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”We are at the very beginning of time for the human race. It is not unreason-

able that we grapple with problems. But there are tens of thousands of years

in the future. Our responsibility is to do what we can, learn what we can,

improve the solutions, and pass them on.” (Richard P. Feynman)



Abstract

In this thesis a newly developed 2–step neural network approach is used to reconstruct

basin–wide monthly maps of the sea surface partial pressure of CO2 (pCO2) at a resolution

of 1◦×1◦ for both the Atlantic Ocean from 1998 through 2007 and the global ocean from

1998 through 2011. From those, air–sea CO2 flux maps are computed using a standard

gas exchange parameterization and high–resolution wind speeds.

Observations form the basis of the studies conducted in this thesis. The neural net-

work estimates benefit from a continuous improvement of the observations, i.e., the Sur-

face Ocean CO2 Atlas (SOCAT) database. Additionally, bottle samples were collected

along the UK–Caribbean line to investigate the variability of the sea surface pCO2 and its

drivers.

The neural network derived pCO2 estimates fit the observed pCO2 data with a root

mean square error (RMSE) of about 10 µatm in the Atlantic Ocean from 1998 through

2007 and about 12 µatm in the global ocean from 1998 through 2011, with almost no

bias in both studies. A check against independent pCO2 data reveals a larger RMSE, in

particular in regions with strong pCO2 variability and gradients.

Temporal mean contemporary flux estimates for the Atlantic Ocean (–0.45±0.15 Pg

C · yr−1) and the global ocean (–1.54±0.65 Pg C · yr−1) agree well with recent studies.

Trends and variabilities within the considered time periods are strongly influenced by

climate modes. The global results from 1998 through 2011 reveal the strongest variability

of the air–sea CO2 fluxes in the Equatorial Pacific (±0.12 Pg C · yr−1, ±1σ), mainly

driven by the El Niño Southern Oscillation (ENSO) climate mode. Trends towards a

strengthening of the Southern Ocean carbon sink (–0.36±0.07 Pg C · yr−1 · decade−1)

from 1998 through 2011 are potentially linked to the recent weakening of the Southern

Annular Mode (SAM) index.
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Chapter 1

Context and background

”It is not knowledge, but the act of learning,

not possession but the act of getting there,

which grants the greatest enjoyment.”

(Carl Friedrich Gauss)



The aim of this thesis is to investigate the variability of the sea surface partial pressure

of CO2 (pCO2) and the air–sea exchange of this gas, based on observations. This chapter

provides an introduction on the relevance of this topic, what is already known and where

the research of this thesis fits into the bigger context. It will provide an overview to

the Earth’s climate system and anthropogenic alterations of the natural greenhouse gas

effect and the role of the global ocean within the climate system. Roughly 50% of human

emitted carbon remains in the atmosphere with the global ocean to–date being a sink

for carbon dioxide (CO2). The processes that control the sea surface pCO2, the air–sea

exchange of CO2, as well as recently derived CO2 sink estimates of the Atlantic Ocean

and the global ocean will further be reviewed.

1.1 The Earth’s climate system and its natural variability

The Earth’s climate is a complex coupled system, which it is not simply driven by the

interaction of its components, but also by external forcings. It receives its energy input

from the sun, with a total amount of roughly 1370 W · m−2 (Kiehl and Trenberth, 1997).

Most of this incoming radiation is reflected back to space, e.g. by aerosol particles and

the natural albedo effect, and never reaches the Earth’s surface. In theory, Earth can be

considered a black body, hence it acts as an ideal emitter of the incoming radiation and its

absorbed energy equals the emitted radiation:

Eabs = Eem (1.1)

Therefore, the emitted energy must equal the energy received from the sun according to

the Stefan–Boltzmann law:

4 · π · RS
2 · σ · TS

4 · π · RE
2

4 · π ·D2
· (1− α) = 4 · π · RE

2 · σ · TE
4 (1.2)

The left hand side of the equation describes the emitted black body radiation by the sun,

calculated via the radius (RS) and the surface temperature (TS) of the sun multiplied by

the the amount of energy received by the Earth surface, calculated from the Earth radius



1.1 The Earth’s climate system and its natural variability 3

(RE) and the distance to the sun (D). The variable σ describes the Stefan–Boltzman

constant and α describes the amount of energy reflected due to the albedo effect. The

right hand side describes the black body energy emitted by Earth, as a function of the

radius (RE) and the surface temperature (TE). Solving this equation for the temperature

of the Earth leads to:

TE = TS ·

√
RS ·
√

1− α
2 ·D

(1.3)

On average, the calculated surface temperature of the Earth (TE) is about –19◦C, hence

much lower than the actual observed temperature of the Earth surface. This temperature

difference is linked to an important natural process. The emitted radiation by the planet

is long wave radiation which gets absorbed by infra–red absorbing gases (Tyndall, 1861),

such as carbon dioxide (CO2), nitrous oxide (N2O), ozone (O3), water vapour (H2O) and

methane (CH4). This effect, called greenhouse effect, alters the emitted Energy (Eem) and

thereby the temperature of the lower atmosphere keeping it ∼ 30◦C warmer on average

than without a greenhouse effect (Kiehl and Trenberth, 1997).

Atmospheric temperature is only one measure of the state of the climate system. Long

term averages (usually over a period of 30 years) of wind, precipitation, humidity and

other meteorological parameters are commonly used to define the climate of a certain re-

gion (Thornthwaite, 1948; Kottek et al., 2006; Le Treut et al., 2007). However, regional

climates are only the result of the state of the global climate system. The global cli-

mate system consists of components or spheres, namely the atmosphere, the hydrosphere,

the cryosphere, the lithosphere and the biosphere, which are interacting with each other.

These interactions are illustrated in figure 1.1 from Le Treut et al. (2007) and include nat-

ural as well as anthropogenic processes linked to positive and negative climate feedbacks,

such as the exchange of heat between the atmosphere and the hydrosphere, the exchange

of gases between the atmosphere and the biosphere or the exchange of water between the

atmosphere and the cryosphere.

Internal and inter–connected processes within the spheres as well as external forcing

cycles that effect the incoming solar radiation of the sun (see figure 1.1) lead to natural

climate variabilities. These variabilities range from timescales of millions of years like
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Figure 1.1: Schematic view of the components of the climate system, their processes and interac-
tions from Le Treut et al. (2007).

e.g. the movement of the continents driven by the Earth’s plate tectonics (Wegener, 1966),

tens to hundreds of thousands of years, like e.g. the Milankovich cycles (Milankovitch,

1920, 1930) effecting the incoming solar radiation, i.e. altering the amount of energy

received from the sun, to only a few years like e.g. major volcanic eruptions (Robock,

2000) which increase the amount of back–scatter particles in the atmosphere. Climate

records, such as ice and sediment cores, reveal strong natural variabilities of the global

climate in the past, which help to gain insight into the natural processes involved.

1.1.1 CO2 and the anthropogenic alteration of the climate system

Past records show a variety of natural climate variabilities from ice–ages to warmer peri-

ods, but since the beginning of the industrial revolution, the Earth’s climate faces a series

of new humankind induced changes. Fossil fuel burning, land use change and cement pro-

duction led to increasing concentrations of greenhouse gases in the atmosphere, altering

the surface temperature of planet Earth. Ice–core records show that since the industrial

revolution the increasing CO2 concentrations continue to rise (Etheridge et al., 1996),

exceeding levels from the past 800,000 years (Lüthi et al., 2008).
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Figure 1.2: Summary of the principal components of the radiative forcing of climate change from
Myhre et al. (2013). Forcing estimates are derived from observed abundance, model simulations in
combination with observations, or purely model based (see Myhre et al. (2013)). Solid bars illus-
trate novel effective rediative forcing estimates, whereas hatched bars illustrate radiative forcing
estimates as they were presented previously in IPCC reports (Myhre et al., 2013). Uncertainties
are illustrated by the whiskers of each bar.

Figure 1.2 from the fifth assessment report (Myhre et al., 2013) of the Intergovern-

mental Panel on Climate Change (IPCC) quantifies the increase in radiative forcing (the

imbalance between received radiation from the sun and emitted radiation from planet

Earth) since the start of the industrial revolution in 1750 up to 2011, linked to human

activities. It clearly shows the strongest contribution from greenhouse gases, especially

CO2. It further illustrates the relatively small effect of natural processes compared to hu-

man activities in observed changes in radiative forcing. Overall the estimated increase in

anthropogenic-induced radiative forcing is estimated to be ∼ 2.3 W · m−2 (Myhre et al.,

2013), altering the imbalance between absorbed and emitted energy (equation 1.1).

The global marine and terrestrial surface temperature record HadCRUT4, as presented

in Morice et al. (2012) from 1850 through 2012, reveals that surface temperatures are

increasing on our planet. Morice et al. (2012) find the warmest temperatures in the 21st

century, with 2010 being the warmest year since the beginning of the record.

Since the beginning of the industrial revolution, humankind has continuously altered

the climate system. Future projections, as summarized in Table SPM.1 in Stocker et al.
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(2013), show that most land areas are virtually certain to experience more frequent hot

days by the end of the 21st century, driven by the increase in radiative forcing caused by

the emission of greenhouse gases. These projections further suggest very likely increased

incidence and/or magnitude of extreme high sea level.

1.1.2 Interaction between the spheres: The global carbon budget

Processes associated with the ocean and land carbon reservoirs and their exchange are

known to substantially reduce the amount of CO2 in the atmosphere. While carbon diox-

ide measurements are highly precise in the atmosphere, air–sea and especially air–land

flux estimates do not yet have the same accuracy, due to temporal and spatial hetero-

geneity, and therefore provide large uncertainties in estimating the different pathways of

emitted carbon (Le Quéré et al., 2009).

In order to improve the projections of climate change in the future, it is essential to

understand and quantify the amount of carbon removed from the atmosphere by the ocean

and terrestrial systems. For example, the Global Carbon Project (http://www.globalcarbonproject.org/),

established in 2001, aims to quantify the different pathways of CO2. Emitted carbon re-

mains in the atmosphere or is redistributed from the atmosphere to the land or ocean.

Recent carbon budgets as presented in Le Quéré et al. (2013) and Sarmiento et al. (2010),

consider these four major terms to close the budget following:

Emff+luc = Fland + Focean +
dGatm

dt
(1.4)

where the variable Em describes sources of CO2 emission, dGatm/dt is the atmospheric

accumulation rate of CO2 and Fland and Focean are land and ocean sinks, respectively.

While Le Quéré et al. (2013) consider fossil fuel combustion (Emff ) and land use change

(Emluc) for their emission term, Sarmiento et al. (2010) use fossil fuel emissions only.

While fossil fuel emissions are fairly well known, e.g from energy statistics (Marland

et al. (2005); http://cdiac.ornl.gov/trends/emis/meth reg.html), and the atmospheric accu-

mulation rate (dGatm/dt) is very accurately measured in the atmosphere (Ballantyne et al.

(2012); Ed Dlugokencky and Pieter Tans, NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends/),

the ocean flux term (Focean) in the budget to date is mainly based on model outputs
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(Sarmiento et al., 2010) or a combination of observations with trends and variabilities

from ocean models (Le Quéré et al., 2013). The last term in the budget, the global land

flux (Fland), can be calculated as the residual between the emission and the other sink

terms, hence the Sarmiento et al. (2010) sink term includes the net land sink (change in

land use change are considered in this term, to avoid introducing additional uncertainties),

whereas Le Quéré et al. (2013) report the residual land sink.

Budget estimates suggest that less than 50% of the emitted carbon remains in the

atmosphere, e.g. Le Quéré et al. (2009) estimate 43% for the time period 1959 to 2008

and Le Quéré et al. (2013) estimate 46% for the time period 2002 to 2011. These budget

estimates suggest that the remainder of the emitted carbon is being fairly equally spread

between the land and ocean. However, all these budgets analyse various time periods and

consist of different estimates, e.g. other models are used to estimate the net ocean flux.

1.2 Ocean–atmosphere interaction

1.2.1 Air–sea gas flux measurements and methods

There are several ways to quantify the air–sea gas flux of CO2, including direct flux mea-

surements and air–sea flux parametrisations. One way to measure the air–sea flux of CO2

is by using eddy correlation techniques (Jones and Smith, 1977). This technique cor-

relates CO2 fluctuations with turbulent vertical velocity fluctuations in the atmospheric

surface layer (McGillis et al., 2001), hence the flux measurements can be used to quantify

the CO2 flux over a wide range of wind speed and other environmental parameter (Jones

and Smith, 1977; McGillis et al., 2001). Eddy correlation measurements are highly pre-

cise and can be used to investigate fluctuations in the CO2 flux within hour timescales

(McGillis et al., 2001). However, these measurements are point measurements and are

therefore not suitable to quantify the global ocean carbon sink over longer time periods.

The air–sea gas flux has been further estimated using ocean interior data and an ocean

inversion approach (see e.g. Gloor et al., 2003). This approach is based on the definition

of a tracer (C∗) which has no sources or sinks in the interior ocean and is represented by

the sum of pre–industrial air–sea gas exchange of CO2 and the anthropogenic invasion

of CO2 (Gruber et al., 1996). The tracer is redistributed in the ocean by transport and
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mixing, hence if these transport processes are inversed, gas fluxes can be implied from this

method (Gloor et al., 2003; Gruber et al., 2009). The advantage of this method is, that it

does not need a gas exchange formulation between atmosphere and ocean and it provides

estimates for both the pre–industrial and the recent exchange of CO2. The disadvantage

of this method is that its quality relies on interior carbonate system quantities with large

uncertainties attached. Furthermore, inter–annual to decadal variabilities of the upper

ocean carbon cycle may be reflected differently in the inversion fluxes.

At last, the air–sea flux of carbon dioxide can be estimated via a simple bulk for-

mulation, which describes the air–sea flux of CO2 as a function of the partial pressure

difference of pCO2 (∆pCO2) between the atmosphere and the ocean and a kinetic term,

describing the wind influence on the gas exchange (see section 1.2.2). The advantage of

this method is that the mole fraction of CO2 can be measured at sea (see chapter 3 for

more detail) and in the atmosphere with low uncertainties attached. The disadvantage of

the ∆pCO2 method is that it strongly depends on the formulation of a wind-driven kinetic

term. Furthermore, large areas of the global ocean remain poorly sampled, leading to the

necessity of data interpolation methods in order to estimate the air–sea gas flux on a global

scale from observations (e.g. Takahashi et al., 2009; Sasse et al., 2013; Rödenbeck et al.,

2013). Within this thesis, the ∆pCO2 method will be applied to estimate the air–sea gas

flux of the Atlantic Ocean (chapter 4) and the global ocean (chapter 5), hence it will be

discussed in more detail in the following section.

Other regional and global flux estimates stem from atmospheric inversions (see e.g.

Gurney et al., 2008), which use atmospheric transport models and CO2 data measured in

the atmosphere to asses the sources and sinks of the contemporary air-sea and air-land gas

flux. While the faster atmospheric transport and mixing compared to the ocean circulation

leads to coarse output resolution in space, atmospheric inversion estimates have a high

temporal resolution in comparison to ocean inversions (Wanninkhof et al., 2013b).

Ocean general circulation models (e.g. Le Quéré et al., 2007; Doney et al., 2009;

Graven et al., 2012) also use the bulk formulation approach to quantify the air-sea CO2

gas exchange, however the sea surface pCO2 is computed from the state variables of the

carbonate system for each timestep, using the information from the previous timestep,

hence the resulting air-sea flux is less dependent on the gas transfer formulation than in
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observation–based estimates (Wanninkhof et al., 2013b). Ocean general circulation mod-

els provide estimates of the anthropogenic flux, as their pre-industrial ocean is saturated.

They are, however, not constrained by observations, hence the sea surface pCO2 is a

process based estimate and therefore relies on the quantification of all carbonate system

processes.

1.2.2 Bulk formulation of the air–sea gas exchange

The expression for the gas flux can be derived by applying a simple model where the

transport of mass through the interface is controlled by turbulence and molecular diffusion

(Jähne et al., 1987).

Air–sea gas exchange is driven by a concentration difference of a gas to its equilibrium

concentration ([CO2,eq]). According to Henry’s Law the equilibrium concentration in a

liquid equals the solubility of a gas times the partial pressure of the gas above the liquid

with witch it is in thermodynamic equilibrium, hence:

[CO2,eq] = K0 · pCO2 (1.5)

where K0 describes the solubility of CO2. Following Weiss (1974) the solubility of CO2

is derived from:

ln(K0) = A1 + A2 · (100/T) + A3 · ln(T/100) (1.6)

+s · [B1 + B2 · (T/100) + B3 · (T/100)2]

where T denotes the absolute temperature of the ocean surface water, s the salinity and

A1−3 and B1−3 are empirically derived constants and can be obtained from Weiss (1974).

The air–sea flux is directly proportional to the partial pressure difference of CO2 or the

concentration difference between the oceanic concentration and the equilibrium concen-

tration (Sarmiento and Gruber, 2006):
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∆pCO2 = pCO2,atm − pCO2,w (1.7)

∆[CO2] = [CO2,atm]− [CO2,w] (1.8)

Hence the ocean is either saturated or it acts as a source or a sink of CO2. In a simple

2–layer model (Broecker and Peng, 1974; Sarmiento and Gruber, 2006), where ocean and

atmosphere are expressed as 2 molecular layers, gas transport through each of these layers

is driven by diffusion and can be expressed by Fick’s first law:

FCO2 = −ε · ∂[CO2]

∂z
(1.9)

In this simple model only the vertical component z is taken into account and the flux

through the layers can further be represented by finite differences (Sarmiento and Gruber,

2006):

FCO2 = −ε · ∆[CO2]

∆z
(1.10)

The diffusion coefficient ε can be expressed as a function of the film layer thickness ∆z

and a kinetic term called the gas transfer velocity k:

ε = k ·∆z (1.11)

Liss and Slater (1974) proposed that the gas transfer velocity of CO2 is orders of magni-

tude larger in the atmosphere, hence for the transport of mass through the interface, only

the water sided velocity (kw) need to be accounted for. By further assuming that there are

no sink and source terms at the interface, the flux of CO2 can be expressed via:
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FCO2 = −kw · ([CO2,atm]− [CO2,w]) (1.12)

or in terms of partial pressure:

FCO2 = −kw ·K0 · (pCO2,atm − pCO2,w) (1.13)

Equation 1.13 is the most commonly used bulk–formulations for the calculation of the

air–sea CO2 flux. While the partial pressure difference term in equation 1.13 describes

the direction and the driver of the flux, the air–sea gas flux magnitude strongly depends

on the kinetic gas transfer velocity kw, which varies as a function of the wind speed and

the sea surface temperature.

1.2.3 Gas exchange rate and transfer velocity

Gas exchange is influenced by breaking waves, bubbles, temperature and humidity gra-

dients, which are linked to wind speed (Woolf, 1997), hence the formulation of the gas

transfer velocity strongly depends on the wind speed, which links these dependencies to

the air–sea gas flux (e.g. Nightingale et al., 2000).

