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Abstract 

 

In legume-rhizobia symbioses, free-living rhizobia colonise root nodules and 

develop into N2 fixing specialists known as bacteroids. During bacteroid 

development, rhizobia must adapt to the nodule environment, consisting of reactive 

oxygen species, low oxygen, antimicrobial secondary metabolites, low pH and in 

some nodules, antimicrobial peptides. This study offers a holistic insight into the 

processes required by R. leguminosarum during bacteroid development in nodules 

formed on four legumes: Pisum sativum, Vicia faba, Vicia hirsuta and Phaseolus 

vulgaris. 

 

Initially, a high-throughput mutagenesis strategy was used to target genes 

upregulated during bacteroid development. Screening forty-two mutants on P. 

sativum identified some moderate phenotypes but more importantly, highlighted 

functional redundancy between certain gene products. A clear example of functional 

redundancy was seen between the Mn
2+

 transporters SitABCD and MntH. Single 

mutations in sitA or mntH did not cause a symbiotic phenotype whereas the double 

mutant could not form bacteroids on P. sativum, V. faba or V. hirsuta. Intriguingly, 

no symbiotic phenotype for the double mutant was observed on P. vulgaris. In 

addition to Mn
2+

 transporters, a Mg
2+ 

channel, MgtE, that is essential for growth in 

Mg
2+

-limited medium at low pH was identified. As with the Mn
2+

 transporters, the 

requirement of MgtE during symbiosis depended upon the species of the host-

legume. Reasons for host-dependent requirement of SitABCD, MntH and MgtE are 

discussed. 

 

The requirement of three O2-responsive regulators that govern regulatory pathways 

essential to N2 fixation was also investigated. FnrN appears to be the major O2-

responsive regulator required for symbiosis but in addition to fnrN, two genes, fixL 

and fixLc, need to be mutated to prohibit N2 fixation. Other findings include a 

putative toxin-antitoxin system that hinders N2 fixation when disturbed. 
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Chapter 1: General Introduction 

 

1.1 LEGUME-RHIZOBIA SYMBIOSES 

 

1.1.1 The importance of legume-rhizobia symbioses 

 

Plants require many nutrients but have the greatest demand for nitrogen (N), sulphur 

(S), phosphorus (P), magnesium (Mg), calcium (Ca) and potassium (K) (Amtmann 

and Blatt, 2009). Around 1.5% of plant dry weight is made up of N, most of which is 

incorporated into amino acids (~85%) or nucleic acids (~5%) (Maathuis, 2009). The 

biggest pool of N in the biosphere is atmospheric dinitrogen (N2), but this chemically 

inert form is unusable for most living organisms, including plants, meaning that 

much of agriculture is reliant on synthetic N fertilisers (Maathuis, 2009; Seefeldt et 

al., 2009). The manufacture and application of synthetic N fertilisers can account for 

up to 50% of the costs associated with crop production and unless significant 

changes in agricultural practice are made, its application will triple over the next 40 

years (Gutierrez, 2012; Xu et al., 2012). 

 

N2 fixation is the reduction of N2 into ammonia (NH3) and is exclusive to 

prokaryotes termed diazotrophs. Rhizobia are diazotrophs that can establish a 

symbiosis with plants in the Fabaceae family (known as legumes) by initiating and 

then infecting specialist organs (nodules) that typically form on the roots of legumes 

(Lodwig and Poole, 2003; Oldroyd and Downie, 2008). During infection, free-living 

rhizobia differentiate into bacteroids, which are specialists in N2 fixation and 

exporting N-compounds to the plant. In return, the plant provides bacteroids with 

nutrients, including a source of carbon to fuel the energy-intensive process of N2 

fixation (Terpolilli et al., 2012; Udvardi and Poole, 2013). This symbiosis is 

essential for feeding agriculture with non-synthetic N and so research into the 

different aspects of legume-rhizobia interactions are of great importance. 
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1.1.2 Rhizobia and their plant hosts 

 

Rhizobia are phylogenetically disparate and are spread across the α- and β-

subclasses of proteobacteria (Masson-Boivin et al., 2009). Numerous genome 

sequences for rhizobia have now been published (Table 1.1). These genomes are 

typically large (5.4-9.2 Mb) and rich in transport, metabolic and regulatory genes 

(Mauchline et al., 2006; Masson-Boivin et al., 2009). 

 

Genome Reference 

 

Azorhizobium caulinodans ORS571 

 

Lee et al., 2008 

Bradyrhizobium japonicum sp. BTAi1 and ORS278 Giraud et al., 2007 

Bradyrhizobium japonicum USDA110 Kaneko et al., 2002 

Mesorhizobium loti MAFF303099 Kaneko et al., 2000 

Rhizobium etli CFN42 Gonzalez et al., 2006 

R. leguminosarum bv. vicae 3841 Young et al., 2006 

R. leguminosarum bv. trifolium WSM2304 Reeve et al., 2010 

Sinorhizobium meliloti 1021 Galibert et al., 2001 

Sinorhizobium sp. strain NGR234 Schmeisser et al., 2009 

 

 

Table 1.1 Published genomes for rhizobia. 
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Some strains of rhizobia have a very narrow host range, while others are compatible 

with a wide variety of legumes (Table 1.2). There are several factors that determine 

host range (Wang et al., 2012). There is the initial dialogue between rhizobium and 

plant, where rhizobia must be able to identify signals secreted by the plant and the 

plant must be able to recognise signals exported by rhizobia. There are 

polysaccharides synthesised by infecting bacteria, which have been speculated to 

have a role in modulating plant-defences (Hotter and Scott, 1991; Parniske et al., 

1994; Simsek et al., 2007; Gibson et al., 2008).  Then there is the requirement of 

certain transporters or enzymes that are essential on some legumes-hosts but not on 

others, examples of which are provided in this work. 

 

In one study on legume-rhizobia compatibility, a total of 625 strains of R. 

leguminosarum were isolated from nodules that formed on crop legumes Pisum 

sativum (pea) or Vicia faba (broad bean) and local, wild legumes including Vicia 

hirsuta, Viccia cracca, Vicia sativa and Lathyrus pratensis. These isolated-strains 

were tested for their ability to nodulate non-host legumes known to be nodulated by 

other strains of R. leguminosarum e.g. strains isolated from P. sativum were tested 

for their ability to nodulate V. faba, V. hirsuta, V. cracca etc. Collectively, a high 

proportion of the R. leguminosarum isolates were able to nodulate several wild 

legumes (89%) but only a third could nodulate the crop legume Vicia faba (34%) 

(Mutch and Young, 2004). 

 

Another study characterised Sinorhizobium spp. isolated from the field, and focused 

on strains that could initiate nodulation but were ineffective at N2 fixation on 

Medicago spp. (Crook et al., 2012). Most incompatibility was found to be host-

conditioned, with strains displaying effective N2 fixation (Fix
+
) on some hosts and 

poor N2 fixation (Fix
red

) or no N2 fixation (Fix
-
) on others. Several accessory 

plasmids were identified as the cause of defective N2 fixation but these plasmids 

were also found to give incompatible strains a competitive advantage during nodule 

colonisation. Indeed, there are reports of superior rhizobial inoculants being 

outcompeted by indigenous rhizobial strains that are less-effective at N2 fixation 

(Dowling and Broughton, 1986; Triplett and Sadowsky, 1992; Crook et al., 2012). 

Thus, a better understanding of the factors that make rhizobia both efficient 
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symbionts and competitive nodule-colonisers is needed to develop more effective 

inoculants for crop legumes. 

 

 

Strain of rhizobium Principal legume-hosts 

Azorhizobium caulinodans ORS571 Sesbania rostrata 

B. japonicum USDA110 

Glycine max (soybean) 

Vigna unguiculata (cowpea) 

Macroptilium atropurpureum (siratro) 

Vigna radiata (mungbean) 

Mesorhizobium ciceri LMS-1 Cicer arietinum (chickpea) 

Mesorhizobium loti MAFF303099 Lotus spp. 

R. etli CFN42 Phaseolus vulgaris (common bean) 

R. leguminosarum bv. viciae 3841 

Pisum spp. (pea) 

Vicia spp. (e.g. broad-bean and vetch) 

Lathyrus spp. (e.g. meadow vetchling) 

Lens spp. (e.g. lentils) 

R. leguminosarum bv. trifolium 

WSM2304 
Trifolium spp. (clover) 

R. leguminosarum bv. phaseoli 4292 Phaseoli vulgaris (common bean) 

Sinorhizobium meliloti 1021 
Medicago spp. (alfalfa and barrel 

medic) 

 

Table 1.2 Host ranges of nine strains of rhizobia. 
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1.2 STEPS LEADING TO LEGUME-RHIZOBIA SYMBIOSIS 

 

1.2.1 Communication in the rhizosphere: flavonoids and Nod factors 

 

The rhizosphere is the local environment influenced by living roots, where many 

interactions between soil-dwelling-microorganisms and the plant take place. Early 

communication between rhizobia and legumes occurs in the rhizosphere and 

involves the secretion of flavonoids from plant roots (Fig 1.1). Flavonoids are 

polycyclic aromatic compounds that attract rhizobia to the rhizosphere (Cooper, 

2007; Faure et al., 2009) and are released near root tips and at the emerging root hair 

zone i.e. the site for bacterial-infection (Hartwig et al., 1990; Graham, 1991; 

Zuanazzi et al., 1998; Abdel-Lateif et al., 2012).  

 

It is generally accepted that the bacterial LysR-transcriptional regulator, NodD, is the 

flavonoid-receptor, although no direct biochemical binding has been reported (Peck 

et al., 2006). In R. leguminosarum, NodD is localised to the cytoplasmic membrane, 

where the inducing flavonoid accumulates (Recourt et al., 1989; Perret et al., 2000). 

The ligand-binding domain is located at the N-terminus of NodD and regulates the 

activity of the C-terminal DNA binding domain, which binds highly conserved nod-

boxes found upstream of genes involved in Nod factor production (Gibson et al., 

2008). 

 

Common nod genes (e.g. nodABC) are responsible for the synthesis of the core 

structure of Nod factor i.e. an N-acetylated, chitin oligomeric backbone with a fatty 

acyl chain (Roche et al., 1996). Other nod gene products include enzymes that 

modify the core structure and thus drive Nod factor diversity (Perret et al., 2000). 

One example of how a Nod factor-modifying enzyme can affect host-range is the 

requirement of NodE by R. leguminosarum for nodulation of certain cultivars of P. 

sativum (Li et al., 2011). 

 

Nod Factor Receptors (NFRs) in root cells of legumes detect Nod factor and are  

essential for nodule formation on L. japonicus, M. truncatula, G. max and P. sativum 

(Madsen et al., 2003; Oldroyd and Downie, 2008; Zhukov et al., 2008; Indrasumunar 
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et al., 2010; Indrasumunar et al., 2011; Broghammer et al., 2012). NFRs are 

receptor-like kinases with N-acetylglucosamine-binding lysine (LysM) motifs in 

their extracellular domain and despite their long established requirement, only 

recently has binding of Nod factors by NFRs been demonstrated (Broghammer et al., 

2012). Perception of Nod factors by NFRs, activate signalling pathways that induce 

important oscillations in Ca
2+

 levels in the nuclear region of the plant cell (Oldroyd 

and Downie, 2008; Murray, 2011).  

 

1.2.2 Signal transduction and nodule formation 

 

The signalling pathway that utilises Ca
2+

 oscillations as a second messenger is 

known as the common symbiosis pathway and is one of the earliest responses to Nod 

factor (Murray, 2011). A calcium and calmodulin dependent protein kinase 

(CCaMK) is involved in perceiving the Ca
2+

 signal and relaying it to the downstream 

components (transcription factors) involved in initiating nodule formation (Oldroyd 

and Downie, 2008; Murray, 2011; Oldroyd et al., 2011).  

 

Events triggered by Nod factor perception induce mitotic cell division in the root 

cortex or sub-epithelial cell layer, leading to formation of the nodule meristem 

(nodule primordium). Induction of cell division is correlated with increases in plant 

hormones auxin, cytokinin, gibberellins and brassinosteroid levels (Murray, 2011). 

There are several different types of nodules that can form, including indeterminate 

and determinate nodules. The best characterised legumes that form indeterminate 

nodules belong to galegoid clade (e.g Medicago, Pisum and Vicia). As a 

consequence of a persistent meristem, indeterminate nodules have an elongated-

shape and exhibit four developmental zones (Fig 1.1). The best characterised 

legumes that form determinate nodules belong to the phaseoloid (e.g. G. max and P. 

vulgaris) or robinioid clade (e.g. Lotus japonicus). These nodules have a transient 

meristem and are spherical as a consequence (Fig 1.1) (Ferguson et al., 2010; 

Oldroyd et al., 2011; Kondorosi et al., 2013). 
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Fig 1.1 Model showing developmental stages of indeterminate and determinate 

nodules. Flavonoids secreted by root hairs attract rhizobia and stimulate them to 

produce Nod factor (1-2). Secreted Nod factor induces root hair curling, trapping the 

rhizobia (3). An infection thread initiates from the infection pocket and progresses 

towards the nodule primordium (5-7). In indeterminate nodules, a meristem 

continually develops and gives rise to new plant cells. As these new cells mature 

they become infected by rhizobia, leading to successive zones of rhizobial invasion 

and differentiation. Determinate nodules do not have a persistent meristem resulting 

in a homologous population of bacteroids. Figure reproduced from Ferguson et al., 

2010. 
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1.2.3 Infection thread formation and colonisation 

 

To access nodule primordia, rhizobia must breach the root epidermis by passing 

through a plant-made structure (the infection thread) that forms inside growing root 

hairs (Figs 1.1 and 1.2). A parallel pathway initiated by Nod factor, independently of 

CCaMK, is required for root-hair deformation (Murray, 2011; Oldroyd et al., 2011). 

Nod factors cause growing root hairs to bend back upon themselves and this curling 

traps the Nod factor-producing rhizobia (Fig 1.1). Growth of the infection thread is 

initiated in the infection pocket by invagination of the root hair cell wall (and 

membrane) and localised cell wall-degradation by a plant synthesised pectate lyase 

(Xie et al., 2012). 

 

Certain polysaccharides synthesised by the invading bacteria are required for 

infection thread formation and nodule colonisation (Gage, 2004). The 

exopolysaccharide (EPS) succinoglycan, is speculated to suppress the plant defence 

response (Hirsch, 1999; Gibson et al., 2008) and mutants that are unable to make 

succinoglycan are defective at initiating infection threads (Finan et al., 1985; Leigh 

et al., 1985; van Workum et al., 1998). Synthesis of cyclic β glucans in M. loti is also 

speculated to modulate the host defence response by reducing the production of 

antimicrobial phytoalexins in L. japonicus and may also have a role in attachment to 

root hairs (Dylan et al., 1990; D'Antuono et al., 2008; Gibson et al., 2008). Surface 

lipopolysaccharides (LPS) have also been shown to modulate the defence response 

by suppressing the release of reactive oxygen species (ROS) and have an important 

role in stabilising the membrane during exposure to stressful environments (Albus et 

al., 2001; Scheidle et al., 2005; Haag et al., 2013). 

 

Extension of the infection thread structure is synchronous with the growth rate of the 

enclosed bacterial column (Gage, 2002). Mixed populations of bacteria in the 

infection thread can occur but the frequency at which this happens is unknown 

(reported to vary between 12-74% in laboratory conditions) (Johnston and Beringer, 

1975; Denison, 2000; Gage, 2002; Friesen and Mathias, 2010). Only bacteria near 

the extending tips of the infection thread proliferate, with the bacteria at the base of 

the infection thread remaining static (Gage et al., 1996; Gage, 2004). It is feasible 
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that strains in mixed infection threads are in fierce competition as only the faster-

growing (more competitive) strain that occupies the terminus of the infection thread 

will go on to populate the nodule (Gage et al., 1996). 

 

The architecture of the infection threads change as they grow towards the nodule 

primordium. As the nodule grows, the infection thread chasing the growing meristem 

becomes highly branched and forms an infection zone (located at the nodule tip). 

Branching of the infection thread (Fig 1.2) during its growth increases the 

distribution of infected nodule cells (Gage, 2004; Monahan-Giovanelli et al., 2006). 

 

 

 

 

 

 

 

 

 

Fig 1.2 Infection thread with a mixed population of red- and green-fluorescent 

bacteria. Top arrow indicates infection thread branching and bottom arrow indicates 

penetration into the underlying cell. Reproduced from Gage, 2002.  

 

 

1.2.4 Bacterial release from the infection thread  

 

Bacteria exit the infection thread via endocytosis but what triggers this is unknown, 

although it must involve a remodelling of the cell wall (Brewin, 2004; Jones et al., 

2007). The unwalled membrane that extends from the infection thread is known as 

an infection droplet and the bacteroid-containing compartment that forms is known 

as the symbiosome  (Fig 1.3) (Brewin, 2004). In indeterminate nodules, there is 

typically only one bacteroid per symbiosome, in contrast to determinate nodules, 

where 8-12 bacteroids share the same symbiosome (Fig 1.7) (Brewin, 2004). What 
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bacteroids in indeterminate and determinate nodules have in common is that every 

nutrient they acquire must first cross the symbiosome membrane. 

 

 

Fig 1.3 Diagram showing the release of rhizobia from the infection thread. 

Reproduced from Brewin, 2004. 

 

 

1.3 N2 FIXATION AND NUTRIENT SHARING 

 

1.3.1 N2 fixation and transport of N-compounds to the plant 

 

The N2 reducing enzyme, nitrogenase, consists of NifDK and NifH. NifD and NifK 

form a heterotetrameric complex that contains the essential iron molybdenum 

cofactor (FeMoCo) and a P-cluster (a [8Fe-7S] cluster). NifH is a homodimer that 

contains a [4Fe-4S] cluster and sites for MgATP binding and hydrolysis (Dixon and 

Kahn, 2004; Rubio and Ludden, 2008). N2 reduction is an energy-intensive process 

requiring 16 molecules of MgATP [N2 + 8 e
-
 + 8 H

+
 + 16 MgATP → 2 NH3 + H2 + 

16 MgADP + 16 Pi]. In addition to N2 (N≡N),  additional triple-bonded molecules 

can serve as a substrate for nitrogenase, including acetylene (H-C≡C-H), which is 

widely used to measure nitrogenase activity (see methods 2.6.4) (Rubio and Ludden, 

2008). 

Bacterium 

Bacteroid 
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Nitrogenase is highly sensitive to oxygen, where O2 concentrations greater than 57 

nM, inhibit its activity (Kuzma et al., 1993; Dixon and Kahn, 2004). Sensitivity is 

partly conferred by a change in the oxidation state of the Fe centres within the 

NifDK complex, [8Fe-7S] cluster and FeMoCo, and inactivation of [4Fe-4S] in NifH 

(Gallon, 1992; Dixon and Kahn, 2004). The nodule provides protection for 

nitrogenase against O2 through a cortical diffusion barrier, generating an O2 gradient 

that decreases from the nodule apex to the interzone regions (where N2 fixation takes 

place) (Fig 1.4) (Kuzma et al., 1993; Batut and Boistard, 1994; Soupene et al., 1995).  

 

The necessity for a low O2 environment must be balanced with the O2 requirement of 

ATP synthesis and this balance is met by a high abundance of plant-synthesised 

leghamoglobins found in the cytoplasm of infected plant cells (Downie, 2005). 

Oxygen-binding leghaemoglobins have a fast O2 association rate coupled with a 

slow dissociation, which enables them to buffer free oxygen in the nanomolar range. 

Consequently, inactivation of the oxygen-sensitive nitrogenase is avoided whilst an 

oxygen flux for respiration is maintained (Appleby, 1984; Downie, 2005; Ott et al., 

2005). Rhizobia also synthesise an alternative cytochrome cbb3-type oxidase that has 

a high affinity for O2 to allow respiration under low O2 (discussed in 1.4.6). 

 

 

Fig 1.4 Longitudinal O2 gradient in a nodule. The cortical diffusion barrier means 

the main route of O2 is through the nodule apex. Reproduced from Dixon and Kahn, 

2004. 
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It is not strictly known how the end product of N2 reduction, NH3, is exported across 

the bacteroid membrane (Fig 1.5). Rhizobia do encode NH4
+
 transporters belonging 

to the AMT (ammonium transporters) family but their expression is downregulated 

in bacteroids (Karunakaran et al., 2009). Instead, NH4
+
 might cross the bacteroid 

membrane by diffusion across the lipid bilayer or via non-selective, unidentified 

protein channels (Udvardi and Poole, 2013).  

 

In plants, both an NH4
+
 channel (Niemietz and Tyerman, 2000) and a cation channel

 

(Tyerman et al., 1995) have been reported to transport NH4
+
 across the symbiosome 

membrane. NH4
+
 assimilation is shutdown in bacteroids so the plant is responsible 

for NH4
+
 assimilation, which involves glutamine synthetase (GS), glutamate 

synthase (GOGAT) and aspartate amino transferase (Fig 1.5) (Udvardi and Poole, 

2013). For indeterminate nodules, the amino acid asparginine is mainly exported out 

of the nodule and into the plant shoot (White et al., 2007). 

 

1.3.2 Transport of nutrients to the bacteroid 

 

The carbon used by bacteroids derives from sucrose made by the plant and 

metabolised into dicarboxylates in the cytoplasm of infected plant cells (Fig 1.5) 

(Kouchi and Yoneyama, 1984; Streeter, 1995; Udvardi and Poole, 2013). Malate is 

the primary dicarboxylate that is transported across the bacteroid membrane by the 

dicarboxylate (Dct) system (Fig 1.5) (Lodwig and Poole, 2003; Yurgel and Kahn, 

2004). Dicarboxylates are then metabolised by the TCA cycle and for this reason, 

enzymes in TCA cycle are essential for N2 fixation; although, there are some 

exceptions and variations between different species of rhizobia (reviewed in 

Terpolilli et al., 2012). 

 

Homocitrate is also required for N2 fixation as it is a critical cofactor of nitrogenase 

(Hoover et al., 1989). Free-living diazotrophs (such as Azotobacter vinelandii and 

Klebsiella pneumonia) can synthesise their own homocitrate through the 

condensation of 2-oxoglutarate and acetyl CoA by the enzyme homocitrate synthase 

(NifV) (Terpolilli et al., 2012). Most symbiotic rhizobia however, do not carry a 

copy of nifV and consequently must obtain homocitrate from the plant. The 
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homocitrate synthase in plants is encoded by FEN1 (Fig 1.5) (Hakoyama et al., 

2009) but how homocitrate is transported across the symbiosome and bacteroid 

membrane is unknown. 

 

The list of plant-encoded, nodule-specific transporters that supply bacteroids with 

essential nutrients is growing and includes several metal transporters (see 1.4.5). In 

addition to metal transporters, a plant-encoded sulphate transporter, SST1, has also 

been reported as essential for symbiotic N2 fixation (Fig 1.5) (Krusell et al., 2005). 

 

The list of bacterial-encoded transporters required for nutrient uptake during 

symbiosis is more extensive but still far from complete. The importance of the Dct 

transport system has already been discussed. Two broad-specificity ABC-type 

transporters, AapJQPM and BraDEFGC, which import branched-chain amino acids 

are also essential for N2 fixation (Fig 1.5) (Hosie et al., 2002; Lodwig et al., 2003; 

Prell et al., 2010). Their requirement is a consequence of a shutdown in amino acid 

synthesis in bacteroids (referred to as symbiotic auxotrophy), rendering bacteroids 

dependent upon a supply of branched-chain amino acids from the plant (Prell et al., 

2009).  
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Fig 1.5 Model showing transport and metabolism of nutrients within an infected 

plant cell. Bacteroid (orange) contained within the symbiosome membrane. 

Reproduced from Udvardi and Poole, 2013. 

 

 

1.4 PHYSIOLOGICAL AND REGULATORY RESPONSES OF R. 

LEGUMINOSARUM DURING BACTEROID DEVELOPMENT 

 

Processes integral to N2 fixation in mature bacteroids have been intensively studied 

(Udvardi and Poole, 2013). Less is known about how rhizobia adapt to the nodule 

environment during bacteroid development, the processes required for a free-living 

cell to differentiate into a bacteroid or how differentiation is regulated. 

 

The remainder of this chapter will discuss what is known about the environment of 

the nodule and the processes that rhizobia require to colonise it. This will include: 

resistance to oxidative stress, organic peroxides, antimicrobial peptides and toxic 

metabolites; uptake and utilisation of metals and other nutrients; and adaptations to 

low O2. 
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1.4.1 Oxidative stress 

 

Reactive oxygen species (ROS) include superoxide anions (O2
.-
), hydrogen peroxide 

(H2O2) and hydroxyl radicals (HO
.
). ROS inflicts destruction by damaging Fe-S 

clusters, disabling mononuclear-Fe enzymes, damaging DNA and disrupting lipids 

through peroxidation (Imlay, 2013). They are by-products of aerobic metabolism but 

also have a role as signalling molecules and as a defence response against pathogens 

(Nanda et al., 2010). ROS are also a prominent feature of the nodule environment 

(Pauly et al., 2006; Gibson et al., 2008; Soto et al., 2009; Nanda et al., 2010). 

 

NADPH oxidases (NOx) represent the major ROS generating system in plants and 

play a crucial role in the oxidative burst (primarily O2
.-
 and H2O2) during plant-

pathogen interactions (Nanda et al., 2010). ROS generation by NOx homologues in 

M. truncatula appear to be required in the early stages of symbiosis, as their 

inactivation suppressed root hair curling and infection thread formation (Lohar et al., 

2007; Peleg-Grossman et al., 2007). Reduction of Nitroblue tetrazolium, detection of 

cerium perhydroxide deposits and ROS-sensitive fluorescent dyes have confirmed 

the presence of ROS in infection threads and roots hairs (Fig 1.6) (Santos et al., 

2001; Ramu et al., 2002; Rubio et al., 2004; Pauly et al., 2006; Lohar et al., 2007; 

Cardenas et al., 2008). Nod factor has been reported to cause both a rapid induction 

of ROS production (Fig 1.6) (Ramu et al., 2002; Cardenas et al., 2008) and reduction 

in ROS levels at later time points (Shaw and Long, 2003; Lohar et al., 2007; Nanda 

et al., 2010). 

 

The function of ROS in legume-rhizobia symbioses is not clear. They might mediate 

infection thread development by loosening the cell wall to allow cell expansion, or 

are needed for the cross-linking of glycoprotenis to stiffen cell walls and inhibit 

expansion (Gapper and Dolan, 2006; Gibson et al., 2008; Soto et al., 2009). 

Supporting this, overexpression of the catalase-encoding katB gene (catalases 

catalyse the degradation of H2O2 to H2O and O2) in S. meliloti delayed nodulation of 

M. sativa and resulted in enlarged infection threads (Jamet et al., 2007). ROS may 

also limit bacterial invasion by causing an increasing proportion of infection threads 

to abort  after the first nodule primordia have been induced (Vasse et al., 1993). ROS 
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causes infection thread abortion by inducing a hypersensitive reaction (an 

accumulation of phenolic compounds and proteins involved in the defence response), 

leading to necrosis of both the plant cell and bacteria. By controlling bacterial 

invasion, the plant can balance its nitrogen requirements with the energy it invests 

into symbiosis (Reid et al., 2011). An abundance of H2O2 has also been reported in 

the senescent zone of indeterminate nodules, suggesting a role of ROS in senescence 

(Rubio et al., 2004)  

 

How rhizobia defend themselves against ROS during bacteroid development is well 

characterised. One of the first bacterial enzymes reported as essential for ROS-

resistance during symbiosis was SodA (superoxide dismutase) in S. meliloti (Santos 

et al., 1999; Santos et al., 2000). Superoxide dismutases are metalloenzymes that 

catalyse the conversion of superoxide into O2 and H2O2. SodA in S. meliloti is 

`cambialistic', meaning it can use either Fe
2+

 or Mn
2+

 as a cofactor. In S. meliloti, 

disruption of sodA caused only moderate sensitivity to oxidative stress but on M. 

sativa, its absence resulted in poor nodulation and abnormal infection. Bacteroid 

development of the mutant was blocked in the infection zone and those bacteroids 

that did reach the plant cytoplasm underwent rapid senescence.  

 

In R. leguminosarum, SodA was found to be exported to the periplasm and is 

thought to play an important role in the protection of membrane lipids and 

periplasmic proteins from extracellular superoxide radicals (Krehenbrink et al., 

2011). However, SodA is not essential for N2 fixation in R. leguminosarum-P. 

sativum symbiosis (personal communication, Allan Downie JIC). 

 

The requirement of catalases has also been studied in legume-rhizobia symbioses. 

There are three classes of catalases: monofunctional heme-containing catalases (most 

common in nature), bifunctional heme-containing catalase-peroxidases and the Mn-

containing catalases (Chelikani et al., 2004). S. meliloti encodes two monofunctional 

catalases (KatA and KatB) and a bifunctional catalase (KatC). A katA katC double 

mutant was released from infection threads but only fixed N2 at ~25% compared to 

the wild type; this was due to a sparse distribution of bacteroids in plant cells, many 

of which appeared senescent (Sigaud et al., 1999; Jamet et al., 2003). In contrast, a 
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katB katC double mutant exhibited poor nodulation and abnormal infection, resulting 

in plant cells devoid of bacteroids (Jamet et al., 2003). 

 

In M. loti, research into the monofunctional catalase, KatE, and bifunctional catalase, 

KatG, discovered that disruption of katE resulted in a 50-60% reduction in N2 

fixation on L. japonicus (Hanyu et al., 2009). The stage at which bacteroid 

development was impeded was not investigated but katE was highly expressed in the 

infection threads.  

 

Bifunctional heme-containing catalase-peroxidases (KatG) have also been studied in 

R. etli and B. japonicum. KatG was important for H2O2-resistance in R. etli but was 

not required for N2 fixation on P. vulgaris (and no symbiotic phenotype was reported 

to be caused by the disruption of katG in B. japonicum) (Vargas Mdel et al., 2003; 

Panek and O'Brian, 2004). 
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Fig 1.6 ROS shown in infection thread (A and C) and root hairs (B and D). In (A) 

and (B) arrows indicate the dark formazan precipitate formed by reduction of 

Nitroblue tetrazolium by superoxide. In (C), nodules sections were perfused with 

cerium chloride, which allowed H2O2 to be localised by the presence of electron-

dense precipitates of cerium perhydroxide; cerium perhydroxides are indicated by a 

single arrow (when in the walls of the infection thread) or by double arrow heads 

(when surrounding bacteria). In (D), root hairs were loaded with ROS-sensitive 

fluorescent dye and treated with Nod factor after t = 0. Reproduced from Santos et 

al., 2001 (A and B), Rubio et al., 2004 (C) and Cardenas et al., 2008 (D). 

A.                      B. 

C. 

D. 
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1.4.2 Organic peroxides 

 

Organic hydroperoxides (ROOH) are present as by-products of metabolism, 

pollutants and as antimicrobials generated by plants, fungi and bacteria (Chuchue et 

al., 2007; Zuber, 2009; Llewellyn et al., 2011). Enzymes that detoxify organic 

peroxides belong to the peroxiredoxin family or the OsmC/Ohr family.  

 

The peroxiredoxin family (Prxs) are thiol-dependent peroxidises that catalyse the 

reduction of H2O2, organic peroxides and peroxynitrite. They are present in all 

kingdoms of life and the best characterised member is the alkyl hydroperoxidase 

reductase (Ahp), consisting of a catalaytic subunit (AhpC) and flavoprotein (AhpF) 

(Bsat et al., 1996; Rocha and Smith, 1999; Mongkolsuk et al., 2000; Poole, 2005; 

Poole et al., 2011). Despite the ability of Ahp to detoxify H2O2 and organic 

peroxides (Seaver and Imlay, 2001) little is known about their role in rhizobia accept 

that Ahp was not essential for H2O2 detoxification in B. japonicum (Panek and 

O'Brian, 2004).  

 

The OsmC/Ohr family is exclusive to bacteria (Cussiol et al., 2003; Fontenelle et al., 

2011). Genes encoding Ohr (Organic Hydroperoxide Resistance) are specifically 

induced by organic hydroperoxides, not by other oxidants or stresses, furthermore, 

disruption of ohr only causes hypersensitivity to organic hydroperoxides 

(Atichartpongkul et al., 2001). Genes encoding OsmC (Osmotically inducible) are 

not induced by organic peroxides but are induced by ethanol and osmotic stress 

instead (Fontenelle et al., 2011); disruption of osmC can lead to sensitivity to both 

H2O2 and organic hydroperoxides (Conter et al., 2001; Lesniak et al., 2003). 

 

Organic peroxides are highly prominent during bacterial invasion of plant tissue 

(Croft et al., 1993; Jalloul et al., 2002) and defences against organic peroxides have 

been studied in plant pathogens Xanthomonas campestris (Mongkolsuk et al., 1998; 

Sukchawalit et al., 2001; Vattanaviboon et al., 2002; Klomsiri et al., 2005) and 

Agrobacterium tumefaciens (Chuchue et al., 2007). Organic peroxide defences have 

also been studied in a range of human pathogens (Fuangthong et al., 2001; Atack et 

al., 2008; Saikolappan et al., 2009; Wolfram et al., 2009; Llewellyn et al., 2011; 
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Caswell et al., 2012). To this date, only one investigation has explored the role of 

organic hydroperoxide resistance in legume-rhizobia symbioses (see Chapter seven). 

 

1.4.3 Antimicrobial secondary metabolites 

 

Plants produce an array of secondary metabolites (non-essential for the metabolic 

processes of the plant) to defend themselves against microbial attack or 

insect/mammal predation (Dixon, 2001) but the identity, variety and abundance of 

secondary metabolites in nodules has not been comprehensively defined 

(Brechenmacher et al., 2010). The phenolic metabolite salicylic acid is involved in 

plant defences and has been studied in legume-rhizobia symbioses. Accumulation of 

salicylic acid was shown to be induced by rhizobia defective for Nod factor 

production (Martinez-Abarca et al., 1998; van Spronsen et al., 2003) and reduction 

of salicylic levels in M. truncatula and L. japonicus, by overexpression of a 

salicylate hydroxylase, resulted in enhanced nodulation and infection (Stacey et al., 

2006). Therefore, it is possible that salicylic acid has both a role in selecting 

compatible symbionts and limiting infection. 

 

The system bacteria typically use to evade toxic secondary metabolites is an efflux 

system, which pumps antimicrobial compounds out of the cell. Several efflux 

systems have been reported to be important to legume-rhizobia symbioses, 

suggesting the presence of antimicrobial compounds in the nodule. On G. max, 

disruption of genes encoding the BdeAB efflux system in B. japonicum, caused a 

~70% reduction in N2 fixation compared to the wild type (Lindemann et al., 2010). 

Nodulation was not affected but fewer mutant bacteroids could be isolated from 

nodules c.f. wild type. The same mutant had no symbiotic defect on the alternative 

hosts V. unguiculata and V. radiata, suggesting antimicrobial compounds in the 

nodule vary between plants. In S. meliloti, smeAB encodes an efflux system that was 

required for competition during nodulation (Eda et al., 2011) and in R. etli, deletion 

of rmrAB, encoding an efflux system, resulted in reduced nodulation (~40%) on P. 

vulgaris (Gonzalez-Pasayo and Martinez-Romero, 2000). 
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1.4.4 Antimicrobial peptides 

 

A large class of nodule-specific cysteine-rich (NCR) antimicrobial peptides are 

synthesised by legumes belonging to galegoid clade and are responsible for some of 

the profound differences seen between bacteroids that develop in nodules formed on 

galegoid-legumes and bacteroids that develop in nodules formed on phaseoloid- or 

robinioid-legumes (Mergaert et al., 2006; Van de Velde et al., 2010; Kondorosi et 

al., 2013). Bacteroids from galegoid-legumes are swollen (Table 1.3 and Fig 1.7), 

undergo endoreduplication, have increased membrane permeability and are unable to 

reproduce. Bacteroids from phaseoloid- or robinioid-legumes are non-swollen (Table 

1.3 and Fig 1.7), do not endoreduplicate, show no increased permeability and are 

able to reproduce (Mergaert et al., 2006; Oono et al., 2009; Kondorosi et al., 2013). 

 

 

Legume Species Legume Clade Nodule type Bacteroid morphology 

P. sativum Galegoid Indeterminate Swollen 

V. faba Galegoid Indeterminate Swollen 

V. hirsuta Galegoid Indeterminate Swollen 

M. sativa Galegoid Indeterminate Swollen 

M. truncatula Galegoid Indeterminate Swollen 

P. vulgaris Phaseoloid Determinate Non-swollen 

G. max Phaseoloid Determinate Non-swollen 

L. japonicus Robinioid Determinate Non-swollen 

 

Table 1.3 Table showing examples of legumes species belonging to the galegoid, 

phaseoloid or robinioid clades. Nodules formed on galegoid-legumes are 

indeterminate and house swollen bacteroids, whereas, nodules formed on 

phaseoloid- or robinioid- legumes are determinate and house non-swollen 

bacteroids. 
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Fig 1.7 Morphology of swollen bacteroids from indeterminate and non-swollen 

bacteroids from determinate nodules. In indeterminate nodules there is one bacteroid 

per symbiosome (left) in contrast to determinate nodules, where symbiosomes 

contain 8-12 bacteroids (right).  Reproduced from Oono et al., 2009. 

 

 

The M. truncatula genome encodes 593 NCR peptides (Young et al., 2011) and 

more than 300 NCR peptide-encoding genes have had their expression confirmed 

(Mergaert et al., 2003). Genes encoding NCR peptides are differentially expressed 

during nodule development with an early induction of some (7 days post inoculation) 

and a later induction of others (13 days post inoculation) (Mergaert et al., 2003). 

Microdisection of nodules by laser-capture has been used to spatially define the 

expression of these NCR genes (Limpens et al., 2013) and identified several genes 

that were induced in the infection zone, with induction of some occurring in the 

distal infection zone (situated near the meristem) and others in the proximal infection 

zone (situated near the N2 fixation zone). 

 

NCR peptides contain an N-terminal hydrophobic signal peptide that targets them to 

the plant cell secretory pathway. Peptides entering this pathway have four possible 

Swollen bacteroids                  Non-swollen bacteroid 
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destinations: the endoplasmic reticulum (ER), the vacuole, the symbiosome or the 

extracellular space (Mergaert et al., 2003). A M. truncatula dnf1-1mutant is 

defective for a nodule-specific single peptidase complex (SPC), which cleaves 

nascent polypeptides destined for intracellular compartments or the extracellular 

matrix (Wang et al., 2010). NCR peptides have been shown to be targeted to 

bacteroids but in a M. truncatula dnf1-1 mutant, NCR peptides were absent from the 

bacteroid extract and colocalised with the ER, suggesting a role of the SPC in NCR 

peptide targeting (Van de Velde et al., 2010). The mode of action for NCR peptides 

is not fully understood but they have been found to target both the membrane and the 

bacterial cytosol (Van de Velde et al., 2010). NCR peptides have a positive charge 

(cationic peptide) that has been suggested to be required for membrane 

permeabilisation (Haag et al., 2012; Haag et al., 2013). 

 

BacA is predicted to form the transmembrane domain of an ABC-type transport 

system in bacteria and is required for protection against NCR peptides (Haag et al., 

2013). An S. meliloti strain carrying a mutation in bacA was hypersensitive to NCR 

peptide-247 (NCR247) and other antimicrobial substances e.g. EtOH and SDS 

(Ichige and Walker, 1997; LeVier and Walker, 2001; Haag et al., 2011). On M. 

truncatula, a S. meliloti bacA mutant senesced after it was released from infection 

droplets (Fig 1.8) (Glazebrook et al., 1993; Haag et al., 2013). However, on the M. 

truncatula dnf1-1 mutant, BacA was not required for bacterial survival (Haag et al., 

2011), suggesting that in planta, BacA is required for resistance to NCR peptide.  

 

Further evidence comes from a study of BacA in strains R. leguminosarum bv. 

phaseoli 4292 and R. leguminosarum bv. viciae A34 (Karunakaran et al., 2010). 

These two strains share the same core-genome but differ in their Sym plasmids 

(encoding genes important for host-selection) and as a consequence, one strain is 

able to initiate determinate nodules on P. vulgaris (4292) and the other strain can 

initiate indeterminate nodules on P. sativum (A34) (Downie et al., 1983). It was 

shown that in R. leguminosarum bv. phaseoli 4292, BacA was not required for N2 

fixation on P. vulgaris but was required in R. leguminosarum bv. viciae A34 for N2 

fixation on P. sativum (Fig 1.8). As NCR peptides were present in P. sativum but not 

in P. vulgaris (Table 1.3), the data agree with a BacA being required for resistance to 

NCR peptides. BacA has also been shown to be dispensable for bacteroid 
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development in other legumes that do not produce NCR peptides (Karunakaran et al., 

2010; Maruya and Saeki, 2010). 

 

 

 

Fig 1.8 Requirement of BacA on NCR peptide-producing M. truncataula/Pisum 

sativum or non-NCR peptide producing P. vulgaris. Reproduced from Haag et al., 

2011. 

 

 

It is not known how BacA confers resistance to NCR peptides but it might provide 

protection via its ability to import peptides. Disruption of bacA in S. meliloti caused 

increased resistance to several classes of antibiotics with an intracellular target 

(Ichige and Walker, 1997; Ferguson et al., 2002; Karunakaran et al., 2010) and it has 

been shown that uptake of the peptides Bac7 and bleomycin is dependent on BacA 

(Marlow et al., 2009; Wehmeier et al., 2010). One model that explains how uptake of 

antimicrobial peptides could confer resistance has been described for the human 

pathogen Haemophilus influenzae (Shelton et al., 2011). In H. influenzae, the sap 

(sensitivity to antimicrobial peptides) operon encodes an inner membrane ABC-type 

transport system that has been shown to import and confers resistance to certain 

antimicrobial peptides. The same antimicrobial peptides tested for transport were 

also shown to be degraded by proteases in the cytoplasm of H. influenza and so it 

was proposed that the Sap transporter imports antimicrobial peptides to the 

cytoplasm where they can be subsequently inactivated (Shelton et al., 2011). 
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1.4.5 Requirement and transport of metals 

 

Despite metals being essential to processes integral to nodule colonisation and N2 

fixation, little is known about how and when these metals are acquired. What is 

known about transport of iron (Fe), zinc (Zn), molybdate (Mo), manganese (Mn) and 

magnesium (Mg) during symbiosis is summarised below. 

 

Since the evolution of oxygenic-photosynthesis, the predominant state of Fe 

switched from soluble ferrous iron (Fe
2+

) to extremely insoluble ferric iron (Fe
3+

) 

(Andrews et al., 2003). To increase the solubility of Fe
3+

, plants produce various 

molecules, like nicotianamine and citrate, to form Fe-chelator complexes (Conte and 

Walker, 2011; Takanashi et al., 2013). A gene encoding a Fe-citrate transporter in L. 

japonicus, LjMATE1, was found to be specifically induced during nodule formation 

and its suppression caused a high accumulation of Fe in the nodule-root junction but 

low amounts of Fe in whole nodule. Suppression of this gene led to poor plant 

growth as a result of poor N2 fixation (~50% reduced compared to wild type). It was 

suggested that LjMATE mediates Fe-citrate transport by releasing Fe-citrate into the 

apoplast of nodules (Takanashi et al., 2013). 

