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Abstract 
 

The research in this thesis concerns feature-based machine learning processes and 

methods for discriminating qualitative natural targets in seabed imagery. The 

applications considered, typically involve time-consuming manual processing stages in 

an industrial setting. An aim of the research is to facilitate a means of assisting human 

analysts by expediting the tedious interpretative tasks, using machine methods. Some 

novel approaches are devised and investigated for solving the application problems. 

These investigations are compartmentalised in four coherent case studies linked by 

common underlying technical themes and methods. The first study addresses pockmark 

discrimination in a digital bathymetry model. Manual identification and mapping of 

even a relatively small number of these landform objects is an expensive process. A 

novel, supervised machine learning approach to automating the task is presented. The 

process maps the boundaries of ≈ 2000 pockmarks in seconds - a task that would take 

days for a human analyst to complete. The second case study investigates different 

feature creation methods for automatically discriminating sidescan sonar image textures 

characteristic of Sabellaria spinulosa colonisation. Results from a comparison of several 

textural feature creation methods on sonar waterfall imagery show that Gabor filter 

banks yield some of the best results. A further empirical investigation into the filter 

bank features created on sonar mosaic imagery leads to the identification of a useful 

configuration and filter parameter ranges for discriminating the target textures in the 

imagery. Feature saliency estimation is a vital stage in the machine process. Case study 

three concerns distance measures for the evaluation and ranking of features on sonar 

imagery.  Two novel consensus methods for creating a more robust ranking are 

proposed. Experimental results show that the consensus methods can improve 

robustness over a range of feature parameterisations and various seabed texture 

classification tasks. The final case study is more qualitative in nature and brings 

together a number of ideas, applied to the classification of target regions in real-world 

sonar mosaic imagery. A number of technical challenges arose and these were 

surmounted by devising a novel, hybrid unsupervised method. This fully automated 

machine approach was compared with a supervised approach in an application to the 

problem of image-based sediment type discrimination. The hybrid unsupervised method 

produces a plausible class map in a few minutes of processing time. It is concluded that 

the versatile, novel process should be generalisable to the discrimination of other 

subjective natural targets in real-world seabed imagery, such as Sabellaria textures and 

pockmarks (with appropriate features and feature tuning.) Further, the full automation 

of pockmark and Sabellaria discrimination is feasible within this framework.  
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Accuracy (binary classification accuracy.) Binary classification accuracy can be 

defined as a function of the outcomes from a specimen machine classification task when 

the ground truth of the test instances is known. The four outcomes commonly specified 

are; (1) true positive (TP), (2) true negative (TN), (3) false positive (FP) and (4) false 

negative (FN). The number of instances of each outcome, e.g., n(TP) can be summed 

and entered in a contingency table, as shown in table G.1. 

 

  

Machine predicted class 

 

+ - 
Actual 

(Ground truth) 

class 

+  

True positive (TP) 

 

 

False Negative (FN) 

-  

False positive (FP) 

 

True negative (TN) 

 
 

Table G.1 A contingency table for binary classification outcomes. 

 

The outcomes are defined as followed: 

 

TP A target ground truth instance is correctly identified by the machine as belonging 

to the target class.  

 

FP A non-target ground truth instance is incorrectly identified by the machine as 

belonging to the target class. 

 

FN A non-target ground truth instance is correctly identified by the machine as 

belonging to the non-target class. 

 

TN A target ground truth instance is incorrectly identified by the machine as 

belonging to the non-target class. 
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The metrics of overall classification accuracy, sensitivity and specificity are then 

defined as: 

Overall accuracy    =  
)()()()(

)()(

FNnFPnTNnTPn

TNnTPn




 

Sensitivity (true positive rate)  =  
)()(

)(

FNnTPn

TPn


 

Specificity (true negative rate)  =  
)()(

)(

FPnTNn

TNn


 

 

Acoustic impedance. The acoustic impedance, Z, of a medium (material) is defined as 

Z =  V, where  is the density of the medium and V, the velocity of the acoustic wave 

within the medium. 

 

Along-track. A direction parallel to the direction of motion of the longitudinal axis of 

the sonar transducer. 

 

Across-track. Orthogonal to the along track direction. 

 

Anisotropic. Orientation (direction) dependency of a measurement or property. As an 

example, smooth sand has an isotropic texture whereas rippled sand is more anisotropic. 

 

Annex 1 Habitat. A habitat that is protected by the European Union (EU) under the 

Habitats Directive: 2006/105/EC, Annex 1. 

 

Attribute. Synonymous with feature or descriptor. In this research all attributes are 

numerical. 

 

Backscatter. A diffuse (non-specular) reflection of signal components back toward the 

point of origin, i.e. the transmitter/receiver. 

 

Backscatter imagery. Imagery formed by transforming transducer output of quantised 

signal intensities to a grey scale image. 
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Ball Vector Machine (BVM.) The Ball Vector Machine (BVM) is a type of SVM that 

uses Minimum Enclosing Balls rather than Quadratic Programming or other numerical 

techniques, to solve the convex optimisation problem in the model induction stage.  

 

Base learner. The core learning algorithms(s) used in a machine learning application, 

for instance, a Naïve Bayes Classifier. 

 

Bathymetry. Relating to depth of the seabed beneath the water surface. An individual 

depth measurement from an acoustic device such as a Multibeam Echosounder is called 

a sounding. Multiple soundings can be used to create a Digital Bathymetry Model 

(DBM). Bathymetry is the underwater equivalent of land surface relief or terrain. 

 

Bedform. A surface pattern induced by fluid flow, such as ripples, in the mobile 

sediments on the seabed. 

 

Benthic. Relating to the bottom of the sea, for example, benthic organism. 

 

Biogenic reef. A reef structure formed from an aggregation of sea creatures. 

 

Block processing. Block processing breaks a P-pixel  Q-pixel image into M 

contiguous, identically sized (n-pixel  n-pixel) blocks prior to processing, as illustrated 

in figure G.1. Zero padding is used on the right and at the bottom of the image to 

enforce this. Multiple computational processes can then be applied to each block 

sequentially.  

 

  

Figure G.1 Block processing illustration 
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Classification objective. The desired (prescribed) outcomes of the classification 

process in relation to a combination of input data, ground truth, machine learning 

processes, target classes and any established conventions for the specific target 

classification. E.g. Sabellaria discrimination is a different objective to sediment 

classification. Sediment classification is a vague, generic description, since in practice 

there are many different methods, with sediment classification objectives dependent on 

the classification schema, target class(es) and intended purpose/use of the classification 

results. 

 

Cluster ensemble. Is a collection of at least two unsupervised (clustering) algorithms. 

The ensemble provides a consensus on the labelling of a pattern instance using label 

alignment and decision fusion strategies. 

 

Consensus. The collective decision of a group of non-communicating machines, 

concerning the properties or classification of pattern instances. 

 

Decision fusion. A process and methods for combining the independent machine 

decisions relating to the properties or classification of a pattern instance. 

 

Digital Bathymetry Model (DBM). A representation of seabed relief (bathymetry). In 

its simplest form the DBM comprises a grid (raster) of individual depth values at 

numerous georeferenced locations. It is the underwater equivalent of a Digital Elevation 

Model (DEM). 

 

Downsampling. Reduces the size of the image input space by transforming 

neighbourhoods of pixels into single values by application of an operator kernel (filter) 

to the pixel neighbourhoods.  

 

Ensemble. Often called a committee, it is a collection of at least two independent base 

learners that are classifiers in the case of a classification ensemble. The ensemble 

provides a consensus on the class label of a pattern instance using a decision fusion 

strategy.  
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Feature. Attribute or descriptor. An individual feature is an element of a feature vector 

– a collection of features. The numerical value of the feature forms an element in a 

pattern instance, representing a data sample. 

 

Filter (1.) A method for evaluating features independently of the machine learning 

algorithm (c.f. wrapper.) A filter approach evaluates the intrinsic saliency of features. 

There are various kinds of filters. Distance or similarity measures can be used for 

evaluating individual features. Feature extraction such as PCA is a different type of 

filter that reduces dimensionality by constructing a feature space that is a linear 

recombination of the original (higher dimensional) feature space.   

 

Filter (2.) A kernel process that changes the data values over a given neighbourhood or 

transforms many data values into a single value, such as a down sampling filter. Filters 

are often applied to remove noise by smoothing the data or for creating features from 

the data. 

 

Full feature vector (FFV.) When several features are created from a data set, the Full 

Feature Vector (FFV) is the vector containing all of the constituent feature components 

(elements.) 

 

Geomorphometry. The extraction of land surface parameters and objects from a DBM 

or DEM. 

 

Georeferenced. Data or attribute values located at known points on the surface of the 

Earth, within a coordinate framework, are georeferenced. 

 

Grain (particle) size. The actual size (diameter) of a granular particle of material, such 

as a sand grain or boulder. 

 

Grain (particle) size distribution. A mathematical model or an empirical distribution 

relating to the sizes of many particles. The distribution may be parameterised by metrics 

such as estimates of the average size and spread, skewness and kurtosis. 
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Ground truth. Ground truth is a type of evidence of some “imaged” physical target and 

certain characteristics of that target. Ground truth description is a semantic label 

representing some known characteristic of the target in a seabed region. “Rock” and 

“Sand” are examples of ground truth labels. Ground truth labels must be available if the 

image regions are to be classified, regardless of whether a supervised or unsupervised 

process is used. 

 

Habitat. An environment where an organism lives. 

 

Heterogeneous. Diverse or non-uniform properties. 

 

High resolution. A vague term that can be applied to distinguish the resolution of 

different sensor types or settings. In general, sidescan sonar can capture higher 

resolution backscatter than a MBES and is therefore referred to as a “high resolution” 

instrument. 

 

Homogeneous. Having relatively uniform properties of some description. 

 

Human (manual visual) interpretation. A.k.a interpretative classification, is the 

process of manually delineating (segmenting) textural regions in sidescan sonar imagery 

or multibeam bathymetry by visual analysis, using acquired knowledge of the visual 

properties of the imagery, considered together with ground truth.  

 

Intensity: The pixel intensity value (grey level) is rendered as image brightness, usually 

on an 8-bit scale of [0 255]. White and black are the end points of the intensity scale and 

may correspond to either 0 or 255 or some other value range, depending on tiff format 

settings.  

 

Interpretative classification. See Human (manual visual) interpretation. 

 

Isotropic. Independent of orientation (direction) of measurement.  
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Kernel (computational kernel.) The square region of coverage of the filter (or other) 

computational operator applied to the raster node or pixel neighbourhood. E.g. a 5  5 

kernel covers 25 grid nodes (or pixels). The functional process implemented by the 

kernel, e.g. convolution, depends on the filtering or feature creation algorithm. 

 

k-Means clustering. Is a prototype-based clustering method using the cluster centroid 

as the prototype. K-means groups instances in a feature space by minimising the sum of 

squares of distances between the instances and the cluster centroids. It is an iterative 

process, converging when there is no longer any movement of instances between the 

clusters.  

 

k-NN classifier. The k-Nearest Neighbours (k-NN) classifier is a non-parametric, lazy 

learner, as there is no explicit training or generalisation phase.  The learning doesn’t 

begin until the query example is presented to the “model” which is defined implicitly by 

stored data instances and classification rules.  In the unweighted distance case, the class 

label is assigned according to the modal label of the k-instances surrounding the test 

instance. 

 

Lacunarity: A feature kernel capturing information about the “gapiness” of binarised 

pixel neighbourhoods.  

 

Land surface parameter. A quantitative attribute, or feature such as curvature, the 

degree of which characterises the surface. 

 

Landform object. A naturally occurring, discrete spatial feature in the land (or seabed) 

surface. Pockmarks are examples of landform objects that can be rendered in a DBM. 

 

Local (property). A characteristic or feature value that is valid for a small region of the 

sonar image or seabed, as defined under a kernel of a specified size. For example, local 

slope of the seabed can be estimated from a raster, over many, say 5m by 5m sub 

regions, whereas global slope is a single value representing the larger scale trend over 

the entire region rendered in the raster. 

 

Mask. A binary (or logical) mask is a template, accompanying the image data 

identifying pixel neighbourhoods that will and will not be processed. 



Glossary 

xxix 

 

Median filtering. A non-linear filtering method in which the value at the centre of the 

filter kernel is replaced by the median value of the k  k kernel neighbourhood.  

 

Morphological filtering. Binary morphological filters use a structuring element (shape) 

of a prescribed size, to carry out dilation, erosion, opening and closing operations. 

 

Multibeam Echo Sounder (MBES.) An acoustic swath imaging platform which may 

be mounted on the hull of a survey ship or on a remote underwater vehicle. The MBES 

captures calibrated (quantitative), georeferenced backscatter and bathymetry data. 

 

Nadir. A direction, pointing vertically downwards beneath the sonar transducer to an 

imaginary location on the seabed. The seabed in the proximity of the nadir location is an 

imaging “blind spot.” 

 

Naïve Bayes classifier. Is a multi-class, probabilistic classifier. In the learning stage, 

training patterns are used to induce a model of the data. In the prediction stage, the 

model is used to assign class labels and posterior support (certainty) to the test 

instances.  

 

Neighbourhood (tile.) Image blocks can be sub-divided into a number of contiguous 

equally sized, square collections of pixels, called neighbourhoods or tiles, as illustrated 

in figure G.2. The dimension of the tile (in pixel units) is identical to the size of the 

feature kernel. E.g. a 5  5 computational kernel covers a neighbourhood of 5  5 

pixels. 

 

 

 

Figure G.2 Tiling of an image block. 

 

Neritic. A zone extending from the low tide mark to a water depth of about 200 m. 

Image block 

Masked region 

Pixel neighbourhoods 

(tiles) in unmasked 

region of image block. 
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Node. A 2-D raster can be imagined to have a local orthogonal grid with each data point 

uniquely located on a crossing point (node) of the lines in the imaginary grid. 

 

Particle size analysis (PSA.) PSA is a technical process used to determine the size and 

distribution of particles (grains) in physical ground truth samples. 

 

Pattern. The word “pattern” is often used interchangeably with feature vector. A 

pattern is a numerical vector of feature values, created by applying different feature 

kernels to the same image neighbourhood.  

 

Phi ( ) Scale. A quantitative measure of unconsolidated grain sizes using the base 2 

logarithm of the grain diameter. It is a modification of the Wentworth scale. 

 

Pockmark. A crater-like, specific landform object formed in the seabed by fluid 

venting through soft sediments.  

 

Qualitative imagery. Backscatter imagery - mosaic or waterfall imagery which has not 

been calibrated to represent an accurate measure of the seafloor backscatter response at 

georeferenced points. Most sidescan sonar imagery is qualitative. 

 

Quantitative imagery. Grey levels correspond to accurately calibrated values of 

backscatter intensity at georeferenced pixel locations. Backscatter from a Multi beam 

echosounder may be regarded as quantitative, compared to that from a sidescan sonar. 

 

Random sampling locations. In an unsupervised approach, no assumptions are made 

about the relationship of any image regions to known properties of the seabed (ground 

truth.) The image can only be segmented (not classified) when ground truth labels are 

unavailable. Many virtual ground truth points of unknown class label are therefore 

created in random locations in the mosaic, for sampling, pattern generation, clustering 

and subsequent model creation using cluster labels as tentative class labels.  

 

Raster. A 2-D array (grid) of data values at regularly spaced grid node locations. All 

image data used in this work are rasterised.  
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Resolution (1.) The relationship of the spatial (sampling) distances between pixels or 

grid points to the true (ground) distances. High resolution imagery shows detail in 

relatively small ground objects. At a lower resolution the objects may not be imaged or 

rendered. Image resolution may be defined as the number of pixels per unit ground 

length (the reciprocal value of ground length per-pixel can also be used.) Image 

resolution may be anamorphic, i.e., different resolutions in mutually perpendicular 

directions. 

 

Resolution (2.) Kernel resolution is the number of pixels covered by the width of the 

(square) computational kernel. E.g., a kernel covering a 5  5 pixels neighbourhood has 

a resolution of 5 pixels. Kernel resolution defines the resolution of the output class map. 

When the kernels are applied to contiguous tiles, inputting a mosaic image with an 

image (ground) resolution of 2 metres per pixel, using a 5  5 kernel resolution, will 

generate a class map resolution of 10 metres per pixel. 

 

Rugosity. Is a measure that can be used to characterise the variability in height or 

“ruggedness”of the seabed surface. 

 

Sabellaria Spinulosa. A tube building worm that can form biogenic reefs. Such reefs 

are designated as Annex 1 habitats. 

 

Saliency. A measure of the importance of a particular feature or subset of features in the 

context of specific data and classification objective(s.) When saliency is measured in a 

wrapper, using classification accuracy as a metric, an individual feature yielding a 

relatively high accuracy compared to the others could be described as the most salient 

individual. 

 

Scan line. A one-dimensional array of quantised signal values output from a sidescan 

sonar receiver, representing returns from a single acoustic pulse in the across-track 

direction. A waterfall image comprises of many such scan lines collected sequentially in 

the along-track direction. 

 

Seabed classification. A process of delineating different regions of the seabed 

(segmentation) and assigning class labels to the regions based on a variety of real 

samples (ground truth), expert knowledge and proxies (acoustic imagery, for instance). 
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Seabed class map. A (usually colour coded) map of the seabed delineating different 

regions according to prescribed or perceived properties of the region. 

 

Segmentation. The partitioning of an image into different, relatively homogenous 

regions without assigning any class labels to the regions. 

 

Self organising map (SOM.) The Self Organising Map (SOM) is a type of 

unsupervised Artificial Neural Network (ANN.) It is a prototype based clustering 

method using topographically prescribed centroids. In a 2-D map, cell centroids that are 

relatively close together represent data points that are similar in some way, in the input 

space.  

 

Sensitivity. See Accuracy. 

 

Sidescan sonar. An acoustic, swath imaging platform usually towed behind a survey 

ship on a long cable. A simple towed sidescan sonar captures acoustic backscatter only. 

Imagery from the sidescan sonar is qualitative and can be interpreted in mosaic and 

waterfall forms. 

 

Sonar mosaic image. An acoustic image of a surveyed region of the seabed formed by 

merging image and ancillary data from several individual survey lines using a 

processing pipeline and dedicated software. 

 

Sonar waterfall image. Backscatter imagery that has not been georeferenced (and may 

not have had any corrections applied). Each across-track scan line forms a single row in 

the image data. 

 

Specific geomorphometric analysis. The analysis of a specific landform object in 

terrestrial or seabed terrain. 

 

Specificity. See Accuracy. 

 



Glossary 

xxxiii 

Supervised process: In a supervised learning process, ground truth points (or textures 

identified by humans) are used as sample locations (training regions), to generate the 

classification model. The output of a supervised classification is a class map. 

 

Support Vector Machine (SVM.) The Support Vector Machine (SVM) is a binary 

classifier with a classification hypothesis (model) whose decision boundary is a 

discriminatory hyperplane. It is a maximal margin classifier. An optimal model with the 

greatest separation between the decision boundary and the n-dimensional patterns in the 

training data set is induced. The optimal hyperplane is represented using a subset of 

training patterns known as Support Vectors. In the prediction stage, unseen pattern 

instances are discriminated according to the side of the hyperplane they lie on. 

 

Swath sonar. An acoustic imaging sonar (Sidescan sonar, Multibeam Echosounder) 

capable of capturing a wide swath of data either side of the Survey Vessel track. 

 

Target recognition. In this context, the recognition and delineation of specific 

distributed natural targets in a DBM or backscatter imagery. A colony of Sabellaria 

Spinulosa is an example of a distributed natural target that imparts a distinctive textural 

signature in backscatter imagery. 

 

Texture: There is no universally accepted definition of what texture is. Qualitatively, 

image texture can be described as “rough”, “smooth”, “isotropic”, “anisotropic”, 

“regular”, “irregular” and so on.  

 

Unsupervised process: In an unsupervised process, the image is randomly sampled and 

a classification model is induced (see, Randomly sampled locations.) The output of the 

unsupervised process is a segmentation of the mosaic. The segmentation can be 

transformed into a classification by manually (or automatically) assigning semantic 

ground truth labels to the different segmented regions. 

 

Well-sorted. Sediments comprise mixtures of different particles. Well-sorted refers to a 

grain size distribution with a relatively low standard deviation, i.e., the particles sizes 

are more uniform. 
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Wentworth scale. A scale for describing the actual size of sedimentary particles in 

millimetres. 

 

Wrapper. A wrapper evaluates features by using a harness containing the base learning 

algorithm(s) and an objective function, commonly classification accuracy. Each 

individual feature or feature subset can used to induce a different model from the 

learning algorithm using a set of training instances.  
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The purpose of this introductory chapter is to briefly present the background to the 

thesis and the research project, to highlight the aims, importance, novelty and 

contributions and to describe the document structure.  

 

In section 1.1, the general background and industrial collaboration is outlined. Section 

1.2 states the aims, objectives and scope of the research. The importance and relevance 

of the work is outlined in section 1.3. Section 1.4 summarises the collective novelty and 

main contributions of the research. Section 1.5 summarises the novelty, main 

contributions and publications by case study. The structure of the thesis by chapter is 

stated in section 1.6. 
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1.1 Background to the thesis and research project 

 

1.1.1 General background 

 

This thesis concerns feature-based machine learning approaches to the discrimination 

and mapping of qualitative natural targets (or regions) in seabed imagery. A natural 

target can be considered a relatively homogeneous and visually distinct region (or 

regions) of interest on the seabed. Seabed imagery, for the purposes of the thesis, is 

rasterised sidescan sonar backscatter imagery or rasterised bathymetry i.e., a digital 

bathymetry model (DBM) from multibeam echosounder (MBES) depth soundings.   

 

As the thesis is situated in the Computing Science domain, the underlying theme is the 

investigation of ideas for algorithms and processes in virtual experimental spaces, with 

a bias towards feature creation and evaluation for the target-specific application 

contexts. The study is not about the science of acoustic seabed classification or of 

backscatter image formation. It focuses on computational methods and processes that 

could potentially be used to assist a human with certain interpretative, qualitative data 

driven tasks, through automation or semi-automation using machine learning systems. 

For instance, manually (visually) identifying and mapping pockmarks in a DBM is a 

slow, labour intensive and therefore expensive undertaking. Furthermore, the results of 

a human inspection and mapping are inconsistent due to intra- and inter-rater variability. 

It would be very useful and profitable then, to engineer new tools and processes using 

machine learning technology to carry out these types of task reliably and expediently.  

 

As an applied, industry-based project, it is predominantly about “problem solving 

research.” Established computing science research methodologies are used in the thesis, 

such as case study, proof of concept and empirical investigation. Sidescan sonar 

imagery and ground truth are qualitative and uncertain. Therefore, the research, 

although empirical, uses mixed methods and is exploratory, descriptive and evaluative 

in nature.  

 

Within the immense domain of machine learning and the limitless scope of application 

scenarios it is only possible to consider a very small subset of ideas and applications, 

given the available time and resources. The novel ideas and applications are explored 
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through four coherent and progressive case studies, linked by common technical 

methods and forming the core of the experimental work presented in the thesis.  

 

1.1.2 Industrial collaboration 

 

This research project was undertaken in a collaborative arrangement between the 

University of East Anglia (UEA), School of Computing Sciences and Gardline 

Geosurvey, a division of Gardline Marine Sciences Ltd. (GMSL) of Great Yarmouth, 

UK. The project was supported by the Grant (R17336) jointly funded by the 

Engineering and Physical Sciences Research Council (EPSRC), UEA and Gardline 

Geosurvey.  

 

Potentially, some of the algorithms, processes and ideas proposed and investigated in 

the thesis may later be developed into commercial/industrial applications by the UEA 

and GMSL project stakeholders. 

 

1.2 General aim, objectives and scope of the research 

 

Aim 

 

The general aim of the research is to devise and investigate novel processes and 

methods that could potentially be used as part of a machine learning system for assisting 

humans with the subjective (interpretative) discrimination and classification of natural 

targets in seabed imagery. The general objectives reflect the aims of the case studies. 

 

Comprehensive details of the aims, objectives and scopes of the individual case studies 

are provided in chapter 4 (section 4.2.2.) 

 

General objectives, corresponding to the case studies 1-4 

 

1. Propose and investigate a novel machine learning process for pockmark object 

discrimination and boundary mapping in a DBM. 
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2. Investigate if the machine discrimination of Sabellaria textures in sidescan 

waterfall and mosaic imagery is a tractable task. Determine suitable features, 

feature configurations and parameters for this task.  

 

3. Design a framework for evaluating the robustness of distance measures for 

feature evaluation and ranking. Investigate properties of a novel committee of 

distance measures for feature evaluation and ranking on sonar imagery. 

 

4. Investigate how to apply an unsupervised machine learning processes to larger 

real-world sonar mosaic imagery. Devise novel methods and processes to meet 

the challenges of this task. Qualitatively evaluate the merits of a fully automated 

supervised and novel, hybrid unsupervised approach (including an unsupervised 

ensemble approach) to a target discrimination task in a real-world mosaic image. 

 

Scope 

 

Technical methods scope is limited to feature based machine learning processes and 

methods summarised at the end of chapter 3. The problems are data driven and the data 

scope is confined to sidescan sonar mosaic imagery, sidescan sonar waterfall imagery 

and MBES bathymetry in the form of a DBM. All data are rasterised and processed. The 

problems and data are considered at a phenomenological, human interpretative level. 

The application scope concerns two identified topics for investigation in chapter 2; 

pockmark discrimination and Sabellaria discrimination. The sediment type 

discrimination task in case study 4 is a contingent application. 

 

1.3 Importance and relevance of the work 

 

Manual, interpretative discrimination and mapping of natural targets in seabed imagery 

is a frequent and necessary task in the marine surveying industry. The work is important 

as it addresses some of the current issues and presents solutions to some of the 

challenging technical problems associated with industry-based, machine-assisted 

interpretative discrimination of specific targets in seabed imagery. It is complementary 

to the quantitative modeling (remote characterisation) approaches that are dependent on 
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empirical and physics based constructs of acoustic backscattering from seabed 

sediments.  

 

Despite the advances in automated acoustic seabed classification, there remain many 

discrimination and classification problems that still depend to a large degree on 

expensive and time consuming office-based human interpretation and are likely to do so 

for the foreseeable future. Given the continuing demand for seabed surveys and for the 

types of class maps derived from the human-centred processing of data captured in 

these surveys, the research is highly relevant as it applies directly to identified “bottle-

neck” stages in the commercial, interpretative processing flows. The importance and 

relevance are placed in a wider context in chapter 2, section 2. 

 

1.4 Summary of collective novelty and contribution of the research 

 

Although the experimental work in the thesis comprises four relatively self-contained 

case studies, they are not independent. In fact, the case studies are coherent and 

progressive. So, in addition to contributing individually, as outlined in the next section 

(1.5) there is also a collective contribution and novelty.  

 

The overarching technical issues linking the case studies primarily concern the features 

that can be used to represent the targets and the reliable measurement of their saliency 

for the specific data driven task. It presents a significant conceptual and technical 

challenge. All other things being equal, effective discrimination of natural targets in 

seabed imagery depends primarily on an appropriate and reliable choice of feature 

generators and their parameterisation for the target class. This issue is addressed in each 

case study and exemplified in particular, in case study 3. The collective contribution of 

the work is therefore to the machine learning domain of feature evaluation, as applied to 

the specific industrial problems and data described herein. Novelty arises not only in the 

methods but in the niche focus of the work, i.e., machine assisted discrimination of 

subjective natural targets, for which there are currently no established approaches other 

than manual human interpretation. 
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1.5 Summary of novelty, main contributions and published work by 

case study 

 

The research carried out in the course of project has resulted in five peer reviewed 

publications. Three of these publications have arisen from the case studies in chapters 5-

8. This section outlines the novelty and contributions of the case studies and states the 

published work. 

 

1.5.1 Case study 1: Pockmark discrimination 

 

This work contributed to the wider domain of DBM analysis and particularly to the 

feature based discrimination of specific landform objects in a DBM. A novel feature 

based machine learning approach to automating the identification of pockmarks and 

mapping their boundaries was presented. The process maps the boundaries of ≈ 2000 

pockmarks in seconds - a task which would take days for a human to complete. 

 

Some of the research work carried out in this case study resulted in the publication of a 

conference paper: 

 

Harrison, R., Bellec, V., Mann, D. and Wang, W. (2011) A new approach to the 

automated mapping of pockmarks in multibeam bathymetry, IEEE International 

Conference on Image Processing (ICIP). 

 

The accompanying poster presentation is included in Appendix 1. 

 

Proportional contributions to the paper are: R. Harrison 85%, V. Bellec 5%, D. Mann 

5%, W. Wang 5%. 

 

1.5.2 Case study 2: Features for Sabellaria discrimination 

 

The main contribution of this work was to the novel task of machine discrimination of 

Sabellaria textures in sidescan sonar imagery. It was the first study of its kind on this 

specific application and directly addresses another industrial problem. It was not known 

whether this task would be tractable or what features should be used. The study 
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demonstrated the tractability of the problem and identified the Gabor filter bank as a 

useful feature creation method for discriminating Sabellaria in waterfall imagery. Filter 

bank configurations and filter parameters were investigated in depth on mosaic imagery. 

Suitable configurations and parameter ranges were identified. 

 

The research on texture feature creation methods for Sabellaria discrimination in 

waterfall imagery led to the publication of a conference paper: 

 

Harrison, R., Bianconi, F., Harvey, R. and Wang, W. (2011) A texture analysis 

approach to identifying Sabellaria spinulosa colonies in sidescan sonar imagery, 

Proceedings of the Irish Machine Vision and Image Processing (IMVIP) conference, 

Dublin. 

 

Proportional contributions: R. Harrison 65%, F. Bianconi 25%, R. Harvey 5%, W. 

Wang 5%. 

 

1.5.3 Case study 3: Feature evaluation and ranking methods 

 

This work contributed to the application domain of sonar imagery feature evaluation 

and to the machine learning domain of feature evaluation and ranking methods, 

specifically, the measurement of the robustness of feature evaluation methods. A novel 

framework for measuring the robustness of distance measure feature evaluation methods 

was devised.  Two novel consensus approaches to feature ranking with multiple 

distance measures were proposed. Experimental results showed that the consensus 

approaches could improve robustness over a range of feature parameterisations and 

various seabed texture classification tasks in sidescan sonar mosaic imagery.  

 

The research on the ranking reliability of distance measures resulted in a journal 

publication: 

 

Harrison, R., Birchall, R., Mann, D. and Wang, W. (2012) Novel consensus approaches 

to the reliable ranking of features for seabed imagery classification, International 

Journal of neural Systems, 22 (6), DOI: 10.1142/S0129065712500268. 
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Proportional contributions: R. Harrison 80%, R. Birchall 5%, D. Mann 5%, W. Wang 

10%. 

 

1.5.4 Case study 4: Unsupervised approach on real-world mosaic imagery 

 

The work in this case study brings together a number of earlier ideas and contributes to 

the application domain of machine discrimination of qualitative targets in sonar 

imagery. A novel, hybrid unsupervised process and methods were proposed for the 

discrimination of textural targets in qualitative, real-world sidescan sonar mosaic 

imagery. The novel methods included a pre-clustering stage for inducing a sub-optimal 

probabilistic unsupervised model and a method for combining unsupervised 

classifications from independent feature channels. On the data used in the case study, a 

single-channel unsupervised approach using Gabor filter bank features produces a 

plausible partitioning of the sediment classes in the imagery over a range of resolutions. 

Although originally intended for Sabellaria discrimination, the success of the process 

and methods in the application context demonstrates the flexibility of the approach and 

the potential versatility for application to a range of target discrimination problems.  

 

1.5.5 Related research (not included in the thesis) published during the project 

 

[1] Distance measure committee for feature evaluation: Application to sonar imagery 

 

A novel committee of distance measures was proposed as an objective function for 

feature evaluation. The idea was motivated by the fact that different distance measures 

yield conflicting feature ranking results. In the committee, distances can be combined to 

produce a consensus rank score. As a test case, parameterisation of a grey level co-

occurrence matrix, for identifying textures peculiar to Sabellaria colonies was 

considered. A strong correlation (r = 0.94) is found between saliency scores and 

classification accuracies using the committee.  
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Conference publication details: 

 

Harrison, R., Birchall, R., Mann, D. and Wang, W. (2011) A novel ensemble of distance 

measures for feature evaluation: Application to sonar imagery, IDEAL 12th Int. Conf. 

Proc., Lecture Notes in Computer Science, 6936, 327–336. 

 

Proportional contributions: R. Harrison 80%, R. Birchall 5%, D. Mann 5%, W. Wang 

10%. 

 

[2] Towed cable, sonar and acoustic beacon model 

 

A novel hybrid model, comprising a static towed instrument-cable system combined 

with an acoustic model for the attached ultra-short baseline (USBL) positioning 

beacon was proposed and was believed to be the first of its kind. Initial numerical 

experiments indicated the model results were consistent with observed field data.   

 

Conference publication details: 

 

Harrison, R. (2009), A spatial model of a towed cable system and USBL acoustic 

beacon, in Società Geologica Italiana, proceedings of the International conference on 

seafloor mapping for geohazard assessment, Eds., Chiocci, F., Ridente, D., Casalbore, 

D. and Bosman, A., 7, 59-62. 

 

1.6 Thesis structure 

 

 Chapter 2 establishes the wider academic, industrial and practical context of the 

research and examines some of the motivating issues and applications. The 

application scope is narrowed to two interpretative discrimination tasks, 

pockmarks and Sabellaria.  

 

 Chapter 3 reviews some of the technical approaches (i.e., methods and 

processes) related to the thesis and identifies some underexplored gaps. 
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 Chapter 4 describes and discusses the research analysis and design. It also 

includes a consideration of evaluation issues related to qualitative tasks in the 

seabed classification domain. 

 

 Chapter 5 is the first of four case studies. A novel approach to the discrimination 

of pockmark objects in multibeam bathymetry is proposed and evaluated. 

 

 Chapter 6 presents an investigation into the tractability of the novel task of 

automated Sabellaria texture discrimination in sidescan sonar imagery. 

 

 Chapter 7 considers the more abstract problem of the robustness of distance 

measures for feature evaluation and ranking. A framework is created for 

evaluating the distance measures and a novel committee proposed and evaluated. 

 

 Chapter 8 brings together several ideas from the earlier work and concerns the 

discrimination of qualitative target regions in real-world mosaic imagery. A 

novel hybrid unsupervised process is proposed and evaluated. 

 

 Chapter 9 evaluates the research overall, assessing the extent to which the aims 

and objectives have been successfully achieved and how the research was 

managed.  

 

 Chapter 10 summarises the conclusions from the individual case studies. 

General conclusions are also drawn, a general recommendation is given and two 

mini-proposals for further work are presented. 
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Research context     Chapter 2 

 

Contents 

 

2.1 Introduction 

2.2 Why we need information about the seabed 

2.3 Data acquisition for seabed classification: Methods and issues 

2.3.1 Overview 

2.3.2 Backscatter imagery 

2.3.3 Bathymetry 

2.3.4 Ground truth  

2.4 Other pertinent issues 

2.5 Summary 

 

 

2.1 Introduction 

 

The research presented in this thesis concerns the design of novel feature based 

computational methods and processes for assisting humans in expediting certain 

qualitative, manual (visual) seabed classification tasks on processed data. As a 

Computing Science thesis, it is not about the discipline of seabed classification per se. 

However, since the research is applied to solving specific problems within this domain, 

it is necessary to have a wider understanding of the relevant background to fully 

appreciate some of the issues involved and to provide some justification and focus for 

the research. Hence, at the end of this chapter, the context limited application scope for 

two of the case studies can be defined. The purpose of the chapter then, is to; 

 

(1)  elucidate the problem areas, identifying some important issues for further 

investigation,  

(2)  establish the need for the research, the commercial motivation and define the 

application scope, 

(3)  position the research within the application domain and the wider technical and 

environmental context.  
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The chapter further serves to highlight the immense scope and cross-disciplinary nature 

of seabed classification tasks and processes and introduces some of the terminology 

associated with the application domain.  The word “classification” is used in this 

context to mean the production of a seabed class map of some description, i.e. the 

depiction of targets and their properties on a two-dimensional map, over a region of the 

seabed at a particular scale. Figure 2.11 is an example of an end product of the 

processing pipeline, a class map.  

 

Legend 

 

 Sand 

 Megarippled sand 

 Gravelly sand 

 Sparse Sabellaria 

 Moderate sabellaria 

 Dense Sabellaria 

 Mussel beds 

 

Figure 2.1. A class map of a neritic habitat, indicating different sediment types, species assemblages and 

geomorphic objects as homogeneous colour-coded regions in a georeferenced framework. 

 

The map represents a neritic habitat and indicates different sediment substrates (sand, 

gravelly sands), species assemblages (Sabellaria spinulosa, mussel beds) and 

geomorphic objects (dunes or megarippled sand) as homogeneous, colour-coded areas 

within a georeferenced framework. The graticule squares are 1 km × 1 km and very 

small sized (10-100 m) to small sized (100 m – 1 km) mesohabitats are resolved, 

according to the scales in Greene et al. (1999). “Habitat” can be defined as “a place 

where a microorganism, plant, or animal lives” (Begon et al., 1990). 

 

Seabed classification is a broad based, challenging and developing field of study. 

Hamilton’s (2005) bibliography lists a non-exhaustive selection of numerous academic 

                                                 
1 Gardline Geosurvey, 2007. Client and location details have been removed. 
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and technical publications on the dozens of disciplines involved. Since 2005, several 

other related studies have been published on for instance; acoustic remote sensing 

techniques, different geographic regions of the World, specific habitat types, shallow 

and deepwater environments along with many approaches to data processing, remote 

characterisation and the automation of seabed target recognition and classification tasks.  

 

Class map production can involve a combination of human and machine functions in the 

processing pipeline. A five-stage sequence, from data acquisition through to the final 

mapping product is summarised in figure 2.2.  

 

 

 

Figure 2.2. A simplified processing flow for class map production.  The thesis focuses on aspects of 

feature based machine learning approaches applied at stages three and four. 

 

In this simplified sequence, data acquisition (1) is followed by a data processing stage to 

convert the raw data into meaningful results or representations. Stage (2) typically 

includes tasks such as estimating distributions of sediment grain sizes by sieving 

sediments retrieved during the physical sampling campaign. Computationally intensive 

work, such as processing depth soundings to produce a rasterised Digital Bathymetry 

Model (DBM) is also carried out at this stage.  

 

Interpretation of the DBM and sonar imagery may be performed manually by a trained 

human interpreter or in some cases, automatically by a machine learning system. As an 

example, the human visual system (HVS) texture discrimination in the sonar imagery 

can be replaced by an automated or semi-automated feature based 

segmentation/classification system at stages (3) and (4). Target regions of the 

bathymetry and imagery are identified and delineated, then semantic labels assigned at 

stage (4), according to class information derived from the ground truth. Finally, the end 

product, a paper class map or electronic, virtual representation is produced at stage (5) 

1.  
Data 

acquisition 

with remote 
sensing 

instruments 

and collection 
of ground 

truth. 

2.  
Data post 

processing, 

including; 
production of 

backscatter 

mosaic and 
DBM, 
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ground truth 
samples.  

3. 
Interpretation 

of results –  

examining 
processed 

backscatter 

imagery and 
DBM. Feature, 

texture and 

target 
identification. 

4.  
Segmentation 

and classification 

of backscatter 
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Association of 
available ground 

truth to 
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regions. 

5.  
Production 

of paper 
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in readiness for delivery to the client. The thesis focuses on feature based machine 

learning and other computational methods that can be used in novel ways to support the 

interpretative process at stages three and four of the above sequence. The problems are 

approached through a set of context-limited case studies. Aspects of the five stages in 

the process of figure 2.2 are considered further in the remainder of this chapter, which is 

organised as follows. 

 

Section 2.2 explains the importance of the seabed and why we need information about 

its nature, in the form of mapping products (class maps). Section 2.3 discusses 

commonly used techniques for acquiring seabed data through remote sensing and 

ground truth campaigns. Some important issues in the interpretation, mapping and 

classification process are outlined in section 2.4. The main points of the chapter and the 

application scope of the thesis case studies are summarised in section 2.5.  

 

2.2 Why we need information about the seabed 

 

There are many reasons for wanting to find out more about the bottom of the seas and 

oceans. Mostly hidden from view, the complex seascape supports a diverse range of 

biotopes and a rich variety of marine life. “Mapping European Seabed Habitats” 

(MESH)2 and “Habitat Mapping for Conservation and Management of the Southern 

Irish Sea” (HABMAP)3 are just two examples of recent large-scale European projects, 

dedicated to gaining a better understanding of the types, extents and distributions of 

seabed habitats. This mapping is essential, if we are to develop an insight into the health 

and dynamics of marine ecosystems and how they can be conserved or protected from 

the detrimental affects of human activities. 

 

Anthropogenic activities and natural processes impact on seabed habitats, yet 

conversely, distant processes taking place at the seafloor can have disastrous effects on 

human populated coastal regions. For instance, submerged mass failures (Billi et al., 

2010) can trigger destructive tsunamis, posing a significant threat to vast stretches of 

coastline. A national project currently being undertaken in Italy “Marine Geohazards 

                                                 
2 http://www.searchmesh.net/default.aspx [accessed 14-02-2012] 
3 http://habmap.org/ [accessed 14-02-2012] 

http://www.searchmesh.net/default.aspx
http://habmap.org/
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along the Italian Coasts” (MAGIC)4 aims to map the hazardous geological regions 

along submarine continental margins of Italy. Knowledge from this project can be used 

to aid the development of more effective tsunami mitigation strategies in civil defence 

programmes. 

 

Perhaps surprisingly, habitats at the bottom of the seas around the UK and Europe are 

intimately connected to our quest for renewable energy. Situated within complex 

Europe-wide and national legislative frameworks, the European Union (EU) member 

states are mandated to generating a proportion of their energy from renewable sources 

by 20215. For the UK, this target is set at 15 % 6. Offshore wind farms can contribute 

significantly to meeting this target but site selection needs careful consideration and 

must be sympathetic to the marine ecosystem. Biogenic reefs, formed by the tube-

building worm Sabellaria Spinulosa (Sabellaria) are protected by the EU under their 

habitats directive7. Destruction of these protected areas must be avoided and site 

investigation therefore includes identifying and mapping any Sabellaria colonies, 

especially reef-like structures. It is essential that site planners and contractors are aware 

of the locations, extents and nature of any protected (or potentially protectable) habitats 

in their operational areas.  

 

The offshore mining industry and in particular the oil and gas exploration and 

production sector is another important consumer of seabed mapping products. During 

the exploration phase for oil and gas, it is useful to identify geomorphic objects such as 

pockmarks, as they can be surface indicators of hydrocarbon reserves, deeper in the 

underlying geology. They are also associated with shallower trapped gases and seabed 

instability, potentially serious hazards to drilling operations and seabed infrastructure, 

respectively (Judd and Hovland, 2007, p 362-371). Pockmarks and numerous other 

geomorphic objects such as canyons, dunes and outcrops are rendered in a DBM, the 

submarine equivalent of a Digital Elevation Model (DEM).  

 

An up-to-date knowledge of the seafloor is therefore critical to the success of all 

offshore projects where mechanical or other forms of seabed interaction are involved. It 

                                                 
4 http://www.magicproject.it/ [accessed 14-02-2012] 
5 Directive 2009/28/EC, Article 3. 
6 Directive 2009/28/EC, Annex 1. 
7 Directive 2006/105/EC, Annex 1. 

http://www.magicproject.it/
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is also important to organisations engaged in conservation, management and monitoring 

activities. From a commercial perspective, mapping products provide persistent revenue 

streams for marine geophysical and hydrographic surveying companies such as 

Gardline Geosurvey8. Surveys and maps are commissioned and purchased largely by 

clients in the offshore industrial sector. In addition to surveying for new projects, repeat 

mapping of a region is often required, since the high-energy marine environment creates 

transient seabed regimes with mobile sediments and ephemeral habitats and landform 

objects. Thus, any class map is an uncertain, grossly simplified static representation of 

dynamic, interchanging biotic and abiotic elements in the seascape.  

 

2.3 Data acquisition for seabed classification: Methods and issues 

 

2.3.1 Overview 

 

Inaccessibility of the seafloor makes it much harder to map and characterise, compared 

to our terrestrial environment. The conductivity and turbidity of seawater rapidly 

attenuates and scatters electromagnetic signals, particularly in the visible spectrum, see, 

for example, Apel (1987), p 588-591. Excluding relatively short imaging ranges, under 

low turbidity conditions, the practical usage of optical devices for remote sensing 

applications in the underwater environment can be quite limited. On the other hand, 

acoustic signals exhibit excellent propagation characteristics in seawater, surface 

sediments and the deeper geology of the seafloor. Acoustic remote sensing has therefore 

become the principal technique for capturing an assortment of data about the seafloor 

and its properties at various spatial scales and resolutions. An acoustic image of the 

seascape, rather like an aerial photograph of a terrestrial landscape, is a surrogate for the 

real, physical surface and all that is contained within it. Backscatter imagery is formed 

by rendering the diffuse acoustic radiation scattered from the seabed back toward the 

point of origin, i.e., the transducer that transmits and receives the radiation. Grey-levels 

of the image pixels correspond to the received intensity (radiosity) values from 

esonified patches of seabed. Acoustic echoes or soundings are commonly used to 

determine depth. Rasterised depth soundings can be rendered as a georeferenced DBM 

showing accurately positioned relief of the seabed surface and depths, relative to a 

vertical datum.  

                                                 
8 http://www.gardlinemarinesciences.com/page/gardline-geosurvey/ [accessed 14-02-2012] 

http://www.gardlinemarinesciences.com/page/gardline-geosurvey/


Chapter 2   Research Context 

 

17  

 

 

Two commonly used acoustic remote sensing devices are the simple towed sidescan 

sonar (sidescan) and the more sophisticated, keel-mounted multi beam echosounder 

(MBES). The sidescan and MBES are sometimes referred to as “imaging sonars” as 

they are both capable of producing a greyscale backscatter “image” of the seafloor.  

Sidescan and MBES can map a wide area of the seabed called a swath. The sidescan 

records acoustic backscatter only, whereas the MBES records accurate depth soundings 

and backscatter. Data used in this thesis are primarily rasterised (square-gridded) 

backscatter imagery from the sidescan and MBES and bathymetry from the MBES.  

 

Ground truth captured during the survey forms an important component of the data used 

in the process, as it provides evidence of what is actually on or near to the surface of the 

seabed. Therefore, it is a means of validating a speculative interpretation of the acoustic 

facies in the backscatter imagery. Ground truth data often takes the form of physical 

samples or near-field video footage. The following two subsections outline and discuss 

acoustic imaging and ground truth methods, pertinent to this thesis. 

 

2.3.2 Backscatter imagery 

 

Seabed backscatter is a diffuse, highly scattered form of acoustic radiation containing 

noisy information about the interaction of a transmitted acoustic pulse with its 

propagation environment. There is no general theory of backscattering from seabed 

sediments, although several empirical and mathematical models have been developed 

which may comprise; (1) roughness scattering, due to the roughness of the seabed 

surface and (2) volume scattering, due to penetration and re-radiation of acoustic energy 

in the heterogeneous sediments. See, for instance, Urick (1967), Novarini and Caruther 

(1998), Chotiros (2006), Holliday (2007), Jackson and Richardson (2007) and Kloser 

(2007).  
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(a) Characteristic “lumpy” Sabellaria textures. 

Each pixel represents a ground area of 

approximately 20  20 cm. The image area covers 

about 2500 m2 of seabed. 

 

 

(b) Dunes (anisotropic texture). Image scale is the 

same as in figure 2.3 (a). The wave number for 

the widest spaced dunes is about 0.15. 

 

Figure 2.3. Examples of two different textures rendered in backscatter imagery from a sidescan. 

 

A sidescan captures qualitative backscatter, since the recorded signal comprises relative 

amplitudes. Sidescan imagery contains useful information about the seabed surface and 

texture, providing a means for discriminating acoustic facies based on textural 

similarities and contrasts and regions of different intensity. The different image regions 

can be correlated to the morphology and in some cases the material properties of real 

targets on the seabed. For instance, Sabellaria colonies are often rendered with a 

distinctive “lumpy” texture, recognisable to a human interpreter, as shown in figure 

2.3(a). In this image region, the ground resolution of each pixel is approximately 20 cm 

 20 cm or 5 pixels per metre. The image covers a seabed area of about 2500 m2. Figure 

2.3 (b) shows an acoustic image of submarine dunes (a.k.a sand waves), at the same 

scale. The texture, unlike that of Sabellaria, is strongly anisotropic, with dark and light 

bands orientated from top to bottom of the image. The wave number (spatial frequency) 

for the dunes with the widest spacing is approximately 0.15. 

 

Sidescan imagery is initially captured by the transducer as a “waterfall” image (figure 

2.4 (a)). Waterfall sections may be processed and merged together, to create a sonar 

“mosaic” of a larger survey area. Figure 2.4 (b)9 shows a backscatter mosaic of seabed 

off the coast of Florida, mapped by the United States Geological Survey (USGS). A 

                                                 
9 http://pubs.usgs.gov/of/1999/of99-396/ [accessed 14-02-2012] 

http://pubs.usgs.gov/of/1999/of99-396/
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waterfall is built up from consecutive individual scan lines as the instrument platform 

translates in the along-track direction. The pixels are not georeferenced and may not 

have had any geometric or radiometric corrections applied to them at this stage. 

Waterfall imagery is sometimes used for human interpretation as the resolution is better 

compared to a down sampled mosaic image. 

 

 

 

 

(a) Waterfall segment – part of a survey line. 

Unlike the mosaic it is not georeferenced and 

aside from water column removal and slant range 

corrections, it is not or radiometrically and 

geometrically corrected. 

 

(b) Mosaic of an entire survey region off the coast 

of Sarasota, Florida, comprising multiple, survey 

lines (transects).  

Figure 2.4. Waterfall (a) and mosaic (b) backscatter imagery. 

 

In figure 2.4 (a), a central vertical region of pixels, corresponding to the water column 

offset, has been removed and the pixel positions corrected for slant range. Processing 

was carried out with the commercial software package, Coda GeoSurvey10. The dark 

central vertical band highlights where backscatter returns from the acoustic beams on 

either side of the instrument have been joined together, i.e., where the water column has 

been removed. Different textural regions can be clearly discerned, including the 

“lumpy” textures characteristic of Sabellaria. The two darker, diagonal lines in the red 

box are probably trawling marks. The brighter horizontal banding in the blue box is 

                                                 
10 http://www.codaoctopus.com/coda-geosurvey/ [accessed 14-02-2012] 

http://www.codaoctopus.com/coda-geosurvey/
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most likely due to “cable snatch”, a sudden jerking of the tow cable due to wave 

induced motion of the surface vessel. 

 

In figure 2.4 (b) the lighter and darker regions in the mosaic represent areas with 

different backscatter intensities. These intensities are correlated to different grain size 

(granular particle diameter) distributions11, as in for instance, Collier and Brown (2005) 

and Goff et al. (2000). Rough and smooth textural regions are also evident indicating 

differing surface rugosities (surface height variability) and morphologies. Small black 

patches on the image are “holes” where data is missing between transects. Producing a 

good mosaic is a challenging task and the development of methods to achieve this is an 

active research area. See, for instance, Chailloux et al. (2011) and Coiras et al. (2004).  

 

Pixels are geometrically and radiometrically corrected for spatial position and intensity 

(grey value), respectively in the mosaicing process. Geometric corrections include 

compensating for water column offset, slant-range to ground-range correction, 

anamorphic distortion and changes in ships velocity (Chavez et al., 2002). The 

corrective stages applied to the sidescan data and whether it is mosaiced or not will 

depend on the purpose for which the imagery is being acquired, the type (manufacturer) 

of instrument, operational parameters and so on. A non-exhaustive list of factors 

influencing the image quality is given in table 2.1. 

 

Noise Acoustic signal Instrument motion Miscellaneous 

Coherent Beam radiation pattern Heave Line drop-out 

Incoherent Source level Sway Pixel drop-out 

Speckle (clutter) Angular responses Surge Missing data 

Striping (banding) Sea surface reflections Pitch Water column 

 Absorption Roll  

 Spherical spreading Yaw  

 Refraction   

 

Table 2.1. A non-exhaustive list of factors influencing sidescan imaging quality. 

 

In neritic environments typical of Sabellaria colonisation, where the water may be very 

shallow, noise and instrument motion can be particularly problematic. Weather noise 

                                                 
11 Grain size distribution is a mathematical or empirical distribution of the mixture of sediment particle 

sizes in the analysed sample. 



Chapter 2   Research Context 

 

21  

 

such as wind and rain can severely degrade the imagery and the degree of degradation is 

extremely difficult to quantify (Kieser et al., 2007). Transmission of mechanical forces 

to the instrument along the tow cable due to surface waves causes erratic platform 

motion, compounding the problem, as is clearly illustrated in figure 2.4 (a).  

 

Since sidescan systems have a longer history than MBES, dating back to the early 

1960’s there is more published literature available. Blondel (2007) covers much of the 

theory and practical applications of sidescan devices and the processing and 

interpretation of backscatter imagery. See also; SeaBeam (2000), IHO, chapter 4, (2011) 

and Hughes-Clarke et al. (2009). For instrument specific information, see the 

GeoAcoustics (Kongsberg)12, Klein13 and Edge-Tech14 websites.  There are dozens of 

publications providing details of the numerous methods and strategies for processing the 

sidescan data. A small selection of these includes; Reed and Hussong (1989), Johnson 

and Helferty (1990), Muller et al. (2007), Cobra et al. (1992), Cervenka and de 

Moustier, (1993), Kenny et al. (2001), Chavez et al. (2002) and Capus et al. (2008). 

Backscatter physics and processing are not of central importance to the thesis, since the 

research concerns machine assistance of qualitative visual tasks. All backscatter 

imagery used for experiments in this thesis has been sourced post-processed and no 

additional corrections are applied.   

 

There are numerous differences between MBES and sidescan instruments, their 

supporting systems, operational procedures, practical applications and processing 

pipelines for the production of backscatter imagery. See for instance, Le Bas and 

Huvenne (2009) who compare sidescan and MBES systems in the context of habitat 

mapping. A comprehensive coverage of many aspects of MBES systems is given by; 

Hughes-Clarke et al. (2009), SeaBeam (2000), and the International Hydrographic 

Organisation (IHO), chapter 4 (2011). Instrument specific technical information on 

Kongsberg Simrad devices (used by Gardline Geosurvey and many other marine survey 

contractors) can be found at the Kongsberg website15. 

 

                                                 
12 http://www.km.kongsberg.com/geoacoustics [accessed 14-02-2012] 
13 http://www.l-3klein.com/ [accessed 14-02-2012] 
14 http://www.l-3klein.com/ [accessed 14-02-2012] 
15 http://www.km.kongsberg.com [accessed 14-02-2012] 

http://www.km.kongsberg.com/geoacoustics
http://www.l-3klein.com/
http://www.l-3klein.com/
http://www.km.kongsberg.com/
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A major distinction between MBES and sidescan backscatter imagery is the accuracy 

and precision with which the image acquisition geometry can be determined. Compared 

to sidescan, the position in space of a recorded backscatter intensity value from the 

seabed is fixed more accurately and precisely with a MBES system. The keel-mounted 

transducer location is established using translational offsets relative to a Global 

Positioning System (GPS) receiver at a fixed reference point on board the survey vessel. 

Motion sensors record pitch, roll and yaw of the vessel so the attitude of the transducer 

at signal transmit and receive times is known. Thus, with MBES instruments, measures 

of backscatter intensity are associated with georeferenced locations and the geometric 

relationship of the transducer with the seabed is deterministic.  

 

Seafloor slopes and aspects are derived from bathymetric measurements collocated with 

the backscattering footprint region. Corrections can then be applied to recover an 

estimate of the signal grazing angle, as in Hou and Hough (2004). This is useful if a 

backscatter modelling approach is applied to characterise the seabed sediments, such as 

the composite roughness model, described in Jackson et al. (1986). The goal of such 

geoacoustic modelling is to estimate, through inversion, the geoacoustic parameters of 

the seabed from an angular dependent backscatter response. Hou and Hough (2004) 

found that their process of grazing angle estimation and application of corrections to the 

backscatter signal may provide an improved correlation of the backscatter with the 

sediment ground truth, particularly grain size distributions. Another remote 

characterisation method proposed by Fonseca and Mayer (2007) and Fonseca et al. 