Although there was an improvement of field measurement techniques and laboratory

studies, like wind tunnel studies, in the last decades, there is still an uncertainty concerning

the transfer velocity. Jähne et al. (1987) first proposed the following relationship for the

transfer velocity:

kw = κ−1 · Sc−n · u∗ (1.14)

The first term κ describes a dimensionless constant. It is the so-called transfer resistance

factor (Jähne et al., 1987). Of particular importance for the transfer velocity are the second

term, the Schmidt number (Sc) and its exponent (n), as well as the third term, the friction

velocity (u∗).

The Schmidt number is given following Jähne et al. (1987) as:
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Sc =
ν

ε
(1.15)

where ν is the kinematic viscosity of water and ε is the molecular diffusivity of the gas.

The kinematic viscosity influences the thickness of the layer, where the gas exchange

takes place. The Schmidt number depends on the salinity and the temperature of the

seawater. For temperatures between 0 and 30◦C, freshwater (salinity of 0) and seawater

(salinity of 35), the Schmidt number can be calculated using the empirical relationship

and empirically derived coefficients for CO2 from Wanninkhof (1992) and Keeling et al.

(1998):

Sc = A− B · T + C · T2 −D · T3 (1.16)

For the Schmidt number exponent n (see equation 1.14), different values are taken de-

pending on the model, which is used to determine the gas transfer velocity. Experimen-

tally, the number of the exponent is determined from multi tracer measurements (Jähne

et al., 1987).

During the last decades more and more gas transfer velocity models were developed

using the latest measurement techniques and wind tunnel studies. All models commonly

use the wind speed at a height of 10 meters above sea level rather than the friction velocity,

as the former can be directly measured. The wind speed dependency in transfer velocity

models ranges from linear (e.g. Liss and Merlivat, 1986) over quadratic (e.g. Wanninkhof,

1992) to cubic (e.g. Wanninkhof and McGillis, 1999), and combinations of linear and

quadratic (e.g. Nightingale et al., 2000).

1.3 Sea surface partial pressure of CO2

The previous section illustrated how the flux of CO2 between the atmosphere and the

ocean depends on the gas transfer velocity and the pCO2 difference (∆pCO2). While

atmospheric mixing ratios are fairly homogeneous in space, the sea surface pCO2 shows

more regional variability (Takahashi et al., 2002), hence the ∆pCO2 is largely driven by
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Figure 1.3: Climatological mean ∆pCO2 (ocean minus atmosphere in µatm) distribution from
(a) the study of Keeling (1968) (colors added by N. Gruber) and (b) the climatology of Takahashi
et al. (2009). Positive or red areas indicate supersaturation of CO2 in the ocean, negative or blue
areas indicate undersaturation.

the sea surface pCO2.

Over the past decades, several studies have been conducted to investigate the distri-

bution of the sea surface pCO2 and the ∆pCO2 using available shipboard observations.

Figure 1.3 illustrates one of the oldest ((a) Keeling, 1968) and a recent ((b) Takahashi

et al., 2009) global ∆pCO2 estimate. While results of Keeling (1968) are derived from

data collected on 14 vessels between 1900 and 1967, the dataset used by Takahashi et al.

(2009) includes ∼ 3 million data points collected on vessels between 1970 through 2007

(Takahashi et al., 2008) and has been normalized to the reference year 2000.

Although ∼ 40 years apart, there is remarkable agreement between these two esti-

mates. Figure 1.3 (a) and (b) illustrate the general pattern of high sea surface partial
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pressures and supersaturation of CO2 in the tropical oceans, lower partial pressure and

undersaturation in the temperate mid latitude oceans, supersaturation in the high latitude

Southern Ocean and the lowest partial pressures with strong undersaturation in the high

latitude North Atlantic.

The sea surface partial pressure of CO2 is strongly influenced by physical, chemical

and biological processes, explaining the pattern illustrated in figure 1.3. In their work,

Takahashi et al. (1993) propose that changes in the surface pCO2 can mainly be described

as a function of the sea surface temperature (T), the dissolved inorganic carbon (DIC),

the total alkalinity (TALK) and the salinity (s) of the seawater. Hence the changes in the

pCO2 can be derived from:

dpCO2 =
∂pCO2

∂T
· dT +

∂pCO2

∂DIC
· dDIC (1.17)

+
∂pCO2

∂TALK
· dTALK +

∂pCO2

∂s
· ds

The relationships between the non–thermal drivers of equation 1.17 and the sea surface

pCO2 is yet not fully quantified. Takahashi et al. (1993) found experimentally, when

DIC, TALK and salinity were kept constant, i.e. by heating a closed parcel of water, the

relationship between pCO2 and temperature is accurately described by:

∂ ln pCO2

∂T
= 4.23% ·◦ C−1 (1.18)

Hence the natural logarithm of the sea surface pCO2 increases by about 4% when temper-

ature increases by 1◦C. This temperature relationship is largely related to the solubility

effect quantified in equation 1.6. Takahashi et al. (1993) note that for surface waters, the

effect of temperature and DIC changes have the largest effect on the sea surface pCO2.

Processes effecting the sea surface pCO2 distribution are further investigated in the fol-

lowing subsections.
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1.3.1 Inorganic carbon cycle

Gaseous CO2 (CO2(gas)) that dissolves in seawater gets hydrated to form aqueous CO2

(CO2(w)). CO2(w) further reacts with water to form carbonic acid (H2CO3), which dis-

sociates in two steps to form bicarbonate (HCO−3 ) and carbonate ions (CO2−
3 ). These

reactions are summarized following Dickson et al. (2007):

CO2(gas) 
 CO2(w) (1.19)

CO2(w) + H2O 
 H2CO3 (1.20)

H2CO3 
 H+ + HCO−3 (1.21)

HCO−3 
 H+ + CO2−
3 (1.22)

The carbonic acid concentration and the concentration of CO2 in seawater can be com-

bined to:

[H2CO∗3] = [CO2(w)] + [H2CO3] (1.23)

(1.24)

And the equilibrium relationships of these reactions are given by:

K0 =
[H2CO∗3]

pCO2
(1.25)

K1 =
[HCO−3 ][H+]

[H2CO∗3]
(1.26)

K2 =
[CO2−

3 ][H+]

[HCO−3 ]
(1.27)

The sum of the products formed by these reactions is the total dissolved inorganic carbon

concentration:

[DIC] = [H2CO∗3] + [HCO−3 ] + [CO2−
3 ] (1.28)
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In order to determine the CO2 system in the ocean, TALK has to be included. TALK of

seawater is a measure of the proton deficit of the solution relative to a zero level and is

defined by Dickson (1981) as:

[TALK] = [HCO−3 ] + 2 · [CO2−
3 ] + [B(OH)−4 ] + [OH−]− [H+] (1.29)

+[HPO2−
4 ] + 2 · [PO3−

4 ] + [SiO(OH)−3 ] + [NH3]

+[HS−]− [HSO−4 ]− [HF]− [H3PO4]

There are however different definitions in the literature, e.g. Peng et al. (1987) and Taka-

hashi et al. (1982).

The sea surface pCO2 can be determined by reactions 1.20 to 1.22 as a function of the

reaction products and their equilibrium constants, as well as approximations of the DIC

and TALK concentrations (see e.g. Sarmiento and Gruber, 2006):

pCO2(w) =
K2

K0 ·K1
· [HCO−3 ]2

[CO2−
3 ]

≈ K2

K0 ·K1
· (2 · [DIC]− [TALK])2

[TALK]− [DIC]
(1.30)

where:

[HCO−3 ] ≈ 2 · [DIC]− [TALK] (1.31)

[CO2−
3 ] ≈ [TALK]− [DIC] (1.32)

Hence, the surface pCO2 is affected by the ratio of the equilibrium constants, the DIC and

the TALK concentration of the seawater. While the solubility of seawater and the other

equilibrium constants are determined by the sea surface temperature and salinity, the DIC

concentration is influenced by the exchange of CO2 with the atmosphere and both DIC

and TALK are influenced by biological processes and mixing.

Equation 1.18 already illustrated the temperature dependence of the sea surface pCO2

when salinity, DIC and TALK are kept constant. Without biological activity, mixing and
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the exchange of gases with the atmosphere, the surface ocean pCO2 would strictly fol-

low this temperature dependence, leading to high partial pressures at the Equator and low

partial pressures towards the poles, following the example of Broecker and Peng (1982).

In contrast, very rapid gas exchange would result in the sea surface pCO2 being in equi-

librium with the atmospheric CO2 whereas the DIC concentration would be at minimum

at the Equator increasing towards the poles due to its temperature dependence. However,

figure 1.3 reveals that the sea surface pCO2 distribution is more complex than explained

by temperature alone and that gas exchange is not sufficiently fast for the surface ocean

pCO2 being in equilibrium with the atmospheric pCO2.

Photosynthesis and remineralisation are the most important biological process con-

sidering the distribution of sea surface carbon dioxide. This process removes CO2 and

nutrients from the surface water to form organic matter and to produce oxygen. Redfield

et al. (1963) proposed a constant stoichiometric ratio between carbon dioxide, nutrients

and oxygen linked to photosynthetic production:

106CO2 + 16NO3 + HPO2−
4 + 122H2O + 18H+ (1.33)


 (CH2O)106(NH3)16(H3PO4) + 138O2

Biological production decreases the sea surface pCO2, the DIC concentration and the

concentration of free protons, increasing the TALK concentration. The global net primary

production by phytoplankton is estimated to remove 45–50 Pg C · yr−1 from the inorganic

sea surface carbon pool (Longhurst et al., 1995) in the form of organic carbon. The

majority of organic matter produced at the ocean eutrophic zone is recycled in the ocean

surface and the remainder is further exported into the deeper layers of the ocean (export

production) by sinking particles (Sarmiento and Gruber, 2006). The contrary process, the

remineralisation of organic matter in the deeper ocean layers, in combination with deep

wintertime mixing and upwelling leads to the re–introduction of DIC, increasing surface

pCO2 concentrations (Sarmiento and Gruber, 2006). Biological production is limited

by the available amount of light and nutrients and therefore shows strong regional and

seasonal variability.
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Figure 1.4: Schematic view of the ocean conveyor circulation and the deep water formation zones
(marked with circles) from Gnanadesikan and Hallber (2002) as illustrated in Sarmiento and Gru-
ber (2006). Dark blue lines and arrows illustrate the pathway of dense or deep water, light blue
lines and arrows illustrate the pathway of intermediate and mode waters and red illustrates the
pathway of light waters. Abbreviations, i.e. NADW (North Atlantic Deep Water), AAIW (Antarc-
tic Intermediate Water) SAMW (Subantarctic Mode Water), AABW (Antarctic Bottom Water),
CDW (Circumpolar Deep Water), IODW (Indian Ocean Deep Water) and NPDW (North Pacific
Deep Water), refer to the relevant water masses.

1.3.2 Ocean circulation and pCO2 distribution

Figure 1.3 illustrates the non–uniform distribution of the ∆pCO2. The dependency of

the sea surface pCO2 on temperature, gas exchange and biology have been discussed in

the previous section. The ocean however is not static, hence there are several features in

figure 1.3 that are influenced by the large scale thermohaline ocean circulation and the

smaller scale wind driven circulation of the ocean surface waters.

The salinity–driven ocean conveyor circulation with its deep water formation zones

affects the distribution of sea surface pCO2. Figure 1.4 from Gnanadesikan and Hallber

(2002) as illustrated in Sarmiento and Gruber (2006) shows the main circulation path-

ways and the main heat exchange areas within the global ocean. Deep water forms in

the high latitude Atlantic Ocean and the Southern Ocean as North Atlantic Deep Water

(NADW) and Antarctic Bottom Water (AABW), respectively. The conveyor circulation

was first proposed by Robinson and Stommel (1959) and has been updated over the years

(Gnanadesikan and Hallber, 2002; Lozier, 2010).

Deep water formation provides a pathway for carbon from the ocean surface into the
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interior ocean. In particular the formation of NADW leads to a strong interior transport of

surface ocean carbon, while the sea surface pCO2 is low due to the cooling of the north-

wards movement of the water mass (see figure 1.3). Large quantities of anthropogenic car-

bon, subducted into the deep ocean, are stored in the high latitude North Atlantic (Sabine

et al., 2004; Khatiwala et al., 2013).

Besides the thermohaline global ocean conveyor circulation, Ekman transport, driven

by the wind stress and the Coriolis force, is one of the major driving factors affecting the

motion of the surface waters and the resulting pCO2 distribution (Sarmiento and Gruber,

2006).

Ekman transport replaces surface water masses with water masses from deeper lay-

ers of the ocean. This results in coastal upwelling and warming of carbon rich water

masses. In the tropical zones of both hemispheres the dominant wind patterns are di-

rected eastwards (Easterlies), resulting in a surface water Ekman transport northwards in

the northern hemisphere and southwards in the southern hemisphere. This leads to a water

mass upwelling at the Equator, which brings water masses, rich in remineralized carbon,

back into the surface layer. The surface transport of carbon enriched water mass in com-

bination with warming results in high pCO2 waters along the Equator, especially seen in

the eastern Equatorial Pacific (see figure 1.3).

The sea surface pCO2 distribution is further influenced by the surface ocean current

system, illustrated in figure 1.5. Warm water masses (originated from the low latitudes)

transport carbon rich waters towards the higher latitudes where water masses start to cool,

increasing the CO2 solubility. In contrast, cool water masses originating from higher

latitudes move towards the low latitudes where they get warmed, thereby reducing the gas

solubility, leading to an increase in the sea surface pCO2.

1.3.3 Sea surface pCO2 measurements

Since the earliest regional estimates of the ∆pCO2 from Wattenberg (1933) in the central

and South Atlantic based on the Meteor expedition from 1925 to 1927, there has been a

strong increase in ocean carbon data over the last century. Projects like the Geochemical

Ocean Sections program (GEOSECS) from 1972 to 1978 and the World Ocean Circu-

lation Experiment (WOCE) in the 1990s helped to better understand the ocean carbon
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Figure 1.5: Schematic of the ocean surface warm and cold water currents as illustrated at
http://oceanmotion.org/html/impact/conveyor.htm. It illustrates the polewards transport of warm
waters and the equatorwards transport of cold waters from higher latitudes, as well as the gyre
circulation in both the North and South Atlantic and Pacific.

system (e.g. Broecker and Peng, 1982) and to develop new quality standards (e.g. Dick-

son et al., 2007) to reduce the uncertainty of the data. Ship–time is expensive, therefore,

within the last decades, there has been an increase in pCO2 measurements on–board Vol-

untary Observing Ships (VOS) (e.g. Cooper et al., 1998; Schuster and Watson, 2007),

which are commercial vessels, participating in the program to obtain a large number of

observations on a repeated ship route.

In order to investigate the temporal variability of the sea surface pCO2 and other

related carbon system parameters in the ocean, several timeseries stations and moor-

ings were launched (see e.g. http://cdiac.ornl.gov/oceans/Moorings/). Three of the old-

est stations include, the Hawaiian Ocean Timeseries (HOT) station (Dore et al., 2009),

the Bermuda Atlantic Timeseries Station (BATS) Hydrostation ”S” (Gruber et al., 2002;

Bates, 2007) and the European Station for Timeseries in the OCean (ESTOC) (González-

Dávila et al., 2007), which were launched in 1988, 1954 and 1995, respectively.

This increasing community measurement effort is reflected in the Lamont–Doherty

Earth Observatory (LDEO) database, which was the first established database gathering

available sea surface pCO2 measurements on a global scale. While in the mid–1990s,

Takahashi et al. (1997) had a total of 250,000 data available for their work, this number

continued to increase to 940,000 in the early 2000’s (Takahashi et al., 2002) up to roughly
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Figure 1.6: Number of fCO2 observations and their distribution per decade within SOCAT v1.5
data base as illustrated in Sabine et al. (2013), for (A)–(D) the global ocean, (E)–(H) the northern
hemisphere and (I)–(L) the southern hemisphere. Blue lines indicate the decadal mean atmo-
spheric CO2 molar fraction in ppm.

3,000,000 towards the end of the last decade (Takahashi et al., 2008, 2009). The current

version includes a total of roughly 6.7 million measurements (Takahashi et al., 2013).

More recently, the community effort led to the creation of the up–to–date largest uni-

fied quality-controlled database: the Surface Ocean Carbon ATlas (SOCAT) (Pfeil et al.,

2013; Bakker et al., 2014). Initiated in 2007 and first published in 2011, the aim of the

database was to provide a publicly available and regularly updated set of surface fCO2

observations (Pfeil et al., 2013), which initially included 6.3 million data points within

the period 1970 through 2007. Updated in 2013 (Bakker et al., 2014), the current version

includes over 10 million data points up to the year 2011.

Figure 1.6 shows the amount of data included in the SOCAT v2 databased as illus-

trated in Sabine et al. (2013) for each decade from 1970 through 2007. It clearly indicates

the increase in surface CO2 observations in time, but further illustrates the unequal dis-

tribution of measurements in space. Within each decade, the majority of measurements

were obtained in the northern hemisphere.
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1.4 Air–sea CO2 flux estimates

1.4.1 Long–term mean air–sea CO2 flux estimates

The previous sections emphasised the role of sea surface pCO2 measurements and the

importance of air–sea gas exchange, regarding the concentration of greenhouse gases in

the atmosphere. A recent estimate by Wanninkhof et al. (2013b) suggests a mean an-

thropogenic CO2 uptake from 1990 to 2010 by the global ocean of –2.0 Pg C· yr−1 for

the last two decades. This estimate is based on the compilation of different approaches

within a recent Regional Carbon Cycle Assessment and Processes (RECCAP) synthesis,

including estimates derived (i) using an empirical update of the Takahashi et al. (2009)

climatology (Park et al., 2010), (ii) from ocean general circulation models that include a

full representation of the oceanic carbon cycle (e.g. Le Quéré et al., 2007; Doney et al.,

2009; Graven et al., 2012), (iii) from inversions of ocean interior carbon measurements

(e.g. Gruber et al., 2009) and (iv) from inversions of atmospheric CO2 (e.g. Gurney et al.,

2008). These methodologically very different methods show a good agreement regard-

ing the 20-year mean flux ranging from –1.9±0.3 Pg C· yr−1 to –2.4±0.3 Pg C· yr−1

(Wanninkhof et al., 2013b).

Recently, more observation–based estimates of the contemporary mean air-sea CO2

flux were derived using the increasing amount of available observations. Takahashi et al.

(2009) estimates a global net flux, referenced to the year 2000, of –1.6±0.9 Pg C· yr−1,

using available surface ocean pCO2 measurements from the LDEO database (Takahashi

et al., 2008) and an advection–based interpolation method. A climatological mean esti-

mate from Sasse et al. (2013), using carbon bottle data within the surface mixed layer in

combination with a combined clustering–regression technique estimates a net flux of –

1.55±0.35 Pg C· yr−1. Both observation–based examples are roughly 0.4–0.5 Pg C· yr−1

lower than suggested by Wanninkhof et al. (2013b).

