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Abstract

Phytoplankton are photosynthetic microbes that form the basis of the marine

food web and are estimated to produce over half of all oxygen in the Earth’s

atmosphere. Recent advances in high-throughput DNA sequencing technologies

have allowed scientists to sample the set of genes actively transcribed from com-

munities of microbes in-situ. This set of transcripts (the metatranscriptome)

provides a snapshot of actively transcribed genes at the time of sampling, and

can provide insights into microbial metabolism and their relationship with their

environment. In this thesis we present the computational analysis of eukary-

otic phytoplankton metatranscriptome data sampled from representative ma-

rine environments; the simulation of metatranscriptome data for benchmarking

computational tools; and analysis carried out on a newly sequenced eukaryotic

phytoplankton genome.

Transcripts affiliated with ribosomal proteins and associated with transla-

tion dominated in all but the Equatorial Pacific metatranscriptome sample.

Hierarchical clustering of the metatranscriptome samples by taxa produced two

groups: the diatom dominated and the alveolate dominated. However, cluster-

ing by Gene Ontology terms clustered the samples by environment type (tropical,

temperate and polar), producing a gradient of translation-associated transcripts

which increased as the in-situ temperature of the samples decreased. A strong

i



correlation (R = 0.9) was detected between the relative proportion of tran-

scripts associated with temperature and the in-situ temperature. Laboratory

experiments on model diatom species under control conditions confirmed that

as the in-situ temperature decreases, these model diatoms produce more tran-

scripts and consequently more ribosomal proteins.

A translational efficiency experiment demonstrated that the rate of transla-

tion decreased under low temperatures for a model diatom species. This sug-

gested that the increased production of ribosomes acts as a compensatory mech-

anism under low temperatures. As more ribosomes require more phosphate-rich

rRNAs we hypothesised that this could have an impact on biogeochemical cycles

(E.g. the Redfield ratio of Nitrate (N) to Phosphate (P)). This was modelled

by our collaborators from the University of Exeter, who produced a global phy-

toplankton cell model of resource allocation. They showed how the N:P ratio

differs across latitudinal temperature zones and predicted the impact of increas-

ing temperature on global N:P.
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Chapter 1

Introduction

The focus of the research presented in this thesis is the development of com-

putational pipelines for the analysis of metatranscriptome data from eukaryotic

phytoplankton. This has ranged from the analysis of environmental transcrip-

tome data, sampled in-situ from phytoplankton communities, to simulating

metatranscriptome data and benchmarking computational tools, and finally the

analysis of transcript sequences from specific phytoplankton species. The re-

search described in this thesis has involved collaborations with other groups

within the UEA and other institutes. A brief overview of the thesis is provided

below detailing my main contributions to each project.

In Chapter 2 we provide background information about metatranscrip-

tomics. We discuss the importance of this relatively new approach to studying

microbial metabolism and some of its applications. We then go on to describe

the group of microbial organisms that provide the focus of our analysis, the eu-

karyotic phytoplankton and their ecological significance. We then describe the

relevant biological processes involved in metatranscriptomics and the current

generation of high-throughput sequencing technologies employed to generate

1



CHAPTER 1. INTRODUCTION 2

metatranscriptome sequence data. Finally, we describe the different stages of

computational analysis involved in metatranscriptome analysis pipelines and pro-

vide an overview of some of the widely used computational tools and resources.

In Chapter 3 we describe the computational pipeline that we implemented

for the analysis of metatranscriptome sequence data from marine eukaryotic

phytoplankton communities. We also detail follow up laboratory experiments

carried out to confirm our findings and discuss the biological significance of the

results. Sampling and sample preparation was performed by groups headed by

Dr. Thomas Mock (UEA), Dr. Gareth Pearson (University of Algarve), and

Dr. Klaus Valentin (Alfred Wegener Institute). The follow up laboratory ex-

periments were carried out by members of Dr. Thomas Mock’s group. Finally,

the phytoplankton cell modelling analysis was performed by Dr. Stuart Daines

and colleagues from the University of Exeter. My contribution was the imple-

mentation of the computational pipeline for the processing and analysis of all

metatranscriptome sequence data.

In Chapter 4 we describe an assessment of sequence processing methods

on simulated metatranscriptome data. Due to a lack of simulated metatran-

scriptome data sets for benchmarking purposes, we also implemented a novel

method to simulate data sets for different levels of taxonomic diversity. We also

assessed the accuracy of protein domain annotation on sequences after the ap-

plication of different processing methods. All work in this chapter was carried

out by myself. Dr. Simon Moxon of the Genome Analysis Center, Norwich,

helped to conceptualise and design the analysis.

In Chapter 5 we describe the analysis of allelic variants in the eukaryotic

phytoplankton Fragilariopsis cylindrus. By performing a comparative analy-

sis with a sexually reproducing phytoplankton species, we tested the hypoth-
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esis that the cessation of sexual reproduction in Fragilariopsis cylindrus has

increased allelic divergence, allowing it to adapt to an extreme polar environ-

ment. The transcriptome of Pseudonitzschia multistriata was sequenced by the

Joint Genome Institute (JGI) for Dr. Mariella Ferrante of the Stazione Zoo-

logica Anton Dohrn in Napoli. Quality filtering of Pseudonitzschia multistriata

transcriptome sequences was performed by Dr. Remo Sanges, also of Napoli.

Interpretation and analysis of the nucleotide divergence results was carried out

by Dr. Mark McMullan and Dr. Cock Van Oosterhout of the School of Environ-

mental Sciences at UEA. My contributions were the assembly of Pseudonitzschia

multistriata sequences, the processing of Fragilariopsis cylindrus alleles, the de-

tection of homologous alleles and the implementation of scripts to calculate

nucleotide divergence.

Finally, in Chapter 6 we discuss the work detailed in this thesis and provide

some thoughts regarding extensions and directions this research could take in

the future.



Chapter 2

Background

2.1 Summary

In this chapter we introduce metatranscriptomics and discuss the importance

and applications of this approach. We provide a brief biological background

into an important group of microbes, the phytoplankton, which are the focus

of analysis for chapters 3 and 5; the processes of translation and transcription

and current high-throughput sequencing platforms. We then discuss the various

stages of a typical metatranscriptome project and summarise the current state

of the art of available computational tools for processing, determining taxo-

nomic affiliations, predicting function and providing comparative and statistical

analyses of high-throughput sequence data.

2.2 Metatranscriptomics

“Although invisible to the naked eye, prokaryotes are an essential component of

the Earth’s biota. They catalyze unique and indispensable transformations in

4
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the biogeochemical cycles of the biosphere, produce important components of

the earths atmosphere, and represent a large portion of lifes genetic diversity”.

[Whitman et al., 1998]

It is estimated that approximately 99% of prokaryotes cannot be cultured

under laboratory conditions [Amann et al., 1995], which greatly limits our un-

derstanding of microbial diversity, population composition and gene expression

to a tiny minority of model organisms. However, recent advances in high-

throughput DNA sequencing technologies have enabled scientists to sample,

sequence and analyse community microbial genomic DNA (metagenomics) or

mRNA (metatranscriptomics).

Metagenomics allows for the analysis of community composition and

the discovery of novel organisms and genes [Fernández-Arrojo et al., 2010].

The largest metagenomic study to date, the Global Ocean Sampling (GOS)

expedition, circumnavigated the globe, sampling microbial communities.

The subsequent analysis produced over 6 million novel protein sequences

[Rusch et al., 2007], [Yooseph et al., 2007] vastly expanding our knowledge of

marine microbes. However, it was restricted to detailing the set of genes that

could potentially be expressed and it tells us nothing about about actual gene

expression levels [Moran, 2010]. In order to study community gene expression at

the time of sampling a metatranscriptomic approach is required. By sequencing

and analysing actively transcribed genes from a population of microbes we can

get a real-time snapshot of community gene expression, see figure 2.1 for an

overview.
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Figure 2.1: Typical protocol for sampling and sequncing of a marine meta-
transcriptome. Samples are size filtered, messenger RNA (mRNA) is then
isolated and amplified before being converted into complimentary DNA
(cDNA) for sequencing. Figure reproduced from [Moran, 2010].

Since the largest proportion of prokaryotes are found in soil and

marine habitats [Whitman et al., 1998], it is unsurprising that the

majority of metatranscriptome projects to date have focused on

soil [Leininger et al., 2006], [Bailly et al., 2007], [Urich et al., 2008],

[Baldrian et al., 2011], [Damon et al., 2012] and marine [Gilbert et al., 2008],

[Frias-Lopez et al., 2008], [Gifford et al., 2010], [Lesniewski et al., 2012] mi-

crobial communities. Another key area of interest is the analysis of microbial

communities present in the intestines of higher organisms [Poroyko et al., 2010],

[Booijink et al., 2010], [Xiong et al., 2012]. Historically, the majority of such
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projects have focused on prokaryote communities. Recently however, a small

number of projects have emerged to address eukaryotic microbial communi-

ties such as the eukaryotic proportion of phytoplankton [John et al., 2009],

[Marchetti et al., 2012].

While the tools and methods employed to analyse metatranscriptome data

vary greatly and depend to some extent on the type of data and aims of the

project, metatranscriptome analyses can be broken down into a series of discrete

stages: sampling, sequencing, sequence processing, determination of taxonomic

composition, functional annotation, comparative and statistical analyses. These

are addressed in more depth in later sections.

Most early metatranscriptome projects employed pyrosequencing

[Gilbert et al., 2008], [Urich et al., 2008], [Gifford et al., 2010], a sequencing

by synthesis method for determining the order of nucleotides in a DNA

fragment (see section 2.5). However, short read platforms such as SOLiD and

Illumina can now produce many times more sequence data at a lower per base

cost - albeit at a cost of shorter reads which require assembly. Many recent

projects have employed these methods, either solely Illumina [Qi et al., 2011],

[Mason et al., 2012] or taken a hybrid approach using an assembled 454

backbone and mapping SOLiD reads to the backbone to provide a more

accurate quantitative analysis [Marchetti et al., 2012].

Generally, functional annotation of microbial metatranscriptomes identify

the majority of transcripts as being involved in fundamental processes such

as biosynthesis and energy generation [Moran, 2010]. While this is hardly

revelatory, the real power of metatranscriptomics lies in its ability to detect

novel biocatalysts from unculturable organisms [Warnecke and Hess, 2009] and

to perform comparative analyses of gene expression profiles - whether tempo-
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ral [Poretsky et al., 2009], spatial [Stewart et al., 2012] or in regard to chang-

ing environmental conditions [Marchetti et al., 2012], [Mason et al., 2012]

or during important biological processes such as phytoplankton blooms

[Gilbert et al., 2008].

Studies providing a combined metagenome and metatranscriptome have

shown that only a relatively small proportion of the metagenome is ac-

tively expressed [Frias-Lopez et al., 2008], and that the most abundant

species are not necessarily the most active in terms of gene expression

[Gilbert et al., 2008], [Stewart et al., 2012]. Also, as mRNA has a short half-life

[Bernstein et al., 2002] compared to protein and not all transcripts are guaran-

teed to be translated into protein [Moran, 2010], the level of transcription of

a gene reflected in a metatranscriptome does not necessarily reflect the abun-

dance of protein and care must be taken when interpreting metatranscriptome

expression profiles.

One shortcoming of projects to date is that a relatively small proportion of

metatranscriptome sequences return matches to protein databases. Even us-

ing the comprehensive NCBI REFSEQ database, only between 13-37% of all

sequences returned matches [Frias-Lopez et al., 2008], [Poretsky et al., 2009],

[Gifford et al., 2010], [Qi et al., 2011]. Although previous studies contained

a high degree of non-coding RNA, protocols for the removal of rRNA from

prokaryotic samples have been developed [Stewart et al., 2010] and for eukary-

otic samples mRNA can be specifically targeted. Therefore, the lack of ho-

mologous sequences may be partly due to the length and quality of sequences

currently available [Wommack et al., 2008]. However, as previously stated only

a small proportion of microbes have been successfully cultured and sequenced

and it seems likely that a lack of reference genomes is the root cause.
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2.3 Phytoplankton

The term phytoplankton is a compound word derived from the Greek - phytos

(plant) and planktos (wandering or drifting), literally meaning wandering plant.

It is an umbrella term for a diverse group of unicellular, photosynthetic organisms

including both eukaryotes and prokaryotes, inhabiting the pelagic or upper layer

of marine and freshwater environments worldwide.

Across coastal and open ocean systems and even polar sea ice, phytoplank-

ton form the basis of the marine food chain. Powered by sunlight, they take

up inorganic compounds directly from their environment such as water and car-

bon dioxide and synthesise organic carbon, releasing oxygen as a by-product.

The process of producing organic compounds carbon dioxide is known as pri-

mary production and phytoplankton are estimated to be responsible for ap-

proximately 50% of global primary production [Field et al., 1998]. Other nutri-

ents are required for phytoplankton growth (primarily nitrate and phosphate)

and, when sufficient light and nutrients are available, phytoplankton popula-

tions grow exponentially forming blooms visible from space. The phytoplank-

ton are grazed upon by microscopic animals (zooplankton), which in turn are

consumed by fish, which are eaten by larger predatory fish which are finally

eaten by humans. Due to their short life-cycle, rapid growth and the speed

with which they react to changes in their environment (nutrient levels, tem-

perature etc.), phytoplankton are widely studied as indicators of environmen-

tal conditions [McCormick and Cairns, 1994] and there has been much inter-

est in how predicted global warming could affect phytoplankton populations

[Boyce et al., 2010]. Other important areas of phytoplankton research are their

potential use as biofuels [Bozarth et al., 2009] and attempting to reduce an-
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thropogenic carbon dioxide levels by artificial iron fertilization of phytoplankton

[Denman, 2008].

The most abundant phytoplankton are the prokaryotic cyanobacteria, but in

terms of standing stock (biomass per unit volume of water) the most important

groups are the larger eukaryotes: the Bacillariophyceae (diatoms), Dinophyceae

(dinoflagellates), Haptophyceae (coccolithophorids and prymnesiomonads) and

Cryptophyceae (cryptomonads) [Parsons et al., 1983]. The most diverse group

of eukaryotic phytoplankton are the diatoms, consisting of some 200,000 species

[Armbrust, 2009]. These can be put into two major groups: the (bipolar or

multi-polar) centric (circular or cylindrical) and the (raphid or araphid) pennate

(rod-shaped) diatoms (see figure 2.2). All diatoms are distinguished by their

intricate silicate cell wall or frustule and overlapping valve structure. The way

in which these intricate silicate structures are formed is of great interest to re-

searchers in the field of nanotechnology [Bradbury, 2004], [Gordon et al., 2009].

Figure 2.2: A) The centric diatom Post-classical pseudonana. B) The
pennate diatom Phaeodactylum tricornutum. C) The polar pennate di-
atom Fragilariopsis cylindrus. Image reproduced with permission from
[Smith et al., 2012].

Diatoms are estimated to have emerged between 190 [Sims et al., 2006] and

250 [Sorhannus, 2007] million years ago and have a complex evolutionary his-

tory. Around 1.5 billion years ago a eukaryotic organism assimilated the genetic

material (known as endosymbiosis) from a cyanobacteria, which formed the

chloroplasts of plants, red and green algae. A second endosymbiosis occurred
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some 500 million years later when a red algae was engulfed by another eukaryote

to create the diatom [Armbrust, 2009]. Diatoms are secondary endosymbionts

containing a chimeric mixture of animal, plant and bacterial genetic material.

Despite so much interest in diatoms, only two species have had their

complete genomes sequenced to date; these are the centric diatom Thalas-

siosira pseudonana [Armbrust et al., 2004], and the pennate diatom Phaeo-

dactylum tricornutum [Bowler et al., 2008]. At the time of writing two other

diatom genomes - the polar diatom Fragilariopsis cylindrus [Institute, a] and

Pseudonitzschia multiseries [Institute, b] are in the draft stage.

2.4 Genetic material

The Central Dogma of Molecular Biology as first stated by Francis Crick in

1958 [Crick, 1958] and clarified in 1970 [Crick et al., 1970] deals with the flow

of genetic information. Essentially, it states that the normal transfers of genetic

information are: 1) DNA to DNA - DNA self-replicating during cell division

for example; 2) DNA to RNA - where the DNA of a gene is transcribed into

complementary RNA; 3) RNA to protein - after transcription RNA is translated

into protein. There are other transfers of genetic information, but this is the

fundamental flow of genetic information for most organisms. So, for a gene

to be expressed, DNA is transcribed into RNA which is then translated into

protein.

Proteins are essential components of cellular activity for all organisms and

they perform a variety of functions: enzymes control chemical reaction rates;

structural proteins such as keratin form hair and nail tissue; they can also be

hormones and influence cell signalling [Klug and Michael, 1997]. Proteins are
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formed from linear sequences of amino acids (composed from a set of 20), which

fold into a three dimensional shape. Each of the 20 different amino acids has a

specific set of properties, the aggregate effect of which determine the properties

of the protein to be formed [Alberts et al., 2002]. These properties effect the

eventual shape of the protein and the type of molecules it can interact with

thereby influencing the function of the protein.

The instructions for creating these protein structures are encoded into the

DNA of an organism’s genes. With eukaryotes, these genes are contained in the

cell nucleus on chromosomes - discrete structures made of DNA tightly wrapped

around histone proteins, and the complete set of chromosomes is called the

genome. Bacterial genomes are generally a single, circular chromosome free

floating in the cell.

DNA is made of two complimentary strands of nucleotides. Nucleotides

consist of a sugar-phosphate backbone and one of the four nucleobases:

adenine, cytosine, guanine or thymine, abbreviated to A, C, G and T

[Klug and Michael, 1997], see figure 2.3. Different bases have an affinity with

each other, allowing them to form a hydrogen bond. For example, adenine

binds to thymine (and vice-versa), and cytosine to guanine (and vice-versa)

[Klug and Michael, 1997]. This allows nucleotides on opposite strands of DNA

to bind (each matching pair of bases is called a base pair) and join the two

strands together. This also means that one strand is the reverse complement

of the other.

When we talk about genome size, we talk about the total number of

base pairs (bp) in terms of kilobases (1 thousand bases), megabases (1 mil-

lion bases) and gigabases (1 billion bases). For example the first organisms

to have their complete genome sequence determined were viral and consisted
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Figure 2.3: Left: structure of double stranded deoxyribonucleic
acid (DNA). Right: structure of single stranded ribonucleic acid
(RNA). Figure reproduced from http://www.tutorvista.com/biology/

types-of-dna-and-rna.

of 3-5 Kb [Fiers et al., 1976], [Fiers et al., 1978]. The genome of the first

sequenced bacteria - Haemophilus influenzae contained a total of 1.8 Mb

[Fleischmann et al., 1995] and the human genome contains approximately 3.2

Gb [Venter et al., 2001].

As mentioned above, for a gene to be expressed, it must first be transcribed

into RNA and then translated into protein. The double-stranded DNA is first

separated into two strands, the coding strand and it’s complement, the tem-

plate strand. In transcription however, only the template strand is copied into

complementary messenger RNA (mRNA, also known as a transcript). As the

mRNA is complementary (is anti-parallel) to the template strand it is therefore

http://www.tutorvista.com/biology/types-of-dna-and-rna
http://www.tutorvista.com/biology/types-of-dna-and-rna
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identical (except for Uracil replacing Thymine) to the corresponding section of

the coding strand, see figure 2.3.

Not all of the DNA in a gene codes for protein; for example, eukaryotic

genes are composed of coding areas (exons) and non-coding areas (introns)

[Klug and Michael, 1997]. At this stage, both are transcribed, as well as un-

translated regions (UTRs) at both ends of the gene which don’t code for protein

but serve other important roles, such as providing binding sites for ribosomes.