 

One Fe
2+

 transporter (GmDmt1) belonging to the Nramp/Dmt1 family, has been 

found localised to the symbiosome membrane in G. max (Kaiser et al., 2003). 

Another plant-encoded transporter that is expressed in infected-nodule cells is SEN1, 

identified in L. japonicus SEN1 is a hypothetical Fe/Mn transporter (homologous to 

vacuolar Fe/Mn transporters in Saccharomyces cerevisiae and Arabidopsis thaliana) 

(Hakoyama et al., 2012). Disruption of SEN1 caused a Fix
-
 phenotype, with nodules 

containing small and senescent bacteroids (Hakoyama et al., 2012). Further work is 

needed to confirm SEN1 as a Fe transporter and to identify its precise location in the 

nodule. The data mentioned, together with the spatio-temporal distribution of Fe in 

M. truncatula nodules detected by synchrotron X-ray fluorescence, come together in 

a simple model that describes how Fe is delivered to symbiosome (Rodriguez-Haas 

et al., 2013). In this model Fe is released from the vasculature tissue into the apoplast 

of the infection zone. Infected cells subsequently import Fe from the apoplast into 
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the cytosol. Once in the cytosol, Fe is transported into the symbiosome (Rodriguez-

Haas et al., 2013). 

 

Fe-requiring metalloproteins in bacteroids include nitrogenase and cytochromes. 

Regulation of Fe homeostasis has been studied in R. leguminosarum, S. meliloti and 

B. japonicum (Hamza et al., 2000; Chao et al., 2005; Viguier et al., 2005; Rodionov 

et al., 2006; Todd et al., 2006; Yang et al., 2006; Johnston et al., 2007; Small et al., 

2009; Hohle and O'Brian, 2010) but will not be discussed here (for a review see 

Johnston et al., 2007). Instead, the focus will be on bacterial Fe transporters required 

during symbiosis. 

 

The only Fe uptake system found to be required by bacteroids is formed by FegA 

and FegB in Bradyrhizobium japonicum 61A152 (Benson et al., 2005). The FegAB 

complex is an outermembrane receptor for the Fe-siderophore complex, Fe
3+

-

ferrichrome, and is dependent on the TonB energy-transducing complex (Andrews et 

al., 2003; Benson et al., 2005). On G. max, disruption of the fegAB operon resulted 

in an absence of bacteroid-containing symbiosomes despite the normal appearance of 

infection threads. Even though FegB was required for Fe
3+

-ferrichrome uptake, the 

symbiotic phenotype could be complemented by just fegA-expression and disruption 

of fegB alone did not cause a symbiotic phenotype. Furthermore, ferrichrome or any 

related hydroxamate has not been found in B. japonicum 61A152 (Guerinot et al., 

1990) and there is no evidence that it is produced in plants (Benson et al., 2005). 

Together with the experimental data, it was concluded that the requirement of FegA 

for symbiosis was independent of Fe
3+

-ferrichrome uptake and is either involved in 

signal transduction (Schalk et al., 2004) or is the receptor for another compound 

(Benson et al., 2005). Consequently, the Fe transporters required by bacteroids for 

symbiosis remain unknown. 

 

A Zn
2+ 

transporter in G. max, GmZIP1, is located on the symbiosome membrane 

(Moreau et al., 2002) but no Zn
2+

 transporters have been characterised in rhizobia. 

 

Molybdate (Mo) is utilised in the FeMoCo in nitrogenase. The ABC-type 

transporter, ModABC, has been characterised as a molybdate transporter in B. 
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japonicum and disruption of modABC caused a reduction in N2 fixation (Delgado et 

al., 2006).  

 

There have been several studies into the role of bacterial Mn
2+

 transporters during 

symbiosis. Some studies suggest that high-affinity Mn
2+

 transporters are critical 

during bacteroid development while others show they are dispensable (Platero et al., 

2003; Chao et al., 2004; Davies and Walker, 2007a, b; Hohle and O'Brian, 2009). 

The role of Mn
2+

 and requirement of Mn
2+

 transporters during legume-rhizobia 

symbioses is discussed in detail in Chapter four. 

 

Little is known about the transport of Mg
2+

 into bacteroids despite its importance as 

a cofactor for ATP and many cellular functions (Smith and Maguire, 1998; Moomaw 

and Maguire, 2008). Only one putative Mg
2+ 

channel, found in R. leguminosarum, 

has been shown to be required for N2 fixation (Karunakaran et al., 2009). This 

channel is discussed in Chapter five. 

 

1.4.6 Low O2 

 

As mentioned previously, the nodule provides a low O2 environment to allow O2-

sensitive nitrogenase to function. Plants synthesis leghemaglobin to buffer O2 levels 

in the nodule but rhizobia still need to adapt to survive in the low O2 environment. 

The major adaptation is the synthesis of a Cu-containing, cytochrome cbb3-type 

oxidase that is essential for respiration under low O2 (Delgado et al., 1998). The 

terminal oxidase has a high-affinity for O2 and is encoded by fixNOPQ. The operon 

fixGHIS is in close proximity to fixNOPQ and encodes the machinery required for 

Cu-delivery to FixNOPQ (Thony-Meyer, 1997). 

 

In B. japonicum, disruption of the fixNOPQ or fixGHIS operons caused a Fix
-
 

phenotype (Preisig et al., 1993; Preisig et al., 1996). S. meliloti 2011 has two copies 

of the fixNOPQ operon and both had to be deleted to cause a Fix
- 

phenotype 

(Renalier et al., 1987); a deletion of fixGHIS in S. meliloti also caused a Fix
-
 

phenotype (Kahn et al., 1989). R. leguminosarum and R. etli also have two copies of 

fixNOPQ. In R. leguminosarum, only when both fixNOPQ operons were disrupted 
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was a Fix
- 

phenotype seen (Schluter et al., 1997). In R. etli, one of the fixNOPQ 

operons lies on the symbiotic plasmid (fixNOPQd) and the other is located on 

plasmid p42f (fixNOPQf); disruption of fixNOPQd alone caused a Fix
- 
phenotype on 

P. vulgaris (Girard et al., 2000; Lopez et al., 2001).  

 

Contrary to the above, deletion of fixNO in A. caulinodans only resulted in a 50% 

reduction in N2 fixation on S. rostrata, furthermore, N2 fixation was only mildly 

reduced in free-living cells (Mandon et al., 1994). This suggests that fixNOPQ is not 

as critical for A. caulinodans as it is for other rhizobia and is suggestive of an 

unidentified, alternative terminal oxidase that can partially compensate for the loss of 

FixNOPQ (Mandon et al., 1994). Disruption of fixGHI in A. caulinodans did not 

affect symbiotic N2 fixation, and is again suggestive of an alternative assembly 

mechanism (Mandon et al., 1993). 

 

Regulation of fixNOPQ and fixGHIS is complex and differs between rhizobia. For 

this reason, regulation will be discussed separately in Chapter six. 

 

 

1.5 TRANSCRIPTOMIC PROFILING OF RHIZOBIA DURING 

BACTEROID DEVELOPMENT 

 

Microarray analyses of R. leguminosarum bv. viciae 3841 (Rlv3841) during 

symbiosis with P. sativum has furthered our understanding of the physiological and 

regulatory responses of rhizobia during bacteroid development (Karunakaran et al., 

2009). Transcriptomic profiles of bacteroids isolated from nodules at 7, 15, 21 and 

28 days post inoculation (dpi) were compared to free-living cells grown in minimal 

medium. Many of the bacteria isolated from nodules 7dpi were likely to be 

developing bacteroids relative to the high number of mature bacteroids that would be 

in older nodules. Hierarchical clustering analysis (Fig 1.9) supported this and 

showed that bacteria isolated from nodules 7 dpi formed a separate branch from 

those isolated at 15, 21, and 28 dpi. This implies that the transcriptome of developing 

bacteroids is very different from mature bacteroids and furthermore, there are a 

significant number of genes that are specifically upregulated in developing 
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bacteroids. Many of these genes are likely to be involved in understudied processes 

integral to nodule colonisation or required for bacteroid development. 

 

A similar study of the S. meliloti-M. sativa symbiosis revealed that bacteroids 

isolated from young nodules (5 dpi) again formed a separate branch from those 

isolated from older nodules (8-18 dpi), highlighting a strong distinction between the 

gene expression profiles of developing and mature bacteroids (Capela et al., 2006).  

 

 

 

Fig 1.9 Tree showing hierarchal clustering of gene expression in developing and 

mature bacteroids isolated from nodules at 7, 15, 21 and 28 dpi. Red indicates highly 

expressed, yellow intermediate and blue low. Reproduced from Karunakaran et al., 

2009. 
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1.6 RESEARCH OBJECTIVES 

 

The organism used in this study was primarily R. leguminosarum bv. viciae 3841 

due to the wealth of transcriptomic data available for this strain (compiled by the 

Philip Poole lab) and its compatibility with two important crop legumes: P. sativum 

(pea) and V. faba (broad bean).  The preliminary objective was to determine the 

requirement of genes specifically upregulated in developing bacteroids. This was 

achieved by targeted mutagenesis and the screening of mutants on P. sativum. 

 

After screening, five aspects of bacteroid development were selected for further 

investigation. The requirement of two types of Mn
2+

 transport systems during the 

colonisation of both indeterminate and determinate nodules is explored in Chapter 

four. Chapter five focuses on the characterisation of a Mg
2+

 channel and its 

requirement on different legume-hosts. In Chapter six, the regulatory pathways that 

govern the expression of genes essential to N2 fixation are investigated. Chapter 

seven looks at organic peroxide resistance and the function of two organic 

peroxidases. Chapter eight examines the role of two plasmid-encoded proteases in 

bacteroids. Thus, this study aims to provide a holistic insight into bacteroid 

development and enhance our understanding of what is required for an effective 

symbiosis. 
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Chapter 2: Materials and Methods 

 

2.1 MEDIA, ANTIBIOTICS AND OTHER CHEMICALS 

 

2.1.1 Media 

For routine growth, R. leguminosarum strains were grown at 28
o
C in tryptone-yeast 

(TY) broth [5 g.l
-1

 tryptone, 3 g.l
-1

 yeast, 6 mM CaCl2] (Beringer, 1974) with 

shaking at 250 rpm. For solid TY medium, agar (1.75% w/v) was added prior to 

autoclaving. Solid TY medium was supplemented with 50 µM MnSO4 when 

growing the double manganese mutants i.e. LMB466 (sitA:pK19mob mntHΩSpc), 

LMB539 (RlvA34 sitA:pK19mob mntHΩSpc) and LMB630 (Rlp4292 sitAΩKm 

mntHΩSpc). 

 

When a defined medium was required, R. leguminosarum strains were grown on acid 

minimal salts (AMS). One litre of AMS contains 0.5 ml 1 M K2HPO4, 0.5 g 

MgSO4.7H2O, 0.2 g NaCl, 4.19 g MOPS buffer, 1 ml Rhizobium solution A 

(containing 15 g EDTA-Na2, 0.16 g ZnSO4.7H2O, 0.2 g NaMoO4, 0.25 g H3BO3, 0.2 

g MnSO4.4H2O, 0.02 g CuSO4.5H2O, 0.001 g CoCl2.6H2O per litre) and 2 ml 

Rhizobium solution B (containing 1.28 g CaCl2.2H2O, 0.33 g FeSO4.7H2O per 100 

ml) adjusted to pH 7.0. After autoclaving, 1 ml Rhizobium solution C (containing 1 g 

thiamine hydrochloride, 2 g D-Pantothenic acid Ca salt, 0.001 g Biotin per litre) was 

added (Poole et al., 1994). Glucose (10 mM) and NH4Cl (10 mM) were filter 

sterilised using a 0.22 µm filter (Millipore) and added to AMS medium. 

Modifications made to AMS to test growth of mutant R. leguminosarum strains are 

stated in Chapters four and five. 

 

E. coli strains were grown at 37
o
C in Luria Bertani (LB) broth [10 g.l

-1 
tryptone, 5 

g.l
-1

 yeast extract, 5 g.l
-1

 NaCl], with shaking at 250 rpm. For solid medium, agar 

(1.4% w/v) was added prior autoclaving. Solid LB medium was supplemented with 

100 mM MgSO4 when growing the E. coli triple gene knock-out strain (ΔmgtA 

ΔcorA ΔyhiD) (Hattori et al., 2009). 
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All bacterial strains constructed in this study were stocked in 15% v/v glycerol, snap 

frozen in liquid nitrogen and stored at -80
o
C. 

 

2.1.2 Antibiotics and other chemicals 

 

Where appropriate, antibiotics were added to media at the concentrations listed in 

Table 2.1. For R. leguminosarum bv. phaseoli, antibiotics were added at the same 

concentration as they were for R. leguminosarum bv. viciae, with the omission of 

streptomycin; instead of streptomycin, rifampicin was used a 10 µg/ml. 

 

Where blue-white screening could be used for screening E. coli transformants, X-gal 

(5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) was added to solid LB medium 

at 40 µg/ml. 

 

 

 Concentrations (µg/ml) 

Antibiotic E. coli R. leguminosarum bv. viciae 

Ampicillin (Amp) 100 - 

Gentamicin (Gm) 10 20 

Kanamycin (Km) 20 - 

Neomycin (Neo) - 80
a 

Spectinomycin (Spc) 50 100 

Streptomycin (Str) - 500 

Tetracycline (Tc) 10 2 

 

Table 2.1 Concentrations of antibiotics used for E. coli and R. leguminosarum. 

a
 Neomycin was added at 250 µg/ml when used to select for pRU877- and 

pK19mob-integration. 
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2.2 BACTERIAL STRAINS, PLASMIDS, BACTERIOPHAGE AND 

PRIMERS 

 

2.2.1 Strains 

 

All R. leguminosarum strains used for this thesis are listed and referenced in Table 

2.2. Nomenclature for mutations can be found in Abbreviations. 

 

Strain Description Reference 

Rlv300 Wild type R. leguminosarum bv. viciae; Str
s 

Johnston and 

Beringer, 

1975 

Rlv3841 
Wild type R. leguminosarum bv. viciae; Str

r
 derivative of 

strain Rlv300; Str
r
 

Johnston and 

Beringer, 

1975 

J325 R. leguminosarum bv. viciae J251; murΩSpc; Spc
r Wexler et al., 

2001 

RlvA34 
R. leguminosarum bv. viciae formerly known as 

8401/pRL1JI 

Downie et al., 

1983 

Rlp4292 
Derivative of field bean isolate 8002 with sym plasmid 

pRP2J1; Rif
r
 

Lamb et al., 

1982 

LMB338 
pLMB305 integrated into Rlv300; pRL100224:pRU877; 

Neo
r
 

This study 

LMB340 
pLMB176 integrated into Rlv300; RL3152:pRU877; 

Neo
r
 

This study 

LMB343 
pLMB212 integrated into Rlv300; RL1485:pRU877; 

Neo
r
 

This study 

LMB347 
pLMB208 integrated into Rlv3841; pRL90266:pRU877; 

Neo
r
 

This study 

LMB348 
pLMB209 integrated into Rlv3841; pRL90226:pRU877; 

Neo
r
 

This study 

LMB349 
pLMB211 integrated into Rlv3841; RL3273:pRU877; 

Neo
r
 

This study 

LMB351 
pLMB187 integrated into Rlv3841; 

pRL120695:pRU877; Neo
r
 

This study 

LMB354 
pLMB216 integrated into Rlv3841; pRL90056:pRU877; 

Neo
r
 

This study 

LMB360 
pLMB469 integrated into Rlv3841; RL2022:pK19mob; 

Neo
r
 

This study 

LMB361 
pLMB246 integrated into Rlv3841; RL0447:pRU877; 

Neo
r
 

This study 

LMB363 
pLMB440 integrated into Rlv3841; RL0940:pK19mob; 

Neo
r
 

This study 

LMB364 pLMB452 integrated into Rlv3841; RL3884:pK19mob; This study 
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Neo
r
 

LMB365 
pLMB186 integrated into Rlv3841; pRL80012:pRU877; 

Neo
r
 

This study 

LMB366 
pLMB306 integrated into Rlv3841; RL1317:pRU877; 

Neo
r
 

This study 

LMB367 
pLMB248 integrated into Rlv3841; RL0262:pRU877; 

Neo
r
 

This study 

LMB369 
pLMB502 integrated into Rlv3841; 

pRL80060:pK19mob; Neo
r
 

This study 

LMB372 
pLMB202 integrated into Rlv3841; RL1302:pRU877; 

Neo
r
 

This study 

LMB374 
pLMB185 integrated into Rlv3841; pRL90025:pRU877; 

Neo
r
 

This study 

LMB375 
pLMB206 integrated into Rlv3841; RL0472:pRU877; 

Neo
r
 

This study 

LMB376 
pLMB329 integrated into Rlv3841; RL2307:pRU877; 

Neo
r
 

This study 

LMB377 
pLMB177 integrated into Rlv3841; RL2927:pRU877; 

Neo
r
 

This study 

LMB378 
pLMB189 integrated into Rlv3841; 

pRL110033:pRU877; Neo
r
 

This study 

LMB385 
pLMB215 integrated into Rlv3841; 

pRL110377:pRU877; Neo
r
 

This study 

LMB391 
pLMB433 integrated into Rlv3841; 

pRL110287:pK19mob; Neo
r
 

This study 

LMB392 
pLMB430 integrated into Rlv3841; RL1880:pK19mob; 

Neo
r
 

This study 

LMB396 
pLMB434 integrated into Rlv3841; RL4103:pK19mob; 

Neo
r
 

This study 

LMB397 
pLMB428 integrated into Rlv3841; RL2925:pK19mob; 

Neo
r
 

This study 

LMB398 
pLMB432 integrated into Rlv3841; RL1631:pK19mob; 

Neo
r
 

This study 

LMB400 
pLMB454 integrated into Rlv3841; RL2924:pK19mob; 

Neo
r
 

This study 

LMB401 
pLMB456 integrated into Rlv3841; RL0390:pK19mob; 

Neo
r
 

This study 

LMB402 
pLMB457 integrated into Rlv3841; 

pRL120362:pK19mob; Neo
r
 

This study 

LMB403 
pLMB441 integrated into Rlv3841; RL1879:pK19mob; 

Neo
r
 

This study 

LMB404 
pLMB427 integrated into Rlv3841; RL1226:pK19mob; 

Neo
r
 

This study 

LMB410 
pLMB467 integrated into Rlv3841; RL3688:pK19mob; 

Neo
r
 

This study 

LMB411 
pLMB429 integrated into Rlv3841; 

pRL90060:pK19mob; Neo
r
 

This study 

LMB421 
pLMB207 integrated into Rlv3841; 

pRL90278:pK19mob; Km
r
 

This study 
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LMB423 
RL4272:pRU877 transduced from LMB384 into 

Rlv3841; Neo
r This study 

LMB425 
pLMB243 integrated into Rlv3841; 

pRL110623:pK19mob; Neo
r
 

This study 

LMB440 
pLMB245 integrated into Rlv3841; 

pRL110055:pK19mob; Neo
r
 

This study 

LMB441 
pLMB335 integrated into Rlv3841; RL3783:pK19mob; 

Neo
r
 

This study 

LMB448 
mgtE::mTn5 transduced from RU4107 into Rlv3841; 

Neo
r This study 

LMB449 
pRL100036:mTn5 transduced from RU4067 into 

Rlv3841; Neo
r This study 

LMB457 
pLMB540 integrated into Rlv3841; 

pRL100035:pK19mob; Neo
r
 

This study 

LMB458 
pLMB541 integrated into Rlv3841; 

pRL80013:pK19mob; Neo
r
 

This study 

LMB549 
pLMB542 integrated into Rlv3841; 

pRL100112:pK19mob; Neo
r
 

This study 

LMB460 pLMB546 conjugated into Rlv3841; mntHΩSpc; Spc
r 

This study 

LMB466 
mntHΩSpc transduced from LMB460 into LMB364 

(sitA:pK19mob); Neo
r
 Spc

r This study 

LMB472 
pLMB568 (pJP2pRL100036) conjugated in RU4067; 

Neo
r 
Tc

r This study 

LMB481 
pLMB576 (pJP2mgtE) conjugated into RU4107; Neo

r
 

Tc
r
 

This study 

LMB482 
pLMB578 conjugated into Rlv3841; ΔpRL100036-

35ΩSpc; Spc
r This study 

LMB489 
pLMB455 integrated into Rlv3841; RL1107:pK19mob; 

Neo
r
 

This study 

LMB495 pLMB590 conjugated into Rlv3841; fixLΩSpc; Spc
r 

This study 

LMB496 
pLMB441 integrated into LMB495; RL1879:pK19mob 

fixLΩSpc; Neo
r
 Spc

r This study 

LMB497 
pLMB596 integrated into Rlv3841; oxyR:pK19mob; 

Neo
r
 

This study 

LMB498 pLMB597 conjugated into Rlv3841; sitA-gusA; Tc
r 

This study 

LMB505 pLMB600 conjugated into Rlv3841; mntH-gusA; Tc
r
 This study 

LMB506 pLMB599 conjugated into Rlv3841; pspAΩSpc; Spc
r 

This study 

LMB511 pLMB597 conjugated into LMB497; sitA-gusA; Tc
r 

This study 

LMB512 pLMB600 conjugated into LMB497; mntH-gusA; Tc
r
 This study 

LMB519 Rlv3841; RL1329ΩSpc Unpublished 

LMB523 Rlv3841; pRL90059:pK19mob RL1329ΩSpc Unpublished 

LMB525 
sitA:pK19mob transduced from LMB364 into RlvA34; 

Neo
r
 

This study 

LMB526 mntHΩSpc transduced from LMB460 into RlvA34; Spc
r
 This study 

LMB539 
sitA:pK19mob transduced from LMB364 into LMB526; 

Neo
r
 Spc

r
 

This study 
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LMB541 pLMB546 integrated into Rlp4292; mntHΩSpc; Spc
r
 This study 

LMB550 pLMB597 conjugated into J325; sitA-gusA; Tc
r 

This study 

LMB551 pLMB600 conjugated into J325; mntH-gusA; Tc
r
 This study 

LMB571 
ΔpRL100036-35ΩSpc transduced from LMB482 into 

LMB458 (pRL80013:pK19mob); Neo
r 
Spc

r This study 

LMB603 pLMB692 conjugated into Rlv3841; RL1302ΩSpc
; 
Spc

r 
This study 

LMB620 
RL2927:pRU877 transduced from LMB377 into 

LMB603; Neo
r 
Spc

r
 

This study 

LMB624 pLMB694 conjugated into 4292; sitAΩKm; Neo
r 

This study 

LMB630 
pLMB694 conjugated into LMB541; sitAΩKm 

mntHΩSpc; Neo
r
 Spc

r
 

This study 

LMB648 pLMB733 conjugated into Rlv3841; fnrNΩTc; Tc
r
  This study 

LMB673 
fnrNΩTc transduced from LMB648 into LMB496; 

RL1879:pK19mob fixLΩSpc fnrNΩTc; Km
r
 Spc

r
 Tc

r
 

This study 

LMB683 
pLMB766 (pJP2mntH) conjugated into LMB466 

(sitA:pK19mob mntHΩSpc); Neo
r 
Spc

r
 Tc

r
 

This study 

LMB730 
pLMB733 conjugated into LMB403; RL1879:pK19mob 

fnrNΩTc; Neo
r 
Tc

r This study 

LMB731 
pLMB733 conjugated into LMB495; fixLΩSpc 

fnrNΩTc; Spc
r 
Tc

r This study 

RU4040 Rlv3841 (bacA:pK19mob); Neo
r Karunakaran 

et al., 2010 

RU4067 Rlv3841 pRL100036::mTn5; Neo
r Karunakaran 

et al., 2009 

RU4107 Rlv3841 mgtE::mTn5; Neo
r
 

Karunakaran 

et al., 2009 

RU4260 Rlv300; RL4274:pK19mob; Neo
r Ramachandra

n et al., 2011 

RU4314 Rlv3841; pRL90059:pK19mob Unpublished
 

 

Table 2.2 R. leguminosarum strains. All strains referenced as unpublished were 

constructed by the Philip Poole group. 
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All E. coli K-12 strains used for this thesis are listed and referenced in Table 2.3 

 

Strain Description Reference 

DH5α 

F
-
 deoR endA1 recA1 relA1 gyrA96 

hsdR17(rk
-
, mk

+
) supE44 thi-1 phoA 

Δ(lacZYA-argF)U169 Φ80lacZΔM15 λ
-
 

Bioline 

Mg Triple KO 

strain 
ΔmgtA  ΔcorA  ΔyhiD 

Hattori et al., 

2009 

LMB469 
pRK415 transformed into Mg Triple KO 

strain; Tc
r This study 

LMB470 

pLMB562 (pRK415mgtE) transformed into 

Mg Triple KO strain; mgtE in same orientation 

as lac promoter; Tc
r
 

This study 

LMB471 

pLMB565 (pRK415mgtE) transformed into 

Mg Triple KO strain; mgtE in reverse 

orientation as lac promoter; Tc
r
 

This study 

 

Table 2.3 E. coli strains. 
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2.2.2 Plasmids 

 

All plasmids used for this thesis are listed and referenced in Table 2.4. 

 

Plasmid Description Reference  

pJET 1.2/Blunt PCR product cloning vector; Amp
r
 Fermentas 

pK19mob 

Mobilisable vector used for integration 

mutagenesis; pMB1 replicon, RP4 mob, lacZα. 

Km
r
 Neo

r 

Schafer et al., 

1994 

pRU877 gusA in pK19mob; Km
r Lodwig et al., 

2004 

pRK2013 Helper plasmid; triparental conjugation; Km
r Ditta et al., 

1980 

pRK415 Broad-host-range plasmid 
Keen et al., 

1988 

pJP2 
Wide-host-range stable gusA transcriptional 

promoter probe vector; Tc
r
 

Prell et al., 

2002 

pHP45Ω-Spc 

pBR322 derivative carrying Ω interposon 

spectinomycin resistance cassette, pHP45 

replicon; Amp
r
 Spc

r
 

Fellay et al., 

1987 

pHP45Ω-Km 

pBR322 derivative carrying Ω interposon 

kanamycin resistance cassette pHP45 replicon; 

Amp
r
 Km

r
 

Fellay et al., 

1987 

pHP45Ω-Tc 

pBR322 derivative carrying Ω interposon 

tetracycline resistance cassette pHP45 

replicon; Amp
r
, Tc

r 

Fellay et al., 

1987 

pJQ200SK 
pACYC derivative, P15A origin of replication; 

Gm
r
 

Quandt and 

Hynes, 1993 

pLMB176 

Internal fragment of RL3152 PCR amplified 

with primers pr0426-27 cloned into pRU877 at 

XbaI; Km
r
 

This study 

pLMB177 

Internal fragment of RL2927 PCR amplified 

with primers pr0429-30 cloned into pRU877 at 

XbaI; Km
r 

This study 

pLMB185 

Internal fragment of pRL90025 PCR amplified 

with primers pr0516-17 cloned into pRU877 at 

XbaI; Km
r
 

This study 

pLMB186 

Internal fragment of pRL80012 PCR amplified 

with primers pr0519-20 cloned into pRU877 at 

XbaI; Km
r
 

This study 

pLMB187 

Internal fragment of pRL120695 PCR 

amplified with primers pr0522-23 cloned into 

pRU877 at XbaI; Km
r
 

This study 

pLMB189 

Internal fragment of pRL110033 PCR 

amplified with primers pr0537-38 cloned into 

pRU877 at XbaI; Km
r
 

This study 
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pLMB202 

Internal fragment of RL1302 PCR amplified 

with primers pr0483-84 cloned into pRU877 at 

XbaI; Km
r
 

This study 

pLMB206 

Internal fragment of RL0472 PCR amplified 

with primers pr0498-99 cloned into pRU877 at 

XbaI; Km
r
 

This study 

pLMB207 

Internal fragment of pRL90278 PCR amplified 

with primers pr0504-05 cloned into pRU877 at 

XbaI; Km
r
 

This study 

pLMB208 

Internal fragment of pRL90266 PCR amplified 

with primers pr0507-08 cloned into pRU877 at 

XbaI; Km
r
 

This study 

pLMB209 

Internal fragment of pRL90226 PCR amplified 

with primers pr0510-11 cloned into pRU877 at 

XbaI; Km
r
 

This study 

pLMB211 

Internal fragment of RL3273 PCR amplified 

with primers pr0546-47 cloned into pRU877 at 

XbaI; Km
r
 

This study 

pLMB212 

Internal fragment of RL1485 PCR amplified 

with primers pr0549-50 cloned into pRU877 at 

XbaI; Km
r
 

This study 

pLMB215 

Internal fragment of pRL110377 PCR 

amplified with primers pr0561-62 cloned into 

pRU877 at XbaI; Km
r
 

This study 

pLMB216 

Internal fragment of pRL90056 PCR amplified 

with primers pr0564-65 cloned into pRU877 at 

XbaI; Km
r
 

This study 

pLMB243 

Internal fragment of pRL110623 PCR 

amplified with primers pr0528-29 cloned into 

pRU877 at XbaI; Km
r
 

This study 

pLMB245 

Internal fragment of pRL110055 PCR 

amplified with primers pr0534-35 cloned into 

pK19mob at XbaI; Km
r
 

This study 

pLMB246 

Internal fragment of RL0447 PCR amplified 

with primers pr0543-44 cloned into pRU877 at 

XbaI; Km
r
 

This study 

pLMB248 

Internal fragment of RL0262 PCR amplified 

with primers pr0610-11 cloned into pRU877 at 

XbaI; Km
r
 

This study 

pLMB305 

Internal fragment of pRL100224 PCR 

amplified with primers pr0552-53 cloned into 

pRU877 at XbaI; Km
r
 

This study 

pLMB306 

Internal fragment of RL1317 PCR amplified 

with primers pr0613-14 cloned into pRU877 at 

XbaI; Km
r
 

This study 

pLMB329 

Internal fragment of RL2307 PCR amplified 

with primers pr0540-41 cloned into pRU877 at 

XbaI; Km
r 

This study 

pLMB335 Internal fragment of RL3783 PCR amplified This study 
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with primers pr0355-56 cloned into pRU877 at 

XbaI; Km
r
 

pLMB427 

Internal fragment of RL1226 PCR amplified 

with primers pr0990-91 cloned into pK19mob 

at XbaI; Km
r
 

This study 

pLMB428 

Internal fragment of RL2925 PCR amplified 

with primers pr0976-77 cloned into pK19mob 

at XbaI; Km
r
 

This study 

pLMB429 

Internal fragment of pRL90060 PCR amplified 

with primers pr1000-01 cloned into pK19mob 

at XbaI; Km
r
 

This study 

pLMB430 

Internal fragment of RL1880 PCR amplified 

with primers pr0986-97 cloned into pK19mob 

at XbaI; Km
r
 

This study 

pLMB432 

Internal fragment of RL1631 PCR amplified 

with primers pr1016-17 cloned into pK19mob 

at XbaI; Km
r
 

This study 

pLMB433 

Internal fragment of pRL110287 PCR 

amplified with primers pr1008-09 cloned into 

pK19mob at XbaI; Km
r
 

This study 

pLMB434 

Internal fragment of RL4103 PCR amplified 

with primers pr0968-69 cloned into pK19mob 

at XbaI; Km
r
 

This study 

pLMB440 

Internal fragment of RL0940 PCR amplified 

with primers pr0996-97 cloned into pK19mob 

at XbaI; Km
r
 

This study 

pLMB441 

Internal fragment of RL1879 PCR amplified 

with primers pr0988-89 cloned into pK19mob 

at XbaI; Km
r
 

This study 

pLMB452 

Internal fragment of RL3884 PCR amplified 

with primers pr0970-71 cloned into pK19mob 

at XbaI; Km
r
 

This study 

pLMB454 

Internal fragment of RL2924 PCR amplified 

with primers pr0978-79 cloned into pK19mob 

at XbaI; Km
r
 

This study 

pLMB455 

Internal fragment of RL1107 PCR amplified 

with primers pr0992-93 cloned into pK19mob 

at XbaI; Km
r
 

This study 

pLMB456 

Internal fragment of RL0390 PCR amplified 

with primers pr0998-99 cloned into pK19mob 

at XbaI; Km
r
 This study 

This study 

pLMB457 

Internal fragment of pRL120362 PCR 

amplified with primers pr1004-05 cloned into 

pK19mob at XbaI; Km
r
 

This study 

pLMB467 

Internal fragment of RL3688 PCR amplified 

with primers pr0972-73 cloned into pK19mob 

at XbaI; Km
r
 

This study 

pLMB469 
Internal fragment of RL2022 PCR amplified 

with primers pr0984-85 cloned into pK19mob 
This study 
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at XbaI; Km
r
 

pLMB502 

Internal fragment of pRL80060 PCR amplified 

with primers pr1115-16 cloned into pK19mob 

at XbaI; Km
r
 

This study 

pLMB540 

Internal fragment of pRL100035 PCR 

amplified with primers pr1189-90cloned into 

pK19mob at XbaI; Km
r
 

This study 

pLMB541 

Internal fragment of pRL80013 PCR amplified 

with primers pr1192-93 cloned into pK19mob 

at XbaI; Km
r
 

This study 

pLMB542 

Internal fragment of pRL100112 PCR 

amplified with primers pr1195-96 cloned into 

pK19mob at XbaI; Km
r
 

This study 

pLMB543 
mntH (RL0940) PCR amplified with primers 

pr1186-87 cloned into pJET1.2/Blunt; Amp
r
 

This study 

pLMB544 

pHP45 ΩSpc (SmaI fragment) cloned into 

pLMB543 (pJET1.2/Blunt- mntH) at EcoRV; 

Amp
r 
Spc

r
 

This study 

pLMB546 
mntHΩSpc from XbaI/XhoI digested 

pLMB544 cloned into pJQ2OOSK; Gm
r 
Spc

r
 

This study 

pLMB553 

mgtE (RL1461) PCR amplified with primers 

pr1241 and pr1242 cloned into  pJET1.2/Blunt; 

Amp
r
 

This study 

pLMB554 

Internal fragment of pRL100036 PCR 

amplified with primers pr1247 and pr1248 

cloned into pJET1.2/Blunt; Amp
r
 

This study 

pLMB555 

Internal fragment of pRL100035 PCR 

amplified with primers pr1249 and pr1250 

cloned into pJET1.2/Blunt; Amp
r
 

This study 

pLMB562 

mgtE-containing BglII fragment cut from 

pLMB553 cloned into pRK415 at BamHI; 

mgtE in same orientation as lac promoter; Tc
r 

This study 

pLMB565 

mgtE-containing BglII fragment cut from 

pLMB553 cloned into pRK415 at BamHI; 

mgtE in reverse orientation as lac promoter; 

Tc
r
 

This study 

pLMB566 

XhoI/BamHI fragment containing internal 

fragment of pRL100036 cut from pLMB554 

and cloned into XhoI/BamHI digested 

pJQ200SK; Gm
r 

This study 

pLMB567 

BamHI/XbaI fragment containing internal 

fragment of pRL100035 cut from pLMB555 

and cloned into BamHI/XbaI digested 

pLMB566; Gm
r 

This study 

pLMB569 

mgtE (RL1461) PCR amplified with primers 

pr1240 and pr1265 cloned into pJET1.2/Blunt; 

Amp
r
 

This study 

pLMB576 
mgtE from XbaI/KpnI diegested pLMB569 

cloned into pJP2 XbaI/KpnI; Tc
r
 

This study 
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pLMB578 
BamHI fragment containing ΩSpc cloned into 

BamHI digested pLMB567; Gm
r 
Spc

r This study 

pLMB581 
fixL PCR amplified with primers pr1270-71 

cloned into pJET1.2/Blunt; Amp
r
 

This study 

pLMB585 
fixL from XbaI/XhoI digested pLMB581 

cloned into pJQ2OOSK XbaI/XhoI; Gm
r
 

This study 

pLMB590 
ΩSpc from SmaI digested pHP45 cloned into 

pJQ200SK- fixL at StuI (blunted); Gm
r
 Spc

r This study 

pLMB592 

Internal fragment of oxyR PCR amplified with 

primers pr1286-87 cloned into pJET1.2/Blunt; 

Amp
r
 

This study 

pLMB596 

Internal fragment of oxyR from XbaI/BglII 

digested pLMB592 cloned into pK19mob 

XbaI/BamHI; Km
r
 

This study 

pLMB597 
sitA promoter PCR amplified with pr1292-93 

cloned into pJP2 XbaI/HindIII; Tc
r
 

This study 

pLMB600 
mntH promoter PCR amplified with pr1290-91 

cloned into pJP2 XbaI/HindIII; Tc
r
 

This study 

pLMB677 
RL1302 PCR amplified with pr1385-86 cloned 

into pJET1.2/Blunt; Amp
r
 

This study 

pLMB679 

sitA PCR amplified from 4292 with primers 

pr1378 and pr1394 cloned into pJET1.2/Blunt; 

Amp
r
 

This study 

pLMB688 

ΩSpc from SmaI digested pHP45 cloned into 

pLMB677 (pJET1.2/Blunt- RL1302) at 

BmgBI; Amp
r 
Spc

r
 

This study 

pLMB691 

ΩKm from EcoRI digested pHP45ΩKm 

(blunted) cloned into pLMB679 SmaI; Amp
r
 

Km
r
    

This study 

pLMB692 

RL1302ΩSpc from XbaI/XhoI digested 

pLMB688 cloned into pJQ2OOSK XbaI/XhoI; 

Gm
r 
Spc

r
 

This study 

pLMB694 
sitAΩKm from XbaI/NotI digested pLMB691 

cloned into pJQ200SK (XbaI/NotI); Km
r
 Gm

r
 

This study 

pLMB732 
fnrN PCR amplified with primers pr1381-82 

cloned into pJQ200SK at XbaI/XhoI; Gm
r
 

This study 

pLMB733 

ΩKm from EcoRI digested pHP45ΩTc cloned 

into pLMB732 (pJQ200SK- fnrN) MfeI; Gm
r 

Tc
r 
 

This study 

pLMB766 
mntH PCR amplified with primers pr1290 and 

pr1462 cloned into pJP2 at XbaI/HindIII; Tc
r This study 

 

Table 2.4 Plasmids. 

 

 

 

 



43 

 

2.2.3 Bacteriophages 

 

R. leguminosarum bv. viciae was transduced using bacteriophage RL38 (Buchanan-

Wollaston, 1979) . 

 

2.2.4 Primers 

 

All primers used for this thesis are listed and referenced in Table 2.5. 