(2009) divides the grazing angles into angular ranges from which slope and intercept 

parameters are extracted. An iterative inversion technique is applied to a modified form 

the effective density fluid model of backscattering (Williams 2001, Fonseca et al. 

2002). It is then possible to estimate the acoustic impedance16 of the seabed, which can 

be used to predict sediment grain size and other properties. Approaches using 

backscatter models and angular dependencies are but one paradigm for characterising 

the seabed. In order to work within a reasonable scope and considering the interpretative 

nature of the problems addressed in the case studies, such physics based techniques are 

not considered in the thesis.  

 

                                                 
16 The acoustic impedance, Z, of a medium (material) is defined as Z =  V, where  is the density of the 

medium and V, the velocity of the acoustic wave within the medium. 
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A considerable amount of research has been carried out on processing and correcting 

(“calibrating”) MBES backscatter for the many effects imparted on the signal by the 

environment. See, for example, Hellequin et al. (2003), Mitchell, (1996), Augustin and 

Lurton (2005), Beaudoin et al. (2002), and Hammerstadt (2000). 

 

Although some keel-mounted studies are reported in the literature (e.g. Hughes Clarke, 

2004), the sidescan is usually towed behind a survey vessel on a cable, as shown in figure 

2.5. Acoustic positioning estimates, if used at all, are typically provided by an ultra-short 

baseline (USBL) beacon system, such as Sonardyne17 or Applied Acoustics18. For a 

discussion of the features of a USBL system, see Philip (2003). 

 

 

 

Figure 2.5. A typical towed system arrangement, showing an acoustic beacon attached to a tow cable.  The 

maximum response axis of the beacon is parallel to the cable at the attachment point (Harrison, 2009). 

 

A typical set-up comprises an acoustic beacon (transponder) attached on the cable or 

tethered to it, near the towed instrument. The beacon, when interrogated, communicates 

with a transceiver onboard the survey vessel, at a fixed vessel reference position. This 

type of positioning system can lack accuracy and precision, compared to keel-mounted 

positoning with GPS, especially with long cable deployments, approaching the beacons 

operational range limitations. Beacon axis alignment, power, frequency and dispersion 

pattern as well as prevailing seawater, weather, oceanographic conditions and depth 

significantly influence the system performance. Fundamentally, sidescan positioning is 

a hardware issue. USBL positioning can be improved upon by deploying a high-

accuracy inertial navigation system (INS) with the instrument platform or by using an 

acoustic beacon network. Initialisation of an INS system involves position fixing, using 

                                                 
17 http://www.sonardyne.com/products/positioning/usbl-all-systems.html [accessed 14-02-2012] 
18 http://www.appliedacoustics.com/Positioning_Products.aspx [accessed 14-02-2012] 

http://www.sonardyne.com/products/positioning/usbl-all-systems.html
http://www.appliedacoustics.com/Positioning_Products.aspx


Chapter 2   Research Context 

 

24  

 

a GPS and an alignment process to determine the initial attitude, as described in Panish 

and Taylor (2011). INS hardware can be bulky and expensive though, so despite the 

much better navigational accuracy attained, its usage for simple sidescan surveys is not 

commonplace. Likewise, acoustic beacon networks require deployment, calibration and 

recovery. This is a time consuming and expensive component of the survey, so beacon 

networks are not routinely used for sidescan imaging operations.  

 

Another potential means of estimating the position of a towed sidescan, improving on 

precision without using expensive additional hardware is by computational modelling. 

For instance, a hydrodynamic model of the tow cable and towed instrument can be 

designed and used to estimate the position by numerical integration. The hydrodynamic 

model can further be combined with a model of the acoustic beacon, as in related but 

separate work of the thesis author, Harrison (2009). Such a hybrid model can be 

parameterised adaptively, to fit the cable shape so that the estimated position from 

numerical integration coincides with known beacon positions. It could help to prevent 

gross positioning errors and facilitates interpolation or extrapolation in cases where the 

acoustic positioning from the USBL system is subsequently missing or unreliable. 

However, whilst this model can potentially provide more precise estimates of spatial 

positioning under relatively steady conditions, the attitude of the instrument is 

indeterminate. 

 

Unknown attitude of the sidescan transducer is again, fundamentally, a hardware issue 

and can be resolved if pitch, roll and yaw motion sensors are attached to the instrument 

platform. As with INS positioning though, motion sensors are typically not fitted to the 

platform due to costs. Usually, the only directional information recorded is from a 

simple heading sensor. Hence, due to the uncertain position and unknown geometry of 

the transducer in relationship to the bathymetry, the backscatter signals from a simple 

sidescan survey cannot be geometrically and radiometrically compensated with the 

same accuracy and precision as the MBES. Capus et al. (2008) also claim sidescan 

platform stability is an ongoing issue and monitoring sensor roll, pitch and yaw remains 

a topic for investigation. They point out that these challenges could be met with 

accurate and synchronised attitude data. These data are rarely available though. It is still 

possible to use backscatter recorded by a sidescan to remotely characterise the seabed 

sediments under certain, idealised conditions. For well-sorted (relatively uniformly 
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sized) particles, both Collier and Brown (2005) and Goff et al. (2000) found a strong 

linear correlation between mean intensity, over a backscatter image neighbourhood and 

mean sediment grain size, as sampled from the seabed in the corresponding image 

region.  

 

Despite the difficulties in positioning and attitude determination, sidescan is capable of 

acquiring very high-resolution (about 10-20 cm ground resolution) backscatter data 

showing intricate details of textured structures at smaller scales. Since the sidescan is 

usually towed a few metres above the seafloor, it can operate at high (~500 kHz) 

frequencies in deeper water. This would not be possible for a keel mounted MBES at 

the sea surface, due to rapid attenuation of the high frequency signal with depth.  

 

Sidescan has proven to be particularly useful for qualitative imaging of biogenic reef 

structures (Limpenny et al., 2010, Birchall, 2007, Degraer et al. 2008). Imaging of 

Sabellaria colonies using different acquisition parameters was investigated by 

Limpenny et al., 2010. In a visual inspection of the imagery they found the quality of 

the textures was influenced greatly by towing speed and the towing direction. Higher 

towing speeds reduced the detectability of Sabellaria reefs in the backscatter image, as 

did imaging in a direction perpendicular to the long axes of the small-scale reef features. 

Whilst beam range alone did not seem to greatly affect the imaging results, the ratio of 

instrument height above the seabed to the range of the acoustic beam is an important 

consideration. They found no discernible differences in the imaging of the reef textures 

at low (100 kHz) and high (400 kHz) frequencies. Interestingly, Degraer et al. (2008) 

imaged another type of biogenic reef formed by the tube-building worm, Lanice 

conchilega. Imaging results were strongly frequency dependent, when they compared 

reef textures at 132 kHz and 445 kHz. The higher frequency imagery resolved finer 

details much more clearly, compared to the lower. However, in comparison to the study 

of Limpenny et al. (2010) a different sidescan instrument was used and the towing 

altitude was at least 2 m lower (3-4 m above the seabed). Collier and Brown (2005) also 

established that a higher frequency (410 kHz) produced qualitatively better images of an 

artificial reef, made from concrete blocks. Further, Birchall (2007) found that higher 

(500 kHz) frequencies were more useful for imaging details of Sabellaria reefs and 

suggests that further investigations are required in order to establish the best frequency 

to use.  
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Under controlled laboratory conditions, backscatter responses from smooth 

homogeneous sediments exhibit frequency and angular dependent characteristics that 

can be modelled empirically or mathematically. In fact, there are many such models, 

some of which, as mentioned earlier, can be inverted to estimate seabed sediment 

properties in MBES remote characterisation applications. However, there are no proven, 

reliable models for higher frequencies such as 500 kHz, used in sidescan imaging. There 

is very little evidence in the literature to suggest that any frequency or angular 

dependent relationship exists for imaging more rugged, heterogeneous structures, e.g 

Jackson and Richardson (2007, p.376). Beyond a certain grain size (larger than the 

wavelength of the esonifying acoustic signal) factors other than grain size dominate the 

scattering process, such as surface roughness and orientation of the imaged object. 

According to Chotiros (2006) in this scattering regime, “the concept of grain size 

dependence breaks down.” He goes on to point out that large coral reefs have facets 

with preferential orientations and this gives rise to wide variability in backscatter 

intensity with aspect. Due to the heterogeneity of the real seabed, the backscatter 

models can fail and produce unexpected or unreliable results. A surface mixture of 

larger sized particle grains or shell fragments with an otherwise well-sorted sediment 

can produce a poor, highly variable correlation of backscatter with the dominant grain 

size of the substrate, as reported in Goff et al. (2000) and Bellec et al. (2010).  

 

At higher acoustic frequencies, in general, the scattering is mostly due to surface 

roughness (rather than volume heterogeneities), due to the rapid attenuation of the 

signal as it penetrates the sub-surface. To complicate matters further, there are instances 

where the surface and volume components cannot be separated. Worm tubes are just 

such a case (Jackson and Richardson, 2007, p 406). A Sabellaria reef is a rugged 

structure composed of a heterogeneous matrix of worm tubes, sediments and other 

organisms. Even if it were imaged by a sidescan, under ideal conditions, with 

deterministic, precise imaging geometry, its backscatter response cannot currently be 

modelled. Therefore, there is no reliable, objective means of remote, global 

characterisation of the Sabellaria through a process of geoacoustic inversion. Despite 

the ambiguity, human identification of the textural surrogates for Sabellaria colonies in 

sidescan imagery, verified by ground truth remains the predominant method in the 

process of identifying and mapping the species. It is a subjective, laborious and 
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expensive task with potentially unreliable results. One of the aims of the thesis is to 

investigate the tractability of automating this manual Sabellaria texture discrimination 

task, with feature based machine learning. In addition to the novelty of the texture 

identification and discrimination task, there would be clear commercial gains in 

expediting this process in an automated or semi automated processing pipeline. 

 

2.3.3 Bathymetry 

 

Bathymetry data are nowadays routinely captured with a MBES. The MBES can record 

hundreds of depth soundings simultaneously enabling rapid, accurate coverage of large 

areas. By processing the raw soundings together with position, motion, tidal and water 

column data, an accurate DBM is produced which represents sampled depths of the 

seafloor terrain. This can also be thought of as another type of seabed image. 

 

A small region of a bathymetry raster from the Geological Survey of Norway (NGU) is 

rendered in figure 2.6. The crater-shaped depressions are pockmarks in soft sediments, 

approximately 30 m across and 2 m deep. The horizontal resolution of this DBM is 5 m 

between grid nodes. Vertical resolution is 1 cm.  

 

 

 

Figure 2.6. Rendered section of a bathymetry raster, supplied by the NGU, showing pockmarks. 

 

In addition to rendering geomorphic objects over a wide range of spatial scales, such as 

pockmarks, dunes and canyons, the DBM surface has a texture. Rocky or reef-like 

surface regions are relatively rough, compared to say, a sedimentary plain. Often, 

objects or regimes that are visible in the bathymetry have a corresponding signature in 

the backscatter imagery, for instance, a prominent and rugged reef-structure. Targets 

can be recognised and delineated in the bathymetry by considering their size, 

morphology and texture.  

 

 Shallower regions 

 

 Deeper regions 

Depth (m) 
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As discussed further in chapter 3, there have been relatively few detailed investigations 

into the machine discrimination of specific submarine landform objects. Due to the 

importance of landform objects such as pockmarks, as pointed out earlier, it is usually 

necessary to identify and map these objects in the DBM. The discrimination and 

mapping of these objects in a machine learning process is thus considered in another 

application case study in the thesis. In common with the Sabellaria discrimination, there 

is novelty in and commercial motivation for investigating the potential for automation 

of this process and devising methods to accomplish the task. 

 

Many aspects of MBES depth determination and data processing can be found in 

Hughes-Clarke et al. (2009), SeaBeam (2000), and IHO, chapter 3 (2011).  

 

2.3.4 Ground truth  

 

Acoustic imagery contains information about the expected real morphology and 

properties of the seabed. Even to the non-expert, it should be clear that the distinctive 

textures in figures 2.3(a) and (b) represent different natural targets. However, the 

imagery is merely a surrogate - a distorted, acoustic representation of the seabed. 

Sabellaria colonies can present a distinctive texture but there is a possibility something 

different is actually on the seabed, say, a shellfish bed or a mixture of shellfish and 

clumps of Sabellaria interspersed with a sandy substrate. The colony may be in decline 

or growth but this and many other properties of the target cannot be established from 

imagery alone.  

 

The speculative interpretation of the imagery requires validation and this is partially 

fulfilled by using ground truth – collecting evidence of what is actually at the seabed. It 

typically involves sparse grab sampling at a few point locations to collect 

unconsolidated sediment samples. The sampling pattern may be regularly spaced, 

random or directed toward specific targets already provisionally identified in the 

imagery as in Galloway (2008). Subject to prevailing water turbidity conditions, video 

footage is also routinely captured to non-invasively provide information about the biota 

and consolidated structures such as rocky or biogenic reefs where physical sampling 

may not be practical (or legal.) Photographs and video footage can be taken of different 
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areas of the seabed, before the camera needs to be brought up to the surface, thus, 

economically covering a wide area. Collection of video data is described in, for 

instance, Ierodiaconou et al. (2007) and recent advances in underwater imaging, in 

Kocak et al. (2008).  

 

In contrast to video, physical samples are invasive and a relatively slow, expensive 

undertaking as the survey vessel has to stop, lower and retrieve the sampling apparatus 

at a number of locations. The position at which a grab sample is taken is uncertain and 

may deviate greatly from the position of the vessel, depending on the water depth and 

local currents. Collier and Brown (2005) report an estimated positional accuracy of  15 

m in 30-52 m water depth (approx. 35-50% of depth), based on the wire length, entry 

angle and sea conditions. However, wire angle at entry to the water is not always a 

reliable indicator of the likely cable trajectory, since the speed and direction of currents 

varies with depth. Acoustic positioning systems such as USBL can be deployed with the 

grab, to improve the estimated location of the grab on the seabed, relative to the vessel. 

In general though, an accurate position of the point on the ground from which the 

sample was taken is not known. This can create problems in supervised classification 

processes when the ground truth locations are used to collect seed samples from the 

mosaic imagery, for training a classifier. This matter is considered again later in 

chapters 4 and 8. 

 

A multitude of devices are in routine use for seabed sampling and many of these are 

described in McIntyre (2005). For sampling Sabellaria, Limpenney et al. (2010) 

recommend four different types of mechanical grab; Hamon, Day, Shipek and Van 

Veen as well as a small epibenthic trawling method. 

 

Quantitative information, such as a sediment grain size distribution can be obtained 

from Particle Size Analysis (PSA) of a grab sample. The distribution can be 

parameterised by the geometric mean, standard deviation, skewness and kurtosis, as in 

Folk and Ward (1957). Semantic labels are applied using descriptive terminology for 

grain size scales, e.g., Friedman and Sanders (1978) and for mixtures of sediment, as in 

the British Geological Survey (BGS) modified Folk sediment trigon, illustrated in figure 
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2.719. The trigon indicates 11 sediment classes, defined according the region occupied 

by the sediment mixture. In producing a class map for offshore industrial use though, a 

simplified representation of a few classes is often preferred. The UK SeaMap 

classification scheme (Long, 2006) is an example, with four sediment classes; mixed 

sediment, coarse sediment, mud and sandy mud and sand and muddy sand, as shown by 

the four coloured borders in figure 2.7.  

 

Legend  

 

G Gravel 

mG Muddy gravel 

msG Muddy sandy gravel 

sG Sandy gravel 

gM Gravelly mud 

gmS Gravelly muddy sand 

gS Gravelly sand 

M Mud 

sM Sandy mud 

mS Muddy sand 

S Sand 

 

Figure 2.7. BGS modified Folk sediment trigon showing the UK SeaMap classes (not to scale.) 

 

Properties such as sediment permeability and hydraulic conductivity can also be derived 

from the mean grain size.  

 

2.4 Other pertinent issues 

 

Processing, interpreting and integrating the various sources of data and information to 

produce a class map are reliant on a host of technology, scientific principles and human 

factors. As the discipline of automated seabed classification is emergent, there are few 

standards and benchmarks with which to evaluate and compare the work of others 

quantitatively.  Perhaps for this reason, the objective statistical methods for acoustic 

characterisation of the seabed is favoured by many researchers (Anderson et al., 2008). 

                                                 
19 Figure is not to scale and is based on fig.3, page 5 in Long (2006). 
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When the substrate characterisation derived from the backscatter is considered together 

with topographic descriptors of the bathymetry, such as slope and aspect, it becomes 

possible to remotely map a physical habitat, in terms of these surrogates, using the 

instrument platform and a dedicated software processing pipeline. 

 

However, seabed substrates and topographic surrogates alone do not capture the 

richness and diversity of the seabed environment. Remote characterisation is one 

representation of this environment at a particular scale of mapping using a specific type 

of instrument. Sidescan sonar affords another view, usually on a smaller scale and at a 

higher resolution than the MBES. It further captures details of important seabed targets 

such as Sabellaria colonies, a task which is unproven with current MBES technology. 

Textures in qualitative sidescan imagery are usually interpreted by humans. There are 

drawbacks to a human approach though, as Blondel (2007, p 249) points out, human 

interpreters with different experiences, will produce different interpretations. Also, 

validation of tentative interpretations/classifications with ground truth is always 

uncertain. It is not practical (or possible even) to ground truth every single point on the 

seabed - this is the whole idea behind extrapolating the classification of acoustic facies 

over a large homogeneous region based on sparse ground truth associated with the 

properties (texture, intensity) of the corresponding sonar image region. A machine 

process can expedite the manual tasks and improve their consistency. Yet the problem 

of validating the results and evaluating the efficacy of the processes in relation to the 

work of others still remains a formidable challenge, irrespective of whether the task is 

performed by a machine or human. This important issue is given further consideration 

in chapter 4.  

 

Binary class maps showing the distribution of a target class can be particularly useful 

such as “Sabellaria” and “non-Sabellaria”. The number of classes that can be usefully 

represented on a single map is open to debate and will depend on the classification 

objective and client specifications. Also, meaningful, standardised unambiguous and 

consistent labeling of classes is very difficult to achieve. As Fraschetti et al. (2008) 

point out, there is “a lack of common vocabulary on habitat types.” This creates a 

further complication in trying to evaluate seabed classification results in relationship to 

the work of other researchers (not to mention their use of differing instruments, 

environmental conditions, operational procedures, data processing pipelines and so on.) 
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There are many different classification schemes for habitats that can help with the 

assignment of standardised class labels, thus facilitating comparisons between different 

surveys and habitat maps, when identical schemes are used. A physical habitat 

approach, applied in Canada was defined by Roff et al. (2003) and in Europe, the 

European Nature Information System (EUNIS)20 classification scheme is sometimes 

applied, as in the MESH project (MESH, 2009).  However, Harris and Baker (2012, p 

877) in a survey of recent habitat mapping research published in the Geohab Atlas, 

found that most researchers did not use any published classification scheme.  

 

2.5 Summary 

   

This chapter has served to elucidate some of the techniques and problem areas, in the 

wider seabed classification domain. The research has been positioned within a technical, 

environmental and commercial context. Two important tasks for case study 

investigations have been identified (1) pockmark discrimination in multi beam 

bathymetry and (2) Sabellaria texture discrimination in sidescan sonar imagery. The 

need for the research and commercial motivation has been established. The main points 

arising from the chapter are: 

 

 Class maps of natural targets in seabed imagery are vitally important for the 

scientific study and management of marine habitats and ecosystems. They are 

business critical for companies engaged in resources exploration and production, 

site placement and infrastructures. Production of seabed class maps from marine 

surveys provides a strong revenue stream for organisations involved in the 

surveying and mapping process. 

 

 Under certain conditions and assumptions, some types of seabed sediments can 

be remotely characterised with MBES using backscatter models. However, 

important natural targets at smaller scales such as Sabellaria colonies and 

pockmarks cannot presently be directly identified and characterised in this way.  

 

 

 

                                                 
20 http://eunis.eea.europa.eu/ [accessed 05-12-2012] 

http://eunis.eea.europa.eu/
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 Identifying, classifying and mapping such subjective natural targets involves 

manual human interpretation and processing (an interpretative approach). This is 

inconsistent, difficult, time consuming and therefore expensive. Results may be 

unreliable and the certainty of the classification and the class boundaries is 

usually unknown or not quantified. Noisy and ambiguous labeling is another 

issue compounding the reliability problem.  

 

 

 The purpose of this thesis is to present an investigation into some of the issues 

and applications identified and design bespoke computational methods and 

processes for effectively representing, identifying and delineating some of these 

seabed targets, with a goal of assisting the human interpretation and 

classification process.  

 

 

The next chapter advances the position incrementally by considering related research 

with an emphasis on the computational methods and processes, particularly the feature 

based machine approaches used in various seabed classification tasks.  
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3.1 Introduction 

 

In the previous chapter, the application context of the work was established and two 

niche areas for further investigation were identified; pockmark discrimination and 

Sabellaria discrimination. In this chapter, the emphasis shifts towards machine methods 

and processes that could be used to help solve these problems and potentially, other 

related problems. The aim of this chapter is to narrow the scope of the computational 

methods to be considered in the thesis, by identifying underexplored areas for further 

investigation within the application confines.  
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To recapitulate: research in the thesis focuses on feature based machine learning 

methods and processes that could be useful for assisting humans in performing 

qualitative manual, target discrimination tasks. The means by which the targets are 

imaged is not a critical factor in this work. Since, if there were a universal standard, 

whereby the target could be discriminated and characterised automatically and reliably 

at a hardware level, by the acoustic remote sensing platform (and an associated 

standardised processing pipeline), it would not be necessary to carry out a tedious and 

expensive manual discrimination and classification process. The problem is exemplified 

in the case of legacy data, where nothing is known about how the data were captured, 

yet it is still clear to a human interpreter that the data contain valuable visual 

information. It is an important distinction to make, between the computing science and 

engineering research in this thesis and the science of acoustic seabed classification. 

 

Several researchers have recently remarked on the need for advancement in the area of 

automated seabed classification tasks. Parnum (2008) states that improvements could be 

made by applying more sophisticated classification algorithms. Marsh and Brown 

(2009) claim there is a need to develop automated computational methods to transform 

high dimensional bathymetric and backscatter data into easily visualised, low-

dimensional maps, representing the seafloor. According to Simard and Stepnowski 

(2007), emphasis should be placed on the extraction and selection of appropriate 

features, for the seabed classification to be successful. Blondel (2007, p. 275) claims 

there is rapid growth in the disciplines of computer assisted interpretation and these will 

be developed in industrial and academic applications over the next decade.  

 

Some of the most relevant related research on feature-based machine learning methods 

as applied to seabed classification problems on rasterised backscatter and bathymetry 

data is introduced in this chapter. Dozens of books and thousands of research papers 

have been written on methods in the associated domains of data mining, machine 

learning and image processing. Some specific methods are considered in greater detail 

and additional works discussed within the case study chapters later on, as the need to 

further contextualise the authors’ work arises.  

 

The remainder of this chapter is organised as follows. Section 3.2 considers methods 

used on sidescan and MBES backscatter imagery. Approaches to MBES bathymetry are 



Chapter 3  Related research 

 

36  

 

described in section 3.3 and examples of combining bathymetry and backscatter 

considered in section 3.4. The paradigm of ensemble classification is outlined in section 

3.5, covering supervised and unsupervised (cluster ensemble) approaches. An outline of 

some of the fundamental machine learning and computational methods applied in the 

experimental work in this thesis is provided in section 3.6. Finally, the chapter is 

summarised in section 3.7.  

 

3.2 Backscatter image classification methods 

 

The basic backscatter image classification problem involves dividing a sonar image into 

a number of relatively homogeneous regions with similar properties, then assigning 

class labels to those regions. Generically, in a feature based machine approach to the 

problem, numerical feature creation kernels need to be parameterised, evaluated and 

applied to the imagery. The features must be capable of capturing salient information, 

representative of the target class properties and it is usually necessary to measure this in 

some way on the data specific classification objective. If the features are ineffective or 

inappropriately parameterised, the classification accuracy may be compromised. When 

the feature vector is large, dimensionality is sometimes reduced by feature extraction or 

selection. Patterns generated from the data in the feature creation process are then used 

to partition the regions in a machine learning process. The process may be supervised, if 

some data where target class labels are known in advance are available for training a 

classifier or unsupervised when no a priori assumptions can be made about the classes 

present. The following two subsections consider some of the feature creation and 

machine learning methods that have been used in the domain. 

 

3.2.1 Feature creation 

 

Simple, effective and efficient features for discriminating regions are statistics based on 

backscatter intensity. A basic assumption is that lighter and darker regions of the 

imagery correspond to areas with different backscatter intensities and thus different 

material properties or sediment types. In a machine learning approach, the mean 

backscatter intensity calculated on an image neighbourhood or “tile” under a 

computational kernel can be used as a discriminatory feature. Although the relationship 

between say sediment grain size and backscatter intensity is complex, using mean 
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intensity as a feature can be useful for mapping the distribution of estimated mean grain 

sizes of sediments in sidescan imagery. Combinations of statistical features, such as 

mean, median and standard deviation may be used together for a meaningful 

partitioning of backscatter imagery in relationship to the substrate and for habitat 

prediction, as in Brown and Collier (2008).  

 

For identifying and segmenting particular morphologies, texture is more important than 

local mean intensities, i.e., some image regions may have similar mean intensity values 

but disparate textures. Texture is a manifestation of the pattern of spatial arrangements 

of the intensities of individual image pixels. Using mean intensity alone, would not 

reliably detect the textural differences characteristic of say the morphology of smooth 

sand and rippled sand. According to Blondel and Gómez Sichi (2009), countless studies 

have shown that textures capture most of the useful information contained in sonar 

imagery. However, the features used should be dictated by the purpose of the 

classification task. For instance, if it is desired to partition the imagery into regions of 

“high”, “intermediate” and “low” backscatter levels, and relate these to mean grain size 

distributions, then descriptive statistics would suffice, it would not be necessary to use 

textural features.  

 

Approaches to texture segmentation fall into two broad categories, 

 

(1) Region based methods, identify all pixels as members of different 

homogeneous regions or textural classes in the image. Boundaries are 

established implicitly as a by-product of identifying the spatial extent of the 

regions. 

 

(2) Boundary based methods, directly identify the boundaries between different 

textural types according to prescribed criteria. 

 

Boundary based methods depend on successful boundary detection, to segment the 

regions of interest. The classification is then achieved by assigning class labels to the 

segmented regions. Boundary methods are suitable for tasks where the boundaries are 

reasonably distinct, for instance, between rock outcrops and sediment. A region-based 

approach is used throughout the thesis as boundaries are generally not well-defined. In 
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the region based approach used, the segmentation can be thought of as an outcome or 

by-product of the tentative, supervised classification of small image tiles or 

neighbourhoods.  

 

Feature creation methods used to represent the textures can be divided into four main 

categories, see for instance, Sonka et al. (2008), Gonzalez and woods (2009); 

 

(1) Statistical methods; the texture is described by the statistics of a local 

neighbourhood of pixels, e.g. co-occurrence matrices, autocorrelation, edge-

frequency, run-length and surface roughness statistics. 

 

(2) Syntactic (structural) methods; the texture is modelled as a composition of 

small base elements (texture primitives) forming a defined spatial pattern; e.g. 

shape-chain grammars, graph grammars. 

 

(3) Model based methods; the texture is represented by a probabilistic or physics 

based model, representing the underlying stochastic process generating the 

image texture, e.g. Markov Random Field, fractal dimension, autoregressive-

models. 

 

(4) Signal processing methods; texture features are derived from the response of a 

filter kernel applied in the frequency or spatial domain, e.g., localised 

(windowed or short-time) multi-resolution spatial filters such as Gabor filter 

banks and wavelets.  

 

For a comprehensive review of texture analysis methods, see Xie and Mirmehdi (2008).  

 

Of these methods, statistical and signal processing are probably the most widely used in 

the sonar image classification domain. The reasons for this are not entirely clear. 

Methods such as the Grey Level Co-occurrence Matrix (GLCM), described in further 

detail below have been in existence for 40 years and are still in widespread use for 

generic classification tasks in commercial sonar image processing software packages. 

So, it is perhaps this “pedigree” and their wide applicability that has led the community 

to maintain the Status Quo with such feature creation techniques. However, for specific, 
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subjective target discrimination problems, towards which, this thesis is biased (as 

opposed to more generic classification) there are many other methods available that 

have not been widely used or explored in the sonar domain. 

 

Grey Level Co-occurrence Matrix Features (GLCM) 

 

Penrose et al. (2005) and Parnum et al. (2004) claim the most common type of 

statistical analysis used for sonar image textures is the Grey Level Co-occurrence 

Matrix (GLCM). Devised by Haralick et al. (1973), the GLCM captures the distribution 

of pixel intensities and their spatial relationship. Blondel and Gómez Sichi (2009) claim 

that other research has shown GLCM’s are optimally adapted for the purpose of 

describing texture. Haralick et al. (1973) initially defined 14 textural features that can 

be computed from the co-occurrence matrix. Since the method was first introduced, 

several other features have been devised and used for specific purposes, such as cloud 

classification in Welch et al. (1988). However, it is well-known that many of the 25-30 

GLCM features presently in use are intrinsically correlated due to their functional 

relationships. According to Reed and Hussong (1989) the five features; angular second 

moment (ASM), contrast (CON), correlation (COR), entropy (ENT) and angular inverse 

difference moment (AIDM) have low correlation, as determined by principal 

components analysis (PCA). Reed (1987) also points out, that ASM, CON, ENT and 

AIDM are insensitive to gain settings and look direction of the sonar. The correlation 

feature is independent of the other GLCM features and produces results very similar to 

autocorrelation and semi-variogram methods (Van der Sanden and Hoekman, 2005).  

 

If more than a few different features are used, not only is computational complexity 

increased but it is likely that redundant information will be generated which could be 

detrimental to the classification accuracy. Blondel and Gómez Sichi (2009), Blondel et 

al. (1993) and Blondel (1996) found the two features, ENT and homogeneity (HOM) 

were able to capture most of the textural variability in sidescan images and they use 

these features in “TexAn” a proprietary software package developed at the University of 

Bath. Blondel (1996), points out that the definition of HOM is the same as inverse 

difference moment (IDM) in Welch et al. (1988). This is consistent with the original 

definition of IDM by Haralick et al. (1973). Reed and Hussong (1989) used the same 

definition of AIDM from Haralick et al. (1973) for IDM. In other words, AIDM, HOM 
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and IDM can be regarded as the same feature. Kalcic and Bibee (2004) used ENT, 

HOM, CON and COR features, averaged over four different orientations. Averaging 

over different directions has a two-fold advantage of (1) reducing dimensionality and 

(2) producing rotationally invariant features. Reed and Hussong (1989) and several 

other researchers have used these rotationally invariant features. A reason for this, as 

Kalcic and Bibee (2004) mention, is that using rotationally invariant features helps 

suppress variability in the patterns due to platform motion artefacts imparted in the 

image data. The GLCM has several parameters that can be tuned for the image data and 

classification objective.  

 

Although GLCM derived features are ubiquitous in the domain and are used in leading 

commercial software packages, there are many other types of features and feature 

combinations that can be applied. Karoui et al. (2008) point out that a number of studies 

have indicated a fusion of features from the different methods could improve texture 

characterisation. They investigated a fusion of filter bank responses and co-occurrence 

distributions to characterise the texture of sidescan images. However, a potential 

drawback of their approach is the use of predefined filter bank parameters without 

explicitly evaluating the affect of different parameterisations. Many texture feature 

generation methods are dependent on multiple parameters. Evaluation and selection of 

feature parameters for the data dependent classification task is critical to its success.  As 

Ruiz et al. (2004) point out, there are several parameters to optimise within a chosen 

method or when using a combination of methods to generate features. They considered 

four methods; GLCM, energy filters and edgeness, Gabor filters and a multi-resolution 

(discrete wavelet transform) analysis. Their results showed that a combination of 

different texture methods could improve classification accuracy. However, they 

concluded that a lack of widely accepted benchmark data means all results must be 

considered within the reported set up. Martin (2005) investigated GLCM, run-length 

matrix, wavelet transform and Gabor filters and found that a fusion method was more 

robust to badly selected features but in general, features from the run-length matrix had 

poor performance. Müller et al. (2007) compared four different approaches to sonar 

texture classification; The GeoTexture1 commercial software package, a wavelet-

domain approach, Artificial Neural Networks (ANN) together with grey level run length 

features and GLCM and ANN with the Grey Level Co-occurrence Iteration Algorithm 

                                                 
1 http://www.km.kongsberg.com/ [accessed 22-03-2012] 

http://www.km.kongsberg.com/


Chapter 3  Related research 

 

41  

 

(GLCIA). They found that the wavelet approach performed well in identifying gravel 

but comparatively poorly with sand and mud. They used the supervised wavelet method 

of Fan and Xia (2003) and suggested it was not suitable for efficient sonar texture 

classification purposes at this stage. The GLCIA and ANN gave the best all-round 

results, but involved a subjective, manual feature extraction process. A different choice 

of GLCIA feature vectors can result in different ANN’s based on the same training data 

set, leading to inconsistent results.  

 

In one of the leading commercial software packages for seabed classification, QTC 

Swathview2, Preston (2009) applies a variety of kernels to generate 29 features, 

including GLCM from the sonar imagery. Principal Components Analysis (PCA) is 

used to convert the high-dimensional feature space into an orthogonal, three-

dimensional component space by forming weighted linear combinations of features. 

PCA was also used by Kalcic and Bibee (2004). However, they claim a more optimal 

approach would be to choose the individual features with the greatest discriminatory 

potential between the regions of interest, if sufficient ground truth is available to 

reliably evaluate class separability. Further, when using PCA, in the case of swathview, 

directional components are preserved and used in the recombination process, since the 

GLCM features are not rotationally invariant. It is therefore possible that local textural 

anisotropies and directionally dependent artefacts could adversely influence the feature 

components. 

 

Using separate feature creation and selection (or extraction) stages followed by 

classification is the most common approach in the domain. It is though not necessary to 

have separate stages. By using a Kohonen Self-Organising Map (SOM) (Kohonen, 

1990), Zhou and Chen (2005) were able to circumvent feature selection in their MBES 

backscatter image classification procedure. Pican et al. (1998) also used a SOM 

approach and compared co-occurrence matrix features with the SOM, for texture 

segmentation of colour seabed imagery. They found that the GLCM features appeared 

to capture better textural information than the SOM, although the optimum set of 

GLCM features has to be determined.  

 

 

                                                 
2 Quester Tangent Corporation, http://www.questertangent.com[accessed 30-11- 2011]  

http://www.questertangent.com/
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Model based and other approaches 

 

Mignotte and Collet (2000) published one of the few model-based approaches to sonar 

image classification. They claim their approach, using a Markovian segmentation model 

and fuzzy logic modelling, is robust to the instrument type and conditions of 

acquisition, as the method works on a shadow detection map as opposed to the grey 

levels of the input image in a texture based approach. 

 

Liu and Zhang (2007) used a Pulse coupled Neural Network (PCNN) which imitates an 

animal retina. The PCNN produces a series of binary images from which a feature 

vector is formed. They claim subsequent classification accuracy better than spectral 

methods and GLCM on test cases of 12 sonar images.  

 

Signal processing approaches 

 

Studies using signal processing based methods for sonar texture analysis are not as 

widely reported as the statistical methods. Although relatively uncommon in sonar 

image processing, the popularity of Gabor Filter banks in many other domains is 

possibly due to certain similarities between the mechanism of textural decomposition of 

the filters and the inferred texture decomposition mechanisms of the Human Visual 

System (HVS.) In an empirical study involving twenty human subjects, Rao and Lohse 

(1993), identified three key dimensions of textural perception; repetition, direction and 

complexity. Multi-channel filters, such as Gabor filter banks can generate textural 

features at different orientations and frequencies replicating, in a very simple manner, 

the orientation (direction) and spatial frequency (repetition) mechanisms of the HVS. 

Atallah (2004) found, in a comparison between Log-Gabor filters and Discrete Wavelet 

Transform (DWT) features on bathymetric sidescan imagery, that generally, the best 

classification results from both methods were close. However, the performance of any 

method is dependent on the data, classification task and parameterisation. In a different 

case study using sonar imagery of an artificial coral reef, Atallah (2004) found that 

increasing the number of orientations and using non-dyadic frequency scales with the 

Gabor filters did not greatly influence the classification results. Two other recent studies 

where Gabor filter banks were applied to sonar imagery are those by Samiee and Rad 



Chapter 3  Related research 

 

43  

 

(2008) and Sun and Shim (2008). The feature creation process of Samiee and Rad 

(2008) used the filter banks to generate a sub-image from each channel followed by 

morphological closure of the sub-images. A modified version of the Chan and Vese 

(2001) Active Contour Model is then applied to segment the binary sub-images. Whilst 

their method is robust to noise and the data acquisition processes, their results were 

reported on small, clean image regions with distinct textural contrasts and relatively 

well-defined textural boundaries. Sun and Shim (2008) combined Gabor filter bank 

features with a model-based feature, the fuzzy fractal dimension (FFD) in a hybrid 

fusion method. Using a Multi-Layer Perceptron (MLP) classifier, they found overall, 

the classification accuracy was higher with the fusion approach, compared to using the 

Gabor filter bank or FFD features in isolation.  

 

3.2.2 Sidescan sonar backscatter image formation considerations 

 

Perhaps the two most widely developed paradigms for generic seabed backscatter 

classification are; (1) image based, using texture as a discriminatory subspace and (2) 

model based approaches utilising calibrated angular responses of backscatter signals 

measured in-situ, together with parametric models of the backscatter interaction with 

different (known) sediment types.  

 

As has already been discussed in the previous chapter, there are some severe limitations 

and technical challenges relating to the calibration of backscatter signals captured by a 

towed sidescan sonar. From a practical perspective, the availability of reliable ancillary 

measurement data (or lack of it) that could facilitate signal corrections is also a concern. 

The key problems of positioning and imaging geometry are surmounted by MBES 

sensing platforms and systems, which are now routinely used for collecting calibrated 

backscatter. Subsequently, automated, software-centred, model-based, backscatter 

angular dependency classifications of the seabed sediment types can be carried out on 

these calibrated data. Some of the research in this thesis though, focuses on subjective 

targets in qualitative (uncalibrated) sidescan backscatter imagery, so by default, an 

angular response, model-based approach to classification is ruled out. This should also 

be apparent when there are no backscatter models of specific targets such as Sabellaria 

colonies.  
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An important purpose of a commercial sidescan sonar survey is to image the target 

regions of interest, within the operating parameters and budget. Hence the survey needs 

to be carefully designed, taking into consideration factors such as imaging direction, 

towing height and speed, acoustic frequency, pulse duration and so on, appropriate for 

capturing the target signatures, as in Limpenney et al. (2010.) Expensive, usually sparse 

ground truth, provides a validation of the presence of the target regions of interest that 

are subsequently related, through a human visual inspection to the sidescan sonar image 

textures. It is well known though, that due to the plethora of factors affecting the signal, 

the rendered textural information in an image presented to the human analyst is not 

necessarily a faithful representation of the real targets on the seabed. Target regions will 

be missed altogether if their signatures are not imaged and rendered recognisably. It 

should be clear too, that if the texture is severely corrupted or not visible to a human, 

the discrimination is not necessarily improved upon by applying a machine approach to 

the discrimination problem. Discrimination by the machine and human (ignoring 

internal processing factors) is always constrained by the amount and quality of 

information they are presented with.  

 

Areas of the target regions in some of the data used in the thesis were imaged from 

different (approximately parallel) directions but there were no raw data or ancillary data 

available to potentially make use of this information (only the processed image raster 

data were available to work with.) Evidence from laboratory experiments indicates that 

directional illumination acts as a filter of three-dimensional textures in optical (Chantler 

et al., 1994, Chantler and McGunnigle, 1995) and sidescan sonar (Bell et al., 1999) 

image formation processes. The direction from which a target is esonified produces a 

different appearance to the image texture. Imaging from more than the two 

approximately parallel directions (e.g., from orthogonal directions) improves the 

likelihood of capturing the signatures of the targets. It also improves the reliability of 

the classification if a similar texture is identified in the same location in two 

independent data sets. In a binary discrimination problem of sonar imagery, if 

“correctly” imaged textures i.e., those rendered as being recognisable as a particular 

class to a human expert and also corresponding to the actual target regions on the 

seabed are correctly identified, then the region of interest is a true positive. Changing 

the direction of esonification could in some cases then potentially result in a different 

classification outcome if the target has strong anisotropic properties, such as sand 
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waves. Imaging from multiple directions is rarely done in commercial surveys though, 

due to cost considerations coupled with post processing complexities.  

 

As Bell et al. (1999) point out, the majority of research on texture based classification 

methods ignores the physical processes by which the sonar image is formed. It is also 

the case in this thesis. A scientific treatment and modelling of the image formation 

process, say for Sabellaria textures would also require a dedicated, highly controlled 

campaign to capture and process the data needed for model verification and validation 

of the synthesised images. Such data were not available for this project.  However, even 

if the data were available, there are still many further uncertainties involved, concerning 

the ground truth definition, sample location accuracy, sampling density and its 

relationship to what is discriminated in the backscatter image. So, any image formation 

process model devised to take factors such as directional illumination into consideration 

(and possibly even compensate for its affects) will contain limitations and uncertainties. 

Further, its validation would ultimately be based on data that are statistical and 

uncertain in nature.  

 

The work on Sabellaria texture discrimination in this thesis considers high resolution 

imagery (up to 6 pixels/m) and the classifications are carried out on small patches, 

generally corresponding to ground areas of less than about 25 m2. Even over these 

relatively small ground areas, the physical target textures can be heterogeneous and 

mixed with other texture classes with uncertain boundaries. This represents natural 

variability, especially in the isotropy, spatially heterogeneous size, shape, surface 

morphology and distribution of the imaged biogenic structures of interest. The natural 

variability is apparent over a variety of resolutions and is different to say the more 

homogeneous and isotropic texture of a smooth sandy surface comprising small, well-

sorted (uniformly sized) particles to which some image formation modelling approaches 

have been successfully applied. 

 

If there were a representative image formation model for the Sabellaria then it may be 

possible to synthesise the appearance of Sabellaria textures in sidescan sonar imagery 

under many different conditions. Any sidescan sonar image data captured in the real-

world surveys could be compared texturally on a neighbourhood basis with the texture 

model generated, under the conditions specific to the survey. Similarity of the real-
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world image texture to the model could then be used as an indicator of the likelihood 

that the imaged region is a Sabellaria colony. The complexities of devising such a 

model should not be underestimated though. Although it has not been done specifically 

for Sabellaria, Bell (1995) and Bell and Linnett (1997) modelled generic underlying 

physical image formation processes by integrating separate models for towfish motion, 

transducer directivity, ray path propagation and scattering from a fractal model of the 

seabed surface.  The underwater scene can include other object models, above or within 

the surface, using primitives such as spheres or cylinders. Scattering of the acoustic ray 

at the intersection point with the scene is simulated using the bistatic model of Jackson 

(1994.)  

 

As was pointed out previously though and also in Bell and Linnet (1997) problems arise 

in validating model simulations due to the lack of definitive data sets for characterising 

the experimental environment. Bell and Linnet (1997) also considered the problem of 

how to compare the simulated output from the model to the actual sidescan imagery and 

used mixed-methods, combining visual interpretation and statistical techniques to 

achieve this. Although identical visual matches between synthetic and real images could 

not be achieved, some qualitative similarities of the general characteristics, in the case 

of rippled sediments were observed between the synthetic and real image regions.  

 

Statistically, backscattering intensity in homogeneous, isotropic sidescan sonar imagery 

can be approximated by Rayleigh distributions (Bell, 1995.)3 In Bell and Linnett (1997) 

the pdfs of the simulated images (for silt and sand) were strongly consistent with fitted 

Rayleigh pdf’s. Further there were close visual similarities between synthesised 

isotropic images and a real image of an isotropic region of the seafloor composed of a 

silt sediment. The synthetic image pdf, real image pdf and the fitted Rayleigh 

distribution again indicated a strong statistical consistency between the real and 

synthesised image regions. Noise and volume reverberation were not considered in their 

model, as these are dependent on the specific survey conditions. They state that it may 

be possible to extend the model to include more complex synthetic topographies and 

make use of the K-distribution as a means for statistical verification rather than visual 

inspection. So, within this framework, it is therefore feasible that Sabellaria-like 

                                                 
3 There are several other parametric pdf models which can be used to represent sonar imagery, such as the 

K-distribution (Jakeman and Pusey, 1976) and the Rayleigh-Rice model, discussed in Thorsos and 

Jackson (1989.) 
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textures could be synthesised and compared statistically with real imaged Sabellaria 

textures. For mostly practical reasons (data availability, time, funding) this interesting 

avenue of exploration lies outside the scope of the thesis. 

 

3.2.3 Classification and clustering methods 

 

Artificial Neural Network (ANN) and Self-Organising Map (SOM) approaches 

 

There are several machine learning algorithms that have been applied to classification 

and segmentation tasks on seabed imagery. One of the most widely reported methods is 

the Artificial Neural Network (ANN). 

 

According to Marsh and Brown (2009) ANN’s have been applied successfully to sonar 

classification problems by several researchers. They claim this research work 

demonstrates that ANN perform better than conventional methods which typically 

require knowledge of underlying probability distributions in the data. Their 

classification scheme is a SOM implementation in Matlab, using a combination of 

backscatter and bathymetric features. They concluded that SOM’s provide one of the 

most accurate methods for clustering acoustic swath data. However, with so many 

different ANN available it is not easy to state definitively which type is better, as there 

are not any standardised, published, benchmarking data or results for ANN’s applied to 

seabed imagery.  

 

ANN’s have been used for texture classification of sonar images since the early 1990’s, 

for instance, Shang and Brown (1992), Shang and Brown (1993), Stewart et al. (1992) 

and Stewart et al. (1994). Shang and Brown (1993) used a supervised approach, 

comprising a cascade of two ANN’s for texture classification of sidescan images. They 

trained two, Multilayer Feed-forward Neural Networks (MFNN) and used GLCM 

image features. The first of the MFNN performed a principal components 

transformation to produce an uncorrelated feature set. The second MFNN carried out 

the classification. A back propagation algorithm was used to learn the weights of the 

two networks. Stewart et al. (1992) describe the use of a supervised ANN classifier with 

different training patterns, network architectures and various combinations of features. 

They conducted experiments to evaluate classification performance and found that using 
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hybrid features (a combination of twenty, spectral and grey level features) was a 

promising approach. Stewart et al. (1994) in a continuation of their work published two 

years earlier found that it was more important to select appropriate elements of the 

feature set and to arrange a set of representative training data than to increase the 

quantity of training data. However they noted that since the classification was based 

purely on textural features there could be some drawbacks. These included the effects of 

grazing angle, other system artifacts and high frequency information loss in the gridding 

(mosaicing) process.  

 

Zhou and Chen (2005) used a cascaded approach, applied to MBES data. In the first 

stage a SOM produced coarse clusters. Output from the SOM formed the input to the 

second stage, in which the results were refined by applying a supervised, Proportional 

Learning Vector Quantisation (PLVQ). They compared their results against those 

obtained with a statistical, Bayesian Decision Theory approach, involving a probability 

model of features created on the data. In all of their test cases, the classification 

accuracy of the SOM/PLVQ was significantly better than the statistical model and the 

use of a SOM in isolation. Liu et al. (2005) proposed a new method of sonar image 

segmentation using snake models based on Cellular Neural Networks (CNN). Their 

results showed the approach was efficient and immune to noise when compared to 

results from other snake based models.  

 

Martin and Osswald (2008) considered the uncertainty in the seabed environment and 

the sometimes conflicting interpretation of the information by different human experts. 

They conjectured that in order to train an automatic classification algorithm it is 

necessary to take into account the differences and uncertainties associated with each 

human expert. A Bayesian Belief Model and a fusion of the experts opinions was used 

to address the uncertainty issues. They found that using a MLP with belief learning 

significantly improved on the results of a classical MLP. Müller and Eagles (2007) 

concluded the combination of GLCIA and ANN had a wide range of potential 

applications in pattern recognition in remotely sensed geophysical images. Currently, 

there is just one commercial software package using an ANN for seabed classification, 

the Triton Imaging SeaClass4. SeaClass uses a supervised MLP, trained on sonar image 

textural features, using training regions selected by a human operator. 

                                                 
4 http://www.tritonimaginginc.com/site/content/products/modules/seaclass/[accessed 06-03-2012] 

http://www.tritonimaginginc.com/site/content/products/modules/seaclass/
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Decision Trees 

 

Another machine learning algorithm that has been applied to seabed classification 

problems, is the Decision Tree (DT) classifier. Ierodiaconou et al (2006) applied an 

automated decision tree classification technique to a fusion of features from MBES 

bathymetric and backscatter data. The classification procedure was supervised and they 

used ground truth from a video sledge to assist in parameterising the model and 

assessing its accuracy. Dartnell and Gardner (2004) used a fusion of four images 

derived from one data set. These images comprised the original acoustic backscatter 

image and three variance images derived from backscatter and bathymetry. Their 

classification was a two-stage process. The first, supervised stage required some a 

priori knowledge of the seafloor. The results from this stage were used to generate rules 

for the subsequent hierarchical DT classification. The high intensity, specular reflection 

along the nadir was treated as a separate “noise” class, to avoid any adverse impact it 

may have had on the sediment classification results.  

 

Clustering 

 

The commercial seabed classification package, QTC swathview, uses Simulated 

Annealing (SA) with a measure of Bayesian Information, as a cost function, to search 

for the best clustering solution within its Automated Classification Engine (ACE) 

(Preston, 2009).  

 

Standard, k-Means clustering is a commonly used technique, with researchers in the 

domain. Whilst k-Means is quite straightforward, it does have some limitations. Tan et 

al. (2006) point out that k-Means cannot handle non-globular clusters or clusters with 

different sizes and densities and they state that performance is also significantly affected 

by outliers. Blondel and Gómez Sichi (2009) claim that more recent domain specific 

classification applications have tended to use the k-Means algorithm. Their tests 

indicated that a simple Euclidean metric was sufficient for the classification application 

in their research. However, the user needs to have an idea of how many different 

clusters are expected in the data, as this must be specified before running the k-Means 
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algorithm. Unlike a SOM, k-Means does not determine the number of clusters 

automatically.  

 

In Brown and Collier (2008) a procedure called ISOCLUST, in the IdrisiTM 

Geographical Information System (GIS) and image processing package was applied to 

carry out unsupervised classification of the backscatter imagery. They computed mean, 

median and standard deviation of intensity as features on the sidescan backscatter 

imagery, in neighborhoods corresponding to a 50 m  50 m ground dimension. Depth 

was used as another feature and three output classes were selected based on multivariate 

analyses of the ground truth sites. A depth threshold partitioned one of the classes into 

two sub-classes. They achieved 78% reliability in habitat predictions (as defined by 

underwater video footage) from the automated classification of the acoustic imagery.  

 

Other, proprietary approaches 

 

Lucieer (2008, 2007b) used the proprietary software package, eCognition to perform 

segmentation and classification of sidescan imagery. The segmentation process uses 

region growing, to break the image into numerous irregular but contiguous patches of 

unequal size. An object oriented fuzzy-rule based classifier was subsequently applied, to 

label the regions as “reef’, “low-reef” and “sand.” In this supervised approach, mean 

and standard deviation of intensity and GLCM mean were found to be the three most 

discriminatory features.  

 

Further coverage of various approaches can be found in Schumann et al. (2010), 

Christensen (2007), Anderson et al. (2007) and Hughes Clarke et al. (2009). 

 

3.3 Bathymetry features 

 

Relative to sidescan and MBES backscatter imagery, until recently, there has been 

comparatively little research into machine methods for feature generation and 

classification of rasterised MBES bathymetry. However, research into the 

geomorphometric analyses of terrestrial land surfaces and land form objects is extensive 

and there are numerous features which have been devised and machine learning tools 
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which have been applied, to a wide range of segmentation and classification tasks. One 

reason for this lag between DEM and DBM (also called Digital Depth Model (DDM) ) 

has been the lack of high-resolution remote sensing instruments for submerged 

landforms (Zeiger et al., 2009). The advent of MBES has revolutionised seabed 

mapping, with its capacity to capture accurate, wide coverage, densely sampled depth 

soundings from the seabed. 

 

According to Harris and Baker (2012), in a survey of recent research, water depth is the 

most useful surrogate for communities of benthic biota. Water depth is important to the 

benthos as it influences the amount of light reaching the seabed, temperature, current 

strength and the impact of physical disturbances originating at the sea surface. In fact, 

depth was used as a surrogate in all 57 habitat case studies carried out by the researchers 

questioned in their survey. Despite its usefulness for habitat classification, in this thesis, 

depth per se at any point on the seabed is not important – it is not used as a feature. For 

geomorphometric analyses and target identification, features derived from local 

neighbourhoods of depth values over a range of spatial scales are far more useful as 

they contain information about the morphological properties of the seabed and the 

specific objects of interest. This reinforces the point made earlier, that the features used 

must be relevant to the objectives of the segmentation or classification task and 

objectives. Certain features useful in habitat classification may though, also be useful in 

terrain analyses or vice versa. Two examples are rugosity (the ratio of surface area to 

projected area) and Topographic Position Index (TPI)/ Bathymetric Position Index 

(BPI).  Some examples of the many features derived from DEM and DBM for terrestrial 

and bathymetric terrain analyses respectively, are listed in table 3.1. There can be some 

variability in the definitions of the feature types and in the computational 

implementation of the feature creation algorithm, such as for the computation of 

directional gradients from which slope is derived. Further details can be found in the 

referenced work of the researchers. 
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Feature Sub features Researchers 

Curvature Maximum, 

minimum, 

Plan, profile 

Bogaart and Troch (2006), Dolan et al. (2008), Ehsani and 

Quiel (2008), Fowler et al. (2008), Galparsoro et al. (2009), 

Holmes et al. (2008), Wilson et al. (2007), Wood (1996), 

Zieger et al. (2009). 

Convexity  Iwahashi and Pike (2007) 

Aspect/Slope  Dartnell and Gardner (2009), Dolan et al. (2008), Ehsani and 

Quiel (2008), Fowler et al. (2008), Franklin (1987), Galparsoro 

et al. (2009), Guinan et al. (2008), Henry et al. (2010), Holmes 

et al. (2008), Iwahashi and Pike (2007), Lundblad et al. (2004), 

Wedding and Friedlander (2008), Wilson et al. (2007), Wood 

(1996), Zieger et al. (2009) 

BPI/TPI  Buhl-Mortensen et al. (2009), Dartnell and Gardner (2009), 

Diesing et al. (2009), Dolan et al. (2008), Galparsoro et al. 

(2009), Guinan et al. (2008), Henry et al. (2010), Lundblad et 

al. (2004), Weiss (2001), Wilson et al. (2007) 

Fractal dimension  Dolan et al. (2008), Fowler et al. (2008), Wilson et al. (2007) 

Rugosity  Dolan et al. (2008), Guinan et al. (2008), Holmes et al. (2008), 

Marsh and Brown (2009), Wedding and Friedlander (2008), 

Wilson et al. (2007), Zieger et al. (2009) 

Terrain 

Ruggedness 

Index (TRI) 

 Dolan et al. (2008); Marsh and Brown (2009); 

Wilson et al. (2007) 

 

Co-occurrence 

Matrix 

 

Correlation, 

Contrast, 

Entropy, e.t.c. 

Franklin and Peddle (1987), Wood (1996) 

Local Fourier 

Histograms (LFH) 

 Cutter et al. (2003) 

Autocorrelation  Wood (1996) 

Morphometric 

descriptors 

Channel, pass, 

peak, pit, plane, 

ridge 

Ehsani and Quiel (2008), Iwahashi and Pike (2007), Lucieer 

(2007a), Wood (1996), Zieger et al. (2009) 

 

 

Table 3.1. Examples of features derived from DEM and DBM for terrestrial and bathymetric terrain 

analyses respectively. 

