INSIGHTS INTO THE

STRUCTURES AND

DYNAMICS OF THE
PATHOGEN SECRETED

EFFECTORS AVR3A11 AND
TARP THROUGH THE
APPLICATION OF NMR
SPECTROSCOPY

James Tolchard

A thesis submitted to the School of Chemistry, University of East Anglia in
the fulfilment of the requirement for the degree of Doctor of Philosophy.

December 2013

(© This copy of the thesis has been supplied on condition that anyone who
consults it is understood to recognise that its copyright rests with the author
and that use of any information derived there from must be in accordance
with current UK Copyright Law. In addition, any quotation or extract must

include full attribution.



Declaration

I declare that the work contained in this thesis, submitted by me for the degree
of Doctor of Philosophy, is my own original work, except where due reference
has been made to other authors or co-workers and has not been previously

submitted by me for a degree at this or any other university.

James Tolchard
December 2013

i



Abstract

The lifecycles of obligate pathogenic and parasitic microorganisms depend on
a myriad of interactions with their hosts at the molecular level. The class
of bacterial proteins directly responsible for these inter-organism interactions
have been termed effector proteins and can function in either an extracellular
or, once secreted into the host cell, an intracellular environment. Primarily
through the use of nuclear magnetic resonance spectroscopy (NMR), I have

investigated the biophysical properties of two such bacterial effector proteins.

TARP (translocated actin recruiting protein) is a largely disordered 100
kDa effector, common to all chlamydial species, which functions to remodel
the host actin cytoskeleton to facilitate the internalisation of the chlamydial
cell. Using constructs of TARP comprising an expected actin binding domain,
I have shown through NMR chemical shift indexing and 15N relaxation that
although the unbound domain is intrinsically disordered a short region, which
aligns to other helical actin binding domains, maintains some helical propen-
sity. Furthermore, these residues map to chemical shift variations in the bound
state and the Ky for the interaction has also been determined using isothermal

titration calorimetry.

AVR3all is an 8 kDa effector from the pepper pathogen Phytophthora
capsici that has been shown to inhibit plant programmed cell death. Using
a combination of 2D and 3D NMR experiments I have assigned the major-
ity of the backbone and side-chain resonances from the structured regions of
AVR3all. Through the acquisition and analysis of 1¥C and N edited HSQC-
NOESY spectra I have also calculated a water refined, structural ensemble
for AVR3all. Additionally, analysis of the slow (H:D exchange) and fast (T4,
Ty and heteronuclear NOE) dynamic regimes, describes AVR3all as a rela-
tively tightly folded helical bundle which also exhibits a significant degree of

conformational exchange.
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Chapter 1

Pathogen Secreted Effectors

1.1 Introduction

Since the emergence of single celled life, the act of molecular communica-
tion amongst, and even between, species has been a fundamentally important
driving force behind the evolution of life on our planet. The evolutionary ad-
vantages that communication can bestow with respect to survival and genetic
propagation are clear, whether defensive, symbiotic or predatory in nature. In-
deed, the obvious worth of cellular interactions can be evidenced from the fact
that cellular adhesion (1), and arguably endosymbiosis (2), which have shaped

multicellular life as we know it, were relatively early evolutionary adaptions.

However, perhaps because these have been such lengthy and convoluted
evolutionary paths, the mechanisms that underpin cellular interactions com-
monly involve multifaceted networks of molecular signals. Understanding the
complexities of these interactions has therefore become a significant motivation
for the majority of the biological sciences due to their far reaching implications
regarding disease (3), immunity (4), medicine (5), and even wider environmen-
tal concerns such as bioremediation (6), conservation (7) and the synthesis of

renewable fuels (8) and sustainable foodstuffs (9).

The incredible scope allowed to intercellular interactions through chem-
istry and biology has also been equally exploited by pathogenic species in order
to hijack, damage and kill other species for their own benefit. To this effect,

many microbial pathogens have evolved sets of proteins that are not immedi-
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ately damaging in themselves, but which are able to interact with and modulate
the cellular processes and signalling networks of their hosts. Termed “effec-
tors”, these proteins have evolved so much so that they usually share similar
structural elements or binding sites to those of the native system. Therefore,
even if the host interaction has previously been studied, a thorough under-
standing of how pathogens are able to subtly manipulate these mechanisms
will most likely require a comprehensive interdisciplinary understanding of the

underlying biological, chemical and physical phenomena supporting them.

There are many known examples of pathogenic species throughout the tree
of life that directly employ effector proteins to their advantage. Interestingly,
whilst great diversity exists between the mechanisms targeted by pathogens,
there are also many examples of common molecular targets that are particu-
larly vulnerable to subversion. Typically, common targets are molecules that
are either overly abundant or overly networked, as these characteristics can
tend to back an organism into an exploitable “evolutionary corner”. Having
total reliance on a particular form or arrangement of a molecular system can
significantly reduce the probability of mutational events prescribing defensive

advantages whilst simultaneously not disrupting any required characteristic.

One such molecular constituent, which several unrelated parasites have
convergently evolved to manipulate, is that of eukaryotic ubiquitin(10). Ubig-
uitin is a highly conserved protein, found in all eukaryotes, which functions
primarily as a molecular identifier for other proteins. As a tag, ubiquitin is
perhaps most synonymous with protein degradation and recycling, but as a
broader cellular signal it also has implications in DNA- repair, transcriptional
regulation, apoptosis and the cell-cycle(11). By interacting with ubiquitin
and fine-tuning some of these interactions, pathogens therefore have potential

access to a significant range of core cellular functions.

For example, a secreted effector (Ospl) from the pathogen Shigella flexneri
has been shown to interfere with host ubiquitination to inhibit a pertinent host
cell immune response. Once secreted into the host cell, Ospl functions to mod-
ify a host E2 enzyme (UBC13) which is then unable to polyuniquitinate an
E3 enzyme (TRAFG6) required for the transduction of the NF-KB signalling
cascade involved in the inflammation-related immune response(10). Further-
more, Legionella pneumophila, another intracellular pathogen, has been shown

to utilise both host ubiquitin and the host proteasome to aid in the temporal
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regulation of its own pathogenesis. Upon infection, L. pneumophila secretes a

number of protein effectors into host cells, two of which are LubX and SidH.

Through homology to E3 ubiquitin ligases, LubX is able to polyubiqui-
tinate SidH, which is then degraded by the host proteasome. Although the
function of SidH itself has not yet been identified, this post-infection degra-
dation of SidH has been shown to be required for optimal disease progression

(12) relative to the initial time of infection.

Another common pathogenic target is that of the actin cytoskeleton, an
equally abundant cellular system. By interacting with the actin cytoskeleton
pathogens are able to exploit its structural properties to aid processes such
as cellular adherence (13) and host cell internalisation (14). For instance, the
highly pathogenic enteropathogenic (EPEC) and enterohemorraghic (EHEC)
E. coli species secrete a small actin binding protein (Tir) into epithelial cells of
the hosts small intestine. By traversing both sides of the host cell membrane,
Tir is able to facilitate the generation of substantial cellular adherences by me-
diating interactions with both intimin molecules on the E. coli cell surfaces and
a sturdy “pedestal” of host cell actin-associated proteins and actin filaments.
Additionally, genera such as Listeria (AcTa protein(15), Figure 1.1.1), Shigella
(LesA protein (16)), Rickettsia (RickA protein (17)) and Burkholderia (BimA
protein (18)) have also evolved ways to exploit the host cell actin related pro-
tein complex (ARP2/3) to conduct mass actin polymerisation at specific sites

on their cell surface to generate propulsion through the host cytosol.

Figure 1.1.1: A transmission electron micrograph of Listeria monocytogenes
utilising intracellular actin filaments to generate a motive force. Adapted from
(17).
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1.2 The Phytophthora genus and avirulence

proteins

1.2.1 The Phytophthora genus

The pathogenic Phytophthora species belong to the class Oomycetes, a some-
what awkward taxonomic classification which describes a combination of both
fungal (hyphal morphology, sporulation) and also protist (two distinct flagella,
cellulose cell wall) characteristics (19). The Phytophthora genus is currently
comprised of 116 known species(20), although theoretical predictions, and re-
sults obtained from sequencing the DNA of unculturable species, suggest that
the final figure may actually fall somewhere between 200-600(21). Currently,
all known species of Phytophthora are active pathogens and although host (and
host tissue) promiscuity varies widely (22), many species have a particular host
tropism towards the agriculturally important dicotyledonous plants. Examples
of Phytophthora pathogen hosts include: carrot, chickpea, cotton, cucumber,
pepper, potato, soybean, tobacco and tomato. Most recently, another species
Phytophthora ramorum has been identified as responsible for the “sudden
oak death” disease sweeping through the west coast of the United States and
Europe (23).

Figure 1.2.1: An example of late blight tomato spoilage produced by Phytoph-
thora infestans. Adapted from (24).
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With such wide ranging and agriculturally important host plant species,
many authorities (25, 26) and groups (27, 28) have labelled Phytophthora sp.
as the main microbial threats to various agricultural industries and native
species, with economic costs measured in billions of dollars (29, 30) from the
resulting crop spoilage (Figure 1.2.1). Indeed, the devastating potential impact
of Phytophthora can be recognised in history from the fact that the causative
agent of late blight in potatoes, the principle cause of the infamous Irish potato

famine of the 19" century, was Phytophthora Infestans.

The Phytophthora lifecycle notably resembles that of typical fungi with
distinct phases of sporulation, dissemination of spores and hyphal growth.
Broadly speaking, the development cycle begins from either asexually or sexu-
ally fertilised diploid types of spore, termed either oospores or chlamydospores
depending on the species and method of fertilisation. Oospores are hardy glob-
ular bodies that are able to weather nutrient deficient environments for long
periods of time. Upon the onset of favourably hydrating conditions, these phy-
tophthoral spores germinate into sporangia that are able to travel relatively
great distances via wind or water. Sporangia contain a variable number of
smaller; infectious particles termed zoospores that are released in favourable
conditions. Zoospores are small, biflaggelate particles capable of chemotacti-
cally driven, short-range, movement towards host plants. Due to the differ-
ences in host specificity, multiple mechanisms are thought to exist across the
Phytophthora genus for host recognition (22) but they generally not fully un-
derstood. One study has identified the metabolic intermediates daidzein and
genistein as the chemoattractants facilitating, at least in part, the infection of

soybean species by P. sojae zoospores (31).

Upon contact with the plant tissue, zoospores differentiate once more into
adherent particles termed cysts that attach to the host plant surface (32). Af-
ter encystation, a nascent germ tube emerges and presents a fixed platform
from which hyphal extensions are able to grow and penetrate the plant ex-
terior. Significant development of the hyphal network then allows extensive
sequestration of the local plant cell nutrients through haustorial extensions

from the hyphae.

The nutrients provided through the hyphal network then promote matu-
ration and formation of haploid gametangia for either heterothallic (exterior to

the plant) or homothallic (interior or exterior to the plant) oospore formation;




CHAPTER 1. PATHOGEN SECRETED EFFECTORS

and the lifecycle continues.

1.2.2 Phytophthora pathogenesis and plant immunity

Perhaps the most well known and agriculturally important Phytophthora species
is P. infestans, the causative agent of late blight in potatoes and tomatoes -
as described in Section 1.2.1. In fact, P. infestans has been designated a
model oomycete species, has had many experimental protocols optimised for
laboratory manipulation (33) and is probably the most well documented Phy-
tophthora species (34). Although pathogenesis can vary a great deal across
the Phytophthora genus, P. infestans has been shown to share significant ho-
mology in mechanism, and levels and timings of gene expression, with fungal

pathogens (35) and other Phytophthora species, including P. capsici (36).

The pathogenesis of P. infestans can be described as a two-stage process.
After the initial interaction from the encysted particle, the biotrophic phase
describes the asymptomatic growth of the hyphae and haustoria. Following
as yet unknown determinants, P. infestans then switches to a necrotrophic
phase whereby plant tissue necrosis is initiated, presumably to better facil-
itate nutrient absorption. The two pathological stages are clearly distinct
and although advancements have been made, a thorough, descriptive model
of pathogenesis does not currently exist (34). What is clear however for all
of the known Phytophthora is that modulation of host cell processes, in par-
ticular the plant immune response, is vital for successful disease progression.
The immune system of higher plants typically offers a multi-layered defence,
ranging from basal, non-specific attributes (antimicrobial secretion, cell walls,
external cuticle) to highly specific molecular interactions. However, without
mobile, immunity-conferring agents, such as the vertebrate white blood cell,
plants require all cells to be able to impart some level of immune response
(37). Deemed part of the innate immunity, the pathogen-associated molec-
ular pattern response (PAMP) is a type of plant immunity which functions
through toll-like receptors to recognise microbial molecules or motifs such as
bacterial flaggelin (38) and lipopolysaccharide (LPS) (39). Successful extra-
cellular recognition of PAMPs then drives transmembrane signalling pathways
and prompts immune responses, for example the generation of reactive oxygen
species (ROS) (40) or programmed cell death (PCD) (41); a process termed
PAMP-triggered immunity (PTT).
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Similar to other plant pathogens, Phytophthora species evade this PTI
response through the use of a suite of secreted effectors to maintain its asymp-
tomatic biotrophic growth phase. For instance the cytosol-secreted Phytoph-
thora avirulence effector AVR3b has been shown to decrease the production of
ROS (42) (effector-triggered susceptibility, ETS). However, the plant:pathogen
arms race has been a long fought one, and as such many plants have evolved
a means to recognise these pathogenic effectors (effector triggered immunity,
ETI) through the products of resistance R genes, to generate further immunity

responses.

Perhaps due to the increased significance of intracellular, rather than ex-
tracellular threat recognition, the ETT response often results in the absolute
action of the hypersensitivity response (HR), which gives rise to PCD (37). As
a means of isolating and annexing the infected tissues, the HR-initiated PCD
initially begins with a cellular influx of Ca?* and H* ions and an efflux of OH-
and K™ ions. This is then followed by increases in cellular ROS, leading to the
breakdown of cellular membranes and the increased production of callose and

lignin, which forms a defensive barrier alongside the adjacent cells.

The activity of many ubiquitin E3 ligases is heavily associated with suc-
cessful activation of the HR response (43, 44), and although they are thought
to facilitate downstream HR signalling, the pathways involved have not been
detailed (45). A further complication of this escalating plant:pathogen conflict
is that there are also many examples of secondary ETT effectors in pathogenic
species able to reintroduce a secondary susceptibility by destabilising elements
associated with the ETI recognition or signalling events. This evolutionary
to and fro between plants and their pathogens can be described as a “zigzag”
model (Figure 1.2.2) of cyclic coevolution; a relationship and mechanism well

described by Flors gene for gene theory (46) between host and parasite.
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Figure 1.2.2: The zigzag model of plant:pathogen interaction. Initial PAMPs
(red diamonds) are recognised by toll-like receptors giving rise to a low-
amplitude PAMP-triggered immune (PTI) response. Pathogen effectors (red
marks) subverting this process lead to effector-triggered susceptibility (ETS)
unless recognised by resistance proteins (ovals) that can lead to effector-
triggered immunity (ETI). Secondary pathogen effectors can inhibit this re-
sponse until adaptations (blue marks) lead to additional effector recognition
and secondary ETI. Adapted from (37).

1.2.3 RXLR effectors and the AVR3all protein

There is an increasingly large subgroup of oomycete effectors that are defined
by a conserved Arg-X-Leu-Arg amino acid motif, where X can be any amino
acid. Many RXLR motifs are also associated with a proximal downstream
Asp-Glu-Glu-Arg (dEER; with a highly variable aspartic acid) motif. To date,
hundreds of RXLR effectors have been directly identified in the main agricul-
turally important Phytophthora species such as P. infestans, P. ramorum, P.
sojae and P. capsici (36, 47). These proteins, first recognised through genetic
analysis of an oomycete pathogen of Arabidopsis spp. (48), can be described
as modular, in that they possess an N-terminal localisation sequence (for ex-
tracellular secretion through the eukaryotic type-II secretion system) followed
by the RXLR (+dEER) motif and then an effector domain of varying length.

A broad range in function has been observed for RXLR effectors, however the

8
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conserved RXLR motif has been shown to convey self- delivery into a wide
variety of eukaryotic cells following secretion into the intercellular space; a
hypothesis which was based on the function of homologous regions in effector
proteins of the malaria-transmitting parasite Plasmodium falciparum. AVR3a
(Avirulence protein 3a) is one such RXLR effector protein identified in P.
infestans (with homologues in P. capsici and P. sojae (49)) which has been
identified as a secondary ETS protein (41, 42), that binds, stabilises and in-
hibits the action of the ubiquitin E3 ligase CMPG1, preventing signalling for
PCD. Interestingly, two main natural alleles of AVR3a exist, termed AVR3aK!
and AVR3a"™ (describing Lys or Glu and Ile or Met at sequence positions 80
and 103, respectively). Both alleles confer virulence in plants missing the cor-
responding R3a resistance gene (i.e. resistant to the 3a AVR protein), however
only AVR3aX! is recognised by R3a carrying plants. There are currently no
studies that describe the direct interactions of either CMPG1 or R3a bound
AVR3a and so the significance of these allelic forms is not explicitly clear.
An X-ray crystal structure of an AVR3a homologue, AVR3all from P. cap-
sici, has been published by our collaborators (Dr Mark Banfield, John Innes
Centre, Norwich) (Figure 1.2.3), and defined a WY domain characterised by
a conserved Trp and Tyr residues as part of the hydrophobic core. Through
in silico comparisons it was shown that many (-44% (49)) of RXLR effectors
share similar structural motifs to the AVR3all WY domain, which designates
the core o-helical fold. The significance of this WY domain has been related
to pronounced evolutionary plasticity, as significant mutations can be incurred
without disrupting the overall fold. This would make RXLR effectors particu-
larly suited to coevolution with host plants and agrees well with observations
that RXLR genes also occupy particularly dynamic regions of the Phytophthora

genome.
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Figure 1.2.3: The four-helix bundle structure of the AVR3all effector do-
main from P. capsici as determined by X-ray crystallography (PDB code:
3ZR8 (49)). The sites of the allelic variations (E71/Q94 for AVR3all, red),
residues of the WY fold motif (blue) and the loop region that conveys variable
resistance-protein recognition (magenta) are annotated. Figure created with
the PyMOL molecular graphics program (50).

1.3 The Chlamydia genus and the TARP pro-

tein
1.3.1 Chlamydia and the chlamydial lifecycle

Chlamydiae are an example of actin-hijacking pathogens. The Chlamydia
genus comprises three prokaryotic species, all of which are known intracellu-
lar parasitic pathogens and one of which, Chlamydia trachomatis, is known to
preferentially infect Homo sapiens. The Chlamydia genus originally contained
several more species but in 1999 a long-argued change was made to its taxo-
nomic classification, based upon evidence supporting their genetic divergence
(51). This placed six other pathogenic species into a new genus, the Chlamy-
dophila, although partial conservation of their actual parasitic mechanism is
evident (52). Both genera are still classified under the same bacterial phylum
due to their ancestral genetics and unique biphasic lifecycle in which intracel-
lularisation within a host cell is absolutely required for growth and replication.

Interestingly, Chlamydiae have extremely small genomes of around 1.2 Mbp

10
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and it is hypothesised that this occurred as an ancestral adaptation to intra-
cellular habitation. Some degree of reliance is therefore expected upon the
host cell proteinaceous machinery for a comprehensive metabolism. Further
hypotheses have even suggested that Chlamydiae are distantly related to an in-
tracellular parasite which ancestrally colonized early plant life (53) and evolved

into the symbiotic chloroplast.

In an extracellular environment, Chlamydiae exist as elementary bodies
(EB) which are metabolically inert yet infectious particles, 0.3 ym in diam-
eter, with cell walls containing little peptidoglycan(54) (Figure 1.3.1). An
abundance of disulphide bridging proteins have been described in their outer
membrane and these could potentially be responsible for their extremely robust
nature and particular resilience to ultraviolet radiation (55). Once chlamydial
EBs have entered into a host organism, electrostatic interactions, mediated by
negatively charged glycosaminoglycan moieties, facilitate nonspecific attach-
ment to the membranes of a wide variety of potential host cell types (56).
Although it has not been determined if these moieties originate from the host
or parasitic cell, they are thought to be heparin and heparan sulphate due to

the elimination of host cell attachment after heparinase treatment (57).

hlamydiae.cotn :
Michaél Ward." . =
P i R T S

Figure 1.3.1: An electron micrograph of a C. trachomatis parasitic inclusion.
Black elementary bodies (E), grey reticulate bodies (R) and a dividing reticu-
late body (DR) can be seen. The bar represents 1 ym (58).

11
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When bound, Chlamydiae then translocate across the host cell membrane
by a mechanism that has yet to be fully elucidated. The greatest experimental
evidence suggests that clathrin-mediated endocytosis is partly required, how-
ever further evidence from the same study seems to imply that a mechanistic

redundancy exists in certain species (59) which further complicates the issue.

Nevertheless, it is known that the ability to hijack the host cell actin
cytoskeletal network is absolutely required for cell invasion. After initial cell
contact, a 1005 residue protein termed translocated actin recruiting protein
(TARP) is secreted into the host cell via a type III secretion system (T3SS)
and accumulates on the host-cell side of the T3SS injection site. TARP is
then able to bind actin monomers and cooperate with indigenous actin remod-
elling proteins such as Rac GTPase and the ARP2/3 complex (60) to generate

significant actin filament polymerisation towards the site of infection.

The actin filament remodelling induced by these complexes then produces
lamellipodia-like extensions (termed “pedestals”) from the host cell that engulf
the chlamydial EBs in a process called parasite-specified phagocytosis due the

aesthetic similarity to the phagocytic immune response (Figure 1.3.2).

Figure 1.3.2: Lamellipodia-like extensions of the host cell membrane at differ-
ent stages as viewed through a scanning electron microscope (SEM) (A,B,D)
and a transmission electron microscope (C). Bars represent 0.5 um (61).
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Upon cell internalisation, the EB rapidly modifies its endocytotic vesicle
with chlamydial proteins allowing it to both intercept Golgi-derived exocytotic
vesicles and evade lysosomal fusion (62). It is also known that the parasitic
vacuole can import host adenosine triphosphate (ATP) as a primary chemical
energy source (63). During this time the EB cellular morphology also under-
goes a thorough change resulting in a larger (-1 ym diameter), metabolically
active cell that is able to undergo multiple rounds of binary fission (Figure
1.3.1). These are termed reticulate bodies (RB) and the chlamydial inclusion

is the only known environment in which they will differentiate and replicate.

In response to an as yet unknown stimulus, the increased population of
RB chlamydial cells will eventually begin to differentiate once again back to
infectious EB particles. Exit from the host cell can then occur via two mech-
anisms, which for C. trachomatis occur equally under laboratory conditions
(64). The “lysis” mechanism involves the rupture of the chlamydial inclusion
and is swiftly followed by the lysing of the host nucleus and other cellular
compartments. This is eventually followed by a break down of the host cell
membrane resulting in host cell death and the release of the EBs into the

extracellular environment.

The alternative release mechanism on the other hand does not result in
the death of the host cell and the whole inclusion is effectively exocytosed
from the host cell. Upon externalisation, the inclusion compartmentalises and

individual EBs bud off from the main inclusion body.

1.3.2 Chlamydiaceae family pathogenesis

The greatest threat to humans from a Chlamydiaceae pathogen is the chlamy-
dial species Chlamydia trachomatis, of which there are 15 known strains, or
serovars. Serovars A, B, Ba and C probably signify the greatest direct threat
to individuals in the developing regions of Asia and Africa where they are the
causative agents of trachoma; a painful eye infection which when left untreated
induces permanent blindness. It is readily spread by direct contact with the
eye, helped by the ability of the chlamydial EBs to remain infectious on inan-
imate objects such as towels for long periods of time. Eye seeking flies also
seem to be an important transmission vector for C. trachomatis and in some
areas fly transmission has been shown to account for 75% of new cases (65).

Early stages of C. trachomatis infection are easily treated with a single dose of
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the antibiotic azithromycin, however due to the ease of transmission within im-
poverished areas, community based mass antibiotic treatment is recommended

for thorough eradication (66) and this is rarely deemed monetarily feasible.

In comparison to the trachoma inducing serovars, serovars D through K
of C. trachomatis preferentially inhabit the human reproductive tract and can
cause a range of conditions in both men and women. Transmitted via unpro-
tected sex, C. trachomatis is currently the most commonly diagnosed sexually
transmitted disease (STD) in the western world (67) and, in the United States
alone, 1.2 million people are estimated to be infected, with an annual in-
crease of -9% observed over the last 13 years (68). Males suffering with these
serovars are usually asymptomatic, but can experience painful inflammations
of the infected tissues with the conditions defined as urethritis, prostatitis
and epididymitis. Females can also expect similar inflammations of the repro-
ductive tissues such as cervicitis, cystitis, urethritis and pelvic inflammatory
disease (PID). Both sexes can also experience proctitis though probably the
most damaging presentation is none at all, as all C. trachomatis strains are
capable of asymptomatic presentation. If a silent infection is untreated and
spreads to the epididymis (males) or upper reproductive tract (females) the
main symptom then becomes partial or irreversible infertility (69, 70). The
causative pathology of infertility is associated with either a blocking of the
fallopian tubes or the epididymis and is caused by tissue scarring and the

accumulation of mucus and cell debris.

The final group of C. trachomatis serovars are those of the Lymphogran-
uloma venereum strains LGV1, LGV2 and LGV3. These are rarely found in
patients from the developed world, although it is present, and even in the de-
veloping regions of Africa and Asia it is still relatively uncommon. Infection
with any one of the LGV strains initially presents as genital ulcers or warts,
something they are frequently mistaken due their low prevalence (71). LGV
strains seem to particularly favour lymphoid cells and several weeks post in-
fection LGV cells spread throughout the lymph system, causing swelling in
potentially any or all of the lymph glands. If treatment is sought, the swollen
lymph glands are usually drained to ease discomfort whilst antibiotics are also
administered. If untreated, symptoms can eventually mimic those of Crohns
disease with a wasting of systemic epithelium and lead to serious malnutrition

and possibly even death.
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The Chlamydiaceae family also contains the human pathogens C. pneu-
monia and C. psittaci. C. pneumonia is primarily a pathogen of the respiratory
tract and although it has been documented as colonising other tissues, these
have resulted in no deleterious symptoms. From within the respiratory tract
however C. pneumonia can lead to various severities of bronchitis, pneumonia,
chronic obstructive pulmonary disease and evidence even exists suggesting a
possible role in the development of multiple sclerosis (72). C. psittaci is primar-
ily an avian pathogen which infects all major systems and ultimately, without
treatment, leads to death. There are a large number of cases however where
serovars A and C-E have been known to zoonotically cross to humans, and

present as a wide range of conditions; from flu-like symptoms to encephalitis
and death.

1.3.3 The chlamydial TARP protein

Very little is currently understood about the host cell invasion of chlamydial
species. It is known, however, that the secretion of a largely intrinsically
disordered chlamydial protein, TARP, into the host cell is absolutely required.
Orthologs of TARP exist in all Chlamydia and Chlamydophila species, albeit
to a varying degrees of conservation. In C. trachomatis serovar LGV2, TARP
is a 1005 residue protein able to recruit and nucleate filamentous actin that
comprises 3 known functional domains: an N- terminal tyrosine rich repeat
region, a proline rich region and a C-terminal actin binding domain (ABD)
(Figure 1.3.3).

H
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Figure 1.3.3: A scheme of the Chlamydia trachomatis LGV2 serovar TARP

protein with tyrosine repeat regions (green boxes), proline rich region (blue
box) and actin binding domain (ABD) red box). Adapted from (73).

The basic unit of the tyrosine rich repeat contains 50 amino acids and
is present six times in the in C. trachomatis LGV2 serovar. The number of
repeats varies in different species but interestingly this repeat region is miss-
ing completely in Chlamydia muridarum, Chlamydophila caviae and Chlamy-

dophila pneumoni to no apparent detriment with respect to infection (74).
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TARP orthologs from species containing the tyrosine repeat domain undergo
phosphorylation by a host Src-family tyrosine kinase soon after secretion into
the host cell (75). However, both the proline-rich domain and actin-binding
domain are well conserved across all chlamydial species and have been shown
to be absolutely required for the actin nucleation of TARP and subsequent
cell invasion. The proline rich domain enables TARP to form homo-multimers
to facilitate the process of actin filament nucleation at the site of chlamydial
invasion. Because each C. trachomatis LGV2 TARP protein comprises only
one actin binding domain it is hypothesised that the act of oligomerisation
enables TARP to form an actin nucleating complex by colocalising multiple

actin binding domains, each capable of binding an actin monomer.

This is further supported by evidence suggesting that TARP orthologs
comprising more than one ABD have increased kinetics with respect to the
actin nucleating reaction and in fact do not require oligomerisation to promote
actin nucleation (76). The proposed actin binding helix is sited between A748
and K758 and shows striking sequence homology to a known actin binding
helix in the Wiskott-Aldrich syndrome protein (WASP) homology domain-2
(WH2). Proteins containing the 35 residue WH2 globular actin binding domain
are usually highly involved in the regulation of cytoskeletal growth and occur
across a wide range of eukarya with the exception of plant species (77). The
TARP ABD is therefore proposed to interact with actin in a similar fashion

to other WH2 containing proteins.

Complete TARP has been shown to nucleate actin filaments in vivo, sup-
porting its natural function; however it has also been shown that TARP pro-
teins from C. trachomatis are able to interact with host actin regulating pro-
teins and further contribute to actin polymerisation by subverting natural
signalling pathways. Guanine exchange factors (GEFs) are well characterised
proteinacious switches which are activated by the binding of guanosine triphos-
phate (GTP). Once active, GEFs are able to transfer the terminal phosphate
group of GTP to their binding partners and lead to their activation. After
passing on their terminal phosphate group, GEFs are rendered in an inactive
state with bound guanosine diphosphate (GDP) but are free to reacquire GTP.
TARP is able to interact with the well known GEFs Sosl and Vav2 which are
normally utilised during the signalling cascade responsible for the remodelling
of the actin cytoskeleton with the eventual activation of cortactin and the
Arp2/3 complex (78, 79). The ability of TARP to use the intracellular actin
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remodelling system for its own means seems to be highly linked to chlamydial
host cell invasion. It is interesting however that this functionality requires
the phosphorylation of the tyrosine residues within the repeats of the tyrosine
rich domains and so cannot therefore be utilised in the invasion of chlamydial
strains lacking these domains. Because natural and artificial TARP proteins
lacking this N-terminal tyrosine rich domain are still capable of invading host
cells, it must therefore be hypothesised that mechanistic redundancy exists,
for this case, potentially with its own actin nucleation function upon multi-

merisation.

It seems to be the case that chlamydial species present multiple examples
of mechanistic redundancy in their methods of cell invasion (59), host kinase
utilisation (60, 80), GEF activation (78), ATP acquisition (63) and host cell
exit (64). This appears to suggest that Chlamydia sp., due to their absolute
dependence upon an intracellular niche for replication, have largely evolved to
support their main selection pressure: the invasion of host cells. It is therefore
my opinion that TARP is a further example of this and an excellent example

of a protein comprising evolutionary redundancy.

1.4 Aims of the thesis

It is the aim of this work to study both the structural and dynamic character-
istics of the chlamydial protein TARP and phytophthoral protein AVR3all,
mainly through the application of solution state nuclear magnetic resonance
(NMR) spectroscopy. A structure for the AVR3all effector could offer impor-
tant insights into its function and work to this end will be detailed in Chapter
3. In Chapter 4 I will also document my efforts in describing the dynamic be-
haviour of AVR3all. Currently very little is known regarding the TARP:actin
interaction. In Chapter 5 I will discuss studies undertaken regarding the native
state of TARP actin binding domain, both through in silico and experimental
means and in Chapter 6 I will discuss work which attempts to describe its in-
teraction with actin and present the construction of a theoretical model of the
TARP:actin interaction. It can be supposed that at some point in the history
of phytophthoral and chlamydial evolution, similar evolutionary advantages
directed significant investment towards interspecies extra- and intra- cellular

Interactions.
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The two genii however originate from different branches of life, which
undermines a broad comparison between the biology of the two species. Nev-
ertheless, the significance of studying these systems individually is obvious
as a result of their continued damage to agricultural industries and human
health throughout the world. It can also be said that a contrast between their
respective mechanisms should prove an interesting observation with respect
to the different biochemical approaches taken in subverting intracellular host

processes.
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Chapter 2

Materials and Methods

2.1 Experimental methods for AVR samples

2.1.1 AVR constructs

Constructs for both AVR3all and AVR3all1AN were provided with N-terminal
hexa-His-tags, inserted into pOPIN-F plasmids (Novagen, USA), by Dr M. J.
Banfield (John Innes Centre (JIC), Norwich, UK). The full-length AVR3all
construct consisted of the 72-residue effector domain from the Phytophthora
capsici protein AVR3all. The “AVR3allAN construct” bore a truncated
version of the AVR3all effector domain, wherein the seven most N-terminal

residues had been removed.

2.1.2 Overexpression of AVR3all and AVR3all1AN
2.1.2.1 Bacterial transformation

Cell transformations, based on a standard transformation protocol (81), were
carried out by adding 1 pl pOPIN-F plasmid DNA (containing the construct
for either AVR3all or AVR3allAN) to 50 pl of competent Escherichia coli
cells (strain BL21DE3) (see Section 2.3.1). Cell/plasmid mixtures were in-
cubated on ice for 30 min before a 45 sec heat shock in a 42°C water bath

and were then returned to ice for a further 5 min. Reactions were then sup-

21



CHAPTER 2. MATERIALS AND METHODS

plemented with 0.5 ml Lysogeny Broth (LB) media (10 g.I"! tryptone, 5 g.I'!
yeast extract, 10 g.I't NaCl) preheated to 37 °C, and were incubated for 1 hr at
37°C whilst shaking (200 rpm). Under sterile conditions, LB-agar-ampicillin
plates (15 g.I'" agar, 100 ug.ml™ ampicillin) were then inoculated with 250 ul

of the transformation reaction and left overnight in a 37 °C incubator.

2.1.2.2 Expression of isotopically enriched (**C, *N) AVR3all

All AVR3all samples were overexpressed and purified by Dr L. Boutemy (JIC,
Norwich) as previously described (49). E. coli colonies from successful trans-
formations were picked and used to inoculate 10 ml aliquots of LB-ampicillin
media (100 pg.ml! ampicillin), which were then incubated overnight at 37°C
with shaking (200 rpm). The following day, 8 ml of each saturated culture
was used to inoculate a 100 ml aliquot of unlabelled minimal essential medium
(MEM) (100 ml M9 salts, 0.4% glucose, 2 mM MgSOy, 10 uM CaCl,, 10 uM
fresh FeSOy, 1 x micronutrient solution, 1 x MEM vitamin mix (Sigma Aldrich,
USA), 100 pg.I't ampicillin. A 1000 x stock solution of micronutrient solution
contained 3 uM (NH4)2MoOy4, 4 uM H3BO3, 30 uM CaCl,, 10 uM CuSOy,
80 uM MnCly and 10 uM ZnSO4. The stock “M9 salts” solution contained
42 mM NaoHPO,, 22 mM KHyPO,, 8.5 mM NaCl, 18.7 mM NH,Cl and was
made to pH 7.8. Starter cultures were grown until saturated (-2.5 hr) and then
harvested by centrifugation at 4,000 x g for 10 min, 20°C. The resulting su-
pernatant was discarded and each cell pellet was resuspended in 1 1 of labelled
MEM; wherein the NH,Cl and glucose of the standard MEM recipe were re-
placed with equal concentration of ’NH,Cl and 0.2% 3C glucose, respectively.
Cultures were incubated at 37°C with shaking (200 rpm) until an O.Dgoy of
0.6-0.8 had been achieved. Overexpression was then induced with the addition
of 1 mM IPTG to each 11 culture and then cultures were incubated at 30°C
overnight with shaking (200 rpm). The following day, cells were harvested by
centrifugation at 4,000 x g for 15 min, the resulting supernatant was removed
and the cell pellets were stored at —20°C.
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2.1.2.3 Expression of isotopically enriched (**N)
AVR3allAN

E. coli colonies from successful transformations were picked and used to in-
oculate 12 ml aliquots of LB-carbenicillin media (100 pg.ml! carbenicillin).
Cultures were then grown at 37°C with shaking (200 rpm) to an O.Dgg of
-1.5. Cells were harvested by centrifugation at 4,000 x g for 10 min, 20 °C.
For each 12 ml starter culture, the resulting cell pellet was resuspended in
50 ml of N-5052 autoinduction media (82) (AIM) (50 mM NayHPO,, 50 mM
KH,PO4, 50 mM *NH,Cl, 2 mM MgSOy, 10 uM fresh FeSOy, 0.5% glycerol,
0.05% glucose, 0.2% lactose, 0.2 x trace metals). A 1000 x stock solution of
trace metals contained 10 mM MnCl,, 10 mM ZnSOy4, 2 mM H3BOj3, 2 mM
CoCly, 2 mM NasMoOy, 2 mM CuCly, 2 mM NiCl,, 2 mM NaySeOy4, 50 mM
FeCls and 20 mM CaCl,.

