting in a regular pattern of cellular organisation within the central streak 

(figure 3.2D).   

            

Figure 3.2. 
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In the examined HH Stage 3-4 embryos (n=15) approximately 20 rosettes 

appeared along the length of the streak. Most rosettes resided in the central 

region with a few in the anterior and occasionally 1 or 2 in the posterior 

regions. The majority of cells in the posterior region exhibited radial arrays 

(figure 3.2H). Some rosettes were also found in the outer edge of the streak 

in the boundary between streak and epiblast. Cells in the epiblast 

demonstrated a uniform organisation throughout, resulting in a regular 

appearance in this region. Like the posterior streak, most cells in the epiblast 

had radial microtubule networks (figure 3.2I and J). Three-dimensional 

reconstructions of the microtubule arrays within the rosettes showed that the 

tips of some cells were protruding from the plane of the rosette towards the 

hypoblast (see Wagstaff et al, 2008). Visualisation of the actin cytoskeleton 

(via rhodamin-conjugated phalloidin) within the primitive streak cells 

confirmed the organisation of six or more polarised cells into rosettes (figure 

3.3A). In addition, it revealed a distinct accumulation of actin, converging at 

the centre of the rosettes, which is assumed to be the leading edge of the 

cells (figure 3.3A and B). Further 3D reconstruction showed that the actin 

containing tips protruded towards the hypoblast (figure 3.3C; Wagstaff et al, 

2008).  

        

Figure 3.3.  
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Aims 

§ To fix gastrulating chick embryos and investigate the localisation of 

cytoskeletal components and their interacting proteins (+TIPs for 

example) in cells within the avian epiblast and primitive streak.  

§ To examine the formation and resolution of previously described 

rosette structures (within the primitive streak) to determine their 

significance for directional movements. For example, does the 

organisation of cells into higher order structures facilitate their 

ingression during gastrulation?  

 

Results 

 

3.7 DF1 and ARPE-19 Immunofluorescence Staining  

In order to characterise cytoskeletal proteins in gastrulating chicken embryos, 

the cross-reactivity of antibodies first had to be tested. DF-1 (chicken embryo 

fibroblasts) and ARPE-19 (human retinal pigment epithelial ‘control’ cells; 

kind gift from B. Tyrrell, UEA, Norwich) cells were fixed with methanol-MES 

and immunostained with various mouse, rat and rabbit antibodies (α-tubulin, 

γ-tubulin, APC, and EB1; see table 2.1). Figure 3.4 demonstrates both the 

cross-reactivity of all of these antibodies with chicken, and methanol-MES as 

an adequate fixative for each antibody. As expected, in both DF-1 and retinal 

epithelial cells, α-tubulin illustrates microtubule expression (figure 3.4A, A2, E 

and, E2), γ-tubulin illustrates the expression of centrosomes (or MTOCs; 

figure 3.4B and B2), APC appears throughout the cytoplasm and also at the 

junctions between ARPE-19 cells (figure 3.4C and C2), and EB1 is 

predominantly on the plus tips of microtubules (although some antibody has 

bound along the lengths of the microtubules; figure 3.4D, D2, E, and E2). 
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Figure 3.4. DF-1 (chicken fibroblast) and ARPE-19 (retinal epithelial) cells 
fixed with methanol-MES and immunostained with various antibodies, 
including A: α-tubulin, B: γ-tubulin, C: APC, D: EB1, and E: α-tubulin (green) 
and EB1 (red). DF-1 cells are depicted in the left-hand column (A, B, C, D, 
and E), while corresponding ARPE-19 cells are depicted in the right-hand 
column (A2, B2, C2, D2 and E2). For further experimental detail including specific 
antibodies and their usage please see materials and methods. 

 

Next, to test the efficiency of PHEMO-fix with these cytoskeletal antibodies, 

DF-1 cells were fixed with PHEMO and immunostained with the same 

mouse, rat and rabbit antibodies (α-tubulin, γ-tubulin, APC, EB1, and, 

additionally, MACF1/ACF7; see table 2.1). Figure 3.5 demonstrates the 

cross-reactivity of the α-tubulin antibody with chick (figure 3.5A) and possibly 

the MACF1/ACF7 antibody (figure 3.5F). However when compared to fixation 

with methanol-MES it is apparent that PHEMO-fix interferes with the function 

of γ-tubulin, APC, and EB1 antibodies (compare figures 3.4 and 3.5). 
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Figure 3.5. DF-1 (chicken fibroblast) cells fixed with PHEMO-fix and 
immunostained with various antibodies, including A: α-tubulin, B: γ-
tubulin, C: α-tubulin (green) and γ-tubulin (red), D: APC, E: EB1, and F: 
MACF1/ACF7. For further experimental detail including specific antibodies and their 
usage please see materials and methods. 

 

Since PHEMO-fix was shown to interfere with the function of several 

cytoskeletal antibodies (figure 3.5) it was anticipated that gastrulating chick 

embryos could be fixed with methanol-MES (or methanol alone) to allow 

investigation of the localisation of various cytoskeletal components. Several 

methods were attempted, including (combinations of) different concentrations 

of methanol-MES (or methanol only), varying incubation periods in fixative, 

and different temperatures while in fix. Unfortunately methanol and methanol-

MES appeared to be too harsh a fixative for these embryo stages and 

embryo integrity was compromised using all of the below conditions (see 

table 3.1). 

 

Table 3.1. Attempted methods of embryo (HH stage 3-4) fixation using 
methanol or methanol-MES. 

Various methanol and 
methanol-MES 

concentrations 

Attempted incubation 
times while in fixative 

(min) 

Attempted temperatures 
during fixation (°C) 

Absolute Methanol/10%Mes 6, 8, 10, 60, 240 -20, 4, 37 

80% Methanol/10%Mes 

100% Methanol          

80% Methanol/PBST 

6, 8, 10, 60, 240 

6, 8, 10, 60, 240 

6, 8, 10, 60, 240 

-20, 4, 37 

-20, 4, 37 

-20, 4, 37 

 

 

Discussion and Future Work 

In 2001, using both transmission electron microscopy and scanning electron 

microscopy (TEM and SEM respectively), Lawson and Schoenwolf (2001a) 
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noted the organisation of cells (in all three germ layers) during the early 

stages of avian gastrulation. Studies aforementioned illustrated the 

microtubule organisation of cells in the epiblast and primitive streak during 

this morphogenesis (Wagstaff et al, 2008). Cells in the epiblast displayed 

mostly radial microtubule-arrays, while most cells in the streak had polarised 

microtubule networks consistent with cells undergoing directional migration. 

Additionally, cells in the streak organised into rosette-structures, which have 

been proposed to facilitate the co-ordinated movement and ingression of 

groups of cells through the streak (Wagstaff et al, 2008). At present, the 

functional significance of multicellular rosettes is not clear. It is interesting to 

note, however, that similar structures have been reported to form during 

migration in the lateral line primordium of zebrafish (Lecaudey et al, 2008) 

and during germband extension in Drosophila (Blankenship et al, 2006). Hair 

cell organ progenitors (proneuromasts) of the zebrafish lateral line 

primordium have been shown to form repeatedly as multicellular rosette 

structures that appear behind the leading edge of the migrating epithelial 

tissue (Lecaudey et al, 2008). Similarly, through live imaging studies, 

Blankenship et al (2006) reveal that intercalating cells in the Drosophila 

germband locally organise to generate multicellular rosette structures. Based 

on three lines of evidence, they suggest rosettes are associated with the 

fundamental cell behaviours that drive axis elongation. First, rosettes were 

shown to form and resolve in a directional fashion, which in agreement with 

structural changes at the tissue level, results in the convergence and 

extension of a cellular array. Second, the majority of germband cells were 

seen to participate in multicellular rosettes, and third, the frequency and 

directionality of rosettes was selectively disrupted in anterior-posterior-

patterning mutants that were defective for axis elongation (bicoid nanos 

torso-like mutants for example). Blankenship et al (2006) further illustrate 

that, in intercalating cells, cytoskeletal and junctional proteins are polarised 

with respect to the axes of the embryo and are dynamically remodelled 

during rosette formation and resolution. 

While different cellular movements are used during the ingression of avian 

primitive streak cells following EMT, during Drosophila germband extension, 
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and during migration in the zebrafish lateral line primordium, rosette 

formation appears important in all three processes. It is, therefore, not 

unreasonable to speculate that the formation of such higher order cellular 

structures co-ordinates cell behaviours during tissue reorganisation and 

morphogenesis. Further characterisation of multicellular rosettes in the avian 

primitive streak, particularly the cytoskeletal components of the cells 

belonging to them, is necessary to determine any significance for directional 

movements. 

To further characterise the rosettes described in gastrulating chick embryos, 

it was anticipated that through the immunostaining of PHEMO-fixed embryos 

(as described by Wagstaff et al, 2008) it would be possible to investigate the 

localisation of additional cytoskeletal components and their interacting 

proteins (+TIPs for example). However, though it was possible to reproduce 

the results (data not shown) with regard to the microtubule cytoskeleton 

(shown previously by Wagstaff et al, 2008), the use of PHEMO-fix proved 

problematic (see below). It is also worth noting that embryo quality had a 

really important part to play in this approach. Poor quality (less robust) 

embryos that were harvested, for example in the winter months, rarely made 

it through this protocol intact. 

The cross-reactivity of various mouse, rat and rabbit antibodies (specifically 

α-tubulin, γ-tubulin, APC, and EB1) has been demonstrated in chicken 

fibroblast cells (DF-1s) fixed with methanol-MES (figure 3.4). As expected, in 

both DF-1 and ARPE-19 cells, α-tubulin illustrated microtubule expression 

(figure 3.4A, A2, E and, E2), γ-tubulin demonstrated the expression of 

centrosomes (or MTOCs; figure 3.4B and B2), APC appeared throughout the 

cytoplasm and also at the junctions between ARPE-19 cells (figure 3.4C and 

C2), and EB1 was predominantly on the plus tips of microtubules (although 

some antibody had bound along the lengths of the microtubules; figure 3.4D, 

D2, E, and E2). Unfortunately however, the function of these antibodies 

(excluding α-tubulin) was impaired when cells were fixed with PHEMO-fix 

solution (figure 3.5).  
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As numerous antibodies were demonstrated to cross-react with methanol-

MES fixed DF1-s, it was predicted that gastrulating chick embryos (HH Stage 

3-4) could also be fixed with methanol-MES (and not PHEMO owing to it’s 

destructive properties towards the majority of tested antibodies) to enable the 

investigation of the localisation of additional cytoskeletal components. 

Regrettably, despite numerous efforts this was not the case. Several 

methods were attempted, including (combinations of) different concentrations 

of methanol-MES (or methanol alone), varying incubation periods in fixative, 

and different temperatures while in fix (table 3.1). It became apparent that 

both methanol and methanol-MES are too harsh on such fragile embryos. It 

was, therefore, concluded that HH Stage 3-4 chick embryos and methanol or 

methanol-MES are not a good combination. Again, embryo quality had an 

important part to play in this assay.  

Clearly, this assay requires further development. It is anticipated that the 

discovery of a methanol-based fixative that does not destroy HH3-4 Stage 

chick embryos would allow for further investigation of the cytoskeleton in 

multicellular rosettes. Additionally, in order to characterise rosettes more 

completely the localisation of microtubule interacting proteins, proteins 

involved in cell polarisation (RhoGTPases and APC for example), and Wnt 

pathway components (as Wnt signalling has been implicated in vertebrate 

gastrulation movements), would be of particular interest. Furthermore, 

following the establishment of protein localisation, interference with protein 

function using RNA interference (RNAi) experiments would reveal any affects 

on cell organisation. Other functional inhibition studies, such as the 

application of nocodazole (which interferes with the polymerisation of 

microtubules), could also be used to determine the role of polarised 

microtubule arrays in rosette formation and ingression movements.  

Alternatively, the combination of electroporation of a GFP reporter construct 

in chick primitive streak cells and live time-lapse confocal microscopy, may 

prove an adequate assay to directly observe any changes in cell shape 

during the formation of rosettes. Additionally, electroporation of GFP fusions 

to cytoskeletal components (i.e. GFP-tubulin) or cytoskeletal interacting 

components (i.e. GFP-EB1) may enable visualisation of the cytoskeleton 
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during this process. A transgenic chick embryo where microtubules or cell 

membranes are labelled may also prove useful. 

In conclusion, owing to the difficulties encountered, it was not possible to 

characterise the rosettes (or cytoskeletal components of the cells belonging 

to them) previously seen in gastrulating chick embryos. Thus, following 

numerous attempts and various methods, the decision was made to pursue 

the characterisation of the cytoskeleton (in vivo) within the somites of older, 

more robust embryos. 	
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Chapter 4: Cell Dynamics and the 
Associated Cytoskeleton During Somite 

Morphogenesis 

 

Introduction 

During avian gastrulation as the primitive streak regresses and the neural 

folds begin to gather at the centre of the embryo, the thick bands of paraxial 

mesoderm that lie between the intermediate mesoderm and the axial 

structures separate into transient aggregates of cells, on either side of the 

neural tube, termed somites (Bellairs, 1963, 1979; Christ et al 1972, 1973; 

Christ and Ordahl, 1995; Gilbert, 2006; Packard, 1978). Somites, which give 

rise to all skeletal muscles in the vertebrate trunk, form in pairs in a rostral-

caudal progression. As new somites form caudally, the more rostral somites 

(in response to extrinsic signals from their surrounding structures) mature 

and commit to forming certain cell types. During maturation and 

differentiation each somite divides into distinct regions: the dermomyotome, 

the sclerotome and the syndetome. The sclerotome generates the vertebrae 

and rib cartilage and the syndetome, which arises within the sclerotome, 

generates the tendons. The dermomyotome, however, consists of both 

dermatome and myotome. The dermatome generates the dermis of the back 

while the myotome produces the musculature of the back, ribs and limbs 

(Brand-Saberi et al, 1996; Brent et al, 2003; Gilbert, 2006; Kahane et al, 

1998). 

A newly formed somite comprises an outer epithelial layer that surrounds a 

central cavity named the somitocoele. Within a few hours of formation the 

ventral portion of the somite disaggregates into ventral mesenchyme (the 

sclerotome), while the medial wall and dorsal portion of the somite (the 

dermomyotome) remain epithelial. The medial wall subsequently folds under 

the dermomyotome initiating formation of primitive skeletal muscle (the 
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myotome). The dorsomedial lip (DML), the medial border of the 

dermomyotome, remains epithelial for a significant period of time during 

which it generates muscle cells that contribute to myotome growth. Notably, 

during early embryonic muscle development DML progenitor cells can adopt 

two fates: to self-renew and remain in the epithelial border of the 

dermomyotome or to translocate in the myotome and terminally differentiate 

(Gros et al, 2004; Ordahl et al, 2001; Rios et al, 2011). Limb and girdle 

muscles derive from progenitors in the lateral dermomyotome, which migrate 

into the limb mesenchyme prior to undertaking myogenic differentiation. 

During later embryogenesis muscle masses separate into deep back 

(epaxial) and abdominal and appendicular (hypaxial) muscles. The 

dermomyotome is composed of proliferative polarised epithelial cells that 

express dermomyotome-specific genes (such as Pax3 and Pax7). However, 

the early myotome comprises postmitotic myocytes, observed as 

mononucleated elongated cells aligned parallel to the embryonic axes, which 

express muscle-specific genes (Myogenic Transcription Factor, Myf5 for 

example). Evidently, myotome formation is a highly coordinated process that 

combines cell migration from the dermomyotome into the myotome, changes 

in cell shape together with an arrest of the cell cycle, and the activation of 

muscle-specific genes (Gros et al, 2004).  

4.1. Myotome Morphogenesis 

Myotome morphogenesis has been comprehensively studied (Cinnamon et 

al, 1999, 2001; Denetclaw et al, 1997, 2001; Denetclaw and Ordahl, 2000; 

Kahane and Kalcheim, 1998; Kahane et al, 1998a, 2001, 2002; Ordahl et al, 

2001; Venters and Ordahl, 2002). During the late 1990’s, it was well 

established that the myotome precursor cells translocate from the 

dermomyotome to form the underlying myotome (Kahane et al, 1998b). Yet 

how these precursors were generated and stimulated to migrate remained 

contentious for a number of years. Despite the use of similar techniques and 

the same animal model (the chick embryo) two distinct models were 

proposed.  
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The first model, from Ordahl and colleagues, proposed that the myotome is 

generated by two permanent stem cell systems: one located at the border of 

the dermomyotome nearest to the neural tube, the dorsomedial lip (DML, 

Denetclaw et al, 1997), and the other at the ventrolateral lip (VLL, Denetclaw 

and Ordahl, 2000). DML and VLL cells, which are the main source of the 

epaxial and hypaxial muscles respectively, translocate directly underneath 

the dermomyotome to form the subjacent myotome layer. Once in the 

myotome they directly elongate to reach the rostral and caudal borders of the 

dermomyotome. Myotome expansion proceeds medio-laterally with older 

myofibres being displaced as newer fibres arise at the DML and VLL and 

translocate into the myotome (see figure 4.1; Brent and Tabin, 2002; 

Denetclaw et al, 2001; Gros et al, 2004; Hollway and Currie, 2003). This 

mode of myotome growth, named incremental growth, implies that 

progenitors within the stem cell population gradually become further apart 

from their progeny in the myotome, which results in a non-coherent 

organisation of the myotome (Denetclaw et al, 2001).  

The second model, from Kalcheim and colleagues, stated that the myotome 

arises from the dermomyotome through distinct waves of cell migration. In 

agreement with Ordahl and colleagues, the first wave originates from cells in 

the dorsomedial region of the epithelial somite. But instead of translocating 

directly into the myotome, these proposed postmitotic pioneer cells 

(myoblasts) bend underneath the dermomyotome and migrate rostrally 

before integrating into the incipient myotome (once at the rostral border they 

elongate toward the caudal border forming the first myofibres; Kahane et al, 

1998a; Kahane and Kalcheim, 1998). Subsequent growth occurs when a 

second wave of myoblasts emanate from all four edges of the 

dermomyotome, but translocate directly into the myotome only from the 

rostral and caudal borders, where they intercalate with the pre-existing 

myofibres. Any DML or VLL contribution to the myotome was thought to be 

preceded by migration (as mesenchymal cells) to the rostral and caudal 

dermomyotome egdes before entering the myotome. This second wave of 

migration causes expansion of the myotome (containing both old and young 

fibres throughout) in both the rostrocaudal and dorsoventral directions and 
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also increases the myotome thickness in the transverse plane (see figure 4.1; 

Brent and Tabin, 2002; Cinnamon et al, 1999, 2001; Gros et al, 2004; 

Hollway and Currie, 2003; Kahane et al, 1998a, 2002). This mode of 

myotome growth was termed intercalating growth as cells from the second 

wave of migration were observed to elongate among older pioneer myofibres. 

Via this process, the relative position of the dermomyotome progenitors is 

maintained with their progeny in the myotome and defined, therefore, as 

coherent myotomal growth (Kahane et al, 2002).  

 

 

Figure 4.1.  
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In 2004, the controversy between the two models was resolved. Through the 

combination of electroporation of a GFP reporter construct in chick somites 

(Scaal et al, 2004) and time-lapse confocal microscopy, Gros et al, (2004) 

demonstrated that all four borders of the dermomyotome give rise to 

myocytes. Two sequential phases in myotome formation were identified: the 

first phase illustrates incremental myotome growth and results from a 

contribution of myocytes derived solely from the medial border of the 

dermomyotome (through the DML). Once in the myotome, these cells (with 

no prior migration) elongate to reach the rostral and caudal borders. In a 

second phase, myocytes from all four dermomyotome borders (caudal, 

rostral and ventrolateral) enter the myotome, combining incremental growth 

at the DML and VLL and coherent growth at the rostral and caudal borders 

(see figure 4.2). Further analyses of the distribution of myocytes from the four 

borders confirmed that DML-derived myocytes colonise only the epaxial 

myotome, whereas the VLL exclusively produces hypaxial myotome (Gros et 

al, 2004; Gros et al, 2005).     