Some post-transcriptional modification also occurs; more specifically, the mRNA

has its introns spliced out, and the exons are then ligated together. A cap is

added to the 5’ end and a stretch of adenines called a poly-A tail is added to

the 3’ end [Klug and Michael, 1997]. The mRNA is now a mature mRNA and

can leave the cell nucleus and enter the cytoplasm to be translated. This is

summarised in figure 2.4 below.

In the cytoplasm, a protein producing factory called a ribosome attaches to

the mRNA at a binding site in the 5’ UTR and translates the strand of mRNA

into a chain of amino acids which form a protein [Klug and Michael, 1997]. The

mRNA is fed through the ribosome 3 nucleotides at a time, each tri-nucleotide

sequence encodes for an amino acid and is called a codon. One of the 64

possible codons, AUG which encodes methionine, is a start codon, and signifies

the start of the translation process. Other RNA molecules called transfer RNAs

(tRNAs) enter the ribosome carrying the required amino acids, which pair to

mRNA codons through a complementary tri-nucleotide adaptor called an anti-

codon. If the tRNA anti-codon complements the current mRNA codon, the

two bond and the amino acid carried by the tRNA is released and added to

a growing chain of amino acids called a polypeptide. Translation terminates

when one of three stop codons is reached, the polypeptide is released, folds and
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Figure 2.4: A) Double stranded DNA. B) Transcription - the double
stranded DNA is divided into two strands: the coding strand and the tem-
plate strand. The enzyme polymerase (blue oval) incorporates nucleotides
into a complementary copy of the template strand, this is a single stranded
messenger RNA (mRNA). C) Mature mRNA with 5’ cap and 3’ poly-A tail.
D) Translation - The mRNA is translated in a ribosome (blue circle) into
chains of amino acids which combine to form proteins.

becomes a protein or a sub-unit of a protein.

2.5 Next generation sequencing technologies

In order to study an organisms’ genome: to analyse its structure; investigate

known and novel genes; to perform comparative genomics; to look at it’s evo-

lutionary history through phylogenomics; or to study the set of genes expressed

(the transcriptome) under varying conditions, it is necessary to extract and de-
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termine the precise sequence of nucleotides contained within the DNA or RNA

molecule(s). This process is called DNA sequencing.

The first generation of DNA sequencing techniques were developed in the

1970s: Frederick Sangers’ chain-termination method [Sanger et al., 1977] and

Maxam-Gilbert chemical sequencing [Maxam and Gilbert, 1977]. Due to the

relative ease and reliability of Sanger sequencing and the use of radioactive

materials in the Maxam-Gilbert method, Sanger sequencing became the de-

facto method of automated DNA sequencing. With Sanger sequencing, a

DNA molecule is fragmented into smaller pieces and cloned in colonies of Es-

cherischia coli. These fragments are extracted and amplified by multiple rounds

of Polymerase chain reaction (PCR), where the DNA is heat separated into

two separate strands (denatured) and each strand incorporates free floating de-

oxynucleotides (dNTPs) to create a double stranded duplicate of the original

fragment. The final round of PCR includes the incorporation of flourescently

labelled dideoxynucleotides (ddNTPs – using a different colour for each of the

four bases), which terminate the extension of a DNA strand. Finally, in a pro-

cess called capillary electrophoresis, the negatively charged DNA fragments are

pulled towards a positive charge and a laser light to stimulate the fluorescent

labelled terminator nucleotides. The fragments’ speed is relative to their length

and so short fragments move towards the positive charge faster, when they pass

the laser light the fluorescent label is activated and the light emitted is measured

and the nucleotide determined (See [Church, 2006], [Shendure and Ji, 2008] for

a full description).

Sanger sequencing is still in use and produces relatively long (∼900bp),

high accuracy sequences. It is however, a slow and expensive process with low

throughput. By comparison, the new generation of sequencing technologies, can
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be run in a massively parallel fashion to produce orders of magnitude more data

at a fraction of the cost and time. For example, the current Sanger sequencing

platform can produce around 100 kilobases of data per run at a cost of ∼$2,400

per million bases sequenced, whereas second generation platforms such as 454

pyrosequencing [Margulies et al., 2005], Illumina and SOLiD can produce ap-

proximately 0.7, 600 and 120 gigabases of data at a cost of $10, $0.07 and

$0.13 per million bases sequenced respectively (see [Liu et al., 2012] for a com-

parison of sequencing platforms). However, it should be noted that sequencing

errors are more likely with these technologies. For example, pyrosequencing

has problems determining homopolymeric regions and Illumina sequences tend

to be biased towards GC rich regions [Dohm et al., 2008] and computational

techniques are required to process the data.

We will focus here on briefly describing two of the most widely used sec-

ond generation platforms - 454 pyrosequencing and Illumina methodologies. For

both methods, the DNA to be sequenced is sheared into smaller fragments, am-

plified through either emulsion PCR (pyrosequencing) or bridge PCR (Illumina).

With pyrosequencing, a nucleotide wash is added to the amplified sequences a

single base at a time and using a combination of enzymes the release of py-

rophosphate is detected and the base determined [Ronaghi, 2001], see figure 2.5

for an overview of 454 pyrosequencing. With Illumina sequencing flourescently

labelled deoxynucleotides are added in cycles, one of which is incorporated and

the identity of the incorporated base is determined by exciting the fluorescent

tag with a laser.

The final product of a sequencing run is a set of sequences files; generally

in FASTA format and a separate file of quality scores for 454, and FASTQ

combined sequence and quality scores for Illumina, see figure 2.6. FASTQ files
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Figure 2.5: Overview of 454 pyrosequencing. A) Clockwise from top left.
DNA shearing: longer DNA molecules (e.g. genomic DNA) are sheared into
fragments of a few hundred base pairs. Emulsion PCR: adaptor sequences
are ligated to the fragments allowing them to bind to capture beads which
are placed into an oil and water mixture containing amplification reagents.
Bead loading: the amplified beads are loaded into a sheet of microscopic
wells called a PicoTiterPlate. Well packing: each wel is then filled with tiny
beads, tightly packing in the amplified beads. B) a) Individual nucleotides
are sequentially flowed over the well. b) As nucleotides are incorporated
into a template strand on an amplifiaction bead pyrophosphate is released.
c) The release of light is detected by a camera and the base determined.
Figure reproduced from [Margulies et al., 2005].

consist of 4 lines per sequence, the first line of each sequence begins with

an @ and contains a unique identifier for each sequence, optionally followed

by details of the sequencing run. The second line contains the sequence of

nucleotides itself, the third line contains an optional description and the fourth

line contains the ASCII encoded sequence quality scores (phred scores), one

score per base, in the same order as the sequence. The quality scores represent

the probability that a particular base is incorrect and calculated by the following

formula: Q = −10 ∗ log10(p). So, for example, a quality score of 15 represents

a 0.0316% probability that the base is erroneous.
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Figure 2.6: A) Nucleotide sequence in FASTA format. B) Separate quality
file for FASTA sequence. C) DNA sequence from (A) converted into FASTQ
format.

FASTA files are plain text files containing a set of sequences. A ”>” denotes

the beginning of each sequence followed by a unique identifier, the subsequent

lines contain the actual sequence of nucleotides itself from 5’ to 3’. The quality

file contains a set of phred equivalent scores ranging from 0 to 40 for each

base of each sequence, representing the probability that the base is an overcall

[Brockman et al., 2008], that is, an extra nucleotide inserted into the sequence.

As previously mentioned, second generation sequencing platforms represent

a huge increase in the throughput of sequence data while reducing both the

cost and time involved in their production. The downside is that these tech-

nologies produce shorter sequences than Sanger; up to 700bp for the latest

454 FLX Titanium platform and over100bp paired reads with Illumina HiSeq

[Liu et al., 2012].
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2.6 Sequence processing

Before any downstream analysis is performed, the raw sequence data must first

be quality filtered. As ’omics samples consist of hundreds of thousands or even

millions of sequences and the taxonomic and functional annotation process is

computationally intensive, the aim is to remove as much unwanted data as

possible. Artifacts from the sequencing process also must be removed and poor

quality reads filtered out. In addition, for metatranscriptomics, decisions need to

be made about the omission or inclusion of rRNA sequences and whether or not

to assemble the sequences or use clustering as a data reduction strategy, that

is, to remove identical or near identical sequences from subsequent analyses.

During metatranscriptome library preparation, primer sequences are an-

nealed to mRNAs to facilitate reverse-transcription into double-stranded cDNA.

Also, during sequencing, primers and adaptors are attached to the cDNA strands

for PCR amplification. These regions must be detected and trimmed away as

they could affect downstream stages. With 454 sequencing in particular, data

sets may contain artificial duplicates [Gomez-Alvarez et al., 2009] - identical,

or near-identical copies of genuine sequence data which, if not addressed could

bias downstream quantification of sequence annotation. Approaches based on

sequence clustering have been developed to detect and remove artificial dupli-

cates [Niu et al., 2010]. However, metatranscriptome data sets contain a high

degree of redundancy. This is because we only sequence a subset of genomes

- the transcribed regions and the more highly expressed a transcript, the more

likely it is that there are genuine duplicates in the data. It is therefore commonly

assumed that the majority of duplicates in metatranscriptome data are natural

and reflect real transcript abundance [Niu et al., 2010].
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Though the methods and parameters vary, other common filtering stages in-

clude trimming by quality score; removing sequences under a certain length (for

example the MG-RAST metagenomics processing pipeline [Meyer et al., 2008]

only uses reads >75bp); removal of low complexity sequences (for example reads

containing an unusually high degree of a single base [Hewson et al., 2009]) or

containing ambiguous bases (Ns). In addition to mRNAs, metatranscriptome

samples may contain other types of RNA that are not translated into proteins.

Examples of these non-coding RNAs are ribosomal RNAs (rRNAs) and trans-

fer RNAs (tRNAs) which are estimated to constitute between 95 and 97% of

total RNA in bacteria [Rosenow et al., 2001], between 80 and 85% in yeast

[Von Der Haar, 2008] and ∼80% in mammalian cells [Lodish et al., 2000]. Ri-

bosomal RNA makes up the greatest proportion of total RNA and some pu-

rification steps are required to specifically target mRNA. These rRNA se-

quences can be detected by alignment against curated databases of rRNA

sequences such as Silva [Pruesse et al., 2007], RDP [Maidak et al., 2001],

GreenGenes [DeSantis et al., 2006] or through HMM methods like RNAmmer

[Lagesen et al., 2007]. If sufficient numbers of rRNA sequences are available

they can be extracted from the sequence pool and used for taxonomic classi-

fication (see section 2.8), otherwise, they should be omitted from downstream

analyses.

Several sequence processing pipelines have been developed offering a range

of filtering options. The MG-RAST server [Meyer et al., 2008] provides op-

tions to filter reads by quality score, length and ambiguous bases. SeqTrim

[Falgueras et al., 2010] offers adaptor removal, quality trimming, and contami-

nation detection. Prinseq [Schmieder and Edwards, 2011], offers both an online

and a stand-alone processing pipeline providing a comprehensive set of filter-
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ing options for high-throughput data including: primer and adaptor removal,

quality trimming, length filtering, rRNA detection, duplicate detection and also

graphical and statistical reports of the data and the filtering results.

Once filtered, in order to reconstruct individual genomes or transcriptomes

from the mixed pool of an ’omics dataset, the data must be assembled.

The aim of assembly is to detect overlapping regions between sequences and

join them into longer contiguous stretches of nucleotides (contigs). There

are two main methods of assembly: De-Bruijn graphs and the overlap lay-

out consensus (OLC) method. Both have their origins in graph theory, see

[Li et al., 2012] for a full description. De-Bruijn graph based assemblers such

as Velvet [Zerbino and Birney, 2008], SOAP denovo [Li et al., 2010], and the

transcriptome assembler Trinity [Grabherr et al., 2011] are generally used for

short-read Illumina assemblies. For longer 454 or Sanger reads, OLC assemblers

are preferred such as MIRA [Chevreux et al., 2004] or 454’s proprietary assem-

bler Newbler [Margulies et al., 2005]. Assembling a single genome or species

specific transcriptome can be problematic due to missing or repetitive regions,

variable coverage, sequencing biases or contaminations. When the data to as-

semble originates from multiple organisms assembly is even more difficult; ’omics

data sets often assemble poorly into short fragmented contigs and the possibly

exists of sequences from two or more similar organisms to merge into chimeric

contigs. Therefore many authors choose to omit assembly [Kunin et al., 2008].

However assemblers have been developed specifically designed to overcome the

problems inherent in ’omics data such as MetaVelvet [Namiki et al., 2011] and

metaIDBA [Peng et al., 2011].

If however, the aim of an analysis is to provide a quantitative overview of a

microbial population rather than genome/gene reconstruction, sequence clus-
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tering is a useful alternative to assembly, and can be used to remove redundancy

thereby reducing the size of the data set before performing homology searches

[Thomas et al., 2012]. Clustering tools like CD-HIT [Li and Godzik, 2006],

Uclust [Edgar, 2010] or as part of the MG-RAST pipeline [Meyer et al., 2008]

use fast, heuristic methods to remove redundancy from sequence data by group-

ing sequences sharing a defined degree of similarity into clusters. The longest

or representative sequence from each cluster can be used for downstream, com-

putationally intensive analyses rather than the entire group of sequences.

2.7 Sequence homology

As stated in section 2.4, the sequence of amino acids that constitute a protein

determine its properties and thereby influence it’s function. Thus, a common

approach in predicting the function of an unknown sequence is by inference

through homology. An unknown or novel sequence can be aligned to sequences

with a known, empirically determined function and, if it is deemed to be homol-

ogous, then we can predict that the novel sequence has a similar function. This

allows us to search for conserved protein domains within DNA sequences by

comparing them to a database of sequences and predict function by detecting

highly similar or homologous sequences.

The majority of tools for producing sequence alignments are based on dy-

namic programming [Eddy, 2004]; techniques such as the Needleman-Wunsch

and Smith-Waterman algorithms, although computationally expensive, detect

the optimal global (alignment across the entirety of the sequences) and lo-

cal (similar regions shared by sequences) sequence alignments respectively.

Two widely used methods for detecting sequence homology are the Basic
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Local Alignment Search Tool (BLAST) [Altschul et al., 1997] and HMMER

[Eddy et al., 2009].

2.7.1 BLAST

The most widely used tool for performing sequence homology searches is BLAST

[Altschul et al., 1997], the Basic Local Alignment Search Tool. Rather than

aligning two sequences over their entire length, (global alignment) BLAST looks

for conserved regions shared by the two sequences (local alignment). It takes an

heuristic approach to sequence alignments. To align one sequence (the query)

to another, (the target) the query sequence is first split into short sub-sequences

called words. If a word can be aligned to the target it forms a seed alignment,

the seed alignment is extended as far as possible in either direction to find

the optimal matching sequence region(s) known as High-scoring Segment Pairs

(HSPs).

BLAST comes in several variations allowing for many types of alignment.

The most commonly performed are alignments of nucleotide to nucleotide

(BLASTN), amino acid to amino acid (BLASTP) and nucleotide to amino

acid sequences (BLASTX), which compares the 6 frame translation of the nu-

cleotide sequence to the amino acid sequence. When a seed match is found

and optimally extended it is assessed by using a substitution matrix to pro-

duce a score for the alignment; BLAST uses the BLOSUM matrix by default

[Henikoff and Henikoff, 1992]. Each pair of amino acids between the query and

target sequence is assessed. If they are identical the score is increased by the

appropriate value from the matrix. If they do not match but share similar prop-

erties - for example, hydrophilic amino acids are more closely related to each

other than to hydrophobic residues - the score is increased by a smaller amount.
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If the bases do not share similar properties, or there is a gap then a penalty

is incurred. The final score is normalised over the sequence length to produce

a standardised quality score for the alignment called the bit-score. Another

value is produced for each alignment called the e-value or expect value. The

e-value is a measure of probability representing the likelihood of an alignment

of the bit-score returned occurring by chance in the query, see figure 2.7 for an

example BLAST report.

Figure 2.7: Example BLAST report. A) Summary section showing the
name of a query sequence, the databases to be searched and the align-
ment progress. B) Alignment statistics including e-value and bit-score. C)
The sequence alignment itself. The alignment contains 3 lines: the query
sequence on top, the matching database sequence at the bottom and the
alignment sequence or high-scoring segment pair (HSP) in the middle. The
coordinates of the matching sequences are shown at the begininning and
end of the alignment.

While BLAST is very much a standard bioinformatics tool, it is limited in

several ways: firstly BLAST only returns the best matches found in the reference
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database used and, due to the relatively low number of sequenced organisms

available, most reference databases are biased towards a small group of model

organisms. For functional analysis this may be sufficient to accurately detect

close homologs, but for determining the taxonomic origins of a sequence the

most significant match returned may be taxonomically distant from the real

source organism [Koski and Golding, 2001].

2.7.2 HMMER

HMMER [Eddy et al., 2009] uses Hidden Markov Models (HMMs) to apply

position-specific models to sequence alignments. An HMM is a trained proba-

bilistic model consisting of a sequence of state transitions, known as a Markov

Chain. The model consists of a series of states and a set of associated transition

probabilities reflecting the probability of progressing from the current state to

a different (or the same) state (see figure 2.8). Each state also has a set of

emission probabilities. These represent the likelihood of the model emitting a

value from a discrete language set at this state. The set of emissions is the

observable output of an HMM, but the underlying rules contained in the state

transitions for producing the output are said to be hidden.

HMMs are used by protein databases including Pfam [Finn et al., 2010] and

TigrFam [Haft et al., 2003]; for rRNA detection and classification tools like

RNAmmer [Lagesen et al., 2007]; for gene or reading frame detection programs

like GeneWise [Birney et al., 2004] and ESTscan [Iseli et al., 1999] (where gene

features such as start and stop codons, introns, exons are used to identify genic

regions); and for determining the taxonomic affiliations of sequences e.g. Carma

[Krause et al., 2008].

With Pfam for example, an HMM is produced for each protein family by
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Figure 2.8: Example HMM - Showing states (circles), state transitions (solid
arrows) and their associated transition probabilities, and emission probabil-
ities (rectangles). This Markov chain proceeds from the start state through
states S1 and S2 to an end state. The probability of moving from one state
to another is represented by the transition probability, and the likelihood
of producing each of the four possible outputs (A-D) is reflected in the set
of emission probabilities.

creating a multiple sequence alignment of homologous protein sequences. The

consensus structure and variance of the protein sequences - highly conserved

residues, frequency of insertions and deletions, can then be modelled and the

residue emission and state transition probabilities calculated. For a Pfam HMM,

the possible states are: match - the two residues are identical (or at least share

similar properties); insertion - the residue is present in the query sequence but

not the consensus; deletion - the residue is present in the consensus but absent

from the query. The residue emissions or observations are the set of 20 amino

acids.

Essentially what is being modelled here is the probability of each residue

(amino acid) in a sequence belonging to the model based on the previous

residue. Query sequences are compared to the Pfam HMMs using HMMER

[Eddy et al., 2009] and an accumulative probability value is produced represent-
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ing the likelihood of the query sequence having been produced by the HMM and

therefore having a similar function to other proteins of the protein family being

modelled. Certain nucleotides or amino acids will be more highly conserved

than others in proteins of a similar function. The strength of HMMs is that,

unlike a BLAST search they can weight certain residues according to their level

of conservation. However, querying HMMs is computationally intensive, and

they require extensive sets of training data to calibrate the models.