Following inoculation, AIM cultures were incubated at 30 °C with shaking
(200 rpm) and left overnight (-14 hr). Individual cultures were harvested by
centrifugation at 4,000 x g for 15 min, 4°C. The resulting supernatant was
then discarded and cell pellets were stored at —20°C. Overexpression was
then checked using InstantBlue™ (Expedeon, UK) stained 15% SDS-PAGE
gels (Section 2.3.2).

2.1.3 AVR3all and AVR3allAN purification

Harvested cell pellets were thawed on ice and resuspended in 30 ml IMAC
binding buffer (50 mM Tris-HCI pH 8.0, 0.5 M NaCl, 50 mM glycine, 5% glyc-
erol) with the addition of an EDTA-free protease inhibitor (Roche, Germany).
The resuspended cells were then lysed with three repeated sonication steps.
Steps consisted of a 5 min incubation on ice followed by an 8 min 20 sec cycle
with 30 W pulse at 200 ms.s (Status 200, Phillip Harris Scientific, UK). Cell
debris was then removed by centrifugation at 30,000 x g for 30 min (4 °C). The
resulting cell lysate supernatant was then applied to a 10 cm disposable plastic
chromatography column containing Ni?* affinity resin (Prochem, USA) with
a column volume (CV) of 5 ml that had been equilibrated with 4CV IMAC
binding buffer. The flow-through was immediately collected on ice, followed by
column washes of 2CV IMAC binding buffer, 3CV IMAC buffer (10 mM imi-
dazole), 3CV IMAC buffer (50 mM imidazole) and 3CV IMAC elution buffer
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(300 mM imidazole). The presence of AVR proteins was confirmed on silver
stained (Section 2.3.3) 20% SDS-PAGE.

Elution fractions containing protein were concentrated to -20 ml using a
spin concentrator (Vivaspin 3 kDa molecular weight cut off (MWCO), Sarto-
rius, Germany) and dialysed using 3.5 kDa MWCO tubing (Biodesign, USA)
over 36 hr against two 5 1 batches of PreScission™ cleavage buffer (50 mM
Tris-HCI pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.5). Af-
ter 36 hr, the concentration of fusion protein was determined using UV-Vis
spectroscopy (€2gonm= 15930 M'.cm™ (His-AVR3all and His-AVR3al1AN)
as calculated by the “Protein Calculator V3.3” web tool accessible at www.
scripps.edu/~cdputnam/protcalc.html). To remove the hexa-His purifi-
cation tag, PreScission™ Protease (GE Healthcare, USA) was then added
(2U.mg™! protein) and the digestion was incubated at 4 °C overnight with slight

agitation.

Following confirmation of digestion using silver stained 20% SDS-PAGE
gels, the sample was dialysed as before for 36 hr against two 5 1 batches of
IMAC binding buffer. The sample was then removed from dialysis and ap-
plied to a Ni** column, equilibrated as before. The flow-through, washes of
2CV IMAC binding buffer and 2CV IMAC buffer (300 mM imidazole) were
then collected on ice. The purity of the final AVR sample was then con-
firmed on SDS-PAGE as before. AVR samples were then dialysed for 36 hr
against two 5 1 batches of AVR NMR sample buffer (0.12 mM NaH;POy,
9.8 mM NayHPOy, 50 mM NaySO,) either at pH 8.8 (AVR3all) or pH 6.8
(AVR3allAN). Samples were then concentrated to 1 mM (Vivaspin 3 kDa
MWCO) for NMR experimentation.

2.1.4 AVR3all NMR sample preparation

All NMR samples were made to a total volume of 500 ul and contained a final
concentration of approximately 1 mM protein, 10% D,O, 0.03% NaNj3 and
200 uM 4,4-dimethyl-4-silapentane-1-sulfonic-acid (DSS). Samples were spin
filtered prior to use (0.22 pym, Corning Inc., USA) and were transferred to
5 mm NMR tubes (either: pp535, Wilmad, USA, or S-5-600-7, Norell, USA).
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2.1.5 NMR spectroscopy of AVR3all

All spectra relating to the full length AVR3all construct were acquired by
Dr T. Blumenschein (UEA) and Dr L. Boutemy (JIC) on a Bruker Avance
ITI 800 MHz spectrometer equipped with a triple resonance indirect detect
TXI probe with Z-gradients at 298 K. Spectra acquired for backbone and
side-chain assignment were: ['H-*C|-HSQC, ['H-°N]-HSQC, CBCA(CO)NH,
CBCANH, CC(CO)NH, 'H-'H-'SN TOCSY, H(CCO)NH TOCSY, aromatic
13C TROSY HSQC and an aromatic '*C TOCSY (hnCBcgedceHE). To obtain
through-space distance measurements for the AVR3all structure calculation,
13C NOESY- HSQC (120 ms mixing time) and N NOESY-HSQC (100 ms
mixing time) spectra were also acquired. All spectral parameters can be seen
in Table 2.1.1.

Table 2.1.1: NMR acquisition parameters for experiments acquired at 800
MHz obtained for the assignment and structure calculation of AVR3all.
Experiments filtered with respect to aromatic moieties are denoted “(Ar.)”.
Dimensions different to those in the table header are labelled in superscript.

All experiments had 1024 Complex points in the the F; *H dimension.

Complex points Spectral width (Hz)
Experiment Scans N 13C 'H 15N 13C
TH-5N HSQC 16 48 - 12019 2433 -
1H-13C HSQC 12 256 - 10416 - 33333
CBCA(CO)NH 32 32 60 12019 2433 15095
CBCANH 32 32 48 12019 2433 15095
CC(CO)NH 64 32 64 12019 2433 15091
BN-TOCSY 32 32 48'H 12019 2433 9603'H
H(CCCO)NH 32 31 64’1 12019 2433 120198
BC-TOCSY (Ar.) 1024 § 24 11161 - 3823
BC-TROSY (Ar.) 32 . 128 11161 - 8081
5N NOESY 16 32 82'H 12019 2433 104168
13O NOESY 16 96'H 32 12019  9603'H 15092

2.1.6 Spectral processing

All spectra were processed with zero-filling and linear prediction (except di-
rectly detected dimension), Fourier transformed and phased using the NMR-
Pipe software package (83). The DSS standard within each sample was used

to reference the respective proton chemical shifts; all indirect dimensions were
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referenced according to the ratio of their heteronuclear gyro-magnetic ratios
and specific nuclear observation frequencies as described by Wishart et al.

(84). IUPAC standard values (85) were taken for the gyro-magnetic ratios.

2.1.6.1 Manual backbone and side-chain assignment

All spectra were analysed in the CCPN Analysis software package (86). Back-
bone and side-chain assignments were initially characterised in terms of nonde-
script spin systems through correlations to amide proton resonances within the
15N HSQC spectrum. A comprehensive comparison of secondary resonances to
BMRB (87) standard values for residues in all structural configurations then

enabled residue-type assignment.

The sequence specific assignment was achieved with the standard “back-
bone walk” technique (outlined in Chapter 3) by following the i to i-1 connec-
tivities for the Co and C( atoms observable in the CBCA(CO)NH, CBCANH
and CC(CO)NH spectra. Assignments were then verified by identifying ¢ to i-1
connectivities for the sidechain protons in the "N TOCSY and H(CCO)NH
TOCSY spectra.

2.1.7 Structure determination
2.1.7.1 Restraint optimisation

The ATNOS/CANDID(88, 89) NOE peak picking and assignment algorithms
within the UNIO (90, 91) software package were used to identify and assign
NOE crosspeaks from both the 3C and >N NOESY-HSQC spectra. Peak pick-
ing tolerances of 0.03 ppm (1H) and 0.4 ppm (**C, *N) were used and based
on the baseplane signal-to-noise ratio determined for the individual NOESY
spectra, NOE crosspeak volumes were scaled and converted into upper limit

distance restraints according to equation 2.1 (89):

—(1/6)

b= S L (2.1)
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where b is the upper distance bound, [ is the volume of the assigned NOE
crosspeak p, Vk is a relative contribution score and @) is a calibration constant
for the proton species (i.e. backbone 'H or side-chain 'Hy or 'Hs methyl
protons) of the o and B nuclei giving rise to the NOE crosspeak in spectrum
S. If the assignment was found to be ambiguous with respect to n possibilities,
the upper distance bound was taken as a superposition across the potential
assignments until the possibilities were discarded according to incompatibilities
with the initial covalent structure (UNIO, cycle 1) or the generated ensemble of
the previous structural iteration (UNIO, cycle2 - cycle7). Input files consisted
of an XEASY (92) formatted list of the AVR3all backbone and side-chain
assignments (created with the CCPN format converter (86)) and CARA(93)
formatted N and *C NOESY-HSQC spectra.

In the same computational run as the ATNOS/CANDID automated NOESY
crosspeak assignment, UNIO, in conjunction with the CYANA 2.1 (94) tor-
sion angle dynamics algorithm, was used to calculate the initial restraint based

models.

Input files consisted of a CYANA formatted amino acid sequence for
AVR3all, a list of ¢ and ¢ backbone dihedral angles as predicted from the
chemical shifts by the TALOS+ (95) web server, a list of all AVR3all NMR
peak assignments and CARA formatted *C and '»N NOESY-HSQC spectra.
UNIO ran through a series of seven iterative cycles of simulated annealing
governed by restraint optimisation and energetic minimisation of the resulting
structures (Table 2.1.2). One hundred initial structures were calculated for
each cycle and the top twenty, scored according to their CYANA target func-
tion (96, 97), were used to progress to the next iterative cycle along with the

respective restraints list.

Table 2.1.2: The computational procedures undertaken with UNIO and
CYANA 2.1 during the iterative restraint optimisation and initial structure
calculation of AVR3all.

Cycle(s) Step # Procedure Parameters
1 1 Network anchoring
1 Initial minimisation
2 High Temperature Dynamics 10 kK, 2 fs
2-7 3 Slow cooling
4 Addition of protons
5) Final minimisation 8000 steps
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2.1.7.2 Final calculation and refinement in

explicit solvent

To generate a refined structural ensemble, CNS 1.3 (98) was used, with the
EBI RECOORD scripts (99) and the fold-optimised restraints from cycle six of
the UNIO/CYANA calculation (to maintain restraint ambiguity). The benefit
to CYANA torsion angle sampling is that simpler potential energy terms and
fewer degrees of freedom (and hence the extra benefit of being computationally
faster) are better to optimise the starting restraints to best evade unfavourable
local minima. However, once a set of self-consistent distances had been opti-
mised and a core macromolecular fold defined, a more rigorous, atomic level,
calculation could be carried out. The EBI RECCORD scripts were used to gen-
erate a final 100-model ensemble calculated in Cartesian space, in the presence
of explicit HyO solvent with the PARALLHDG 5.3 force field (Table 2.1.3).

Table 2.1.3: The computational procedures undertaken with CNS 1.3 as
dictated by the RECOORD (99) scripts for the second simulated annealing
step and water refinement of the AVR3all structural ensemble.

Phase Step Procedure
1 High temperature torsion angle dynamics
10 kK in 2000, 24 fs steps
Simulated 2 Torsion angle dynamics cooling
annealing 10 kK to 50 K in 2000, 24 fs steps
3 Cartesian dynamics cooling

i) 2 kK to 1 kK in 8000, 3 fs steps
ii) 1 kK to 50 K in 8000, 3 fs steps

1 Energy minimisation
7 A water shell immersion
2 Slow heating
100 K to 500 K in 100 K, 3 fs, steps
Solvated 3 Refinement
refinement 500 K 4 fs , 2000 MD steps
4 Slow cooling
500 K to 25 K, in 25 K incr. 4 fs
5 Final minimisation
200 steps
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2.1.7.3 Ensemble validation

The final ensemble of 100 structures were scored according to their lowest over-
all structural energies (D (Evonds+Eangies, +Eimproper+EdinedraiTEvanDerw aals+
FEeec + Enor + Ecqin)) and the top 20 structures with zero NOE (>0.2 A) or
dihedral (>5°) restraint violations were compiled into a 20 model structural
ensemble Protein Data Bank (PDB) file. The structural validation tools CING
(100) and PSVS (Protein Structure Validation Suite (101), including analyses
from the PROCHECK (102) and WHATTIF (103) software packages) were used
to assess the overall quality of the calculated models. If regions were found to
be “disallowed” with respect to backbone ¢ and ¢ angles, 3 atom deviation or
side-chain rotamer geometry across a significant number of structural models,
attempts were made to improve the overall ensemble by either relaxing the
restraints to 5.5 A or deleting them entirely if they were found to be incom-
patible with the overall fold. The calculation was then repeated with these
alterations or omissions until no significant violations remained. The final
structural ensemble has since been deposited with the RCSB under the acces-
sion code 3ZGK and will be released upon publication of the corresponding

article.

2.1.8 AVR3allAN NMR sample preparation

NMR samples for Ty, Ty and hetNOE relaxation at 500 and 800 MHz were
made to a total volume of 290 ul and contained a final concentrations of 1 mM
protein, 10% D50, 0.03% NaNj and 200 uM DSS. Samples were spin filtered
prior to use (0.22 ym pore size, Corning Inc., USA) and were transferred to
5 mm Shigemi tubes, susceptibility matched to DO, with an 8 mm spacer
designed for use in Bruker probes (Shigemi Inc., USA). Tube inserts were
positioned so as to fully remove any air above the sample and were fixed into
position with Parafilm (Pechiney Plastic Packing Company, USA) to the top

of the outer tube.

2.1.9 NMR relaxation of AVR3all1AN

For the AVR3allAN construct, all N relaxation NMR experiments were ac-
quired at 293 K on Bruker Avance III (800 MHz) and Avance I (500 MHz)
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spectrometers equipped with triple resonance indirect detect TXI probes with
Z-gradients. All sets of T; (delays: 20 ms, 100 ms, 200 ms, 500 ms, 750 ms, 1 s
(repeated) and 4 s) and Ty experiments (delays: 17 ms (repeated), 51 ms, 85 ms
(repeated), 136 ms, 170 ms (repeated), 204 ms and 254 ms) were acquired as
interleaved pseudo-3D experiments with all relaxation delays acquired at each
1N t1 increment. Heteronuclear (NH) steady state NOE (hetNOE) experi-
ments were acquired, in triplicate, as interleaved pairs of HSQC experiments
either with or without an initial period of proton saturation. Although only
minor differences were observed between the AVR3all HN chemical shifts at
298 K, and AVR3allAN at 293 K, a 'H-1N TOCSY-HSQC was also acquired
at 293 K to facilitate the assignment of several peaks (Table 2.1.4). To ensure
a consistent temperature between spectrometers and individual relaxation ex-
periments, each spectrometer was temperature calibrated by a series of 1D 'H
spectra of a methanol standard according to the Bruker Variable Temperature
Unit manual (Section 2.3.4.).

Table 2.1.4: NMR acquisition parameters for °N relaxation experiments
acquired at 500 and 800 MHz for the AVR3allAN construct. Ty, Ty and
hetNOE experiments were acquired with hsqctletf3gpsidd, hsqct2etf3gpsidd
and hsqcnoef3gpsi pulse programs, respectively and the HSQC-TOCSY was
acquired with the dipsihsqcf3gpsi3d pulse program.Bracketed complex points
and spectral widths apply to the Fs3 'H dimension of the 800 MHz 'H-'N
TOCSY-HSQC.

By Experiment  scans Complex points Spectral width (Hz)
(MHz) g BN q 15N
500 Ty 32 1024 64 7508 1519
500 Ty 32 1024 64 7508 1519
500 hetNOE 64 1024 32 7508 1519
800 Ty 32 1024 44 12019 2432
800 Ty 32 1024 64 12019 2270
800 hetNOE 64 1024 64 12019 2491

800 HSQC-TOCSY 64 1024 (48) 32 12019 (9603) 2432

2.1.10 NMR relaxation data processing

I°N relaxation spectra were processed as before (Section 2.1.1) and amide
assignments not easily inferred from the AVR3all construct at 298 K were
verified by comparing the chemical shifts of TOCSY-HSQC spectra at the two

temperatures. The CCPN Analysis software package was used to extract the

30



2.1. EXPERIMENTAL METHODS FOR AVR SAMPLES

peak intensities of peak maxima in all relaxation spectra and for T; and Ty
data; the relax (104) software package was used to fit, and minimise, the peak

intensities to a two parameter exponential decay (equation 2.2):

I(t) = Lye Tt (2.2)

where I(t) is peak intensity at time point ¢, I, is the initial peak intensity and
R is the relaxation rate. Baseplane noise, extracted from each spectrum with
nmrDraw, was used to describe the initial peak intensity error and Monte Carlo
simulations within the relax calculation generated final errors with respect to
the deviation from the fit.

For hetNOE data, for each repeated pair of data sets, relax was used to

calculate the hetNOE peak intensity ratio according to equation 2.3:

Isat
ref

NOFE =

(2.3)

where [, refers to the peak intensities from spectra acquired with a preceding
proton saturation pulse and I, refers to peak intensities from the standard
reference 'H-1N HSQC. For analysis, and further calculations, the mean av-
erage of these triplicates at each field was taken, along with the standard
deviation between the respective replicates, as an estimation of the error. The
calculated R;, Ry and hetNOE relaxation values for AVR3allAN at 500 and
800 MHz were then used as inputs, along with an estimated axially-symmetric
diffusion tensor calculated from the 3ZR8 crystal structure using the program
quadric (105, 106), to calculate the Lipari-Szabo model-free parameters with
ModelFree 4.15 (107, 108) (see Section 4.3).

2.1.11 NMR H/D exchange of AVR3allAN

A PN-labelled AVR3allAN sample, prepared as before except with a 550 ul
sample volume, was flash frozen in liquid nitrogen and lyophilised in vacuo
overnight. The resulting protein was resuspended in 550 ul D,O on ice and
transferred to a 5 mm NMR tube (pp535, Wilmad).
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A series of 28 SOFAST-HMQC (pulse program “sthmqcf3gpph”) exper-
iments at 278 K were then acquired at 800 MHz (to = 4 min) over 24 hr.
Spectral widths of 12019 Hz and 3187 Hz and complex points of 1024 and 48
were used for the direct and indirect dimensions respectively. Initial experi-
ments (<49 min) were acquired with 8 scans, and later experiments contained
16 scans to help account for the decrease in signal resulting from H/D ex-
change; each experiment had 96 indirect increments. A subsequent °N edited
HSQC-TOCSY at 800 MHz was also acquired at 278 K to aid resonance as-
signment; with spectral widths of 12019 Hz, 2433 Hz and 9603 Hz with 1024,
32 and 48 complex points for the 'H (Fy), N (Fy) and 'H F3 dimensions
respectively. The CCPN Analysis software package was used to extract peak
intensity maxima which were then fitted to exponential decays using the Origin

(109) software package.

2.2 Experimental methods for TARP samples

2.2.1 TARP constructs
2.2.1.1 TARP ABD (726-825)

A 100-residue construct of the actin-binding domain (ABD) of the TARP
protein from Chlamydia trachomatis was kindly provided with an N-terminal
glutathione-S-transferase (GST) tag, inserted into a pGEX-6P-1 plasmid, by
Dr Ted Hackstadt (Rocky Mountain Laboratories, Montana, USA). The nu-
merical descriptor “726-825” refers to the wild type, full-length TARP residue

numbering.

2.2.1.2 TARP (726-808)

An 88 residue, C-terminally truncated, construct of the TARP actin-binding
domain was also created by introducing a premature stop codon in the
TARP796.805 gene by site directed mutagenesis. This was achieved by us-

ing a Quikchange IT™

site directed mutagenesis kit (Agilent, USA), as per
manufacturers instructions with custom primers (Sigma Aldrich, USA) (Table

2.2.1). The resulting construct was purified from successfully transformed F.

32



2.2. EXPERIMENTAL METHODS FOR TARP SAMPLES

coli (strain XL1-Blue) using a NucleoSpin®) plasmid midi prep kit (Macherey-
Nagel, Germany) and sequenced (Genome Enterprise Limited, UK) using stan-

dard pGEX forward and reverse primers.

Table 2.2.1: The PCR primers used to incorporate a premature stop codon
at residue position 809 in the TARP 726-825 gene by site directed mutagenesis.

Primer Sequence (5’-3)

Forward CCATGGAAAGGAAGCACGTCTTAAACGGGATCAGCAGGAG
Reverse GGTACCTTTCCTTCGTGCAGAATTTGCCCTAGTCGTCCTC

2.2.2 Overexpression of TARP constructs

2.2.2.1 Bacterial transformation

Cell transformations of TARP constructs were carried out with the protocol

outlined in Section 2.1.2.1.

2.2.2.2 Unlabelled TARP construct expression

E.coli (strain BL21 DE3*) colonies from successful transformations were picked
and used to inoculate 10 ml aliquots of LB-ampicillin media (100 pg.ml !
ampicillin). After overnight growth at 37°C with shaking (200 rpm), 5 ml
of overnight culture was used to inoculate 0.5 1 of LB-ampicillin media (2 1
flasks), which were then incubated at 37°C with shaking (200 rpm). Cultures
were grown to an O.Dggo of 0.6-0.8 and then supplemented with 1 mM IPTG
to induce overexpression. After 3-4 hours of continued growth, cultures were
harvested by centrifugation at 4,000 x g for 15 mins, 4°C. Following centrifu-
gation, all supernatant was removed bar -40 ml, which was used to resuspend
the cell pellets. Cultures were then transferred to 50 ml centrifuge tubes and
cells were harvested by centrifugation once more at 4,000 x g for 15 mins,
4°C. All remaining supernatant was discarded and cell pellets were frozen at
—20°C.
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2.2.2.3 Expression of isotopically enriched TARP

constructs

All isotopically enriched TARP expressions were carried out according to Sec-
tion 2.1.2.2, with either appropriate concentrations of ’NH,Cl and *2C glucose
or NH,CI and *C glucose.

2.2.3 TARP purification

Harvested cell pellets were thawed on ice and resuspended in 35 ml ice cold
phosphate buffered saline (PBS) (140 mM NaCl, 2.7 mM KCI, 10.1 mM
NayHPOy, 1.8 mM KH,POy), pH 7.3. The resuspended cells were lysed with
two sonication steps of 8 min 20 sec, by 30 W pulses for 200ms.s! (Status
200, Phillip Harris Scientific, UK) with a 5 min incubation on ice in between
steps. Cell debris was then harvested by centrifugation at 30,000 x g for
30 min, 4°C. Overexpression was checked using InstantBlue™ (Expedeon,
UK) stained 15% SDS-PAGE gels. The resulting lysate was supplemented
with 2 mM DTT and applied to a 20 cm glass chromatography column con-
taining Glutathione Superflow GST-affinity resin, CV = 15 ml, (Generon, UK),
that had been equilibrated with 4 CV PBS + 2 mM DTT. The column was
then left to incubate, with agitation, at 4°C for 2 hr. The flow-through was
then collected on ice, followed by eight individual CV washes of PBS + 2 mM
DTT. GST-tagged protein was then eluted with four individual CV washes of
10 mM glutathione, 50 mM Tris-HCI, 200 mM NaCl, pH 7.5. Elutions fractions
were analysed with InstantBlue™ (Expedeon, UK) stained 15% SDS-PAGE
gels and fractions containing GST-TARP constructs were pooled and dialysed
exhaustively against two 5 1 aliquots of PreScission™ cleavage buffer over
36 hr using 3.5 kDa MWCO tubing at 4°C. Fusion protein concentration was
determined by UV-Vis spectroscopy (GST:TARP796.825/ TARP726.808 €280nm =
47650 Mt.cm™) and PreScission™ protease was then added (2U.mg™) with
the digestion incubated at 4 °C overnight with slight agitation. Silver stained
15% SDS-PAGE gels were then used to confirm digestion and samples were
then concentrated to 1.5 ml with a 5 kDa MWCO concentrator.

The TARP samples were then finally purified using a 75 cm glass chro-
matography column packed with S75 Superdex size exclusion media (GE Health-

care, USA). Using an AKTA explorer purification system, samples were in-
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jected onto the column (CV = 330 ml), equilibrated with 2 CV PreScission
cleavage buffer, at 1 ml.min! and elution fractions were collected based upon
the absorbance at 280 nm. The presence of pure TARP was established for
experimental use by silver stained 15% SDS-PAGE gels. TARP samples were
then dialyses exhaustively over 36 hrs against two 5 1 aliquots of G-actin buffer
(0.2 mM CaCly, 2 mM Tris-HCI, pH 7.5) either with 0.2 mM NayATP for ITC

and SRCD experimentation, or without for NMR experimentation.

2.2.4 Actin purification

G-actin was purified with a two-step protocol modified from that originally
described by Pardee and Spudich (110) with the aid of Dr. Robin Maytum
(University of Bedfordshire).

2.2.4.1 Preparation of actin-acetone powder

Two freshly killed chickens (A.D Harveys slaughterhouse, Norwich, UK) were
collected within one hour of sacrifice and stored on ice during transit. All
following work was carried out on the day of slaughter, in a 4°C cold room,
with all buffers and equipment prepared in advance and cooled to 4°C. All
obtainable breast muscle (-240 g) was dissected from both chickens and minced

twice through a meat grinder until homogenous.

Mince was then stirred in 11 of extraction buffer #1 (150 mM KHyPOy,
150 mM Ky;HPOy,, pH 6.5) for 10 mins before being collected and drained
through muslin cloth which had been sterilised by boiling in water for 15 min.
The extraction process was repeated twice more, with extraction buffers #2
(50 mM NaHCO3) and #3 (1 mM EDTA, pH 7.0), respectively. The extracted
meat was then washed in two 2 | aliquots of HoO for 5 min with stirring. The
washed muscle was then moved to a room temperature fume cupboard and
added to 1 | acetone, with stirring, for 10 min before being pressed dry with
sterile muslin cloth. The acetone wash was repeated a total of five times and
the resulting muscle was loosely broken up, covered with tissue and left to
dry on a large evaporating dish overnight. The following day, all filamentous
material was coarsely grated to remove large, insoluble matter and the resulting

actin-acetone powder (21.13 g) was stored at —20°C.
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2.2.4.2 Actin purification

All buffers, and muslin cloth (sterilised by boiling for 15 minutes), were pre-
pared 24 hrs prior so as to allow them to chill thoroughly to 4 °C. Packed in a
mild salt:ice mix, 1.5 g of actin-acetone powder was stirred with 120 ml initial
buffer (10 mM Tris-HCI, 0.5 mM Na,ATP, 0.2 mM CaCl,, 1 mM DTT, pH 8.0)
for 30 min. The resulting solution was strained through two layers of sterile
muslin cloth into a filter paper containing Buchner funnel on ice, under vac-
uum. The original beaker was rinsed with a further 30 ml initial buffer, which
was then also filtered. Filtrate was then further clarified by ultracentrifugation
for 1 hr at 92,650 x g, 4°C. The G-actin-containing supernatant was decanted,
supplemented with 2 mM MgCl, and 100 mM KCI to induce polymerisation
and left to gently stir at room temperature for 1 hr. Polymerised actin was
then harvested by ultracentrifugation for 3 hr at 92,650 x g, 4°C. The super-
natant was then discarded and F-actin pellets were resuspended in a total of
22 ml depolymerisation buffer (0.5 mM Tris-HCI, 0.2 mM CaCl,, 1 mM NaNj,
pH 7.5). This was passed though a handheld homogeniser 10 times before
being left to dialyse (3.5 kDa MWCO) against a further 4.5 1 depolymerisation
buffer for 12 hr at 4 °C.

The following day, the depolymerised actin was removed from dialysis and
clarified once more from insoluble materials by ultracentrifugation for 1 hr, at
92,650 x g, 4°C. The resulting solution was either diluted (depolymerisation
buffer), or concentrated (Vivaspin, 10 kDa MWCO) to 1 mg.ml™* (Gallus gallus
actin €280nm= 1.028 mg.ml'.cm™), and the resulting solution supplemented
with final concentrations of 5 uM NayATP, 2 mM MgCly, and 100 mM KCL
Pure F-actin pellets were then harvested with ultracentrifugation at 92,650 x g
for 3 hr, 4°C. The pelleted F-actin was resuspended in a total of 10 ml G-
actin buffer (0.2 mM Nay,ATP, 0.2 mM CaCly, 2 mM Tris-HCI, pH 7.5), passed
through a handheld homogeniser 10 times and dialysed (3.5 kDa MWCO) for
36 hr against 5 1 G-actin buffer. Actin samples were then diluted accordingly
prior to use, and any excess was flash frozen, with the addition of 1 mM DTT,

in liquid nitrogen and stored at —80°C.
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2.2.5 NMR sample preparation

All NMR samples were made to a total volume of 500 uyl and contained final
concentrations of approximately 1 mM protein, 10% D,0O, 0.03% NaNj and
200 uM DSS. Samples were spin filtered prior to use (0.22 ym, Corning Inc.,
USA) and were transferred to 5 mm NMR tubes (pp535, Wilmad).

2.2.6 NMR spectroscopy

NMR spectra for the TARP796.805 and TARP796.508 constructs were acquired
at 298 K (unless otherwise stated), either at 800 MHz (using a Bruker Avance
III spectrometer equipped with a triple resonance indirect detect TXI probe
with z-gradients) or 500 MHz or 600 MHz (using Varian Inova spectrometers

with 5 mm triple resonance z-gradient probes).

The following experiments were acquired by Dr. Tharin Blumenschein,
UEA, using the TARP72.805 construct, at 800 MHz: ['H-'SN]-HSQC, 3D
CBCA(CO)NH, 3D HNCACB, 3D HNN, 'H-'N TOCSY-HSQC and 'H-'°N
NOESY- HSQC (Table 2.2.2). Furthermore, series of variable temperature
(278-307 K, in 5 K increments), pH (additions of 1 M NaOH or 1M HCI) and
NaCl concentration (additions of 1 M or 5 M NaCl) ['H-°N] HSQC series were
also acquired (Table 2.2.3).

Table 2.2.2: NMR acquisition parameters of experiments acquired at 800 MHz
for the backbone assignment and analysis of the TARP ABD.Dimensions
different to those in the table header are labelled in superscript.

Experiment Scans  Complex points Spectral width (Hz)
lH 15N 13C IH 15N 13C

TH-BN HSQC 24 1024 128 - 11161 3250 -

CBCA(CONH 16 1024 32 90 9615 2595 15095
HNCACB 24 1024 32 70 9615 2595 15095
HNN 48 1024 41 32N 9615 2595 2595 °N

15N NOESY 16 1024 32 96 'H 09615 2595 9615 H
BN-TOCSY 16 1024 32 92 °'H 09615 2595 9615 H
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Table 2.2.3: NMR acquisition parameters for '°N experiments acquired for
the TARP ABD construct.All experiments except pH series (hsqcetf3gpsi)
were acquired with the ghNhsqc pulse program.

By Experiment scans Complex points Spectral width (Hz)

(MHz) 'H 15N H 15N
500 T, 16 1024 128 8000 1944
500 T 32 1024 128 8000 1944
600 NaCl series 32 1024 64 8358 2431
600  Temp. series 8 1024 256 6948 1630

800 pH series 8 3250 128 11161 2270

During the pH titrations, the method used to determine the exact pH was
taken and modified from that described by Baryshnikova, O. K et al., (111),
wherein the [HA]/[A-] ratio of the buffer species from are calculated from the
1D 'H-NMR chemical shifts of the labile buffer protons (Equation 2.4).

(2.4)

00ps — O
pH = pK, — logio (M)

Oma — 00bs

where Sops is the observed chemical shift (ppm) of the buffer species and 6y
and 0, are the predetermined chemical shifts with respect to the fully proto-

nated and fully deprotonated states respectively.

The relaxation experiments carried out for the 105 residue construct of
the TARP ABD were acquired at 500 MHz were using sets of individual HSQC
experiments with randomly ordered sets of T; delay times (20 ms (repeated),
100 ms, 300 ms (repeated), 500 ms, 750 ms, 1s, 2's, 3 s, 5s) or Ty delays(10 ms
(repeated), 50 ms, 70 ms, 110 ms, 150 ms (repeated), 210 ms, 250 ms, 310 ms)
delays. All spectra regarding the TARP constructs were processed using NM-
RPipe and analysed with the CCPN Analysis and relax software packages as
previously described (sections 2.1.1, 2.1.2 and 2.1.6 respectively).

2.2.7 Synchrotron circular dichroism

Synchrotron radiation circular dichroism (SRCD) experiments of the two TARP
constructs, and their analysis, were acquired by our collaborators Dr Andrew
Miles and Prof Bonnie Wallace (Birbeck college, UK) on beamline CD1 at
the Institute for Storage Ring Facilities, University of Aarhus Denmark. Two
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aliquots of both TARP constructs were shipped on ice at 1 mg.ml™!, following
dialysis against 5 1 aliquots of either G-actin buffer (without Nay ATP) (20°C
experiment), or G-actin buffer (without Nay ATP), 10% glycerol (thermal de-
naturation experiments up to 85°C). A 20 uM 3:1 TARP ABD:actin complex
was also prepared, and shipped on ice, in the presence of G-actin buffer with
0.2 mM ATP. Measurements were made between 280 nm and 175 nm (1 nm
step size) in 0.005 cm pathlength quartz Suprcil cells (Hellma, UK), with
an averaging time of 2 s. Variable temperature SRCD was carried out from
20°C to 85°C in 5°C increments, with each stage equilibrated with a 3 min
hold-time. Three scans were acquired at each temperature and were aver-
aged and subtracted from the average of three control scans of the relevant
buffer. Spectra were calibrated against camphorsulphonic acid (112) and all
processing was carried out with CDTool software(113). The Dichroweb anal-
ysis server was used for all secondary structure determination (114). Values
from the CONTINLL (115, 116), SELCON and CDDSTR (117) (Reference

dataset 6) algorithms were averaged.

2.2.8 Electrospray mass spectrometery

Mass spectrometry of TARP ABD was carried out by Dr Robin Maytum at
the University of Bedfordshire using a Thermo Finnigan LCQ spectrometer,
fitted with a metal needle electrospray ionisation option. A 1 mM sample of
TARP796.805 was buffer exchanged into 10 mM Ammonium Bicarbonate. Prior
to experimentation, the sample was made to 20% methanol, 0.1% formic acid
and the sample was applied by direct injection at a flow rate of 10 ul.min™.
Data was recorded and averaged, over 5 min, and processed with the accompa-
nying Thermo Xcalibur v1.3 software. The masses for each peak in the most
intense multiply charged series were calculated using the equation (m/z) x z
and the average mass was calculated as the mean average with the standard

deviation as the error.

2.2.9 [Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) was carried out using a MicroCal 200
calorimeter (GE Healthcare) at the John Innes Centre, Norwich, UK.
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Both the TARP ABD and actin samples were dialysed in separate dialysis
bags against the same two 5 | batches of G-actin buffer for 36 hr. The con-
centrations of both samples were adjusted to the final values the morning of
experimentation. Ligand binding experiments were carried out at 25°C, with
a series of 19, 2 yl injections of 175 uM TARP796. 805 (total syringe volume =
40 pl), into a 200 pl chamber of 10 uM G-actin with 1000 rpm stirring. Injec-
tions were made over 4 s, 120 s apart, with an initial injection point carried
out (volume = 0.4 pl, duration = 0.8 s) to ensure the syringe was void of air.
Three control experiments were also carried out in order to subtract the en-
thalpies associated with injection (buffer:buffer), actin dilution (buffer:actin)
and TARP dilution (TARP:buffer). All analysis was carried out within the
Origin software package using the integrated MicroCal ITC plugin.