 

Figure 4.2.   
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The central portion of the dermomyotome also has a major role in myotome 

morphogenesis. Once the myoblasts from the lateral borders of the 

dermomyotome have formed the ‘primary myotome’, the centralmost region 

of the dermomyotome gives rise to a further population of muscle cells. 

Following their delamination from the dermomyotome, these muscle cells 

undergo EMT and join the primary myotome cells to produce a ‘secondary 

myotome’. In contrast to the marginal myoblast cells, these undifferentiated 

central cells rapidly proliferate. Some will eventually differentiate to form 

muscle but others sustain their undifferentiated state, surround the mature 

muscle cells and become the satellite cells responsible for postnatal growth 

and muscle repair (Ben-Yair and Kalcheim, 2005; Gilbert, 2006; Gros et al, 

2005; Manceau et al, 2008; Relaix, et al, 2005). 

As aforementioned, myotome formation in amniotes is initiated at the DML 

(Gros et al, 2004), directly opposite to the neural tube (figure 4.3a’, a’’). Cells 

from the DML enter a transition zone (figure 4.3b, c), via a morphogenetic 

process that is not fully understood, where they instigate the expression of 

muscle-specific markers and shut off the expression of dermomyotome-

specific genes (figure 4.3d). 
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Figure 4.3.  
 

 
 
 

 
 
 
 
 

 

 

Using time-lapse confocal microscopy (combined with electroporation of a 

GFP reporter construct) to analyse a live chick specimen, Gros et al (2009) 

have summarised that, within the transition zone, cells first lose their typical 

bottle-shaped morphology (present in the DML) and then initiate protrusive 

activity that is characterised by filopodia formation. The filopodia extend in all 

directions and are later replaced by lamellipodia, which form at the anterior 

and posterior ends of the cells. Extensive cell elongation along the antero-

posterior embryonic axis results in the formation of full-sized myocytes (figure 

4.4).  
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Figure 4.4.  
 

 

4.2. NOTCH signalling and Myogenesis 

The NOTCH pathway has previously been shown to influence myogenesis. 

Interaction of the NOTCH receptor with one of its ligands, Delta or 

Serrate/Jagged, triggers NOTCH signalling (Mumm and Kopan, 2000). The 

NOTCH receptor, succeeding ligand binding, undergoes a proteolytic 

cleavage, which releases the NOTCH intracellular domain (NICD) to the 

cytoplasm. Translocation of the NICD to the nucleus results in its association 

with members of the CSL (CBF1/RBP-Jκ, Suppressor of hairless [Su(H)], 

LAG-1) family, which modulates the transcriptional activity of these proteins. 

The NCID-CSL complex activates the expression of downstream targets 

including members of the Hairy/Enhancer-of-Split (HES) family of basic Helix-

Loop-Helix (bHLH) transcription factors. Forced expression of either NOTCH 

ligands or activated NOTCH receptor has been shown to inhibit muscle 

differentiation (Kopan at al, 1994; Kuroda et al, 1999; Nofziger et al, 1999; 

Shawber et al, 1996; Wilson-Rawls et al, 1999).  

While the translocation of DML cells into the myotome is not fully 

characterised, Rios et al (2011) have recently shown that muscle progenitors 

in the somites require the transient activation of NOTCH signalling to 

undergo terminal differentiation. During the first phase of myogenesis 

NOTCH family members are expressed in the DML, the transition zone, and 
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the myotome (figure 4.5). HES1/cHairy2 and lunatic fringe (LFNG), the 

NOTCH target genes, are expressed in a salt and pepper pattern in the DML 

(Hirsinger et al, 2001; Rios et al, 2011).  

Figure 4.5. 

Using live video microscopy, Rios et al (2011) followed the morphogenetic 

movements of NOTCH-activating cells (cells electroporated with a NOTCH 

reporter construct, consisting of the mouse Hes1 promoter region upstream of 

a destabilised GFP, which responds to NOTCH activation and inhibition). 

Epithelial cells in the DML that activated the NOTCH reporter rapidly 

translocated to the transition zone (figure 4.6). 

Figure 4.6. 
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Furthermore, inhibition of NOTCH activity in somites, using both small 

interfering RNAs (siRNAs) and a truncated dominant negative form of 

mastermind (DN MAML1; a NOTCH transcriptional co-activator), showed a 

drastic reduction of myogenic differentiation (characterised by a reduction of 

Myf5-positive cells), with almost all cells in which NOTCH signalling was 

inhibited remaining epithelial in the dermomyotome. Interestingly, sustained 

activation of NOTCH signalling (gained via electroporation of NICD in newly 

formed somites) reverses the myogenic program, also resulting in a 

downregulation of Myf5 and MyoD expression. Rios and colleagues (2011) 

illustrated, with a doxycyclin-inducible system that drives NICD expression, 

that the majority of electroporated cells with maintained NCID expression (i.e. 

in the continuous presence of doxycyclin) translocated to the transition zone 

but did not maintain Myf5 expression. Yet a transient activation of NOTCH 

signalling, achieved via the removal of doxycyclin (whereby NICD was 

expressed 6 h later, but was undetectable after overnight incubation), resulted 

in the translocation of most electroporated cells to the transition zone and the 

myotome with virtually all cells expressing Myf5. Additionally, electroporated 

cells that were located in the myotome had elongated into myocytes, implying 

that they had initiated terminal differentiation (Rios et al, 2011). Moreover, 

neural crest cells, which express the NOTCH ligand Delta1 (DLL1) in a 

mosaic pattern, migrate in close proximity to the DML. Gain and loss of Delta1 

function in neural crest cells was shown to modify NOTCH signalling resulting 

in delayed or premature myogenesis (Rios et al, 2011). Gain-of-function (via 

overexpression of DLL1 in neural crest) resulted in a robust activation of chick 

HES1 mRNA expression and of the NOTCH reporter activity in somites, while 

loss-of-function (via electroporation of a dominant-negative form of DLL1, and 

siRNAs against chick DLL1) resulted in a significant reduction in Myf5 

staining. A model proposed by Rios et al (2011) indicates that the neural crest 

regulates early muscle formation via a mechanism that relies on the migration 

of neural crest cells, which are expressing DLL1, to initiate the transient 

activation of NOTCH signalling in selected muscle progenitors (see figure 4.7 

for proposed ‘kiss and run’ model).  
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Figure 4.7.  
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4.3. C2C12 Cells and Myogenesis  

Embryonic myogenesis is a multistep process, which is regulated by the 

myogenic regulatory factors (MRFs): Myf5, MyoD, myogenin and MRF4. It 

begins with the commitment of an embryonic precursor to the myogenic 

lineage, followed by the proliferation of these committed myoblasts, the 

differentiation of myoblasts into postmitotic myocytes, and finally fusion of 

myocytes to form a multinucleated myotube. This process is accompanied by 

extensive cytoskeletal reorganisation. The C2C12 mesenchymal cell line is a 

widely used in vitro model for myogenesis. C2C12 cells originate from the 

laboratory of Helen Blau (Blau et al, 1983) and are a subclone of C2 

myoblasts (Burattini et al, 2004). Yaffe and Saxel (1977) originally derived C2 

cells from mouse thigh muscle. C2C12 cells mimic skeletal muscle 

differentiation in vitro: when serum is withdrawn from culture medium the 

myoblasts spontaneously differentiate into contractile myotubes within five 

days. When cultured in high serum conditions C2C12 myoblasts remain 

undifferentiated and express Myf5 and MyoD but not myogenin and Mrf4. 

Myf5 and MyoD actively determine the committed state of C2C12 cells but 

their ability to induce myogenic differentiation is blocked in high serum 

conditions. Depletion of growth factors and/or the downregulation of growth 

factor receptors initiate myogenic differentiation, which is marked by 

increased expression of myogenin and other muscle differentiation markers 

like myosin heavy chain.   

 

Aims 

§ To perform microtubule immunostaining of avian somites, which may 

reveal similar rosette structures to that previously described in the 

avian primitive streak. Further characterisation of which may 

determine any significance for cell movement. 

§ To electroporate a GFP marker, in combination with time-lapse 

microscopy, to visualise the translocation of cells from the dorsomedial 

lip (DML) of the somite to the myotome in real time. Also 
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electroporation of tubulin-GFP may allow observation of the 

microtubule cytoskeleton during this process.  

 

Results 

4.4. C2C12 Immunofluorescence Staining  

Prior to instigating the immunostaining of microtubules in avian somites, 

C2C12 mouse myoblast cells (an in vitro model of myogenesis) were fixed 

with methanol-MES and immunostained with α-tubulin antibody. Figure 4.8 

demonstrates both the cross-reactivity of this rat antibody with mouse 

myoblasts and methanol-MES as an adequate fixative. As expected, α-

tubulin illustrates microtubule expression in cells at day 1 (figure 4.8a) and 

day 4 (figure 4.8b) of differentiation.  

 

  
Figure 4.8. C2C12 cells immunostained for microtubules (using α- tubulin 
antibody) at day 1 (a) and day 4 (b) of differentiation. For further experimental detail 
please see materials and methods. 

 

 

4.5 Embryo Sections and Immunofluorescence Staining  

To enable visualisation of the microtubule cytoskeleton within cells of the 

avian somite, HH Stage 16 chick embryos were fixed with microtubule 

assembly buffer (BRB; containing formaldehyde and glutaraldehyde). 

Following fixation, trunks of embryos were cryosectioned (section thickness 

15µm). Sections were subsequently immunostained with α-tubulin antibody 

and DAPI (see figure 4.9 for an example).  

(a) (b) 
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Figure 4.9. Microtubule immunofluorescence staining of a HH Stage 16 chick 
embryo cross section. The embryo was fixed with BRB (containing formaldehyde 
and glutaraldehyde) and the trunk was cryosectioned. Sections were then 
immunostained with α-tubulin antibody and DAPI. At high magnification there 
appears to be stained microtubules and nuclei in the somite (c). The dashed 
square in (b) highlights the magnified area in (c). The position of the section (b, c) 
with regard to the embryo is marked on (a). Part (a) adapted from and courtesy of 
Hamburger and Hamilton (1951).  

 

The α-tubulin antibody appears to be staining for something that resembles 

microtubules (as anticipated) however this is not very clear in the tissue 

section (figure 4.9c).  

 

4.6. Wholemount Somite Immunofluorescence Staining  

Owing to problems encountered with both the microtubule assembly buffer 

and the cryosectioning the decision was made to try immunostaining 

(isolated) somites in wholemount. HH Stage 17 chick embryos were fixed in a 

solution containing both methanol and formaldehyde (recommended by Dr. 

Deborah Goldspink, UEA, Norwich) and interlimb somites were excised. 

Excised somites were immunostained for either microtubules (using α-tubulin 

antibody) or microtubules and DNA (using α-tubulin antibody and propidium 

iodide). Following immunostaining, somites were imaged with an inverted 

confocal two-photon microscope. Figure 4.10 illustrates a Z-stack (a series of 

confocal slices) through one of the interlimb somites stained for microtubules 

only, while figure 4.11 demonstrates a Z-stack through an interlimb somite 

stained for microtubules and DNA.  

(c) (b) (a) 

(b), (c) 

NC 

NT 
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Figure 4.10. Confocal stack of an interlimb somite of a HH Stage 17 chick embryo 
immunostained for microtubules. Z-stack is shown from dorsal (b) to ventral (m). Image 
illustrated in b is 10 µm into the somite from its most dorsal side and every image thereafter 
is a further 6 µm deeper into the tissue i.e. image in c is 16 µm deep; image in d is 22 µm 
deep and so on. The image shown in a is purely to familiarise the reader with the structure of 
the somite in images b-m. The dashed red boxes highlight examples of dividing cells in the 
dermomyotome while red arrows highlight examples of dividing cells in the lips of the somite. 
*DML: dorsomedial lip, R: rostral lip, C: caudal lip. Scale bar (a) is 50µm. 
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(b) (c) (d) 

(e) (g) (f) 
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Figure 4.11. Confocal stack of an interlimb somite of a HH Stage 17 chick embryo 
immunostained for microtubules and DNA. Z-stack is shown from dorsal (a) to 
ventral (l). Image illustrated in a is 9 µm into the somite from its most dorsal side and 
every image thereafter is a further 9 µm deeper into the tissue i.e. image in b is 18 
µm deep; image in c is 27 µm deep and so on. Microtubules are in green and DNA 
is in red. The dashed red box highlights a dividing cell. Labels on the image shown 
in j are purely to familiarise the reader with the structure of the somite. *DML: 
dorsomedial lip, VLL: ventrolateral lip, R: rostral lip, C: caudal lip. Scale bar (a) is 50µm. 
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The α-tubulin antibody illustrates microtubule expression within the Z-stacks 

(somites; figure 4.10 and figure 4.11). Dividing cells have been detected, 

particularly in the lips of the somite (see red arrows in figures 4.10l and 

4.10m for examples) and what is believed to be the dermomyotome (see 

dashed red boxes in figure 4.10l for examples). Intriguingly, the dividing cells 

appear to be dividing in the plane of the epithelial dermomyotomal sheet and 

not in an apico-basal fashion. Figure 4.12 is a close up of the dividing cell 

highlighted in figure 4.11c (dashed red box). This corroborates the specificity 

of the α-tubulin antibody for microtubules (which in this instance are spindle 

microtubules) and propidium iodide for DNA staining.  

 

	
  

Figure 4.12. Dividing cell from a HH Stage 17 chick embryo 
interlimb somite. Microtubules are shown in green and DNA 
is shown in red. This image is a close up of a cell highlighted 
in figure 4.11c. 

 

4.7. Targeted Electroporation of the Dorsomedial Lip 

To enable visualisation of the microtubule cytoskeleton within cells that have 

been reported to translocate from the dorsomedial lip (DML) of the somite to 

the myotome in real time, epithelial somites I-V of HH Stage 16 chick 

embryos were injected with GFP-tubulin and electroporated. Following 

electroporation (with electrodes positioned to target the DML), embryos were 

re-incubated for 13-16 hours. Electroporated somites, now interlimb 

(embryos now at HH Stage 19-20), were then isolated and prepared for 

imaging (see materials and methods for more details about slice cultures). 

Live somites were imaged for a minimum of 3 hours (and in some instances 

up to 10 hours) with an inverted confocal two-photon microscope (see figure 

4.13 for an example).  
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Figure 4.13. Time-lapse confocal analysis showing GFP-tubulin expression in a 
HH Stage 20 chick interlimb somite injected and electroporated at HH Stage 16. 
b indicates the start of the time-lapse and each subsequent image is 50 min after 
the previous image (i.e. c is 50 min after the start, d is 100min after the start and 

(b) (c) 

(d) (e) 

(f) (g) 

(a) DML 

TZ 

M 
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so on). The image shown in a is purely to familiarise/orient the reader with the 
structure of the somite in images b-g. All images are across one plane (i.e. the 
same slice within the Z-stack) and are, therefore, the same depth within the 
tissue. *DML: dorsomedial lip, TZ: transition zone, M: myotome. Scale bar (a) is 50µm. 

 

 

The injection and electroporation of GFP-tubulin into the developing somite 

has permitted the observation of cells in the epithelial DML, the 

mesenchymal transition zone, and the myotome (figure 4.13). Various 

changes to the cells are evident during the course of the 4 h 10 min time-

lapse experiment; however, it is not possible to easily detect the microtubule 

cytoskeleton (as was anticipated with the overexpression of GFP-tubulin; 

figure 4.13). It is difficult to determine the exact depth of the slice within the 

somite (i.e. the depth from the dorsal side) as the Z-stack only visualises the 

electroporated cells. The Z-stacks for the immunostained somites described 

above, however, represent the whole somite as all of the excised tissue was 

stained. 

Epithelial somites I-V of HH Stage 16 chick embryos were also injected with 

a membrane bound GFP (GFP-GPI) and electroporated. Following targeted 

electroporation to the DML, embryos were re-incubated for 13-16 hours. 

Electroporated somites (now interlimb, as embryos at HH Stage 19-20) were 

subsequently excised and prepared for imaging. Live somites were imaged 

for a minimum of 2 hours (and in some instances up to 12 hours) with an 

inverted confocal two-photon microscope (see figure 4.14 for an example). 

Like GFP-tubulin, the injection and electroporation of GFP-GPI into the 

developing somite has allowed the observation of cells in the DML, the 

transition zone, and the myotome (figure 4.14). The electroporated cells 

highlighted throughout the 2 h 45 min time-lapse (figure 4.14) appear to be 

very dynamic, particularly in the dorsomedial lip. The DML cells display high 

levels of activity, characterised by the formation of filopodia, which appear to 

extend from the anterior end of the cells (see red arrows in figure 4.14). 

Again it is difficult to ascertain the exact depth of the slice within the somite 

as the Z-stack only visualises the electroporated cells. 
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Figure 4.14. Time-lapse confocal analysis showing GFP-GPI expression in a HH 
Stage 20 chick interlimb somite injected and electroporated at HH Stage 16. b 
indicates the start of the timelapse and each subsequent image is 15 min after the 
previous image (i.e. c is 15 min after the start, d is 30min after the start and so on). 
The image shown in a is purely to familiarise/orient the reader with the structure of 
the somite in images b-g. All images are across one plane (i.e. the same slice within 
the Z-stack) and are, therefore, the same depth within the tissue. Red arrows 
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highlight a filopodia extension *DML: dorsomedial lip, TZ: transition zone, M: myotome. Scale 
bar (a) is 50µm. 

 

 

Discussion and Future Work 

The cross-reactivity of rat α-tubulin antibody with mouse C2C12 myoblasts 

has been demonstrated (figure 4.8). As anticipated, α-tubulin immunostaining 

has illustrated the expression of the microtubule cytoskeleton. At day 4 of 

differentiation microtubules appear to be predominantly oriented in the 

longitudinal axes of the cells (figure 4.8b), whereas they are much less 

organised at day 1 of differentiation (figure 4.8a). This is in agreement with 

Tassin et al (1985) who illustrated that the microtubule cytoskeleton (and the 

organelles associated with it) is reorganised as myoblasts differentiate, 

elongate, and fuse into myotubes. They demonstrated that, during skeletal 

muscle cell differentiation, the classic network of microtubules nucleated at 

the centrosome changes into an array of mostly parallel longitudinal 

microtubules that are no longer focused on centrosomes (Tassin et al, 1985).  

Microtubule stabilizing and destabilizing agents have been shown to 

compromise myotube differentiation; therefore, microtubule dynamics are 

believed to be essential for myotube formation (Guo et al, 1986; Pizon et al, 

2005; Saitoh et al, 1988). Musa et al (2003) have shown that myotube 

development includes alternate phases of cell fusion and elongation. 

Furthermore they illustrate that EB1 (a +TIP protein; see 3.5. Microtubule 

Plus-End Tracking Proteins [+TIPs]) can be detected throughout the entire 

myotube. It is more intense, however, at the ends of the cell suggesting a 

role for microtubule dynamics in cell elongation (Musa et al, 2003). Straube 

and Merdes (2007) have shown that EB3, an EB1 homolog, is specifically 

upregulated during myogenic differentiation and is vital for myoblast 

elongation and fusion. Vector-based RNAi studies in cultured myoblasts 

showed that EB3 regulates microtubule dynamics and cortical microtubule 

capture (i.e. knockdown of EB3 prevented myoblast elongation and fusion 

into myotubes), which may be required for cell fusion and for the stabilisation 
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of polarised membrane protrusions. Furthermore, EB1 depletion in 

undifferentiated myoblasts was shown to have no negative effect on 

microtubule organization or on the centrosomal focusing of microtubule 

minus ends. Despite high homology between EB3 and EB1, overexpression 

of EB1 did not rescue the effect of EB3 depletion on myoblast differentiation. 