 

A review of several geomorphometric features used in a bathymetric context and an 

assessment of their utility as predictor variables for species distribution models is given 
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by Wilson et al. (2007). There are several commercial, non-commercial and academic 

GIS packages available which are capable of deriving features, from DEM’s to 

represent terrestrial topography, see for instance, the Virtual Terrain Project (VTP)5. 

The survey of Harris and Baker (2012) found the commercial GIS package, ArcGIS6, is 

the most popular tool for analysing bathymetry and backscatter data, in relation to the 

study of the spatial distribution and composition of benthic communities. However, 

even though features such as slope and aspect are routinely used for habitat 

classification studies, there have been relatively few investigations into the features that 

can be used reliably for quantitative geomorphometry and the morphological 

characterisation of DBM's and in particular, specific landform objects within the DBM. 

Examples of the use of GIS packages applied to DBM analyses are described in, for 

instance, Wilson et al. (2007), Lucieer (2007a), Galparsoro et al. (2009) and Gorini 

(2009). As these researchers found, some of the features generated by GIS packages are 

useful when applied in a bathymetric context. The terrestrial GIS package, Landserf 

(Wood, 1996) was used by Wilson et al. (2007), Lucieer (2007) and Galparsoro et al. 

(2009) to generate features in their bathymetric terrain analyses for habitat studies. In 

Landserf, the DEM/DBM is represented as a quadratic surface. Six morphometric 

descriptors can be generated (derived from local curvature and gradient functions), these 

are; peak, pit, channel, pass, ridge and planar, as listed in table 3.1. “Local” is used to 

mean a feature value that is valid for a small region of raster, as defined under a kernel 

of a specified size.  

 

The rocky reef (Lucieer, 2007a,b, Diesing et al., 2009) is an example of a specific, 

distributed landform object, unique to the underwater environment. Pockmarks are 

another type. Visually, dense pockmark swarms are perhaps more comparable to the 

cratered surface of Mimas, one of Saturn’s moons than any known terrestrial features. 

Since, the size, shape and surface properties of objects in the submarine environment 

are different to terrestrial land surface objects, feature kernels designed for capturing 

information about terrestrial objects are not necessarily effective or optimal for seabed 

object discrimination. In cases where the landform object is unique to the seabed and no 

similar objects are observed on the terrestrial surface, it may be necessary to develop a 

bespoke approach to say, the automated identification, segmentation, characterisation 

                                                 
5 http://vterrain.org/ [accessed 17-03-2012] 
6 http://www.esri.com/software/arcgis [accessed 05-12-2012] 

http://vterrain.org/
http://www.esri.com/software/arcgis
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and mapping of the object(s). Some examples relating to specific seabed objects in a 

DBM include; Rocky reef (Lucieer, 2007a,b), debris flows (Micallef et al., 2007) and 

pockmarks (Fowler et al., 2008, Gafeira et al. 2012). 

 

3.4 Combining bathymetry and backscatter information 

 

As described in chapter 2, the DBM is in some cases used to apply corrections for 

topography and angle of incidence to the MBES backscatter imagery, in an attempt to 

calibrate the backscatter intensities, prior to the classification process. Also, features 

derived from the DBM can be integrated with features derived from the backscatter 

imagery, as part of the classification process. The features may be used together to 

induce a classification model containing mixed backscatter and DBM features or in a 

(more challenging) post-classification fusion process, merging together the separate 

DBM and backscatter classifications. The combination of different data layers is 

appealing as it is likely to provide a more robust seabed classification.  

 

Ierodiaconou et al. (2007) used a video ground truth database to estimate the 

separability of three substrate and seven biota classes, using the Jeffries-Matusita and 

transformed divergence measures in the commercial software package, ENVI (version 

4.2)7. They next applied a DT classifier, with features derived from the bathymetry and 

backscatter data, together with the video information. Although the precise details of 

their methods and evaluation are not given they found that combining bathymetry and 

backscatter features improves class separability in the substrate and biota classifications, 

compared to using the bathymetry or backscatter independently.   

 

Marsh and Brown (2009) used normalised backscatter features derived at the MBES 

beam level, together with features such as slope and seabed roughness, derived from the 

bathymetry. Their classification approach employs a SOM and can combine features 

from the two data types, ranging from bathymetry only, to backscatter only. Thus, a 

multitude of different class maps can be produced with various contributions of 

backscatter and bathymetry features in combination. They claim that the SOM is the 

most accurate means of clustering swathe data. Additionally, they state that a 

classification based on beam level angular response is preferable to one based on 

                                                 
7 http://www.exelisvis.com/language/en-us/productsservices/envi.aspx [accessed 19-03-2012] 

http://www.exelisvis.com/language/en-us/productsservices/envi.aspx
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backscatter strength mosaics, as the angular response can be useful for discriminating 

different seabed sediments. However, no accuracy figures or quantitative evaluation is 

provided in their work. Further, the provisional classes determined by the SOM are not 

compared against the ground truth (as these data were not available). 

 

Dartnell and Gardener (2004) used a MBES backscatter mosaic image and three derived 

images, based on local neighbourhood variance of the original backscatter mosaic and a 

collocated bathymetry raster. A 3  3 variance kernel was applied to the backscatter 

mosaic and to the bathymetry raster. An additional 11  11 kernel was applied to the 

bathymetry raster, to provide the same feature at small and large-scale resolutions. The 

feature sub-images and the original backscatter intensity image were subsequently 

clustered into five groups. The four sets of clustered results were further analysed by 

rule-based DT classification, implemented in the proprietary package ERDAS Imagine8, 

to predict the seabed facies. Three separate data sets were available for validating the 

predicted class map; sediment samples, seabed photographs and high-resolution seismic 

reflection profiles. The seismic sections are used to qualitatively validate the 

discrimination between rock outcrops and sediments. Photographic validation of seabed 

classes was also qualitative but accuracy of sediment facies prediction for three classes 

could be quantified by comparison with the physical samples and 72 % accuracy was 

achieved in this case. 

 

There are many classification algorithms and paradigms, routinely used in satellite 

remote sensing and other areas that have so far not been considered or have received 

little attention, in the context of seabed classification problems. An example of a 

specific type of discriminative classifier is the Support Vector Machine (SVM) (Vapnik, 

1982, 1998). With exceptions of Martin et al. (2006) and Lanaaya et al. (2005b) few 

researchers have used the SVM on sonar image classification problems, despite its 

widely acknowledged excellent performance on many types of problems. Naïve Bayes 

is another well known and widely used probabilistic classifier that has not been 

considered in any published studies on seabed classification problems. 

 

 

                                                 
8 http://www.erdas.com/products/ERDASIMAGINE/ERDASIMAGINE/Details.aspx [accessed 19-03-

2012] 

http://www.erdas.com/products/ERDASIMAGINE/ERDASIMAGINE/Details.aspx
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3.5 Ensemble methods 

 

An ensemble or committee comprises a collection of machine-learning models and 

decision fusion strategy for combining the model predictions (Dietterich, 2000). See 

Sinha et al. (2008) for a recent survey of various decision fusion methods. Multiple 

models are created from different samples of training data or using different features 

and can be supervised (classifier ensemble) or unsupervised (cluster ensemble). 

Although supervised ensembles are in common use and have many real-world 

applications (Pal, 2007), they have received very little attention within the seabed 

classification domain.  

 

3.5.1 Supervised ensemble 

 

Figure 3.1 illustrates the components in a simple ensemble system. The input channels 

to the ensemble are sets of pattern instances, Pj generated from the data, Dj. The features 

(or their parameters and analysis scales) used to generate the patterns may be different 

and data could be from multiple sources. Model induction and subsequent classification 

of the input channels is performed by N classifiers C1…CN. The predictions of the 

individual classification hypotheses are combined using a decision fusion strategy to 

produce the overall, consensus result of the classification process as an output. 

 

 

 

Figure 3.1. A classifier ensemble is made from a collection of classification algorithms and a decision 

fusion strategy. 
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Classification models can be induced by sampling different training instances, by using 

different feature groups, model parameters or data layers in the training phase. There are 

many possible variants of this approach, such as inducing multiple models on the same 

data layer, inducing different models for different dichotomies on the same data layer or 

even ensembles of models on multiple data layers such as backscatter and bathymetry.  

 

Ensembles have found many commercial uses including, remote-sensing, e.g, Pal 

(2007), Steele and Patterson (2001), in predictive problems, such as Wang et al. (2005), 

control problems, e.g., Pardoe et al. (2005) and credit scoring, in Zhou et al. (2010).  

 

One of the earliest applications of an ANN ensemble to a remote-sensing classification 

problem was by Cherkauer (1996). As a decision fusion strategy, he used a simple 

averaging of the output from individual ANN's to automatically detect and classify 

volcanoes in Radar images of Venus. Approaches using ensembles of DT's such as 

Random Forest (RF) (Breiman, 2001), have been used in land cover classification 

applications in Chan and Paelinckx (2008) and Gislason et al. (2006). Further 

applications of ANN and DT classier ensembles to remotely sensed data are described 

in Oza and Tumer (2008). Applications of SVM ensembles to remote sensing 

classification problems are described in Chan et al. (2001), Zortea et al. (2007),  

Melgani and Bruzzone (2004), Bruzzone et al. (2006), Waske (2007). 

 

Two studies on ensemble approaches have been carried out in the context of sidescan 

sonar imagery, by Martin et al. (2004) and Martin (2005). They investigated the fusion 

of classification results based on models created with different types of textural features. 

Generated patterns were input to a committee of MLP’s, with each committee member 

associated to a discrete feature input channel. Channel outputs were combined in a 

decision fusion strategy based on evidence theory.  

 

3.5.2 Unsupervised (cluster) ensemble  

 

Clustering (unsupervised learning) concerns the problem of partitioning unlabelled 

patterns into groups so that similarity is maximised within the group and minimised 

between groups. Strehl and Ghosh (2002) call the problem of combining multiple 

partitions (different sets of clustered patterns), without accessing the original features or 
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the partitioning algorithms, the cluster ensemble problem. The problem is more 

challenging than creating a classifier ensemble, since the cluster labels are symbolic, 

there will be an issue of label correspondence. Further, the number of clusters in each 

partitioning may differ, depending on how the partitioning was created. According to 

Hadjitodorov et al. (2006), the different ways of building a cluster ensemble are; 

 

o Feature-distributed clustering, where different feature subsets are used. 

 

o Heterogeneous or hybrid clustering, using different clustering algorithms. 

 

o Homogeneous clustering, where a random parameter is varied on the same 

algorithm. 

 

o Object distributed clustering, where each ensemble member is induced with a 

different data sample. 

 

Building the cluster ensemble is the first stage but the more difficult part is combining 

each clustering. Consider figure 3.2. Using a notation similar to that of Strehl and 

Ghosh (2002), let X = {x1, x2,…, xn} denote a set of pattern instances. A partitioning of 

the patterns into k clusters is {Cl | l = 1,…,k}, which can be represented by a label 

vector, . Each of the r partitioning algorithms, (i) takes the pattern instances as the 

input and outputs the label vector, (i). An algorithm dependent numerical support 

(posterior probability) vector (i) may also be associated with each label instance in the 

output from the partitioning algorithm. Thus, the symbolic labels and their support may 

be used as inputs to a consensus labelling function or heuristic, . The purpose of  is to 

combine the vectors, (i) (and (i), if available) from the different partitioned sets, into a 

consensus label vector, L (with consensus support, if label support is input to the 

function.) 
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Figure 3.2. Basic components and process of a cluster ensemble. 

 

A clustering selection process may also be used, which attempts to identify the best 

clusterings to combine in the consensus function. There are several ways of comparing 

different clusterings, such as the adjusted rand index (ARI) (Hubert and Arabie, 1985) 

and information theoretic measures, e.g. Normalised Mutual Information (NMI), of 

which there are a number of variants, as in, for instance, Vinh et al.(2010). Cluster 

comparison measures may also be used to measure the diversity of the clusterings. 

Kuncheva and Hadjitodorov (2004) showed that a diverse ensemble of clusterings can 

improve the clustering result.  

 

The way in which the clusterings are combined depends on whether or not, aside from 

the cluster labels assigned to the pattern instances, any additional information is 

available, e.g., distances from cluster centres of the individual pattern instances. 

Hadjitodorov et al. (2006), outline four approaches to finding the consensus clustering 

(i.e. the resultant partitioning).  

 

o Direct approach, requires relabeling of the individual clusterings so that the 

labels correspond, followed by a fusion of clusters with the same labels in for 

instance, Zhou and Tang (2006). 

 

o Feature-based approach, the output of each clustering is treated as an 

“intermediate feature space” which is then re-clustered. 
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o Hypergraph approach, recasts the cluster ensemble as a hypergraph partitioning 

problem which may be solved using, say the Hypergraph Partitioning 

Algorithm (HGPA), as in Strehl and Ghosh (2002). 

 

o Pairwise (co-association), uses a coincidence (co-association) matrix from 

which the final clustering is derived.  

 

Several of the different consensus function definitions and their relationships are 

described in Li et al. (2004).  

 

Following the label combination process, the consensus vector L, may be replaced by 

associating the collections of symbolically labelled objects with a set of known 

semantic (ground truth) labels.  

 

There is no general, universally accepted solution, methods or processes for the cluster 

ensemble problem. Strehl and Ghosh (2002) pointed out that very few approaches to 

combining clusterings had been proposed and the cluster ensemble approach was not 

widely used, in comparison to supervised ensembles. This same point was noted three 

years later by Zhou and Tang (2006) and again, more recently by Tumer and Agogino 

(2008).  

 

3.6 Outline of machine learning methods used in the experimental 

work in this thesis 

 

In machine learning systems, such as those engineered and investigated in the thesis, the 

machine learning algorithm (or base learner, for instance, a Naïve Bayes classifier) is 

but one component in a collection of computational methods comprising the learning 

system. The researcher uses the term “machine learning methods” to mean, in the 

broadest sense, methods that are collectively vital to the learning process and learning 

outcomes of the system as a whole.  

 

Typically, the vital conceptual components and processes of the machine learning 

system comprise (1) an abstraction process, in the form of attribute (feature) creation to 

represent the concepts to be learnt. The attribute descriptions relate to global properties 
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of the objects they represent (Dietterich and Michalski, 1983, p.42). In this thesis, they 

are numerical feature vectors, i.e., patterns. (2) A means of evaluating the features to 

assess their relevance and subsequently, the provision of training examples to the 

learner. (3) In an inductive learning process (learning by example, as primarily used 

here) the classifier builds a hypothesis or model of what has been learnt from the 

training examples. The machine learning algorithm is treated as a “black box”. (4) 

There also needs to be a method for evaluating how the learning system has performed 

on the task, i.e., having learnt something about the concept, when class predictions 

about new (unseen) data instances are made, how does the prediction compare to what 

is already known about the instances. (5) In the case of ensemble or hybrid systems with 

more than one learning algorithm and therefore multiple models, a subsystem is needed 

for processing the results from the models within the learning system. This may create 

further design and engineering complexity in other areas such as the system evaluation 

and the system decision making process concerning model selection.  

 

The focus of the methods in the thesis is biased towards feature creation and evaluation, 

since it is usually the case that the choice of features used to represent the targets is 

more important than the choice of machine learning algorithm. However, when we 

evaluate features and their parameters for a given classification task, the decision made 

about which features and parameter settings to use is not independent of the method 

used to measure the properties of interest. The researcher advocates a holistic approach 

to feature evaluation, using a mixture of methods in order to build up a clearer and more 

reliable picture of the saliency and reliability of the features on a specific data driven 

classification task. Many of these ideas will unfold in greater technical and analytical 

detail as the thesis progresses.  

 

The remainder of this section outlines some of the key computational methods that are 

used in the experimental investigations in the thesis.  

 

3.6.1 Computational kernels 

 

The word “kernel” appears frequently in the thesis and refers to a computational sub-

grid (or matrix) through which an algorithm is implemented. It can also be used in the 

mathematical sense to mean a matrix-like operation. For instance, non-linear SVM 
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kernel functions are implemented as a matrix of inner products between vectors 

representing points in the feature space. Generally then, a computational kernel 

implements an algorithm that transforms data values into a single or many-valued 

output.  

 

 

 
 
Figure 3.3. An example of a mean filter kernel. 

 

Figure 3.3 illustrates a simple mean filter kernel. The kernel is an imaginary grid of a 

prescribed size (in this case 5  5 pixels or nodes) placed over a corresponding localised 

region of input data, e.g. a pixel neighbourhood or “tile” in a mosaic image. The 

algorithm replaces the pixel grey value at the centre of the kernel with the mean of the 

pixel neighbourhood (excluding the centre value) under the kernel. The output is single 

valued. The kernel may be used to downsample the data by reducing the number of 

pixels in the output image by up to a factor of 25 (in this example) if it is applied at 

contiguous locations, tessellating the entire input image. Alternatively, if the kernel is 

applied at each individual image pixel in the input image, the filtered output image 

contains the same number of pixels as the input. Some form of image edge padding is 

required in this case, e.g., mirroring the first and last two rows and columns of the input 

image.  

 

The mean value filter is (excluding its size) a non-parametric kernel, since it contains no 

operator values. Certain parametric operations can be implemented through kernels 

comprising discretised values. The matrix of values is then applied to the corresponding 

input (image) neighbourhood values using some prescribed operation. For instance, in 
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the spatial domain implementation of Gabor filters, the 2-D filter kernel is discretised at 

regular intervals and these spatially ordered discretised values form the computational 

kernel, i.e., the matrix, A. The input matrix, B comprises a spatially ordered 

neighbourhood of (data) values, having the same dimension as A. The single-valued 

output from applying this kernel is equal to the sum of the Hadamard product, ij
BA )(   

of the two matrices.  

 

3.6.2 Feature evaluation and selection 

 

As has already been pointed out, there are numerous different texture feature creation 

methods. Many of these are parametric. Depending on the type of features, changing the 

feature parameters changes the discretised values in the computational kernel for the 

feature, producing a different output result when the kernel is applied. Feature saliency 

is a measure of the importance of a particular feature and any specific parameterisations 

of the feature in the context of the input data and classification objectives. The features 

and their parameterisations often need to be evaluated in some way to determine their 

saliency for a prescribed task. By searching the parameter space, suitable parameter 

values can be selected so that the feature is tuned to perform well on the prescribed task.  

 

Two established, widely used paradigms for feature (parameter) evaluation and 

selection are the filter and wrapper. Filters and wrappers may be used independently or 

combined in a more sophisticated hybrid evaluation procedure. The key difference 

between the two approaches is that filters do not require the induction of a machine 

learning model. A filter approach evaluates the intrinsic saliency of features 

independently of the machine learning algorithm.  There are various kinds of filters. 

Distance or similarity measures are filters that are typically used for evaluating 

individual features.  

 

A wrapper evaluates features by using a harness containing the base learning 

algorithm(s) and an objective function. Each individual feature or feature subset can be 

used to induce a different model from the learning algorithm using a set of training 

instances. When saliency is measured in a wrapper using say, classification accuracy as 

an objective function, an individual feature yielding a relatively high accuracy 

compared to the others could be described as the most salient individual. It is sometimes 
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desirable to have high values of sensitivity and specificity together with high accuracy. 

Thresholds for accuracy are occasionally prescribed together with thresholds for 

sensitivity and specificity in a conditional objective function, where all conditions need 

to be satisfied for the feature to be selected. For instance, finding feature 

parameterisations that result in {accuracy > a and sensitivity > b and specificity > c} 

where a, b, and c are the threshold values. However, these accuracy metrics alone say 

nothing of the important concepts of stability of the feature in the presence of data 

variability or robustness of the feature to changes in parameters and classification 

objectives. 

 

3.6.2 Supervised learning 

 

(1) Support Vector Machine (SVM) 

 

The Support Vector Machine (SVM) (Vapnik, 1995, 1998) is a binary classifier with a 

classification hypothesis (model) whose decision boundary is a discriminatory 

hyperplane. It is a maximal margin classifier. During the induction stage the optimal 

model with the greatest separation between the decision boundary and the n-

dimensional patterns, xj in the training data set is found. The optimal hyperplane is 

represented using a subset of training patterns known as Support Vectors.  

 

For a linear SVM with separable training patterns, the binary classification function,  

(xi), for determining class membership of an unseen pattern, xi is,  (xi) = sgn( w· xi -  

) where w is the unit normal vector to the hyperplane and  is the (minimum) distance 

of the hyperplane from the origin. The class label yi  { 1} is assigned to a test 

instance according to whether  (xi) is positive or negative, which depends on the side 

of the hyperplane the test instance lies on in the feature space.  

 

Maximising the margin during the induction stage is equivalent to minimising the 

Euclidean norm of the vector, w, subject to the condition, yj (w· xj + )  1. The 

problem can be reformulated as a Lagrangian dual that is solved using numerical 

techniques such as quadratic programming (QP) to find the optimal model parameters. 

When the training patterns are not separable, a so-called soft margin approach is used 

which permits small training errors, with an associated cost (penalty.) The objective 
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function still requires minimisation of the Euclidean norm of w but the inequality 

constraint, yj (w· xj + )  1 can no longer be satisfied. Thus, the optimisation problem 

now concerns maximising the soft margin subject to the trade-off of the cost of training 

errors. 

 

Non-linear SVM’s can be effectively implemented implicitly, using the kernel trick. 

The basic idea is to compute the similarity between pattern instances in the original 

feature space using a kernel function. It is a far more efficient approach, compared to 

transforming the pattern instances explicitly to a new (higher dimensional) feature space 

where the patterns are linearly separable. 

 

Linear and non-linear SVM’s models were induced in Active Learning experiments (not 

documented in the thesis.) The SVM is outlined here though due to its very close 

relationship to the Ball Vector Machine (BVM.) 

 

(2) Ball Vector Machine (BVM) 

 

The Ball Vector Machine (BVM) (Tsang et al., 2007) is a type of SVM that uses 

Minimum Enclosing Balls (MEB) rather than QP or other numerical techniques, to 

solve the optimisation problem in the model induction stage. The C++ BVM 

implementation8 by Tsang et al. (2007) is an extension of the LibCVM/LibSVM toolkit.  

 

(3) Naïve Bayes Classifier 

 

Unlike the discriminatory SVM and BVM, the Naïve Bayes classifier is probabilistic. It 

is a multi-class classifier, based on Bayes’ theorem. Only a small amount of training 

data is needed for the maximum likelihood estimates of the model parameters from the 

unknown probability distributions of the classes during induction. In the prediction 

stage, decision support, output with the corresponding class labels from the classifier, is 

the probability that the labelled pattern instance belongs to the assigned class.  

 

                                                 
8 LibCVM Toolkit Version: 2.2 (beta), How to use. http://www.cs.ust.hk/ ivor/cvm.html [Accessed 23-

07-2010] 
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The classifier is called “naïve” because of the naïve assumption that features used to 

train the model are conditionally independent, given the class, i.e., P(x | ) = n
j 1 P(xj 

| ), where, x is a feature vector, xj  x and , a class. Although in practice it is known 

to work well even if the conditional independence assumption is not satisfied 

(Domingos and Pazzani, 1997) and also for functionally dependent features, as in Rish 

(2001.) The Naïve Bayes classifier from the Matlab library is used in the experiments in 

case studies 3 and 4. 

 

(4) K-Nearest Neighbours (k-NN) 

 

The k-Nearest Neighbours (k-NN) classifier (Fix and Hodges, 1951) differs again from 

the others outlined previously. Aside from setting the number of neighbours, k, there are 

no parameters. The k-NN is a lazy learner, as it has no explicit training or generalisation 

phase. The “model” is defined implicitly by stored data instances and classification 

rules.  

 

The algorithm works by computing the distance (or similarity) between a query instance 

and its k-NN in the “model” data set. In the case where all k instances are equally 

weighted, the predicted label of the query instance is the modal class label of its k-NN.  

The contribution to the classification decision of the individuals in the k-NN can also be 

weighted according to their distances from the query instance, as in Dudani (1976.)  

 

3.6.3 Unsupervised learning 

 

(1) k-Means 

 

The k-Means is a prototype-based clustering algorithm that uses the centroids of clusters 

as the prototypes. It groups pattern instances into clusters in a feature space by 

minimising the sum of squares of distances between the patterns and the cluster 

centroids. Initially, the number of clusters (k) needs to be specified or estimated in a 

cluster evaluation procedure. Random points may be assigned as the initial centroids.  

K-Means clustering is an iterative process and the key steps are (1) compute centroids 

(2) determine the distance of each instance from the centroids (3) group the instances 

into clusters based on the minimum distance from the centroids (4) update the centroid 
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locations.  Instances may move from one cluster to another in the iteration and this 

continues until convergence, when there are no further changes in the instances 

belonging to each cluster.  

 

 

(2) Self-Organising Map (SOM) 

 

The Self Organising Map (SOM) is a type of unsupervised ANN. It can be thought of as 

a prototype clustering method, with the centroids topographically prearranged in a fixed 

sequence, i.e. a map. In a 2-D map, the centroids (cells) close together represent data 

points (pattern instances) that are similar in some way, in the input space. Therefore, the 

SOM can serve as a cluster analysis tool (as is the case in the thesis), since it preserves 

the topology and relative distance between patterns.  

 

3.7 Summary 

 

The aim of this chapter was to identify some of the underexplored (also some of the 

more commonly used) computational methods in the seabed image classification 

domain and hence confine the scope of the computational methods to be considered 

within the application focus of the thesis.  The key points arising from this chapter are: 

 

o Using texture as a discriminative subspace is probably the commonest approach 

to classifying seabed imagery. The most frequently used texture features are 

derived from Grey level co-occurrence matrices (GLCM).  Many researchers 

and commercial processing packages use these features.  

 

o Descriptive statistics can be used as features on sidescan imagery since mean 

backscatter intensity can be correlated to sediment type. 

 

o Signal processing methods, such as Gabor Filter banks, despite their widespread 

use elsewhere are rarely considered for feature creation in the seabed 

classification domain and are not currently used in any commercial processing 

packages. 
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o Image texture formation models may offer a promising approach, as part of a 

machine system for the discrimination of specific textural targets such as 

Sabellaria. However this was not a viable research pathway for the thesis as 

there were no data available for validation. 

 

o In order to work effectively, parametric feature kernels need some degree of 

tuning for the specific data dependent classification objectives. There is no 

universally accepted method for feature (and feature parameter) evaluation on 

seabed imagery. There have been very few domain specific studies concerning 

feature evaluation methods and none regarding the robustness of the methods. 

 

o There are no published studies on the machine discrimination of Sabellaria 

textures. It is not known what features could be useful for the novel task of 

discriminating these textures in waterfall and mosaic imagery. 

 

o Most studies use their own data, classification objectives, features, classifier, 

processing strategies and class labeling system. In some published studies, there 

is no external validation. It is all but impossible to evaluate the work of different 

researchers and each has to be considered on its own merits for the specific 

problem being studied. This issue is explored further in the next chapter. 

 

o There have been few published case studies on machine discrimination of 

specific landform objects in DBM’s and what features are suitable for these 

novel tasks. 

 

o More sophisticated classification approaches, using hybrid methods and 

unsupervised ensembles have received very little attention in the domain. 

 

The aim of this chapter has been achieved. As will be seen as the thesis progresses, 

many of the points raised above concerning the computational methods will be revisited 

and explored further, within the case studies. In the next chapter, the research analysis 

and design is presented. The issue of evaluation and standardisation of results is also 

discussed as it is not easy to specify at this stage.  
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4.1 Introduction 

 

This chapter concerns the research analysis and design i.e., the approach to the research, 

how it was executed and the methods, processes and evaluation issues involved. Section 

4.2 covers the main aspects of the research analysis and design, focusing on the 

framework for the research at global and case study levels. The aims, objectives and 

scope are stated and a general description of the research type and methodology is 

given. Generic research design as applied at a case study level is then outlined. As an 

industrial project, some extraordinary issues arose which led to major changes in the 

direction, design and duration of the research. Some of these factors are considered 

further in the research management section of chapter 9 but they are briefly stated in 

this chapter, in the context of the project timeline (4.2.5). The main (known) risks for 

the project are also identified.  

 

Section 4.3 discusses some the evaluation issues. The results are uncertain in human 

interpretative and machine approaches to the subjective seabed target discrimination 

problems considered. Issues relating to interpretation and mapping, external validation 
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and standardisation are outlined and discussed. This section includes some original 

work to elucidate one of the problems and support the argument. 

 

4.2 Research analysis and design 

 

Section 4.2.1 presents a general background to the research project and type of research. 

In section 4.2.2 the general aims, objectives and scope of the project and the individual 

case studies are stated. The type of research and general methodology is outlined in 

section 4.2.3. Research design at a case study level is considered in section 4.2.4. The 

timeline of general project activities is summarised in section 4.2.5. Two key risks are 

identified in 4.2.6. 

 

4.2.1 Background 

 

The research in this thesis concerns the creation and evaluation of novel processes and 

methods (ideas) in a virtual (computational) experimental space. From a practical 

perspective, these artifacts could potentially be useful if implemented in an industrial 

context. In particular, for assisting with laborious and expensive office based 

classification related tasks at the human interpretative end of a data processing pipeline. 

In order to be described as research, knowledge and understanding must be advanced in 

some way. The thesis provides evidence to show that a context-limited advancement has 

been achieved in the course of the project. The purpose of this section though, is to 

describe the research framework that has facilitated the accomplishment of this goal. 

 

4.2.2 Aim, objectives and scope of the project and case studies 

 

General aim 

 

The general aim of the research is to devise and investigate novel processes and 

methods that could potentially be used as part of a machine learning system for assisting 

humans with the subjective (interpretative) discrimination and classification of natural 

targets in seabed imagery. The general objectives reflect the aims of the case studies. 

 

 

 



Chapter 4  Research design 

 

71  

General objectives 

 

1. Propose and investigate a novel machine learning process for pockmark object 

discrimination and boundary mapping in a DBM. 

 

2. Investigate if the machine discrimination of Sabellaria textures in sidescan 

waterfall and mosaic imagery is a tractable task. Determine suitable features, 

feature configurations and parameters for this task.  

 

3. Design a framework for evaluating the robustness of distance measures for 

feature evaluation and ranking. Investigate properties of a novel committee of 

distance measures for feature evaluation and ranking on sonar imagery. 

 

4. Investigate how to apply an unsupervised machine learning processes to larger 

real-world sonar mosaic imagery. Devise novel methods and processes to meet 

the challenges of this task. Qualitatively evaluate the merits of a fully automated 

supervised and novel, hybrid unsupervised approach (including an unsupervised 

ensemble approach) to a target discrimination task in a real-world mosaic image. 

 

General scope 

 

Technical methods scope is limited to feature based machine learning processes and 

methods summarised at the end of chapter 3.  

 

The problems are data driven and the data scope is confined to sidescan sonar mosaic, 

and waterfall imagery and MBES bathymetry in the form of a DBM. All data are 

rasterised and processed. No further processing is applied. The problems and data are 

considered at a phenomenological, human interpretive level.  

 

The application scope concerns the two previously identified topics for investigation in 

chapter 2; pockmark discrimination and Sabellaria discrimination. The sediment 

discrimination task in case study 4 is a contingent application. 
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Situated within the general aims and scope are the four case studies. Each case study has 

its own aim, objectives and scope, as summarised in table 4.1. Thus the general scope is 

defined implicitly by the scope of the case studies. 

 

 

[1] Pockmark object discrimination and mapping 

 

 

Problem 

statement/question 

 

Manually identifying and mapping pockmarks rendered in a 

DBM is a time consuming, inconsistent and expensive manual 

process. Can aspects of this process be automated with a 

machine learning system? 

 

Aim Design methods and a process for supervised discrimination and 

mapping of the pockmarks. 

 

Objectives 1.1. Investigate types and combinations of features that could be 

useful for representing and discriminating between grid-node 

neighbourhoods belonging to pockmark objects and those that 

do not. Identify the most useful features using classification 

accuracy as the objective function. 

 

1.2. Compare the machine identification of the pockmark 

landform objects to the manual human identification by 

counting the objects identified. 

 

Scope 

 

DBM data from the Geological Survey of Norway. Supervised 

feature based machine learning, with manual, human selection 

of training points. Discrimination of pockmark grid nodes 

neighbourhoods and mapping the boundaries of pockmark 

objects. 
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[2] Sabellaria texture discrimination 

 

 

Problem 

statement/question 

 

Manual, interpretative discriminating and mapping of Sabellaria 

textures rendered in sidescan sonar imagery is a time 

consuming, inconsistent and expensive manual process. Can 

aspects of this process be automated with a machine learning 

system? 

 

Aim Identify a useful feature creation method and parameter ranges 

for efficiently discriminating Sabellaria textures from other 

textures in sonar waterfall and mosaic imagery. 

 

 Objectives 2.1. Evaluate different state-of-the-art feature creation methods 

on waterfall imagery and identify any promising methods. Use 

Sabellaria classification accuracy and overall classification 

accuracy as objective functions for the evaluation. 

 

2.2. Investigate, in depth, a feature creation method (from 

objective 1) for Sabellaria discrimination in sonar mosaic 

imagery and identify a suitable configuration and set of 

parameters for the chosen feature creation method. Use 

classification accuracy and cost as objective functions for 

heuristically evaluating the configurations and parameters. 

 

Scope Mosaic and waterfall dataset 1. Sabellaria texture discrimination 

on small sized image patches. 
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[3] Feature evaluation and ranking using distance measures 

 

 

Problem 

statement/question 

 

Which distance measures are useful for evaluating and ranking 

features and feature parameters on sonar imagery? Can a 

committee of distance measures provide more reliable results 

than an individual? How robust are the feature evaluation 

methods? 

 

Aim To find out which distance measures can be used for a robust 

evaluation and ranking of parametric features, applied to sonar 

imagery and establish if a committee of distance measures can 

improve the robustness, compared to an individual. 

 

Objectives 3.1. Establish which individual distance measure(s) are most 

reliable for feature evaluation and ranking on sonar imagery. 

Evaluate the methods by considering the correlation to 

classification accuracy, rank correlation and the variability of 

these properties under different conditions. 

 

3.2. Establish if there is any advantage in using a committee of 

distance measurements on sonar imagery and what the 

limitations are. Evaluate as described in objective 1. 

 

Scope Mosaic and waterfall dataset 1, small image patches. Outex 

benchmark textures. Grey Level Co-occurrence Matrix features. 
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[4] Unsupervised classification of sonar imagery 

 

 

Problem 

statement/question 

 

How can multi-class supervised and unsupervised classification 

techniques be applied to larger sized, real-world mosaic images? 

What are the main technical issues, advantages and 

disadvantages of the supervised and unsupervised approaches? 

Is there any justification for using an ensemble approach? 

Which approach is better for discriminating between sediment 

types? 

 

Aim Devise an unsupervised process, including a fusion method for 

multi-class, multi-model unsupervised discrimination and 

subsequent classification of interesting regions in full-sized 

sonar mosaic imagery.  

 

 Objectives 

 

4.1 Devise a heuristic, hybrid machine learning process for the 

unsupervised classification of sonar mosaic imagery.  

 

4.2 Qualitatively evaluate the plausibility of the process and 

results by comparison with a supervised classification and a 

specimen, manually produced classification.  

  

Scope USGS sonar mosaic imagery, ground truth descriptions and 

sediment class map. Sediment type (grain size) discrimination. 

 

 

Table 4.1 Summary of the aims, scope and objectives for each case study. 
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4.2.3 Outline of research type and general methodology 

 

As an industry-based project, it is predominantly about “problem solving research” as 

defined by Phillips and Pugh (2005, p 52.) It is also a form of action research (Lewin, 

1946, Susman and Evered, 1978) since the consequences of the research could 

potentially bring about a change in the way certain manual tasks are currently carried 

out in the workplace. Therefore, by implication, it must be applied research. It is also 

pragmatic in the sense that an aim is to create knowledge and methods to improve 

specific situations. Established computing science research methodologies are used in 

the thesis; case study, proof of concept and empirical investigation (Ramesh et al., 

2004.)  

 

Figure 4.1 illustrates a product of the research (the four case studies ordered from top to 

bottom along a timeline) and the conceptualised framework for the research. The case 

studies are aim driven, and each has its own individual (but coherent) objectives and 

scope that are subsets of the overall aim, objectives and scope of the thesis. This serves 

as one constraint on the research design at the case study level. Another constraint is the 

desired output or outcome from the case research. These endpoints facilitate the 

construction of a research design for the studies. This is described further in subsection 

4.2.4. The case study research designs are components of the overarching or global 

methodology concerning the research process, methods and procedures. Each case study 

therefore is a distinct but coherent component of the thesis. 

 

The research is primarily qualitative, exploratory, descriptive and evaluative. It cannot 

be described as fundamental or explanatory, since the purpose is not to investigate 

causality with testable hypotheses. In fact, is not possible to construct reliable 

hypotheses when the facts are uncertain.  Much of the work carried out concerns 

observing outcomes or generating numerical results from data in virtual experimental 

spaces and subsequently interpreting and analysing those results. It is therefore 

empirical research.  

 

There are three principal benefits of using an experimental computing science approach 

to the case studies, as in Tichy (1998); 
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1. The knowledge base can be made more reliable by reducing the uncertainty 

about, methods and tools which are appropriate for the task. 

 

2. New and unexpected insights can arise in the course of the experimental work. 

 

3. Useless approaches and incorrect assumptions can be identified and eliminated. 

This helps to align ideas and engineering in more fruitful directions. 

 

The researcher has no control over data collection and processing prior to the point of 

applying the machine learning processes, so in this respect, the work is 

phenomenological and specific to the individual data set. Although, a case study 

structure is suitable for this type of research and the different themes investigated, one 

limitation is that it is not easy to generalise. Whilst inductive and deductive reasoning 

processes are used, the research is not fully inductive (or deductive) due to the 

aforementioned limitations of hypothesis construction and generalisation within the 

individual case studies.  

 

 

Figure 4.1 Conceptual layout showing the generic research design for the case studies and the methods 

used. 
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The research methods are mixed, and a combination of qualitative and quantitative 

techniques is used. Again, this follows from the fact that the data are qualitative and 

uncertain and whilst quantitative analyses can be applied, the outcomes are subjective. 

Mixed methods can lead to a holistic understanding of the processes and outcomes from 

the process (Bazely, 1999, p 284.) 

 

4.2.4 Generic case study design 

 

Having described some of the global characteristics of the research, attention is now 

turned to the case study level and the attributes associated with the yellow boxes, 

“Research design” and “case study specific methods” in figure 4.1. 

 

There are differences in detail regarding the research design and process for each of the 

case studies. The design and process for the individual studies is implicit within the case 

study chapters. However, the templates for each study are quite similar. This section 

describes a generic design and states the methods, broadly applicable to all of the case 

studies. Evaluation of the results is considered as a separate topic in section 4.3. The 

key design factors are as follows: 

 

Data  

 

Consideration is given to what data are required (to meet the objectives, if already 

known) and where the data will come from. It is lower risk and a sensible precaution to 

devise problem statements and design the research around available data than to propose 

research based on data that is not yet available (see also, section 4.2.6). Instances where 

data were available at the inception of the research are indicated in table 4.2.  

 

Problem statement (objectives) 

 

A simple test for the objectives is the SMART rule: Specific, Measurable, Agreed, 

Realistic and Time constrained. Most of the objectives in each case study satisfy this 

rule, as summarised in table 4.2. 
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Objective Data S M A R T 

1.1       

1.2       

2.1       

2.2       

3.1       

3.2       

4.1 -      

4.2       

 

Table 4.2 Summary of objectives according to the SMART criteria. 

 

Experimental methods and procedures 

 

The experiments are virtual, involving the evaluation of an idea in a virtual 

experimental space. A computational challenge in this study was the lack of existing 

software tools and frameworks required to carry out the experimental tasks. 

Consequently, many of the algorithmic methods (excluding the core learning algorithms 

such as Naïve Bayes and k-means) implemented within the experimental harnesses and 

the design and implementation of the harnesses themselves, had to be done from first 

principles.  

 

In deciding on the dimensions of the experimental space, it is essential to identify a few 

important metrics that facilitate a sensible measurement or representation of the desired 

properties of the concept under test.  It is not realistic in the cases here, to explore more 

than a few properties due to the computational time required and the additional 

difficulty of analysing and making sense of the results. Deciding on suitable metrics (or 

proposing new ones) capturing the properties of interest therefore requires a thorough 

understanding of the problem and the domain literature. It is also important to decide 

which parameters will remain fixed and which can be varied. Detailing the 

specifications and the parameters for the experimental space constrains the problem to a 

manageable size and also helps to ensure repeatability (reliability), i.e., given the same 

data, experimental set-up and parameters, an independent researcher would obtain 

identical results.  
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Generation of results, visualisation and analysis of results 

 

In all of the case studies, the raw results output from the experimental harnesses are 

numerical. Visual representation is preferable for interpretation, understanding and 

communication of the results. This entails another layer of processing, applied to the 

results output from the experimental harnesses. Each study required its own results 

analysis and visualisation layer. Generally, the simplest method of analysis was chosen.  

 

4.2.5 Timeline of general project activities 

 

The timeline of research activities (in their most general terms) is summarised in figure 

4.2. Blue boxes correspond to part-time activities and orange boxes to full-time. Eight 

months were spent on preliminary investigations prior to officially commencing the 

full-time project. Much of the first-year work was devoted to studying domain 

literature, investigating possible research pathways and on practical development and 

experimental work relating to the discrimination of pockmarks in MBES bathymetry 

data. Some time after the fundamental direction of the research was changed to the 

discrimination of Sabellaria colonies in sidescan sonar data, it became apparent that data 

required to continue with and bring to conclusion this line of research would not be 

available. Contingent investigations were thus carried out in another direction using 

different data. A more detailed consideration is given in chapter 9. 

 

 

Figure 4.2 Research timeline (general themes and deadlines) 
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4.2.6 Risk awareness 

 

A research project whose outcomes depend on several, intensive software design and 

development stages for the experimental harnesses and also on the provision of data has 

a very high level of intrinsic risk.  

 

An interesting viewpoint is that building a thesis from a diverse collection of data and 

experimental harnesses in the case study contexts mitigates the risk of problems due to 

dependency on a single theme centred on one experimental harness and data set. For 

example, if all of the work were based on a single piece of software that was discovered 

to be faulty at a late stage, it could potentially have implications for the entire project 

and all results in the thesis.  

 

The data provision/acquisition had three contingencies (in addition to the original data 

set which later turned out to be incomplete.) Again, this is considered further in chapter 

9. 

 

4.3 Discussion of evaluation issues 

 

The purpose of this section is to describe and discuss some of the evaluation issues 

associated with subjective, interpretative manual target discrimination and classification 

tasks and the machine automation of these tasks.  The results in general, from 

interpretative human classification are not as repeatable or consistent as those obtained 

from statistical, acoustic seabed classification methods. Anderson et al. (2008) present 

an argument in favour of statistical, objective classification procedures over manual 

interpretative classification. However, Christensen (2007) found that some of the results 

from automatic classification software were rather poor and claims that the automatic 

classification usually has greater uncertainty than manual classification. As has been 

pointed out, the work in this thesis concerns the automation of interpretative 

classification tasks (which is quite different from automated acoustic seabed 

classification). The application focus of the thesis is on tasks that cannot currently be 

achieved by more objective acoustical seabed classification methods. Thus, measuring 

and assessing the efficacy of the machine processes in the thesis presents a number of 

challenges. 
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There are several examples of published work on seabed classification problems that 

have good external validation, even though the methods, processes and classification 

objectives may not be standardised. In these cases, the results of the machine 

classification process applied to the sonar imagery are supported by various forms of 

ground truth, for instance; (1) PSA from grab samples for confirming sediment types, 

(2) shallow seismic sections for confirming subsurface geology and regions of rock 

outcropping and surface sediments, (3) photographic or video evidence of seabed 

substrate. See, for instance, Dartnell and Gardner (2004), McGonigle et al. (2009) and 

Brown and Collier (2008).  

 

As an example of a validation issue, in the case of pockmarks, it is not easy or 

inexpensive to go to the bottom of the sea and take the various measurements required 

to confirm the efficacy of a human or machine discrimination of these objects in a 

DBM. Further issues arise, for instance, if the pockmark boundary is not defined in 

some way. There may be considerable disagreement amongst experts on what exactly 

the boundary is, as visually rendered in the DBM. Invariably, some simplifying 

assumptions have to be made in order to make progress with machine processes for 

discriminating such targets. In Gafeira et al. (2012), a watershed method is applied and 

identified objects are treated geometrically as polygons. A combination of two 

thresholds for minimum area and area/perimeter ratio are used to reject polygons that 

are less likely to be pockmarks. It is different to the approach of case study 1, in the 

next chapter of the thesis, where, the assumption is made that all identified objects are 

pockmarks. They are both plausible assumptions, based on knowledge and context. In 

case study 1, the object densities are 2-6 times greater than the highest density case 

considered by Gafeira et al. (2012). The feature based approach is different too and the 

resolution of the features is tuned to identify objects of a particular size range. Thus 

small, irrelevant objects are likely to be filtered by the features as they are below the 

resolution threshold. Having made these simplifying assumptions, a quantitative 

comparison (evaluation) between machine and human object discrimination is 

facilitated, such as the number of objects identified and the speed with which the task 

was done. However, because of the differences in the methods, processing flows and 

assumptions, the lack of common benchmarking data and standardised evaluation 

metrics, it is not easy to make a comparison of the approach with the work of other 

researchers. The same is true for much work in the seabed classification domain, as 
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there is such a great diversity in classification objectives, methods, processes and 

labelling of entities, generally with no widely accepted common framework or data sets 

for benchmarking new methods.  

 

Natural entities on the seabed are often heterogeneous and distributed, occurring at a 

variety of spatial scales, such as the case with Sabellaria colonies. Human interpretation, 

despite its subjectivity, is perhaps the most widely used method for identifying and 

delineating Sabellaria texture surrogates in sonar imagery.  

 

To highlight some of the issues involved in trying to establish a meaningful evaluation, 

of human (manual) vs. machine, a simple controlled experiment was carried out. The 

example in figure 4.3 illustrates inter-rater variability between five independent human 

raters (sonar interpreters) when tasked with discriminating regions of potential 

Sabellaria colonisation from the background in a small region of waterfall imagery.  

 

 

Original image Rater 1 Rater 2 Rater 3 Rater 4 Rater 5 

Legend  Sparse Sabellaria  Moderate Sabellaria 

 

Figure 4.3. Manual segmentation and classification of the same waterfall image section (far-left) by 5 

independent human raters. Block white areas indicate Sparse Sabellaria and block grey areas, moderate 

Sabellaria. All other regions not block shaded represent sand (as in fig. 4.5.) 

 

The raters were presented with identical versions of the original image shown on the far 

left of figure 4.3. Water column removal and slant range correction had already been 

applied beforehand in CodaGeosurvey processing software. Usually, individual 

interpreters will apply their own preferred enhancements to the imagery to assist with 

the visual examination of the textures, including changing brightness and contrast, 

filtering and histogram equalisation.  
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In the experiment, the raters could not reprocess the raw data to alter the image. This 

circumvents the potential problem pointed out by Johnson and Helferty (1990) that 

sidescan imagery can be enhanced by a human, to match a preconceived idea of how the 

processed image of the seafloor should appear. The interpretation was constrained to the 

identification of up to three prescribed classes in the imagery, as shown in figure 4.4. 

 

 

Figure 4.4. Class prescriptions for the image region shown in figure 4.3 

 

The target class, (T ) is defined as the textural region(s) in the image which potentially 

represent Sabellaria colonisation. The target has two possible sub-class definitions, 

“sparse/patchy concentration” and “moderate concentration”, shaded white and grey, 

respectively (if distinguished) in the interpreted images of figure 4.3. Regions not 

belonging to the target class (T) are defined as “sand”. The regions are associated with 

class labels by ground truth but the true boundaries of the regions are undefined (and 

unknowable). The meanings of the sub-class labels are imprecise and describe the 

qualitative degree of patchiness or ground coverage of the colonies. There is no defined, 

quantifiable distinction between the two subjective labels.  

 

Individual raters expressed a high (100 %) degree of confidence in the correctness their 

interpretations. The result of the experiment was five different interpretations, with 

unequal numbers of classes and significant inter-rater variability in the delineated class 

regions, shown in figure 4.3. Although the experiment was not repeated later, it is 

highly likely that intra-rater variability would also be observed, i.e., the same interpreter 

presented with the same information would produce a different interpretation at a 

different time. Despite the uncertainties in the class labelling and the boundary 

locations, it is clear that each interpreter must have some notion, in their internal visual 

Image 
region 

No sabellaria 
(sand) 

Possible 
Sabellaria 
colonisation 

Sparse/patchy 
concentration 

Moderate 
concentration 
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database, of the texture type that characterises regions of potential Sabellaria 

colonisation.  

 

Given the individuals were presented with the same image and they all recognise the 

Sabellaria textures, why are the interpretations different? There are many factors 

involved here. Unlike the clean, relatively homogeneous representation in figure 2.3 (a), 

in this image, the Sabellaria target is far more ambiguous. Textural surrogates are 

heterogeneous and spatially distributed with varying density (coverage) and lacunarity 

(variability in the size and shape of the distributed target elements). The image is also 

quite visibly corrupted with noise. Therefore, it is very difficult for the human 

interpreter to reliably discriminate regions of Sabellaria textures from the background. 

The natural boundaries of Sabellaria colonies are not well-defined, so there may be 

many possible interpretations of the spatial extent (Hendrick and Foster-Smith, 2006). 

Our eyes can discern differences in tone and texture of the grey levels between the 

different regions due to differing acoustic reflectivity and roughness of the materials, so 

naturally, physiological differences such as visual acuity will affect interpretation. There 

may also be institutional bias, where individuals have been trained to interpret imagery 

in a certain way by a particular institution or individual. The raters bias and variance is 

impossible to measure in absolute terms, because the true boundary of the classes is 

unknown. Georeferenced video footage or photographs would provide a more detailed 

representation of the Sabellaria colony and its delineation from surrounding sediments 

but these data are not available for this study. In fact, detailed, ground truth data are 

seldom available for evaluating seabed classification results (Martin et al., 2006).  

 

A basic assumption in seabed interpretation and classification is that if a ground truth 

point lies within a corresponding region of imagery with textural (or intensity) 

properties associated with the ground truth, the homogeneous region can be assigned the 

class label associated with the ground truth point. Ground truth data, in addition to 

being highly localised is usually very sparsely distributed due to the acquisition costs. 

 

In the next stage of this experiment, using an un-weighted majority vote scheme, class 

labels are assigned to the image regions with the combined (consensus) classifications 

of the independent raters. This suppresses the inter-rater variability leading to a more 

reliable class map, with unknown accuracy (bias) in the true class boundaries. The 

consensus class map is shown on the far left of figure 4.5.  
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The results of two supervised, binary classification experiments (A), (B), are also shown 

in the centre and at the right of figure 4.5. In both cases the white areas represent the 

target class, Sabellaria (no sub-class distinction is made) and the black areas correspond 

to the background (sand class). The model induction and prediction parameters and 

sample locations for each experiment are identical but different feature creation 

methods are used (the methods are discussed in much greater detail later in the thesis.)  

 

In machine classification (A), features are generated using a Gabor filter bank. Features 

derived from a GLCM produced classification (B). The blue vertical line in (A) and (B) 

is the image centre line and the parallel red lines enclose a region containing poor 

quality or noisy pixels either side of the nadir region. Superimposed magenta lines show 

the outline of the consensus boundary of the raters. The regional, machine based 

segmentation is a by-product of the classification.   

 

 

Figure 4.5. (left) Consensus classification of the image region in figure 4.3, by five independent raters. 

(A) machine classification using Gabor filter bank features. (B) machine classification using GLCM 

features. 

 

Qualitatively, it is clear that the spatial extent of the human consensus classification and 

the two example machine classifications have some similarity. A quantitative 

assessment of similarity can be made by counting the number of sub-regions (small 

tiles, or image neighbourhoods), excluding the central region, where the human and 

machine classification are in agreement, i.e. by using a contingency table for Sabellaria 

and non-Sabellaria classification. If the assumption is made that the human 

interpretation is the benchmark or gold standard, the similarity, compared to the 

 (A) (B) 
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benchmark can be called accuracy. In this case, classification (A) has an accuracy of 

72.6 % and (B) 80.6 %. The word accuracy is inappropriate though, because these 

accuracies compare the proportions of a bulk area that have been assigned a class label 

that is in agreement with an uncertain human classification.  

 

Further, in the absence of visual information, the numerical values of accuracy indicate 

that method (B) is more accurate at identifying Sabellaria than method (A). Yet, the 

visual result of (A), despite having an accuracy which is 10% lower than (B), is more 

representative of the actual physical distribution of the Sabellaria clumps. It not only 

captures the patchiness but shows a clear distinction between the degree of patchiness 

on the left and right sides of the centre line, corresponding to the descriptions of sparse 

and moderate concentrations of Sabellaria, respectively. For offshore engineering 

purposes, where contractors are concerned with avoiding bulk areas of a particular 

habitat, a classification similar to (B) may be useful. But for scientific purposes, where 

researchers are interested in quantifying the spatial distributions of biogenic structures 

at a particular scale, classification (A) would be more suitable. It is not then, a simple 

matter of claiming that one method is more accurate than another and is thus a better 

method. This further justifies a mixed methods approach to evaluating such results. It 

also highlights a point that repeatability of the classification approach and results may in 

fact, not be an issue for certain types of study where bespoke methods and analyses are 

required in an interpretative classification. It is the opinion of the author that instead of 

trying to replace interpretative approaches with objective statistical approaches, 

computational methods should be devised to assist the interpretative approach and 

facilitate an integration of human knowledge with objective methods, to provide a 

holistic view of the submarine environment. 

 

External validation of tentative classifications in sidescan sonar imagery with ground 

truth is also uncertain. The very limited numbers of georeferenced locations where 

physical ground truth samples are taken in a survey do not usually coincide with the 

corresponding georeferenced points in the imagery or may correspond with image 

regions which are noisy or distorted. There is always a mismatch due to positioning 

errors in the image acquisition process and in the estimation of the ground truth 

location. If ground truth locations lie in the nadir region (almost directly below the 

instrument), the image data will be saturated, containing no discernible textural 

information. An example of this problem is shown in figure 4.6. The green markers 
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indicate ground truth locations in the nadir region of the image (the bright, vertical band 

of noise, running from top to bottom). Sabellaria were identified at this ground truth 

location. Visual inspection of the image textures reveals the possibility of Sabellaria 

colonisation in the region to the left, bounded by the red line, several metres from the 

ground truth locations. There is no discernible texture characteristic of Sabellaria near to 

ground truth points. 

 

 

 

Figure 4.6. Ground truth points (green markers) are located in the nadir region of the image where there 

is no discernible textural information. A possible location of a Sabellaria colony is the region of texture 

bounded by red, to the left. 

 

The hard evidence that Sabellaria are in the vicinity is in the ground truth samples. The 

ground truth sample points may (or may not) be accurately georeferenced and 

accurately collocated in the image. It might have been the case that small, isolated 

patches were sampled and they are acoustically transparent or unresolved at the 2 pixel 

per metre resolution in the mosaic or obscured by the nadir distortions. It is also 

possible that the sampling locations were actually inside the region bounded by red (or 

some other region) and there is a mismatch in the image location due to positioning 

errors of the sidescan instrument and the ground truth sample points. This is speculative 

though. 

 

Regardless of the reasons why there is no discernible Sabellaria texture at the ground 

truth location, great care is needed when designing a machine process applied to the 
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discrimination task, because of such spatial mis-matches between real-world ground 

truth locations and corresponding target textural regions in the mosaic image. In this 

instance, if points near the ground truth locations are selected as target class seeds for 

training a supervised learning algorithm to identify Sabellaria textures, the induced 

model will likely be a poor representation and the prediction results erroneous. A 

human interpreter can recognise textures characteristic of different regions in the image, 

so a visual selection of representative training regions for building a machine learning 

model of the textures can be a more reliable approach, as in Blondel and Gómez-Sichi 

(2009.) Naturally, for this to work, the mosaic needs to be created and rendered at a 

resolution appropriate for visual identification of the textures of interest. 