2.2.10 TARP:actin docking simulations

All in silico docking simulations for the TARP:ABD and WAVE2 WH2 do-
mains with monomeric G-actin were carried out on the FlexPepDock web
server (118) (accessible: http://flexpepdock.furmanlab.cs.huji.ac.il/).
Input files consisted of single PDB formatted coordinate files containing the G-
actin monomer and relevant peptides as molecular chains A and S, respectively,
with a single “TER” termination line in between. No small molecules or water
molecules were included. The model for the G-actin monomer included in all
simulations was derived from the WAVE2:actin crystal structure (PDB code:
2A40) (119).The reliability of the FlexPepDock methodology was tested with
simulations of the 22 residue WAVE2 WH2 domain, for which the results could
be compared to the 2A40 crystal structure. Three calculations were carried out
for both the aligned 22 residue WAVE2 and TARP ABD WH2 domains. These
were with both constructs either occupying a fully extended state (135° for all
@/ angles), conforming to ideal-geometry 10 residue o-helices (¢/{) angles
of —57° and —47° respectively) or containing the conformation of the actin-
bound WAVE2 peptide. For the aligned TARP fragment, this was achieved by
constraining the construct to the dihedral angles of the WAVE2 peptide from
the 2A40 crystal structure. All WH2 chains were translated out of the actin
hydrophobic cleft by 5 A at 90° to the plane of the a-helical axis. The fully
extended, ideal-geometry helices and WAVE2-adopted conformation (for the
TARP ABD) were generated by standard scripts packaged with CNS version
1.3 (98), MODELLER (120) and UCSF-Chimera (121), respectively.
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2.3 Common techniques

2.3.1 Preparation of competent cells

To prepare E. coli strains JM-109 and BL21-DE3 for efficient transformation,
5 ml of LB culture was inoculated from colonies picked from LB-agar plates
and incubated overnight at 37°C with 200 rpm shaking. The following day,
0.4 ml of overnight culture was used to inoculate 40 ml of fresh LB and cultures
were incubated at 37°C with 200 rpm shaking until the O.Dgo was approxi-
mately 0.4. Cells were transferred to a 50 ml centrifuge tube and harvested by
centrifugation at 7,700 x g for 8 min, 4°C. Following centrifugation, the su-
pernatant was discarded and the cell pellet, incubated on ice, was resuspended
in 8 ml ice cold Transformation Buffer 1 (100 mM KCI, 300 mM potassium
acetate (pH 7.5), 13.5 mM CaCly, 15% (v/v) glycerol, 50 mM MgCl,, pH 6.4,
sterilised by autoclave). Cells were then incubated on ice for a further 15 min
and then harvested as before. Supernatant was discarded and cells were re-
suspended in 4 ml ice cold Transformation Buffer 2 (10 mM KCI1, 100 mM
CaCly, 15% glycerol (v/v) and 20 mM 3-(N-morpholino)propanesulfonic acid
(MOPS), pH 6.8, sterilised by autoclave). 50 ul aliquots of cells were trans-
ferred to 1 ml micro-centrifuge tubes, flash frozen in liquid nitrogen and stored

at —80°C for future use.

2.3.2 SDS-PAGE

All SDS-PAGE gels were run at 200 V until the leading edge of the Bromophe-
nol blue sample buffer had flowed from between the gel plates. Cell lysate
samples were prepared by harvesting cells from 1 ml of culture, removing the
supernatant, and heating at 100°C for 10 min in an appropriate (50 {ul pre-
induction, 100 pl post-induction) volume of Bromophenol blue sample buffer
(50 mM Tris-HCI pH 6.8, 10% (v/v) glycerol, 2% (w/v) SDS, 0.1% (w/v)
Bromophenol blue, 0.7 M 2-mercaptpethanol). Protein samples were prepared
by the addition of an equal volume of 2x concentrated sample buffer to sam-
ple. Following electrophoresis, protein bands were stained using InstantBlue™
coomassie stain (Expedeon, UK) until satisfactorily visible, and background

stain was removed by rocking the gels over night in 4H50.
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2.3.3 SDS-PAGE silver staining

Silver staining was used to visualise SDS-PAGE protein bands that were in-
effectively stained with InstantBlue due to a lack of aromatic amino acids.
Following electrophoresis, gels were first removed from the casting plates and
then washed for 10 min each in separate 50 ml volumes of: 50% methanol, 5%
methanol, 40 uM DTT (30 s HO rinse) and 0.1% (w/v) AgNO; (30 s H,O
rinse). Protein bands were then visualised by washing in development solution
(0.05% formaldehyde, 280 mM NayCO3) until stained. Citric acid was then
added in excess to stop the staining and background staining could be clarified,

if necessary, by rocking in 50 ml HyO for 12 hr.

2.3.4 NMR temperature calibration

The accuracy of the intended sample temperature within all NMR spectrom-
eters was checked using the standard 100% methanol sample provided with
Bruker spectrometers. 1D 'H-NMR spectra were recorded at 293 K and tem-

perature accuracy was assessed using equation 2.5 (122):

T = —23.832A% — 29.46A + 403 (2.5)

where T is the temperature in Kelvin and 8A is the difference in ppm between
the CH3 and OH 'H-NMR peaks of the 100% methanol sample.
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Chapter 3

Characterising the Structure of
AVR3all

3.1 Introduction

3.1.1 Principles of NMR spectroscopy
3.1.1.1 Matter and quantum spins

As a form of spectroscopy, nuclear magnetic resonance (NMR) deals with the
interactions of matter and electromagnetic (EM) energy. Simply put, matter,
as we know it, is composed of atoms, which are in turn comprised of nuclei and
electrons. The nuclei can then be further divided into protons and neutrons
and those in turn are comprised of quarks, without delving into the further

sub divisions (Figure 3.1.1).

The quarks comprising the nucleons are either of the flavour up or down
and it requires two down quarks and an up to form a neutron and two up
and a down for a proton. This then results in a neutron with neutral electric
charge and 1/2 spin and a proton with positive charge (1.602 x 10 C) and
1/2 spin. Spin is an odd concept to comprehend, as there is no macroscopic
equivalent, but it is a fundamental property of all sub atomic particles such as

the magnetic moment, mass, or charge.
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Figure 3.1.1: The composition of matter with an approximate diameter scale.
Quarks (Q in red) are denoted with a U or a D for their up and down flavours,
respectively.

It also does not mean an actual rotational movement but defines a ten-
dency towards a particular angular momentum for a particle, regardless of its
motion. Subatomic particles, atoms and molecules may have an actual rota-
tional angular momentum obtained from physical collisions or electromagnetic
manipulation but it is only subatomic particles that intrinsically possess an
angular momentum, and this is determined by their spin. Spin, as a quantum
property, is designated by S and is either expressed as integer terms (boson
particles) or half-integer terms (fermion particles). As the physical rotational
angular momentum at the atomic level is also quantised, the total angular
momentum vector, J3, for a particle can be deduced by arrangement of the

two quantum components J; and Js (equation 3.1) (123).

)
|Jy — Jo
|1 — Jo| +1

Js = (3.1)
\|J1 + Jo
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Equation 3.1 is a good example of how quantum states can be combined
through additive or subtractive means, and how further additions or subtrac-
tions of the relevant quantum integers are possible until the minimum state
is achieved through sufficient reductions. In real environments a system will
summate to the lowest energy state as dictated by its surroundings. This is
described by the Aufbau and Pauli principles that explain how electron spins
pair and reside in the lowest energy orbital locations (123). Atomic nuclei
themselves also possess quantum spin, I. This is a culmination of their con-
stituent proton and neutron spins and for hydrogen, (*H), I = 1/2 resulting
from its single proton nucleus. For all other nuclei, which are comprised of
multiple protons and neutrons (collectively termed nucleons), the potential
values for the overall spin can be calculated in a similar fashion to Equation
3.1 for different combinations of the nucleon spin states. Although many po-
tential configurations may exist, under standard conditions, the overall I will
result from the lowest energy configuration, which is termed the ground state.
There are no empirical methods of predicting specific ground state spins, and

they are best thought of as properties inherent to each element or isotope.

Standard NMR techniques deal with nuclei of spin 1/2. This is due to the
fact that spin /2 nuclei act as a single point charge and so subsequently ex-
hibit a symmetrical electrical distribution. Electric effects do not then dictate
the rotational movement of the nuclei and during an NMR experiment any
apparent change can be thought of as induced by magnetic interaction. The
utilisation of elements with spin >1/2 is possible with NMR but nuclei with
largely homogenous electric fields are favoured due to their limited electronic

interaction with the surrounding environment (124).

3.1.1.2 The Zeeman Effect and Nuclear Zeeman splitting

During an NMR experiment, the measured spectral energies arise from the
emissions of perturbed nuclei relaxing to a lower energy state. The Zeeman
Effect describes the initial splitting of these energy states due to the applied
magnetic field on the sample (Figure 3.1.2, A & B). In the absence of a mag-
netic field any given particle will have 2n + 1 alternate, constituent particle
quantum state configurations which are degenerate; that is their energy levels

are equal.

The Zeeman Effect has also been described for electrons (Figure 3.1.5, C)
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(125) whereby the quantum arrangement of both their orbital arrangement or
spin can occupy separate degenerate levels and for photons (126) which have
degenerate quantum spins. NMR spectroscopy however utilises the Zeeman
Effect of nuclei, the Nuclear Zeeman effect, wherein the constituent nucleon
spins can be degenerately arranged. Although these configurations equate
to the same degenerate energy, each arrangement will have its own specific
angular momentum quantum state and hence its own magnetic moment as

they are co-linear properties (Equation 3.2) (127):

p=n1 (3.2)

where y is the magnetic moment of the particle, v is the gyromagnetic ratio of

the particle and I is the nuclear spin.
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Figure 3.1.2: A). The Zeeman splitting of a spin % nucleus, where h is Plancks
constant (6.63x103* J.s), v is the radiation frequency and E is emission energy.
By is the applied magnetic field and M; is the azimuthal quantum number.
B). The Zeeman splitting of a spin=1 nucleus. C). The Zeeman splitting of
an electron orbital with three degenerate configurations. D). The Boltzmann
distribution equation. Where N; / N is the fraction of particles in each state,
g; is the number of degenerate states, E; is the energy of the particles, Z (T) is
the partition function, T is temperature in Kelvin and Kg is The Boltzmann
constant (1.38065 10% J.K').
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In the presence of a magnetic field the degeneracy of these energy states is
removed as their respective magnetic moments align differently with the main
magnetic field By. Once the magnetic field has been applied and the degeneracy
of the energy states has been removed, whether or not the magnetic moment
of a particular atomic nucleus will align with or against the field can be though

of as a random process.

However, real-world samples are ensembles of atoms, and the fraction of
the total population in each energy state is actually a function of Boltzmann
distribution (Figure 3.1.2, D) (128). Related to the energy within the system,
the Boltzmann distribution is a probability measure that can determine the
ratio of high energy to low energy states in a particular system. Historically
these states have been labelled f for high energy states (which align against the
magnetic field) or o for the lower energy states (which align with the magnetic
field).

3.1.1.3 Nuclear magnetism and precession

In a free moving state, atoms will tend to align their magnetic moment for
a minimal magnetic energy along the axis of the external magnetic field B.
Atomic magnetism arises from three components, two of which are inherent
electron magnetism and inherent nuclear magnetism both intrinsic quantum
properties of their respective particles. The other constituent is an induced
magnetism dependent on electron orbital circulation and is wholly comparable

to the phenomenon of electronic inductance.

The combination of these magnetic components then determines the over-
all magnetic moment for a given atom and therefore its behaviour within an
external magnetic field. Magnetic moments with a dominant electron current
component perturb the external magnetic field outwards (diamagnetic) whilst
moments with dominant inherent magnetism attract it (paramagnetic). NMR,
as the name suggests, deals with the inherent quantum magnetism of the nu-
cleus, y, and this is the summation of the inherent magnetism of the subnuclear
particles. As shown in Equation 3.2, u is also related to the nuclear spin I by
a proportionality constant known as the gyromagnetic ratio, y. This relation-
ship not only defines how the magnetic moment and spin angular momentum
magnitudes are correlated, but with respect to the plane in which they act,

also explains the relationship between their directional components.
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As co-linear properties, a nucleus with y > 0 will have a parallel / and y
alignment whereas I and y will be antiparallel for a y < 0 (Figure 3.1.3, A).
The gyromagnetic ratio is an inherent characteristic of sub atomic particles
and, if known a priori, can be used to determine the behaviour of a particu-
lar nucleus within an applied magnetic field. Outside of a magnetic field, the
atomic magnetisation of a normal material (i.e. not a fixed magnet) will be
isotropic; it is equally distributed in each direction and has no net effect. In
addition, the nuclear spin angular momentum will also be similarly isotropic.
Upon the application of an external magnetic field (By), the individual nuclear
magnetic moments will align, distributing themselves between energy configu-

rations according to Boltzmann distribution (Figure 3.1.2 D).

@ Y<0 vy>0 IB" Y<0

i:éu A\ u
I

wy = —Y By

Figure 3.1.3: The relative directions of nuclear spin angular momentum (/)
and magnetic momentum (u) at the lowest energy configuration for nuclei with
gyromagnetic ratios (y) greater or less than zero. B) The torque generated
nuclear precession in the presence of an external magnetic field C). The angle
between precession and the By axis immediately after application of the field
relates to the nuclear directionality prior to By. D). The relationship between
the frequency of precession (w), the gyromagnetic ratio (y) and the external
magnetic field strength (B).
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However the presence of the co-linear spin angular momentum compli-
cates the actual behaviour in the magnetic field. The polarising effect of By on
the magnetic moment creates a torque with the spin angular momentum and
the magnetic moments quickly begin to rotate, or precess, about the By axis.
Although the angle of precession will initially be in relation to the initial posi-
tion of I with respect to the By axis (Figure 3.1.3, C), the bulk magnetisation
of the nuclei will quickly (ms) reorient to precess at a fixed angle (¥) (Figure

3.1.3, B) (Equation 3.3).

mry

cos = ————
I(I+1)

(3.3)

where m is the spin state of the nucleus, and I is the spin quantum number.
The frequency of precession (The Larmor frequency, «/21) around the By axis
(historically defined as the z axis) is characteristic of a particular elemental
nucleus and is related to the strength of the applied field and the relevant gy-
romagnetic ratio (Figure 3.1.3, D). For nuclei with y >0 the Larmor precession
will be clockwise about the z axis. For a y <0, Larmor precession will seem-
ingly occur in an anticlockwise direction, although this is just a technicality
owing to the observed frame of reference (4z axis), as the nuclei will have
opposing signs of / and y. This is akin to observing a clock from the opposite
side of the clock face and watching the hands rotate anticlockwise. At this
stage, when Equation 3.3 governs the angle of precession and the spin states
have achieved Boltzmann distribution, the sample is said to be at thermal

equilibrium with the system and the external magnetic field.

3.1.1.4 Generating the NMR signal

Before an experiment takes place, at equilibrium the aligned magnetic mo-
ments of all the spins in solution at equilibrium sum to create a definitive,
net magnetisation vector along the By z axis related to the temperature in the
system. The time it takes to introduce this specific anisotropic magnetisation
once the By field is applied has been termed T4, or the longitudinal relaxation

time and was mathematically derived by Felix Bloch in 1946 (Equation 3.3).

My — M,
M.,  =~(M,B, — M,B,) + —OT
1

@)

(3.4)
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where M is the nuclear magnetisation for the subscript Cartesian axis (x, y
and z), B is the magnetic field strength in the denoted plane (x and y), v is
the gyromagnetic ratio of the nucleus, My is the steady state nuclear magneti-
sation and T is the longitudinal relaxation time. An accurate measure of z
axis bulk magnetisation is unfortunately difficult, if not impossible, to obtain
owing to the huge dominance of the By magnetic field. The majority of NMR
experiments therefore work by measuring the net magnetisation and relaxation
times within, and out of, the x-y plane after the application of a second rotat-
ing magnetic field, termed B;. If this electromagnetic B; pulse is applied to the
sample with the same frequency as nuclear precession, but along the x-y axis,
the net magnetisation within a sample can be made to rotate away from z-axis
equilibrium through an effective torque on the equilibrium bulk magnetisation
vector. These EM pulses, due to the frequency range of nuclear precession, fall
into the radio-frequency (RF) band of EM waves and in their simplest form
are used to induce a 90° change in the net magnetisation. The subsequent
change from the z-axis into the x-y plane enables the bulk magnetisation, now

perpendicular to By, to be measured for the sample.

Once the desired axial changes in the bulk magnetisation vector have been
induced, the pulse is turned off. Because the net magnetisation vector of the
nuclei in the sample was aligned along the z axis prior to the pulse, the bulk
magnetisation vector, having been rotated by the same degree, remains aligned
but now in the x-y plane. At this time immediately after a pulse, the magnetic
moments of the excited nuclei are said to be coherent, or in phase with one
another, and so sum to create the xy term of the bulk magnetisation. Al-
though the bulk magnetisation vector is now perpendicular to By, the thermal
instability of the sample will eventually lead to the nuclear populations once
again attaining thermal equilibrium with By. Concomitantly, because the fre-
quency of precession is dependent on u.Bj, small spatial fluctuations in the
magnetic field will cause some spins to precess at slightly different frequen-
cies, therefore although the initial bulk magnetisation was transferred into the
x-y plane, these different rates of precession will cause a loss of coherence of
the net magnetisation over time. The time a sample takes to lose coherence
and reach thermal equilibrium in the x-y plane is called the transverse relax-
ation time or Ty and can yield important information regarding the dynamics
of a particular species, as molecular motions can also cause variations in the
locally experienced magnetic field. The same can also be said for the longi-

tudinal relaxation time, which is the relaxation back to equilibrium along the
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z axis (T1). The signals acquired during an NMR experiment come from the
bulk magnetisation and are measured by exploiting electromagnetic induction,
which yields a flowing current in a coil, wound perpendicular to the By mag-
netic field. The Ty and Ty relaxations to thermal equilibrium with By yields a
specific, yet typical, signal known as free induction decay (FID) which corre-
sponds to the withdrawal of the magnetisation, from the observable x-y plane

and consequently detection by the coil (Figure 3.1.4).

time

Signal intensity

Figure 3.1.4: A typical free-induction decay (FID) signal acquired after a
pulsed NMR experiment.

There are however multiple parts to an NMR dataset and this is depen-
dent on the specific pulse sequence defined at the start of the experiment.
Theoretically any spin % nucleus will precess in a magnetic field, will be mal-
leable with respect to B; and will have a detectable net magnetic moment.
However the differences in the rate of Larmor precession, as dictated by the
gyromagnetic ratios of the nuclei under observation, usually requires the use
of dedicated circuitry (channels) for the excitation and detection of different

isotopes.

3.1.1.5 The parts per million (ppm) chemical shift scale

Although NMR signals can then be used to ascertain a wide range of infor-
mation about a sample, it is important to maintain a common measurement
system to enable the comparative use of the acquired spectra. In this regard,
when reporting chemical shift frequencies the By field must be taken into ac-
count due to its proportionality to Larmor precession and the Zeeman splitting
of energy levels. Consequently, the Fourier transformed absorption peaks mea-
sured at different field strengths will have a different resonant frequency for

different By magnetic field strengths.
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For this reason, resonant frequencies are always described in relation to
those of a reference compound so that they are independent of field strength.
This chemical shift scale therefore enables results from different spectrometers

to be readily compared, and are calculated according to the formula:

0 0
w _wRef

0
wRef

§ = 10° (3.5)

where 8 is the chemical shift, »° is the Larmor frequency of the nucleus un-
der investigation and w%get is the Larmor frequency of a reference compound,
usually tetramethylsilane (TMS) or 4, 4-dimethyl-4-silapentane-1-sulfonic acid
(DSS). Reference compounds therefore designate a zero to the frequency do-
main and although different reference compounds can be used, as long the
exact standard is known, it can be used to standardise the resulting spectra
and allow comparative analysis. Due to the resulting numerical magnitude
of most chemical shifts it has become standard to denote chemical shifts with
units of parts per million ppm, hence why Equation 1.4 multiples the difference

in frequency by 10°.

3.1.1.6 The HSQC experiment

The 2D heteronuclear single quantum coherence (HSQC) NMR experiment,
and many variants thereof, can be described as the workhorses of NMR. in-
vestigations into protein systems. Its ubiquitous use stems from its ability to
cleanly observe heteronuclear correlations with a relatively short acquisition
time under standard operating parameters (potentially as quick as tens of sec-
onds). This is most commonly acquired for H-N or H-C correlations, but does
of course require the sample under investigation to contain spin = % isotopes
(13C or N) of the particular heteronucleus under observation. The ability
to detect 'H-'°N correlations for isotopically labelled samples is also partic-
ularly useful as the resulting spectra single peaks for the individual amide
moieties of amino acids - with the exceptions of prolines (for which no amide
is present) and NHj sidechain moieties (which appear as two peaks due to
the individual protons each coupling to a shared nitrogen atom). If triple res-
onance experiments are also acquired, then amide peaks can be assigned to
their corresponding amino acids within the primary sequence, allowing residue

specific characterisation. The 'H-'°N HSQC spectrum, is therefore described
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as a “fingerprint” which reports on the conformational and biochemical profile
of the proteins under investigation. The influence of variables, such as tem-
perature, pH, or the addition of small molecules or macromolecular binding
partners, can therefore be highlighted at a residue specific level. The 'H-!N
HSQC experiment is also the principal building block of NH relaxation exper-
iments that allow the elucidation of dynamic molecular phenomena (discussed
later in Chapter 4). The HSQC pulse sequence (Figure 3.1.5) first begins with
an insensitive nuclei enhanced by polarisation transfer (INEPT) magnetisa-
tion transfer that facilitates selective sensitivity enhancement by transferring
magnetisation from the abundant, magnetically susceptible, I spins (*H, large
), to the directly bound, relatively insensitive S spins (*°N, small v) (Figure
3.1.5, *1).
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Figure 3.1.5: The pulse sequence for the gradient enhanced coherence selec-
tion, sensitivity improved hsqcetf3gpsi heteronuclear single quantum coherence
(HSQC) experiment (130-132) routinely used for detecting 'H-'°N correlations
throughout these studies. Narrow hollow bars and wide black bars represent
90° and 180° pulses respectively and shaped pulses are denoted as rounded
bars. All pulses were applied to the x phase unless otherwise stated. The
GARP pulse sequence (133) was used for decoupling during signal acquisition
(hollow triangle). Starred numbers denote the point of INEPT magnetisa-
tion transfer (*1), T; evolution period (*2), the reverse INEPT N-'H mag-
netisation transfer (3*), a PEP block to recover lost signal (*4) and GARP
decoupling during acquisition (*5).

A Ty period (Figure 3.1.5, *2), then follows where the magnetisation is
left to evolve under the chemical shift of the S spins, and during which [
magnetisation is refocused in the x-y plane by a 180° x phase pulse. If a

double labelled sample is under analysis, an optional shaped pulse (Figure
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3.1.5, pl4) can be used to remove the *C-°N coupling during the T; period.
A reverse INEPT transfer block (*3) then transfers magnetisation back to the
coupled [ spins for enhanced detection (owing to the larger y). This is followed
by a “preservation of equivalent pathways” (PEP, (129)) sequence (*4) which
salvages I magnetisation lost during the Ty period due to the inability of the
reverse INEPT transfer to propagate x-plane magnetisation. Incorporation
of the PEP block can recover signal by as much as a factor of v/2, therefore
further increasing the sensitivity of the experiment. The resulting signal is
then measured during decoupling (*5), so as to ensure singlet peaks for the

detected HN correlations, simplifying the resulting spectrum.

3.1.1.7 'Triple resonance experiments and assignment

Although 1D and 2D experiments, such as the aforementioned HSQC, can be
employed in the characterisation of macromolecular biochemistry, the process
of describing individual moieties specifically requires a more complex set of
experiments which can observe particular nuclei based upon multiple types of

different through bond correlation.

In particular, the repeating, and predicable nature of protein chemistry
can prove effective “logic gates” for correlating through bond relationships
between the inherent connectivities of specific hydrogen, carbon and nitrogen
nuclei. Of course, for magnetisation transfer to occur, the exploited nuclei are
required to be of I spin = 1/2 and unfortunately this is not the case for the
naturally abundant isotopes of carbon and nitrogen. However specific types
of chemical synthesis and protein expression methods exist for introducing the
spin = 1/2 isotopes of 1*C and '°N; although this can be an expensive and time-

consuming process.

Termed “triple resonance”, these three-dimensional (3D) experiments then
provide the capability to select for, and resolve in 3D spectral space, the peaks
of specific moieties such as protein backbone protons, nitrogens or carbons or
sidechain atoms such as those of aliphatic or aromatic nuclei. The use of the
information obtained from these spectra can be used to confidently add anno-
tations (assignments) to other spectra, such as the HSQC, for which residue
specific information is not inherently available. For instance, for any given
amino acid (except proline) under ideal conditions, the HN correlation of its

amide moiety will be observed as a single peak in the 'H-'N HSCQ spectrum.
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Triple resonance experiments, which also utilise scalar magnetisation transfer
pathways via these amide correlations, can then be acquired wherein the re-
sultant signals also posses components modulated by the resonant frequencies
(chemical shifts) of these HN nuclei. These frequencies should therefore match
the '1H and N chemical shift components observable in the 'H-'*N HSQC

spectrum.

Assignment itself usually requires multiple triple resonance experiments
to be carried out which can correlate one, or more nuclei to the initial back-
bone amide. Because an atoms environment heavily influences the value of
their chemical shift, peaks of a certain frequency can be indicative of partic-
ular residues, and residue-type assignment can then be made. This is due
to the characteristic chemical shifts of some nuclei in particular amino acids;
namely, alanine (high field CB), glycine (Ca -45 ppm, lack of Cj), serine and
threonine (low field CB). A full atomic assignment however requires identi-
fying connectivities between associated triple resonance peaks. Figure 3.1.6
describes this process for the commonly acquired HNCACB/CBCA(CO)NH

pair of experiments.

As described in Figure 3.1.6, assignment is made possible with pairs of
experiments which use similar magnetisation transfer pathways but enable
the distinction between the nuclei of a particular residue (7) and those of the
residue sequentially preceding it (i-1). Sequential connectivities are therefore
identified with a “backbone walk” by matching Ca and CB chemical shifts
between directly observed residues and those of the corresponding preceding
residue within their own directly detected HN plane. Although a full resonance
assignment is not always necessary (i.e. characterisation of all the observable
nuclei) the assignment process is rarely trivial and to support this backbone
walk methodology, other experiments can also be used which can characterise
the side chain protons (H(CCO)NH), the CO chemical group (HNCO) or the

amide "N (HNN) in a similar fashion between sequentially linked residues.
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Figure 3.1.6: A schematic of the backbone walk methodology for NMR peak
assignment (bottom) and typical carbon peak pattern connectivities in the
relative HN plane of the directly observed residue (i) (top). HNCACB spectra
visualise the Co and CB nuclei from the 4 perspective (blue lines) and weaker
peaks of the preceding residue (i-1, dashed blue lines) as opposing phases
(orange and purple respectively). The CBCA(CO)NH experiment observes
both the Co and Cp nuclei as a single positive phase (green peaks) for the 4-1
residue (dashed red) and confirm the i-1 classification. Adapted from (134).

3.1.2 Experimental aims

By using the principles of NMR spectroscopy as explained above, the aim of
the following chapter will be to document the work undertaken in the deter-
mination of a solution state structure for the AVR3all effector domain. The
acquisition of NOESY-based experiments should allow pertinent distance mea-
surements to be incorporated into a water-refined ensemble and could provide
functional insight, either alone or in conjunction with the previously deter-

mined crystal structure for a shorter AVR3all construct (49).

58



3.2. RESULTS

3.2 Results

3.2.1 Purification

To determine the solution structure of the AVR3all effector domain, an 89
residue construct, comprising the entire secreted effector domain and an addi-
tional N-terminal hexa-His tag, was overexpressed. The purification tag was
cleaved prior to experimentation, yielding 70 residues native to the 72 residues
originally postulated as the effector domain, plus two N-terminal residues (GP)
remaining from the PreScission™ protease digestion. The cleaved construct
had previously been shown unamenable to crystalisation (49). The '3C, *N
double labelled sample for the AVR3all effector domain construct was pre-
pared by Dr Laurence Boutemy at the John Innes Centre, Norwich. Purifica-
tion yielded >5 mg of pure protein, enabling the preparation of an ideal, 1 mM

protein, NMR sample.

3.2.2 NMR resonance assignment

3.2.2.1 Manual peak assignment

Manual peak assignment was carried out with the backbone walk methodology
originally described by Kurt Wiithrich in 1983 (135) (Section 3.1.1.7) that
exploits the characteristic chemical shifts of certain moieties and the sequential
connectivities of protein systems to yield information regarding the specific

type and sequence position of the observed correlations.

In order to assign the chemical shifts of the AVR3all effector domain
backbone nuclei, a 2D 'H-'N HSQC spectrum and 3D CBCA(CO)NH, CB-
CANH and CC(CO)NH TOCSY spectra were acquired. Aliphatic sidechain
protons were assigned using "N-TOCSY and H(CCO)NH TOCSY spectra
whilst aromatic sidechain protons required separate *C-TOCSY and TROSY
HSQC experiments owing to their different chemical shift ranges (25 ppm -
40 ppm and 100 ppm - 140 ppm respectively, compared to the aliphatic 'H
shifts of -1 ppm - 8 ppm. Using this method, 77% of the amide residues (54 of
72, Figure 3.2.1), 69% of the remaining backbone nuclei and 71% of the non-

labile protons could be assigned. A full resonance assignment for the full length
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AVR3all construct is available at the BMRB (http://www.bmrb.wisc.edu),

accession number 18910.
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Figure 3.2.1: The assigned 'H-'*N HSQC spectrum, acquired at 800 MHz for
the full length construct of the AVR3all effector domain. Black lines indicate
amide correlations with a shared nitrogen nucleus, as found in the NH, groups
of amino acid sidechains.

Of the 72 residues within the AVR3all construct, only two (Pro2 and
Pro26) were fully expected to be unobservable within the 'H-'>N HSQC spec-
trum. All visible amide peaks were assigned except 15, however these were
all were found to be minor alternate conformations of other assigned residues.
This was confirmed by identical chemical shifts and peak patterns to those of

other residues with respect to their ¢ and -7 Ca and Cp resonances.

3.2.2.2 Automated NOESY peak assignment

In order to describe the spatial restraints for NMR structure determination,
the peaks present in the triple resonance nuclear Overhauser effect experi-
ments (NOESY) must also be assigned. In principle, this can be accomplished
through the sequential-walk methodology described above, as assigned root

peaks (H-N or H-C scalar correlations) will show a correlation in the f3 di-
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mension to spatially close protons, which should then be identifiable from
their specific chemical shifts. There are many examples of manual NOESY
crosspeak assignments in the literature, however *C and '°N edited HSQC-
NOESY spectra can be notoriously crowded, as in theory, all protons within

5.5-6 A should give rise to observable signals.

For this reason the UNIO automated assignment tool (90, 91) was used
which, when given a list of direct resonance assignments and a set of referenced,
processed HSQC-NOESY spectra, can objectively distinguish and assign the
observable f; peak dimensions (and hence the proximal nuclei). A particular
strength of the UNIO package is that it optimises the assignment list whilst
performing a preliminary structure calculation for the protein in question. The
assignments (and subsequently the structure) are then iteratively refined based
upon which assignments are in fact possible from the current structural en-
semble. It has been shown (88, 89) that the ATNOS automated peak picking
algorithm is most reliable when >90% of the available non-labile proton chem-
ical shifts have been assigned. However, depending on whether or not the
assignments will give rise to meaningful NOE crosspeaks, this figure can be
lowered to 70-75%. Although only 71% of the overall non-labile protons were
assigned for AVR3all the impact upon the final structural ensemble will de-
pend on the significance of the ultimately retained NOESY assignments. The
original peak assignments were also used to generate a list of backbone dihe-
dral angles from the TALOS plus web server (95). This generated 98 ¢ and
() backbone angles found to be in good agreement with those in the TALOS+
angle database and were included as optional set of initial restraints with the
UNIO calculation.

Using the manual assignments as input data, the ATNOS algorithm was
able to identify a total of 2746 NOESY crosspeaks, of which an initial list of
345 and 1227 NOE crosspeaks were assigned from the N and *C NOESY-
HSQCs respectively. Upper limit distances were then calculated and combined
if more than one distance existed for the same atom pair to generate a list of

879 initial distance restraints.
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3.2.3 Structure determination

3.2.3.1 The initial AVR3all ensemble

After seven iterative cycles, the UNIO calculation resulted in a 20 model struc-
tural ensemble, restrained by 782 distance and 98 ¢ and ¢ dihedral angu-
lar restraints (Figure 3.2.2). Common to the crystal structure of the shorter
AVR3all construct (PDB code: 3ZR8 (49), Figure 1.2.3), the ensemble adopts
a four helix bundle conformation with two pairs of anti-parallel alpha helices.
The ensemble root mean squared deviation (RMSD) average distance viola-
tion was 0.0154 A and 0.1764° for the final distance and angular restraints. All
residues occupied “most favoured” (92.4%) or “allowed” (7.6%) Ramachan-
dran backbone dihedral angles. The average deviation between the structural
ensemble models was 2.2 A across the protein backbone and although large
deviations across an ensemble can be a reflection of poor restraint characteri-
sation, it can also be seen as a measure of structural heterogeneity, as the data

acquired fundamentally relates to an ensemble of molecules in solution.

Both facets to this structural deviation can arguably be seen for the
AVR3all ensemble. On average there are 10.86 spatial restraints per residue
and the four helices in particular are well represented (Figure 3.2.3). This is
paralleled by a relatively small deviation in the atomic coordinates of just 1.1 A
RMSD for the backbone atoms of the helical regions. The N-terminal seven
residues and the helix 3 to helix 4 loop however, with no spatial restraints,
have larger ensemble deviations of 3.1 A and 2.8 A respectively. These regions
can be said to have had their geometry determined solely by the tethering of
their termini to the respective helices and the restrictions of ideal chemical

bonding and geometry enforced during the calculation.
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C-term

Figure 3.2.2: The Initial 20 model NMR, ensemble for AVR3all with o-helices
shown in red and loop regions in green (top). A cylindrical helix model is shown
for clarity representing the overall average fold of the unrefined AVR3all NMR
ensemble (bottom). Images were generated in the PyMOL molecular graphics
program (50).
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Figure 3.2.3: The number of NOE restraints per AVR3all residue. Residues
K51 to K57 define the unassignable helix 3 to helix 4 loop. Plot generated
from the output of the Protein structure validation suite (PSVS) (101).

The quality of a protein structure can be measured in many ways, and
with respect to the overall quality of the UNIO calculation, there are conditions
which should be satisfied in order to state whether a structure is of acceptable
quality (88, 89). These are:

1. The initial cycle 1 average Target Function is less than 250 A2

2. The initial cycle 1 average RMSD is less than 3 A

3. The RMSD between the first and last mean structures is less than 3 A
4. The final cycle 7 Target function is less than 10 A2

5. The final ensemble should have less than 20% discarded long range NOEs

6. The final ensemble should have less than 20% unassigned NOEs

If the first three conditions are not met, due to the nature of the calcu-

lation itself whereby the result of one structural iteration is the input to the
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next, it cannot be said that a poor initial model, and potentially inaccurate
assignments, did not heavily influence the final structure. Condition 4 ensures
the overall physicochemical quality of the final structure is not unrealistic.
This is defined by the Target function score, an overall measure of quality (96,
97), which takes into account the number of distance and angular modelling
restraints violated, the number of non-bound steric overlaps and the extent of
any energy violations arising from NOE restraints, Van der Waals interactions

or dihedral angles; a perfect score would be zero.

Conditions 1, 2 and 4 were satisfied during the AVR3all calculation (Ta-
ble 3.2.1 & 3.2.2), and conditions 3 and 5 were met with a cycle l:cycle 7
mean structure deviation of 1.824 A and an overall value of 6.25% discarded
long range NOE restraints. The 6th condition was not met, with 24.7% of all
potential HSQC-NOESY peaks left unassigned.

Table 3.2.1: The target function and overall RMSD for each cycle’s 20 highest
scoring models. RMSD Drift is defined as the mean deviation from the cycle
7 ensemble.