 

Primers Sequence Description 

M13uni (-21) TGTAAAACGACGGCCAGT 
Mapping/sequencing primer; 

pK19mob and pRU877 

M13rev (-29) CAGGAAACAGCTATGACC 
Mapping/sequencing primer; 

pK19mob and pRU877 

pK19/18A ATCAGATCTTGATCCCCTGC 
Mapping primer for pK19mob 

and pRU877 integration 

pK19/18B 
GCACGAGGGAGCTTCCAGG

G 

Mapping primer for pK19mob 

integration 

pr0095 
TGCATCGGCGAACTGATCG

TTA 

Mapping primer for pRU877 

integration 

pOT forward CGGTTTACAAGCATAAAGC 
Mapping primer; intersposon 

mutagenesis 

pOT 

forward_far 
GACCTTTTGAATGACCTTTA 

Mapping primer; intersposon 

mutagenesis 

pJET 1.2 For 
CGACTCACTATAGGGAGAG

CGGC 

Mapping/sequencing primer; 

pJET 1.2/Blunt 

pJET 1.2 

Rev 

AAGAACATCGATTTTCCAT

GGCAG 

Mapping/sequencing primer; 

pJET 1.2/Blunt 

p611 
GCGATCCAGACTGAATGCC

C 
Mapping primer; pJP2 

pr0096 
TCGTAAATGCTGGACCCGA

TGG 
Mapping primer; pJP2 

pr0355 
CTTCTCGAGCTCTAGATTGC

GCAATCACTGAACCAG 

Forward primer; BD cloning of 

RL3783 

pr0356 
ATTACCTCAGTCTAGAGAA

CAGCTTCGGGTTCACGA 

Reverse primer; BD cloning of 

RL3783 

pr0413 
GGGCGGCGTTCGGTTGCCG

AG 

Mapping primer for RL4103 

mutagenesis 

pr0416 GGGACGGACAAGATTGCC 
Mapping primer for RL3884 

mutagenesis 

pr0419 
GGCGGCCTGGCTCATGGCG

GA 

Mapping primer for RL3688 

mutagenesis 

pr0426 
CTTCTCGAGCTCTAGATCGC

ATTGATGACCGACCCG 

Forward primer; BD cloning of 

RL3152 
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pr0427 
ATTACCTCAGTCTAGAGCA

GGCCGCTATGGGTGAGC 

Reverse primer; BD cloning of 

RL3152 

pr0428 
ACCGCTGTTGTCGCAACGG

C 

Mapping primer for RL3152 

mutagenesis 

pr0429 
CTTCTCGAGCTCTAGAGGC

AAAACCCACATCTCCGG 

Forward primer; BD cloning of 

RL2927 

pr0430 
ATTACCTCAGTCTAGAGAA

GAAGGAGCCGTTGTCGG 

Reverse primer; BD cloning of 

RL2927 

pr0431 ACGGCTGGGTCGAGCACGA 
Mapping primer for RL2927 

mutagenesis 

pr0434 
ATGCTCGCTGAAGACCCGT

TCA 

Mapping primer for RL2925 

mutagenesis 

pr0437 
CTATGTCAGTAGCTACCAA

C 

Mapping primer for RL2924 

mutagenesis 

pr0446 
ATCCGACGGACAGCCGGCG

CCG 

Mapping primer for RL2022 

mutagenesis 

pr0479 
GTTGGCGCCGTCGAACATG

C 

Mapping primer forRL1880 

mutagenesis 

pr0482 
AGTTCGATGTTCGTATCCG

AAC 

Mapping primer for RL1879 

mutagenesis 

pr0483 
CTTCTCGAGCTCTAGAGTTT

CCGAAAACGGCGTTCT 

Forward primer; BD cloning of 

RL1302 

pr0484 
ATTACCTCAGTCTAGAAAG

GGCAGACGATGTGGGCT 

Reverse primer; BD cloning of 

RL1302 

pr0485 
GAAGACAGAAGCTGCTCCC

G 

Mapping primer for RL1302 

mutagenesis 

pr0488 
GGCCCGCCACGGCCGGGAA

A 

Mapping primer for RL1226 

mutagenesis 

pr0491 
CAAAAGTTGAATGCGGGAA

CA 

Mapping primer for RL1107 

mutagenesis 

pr0497 ACGGCCGGGCGGCCTATGC 
Mapping primer for RL0940 

mutagenesis 

pr0498 
CTTCTCGAGCTCTAGAAGG

CGGCGATGACCCTCTTT 

Forward primer; BD cloning of 

RL0472 

pr0499 
ATTACCTCAGTCTAGATGA

CGATTGCCGCAAGGACG 

Reverse primer; BD cloning of 

RL0472 

pr0500 
GAGCGGAAACATCGACATC

GAG 

Mapping primer for RL0472 

mutagenesis 

pr0503 AAAGGCGGCCTTTCGACCG 
Mapping primer for RL0390 

mutagenesis 

pr0504 
CTTCTCGAGCTCTAGACTTC

GATGTGGTCTTCAACC 

Forward primer; BD cloning of 

pRL90278 

pr0505 
ATTACCTCAGTCTAGAAGA

TCATGGCCGAGATCCTC 

Reverse primer; BD cloning of 

pRL90278 

pr0506 GTTTCATAGTCGATGAGTTC 
Mapping primer for pRL90278 

mutagenesis 

pr0507 
CTTCTCGAGCTCTAGAGAG

AACACGATCGCCGCCTT 

Forward primer; BD cloning of 

pRL90266 

pr0508 ATTACCTCAGTCTAGAACC Reverse primer; BD cloning of 
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AGATCCTGCGGACGTTC pRL90266 

pr0509 
ACGTCGAAGGAGGTTACCT

T 

Mapping primer for pRL90266 

mutagenesis 

pr0510 
CTTCTCGAGCTCTAGAGAG

CAGGCGGCCGATGAAAA 

Forward primer; BD cloning of 

pRL90226 

pr0511 
ATTACCTCAGTCTAGAATG

GCGATCTCGTCGGAGCT 

Reverse primer; BD cloning of 

pRL90226 

pr0512 TCATCCTCTTTTGGTTTTTG 
Mapping primer for pRL90226 

mutagenesis 

pr0515 
CGGAAAGCGCTCGCCGGCA

A 

Mapping primer for pRL90060 

mutagenesis 

pr0516 
CTTCTCGAGCTCTAGAAGC

AGCCAGTCGAACATCTG 

Forward primer; BD cloning of 

pRL90025 

pr0517 
ATTACCTCAGTCTAGAATC

ATTCGCGACACAGTTTC 

Reverse primer; BD cloning of 

pRL90025 

pr0518 TGCTTTAGGCGTTCTGGCTT 
Mapping primer for pRL90025 

mutagenesis 

pr0519 
CTTCTCGAGCTCTAGACCA

GGAACAGGCAAGTCTCT 

Forward primer; BD cloning of 

pRL80012 

pr0520 
ATTACCTCAGTCTAGAGTT

ACGCGACTCATGAACGG 

Reverse primer; BD cloning of 

pRL80012 

pr0521 
GATCCATCTGAAGGCTCAG

AA 

Mapping primer for pRL80012 

mutagenesis 

pr0522 
CTTCTCGAGCTCTAGATGG

ATGCCGCCTTCGAGGAA 

Forward primer; BD cloning of 

pRL120695 

pr0523 
ATTACCTCAGTCTAGATGTT

GTCGTCAGGATGGGCG 

Reverse primer; BD cloning of 

pRL120695 

pr0524 
ATCTACGTGTTTGGCGCGG

AAT 

Mapping primer for pRL120695 

mutagenesis 

pr0527 
GCCCGGGCAAAATGCTGTC

G 

Mapping primer for pRL120362 

mutagenesis 

pr0528 
CTTCTCGAGCTCTAGAATC

GGCTATCACGCTGTCGG 

Forward primer; BD cloning of 

pRL110623 

pr0529 
ATTACCTCAGTCTAGATTTC

TCTGAGCTCATGGCCG 

Reverse primer; BD cloning of 

pRL110623 

pr0530 
AATGATGGAATTCCATCAT

TG 

Mapping primer for pRL110623 

mutagenesis 

pr0533 
GGAAAGCTTGATGTCTTCG

C 

Mapping primer for pRL110287 

mutagenesis 

pr0534 
CTTCTCGAGCTCTAGAGGC

GTTACCATCGAGGGCTT 

Forward primer; BD cloning of 

pRL110055 

pr0535 
ATTACCTCAGTCTAGATGTC

GATATAGGCCTGCCGG 

Reverse primer; BD cloning of 

pRL110055 

pr0536 AGACGCGCGAATTATCACA 
Mapping primer for pRL110055 

mutagenesis 

pr0537 
CTTCTCGAGCTCTAGATGCT

CTTCGGCATCGTCTTC 

Forward primer; BD cloning of 

pRL110033 

pr0538 
ATTACCTCAGTCTAGAACG

TCGAGCACTTCGGTCAG 

Reverse primer; BD cloning of 

pRL110033 



46 

 

pr0539 
CGGACGCACAAAGGTCGCT

T 

Mapping primer for pRL110033 

mutagenesis 

pr0540 
CTTCTCGAGCTCTAGAGATT

GGAATCGTGTCGAAGG 

Forward primer; BD cloning of 

RL2307 

pr0541 
ATTACCTCAGTCTAGAATG

TCGCGTTTAACACGATC 

Reverse primer; BD cloning of 

RL2307 

pr0542 
CAGACAGCAAAAACCCGGC

T 

Mapping primer for RL2307 

mutagenesis 

pr0543 
CTTCTCGAGCTCTAGAGCG

GTGCTGCGATGTTCGAT 

Forward primer; BD cloning of 

RL0447 

pr0544 
ATTACCTCAGTCTAGAGTC

ACATGGGAGACGCCGCC 

Reverse primer; BD cloning of 

RL0447 

pr0545 
GGAGCGCCCCAATGCGTCT

G 

Mapping primer for RL0447 

mutagenesis 

pr0546 
CTTCTCGAGCTCTAGAGAA

ACAGGGCCTTCGTCGAA 

Forward primer; BD cloning of 

RL3273 

pr0547 
ATTACCTCAGTCTAGAGCA

GAACATCACGGCCTTCG 

Reverse primer; BD cloning of 

RL3273 

pr0548 
GTCGGCCCCCTCGAATAAT

A 

Mapping primer for RL3273 

mutagenesis 

pr0549 
CTTCTCGAGCTCTAGACAT

GGGTCGTGGTCTGCAAC 

Forward primer; BD cloning of 

RL1485 

pr0550 
ATTACCTCAGTCTAGATCC

AGGGAGATCGCTGCTTG 

Reverse primer; BD cloning of 

RL1485 

pr0551 
GCCGTTCGACCCGCGTTCA

C 

Mapping primer for RL1485 

mutagenesis 

pr0552 
CTTCTCGAGCTCTAGACGC

CTCGATCGATCTCATCA 

Forward primer; BD cloning of 

pRL100224 

pr0553 
ATTACCTCAGTCTAGATACT

TGGCGTCCGCCTCTTC 

Reverse primer; BD cloning of 

pRL100224 

pr0554 TGTTCATTGCGGTTCGTCAG 
Mapping primer for pRL100224 

mutagenesis 

pr0557 
GAAAGCGAGCGGATGGCGC

T 

Mapping primer for pRL80060 

mutagenesis 

pr0561 
CTTCTCGAGCTCTAGAGAC

GACATGCCCGACCTCAT 

Forward primer; BD cloning of 

pRL110377 

pr0562 
ATTACCTCAGTCTAGACGC

GCAGGATGTCGTATTCC 

Reverse primer; BD cloning of 

pRL110377 

pr0563 
TACTGTTCGGGCAGCGGGA

G 

Mapping primer for pRL110377 

mutagenesis 

pr0564 
CTTCTCGAGCTCTAGACGC

CATCTACGATCGCCTCT 

Forward primer; BD cloning of 

pRL90056 

pr0565 
ATTACCTCAGTCTAGACGG

TCGATCTGCACCTTGAC 

Reverse primer; BD cloning of 

pRL90056 

pr0566 CTTCCCTCTCGCTTTTCGTT 
Mapping primer for pRL90056 

mutagenesis 

pr0610 
CTTCTCGAGCTCTAGAGAG

GCGGAGATGCGGGAAAT 

Forward primer; BD cloning of 

RL0262 

pr0611 ATTACCTCAGTCTAGACGTT Reverse primer; BD cloning of 
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GGCGCGATATCGTCAA RL0262 

pr0612 
TAGAAAAGTGTCAGCGTTT

T 

Mapping primer for RL0262 

mutagenesis 

pr0613 
CTTCTCGAGCTCTAGACCTG

AGCGGATGGCTAGAAG 

Forward primer; BD cloning of 

RL1317 

pr0614 
ATTACCTCAGTCTAGAGAA

CTGCCTTTTCGAACGGG 

Reverse primer; BD cloning of 

RL1317 

pr0615 ATCTTGTCGATGTTACGGCC 
Mapping primer for RL1317 

mutagenesis 

pr0621 
ACGCGTGAAGGCGCTCGAT

CA 

Mapping primer forRL1631 

mutagenesis 

pr0706 
TTCGTCCGGAATTGCGCGA

A 

Mapping primer for RL3783 

mutagenesis 

pr0968 
GCAGGTCGACTCTAGACCG

GCGGCGGCTGGGACCAG 

Forward primer; BD cloning of 

RL4103 

pr0969 
CCGGGGATCCTCTAGACCA

GCCCTTGGTCTTCAGCG 

Reverse primer; BD cloning of 

RL4103 

pr0970 
GCAGGTCGACTCTAGAACA

GACAACCAATTCGAAGT 

Forward primer; BD cloning of 

RL3884 

pr0971 
CCGGGGATCCTCTAGATAA

AGCACGCCTCCATAGTG 

Reverse primer; BD cloning of 

RL3884 

pr0972 
GCAGGTCGACTCTAGAAGT

TGCTGGAGGTCGCCGCG 

Forward primer; BD cloning of 

RL3688 

pr0973 
CCGGGGATCCTCTAGATGG

CTTTCCAACGTATCTGC 

Reverse primer; BD cloning 

ofRL3688 

pr0976 
GCAGGTCGACTCTAGAAGT

TCCAGGCGCAAGGTGCA 

Forward primer; BD cloning of 

RL2925 

pr0977 
CCGGGGATCCTCTAGAAGG

TAACGCCAATTCGGCTT 

Reverse primer; BD cloning of 

RL2925 

pr0978 
GCAGGTCGACTCTAGAGAA

TTTCCTGTGCTTCGCGG 

Forward primer; BD cloning of 

RL2924 

pr0979 
CCGGGGATCCTCTAGATTC

TGCACGACGGGAAAGTC 

Reverse primer; BD cloning of 

RL2924 

pr0984 
GCAGGTCGACTCTAGACTG

TTTGCACCGGCAGCTTT 

Forward primer; BD cloning of 

RL2022 

pr0985 
CCGGGGATCCTCTAGAGTA

TTTGAAGATCTCGGGAT 

Reverse primer; BD cloning of 

RL2022 

pr0986 
GCAGGTCGACTCTAGAAGA

CCGTCGAGACAGCACAG 

Forward primer; BD cloning of 

RL1880 

pr0987 
CCGGGGATCCTCTAGAAAC

CGGCTCGCAACCTTGAA 

Reverse primer; BD cloning of 

RL1880 

pr0988 
GCAGGTCGACTCTAGATGG

AAGAGCTTCGGACCGAA 

Forward primer; BD cloning of 

RL1879 

pr0989 
CCGGGGATCCTCTAGAATA

TCTCGATCGTCAGACGG 

Reverse primer; BD cloning of 

RL1879 

pr0990 
GCAGGTCGACTCTAGAGCT

GACGCGCTATTACTTCA 

Forward primer; BD cloning of 

RL1226 

pr0991 
CCGGGGATCCTCTAGAGAA

ATAGAAGGCGCCGAGGC 

Reverse primer; BD cloning of 

RL1226 
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pr0992 
GCAGGTCGACTCTAGAACA

TCTCCTTCGGCTCGGCC 

Forward primer; BD cloning of 

RL1107 

pr0993 
CCGGGGATCCTCTAGAGCG

GATCAGCTTCTCGGATT 

Reverse primer; BD cloning of 

RL1107 

pr0996 
GCAGGTCGACTCTAGAGCT

CGAAATTCGGCTATGCG 

Forward primer; BD cloning of 

RL0940 

pr0997 
CCGGGGATCCTCTAGAATA

CCAGATGGTGACGATCG 

Reverse primer; BD cloning of 

RL0940 

pr0998 
GCAGGTCGACTCTAGATAT

TCGCCTCCGCCGTACGA 

Forward primer; BD cloning of 

RL0390 

pr0999 
CCGGGGATCCTCTAGAGCG

AACCTTGGGATCGGAAA 

Reverse primer; BD cloning of 

RL0390 

pr1000 
GCAGGTCGACTCTAGACTG

ACGGCCTATTTCAGCAA 

Forward primer; BD cloning of 

pRL90060 

pr1001 
CCGGGGATCCTCTAGAATT

GCGCAGCATGTTGGTCA 

Reverse primer; BD cloning of 

pRL90060 

pr1004 
GCAGGTCGACTCTAGATTT

TGCGCCGCTCAACAGCT 

Forward primer; BD cloning of 

pRL120362 

pr1005 
CCGGGGATCCTCTAGAAAT

GTCCTTGTCGTCGACAA 

Reverse primer; BD cloning of 

pRL120362 

pr1008 
GCAGGTCGACTCTAGATGA

TCGGTGGTTTTGGTGGC 

Forward primer; BD cloning of 

pRL110287 

pr1009 
CCGGGGATCCTCTAGAAAC

AGTGACGACGCGGTCGA 

Reverse primer; BD cloning of 

pRL110287 

pr1016 
GCAGGTCGACTCTAGAGCC

GAAAGCCTTGGGATGAA 

Forward primer; BD cloning of 

RL1631 

pr1017 
CCGGGGATCCTCTAGATTG

ACGACATTGCGAATATT 

Reverse primer; BD cloning of 

RL1631 

pr1115 
GCAGGTCGACTCTAGATCG

TCCGGTACGCTCACAAT 

Forward primer; BD cloning of 

pRL80060 

pr1116 
CCGGGGATCCTCTAGACAT

TTCAGCTGAGGCCTTGT 

Reverse primer; BD cloning of 

pRL80060 

pr1186 
CGTATAGACGCGGCGTTCG

A 
Forward primer; mntH (RL0940) 

pr1187 
AGGGCATGAGCGTGCTGGA

A 
Reverse primer; mntH (RL0940) 

pr1189 
GCAGGTCGACTCTAGATCG

CCGGGCGGTTGAATATT 

Forward primer; BD cloning of 

pRL100035 

pr1190 
CCGGGGATCCTCTAGAACA

TTGGGTCGGTAGTACGT 

Reverse primer; BD cloning of 

pRL100035 

pr1191 
GCCAGATATCGGAGTGCAC

A 

Mapping primer for pRL100035 

mutagenesis 

pr1192 
GCAGGTCGACTCTAGATCC

GCACCGGAAGATGATGA 

Forward primer; BD cloning of 

pRL80013 

pr1193 
CCGGGGATCCTCTAGACCT

GAGATTCGAAAACCACG 

Reverse primer; BD cloning of 

pRL80013 

pr1194 CGTCCGAACAATTTTCCGTC 
Mapping primer for pRL80013 

mutagenesis 

pr1195 GCAGGTCGACTCTAGATGT Forward primer; BD cloning of 
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GAGGAATGCATACGCGG pRL100112 

pr1196 
CCGGGGATCCTCTAGACCT

TGCAGATCGCCGATGGC 

Reverse primer; BD cloning of 

pRL100112 

pr1197 
GCTGCATTCGGAACGAAAT

T 

Mapping primer for pRL100112 

mutagenesis 

pr1225 
GCAGCACCTTCGAGCGAGA

C 

Mapping primer for mntH 

(RL0940) mutagenesis 

pr1226 
CCTTAGACAGAATGAGCTG

G 

Mapping primer for mntH 

(RL0940) mutagenesis 

pr1240 
TTTTCTAGAGAAGCTGCCC

GAGGGAAAAT 
Forward primer; mgtE (RL1461) 

pr1241 
TTTGAATTCAGTCGATTGCC

TTTGCCGTA 
Forward primer; mgtE (RL1461) 

pr1242 
TTTGAATTCTGCCCGAGGG

AAAATAATTC 
Reverse primer; mgtE (RL1461) 

pr1247 
TTTCTCGAGCGACGTACAA

GGAATTGTTA 
Forward primer; pRL100036 

pr1248 
TTTGGATCCTAGTTCGTACG

CGATGACAT 
Reverse primer; pRL100036 

pr1249 
TTTGGATCCAATATCCCGAT

CGAAATGAT 
Forward primer; pRL100035 

pr1250 
TTTTCTAGAGAAGACGCCA

ATCGCATCAC 
Reverse primer; pRL100035 

pr1265 
AAAGGTACCCATTCTGGCG

TTAAGCATTT 
Reverse primer; mgtE (RL1461) 

pr1270 
CTCGAGGCTACATCGACCA

CTATCTC 
Forward primer; fixL 

pr1271 
TCTAGAACACGGGCGTCAT

CTTCGAC 
Reverse primer; fixL 

pr1272 
CGGAAGAGCTTCCACGATG

A 

Mapping primer for fixL 

mutagenesis 

pr1273 GCCGTCCGCACCTGTCGTTC 
Mapping primer for fixL 

mutagenesis 

pr1286 
AGATCTATCTCCCAGCCGG

CATTGTC 
Forward primer; oxyR 

pr1287 
TCTAGAGGCCATCGGTGTC

GAATTGC 
Reverse primer; oxyR 

pr1288 
GCTTGATAGGCCACAGCAG

G 

Mapping primer for oxyR 

mutagenesis 

pr1289 
GCGATGCCCACGCCGTTGG

C 

Mapping primer for oxyR 

mutagenesis 

pr1290 
AAGCTTTCAGGCGCGACTG

GACGGGC 

Forward primer; mntH (RL0940) 

promoter 

pr1291 
TCTAGATCGCCATGCCGAG

CTGTGAC 

Reverse primer; mntH (RL0940) 

promoter 

pr1292 
AAGCTTCCTATCTGGTCTTC

AAGGCC 

Forward primer; sitA (RL3884) 

promoter 

pr1293 
TCTAGATTGGTTGTCTGTTG

GGCAGC 

Reverse primer; sitA (RL3884) 

promoter 
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pr1378 
CGAGCTTTCCGGCGGCCAG

A 
Forward primer; Rlp4292 sitA 

pr1381 
GCCTAAAGCGCGTCTGGTT

C 
Forward primer; fnrN 

pr1382 
AATAAGCCTGCGGCGCATC

C 
Reverse primer; fnrN 

pr1385 
GCTAATTCCGGGCGTGGCA

T 
Forward primer; RL1302 

pr1386 
GACCTTTACCCAGGGCATC

G 
Reverse primer; RL1302 

pr1387 
GGTGAATCTCCGTCGAGGG

C 

Mapping primer for RL1302 

mutagenesis 

pr1388 
GGGTGCCGATCAGTTCTTC

C 

Mapping primer for RL1302 

mutagenesis 

pr1394 
GCGTCACCGCCGTCGTCGG

C 
Reverse primer; Rlp4292 sitA 

pr1432 
CTGGGCCATGGTCTCGATC

A 

Mapping primer for fnrN 

mutagenesis 

pr1433 
CATAATCTCGGCACCATGG

C 

Mapping primer for fnrN 

mutagenesis 

pr1457 
CGTTGAGCTGATCGACCAT

G 

Mapping primer for Rlp4292 sitA 

mutagenesis 

pr1462 
TCTAGAGCTGCGTGCGCCT

CTCGTCA 
Reverse primer; mntH 

 

Table 2.5 Primers. 
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2.3 MOLECULAR TECHNIQUES 

 

2.3.1 DNA isolation 

 

Genomic DNA (gDNA) was isolated from bacterial cultures using the DNeasy 

Blood and Tissue kit (Qiagen), following instructions provided by the manufacturer 

(Pre-treatment for Gram-Negative bacteria and Purification of total DNA from 

Animal Tissues). 

 

Plasmid DNA was isolated from E. coli DH5α using the Spin Miniprep kit (Qiagen), 

following instructions provided by the manufacturer (Plasmid DNA Purification 

using the QIAprep Spin Miniprep Kit and a Microcentrifuge). 

 

2.3.2 Polymerase chain reaction (PCR) 

 

PCR primers were designed using Vector NTI 11.0 or the Clontech online tool for 

creating primers used for In-Fusion® cloning (Clontech). Primers were synthesised 

by Eurofins MWG Operon. 

 

PCR reactions (10 µl or 50 µl) were made using GoTaq® Green master mix 

(Promega) or Phusion® High-fidelity PCR master mix (Finnzymes). Thermocycler 

conditions were set using instructions provided by the manufacturer of the master 

mix and Tm calculations of primers provided by Eurofins MWG Operon. Both 

gDNA and plasmid DNA were used as templates for PCR. Colony PCR was used for 

large screens of transformants, where E. coli cells were transferred from a single 

colony to the PCR reaction using a sterile pin. For large screens of R. 

leguminosarum strains (i.e. screening for mutagenesis), cells were transferred to 500 

µl sterile H2O using a sterile loop and pelleted by centrifugation (6000 rpm for 4 

minutes). Following centrifugation, 490 µl of the supernatant was removed and 100 

µl alkaline poly(ethylene) (PEG) reagent was added. To make the alkaline PEG 

reagent, 60g PEG200 (Sigma) was combined with 0.93 ml 2M KOH and 39 ml 

water. Pelleted bacteria were incubated in the alkaline PEG reagent at room 
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temperature for 15 minutes. For a 10 µl PCR reaction, 1 µl of bacteria suspended in 

alkaline PEG was added. 

 

When PCR product was to be used for cloning, PCR products were purified using 

the QIAquick PCR purification kit (Qiagen), following the manufacturer’s 

instructions.
 

 

2.3.3 Agarose gel electrophoresis 

 

PCR products, restriction digests and GeneRuler
TM

 1 kb DNA ladder (Thermo 

Scientific) were separated by agarose gel electrophoresis on 1% agarose (Sigma) in 

TAE buffer [400 mM Tris acetate, 1 mM EDTA] at 120 mV for 45-75 minutes. For 

PCR reactions using Phusion® High-fidelity PCR master mix (Finnzymes), 1X 

DNA loading dye (Qiagen) was added to samples. After electrophoresis, DNA was 

stained in ethidium bromide (0.5 µg/ml
-1

) for 30 minutes and analysed using a UV 

transilluminator. 

 

2.3.4 Restriction digests 

 

Restriction digests of purified DNA were conducted using restriction endonucleases 

and buffers (Fermentas or Roche) following the manufacturer’s instructions. 

Fragmented DNA was analysed by agarose gel electrophoresis. When required for 

cloning, fragmented DNA was purified using the QIAquick PCR purification kit 

(Qiagen) or QIAquick gel extraction kit (Qiagen) following instructions provided by 

the manufacturer. 

 

2.3.5 Ligations 

 

DNA ligations were performed using enzymes and buffers provided in the CloneJET 

PCR Cloning kit (Fermentas) or T4 DNA ligase supplied with the 10X T4 DNA 

ligase buffer (Fermentas). Ligations for pJET cloning were performed at room 

temperature for 20 minutes, or for all other ligations, overnight at 16
o
C.  
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2.3.6 BD In-Fusion
TM

 cloning 

 

A BD In-Fusion
TM

 cloning kit (clontech) was used for high-throughput cloning 

following the manufactures instructions. An online tool (Clontech) was used to 

design primers with 16 bp extensions homologous to vector ends. Cloning enhancer 

(Clontech) was added to PCR product before the In-Fusion
TM

 cloning reaction to 

achieve optimal results. A second online tool was used to calculate the optimal molar 

ratio of PCR product to vector for the cloning reaction. After the In-Fusion reaction, 

recombinant plasmids were used to transform competent E. coli DH5α cells. 

 

2.3.7 Transformations 

 

Chemically competent E. coli DH5α cells (Bioline) were used for transformations. 

Competent cells (50 µl) were thawed on ice and 2 µl ligation mix or purified plasmid 

was added. Cells were then incubated for 30 minutes on ice, heat shocked at 42
o
C for 

45 seconds and then transferred back to ice. After three minutes, 250 µl SOC 

medium (2% w/v tryptone, 0.5% w/v yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 

mM MgSO4 10 mM MgCl2, 20 mM glucose) was added and cells were incubated for 

1 hour at 37
o
C with shaking at 250 rpm. Cells were then plated on LB agar 

containing the appropriate antibiotic selection and incubated overnight at 37
o
C. 

 

2.3.8 Conjugation from E. coli to R. leguminosarum 

 

Plasmids were transferred from E. coli to R. leguminosarum by tri-parental 

conjugation using a helper E. coli strain that carried pRK2013 (Ditta et al., 1980). E. 

coli strains carrying either the plasmid of interest or pRK2013 were grown in LB 

(containing the appropriate antibiotics) overnight at 37
o
C with shaking at 250 rpm. 

Overnight cultures were then subcultured (200-500 µl inoculum) in fresh LB 

containing appropriate antibiotics and grown for 6-8 hours at 37
o
C with shaking at 

100 rpm (to OD600 0.4-0.6). When grown, E. coli strains were pelleted by 

centrifugation at 6000 rpm for 4 minutes and then re-supsended in TY; a washing 

step was included to remove traces of antibiotics.  
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Recipient R. leguminosarum strains were grown on TY slopes containing appropriate 

antibiotics at 28
o
C. After 3 weeks, 5 ml TY was added to slopes to obtain a rhizobial 

suspension. To make the conjugation mix, the rhizobial suspension was added to 400 

µl of washed E. coli culture carrying the plasmid of interest and 200 µl of washed E. 

coli culture carrying the pRK2013 plasmid. The conjugation mix was then spun 

down at 6000 rpm for 4 minutes, resuspended in 30-50 µl TY and then spotted onto a 

sterile nitrocellulose filter placed on solid TY medium. Conjugation mix was 

incubated overnight at 28
o
C, suspended in 1 ml TY, plated out on TY agar 

containing appropriate antibiotics and incubated at 28
o
C. To select against E. coli, 

streptomycin (500 µg/ml) or in the case of R. leguminosarum bv. phaseoli, 

rifampicin (10 µg/ml) was used. 

 

2.4 MUTAGENESIS TECHNIQUES 

 

2.4.1 Mutagenesis of R. leguminosarum by pRU877- and pK19mob-

integration (single-crossover) 

 

High-throughput, site-directed mutagenesis of R. leguminosarum was achieved by 

pRU877- (Lodwig et al., 2004) or pK19mob-integration (Schafer et al., 1994). 

 

PCR primers were designed to amplify the internal fragment (300-900 bp) of the 

targeted gene. A 16 bp extension homologous to the vector ends of XbaI-digested 

pRU877 or XbaI-digested pK19mob was added to the 5’ end of the primers. These 

primers were used to amplify the internal fragment of genes from R. leguminosarum 

gDNA. The PCR products were then cloned directly into XbaI-digested pRU877 or 

XbaI-digested pK19mob using the BD In-Fusion
TM

 cloning kit (Clontech) (2.3.6). 

Recombinant plasmids were transformed into competent DH5α cells (2.3.7). E. coli 

cells carrying the pRU877 or pK19mob plasmid were selected for using kanamycin 

on solid LB medium. For pK19mob recombinant plasmids, blue/white screening 

could be used to check for an insert by the addition of X-gal to the solid LB medium. 

 

To confirm that the correct sequence had been cloned into pRU877 or pK19mob, 

sizes of the inserts were determined by colony PCR using the vector-mapping 
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primers M13uni (-21) and M13 (-29). Plasmids with the correctly sized inserts were 

sent to Eurofins MWG Operon for sequencing (at a concentration of 50-100 ng/µl) 

using M13 primers. Sequences were then checked against the Rlv3841 genome 

sequence (Young et al., 2006) using Vector NTI 11 Align X. 

 

Recombinant plasmids with the correct sequence were transferred into R. 

leguminosarum by tri-parental conjugation (2.3.8). To select against E. coli, 

streptomycin (500 µg/ml) or in the case of R. leguminosarum bv. phaseoli, 

rifampicin (10 µg/ml) was used. To select for pRU877 or pK19mob integration, 

neomycin was used at 250 µg/ml. Colonies that grew on solid TY medium 

containing these antibiotics were screened for pRU877/pK19mob integration by 

colony PCR using a mapping primers specific to pRU877 (pr0095) or pK19mob 

(pK19/18A or pK19/18B) and a primer binding ~500bp upstream of the disrupted 

gene. Mapping primers along with primers used to amplify the internal fragments of 

the targeted genes can be found in Table 2.5.  

 

In this thesis, the nomenclature used to denote mutations created by pRU877- or 

pK19mob-integration is :pRU877 or :pK19mob e.g. sitA:pRU877 means mutation  

of sitA by pRU877-integration.  

 

2.4.2 Mutagenesis of R. leguminosarum by Ω intersposon insertion 

(double-crossover) 

 

When an alternative marker was required (e.g. for the construction of double 

mutants), genes were disrupted with by insertion of an Ω intersposon carrying 

spectomycin resistance
 
(ΩSpc), an Ω intersposon carrying tetracycline resistance 

(ΩTc) or an  Ω intersposon carrying kanamycin resistance (ΩKm) (Fellay et al., 

1987). 

 

The general strategy involved cloning a DNA region that contained the target gene 

with ~1 kb either side into pJET1.2/blunt. The Ω intersposons carrying antibiotic 

resistance were cut from pHP45Ω plasmids (Fellay et al., 1987) and inserted into the 

cloned gene at a unique restriction site. When necessary, linearised-plasmid was 
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blunted by a Klenow Fragment (Thermo Scientific). The pJET1.2/blunt insert was 

then cloned into the mobilisable, suicide vector pJQ200SK (Quandt and Hynes, 

1993). Alternatively, the gene of interest with the 1 kb flanking regions was cloned 

into pJQ200SK, and in this vector, the Ω intersposon was inserted. Recombinant 

pJQ200SK plasmids were transferred into R. leguminosarum by tri-parental 

conjugation (2.3.8) and pJQ200SK- integration was selected for with the appropriate 

antibiotics. Approximately ten antibiotic-resistant colonies were grown on a TY 

slope containing the appropriate antibiotics. After three days’ growth, 5 ml TY was 

added to the slope and the suspension was plated out on solid AMS medium 

containing 10 mM NH4Cl and 10% sucrose. Due to the presence of the lethal 

sucrose-inducible sacB gene on pJQ200SK, addition of 10% sucrose selected for 

double-crossover events that result in the replacement of the host DNA with the 

pJQ200SK-insert. To confirm the loss of the pJQ200SK vector and presence of the 

Ω intersposon insertion, sucrose-resistant colonies were then patched on a TY plate 

containing gentamicin and a replicate TY plate containing the antibiotic that the Ω 

intersposon confered resistance to i.e. spectinomycin, tetracycline or kanamycin. 

Colonies sensitive to gentamicin but resistant to the second antibiotic were screened 

by PCR for double-crossover events using a mapping primer specific to the Ω 

intersposon (pOT forward_far) and mapping primers designed to bind >1 kb 

downstream and upstream of the disrupted gene. Mapping primers and cloning 

primers used for Ω intersposon insertions can be found in Table 2.5. 

 

In this thesis, the nomenclature used to denote a mutation created by Ω intersposon 

insertion is ΩSpc, ΩKm or ΩTc (depending on the antibiotic resistance) e.g. 

sitAΩSpc. 

 

2.4.3 Generalised transduction in R. leguminosarum     

 

The bacteriophage RL38 (Buchanan-Wollaston, 1979) was used to transduce genetic 

regions carrying mutations (and antibiotic resistance markers) from one strain of R. 

leguminosarum to another. 
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Phage were propagated in the donor strain (i.e. the strain that carries the genetic 

region that is to be transferred). The donor strain was grown on a TY slope carrying 

the appropriate antibiotics. After two days’ growth, bacteria were resuspended in 3 

ml sterile H2O and 0.1 ml aliquots of this suspension were added to 0.1 ml of a serial 

dilution of phage (1 x 10
-2 

to 1 x 10
-6

). In addition, for controls, one sample 

contained just bacteria and another sample just contained phage. All samples were 

used to inoculate  3 ml melted TY agar (0.9% w/v agar) incubated at 42
o
C, which 

was then poured over the surface of a TY plate. Plates were incubated at 28
o
C.  

 

After 2-3 days, the bacterial/phage dilution that produced a lawn, that was just before 

complete confluence, was eluted by the addition of 10 ml sterile H2O to the plate. 

Bacteria and phage were eluted by gentle rocking. After 2 hours, the bacteria/phage 

suspension was recovered using a 10 ml syringe and passed through a 0.22 µM filter 

(Millipore) to remove bacteria. After filter sterilisation, 2-4 drops of chloroform 

were added to the phage to ensure that the phage solution was free from bacteria. 

Phage solution was stored at 4
o
C. 

 

For transductions, the recipient strain (i.e. the strain that will receive the genetic 

region that is to be transferred by the phage) was grown on a TY slope at 28
o
C. After 

2-3 days’ growth, 3 ml TY was added to obtain a bacterial suspension. 200 µl 

aliquots of this suspension were mixed with 0.1, 1.0, 10 and 100 µl of phage solution 

prepared from the donor strain. Controls that contained just the phage or bacteria 

were made. Bacteria/phage mixtures were incubated at 28
o
C and after 1 hour, were 

plated out on solid TY medium containing the appropriate antibiotics. Plates were 

incubated for 3-5 days at 28
o
C and colonies were isolated using a sterile plastic loop. 

Colonies were checked for correct transductions by colony PCR. 
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2.5 ASSAYS 

 

2.5.1 Testing growth of R. leguminosarum strains in modified AMS 

medium containing varying levels of MnSO4 (96-well plate) 

 

Growth of R. leguminosarum strains was tested in modified AMS medium 

containing 0.05 µM or 25 µM MnSO4 using the following protocol. Strains were 

first grown on TY slopes with the appropriate antibiotics and for the growth of 

LMB466 (sitA:pK19mob mntHΩSpc) solid TY medium was supplemented with 50 

µM MnSO4. After 2 days’ growth, 5 ml AMS was added to the slopes to obtain a 

bacterial suspension, which was then used to inoculate 100 ml AMS glucose (or 

modified AMS glucose containing 25 µM MnSO4 for growth of LMB466 

(sitA:pK19mob mntHΩSpc)) to an OD600 of 0.01. Cultures were incubated at 28
o
C 

with shaking at 220 rpm. When exponential phase was reached (OD600 0.2-0.6), 10 

ml samples x2 were taken from each culture, centrifuged at 4000 rpm (revolutions 

per minute) for 5 minutes and then resuspended in modified AMS (omitting 

MnSO4). This washing-step was repeated twice to remove extracellular traces of 

MnSO4. After the third wash, for each stain, one sample was resuspended in 

modified AMS glucose containing 0.05 µM MnSO4 and the second sample was 

resuspended in AMS glucose containing 25 µM MnSO4. Both were resupended to an 

OD600 of 0.1. Samples were then transferred to a 96-well plate as 200 µl aliquots and 

read at OD600 by a BioTek EON
TM

 plate reader. Growth was measured for 24 hours 

at 30 minute intervals between linear-shaking. 

 

2.5.2 Testing growth of R. leguminosarum strains in modified AMS 

medium containing varying levels of MnSO4 (conical flask) 

 

Growth of R. leguminosarum strains was tested in 50 ml of modified AMS glucose 

containing 0.05 or 10 µM MnSO4 using the following protocol. Strains were grown 

first on TY slopes with the appropriate antibiotics and for the growth of the double 

mutants LMB466 (sitA:pK19mob mntHΩSpc), LMB539 (RlvA34 sitA:pK19mob 

mntHΩSpc) and LMB630 (Rlp4292 sitAΩKm mntHΩSpc), solid TY medium was 

supplemented with 50 µM MnSO4. After 2 days’ growth, 5 ml modified AMS 
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(omitting MnSO4) was added to the slopes to obtain a bacterial suspension; this 

suspension was used to inoculate both 50 ml modified AMS glucose containing 0.05 

µM MnSO4 and 50 ml modified AMS glucose containing 10 µM MnSO4 to an 

~OD600 of 0.005. Cultures were incubated at 28
o
C with shaking at 220 rpm. After 14 

hours, samples were taken every 3-4 hours and used to measure OD600. 

 

2.5.3 Testing growth of R. leguminosarum strains in AMS medium 

containing varying levels of MgSO4 at pH 7.0 or pH 5.75 (conical 

flask) 

 

Strains were grown on TY slopes with the appropriate antibiotics and after 2 days’ 

growth, 5 ml modified AMS (omitting MgSO4) was added to obtain a bacterial 

suspension. The bacterial suspension was used to inoculate both 50 ml modified 

AMS glucose containing 0.01 mM MgSO4 or 50 ml AMS glucose containing 2 mM 

MgSO4. Cultures were incubated at 28
o
C with shaking at 220 rpm. After 14 hours, 

samples were taken every 3 hours and used to measure OD600. When measuring 

growth at low pH, pH of AMS was adjusted to pH 5.75. 

 

2.5.4 Testing growth of R. leguminosarum strains in the presence of 

5% EtOH (96-well plate) 

 

Growth of R. leguminosarum strains was tested in AMS glucose containing 5% 

EtOH using the following protocol. Strains were first grown on TY slopes with the 

appropriate antibiotics. After 2 days’ growth, 5 ml AMS was added to the slopes to 

obtain a bacterial suspension, which was then used to inoculate 100 ml AMS glucose 

to an OD600 of 0.01. Cultures were incubated at 28
o
C with shaking at 220 rpm. When 

exponential phase was reached (OD600 0.2-0.6), 10 ml samples x2 were taken from 

each culture and centrifuged at 4000 rpm for 5 minutes. One pellet was resupended 

in AMS glucose containing 5% EtOH and the other was resuspended in AMS 

glucose (negative control) to an OD600 0.1. Samples were then transferred to a 96-

well plate as 200 µl aliquots and read at OD600 by a BioTek EON
TM

 plate reader. 

Growth was measured for 40 hours at 30 minute intervals between linear-shaking. 
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2.5.5 H2O2 sensitivity assay 

 

To measure sensitivity of Rlv3841, LMB364 (sitA:pK19mob) and LMB460 

(mntHΩSpc) to H2O2, strains were pre-cultured in 100 ml AMS glucose to stationary 

phase (OD600 0.9-1.1). Cultures were washed x3 in modified AMS (omitting MnSO4) 

and diluted with modified AMS glucose (omitting MnSO4) to a final OD600 0.1. 

Diluted cultured were split into 2 x 50 ml cultures and 0.5 mM H2O2 was added to 

one and the other was used as a negative control. Cultures were incubated at 28
o
C 

with shaking at 220 rpm and at 0, 2, 4 and 6 hours, samples were taken and serially 

diluted (1 x 10
-1

 to 1 x 10
-8

) in modified AMS (omitting MnSO4). All dilutions were 

spotted (15 µl aliquots) onto solid AMS glucose medium (3 spots for each dilution). 

Plates were incubated at 28
o
C and after two days, colony forming units/ml for each 

sample was determined. 

 

2.5.6 β-glucuronidase (GUS) activity 

 

To study expression of sitA and mntH in response to MnSO4, GUS activity was 

measured in strains carrying sitA-gusA or mntH-gusA. Cells were grown overnight at 

28
o
C with shaking at 220 rpm, in modified AMS glucose containing either 0.05 µM 

or 0.9 µM MnSO4. When OD600 1-1.2 was reached, 1.5 ml samples were taken, 

centrifuged at 6500 rpm for 5 minutes and resuspended in 1.5 ml Z buffer (0.06 M 

Na2HPO4, 0.04 M NaH2PO4, 0.01 M KCl, 0.001 M MgSO4, pH 7.0). In duplicate, 

350 µl of resupended cells was taken and added to 280 µl Z buffer and 70 µl 

lysozyme-solution (0.05 g lysozyme and 350 µl mercaptoethanol in 10 ml of 10 mM 

phosphate buffer, pH 7.8). To make 10 mM phosphate buffer, 0.1 M phosphate 

buffer was made (90.8 ml 1 M K2HPO4 added to 9.2 ml 1 M KH2PO4) and diluted to 

10 mM ; pH was tested before and after dilution. The final concentration of lysozyme 

equates to 0.5 mg/ml. Samples were inverted several times and incubated at 30
o
C for 

five minutes. Remainder of cells suspended in Z buffer was used to determined the 

OD600. 

 

After five minutes, 15 µl 0.5 M ethylenediaminetetraacetic acid (EDTA), pH 8.0, 

was added, samples were mixed by inverting several times and then left to incubate 
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at 30
o
C. After 15 minutes, 0.5 µl of 20% sodium dodecyl sulfate (SDS) was added, 

samples were mixed by inverting and then incubated at 30
o
C. After 30 minutes, 140 

µl of 4-nitrophenyl β-D-glucuronide (PNPG) solution (0.08g PNPG (Sigma) and 70 

μl mercaptoethanol in 20 ml of Z buffer) was added and incubated at 30
o
C. After 5 

minutes, the reaction was stopped by the addition of 350 µl of 1 M Na2CO3. Samples 

were mixed by inverting several times, centrifuged at 13000 rpm for 30 minutes to 

pellet cell debris and the supernatant was measured at OD420. The assumption that 1 

ml of an OD600 1.0 culture contains 0.22 mg of protein and the extinction co-efficient 

of 4.012 x 10
3 

mol
-1

 cm
-1

 was used to calculate the rate at which p-nitrophenyl was 

released from PNPG by β-glucuronidase hydrolysis (Lodwig et al., 2004). 

 

To study expression of sitA-gusA and mntH-gusA in response to oxidative stress, 

cells were grown in 100 ml AMS glucose to OD600 0.2-0.4. Cultures were then split 

into 2x 50 ml, where to one, 100 µM H2O2 was added and the other was used as a 

negative control. Following treatment, samples were taken at 0, 2, 4 and 6 hours. 

GUS activity was measured for all samples as described above. 

 

2.5.7 Disk assays 

 

Strains were grown on TY slopes containing the appropriate antibiotics. After two 

days’ growth, 5 ml TY was added to obtain a bacterial suspension, which was 

diluted with TY to OD600 0.2. A volume of 200 µl was taken from this diluted 

bacterial suspension and used to inoculate 3 ml melted TY agar (0.9% w/v agar) 

incubated at 42
o
C. Immediately after inoculation, the melted TY agar was poured 

over solid TY medium and left to solidify at room temperature. After 30 minutes, a 

sterile filter disc (Whatman Grade AA 6 mm discs; GE Healthcare, Life Sciences) 

was placed on the top layer of agar and 15 µl of the experimental compound was 

added directly to the disc. Plates were incubated at 28
o
C and after 2 days, the zone of 

inhibition was measured. Disk assays testing the sensitivities of Rlv3841 and 

RU4107 (mgtE::mTn5) to toxic-concentrations of metals (Chapter five) were 

conducted on solid AMS glucose instead of TY. 
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2.6 PLANT EXPERIMENTS 

 

2.6.1 Growth of P. sativum and V. faba 

 

P. sativum cv. Avola or scarified V. faba cv. Sutton seeds were surface sterilised by 

immersing them in 70% EtOH. After 1 minute, the EtOH was poured away and the 

seeds were immersed in sterile H2O. After 1 minute, H2O was poured away and 

seeds were immersed in 2% sodium hypochlorite for 5 minutes and then washed 

with sterile H2O for 1 minute. Washing with sterile H2O was repeated 5 times to 

remove traces of sodium hypochlorite. After washing, seeds were transferred to a 

sterile flask and the washing step was repeated another 5 times. Surface sterilised 

seeds were then placed in a sterile Petri dish. 