 

The approach taken in case studies 2 and 3 (chapters 6 and 7 respectively) in the thesis 

is to use small homogeneous regions of mosaic and waterfall imagery containing 

textures representative of Sabellaria and other seabed classes. The texture samples were 

selected by visual inspection, subject to the condition that selected regions tentatively 

identified as belonging to a particular class must have nearby external validation, in the 

form of ground truth, confirming the class type. This reduces the uncertainty in the 

experiments concerning discrimination of Sabellaria from other textural entities, 

primarily by removing the boundary and heterogeneity issues associated with mixed 

natural textures on larger sized image regions or full-size mosaics.   

 

According to Anderson et al. (2008), many researchers prefer statistical, objective 

approaches to seabed classification. Current objective methods are based on established 

physics or empirical models of backscatter-sediment interaction, as in Fonseca and 

Mayer (2007), Fonseca et al. (2008) and Hughes Clarke et al. (1997). A reason why 

these methods are preferred by some researchers (and in some industrial data acquisition 

and classification pipelines) is that substrate classification results obtained from 

calibrated backscatter data (as in remote substrate characterisation) are standardised and 

repeatable (albeit uncertain.) However, seabed substrate alone does not capture the 

richness and diversity of the seabed environment. Remote substrate characterisation is 

one of representation of this environment. Sidescan offers another view, usually on a 

smaller scale and at a higher resolution than the MBES. It further captures details of 

important seabed targets such as Sabellaria colonies, a task which is unproven with 

current MBES technology.  
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The focus of the work in the thesis is specifically on novel computational methods and 

processes that could be used for automation of decision (human) level qualitative 

interpretation and classification tasks on qualitative data, such as Sabellaria 

discrimination. It is important to appreciate that the results and their subsequent 

evaluation is context specific and uncertain. It is not a limitation of the research work 

itself but an intrinsic property of the problems under consideration. A pragmatic 

research approach is appropriate for these problems since they can be specified 

(implicitly or explicitly) as: If the interpretation (classification) task is done by machine 

subject to parameters A, B, C, D,…, N the outcomes will be P, Q,…Z. Thus reliability 

and repeatability (reproducibility) are always guaranteed.  

 

Ideally, experimentation with different features, classification algorithms and processing 

pipelines should be performed on a common seabed texture benchmarking dataset. This 

point has recently been expressed by other researchers, e.g., Schumann et al. (2010). A 

common benchmarking dataset would enable the various feature creation methods and 

classification paradigms to be compared against each other directly and the merit of new 

algorithms and processes could be evaluated within a coherent measurement 

framework. A prescribed set of tasks for evaluating the methods and processes together 

with clearly defined metrics for the tasks such as classification accuracy, reliability and 

processing time, would facilitate a meaningful, quantitative comparison between the 

work of different researchers. Presently, common seabed texture benchmarking data sets 

and prescribed tasks and metrics have not been established. It would require 

collaboration of the broader research community to set up such a database and define 

the benchmarking scenarios, tasks and metrics. 

 

In the next chapter, the first of the four experimental case studies is presented. Case 

study one concerns a feature based machine learning approach to the discrimination of 

pockmark objects and the mapping of their boundaries in a DBM. 
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A new approach to the   Chapter 5 

automated mapping of pockmarks in 

multi-beam bathymetry   

 

Some of the work presented in this chapter resulted in the publication of a paper, “A 

new approach to the automated mapping of pockmarks in multi-beam bathymetry” by 

Harrison et al. (2011). The companion poster presentation is in Appendix 1. 
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5.1 Introduction 

 

This chapter is the first of four case studies covering the core experimental work carried 

out for the thesis. As has been pointed out previously, discriminating and mapping 

pockmarks in multibeam bathymetry is an important interpretative task. The aim of the 

case study reported in this chapter is to establish if it is feasible to automate the process 

using feature based machine learning methods. The two main objectives concern (1) the 

investigation of different types and combinations of features for discriminating between 

pockmark and non-pockmark neighbourhoods in a DBM and (2) comparing the 

machine discrimination of pockmark objects with a human discrimination. The 

remainder of the chapter is organised as follows. The short following subsection (5.1.1) 

briefly describes what a pockmark is. The problem and some related previous work is 

outlined in section 5.2. Methods and process design are covered in section 5.3. Feature 

creation methods are described in section 5.4. The next three sections present the main 

investigative components of the case study; section 5.5 elucidates the feature evaluation 

process, section 5.6 explains the real-world object discrimination process in a DBM. 

The results are evaluated and discussed in section 5.7. Finally, an overall evaluation, 

conclusions, recommendations and scope for further work are presented in section 5.8   

 

5.1.1 Pockmarks 

 

Pockmarks are naturally occurring depressions found in soft sediments at the bottoms of 

lakes, estuaries and oceans around the world. It is widely believed that their principal 

formation mechanism is fluid flow from the seabed into the water column. Their 

presence can be indicative of underlying hydrocarbon reserves, as in Pinet et al. (2008), 

Chand et al. (2009) and Judd (2001). Pockmarks support unique ecological niches as 

described in Webb (2009). They are designated as Special Areas of Conservation (SAC) 

if they contain Methane Derived Authigenic Carbonate (MDAC) structures1, such as the 

Scanner Pockmark2 and Braemer Pockmarks3 in the North Sea. Additionally, they are 

associated with geohazards, including seabed instability, trapped gases and submarine 

                                                 
1 Directive 2006/105/EC, Annex 1 (1180 Submarine structures made by leaking gases) [accessed 10-06-2012] 
 
2 http://jncc.defra.gov.uk/pdf/ScannerPockmark_SelectionAssessment_4.0.pdf [accessed 10-06-2012] 
3 http://jncc.defra.gov.uk/pdf/BraemarPockmarks_ConservationObjectives_AdviceonOperations_4.0.pdf [accessed 

10-06-2012] 

http://jncc.defra.gov.uk/pdf/ScannerPockmark_SelectionAssessment_4.0.pdf
http://jncc.defra.gov.uk/pdf/BraemarPockmarks_ConservationObjectives_AdviceonOperations_4.0.pdf
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slides. Furthermore, increased fluid escape from active pockmarks may be precursory to 

earthquake activity (Hovland et al., 2002, Lastras et al., 2004).  

 

King and MacLean (1970) first discovered these features off the coast of Nova Scotia 

and described them as “cone-shaped depressions" in the seabed. More recent 

discoveries and investigations include; the Victoria Land Basin, Antarctica (Lawver et 

al., 2007), the St. Lawrence Estuary, Canada (Pinet et al., 2008) and the Black Sea 

(Naudts et al., 2008).  

 

Their coverage can be extensive; Chand et al. (2009) report they have been observed in 

most of the Norwegian offshore region. On the Bering shelf, Nelson et al. (1979) noted 

areal pockmark densities of up to 1340 per km2 over an area of 20 000 km2. These 

ubiquitous objects occur in various shapes and sizes, and possess diverse morphological 

properties, hence, they can be classified into different generic types. Hovland et al. 

(2002) define “regular-" and “asymmetric-normal pockmark" types as circular 

depressions from 10 - 700 m diameter and 1 – 45 m deep (Figure 5.1).  

 

 

 

 

Figure 5.1. Shapes of  “regular-normal" (left) and “asymmetric-normal" (right) pockmarks, based on a 

figure in Hovland et al. (2002). 

 

If one axis is much longer than the other, the pockmark is described as “elongated." 

Pockmarks, submarine sand dunes and canyons are just a few examples of a diverse 

range of morphological (landform) objects that can be rendered in a digital Bathymetry 

Model (DBM). A DBM is the end product of a processing chain, applied to acoustic 

sounding data, often collected by a Multi-Beam Echo Sounder (MBES) during 

hydrographic survey operations. It comprises accurately georeferenced depths in a 

raster, at fixed interval node spacing, representing the sampled terrain of the seafloor. 
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5.2 Problem outline and previous work 

 

The process of identifying pockmarks in a DBM and of placing and mapping their 

individual boundaries is still predominantly a manual task. Manual identification and 

mapping of even a relatively small number of pockmarks can consume many hours of a 

skilled analysts' time. Human decisions on boundary size, shape and placement are 

likely to be subjective too and it is difficult to achieve consistency from one pockmark 

to another or between different interpreters working on the same data set.  

 

Simplifying assumptions can be made about the boundaries, for instance, using a 

circular boundary, as in Rogers et al. (2006), although most pockmarks are not circular 

in shape. Manually placing a polygon around the pockmark in a Geographical 

Information System (GIS) software package is another, arbitrary approach to 

establishing boundary size, shape and location. However, if a detailed study is required 

of a dense pockmark swarm containing thousands of individuals, the task of objectively 

placing boundaries and mapping each individual is virtually impossible for a human to 

undertake. It would therefore be very useful to have an automated machine learning 

procedure for performing this task relatively expeditiously, objectively and consistently.  

 

As pointed out earlier in chapters two and three, there have been relatively few 

investigations into the quantitative geomorphometry of DBM’s and machine approaches 

to discriminating specific landform objects. A feature based approach to semi-

automatically extracting pockmarks from MBES data was proposed by Fowler et al. 

(2008). Their feature vector comprised components such as terrain slope, curvature and 

fractal dimension, generated in a Geographical Information System (GIS) package.  

 

More recently, Gafeira et al. (2012) proposed a process for discrimination and 

morphological characterisation of pockmarks in the northern North Sea region, with 

tools implemented using a script in ArcGIS. A watershed method is applied in a seven 

stage “pockmarks identification script” which is followed by a “pockmark 

characterisation script.” 

 

Interestingly, the planar shapes of impact craters in images of the lunar and planetary 

surfaces (although more circular) can appear similar to the shapes of seabed pockmarks. 
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Automated detection and segmentation of impact craters in radar and optical images is 

the subject of ongoing research. Some of the more recent approaches include, using a 

boosting algorithm for binary discrimination (Martins et al., 2009), a three-stage 

workflow, comprising focusing, edge organisation and refinement processes (Kim et al., 

2005), and a multi-stage supervised process using mathematical morphology and shape 

descriptor features with a Decision Tree (DT) classifier (Urbach and Stepinski, 2009). 

Craters usually have a quite well-defined rim which can be used as a means of 

delineating the crater from the background. Pockmarks on the other hand, due to the 

formation process and the erosional/depositional environment may not have such 

clearly defined morphological boundaries. 

 

There are several possible approaches to the pockmark discrimination problem. An 

image processing method could work well for boundary-based segmentation of 

pockmark objects. For instance, using the Circular Hough Transform (CHT) (Duda and 

Hart, 1971) or a zero-crossing edge detection method, such as the Laplacian of a 

Gaussian (Marr and Hildreth, 1980). However, the proposed approach used in this work 

is a region-based segmentation, achieved as a by-product of a feature based, supervised 

binary classification. The aim is to try to learn which neighbourhoods (centred on grid 

nodes) of the DBM belong to a pockmark (P) object (or not, P ) and use this as a 

means of object discrimination. 

 

5.3 Methods and process design 

 

5.3.1 Overview of process and methods 

 

The process comprises seven stages, as illustrated in figure 5.2. 

 

1. Feature creation: A feature vector is generated, as described in the next section. 

The full feature vector (FFV) contains all features at multiple resolutions if 

feature evaluation and pre-selection has not been performed. 

 

2. Feature selection: (Optional) feature saliency is evaluated in a filter and 

wrapper, applied to control data. Bhattacharyya's distance measure is used to 

rank features in the filter approach, whilst exhaustive feature subset evaluation 
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and feature clamping can be carried out within the wrapper. Results are used to 

select an appropriate feature sub-set for the task. 

 

3. Classifier model induction and class prediction: A Ball Vector Machine 

(BVM) classifier is trained with user-selected samples. The classifier then 

predicts the labels of all grid nodes in the raster as either pockmark (P) or non-

pockmark (P) classes. 

 

4. Segmentation of the landform objects: Classifier output (label predictions) are 

transformed into a raw (unprocessed) binary image, referenced to the local 

coordinates of the DBM grid. 

 

5. Filtering: A morphological closure operation is applied, to remove false 

positives and false negatives from the binary image. 

 

6. Boundary extraction: A kernel detects the boundaries between the two classes 

in the filtered image. 

 

7. Mapping: Boundary locations are super-positioned on the original DBM raster 

and the end result is displayed to the user.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5  Pockmark mapping 

 

97  

 

 

 

 

Figure 5.2. Sequential stages in the pockmark discrimination and mapping process 

 

5.3.2 Test data 

 

A rectangular sector of rasterised (5 metre node spacing) bathymetric data 7.5 km x 2.8 

km was provided by the Geological Survey of Norway (NGU.) These data are a small 

subset of a 3500 km2 survey conducted during 2005-2006, in the Barents Sea. A 

Kongsberg EM 1002 MBES was used to collect the bathymetric data. See Chand et al. 

(2009) for further details of the surveyed area and data acquisition.  
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5.3.3 Boundary definition 

 

There is no consensus of opinion on what, precisely, constitutes a morphological 

boundary or boundary region between a pockmark and the surrounding seabed. In fact, 

boundary delineation (specifically its ambiguity) is inherent in many landform object 

discrimination problems, e.g., Fisher et al. (2004).  

 

In this work, a pockmark boundary is defined to exist where a P class grid node is next 

to a P node. Thus, object segmentation and boundary delineation can be derived from 

binary classification of the nodes, as a pockmark object is a localised spatial cluster of P 

nodes. The aim is to learn which neighbourhoods could be part of a pockmark (or not), 

rather than define the whole pockmark object in terms of its intrinsic morphological 

properties. The DBM surface (unlike the real, continuous object surface) is a sample of 

points from the topography soundings. As the underlying data representation of the 

surface is discrete and a hard classification technique is applied, this hard boundary 

definition will be the most practical. The basic concept is illustrated in figure 5.3. Figure 

5.3 (a) shows the rendered DBM surface and 5.3 (b) a specimen classification of P 

(blue) and P (red) nodal points. In this figure, targets are defined by the collection of 

blue nodes and their boundary elements defined to occur where red and blue nodes are 

next to each other. 

 

 

Figure 5.3 (a) example of a rendered section of DBM (b) corresponding specimen binary classification of 

node points in the DBM section, showing how targets (collections of blue-coloured nodes) and their 

boundaries are represented, in accordance with the definition in the text. 
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5.4 Feature creation 

 

It is important to represent neighbourhoods forming part of a pockmark, (P), and non-

pockmark, (P) with discriminatory patterns so that an efficient (low dimensional) and 

accurate machine model can be induced with a small number of pattern instances. A 

fundamental problem to solve then, is to establish if the pattern created by the features, 

on a particular nodal neighbourhood in the DBM identifies that node as belonging to a 

pockmark object or not. It is a binary or two-class problem, with the P nodes as the 

target class. The features need to be able to capture the context of the node, relative to 

its surroundings and hence, collectively, capture the geometric signature of the landform 

objects so they can be partitioned from the surroundings, using the boundary definition 

in 5.3.3.  

 

Resolution of the features is also important. If the computational kernel is set at an 

inappropriate resolution, the patterns will not be as discriminatory. A much larger scale 

(lower resolution) feature kernel would be useful for discriminating regions of the DBM 

covered by pockmarks, facilitating the delineation of a pockmark field. Such a large 

scale would be unsuitable though, for distinguishing individual landform objects, which 

is the goal of this work. In a visual inspection of the rendered DBM, the pockmark 

diameters ranged from approximately 20 m - 50 m, this is corroborated by Chand et al. 

(2009) who observed diameters generally less than 50 m. The node spacing in the raster 

is 5 m, indicating that computational kernel scales of 5, 7, 9 and 11 nodes (25 m - 55 m) 

should be appropriate, considering the size ranges of these pockmarks. Feature 

generators chosen for the task are subdivided into two generic groups comprising 

“terrain” and “textural" features as described in the following subsections.  

 

5.4.1 Terrain features 

 

[1] Prototype crater matching kernel (PCM) 

 

A novel, prototype crater matching kernel is defined, based on the description of 

pockmarks as “concave, crater-like depressions" King and MacLean (1970).  
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Moving outwards from the lowest (assumed central) point inside a normal pockmark,  

whilst remaining inside the pockmark boundary, it is reasonable to suppose, for the 

purposes of modeling, that the altitude of the location increases monotonically with 

distance from the centre. This follows directly from the notion of the pockmark as 

“concave” and “crater-like.” A prototype kernel for evaluating if a local spatial 

arrangement of DBM nodes conforms to this notion is proposed. By comparing the 

relative vertical positions of nodes in directional sequences (defined by the unit vectors 

below) on the DBM, with a formal mathematical description of the “crater like” 

prototype, the degree of similarity between the local DBM structure and the prototype 

can be assessed. Figure 5.4 illustrates a kernel spanning seven grid nodes of a 

hypothetical DBM neighbourhood, with the central node under test. The kernel is non-

parametric (aside from its size) and contains no pre-assigned operator values. The 

objective is to assign a numerical weight to the node under test to assess its similarity to 

the notion of a crater-like object within the context of the spatial neighbourhood of 

nodes. 

 

Figure 5.4.  PCM kernel, spanning seven grid nodes of a hypothetical DBM neighbourhood, with the 

central node under test at the local (kernel centred) origin. 

 

Four unit vectors, nd̂ , correspond to four orthogonal directions, within the 

computational kernel, relative to the centre of the kernel at the current location in the 

DBM, O(x, y).  
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Moving in an anticlockwise direction starting in the direction of the positive x-axis (+x): 

 

0d̂   (1, 0)  

1d̂     (0, 1) 

2d̂     (-1, 0) 

3d̂    (0, -1)     

(5.1) 

The kernel size, k  {5, 7, 9, 11} (grid nodes) used to generate a sub image at a 

particular resolution, places a bound on the discrete number of nodes in the sequence, 

from the local origin O, in the directions nd̂ . The current position in the node chain, 

relative to the origin is p, where,  
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The altitude, z of a node at  p, in a direction nd̂  is therefore,  z (p nd̂ ). At the local origin 

of the kernel, z0 =  z (0 nd̂ ). A discrete, unit Heaviside function, H [f (p, nd̂ )] can now 

be defined to compare the relative, sequential vertical displacements of the nodes in the 

directional sequences, 
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          (5.2) 

Finally, a normalised weighting function, Wk: {0  Wk   1}is defined, which is applied 

at each grid node tested, to generate the feature value at a specific resolution, k. In 

compliance with the definition of the relative spatial arrangement of nodes in a “crater-

like” context, max{Wk} = 1 (a localised node structure that is identical to the definition 

of being “crater-like” as in fig. 5.4) and min{Wk} = 0 (a localised node structure that is 

least like the definition of being “crater- like”),  
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There are some important advantages of this novel prototype crater-matching feature;  

 

o There is no need to fit a local surface to the nodes or compute curvatures or 

gradients.  

 

o Nodal values in the DBM can be used directly, no smoothing is required. 

 

o It is not necessary to compare numerical kernel prototype values with the DBM 

nodal values to establish the degree of correlation, as is the case with many 

correlation based pattern-matching templates.  

 

o The approach can easily be modified to fit other structural variants such as 

“elongated pockmark," or “ridge.” 

  

o The spatial coherency of the real, individual morphological features is captured 

in the set of multi-resolution sub-images. This could potentially be useful for 

high-frequency noise rejection and for automated determination of pockmark 

size.  

 

In summary, the PCM feature should provide a strong indication of the context of the 

central pockmark nodes, as will be demonstrated later. It is computationally less 

expensive than existing template approaches, since relative spatial relationships are 

quantified, as opposed to computing absolute numerical measures such as gradient, 

curvature and shape template correlation. 

 

[2] Deviation from a local mean plane (DMP) 

 

This measure is similar to the Bathymetric Position Index (BPI) (Weiss, 2001). The BPI 

measures the deviation of a central node, from the mean altitude of nodes within a 

circular patch of surrounding nodes. Using the (GIS) notation of Wilson et al. (2007), 

 

BPI = Zgrid - focalmean(Zgrid; circle, r)    

(5.4) 
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where, Zgrid is the current node at which BPI is being calculated. The focal mean 

provides the mean value of the DBM nodes in a circle, radius r, centred on Zgrid. In the 

application used here, the deviation of the central node from the mean of a square kernel 

of dimension, 5, 7, 9 and 11 nodes is computed after the local nodal values under the 

kernel are first transformed to a zero-mean normal distribution, i.e N ~ (0, 1). After 

computing the residual at each of the nodal positions, the four feature spaces are 

globally rescaled to [-1,1]. Any node that is low, relative to its surroundings (such as a 

node near the centre of a pockmark) would take a negative value. Relatively high nodes 

have positive values and any node at the same level as the local mean (zero) plane has a 

deviation of zero. 

 

[3] Laplacian of a Gaussian (LGA) 

 

The Laplacian of a Gaussian was first defined by Marr and Hildreth (1980). It can be 

used as an edge detector (Gonzalez and Woods, 2008). In the application here, there is 

no need to calculate the zero crossings to find edges explicitly (as would be the case in a 

boundary based segmentation), since it is the response of the function to a pockmark as 

a distinguishing feature that is of interest. The function is obtained by applying the 

Laplacian operator 2 to the isotropic Gaussian convolution mask G(x, y) giving the 

expression, 

2 G(x, y) = 

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       (5.5) 

 

where, x and y are displacements from the kernel centre node and  is the standard 

deviation of the Gaussian function, which is varied in proportion to the resolution of the 

computational kernel. The feature sub-images, z(x, y) are generated at the four specified 

kernel resolutions by convolution of a normalised Laplacian of a Gaussian with the 

DBM, Z(x, y), 

 

z(x, y) = 
N

1
2 G(x, y)* Z(x, y) 

          (5.6) 
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where the resolution dependent normalisation coefficient, N (k), is defined as, 
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5.4.2 Texture features 

 

Textural features derived from the co-occurrence matrix, a.k.a the Grey Level Co-

occurrence Matrix (GLCM) of Haralick et al. (1973) have been applied to numerous 

problems in, for example, remote sensing (Clausi, 2002), terrestrial terrain analysis 

(Wood, 1996) and classification of multi-beam backscatter imagery (Blondel and 

Gómez Sichi, 2009). However, it is not known if an individual pockmark can be 

discriminated from its immediate surroundings by considering local co-occurrence 

based measures of textural patterns in the terrain.  

 

Further technical details of the GLCM and a method for evaluation of the parameters 

and features are given in chapter 7. A brief outline is given here. In order to capture the 

texture of individual pockmarks it is necessary to use a kernel size comparable to (or 

smaller than) the size of the feature of interest. Kernel sizes of 5 and 7 nodes, 

corresponding to a morphological feature size of 25m-35m are used. The inter-pixel 

distance || d ||, is fixed at || d || = 1, and nodal altitudes are quantised locally, under the 

kernel, to 3 bits (Q = 3), i.e. 8 levels in all experiments. This is a necessary step, as 

DBM rasters typically have a vertical resolution of 1 cm. In a data set like this one with 

a vertical range of a few tens of metres, there are potentially thousands of discrete 

levels. It would be extremely inefficient computationally, to use a GLCM at the full, 

vertical resolution due to the size and sparsity of the matrix.  

 

Directions of the displacement (sampling) vector used in this study are

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P is a normalised co-occurrence matrix at orientation  and fk{P} a feature derived 

from the co-occurrence matrix at orientation  for the kernel size k. A rotationally 

invariant feature, RI

kF , can be defined by taking the mean over the four orientations, 
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An advantage of using a rotationally invariant GLCM is that textural anisotropies and 

the effects any other orientation dependent factors are averaged to produce a mean 

representation of the texture. Using the mean of the feature values in each direction also 

reduces the dimensionality of the feature space by a factor of 4, compared to generating 

the features at each orientation. Three features are derived from the co-occurrence 

matrix; contrast (CON), correlation (COR) and entropy (ENT) i.e., RI

kF = {CON, COR, 

ENT}. Clausi (2002) also used CON, COR and ENT as a preferable choice of features 

for classifying Synthetic Aperture Radar (SAR) sea-ice imagery. Further, through 

experimentation, Clausi (2002) found that the peak classification accuracy using these 

features occurred at coarse quantisation levels (hence lower computational complexity 

and the choice of Q = 8.) The three features are defined as follows; 

 

Contrast (CON) - a measure of differences in the quantised values between 

neighbouring nodes. 
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          (5.9) 

 

Correlation (COR) - a measure of how correlated the quantised value of a node is to that 

of its neighbours. 

 

COR = 
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Entropy (ENT) - a measure of the randomness of the quantised nodal values. 

 

ENT =  PPd
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Where i, j and i, j are the mean and standard deviations of the (normalised) co-

occurrence distribution, given by, 
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All features are summarised in table 5.1. The legend applies to all subsequent figures. 

  Kernel resolution, k (grid nodes)  

Feature 

type 

Feature 5 7 9 11 Legend 

 

Terrain 

Prototype crater matching PCM(5) PCM(7) PCM(9) PCM(11)  

Deviation from mean plane DMP(5) DMP(7) DMP(9) DMP(11)  

Laplacian of a Gaussian LGA(5) LGA(7) LGA(9) LGA(11)  

 

Texture 

Contrast CON(5) CON(7) - -  

Entropy ENT(5) ENT(7) - -  

Correlation COR(5) COR(7) - -  

 

Table 5.1. Summary of the features and resolutions used in this study. Texture features are not applied in 

this test case at resolutions of 9 and 11 nodes. 
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5.5 Feature evaluation 

 

5.5.1 Qualitative feature evaluation 

 

This qualitative evaluation provides a preliminary insight into the discriminatory 

capacity of the individual features. Responses of an individual feature to a grid node in 

the context of a pockmark and non-pockmark terrain patch are investigated. Differences 

in the magnitude of the feature responses in these two contexts may be indicative of the 

capacity of the feature to discriminate between P and P grid node classes in general. 

Qualitative evaluation is not an integral part of the processing.  

 

[1] Qualitative evaluation of features at a typical P-node 

 

A normal, asymmetric pockmark (approx. width = 35m, length = 45m, depth = 2m) is 

used to investigate the behaviour of the features, applied to a line of nodes through a 

single interior control node, as shown in figure 5.5. 

 

 

 

Figure 5.5  A typical asymmetric normal pockmark selected arbitrarily from the DBM: width = 35m, 

length = 45m, depth = 2m. 

 

The normalised numerical responses of the features generated on neighbourhoods 

centred along a line of 11 sequential grid nodes, through the control node, parallel to the 

x-axis are shown by the bar charts in figure 5.6. They are grouped row-wise according 

to the feature type and column-wise according to the feature kernel resolution, k. The 

first row (kernel sizes 5,7,9,11, from left-right) shows the response of the PCM kernel. 

At all four resolutions, the feature value peaks, as the kernel moves through the 

pockmark. It is clear that the response of the feature is correlated at the different 

Control node 
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resolutions. Row 2 shows the response of DMP, with the zero crossing points 

approximating the boundary between the pockmark and the surroundings. A similar 

shaped response, but with a greater amplitude, is produced by LGA in row 3. The 

similarity between the responses of LGA and DMP is a possible indicator of 

redundancy, and their magnitudes may also be correlated to the response of PCM. The 

two charts in row 4 show the variation of ENT at length scales of 5 and 7 nodes, 

respectively. CON values are shown by the charts, in row 5, again at 5 and 7-node 

scales. The first two charts of the final row show COR at resolutions of 5 and 7 nodes. 

A small contour plot of the bathymetry and the terrain profile through the control node, 

are also shown on the right of the final row. Whilst the 3 features from the terrain group 

in rows 1-3 show distinctive responses to the pockmark, it is not clear from this initial 

inspection if the textural features will prove to be useful discriminators. 
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Figure 5.6  Bar charts showing the normalised values (y-axes) of the terrain and texture features at node 

points (1-11) (x-axes) along a line, x-x, through the control node, inside the pockmark, parallel to the x-

axis. The bar charts are colour coded according to the legend in table 5.1. A contour plot (bottom row, 

third right) represents the bathymetric surface and the location of the control node (white square marker.) 

The vertical profile of the DBM nodes along x-x is shown in the plot at the bottom right corner. 
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The numerical responses of all 18 features at the control node inside the pockmark, i.e., 

the full-feature vector (FFV) at the control node are summarised by the bar chart in 

figure 5.7. The first 4 bars show the response of PCM. Bars 1-3 increase in height as the 

kernel size increases, indicating PCM is responding more strongly. There is a slight 

drop in the amplitude of the feature as shown by bar 4, at a scale of 55 m, which is at 

least 10m greater than the longest dimension of the pockmark. The peak response at bar 

3 (9 nodes or 45 m) corresponds to the maximum dimension of the pockmark, of 45 m. 

Response patterns of DMP and LGA in bars 5-8 and 9-12 respectively produce values 

which increase monotonically with kernel size. ENT values are indicated by bars 13-14, 

CON, bars 15-16 and COR, bars 17-18.  

 

 

Figure 5.7 Bar chart showing the numerical responses of all the individual features in figure 5.6 at the 

control node inside of the pockmark. The bars are colour coded (legend in table 5.1.) 

 

[2] Qualitative evaluation of features at a typical P node 

 

A control node is selected, clear from any pockmark boundaries, in a square patch of 

terrain. To avoid repeating previous details, the numerical performance of the features at 

the control node is summarised in figure 5.8.  

 

Figure 5.8. Bar chart showing the numerical values of the FFV at a P control node. 
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There are clear differences between the feature profile at the P node in figure 5.8 and 

the P node in figure 5.7. The amplitude of the PCM feature is much lower at the P  

node. The sign of DMP and LGA is reversed at the P node. The remaining 6 bars 

indicate the responses of the 3 textural features at the two resolutions. ENT and COR 

(bars 13-14 and 17-18, respectively) show a slight increase in amplitude between the 5 

and 7-node scale at the P node. The amplitude decreases slightly, in moving from the 5 

to 7-node resolution at the P node. CON values (bars 15-16) have greater amplitudes 

inside of the pockmark.  

 

By applying a feature selection process to a larger sample of P and P control nodes, in 

the next section it is shown that these differences are not coincidental and they can be 

used to discriminate between P and P classes. 

 

5.5.2 Quantitative feature evaluation 

 

The goal of this process is to identify the least number of features capable of 

discriminating between the nodes, with the highest accuracy. Preselecting features 

reduces the dimensionality of the feature vector. This expedites the processing and 

generally improves accuracy. Two independent methodological approaches to feature 

evaluation are applied; 

 

o Filter approach: Features are evaluated individually and independently of the 

classification algorithm, using a distance measure to assess their discriminatory 

potential. The features are ranked in decreasing order of their intrinsic capacity 

to separate the classes. 

 

o Wrapper approach: A classification model is induced and the features are 

evaluated on the basis of their performance (sensitivity, specificity and 

accuracy) with the specific classifier. Within the wrapper, features are 

investigated using a feature clamping approach and by performing exhaustive 

evaluation of feature sub-set combinations. Further details of these methods can 

be found in, for instance, Guyon and Elisseef (2003), Tan et al. (2006) and 

Webb (1999). 
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[1] Filter approach 

 

Bhattacharyya's distance measure (Bhattacharyya, 1943) is used to compute the distance 

between the estimated probability density function (pdf) of the feature values for P and 

P class instances, sampled from the control data. Denoting the probability distribution 

estimates for P and P class instances of an individual feature xf , by P(xf ) and P(xf ), 

respectively, the Bhattacharyya distance measure is, 

 

B(P(xf ), P(xf )) = arcos

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          (5.13) 

 

Where, B  [0, 
2
 ], the maximum and minimum values corresponding to disjoint and 

congruent, coincident distributions, respectively (i.e. maximum and minimum class 

separation.) The control data used in the feature evaluation and selection stages 

comprise approximately 1000 manually (visually) selected and labeled DBM nodes in 

each class, i.e. the selected control nodes were labeled as P or P. Care was taken to 

ensure the P points were selected from inside independent pockmarks away from the 

boundaries and P control points from the surrounding terrain, away from the 

boundaries of nearby pockmarks. Computing the distance measure for each individual 

feature facilitates ranking of the features in terms of their class discriminatory capacity, 

as shown in figure 5.9.  

 

 

Figure 5.9 Bar chart showing a ranking of the individual features, computed using Bhattacharyya’s 

distance measure. 



Chapter 5  Pockmark mapping 

 

113  

 

The most salient individual feature is LGA(11). It has the greatest intrinsic capacity to 

discriminate between the P and P classes. The pseudo random noise feature (PRN) is 

the least effective (and naturally, we should expect all discriminatory features to 

perform better than random noise.) The left-half of the ranking chart is populated mostly 

by the terrain features at larger kernel sizes, confirming an appropriate choice of 

resolutions for the scale of the objects. Terrain features with the smaller kernel sizes and 

the textural features are grouped more to the right of the chart indicating a relatively low 

discriminatory capacity as individual features. Any one of the top 3 features, LGA(11), 

LGA(9), PCM(11) may be suitable for inclusion in a feature vector. 

 

[2] Wrapper approach 

 

A Ball Vector Machine (BVM)4 classifier is used as the core learning algorithm for the 

dual tasks of feature evaluation in the wrapper and classifying grid nodes in the real 

world application. It is a fast Support Vector Machine (SVM) that uses a core set 

approximation on very large data sets (Tsang et al., 2007). The binary classification 

function,  (x), for determining class membership of an unseen pattern, x is,  (x) = 

sgn( w· (x) -  ) where w is the normal vector to a discriminating hyperplane and  is 

the distance of the plane from the origin. A default radial basis function (RBF) kernel, 

 (x), is used. Default settings are also used for model cross-validation, training cost, C, 

and the hyper-parameter for the RBF kernel function, . A sound practical reason for 

choosing the BVM as the binary, hard discriminative classifier Practical reasons for 

choosing theBVM are that it is as accurate as an SVM but faster, and can deal with 

larger data sets (Tsang et al., 2005.) 

 

(a) Feature clamping technique 

 

In a feature clamping technique, one feature at a time can be removed from the n-

dimensional FFV and then replaced. The classifier is trained and tested on each 

combination (containing n-1 features) replacing the feature before taking out the next 

one, until all 18 combinations have been tested in this way. Examining the sensitivity, 

specificity and overall accuracy of the classifier output highlights any features whose 

                                                 
4 LibCVM Toolkit Version: 2.2 (beta), How to use. http://www.cs.ust.hk/ ivor/cvm.html [Accessed 23-

07-2010] 
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removal from the FFV produces an increase (or reduction) in class discrimination 

performance. The individual features are then ranked according to the change in overall 

accuracy brought about by their removal from the FFV. Features whose removal causes 

the greatest reduction in accuracy are ranked the highest. The clamping experiment was 

repeated 10 times, using different numbers of samples and ratios of P and P control 

nodes. The ranking of the features is shown in figure 5.10.  

 

 

Figure 5. 10 Features ranked, in order of decreasing influence on the FFV, from left-right. Mean change 

in accuracy is used as an objective function for the rankings. Mean change in sensitivity is also shown and 

the error bars indicate the standard deviation of sensitivity change over multiple runs.. 

 

The most salient feature is LGA(11), followed by LGA(9) and COR(5). The overall 

mean accuracy of the FFV for discriminating between P and P control nodes in all test 

cases is 93.3 %. Mean overall sensitivity is 93.4%. Sensitivity changes are shown on 

figure 5.10, the error bars represent 1 standard deviation from the mean sensitivity 

change. LGA(11), brought about a 2.31 % mean reduction in accuracy, when it was 

removed from the FFV indicating that it must have a relatively important contribution to 

make in relation to the other features. 

 

The filter investigation and the feature clamping experiments provide evidence that 

LGA(11) is probably the most useful individual feature of the group. The feature 

clamping results indicate is it important, synergistically to the FFV which could in turn, 

be connected to its overall importance in relation to other feature combinations. 

Removal of any of the other features individually from the FFV reduced the accuracy by 

less than 1% and the differences in these accuracy changes, between features other than 

LGA(11) is very small, less than 0.5% between LGA(9) and LGA(5), ranked second 
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and bottom, respectively. Considering the changes in sensitivity in figure 5.10, removal 

of the individual features LGA(9), PCM(11), LGA(11) or ENT(7) reduces the 

sensitivity by between 1.5 - 2.0 %. It is possible that a combination of 2 features, such 

as LGA(11) or PCM(11) with ENT(7) (or any other textural feature) would be suitable 

for the classification task. The reason for this is that the terrain features are not strongly 

correlated to the textural features. For instance, it may at first seem logical to construct 

the feature space from say the top-3 ranked features in figure 5.9. However, they are 

highly correlated (which was easily verified using a correlation matrix), since the top 

two features are the same feature applied at different scales of analysis. In other words, 

they may contain redundant information that will not be useful to the classifier.  

 

(b) Exhaustive evaluation of feature subsets 

 

Several further experiments were carried out to exhaustively evaluate all the feature 

combinations in pre-selected feature subsets. The reason for doing this is to identify 

specific feature combinations that have a good classification performance. Using 

information from the filter, feature clamping and exhaustive evaluations, a reliable 

decision can be reached, concerning which feature combinations would be suitable for 

maximising the accuracy and reliability of the classification task. Additionally, another 

objective is to minimise the computational complexity by reducing the dimensionality 

of the feature space. The overall goal is to find the combination(s) of features with the 

smallest dimension producing the highest classification accuracy, subject to a threshold 

of minimum sensitivity, specificity and accuracy of 80 %. As an illustrative example, all 

possible combinations of the six different feature groups at a fixed resolution of seven 

nodes (35m) were evaluated on the control data. The feature combinations are encoded 

as binary strings, with "1" indicating the presence of the feature in a combination and 

"0" its absence. Ranking of the features was based on using overall accuracy as the 

objective function, subject to the additional constraint that accuracy, sensitivity and 

specificity must all exceed the 80 % threshold. Only seven feature combinations out of 

the 64 evaluated in this experiment satisfied the criteria. They are listed, with numerical 

results, in table 5.2. A smaller difference between sensitivity and specificity is also 

preferable over a relatively large difference, so this condition can be applied as a further 

constraint if desired, in selecting a good feature subset for the classification task. 
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Combination 

code 

sensitivity 

% 

specificity 

% 

accuracy 

% 

rank dimension 

101011 91.8 85.1 89.0 1 4 

001111 93.7 82.4 89.0 1 4 

111100 90.7 85.8 88.7 2 4 

111111 87.3 89.7 88.3 3 6 

101110 93.7 80.3 88.1 4 4 

111010 88.4 86.9 87.8 5 4 

111110 85.6 89.4 87.2 6 5 

 

FFV code 1 1 1 1 1 1 

Attribute PCM DMP LGA CON COR ENT 

Example 1 0 1 0 1 1 

Combination PCM - LGA - COR ENT 

 

Table 5.2 Top seven feature subsets at a resolution of 7 nodes (35 m). The feature codes key and an 

example code is also provided. 

 

All these combinations include at least one feature from both the terrain and textural 

feature groups. Of the two joint top-ranked feature combinations {LGA(7), CON(7), 

COR(7), ENT(7)} has slightly higher sensitivity and is therefore marginally better at 

identifying the P nodes, compared to {PCM(7), LGA(7), COR(7), ENT(7)}.  The 

former also has a smaller difference (6.7 %) between sensitivity and specificity. 

 

Considering the correlation between the generated feature distributions on the two 

classes (at a kernel size of 7 nodes), the linear similarity in the distributions of values in 

the control data, for each feature can be quantified with Pearson’s correlation 

coefficient. The results are shown as a matrix, in figure 5.11. The upper-right triangular 

part of the matrix shows the degree of correlation for the P class and the lower-left 

triangular part shows the degree of correlation for the P class. The features are 

grouped as terrain and texture types, using the same codes as before. 
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Figure 5.11. Correlation between different feature distributions at a fixed kernel size of k = 7. The upper-

right triangle shows the correlation coefficients for the pockmark class (P) distributions and the lower-left 

shows the correlation coefficients for the non-pockmark (P) class. 

 

Some very interesting information is shown here.  The region shaded in green shows 

strong correlations between the different features in the terrain group generated on the 

control data for pockmark and non-pockmark classes at the same scale (a strong 

correlation was also observed between the same feature generated at different scales.) 

The pink shaded region also shows strong correlations, i.e., COR(7):CON(7) and 

ENT(7):CON(7), between the textural features for the pockmark and non-pockmark 

control data. Correlation between the terrain features and the textural features (yellow 

shaded region) is negligible for the non-pockmark class, with correlation coefficients of 

comparable magnitude to the correlation with the PRN. However, the blue shaded 

region shows a relatively greater correlation between the textural features and the terrain 

features for the P class. This may indicate a natural correlation between the real texture 

and morphology of interior of the pockmarks (P) relative to the surrounding terrain of 

the seabed (P).  

 

Similar experiments were carried out using pre-selected subsets containing up to 12 

features, at multiple resolutions. Combinations including LGA(11) or PCM(11) paired 

with one of the textural features were found to produce very good classification results 

on the control data. For instance, with the combination {LGA(11), CON(7)} sensitivity, 

specificity and accuracy of 96.9%, 92.0% and 94.8% respectively, were attained. It is 

possible to improve on these values slightly but a case of diminishing returns. Gaining 

~1% in accuracy was typically achievable with a 4-5 fold increase in the dimension of 

the feature space. The overall best accuracy result was 95.9 % with a combination of 10 

features. In terms of achieving the goal of accuracy and low dimensionality though, a 

two-dimensional combination of LGA(11) or PCM(11) with CON(7), COR(7) or 
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ENT(7) would be appropriate. The combinations {LGA(11), ENT(7)} or {PCM(11), 

ENT(7)} are preferable since ENT(7) has a lower computational complexity compared 

to CON(7) or COR(7). Sensitivity, specificity and accuracy of up to 95.4%, 90.1% and 

93.1% respectively were attained with {LGA(11), ENT(7)}. This specific combination 

is used for object discrimination in a real-world test case on a DBM containing a dense 

pockmark swarm.  

 

Whilst overall binary classification accuracy on the labelling of individual grid node 

points is a key metric, it is important to consider sensitivity and specificity too in the 

preceding analysis. Since, the evaluation and validation data used in the feature 

evaluation process comprised sets of balanced samples of carefully selected control 

points. However, in the bathymetry data set, the surface area covered by the pockmarks 

is much less than that of the surrounding terrain. Thus, there are far fewer P than P 

node points. At the validation stage, it is possible to have a relatively high accuracy with 

large differences between sensitivity and specificity. However, this can lead to 

unsatisfactory results when such a model is applied to the unbalanced test data. So in 

general then, machine models should be sought based on feature sets that yield 

relatively high validation accuracy, low dimension of feature space and a relatively 

small (< 10% ) difference between sensitivity and specificity. In terms of comparing 

actual object discrimination between the machine and the human (considered in section 

5.7), these metrics are less suitable and an alternative scheme is proposed. Some care is 

needed in specifying a “best” choice of features for the task and furthermore, the choice 

of features is highly dependent on the methods of measurement, i.e., how the features 

are evaluated (a topic considered in further detail in case study 3, chapter 7.) These 

factors have to be considered then, within the context of the abstract measurement 

framework and the evaluation metrics used. The selection of features is a type of 

optimisation problem within this methodological framework. Some of the more 

important objectives that can be considered in an optimisation are (in no particular 

order): 

 

1. Maximising feature saliency (i.e., maximising accuracy, and or sensitivity and 

specificity.) 
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2. Maximising the feature stability and robustness to data and parameter 

perturbations (this concept is revisited in case study 3, chapter 7). 

 

3. Minimising the difference between sensitivity and specificity. 

 

4. Minimising the dimension of the feature space (choosing fewer features but 

conceding relatively little accuracy.) 

 

5. Minimising the input size in the feature creation process. 

 

6. Minimising computational complexity of the feature creation methods. 

 

7. Correlation constraints, such as removing features subject to a correlation 

threshold. 

 

For the analysis here, objectives 1, 3, 4 and to a lesser extent, 6 and 7 were considered. 

Further, the selected features should have strong semantics such as a physical (or 

intuitive) relationship between the collective feature set (or individuals within it) and 

the real properties the features capture information about. Although this is not always 

easy or possible with high dimensional feature sets, as there may be no obvious 

connection between the combination of features and the outcomes of the classification 

task. In the case here though, for one of the best choices of features sets, {LGA(11), 

ENT(7)}, LGA(11) responds strongly to edges and blobs at this scale and ENT(7) 

responds to the degree of randomness of the texture. Pockmarks have intrinsic 

morphological differences compared to the surrounding terrain of the seabed. These 

properties can therefore be represented meaningfully and used to discriminate the 

objects from the surroundings by using a machine to learn differences in the 

randomness of the texture and the occurrence of edge-like structures in the terrain with 

information from this feature combination. There are also other combinations that may 

produce similarly good results. 
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5.6 Real-world object discrimination 

 

To demonstrate and evaluate the prototype process in a practical context, it is applied to 

pockmark object discrimination in a dense swarm. The DBM, supplied by the NGU, 

covers a 21 km2 section of the Barents Sea. Horizontal resolution is 5 metres between 

the grid nodes and the DBM contains 844 124 nodes. Processing proceeds in the 

following stages; 

 

1. The process is initialised manually by visually selecting a small sample of 

training points comprising approximately 10 P and 10 P class instances from 

the Graphical User Interface (GUI). 

 

2. A pattern vector (comprising the pre-selected features {LGA(11), ENT(7)} in 

this specific test case) is generated for the training points and on all of the DBM 

grid nodes. In the previous analysis on the evaluation and validation control 

data, accuracy exceeded 90%, the difference between sensitivity and specificity 

is less than 10% and the feature space is 2-dimensional, i.e., computationally 

efficient. 

 

3. A BVM classification model is induced with the user selected training points 

and pre-selected features. 

 

4. Using the model from the previous stage, the classifier hard-labels all DBM 

nodes as belonging to P or P classes. 

 

5. Sequential labels output from the classifier are transformed into a binary image 

by encoding the labels as [0 1] and mapping them to the local raster coordinates 

of the DBM. 

 

6. The binary image is filtered in a morphological closure operation. 

 

7. Boundaries are extracted from the closed image and super-positioned on the 

DBM raster. 
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After selecting the training instances all stages are completed sequentially and the 

boundaries automatically placed, within a few seconds.  

 

DBM Data is loaded into the GUI and displayed as a grey scale. Numerous experiments 

were conducted to determine an appropriate number of samples to choose. It was found 

the best results were obtained by selecting a very sparse, balanced sample of 

approximately 10 instances of each grid node type (<0.003 % of the data.) The instances 

can be selected individually from widely distributed locations. Red and blue markers in 

figure 5.12 indicate locations where respectively, P and P training instances, have 

been selected.  

 

 

Figure 5.12 The user selects a balanced sample of about 10 instances from the P (red circle) and P 

(blue circle) node classes by mouse clicks on the rendered DBM. The visible area in this particular case is 

approximately 7 km2, i.e. about one third of the DBM area. 

 

A single BVM model is induced with the pattern instances created at each of the 

previously selected training nodes. Output from the classifier is a sequential stream of 

hard [0 1] class labels. This output stream is encoded, as a binary image, with pixels 

referenced to the grid coordinates of the DBM raster. Effectively, by classifying 

individual nodes as P and P the DBM is implicitly segmented by mapping the class 

labels to the binary image space, B.  
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The segmentation may contain noise in the form of false positives and false negatives 

and these are removed by filtering, prior to boundary extraction. Morphological closure 

is used as the filtering process, the closure operation is defined as, 

 

B  S = (B   S) ϴ S 

          (5.14) 

 

where S is the structuring element. Dilation and erosion are applied with a square 

structuring element spanning 3 nodes. Further details of morphological operations can 

be found in, for instance, Gonzalez and Woods (2008). 

 

Finally, after morphological closure, all object boundary locations can be identified in 

accordance with the earlier definition of the boundary in subsection 5.3.3. The 

boundaries are superpositioned on top of the DBM raster and a new viewing window 

opens (figure 5.13) displaying the boundaries of the identified individual pockmark 

objects in red. 

 

 

 

Figure 5.13 The end result of the process is a display showing the boundaries of the identified 

pockmarks, overlaid on the DBM. 

 

In terms of efficiency, completion of the processing stages including boundary 

extraction and mapping of approximately 2000 pockmark objects can be accomplished 
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in seconds on a reasonably specified PC. A human analyst manually mapping say, 100 

pockmarks per hour, working non-stop for 10 hours per day, would take two days to 

complete this task. There would also be intra-rater variability in the boundary placement 

and shape (and inter rater variability if two or more analysts worked on the same data 

set.)  

 

Therefore, the two key advantages of the machine process are; 

 

(1) it can perform the task 3 orders of magnitude faster than a human and  

 

(2) it produces more precise boundary placement and shapes, according to the object 

boundary definition. 

 

In the next section, the quality of the object discrimination is considered. 

 

5.7 Evaluation and discussion of results  

 

The machine discrimination of individual pockmarks is compared against human 

discrimination in 7 sub-regions of the data, shown in figure 5.14, using results obtained 

from the application set-up, described previously. Each of the regions has an area of 1 

km2 (40 000 grid nodes) and areal pockmark densities ranging from 76 - 190 km-2.  

 

 

 

Figure 5. 14 Locations of the 7 regions used to compare machine against human identification of the 

pockmarks. Each region is 1km2 (40 000 grid nodes). 
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It is perhaps inappropriate to consider “errors" or “accuracy” in this evaluation since in 

common with much of the other work in the thesis (and many other related studies in 

the domain) the outcome of the human or machine interpretation/classification is 

uncertain. There is little or no ground truth available to establish conclusively whether 

the machine or the human has correctly identified and delineated a meaningful target or 

not. Seabed depressions are created by a variety of processes, e.g., the base of an 

iceberg impinging on the seabed may leave an imprint that looks like a pockmark in size 

and shape. However, as geologists have identified this area as a pockmark swarm, the 

assumption has to be made that the majority of the landform objects within the area are 

pockmarks. In other words, if it is about the same size and shape as a pockmark and is 

surrounded by similar landform objects in a known pockmark field, then it is more 

plausible that the object is a pockmark than some other type of object formed by a 

different mechanism. 

 

The comparison between human and machine approaches is based on the number of 

occurrences of agreements and disagreements in the machine and human identification 

of an (assumed pockmark) object at the same location. An agreement occurs when the 

machine and human have identified a discrete object at the same location. Agreement of 

the boundary shape and position is not considered. There are four types of 

disagreement, defined as follows; 

 

Type 1.  The human identifies an object not identified by the machine. 

 

Type 2.  The machine identifies an object not identified by the human. 

 

Type 3.  The human identifies multiple objects in one location but the machine 

identifies one object. 

 

Type 4.  The machine identifies multiple objects in one location but the human 

identifies one object. 

 

Set M contains machine identified objects, set H, human identified objects. T1, T2, T3 

and T4 are the sums of the instances of disagreement types 1-4, respectively, as defined 

above. OT3 and OT4 are the sums of the individual object counts identified by the human 
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(for instances of Type 3 disagreements) and for the machine, respectively (for instances 

of Type 4 disagreements.) The number of objects identified by the machine and human 

for which there is an agreement, is |H  M|. The total number of identifiable objects is,  

 

Ototal = |H  M| + T1 +T2 +OT3 +OT4. 

          (5.15) 

The total number of disagreements on individual objects is,  

 

Dtotal = T1 + T2 + (OT3 - T3) + (OT4 - T4). 

          (5.16) 

 

Overall agreement, A, between the machine and the human can now be quantified as,  

 

A = (Ototal - Dtotal) / (Ototal)  100%. 

          (5.17) 

 

Total disagreements are computed in this way so as not to excessively penalise the 

human or the machine for agreeing on localisation of an object but disagreeing on the 

quantity of objects within the localised area. For instance, the machine may identify one 

object in a specific localised area and the human may identify two smaller, discrete 

objects. Both approaches have identified the location but are in disagreement over the 

quantity of objects. The cost in this instance is 1 disagreement. If the machine identified 

1 object and the human identified 3 objects, the cost would be 2 disagreements. This 

evaluation method is then, more complex than a simple contingency test for object 

identification, since the type 3 and 4 disagreements concern object resolution. It should 

be expected that very closely spaced objects with a low contrast to the background are 

harder to resolve individually than higher contrast, well separated objects. 

 

Figures 5.15 shows the comparisons between the machine (left image) identification of 

pockmarks and the (contrast enhanced) image used by the human analyst for 

identification of the pockmarks (right) in sub regions 1 - 7 respectively. Type 1 and type 

2 disagreements are highlighted by the light blue boxes, type 3 and type 4 

disagreements by the magenta boxes. Pockmark boundaries placed by the machine 

approach are shown in red. The grid (green lines) divides each region into 16 smaller  
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Region 1 

 

Region 2 

 

 

 

Region 3 

 

Region 4 

 

 

 

Region 5 

 

Region 6 

 

 

 

Region 7  

Fig. 5.15. Seven image regions used in the evaluation. For each region, the left image shows the 

pockmarks and boundaries identified by machine. The right image is used for human identification and 

counting of individual pockmarks. 
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(250 m  250 m) boxes, to help with the comparison and counting of objects identified 

in the corresponding areas of the left and right images. The number of agreements and 

disagreements, between the machine and human approaches are summarised in table 

5.3. Total number of identifiable objects, total number of object disagreements and 

overall agreement are summarised in table 5.4.  

 

 

Region |M  H| T1 T2 T3 T4 OT3 OT4 

1 133 0   4 16 0 35 0 

2 139 1   6 12 0 24 0 

3 151 1   6 14 0 32 0 

4   61 1 43 3 0 8 0 

5 288 3 43 1 0 2 0 

6 114 0   2 4 0 6 0 

7   94 0 32 6 0 14 0 

 

Table 5.3 Summary of agreements and disagreements between the machine and human approaches in 

each of the 7 subregions. 

 

 

Sub-region Ototal Dtotal A(%) 

1 172 23 86.6 

2 170 19 88.8 

3 190 25 86.8 

4 113 49 56.6 

5 76 47 38.2 

6 122 4 96.7 

7 140 40 71.4 

 983 207  

 

 

Table 5.4 Summary of total agreements, disagreements and the overall agreement, A, in each sub-region. 
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The mean overall agreement, A  (%), for a number of regions, R, is given by,  
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          (5.18) 

 

For a total of 983 objects, in the 7 regions, mean overall agreement, A  = 78.9%. 

Highest localised agreements, up to 96.7%, occur in regions 1, 2, 3 and 6, where the 

contrast between pockmarks and the background terrain is strong and the individual 

objects are easily identifiable by the human. There are relatively few instances of type 1 

and type 2 disagreements in these regions - mostly type 2, situated in localised areas 

where the visual appearance of the pockmark object is not clearly defined. Some type 3 

disagreements are also evident in these regions. This may in part be due to the choice of 

the LGA(11) feature. In raw segmentation images (fig.5.16) boundaries obtained from 

LGA(11) tend to be smoother, compared to using PCM(11). Further, LGA(11) can 

occasionally coalesce two or more neighbouring individuals into a single segmented 

object, whereas PCM(11) can segment very closely spaced individual pockmarks more 

effectively. 

 

 

 

 

Figure 5.16 Raw segmentations: PCM(11) (left), LGA(11) (right). 

 

However, the morphological closure operation also has a tendency to coalesce 

individual objects that are very close to each other. Thus, whichever feature 

combination is used there will probably be a few neighbouring objects merged during 

closure. 
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In all of the regions, the number of type 1 disagreements is very low, indicating it is 

quite rare for the human to identify an object that cannot be identified by the machine. 

Small sized and low contrast (presumably very shallow) pockmarks in regions 4, 5, and 

7 are quite difficult for the human to identify even when the DBM image contrast is 

enhanced. There are numerous type 2 disagreements in these regions, indicating that the 

machine may be more effective than the human at identifying these particular types of 

pockmarks in this terrain. Of course, the machine also has speed advantages, having 

placed boundaries around all of the objects identified in the DBM, in less than 20 

seconds.  

 

5.8 Evaluation, conclusions, recommendations and scope for further 

work 

 

5.8.1 Evaluation 

 

The problem of pockmark discrimination in a DBM was identified and solved using a 

novel feature based machine learning process, capable of accomplishing in a few 

seconds, a task that would take days for a human analyst to complete. A peer reviewed 

conference publication arose as a consequence of the research.   