Straube and Merdes (2007), following detailed mapping studies, 

demonstrated that this could be attributed to a few amino acid substitutions 

between EB1 and EB3 located in the N-terminal calponin homology domain, 

which suggests the existence of muscle-specific partners recognising the N-

terminus of EB3 (Jaworski et al, 2008; Straube and Merdes, 2007). Prior to 

their investigation, this EB protein domain had only been implicated in 

microtubule binding (Hayashi and Ikura, 2003), and all known interactions 

with multiple EB binding partners had been shown to rely on the EB C-

terminus (Jaworski et al, 2008; Lansbergen and Akhmanova, 2006). 

However, in 2009 Zhang et al demonstrated that EB1 is required for the 

microtubule stabilisation that takes place in myoblasts at the onset of 

differentiation. They generated C2 (mouse muscle) cell lines that 

permanently expressed EB1-targeted shRNAs (short/small hairpin RNAs) 

and illustrated that, before any differentiation-related changes can take place, 

EB1 is specifically knocked down by more than 90%. Zhang et al revealed 

that differentiation (assessed via myogenin expression), elongation, and 

fusion were all prevented. Microtubule stabilization and the accumulation of 

cadherin and β-catenin on the plasma membrane (two events that normally 

precede differentiation) were also inhibited. Interestingly, the re-expression of 

EB1 (as EB1-GFP) was shown to restore all aspects of normal differentiation, 

while EB3-GFP re-expression only restored elongation and not fusion (Zhang 

et al, 2009). Zhang et al (2009) suggest that this divergence in the relative 

importance of EB1 compared with EB3 might be somewhat reconciled by 

considering experimental differences: the isolation of their permanently 

knocked down cells compared with the transient transfections performed by 

Straube and Merdes (2007) for example.  

Following fixation with microtubule assembly buffer (BRB; containing 

formaldehyde and glutaraldehyde), the trunks of HH Stage 16 chick embryos 
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were cryosectioned and subsequently immunostained with α-tubulin antibody 

(figure 4.9). Unfortunately, sections were not great quality. This could be due 

to the fixing conditions or the cryosectioning itself. Nonetheless, α-tubulin 

staining appears to be detecting microtubules (as expected), however it is 

difficult to characterise the microtubule cytoskeleton (i.e. look for rosette 

structures) within the somites of the sectioned tissue. Compared to the 

microtubule staining shown in C2C12 myoblasts (figure 4.8 above) and the 

staining previously shown by Wagstaff et al (2008) in early HH Stage 3-4 

chick embryos it is clear that this approach needs optimising. It ought to be 

noted that, like with the younger HH Stage 3-4 embryos (see previous 

chapter), several alternative methods to fix HH Stage 16 embryos were 

attempted: which included (combinations of) different concentrations of 

methanol-MES, varying incubation periods in fixative, and different 

temperatures while in fix. Again, like before, methanol-MES did not appear to 

be a suitable fix for (HH Stage 16) chick embryos (with some embryos 

shrinking and others disintegrating, particularly during sectioning [despite 

appearing ‘normal’ in wholemount]). It was anticipated that fixing in methanol-

MES would be possible so that the range of cytoskeletal antibodies shown to 

cross-react with chick DF-1s (again see chapter 3) could subsequently be 

utilised. Attempts were also made to PHEMO-fix HH Stage 16 embryos 

(using the method described by Wagstaff et al, 2008). While this fix seemed 

less harsh on the embryos, in that they endured fixation and sectioning, 

successive attempts at staining microtubules (α-tubulin immunostaining) 

were unsuccessful; even following attempts with (combinations of) different 

antibody concentrations, various detergent concentrations during fixing, and 

different incubation periods in primary and secondary antibodies (i.e. 

adjusted from the method described by Wagstaff et al, 2008). In conclusion, 

fixation with microtubule assembly buffer (BRB; containing formaldehyde and 

glutaraldehyde), of all the fixation methods attempted, gave the best results 

(i.e. something resembling microtubules appears to be stained; figure 4.9). 

However, as aforesaid, this fixation method still needs improving and any 

interference with the function of antibodies, other than α-tubulin, remains to 

be tested. 
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Due to the problems encountered with cryosectioning the decision was made 

to try immunostaining (isolated) somites in wholemount. After numerous 

attempts with various fixes, a solution containing both methanol and 

formaldehyde was found to give the best results for successive microtubule 

immunostaining (with α-tubulin antibody). Figure 4.10 illustrates a series of 

confocal slices (a Z-stack) through an interlimb somite of a HH Stage 17 

chick embryo stained for microtubules only, while figure 4.11 demonstrates a 

Z-stack through an interlimb somite, also from a HH Stage 17 embryo, 

stained for microtubules and DNA. Microtubule expression is apparent within 

both Z-stacks (somites; figure 4.10 and figure 4.11). However, the stain 

appears to have only penetrated some of the tissue. In figure 4.10, α-tubulin 

antibody is seen in what is believed to be the ectoderm and dermomyotome 

(figure 4.10a-l), however the fluorescence fades significantly when myotomal 

depth is reached (i.e. it is difficult to observe staining in myofibres; figure 

4.10m). Similarly, in figure 4.11, α-tubulin antibody is seen in what is believed 

to be the ectoderm and possibly the (most dorsal part of the) dermomyotome 

(figure 4.11a-c) but, again, it is difficult to see any stain for microtubules 

deeper within the tissue: it looks as if there is some autofluorescence emitting 

from the tissue (figure 4.11f-l). Also in figure 4.11(j-l) it appears as if there is a 

‘hole’ in the somite where the myotome should be. This could be due to the 

high level of methanol in the fixative. This method was somewhat successful, 

in that it is possible to detect microtubules within certain regions of the 

somite, unfortunately however, it is very difficult to distinguish rosette 

structures like those that were seen in the primitive streak of gastrulating 

HH3-4 embryos (see 3.6 Avian Gastrulation and the Cytoskeleton). Dividing 

cells were detected however (figures 4.10-4.12), particularly in the lips of the 

somite (figure 4.10l and figure 4.10m) and the presumed dermomyotome 

(figure 4.10m), which validates the specificity of the α-tubulin antibody for 

microtubules (in this instance spindle microtubules). Interestingly, cells that 

are dividing appear to be dividing in the plane of the presumed epithelial 

dermomyotomal sheet (i.e. not apico-basal division).  

The dermomyotome is a highly proliferative tissue (Gros et al, 2005; Kohler 

et al, 2005). It is a heterogeneous pool of progenitor cells, which have 
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varying proliferative capacities and cell division patterns (Ordahl et al, 2001; 

Venters and Ordahl, 2005). Dermomyotomal cells provide precursors for the 

dermis of the back, the muscle of the back and limbs, and endothelia (Scaal 

and Christ, 2004). Two types of cell divisions have been defined in the 

dermomyotome: planar and apico-basal divisions (which are described in 

relation to the plane of the epithelial dermomyotomal sheet). Planar cell 

divisions produce daughter cells that lie adjacent to each other on the 

basement membrane of the dermomyotome, whereas apico-basal divisions 

push the daughter cells either dorsally to form dermis, or ventrally into the 

myotome (Venters and Ordahl, 2005; Yusuf and Brand-Saberi, 2006). 

Intriguingly, using electroporations as a marking technique, Ben-Yair and 

Kalcheim (2005) have shown that a single cell in the central dermomyotome 

can give rise to both dermogenic and myogenic progenitors that later 

translocate under the ectoderm or into the myotome ventrally, respectively. In 

addition, they noted that this fate segregation is associated with a sharp 

change in the plane of cell division from the young epithelium (wherein 

symmetrical divisions occur parallel to the mediolateral plane of the 

dermomyotome [shown in figure 4.10]), to the dissociating dermomyotome 

(wherein cell divisions become mostly perpendicular). The dermomyotomal 

progenitor cell populations, therefore, undertake a series of planar cell 

divisions that result in an increase in the number of the stem cell pool and 

later restore to asymmetrical cell divisions through altering the plane of 

division (Ben-Yair and Kalcheim, 2005; Yusuf and Brand-Saberi, 2006). 

Change in cell division has been shown to correlate with the rise of more 

differentiated cell types (Cayouette and Raff, 2003). Morrison and Kimble 

(2006) have reported that, in stem cells, asymmetrical cell divisions are a 

means of preservation of the stem pool: a stem cell divides mitotically to yield 

one daughter cell that retains the stem cell characteristics, whereas the other 

daughter cell is a more differentiated cell committed to a specific lineage.   

A previously published electroporation technique (Scaal et al, 2004), which 

permits the targeting of different regions of the avian somite, was established 

within the laboratory. It was anticipated that targeted electroporation (i.e. 

electroporation of the medial portion of the somite to transfect the medial lip 
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of the dermomyotome) of reporter constructs into developing somites would 

enable the visualisation, in real time, of cells which have been reported to 

translocate from the dorsomedial lip to the transition zone and subsequently 

to the myotome (Gros et al, 2009; Rios et al, 2011; Scaal et al, 2004). In 

addition, it was speculated, that the electroporation of tubulin-GFP would 

allow observation of the microtubule cytoskeleton during this morphogenesis. 

Electroporation was successful (i.e. the dermomyotome and dorsomedial lip 

were effectively electroporated with numerous constructs, which included 

GFP-tubulin and GFP-GPI, figures 4.13 and 4.14 respectively), as was time-

lapse microscopy (somites were imaged between 3 and 12 hours and tissue 

appeared to survive throughout as previously reported by Gros et al, 2004). 

However, the successive analysis proved to be much more difficult than 

expected. It was presumed that if sequential Z-stacks of the same somite 

were taken over time (i.e. every 15 min) then it would be possible to track cell 

movement in 3D. Unfortunately, due to unforeseen limitations in the software 

that was available at the time of analysis, it was not possible to view Z-stacks 

in 3D over time. Thus, the time-lapse images shown here (figures 4.13 and 

4.14) are only across one slice in the Z-stack, that is to say they are all at the 

same depth in the tissue. So, although it may appear that cells are migrating 

(and in some cases they probably are) from one region of the somite to 

another it cannot be conclusively decided from this data: for example, cells in 

the DML that appear to have ‘moved’ toward the transition zone (figure 4.13) 

may in fact just have ‘dipped’ below or above the focal plane. Having said 

that, it does appear that a myofibre is forming in figure 4.14b-f, but this would 

have to be verified using software that enables 3D analysis over time. 

Because of these limitations it was not possible to confidently visualise cells 

moving from the DML to the myotome.  

It is worth mentioning that individual Z-stacks were analysed in 3D by eye 

(i.e. a Z-stack at the start of a time-lapse, and then one 30 min later and so 

on), but it was extremely difficult to track cells this way (3D stacks not 

shown). Software that can create 3D movies over time would allow a much 

more comprehensive and concrete analysis and is strongly recommended. 

Nonetheless, despite the limitations of our analyses, it is possible to see, as 
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might be expected, that cells in the dorsomedial lip, the transition zone, and 

the myotome are all active at this stage of development. Even in a very short 

time-lapse experiment it is clear that the cells in the dorsomedial lip are 

highly active (figure 4.14). Filopodia, similar to those previously described in 

cells in the transition zone (Gros et al, 2009), appear to be forming and 

extending from the anterior ends of the cells. 

Evidently, it is not possible to distinguish the microtubule cytoskeleton 

following GFP-tubulin electroporation into developing somites (figure 4.13). 

This might be because too much non-polymerised tubulin is being expressed, 

which might be masking any polymerised tubulin. Immunostaining with α-

tubulin antibody, as aforementioned, highlighted microtubules in the 

presumed ectoderm and dermomyotome (figures 4.10 and 4.11), but this was 

also unsuccessful with regard to enabling observation of the microtubule 

cytoskeleton in the myotome (embryonic myofibres).  

On a final note, the somite immunostaining looks promising but does require 

further improvements. To help with the penetration issue abovementioned, 

perhaps the somites could be incubated in antibody/antibodies for longer, or 

a higher concentration of detergent could be used, or even very small 

incisions could be made within the tissue. Also, different percentages of 

methanol or formaldehyde could be attempted to try and prevent damage to 

the tissue. Once optimised, it may be possible to try interference 

experiments. For example, treat isolated somites with nocodazole, fix them at 

different recovery times, and then stain for microtubules to see any overall 

affects or delays in somite development. It would be also interesting to stain 

for other cytoskeletal components or their interacting proteins (following 

assessment in cells to ensure that this fixative does not interfere with the 

chosen antibodies). It might also be worth trying to fix HH Stage 3-4 embryos 

this way or with the BRB (containing formaldehyde and glutaraldehyde) 

fixative as this may allow for improved immunostaining of the cytoskeleton 

(see Chapter 3 Discussion). 
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Chapter 5: Microtubule-Actin Cross-linking 
Factor 1/ Actin Cross-linking Family 7 

(MACF1/ ACF7) 

 

Introduction 

Microtubule-actin cross-linking factor 1/actin cross-linking factor 7 

(MACF1/ACF7) is a multi-domain cytoskeletal protein that belongs to the 

spectraplakin family of proteins, which also includes bullous pemphigoid 

antigen 1 (BPAG1; see 1.6. Spectraplakins). It has an important role in the 

association with actin filaments and microtubules, and participates in protein 

transportation, signal transduction, and embryonic development (Chen et al, 

2006; Leung et al, 2002; Jefferson et al, 2004). Spectraplakins are enormous 

(>500kD), multifunctional cytoskeletal linker proteins that act as master 

coordinators between different types of cytoskeletal filaments. They are able 

to bind to all three types of cytoskeletal filaments (actin, microtubules, and 

intermediate filaments) and, as their name implies, they contain domains 

found in two cytoskeletal families, the spectrins and plakins (Röper et al, 

2002). Spectraplakins’ genes are characterised by multiple tissue-specific 

promoters, large numbers of coding exons, and differentially spliced 

transcripts. This results in a diversity of different isoforms (that contain 

combinations of various protein domains) each with the ability to interact with 

different cytoskeletal and/or membrane components (Röper et al, 2002; 

Suozzi et al, 2012).  

 

5.1. MACF1/ACF7 Structure and Isoforms 

Structurally, full length MACF1/ACF7 is a large, 608kD, protein that can be 

divided into 3 domains: an N-terminal domain that comprises both a calponin 

type actin-binding domain (ABD) and a globular plakin domain; followed by a 
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rod domain that contains dystrophin-like spectrin repeats; and a C-terminal 

domain that can directly bind microtubules (figure 5.1; Sun et al, 2001). The 

N-terminal domain, which shares 63-88% amino acid sequence homology to 

BPAG1, contains an M1 domain that has been shown to interact with 

microtubules (Karakesisoglou et al, 2000). The C-terminal domain can be 

divided into three regions: (1) two calmodulin-like EF-hand calcium-binding 

motifs; (2) a glycine/arginine-rich (GAR) domain that is homologous to 

regions of the Gas2 (growth arrest-specific protein 2) and GAR22 (gas2-

related protein on chromosome 22) proteins; and (3) at the extremity of the 

C-terminal, a serine and proline-rich region containing several glycine-serine-

arginine (GSR) repeats (GSR-containing domain; figure 5.1; Sun et al, 2001). 

Leung et al (1999) have illustrated that this entire C-terminal domain can 

interact with microtubules in vitro and in vivo.   

 

 

Figure 5.1. Schematic to show MACF1/ACF7 and its multiple domain 
structure: the N-terminal domain, which comprises both an actin-binding 
domain (ABD; which consists of two CH domains) and a globular plakin 
domain; followed by a rod domain that contains dystrophin-like spectrin 
repeats; and a C-terminal domain that includes two EF-hand calcium binding 
motifs, in addition to a region that is homologous to two related proteins, 
GAR22 and Gas2 (adapted from and courtesy of Suozzi et al, 2012). 

 

As in all spectraplakins, the transcripts of MACF1/ACF7 and BPAG1 are 

alternatively spliced resulting in varying isoforms with different functional 

domains (figure 5.2; Leung et al, 1999; Suozzi et al, 2012). MACF1a/ACF7 

and BPAG1a have similar domain organisation with an actin-binding domain, 

a plakin domain, a rod domain with spectrin repeats, and a C-terminus 

comprising an EF-hand motif and a GAR domain (Karakesisoglou et al, 2000; 

Leung et al, 1999; Sun et al, 2001). However, MACF1b/ACF7 and BPAG1b, 

alternatively spliced isoforms, contain variable numbers of plakin repeats 

between the plakin domain and spectrin repeats. MACF1b/ACF7 has a more 
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complicated plakin repeat domain (PRD) region than BPAG1b, in that it 

contains three full and two partial PRDs (Sonnenberg and Liem, 2007; 

Suozzi et al, 2012). MACF1b/ACF7 has been shown to interact with and 

maintain the structure of the Golgi apparatus (Lin et al, 2005).  

 

 

 

Figure 5.2. Mammalian MACF1/ACF7 and BPAG1 isoforms. Six types of 
functional domains can be found within the mammalian isoforms of 
MACF1/ACF7 and BPAG1: a calponin-type actin-binding domain 
(containing CH1 and CH2 regions), a plakin domain, a plakin repeat 
domain (PRD), an α-helical spectrin repeat domain, an EF-hand motif, and 
a GAR domain. The BPAG1a2 isoform contains a sequence coding for a 
conserved myristoylation (myr) motif. MACF1b, BPAG1b, and BPAG1e 
contain a variable number of PRDs. PRDs are grouped into three classes 
termed A, B, and C, which are connected by a linker subdomain. The 
number of both spectrin and plectin repeats shown here are descriptive in 

 

*  Predicted domain structure 
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nature, and in reality may vary between spectraplakins. The structure 
shown for MACF1c is a predicted domain structure. Note that the figure is 
not drawn to scale (figure adapted from and courtesy of Suozzi et al, 
2012). 

 

Different transcription start sites in spectraplakin genes result in at least four 

different N-termini in BPAG1, while at least three start sites are present in the 

gene encoding MACF1/ACF7 (Leung et al, 1999; Röper et al, 2002; Suozzi 

et al, 2012). The alternate start sites, in addition to altering cytoskeletal 

associations, confer tissue specificity. BPAG1e is specific to skin epidermis 

(forming links between hemidesmosomes and keratin intermediate filaments; 

Mueller et al, 1989), whereas BPAG1a1/BPAG1n4 is highly expressed in the 

peripheral nervous system, and BPAG1b is specific to the muscle (Groves et 

al, 2010; Leung et al, 2001; Steiner-Champliaud et al, 2010; Yang et al, 

1996). Mammalian MACF1/ACF7 is also expressed broadly, including the 

central nervous system and the epidermis (Karakesisoglou et al, 2000). 

 

5.2. MACF1/ACF7 Functions 

MACF1/ACF7 has been shown to interact with both microtubules and actin in 

cultured mammalian cells (Leung et al, 1999). It is a microtubule plus-end 

tracking protein (+TIP) that mediates cortical interactions via the association 

of microtubule ends with the actin cytoskeleton and the plasma membrane 

(Akhmanova and Steinmetz, 2008; see 3.5. Microtubule Plus-End Tracking 

Proteins [+TIPs]). Furthermore, it directly binds EB1 (another +TIP) and 

demonstrates EB1-dependent plus-end-tracking of microtubules in vivo (Slep 

et al, 2005).  

In MACF1/ACF7-null primary endodermal cells, Kodama et al (2003) 

demonstrate that extending microtubules fail to co-align with F-actin at the 

plasma membrane. In HeLa cells, MACF1/ACF7 was shown to regulate the 

cortical localisation of CLASP2 (another +TIP), which suggests it plays a role 

in the stabilisation of microtubules and cell motility (Drabek et al, 2006). The 

loss of MACF1/ACF7 results in less-stable, long microtubules with skewed 
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cytoplasmic trajectories. This is devastating for the developing mouse 

embryo, in which full MACF1/ACF7 knockout causes pre-implantation 

lethality (Kodama et al, 2003).  

In mammalian cells, the bundling of actin filaments provides stabilising forces 

for the capture, growth and guidance of microtubules (Kodama et al, 2003). 