The difference between the observation–based estimates and the estimates included

in Wanninkhof et al. (2013b) can be linked to riverine–derived carbon. The contemporary

air–sea flux is a combination of a natural and an anthropogenic driven flux component.

The natural air–sea flux of CO2 is estimated to be balanced on global scale (Gruber et al.,

2009), i.e. the pre–industrial ocean was on average neither a sink, nor a source of atmo-

spheric CO2. However, when taking into account riverine-derived carbon (Jacobson et al.,
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2007), the pre–industrial ocean describes a source of CO2 to the atmosphere of 0.45 Pg

C· yr−1.

A special focus within this thesis is on the Atlantic Ocean. Over the last two decades,

the Atlantic Ocean (44◦S to 79◦N and west of 19◦E) has taken up about –0.49±0.11 Pg

C · yr−1 on average (Schuster et al., 2013), with about half of it being driven by the

uptake of anthropogenic CO2, while the other half represents an uptake flux of natural

CO2 (Gruber et al., 2009; Schuster et al., 2013). This makes the Atlantic Ocean one of

the most important sinks per area for atmospheric CO2, and especially for anthropogenic

CO2 (Sabine et al., 2004; Mikaloff Fletcher et al., 2006, 2007; Gruber et al., 2009).

This sink estimate was taken from the Atlantic Ocean RECCAP study by Schuster

et al. (2013) where the authors reviewed different methodologies to estimate the air–sea

CO2 fluxes and provided a ”best” estimate. Furthermore, RECCAP–based estimates exist

for different ocean basins (e.g. Lenton et al., 2013), the global ocean (Wanninkhof et al.,

2013b) as well as for the air–land flux (e.g. Haverd et al., 2013). While the Atlantic Ocean

RECCAP study includes (I) the pCO2 climatology of Takahashi et al. (2009) and the Tier

1 methodologies described in Schuster et al. (2013) which include (II) Ocean Inversions

(Gruber et al., 2009), (III) Atmospheric Inversions (e.g. Peylin et al., 2013), (IV) Ocean

Biogeochemical Models (e.g. Le Quéré et al., 2007; Doney et al., 2009; Graven et al.,

2012), as well as observation–based results including (V) a SOCAT v1.5 based multi

parameter regression (Schuster et al., 2013) and (VI) an estimate based on the pCO2

database of Takahashi et al. (2009) updated by McKinley et al. (2011), the best estimate

is derived from two observation–based sources, namely (I) using ocean surface partial

pressure of CO2 (pCO2) measurements (Takahashi et al., 2009) and (II) from inversions

of ocean interior carbon measurements (e.g. Gruber et al., 2009). These estimates, how-

ever, differ in the way that model and inversion-based estimates report the anthropogenic

carbon flux, i.e. include riverine-derived carbon, whereas observation–based estimates

report the contemporary flux only.
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1.4.2 Variability and trends of the Atlantic Ocean sea surface pCO2 and

air–sea flux

The Atlantic Ocean sink varies substantially by season, which is in part driven by the sea-

sonal variations in surface ocean pCO2 linked to temperature and biological activity, but

also related to circulation (Takahashi et al., 1993, 2002; Schuster et al., 2013). The sink

strength is further affected by seasonal variations in surface ocean winds and atmospheric

CO2. Surface ocean pCO2 varies over a wide range above and below the atmospheric

pCO2, with much of the seasonal amplitude dominated by temperature in the subtropi-

cal regions in both hemispheres (Gruber et al., 2002; Takahashi et al., 2002; Sarmiento

and Gruber, 2006), explaining the summer maximum in surface ocean pCO2. In con-

trast, biological processes acting in synergy with ocean mixing and circulation dominate

the seasonal pCO2 cycle in Equatorial and high latitude regions (poleward of 40◦N and

40◦S) (Takahashi et al., 1993; Bennington et al., 2009), explaining the summer minimum

in oceanic pCO2. Due to their opposite phasing, thermal and non-thermal drivers cancel

each other out along the regime boundaries at around 40◦S and 40◦N (Takahashi et al.,

2002), leading to a minimum in the seasonal amplitude at those latitudes. This is illus-

trated in figure 1.7 for the global ocean. In their study, Schuster et al. (2013) identified

a broad agreement among independent seasonal flux estimates in the temperature-driven

subtropics, but not elsewhere.

Long term trends and inter–annual variability of the Atlantic carbon sink represent a

source of substantial disagreement between different methodologies and studies (Schuster

et al., 2013). Using surface ocean pCO2 observations, Schuster and Watson (2007) argued

for decrease in the North Atlantic carbon sink of ∼0.24 Pg C· yr−1 and a reduction in

the seasonal pCO2 amplitude in both the subtropical and temperate North Atlantic from

the mid–1990s to the mid–2000s. Further support for a decreasing North Atlantic sink

comes from Lefèvre et al. (2004), Lüger et al. (2006), Olsen et al. (2006), and Schuster

et al. (2009b), although each study analysed different regions and periods and also used

different methods to determine trends. Schuster et al. (2009b), for example, analysed

data from 1990 until 2006 in the eastern subpolar gyre and throughout most of the central

North Atlantic, while Olsen et al. (2006) focused on the Nordic Seas, but looked at a more

extended period, i.e., from 1981 until 2002/2003.
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Figure 1.7: Thermal driven minus non–thermal driven seasonal amplitude as illustrated in Taka-
hashi et al. (2002). Positive values indicate where the thermal effects exceed the non–thermal
effects and negative values indicate where non-thermal effects exceed the thermal effects.

Results from the RECCAP study (Schuster et al., 2013) show only limited inter–

annual variability within the Atlantic and Arctic Ocean from 1990 to 2010. The standard

deviations of the inter–annual variability (deseasonalized and detrended estimates from

various methods included in RECCAP) are ranging from ±0.015 Pg C · yr−1 derived

from a multi parameter regression method to ±0.055 Pg C· yr−1 derived from the median

of the ocean inversion studies.

Trends from 1995–2009 reported in the Atlantic Ocean RECCAP study of Schuster

et al. (2013) are derived from the available ocean biogeochemical models, atmospheric

inversion studies and the estimate based on the pCO2 database of Takahashi et al. (2009)

updated by McKinley et al. (2011). These trends were derived from the slope of the linear

fit of the deseasonalized flux data. Atmospheric inversions suggest a small but positive

flux trend, i.e. a trend towards a decreasing carbon sink, for the Atlantic Ocean including

the Arctic Ocean of 17±26 Tg C · yr−1 · decade−1, while model and database trends

indicate a negative flux trend of –34±14 Tg C · yr−1 · decade−1 and –290±7.4 Tg C ·

yr−1 · decade−1, respectively for the same region.

The initial year and period of data analysed for trends are crucial aspects to consider

when answering different questions (Gruber, 2009). McKinley et al. (2011) pointed out
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that when the surface ocean trends in pCO2 are analysed over more than 25 years, all

regions in the North Atlantic exhibit trends that are not statistically different from the

trend in atmospheric CO2, implying no change in the sink/source strength. However,

when the periods of analyses were shortened to 10 years and the beginning and end years

shifted, substantial trends emerged, largely reflecting inter–annual to decadal timescale

variability.

1.4.3 Variability and trends of the global sea surface pCO2 and air–sea flux

Wanninkhof et al. (2013b) investigates the inter–annual variability of the global ocean

carbon flux from 1990 to 2010, based on ocean biogeochemical models, atmospheric in-

versions and an empirical update of the Takahashi et al. (2009) climatology (Park et al.,

2010). These authors found a ”best” estimate of the IAV of ±0.2 Pg C · yr−1 (1σ), which

ranges from±0.16 Pg C · yr−1 (1σ) for the median of the available ocean biogeochemical

models to ±0.40 Pg C · yr−1 (1σ) for the atmospheric inversion model median. Wan-

ninkhof et al. (2013b) further note that inter–annual variabilities from individual models

are larger (∼ ±0.25 Pg C · yr−1), indicating that the inter–annual variability of the differ-

ent models is not coherent in time.

Trends for the period 1990 to 2010 as illustrated in Wanninkhof et al. (2013b) show

strong differences between the different methodologies. The smallest trend signal of the

air–sea CO2 flux of –0.13 Pg C · yr−1 · decade−1 stems from the median of the available

atmospheric inversion models. In contrast the median of the ocean inversion fluxes shows

a substantially larger trend of –0.5 Pg C · yr−1 · decade−1 (Wanninkhof et al., 2013b)

While natural climate–driven variabilities have their largest effect on the natural CO2

fluxes, trends in the contemporary fluxes are mainly driven by the anthropogenic increase

of CO2 in the atmosphere. Fay and McKinley (2013) analysed 30 year global trends

over large scale ocean biomes and concluded that for most regions, trends in the sea

surface pCO2 are parallel or slightly smaller than atmospheric trends implying hardly any

change in the ocean carbon sink/source strength over such a large timescale. However, on

shorter timescales or when changing the start and end year, trends emerge in response to

climate mode signals, similar to the study of McKinley et al. (2011). The effect on trends

compared for different timeperiods is shown in figure 1.8 following the illustration in Fay
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Figure 1.8: Linear trends calculated for 16 biome regions as illustrated Fay and McKinley (2013)
for (a) the 1990 to 2005 period and (b) the 1981–2010 period. Blue biome areas indicate a shal-
lower trend in sea surface pCO2 whereas red biome areas indicate a steeper sea surface pCO2

trend. Pink biome areas indicate where the ocean pCO2 trend is parallel to the atmospheric pCO2

trend

and McKinley (2013).

1.5 Climate variability and CO2 fluxes

Inter–annual variabilities, strongly influenced by climate, are largely affecting the natural

CO2 flux (Le Quéré et al., 2010; Wanninkhof et al., 2013b; Fay and McKinley, 2013).

Previous studies linked strong regional to basin–wide variabilities of the contemporary

air–sea CO2 flux to different climate modes. Three of the most commonly discussed cli-

mate indices are illustrated in figure 1.9, namely the Multivariate ENSO (El Niño South-

ern Oscillation) index (MEI), the North Atlantic Oscillation winter index (NAO) and the
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Figure 1.9: Timesries of (a) the Multivariate ENSO index (MEI) as illustrated in Wolter and
Timlin (2011), (b) the Southern Annular Mode (SAM) index as illustrated in Marshall (2003) and
(c) the North Atlantic Oscillation (NAO) index as illustrated in Osborn (2011) for an extended
time period.

Southern Annular Mode index (SAM). These climate modes and their influence on the

air–sea flux of CO2 are introduced in this section.

ENSO describes the most important coupled ocean–atmosphere phenomenon to cause

global climate variability on inter–annual time scales, and refers to strong periodically
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occurring variations in sea level pressure and sea surface temperatures in the Equatorial

Pacific, which are reflected in the sea surface pCO2 and the exchange of CO2 with the

atmosphere (Feely et al., 2006). ENSO events appear in two phases, namely (i) the El

Niño phase with warm sea surface temperatures and high surface level pressures in the

Equatorial Pacific followed by (ii) La Niña with cold surface water temperatures and low

sea level pressure in the (see e.g. Trenberth et al., 2007).

The MEI (figure 1.9 (a)) is based on six observed climate variables over the Tropical

Pacific, namely (i) pressure, (ii) zonal and (iii) meridional components of the surface

wind, (iv) sea surface temperature, (v) surface air temperature, and (vi) total cloudiness

fraction of the sky (Wolter, 1987). From those,the MEI is further calculated as the first

unrotated Principal Component (PC) of all six observed fields combined (Wolter, 1987).

A study of Feely et al. (2006) in the Equatorial Pacific over a 23 year period from

1981–2004 indicates a strong inter–annual signal of air–sea CO2 flux, driven by the ENSO

climate mode, and an additional seasonal variability in the eastern Equatorial Pacific.

El Niño periods are characterized by a reduction in the trade wind intensity, reducing

the upwelling effect along the Equatorial Pacific (McPhaden et al., 1998). This leads

to a reduction in the amount of re–mineralized carbon reaching the ocean surface layer

while surface temperatures increase. While the effect of ENSO in the Pacific Ocean is

thoroughly discussed in the literature, the global and intra–basin wide contemporary CO2

flux response to ENSO has barely been addressed in the literature.

The SAM is associated with hight and pressure anomalies between mid and high

latitudes in the southern hemisphere, hence it reflects changes in the main westerly wind

belt (Trenberth et al., 2007). Previous studies suggest, that the trend towards a positive

SAM phase in the last decades from ∼ 1965 onwards (see figure 1.9 (b)) has enhanced

westerly winds and shifted them towards the poles, leading to enhanced upwelling of

neatural carbon and a reduction in the Southern Ocean carbon sink (e.g. Le Quéré et al.,

2007). More recently, Fay and McKinley (2013) argue that the response to the recent

weak negative trend (from 1998 onwards in figure 1.9 (c)) in the Southern Annular Mode

(SAM) led to increasing CO2 flux trends in the Southern Ocean.

The NAO is the dominant large–scale climate mode in the Atlantic Ocean (e.g. Hur-

rell, 1995) and impacts sea–surface pCO2 via changes in the driving parameters. During
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positive NAO phases (see figure 1.9 (c)), sea surface temperature shows a tripole pattern

with cold anomalies in the subpolar region and warm anomalies in the mid latitudes and

corresponding changes in vertical mixing and nutrient supply (Marshall et al., 2001).

Using surface ocean pCO2 observations, Schuster and Watson (2007) argued for de-

crease in the North Atlantic carbon sink of ∼0.24 Pg C· yr−1 and a reduction in the

seasonal pCO2 amplitude in both the subtropical and temperate North Atlantic from the

mid–1990s to the mid–2000s. The authors linked this reduction to the large changes that

occurred in the climate mode of the North Atlantic over this period, i.e. a shift of the

North Atlantic Oscillation (NAO) from very positive phases in the early 1990s to nega-

tive and near–zero phases in the mid–2000s (illustrated in figure 1.9 (c)). Corbière et al.

(2007) supported this conclusion on the basis of their observations from the subpolar gyre

over the 1993 to 2003 period, pointing out that the larger than expected increase in the

observed pCO2 is mainly a result of rapid warming.

Based on the results of a global ocean biogeochemistry model, Thomas et al. (2008)

argued that the trend toward a smaller North Atlantic sink identified by Schuster and Wat-

son (2007) is transitory and is expected to rebound in the near future, i.e. that this decrease

is part of a ”natural” fluctuation and should not be interpreted as a signal of anthropogenic

climate change. They interpreted the decline in the sink strength to be the result of a

NAO–driven reduction in the transport of water by the North Atlantic Current into the

eastern subpolar gyre. In a contrasting modeling study, Ullman et al. (2009) argued that

the North Atlantic carbon sink actually increased from the mid–1990s to the mid–2000s.

They proposed that the declining trend in the NAO from the early to mid–1990s until the

mid–2000s led to reduced convective mixing in the subpolar gyre, counteracting the im-

pact of warming. Ullman et al. (2009) argue, that Thomas et al. (2008) do not analyze

changes in vertical mixing, which Ullman et al. (2009) found to dominate the large scale

trends in the subpolar gyre.

1.6 Current limitations on data interpolation methods

A major challenge in detecting trends and variabilities in the global ocean carbon sink

from observations is due to the highly heterogeneous distribution of the surface ocean

pCO2 measurements in time and space, as illustrated in figure 1.10. Different approaches
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Figure 1.10: Number of unique months where fCO2 measurements are available for each gridbox
in SOCAT v1.5, as illustrated in Sabine et al. (2013)

have been employed to overcome this limitation and to create basin wide estimates. These

include the binning of data to 4◦×5◦ bins in latitude and longitude followed by an advection–

based interpolation method (Takahashi et al., 1999, 2003, 2009), binning of data to large–

scale biogeochemical provinces (McKinley et al., 2011), multi–linear regression models

(e.g. Chierici et al., 2009; Peng and Wanninkhof, 2010), neural network–based meth-

ods (e.g. Lefèvre et al., 2005; Friedrich and Oschlies, 2009; Telszewski et al., 2009;

Sasse et al., 2013) and a novel diagnostic model of ocean mixed layer biogeochemistry

(Rödenbeck et al., 2013). Each of these approaches has its strengths and weaknesses.

For example, the binning and interpolation scheme employed by Takahashi et al.

(1999) is well suited for constraining monthly climatologies. However, its coarse resolu-

tion tends to smooth out small–scale features. Nevertheless, the method is not sensitive

to outliers, due to the large scale smoothing. The binning to large–scale biogeochem-

ical provinces works well to determine long–term trends (McKinley et al., 2011), but

its resolution is even more coarse. The multi–linear regression models allow very finely

resolved estimates. However, the explained variance in these statistical models is often

relatively low, causing substantial uncertainties in the estimated fields. More recently,

self–organizing map (SOM) based neural network techniques have been applied to esti-

mate the sea surface pCO2. Lefèvre et al. (2005) and Telszewski et al. (2009) have applied

this technique to cluster available observations based on their relationship towards relevant

input parameters that are known to affect the sea surface pCO2 distribution. These authors
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then used the average pCO2 from each cluster to estimate the sea surface pCO2 where no

observations exist and similar input data relations apply. The disadvantage of this method

however is, that only a discrete set of clustered pCO2 data are available to estimate the sea

surface pCO2 where no observations exists, hence it is favourable to use large amounts of

clusters. However, data sparsity can leads to clusters without corresponding observations,

limiting the extrapolation power of this method. To overcome this limitation Sasse et al.

(2013) applied a 2–step approach, where the authors use a multi–linear regression tech-

nique, rather than the cluster average to obtain a continuous relationship between input

data and pCO2. This approach however, assumes linearity between the sea surface pCO2

and its predictors.

1.7 Aim of the research

In order to investigate the variability of the sea surface pCO2 and the resulting air–sea

carbon flux, a novel neural network based approach that overcomes most of the afore-

mentioned issues which have limited previous studies, is introduced in chapter 2. This

method is capable of capturing a large amount of variability in pCO2 due to the non–linear

predictor–observation relationship on a fine 1◦×1◦ spatial grid. The method determines

the non–linear relationships between the surface ocean pCO2 observations and a set of

independent observations to produce global sea surface maps of pCO2 on a monthly ba-

sis. The network gathers information from similar ocean biogeochemical provinces and

provides regional and global pCO2 estimates.

The newly developed neural network method relies on the assumption that the ocean

carbon sink and its variability can be estimated as a function of proxy variables, which

are subjectively chosen. Furthermore, it relies on ocean carbon measurements in order to

establish a correct relationship. Therefore, the work presented in this thesis benefits from

the recent publication of the SOCAT database, which provides the to–date largest global

data set of surface ocean fugacity of CO2 (similar to the pCO2, but accounting for the

non-ideal behavour of CO2) observations (Pfeil et al., 2013; Sabine et al., 2013; Bakker

et al., 2014). Chapter 3 gives an introduction on the pCO2 measurement techniques used

in the North Atlantic Ocean, similar to those included in SOCAT. Furthermore, bottle

samples collected on–board a VOS ship are used to investigate the variability of the major
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carbonate system parameter, namely DIC, TALK and the sea surface pCO2, along the

UK–Caribbean shipping line.