2.8 Taxonomic classification

One of the main aims of ’omics is to identify and quantify the taxonomic

composition of a set of sequence data. A wide variety of applications have been

designed for this purpose and new tools and methods are being published every

year. This section provides an overview of some of the most widely used tools

at the time of writing.

Broadly speaking, the approaches for determining the taxonomic affiliations

can be categorised as either similarity-based or composition-based. For many

years, the gold standard for determining taxonomic diversity was by the tar-

geted sequencing and classification through similarity searches against curated

databases of 16s rRNA, a highly conserved gene ubiquitous in prokaryotic or-

ganisms (or 18s rRNA in eukaryotes). Many computational tools exist for the

classification of 16s sequences such as UniFrac [Lozupone and Knight, 2005],

Mothur [Schloss et al., 2009] and Arb [Ludwig et al., 2004]. However, this ap-

proach may lead to biased results due to variations in 16s rRNA copy numbers

or from PCR bias [Liu et al., 2011] and many alternative approaches have been

developed.
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One such tool is MLTreeMap [Stark et al., 2010], which aligns sequences

against a small set of highly conserved marker genes (16s/18s, RuBisCO etc.).

Those that match a marker gene are incorporated into a multiple sequence

alignment containing the marker gene sequences and placed on a phylogenetic

tree using maximum likelihood. While MLTreeMap can taxonomically place

sequences containing marker genes relatively accurately (>85% accuracy at the

phylum level), only a tiny proportion of environmental sequences will contain

these marker genes and MLTreeMap could only classify ∼1% of sequences from

a metagenomic sample.

Metaphyler [Liu et al., 2011] uses a set of 31 marker genes, based on the

Amphora pipeline [Wu et al., 2008], but can be extended to include all available

genomes. Classification of input sequences is determined by a BLAST similar-

ity approach using automatically learned settings from the reference database.

Metaphyler is fast, can provide an accurate overview of the taxonomic compo-

sition of environmental sequence data (>90% precision at all taxonomic levels)

and can potentially identify novel taxa. However, as with other marker gene

approaches, only the subset of sequences containing the marker genes can be

classified. Carma3 [Gerlach and Stoye, 2011] can use either BLAST or HMM

results (e.g. from Pfam) and works on the assumption that different protein

families will have different mutation rates but that the rate of mutation among

members of the same family is consistent. Sequences are taxonomically placed

based on the bit-scores of reciprocal BLAST searches between the region of

sequence used for the initial alignments.

The metagenome analyser MEGAN is a Java application with a range

of features for taxonomic, functional and comparative analyses of one or

more data sets [Huson et al., 2007], [Mitra et al., 2010], [Mitra et al., 2011].
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It uses a BLAST pre-processing stage, where sequences are com-

pared to a reference database such as the NCBI non-redundant pro-

tein database [Pruitt et al., 2007], UniProt [Bairoch et al., 2005] or Silva

[Pruesse et al., 2007]. The BLAST results are loaded into MEGAN, along with

a set of user defined parameters, (bit-score cut-off, number of allowable hits

per sequence etc.) and the sequences are mapped onto the NCBI taxonomy

tree (built from all organisms contained in GenBank) using a Lowest Common

Ancestor (LCA) Algorithm. For example if a sequence has matches to two taxa

a and b, then it is placed on the taxonomic tree at the lowest node that contains

both a and b as descendants. MEGAN is very user friendly and performs well

compared to best BLAST approaches such as that employed by the MG-RAST

[Meyer et al., 2008] pipeline.

Composition-based tools work on the principle that the frequency of

oligonucleotides (short region of single-stranded DNA generally less than 20

nucleotides) in an organisms’ genome contain a species-specific signature

that can be used to characterise DNA fragments [Kariin and Burge, 1995],

[Teeling et al., 2004a]. As the name suggests, Tetra [Teeling et al., 2004b]

uses tetranucleotide usage to classify DNA fragments. First, the frequency

of all 256 (44) tetranucleotides in a DNA fragment is calculated. These are

then compared to the tetranucleotide frequencies of a set of reference genomes

and the correlation coefficients calculated for each comparison. Phylopythia

[McHardy et al., 2006] uses a multi-class support vector machine (SVM) trained

on variable length oligonucleotides of reference genomes. While it performs with

>80% and >90% accuracy for sequences of unknown and known origin respec-

tively Phylopythia [McHardy et al., 2006], performance tails off drastically for

fragments under 1 Kb in length. PhymmBL [Brady and Salzberg, 2009], is a
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hybrid classifier which combines nucleotide composition (Phymm) and similar-

ity based methods (BLAST). The Phymm part of the tool builds interpolated

Markov models (IMMS) from variable length oligomers (weighted according to

frequency of occurrence) of a set of reference genomes. When used in conjunc-

tion with BLAST alignments, PhymmBL can classify reads as short as short

as 100 bp with accuracy comparable to or greater than stand-alone BLAST or

other composition-based methods such as PhyloPythia.

It is clear that there is as yet no ‘one size fits all’ taxonomic classifier.

As with many bioinformatics tools there are trade-offs to be made between

speed, accuracy and coverage. Similarity-based methods tend to work well

with most length sequences, although accuracy and specificity will increase

with sequence length [Wommack et al., 2008]. Most composition-based meth-

ods need longer sequences to determine a clear signal of oligonucleotide usage

and perform poorly on sequences shorter than 1 Kb. Similarity-based meth-

ods can be biased by both under and over-represented taxa in the reference

databases used [Piganeau, 2012], and often the closest BLAST match may not

necessarily represent the closest phylogenetic match [Koski and Golding, 2001].

Marker gene approaches tend to have better performance but only allow classi-

fication of a tiny subset of sequences. Composition-based methods are reliant

on having sufficient training data available to build reliable reference models

[McHardy and Rigoutsos, 2007].

2.9 Functional annotation

A key stage in an ’omics analysis is determining the functional potential of a set

of genes detected within a metagenomic sample or the functional activity in the
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transcripts of expressed genes in a metatranscriptome sample. The putative

function of a gene or transcript sequence is inferred by comparisons of their

amino-acid translations to one or more reference databases using either BLAST

or HMM searches, sequences that produce matches within defined similarity or

probability thresholds are deemed to be homologous. The functional annotation

of the matching sequence is assigned as a predicted function.

The National Centre For Biotechnology Information (NCBI) provides two

comprehensive reference databases, GenBank [Benson, 2011] and the non-

redundant protein database RefSeq [Pruitt et al., 2012]. GenBank is built from

genomic data, transcripts and environmental sequences from Genbank itself in

the U.S., EMBL in the U.K. and the DNA Data Bank of Japan. At the time

of writing GenBank contains over 150 Gb of nucleotide sequence from over

300,000 organisms. RefSeq is a more compact reference set of genomic, tran-

script and EST sequences. It is nonredundant at the species level, meaning that

identical or highly similar sequences are represented by a single sequence. The

current release contains over 4 billion amino acid sequences.

While these are among the most comprehensive reference databases avail-

able, the sequences are from a variety of sources and the quality of annotation is

inconsistent, sometimes erroneous [Schnoes et al., 2009] and many sequences

have no functional annotation at all, or are classifed as either predicted or hypo-

thetical proteins based on similarity to existing sequences. The UniProt Knowl-

edge Base (UniProtKB) [Bairoch et al., 2005] consists of two parts: Swiss-Prot

and TrEMBL. Swiss-Prot contains highly accurate, [Schnoes et al., 2009] man-

ually curated protein sequences with detailed information about the function

and structure of the sequence, as well as information from relevant literature.

TrEMBL consists of automatically annotated, and therefore less reliable se-
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quences.

Another approach to predicting the function of a sequence is to attempt

to cover the majority of protein coding sequences using representative sets of

orthologous proteins from different organisms separated into families of proteins

or functional groups. The key concept is that the majority of proteins are

highly conserved among different species, as protein shape determines function

and amino acid sequence determines protein shape, so major mutations in a

sequence would likely disrupt the function of a gene. So, in determining the

function of a sequence we do not necessarily need to compare it to all proteins

from all organisms; the conserved consensus is suffcient.

The Pfam protein families database [Finn et al., 2010] is maintained by the

Sanger Institute and uses manually curated and calibrated profile HMMs to

represent families of homologous proteins. Sequences are queried against these

probabilistic models to judge the likelihood that the sequence could have been

produced by the model. The current Pfam database is built from protein se-

quences from UniProt [Bairoch et al., 2005], and covers around 80% of UniProt

proteins in a set of around 13,500 protein families. It therefore provides high

coverage of protein sequences with a small reference set. The manually curated

models provide high quality, consistent annotation.

The Kyoto Encyclopaedia of Genes and Genomes (KEGG) database

[Ogata et al., 1999] is an hierarchical knowledge-base containing detailed, em-

pirically validated information on metabolic pathways and the protein compo-

nents and their interactions. Groups of orthologous proteins are represented by

single KEGG orthologys (KO), sequences can be aligned with BLAST to KOs

through the KAAS web server [Moriya et al., 2007] or against a local down-

loaded version of the database and partial or complete pathways reconstructed.
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KEGG results are somewhat ambiguous as proteins may be involved in mul-

tiple interactions in multiple pathways. However, tools exist to reduce a set

of KO results, such as MinPath [Ye and Doak, 2009], which uses a parsimony

approach to provide the minimal set of pathways that explain a results set.

To visualise the complete set of detected metabolic pathways, tools such as

iPath [Letunic et al., 2008] allow for customisable pathway maps of interacting

metabolic pathways.

The Gene Ontology (GO) [Ashburner et al., 2000] was conceived as a con-

sistent, universal set of gene and gene product descriptions. Contained within

a directed acyclic graph structure, GO terms are divided into three cate-

gories: Cellular Component, Molecular Function and Biological Process and

provide detailed descriptions of genes and gene products in these contexts.

It is rarely the case that we find a one-to-one mapping between genes and

GO terms. Often a single sequence can be associated with multiple GO

terms from different categories at different levels of detail. Thus, many tools

have been developed to not only detect significantly different GO terms be-

tween data sets, but also to summarise and visualise reduced sets of GO

terms. ReviGO [Supek et al., 2011] for instance reduces and plots lists of

GO terms into clusters of terms based on a measure of semantic similar-

ity; WeGO [Ye et al., 2006] enforces a tree-like hierarchy onto list of GO

terms, allowing the user to define a level of detail for summary. Finally, it

is possible to map annotations from other sources to GO terms; for example

Pfam (http://www.geneontology.org/external2go/pfam2go), or NCBI

sequences through Blast2GO [Conesa et al., 2005].

The NCBI Clusters of Orthologous Groups (COG) and euKaryotic Orthol-

ogous Groups (KOG) databases [Tatusov et al., 2003] contain groups of or-

http://www.geneontology.org/external2go/pfam2go
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thologous proteins representing prokaryotes and eukaryotes respectively. Each

COG or KOG represents a highly conserved protein structure common to mul-

tiple species. For each database, a small representative set of organisms were

chosen and conserved proteins detected by finding 3 way reciprocal BLAST

hits between their genomes. Orthologs detected among at least 3 of the rep-

resentative organisms are then subjected for manual curation and annotation

using other data repositories such as GenBank. The eukaryote specific database

provides a high level functional annotation, grouping sequences into 25 broad

categories, however, it is built from just 7 species and has not been updated

since it’s inception.

2.10 Comparative analyses

As stated in section 2.2, the power of metatranscriptomics lies in it’s abil-

ity to capture a real-time snapshot of community mRNA abundance allowing

for comparative studies. After detecting taxonomic affiliations and predicting

the function of sequences, the final and arguably most important stage of any

metatranscriptomics analysis pipeline is to summarise, visualise and detect sta-

tistically significant differences – and similarities - between samples.

Generally what is reported is the number of sequences matching to certain

taxa, or the percentage of reads or percentage of assignable reads. Common

methods for detecting significantly different taxa or transcripts work using ei-

ther Fisher’s exact test or Chi-squared test [McDonald, 2009]. These methods

use 2x2 contingency tables containing the proportion of sequences matching

to taxa/gene X and the proportion of sequences not matching to X in two

samples. A measure of probability (p-value) is calculated representing the like-



CHAPTER 2. BACKGROUND 36

lihood of observing the table given the null hypothesis (i.e. that there is no

difference in the abundance of X in the two samples). It should be noted that

the Chi squared p-value is an approximation, but fast to calculate and suitable

for large values, whereas Fisher’s exact is more computationally intensive but

more sensitive to small values (rare taxa/genes). During multiple tests, false

positives can be introduced, dependent on the p-value cutoff used, hence p-

value correction is required [White et al., 2009]. A common approach is to use

Bonferonni correction, lowering the p-value according to the number of tests

performed.

As described in section 2.9, various tools exist specifically for the visual-

isation of GO terms, many of which can be used for detection of enriched

(significantly more abundant in one sample) GO terms. The majority of these

use either Fisher’s exact test or Chi-squared test (see [Sherman et al., 2009] for

more details). The Metagenome Analyser MEGAN [Huson et al., 2007] intro-

duced in section 2.8, originally a graphical user interface tool for the analysis and

visualisation of taxonomic profiles through tree structures, has been extended

to incorporate not only functional analysis but also comparative analyses of

multiple samples. The approach they have implemented to detect differential

expression or significantly different taxa is called the directed homogeneity test.

It is based on Pearson’s chi-square test (optionally Bonferonni corrected) and

assesses not only individual nodes but all children of a node. Other contin-

gency table approaches include XIPE [Rodriguez-Brito et al., 2006], which uses

a difference of medians approach and STAMP [Parks and Beiko, 2010] which

attempts to identify differences that are biologically significant and not just

statistically significant.

Microbial organisms have a profound effect on their surrounding environ-
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ment, but this relationship is not unilateral, environment conditions (temper-

ature, light, nutrients etc.) effect both the behaviour - in terms of gene ex-

pression – and the population mix of microbial communitites. It is important

to be able to contextualise the gene expression profile of a microbial commu-

nity with regard to their surroundings and determine the impact of different

environmental factors on community gene expression. The software package

Primer-E [CLARKE, 1993] provides an array of statistical functions including

multivariate statistical tools such as multidimensional scaling (MDS) and prin-

cipal components analysis (PCA). For example, a canonical correlation analy-

sis applied to metagenomic data from the GOS data set [Rusch et al., 2007],

[Yooseph et al., 2007] showed that temperature, sunlight, oxygen and carbon

dioxide played a larger role in determining the distribution of genes associated

in various metabolic pathways than salinity and nutrients [Raes et al., 2011].

2.11 Discussion

In this chapter we have given an overview of metatranscriptomics, a powerful

approach for analysing and comparing the community gene expression of un-

culturable microbial organisms from diverse environments. We have provided

some background on the fundamental biology underpinning this approach; the

importance of such projects and some of their applications. We have also

given an overview of the different steps required for performing a metatran-

scriptomics analysis and discussed a selection of the most popular computa-

tional tools employed. There is no standard protocol for the computational

analysis of metatranscriptome data; the approach employed is usually depen-

dent on the project and its aims. In the next chapter we implement and apply
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a computational analysis pipeline to metatranscriptome data from eukaryotic

phytoplankton communities from a range of environments.



Chapter 3

Computational analysis of

eukaryotic phytoplankton

metatranscriptomes

This chapter is adapted from ‘The impact of temperature on marine phyto-

plankton resource allocation and metabolism’, A. Toseland, S. Daines, J. Clark,

A. Kirkham, J. Strauss, C. Uhlig, T.M. Lenton, K. Valentin, G.A. Pearson, V.

Moulton, T. Mock, accepted for publication at Nature Climate Change, 29th

July 2013.

39



CHAPTER 3. COMPUTATIONAL ANALYSIS OF EUKARYOTIC

PHYTOPLANKTON METATRANSCRIPTOMES 40

3.1 Summary

This chapter describes the analysis of 454 sequence data from marine eukaryotic

metatranscriptomes from distinct latitudinal temperature zones. This project

was a collaboration between the Schools of Computing Sciences and Environ-

mental Sciences at UEA, the Alfred Wegener Institute in Bremerhaven, the

University of Algarve, and the University of Exeter. In this chapter we will focus

on the computational analysis which was carried out in the School of Computing

Sciences. For a breakdown of author contributions see Chapter 1.

3.2 Background

To better understand the effect that temperature has on the metabolism of

eukaryotic phytoplankton we undertook a large-scale metatranscriptome, study

sampling communities across a range of temperature zones. Phytoplankton

are influenced by their ambient temperature in many ways, for example, their

metabolism and diversity are dependent on their temperature optima for growth

[Eppley, 1972] and on temperature driven physical constraints such as stratifi-

cation and mixing for the supply of nutrients [Falkowski et al., 1998]. Although

hotly debated, it has been suggested that global warming has already had a pro-

found impact on phytoplankton standing-stock, reducing it by approximately 1%

per year [Boyce et al., 2010]. Despite the significance of temperature for ma-

rine phytoplankton, especially in the context of anthropogenic global warming,

we currently have a limited understanding of its impact on eukaryotic phyto-

plankton growth, metabolism, and community composition.

We sequenced the metatranscriptomes of eukaryotic phytoplankton com-

munities across a latitudinal range of temperature zones. Samples were taken
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from all 3 major marine temperature zones: polar (Arctic (ARC) and Antarctic

(ANT)), temperate (North Pacific (NPAC) and North Atlantic (NATL)) and

tropical (Equatorial Pacific (EPAC)) (see figure 3.1). The aims of this analy-

sis were to determine the taxonomic composition and transcriptional profile of

each sample, to determine the differences and similarities between samples and

finally to investigate the impact of environmental conditions on phytoplank-

ton community transcript expression. The remainder of this chapter details

the bioinformatic analysis of metatranscriptome data. We present a schematic

overview of the bioinformatics analysis in figure 3.2. For completeness, we also

include a brief description of follow-up molecular biology experiments performed

in the Mock lab and discuss some of the results from a novel cellular resource

allocation model developed at the College of Life and Environmental Sciences

from the University of Exeter as part of this project.

3.3 Materials and methods

3.3.1 Sampling and sequencing

Phytoplankton cells were taken from water samples obtained during research

vessel cruises, the samples were filtered to remove non-microbial matter and the

samples were then frozen in liquid nitrogen. For the Antarctic sea-ice samples,

ice cores were drilled and the samples melted in sea water before filtering and

freezing. Next, total RNA was extracted from the samples, these were then

purified to remove non eukaryotic mRNA. The mRNA samples were then reverse

transcribed into double-stranded complimentary DNA (cDNA) for sequencing

with the 454-GS-FLX and 454 Titanium platforms. For a full description of the

materials methods used for sampling and sequencing see Appendices A.1 and
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Figure 3.1: Sampling sites and surface ocean temperatures according to
the World Ocean Atlas (2009). ARC: Arctic Ocean; NATL: North At-
lantic Ocean; NPAC: North Pacific Ocean; EPAC: Equatorial Pacific; ANT:
Southern Ocean.

A.2.

3.3.2 Sequence processing

As the quality of 454 sequences tends to deteriorate towards the 3’ end, we per-

formed clipping by quality score. Quality clipping was performed as in Marchetti

et al. [Marchetti et al., 2012]. Using a single base sliding window, we trimmed

each sequence from the 3’ end until a base with a quality score of ≥14 was

met. To identify potential sequencing artifacts, we clustered all sequences with

CD-HIT-est [Li and Godzik, 2006] at 100% identity requiring 100% coverage of

both sequences. We retained only the cluster representatives; cluster members

(exact duplicates) were deemed potential artifacts and were omitted from fur-

ther processing. To detect the 5’ primer sequence we used the short sequence
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Figure 3.2: Workflow diagram of computational metatranscriptome anal-
ysis. Raw sequences (white) go through several processing stages (blue),
before taxonomic (yellow), functional (pink) and finally comparative and
statistical analyses (green).

alignment tool PatMan [Prüfer et al., 2008] allowing for up to 4 mismatches

and 2 gaps. We used the match coordinates from PatMan to identify primer

regions and these were removed using a custom BioPerl script. The 3’, 17

base oligo-dt primer was identified using Dust [Kuzio et al., 2006] (word size

2, complexity value of 50) to get the coordinates of low complexity regions.