Intriguingly, MACF1/ACF7 deficiency compromises the targeting of 

microtubules along F-actin to focal adhesions and consequently impairs focal 

adhesion dynamics (Wu et al, 2008). In epidermal cells, the effect of 

MACF1/ACF7 on focal adhesion dynamics is dependent on polarised 

microtubules, which are stabilised by underlying actin fibres. At focal 

adhesion sites, microtubules are thought to serve as macromolecular tracks, 

which enable the delivery of factors that promote focal adhesion turnover 

(Ezratty et al, 2005; Kaverina et al, 1998; Kaverina et al, 1999; Krylyshkina et 

al, 2002; Krylyshkina et al, 2003). The loss of MACF1/ACF7, therefore, 

impedes the convergence of microtubule ends at peripheral focal adhesions 

and, as a result, focal adhesions become highly stabilised and refractile to 

the normal dynamics necessary for efficient cell migration (Wu et al, 2008).  

It is not fully understood how MACF1/ACF7 functions in targeting plus-ended 

microtubule growth along F-actin to polarised focal adhesions. Wu et al 

(2008) have shown that MACF1/ACF7’s binding domains for actin filaments, 

microtubules, and microtubule plus-end proteins are not sufficient to rescue 

the defects in focal adhesion-cytoskeletal dynamics and migration functions 

of MACF1/ACF7-null keratinocytes. They also uncovered an intrinsic actin-

dependent ATPase domain in MACF1/ACF7 that is required for the 

regulation of focal adhesions and also might help to maintain essential +TIP 

proteins at the plus ends of microtubules during their coordinated growth 

along actin filaments (Suozzi et al, 2012; Wu et al, 2008).  

Kakinuma et al (2004) have shown that the transport of vesicles from the 

trans-Golgi network (TGN) also depends on MACF1/ACF7. Their results 

indicate that the TGN protein p230 (which is anchored to TGN membranes) 

interacts with MACF1/ACF7, providing the molecular link for the transport of 

glycophosphatidylinositol (GPI)-anchored proteins along microtubule and 
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actin cytoskeletal tracks from the TGN to the plasma membrane/cell 

periphery (Kakinuma et al, 2004).  

The generation of a conditional knockout (cKO) mouse has highlighted the 

importance of MACF1/ACF7 in nervous system development (Goryunov et 

al, 2010). MACF1 cKO brains showed a disorganised cerebral cortex with a 

mixed layer structure, heterotopia of the hippocampal pyramidal layer, 

disorganized thalamocortical and corticofugal fibres, and aplastic anterior and 

hippocampal commissures (Goryunov et al, 2010). 

The function of MACF1/ACF7 in mammalian skin has been clarified owing to 

the specific deletion of MACF1/ACF7 in skin epidermal cells (Wu et al, 2008, 

2011). Unlike mice that lack BPAG1, which show skin blistering and sensory 

neuron and muscle degeneration (with each cell type manifesting gross 

defects in cytoskeletal organisation; Brown et al, 1995; Guo et al, 1995), 

MACF1/ACF7 cKO mice display no gross morphological changes in their skin 

or hair coat (Wu et al, 2008). Possibly because MACF1/ACF7s function in 

development can also be performed by BPAG1. When challenged to respond 

to injury, however, MACF1/ACF7 cKO skin cells display a significant delay in 

migration and wound closing. The delayed response is rooted in impaired 

epidermal migration, as also shown by monolayer scratch assays 

implemented on cultured primary keratinocytes (isolated from cKO back skin 

and wild type littermate controls). The aberrant migration seen in 

MACF1/ACF7-null keratinocytes is due to the absence of microtubule-

induced focal adhesion turnover (i.e. more stable focal adhesions) and 

increased adherence to the underlying extracellular matrix substratum (Wu et 

al, 2011). The findings of Wu et al (2008, 2011) thus indicate that 

MACF1/ACF7, through its ability to coordinate microtubule-actin dynamics, 

regulates migration by promoting focal adhesion dynamics (Suozzi et al, 

2012).   

Recently, a link between MACF1/ACF7 and GSK3β has been illustrated. Wu 

et al (2011) have shown that, during wound healing in mammals, GSK3β 

controls microtubule architecture and polarised movement of skin stem cells 

through the regulation of MACF1/ACF7 (see 6.5. GSK3β Regulates 
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MACF1/ACF7 in Cell Migration). They propose that this data may further 

substantiate a link between MACF1/ACF7 and Wnt signalling. 

 

5.3. MACF1/ACF7 and its Role in Wnt Signalling 

In mouse embryos, MACF1/ACF7 is ubiquitously expressed (Bernier et al, 

2000; Leung et al, 1999). High expression has been shown in neuronal 

tissues and the foregut of embryonic day 8.5 (E8.5) embryos and the head 

fold and primitive streak of E7.5 embryos (Chen et al, 2006). MACF1/ACF7 

heterozygous mice were shown to develop normally, while homozygous 

knockout mice died early during gastrulation and displayed developmental 

retardation at E7.5: with defects in the formation of the primitive streak, node, 

and mesoderm (Chen et al, 2006). Since this phenotype is reminiscent of 

Wnt-3-/- mice (Lui et al, 1999) and LRP5/6 double-knockout mice (Kelly et al, 

2004), Chen et al (2006) hypothesised and tested for a role of MACF1/ACF7 

in Wnt signalling. Using coimmunoprecipitation assays, MACF1/ACF7 was 

found to be in a cytosolic complex with Axin, GSK3β, β-catenin, and APC. In 

cultured cells, reduction of MACF1/ACF7 (via siRNA) was shown to increase 

the cytosolic levels of Axin and inhibit canonical Wnt signalling (i.e. decrease 

the amount of β-catenin in the nucleus). Intriguingly, MACF1/ACF7 was seen 

to translocate with Axin to the plasma membrane in a Wnt-dependent 

manner, and both a wild type and a dominant negative form of MACF1/ACF7 

were shown to bind to LRP6 and Axin simultaneously (Chen et al, 2006).  

Chen et al (2006) have proposed a model for the involvement of 

MACF1/ACF7 in the Wnt/β-catenin signalling pathway. In the presence of 

Wnt, frizzled and LRP5/6 (receptor and coreceptor respectively) are 

activated. MACF1/ACF7 is then thought to be involved in the translocation of 

a complex containing Axin, β-catenin, and GSK3β (but not APC) from the 

cytosol to the cell membrane, where Axin and MACF1/ACF7 bind to LRP5/6. 

As a result, GSK3β is inactivated by phosphorylation, Axin is degraded, and 

β-catenin is released. This then enters the nucleus and activates Wnt-

responsive genes. Conversely, in the absence of Wnt, MACF1/ACF7 binds to 

a complex containing Axin, APC, β-catenin, and GSK3β. There is then no 
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expression of the TCF controlled genes owing to the degradation of β-catenin 

after phosphorylation by GSK3β (see figure 5.3; Chen et al, 2006). 

 

 

 
 

Figure 5.3. A model to show the involvement of MACF1/ACF7 in the Wnt/β-
catenin signaling pathway. (A) Without Wnt, MACF1/ACF7 binds to a protein 
complex that contains Axin, APC, β-catenin, and GSK3β. Owing to the 
degradation of β-catenin, after phosphorylation by GSK3β, there is no expression 
of the TCF controlled genes. (B) Wnt activates its receptor and coreceptor 
(frizzled and LRP-5/6 respectively). MACF1/ACF7 is then involved in the 
translocation of the complex containing Axin, β-catenin, and GSK3β (but not 
APC) from the cytosol to the cell membrane, where Axin and MACF1/ACF7 bind 
to LRP-5/6. GSK3β is consequently inactivated by phosphorylation, Axin is 
degraded, and β-catenin is released. β-catenin then enters the nucleus where it 
can activate Wnt-responsive genes (courtesy of Chen et al, 2006). 
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Aims 

§ To generate an RNA probe against the expressed sequence tag clone 

ChEST16M13, which is thought to correspond to MACF1/ACF7, and 

perform in situ hybridisation experiments to establish an expression 

pattern for MACF1/ACF7 in chick. This may help determine a role, if 

any, for MACF1/ACF7 in chick gastrulation and/or somitogenesis.  

§ To knockdown MACF1/ACF7 (using siRNAs directed against mouse 

MACF1/ACF7) in murine C2C12 cells to reveal effects, if any, on the 

microtubule cytoskeleton. 

 

 

Results 

5.4. Characterisation of ChEST16M13 (MACF1/ACF7) 

An expressed sequence tag (EST; ChEST16M13, supplied by Ark-

Genomics) that was thought to correspond to MACF1/ACF7 was identified. In 

chick, only one MACF1/ACF7 transcript (ENSGALT00000005857) has been 

annotated. Analysis has shown that ChEST16M13 recognises exons 89-93 

of this transcript (figure 5.4A). In human, however, 37 alternative 

MACF1/ACF7 transcripts (20 of which are protein coding) have been 

annotated. ChEST16M13 recognises exons 80-84 in human transcript 

MACF1-031 (figure 5.4B). 
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Figure 5.4. ChEST16M13 recognition sites on chick and human MACF1/ACF7 
transcripts. ChEST16M13 recognises exons 89-93 of the only annotated chick 
MACF1/ACF7 transcript (A) and exons 80-84 in human transcript MACF1-031 
(B). In addition to the human MACF1-031 transcript, ChEST16M13 also 
recognises the human MACF1-204, MACF1-028, MACF1-203, MACF1-201, 
MACF1-001, MACF1-032, MACF1-003, and MACF1-005 transcripts (B).             
A red line marks EST recognition sites on the chick transcript and the human MACF1-031 
transcript and marked by a star are all transcripts that are recognised by the EST. A green line 
marks the probe recognition site for the data collected on the GEISHA database and marked by an 
orange circle are all the transcripts recognised by this probe (transcript data courtesy of Ensembl 
database available at: http://www.ensembl.org/index.html). 

 

In addition to the human MACF1-031 transcript, further analyses reveals that 

this EST (ChEST16M13) also recognises the human MACF1-204, MACF1-

028, MACF1-203, MACF1-201, MACF1-001, MACF1-032, MACF1-003, and 

MACF1-005 transcripts (figure 5.4B).  
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5.5. MACF1/ACF7 Chick Expression Pattern 

An RNA probe was synthesised using the ChEST16M13 clone (i.e. against a 

fragment of the chick MACF1/ACF7 gene) and used for in situ hybridisation 

experiments. In early chick embryos, MACF1/ACF7 appears to be expressed 

in the primitive streak; figure 5.5A shows strong expression at HH Stage 2, 

which appears to decrease at HH Stage 3 and Stage 4 (figure 5.5B and C 

respectively). At HH Stage 11 expression is apparent in the forebrain, 

hindbrain, pre-segmented mesoderm and in the somites (figure 5.5D and E). 

 

   

 

Figure 5.5. The expression pattern of MACF1/ACF7 in early chick 
embryos. MACF1/ACF7 appears to be expressed in the primitive 
streak: (A) shows strong expression at HH Stage 2, which appears to 
decrease at HH Stage 3 and HH Stage 4, (B) and (C) respectively. 
(D) At HH Stage 11 expression is apparent in the forebrain, hindbrain, 
pre-segmented mesoderm and in the somites. (E) Higher 
magnification of somite expression in embryo shown in (D). *PS: 
primitive streak, FB: forebrain, HB: hindbrain, S: somite, PSM: pre-segmented 
mesoderm 
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At HH Stage 17 MACF1/ACF7 expression is evident in the somites, forelimbs 

and heart (figure 5.6A and B). A section through the trunk of the embryo (just 

above the hind limb in this instance) reveals expression in the 

dermomyotome and dorsomedial lip of the somite (figure 5.6C). 

 

   

Figure 5.6. The expression pattern of MACF1/ACF7 in a HH Stage 17 chick 
embryo. Expression is apparent in the somites (A), forelimbs (A), and the heart 
(A, B). A section through the embryo trunk (just above the hind limb in this 
instance) reveals that MACF1/ACF7 expression is evident in the dermomyotome 
and dorsomedial lip (DML) of the somites (C). *FL: forelimb, H: heart, S: somite, NT: 
neural tube, NC: notochord, DM: dermomyotome, DML: dorsomedial lip.  

 

 

At HH Stage 20 MACF1/ACF7 expression is apparent in the fore and 

hindlimbs (figure 5.7A, F, G, and H), the first pharyngeal arch (figure 5.7A, B, 

C, D, and E), the olfactory placode (figure 5.7A, B, C, D, and E), and the 

heart (figure 5.7E and F). There also appears to be very weak expression in 

the optic vesicle (figure 5.7B, C, D, and E) and the otic vesicle (figure 5.7A). 
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Figure 5.7. The expression pattern of MACF1/ACF7 in a HH Stage 20 embryo. 
Expression is apparent in the fore and hindlimbs (A, F, G, and H), the first pharyngeal 
arch (A, B, C, D, and E), the olfactory placode (A, B, C, D, and E), and the heart (E 
and F). There also appears to be very weak expression in the optic vesicle (B, C, D, 
and E) and the otic vesicle (A). *FL: forelimb, PA: pharyngeal arch, OV: otic vesicle, OlfP: 
olfactory placode, HL: hindlimb, T: tail, OpV: optic vesicle, H: heart, S: somite, NT: neural tube. 
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At HH Stage 31 MACF1/ACF7 expression is evident in the forelimbs, 

hindlimbs, the formed beak (with a single egg tooth), and the tail (figure 5.8A) 

Expression also appears to be ubiquitous in the heart (including the auricles) 

of a day 7 (HH Stage 31) embryo (figure 5.8B).   

 

    

Figure 5.8. The expression pattern of MACF1/ACF7 in a HH Stage 31 
embryo. (A) Expression is apparent in the forelimbs, hindlimbs, the formed 
beak (with a single egg tooth), and the tail. (B) Expression also appears to 
be ubiquitous in the heart (including the auricles) of a day 7 (HH Stage 31) 
embryo. *FL: forelimb, HL: hindlimb, T: tail, B: beak, H: heart, Au: auricle. 

 

5.6. MACF1/ACF7 Immunofluorescence Staining 

To characterise the localisation of MACF1/ACF7 with regard to the 

microtubule cytoskeleton, murine C2C12 cells, following 3 days in 

differentiation medium, were fixed with ice-cold methanol-MES and 

immunostained with α-tubulin antibody and MACF1/ACF7 antibody (see table 

2.1). Figure 5.9 demonstrates the cross-reactivity of the α-tubulin antibody 

with mouse (cells), and also methanol-MES as an adequate fixative. As 

expected, α-tubulin antibody illustrates microtubule expression (figure 5.9B). 

MACF1/ACF7 antibody shows a ubiquitous expression for MACF1/ACF7, but 

this pattern/antibody remains to be verified (figure 5.9A).  
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Figure 5.9. MACF1/ACF7 and microtubule immunostaining in murine C2C12 
cells. C2C12 cells, following 3 days in differentiation medium, were fixed with ice-
cold methanol-MES and immunostained with α-tubulin antibody and 
MACF1/ACF7 antibody. MACF1/ACF7 antibody shows a ubiquitous expression 
for MACF1/ACF7 in green (A) and α-tubulin antibody illustrates microtubule 
expression in red (B). (C) Merged image of (A) and (B), DNA is visualised via 
DAPI staining (blue).  

 

To characterise the localisation of MACF1/ACF7 with regard to the actin 

cytoskeleton, C2C12 cells were immunostained with phalloidin and 

MACF1/ACF7. Cells were fixed with PFA and permeabilized with TritonX-100 

(see materials and methods for further details). Phalloidin staining reveals 

actin filaments (figure 5.10A) and, again, MACF1/ACF7 appears to be 

abundant throughout the cells (although, as abovementioned this antibody 

needs to be verified; figure 5.10B).  

 

   
Figure 5.10. MACF1/ACF7 and actin immunostaining in murine C2C12 cells. 
C2C12 cells, following 3 days in differentiation medium, were fixed with PFA, 
permeabilized with TritonX-100 and immunostained with MACF1/ACF7 antibody 
and phalloidin. Phalloidin staining illustrates F-actin expression in green (A) and 
MACF1/ACF7 antibody shows a ubiquitous expression for MACF1/ACF7 in red 
(B). (C) Merged image of (A) and (B), DNA is visualised via DAPI staining (blue).  
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5.7. MACF1/ACF7 siRNA transfection in C2C12 cells 

To confirm any MACF1/ACF7 knockdown in C2C12 cells transfected with 

siRNAs directed against mouse MACF1/ACF7 a western blot was performed. 

C2C12 cells were transfected on day 0 (of differentiation) with a combination 

of pre-designed siRNAs directed against mouse MACF1/ACF7 (supplied 

from Applied Biosystems, LifeTechnologies; see 2.21 Cell Transfection). 

Protein lysate was harvested following 48 hours growth in differentiation 

medium and a western blot was stained against MACF1/ACF7. 

MACF1/ACF7 antibody reveals several bands in control cells (i.e. non-

transfected day 2 cells), including a particularly strong band at approximately 

50kDa (figure 5.11A, lane 1). This strong band, however, almost completely 

disappears in cells that were transfected with siRNA1, siRNA2, or a 

combination of siRNA1 and siRNA2 (figure 5.11A, lanes 2 - 4). 

 

 

   
Figure 5.11. MACF1/ACF7 knockdown in C2C12 cells. Protein lysate was 
harvested from C2C12 cells grown in differentiation medium for 2 days. A 
western blot was stained against MACF1/ACF7 (A), and actin as a loading 
control (B). MACF1/ACF7 antibody reveals several bands in control wild type 
(i.e. non-transfected) cells (lane 1). The strong band that appears at 
approximately 50kDa, however, almost completely disappears in those cells 
transfected with siRNA1, siRNA2, or a combination of siRNA1 and siRNA2 
(lanes 2, 3, and 4 respectively). Notably, the same MACF1/ACF7 siRNAs failed 
to affect the two upper molecular weight proteins detected by the MACF1/ACF7 
antibody. The domain composition of these bands (or potential isoforms) is 
unknown (western blot and siRNA transfection performed by and courtesy of Dr. 
Katarzyna Goljanek-Whysall).  
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Discussion and Future Work 

In chick, only one MACF1/ACF7 transcript (ENSGALT00000005857) has 

been annotated. ChEST16M13 has been shown to recognise exons 89-93 of 

this transcript (figure 5.4A). In human, however, 37 alternative MACF1/ACF7 

transcripts (20 of which are protein coding) have been annotated. 

ChEST16M13 recognises exons 80-84 in the human transcript MACF1-031 

(figure 5.4B). This EST also recognises, in addition to the human MACF1-

031 transcript, the human MACF1-204, MACF1-028, MACF1-203, MACF1-

201, MACF1-001, MACF1-032, MACF1-003, and MACF1-005 transcripts. It 

is not unreasonable, therefore, to posit that in chick, other transcripts (which 

may exist and are yet to be annotated) may also be recognised by this EST 

clone. 

An RNA probe, synthesised using ChEST16M13, was used for in situ 

hybridisation experiments to determine the expression pattern of the 

MACF1/ACF7 gene in a variety of HH Stage chicken embryos (figures 5.5-

5.8). Expression is apparent in both the primitive streak of early chick 

embryos and in the somites of HH Stage 11 and 17 embryos, further 

suggesting that this gene may have a role in gastrulation and/or also in 

somitogenesis. The mouse knockout generated by Chen et al (2006) had a 

gastrulation phenotype, which is consistent with the expression in the 

primitive streak. Furthermore, a section through the trunk of the embryo (just 

above the hind limb) reveals expression in the dermomyotome and 

dorsomedial lip of the somite. Interference of MACF1/ACF7 in early chick 

embryos or in early somites could, therefore, test the effects (if any) of this 

gene on the development of the primitive streak and the formation and/or 

differentiation of somites (see 6.8 MACF1/ACF7 and Early Muscle Fibres). Of 

particular interest would be any effects on the cytoskeletal architecture during 

gastrulation and/or somitogenesis. MACF1/ ACF7 expression is also evident 

in other structures at different stages of development (see figures 5.5-5.8).  