 

Surface sterilised seeds were sown in 1 l
-1

 pots (2 seeds per pot) containing 

autoclaved vermiculite and 400 ml N-free rooting solution (4 mM Na2HPO4, 3.7 mM 

K2PO4, 1 mM CaCl2, 800 μM MgSO4, 100 μM KCl, 35 μM H3BO3, 10 μM Fe 

EDTA, 9 μM MnCl2, 0.8 μM ZnCl2, 0.5 μM Na2MoO4, 0.3 μM CuSO4). To make 

the inoculants, R. leguminosarum strains were grown on TY slopes containing the 

appropriate antibiotics. After 3 days’ growth, 5 ml of sterile H2O was added to 

slopes and 1 ml of the bacterial suspension was diluted with 19 ml sterile H2O. At 

time of sowing, seeds were inoculated with 1 ml of the diluted bacterial suspension 

and pots were covered with Clingfilm to reduce water loss and contamination when 

being transported to the controlled growth room. 

 

Plants were grown in a controlled growth room at 22
o
C

 
with a 16 hour light cycle. 

After 5-7 days, above the emerging shoots an opening was made in the Clingfilm 

using a sterile blade and seedlings were thinned to one plant per pot. Plants were 

harvested 3 weeks post inoculation (p.i.). 

 

When necessary, nodules from 3 week plants were sectioned and stained with 

toluidine blue by Sue Bunnewell (BioImaging, JIC). Sections were then visualised 

under a Leica DM6000 light microscope. For visualisation by electron microscopy, 
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ultrathin sections were taken and stained with uranyl acetate and lead citrate by Kim 

Findlay (BioImaging, JIC). 

 

2.6.2 Growing V. hirsuta 

 

V. hirsuta seeds were scarified with sandpaper for 10 seconds. Seeds were then 

surface sterilised by immersion in 1% sodium hypochlorite for 5 minutes. Sodium 

hypochlorite was poured away, seeds were washed 5 times with sterile H2O, 

transferred to a sterile flask and then washed another 5 times. Seeds were then placed 

on H2O agar (agar 3% w/v) and incubated at 4
o
C. After 3 days, seeds were moved to 

room temperature and kept in the dark to germinate. After two days, germinated 

seeds were sown into 1 l
-1

 pots (6 seeds per pot) containing autoclaved vermiculite 

and 400 ml N-free rooting solution. Seeds were inoculated with R. leguminosarum 

strains (as described in 2.6.1). Following seed inoculation, pots were covered with 

Clingfilm. 

 

 

Plants were grown in a controlled growth room at 22
o
C with a 16 hour light cycle. 

After 5-7 days, above the emerging shoots an opening was made in the Clingfilm 

using a sterile blade. Plants were harvested 3 weeks p.i. 

 

2.6.3 Growing P. vulgaris  

 

P. vulgaris cv. Tendergreen seeds were surface sterilised by immersion in 70% 

EtOH for 30 seconds and then washed in sterile H2O for 5 seconds. Seeds were then 

immersed in 2% sodium hypochlorite for 2 minutes, and quickly washed with sterile 

H2O 5 times, only leaving the seeds in the H2O for a maximum of 5 seconds. Seeds 

were transferred to a sterile flask and washed another 3 times. After the final wash, 

seeds were placed in a sterile Petri dish. Seeds were sown in 1 l
-1

 pots (2 seeds per 

pot) containing autoclaved vermiculite and 400 ml N-free rooting solution. Seeds 

were then inoculated with R. leguminosarum bv. phaseoli strains (as described in 

2.6.1). Following seed inoculation, pots were covered with Clingfilm. 

 



64 

 

Plants were grown in a controlled growth room at 22
o
C with a 16 hour light cycle. 

After 5-7 days, above the emerging shoots an opening was made in the Clingfilm 

using a sterile blade and seedlings were thinned to one plant per pot. Plants were 

harvested 4 weeks p.i. 

 

2.6.4 Acetylene reduction assays 

 

Rates of N2 fixation were determined by measuring the reduction of acetylene to 

ethylene (Hardy et al., 1973; Trinick et al., 1976). Harvested plants (3 weeks p.i. for 

P. sativum, V. faba and V. hirsuta or 4 weeks p.i. for P. vulgaris) were placed in 250 

ml Schott bottles lined with moistened paper and neoprene lids to ensure an airtight 

seal. Once sealed, 8 ml of air was removed and 6.5 ml of acetylene was added by 

syringe. Plants were incubated at room temperature and after 1 hour, 1 ml gas 

samples were collected by syringe. Samples were analysed by a Shimadzu GC-14B 

gas chromatograph and rates of acetylene reduction were calculated based on the 

ratio of ethylene to acetylene. 

 

2.6.5 Nodule counts and re-isolation of nodule bacteria 

 

After rates of acetylene reduction were determined, plants were removed from Schott 

bottles and nodules were counted. After the nodules had been counted, 

approximately 5-10 nodules for each inoculation were removed from the roots and 

placed in an Eppendorf tube. Nodules were immersed in 70% EtOH and after 1 

minute washed in sterile H2O. Nodules were washed in sterile H2O 10 times, placed 

in a 96-well plate and then immersed in 100 µl sterile H2O. Nodules were crushed 

with a sterile rod and the resulting bacterial suspension was streaked onto a solid TY 

medium. Plates were incubated at 28
o
C for 3-4 days. From these TY plates, 5-10 

colonies were randomly selected and patched onto a TY plate and replica TY plates 

containing antibiotics to verify the presence of the antibiotic resistance marker. 
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2.6.6 Shoot dry weights 

 

P. sativum or V. faba seeds were sown and inoculated (2.6.1) in 2 l
-1

 pots containing 

autoclaved vermiculite and 800 ml N-free rooting solution. After 4 weeks p.i., 400 

ml of sterile H2O was added to each pot and after 6 weeks p.i., plants were harvested. 

Shoots were removed, placed in pre-weighed envelopes and dried at 60
o
C. After 3 

days, weights of dried shoots were determined. 

 

2.6.7 Histochemical staining of nodule sections 

 

To detect sitA-gusA and mntH-gusA expression in planta, nodules were taken from 3 

week plants and sectioned under H2O into 80-100 µM sections using a vibratome. 

Sections were then incubated in staining buffer (50 mM sodium phosphate buffer pH 

7.0; 0.1% Triton X-100, 5 mM K3[Fe(CN)6]; 5 mM K4[Fe(CN)6]) containing 0.02% 

5-bromo-4-chloro-3-indoyl-β-D-glucuronide (X-GlcA, Sigma). After 18 minutes, the 

reaction was stopped by fixing the sections in 1.25% glutaraldehyde in 50 mM 

sodium phosphate buffer (pH 7.0). Sections were visualised under a Leica DM6000 

light microscope. 

 

2.6.8 Dry weights of bacteroids, plant cytosol, nodules and 

quantification of Mg by Atomic Absorption Spectroscopy 

 

Atomic absorption spectroscopy (AAS) was used to quantify Mg associated with the 

plant cytosol and bacteroids isolated from nodules. Rlv3841 or RU4107 

(mgtE::mTn5) was used to inoculate 32 P. sativum seeds sown in 1 l
-1

 pots (2x seeds 

per pot) (2.6.1). This was done in triplicate e.g. 3 cultures of Rlv3841 were used to 

inoculate x3 batches, each batch containing 32 seeds. After 5-7 days, seedlings were 

thinned to 1 seedling per pot. This was repeated for V. faba. 

 

Plants were harvested after 3 weeks; all nodules were collected from each batch of 

plants and transferred to separate beakers. Nodules were macerated with a clean 

mortar and pestle in 10 ml of 10 mM phosphate buffer (pH 7.0). The macerated 

nodule-mix was transferred to a 15 ml Falcon tube and centrifuged at 1000 rpm for 5 
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minutes to remove traces of vermiculite and plant debris. The supernatant was 

transferred to a new 15 ml Falcon tube and centrifuged at 4000 rpm. After 10 

minutes, the supernatant (plant cytosol) was transferred to a new 15 ml Falcon tube; 

the pellet was also kept (bacteroid).  

 

Samples were prepared for AAS following the Perkin Elmer guide for Analytical 

Methods for Atomic Absorption Spectroscopy; Analysis of Plant Tissue: Dry Ashing 

protocol. Plant cytosol and bacteroid fractions were transferred to a pre-weighed 

crucible (bacteroid pellet was resupended in deionized H2O to transfer) and dried at 

100
o
C overnight. Crucibles containing the dried samples were weighed and sample 

weight was determined. Nodule dry weight could be calculated by combining the dry 

weights of the bacteroid and plant cytosol fractions. Weighed-samples were then 

transferred to a muffle furnace, where they were ashed at 250
o
C for 2 hours (with the 

temperature increasing by 10
o
C/minute) and then at 550

o
C for 20 hours (increasing 

by 10
o
C/minute). Ashed samples were weighed and then dissolved in 1 ml

-1
 2% HCl 

acid. Samples were then diluted 1/100 with deionized H2O or in the case of RU4107 

bacteroid pellet, 1/50. Samples were mixed by vortexing. 

 

Mg was quantified with assistance from Dave Hart (IFR) using a Perkin Elmer 

Model 3300 Atomic Absorption instrument with an air-acetylene flame. The Mg 

standard was an Mg AAS solution 1000 mg/l
-1

 (Sigma). A non-linear standard curve 

was created by measuring AU for the following concentrations of the Mg AAS 

standard: 0.5 mg/l
-1

, 1.5 mg/l
-1

 and 3.0 mg/l
-1

. Using the standard curve, samples 

were analysed by the atomic absorption instrument and Mg was quantified (Mg mg/l
-

1
). Each sample was measured in triplicate for 1 second

-1
 at 1 second

-1
 intervals and 

then averaged. After every 10 readings, dilutions of the Mg AAS solution were 

analysed to verify the reliability of the standard curve. Mg concentrations (mg/l
-1

), 

dilution factor and dry weights of samples were used to determine Mg mg/g
-1

 dry 

weight. 
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Chapter 3: Mutagenesis of Genes Upregulated during 

nodule-colonisation and bacteroid development 

 

3.1 INTRODUCTION 

  

Microarrays that compared Rlv3841 grown in minimal medium to bacteria isolated 

from P. sativum nodules at four different time points, provided an insight into 

bacteroid development (Karunakaran et al., 2009). Genes upregulated (≥3-fold) in 

developing bacteroids (isolated from nodules 7 dpi) but not in mature bacteroids 

(isolated from nodules 15, 21 and 28 days dpi.) were identified. Forty-eight of these 

genes were selected for mutagenesis to discover genes required for nodule 

colonisation and bacteroid development. 

 

3.2 RESULTS AND DISCUSSION 

 

3.2.1 Construction of mutants 

 

Targeted mutagenesis utilised the integration plasmids pRU877 and pK19mob 

(2.4.1) (Fig 3.1). Plasmid pRU877 (Lodwig et al., 2004) is derived from pK19mob 

(Schafer et al., 1994), with the addition of gusA (from pJP2) cloned into pK19mob as 

a KpnI/PstI fragment to combine integration mutations with gusA chromosomal 

fusions. Plasmid pK19mob was used because a number of genes could not be 

mutated using pRU877; this may have been the result of incorrect integrations 

caused by a low level of homology between gusA and an unknown region(s) in the 

Rlv3841 genome. 
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Fig 3.1 Maps of integration plasmids pK19mob (top) and pRU877 (bottom) showing 

location of XbaI in the multiple cloning site and binding sites for primers 

(pK19/18A, pK19/18B and pr0095) used for mapping integrated-plasmids to 

Rlv3841 genome. 
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3.2.2 Analysis of upregulated genes and their requirement for 

bacteroid development 

 

Forty-eight genes were selected for mutagenesis and ultimately, forty-two of these 

genes were successfully mutated (Table 3.1). The forty-two genes could be separated 

into seven classes based on their putative roles during bacteroid development. These 

classes were: transport, efflux systems, resistance to oxidative stress, resistance to 

membrane stress, metabolism, regulation and unknowns (Table 3.1). In this section, 

genes and results are discussed for each separate class.  

 

To test their abilities to nodulate and fix N2 on P. sativum, the forty-two mutants 

were used to inoculate seeds that were subsequently grown for three weeks (2.6.1). 

After three weeks, N2 fixation was measured by acetylene reduction (2.6.4), nodules 

were counted and then crushed to confirm the presence of the integrated plasmid 

(2.6.5).  Due to space constraints in the controlled growth room, plants were tested in 

13 batches with each batch including uninoculated plants and plants inoculated with 

Rlv3841 (wild type). Rates of acetylene reduction for mutant-inoculated plants were 

compared to both Rlv3841-inoculated plants in the same batch (batch Rlv3841) and 

the average rate for all Rlv3841-inoculated plants across the 13 batches (combined 

Rlv3841). The same was done for nodule counts. Combining the Rlv3841-inoculated 

plants helped deal with the issue of some batches containing Rlv3841-inoculated 

plants that had low rates of acetylene reductions due to slow germinating seeds or 

poor plant growth. 
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Gene 
Exp. at 

7dpi  
Description  Strain 

RL0262 3.1 Putative oxygen-binding heme protein LMB367 

RL0390 3.9 PraR; regulator involved in quorum sensing  LMB401 

RL0447 7.0 Conserved hypothetical exported protein LMB361 

RL0472 3.0 Putative TetR family transcriptional regulator LMB375 

RL0940 5.7 Putative MntH protein; Mn2+ transporter LMB363 

RL1106 20.0 Putative PspA (phage shock response protein) LMB506 

RL1107 27.6 Putative YiaAB superfamily protein;   LMB489 

RL1226 11.3 Conserved hypothetical protein LMB404 

RL1302 9.3 Putative OsmC/Ohr organic peroxide LMB372 

RL1317 3.7 Putative TM protein; CBS containing ion transporter LMB366 

RL1485 4.6 Putative protein required for attachment to host cells  LMB343 

RL1631 12.8 Putative hypothetical protein LMB398 

RL1879 3.2 Putative FixL-homologue; FixLJ hybrid protein  LMB403 

RL1880 3.3 Putative FixK-like protein; CRP/FNR family LMB392 

RL2022 8.4 Putative  cobalamin/Fe3+-siderophore transporter LMB360 

RL2307 4.4 Putative CsbD superfamily protein; general stress response LMB376 

RL2924 3.9 Putative MarR regulator LMB400 

RL2925 4.1 Putative MutT; hydrolyzes mutagenic nucleotides LMB397 

RL2927 5.6 Putative OsmC/Ohr organic peroxide LMB377 

RL3152 3.1 Putative regulator LMB340 

RL3273 4.1 Putative protein of unknown function LMB349 

RL3688 3.2 Putative TetR family transcriptional regulator;  LMB410 

RL3783 8.5 Putative MFS transporter; efflux system LMB441 

RL3884 4.8 Putative SitA protein; Mn2+ transport LMB364 

RL4103 7.5 Putative protein; extra-cytoplasmic solute receptors LMB396 

RL4274 14.2 Putative MFP component of efflux system LMB384 

pRL80060 3.5 Putative solute-binding component of ABC transporter LMB369 

pRL80012 5.4 Putative AAA+ protein; proposed protease interaction LMB365 

pRL90025 5.4 Putative FixK-like protein; CRP/FNR family LMB374 

pRL90056 3.9 Putative GntR family transcriptional regulator LMB354 

pRL90060 11.6 Putative MFS transporter; efflux system LMB411 

pRL90226 3.2 Putative regulator; contains receiver and effector domain LMB348 

pRL90266 3.3 Putative glycerophosphodiester phosphodiesterase LMB347 

pRL90278 4.4 Putative cytochrome bd-II oxidase subunit 1 LMB421 

pRL100224 4.5 Putative nitrilotriacetate monooxygenase component LMB338 

pRL110033 5.1 Putative ABC efflux system LMB378 

pRL110055 3.3 Putative protein containing mononucleotidyl cyclase domain LMB440 

pRL110287 6.6 Putative 3-oxoadipate CoA-transferase subunit A (PcaI) LMB391 

pRL110377 6.9 Putative Kdp operon transcriptional regulatory protein LMB385 

pRL110623 4.3 Putative sugar-binding protein containing DNA binding domain LMB425 

pRL120362 4.0 Putative catalase-peroxidase; KatG LMB402 

pRL120695 6.3 Putative TetR family transcriptional regulator LMB351 
 

■Transport    ■ Efflux system    ■ Resistance to oxidative stress    ■ Resistance to membrane stress      

■ Metabolism    ■ Regulator    □ Unknown or other     

 

Table 3.1 Mutated genes and their fold-induction in bacteroids isolated from nodules 

7 dpi relative to free-living cells (Exp. at 7dpi ) (Karunakaran et al., 2009). Putative 

functions of genes are colour coded (see legend). Where abbreviated, TM = 

transmembrane, AAA = ATPase family associated with various cellular activities, 

MFP = membrane fusion protein, MFS = major facilitator superfamily, SBP = solute 

binding protein and CBS = cystathionine-β-synthase. 
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Transport 

 

Putative transport systems were identified using the sequenced-genome of Rlv3841 

(Young et al., 2006), searching for homology to characterised-transporters using the 

basic local alignment search tool (BLAST) (Altschul et al., 1990) and identifying 

conserved domains (Marchler-Bauer et al., 2009). Substrates for the putative 

transporter systems were also considered using a transport database that predicts 

substrates based on the family the putative transporter has been assigned to (Ren et 

al., 2007). 

 

Five genes encoding putative transporters or components of transport systems were 

mutated. Two of these genes encode putative proteins involved in the transport of 

Mn
2+

. The gene mntH (RL0940) encodes a putative H
+
-dependent transporter 

belonging to the natural resistance-associated macrophage protein (Nramp) family 

(Kehres et al., 2000; Makui et al., 2000) that shows 60% amino acid identity to B. 

japonicum MntH (Altschul et al., 1990; Hohle and O'Brian, 2009). The gene sitA 

(RL3884) encodes a solute binding protein (SBP) for the Mn
2+ 

ABC-type transport 

system (SitABCD) (Diaz-Mireles et al., 2004). Mn
2+ 

transport has been shown to be 

required for S. meliloti-M. sativa symbiosis but neither disruption of mntH or sitA in 

Rlv3841 caused an obvious symbiotic defect on P. sativum (Table 3.2). 

 

Genes RL2022 and pRL80060 encode putative SBPs that are predicted to belong to 

ABC-transport systems that import amino acids (Ren et al., 2007). However, neither 

gene was required for bacteroid development (Table 3.2). 

 

The mutated gene RL1317, encodes a protein with a transporter associated domain 

and two conserved CBS (cystathionine β-synthase) domains, which are associated 

with the gating of ion channels (Ignoul and Eggermont, 2005; Ishitani et al., 2008). 

Plants inoculated with the mutant strain LMB366 (RL1317:pRU877) did have 

significantly (p= 0.01) fewer nodules relative to plants inoculated with Rlv3841 but 

the mutant reduced acetylene at the same rate as the batch Rlv3841 (p= 0.36) (Table 

3.2). More replicates are needed to confirm this reduction in nodulation. 
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  Acetylene Reductions Nodule Counts 

Strain 
Disrupted 

gene 

Acetylene reduction 

(µmol h
-1

 plant
-1

) 

% of 

batch 

Rlv3841
a 

% of 

combined 

Rlv3841
b 

Nodule 

count 

(n= 3) 

% of 

batch 

Rlv3841
a 

% of 

combined 

Rlv3841
b 

LMB360 RL2022 
3.96 ± 0.56 

(n= 5) 

92 

± 13 

80 

± 11 
94 

± 10 

104 

± 11 

97 

± 10 

LMB363 
RL0940 

(mntH) 
4.02 ± 0.5 

(n= 5) 

93 

± 97 

82 

± 10 
107 

± 10 

117 

± 12 

110 

± 11 

LMB364 
RL3884 

(sitA) 
6.30 ± 0.68 

(n= 5) 

117 

± 13 

128 

± 14 
78 

± 6 

102 

± 8 

81 

± 6 

LMB366 RL1317 
3.51 ± 0.63 

(n= 4
c
) 

76 

± 14 

71 

± 13 
54 

± 7 

57 

± 8 

56 

± 7 

LMB369 pRL80060 
4.01 ± 0.28 

(n= 5) 

122 

± 8 

81 

± 6 
111 

± 5 

101 

± 4 

114 

± 5 
 

Table 3.2 Rates of acetylene reduction and nodule counts (± SEM) for P. sativum 

inoculated with strains carrying mutations in genes that encode putative transport 

systems. n= number of plants tested. 

a  
Batch Rlv3841 refers to average measurement recorded for Rlv3841-inoculated 

plants sown and harvested on the same day as the mutant strain. 

b 
Combined Rlv3841 refers to average measurement recorded for all Rlv3841-

inoculated plants across all batches.  

c 
For the majority of inoculations, five biological replicates were used to measure 

rates of acetylene reduction. A seed not germinating was the cause for when less 

than five replicates were used. 
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Efflux 

 

Several efflux systems were upregulated in developing bacteroids agreeing with the 

research on efflux systems in B. japonicum, S. meliloti and R. etli. There are five 

families of efflux systems: (1) resistance nodulation cell division (RND), (2) major 

facilitator superfamily (MFS), (3) small multidrug resistance (SMR), (4) multidrug 

and toxic compound extrusion (MATE) and (5) ATP-binding cassette (ABC). Six 

putative RND-type and six putative MFS-type efflux systems were found to be 

encoded by Rlv3841 (Table 3.3). 

 

RL4274 (Table 3.3) was selected for mutagenesis because of its strong induction 

during bacteroid development and in the rhizosphere of P. sativum (Ramachandran 

et al., 2011). It encodes a putative membrane fusion protein (MFP) that is predicted 

to function as part of a tripartite RND efflux system. MFPs are lipoproteins that 

bridge the periplasm, forming a tunnel that connects the efflux pump with an 

outermembrane channel (Lewis, 2000; Blair and Piddock, 2009). The cognate pump 

for this system is likely to be encoded by RL4275.  

 

Two MFS-type efflux systems were also targeted for mutagenesis: RL3783 and 

pRL90060 (Table 3.3). The product of pRL90060 is an ortholog of RmrB in R. etli 

(1.4.3), sharing 88% amino acid identity (Gonzalez-Pasayo and Martinez-Romero, 

2000). The gene pRL110033 was also mutated as it encodes a putative ABC-type 

efflux system (polypeptide that contains both the ABC and transmembrane 

domains). Some efflux system-encoding genes were upregulated in developing 

bacteroids but were not selected for mutagenesis due to a high p-value or because 

they had been investigated previously (see section 3.2.5). 

 

None of the mutations in genes encoding for efflux systems caused an obvious 

symbiotic defect except disruption of RL4274, which resulted in a Fix
-
 phenotype 

(incapable of N2 fixation) (Table 3.4). Nodules initiated by the mutant strain 

LMB384 (RL4272:pRU877) were small, white and spherical. It was possible to 

isolate bacteria from nodule crushes. 
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Efflux Type Locus Tag Component 
7 dpi 

bacteroid 

21 dpi 

bacteroid 

Pea 

rhizospere 

RND 
RL4274 MFP 14.2 2.6 135.0 

RL4275 Pump 0.6 1.6 1.2 

RND 
RL1454 MFP 10.5 1.7 2.0 

RL1453 Pump 2.3 1.4 1.8 

RND 
RL4224 MFP 4.6 1.4 1.0 

RL4223 Pump 2.2 1.3 0.6 

RND 
RL3269 Pump 2.6 0.7 1.2 

RL3270 MFP 1.7 0.7 0.9 

RND 

pRL120696 MFP 2.3 0.6 1.5 

pRL120697 MFP 2.1 0.9 1.1 

pRL120698 Pump 2.5 0.5 0.9 

RND 
RL2666 Pump 2.4 1.4 1.5 

RL2667 MFP 1.7 0.7 0.4 

MFS 
pRL90059 MFP 27.5 3.3 5.5 

pRL90060 Pump 11.6 0.8 1.4 

MFS 
RL3784 MFP 13.0 0.9 1.6 

RL3783 Pump 8.5 0.7 1.4 

MFS 
RL4180 MFP 8.3 1.0 1.7 

RL4179 Pump 2.9 1.2 1.3 

MFS RL4612 Pump 7.3 3.2 0.8 

MFS RL0996 Pump 4.8 2.7 4.6 

MFS 
RL1330 Pump 2.1 1.0 1.7 

RL1329 MFP 1.6 2.1 1.8 

 

Table 3.3 Putative RND- and MFS-type efflux systems and their  fold-induction in 

bacteria isolated from nodules 7 dpi, 21 dpi  or pea rhizosphere relative to free-living 

cells grown on minimal medium (Karunakaran et al., 2009; Ramachandran et al., 

2011). Green highlights genes >3-fold upregulated. Genes written in red were 

mutated in this study. 
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 Acetylene Reductions Nodule Counts 

Strain 
Disrupted 

gene 

Acetylene 

reduction 

(µmol h
-1

 plant
-1

) 

% of 

batch 

Rlv3841 

% of 

combined 

Rlv3841 

Nodule 

count 

(n= 3) 

% of 

batch 

Rlv3841 

% of 

combined 

Rlv3841 

LMB378 pRL110033 
4.53 ± 0.76 

(n= 5) 

78 

± 13 

92 

± 15 
68 

± 11 

62 

± 10 

70 

± 11 

LMB384 RL4274 
0.02 ± 0.00 

(n= 5) 

0 

± 0 

0 

± 0 
106 

± 8 

111 

± 8 

109 

± 8 

LMB411 
pRL90060 

(rmrB) 
6.92 ± 0.36 

(n=5) 

129 

± 7 

140 

± 7 
84 

± 11 

110 

± 14 

87 

± 11 

LMB441 RL3783 
7.20 ± 1.24 

(n= 5) 

94 

± 16 

146 

± 25 
84 

± 14 

83 

± 14 

86 

± 14 

 

Table 3.4 Rates of acetylene reduction and nodule counts (± SEM) for P. sativum 

inoculated with strains carrying mutations in genes that encode putative efflux 

systems. n= number of plants tested. 

 

 

Resistance to oxidative stress 

 

Agreeing with the presence of ROS in infection threads, several genes predicted to 

have a role in resistance to oxidative stress were upregulated in developing 

bacteroids.  

 

Gene pRL120362 encodes a putative bi-functional heme-dependent catalase-

peroixdase (KatG). Disruption of this gene did cause a decrease in acetylene 

reduction relative to the combined Rlv3841-incoulated plants (Table 3.5) but this 

experiment needs to be repeated due to low rates of acetylene reduction for the 

batch-Rlv3841 (2.27 µmol h
-1 

plant
-1

 ± 0.18). 

 

RL1302 and RL2927 encode putative organic peroxidases belonging to the 

OsmC/Ohr family. Clustered with RL2927, RL2925 encodes a putative 

pyrophosphohydrolase (MutT), which prevents errors in DNA replication by 

hydrolysing mutagenic mispairing nucleotides (e.g. 8-oxo-dGTP) caused by 

oxidative damage (Fowler and Schaaper, 1997). These genes however, were not 

essential for bacteroid development (Table 3.5). 
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 Acetylene Reductions Nodule Counts 

Strain 
Disrupted 

gene 

Acetylene 

reduction 

(µmol h
-1

 plant
-1

) 

% of 

batch 

Rlv3841 

% of 

combined 

Rlv3841 

Nodule 

count 

 (n= 3) 

% of 

batch 

Rlv3841 

% of 

combined 

Rlv3841  

LMB372 
RL1302 

(osmC/ohr) 
3.99 ± 0.62 

(n= 3) 

86 

± 14 

81 

± 13 
92 

± 4 

96 

± 4 

94 

± 4 

LMB377 
RL2927 

(osmC/ohr) 
5.81 ± 0.59 

(n =5) 

100 

± 10 

118 

± 12 
72 

± 3 

66 

± 3 

74 

± 3 

LMB397 
RL2925 

(mutT) 
4.21 ± 0.20 

(n= 5) 

73 

± 3 

85 

± 4 
92 

± 9 

79 

± 8 

95 

± 9 

LMB400 RL2924 
4.12 ± 0.50 

(n= 5) 

88 

± 11 

84 

± 10 
95 

± 8 

92 

± 7 

97 

± 8 

LMB402 
pRL120362 

(katG) 
2.76 ± 0.24 

(n= 5) 

121 

± 11 

56 

± 5 
76 

± 5 

84 

± 6 

78 

± 6 

 

Table 3.5 Rates of acetylene reduction and nodule counts (± SEM) for P. sativum 

inoculated with strains carrying a mutation in genes encoding proteins with a 

putative role in oxidative stress resistance. n= number of plants tested. 

 

 

Resistance to membrane stress 

 

Three upregulated genes were predicted to have a role in resistance to membrane 

stress. RL1106 encodes a putative PspA (Phage Shock Protein) and is likely to share 

an operon with RL1107, which encodes a putative transmembrane protein. PspA was 

discovered when found in high abundance in E. coli upon infection by filamentous 

phage (Brissette et al., 1990; Joly et al., 2010). Since this discovery, PspA has been 

reported to respond to a multitude of conditions that perturb the integrity of the 

membrane e.g. salt stress (Bidle et al., 2008; Vrancken et al., 2008), ethanol 

(Vrancken et al., 2008), osmotic stress (Vrancken et al., 2008), proton ionophores 

(Weiner and Model, 1994; Becker et al., 2005), organic solvents (Kobayashi et al., 

1998), heat shock (Brissette et al., 1990) and stationary-phase at alkaline pH (Weiner 

and Model, 1994). PspA is speculated to provide protection by binding to the 

membrane in response to stress and maintaining the proton motive force (pmf) by 

forming a homomultimeric scaffold that covers the inner membrane, suppressing 

proton leakage (Kobayashi et al., 2007; Joly et al., 2010). Despite this, disruption of 

pspA or RL1107 did not cause any obvious symbiotic defects (Table 3.6). 

 

Gene pRL80012 encodes a putative AAA+ (ATPase associated with diverse cellular 

activities) protein and is likely to share an operon with pRL80013, which encodes a 
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putative protease. The putative products of these two genes typically form a complex 

known as AAA+ protease, which can degrade damaged or misfolded proteins (Sauer 

and Baker, 2011). Surprisingly, plants inoculated with the mutant LMB365 

(pRL80012:pRU877) had a higher rate of acetylene reduction relative to the batch 

Rlv3841-inoculated plants (p ≤0.05) (Table 3.6). However, when this experiment 

was repeated with 12 biological replicates for both Rlv3841 and LMB365 

(pRL80012:pRU877), there was no significant difference between the rates of 

acetylene reduction (LMB365= 7.45 ± 0.34 c.f. Rlv3841= 7.19 ± 0.19; p= 0.46). 

 

 

 Acetylene Reductions Nodule Counts 

Strain 
Disrupted 

gene 

Acetylene 

reduction 

(µmol h
-1

 plant
-1

) 

% of 

batch 

Rlv3841 

% of 

combined 

Rlv3841 

Nodule 

count 

 (n= 3) 

% of 

batch 

Rlv3841 

% of 

combined 

Rlv3841  

LMB365 pRL80012 
6.39 ± 0.45 

(n= 5) 

182 

± 13 

130 

± 9 
108 

± 5 

86 

± 4 

111 

± 6 

LMB489 RL1107 
5.33 ± 0.73 

(n= 5) 

116 

± 16 

108 

± 15 
78 

± 3 

94 

± 4 

80 

± 3 

LMB506 
RL1106 

(pspA) 
5.93 ± 0.74 

(n= 5) 

107 

± 13 

120 

± 15 
100 

± 4 

105 

± 4 

103 

± 4 

 

Table 3.6 Rates of acetylene reduction and nodule counts (± SEM) for P. sativum 

inoculated with strains carrying mutations in genes encoding proteins with putative 

roles in membrane stress resistance. n= number of plants tested. 

 

 

Metabolism 

 

Three genes were predicted to have a metabolic function. The gene pRL90266 

encodes a putative glycerophosphodiester phosphodiesterase (GDPD), which 

hydrolyses glycerophosphodiesters formed by the deacylation of phospholipids; it is 

involved in membrane recycling and nutrient scavenging (Patton-Vogt, 2007; 

Santos-Beneit et al., 2009). Products of glycerophosphodiesterases breakdown can 

be fed into pathways utilised for glycerol metabolism. Recently, genes essential for 

glycerol utilisation were identified in R. leguminosarum bv. viciae VF39 and their 

disruption caused a reduced ability to compete with the wild type during colonisation 

of P. sativum nodules (Ding et al., 2012). Orthologs of these genes can be found in 

Rlv3841 between loci pRL90074-pRL90081; some of these genes were moderately 
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upregulated (≥1.5-fold) in developing bacteroids. Disruption of pRL90266 did not 

cause a significant decrease in acetylene reduction or nodule number (Table 3.7) but 

it remains to be determined if LMB347 (pRL90266:pRU877) is defective for 

competition. 

 

Aromatic compounds can be metabolised to tricarboxylic acid intermediates by the 

β-ketoadipate pathway (MacLean et al., 2006). The gene pRL110287 (pcaI) forms 

part of the putative pcaIJF operon that is required for the conversion of β-

ketoadipate to succinate and acetyl-coenzyme A (MacLean et al., 2006). However, 

no noticeable phenotype was caused by disruption of pRL110287 (Table 3.7). 

 

 Acetylene Reductions Nodule Counts 

Strain 
Disrupted 

gene 

Acetylene 

reduction 

(µmol h
-1

 plant
-1

) 

% of 

batch 

Rlv3841 

% of 

combined 

Rlv3841 

Nodule 

count 

 (n= 3) 

% of 

batch 

Rlv3841 

% of 

combined 

Rlv3841  

LMB347 pRL90266 
6.19 ± 0.86 

(n= 4) 

107 

± 15 

126 

± 17 
86 

± 16 

79 

± 15 

89 

± 16 

LMB391 
pRL110287 

(pcaI) 
3.50 ± 0.29 

(n= 3) 

81 

± 7 

71 

± 6 
79 

± 8 

87 

± 9 

82 

± 9 

LMB421 pRL90278 
3.77 ± 0.46 

(n=5) 

88 

± 11 

77 

± 9 
87 

± 3 

95 

± 3 

89 

± 3 

 

Table 3.7 Rates of acetylene reduction and nodule counts (± SEM) for P. sativum 

inoculated with strains carrying mutations in genes encoding proteins with a putative 

metabolic function. n= number of plants tested. 

 

 

Regulation 

 

Twelve genes encoding putative regulators were mutated, including one gene 

(RL1879) that encodes a FixL-homologue. FixL is an O2-sensing regulator essential 

for N2 fixation in S. meliloti, B. japonicum and A. caulinodans (David et al., 1988; 

Anthamatten and Hennecke, 1991; Kaminski and Elmerich, 1991) but not in R. 

leguminosarum bv. viciae VF39 (Patschkowski et al., 1996). Two of the other genes 

encode FixK-homologues (RL1880 and pRL90025), which are also involved in 

regulating genes essential for N2 fixation (Terpolilli et al., 2012). However, 

disruption of these putative regulators did not cause any obvious symbiotic defects 

(Table 3.8). 
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The protein encoded by RL0390 was originally annotated as a putative pH-regulated 

regulator (PhrR) but has since been identified as a repressor (PraR) of two N-acyl-

homoserine lactone (AHL)-based quorum sensing systems (Frederix et al., 2011). In 

agreement with the thesis of Marijke Frederix, 2010 (Allan Downie lab), P. sativum 

inoculated with the praR mutant formed pink nodules and showed no reduction in 

nodule number (Table 3.8). 

 

Rates of acetylene reduction or nodule number were not affected by any of the other 

mutations in genes encoding for putative regulators (Table 3.8). 

 

 Acetylene Reductions Nodule Counts 

Strain 
Disrupted 

gene 

Acetylene 

reduction 

(µmol h
-1

 plant
-1

) 

% of 

batch 

Rlv3841 

% of 

combined 

Rlv3841 

Nodule 

count 

 (n= 3) 

% of 

batch 

Rlv3841 

% of 

combined 

Rlv3841 

LMB340 RL3152 
4.90 ± 0.48 

(n= 5) 

85 

± 8 

99 

± 10 
123 

± 11 

113 

± 10 

127 

± 11 

LMB348 pRL90226 
3.08 ± 0.09 

(n= 5) 

88 

± 3 

63 

± 2 
74 

± 1 

59 

± 0 

76 

± 1 

LMB351 pRL120695 
4.75 ± 0.75 

(n= 4) 

103 

± 16 

96 

± 15 
76 

± 7 

79 

± 7 

78 

± 7 

LMB354 pRL90056 
3.85 ± 0.56 

(n= 3) 

83 

± 12 

78 

± 11 
87 

± 7 

91 

± 7 

89 

± 7 

LMB374 
pRL90025 

(fixK-like) 
6.17 ± 0.23 

(n= 4) 

134 

± 5 

125 

± 5 
94 

± 22 

99 

± 23 

97 

± 22 

LMB375 RL0472 
4.74 ± 0.53 

(n= 5) 

82 

± 9 

96 

± 11 
73 

± 11 

66 

± 10 

75 

± 11 

LMB385 pRL110377 
4.29 ± 0.43 

(n= 5) 

93 

± 9 

87 

± 9 
102 

± 11 

107 

± 12 

105 

± 12 

LMB392 
RL1880 

(fixL-like) 
5.71 ± 0.50 

(n= 5) 

122 

± 11 

116 

± 10 
84 

± 11 

82 

± 11 

86 

± 11 

LMB401 
RL0390 

(praR) 
5.48 ± 0.40 

(n= 5) 

127 

± 9 

111 

± 8 
110 

± 3 

110 

± 3 

103 

± 3 

LMB403 
RL1879 

(fixK-like) 
4.18 ± 0.14 

(n= 5) 

90 

± 3 

85 

± 3 
93 

± 2 

90 

± 2 

95 

± 2 

LMB410 RL3688 
4.85 ± 0.55 

(n= 5) 

85 

± 10 

98 

± 11 
93 

± 4 

80 

± 4 

95 

± 5 

LMB425 pRL110623 
4.4 ± 0.35 

(n= 5) 

125 

± 10 

89 

± 7 
80 

± 1 

63 

± 1 

82 

± 1 

 

Table 3.8 Rates of acetylene reduction and nodule counts (± SEM) for P. sativum 

inoculated with strains carrying a mutation in genes encoding putative regulators. n= 

number of plants tested. 
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Unknowns or other 

 

Six of the genes mutated encoded hypothetical conserved proteins and four encoded 

putative proteins that could not be assigned a putative function. P. sativum 

inoculated with LMB343 (RL1485:pRU877), LMB376 (RL2307:pRU877) and 

LMB404 (RL1226:pK19mob) showed moderate decreases in acetylene reduction 

that were statistically significant (p ≤0.05) (Table 3.9) but more replicates are needed 

to confirm this. All other mutations caused no differences in acetylene reduction or 

nodule number (Table 3.9). 

 

 Acetylene Reductions Nodule Counts 

Strain 
Disrupted 

gene 

Acetylene 

reduction 

(µmol h
-1

 plant
-1

) 

% of 

batch 

Rlv3841 

% of 

combined 

Rlv3841 

Nodule 

count 

 (n= 3) 

% of 

batch 

Rlv3841 

% of 

combined 

Rlv3841  

LMB338 pRL100224 
3.23 ± 0.36 

(n= 5) 

98 

± 11 

66 

± 7 
103 

± 5 

94 

± 4 

106 

± 5 

LMB343 RL1485 
3.64 ± 0.34 

(n= 5) 

63 

± 6 

74 

± 7 
94 

± 4 

86 

± 4 

97 

± 5 

LMB349 RL3273 
4.83 ± 0.81 

(n= 4) 

83 

± 14 

98 

± 16 
69 

± 7 

63 

± 7 

71 

± 8 

LMB361 RL0447 
3.52 ± 0.12 

(n= 5) 

107 

± 4 

71 

± 2 
90 

± 10 

82 

± 9 

93 

± 11 

LMB367 RL0262 
3.69 ± 0.36 

(n= 5) 

86 

± 8 

75 

± 7 
80 

± 13 

88 

± 14 

83 

± 13 

LMB376 RL2307 
4.07 ± 0.15 

(n= 3) 

70 

± 3 

83 

± 3 
70 

± 4 

64 

± 4 

72 

± 4 

LMB396 RL4103 
4.35 ± 0.44 

(n= 5) 

93 

± 9 

88 

± 9 
92 

± 10 

89 

± 9 

95 

± 10 

LMB398 RL1631 
3.30 ± 0.23 

(n= 5) 

100 

± 7 

67 

± 5 
80 

± 3 

73 

± 3 

83 

± 3 

LMB404 RL1226 
4.21 ± 0.27 

(n= 5) 

73 

± 5 

85 

± 6 
122 

± 17 

105 

± 15 

126 

± 18 

LMB440 pRL110055 
7.94 ± 1.25 

(n= 5) 

104 

± 16 

161 

± 25 
95 

± 15 

94 

± 15 

98 

± 16 

 

Table 3.9 Rates of acetylene reduction and nodule counts (± SEM) for P. sativum 

inoculated with strains carrying mutations in genes encoding proteins with an 

unknown function. n= number of plants tested. 
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3.2.3 Genes that could not be mutated 

 

Despite multiple attempts, it was not possible to isolate strains carrying mutations in 

six genes, including three genes (RL2578, RL2582 and RL2580) thought to share an 

operon that encodes proteins predicted to be involved in Fe-S cluster biogenesis 

(Young et al., 2006). Fe-S clusters are used as cofactors by a wide range of proteins, 

participating in electron transfer, catalysis and regulatory processes (Beinert et al., 

1997; Lill, 2009). There are three types of Fe-S assembly systems in bacteria: ISC 

(iron sulphur cluster), SUF (sulphur formation) and NIF (nitrogen fixation) (Lill, 

2009). Typically, the ISC system is used for housekeeping cluster assembly, SUF is 

used during oxidative stress and NIF is used to assemble clusters into nitrogenase 

(Takahashi and Tokumoto, 2002; Tokumoto et al., 2004; Ayala-Castro et al., 2008).  

 

The genes sufS (RL2578), sufB (RL2582) and sufC (RL2580) encode a putative 

cysteine desulfurase, Fe-S scaffold protein and a transfer protein, respectively, that 

operate as part of the SUF assembly system (Table 3.10). Some bacteria encode 

more than one Fe-S cluster biogenesis system e.g. E. coli (Tokumoto et al., 2004; Xu 

and Moller, 2008) but Rlv3841 only seems to encode the SUF system (Table 3.10) 

(it does contain a weak orthologue for nifS but all other components of the NIF 

system are absent) (Altschul et al., 1990; Young et al., 2006). This offers an 

explanation to why it was not possible to mutate sufC, sufB and sufS, as their loss 

would be lethal. It also implies that the SUF system delivers the Fe-S cluster to 

nitrogenase. 