The neural network method introduced in chapter 2 will be used to investigate the

mean state, as well as the variability of the sea surface pCO2 and the air–sea gas flux of

CO2 in the Atlantic Ocean (chapter 4) and the global ocean (chapter 5). The estimated

sea surface pCO2 will first be validated with independent data from timeseries stations

and moorings, before the results are analysed. The global results in chapter 5 provide an

estimate of the ocean sided pathway of the globally emitted carbon and therefore provide

the basis to close the global carbon budget based on surface ocean CO2 observations.

Finally, the results and findings of this thesis will be discussed in chapter 6.



Chapter 2

Methods

”Borders. I have never seen one.

But I have heard they exist in the

minds of some people.”

(Thor Heyerdahl)
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This chapter will provide an introduction to neural networks, the basic principle of

how they can be used to estimate a certain target value from dependent input data and

how they are used in particular for the studies presented in this thesis. A novel 2–step

approach will be introduced where the global ocean is firstly divided into biogeochemical

provinces, and secondly the input–target relationship is reconstructed for each province

separately. This non–linear relationship is then used to estimate sea surface pCO2 targets

where no direct observations are available.

2.1 Using neural networks to estimate the sea surface pCO2

In order to estimate the sea surface partial pressure and the air–sea gas flux of CO2, two

neural network methods are used to reconstruct the relationship between input variables

and target measurements of the sea surface pCO2 on a monthly 1◦×1◦ resolution. This

novel 2–step approach is used to establish numerical relationships between the sea surface

pCO2 and a suite of input data that are known to drive its variability. In the first stage,

a neural network clustering algorithm (SOM) is used to define a discrete set of biogeo-

chemical provinces that share a common relationship between the independent inputs and

the target pCO2. In the second stage, for each biogeochemical province a non–linear and

continuous relationship is derived between pCO2 and the input parameters on the basis

of a feed–forward network (FFN) method. This input–target relationship is then used to

estimate surface ocean pCO2 for each month and each pixel.

The resulting surface ocean pCO2 distribution is then combined with corresponding

atmospheric pCO2 data and wind–speed based estimates of the gas transfer velocity to

construct the mean and variability of the Atlantic Ocean carbon sink (chapter 4) from

1998 through 2007 using the SOCAT v1.5 dataset (Pfeil et al., 2013; Sabine et al., 2013)

and of the global ocean carbon sink (chapter 5) from 1998 through 2011 using the SOCAT

v2 dataset (Bakker et al., 2014). In both stages, for the Atlantic study and the global

ocean study, global input and target data sets are used, taking advantage of the fact that

biogeochemical provinces with limited coverage in a particular ocean basin can learn from

observations in the same biogeochemical province in another ocean basin.

Prior to the decision of combining the two neural network methods, both of them were

tested separately. The SOM technique, as it was previously applied (e.g. Telszewski et al.,
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2009) and tested here, can only reconstruct a discrete number of estimates, hence in or-

der to capture the range of globally observed pCO2 values, and further be able to capture

small variabilities, over a time-span of ten years or more, a large amount of processing

units (or neurons) is required. This results in three major issues: I) A large number of neu-

rons requires large computational performance, II) data sparsity leads to empty clusters

when large numbers of neurons are applied, hence the method partly loses its extrapola-

tion power and III) The non-uniform distribution of both input variables and observations

require extensive pre-processing of the data, in the form of data normalization, to not bias

the cluster result towards one particular input.

The stand-alone FFN results provide a continuous range of pCO2 estimates and data

normalization is not required, however, yet again, the non-uniform observation distribu-

tion provides a major challenge for this method. The aim of the method is to minimize

the mean squared error between estimates and observations, hence where the majority of

the observations exist in time (e.g. 2005 through 2007) and in space (e.g. the temperate

North Atlantic and North Pacific) the method is able to reproduce the data with virtually

no bias, however data poor regions receive less weight, and the method overfits the tem-

perate regions, but loses the extrapolation power over large data poor areas of the global

ocean. This is reflected in high variance within the estimated fields, which is not in line

with available observations.

The combination of both methods aims to overcome most of this issues, i.e., to pro-

duce a continuous number of estimates within certain pre-defined province. This province

definition assures that data poor regions receive more weight and are not overpowered by

data rich regions.

Figure 2.1 shows a schematic of the method, from the choice of input variables via the

neural network steps to the final product. Neural networks, their applications in science,

as well as each step individually are explained in more detail in the following subsections.

2.1.1 Neural networks

Neural networks have been previously applied to solve complex problems in many sci-

entific disciplines, such as atmospheric sciences (e.g. Kolehmainen et al., 2001; Marzban
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Figure 2.1: Schematic of the neural network method, including the input data, the two neural
network approaches (step 1 is coloured in blue and step 2 is coloured in red) including their
different pathways, the target observations and the final pCO2 fields.

and Stumpf, 1996), climate science (e.g. Knutti et al., 2003), terrestrial science (e.g. Lund-

stedt, 1992; Maier and Dandy, 2000) and ocean science (e.g. Tsai et al., 2002; Tangang

et al., 1997). More recently, neural network techniques made their way into the field of

ocean bigeochemistry. Lefèvre et al. (2005), Friedrich and Oschlies (2009), Telszewski

et al. (2009), Sasse et al. (2013) and Nakaoka et al. (2013) have recently applied neural

network techniques to create maps of the sea surface pCO2. However, neural network

based maps were previously limited to certain ocean basins (e.g. Nakaoka et al., 2013) or

climatologies of the global ocean (e.g. Sasse et al., 2013).

The term neural network (or artificial neural network) arises from the biological pro-

cessing unit called ”neuron” of the human brain. Although neural networks as they are

used in science are purely mathematical, they are inspired by the strong inter–connection

of the biological neurons and the unique way these inter–connected units solve specific

problems by learning from previous examples. There are several different groups of neural

networks, designed to solve specific problems, such as pattern recognition, identification,
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Figure 2.2: Schematic of the typical neural network processing chain from Demuth et al. (2008)
represented by the black lines. Inputs are processed in the neural network and the network outputs
are compared to targets. Iteratively, the network weights are adjusted to minimize the output–
target misfit. The blue line represents the typical processing chain of a SOM, where no output is
produced and the weights are adjusted according to the presented input data.

classification, speech, vision, and control systems (Demuth et al., 2008). Despite the large

variety of neural networks and their applications, they are typically all trained in a way

that a particular input leads to a specific target output. The network training is an iterative

process, where the coefficients of each neuron, called weights of a neuron, are adjusted

after every iteration so the network output best matches a target value (Demuth et al.,

2008). Figure 2.2 shows this general process chain of neural networks following Demuth

et al. (2008). Inputs are provided to the neural network, they are processed and an output

is generated. The output is then validated against targets and the weights of the neurons

are adjusted in response.

Neural networks are commonly differentiated in static and dynamic categories and by

the number of neuron layers. Static neural networks, like e.g. the feed–forward neural

network used here in step 2, compute the network output and adjust the weight of the

neurons in response to a single input, whereas dynamic networks compute their output and

adjust the neuron weights in response to current and previous network inputs and outputs

combined. Neural networks are commonly organized in network layers (often referred to

as hidden layers and output layer), where each layer consists of inter–connected neurons.

The inter–connections between inputs and layer neurons is shown in figure 2.3. Input data
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Figure 2.3: Schematic of the connections of a three layer neural network, including two network
layers and one output layer. The connections illustrate the link between inputs, neurons and targets
illustrated in figure 2.2.

are processed in these network layers via their system of weighted connections.

2.1.2 Data choice

In order to train a neural network, sets of input and target data have to be provided. The

fCO2 observations from the SOCAT v1.5 (Sabine et al., 2013) and v2 (Bakker et al.,

2014) database, gridded onto monthly 1◦×1◦ fields, form the basis of the computations.

The cruise-weighted average was used here, where first all data collected from the same

cruise within a grid box were averaged and in a second step, the grid box averages from

each cruise separately were further averaged within the same box to avoid biasing the

final value towards cruises where high resolution measurements were obtained (Sabine

et al., 2013). These SOCAT data sets includes global observations over the period 1970

to 2007 in version 1.5 and over the period from 1970 to 2011 in version 2 and underwent

an extensive series of automatic and manual secondary quality controls (Pfeil et al., 2013).

For both the SOCAT v1.5 and the SOCAT v2 database, the reported fCO2 estimates were

converted to pCO2 using the formulation (see e.g. Weiss, 1974; Körtzinger, 1999):
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pCO2 = fCO2 · exp

(
P surf
atm

B + 2 · δ
R · T

)−1

(2.1)

where P surf
atm is the total atmospheric surface pressure, B and δ are viral coefficients

(Weiss, 1974), R is the universal gas constant and T is the absolute temperature (Reynolds

et al., 2002). The monthly mean sea level pressure of the National Centers for Environ-

mental Prediction (NCEP) was used for P surf
atm (Kalnay et al., 1996). The correction from

fCO2 to pCO2 describes only minimal changes in absolute terms, resulting in a global

mean difference of only ∼ 1.3 µatm between the two fields.

Figure 2.4 (a) shows the distribution of the converted gridded pCO2 observations of

the SOCAT v1.5 database from 1998 through 2007 and figure 2.4 (b) shows the distribu-

tion of the SOCAT v2 database from 1998 through 2011. It demonstrates the heteroge-

neous distribution of observations in the global ocean. While the northern hemisphere is

spatially well covered, large areas have little data coverage in the southern hemisphere.

In the Atlantic Ocean the fCO2 (and converted pCO2) data distribution of the SOCAT

v1.5 dataset has relatively good spatial coverage, but yet are highly skewed in time. The

number of 1◦×1◦ pixels with fCO2 measurements within the chosen study area varies

from as low as ∼ 180 (∼ 1% of all data) per year in 1999 and 2000, to over 4000 (∼

20% of all data) per year in 2006 and 2007, with the latter two yeas accounting for 40%

of all measurements. This provides a challenge for conventional regression models to not

introduce a systematic bias towards regions and years, where the majority of observations

exist. The new 2–step neural network approach compensates for the limited coverage

within a province in a certain ocean basin by learning from observations in the same

biogeochemical province in another ocean basin. The global data on the other hand are

more homogeneously distributed in time. In contrast, the Atlantic has a good spatial

coverage, while this is not the case for many of the other ocean basins.

A crucial choice concerns the selection of the independent input variables used for

the training of the networks. Takahashi et al. (1993) suggested that changes in the sea

surface pCO2 are determined by four main drivers, namely the sea surface temperature

(SST), sea surface salinity (SSS) the concentration of total dissolved carbon (DIC) and

the total alkalinity (TALK) of the surface waters, representing the ocean chemistry and
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Figure 2.4: (a) Map of the gridded observations within the SOCAT v1.5 database (Pfeil et al.,
2013; Sabine et al., 2013) from 1998 through 2007 and (b) map of the gridded SOCAT observa-
tions included in version 2 (Bakker et al., 2014) from 1998 through 2011.

physics. The choice of SST and SSS was made as these parameters represent proxies as

suggested by Takahashi et al. (1993), and are available globally on a monthly timescale,

spanning the entire study period. However, to–date TALK and DIC products are limited to

annual and monthly climatologies and are therefore not suited to reconstruct year–to–year

variabilities.

Hence, in addition to SST and SSS, the method requires additional information about
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Table 2.1: Input datasets and their original resolution used to estimate the sea surface pCO2 within
the Atlantic Ocean study (chapter 4) and the global ocean study (chapter 5).

input variables original resolution Atlantic Ocean global ocean
study study

Reynolds SST 1◦×1◦×monthly X X
SeaWiFS CHL 9km×9km×monthly X -
Globcolour CHL 1◦×1◦×monthly - X
ECCO2 MLD 1/4◦×1/4◦×daily X X
ECCO2 SSS 1/4◦×1/4◦×daily - X
SODA SSS 1/2◦×1/2◦×monthly X -
Globalview xCO2 0.05 sin(rad)×monthly X X
pCO2 climatology 72◦×45◦×monthly X X

physical, chemical and biological processes which alter the sea surface DIC and TALK

concentrations and therefor effect the sea surface pCO2. In section 1.3.1 it was noted, that

biological production decreases the surface DIC concentration and increases the TALK

concentration, hence a proxy is required to establish the link between the effect of biolog-

ical production and sea surface pCO2. Since the start of the SeaWiFS satellite mission in

1997 (SeaWiFSProject,

http://oceancolor.gsfc.nasa.gov/cgi/l3), high resolution monthly and inter–annually vary-

ing chlorophyll–a (CHL) data are available and are therefore added as a simple but unique

proxy to represent the biological effect on the sea surface pCO2 distribution.

Furthermore, vertical mixing allows the re-introduction of DIC from deeper layers

of the ocean (see section 1.3.1), increasing the partial pressure of CO2 at the sea surface.

Hence the ocean mixed layer depth (MLD) was added as an additional physical parameter.

At last, trends in sea surface pCO2 are attributed to the increase in atmospheric CO2

(see e.g. McKinley et al., 2011), hence the atmospheric mole fraction of CO2 (xCO2,atm)

was added to represent the main driver for the anthropogenic induced trend in sea surface

pCO2. The same product is further used for the calculation of the air–sea gas flux (section

2.1.6).

There are however more inter-annually varying proxies that were tested within the

decision making process, e.g. sea surface height and the surface ocean winds. The final

decision to use SST, SSS, MLD, CHL and xCO2 was based on error analysis, i.e., which

combination of variables provides the best fit compared to SOCAT as well as independent

timeseries data, which will be introduced in the next subsection.
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The time period of the analysis is restricted from January 1998 to December 2007 for

the first study concentrating on the Atlantic Ocean basin (chapter 4) and January 1998 to

December 2011 for the second study covering the global ocean study (chapter 5), due to

the temporal limitations of the data that were chosen for these studies (CHL, SOCAT v1.5

and SOCAT v2)

For the Atlantic study, presented in chapter 4, the National Oceanic and Atmospheric

Administration (NOAA) Optimum Interpolation (OI) sea surface temperature v.2 (SST)

(Reynolds et al., 2002), the SeaWiFS mapped CHL (SeaWiFSProject,

http://oceancolor.gsfc.nasa.gov/cgi/l3), the MLD data from the Estimating the Circula-

tion and Climate of the Ocean, Phase II (ECCO2) project (Menemenlis et al., 2008),

the Simple Ocean Data Assimilation (SODA) SSS data (Carton and Giese, 2008) and

the monthly atmospheric xCO2,atm from GLOBALVIEW-CO2 (2011) are used. Due to

the additional years from 2008 through 2011 of the global study, presented in chapter 5,

the SSS and CHL datasets are replaced by the ECCO2 project SSS (Menemenlis et al.,

2008) and the Globcolour CHL (http://www.globcolour.info) datasets, respectively. In ad-

dition, the monthly pCO2 climatology, with the reference year 2000, of Takahashi et al.

(2009) is used in both studies as an additional input parameter for defining biogeochem-

ical provinces. The datasets used within the different studies are further summarized in

table 2.1. In view of their strongly skewed distribution, MLD and CHL have been log–

transformed before used as input data.

The chosen input data illustrated in table 2.1 represent a variety of observation–based

interpolation products (pCO2 climatology, Reynolds SST, Globalview xCO2), data as-

similation based products (SODA SSS), satellite derived products (SeaWIFS CHL, Glob-

colour CHL, Reynolds SST), and model estimates constraint by in-situ (e.g. ARGO)

data (ECCO2 MLD, ECCO2 SSS). While satellite based products have the advantage

of near global direct coverage, other products rely on the spatial and temporal coverage

of available observations. While e.g. the SST product has small uncertainties attached,

due to the satellite-observation bias correction applied (Reynolds et al., 2002), MLD and

SSS products are indirect model estimate constrained by temperature and salinity profiles

(Menemenlis et al., 2008) and are therefor assumed to have larger uncertainties attached.
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Table 2.2: Input and target vector elements for each subset used within the method. The subscript
ds describes de–seasonalised data, which are computed by subtracting the long–term mean sea-
sonal cycle from the original dataset. Additionally, log(CHL) was excluded from sets FINP, FITR,
FIVAL and FINP2 to estimate pCO2 where no satellite chlorophyll–a is available due to cloud
cover.

Set name Elements n of the jth input vectors pjn Targets (tj)
SINP SST, log(MLD), SSS, pCO2,clim -
(SOM Input)

FINP, FITR, FIVAL SST, log(CHL), log(MLD), SSS, xCO2,atm, pCO2,SOCAT

(FFN Input, Training SSTds, CHLds, MLDds, SSSds, xCO2,atm,ds

and Validation)

FINP2 SST, log(CHL), log(MLD), SSS, xCO2,atm, -
(FFN Input 2) SSTds, CHLds, MLDds, SSSds, xCO2,atm,ds

2.1.3 Data preparation and validation data

Data from the previous section with an original resolution finer than the required 1◦×1◦

were averaged onto the desired grid, whereas input data with a coarser resolution were

interpolated using a bilinear interpolation. Further, monthly averages were taken of all

inputs with a finer temporal resolution.

Seasonal variabilities are much larger than trends and year–to–year variabilities within

the input data for most parts of the ocean, hence, to highlight anomalies and year–to–

year trends within the data sets, de–seasonalised sets of the input variables were further

produced by removing their long–term mean seasonal cycle from the original dataset.

This approach aims to assure that small signals are not hidden by much larger signals.

In the next step the monthly 1◦×1◦ input data are rearranged into three major data sets.

Each of these data sets consists of input vectors (pn) where the input data are organized

as row vector elements, for example SST, log(MLD), SSS, and pCO2,clim for the self–

organizing map input (SINP) dataset (table 2.2). Table 2.3 as an example shows how

the input vectors are arranged for the Atlantic Ocean study from 1998 through 2007,

namely by sampling each input dataset at the same space–time point. Every input vector

pn consists of data points at the same geographical location on a 1◦×1◦ grid at the same

point in time, as illustrated in table 2.3. Two of the main data sets, SINP and the feed–

forward network input 2 set (FINP2) do not have a corresponding target dataset (table

2.2) as they are used to produce basin–wide outputs. Input vectors with empty vector
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Figure 2.5: Flow chart of the different stages within the neural network methods and the datasets
used to train and validate the neural networks.

elements, e.g. where no salinity data are available, were further removed from these data

sets. The third major set, the feed–forward network input set (FINP), consists only of

input vectors where corresponding SOCAT observations, or targets (t), are available, i.e.,

they are further subsampled in time at the locations where observations are available to

estimate the input–target relationship. In order to train the FFN, two sub sets of the FINP

set are created, namely the actual training (FITR) set and a validation (FIVAL) set (table

2.2). The different stages of the 2–step neural network method, as well as the datasets

used are illustrated in figure 2.5.