In chick, the full MACF1/ACF7 expression pattern has not been previously 

shown, so to confirm these results it would be worthwhile repeating the 

above in situ hybridisation experiments with a sense mRNA probe as a 
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control. Further in situ hybridisation experiments are also required to 

complete the MACF1/ACF7 expression pattern for all chick HH Stages and 

cryosectioning is also essential for comprehensive analysis. In situ 

hybridisation experiments were replicated more than once with a minimum of 

3 embryos for each HH Stage. However, while the expression pattern shown 

here for each HH Stage is a majority example it ought to be noted that in 

some embryos the expression varied. The reason for this might be that the 

EST is longer than what was sequenced (i.e. sequencing is generally only 

efficient for approximately 1kb and EST was only sequenced in one 

orientation) and if the temperature varied slightly between experiments the 

end of the probe may have bound differently giving slightly varied results? 

It is also worth noting that a slightly different expression pattern (for HH stage 

17 chick embryos) has been shown for MACF1/ACF7 on the Gallus 

Expression in Situ Hybridization Analysis (GEISHA) database (available at: 

http://geisha.arizona.edu/geisha/). BLAST (Basic Local Alignment Search 

Tool) analysis shows that the probe (5’ sequence) used in the generation of 

the GEISHA data corresponds to ChEST558D1 (Contig number 341352.2). 

Interestingly, sequence alignment of the 5’ probe against the chicken 

genome reveals alignment to a region of chromosome 23 that is 195bp 

downstream of the MACF1/ACF7 stop codon and 493bp upstream of 

BMP8a. No exons are currently annotated within this intergenic region. 

However, sequence alignment of the 5’ probe against the human 

MACF1/ACF7 3’ UTR (untranslated region) reveals short regions of 

homology. Thus it is likely that the probe used to generate the data on 

GEISHA corresponds to a chicken 3’ UTR. To be certain, however, it would 

be necessary to clone the chicken 3’UTR of MACF1/ACF7. Further analyses 

of the probe used to collect the GEISHA data also suggests that it can 

recognise, in addition to all the human transcripts recognised by 

ChEST16M13, human MACF1-010, MACF1-011, and MACF1-007 (figure 

5.4). The recognition of these additional transcripts may also result in a 

varied expression pattern.  

In 2000, Bernier et al described the developmental expression profile for 

mouse MACF1/ACF7. RNA in situ hybridisation experiments illustrated 
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MACF1/ACF7 transcripts in the dermomyotome and neural fold of day 8.5 

mouse embryos and, later in development, expression was predominant in 

neural and muscle tissues (of particular interest, at day 10.5, expression 

appeared restricted to the myotome of the somite). Interestingly, just before 

birth, expression was strongly upregulated in type II alveolar lung cells 

(Bernier et al, 2000). Bernier et al (1996) had previously reported the 

identification of three different MACF1/ACF7 isoforms. Two of these isoforms 

were reported to have putative actin binding domains (ABDs) at their N-

termini, which were later shown to be functional (Leung et al, 1999). The 

three different isoforms were shown to contain alternative exons at their 5’ 

ends (Bernier et al, 1996), a similar transcript diversity to BPAG1 (Brown et 

al, 1995). Bernier et al (2000) performed RNase protection assays (using a 

riboprobe that could distinguish between transcripts for isoforms 1 and 2) to 

determine the tissue distribution of isoforms 1 and 2 in postnatal day 3 mice. 

They also determined the distribution of isoform 3 (which lacks a functional 

ABD domain) using RT-PCR (reverse transcription-polymerase chain 

reaction). High levels of MACF1/ACF7 transcripts for isoform 2 were detected 

in the brain, spinal cord, and lung, while expression was lower in the kidney, 

heart and skeletal muscle (with none detected in the skin, liver, stomach, and 

spleen). Conversely, isoform 1 transcripts were detected in all tissues tested 

and were predominant in skin, kidney, and stomach. Transcripts for isoform 3 

were mainly detected in the brain and spinal cord, with moderate levels in 

skin, lung, and kidney (and no detection in the heart, skeletal muscle and 

liver).  

Evidently, transcripts for all three isoforms have different tissue distribution 

(Bernier et al, 2000). RNase protection assays were also performed on RNA 

from mouse embryos at day 7.5 to day 10.5 and these illustrated that 

MACF1/ACF7 is expressed early in embryogenesis (Bernier et al, 2000). 

MACF1-1/ACF7-1 mRNA was detected in day 7.5 to day 10.5 embryos, while 

MACF1-2/ACF7-2 mRNA only became detectable at day 10.5 (Bernier et al, 

2000). Bernier et al (2000) suggest that the alternate isoforms of 

MACF1/ACF7 may have differential functions based on the cell types in 

which they are expressed and the partners with which they interact. 
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The isoforms of BPAG1, the only other known mammalian spectraplakin, 

have also been shown to be tissue specific (see 5.1. MACF1/ACF7 Structure 

and Isoforms). Thus it is not unreasonable to speculate that MACF1/ACF7 

isoforms exist in chick and that these would also be tissue specific. As 

abovementioned, the ChEST16M13 clone recognises the only annotated 

chick MACF1/ACF7 transcript and nine of the thirty-seven alternative human 

MACF1/ACF7 transcripts. It is difficult to determine if these particular 

transcripts correlate to any of the known mammalian isoforms and thus 

determine if this particular EST is isoform specific (i.e. is the expression 

pattern for chick, shown here [using an RNA probe against this EST], relative 

to one or more isoform?). BLAST analysis of the ChEST16M13 sequence 

shows that this EST corresponds to a predicted chick MACF1/ACF7 isoform 

4-like, but how/if this corresponds to known mammalian isoforms remains to 

be elucidated. Furthermore, it is difficult in the current literature to define the 

named isoforms in mammals. For instance, how do the mouse MACF1/ACF7 

isoforms described by Bernier et al (1996; see above) correlate to those 

mammalian isoforms described in the review by Suozzi et al (2012; see 5.1. 

MACF1/ACF7 Structure and Isoforms)? One could speculate that the mouse 

isoform, which lacks a functional ABD domain (i.e. isoform 3), reported by 

Bernier et al (1996), corresponds to the MACF1c isoform (which has a 

predicted domain structure and lacks an ABD domain) reviewed by Suozzi et 

al (2012) but this would need to be confirmed (as with all the other isoforms). 

Nonetheless, it is evident that, in mammals, MACF1/ACF7 and BPAG1 are 

expressed in multiple isoforms in different tissues, and this is likely to be the 

case in chick. 

BPAG1 knockout mice (BPAG-/-) display sensory neuronal defects, skin 

blistering, and muscle degeneration (dying at 3-5 weeks of age). The 

neuronal defects are due to the absence of BPAG1a in the nervous system. 

Degeneration is only seen in certain tissues even though BPAG1 is 

ubiquitously expressed. This suggests that MACF1/ACF7 might compensate 

for BPAG1 in other regions (Brown et al, 1995; Guo et al, 1995). 

MACF1/ACF7 knockout mice, however, die at gastrulation (Chen et al, 2006), 

indicating that the function of MACF1/ACF7 may be different from that of 
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BPAG1 in some tissues essential for development (or that BPAG1 is not 

expressed in those tissues). Intriguingly, MACF1/ACF7 cKO mice display no 

gross morphological changes in their skin or hair coat (Wu et al, 2008), which 

suggests that MACF1/ACF7s function later in development may be 

performed by BPAG1. Together, these data suggest that there is likely to be 

some redundancy between MACF1/ACF7 and BPAG1. As aforementioned, 

the spectraplakin family also comprises a single gene in zebrafish, Magellan, 

a single gene in Drosophila melanogaster, short stop (shot)/Kakapo, and a 

single Caenorhabditis elegans gene, vab-10 (reviewed by Suozzi et al, 

2012). Vab-10 mutants display elongation and body morphology defects 

(Bosher et al, 2003). Mutations of short stop (shot)/Kakapo result in defects 

in epidermal integrity, epidermal muscle attachment, muscle-dependent 

tendon cell differentiation, anastomosis of the tracheal branches, axonal 

outgrowth and guidance, and dendritic morphogenesis (see review by Röper 

and Brown, 2003). As short stop (shot)/Kakapo is the only spectraplakin gene 

in Drosophila melanogaster it is not surprising that mutations in this gene 

have a stronger phenotype than mutations in BPAG1 (owing to possible 

redundancy between BPAG1 and MACF1; Röper et al, 2002).  

 

Preliminary experiments to establish if MACF1/ACF7 knockdown in C2C12 

cells affects the microtubule cytoskeleton have been illustrated (figures 5.9-

5.11). Immunostaining of murine C2C12 cells, following 3 days in 

differentiation medium, with a MACF1/ACF7 antibody has demonstrated a 

ubiquitous expression for MACF1/ACF7 (figures 5.9A and 5.10B). The 

accuracy of this antibody, however, is yet to be confirmed. Additionally, 

negative control experiments should be performed (i.e. staining without 

primary antibody). That said, the stain appears stronger in cells fixed with 

methanol-MES (figure 5.9A) compared to those fixed in PFA and TritonX-100 

(figure 5.10B), however, this may also be a result of the secondary antibody 

that was utilised (i.e. anti-mouse Alexa fluor 568 [red] fades much more 

quickly than anti-mouse Alexa fluor 488 [green]). To note, some C2C12s 

were fixed with PFA and TritonX-100 to accommodate the staining conditions 

of phalloidin. As expected, phalloidin staining reveals F-actin (figure 5.10A) 
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and α-tubulin staining illustrates the expression of microtubules (figure 5.9B) 

in wild type C2C12s. A western blot was performed to confirm any 

MACF1/ACF7 knockdown in C2C12 cells transfected with siRNAs directed 

against mouse MACF1/ACF7 (figure 5.11). The MACF1/ACF7 antibody 

revealed several bands in control cells (non-transfected cells), including a 

particularly strong band at approximately 50kDa (figure 5.11A, lane 1). This 

strong band, however, almost completely disappeared in cells that were 

transfected with siRNA1, siRNA2, or siRNA1 and siRNA2 together (figure 

5.11A, lanes 2 - 4). Notably, the same MACF1/ACF7 siRNAs failed to affect 

the two upper molecular weight proteins detected by the MACF1/ACF7 

antibody (figure 5.11). The domain composition of any of the detected bands 

is unknown. There is a possibility that the band that disappears following 

siRNA transfection is a specific isoform, or perhaps, more likely, it is a 

cleavage (degradation) product. Further experiments are needed to validate 

this.  

Sanchez-Soriano et al (2009) have shown that it is possible (using a 

MACF1/ACF7 antibody) to detect a protein appearing as a ~600 kDa band 

on a western blot: before transferring proteins to a polyvinylidene difluoride 

(PVDF) membrane, cell lysates from Neuro 2A cells (from a mouse neural 

crest-derived cell line) were resolved by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) using a 3-8% Tris-acetate 

gradient gel (Invitrogen). The detected band was shown to correspond in size 

to the Shot-LA isoform implicated in axon extension in Drosophila (Lee and 

Kolodziej, 2002). Owing to it’s size, this band could represent the full-length 

MACF1/ACF7 or a large ~600kDa isoform. It may, therefore, be worthwhile 

repeating the western blot technique described above for C2C12 cell lysate 

(following siRNA transfection) to see if there is any decrease in the larger 

MACF1/ACF7 bands (not detected on the western shown here, figure 5.11). 

It would also be interesting to repeat the immunostaining described above 

(figures 5.9 and 5.10) but this time following transfection of the C2C12 

myoblasts with different combinations of siRNAs (directed against 

MACF1/ACF7) to see if there are any affects on the microtubule and actin 

cytoskeleton. As the loss of MACF1/ACF7 in primary endodermal cells has 
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been shown to result in less-stable, long microtubules with skewed 

cytoplasmic trajectories, when compared to control cells (Kodama et al, 

2003), it is anticipated that following siRNA transfection, not only would there 

be a reduction in MACF1/ACF7 (confirmation of MACF1/ACF7 knockdown 

via immunostaining would first require verification of the MACF1/ACF7 

antibody) but also a disruption to the microtubule cytoskeleton.  

In C2C12 cells immunostaining for MACF1/ACF7 has not been previously 

shown. Staining for other +TIPS (EB1 and EB3 for example), however, has 

been previously reported (Mimori-Kiyosue and Tsukita; Straube and Merdes, 

2007). Interestingly, Young et al (2003) have illustrated the localisation of 

muscle/neuronal, BPAG1a/b, isoforms and the epithelial, BPAG1e, isoform 

within C2C12 myoblasts. An antibody specific to BPAG1a/b isoform 2 was 

shown to detect protein co-aligning with actin stress fibres, and additionally, 

the same antibody and two BPAG1e antibodies predominantly detected 

protein in the nuclei. A BPAG1a/b isoform 2 N-terminal fusion protein 

containing the plakin domain was also shown to localise to actin stress fibres 

and to nuclei (Young et al, 2003). Young et al (2003) subsequently 

demonstrated that a functional nuclear localisation signal exists within the 

plakin domain and is responsible for localisation of the fusion protein to the 

nucleus. Furthermore, BPAG1a/b isoform 1 N-terminal fusion proteins were 

shown to differ in their interaction with actin filaments and their ability to 

localise to the nucleus, indicating BPAG1 isoforms with different N-termini 

have differing roles (Young et al, 2003).  

The immunostaining for MACF1/ACF7 in C2C12s shown here could indicate 

a similar pattern to that depicted for BPAG1, in that the stain appears to be in 

the nucleus and possibly along actin filaments (figures 5.9A, 5.10B and 

5.10C). However as aforementioned, the MACF1/ACF7 antibody that was 

utilised has to be verified and optimal cell fixing conditions need to be 

established. If the epitope against which the MACF1/ACF7 antibody is 

directed was known, it would also be interesting to determine what 

MACF1/ACF7 protein isoforms are being recognised in the mouse, chick, 

and human, and compare this to the isoforms that are being recognised by 

the ChEST16M13 clone in the in situ hybridisation experiments (i.e. are the 
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antibody and EST highlighting the same isoforms?). It would also be 

interesting to see the localisation of the recognition site (i.e. is the epitope of 

the antibody in the N-terminal or C-terminal?).  
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Chapter 6: Wnt Signalling in 
Somitogenesis and Myogenesis 

 

Introduction 

Somite development is a rhythmic process that involves a series of steps, 

which include paraxial mesoderm segmentation, epithelialisation, somite 

formation, somite patterning, somite maturation, and differentiation of somitic 

cells into different lineages (Geetha-Loganathan et al, 2008). Wnt signalling 

has been shown to play vital roles in several of these steps of development. 

Wnts are signalling molecules that regulate numerous developmental 

processes, including proliferation, asymmetric division, patterning, and cell 

fate determination (Wodarz and Nusse, 1998), they function as signals via 

either the canonical pathway or the noncanonical pathways (see 1.5. Wnt 

Signalling).  

 

6.1. Somite Patterning and Wnt Signalling 

The formation of the dermomyotome is a result of dorsoventral patterning 

whereby the ventromedial epithelial somite undergoes EMT to form the 

sclerotome, which leaves behind a dorsally located epithelial sheet termed 

the dermomyotome. The epithelial state of the dermomyotome is regulated 

by signals that originate from dorsal structures such as the surface ectoderm 

and dorsal neural tube. These dorsalising signals work in contrast to the 

ventral signals from the notochord and floor plate, which promote de-

epithelialisation and mesenchymal fate. The patterning and fate 

determination of somitic cells thus occurs in response to the extrinsic signals 

from the adjacent tissues (Brand-Saberi et al, 1996; Brent and Tabin, 2002; 

Kalcheim and Ben-Yair, 2005; Scaal and Christ, 2004; Williams and Ordahl, 

1997). Wnts are acknowledged as key players in the establishment of the 

dorsal epithelial dermomyotome, while the paracrine factors Sonic Hedgehog 
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(Shh) and Noggin are the major ventralising signals. Shh and Noggin, 

produced and secreted by the notochord (and Shh also by the floor plate of 

the neural tube), are necessary for induction (and maintenance) of the 

sclerotome (Brand-Saberi et al, 1993; Borycki et al, 1998; Christ et al, 1992; 

Dietrich et al, 1997; Dockter and Ordahl, 2000; Fan and Tessier-Lavigne, 

1994). The formation of the medial half of the dermomyotome is attributed to 

Wnt1 and Wnt3a signalling from the dorsal neural tube, whereas ectodermal 

Wnt4, Wnt6, and Wnt7a signalling influences the lateral half of the 

dermomyotome (Christ et al, 1992; Münsterberg et al, 1995a; Olivera-

Martinez et al, 2001). Galli et al (2004) have also shown that Wnt3a 

stimulates cell proliferation in the dermomyotome. Intriguingly, soon after the 

sclerotome and dermomyotome are established, the dorsal Wnt signals and 

the ventral Shh signals synergise to promote and develop the intermediate 

myotome (Dietrich et al, 1997).  

The dermomyotome is patterned along the mediolateral axis into medial, 

central, and lateral regions, which contain progenitors of epaxial muscle, 

dermis, and hypaxial muscle, respectively. At the level of the segmental plate 

and the epithelial somites, Wnt6 is expressed throughout the entire 

ectoderm, which overlies the neural tube, the paraxial mesoderm and the 

lateral plate mesoderm. As the somite matures, however, its expression 

becomes restricted to the lateral ectoderm, which covers the ventrolateral lip 

of the dermomyotome and the lateral plate mesoderm (Geetha-Loganathan 

et al, 2006). Geetha-Loganathan et al (2006) have shown that Wnt11 is an 

epithelialisation factor that, upon induction by the neural tube (Marcelle et al, 

1997), maintains the epithelial state of the dorsomedial lip while restricting 

the expression of Wnt6 to the ectoderm overlying the ventrolateral lip. Wnt11 

and Wnt6 thus maintain the epithelial nature of the dorsomedial and 

ventrolateral lips, respectively, allowing the central region of the 

dermomyotome to de-epithelialise to form dermis and muscle (Gros et al, 

2005), which indicates a role of Wnt signalling in the patterning of the 

dermomyotome along its mediolateral axis (Geetha-Loganathan et al, 2006; 

Geetha-Loganathan et al, 2008). 
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Bone morphogenetic proteins (BMPs) also have a significant role in somite 

patterning. BMP4 is expressed in the dorsal neural tube, where it induces 

Wnt1 (which in turn induces Wnt11 expression in the dorsomedial lip of the 

dermomyotome [Marcelle et al, 1997]), and in the lateral plate mesoderm. 

BMPs block MyoD expression (and thus have a negative influence on 

myogenesis), so to ensure proper formation of the myotome their action is 

controlled by the early expression of their antagonist Noggin in the medial 

somite (Reshef et al, 1998). 

The signals that govern somite patterning also influence cell fate 

determination. Wnt signals from the surface ectoderm and the dorsal neural 

tube, for example, do not just favour a dorsal somitic fate (i.e. the 

dermomyotome) but in connection they also promote myogenesis. Wagner et 

al (2000) have shown, via implantation of Wnt1, Wnt3a, and Wnt4 secreting 

cells, that not only was the ventral region of the somite compromised but also 

that myotome formation was enhanced (noted by an increase of the MyoD 

expression domain). 

 

6.2. Wnt Signalling and Skeletal Muscle Development 

In vertebrates, most skeletal muscles (excluding certain head muscles) 

develop from somites (Bryson-Richardson and Currie, 2008). Maturing 

somites develop the ventrally located mesenchymal sclerotome, which forms 

cartilage scaffold of the bony skeleton, and the dorsally located epithelial 

dermomyotome, which develops into the dermis and the skeletal muscles of 

the trunk and limbs. Originating in the dermomyotome, myogenic precursor 

cells (MPCs) are identified by the expression of the paired-box transcription 

factors Pax3 and Pax7 (Kassar-Duchossoy et al, 2005). Cells that delaminate 

from the dermomyotome express myogenic regulatory factors (MRFs) and 

ultimately downregulate Pax3/Pax7 to produce the first skeletal muscle tissue 

(the myotome). At limb level, myogenic progenitor cells with long-range 

migratory capability delaminate from the somite and will later form muscles in 

the extremities (Buckingham et al, 2003). 
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Embryonic myogenesis is coordinated via a complex signalling network of 

temporally regulated morphogenetic cues from structures that surround the 

developing muscle tissue. These extrinsic signalling molecules, as 

abovementioned, include Wnts, Sonic Hedgehog (Shh), and bone 

morphogenetic proteins (BMPs). The following will focus on the roles of Wnt 

family members in regulating the development of embryonic muscle (figure 

6.1).  