Iteration Target Function RMSD RMSD Drift Constraints

(A?) (A) (A) generated
1 191.169 2.351 6.070 879
2 72.478 1.067 6.303 1103
3 24.282 1.310 5.726 1022
4 6.913 1.229 5.565 969
5 4.236 1.716 1.836 958
6 0.817 1.988 1.238 870
7 0.544 2.151 0.000 782

The 6th condition however is intended to be an indirect measure of the
signal to noise for a given NOESY spectrum (88), as it is assumed that the
ATNOS algorithm within the UNIO package will be able to assign peaks for

which root assignments were also available.

Albeit correct, this assumption has the potential to be influenced by
unassignable initial residues that then correspond to visible HSQC-NOESY
peaks. Since 29% of all non-labile protons could not be assigned, this is a
realistic possibility. The observation that minor conformer peaks exist also
suggests that this measure should not impact the quality of the UNIO en-
semble alone, as these do correlate to NOESY peaks which would have been

picked by ATNOS, but which would have been unassignable as a result of the
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differences in the root chemical shifts.

Table 3.2.2: The calculated and refined NOE distances as determined by
UNIO for the AVR3all structure calculation. Sequential NOEs are defined
as i-j=1.

Number of determined NOE distances
[terative  Intra  Sequential Medium range Long range Total

cycle  residue (<4 A) (>5 A)
1 221 205 295 158 879
2 197 313 391 202 1103
3 191 266 357 208 1022
4 169 250 343 207 969
5 157 254 344 203 958
6 158 227 296 195 870
7 143 193 265 181 782

3.2.3.2 The refined NMR ensemble of AVR3all

The methodology described above for simultaneous NOE peak assignment and
structure determination is a powerful tool for identifying the tertiary fold of
proteins and their molecular restraints. However, the advantageous speed of
the calculation (-3 hours for a 10 kDa protein using a -3 GHz, quad core
based CPU) is achieved by simplifying the modelled degrees of freedom within
a protein about their dihedral angles (torsion angle dynamics). Although it
is more computationally time consuming, a more rigorous method of struc-
tural modelling however can be achieved by modelling the individual atoms
and interatomic forces (Cartesian dynamics). Similarly, standard structural
modelling programs do not take account of protein solvation or (as was the
case for the initial UNIO modelling) apply a simplified global hydrophobic
term. Therefore, a realistic depiction of a proteins structure, in terms of its
biologically relevant solvated state ideally requires additional modelling to best

reflect models from solution state data.

To this end, the penultimate (cycle 6), structurally guided, UNIO re-
straints list for the AVR3all construct was taken to generate a refined struc-
tural ensemble in explicit solvent with a simulated annealing procedure util-
ising Cartesian dynamics. The penultimate restraints list was chosen as it
still contained restraint ambiguities and although the calculated upper bound

limits remained the same as cycle 7, the inclusion of additional restraint possi-
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bilities allowed additional freedom to the refinement calculation. As stated in
previous work (136), structure minimised modelling restraints, such as those
from UNTO, should in principle be relaxed by 0.2 A to account for a structural
bias in the restraints themselves incurred during the iterative calculations.
Similarly, the lower bound limits should also be reduced to 0 A (instead of the
minimum proton:proton distance of 1.8 A) to allow diastereotopic substituents

to be modelled more precisely without the need for modelled pseudo atoms.

The refinement calculation of the AVR3all effector domain utilised the
CNS 1.3 software suite (98) with the RECOORD (99) parameter set and CNS
scripts. RECOORD parameters are a published set of CNS force constants
(bonding, angular restrictions) and a tailored simulated annealing calcula-
tion (as described in Section 2.1.3.2) that have been devised for NMR based
structure calculation by optimising the recalculation of over 500 PDB pub-
lished NMR structures. 100 individual refined models were calculated for the
AVR3all effector domain and the top 20 scoring models, as determined by
the CNS total energy scores, with no restraint violations were compiled into a
structural ensemble (Figure 3.2.4). Although it is important to describe NMR
derived structures as ensembles to reflect the heterogeneity of the molecule,
the exact number of models varies widely in the literature. A value of 20 was

chosen as this is the most commonly submitted number in the Protein Data
Bank (137).

The refined structural ensemble has a visible improvement in the devi-
ation between the four -helices, with much improved RMSD values of 0.7 A
and1.4 A for the backbone and heavy atoms respectively. Concomitantly, the
effect of the solvated molecular dynamics run has also served to amplify the
heterogeneity across the unstructured N-terminus and helix 3 to helix 4 loop.
This should not be thought of as decreasing the significance of the model,
but better reflecting the potential for conformational heterogeneity in those
regions, given the lack of rigid secondary structure. These heterogeneous re-
gions were also those unobservable within the NMR spectra acquired, and as
dynamic phenomena occurring in the intermediate exchange regime can act to
broaden peaks by averaging the signals from their many conformations, the

resulting models can be seen as an accurate depiction of the solution state(s).
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Figure 3.2.4: The final, 20 model, water refined ensemble for AVR3all, with
water molecules omitted for clarity (top). A ribbon representation of the
refined 20 model NMR ensemble highlighting the functional residues (Q94 and
ET71, red) and residues comprising the WY motif (W96, Y125, blue). Images
were generated in the PyMOL molecular graphics program (50).

The refined solution model can also be compared against that of the pre-
viously published crystal structure for the shorter AVR3all construct (PDB
code: 3ZR8) (Figure 3.2.5) which is missing the N-terminal 7 residues. The
mean refined AVR3all ensemble structure is in good agreement to that of
3ZR8 with the two aligning to within 1 A RMSD across the protein backbone.
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Although this is not alone sufficient to validate the accuracy of the gener-
ated model, it certainly strengthens the significance of the solution ensemble
which, even with 71% assignment, can be seen to map extremely well to the

crystal structure which was solved to 0.9 A.

Figure 3.2.5: The average refined AVR3all Ca backbone trace (red he-
lices/green loops) aligned against the shorter AVR3all construct crystal back-
bone trace (PDB code: 3ZR8 (49)) (blue). Image and alignment generated
with the PyMOL molecular graphics program (50).

The level of conformational agreement can further be seen from the trace
of the C atoms for all NMR models in Figure 3.2.6 as compared to the 3ZRS8
crystal structure, and serves to highlight both the similarity between the helical
conformations, the overall fold and particular the structural divergence across
the unrestrained residues occupying the N-terminus and the helix 3-4 loop.
Equally, the overall depiction of the heavy atom RMS deviations between the
most representative NMR model (as determined by MolProbity) and the 3ZR8
structure (Figure 3.2.7, blue) displays the striking agreement between helices
2 and 3 (2-5A), the looser but still agreeable alignments of helices 1 and 4
(5-10A), and the relative divergence between the termini and the helix 1-2
and 3-4 loop regions (10-20 A). Furthermore, all of these trends can be seen
for the averaged, all-atom, RMS deviations per residue between the 20 models
of the NMR ensemble (Figure 3.2.7, red). Although this seemingly depicts a

poorer extent of agreement (5-15A across the helices), as the overall trend is
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consistent (as compared to the most representative model:3ZR8 comparison),
it can still be said that the conformational heterogeneity of the ensemble is

depicting that of the 3ZR8 conformation.

Figure 3.2.6: The Ca backbone traces of all NMR ensemble models (red/green)
aligned with the 3ZR8 (49) crystal structure of AVR3allAN (blue). Image and
structural alignment generated with the PyMOL molecular graphics program
(50).

Common characteristics of four helix bundle conformations (138) include a
significant hydrophobic core amongst the helices and the presence of a number
of salt bridges which act to stabilise the bundle by restraining the anti-parallel
pairs of helices. For the refined AVR3all ensemble, a considerable area of the
bundle interior is occupied by hydrophobic residues (Figure 3.2.8). However,
no residues can be seen which would be capable of forming salt bridges, even
at the maximum theoretical limit for such interactions of 4 A (139). Other
AVR homologues such as AVR3ad (Phytophthora capsici [PDB code: 21C2,
currently unpublished] and AVR3a (Phytophthora infestans (49)) also share
this four helix bundle fold containing a significant hydrophobic core whilst

lacking the potential to form salt bridges.
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Figure 3.2.7: The average RMSDs per residue between the heavy atoms of
the most representative NMR model (model 20) and the 3ZR8 (49) crystal
structure (blue) compared to the average RMSD for all atoms across all models
of the AVR3all NMR ensemble (red).

Figure 3.2.8: The average AVR3all ensemble structure highlighting the hy-
drophobic core within the four helix bundle. Blue regions belong to the hy-
drophobic sidechains of alanine, isoleucine, leucine, methionine, phenylalanine,
tyrosine and valine residues.
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3.2.3.3 Ensemble Validation

To fully describe the global quality of the refined AVR3all ensemble, the use
of specific validation tools is required in order to compare the modelled bond
lengths, bond angles and sidechain geometries against ideal values whilst also
ensuring the final ensemble is still an accurate reflection of the initial data
used to restrain it. The PSVS (101) and CING (100) validation suites, with
the latter also including analyses from the PROCHECK (102) and WHATIF
(103) analysis tools, are two such sets of tools which score NMR, X-ray or
homology based models according to theoretically ideal bonding geometries,

potential energy terms and comparisons to precise high resolution X-ray data.

The 20-model AVR3all ensembles from the unrefined final UNIO calcu-
lation and the water refined CNS calculation were analysed with the CING
and PSVS suites and the outputs are summarised in Table 3.2.3. Generally,
the refined ensemble scores can be seen to score better than that of the UNIO
structure and both structures are good representations of the starting data,
with only 5 restraint violations present within all models of initial ensemble,
and zero restraint violations for the refined model. Of course, an absence of
restraint violations was a determinant in choosing the top 20 models for the

CNS ensemble, so this is not necessarily a self-consistent check.

The Ramachandran plot analysis (140) is a measure of assessing the phys-
ical validity of the ¢ and ¢ backbone angles. By plotting the respective angles
against one another for individual residues, the resulting plot describes the
distinct zones of a helices and (3 sheet secondary structure elements. Both
structures are can be seen to adopt highly idealistic backbone angles from
the PSVS analysis. However, this approach has recently been expanded to
include residue-specific plots to aid visual analysis, as the typical ¢ vs. ¢
‘structured zones’ for these residues are distinct from those of other residues
(141). The Molprobity webserver (142) was used for this analysis (accessible:
http://molprobity.biochem.duke.edu/index.php). For the AVR3all re-
fined ensemble, 97.6% of all residues can be seen to adopt favoured or allowed
backbone angles (Figure 3.2.9). Although this is less favourable that the PSVS
score, this is still a respectable result and suggests that, in conjunction with
the other validation scores, the significant majority of the ensemble backbone

accurately depicts a valid solution state ensemble.
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The PROCHECK and WHATTEF tools score protein structures based upon
a number of restraint-independent Z-scores, which depict the RMS deviation
between various characteristics of the queried models to those obtained form
high resolution X-ray structures. For WHATIF analysis, favourable scores
are shown as positive values. Similarly, the PROCHECK scores weight the
characteristic variance between the WHATIF scores and those of the ideal
structures so that an ideal PROCHECK Z-score is equal to 1.0. Under or
over- restrained characteristics are then defined as values greater than or less

than 1.0, respectively.

Although there is clear improvement after the refined Cartesian modelling,
both AVR3all ensembles have less than ideal rotamer geometries. Although
scores between -3 and +3 are commonly deemed acceptable (143), a score of -
3.903 £ 0.574 could signify a potential problem. However, significant time was
spent manually investigating specific sidechain assignments, restraints and in-
dividual violations and no consistent errors were apparent, suggesting that this
is simply a reflection of an average deviation from ideal crystalline geometry.
The refined ensemble of the AVR3all effector domain has been deposited in
the Protein Data Bank (137) (PDB code: 3ZGK) and the AVR3all chem-
ical shifts have been deposited in the Biological Magnetic Resonance Bank
(BMRB) (87) (accession number: 18910). Both datasets will be made freely
available on the 18th of December 2013.
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Table 3.2.3: The average validation scores for the AVR3all structural pre and
post refinement in explicit solvent. The software/webtools used for specific
validations are denoted with superscript terms. The WHATIF Z-scores are

deemed favourable when positive and the PROCHECK Z-scores should ideally

be close to 1.00.

Unrefined Refined
Average violations per model
>0.2 A NOE violations 2Cyana OCSN
>5° degrees dihedral angles 3Cyana OCNS
Backbone deviation (RMSD) PSVS
All residues 2.2 A 2.9 A
Ordered 0.4 A 0.7 A
Ramachandran angle statistics FSVS
Favoured regions 95.20% 94.40%
Allowed regions 4.80% 5.60%
WHATIF Z-Scores ¢ING
15% generation packing -0.216 + 0.786  0.028 + 0.628
27d generation packing 0.602 £ 1.173  2.006 £ 1.514
Ramachandran plot appearance -6.205 £ 0.432 -4.726 £+ 0.613
X1/ )2 rotamer normality -7.643 &+ 0.354 -3.903 £ 0.574
Backbone conformation -0.648 £ 0.355 -1.961 + 0.589
PROCHECK Z-Scores ¢ING
Bond lengths 1.002 £ 0.0 1.111 £ 0.009
Bond angles 0.209 £ 0.0 0.540 £ 0.025
Omega angle restraints 0.014 £ 0.01  0.659 £ 0.084
Sidechain planarity 0.037 &£ 0.002  1.085 £ 0.217
Improper dihedral distribution 0.253 4+ 0.001  0.965 £ 0.057
Inside/Outside distribution 1.076 £ 0.029  1.126 £ 0.045
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Figure 3.2.9: The Ramachandran plots representing the refined AVR3all 20
model ensemble. The light blue contours indicate regions highly favoured
whilst the dark blue corresponds to allowed regions. Residues adopting dis-
allowed backbone angles are represented by magenta data points, with the

relevant ensemble model noted in brackets. Generated with the MolProbity
web tool (142).
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3.3 Discussion

Using NMR data alone, a water refined, solution ensemble has been calculated
for the AVR3all effector domain. Although an X-ray crystallography derived
structure was accomplished and published before that described here (PDB
entry: 3ZR8), detracting somewhat form the novelty of the NMR based struc-
ture, it does not reduce the overall significance of the NMR ensemble and, at
the very least, both structures should be regarded as complementary evidence
in future investigations of the AVR3all protein. Although the completeness
of the NMR peak assignments was less than ideal, the automated restraint
optimisation and initial calculation were shown to be of sufficient quality as
defined by the guidelines set out by of the UNIO developers. The number of
restraints generated per residue, the iterative improvement in the structures,
and the reproduction of the overall fold, as compared the 3ZR8 crystal struc-
ture, also support the worth of the resulting models and the concomitantly

guided structural restraints.

The lack of any observed peaks for the seven N-terminal residues, which
in effect limits the restraint based model to the regions which comprised the
truncated crystal structure construct also does not reduce the significance of
the ensemble. Although these seven residues were unrestricted and therefore
allowed to evolve freely during the simulated annealing calculations, the final
model confirms that the main tertiary fold of the structure remains unchanged
in the presence of the N-terminal residues and as such adds extra credibility

to the X-ray crystallography based structure.

The water refinement procedure undertaken also generated a generally
well scoring structural ensemble. Although ideal rotamer geometry was not
obtained, the validation scores are in line with those seen in other NMR derived
structures within the PDB (144) and our laboratory (143) (data not shown).
One caveat to this type of comparative validation is the inherent differences
between crystalline characteristics and those determined from either solution
state data or molecular dynamics. Although the accuracy of X-ray crystallog-
raphy based structures is not being called into question, the potential for a
broader range of dynamic, greater than ground state, configurations to exist
in solution implies that non-crystalline molecular characteristics should not

necessarily be absolute measures of poor structural quality.
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In terms of biological significance, identification and characterisation of
the wild type alleles of RXLR AVR effectors have shown that the residues
that map to positions 71 and 94 within AVR3all can influence effector recog-
nition by host cell resistance proteins, (Section 1.2.3) (49). The construct used
in this study represents the AVR3all allele shown to evade the host immune
response and the NMR ensemble clearly describes a four helix bundle con-
formation with a similar positioning of the residues E71 and Q94 as seen in
the 3ZR8 crystal structure (Figure 3.3.1). It has previously been hypothesised
that the localisation of these residues to a single molecular face suggests they
are involved in the binding interface to host resistance proteins. The NMR en-
semble therefore also supports this hypothesis as the accessible conformational
scope, as highlighted by the structural heterogeneity at residue positions 71

and 94, could facilitate such a mechanism.

Y131 - Xtal

Figure 3.3.1: The aligned structure of the AVR3all effector domain as solved
by X-ray crystallography (cyan, pdb code: 3ZR&) and the average structure
as determined by NMR spectroscopy (green cartoon representation). The
sidechains of the biologically relevant residue E71 (orange), Q94 (magenta)
and Y131 (purple) are overlaid from all models.

A further residue position, Y131 - the last helical residue of helix 4 has also

been shown to be important in determining inhibition of pathogen initiated
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programmed cell death (PCD) through interactions between host cell proteins
and the co-secreted oomycete protein INF1 (145). It is currently not known
whether residue positions 71, 94 and 131 represent a single binding interface for
both resistance protein recognition and INF1 inhibition, or if multiple binding
sites exists with differing dependencies on these residue positions. However, an
interesting distinction between the NMR ensemble and the X-ray structures
can be seen at residue Y131, whereby the crystal structure seemingly deviates
from the linear helical arrangement and adopts a more open conformation
(Figure 3.3.1). The source of this discrepancy was identified by visualising the
molecular symmetry of the 3ZR8 structures crystal packing (Figure 3.3.2).

Y-131 (NMR)

Figure 3.3.2: The aligned structure of the AVR3all effector domain as solved
by X-ray crystallography (cyan, pdb code: 3ZR8) and the average structure
as determined by NMR (green cartoon). The relative positions of the Y131
sidechains are shown and an identified crystal contact salt bridge between K80

and Y131 between the crystal structure and a symmetric partner (orange) has
been highlighted at 3.5 A.

It was determined that the N terminal nitrogen of the K80 sidechain
from an adjacent unit cell lies within 3.5 A of the sidechain hydroxyl oxygen
of Y131, implying that the crystal lattice is most likely distending the protein
conformation. Although this is only a small difference; the change in position
places Y131 on the same molecular face as that occupied by positions 71 and
94, and being sufficiently close to residue 94 so as to be involved in the same

ligand interactions.
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Chapter 4

Dynamic Characterisation of
AVR3all

4.1 Introduction

4.1.1 NMR relaxation

As touched upon in Section 3.1.1.4, the relaxation of excited spin states to
thermal equilibrium is of fundamental importance to NMR, for without it no
NMR signal would be observed due to the equalisation of spin state popula-
tions. In contrast to other spectroscopic methods, excited state nuclei do not
spontaneously emit excess energy across a practical timeframe but dissipate it
through discrete pathways via stimulations resulting from fluctuations in the

locally experienced magnetic fields, creating an effective magnetic field Bg.

The two concomitant pathways that facilitate the relaxation of NMR ex-
cited states back to equilibrium by energy transference to the surrounding
physicochemical system are longitudinal relaxation and transverse relaxation.
Using a Cartesian description of the bulk magnetisation vector, longitudinal re-
laxation describes the relaxation processes responsible for returning magnetisa-
tion to equilibrium along the z-axis (axis of the By magnetic field). Transverse
relaxation describes the loss of coherence in the x-y plane following excitation
(Figure 4.1.1).
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lengitudinal transverse
relaxation relaxation

equilibrium 50" pulse

Figure 4.1.1: The general phenomena of longitudinal and transverse relaxation
with respect to the bulk magnetisation vector (blue) and the z-axis of the
applied magnetic field (By) after an example 90° pulse to y.

Longitudinal relaxation is also called spin-lattice relaxation due the na-
ture of the underlying mechanisms of energy transfer. Although the term
“lattice” was originally described for the relaxation of solid materials fixed
within a molecular lattice, in its solution-state interpretation “lattice” refers
to both bound and unbound neighbouring molecules within the sample (123).
The complex vibrational and rotational motions of the surrounding lattice
influence the Bqg experienced for any given spin. If these field oscillations oc-
cur perpendicular to the z-axis and at a frequency proportional to the energy
difference between the ground (o) and excited () states, then the allowable
quantised energy transfer leads to the enthalpic restoration of the equilibrium

Boltzmann distribution of spin populations.

The associated mean lifetime for net longitudinal relaxation to occur is
termed the T time constant and can be described by the exponential equation
4.1:

M, = My(1 —2¢ /™) (4.1)

where M, denotes the bulk z-axis magnetisation after a time t for a given T}

relaxation time and a initial (7 = 0) starting z-axis magnetisation (Mp).

Transverse relaxation is also termed spin-spin relaxation because the dis-
sipation of coherence occurs though an inter-spin flip-flop mechanism wherein
the loss of energy of an excited state () to ground state (o) transition induces

a reciprocal a-to-f transition for an additional spin.
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The same fundamental mechanisms that cause longitudinal relaxation
may also induce transverse relaxation, with the addition of longitudinal field
effects from both inhomogeneities in the By field and those arising from molec-
ular motions within the sample. However the resulting pathway relates to pro-
cesses that cause a loss of magnetisation coherence following a pulse. In this
sense, transverse relaxation is not an enthalpic process, as it does not disturb
the energetic populations, but an entropic decay wherein the magnetisation of

excited stated diffuses to full isotropy within the x-y plane.

The apparent transverse relaxation can also be described by an exponen-

tial time constant (Ts) (equation 4.2):

My = MmyoeiT/TQ*) (4.2)

where My, is the resulting net magnetisation in the x-y plane after a time
t for a given Ty" relaxation time constant and an initial x-y magnetisation
(Myyo). However, T," represents the mean lifetime associated to effects from
both external field inhomogeneities and molecular motions. To report solely
on the extent of transverse relaxation accountable to the inherent molecular
motions (Ty) the external field inhomogeneities can be compensated for with
a spin echo pulse (146) (Figure 4.1.3).

Assuming that the present By field inhomogeneities remain static, the
acquisition of experiments with multiple delay times (1) can be used to observe
the loss of coherence as a function of the refocusing pulse, thereby negating the
field effects. The same effect is exploited in the investigation of heteronuclear

relaxation phenomena with a CPMG sequence.
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a) b)) d)

|_| T i T
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Figure 4.1.2: The spin echo refocusing pulse (top) and its effect on the net
magnetisation (bottom). Following the net magnetisation at equilibrium (a),
a 90° pulse (hollow bar) of x phase reorients the net magnetisation along the
y-axis. After a time, 1, field inhomogeneities act to dephase the coherent
magnetisation, with some spins beginning to precess faster or slower than net
(b). After the application of a 180° pulse (solid bar) of y phase, the resulting
180° flip of all magnetisation vectors to the y-axis (c) results in the eventual
refocusing of the net magnetisation after a second period of T (d).

4.1.2 Relaxation mechanisms

Alluded to in the above descriptions of the relaxation-stimulating B.g effects,
the molecular motions with frequencies proportional to the energy difference
between the o and 3 energy states (Larmor frequency), or combinations of

states, can facilitate relaxation through a number of distinct mechanisms.

4.1.2.1 Dipole-dipole interactions

Dipole-dipole interactions are the primary mechanism responsible for both lon-
gitudinal and transverse relaxation pathways. Every magnetic nucleus within
a sample will possess a magnetic moment, and for the predominantly observed
spin 1/2 nuclei, this will be dipolar in nature. The ability of a magnetic dipole
to interact (couple) to that of another nucleus depends predominantly on the
distance between them and the strength of the individual magnetic moments

(v) as described by equation 4.3:
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h
p=1 7?5 (3cos — 1) (4.3)

dr g

where D is the strength of the interaction (in units of rad.s), Yo is the per-
meability of free space, h is the reduced Planck constant, y; and yg are the
gyromagnetic ratios of the coupling nuclei, r is the distance between the two
nuclei and ¥ is the angle between the respective dipoles. For this reason,
directly bound protons (with a large y) offer the greatest potential for dipole-
dipole interactions and this is especially true for large biological molecules with

relatively slow correlation times.

4.1.2.2 Chemical shift anisotropy (CSA)

The particular chemical shift measured during an NMR experiment for individ-
ual types of nuclei will depend on the magnetic shielding available from their
immediate local environment and the overall orientation within B.;. However,
we observe singular chemical shifts in solution state NMR for distinct species
as a result of isotropic molecular tumbling averaging out these variations over
the course of the experiment. Nonetheless, at the level of the individual spin,
the anisotropic fluctuations in individual chemical shifts also present an acces-
sible relaxation mechanism. Equation 4.4 (127) describes the summation of

the average isotropic chemical shift tensor, o:

o= Tz + Ugy + s (4.4)

where xx, yy and zz refer to the respective spatial components of the chemical
shift tensor, 0. The chemical shift (CSA) anisotropy term itself (Ao) is defined
by equation 4.5:

(4.5)

Ao =04y —
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4.1.2.3 Chemical exchange

The interchange of chemical species between specific magnetic environments
during the acquisition of an NMR experiment is a complex phenomenon. Sim-
ply put, chemical exchange refers to the inter- and intra- molecular exchange of
chemical species or conformations and the ability to distinguish the individual
spin environments depends on how the rate of exchange (k) compares to the

difference in precession at the two sites (Aw).

However, in a continually exchanging system, the difference in Larmor
frequency between the two sites of exchange (Aw = wq-w1) will cause an ef-
fective Larmor precession to be experienced (0e) which will be dependent on
the rate of exchange, k. Over time, the effective Larmor frequency will be seen
to fluctuate about weg by the half the difference between the two sites (Aw/2)
giving rise to a true effective frequency of precession of weg = Aw/2. The lon-
gitudinal magnetic component of this oscillation of the Larmor frequency can
then act as an effective transverse relaxation mechanism for surrounding nu-
clei. However, the frequency of oscillation is directly related to k and minimal
effects will be seen when k << Aw (slow exchange) or when k >> Aw (fast

exchange) and the greatest effect will be when k « (intermediate exchange).

4.1.2.4 The heteronuclear Overhauser enhancement

The nuclear Overhauser effect, as first described in 1962 (147) essentially de-
scribes the rate of a dipole-dipole internuclear relaxation process (o1s) whereby
a 3 state spin is able to relax by inducing the simultaneous excitation of an o

state spin (Figure 4.1.3).

When discussing the interactions between the spin states of two nuclei,
the possible transitions fall into three classes. Single quantum transitions (W)
represent the change of one spin state at any one time (i.e. a single o to 3 tran-
sition without perturbing the neighbouring nuclei) whereas double quantum
transitions (Ws) and zero quantum transitions (W) occur via through space

cross-relaxations with the spin states of neighbouring nuclei.
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Figure 4.1.3: An energy level diagram, for two heteronuclei (I and ) and the
spin state transitions (wg, ws) accessible to the nuclear Overhauser effect.

The probability of either a Wy or W5 transition predominating depends on
the whether the frequencies of the experienced molecular motions correspond
to either of the transition state energies. In small molecules, Wy transitions
prevail due to rapid molecular tumbling; whereas macromolecular tumbling
typically promotes Wy transitions. If a particular set of nuclear spins (S) are
saturated, (i.e. equal spin state populations), Wy and Wy zero and double
quantum transitions result in a measurable change (with respect to the net
effect) in I spin magnetisation. The nuclear Overhauser enhancement (ng)
is then said to be either positive (augmented M;, Wy dominates) or negative
(attenuated My, Wy dominates). Although the nuclear Overhauser effect is
related to the distance between two spins, the enhancement alone, ng, is not
directly proportional to the inter-spin distance, and only qualitatively reports
on whether the spins were close enough to magnetically couple. Nonetheless,
an observation of nig can enable the characterisation of the NOE as a relaxation
mechanism and therefore yield information on the magnitude of the molecular

motions proportional to the zero quantum of double quantum transitions.
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4.1.2.5 Paramagnetic relaxation

Paramagnetic relaxation is the magnetic dipolar coupling between a nuclear
magnetic moment and that of an unpaired electron. This effect is not seen for
electron pairs as the antiparallel spin arrangements of the constituent electrons
reduce the effective magnetic moment to zero. The magnetic moment of an
unpaired electron is approximately 2000x greater than that of common nuclei
and so if free radicals are present in solution, they can readily provide a form of
dipole-dipole relaxation that dominates the other aforementioned mechanisms.
As an inherently dipolar interaction, the extent of paramagnetic relaxation
is dependent on the distance between the coupling species but owing to the
significantly larger magnetic moment, paramagnetic relation can act over larger
distances than inter-nuclear dipolar coupling. This effect is exploited in the
structural investigations of proteins by measuring the paramagnetic relaxation
enhancement (PRE) that arises from cognate metal ions or artificially bound
paramagnetic labels. As a relaxation enhancement, the PRE effect acts to
reduced the signal intensity of proximal spins and when explicitly measured

can provide inter-atomic distance information through equation 4.6:

Y155(S + 1)7%* .\
r= [ RSP (4TC1 n w%ﬁf) ] (4.6)
where r is the nuclear-electron distance, S is the electron spin quantum number,
Y is the nuclear gyromagnetic ratio, g is the electron g-factor, 5 is the Bohr
magneton, Ry5F is the enhanced paramagnetic transverse relaxation rate, T, is
the correlation time for the electron-nuclear interaction and wH is the nuclear

(proton) Larmor frequency.

4.1.2.6 Other relaxation mechanisms

Three other mechanisms can facilitate the relaxation of excited, coherent spin
states, although in biological solution state NMR, they are rarely deemed

significant.
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Spin rotation relaxation applies to small molecules and, in rare cases, the
freely moving portions of larger molecules without other accessible relaxation
mechanisms. Due to the rapid tumbling of small molecules in solution, the
motion of the associated electrons acts to create a local magnetic field. Molec-
ular collisions then cause oscillations in these local fields, and if the frequency

is proportional to the Larmor frequency, relaxation can occur.

The mechanisms discussed so far directly apply to commonly observed
spin half (I = 1/2) nuclei that have a dipolar magnetic moment. However if
[ <1/2, and a significantly asymmetric nuclear charge distribution exists then
coupling can occur between the surrounding electrons and the quadrupolar
nuclear electric field. This can then lead to accessible relaxation if molecular
motions perturb the quadrupolar coupling at a rate comparable to the Larmor

frequency.

Scalar relaxation is a consequence of the scalar couplings (J-couplings) be-
tween covalently attached nuclei, mediated by the individual nuclear hyperfine
couplings to the bond electrons. Scalar couplings are of course exploited in the
process of magnetisation transfer between attached spins and are thought of as
orientation independent, with respect to By. However, although the effect av-
erages en mass, at the level of the individual spin, they are not independent of
internal molecular motions of bond vibrations and rotations. Again, therefore,
if these internal motions act to modulate the effective inter-particle couplings
on at timescale proportional to Larmor frequency of proximal spins, an ener-
getic pathway is said to be accessible for the relaxation of excited nuclear spin

states.

4.1.3 The study of protein dynamics by
NMR relaxation

The above descriptions of NMR relaxation mechanisms should highlight the
many ways in which molecular motions enable the restoration of equilibrium
spin populations and isotropic magnetisation for an ensemble of excited spin
states. Fortunately for NMR spectroscopists, the reciprocal statement also
holds true and from the measurement and analysis of relaxation times, infor-
mation on the scope, magnitude and type of molecular motions accessible to

a sample can be revealed.
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The broad timescales across which different NMR techniques report upon
can provide atomic level insights into the conformational behaviour and bio-

logical function of proteins in particular (Figure 4.1.4).

aromatic flips sidechain rotation
unfolding / foldin i i
g qccal libration

loop orientation |
internal protein motions™ 1

chemical kinetics tumbling vibration
10° 10° 10° 10° 10° 107
i i i i i i
Seconds
H-X exchange Tio T2 T,, T,, NOE
Chemical shift CPMG
RDCs

Figure 4.1.4: The timescales associated with protein dynamic phenomena (red
bars) and the NMR techniques used for their detection (black bars). CPMG
and RDC refer to Carr, Purcell, Meiboom, Gill relaxation dispersion and resid-
ual dipolar couplings respectively. Ty, Ty, Ty and NOE refer to longitudinal,
longitudinal (rotating frame), transverse relaxation and nuclear Overhauser
enhancement, respectively.

A fundamental caveat to the investigation of proteins however is one of
molecular size. The correlation time () is defined as the average time taken
for a molecule to rotate through one radian. This is of course affected by the
viscosity and temperature of solution, but is principally a factor of molecular
size and shape. From Figure 4.1.5, it can be seen that as the correlation time
increases, the transverse relaxation time, Ty, becomes faster. Equation 4.7
describes how the linewidth (vl/2) of Fourier transformed peaks is proportional
to the Ty time.

1
AIA/Q = 7'('_13 (47)

NMR experiments of large molecules (>30 kDa) therefore result in broad
spectral lines, and combined with the fact that larger molecules generally yield

more complex spectra, this quickly limits the effective size of the molecules that
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can be studied with NMR although experimental techniques such as transverse
relaxation optimised spectroscopy (TROSY) and spin 1/2 labelling schemes do

exist which can which simplify the spectra.
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T (correlation time)

Figure 4.1.5: The general relationships between T; and Ty relaxation times as
a function of the applied By magnetic field and the molecular correlation time

(TC>‘

Although one-dimensional 'H relaxation is occasionally used in the study
of proteins, even without the complications from Ty broadening, significant
spectral overlap exists. For this reason, the relaxation of heteronuclear spins
is frequently used to study protein dynamics due to the inherent improvement
in resolution of 2-dimensional acquisition. Modifications of the 'H-1°N HSQC
pulse sequence (section 3.1.1.6) that enable the measurement of longitudinal,
transverse and cross-relaxation rates are particularly advantageous for proteins
as they are able to effectively probe the scope of relaxation across the ps-ns and

us-ms timescales for each residue in the protein backbone (excluding proline).

The potential for N relaxation to report on dynamic phenomena is en-
capsulated in equations 4.8 - 4.12 (148):
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%1 B % [J(wir — wn) +3J(wn) + 6] (wi + wn)] + T (wn) (4.8)
1 &
T = g [4](0) + J(CL)H — WN)+3J(WN) + 6](&)[{) + 6J(WH + (,UN)}
> . (4.9)
+% [4.7(0)4+3J (wy)] + Rea
NOE =1+ d; % (6. (wi +wy) — J(wy —wy)] T (4.10)

where J is the spectral density function evaluated at the frequencies wy-wy;,
wN, Wp+oN, og and 0, with o indicating the Larmor frequency of the subscript

nucleus,

poN? [ yaynh\’
= (%) (QNH) (4.11)
o _ 1 2
c :§(wNAJ) (4.12)

where Yy is the permeability of free space, h is the reduced Planck constant,
rnp s the heteronuclear bond distance, yy and yn are the gyromagnetic ratios
of the superscript nuclei and Ao is the nitrogen chemical shift anisotropy. The
terms ¢ and d represent the contributions to relaxation from chemical shift
anisotropy and dipole-dipole mechanisms respectively. Ry is defined as the
rate of any exchange process (section 4.1.2.3) that contributes to transverse
relaxation. In the case of standard macromolecular N relaxation, these are

the only relaxation mechanisms presumed significant.

Interestingly, a noteworthy question exists surrounding the exact values
chosen for Ao and ryg. Standard practice assumes values of -172 ppm and
1.02 A for the "N CSA and N-H bond length respectively. However experi-
mentally determined deviations from standard values have been reported in
the literature for both the N-H bond length (-1.04 A (149)), and the >N CSA
(-172 ppm +13 (150)). Although it is not routine practice, due to the in-
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creased significance of the 15N Ao term at high fields, changing this value can
sometimes be used as a technique to improve the compatibility of calculated

molecular motions.

4.1.4 Spectral density mapping

Spectral density mapping is thought of as the most direct extraction of motion
characterisation from a set of relaxation data. By acquiring T, Ty, hNOE
and two-spin relaxation experiments, the evaluation of the spectral density at
five frequencies - proportional to those observed (i.e. J(0), J(wy), J(owp+ox),
J(own) and J(wg-wn)) can detail the magnitude of motions acting across those
frequencies which contributed to relaxation. This method also benefits from
being independent of the overall rotational motion (see equation 4.1.5) and
requires no a priori assumptions regarding the diffusive models (151). For
instance, for acquisition of a relaxation dataset at 500 MHz the evaluated
frequencies of 0 MHz, 50 MHz, 550 MHz, 500 MHz, and 450 MHz would sample

the extent of molecular motions acting across those reciprocal timescales.