We examined each identified region and, if it was of an appropriate length

(≥15 bases) and composed of ≥75% adenine or ≥75% thymine, the region

was trimmed from the sequence. We identified low complexity sequences us-

ing Dust [Kuzio et al., 2006]. Using default parameters, we ran all sequences

through Dust, any low complexity regions were masked with Xs and the propor-

tion of masked bases for each sequence was calculated. Any sequences com-

prising of ≥70% low complexity region were filtered out. Finally we removed

any sequences that were less than 50 bp in length.
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Despite specifically targeting eukaryotic mRNA by attaching oligo-dt primers

to the poly-A region of transcripts, some non mRNA could have been present

in the samples. John et al. [John et al., 2009] reported that ∼2% of sequences

in a small scale eukaryotic metatranscriptome held significant similarity to ribo-

somal RNA (rRNA). In order to detect putative rRNA sequences we performed

BLASTN [Altschul et al., 1997] searches (default settings, no complexity filter-

ing) against both the large and small subunit databases of the Silva ribosomal

database [Pruesse et al., 2007]. Sequences returning hits with bit scores ≥50

were deemed putative rRNA and we excluded them from further analysis.

The final processing stage was to cluster sequence sets to remove redun-

dancy and speed up homology searches. We clustered each sample with CD-

HIT-est at ≥95% overall identity and requiring ≥50% coverage of the repre-

sentative sequence. We created a lookup table of cluster details (Cluster repre-

sentative ID, Cluster size, Cluster member Ids) in order to scale the annotation

results of cluster representatives accordingly.

To explore the composition of the samples and to detect broad-scale simi-

larities and differences between samples, we pooled all 5 sequence sets together

and clustered the amino-acid translations. We added an environment specific

prefix to the unique identifier of sequences from all samples to denote their

sample of origin and pooled them together. We then translated all sequences

into their longest open reading frames (minimum length ≥10 amino acids) and

clustered them with CD-HIT (≥90% overall identity, ≥50% coverage of the rep-

resentative sequence). Using a custom Perl script, we examined the resulting

clusters individually and appended the sequence ids of all cluster members to a

list for each environment involved in that cluster. The resulting lists were used

to create a sequence distribution Venn diagram in R using the venn function of
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the gplots package.

3.3.3 Taxonomic affiliations

To determine the taxonomic composition of the samples we used PhymmBL

[Brady and Salzberg, 2009], a hybrid classifier which combines BLAST align-

ments with nucleotide composition based interpolated markov models. By de-

fault, PhymmBL uses bacterial and archaeal genomes from NCBI GenBank

[Benson, 2011] as a reference. It is however, extensible and has been suc-

cessfully applied to eukaryotic data [Brady and Salzberg, 2011]. We created a

representative set of 44 eukaryotic organisms using genomes and ESTs (Ex-

pressed Sequence Tags) covering the major eukaryote groups but with a focus

on algal species for this analysis (see Appendix A.3) for a list of organisms

used and taxonomic labels. It was important to include out-groups (non algal

species) to ensure that the analysis was not biased towards algal species and

also to include any organisms that may have contaminated the samples during

earlier stages. Genome sequences were downloaded from NCBI GenBank and

JGI (with 4 exceptions: Cyanidioschyzon merolae from Cyanidioschyzon mero-

lae Genome Project http://merolae.biol.s.u-tokyo.ac.jp/download;

Strongylocentrotus purpuratus from Sea Urchin Genome Project http://www.

hgsc.bcm.tmc.edu/projectspecies-o-Strongylocentrotus; Danio rerio

from UCSC http://genome.ucsc.edu/cgi-bin/hgGateway?db=danRer5;

and Homo sapiens from Genome Reference Consortium http://hgdownload.

cse.ucsc.edu/goldenPath/hg19/chromosomes/). EST sequences were

downloaded from NCBI-dbEST and clustered with CD-HIT-est at 95% simi-

larity to ensure non-redundancy of sequences.

We used taxonomic classifications for the PhymmBL configuration file from

http://merolae.biol.s.u-tokyo.ac.jp/download
http://www.hgsc.bcm.tmc.edu/projectspecies-o- Strongylocentrotus
http://www.hgsc.bcm.tmc.edu/projectspecies-o- Strongylocentrotus
http://genome.ucsc.edu/cgi-bin/hgGateway?db=danRer5
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
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the NCBI taxonomy [Federhen, 2012] and AlgaeBase [Guiry and Guiry, 2011].

The sequence files and taxonomic details were added to PhymmBL in batch

mode and IMMs created for each new organism. The cluster representative

sequences of the metatranscriptome samples were run through the PhymmBL

pipeline, and the results were filtered with a confidence score cutoff of ≥0.9 at

the phylum level and scaled by the size of cluster.

3.3.4 Functional annotation

Pfam

We translated clustered representative sequences into all six reading frames (Min

length 10 amino acids) and performed homology searches against the Pfam

protein database [Finn et al., 2010] using pfam scan.pl (Pfam-A only, default

gathering thresholds used). The results were formatted with a custom Perl

script and scaled according to cluster size.

Rarefaction curves

Rarefraction curves were produced with the online Rarefaction tool (http:

//www.biology.ualberta.ca/jbrzusto/rarefact.php#Calculator) us-

ing the Chao estimator of species richness. A list of raw totals for each detected

Pfam domain were entered (plus the number of sequences providing no hits)

and sampled at 50,000 sequence intervals.

KEGG

We identified KEGG pathways [Ogata et al., 1999] for cluster representative se-

quences using the KEGG/KAAS web-server [Moriya et al., 2007] (using single-

http://www.biology.ualberta.ca/jbrzusto/rarefact.php#Calculator
http://www.biology.ualberta.ca/jbrzusto/rarefact.php#Calculator


CHAPTER 3. COMPUTATIONAL ANALYSIS OF EUKARYOTIC

PHYTOPLANKTON METATRANSCRIPTOMES 47

directional best hit EST mode against a eukaryote representative gene set,

bit-score cut-off ≥40). The resulting KO (Kegg Orthology) lists were scaled by

cluster size and filtered using MinPath [Ye and Doak, 2009] to get a minimal

set of pathways. Hits for KEGG pathways K000230: Purine metabolism and

K000240: Pyrimidine metabolism were summed and plotted against tempera-

ture for each environment.

GO

We then mapped all detected Pfam domains to their corresponding GO

term(s) [Ashburner et al., 2000] using a custom Perl script and the mapping

file Pfam2Go (http://www.geneontology.org/external2go/pfam2go).

Then, for each possible pair of environments we performed a Fisher’s exact

test on each GO term. Enriched GO terms (For all three categories: Cellu-

lar component, biological process and molecular function) were identified using

a Bonferroni corrected p-value <0.001 and used to create term clouds (One

for each environment in the pairwise comparison). Lists of enriched GO terms

were created - one for each environment, with the frequency of a GO term in

the list determined by the absolute difference in the normalised abundance of

the term between the two environments. Term clouds were then created using

Worditout.com using direct colour blending from blue (low frequency) to red

(high frequency).

http://www.geneontology.org/external2go/pfam2go
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3.3.5 Comparative analyses

Heatmaps

We created heatmaps to summarise both the PhymmBL taxonomic classifica-

tions and Gene Ontology totals using the Heatmap.2 function in R. Heatmaps

represent frequency data using a matrix of colour coded cells (where the colours

represent the frequency of the value). Either the rows of the matrix, the columns

or both can be hierarchically clustered, grouping similar rows or columns in close

proximity. For the taxonomy heatmap, only PhymmBL classified algal groups

were used. For GO terms we only used biological process GO terms that were

present over a certain abundance cutoff (≥0.5% of hits in at least one data

set). For the column dendrogram representing the overall similarity of the data

sets, we read in the percentage of hits to each phyla or GO term as a table

and used these to create a distance matrix using the value: 1 minus the Pear-

son correlation coefficient. The row dendrogram was created using the default

settings of Heatmap.2 (euclidean distance). Both dendrograms were created

using complete-linkage clustering, and the data cells were scaled and centred

by column.

Multidimensional scaling

Next we performed multidimensional scaling for the most abundant phyla – the

Bacillariophyta and Dinoflagellata – based on the set of Pfam domains detected

for these organisms. Multidimensional scaling is a technique to place objects in

n-dimensional space based on a correlation matrix. The proximity of objects to

one-another in the plot reflects how similar they are. We extracted Pfam results

for Bacillariophyta and Dinoflagellata sequences (PhymmBL phylum confidence
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score ≥0.9) and used them to create a 10x10 correlation matrix, with each

cell of the matrix holding the correlation score (1 minus the Spearman corre-

lation coefficient) between the Pfam totals of the two groups represented by

the cell. The correlation matrix was converted to a euclidean distance matrix

and non-metric multidimensional scaling performed using the IsoMDS function

(Kruskall’s) of the MASS package in R.

Canonical correspondence analysis

We performed a canonical correspondence analysis (CCA) using the VEGAN

package in R. CCA is a two-stage technique consisting of ordination and en-

vironmental gradient identification fitting [Ter Braak, 1986], and is commonly

used for analysing the effect of environmental variables on community com-

position. We treated the transpose of the normalised Pfam count tables as

our species data and created a second table of environmental factors such

as temperature, salinity, latitude, longitude and nutrient levels. Where en-

vironmental data was unavailable we used the World Ocean Atlas (http:

//www.nodc.noaa.gov/OC5/SELECT/woaselect/woaselect.html) for nu-

trient levels, taking the annual surface mean values. For light levels we used

the Pangaea information system website (http://www.pangaea.de) to find in-

situ PAR (Photosynthetically Active Radiation) readings over a depth gradient

for environments analogous to our samples. By plotting PAR against depth and

fitting an exponential regression line we could extract the equation for the PAR

- depth relationship and plug in our depth measurement to get an estimated

PAR. The data sets we used were: ANT (Nicolaus, M et al. (2012): Downward

spectral solar irradiance as measured in different depths under sea ice (transmit-

ted irradiance) at sea ice station PS78/267-1.doi:10.1594/PANGAEA.786857);

http://www.nodc.noaa.gov/OC5/SELECT/woaselect/woaselect.html
http://www.nodc.noaa.gov/OC5/SELECT/woaselect/woaselect.html
http://www.pangaea.de
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EPAC (Eldin, Gerard; Rodier, Martine; Dupouy, D (2004): Physical oceanogra-

phy at CTD station FLUPAC 119. doi:10.1594/PANGAEA.186766); ARC and

NATL (Fossa, Jan Helge; Kutti, Tina; Bergstad, Odd Aksel; Knutsen, Tor;

Svellingen, Ingvald; Wangensten, Jarle; Johannessen, Reidar; Steinsland, Asgeir

(2011): Physical oceanography during R/V H. Mosby cruise IMR-2009615. In-

stitute of Marine Research, Bergen, doi:10.1594/PANGAEA.756308); NPAC

(NPAC: Whitney, Frank (2002): Physical oceanography at station IOS 97-

11 CTD045.doi:10.1594/PANGAEA.79563).

Where there were multiple samples, such as in the ANT and EPAC sam-

ples, we took the mean values. All environmental data were transformed to a

log2 scale and an offset added to temperature values to make them positive.

See Appendix A.4 for a table of environmental conditions. To highlight specific

proteins for nitrate reductases, fucoxanthin chlorophyll binding proteins (FCPs),

ribosomal proteins and silicon transporters we took one gene of each type from

3 diatoms: Thalassiosira pseudonana, Phaeodactylum tricornutum and Cylin-

drotheca fusiformis. Each gene was compared to Pfam-A (gathering threshold

cutoff) and the detected domains used to represent that gene.

Comparisons with species specific transcriptome

As ∼60% of sequences in the NPAC sample had taxonomic affiliations with

Thalassiosira pseudonana we chose this data set to perform a comparison

with expression data from a T. pseudonana genome-wide microarray exper-

iment [Mock et al., 2008]. First we compiled a spreadsheet of differentially

expressed (log2 fold change ≤1, p-value <0.05) T. pseudonana genes and ex-

pression values under low temperature (4◦C), and silicate, nitrate, iron and

CO2 limitation. Columns were added to each gene for GO, KEGG, KOG
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(annotations taken from JGI http://genome.jgipsf.org/Thaps3/Thaps3.

download.ftp.html)) and Pfam annotations (performed ourselves by search-

ing against Pfam-A and using the default gathering threshold cutoffs). Se-

quences from the NPAC sample classified as Bacillariophyta (PhymmBL phy-

lum confidence score ≥0.9) were extracted and BLASTed against the JGI T.

pseudonana gene models (BLASTX, e-value ≤1e-5, using soft masking, requir-

ing ≥50% coverage of the query and ≥75% overall identity and taking the single

best hit). Finally we added the number of total matches to each differentially

expressed gene to the table.

3.4 Results

3.4.1 Sequence processing

The combined 454 sequencing runs produced 5 data sets giving us a total

of 2,075,984 million raw sequences. After quality filtering we were left with

1,533,513 sequences, that is ∼74% of the original total. For four of the data

sets, between 18% and 28% of raw sequences were filtered out completely,

however for the ANT data set ∼44% of sequences were removed. This was

caused by a combination of low complexity sequences and a high proportion

of putative sequencing artifacts i.e. artificial duplicates. The EPAC and NPAC

data sets also contained a considerably higher number of artifacts than the ARC

and NATL data sets. We do not know whether this reflects genuine sequencing

artifacts or is due to natural duplicates caused by a highly dominant species or

dominant transcript. However the low number of clusters produced from these

data sets (see table 3.1) seems to reflect a reduced level of sequence diversity.

The NATL and ARC data sets displayed some other clear differences to

http://genome.jgipsf.org/Thaps3/Thaps3.download.ftp.html
http://genome.jgipsf.org/Thaps3/Thaps3.download.ftp.html
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ANT ARC EPAC NATL NPAC
#Raw Reads 391,614 514,223 342,252 513,985 313,910
Avg Length (bp) 168.1 278.1 158.9 310.7 258
Total Size (Mb) 65.83 143.03 54.4 159.67 81
Potential Artifacts1 49,093 3,175 21,942 5,172 14,172
Putative rRNA2 3,595 38,651 1,324 68,009 1,254
#Filtered Reads 220,844 421,107 246,534 394,187 250,841
Avg Length (bp) 209.3 252.1 161 285.6 268.2
Total Size (Mb) 46.22 106.18 39.69 112.58 67.26
GC% 43.43 43.82 47.3 43.99 44.44
#Clusters3 29,840 254,423 119,783 252,031 76,564

Table 3.1: Summary of 454 sequence data for Antarctic (ANT), Arctic
(ARC), Equatorial Pacific (EPAC), North Atlantic (NATL), and North Pa-
cific (NPAC) metatranscriptomes. 1: Only exact duplicates were removed:
CD-HIT-est clustering at 100% identity requiring 100% coverage of both se-
quences. 2: BLASTN against Silva SSU & LSU database Best hit, no com-
plexity filtering, bit-score cutoff ≥50. 3: CD-HIT-est clustering ≥95% over-
all identity, requiring ≥50% coverage cluster representative. ANT, EPAC
and NPAC sequenced with GS-FLX, ARC and NATL sequenced with GS-
FLX Titanium.

the other data sets; the sole use of the Titanium platform (the EPAC, NPAC

and ANT data sets were produced using a combination of FLX and Titanium

sequences) was reflected in the longer average read length (see table 3.1). Also,

they contained a much higher proportion of putative rRNA sequences: 7.5%

and 13% of raw reads in ARC and NATL respectively compared to <1% in the

other three data sets. This is likely due to differences in sample preparation;

the employment of 2 rounds of mRNA purification used to prepare the ANT,

EPAC and NPAC samples having removed virtually all non-mRNA.

Exploratory clustering of sequences from all 5 samples showed that the

majority of sequences were environment specific, from 82% in NPAC to as much

as ∼97% of sequences in the ANT and EPAC data sets (see figure 3.3). Only

a handful of sequences (552) were contained in clusters containing sequences
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from all five environments.

Figure 3.3: Sequence-distribution Venn diagram for pooled sequences clus-
tering based on CD-HIT (longest open reading frames clustered using 90%
similarity and 50% overlap of sequences).

The largest overlap was between the ARC and NATL data sets, 102,624

sequences fell into clusters shared by these two samples. This is perhaps unsur-

prising considering the close proximity of the two sampling sites. The second

largest overlap was between the NPAC and ANT data sets (43,918 sequences).

This cannot be explained by geographic location and may be explained by sim-

ilarities in population composition or transcriptional behaviour.

3.4.2 Rarefaction curves

The rarefaction curves based on Pfam protein domains showed a levelling-off

for all five samples with all sequences included (see figure 3.4). Compared

to the Chao-1 estimates, our samples contained between 70% and 85% of the
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predicted domain content. We produced rarefaction curves based on detected

protein domains rather than taxa; the limited number of reference genomes

used in this analysis would lead to the curves plateauing too soon and producing

misleading results.

Figure 3.4: Pfam protein domain rarefaction curves for Equatorial Pacific
(EPAC), North Pacific (NPAC), Antarctic (ANT), North Altantic (NATL)
and Arctic (ARC) metatranscriptomes. (Chao-1 estimator of species rich-
ness using 50,000 sequence increments. http://www.biology.ualberta.

ca/jbrzusto/rarefact.php).

3.4.3 Taxonomic affiliations

A relatively low proportion of sequences returned matches to organisms in the

PhymmBL reference database. Using a confidence score cut-off of ≥0.9 at

the phylum level, the proportion of sequences assigned a reliable taxonomic

affiliation ranged from as low as 3% in EPAC to 33% in ANT, with around

http://www.biology.ualberta.ca/jbrzusto/rarefact.php
http://www.biology.ualberta.ca/jbrzusto/rarefact.php
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8% of sequences from the other 3 data sets returning matches to our reference

database.

Although all samples contained a small proportion of matches to out-groups,

the EPAC sample contained a higher percentage of matches to bacterial se-

quences. However, the number of overall matches was generally very low -

the most abundant transcripts in all 5 data sets were from eukaryotic phyto-

plankton. Hierarchical clustering of species abundance, separated the samples

into two clusters, the diatom dominated NPAC and polar samples (ANT and

ARC) and the dinoflagellate/ciliophora dominated open ocean samples EPAC

and NATL (see figure 3.5).

Diatoms are known to dominate phytoplankton communities in coastal up-

welling systems such as Puget Sound and sea ice [Armbrust, 2009]. This was

reflected at the species level taxonomic affiliations: 61% of assignable sequences

from NPAC were most similar to Thalassiosira pseudonana (this is consistent

with microscopic observations, see Appendix A.5), and 86% of assignable se-

quences from ANT were most similar to the polar diatom Fragilariopsis cylindrus.