 

 

Figure 6.1. Wnt signaling and the embryonic origin of skeletal muscle of 
the trunk and limb. Wnt signaling, from tissues that surround the 
developing muscle, influences embryonic myogenesis. Wnt1, Wnt3a, 
and Wnt4 are expressed in the dorsal regions of the neural tube. The 
dorsal ectoderm expresses Wnt4, Wnt6, and Wnt7a. Wnt11 is 
expressed in the epaxial dermomyotome. These Wnts regulate 
embryonic muscle development in a spatiotemporal manner (courtesy 
of von Maltzahn et al, 2012).  

 

Wnt1, Wnt3a, and Wnt4 are expressed in the dorsal half of the neural tube 

and, in cooperation with Shh signalling from the notochord, have been shown 

to induce myogenesis in presegmented mesoderm explants (Münsterberg et 

al, 1995a). However, Wnt7a and Wnt7b, which do not induce somitic 

myogenesis in vitro, are mainly expressed in the ventral half of the neural 

tube (Parr et al, 1993). Wnt signalling has additionally been demonstrated to 

influence the expression of myogenic regulatory factors (MRFs), which are 

essential transcriptional regulators of myogenic lineage progression and 
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differentiation. In explant cultures of paraxial mesoderm from mouse 

embryos, Wnt1, produced in the dorsal neural tube, was shown to induce 

myogenesis via activation of the MRF Myf5, whereas Wnt7a or Wnt6, 

produced in the dorsal ectoderm, preferentially activates the MRF MyoD 

(Tajbakhsh et al, 1998). Wnt7a activates MyoD via a PKC-dependent β-

catenin-independent non-canonical pathway (Brunelli et al, 2007). Wnt1 

signals through two Frizzled receptors (Fzd1 and Fzd6) in the epaxial domain 

of the somite, to regulate the expression of Myf5 via the canonical Wnt/β-

catenin pathway (Borello et al, 2007). 

During mouse somitogenesis the Fzd7 receptor is expressed in the hypaxial 

region of the somite, which suggests an interaction with Wnt7a (Borello et al, 

1999a). Correspondingly, as mentioned above, the Fzd1 and Fzd6 receptors 

are expressed in the epaxial region, which correlates with the expression of 

Myf5. In addition, transplacental delivery of sFRP3 (a soluble Wnt antagonist) 

reduces skeletal myogenesis in a dose-dependent fashion, which 

demonstrates that Wnt signalling is indispensable during embryonic 

myogenic development (Borello et al, 1999b).  

Otto et al (2006) have illustrated that, within the dorsal somite, Wnt1, Wnt3a, 

Wnt4, and Wnt6 can upregulate and expand Pax3 and Pax7 expression. In 

addition, Wnt6 can mimic the effect of the dorsal ectoderm in maintaining the 

expression of Pax3 and Pax7. Wnt-induced expression of Myf5, MyoD, and 

Pax3, in the mouse somite, is mediated by PKA and cAMP response 

element-binding protein (CREB; Chen et al, 2005). Furthermore, Abu-Elmagd 

et al (2010) have shown that Wnt signals that directly affect Lef1 

transcriptional activator and Pitx2 transcription factor activity affect the 

number of premyogenic Pax3/Pax7 cells.  

Knockout studies performed in mouse embryos have revealed the 

importance of Wnt signalling in dermomyotome formation. Embryos lacking 

both Wnt1 and Wnt3a do not form the medial region of the dermomyotome, 

which is accompanied with a reduction in the expression of Myf5 (Ikeya and 

Takada, 1998). Also, Linker et al (2005) have demonstrated that Wnt6 β-

catenin-dependent signalling from the dorsal ectoderm is necessary for the 
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maintenance of epithelial organisation in somites and dermomyotome 

formation. Moreover, conditional deletion of β-catenin (driven by Pax3-Cre or 

Pax7-Cre) revealed that β-catenin is required within the somite for the 

formation of the dermomyotome and the myotome and for the determination 

of the number of foetal progenitors and myofibres in the limb (Hutcheson et 

al, 2009).  

 

6.3. Wnt11 and Early Muscle Fibres  

Gros et al (2009) have shown that the sequential action of the Wnt/PCP and 

the Wnt/β-catenin pathways is essential for the formation of fully functional 

chick embryonic muscle fibres. Their studies revealed that Wnt11 expression 

in the epaxial dermomyotome acts as a local cue to direct and organise the 

elongation of primitive myofibres in the myotome. Their results demonstrate 

that the effect of Wnt11 is mediated through the evolutionary conserved 

planar cell polarity (PCP) pathway, downstream of the Wnt/β-catenin 

pathway that is required to initiate the myogenic program of myocytes and 

the expression of Wnt11 itself.  

The neural tube, which drives Wnt11 expression in the dorsomedial lip of the 

dermomyotome (Marcelle et al, 1997), was shown to be necessary and 

sufficient to orient myocyte elongation. Half of the neural tube was removed 

at the level of the presomitic mesoderm, where myocytes have not yet 

formed. One day after ablation, myocytes that had formed during incubation 

(stained for myosin heavy chain) were disorganised when compared to those 

on the control side of the embryo (figure 6.2a, b). When the neural tube was 

removed at an embryonic level where myocytes had already formed, the 

myotome was almost normal following one day of incubation. Additionally, as 

myosin heavy chain antibodies only reveal fully elongated myocytes, 

dorsomedial lip cells were electroporated with a GFP reporter gene (before 

neural tube ablation), to show all cell shape changes induced by the absence 

of the neural tube. One day later, in addition to disoriented fully elongated 

myocytes, Gros et al (2009) observed GFP-positive cells that had elongated 
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in the either the wrong direction, in many directions, or had failed to elongate 

altogether when compared to the control (figure 6.2c, d). 

 

 

Figure 6.2. The neural tube is necessary and sufficient for the oriented 
elongation of myocytes. a, b, Myotome organisation is illustrated with a 
myosin heavy chain antibody in the presence (a) or absence (b) of the neural 
tube. c-f, Myocyte organisation following electroporation of GFP in the 
dorsomedial lip cells in control (c) or neural-tube-ablated (d) embryos. e is an 
enlargement of d. f summarises the aberrant shapes and orientations of cells 
in e. Solid and dashed horizontal lines show the position of the neural tube in 
normal or neural tube ablated embryos respectively. Dashed boxes outline 
the somites (figure courtesy of Gros et al, 2009). 
 

 

To test if Wnt11 plays a role during the polarised elongation of myocytes, 

small interfering RNAs (siRNAs), directed against chick Wnt11, were also 

electroporated. This lead to partially elongated electroporated cells within the 

myotome in addition to mis-oriented myocytes, a phenotype that was not 

seen in GFP- or control siRNA-electroporated embryos (Gros et al, 2009). 

These experiments show that Wnt11 is necessary to control myocyte 

orientation and indicate that the action of the neural tube on the polarised 

elongation of myocytes is mediated, somewhat, by Wnt11.  

In vertebrates, during convergence extension movements, Wnt11 has been 

reported to act through the PCP pathway (Heisenberg et al, 2000; 

Wallingford et al, 2000) and Djiane et al (2000) and Witzel et al (2006) have 

c d e f 
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shown that Fzd7 mediates its activity. To ascertain if Wnt11 is acting through 

the PCP pathway in chick somites, Gros et al (2009) electroporated a 

secreted form of Fzd7, which acts as a competitive inhibitor of Fzd7 function 

(Bhanot et al, 1996). Electroporated cells failed to elongate and, 

correspondingly, when a full-length Fzd7 was overexpressed myocytes were 

shown to elongate aberrantly. The overexpression and knockdown (via 

siRNAs) of chick Prickle1, a core PCP molecule expressed in the myotome 

(Cooper et al, 2008) that has no known role in β-catenin-dependent Wnt 

signalling but is required for PCP in vertebrates and invertebrates (Seifert 

and Mlodzik, 2007), also resulted in the disorganised elongation of myocytes 

(Gros et al, 2009). Dishevelled (Dvl), the downstream effector of frizzled, 

mediates the activity of both the β-catenin-dependent and the PCP pathways 

and several dvl constructs have been shown to interfere with one or both of 

these pathways in Drosophila or Xenopus (Axelrod et al, 1998; Heisenberg et 

al, 2000; Rothbacher et al, 2000; Wallingford et al, 2000). The full-length dvl 

and dvl-∆PDZ and dvl-∆DEP (constructs that lack the PDZ or the DEP 

domain respectively) have been shown to interfere with the Wnt/PCP 

pathway during vertebrate gastrulation (Heisenberg et al, 2000; Rothbacher 

et al, 2000; Wallingford et al, 2000). Gros et al (2009) demonstrate that 

expression of all three of these constructs in the dorsomedial lip results in 

failure of electroporated cells to elongate correctly within the myotome. Rho 

and Rac (small GTPases) are downstream effectors of the PCP pathway. 

The overexpression of Rock (Rho-associated, coiled-coil containing protein 

kinase) in the dorsomedial lip resulted in the formation of mis-oriented or 

multipolar myocytes. Additionally the overexpression of Wnt11 brought about 

a robust phosphorylation of JNK (c-Jun N-terminal kinase, the kinase 

associated with Rac) within the transition zone, which suggests that Wnt11 is 

able to activate this WNT/PCP target. Together, these data infer that Wnt11 

regulates the polarised elongation of myocytes via the PCP pathway (Gros et 

al, 2009).   

As Wnt11 has also been shown to activate the canonical, β-catenin-

dependent pathway (during Xenopus axis formation for example; Tao et al, 

2005), Gros et al (2009) next determined if Wnt11 regulates the polarised 
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elongation of myocytes via activation of the PCP pathway only or the 

canonical pathway as well. In mice, initiation of the expression of Myf5 in the 

dorsomedial lip was demonstrated to depend on Wnt/β-catenin-dependent 

signalling (Borello et al, 2006). Correspondingly, electroporation of full-length 

Dvl or an activated form of β-catenin (both of which activate the Wnt/β-

catenin-dependent pathway) resulted in overexpression of Myf5. 

Electroporation of dominant-negative forms of β-catenin or Lef1 (which 

repress the Wnt/β-catenin-dependent pathway), however, led to inhibition of 

Myf5 expression, confirming that the Wnt/β-catenin-dependent pathway is 

essential for muscle fate (Abu-Elmagd et al 2010; Gros et al, 2009). Myf5 

expression was neither upregulated nor downregulated following 

electroporation (in the dorsomedial lip) of Wnt11, secreted Fzd7, siRNAs 

against chick Wnt11, dvl-∆PDZ or dvl-∆DEP. This indicates that, within the 

transition zone, these constructs do not modulate the Wnt/β-catenin-

dependent pathway and that the elongation defects generated by these 

constructs are due to a modulation of the PCP pathway only (Gros et al, 

2009). Inhibition of Wnt/β-catenin-dependent signalling also affected 

elongation in electroporated cells. Those cells, however, did not activate the 

expression of Myf5, yet they retained Pax7 expression. Gros et al (2009) 

suggest that blockage of the β-catenin-dependent pathway maintains the 

cells in an undifferentiated (Pax7+ Myf5-) state, which inhibits their maturation 

into polarised and elongating myocytes. Together with the observation that 

canonical Wnt signalling regulates the expression of Wnt11 (see Gros et al, 

2009), this implies that β-catenin-dependent Wnt signalling is required 

upstream of muscle fibre polarised elongation, which is itself controlled by the 

Wnt11/PCP pathway (figure 6.3). 
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Figure 6.3. The sequential action of the Wnt/PCP and the Wnt/β-
catenin pathways is essential for the formation of fully functional chick 
embryonic muscle fibres (Gros et al, 2009). Wnt11 expression in the 
epaxial dermomyotome acts as a local cue to direct and organise the 
elongation of primitive myofibres in the myotome. The effect of Wnt11 is 
mediated through the PCP pathway, downstream of the Wnt/β-catenin 
pathway that is required to initiate the myogenic program of myocytes 
and the expression of Wnt11 itself.  

 

To conclude, Gros et al (2009) exposed differentiating myocytes to localised 

exogenous sources of Wnt11 to test whether Wnt11 (expressed by the 

dorsomedial lip cells) provides an instructive or a permissive signal to the 

elongating myocytes in the transition zone. Wnt11-expressing cells were 

placed between two adjacent, newly formed somites and myocytes that 

formed under these conditions elongated parallel to the grafted cells (figure 

6.4b,e). Myocytes elongated normally, however, in embryos grafted with 

control cells (figure 6.4a, d). Furthermore, when small aggregates of cells 

expressing Wnt11 were positioned within the somite, myocytes were 

observed swirling around the injected cells (figure 6.4c, f).  
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Figure 6.4. Wnt11 acts as an instructive cue during myocyte elongation. 
Dorsal views of somites where control cells (a, d) or Wnt11-expressing 
cells (b, c, e, f) were positioned between two somites (a, b, d, e) or within 
the myotome (c, f). Myosin heavy chain antibody (green) illustrates 
myotome organisation, whereas injected cells are labelled with lipophilic 
dye DiI and are coloured red. The bottom panels are schematics 
summarising the results in a-f, showing that cells expressing Wnt11 
reorient myocytes according to the new source of Wnt11, whereas control 
cells do not affect orientation (figure courtesy of Gros et al, 2009). 
 
 
 

In a reverse experiment, myocytes were shown to elongate in a disorganised 

manner in somites uniformly expressing Wnt11 (homogenously infected with 

RCAS-Wnt11 retroviruses). Together, these data indicate the importance of a 

localised source of Wnt11 for the oriented elongation of myocytes and they 

reveal that Wnt11 acts as an instructive cue interpreted by myocytes to 

determine the orientation of their elongation (Gros et al, 2009). 

 

6.4. Wnt Signalling and the Cytoskeleton 

The cytoskeleton, as aforementioned, is highly dynamic and undergoes 

continuous reorganisation. This reorganisation allows cells to change shape, 

to divide, and to participate in directed migration. In order to achieve such 

complex cellular functions cytoskeletal elements must be co-ordinately 
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regulated. Numerous studies have revealed key cytoplasmic molecules that 

regulate the organisation and dynamic of the cytoskeleton. Furthermore, 

several extracellular factors have been shown to trigger signalling cascades 

that directly modulate the cytoskeleton (Salinas, 2007). 

Embryonic morphogens, such as Wnts, influence the fate of cells during early 

embryonic patterning, cell movement, and cell polarity (Wodarz and Nusse, 

1998), processes in which the cytoskeleton is noticeably modified. It has 

frequently been assumed that these morphogens, and many other growth 

factors, regulate the cytoskeleton indirectly by inducing changes in gene 

expression. More recent studies, however, have shown that signalling 

pathways (activated by morphogens) directly modulate the cytoskeleton by 

altering the activity, destination and stability of cytoskeletal regulators 

(reviewed by Salinas, 2007). 

The canonical Wnt pathway is mostly associated with β-catenin and 

transcriptional regulation (see 1.5. Wnt Signalling). However, canonical Wnt 

signalling has been shown to directly regulate the cytoskeleton without 

transcriptional activity (Ciani et al, 2004; Schlesinger et al, 1999; Walston et 

al, 2004). Various components of the canonical Wnt pathway have been 

shown to associate with the cytoskeleton (table 6.1). These associations 

suggest two possible outcomes. First, that Wnt signalling can be locally 

activated within specific cellular compartments. Second, local alterations to 

the cytoskeleton could induce the release or sequestration of Wnt 

components associated with the cytoskeleton resulting in the activation or 

repression of the Wnt cascade in specific cellular compartments. Wnt 

signalling, therefore, can be confined to specific cellular regions and as a 

consequence influence cell behaviour without necessarily affecting nuclear 

function (Salinas, 2007). 

 

 

 



	
  

	
   133	
  

Table 6.1.  Components of the canonical Wnt pathway and their associations with 
the cytoskeleton (adapted from and courtesy of Salinas, 2007. For all references 
see Salinas, 2007). 
 

Component Function in the Wnt pathway Association to the cytoskeleton Effect on microtubules 

Dishevelled Scaffold protein that binds to 
Fz and induces the 
disassembly of the destruction 
complex 

Binds to microtubules (MTs) and 
actin filaments 

GOF: increased MT stability 
and the formation of looped 
MTs 

Casein Kinase I A family of serine/threonine 
kinases that phosphorylate Dvl, 
β-catenin and LRP 

Binds to microtubules and 
phosphorylates α/β tubulin, 
stathmin and MT-associated 
proteins 

No directly demonstrated 
effects, but it is suggested to 
decrease microtubule 
stability 

Gsk3β Serine/threonine kinase that 
phosphorylates APC, Axin, ß-
catenin and LRP 

Binds to microtubules and 
phosphorylates MT-associated 
proteins 

GOF: decreased MT stability 

Axin Scaffold protein and part of the 
destruction complex 

Binds to microtubules GOF: increased MT stability 

APC Scaffold protein and part of the 
destruction complex 

Binds to microtubules and actin 
filaments 

GOF: increased MT stability 
and microtubule net growth 

β-catenin Cytoplasmic protein and 
nuclear activator of Tcf/Lef-
mediated transcription 

Binds to actin filaments and to 
microtubules 

KD: decreased MT re-growth 
after nocodazole 

MACF1/ACF7 Cytoplasmic protein required 
for Axin translocation to the 
membrane and its binding to 
LRP5/6 

Microtubule-actin cross-linking 
protein 

LOF: similar to Wnt3 or 
LRP5/6 double KO mice 

TCF/LEF Transcription factors NR NR 

LOF: loss of function. GOF: gain of function. KD: RNAi knockdown. NR: no reported. 

 

 

Numerous studies in Caenorhabditis elegans, Drosophila, and vertebrates 

have demonstrated a role for Wnt signalling in the regulation of the 

microtubule cytoskeleton. In addition to regulating microtubule stability, Wnts 

regulate the organisation of the microtubule network by modulating the 

tethering of the microtubules to the cell cortex. Capture of microtubules at the 

cell cortex is essential for correct alignment of the mitotic spindle (and thus 

segregation of chromosomes during cell division), for cell migration, and for 

oriented cell growth such as axon elongation (for a comprehensive review 

see Salinas, 2007).  

Miller et al (1999) and Krylova et al (2000) illustrated that, in mammalian 

cells, Dvl is tightly associated with microtubules. This was the first 
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demonstration that canonical Wnt signalling might directly regulate the 

cytoskeleton. In developing neurons, endogenous Dvl preferentially 

associates with stable microtubules (Krylova et al, 2000). Wnt pathway 

activation (through Dvl) increases microtubule stability as microtubules 

become resistant to depolymerisation by nocodazole (Ciani et al, 2004; 

Krylova et al, 2000). Ciani et al (2004) have shown that microtubule stability 

is achieved via inhibition of GSK3β but through a transcription-independent 

pathway. In addition they also illustrated that endogenous Axin (a negative 

regulator of the Wnt cascade) binds to and stabilises microtubules, which 

may suggest that Axin is a modulator rather than an inhibitor of the Wnt 

pathway or that perhaps it plays a dual role. Thus, a canonical Wnt pathway 

that diverges downstream of GSK3β regulates microtubules, which results in 

profound changes in cell behaviour (Salinas, 2007).  

The inhibition of GSK3β directly affects the behaviour of microtubules by 

altering the phosphorylation of specific cytoskeletal targets. GSK3β 

phosphorylates many MAPs including MAP1B, MAP2 and APC. Wnt pathway 

activation, in axons, results in a significant decrease in MAP1B 

phosphorylation, at a site phosphorylated by GSK3β (Ciani et al, 2004; Lucas 

et al, 1998). Intriguingly, GSK3β phosphorylation of MAP1B maintains 

microtubules in a dynamic state (Goold et al, 1999), while decreased 

phosphorylation (via inhibition of GSK3β) results in increased microtubule 

stability (Lucas et al, 1998). Though the effects of Wnts on axon behaviour 

and the stability of microtubules can be explained by alterations in the 

phosphorylation of MAP1B, other GSK3β targets may also contribute to 

changes in the microtubule cytoskeleton. Together this data shows that 

canonical Wnt signalling regulates microtubule stability by directly targeting 

cytoskeletal proteins (Salinas, 2007).  