 

Another gene that could not be mutated is mraZ (RL3316), which has been 

associated with cell wall biosynthesis and cell division. The gene mraW, downstream 

of mraZ, has been shown to be essential in E. coli (Carrion et al., 1999; Adams et al., 

2005). 
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 Rlv3841 Amino acid identity % 
 

  

Cysteine desulphurase sufS (RL2578) 

nifS (RL2583) 

46 

36 

Scaffold sufA (RL2576) 

sufB (RL2582) 

sufD (RL2579) 

41 

61 

30 

Fe-S transfer sufC (RL2580) 58 

 

Table 3.10 Putative Fe-S cluster biogenesis system in Rlv3841. Genes identified by 

the homology of their products to SUF components present in E. coli K12 or NIF 

components present in Azotobacter vinelandii DJ.  

 

 

3.2.4 Disruption of RL4274 does not cause a Fix
-
 phenotype on P. 

sativum 

 

LMB384 (RL4274:pRU877) was the only mutant strain to show a Fix
-
 phenotype on 

P. sativum. To ascertain whether the Fix
-
 phenotype was caused by the mutation 

RL4274:pRU877 or was the result of a secondary mutation, RL4274:pRU877 was 

transduced using RL38 phage (2.4.3) from LMB384 into Rlv3841, resulting in strain 

LMB423. The presence of the RL4274:pRU877 mutation in LMB423 was confirmed 

by PCR using pK19/18A and pr0560. P. sativum was inoculated with LMB423 and 

after three weeks, rates of acetylene reduction were measured. In strong contrast to 

LMB384 (RL4274:pRU877), LMB423 reduced acetylene at the same rate as 

Rlv3841 (Fig 3.2), implying that the Fix
- 
phenotype observed with LMB384 was the 

result of an unknown, secondary mutation. 
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Fig 3.2 Rates of acetylene reduction for P. sativum inoculated with Rlv3841 and 

LMB423. Averaged from five plants ± SEM. 

 

 

Further proof that RL4274 is not essential for N2 fixation came from mutant strain 

RU4260 (RL4274:pK19mob) (Ramachandran et al., 2011). As a result of an overlap 

between this project and a project that focussed on genes important to colonisation of 

the P. sativum rhizosphere, RL4274 had been selected for mutagenesis twice. 

RU4260 (RL4274:pK19mob) had not previously been tested for its ability to fix N2, 

but when inoculated onto P. sativum, in agreement with LMB423, this strain reduced 

acetylene at the same rate as Rlv3841 (Fig 3.3). 
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Fig. 3.3 Rates of acetylene reduction for P. sativum inoculated Rlv3841 and 

RU4260. Averaged from five plants ± SEM. 

 

 

3.2.5 Requirement of efflux systems on Vicia faba 

 

The efflux system BdeAB is required by B. japonicum for efficient symbiosis on G. 

max but not on V. radiata or V. unguiculata (Lindemann et al., 2010). This implies 

that the requirement of some efflux systems depends on the legume-host i.e. toxic 

compounds endogenous to the plant. For this reason, all Rlv3841 strains carrying a 

mutation in a gene encoding for an efflux system-component were screened on V. 

faba (an alternative legume-host for Rlv3841). In addition to mutants made in this 

study, strains RU4260 (RL4274:pK19mob), RU4314 (pRL90059:pK19mob), 

LMB519 (RL1329ΩSpc) and double mutant LMB523 (pRL90059:pK19mob 

RL1329ΩSpc) were also tested; additional mutants were constructed by Adrian Tett 

and Karunakaran Ramakrishnan and were Fix
+
 on P. sativum (unpublished data from 

the Philip Poole lab). 
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V. faba seeds were inoculated with the mutant strains (2.6.1) and harvested after 

three weeks. All strains were able to nodulate and reduce acetylene on V. faba (Figs 

3.4 and 3.5). LMB523 (pRL90059:pK19mob RL1329ΩSpc) was the only strain that 

showed a decrease in acetylene reduction and nodulation relative to Rlv3841 (Figs 

3.4 and 3.5). This experiment needs to be repeated with more replicates to confirm 

these differences.  

 

 

 

 

Fig 3.4 Rates of acetylene reduction for V. faba plants inoculated with Rlv3841 and 

strains carrying mutations in genes encoding for putative efflux systems. Averaged 

from five plants ± SEM. * indicates a statistically significant (p ≤ 0.05) difference 

relative to Rlv3841-inoculated plants. 
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Fig 3.5 Nodule counts recorded from V. faba plants inoculated with Rlv3841 and 

strains carrying mutations in genes encoding for putative efflux systems. Averaged 

from three plants ± SEM. * indicates a statistically significant (p ≤ 0.05) difference 

relative to Rlv3841-inoculated plants. 

 

 

3.3 CONCLUSION 

 

This preliminary investigation was vital for identifying functional classes of genes 

and processes required during bacteroid development. None of the mutations 

severely impaired bacteroid development which is likely to be the result of 

functional redundancy between the upregulated genes. The two putative Mn
2+

 

transport systems encoded by mntH and sitABCD are a clear example of this. 

SitABCD could apparently compensate for the loss of MntH and vice versa. 

 

The efflux systems could be another example of functional redundancy as there were 

eight efflux systems upregulated in developing bacteroids (Table 3.3). Furthermore, 

it is known that efflux systems have a broad specificity for a diverse range of 

compounds (Higgins, 2007). Therefore, the loss of one efflux system could easily be 

compensated by another. 

 

There is also likely to be some functional redundancy between genes involved in 

resistance to oxidative stress. In addition to the mutated catalase-encoding gene, 
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katG (Table 3.5), Rlv3841 encodes a second putative heme-dependent catalase, KatE 

(encoded by RL2024). Furthermore, katE is >3-fold upregulated in mature 

bacteroids, 1.7-fold upregulated in developing bacteroids (Karunakaran et al., 2009) 

and shares 77% amino acid identity with a catalase (KatE) required by M. loti for N2 

fixation on L. japonicus (Hanyu et al., 2009). In addition to the two catalases, there 

could also be a degree of functional redundancy between the two OsmC/Ohr organic 

peroxidases encoded by RL1302 and RL2927 (Table 3.5). 

 

There may also be functional redundancy amongst the regulators upregulated in 

developing bacteroids, particularly between fixL and RL1879 (encoding a FixL-

homologue) (Table 3.8). 

 

Five of the mutants were moderately reduced in their ability to reduce acetylene or 

initiated less nodules relative to Rlv3841: LMB366 (RL1317:pRU877) (Table 3.2), 

LMB402 (katG:pK19mob) (Table 3.5), LMB343 (RL1485:pRU877) (Table 3.8), 

LMB376 (RL2307:pRU877) (Table 3.8), LMB404 (RL1226:pK19mob) (Table 3.8) 

and LMB523 (pRL90059:pK19mob RL1329ΩSpc) (Figs 3.4 and 3.5). However, 

because these were only moderate phenotypes it was decided that further 

investigation into the functional redundancy between genes would have a greater 

chance of unearthing processes critical to bacteroid development. 

 

The remainder of this thesis will therefore focus on four different aspects of 

bacteroid development: the transport of metals (Chapters four and five), regulation of 

genes essential to N2 fixation (Chapter six), resistance to organic peroxides (Chapter 

seven) and the role AAA+ proteases (Chapter eight) in developing bacteroids. The 

efflux systems were not investigated further due to the number of systems encoded 

by Rlv3841 (Table 3.3). The hypothesised redundancy between the two catalases 

was also not pursued as their role in bacteroid development has already been well-

characterised in S. meliloti and M. loti (Jamet et al., 2003; Hanyu et al., 2009). 
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Chapter 4: Mn2+ transport 

 

4.1 INTRODUCTION 

 

Manganese (Mn
2+

) is a trace metal maintained at a concentration of 10-100 µM in 

the cell (Finney and O'Halloran, 2003). Mn
2+ 

has been found to be critical for 

numerous processes but the most common physiological role attributed to Mn
2+ 

is 

resistance to oxidative stress (Kehres and Maguire, 2003). In Mn
2+

-dependent 

superoxide dismutases (SodA), Mn
2+

 operates as a redox catalyst in the 

detoxification of O2
-
 into H2O2 and O2.  Mn

2+
 is also a cofactor for non-haem 

catalases that detoxify H2O2 into H2O and O2 (McEwan, 2009). Furthermore, Mn
2+

 

has a protective role during oxidative stress that is independent of both superoxides 

and catalases (McEwan, 2009). It has been speculated that Mn complexed to 

polyphosphate and pyrophosphate can quench O2
-
, while Mn complexed to 

bicarbonate can quench H2O2 (Archibald and Fridovich, 1982; Berlett et al., 1990). 

However, the physiological relevance of this scavenging property has been disputed 

in a study conducted by Anjem et al., 2009, which proposes the protective effect of 

Mn
2+

 instead stems from its ability to replace Fe
2+

 as a cofactor for mononuclear 

enzymes. The replacement of Fe
2+ 

with Mn
2+

 would make these proteins less 

vulnerable to H2O2 and O2
-
 (Anjem and Imlay, 2012) and suppresses the Fe

2+
-

dependent formation of HO
.
 radicals (Anjem et al., 2009; Imlay, 2013). 

 

Mn
2+

 is also utilised as a cofactor for enzymes in unstressed cells, for example, 

pyruvate kinase in B. japonicum (PykA) (Hohle and O'Brian, 2012), malic enzymes 

in P.aeruginosa (Eyzaguir.J et al., 1973) and a certain class of ribonucleotide 

reductase in E. coli (required under Fe-limitation)  (Andrews, 2011; Martin and 

Imlay, 2011). In B. japonicum, Mn
2+

 also has a role in Fe-homeostasis through 

binding the global Fe-regulator Irr (positively regulates genes encoding Fe-

transporters), altering its structure and subsequently, making it less vulnerable to 

degradation (Puri et al., 2010). However, like other metals, Mn
2+

 can be toxic in 

excess, which is supported by the recent discoveries of Mn
2+

 efflux systems in 

bacteria (Rosch et al., 2009; Sun et al., 2010; Li et al., 2011; Waters et al., 2011). 
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To enter a Gram-negative cell, Mn
2+

 must first cross the outer membrane, which can 

be achieved via a selective outer membrane pore (MnoP) (Hohle et al., 2011). Mn
2+

 

is then transported across the inner membrane by an ABC-type transporter encoded 

by the sitABCD operon or an H
+
-coupled symporter (belonging to Nramp protein 

family) encoded by mntH (Fig 4.1). 

 

 

 

Fig 4.1 Scheme showing importation of Mn
2+

 into a Gram-negative bacterium via an 

outer membrane protein (MnoP) and inner membrane transporters SitABCD and 

MntH. Encoding genes are represented by red arrows. Values correspond to fold-

induction of genes in developing bacteroids isolated from nodules 7 dpi relative to 

free-living cells grown in minimal medium (Karunakaran et al., 2009).  

  

 

Outer membrane 

Inner membrane 

Developing bacteroids Developing bacteroids 
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The requirement of Mn
2+

 transport for bacteroid development in indeterminate 

nodules has been demonstrated in M. sativa-S. meliloti symbiosis.  S. meliloti 

encodes a SitABCD transport system that was required for growth in medium 

limited for Mn
2+

 (Platero et al., 2003; Chao et al., 2004; Davies and Walker, 2007a, 

b). On M. sativa, deletion of sitA (Δ sitA) (Chao et al., 2004) or mutation by mTn5-

integration (sitA::mTn5) (Davies and Walker, 2007b) caused a ~50-75% decrease in 

acetylene reduction relative to the wild type (Table 4.1). M. sativa inoculated with 

sitA::mTn5, formed either small white nodules (Fig 4.2B) or elongated white nodules 

(Fig 4.2C). Electron microscopy revealed that sitA::mTn5 bacteroids were present 

within plant cells of both nodule-types but the mutant could only be isolated from 

the elongated white nodules, which contained 1000-fold fewer bacteria relative to 

nodules containing the wild type. 

 

 

 

 

Fig 4.2 Nodules formed on M. sativa inoculated with S. meliloti 1021 (A) or S. 

meliloti (sitA::mTn5) (B and C). Reproduced from Davies and Walker, 2007b. 

 

 

In contrast to the above, a third study reported that there were no difference between 

the dry weight of M. sativa inoculated with S. meliloti wild type and M. sativa 

inoculated with S. meliloti strains carrying Tn5-mutations in either sitB or sitD 

(Platero et al., 2003); however, acetylene reduction assays were not conducted. 

Furthermore, the strain of S. meliloti and cultivar of plant used by Platero et al were 
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different from those used in the other two studies (Chao et al., 2004; Davies and 

Walker, 2007a) (Table 4.1). 

 

The requirement of Mn
2+

 transport for bacteroid development in determinate nodules 

has been investigated using B. japonicum and G. max. B. japonicum does not encode 

a sitABCD operon and instead contains a MntH transporter that is essential for Mn
2+

 

uptake and growth in Mn
2+

 limited medium. However, MntH was shown not to be 

essential for G. max-B. japonicum symbiosis as confirmed by nodule weights and 

rates of acetylene reduction (Table 4.1) (Hohle and O'Brian, 2009). 

 

The Rlv3841 genome is predicted to encode both putative MntH and SitABCD 

transport systems. MntH is encoded by mntH (RL0940) and shows 60% amino acid 

identity to B. japonicum MntH (Altschul et al., 1990; Hohle and O'Brian, 2009). 

Expression of the sitABCD operon from R. leguminosarum was previously shown to 

rescue the growth phenotype of S. meliloti sitB::Tn5 (Platero et al., 2003; Diaz-

Mireles et al., 2004) and its expression in R. leguminosarum is regulated in response 

to Mn
2+

 by the Fur-like repressor, Mur (manganese uptake regulator) (Fig 4.1) (Diaz-

Mireles et al., 2004; Diaz-Mireles et al., 2005). When bound to Mn
2+

, Mur binds to 

conserved sites upstream of sitABCD and represses transcription by occluding RNA 

polymerase access to the promoter (Diaz-Mireles et al., 2005). Mur-binding sites 

have also been identified upstream of mntH in Rlv3841, but regulation of mntH by 

Mur has not been demonstrated (Rodionov et al., 2006). In Rlv3841, expression of 

both sitABCD and mntH is strongly induced during bacteroid development  (Fig 4.1) 

(Karunakaran et al., 2009) but single mutations in sitA or mntH did not prevent 

bacteroid development in indeterminate nodules formed on P. sativum (Table 4.1). 

 

This investigation determines whether there is functional redundancy between the 

two Mn
2+

 transport systems encoded by Rlv3841 and subsequently, establishes 

whether Mn
2+

 transport is required for bacteroid development in nodules formed by 

P. sativum. It also addresses whether the requirement of Mn
2+ 

transporters differs 

between legume-hosts, including both plants that form indeterminate nodules (e.g. 

M. sativa, P. sativum, V. faba and V. hirsuta) and plants that form determinate 

nodules (G. max and P. vulgaris). 
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Organism Mutation 
Symbiotic 

phenotype 

Legume-

host 
Nodule Type Reference 

S. meliloti 

242 
sitB::Tn5 

Plant dry weights 

equivalent to wild 

type inoculated 

M. sativa 

cv. Creola 
Indeterminate 

Platero et 

al., 2003 

S. meliloti 

242 
sitD::Tn5 

Plant dry weights 

equivalent to wild 

type inoculated 

M. sativa 

cv. Creola 
Indeterminate 

Platero et 

al., 2003 

S. meliloti 

1021 
Δ sitA 

Decreased plant 

wet weight and 

~50% decrease in 

acetylene reduction 

M. sativa 

cv. Europe 
Indeterminate 

Chao et al., 

2004 

S. meliloti 

1021 
sitA::mTn5 

~75% decrease in 

acetylene reduction  

and small white or 

intermediate-sized 

nodules 

M. sativa Indeterminate 

Davies and 

Walker 

2007a, b 

B. japonicum 

USDA110 
Δ mntH 

Nodule weight and 

rates of acetylene 

reduction 

equivalent to wild 

type 

G. max 

cv. Essex 
Determinate 

Hohle and 

O’Brian 

2009 

Rlv3841 sitA:pK19mob 

Nodule number and 

acetylene reduction 

equivalent to wild 

type 

P. sativum 

cv. Avola 
Indeterminate This study 

Rlv3841 

 
mntH:pK19mob 

Nodule number and 

acetylene reduction 

equivalent to wild 

type 

P. sativum 

cv. Avola 
Indeterminate This study 

 

Table 4.1 Symbiotic phenotypes for rhizobial strains carrying mutation in sitABCD 

or mntH. 
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4.2 RESULTS 

 

4.2.1 Expression of sitA-gusA and mntH-gusA is induced in response 

to Mn
2+

 limitation and during symbiosis 

 

Reporter gusA-fusions, where gusA encodes β-glucuronidase (GUS), were used to 

study the expression of sitABCD and mntH in free-living cells and during symbiosis. 

To construct sitA-gusA and mntH-gusA, promoter regions were PCR amplified from 

Rlv3841 gDNA using sitA primers pr1292 and pr1293 and mntH primers pr1290 and 

pr1291. The PCR products were cloned into the broad-host range plasmid pJP2 

(Prell et al., 2002) at the XbaI/HindIII site to make plasmids pLMB597 (sitA-gusA) 

and pLMB600 (mntH-gusA). Plasmids were then conjugated into Rlv3841 (2.3.8) to 

make LMB498 (sitA-gusA) and LMB505 (mntH-gusA). 

 

To investigate expression of sitA-gusA and mntH-gusA in response to Mn
2+

 

limitation, LMB498 (sitA-gusA) and LMB505 (mntH-gusA) were grown in modified 

AMS glucose containing 0.05 µM or 0.9 µM MnSO4. Samples were taken from the 

cultures and used to measure GUS activity (2.5.6). For both LMB498 (sitA-gusA) 

and LMB505 (mntH-gusA), GUS activity was approximately 2-fold higher when 

grown in 0.05 µM relative 0.9 µM MnSO4 (Fig 4.3). A 2-fold induction of sitABCD 

and mntH may seem a weak response to Mn-limitation but this can be explained by 

the fact that both sitA-gusA and mntH-gusA were encoded by a multi-copy plasmid. 

More specifically, in medium containing 0.9 µM, some expression of sitA-gusA and 

mntH-gusA may have been due to inadequate numbers of the chromosome-encoded, 

repressor Mur, consequently, obscuring the true affect of Mn
2+

 on the expression of 

both gusA-fusions. 

 

To determine whether the induction of sitA-gusA and mntH-gusA is dependent upon 

Mur, plasmids pLMB597 (sitA-gusA) and pLMB600 (mntH-gusA) were conjugated 

into R. leguminosarum bv. viciae strain J325 (murΩSpc) (Wexler et al., 2001) to 

make LMB550 (murΩSpc sitA-gusA) and LMB551 (murΩSpc mntH-gusA). In the 

murΩSpc background, expression of both gusA-fusions was increased and 
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differential expression between MnSO4-concentrations was lost (Fig 4.3). This 

confirms that both sitABCD and mntH are repressed by Mur. 

 

 

 

 

 

Fig 4.3 GUS activity measured for (A) LMB498 (sitA-gusA), LMB550 (murΩSpc 

sitA-gusA), (B) LMB505 (mntH-gusA) and LMB551 (murΩSpc mntH-gusA) grown 

in modified AMS glucose containing 0.05 µM or 0.9 µM MnSO4. Averaged from 

three independent experiments ± SEM. * indicates statistically significant difference 

(p ≤ 0.05). 

 

 

In addition to Mn
2+

 limitation, studies on other bacteria have found the expression of 

Mn
2+

 transporter-encoding genes to be regulated by OxyR in response to oxidative 

stress (Kehres et al., 2000; Kehres et al., 2002a; Runyen-Janecky et al., 2006). To 

investigate if this holds true for Rlv3841, gusA-fusions were tested in a strain 

carrying a mutation in oxyR.  
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To mutate oxyR, its internal fragment was PCR amplified using primers pr1286 and 

pr1287. The PCR product was cloned into pJET1.2/blunt to make pLMB592. An 

XbaI/BglII fragment containing the internal fragment of oxyR was cut from 

pLMB592 and cloned into XbaI/BamHI-digested pK19mob, resulting in pLMB596. 

Plasmid pLMB596 was conjugated into Rlv3841 to make LMB497 

(oxyR:pK19mob). Plasmids pLMB597 and pLMB600 were then conjugated into 

LMB497 (oxyR:pK19mob), resulting in strains LMB511 (oxyR:pK19mob sitA-gusA) 

and LMB512 (oxyR:pK19mob mntH-gusA). 

 

To measure expression in response to oxidative stress, cultures were grown and split 

into two samples. To one sample, 100 µM H2O2 was added, while the other sample 

was treated as a negative control. GUS activity was measured at 0, 2, 4 and 8 hours 

(2.5.6). However, disruption of oxyR did not cause a change in GUS activity and 

GUS activity did not differ between samples treated and not treated with H2O2 (Fig 

4.4). 

 

The gusA-fusions were also used to analyse expression of the Mn
2+

 transporters 

during symbiosis. P. sativum was inoculated with LMB498 (sitA-gusA) or LMB505 

(mntH-gusA). After three weeks, sections were taken from nodules and stained for 

GUS activity (2.6.7). Both sitA-gusA and (Fig 4.5A) and mntH-gusA (Fig 4.5B) were 

expressed throughout the nodule, highlighting the probable importance of Mn
2+

 

uptake during symbiosis. 
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Fig 4.4 GUS activity measured for (A) LMB498 (sitA-gusA), LMB511 

(oxyR:pK19mob sitA-gusA), (B) LMB505 (mntH-gusA) and LMB512 

(oxyR:pK19mob mntH-gusA) grown in AMS glucose containing 0 µM or 100 µM 

H2O2. H2O2 added at 0 and samples taken at 2, 4 and 6 hrs. Averaged from three 

independent experiments ± SEM. 
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Fig 4.5 Histochemical staining of longitudinal sections of three week P. sativum 

nodules for GUS activity. Plants were inoculated with (A) LMB498 (sitA-gusA) or 

(B) LMB505 (mntH-gusA). Four nodules shown for each inoculation. 

 

 

A. B. 
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4.2.2 A sitA mntH double mutant cannot grow in Mn
2+

-limited 

medium 

 

A double mutant was constructed to test if there is any functional redundancy 

between sitABCD and mntH. To make the double mutant, mntH was first mutated by 

insertion of a Ω intersposon carrying Spc
r 
(mntHΩSpc). Primers pr1186 and pr1187 

were used to amplify a 3 kb region containing mntH from Rlv3841 gDNA. The PCR 

product was subcloned into pJET1.2/blunt to make pLMB543. A SmaI fragment 

containing the ΩSpc cassette was cloned into pLMB543 at EcoRV to make 

pLMB544. A 5 kb XbaI/XhoI fragment from pLMB544 was cloned into XbaI/XhoI-

digested pJQ200SK resulting in pLMB546. Plasmid pLMB546 was conjugated into 

Rlv3841 to make LMB460 (mntHΩSpc) (2.4.2). To construct the double mutant, 

mntHΩSpc was transduced from LMB460 (mntHΩSpc) into LMB364 

(sitA:pK19mob) to make LMB466 (sitA:pK19mob mntHΩSpc). TY was 

supplemented with 50 µM MnSO4 when selecting for and for routine growth of 

LMB466 (sitA:pK19mob mntHΩSpc). 

 

Strains were tested for growth in modified AMS medium containing 0.05 (Mn
2+

-

limited) or 25 µM MnSO4 (non-limited) (2.5.1). Both single mutants were able to 

grow in AMS glucose containing 0.05 µM MnSO4 but LMB364 (sitA:pK19mob) had 

a longer mean generation time (5.5 hrs c.f. 4.5 hrs) (Fig 4.6). Growth of LMB466 

(sitA:pK19mob mntHΩSpc) however, was severely reduced in AMS glucose 

containing 0.05 µM MnSO4. Growth phenotypes for both LMB364 (sitA:pK19mob) 

and LMB466 (sitA:pK19mob mntHΩSpc) could be rescued by the addition of 25 µM 

MnSO4 (Fig 4.6). The growth defect of LMB466 (sitA:pK19mob mntHΩSpc) could 

be reproduced in flask cultures (Fig 4.25) and on solid medium (Fig 4.7). 
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Fig 4.6 Growth of Rlv3841 [diamonds], LMB364 (sitA:pK19mob)  [squares], 

LMB460 (mntHΩSpc) [circles] and LMB466 (sitA:pK19mob mntHΩSpc   

[triangles] in modified AMS glucose containing either 0.05 µM MnSO4 or 25 µM 

MnSO4. Averaged from three independent experiments ± SEM. 
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Fig 4.7 Rlv3841 and LMB466 (sitA:pK19mob mntHΩSpc) grown on solid modified 

AMS glucose medium containing either 0.5 µM or 50 µM MnSO4. 

 

 

4.2.3 SitABCD and MntH are required for H2O2-resistance 

 

Even though no change in expression for sitA-gusA and mntH-gusA was seen in 

response to H2O2 (Fig 4.4), the requirement of SitABCD and MntH for resistance to 

oxidative stress was tested. To measure H2O2-sensitivity, Rlv3841, LMB364 

(sitA:pK19mob) and LMB460 (mntHΩSpc) were first grown in AMS glucose. 

Cultures were then washed with and resuspended in modified AMS (omitting 

MnSO4); resuspended cultures were split into two samples and 0.5 mM H2O2 was 

added to one, while the other culture was used as a negative control. Samples were 

taken at 0, 2, 4 and 6 hrs and used to determine number of colony forming units 

(CFU) (2.5.5).  

 

Both LMB364 (sitA:pK19mob) and LMB460 (mntHΩSpc) were more sensitive to 

H2O2 relative to Rlv3841 (Fig 4.8). The hypersensitivity of LMB364 

(sitA:pK19mob) to H2O2 agrees with the slow growth phenotype seen in Mn
2+

-

Rlv3841 

                       

LMB466 

                       

sitA:pK19mob mntHΩSpc 

0.5 µM MnSO4 

50 µM MnSO4 
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limited medium (Fig 4.6). LMB460 (mntHΩSpc) does not show a growth phenotype 

(Fig 4.6) and so its hypersensitivity might suggest a greater demand for Mn
2+

 under 

oxidative stress, consistent with the 
54

Mn data published by Anjem et al 2009. 

 

 

Fig 4.8 Sensitivity of Rlv3841 [diamonds], LMB364 (sitA:pK19mob) [squares] and 

LMB460 (mntHΩSpc) [circles] to H2O2. Strains incubated in MnSO4-free AMS 

glucose containing either 0 mM H2O2 (solid line) or 0.5 mM H2O2 (broken line). 

Survival (%) corresponds to number of colony forming units (CFU) relative to the 

number of CFUs at time 0 hrs. Averaged from three independent experiments ± 

SEM. 
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MnSO4 however, no difference in sensitivity was seen between the single mutants 
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speculated that when grown in 25 µM MnSO4, none of the mutants were limited for 

Mn
2+

 and so exhibited the same sensitivity as Rlv3841. Therefore, the sensitivity of 

LMB466 (sitA:pK19mob mntHΩSpc) to H2O2 still needs to be determined and the 

experiment is likely to involve growing LMB466 (sitA:pK19mob mntHΩSpc) in a 

Mn
2+

-rich medium and then starving the culture of Mn
2+ 

for a period of time before 

treating with H2O2. 

 

 

Fig 4.9 Sensitivity of Rlv3841 [diamonds], LMB364 (sitA:pK19mob) [squares], 

LMB460 (mntHΩSpc) [circles] , LMB466 (sitA:pK19mob mntHΩSpc) [triangles] to 

H2O2. Strains were grown in modified AMS (containing 25 µM MnSO4) glucose and 

then incubated in MnSO4-free AMS glucose containing either 0 mM H2O2 (solid 

line) or 0.5 mM H2O2 (broken line). Survival (%) corresponds to number of colony 

forming units (CFU) relative to the number of CFUs at time 0 hrs. Data from one 

experiment. 
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4.2.4 A sitA mntH double mutant is Fix
- 
on P. sativum 

 

To test whether Mn
2+

 transport is required for bacteroid development, P. sativum 

was inoculated with Rlv3841, the single mutants or double mutant. After three 

weeks, P. sativum inoculated with LMB364 (sitA:pK19mob) or LMB460 

(mntHΩSpc), had nodules that were similar in colour and morphology to nodules on 

Rlv3841-inoculated plants. Plants inoculated with LMB466 (sitA:pK19mob 

mntHΩSpc) however, formed small, white and spherical nodules, which are typical 

of an ineffective symbiosis (Fig 4.10). Rates of acetylene reduction suggest that 

LMB364 (sitA:pK19mob) and LMB460 (mntHΩSpc) fix N2 at wild type rates but in 

concurrence with the nodule morphology, no N2 fixation could be detected for plants 

inoculated with LMB466 (sitA:pK19mob mntHΩSpc) (Fig 4.11). It was possible to 

recover LMB466 (sitA:pK19mob mntHΩSpc) from the Fix
- 
nodules. 

 

 

Fig 4.10 Nodules on P. sativum inoculated with (A) Rlv3841 or (B) LMB466 

(sitA:pK19mob mntHΩSpc). 

 

A.                                      B. 
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Fig 4.11 Rates of acetylene reduction for Rlv3841, LMB364 (sitA:pK19mob), 

LMB460 (mntHΩSpc) and LMB466 (sitA:pK19mob mntHΩSpc) on P. sativum. 

Averaged from five plants ± SEM. 

 

 

P. sativum inoculated with LMB466 (sitA:pK19mob mntHΩSpc) were also grown 

for six weeks alongside Rlv3841-inoculated and uninoculated plants. Plants 

inoculated with LMB466 (sitA:pK19mob mntHΩSpc) were indistinguishable from 

the uninoculated controls in both appearance (Fig 4.12) and shoot dry weight (2.6.6) 

(Table 4.2) confirming the absence of N2 fixation. 
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Fig 4.12 Photo showing (A) uninoculated, (B) Rlv3841-incoulated and (C) LMB466 

(sitA:pK19mob mntHΩSpc)-inoculated P. sativum. All plants were grown for six 

weeks. 

 

 

Inoculation Shoot dry weight (g) 

Uninoculated 0.87 ± 0.07 

Rlv3841 3.0 ± 0.23 

LMB466 (sitA:pK19mob mntHΩSpc) 0.9 ± 0.06 

 

Table 4.2 Shoot dry weights for (A) uninoculated, (B) Rlv3841-inoculated and (C) 

LMB466 (sitA:pK19mob mntHΩSpc)-inoculated P. sativum. All plants were grown 

for six weeks. Averaged from ten plants ± SEM. 

 

 

The ability of mntH to rescue the symbiotic phenotype of LMB466 (sitA:pK19mob 

mntHΩSpc) was tested. Primers pr1290 and pr1462 were used to PCR-amplify a 1.9 

kb region containing mntH from Rlv3841 gDNA. The PCR product was digested 

with XbaI/HindIII and cloned into XbaI/HindIII-digested pJP2, to make pLMB766. 

The plasmid pLMB766 was conjugated into LMB466 (sitA:pK19mob mntHΩSpc) to 

make LMB683 (sitA:pK19mob mntHΩSpc pJP2mntH). LMB683 (sitA:pK19mob 

mntHΩSpc pJP2mntH) was able to reduce acetylene at wild type rates (Fig 4.13) 
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demonstrating that pJP2mntH can rescue the symbiotic phenotype of the double 

mutant. 

 

 

 

Fig 4.13 Rates of acetylene reduction for Rlv3841 and LMB683 (sitA:pK19mob 

mntHΩSpc pJP2mntH). Averaged from five plants ± SEM. 

 

 

Sections taken from nodules (2.6.1) formed on Rlv3841- or LMB466 (sitA:pK19mob 

mntHΩSpc)-inoculated P. sativum were visualised by light microscopy (Figs 4.14 

and 4.15) and transmission electron microscopy (TEM) (Fig 4.16). Even though 

infection thread-like structures could be seen in both nodules containing Rlv3841 

and LMB466 (sitA:pK19mob mntHΩSpc) (Fig 4.14), only a few plant cells were 

infected by LMB466 (sitA:pK19mob mntHΩSpc) (Fig 4.15). The few plant cells that 

were infected, were sparsely packed with LMB466 (sitA:pK19mob mntHΩSpc) 

bacteroids, relative to the densely-packed plant cells containing Rlv3841 (Fig 4.16). 

Furthermore, nodules from LMB466 (sitA:pK19mob mntHΩSpc)-inoculated plants 

contained many starch granules (Fig 4.16), which is typical of an infective symbiosis 

(Udvardi and Poole, 2013). 

0 

1 

2 

3 

4 

5 

6 

Rlv3841 LMB683 

A
ce

ty
le

n
e 

re
d
u
ct

io
n
 (

µ
m

o
l h

-1
 p

la
n
t-1

) 

 

sitA:pK19mob mntHΩSpc 

pJP2mntH 



107 
 

 

Fig 4.14 Sections of nodules taken from P. sativum inoculated with (A) Rlv3841 or 

(B) LMB466 (sitA:pK19mob mntHΩSpc). Arrows indicate infection thread-like 

structures. Sections stained with toluidine blue. Visualised by light microscopy at 

magnification x 20. 

20 µm 

A. 

B. 

20 µm 



108 
 

 

 

Fig 4.15 Sections of nodules taken from P. sativum inoculated with (A) Rlv3841 or 

(B) LMB466 (sitA:pK19mob mntHΩSpc). Sections stained with toluidine blue. 

Visualised by light microscopy at magnification x 10. 
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Fig 4.16 Ultrathin sections of nodules taken from P. sativum inoculated with 

Rlv3841 (A and C) or LMB466 (sitA:pK19mob mntHΩSpc) (B and D). Visualised 

by TEM at magnfication x 420 (A and B) or x 550 (C and D). 

 

 

4.2.5 A sitA mntH double mutant is Fix
- 
on V. faba and V. hirsuta 

 

The requirement of SitABCD and MntH for symbiosis with other indeterminate 

legumes within the host range of Rlv3841 was investigated. As with P. sativum, 

inoculating V. faba with LMB466 (sitA:pK19mob mntHΩSpc) resulted in small, 

white spherical nodules (Fig 4.17) and an absence of acetylene reduction (Fig 4.18). 
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Furthermore, both LMB364 (sitA:pK19mob) and LMB460 (mntHΩSpc) initiated 

pink nodules on V. faba and reduced acetylene at a rate similar to Rlv3841 (Fig 

4.18). 

 

 

Fig 4.17 Nodules on V. faba inoculated with (A) Rlv3841 or (B) LMB466 

(sitA:pK19mob mntHΩSpc).  

 

 

 

Fig 4.18 Rates of acetylene reduction for Rlv3841, LMB364 (sitA:pK19mob), 

LMB460 (mntHΩSpc) and LMB466 (sitA:pK19mob mntHΩSpc) on V. faba. 

Averaged from five plants ± SEM. 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Rlv3841 LMB364 LMB460 LMB466 

A
ce

ty
le

n
e 

re
d
u
ct

io
n
 (

µ
m

o
l h

-1
 p

la
n
t-1

) 
  

A.                           B. 

sitA:pK19mob mntHΩSpc sitA:pK19mob 

mntHΩSpc 



111 
 

Consistent with P. sativum, infection thread-like structures could be seen in sections 

taken from V. faba nodules containing LMB466 (sitA:pK19mob mntHΩSpc) (Fig 

4.19) and there were few infected plant cells (Figs 4.19 and 4. 20). Furthermore, 

plant cells that were infected by LMB466 (sitA:pK19mob mntHΩSpc) appeared to 

contain a low number of bacteroids compared to cells densely packed with 

Rlv3841bacteroids (Fig 4.19). 

 

The requirement of SitABCD and MntH was also tested with V. hirsuta After three 

weeks, V. hirsuta inoculated (2.6.2) with LMB466 (sitA:pK19mob mntHΩSpc) were 

stunted in growth and showed signs of chlorosis, as seen with the uninoculated 

control (Fig 4.21). Acetylene reduction assays confirm that LMB466 (sitA:pK19mob 

mntHΩSpc) was unable to fix N2 on V. hirsuta (Fig 4.22). 
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Fig 4.19 Sections of nodules taken from V. faba inoculated with (A) Rlv3841 or (B) 

LMB466 (sitA:pK19mob mntHΩSpc). Arrows indicate infection thread-like 

structures. Sections stained with toluidine blue visualised by light microscopy at 

magnification x 20. 

20 µm 

A. 

B. 

20 µm 
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Fig 4.20 Sections of nodules taken from V. faba inoculated with Rlv3841 or 

LMB466 (sitA:pK19mob mntHΩSpc). Sections stained with toluidine blue. 

Visualised by light microscopy at magnification x10. 

 

 

 

 

 

 

 

 

Fig 4.21 Photo showing (A) uninoculated, (B) Rlv3841-inoculated and (C) LMB466 

(sitA:pK19mob mntHΩSpc)-inoculated V. hirsuta. All plants were grown for three 

weeks. 

A.         B.            C. 

50 µm 

50 µm 

50 µm 

50 µm 

Rlv3841 LMB466 
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Fig 4.22 Rates of acetylene reduction for Rlv3841 and LMB466 (sitA:pK19mob 

mntHΩSpc) on V. hirsuta. Averaged from twenty-four plants ± SEM. 

 

 

4.2.6 High affinity Mn
2+

 transporters are not essential for bacteroid 

development in determinate nodules formed by P. vulgaris 

 

Strains, R. leguminosarum bv. phaseoli 4292 (Rlp4292) and R. leguminosarum bv. 

viciae A34 (RlvA34) were used to test if SitABCD and MntH are required for 

symbiosis with a legume that  forms determinate nodules. These two strains share 

the same genetic background with the exception of their Sym plasmids (encoding 

genes important for host selection) (Fig 4.23); consequently, one strain initiates 

determinate nodules on P. vulgaris (Rlp4292), whereas the other initiates 

indeterminate nodules on P. sativum (RlvA34) (Lamb et al., 1982; Downie et al., 

1983). 
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Fig 4.23 Rlp4292 and RlvA34. RlvA34 was engineered by curing Rlp4292 of its 

Sym plasmid (pRP2J1) and conjugating the Sym plasmid from R. leguminosarum 

(pRL1J1) into the cured strain (Lamb et al., 1982; Downie et al., 1983). 

 

 

Mutations made in Rlv3841 were remade in both RlvA34 and Rlp4292. To remake 

the mutations in RlvA34, sitA:pK19mob and mntHΩSpc were transduced from 

LMB364 and LMB460 (respectively) into RlvA34, resulting in LMB525 (RlvA34 

sitA:pK19mob) and LMB526 (RlvA34 mntHΩSpc). To create the double mutant, 

sitA:pK19mob was transduced from LMB364 into LMB526, to make LMB539 

(RlvA34 sitA:pK19mob mntHΩSpc). TY was supplemented with 50 µM MnSO4 

when selecting for and for routine growth of LMB539 (RlvA34 sitA:pK19mob 

mntHΩSpc). 

 

Bacteriophage RL38 is incapable of infecting Rlp4292 so mutations were remade by 

conjugation. To make mntHΩSpc in Rlp4292, pLMB546 was conjugated into 

Rlp4292, resulting in LMB541 (Rlp4292 mntHΩSpc). To make sitAΩKm, a 3 kb 

region containing sitA was PCR-amplified from Rlp4292 gDNA using primers 

pr1378 and pr1394. The PCR product was subcloned into pJET1.2/blunt to make 

pRP2J1 

Sym plasmid cured 

pRL1J1 

pRL1J1 

R. leguminosarum bv. phaseoli 

R. leguminosarum bv. viciae 

Rlp4292 

RlvA34 
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pLMB679. A blunted EcoRI fragment containing ΩKm was then cloned into SmaI-

digested pLMB679 to make pLMB691. A 5 kb XbaI/NotI fragment from pLMB691 

was cloned into XbaI/NotI digested pJQ200SK, resulting in pLMB694. Plasmid 

pLMB694 was conjugated into Rlp4292 to make LMB624 (Rlp4292 sitAΩkm). To 

make the double mutant, pLMB694 was conjugated into LMB541, resulting in 

LMB630 (Rlp4292 sitAΩKm mntHΩSpc). TY was supplemented with 50 µM 

MnSO4 when selecting for and for routine growth of LMB630 (Rlp4292 sitAΩKm 

mntHΩSpc). 

 

P. sativum was inoculated with RlvA34, LMB525 (RlvA34 sitA:pK19mob), 

LMB526 (RlvA34 mntHΩSpc) or LMB539 (RlvA34 sitA:pK19mob mntHΩSpc). 

The double mutant LMB539 (RlvA34 sitA:pK19mob mntHΩSpc) did not reduce 

acetylene on P. sativum, consistent with what was seen with LMB466 (Rlv3841 

sitA:pK19mob mntHΩSpc) (Fig 4.24). 

 

P. vulgaris was then inoculated with Rlp4292, LMB541 (Rlp4292 mntHΩSpc), 

LMB624 (Rlp4292 sitAΩKm) or LMB630 (Rlp4292 sitAΩKm mntHΩSpc) (2.6.3). 

In contrast to the Fix
-
 phenotype seen with P. sativum, double mutant LMB630 

(Rlp4292 sitAΩKm mntHΩSpc) reduced acetylene at a rate equal to Rlp4292 (Fig 

4.24). 

 

Following these results, the ability of LMB539 (RlvA34 sitA:pK19mob mntHΩSpc) 

and LMB630 (mntHΩSpc sitAΩKm) to grow in Mn
2+

-limited medium was tested 

(2.5.2). Conforming with the growth phenotype of LMB466 (sitA:pK19mob 

mntHΩSpc), LMB539 (RlvA34 sitA:pK19mob mntHΩSpc) and LMB630 (Rlp4292 

mntHΩSpc sitAΩKm) grew poorly in modified AMS glucose containing 0.05 µM 

MnSO4 (Fig 4.25). This implies that the difference in symbiotic phenotypes is not 

due to an unidentified Mn
2+

 transporter encoded on the Sym plasmid of Rlp4292. 
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Fig 4.24 Rates of acetylene reduction for P. sativum (blue bars) inoculated with 

RlvA34, LMB525 (RlvA34 sitA:pK19mob), LMB526 (RlvA34 mntHΩSpc) or 

LMB539 (RlvA34 sitA:pK19mob mntHΩSpc) and P. vulgaris (orange bars) 

inoculated with Rlp4292, LMB541 (Rlp4292 mntHΩSpc), LMB624 (sitAΩKm) or 

LMB630 (mntHΩSpc sitAΩKm). 
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Fig 4.25 Growth of Rlv3841 (solid line with triangles), double mutant LMB466 

(broken line with triangles), RlvA34 (solid line with circles), double mutant 

LMB539 (broken line with circles), Rlp4292 (solid line with diamonds) and double 

mutant LMB630 (broken line with diamonds) grown in modified AMS containing 

either 0.05 µM MnSO4 or 10 µM MnSO4. 
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4.3 DISCUSSION 

 

The homology of SitABCD and MntH to characterised Mn
2+

 transporters, the 

regulation of sitABCD and mntH by Mur in response to Mn
2+

 (Fig 4.3) and the 

growth phenotype of LMB466 (sitA:pK19mob mntHΩSpc) (Fig 4.6), strongly 

suggest that sitABCD and mntH encode Mn
2+

 transporters. However, transport assays 

using 
54

Mn
2+

are still required to confirm this. Furthermore, because some Mn
2+

 

transporters are also capable of Fe
2+

 transport, the ability of unlabelled Fe
2+

 to inhibit 

54
Mn

2+
-uptake should also be tested (Hohle and O'Brian, 2009). Indeed, the 

possibility that SitABCD and MntH may also be capable of a level of Fe
2+

 transport 

is particularly relevant to symbiosis because, despite Fe have a clear role in N2 

fixation, it is not known how Fe is imported into the bacteroid. 