As spectrometer time or access is rarely abundant, standard relaxation
investigations are only typically concerned with the measurement of Ty, Ty
and hetNOE relaxation. This therefore leaves the methodology mathemati-
cally underdetermined (i.e. 3 measurements, with 5 equations) and without

incurring assumptions regarding J(w), the methodology falls down.

However, a simplified form of the above, termed reduced spectral density
mapping (152), only requires three measurements to be made and makes just
one assumption, that J(on) J(wp+on) J(op-on) = J(0.87wy). By rearrang-
ing equations 4.8-10, the interrogation of the spectral density function at the
three frequencies J0.87(wH), J(wN) and J(0) can be directly related to the

relaxation measurements by Equations 4.13-4.15:

4o

4R1 — 5o
=—— 4.14
Jen) = 3p 330 (4.14)
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(6R2 — 3R1 — 2720’)
3d? + 4c?

J(0) = (4.15)

where:

o= R(NOE —1) X (4.16)
YH

and ¢ and d are defined by Equations 4.11-12.

4.1.5 Model free analysis

As alluded to already, the mechanisms which underpin nuclear relaxation are
dependent on the fluctuations of the local magnetic fields surrounding a given
spin, which are in turn dependent on molecular motions. For °N relaxation,
the N-H bond vector is a strong indicator of these motions and by assuming
a fixed N-H bond length and a fixed motional scheme (or model) such as free

conical diffusion, then the extent of specific motions can be estimated.

However, in assuming any one particular diffusive model for the N-H vec-
tor, the extraction of motional characteristics from experimental data is re-
stricted to that model alone. The model-free approach, first described by
Lipari and Szabo in 1982 (153, 154), does not make assumptions regarding
the specific diffusive model and can therefore describe general characteristics
applicable to different motional schemes. This approach relies on the ability
to summarise individual contributions to relaxation through the deconvolu-
tion of the correlation function that describes the overall Brownian molecular

diffusion.

In the case of isotropic diffusion, the spectral density of the correlation
function J(w) decays as a function of the isotropic correlation time (t,,) and

is calculable from equation 4.17:

J(w) = % <T—m) (4.17)

1+ (wrm)?

which can then be employed in the characterisation of the generalised model

free order parameter, S , with the following formula:
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J(w) = ( SR G 32)7) (4.18)

O\ (Wrn)? 1+ (wr)?

whereby 1, the effective correlation time:

1
= 4= 4.19
. ( )

where T, is correlation time describing intramolecular motions which lead to N-
H vector reorientation. The generalised order parameter S (commonly referred
to as S?) is a measure of the spatial restrictions of the N-H bond vector and
has values between 1 (full restriction) and 0 (no restriction).The isotropic case
of macromolecular diffusion however is usually an idealistic description, and in
the case of anisotropic diffusion the overall diffusion cannot be encompassed
within a single correlation time. Internal motions are independent of overall
molecular diffusion (and so the term remains unchanged) but the model free
formalism needs to include additional terms to describe the separate axial
components (Equation 4.20, (155, 156)):

1—5%)r
_ g2 A Tk ( 4.2
Hw)=5 kzlz: 5 ; L + (wTp )2 + 1+ (wr)? (4.20)
where,

T =6D+71," (4.21)

where A and T are defined as:

Ay =6m?n® 7 = 4D, + D, + D.)™"

Ay =612n2 7= (4D, + D, + D.)"!

As = 61>°m?  73= (4D, + D, + D,)""
Ay=d—e 7 =[6(D+(D?— 12"

As=d+e 75=[6(D—(D*—L?)"]""
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with 1, m and n representing the direction cosines of the NH vector with

respect to the Cartesian axes x, y and z respectively.

D and L are defined as:

1
D= (D:+Dy+ D) (4.22)
1
L? = 3 (DD, + DD, + D,D,) (4.23)
d and e are defined as:
314 +m* +n*) —1
g BE+m+nh 1] (4.24)

2

0 (31 4+ 6m*n? — 1) + 6,(3m* + 60*n? — 1) + 0,(3n* + 61*m? — 1)
6

e =

(4.25)

and

o= Di=D (4.26)
(D~ 1)}

The ratio of Ry/R; relaxation times for residues that are not heavily
perturbed by internal motions or exchange processes (155) can be used to
good effect, in combination with Equations 4.8, 4.9 and 4.17 (which determine
the spectral density J(w) as a function of Ry/R;), to report on the overall
rotational correlation time t.. In the case of isotropic diffusion, Equations
4.27-28 describe the relationship between the correlation time and the isotropic

diffusion tensor:

(4.27)

with D, equal to:
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kT

Diso = 5 =
8mnr3

(4.28)
where k is the Boltzmann constant, T is the temperature in Kelvin, n is the vis-
cosity of solution and r is the effective molecular radius experiencing isotropic

tumbling.

This approximation of Dj,, does not of course apply in the anisotropic
case. However, given a high-resolution three-dimensional structure, the Dy,
Dy, and D,, components of either axially symmetric or fully anisotropic dif-
fusion tensors can be calculated in relation to the observed Ry /R4 ratios with
programs such as Modelfree (107). Variations in specific model free formalism
do exist such as that presented by Clore et al. (157) which enables the extrac-
tion of two independent internal motions (S¢?, S4?); however the ultimate goal
of model free analysis is to utilise the numerically quantified parameters cal-
culated above (Rey, Te and S? (or S¢? and S,?)) to determine the most suitable

dynamic model for the observed relaxation data.

Five standard models exist to which the obtained parameters can be fit,

and statistically optimised for isotropically diffusing molecules:

modell =S,

model2 =Sy + T,
model3 =So + Rex
modeld =S5 + Te + Rex
model5 =S¢* + S + 7.

Model 1 is indicative of fast internal motions (t. < 10 ps) and describes
the amide vector solely as a factor of its S? order parameter whereas model 2
includes an additional internal correlation time. Models 3 and 4 are extensions
of models 1 and 2 respectively, with the inclusion of a chemical exchange term
Rex to account for slow (ms) contributions to To. The fifth model is based
upon the work of Clore et al., (157) and accounts for two distinct internal

motions acting across timescales of at least an order of magnitudes difference.
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4.1.6 Experimental aims

Building upon the principles of NMR spectroscopy that were outlined in Chap-
ter 3, the aim of Chapter 4 will be to document the investigation into the
dynamic behaviour of the AVR3all effector domain. The potential for NMR
to report on a wide range of dynamic molecular phenomena at the level of the
individual amino acid could help to elucidate any pertinent molecular motions

that may underpin the functional interactions of the AVR effector.

4.2 Results

4.2.1 Purification and resonance assignment

For dynamic analyses, a shorter construct of the AVR3all effector domain
(C-terminal 65 residues) was chosen to enable direct comparison in between
obtained NMR relaxation parameters and the 3ZR8 crystal structure (49). The
purification of N isotopically enriched samples of the truncated AVR3allAN
construct was both straightforward and generated comparable yields of pure
protein to that of the full length construct, enabling the creation of 1 mM
protein NMR samples.

Figure 4.2.1 shows example silver-stained SDS-PAGE gels of the initial
Ni%* affinity column purification for the extraction of the hexa-His tagged fu-
sion protein from cell lysate and the subsequent PreScission protease digestion
to remove the purification tag. The purity of the sample was such that a further
gel filtration step was not required for the removal of any contaminant proteins
and a repeated run through the Ni?* affinity column yielded sufficiently pure,

protease-free, protein.

98



4.2. RESULTS

post pre
Mw digest digest

116 kDa —

66.2 kDa—— s

45 kDa —— S
35 kDa ——

25 kDa —— s

v
18.4 kDa —— M

14.4 kDa —— s

Figure 4.2.1: An example silver-stained SDS-PAGE gel of the resulting Ni**
affinity purification step (Left). Lanes contained samples of cell lysate (lysate),
column flow through fractions (FT), column washes 1-4 (W1-4) and the elution
fractions (E1-4) containing 300 mM imidazole. An example silver-stained gel
following hexa-His tag cleavage is also shown (Right).

4.2.2 Initial NMR assignment

The initial '"H-'N HSQC of the AVR3allAN construct shared significant sim-
ilarity to that of the full-length construct (Figure 4.2.2), allowing a direct map-
ping of most of the HN assignments. A small number of residues however were
not directly assignable and required analysis of a N edited HQSC- TOCSY
experiment, in comparison to that acquired for the full-length construct, to
complete resonance assignment. Perhaps unsurprisingly, the residues which
experienced the greatest chemical shift differences to those of the full length
construct (K67, V75, K77, A79, K80) were contained within the N-terminal
o-helix 1 (Figure 4.2.3, red residues). It is unlikely that these residues have
structurally relevant implications with respect to the four helix bundle confor-

mation.

Although this was not tested with the acquisition of triple resonance data
for structure determination or chemical shift indexing, it is more likely that the
increase in relative conformational freedom of the N-terminal resides affected

the average chemical shifts.
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Figure 4.2.2: The 'H-»N HSQC spectra of the AVR3all full length effec-
tor domain construct (black peaks, black assignments) and the truncated
AVR3allAN construct acquired at 800 MHz. AVR3allAN peaks with sig-
nificantly different chemical shifts to those of the full length construct (red
peaks, red assignments) were proximal to the truncated region. Black lines
indicate the NHy groups of amino acid sidechains.

Figure 4.2.3: The top scoring ensemble model from the full length AVR3all
NMR solution structure (cyan, left) an the offset 3ZR8 crystal structure (green,
right), with red residues displaying notable HN chemical shift differences in
initial 'H-?N HSQC spectra.
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The observation that residues D108 and L110 also experienced chemical
shift perturbations from the N-terminal truncation also agree with this hypoth-
esis, as their positioning at the C-terminus of o-helix 3 would also place them

within range of the conformational potential of the extended N- terminus.

4.2.3 AVR3all Hydrogen-Deuterium exchange

To probe the slow timescale dynamics of the AVR3allAN construct, a se-
ries of Hydrogen-Deuterium (H/D) exchange NMR experiments were carried
out. To this end, following the lyophilisation of a pre-existing °N labelled
AVR3allAN sample and resuspension in 500 ul D,O, a series of 'H-'>N SO-
FAST HSQC spectra were recorded at increasing time intervals. Although
the bulk, protonated, solvent will be removed through lyophilisation, any pro-
tons attached to the protein should remain intact. Because 'H-'"N HSQC
based experiments only give rise to NMR signals following successful 'H-1°N
magnetisation transfer (and back again), as the resuspended protein begins to
exchange with the deuterons of the solvent, the rate of exchange can be iden-
tified from the decrease in NMR peak intensity over time. As well as being a
measure of solvent accessibility and hydrogen bonding, determination of amide
exchange rates can also help to describe slow timescale dynamic phenomena
such as protein breathing or the large conformational rearrangements seen in
unfolding/folding pathways (158).

An important experimental caveat to H/D exchange experiment is the
lag period between resuspension of the sample and subsequent analysis; as the
bound protons will immediately begin to exchange with the solvent following
resuspension. It can be relatively time consuming to ensure that all dehydrated
protein has been resuspended, transferred to an NMR tube and placed within
the magnet before experiment acquisition can begin. The lag period of the
acquired H/D exchange experiments was reduced to 4 minutes by resuspend-
ing the sample close by to the NMR laboratory, pre-tuning the spectrometer
to the sample prior to lyophilisation and only performing a brief, automated,
shimming procedure for the z-axis shims. Nonetheless, preliminary H/D ex-
change experiments at 298 K, pH 8.8 yielded no signals, indicating that all
protons had thoroughly exchanged (data not shown).
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ing the acquisition temperature to 278 K, preparing the sample on ice with
pre-chilled DO and lowering the pH of the sample buffer to 6.8, the loss of

peak intensity became measurable over a longer timescale, with two signals in

However, as a kinetic process with a temperature dependency, by reduc-

particular persisting up to 23 hours 50 minutes (Figure 4.2.4).

15N (ppm)

15N (ppm)

15N (ppm)

Figure 4.2.4: Example 'H-"N SOFAST HSQC spectra acquired at 800 MHz for
the AVR3allAN construct before resuspension in DO (control), and 4 mins,
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28 mins, 58 mins, 4hr 50 mins and 23hr 50 mins post-resuspension.
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The residue assignments of the 'H-'N HSQC spectra at 278 K required
an additional *N-edited HSQC-TOCSY experiment to be acquired and only
a small number of peaks became unobservable due to the effective increase in

viscosity as a result of the decreased temperature.

Upon analysis of the H/D exchange spectra it became apparent that
twenty residues had exchanged beyond observation before the first time point
(4 mins). The lifetimes of the measurable peaks were calculated by fitting the
loss of peak intensity over time as describe in (Section 2.1.7) to the exponential
equation y = yo + A/, Figure 4.2.5 presents the log of these lifetimes (for
simplification of the plot) and although this appears to be a seemingly sparse
dataset, the behaviour of the persistent amides is explainable when mapped
onto the structure of the truncated AVR3all domain (Figure 4.2.6).

The results suggest that the AVR3allAN four-helix bundle can be de-
scribed as a particularly stable structural element with respect to slow timescale
motions. Although the H/D exchange rates of many residues were not appar-
ent, the positions of these residues can be seen to map to the surface of the
folded structure and therefore represent the residues with the greatest sol-
vent accessibility and, subsequently, those which would be expected to rapidly

exchange with the solvent (Figure 4.2.6, cyan).

In contrast, the amide protons of residues which can be seen to line the
internal core of the fold were observed to posses the longest observed lifetimes.
This is in agreement with the description of the AVR3all bundle possessing
a significantly hydrophobic core (Figure 3.2.8, (49)) and suggests that signifi-
cant, large scale, conformational changes do not regularly occur. Interestingly,
this effect is not globally true across all four helices and a number of residues
constituting the interior face of the N-terminal helix can be seen to have fully
exchanged before the first time point, which indicates significant solvent ac-
cessibility. It may well therefore be the case then, that the N-terminal helix
is more prone to slow timescale reorientations or transient dissociations from

the hydrophobic core.

Because the process of protein H/D exchange is inherently linked to pro-
tein conformational stability, accurate H/D exchange measurements can also
be used to draw direct conclusions regarding the free energy of unfolding. As
was the case for the AVR3allAN experimentation, standard experimental pro-

tocols serve to measure an overall rate constant of exchange (kex). However,
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Figure 4.2.5: The calculated amide proton exchange lifetimes across the
AVR3all1AN backbone. The secondary structure, as described by the 3ZR8
crystal structure (49) is presented above. Resonances that were assignable in
the standard AVR3allAN 'H-'°N HSQC, but which had no signal at the first
time point are denoted with * in the secondary structure.

Unassignable
< 1 minute
>1, <50 minutes

>50 minutes

Figure 4.2.6: The structure of the 3ZR8 AVR3allAN crystal structure (49)
coloured by the calculated amide proton exchange lifetimes. Unassignable
residues = grey, residues for which no signal was seen, and hence the ex-
pectancy time was 1 minute, (cyan), residues with amide expectancy times >1
and <50 minutes = orange and >50 minutes = red.

104



4.2. RESULTS

H/D exchange is best described as a two step process (159), wherein kex is
comprised of transitions between closed:open conformational states, as well as
the rate of chemical H/D exchange (Equation 4.29).

(N—-H---0=0C)y £ (N—-H),, 2 N-D (4.29)

kq

where (N-H---O=C), (N-H),, and N-D refer to the structurally closed, open
and solvent-exchangeable states, respectively, ko, (open) and k. (closed) are
the associated rate constants for exchange between the structural forms and

ky. (random coil) is the intrinsic H/D exchange rate constant.

As described by Bai et al., (160), the intrinsic rate of exchange from the
open state is generally predictable when information regarding the sample
temperature, pH and salt concentration are known. Interestingly however, k.
is also dependent on the local chemical environment, as defined by the protein
primary sequence (steric blocking, inductive effects), and this also has to be
taken into account by modulating the intrinsic exchange rate for each amide
by incorporating the potential of the flanking sidechains to inhibit or facilitate

exchange.

Theoretical k. values for the AVR3allAN construct at pH 6.8 and 278 K
were calculated with this methodology as described by Bai et al., (160) wherein
k.. is the sum of the residue-specific acid, base and water catalysis rate con-
stants (kre = Kacia + Kpase + Kwater) (Figure 4.2.7).

Compared to the relatively tentative description of H/D exchange from
Figure 4.2.5, Figure 4.2.7 highlights the relative stability of the central 2 he-
lices in direct comparison to the exchange rates that would be expected for a
random coil conformation (k,.). Furthermore, although k., was unable to be
measured for large sections of the terminal helices, it cannot be said that this
therefore indicates a significantly open conformation at these positions. This
is because exchange, slower than that of the expected k.., could still have oc-
curred during the lag time of the experiment (note the separate axes of Figure
4.2.7). This therefore indicates that AVR3allAN is more often occupying a
closed conformational state than one able to exchange with the solvent; how-
ever to extract meaningful conclusions regarding protein stability the precise

balance of kg, kop and k;, exchange processes must be ascertained.
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Figure 4.2.7: The experimental H/D exchange rates (kex) for AVR3allAN
(green) and the calculated intrinsic rate constants (k) (red) using the method-
ology of Bai et al.,(160).

In the case of AVR3allAN, where k., << kg, the underlying exchange
can either be defined by k,, alone (i.e. kg << k., termed EX1) or by both
kop and kg (ie. kg >> k., termed EX2).

Explicit methods exist for determining whether a particular system is ex-
periencing EX1 or EX2 exchange, however the most accurate requires that
multiple data sets be acquired at different pH to identify any pH rate- depen-
dency (i.e. if kg << kg, then key = ko, ; which should not be directly pH
dependent = EX1). However, there was unfortunately not time to carry out
this experimentation during this work. A rough approximation does exist (159)
which states that residues with similar free energy of exchange values (ignoring
the exchange model) will have similar k,. values (EX1), whilst the reverse is

applicable to EX2 conditions. This approximation was attempted by using the

(k
Tre )

however, it was unfortunately the case that a mixture of the aforementioned

experimental ke, and calculated k. values to derive AGyp(AG = —RT In

scenarios were present and so no further analysis could be carried out.
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4.2.4 15N backbone relaxation

Longitudinal, transverse and hetNOE N relaxation measurements were ac-
quired for the AVR3allAN construct at both 500 and 800 MHz. Relaxation
rates R; and Ry and the hetNOE enhancement were determined according to
Section 2.1.6 and the calculated relaxation rates are presented in Figures 4.2.8
and 4.2.9.

The residues of the AVR3allAN construct that were assignable within
the 'H-1N HSQC spectra were those pertaining to the well folded regions of
the molecule, as observed from comparisons to both the AVR3allAN crystal
structure and the NMR ensemble of the full length effector. The regions that
would be expected to experience the greatest dynamic phenomena (such as
the helix3-helix4 loop) could therefore not be measured. The relaxation rates
of three N-terminal residues (L5, A6, A7) also could not be ascertained due
to significant spectral overlap. The immediate observation from all of the
15N relaxation measurements ascribes a relatively uniform dynamic behaviour
over the molecular system as seen from wholly consistent relaxation rates. The
only consistent deviation from this regularity is the very C-terminal residue
V65 (V132, full length protein numbering), which is a common observation
based upon the lack of motional restriction at either terminus. The mean
averages, errors and standard deviations of all the relaxation values (excluding
the C-terminal V65) further highlight this consistency (Table 4.2.1).

Table 4.2.1: The mean average values, errors and standard deviations (o) for
the calculated relaxation rates at 500 and 800 MHz of all residues, excluding
the C-terminal residue V65.

Relaxation Avg. (s1), ANOE) Err. (s, hNOE) o (s, hNOE)

R, 500 MHz 2.20 0.03 0.09
R; 800 MHz 1.38 0.02 0.06
Rs 500 MHz 9.57 0.13 0.72
Rs 800 MHz 12.17 0.27 1.20
hNOE 500 MHz 0.73 0.02 0.05
hNOE 800 MHz 0.82 0.01 0.05
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Figure 4.2.8: The R; and Ry "N relaxation rates and the 'H-'N heteronuclear
NOE enhancements at 500 MHz across the AVR3allAN backbone. Errors
were calculated from the error of the fit with respect to signal to noise. Ex-
amples of the mono-exponential decays of normalised peak intensities for R;
(bottom left) and Ry (bottom right) rates for three residues are shown, with
numbers relating to the truncated construct.
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Figure 4.2.9: The R; and R, °N relaxation rates and the 'H-'°N heteronuclear
NOE enhancements at 800 MHz across the AVR3allAN backbone. FErrors
were calculated from the error of the fit with respect to signal to noise. Ex-
amples of the mono-exponential decays of normalised peak intensities for R;
(bottom left) and Ry (bottom right) rates for three residues are shown, with
numbers relating to the truncated construct.
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Of the 48 residues analysed in all datasets, approximately 30 residues were
within +1 (terminus-excluding) standard deviation of the calculated averages
across all datasets (Table 4.2.1); however, although relaxation values were
relatively uniform, only eight, scattered, residues were consistently shown to
be within these parameters across all datasets (K21, Q27, D31, Q38, D41,
N56, M59 and Y61). The calculated errors presented in Table 4.2.1 represent
percentage errors of 1.4%, 1.3% and 3.0% for the Ri, Ry and hetNOE mea-
surements at 500 MHz and 1.4%, 2.2% and 1.5% for the respective values at
800 MHz; which are comparable to values reported in similar N relaxation
studies found in the literature (161164). Figures 4.2.8-9 also highlight the de-
pendence of Ry and Ry on the magnetic field strength, with observations of
shorter R; rates and longer Ry rates at 800 MHz compared to 500 MHz. This
is due to due to the increase in Larmor frequency of the respective nuclei (and
subsequently J(w)). The increase in hNOE at 800 MHz is also as expected due

to its dependence on Rj.

The Ry/R; ratio is frequently used as a qualitative probe of molecular
motions. This arises from the fact that slow exchange processes serve to in-
crease Ry, but not R; (Rex, Equation 4.9), consequently increasing the ratio.
Conversely, residues experiencing significant internal motions can be identified,

as they will serve to decrease the Ry /R, ratio.

The Ry/R; ratios presented in Figure 4.2.10 indicate that, as sampled
at 500 MHz, the observable residues of the AVR3allAN construct are ex-
periencing relatively uniform contributions to relaxation from slow and fast
timescale motions. However, the relative decrease in the Ry/R; value for the
C-terminal residue V65 is suggestive of enhanced relaxation due to rapid in-
ternal dynamics. Although this description of V65 is mirrored in the Ry/R4
value at 800 MHz, the remainder of the protein is distinctively less uniform.
In particular, a number of residues in the C-terminal helix 4 are suggestive
of influence by slow timescale exchange, which was not directly evident from

either the relaxation rates alone, or the ratios at 500 MHz.
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Figure 4.2.10: The Ry/R; '°N relaxation ratios at 500 MHz (blue) and 800 MHz
(red) for the AVR3allAN construct.

Whilst the above descriptions are rather vague with respect to specific
motional characteristics, Ry/R; ratios can also be used as an approximate
measure of the overall rotational correlation time, t,,, in the case of isotropic
diffusion (Equation 4.17). For this approximation to hold, Tjandra et al., have
defined two criteria (161) so that the relaxation times of any residues deemed
to be experiencing significant fast internal motions (as evident from hNOE <
0.65) or substantial exchange processes (equation 4.30) can be discarded due

to their inability to report on an overall correlation time.

(1) = Tpn) _ () =Thw) _ SD(o) (4.30)

(T7) (Th)

where the Ty and Ty relaxation times of individual residues, n, should be
evaluated against the average relaxation times (T5) and (T7) (as calculated
from the subset of residues for which ANOE > 0.65), and the standard deviation

(o) is with respect to (((I2) — Ton)/(T2) — ((Th) —T1,)/{T1)).

These Tjandra-Bax criteria can also be employed in the characterisation
of anisotropic diffusion although a singular correlation time does not apply
in this instance. Because the Ry/R; ratio will depend on the orientation of
the NH bond vector due to the dipolar interaction (Equation 4.20), with an
a priori description of the diffusive mode, estimations can be made regarding

the principal axes of the diffusion tensor.
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In the case of the AVR3allAN, the relative principal axes of the dif-
fusion tensor (Dy, Dy and D,) were first estimated with pdbinertia (accessi-
ble: http://www.palmer.hs.columbia.edu/software/diffusion.html) us-
ing the 3ZR8 crystal structure of the AVR3allAN construct as input. The
result of this calculation generated an inertia tensor with lengths of the rela-
tive principal axes equal to: 1.00:0.93:0.75 which suggests that either an axially
symmetric of fully anisotropic model of diffusion should, in principle, be ob-
served. Although this has previously been shown a valid approximation (161),
the calculated inertia tensor does not take account of any asymmetric drag
due to protein hydration, as the calculated inertia tensor only describes the

3D distribution of angular momentum as a result of molecular size and shape.

HYDRONMR (165) offers an alternative approach which, provided a 3D
structure is available, is able to both extract the NH bond vectors and es-
timate of the Ty, Ty and NOE relaxation rate (and also the reduced spec-
tral density terms J(0), J(wy) and J(0.87wy)) at a particular magnetic field
strength by modelling the effect of hydration on diffusion (accessible: http:
//leonardo.inf .um.es/macromol/programs/hydronmr/hydronmr.htm). By
redefining every non-hydrogen atom within the structure as a series of beads
with increased atomic radii (defined as the atomic element radius, AER) the
program attempts to account for the additional contribution of the hydration
shell to diffusion. The AER value can then be optimised to account for the
hydration shells of individual proteins.Figures 4.2.11-12 present the Ry /R4 ra-
tios for the AVR3allAN construct (excluding those significantly affected by
fast and slow motions, as defined by Equation 4.30) and the theoretical ratios
as calculated by HYDRONMR at 500 MHz and 800 MHz respectively for five
values of AER bead size. Calculations were carried out between 2.6 and 3.5 A
in 0.10 A increments, with a >N chemical shift anisotropy of -172 ppm, with an
NH bond length set to 1.02 A and at a temperature of 293 K with a standard

value of viscosity taken to be 1.0 x 10 N s m™.

Unfortunately, no agreement was observed between the experimentally de-
termined relaxation values and those theoretically calculated with the various
bead sizes. All calculated values were significantly lower than those measured.
As would be expected, the increase in bead size corresponded to increasing

values of Ry/R; as a result of slower effective diffusion.
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Figure 4.2.11: The AVR3allAN R, /R; ratios at 500 MHz which satisfy the
Tjandra-Bax criteria (161) (green squares) and the HYDRONMR theoretical
ratios for multiple AER values of 2.6 (red), 2.8, (blue), 3.0 (orange), 3.2 (black)
and 3.4 A (purple).
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Figure 4.2.12: The AVR3allAN Ry /R; ratios at 800 MHz which satisfy the
Tjandra-Bax criteria (161) (green squares) and the HYDRONMR theoretical
ratios for multiple AER values of 2.6 (red), 2.8, (blue), 3.0 (orange), 3.2 (black)
and 3.4 A (purple).

However this trend could not be explored further to better match the
experimental results as the overlap between the beads resulted in premature

termination of the calculation (data not shown).
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The inability to recreate the high Ry /R; ratios from the experimental re-
sults suggest that the residues chosen for comparison are experiencing signifi-
cant exchange processes (166). Although this subset of real data should have
been devoid of slow dynamic phenomena through application of the Tjandra-
Bax criteria, a potential criticism of the method should be highlighted. The
selection process assumes that any residues experiencing significant fast or slow
exchange will be distinct from those not, by lower or higher deviations from
the mean Ry /R; values respectively. However, in the instance where both fast
internal motions and slow exchange processes affect the majority of the protein
backbone, a situation can be envisaged wherein different proportions of these
exchange processes can culminate in a seemingly consistent Ry /R, values. Ar-
guably, the requirement for residues with an hNOE > 0.65 should account for
this effect due to its dependence on significant fast motions, and so suggests

that slower timescale motions are most likely perturbing the analysis.

4.2.5 Reduced Spectral Density Mapping

Although unfortunate, the above description of slow exchange processes dis-
rupting characterisation of the molecular diffusion from Ry /R, ratios is catered
for by work from Chang et al., (167). This states that a better method of iden-
tifying rotational correlation times is to directly compare in silico calculated
m values to those that have been calculated from spectral density calcula-
tions and modified to mathematically cancel the internal motions component
((1 = S?) 1) from the initial equations (Equation 4.31):

JO)—J(wy))  (0.87Twr—wn)? -2
Tm=(<J<wN>—J<wH>) W7 *1) Jon

(4.31)
Therefore, using the spectral density equations, presented here as Equa-
tions 4.13-4.1.5, the spectral densities were evaluated at J(0), J(on) and J(0.87cy)
for both 500 and 800 MHz magnetic fields for all of the AVR3allAN residues.
Equation 4.30 was then used to calculate local T, values for each residue and
these were then compared to the in silico modelled t,, values, as determined

by HYDRONMR for the calculated values between 2.6 and 3.5 AER.
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Using this methodology, the AER value which best represented the ex-
perimental results was determined to be 2.9 A at both magnetic fields, as the
local T, values for this bead size possessed the lowest mean deviation from the
experimental results. A comparison between the manually calculated m values
at both magnetic fields and those calculated by HYDRONMR can be seen in
Figure 4.2.13.

The local T, values that were calculated to be independent of internal
motions of the acquired °N relaxation data are in good agreement with that
determined by HYDRONMR with a bead size of 2.9 A, with even small trends
in 1, visible such as the marginally higher rotational correlation time for helix
3. Due to the success of this calculation in mirroring internal motion indepen-
dent data, it can be said with some confidence that the other results from the
HYDRONMR calculation should also describe the dynamic behaviour of how
AVR3al1AN would behave if it were indeed a rigid body.
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Figure 4.2.13: The local 7, values as calculated at 500 MHz (blue) and
800 MHz (red) from >N relaxation data of all AVR3allAN residues and the
local T, values as determined by HYDRONMR for an AER value of 2.9 A.
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The HYDRONMR calculation also determined an average mean rotational
correlation time for the whole protein of 5.22 ns, which is reasonable given
the potential for exchange and anisotropic diffusion to increase the rule-of-
thumb (the rule being 0.6 x MW (kDa) = <. (ns)) correlation time, which
for AVR3allAN = 4.49 ns. Furthermore, relative lengths of the anisotropic
diffusion tensor were determined to be 1.00:0.77:0.85 from the PDB file, and
although these are with respect to a rigid structure, they suggest a greater deal
of axial symmetry than the relative lengths of the inertia tensor calculated by

pdbinertia.

Figure 4.2.14 then compares the experimentally calculated reduced spec-
tral density parameters to those from the HYDRONMR outputs at 500 and
800 MHz, corrected by a factor of 2/5 given that the equations used by HY-
DRONMR differ from equations 4.13 to 4.17. The differences between the eval-
uated frequencies provide an interesting comparison as it can be assumed that
the HYDRONMR data represents that of a rigid AVR3allAN protein. The
observation of higher J(0) values suggest that there are significantly greater
slower frequency internal motions across the entire protein, and specifically
for helix 4, which confirms that a significant Rex exchange term would have

skewed conclusions from the Ry/R; ratio alone.

The faster internal motions probed by J(wy) and J(0.87wy) however are in
contrast to one another and suggest that on the faster nanosecond timescale,
faster internal motions of 50 MHz are particularly more prominent. Con-
versely, the faster motions at the ps timescale, probed by J(0.87wy), shows

little divergence from a relatively rigid body.

Finally, although model free analysis was attempted with the raw °N re-
laxation data, all calculations either failed to converge or yielded thoroughly
uninterpretable results (data not shown). Although unfortunate, it would
seem that the inherent level of conformational exchange, as determined from
comparisons to the HYDRONMR calculations, were most likely complicat-
ing the dynamic characterisation where levels of exchange were mistaken for
anisotropy, therefore failed to fit to the structure and dynamics of the system

as a whole.
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Figure 4.2.14: A comparison between the spectral densitys evaluated at J(0)

(top), J(wn) (middle) and J(0.87wy) (bottom) of the values calculated from
5N data and those determined by HYDRONMR for an AER value of 2.9 A
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4.3 Discussion

Particular regions of the AVR3al1 effector have been shown to be without fixed
secondary structure, as observed from both the calculated X-ray structure
and the NMR ensemble, and so could therefore be susceptible to dynamic
phenomena. However, due to the inability to resolve the amide peaks of these
residues, no conclusions could be made from experimental data about the
level of dynamics at these sites. This could have been particularly insightful,
as mutations in the helix 3-to-4 loop have been documented in the literature
as capable of reintroducing plant recognition, via the R3a resistance protein,
for the AVR3a"™ allele of Phytophthora infestans for which there is no native
interaction (145).

The results of the hydrogen/deuterium exchange experiments suggest that
as a whole, the 4-helix bundle fold of the effector domain is largely stable
with regard to slow dynamic phenomena such as folding-unfolding reactions or
changes in helical rearrangement. However, the observation that three residues
of the N-terminal helix-1 interior face have rapid exchange times, akin to those
directly on the surface of the protein proves interesting. Although other RXLR
effectors, including the AVR3a4 protein from P. capsici, are also shown to form
a four-helix bundle conformation, RXLR effectors in general have a distinct
overall lack of sequence homology. In trying to describe similarities between
RXLR effectors, the actual conserved structural motif has been defined as that
of a three helix bundle conformation termed a WY domain (168), which con-
stitute helices 2, 3 and 4 of the AVR3all fold. The N-terminal helix therefore
represents an addition to the central WY domain fold, although it clearly has
functional significance as it contains residue position 71. Therefore it may well
be that the hydrophobic interactions which drive the compactness of the fold
are not as favourable for the N-terminal helix than for helices 2-4, causing a
relative lack of affinity for the hydrophobic core which would allow its residues

specifically greater solvent accessibility.

Reduced spectral density analysis was used to analyse the extent of fast
and slow internal molecular motions across the protein backbone. Although
initial interpretations of the fast timescale motions with '®N relaxation data
alone proved to be complicated by the presence of slow timescale exchange

process(es), after extraction of these terms by use of Equation 4.31 it became
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obvious that in relation to a relatively rigid model, AVR3allAN as a whole
displays a greater level of slow motions across the entire backbone in compar-
ison to that of a rigid macromolecule. It could be argued that the level of
slow exchange observed was in fact an artefact resulting from either weakly
associating dimers or inconsistencies between the acquired data sets at the two
magnetic fields. Common problems include either the setup of the particular
pule sequences used or, in particular, differences in the concentrations of the
samples used which can impact the viscosity of solution and hence impact the
rate of diffusion. However although minor differences in the sample concen-
trations cannot be ruled out entirely, previous work has explicitly highlighted
that AVR3allAN does not form dimer species in solution (49). Furthermore,
a comparison of the field independent J(0) values calculated across the pro-
tein (Figure 4.3.1) at each field exhibit significant correlation to one another,

indicating that the data acquired was in fact comparable.
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Figure 4.3.1: The field independent motions for the AVR3allAN construct at
both 500 and 800 MHz plotted together. The linearity of the plot can be used
as a measure of the consistency between the datasets.

Although not seen as an explicit characterisation of dynamic phenomena,
the B-factor, or temperature factor, obtained during the processing of X-ray
crystallography data has classically been used as a tentative reporter of protein
dynamics. Evaluations of B-factors are frequently carried out in the literature

regarding protein structure-function investigations and, in particular, are rou-
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tinely compared to NMR-derived dynamic data (169, 170). However, although
crystallographic B-factors are related to the additional x-ray scattering that
arises from molecular motion, they can equally reflect the level of static dis-
order within the crystal lattice; and at present the two phenomena are unable

to be meaningfully deconvoluted.

With this is mind, recent works (171, 172) suggest that in actuality no
general conclusions can be made from comparing crystallographic B-factors
to explicit dynamic observations and that molecular dynamics calculations
are actually a far better complimentary method to aid the characterisation
of molecular motions. Although the relevant Gaussian Network Modelling
(GNM) calculations (171) were outside the scope of this work, for complete-
ness, Figure 4.3.2 shows the B-factors of the backbone Ca and N atoms ex-
tracted from the 3ZR8 crystal structure as compared to the Ry/R; ratio for
the AVR3allAN construct at 800 MHz.