Where no chlorophyll–a satellite data are available, due e.g., to cloud cover or lack

of sufficient light at high latitudes in winter time, the sea surface pCO2 is estimated with

the remaining input parameters. This applies to about 22% of all pixels in the Atlantic

Ocean from 1998 through 2007 and about 18% of all estimated global pixels from 1998

through 2011 and mainly concerns the high latitude oceans in winter. Since chlorophyll

concentrations tend to be low and unvarying during these months, it is expected that this

choice has a relatively small influence on the results.

To evaluate the results of the Atlantic Ocean study (chapter 4), data from two sources
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Table 2.3: Arrangement of r input vectors with n vector elements from the global input data from
1998 to 2007

Point in time and space Input vector elements
j=1 Jan 1998; 89.5◦S; 179.5◦W p1

1, p1
2, ... p1

n

j=2 Jan 1998; 89.5◦S; 178.5◦W p2
1, p2

2, ... p2
n

: : :
j=p-1 Jan 1998; 89.5◦S; 178.5◦E pp−1

1 , pp−1
2 , ... pp−1

n

j=p Jan 1998; 89.5◦S; 179.5◦E pp1, pp2, ... ppn
j=p+1 Jan 1998; 88.5◦S; 179.5◦W pp+1

1 , pp+1
2 , ... pp+1

n

: : :
j=q-1 Jan 1998; 89.5◦N; 178.5◦E pq−1

1 , pq−1
2 , ... pq−1

n

j=q Jan 1998; 89.5◦N; 179.5◦E pq1, pq2, ... pqn
j=q+1 Feb 1998; 89.5◦S; 179.5◦W pq+1

1 , pq+1
2 , ... pq+1

n

: : :
j=r Dec 2007; 89.5◦N; 179.5◦E pr1, pr2, ... prn

that are not included in SOCAT v1.5 are used. Firstly, timeseries data are extracted from

the combined record from BATS (Bermuda Atlantic Time Series Station) and Hydrosta-

tion ”S” (Bates, 2007; Gruber et al., 2002) and the European Station for Time Series in the

Ocean (ESTOC) (e.g. González-Dávila et al., 2007). Sea surface pCO2 data from BATS

are calculate from the actual recorded TALK and DIC observations, as further explained

in chapter 3. Secondly, a total of 3065 additional data points within the Atlantic basin

from 1998 through 2007 are used from the updated SOCAT v2 database, which were not

included in version 1.5 and therefore constitute independent data.

Results of the global study (chapter 5) are validated with the extended temporal record

of the timeseries above, as well as further independent timeseries data not included in

SOCAT v2 and available from the Carbon Dioxide Information Analysis Center (CDIAC)

CO2 timeseries and mooring project (http://cdiac.ornl.gov/oceans/Moorings/). Data from

timeseries stations that do not report the sea surface pCO2 directly, have been calculated

from the actual recorded TALK and DIC observations using the method explained in

chapter 3.

To evaluate the sensitivity of the results with regard to the chosen input data, 4 sensi-

tivity runs were performed within the Atlantic Ocean (chapter 4) study, namely

• SR1 (sensitivity run 1), where the SODA sea surface salinity was replaced with the

World Ocean Atlas 2009 (Antonov et al., 2010) sea surface salinity climatology

• SR2, where the ECCO2 MLD product was replaced with the de Boyer Montegut
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(de Boyer Montegut et al., 2004) MLD climatology

• SR3, where the SST product was replaced with the SODA (Carton and Giese, 2008)

sea surface temperature product

• SR4, where chlorophyll–a was excluded as an input parameter

2.1.4 Dividing the global ocean into biogeochemical provinces using a self–

organizing map

In a first neural network step, SOM method (Kohonen, 1987, 2001) is used to partition

the global ocean into 16 biogeochemical provinces. Such a biogeochemical province is

characterized by each of its locations having a similar relationship among all considered

input data. Based on trial and error, the choice of climatological pCO2 from Takahashi

et al. (2009), SST, log(MLD) and SSS as the input data for the SOM (SINP data set in

table 2.2) was made. Chlorophyll–a, i.e., log(CHL), was excluded due to its many missing

values. This section provides more detail to the first step outlined in figure 2.5.

A SOM is a neural network based cluster algorithm that can detect regularities within

the provided input data and then learns to group similar input data together (Demuth

et al., 2008). It is a one layer neural network, hence the network consists of only one

network layer (see figure 2.3). It is capable of identifying similar input data, arranged as

input vectors via their Euclidean distance towards the neurons of the network which then

physically respond by moving towards the input vectors. As a one layer network, a self–

organizing map does not have an output layer, hence does not compute outputs. It is the

adjustment of the neurons weights, i.e. the response of the neurons and their adjustment

towards the inputs, that makes this algorithm suitable to cluster the global ocean. Figure

2.6 shows the adjustments of neurons (their physical movement) in response to input data.

The choice of 16 provinces represents a subjectively determined optimum between too

many provinces with too little data but a high degree of correlation between the provinces,

and too few provinces with a lot of data, but too high variance in the data. Self organizing

maps have previously been used to estimate the sea surface pCO2 directly (Lefèvre et al.,

2005; Friedrich and Oschlies, 2009; Telszewski et al., 2009; Nakaoka et al., 2013) by

assigning a set of discrete pCO2 values to a large amount of trained neurons. Here, a

similar approach is used to train the neurons, but rather than assigning a pCO2 value to
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Figure 2.6: Neuron response to input data marked as X following Vesanto et al. (2000). Neurons
and their neighbours organized on a regular grid, are physically drawn towards the input. BMU
stands for ”best matching unit” and refers to the closest, or winning neuron.

each neuron, a second neural network is used (step 2) to estimate a continuous set of pCO2

values for each province.

The chosen map was initialized with 16 neurons, organized on a 2–dimensional 4×4

point hexagonal grid. This means that the input data are clustered into 16 neurons, which

represent the 16 biogeochemical provinces. In this case each weight of a neuron consists

of a four element vector (SST, log(MLD), SSS, pCO2,clim), representing its coordinates.

The distance between a neuron and an input vector is calculated via a distance function.

These processing units are initially spread over a 2–dimensional field, in this case in a

hexagonal formation, forming a single layer of neurons. Experience has shown, however,
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that the choice of neuron topology does not have a significant effect on the final province

distribution. The use of neurons, their initialization and their distance relation describes

the biggest difference towards other clustering algorithms, e.g. k–means clustering (e.g.

Wagstaff et al., 2001). For both studies, the Euclidean distance between a neuron’s weight

vector and the input vectors of the SINP dataset was used for the distance function. The

weight matrix (Wm=16,n=4), which is formed by the 16 neurons with their 4 weight vector

elements, was randomly initialized.

After initialization, the training vectors are introduced to the SOM with each training

parameter as one element of the vector. For the jth input vector pjn with length n, the

Euclidean distances to each of the i=1,...,16 neurons represented by each row i of the

weight matrix are calculated:

dji =

√√√√ n∑
l=1

(Wi,l − pjl )2 (2.2)

djm comprises a vector containing the Euclidean distances to each neuron i of the input

vector pjn. The smallest element of the distance vector, i.e. the shortest distance element,

marks the distance towards the closest neuron, called the winning neuron. The neuron i is

updated by moving towards the average position of all the input vectors it was identified as

a winner, or a close neighbour of the winner, hence neurons physically move in response

to the input vectors (Demuth et al., 2008). This sort of training is called ”batch training”.

This is done by adjusting the ith row of the initial weights matrix after the iterative step q

following Vesanto et al. (2000):

Wi,n(q + 1) =

∑r
j=1 S(dneighbour − dji ) · p

j
n∑r

j=1 S(dneighbour − dji )
(2.3)

where Wi,n is the ith row of the input weight matrix, dji is the Euclidean distance between

the neuron i and the presented jth input vector and dneighbour is the neighbourhood radius.

S describes the step function. Neighbouring neurons will only be updated if S(dneighbour

– dji ) > 0. During the training of the SOM dneighbour decreases in two phases from an

initial coarse training phase where the surrounding nearest neighbours are updated that lie
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within a neighbourhood radius of 3, which lasts for the first 100 iterations, to a final fine

training phase where only the winning neuron is updated.

After q=200 iterations (presenting all input vectors to the SOM 200 times), the training

is stopped and the input vectors are re–introduced, without updating the SOM. In return

every vector receives the neuron number i of the winning neuron, where dji = min(djm),

until every training vector is labelled with a number between 1 and 16, representing the

province the vector belongs to. Since every input vector has a geographical location (see

table 2.3) the global ocean can now be divided into 16 biogeochemical provinces.

As the four vector elements of the weight vector and the input vectors pjn represent

the coordinates of the map, a normalized set of input data would assure equal weighting

of each input parameter (when Euclidean distances are computed). However, here the

relative weights of the input data are forced toward the climatological sea surface pCO2

data, in order to minimize the variance of pCO2 within each biogeochemical province for

the entire period. To do so, input data are not normalized or altered, with the exception

of MLD, which was log–transformed (table 2.2). As a consequence, the range between

the lowest and highest value of sea surface pCO2 is one order of magnitude larger than

that for SST, and about another order of magnitude larger than that for the remaining in-

put parameters (log(MLD), SSS). This was done to reduce the misfit between estimates

and observations in the second stage of the fitting, i.e. in the FFN. As a consequence,

the biogeochemical provinces follow the seasonal pattern of the sea surface pCO2 clima-

tology, as the Euclidean distances between neuron weights and input vectors are largely

dominated by one element, namely sea surface pCO2, meaning that the seasonality of

sea surface pCO2 climatology at any given location will be mostly determined by the

seasonal changes of the biogeochemical provinces and to a lesser degree by the seasonal

cycle of the input data in the second stage of the fitting. In addition, owing to the clima-

tological nature of the used Takahashi et al. (2009) sea surface pCO2 data, there are few

inter–annual shifts in the distribution of the biogeochemical provinces. The dynamics, i.e.

the change in shape of the provinces from one month to the next and the much smaller

changes from one year to the next of the provinces, forms the largest difference to con-

ventional provinces or biomes (e.g. Longhurst et al., 1995; McKinley et al., 2011; Fay
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Figure 2.7: Map of the biogeochemical provinces in the Atlantic Ocean identified by the self–
organizing map (SOM) method: (a) Province number of the mode (i.e., most frequent occurrence).
(b) The number of provinces every pixel belongs to from 1998 to 2007.

and McKinley, 2013). No time or space information was introduced to the SOM, there-

fore these temporal variations emerge solely from the temporal variability of the monthly

input data from 1998 through 2007 in the Atlantic Ocean and from 1998 through 2011 in

the global ocean.

Figure 2.7 (a) shows the mode of the provinces of the Atlantic study (chapter 4), i.e.,

the province each pixel mainly belongs to from 1998–2007 and figure 2.7 (b) shows the

number of shifting provinces per pixel. Despite their strong seasonal dynamics in space

(figure 2.7 (a)) and time (figure 2.7 (b)), the estimated biogeochemical provinces exhibit

a coherent large–scale behaviour, reflecting the well known oceanic structures such as the

gyres, the equatorial regions, and the high–latitude North Atlantic. These provinces vary

in time and space mainly in accordance with the variability of the climatological pCO2.

In the tropics, and the high latitude North Atlantic, the climatological pCO2 vary little

seasonally and therefore the provinces remain fairly steady, with only minimal province

shifts. In contrast, the gyre regions of both hemispheres exhibit much larger seasonal

variability, hence pixels there undergo many more province changes. The largest shifts

occur along the Gulf Stream, where certain pixels change their province association up to

10 times.
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Additionally, for the global ocean study (chapter 5), small ”island” provinces with a

surface area smaller than 10 connected pixels (10× 1◦ longitude× 1◦ latitude grid boxes)

of each month were removed and replaced by the mode of the surrounding provinces.

Figure 2.8 again shows the mode of the resulting provinces and the number of shifting

provinces for each pixel, during the full time period from 1998 through 2011 for the

global ocean. Similar to the Atlantic Ocean regimes, regions with strong seasonal pCO2

variability undergo stronger province shifts, resulting in larger numbers of provinces per

pixel.

2.1.5 Reconstructing the sea surface pCO2 using a feed–forward network

As a second step a feed–forward network (FFN) method is used to reconstruct the non–

linear relationship between a set of input variables and corresponding targets, i.e., sea

surface pCO2, separately for each of the 16 biogeochemical provinces.

The FFN method is a type of backpropagation network method that is capable of

approximating any function with a finite number of discontinuities (Demuth et al., 2008).

It consists of two layers, one network layer and one output layer (see figure 2.3). Similar

to multi–linear regressions, a feed–forward network adjusts coefficients, i.e. the weights

of every neuron in each network layer, to establish a relationship between inputs and

targets. The adjustment of the weights follows an iterative process. The first iteration

includes an initial guess, where the weights are randomly initialized, the estimates are

computed and compared to the target observations (see figure 2.2). From there on the

network goes backwards (hence the name backpropagation) and automatically re–adjusts

the coefficients with the aim to reduce the mean squared error between estimates and

targets. For each iteration, only a random subset of the data is used to train the network,

while the remaining data are used for validation. The updating process of the coefficients

is repeated until the network estimates derived from the validation set no longer improve

significantly relative to the targets. The established relationship is then used to predict the

pCO2 for each point in time and space where no observations are available.

The feed–forward network was trained with the FINP dataset that included all input

variables including their deseasonalised representation (see table 2.2). To this end the

dataset was split into the 16 ocean provinces (FINPk, FINP2k, with k=1,...,16) and each of
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Figure 2.8: Map of the biogeochemical provinces in the global ocean identified by the Self–
Organizing Map (SOM) method: (a) Province number of the mode (i.e., most frequent occur-
rence). (b) The number of provinces every pixel belongs to from 1998 to 2011.

them was processed separately. Due to the temporal and spatial variability of the provinces

and the heterogeneous spatiotemporal distribution of the pCO2 data, large differences

exist in the number of observations within the different provinces. However, the neural

network fit does not show degeneration as a function of the data density, as will be shown

in chapter 4, since the temporal distribution and the spatial heterogeneity of the data does

not lead to any major bias.
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The feed–forward network uses two layers of neurons, one network layer of neurons

(often refered to as ”hidden” layer in the literatue) using a tangents–sigmoid transfer func-

tion and one linear output layer. The response of the hidden layer to the input vector pjn

can be written as follows:

ai =
2

1 + exp(−2 · (Wi,n · pjn + bi))
− 1 (2.4)

Where ai is the response of the hidden layer of ith neuron. The response of all neurons

m then forms the output vector of the hidden layer am. This vector serves as input for the

second layer of neurons, the linear output layer:

pCOj
2,est = Wm · am + b (2.5)

Equation (2.4) and (2.5) show how the network calculates the scalar output pCOj
2,est for

the jth input vector pjn in two steps, each step referring to one layer of the network. In the

hidden layer the input vectors are multiplied with the weight matrix (weight vectors of

each neuron organized in matrix form) of the hidden layer Wm,n and added to the layer

bias vector bm. The output vector of the hidden layer am is created using a tangents–

sigmoid transfer function (equation 2.4), that computes elements of am in the range from

–1 to +1. Similar to the SOM, the size of Wm,n is determined by the size n of the input

vector and the number m of neurons in the hidden layer. The length of bm and am is as well

determined by the number of neurons m. In the linear output layer am, is processed the

same way as pjn in the hidden layer, with the exception that the output layer only consists

of one neuron to produce one scalar pCO2 estimate (pCOj
2,est) for every input vector.

Furthermore, the linear output layer allows pCOj
2,est to have any value between –infinity

and +infinity. During the training the weights and biases of each layer get iteratively

adjusted to minimize the error between the network output pCOj
2,est and the scalar target

element tj from the corresponding SOCAT database that corresponds to pjn. Therefore,

the network can only be trained by those input vectors which do have co–located pCO2

observations.
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Before the training starts, the training vectors with corresponding observations from

the FINPk dataset are provided to initialize the network layer size. The size of the two

network layers is determined by the number of neurons and the number of input vector

elements n. The networks initial weights and biases are randomly generated. An impor-

tant parameter that has to be provided before training starts is the number of neurons for

the hidden layer. Too few neurons are not able to reproduce realistic results, whereas too

many neurons decrease the computational performance and cause over–fitting and there-

fore the network is not able to generalize (Demuth et al., 2008). Since the number of

inputs and targets varies per province, one best number of neurons can not be provided

to be used for all 16 provinces. Therefore a pre–training is performed, increasing the

number of neurons in the hidden layer parabolically starting from two neurons up to a

number where the ratio between of the training sample size (number of input vectors) to

the number of weights does exceed 30. Amari et al. (1997) proposed this ratio to prevent

artificial neural networks from over–fitting.

During every pre–training process the FINPk set is divided into two independent sub–

sets. The first (FITRk) is used to train the network and the second (FIVALk) is used

for validation within the method. Amari et al. (1997) suggested an optimal split (ropt)

between training and validation data as a function of the modifiable parameters h:

ropt =
1√
2 · h

(2.6)

Modifiable parameter refers to the weights and biases of the network. During every

pre–training process the FITRk training vectors and the corresponding FITRk targets are

introduced to the network and the weights and biases are iteratively updated in the di-

rection where the performance function, which is the mean squared error between net-

work outputs pCOj
2,est and FITRk targets tj , decreases most rapidly. The FFN uses the

Levenberg–Marquardt (Marquardt, 1963) algorithm, which is a quasi Newton method, to

update weights and biases in every iteration step with the aim to reduce the mean squared

error between outputs and targets. This can be written as follows:
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xq+1 = xq − [JT · J + µ · I]−1 · JT · e (2.7)

The variable xq describes a vector of the current weights and biases, I is the identity

matrix, J is the Jacobian matrix that contains first derivatives of the network errors with

respect to the weights and biases and e describes a vector containing the network errors.

The scalar µ decreases after every successful step and increases after an increase of the

performance function (Demuth et al., 2008). The application of the algorithm in neural

networks is described in more detail in (Hagan and Menhaj, 1994; Hagan et al., 1996).

After every iteration of each pre–training, the network is validated by using the FIVALk

sub–set. The updated weights and biases are used to simulate outputs from the FIVALk

inputs and the mean squared error between these outputs and the FIVALk targets is calcu-

lated. Every pre–training of the network stops automatically when six consecutive itera-

tions do not reduce the network’s error on the FIVALk targets to prevent the network from

over–fitting. After the pre–trainings with increasing number of neurons the one where the

mean squared error of the validation data set FIVALk is a minimum is selected within

each province and receives the optimal number of neurons for the actual training process.

During the actual training process the number of neurons is adjusted according to the

best pre–training performance for each of the 16 provinces separately. Ten trainings are

performed, where validation data are randomly picked, according to equation (2.6), out

of the entire pool of observations to avoid over–fitting of the network output. After every

training the trained network is used to simulate pCOj
2,est from the FINPk dataset and the

output is the average of the 10 training cycles, to end up with one monthly estimate for the

time period 1998 through 2007 in the Atlantic Ocean study and 1998 through 2011 in the

global ocean study for each province. After 16 FFN runs the results of the 16 provinces

are combined to retrieve the pCO2 estimates on a monthly global 1◦×1◦ grid, which will

be presented in chapter 4 and chapter 5.