 

It is not unusual for bacteria to encode both types of Mn
2+

 transporter but only a few 

studies have eliminated both transport systems within the same strain (Zaharik et al., 

2004; Runyen-Janecky et al., 2006; Sabri et al., 2008; Perry et al., 2012). One reason 

for having two Mn
2+

 transporters would be if the abilities of SitABCD and MntH to 

transport Mn
2+

 differed according to the environment. For example, Salmonella 

enterica encodes both MntH and SitABCD. In S. enteria, MntH can transport Mn
2+

 

at a high rate at both an acidic and slightly alkaline pH, whereas SitABCD, is almost 

inactive in acidic environments, and optimally transports Mn
2+ 

at slightly alkaline pH 

(Kehres et al., 2002b). If this is also the case for Rlv3841, it would enable Rlv3841 

to effectively compete for Mn
2+

 in both alkaline and acidic soils. It would be 

intriguing to measure growth of the single mutants at different pH, to see if the 

disruption of mntH would cause a growth phenotype at low pH, like disruption of 

sitA did at neutral pH (Fig 4.6). 

 

Both single mutants exhibited hypersensitivity to H2O2 relative to Rlv3841 (Fig 4.8). 

Although it is well know that disruption of Mn
2+

 transport causes sensitivity to 

oxidative stress (Davies and Walker, 2007b; Anderson et al., 2009; Anjem et al., 

2009), this result differs from what was seen for Shigella flexneri and an avian 

pathogenic E. coli strain , where both sitABCD and mntH had to be mutated to cause 

H2O2-hypersensitivity (Runyen-Janecky et al., 2006; Sabri et al., 2006). However, 
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the fore mentioned studies used disk assays to determine H2O2-sensitivity, whereas 

in this study, sensitivity was determined in liquid medium. 

 

The symbiotic phenotype of LMB466 (sitA:pK19mob mntHΩSpc) on P. sativum, V. 

faba and V. hirsuta differed from the symbiotic phenotype of S. meliloti sitA::mTn5  

(and Δ sitA) on M. sativa (Fig 4.2) (Chao et al., 2004; Davies and Walker, 2007b). 

Only small white nodules were initiated by LMB466 (sitA:pK19mob mntHΩSpc) 

(Figs 4.10 and 4.17) in contrast to the mixture of small white and intermediate-sized 

nodules initiated by  S. meliloti sitA::mTn5 on M. sativa (Davies and Walker, 

2007b). Furthermore, LMB466 (sitA:pK19mob mntHΩSpc) was incapable of N2 

fixation, whereas some acetylene reduction could be detected for S. meliloti 

sitA::mTn5 and Δ sitA (Chao et al., 2004; Davies and Walker, 2007b). One 

explanation could be that S. meliloti encodes another Mn
2+

 transporter. S. meliloti 

does contain an uncharacterised gene (SMa1115) that encodes a putative Nramp 

transporter that shares 26% amino acid identity with MntH from E. coli and 24% 

with MntH from Rlv3841 (93% and 67% coverage respectively) (Patzer and Hantke, 

2001; Platero et al., 2007). If SMa1115 does encode a functional Mn
2+

 transporter it 

would explain why mutations in the S. meliloti sitABCD operon either caused partial 

symbiotic phenotypes (Chao et al., 2004; Davies and Walker, 2007b) or no 

phenotype (Platero et al., 2003) on M. sativa cultivars. 

 

It is not know at what stage LMB466 (sitA:pK19mob mntHΩSpc) is blocked in 

bacteroid development. The presence of normal-looking infection threads (Figs 4.14 

and 4.19), low number of infected cells (Figs 4.15 and 4.20) and small number of 

bacteroids in infected cells (Figs 4.16 and 4.19) suggest that development is blocked 

at a late stage of infection thread progression or possibly during the release stage. A 

similar phenotype was seen for RU4040 (bacA:pK19mob) on P. sativum, where 

infection threads could be seen but the mutant was unable to infect plant cells and 

develop into bacteroids (Karunakaran et al., 2010). 

 

What causes the block in the release of bacteria from the infection thread is also 

unknown. A likely explanation is an inability to survive the oxidative stress imposed 

by the presence of H2O2 in the infection threads (Santos et al., 2001; Rubio et al., 

2004; Cardenas et al., 2008; Montiel et al., 2012). In one strain of S. meliloti 
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(Rm5000), a Mn-dependent SodA has been shown to be essential for infection and 

bacteroid development (Santos et al., 2000), however, disruption of sodA in the 

parent strain of S. meliloti sitA::mTn5 (S. meliloti 1021) did not cause a symbiotic 

defect (note: sodA is annotated as sodB in S. meliloti 1021). Furthemore, a sitA sodA 

double mutant exhibited the same level of symbiotic deficiency as a sitA::mTn5 

mutant (Davies and Walker, 2007b). Indeed, disruption of sodA in Rlv3841 was also 

found not to affect acetylene reduction or nodulation on P. sativum (personal 

communication, Allan Downie JIC). Therefore, the requirement of SitABCD and 

MntH for symbiosis cannot be attributed to the activity of SodA. Alternatively, 

importation of Mn
2+ 

might provide protection against oxidative stress by replacing 

Fe
2+

 in certain mononuclear enzymes (Anjem et al., 2009). 

 

For some bacteria however, the requirement of Mn
2+

 is not restricted to oxidative 

stress resistance and is utilised by enzymes central to metabolism e.g. pyruvate 

kinase (PykA), NAD
+
 malic enzyme (Dme) and NADP

+ 
malic enzyme (Tme) 

(Eyzaguir.J et al., 1973; Hohle and O'Brian, 2012). Dme has been shown to be 

essential in S. meliloti for N2 fixation (Driscoll and Finan, 1993) and a dme pykA 

double mutant in Rlv3841 is Fix
-
 (Mulley et al., 2010). However, the dme pykA 

double mutant was not defective for bacteroid formation (unpublished data, Philip 

Poole lab) and so the symbiotic phenotype of LMB466 (sitA:pK19mob mntHΩSpc) 

cannot be attributed to an absence of a Mn
2+

 cofactor for metabolic enzymes Dme 

and PykA. 

 

SitABCD and MntH were not required for bacteroid development in determinate 

nodules formed on P. vulgaris as acetylene reductions for the double mutant 

LMB630 (Rlp4292 sitAΩKm mntHΩSpc) were equivalent to wild type Rlp4292 (Fig 

4.24). This agrees with the symbiotic phenotype of B. japonicum Δ mntH, which was 

severely defective for 
54

Mn
2+

 uptake but not for bacteroid development in 

determinate nodules on G. max (Hohle and O'Brian, 2009). A simple explanation 

could be that there are higher levels of bioavailable Mn
2+

 in P. vulgaris and G. max 

nodules relative to P. sativum, V. faba, V. hirsuta and M. sativa; this may or may not 

be a general feature of determinate nodules. Alternatively, developing bacteroids in 

indeterminate nodules may have a higher requirement for Mn
2+

 relative to 

developing bacteroids in determinate nodules, for example, if the infection threads in 
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indeterminate nodules contain higher levels of ROS. However, ROS have never been 

accurately quantified in the infection threads of either nodule-type. 

 

Another alternative explanation could be the presence of NCR peptides in nodules 

formed on legumes belonging to the galegoid clade (e.g. P. sativum, V. hirsuta, V. 

faba and M. sativa) but absence in nodules formed on legumes in belonging to the 

phaseoloid (e.g. G. max and P. vulgaris) (see 1.4.4). These plant-derived 

antimicrobial peptides increase membrane permeability (Van de Velde et al., 2010) 

and disruption of the membrane by other antimicrobial peptides leads to loss of K
+
 

ions, amino acids, ATP and Mg
2+

 ions from the cell (Galvez et al., 1991; Okereke 

and Montville, 1992; Maftah et al., 1993; Matsuzaki et al., 1997; Xu et al., 1999; 

Brogden, 2005; Bolintineanu et al., 2010). It is therefore feasible, that NCR peptides 

present in galegoid nodules may cause a loss of ions from the bacterial cell, 

including Mn
2+

, explaining the requirement of high-affinity Mn
2+

 transporters during 

infection of P. sativum, V. faba etc. 

 

Some antimicrobial peptides can also disrupt the proton motive force (pmf) of the 

membrane and the functionality of some divalent metal transporters has been shown 

to depend on pmf-conservation (Karlinsey et al., 2010). Therefore, in phaseoloid 

nodules, divalent transporters with a low-affinity for Mn
2+

 might be able to 

compensate for the absence of SitABCD or MntH, however, if the functionality of 

these low-affinity transporters is compromised by the presence of NCR peptides, the 

rate of Mn
2+

 uptake might not be enough to compensate for the loss of high-affinity 

Mn
2+

 transporters. 

 

A third reason explaining why the presence of NCR peptides might cause a 

requirement of high-affinity Mn
2+

 transport is that antimicrobial peptides have been 

reported to stimulate HO
.
 formation via the Fenton reaction (via the damage of Fe-S 

clusters) (Kohanski et al., 2007). Consequently, there could be a higher demand for 

Mn
2+

 to suppress the Fenton reaction by replacing Fe
2+

 in mononuclear enzymes and 

as a cofactor for SodA (Davies and Walker, 2007b; Krehenbrink et al., 2011; Anjem 

and Imlay, 2012). However, this common mechanism of HO
. 

induced cell death 

caused by antimicrobial peptides has been since disputed by Ezraty et al., 2013.  
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Contrasting phenotypes resulting from elimination of Mn
2+

 transporters has also 

been seen in the human pathogen Yersinia pestis, where a sitA mntH double mutant 

(note: sitABCD in Y. pestis is annotated as yfeABCD), caused reduced virulence in 

the lymph nodes (bubonic plague) but no loss of virulence in the lungs (pneumonic 

plague) (Perry et al., 2012). However, for plant-infecting bacteria, this is the first 

demonstration that the requirement of metal transporters depends upon the species of 

the plant-host. 
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Chapter 5: Mg2+ transport 

 

5.1 INTRODUCTION 

 

5.1.1 Magnesium 

 

Magnesium (Mg
2+

) is the most abundant divalent cation inside many living cells and 

essential for a broad range of cellular functions, including stabilising ribosomal 

subunits, a cofactor for ATP, establishing the secondary structure of nucleic acids 

and stabilising membranes (Smith and Maguire, 1998; Moomaw and Maguire, 

2008). Despite this, very little is known about how Mg
2+

 is transported during 

legume-rhizobia symbioses. 

 

One study found that M. sativa grown in Mg
2+

-limited conditions nodulated poorly, 

were small, chlorotic and exhibited poor rates of N2 fixation (<25% compared to 

plants grown in the normal growth medium) (Miller and Sirois, 1983). In the same 

study, the rate of acetylene reduction for bacteroids isolated from M. sativa nodules 

(taken from plants grown in the normal growth medium), could be improved by ~ 

10% by the addition of Mg
2+

. Furthermore, addition of the chelating agent 

ethyleneglycol-bis-(aminoethyl ether)-N, N’-tetraacetic acid (EGTA) to the isolated 

bacteroids caused a 28% decrease in acetylene reduciton, which could be partially 

restored by the addition of Mg
2+

. One requirement of Mg
2+

 for N2 fixation is 

providing energy to nitrogenase because reduction of N2 by this enzyme requires 

sixteen MgATP molecules [N2+8H
+
+16MgATP+8e

-  
→ 

2NH3+H2+16MgADP+16P i] (Seefeldt et al., 2009). 

 

5.1.2 Magnesium importers 

 

Three types of Mg
2+ 

importers have been identified in prokaryotes: (1) P-type 

ATPase, (2) the CorA channel and (3) the MgtE channel (Maguire, 2006; Moomaw 

and Maguire, 2008).  
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The P-type ATPases MgtA and MgtB are unusual transporters because they utilise 

ATP for Mg
2+

-uptake
 

with, rather than against, the electrochemical gradient 

(Moncrief and Maguire, 1999; Maguire, 2006). MgtA and MgtB in Salmonella 

typhimurium are capable of Mg
2+

 (and Ni
2+

) influx but not efflux (Smith and 

Maguire, 1998). Disruption of mgtB has been shown to hinder long-term survival of 

S. typhimurium in macrophages (Blanc-Potard and Groisman, 1997; Smith and 

Maguire, 1998). 

 

The second type of Mg
2+ 

importer, the
 

CorA (cobalt resistance) channel, is 

ubiquitous amongst prokaryotes and can mediate both uptake and efflux of Mg
2+

 (in 

addition to Co
2+

 and Ni
2+

) (Smith and Maguire, 1995; Moncrief and Maguire, 1999; 

Moomaw and Maguire, 2008). The CorA-channel has been studied in the human 

pathogens S. enterica and Helicobacter pylori; disruption of corA attenuated 

virulence of S. enterica in mice and resulted in defective invasion of and replication 

within epithelial cells (Pfeiffer et al., 2002; Papp-Wallace et al., 2008). CorA has 

also been investigated in the plant pathogen Pectobacterium carotovorum, where 

mutation of corA caused a decrease in the production of cell-wall degrading enzymes 

i.e. pectate lyase, proteases, polygalacturonase and cellulase (Kersey et al., 2012). 

Consequently, the mutant had attenuated virulence as it macerated less host tissue 

compared to the wild type and multiplied poorly in planta. CorA-type channels have 

also been indentified in plants and are annotated as MRS2. In A. thaliana, eight 

MRS2-like genes have been shown to encode functional CorA channels (Schock et 

al., 2000; Li et al., 2001; Gebert et al., 2009). 

 

The third type of Mg
2+ 

importer, the MgtE channel, was first discovered in Bacillus 

firmus OR4 (Smith et al., 1995) but is now known to be commonly present in all 

kingdoms of life (Moomaw and Maguire, 2008; Hattori et al., 2009). In vivo 

complementation of a mutant E. coli strain deficient for Mg
2+

-uptake together with 

in vitro patch-clamp analysis, characterised MgtE as a highly selective Mg
2+

 channel 

(but also capable of low levels of Co
2+

-uptake) (Hattori et al., 2009). A crystal 

structure of MgtE from Thermus thermophilus identified MgtE as a homodimer in 

the presence of Mg
2+

 (Hattori et al., 2007). Cystathionine β-synthase (CBS) domains 

that reside in the cytosolic region of MgtE are thought to be involved in ion sensing 
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and regulation of a gating-mechanism for the ion-conducting pore in response to 

Mg
2+

 levels (Fig 5.1) (Ishitani et al., 2008; Hattori et al., 2009). 

 

 

Fig 5.1 Model for Mg
2+

-dependent gating of MgtE channel. Model shows the N-

terminal (blue), CBS domains (green), the plug helix (yellow) and transmembrane 

domains (red). When intracellular levels of Mg
2+

 are high, Mg
2+

 ions (purple circles) 

bind between the interface of the CBS domains or the interface between the CBS 

domains and the N-terminal, stabilising the closed state of the channel. When 

intracellular levels of Mg
2+

 are low, the interface between the cytosolic domains is 

destabalised. This in turn destabalises the closed state of the transmembrane 

domains, resulting in an open formation that allows the passage of Mg
2+

 ions into the 

cell. Reproduced from Hattori et al., 2009.  

 

 

Only a few studies on MgtE in bacteria have been reported and typically focus on the 

structure, mechanism or function of the channel (Smith et al., 1995; Merino et al., 

2001; Hattori et al., 2007; Anderson et al., 2009; Ragumani et al., 2010). Only three 

studies have investigated the physiological role of MgtE. In Aeromonas hydrophilia, 

disruption of mgtE resulted in a reduced ability to adhere to Hep-2 cells, decreased 

swarming on semisolid agar and reduced its ability to form biofilms (Merino et al., 

2001). In Pseudomonas aeruginosa, disruption of mgtE caused increased 

cytotoxicity on epithelial cells (Anderson et al., 2010). Overexpression of mgtE from 

Bacillus subtillis in S. enterica, enhanced thermotolerance of S. enterica as did 

overexpression of a gene encoding its native transporter MgtA (O'Connor et al., 

2009). The increased thermotolerance may have been due to accumulated levels of 
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intracellular Mg
2+ 

caused by the overexpresison of mgtE, which stabilised proteins 

and increased membrane integrity. Mg
2+

 has also been shown to inhibit Fe
2+

 

transport by an unknown mechanism therefore, hyperaccumulation of Mg
2+

 might 

have lessened oxidative damage by preventing Fe
2+

 uptake   (levels of oxygen 

radicals increase with above-optimal temperatures) (Papp and Maguire, 2004; 

O'Connor et al., 2009). 

 

5.1.3 Regulation of genes encoding Mg
2+

 importers 

 

Regulation of genes encoding Mg
2+ 

importers occurs at the transcriptional level, 

post-transcriptional level and post-translational level (Cromie et al., 2006; Dann et 

al., 2007; Hattori et al., 2009; Zhao et al., 2011; Lim et al., 2012). In S. enterica, 

mgtA and mgtB are regulated by the PhoQ-PhoP two-component system. Under low 

levels of Mg
2+

, PhoQ phosphorylates the DNA binding protein PhoP; PhoP~P then 

activates mgtA and mgtB expression (Groisman, 2001; Cromie et al., 2006). 

 

Expression of mgtA has an additional level of control, which is dependent on a 5’ 

untranslated region (5’UTR) (Cromie et al., 2006). When Mg
2+

 levels are above a 

certain threshold, Mg
2+ 

will bind to the 5’UTR of mgtA, which promotes the 

formation of a stem-loop structure, causing transcription to terminate before the 

coding-region of mgtA is reached. In contrast, when Mg
2+

 levels are below a certain 

threshold, the 5’UTR is not bound to Mg
2+

 and consequently, an alternative stem-

loop structure is formed, allowing transcription of the mgtA coding region (Cromie et 

al., 2006). More recently, an ORF encoding a 17-residue peptide, MgtL, was 

identified within the 5’UTR of mgtA (Zhao et al., 2011). High levels of Mg
2+

 

stimulate the translation of mgtL and this translation is essential for the premature 

termination of mgtA-transcription. The mechanism behind MgtL-dependent 

termination of mgtA-transcription is unknown (Zhao et al., 2011). 

 

Regulation of mgtE from B. subtillis is also reliant on a riboswitch, “M-box”, that 

binds and responds to Mg
2+

; however, the 5’UTR of mgtA and the M-box of mgtE 

share no similarities in sequence or secondary structure  (Dann et al., 2007). The 

model for M-box regulation is as follows: when Mg
2+

 levels are low, a stem-loop 
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structure forms in the M-box and acts as an anti-terminator, thereby preventing the 

formation of an additional stem-loop that can terminate transcription. When Mg
2+

 

levels are high, Mg
2+

 binds to the M-box, the secondary structure changes and the 

anti-terminator is lost, allowing the formation of the terminator (Dann et al., 2007; 

Helmann, 2007). 

 

Regulation of corA from E. coli is also reliant on a 5’UTR (Lim et al., 2012). The 

5’UTR is targeted and cleaved by Mg
2+

-dependent RNaseIII. It has been suggested 

that loss of the 5’UTR makes the corA transcript highly vulnerable to attack by 

RNases, the action of which is inhibited by hairpin structures in the 5’UTR. 

 

5.1.4 A Putative MgtE channel in Rlv3841 is required for symbiosis 

on P. sativum 

 

Isolated from a random-mutagenesis screen of Rlv3841, the strain RU4107 carries a 

mTn5 in mgtE (RL1461) and was shown to be symbiotically defective on P. sativum 

(Karunakaran et al., 2009). However, rates of acetylene reduction were never 

measured and infection was never analysed. Furthermore, it was not experimentally 

proven that mgtE encoded a Mg
2+

 channel and there was no characterisation of 

RU4107 (mgtE::mTn5) in a free-living state. 

 

No other Mg
2+

 importer has been identified to have a role in legume-rhizobia 

symbioses so it was important to further investigate the role of the putative MgtE 

channel in free-living cells and during symbiosis. This investigation aimed to 

determine the stage at which bacteroid development of RU4107 (mgtE::mTn5) is 

impeded i.e. in the infection threads as with LMB466 (sitA::pK19mob mntHΩSpc) 

or at a later developmental stage. Furthermore, following the discovery that the 

requirement of Mn
2+

 transporters depends upon the plant-host, the requirement of 

MgtE was also tested on V. faba and V. hirsuta. 
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5.2 RESULTS 

 

5.2.1 The gene mgtE encodes a Mg
2+

 channel 

 

The TransportDB database (Ren et al., 2007) and searches on the Rlv3841 genome 

using the BLAST (Altschul et al., 1990; Young et al., 2006), identified three genes 

encoding putative CorA and two genes encoding putative MgtE channels (Table 

5.1). It is not unusual for bacteria to encode multiple Mg
2+

 importers, in fact, 

multiple genes encoding putative Mg
2+

 importers were also identified in other 

rhizobia (Table 5.1). In contrast to the Mn
2+

 transporters, according to microarray 

data, genes encoding the putative Mg
2+ 

channels were not upregulated in developing 

bacteroids (Table 5.2) (Karunakaran et al., 2009). 

 

Table 5.1 Distribution of genes encoding putative Mg
2+

 importers across five species 

of rhizobia (Ren et al., 2007). 

 

 

 

 

 

Genome 
Number of 

corA 

Number of 

mgtE 

Number of 

mgtA/B 

R. leguminosarum 3841 3 2 0 

S. meliloti 1021 3 1 0 

R. etli CFN 42 3 2 0 

M. loti MAFF303099 6 2 0 

B. japonicum USDA110 4 1 1 
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Table 5.2 Genes encoding putative Mg
2+

 channels in Rlv3841. Values correspond to 

fold-induction of genes in Rlv3841 isolated from from nodules 7, 15 or 21 dpi 

relative to free-living cells grown in minimal medium (Karunakaran et al., 2009). 

The highlighted row indicates the mgtE required for symbiosis on P. sativum.  

 

 

In Rlv3841, the gene mgtE encodes a putative MgtE channel that shares 37% amino 

acid identity with the characterised MgtE from T. thermophilus (Altschul et al., 

1990; Hattori et al., 2007). To confirm that mgtE did encode a Mg
2+

 channel, a 1.6 

kb fragment containing mgtE  was cloned into the broad-host-range vector pRK415 

(Keen et al., 1988) to see if it could complement an E. coli triple gene knock-out 

strain (ΔmgtA ΔcorA ΔyhiD), hereafter denoted as MgKO, for growth on LB (Hattori 

et al., 2009). Primers pr1241 and pr1242 were used to amplify mgtE from Rlv3841 

gDNA. The PCR product was subcloned into pJET1.2/blunt to make plasmid 

pLMB553. A BglII fragment from pLMB553 containing mgtE was cloned into 

BamHI-digested pRK415, in the same orientation of and downstream of the lac 

promoter, resulting in plasmid pLMB562 (plac-mgtE). This fragment was also 

cloned into BamHI-digested pRK415 in the reverse orientation, resulting in 

pLMB565 (mgtE). E. coli MgKO was then transformed with the empty plasmid 

pRK415, pLMB562 (plac-mgtE) and pLMB565 (mgtE) to make LMB469, LMB470 

and LMB471, respectively. 

 

The E. coli MgKO strain could only grow on LB when supplemented with 100 mM 

MgSO4 (Fig 5.2). Expression of mgtE from the lac promoter (LMB470) was able to 

complement growth of E. coli MgKO on unsupplemented LB, whereas the vector by 

Locus Tag Putative Family 
7 day 

bacteroid 

15 day 

bacteroid 

21 day 

bacteroid 
     

RL1461 (mgtE) MgtE 0.7 0.5 0.8 

RL2551 MgtE 0.5 1.1 0.9 

RL0921 CorA 0.4 0.6 0.6 

RL0964 CorA 1.3 1.8 1.0 

pRL120701 CorA 0.6 0.7 0.5 
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itself (LMB469) or mgtE in the reverse orientation of the lac promoter (LMB471) 

was unable to do so. From this complementation assay, it was concluded that mgtE 

did encode a Mg
2+

 channel. 

 

 

 

 

 

 

 

 

Fig 5.2 Complementation of E. coli ΔmgtA ΔcorA ΔyhiD strain (MgKO) for growth 

on LB with Rlv3841 mgtE. E. coli MgKO strain was transformed with empty 

plasmid (LMB469), plasmid containing mgtE under the control of the lac promoter 

(LMB470) and plasmid containing mgtE in the reverse orientation of the lac 

promoter (LMB471). 

 

 

To determine if the MgtE channel was permeable to other metals, disk assays (2.5.7) 

were used to test the sensitivity of RU4107 (mgtE::mTn5) to toxic levels of CoCl2, 

NiSO4 and ZnCl2. Agreeing with the permeability of MgtE from T. thermophilus to 

Co
2+

 (Hattori et al., 2009), RU4107 (mgtE::mTn5) was less sensitive to a toxic 

concentration of CoCl2 relative to Rlv3841 (Fig 5.3), implying that MgtE is capable 

of a level of Co
2+

-uptake in addition to Mg
2+

. RU4107 (mgtE::mTn5) was not more 

sensitive to toxic concentrations of NiSO4 and ZnCl2, indicating that MgtE is 

impermeable to these metals. 

 

 

               MgKO              LMB469          LMB470          LMB471 

LB + 0 mM MgSO4 

LB +100 mM MgSO4 

                                   (empty plasmid)   (plac-mgtE)         (mgtE) 
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Fig 5.3 Sensitivity of Rlv3841 and RU4107 (mgtE::mTn5) to 50 mM CoCl2, 50 mM 

NiSO4 and 100 mM ZnCl2. Zone of inhibition averaged from three experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

Rlv3841 RU4107 (mgtE::mTn5) 

CoCl2 
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CoCl2 
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5.2.2 RU4107 (mgtE::mTn5) grows poorly at low pH in Mg
2+

-limited 

medium 

 

Growth of RU4107 (mgtE::mTn5) in modified AMS containing either 0.01 mM or 2 

mM MgSO4 (2.5.3) was found to be similar to Rlv3841 (Fig 5.4). The absence of a 

growth phenotype for RU4107 (mgtE::mTn5) was not surprising due to the  presence 

of other putative Mg
2+ 

importers encoded by Rlv3841 (Table 5.2). Indeed, studies on 

other bacteria have reported that more than one gene  encoding a Mg
2+

 importer 

needs to be disrupted to cause a growth defect (Hmiel et al., 1989; Snavely et al., 

1989; Hattori et al., 2009). However, because RU4107 (mgtE::mTn5) is 

symbiotically defective on P. sativum, it was hypothesised that conditions associated 

with the nodule might affect the requirement of MgtE. Level of pH was a strong 

candidate because pH has been shown to change functionality of other transporters 

(Hicks et al., 2003; Mahmood et al., 2009; Hirano et al., 2011; Lu et al., 2011) and 

rhizobia are exposed to low levels of pH during symbiosis (Pierre et al., 2013). This 

hypothesis was proven to be correct because at low pH (5.75), growth of RU4107 

(mgtE::mTn5) was greatly reduced in modified AMS containing 0.01 mM MgSO4 

(Fig 5.4). Growth of RU4107 (mgtE::mTn5) could be rescued by the addition of 

MgSO4 (Fig 5.4) (2.5.3) 

 

A plasmid containing mgtE was constructed to test whether mgtE could rescue 

growth of RU4107 (mgtE::mTn5) at pH 5.75 in Mg
2+

-limited medium. Plasmid pJP2 

was selected for the cloning of mgtE because it is highly stable and therefore could 

be used for in planta, in addition to growth complementation studies. Primers pr1240 

and pr1265 were used to amplify a 1.6 kb fragment from Rlv3841 gDNA containing 

mgtE. The PCR product was subcloned into pJET1.2/blunt to make pLMB569. A 

XbaI/KpnI fragment from pLMB569 containing mgtE was cloned into XbaI/KpnI 

digested pJP2, yielding pLMB576 (pJP2mgtE). Plasmid pLMB576 (pJP2mgtE) was 

then conjugated into RU4107 (mgtE::mTn5) to make LMB481 (mgtE::mTn5 

pJP2mgtE). As with Rlv3841, at pH 5.75 LMB481 (mgtE::mTn5 pJP2mgtE) could 

grow in modified AMS medium containing 0.01 mM MgSO4 (Fig 5.4), 

demonstrating that mgtE can complement the growth of RU4107 (mgtE::mTn5). 
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Fig 5.4 Growth of Rlv3841 [diamonds], RU4107 (mgtE::mTn5) [triangles] and 

LMB481 (mgtE::mTn5 pJP2mgtE) [squares] at pH 7.0 or pH 5.75 in modified AMS 

glucose containing 0.01 mM or 2 mM MgSO4. Averaged from three independent 

experiments ± SEM. 
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Microarrays that compared free-living Rlv3841 grown at pH 5.75 to cells grown at 

pH 7.0 have been conducted in the Philip Poole lab (unpublished) but expression of 

mgtE was not upregulated at pH 5.75 (Table 5.3). This implies that expression of 

mgtE is not regulated in response to pH. 

 

Locus Tag Putative Family pH 5.75 

   

mgtE MgtE 1.0 

RL2551 MgtE 0.6 

RL0921 CorA 0.4 

RL0964 CorA 1.6 

pRL120701 CorA 0.7 

 

Table 5.3 Fold-induction of Rlv3841 genes encoding putative Mg
2+

 channels in cells 

grown in minimal medium at pH 5.75 compared to cells grown pH 7.0. The 

highlighted row indicates the mgtE required for symbiosis on P. sativum.  

 

 

5.2.3 RU4107 (mgtE::mTn5) forms bacteroids on P. sativum 

 

To determine the stage at which bacteroid development of RU4107 (mgtE::mTn5) is 

impeded, P. sativum was inoculated with RU4107 (mgtE::mTn5). After three weeks, 

nodules containing RU4107 (mgtE::mTn5) were small and white, in contrast to the 

elongated, pink nodules containing Rlv3841. Dry weights revealed that nodules 

containing RU4107 (mgtE::mTn5) weighed <50% the weight of nodules containing 

Rlv3841 (Fig 5.5A) (2.6.8). Acetylene reduction assays suggest that N2 fixation was 

<10% for RU4107 (mgtE::mTn5) compared to Rlv3841 and this could be 

complemented by plasmid pJP2mgtE (LMB481) (Fig 5.5B). 
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Fig 5.5 Nodule dry weights (A) and rates of acetylene reduction (B) for Rlv3841, 

RU4107 (mgtE::mTn5) or LMB481 (mgtE::mTn5 pJP2mgtE) on P. sativum. 

Averaged from forty-eight (A) or five (B) plants ± SEM. * indicates a statistically 

significant (p ≤ 0.05) difference relative to Rlv3841-inoculated plants. 
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Nodule sections revealed that bacteria carrying the mgtE::mTn5 mutation could 

infect plant cells but there was a higher proportion of uninfected plant cells relative 

to nodules containing Rlv3841 (Fig 5.6). Electron microscopy revealed that RU4107 

(mgtE::mTn5) did form classical branch-shaped bacteroids, however, many of the 

RU4107 (mgtE::mTn5) bacteroids had accumulated poly-β-hydroxybutyrate (PHB) 

granules, in contrast to Rlv3841 bacteroids where PHB was mostly absent (Fig 5.7). 

This implies that RU4107 (mgtE::mTn5) bacteroids do not fully mature on P. 

sativum (Trainer and Charles, 2006; Terpolilli et al., 2012; Udvardi and Poole, 

2013). Electron micrographs also show that those plant cells infected with RU4107 

(mgtE::mTn5), contain fewer bacteroids relative to cells infected with Rlv3841 (Fig 

5.7). Furthermore, by measuring dry weights (2.6.8), it was observed that the weight 

of RU4107 bacteroids/nodule dry weight measured ~30% less than Rlv3841 

bacteroids (Fig 5.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Rlv3841 RU4107 (mgtE::mTn5) 

50 µm 50 µm 

50 µm 50 µm 

Fig 5.6 Sections of nodules taken from P. sativum inoculated with Rlv3841 or 

RU4107 (mgtE::mTn5). Sections stained with toluidine blue. Visualised by light 

microscopy at magnification x 10. 
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Fig 5.7 Ultrathin sections of nodules taken from P.sativum inoculated with Rlv3841 

or RU4107 (mgtE::mTn5). Arrows indicate bacteroids or poly-β-hydroxybutyrate 

(PHB). Visualised by TEM at magnification x 1700 (top) or x 6500 (bottom).  

Rlv3841 RU4107 (mgtE::mTn5) 
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Fig 5.8 Dry weights of Rlv3841 and RU4107 (mgtE::mTn5)  bacteroids isolated 

from P. sativum nodules. Averaged from forty-eight plants ± SEM. * indicates a 

statistically significant (p ≤ 0.05) difference relative to Rlv3841-inoculated plants. 

 

 

P. sativum inoculated with RU4107 (mgtE::mTn5) were also grown for six weeks. 

After six weeks, plants inoculated with RU4107 (mgtE::mTn5) looked similar to 

uninoculated plants (Fig 5.9) and the shoots weighed a third of P. sativum inoculated 

with Rlv3841 (Table 5.4). 

 

 

Fig 5.9 Photo showing (A) uninoculated, (B) Rlv3841-inoculated and (C) RU4107 

(mgtE::mTn5)-inoculated P. sativum. All plants were grown for six weeks. 
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Inoculation Shoot dry weight (g) 

Uninoculated 0.87 ± 0.07 

Rlv3841 3.0 ± 0.23 

RU4107 (mgtE::mTn5) 1.0 ± 0.03 

 

Table 5.4 Shoot dry weights for (A) uninoculated, (B) Rlv3841-inoculated and (C) 

RU4107 (mgtE::mTn5)-inoculated P. sativum. All plants were grown for six weeks. 

Averaged from ten plants ± SEM. 

 

 

5.2.4 RU4107 (mgtE::mTn5) is symbiotically defective on V. hirsuta 

but not on V. faba 

 

The symbiotic efficiency of RU4107 (mgtE::mTn5) was tested on other legumes 

within the host-range of Rlv3841 to determine whether the requirement of MgtE 

extends to other plant-hosts. On V. hirsuta, RU4107 (mgtE::mTn5) showed a similar 

phenotype to what was seen with P. sativum i.e. rates of acetylene reduction were 

<5% compared to Rlv3841 (Fig 5.10). Consequently, V. hirsuta inoculated with 

RU4107 (mgtE::mTn5) were small and showed signs of chlorosis (Fig. 5.11).  

 

In contrast, V. faba plants inoculated with RU4107 (mgtE::mTn5) formed elongated, 

pink nodules and reduced acetylene at the same rate as Rlv3841 (Fig 5.12). Dry 

weights of V. faba nodules containing RU4107 (mgtE::mTn5) were similar to 

nodules containing Rlv3841 (Fig 5.13A) and the dry weight of RU4107 

(mgtE::mTn5) bacteroids weighed the same as Rlv3841 bacteroids (per nodule dry 

weight) (Fig 5.13B). Six week V. faba inoculated with RU4107 (mgtE::mTn5) were 

indistinguishable, in both appearance (Fig 5.14) and shoot dry weight (Table 5.5), 

from V. faba inoculated with Rlv3841. 
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Fig 5.10 Rates of acetylene reduction for V. hirsuta inoculated with Rlv3841 or 

RU4107 (mgtE::mTn5). Averaged from twenty-four plants ± SEM. * indicates a 

statistically significant (p ≤ 0.05) difference relative to Rlv3841-inoculated plants. 

 

 

Fig 5.11 Photo showing (A) uninoculated, (B) Rlv3841-inoculated and (C) RU4107 

(mgtE::mTn5)-inoculated V. hirsuta. All plants were grown for three weeks. 
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Fig 5.12 Rates of acetylene reduction for V. faba inoculated with Rlv3841, RU4107 

(mgtE::mTn5) or LMB481 (mgtE::mTn5 pJP2mgtE). Averaged from five plants ± 

SEM. 

 

 

 

Fig 5.13 Dry weights of nodules (A) and bacteroids (B) from V. faba plants 

inoculated with Rlv3841, RU4107 (mgtE::mTn5) or LMB481 (mgtE::mTn5 

pJP2mgtE). Averaged from 44-48 plants ± SEM. 
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Fig 5.14 Photo showing (A) uninoculated, (B) Rlv3841-inoculated and (C) RU4107 

(mgtE::mTn5)-inoculated V. faba. All plants were grown for six weeks. 

 

 

Inoculation Shoot dry weight (g) 

Uninoculated 1.71 ± 0.13 

Rlv3841 3.5 ± 0.33 

RU4107 (mgtE::mTn5) 3.61 ± 0.22 

 

Table 5.5 Shoot dry weights for (A) uninoculated, (B) Rlv3841-inoculated and (C) 

RU4107 (mgtE::mTn5)-inoculated V. faba. All plants were grown for six weeks. 

Averaged from ten plants ± SEM. 

 

 

5.2.5 Quantification of Mg associated with bacteroids and plant 

cytosol from P. sativum and V. faba nodules 

 

It was hypothesised that RU4107 (mgtE::mTn5) bacteroids in P. sativum nodules 

were starved of Mg
2+

 and that this caused the poor rates of acetylene reduction (Fig 

5.5). Furthermore, RU4107 (mgtE::mTn5) bacteroids from V. faba were not starved 

of Mg
2+

, explaining why no decrease in acetylene reduction was observed (Fig 5.12). 

A difference in the bioavailability of Mg
2+

 between P. sativum and V. faba nodules 

would explain this. To test these hypotheses, atomic absorption spectroscopy (AAS) 
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was used to quantify Mg
 
levels associated with Rlv3841 and RU4107 (mgtE::mTn5) 

bacteroids isolated from both P. sativum and V. faba nodules. In addition, Mg was 

quantified in the plant cytosol of nodules formed on P. sativum and V. faba.  

 

Three replicate samples were obtained for each inoculation where each sample was 

derived from nodules collected from 13-16 plants. Bacteroids were separated from 

the plant ctyosol by centrifugation and dry weights of both were measured (Table 

5.6). The weighed bacteroid and plant cytosol fractions were then used to quantify 

Mg as described in 2.6.8. 

 

 Weight of bacteroid sample (mg) 

± SEM 

Weight of plant cytosol sample 

(mg) ± SEM 

 Rlv3841 RU4107 Rlv3841 RU4107 

P. sativum 41.6 ± 1 12.3 ± 2 126.5 ± 2 62.8 ± 1 

V. faba 41.5 ± 3 33.6 ± 2 
a 

108 ± 6 87.4 ± 2 
a 

 

Table 5.6 Dry weights of bacteroid and plant cytosol samples used for AAS. 

Weights averaged from three independent samples, where each sample was derived 

from nodules taken from 13-16 plants.  

a 
fewer V. faba inoculated with RU4107 (mgtE::mTn5) germinated [n= 13, 15, 16) 

relative to V. faba inoculated with Rlv3841 [n= 16, 16, 16), explaining the difference 

in sample weights. 

 

 

Surprisingly, for bacteroids isolated from P. sativum, there was more Mg
 
associated 

with RU4107 (mgtE::mTn5) than there was with Rlv3841 (per g
-1

 dried bacteroids) 

(Fig 5.15A). There was no difference between Mg levels associated with RU4107 

(mgtE::mTn5) and Rlv3841 bacteroids isolated from V. faba (per g
-1

 dried bacteroid) 

(Fig 5.15A). A similar pattern was observed for the plant cytosol, as plant cytosol 

isolated from P. sativum nodules containing RU4107 (mgtE::mTn5) was associated 

with higher levels of Mg relative to the plant cytosol isolated from nodules 

containing Rlv3841 (per g
-1

 dried plant cytosol) (Fig 5.15B). Again, no difference 

was observed for V.  faba (per g
-1

 dried plant cytosol) (5.15B). It was also observed 
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that there were lower amounts of Mg
 
associated with both bacteroids and plant 

cytosol isolated from V. faba relative to P. sativum (per g
-1

 dried nodule) (Fig 5.15). 

 

 

 

 

Fig 5.15 Quantification of Mg associated with (A) bacteroids and (B) plant cytosol 

isolated from nodules formed on P. sativum or V. faba inoculated with Rlv3841 

(blue bars) or RU4107 (mgtE::mTn5) (red bars). Averaged from three samples ± 

SEM. * indicates a statistically significant (p ≤ 0.05) difference relative to sample 

isolated from nodules containing Rlv3841. 
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5.3 DISCUSSION 

 

The ability of RU4107 (mgtE::mTn5) to grow in medium limited for Mg
2+ 

depended 

on pH (Fig 5.4), implying that MgtE is sensitive to changes in pH. MgtE may be 

similar to KcsA, a channel for potassium-transport, in the way it is regulated by pH 

(Hirano et al., 2011). The model for pH-regulated gating of KcsA relies on 

electrostatic charges between clusters of charged amino acids. Upon a lowering of 

the pH, these clusters become positively charged, causing a repulsion that brings 

about a conformational change in the ion-conducting pore (Fig 5.16). Clusters 

important to regulating the gating of the KcsA in response to pH have been located 

at both the transmembrane and cytoplasmic domains of KcsA (Hirano et al., 2011). 

Alternatively, a lowering of the pH might increase the demand for Mg
2+

, for 

example, the requirement of MgATP to energise proton pumps (P-type ATPases and 

F-ATPases) needed to maintain the intracellular pH. It is feasible that a change in pH 

might alter the availability of free-Mg
2+

, however, a decrease in pH would favour the 

release of Mg
2+

 from metabolites (Igamberdiev and Kleczkowski, 2011) and 

therefore cannot explain  the poor growth of RU4107 (mgtE::mTn5) at low pH. It 

should also be noted that a buffer was not used in growth experiments conducted at 

low pH (Fig 5.4) and that, although it was measured prior, pH was not measured 

after the experiment. Consequently, although a strong phenotype was observed for 

RU4107 (mgtE::mTn5), the experiment does need to be repeated with an appropriate 

buffer and the pH should be measured after the experiment to confirm that the pH of 

the medium has not changed. 

 

MgtE is essential for efficient symbiosis with P. sativum and V. hirsuta (Figs 5.5 and 

5.10) but not on V. faba (Fig 5.12). Three possible explanations for this are (1) there 

is a difference in the requirement of Mg
2+

, (2) the activity of other Mg
2+

 transporters 

differs between hosts or (3) there is a difference in the bioavailability of Mg
2+

. It is 

unlikely that bacteroids from P. sativum and V. faba differ in their requirement for 

Mg
2+

 because it is fundamental for N2 fixation and many other cellular processes. 