Indeed, the NMR and crystallographic data are in poor agreement, with no
visible trend in B-factor correlating to the helix 3-4 loop for which NMR data
could not be obtained, presumably due to unfavourable dynamics. Conversely,
the largest Ca and N B-factors correlate precisely to helix three for which
no noteworthy, experimentally determined, dynamics had been shown, and
for which no greater-than-average backbone deviations across the AVR3all
solution-state NMR ensemble were apparent. Although the NMR derived
S? order parameter is perhaps better compared to crystallographic B-factors
(173), because this was unable to be determined in this work, the Ro/R; ratio
perhaps stands as the next best measure to highlight any significant trends
between both slow and fast timescale motions. Therefore, it is entirely more
probable that the observed B-factors are in fact highlighting significant static
disorder for helix 3 rather than an important dynamic process, and subse-
quently, further investigation of the AVR3allAN B-factors, should not be

carried out with a view to functional interpretation.
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Figure 4.3.2: The B-factors of the backbone N (blue) and Cu (red) atoms of the
AVR3allAN crystal structure (3ZR8) compared to the experimental Ry/R4
ratio at 800 MHz (purple).
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Chapter 5

Characterising the TARP ABD

5.1 Introduction

5.1.1 Protein intrinsic disorder a brief history

Protein structure is classically defined by four, increasingly complex, hierar-
chical levels: primary structure (order of amino acids), secondary structure
(o-helical, Bstrand, coil and turn elements), tertiary structure (association and
folding of the secondary structure elements) and quaternary structure (the as-
sociation of multiple units of tertiary structure). For many decades, the clas-
sical understanding of the structure-function paradigm was applied to molec-
ular biology with an understanding that the breadth of specific and selective
function, as required by the interactions of complex life, was only achievable
through the three dimensional complexity accessible to the higher tiers of pro-
tein structure. The last decade or so however has seen an increasing amount
of evidence supporting the idea that extended, unstructured, regions or indeed
whole disordered proteins, not only exist in nature but that they also have

distinct functional roles.

A great deal of scientific study has of course focussed on induced-disorder
states, for instance in elucidating the fundamental principles of protein folding.
Unfortunately, it can be said that this early research into enzyme chemistry,
central to the conceptualisation of the molecular structure-function paradigm,

also lead to the temporary disregard of disordered protein states (174).
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Undeniably, it is difficult to contemplate reaching an alternate conclusion,
given the scientific zeitgeist of the mid-to-late 20" century, with the accumulat-
ing evidence linking precise structural arrangement to selective reactivity and,
concomitantly, chemical or thermal denaturation to functional ablation. This
emerging interest in protein structure also helped seed the advent of routine
X-ray crystallography and indeed for many years this generated a somewhat
inevitable bias in protein science towards structured, crystallisable proteins.
Distinct disordered regions were regularly dismissed as functionless linkers,
phasing errors or simply products of an exogenous environment; that is if they

were not removed entirely to facilitate crystalisation.

Over time, evidence of functional, natively disordered proteins has been
supported through a combination of functional assays and the application of
structure-probing solution state techniques such as NMR and small angle x-
ray scattering (SAXS).

These observations, for a time, unsettled the classical structure-function
paradigm; indeed, functionality with a lack of distinct 3D structure is in direct
opposition to its understanding. But recently a general description of pro-
tein function is starting to be put forward which suggests an understanding
of disordered functional domains should supplement the classical paradigm,
rather than redefine it (174). It is widely accepted that any degree of protein
structure, whether it be none at all, is a consequence of the order and com-
position of the primary sequence amino acids (175, 176). Natively disordered
proteins have therefore been termed “intrinsically disordered proteins” (IDPs)
so as to accurately describe their inherently predetermined lack of structure.
Also, functional observations of ordered proteins continue to be satisfactorily
explained (generally) by induced-fit or conformational selection mechanisms
which are facilitated by active site dynamics and supported by precise, coded,

structural arrangement (177).

The distinction begins to arise from the fact that whilst structure deter-
mines function, an infinite variation in 3D structure can not necessarily allow
for infinite possible function; and broadly speaking, the majority of ordered
proteins have evolved to be highly selective, specific, tight binding macro-
molecules. Conversely, disordered proteins regions are more commonly associ-
ated with the highaffinity lowspecificity or lowaffinity high specificity protein-

binding events involved in signal transduction and transcriptional regulation
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(178) (Note: To date, only one example of a disordered catalytic enzyme has
been documented (179)). Consequently, protein disorder can be thought of
as expanding the functional repertoire of proteins, into territory that the very

nature of 3D structure precludes.

An appreciation of IDPs may also help to explain the recently described
paradox in molecular biology which shows an unexpected lack of correlation
between an organisms complexity and its genome size (180). Many attempts
have been made to rationalise this observation, such as with microRNAs or
alternative splicing, but a significant positive correlation also exists between
an organisms complexity and the number of disordered proteins encoded by
its genome (181). It may well be that cellular complexity is greater than the
sum of all these biological parts, but with IDPs proving central to functional
regulation and with being increasingly linked to involvement in human disease
states (182), an understanding of the long dismissed disordered state may well

prove vital as we begin to decipher increasingly complex biochemical problems.

5.1.2 Characterising protein disorder

Much work has focussed on describing protein structure by both direct and
indirect biochemical and biophysical observations and this is also true for the
characterisation of disordered proteins. Omne of the most telling biophysical
measurements in this regard, observable through a number of techniques, is

that of a proteins effective hydrodynamic diffusion profile (Stokes radius (Rg)).

By assuming an average folded density for proteins, (1.37 g.cm™ (183),
although specific densities can be calculated as a function of molecular weight
(184)) for a given molecular weight (and hence the effective radius), the diffu-
sion of a spherical body can be calculated through use of the Stokes-Einstein

equation (eq 5.1.1):

D kT
67T77RS

(5.1)

where D is the diffusion constant, xis the Boltzmann constant (1.3806 x 10%
J.K-1), T is the temperature of the system (in Kelvin), n is the viscosity of
solution and Rg is the radius of the diffusing sphere. When applied to biological

molecules, the effective Rg can be increased through solvent interactions, but
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the effect is essentially uniform and therefore allows for the determination of
either theoretical molecular weight or diffusion rate when given the converse

information.

Techniques such as dynamic light scattering (DLS), pulsed field gradient
(PFG) NMR and gel filtration chromatography are commonly used to measure
the diffusion characteristics of proteins in solution, and do so by comparison

to the diffusion of either small molecules, or standard calibration curves.

The inherent extended structure of IDPs (and hence relatively low densi-
ties and variable Stokes radii) limits the success of molecular weight determi-
nation with these methods. The level of divergence from spherical- molecule
calibration curves can then be used as a measure for the amount of disorder
within a protein, and net approximations of Rg can be made by comparing dif-
fusive characteristics to those of ideal spherical bodies with a given Rg (185).
Interestingly though, disorder regions do not commonly share the diffusion
characteristics of denatured proteins of similar sizes. This is thought to be as
a result of their unusually low hydrophobicity and high net charge as compared
to globular proteins (see Figure 5.2.2), and can cause IDP regions to be rel-
atively more compact compared to fully denatured states (186). This overall
high net charge of IDPs is also thought responsible for the observation that
disordered regions tend to migrate as unusually large molecules by SDS-PAGE.
For ordered proteins, the relative proportion of hydrophobic residues is mainly
proportional to molecular weight, allowing proportional binding of SDS and
comparative PAGE migration. The unusually high net charge of IDPs how-
ever, lowers their affinity for SDS, and they subsequently experience lower net
negative charge, slower migration through the acrylamide matrix and appear

to migrate as larger molecules (187).

The extended structure of IDPs also has direct biochemical consequences.
Enhanced proteolysis is commonly observed due to the large accessibility of
intrinsically disordered domains to proteases. Techniques that measure protein
folding-unfolding events such as differential scanning calorimetry (DSC) or
other methods of thermal or chemical denaturation also typically yield atypical

results as the there are non-existent, or limited, structural elements to monitor.

Small-angle X-ray scattering (SAXS) is perhaps the most direct measure
of a proteins overall size and shape, with the potential to also characterise the

conformational distribution sampled by a particular molecule (188). A wide
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variety of parameters can be extracted from SAXS data, such as molecular
weight, diameter and radius of gyration (Rg) that can help to characterise
the level of disorder within a protein. Furthermore, although the generation
of accurate structural models from SAXS data is currently quite limited due
to the relatively low resolution of the data, computational advances in the

processing of SAXS data are starting to significantly enhance it (189).

The many information-rich facets of NMR make it perhaps the most in-
sightful tool for studying proteins, ordered or disordered, in solution albeit
with a size limitation of -40-100 kDa depending on the system and the avail-
able hardware (190). NMR spectroscopy provides the unique ability to monitor
the structure, dynamics and interactions of proteins in solution at the level of
the individual amino acid, and indeed the (magnetically active) nuclei within
them. As previously discussed (Sections 3.1 and 4.1 respectively), the chemi-
cal shifts of specific moieties, and their relaxation to equilibrium in a magnetic
field, are heavily influenced by their covalent and spatial surroundings and
their local and overall mobility. The higher levels of protein structure there-
fore have a major impact on the observed chemical shift dispersion, linewidth
and relaxation times measured during NMR experiments. In contrast, the lack
of structure within IDPs consequently yields largely distinct data to those of
globular proteins enabling the characterisation of their dynamic properties and

latent structural propensities.

Analysis of NMR chemical shifts alone is usually sufficient evidence to
state if disorder is prevalent within a sample. For instance, minimal chemical
shift dispersion within the 1H dimension of 'H-N HSQC spectra is indicative
of an absence of the heterogeneous spatial surroundings involved in secondary
structure. Comparisons to the chemical shifts of amino acids occupying known
secondary structure elements (chemical shift indexing, CSI) can then provide
a quantitative measure of the extent and type of order within a sample (84).
For IDPs, this is usually more informative than traditional NOESY-based
inter-nuclei distance measurements as the significant backbone dynamics can

preclude distinct magnetisation transfer through the nuclear Overhauser effect.

The scope allowed in the analysis of NMR relaxation data for IDPs is
somewhat restricted compared to the analysis of globular proteins because a
single isotropic correlation time is not sufficient to describe their molecular

tumbling in solution. Nonetheless, by recording backbone amide N longitu-
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dinal (R;), longitudinal rotating frame (R;,) and transverse (Rs) relaxation
rates and steady state heteronuclear NOE enhancements, dynamic phenom-
ena across fast (ps-ns) and slow (us-ms) timescales can be probed (see Figure
4.1.4).

Furthermore, use of these relaxation rates can be applied to reduced spec-
tral density mapping (RSDM) to determine the spectral density function J(w)
at the frequencies of J(0), Jon and J(0.87wy) as previously mentioned. As
measures of the extent of relaxation at theses frequencies, they are used as com-
mon measures to compare the internal molecular motions of different systems
(152), and can help determine latent or partial secondary structure elements in
IDPs (191). Kinetic phenomena can also be probed with NMR and, similar to
Fourier- transform infrared spectroscopy (FTIR) and mass spectrometry (MS)
techniques, experiments designed to monitor the chemical exchange between
protons and deuterons can provide residue specific insights into the level of
solvent accessibility and the slow time scale motions (seconds-hours) which

are indicative of large conformational changes or folding:unfolding events.

5.1.3 Experimental aims

As a result of the relatively sparse information currently available about the
TAPR protein, and in particular the biochemical detail of its actin interaction,
this chapter will server to document an initial in silico investigation into the
actin binding region of the TARP protein and the biophysical characterisation

regarding its native state.

5.2 Results

5.2.1 In silico characterisation

Because it can be said that a proteins structure and function are downstream
results of its initial primary amino acid composition and sequence, the long
pursued Holy Grail of structural biology is to be able to identify these charac-
teristics from sequence information alone. However, the complexities of folding

landscapes, exchanging and minor-populated conformations, post-translational
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modifications and interactions with solvent, small molecules or other proteins
make this an extremely ambitious goal. Nevertheless there are a growing num-
ber of sequence-related trends that can currently be identified, either through
sequence comparison or ab initio calculations, that are supported with bio-
chemical data. Owing to the relative simplicity of using these web-based tools
(although not necessarily the interpretation of the results) in silico methods

are increasingly being used in the initial characterisation of proteins.

The 100 residue sequence of the TARP actin binding domain (ABD),
which had previously been shown to be the minimum actin binding construct
(73), was used for all calculations with the omission of the five N-terminal
residues remaining from GST cleavage which were present in the physical con-
struct. Initially, the PSIPRED webserver was used (Version 3.3, accessible at:
http://bioinf.cs.ucl.ac.uk/psipred/) to identify elements of secondary
structure in the TARP ABD construct. Methodologically, PSIPRED works by
building a sequence homology matrix from multiple protein alignments to the
query sequence. This matrix profile is then ranked as a function of regions of
solvent accessibility (or conversely, hydrophobicity) and the original sequence
is then retrospectively scored according to the structural propensity of the
aligned homology profile (192). Results are then returned on a residue- by-
residue basis with the most likely type of secondary structure (helix, strand or
coil) and an associated confidence value. This approach has scored consistently
well in the CASP assessment of in silico tools (193).

The PISPRED prediction for the TARP ABD (Figure 5.2.1) shows two
regions of a-helix and a short stretch of -strand, with the remaining protein
predicted to be in a random coil conformation. The first region, a 12 residue
helix (full length numbering: A749-H761), has previously been identified as
homologous to that of other WH2 actin binding helices (73). The second
predicted helical region (L783-T792) has not been previously described, with
respect to structure or function, but shows very little homology to other char-
acterised proteins, as evidenced from searches carried out with the Basic Local
Alignment Search Tool (BLAST, accessible at http://blast.ncbi.nlm.nih.
gov/Blast.cgi) (Data not shown). The predicted region of 3-strand (T799-
V781) is particularly short at three residues and with low confidence values,

its existence should be treated tentatively.
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Disordered protein regions were historically described by an absence of
sequence or biochemical characteristics that matched those of known structural
elements. An approach derived in 2000 has been able to specifically identify
disordered regions by correlating their overall hydrophobicity with their net
charge at physiological pH (194). Within this charge-hydrophobicity phase
space, a visible threshold distinguishes known ordered proteins from predicted

and experimentally characterised disordered (Figure 5.2.2).
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Figure 5.2.1: The adapted output from a PSIPRED v3.3 secondary structure
prediction concerning the 100 residue TARP ABD. Annotated helices (H, pink
bars), strand (E, yellow arrow) and coil (C, black line) are shown below their
respective confidence value (blue bars).

The threshold between order and disorder, as defined by charge-hydrophobicity
phase space if define by equation 5.2.1:

(R) = 2.785(H) — 1.151 (5.2)

where <R> and <H> refer to mean net charge and mean Kyte-Doolittle
(195) hydrophobicity respectively. The position of the TARP ABD in charge-
hydrophobicity phase space (<R> = 0.074, <H> = 0.444, calculated at pH
7.0) lies almost exactly at the interface between ordered and disordered pro-

teins (Figure 5.2.4, yellow star). Neither fully ordered or disordered by this
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definition, this could suggest that the TARP ABD contains either an equal pro-
portion of order and disorder promoting regions (a theory not supported by
Figure 5.2.1) or that regions with propensity for either order or disorder are
detracting from fully indicative characteristics within charge-hydrophobicity

phase space.
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Figure 5.2.2: A mean net charge vs. mean hydrophobicity plot (adapted from
(194), figure 3d) with the TARP ABD superimposed (yellow star). Known
folded proteins are depicted as squares (dark blue), coloured circles represent
known disordered proteins (pink), their sequence based homologues (cyan)
and proteins predicted to be disordered (green). The order:disorder bound-
ary is defined, with <R> and <H> denoting mean net charge and mean net
hydrophobicity respectively.

A number of methods also exist for locating disordered regions specifi-
cally within a sequence, rather than treating a whole domain as an individ-
ual entity. The methodologies of these disorder prediction tools can differ
significantly through the inclusion of different, or mixed and weighted, com-
ponents such as physical principles (i.e. charge-hydrophobicity phase space),
amino acid composition, homologue based position-specific matrices or con-
versely predictions of secondary structure or solvent accessibility (196). There
are also tools, termed meta-predictors, which seek to combine the results of

multiple approaches to best describe the disorder within a system.
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The PONDR-FIT web tool (196) is one such meta-predictor (accessi-
ble: http://www.disprot.org/pondr-fit.php) shown to significantly im-
prove initial predictions (as compared to experimental structural determina-
tion) by incorporating multiple sequence-based features. The PONDR-FIT
prediction of disorder within the TARP ABD (Figure 5.2.3) agrees well with
the PSIPRED structural prediction (Figure 5.2.1) and also a prediction of
the average area buried (accessible: http://web.expasy.org/protscale); a

traditional measure of folded structure elements (197).
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Figure 5.2.3: A comparison of the in silico structure predictions for the TARP
ABD. The PSIPRED prediction (Figure 5.2.3) is represented as green bars
(o-helices) and yellow arrows (B-strand) (top). The PONDR-FIT disorder pre-
diction (blue) and an average area buried hydrophobicity plot (red) (197) of the
TARP ABD overlaid. Scores have been normalised, between 1 (full disorder)
and 0 (full order). The threshold between order and disorder (PONDR-FIT)
is shown (dashed black).

Although the PSIPRED-predicted structural elements match trends in
both hydrophobicity (and hence propensity to fold) and a lack of disorder, the
relative divergence from a fully disordered score should be taken into account.
In this sense, only the presence of the WH2-homologous a-helix 1 is supported
by all calculations carried out, as seen by a PONDR-FIT score below the
disorder:order threshold of 0.5 (196) (Figure 5.2.3). Nonetheless, it is only a

slight, and partial, deviation from disorder.
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Although experimental observations should ideally complement in silico
analysis, this result may also explain the inconclusive position of the TARP
ABD within the charge-hydrophobicity phase space. It is clear that the major-
ity of the construct resembles that of largely disordered protein. It may well
prove that the regions of predicted secondary structure (in particular helix 1)
actually only correspond to propensities for secondary structure. This would
agree with observations of other disordered protein-binding domains (174) that
present partially formed or non-existent secondary structure elements, which

only truly fold upon ligand binding.

5.2.2 Purification and size characterisation

There were no significant practical obstacles to overcome during the purifi-
cation steps of the TARP ABD (Section 2.2.3). Initial visualisation of the
GST-TARP fusion protein by SDS-PAGE (Figure 5.2.4) indicated that the
unlabelled fusion protein migrated as a 43.77 kDa protein, although theoret-
ical prediction (http://www.scripps.edu/~cdputnam/protcalc.html) esti-
mated the 331 residue protein to be 36.82 kDa.
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Figure 5.2.4: An example 20% SDS-PAGE gel of the overexpression of the
GST-TARP ABD (*) after induced overexpression with 0.8 mM IPTG (left).
The apparent molecular weight of the fusion protein was determined by graph-
ical analysis of the fusion protein SDS-PAGE migration (red) relative to the
mobility of the molecular weight standards (blue). (Rf = band migration /
dye front migration) (right).

Following GST affinity-purification and cleavage of the fusion protein, the
molecular weights of the eluted species were assessed. Although free GST
is known to dimerise in solution (198), suggesting a molecular weight migra-

tion of 52.86 kDa could be expected, analysis of the size exclusion purifica-
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tion chromatogram indicated free GST migrated as a 66 kDa protein (Figure
5.2.5, top and bottom right). Analysis of the size exclusion fractions by SDS-
PAGE, with its denaturing sample conditions, identified the GST monomer
as 29.1 kDa (Figure 5.2.5, bottom left), a figure in better agreement with its
expected monomeric weight of 26.43 kDa. Migration of the TARP ABD im-
plied a diffusive profile greater than that of its expected 10.4 kDa by both
size exclusion chromatography and SDS-PAGE, observed as a 39.75 kDa and
a 15.1 kDa protein respectively (Figure 5.2.5). Both results confirm that the
TARP ABD has a larger radius than that expected for a globular protein of

the same molecular mass.
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Figure 5.2.5: An example size exclusion chromatogram at 280 nm (blue) and
214 nm (red) of the cleaved GST and TARP ABD sample (Top). Orange
alphanumerics denote individually collected 2 ml fractions. Standard protein
calibrants (cytochrome ¢, carbonic anhydrase, bovine serum albumin (BSA),
alcohol dehydrogenase and [3-amylase) were used to calibrate the S75 column
across a molecular weight range of 12.4 kDa to 200 kDa. The linear relationship
between elution volume and molecular weight was used to evaluate sample
size (Bottom right). An example silver stained 20% SDS-PAGE gel of the
cleaved GST, TARP ABD size exclusion fractions. Alphanumeric descriptions
correspond to those from the size exclusion purification (Bottom left).

The full length TARP protein has previously been shown to migrate aber-
rantly on SDS-PAGE (74) and a fragment containing the TARP ABD has also

shown a larger than expected molecular weight by size exclusion (73).
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The gel filtration elution volumes of the protein calibrants were also used
to determine the effective Stokes radius of the TARP ABD. This was carried
out by exploiting the correlation between the Stokes radius of a diffusing body
and the elution volume of a given sample, combined with the properties of the
specific gel filtration column (and packed media) through calculation of the
partition coefficient (Kay) (199, 200).

The TARP ABD was shown to diffuse with an Ry = 27.2 A, another mea-
surement far larger than that expected for a spherical protein of 10.4 kDa. In
contrast, the most similar diffusing protein, carbonic anhydrase - a 29 kDa
spherical protein - has an Ry = 24 A indicating that the TARP ABD is indeed

sampling a significantly extended conformation in solution.

0.45
04 cytochrome C y =-0.0105x + 0.5108
0.35 ‘
03 carbonic
anhydrase
= 0.25
i TARP ABD
0.2
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0.1 BSAO dehydrogenase
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Figure 5.2.6: Determination of effective Stokes radius for the TARP ABD. The
known Stokes radii of the protein standards (201), blue diamonds (B-amylase
48 A, alcohol dehydrogenase 46 A, BSA 34.8 A, carbonic anhydrase 24 A and
cytochrome C10 A) were correlated to the partition coefficient Kyy. Kay =
(Ve Vo)/(V-Vg) where V, is the elution volume of the sample, Vj is the void
volume of the column, as determined with Blue dextran, and Vt is the total
volume of the column, calculated from the height of the resin.

Unfortunately, the migration characteristics of dimerised GST and the
TARP ABD limited the efficiency of the size exclusion purification step, with
numerous TARP fractions shown to contain GST impurities (Figure 5.2.5.
bottom left). However, pooled pure fractions from 1 1 of culture consistently
yielded > 5 mg of the TARP ABD, which was sufficient for a 1 mM, 0.5 ml
NMR sample. Furthermore, the TARP ABD was later shown to be particularly
stable, so impure fractions containing notable proportions of the TARP ABD

were frozen and added to subsequent purifications prior to size exclusion.
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5.2.3 Biophysical characterisation

5.2.3.1 Mass spectrometry

Because a larger molecular weight than expected was seen during purification
and initial observations of ’N-HSQC NMR spectra of the TARP ABD yielded
significantly fewer amide-correlation peaks than expected (Section 5.2.3.3),
priority was given to ascertaining the molecular weight of the purified sample.
Electrospray ionisation mass spectrometry (ESI-MS) was used to check the
molecular mass of the purified TARP ABD construct (Section 2.2.5) (Figure
5.2.7).

ag aiga

[T5]

PHEnd diariandy

Figure 5.2.7: The electrospray ionisation mass spectrum of the TARP ABD.
Highlighted peaks correspond to integer m/z ratios for a mass of 10403 + 3
Da, in agreement with that of the theoretically predicted molecular weight of
10411 Da.

The sum of the predominant mass:charge peaks (Figure 5.2.7, red bars)
indicate a total mass of 10403 Da for the 105 residue TARP ABD construct; a
figure in agreement with the in silico calculated molecular weight of 10411 Da

(calculated as in Section 5.2.2).
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5.2.3.2 Synchrotron circular dichroism

The secondary structure of the TARP ABD construct was also probed with
synchrotron radiation circular dichroism (SRCD). Standard bench-top circular
dichroism measures the differences in the absorption by a sample between left
and right plane polarised light, most commonly across the far-ultraviolet (UV)
region of the EM spectrum (190-250 nm). For protein samples this can yield
quick and non-destructive structural information resulting from the different
absorptive properties of the secondary structure elements. There are also rich
structural data available in the vacuum ultraviolet (VUV) EM region (150-
200 nm), but this is not practically accessible with standard laboratory light
sources due to inabilities in maintaining low wavelength flux (202). Modern
synchrotron light sources can generate plane-polarised light with significantly
increased flux (-103 photons.sec!) across the VUV region, allowing these ex-
tra data to be acquired and simultaneously providing a higher overall signal
to noise (for a given sample concentration). SRCD spectra were acquired in
collaboration with Professor Bonnie Wallace and Dr Andrew Miles, Birkbeck
College, University of London. The SRCD spectra of the TARP ABD suggest
that the construct is a largely disordered protein (Figure 5.2.8, Table 5.2.1).
Positive changes in ellipticity are stereotypically indicative of helices (195 nm,
208 nm, 222 nm) and strands (185 nm, 192 nm, 212 nm). All SRCD spectra
for the TARP ABD are largely devoid of positive signal. The SRCD tem-
perature series presents a relative increase in ellipticity at -222 nm between
20°C and 85 °C, indicating an increase in helical structure. Although counter-
intuitive with respect to globular proteins (with regards to thermal denatura-
tion), the observation of increasing helical content with increased temperature
matches reports in the literature for other IDPs (203205). The phenomenon
has not been thoroughly explained (203), and competing theories have been
put forward. One hypothesis states that an increase in temperature results in
the strengthening of general hydrophobic interactions which facilitates folding.
Other research however suggests that increasing temperature is favourable to
polyproline helix II formation (which do not necessarily require proline, as
would be the case for the TARP ABD) and that this is often mistaken for
helical content with CD methods (206, 207).
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Figure 5.2.8: Synchrotron radiation circular dichroism (SRCD) spectra of the
TARP ABD measured at 20 °C (dashed black line). Experiments were repeated
in 5°C increments (solid grey lines) up to 85°C (solid black line). To check
sample stability, the red line indicated the final spectrum, after returning to
20°C.

Table 5.2.1: The average secondary structure content of the TARP ABD
calculated from SRCD spectra at 20°C and 85°C (Figure 5.2.3). Values are
averaged from the CONTINLL, SELCON and CDDSTR algorithms.

Secondary structure 20°C (%) 85°C(%) A%
a-helix 5+1 8+ 2 3
B-strand 10+ 1 14 £+ 2 4
Disordered 76 1 66 £ 6 -10

5.2.3.3 NMR resonance assignment

The NMR resonances of the TARP ABD domain were assigned using the
same backbone walk methodology outlined in Section 3.2.1, by utilising the
HNCACB/CBCA(CO)NH and HNCO/HN(CA)CO experimental pairs. The
observable TARP ABD backbone amide peaks exhibited extremely limited
spectral dispersion (Figure 5.2.10), which hampered the assignment process.
To resolve these difficulties, an HNN triple resonance experiment was also
acquired. The HNN experiment can aid in the sequential assignment of peaks
in crowded spectral regions by visualising the i-1 and ¢+1 amide correlations in
the same N plane as the 7 amide resonance. The increased spectral dispersion
of N species then usually allows for a clearer identification of connected spin

systems (Figure 5.2.9).
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Figure 5.2.9: An example of the backbone-walk assignment process carried
out for the TARP ABD construct, using 'H-'N strips from the HNN triple
resonance NMR, experiment. Crosspeaks correspond to the backbone amide
group of either the directly observed residue (i), or sequentially preceeding
(i-1) or proceeding (i+1) residues. The ambiguous assignment of 4, i-1 and
1+ 1 peaks was carried out according to the methodology described by Panchal
et al. (208) regarding the phase of the peak (red = positive, black = negative)
and the residue type, if known.

In total, 80% of the TARP ABD backbone (Asp726 - Ser808) was assigned
sequentially (Figure 5.2.8), excluding direct assignment of prolines 747, 765,
775 and 802, although the chemical shifts of their Ca C and C resonances
were observed from an i+1 perspective. A full list of the assigned residues
and resonance is included in Appendix I. The were no other peaks in any
spectrum acquired for the TARP ABD that could even partially account for

the remaining C-terminal 17 residues (Ser809 - Ser825) and hence were unable
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to be assigned. Eleven peaks were identified which corresponded to minor
conformations of assigned residues, as evidenced by identical chemical shifts
and 7 and -1 peak patterns in the HNCACB/CBCA(CO)NH and HNCO
HN(CA)CO spectra.
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Figure 5.2.10: The assigned 'H-'°N HSQC spectrum at 800 MHz of the TARP
ABD. The spectrum has been cropped and the Trp 803 side chain has been
omitted for clarity. Side chain resonances (1H 6.8-7.7 ppm) were not assigned.

The failure to observe the 17 C-terminal residues of the TARP ABD with
standard double and triple resonance NMR is most likely explained by peak

broadening resulting from an intermediate chemical (inter- or intra-molecular
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interactions) or conformational exchange process. That is, that the exchange
process between two or more species is occurring on a timescale highly similar
to the reciprocal of the difference in chemical shift frequency between the two

states, as observed by NMR at a particular magnetic field strength.

Both chemical and conformational exchange phenomena are of course ki-
netic in nature, however the populations of the interconverting states will be
governed by thermodynamics, and as such are open to manipulation. With
this in mind, a series of 'H-"’N HSQC experiments were carried out, using
the TARP ABD, between 5 and 35°C (283-298 K), in 5°C increments (Figure
5.2.11).

The aim of the series was to try and force the exchange processes into rela-
tive slow (low temperature) or fast exchange (high temperature) and therefore
observe the individual (slow exchange limit) or averaged (fast exchange limit)
signals. Unfortunately, no extra NMR signals peaks were observed, and at,
or approaching 308 K, a number of peaks were lost, presumably from the in-
creased solvent exchange. Although the C-terminus of the TARP ABD does
not contain any significantly hydrophobic or charged patches, because the tem-
perature series was not successful in identifying any extra peaks, pH and NaCl
titrations were also carried out to try and inhibit any potential inter- or intra-
molecular interactions (Figure 5.2.12). Both titrations did not significantly
alter the conformational behaviour of the TARP ABD as evidenced by consis-
tent NH chemical shifts. The [NaCl] titration did not yield any new peaks and
all peaks remained observable throughout the titration. Unfortunately, the pH
titration also failed to introduce any new peaks with respect to the C-terminal
region of the TARP ABD, although after and including pH 8.6, a number of

minor degradation peaks were observed.

Although the amide resonances remained fixed and observable between
pH 4.5 to 7.7, as of the pH 8.6 titration point only V762, V763, V786 and
W803 were visible, and by pH 9.9 no assigned peaks were present. Similar to
the temperature titration, this loss of signal is due to enhanced proton exchange
with the solvent, as the pH approaches the pKas of the amide protons. It is
interesting to note the longevity of a number of residues. The amide pK,s for
valine and tryptophan (9.62 and 9.39 respectively) are not particularly high
compared to other amino acids. The disappearance of other valine cross peaks

is also interesting.
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Figure 5.2.11: The 'H-'N HSQC temperature series at 600 MHz of the TARP
ABD between 278 and 308 K. The direction of the upfield shift associated with
increasing temperature is marked. Assignments have been omitted for clarity.

One hypothesis is that these amide protons are participating in hydrogen
bonding, potentially altering their effective pK,s and leading to increased en-
durance in a high pH environment. It is worth noting that V762 and V763
are just C-terminal to the WH2 homologous helix 1. It could therefore be the
case that hydrogen bonding from some partial helical content is causing these
observations, but the possibility of long-range H bond interaction between or

amongst any or all of these residues cannot be ruled out.
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Figure 5.2.12: Cropped backbone amide regions of overlaid 'H-'°N HSQC
[NaCl] (left) and pH (right) titration series of the TARP ABD at 600 and
800 MHz. Concentrations of NaCl used were: 0-mM (Navy), 10 mM (red) ,
20 mM (sky blue), 30 mM (maroon), 50 mM (teal), 75 mM (orange), 0.1 M
(magenta), 0.15 M (mauve), 0.2 M (purple) and 0.25 M (black). The pH for
each experiment was calculated after the addition of either 1 M NaOH or HCI
(see Section 2.2.3): pH 4.5 (navy), 4.7 (red), 5 (sky blue), 6.4 (green), 6.5
(maroon), 7.3 (pink), 7.7 (teal), 8.6 (purple), 8.8 (green) and 9.9 (black).

Upon searching the literature, studies were found which conducted 'H-
5N HSQC temperature series to investigate hydrogen bonding in proteins
(209, 210). By correlating the overall, isotope weighted, changes in chemi-
cal shift across the temperature range, assumptions can be made about the

level of hydrogen bond participation by particular amide protons. Amino acid
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temperature coefficients for the TARP ABD (Figure 5.2.13) were therefore cal-
culated from Figure 5.2.9. The result suggests that a number of residues may
be engaged in hydrogen bonding. For comparison to the literature, chemical
shifts were reported as (-8) and a threshold value of -4.7 ppb . K! is stated as
an 85% probability threshold for hydrogen bond participation. Eleven resides
had temperature coeffients more positive than the 85% probability threshold
(Figure 5.2.13, Table 5.2.2).
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Figure 5.2.13: The amide proton temperature coefficients for the TARP ABD
as calculated from the 'H-"N HSQC temperature series (Figure 5.2.9). 20
residues have been omitted because they could not be assigned at all temper-
atures. Chemical shift changes are reported as o (-8). Temperature coefficient
more positive than -4.6 ppb K (black dashed line) indicate the likelihood
of hydrogen bonding exceeds 85% (209). The PSIPRED secondary structure

prediction is overlaid.

Interestingly, the residues tolerant to high pH did not all correspond to
those for which hydrogen bond formation was likely. However, five residues

matched regions of predicted helical secondary structure.
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Table 5.2.2: The TARP ABD residues with temperature coefficients greater
than the 85% probability threshold for hydrogen bonding.

Residue A oxn / AT (ppb.K) Predicted region

L738 -4.27 -
AT48 -4.26 -
K750 -4.54 Helix 1
AT755 -4.64 Helix 1
K758 -3.70 Helix 1
N768 -4.42 -
L776 -3.19 -
ATTS8 -3.68 -
L782 -4.55 Helix 2
D788 -3.08 Helix 2
E796 -3.88 -

5.2.3.4 NMR comparison of TARP constructs

Because of the inability to resolve the C-terminal region of the TARP ABD
with NMR, a shorter, GST-tagged construct was generated (Section 2.2.1.2)
that omitted the C-terminal 17 residues. The purpose of the construct,
TARP796.803, was to observe whether the C-terminus was important to the
behaviour of the larger TARP ABD. Figure 5.2.14 shows the overlaid 'H-°N
HSQC spectra of the two constructs.

The 'H-1°N HSQC spectra of the two constructs are largely identical. The
only differences were two peaks, unassignable in the TARP ABD construct,
which were not observed in the spectrum of the shorter construct. Triple
resonance peaks did exist for the two unassigned HSQC peaks, but they were
indicative of threonine residues (Ca 6 = 63.17, 63.30 ppm and CB & = 70.77,
70.63 ppm) and as no threonines remained unassigned, they were thought
to have arisen from a significantly different minor populated state. If the
inability to observe the C-terminus of the full length protein was indeed a
result of dynamic phenomena, the removal of this potential for conformational
destabilisation could result in a restriction of the conformational sampling or
a minimisation of the conformational populations. Nonetheless, the assignable
region of the TARP ABD was not perturbed in its major-form behaviour by

the truncation.
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Figure 5.2.14: The assigned 'H-"N HSQC spectrum (800 MHz) of the TARP
ABD (teal) and the overlaid 'H-"N HSQC spectrum (800 MHz) of the
TARP796.50s construct (orange). The spectrum has been cropped and the Trp
803 side chain has been omitted for clarity. The two peaks unobservable in the
TARP796.80s have been circled in red.

The secondary structure content of the shorter construct was also probed
with SRCD (Table 5.2.3, Figure 5.2.15).

The results of the SRCD analysis suggests that there was not a significant
difference between the structural content of the two constructs. Although
the relative size of the shorter construct is 7.6% smaller than that of the

TARP ABD, the expected increase in relative helical content (assuming the C-
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terminus was indeed disordered, as predicted) falls within the standard error of
the measurements. It should also be noted that for largely disordered proteins,
content reported as -strand can also be indicative of disorder (Dr Andrew

Miles, personal communication 04/05/2012).