 

6.5. GSK3β Regulates MACF1/ACF7 in Cell Migration 

Wu et al (2011) have recently reported that GSK3β orchestrates polarisation 

and reorganisation of microtubules in hair follicle stem cells during wound 

healing. This report, along with another study by Zaoui et al (2010), has 
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shown that GSK3β governs the elongation of microtubules through its control 

of the +TIP protein MACF1/ACF7 (Previewed by Yucel and Oro, 2011; for 

more information about MACF1/ACF7 see Chapter 5). Wu et al (2011) 

demonstrate that there is a significant delay in wound closure in mice with 

mutations in the MACF1/ACF7 gene. They illustrate that GSK3β directly 

phosphorylates the C-terminus of MACF1/ACF7, which diminishes 

MACF1/ACF7’s binding to microtubules (i.e. attenuating the interaction 

between the acidic C-terminal tubulin tails and MACF1/ACF7’s GSR domain). 

Using a phospho-specific antibody, Wu et al (2011) also show that phospho-

MACF1/ACF7 localises to the cytoplasm but not to microtubules, 

corroborating that MACF1/ACF7 phosphorylation uncouples the +TIP from 

microtubules (figure 6.5). The authors subsequently show that a 

phosphorylation-refractile MACF1/ACF7 (a mutant version of MACF1/ACF7 

that is refractory to phosphorylation by GSK3β) can rescue certain elements 

of the MACF1/ACF7 mutant phenotype (overall microtubule architecture for 

example; Previewed by Yucel and Oro, 2011).  

 

 

Figure 6.5.  GSK3β Is a Central Regulator of the Cytoskeleton during Cell Migration. 
In non-migrating cells, GSK3β is normally active and phosphorylates +TIP proteins. 
Phosphorylation uncouples +TIPs from microtubules (Wu et al, 2011), which inhibits 
growth of the filaments. Migratory cues, like Heregulin, inactivate GSK3β by 
phosphorylation (Zaoui et al, 2010), thus allowing the local extension of 
micrtotubules by +TIPs. This helps to polarise the cytoskeleton and direct cellular 
movement toward the migratory cues (courtesy of Yucel and Oro, 2011).  
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Comparably, Zaoui et al (2010) have studied the role of GSK3β in the 

migration of breast carcinoma cells responding to Heregulin (the epidermal 

growth factor [EGF] ligand) via stimulation of the tyrosine kinase receptor 

ErbB2. Previously, Zaoui and colleagues had shown that, at the leading edge 

of the cell, Heregulin induces directed cell protrusions by triggering the Memo 

(mediator of ErbB2 motility) membrane complex. They had also 

demonstrated that APC and CLASP2 mediate the formation of microtubules 

at cell protrusions during these cells’ migration (Marone et al, 2004; Zaoui et 

al, 2008). More recently they show that Memo inactivates GSK3β, which in 

turn targets APC and CLASP2 to the plasma membrane. Furthermore, 

Heregulin activity localises MACF1/ACF7 to the membrane and microtubules, 

and this localisation depends on GSK3β and APC (Previewed by Yucel and 

Oro, 2011; Zaoui et al, 2010).  

Taken together, the abovementioned data convincingly link the activity of 

GSK3β and the phosphorylation status of MACF1/ACF7 with cell migration 

and MACF1/ACF7 association with microtubules (Yucel and Oro, 2011). The 

biochemical mechanism of the regulation of MACF1/ACF7 by GSK3β, 

however, remains to be elucidated. Wu et al (2011) illustrate that neither the 

kinase-refractile nor the phospho-mimetic mutants of MACF1/ACF7 could 

rescue the directional mutant and polarity defects in MACF1/ACF7 mutant 

hair follicle stem cells. Thus, unpredictably, GSK3β regulation of 

MACF1/ACF7 must be more complex than simply inhibition by 

phosphorylation, which implies that subsets of the multiple MACF1/ACF7 

phosphorylation sites might have distinct functions. Kumar et al (2009) have 

previously observed such behaviour for CLASP2. Alternatively, prolonged 

microtubule elongation may require the cycling of MACF1/ACF7 

phosphorylation (Yucel and Oro, 2011). 
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Aim 

§ To further examine the effects of Wnts on myofibre orientation, which 

may reveal a direct role for the canonical Wnt pathway in fibre 

orientation that is independent of Wnt11. 
 
 

Results 

6.6. Wnt11 and Early Muscle Fibres  

To visualise myofibres in somites, HH Stage 20 chick embryos were 

immunostained in wholemount with MF20, a monoclonal antibody that 

recognises the heavy chain of myosin II. As expected, myosin heavy chain is 

apparent in both the somites and in the heart (figure 6.6).  

 

 

Figure 6.6.  Myosin heavy chain expression in a HH Stage 20 Chick 
embryo. Embryo was immunostained in wholemount with MF20 antibody 
and, as expected, myosin heavy chain appears in the somites and in the 
heart. 

 

 

To test the effects of Wnt11 on myofibre orientation, Wnt11 secreting rat 

fibroblast cells (a kind gift from Dr. Chen-Ming Fan, Carnegie Institution of 

Washington, Baltimore, MD 21218) were stained with DiI and injected either 

within the myotome (somite IV) or between two somites (somites III and IV, 

or somites IV and V) of HH Stage 16 chick embryos. Embryos were re-
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incubated for 14-16 hours and then subjected to in situ hybridisation 

experiments, to detect Wnt11, and immunostaining for myosin heavy chain 

(see figure 6.7 for an example).  

 

  

Figure 6.7. Wnt11 and myosin heavy chain expression in a HH Stage 20 
Chick embryo following targeted fibroblast injection. Wnt11 secreting rat 
fibroblasts (stained red with DiI) were injected between somites IV and V at 
HH Stage 16. The embryo was re-incubated for 14 h and subsequently 
hybridised with an RNA probe for Wnt11 (A) and immunostained in 
wholemount with MF20 to reveal myosin heavy chain in green (B).  

 

 

Again, as anticipated myosin heavy chain is apparent in the heart and 

somites of the HH Stage 20 embryo (figure 6.7B). Wnt11 is strongly 

expressed in the dorsomedial lip of the somite as previously described by 

Tanda et al (1995) and Marcelle et al (1997). Interestingly, expression is also 

evident in what appears to be eye muscle (figure 6.7A). To observe the 

effects of the exogenous Wnt11 on myofibres, the somites positioned on 

either side of the injected fibroblasts were excised and prepared for widefield 

inverted microscopy (figure 6.8; see materials and methods for more details 

about slice cultures). 

 

 

(A) (B) 
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Figure 6.8. Effects of an exogenous source of Wnt11 on early myofibres. 
(A) Dorsal view of somites where DiI labelled Wnt11-expressing cells (red) 
were positioned between the two somites at HH Stage 16. Following re-
incubation for 14 h the embryo was immunostained for myosin heavy chain 
(green), which illustrates aberrant myotome organisation. (B) Dorsal view of 
somites illustrating myotome organisation (myosin heavy chain) in the 
absence of any injected exogenous cells. 
  

 

The injected fibroblasts were sometimes ‘pushed out’ to the lateral side of the 

somite as in figure 6.8A. Nonetheless, in agreement with Gros et al (2009), 

the early myofibres appear to be orienting toward the Wnt11 secreting cells 

(figure 6.8A, n=3). This disorientation of myofibres was never seen in somites 

that were not cell injected (figure 6.8B, n=4). 

 

6.7. Wnt3a and Early Muscle Fibres  

To test if canonical Wnt orients the myofibres independently of Wnt11, 

Wnt3a-expressing rat fibroblasts (a kind gift from Dr. Jan Kitajewski, 

Columbia University, New York, 10032) were also injected either within the 

myotome (somite IV) or between two somites (somites III and IV, or somites 

IV and V) of HH Stage 16 chick embryos. Embryos were subsequently re-

incubated for 14-16 hours and then hybridised with an RNA probe for Wnt3a 

and immunostained for myosin heavy chain (see figure 6.9 for an example).  

 

(A) (B) 
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Figure 6.9. Wnt3a and myosin heavy chain expression in a HH Stage 20 
Chick embryo following targeted fibroblast injection. Wnt3a secreting rat 
fibroblasts (stained red with DiI) were injected into somite IV at HH Stage 16. 
The embryo was re-incubated for 14 h and subsequently hybridised with an 
RNA probe for Wnt3a (A) and immunostained in wholemount with MF20 to 
reveal myosin heavy chain in green (B).  

 

In agreement with previous studies (see GEISHA database available at: 

http://geisha.arizona.edu/geisha/ for more details), Wnt3a is strongly 

expressed in the developing spinal cord, the tail bud, the otic placode, and in 

the midbrain (figure 6.9A). As before, myosin heavy chain is in the heart and 

somites of the HH Stage 20 embryo (figure 6.9B).  

To observe the effects of the exogenous Wnt3a on myofibres, the somites 

positioned nearest to the injected cells were isolated and prepared for 

widefield-inverted microscopy (figure 6.10; see materials and methods for 

more details about slice cultures). 

 

  

Figure 6.10.  Effects of an exogenous source of Wnt3a on early myofibres. (A) 
Dorsal view of somites where DiI labelled Wnt3a-expressing cells (red) were 
positioned within the myotome of somite IV at HH Stage 16. Following re-
incubation for 14 h the embryo was immunostained for myosin heavy chain 
(green), which illustrates aberrant myotome organisation. (B) Dorsal view of 
somites where DiI labelled LNCX2 control cells (red) were injected within the 

(A) (B) 

(A) (B) 
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myotome of somite IV at HH Stage 16. Following re-incubation for 14 h the 
embryo was immunostained for myosin heavy chain (green).  
 
 

As shown in figure 6.10A, myofibres appear to be orienting toward the Wnt3a 

secreting cells (n=8), not dissimilar to those myofibres orienting toward 

exogenous Wnt11 shown above. In the somites injected with control cells, 

although the cells often displayed obstruction to the myofibres (as shown in 

figure 6.10B), the myofibres never appeared to be orienting in their direction 

(n=4).  

Wnt3a and Wnt1 signalling from the neural tube are known to drive the 

expression of Wnt11 in the dorsomedial lip of the dermomyotome (Marcelle 

et al, 1997). Thus embryos injected with Wnt3a-expressing cells were 

hybridised with an RNA probe for Wnt11 to examine whether the effect on 

the myofibres was a direct response to Wnt3a and not because of any 

upregulation of Wnt11 in the lateral region of the somite (see figure 6.11 for 

an example).   

 

   

Figure 6.11.  Exogenous Wnt3a in the myotome and lateral regions of the 
somite does not upregulate Wnt11. Wnt3a-expressing fibroblasts (stained 
red with DiI) were injected between somites III and IV at HH Stage 16. The 
embryo was re-incubated for 14 h and subsequently hybridised with an RNA 
probe for Wnt11 (A) and immunostained in wholemount for myosin heavy 
chain in green (B). 

 

Evidently, excluding the endogenous Wnt11, no additional Wnt11 expression 

is apparent near the Wnt3a-expressing fibroblasts. Nor is there any 

upregulation of endogenous Wnt11 (i.e. in the dorsomedial lip) in the cell 

(B) (A) 
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injected somite compared to the non-injected side (figure 6.11, n=9). This 

suggests that a canonical Wnt ligand (Wnt3a), independent of Wnt11, has a 

role in the orientation of embryonic myofibres.  

 

6.8. MACF1/ACF7 and Early Muscle Fibres  

Wnts are known to inhibit GSK3β. GSK3β has been shown to govern the 

elongation of microtubules through its control of MACF1/ACF7: active GSK3β 

phosphorylates the +TIP protein, thus uncoupling it from microtubules and 

inhibiting their growth, while inactive GSK3β allows the extension of 

microtubules by +TIPs, which helps to polarise the cytoskeleton and direct 

cellular movement (Wu et al, 2011; Zaoui et al, 2010). Wu et al (2008) have 

demonstrated that in MACF1/ACF7-null mouse keratinocytes there is 

aberrant and delayed cell migration. It is posited, therefore, that 

MACF1/ACF7 (downstream of GSK3β) has a role in the cell migration and 

orientation necessary for correct myotome formation/myofibre organisation. 

This may provide a direct link between canonical Wnt and the orientation of 

chick embryonic myofibres via GSK3β and its regulation of MACF1/ACF7 

(figure 6.12).   

 

Figure 6.12.  Proposed additional pathway suggesting a role for 
MACF1/ACF7, downstream of GSK3β, in the organisation of chick 
embryonic muscle fibres. For further details on the Wnt11-PCP pathway that is 
depicted see figure 6.3.  
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To test if MACF1/ACF7 is required for correct myofibre organisation, somites 

I-V of HH Stage 16 chick embryos were injected with a morpholino that 

targets the first translation start site of MACF1/ACF7. Following 

electroporation, embryos were re-incubated for 12-16 hours and then 

immunostained for myosin heavy chain. Electroporated somites, now 

interlimb, were isolated and prepared for inverted confocal two-photon 

microscopy (see figure 6.13 for an example). 

 

  

  

Figure 6.13. Attempted MACF1/ACF7 knockdown in somites and its effects 
on myofibre organisation. (A, A’) Control morpholino (green) was injected 
and electroporated into somites I-V of a HH Stage 16 chick embryo, following 
15 h re-incubation the embryo was immunostained for myosin heavy chain 
(red). A and A’ represent 2 different interlimb somites from the same 
electroporated embryo. (B, B’) A morpholino (green) against the translation 
start site of MACF1/ACF7 was injected and electroporated into somites I-V of 
a HH Stage 16 chick embryo, following 15 h re-incubation the embryo was 
immunostained for myosin heavy chain (red).  B and B’ represent 2 different 
interlimb somites from the same electroporated embryo. 

(A) (A’) 

(B’) (B) 
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As anticipated, electroporation of a control morpholino appears to have no 

overall influence on the organisation of myofibres (figure 6.13A, A’, n=2). 

Intriguingly however, in the example shown here, following electroporation of 

a MACF1/ACF7 morpholino the myofibres appear to be relatively normal in 

one somite but somewhat aberrant, with disrupted fibre orientation, in a 

neighbouring somite of the same embryo (figure 6.13B, B’, n=1).  

In addition to the morpholino electroporations, an overexpression and rescue 

experiment was designed (but not completed, see below) to test if 

MACF1/ACF7 is required for correct myofibre organisation. The 

electroporation of hGSK3β into early somites resulted in normal myofibre 

organisation (data not shown). This suggested that, despite the additional 

GSK3β, there were not enough β-catenin destruction complexes to inhibit the 

function of β-catenin and, that there was not enough active GSK3β to 

phosphorylate MACF1/ACF7 and uncouple it from microtubules (i.e. inhibit its 

proposed function in myofibre organisation). An alternative experimental 

approach considered was the overexpression of Axin2. It is hypothesised that 

overexpression of Axin2 will prevent the diassociation of β-catenin 

destruction complexes (as the ‘free’ Axin will saturate the appropriate 

receptors) and, therefore, perturb normal fibre organisation, validating both 

pathways (i.e. β-catenin will be downregulated and as a consequence so will 

the activation of Wnt11). Although it ought to be noted that the ‘free’ Axin 

may not preferably bind to the receptor over the destruction complexes, and 

that, although overexpression of Axin2 should result in more Axin there might 

not necessary be enough of all the other components required to form 

destruction complexes. Nonetheless, this experiment could be 

complemented by rescue of β-catenin downstream of the destruction 

complex (i.e. constitutively active β-catenin is electroporated at the same 

time as Axin2). In this scenario the Wnt11-PCP pathway should be rescued 

and normal myofibre organisation should ensue. If this is the case then this 

pathway is sufficient for organisation. However, if correct orientation is not 

observed this might suggest that the proposed parallel MACF1/ACF7 

pathway is also necessary. 
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To enable such a complex experiment it was necessary to first test if an 

assay involving simultaneous cell injection and electroporation was possible. 

Somites I-V of HH Stage 16 embryos were injected and electroporated with 

GFP-GPI and subsequently LNCX2 control fibroblasts stained red with DiI 

were injected between two somites. Following overnight incubation, 

electroporated somites on either side of the injected cells were excised and 

prepared for inverted confocal two-photon microscopy (see figure 6.14 for an 

example). 

 

 

 

Figure 6.14. Simultaneous cell injection and electroporation is 
possible in early chick somites. Electroporated GFP-GPI (green) is 
evident in the myofibres and LNCX2 rat fibroblast cells (stained red 
with DiI) are apparent within the border of the two somites. Dashed 
lines outline individual somites. *DML: dorsomedial lip. 

 

Evidently, it is possible to inject and electroporate an embryo with a construct 

and, at the same time, inject cells in suspension (figure 6.14, n=2). Based on 

previous experience, embryo survival rate and development appeared to be 

very similar to that of embryos following electroporation only (Scaal et al, 

2004). 

Next, somites I-V of HH Stage 16 embryos were injected and electroporated 

with either GFP-GPI only or Axin2 and GFP-GPI. Subsequently, Wnt3a-

expressing fibroblasts stained red with DiI were injected between two 

somites. Following overnight incubation, electroporated somites on either 

DML 
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side of the injected cells were isolated and prepared for inverted confocal 

two-photon microscopy (figure 6.15). 

 

  
Figure 6.15. Preliminary experiments to test if Axin2 overexpression can perturb 
the myofibres response/orientation towards exogenous Wnt3a (shown earlier). 
(A) Dorsal view of somites that were electroporated with GFP-GPI only (green) 
and simultaneously injected, between the two somites, with Wnt3a-expressing 
cells (stained red with DiI). (B) Dorsal view of somites that were electroporated 
with GFP-GPI and Axin2 (green) and at the same time injected, between the two 
somites, with Wnt3a-expressing cells (stained red with DiI). Dashed lines outline 
individual somites. *DML: dorsomedial lip. 

 

As anticipated, the myofibres electroporated with Axin2 (overexpressing 

Axin2) and GFP-GPI appear to be relatively normal, in that they are not 

orienting toward the Wnt3a secreting cells (which are apparent not just in the 

border between the two somites but also within the somites; figure 6.15B, 

n=1). That said the myofibres electroporated with GFP-GPI only (figure 

6.15A, n=2) are not responding/orienting toward the Wnt3a cells as expected 

(shown earlier with myosin heavy chain staining, figure 6.10). To show that it 

was not the electroporation itself that was affecting the previously observed 

response (see figure 6.10), protein lysate was harvested from the same 

passage of Wnt3a-secreting fibroblasts used in this experiment and from 

newly thawed cells. A western blot was stained against Wnt3a and while the 

newly thawed cells were secreting Wnt3a in abundance, only a very faint 

band was detected in the cells that were utilised (even though they were 

under antibiotic selection; data not shown). This is likely to be the reason why 

GFP-GPI electroporated cells are not responding to the ectopic fibroblasts, 

DML DML (B) (A) 
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as there is very little Wnt3a being secreted (in earlier experiments i.e. figure 

6.10, the Wnt3a-expressing fibroblasts were at a much earlier passage and, 

at this point in time, the expression had been verified by western). 

It is worth noting that the above morpholino experiments and the Axin2 

overexpression experiments are only preliminary. Repeat experiments (with 

newly thawed cells (with confirmed Wnt3a secretion via western blot), in the 

case of Axin2 overexpression experiment) remain to be performed. The β-

catenin rescue experiments are also yet to be performed. 