3.4.4 Functional annotation

As with other metatranscriptomics projects (see section 2.2) between 16% and

35% of sequences returned matches to Pfam domains. However, as for the

taxonomic affiliations, the EPAC data set returned significantly fewer matches

than the other 4 samples (around 5.7%). The ARC and NATL samples returned

the most diverse range of domains with ∼3,000 unique domains identified, the

ANT sample returned the fewest (583 unique domains). This probably reflects

the dominance of a single species (see above) in a niche environment (low

temperature, high salinity brine pockets in sea ice) performing a specialised set
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Figure 3.5: Heatmap summary of PhymmBL-classified (confidence score
≥0.9) algal sequence abundances. Complete-linkage clustering was em-
ployed for both row and column dendrograms. Column dendrogram created
from a distance matrix of 1-Pearson correlation coefficients; row dendro-
gram created using default dist function of Heatmap.2 (euclidean distance
matrix). Cell values were scaled by column: z-score represents the original
value minus the column mean and divided by the standard deviation.

of metabolic functions.

The most abundant domains were components of the ribosome, a major

component in the biosynthesis of proteins. These comprised between 41% and

9% (ribosomes were the second most abundant domain in EPAC, after the

bac rhodopsin) of all identified domains. A heatmap of biological process GO

terms showed that translation was the most abundant process (see figure 3.6).
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It also indicated an apparent gradient in the abundance of sequences associated

with translation, with the lowest abundance in the tropical sample (EPAC)

increasing in the temperate samples (NATL and NPAC) and the highest values

in the two polar samples (ANT and ARC). A strong correlation was detected

between the normalised abundance of sequences associated with the GO term

for translation and the in-situ temperature of the sampling sites (R2 = 0.8).

Figure 3.6: Heatmap summary of biological process GO terms. Complete-
linkage clustering was employed for both row and column dendrograms.
Column dendrogram created from a distance matrix of 1-Pearson corre-
lation coefficients; row dendrogram created using default dist function of
Heatmap.2 (euclidean distance matrix). Cell values were scaled by column:
z-score represents the original value minus the column mean and divided by
the standard deviation.
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This was also reflected in our pairwise GO-term word clouds. When looking

at significantly different GO terms (Bonferroni corrected p-value <0.001) it was

clear that in lower temperature samples, GO terms associated with biosynthesis,

such as ‘translation’, ‘ribosome’ were enriched. See figure 3.7 below for GO term

cloud of significantly enriched GO terms in ANT compared to EPAC.

Figure 3.7: Statistically significantly (Bonferroni corrected Fisher’s exact
test p-value <0.001) enriched GO terms in ANT compared to EPAC. Term
clouds created with http://www.worditout.com. Terms scaled by the ab-
solute difference in the relative abundance of the enriched term and using
direct colour blending from blue (low frequency) to red (high frequency).

3.4.5 Comparative analyses

Multidimensional scaling

As bacillariophyta and dinoflagellata were the most abundant taxa in our sam-

ples, we selected these groups for our MDS plot. The final ordination required

four dimensions with a Kruskall’s stress value of 0.0086 (measure of goodness

of fit for the ordination, which ideally should be ≤0.1 [Manly, 2005]) after 50

http://www.worditout.com
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iterations. In figure 3.8 the first two dimensions show a clear separation along

the x-axis of bacillariophyta and dinoflagellata based on their transcriptional

profiles reflecting the different transcriptional behaviour of these taxa. The

bacillariophyta samples also appear to have been positioned along the y-axis

(Dimension 2) according to the latitude of their sampling sites. In addition, the

y-coordinates of the bacillariophyta samples had a very strong correlation with

latitude (R2 = 0.99).

Figure 3.8: Non-metric multidimensional scaling (MDS) plot based on a
distance matrix (1 minus Spearman correlation coefficient) of Pfam protein
families from PhymmBL classified Bacillariophyta (BAC) and Dinoflagel-
lata (DINO) sequences.
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Canonical correspondence analysis

A multiple correlation plot of environmental factors with the abundance of

transcripts in each environment associated with the GO term for translation

identified temperature as the most strongly correlated factor (R2 = 0.81) see

Appendix A.6). Using a set of four environmental conditions (temperature,

light, nitrate and phosphate) 100% of variability could be accounted for. Four

dimensions were required to account for the variability in the data, the di-

mensions accounted for 37.31%, 31.84%, 26.5% and 4.3% of total variability

respectively. Taken in isolation the four factors could account for 34.87% (phos-

phate), 31.71% (nitrate), 30.17% (light) and 28.32% temperature.

Plotting the first three dimensions shows that the nutrients nitrate and phos-

phate are mostly strongly associated with the first dimension (reflected in the

direction and length of vector) and that light and temperature are most strongly

associated with dimension 2 (see Appendix A.7 for CCA plots of dimensions 1

and 2 and 1 and 3). We highlighted all ribosomal proteins in the plots, and

the plot of dimensions 2 and 3 shows that most of the variation in ribosomal

proteins occurs along dimension 2, suggesting that the environmental factors

light and temperature are strong influences on this variability, see figure 3.9

below.

Comparisons with species specific transcriptome

We extracted 14,926 sequences from the NPAC metatranscriptome identified as

bacillariophyta-like and aligned these to T. pseudonana genes. A total of 10,713

sequences aligned within the thresholds used. Over 95% of these sequences

matched to T. pseudonana genes that were up-regulated under low temperature.

Although Puget Sound, the source of the NPAC samples, is classed as
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Figure 3.9: Canonical correspondence analysis (CCA) between protein fam-
ily (Pfam) abundance and environmental conditions deduced from ocean
samples in this study, red circles represent ribosomal transcripts.

a temperate system, the average surface temperature doesn’t exceed 12◦C,

even in summer [Moore et al., 2008] (the temperature at the time of sam-

pling of 12◦C reflecting the annual maximum). Also, several strains of T.

pseudonana have been shown to be growth limited by temperatures of 13.5◦C

[Ferguson et al., 1976]. So, it would seem that naturally occurring communi-

ties of T. pseudonana-like species were limited by the low temperature in Puget

Sound.

3.4.6 Follow up experiments

To test this relationship between temperature and the transcription of riboso-

mal genes detected through in-silico analysis, laboratory experiments were per-

formed on model diatom species under control conditions. The first of these was
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quantitative real time polymerase chain reaction (qPCR), a technique to mea-

sure the abundance of specific DNA molecules (or reverse transcribed mRNA).

The experiment showed that for five different ribosomal genes of the diatom

Fragilariopsis cylindrus, levels of mRNA were significantly increased (log2 fold

change ≥ 1, p <0.05) at -2◦C compared with 10◦C.

In order to determine whether this increase in the transcription of riboso-

mal genes led to an increase in the production of ribosomes, Western blots

were performed for two model diatom species - Thalassiosira pseudonana and

Fragilariopsis cylindrus. Western blots are a technique used to detect and esti-

mate the abundance of proteins. It uses gel electrophoresis to separate protein

samples by molecular weight, the proteins are then stained by protein-specific

antibodies, the thicker the band the more abundant the protein. The ribosomal

protein S14 was used for both diatoms under nutrient replete conditions across

a range of temperatures. Figure 3.10 clearly shows an increased presence of

this protein for decreasing temperatures.

Figure 3.10: Western Blots using a commercial antipeptide against the eu-
karyotic ribosomal protein S14. Cultures of Fragilariopsis cylindrus and
Thalassiosira pseudonana were cultivated at different temperatures under
nutrient replete conditions.

The final follow up experiment was to test whether the rate of translation

was affected by temperature. The Mock Lab performed a translation efficiency

experiment using a transgenic strain of Thalassiosira pseudonana, with a par-

ticular gene (nitrate reductase) modified to express GFP (Green Fluoresence
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Protein) when nitrate is added to the culture (i.e. when the nitrate reductase

is translated). Measurements of the percentage increase of GFP produced over

time were used to reflect translational efficiency. The results showed that the

amount of GFP expressed increased at a faster rate (∼3 fold) forThalassiosira

pseudonana cultures at 20◦C than at 11◦C (See Appendix A.8). So, despite an

increase in the abundance of ribosomes at lower temperatures, it seems that

the rate of translational efficiency is reduced. This increase in the production

of ribosomes may be a compensatory mechanism, as the rate of translation is

reduced more ribosomes are required for biosynthesis.

3.5 Discussion

In this chapter we have described the analysis of metatranscriptome samples

from eukaryotic phytoplankton as part of an integrative approach combining

bioinformatics and molecular biology. The metatranscriptomics computational

pipeline involved quality filtering of high-throughput sequence data, identifying

the taxonomic composition of samples, determining the transcriptional profile

and a series of comparative analyses. Multivariate statistical techniques such as

hierarchical clustering, multidimensional scaling and canonical correspondence

analysis were employed to identify similarities and differences between sam-

ples and to assess the influence of environmental conditions on transcriptional

profiles. Not only is this the first large-scale, global eukaryotic phytoplankton

metatranscriptome study, but it also led to new biological discoveries.

The main shortcomings of this project lie in the experimental design. Firstly,

the project consists of just five sample sites. It is therefore impossible to say if

these samples are truely reflective of the environment types they represent. The
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small number of samples may also weaken the significance of statistical methods

employed and any differences between samples may be exaggerated. Secondly,

there was no replication of sampling. It is common practice to produce replicate

(usually triplicate) samples to help differentiate between biological variability

and technical variability. With only a single sample it is difficult to determine

whether transcripts expressed at high or low levels reflective genuine microbial

behaviour or are simply an artifact of the particular sample. Thirdly, the samples

were collected by different groups using slightly different approaches and these

were sequenced by different facilities using a combination of different platforms.

This could also lead to biases in the results.

The in-silico analysis identified phytoplankton species as the dominant taxa

in all five samples and found that the majority of transcripts were associated

with the biosynthesis of proteins. In addition, we identified a strong relationship

between temperature and translation (a strong correlation between temperature

and the abundance of transcripts identified as ribosomal - a key component in

the biosynthesis of proteins). Follow-up molecular biology experiments showed

that lower temperatures lead to increased levels of mRNA for ribosomal genes,

and increased levels of ribosomal proteins. In addition, a translational efficiency

experiment demonstrated that the rate of translation (for a specific gene) was

significantly lower at lower temperatures.

We also collaborated with a group from the College of Life and Environ-

mental Sciences from the University of Exeter. They produced both cell-level

resource allocation models and global models of cellular nitrate and phosphate

levels. The ratio of nitrate to phosphate in plankton is part of the Redfield ra-

tio (the rate of carbon to nitrogen to phosphate atoms, traditionally 106:16:1).

Recent worked revealed that the N:P component of the Redfield ratio is re-
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Figure 3.11: A) Cell model containing light-harvesting apparatus (L)
(Chlorophyll, accessory pigments), biosynthesis (E) (small molecule biosyn-
thesis (sm) and ribosomes (rib)) and cell structure (S) (including nutrient
acquisition and assimilation). B) Modelled N:P ratios based on cell and
ecosystems model.

lated to the ratio of nitrogen rich protein to phosphate rich ribosomal RNA

(rRNA) [Loladze and Elser, 2011]. The global models predict that N:P ratios

will be lower in cold regions where resource allocation emphasises biosynthesis

see figure 3.11-B, whereas in warmer regions N:P will be higher due to emphasis

on photosynthesis. It seems likely therefore that increased water temperature

due to anthropogenic global warming could cause changes in the fundamental

chemistry of plankton communities and the ocean itself.



Chapter 4

Assessment of sequence

processing methods on simulated

metatranscriptome data

This chapter is adapted from ‘Assessment of sequence processing methods on

simulated metatranscriptome data ’, A. Toseland, S. Moxon, T. Mock, V. Moul-

ton, in preparation.
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4.1 Summary

This chapter describes the assessment of sequence clustering on simulated meta-

transcriptome sequence data in order to determine an optimal parameter set.

We developed an approach to simulate metatranscriptome data and assessed a

widely used clustering application over an extensive range of parameters. We

also compared this approach with an alternative sequence processing method -

sequence assembly.

4.2 Background

Metatranscriptome data can contain a high degree of redundancy, that is, mul-

tiple identical or nearly identical sequences. In an investigation into the pro-

portion of artificial and natural duplicates in pyrosequenced metatranscriptome

data, Niu et al. reported that as much as 60% of all sequences in an early

metatranscriptome data set were likely natural duplicates [Niu et al., 2010].

Generally only a small proportion (∼15-35%) of metatranscriptome se-

quences have homologs in reference databases [Frias-Lopez et al., 2008],

[Poretsky et al., 2009], [Gifford et al., 2010], [Qi et al., 2011]. Therefore, some

form of data reduction strategy is beneficial before running computationally in-

tensive homology searches.

Two approaches that are often employed to reduce redundancy in meta-

transcriptome sequence data sets are to assemble sequences into contiguous

fragments or to separate the data set into clusters of sequences sharing a

defined degree of similarity. Metatranscriptome data shares some properties

of metagenomic data sets, namely that the sequence data derives from a di-

verse range of organisms and that the coverage of each will be highly variable.
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This can lead to fragmented assemblies containing potentially chimeric contigs

[Kunin et al., 2008] and recommendations have been made that highly diverse

data sets should not be assembled [Mavromatis et al., 2007] and that clustering

be used as an alternative data reduction technique [Thomas et al., 2012]. Some

authors of metatranscriptome projects assemble [Ogura et al., 2011], some clus-

ter as a data reduction strategy [Gilbert et al., 2008], [Poretsky et al., 2009],

[Rinta-Kanto et al., 2012] or as a means of removing potential artificial du-

plicates [Stewart et al., 2011] and some do neither [Frias-Lopez et al., 2008]

[Urich et al., 2008].

In this chapter, we shall investigate popular data reduction tools and assess

their performance for metatranscriptome data in terms of the accuracy of re-

sulting protein annotations. To do this we will also describe a way to simulate

such data sets. Several approaches have previously been described to simulate

metagenomic data sets [Mavromatis et al., 2007], [Pignatelli and Moya, 2011],

[Mende et al., 2012] for benchmarking assembly and gene annotation tools.

However, to date no similar methods have been developed to simulate meta-

transcriptomic data for similar purposes.

4.3 Materials and methods

4.3.1 Simulated metatranscriptomes

We created three population profiles to represent low, medium and high diver-

sity bacterial communities (referred to as LD, MD and HD respectively from

here on). These were recreated as closely as possible from the organism lists

and genome coverage levels used in the simulated metagenome study by Pig-

natelli et al. [Pignatelli and Moya, 2011]. All 3 populations contained the same
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112 organisms used in the Pignatelli simulations but are present in different

quantities. The genome coverage values were scaled to create discrete organ-

ism abundances to give a total population size of approximately 1,000 for each

sample. The low diversity population was dominated by a single taxa and repre-

sents a niche environment such as the acid mine drainage metagenome sampled

by Tyson et al. [Tyson et al., 2004]. The medium diversity set contains a small

number of dominant taxa, and finally the high diversity sample contains no

dominant taxa, all organisms are present in roughly equal proportions (See Ap-

pendix B.1 for list of organisms used).

For each diversity level, we generated a set of species-specific transcript ex-

pression profiles. For each of the 112 species in the samples, we generated a

Pareto-like, power law distribution (P (k) ∝ k−r) [Ueda et al., 2004], modelling

the probability of a gene having the level of expression k and the exponent

r is directly related to the rate of mRNA decay [Nacher and Akutsu, 2006].

This distribution has been empirically demonstrated (based on genome-wide

microarray data) to apply to gene expression from a range of model organisms

such as bacteria (E. coli), yeast (S. cerevisiae), plant (A. thaliana), insect (D.

melanogaster) and mammal (M. musculus and H. sapiens) [Ueda et al., 2004].

For each species we used J. Cristobal Vera’s transcript simulator (http:

/personal.psu.edu/jcv128/software.html) to produce an expression pro-

file using an r exponent of 1.69 (E. coli value as shown by [Ueda et al., 2004]),

each gene could take an expression value between 1 and 1,000 within a Pareto

power law distribution, reflecting the number of transcript copies present in the

cell, which is then scaled up by the total abundance of the organism in the

sample.

Next, we downloaded the gene sequences (nucleotide and amino acid se-

http:/personal.psu.edu/jcv128/software.html
http:/personal.psu.edu/jcv128/software.html
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quences) for all 112 species from the Joint Genome Institutes Integrated Micro-

bial Genomes database (JGI-IMG) [Markowitz et al., 2006]. For each diversity

level we first created a test data set for comparative purposes using the JGI-

IMG manually curated, error-free gene models in translated amino acid format

(these data sets are referred to with the suffix ‘AA’). We sampled each gene

a number of times equal to the copy number from the appropriate expression

profile using a random start location and an average sequence length of 100

amino acids (assuming a 454 nucleotide sequence of 200-400 bp translated in

full). All sampled fragments were added to a sequence file representing the

transcript pool.

To introduce more realism, the second sample sets used the JGI-IMG nu-

cleotide gene models (referred to with the suffix ‘NT’). We again randomly

sampled fragments from each gene a number of times equal to the copy num-

ber, we used a random start location, a minimum length of 6 bases to reflect

random hexamer primers and a maximum length of 400 bases. We then ran

these fragments through 454sim [Lysholm et al., 2011] using the GS-FLX error

models to introduce realistic sequence errors and translated the resulting se-

quence into their longest open reading frames. For both the AA and NT data

sets we then randomly sampled 250,000 sequences without replacement from

each transcript pool. Although the 454 GS-FLX platform can produce∼400,000

sequences per run [Shendure and Ji, 2008], after quality filtering and removal

of rRNA for example, there are often less than 300,000 sequences remaining

(see table 3.1 for example).
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4.3.2 Clustering

Sequence clustering programs divide a set of nucleotide or amino acid se-

quences into groups sharing a specified degree of similarity. Each cluster of

sequences is represented by the longest sequence in the cluster. These rep-

resentative sequences can then be annotated by homology searches against

databases such as NCBI-nr [Pruitt et al., 2007], Pfam [Finn et al., 2010], COG

[Tatusov et al., 2003] and KEGG [Ogata et al., 1999]. The resulting annota-

tions can then be transferred to the shorter, member sequences of the cluster,

some of which may contain insufficient protein domain regions to allow classifi-

cation. If the clustering parameters used are too loose, sequences with unrelated

function may be grouped together and transferred annotations may be false pos-

itives, but, if the parameters are too stringent, then little benefit will be gained

in terms of data reduction.

We performed all clustering using CD-HIT [Li and Godzik, 2006], a popular

clustering application due to its a high-speed, short word filtering algorithm

and range of utility programs. For the nucleotide simulated metatranscriptome

data, the sequences were translated into a set of longest open reading frames.

We chose to cluster amino acid sequences rather than nucleotide sequences

as synonymous codons could lead to nucleotide sequences that translate into

amino acid sequences with high similarity being assigned to separate clusters.

The sequences were clustered over a range of identity parameters. A nested

loop was used to increment overall sequence similarity (C) from 40% to 100%

(in 20% increments), and then percentage coverage of the cluster representative

(aL) and cluster members (aS) increasing in 25% increments from 0 to 100%.
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4.3.3 Assembly

The simulated 454 nucleotide data sets and the two real metatranscriptomes

were assembled using MIRA [Chevreux et al., 2004], in de-novo, accurate, est

mode, with non-uniform read depth, and all other parameters as default. MIRA

features an extensive range of configurable parameters, making it a popular

choice for assembling complex data sets. Both the contigs and debris (unassem-

bled sequences) were translated into their longest open reading frames as above

and Pfam homology searches were performed on all contig and debris sequences.

The final stage was a two-step processing stage of first assembling the

nucleotide sequences as above, combining the translated contigs and debris

and clustering them using the same range of parameters as in the clustering

experiments described above.

4.3.4 Sensitivity, specificity and accuracy

The sensitivity, specificity and accuracy of annotation was assessed for all reads

(no clustering or assembly); for the transferred annotation of cluster represen-

tatives to cluster members; for assembled contigs and singletons; and finally, for

clustered assemblies. Sequences were compared to the Pfam-A database using

pfam scan.pl and detected domains compared to the Pfam domains of the gene

region the sequence originated from.