 

Before undertaking the case study it was not known what features would be useful for 

the discrimination task or how effective the devised process would be. The investigation 

carried out in the case study provided evidence to demonstrate that it was possible to 

discriminate a large quantity of pockmarks, and map their boundaries expediently using 

the proposed process. Different types of features were considered at a variety of 

resolutions and it was found, through multiple methods of evaluation, that a 

combination of two features provided very good classification results on validation data. 

This was subsequently verified on a real-world test case and the quality of the 

discrimination evaluated by comparing machine and human object identification. The 

aim and objectives of the study have therefore been successfully achieved.   

 

Compared to planetary and terrestrial land surfaces there has not been much research on 

the machine discrimination of specific landform objects in DBM’s or the types of 
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features and scales of analysis to use for landform object discrimination. The study 

contributes generally to this wider domain. Specifically though, this is the first bespoke 

machine learning process designed for the purpose of pockmark discrimination. Fowler 

et al. (2008) first proposed a process based on conventional land surface attributes such 

as slope and curvature, derived in a GIS package. More recently, a script based 

watershed method was proposed by Gafeira et al. (2012).   

 

Further research could be carried out to extend the evaluation of the methods and 

process on areas covered by different types of pockmark. It may also be revealing, in 

future work, to apply the unsupervised process of case study 8 (with modifications) to 

establish if the discrimination can be fully automated. The work that has been 

completed so far can also be built upon further by combining bathymetry and 

backscatter data to classify different types of pockmark. 

 

Aside from the BVM implementation, all of the software used for the experimental 

harness was designed and developed ab initio, using C++. The main harness comprised 

several C++ dynamic link libraries (dll) and executables, with a Visual Basic user 

interface. The reading of intermediate results files and the control of data 

communication processes between modules in the harness were managed by MS-DOS 

batch files. Some of the results output from the harness were subsequently post 

processed and rendered visually using Matlab. 

 

5.8.2 Conclusions 

 

A new feature based machine learning process has been proposed and evaluated, for 

segmenting and mapping pockmarks in a real-world DBM. Good classification results 

can be expected by combining either LGA(11) or PCM(11) with one co-occurrence 

textural feature. For instance, the combination {LGA(11), CON(7)} attained sensitivity, 

specificity and overall accuracy of 96.9%, 92.0% and 94.8% respectively on the control 

data. Sensitivity, specificity and accuracy of up to 95.4%, 90.1% and 93.1% 

respectively were attained with {LGA(11), ENT(7)}. This specific combination was 

used for object discrimination in a real-world test case on a DBM containing a dense 

pockmark swarm. The agreement between machine and human on the identification of 

pockmarks is on average, in this test case, 78.9%. The machine approach may be better 
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at identifying low contrast objects that are difficult for a human to identify. It is also 

significantly faster than a human analyst, taking seconds rather than days, to identify 

and objectively map the boundaries of approximately 2000 individual pockmarks. 

Furthermore, the placement and shape of the individual boundaries is consistent. 

 

The aim of the case study was to establish the feasibility of automating pockmark 

discrimination using feature based machine learning methods. A novel process and 

methods were proposed and evaluated. The two main objectives concerned an 

investigation of the different types and combinations of discriminatory features for the 

task and comparing the machine discrimination of pockmark objects with a human 

discrimination. As has been demonstrated in the chapter and the conclusions, the aim 

and objectives have been successfully achieved. 

 

5.8.3 Recommendations 

 

In relation to the data under consideration, the BVM classifier gave good results in 

terms of classification accuracy and the efficiency of model induction and class 

prediction. Due to its speed and accuracy it is recommended as a hard discriminative 

classifier for this task, using a RBF kernel. It is likely that other base learners will 

perform well on this task, such as the Naïve Baye’s classifier or SVM. The Naïve 

Baye’s classifier also generates numerical support (probabilities) for the class labels.  

 

A two-dimensional feature space is recommended for this task, comprising LGA(11) 

and ENT(7). LGA(11) responds to edges and blobs and ENT(7) responds to the degree 

of randomness of the texture. Pockmarks have morphological differences compared to 

the surroundings. These properties are captured by the features and used to discriminate 

the objects by using a machine to learn represented differences in the randomness of the 

texture and the occurrence of edge-like structures in the terrain.  

 

In order to apply the process to similar types of pockmarks in different data, it is 

recommended that the approximate range of sizes of the pockmarks (in grid nodes) is 

first estimated by visual inspection. The range of sizes in the data considered was 

approximately 20-50 meters. Setting the LGA kernel size corresponding to the upper 

range of the physical sizes of the pockmark objects and the texture feature at the mid-
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range value may be a suitable choice for other data. Resolution will also need to be 

taken into consideration in this case, to estimate the size of the feature creation kernels 

to be applied. A feature evaluation process is still therefore recommended when using 

different data sets, to identify the most useful features and their resolutions for the 

specific object properties in the data.  It is also recommended that the evaluation process 

is holistic, using a variety of methods to assess the usefulness of individual features and 

combination of features.  

 

Morphological closure should be applied to remove false positives (FP) and false 

negatives (FN). In general, choosing a small kernel size for the features leads to a 

noisier classification result with a greater proportion of FN and FP instances. The kernel 

sizes specified previously will not result in a large number of FP or FN and will tend to 

filter out smaller irrelevant objects that are probably not pockmarks.  

 

5.8.4 Scope for further work 

 

There are several ways in which this work could be extended. A few possibilities are 

outlined here; 

 

o Fusing features derived from DBM and backscatter imagery for 

discrimination/classification of different pockmark types and extracting other 

information that could be used in commercial applications (see the mini-

proposal in chapter 10, section 10.2.1.) 

 

o Automated counting of the identified objects and determination of object 

properties such as planar area, eccentricity, volume, depth, and spatial 

distribution statistics. 

 

o Experimentation on other data sets (subject to availability) containing different 

types, sizes and areal densities of pockmarks. 

 

o A comparison of supervised and unsupervised approaches, e.g comparing the 

proposed approach with a full automation using a pre-clustering stage (as 

applied to sonar mosaic imagery in chapter 8.)  
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o A comparison with non-feature based approaches such as watershed methods 

and crater discrimination algorithms. 

 

o Representing the uncertainty in the discrimination of the individual objects by 

making use of the decision values (distance of pattern instances from the 

separating hyperplane in the BVM or an SVM.) Alternatively, a Naïve Bayes 

classifier could be used to generate probabilistic support.  

 

o Evaluating the agreement between human analysts and machine, in the 

placement and shape of pockmark boundaries. Multiple interpreters used in 

object identification. 

 

In the next chapter, feature creation and evaluation concepts are advanced and 

considered in a more challenging case study on another important natural seabed target 

discrimination problem – the discrimination of Sabellaria textures in sidescan sonar 

imagery. 
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Feature based discrimination Chapter 6 

of Sabellaria spinulosa textures 

in sidescan sonar imagery  

 

The work presented in section 6.2 of this chapter resulted in the publication of a paper, 

“A texture analysis approach to identifying Sabellaria spinulosa colonies in sidescan 

sonar imagery” by Harrison et al. (2011). 

 

Contents 

 

6.1 Introduction 

6.2 Sabellaria texture discrimination in waterfall imagery 

 6.2.1 Methods 

 6.2.2 Experimental work 
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6.1 Introduction 

 

In the previous chapter, the identification of targets (pockmark objects) in a DBM was 

studied. The case study reported in this chapter approaches the novel task of 

discriminating a target textural class, representing potential Sabellaria spinulosa 

(Sabellaria) colonisation in sidescan sonar imagery. Manual (visual) discrimination and 

mapping of the Sabellaria is an important but time consuming and expensive task. The 

aim of this case study is to establish if machine discrimination of Sabellaria textures 

from other seabed texture classes in sonar imagery is a tractable problem. The 

objectives concern the evaluation of a selection of state-of-the-art feature creation 

methods on waterfall imagery to identify any promising methods for Sabellaria 

discrimination (section 6.2) and a more in-depth analysis of a single method, applied to 

a similar task in mosaic imagery (section 6.3). The main findings indicate that a tuned 

Gabor filter bank is a useful feature creation method for Sabellaria discrimination in 

waterfall and mosaic imagery. Other potentially useful features for Sabellaria 

discrimination are briefly considered in section 6.4. 

 

Due to (documented) external issues affecting the provision of data, it was not possible 

to investigate any of these methods for Sabellaria discrimination on multiple or larger 

sized real-world data sets. However, it is not uncommon for published studies in the 

domain to focus on smaller sections of imagery from a single data set, as opposed to 

much larger mosaics. Using smaller patches of verified imagery greatly reduces the 

uncertainty of the study. Despite the noise, distortions and intra-class variability, there is 

more certainty that a smaller image patch contains a relatively homogeneous region of 

texture, as in the examples of figures 2.3 (a) and (b) in chapter 2. When there is ground 

truth and expert visual inspection, this helps to confirm that the texture is in some way 

representative of the seabed class. It is pointed out in section 6.5 that the establishment 

of a seabed texture benchmarking database would be very useful for further increasing 

the understanding of and advancing texture analysis methods in this domain.  
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6.2 Sabellaria textures in waterfall imagery 

 

This section summarises an experimental investigation into the performance of some 

statistical, signal processing-based and morphology-based texture features for 

classifying seabed classes in qualitative sidescan sonar imagery. The primary concern is 

the detection of the tube-building worm Sabellaria spinulosa. (Sabellaria). Sabellaria 

inhabits sub-tidal and intertidal zones in UK and European waters (Limpenny et al., 

2010). Dense accumulations of such worms can form biogenic reefs which are protected 

under the EU Habitats Directive. Naturally, this has planning and commercial 

ramifications for the offshore renewable energy industry as well as other construction 

activities that cause a seabed disturbance. 

 

Sidescan sonar is often the instrument of choice for high-resolution acoustic imaging of 

the seabed (see for instance, Blondel 2007, Fish and Carr, 2001.) The imagery contains 

useful textural information that can indicate the presence and extent of Sabellaria 

colonies (Limpenny et al., 2010, Hendrick and Foster-Smith, 2006, Birchall, 2007.) The 

sonar is usually towed on a cable behind a survey ship. It generates pulsed, fan-shaped 

lobes of acoustic radiation from a transducer array that doubles as a receiver for 

returning signals. The acoustic energy undergoes a complex environmental interaction 

as it propagates through the water column, into the seabed and back to the instrument, 

as illustrated in figure 6.1. 

 

 

 

Figure 6.1 Illustration showing the basic operation of a sidescan sonar 
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Figure 6.2 A waterfall image segment is built up progressively, from a sequence of transverse scan lines 

as the instrument is towed above the seabed. 

 

Returning signals are captured as a time series of amplitudes, comprising the sum of 

spatiotemporally varying specular components and boundary and volumetric backscatter 

from the seabed and water body. As the instrument advances, a waterfall image of the 

seabed (figure 6.2) is built up from consecutive scan lines. The imagery contains noise 

and various radiometric and geometric distortions from multiple sources (Cervenka and 

de Moustier, 1993, Cobra et al., 1992.) Image degradation can be exacerbated in the 

shallow water regimes where Sabellaria are found, due to wave motion and surface 

noise, such as from rainfall.  

 

Optical imaging of the Sabellaria offers much higher resolution and is sometimes used 

for localised, non-intrusive ground truthing over small areas. Optical and sonar imaging 

are both stochastic processes but there are fundamental differences in the imaging 

physics and the transducers. Underwater optical cameras (still and video) use charged 

coupled device (CCD) or Complementary Metal Oxide Semiconductor (CMOS) arrays 

of pixel elements for visible-spectrum imaging (Jonsson et al., 2009.) Absorbtion of 

electromagnetic radiation by seawater, backscattering due to turbidity and the limited 

ground coverage make this a less practical option for surveying large areas though. 

Recent advances in underwater imaging technology are described in Kocak et al.(2008). 

  

The heterogeneous structure and spatial distribution of the Sabellaria colonies produces 

diverse textural proxies in sonar imagery. Identification, segmentation and mapping of 

these textures is predominantly a manual task performed by a human expert. However, 

this procedure is tedious, subjective and therefore expensive. An automated, objective 

approach to reliably discriminating textural regions characteristic of Sabellaria would 

assist in the process of mapping the colonies. Further, automation would expedite 
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processing of the large volumes of data currently being acquired in site surveys for 

offshore wind farm developments.   

 

Different methods for the generic textural analysis of sonar images have been studied 

widely and include; Gabor filters (Samiee and Rad, 2008), Wavelets (Wang et al., 2007, 

Celik and Tjahjadi, 2011) and Co-occurrence matrices (Reed and Hussong 1989, 

Blondel et al., 1998, Karoui et al., 2005.) Yet there is no published research on the 

features that could be used for our specific task - the automated discrimination of 

Sabellaria in sidescan imagery. Due to data dependent performance, we need to evaluate 

a set of methods on this novel texture classification problem, as a preliminary stage in 

the design of an expert system for automatic Sabellaria discrimination. 

 

The remainder of section 6.2 is organised as follows. In 6.2.1 the methods included in 

the comparison are briefly reviewed. Experimental set-up including image acquisition, 

preparation and accuracy estimation is outlined in 6.2.2. Results are presented and 

discussed in 6.2.3. 

 

6.2.1 Methods 

 

During the last 20 years many approaches to texture analysis have been described in the 

literature. A comprehensive and up-to-date review can be found in Xie and Mirmehdi 

(2008.) Here, we consider methods from three groups: Statistical, Signal processing-

based and Morphology-based. All the approaches included in the comparison are 

rotation invariant as we do not assume any preferred orientations of natural textures in 

the imagery. Given the large palette of textural descriptors available, we restrict our 

subset to include some well-known techniques in the sonar imaging domain and others 

whose performance on this type of imagery is untested. The saliency of all these 

features in relation to the specific task is unknown though. Thus, the aim of our 

investigation is to find out which of these feature groups is the most promising for the 

task.  

 

[1] Statistical methods 

 

Statistical methods are based on the statistical distribution of greyscale values at 

predefined relative positions. The methods considered here are: Local Binary Patterns 
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(LBP), Improved Local Binary Patterns (ILBP), Coordinated Clusters Representation 

(CCR), co-occurrence matrices (COOC) and the recently introduced Binary Gradient 

Contours (BGC) (Férnandez et al. 2011). LBP, ILBP and CCR have received significant 

attention in recent years due to their ease of implementation, low computational cost 

and high discrimination accuracy in many applications, see Férnandez et al. (2010). Co-

occurrence matrices are included as a useful benchmark in many comparisons and are 

appropriate here due to their widespread use in the sonar domain. 

 

The basic version of the LBP (LBP33) uses the 256 possible binary patterns that can be 

defined in a 3  3 window, taking the central pixel value as a threshold. The 3  3 

subscript is used to indicate this.  A rotation invariant (ri, as indicated in the superscript) 

version (LBP ri

1,8 ) is obtained by replacing the original 3  3 window with a circular one 

and considering all rotated versions of the same pattern to be equivalent (Ojala et al., 

2002.) This reduces the number of histogram bins (features) by a factor of 8 (since there 

are 8 directions separated by π/4 radians ) to 36. The subscript 8,1 is used in this case 

and unless stated otherwise, the same definitions for the superscripts and subscripts are 

applied in the features subsequently described. 

 

ILBP (Jin et al., 2004) is an extension of the LBP. The main differences are: (1) The 

threshold is the mean value of the nine pixels in the window. (2) The central pixel is 

included in the definition of the binary patterns (in the LBP it is excluded). Hence, there 

are 511 possible binary patterns for the basic version (ILBP33), since one of the 

patterns (all black pixels) is impossible by definition. The number of features is reduced 

to 71 in the rotation invariant case (LBP
ri

1,8 ), which is obtained as described previously. 

 

The BGC considers the binary gradients defined between pairs of adjacent pixels lying 

on the peripheral closed path of a 3  3 grayscale window. This approach, despite 

discarding the central pixel, has been shown to be potentially superior to the LBP on a 

theoretical basis (Fernandez et al., 2011.) In this work the version referred to as BGC1 

is used. This descriptor, which generates 255 features in the basic version (BGC133), 

can be easily made rotationally-invariant (LBP1
ri

1,8 ), in the same way as the LBP. In this 

case the number of features reduces to 35.  
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The CCR (Kurmyshev and Sanchez-Yanez, 2003) differs from the previous methods in 

the thresholding approach. Whereas this is local in both LBP and ILBP, it is global in 

the case of the CCR. This gives 512 possible binary patterns for the basic version 

(CCR33), which reduces to 72 in the rotation invariant version (CCR ri

1,8 .) 

 

Co-occurrence matrices (Haralick et al., 1973) estimate the joint probability 

distributions of gray level combinations for pixel pairs at fixed displacements and 

orientations. In the implementation used here eight displacement vectors are considered: 

{(1,0), (1,1), (0,1), (-1,1), (-1,0), (-1,-1), (0,-1), (1,-1)}. The following five features are 

derived from the distributions: contrast, correlation, energy, entropy and homogeneity. 

Rotation invariance is achieved by averaging the feature values over the orientations. 

 

 [2] Signal processing-based methods 

 

Signal processing methods usually involve feature generation by filtering the image 

through suitable filter banks and computing global statistics from the filter responses. 

Gabor filtering, the Dual-Tree Complex Wavelet Transform (DT-CWT) and Ring filters 

are considered in this study. 

 

Gabor filters are one of the most effective approaches to extracting textural features. It 

is commonly believed that their effectiveness is related to their ability to model the 

frequency-orientation decomposition performed by simple cells in the mammalian 

visual cortex. In these experiments two Gabor filter banks are used: one with four 

frequencies and six orientations (Gabor 4-6) and the other with six frequencies and eight 

orientations (Gabor 6-8). In both cases the other parameters are: maximum frequency = 

0.327,  = 0.5,  = 0.5, frequency ratio = half-octave. These values have been chosen in 

compliance with the guidelines suggested in Bianconi and Fernández (2007). Texture 

features comprise the mean and standard deviation of the absolute value of the 

transformed images. Rotation invariance is obtained through DFT normalisation, 

generating 32 and 60 features for the two banks, respectively. 

 

The DT-CWT (Kingsbury, 1998) has interesting properties, such as moderate 

redundancy and directional selectivity. It operates on the directions 15o, 45o, and 

75o. To achieve consistency with the number of scales and orientations in the Gabor 
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filtering, four scales and the six orientations are used (DT-CWT 4-6). For each sub-band 

the mean and the standard deviation of the absolute value of the CWT coefficients are 

used as texture features. The features generated at each scale are averaged over the six 

orientations in order to obtain rotational invariance (DFT normalisation is not 

recommended in this instance, due to differing sensitivities of the complex wavelets). 

This configuration results in 4  2 = 8 features. 

 

Ring filters (Coggins and Jain 1985) are also well known in texture analysis. Being 

based on circular Gaussian transfer functions, they are intrinsically invariant against 

rotation. In the experiments presented in this paper we employed a bank of five filters 

with centre frequencies 1, 2, 4, 8 and 16 cycles/image. The other filtering parameters are 

set as suggested in Coggins and Jain (1985.) Texture features are the mean and standard 

deviation of the absolute value of the transformed images, resulting in a feature vector 

of dimension 10.     

 

[3] Morphology-based methods 

 

Morphology-based methods extend the classical digital morphological operations to 

greyscale images. Two well-known methods are considered: granulometry and 

variogram. 

 

Granulometry (Hanbury et al., 2005) is the normalised sum of the pixel values of an 

image, when transformed with a family of openings and closings, as a function of the 

size of the structuring elements. In the experiments, we use four linear structuring 

elements with orientations {0o, 45o, 90o, 135o} for opening and closing. The dimension 

of the elements ranges incrementally, in steps of 4, from 2 to 50 pixels. Rotationally-

invariant features are produced by averaging the four granulometry vectors 

corresponding to each direction, giving 13  2 = 26 features. 

 

The variogram (Wackernagel, 2003) estimates greyscale difference as a function of the 

distance between pixels. Given two generic pixels x1 and x2 the average greyscale 

difference is defined as 1/2E{[g(x1) - g(x2)]
2}1/2, where g represents the greyscale value 

and E the expected value. In the experiments, eight variograms were considered, 

corresponding to the displacements (d1, d2) = {(n, 0), (n, n), (0, n), (-n, n), (-n, 0), (-n, -
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n), (0, -n), (n, -n)} for n = 1,…, 20. For rotation invariance the average variogram is 

computed over the eight displacements, which yields a 20-dimensional feature vector.  

 

All of the individual feature generation methods described above were implemented in a 

Matlab harness. 

 

6.2.2 Experimental work 

 

[1] Data acquisition and preparation 

 

An Edgetech1 500 kHz towed sidescan sonar was used to capture the acoustic imagery. 

Range on port and starboard channels was set at 100m and along-track samples acquired 

at approximately five pings (scan lines) per metre. A subset of survey line waterfall 

segments were down-sampled in the across-track direction at five pixels per metre and 

slant range corrected in Coda GeoSurvey2 processing software. No further geometric or 

radiometric corrections were applied and the waterfall image segments were output as 

greyscale [0, 255] Tiffs, with a fixed (software specific) five-bit radiometric resolution. 

The image sample regions were chosen from transects oriented in approximately the 

same directions, and as far as possible, from the central region of the imaged seabed on 

the same side of the transducer (i.e., esonified from approximately the same directions 

and incidence angles) where the towfish was moving relatively smoothly, in a straight 

line and the textures of interests were present. Generally the representative samples 

were chosen within about 100 metres of each other. 

 

For the classification experiments, 40 image regions (20 Sabellaria and 20 non-

Sabellaria) each 256  256 pixels (approximately 50 m  50 m ground coverage) were 

extracted from the processed waterfall segments. The non-Sabellaria regions are further 

sub-classified as Sand, Mussels, Bedforms and Boulders. These classes are defined in 

table 6.1 and the number of class instances listed. Typical appearances of the five 

textural classes are shown in figure 6.3. 

 

 

 

                                                 
1 http://www.edgetech.com/edgetech/gallery/category/side-scan-sonar-systems  [accessed 13-07-2011] 
2 http://www.codaoctopus.com/coda-geosurvey/  [accessed 13-07-2011] 

http://www.edgetech.com/edgetech/gallery/category/side-scan-sonar-systems
http://www.codaoctopus.com/coda-geosurvey/
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Class Image region description No of images 

Sabellaria Moderate Sabellaria eggregations 20 

Sand Sandy and mixed sandy sediments 6 

Bedforms Linear dunes, wavelength, {2   5} m 6 

Mussels Mussel beds on a sandy substrate 6 

Boulders Boulders on a sandy substrate 2 

 

Table 6.1 Summary of textural classes 

 

 

   

 

(a) Sabellaria (b) Sand (c) Bedforms 

 

  

 

 

(d) Mussels (e) Boulders  

 

Figure 6.3 Examples of the five textural classes 

 

Natural textural variability is clearly present. For instance, bedforms exhibit varying 

wavelengths and coherencies in individual image regions as in (figure 6.4) and within 

the class. These clearly reflect true natural variability of the target together with any 

distortions generated through unknown variations in the image acquisition parameters. 
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Figure 6. 4 intra-class variability of bedform wavelength, amplitude and coherency. 

 

[2] Classification and accuracy estimation 

 

To assess the effectiveness of the methods described earlier, a multi-class supervised 

classification experiment was carried out using a nearest-neighbour (1-NN) classifier 

with L1 (Manhattan) distance. The choice of 1-NN is motivated by its absence of tuning 

parameters, its ease of implementation and by the asymptotic property that its error is 

bounded by twice the Bayes error as the number of samples tends to infinity. The choice 

of distance (similarity) measure can affect the k-NN results, since different distance 

measures can produce different sets of k-neighbours. When there is no prior knowledge 

of what distance measure is most suitable for a particular classification task, the 

Manhattan or Euclidean distances are conventionally used (Wang et al., 2006.) Results 

for the lowest error rates on five benchmark classification tasks (unrelated to the 

problem being considered here), in Wang et al. (2006) indicate that the mean error rate 

is slightly lower for the Manhattan measure, compared to the Euclidean. It does not 

necessarily mean that the error rates will be lower by using the Manahttan, as opposed 

to Euclidean measure for the test case here due to the different data and objectives. In 

the absence of any information to suggest otherwise though, it is not an unreasonable 

decision to choose this measure. Accuracy estimation is based on leave-one-out cross 

validation. The classifier and validation process was implemented using Matlab library 

routines. 

 

6.2.3 Results and discussion 

 

A potentially useful feature generation method for this task should yield good 

classification accuracies on relatively small sub-image sizes. Table 6.2 shows mean 

classification accuracies (%) for each method on the different sized sub-images. Results 

are partitioned into overall multi-class accuracies (left) and Sabellaria-specific 

accuracies (right) - i.e. sensitivity with Sabellaria as the target.  
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Table 6.2 Overall multi-class classification accuracy (sensistivity) for Sabellaria. 

 

A ranking of the methods is defined through the following pairwise comparison rule: A 

method outperforms another method if its accuracy is greater on each sub-image size. 

Assigning +1 for a win, -1 for a loss and 0 for a tie we obtain the results shown in table 

6.3. The overall accuracy as a function of sub-image size for the top five and bottom 

ranked texture descriptors is shown graphically in figure 6.4. 

 

 

 

 

Table 6.3 Total scores and rank for each method 
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Figure 6.5 Variation in overall accuracy with sub-image size 

 

These results clearly indicate the superiority of signal processing methods on this 

texture classification task. Both Gabor and ring filters produce good results, with an 

overall classification accuracy as high as 89.4% and an accuracy for Sabellaria-specific 

images exceeding 90%. These two methods also yielded some of the highest accuracies 

on specific classes of Sand and Bedforms. This is very useful, as in their natural habitat, 

Sabellaria require sand to construct their tubes and they are often found in regions 

where relatively strong currents (hence bedforms) exist. Features producing good 

classification accuracies on the Sabellaria, Sand and Bedform classes should also be 

effective for discriminating between these classes and performing the desired image 

segmentation. 

 

The classification could be extended to include distinguishing between different 

periodicities in bedform textures using a Fourier Transform approach. Variations in the 

spatial-frequency can occur over short length scales as shown in figure 6.3 (c). In this 

instance, wavelengths range from approximately 2 - 5 metres over the region, so a short-

time, windowed Fourier Transform with good spatial and spatial-frequency localisation 

would be required. The choice of windowing function for the transform would therefore 

be Gaussian as this optimises the joint spatial and spatial-frequency localisation. 

Further, we would want to analyse at multiple frequencies. Clearly though, a Gaussian 

windowed short time Fourier Transform applied at different centre frequencies is a 
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Gabor expansion. The filter banks are computational implementations of this expansion 

and therefore have the added versatility of being able to perform this type of periodicity 

discrimination, should it be needed. 

 

Among the statistical methods investigated, the ILBP and BGC1 gave good results too. 

As far as is known, these two methods have not been applied to sonar imagery before. 

Their performance here suggests that they could be useful additions to the pool of 

methods currently being used in the domain. Surprisingly the LBP does not appear to 

perform particularly well in this context. It is believed this could in part be a 

consequence of the image formation process. Downsampling, radiometric compression 

and other processing factors will result in a loss of some high-frequency components 

present in the original signal, as noted in Stewart et al., (1994.) These high frequency 

components are vital for methods based on small scanning windows such as the LBP.  

 

Most methods exhibited a peak overall accuracy at a sub-image size of 128 pixels, 

corresponding to a square ground patch of approximately 25 × 25 m (625m2.) This 

indicates that there may well be an optimal size of imaged area for the classification 

task, under the specific parametric conditions of the feature creation methods used in 

this test case. The COOC features were ranked bottom out of all the methods considered 

and as can be seen in figure 6.4, accuracies from the COOC features decreased 

monotonically by 13% over the range of sub-image sizes tested. This is most likely due 

to the small magnitude of the displacement vectors in relationship to the scales of the 

textural variations and also noise in the imagery. It is possible to achieve good results 

with co-occurrence features on sonar data but this requires careful parameter and feature 

tuning for the specific data set and texture discrimination tasks. Further details of an 

approach to co-occurrence parameter optimisation can be found in Blondel and Gómez-

Sichi (2009) and in chapter 7 of this thesis. 

 

6.3 Sabellaria texture discrimination in mosaic imagery 

 

The previous investigation of different features on sonar waterfall imagery revealed the 

Gabor Filter Bank (GFB), under the prescribed parameterisation, as one of the top 

methods for Sabellaria discrimination. In this section, the parameterisation and design 

of a GFB, for the discrimination of Sabellaria textures in of sonar mosaic imagery is 
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considered in greater detail. Mosaic imagery is obtained by applying a mosaicing 

process to waterfall imagery. The mosaicing process georeferences the pixel values and 

in so doing, the geometry and radiosity of the waterfall pixels is transformed. The 

processing steps applied in the production of the supplied mosaic imagery in this study 

are unknown (and unknowable). The aim of this section is to identify a useful set of 

filter parameters and filter bank configurations that would be useful for discriminating 

Sabellaria textures from other textures in sonar imagery. 

 

6.3.1 The Gabor filter bank  

 

[a] Background 

 

Research concerning the design and parameterisation of Gabor filter banks and their 

numerous applications to image texture representation, image retrival, segmentation and 

classification is extensive, e.g Manjunuth and Ma (1996), Bovik et al.(1990), Jain and 

Farrokhnia (1991), Dunn et al. (1994). However, for reasons that are unclear, their use 

in sonar image processing has not been widely adopted. There are presently no 

commercial software packages for sonar processing that include Gabor filter banks as a 

textural analysis and segmentation method. Published research on the application of 

Gabor filter banks to sonar imagery is scarce compared to methods such as GLCM. 

Further, aside from the study on waterfall data, in the previous section, there is no 

published work at all, relating to the specific case of discriminating of Sabellaria from 

other textures in sonar images.  

 

One of the earliest applications of Gabor filters to sonar imagery was carried out by 

Cexus and Boudraa (2003). They used texture energy features derived from the filter 

output channels, in an unsupervised approach to segmentation of seabed textures. 

Atallah (2004) experimented with different parameterisations of Log-Gabor filter banks 

for the classification and segmentation of sidescan and bathymetric sidescan imagery. 

He found that adding more orientations to the filter bank improved classification results 

by up to 20% on the sidescan data set. However, with a different data set containing 

imagery of artificial coral reefs surrounded by sediment, he found that increasing the 

number of orientations in the filter bank did not greatly improve the classification 

results. Atallah (2004) claims this is probably due to random orientations of the 

textures. Further, the comparative effects of dyadic (octave) and non-dyadic 
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implementations of frequency scales on the results of the reef – sediment discrimination 

case were not significant. Sun and Shim (2008) used a fusion of Gabor filter bank 

features and Fuzzy Fractal Dimension (FFD) applied to the classification of sand, rock 

and mud textures. They found that fusing the two feature sets led to an improvement in 

classification performance, compared to using the features independently. Their Gabor 

filter bank was implemented using only the even symmetric (real) kernel (a Gabor filter 

kernel is complex valued and comprises real and imaginary components). Similar 

implementations, in different applications, were adopted by Jain and Farrokhnia (1991) 

and Camapum Wanderley and Fisher (2001). Malik and Perona (1990) provide some 

justification for an even symmetric kernel choice, based on psychophysical grounds.  

 

High-level texture perception in the Human Visual System (HVS) depends on many 

factors but is strongly dependent on repetition (frequency), orientation and complexity 

properties of the texture (Rao and Lohse, 1993). Prior to this work, Campbell and 

Kulikowski (1966) had found that an aspect of HVS functionality could be described in 

terms of orientation tuned channels. One approach to modelling the perception of 

texture by the HVS is therefore to use a multi-channel filter bank, which captures 

frequency-orientation characteristics of a texture. However the parameters used to 

model this aspect of the HVS in the context of a multi-channel filter bank (such as 

Gabor) are not necessarily appropriate for machine based textural discrimination 

problems. For instance, use of the even symmetric Gabor function in isolation may lead 

to inconsistent classification results compared to using the complex filter pairs, 

particularly when no post filtering is applied (Clausi and Jernigan, 2000). Further, cells 

in the visual cortex respond to approximately dyadic frequency bandwidths (Pollen and 

Ronner, 1983). Clausi and Jernigan (2000) claim that a filter bank model of the HVS, 

with 30o angular separation and one octave spacing/bandwidth is preferred. However, in 

the experimental work presented in this section for the specific task of Sabellaria 

discrimination, half-octave separation is shown to be preferable. 

 

Numerous different post processes can be applied to the output channels of the Gabor 

filter bank, for instance; Gabor-energy (magnitude), complex moment, grating cell 

operators and full-rectification. These responses are often used directly as textural 

features, several are compared in a study by Grigorescu et al (2002) and also in Clausi 

and Jernigan (2000). Features derived from the complex phase output can also be used 

to detect discontinuities within relatively homogeneous textural classes (Du Buf and 
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Heitk, 1991). Since the focus here though is on binary discrimination of textural classes 

rather than intra-class textural discontinuities, the phase information is not considered 

further.  

 

There are a multitude of ways of applying a Gabor filter bank, configuring the output 

channels and deriving features. The precise approach used will depend on the 

application objectives and the desired output for the subsequent processing pipeline. In 

this study, the filter bank is used as a combined feature generator and down-sampler. 

The objective is to represent small, contiguous, non-overlapping image neighbourhoods 

with a feature vector capturing the frequency-orientation properties of textures within 

the pixel neighbourhood.  

 

[b] Filter bank definition and implementation 

 

The theory of Gabor filter banks and their mathematical description is widely 

documented. An individual Gabor filter is built from a 2-D Gaussian function 

modulated by a complex, planar sine wave. It is sometimes called a Gabor Elementary 

Function (GEF) or a Gabor Wavelet. The GEF was originally defined by Gabor (1946) 

and subsequently extended to a 2-Dimensional space by Daugman (1985). The Gabor 

filter bank,  comprises a total of |||| individual filters, at orientations,  = {0,.., Q-

1} and centre spatial frequencies (wave numbers),  = {0,…, J-1}. So, for example, if 

there are eight orientations (|| = 8) and five frequencies (|| = 5) there are 40 

individual filters in the filter bank. A spatial (x, y) domain template function for a two-

dimensional, individual Gabor filter kernel can be defined as,  
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where, 
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In equations 6.1 and 6.2, the p, n terms represent the standard deviation of the 

Gaussian envelope in directions parallel and normal to the x-direction, respectively. The 

modulating spatial frequencies of the sinusoid in the corresponding directions are u0 and 

v0. The spatial frequency (wave number) and coordinate vectors, k and x respectively 

(defined below) are used for compactness of the notation, which varies widely (c.f. 

equation (91) in Movellan (2002), equations (2), (3) and (4) in Dunn et al. (1994) and 

equation (1) in Bianconi and Fernández (2007)). The ‘r’ subscript indicates transformed 

(rotated) components and as usual, i = 1 . 

 

Individual filter kernels have real and imaginary components, as shown in figure 6.6. 

Output from the kernels may be used independently or combined, commonly as the 

magnitude response. Although, as noted previously, many implementations use only the 

real (cosine) component of the filter kernel. A cosine or sine kernel only  

implementation is phase sensitive, since the complex sine kernel is a π/2 phase shifted 

version of the real cosine kernel. Further, unless the DC component of the real kernel is 

compensated or filtered, it will not be intensity invariant as the output will be biased by 

intensity. The output from the complex sinusoidal kernel has a zero DC component and 

is therefore unbiased. Using a normalised (zero DC) magnitude response from the real 

and complex kernels ensures that the filter output is insensitive to intensity and to phase, 

as in Movellan (2002). 

 

 

  

(a) Even-symmetric (real component), 

 Re 

(b) Odd-symmetric (imaginary component), 

 Im 

 

Figure 6. 6 Real and imaginary components of a Gabor filter kernel. 
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The spatial frequency domain and Cartesian spatial domain vectors are k = (u0, v0)
T and 

x = (x, y)T , respectively. Rotated vectors kr and xr are obtained by applying the rotation 

matrix, R(), where, 

R(*) = 

   

    

















cossin

sincos

 

          (6.3) 

 

hence, kr = R( )k and xr = R( )x. By setting   , the vector parallel to the 

wavefront direction is aligned with the corresponding p component of standard 

deviation in the 2-D Gaussian. The normal component of the Gaussian envelope, n is 

then aligned normally to the wavefront direction. Multiple filters,  { (q),  (j)} can be 

derived from the template function to construct a filter bank. Individual filter outputs 

can be computed by convolving the filter kernel with correspondingly sized 

neighbourhoods of the input image, in the spatial domain. The convolution operation 

can use the real,  Re or imaginary,  Im components of the filter kernel or both. The 

output channels in the experimental implementation are summarised in table 6.4, where 

* is the convolution operator. 

 

Output channel Abbr. Definition 

 

Imaginary  IIm I Im{ (q),  (j)}  =  Im{ { (q),  (j)}  I (x, y)} 

 

Real IRe I Re{ (q),  (j)}  =  Re{ { (q),  (j)}  I (x, y)} 

 

Norm (magnitude or energy) IMag | I Mag{ (q),  (j)} | = | IRe + i IIm | 

 

Full rectification IRec | I Rec{ (q),  (j)} | = | IRe | + | i IIm | 

 

 

Table 6.4 Output channel configuration 

 

Channel responses as defined in table 6.4 can be used directly as features. Frequency 

progression (or frequency ratio) defines the location of and separation between 

individual filter centres on a normalised spatial frequency scale. Using J different 
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frequency centres, and the lowest frequency centre positioned at 0, with 1/(J – 1) 

octave spacing, the frequency progression is, 

j = 0
 12 J

j

 

          (6.4) 

 

The frequency bandwidths and angular bandwidths of filters in the spatial frequency 

(wave-number) domain (u, v) are functions of the envelope standard deviations, p and 

n in the spatial domain. Large spatial coverage (i.e., large p, n) in the spatial domain 

gives rise to narrower frequency bandwidths in the (u, v) domain. This is illustrated in 

figure 6.7. Response patterns of individual filters are circular when the Gaussian kernel 

is isotropic, i.e., p = n, as is used in the experiments in this study. 

 

    

 

(a)  = 5 

 

(b)  = 8 

 

(c)  = 10 

 

(d)  = 20 

 

Fig. 6.7 Spatial-frequency (u, v) representation of prototype Gabor filter banks showing how the 

bandwidth of the filters changes with increasing . 

 

The angular spacing in this illustration is  = /6. Due to the rotational symmetry of 

the filter bank, channel responses generated by conjugates, *{q + , j} are 

duplicated. It is therefore unnecessary to implement the conjugates (shown to the left of 

the red line in figure 6.8) as they increase processing costs and produce redundant 

information. 
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Fig. 6.8 Spatial-frequency (u, v) representation of a prototype Gabor filter bank. Only the filters  {q , 

j} to the right of the red line are used. The conjugate filters  *{q + , j} on the left have redundant 

orientations. 

 

It is not necessary to apply the filter bank kernels at every pixel location in the input 

image, I (although this can be done if desired.) The filter bank can be used as a down-

sampler in the feature creation process, by convolving the kernels with N  M 

contiguous, non-overlapping pixel neighbourhoods, centred on I(n, n), as shown in 

figure 6.9. The dimension of the feature space at this stage is D = ||||. 

 

Using the feature creation kernel as a down-sampler has the two-fold advantage of 

greatly reducing the time required for pattern generation and reducing the size of the 

input space to the classifier. For example, using 25  25 pixel contiguous 

neighbourhoods reduces the pattern generation time and the size of the input space by a 

factor of 625, compared to generating pattern instances at each pixel location. 

Efficiency can be improved further by dimensionality reduction. One way of achieving 

this is by deriving rotationally invariant features from the orientation dependent output 

channels. Three well-known post-processing methods applied to the feature vectors 

after they have been generated are; (1) taking the mean response over all directions, (2) 

selecting the directional channel with the maximum response at each value of j 

(Varma and Zisserman, 2005) and (3) applying a Discrete Fourier Transform (DFT) to 

the output channels (Bianconi et al., 2008). The rotational configurations and the 

methods used to apply them are summarised in table 6.5.  
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Figure 6.9 Illustration showing how the filter kernels can be used to create a down-sampled feature space 

from contiguous pixel neighbourhoods. Each matrix contains the patterns (filter channel responses) for 

the image neighbourhood. 

 

 

Rotational configuration 

of output, * 

 

Definition Dimension, 

D 

 

Rotationally variant, RV Directional channels are unmodified |||| 

 

Rotationally invariant, 

maximum response, max 

max  = max{  (0,.., Q)} || 

 

Rotationally invariant, 

mean response,  

 

 = 





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Rotationally invariant, 

DFT response,  (DFT) 
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(|| - 2)| | 

 

Table 6.5 summary of rotational configurations and methods 
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As well as reducing dimensionality, an additional advantage of using rotationally 

invariant features is that they tend to suppress some of the (undesirable) variability 

captured by the features, due to the effects imparted by sensor platform motion on the 

imagery (Kalcic and Bibee, 2004). The Dimension, D of the rotationally invariant 

feature space is given in the right column of table 6.5 as a product of the number of 

orientations || and frequency centres || in the filter bank. As an example, if there are 

6 orientations and 5 frequencies, there will be 30 rotationally dependent output 

channels. Computing a mean or maximum directional response will reduce the 

dimension of the feature space to 5. Applying the DFT will produce a rotationally 

invariant feature space of dimension 20 as it represents the rotationally invariant 

features for each frequency band in terms of the Fourier spectral components. The 

investigation of Bianconi et al. (2008) found that the DFT approach performed better 

than some other methods (total energy, circular shift, brute force and no rotational 

invariance) in their texture classification experiments. Total energy is the sum of the 

energies of a specific frequency band over all orientations (dividing this by the number 

of orientations gives the mean response method.) They point out a limitation of the total 

energy approach is that it removes orientation dependent information. Further, they also 

point out that searching for the highest energy orientation (as in the circular shift or 

similarly, maximum energy approaches) may be prone to errors and sensitive to noise. 

 

 

6.3.2 Experimental work 

 

The purpose of these experiments is to investigate how different filter bank 

parameterisations influence the accuracy of binary discrimination of Sabellaria textures 

and to identify a useful set of filter parameters for this purpose, on the supplied imagery.  

 

The supplied mosaic imagery has a resolution of 6 pixels/m and a radiometric resolution 

of 5 bits, i.e., 32 discrete grey values [0, 7,..247, 255], specific to the Coda GeoSurvey3 

processing software used in the mosaicing process. Details of corrections applied and 

parameters used in the mosaic processing pipeline are unknown, as is often the case 

with legacy mosaic imagery.   

 

                                                 
3 http://www.codaoctopus.com/coda-geosurvey/ [accessed 13-07-2011] 

http://www.codaoctopus.com/coda-geosurvey/
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In the experiments, computational kernel sizes of 11, 17, and 23 pixels are used to 

generate the filter responses. These correspond to ground coverage of approximately 2, 

3 and 4 m respectively. A Naïve Baye’s classifier (see, for example, Duda et al., 2001, p 

13.) is used in a wrapper, with mean classification accuracy as the objective function for 

evaluating the parameters. As this series experiments differs from those in section 6.2 

and 6.3.4 different processing flows and experimental harness architectures were 

implemented. The results from each harness were not compared in any detail, since the 

experimental campaigns, although closely related, were independent, with different 

objectives. So the fact that different learning algorithms were used in each harness is not 

relevant.  

 

Multiple, balanced random samples are selected for training the classifier and the 

multiple models are then applied independently to the remaining samples to predict the 

class labels. The mean and standard deviation of the accuracies of the model predictions 

is computed for each run, over the value ranges in an eight-dimensional parameter 

space, comprising;  

 

1. computational kernel size, k,  

2. initial frequency, 0,  

3. frequency progression (octave ratio),  

4. angular separation, ,  

5. Gaussian S.D, n, (isotropic envelope),  

6. channel configuration,  

7. rotational configuration,  

8. class discrimination task.  

 

 

 

 

 

 

 

 

 

 



Chapter 6  Sabellaria texture discrimination 

 

158  

Output features are normalised to [0 1].  Table 6.6 summarises the output channel and 

rotational configurations of the filter bank and the corresponding feature space 

dimensions, D. 

 

Channel 

configuration 

Rotational configuration 

 RV   (DFT) max 

IMag |||| || (||-2)|| || 

IRe |||| || (||-2)|| || 

IIm |||| || (||-2)|| || 

IRec |||| || (||-2)|| || 

 

Table 6. 6 Summary of the feature space dimensions for output channel and rotational configurations. 

 

The intrinsic filter bank parameters and their value ranges are summarised in table 6.7 

 

Parameter Values 

0 0.05, 0.07, 0.09, 0.11, 0.13, 0.15 

Octave ratio 1, 2, 4:  || = {3, 5, 9} 

Kernel size, k 11, 17, 23 

n, p {n, p } {1, 3, 5, 7, 9}, {1, 3, 5, 7, 9, 11, 13, 15}, {1, 3, 5, 7, 9, 11, 

13, 15, 17, 19, 21} 

 /3, /4, /6, /8:   || = {3, 4, 6, 8} 

 

Table 6. 7 Summary of parameters and ranges of values considered. 

 

 

The binary discrimination tasks are;  

 

1. Sabellaria-mixed sediments,  

2. Sabellaria-Mussels,  

3. Sabellaria-rock,  

4. Sabellaria-sand,  

5. Sabellaria-bedformed sand (i.e., sand dunes or sand waves.)  
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Examples of some of the synthesised test images used and the reference class map are 

shown in figure 6.10. 

 

   

 

(a) Sabellaria- 

mixed sediments 

(b) Sabellaria- 

Mussels 

(c) Sabellaria- 

Rock 

 

  

 

 

 

(d) Sabellaria- 

Sand 

(e) Sabellaria- 

Sand dunes 

(f) class map: Sabellaria 

(white), background  

(black) 

 

Figure 6.10 Image patches used for evaluation. The individual squares are sized at integer multiples of 

the feature kernel, to ensure class homogeneity under the feature kernel. The examples shown are for a 

kernel size, k = 11. 

 

Under the controlled experimental conditions, using evaluation images synthesised from 

parts of a larger mosaic, it is possible to ensure that the feature kernels are applied only 

to image regions of the specified classes (regardless of whether those classes are 

homogeneous, correctly labelled or not). The image patches used in the test cases are 

sized as integer multiples of the kernel size, so there is no overlap onto tiles having a 

different class label. This does not remove the problem of within-class heterogeneity or 

incorrectly assigned class labels but these factors are beyond the control of the 

experiment. The five classification tasks considered in the evaluation reflect possible 
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real-world discrimination tasks. A common case would be the discrimination of 

Sabellaria from smooth sediments or bedformed sediments such as sand dunes. 

 

6.3.3 Results and discussion 

 

Several tens of thousands of experimental runs were carried out, so in order to focus on 

a meaningful analysis, only a small subset of the results are presented and discussed 

here. Results are considered from one channel configuration (magnitude, IMag), one 

rotational configuration (maximum response, max) and at a single kernel size of k = 17.  

 

Figure 6.11 shows how the mean classification accuracy (%) (y-axis) varies with the 

filter envelope standard deviation,  (x-axis) on the Sabellaria-sand discrimination task 

for the 12 combinations of angular separation (number of orientations) and frequency 

progression (number of frequencies) of the filter bank. The line colour corresponds to 

the initial centre frequency (0) in the frequency progression, as indicated in the legend. 

As, strictly these are wavenumbers rather than angular frequencies in time, the units are 

cycles per unit distance. Visual inspection of the figures shows that in many cases, 

maximum accuracy occurs near  = 9. It can also be seen that the variability in the 

accuracies produced at different values of 0 decreases as the number of frequencies in 

the progression increases. For instance, the choice of 0 at || = 3, || = 9 is less critical 

than at || = 3, || = 3, where average accuracies can change by more than 20% 

depending on 0 . For a fixed dimension of feature space, D = || The results are clearly 

influenced by changing the number of orientations in the filter bank but there is no 

obvious systematic effect in this particular case. 
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Figure 6.11 Sabellaria-sand discrimination accuracy (mean) over the range of initial frequencies, 

frequency progressions and angular separations of the filter bank. 
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Figure 6.12 Sabellaria sand discrimination sd of accuracy for the corresponding graphs in figure 6.11. 
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Figure 6.12 shows the standard deviation of the accuracies in figure 6.11. With few 

exceptions, there is a general trend of an increase in sd with increasing . The sd at 

different values of 0 is greatest at || = 3.  

 

The value of , in all cases strongly influences the accuracy, with up to 25% difference 

in accuracy over the range of  values, in each configuration. A similar affect was 

apparent on the other discrimination tasks. As this factor influences classification 

accuracy more than the other parameters, it is reasonable to first identify the (global) 

value of  that produces the highest mean accuracies overall. The relative frequency of 

maximum mean accuracies attained over all class discrimination tasks, frequency 

progressions, angular separations and 0 values, is shown in figure 6.13. This result 

indicates that if   = 9 is selected, the probability of attaining the maximal accuracy 

(irrespective of the classification task or other parameter settings) is 0.57, more than 

double that for   = 11 and three times that for   = 7. Interestingly, considering the 

results from other experiments (not reproduced here), the value of  corresponding to 

the greatest probability of occurrence of maximum accuracies was found in general, at 

approximately half of the kernel size, i.e., k/2. 

 

 

 

 

Figure 6.13 Relative frequency of filter envelope standard deviation () producing the maximum 

accuracy, for k = 17, over all parameters and classification tasks. 
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The choice of 0 for half- and quarter-octave frequency progressions, with   < k/2 is 

less critical, since the accuracy produced by using different 0 values varies by less than 

5 % over the range of 0.  

 

Figure 6.14 shows the mean and SD (error bars) of classification accuracies using 0 = 

0.15, over all classification tasks. It is clear there is a consistent hierarchy in the level of 

difficulty of the different discrimination tasks across the various frequency progressions 

and angular spacings of the filter bank. The discrimination of Sabellaria from Mussels is 

the hardest task, followed by rock, sand dunes, mixed sediments and finally, the easiest 

discrimination task, with the highest accuracies, Sabellaria-sand.  

 

The next decision, concerns choice of a suitable combination of frequency progression 

and angular separation for the scope of classification tasks.  
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Figure 6.14 Mean and standard deviation of classification accuracy as a function of , at a kernel size k = 

17, initial frequency, 0 = 0.15, for all class discrimination tasks. Error bars indicate the accuracy sd.  

 

 

Table 6.8 shows the mean (bold) and S.D. of the accuracies over all classification tasks, 

with the 12 different combinations of angular spacing and number of frequency 

channels. The results in table 6.8 are shown graphically in figure 6.15 (b). The mean 
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accuracy is greater (by at least 3.5 %) and the sd lower for the filter banks with half and 

quarter-octave frequency progressions, at all angular spacings. Highest mean accuracy 

is achieved using an angular spacing of /8 and 9 frequency channels.  

 

Frequencies 

|| 

Number of filter orientations || 

3 4 6 8 

3 72.2 71.5 74.7 76.0 

2.8 3.6 3.2 2.2 

5 76.6 75.8 78.6 79.2 

0.9 2.1 1.4 0.5 

9 77.0 76.5 78.3 79.7 

1.1 0.7 1.5 0.6 

 

Table 6.8  Mean and S.D. of classification accuracies over all class discrimination tasks, with  = 9, at a 

kernel size k = 17 and initial frequency, 0 = 0.15. 

 

 

 

 

Figure 6.15 (a) Mean classification accuracy over all tasks, at ,= 9, k = 17, 0 = 0.15, against cost 

(number of output channels generated) at different numbers of orientations and frequencies. (b) Mean 

overall accuracy as a function of octave ratio and number of orientations. 

 

A very important further consideration is one of cost. When generating features from 

the input image, each orientation and centre frequency channel requires two separate 

convolutions with the real and imaginary kernels. If (all other things being equal) the 

cost of this operation is one unit, then the relationship between cost and accuracy can be 

(a) (b) 
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represented, as in figure 6.15 (a). This initial unit cost is fixed, regardless of how 

rotational invariance (and dimensionality reduction) is later achieved and the extent to 

which dimensionality is reduced, by post processing the output channels. The ratios of 

gains in accuracy are not of the same order as the gains in cost required to achieve the 

accuracy improvement. Halving the angular separation increases the cost by 100% but 

only increases the accuracy by about 5%. For this reason, the filter bank with an angular 

separation of /6 and half-octave frequency progression is chosen (indicated by the 

larger green marker on fig. 6.15 (a).) 

 

Rotational invariance by the maximum response is an effective method (Varma and 

Zisserman, 2005) and has a lower dimensional output compared to using the DFT. Good 

results are possible from the DFT (Bianconi et al., 2008) but where cost is an important 

consideration, DFT is expensive to implement compared to max and the dimension of 

the reduced feature space, is always a factor of (||-2) greater, compared to using the 

mean or max invariance methods. Table 6.9 summarises the suggested parameters that 

are generally useful for discriminating Sabellaria from other textures in this specific test 

case on the mosaic data.  

 

Parameter 

(configuration) 

Value (description) 

0 0.10-0.15 

Octave ratio 2 (half-octave progression) 

Kernel size, k 17 

n, p {n, p } ~9 (or approx. k/2) 

 /6 (six orientations) 

Channel configuration IMag  (magnitude response) 

Rotational configuration max (maximum response) 

 

Table 6.9 Summary of parameters and configurations useful for discriminating Sabellaria from other 

textures in the mosaic data. 

 

The mosaic imagery regions under test had a ground resolution, RG = 6 pixels per metre. 

It can be speculated then, for the creation filter bank features suitable for discriminating 
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Sabellaria, the filter kernel size, k  3RG and   1.5RG  may in general, provide good 

results. 

 

In the next section, some further results from an extension of this investigation are 

presented and discussed. 

 

6.3.4 Further results and considerations 

 

In a practical application scenario, it is conceivable, that presented with a mosaic image 

on a computer screen, a human operator could manually identify potential target regions 

of Sabellaria (S) and non target regions ( S) then select a few training points to induce 

a supervised classification model for Sabellaria discrimination. This is of course, similar 

to the approach used in the previous chapter, for pockmark discrimination. To test the 

feasibility in this context, a number of composite textural images were constructed 

using image patches from different regions of the mosaic. An example of a composite is 

shown in figure 6.16 (a) and the classes are described in table 6.10. The corresponding 

regional class map is shown in figure 6.16 (b) with the white regions representing the 

target, S class. 

 

 

 

 

(a) (b) 

 

 

Figure 6.16 (a) Example of a composite image used in this test case. See table 6.10 for a description of 

the ground truthed textural classes. (b) Regional class map. The target S class is white. 
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Image 

key 

Description of specific class Generic 

(binary) 

class label 

d Sabellaria (moderate Sabellaria growth) with low-moderate 

elevation (28cm), patchy cover (up to approx. 75 %.)  

 

S 

b Sabellaria (patchy Sabellaria aggregations) on a mixed substrate, 

with significant damage and broken tubes. 

 

S 

i Sabellaria (patchy Sabellaria) on a mixed substrate, with 

significant damageand broken tubes. 

 

S 

e Mixed coarse, shelly substrata with occasional cobbles and 

mudstone.  

 

 S 

f Sandy substrate with some gravel and cobbles.  

 

 S 

a Dense Mussel bed on sand, at least 75 % cover.  

 

 S 

c Rock outcrop (possibly chalk) with some overlying sand, 

sediments and epifauna.  

 

 S 

g Sand, Linear dunes, wavelength approx.  = 3 m, with fine 

surface sediments, gravel and shell.  

 

 S 

h Lumps of clay and mudstone on mixed substrata.  S 

 

Table 6.10 Descriptions of the ground truthed textural classes in the compositie image (fig 6.16.) 