2.1.6 Air–sea CO2 flux calculation

The estimated pCO2 fields are further used to calculate the air–sea flux density in mol C ·

m−2 · yr−1 for each month and 1◦×1◦ pixel from:
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FCO2 = −kw ·K0 · (1− fice) · (pCO2,atm − pCO2) (2.8)

where K0 is the mainly temperature driven solubility of CO2 (calculated in mol C · m−3 ·

µatm−1 ) and kw is the gas transfer velocity (calculated in m · yr−1) introduced in chapter

1 of this thesis. The air–sea flux results will be presented in chapter 4 for the Atlantic

Ocean and in chapter 5 for the global ocean. Throughout this thesis the flux is defined

positive upward, i.e., outgassing of CO2 from the ocean to the atmosphere is positive, and

ocean CO2 uptake from the atmosphere is negative. fice refers to the percent of ice cover

within a region derived from Rayner et al. (2003). For the gas transfer velocity (here

calculated in cm · hr−1) the formulation of Wanninkhof (1992) is used with the scaling

factor of Sweeney et al. (2007), i.e.:

kw = 0.27 · (Sc/660)−
1
2 · u2 (2.9)

where Sc the dimensionless Schmidt number and u the monthly mean Cross–Calibrated

Multi–Platform (CCMP) wind speed (Atlas et al., 2011) at a height of 10 meters above

the sea surface.

The solubility of CO2 is calculated according to Weiss (1974) and the Schmidt number

according to Wanninkhof (1992) using the same SST and SSS input data used for the

training of the neural network.

The partial pressure of atmospheric CO2, i.e., pCO2,atm, is computed from the dry air

mixing ratio xCO2 of GLOBALVIEW-CO2 (2011), taking into account the water vapor

correction according to Dickson et al. (2007):

pCO2,atm = xCO2,atm · (P surf
atm − PH2O) (2.10)

where P surf
atm is the sea–level pressure from NCEP (Kalnay et al., 1996), and PH2O de-

scribes the water vapor pressure.
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2.2 Critical reflection on the method

Compared to conventional methods, the presented method in this chapter is capable of

reconstructing small amounts of noise within the sea surface pCO2 data, due to its non–

linear input–target data relationship, hence it qualifies to investigate the inter–annual vari-

ability of the sea surface pCO2 which is often buried under much larger signals, such as

the seasonal cycle. The 2–step approach further provides estimates on sparse observation

data regions, by applying relationships learned from similar ocean regions, where larger

amounts of data exist.

However, like with any other method based on statistics, the neural network recon-

structs a relationship based on the provided input data, which are subjectively chosen.

This implies that the drivers for the seasonal and inter–annual variability, as well as trends

need to be well known and only their exact relationships remain uncertain or unknown.

For example, atmospheric CO2 drives the trend signal in the global ocean. This atmo-

spheric CO2 signal is rather linear over the considered time periods in this thesis, hence

any other linearly increasing or decreasing input parameter, e.g. calender date or num-

ber of pirates in the global ocean, that would replace the atmospheric CO2 as an input

parameter, might result in the same sea surface pCO2 estimate, although the established

relationship is based on a completely wrong assumption.

Moreover, uncertainties exist in the chosen input data, in particular those derived from

model estimates constraint by in-situ observations (e.g. MLD). These uncertainties, how-

ever, do not necessary reflect the uncertainty of the final pCO2 estimate, as the variability

of the pCO2 is entirely determined by those input parameter that are correlated to the

available target observations. The effect of different input data will be further tested in

chapter 4 by sensitivity runs SR1-SR4.

Furthermore, many of the input data that drive the sea surface pCO2 distribution and

its variability are correlated with each other, hence occasionally, only a subset of input

data are needed in order to establish a statistical relationship valid to reconstruct the sea

surface pCO2 observations within the SOCAT database, although this does not imply that

the input data of the chosen subset are the ultimate drivers. This inter-correlation make it

further difficult to quantify the contribution of the pCO2 change of each input parameter,

hence the method presented does not give a direct quantification of the involved processes.
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Previous research has focused on the exact relationship between input data and the

sea surface pCO2 (Takahashi et al., 1993). As a result, mechanistic understanding exists

to–date regarding the pCO2–SST relationship (see section 1.3). The method presented

here does not assume any prior knowledge between input data and target pCO2, hence

the method may be improved by implementing the well known pCO2–SST relationship

(e.g. estimating changes in pCO2 as a combination of the pCO2–SST relationship with a

neural network based estimate of the non temperature driven changes) and is a suggestion

for future work.

Data sparse regions are estimated from the relationship derived from the available

observations within the same province. The similarity of the input–target relationship

within one province is another assumption. The validation approach using the FIVAL

dataset within the FFN provides a first control mechanism to help the network generalize

a relationship and to not over–fit the available observations within a province. However,

further validation of the neural network outputs it needed and a thorough assessment with

independent data needs to be conducted where available.

In conclusion, the neural network approach is only as valid as the chosen input and

target data and it can only be truly validated where observations exist, hence a large part

of this thesis will be assigned to validating the final pCO2 estimates in the Atlantic Ocean

(chapter 4) and the global ocean (chapter 5).



Chapter 3

pCO2 sampling and processes in the

North Atlantic

”It doesn’t matter how beautiful your theory is,

it doesn’t matter how smart you are.

If it doesn’t agree with the experiment, it’s wrong.”

(Richard P. Feynman)



In this chapter underway measurements of the sea surface pCO2 as well as discrete

bottle samples obtained along the UK–Caribbean ship route are introduced and the car-

bonate system parameter along the line are investigated. This chapter further provides

an overview on the measurement techniques and the quality control of in–situ data. Since

2002, underway measurements obtained along the line are used within the SOCAT database,

which forms the basis of the neural network technique introduced in chapter 2. Discrete

bottle samples, collected during four field campaigns, are used to investigate the variabil-

ity and the drivers of the sea surface pCO2 along the UK–Caribbean line.

The students contribution to the work presented in this chapter includes the support

of the data PI Ute Schuster in the regular maintenance of the underway measurement

system on–board M/V Benguela Stream (section 3.1.1), the regular quality control of the

data (section 3.1.2) as well as laboratory–based testing of the equipment. The planning

and preparation process for four individual voyages, the sampling of discrete bottle data

(section 3.2) on–board M/V Benguela Stream, their analysis in the laboratory (section

3.2.1), as well as the quality control of the data (section 3.2.2) was carried out as shared

work by the student and Clare Ostle, with great support by Oliver Legge and the technical

staff of the University of East Anglia. All the analysis of the data and the interpretation

of the results, presented from section 3.2.3 onwards, was solely conducted by the student.

Although the work presented here fits only one chapter of this entire thesis, it has to be

noted that a much more significant amount of time spend within this PhD project was

dedicated to this work.

3.1 Underway measurements of the sea surface pCO2

Since 2002 the University of East Anglia (UEA) has been measuring the underway sea

surface pCO2 from Portsmouth, UK, to the Caribbean using an automated equilibration

system (Schuster and Watson, 2007), developed at UEA, funded by the European Com-

mission (EC) projects CAVASSOO, CARBOOCEAN and CARBOCHANGE. The instru-

ment is currently mounted on the M/V Benguela Stream, a reefer vessel participating in

the Voluntary Observing Ship (VOS) program, and is set up to measure sea surface carbon

dioxide, marine air CO2, SST and SSS to obtain a high number of observations at a high

accuracy. A similar system has been successfully operated along this route between June
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Figure 3.1: Schematic of the underway measurement system updated from Cooper et al. (1998).
Sensors are labelled with T for temperature, C for conductivity, O for oxygen, P for pressure and
F for mass flow controller. The labels MPV, W and S refer to multi position valve, water watchers
and solenoid valves, respectively.

1994 through August 1995 (Cooper et al., 1998) and from 2002 onwards a large number

of underway sea surface pCO2 observations in the North Atlantic subtropics are collected

from vessels along this shipping route using a similar measurement set–up, with slight

modifications over time.
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3.1.1 Measurement system and maintenance

Figure 3.1 shows the schematic of the measurement system as illustrated in Cooper et al.

(1998) but modified to the most recent set–up mounted on M/V Benguela Stream. Seawa-

ter carbon dioxide (CO2,w) can not be directly measured, hence it has to be equilibrated

with a gas first (see equation 1.19). This is done in a specifically designed equilibrator

(Cooper et al., 1998), which consists of a gas tight tube filled with raschig rings (hatched

area in figure 3.1). The equilibrator is currently located below sea level, hence no pump

is in use, as the regular water pressure is sufficient for a constant stream of seawater from

the inlet. While seawater percolates from the top to the bottom of the equilibrator, the

raschig rings provide a large surface area for a rapid exchange of CO2 between the seawa-

ter and air, the latter circulated in a closed loop, passing the equilibrator from the bottom

to the top. The air equilibrates with the seawater and is then circulated using a diaphragm

pump through a LiCor 7000 infra–red gas analyser, where both the mole fraction of CO2

(xCO2(gas)) and moisture of the air is measured. Seawater that passes through the equili-

brator ends up in a sump tank and gets further pumped back to sea.

Inside the equilibrator two Pt100 temperature sensors are mounted to measure both the

temperature on the top and at the bottom of the equilibrator. Furthermore a pressure sensor

is mounted on the top of the equilibrator. Both temperature and pressure are measured

to convert xCO2 to carbon dioxide in partial pressure units (pCO2) and to correct for

temperature changes between the seawater inlet and the equilibrator (see e.g. Dickson

et al., 2007).

At the seawater inlet of the ship, which leads to the equilibrator, digital Aanderaa sen-

sors are located, namely a temperature sensor 4050, an oxygen optode sensor 3835 and

a conductivity sensor 3919, mounted in a sensor housing. These digital sensors are con-

nected to a data–logger next to the electronics cabinet, which converts the sensor reading

into the desired units. Furthermore, marine air is pumped from the port side bridge wing

of the ship to the LiCor 7000 system. Both marine air and air from the equilibrator pass

a condenser. This is a control mechanism to avoid water vapour to condense in the LiCor

7000 gas analyser and therefore damage the unit. The instrument includes three water

watchers which shut down the instrument in case of water approaching the analyser. Fur-

thermore, a mass flow controller is positioned before the LiCor 7000 gas analyser which
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regulates the air flow from the equilibrator, the marine air line and three gas standards to

100 ml · min−1.

To calibrate the LiCor, three 10 litre standard gases are currently used on–board. The

standards contain a known mixing ratio of carbon dioxide, i.e., roughly 250 parts per

million (ppm), 350 ppm and 450 ppm, respectively. These standards are pre– and post–

calibrated in the laboratory, against highly accurate NOAA gas standards, to determine

the correct mixing ratio before they are applied on–board. The aim of the standards is to

calibrate the seawater derived xCO2 measurements.

The LiCor 7000 unit, the Aanderaa data logger and the electronics cabinet are con-

nected to an instrument computer. The measurement software on the computer regulates

the measurement procedures and automatically records the readings of all sensors, and

stores them in a data file. The on–board measurement system is fully automated, hence no

scientist needs to operate the system. The measurement system works in a self–repeating

3–step cycle, repeatedly measuring air from the equilibrator, marine air and gas standards.

A complete round trip of the ship takes four weeks, which includes two Atlantic cross-

ings, one southbound voyage from Le Havre, France (49◦N 29’ and 0◦E 6’) leading usu-

ally south of the Azores through the subtropical gyre to the southern Caribbean islands

(∼ 10–12 ◦N and ∼ 60◦W), and one northbound return voyage from Manzanillo in the

Dominican Republic (19◦N 42’ and 71◦W 44’) back to Portsmouth, UK (50◦N 44’ and

1◦W 5’). However, ship routes depend on weather, current and sea–state conditions and

Caribbean arrival ports vary occasionally.

After arrival of the ship in Portsmouth, an on–board maintenance procedure is carried

out. Firstly, data from the last voyage are downloaded and analysed to see if there have

been technical problems which need immediate attention. Further on, the standard gas

cylinder pressures and the amount of water in the condenser are checked and a pressure

leak test is carried out for the equilibrator air loop, to check if the line is gas tight. Af-

terwards, the Aanderaa sensors in the seawater housing and, if necessary, the equilibrator

are cleaned. Next, the analogue pressure and temperature sensors are calibrated. The

Pt100 sensors are calibrated against the Aanderaa temperature sensor in three different

temperatures, namely in warm water, cool water and melting ice. At last, the standard

measurement routine is started before the ship leaves for the next voyage.
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3.1.2 Quality control

Before the final data product is derived, a series of quality checks need to be performed,

to determine the robustness of the measurements. In a first step temperature sensor read-

ings of a voyage are compared. The seawater line leading from the seawater inlet to the

equilibrator is well insulated, hence a good calibration of the sensors will lead to fairly

similar readings between the Aanderaa sensor at the seawater inlet and the two Pt100 sen-

sors in the equilibrator. Therefor, differences between the seawater inlet and equilibrator

readings might indicate a problem with the water flow.

Due to the mass flow controller, gas flow rates are supposed to be fairly constant at

100 ml · min−1. However, if flow rates of the equilibrator air loop or the marine air

supply drop, this might indicate problems with the air pumps in either loop. Dropping

gas standard flow rates might indicate a leak in the gas line or problems with the regulator

settings.

The LiCor 7000 gas analyser further consists of a pressure sensor, whose readings are

compared with those from the equilibrator pressure sensor. Furthermore, the ship crew

reports meteorological data, measured on the bridge, including atmospheric pressure for

weather forecasts (http://www.sailwx.info/), hence these data can be further used to check

the precision of the pressure sensor readings.

In a next step the gas standard readings are analysed. Due to the strong ambient tem-

perature difference at the instrument between the port of Portsmouth and the Caribbean

of up to 30◦C, the moisture content of the air passing through the LiCor 7000 changes for

both marine air and air passing the equilibrator, but they should be zero for the three gas

standards. Within roughly 30 minutes of gas standard measurement time, both moisture

and CO2 content are expected to be steady.

Change of water masses or biological activity can cause steep gradients in the seawa-

ter xCO2 readings. Salinity (calculated from conductivity) and oxygen provide indicators

if such a steep gradient is caused by water mass changes or by biological activity. Ad-

ditionally, the crew on–board collects nutrient and salinity bottle samples roughly every

four and 12 hours, respectively, while the ship is at sea.

Atmospheric CO2 is in general fairly constant throughout an Atlantic Ocean crossing,
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hence strong variability within a short time period might indicate wind driven contermina-

tion of marine air through the ship’s stack. Meteorological data (http://www.sailwx.info/),

as well as ship speed and direction are used to identify ship contermination.

The quality controlled data have been used in several studies (e.g. Cooper et al., 1998;

Schuster and Watson, 2007; Schuster et al., 2009b; Watson et al., 2009) and are included

in the major sea surface pCO2 and fCO2 databases, namely the Lamont–Doherty Earth

Observatory (LDEO) database (Takahashi et al., 2013) and the Surface Ocean CO2 Atlas

(SOCAT) database (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014).

3.2 Collection of discrete bottle samples along the UK–Caribbean

line

In addition to the automated measurements a total of four accompanied field campaigns

were carried out in the North Atlantic Ocean on–board M/V Benguela Stream in April/May

2012 (BS56 – Peter Landschützer on–board), June/July 2012 (BS58 – Clare Ostle on–

board), September/October 2012 (BS62 – Clare Ostle on–board) and January/February

2013 (BS66 – Peter Landschützer on–board), each voyage representing one of the four

seasons. A total of 325 bottle samples were collected with, on average, 40 seawater bottle

samples per crossing during the day in intervals of about 2 hours. Figure 3.2 shows the

ship tracks for each voyage split up into southbound and northbound voyages. Samples

were taken from a bypass line of the main seawater line towards the equilibratar, located

right after the sensor housing (see figure 3.1). At this bypass line a t–piece splits the

bypass line into two lines. The first, a water hose leading directly to the sump tank under-

neath the equilibrator, and the second, a roughly one meter long piece of tubing, which

was used to fill up the bottles.

Right before the t–piece a strainer was located to filter small particles. This strainer

was cleaned once a day to prevent organic material to be captured in the bottles. The first

sample of the day was collected in a 500 ml bottle, used as replicate sample to later asses

the quality of the analysis in the laboratory. All other samples were collected in 250 ml

bottles.

Before taking the samples, all bubbles appearing in the sample tubing were removed

and the bottles were properly rinsed. The bottles were filled by placing the end of the
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Figure 3.2: Map of the ship tracks of the (a) southbound and (b) northbound UK–Caribbean line
in months where bottle samples were taken. Red colours refer to the Spring voyage in April/May
2012, Green colours refer to the Summer voyage in June/July 2012, Blue colours refer to the
Autumn voyage in September/October 2012 and black colours refer to the Winter voyage in Jan-
uary/February 2013. Circles indicate where bottle samples were taken along the line.

tygon tubing at bottom of the bottles and then filled by overflowing them with about four

times the bottle’s volume, according to the standard operating procedure (SOP) given by

Dickson et al. (2007).

After the bottles were filled, the stopper was placed on the bottles to avoid gas ex-

change and water contamination while moving from the sampling site to the fixing sta-

tion. Immediately after collecting the samples, temperature and salinity of the seawater

were recorded, as well as time, date and geographical position of the ship. The samples

were then fixed on–board by first removing 1% by volume of the seawater bottle and then

adding 50 µl of saturated mercuric (II) chloride (HgCl2) in every 250 ml bottle and 100 µl

in every 500 ml bottle, following the SOP by Dickson et al. (2007). Mercuric (II) chloride

prevents changes of inorganic carbon to organic carbon and vice versa while the samples

are stored. The stopper was wiped with a clean tissue and greased to seal the bottle to

prevent the exchange of gases while being stored in a dark place on the ship.

3.2.1 Analysis of discrete bottle samples

The samples were analysed within two laboratory campaigns, one after the first two voy-

ages and the second one at the end of the field campaign. Two VINDTA 3C (Versatile

INstrument for the Determination of Total inorganic carbon and titration Alkalinity) in-

struments were used simultaneously to determine the TALK concentration via titration
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and the DIC concentration via coulometry (Mintrop, 2011). The VINDTA 3C system op-

perates at an accuracy of ±1 µmol · kg−1 for both TALK and DIC when analysing open

ocean water samples (Mintrop et al., 2000). Nutrients, for the calculation of TALK, were

provided from the samples taken on–board and interpolated to the actual DIC and TALK

measurement points.

To analyse the TALK content of the samples, the bottles are opened and maintained in

a water bath at a temperature of ∼ 25◦C. A known volume of a sample is then dispensed

into a water–jacked cell, which is as well maintained at a temperature of ∼ 25◦C. In the

cell, 150 µl increments of hydrochloric acid are titrated into the sample using a piston

burette.