For each clustering parameter set we assessed the representative sequence by

comparing the set of domains detected in the sequence itself with the annotation

of the region of its origin. Each cluster member sequence was then compared to

the cluster representative by comparing the representative sequence annotation

with the region of origin of the cluster member. We classified simulated meta-
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transcriptome sequences as containing a domain if the origin of the sequence

overlapped a domain region by one or more bases.

For example, taking a cluster with representative sequence R and one mem-

ber sequence M and the origin of the member O:

• If the representative sequence returns no domains ({R} = 0) and the

region of origin of the member contains no partial or complete domains,

({M} = 0) we return 2 true negatives, one for the representative sequence

and one for the member.

• If the representative sequence returns no domains ({R} = 0), but the

region of origin of the member contains n partial or complete domains,

({M} = n) we return n false negatives.

• If both the representative and the member sequence contain domains we

define (i) true positives as the intersection between the set of domains

present in the representative and the set of domains contained in the origin

of the member ({R}∩ {O}) (ii) false positives as the domains contained

in the representative but not the origin of the member ({R} − {O})

and (iii) false negatives as domains contained in the member but not the

representative ({M} − {R}).

The resulting counts of true positives (TP), false positives (FP), true neg-

atives (TN) and false negatives (FN) are then used to calculate sensitivity (TP

/ TP + FN), specificity (TN / TN + FP) and accuracy (TP + TN / TP +

FP + TN + FN) for each clustering parameter set.
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4.3.5 Real metatranscriptomes

In addition to the simulated data sets, we also assessed the different se-

quence processing methods on two real prokaryotic 454 sequenced meta-

transcriptomes. We downloaded the 110m metatranscriptome (OMZ) from

[Stewart et al., 2012] from the sequence read archive and the present-day mid

bloom metatranscriptome (GIL) from [Gilbert et al., 2008] from CAMERA. The

data sets were chosen to reflect real metatranscriptomes sequenced by 454 py-

rosequencing, of a representative size in terms of the number of sequences and

containing a low proportion of rRNA. The Gilbert data set was dominated by a

couple of bacterial classes and reflects a medium diversity sample. In the OMZ

data set, there is no clearly dominant taxa, and this data is somewhere between

a medium and high diversity sample (see Appendix B.3). Both data sets were

filtered to remove rRNA by BLAST searches against the Silva database (Both

SSU and LSU, filtered using parameters in [Mou et al., 2008]). To remove

potential sequencing artifacts, we also clustered each data set using CD-HIT

(requiring 100% sequence similarity over 100% of the sequence length). The

filtered sequences were then translated into their longest ORFs and clustered

in the same way as for the simulations above. Although we cannot assess the

resulting annotations in terms of accuracy (as we do not know the genuine do-

main content), these data sets are useful to assess the impact of the methods

employed on real data.

4.4 Results

In summary, we have created 6 simulated metatranscriptomes. Three data

sets representing three different levels of taxonomic diversity (low, medium and
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high) were sampled directly from error-free, correctly translated amino acid

gene models. Three more data sets (also representing low, medium and high

diversity populations) were sampled from the original nucleotide sequences of

the same genes. These were then run through a 454 simulator to reflect se-

quencing errors and finally translated into longest open reading frames. We

then assessed the accuracy of protein domain annotation against the Pfam-A

database of each dataset on all unprocessed sequences, on clustered sequences,

assembled sequences and finally by first assembling and then clustering the se-

quences. We also subjected two published metatranscriptome data sets to the

same processing methods to provide an indication of how the methods work on

real data.

4.4.1 Data sets

Each of the three simulated data sets consisted of 250,000 sequences with

an average length of ∼200 bp (see table 4.1). Although 454 sequencing can

produce longer sequences on average (around 250 bp) [Shendure and Ji, 2008]

this is consistent with real 454 metatranscriptome data (see OMZ and GIL in

table 4.1 and ANT, EPAC and NPAC data sets in table 3.1). This likely reflects

the fact that we are sampling (using random start location due to random

priming) from short fragments of mRNA (the average length of all JGI-IMG

transcripts used for the simulations was <1,000 bp) rather than long stretches

of genomic DNA and are therefore not guaranteed full length fragments.

We downloaded 557,762 and 162,871 sequences for the OMZ and GIL meta-

transcriptomes respectively. Our filtering steps identified ∼33% of sequences

as putative rRNA for the OMZ data set and ∼3% for the GIL data set (see

table 4.1). This differs by about 2-3% from the original publications. This is
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likely due to slight differences in the filtering parameters used. We were left

with 313,147 and 153,487 non rRNA sequences for the OMZ and GIL samples

respectively with an average length of over 200 bp.

Data Set #Reads #Nucleotides [Mb] Avg. Length
LD 250000 50.4 201.5
MD 250000 49.7 198.6
HD 250000 51.1 204.3
GIL 153487 35.61 232
OMZ 313147 64.67 206.5

Table 4.1: Summary of 454 data sets. Number of reads, total number of nu-
cleotides in Megabases and average sequence length for low diversity (LD),
medium diversity (MD) and high diversity simulated metatranscriptomes,
and for Gilbert (GIL) [Gilbert et al., 2008] and Stewart Oxygen Minimum
Zone (OMZ) [Stewart et al., 2012] real metatranscriptomes.

4.4.2 Annotation of unprocessed sequences

Our next step was to assess the accuracy of Pfam annotations for all unprocessed

sequences. This provides a baseline to compare subsequent results. For both

the nucleotide (NT) and amino acid (AA) simulated data sets we performed

homology searches against the Pfam-A database. Any detected domains were

compared with the Pfam annotations for the origins of the simulated sequence

(the region of the original JGI-IMG sequence our simulated read was sampled

from) and assessed as in section 4.3.4.

AA data sets

For the AA simulated data sets, around 140,000 domains were detected in each

diversity level (see table 4.2). Sensitivity for all 3 was 72%, specificity ranged

between 78 and 89% and accuracy was between 74 and 76%.
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Data Set TP FP TN FN SENS SPEC ACC
LD-AA 145,895 8,616 57,544 57,306 0.72 0.87 0.76
MD-AA 143,428 7,858 60,920 56,277 0.72 0.89 0.76
HD-AA 138,367 16,369 59,337 54,433 0.72 0.78 0.74

Table 4.2: Assessment of Pfam annotations on all amino acid sequences
for low diversity (LD), medium diversity (MD) and high diversity (HD)
simulated metatranscriptomes.

NT data sets

For all three NT data sets around 30,000 domains were identified. While speci-

ficity was generally high (95-98%), sensitivity was significantly lower than for

the AA simulations – around 16-17% (see table 4.3) and overall accuracy was

around 40%. The difference in the number of domains detected between the AA

simulations and the NT simulations is likely due to several factors. With the

AA simulations, the sequences were taken from manually curated, error-free,

correctly translated sequences. However, the NT simulations contain sequenc-

ing errors and are not guaranteed to be ‘in-frame’ (i.e. the first nucleotide of

the sequence may not be the first position of a codon) and translation errors

may occur. Lastly, the sequence length of the AA sequences (average 100

amino acids) may be overly optimistic, it is unlikely that a nucleotide sequence

will translate in it’s entirety to amino acids and it may be that only partial

translations are possible.

Data Set TP FP TN FN SENS SPEC ACC
LD-NT 30,406 1,961 76,350 159,548 0.16 0.97 0.40
MD-NT 30,112 1,917 79,683 156,166 0.16 0.98 0.41
HD-NT 31,770 4,376 81,860 149,787 0.17 0.95 0.42

Table 4.3: Assessment of Pfam annotations on all translated nucleotide
sequences for low diversity (LD), medium diversity (MD) and high diversity
(HD) simulated metatranscriptomes.
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4.4.3 Clustered sequences

AA data sets

For the first data set, sampled directly from the JGI-IMG amino acid gene

models, clustering produced a significant increase in the number of protein do-

mains detected. The best performing parameter set, in terms of the largest

positive difference between the increase in true positives and the increase in

false positives (compared to annotating all sequences individually) was an over-

all similarity threshold of ≥40%, and requiring ≥25% coverage of the cluster

representative and between ≥50-75% coverage of cluster member sequences.

Increases in true positive detection of 5.88%, 6.49% and 6.45% were achieved

for the LD, MD and HD data sets respectively (see figure 4.1).

NT data sets

For the translated nucleotide sequences, clustering at the lowest overall percent-

age similarity (40%) produced the poorest results. At this identity threshold,

the number of additional false positives exceeded the number of additional true

positives detected (see figure 4.1). As the overall percentage similarity thresh-

old increased, both the number of true and false positives detected decreased.

Also, as the required sequence coverage threshold increased the increase in true

and false positive detection decreased.

The best performing parameter sets were ≥60% overall similarity, ≥0%

coverage of the cluster representative and 0-50% minimum coverage of cluster

members. These parameters produced increases in true positives of 5.82%,

7.48% and 4.79% for the LD, MD and HD data sets respectively. These

increases came at the cost of a small increase in false positives, (see fig-
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Figure 4.1: Increase in true positives (Blue line) and false positives (Red
line) for annotated clustered sequences compared to annotation of all indi-
vidual sequences for low diversity (LD), medium diversity (MD) and high
diversity (HD) simulated metatranscriptomes. Top row - amino acid se-
quences directly sampled from JGI gene models. Bottom row - translated
454sim nucleotide sequences. X-axis represents clustering parameters, sim-
ilarity in 20% increments. Within each 20% section are the results for
clustering with varying coverage (0-100%) of the cluster representative and
cluster members.

ure 4.1). Although sensitivity increased in all cases, the overall accuracy de-

creased slightly, due to a small increase in false positives, causing decreased

specificity.

4.4.4 Assemblies

For the simulated nucleotide data sets, the assemblies incorporated around half

of all sequences into contigs, with the exception of the high diversity data

set (∼30% of all sequences). The average contig lengths were 298.6, 298.3

and 257.3 base pairs for LD-NT, MD-NT and HD-NT, respectively (see Ap-
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pendix B.2 for assembly statistics). For the two real metatranscriptomes GIL

and OMZ, 47.62% and 53.88% of sequences assembled into contigs with an

average length of 415.5 and 244.4 respectively.

For both LD-NT and MD-NT data sets, the contigs alone produced more

domains than both the baseline all sequence annotation and the best performing

clustering parameter set. For the HD data set the combined annotations of

the contigs and debris also exceeded the baseline and optimal clustering. The

assemblies (combined contigs and debris) produced large increases in sensitivity

(LD 13%, MD 14% and HD 4%), at a cost of decreased specificity (LD -4%

,MD -4% and HD 2%). However, overall accuracy increased by +7%, +8%

and +2% for LD, MD and HD respectively.

Finally, the two stage approach of assembling sequences and then clustering

the combined contigs and debris produced the highest overall increases in true

positive domain detection. With the optimal clustering parameters (similarity

of ≥60% and requiring ≥0% coverage of the representative and between 0-

50% minimum coverage of cluster members) sensitivity was increased by (LD

+14%, MD +15% and HD +4%). However, the slight increase in false positives

decreased specificity (LD -5%, MD -7% and HD -4%) and overall accuracy

increased in the LD and MD sets by 6% (see table 4.4 for full summary of

sensitivity, specificity and accuracy for all 454 experiments).

The overall picture is that clustering produces a small increase in the number

of true positives detected, however, overall accuracy is decreased slightly due

to an increase in the number of false positives. Assembly produces a large

increase in true positive detection, far outweighing the additional false positives

introduced. Clustered assemblies produce the most true positives but again at

the cost of a slight reduction in overall accuracy (see figure 4.2).
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The low and medium diversity simulations produced the largest increases in

true positive detection, and the overall results looked very similar (see figure

4.2). It would appear that samples containing one or more dominant species

will tend to assemble well and these longer reads will allow for more domains

to be classified more accurately. For the high diversity simulation, the different

processing methods made relatively little difference. With no dominant species,

it appears that little is to be gained from sequence assembly.

Figure 4.2: Percentage of true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) returned from Pfam domain an-
notation of ALL (All individual sequences), CLS (Optimal clustering pa-
rameters), ASS (Assembled) and CLA (Clustered assembly) of simulated
metatranscriptomes.
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LD MD HD
Sens Spec Acc Sens Spec Acc Sens Spec Acc

All sequences 0.16 0.97 0.4 0.16 0.98 0.41 0.17 0.95 0.42
Optimal clustering 0.17 0.96 0.37 0.17 0.96 0.39 0.18 0.92 0.4

Assembly 0.29 0.93 0.47 0.3 0.94 0.49 0.21 0.93 0.44
Clustered assembly 0.3 0.92 0.46 0.31 0.91 0.47 0.21 0.91 0.42

Table 4.4: Performance summary of 454 simulations. Sensitivity, specificity
and accuracy of Pfam annotations for: all sequences; cluster representatives
transferred to members; assembly (contigs & singletons); and clustered as-
semblies for low diversity (LD), medium diversity (MD) and high diversity
(HD) samples.

Although we do not know the precise taxonomic or functional composition

of the two real metatranscriptomes, it is still interesting to note the effect

these different approaches had on the frequency of protein domains. For the

GIL data set, which we defined as a medium diversity sample, clustering only

produces a small increase in the normalised abundance of domains compared

to annotating all reads individually (see figure 4.3). However, assembly and a

clustered assembly produce nearly double the number of domains per hundred

thousand bases; this is very similar behaviour to the medium diversity simulated

metatranscriptome. The higher diversity OMZ sample results were closer to the

high diversity simulation, the main difference being that for the real data set,

clustering produced more domains per hundred thousand bases than assembly

(figure 4.3).

4.5 Discussion

In this chapter we have described the assessment of sequence processing meth-

ods (clustering, assembly and clustered assembly) using simulated metatran-

scriptome sequence data. We created simulated data sets to represent three
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Figure 4.3: Normalised frequency of protein domains detected in
simulated data sets (Low, (LD) Medium (MD) and High diversity
(HD)) and real metatranscriptomes (GIL [Gilbert et al., 2008] and OMZ
[Stewart et al., 2012]) for all individual annotated reads (ALL), optimal
clustering parameters (CLS), assembled data (ASS) and clustered assembly
(CLA).

different levels of taxonomic diversity using a power law distribution of tran-

script expression. Using popular clustering and assembly tools we compared

the results of clustering on error free amino acid sequence fragments to those

of translated error-prone 454 nucleotide sequences. Finally we compared the

results of our simulations with those from real metatranscriptome data.

These results show that, of the sequence processing methods assessed, as-

sembly produces the largest increase in protein domain detection and overall

accuracy of the annotations. The longer reads produced allowing for more ac-

curate classification of protein domains. Secondly, the results show that the

level of diversity of the sample affects the quality of the assembly, in terms of

the number of reads assembled, average contig length and in the resulting an-
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notations. The greater the number of different taxa present in the sample, the

lower the coverage of each organism and transcript will be, therefore reducing

the likelihood of recreating full transcripts. The high diversity simulated data

set assembled the worst and none of the processing methods assessed produced

large increases in domain detection. For the real OMZ metatranscriptome, as-

sembly actually proved to be inferior to clustering in terms of the number of

domains detected.

The final choice as to whether to assemble or to cluster metatranscriptome

sequences will ultimately depend on the diversity of the samples and the aims

of any downstream analysis. It seems that little is to be gained from assembling

highly diverse data sets, and rRNA sequencing or even microscopic observations

could provide an estimate to species diversity.

Since this analysis was started, more metatranscriptome projects have em-

ployed Illumina sequencing platforms [Qi et al., 2011], [Mason et al., 2012],

[Orsi et al., 2013]. This allows for a greater sequencing depth compared to

454 and although it requires more complicated data normalisation, it would be

interesting to investigate the effect of different processing methods on this type

of sequence data.

There are several limitations to the simulations we have performed. The

composition of transcripts in a community of microbes is determined by a whole

host of factors such as light, temperature, nutrient levels, season, sampling

depth and interactions between species. In the approach we have employed,

the number of transcript copies per genes is random, with each gene having

an equal chance of being expressed at a certain level. In reality, transcripts

from genes involved with fundamental processes - for example, biosynthesis or

housekeeping genes - are more likely to be present at high or less variable levels.
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Finally, note that we chose to use the clustering algorithm CD-HIT and the

assembler MIRA (with uniform parameters for each sample) based on their suit-

ability and popularity. However, other clustering applications such as BlastClust

[Dondoshansky and Wolf, 2002] or UClust [Edgar, 2010] may provide better re-

sults. Comparing the results of the error free amino acid sequence annotations

with the results of error containing translated nucleotide sequences highlight

the need to either check all 6 reading frames or employ a more reliable reading

frame detection method, such as FragGeneScan [Rho et al., 2010].



Chapter 5

Analysis of putative alleles in the

polar diatom Fragilariopsis

cylindrus

This chapter is adapted from ‘Adaptation to polar sea ice facilitated by allelic

divergence in a psychrophilic eukaryote ’, T. Mock et al. in preparation.
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5.1 Summary

In previous chapters we highlighted the pressing need for additional reference

genomes for eukaryotic phytoplankton. One phytoplankton species, whose

genome is currently in the draft stage is Fragilariopsis cylindrus, a keystone

species in polar marine environments. This chapter describes the analysis of

putative alleles (alternative forms of the same gene) in the draft genome se-

quence of Fragilariopsis cylindrus. We hypothesized that the cessation of sex-

ual reproduction in Fragilariopsis cylindrus may have led to the high degree

of heterozygosity observed, thereby allowing this species to adapt to extreme

polar conditions. Using metatranscriptome sequences from Fragilariopsis cylin-

drus–like organisms and transcriptome sequences from two strains of a sexually

reproducing eukaryotic phytoplankton, we investigated allelic variance in Frag-

ilariopsis cylindrus genes based on their draft sequences to see if alleles from

Fragilariopsis cylindrus were more divergent than homologous alleles in a sexu-

ally reproducing diatom. This project was a collaboration between the Schools

of Computing Sciences and Environmental Sciences at UEA and the Stazione

Zoologica Anton Dohrn in Napoli.

5.2 Background

Fragilariopsis cylindrus is a pennate diatom generally found in the polar seas

and sea-ice. These psychrophilic (cold loving) organisms inhabit a harsh envi-

ronment, which experiences large fluctuations in environmental conditions such

as temperature, light and salinity and annual ice formation and melting change

the environment drastically. Despite this, F. cylindrus thrives in such conditions

and tends to dominate phytoplankton communities at the poles.
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The genome of F. cylindrus was recently sequenced by the Joint Genome

Institute (JGI) and the draft genome sequence along with annotation tracks

for GO terms, KEGG pathways etc. is currently available (http://genome.

jgi-psf.org/Fracy1/Fracy1.home.html). The genome was sequenced us-

ing the Sanger platform at ∼7.25 fold coverage. The current draft of the

genome consists of 271 scaffolds totalling ∼80 megabases. The genome con-

tains around 5.4% gaps and at present it may be that some chromosomes

are represented by multiple scaffolds and the precise genomic location of some

scaffolds is unknown. The genome contains a total of 27,137 predicted genes.

However, due to a high degree of heterozygosity in F. cylindrus [Strauss, 2012]

(that is polymorphic regions of DNA at a specific locus) many regions of the

genome could not be collapsed into a single consenus haplotype, and ∼30% of

the predicted gene models are heterozygous gene copies present in more than

one scaffold [Strauss, 2012].