 

Three of the textural regions are S class, the remaining 6 are from a variety of  S 

textural classes. Two of the S texture regions have intentionally been chosen to be 

similar (d, i) and another (b) which is different, as this reflects more realistically, the 

natural intra-class variability encountered. The problem here is more challenging due to 

the heterogeneous,  S textures from which the S class has to be discriminated. 
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A large number of experiments were again carried out using the parameter ranges 

identified in the previous sub section (table 6.9.) with some additional parameter values 

for  and k, using a larger (k = 25, i.e., up to approximately 25 m2 ground coverage) 

sized kernel. The fixed parameters/configurations used are; (1) half-octave frequency 

progression, (2) angular separation of /6 (six orientations), (3) magnitude response 

output and (4) 0 = 0.1. Different kernel sizes (k  17) were considered and as before, a 

circular Gaussian envelope was used in the filters (n, p) and the affect of varying   

investigated.  

 

Results discussed for the specific test case here were generated in a more expensive 

process, by convolving the filter kernels at each pixel location and using all the output 

channels without further dimensionality reduction, i.e., the filter bank is not rotationally 

invariant. Additionally, a 2-D Gaussian filter is applied in a post processing stage to 

each independent dimension of the pattern space (the channel sub-images) to smooth the 

magnitude output before model induction and subsequent classification. A Gaussian 

envelope with an sd approximately 1.5 times larger than the Gabor filter envelope, i.e 

1.5 was applied. In fact, overall, this experimental set up represents a more extreme 

end of the computational costs, compared to the harness in section 6.3.3. Training 

samples comprise multiple balanced sets of 30 instances selected from each generic 

class in the synthetic image. As in the case study of chapter 4, the BVM was used as the 

core learning algorithm, with the same default settings. As stated previously, the fact 

that a different base learner is used in the different harnesses is not relevant as no 

detailed comparisons of results were made between the harnesses, since the 

experimental objectives were different. See also, the evaluation section (6.5.1) where 

some of the implementation and coding issues are outlined. 

 

Classification accuracy is measured using mean values of sensitivity (Se) for the S 

class and specificity (Sp), for the  S class. Mean accuracy (Acc) and error rates (ER) 

are also used. The sd for each metric is abbreviated as; sensitivity (Se), specificity 

(Sp), accuracy (Acc) and error rate (ER). Regional classification is a function of 

lower (pixel)-level, binary classification outcomes in the textural class regions. A 50 % 

accuracy threshold criterion is used to assign the overall class label for the texture 

region.  
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Results in table 6.11 show the variation in classification accuracy at the pixel level, 

within the regions (a,…,i) with  {5, 8, 10, 20} and k = 25. The Sabellaria texture 

regions are indicated with an (S) symbol, e.g., b(S). Results in the Sabellaria texture 

rows represent sensitivity (the proportion of pixels correctly classified as belonging to 

the S class) and those in the other rows, specificity, i.e, the proportion of pixels in a  S 

region correctly classified as belonging to a  S class. The values in table 6.11 can thus 

be thought of as relative frequencies, an estimate of the probability that a specific 

texture region (a,…,i)  is either S or  S class, e.g., for  = 10, p(a =  S) = 0.74 and 

p(d(S) = S) = 0.84. 

 

Region  = 5  = 8  = 10  = 20 

a 65.1 72.5 74.0 53.3 

b(S) 79.0 81.9 72.6 63.1 

c 68.2 72.7 76.2 80.7 

d(S) 92.8 89.8 83.8 88.6 

e 70.0 80.1 84.7 89.4 

f 89.8 94.6 95.7 93.8 

g 95.1 99.1 99.4 92.5 

h 76.9 95.0 90.5 87.9 

i(S) 79.5 76.0 68.1 76.1 

 

Table 6.11 classification accuracy at the pixel level for the specific texture regions (a,…,i)  as a function 

of  , with k = 25. The region key is the same as in table 6.10 and the symbol (S) identifies regions, e.g., 

b(S), of the target, Sabellaria class. 

 

The results of table 6.11 are shown graphically in figure 6.17 and the pixel-level binary 

classifications of the test composite in figure 6.18. The grey dashed curve connecting 

the lowest regional accuracies in fig 6.17 represents the maximum estimated certainty 

threshold at which all of the regions can be correctly assigned a generic S or  S class 

label. Using a 50 % accuracy threshold, the resultant generic class labelling of each 

region for the different values of  is summarised in table 6.12. 
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Region  = 5  = 8  = 10  = 20 

True 

class 

a  S  S  S  S  S 

b(S) S S S S S 

c  S  S  S  S  S 

d(S) S S S S S 

e  S  S  S  S  S 

f  S  S  S  S  S 

g  S  S  S  S  S 

h  S  S  S  S  S 

i(S) S S S S S 

 

Table 6.12 Predicted generic regional class labels using a threshold of  50 % correctly labelled pixels in 

each texture region. The region key is the same as in table 6.10 and the symbol (S) identifies regions, e.g., 

b(S), of the target, Sabellaria class. 

 

Using the 50% threshold, all of the regions are correctly assigned the generic class label, 

regardless of the value of , it is 100% accurate. Clearly, as was shown in the previous 

section, the classification accuracies are affected by changing , due to the response of 

the filters to the textures at different bandwidths. As can be seen in figure 6.17, the 

highest regional certainty threshold that could be applied, in order for all regions to be 

correctly labelled, has a peak near to  = 8 at 72.5 %. 
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Figure 6.17 results of table 6.11 showing the variation in pixel-level classification accuracy with 

changing . The grey dashed curve represents the maximum certainty (threshold) with which the regional 

classification can be applied. 

 

With a 50% certainty threshold, in this case, all other things being equal, the choice of  

is irrelevant to the final generic regional classification (CFINAL = 100%) since the chosen 

configuration and parameterisation of the filter bank will give rise to the correct labeling 

of all the regions as either S or  S classes. However, with a 50% threshold, it may not 

be that certain if an individual region is correctly labeled, e.g, at  = 20, p(a = S) = 

0.53, slightly better than a random guess. If a higher confidence is required in the 

results, e.g., p(CFINAL = 100%   0.70), this can only be achieved with  = 8. 
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 = 5  = 8  = 10  = 20 

 

Figure 6.18 Visual results of the pixel level classification on the test synthetic image, for  {5, 8, 10, 

20} and k = 25. The filter bank patterns in the wavenumber (u, v) space are also shown for comparison. 

 

The final experiment concerns how the pixel-level classification accuracies are affected 

by variability in the classification models, induced with multiple training sets, sampled 

from different regions of the imagery. The textural classes and the filter bank 

parameters/configurations are as before, with  {5, 8, 10}. Results are summarised in 

table 6.13. Clearly, the classification results from the filter bank features are resilient to 

data variability as the sd’s for all metrics are less than 3.6 %. Highest sensitivity of 84.3 

%, is achieved with  = 5, but the best overall accuracy, 83.1 %, is obtained with  = 8.  

 

 Se Se Sp Sp Acc Acc ER ER 

 = 5 84.3 3.2 79.1 3.6 80.9 1.5 19.1 1.5 

 = 8 83.4 2.9 82.9 3.1 83.1 1.5 16.9 1.5 

 = 10 77.0 2.9 84.0 3.1 81.7 1.4 18.3 1.4 

 

 

Table 6.13 Mean and sd of pixel-level classification accuracy metrics, from different classification 

models induced with multiple training sets.  {5, 8, 10,} and k = 25. 
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6.3.5 Summary 

 

Despite the importance of tuning to the success of a particular texture classification task, 

there is no unified approach to Gabor filter bank design (Bianconi and Fernández 2007). 

A heuristic approach was used in this section to investigate the efficacy of Gabor filter 

bank features for discriminating Sabellaria textures in sonar mosaic imagery. Various 

parameters and configurations were investigated on several discrimination tasks in 

different experimental spaces. 

 

The research in section 6.3.3 facilitated the specification of a useful set of filter bank 

design parameters for discriminating Sabellaria textures from other seabed textural 

classes (table 6.9 is shown again below.) 

 

 

Parameter 

(configuration) 

Value (description) 

0 0.10-0.15 

Octave ratio 2 (half-octave progression) 

Kernel size, k 17 

n, p {n, p } ~9 (or approx. k/2) 

 /6 (six orientations) 

Channel configuration IMag  (magnitude response) 

Rotational configuration max (maximum response) 

 

The overall classification process applied in this case was relatively efficient because 

(1) the filter bank was used as a down sampler in the feature creation process (2) 

rotational invariance (hence dimensionality reduction) was applied and (3) no post 

filtering was applied. This process and the configuration and parameters in table 6.9 

typically gave rise to classification accuracies in the range of 75-80%. 

 

In section 6.3.4 a more challenging task was considered, using similar texture classes, 

parameter ranges and configurations. Overall accuracies were higher than achieved in 

section 6.3.3, usually exceeding 80%, as shown in table 6.13. A major difference in the 

process though, for this improvement in accuracy, compared to the process used in 



Chapter 6  Sabellaria texture discrimination 

 

176  

section 6.3.3 is the computational cost.  The cost factors included (1) generating features 

on the kernel neighbourhood of each pixel, compared to downsampling (625 times more 

expensive for k = 25), (2) not applying rotational invariance (6 times more expensive, 

compared to using max or mean rotational invariance, due to their dimensionality 

reduction), (3) post filtering the sub-images with a Gaussian kernel, requiring another 

convolution operation on the kernel neighbourhood of each pixel on the sub-image 

produced by each channel of the filter bank.  

 

Finally, it is speculated, for the creation filter bank features suitable for discriminating 

Sabellaria, the filter kernel size, k  3RG and filter envelope sd   1.5RG  may in 

general, provide good results. 

 

6.4 Other useful features 

 

The results from both the waterfall and mosaic data using the Gabor filter bank are very 

promising and the researcher considers that filter banks are potentially the best method 

for Sabellaria texture discrimination. However, parameter tuning adds complexity to the 

feature creation process and cost is a further consideration. Certain low cost features 

with few or no parameters (e.g median, mean and standard deviation) already have a 

proven utility in sonar image processing. Parameter free features have a clear advantage 

in practical terms, as they do not require a saliency evaluation process prior to their 

application (strictly, all so-called parameter-free features have a single parameter, the 

kernel size.)  

 

Three further types of features that have been considered for Sabellaria discrimination 

in this research work are; descriptive statistics, edge filters and lacunarity. Aside from 

the kernel size, the edge and lacunarity features have single threshold parameter. The 

purpose of this section is to outline some of properties of these features creation 

techniques and explain how they may potentially be useful for the task of Sabellaria (or 

other seabed texture) discrimination.   
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[1] Descriptive statistical features 

 

Descriptive statistical features are simple, yet can also be some of the most useful 

features for classifying regions of sonar imagery. Information contained in the pixel 

intensity distributions in localised regions of the imagery underpins the process of 

discriminating between class regions, using descriptive statistics.  

 

As pointed out earlier in chapters 2 and 3, there is sometimes a good correlation 

between sediment grain sizes and the mean backscatter intensity. It is also well 

established that hard surfaces such as rock are acoustically more reflective than say soft 

clay sediments. Therefore, it is possible to discriminate between different seabed 

regions using mean backscatter intensity alone. A clear benefit of using mean 

backscatter as a discriminatory feature is that since it can have a relationship to the 

physical character of the seabed, it facilitates a somewhat easier interpretation and 

understanding of the classification results in geological and habitat mapping context. 

Some commercial packages such as QTC Swatheview4 use mean backscatter intensity 

as one of the features in the feature vector.  

 

The caveat with using simple statistics (and some other types of features) is that there 

will always be undesirable factors influencing the intensity of the sonar signal and the 

radiosity values of the mosaic image pixels. Usually the uncertainty in the radiosity 

value is far greater in sidescan than multibeam imagery. In the worst case, using mean 

backscatter as a feature may lead to a partitioning of regions with different user applied 

gain settings or seabed proximity to the transducer rather than any true differences in 

seabed properties. So the basic assumption when using these features is that the data 

have been prepared or calibrated in such a way to, as far as possible, suppress these 

undesirable radiometric artefacts. 

 

A comparison of Sabellaria (fig 6.19 (d)) and gravel (fig 6.19 (e)) classes reveals some 

interesting differences. The Sabellaria class has a visually higher contrast, also shown 

by the intensity distributions in figure 6.20. The distribution for Sabellaria, is broader, 

whereas the lower contrast gravel class intensities are narrowly spread around the 

median value. 

                                                 
4 http://www.questertangent.com/seabed-classification/seabed-classification-products/qtc-swathview-

seabed-classification/ [accessed 06-07-2012] 

http://www.questertangent.com/seabed-classification/seabed-classification-products/qtc-swathview-seabed-classification/
http://www.questertangent.com/seabed-classification/seabed-classification-products/qtc-swathview-seabed-classification/
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(a) Mussels (b) Sand (c) Rock (d) Sabellaria (e) Gravel 

 

Figure 6. 19  Mosaic regions showing some typical seabed types. 

 

Mean intensity for the gravel is slightly higher than for Sabellaria, suggesting (in these 

samples) the gravel may have a comparatively higher acoustic reflectivity. Similar 

differences can be observed between the distributions for all of the classes. Clearly, 

there may also be some useful information about the local area of the seabed in the 

distribution shape itself. 

 

 

 

Figure 6.20 Intensity histograms of Sabellaria ( shown in fig. 6.19 (d)) and Gravel (shown in fig. 6.19 

(e)) classes. 

 

Infact, estimating the parameters of a distribution model is another means of classifying 

a particular seabed class in calibrated sonar imagery, as described by de Moustier 

(2009) in Hughes-Clarke et al. (2009). There are many proposed distribution models 

though, such as Rayleigh-Rice, K-distribution, Log-Normal and Rayleigh Mixture, see 

for instance, Jackson and Richardson (2006), Dunlop (1997), Gensane (1989) and 
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Lyons and Abraham (1999). Histogram matching would be another, empirical approach, 

given class exemplars of intensity distributions, the similarity to the generated intensity 

histogram on the test sample could be measured and used to classify the test data.  

 

Due to the lack of calibration and the noise and distortion usually present in qualitative 

sidescan mosaic imagery, there will be ambiguity in attempting to fit the image intensity 

distribution to a particular parametric distribution model. In this case, an empirical 

approach is preferable, to estimate the probability mass function. The (normalised) 

histogram bin values can then be used directly as individual feature values.  

 

Stewart et al. (1994) found, in their analysis of sidescan data from the Juan de Fuca 

Ridge, that variation in mean area intensity together with textural variability is 

associated with different seafloor types. Johnson and Helferty (1990) also provide 

evidence of the power of a histogram to discriminate between regions of differing 

acoustic reflectivity. Outside of the sonar image classification domain, intensity 

histograms have been used in studies of medical imagery. For instance, Tweed and 

Miguet (2002) used a combination of histogram and textural features to detect regions 

of interest in mammograms.  

 

[2] Edge filters 

 

The response of a local pixel neighbourhood to an edge detector can be used to create 

features. Textured areas such as regions of rock, Mussels or Sabellaria have different 

quantities and spatial distributions of edges, compared to relatively smooth areas such 

as sands and sediments. Coverage of the theory of various edge detectors can be found 

in, for instance, Marr and Hildreth (1980) and Torre and Poggio (1986). 

 

A Sobel mask (Sobel, 1990) was applied in the experimental investigations carried out 

for the thesis. It is a first derivative, directional edge detector and whilst easy to 

implement, it has the disadvantage of being sensitive to noise (Sharifi et al., 2002.) 

Masking known noisy areas of the imagery is an assumed prerequisite to applying this 

method. 

 

The directional gradient operator in the Sobel mask responds strongly to transition 

regions where there are large differences in the radiosity values of neighbouring pixels. 
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Detected edge pixels are highlighted by binarising the response of the image to the 

Sobel masks, at a predefined threshold parameter, t. Directional gradients, gx and gy are 

computed over the pixel neighbourhood, n(x, y) by convolution with the Sobel masks Sx 

and Sy, respectively, i.e., Gx = Sx*n(x, y)  and Gy = Sy*n(x ,y). The strength of the 

detected edges in the neighbourhood, Gn(x, y), is the magnitude of the directional 

derivatives, G = 5.022 )( yx gg  .  

 

The resultant image is binarised, to obtain the binary image, Bn(x ,y) using the detection 

threshold parameter, t > 0 and the discrete unit Heaviside function,  
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Changing t, produces different ratios of edge pixels to total pixels, rE, in Bn. These ratios 

can be used as feature values. As t increases, rE reduces at different rates, for different 

seabed classes.   

 

Figure 6.21 shows the result of the first step in the feature creation process, applying the 

edge detector at various t values to the images in figure 6.19 to obtain Bn for each class. 

At the minimum value of  (in this case) t = 0.05, in the top row, the SNR is low and 

even texturally smooth regions such as the sand, exhibit a large number of edge pixels. 

Increasing t to 0.15 (second row) has a filtering effect, with the more highly textured 

classes exhibiting a greater number of edge pixels. The filtering effect increases as t is 

increased further until the number of edge pixels approaches zero (i.e., rE  0.) 

 

The next step in the feature creation process is to compute the ratio,  rE, of edge (‘1’ or 

‘white’ pixels) to the total number of pixels in the neighbourhood, at the different 

threshold values. The plot in figure 6.22 shows how rE varies with t for the five different 

classes (applied to the entire 250  250 pixel image sample.) For small t, (t = 0.05) it is 

clear that the low SNR does not produce a wide range of rE values for the different 

classes. However, there appears to be an optimal domain for t that yields wide ranging, 

rE values, potentially useful for discriminating between the classes. In this case values 

of t between 0.1 and 0.25 produce the greatest differences of rE between the classes. 
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Some advantages of this feature creation approach are (1) it is rotationally invariant, (2) 

it is (mean) illumination invariant, as it is based on derivatives, (3) for relatively 

homogeneous textures, the results are consistent over a wide range of spatial scales, i.e., 

it is scale invariant, (4) the feature values are easily computed ratios and do not require 

normalisation. Examples of the results over different kernel sizes are shown in figure 

6.23.  

 

 

 

Figure 6.21 The result of applying a Sobel edge detection mask to the images in figure 6.19. The 

threshold value increases from top to bottom. Each column contains the class instances corresponding to 

the left to right layout in figure 6.19. 
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Figure 6.22 Variation in the ratio of edge pixels to total neighbourhood pixels, with threshold value for 

five different seabed classes. The ratio is computed on the entire 250  250 pixel image sample. 

 

  

 

(a) k = 11 (b) k = 25 

 

  

 

(c) k = 50 (d) k = 100 

 

Figure 6.23 The profiles of the feature values are relatively consistent over an order of magnitude of 

kernel sizes. 
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[3] Lacunarity 

 

Lacunarity measures the ‘gapiness’ or ‘hole-iness’ in a geometric structure (Kaye, 

1989.) The concept of lacunarity, first introduced by Gefen et al. (1983), can be applied 

to the analysis of a binary image representing the distribution of targets of interest, 

against the background. In the case here, the targets of interest are taken as the edge 

pixels, generated as described in the preceding paragraphs. It is clear that the different 

seabed textures have different spatial arrangements of edge pixels, so the lacunarity of 

these arrangements could potentially be used as a discriminatory feature.  

 

Lacunarity has been studied widely as a measure of natural textures, for instance, in 

satellite images of forest cover (Butson and King, 2006, Mahli and Román-Cuesta, 

2008) and landscape textures (Plotnick et al., 1993, McIntyre and Wiens, 2000.) 

According to Mahli and Román-Cuesta (2008), information about the forest structure, 

captured by lacunarity is difficult to interpret and the relationship of lacunarity to the 

real structures is not clear.  

 

The natural distribution and clumpiness of certain types of forest canopy cover may in 

certain cases, resemble the distribution of natural targets, such as Sabellaria reefs or 

other habitats on the seabed. However, there are no published studies on using 

lacunarity analysis to discriminate between seabed textures or for analysing the 

distribution of natural targets such as reefs.  

 

The commonly applied gliding box algorithm of Allain and Cloitre (1991) was 

implemented and is used to generate multi-resolution feature values within a specific 

kernel size. Some examples of the visual classification results using edge filter features 

and lacunarity features are presented in case study 4 (chapter 8.) 
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6.5 Evaluation, conclusions, recommendations and scope for further 

work 

 

6.5.1 Evaluation 

 

The aim of this study was to establish the tractability of a machine approach to the 

novel tasks of discriminating Sabellaria textures in sidescan waterfall and mosaic 

imagery. It was the first study of its kind to approach this important interpretative 

problem. The first objective was to identify the most promising feature creation 

methods on waterfall imagery and the second, to investigate one of these methods in 

more detail on mosaic imagery, identifying any salient, method specific feature 

configurations or parameterisations. Features created from the signal processing 

methods were generally found to be the best discriminators on the waterfall imagery, the 

top two being different configurations of a Gabor filter bank. Research work on the 

waterfall imagery features resulted in a peer reviewed conference publication. 

Configurations of the Gabor filter bank and filter parameters were considered in much 

greater detail for discriminating Sabellaria textures from other textural classes in mosaic 

imagery. Cost of the configuration (in terms of the number of feature channels created) 

was also considered as a constraint on the design. The aim and objectives have been 

successfully achieved, since discriminatory filter bank configurations and filter 

parameter ranges for the task were identified.  

 

The main contribution and novelty of this work is in the task of machine discrimination 

of Sabellaria textures - it is the first study of its kind to address this problem. Identifying 

the Gabor filter bank as a suitable method for feature creation and further establishing a 

filter bank configuration and filter parameterisation is an important step in confirming 

the feasibility of automating the Sabellaria discrimination task. Relatively few studies 

have considered Gabor filter bank features for classification of sonar textures, so the 

work also contributes more generally to the domain specific application scope of filter 

bank features and the use of texture surrogates as a subspace for solving seabed 

classification problems.  

 

Three different experimental harnesses were designed and implemented and these had 

variations in their architecture, according to the experimental objectives. The feature 
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creation and evaluation harnesses used in section 6.3.4 was developed primarily using 

C++ and comprised a collection of dynamic link libraries (dll’s) with processes between 

the dll’s controlled through a bespoke Visual Basic user interface. MS-DOS batch files 

were used for reading and writing intermediate data and for invoking other executables. 

It became apparent that this approach would be too inflexible for the experimental 

campaign as a whole, since, as work on the harness progressed and experiments were 

run, it was clear that there would be further experimental dimensions required in the 

enquiry. Facilitating these investigations computationally within the harness would have 

introduced unnecessary technical burdens especially in expanding the experimental 

space and in attempting to deploy heterogeneous software on the high performance 

computing (HPC) facilites at the UEA. However, the harness fully served its purpose in 

generating the results for section 6.3.4.  A decision was made to revise the architecture 

and design and implement a new harness in Matlab. The Matlab harness was used 

extensively for results generation in section 6.3.3. Numerous function files were 

implemented and these could be deployed relatively easily on the HPC. The Matlab 

harness used for generating the results in section 6.2.3 was kindly made available during 

the collaborative aspect of this case study (section 6.2), by Professor Francesco 

Bianconi, of the University of Perugia, Italy. 

 

6.5.2 Conclusions 

 

An investigation on samples of waterfall imagery revealed that several types of feature 

creation methods could be useful for discriminating Sabellaria textures from other 

seabed texture types. The Gabor filter bank, DT-CWT, ILBP and BGC were some of 

the strongest performing methods in this respect.  

 

The Gabor filter bank was chosen for further investigation regarding the discrimination 

of Sabellaria textures in mosaic imagery. The following parameter settings provided 

reasonable overall results on the data under test, using an isotropic Gaussian kernel: 
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Parameter 

(configuration) 

Value (description) 

0 0.10-0.15 

Octave ratio 2 (half-octave progression) 

Kernel size, k 17 

n, p {n, p } ~9 (or approx. k/2) 

 /6 (six orientations) 

Channel configuration IMag  (magnitude response) 

Rotational configuration max (maximum response) 

 

The process was relatively inexpensive, as the filter bank was used to down sample the 

input imagery in the feature creation process. It was speculated, for the creation of filter 

bank features suitable for discriminating Sabellaria textures at a ground resolution in the 

image of, RG pixels per metre, the filter kernel size, k  3RG and filter envelope sd   

1.5RG  may in general, provide good results. 

 

A further experimental investigation using a more expensive process also yielded very 

good classification results. However, only a slight improvement in accuracy was 

achieved at considerable extra computational cost. 

 

Evidence from the investigations presented in this chapter provides a strong indication 

that discrimination of Sabellaria textures is indeed tractable. A useful set of parameters 

and configurations were established, also taking into consideration the cost of 

generating the features. The aim and objectives for this case study have therefore been 

successfully achieved. 

 

6.5.3 Recommendations 

 

For discriminating Sabellaria target textures from other texture classes in sonar waterfall 

and mosaic imagery, the filter bank should be used and configured as specified in the 

conclusions. To achieve maximum efficiency, the filter bank should be applied as a 

downsampler in the feature generation process. Further efficiency improvements may 

be gained through a more efficient spatial domain implementation of the filter bank, 
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e.g., using the separability properties, as in Amayeh et al., (2009). For maximum 

classification accuracy and resolution (at the cost of reduced computational efficiency) 

the filter bank features should be generated at each pixel location and a Gaussian post 

filter applied to the feature space sub-images. For ease of implementation, Matlab is 

recommended and the Naïve Bayes classifier from the Matlab library can be used as a 

core learning algorithm, since it can also output probabilistic support (certainty) for the 

classes, if desired.  It is also recommended that a number of different experiments are 

designed to evaluate the features. 

 

6.5.4 Scope for further work 

 

o There are already established optical imaging benchmarking databases, such as 

Outex5 and CUReT6 and in principle, there is no reason why a similar 

benchmarking database for sonar imagery cannot be established. Perhaps one of 

the single most important means of advancing the study of seabed texture 

discrimination and classification would be to build a database of ground-truthed 

sonar images. The database could contain imagery of different sediments, 

bedforms, habitats, biogenic and geological structures and so on. Imagery could 

be captured by a variety of industry-standard instruments under various 

environmental conditions, operating frequencies and resolutions. The database 

would then be made freely available to researchers around the world. 

 

o It would be very useful to evaluate the Gabor filter bank features (and others 

too) on larger sized, real-world imagery, capturing wider coverage of Sabellaria 

colonies, their natural variability, distributions and boundaries with the 

surroundings. In order for this to be meaningful, good quality data are required, 

with (preferably dense) ground-truth and multiple human interpretations. 

 

In carrying out this work, it became clear that there had been few detailed studies 

concerning methods for evaluating features and feature parameters in the context of 

sonar image texture classification tasks. Consequently, the case study in chapter 7 

investigates the problem of feature evaluation and the robustness of feature evaluation 

methods.  

                                                 
5 http://www.outex.oulu.fi/ [accessed 07-07-2012]. 
6 http://www.cs.columbia.edu/CAVE/software/curet/ [accessed 07-07-2012]. 

http://www.outex.oulu.fi/
http://www.cs.columbia.edu/CAVE/software/curet/
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Novel consensus approaches   Chapter 7 

to the reliable ranking of features  

for seabed imagery classification  

  

The work presented in this chapter resulted in the publication of a paper, “Novel 

consensus approaches to the reliable ranking of features for seabed imagery 

classification,” by Harrison et al. (2012). 
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7.1 Introduction 

 

The previous chapter considered various feature creation methods for the discrimination 

of textures in mosaic and waterfall imagery. In doing this work, it became clear that 

there had not been much research concerning methods for evaluating and selecting 

features for machine learning applications in the sonar image classification domain or 

proposals of new methods for this purpose. Further, the more generic concept of 

robustness of a feature evaluation method, whilst important, has received very little 

attention in the published literature. The aim of this chapter then, is to propose a novel 

framework for evaluating distance measures, for the purpose of evaluating and ranking 

parametric features on sonar imagery. It is more abstract than the previous chapter in the 

sense that the focus is on the method used to evaluate the features rather than the 

features themselves.  The objectives are to establish which individual distance measures 

are most reliable for feature evaluation and ranking and to determine if there is any 

advantage in using a committee of distance measures for this purpose. Methods are 

compared using the correlation of estimated saliency to classification accuracy and the 

correlation of a feature ranking to a baseline ranking, together with the variability in 

these properties.  

 

A fundamental process in machine learning for a specific data-driven task is the 

induction of a model from data in a chosen feature space. Selecting a small set of 

discriminatory features to construct the feature space improves computational efficiency 

and often results in a more accurate and simpler model for capturing the intrinsic 

properties of the problem. However, estimating the saliency (i.e. discriminative 

potential) of features, ranking them and selecting a subset for model generation is a non-

trivial task. 

 

The main paradigms for feature ranking and selection are the filter-based, wrapper-

based and embedded approaches, as described in, for instance, Guyon and Elisseeff 

(2003), and Liu Motoda (2008). It is well-known that wrapper-based approaches are 

model-dependent and computationally expensive (Kohavi and John 1997). Whilst they 

can in certain cases (e.g Patrinos et al. 2010) produce better rankings and selections, 

their high computational cost is a limiting factor in their applications. Further, as the 

objective function is based on minimising the error-rate of the classifier, they can lead 

to model over fitting (Kohavi and Summerfield 1995.) 
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Embedded feature selection is an integral sub-component of a dedicated classifier 

system. There are many embedded variants, a well-known example being Random 

Forest (RF) (Breiman, 2001.) The RF algorithm selects multiple random subsets of 

features that are used to induce different decision tree (DT) models, to construct a DT 

ensemble. 

 

In contrast, model-independent filters do not require any inductive learning algorithm 

and are consequently more efficient. Filters are usually based on correlation measures 

(sometimes called dependence or association measures), information (or uncertainty) 

measures and distance (separability, discrimination or divergence) measures. Distance 

measures are simple and effective methods for quantifying the class separability of 

individual features. They are preferred in real world applications where the features and 

their parameterisations need to be evaluated quickly and the size of the parameter space 

is large, such as in classifying acoustic imagery of the seabed. 

 

There are though, dozens of distance measures to choose from, as in Cha (2007) yet no 

universal criteria for selection of a particular measure for a given type of data or 

application.  Due to their definitions, different measures generate different numerical 

values of distance between estimated class probability density functions (pdf). After 

assigning rank scores to the features, the score permutations from different measures 

often do not coincide. Additionally, the ranking of features produced by any individual 

measure may be unstable if small changes in the data sampled for feature evaluation 

produces different rankings. This creates difficulty, for example, when selecting the 

“top-n” features, if combinations of the n-components differ, it is not clear which will 

produce the most discriminatory feature space. 

 

These problems are amplified when data are noisy (which is always the case with sonar 

imagery), features are parameter-dependent and their saliency is sensitive to changes in 

the parameter space. In a case like this, it is imperative to be able to evaluate and select 

the best parameters and features, accurately and consistently. A reliable and efficient 

evaluation and selection approach is thus needed which is robust across a range of 

parameters and domain classification tasks and stable in the sense that the results are 

unaffected by small changes in the sampled data. 
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This chapter presents two novel, filter-based methods; an unweighted consensus and a 

weighted consensus, for estimating the saliency of individual features and ranking them. 

The consensus results and those of the constituent individual distance measures are 

compared by considering measured saliency in relation to classification accuracy. 

Correlation of candidate rank score permutations with baseline rankings established on 

validation data is used as a means of evaluating the robustness to changes in parameters 

and classification tasks. The methods are tested using Grey Level Co-occurrence Matrix 

(GLCM) features (Haralick et al. 1973) created on sonar mosaic and waterfall imagery 

of the seabed and for further comparison, on a selection of textures from the Outex 

database1. GLCM features are probably the most widely used textural feature generation 

methods in the sonar image processing domain and can be found in several sonar image 

classification packages, such as; Swathview2, TexAn (Blondel et al. 1998), SeaClass3 

and SonarWiz 54.  

 

The remainder of this chapter is organised as follows. In section 7.2, related work is 

outlined. A conceptual framework for consensus ranking is defined in section 7.3. 

Section 7.4 describes the application context, including the GLCM features and data 

used in this study. Section 7.5 covers experimental methods and a discussion of the 

results. Finally, an evaluation, conclusions, recommendations and suggestions for 

further work are presented in section 7.6. 

 

 

 

 

 

 

 

 

 

 

                                                 
1 University of OULU, Outex Texture Database, http://www.outex.oulu.fi/  [accessed 05-08-2012] 
2 Quester Tangent Corporation, http://www.questertangent.com  [accessed 18-06-2012] 
3 Triton Imaging Inc. http://www.tritonimaginginc.com/site/content/products/modules/seaclass  [accessed 

18-06-2012] 
4 Chesapeake Technology Inc. http://www.chesapeaketech.com  [accessed 18-06-2012] 

http://www.outex.oulu.fi/
http://www.questertangent.com/
http://www.tritonimaginginc.com/site/content/products/modules/seaclass
http://www.chesapeaketech.com/
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7.2 Related work 

 

As the application interest is in machine segmentation and classification of targets in 

sonar imagery of the seabed, the focus is on some related work in this domain. The 

more recent topic of feature selection robustness is also considered.  

 

7.2.1 Domain specific feature selection 

 

In one of the leading commercial software packages for seabed classification, 

Swathview, Preston (2009) applies a variety of kernels to generate 29 features 

(including GLCM) from the sonar imagery. Principal Components Analysis (PCA) is 

used to convert the high-dimensional feature space into a three-dimensional component 

space. Whilst PCA is a widely used technique for extracting meta-features, i.e. principal 

components, it has three shortfalls; 

 

o Parameter dependent individual features are not evaluated explicitly for class 

separability, as PCA per se is not designed for this purpose. 

 

o Even though an end result of applying PCA is reduction in dimensionality, it 

still requires the creation of numerous features from the entire input space of a 

typically large image. This is computationally expensive in time and storage and 

inefficient too, as sub-images of the input space are generated regardless of the 

usefulness of the feature kernel. 

 

o The semantics of the original individual features derived from the input imagery 

is not propagated through to the final classification results. In the case of seabed 

class maps, the meaning of the class types and their spatial distribution in 

relationship to the component space and the physical character (ground truth) of 

the seabed may not always be obvious to an expert interpreter.  

 

Where PCA seeks to maximise the variance of components in a linear space, 

Curvilinear Components Analysis (CCA) is a local topology preserving, non-linear 

method. It is still subject to the aforementioned shortfalls of PCA though. Lanaaya et al. 

(2005a) proposed supervised CCA for seabed imagery feature extraction. In their 

experiments on a database of real sonar imagery, a 15-dimensional space of wavelet 



Chapter 7  Reliable feature ranking 

 

193  

features was reduced to five CCA components. It was found that supervised CCA 

improved the computational time of the classification tasks, compared to unsupervised 

CCA and the original, unreduced feature space. However, this increase in computational 

efficiency was at the expense of accuracy, with the global accuracy of the supervised 

CCA method being several percent less than the other two methods. They point out a 

possible reason for this is the highly overlapped classes and the imbalance of different 

class instances in their database. 

 

In a related paper, Lanaaya et al. (2005b) used a Genetic Algorithm (GA) in a wrapper 

approach, with accuracy output from a Support Vector Machine (SVM) as the fitness 

function, to select subsets from 63 wavelet features. They found that using the GA  for 

subset selection led to an improvement in accuracy, compared to no feature selection. 

However, using the GA wrapper is a time consuming process in the learning stage. 

 

Blondel and Gómez Sichi (2009) use a static, two-dimensional feature space comprising 

two GLCM features, entropy and homogeneity. Systematic parameter evaluation is 

carried out to optimise the co-occurrence matrix, using image data from training zones. 

Parameters are chosen in a contextual (visual) assessment, by considering separations of 

class clusters in the feature space. The semantics of the features are preserved in this 

method. 

 

In yet another approach, where sonar imagery was used as one of the test cases, Karoui 

et al. (2008) devised a textural similarity measure based on a weighted sum of 

Kullback-Leibler divergence measures of distances between the feature distributions.  

The Kullback-Leibler divergence is one of numerous distance measures, many of which 

are defined in Cha (2007). Since induction of a classification model is unnecessary, 

filter-based approaches, such as these are computationally efficient, compared to say 

wrapper-centred feature evaluation and selection processes.  Furthermore, unlike feature 

extraction methods such as PCA and CCA, distance measures facilitate an intelligent 

choice of individual features and their parameterisations, to construct the feature space. 

The features may be evaluated by investigating their discriminatory potential on small 

patches of the input image containing the targets of interest. Evaluation and validation 

patches are selected by an expert human interpreter.  So, when generating patterns on 

large data sets, it is only necessary to apply those pre-selected kernels to generate a few, 
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salient features. This is clearly more efficient than applying numerous kernels, many of 

which may create ineffective features.  

 

Several empirical studies have considered distance measures for saliency estimation, in 

a variety of contexts, for instance; colour and texture (Rubner et al. 2001) name-

matching (Cohen et al. 2003), medical image registration (Penney et al. 1998) and 

signal processing (Basseville, 1989). Yet, aside from Harrison et al. (2011) and Karoui 

et al. (2008), there have been few studies addressing the use of distance measures, for 

feature evaluation with respect to sonar imagery.  

 

7.2.2 Robustness of feature selection methods 

 

Harrison et al. (2011) demonstrated the influence of different feature parameterisations 

and classification tasks on disagreements in rank score permutations derived from 

different distance measures. Faced with ambiguities of rank, it is not a straightforward 

matter to determine which is most useful and reliable under the conditions of the 

parameters, features and classification task on which the ranking is based.  

 

Until quite recently, despite its fundamental importance, the concept of stability of a 

feature selection method has not received a great deal of attention (Kalousis et al., 2007, 

Křížek et al., 2007, Saeys et al., 2008.) Stability of a feature selection algorithm can be 

defined as the robustness of the results or “feature preferences” to small perturbations in 

the data samples used to evaluate the features (Kalousis et al., 2007.) 

 

Kalousis et al. (2007) proposed the first framework to measure the stability of feature 

selection algorithms, applied to problems in high dimensional spaces. The measure of 

stability used will depend on how the feature selection algorithm represents the results 

of the feature evaluation, which, could be a weighting score, a ranking or a feature 

subset. In the case of ranking, Spearman's rank correlation coefficient was used to 

evaluate the rank stability (see also, Saeys et al., 2008.) Kalousis et al.(2007) found that 

of the different feature selection methods investigated, no individual method was 

consistently more stable than the others over the problem space considered, although for 

some types of problem a given method may be more stable than others. Regarding the 

issue of stability and classification performance, the point is made that if the algorithm 
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consistently selects the same features there will be greater confidence in the selection 

and in the corresponding classification performance.  

 

The importance of considering robustness together with classification performance is 

echoed by Saeys et al. (2008) and as Křížek et al. (2007) point out, the stability of the 

selected features may not be connected to the quality of the features, i.e. a stable feature 

set is not much use if the features are uninformative or generate inaccurate classification 

models. Whilst the notion of stability is clearly important to the feature selection 

method, it cannot be considered independently of feature saliency when making a 

decision about which feature selection method to use.  

 

Křížek et al. (2007) propose an entropy based method for assessing the stability of 

feature selection methods. The approach is motivated by the fact that the objective 

functions for feature selection use a random sample of data. The stability of the feature 

selection algorithms may therefore be evaluated by considering the generated 

probability distributions of selected feature subsets, since different feature subsets are 

selected with a certain probability when randomly sampled input data is used. Entropy 

quantifies the randomness (or uncertainty) of the system states, with a purely random 

selection of features having maximum entropy and a perfectly stable selection of 

features on different random samples having zero entropy. 

 

Saeys et al. (2008) devised an ensemble approach to improve the stability of feature 

selection. Ensemble methods as in Scherer et al. (2009) and fusion algorithms, e.g in 

Baraque (2011) have demonstrated effectiveness in producing reliable solutions across a 

range of applications, e.g. Pal (2007). In their study, Saeys et al. (2008) used two filters: 

Symmetric Uncertainty (univariate) and the RELIEF algorithm (multivariate) 

(Kononenko, 1994), together with two embedded methods: RF and recursive feature 

elimination in a linear Support Vector Machine. For each of the four selection methods, 

a homogeneous ensemble of feature selection methods was induced using bagging, with 

10 sub-samples of data. The output of the feature selector is aggregated into a consensus 

feature ranking, by weighted voting. This contrasts with the approach presented in this 

case study, where the consensus rank is produced by aggregating the independent ranks 

of different feature selectors. The ranks are based on the average values output from the 

individual feature selector using multiple random samples. This will have the effect of 

suppressing the influence of small changes in the data on the output rank, circumventing 
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some of the stability issues. We can then consider the robustness of the method over 

different feature parameterisations and classification tasks. 

 

7.3 Consensus feature ranking methods 

 

The distance between estimated univariate probability density functions (pdf) of feature 

components generated on different classes, provides a measure of the classification error 

probability (Webb, 1999, Duda et al., 2001.) Disjoint distributions are indicative of 

highly discriminative (i.e. salient) features, compared to those with class distributions 

that are closer together.  

 

Motivated by the inherent variability of qualitative sonar imagery, the key idea is to fuse 

diverse information captured by multiple measures in a consensus approach. The goal is 

to achieve an efficient means of generating a more representative and robust ranking. A 

theoretical framework presented in this section defines the most general case of 

consensus ranking with m independent distance measures. Important stages in the 

process include:  

 

1. balanced, multiple random sampling of the input space, 

 

2. scaling the individual feature values to [0, 1] across the classes and features, 

 

3. estimating the normalised, non-parametric probability distributions for all 

features and classes, 

 

4. computing the median pair-wise distances between all distributions (based on 

the multiple random samples,) 

 

5. assigning an integral (or continuous) consensus rank score to each feature using 

equally weighted outputs from each distance measurement, 

 

6. reliability weighting of rankings by considering the robustness to different 

feature parameterisations and classification tasks. 
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7.3.1 Non-parametric distribution estimation 

 

A non-parametric approach to representing the feature distributions of the classes is 

preferred over a model-based approach, mainly due to the potential ambiguity of fitted 

models (particularly with qualitative sonar imagery). 

 

For a set of n specific classes, cs = {c1, c2,...cn}, non-parametric class conditional 

probability distributions P̂ (x | cs) for each component, xf of the feature vector, x  ℝD 

(where D is the dimension of the feature space) are estimated using histograms.  

 

The scaled feature domain, xf = [0, 1] is divided into equal width intervals, i and the 

distributions are normalised: xf
p.dxf   xf

q.dxf  1. Pair-wise distances between the 

component distributions for specific classes are computed if the distances between a 

generic target T and non-target T distribution is required (T, T {c1, c2,...cn}, T  

T = .) Probability distribution estimates for the generic classes are then, p = p(xf | T) 

and q = q(xf | T) respectively.  

 

Once computed the set of 
2
1 nD(n-1) histograms is re-used by each distance measure. 

Histograms are recomputed for each specific parameter combination from the feature 

parameter space (see subsection 7.4.1). The number of bins is fixed at 30 for the results 

reported in this chapter.  

 

7.3.2 Individual distance measures 

 

Without loss of generality, six commonly used parameter-free distance measures 

(defined in table 7.1) are chosen for this test case, five of them from the different 

families of measures as categorised by Cha (2007). These are; Minkowski family: 

Euclidean L2 (Eu) , L1 absolute difference family: Canberra (Ca), Fidelity family: 

Bhattacharyya  (Bh) (Bhattacharyya, 1943) Chi-squared family: Chi-Squared (CS),  

Shannon’s entropy family: Kullback-Leibler divergence (KL) (Kullback and Leibler 

1951) finally, the Kolmogorov-Smirnov (KS) distance (Geman et al. 1990).  
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Table 7.1 Definitions of the candidate distance measures used in the test case. 

 

 

Euclidean distance is a distance between vectors but the concept is transferrable to 

feature distributions (histograms), since the probabilities (frequency coded bin values) 

are vector components. Euclidean distance and other measures are affected by the range 

of feature values, hence the need to normalise both the feature values and the 

histograms. Although it is widely employed in a variety of applications,  Aksoy and 

Haralick (2000) found that it is was significantly outperformed by likelihood based 

measures on image retrieval tasks. Foote (1997) found it was outperformed by a cosine 

distance in retrieving simple sounds. 

 



Chapter 7  Reliable feature ranking 

 

199  

In common with the other measures, the Canberra measure has diverse usage. Emran 

and Ye (2001) used a modified Canberra measure to establish the similarity of an 

observed event sequence to normal or attack sequences, for the generation of computer 

intrusion warnings. Their approach performed well in the special case where attack and 

normal events were widely separated but less satisfactorily in other cases. In Androutsos 

et al. (1998), the measure was compared against others in an application to colour image 

retrieval. Best retrieval rates were achieved with the Minkowski L1 norm and L2 norm 

(Euclidean) distance measures. The Canberra measure resulted in many erroneous 

retrievals. Its retrieval rate was comparable to the Minkowski L measure. 

 

Bhattacharyya’s measure is a measure of angular separation between the histograms, 

since the probabilities represent direction cosines (Bhattacharrya, 1943). It is applicable 

to any data sample, regardless of the underlying distribution (Thacker et al. 1997). 

 

Puzicha et al.(1997) proposed the Chi-squared statistic as a similarity measure for 

texture segmentation and image retrieval tasks. It can also be used as an approximation 

to the Kullback-Leibler divergence (Vasconcelos and Lipmann, 2000). Bugatti et al. 

(2008) evaluated the Chi-Squared and other measures in the context of similarity 

queries applied to medical image data sets. They found that it outperformed the other 

methods under test, with respect to precision and recall, only in the case when a feature 

vector comprising Zernike moments was used. With other feature types the Canberra 

distance produced a better performance. 

 

The Kolmogorov-Smirnov distance, in contrast to the other distance measures here uses 

an estimated distribution function (EDF), instead of an estimated pdf. It was first 

proposed as a distance measure in an image segmentation context by Geman et al. 

(1990.) 

 

Kullback-Leibler divergence is an information theoretic method, and differs from the 

others in that it measures probabilistic uncertainty between the feature distributions. An 

extended symmetric version from Petrou and Sevilla (2006) is implemented in this 

study.   
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7.3.3 Consensus ranking of features 

 

Each of the M distance measures, dm, m  [1,2,...M] generates a set of real values 

dependent on the component of the feature vector, xf, f  [1,2,...D] and specific class 

distribution comparison, (p, q)w, w   [1,2,...], where m, f, w  ℤ + and say,  = | T || 

T |. Thus, for every pair-wise class combination we have a matrix, dm (x, (p, q)w) of M 

sets of computed distance values for each feature component, given by, 

 

 

dm (x, (p, q)w) = 

   

   



















DDMM

DD

xdxd

xdxd







11

1111

 

(7.1) 

Note that for the purposes of this work, the values are the median distance values 

computed from the histograms based on multiple random samples, since the median is 

less affected by outliers. The output of a ranking function is the matrix, r (x, (p, q)w) 

(matrix 7.2), of rank scores (weights), r for each feature component as determined 

using the ranks derived from each distance measure and specific class distribution 

comparison.  
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(7.2) 

The top-ranked feature component is assigned an integral rank score equal to the 

cardinality of the feature set (i.e. D). Descending positions are assigned scores, 

progressively decreased by one. In the event of a tie for any rank position, all tied 

features are allocated equal rank scores of the tied position. Elements in the rows of 

matrix 7.2 form a specific permutation of rank scores for the feature vector as derived 

from the corresponding distance measure. Each feature component has a rank score, in a 
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three-dimensional version of matrix 7.2 (the third dimension being the pairwise 

combinations of classification tasks).  

 

By summing the rank scores for feature components over all distance measures and all 

pair-wise combinations of specific classes, a consensus rank score for each component, 

rco(xf ) in terms of its capacity to discriminate between the generic classes is obtained, 

from, 

rco( xf ) = 




11 w

M

m

xm,f (r, (p, q)w) 

(7.3) 

 

In the case of a single binary classification task, this is equivalent to a column-wise 

summation of the elements in matrix 7.2. The consensus represents a general case for 

any number of components, distance measures and pair-wise class comparisons.  

 

Of course, it is not essential to assign an integral rank score. Since, the distance 

measures are continuous valued functions over bounded ranges, clearly, the method can 

easily be modified to generate a normalised mean distance measure, for any component 

and pairwise class comparison, 

 

 

(7.4) 

where, max(fdm) and min (fdm) are the functional maxima and minima, respectively, of 

the specific distance measure. The output from eq. 7.4 can be used to produce a 

continuous valued ranking of the feature components. Continuous valued output may be 

preferable to integral rank scores when applying certain feature selection methods, since 

rank does not provide a measure of the magnitude of the distances between the feature 

vector components.  

 

Computationally, the multiple (independent) distance measure calculations are 

embarrassingly parallel as the results are generated independently, from the common set 

of input distributions. There is no need for communication of intermediate results 
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between individual measures. The process can easily be implemented in parallel if 

justified by the data volume, feature parameter space and number of dichotomies. 

 

7.3.4 Reliability weighting of permutations 

 

In the case of no ties, there are D! possible permutations of the elements (rank scores) in 

the rows of matrix. Eq. 7.3 produces a consensus rank score on the premise that each 

distance measure has an equally valid rank permutation to contribute to the consensus. 

In reality, the performance or suitability of an individual distance measure varies 

according to the feature parameterisation and classification task. Therefore, the specific 

permutation of rank scores derived from one measure may be less robust than the others 

and should be treated differently.  

 

Now, consider a case where the robustness is not known in advance. As the most 

reliable individuals (i.e. the most robust ranks over the problem space) are desired for 

contributing to the consensus, a quality control process is introduced to evaluate the 

individuals.  

 

It uses a feedback mechanism to compare the rank permutation instances in r (matrix 

7.2) with baseline permutations rb (see subsection 7.2) using Spearman’s rank 

correlation coefficient, . 

 

A diagonal weighting matrix, W(dm, (p, q)w) is constructed, with entries corresponding 

to the rank correlation coefficient, m where,  

 

 

(7.5) 

The matrix of component rank scores, weighted for reliability and rounded to the 

nearest integer, rW(dm, (p, q)w) is, 
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(7.6) 

further, by applying a binary threshold, say, 
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(7.7) 

 

rankings from r can be accepted (1) or rejected (0), if the robustness measure for the 

ranking is above or below the threshold, respectively. After determining the weightings, 

the consensus rank score for a feature component, weighted for robustness, r (xf ) is 

recomputed by, 

r (xf ) = 




11 w

N

m

 ( m, f , (p, q)w ) 

(7.8) 

where, N = M if no sequences are rejected and m,,f    rW 
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Figure 7.1. Greatly simplified representation of the experimental harness. The three main conceptual 

blocks of the processes in the harness are colour coded according to the tasks performed, such as 

estimating feature saliency and feature rank (mauve symbols), evaluating the feature evaluation methods 

and their ranking robustness (yellow and blue symbols). See text for an explanation. 

 

Figure 7.1 represents the three conceptual processing blocks in the experimental 

harness, corresponding to feature evaluation and ranking (mauve coloured symbols), 

validation processes (yellow), ranking evaluation and quality control (blue). The filter 

sub-process is represented by the mauve symbols. Globally, the experimental harness is 

a wrapper for evaluating the filter methods.  

 

The process begins by deriving a set of parametric features from the image data instance 

(evaluation data) under consideration. Matrix 7.2 is constructed (generate matrix of 

rankings) using the output from the distance measure channels and the consensus rank 

computed by applying eq. 7.3. The independent validation sub-process is used to 

generate baseline ranks from separate validation data and for assessing the correlation of 

the measured saliency of the features with the classification accuracy from multiple 

models.  The sub-process for evaluation of ranking robustness and weighting of the 
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distance measure ranks, according to their reliability, uses information generated in the 

validation and feature evaluation sub-processes. 

 

7.4 Application Context 

 

Identifying and mapping interesting regions in seabed imagery is a subjective and time 

consuming task for a human analyst and an immensely challenging task for any feature-

based machine learning system. Much seabed classification research has focused on 

using sonar image texture as a discriminative subspace. Since GLCM features are 

probably the most widely used in the domain, they are applied in the test cases here. 

 

7.4.1 GLCM feature creation 

 

Devised as a means of textural analysis by Haralick et al. (1973) a co-occurrence matrix 

is an estimation of the joint probability distribution of combinations of quantised 

intensity value pairs at the ends of a sampling vector, d. The sampling vector is applied 

at multiple orientations,   , to pixel neighbourhoods in the input image, bounded by 

a kernel, of size k. The size of k determines the final resolution of the segmentation or 

class map, whereas || d || is the length scale at which the texture is analysed.  

 

Although there are many others, five features (or textural indices), are derived from the 

co-occurrence matrices in our test case; Angular Inverse Difference Moment (AIDM), 

Angular Second Moment (ASM), Contrast (CON), Correlation (COR) and Entropy 

(ENT). Our choice of derived features follows those used by Reed and Hussong (1989) 

in their classification of SeaMARC II sonar imagery. 

 

The discrete valued parameter space  = {1, 2,…,} yields  




1
||

j j  unique 

instances of the full feature vector, x. Matrices are generated at four symmetric pairs of 

orientations, so the dimension of x is initially 20. The parameter and configuration 

subset for which results are presented in this paper is summarised in table 7.2. 
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Parameter Value 

Kernel dimension, k (pixels) {5, 11, 17} 

Quantisation level, Q (bits) 3 

Sampling orientation 0, 1 

Inter-pixel distance, ||d0|| f (k, Sp) 

Configuration  

(xf ) =  

||

k
||




1

1
(xf ) 

D = |x| 

Sampling pattern, Sp( ) Octagonal 

 

Table 7.2 Summary of co-occurrence matrix parameters and configurations 

 

It would be feasible to work directly with the five features derived at four orientations 

and several different kernel sizes, treating each parameterisation of the features as a 

separate attribute. However, this is not really necessary as x would soon grow in 

dimension greatly, containing hundreds of feature components, many of which would 

be highly correlated. The end product of this would be a high-dimensional feature space 

containing numerous redundant or irrelevant feature components. PCA could be applied 

to reduce the dimensionality but this is not what is desired, as outlined in the earlier 

argument in subsection 7.2.1. 

 

Mean components are computed over , to create the five-dimensional, parameter 

dependent, rotationally invariant vectors, x = (CON(), COR(), ASM(), AIDM(), 

ENT()). Obviously, the removal of directional dependence of the kernels usefully 

serves to reduce dimensionality. Directionally dependent features can be useful for 

discriminating anisotropic textures but this is not of concern here. An additional 

advantage is that it tends to suppress some of the undesirable variability captured by the 

features, due to the effects imparted by sensor platform motion on the imagery.  

 

The quantisation level is fixed at Q = 3 bits and an octagonal sampling pattern is 

applied. Defining the inter-pixel distances at a particular analysis scale, p = {d0, d1} 

where, d0 is orthogonal to the sides of the (square) pixel and d1 = sin(
4
 )d0, diagonal 
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to the pixel, a set of sampling vectors for the octagonal pattern at any scale of analysis 

is, 
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An octagonal sampling pattern is implemented at these kernel sizes and scales of 

analysis as it ensures the scales in the 0 and 1 directions are approximately equal. 

This contrasts to a square sampling pattern in which the 1 length scales are a factor of 

2 greater than in the 0 directions. The octagonal pattern also helps to ensure 

directional uniformity in the quantity of samples entered in the joint distribution. 

Exploration of the parameter space is restricted to the variables, k and d0, in this 

investigation, keeping all others fixed. Feature elements of x, in addition to being 

rotationally invariant, are always derived at homogeneous scales of analysis and kernel 

sizes. 

 

7.4.2 Experimental data 

 

Sidescan sonar imagery contains useful textural information indicating the nature and 

extent of different physical and morphological regimes on the seabed (Blondel 2007, 

Johnson and Helferty 1990.) Of particular concern are protected habitats, such as reefs 

formed by colonies of the tube-building worm, Sabellaria Spinulosa (Sabellaria)( 

Birchall, 2007, Hendrick and Foster-Smith, 2006,  Limpenny et al. 2010,.) The test 

cases focus on Sabellaria as the target texture in sonar mosaic imagery and attempt to 

discriminate it from other specific seabed types. In addition, some consideration is 

given to Sabellaria textures in waterfall imagery. Photographic images of a selection of 

natural textures from the Outex database are also used to make wider comparisons. 

Samples of the imagery are shown in figure 7.2. Mosaic imagery sized for the kernel, k 

= 5 is shown in the top row, waterfall data (k = 11) in the middle row and Outex 
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textures (k = 11), in the bottom row. The data types and textural classes are summarised 

in table 3. Abbreviations, e.g. Sab., Ro., are used in the next section. 

 

 

 

Figure 7.2. Examples of the different textural classes used in the test case. 