Table 5.2.3: The average secondary structure content of the TARP ABD
and TARP726.508 construct as calculated from SRCD spectra at 20 °C (Figure
5.2.15). Values are averaged from the CONTINLL, SELCON and CDDSTR

algorithms.

Secondary structure ~ TARP ABD (%) TARP796.808 (%)

a-helix 541 5+ 2
B-strand 10+ 1 14 +1
Disordered 76 £ 1 69 £ 3
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Figure 5.2.15: Synchrotron radiation circular dichroism (SRCD) spectra of the
TARP ABD (red) and the shorter TARP794.508 construct (black) measured at
20°C.

The inability to resolve the TARP ABD C-terminus with NMR was thus
deemed inconsequential and further experimentation planned to investigate
the actin:TARP ABD interaction by using the larger TARP ABD construct.
If the C-terminus were to be involved in the actin-binding function of TARP,
then firstly this would be observable to other biophysical techniques (ITC,
SRCD), and secondly it may even be that the actin bound state stabilises the

C-terminus into an observable population with NMR.
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5.2.3.5 Chemical shift indexing

As previously mentioned (Section 5.1.2), a detailed analysis of a proteins NMR
chemical shifts can highlight regions of secondary structure by comparison to
the chemical shifts of residues in fully folded, or random coil (and hence dis-
ordered), regions. To this end, the standard chemical shift indexing (CSI)
technique compares whether a given resonance is upfield or downfield shifted
(the structural implications differ between moieties) compared to a reference
random coil value (84). Addressing structural content, and especially struc-
tural propensity, is therefore heavily reliant on accurate random coil chemical
shifts. However, for proteins with significant disorder, a recent paper has
shown that determination of structural content can be greatly improved by
redefining the reference random coil values through incorporating a shielding
term to account for the chemical shift perturbations, away from true random

coil, resulting from their flanking residues (211).

This neighbour-corrected IDP (ncIDP) analysis was carried out for the
TARP ABD by uploading the backbone N and 3Ca chemical shifts to the
ncIDP webserver (accessible at: http://nmr.chem.rug.nl/press/7p=1) (Fig-
ure 5.2.16, green and red respectively). N secondary chemical shift were
included as negative values to simplify Figure 5.2.16 so that the 1 and -1
thresholds correspond to fully formed o-helix and B-strand respectively for
both nuclei. Only the backbone "N and '3Ca resonances were included in the
analysis due to their apparent sensitivity to IDP structural propensities (211),
although Ha, *Ca, Cp and *C’ resonances are usually deemed more sensi-
tive, and hence are more commonly used, in the CSI analysis of predominantly

folded proteins.

For comparison, a further method of chemical shift based structure as-
sessment was carried out for the TARP ABD. The SSP method (212) creates
a residue, and moiety-weighted structural propensity score, based upon how
sensitive the individual chemical shifts are to secondary structure. All as-
signed TARP ABD chemical shifts were used, with the SSP program (212)
(freely available at: http://pound.med.utoronto.ca/software.html) (Fig-
ure 5.2.17). Similar to the ncIDP analysis, SSP scores above 1, and below -1,

signify fully formed o-helices or 3-strands respectively.
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Figure 5.2.16: The ncIDP chemical shift analysis carried out for the TARP
ABD using *Co and '°N backbone resonances. The PN secondary chemical
shifts are reported as negative so that the structural thresholds are comparable.
SSP scores > 1 are indicative of fully formed o-helix and scores < -1 indicate
fully formed {-strand. The PSIPRED structure prediction of the TARP ABD
is overlaid.

Both chemical shift analyses suggest that a level of o-helical content exists
across the M749-D761 region, corresponding to the WH2-homologous, in silico
predicted helix. With respect to the ncIDP analysis, the chemical shifts of four
residues (L753, S754, V756 and R757) are clearly beyond the -helical threshold
and K750 is only marginally below, with an ncIDP A chemical shift of 0.985.
The ncIDP secondary chemical shifts for the other helix (G783-T792) remain
largely random coil, although two residues (T798 and V799) have shifts that
would seem to correlate to the PSIPRED predicted B-strand region.

The SSP analysis is not as explicitly suggestive of any fully formed sec-
ondary structure elements within the TARP ABD. SSP scores are weighted
so as to create an effective probability describing the distribution of confor-
mational states, as they are based on the assumption that secondary chemical
shifts represent the average conformational state (212, 213). The magnitude
of the SSP scores for the TARP ABD suggest that most residues are largely
occupying random coil conformations, with an SSP score of 0 /pm 0.1. The
most prominent patch of apparent helical content matches that of the WH2
homologous, PSIPRED predicted o-helix; albeit with only a partial, 20%, con-

formational population. However, when summed and averaged with respect
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to the 105 residue construct, the overall helical propensity shown by SSP of
3.2%, although slight, is in good agreement with the value of 5% =+1 of the
overall helical content as determined by SRCD.

=
5

o o
==
[ 7 T I

[l
-
[I
—

=]

726 736 746 756 766 776 786 796 806

8 experimental - § ncIDP (ppm)
=) o
e o [=}
= [#)] [#)]

I
S
—
[#5]

<
(]

Residue number

Figure 5.2.17: The SSP score chemical shift analysis carried out for the TARP
ABD, using all assigned resonances. The SSP authors (212) describe thresholds
of 1 and -1 for fully helical or strand conformations respectively. The PSIPRED
structure prediction of the TARP ABD is overlaid.

5.2.3.6 Relaxation analysis

Chapter 4 describes how N NMR relaxation measurements can report on
the level and frequency of dynamic phenomena within a molecular system.
The aforementioned experiments using the TARP ABD construct have shown
a significant preference for conformational disorder across the protein, with
small regions of variable secondary structure propensities. However, owing to
sensitivity across faster timescales, N relaxation can also provide a differ-
ent measure of structural propensities by distinguishing between the reduced

mobility of folded regions and the comparative freedom of disordered ones.

To this end, Ty and Ty *N relaxation experiments were to be carried out,
with modified "H-""N HSQC experiments (Section 4.3), for the TARP ABD at
500 MHz. Due to the restricted spectral dispersion, some residues were unable
to be analysed as the degree of crosspeak overlap was so severe that it would

be impossible to separate the decay in intensity for each peak for relaxation
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analysis. The analysed R; and Ry values throughout the protein are shown in

Figures 5.2.18-19 respectively.
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Figure 5.2.18: The R, rate at 500 MHz for the TARP ABD construct. Errors in
rate were calculated from the standard deviation in peak height from repeated
delay times using the relax software package (104).
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Figure 5.2.19: The R, rate at 500 MHz for the TARP ABD construct. Errors in
rate were calculated from the standard deviation in peak height from repeated
delay times using the relax software package (104).

The relaxation data acquired for the TARP ABD shows an inherent prob-

lem in that the Ry relaxation rate (average Ry = 2.00 4 0.04 s7') was compa-
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rable to, if not slower than, that of the calculated R; rate (average Ry = 1.77
+ 0.22 s!) for the majority of the analysed residues. Owing to the nature of
longitudinal and transverse relaxation, wherein x-y plane magnetisation must
return to equilibrium (Ty) before the z-component (T;), this observation is
theoretically impossible (214). Nonetheless, the observed Ty exponential de-
cays (Figure 5.2.20, right) suggest that abnormal peak height decays perturbed
the accurate exponential fitting of the data, and that this lead to an improper
determination of Ty relaxation times. Further analysis of the relaxation data

was therefore not possible, and additional experiments were not acquired.
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Figure 5.2.20: Examples of T (left) and Ty (right) peak intensity decay curves
(normalised to the first time point) fit to mono-exponentials for the residues
D727, V786 and S808 of the TARP ABD.

5.3 Discussion

The analyses undertaken for the TARP ABD were undertaken with a view
to characterising its structural content and behaviour to better understand
its interaction with actin monomers. Described in detail in Chapter 6, many
WH2 domain-containing proteins comprise a short a-helix which binds to actin

across a hydrophobic cleft that lies between two actin subdomains (215).

The multiple in silico analyses carried out suggest that the TARP ABD
is largely occupying a disordered conformation. Perhaps unsurprisingly, the
most significant prediction of secondary structure (and lack of disorder) agrees

well with the region of the sequence shown homologous to other WH2 heli-
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cal domains. However, the calculated confidence levels, and proximities to
theoretical thresholds, seem to indicate that, at best, the A749-H761 region
contains only partial helical content, and that fully formed helix should not be
expected from experimental data. The position of the TARP ABD within the
charge-hydrophobicity phase space also suggests that neither fully disordered

or ordered amino acid sequence determinants predominate.

Analyses of the gel filtration purification for the isolated TARP ABD con-
struct suggested that it diffused in solution with a significantly greater effective
RS than that expected for a protein of 10.4 kDa. According to Csizmok et
al. (216), the extent of conformational extension for an IDP can be predicted
based upon the ratio of its theoretical molecular weight verses that calculated
from gel filtration elution volumes; wherein a MW,,, / MW of 2-3 indicates a
pre-molten globule state and a MW,,, / MW of 4-6 is indicative of a protein
largely sampling a fully extended, random coil conformation. With a MW,,,
/ MW of 3.82, I propose that the vast majority of the TARP ABD construct
is principally sampling a fully extended random coil conformation. Assuming
that any level of secondary structure across the A749-H761 region would re-
sult in a certain level of conformation restriction, partial helix formation may
explain why the MW,,, / MW of the average conformation ratio is slightly

below the random coil range.

One potential apparent criticism to this hypothesis is the possibility of
TARP ABD multimerisation. This possibility was not directly analysed, but
both electrospray ionisation mass spectrometry (ESI-MS) and NMR data al-
lude to a monomeric TARP ABD species. Primarily, because ESI-MS applies
a soft-ionisation technique, m/z peaks from covalently or electrostatically at-
tached multimeric species are commonly observed (217, 218); and this was not
the case in the TARP ABD ESI-MS spectrum. Similarly, multimeric species of
any multiplicity were not observed via SDS-PAGE, although non-denaturing
native PAGE was not explicitly carried out. Secondly, the NMR spectrum
of the TARP ABD construct did not contain any extra peaks or many peaks,
which were determined to be from minor or alternate conformations that could
possibly suggest a multimeric species. If the TARP ABD were indeed amassed
as a -39.75 kDa species as suggested by gel filtration, the associated increase in
T, and Ty relaxation rates would have severely hampered NMR analysis due
to poor signal to noise and broadened signals respectively; and these traits

were also not observed. This argument could be countered with the hypothe-
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sis that the TARP ABD C-terminus, unamenable to NMR, may have provided
a site of dynamic dimerisation - hence occluding itself from observation due to
exchange broadening and allowing relatively symmetric behaviour across the
remaining N-terminus. Yet, the near-identical 'H-1°N HSQC spectra of both
the TARP ABD and the shorter 726-808 construct for the C-terminal peaks
806-808 (which would be perturbed by such an interaction) also rules this out.

The dominance of conformational disorder is also apparent from both
SRCD and NMR spectroscopic observations. SRCD analysis indicates that
the TARP ABD is -95% disordered, assuming that the B-strand contributions
to absorbance at 185 nm, 192 nm, 212 nm are indeed indicative of disorder as
has been stated. It could be that the calculated 10% B-strand exists, yet it
was neither predicted by in silico means or, more importantly, discernible in
the NMR chemical shift analysis. Interestingly, only 5% of the TARP ABD
was suggestive of an o-helical conformation. The WH2-homologous region
was predicted to exist as a 12 residue o-helix by PSIPRED and, within a
105 residue construct, this represents a theoretical prediction of 11.4%. The
acquired SRCD data therefore strengthens the argument that helical content

is present but only partially formed at any one time.

Studies of the TARP ABD with NMR spectroscopy offered information
at a residue-specific resolution on the conformational behaviour and secondary
structure content of the construct. The initial *H-"N HSQC spectrum dis-
played an extremely reduced spectral dispersion throughout the 'H dimension
which is entirely characteristic of a predominantly disordered protein (219)
(Note: Figure 3.3.1 presents an example of the spectral dispersion present in
a 'H-">N HSQC spectrum of an ordered protein).

At a more direct, albeit semi-quantitative, level, the employed chemical
shift indexing methods, specifically designed to account for the properties of
IDPs, also imply that the TARP ABD construct is largely disordered in solu-
tion. Both techniques predicted some level of helical content aligning to the
region of WH2 homologues, although there was some disparity regarding the
degree of propensity for helix formation between the two methods. The ncIDP
analysis suggested that seven '°N chemical shifts were highly indicative of heli-
cal structure, although only one residue (Gly746) possessed both 3Co and °N
ncIDP secondary chemical shifts above the structural threshold. This may be

a measure of partial helix formation although a more rigorous approach would
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be to discuss all the available data with weighted scores such as that provided
by the SSP program. The region associated with helical propensity from SSP
analysis matches that predicted by both in silico calculations and ncIDP anal-
ysis yet the result is far less evocative of true helix formation. Although the
ncIPD analysis takes into account the chemical shift shielding from preceding
and proceeding residues, the unification of all available chemical shifts into
a single weighted scores is perhaps the more accurate method as in this in-
stance, the depiction of SSP partial helical content is also in agreement with
both SRCD data and in silico results.

The investigation into the predisposition for hydrogen bond formation
yielded no conclusive results. There were no definitive areas of significant
propensity for hydrogen bond formation within the TARP ABD, however the
observation that most residues experienced temperature associated shifts close
to the threshold for significant hydrogen bond formation also correlates with
the idea of partial WH2 helix formation.

The erroneous T relaxation decays for the TARP ABD, which inhibited
dynamic analysis with NMR, were unfortunate and puzzling. Figure 4.1.5
describes the general relationships between T and T4 as a function of the cor-
relation time of the molecule and the strength of the applied By magnetic field.
Theoretically, Ty and Ty are only ever seen to be of a similar magnitude when
the apparent local molecular motions, which significantly contribute to Ty re-
laxation, are akin to that of small molecules at relatively low magnetic field
strengths. At 500 MHz field strength, the observed T and T relaxation times
should have been wholly distinct for a macromolecule of the TARP ABDs size.
Errors in experiment acquisition, spectral processing or relaxation rate anal-
ysis could possibly account for this problem, but although all computational
methodologies were checked and repeated multiple times, no obvious source of

error could be determined.

Ultimately, the quality of the observed Ty decay curves suggest that the
calculated Ty values do not reflect a real, single, relaxation process, as the data
does not conform to a single exponential decay. Fitting to double exponentials
was attempted, but no statistical improvement in the fittings was observed

(data not shown).
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Chapter 6

Characterising the TARP:actin

Complex

6.1 Introduction

6.1.1 The controversy surrounding intrinsic disorder

The notion of intrinsic protein disorder is, in theory, well supported by recent
experimental data as described in Section 5.1. However, there are still scien-
tists that argue about the functional significance of intrinsic disorder in vivo,
primarily because most IDP binding regions can be shown to stabilise into
fully formed secondary structure elements through ligand interactions (220).
In this regard, it is suggested that the observation of persistent intrinsic dis-
order is in fact an artefact of non-host in witro purification and that IDPs
would be better termed “proteins waiting for a partner” (PWPs) (221). The
inference being that PWPs, in the unbound, anti-folded state, never truly per-
sist in the complex and crowded in vivo environment and therefore have no
functional significance until a binding partner is present. The 3D structure
acquired upon binding, and how it facilitates the interaction, is then thought
of as the principally significant functional component, superseding that of the
initial conformation. Disorder, as measured in vitro, is therefore only regarded
as a reflection of an atypical flexibility in vivo, and that this is simply an ex-
tension of the well documented examples of protein flexibility, in fully folded

proteins, which facilitate induced fit binding.
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In my opinion, and those of other IDP proponents (222), this is somewhat
of a semantic argument designed to maintain the classical structure-function
paradigm. By all definitions it is agreed that on a fundamental level, IDPs
represent a distinct class of protein species and that the majority of IDPs
do indeed transition to folded states upon ligand binding. But owing to the
prevalence of IDPs throughout Eukarya, it is reasonable to assume that intrin-
sic disorder, as a characteristic, has evolved due to the type of functionality
it can bestow. Undeniably, this logic does not necessarily identify “disorder”
specifically as the sought after trait, but although the importance of fold-
mediated interactions should not be disregarded, the unique biophysical traits
of disordered regions, as well as their potential to augment the interactions
of their folded states, suggests that protein disorder does indeed have distinct

functional significance.

For instance, the extended nature of disordered proteins can itself be a
direct functional asset. One example can be witnessed from microtubule asso-
ciated proteins (MAPs), a group of proteins which surround the cytoskeletal
microtubule filaments and project a disordered domain out into solution. Us-
ing atomic force microscopy, the coat of MAP projection domains has been
shown to exert to a long-range resistance to compression whilst maintaining
a phosphorylation-dependent fixed length. These “entropic brushes” therefore

act to maintain microtubule spacing as a direct consequence of disorder (223).

Specific ligand binding mechanisms have also been shown to exist which
exploit the lack, or transient nature, of structural elements in IDPs. IDP:protein
“fuzziness” (224) describes the spectrum of bound state polymorphism which
can range from static fuzziness, wherein a folded IDP element can bind in mul-
tiple different conformations, to dynamic fuzziness, where the bound state of
the IDP also samples a significant conformational ensemble. Similarly, experi-
mental observations (225) in support of the “fly- casting” binding mechanism
proposed by Shoemaker et al. (226) imply that initial low affinity / high
specificity interactions can facilitate the folding of high affinity interaction
sites within IDPs. By reducing the potential for conformational search, this
mechanism acts to smooth the energy landscapes of interaction and folding,

leading to enhanced binding kinetics.

But of course, the folding of any protein is in fact a molecular binding

reaction (227), albeit an intra-molecular one, with a precise balance between
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the associated entropic and enthalpic changes. However, perhaps as a result
of the enormous body of work undertaken in understanding ordered proteins,
folding and inter-molecular interactions have almost become conceptually in-
dependent, when in fact they are analogous. This statement emphasises the
potential for cohesion between a theory of disordered proteins and the tradi-
tional structure function paradigm. Although IDPs reside in a unique region
of the structure-function continuum, they share the fundamental principles of
primary sequence encoded function, chemical constituency and the scope for
chemical interactions. Their distinct biophysical characteristics simply offer
an alternate solution to molecular challenges and although not every disor-
dered region will confer function, a figurative dismissal of intrinsic disorder as

“awaiting significance” may well prove short sighted.

6.1.2 Actin, actin binding proteins
and the WH2 domain

Actin is a highly conserved, 42 kDa protein which can self associate into ex-
tensive polymerised chains to form the microfilament components of the eu-
karyotic cytoskeleton (228). In a standard cytoplasmic environment, actin
microfilaments provide a comprehensive morphological scaffold and facilitate
vesicular trafficking by providing transit routes. The molecular forces gen-
erated by rapid filament polymerisation in vivo also enable dynamic cellular
morphologies, such as those involved in migration or phagocytosis (229). But
perhaps the most well known function of actin filaments is as a component of
the contractile myofibril units within muscle tissues, which generate practical
forces from the ATP dependent interactions of actin (thin) and myosin based
(thick) filaments.

Monomeric, globular, actin (G-actin) is comprised of four subdomains in a
planar arrangement, which impose a distinct structural and functional polarity

between opposing molecular faces (Figure 6.1.1).
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barbed (+) end

pointed (-) end

Figure 6.1.1: A surface representation of the 42 kDa G-actin monomer as
derived by X-ray diffraction to 1.54 A (PDB code: 1J6Z) (230), with its four
labelled subdomains (*). The barbed-end direction of actin filament extension
is shown and the ADP binding site (ADP = orange spheres) and the residues
that line the hydrophobic cleft (red, residues 143,144,146,148, 168, 341, 345,
346, 349, 315 and 355) are displayed. Created with the PyMOL molecular
graphics program (50).

The pointed (or minus) end lies at the apical interface between subdomains
2 and 4 and forms an ATP binding site, whilst the barbed (or plus) end lies at
the opposing face between subdomains 1 and 3, creating an “actin minus end”
binding site (Figure 6.1.1). The structural polarity therefore also applies to
actin filaments, which extend in a barbed endtopointed end fashion, although a
slight offset of 166°, which results in the actin filament aesthetically resembling

a helix of two twisted linear filaments (231).

G-actin is a catalyst of ATP hydrolysis in the presence of Mg?* ions, albeit
a slow one, with a standard ATP turnover of 0.3 s (232), however, hydrolysis
itself is a key step in the actin polymerisation:depolymerisation mechanism.
Following G-actin:ATP association, the resulting conformational change facil-
itates the accommodation of an additional ATP-bound actin monomer at its
barbed end. Once actin has self-associated, the hydrolysis of ATP to ADP
+ P; then occurs, making the process of filament elongation incredibly en-

ergy expensive, especially as the products of hydrolysis remain confined to
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the nucleotide binding cleft as a result of the arrangement between associated
actin monomers. For the formation of new actin filaments (F-actin) to occur,
nucleation complexes of trimeric F-actin are required to overcome the ini-
tial destabilisation of simultaneous depolymerisation (233) and once formed,
the concentration of free G-actin:ATP (the critical concentration, Cc) must
also remain high to continually favour K,, over K.,g. Once polymerisation
has reached a steady state equilibrium (K, ~ K,g), actin filaments are said
to “treadmill”; an analogy which describes a relatively fixed filament length
whilst the constituent actin monomers physically pass along the filament with
a barbed-to-pointed end directionality due to filament association and disso-

ciation occurring at different ends.

Actin polymerisation does not readily occur in vitro at low concentrations,
although in the presence of Mg?*™ and ATP, it can self-polymerise at concentra-
tions above 100 uM, wherein the rate of successful binding collisions supersedes
the depolymerisation rate. However, actin polymerisation never truly occurs
unchecked in wvivo due to a plethora of regulatory proteins which function
to modify the inherent rates of polymerisation or depolymerisation. Broadly
termed “actin binding proteins” (ABPs), both G-actin- and F-actin-specific
ABPs act to modulate actin polymerisation (or depolymerisation) kinetics to

maintain the constitutive functional roles actin provides (234).

One such group of ABPs are the actin related proteins (Arp) 2 and 3,
which share 45% sequence identity to actin and are structurally very similar.
Arp 2 and 3 are able to form a stable complex together with five other proteins
(actin related protein complex (ARPC) 1-5) that serve to mimic the actin
nucleating homotrimer. The Arp2/3 complex then effectively caps the minus
end of the filaments and stops their decay, promoting rapid elongation. The
Arp2/3 complex is also capable of nucleating actin filaments from the sides of
pre-existing filaments at an included angle of -70° aiding in the creation of vast
branching networks (235, 236). Conversely, the cofilin family of proteins are
actin depolymerisation factors and are present in all eukaryotic cells. Cofilins
can bind along the length of the actin filament and induce a tighter helical
conformation to subsequently destabilise the filament. The kinetic off-rate at
the minus end is then greatly increased and swift degradation of the filament
ensues (237).
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A particular subgroup of ABPs was first identified as a result of study-
ing the underlying mutations responsible for Wiskott-Aldrich syndrome (238),
a condition which primarily impairs the human immune system and results
in eczema, thrombocytopenia and recurrent infections. Interestingly, the iso-
lated protein in question (Wiskott-Aldrich syndrome protein (WASP)), al-
though unknown at the time, was shown to share striking sequence homology
to other, recognised, G-actin binding proteins and significant sequence con-
servation throughout the eukaryotic kingdom (77). The actin binding domain
was termed Wiskott-Aldrich homology domain 2 (WH2). The most investi-
gated WH2-ABP is thymosin-3 4, a G-actin sequestering protein, which is
the only known WH2 domain containing protein to promote filament depoly-
merisation. However, in all WH2 variants experimentally analysed, a short
N-terminal o-helix is observed that is comprised of a highly conserved amino
acid motif: MxxIxxfxkxxLLK that is shown to span the actin hydrophobic cleft
(I136-G146) (Figure 6.1.2).

Figure 6.1.2: A surface representation of a G-actin monomer (blue, pdb: 1T44
(240)) and superimposed actin-aligned structures of the WH2 domains from
the actin binding proteins spire (orange, pdb: 3MN7 (239)), WASP (green,
pdb: 2A37 (119)), thymosin-B 4 (magenta, pdb: 1T44) and ciboulot (cyan,
pdb: 1SQK (241)). The actin hydrophobic cleft is highlighted in red and the
bound ATP nucleotide is shown as orange spheres. Created with the PyMOL
molecular graphics program (50).
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Of the conserved residues, M1 and 14 locate to the actin facing side of
the o-helix, whilst L12 and K13 localise to the C-terminal extended region
of the WH2 domain that interacts with actin towards the proximal regions of
subdomains 2 and 4 (239). Lowercase {7 and k9 refer to residues only conserved
in thymosin-$ 4 homologues and are thought to impart the increased actin
affinity necessary for G-actin sequestration (77). The TARP ABD contains
a homologous region to the WH2 domain, and is therefore expected to bind

actin in a similar manner.

6.1.3 Experimental aims

The TARP protein, and the 100 residue construct chosen for analysis in Chap-
ter b, have previously been shown to bind actin and serve as a platform for
actin polymerisation; however no biochemical or structural information exists
for the interaction itself. The aim of Chapter 6 will be to describe the actin
interaction of the TARP actin binding domain with NMR and isothermal titra-
tion calorimetry (ITC) and to calculate and discuss potential in silico models
for the actin bound state of the TARP WH2-homologous region.

6.2 Results

6.2.1 NMR spectroscopy

Owing to its potential for residue specific insights, NMR spectroscopy was
used in an attempt to characterise the actin interaction of the TARP ABD.
Although the TARP ABD:actin K4 was not known prior to experiment de-
sign and acquisition, in order to skew the interaction in favour of a majority
bound state, an excess of G-actin was required. However, because G-actin
self- polymerisation occurs in the presence of ATP at -100 uM and Mg?*, a
severe limitation became the useable concentration of TARP ABD. Unfortu-
nately, triple resonance data could therefore not be acquired for the bound
state owing to unrealistic experiment time as a consequence of the low TARP
concentration. Nonetheless, a 2D 'H-'"N HSQC spectrum was acquired for a
sample containing 31 uM TARP ABD and 85 uM G-actin, using 256 scans to
best match the signal to other TARP HSQC spectra (Figure 6.2.1).
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Figure 6.2.1: The assigned 'H-'N HSQC spectrum at 800 MHz of the TARP
ABD (teal) and the overlaid "H-'"N HSQC of a 56 uM 1:1 ratio of the TARP
ABD and G-actin (red).

The amide crosspeaks that were observable in the ;H-15N HSQC spectrum
of the TARP ABD in the presence of actin match previously assigned chem-
ical shifts; however a number of peaks had lost relative intensity or become
completely unobservable and no additional peaks were observed. Jewett et
al. have show in previous work that the TARP ABD fragment is able to bind
actin without inducing filament polymerisation (76). The observations of the
1H-15N HSQC spectrum of the TARP ABD in the presence of actin could be

explained by either incomplete binding in intermediate exchange in the NMR
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timescale or an increased T, time for the bound residues due to the influence

on molecular tumbling from the 42 kDa actin monomer.

In an attempt to extract some information regarding the residues of the
TARP ABD involved in the actin interaction, the relative peak intensities of
the two spectra were compared. Peak intensities from each spectrum were first
internally scaled as a ratio of their intensity compared to a glycine residue that
had been assigned to the N-terminal GST-cleavage site (“-2G” Figure 6.2.1).
This was deemed the best possible reference peak because of a similar intensity
in both spectra and a consistent chemical shift, suggesting it was unperturbed
by the presence of actin. The respective peak height ratios were then compared
to analyse the residue specific differences. As a result of peak overlap, 12 peaks
were not included in the analysis due to an inability to confidently distinguish

individual intensities (Figure 6.2.2).
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Figure 6.2.2: The observed changes in 'H-?’N HSQC peak intensities, of the
assigned TARP residues, in the presence of excess actin. The PSIPRED sec-
ondary structure prediction of the TARP ABD is overlaid.

The peak intensity analysis suggests that the region N-terminal to the
predicted WH2 o-helix (D726-G743) does not interact with G-actin to any
significant extent. A clear increase in consistent peak perturbations correlates
to the N-terminus of the predicted WH2 o-helix, suggesting an interaction is

does indeed taking place. Interestingly, a similar level of peak perturbation

165



CHAPTER 6. CHARACTERISING THE TARP:ACTIN COMPLEX

persists across the remaining residues of the construct, indicating that the C-
terminal region may also interact with the G-actin monomer to a significant

extent.

6.2.2 Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) provides a means of measuring the en-
thalpic response (AH) associated with molecular interactions. Although the
magnitude of these heat changes is frequently on the order of 10 x 1071°°C,
by accurately following AH as a function of the ratio of ligand and receptor
concentrations, thermodynamic parameters can be determined for an observed

reaction by use of the following equations and data.

As an example of an ITC titration under ideal conditions (i.e. when
AH is measurable and saturation of binding occurs), Figure 6.2.3 shows how n
(reaction stoichiometry), AH and K, (association constant) can be determined

from the integration of the isotherm:

0 0.5 1 n 15 2 2.5 3

AH

kcal / mol

-12
Molar ratio

Figure 6.2.3: An example of an integrated ITC binding isotherm. The methods
of ascertaining preliminary values for AH (overall energy change), n reaction
stoichiometry (molar ratio at 1/2AH) and the equilibrium constant (either K,
or 1/Kq as a function of the gradient) are shown.

166



6.2. RESULTS

Equations 6.2.1 and 6.2.2 then show how, with the measured enthalpic
change (AH) and the experimentally set temperature (T), the entropic change
(AS) and Gibbs free energy (AG) of binding can be determined:

AG = —RT InK, (6.1)

AG = AH —TAS (6.2)

where R is the defined as the ideal gas constant (8.314 J K! mol?) and K,
is the association constant of binding. For an assumed binding mechanism
(e.g. single binding site), the total heat of association can then be theoretically
determined for each titration point as a function of free and bound protein and
ligand to theoretically describe the overall binding reaction. The theoretical
isotherm is then optimised to best fit the experimental data as a mixed function
of K,, stoichiometry (n) and AH.

In terms of experimental design, assuming the molecules involved release
or absorb measurable heat upon binding, the main consideration is taking the
binding constant into account, so that concentrations of protein and ligand
can be chosen to observe saturation over the course of the experiment. The
TARP ABD: actin interaction had not previously been measured in any detail.
Although many ITC investigations carry out test titrations for this reason,
owing to machine time and material constraints, a more informed method of
initial estimate was sought. Table 6.2.1 shows the sequence alignments between
the TARP ABD WH2 predicted helix and other WH2 domains for which an
experimentally derived actin binding constant had been determined. Although
WH2 domain containing proteins have not been exclusively shown to interact
with actin solely by their WH2 domain helix, as the prominent, conserved,
interaction site, it was assumed that a significant degree of the protein-specific
actin affinity arose from the specific WH2 domain helices. The TARP ABD
WH2 region best aligned with the tightest known actin binding WH2 domain
(Kq = 52 nM), found in WAVE2, a protein which nucleates the branching of
actin filaments in humans as part of the ARP2/3 complex (119). However,
as the next best aligning WH2 domain had a K4 = 230 nM, a conservative
estimate of 100 nM was chosen as the theoretical association constant for the

TARP ABD:actin interaction. Figure 6.2.4 shows an example of the resulting
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ITC dataset collected, fit to a single-site model.

Table 6.2.1: Pairwise sequence alignments between the TARP ABD WH2-
homologous region and other WH2 domains for which an actin-only associated
K4 had been published (119). Alignments were carried out using the T-
COFFEE webserver (242, 243) with FASTA formatted sequences (accessible:
http://tcoffee.crg.cat/apps/tcoffee/do:regular).

% conserved WH2 domain T-COFFEE alignment actin K
g d
TARP 5. --- NIRDISENRKH - LBN
WEE 5. wa37ass  VoDANSDERSAMNGGE QL RRVEPQREQEKREN 52 M
. T
MIM 725-755 DTPQ LKKTTTNDRSAPRFS 230 nM
Bl 87 TARP 56,625 L------memmeee
WASP 430-458 GIQLNKTPGAPESSALQP 250 nM
. TARP
: 87 726-825 AM
L WIP 29-46 EQAIé_ 215 uM
TARP56 625 ILS.
@i 79 wERiises DRRVERQREQERDN 26.53 UM
TARP726.675 DIL-- SAVRKHE
con : 56 WIP 46-63 %TVTNDRSAPILD > 100 pM
TARP 756 525 ~--AMKDILSAVRK-------------- HEDV
con : 49 WIP 29-60 EQAGRNALLSDISKGKKLKKTVINDRSAPIED 160 uM

In total, four TARP ABD:actin titrations were carried out, along with
control titrations to determine the heat of actin dilution, TARP ABD dilution
and potential buffer mismatches between the two samples. Only dilution of
the TARP ABD (Figure 6.2.5) proved significant and the average value was
therefore subtracted from each TARP ABD:actin dataset prior to analysis
(Table 6.2.2).

The calculated Kd of 102 nM + 33 nM for the TARP ABD:actin interac-
tion is of a similar magnitude to those of other WH2:actin interactions and all
repeated titrations lead to negative values for AG, indicating that the binding
interaction is favourable. The reaction stoichiometry of 1:1 also agrees other
WH2 domain:actin studies. Furthermore, the consistently positive value for
-TAS indicates that a significant decrease in entropy (disorder to order) is
concomitant with binding. This is commonly observed when proteins, in par-
ticular IDPs (174), undergo a folding transition upon binding and is further
evidence supporting the fact that the TARP ABD WH2 helix is not actually

fully formed in the unbound state.
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Figure 6.2.4: The first measured I'TC binding isotherm between the TARP
ABD and G actin (top) and the integral of the heat change fitted to a single
binding site model (bottom). The enthalpies associated with the dilution of
TARP were subtracted prior to integration. Fitting was carried out with the
MicroCal ITC plugin for Origin (109). All fitting parameters were left free to
optimise until the chi-squared value no longer improved. Experiments were
carried out with a 200 ul chamber of 10 uM G actin thermostatically held at
25°C. A preliminary injection of 0.4 pl 175 uM TARP was followed by 19
injections of 2 ul, giving a final TARP:actin molar ratio of 3.36:1.

When looking at the aligned sequence characteristics of documented WH2
domains and that of the TARP ABD (Figure 6.2.6), the sequences and binding
affinities qualitatively suggest a correlation between actin binding affinity and

the number of hydrophobic residues present.
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Chereau et al. (119) also describe the significance of the two arginine
residues in the WAVE2 LRRV motif of extended structure, just C-terminal to
the WH2 helix, which form salt bridges to actin residues D24 and D25. Al-
though these residues are not conserved in the TARP ABD, the corresponding
amino acids (V763-Y764) could contribute to the interaction through addi-

tional hydrophobic interactions and may explain the similar binding affinity.

5.87

average AH TARP ABD dilution = 0.024 pcal / sec

ucal / sec
»
N
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Figure 6.2.5: The ITC isotherm used to determine the heat of dilution for 175
uM TARP ABD injections. The observed average heat change across 19 2 ul
injections of 175 uM TARP, of 0.024 pcal.sec, was subtracted from all ITC
datasets prior to analysis.

Table 6.2.2: The optimised thermodynamic parameters obtained by fitting
the TARP ABD:actin I'TC isotherms to a single biding site model. Gibbs free
energies were calculated using equation 6.2.2 for a set temperature of 298 K.

ITC n Kq AH -TAS AG
run (nM) (kcal. mol™!)  (kcal.mol™)  (kcal/mol)
1 1.04 119 -16.8 7.36 -9.44
2 0.935 134 -16.6 7.27 -9.33
3 1.06 58.8 -15.3 5.48 -9.82
4 0.982 94.3 -15.7 6.14 9.56

Avg. 1.00 £ 0.01 102 + 32,9 -16.1 £0.71 6.56 + 0.91 -9.54 £ 0.21

170



6.2. RESULTS

protein kg WH2_helix

P i -

WAVE2 (52nM)  --VSDERSDEESEEROGCEOERRNFEQREQEKRDV

TARPABD (102nM)  GNDGPENKDEESENREEEDUNNPGDNGGSTEG--

Wi (160nM)  --EQAGRNEEESDESKGEREKEEVTNDRSAPIL-
MIM (230nM)  ---TPOGEDNMENAERRGUREREETTNDRSAPR--

WASP (250 nM) RGEENDDEROGEOENREPGAPESSALQ

Figure 6.2.6: An EBI-MUSCLE (accessible: http://www.ebi.ac.uk/Tools/
msa/muscle) (244) multiple sequence alignment (gaps removed as of WH2 he-
lix, dashed black box) for WH2 domains sorted by their actin binding Kq (119).
Residues have been coloured according to their chemical characteristics: blue
= most hydrophobic (195) (A,C,F, I, M,L,V,W,Y), green = polar / uncharged
(N,Q,S,T), magenta = acidic (D,E) and , red = basic (K,R,H).