The titration is stopped after the total amount of acid, added to the sample in the

cell reaches a total of 4.2 ml. The titration process is monitored by a Titrino pH meter

(readable to 0.1 mV), which uses a proton sensitive electrode, located within the cell. The

TALK calculation is done both graphically and mathematically (Schuster et al., 2009a;

Mintrop, 2011) by plotting the volume of acid against the electromagnetic force measured

by the pH meter. The resulting titration curve shows two inflection points, namely the

protonation of carbonate and bicarbonate, and the acid consumption up to the second

point is equal to the titration alkalinity.

The DIC concentration is measured by dispensing a known volume into a stripping

chamber, where the sample is acidified with 8.5% phosphoric acid. This is done to convert

all carbonate species to CO2 gas. Pure nitrogen (N2) is bubbled through a fine frit at the

bottom of the stripping chamber, to ensure that the solution is stripped of CO2. The

nitrogen gas acts as a carrier gas for CO2, hence to remove all CO2 before entering the

stripping chamber, it passes through a CO2 absorbent. The CO2 enriched gas then passes

a Peltier cooling system to condense water vapour before it reaches a coulometer cell.

The coulometer cell consists of a main body and a side arm. In the main body

a cathode solution, consisting of a mixture of water, tetra–ethyl–ammonium bromide,

ethanolamine, dimethylsulfoxide and thymolphthalein indicator, is absorbing CO2 in the

gas stream. The side arm contains of an anode solution consisting of a mixture of sat-

urated potassium iodide in water and dimethylsulfoxide (Dickson et al., 2007). In the

main body, CO2 reacts with ethanolamine to produce hydroxyethylcarbamic acid, which
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causes a change in pH. As a result of this reaction, a color change occurs, which is mea-

sured via transmittance at ∼ 610 nm (Dickson et al., 2007). The measurement system

aims to maintain the transmittance at a constant level of 29%, hence hydroxide ions are

generated at a platinum cathode by electrolyzing water. The required electrons for this

process are generated at a silver anode of the side arm. This generates a current which

is related by the Faraday constant to the moles of CO2 absorbed by the solution (John-

son et al., 1993). When the coulometer readings drop below a set endpoint of 50 counts

· minute−1 the measurement system stops, sample results are recorded and DIC can be

calculated following Dickson et al. (2007) from:

DIC =
NS − b · t− a

c
· 1

VS · ρ
(3.1)

WhereNS is the coulometer reading in counts for the sea water sample, a is the acid blank

in counts, b is the background level of the system in counts · min−1, c is the coulometer

calibration factor in counts · mol−1, t is the time required to measure the water sample in

minutes, VS is the volume of the sea water sample at the temperature of use in dm3 and ρ

is the density of the seawater sample in g · cm−3.

For the most accurate work, two further minor corrections may need to be made to

compute the total DIC in the original seawater sample, namely for the dilution by mercuric

chloride when the sample was collected and for the exchange of CO2 with the headspace

in the sampling bottle.

3.2.2 Quality control

In a first stage, the quality of the VINDTA 3C procedure needs to be assessed. This is done

in two ways. Firstly, the accuracy is assessed by using certified reference material (CRM)

standards from the Scrippts Oceanographic Institude, San Diege, USA, and secondly the

precision is assessed by using the 500 ml bottles that were taken as the first sample every

day at sea. CRMs are highly accurate 500 ml standards with a known concentration of

DIC and TALK. During the laboratory analysis, CRM standards are analysed as the first

and the last sample every day. After the laboratory analysis is complete, the measured

DIC and TALK concentrations of the CRMs are compared to the certified concentration
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of the standards and if necessary, for the TALK analysis, the recorded acid concentration

is corrected to reduce the offset between the measured and the certified concentration of

the CRMs. This acid correction is then applied to all TALK samples analysed with the

same VINDTA 3C.

Secondly 500 ml sample bottles, or replicate bottles, are used to asses the quality of

the measurements. For the VINDTA 3C analysis, a sample volume of 250 ml is needed to

derive the DIC and TALK concentration, hence 500 ml bottles can be used for in–bottle

replicates. The measured TALK concentrations are supposed to be within the uncertainty

provided by the VINDTA 3C measurement system (±1 µmol · kg−1), hence larger differ-

ences between replicates indicate bad quality of the data. In this case, no further samples

are analysed and 500 ml seawater junk samples are used instead to asses when the repli-

cate offset is back within the provided uncertainty.

After completing the analysis, the resulting DIC and TALK concentrations are quality

controlled using the World Ocean Circulation Experiment (WOCE) flagging system. Ev-

ery measurement receives a number, namely 2 for good data, 3 for probably bad data and

4 for bad data. Additionally, a flag 9 for missing data was introduced, which is not in line

with the WOCE flagging system. Overall, six DIC data points with a flag 4 and one DIC

data point with a flag 9 were assigned. Four TALK data points received a flag 4 and three

more data points were assigned a flag 9. All other data points were assigned a flag 2 and

were considered for further analysis.

Finally, the error of the DIC and TALK analysis procedure was assessed by the stan-

dard deviation of all CRM bottles used resulting in a DIC uncertainty of ±2.55 µmol ·

kg−1 and a TALK uncertainty of ±1.46 µmol · kg−1, which is slightly larger than the

reported uncertainty of the VINDTA 3C measurement system.

3.2.3 Comparison with independent data products

To–date two databases provide the largest sets of DIC and TALK data measured in the

Atlantic Ocean, namely the GLODAP v1.1 (Global Ocean Data Analysis Project, Key

et al. (2004)) database and the CARINA (Carbon in the Atlantic Ocean, CARINA-Group

(2009)) database. While the CARINA database includes DIC and TALK data, measured

between 1977 and 2006, GLODAP v1.1 Atlantic Ocean data are available between 1972
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and 1998. Both databases include measurements at several depths. Besides the temporal

offset between the data within the databases and the bottle data sampled onboard M/V

Benguela Stream, a comparison (not shown here) reveals, that there is not a single data

point, measured within the same month (independent from the sample year) that has a

spatial difference less than 1◦latitude and 1◦longitude with the Benguela Stream samples.

In order to compare all bottle data that have received a WOCE flag of 2, available

climatological products are used, which are based on the above databases and the LDEO

surface ocean carbonate parameter dataset. In particular, the recently released monthly

gridded DIC and TALK climatologies, normalized to the year 2005, of Takahashi and

Sutherland (2013), available from Biological and Chemical Oceanography Data Manage-

ment Office (http://www.bco–dmo.org/dataset/3961) are used. The comparison is illus-

trated in figure 3.3.

The climatological product includes data from the global GLODAP database which

consists of 122 WOCE, Joint Global Ocean Flux Study (JGOFS), NOAA Ocean – At-

mosphere Exchange Study (OACES) and other international and historical cruises con-

ducted in the 1990s. The aim of GLODAP was to create a high quality global dataset

to determine the global distributions of both natural and anthropogenic inorganic carbon.

GLODAP was made available for the public via the Carbon Dioxide Information Anal-

ysis Center (http://cdiac.ornl.gov/oceans/glodap/). The Takahashi and Sutherland (2013)

climatology product further includes about 4800 DIC and TALK data from the CARINA

database (CARINA-Group, 2009) and about 2600 pCO2 data from the LDEO database.

The monthly DIC and TALK climatologies are presented on the same 4◦×5◦ grid as the

Takahashi et al. (2009) pCO2 climatology. For the comparison of the sea surface DIC

and TALK in figure 3.3 (a) an (b), data points of the climatological surface layer were

co–located to the nearest point where bottle samples were collected.

The mean difference between the sampled DIC data and the climatological data (figure

3.3 (a)) is –3.44 µmol · kg−1, with a RMSE of 14.77 µmol · kg−1, with the regression line

closely following the optimal red regression line. Figure 3.3 (b) shows a similar match

between bottle samples and the climatological TALK, with the regression line closely

following the optimal red regression line. The mean difference is 4.76 µmol · kg−1 and

the RMSE is 14.36 µmol · kg−1 between the independent TALK products.
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Figure 3.3: Analysed DIC and TALK data along the UK–Caribbean line that received a WOCE
flag of 2 compared to climatologies of Takahashi and Sutherland (2013), available from Biological
and Chemical Oceanography Data Management Office (http://www.bco–dmo.org/dataset/3961)
for (a) DIC and (b) TALK. Colours refer to the different seasons when the measurements were
taken, following the color code of figure 3.2, namely red for spring, green for summer, blue for
autumn and black for winter. The black lines show the regression lines of all data points combined
and the red lines show the optimal one–on–one regression line.
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It needs to be noted here, that the comparison with climatologies presented in this

section is far from ideal, given their temporal offset an their coarse resolution. An updated

version of GLODAP database (GLODAPv2) is currently in progress, due to be published

in February 2014.

3.2.4 Variability of the sea surface DIC and TALK along the UK–Caribbean

line

Figure 3.4 shows the DIC and TALK data along the UK–Caribbean line that received a

WOCE flag of 2 split up into the four seasons. Towards the most western longitudes,

DIC drops to its lowest values along both transects (see figure 3.4 (a) and (b)). TALK,

illustrated in figure 3.4 (c) and (d) increases from the east to the west throughout all

seasons along both transects and peaks at ∼ 40–50 ◦W along the southbound transect and

at ∼ 50–60◦W along the northbound transect. Similar to DIC, TALK concentrations drop

towards the most western longitudes

TALK is mainly determined by freshwater addition through precipitation and loss

through evaporation within the subtropical Atlantic Ocean, hence it is strongly related to

SSS and only to a lesser degree to SST (see e.g. Lee et al., 2006). In contrast, the DIC

distribution is strongly dependent on the solubility of CO2 (K0), which is mainly driven

by temperature and to a lesser degree by salinity (see e.g. Sarmiento and Gruber, 2006).

From the east to the west and from the cold to the warm seasons, temperatures, illus-

trated in figure 3.5 (a) and (b), increase and thereby reduce the solubility of seawater CO2.

TALK and SSS are closely related, as expected, illustrated in figure 3.5 (c) and (d).

Figure 3.6 (a) shows that the DIC/TALK ratio decreases as a function of longitude

along both transects. This illustration was chosen as it reveals three distinct water masses,

the first east of 24◦W, the second between 24–55◦W and the third west of 55◦W along

both transects, coloured in cyan, black and magenta, respectively. The most eastern water

mass shows a medium decrease towards the west in the DIC/TALK ratio, which is stronger

along the southbound transect. The mid longitude water mass is determined by a strong

decrease towards the west in the DIC/TALK ratio which is almost equally pronounced

along both transects. The most western water mass shows the weakest decrease in the

ratio towards the west.
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Figure 3.4: Analysed DIC and TALK data along the UK–Caribbean line that received a WOCE
flag of 2 split up into the 4 seasons when data were sampled. (a) shows DIC data along the
southbound voyages, (b) shows DIC data along the northbound return voyages, (c) shows TALK
data along the southbound voyages and (d) shows TALK data along the northbound return voyages.
Colours for the different seasons follow the color code from figure 3.2, namely red for spring, green
for summer, blue for autumn and black for winter.
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Figure 3.5: Underway SST and SSS data along the UK–Caribbean line measured by the Aanderaa
sensors at the seawater inlet split up into the 4 seasons when data were sampled. (a) shows SST
data along the southbound voyages, (b) shows the SST data along the northbound return voyages,
(c) shows SSS data along the southbound voyages and (d) shows SSS data along the northbound
return voyages. Colours for the different seasons follow the color code from figure 3.2, namely
red for spring, green for summer, blue for autumn and black for winter.
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Figure 3.6: Property plots of (a) the DIC/TALK ratio as a function of longitude including lin-
ear regression lines for both northbound and southbound transects, (b)–(d) DIC/TALK ratio as
a function of SST, SSS and CHL, respectively. Cyan circles mark measurements taken east of
24◦W, black triangles mark measurements taken between 24◦W–55◦W and magenta crosses mark
measurements taken west of 55◦W, based on the changing DIC/TALK ratio in (a).
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Figure 3.6 (b)–(d) illustrate the DIC/TALK ratio as a function of the main drivers,

combined for both transects, namely SST, SSS and CHL, representing the photosynthetic

activity. For CHL, the monthly Globcolour (http://www.globcolour.info) product (see

chapter 2) for the years 2013/2013 was taken and the nearest satellite data point was used

for the comparison to the actual observations.

The DIC/TALK ratio shows a linear relationship with SST in figure 3.6 (b) along all

water masses. Within the subtropics, SSS explains roughly 80% of the TALK variability

(Millero et al., 1998), hence the SST effect on the TALK distribution is fairly small,

but is much larger on DIC. However, SST can not be regarded as a stand–alone driver,

since SSS, biological production and gas exchange are not constant. For example along

the southbound transect within the mid section water mass (24◦W–55◦W), DIC barely

changes as the ship moves west, hence the increase in TALK drives the DIC/TALK ratio

in this region.

The DIC/TALK ratio in figure 3.6 (c) shows a linear decrease throughout most parts

of the transect as function of salinity. Here, the increasing evaporation/transpiration ratio

alters the SSS as well as the TALK concentration, whereas DIC is only influenced to a

lesser degree by SSS changes. The water mass furthest west provides an exception to the

linear decrease of the DIC/TALK ratio as a function of salinity. Here, TALK decreases

with decreasing SSS, while DIC decreases at a similar rate, resulting in a barely changing

DIC/TALK ratio. SST does not explain the drop in DIC (see figure 3.4 and figure 3.5),

hence a plausible explanation for the almost steady ratio within the most western water

mass can be provided by the entrainment of freshwater, causing low DIC concentrations,

and further explaining a simultaneous drop in both SSS and TALK.

Figure 3.6 (d) illustrates the DIC/TALK ratio as a function of CHL. Within the water

mass furthest to the east, biological production becomes more important. Photosynthesis

decreases the amount of carbon in the surface ocean, leading to a decrease in DIC, whereas

the formation of organic matter further decreases the amount of free protons, resulting in

an increase in TALK, i.e., decreases the DIC/TALK ratio. Furthermore, the spread in the

data might indicates seasonal variability of the biological effect.
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3.3 Sea surface pCO2 along the UK–Caribbean line

3.3.1 Sea surface pCO2 calculation

The DIC and TALK data provide the two required carbonate system parameters for the

calculation of the sea surface pCO2, together with the directly measured SST, SSS and

atmospheric pressure at sea level. Furthermore, nutrient data (silicate and phosphate)

sampled on–board were co–located to the closest DIC and TALK sampling locations and

used for the pCO2 calculation. For the calculation the Matlab version of CO2SYS is used

which is based on the original program for DOS and EXCEL (Lewis and Wallace, 1998).

The program uses two out of the four parameters (DIC, TALK, either fCO2 or pCO2, and

pH) of the carbonate system in seawater and their relationship to compute the remaining

parameters, in this case the sea surface pCO2 and pH.

In a first step, using the TALK definition by Dickson (1981) and the dissociation con-

stants K1 and K2 obtained by Mehrbach et al. (1973) and refitted by Dickson and Millero

(1987), the sea surface pH is calculated from DIC and TALK. The program iteratively

calculates the pH via Newtons method from an initial start guess to a final pH value with

zero residual. Finally, the sea surface fugacity (fCO2) is calculated from the DIC con-

centration and the free protons following:

fCO2 =
[DIC]

K0
· [H+] · [H+]

[H+] · [H+] + K1 · [H+] + K1 ·K2
(3.2)

Finally, fCO2 is converted to pCO2 using equation 2.1

3.3.2 Validation of the calculated sea surface pCO2

In order to validate the calculated pCO2 data, they are in a first step directly compared to

the measurements derived from the underway system on–board the ship. After the quality

control of the underway CO2 data, a total of 147 data points, at the same measurement

point in time and space, remain for comparison with the bottle sample derived pCO2.

Unfortunately, due to technical problems, no underway data are available in summer and

only a limited amount of data remain for the autumn and winter voyage. Therefore, for

additional validation within all seasons, the gridded 1◦×1◦ SOM–FFN estimates, derived
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from the method presented in chapter 2, are used. The monthly 1◦×1◦ SOM–FFN pCO2

estimates from 1998 through 2011 were averaged in time for each month and further

corrected to the actual sampling date by adding 1.5 µatm per year. The global SOM–

FFN pCO2 validation and results will be presented in chapter 5. Similar to the DIC and

TALK comparison in figure 3.3, the SOM–FFN monthly data were co–located to nearest

sampling point in space, within at least 1◦ longitude and 1◦ latitude, within the same

month.

Figure 3.7 (a) shows the comparison between the calculated pCO2 data, derived from

the discrete bottle samples with the quality controlled underway data, while figure 3.7 (b)

shows the comparison with the co–located pCO2 data from the SOM–FFN. The regression

in figure 3.7 (a) reveals a close match between the two independently determined sea

surface pCO2 data. The majority of all pCO2 measurements lies within 300 to 400 µatm,

however, a few data measured close to the shore of England and France exceed partial

pressures of 500 µatm. Overall, the comparison shows a small mean difference between

the 147 data points of 0.42 µatm and a RMSE of 10.09 µatm. The slope of the regression

reveals a close match of all data along the entire range of partial pressures measured.

Figure 3.7 (b) reveals a larger spread between the calculated pCO2 data and the SOM–

FFN estimates. The mean difference between all data points is 0.12 µatm with a RMSE of

13.64 µatm. The larger spread between the data is likely linked to the co–location of the

1◦×1◦ gridded data to the actual sampling point. Furthermore, figure 3.7 (b) shows that

winter data lie in general below the red one–on–one regression line, whereas summer data

lie above, indicating that (i) the 1.5 µatm trend correction does not accurately represent

the actual trend within all seasons and (ii) the effect of inter–annual pCO2 variabilities

can not be reconstructed by a simple temporal correction.

3.3.3 Variability and drivers of the sea surface pCO2

The comparison of the calculated sea surface pCO2 data with underway measurements

shows that both agree well with each other. Hence, there is confidence that these data

provide an accurate basis to investigate the seasonal variability of the sea surface pCO2

along the UK–Caribbean line. However, samples were taken during daytime only and

the sampling locations are dependent on the ship speed as well as the ship route and vary
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Figure 3.7: Calculated pCO2 data along the UK–Caribbean line compared to (a) the quality con-
trolled underway measurement derived from the infra–red absorption method and (b) the SOM–
FNN derived with the method presented in chapter 2. Colours refer to the different seasons when
the measurements were taken, following the color code of figure 3.2, namely red for spring, green
for summer, blue for autumn and black for winter. The black lines show the regression lines of all
data points combined and the red lines show the optimal one–on–one regression line.
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Figure 3.8: Seasonal pCO2 data points and their polynomial fits as a function of longitude for
(a) the southbound transect and (b) the northbound transect. Colours refer to the different seasons
when the measurements were made, following the color code of figure 3.2, namely red for spring,
green for summer, blue for autumn and black for winter.

between the different seasons as illustrated in figure 3.2. This circumstance makes a direct

sample–to–sample comparison between different seasons impossible. As a consequence

a different approach is used to investigate the seasonal variability of the sea surface pCO2.