The functionality of other putative Mg
2+ 

importers (Table 5.2) might be the cause if 

the environment provided by P. sativum and V. hirsuta nodules is different from V. 

faba nodules. For example, if the nodules from V. faba provide a less acidic 
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environment than nodules from P. sativum, the requirement for a low pH Mg
2+

 

transporter would be less and the functionality of other Mg
2+

 importers might be 

higher. Proving this would involve testing the functionality of the other putative 

Mg
2+

 importers encoded by Rlv3841 (Table 5.2) at range of pH levels. 

 

 

Fig 5.16 Model for pH-dependent gating of KcsA. At pH 7.0 (top), the cytoplasmic 

domains and the cluster of charged amino acids situated between the transmembrane 

domains have a neutral charge, resulting in a closed formation of the channel. At pH 

4.0 (bottom), the cytoplasmic domains and the cluster of charged amino acids, 

become positively charged, causing a repulsion that opens the channel. Reproduced 

from Hirano et al., 2011. 

 

 

A difference in the bioavailability of Mg
2+

 would be an obvious explanation for the 

contrasting phenotypes but less Mg was found to be associated with the plant cytosol 

isolated from V. faba relative to P. sativum (per g
-1

 dried plant cytosol) (Fig 5.15B). 

This however, does not disprove the bioavailability hypothesis as the difference in 

the bioavailability of Mg
2+

 could be specifically localised to the symbiotic space. 
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Such an occurrence could arise from a plant-encoded Mg
2+

 transporter located in the 

symbiosome membrane, which would supply the enclosed bacteroids with Mg
2+

.This 

transporter would have to be present in V. faba but not in P. sativum or V. hirsuta. 

Several plant-encoded, nodule-specific transporters have been identified and supply 

bacteroids with metal ions (Moreau et al., 2002; Kaiser et al., 2003; Hakoyama et al., 

2012). Furthermore, AAS does not show how much Mg is freely available. The 

concentration of Mg
2+

 in plant tissues has been reported to be around 10 mM, 

however, much of this Mg
2+

 is complexed with metabolites; as a result, the steady 

cytosolic concentration of free-Mg
2+

 could be as low as 0.2-0.4 mM (Igamberdiev 

and Kleczkowski, 2001, 2011). Thus, although there is more Mg in P. sativum 

nodules, V. faba nodules could still contain more Mg
2+

 that is freely-available to 

bacteroids. 

 

Intriguingly, P. sativum nodules containing RU4107 (mgtE::mTn5) bacteroids had 

higher levels of Mg associated with the plant cytosol (per g
-1

 dried plant cytosol) 

relative to nodules containing Rlv3841 (Fig 5.15B). If correct, the plant may be 

delivering more Mg
2+

 to the inefficient nodules, which may be specific to RU4107 

(mgtE::mTn5) or a general feature of ineffective symbiosis. However, the data could 

be misleading; the nodules taken from P.sativum inoculated with RU4107 

(mgtE::mTn5) had a lower mass relative to nodules containing Rlv3841 (Fig 5.5A). 

Thus, caution should be taken when comparing the two. 

 

It was predicted that the symbiotically-defective RU4107 (mgtE::mTn5) bacteroids 

on P. sativum were starved of Mg
2+

, however, more Mg was found associated with 

RU4107 (mgtE::mTn5) than with Rlv3841 bacteroids (per g
-1

 dried bacteroid) (Fig 

5.15A). If correct, this would imply that the requirement of MgtE during symbiosis 

is independent of its ability to import Mg
2+

. Phenotypes caused by the disruption of 

mgtE in other bacteria have been found to be independent of the cell’s ability to 

import Mg
2+

. In P. aeruginosa, disruption of mgtE led to increased cytotoxicity in 

epithelial cells (Anderson et al., 2008). Further investigation revealed this was due to 

the induction of genes encoding for the type III secretion system (T3SS). 

Intriguingly, the authors proposed that modulation of T3SS expression by MgtE was 

independent of the transport function of MgtE, as MgtE variants defective for Mg
2+

 

transport (where MgtE was altered at its Mg
2+

 binding sites) could still complement 
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the cytotoxicity effect (Anderson et al., 2010). Similarly, disruption of corA in S. 

enterica attenuated virulence but this loss of virulence was found to be independent 

of intracellular Mg
2+

 levels (Papp-Wallace and Maguire, 2008). Therefore, further 

work is required to determine whether the requirement of MgtE on P. sativum and V. 

hirsuta is dependent on its transport function or dependent on an unknown function 

of MgtE. An additional role of MgtE could depend on the presence of the CBS pair 

within the cytosolic region. In addition to ion channels, CBS-containing proteins 

have been found to interact with thioredoxins and consequently, are important to 

cellular redox homeostasis; for example, the chloroplast-localised CBS-containing 

protein CBSX1 was found to regulate H2O2 levels via thioredoxin-interactions (Yoo 

et al., 2011). Alternatively, it is likely that there was some contamination of the 

bacteroid samples with Mg from the plant cytosol sticking to the EPS and LPS on 

the bacterial surface. Therefore, the higher levels of Mg in RU4107 (mgtE::mTn5) 

bacteroids could be explained by the higher levels of Mg in the plant cytosol of 

nodules containing RU4107 (mgtE::mTn5) bacteroids (Fig 5.15B). 

 

Nevertheless, mgtE has been shown to encode a Mg
2+

 importer that is required for 

N2 fixation on some but not all legumes compatible with Rlv3841. Along with the 

Mn
2+

 transporters studied in Chapter four, there are now two examples of the 

requirement of metal transporters differing between legume-hosts. 
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Chapter 6: Switching on Genes Required for N2 

Fixation 

 

6.1 INTRODUCTION 

                                                         

6.1.1 O2-responsive regulators 

 

There is a multitude of regulators in bacteria that utilise either a [4Fe-4S] cluster or 

haem to sense O2 (Green et al., 2009). The sensory domain of FNR (Fumarate and 

Nitrate Reduction) for example, contains essential cysteine residues that coordinate a 

[4Fe-4S] cluster (Sutton et al., 2004). In the absence of O2, the [4Fe-4S]
2+

 cluster 

permits dimerisation of FNR, which is optimal for the regulatory domain to bind 

DNA. In the presence of O2 however, the [4Fe-4S]
2+ 

is converted to [2Fe-2S]
2+

, 

causing a conformational change in FNR that promotes the inactive-monomeric state 

(Moore and Kiley, 2001; Moore et al., 2006; Jervis and Green, 2007). FNR has been 

characterised in R. leguminosarum and R. etli where it is encoded by fnrN (Gutierrez 

et al., 1997; Colombo et al., 2000; Clark et al., 2001; Lopez et al., 2001; Boesten and 

Priefer, 2004; Moris et al., 2004; Granados-Baeza et al., 2007). 

 

A second type of O2-responsive regulator is FixL, which consists of a C-terminal 

transmitter domain and a N-terminal sensory component that is dependent upon an 

O2-sensing haem contained within a PAS domain (Taylor and Zhulin, 1999; Green et 

al., 2009). The presence of O2 can change the co-ordination state of the Fe atom 

within the haem and subsequently cause a conformational change in FixL. Only in 

the absence of oxygen does the conformation of FixL allow autophosphorylaiton of 

its C-terminal transmitter domain (Tuckerman et al., 2001). 

 

A less well-characterised O2-responsive regulator is NifA, an enhancer-binding 

protein that, in conjunction with σ
54

, activates the transcription of nifHDK and other 

genes required for N2 fixation (Salazar et al.; Bobik et al., 2006; Hauser et al., 2007; 

Sullivan et al., 2013). In B. japonicum, NifA  is directly inactivated by O2 and 

subsequently degraded (Morett et al., 1991). Conserved cysteine residues and metal 
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ions, Fe
2+

 in particular, are essential for NifA-activity (Fischer et al., 1988; Morett et 

al., 1991; Dixon and Kahn, 2004). In S. meliloti, NifA has also been shown to be 

sensitive to O2 and degraded upon inactivation (Huala and Ausubel, 1989). In E. 

coli, degradation of inactive S. meliloti NifA was found to be dependent on Lon 

protease (Huala et al., 1991). 

 

6.1.2 Regulation of fixNOPQ 

 

The nodule provides a low O2-environment to enable O2-sensitive nitrogenase to 

function. To maintain respiration under low O2, rhizobia synthesise a cytochrome 

cbb3 terminal oxidase, encoded by fixNOPQ and assembled by FixGHIS. The 

number of copies and regulation of fixNOPQ differs between rhizobia but activation 

typically requires FixL, FnrN or both.  Regulation of fixNOPQ also involves 

CRP/FNR homologues, termed FixK, that act downstream of FixL and FnrN 

(Terpolilli et al., 2012). 

 

In S. meliloti, expression of fixNOPQ is regulated by a FixLJ-FixK regulatory 

cascade (Fig 6.1). In the absence of oxygen, the membrane-anchored FixL 

autophosphorylates and subsequently phosphorylates the receiver domain of the 

transcriptional regulator, FixJ (Lois et al., 1993). Phosphorylation promotes 

dimerisation of FixJ, disrupting the inhibitory interface between the receiver domain 

and the transcriptional activator domain (Da Re et al., 1999). Activated FixJ~P then 

induces the expression of fixK and FixK activates expression of fixNOPQ. 

Consequently, disruption of either fixL or fixK in S. meliloti caused a Fix
-
 phenotype 

on M. sativa (Forrai et al., 1983; David et al., 1988; Virts et al., 1988; Batut et al., 

1989; Terpolilli et al., 2012). 

 

The fixNOPQ operon in A. caulinodans is also regulated by a FixLJ-FixK cascade 

(Fig 6.1). As with S. meliloti, mutation of either fixL or fixK in A. caulinodans 

prohibited symbiotic-N2 fixation on Sesbania rostrata and also N2 fixation in free-

living cells (Kaminski and Elmerich, 1991; Kaminski et al., 1991). 
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Fig 6.1 Regulation of fixNOPQ in S. meliloti and A. caulinodans. Grey arrows 

represent genes, black arrows denote DNA binding, blue arrows indicate 

transcription, +/- specifies positive/negative regulation and dotted arrows show 

phosphorylation. 
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Regulation of the fixNOPQ operon in B. japonicum is under the control of a FixLJ-

FixK2 cascade. Unlike the membrane-anchored FixL in S. meliloti, FixL from B. 

japonicum lacks the transmembrane segments and is cytosolic as a consequence 

(Gilles-Gonzalez et al., 1994; Rodgers, 1999). In addition to being transcriptionally 

regulated by FixJ~P, FixK2 is post-translationally regulated by ROS, where the 

oxidation of a critical single cysteine residue near the DNA-binding domain causes 

its inactivation (Mesa et al., 2009). This post-translational control might prevent 

FixK2-activating fixNOPQ and other symbiotic genes prematurely (e.g. in the 

infection thread where ROS are present) and also cause the shutdown of symbiotic 

processes during senescence (when ROS are also present). Disruption of fixL or fixK2 

caused a severe reduction (90-99%) in N2 fixation (Anthamatten and Hennecke, 

1991; Nellen-Anthamatten et al., 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.2 Regulation of fixNOPQ in B. japonicum. Grey arrows represent genes, black 

arrows denote DNA binding, blue arrows indicate transcription, +/- specifies 

positive/negative regulation and dotted arrows show phosphorylation. 
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Studies suggest that in R. etli CFN42, two parallel pathways, governed by FixL and 

FnrN, regulate expression of the two fixNOPQ operons (Fig 6.3) (Granados-Baeza et 

al., 2007). There is no FixJ in R. etli so FixL regulates expression of fixK via FxkR, a 

regulator that belongs to the OmpR/PhoB family (Zamorano-Sanchez et al., 2012). 

FixL post-translationally regulates FxkR but it is not known whether a phoshorelay 

is involved. FxkR is required for microaerobic expression of both fixNOPQ operons 

(Girard et al., 2000; Zamorano-Sanchez et al., 2012). In the second pathway, 

expression of fixNOPQ is regulated by two FNR-regulators, FnrNchr (encoded on 

the chromosome) and FnrNd (encoded on the symbiotic plasmid) (Lopez et al., 2001; 

Terpolilli et al., 2012). Under low oxygen, fixNOPQd expression is under the 

positive control of FnrNchr (and also FnrNd to a lesser extent). A severe reduction in 

N2 fixation was only seen when fixL, fnrNchr and fnrNd were mutated in the same 

background (Lopez et al., 2001). There is also a degree of crosstalk between these 

regulators, which is reviewed in Terpololli et al., 2012. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.3 Regulation of fixNOPQd and fixNOPQf in R. etli. Grey arrows represent 

genes, black arrows denote DNA binding, blue arrows indicate transcription, +/- 

specifies positive/negative regulation and dotted arrows show phosphorylation. 
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Regulation of the both fixNOPQ operons in R. leguminosarum bv. viciae VF39 

might also be dependent on both FixL and FnrN (Fig 6.4) (Schluter et al., 1997). As 

in R. etli, there is no FixJ but there is a FxkR-orthologue that was able to 

complement the loss of fxkR in a R. etli background (Zamorano-Sanchez et al., 

2012). FixL is required for induction of fnrN and fixNOPQ under O2 limitation 

(Schluter et al., 1997; Boesten and Priefer, 2004). Single mutations in fixL and fixK 

resulted in a Fix
+
 phenotype, whereas disruption of fnrN caused a ~70% reduction in 

N2 fixation (Colonna-Romano et al., 1990; Patschkowski et al., 1996). When  fixK 

and fnrN are disrupted in the same background, a Fix
-
 phenotype was observed 

(Patschkowski et al., 1996). However, the phenotype of a fixL fnrN double mutant 

was never reported in R. leguminosarum, leaving uncertainty about the requirement 

of FixL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.4 Incomplete model showing regulation of fixNOPQpRL9 and fixNOPQpRL10 

in R. leguminosarum. Grey arrows represent genes, black arrows denote DNA 

binding, blue arrows indicate transcription, +/- specifies positive/negative regulation 

and dotted arrows show phosphorylation. 
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6.2 RESULTS 

 

6.2.1 Identification and expression of three fixK-like regulators, fnrN 

and two fixL-homologues in Rlv3841 

 

The Rlv3841 genome (Young et al., 2006), BLAST (Altschul et al., 1990) and a 

comparative genomic analysis conducted by Dufour et al 2010, were used to identify 

putative regulators of the fixNOPQ operons in Rlv3841 (Table 6.1). Three CRP/FNR 

regulators belonging to the FixK subfamily were identified and provisionally 

annotated FixK, FixKb and FixKc, where pRL90019 encodes the FixK characterised 

in R. leguminosarum bv. viciae VF39 (Patschkowski et al., 1996; Li et al., 2003; 

Dufour et al., 2010). The gene encoding FixKb (pRL90025) is also located on pRL9 

and is proximal to the fxkR-orthologue, whereas the gene encoding FixKc (RL1880), 

is located on the chromosome, upstream of a fixL-homolgue (Fig 6.5). The FixL-

homologue has been provisionally annotated FixLc (where c denotes chromosome) 

as it shares 57% amino acid identity with FixL (Fig 6.6) and contains the conserved 

PAS domain, haem binding pocket, histidine kinase domain and C-terminal receiver 

domain (Marchler-Bauer et al., 2011). However, FixKb (pRL90025), FixLc 

(RL1879) and FixKc (RL1880) were shown not to be essential for N2 fixation on P. 

sativum (Table 3.8).  

 

Two other regulators in Rlv3841 that belong to the CRP/FNR family, StoR10 and 

StoR9 (see Table 6.1), are orthlogues of StroRd and StoRf in R. etli (Granados-

Baeza et al., 2007). In R. etli, both are involved in negative regulation of the two 

fixNOPQ operons but may also have additional roles as disruption  of stoRd causes 

an increase in N2 fixation, while disruption of stoRf caused a reduction in N2 fixation 

(Granados-Baeza et al., 2007). 

 

Once identified, expression of the putative regulators of fixNOPQ were examined in 

developing bacteroids (Karunakaran et al., 2009) and at pH 5.75 (unpublished data 

from the Philip Poole lab) (Table 6.1). Expression of both fixL-homologues and their 

neighbouring fixK genes was upregulated during bacteroid development 

(Karunakaran et al., 2009), implying that synthesis of the cytochrome cbb3 terminal 



157 
 

oxidase is an early feature of nodule colonisation. Intriguingly, all three fixK-like 

genes and both fixL-homologues were also upregulated at pH 5.75, suggesting that 

low pH could be another signal for the switch on of N2 fixation. 
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Gene 

Designation 
Locus Tag Product 7d bacteroid 21d bacteroid 

 

pH 5.75 

       

fixL pRL90020 FixL 2.6 0.8  2.4 

fixK pRL90019 FixK 15.8 2.4  50.4 

fixN pRL90018 FixN 21.9 38.1  1.7 

fixO pRL90017 FixO 47.8 54.7  1.6 

fixP pRL90016A FixP 49.6 53.3  1.8 

fixQ pRL90016 FixQ 67.4 63.9  1.0 

fixG pRL90015 FixG 18.7 9.3  1.4 

fixH pRL90014 FixH 11.3 4.1  1.3 

fixI pRL90013 FixI 9.4 3.2  1.1 

fixS pRL90012A FixS 18.7 8.7  1.0 

stoR9 pRL90012 Putative StoR 11.5 4.6  0.9 

       

fxkR pRL90026 FxkR 0.5 0.5  0.5 

fixKb pRL90025 Putative FixK 5.4 1.0  38.7 

       

fixN pRL100205 FixN 80.4 119.7  1.5 

fixO pRL100206 FixO 65.8 69.3  1.1 

fixP pRL100206A FixP 39.9 71.3  1.1 

fixQ pRL100207 FixQ 87.7 85.3  0.8 

fixG pRL100208 FixG 5.5 3.5  1.6 

fixH pRL100209 FixH 19.9 5.0  1.1 

fixI pRL100210 FixI 5.9 1.8  0.9 

fixS pRL100210A FixS 9.5 13.8  1.0 

stoR10 pRL100211 Putative StoR 8.7 3.5  0.9 

       

nifA pRL100196 NifA 11.6 11.9  5.4 

       

fnrN RL2818 FnrN 13.4 4.9  1.7 

       

fixLc RL1879 Putative FixL 3.2 1.5  3.3 

fixKc RL1880 Putative FixK 3.3 1.6  9.1 
       

 

Table 6.1 Genes encoding putative regulators of fixNOPQ and fixGHIS operons in 

Rlv3841. Values for 7d bacteroid and 21d bacteroid correspond to fold-induction of 

genes in Rlv3841 isolated from nodules 7 and 21 dpi relative to free-living cells 

grown in minimal medium (Karunakaran et al., 2009). Values for pH 5.75 

correspond to fold-induction of genes in Rlv3481 grown in minimal medium at pH 

5.75 relative to Rlv3841 grown at pH 7.0 (unpublished data from the Philip Poole 

lab). Green highlights genes >3-fold upregulated. 
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Fig 6.5 Maps showing the location of fix genes located on pRL9, pRL10 and the 

chromosome. Purple arrows represent genes encoding the cytochrome cbb3 terminal 

oxidase, green arrows represent genes encoding the assembly system for the terminal 

oxidase, blue arrows represent genes encoding regulators belonging to the CRP/FNR 

family, orange arrows represent genes encoding FixL and pink arrow represents the 

gene encoding for FxkR. Red, green or blue triangles indicate genes that have been 

mutated by pK19mob integration, ΩSpc or ΩTc mutagenesis (respectively).   
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CLUSTAL 2.1 multiple sequence alignment 

 

 

FixL      MPHRLVSPRTVSSHELDAMVHVLDGADILIHRFDGTITHWSIGCENMYGW 50 

FixLc     -----MVEHATSETDLDRIVRMFDGANLIVHGFDGVIQRWTSGCEQLYGW 45 

               :  ::.*. :** :*:::***::::* ***.* :*: ***::*** 

 

FixL      AREEAIGEKVHELLATQFPEPVENIRDQLKSRGSWQGETTHRHKSGHDIH 100 

FixLc     SASEAVGNVVHDLLDTQFPAGVEELRTEVRDKGFWTGQVGHRRKDGVRLA 95 

          : .**:*: **:** ****  **::* :::.:* * *:. **:*.*  :  

 

FixL      VASRYVLVNLPDGDLAVIETNSDVSALKRSQEVVKSREAHLSSILDTVPD 150 

FixLc     IVTRWTVLELGDPDTLIIQSNNDVTLMQQVGDELRERQAHLQSILATVPD 145 

          :.:*:.:::* * *  :*::*.**: :::  : ::.*:***.*** **** 

 

FixL      AMVVIDDKGVVLSFSKAAEKLFGMSSEQICGRNVSNLMPNPYRDAHDGYI 200 

FixLc     AMIVIDDKGCIASFSTAAEKLFGYSADEAIGQNVSMLMPSPDREAHDGYL 195 

          **:****** : ***.******* *:::  *:*** ***.* *:*****: 

 

FixL      DHYLDTGEKRIIGYGRVVTGQRADGSQFPMELHVGEATANGERIFTGFVR 250 

FixLc     DSYIRTGRRRIIGYGRVVVGLRKHGTTFPMELSVGEAVAGGKRTFTGFVR 245 

          * *: **.:*********.* * .*: ***** ****.*.*:* ****** 

 

FixL      DLTSRYKIEEDLRQSQKMEAVGQLTGGIAHDFNNLLTVISGNLEMIEDKL 300 

FixLc     DLTSRHRIEAELRQSQKMEAVGQLTGGLAHDFNNLLAVIIGNLEMLEARL 295 

          *****::** :****************:********:** *****:* :* 

 

FixL      PPGNLREILGEAQAAAADGAVLTAQLLAFGRRQPLNPKRADLGQLVSGFS 350 

FixLc     AEPGQLSLLREAQSAADDGARLTSQLLAFGRRQALAPTVLDVGALLGEFS 345 

          .  .  .:* ***:** *** **:*********.* *.  *:* *:. ** 

 

FixL      DLLRRTLGEDIRLSTVIDGSGLNVLVDSSQLQNAILNIALNARDAMPKGG 400 

FixLc     DLVQRTLGDSVELRTIIPGRRLSAMADKAQLQSALLNLSINARDAMPAGG 395 

          **::****:.:.* *:* *  *..:.*.:***.*:**:::******* ** 

 

FixL      SLTTTISRVHLDADYAKMYPELRSGNFVLVTMTDTGSGMTEEVKKHAIEP 450 

FixLc     RLTIEISGVEIDADYVGMYPAIRPGRYVLISVTDTGTGMTSEVMERAFEP 445 

           **  ** *.:****. *** :*.*.:**:::****:***.** ::*:** 

 

FixL      FFTTKEVGSGTGLGLSMVYGFVKQSGGHLQLYSEVGRGTAVRIYLPAING 500 

FixLc     FFTTKPTGSGTGLGLSMVYGFAKQSAGHLQLYSEPGEGTTVRLFLPRADG 495 

          ***** .**************.***.******** *.**:**::**  :* 

 

FixL      VKPQEPAPDHGSDDNQLPQGDEVVLVVEDDARVRRVAVARLASMGYKVRE 550 

FixLc     GR--DSHPDEQQVKDAPSPGTETILVVEDDARVRRVTISRLQTLGYSVIE 543 

           :  :. **. . .:  . * *.:************:::** ::**.* * 

 

FixL      AENGHRALDLLKENPDVALLFTDIVMPGGMTGDELAKEVRILRPDIAVLF 600 

FixLc     ATNGIDALKELEAGHDVALLFSDVAMPG-MNGDELARKVRERWPRVKILL 592 

          * **  **. *: . ******:*:.*** *.*****::**   * : :*: 

 

FixL      TSGYSEPGLAGNDTVPGAQWLRKPYTAKELALRVRELLDAK------ 641 

FixLc     TSGFSEPHAAEKEIEAGAGWLKKPYTASEMSTRLRLLLDARHGSDSA 639 

          ***:***  * ::  .** **:*****.*:: *:* ****:       

 

Fig 6.6 Multiple amino acid sequence alignment of FixL and FixLc. ClustalW2 was 

used for the alignment (Larkin et al., 2007). (*) indicates conserved residues, (:) 

indicates strongly similar properties and (.) weakly similar properties. 
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6.2.2 Symbiotic requirement of fixL, fixLc and fnrN 

 

To determine the requirement of the FixL-homologues, a single fixL mutant and a 

double fixL fixLc mutant were constructed. To construct fixLΩSpc, primers pr1270 

and pr1271 were used to amplify a 1 kb region containing fixL. The PCR product 

was subcloned into pJET1.2/blunt resulting in pLMB581. A SmaI fragment 

containing the ΩSpc cassette was cloned into pLMB581 at a unique StuI site blunted 

using the Klenow fragment. The fixLΩSpc construct was then cloned into 

XbaI/XhoI-digested pJQ200SK as an XbaI/XhoI fragment, forming the plasmid 

pLMB590. Plasmid pLMB590 was conjugated into Rlv3841 to make LMB495 

(fixLΩSpc). A fixL fixLc double mutant was constructed by conjugating pLMB441 

into LMB495 to make LMB496 (fixLΩSpc fixLc:pK19mob). 

 

P. sativum was inoculated with LMB403 (fixLc:pK19mob), LMB495 (fixLΩSpc) or 

LMB496 (fixLΩSpc fixLc:pK19mob). For all inoculations, rates of acetylene 

reductions were similar to Rlv3841 (Fig 6.7). This shows that in contrast to S. 

meliloti, A. caulinodans and B. japonicum, FixL-mediated regulation is not essential 

for N2 fixation in R. leguminosarum.  

 

Following this result, a single mutation was made in fnrN to confirm that FnrN-

requirement is the same in Rlv3841 as it is in R. leguminosarum bv. viciae VF39 

(Patschkowski et al., 1996). The double mutant fnrN fixL, double mutant fnrN fixLc 

and triple mutant fnrN fixL fixLc were also constructed in order to determine the 

symbiotic requirement of the three O2-responsvie regulators. 

 

To construct fnrNΩTc, a 2.5 kb region containing fnrN was amplified from Rlv3841 

using primers pr1381 and pr1382; the PCR product was then digested with 

XbaI/XhoI and cloned into XbaI/XhoI linearized pJQ200SK to make pLMB732. An 

EcoRI fragment containing ΩTc was cloned into pLMB732 at a unique MfeI 

restriction site, resulting in pLMB733. The plasmid pLMB733 was conjugated into 

Rlv3841 to make LMB648 (fnrNΩTc). Double mutants LMB730 (fixLc:pK19mob 

fnrNΩTc) and LMB731 (fixLΩSpc fnrNΩTc) were constructed by conjugating 
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pLMB733 into LMB403 (fixLc:pK19mob) and LMB495 (fixLΩSpc). Triple mutant 

LMB673 (fixLc:pK19mob fixLΩSpc fnrNΩTc) was constructed by transducing 

fnrNΩTc from LMB648 (fnrNΩTc) into LMB496 (fixLΩSpc fixLc:pK19mob). 

 

 

 

 

Fig 6.7 Rates of acetylene reduction for P. sativum inoculated with Rlv3841, 

LMB403 (fixLc:pK19mob), LMB495 (fixLΩSpc) or LMB496 (fixLc:pK19mob 

fixLΩSpc). Averaged from five plant ± SEM. 

 

 

P. sativum was inoculated with the single, double or triple mutants. In agreement 

with R. leguminosarum bv. viciae VF39, disruption of fnrN in Rlv3841 (LMB648) 

caused a severe decrease (~90%) in acetylene reduction (Fig 6.8A); double mutants 

LMB730 (fixLc:pK19mob fnrNΩTc) and LMB731 (fixLΩSpc fnrNΩTc) showed 

similar decreases (~85-90%) in acetylene reduction (Fig 6.8B). However, no 

acetylene reduction could be detected for the triple mutant LMB673 (fixLc:pK19mob 

fixLΩSpc fnrNΩTc) (Fig 6.8A). 
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Fig 6.8 Rates of acetylene reduction for P. sativum inoculated with Rlv3841, (A) 

LMB648 (fnrNΩTc), LMB673 (fixLc:pK19mob fixLΩSpc fnrNΩTc) (B) LMB730 

(fixLc:pK19mob fnrNΩTc) and LMB731 (fixLΩSpc fnrNΩTc). Averaged from five 

plants ± SEM. 
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6.3 DISCUSSION 

 

It is likely that two pathways govern the expression of the fixNOPQ operons in R. 

leguminosarum. One pathway requires FnrN and disruption of fnrN causes a severe 

reduction in N2 fixation (Fig 6.8A). The second pathway requires FixL or a 

functional FixL-homolgue (Fig 6.6) annotated here as FixLc. In the absence of the 

FnrN-governed pathway, the FixL-homologues are essential for N2 fixation (Fig 

6.8A). 

 

It is not known how FixL induces the fixNOPQ operons in R. leguminosarum 

(Schluter et al., 1997; Boesten and Priefer, 2004) and it is not known whether FixLc 

can also regulate fixNOPQ, although the symbiotic phenotypes of the double and 

triple mutants suggest it can (Figs 6.8A and 6.8B). The obvious model would have 

the FixL-homologues activating FxkR, which would then active the expression of 

fixK and FixK would then activate expression of fixNOPQ (Fig 6.4). This model 

would explain why in R. leguminosarum bv. viciae VF39 a fixK fnrN double mutant 

is Fix
- 
(Patschkowski et al., 1996), as both regulatory pathways would be negated. 

However, it is not known whether induction of fixK is dependent upon the FixL-

homologues and furthermore, it was reported that FixK is dispensable for activation 

of both fixNOPQ operons in R. leguminosarum bv. viciae VF39 (Schluter et al., 

1997). However, the non-requirement of FixK for fixNOPQ-activation may just 

suggest that FnrN is the major regulator of the fixNOPQ (consistent with the rates of 

acetylene reduction) and therefore, FixK might only cause noticeable changes in 

fixNOPQ expression in the absence of FnrN. Alternatively, it is also possible that the 

FixL-homologues activate fixNOPQ expression independently of FixK and that FixK 

and FnrN regulate additional genes that are essential to N2 fixation. 

 

It is clear that the regulons of all the regulators involved in switching on N2 fixation 

in R. leguminosarum require better definition. This would be no small challenge due 

to the presence of six CRP/FNR-type regulators, two FixL-homologues and a novel 

FxkR-regulator. There is also likely to be a high-level of cross-talk between the 

regulators in accordance with what has been shown in R. etli (Granados-Baeza et al., 
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2007) and B. japonicum (Mesa et al., 2008). Furthermore, regulons of FixLJ and 

FixK-type regulators have been shown to consist of a great number of genes (Bobik 

et al., 2006; Mesa et al., 2008). 

 

The complexity of the networks that govern the expression of fixNOPQ and other 

genes required for N2 fixation (see Terpolilli et al., 2012 for a review) implies that 

the regulation of N2 fixation is tightly controlled. The multiple O2-sensing regulators 

encoded by R. leguminosarum may have different affinities for O2, resulting in a 

finely-tuned and sensitive response to changing levels of O2. Furthermore, the 

multiple regulators downstream of the O2-sensing regulators could allow the 

integration of multiple signals that impede or activate N2 fixation e.g. ROS (Mesa et 

al., 2009) and pH (Table 6.1) (additional signals are reviewed in Terpolilli et al., 

2012).  However, O2 is likely to be the major signal that governs the switch on of 

fixNOPQ and it has now been shown that three O2-repsonsive regulators, FnrN, FixL 

and FixLc are required for N2 fixation in Rlv3841. 
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Chapter 7: Resistance to Organic Peroxide 

 

7.1 INTRODUCTION 

  

Organic peroxides (ROOH) are highly toxic because of their tendency to form 

destructive organic peroxide radicals (RO
.
) (Akaike et al., 1992). They can be part of 

a plant’s defence response so enzymes that detoxify organic peroxides have been 

studied in several plant pathogens (Mongkolsuk et al., 1998; Sukchawalit et al., 

2001; Vattanaviboon et al., 2002; Klomsiri et al., 2005; Chuchue et al., 2007). 

Belonging to the  OsmC/Ohr family, OsmC (osmotically inducible protein) provides 

resistance to both H2O2 and organic peroxides, whereas Ohr (organic hydroperoxide 

resistance protein) only provides resistance to organic peroxides (Atichartpongkul et 

al., 2001; Conter et al., 2001; Lesniak et al., 2003). AhpC belongs to the 

peroxiredoxin family and provides resistance to H2O2, peroxynitrite and organic 

peroxide (as discussed in 1.4.2) (Poole et al., 2011). 

 

Disruption of ohr in S. meliloti caused hypersensitivity to organic peroxides t-butyl 

hydroperoxide (tBOOH) and cumene hydroperoxide (CuOOH) (Fontenelle et al., 

2011). Expression of ohr is induced in response to organic peroxides and repressed 

by a MarR-type repressor (OhrR) under non-stressed conditions. In nodules, ohr-

lacZ was highly expressed in the N2 fixation zone, correlating with the presence of 

Ohr in a previous proteomics study (Djordjevic, 2004). Ohr however, is not essential 

for symbiosis, as M. sativa inoculated with an ohr mutant had a similar number of 

nodules and dry weight to M. sativa inoculated with wild type. This could be the 

result of functional redundancy between Ohr and another organic peroxide-resistance 

protein e.g. putative AhpC (SMb20964) or putative OsmC (SMc01944) (Fontenelle 

et al., 2011). Indeed, expression of osmC (SMc01944) is induced by the presence of 

organic peroxides in S. meliloti (Barloy-Hubler et al., 2004). 

 

Five genes in Rlv3841 encode putative OsmC/Ohr proteins, including RL2927 and 

RL1302 (Table 7.1). RL2927 and RL1302 are highly upregulated during bacteroid 

development (Table 7.1). Upstream of RL1302 is a gene encoding a MarR-type 

repressor (RL1301A). In close proximity to RL2927 is another gene encoding for a 
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MarR-type repressor and is 4-fold upregulated in developing bacteroids. The 

putative products of RL1301A and RL2924 share 54% and 49% amino acid identity 

(respectively)  to OhrR in S. meliloti (Fontenelle et al., 2011). Rlv3841 also encodes 

a putative AhpC-type peroxiredoxin (Altschul et al., 1990; Young et al., 2006). 

 

Gene 
Family of 

Product 

7 day 

bacteroid 

21 day 

bacteroid 

Pea 

rhizosphere 

RL2927  OsmC/Ohr 5.6 0.8 0.7 

RL2737 OsmC/Ohr 1.8 1.0 1.8 

pRL90318 OsmC/Ohr 0.9 1.6 1.3 

RL1302 OsmC/Ohr 9.3 0.4 0.4 

RL4226 OsmC/Ohr 0.8 0.5 1.3 

RL2003 (ahpC) AhpC 1.2 0.9 1.3 

 

Table 7.1 Expression of genes encoding putative OsmC/Ohr or AhpC proteins in 

Rlv3841 isolated from P. sativum nodules at 7 dpi, 21 dpi or isolated from the P. 

sativum rhizosphere. Values correspond to fold-induction relative to free-living cells 

grown in minimal medium. Highlighted cells are >3-fold upregulated. (Karunakaran 

et al., 2009; Ramachandran et al., 2011). 

 

 

Single mutations in RL1302 and RL2927 (strains LMB372 and LMB377 

respectively) did not cause any reductions in N2 fixation relative to Rlv3841 (Table 

3.5). As expected, a mutation in the putative MarR-repressor, encoded by RL2924, 

(strain LMB400) also caused no reduction in N2 fixation (Table 3.5). 
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7.2 RESULTS 

 

7.2.1 Alignment of OsmC/Ohr family members 

 

OsmC and Ohr orthologs cluster into two related subfamilies both of which contain 

two highly conserved cysteine residues (Fig 7.1) (Atichartpongkul et al., 2001). Site-

directed mutagenesis confirmed that these two cysteine residues are essential for the 

catalytic activity of Ohr in P. aeruginosa and are proposed to be directly involved in 

metabolism of peroxides (Lesniak et al., 2002). A VCPY motif around the second 

conserved cysteine is conserved in the Ohr but not in the OsmC subfamily 

(Atichartpongkul et al., 2001). The product of RL1302 contains the VCPY motif, 

implying that it belongs to the Ohr family (Fig 7.1). The function of VCPY is 

unknown but might place the conserved cysteine residue in a nucleophilic 

environment, allowing it to react with peroxide molecules (Atichartpongkul et al., 

2001). Hereafter, RL1302 will be provisionally annotated as ohr. 
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CLUSTAL 2.1 multiple sequence alignment 
 

RL1302     ------------------------------MPILYTTKASATGGRA-GRA 19 

Atu0847    ------------------------------MPILYTTKASATGGRA-GNA 19 

SMc00040   ------------------------------MPILYRTTASATGGRA-GQA 19 

Xanth_ohr  --------------------------MASPEKVLYTAHATATGGRE-GRA 23 

Pseud_ohr  --------------------------MQT-IKALYTATATATGGRD-GRA 22 

RL2737     --------------------------MTKIDKVLYTGKTHTTGGRD-GAS 23 

RL2927     --------------------------MT--EKLLFTGKTHISGGRD-GSA 21 

pRL90318   MVKCEVSLTRRIAPRWVDDADRLEIPVSNTQRVIYTAITDTIGGRESGVA 50 

RL4226     ------------------------------MQINRTASAHWTGGLKDGKG 20 

                                                 :   **   * . 

 

RL1302     VSENGVLDVT-LTVPKELGGDGATGTNPEQLFAAGYSACFLGALKFVAGQ 68 

Atu0847    KSEDGVLDVT-LTVPKELGGDGARGTNPEQLFAAGYSACFLGALKAVAGK 68 

SMc00040   KSKDGVLDVT-LTVPKELGGDGARGTNPEQLFAAGYSACFLGALKFVAGK 68 

Xanth_ohr  VSSDKALDAK-LSTPRELGGAGGDGTNPEQLFAAGYAACFIGAMKAVAAQ 72 

Pseud_ohr  VSSDGVLDVK-LSTPRELGGQGGAATNPEQLFAAGYSACFIGALKFVAGQ 71 

RL2737     HSDDGQLDIK-LSPPGS----NRAGTNPEQLFAAGWSACFIGAIGIAAGK 68 

RL2927     RSGDGTIDIK-LPQP------HPAAEN---LFGIAWSACYIGAMELAAAQ 61 

pRL90318   RSSDGVLDIR-FSAPGS----PRIGTNPEQLLSAGWSASFASAIALAAFN 95 

RL4226     LISTQSGALKDYPYGFASRFEGVAGTNPEELIGAAHAGCFTMALSLILGE 70 

                       .           . *   *:. . :..:  *:     : 
 

RL1302     QKVKIPEDTTVSAKVGIGPREDGG-GFGIEVALTVNIPGLDRETAEKLAA 117 

Atu0847    HKVKIPEDTTVTATVGIGPREDGT-GFGIEVTLKVNIPGLEREKAEELVA 117 

SMc00040   EKVKLAEDTTVTGTVGIGPRDDGT-GFFIDAALEISSPGVEKAVLEDLVQ 117 

Xanth_ohr  DKLKLPGEVSIDSSVGIG-QIPG--GFGIVVELRIAVPGMDKAELQTLVD 119 

Pseud_ohr  RKQTLPADASITGKVGIG-QIPG--GFGLEVELHINLPGLEREAAEALVA 118 

RL2737     LKVKLPADAAVNAEVDLG-ATDG--DYFLQARLKVSLPGIEADLARALVD 115 

RL2927     RKITLPDGPEVDAEITLN-ADNG--SFFLRARLNVSLPGIDRDVAQELIE 108 

pRL90318   RNIAFAGEVSIHAEVEIE--IDPV-SYTLSVRLHVRLPGIERALAQLLTA 142 

RL4226     AG-FTAEHMETSAKVTLESVEGGFAITAIHLSLSGRIPGADEATFTELAN 119 

                .      . : :           :   *    ** :      *   
 

RL1302     AAHIVCPYSHAMRTS-TEVPVTVA- 140 

Atu0847    AAHIVCPYSHAMRTS-TEVPVSVA- 140 

SMc00040   KAHIVCPYSHATRGN-VDVKLTVA- 140 

Xanth_ohr  KAHQVCPYSNATRGN-IDVTLTLA- 142 

Pseud_ohr  AAHQVCPYSNATRGN-IDVRLNVSV 142 

RL2737     EAHRTCPYSKATRGN-INVELSIA- 138 

RL2927     AAHGICPYSKATHGN-IDVETTLV- 131 

pRL90318   EARRLCPFSSTIGRG-LAVAVDLD- 165 

RL4226     KAKAGCPVSKALASVPITLDVKVV- 143 

            *:  ** * :       :   :   

Fig. 7.1 Multiple amino acid sequence alignment of OsmC/Ohr family members. 

RL1302, RL2737, RL2927, pRL90318 and RL4226 from Rlv3841; Ohr (Atu0847) 

from A. tumefaciens (Chuchue et al., 2007), Ohr (SMc00040) from S. meliloti 

(Fontenelle et al., 2011), Ohr from X. campestris (Mongkolsuk et al., 1998) and Ohr 

from P. aeruginosa (Atichartpongkul et al., 2010). Black shading and white lettering 

highlight the conserved cysteine residues and the VCPY motif present in the Ohr 

subfamily (Atichartpongkul et al., 2001; Lesniak et al., 2002). ClustalW2 was used 

for the alignment (Larkin et al., 2007). (*) indicates conserved residues, (:) indicates 

strongly similar properties and (.) weakly similar properties. 
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7.2.2 Construction of double mutant 

 

It was speculated that there is functional redundancy between the products of 

upregulated genes ohr and RL2927, explaining why no symbiotic phenotype was 

detected for LMB372 (ohr:pRU877) or LMB377 (RL2927:pRU877). A double 

mutant was constructed to test this. 

 

To make the double mutant, a strain carrying the mutation ohrΩSpc was constructed. 

Primers pr1385 and pr1386 were used to amplify a ~2.5 kb region containing ohr. 

The PCR product was subcloned into pJET1.2/blunt to make pLMB677. A SmaI 

fragment containing the ΩSpc cassette was cloned into pLMB677 at a unique BmgBI 

site, resulting in pLMB688. The XbaI/XhoI fragment of pLMB677, containing ohr-

ΩSpc, was cloned into XbaI/XhoI digested pJQ200SK, creating pLMB692. Plasmid 

pLMB692 was conjugated into Rlv3841 to make LMB603 (ohrΩSpc). To construct 

the double mutant, RL2927:pRU877 was transduced from LMB377 into LMB603 

(ohrΩSpc) to make LMB620 (RL2927:pRU877 ohrΩSpc) 

 

7.2.3 Sensitivity to organic peroxides and H2O2 

 

Disk assays (2.5.7) were used to determine the sensitivity of strains to CuOOH and 

H2O2. Disruption of ohr caused hypersensitivity to CuOOH, relative to Rlv3841 (Fig 

7.2). Disruption of RL2927 however, had no effect, even in combination with 

ohrΩSpc (Fig 7.2). None of the tested mutant strains showed hypersensitivity to 

H2O2 (Fig 7.3). 
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Fig 7.2 Disk assays testing resistance of Rlv3841, LMB377 (RL2927:pRU877), 

LMB603 (ohrΩSpc) and LMB620 (RL2927:pRU877 ohrΩSpc) to 0.1 M CuOOH. 