 

Discussion and Future Work 

As previously described by Tanda et al (1995) and Marcelle et al (1997), 

strong Wnt11 expression has been illustrated in the dorsomedial lip of the 

chick somite (figure 6.7A). Expression is also evident in what appears to be 

eye muscle. In agreement with Gros et al (2009), the injection of Wnt11-

expressing fibroblasts into the developing somites of chick embryos has 

shown that Wnt11 influences the orientation of myofibres (figure 6.8). The 

disorientation of fibres was not seen in non-cell-injected somites; however, 

control cells (containing the same plasmid backbone without Wnt11) should 

also be injected to verify that the phenotype is a result of the secreted Wnt11 

and not the cells themselves. Interestingly, subsequent hybridisation with an 

RNA probe for Wnt11 did not appear to detect these cells. The cells utilised 

expressed mouse Wnt11, while the probe was against chick: thus the identity 

between chick and mouse Wnt11 is apparently not sufficient for the probe to 

cross-react. In addition quenching may disguise a weak signal if any. 

Wnt3a, in agreement with previously reported studies (see GEISHA database 

available at: http://geisha.arizona.edu/geisha/ for more details), has been 

shown to be expressed in the developing spinal cord, the tail bud, the otic 

placode, and in the midbrain of HH Stage 20 chick embryos (figure 6.9A). To 

test if the canonical Wnt ligand, Wnt3a, orients embryonic myofibres, Wnt3a-

secreting rat fibroblasts were also injected into the developing somites of 

chick embryos. Myofibres were shown to orient toward the Wnt3a cells 
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(figure 6.10A), in a similar vein to those myofibres shown to be influenced by 

Wnt11 (shown in figure 6.8A and by Gros et al, [2009]). The disorientation of 

fibres was not seen in somites injected with control cells (i.e. LNCX2 rat 

fibroblasts). However, as aforementioned, there did appear to be some 

obstruction to the fibres due to the localisation of the exogenous control cells 

(figure 6.10B). 

As Wnt3a and Wnt1 signalling from the neural tube have been shown to drive 

the expression of Wnt11 in the dorsomedial lip of the dermomyotome 

(Marcelle et al, 1997), embryos injected with Wnt3a-expressing cells were 

subsequently hybridised with an RNA probe for Wnt11 to examine whether 

the effect on the myofibres was a direct response to Wnt3a and not because 

of any upregulation of Wnt11 in the lateral region of the somite (figure 6.11). 

No additional Wnt11 expression (i.e. excluding endogenous Wnt11) was 

seen near the Wnt3a-expressing fibroblasts. In addition, no upregulation of 

endogenous Wnt11 in the cell-injected somite was observed, compared to 

the non-injected side (figure 6.11), which suggests that (canonical) Wnt3a, 

independently of Wnt11, has a role in the orientation of embryonic myofibres. 

The wholemount embryos remain to be sectioned to show conclusively that 

there is no upregulation of Wnt11. 

Intriguingly, Geetha-Loganathan et al (2006) state that implantation of 

Wnt3a-producing cells into the somites does lead to the upregulation of 

Wnt11. They imply that cells implanted in what appears to be the lateral 

portion of the somite upregulate the endogenous expression of Wnt11 (i.e. 

the expression in the dorsomedial lip) but no expression is seen in the vicinity 

of the ectopic cells. While the latter agrees with what is shown here, 

upregulation of endogenous Wnt11 (in somites injected with Wnt3a-secreting 

fibroblasts), however, was never seen suggesting that in fact Wnt3a alone is 

not sufficient. Additionally, Gros et al (2009) have shown that grafting of an 

ectopic neural tube perpendicular to the antero-posterior embryonic axis 

between two newly formed somites induces the ectopic expression of Wnt11 

(in somites in contact with the graft). They suggest that this is due to the 

action of Wnt1 and/or Wnt3a from the dorsal neural tube. Perhaps, therefore, 
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no upregulation of Wnt11 was seen subsequent to the injection of Wnt3a-

secreting cells, as Wnt1 is also required? 

To test if MACF1/ACF7, which is regulated by GSK3β (Wu et al, 2011), has a 

role in the cell migration and orientation necessary for correct myofibre 

organisation, a fluorescein isothiocyanate (FITC) labelled morpholino that 

targets the first translation (ATG) start site of MACF1/ACF7 was injected and 

electroporated into developing chick somites. Following overnight re-

incubation, it was anticipated that cells containing the MACF1/ACF7 

morpholino would be disorganised compared to either non-electroporated 

cells or those electroporated with a control morpholino. Unfortunately, as 

shown in figure 6.13 it is difficult to identify individual cells electroporated with 

morpholino and thus compare them with the non-electroporated cells. It is 

presumed that non-electroporated fibres would show a normal phenotype.  

However, there is a possibility that any disorganised fibres (i.e. those 

expressing the MACF1/ACF7 morpholino, if this indeed causes 

disorientation) could influence them. That said, overall, electroporation of a 

control morpholino appears to have no influence on the organisation of 

myofibres (stained for myosin heavy chain; figure 6.13A, A’). Yet, the 

electroporation of a MACF1/ACF7 morpholino shows what appears to be 

relatively normal myofibres in one somite but somewhat aberrant (with 

disrupted fibre orientation) myofibres in a neighbouring somite of the same 

embryo (figure 6.13B, B’). The difference in phenotype between the two 

somites could be a result of the volume of injected/electroporated 

morpholino. Using FITC as a guide for the volume of morpholino 

electroporated, it appears that there is more morpholino in the somite shown 

in figure 6.13B’ compared to that shown in figure 6.13B, which suggests that 

higher amounts of electroporated morpholino may have a stronger 

phenotype. It ought to be noted that this is preliminary data and repeat 

experiments are necessary before any real conclusions can me made. 

Furthermore the morpholino needs to be validated (i.e. is it specific?). 

Unfortunately, as described previously, the specificity of the MACF1/ACF7 

antibody used in the abovementioned immunostaining/western blot 

experiments (Chapter 5) is also yet to be confirmed and, therefore, cannot be 
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used to validate the morpholino. Thus in vitro translation may be an 

appropriate method to confirm its accuracy. However, given that there are 

likely multiple isoforms produced in the chick (which are not yet annotated), 

this may also be quite challenging. 

The MACF1/ACF7 gene contains multiple translation initiation codons, which 

are separated by extended stretches of DNA (Karakesisglou et al, 2000; 

Leung et al, 1999). Thus it is possible that some of the MACF1/ACF7 

isoforms (see chapter 5 for more information) do not contain the translation 

start site that is targeted by the MACF1/ACF7 morpholino abovementioned. 

This might suggest that, alone, this morpholino is inadequate to knockdown 

enough MACF1/ACF7 to see a significant phenotype. Perhaps simultaneous 

electroporation of this morpholino and a splice morpholino would result in 

greater knockdown and consequently a stronger phenotype? Following 

successful knockdown (with one or more morpholinos), it is hypothesised that 

the subsequent injection of Wnt3a-expressing cells will show that cells/fibres 

expressing MACF1/ACF7 morpholino(s) are not only disorganised but also 

unresponsive to the ectopic Wnt3a.  

In 2010, Goryunov et al knocked out MACF1a in the developing mouse 

nervous system using Cre/loxP technology. To avoid (the improbability of) 

targeting MACF1/ACF7’s multiple translation initiation codons with a single 

construct, they decided to specifically target the actin-binding domain of 

MACF1/ACF7, which at the time of their study was present in both known 

isoforms of MACF1/ACF7, MACF1a and MACF1b. Embryos carrying two 

fully recombined alleles in all tissues (i.e. MACF1R/R embryos) were shown 

to have a phenotype as severe as that described by Chen et al (2006) and 

Kodama et al (2003) in MACF1/ACF7 knockout embryos (i.e. mice died 

within 24–36 h after birth of apparent respiratory distress). MACF1 cKO 

brains showed a disorganised cerebral cortex with a mixed layer structure, 

heterotopia of the hippocampal pyramidal layer, disorganized thalamocortical 

and corticofugal fibres, and aplastic anterior and hippocampal commissures. 

Further analysis of the expression of MACF1/ACF7 in the cKO mice brains 

highlighted the existence of a novel isoform, which they termed MACF1c. 

This isoform lacked the actin-binding domain and was not affected by the 
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conditional knockout, which suggests it has a separate initiation codon 

downstream of the actin-binding domain. The MACF1/ACF7 cKO mice 

generated by Goryunov et al (2010), thus exemplify a nervous-system-

specific knockout of MACF1a, which appears crucial for normal brain 

development. The MACF1c isoform, which was shown to be identical to 

MACF1a except for the absence of an actin-binding domain (i.e. it is still 

expected to contain a microtubule-binding domain), did not compensate for 

the loss of MACF1a, which argues that the actin-binding capacity of 

MACF1/ACF7 is essential in the developing brain (Goryunov et al, 2010). Of 

further interest, BPAG1 (the other mammalian spectraplakin and 

MACF1/ACF7 homologue, see Chapter 5) has also been shown to contain 

an initiation codon downstream of the actin-binding domain, though the 

resulting transcript, BPAG1e is only expressed in epithelia (Sonnenberg and 

Liem, 2007).  

It is also worth mentioning that numerous attempts were made to inject and 

electroporate the somites of HH Stage 16 embryos with the same constructs 

used for the published Wu et al (2011) data (a kind gift from Prof. Elaine 

Fuchs, The Rockefeller University, New York, 10065). Specifically, their 

engineered mammalian expression vectors encoding human influenza 

hemagglutinin epitope (HA)-tagged full-length ACF7, as well those with point 

mutations that converted GSK3β phosphorylation sites at P1 

(phosphorylation site cluster 1) and P2 (phosphorylation site cluster 2) to 

either a kinase refractile version harbouring Ser-Ala mutations (S:A mutant) 

or a phosphomimetic version, containing Ser-Asp mutations (S:D mutant). 

However, these electroporation’s were never successful and, unfortunately, 

the same result occurred following attempts to transfect C2C12 cells. It is 

speculated that this could be due to the extremely large size (>20kb) of the 

plasmids. Therefore, it might be worthwhile cloning smaller MACF1/ACF7 

domains for overexpression experiments (the microtubule binding or the 

actin-binding domains for example), to see this has any effects on chick 

somite development/myofibre orientation. Expression of a specific domain 

may give a dominant negative effect: for example, overexpression of the 

microtubule-binding domain may prevent the endogenous full length 
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MACF1/ACF7 from binding to microtubules and may induce some 

phenotype.  

As previously mentioned, the possibility that Wnt3a might influence chick 

embryonic myofibres, independently of Wnt11 (see figures 6.10A and 6.11), 

led to the hypothesis that MACF1/ACF7 might be the link between Wnt3a 

and fibre orientation (see proposed model, figure 6.12). An 

overexpression/rescue experiment was designed (in addition to 

MACF1/ACF7 morpholino experiments) to prove/disprove this theory (please 

see the above results section for experimental design, reasoning and some 

discussion). It ought to be noted that this experiment remains to be 

completed, attempts at Axin2 overexpression for example were only 

attempted once (figure 6.15), thus the data shown here is preliminary. The 

completion of these experiments, however, might show that MACF1/ACF7 

does have a role to play in chick myofibre orientation. If so, it is posited that 

the link between MACF1/ACF7 and GSK3β would be similar to that shown by 

Wu et al (2011) in hair follicle stem cells. However, the link between Wnt3a 

and GSK3β remains elusive. While it is widely accepted that Wnt signalling 

inhibits GSK3β, how this occurs is not completely understood. It might also 

be valuable to perform an in situ hybridisation experiment against 

MACF1/ACF7 on embryos injected with Wnt3a secreting cells, to see if 

Wnt3a itself directly upregulates MACF1/ACF7. 

On a final note, an assay involving simultaneous cell injection and 

electroporation has been demonstrated (figure 6.14), which may prove useful 

for experiments that require live visualisation of myofibres (i.e. not fixed and 

immunostained for myosin heavy chain) following cell injection into the 

somite (i.e. time-lapse).  
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Chapter 7: Overall Summary 

Using the chick as a model system, experiments presented in this thesis 

have demonstrated the difficulty of observing cytoskeletal proteins (and any 

interacting proteins) in tissues/embryos (in vivo), when compared to cells in 

culture (in vitro). In particular, fixing and immunostaining of young primitive 

streak stage (HH 3-4) chicken embryos was problematic owing to both their 

fragility and the dependency on good quality eggs. Unfortunately, it proved 

too challenging to further characterise the cytoskeleton (and any interacting 

proteins) and successively examine the formation and resolution of the 

rosette structures that had been previously reported (Wagstaff et al, 2008). 

Additionally, observation of the microtubule cytoskeleton in avian somites in 

real time was difficult as it was not possible to distinguish the microtubules 

following GFP-tubulin overexpression. That said the electroporation 

technique utilised for overexpression experiments was extremely successful. 

While it was not possible to visualise the microtubules themselves, this 

technique in combination with time-lapse microscopy revealed a somite 

structure congruent with that previously published (Gros et al, 2009). It was 

also anticipated that targeted electroporation (i.e. electroporation of the 

medial portion of the somite to transfect the medial lip of the dermomyotome) 

of reporter constructs into developing somites would enable the visualisation, 

in real time, of cells which have been reported to translocate from the 

dorsomedial lip to the transition zone and subsequently to the myotome 

(Gros et al, 2009; Rios et al, 2011; Scaal et al, 2004). However, though 

electroporation and microscopy were both successful, the successive 

analysis proved to be much more difficult than expected.  

Nonetheless, microtubule immunostaining of fixed somites has been 

demonstrated. These stains highlighted dividing cells within both the 

dermomyotome and the lips of somites, which appear to be dividing in the 

plane of the epithelial dermomyotomal sheet. This corresponds with 

previously published data by Venters and Ordahl (2005) and Yusuf and 

Brand-Saberi (2006). However, to date, analysis has not revealed any rosette 

structures like those that were previously seen in the primitive streak 
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(Wagstaff et al, 2008). Although still in its infancy, the fixation method used 

for these stains looks promising and once optimised it may be used to 

characterise additional cytoskeletal proteins.  

On a separate note, an expression pattern for the MACF1/ACF7 

(microtubule-actin cross-linking factor 1/actin cross-linking factor 7) gene has 

been illustrated in a variety of HH Stage chicken embryos. Expression is 

apparent in both the primitive streak of early stage embryos and in the 

somites of HH Stage 11 and 17 embryos. This, in addition to data published 

by Chen et al (2006), further suggests a role for MACF1/ACF7 in gastrulation 

but more intriguingly it also suggests a possible role for MACF1/ACF7 in 

somitogenesis. Preliminary experiments to knockdown MACF1/ACF7 in 

somites, using a morpholino that targets the first translation (ATG) start site 

of MACF1/ACF7, have shown some promising results with regard to myofibre 

orientation. There will be worth to further optimise and repeat these 

experiments.  

Finally, in agreement with Gros et al (2009), the injection of Wnt11-

expressing fibroblasts into the developing somites of chicken embryos has 

shown that Wnt11 influences the orientation of myofibres. Furthermore, a 

similar effect has been shown following the injection of Wnt3a-expressing 

fibroblasts into the somites (experiments presented in this thesis). This effect 

on myofibres was shown to be independent of Wnt11 and suggests that 

canonical Wnt (Wnt3a) has a role in the orientation of myofibres. An 

overexpression/rescue experiment to further validate this was designed, but 

unfortunately owing to time constraints remains to be completed.  

In summary, the cytoskeleton is vital throughout development: playing an 

important role in intracellular transport, cellular division, cell polarisation, cell 

shape changes and cell migration. Surprisingly, although much is known 

about the cytoskeleton of eukaryotic cells in vitro, little has been illustrated 

during early development, particularly during gastrulation and somite 

morphogenesis. Techniques established here have enabled preliminary 

examination of the cytoskeleton in vivo and when used further they may 

begin to unravel the importance of the cytoskeleton and how it is regulated. 
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Abbreviations 
 

+TIPS   Microtubule plus-end proteins  

ABD   Actin-binding domain  

ACF7   Actin crosslinking factor-7  

APC   Adenomatous polyposis coli  

ARPE-19   Human retinal pigment epithelial cells 

ATG   Translation start site 

ATP   Adenosine-5'-triphosphate  

bHLH   Basic Helix-Loop-Helix 

BLAST   Basic Local Alignment Search Tool 

BMP4   Bone morphogenetic protein-4 

BMPs   Bone morphogenetic proteins  

BPAG-/-  BPAG1 knockout mice 

BPAG1   Bullous pemphigoid antigen 1  

CamKII   Calcium–calmodulin-dependent kinase II  

Cdc42    Cell division control protein 42 homolog 

CH   Calponin homology  

CK1   Casein kinase I  

cKO   Conditional knockout  

CLASP2  Cytoplasmic linker associated protein-2 

CLASPs  Cytoplasmic linker associated proteins  

CLIP-170 - GFP  Cytoplasmic linker protein-170 - green fluorescent protein 

CREB   cAMP response element-binding protein    

DAPI   4',6-diamidino-2-phenylindole 

DF-1s   Chicken embryo fibroblasts  

Dlg1   Discs large 1  

DLL1   NOTCH ligand Delta1  

DML   Dorsomedial lip 

DTT   Dithio threitol  

Dvl   Dishevelled 

EB   End-binding  
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EB1   End-binding 1  

EB3   End-binding 3 

EC   Early Chick  

ECM   Extracellular matrix  

EGF   Epidermal growth factor  

EMT   Epithelial-to-mesenchymal transition 

ErbB2   Tyrosine kinase receptor  

EST   Expressed sequence tag 

FITC   Fluorescein isothiocyanate  

Fzd   Frizzled 

GAR   Glycine/arginine-rich 

GAR22   Gas2-related protein on chromosome 22 

Gas2   Growth arrest-specific protein 2 

GDP   Guanosine diphosphate  

GFP   Green fluorescent protein 

GPI   Glycophosphatidylinositol 

GSK3β   Glycogen synthase kinase 3 β  

GSR   Glycine-serine-arginine 

GTP   Guanosine-5’-triphosphate  

GTPases  Guanosine-5’-triphosphatases  

HA   Human influenza hemagglutinin epitope  

HES   Hairy/Enhancer-of-Split  

HH   Hamburger-Hamilton  

IQGAP1  IQ motif containing GTPase activating protein 1 

JNK   c-Jun N-terminal kinase  

Lef1   Lymphoid enhancer-binding factor 1  

LFNG   Lunatic fringe 

LRP   Lipoprotein receptor-related protein  

MACF1   Microtubule and actin crosslinking factor-1 

MAP1B   Microtubule-associated protein 1B 

MAPs   Microtubule-associated proteins   

MET   Mesenchymal-epithelial transition  

MPCs   Myogenic precursor cells 
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MRCK   Myotonic-dystrophy kinase related Cdc42-binding kinase  

MRFs   Myogenic regulatory factors  

MTOC   Microtubule-organising centre 

Myf5   Myogenic transcription factor-5 

MyoD   Myogenic differentiation 1 

Net1   Neuroepithelial-transforming-protein 1  

NFAT   Nuclear factor of activated T cell  

NICD   NOTCH intracellular domain  

NT3   Neutrophin-3  

PAK   p21-activated kinase  

Pax1   Paired box protein 1 

Pax3   Paired box protein 3 

Pax7   Paired box protein 7 

PBS   Phosphate buffered saline  

PCP   Planar cell polarity   

PI3K   Phosphatidylinositol 3-kinase 

PKC   Protein kinase C  

PKN   Protein kinase N  

PLC   Phospholipase C 

PRD   Plakin repeat domain  

PVDF   Polyvinylidene difluoride  

RNA   Ribonucleic acid 

RNAi   RNA interference  

RNase   Ribonuclease 

ROCK   Rho-associated, coiled-coil containing protein kinase  

RT-PCR  Reverse transcription-polymerase chain reaction 

S:A mutant  Ser-Ala mutations  

S:D mutant  Ser-Asp mutations 

SDS-PAGE  Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM   Scanning electron microscopy 

Shh   Sonic hedgehog  

siRNAs   Small interfering RNAs 
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Su(H)   Suppressor of hairless 

TCF/LEF  T cell factor/lymphoid enhancer factor 

TEM   Transmission electron microscopy 

TGN   Trans-Golgi network  

UTR   Untranslated region 

WASP   Wiskott-Aldrich syndrome protein  

 

 

 