 

 

Mosaic Waterfall Outex 

Sabellaria (Sab.) Sabellaria (Sab.) Crushed stone (CSt.) 

Mixed sediments (Mix.) Mixed sediments (Mix.) Coarse sand (CSa.) 

Mussels (Mu.) Mussels (Mu.) Fine sand (FSa.) 

Sandwaves (Sw.) Sand (Sa.) Flour (Fl.) 

Rock (Ro.) Sandwaves 1 (Sw1.) Mineral (Mnl.) 

Sand (Sa.) Sandwaves 2 (Sw2.) Wood (Wo.) 

 

Table 7.3. Summary of all classes and datasets used in this study together with their abbreviations. 

 

7.5 Experimental results and discussion 

 

The purpose of these experiments is to investigate the efficacy of our consensus 

approach to feature saliency estimation and ranking. The main application interest is the 
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sonar mosaic imagery so the presentation and analysis of results concentrates more on 

these data. 

 

A set of quantitative properties that a useful method for evaluating and ranking features 

on sonar mosaic imagery (or any other data) should possess is defined as; 

 

1. Distance estimates correlate well (in a linear, least squares regression) with the 

median accuracy of multiple classification models applied to validation data. 

 

2. Low variability of property (1) over different feature parameterisations and 

classification tasks. 

 

3. Good rank correlation of the derived feature rankings with median baseline 

rankings. 

 

4. Low variability in property (3) over a range of feature parameterisations and 

classification tasks. 

 

A Naïve Bayes classifier is used as the core learning algorithm in the wrapper for 

determining the classification accuracies and establishing the baseline rankings. 

Multiple models are induced for each feature parameter setting and classification task. 

Median classification accuracies are then computed from the class predictions of the 

models on a set of validation patterns. To clarify, the purpose of the wrapper is as a 

means of validation of the filter method within the experimental harness. In practice, to 

configure the feature evaluation and ranking process to work in the context of the same 

classification objectives on standardised, calibrated data sets, this validation process 

would need to be performed once on representative samples of the data. Following the 

validation, the filter may then potentially be applied to other similar data with the same 

classification objectives, without further validation. 

 

7.5.1 Investigating saliency and classification accuracy 

 

Properties (1) and (2) concern the relationship of distances output from individual 

measures and the consensus, to the median classification accuracy from multiple 

models. Figure 7.3 shows the distances (horizontal-axis) between individual features 
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over a range of classification tasks and parameters, plotted against classification 

accuracy, for each feature evaluation method applied to the mosaic imagery. Consensus 

(Co) saliency in this case, is the output from equation 7.4. Sabellaria is the target class 

and the markers represent the texture classification tasks. 

 

 

 

Figure 7.3. Scatter plots showing measured saliency (horizontal-axis) vs. median classification accuracy 

for individual features, over multiple classification tasks and parameter settings on the sonar mosaic data. 

Marker key: + Sabellaria-Mixed sediments, * Sabellaria-Mussels, o Sabellaria-Sandwaves, + Sabellaria-

Rock, o Sabellaria-Sand.} 

 

According to figure 7.3 there are varying degrees of scatter amongst the different 

classes and feature evaluation methods. Eu, Bh, KL and Co are, overall, more correlated 

to the median classification accuracy than Ca, CS and KS. It is also clear that Eu, Bh 

and KL have outlying values, compared to Co. In order to quantify the relationship of 

estimated, relative feature saliency to classification accuracy, the R2 statistic is used as a 

measure of goodness of fit, in a linear, least squares regression. The fit is better as R2  

1. Consistently high values of R2 are desired over different classification tasks, i.e, a 

relatively low standard deviation of R2. The results for each of the data sets are 

summarised in table 7.4.   
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Mosaic Eu Ca Bh CS KS KL Co 

Sab-Sw 0.55 0.15 0.90 0.00 0.07 0.84 0.78 

Sab-Mix 0.44 0.10 0.79 0.54 0.28 0.40 0.77 

Sab-Sa 0.55 0.01 0.66 0.26 0.05 0.57 0.74 

Sab-Ro 0.70 0.35 0.82 0.72 0.41 0.66 0.83 

Sab-Mus 0.75 0.13 0.86 0.00 0.09 0.79 0.76 

 0.60 0.15 0.81 0.30 0.18 0.65 0.78 

 0.13 0.13 0.09 0.32 0.16 0.18 0.03 

Waterfall        

Sab-Mix 0.24 0.01 0.55 0.15 0.13 0.45 0.62 

Sab-Mu 0.53 0.03 0.49 0.49 0.61 0.46 0.54 

Sab-Sa 0.71 0.00 0.79 0.05 0.04 0.73 0.80 

Sab-Sw1 0.19 0.12 0.45 0.27 0.60 0.36 0.46 

Sab-Sw2 0.44 0.16 0.30 0.27 0.49 0.33 0.36 

 0.42 0.06 0.52 0.25 0.37 0.47 0.56 

 0.21 0.07 0.18 0.16 0.27 0.16 0.17 

Outex        

CSt-Csa 0.10 0.25 0.56 0.31 0.14 0.37 0.57 

CSt-FSa 0.36 0.10 0.67 0.43 0.10 0.55 0.63 

CSt-Fl 0.36 0.08 0.90 0.01 0.19 0.83 0.68 

CSt-Mnl 0.18 0.41 0.69 0.32 0.30 0.51 0.63 

CSt-Wo 0.11 0.14 0.22 0.12 0.17 0.10 0.32 

 0.22 0.20 0.61 0.24 0.18 0.47 0.57 

 0.13 0.14 0.25 0.17 0.08 0.27 0.14 

 

Table 7.4 R2 values for specific classification tasks  and distance measures 

 

 

Figure 7.4 shows a plot of the mean,  (horizontal axis) against the standard deviation, 

 (vertical axis) of R2, over all tasks and data sets. From top to bottom; (a) sonar 
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mosaic, (b) sonar waterfall, (c) Outex. Horizontal and vertical broken lines in each plot 

correspond to the mean values of  and , respectively, over all distance measures and 

classification tasks on the particular data set.  

 

Markers further to the right of the plots and closer to the horizontal axis correspond to 

methods which satisfy, properties (1) and (2) more strongly. Since, correlation to 

classification accuracy is better than the mean for the group and variability over the 

tasks and parameters lower than the mean variability. Assigning a score of one point to 

a method with a mean R2 greater than the group mean and one point for a mean standard 

deviation less than the group mean, the results over all data sets and tasks are 

conveniently summarised in table 7.5. Co is the only method that satisfies properties (1) 

and (2) over all tasks on the three different sets of data. 

 

On the mosaic data (our main interest), it is clear that Bh is the strongest individual 

measure over this range of parameters and classification tasks. It has a mean R2 value of 

0.81, slightly higher than Co (0.78). However, the key advantage of Co is the 67% 

lower spread of values ( = 0.03) over the classification tasks on these data, c.f. the best 

individual, Bh, with  = 0.09. Low variability in the relationship between saliency and 

classification accuracy over different classification tasks is most desirable in practical, 

industrial applications. 
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Figure 7.4. Plots showing the mean (horizontal axis) and standard deviation of the R2 statistic over all 

tasks and parameters for the different datasets. 

 

 

All data Eu Ca Bh CS KS KL Co 

 

Property (i) 2 0 3 0 0 3 3 

 

Property (ii) 2 3 1 2 1 1 3 

 

 

Table 7.5 Properties (i) and (ii): Number of times the properties are satisfied for all data sets. 

 

Clearly though, the measured saliency must also correlate to the classification accuracy, 

regardless of whether the accuracy itself is relatively high or low. Co is the overall 
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winner with respect to these qualities, considered over all the data sets, closely followed 

by the individuals, Bh and KL. It is interesting to note that the overall mean correlation 

to classification accuracy is approximately 25% higher on the mosaic imagery, 

compared to the other two. 

 

7.5.2 Defining a baseline rank 

 

Before properties (3) and (4) concerning the rank correlation and robustness can be 

considered, it is first necessary to define a baseline ranking against which all other 

computed ranks can be compared. The approach used is the same for all data sets, so we 

explain this procedure in the context of the sonar mosaic data. 

 

In a supervised learning scenario, a human operator may manually select small 

evaluation and validation regions from the sonar imagery. The evaluation data is used to 

estimate the feature saliency and induce the classification models. It is assumed the 

underlying class distributions are similar in the evaluation and validation data sets and 

the validation data set can be defined as a non-universal, class-specific benchmark (i.e. 

the benchmark is valid on one data set only.)  

 

A baseline ranking is defined, derived from the median classification accuracy of 

multiple predictions on the validation data, using an exhaustive search of the feature 

subsets on the different classification tasks, over specified parameter ranges. 

 

 

 

Figure 7.5. Classification accuracy on validation data, using multiple models for individual features. The 

median values are used to establish the baseline ranking. 
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Figure 7.5 shows the results used to determine a baseline ranking for the individual 

features (subsets of D = 1), on the Sabellaria-sandwaves classification task, with 

parameter settings, k = 17, || d0 || = 13. Validation accuracy is on the vertical axis and 

the numbers on the horizontal axis correspond to binary codes for the individual 

features. Small black triangles show the 95% confidence interval for the location of the 

median validation accuracy, with the median indicated by a black dot. The horizontal 

broken line represents overall median accuracy for the subset bin. Basing the rank on 

median accuracies, in descending order, the individual features are, (1) ENT, (4) ASM, 

(16) CON, (2) AIDM and finally, (8) COR. In accordance with the earlier definition, 

this is used for the baseline rank score permutation of the individual feature components 

for the prescribed classification task and parameter settings, i.e. rb(x)= (3, 1, 4, 2, 5). 

 

It is clear from figure 7.5 though, that some of the individual features produce 

classification models that are more stable than others to variability in the sampled data 

(all other things being equal.) ENT and ASM models are both stable as there is a 

relatively small spread between the 95% confidence limits. They are also salient as they 

yield high classification accuracies. COR is the most stable but least salient. CON and 

AIDM are relatively less stable than the others, with a wide spread of accuracies 

between the confidence limits and in some cases, relatively poor models are induced.  

 

If the confidence limits of classification models induced from the individual features 

have overlapping ranges of accuracy, other baseline rank permutations are possible. It is 

far more likely that the top two rank positions held by ENT and ASM could be 

interchanged but impossible (in this test case) for the rank of ENT and AIDM to be 

interchanged as there is a vertical “gap” between the lower and upper limits of the 

confidence intervals. Interestingly, whilst AIDM is relatively less stable, it is unlikely to 

affect the rank stability as much as the two most salient feature models with a relatively 

higher stability. Obviously, the baseline ranking has some uncertainty, dependent on 

model and rank stability. A rigorous, quantitative treatment of these issues could form 

the subject of future work. 

 

7.5.3 Investigating task robustness 

 

Having defined a method for establishing baseline rankings attention is turned to using 

Spearman’s rank correlation coefficient, , to compare the rankings derived from the 
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distance measures, with the baselines, over a variety of parameters and classification 

tasks. The purpose is to assess the robustness of the rankings against properties (3) and 

(4). Table 7.6 contains detailed results for the values of , computed over a sample of 

classification tasks and parameter settings for the sonar mosaic imagery. Consensus 

rankings are generated in unweighted (Co) and weighted (Co+) modes of operation, i.e, 

from eq. 7.3 and 7.8, respectively. In the weighted mode a binary threshold is applied, 

as defined in eq. 7.7. 

 

Differences, , between the correlation coefficients for unweighted and weighted cases 

and the number of distance measure rankings rejected, N, for each 

task/parameterisation, are given in the last two columns of the table. The final row of 

the table contains the relative frequency of rejections for each method over the sample 

of tasks and parameterisations. The mean and standard deviation, , , for the 

methods over all tasks and all data sets are summarised in table 7.7 and shown 

graphically in figure 6. Values of  and , are shown on the horizontal and vertical 

axes, respectively. The vertical and horizontal broken lines on each plot indicate the 

overall mean values for  and  for the specific data set. Methods with high values of  

 (property (3)) and low values of   (property (4)) are preferable as they reflect good 

correlation of the estimated ranking with the baseline and a relatively high robustness to 

the different classification tasks and feature parameterisations. These methods are 

indicated by markers towards the bottom-right of the plots. 
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Figure 7.6. Mean and standard deviation of Spearman's rank correlation coefficient. 

 

Considering the results on the mosaic imagery, as an individual, Bh has performed well, 

on average, with  = 0.84. The unweighted committee has a slightly lower value ( = 

0.76) but the variability in the results is 15% better (lower),  = 0.18 for Co, c.f. Bh,  

= 0.21. Using the quality control mechanism, with the binary threshold to accept or 

reject individual rank sequences improves  slightly, by increasing the value from 0.76 

for Co to 0.80 for Co+. Importantly, variability is reduced further still, by another 22%, 

from  = 0.18 for Co to  = 0.14 for Co+ (i.e. 34% lower variability than Bh), 

demonstrating an improved robustness on the sonar mosaic tasks. 
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In two cases, as shown in table 7.6, Bh performed unsatisfactorily,  = 0.3, on the 

Sabellaria-mussels and Sabellaria-sand classification tasks. Using the same parameters, 

it performed well on other tasks such as Sabellaria-sandwaves. On the other hand, using 

Co+, none of the rankings has a  - value less than 0.6, a clear indication of good 

ranking conformity over the tasks. 
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Task (k, d) Eu Ca Bh CS KS KL Co Co+  N 

Sab-Mix 11,9 0.6 -0.6 1.0 0.1 0.2 1.0 0.7 1.0 +0.3 3 

 11,7 0.3 -0.1 0.9 -0.2 -0.1 1.0 0.6 0.9 +0.3 4 

 17,15 0.6 -0.6 0.9 -0.3 -0.1 0.9 0.4 0.7 +0.3 3 

 17,13 0.3 -0.4 0.7 -0.2 -0.3 0.7 0.5 0.7 +0.2 4 

Sab-Mu 11,9 0.8 -0.2 0.9 0.8 0.8 -0.3 0.9 0.8 -0.1 2 

 11,7 0.7 0.4 0.3 0.6 0.0 0.6 0.6 0.6 0.0 3 

 17,15 0.6 0.3 0.9 0.7 0.8 0.6 0.6 0.7 +0.1 1 

 17,13 0.6 -0.3 0.9 0.7 0.8 0.0 0.7 0.6 -0.1 2 

Sab-Sw 11,9 0.9 -0.5 1.0 0.7 0.3 1.0 0.9 0.9 0.0 2 

 11,7 0.9 -0.6 1.0 0.9 0.5 1.0 0.9 0.9 0.0 1 

 17,15 1.0 -0.9 0.9 -0.1 0.5 0.8 1.0 0.9 -0.1 2 

 17,13 0.9 -0.9 1.0 0.0 0.3 1.0 0.9 1.0 +0.1 3 

Sab-Ro 11,9 0.7 0.1 1.0 0.9 0.3 0.9 1.0 1.0 0.0 2 

 11,7 0.7 0.3 0.9 0.7 0.6 0.6 1.0 0.7 -0.3 1 

 17,15 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.7 0.0 0 

 17,13 0.7 0.5 0.9 0.3 0.5 0.9 0.7 0.9 +0.2 1 

Sab-Sa 11,9 0.7 -0.7 0.7 -0.9 0.5 0.9 0.7 0.6 -0.1 2 

 11,7 0.7 -0.3 0.3 0.3 0.5 0.5 0.8 0.9 +0.2 3 

 17,15 0.6 -0.6 0.7 -0.3 0.5 0.9 1.0 0.7 -0.3 2 

 17,13 0.6 -0.7 0.9 -0.5 0.1 0.9 0.6 0.7 +0.1 3 

Task mean  0.68 -0.27 0.84 0.25 0.36 0.74 0.76 0.80   

Task s.d  0.18 0.47 0.21 0.53 0.31 0.35 0.18 0.14   

Rejections - 0.05 0.40 0.05 0.25 0.20 0.05 - -   

 

Table 7.6. Rank score permutation evaluation - detailed results from the sonar mosaic imagery, showing 

Spearman’s rank correlation coefficients for the different methods over a range of classification tasks and 

parameters. 
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Mosaic Eu Ca Bh CS KS KL Co Co+ 

 0.68 -0.27 0.84 0.25 0.36 0.74 0.76 0.80 

 0.18 0.47 0.21 0.53 0.31 0.35 0.18 0.14 

Waterfall         

 0.59 -0.42 0.67 0.31 0.29 0.70 0.60 0.71 

 0.38 0.43 0.28 0.47 0.50 0.26 0.28 0.28 

Outex         

 0.09 -0.09 0.60 0.08 0.14 0.49 0.30 0.57 

 0.53 0.49 0.39 0.56 0.25 0.54 0.42 0.57 

 

 

Table 7.7 Mean,  and standard deviation, , of the spearman’s rank correlation coefficient for all 

feature parameterisations and classification tasks over all data sets. 

 

Compared to Co,  indicates an improvement in the correlation of Co+ in 45% of the 

test cases. There was no change in 25% of cases and a reduced correlation in 30%.  It is 

not immediately obvious if there is any pattern in the improvement or reduction in 

correlation, with respect to the number, N, of rankings rejected. 

 

By storing quality control information, performance profiles of the methods can be built 

up progressively. The usefulness of Ca within the committee may be questionable on 

this task, as the proportion of rejections due to this measure (0.4) is much higher than 

the others. CS has the greatest variability (lowest robustness), which, according to the 

distribution of the rejection instances in table 7.6 may be more unstable with respect to 

classification task than changing feature parameters. Eu, Bh and KL have far lower 

frequencies of rejection that are not correlated to each other. If so desired, rankings from 

each measure could be weighted, according to their reliability history, and form the 

consensus from the weighted contributions instead of using a binary select/reject 

criteria. As an illustrative example, first removing Ca, the weighting would be 0.29 Eu 

+ 0.29 Bh + 0.07 CS + 0.06 KS + 0.29 KL for the mosaic imagery, based on the 

rejections in table 7.6. 
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All data Eu Ca Bh CS KS KL Co 

 

Co+ 

Property (iii) 2 0 3 0 3 3 3 

 

3 

Property (iv) 1 0 3 0 1 1 3 

 

2 

 

Table 7.8 Properties (iii) and (iv): Number of times the properties are satisfied for all data sets. 

 

Referring to figure 7.6 and using the same approach as in section 7.1, one point is 

assigned to a method if it exceeds the overall mean of  (property (3)) and one point if 

it has a standard deviation lower than the overall mean of  (property (4)). Points 

allocated are summarised in table 7.8. The joint winners are Co and Bh considered over 

all feature parameterisations, classification tasks and data sets. Co+ and KL also 

demonstrated good overall performances. 

 

The consensus approaches can improve the rank correlation and reduce variability in the 

ranking (hence improve the robustness) over multiple feature parameterisations and 

classification tasks. An improvement in robustness is particularly evident with Co+ on 

the sonar mosaic imagery. Clearly though, Bh and KL also have good overall 

performance as individuals.  

 

Taking into consideration the total points awarded to each method for all of the 

properties (1)-(4), then the consensus approach, Co is the overall winner as its 

performance, on average, exceeded the group with respect to these properties, in all test 

cases. In other words, Co has demonstrated a relatively robust ranking of features and a 

measure of saliency that consistently correlates well with the achieved classification 

accuracy.  

 

 

 

 

 



Chapter 7  Reliable feature ranking 

 

222  

7.6 Evaluation, conclusions, recommendations and scope for further 

work 

 

7.6.1 Evaluation 

 

This case study was the most abstract of the four and concerned an investigation into the 

robustness of distance measures and novel distance measure committees for feature 

evaluation and ranking on sonar imagery.  

 

The objectives were to establish which individual distance measure(s) are most reliable 

for feature evaluation and ranking on sonar imagery and to assess if there is any 

advantage in using a committee of distance measures for consensus evaluation and 

ranking on this task. A complex experimental (computational) framework was designed 

and developed for the task. The detailed results analyses indicated, under the prescribed 

conditions of the experimental sub-space, that a consensus feature evaluation and 

ranking approach improves the correlation of measured feature saliency to classification 

accuracy and the correlation of feature rankings to a baseline rank. In addition, under 

the same constraints, the variability of these properties could be reduced, over a range of 

feature parameters, classification tasks and data sets, i.e. the feature evaluation and 

ranking robustness were improved. Bhattacharyya’s measure and the Kullback-Leibler 

divergence were identified as the best individual performers in the investigation. The 

objectives have therefore been successfully met. 

 

A key advantage of the approach is that it facilitates an intelligent selection of a few 

individual discriminatory features and their parameters (including scales of analysis) to 

induce a classification model. Semantics of the features are propagated, so that 

classification results can possibly be related to the observed properties of the data and 

ground truth in a more meaningful way, compared to feature extraction methods such as 

PCA, as used by Preston (2009), where a large number of features are recombined with 

different weightings. It is also efficient, as the features are evaluated on relatively small, 

representative evaluation areas of the input imagery. This allows decisions to be made 

about the features before they are created on the entire (much larger) input space. There 

has only been one other study on the use of distance measures applied to sonar imagery 

feature evaluation, by Karoui et al. (2008). The application of a committee approach is 
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therefore the first of its kind in the domain. In addition to contributing as an application 

to the sonar imaging domain then, this work also contributes to the feature evaluation 

and selection domain. It is only recently (since about 2007) that issues of feature 

stability and robustness have been considered and only a handful of papers have so far 

been published on this important aspect of machine learning. Perhaps the most closely 

related work is by Saeys et al. (2008). However, the main difference is they used 

bagging and a homogeneous committee of feature selectors (i.e., the same feature 

selector, with re-sampled data), compared to an aggregation of results from different 

feature selectors in the thesis case study. An outcome of the research in this case study 

was a peer-reviewed publication in a leading computing science journal. 

 

The achievements of this work could be extended by considering a notion of “diversity” 

in the committee of feature selectors and investigating the connection between diversity 

and the stability/robustness of the feature evaluation and ranking.  

 

The design and implementation of the experimental harness was very challenging and 

its scope extends beyond the condensed subset of experimental dimensions and results 

presented in this case study. For instance, within the harness, it is possible to generate 

all feature subset combinations and evaluate the methods in relationship to feature 

combinations over different dimensions of feature space. As an example, the evaluation 

and ranking of any pairs of features could be considered. The harness is implemented as 

a suite of Matlab files and was developed ab initio by the researcher. Results generated 

by the harness required further organisation, processing and analysis. A number of 

further Matlab scripts were written to implement these processes, facilitating the 

generation of the final results and their visual representations. 

 

7.6.2 Conclusions 

 

The correlation between the estimated saliency of the features and classification 

accuracy was investigated, as was the robustness of ranking over different GLCM 

feature parameterisations and classification tasks on three data sets. On the sonar mosaic 

imagery, compared to the best individual, the consensus achieved a 67% reduction in 

the variability of the R2 goodness of fit measure of saliency correlation to median 

classification accuracy. Considering the rank permutations, the unweighted consensus 

approach led to a 15% reduction in the variability of the correlation of rank score 
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permutations, relative to the best individual. This reduction was improved to 34% using 

ranking selection according to a binary threshold, in a weighting mechanism. A 

reduction in variability is evidence of an improvement in robustness over the prescribed 

feature parameterisations and different classification tasks. Considering properties (1)-

(4), as evaluated over all tasks, parameters and data sets, the consensus approach is the 

best method overall, demonstrating a relatively robust ranking of features and a measure 

of saliency that consistently correlates well with the achieved classification accuracy. 

The Bhattacharyya distance measure and Kullback-Leibler divergence are the best 

individuals. 

 

The aim of this chapter was to propose a novel framework for evaluating distance 

measures, for the purpose of evaluating and ranking parametric features on sonar 

imagery. The aim has been successfully achieved, since the framework has been 

proposed and implemented as an experimental harness. The objectives were to establish 

which individual distance measures are most reliable for feature evaluation and ranking 

and to determine if there is any advantage in using a committee of distance measures for 

this purpose. From the work carried out in the chapter and the conclusions, it has been 

demonstrated that the objectives have also been successfully achieved.  

 

7.6.3 Recommendations 

 

The investigations carried out showed that the Bhattacharyya distance measure and 

Kullback-Leibler divergence are the best individual distance measures for feature 

evaluation on sonar imagery. These individual methods are recommended, as the 

measured saliency of the features correlated consistently well with the achieved 

classification accuracy. It is also possible and potentially useful to calibrate the 

measured saliency with an estimate of likely classification accuracy, as in Harrison et 

al. (2011). For a more robust (but computationally expensive) method of evaluation, the 

consensus of multiple distance measures is recommended. Further, it is also 

recommended that in general, holistic approaches are taken towards the feature 

evaluation process, as in this case study, case study 1 (chapter 4), where a diverse range 

of methods were applied for the assessment of individuals and combinations of different 

features. It is clear that robustness of the methods by which the saliency and reliability 

of an individual feature or subset of features is measured is of fundamental importance 
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to the design of a meaningful, discriminatory feature space for a particular classification 

task. 

 

7.6.4 Scope for further work 

 

o A wider range of classification tasks on seabed imagery captured by different 

sidescan sonar instruments under varying conditions could be considered.  

 

o A rigorous treatment of rank stability in the feature selectors and model stability 

at the validation stage would usefully provide a means of quantifying 

uncertainty in the estimated robustness of the feature selectors over the space of 

parameters and classification tasks.  

 

o GLCM features are the most well known textural features in the sonar image 

classification domain, yet there are other very useful parametric features, such as 

the Gabor filter banks that could also be used as test cases. 

 

o A notion of diversity in feature selectors could be considered and importantly, 

how to define and measure it. It would then be possible to build different 

committees of feature selectors and investigate if there is any connection 

between the diversity of the committee and the robustness of the features and 

feature parameters selected for a particular classification task.  

 

So far in the thesis, much of the experimental work has involved using small 

sections of sonar mosaic imagery. This is common practice in the domain and many 

published studies use this approach. However, discrimination of interpretative 

targets in a much larger, real-world sidescan sonar mosaic image presents a number 

of significant technical challenges, some of which are addressed in the following 

chapter. 
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8.1 Introduction 

 

The research presented in this chapter concerns a “demonstration of concept” case 

study. It focuses on a context limited exploratory investigation into the feasibility of a 

novel process and methods for the fully automated classification of subjective targets in 

real-world sonar mosaic imagery. The main underpinnings of the case study are; 

 

 Motivation. In an industrial processing context, the real-world mosaic images 

are large, ranging from about 10 MB to 100’s of MB. The goal is to fully- or 

semi-automate the manual interpretative process, achieving a plausible 

classification outcome, similar to what a human might produce but in a fraction 

of the time, i.e., in minutes as opposed to days. 

 

 Synthesis. Many of the ideas and methods, such as feature creation and 

evaluation, investigated during the course of the research are brought together as 

components of a coherent system, to achieve the goal.  

 

 Design. Dealing with real-world imagery presents a number of additional 

challenges, particularly in standardising the unsupervised process across 

multiple image blocks. A novel hybrid process using heterogeneous machine 

learning algorithms is designed to surmount this challenge. A heuristic for 

fusing multiple unsupervised feature channels (models) is also developed. The 

efficacy of the unsupervised process is demonstrated in the case study by 

comparison of results with manual and fully-automated supervised 

classifications.  

 

The overall aim of this work then is to devise a novel process for classifying subjective 

targets in sidescan mosaic imagery. The first objective is to devise a novel, hybrid 

unsupervised approach, using heterogeneous machine learning algorithms and a 

heuristic for fusing unsupervised classifications. The second objective is to evaluate the 

unsupervised process by comparison with a fully automated, supervised machine 

approach and a specimen class map of sediment types and therefore demonstrate the 

plausibility of the process and its desirable properties for the task.  
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Research in this chapter has an empirical, quantitative component but compared to the 

previous chapters, it is more qualitative and descriptive in nature. As pointed out earlier, 

using mixed methods provides a more holistic view. There is no exact “answer” to be 

achieved but through experimentation with the process and methods it is possible to 

eliminate ineffective components and arrive at an effective system configuration for 

achieving a reasonable classification outcome in the application context. 

 

The remainder of the chapter is organised as follows. Section 8.2 outlines the context of 

the problem and describes some related work. In section 8.3 the overall process, and 

novel components are proposed. The experimental campaign is described in section 8.4. 

A selection of results are analysed and discussed in section 8.5. Finally, conclusions and 

scope for further work are presented in section 8.6. 

 

8.1.1 Important note 

 

The application scenario in this case study concerns sediment discrimination in sidescan 

sonar mosaic imagery. It is a contingent application, using resources that were available 

for a demonstration of the process, instead of the intended Sabellaria target 

discrimination. An assumption is made for the purposes of this case study, that intensity 

and texture in the mosaic image have an unknown relationship to the distribution of 

sediment targets. Sidescan imagery can be used for sediment grain size classification, as 

in Collier and Brown (2005) although an angular dependency method using MBES 

backscatter is often employed for this purpose, as in Hughes Clarke et al. (1997) and 

Fonseca et al. (2009). In the application considered here, despite not being as originally 

intended some curious, serendipitous findings arose and it has therefore been successful 

in this respect. It also demonstrates the versatility of the process and intimates the 

potential for transferability, regarding various target discrimination applications. 

 

8.2 Previous work 

 

8.2.1. Problem background and solution outline 

 

Sidescan sonar is one of the most widely used acoustic remote sensing platforms in 

marine environmental surveys. Mosaic imagery, produced from the processed swath of 
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backscatter signals, contains tonal (intensity) and textural information related to the 

roughness characteristics and spatial distribution of different regions on the seabed. See, 

Blondel (2007), Fish and Carr (2001) and Le Bas and Huvenne (2009). It has proven 

utility for high-resolution imaging of biogenic structures (Birchall, 2007, Degraer et al. 

2008, Hendrick and Foster-Smith 2007, Limpenny et al. 2010.) Natural features on a 

variety of spatial scales, including sand dunes and rock outcrops are often 

distinguishable in the mosaic. Whilst most of the image information content is textural 

(Blondel and Gómez-Sichi 2009), distributions of well-sorted sediment particle sizes, 

under certain conditions, are strongly correlated to sidescan sonar backscatter intensity 

(Collier and Brown, 2005) and hence to pixel radiosity values in the mosaic image. 

Thus, features such as descriptive statistics and local intensity histograms can be used to 

represent and discriminate between surface sediments. Sidescan sonar imagery 

acquisition is usually accompanied by a ground truth sampling campaign, typically 

comprising collection of sediment grab samples for particle size analysis (PSA) and 

photographic or video capture of benthic organisms and consolidated structures.  

 

Due to their qualitative nature, mosaic images are often analysed manually, by human 

interpreters. In fact, the human eye is generally accepted as being the best delineator of 

the regions in a sidescan image (Limpenny et al., 2010). During the interpretation 

process, the extents of relatively homogeneous regions of textures and intensities in the 

image are analysed, together with information derived from the ground truth. The aim 

of this manual interpretative process is usually to create a seabed class map, by 

interpolating between (or extrapolating from) known ground truth points and the 

corresponding regional image properties associated with these points. Ground truth 

partially validates the interpretation, although as discussed in chapter 4, section 4, due 

to the localisation of the ground truth, the classes and their boundaries are always 

uncertain and ambiguous, regardless of the processing stages and whether the map was 

created in a human or a machine process. There may also be also a semantic gap 

between the true meaning of a descriptive label, the local “real” attributes of the seabed 

the label is describing and the representation on the class map.  It is possible to 

represent any number of characteristics as classes on a single map but five or six classes 

are usually sufficient for depicting the main substrate types (gravel, sand, mud), 

together with areas of say, outcropping and biogenic structures or similar regions of 

interest, depending on the classification objective. The classification objective greatly 
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affects the outcome of the process. For instance, objective ground truth representations 

such as grain size distributions and their parameters may be used to represent the 

ground truth in different ways, according to different classification schemes. 

 

Manually producing a class map is a time consuming and expensive task, requiring the 

effort of at least one human interpreter over many days. It is also well known that the 

process is subjective and inconsistent, since different human analysts yield differing 

interpretations (Blondel 2007, Johnson and Helferty 1990, Martin et al. 2006) However, 

qualitative image capture using the comparatively low-cost, high resolution sidescan 

sonar and its subsequent human interpretation remains an important, established 

practice in the marine surveying industry and is likely to continue for the foreseeable 

future. It would be beneficial then, to devise a means of improving the efficiency and 

reliability of the industrial human processing pipeline by making use of machine 

learning technology. The idea of automating this process is not new. Czarnecki (1979) 

published one of the earliest investigations into the application of pattern recognition 

techniques to the classification of sidescan sonar imagery. Since then, other supervised 

and unsupervised feature based approaches have been proposed, such as, Blondel et al. 

(1998) (TexAn), Kalcic and Bibee (2004), Preston et al. (2004) (QTC), Samiee and Rad 

(2008), and Sun and Shim (2008). To date though, there are still no universally accepted 

methods or procedures. It remains a formidable problem and presents a number of 

technical challenges. Relatively few of the proposed approaches have matured into 

established sonar image processing implementations. Of these, perhaps the best known 

are from QTC (commercial processing software), and the TexAn package (academic 

processing software). 

 

A generic problem with supervised learning approaches in any domain is the potential 

introduction of label noise during the sampling and training process, giving rise to an 

erroneous classification model, as in (Lawrence and Scholkopf 2001). Selection of 

sonar image training regions can be through a qualitative visual inspection, as in 

Blondel and Gómez Sichi (2009) or by using the ground truth points as seed locations 

(one of the approaches taken in this case study). Visual inspection and selection is very 

effective when there are a few distinct and homogeneous textural classes such as 

smooth sediments and rock. Small representative regions of the classes can be chosen 

from the image and used for feature (and feature parameter) evaluation and validation, 
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as in TexAn. This approach was also used for the feature evaluation investigations in 

the previous two chapters of the thesis. The reason this approach works well is because 

the regions of interest have been pre-identified using expert knowledge. It is then a case 

of evaluating the most discriminatory features for the classification objective and 

inducing a machine model for classifying the targets in the entire image. The manual 

selection of visual training regions may not work as effectively though, when there are 

several classes without clear spatial demarcation, for instance, transitions from one type 

of smooth sediment to another with a continuous intensity gradient.  

 

Using ground truth points as seed locations facilitates a fully automated, supervised 

training and classification process, as no manual intervention is required. Due to 

positioning uncertainties though, the image region sampled may not correspond to the 

class sampled at the true ground truth location. The chance of introducing label noise is 

high, in this case, as positional uncertainty can exceed 35% of the water depth, as 

documented in the survey of Collier and Brown (2005). If the seed locations for training 

the classifier are not representative of the class in terms of intensity and texture, then an 

erroneous model will be induced and classification results may be poor.  

 

Unsupervised (or clustering) approaches, as in Preston et al. (2004) and Preston (2009) 

do not depend on a priori knowledge, consequently, label noise and variability in human 

selected training regions is not a concern. At the end of an unsupervised process, 

meaningful labels can be assigned to the partitioned regions (provisional classes) by 

human inspection of the segmentation in relation to the observed regions in the mosaic 

imagery and consideration of any ground truth points lying within the segmented 

regions. It is possible to automate this process and a procedure for doing so is also 

presented in the case study. There are three key problems to address when implementing 

an unsupervised approach;  

 

 how to choose an appropriate number of classes (clusters), either specified by a 

human user or determined automatically in some way, 

 

 how to select the best clustering model for the number of classes and  
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 how to assign ground truth class labels to the unsupervised solution.  

 

A further consideration, when dealing with the unsupervised classification of large, real-

world sonar mosaics is the processing efficiency, which can be improved by dividing 

the image into numerous independent blocks. Block processing constrains the quantity 

of pattern instances created and processed in memory to a manageable size. An 

important, highly relevant practical problem though, is that because the blocks are 

independent, without careful treatment, inconsistent class partitioning and non-

corresponding labeling of patterns can arise. The problem is addressed in this work by 

implementing a novel pre-clustering process that assigns provisional class labels to 

training patterns. The best solution set is selected through an internal validation process. 

This pattern set is subsequently used to induce a global, Naïve Bayes classification 

model (see, for example, Duda et al., 2001, p 13.) Thus, the same unsupervised 

classification model is applied on each block and patterns created on the blocks are 

range normalised to the pattern set used to induce the global model. This hybrid 

approach ensures consistent results on each of the independent image blocks within the 

separate feature spaces and probabilistic support is provided by the classifier, for each 

classified pattern on the individual blocks.  

 

Different unsupervised models can be induced in independent feature spaces, known as 

feature-distributed clustering (Hadjitodorov et al. 2006.) However, the predicted 

provisional class labels output from each feature channel will not correspond – an 

inherent problem with unsupervised ensembles (Strehl and Ghosh 2002). In this work, 

the unsupervised output channels are fused together by considering relative frequencies 

of label permutations in the joint distributions of spatially co-located class labels, 

together with their numerical support (posterior probabilities.) Permutations with the 

“top-n” relative frequencies are selected and the corresponding sets of points are 

relabeled, in their spatial locations to produce a provisional, n-class map. Finally, 

meaningful class labels are assigned to the provisional classes, based on the conditional 

probability of occurrence of a particular ground truth class type within the spatial 

coverage of the provisional class region. The proposed unsupervised process is 

evaluated by comparison with a supervised classification and a manual interpretation of 

the imagery and ground truth data. 
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8.2.2 Sidescan sonar image classification 

 

There have been several proposed approaches to sonar image classification published 

recently, employing a wide variety of feature creation techniques and machine learning 

methods. Although as yet, there are no definitive review works, some of the approaches 

are covered in Simard and Stepnowski (2007), Hughes Clarke et al. (2009) and 

Schumann et al. (2010). An outline of some related previous work is recapitulated here, 

as much has already been covered in earlier chapters. 

 

Karoui et al. (2008) state that a number of studies have indicated a fusion of features 

from different feature creation methods could improve texture characterisation. They 

investigated a fusion of Gabor filter bank responses and co-occurrence distributions to 

characterise the texture of sidescan sonar images. Two other recent studies where Gabor 

filter banks were applied are those by Samiee and Rad (2008) and Sun and Shim (2008). 

The feature creation process of Samiee and Rad (2008) used the filter banks to generate 

a sub-image from each channel followed by morphological closure. Whilst their method 

is robust to noise and the data acquisition processes, their results were reported on 

small, clean image regions with distinct textural contrasts and relatively well-defined 

textural boundaries. Sun and Shim (2008) combined Gabor filter bank features with a 

model-based feature, the fuzzy fractal dimension (FFD) in a hybrid fusion method. 

Using a Multi-Layer Perceptron (MLP) classifier, they found overall, the classification 

accuracy was higher with the fusion approach, compared to using the Gabor filter bank 

or FFD features in isolation. For more comprehensive coverage of the Gabor filter bank, 

refer to chapter 6 of the thesis. 

 

Standard, k-Means clustering is a popular unsupervised technique with researchers in 

the domain. Whilst k-Means is quite straightforward, it does have some limitations. It 

cannot handle non-globular clusters or clusters of different sizes and densities and 

performance is also significantly affected by outliers (Tan et al., 2006.) Blondel and 

Gómez Sichi (2009) claim that more recent applications have tended to use the k-Means 

algorithm. Their tests indicated that a simple Euclidean metric was sufficient for the 

classification application in their research. However, the user needs to have an idea of 

how many different clusters are expected in the data, as this must be specified before 
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running the k-Means algorithm. Unlike a SOM, k-Means cannot determine the number 

of clusters automatically.  

 

8.2.3 Ensemble/fusion approaches 

 

An ensemble or committee comprises a collection of machine-learning models and 

decision fusion strategy for combining the model predictions (Dietterich, 2000). See 

Sinha et al. (2008) for a recent survey of decision fusion methods. Multiple models are 

created from different samples of training data or within different feature spaces and can 

be supervised (classifier ensemble) or unsupervised (cluster ensemble). Although 

supervised ensembles are in common use and have many real-world applications (Pal 

2007), they have received very little attention within the seabed classification domain.  

 

Unsupervised (cluster) ensembles (Strehl and Ghosh, 2002) are generally more difficult 

to implement than supervised ensembles due to the problem of class label 

correspondence. It is not possible to use a simple voting mechanism, as in the case of a 

supervised ensemble, since provisional class labels output from each channel are not 

associated to the same class. So, in addition to the problems of determining the number 

of clusters, the best clustering solution and assigning meaningful labels to the 

provisional classes, it is also necessary to have a strategy for aligning the labels and 

combining the label vectors. 

 

 In the context of sidescan sonar imagery, there have been few ensemble based 

approaches proposed. Martin et al. (2004) and Martin (2005) studied the fusion of 

classification results based on models created with different types of textural features 

was investigated. Generated patterns were input to a committee of MLP’s, with each 

committee member associated to a discrete feature input channel. Channel outputs were 

combined in two decision fusion strategies based on evidence theory and distances. Sun 

and Shim (2008) also used an MLP in their hybrid fusion process, however, the work of 

Sun and Shim (2008), Martin et al. (2004) and Martin (2005) was limited to 

classifications on small patches of sonar imagery of relatively distinct classes. Dartnell 

and Gardener (2004) used an unsupervised ensemble technique for seabed classification 

based on a fusion real-world MBES bathymetry and backscatter imagery. A rule-based 

approach was implemented with a hierarchical DT classifier to combine four 
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unsupervised classifications in the ERDAS Imagine1 software package. The rules were 

based on the known classes in the ground truthed areas.  

 

The approach used in this case study assumes nothing about the relationship of the 

clusterings to the ground truth until after the clusterings have been combined. It is a 

treated as a cluster ensemble problem, as defined by Strehl and Gosh (2002). 

 

8.3 Proposed feature-distributed process and methods 

 

The proposed, hybrid, feature-distributed, unsupervised ensemble approach presented 

here is the first of its kind in the context of interpretative sonar image classification on 

real-world mosaics. The hybrid process is applied only in the unsupervised case and 

regardless of whether a single or multi-channel (ensemble) approach is used. 

 

It is evaluated by comparison with a supervised machine classification and a specimen 

classification (class map.) The supervised and unsupervised approaches require different 

processing methods. Eight of the more important stages and corresponding methods are 

specified in table 8.1 and described in the following subsections. The abbreviation GT is 

used for ground truth and S, T, E, L for Statistical, Texture, Edge detection and 

Lacunarity feature channels, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 http://geospatial.intergraph.com/products/ERDASIMAGINE/ERDASIMAGINE/Details.aspx [accessed 

05-12-2012] 

http://geospatial.intergraph.com/products/ERDASIMAGINE/ERDASIMAGINE/Details.aspx
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Stage Supervised Unsupervised 

 

1. Image sampling GT sample station 

locations, 8-NN kernel 

neighbourhoods. 

 

Multiple, random locations, 8-NN 

kernel neighbourhoods. 

2. Block 

processing 

Sequential, non-

overlapping blocks. 

 

Sequential, non-overlapping 

blocks. 

3. Feature creation  Multi-channel {S, T, E, L} 

 

Multi-channel {S, T, E, L} 

4. Model induction 

(Naïve Bayes) 

Labelled samples from GT 

stations. 

Pre-clustering. Induce 

probabilistic classification model 

with clustered patterns and cluster 

labels. 

 

5.Independent 

classification 

channels 

Predict class label and 

posterior probability for 

each pattern instance. 

 

Predict provisional class label and 

posterior probability for each 

pattern instance. 

6. Post processing 

(smoothing) 

Output blocks smoothed 

using categorical 

distribution of  k-NN in 

intermediate map space. 

 

Output blocks smoothed using 

categorical distribution of k-NN in 

intermediate map space. 

7. Fusion (DsI-

DeO) 

Weighted voting “Top-n”, relative frequencies in 

joint distributions. 

 

8. Assign class 

labels 

Not applicable Conditional probability of GT 

class occurrence in spatial 

coverage of provisional class.  

 

Table 8.1. Summary of main processing stages and methods for supervised and unsupervised ensembles. 
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8.3.1 Sampling strategies 

 

Before any image sampling can take place, a binary mask is created to flag areas of 

imagery that should not be processed, such as no-data, nadir2 lines or any areas of poor 

quality. 

 

In the supervised approach, the geographic coordinates of the Ground truth (GT) 

physical sampling stations are first converted to local image coordinates. The image 

coordinates assigned to each GT location depend on image resolution and the size of the 

feature creation kernel, since, for efficiency, the image is down-sampled during the 

feature creation process. The eight nearest neighbours3 (8-NN) of the GT image 

neighbourhood covered by the kernel are also sampled, providing a maximum of 9 seed 

patterns at each location. Assumptions made are (1) the neighbouring image patches 

represent a homogeneous class and are thus assigned the same class labels as the GT 

point and (2) the true location of the GT point is within the area bounded by the 8-NN. 

Image regions that have been masked are not sampled.  

 

The unsupervised approach uses multiple (5) random samplings of arbitrary image 

locations with the number of non-replacement coordinate pairs, qi  {25, 50, 100, 200.} 

Again the central location and its 8-NN are sampled. No assumptions are made about 

the class of the central location or the neighbourhoods under the feature creation kernel. 

Re-sampling is required in order to carry out the internal validation process to select the 

number of clusters and the best clustering solution on each feature channel. 

 

8.3.2 Image block processing scheme 

 

Block processing, see for instance, Lalgudi et al. (2000), reduces computational 

memory overheads and processing time by reading image blocks from disk into 

memory instead of the entire image. The algorithm implemented divides the image into 

non-overlapping blocks that are processed sequentially.  Block size is constrained by 

                                                 
2 The nadir is the point on the seabed vertically beneath the transducer. It traces out an imaginary line as 

transducer moves. 
3 Nearest neighbours (NN) in this case study refers to neighbouring points in a fixed arrangement in a 

regularly spaced grid, rather than an unordered collection of neighbouring points in a feature space.  
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two prescribed parameters, firstly, the number of pattern instances to be processed on 

each block, Np, and secondly the feature creation kernel size, k. For an input image of 

size m rows  n columns, unless m and n are exactly divisible by kNp, zero padding at 

the image edges is required to produce a set of identically sized blocks covering the 

entire mosaic image. The binary mask is also delineated congruently to the mosaic 

image and each mask block is read into memory at the same time as the corresponding 

image block so that patterns are not generated on masked regions. At the end of 

processing, the blocks of class labels and class posteriors output by each feature channel 

are concatenated.  

 

8.3.3 Feature creation 

 

Although any number of independent feature channels can be implemented for model 

induction and class prediction, four were initially considered in the preliminary 

experimental investigation; statistical (S), textural (T), Edge (E) and lacunarity (L). In 

the detailed experimental investigation presented in section (8.5.2), just two of these, S 

and T, are selected for more in-depth consideration. The reason for this is the 

preliminary investigation into the results from the feature channels led to a rejection of 

the E and L channels for this specific task. Using just two channels in the detailed 

analysis also simplifies the processing and post-processing stages and the exposition of 

the analysis. 

 

Statistical features (S) 

 

The simplest (and possibly most effective and efficient) features for discriminating 

regions are statistics based on backscatter intensity. A basic (and rather naive) 

assumption is that lighter and darker regions of the imagery correspond to areas with 

different backscatter intensities and thus different material properties or sediment types. 

Combinations of statistical features, such as mean, median and standard deviation can 

be used together to partition backscatter imagery, in relationship to the substrate grain 

sizes, as in Collier and Brown (2005). A two-dimensional feature vector is applied in 

the test case, comprising, local mean and local standard deviation at kernel sizes 

(resolutions), k {5, 11, 15} pixels. 
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Textural features (T) 

 

Based on the promising results obtained in some of the previous work (chapter 6), a 

Gabor filter bank (GFB) is designed and implemented to generate the textural features 

in this test case. Task dependent tuning is required as there are several parameters and 

configurations as well as numerous different types of features that can be derived. See, 

for instance, Bianconi and Fernández (2007), Grigorescu et al. (2002) and Clausi and 

Jernigan (2000). The feature derived here is the magnitude response. Rotational 

invariance is implemented by selecting the directional channel at a specific centre 

frequency, with the maximum response. Radial separation of the filters is set at /6 

radians, i.e., the number of orientations, || = 6. The size of the computational kernel 

varies according to the specified resolutions. Initial centre frequency is, f0 = 0.15. The 

half-octave frequency progression yields five band-pass centre frequencies, |F| = 5 and 

hence a five-dimensional feature vector. An isotropic Gaussian envelope is used, with 

standard deviation, , proportional to the computational kernel resolution,  = (k-1)/2.  

 

Edge features (E) 

 

An edge detection filter is applied, as described in section 6.4, using a Sobel mask. 

Thresholds of 0.04, 0.07 and 0.10 are used and therefore three features are generated. 

 

Lacunarity features (L) 

 

The commonly applied gliding box algorithm of Allain and Cloitre (1991) is 

implemented, to generate multi-resolution feature values within a specific kernel size. 

The number of lacunarity features generated, , satisfies { : max(2) < k}. In the test 

case, the maximum number of features is three as the maximum kernel size is k = 15. 
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Feature group Parameters/configuration Nr. of  

features 

Statistics (S) Local mean and local standard deviation. 2 

Texture (T) || = 6,  |F| = 5,  = (k-1)/2, f0 = 0.15, max. RI. 5 

Edge (E) Thresholds; 0.04, 0.07, 0.10. 3 

Lacunarity (L) Binarisation threshold; 0.04. 2 or 3 

 

Table 8.2 Summary of feature channel parameters 

 

8.3.4 Model induction 

 

Model induction for the supervised case is straightforward. Image samples 

automatically selected around the GT points are used to create training patterns for the 

different feature channels. The pattern instances and their associated class labels are 

then used to induce independent Naïve Bayes classification models in each channel. All 

feature values are range-normalised on [0 1] using the extrema of values in the training 

pattern instances. 

 

Some ingenuity is required for creation of the unsupervised models. As pointed out 

earlier, some studies on unsupervised classification (and cluster ensemble approaches) 

use relatively small image samples, and apply the unsupervised approach to a global 

pattern space. However, real-world sonar images are large, typically 10 MB – 100’s of 

MB and hence the use of a block processing scheme here. Each block is independent, so 

it is not possible to apply an unsupervised approach to each block without applying 

some form of global constraints. Otherwise, pattern partitioning and normalisation 

would be inconsistent, not to mention the label correspondence problem that would 

arise. To address this problem, a pre-clustering process is used to identify potential 

classes, based on multiple random sampling of patterns derived from the global image 

space. The best solution, established in an internal validation process is then used to 

induce a global, probabilistic classification model in each feature channel. A number of 

steps are involved and these are summarised in figure 8.1.  
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Figure 8.1. Simplified unsupervised model induction process. 

 

 

Step 1. N samplings (nj) of Q pairs (qi) of random image coordinates are 

generated, subject to masking constraints. 

  

Step 2. Pattern instances are created for each feature channel from the image 

neighbourhoods sampled at each set nj(qi) of image coordinates. 

 

Step 3. Each nj(qi) is converted into a SOM for the feature channel, which is then 

clustered. 

 

Step 4. The modal number of clusters generated over multiple clustering runs 

N(qi) from step 3, is determined and this is used to define the number of 

provisional classes present in the data set. 

 

Step 5. From the pattern sets nj(qi) corresponding to the modal number of clusters 

determined in step 4, the set that yields the clustering with the best mean 

silhouette measure (Rousseeuw 1986) from separate k-means clusterings in the 

original feature space is selected. This is the optimal cluster model in terms of i) 
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number of clusters, ii) number of data samples and iii) the specific set of random 

samples used to induce the patterns and the clustering, from the multiple re-

sampling. The pattern instances in this set are assigned provisional class labels 

{1,…,6} in each feature channel, according to the cluster to which each pattern 

belongs. 

 

Step 6. Naïve Bayes models are induced on each channel as in the supervised 

case, using the pattern instances and provisional class labels identified in step 5. 

 

This validation process is rapid and takes less than one minute to induce and select the 

unsupervised classification models, with N = 5, qi = 100. The end results are global, 

probabilistic classification models, optimised on the sample space. The unsupervised 

models can now be applied consistently, for pattern label prediction on each 

independent image block. The internal validation process helps to ensure that the best 

model is chosen with respect to the number of clusters and the best clustering solution 

for the identified number of clusters. The result is channel specific, since the number of 

clusters and the best solution will depend on the feature kernel that has generated the 

patterns. 

 

8.3.5 Independent classification channels 

 

The class prediction process is identical for the supervised and unsupervised 

approaches. Although, using the supervised approach, class labeling is consistent across 

the feature channels. Each feature channel has its own independent classification model 

that assigns a class label and posterior probability to the pattern stream generated from 

the image blocks. The pattern values created on the blocks are range normalised to the 

selected model pattern values. Values falling outside of the range of the model are 

clipped to 0 or 1. The output streams of class labels and posteriors are rearranged into 

rectangular grids, corresponding to the current image block. This requires sequencing 

with the mask flags to ensure that the classified points, their class labels and posteriors 

are assigned to the correct spatial locations in the down sampled output blocks.  
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8.3.6 Post processing of output blocks 

 

Following block concatenation, a filtering stage is applied to the intermediate class map, 

subject to masking constraints, to produce a smoother result. This process involves 

determining the relative frequency of occurrence of class categories at each map point 

and its 24-NN.  The modal class label is assigned to the point at the centre of the moving 

neighbourhood window. In the case of a multi-modal distribution the label assigned is 

that of the class with the greatest mean posterior probability on the local 

neighbourhood. This process is the same for the supervised and unsupervised 

approaches.  

 

A weighted posterior probability, p is computed at each filtered point, for the assigned 

class label, *. It is calculated as the product of the relative frequency of *, in the 24-

NN empirical distribution of the categorical classes and the mean posterior of * over 

the neighbourhood. Since, if the 24-NN is mostly class * and the mean posterior of * 

is high, the probability that the class label assigned at the point is * must also be high. 

 

8.3.7 Fusion of classifications 

 

Combining classifications is a form of decision fusion and the fusion methods concern 

the combination of individual beliefs into a consensus belief (Sinha et al. 2008). There 

are many applications and techniques (Mitchel, 2007, Sinha et al. 2008). In the 

unsupervised and supervised strategies applied in this work, the fusion model is: “soft” 

decision input  decision output (DsI-DeO) according to the scheme of Dasarathy 

(1994.) Support, in the form of class posteriors is available on each input channel, hence 

the soft decision input. Input channels are streams from the post-processed blocks, 

described in 8.3.6. The decision output also has a support of class posteriors, further 

modified according to the inputs. 

 

1. Supervised decision fusion strategy 

 

In the supervised case, since class labels have already been assigned, the channel labels 

correspond to the same class but in different feature spaces. The supervised fusion 

strategy uses a weighted voting scheme, where the weight is the posterior probability of 
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the (filtered) class label instance. In the two-channel test case considered, (for example, 

after channel pre-selection of S and T), the posterior probability of a class label from 

intermediate map (channel), S, is pS and from map T, pT. If the class labels from 

collocated points in each map are the same, the decision fusion process assigns the 

common class label and the mean of the posteriors. If the class labels differ, the class 

label with the greatest posterior, p*  = max{pS, pT} is assigned as the output class, with a 

new posterior, p’ =  p* /( pS + pT). The modified posterior, p’ sensibly reflects the 

increased uncertainty that the ‘correct’ class label has been selected, when the beliefs 

differ. This strategy is easily extended to several channels. 

 

2. Unsupervised decision fusion strategy 

 

Each input channel is similar to the supervised case in that it is a label stream with 

posterior support. There are three complications though, (1) the association between the 

channel input labels and the class is unknown, (2) the labeling in each channel does not 

correspond to the same entity and (3) the cardinality of the label sets on each channel is 

unequal. It is assumed that the ground truth is not available at this stage and can only be 

used after the decision fusion process has been applied to the intermediate maps. 

Further, is assumed that no further information about the partitioning algorithm or the 

pattern instances is available, i.e., it is a cluster ensemble problem, according to the 

definition of Strehl and Ghosh (2002).  A heuristic fusion strategy is applied as follows;  

 

(1) collocated points in each intermediate map (label vector, (i)) are randomly 

sampled,  

 

(2) the joint distribution of the class label permutations of the samples is created, 

 

(3) the top-n permutations are selected, based on their relative frequencies in the 

joint distribution, subject to i) n does not exceed six and ii) permutations with a 

relative frequency less than 0.05 are not considered to be relevant,  

 

(4) a new map is created by relabeling all of the spatial locations according to the 

top-n selected label permutations of the intermediate maps and  
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(5) a new posterior is computed as the mean of the class label posteriors in the 

permutation at the spatial location, since the point now has a probability of a 

particular permutation occurring. All points occupied by permutations with a 

relative frequency less than 0.05 are set to zero (the mask pixel value).  