Analysis of the heterozygous genes suggest that these are highly diverged

alleles rather than gene duplications (paralogs) [Strauss, 2012]. Based on the

assumption that paralogs would have a higher divergence than alleles, as par-

alogs would be free to evolve independently, the level of sequence similarity

(>99% for the majority of pairs) between the heterozygous genes speaks for

allelic pairs [Strauss, 2012]. The coverage of heterozygous gene copies was also

investigated. Assuming that a heterozygous gene pair represents two copies of

the same genomic locus, we might expect that each of the heterozygous genes

has a twofold lower average coverage than paralogous genes. The results show

that the primary gene copy (the copy on the larger of the two scaffolds, had a

higher average coverage (∼6-fold) in comparison to the secondary copies ∼3-

fold see figure 5.1. However, this is likely due to the method of assembly. As

http://genome.jgi-psf.org/Fracy1/Fracy1.home.html
http://genome.jgi-psf.org/Fracy1/Fracy1.home.html
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the primary gene copy is contained within the larger scaffold, it is likely that

the coverage of the primary gene copy is higher as sequences that are identical

or nearly identical to both would be recruited into the larger scaffold and it is

only when the level of divergence exceeds a predefined threshold that the a new

contig branches off from the first. Finally, analysis of scaffold synteny showed

no evidence of large-scale genome duplication [Strauss, 2012].

Figure 5.1: Average coverage of alternate (top) and primary (bottom) pu-
tative allele sequences of Fragilariopsis cylindrus. X-axis: average coverage
per gene. Y:axis: percentage of total heterozygous gene sequences. His-
togram supplied by JGI.

F. cylindrus is believed to have a clonal mode of reproduction as sexual repro-

duction has not been observed either in lab cultures or in the field, also several
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key meiotic genes are absent [Strauss, 2012]. Without Mendelian segregation

and recombination of alleles during sexual reproduction, genomic heterozygos-

ity and therefore allelic heterozygosity could increase with every generation. A

transcriptome-wide RNA-SEQ analysis of F. cylindrus under different growth

limitations revealed that more than half of the putative alleles showed unequal

bi-allelic expression (>4 fold) [Strauss, 2012]. We hypothesized therefore that

the lack of sexual reproduction in F. cylindrus could have been responsible for

the high degree of heterozygosity, with the continuously diverging allelic pairs

allowing F. cylindrus to adapt to extreme fluctuations in environmental con-

ditions and inhabit such a niche environment. In order to test whether the

putative F. cylindrus alleles are indeed more divergent we compared them with

homologous genes from a mate pair (that is, the two strains were cross bred

to produce the eventual strain to be sequenced for the genome sequence) the

sexually reproducing diatom Pseudonitzschia multistriata.

5.3 Materials and methods

5.3.1 Culture preparation

The genome of F. cylindrus was derived from the CCMP1102 strain (https://

ncma.bigelow.org/ccmp1102), which was grown at the University of Wash-

ington. Individual cells were isolated by flow cytometery and placed into separate

wells of a culture plate (Thomas Mock, personal communication, 10/2/14).

The two strains of Pseudonitzschia multistriata were isolated from net sam-

ples collected in the Gulf of Naples. Individual cells were isolated under an

inverted light microscope, cleaned and placed into separate wells of a culture

plate. For more details see [Tesson et al., 2013].

https://ncma.bigelow.org/ccmp1102
https://ncma.bigelow.org/ccmp1102
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5.3.2 Analysis of allelic transcripts from Fragilariopsis

cylindrus–like organisms in a polar metatranscrip-

tome

As our analysis of the Antarctic (ANT) metatranscriptome identified the ma-

jority of sequences as being most similar to Fragilariopsis cylindrus (see sec-

tion 3.4.3), this provided us with an opportunity to investigate the expression

of transcripts from allelic variants from a naturally occurring population. We ex-

tracted all bacillariophyta sequences (PhymmBL confidence score ≥0.9) whose

best match was to Fragilariopsis cylindrus and aligned them to the full Fragi-

lariopsis cylindrus amino acid gene set (including allelic variants). Alignments

were performed using BLASTX (6 frame translation of nucleotide sequence

query against amino acid reference), using soft masking, an e-value cut-off of

≤1e-10 and taking the best single hit per sequence.

5.3.3 Comparisons with a sexually reproducing diatom

Preparation of Fragilariopsis cylindrus transcripts

We first created our own transcript sequences for Fragilariopsis cylin-

drus, formed from only coding sequence regions (as we found that some

JGI transcripts contained untranslated regions (UTRs)). We downloaded

the latest FC scaffold sequences (Fracy1 assembly scaffolds.fasta) and gff

file (Fracy1 GeneModels FilteredModels1.gff) fromhttp://genome.jgi-psf.

org/Fracy1/Fracy1.download.ftp.html. Then, based on a list of 9,062 al-

lelic pairs supplied by JGI, we created a custom Perl script to extract, orientate

and concatenate the nucleotide sequence for coding regions of each transcript

from start codon to stop codon.

 http://genome.jgi-psf.org/Fracy1/Fracy1.download.ftp.html
 http://genome.jgi-psf.org/Fracy1/Fracy1.download.ftp.html
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Preparation of Pseudonitzschia multistriata transcripts

Two strains (referred to as CIIO and CIIP from this point forwards) of

Pseudonitzschia multistriata, a sexually reproducing pennate diatom were se-

quenced at the Joint Genome Institute using the Illumina platform. This pro-

duced approximately 92 million and 83 million, 150 bp paired end, strand specific

reads for CIIO and CIIP, respectively. The data were filtered by quality score

and adapter retention. Read pairs where at least one read matched the adapter

sequences or showed a quality score of less than 30 for more than the 20% of

the read were removed. This left approximately 25 million and 12 million quality

filtered reads for CIIO and CIIP, respectively (Mariella Ferrante, Remo Sanges,

personal communication, 10/11/12).

We assembled the quality filtered reads for CIIO and CIIP with Trinity

[Grabherr et al., 2011] using a predetermined parameter set (Remo Sanges,

personal communication, 13/11/12). To detect open reading frames (ORFs)

in the assembled transcripts we used Transdecoder, (http://transdecoder.

sourceforge.net/) a hexamer frequency, ORF detection utility contained in

the Trinity download. Default parameters were used, except for lowering the

minimum reading frame length to 50.

To identify allelic pairs from the Pseudonitzschia multistriata transcripts, we

performed a reciprocal BLAST between the detected reading frames of the two

assembled transcriptomes (BLASTN, overall identity ≥90%, requiring ≥75%

coverage of both sequences). When a contig produced multiple candidate read-

ing frames, we filtered the BLAST results to leave only the longest reading

frame from each original transcript and its allelic counterpart.

http://transdecoder.sourceforge.net/
http://transdecoder.sourceforge.net/
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Identifying orthologous alleles

The next step was to identify Pseudonitzschia multistriata alleles that were ho-

mologous to those in Fragilariopsis cylindrus. We performed reciprocal BLASTs

between the putative alleles of each Pseudonitzschia multistriata strain and

Fragilariopsis cylindrus alleles. The BLAST alignments were performed on the

theoretical six frame translation of the sequences using TBLASTX, requiring

≥30% overall identity and ≥50% coverage of the query sequence (thresholds

used in [Allen et al., 2008] to detect homologous transcripts). The BLAST

results were combined and filtered to produce a list of Pseudonitzschia multis-

triata allelic pairs that either match to a singleton (i.e. a gene that has been

collapsed into a single haplotype) or to the same allelic pair in Fragilariopsis

cylindrus.

For each species, we then aligned each allelic pair using ClustalW2

(larkin2007) and compared the aligned sequences, base by base in parallel to

calculate the number of SNPs (Single Nucleotide Polymorphisms), distinct indel

(insertion/deletion) events and the number of positions included in indels.

Calculating divergence of allelic pairs

The following steps were performed for both Fragilariopsis cylindrus and

Pseudonitzschia multistriata. For each sequence pair, we translated the nu-

cleotide transcript sequences into amino acids and aligned them using Clustalw2

[Larkin et al., 2007], we also removed stop codons from the end of sequences if

necessary. We then mapped the amino acid alignments back over the nucleotide

sequences to ensure the nucleotide sequence contained full codons and were ‘in

frame’. We then realigned the adjusted nucleotide sequences and calculated

ka/ks for each sequence pair using codeml in pairwise mode as part of the
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PAML 4.6 package [Yang, 2007]. For Fragilariopsis cylindrus singletons, ka, ks

and therefore ka/ks were assumed to be zero.

5.4 Results

5.4.1 Allelic transcripts from Antarctic metatranscrip-

tome

Of the 63,758 Antarctic metatranscriptome sequences identified as most similar

to Fragilariopsis cylindrus, 41,130 aligned to Fragilariopsis cylindrus gene models

with the thresholds used. Of these, 30,104 sequences (∼73%) had their best

match to a sequence from an allelic pair. We detected matches to a total of

455 allelic pairs. A great many of these pairs had only a single match to a

single allelic variant, or very few (<5) in total. However, of the 167 allelic pairs

with ≥5 matches to either allele, 78 pairs had significantly higher (Fisher’s

exact test, p-value ≤0.001) matches to one allele. Figure 5.2 shows the 20

most abundant allelic pairs (in terms of total number of sequences matching

to both allelic variants). For all but one allelic pairs the number of sequences

is significantly different. However, as the distribution of alleles in the Antarctic

metatranscriptome is unknown. These results could be due to one putative

allele being more abundant in the sample.

5.4.2 Comparisons with a sexually reproducing diatom

The CIIO and CIIP strains of Pseudonitzschia multistriata assembled into 39,714

and 32,198 contigs, respectively. We then retained any contigs where trans-

decoder predicted one or more candidate reading frames. This gave us 28,080
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Figure 5.2: Percentage contribution of environmental transcripts to Fragi-
lariopsis cylindrus allelic variants. Hits to allelic variant 1 (contained within
the larger scaffold) are shown in dark grey along with the number of hits on
the left Y-axis. Hits to allelic variant 2 (smaller scaffold) are shown in light
grey with the number of hits shown on the right Y-axis. Diagram shows the
twenty most abundant (total hit count to both allelic variants) allelic pairs.

and 24,486 contigs for CIIO and CIIP respectively. A reciprocal BLAST between

the predicted reading frames produced 8,962 putative allelic pairs. The recip-

rocal BLAST between Pseudonitzschia multistriata and Fragilariopsis cylindrus

identified 1,485 allelic pairs in Pseudonitzschia multistriata with homologs in

Fragilariopsis cylindrus (with ∼64% matching to allelic pairs).

We decided to perform the reciprocal BLAST against all Fragilariopsis cylin-



CHAPTER 5. ANALYSIS OF PUTATIVE ALLELES IN THE POLAR

DIATOM FRAGILARIOPSIS CYLINDRUS 96

drus transcripts rather than just the allelic pairs for two reasons. Firstly, by only

using Fragilariopsis cylindrus alleles we could bias the analysis by only using the

most heterozygous sequences, and secondly, this approach produced a greater

number of sequence pairs to work with.

Despite the relatively stringent parameters used for allele detection in

Pseudonitzschia multistriata we observed that a small number of allelic pairs

aligned poorly during the ka/ks analysis (see figure 5.3). Upon closer inspection

this was found to be due to the mapping of mistranslated reading frames over

the original nucleotide sequences. The ClustalW2 alignment scores (overall %

similarity) for the final adjusted nucleotide alignments were appended to the

results file and allelic pairs aligning with <80% similarity were filtered out. This

left a total of 1,354 homologous allelic pairs.

Figure 5.3: Histograms of Clustalw2 percentage alignment scores for allelic
pairs for Fragilariopsis cylindrus (Left) and Pseudonitzschia multistriata
(Right).
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5.4.3 Interpretation of ka/ks data

From the sequence length and SNP count data produced in section 5.3.3, over-

all nucleotide polymorphism was calculated for each allelic pair of each species.

Overall nucleotide polymorphism was higher, on average for Fragilariopsis cylin-

drus alleles than for homologous Pseudonitzschia multistriata alleles (see fig-

ure 5.4). The mean nucleotide polymorphism and standard error of mean in

brackets were 0.013 (0.6310−3) and 0.002 (0.1310−3) for Fragilariopsis cylin-

drus and Pseudonitzschia multistriata respectively. This difference was deemed

statistically significant by a paired T-test (p-value = 2.7810−55).

Figure 5.4: Scatter plot of nucleotide polymorphism between alleles of Frag-
ilariopsis cylindrus (Fc) against nucleotide polymorphism of homologous
putative Pseudonitzschia multistriata (Pm) alleles. (n = 1354).

However, contrary to our expectations, the average ka/ks ratio was lower

for Fragilariopsis cylindrus (mean = 0.195; standard error of mean = 0.069),

than for Pseudonitzschia multistriata (mean = 0.483; standard error of mean

= 0.067). This could be for several reasons. The presence of singletons in the

Fragilariopsis cylindrus data may have artificially lowered nucleotide divergence;
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these sequences may have contained a low degree of divergence which has been

lost as potential allelic variants were collapsed into single contigs. Secondly,

partitioning nucleotide divergence into synonymous and non-synonymous mu-

tations revealed that Fragilariopsis cylindrus alleles contained a greater number

of both non-synonymous and synonymous mutations (see figure 5.5). So, al-

though overall nucleotide divergence is indeed higher in Fragilariopsis cylindrus,

the high number of synonymous mutations has likely eroded the signal of posi-

tive selection.

Figure 5.5: Plot of Synonymous nucleotide polymorphism (left), and non-
synonymous nucleotide polymorphism (right) between alleles of Fragilari-
opsis cylindrus (Fc) and homologous putative Pseudonitzschia multistriata
(Pm) alleles (n = 1354).

As synonymous mutations do not alter the encoded amino-acid sequence,

they are not usually removed by purifying selection. Therefore, synonymous

mutations are expected to accumulate almost linearly over time and the rate

of synonymous mutations per synonymous site (ks) can be used as a proxy for

the age of a sequence and can, when plotted against the frequency of paralo-

gous/allelic sequences be used to identify gene duplication events. According to

[Lynch and Conery, 2000], duplicated genes begin with no polymorphism, but

gradually acquire them over time. Thus, plotting the frequency of duplicated
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genes against their age (ks) should produce an L-shaped plot with a large initial

peak representing recently duplicated genes and decreasing exponentially over

time (see [Blanc and Wolfe, 2004] figure 1A). Large-scale genome duplication

events will greatly the increase the number of duplicated genes and lead to

secondary peaks (see [Blanc and Wolfe, 2004] figure 1B), the number of syn-

onymous mutations per synonymous site (ks) these genes have subsequently

acquired represents the age of the duplication event.

Figure 5.6 shows the expected L-shaped plot for P. multistriata, but, F.

cylindrus, exhibits two peaks: the first of which most likely represents our

singletons - where all polymorphism values are assumed to be zero; and a second

which is indicative of a genome duplication event. However, as evidence from

JGI suggests that these are allelic variants rather than paralogs (duplicates) this

second peak may represent the point at which a large proportion of F. cylindrus

alleles began diverging and may therefore indicate the point at which sexual

reproduction ceased (Mark McMullan, personal communication 5/3/13).

5.5 Discussion

In this chapter we have described the analysis of highly diverged, putative allelic

variants in the polar diatom Fragilariopsis cylindrus. To provide support for the

hypothesis that the lack of sexual reproduction in F. cylindrus has facilitated the

evolution of highly diverged alleles, allowing it to adapt to fluctuating environ-

mental conditions we compared putative alleles of F. cylindrus with homologs in

the sexually reproducing diatom P. Multistriata with the assumption that if F.

cylindrus reproduces asexually it should exhibit a higher degree of divergence.

The results showed that overall nucleotide polymorphism was significantly
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Figure 5.6: Left: Histogram of Pseudonitzschia multistriata putative allelic
pair ks (synonymous substitutions per synonymous site) frequencies. Right:
Histogram of Fragilariopsis cylindrus putative allelic pair ks frequencies

higher for F. cylindrus; that both synonymous and non-synonymous mutations

were higher for F. cylindrus, even though the overall ratio of non-synonymous

to synonymous mutations was lower. These results show that putative alleles in

F. cylindrus are more divergent than their homologs in the sexually reproducing

diatom P. Multistriata. Although this supports the hypothesis that cessation of

sex in F. cylindrus led to a high degree of allelic variance, thereby allowing it to

adapt to a fluctuating environment, there are other possible contributing factors
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for this high degree of heterozygosity to be considered: genome duplication and

a large effective population size.

Analysis of the F. cylindrus genome by JGI suggest that it is unlikely that any

large-scale genome duplication has occurred [Strauss, 2012], also, duplication

events are not thought to be a major driver in the generation of diatom diversity

[Bowler et al., 2008]. Another possibility is that a large effective population size

has contributed towards this high degree of allelic variance, as in Ciona intesti-

nalis [Dehal et al., 2002]. Work is ongoing by Cock Van Oosterhout producing

simulations to assess the effect of effective population size on allelic diversity.

A plot of the frequency of allelic variant pairs against synonymous mutations

show a second peak in F. cylindrus which may represent a genome duplication

event - which is not supported by the evidence from JGI - or this may coincide

with the cessation of sexual reproduction.



Chapter 6

Discussion and future work

6.1 Summary

In Chapter 3 we described the computational pipeline that we set up to process

metatranscriptome data from communities of eukaryotic phytoplankton from

five representative marine environments. This involved a series of quality fil-

tering and redundancy removal steps; identifying the taxonomic affiliations of

transcript sequences and predicting their function; and finally a series of com-

parative and statistical analyses to identify similarities and differences between

samples and investigate the relationship between environmental factors and the

abundance of transcripts encoding for particular proteins.

The analysis revealed that all of the samples were dominated by eukary-

otic phytoplankton and that the majority of transcripts encoded for proteins

involved in biosynthesis. It also identified a correlation between the in-situ tem-

perature of the sampling sites and the abundance of transcripts encoding for

ribosomal proteins, a key component in the biosynthesis of new proteins. This

was confirmed through laboratory experiments on model diatom species under

102
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control conditions. These experiments showed that lower temperatures lead to

not only an increase in the level of transcription of ribosomal genes, but also an

increase in the translation of ribosomal proteins. We theorised (and modelling

simulations by a group in Exeter predicted) that this could alter the chemical

composition of phytoplankton biomass (in terms of nitrate and phosphate) and

have implications for fundamental marine biogeochemical cycles.

In Chapter 4 we described an assessment of sequence processing methods

on simulated metatranscriptome data. We generated simulated 454 sequence

data for microbial metatranscriptomes representing three different levels of tax-

onomic diversity. We then assessed the sensitivity, specificity and accuracy of

protein domain annotation on the simulated sequence data sets using differ-

ent processing methods: clustering; assembly; clustered assembly; and with no

processing. The results showed that sequence assembly produced the largest

increase in the overall accuracy of protein domain annotation, but that the

benefits of assembly are reduced with higher levels of taxonomic diversity.

In Chapter 5 we described an analysis of the allelic diversity in the polar

diatom Fragilariopsis cylindrus. To test the hypothesis that the cessation of sex

in Fragilariopsis cylindrus led to a high degree of heterozygosity, thereby allow-

ing it to adapt to an extreme environment, we performed comparative analyses

with the sexually reproducing diatom Pseudonitzschia multistriata. Using tran-

scriptome sequences from a mate pair of Pseudonitzschia multistriata strains,

we investigated the rate of nucleotide divergence of Fragilariopsis cylindrus al-

leles compared to homologous allelic pairs of Pseudonitzschia multistriata. The

results showed that overall nucleotide divergence and the number of both syn-

onymous and nonsynonymous mutations were higher for Fragilariopsis cylindrus

alleles than their Pseudonitzschia multistriata homologs, supporting our hypoth-
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esis.