6.2.3 Synchrotron radiation CD spectroscopy

The analysis of NMR data for the TARP ABD in the presence of actin did
not yield any extra chemical shift data to help characterise the interaction.
Nonetheless, to further support the presence of the WH2 o-helix in the TARP
ABD bound state, synchrotron radiation circular dichroism (SRCD) spec-
troscopy was used to try and determine any changes in secondary structure
content in the presence of actin. Although actin is a relatively large, heavily
folded protein and the expected increase in TARP secondary structure would
be minor, due to the summative nature of the CD signal, and the favourable
signal to noise from a synchrotron light source, even small changes in the struc-
tural content of a sample should be apparent. SRCD spectra were acquired
for the TARP ABD, G-actin and a -3:1 molar complex of the TARP ABP
and G-actin (Figure 6.2.7) in collaboration with Professor Bonnie Wallace and
Dr Andrew Miles, Birkbeck College, London. A theoretical SRCD spectrum
was also calculated to hypothetically describe the expected SRCD spectrum if
no changes in secondary structure were observed in either component of the
TARP ABD:actin complex. This was achieved by summing the observed el-
lipticity, €, from the individual SRCD spectra of the TARP ABD and actin
by equation 6.2.3 (245) to take account of the dominant CD absorption of the
peptide bond:

(AEAXNA) + (AETXNT)
Na+ Nr

A€T:A =
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where Ag is the CD ellipticity, N is the number of peptide bonds (number of
residues 1) and subscript A, T and T:A refer to actin, the TARP ABD and
the TARP ABD:actin complex respectively. To accurately take account of the
significant disordered and structural content in the individual spectra of the
TARP ABD and G-actin respectively, different reference data sets (db6 and
spl75t respectively) were used on the recommendation of Dr Andrew Miles,
Birkbeck College (personal communication, 03/08/2013).

TARP
Actin

== == = TARP ABD + Actin

-------- TARP ABD + Actin
theoretical

CD (Delta epsilon)

Wavelength (nm)

Figure 6.2.7: The SRCD spectra of the TARP ABD (black, bold), G-actin
(black) and a complex of the TARP ABD:actin in a 3:1 ratio. The theoretical
TARP:actin spectrum (assuming no change in secondary structure at a 1:1
molar ratio) is also shown (orange).

The structural content of the free TARP ABD suggests 5% of o-helix is
present in solution (Table 6.2.3) in agreement with that of the previous analysis
undertaken (Figure 5.2.15). In the bound state the overall helical content of
the complex is 4% greater than that expected from the mixture of actin and
the TARP ABD, assuming no structural change takes place. Ignoring potential
changes in the secondary structure of actin, for which observation of free and
WH2-bound actin structures are not significantly different, this suggests that
the increase in helical content arises from the conformation of the bound state
TARP ABD.

The actin bound state of the TARP ABD therefore suggests that in total
9% =+ 3.7 of o-helix is present. If the TARP ABD does have native propensity

for a 12 residue o-helix to form, which would match that seen for the actin
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bound state of the homologous WAVE WH2 region, then 11.4% of o-helix
would be expected. The calculated helical increase, with its associated error

could then account for a helix of this size.

Table 6.2.3: The average secondary structure content of the TARP ABD,
G-actin, a 3:1 molar ratio complex of the TARP ABD:actin and that of the
theoretical 1:1 combination of the TARP ABD and G-actin assuming no
secondary structure changes. SRCD spectra were acquired at 20 °C and values
are averaged from the CONTINLL, SELCON and CDDSTR algorithms using
the db6 database (D) for TARP analysis and the SP175t database (S) for
actin containing samples.

Secondary % Secondary structure content

structure TARPP G-actin  Theoretical® TARP:actin®  Aheor:meas
a-helix 5+3 2840 17+ 2 21 + 1 4+ 224
B-strand 16 £0 24+ 3 29 + 2 29 +1 0+224

Disordered 67 +4 34 +1 39 £ 2 37+ 2 -2 £ 2.83

6.2.4 Modelling the TARP ABD: actin interaction

Although this investigation was unable to provide adequate experimental data
to describe the TARP ABD:actin interaction at a molecular resolution, by
combining the qualitative and quantitative low resolution data with respect
to the TARP ABD, the TARP ABD:actin complex and previously published
information regarding WH2 domain:actin interactions, an in silico approach
was undertaken in an attempt to model the actin bound TARP ABD.

As previously shown in Figure 6.1.3, existing structures of actin bound
WH2 domains typically present the WH2 helical domain binding to the actin
hydrophobic cleft in between subdomains 1 and 3 and the remaining extended
residues interacting through hydrophobic interactions and salt bridges across
actin subdomains 2 and 4. The NMR data presented in Section 6.2.1 (Figure
6.2.2), suggests the majority of the TARP ABD is perturbed by actin and
so could support this type of actin binding mechanism. However, the likely
structural rearrangement of the TARP ABD upon binding, as evidenced from
SRCD and ITC data, ruled out the use of traditional rigid-body in silico

docking methods, which do not account for significant protein dynamics.

The Rosetta based FlexPepDock web server (118) provides a freely avail-

able docking methodology whereby only one molecule is portrayed as rigid and
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an approximate peptide structure of up to 30 residues can be docked under
high resolution low energy refinement by incorporating full peptide backbone
flexibility into the calculation. The published articles corresponding to the
FlexPepDock methodology (118, 246) state that during their own testing, near
native binding conformations were able to be modelled when the starting con-
formation of the docked peptide was up to 5.5 A RMSD away from that of the
native fold and fully extended. The description of “near native” conformation
is defined as an impressive < 2 A backbone peptide RMSD and < 1 A sidechain

RMSD from that of the experimentally determined bound conformation.

Prior to FlexPepDocking the TARP ABD with actin, I felt it necessary
to test the methodology, and the method of input file preparation, with the
WAVE2:actin structure (PDB code: 2A40). WAVE2 was specifically chosen
as it had the most similar sequence and actin binding affinity to that of the
TARP ABD compared to other WH2 domains (Figure 6.2.1). Three control
simulations were run, with each being scored against the experimentally de-
termined 2A40 crystal structure (with small molecules and the cocrystalised
DNase I removed). The chosen starting conformations, all based around the 22
residue WH2 fragment from the 2A40 structure (Figure 6.2.8, orange), were an
in silico extended peptide (£135° for all ¢/¢ angles) in the same orientation
as the bound state (Figure 6.2.8, green), an in silico generated 10 residue ideal
o-helix with a linear conformation (Figure 6.2.8, cyan) and the conformation
of the bound state both with a 5 A translation out of the actin cleft at 90° to
the axis of the WH2 helix (Figure 6.2.8, magenta).

The FlexPepDock calculation itself begins with a steric energy minimi-
sation for both the receptor and the ligand sidechains. 200 receptor:ligand
structures are then generated in the presence of increased attractive, and de-
creased repulsive, van der Waals terms to prevent separation of the two chains.
This also facilitates the generation of diverse starting conformations under ran-
dom optimisation. The initial ensemble of structures is then refined over 10
cycles of iterative optimisation throughout which the van der Waals terms
are gradually returned to those outlined by the standard Rosetta framework
parameters (247). Traditional rigid-body docking occurs during each cycle
and is followed by Monte-Carlo energy minimisation of the peptide backbone
and sidechain geometries to generate a final set of 200 high resolution output
models. When using the FlexPepDock server, the top 10 low energy structures

are returned with a plot correlating the RMSDs from a reference structure of
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Figure 6.2.8: The WAVE2:actin structure (PDB code: 2A40) (orange cartoon
= experimentally determined bound state of WAVE2, blue surface = G-actin)
overlaid with the starting positions of the WAVE2 FlexPepDock tests for the
extended structure (green) and an extended structure with an ideal-geometry
10 residue o-helix (cyan) and native state conformation (magenta), both trans-
lated 5 A out of the actin binding cleft.

the individual models, if provided (otherwise the server determines the RMSD
from the input structure), against their overall Rosetta energy score (lower is
better).

6.2.4.1 WAVE2:actin docking test

The combined results from the three WAVE2:actin FlexPepDock calculations
can be seen in figures 6.2.9-10. Contrary to the results presented in the article
originally describing the FlexPepDock methodology (246), the modelling of the
WAVE2:actin complex, as compared to that of the experimentally determined
2A40 crystal structure (119) was significantly influenced with respect to the

starting conformation of the docking peptide.

When initiated from a fully extended conformation (Figure 6.2.9, cyan)
neither formation of the WH2 helix, or localisation of the C-terminal ex-
tended region were comparable to the crystal structure, with average backbone
RMSDs of between 13.7- 17.9 A (Figure 6.2.10, green) between the top scoring
models and that of the 2A40 conformation.
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When initiated with an ideal-geometry o-helix for the natively helical
residues, the docking procedure fared better energetically and in relation to
the 2A40 conformation (Figure 6.2.9, yellow and Figure 6.2.10, red). However
the extended C-terminus also failed to localise to the native position. The
best approach was clearly that where the docking procedure was started with
the native conformation already present, albeit with the peptide removed by
5A from the actin surface (Figure 6.2.9, magenta and Figure 6.2.10, black),
which generated the most favourable total Rosetta scores and average back-
bone RMSDs of 0.6 3.7 A across the top 10 scoring models. The C-terminal
extended region can also be seen to generally maintain its conformation and
the sidechains of the residues shown to form salt bridges with actin residues
D24 and D25 locate to within 3 A of the native conformation for 9 of the 10

top scoring models.

Figure 6.2.9: The average structures of the top 10 scoring models from the
fully extended (cyan), ideal-geometry helix (yellow) and actin-bound WAVE2
conformations (magenta), with the latter two removed 5 A from the actin hy-
drophobic cleft, WAVE:actin FlexPepDock docking calculations. The simpli-
fied 2A40 crystal structure of the bound WAVE WH2 domain (green) and
a surface representation of the actin monomer (blue) are shown, with high-
lighted residues depicting the hydrophobic cleft (red) and residues involved in
salt bridge formation (D24 & D25, orange).
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Figure 6.2.10: The total Rosetta energy scores and backbone RMSDs to the ex-
perimentally determined WAVE:actin complex (modified 2A40 pdb file (119)),
for the top ten scoring models from the WAV E:actin FlexPepDock actin dock-
ing calculations for extended (green), ideal helix (red) and original model
(black) starting conformations.

6.2.4.2 TARP ABD:actin docking calculations

Although the WAVE2:actin docking test suggested that a near-native starting
conformation generated the most favourably docked structures, for compari-
son, three TARP ABD:actin docking calculations were carried out for starting
conformations similar to those used in the WAVE test. The results from these

FlexPepDock calculations can be seen in Figures 6.2.11-12.

As seen during the WAVE docking test, the calculation starting from
a fully extended conformation generated the poorest scoring results (Figure
6.2.12, green), again, with neither formation of the WH2 helix or an actin-
proximity for the C-terminal extended residues (Figure 6.2.11, cyan) which
could account for the perturbations in NMR peak heights as seen in Figure
6.2.2. The second starting model however, managed to both maintain the
conformation of the WH2 helix throughout the calculation and favourably
position the C-terminal residues proximal to the actin surface (Figure 6.2.11,
yellow), albeit differently to that of the native WAVE conformation.
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Figure 6.2.11: The average structures of the top 10 scoring models from the
fully extended (cyan), ideal-geometry helix (yellow) and WAVE2-adopted con-
formations (magenta), with the latter two removed 5A from the actin hy-
drophobic cleft, TARP ABD:actin FlexPepDock docking calculations. The
simplified 2A40 crystal structure of the bound WAVE WH2 domain (green)
and a surface representation of the actin monomer (blue) are shown, with high-
lighted residues depicting the hydrophobic cleft (red) and residues involved in
salt bridge formation (D24 & D25, orange).

The final starting conformation, with an initial input structure modelled
on the backbone dihedral angles of the 2A40 crystal structure actin-bound
WAVE2 domain, perhaps unsurprisingly contained the most favourable back-
bone RMSD to that of the native actin bound WAVE2 conformation (Figure
6.2.11, magenta and Figure 6.2.12, black). The total Rosetta scores were
also favourable and comparable to those obtained for the native conformation
WAVE2 model.

However, interestingly, it was not the highest scoring calculation. Even
small improvements in Rosetta scores have previously been shown to be a
good reflection of enhanced docking calculations with respect to generating
near-native models (248). Owing to the lack of conformational bias in the
input structure, the result of this docking calculation should not therefore be

ignored in favour of that more similar to the actin-bound WAVE conformation.
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Figure 6.2.12: The total Rosetta energy scores and backbone RMSDs to the ex-
perimentally determined WAVE:actin complex (modified 2A40 pdb file (119)),
for the top ten scoring models from the TARP ABD:actin FlexPepDock actin
docking calculations for extended (green), ideal helix (red) and WAVE-adopted
conformation (black) starting models.

Although experiential validation is outside the scope of this work, it may
prove true that, similar to other IDP proteins, the TARP ABD may exhibit
a degree of static “fuzziness” in the bound state and that the results of these

docking calculations highlight the potential for a broad binding interaction.

The intermolecular interactions describing the actin bound WAVE2 con-
formation have been previously described (119) in terms of the WH2 he-
lix:hydrophobic cleft and the salt bridge interactions between the actin residues
D24 and D25 and those of the LKKV motif within the WAVE2 C-terminus.
Figure 6.2.13 highlights the structural observations from the high scoring
TARP ABD docking models of the unbiased input conformation. All models
(Figure 6.2.13, red) can be see to adopt a similar a-helical position to that of
the native WAVE2 conformation (Figure 6.2.13, green), with the backbones of
the 12 helical WAVE2 residues aligning to within 0.26 A RMSD of the average
TARP ABD helix.

Excluding model 10, the C-termini of the top nine scoring TARP ABD
models all show a similar localisation (backbone RMSD of 1.3 A), which is sig-
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nificantly different to that obtained from the unbiased helical WAVE2 domain
that was shown to protrude away from the actin surface (Figure 6.2.9, yellow).
In looking for potential interaction sites, the actin residue R147 sidechain (Fig-
ure 6.2.13, magenta) was identified as lying within 3 A of the sidechain of the
TARP ABD residue D762 in the majority of calculated models.

Figure 6.2.13: The structure of the simplified 2A40 crystal structure of the
WAVE WH2 domain (green) and an actin monomer (blue surface) overlaid
with the top ten models of the TARP ABD docking calculation started from an
overall linear conformation with an ideal o-helix (red). Hydrophobic residues
on the actin surface and the WH2 proteins are coloured orange and cyan
respectively. Actin residues R147 and A331 are coloured magenta and yellow
respectively.

Similar to the WAVE2 domain native conformation, this could therefore
provide a salt-bridge anchoring site for the C-terminus of the TARP ABD. Fur-
thermore, the hydrophobic residues Y765 and G767 of the TARP C-terminus
(Figure 6.2.13, cyan) can be seen to locate between 2.5 to 4A of a small
hydrophobic pocket on the actin surface, positioned around the actin A331
sidechain (Figure 6.2.13, yellow), but also including residues G308-A310 and
1329-A331 (Figure 6.2.13, orange residues flanking A331 (yellow)).

The FoldX energy force field (249) was also used, as a software plugin (250)
with the YASARA molecular viewer package (251), to subjectively analyse the
binding interfaces of top ten models of the two comparable TARP ABD:actin

docking calculations. These results are summarised in Figure 6.2.14. The
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analysis of the bound state residues for the two models agrees well with the
initial observations of hydrophobicity and salt-bridge pairs described above
for the unbiased TARP ABD model, and those of WAVE described in the

literature.

Figure 6.2.14: The structure of the simplified 2A40 actin crystal structure
(light blue surface) overlaid with the average structures of the TARP ABD
docking calculations (green). Actin residues shown to form a binding interface
are coloured according to whether they are involved in both TARP ABD mod-
els (red), the WAVE2-adopted conformation model (magenta) or the unbiased
TARP ABD model (orange). Residues of the TARP ABD constructs shown
to form a binding interface were coloured cyan and dark blue for the WAVE
conformation and the unbiased model respectively.

The FoldX algorithm also calculates an effective free energy of binding
between two molecular partners. For the top ten models of the two predomi-
nant TARP ABD:actin models, these were determined to be -12.01 + 2.01 and
-11.34 £ 2.99 kcal.mol™? for the unbiased and WAVE2-adopted conformation
models respectively. This compares to a calculated free energy of +1.437 +
2.55 kcal.mol™? for the initial extended model that exhibited no C-terminal
interaction with actin and obtained a poor overall Rosetta score. These theo-
retical free energy terms are based upon the total summed energies calculated
from the backbone conformations, intermolecular and intramolecular hydrogen
bonds, van der Waals contributions and electrostatic interactions. Although
these values should not be quantitatively compared to those experimentally

determined (252), the similarity between the two binding energies suggests
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that both models could be equally favourable and lends further credibility to
the idea that the TARP ABD is able to bind actin monomers in multiple ways.

6.3 Discussion

Although previous research had identified the WH2-homologous region of the
TARP protein and briefly confirmed its function, no published data is currently
available that describes the interaction between actin and the TARP ABD in

any biochemical or molecular detail.

Unfortunately, NMR analyses failed to yield conclusive, specific informa-
tion as to the site of actin interaction within the TARP ABD. Analysis of
the bound state 'H-'N HSQC spectrum however did highlight a broad site
of interaction from residue A740 at the N-terminus of the WH2 homologous
helix to G805 within the C-terminal extended region (Figure 6.2.2). This is
in agreement with the known actin-bound structures of WH2 domains which
depict a short helical interaction in the actin hydrophobic cleft and stretch of

-10 residues lying across the surface of actin subdomain 2.

Actin is notoriously difficult to crystallise owing to its potential for self
association and the structural reorganisation associated with ATP hydrolysis
(253). However all elucidated crystallographic structures of actin bound WH2
domains (excluding -thymosin 4, which possesses a significantly folded do-
main) typically required substantial truncations of the bound WH2 ligand, as
evident in Figure 6.1.3, to enable crystal formation. Although WH2 domains
are largely described as heavily disordered, with a propensity to fold upon
binding, in the literature (254256) the requirement of short WH2 fragments
for actin bound crystallisation suggests that in the bound state, WH2-actin in-
teractions do only occur across a short, but sequential, binding interface. The
observations of the TARP ABD residues perturbed upon binding are therefore
also in agreement with this idea, and suggests that the identified sequence
homology within the TARP ABD to other WH2 domains was an accurate

sequence annotation.

The results of the ITC analysis are the first reported thermodynamic char-
acteristics of the TARP ABD:actin interaction. The determined Ky of 102 £

32.9 nM is in good agreement with those of other WH2 domain:actin interac-
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tions and highlights the significance of the primary sequence properties, both
in the design of ITC experimentation and in the identification of the deter-
minants related to ligand affinity. Although WH2 domains as a whole should
not necessarily be grouped as a single functional entity that only interacts
with actin at fixed positions, the correlation between actin affinity and the
hydrophobic content of the WH2 helix and that of the C-terminus is striking,
and suggests that hydrophobic interactions do indeed play a formative role in

WH2:actin complexes as proposed by Chereau et al., (119).

The calculated changes in Gibbs free energy (AG = -9.54 kcal.mol™!),
enthalpy (AH = -16.1 kcal.mol!) and entropy (-TAS = 6.56 kcal.mol ") also
offer an insight into the actin binding function of the TARP ABP. As observed
for other IDPs, the favourable reaction (-AG) is facilitated by an exothermic

enthalpic change (-AH) that balances the concomitant decrease in entropy
(-TAS) required for folding.

Furthermore, the determination of a TARP ABD:actin Ky allows the ret-
rospective discussion of the NMR experiment in the presence of actin. Given
a Kq4 of 102 nM, with concentrations of 31 uM and 85 uM for the TARP ABD
and actin respectively, the expected bound state concentration would be 30.4
uM (99.8% of the total [TARP ABD]). The dominance of the bound state
indicates that the observable TARP ABD peaks should not been influenced
by those of the unbound state, however the lack of any chemical shift changes
is not suggestive of a conformation and environment different to that of the
free state. It must therefore be the case that the ITC determined Kg is not
appropriate in the absence of ATP. However, a relative difference in the peak

intensities suggests binding was occurring, albeit to a lesser extent.

The SRCD investigation into the secondary structure content of the TARP
ABD following actin binding provided experimental evidence to suggest that
the TARP ABD does indeed fold upon binding. The calculated increase in
helical content of 4% suggests than in the bound state the helical content of
the TAR ABP rises to a total figure of 9% =4 3.7. With the associated error,
this level of structural content could account for the expected level of 11.4%
content if the 12 residue helix were indeed to fold as seen for the other WH2
proteins. Unfortunately, due to time constraints, the -3:1 molar ratio sample
was the only sample used for analysis. The calculation to theoretically deduce

the complex CD spectrum assumes a 1:1 molar ratio. Although this is not
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ideal, it could therefore be the case that excess disordered TARP ABD in the
free state is diluting the apparent helical content and that in actuality a higher
percentage of a-helix is formed upon binding. Nonetheless, the increase in the
helical content of the TARP ABD also validates the creation of preformed

structure for use in structural docking models.

A potential criticism to this hypothesis is that there are no means of dis-
tinguishing whether the observed changes in secondary structure are actually
a consequence of additional o-helix formation within the actin monomer. This
possibility can regrettably not be ruled out, and it remains a potential source
of error in many SRCD studies of protein:protein complexes. In this instance,
it can however be said that no significant structural changes can be seen be-
tween the crystal structures of the actin monomers from the WAVE bound
state (119) (pdb code: 2A40) and that of native, ligand free, G-actin (257)
(pdb code: 3HBT); with a total backbone RMSD between the two of only
0.46 A (data not shown).

The results from the FlexPep Docking calculations of the TARP ABD
and WAVE WH2 domains with actin yielded interesting results. Although the
test carried out with the modified WAVE structures were not able to repro-
duce a bound state model similar to the 2A40 crystal structure, improvements
in both energetic scores and backbone RMSDs were observed with backbone
conformations approaching that of the native fold (Figure 6.2.10). The work
outlining the FlexPepDock methodology (246) describes similar trends in suc-
cessful calculations, however their improvements were not as dramatic as that
seen for the WAVE domain, wherein no features of the true bound state were
able to be recreated with starting conformations other than that of the native

interaction.

The docking calculations for the TARP ABD provided two potential actin
binding modes. The input structures to both models were composed of a pre-
formed WH2-homolgous a-helix to facilitate WH2-like localisation of the TARP
ABD within the actin hydrophobic cleft whilst allowing the inherent flexibility

of the calculation to find the most energetically favourable conformations.

The resulting TARP ABD:actin models for both the preformed helix and
WAVE2-adopted backbone angle input files show equally respectable total
Rosetta scores, analogous to those of the native conformation WAVE test

scores, even though their C-termini form interactions to the actin surface at
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90° to one another, across different actin subdomains. Manual investigation
and a FoldX analysis into the possible attractive interactions also bore similar
results to each other, and again highlighted the importance of hydrophobic
interactions and the potential for salt bridge formation, as had previously
been shown for other WH2:actin interactions. The comparable FoldX energies
of binding also provide another measure that suggests that the interactions

formed in both models are equally favourable.

No currently published WH2:actin crystal structures reflect the possibility
of the unbiased docking model of the TARP ABD C-terminus binding actin
across the surface of subdomain 3. This does not necessarily exclude the
subdomain 3 model from having biological relevance, as isolation of a lowest
energy ground state conformation is a well known potential pitfall of studying
crystalline samples (258, 259). Without direct structural evidence regarding
the actin bound state of the TAPR ABD in solution, the significance of this

subdomain 3 model should therefore not be ignored.

Bound state polymorphism, or static “fuzziness”, is a characteristic com-
monly found in IDPs and has been specifically linked to the function of other
WH2 domain containing proteins (224, 260). Although the WH2 o-helix is
invariably shown to bind in the same orientation, the apparent “fuzziness” of
the WH2 domain has been postulated as the cause for its ability to act as a
modulator of actin nucleation, polymerisation rates or filament destabilisation
depending on the dynamics of the interactions between the WH2 C-terminus
and actin subdomain 2 (261).

The finding that both TARP ABD:actin binding models are theoretically
probable could therefore agree with observations of other actin binding proteins
and the many descriptions of bound state heterogeneity for IDPs in general.
Whether or not the subdomain 2 or 3 C-terminal binding sites provide distinct
functions however, at this stage, cannot be commented on. It may be equally
true that the subdomain 3 model simply provides a dynamic “rest-stop” for
the WH2 C-terminus which does not require total molecular dissociation and

thus acts to fine tune the dynamics of the WH2 C-terminus.
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Chapter 7

Conclusion

As explained in section 1.4, the overall aims of this thesis were to provide
structural and dynamic insight into the biophysical properties of the actin
binding domain of the Chlamydia trachomatis TARP protein and the secreted
effector domain of AVR3all from Phytophthora capsici.

The effector domain of AVR3all was shown to form a well ordered four
helix bundle in solution, and although this was not a thoroughly novel ob-
servation in itself, it does support the characterisation of the fold. It also
highlights the potential of the Y131 residue, that was determined to be in a
different orientation in the X-ray structure of the same construct, to partake
in ligand interactions with the other residues also identified as functionally
important. The observations from the dynamic analysis of AVR3all portray
it as relatively rigid on the very slow timescale of large domain orientations,
which reinforces the idea that the core hydrophobic 4-helix bundle is indeed

stable in solution.

With respect to the overall description of the proteins dynamics, it was
unfortunate that the N relaxation data could not be analysed according to
the widely used mode free approach. However, the ability to probe the internal
motions of the AVR3all construct with reduced spectral density analysis, in
light of the diffusion model calculated from the X-ray structure suggests that
internal motions across the nanosecond timescale or slower are greater than

that expected for a rigid protein of the same size and shape.
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The AVR3all effector of P. capsici represents a protein that adheres to
the classical interpretation of the structure-function paradigm, whereby a fully
formed, definitive structure facilitates the specific intermolecular interactions
required for highly selective, high affinity binding events to occur. The obser-
vation of multiple native binding partners, both of the host and the parasite,
potentially justify this type of structural organisation so as to perhaps ensure
that the specific molecular recognition sites for any binding partner are always
present and are not reliant upon the downstream consequences of any other
binding events. Concomitantly, the significant proportion of internal motions
identified throughout the protein might also provide some form of structural
plasticity in regards to maintaining these binding sites in the event of any mi-

nor conformational rearrangements resulting from the binding of either ligand.

In contrast, although the dynamics of the TARP actin-binding domain
(ABD) could not be investigated specifically, the thoroughly novel data and
analysis presented in chapters 5 and 6 shows that the domain itself has the
biophysical characteristics of a typical disordered protein. Additionally, al-
though the interaction between actin and the TARP ABD could not be inves-
tigated at the atomic level; the thermodynamic characterisation, and binding-
induced structural rearrangement can be said to be comparable to those of
other WH2:actin interactions, for which the TARP ABD has some limited
sequential homology. Two potential interaction models of equal in silico sig-
nificance have also been proposed for the actin:TARP ABD association and
although these are not currently confirmed by experimental data, the potential
of multiple binding sites, or modes, is also a concept which further agrees with
the portrayal of the TARP ABD as a typically disordered protein. The intrin-
sic disorder inherent to the TARP ABD represents a well characterised method
for instilling either high-affinity, low-specificity or low-affinity, high-specificity
protein binding events. In the case of the TARP ABD, this is most likely to
be high-affinity, low-specificity, as witnessed by the fairly tight Kd and the
potential for distinct binding modes across the actin surface. When thought of
as part of a modular protein or multimer, within which multiple actin binding
domains are present, the benefits of these high affinity, low specificity inter-
actions, coupled with significant conformational freedom, allude to the overall
mechanism for co-localisation of the multiple G-actin monomers needed for
filament nucleation. Whilst the short WH2-like motif forms a tight interaction
with actin, the conformational variability of the bound state C-terminus can

be envisaged as conferring a flexible tolerance to the anchor site. The confor-
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mational freedom resulting from the disordered nature of TARP could then
accommodate the required orientations and proximities for the bound actin
monomers to interact with one another as is required for filament nucleation
to occur. The results presented in this thesis therefore describe two inherently
different proteins. Although the sources of these two proteins are from wholly
distinct organisms, as two examples of intracellularly secreted protein effectors
which function to modulate host cell processes, they therefore represent two di-
ametrically opposed solutions to arguably very similar evolutionary problems.
Nonetheless, the complexities of modulating multifaceted cellular mechanisms,
without causing significant perturbation of the native function, so as to either
be of immediate detriment to the host cell or used as an indirect measure
of infection suggests that both affinity and selectivity are important factors
to consider. However, the individual biophysical characteristics of these two
proteins can ultimately be described as a function of the native ligands and
systems about which they evolved to selectively interact with, and as such this

can be used to justify the distinctions between them.
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Appendix A

TARP796.8205 NMR resonance

assignment

Table 1: The NMR assignments for the TARP796.805 construct main confor-
mation, comprising the actin binding domain of the full length C. trachomatis
LGV2 TARP protein (CT456). Construct residues 1-5 are remnants of the

cleavage site from removal of the GST purification tag.

Residue number TARP796.805 chemical shifts
Construct Full length Residue HN N CcO Ca Cp
1 - Gly - - - - -
2 - Pro - - 177.02 63.22 32.32
3 - Leu 8.58 122.09 177.88 55.46 42.15
4 - Gly 8.44 110.23 174.23 45.33 -
5 - Ser 8.20 115.60 174.30 58.39 64.03
6 726 Asp 8.46 122.10 176.02 54.36 41.16
7 727 Asp 8.30 121.19 176.76 54.35 41.17
8 728 Ser 8.39 116.74 17545 59.39 63.82
9 729 Gly 8.49 110.81 174.30 45.51 -
10 730 Ser 8.13 115.72 174.61 58.37 63.91
11 731 Val 8.19 121.64 176.31 62.33 32.74
12 732 Ser 8.45 119.65 174.73 58.32 63.93
13 733 Ser 8.46 118.33 174.77 58.52 63.93
14 734 Ser 845 117.91 174.89 58.66 63.88
15 735 Glu 8.45 122.67 176.94 57.06 30.13
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Residue number

TARP 726-825 chemical shifts

Construct Full length Residue HN N CO Ca Cp
16 736 Ser 8.24 116.09 174.64 59.02 63.73
17 737 Asp 8.29 12220 176.82 54.51 40.96
18 738 Lys 8.19 121.66 176.83 56.91 32.58
19 739 Asn 8.36 118.80 175.10 53.49 38.93
20 740 Ala 8.09 124.03 177.79 52.85 19.22
21 741 Ser 8.27 115.02 174.64 58.39 63.81
22 742 Val 8.09 121.34 176.64 62.43 32.68
23 743 Gly 8.44 111.99 173.99 45.32 -
24 744 Asn 8.37 118.81 174.91 53.33 39.10
25 745 Asp 8.42 120.38 176.26 54.31 41.27
26 746 Gly 8.16 108.91 172.05 44.96 -
27 47 Pro - - 177.01 63.42 32.06
28 748 Ala 8.37 123.49 17820 52.71 19.02
29 749 Met 8.28 119.50 176.54 55.76 32.47
30 750 Lys 823 121.39 176.50 56.97 32.94
31 751 Asp 8.24 120.81 176.69 54.68 41.04
32 752 Ile 8.01 121.02 176.84 62.06 38.49
33 753 Leu 8.24 123.84 17791 55.73 42.00
34 754 Ser 8.08 115.66 174.61 58.99 63.64
35 755 Ala 8.12 12534 17792 52.92 19.16
36 756 Val 7.92 11856 176.34 62.74 32.48
37 757 Arg 8.26 124.45 176.10 56.07 30.70
38 758 Lys 8.27 122.65 176.20 56.46 33.14
39 759 His 8.37 120.50 174.95 56.15 30.20
40 760 Leu 817 123.50 176.65 55.15 42.53
41 761 Asp 8.35 121.28 175.79 54.43 41.13
42 762 Val 7.93 120.06 17540 62.10 33.01
43 763 Val 811 124.21 17547 61.98 32.93
44 764 Tyr 8.50 126.16 174.23 55.58 38.36
45 765 Pro - - 177.35 63.57 31.99
46 766 Gly 8.00 108.62 173.89 45.18 -
47 767 Asp 8.21 120.20 176.41 54.39 41.31
48 768 Asn 8.52 119.37 176.00 53.39 38.84
49 769 Gly 8.50 109.13 174.83 45.76 -
50 770 Gly 826 108.65 174.23 4530 -
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APPENDIX A. TARP72.825 NMR RESONANCE ASSIGNMENT

Residue number

TARP726_825 chemical shifts

Construct Full length Residue HN N CO Ca Cp
51 771 Ser 8.23 115.50 175.07 58.24 63.95
D2 772 Thr 8.32 115.93 174.57 61.99 69.67
53 773 Glu 8.38 122.93 176.49 56.58 30.55
54 774 Gly 8.25 110.16 171.81 44.67 -
95 775 Pro - - 17720 63.14 32.12
56 776 Leu 8.33 122.06 177.57 55.35 42.21
o7 T Gln 8.33 121.36 175.74 55.75 29.46
o8 778 Ala 8.34 125.13 177.50 52.73 19.21
59 779 Asn 8.42 117.58 175.26 53.41 38.68
60 780 Gln 8.36 120.75 176.07 56.02 29.64
61 781 Thr 8.29 115.83 174.51 61.94 69.86
62 782 Leu 8.32 124.80 177.71 55.45 42.39
63 783 Gly 8.32 109.33 173.70 45.19 -
64 784 Asp 8.20 120.41 176.10 54.45 41.23
65 785 Ile 8.07 120.88 176.24 61.11 38.70
66 786 Val 8.26 125.41 176.03 62.43 32.60
67 787 Gln 8.48 124.86 175.45 55.77 29.75
68 788 Asp 8.41 122.09 176.26 54.48 41.10
69 789 Met 8.37 120.91 176.45 b55.71 32.96
70 790 Glu 8.52 121.85 176.97 56.96 30.18
71 791 Thr 8.24 114.88 174.95 61.99 69.77
72 792 Thr 8.19 116.08 175.21 62.22 69.87
73 793 Gly 8.46 111.27 174.43 45.49 -
74 794 Thr 8.11 113.38 174.77 61.76 70.01
75 795 Ser 8.43 118.24 174.61 58.45 63.82
76 796 Gln 8.49 122.31 175.96 55.96 29.46
7 797 Glu 8.44 121.87 176.63 56.81 30.37
78 798 Thr 8.24 116.16 174.30 62.29 69.79
79 799 Val 8.19 123.84 17593 62.27 32.75
80 800 Val 8.29 124.88 175.87 62.18 32.68
81 801 Ser 8.43 121.23 173.02 56.01 63.53
82 802 Pro - - 176.53 63.38 31.88
83 803 Trp 8.05 120.73 176.29 57.39 29.24
84 804 Lys 7.95 124.38 176.32 56.21 33.07
85 805 Gly 7.51 108.99 173.78 45.15 -
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Residue number

TARP 726-825 chemical shifts

Construct Full length Residue HN N CO Ca Cp
86 806 Ser 8.19 115.33 174.89 58.33 64.02
87 807 Thr 828 11540 173.88 61.69 69.88
88 808 Ser 7.99 123.35 178.58 60.11 64.83
89 809 Ser - - - - -
90 810 Thr - - - - -
91 811 Gly : : - - ]
92 812 Ser - - -
93 813 Ala - - - - -
94 814 Gly ; ; - - ;
95 815 Gly - - - - -
96 816 Ser - - - - -
97 817 Gly - - - - -
98 818 Ser - - - - -
99 819 Val - - - - -
100 820 Gln - - - - -
101 821 Thr - - - - -
102 822 Leu - - - - -
103 823 Leu - - - - -
104 824 Pro - - - - -
105 825 Ser - - - - -
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