 

3. Channel selection 

 

In the case of v-independent feature sets, there are 2v-1 possible combinations of class 

map. Normalised Mutual Information (NMI) is one metric that may be used for pairwise 

comparisons of the intermediate clustering solutions from the channels, if some form of 

channel pre-selection is desired. NMI is defined as, 
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           (8.1) 

Where , C are two specimen clusterings to be compared, k, j are the number of 

clusters in , C, respectively and N is the sample size. The NMI is a widely used 

information theoretic measure and estimates the reduction in uncertainty of channel C 

through knowledge of channel . See for instance, Fred and Jain (2002), Vinh et al. 

(2010) and Kuncheva and Hadjitodorov (2004). NMI is defined on [0, 1] with a zero 

value reflecting randomness (i.e. channel C contains no information about channel ) 

and one, identical (if channel  is known channel C is also known.)  

 

8.3.8 Assigning class labels 

 

The final stage in the unsupervised process is the assignment of semantic class labels to 

the provisional class labels of the top-n permutations. Given any provisional class, Cp, 

the ground truth class, Cg with the highest conditional probability of occurrence, 

max{p(Cg |Cp)} at the ground truth sampling points, within the spatial region of Cp, is 

assigned as the final class label for the region. For example, if a particular provisional 

class region, A, contains 7 instances of ground truth class X and one instance of ground 
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truth class Y, region A is assigned the semantic label of ground truth class X. All of the 

posteriors for the points in the region are then multiplied by the relative frequency of 

occurrence of X in region A to reflect the uncertainty of the final label assignment. 

 

8.4 Experimental work 

 

8.4.1 Experimental aim  

 

The aim of the experimental campaign is to generate visual and numerical results for 

evaluating the proposed unsupervised approach against a supervised process and a 

manual classification. The experimental test case makes use of publically available data 

from the United States Geological Survey (USGS), Open-File Report 99-3964, collected 

from the Inner Shelf, off the coast of Sarasota, Florida.  

 

The objective is to create maps of the seabed sediment type distributions (specifically 

defined by the mean grain size distributions), with the supervised and unsupervised 

machine learning processes. An implicit assumption is that the features derived from the 

mosaic imagery will capture some useful information concerning the sediment 

distributions. Three types of multi-class, machine classifications are generated in the 

experiments, with a variety of configurations (the focus is on the statistical and textural 

feature channels after initial channel pre-selection). 

 

1. Supervised, single channel: statistical and textural feature channels are 

considered individually. 

 

2. Unsupervised, single channel: statistical and textural feature channels are 

considered individually. 

 

3. Unsupervised, multi channel (feature-distributed ensemble): decision level 

fusion of feature channels. 

 

                                                 
4 http://pubs.usgs.gov/of/1999/of99-396/ [accessed 01-06-2011] 

http://pubs.usgs.gov/of/1999/of99-396/
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8.4.2 Data 

 

Data used in the experiments comprises a sidescan sonar mosaic tiff image (fig. 8.2(a)), 

the details of 152 ground truth sampling stations and a specimen class map of the 

sediment distributions (fig. 8.2(b).) The mosaic image is 4063  4617 pixels and has an 

anamorphic ground scale of 4.000 pixels per metre horizontally and 4.047 pixels per 

metre vertically. All ground truth stations can be classified according to ranges of the 

mean grain size () determined from the station sediment sample PSA. The class labels 

and corresponding ranges of  are given in table 2, together with the colour legend for 

fig. 8.2(b). All subsequent maps and charts use the same colour coding to represent the 

classes.  

 

  

(a)  (b)  

 

Figure 8.2. (a) Sonar mosaic showing locations of the 152 sampling stations (b) specimen class map, 

showing the estimated distribution of four different sediment grain size classes (see table 2 for legend.) 

 

There are four supervised (S) classes, 1-4, in the table. Up to six unsupervised (US) 

provisional classes, 1-6 are assigned and the class labels correspond to the colour legend 

in table 8.3 but are unconnected to the four grain size classes, until the ground truth 

labels have been assigned at the end of the unsupervised process. Magenta and yellow 

can be assigned to a provisional (unsupervised) class at an intermediate processing stage 

but never to a ground truth class.  
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US S Mean  Description  

1 1 < 1.0 Very coarse sand and gravel  

2 2 1.0 – 2.0 Medium sand  

3 3 2.0 – 3.0 Fine sand  

4 4 > 3.0 Very fine sand  

5  - -  

6  - -  

 

Table 8.3. Sediment type definitions and colour legend for the class map in figure 8.2(b) and for all 

subsequent maps and charts. Magenta and yellow can only be assigned in the unsupervised case and never 

to one of the four ground truth class. 

 

8.5 Results and discussion 

 

8.5.1 Inspection of the specimen classification 

 

A preliminary inspection of the ground truth class distributions and the specimen class 

map of fig. 8.2(b) provide some interesting insights. Figure 8.3 (a) shows the relative 

frequency of the four sediment classes recorded at the ground truth sampling stations, 

Cg. The samples are predominantly of class 1 (very coarse sand and gravel). Comparing 

this to the relative areas of the corresponding regions in the class map, CR, the greatest 

regional coverage is class 1 (0.43), followed by class 2 (0.38). The proportions of the 

areas mapped as a particular class type are not the same as the relative frequencies of 

the ground truth class types, particularly so for classes 2 and 3.  
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(a)  (b)  (c). 

 

Figure 8.3. (a) Relative frequency of sediment class occurrences at sampling stations, Cg. (b) Relative 

areal coverage of the sediment class regions, CR, determined from the class map in fig. 2(b). (c) Relative 

frequency of occurrence of a ground truth sediment class within the mapped sediment class region, Cg  

CR. 

 

Class 2 occupies a relatively large area of the map, compared to the relative frequency 

of occurrence of the class type at the ground truth stations. Class 1, on the other hand, 

has a relative frequency of ground truth occurrences comparable to the relative areal 

coverage. Figure 8.3 (c) shows the relative frequency of occurrence of ground truth 

classes, within the corresponding classified regions in the class map, i.e., Cg  CR. This 

demonstrates that the regions in the class map are impure. The region for class 2 has the 

highest impurity as it contains a lower, relative proportion of corresponding class 2 

ground truth points. The class 4 region is 100% pure, it contains no ground truth points 

which are not of class 4, although Class 1 and Class 3 regions both contain some class 3 

ground truth points. Whilst the regions do predominantly contain the associated ground 

truth class, they are really an inhomogeneous mixture of the different ground truth class 

types. Clearly there is some uncertainty here in the boundaries of the classes, their 

spatial coverage and the association with the ground truth. Classification accuracy per 

se, is not that important in this type of problem, since the true classes and their spatial 

distributions are unknown and unknowable. Thus it is important to appreciate, that in 

making any comparisons, one uncertain quantity is being compared to another uncertain 

quantity.  
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8.5.2 Single channel supervised and unsupervised approaches 

 

In these experiments, specimen class maps are produced by the supervised and 

unsupervised machine approaches described previously, using the feature channels 

independently and various properties described and compared. Several preliminary 

experiments were run before commencing an in-depth treatment on a more focused 

experimental sub-space and progressing through the process and methods. In the 

preliminary experiments, it was clear that the unsupervised method was generally 

producing a greater number of (non-sparse) partitions, over the different feature spaces 

and parameters. The supervised approach had a tendency to produce predominantly 

binary classifications, sometimes with a dominant class and a sparser second class, as 

exemplified by the classification using Edge filters at a resolution of k = 11, in figure 

8.4. By comparison, four potential classes were partitioned with the same feature 

channel, at the same resolution in the unsupervised approach.  

 

k = 11 S T E L 

Supervised 

    

 

Unsupervised 

(qi = 200) 

    

 

Figure 8.4 Examples of the intermediate class maps and partitioning produced respectively by the 

supervised and unsupervised approaches on the individual, S, T, E and L feature channels. The class 

colour codes in the supervised cases correspond to the legend of table 8.3. Colours in the unsupervised 

cases relate to different (unknown) and generally non-corresponding classes. 
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 S T E L 

S 1.00 0.14 0.05 0.05 

T  1.00 0.08 0.07 

E   1.00 0.33 

L    1.00 

 

Table 8.4 Pairwise NMI for the unsupervised feature channels with qi = 200, k =11. 

 

The pairwise similarities of output maps were compared quantitatively using NMI. The 

NMI values for the unsupervised maps in figure 8.4 are summarised in table 8.4. 

According to this metric, the maps produced by the edge and lacunarity features are the 

most similar pair (NMI = 0.33). As was mentioned earlier, NMI could potentially be 

used as one means of assessing which channels to accept or reject, as part of the 

unsupervised fusion process. Further consideration of channel selection metrics could 

form the focus of future work but in this case, the two channels with the lowest mean 

pairwise NMI are selected, these are S (mean NMI = 0.08) and T (mean NMI = 0.097.)  

The remainder of section 8.5 is an exposition of a more detailed investigation and 

focuses on the process and results obtained using the two selected feature channels.  
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Figure 8.5 shows the post-processed map results, with features generated at the three 

different kernel sizes, k  {5, 11, 15}. Unsupervised models were created with 

randomly generated sampling points, qi  {25, 50, 100, 200}.Only the results for qi  = 

100 are shown. 

 k = 5 k = 11 k = 15 

Supervised 

Channel {T} 

   

Supervised 

Channel {S} 

   

Unsupervised 

Channel {T} 

(qi = 100) 

   

Unsupervised 

Channel {S} 

(qi = 100) 

   

 

Figure 8.5. Specimen class maps produced using supervised and unsupervised approaches on two 

independent channels (see text for a full explanation.) 

 

The top two rows in figure 8.5 show the results of the supervised classifications, using 

all the ground truth points to induce the classification models. In the supervised cases, 

the colour coding corresponds directly to the class legend in table 8.3 and the class map 

in fig. 8.2(b). With the exception of the texture channel at a scale of k = 5, the coverage 

of sediment has been predicted as predominantly class 1 and class 3. There is a gross 

classification error using the textural channel at k = 5, since the region which broadly 

corresponds to class 3 has been incorrectly classified as minority class 4. At this stage, 

the colour coding of the unsupervised maps represents provisional classes and has no 
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correspondence to the true class types.  

 

The top rows of figures 8.6 and 8.7 show the relative frequency of ground truth class 

points within the predicted class regions for the S and T-channels, respectively, in the 

specimen class maps. The lower rows show the distributions of class posteriors over the 

predicted regions. The left three columns show the supervised approach with k  {5, 11, 

15}. Results for the unsupervised approach (qi = 100) are on the right. Comparing 

figures 8.6 and 8.7, it is clear that in all cases, the textural features yield a greater 

number of predicted classes in both the supervised and unsupervised approaches. 

 

 

 

Figure 8.6. S-channel results. Top row: Relative frequency of occurrence of a ground truth sediment class 

within the predicted sediment class region, Cg  CR. Lower three rows: distribution of class posteriors 

over the predicted areas in the machine maps. Left three columns show the supervised approach with k  

{5, 11, 15}. Results for the unsupervised approach (qi  = 100) are on the right. 

 

An important difference, between the supervised and unsupervised approaches is the 

distribution of posteriors for the predicted classes. In all cases, the mean of the 

distribution (vertical black line) is greater for the unsupervised results, being more 

peaked, with modal posterior values close to unity and hence a much higher certainty in 

the identification of the provisional classes, relative to the supervised case. The 

supervised models have generally been successful at predicting the regions of class 1 
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and class 3. However, it is clear there is a tendency for the supervised models to 

misclassify class 2 as class 1. Interestingly, class 2 was the least pure in the manual 

classification and has lower mean posterior values over the classified region, compared 

to the other classes.  

 

 

Figure 8.7. T-channel results. Top row: Relative frequency of occurrence of a ground truth sediment class 

within the predicted sediment class region, Cg  CR. Lower four rows: distribution of class posteriors over 

the predicted areas in the machine maps. Left three columns show the supervised approach with k  {5, 

11, 15}. Results for the unsupervised approach (qi  = 100) are on the right. 

 

Turning to the unsupervised approach, the provisional class regions are first relabeled, 

as described in subsection 8.3.8. As an illustrative example, consider the ground truth 

distributions in the provisional classes shown for the unsupervised, T-channel at k = 15 

(top-right corner of figure 8.7.) Five provisional classes have been identified. Using the 

conditional probabilities of the ground truth classes within the provisional class regions, 

it is clear that provisional class 2 strongly corresponds to ground truth class 1, as the 

largest proportion of bar 2 in the figure is red. Provisional class 3 is labeled as class 3 

(blue) and provisional class 4, as class 2 (green.) Provisional classes 1 and 5 contain 

mostly ground truth class 2 and 1, respectively, so all regions in these provisional 

classes are relabeled according to the ground truth class. Applying this process in each 
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of the test cases produces the (unsupervised) class maps, with the colour coded regions 

now corresponding to the class legend of table 8.3. The resulting specimen class maps 

are shown in figure 8.8.  

 

 

 k = 5 k = 11 k = 15 

Unsupervised 

Channel {S} 

(qi = 100) 

   

    

Unsupervised 

Channel {T} 

(qi = 100) 

   

    

Figure 8.8 Specimen unsupervised class maps from fig. 8.5, relabeled so that the colour codes of the 

classified regions correspond to the ground truth class legend of table 8.3.  

 

Visually, from figure 8.8, it is immediately apparent the unsupervised textural channel 

has been more successful at discriminating class 2 (green), at all resolutions. The 

statistical feature channel has discriminated class 2 only at the highest resolution (k = 5). 

Minority class 4 has not been identified in any of the cases. With corresponding class 

labels in all of the specimen maps, it is now possible to make a direct comparison 

between the supervised and unsupervised machine maps and the specimen map. The 

similarity of the maps is related to the number of collocated, identically classified 

points. It can be quantified as the sum of the diagonal elements in the 4  4 confusion 

matrix, divided by the sum of all entries in the matrix. This measure ranges from 0 (no 

similarity) to 1 (identical). The results for the test cases are summarised in table 8.5 and 

shown graphically in figure 8.9.  
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 Supervised Unsupervised 

Channel k =5 k =11 k =15 k =5 k =11 k =15 

 Similarity 

S 0.52 0.54 0.54 0.56 0.56 0.56 

T 0.50 0.57 0.55 0.61 0.59 0.59 

 

Table 8.5. Similarity between the supervised and unsupervised class maps and the specimen class map. 

 

 

Figure 8.9. Similarity of the machine produced class maps to the human produced class maps for the 

experimental test cases.  

 

Quantitatively, the unsupervised approaches produced class maps more similar to the 

manual approach (specimen map) than the supervised approach. The result is not really 

surprising, considering that in the supervised cases, class 2 was often misclassified as 

class 1 or class 3. A most likely explanation for this is label noise and class 

heterogeneity in the training samples. Results are of course dependent on the features 

used, for instance using local intensity histogram features will produce a different 

outcome to the descriptive statistical features applied in the test case. Another important 

factor that influences the results is the classification objective. In this case, it is mapping 

the sediment distribution according to estimated mean grain size. If there were a 

different classification objective, such as mapping the sediment distributions according 

to the UK SeaMap classification scheme (Long, 2006), there would be a different 

classification outcome. Since, in the UK SeaMap scheme, the ground truth data points 

are assigned categorical class labels related to the mixture ratio of the three basic 
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sediment types, sand, gravel and mud, from the PSA. The class labels are assigned 

according to the region occupied in the modified (simplified) Folk Trigon (ternary 

diagram), shown in figure 8.10 (a).  

 

 

  

 

(a) UK SeaMap sediment trigon 

 

(b) S-channel (2-classes) 

 

(c) T-Channel (3-classes) 

 

Figure 8.10. In the UK SeaMap classification objective, the ground truth points are assigned categorical 

class labels according to the predefined class region occupied by the points in the ternary diagram. 

 

Figure 8.10 (b) shows the supervised UK SeaMap classification using the S channel and 

8.10 (c), the T-channel. The results of this work are not discussed further here, as there 

is no means of making any comparison – there is no manually produced classification, 

compliant with the UK SeaMap classes for these data. It is curious though, that with this 

different classification objective, the filter bank features have again identified more 

sediment classes than the statistical features.  

 

8.5.3 Unsupervised fusion approach 

 

In the test case here, there is little point in combining the supervised channels, since in 

the case of k = 5, there is a gross classification error on the T-channel and at k = 11 and 

k = 15, the output maps from the T and S channels are similar.  

 

For the unsupervised approach, there is more variability in the results from the channels, 

as is clearly shown in figure 8.5. The unsupervised results from the S and T channels are 

combined, as described in the procedural steps 1-5 in section 8.3.7, item 2. The case for 
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k = 15 is described here.  

 

Firstly, the joint distribution of a collocated sample of points from each independent 

channel is constructed. For n-channels, the distribution will be n-dimensional. As two 

channels are used in the test case, the sample distribution is two-dimensional, as shown 

in figure 8.11 (a). The number of bins in the distribution depends on the number of 

provisional classes identified in each feature space. There are 10 bins in this example as 

five provisional classes were identified in the T-space and two in the S-space. Each bin 

corresponds to a label permutation. Therefore, the heights of the bars in the distribution 

correspond to the relative frequency of occurrence of a particular permutation of labels 

in the collocated sample space. In other words, it is an empirical estimation of the 

probability that a randomly sampled channel location will have a particular permutation 

of labels. If the relative frequency of occurrence is less than 0.05, the permutation bin is 

considered to be non-relevant. The top-n bins with the highest relative frequencies are 

selected as the provisional classes. In this case, four classes are chosen, as there are four 

ground truth classes. All collocated channel points are now relabeled, according to the 

permutation of the channel labels. Those with a non-relevant permutation are assigned a 

class label of ‘0’, which corresponds to a masked location. The support assigned to the 

re-labeled permutations is the mean posterior of the labels at the collocated points. The 

resultant provisional class map is shown in figure 8.11 (d). To assign the most 

appropriate class labels to the provisionally labeled classes, the distribution of the 

ground truth classes within the regions of coverage of the provisional classes is again 

considered. As should be expected, the provisional classes are impure, shown by the 

distribution at the top of figure 8.11 (b). The four sub-figures show the distribution of 

support, i.e., the posteriors for each provisional class region. The ‘green’ and ‘cyan’ 

provisional classes have a lower mean certainty, in comparison to the ‘red’ and ‘blue’ 

provisional classes. Using the relative frequencies of occurrence of the ground truth 

classes in the provisional class regions, the conditional probabilities of occurrence of a 

particular ground truth class within a provisional class region are estimated. The results 

for all ground truth classes and provisional classes are given in table 8.6.  
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  Provisional class (C) 

  c1 c2 c3 c4 

Ground truth 

Class (G) 

g1 0.77 0.34 0.11 0.45 

g2 0.11 0.52 0.18 0.45 

g3 0.11 0.15 0.60 0.09 

g4 0.00 0.00 0.11 0.00 

 

Table 8.6. Conditional probabilities of finding a ground truth point of a particular class, within a 

provisional class region. 

 

The provisional class region is assigned the label of the ground truth class with the 

maximum conditional probability. Considering table 8.6 and the distribution at the top 

of figure 8.11 (b); Provisional class 1 is labeled ‘class 1’ since, p(g1|c1) = 0.77, 

provisional class 2 is labeled ‘class 2’ (p(g2|c2) = 0.52) and provisional class 3 is labeled 

‘class 3’ (p(g3|c3) = 0.60). The final provisional class 4, is a mixture of three ground truth 

classes which are not distinct from the others. So the most sensible decision is to merge 

this provisional class with another class. However, as the provisional class 4 is bimodal, 

a tie-break is needed to decide if it should be merged with class 1 or 2. A larger 

proportion of class 2 is distributed amongst the other classes, compared to class 1, so it 

is assigned to class 2. The resultant class map is shown in figure 8.11 (e). The support 

of the resultant class map is again modified because of the uncertainty in the assignment 

of the ground truth labels to the provisional class regions (as each region contained a 

mixture of ground truth points with an associated conditional probability). The posterior 

supports for each class region are multiplied by the conditional probability of finding 

the ground truth class within the classified region. This has the effect of shifting the 

distribution of conditionals left along the axis, as shown in figure 8.11 (c). The shape of 

the distribution of posteriors is unaltered, except in the case for class 2, which is now a 

bimodal, additive mixture of the distribution of posteriors for provisional class 2 and 4. 

Figure 8.11 (f) shows the final class map, with the colour intensity of the classified 

regions proportional to the posterior probabilities of the classified points in each class 

region.  
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(a) Joint distribution of co-

located label permutations. 

 

(b) GT label distributions 

within the spatial 

distribution of the 

provisional classes 

(c) GT label distributions 

after relabeling points in 

cluster 4 as class 2 

   

(d) Class map showing 

distribution of the ‘top-4’ 

permutations 

(e) Class map after 

relabeling and reassignment 

of ground truth labels. 

(f) Class map with colour 

intensities proportional to 

the class posterior 

probabilities. 

 

Figure 8.11. Results of applying the unsupervised fusion strategy and of relabeling the classes according 

to the most likely ground truth classes. See text for a full description. 

 

For a further visual comparison, the results of the manual classification and the 

unsupervised ensemble are shown side-by-side in figure 8.12. Figure 8.12 (a) and (b) 

show the distribution of ground truth classes within the classified regions. The visual 

comparison between the manually produced and machine maps in figure 8.12 (c) and 

(d) is plausible, with bulk areas of class 2 (green) to the left and areas of class 1 (red) 
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that appear to correspond well between the two maps. Class 3 (blue) on the other hand 

has a larger regional coverage in the machine map compared to the manually produced 

map. Quantitatively, the similarity between the two maps is 0.6. This might at first 

indicate a closer similarity to the manually produced map, compared to the independent 

S and T channels which had a similarities of 0.57 and 0.59 respectively, when 

considered individually. However, this ‘improvement’ may not be real or relevant. The 

aim of the work here is not to fit the machine map to the manually produced map but to 

show that the proposed process and methods produces a plausible classification, 

substantiated with numerical (probabilistic) support. The specimen, manually produced 

map is used purely for comparison, it is not a benchmark and the class types and their 

boundaries are uncertain. It may be the case that the machine map is more 

representative of the classes and their distributions than the manually produced map. So, 

if a closer similarity to the manually produced map is achieved, it may in fact indicate 

that a less representative machine map has been produced, if the manual map is not 

representative of the real class distributions and their boundaries. Thus combining the S 

and T channels may have made the class map less representative but equally, it is not an 

implausible representation. Resolution of this ambiguity is not a tractable problem.  
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(a) distribution of ground truth points in 

manually produced class map. 

(a) distribution of ground truth points in 

class map produced from the fusion of 

unsupervised classifications. 

 

  

(c) Manually produced specimen class 

map 

(d) Machine class map (fusion of 

unsupervised classifications) 

 

Figure 8.12. Comparison of manually produced (left) and fusion of unsupervised machine classifications 

(right.)  

 

8.5.4 Overall discussion 

 

Taking into consideration the qualitative and quantitative outcomes of the different 

processes considered in the experiments and the external validation in the form of 

ground truth and a specimen class map, the single channel (filter bank features) in the 

unsupervised process is the best performer. Although the unsupervised ensemble 

approach was also efficacious from a qualitative perspective, in the discrimination of 

the main classes and the quantitative similarity to the specimen class map, it is 

computationally more expensive than a single channel, single classifier approach and far 

more challenging to implement.  
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A manual approach is subjective, time consuming, inconsistent and expensive. The 

machine approach (irrespective of whether supervised, unsupervised, single or multiple 

model) in the experiments here is conservatively, at least three orders of magnitude 

faster than the manual approach, as the process does not take longer than about 5 

minutes. However, the quality of the output is also important. An important advantage 

that the machine approach has over a manual approach is (at least in the methods here), 

it provides numerical support for the certainty of the classification at each location in 

the class map. As was demonstrated, this support can be modified to take into 

consideration the impurity of the classes, as defined by the mixture of different ground 

truth classes within the classified regions.  

 

Although it is possible to apply a global class support using the conditional probabilities 

of the ground truth classes within the regions of the classes in a manually produced 

map, it is not possible to assign that support to specific points. Further, the unsupervised 

model is also rigorously internally validated, in that the optimal unsupervised model is 

chosen, based on multiple random samplings and pre-clusterings so that the most 

appropriate number of provisional classes is identified and the best solution for that 

number of classes is selected. Thus, machine production of the map has speed, internal 

validation and outputs quantitative support for the certainty of the classification results. 

A further advantage is, all other things being equal, consistency. Given the same data, 

processing flow, feature sets and operational parameters, the machine process will 

deterministically produce identical classification results – there is no intra-rater 

variability. This is not the case with human/manual processing. Both manual and 

machine approaches are capable of producing plausible classifications but the machine 

has some clear advantages as described above.    

 

The classification objective is of paramount importance. In the test case here, the 

objective was to use the machine approaches to classify the sonar image according to 

mean sediment types (defined by grain size distributions.) Using the same data, features 

and methods but a different classification objective will produce a different outcome, 

for instance, a classification of sediment types according to the UK SeaMap classes. 

The choice of features is naturally an important decision. A surprising outcome was that 

it was not known beforehand if the Gabor filter bank features would be useful for the 
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classification objective described here. They produced a classification similar to the 

specimen class map, identifying the three main classes at a various resolutions. The 

statistical features produced classifications that were predominantly binary in the 

supervised and unsupervised cases.  

 

In general, the supervised approach did not work as well as the unsupervised approach 

and this is probably due to fully automating the process using image samples selected 

around the ground truth points. Label noise and class heterogeneity are possibly 

responsible for the induction of unrepresentative classification models. In future work, 

manual, visual selection of training regions will be considered for the supervised 

process, as in Blondel and Gómez-Sichi (2009.) Manual selection of training regions 

may be more appropriate for the Sabellaria discrimination problem where the image 

textures are quite distinct. 

 

Overall, this investigation has been very successful, since the flexibility of the process 

has been implicitly demonstrated. The good results obtained from the contingent 

application scenario indicate that the process and methods are versatile and therefore 

have the potential for application to a variety of seabed target discrimination problems.  

 

8.6 Evaluation, conclusions, recommendations and scope for further 

work 

 

8.6.1 Evaluation 

 

The aim of this work was to devise a machine process and methods for fully automated 

multi-class classification of subjective targets in real-world mosaic imagery. The 

hybrid, unsupervised process has internal validation components for identifying the 

number of provisional classes and finds the best clustering solution for a given number 

of provisional classes. This facilitates induction of a probabilistic unsupervised 

classification model which can be applied consistently to the individual blocks in the 

block processing scheme.  The research in this case study was primarily exploratory and 

descriptive and used mixed methods to investigate the plausibility of the process, 

methods and outcomes in the (contingent) application context, a sediment classification 

task. An objective was to evaluate classification outcomes in a qualitative comparison 
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between supervised, and unsupervised approaches and the types of features used, 

compared to a specimen manual classification. The classification objective was to 

divide the image into regions corresponding to different sediment target types (as 

defined by their grain size ranges). A curious outcome was that the features derived 

from the Gabor filter bank channel operating in isolation identified more classes, 

relatively consistently, over a range of resolutions, in the single-channel unsupervised 

process. There was no evidence available beforehand to indicate that the Gabor filter 

bank would be a useful feature generator for this task. In fact, it was expected that the 

statistical features would be the most salient. The unsupervised ensemble approach 

using filter bank and statistical features also produced plausible results but there was no 

strong evidence to indicate that this more complex, expensive process is better than the 

unsupervised approach using the single, textural channel. Predominantly, the supervised 

approach led to a binary classification outcome. This is most likely due to label noise 

and hence the induction an unrepresentative models. The hybrid, unsupervised process, 

using the Gabor filter bank features showed reasonably good qualitative and 

quantitative similarities to the specimen manual classification. Gabor filter banks were 

the most promising approach for the sediment discrimination context considered here. 

The machine class map was produced in a few minutes, compared to days of work for a 

human analyst. The main aim and objectives of this work have been successfully 

achieved. Importantly, this study has demonstrated the versatility of the process and 

methods, intimating the potential transferability to other target discrimination problems. 

A paper is being prepared from the work in this case study, to submit to a journal for 

consideration. The main contribution of this work is to the fully automated processing 

of subjective target discrimination tasks in real-world imagery. 

 

An experimental harness was designed and implemented in Matlab, comprising about 

40 separate m-files. Further scripts were written to carry out additional post-processing 

of the intermediate results generated in multiple runs of the harness.  Several of the 

components of the experimental harness were later integrated, with modifications, in a 

prototype sonar mosaic image segmentation/classification process, for the industrial 

stakeholders.  
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8.6.2 Conclusions 

 

Novel processes and methods have been proposed and evaluated on the application 

context of the discrimination of sediment target regions in a real-world sonar mosaic 

image. The hybrid, unsupervised approach using the Gabor filter bank features is the 

most promising approach for the discrimination of sediments considered here, according 

to the prescribed classification objective. This combination of features and processing 

methods produced the best overall results, over a range of resolutions, in comparison to 

the other approaches considered. The results are plausible and importantly, the 

classifications have numerical support. The aim and objectives of the case study have 

therefore been successfully achieved. The work also intimates the potential of the 

process and methods for application to a variety seabed target discrimination problems.  

 

8.6.3 Recommendations 

 

The following recommendations are provided, regarding the machine learning process 

configuration. Gabor filter bank features are recommended as the first choice for a 

single feature channel set-up but before use, they will need parameter tuning and 

validation on samples of the image texture classes. 

 

If a supervised approach is to be used, it is recommended that patches of visually 

identifiable texture (preferably with ground truth validation) are selected for classifier 

training, rather than using the immediate vicinity of the ground truth locations as seed 

locations. The texture patches used for feature evaluation and selection may also be 

used for classifier training. 

 

The number of random locations to be sampled is the only parameter for the 

unsupervised process. Some experimentation, involving visual inspection of the output 

class map may be required to find a good number of training points in the unsupervised 

case, as this will vary with image size, kernel size, features used and number of tentative 

classes. For the approximately 16 MP image tested, with 3-4 classes, 100 sample 

locations (up to 900 training patches) worked well. 
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A single parameter, the block width, in tiles, determines the (square) block size used in 

the block processing scheme. The tiles are the image neighbourhoods, sized according 

to multiples of the kernel size used for the feature creation. There are no specific 

recommendations for the block size as this may depend greatly on the PC processing 

power available. Using a block width of 100  the feature kernel size should be a useful 

starting point.  

 

8.6.4 Scope for further work 

 

A mini-proposal for further work on Sabellaria classification is presented in chapter 10 

(10.2.2). Some other avenues for investigation include: 

 

 Evaluation with a variety of different classification objectives, for instance, rock 

and sediment classification, habitat classification, other sediment classification 

schemes and complex morphological regimes.  

 

 Integration of other data types (and features) in the classification solution, such 

as multibeam bathymetry or single beam echosounder. 

 

 Investigation of a semantic labeling process taking into consideration the local 

variations in spatial uncertainty at the ground truth locations. 

 

 Further investigation of feature channel selection and combination methods for 

the ensemble process. 

 

 Investigation of the manual selection of training regions (patches of imagery) for 

the supervised approach, compared against using ground truth seed locations. 

 

It is important to point out that the further work is dependent on the availability of good 

data sets, with comprehensive ground truth and manually produced specimen class 

maps to improve robustness of the external validation. 
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Evaluation      Chapter 9 

       

Contents 

 

9.1 Overall evaluation 

9.2 Research project management 

 9.2.1 Stakeholder influence on research design 

 9.2.2 Division of project time 

 9.2.3 Publication output and schedule 

9.2.4 Execution of project case studies 

9.2.5 Risk revisited 

 

The purpose of this chapter is to provide an overall evaluation, bringing together 

various aspects of the research in section 9.1. Some of the research project management 

issues and outcomes that were pertinent to the project are also considered, in section 

9.2. 

 

9.1 Overall evaluation 

 

Overall, the research project has been successful and the aims and objectives have been 

met, as described in each of the individual case studies. The individual studies also 

demonstrated that context limited contributions to advances in knowledge were 

achieved. 

 

The research carried out concerned machine learning methods for discriminating natural 

targets in seabed imagery. The methods were applied at stages 3 and 4 in figure 2.2, to 

interpretative discrimination/classification problems, usually carried out in a manual 

process, involving a human analyst. In all of the case studies, it was found that either 

full- or semi-automation of the process was a tractable problem. The important 

industrial application tasks, included pockmark discrimination and Sabellaria 

discrimination.  
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The machine learning methods aspect of the research focused on how computational 

and machine learning algorithms could be applied in the processes and how they could 

be combined, as part of the approach to solving the specific industrial problems. The 

classification and clustering algorithms per se were of secondary importance, being 

treated as black boxes for performing a classification or partitioning within the 

framework of the machine methods and processes. In the case of binary discrimination 

problems such as the discrimination of pockmark or Sabellaria targets from the 

background, the BVM classifier was found to work well. For multi-class problems such 

as sediment classification, the Naïve Bayes classifier was suitable and provided 

probabilistic support for the class predictions of individual pattern instances. 

 

For the novel processes devised for the specific application problems considered in this 

research, the feature creation methods and the evaluation of the feature configurations 

and parameterisations is fundamental to the success of the approach. Salient features 

need to be identified and applied with appropriate configurations and parameterisations, 

to extract useful information about the targets. Feature creation and evaluation methods 

are therefore a central and integral aspect of the machine learning methods, hence the 

emphasis on these methods in three of the four case studies. The bespoke feature based 

approaches were effective and efficient solutions to the problems, successfully 

completing the tasks in a fraction of the time compared to a manual approach. However, 

careful set-up and choice of features, feature configurations and parameterisation is 

required for each situation using different image data, targets and classification 

objectives. Evaluation of the features is a significant challenge, and more 

fundamentally, measuring the robustness of the method used to evaluate the features for 

the prescribed tasks. In other words, when measuring the saliency of a feature, it is not 

necessarily known how robust the measurement method is across a variety of tasks and 

feature configurations.  An approach to the issue of determining a robust ranking of 

parametric features using distance measures and novel committees was considered in 

the third case study (chapter 7.) Even if a few individual features are chosen to create a 

classification model though, it can still be difficult to associate the properties of the 

targets observed in the imagery with the properties of the feature creation methods and 

the information these methods capture about the targets. There was clear evidence 

showing the Gabor filters were good discriminators of Sabellaria textures (and also, 

unexpectedly, sediment types.) Yet, the underlying connection between the properties of 
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the Sabellaria textures and the reason why the Gabor filters work well on this task is not 

known (another avenue for further work.) 

 

There are numerous permutations of machine learning methods that can be applied, 

from the palette of feature creation methods, feature evaluation and selection strategies, 

classification and clustering algorithms and post-processes. The approach and the 

methods depend not only on the classification objective and data but also on the size of 

the input space. Further technical issues arise as the size of the input space grows, as 

was evident in case study 4 (chapter 8) where a number of earlier ideas and methods 

were integrated in the context of real-world mosaic imagery. The novel, hybrid 

unsupervised approach produced plausible classification results on the sediment 

classification task, in a few minutes of processing time. The process is versatile and the 

researcher considers that it should be generalisable to the discrimination of other 

subjective natural targets in seabed imagery, such as Sabellaria and pockmarks (with 

appropriate features and feature tuning.) Further, the full automation of pockmark and 

Sabellaria discrimination/classification is feasible within this processing framework. 

 

The mixed methods analyses of the results proved useful in creating a holistic overview 

of the properties of the machine methods and processes, as applied to the subjective, 

interpretative problems. It is helpful to consider the outcomes of applying a machine 

method to an interpretative problem using a variety of metrics, not just classification 

accuracy. The ‘true’ interpretation and classification is unknown (and generally 

unknowable) and therefore any solution (human or machine) is uncertain.  

 

It should be apparent, if there were proven, reliable, methods and hardware for wide 

coverage remote acoustic discrimination of targets such as Sabellaria and pockmarks, 

that an interpretative approach may not be needed. So, expediting the required 

laborious, manual discrimination and classification tasks with machine methods is a 

reasonable proposition. Despite the preference amongst many researchers for the 

emergent automated, objective approaches to seabed classification problems using 

calibrated backscatter, there is still a niche for bespoke, feature based approaches to 

such subjective interpretative problems.  
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Standardisation (or lack of it) is still a pressing issue in many seabed classification 

problems though. One means of advancing the study of seabed texture discrimination 

and classification would be to build a database of ground-truthed sonar images. The 

database could contain real-world imagery of different sediments, bedforms, habitats, 

biogenic and geological structures. A selection of classification and discrimination 

objectives and metrics could be prescribed to facilitate a standardised evaluation of 

different proposed machine learning methods for automation of the tasks.  The database 

could be made freely available to researchers around the world and would enable the 

comparison of results from different machine methods on benchmark objectives and 

data.  
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9.2 Research project management 

 

The purpose of this section is to outline some of the key successes and difficulties of the 

project in relationship to the project structure and management. There is some overlap 

of the project management with research approach and design described in chapter 4. 

 

9.2.1 Stakeholder influence on research design 

 

Much real-world research is agenda driven and multiple parties or stakeholders are often 

involved. The stakeholders influence the themes and direction of the research. In some 

cases, research is tendered through a bid process and contract, with aims already 

prescribed by the stakeholder (tendering organisation). This is in contrast to “blue sky” 

projects where, say, research aims are proposed relatively independently by the 

researcher, without necessarily having a clear practical or application driven goal. 

Funding for these projects can be sought through a competitive grant application. Even 

so, the researcher is still subject to external influences, since the proposal for a “blue 

sky” project is likely to be constrained by the availability of funding for specific types 

of research in relationship to the researchers’ domain and the proposal details. In other 

words, the work undertaken by a researcher can never be fully independent of external 

influences and some degree of flexibility is therefore required to adapt the themes and 

design of the research according to these factors. Unfortunately, external influences may 

be adverse and are not always positive or constructive. This may lead to a variety of 

problems with inevitable delays or even failure of a project. The project risk is 

particularly high in research work where a large proportion of the time and effort is 

consumed with software development tasks, as these carry their own spectrum of risk 

factors. See, for instance, Schmidt et al, (2001.)  

 

The research project involved industrial and academic stakeholders who exerted 

influence on the themes and direction of the research within a general interpretation of 

the aims. The design originally proposed by the researcher had a central theme 

concerning the discrimination and classification of pockmarks. This piece of research 

involved the researchers own ideas and decisions, relatively independently of the 

stakeholders. As well as containing a “blue sky” element it also had clear practical and 

commercial goals. A point of departure from the original design and plan was marked 
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by an agreed change of direction to the problem of Sabellaria discrimination as this was 

a priority on the industrial stakeholder agenda. Unfortunately, data provision issues 

encountered by the industrial stakeholder, connected with this line of enquiry later 

induced a further change of the research themes and design to accommodate even 

greater flexibility and alternative pathways. Consequently the research project was 

fragmented into a collection of case-studies. The global case-study structure is therefore 

evolutionary, being brought about due to external factors, rather than a structure initially 

planned by the researcher.  

 

9.2.2 Division of project time 

 

The timeline of research activities (in their most general terms) was summarised in 

chapter 4, figure 4.2. Figure 9.1 shows the estimated division of time spent on the main 

project tasks. The most time consuming component of the work was experimental 

harness development. Each change in direction of the project required further 

substantial development work, data sourcing and preparation. Data preparation and 

experimental harness development (software design, engineering and coding) are not 

direct research activities, although clearly, they are essential to support the research and 

are thus labeled as indirect research in figure 9.1. Although unavoidable due to the 

external factors driving the changes in direction and because of the lack of any suitable 

pre-existing software implementations, the repeated experimental harness development 

for different tasks was a less effective use of the time budget.  
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Figure 9.1 Division of time on the main project tasks. Indirect research activities are to the left of the 

dashed red line. 

 

Extending 1.25 years beyond the 3-year completion benchmark and given the 8 months 

of preliminary work, the project has obviously encountered severe delays. The 

researcher considers that project time management was based on sound principles and 

practice and that overrunning was due to adverse stakeholder influence on the project 

and issues with the provision/acquisition of suitable data. 

 

9.2.3 Publication output and schedule 

 

The fact that five peer reviewed conference and journal publications have arisen during 

the course of the project is evidence that the research output can withstand the test of 

external scrutiny. The researcher considers that three conference publications and one 

journal publication would be a satisfactory goal to achieve regarding publication output. 

This element of the project has been successful. The timeline for the papers and 

presentations is shown in figure 9.2. 

Indirect research 

activities 

High effort, time 

consuming. No 

directly useful output. 

Direct 

research 

activities 

High effort, 

time 

consuming. 

Useful output 
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Figure 9.2 Conference and journal paper submission and presentation/publication timeline. 

 

9.2.4 Execution of project case studies 

 

Some of the main project investigation themes are listed in table 9.1. Not all of these 

themes evolved into case studies in the thesis. The SMART assessment of objectives is 

applied to the themes as a means of comparing their relative merits. The ‘Data’ column 

indicates if sufficient data were in the possession of the researcher at the time the 

decision was made to follow a particular theme. 

 

Description Data S M A R T 

1. Pockmark discrimination in MBES data       

2. Application of machine learning ensemble -      

3. Sabellaria image texture discrimination -      

4.Distance measure committee for feature evaluation -      

5.Active learning for sabellaria discrimination -      

6.Sediment classification in sidescan sonar imagery       

 

Table 9.1 Comparison of research themes according to the SMART criteria. 
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Description P Alt C EF Pu

b 

CS 

1. Pockmark discrimination in MBES data  - -  1 5 

2. Application of machine learning ensemble  - -  0 - 

3. Sabellaria image texture discrimination  -   1 6 

4.Distance measure committee for feature evaluation -    2 7 

5.Active learning for sabellaria discrimination -  -  0 - 

6.Sediment classification in sidescan sonar imagery -    0 8 

 

Table 9.2 Further comparison of research themes. See text for description. 

 

Table 9.2 shows the research themes, with an indication of whether it was a planned (P) 

or alternative (Alt) (contingent) pathway, whether the intended investigation was 

completed (C) and if it could be extended further (EF). It also shows if the work led to 

any publications (Pub) and whether or not the work is included in the thesis as a 

separate case study (CS), in which case, the chapter number is given. Some points 

concerning the research managment issues and outcomes in each theme are outlined 

below: 

 

1. Pockmark discrimination in MBES data 

 

The researcher had originally planned this theme as the main problem solving pathway 

for the thesis. Whilst appropriate data were in the researchers’ possession and a realistic, 

focused plan for progression had already been devised, continuation of this work to 

include pockmark classification and the use of a fusion of backscatter and bathymetry 

data did not meet stakeholder approvals. The work was suspended when the direction of 

the research was changed to Sabellaria discrimination. In chapter 10 (section 10.2.1), a 

mini-proposal is given for advancing the pockmark research theme. 
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2. Application of machine learning ensemble 

 

Whilst there was considerable stakeholder pressure to utilise ensemble methods, it was 

the opinion of the researcher that problem solving should be carried out as a primary 

activity and that appropriate technology should be used as necessary to solve the 

industrial problem. For example, the problem orientated research question is “can a 

machine learning process be used to discriminate pockmarks?” rather than “can a 

machine learning ensemble be used to discriminate pockmarks?” It is reasonable to 

choose more complex methods only when it is clear that simpler methods are 

unsuitable.  

 

3. Sabellaria image texture discrimination 

 

The researcher agreed to this theme on the premise that suitable data would be provided 

by the industrial stakeholders. One partially complete data set was made available and 

this facilitated a comprehensive investigation into the discrimination of Sabellaria 

textures on a relatively small scale. However, it was not possible to extend this line of 

work to larger data sets as the data were not available. The methods and process 

designed for discriminating the Sabellaria textures in large real world mosaics were 

applied to an alternative problem in case study 4 (point 6 below.) 

 

4. Distance measure committee for feature evaluation 

 

This work was more abstract and less applied than the work in the other case studies. 

The researcher had initial reservations concerning this line of investigation due to the 

additional time required for designing the experiments, preparing data, developing the 

experimental harnesses and writing the papers – which did eventually lead to a journal 

publication. Clearly though, feature evaluation has been an important central theme in 

the thesis and the work in this case study is novel and contributed strongly to the 

‘machine learning methods’ aspect of the research work. 
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5. Active learning for Sabellaria discrimination 

 

This work consumed a considerable amount of time, again predominantly in 

experimental harness development. Good results were obtained from a new query 

strategy for SVM based active learning, devised by the researcher. Also, it was shown 

that initial selections of training sets by different human interpreters converged over 10-

15 epochs, to very similar classification outcomes. In other words, it could be feasible to 

use active learning to reduce inter-rater variability, so that different experts could arrive 

at similar sabellaria texture segmentations. However, taking into consideration the 

severe delays already incurred, despite the promising results obtained thus far, a 

decision was made to halt the line of enquiry. 

 

6. Sediment classification in sidescan imagery 

 

The work in this specific case study was carried out independently by the researcher, as 

an exploratory, proof of concept study using a novel hybrid process and methods, 

originally intended for supervised/unsupervised Sabellaria discrimination in real-world 

mosaic imagery. Although the sediment discrimination application instance was not 

considered to be ideal, given the time and data available, it was a reasonable course of 

action to take. The outcome of this case study demonstrated the versatility of the 

proposed process and methods and the potential for transfer to various target 

discrimination applications.  A mini proposal is presented in chapter 10, (section 

10.2.1), for extending this work to the task of Sabellaria texture discrimination.  

 

In the researchers’ opinion, all of the themes followed were quite successful, since the 

revised aims and objectives were met. However, it is also considered that the externally 

imposed, fragmentation of the project has hampered productivity.  

 

9.2.5 Risk revisited 

 

As stated earlier, and in chapter 4, a research project whose outcomes depend on several 

intensive software design and development stages for the experimental harnesses and on 

the provision of data has a very high level of intrinsic risk. However, it appeared that 

supply and provision of sonar image data containing Sabellaria was the main source of 
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issues with this project. The originally supplied data set turned out to be incomplete and 

the missing data could not be traced. Other potential data sets were identified but were 

ultimately not provided or not available for use. A data set from an external organisation 

was acquired but there were issues with the re-processing of the mosaic imagery and 

further, the interpretation of regions of Sabellaria in the imagery was not available. 

 

The issues with the supply of data were unusual in this case, since the industry 

stakeholders provided partial funding for the project and also had a material interest in 

the outcomes of research utilising these data. However, whilst unusual, it is not entirely 

unexpected since, as Petre and Rugg (2010, p 111) state, two of the ignoble truths of 

doing research are “resources won’t be there when you need them” and people will not 

deliver. Nonetheless, a researcher should have certain expectations regarding data 

provision otherwise no research requiring data provision would be commenced or 

concluded. 
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10.2.1 Mini proposal 1: Pockmark classification and trapped gas hazards 

10.2.2 Mini proposal 2: Unsupervised/supervised Sabellaria discrimination 

 

 

 

Results from the four case studies were critically analysed and discussed in the 

respective chapters, 5-8. In this final chapter of the thesis, section 10.1 summarises the 

conclusions derived from the analyses of each case study (10.1.1). The main 

contributions are also stated. Some general conclusions from an analysis of the research 

as a whole are also drawn (10.1.2) and a general recommendation is stated (10.1.3). 

Two-mini proposals are outlined in section 10.2, designed to advance the achievements 

of the work, in the context of other novel applications. 
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10.1 Conclusions 

 

10.1.1. Case study specific conclusions 

 

Case study 1: A new approach to the automated mapping of pockmarks in multi-beam 

bathymetry 

 

A novel feature based machine learning process was proposed and demonstrated to be 

effective for rapidly identifying pockmarks and mapping their boundaries. Salient 

features and appropriate scales of analysis at which to apply the feature kernels were 

identified in a comprehensive feature evaluation/validation process. These achievements 

showed the objectives of the study were successfully met. The work contributed to the 

wider domain of DBM analysis and particularly to the feature based discrimination of 

specific landform objects in a DBM. 

 

Case study 2: Feature based discrimination of Sabellaria spinulosa textures in sidescan 

sonar imagery 

 

The study was the first of its kind concerning the novel task of machine discrimination 

of Sabellaria texture surrogates in sidescan sonar imagery. Features created from the 

signal processing methods were generally found to be the best discriminators on the 

waterfall imagery. A Gabor filter bank configuration and range of filter parameters for 

effectively discriminating Sabellaria textures in mosaic imagery was established.  

 

It was speculated that for visually discernible Sabellaria textures in the mosaic at a 

ground resolution, RG pixels per metre, the filter kernel size, k  3RG and filter envelope 

sd   1.5RG  may provide good discrimination results. These outcomes showed the 

objectives of the study were successfully met. The main contribution of this work was 

to the novel task of machine discrimination of Sabellaria textures.  

 

Case study 3: Novel consensus approaches to the reliable ranking of features for seabed 

imagery classification 
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A novel framework for empirically evaluating distance measures for feature evaluation 

and ranking was proposed. The subsequent experimental campaign and results analysis 

showed that a consensus feature evaluation and ranking approach improved the 

correlation of measured feature saliency to classification accuracy and the correlation of 

feature rankings to a baseline rank on sonar imagery, under prescribed conditions. 

Under the same conditions, the variability of the correlation metrics was reduced, i.e. 

the feature evaluation and ranking robustness were improved. These achievements 

showed that the objectives of the study were successfully met. The work contributed to 

the application domain of sonar imagery feature evaluation and to the machine learning 

methods domain of feature evaluation and ranking. Specifically, the measurement of 

robustness of feature evaluation methods.  

 

Case study 4: Unsupervised classification of sonar imagery 

 

A novel, hybrid process and methods were proposed for the rapid unsupervised 

discrimination of natural targets in qualitative, real-world sidescan sonar mosaic 

imagery. The novel methods devised included a pre-clustering stage for inducing a sub-

optimal probabilistic unsupervised model and a method for combining unsupervised 

classifications from independent feature channels. The unsupervised classifications 

using the Gabor filter bank features showed reasonable qualitative and quantitative 

similarities to the manual classification. The filter bank features led to a more 

representative classification of the sediments over a range of resolutions – an 

unexpected result. The supervised process was not as efficacious as the unsupervised, 

since in most of the experiments two classes were identified on the statistical and filter 

bank feature channels. The machine methods are versatile and the process can 

potentially be applied to a variety of seabed target discrimination problems in real-world 

imagery. The work contributed to the application domain of machine discrimination of 

qualitative targets in sonar imagery.  
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10.1.2 General conclusions 

 

Evidence for the tractability of the pockmark and Sabellaria discrimination problems 

(and also sediment classification) with feature based machine learning methods and 

processes has been presented in these case studies. 

 

Of the machine methods considered, the feature creation and evaluation methods were 

of central importance to the success of the approaches in the specific application 

contexts. The features need to be tuned appropriately to the data, targets and 

classification objectives. 

 

The novel, hybrid unsupervised approach that was devised, produced plausible 

classification results on the sediment classification task, in a few minutes of processing 

time. The process is versatile and the researcher considers that it should be generalisable 

to the discrimination of other subjective natural targets in real-world seabed imagery, 

such as Sabellaria and pockmarks (with appropriate features and feature tuning.) 

Further, the full automation of pockmark and Sabellaria discrimination/classification is 

feasible within this processing framework. 

 

Using calibrated acoustic backscatter in an objective approach to seabed classification is 

a method preferred by some researchers. However, there are certain discrimination and 

classification problems that are (currently) more suited to or depend on a subjective 

interpretative approach. In cases such as these, bespoke, feature based machine learning 

approaches can be devised to assist the human interpreter, greatly expediting the 

discrimination task. 

 

A useful artefact that would help to further advance the study of seabed texture/target 

discrimination in general would be a database of texture samples and real-world mosaic 

image exemplars that could be used for benchmarking different methods and processes 

and a prescribed set of tasks and metrics to ensure a common evaluation framework for 

comparing different approaches. 
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10.1.3 General recommendation 

 

Engineering a machine learning system to undertake tasks traditionally carried out by a 

human is an immensely challenging undertaking. Within this system, the critical aspects 

of feature evaluation and selection are in many cases based on measurement methods 

with mathematical foundations, such as distance measures. However, in order to gain a 

more reliable view of the usefulness of the features (and their parameterisations) for a 

particular task, it is beneficial to consider multiple measurements using a range of 

measuring methods. Individual methods have different reliabilities (and computational 

costs), dependent on the classification objectives, the features and the data. Therefore, 

the researcher makes a general recommendation that, considering feature evaluation as 

an art, a holistic approach should be taken to the evaluation process, using multiple 

measurement methods, experimental approaches and processes, as was practised in case 

studies 1-3.  
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10.2 Scope for further work 

 

Two mini-proposals are presented that build on the achievements of the case studies in 

the thesis.  

 

10.2.1 Mini-proposal 1: Pockmark classification and trapped gas hazards 

 

The general aim of this research is to fuse morphological (DBM) attributes and 

backscatter attributes to classify pockmarks (see Sections 8 and 9 of the ICIP poster in 

Appendix 1) and establish if any particular type of pockmark is associated with 

potential trapped gas hazards. 

 

The reason for doing this is to generate and analyse information that could potentially 

be used to better understand the connection between pockmark type, activity and other 

geohazards. Pockmark fields are often associated with trapped gas hazards and these 

can create serious problems for (very expensive) drilling operations. Is there a distinct 

type of pockmark or pockmark activity/inactivity that is associated more strongly with 

potential trapped gas hazards? If so, could it be used as an indicator for the potential risk 

when identified in the seabed imagery (DBM, backscatter image)? 

 

Different pockmark types can be discriminated by considering clusters of their 

morphological and backscatter attributes. These clusters could be analysed, with respect 

to spatial locations of potential trapped gas hazards that have been identified in seismic 

data from the pockmark field, together with any in-situ measurement data. It may also 

prove fruitful to consider historical data (if available) where known blowouts have 

occurred and identify what types of pockmark (if any) were associated with the event.  

 

Resources required are primarily data, including; DBM, multibeam backscatter and 

seismic sections covering the pockmark field and information on in-situ measurements 

and samples. An experimental harness would need to be designed and developed to 

accommodate the additional data layers.  

 

A specific objective involving an inductive element of research is embodied in the null 

hypothesis: “There is no evidence to indicate that there is a distinct type of pockmark 
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distributed spatially in such a way that its occurrence is correlated spatially with the 

occurrence of trapped gas hazards identified in seismic profiles.” 

 

An estimated time scale for carrying out this work is one year. Output from the research 

is one conference publication/presentation and one journal publication. Results would 

have a wide domain interest, covering the machine learning and geosciences 

communities and the oil and gas industry, exploration and production sector. 

 

10.2.2 Mini-proposal 2: Unsupervised/supervised Sabellaria discrimination 

 

The general aim of this research is apply the unsupervised (or supervised) process 

proposed in case study four, to the discrimination of potential Sabellaria colonies and 

possibly sub-classifications of the colonies, in large, high-resolution sidescan sonar 

mosaics. 

 

Experiments would be conducted with different features and parameters to establish if it 

is possible to distinguish regions colonised by Sabellaria from other areas of the seabed. 

A further objective is to find out if (numerical) features or attributes can be identified 

for reliably representing properties of the colonisation so that a sub-classification can be 

established, similar to say, that of Hendrick and Foster-Smith (2006).  

 

Resources required are mostly data; sidescan sonar mosaics containing known 

Sabellaria colonies, ground truth descriptions and human interpretation/classification 

(i.e. manually produced class maps, preferably from more than one rater) delineating the 

regions of the seabed and showing the different types of Sabellaria colonisation, for 

instance, sparse, moderate and dense. 

 

An estimated time scale for carrying out this work is one year. Output from the research 

is one conference publication/presentation and one journal publication. Results would 

have domain interests covering machine learning and the marine habitat 

classification/mapping communities. 
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Appendix 1  
 

 

IEEE International conference on image Processing (ICIP), poster presentation, 

Brussels, September 2011. 
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