Averaged from three independent experiment ± SEM. * indicated a statistically 

significant (p ≤ 0.05) difference relative to Rlv3841. 

 

 

Fig 7.3 Disk assays testing resistance of Rlv3841, LMB377 (RL2927:pRU877), 

LMB603 (ohrΩSpc) and LMB620 (RL2927:pRU877 ohrΩSpc) to 10 mM (grey 

bars) and 50 mM (white bars) H2O2 . Averaged from three independent experiments 

± SEM. 
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To confirm that the increased sensitivity of LMB603 (ohrΩSpc) and LMB620 

(RL2927:pRU877 ohrΩSpc) to CuOOH was caused by the disruption of ohr and not 

the presence of the ΩSpc cassette, LMB372 (ohr:pRU877) was also tested for 

sensitivity to CuOOH. LMB372 (ohr:pRU877) was more sensitive to CuOOH 

compared to Rlv3841 (Fig 7.4) confirming that disruption of ohr is the cause of 

sensitivity. The requirement of RL2924 (encoding MarR-repressor upstream of 

RL2927) for organic peroxide resistance was also tested. As expected, LMB400 

(RL2924:pK19mob) showed no increased sensitivity or resistance to CuOOH (Fig 

7.4). 

 

 

 

Fig 7.4 Disk assays testing resistance of Rlv3841, LMB372 (ohr:pRU877) and 

LMB400 (RL2924:pK19mob) to 0.1M CuOOH. Averaged from three independent 

experiments ± SEM. * indicated a statistically significant (p ≤ 0.05) difference 

relative to Rlv3841. 
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7.2.4 Symbiotic requirement of OsmC and Ohr 

 

Rlv3841, LMB377 (RL2927:pRU877), LMB603 (ohrΩSpc) or LMB620 

(RL2927:pRU877 ohrΩSpc) were used to inoculate P. sativum. All plants showed a 

Fix
+
 phenotype and reduced acetylene at similar rates to Rlv3841 (Fig 7.5). 

 

 

 

Fig 7.5 Rates of acetylene reduction for P. sativum inoculated with Rlv3841, 

LMB377 (RL2927:pRU877), LMB603 (ohrΩSpc) or LMB620 (RL2927:pRU877 

ohrΩSpc). Averaged from five plants ± SEM. 

 

 

7.3 DISCUSSION 

 

The ohr (RL1302) gene encodes an organic peroxidase that confers resistance 

against organic peroxide but not H2O2 (Figs 7.2. and 7.3). RL2927 does not confer 

resistance to organic peroxide and subsequently, the double mutant LMB620 

(RL2927:pRU877 ohrΩSpc) was not more sensitive to organic peroxide relative to 

single mutant LMB603 (ohrΩSpc) (Fig 7.2). 
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None of the mutations caused a significant symbiotic defect on P. sativum, therefore, 

either resistance to organic peroxides is not essential for bacteroid development or 

there is another organic peroxidise active during symbiosis. A strong candidate 

would be the product of RL2737 as it contains the two conserved cysteine resisdues, 

the VCPY motif (with the exception of a threonine residue in the place of valine) 

(Fig 7.1) and is 1.8-fold upregulated in developing bacteroids (Table 7.1). 

Alternatively, the putative AhpC encoded by RL2003 may also be active during 

symbiosis and confer resistance against organic peroxides. 

 

It is not clear why Rlv3841 encodes multiple organic peroxidases. It is possible that 

they differ in their specificity for organic peroxides and therefore, each organic 

peroxidase may target a different subset of organic peroxides. For example, both Ohr 

from P. aeruginosa and OsmC from E. coli have a higher affinity for tBOOH and 

CuOOH over H2O2, however, the active site of OsmC is structurally different from 

Ohr. It has therefore been suggested that Ohr and OsmC may target structurally 

different peroxides (Lesniak et al., 2002, 2003). Further research could include 

identifying organic peroxides endogenous to both Rlv3841 and P. sativum, then 

determining whether the affinity for these endogenous peroxides differs between the 

putative organic peroxidases encoded by Rlv3841. Testing the requirement of 

organic peroxidases on other legumes compatible with Rlv3841 may also prove to be 

insightful e.g. V. faba and V. hirsuta may generate different types and amounts of 

organic peroxides. 

 

It is clear that full resolution of this topic would require the construction of multiple 

mutants, possibly including a quadruple mutant. This was considered beyond the 

scope of this thesis. 
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Chapter 8: AAA+ proteases encoded on pRL10 and 

pRL8 
 

8.1 INTRODUCTION 

 

AAA+ proteases consist of one or two AAA+ (ATPases associated with diverse 

cellular activities) domains and a protease domain (a chamber where peptide 

degradation takes place) (Fig 8.1). The AAA+ domain(s) and the protease domain 

can either be contained within the same polypeptide (e.g. FtsH and Lon) or are 

comprised of separate polypeptides (HslUV, ClpXP, ClpAP and ClpCP) (Sauer and 

Baker, 2011). The AAA+ protein typically forms a hexameric ring that drives the 

unfolding of a protein targeted for destruction and then translocates it to the 

degradation chamber of the protease (Fig 8.1). This process is highly specific and 

involves recognition of certain amino acid motifs known as degrons by the AAA+ 

domain (Sauer and Baker, 2011). 

 

 

Fig 8.1 Arrangement and mechanism of AAA+ proteases. Reproduced from Gur et 

al., 2011. 
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AAA+ proteases have a number of different roles in the cell (Fig. 8.2), the most 

well-known being the degradation of damaged or misfolded proteins that might 

otherwise cause intracellular aggregates (Sauer and Baker, 2011). AAA+ proteases 

can also change a cell’s transcriptome by targeting transcriptional regulators, an 

example of which, is the degradation of FixK2 by ClpAP, a key regulator of N2 

fixation in B. japonicum (see Chapter six) (Jenal and Hengge-Aronis, 2003; Gur et 

al., 2011; Bonnet et al., 2013). AAA+ proteases have also been shown to target 

sigma factors and anti-sigma factors and so can determine the expression of entire 

regulons e.g. the heat shock regulon by degradation of σ
32

, genes involved in 

envelope stress response by degradation of an anti-sigma factor that binds σ
E
 and 

genes involved in the general stress response by degradation of σ
s
 (Gur et al., 2011). 

AAA+ proteases are involved in controlling the life cycle of Caulobacter crescentus 

through degradation of cell cycle proteins, regulators and cellular machinery (Gur et 

al., 2011; Bhat et al., 2013). Proteases have also been proposed to target 

antimicrobial peptides after they have been imported into the cell (Shelton et al., 

2011). 

 

 

Fig 8.2 Diverse roles of AAA+ proteases. Reproduced from Gur et al., 2011. 
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Studies of AAA+ proteases in rhizobia are few in number. In S. meliloti, mutation of 

lon, encoding the Lon protease, caused ineffective symbiosis on M. sativa (Summers 

et al., 2000). Plants inoculated with this mutant weighed the same as an uninoculated 

control, were delayed in nodulation and initiated small nodules, from which, only a 

few bacteria could be recovered. The cause of this symbiotic phenotype has not been 

determined but it was observed that disruption of lon resulted in hyper-production of 

EPS and poor growth in minimal medium. Secondly, CtpA (carboxy-terminal 

protease) has been characterised in Rlv3841. Disruption of ctpA (RL4692) caused an 

increased sensitivity to detergents and susceptibility to desiccation on solid medium; 

the symbiotic requirement of CtpA was not reported (Gilbert et al., 2007). 

 

Two putative AAA+ proteases in Rlv3841 are encoded by putative operons 

pRL80012-13 and pRL100036-35. The pRL80012-13 operon is 5-fold upregulated 

in developing bacteroids but pRL80012 was found to be non-essential for symbiosis 

(see Table 3.6). The putative pRL100036-35 operon is not upregulated in bacteroids 

but a mTn5 insertion at pRL100036 caused a defective symbiosis on P. sativum 

(Karunakaran et al., 2009). This data implies that both these putative AAA+ 

proteases are important to symbiosis and so they were investigated further, beginning 

with the characterisation of the symbiotic defect caused by the disruption of 

pRL100036 (Karunakaran et al., 2009). 
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8.2 RESULTS AND DISCUSSION 

 

8.2.1 RU4067 (pRL100036::mTn5) forms bacteroids but is defective 

for N2 fixation 

 

P. sativum was inoculated with RU4067 (pRL100036::mTn5) to determine if any N2 

fixation can occur. Rates of acetylene reduction indicate that RU4067 

(pRL100036::mTn5) could fix N2 but at ~25% the rate of Rlv3841 (Fig 8.3). The 

nodules containing RU4067 (pRL100036::mTn5) had two different morphologies; 

some were white and elongated (Fig 8.4B) while others were small, white and 

spherical (Fig 8.4C). Generally however, plants inoculated with RU4067 

(pRL100036::mTn5) had a higher number of nodules but a lower total nodule mass 

relative to plants inoculated with Rlv3841 (Figs 8.5A and 8.5B). Sections taken from 

these nodules revealed that RU4067 (pRL100036::mTn5) could infect plant cells 

(Fig 8.6) and that white-elongated nodules (Fig 8.6D) had more infected cells than 

the small-white-spherical nodules (Figs 8.6B and 8.6C). 
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Fig 8.3 Rates of acetylene reduction for Rlv3841 and RU4067 (pRL100036::mTn5) 

on P. sativum. Averaged from five plants ± SEM. * indicates a statistically 

significant difference (p ≤ 0.05) relative to Rlv3841-inoculated plants. 

 

 

 

Fig 8.4 P. sativum nodules on plants inoculated with Rlv3841 (A) or RU4067 

(pRL100036::mTn5) (B and C). Nodules formed on RU4067-inoculated plants were 

white and elongated (B) or white, small and spherical (C). 
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Fig 8.5 Nodule number (A) and fresh weight of nodules (B) on P. sativum inoculated 

with Rlv3841 or RU4067 (pRL100036::mTn5). Averaged from ten plants for 

Rlv3841 and five plants for RU4067 (pRL100036::mTn5) ± SEM. * indicates a 

statistically significant (p ≤ 0.05) difference relative to Rlv3841-inoculated plants. 

 

 

* 

0 

20 

40 

60 

80 

100 

120 

140 

Rlv3841 RU4067 

N
o

d
u

le
 c

o
u

n
t/

p
la

n
t 

* 

0 

50 

100 

150 

200 

Rlv3841 RU4067 

F
re

sh
 w

ei
g
h
t 

o
f 

n
o
d
u
le

s 
(m

g
/p

la
n
t)

 

pRL100036::mTn5 

pRL100036::mTn5 

A. 

B. 



181 

 

 

 

Fig 8.6 Sections of nodules taken from P.sativum inoculated with Rlv3841 (A) or 

RU4067 (pRL100036::mTn5) (B, C and D). Sections (B and C) show small 

spherical nodules and (D) shows a white, elongated nodule. Sections stained with 

toluidine blue. Visualised by light microscopy at magnification x 10. 

 

 

Electron micrographs showed that RU4067 (pRL100036::mTn5) could form branch-

shaped bacteroids (Fig 8.7B) and that a number of nodule cells contained increased 

numbers of starch granules, which are typical of an ineffective legume-rhizobia 

symbiosis (Figs 8.7C and 8.7D) (Udvardi and Poole, 2013). 
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Fig 8.7 Ultrathin sections of nodules taken from P.sativum inoculated with Rlv3841 

(A) or RU4067 (pRL100036::mTn5) (B, C and D). Visualised by TEM at 

magnification x 1500 (A and B) or x 800 (C and D). 

 

 

To confirm that the pRL100036::mTn5 mutation caused the symbiotic defect and not 

a secondary mutation, a region containing pRL100036::mTn5 was transduced from 

RU4067 (pRL100036::mTn5) into Rlv3841, resulting in LMB449. LMB449 had 

severely reduced rates of acetylene reduction rates, suggesting that a secondary 

mutation was not the cause of the symbiotic defect (Fig 8.8). 
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Fig 8.8 Rates of acetylene reduction for Rlv3841 and LMB449 (pRL100036::mTn5) 

on P. sativum. Acetylene reduction for Rlv3841-inoculated was calculated from one 

plant and LMB449 (pRL100036::mTn5) was averaged from two plants ± SEM. 

 

 

8.2.2 The putative AAA+ protease encoded by pRL100036-35 shows 

significant homology to a toxin-antitoxin system (IetAS) in 

Agrobacterium tumefaciens 

 

A search of the literature revealed that the putative AAA+ protease encoded by 

pRL100036-35 was homologous to IetA and IetS in Agrobacterium tumefaciens 

(59% and 50% amino acid identity, respectively) (Table 8.1) (Yamamoto et al., 

2007; Yamamoto et al., 2009). IetA and IetS have been proposed to function as a 

toxin-antitoxin system that contributes to plasmid stability and incompatibility. It 

was speculated that the antitoxin (IetA) is able to neutralise the effects of its cognate 

toxin (IetS) by interacting with IetS or its target molecule (Yamamoto et al., 2009). 

This ensures plasmid stability because if the plasmid harbouring ietAS is lost from 

the host cell, the antitoxin is quickly degraded allowing the IetS toxin to initiate cell 

death or arrest cell growth (Fig 8.9) (Yamamoto et al., 2009; Yamaguchi et al., 

2011). It is not known how IetS causes toxicity but synthesis of IetS in the absence 
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of IetA resulted in poor growth growth and reduced cell viability of A. tumefacies 

(Yamamoto et al., 2009).  

 

 

Organism Locus tag  
AA identity 

(%) 
Putative Product 

No. of 

intervening 

nucleotides 

Agrobacterium 

tumefaciens 

Atu6082 (ietA) 100 AAA+ 
3 

Atu6083 (ietS) 100 Protease 

Xanthobacter 

autotrophicus 

Xaut_4803 82 AAA+ 
0 

Xaut_4804 79 Protease 

Beijerinckia indica 
Bind_2677 65 AAA+ 

15 
Bind_2676 51 Protease 

Rhizobium etli 
RHE_PD00006 62 AAA+ 

−1 
RHE_PD00007 49 Protease 

Rhizobium 

leguminosarum 

pRL100036 (ietA) 59 AAA+ 
15 

pRL100035 (ietS) 50 Protease 

Syntrophobacter 

fumaroxidans  

Sfum_2857 54 AAA+ 
21 

Sfum_2858 43 Protease 

Magnetococcus sp. 

strain MC-1  

Mmc1_1291 52 AAA+ 
20 

Mmc1_1292 40 Protease 

Thiobacillus 

denitrificans  

Tbd_1692 52 AAA+ 
20 

Tbd_1693 41 Protease 

Anaeromyxobacter sp. 

Fw109-5 

Anae109_4229 55 AAA+ 
90 

Anae109_4230 42 Protease 

Rhodococcus jostii  
RHA1_ro11077 56 AAA+ 

17 
RHA1_ro11076 41 Protease 

Hahella chejuensis  
HCH_03415 48 AAA+ 

17 
HCH_03413 39 Protease 

 

Table 8.1 Orthologues of IetAS from A. tumefaciens. Pink highlights Rlv3841. No. 

of intervening nucleotides corresponds to the number of nucleotides that separate the 

two open reading frames. AA= amino acid. Adapted from Yamamoto et al., 2009. 
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Fig 8.9 Model for the toxin-antitoxin system. The toxin and antitoxin are 

constitutively expressed; the toxin and its cognate antitoxin form a stable complex 

that attenuates the toxin’s function. The antitoxin is less stable than the toxin or is 

targeted for proteolysis. Consequently, when the plasmid is lost, the antitoxin is 

quickly degraded, freeing toxins and enabling their toxic function. Reproduced from 

Yamaguchi et al., 2011. 

 

 

It is interesting that a putative toxin-antitoxin system should be located on pRL10 

(the Sym plasmid) as this plasmid contains many of the genes essential to symbiosis, 

including the nod genes and the N2 fixation genes (Young et al., 2006). Like ietAS in 

A. tumefaciens, pRL100036-35 is located near the repABC replicon, which is 

required for plasmid segregation and replication (Cevallos et al., 2008; Yamamoto et 

al., 2009; Mazur et al., 2011). Hereafter, owing to the homology the pRL100036-35-

encoded putative AAA+ protease has with IetAS, pRL100036-35 is provisionally 

annotated as ietAS. 

 

 

 

Fig 8.10 Map showing the location of ietAS (pRL100036-35) relative to repABC on 

pRL10 (Sym plasmid). Values correspond to length of region (base pairs). 
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8.2.3 RU4067 (ietA::mTn5) can be complemented by ietA alone and 

ietAS is not required for symbiosis 

 

It is likely that ietA and ietS share the same operon as the open reading frames are 

only separated by 15 nt (Table 8.1). Therefore, the mTn5 insertion at ietA is likely to 

cause either a polar-mutation that would null expression or a non-polar mutation that 

would only reduce the expression of ietS. Non-polar mutations caused by the mTn5 

construct present in RU4067 (ietA::mTn5)  (Reeve et al., 1999; Karunakaran et al., 

2009) have been reported in other studies, indeed the symbiotic defect caused by 

sitA::mTn5 in S. meliloti (see Chapter four) could be rescued by a plasmid containing 

sitA alone (as opposed the entire sitABCD operon) (Davies and Walker, 2007b). If 

expression of ietS is only reduced, the low levels of the IetS-toxin could be diluted 

out in free-living cells as a result of cellular division. In bacteroids however, which 

do not divide, a low level of ietS expression would eventually cause a high 

accumulation of the toxic IetS. Furthermore, bacteroids undergo extensive 

endoreduplication during symbiosis (having approximately 8-12 copies of the 

genome) (Mergaert et al., 2006; Prell et al., 2009), meaning that there might be 

multiple copies of ietS in bacteroids, resulting in higher levels of the toxin. 

 

To test whether ietA alone could complement the symbiotic phenotype of RU4067 

(ietA::mTn5), a plasmid containing ietA was constructed. Primers pr1237 and pr1238 

were used to amplify ietA and the PCR product was cloned into pJET1.2/blunt, to 

make pLMB551. An XbaI/BamHI fragment containing ietA was then cloned into 

XbaI/BamHI digested pJP2, resulting in pLMB568. Plasmid pLMB568 was 

conjugated into RU4067 (ietA::mTn5) to create LMB472 (ietA::mTn5 pJP2ietA).  

 

The plasmid pJP2ietA could complement RU4067 (ietA::mTn5) (Fig 8.11), 

supporting the hypothesis that if ietS is expressed in RU4067 (ietA::mTn5), IetA can 

suppress the toxicity of IetS and subsequently, rescue the symbiotic phenotype.  

 

Alternatively, it could mean that the requirement of IetA is independent of IetS. 

Therefore, to determine whether ietA is essential or non-essential for symbiosis in 

the absence of ietS, a ~1.5 kb deletion was made in the putative ietAS operon (Fig 
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8.12). To make a deletion, primers pr1247 and pr1248 were used to amplify a 928 bp 

region containing the beginning 759 bp of ietA and primers pr1249 and pr1250 were 

used to amplify a 984 bp region containing 972 bp from the 3′ end of ietS (Fig 8.12). 

Both the PCR products were cloned into pJET1.2/blunt vectors, resulting in 

pLMB554 and pLMB555, respectively. An XhoI/BamHI fragment from pLMB554 

containing the 759 bp of ietA was cloned into XhoI/BamHI digested pJQ200SK, to 

make pLMB566. A BamHI/XbaI fragement from pLM555 containing 972 bp of ietS 

was then cloned into BamHI/XbaI digested pLMB566, to make pLMB567. A BamHI 

fragment containing ΩSpc cassette was cloned into BamHI digested pLMB567, 

resulting in pLMB578. The plasmid pLMB578 was conjugated into Rlv3841 to 

make LMB482 (ΔietASΩSpc). After inoculating P. sativum with LMB482 

(ΔietASΩSpc), it was revealed that the rate of acetylene reduction for the mutant was 

similar to Rlv3841, confirming that IetAS is not required for symbiosis. 

 

 

Fig 8.11 Rates of acetylene reduction for Rlv3841, LMB472 (ietA::mTn5 pJP2 ietA) 

and LMB482 (ΔietASΩSpc) on P. sativum. Averaged from five plants ± SEM. 
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ΩSpc 

ietA ietS 

2460 bp 981 bp 

1566 bp 

BamHI BamHI 

2056 bp 

pr1250 pr1248 pr1249 pr1247 pr1237 pr1281 

pOT forward_far pOT forward_far 

 

 

 

 

 

 

 

Fig 8.12 Deletion of a ~1.5 kb region from ietAS. The deletion and the presence of 

the ΩSpc cassette were confirmed by PCR with primers pOT forward_far with 

pr1237 and pOT forward_far with pr1281. 

 

A strain carrying a single pK19mob integration in ietS was also constructed to 

confirm that IetS is not essential for symbiosis. Primers pr1189 and pr1190 were 

used to amplify the internal fragment of pRL100035 and the PCR product was 

cloned into pK19mob using the BD In-Fusion
TM

 cloning kit (2.3.6) to create 

pLMB540. Plasmid pLMB540 was conjugated into Rlv3841 to make LMB457 

(ietS:pK19mob). P. sativum was inoculated with LMB457 (ietS:pK19mob), grown 

for three weeks and Fig 8.13 shows that the rate of acetylene reduction for LMB457 

(ietS:pK19mob) was equivalent to Rlv3841. 
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Fig 8.13 Rates of acetylene reduction for Rlv3841 and LMB457 

(pRL100035:pK19mob) on P. sativum. Averaged from five plants ± SEM. 

 

 

8.2.4 pRL80012-13 is located next to repABC 

 

When considering the role of pRL80012-13 it was observed that the closest 

homologue to pRL80012 is ietA (32% amino acid identity) (Altschul et al., 1990; 

Young et al., 2006). Furthermore, like ietAS, pRL80012-13 is located near to the 

repABC operon (Fig 8.14) on the plasmid pRL8. Plasmid pRL8 contains a number of 

genes that are upregulated specifically in the pea rhizosphere (Ramachandran et al., 

2011). To test if there is any redundancy between the two AAA+ proteins encoded 

by ietA and pRL80012, the double mutant LMB581 (pRL80012:pK19mob 

ΔietASΩSpc) was constructed by transducing ΔietASΩSpc into LMB365 

(pRL80012:pK19mob). LMB581 (pRL80012:pK19mob ΔietASΩSpc) was 

inoculated onto P. sativum and harvested after three weeks. The plants inoculated 

with LMB581 (pRL80012:pK19mob ΔietASΩSpc) appeared healthy, had pink 

elongated nodules but unfortunately, due to a malfunction of the gas chromatograph 

on the day of harvest, rates of acetylene reduction could not be measured. 
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Fig 8.14 Map showing the location of pRL80012-13 relative to repABC on pRL8. 

Values correspond to length of DNA (base pairs). 

 

 

A single mutation in pRL80013 was also made by pK19mob integration. Primers 

pr1192 and pr1193 were used to amplify the internal fragment of pRL80013. The 

PCR product was then cloned into pK19mob using the BD In-Fusion
TM

 cloning kit 

(2.3.6) to create pLMB541. Plasmid pLMB541 was conjugated into Rlv3841 to 

make LMB458 (pRL80013:pK19mob. The double mutant LMB571 

(pRL80013:pK19mob ΔietASΩSpc) was also constructed by transducing 

ΔietASΩSpc from LMB482 into LMB458 (pRL80013:pK19mob). Rates of acetylene 

reduction for LMB457 (pRL80013:pK19mob) and LMB571 (pRL80013:pK19mob 

ΔietASΩSpc) were the same as Rlv3841, confirming that the two AAA+ proteases 

are not essential for symbiosis (Fig. 8.15). 
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Fig 8.15 Rates of acetylene reduction for Rlv3841, LMB458 (pRL80013::pK19mob) 

(A) and LMB571 (pRL80013:pK19mob ΔietASΩSpc) (B) on P. sativum. Averaged 

from five plants ± SEM. 
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8.2.5 Putative operons ietAS and pRL80012-13 confer resistance to 

5% EtOH but not to tested antibiotics 

 

Although low expression of ietS in the absence of ietA is likely to cause more 

toxicity to a non-dividing cell (i.e a bacteroid), it is possible that it would cause a 

level of toxicity in dividing cells (i.e. free-living cells) too. RU4067 (ietA::mTn5) did 

have a moderate growth phenotype in modified AMS glucose, reaching a lower 

maximal OD600 relative to Rlv3841 and having slower mean generation time of ~6 

hrs (c.f. ~ 4 hrs for Rlv3841) (Fig 8.16A). However, LMB457 (ietS:pK19mob) 

shows an almost identical growth phenotype to RU4067 (ietA::mTn5) (Fig 8.16A) 

and furthermore, even though LMB482 (ΔietASΩSpc) had a mean generation time of 

~4 hrs, like RU4067 (ietA::mTn5) and LMB457 (ietS:pK19mob), it reached a lower 

maximal OD600 (Fig 8.16A). Therefore, the growth phenotype for RU4067 

(ietA::mTn5) cannot be explained by low expression of ietS in the absence of IetA. 

LMB365 (pRL80012:pK19mob) and LMB458 (pRL80013:pK19mob) were also 

tested for growth and they too show a long mean generation time of ~6 hrs (Fig 

8.16B). However, experiments measuring growth of all the AAA+ protease mutants 

have only been conducted once and therefore need to be repeated. 

 

Other studies have shown AAA+ proteases to confer resistance to stresses such as 

EtOH, oxidative stress and heat stress (Gerth et al., 1998; Chatterjee et al., 2005; Xie 

et al., 2013). For this reason, cells were grown in AMS glucose with 5% EtOH 

(2.5.4) and Figs 8.16A and 8.16B suggest that mutants defective for either of the 

AAA+ proteases are hypersensitive to EtOH. 
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Fig 8.16 Growth of Rlv3841 and mutants in AMS glucose (solid line) and AMS 

glucose with 5% EtOH (broken line). Shown in (A) is Rlv3841 [white diamonds], 

RU4067 (ietA::mTn5) [pink triangles], LMB457 (ietS:pK19mob) [orange crosses) 

and LMB482 (ΔietASΩSpc) [green circles]. Shown in (B) is Rlv3841 [white 

diamonds], LMB365 (pRL80012:pK19mob) [red triangles] and LMB458 

(pRL80013:pK19mob) [blue circles]. Data from one experiment. 
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Mutations in genes encoding for AAA+ proteases have also been shown to cause 

sensitivity to various antibiotics (Rajagopal et al., 2002; Ulvatne et al., 2002; 

Yamaguchi et al., 2003; Gilbert et al., 2007; Hinz et al., 2011; Fernandez et al., 

2012; McGillivray et al., 2012). Therefore, the sensitivity of Rlv3841, LMB482 

(ΔietASΩSpc), LMB365 (pRL80012:pK19mob) and LMB581 (pRL80012:pK19mob 

ΔietASΩSpc) to gentamicin, polymyxin, chloramphenicol, piperacillin, ampicillin, 

tetracycline, rifampicin and bacitracin was also tested. RU4040 (bacA:pK19mob) 

(Karunakaran et al., 2009) was used a positive control as BacA had been shown to 

confer resistance to a number of antibiotics (Ichige and Walker, 1997; Ferguson et 

al., 2002; Karunakaran et al., 2009). 

 

Disk assays (2.5.7) show that RU4040 (bacA:pK19mob) was hypersensitive to 

chloramphenicol, piperacillin, rifampicin, tetracycline and ampcillin. However, none 

of the AAA+ protease mutants were hypersensitive to any of the antibiotics at the 

tested concentrations. 
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Fig 8.17 Cont’d Disc assays testing the sensitivity of Rlv3841, RU4040 

(bacA:pK19mob), LMB365 (pRL80012:pK19mob), LMB482 (ΔietASΩSpc) and 

LMB581 pRL80012:pK19mob ΔietASΩSpc) to gentamicin (5 mg/ml), polymyxin B 

(5 mg/ml), chloramphenicol (0.5 mg/ml), piperacillin (20 mg/ml), rifampicin (5 

mg/ml), bacitracin (80 mg/ml), tetracycline (0.5 mg/ml) and  ampicillin (5 mg/ml). 

Averaged from three independent experiments ± SEM. * indicates a statistically 

significant (p ≤ 0.05) difference relative to Rlv3841. 
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8.3 CONCLUSION 

 

The putative AAA+ protease encoded by ietAS (pRL100036-35) shows homology to 

a toxin-antitoxin system (Table 8.1) that is required for plasmid stability and 

incompatibility in A. tumefaciens (Yamamoto et al., 2007; Yamamoto et al., 2009). 

The putative AAA+ protease encoded by pRL80012-13, like ietAS in Rlv3841 and 

A. tumefaciens, is proximal to the repABC operon and the closest homologue for the 

AAA+ protein (pRL80012) is IetA; this suggests that pRL80012-13 may also encode 

a toxin-antitoxin system. However, further experimentation is required to determine 

if ietAS and pRL80012-13 confer plasmid stability and resistance against 

incompatible plasmids. 

 

Although the presence of the IetS toxin may cause a symbiotic defect in the absence 

of IetA antitoxin (Figs 8.3-8.7), the IetAS system is not essential for symbiosis (Fig 

8.11). Expression of ietS still needs to be demonstrated by qRT-PCR in RU4067 

(ietA:mTn5) and the putative toxicity of IetS requires further investigation. 

 

If the AAA+ proteases encoded by ietAS and pRL80012-13 are required for plasmid 

maintenance, they may also have a dual role in the stress response as disruption of 

either operon causes hypersensitivity to EtOH (Fig 8.16). A role in stress response 

could explain why pRL80012-13 is upregulated in developing bacteroids. One model 

that explains how AAA+ protease toxin-antitoxin systems could have dual roles in 

plasmid maintenance and stress response is: in the presence of IetA, IetAS targets 

misfolded of denatured proteins but in the absence of IetA, IetS may bind to an 

alternative AAA+ protein that would change its specificity to proteins with an 

essential cellular function. 
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Chapter 9: Future perspectives 

 

9.1 SCREENING 

 

The initial aim of this study was to investigate processes required for nodule-

colonisation and bacteroid development. In Rlv3841, mutations were made in forty-

two genes that were upregulated during bacteroid development. Even though five of 

the mutant strains were moderately reduced in their ability to initiate nodules and 

reduce acetylene on P. sativum (or V. faba in one case), it was evident that there was 

functional redundancy between certain genes. Instead of focusing on individual 

mutations that may cause moderate phenotypes or conducting further screening, e.g. 

ability of mutants to compete with Rlv3841 for nodule-colonisation, it was decided 

to investigate functional redundancy in order to further our understanding of critical 

processes during bacteroid development. 

 

9.2 Mn
2+ 

TRANSPORT 

 

The most obvious example of functional redundancy was between the Mn
2+ 

transporters SitABCD and MntH. The double mutant LMB466 (sitA:pK19mob 

mntHΩSpc) was symbiotically-defective on P. sativum, whereas single mutations in 

sitA and mntH did not cause any obvious phenotypes (Fig 4.11). Transport assays, 

including experiments that test the ability of SitABCD and MntH to transport Fe
2+

 

(in addition to Mn
2+

)
 
should be a prioritised because to this date, no bacterial Fe

 

transporter is known to be essential for symbiosis. Further work is also needed to 

determine the stage at which bacteroid development of LMB466 (sitA:pK19mob 

mntHΩSpc) is impeded. This is likely to involve quantifying infection threads, the 

use of cell-permeable fluorescent dyes e.g. SYTO 13 (stains nucleic acids) (Haynes 

et al., 2004) and visualisation of LMB466 (sitA:pK19mob mntHΩSpc) carrying 

gfp/DsRed by confocal microscopy (Gage, 2002). 

 

Mn
2+

 transporters are required by R. leguminosarum to develop into N2-fixing 

bacteroids in indeterminate nodules formed on P. sativum, V. faba and V. hirsuta 
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(Figs 4.11, 4.18 and 4.22) but not in determinate nodules formed on P. vulgaris (Fig 

4.24). Similarly, S. meliloti strains carrying mutations in sitA were reduced in their 

ability to fix N2 in indeterminate nodules formed on M. sativa (Chao et al., 2004; 

Davies and Walker, 2007b) whereas MntH was not required by B. japonicum to form 

N2-fixing bacteroids in determinate nodules formed on G. max, despite MntH being 

essential for growth in low concentrations of MnCl2 (Hohle and O'Brian, 2009). 

Possible explanations for these differences include variability in the bioavailability 

of Mn
2+

, varying levels of ROS or alternatively, the presence of NCR peptides in 

indeterminate nodules formed on galegoid legumes (e.g. P. sativum, V. faba, V. 

hirsuta and M. sativa) but absence in determinate nodules on phaseoloid legumes 

(e.g. P. vulgaris, G. max). This leaves a number of hypotheses that need to be tested. 

 

The small quantity of Mn
2+

 in cells means that AAS should not be used to quantify 

Mn
2+

 and so alternative methodologies would have to be employed to determine if 

more Mn
2+ 

is present in determinate relative to indeterminate nodules (discussed 

later). ROS could be visualised using Nitroblue tetrazolium (Santos et al., 2001), 

cerium chloride (Rubio et al., 2004) or ROS-sensitive fluorescent dyes (Cardenas et 

al., 2008) but determining whether there is a significant difference in the level of 

ROS in contact with bacteria infecting indeterminate nodules relative to determinate 

nodules would be difficult. Investigating the requirement of Mn
2+

 transporters in the 

presence of NCR peptides, may include testing whether a higher a concentration of 

Mn
2+

 is required to rescue growth of LMB466 (sitA:pK19mob mntHΩSpc) when 

NCR peptides are added to the medium or alternatively, testing cell viability of Mn
2+

 

starved cells in response to NCR peptides. In addition, the dye hydroxyphenyl 

fluorescein (HPF) (Setsukinai et al., 2003) could be used to test whether the presence 

of NCR peptides stimulates HO
. 
generation in bacteria (Kohanski et al., 2007). 

 

Mn
2+ 

transport should be investigated in M. loti. Firstly, because the requirement of 

Mn
2+

 could be tested on another plant-host, L. japonicus (a robinioid legume that 

does not synthesis NCR peptides), and secondly, there are transgenic lines of L. 

japonicus available that can synthesise NCR035 peptide (Van de Velde et al., 2010). 

Thus, if a M. loti mutant lacking high-affinity Mn
2+

 transporters is Fix
+
 on L. 

japonicus but Fix
- 

on the NCR035-synthesising transgenic line, it would provide 

strong evidence for the NCR peptide-dependent requirement of Mn
2+ 

transporters. 
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9.3 Mg
2+ 

TRANSPORT 

 

The discovery of a host-dependent requirement for Mn
2+

 transporters prompted 

characterisation of a putative Mg
2+

 channel, MgtE, known to be required for 

effective symbiosis on P. sativum (Karunakaran et al., 2009). MgtE was confirmed 

as a Mg
2+ 

importer by its ability to
 
complement an E. coli triple knock-out strain that 

could not grow on LB unless supplemented with a high concentration of MgSO4 (Fig 

5.2). Further characterisation of MgtE in free-living cells should include transport 

assays. Commercial availability of 
28

Mg
2+

 is poor so kinetic studies will likely 

involve the use of cell-permeable fluorescent probes that can bind free Mg
2+

 ions e.g. 

Mag-fura (Life technologies) (London, 1991; Froschauer et al., 2004). 

 

As with the sitA:pK19mob mntHΩSpc double mutant defective for Mn
2+ 

transport, 

the requirement of MgtE also depended upon the plant-host because RU4107 

(mgtE::mTn5) was symbiotically defective on P. sativum and V. hirsuta (Figs 5.5 

and 5.10) but not on V. faba (Fig 5.12). The quantification of Mg in the plant cytosol 

of P. sativum and V. faba nodules by AAS did not explain this difference in MgtE-

requirement because P. satium nodules contained higher levels of Mg
 
relative to V. 

faba nodules (Fig 5.15B). Analysis of nodule sections using synchrotron-based X-

ray fluorescence (S-XRF) might prove to be more informative because this technique 

can spatially define the location of metals at a subcellular resolution (Rodriguez-

Haas et al., 2013). For example, even though there is more total Mg in P. sativum 

nodules, S-XFR might reveal that there is more Mg allocated to the N2 fixation zone 

in V. faba nodules. S-XFR might also determine if there is more Mn in G. max and 

P. vulgaris nodules relative to P. sativum etc., as is it can detect metals at 

submicromolar concentrations (Rodriguez-Haas et al., 2013). 

 

Although the experiment needs to be repeated in an appropriately buffered-medium, 

the requirement of MgtE appeared to be dependent on pH (Fig 5.4) so the acidity of 

P. sativum, V. hirsuta and V. faba nodules should be investigated. This could be 

achieved by the use of cell-permeable fluorescent probes that can accurately measure 

pH i.e. DND-160 (Pierre et al., 2013). This might reveal that the symbiotic space 
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enclosing bacteroids in P. sativum and V. hirsuta nodules is more acidic relative to 

V. faba nodules. 

 

It is possible that a plant-encoded Mg
2+ 

transporter located on the symbiosome 

membrane, present in V. faba but not in P. sativum nodules, causes the difference in 

MgtE-requirement. If variation in the symbiotic-phenotype of RU4107 

(mgtE::mTn5) existed between the parents of an available recombinant inbreed line 

(RIL) population of P. sativum, V. hirsuta or V. faba, the RILs could be used to map 

the relevant plant genes e.g. a plant gene that encodes an Mg
2+ 

transporter. 

 

It is also important to determine whether the requirement of MgtE on certain 

legumes is dependent on its ability to transport Mg
2+ 

or on another property of MgtE 

e.g. possible redox function of the CBS domains (Yoo et al., 2011). Firstly, this will 

require making specific point mutations in mgtE that would render MgtE incapable 

of transporting Mg
2+ 

(determined by complementation of the E. coli triple knock-out 

strain), as was done for mgtE in P. aeruginosa (Anderson et al., 2008). The ability of 

these MgtE-variants to complement the symbiotic defect of RU4107 (mgtE::mTn5) 

could then be tested. If MgtE-variants incapable of Mg
2+

 transport are able to 

complement the symbiotic defect of RU4107 (mgtE::mTn5) it would imply that the 

requirement of MgtE is independent of its ability to transport Mg
2+

. Comparing the 

transcriptome of RU4107 (mgtE::mTn5) bacteroids with Rlv3841 bacteroids may 

also shed light on the role of MgtE e.g. are there upregulated-genes encoding other 

Mg
2+ 

transporters or proteins involved in defence against ROS in the mutant 

bacteroids? 

 

9.4 REGULATION OF fix GENES 

 

The genes encoding for O2-responsive regulators FnrN and FixL were upregulated 

during bacteroid development in addition to a gene encoding a FixL-homologue 

(FixLc). FnrN appears to be the major O2-responsive regulator required for N2 

fixation but all three regulators need to be mutated to cause a Fix
-
 phenotype (Fig 

6.8). 
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Comparing the number of O2-responsive regulators in Rlv3841 to S. meliloti, A. 

caulinodans and B. japonicum raises the question: why does R. leguminosarum have 

three O2-responsive regulators? It is possible that, even though there is going to be 

some cross over between the regulatory pathways that they activate, some pathways 

may be unique to each regulator. Furthermore, the pathways activated by these 

regulators may not just regulate fix and nif genes, but might also regulate other 

processes required for bacteroid development in response to low O2. Future work 

therefore should include chromatin immunoprecipitation experiments followed by 

sequencing (ChIP-seq) (Johnson et al., 2007; Mikkelsen et al., 2007; Furey, 2012) to 

first determine the regulon of FnrN but then to determine the regulons of the other 

five CRP/FNR-type regulators and FxkR. This sort of global analysis will shed light 

on the regulatory pathways required for a free-living cell to develop into a N2 fixing 

bacteroid. 

 

9.5 IetAS 

 

A putative AAA+ protease, provisionally annotated as IetAS, was found to have 

homology to a plasmid-encoded toxin-antitoxin system in A. tumefaciens 

(Yamamoto et al., 2009). Insertion of a mTn5 at ietA (Karunakaran et al., 2009) 

severely reduced the rate of acetylene reduction on P. sativum (Fig 8.3). It is 

speculated that the ietA::mTn5 mutation is non-polar and therefore only reduces the 

expression of the toxin-encoding ietS. Consequently, the toxic IetS would 

accumulate in non-dividing bacteroids in the absence of its cognate antitoxin. 

Initially, further investigation should use qRT-PCR to confirm expression of ietS in 

RU4067 (ietA::mTn5). Secondly, yeast two-hybrid or bacterial two-hybrid could be 

used to determine whether IetA interacts with itself and IetS, as has been done with 

other AAA+ proteases (Lee et al., 2003; Lien et al., 2009).  

 

Further work will determine whether the IetAS system confers maintenance of the 

Sym plasmid (pRL10), which could be achieved by following the protocols used by 

Yamamoto et al. (2009) to study the comparable toxin-antitoxin system in A. 

tumefaciens. The potential role of IetAS in response to stress (Fig 8.16) should also 

be investigated, initially by testing the sensitivity of the AAA+ protease mutants to 
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heat stress, oxidative stress, osmotic stress and NCR peptides. The same should be 

done for the second putative toxin-antitoxin encoded on pRL8 (pRL80012-13). 

 

An in-depth analysis of the IetAS system will need to investigate how IetS causes 

toxicity. This might involve defining the substrates of IetAS. One method to identify 

substrates for AAA+ proteases involves engineering a proteolytically inactive 

protease to be used a ‘trap’ (Feng et al., 2013; Graham et al., 2013). IetS
trap 

proteins 

would retain but not degrade substrates translocated to its degradation chamber. 

Substrates captured by His-tagged IetS
trap

 would be co-purified and then identified 

by mass spectroscopy. This method should also confirm that IetS binds to IetA and 

possibly identify alternative AAA+ protein-binding partners. 

 

9.6 CONCLUDING REMARKS 

 

During bacteroid development, cellular functions of rhizobia change profoundly in 

response to oxidative stress, low O2, antimicrobial secondary metabolites, low pH 

and antimicrobial peptides. The environment provided by a nodule can vary and 

consequently, a rhizobium’s requirement of certain genes during bacteroid 

development will depend on the species of the host-legume. This has been illustrated 

in this thesis by the host-dependent requirement of Mn
2+

 transporters and a Mg
2+ 

channel. In other rhizobia, reports of host-dependent requirements include an efflux 

system (Lindemann et al., 2010), phosphoenolpyruvate carboxykinase (Osteras et al., 

1991), an uncharacterised ABC-type transport system (Koch et al., 2010), NAD
+
-

malic enzyme (Zhang et al., 2012), regulation of nif and fix genes (Miller et al., 

2007) and BacA (Karunakaran et al., 2010). There is likely to be many more genes 

that have a host-dependent requirement yet to be discovered. So far, the study of 

host-dependent requirements has only identified obvious symbiotic defects e.g. poor 

nodulation and N2 fixation. Further research into this area therefore, should also 

consider competition i.e. does the ability of a rhizobial strain to compete with other 

strains during nodule-colonisation also depend on the host. Investigating host-

dependent requirements would lead to the development of better rhizobial inoculants 

that are both competitively and symbiotically effective on a wider range of legumes. 
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