6.2 Future work

6.2.1 Improvements to the metatranscriptome analysis

The major limitations of the analysis in Chapter 3 were the small number of

sites sampled and the inconsistency in sampling methodologies. The samples

were taken from disparate environments during different sampling cruises from

different institutions. Therefore slight differences exist in the methods employed

for water sampling, cell size filtering, mRNA sample preparation, the sequenc-

ing technology employed and inconsistencies in the recording of sampling site

meta-data. These factors could lead to biased results and a low level of confi-

dence in statistical testing. When testing relationships between environmental

conditions and transcriptional activity, it is possible that other key differences

in environmental conditions (for example the extremely high salinity of Antarc-

tic sea-ice, or the high nutrient concentrations of Puget Sound) could skew

statistical analyses.

In order to provide a more thorough investigation of the influence of a

particular environmental factor (temperature) on the metabolism of eukaryotic

phytoplankton with a greater degree of confidence, our intention is to perform

a new metatranscriptome analysis. The aim is to produce over 100 metatran-

scriptome samples, using the latest Illumina RNA-SEQ sequencing technology,

from phytoplankton communities across a latitudinal transect. This approach

should allow us to analyse phytoplankton metabolism across a gradually chang-

ing temperature gradient with a high degree of confidence.
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6.2.2 Illumina simulations for sequence processing assess-

ment

As previously mentioned, the majority of early metatranscriptome projects em-

ployed 454 pyrosequencing. Recently however, there has been a shift towards

the shorter sequence length, but significantly higher throughput of Illumina se-

quencing. Illumina sequencing can now produce reads exceeding 100bp and can

provide around 15 times as much sequence data as the 454 price equivalent. The

short reads provided by Illumina sequencing would require assembly and it would

be of interest to extend the simulation approach described in Chapter 4 to pro-

duce simulated Illumina data to assess the current range of assembly programs

designed for the problem of assembling transcripts from a mixed population of

organisms.

6.3 Conclusions

Recent advances in high-throughput sequencing have allowed scientists unpar-

alleled access to the genetic material of the previously unculturable majority

of microbes. The in-situ sampling, sequencing and computational analysis of

microbial metagenomes and metatranscriptomes has been applied to micro-

bial communities from a diverse range of environments. These relatively new

disciplines have quickly become important tools in, for example, the discov-

ery of novel biocatalysts and in providing comparisons of microbial community

metabolism and taxonomic make up.

Metatranscriptomics is necessarily a collaborative approach. The bioinfor-

matics pipeline identified potentially interesting patterns in the data that molec-

ular biologists were able to reproduce in specific species under laboratory con-



CHAPTER 6. DISCUSSION AND FUTURE WORK 106

ditions and investigate in more detail. Finally cell modelling techniques were

used to make global predictions about the impact of this relationship on bio-

geochemical cycles.

The work described in this thesis highlights several current limitations to

this field. Firstly, there is a need for more reference organisms in sequence

databases. As previously stated, in most metatranscriptome projects, less than

half of the sequence data return matches to known sequences. This may be

partly due to sequence quality issues, the presence of untranslated regions, or

possible non-coding RNAs, however, the need for more reference genomes and

transcriptomes is clearly a limitation. At present we are limited to a relatively

small number of model organisms, especially for the larger eukaryotic genomes.

While the majority of metatranscriptome analyses involve a series of similar

processes, the set of tools employed, and parameters chosen vary greatly from

project to project. For each step of a metatranscriptome analysis, including

quality control, clustering, assembly, taxonomic classification, transcript func-

tion prediction and statistical tests, a large array of tools are available and there

is no consensus as to how to analyse metatranscriptome data. The choice of

tools and analyses employed will depend on the nature of the data, the type and

diversity of organisms sequenced, which sequencing platform was employed, the

amount of sequence data produced. This choice is also influence by the overall

aims of the analysis (e.g. whether it is hypothesis driven or a more exploratory

analysis), and the computational resources available. This type of analysis

therefore requires a certain amount of flexibility and trial and error.

Despite the range of computational tools available for metatranscriptome

analysis there remain many possible areas of improvement. The assembly of

sequence fragments from a diverse range of organisms, each with varying cov-
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erage is still challenging. The taxonomic classification of sequence fragments is

currently limited by sequence length and by the paucity of reference genomes.

Also, the ever increasing scale of data that can be produced will necessitate im-

provements in data storage, algorithm speed and in summarising and visualising

the results of large-scale metatranscriptome analysis.

The metatranscriptome analysis performed in this thesis also highlights the

importance of experimental design. The sequence data represents the metabolic

activity of a community of microbial organisms at the time of sampling. Slight

variations in the methodology employed to obtain the samples could lead to

slight biases in the eventual results. Great care should be taken to ensure that

the methods employed for sampling, sequencing and analysing the data are as

consistent as possible. The required meta-data should be carefully planned and

recorded. Decisions should be made as to whether it is feasible to supplement

the metatranscriptome data with metagenome data, 16s or 18s data or, pro-

ducing transcriptomic or genomic data for key species in the environment of

interest.

This is an exciting period for ’omics analyses. Each new analysis expands

our understanding of microbe-environment interactions. Microbes from niche

environments may reveal novel enzymes with potential medical, agricultural or

industrial applications. As ’omics analyses become more and more a standard

part of the microbiologists tool kit, bioinformatics faces the challenge of keeping

up with the deluge of data and adapting to the goals of individual analyses.



Bibliography

[Alberts et al., 2002] Alberts, B., Johnson, A., Lewis, J., Raff, M., and Roberts, K.

(2002). Molecular Biology of the Cell 4th edition. National Center for Biotech-
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Appendix

A.1 Metatranscriptome sampling

The equatorial Pacific samples were taken from two stations: EPAC1: 0◦,

155◦W; EPAC2: 0◦, 140◦W during a cruise to the equatorial Pacific Ocean

from 15th to 2nd of October 2006 onboard the RV Kilo Moana. The North

Pacific sample was taken from one station (NPAC: 47◦55.19 N; 122◦20’38 W)

during a Puget Sound cruise on the 15th of August 2007 onboard the Sorcerer

(Craig Venter Institute, US). Water for RNA samples was pumped from about

8m depth onboard with a hose and peristaltic pump. Cells were immediately

filtered onto autoclaved Nucleopore filters (25mm) with a pore size of 2µm.

Not more than 500ml were filtered at a time in order to keep the filtration time

≺5 minutes per filter. Filters were subsequently flash frozen in liquid nitro-

gen and stored in the laboratory at -80◦C. Phytoplankton were collected and

concentrated by net tows from about 10m depth to the surface, using 0.25m

diameter nets with a mesh size of 10 µm (Research Nets Inc. Redmond, WA,

USA).
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Antarctic samples were taken on two stations (ANT1: 65◦06.11 S, 57◦23.55

W; ANT2: 60◦07.11 S, 47◦54.55W) during the WWOS (Winter Weddell Out-

flow Study) cruise in Austral summer 2006 with the German Icebreaker Po-

larstern. Samples on ANT1 were obtained by icecore drilling and collecting mi-

croorganism communities from the lowermost cm (ice-waterinterface) of the ice

core. For RNA extraction ice samples were melted in or washed with prefiltered

(0.2µm) sea water or brine and cells were subsequently filtered onto Isopore

filters (Millipore) (25mm) with a pore size of 1.2µm. Filters were subsequently

flash frozen and stored in liquid nitrogen. Samples on ANT2 were obtained by

fishing ice floes and collecting microorganisms from the ice-water interface as

done on ANT1.

For the North Atlantic and Arctic, phytoplankton community samples were

taken in June 2009 on board the RV Jan Mayan. Water samples at the DCM

were taken directly from the CTD rosette (12.5 L Niskin bottles) in waters

characterised as Arctic (June 20 SW Spitsbergen at 76◦ 36N; 18◦ 11E, temper-

ature -1◦C at 35 m) and Atlantic influenced (June 16 at the Polar front south

of Bear Island at 73◦ 55N; 18◦ 46E, temperature +2.1◦C at 50m). Cells were

collected by filtration on 5µm pore-etched polycarbonate filters, flashfrozen in

liquid nitrogen, and stored in a cryoshipper for transport to the laboratory.

A.2 Metatranscriptome sequencing

Several samples per station and ecosystem (EPAC, NPAC, ANT) were filtered

onto 2µ pore size filters and subsequently flash frozen in liquid nitrogen and

stored at -80◦C. RNA extraction was performed with the ToTally RNA extrac-

tion kit (Ambion) according to the manufacturers recommendation. Eukaryotic
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mRNA was extracted with the Oligotex mRNA purification kit (Qiagen). The

same kit was used to do an additional purification with the purified mRNA from

the first time to reduce the contamination by rRNA and bacterial mRNA. Due

to a very limited amount of double purified eukaryotic mRNA, we pooled all

samples from each ecosystem (EPAC, NPAC, ANT). cDNA synthesis on the

pooled samples was conducted with the SuperSmart PCR cDNA kit (Clontech)

according to manufacturers recommendations. Libraries for next generation se-

quencing were constructed according to protocols for Roche 454 GS-FLX and

GS-Titanium sequencing. GS-FLX sequencing was done at the NERC sequenc-

ing facility in Liverpool (UK) and GS-Titanium sequencing was done at Roche

454 (US).

For the NATL and ARC samples, extraction of total RNA from replicate fil-

ters was performed following standard protocols and a commercial kit (RNAeasy,

Qiagen). Synthesis of full-length double-stranded cDNA (ds-cDNA) was per-

formed from 250ng of total RNA of each sample (SMARTer PCR cDNA Syn-

thesis Kit; Clontech) according to the manufacturer’s instructions, allowing

synthesis of full-length transcripts while maintaining the gene representation

of unamplified samples. Full-length single-stranded DNA templates were then

amplified by long-distance PCR using the Advantage 2 PCR Kit (Clontech).

Replicate PCR reactions were performed for each library in order to obtain the

amount required for sequencing (3 5µg), and subsequently pooled and purified

using the MiniElute PCR Purification kit (Qiagen). The cDNA libraries were

quantified using NanoDrop (ThermoScientific), and the quality of final sam-

ples was verified using agarose gel electrophoresis. Libraries were sequenced

by a commercial service provider (BioCant, Portugal) using 454 FLX Titanium

chemistry.
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A.5 North Pacific sample phytoplankton cell

counts

Dominant phytoplankton Cells/L

Coscinodiscus walesii 5472±894

Chaetoceros spp. single cells 13105±1983

Chaetoceros spp. chains 6280±453

Thalassiosira spp. 91129±7998

Thalassiosira nitzschioides ≺1000

Pennate diatoms ≺100

Dinoflagellates ≺100

Unidentified flagellates ≺1000

Table A.4: Taxonomic composition of major eukaryotic phytoplankton
species in NPAC (North East Pacific (Puget Sound)) on 15th of August
2006. N=3.
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A.6 Multiple correlation plot

Figure A.1: Multiple correlation plot between normalised abundance of
metatranscriptome sequences associated with GO:0006412 translation and
environmental factors. Lower triangle displays scatter plot of factors from
the central diagonal. Upper triangle displays scaled correlation coefficient
between factors from central diagonal.
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A.8 Translational efficiency experiment

Figure A.3: Measurements of translation induction (lag time) and efficiency
(slope) at different temperatures in T. pseudonana based on an inducible
promoter (nitrate reductase) and measurements of % eGFP increase over
time (N = 3; error bars denote standard deviation; mGFP = constant for
% eGFP increase per minute).
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Appendix B

B.1 Taxonomic composition of simulated meta-

transcriptomes

JGI-IMG ID Organism LD MD HD

640753001 Actinobacillus succinogenes 130Z 6 6 10

637000005 Alkalilimnicola ehrlichei MLHE-1 6 5 10

640753002 Alkaliphilus metalliredigens QYMF 5 4 9

646564504 Anabaena variabilis ATCC 29413 6 5 9

637000007 Anaeromyxobacter dehalogenans 2CP-C 6 5 10

639633006 Arthrobacter sp. FB24 6 5 10

643692004 Azotobacter vinelandii DJ, ATCC BAA-1303 6 5 9

643692007 Bacillus cereus 03BB102 7 5 11

645058795 Bifidobacterium longum DJO10A 5 4 9

640427103 Bradyrhizobium sp. BTAi1 56 111 10

643692011 Brevibacillus brevis NBRC 100599 5 4 8

641522608 Burkholderia ambifaria MC40-6 6 5 11

637000046 Burkholderia cenocepacia AU 1054 6 5 10

639633014 Burkholderia cenocepacia HI2424 6 5 10

637000051 Burkholderia sp. 383 7 5 11

640069307 Burkholderia vietnamiensis G4 6 5 10

637000053 Burkholderia xenovorans LB400 5 4 8

640427106 Caldicellulosiruptor saccharolyticus DSM 8903 7 5 10

637000160 Chelativorans sp. BNC1 5 4 9

637000072 Chlorobium chlorochromatii CaD3 5 6 10

142
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JGI-IMG ID Organism LD MD HD

642555121 Chlorobium limicola DSM 245 6 5 9

639633020 Chlorobium phaeobacteroides DSM 266 5 5 9

641228485 Chloroflexus aurantiacus J-10-fl 7 5 10

637000075 Chromohalobacter salexigens DSM 3043 5 4 8

640753016 Clostridium beijerinckii NCIMB 8052 7 5 10

640069309 Clostridium thermocellum ATCC 27405 6 5 9

646311918 Cronobacter turicensis 7 4 11

637000087 Cytophaga hutchinsonii ATCC 33406 47 4 8

637000088 Dechloromonas aromatica RCB 5 4 9

641228488 Deinococcus geothermalis DSM 11300 6 5 10

643692021 Desulfobacterium autotrophicum HRM2, DSM 3382 6 4 9

637000095 Desulfovibrio desulfuricans G20 6 4 9

637000097 Ehrlichia canis Jake 7 6 9

637000098 Ehrlichia chaffeensis Arkansas 7 6 10

637000101 Enterococcus faecalis V583 5 4 7

641522626 Exiguobacterium sibiricum 255-15 6 5 10

640753026 Fervidobacterium nodosum Rt17-B1 5 4 8

637000116 Frankia sp. CcI3 6 5 10

641228492 Frankia sp. EAN1pec 6 5 10

637000119 Geobacter metallireducens GS-15 6 5 9

637000127 Histophilus somni 129PT 5 5 9

637000137 Jannaschia sp. CCS1 6 5 10

640753031 Kineococcus radiotolerans SRS30216 6 5 10

639633027 Lactobacillus brevis ATCC 367 4 4 8

639633028 Lactobacillus casei ATCC 334 6 5 9

639633029 Lactobacillus delbrueckii bulgaricus ATCC BAA-365 5 4 8

639633030 Lactobacillus gasseri ATCC 33323 6 5 11

640069315 Lactococcus lactis cremoris MG1363 5 5 8

639633034 Leuconostoc mesenteroides mesenteroides ATCC 8293 5 4 8

639633036 Magnetococcus sp. MC-1 5 4 10

639633037 Marinobacter aquaeolei VT8 6 5 10

637000161 Methanococcoides burtonii DSM 6242 5 5 10

637000162 Methanosarcina barkeri fusaro 5 4 9

637000164 Methanospirillum hungatei JF-1 6 5 10

637000165 Methylobacillus flagellatus KT 6 4 10

637000167 Moorella thermoacetica ATCC 39073 13 12 22

637000192 Nitrobacter hamburgensis X14 6 4 10

637000193 Nitrobacter winogradskyi Nb-255 6 4 10

637000194 Nitrosococcus oceani ATCC 19707 6 5 10

637000196 Nitrosomonas eutropha C71 6 5 10

637000197 Nitrosospira multiformis ATCC 25196 6 5 10

639633046 Nocardioides sp. JS614 6 5 10

640427126 Novosphingobium aromaticivorans DSM 12444 6 5 10

639633047 Oenococcus oeni PSU-1 4 4 8

639633048 Paracoccus denitrificans PD1222 5 5 10

639633049 Pediococcus pentosaceus ATCC 25745 5 4 9

644736398 Pedobacter heparinus DSM 2366 5 4 9
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JGI-IMG ID Organism LD MD HD

637000204 Pelobacter carbinolicus DSM 2380 6 5 9

639633050 Pelobacter propionicus DSM 2379 6 5 10

642555146 Pelodictyon phaeoclathratiforme BU-1 6 5 10

637000208 Polaromonas sp. JS666 6 6 10

637000210 Prochlorococcus marinus MIT 9312 5 5 9

637000212 Prochlorococcus marinus NATL2A 7 4 10

642555149 Prosthecochloris aestuarii SK413, DSM 271 5 4 11

637000216 Pseudoalteromonas atlantica T6c 6 6 11

637000221 Pseudomonas fluorescens PfO-1 5 4 8

640427132 Pseudomonas putida F1 6 5 11

637000224 Pseudomonas syringae pv. syringae B728a 6 4 9

637000226 Psychrobacter arcticus 273-4 5 4 8

637000227 Psychrobacter cryohalolentis K5 7 5 10

643348570 Rhodobacter sphaeroides KD131 4 4 8

637000235 Rhodoferax ferrireducens T118 6 5 10

639279312 Rhodopseudomonas palustris BisA53 6 5 10

637000237 Rhodopseudomonas palustris BisB18 7 46 10

637000238 Rhodopseudomonas palustris BisB5 6 139 10

637000240 Rhodopseudomonas palustris HaA2 260 5 10

637000241 Rhodospirillum rubrum ATCC 11170 6 41 9

637000248 Rubrobacter xylanophilus DSM 9941 7 6 11

637000268 Ruegeria sp. TM1040 7 6 12

637000249 Saccharophagus degradans 2-40 5 5 10

639633057 Shewanella amazonensis SB2B 6 4 10

640069330 Shewanella baltica OS155 6 5 10

637000257 Shewanella frigidimarina NCIMB 400 6 5 10

640069331 Shewanella loihica PV-4 6 4 10

637000258 Shewanella oneidensis MR-1 6 5 10

639633058 Shewanella sp. ANA-3 7 5 10

637000260 Shewanella sp. MR-7 7 5 11

639633059 Shewanella sp. W3-18-1 5 5 10

637000271 Sphingopyxis alaskensis RB2256 6 5 10

644736409 Streptococcus suis SC84 6 5 9

639633062 Streptococcus thermophilus LMD-9 4 4 10

641522654 Synechococcus sp. PCC 7002 5 4 8

639633063 Syntrophobacter fumaroxidans MPOB 6 4 9

637000316 Syntrophomonas wolfei wolfei Goettingen 5 5 10

641522655 Thermoanaerobacter pseudethanolicus ATCC 33223 7 4 10

637000319 Thermobifida fusca YX 5 4 8

637000324 Thiobacillus denitrificans ATCC 25259 7 6 12

637000325 Thiomicrospira crunogena XCL-2 5 5 10

637000326 Thiomicrospira denitrificans ATCC 33889 6 6 8

637000329 Trichodesmium erythraeum IMS101 6 5 10

637000348 Xylella fastidiosa 9a5c 22 140 18

641522659 Xylella fastidiosa M12 10 68 4

Table B.1: List of organisms used for simulated metatranscriptomes, and
copy numbers for Low Diversity (LD), Medium Diversity (MD) and High
Diversity (HD) samples.
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B.3 Taxonomic composition of real metatran-

scriptomes

Figure B.1: Taxonomic affiliations of Gilbert mid-bloom metatranscrip-
tome (Black) and metagenome (Grey) sequences. Figure reproduced
from [Gilbert et al., 2008].
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Figure B.2: Taxonomic affiliations of Stewart 110m metagenome (Left)
and metatranscriptome (Right) sequences. Part of a figure reproduced
from [Stewart et al., 2012].
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