In a first step the individual voyages were split up into northbound and southbound

transect and the four different seasons. Data points for each of the 8 individual transects

were then plotted against their longitude co–ordinates and a 4th order polynomial was fit

to the data:

y = a · x4 + b · x3 + c · x2 + d · x+ e (3.3)

This is illustrated in figure 3.8. A fourth order polynomial was chosen as it shows the

smallest bias compared to the actual calculated pCO2. The variables a–e are the coef-

ficients of the least squares fit. Data points east of 8◦W were excluded, firstly because

not every season was present along these longitudes and secondly because steep gradients

close to shore strongly influence the polynomial fit. Hence, in the following, the seasonal

variability is only discussed for the open ocean. Furthermore, differences between ship

tracks are not accounted for in the following analysis.

Figure 3.8 provides an insight into the seasonal variability of the sea surface pCO2

in the temperate North Atlantic Ocean. The maximum seasonal amplitude along both
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Figure 3.9: Hovmöller plot of the seasonal pCO2 cycle along the UK–Caribbean line for (a) the
southbound transect and (b) the northbound transect.

transects is mainly determined by the difference between summer (green line) and spring

(red line), but substantially differs between both transects. While the northbound transect

(figure 3.8 (b)) shows a maximum seasonal amplitude around 40◦W of ∼ 80 µatm, the

maximum seasonal amplitude of the southbound transect (figure 3.8 (a)) does not exceed

50 µatm. However, it can be argued here, that the amplitude difference along the north-

bound section is linked to the different ship tracks (see figure 3.2) between spring (further

north) and summer (further south), which are furthest apart around 40◦W, exactly where

the strongest seasonal difference occurs.

The seasonal pCO2 variability between east and west is further shown in figure 3.9.

The Hovmöller contour plots in figure 3.9 were created by plotting the pCO2 of every 1◦

longitude step from each polynomial derived from equation 3.3. Figure 3.9 illustrates the

seasonal variability and the variability along the line from the west to the east following

the example shown by Cooper et al. (1998). Along both transects, the North Atlantic

subtropical gyre region (∼ 24◦W to 55◦W) shows a clear temperature driven seasonal

pattern with high partial pressures in summer, whereas the most eastern longitudes show

an anti–phased seasonal cycle, as clearly seen along the northbound transect. The sea-

sonal maximum of the most western longitudes is shifted from summer at the southbound

transect to autumn at the northbound transect. However, there is ∼ 6◦ in latitude and ∼

10◦ in longitude difference between the port of arrival and the port of departure in the

Caribbean. The borders, where these changes in the seasonality occur, coincide with the

changes in the DIC/TALK ratio investigated in section 3.2.4.
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In order to investigate the drivers of the pCO2 variability along the UK–Caribbean

line, the changes in the sea surface pCO2 were split up into components as suggested by

Takahashi et al. (1993) (see equation 1.17). East to west modifications in the pCO2 result-

ing from temperature changes are computed using equation 1.18 as reported by Takahashi

et al. (1993). DIC and TALK as well as salinity normalized TALK (sTALK) and DIC

(sDIC), to compute the effect of freshwater forcing (FRESH), are derived from the ap-

proximations of Lovenduski et al. (2007):

∂pCO2

∂DIC
·∆DIC =

sDIC

s0
· ∂pCO2

∂DIC
·∆s +

s

s0
· ∂pCO2

∂DIC
·∆sDIC (3.4)

∂pCO2

∂TALK
·∆TALK =

sTALK

s0
· ∂pCO2

∂TALK
·∆s +

s

s0
· ∂pCO2

∂TALK
·∆sTALK (3.5)

∂pCO2

∂FRESH
·∆FRESH =

sDIC

s0
· ∂pCO2

∂DIC
·∆s +

sTALK

s0
· ∂pCO2

∂TALK
·∆s (3.6)

where:

∂pCO2

∂DIC
=
pCO2

DIC
· γDIC (3.7)

∂pCO2

∂TALK
=

pCO2

TALK
· γTALK (3.8)

with:

γDIC ≈
3 · TALK ·DIC− 2 ·DIC2

(2 ·DIC− TALK) · (TALK−DIC)
(3.9)
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Figure 3.10: Sea surface pCO2 changes plotted against longitude for the southbound (a)–(d) and
the northbound (e)–(h) transects for each season from spring (top) to winter (bottom). The pCO2

changes along the lines are split up into changes of the driving components, namely DIC (red),
TALK (black), freshwater fluxes (FRESH – green) and SST (magenta). All changes are plotted
relative to the first measurement in the east

γTALK ≈ −
TALK2

(2 ·DIC− TALK) · (TALK−DIC)
(3.10)

The change in the sea surface pCO2 along the line from the east to the west for each season

and both southbound and northbound voyage are illustrated in figure 3.10. Takahashi et al.

(1993) proposed a 4% change in the sea surface pCO2 per ◦C warming of the surface

water. This is reflected in a pCO2 change > 200 µatm from the east to the west in all

seasons and along both transects. In contrast, freshwater changes only have a minor effect
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on the sea surface pCO2.

The temperature effect on the pCO2 appears to be largely balanced from the east to the

west by the DIC contribution along the northbound transect. Similar to SST, variations in

DIC lead to pCO2 changes of < –200 µatm between the east and the west. These DIC

shifts are however not linear, particularly along the southbound transect. The steady DIC

concentration in the subtropical gyre is linked to the long residence time of carbon and the

limited effect of mixing and biology. Hence, the contribution of DIC on the pCO2 change

is small in the mid longitudes, in particular along the southbound transect.

Increasing TALK concentrations from the east to the west, driven by the evapora-

tion/transpiration ratio, resemble a reduction of free protons, resulting in a decrease in the

sea surface pCO2 along the line. Throughout all seasons, the TALK effect on sea sur-

face pCO2 changes reaches magnitudes similar to those driven by DIC, but is particularly

strong in the subtropical gyre. In summer, along both transects, the TALK effect exceeds

the DIC effect, counteracting the temperature driven increase in sea surface pCO2.

The water mass furthest to the west (west of 55◦W) has been linked to freshwater input

in the previous sections. The water balance effect changes DIC proportionally to TALK,

resulting in a low net freshwater effect on the sea surface pCO2, which is in agreement

with Takahashi et al. (1993).

3.4 Summary and conclusion

A total of 325 bottle samples was collected on–board M/V Benguela Stream during four

field campaigns between April/May 2012 and January/February 2013, with each voyage

representing one of the four seasons. TALK and DIC content of the bottle samples were

analysed during two laboratory campaigns using a VINDTA 3C analysing system.

The DIC/TALK ratio reveals three distinct water masses along the UK–Caribbean

line. The DIC/TALK ratio decreases linearly within all water masses as a function of

temperature, indicating its influence on the DIC concentration throughout large parts of

the crossings. Changes in salinity, linked to evaporation/transpiration changes, are ex-

pected to likewise change the TALK concentration, whereas DIC is expected to show

only a minor response to salinity changes. This is well pronounced in water masses east

of 55◦W, but not the water mass furthest west, where DIC and TALK decrease equally,
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linked to the entrainment of freshwaters. Biological production only plays a role in the

water mass furtherst to the east (east of 24◦W)

The analysed DIC and TALK data further form the basis to calculate the sea surface

pCO2. The calculated pCO2 values agree well with the available quality controlled data

obtained from the underway system installed on M/V Benguela Stream. For each cross-

ing, i.e. southbound and northbound, the pCO2 data again clearly show the three distinct

regions. The first, west of 55◦W, shows an autumn maximum of sea surface pCO2. The

second, from 24◦W to 55◦W, shows a temperature driven gyre seasonality with the lowest

partial pressures in the cooler winter and spring months and pCO2 maximum in sum-

mer. Here, the seasonal amplitude reaches ∼ 80 µatm. The third region, east of 24◦W

(north of ∼ 40◦N), shows the reversed seasonal cycle of the mid longitude water mass

with high partial pressures in winter and spring and lower partial pressures in summer

and autumn, as illustrated in figure 3.9. This region is part of the transition zone between

the temperature dominated subtropical waters and the biologically driven subpolar waters

(Takahashi et al., 2002). DIC and TALK changes counteract the temperature driven pCO2

increase along the line, with contributions to the pCO2 change < –200 µatm (compared

to temperature driven changes > 200 µatm).

Bottle measurements along the UK–Caribbean line illustrate the close match between

calculated sea surface pCO2 and those measured via infra–red absorption, confirming the

robustness of current measurement standards. The bottle samples provide the basis for

a quantitative assessment on the variability of the sea surface pCO2 along the ship route

regarding its temperature, salinity, TALK and DIC dependency. Hence, discrete bottle

samples form an accurate basis to investigate the sea surface pCO2, its variability and

drivers along the UK–Caribbean line.



Chapter 4

Seasonal to inter–annual variability

of the Atlantic Ocean carbon sink

”Science cannot solve the ultimate mystery of nature.

And that is because, in the last analysis, we ourselves

are a part of the mystery that we are trying to solve.

(Max Planck)
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In this chapter the 1◦×1◦ monthly estimated pCO2 and air–sea flux fields derived

from the 2–step neural network method (SOM–FFN) introduced in chapter 2 are pre-

sented for the Atlantic Ocean from 1998 through 2007. At first the quality of the pCO2

product is determined by examination of the pCO2 residuals, defined as the difference

of the SOM–FFN pCO2 estimates and gridded observations of the SOCAT v1.5 database

(Sabine et al., 2013), in both time and space. In a second, more robust test the SOM–FFN

estimates are validated with independent timeseries products and data from the updated

version of the SOCAT database (version 2). The residuals further form the basis for an

in–depth uncertainty analysis of the air–sea gas flux. The decadal and seasonal mean re-

sults, computed from the pCO2 estimates and the CO2 flux are illustrated, and it is shown

that they are consistent with recent studies. Finally, a pCO2 and CO2 flux trend and inter–

annual variability analysis is conducted in the Atlantic Ocean, the North Atlantic and the

South Atlantic sub–basins, within the considered time period.

4.1 Residuals and validation

A first check to test the quality of the neural network estimates is to look at the residuals.

The combined SOM–FFN method obtains good fits with an overall mean r2 between the

fitted pCO2 and the gridded Atlantic Ocean SOCAT v1.5 data of 0.87 and a root mean

squared error (RMSE) of about 10 µatm (table 4.1). The overall bias is small (–0.10

µatm). Similar results apply to each year individually, indicating that the temporally

inhomogeneous data distribution does not have a measurable effect on the estimates for

each year.

The residuals are not entirely randomly distributed in space. As shown in figure 4.1

(a), the temporal mean residuals in each pixel show generally low values in the open

ocean region, but tend to increase towards the fronts. The strongest model–observation

discrepancies occur in the Equatorial Atlantic, along the Gulf Stream and North Atlantic

Current as well as in the Norwegian, Greenland and the North Seas (see figure 1.5), i.e.,

mostly in regions with relatively strong horizontal gradients in surface ocean pCO2.

The standard deviation of the residuals (figure 4.1 (b)) shows that the highest temporal

errors occur again in the high latitudes of the North Atlantic, in particular the Norwegian

and North Sea, as well as along the North American coastline and in the eastern South
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Table 4.1: Statistical measures of the comparison of the neural network–based estimates of pCO2

with the SOCAT v1.5 gridded observations (Sabine et al., 2013) in the Atlantic Ocean from 44◦S
to 79◦N and west of 30◦E

Period r2 RMSE [µatm] bias [µatm] # data
1998-2007 0.87 9.89 -0.10 20003

1998 0.93 7.15 -0.18 583
1999 0.89 9.35 1.62 186
2000 0.78 11.14 -0.19 178
2001 0.83 11.48 -0.87 566
2002 0.87 8.98 0.22 1941
2003 0.87 7.47 -0.11 1963
2004 0.87 8.13 -0.14 2729
2005 0.88 9.52 -0.43 3575
2006 0.85 11.51 -0.10 4280
2007 0.87 10.89 0.12 4002

Figure 4.1: (a) Temporal mean residuals and (b) standard deviation of the residuals in µatm
between neural network estimates and SOCAT v1.5 gridded observations (Sabine et al., 2013) for
the period from 1998–2007. Pixels that have a value in (a) but not in (b) indicate where only 1
observation in time is available.

Atlantic between 0 and 30◦S. This indicates that the model input parameters are not able to

predict all the temporal variability occurring in these regions with known biogeochemical

complexity.

To test the impact of the inhomogeneous distribution of the neural network input data

and pCO2 observations, the residuals are further shown as a function of the input vari-

ables (figure 4.2). It is shown that residuals are independent of the magnitude of the
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Figure 4.2: Residuals as a function of (a) fitted pCO2, (b) atmospheric pCO2, (c) sea–surface
temperature (SST,) (d) natural log of surface chlorophyll (log(CHL)), (e) natural log of mixed
layer depth (log(MLD)), and (f) sea–surface salinity (SSS). The upper plot in each panel depicts
the residuals, shown as a box–and–whiskers plot. The red line in the box show the median, the
blue–outlined box indicates the 25 and 75 percentiles and red plusses mark residuals outside this
interval. The lower plot shows the relative number of observations within each bin.

estimated pCO2, and also do not show any dependence on the magnitude of the inde-

pendent variables. Each bin median of the residuals is close to zero, with the strongest

spread occurring in the low pCO2 bins around 275 µatm which coincides with low SST at

around 5◦C and high log(CHL) concentrations at around –0.25 to 1.25 mg·m−3. Figure

4.2 further shows that large residuals, most of which stem from regions characterized by
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Figure 4.3: Sea surface pCO2 from neural network (NN) estimates and time–series stations: (a)–
(b) from the BATS Hydrostation ”S” (Bates, 2007; Gruber et al., 2002) and (c)–(d) from the
ESTOC (González-Dávila et al., 2007) timeseries stations. In (a) and (c) the actual timeseries data
are compared, while in (b) and (d), the long–term mean seasonal cycle is evaluated. Grey shading
shows the uncertainty of the neural network estimate based on its RMSE in (a) and (c), and the
average RMSE in (b) and (d). Red shading shows the standard deviation of the mean seasonal
cycle for each timeseries station. The deseasonalysed timeseries (monthly timeseries minus mean
seasonal cycle) at BATS and ESTOC are illustrated in plots (e) and (f) respectively. Linear fits are
illustrated by the dashed lines and the slope of each fit is shown in the figure legend).

strong horizontal pCO2 gradients, are independent of the data density.

The residuals indicate that the combined SOM–FFN method fulfils most tests for a

good fit and does not contain any major biases. In particular, there is no indication of a

substantial degeneration of the fits as a function of data density. Regions with high spatial

or temporal variability are the least well fitted, while the fits for most of the less variable

open ocean are very good.
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4.2 Validation with independent observations

A second and more robust test of the model’s ability to predict basin wide pCO2 fields

was conducted by comparing output values to independent data. To this end the network–

based pCO2 estimates are compared with observations from two timeseries stations in

the subtropical North Atlantic, i.e., the combined record from BATS (Bermuda Atlantic

Time Series Station) and Hydrostation ”S” (Bates, 2007; Gruber et al., 2002) located in

the northwestern Sargasso Sea near Bermuda (32.17◦N, 64.50◦W), and the European Sta-

tion for Time Series in the Ocean (ESTOC, e.g. González-Dávila et al., 2007) located

in the eastern subtropical gyre near the Canary Islands (29.04◦N, 15.5◦W). Sea surface

pCO2 at BATS has been calculated from the reported DIC and TALK concentrations us-

ing CO2SYS as explained in section 3.3.1 of this thesis. These stations provide near

monthly coverage over the time period estimated by the neural network method. At ES-

TOC, pCO2 is reported, however, it is not directly measured, but calculated from directly

observed carbonate system parameter. In months where more than one measurement was

taken at each timeseries station, the average value was used to compare the sea surface

pCO2 to the SOM–FFN estimates. Furthermore, SOM–FFN estimates are not centred

at the exact geographical position of both timeseries stations, therefore the four closest

surrounding 1◦×1◦ grid–boxes are interpolated to the exact location of the timeseries sta-

tions, weighted by their distance.

Figure 4.3 shows the comparison between the neural network estimates with both

timeseries for the period between 1998 through 2007 and the mean seasonal cycle within

this period. While the phase of the seasonal cycle is captured well, figure 4.3 shows

that the neural network estimates in general overestimate the pCO2 in winter at Bermuda

from January to April and underestimate the autumn maxima at ESTOC from August to

November. This underestimation of the seasonal amplitude is likely linked to the valida-

tion approach which was implemented to prevent the neural network from overtraining

(see chapter 2). The neural network estimates further show a decrease in the summer sea

surface pCO2 in the eastern subtropical gyre (figure 4.3 (c)) from 2005 onwards which is

not seen in the ESTOC data. The decadal mean difference between BATS data and neural

network estimates is 7.56 µatm with a root mean squared error (RMSE) of 17.53 µatm.

Similar to BATS, the decadal mean difference between ESTOC data and the estimates in
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this study is –8.06 µatm with an RMSE of 16.85 µatm.

Figure 4.3 (e) and (f) shows the deseasonalysed (monthly timeseries minus mean sea-

sonal cycle) for both stations and dashed lines represent the linear fit to the data. It can

be clearly seen that there is substantial high frequency variability at both stations. The

linear fit suggests a stronger increase in sea surface pCO2 at BATS and a lower increase

at ESTOC. The differences in the trend mainly stem from the first years of the analysis

period where the least amount of data exist to train the neural network, however, given

the strong variability in both the timeseries data and the neural network estimates, none

of the linear trend lines are statistically different from 0.

As a last test, data from the recently updated SOCAT v2 database (Bakker et al.,

2014) are used, which provides new independent data points within the study period to

validate the results. An additional 3065 gridded observations, spread over the entire At-

lantic Ocean have been added for the study region from 1998 through 2007, equivalent

to an extra 15% of the total number of data in the Atlantic Ocean used to train the neural

network. Figure 4.4 shows the temporal mean and standard deviation of the residuals,

similar to figure 4.1. The largest misfit between the network estimates and the SOCAT

v2 observations can be identified along the Gulf Stream and North Atlantic Current, con-

firming that the method has difficulties to fully capture all variability within this region.

Overall, the neural network estimates have a RMSE of 22.83 µatm and a bias of 4.85

µatm. When excluding data north of 40◦N, where the largest misfits are obtained, the

results improve with a RMSE of 16.29 µatm and a mean difference of –1.12 µatm similar

to the numbers obtained from the independent timeseries stations. This suggests that over

most of the ocean, the SOM–FFN method succeeds in predicting the observed pCO2 at

any given time and place to within about 22 µatm, and a bias of a few µatm.

4.3 Uncertainty of the air–sea flux

The uncertainty of the air–sea CO2 flux stems from the error in the estimated ∆pCO2 and

the uncertainty of the gas transfer coefficient (Takahashi et al., 2009). This uncertainty is

estimated for the integrated flux over 4 RECCAP/Ocean Inversion regions (see table 4.2

for region borders Gurney et al., 2008) rather than for each 1◦×1◦ grid–cell.

The ∆pCO2 estimate is subject to two main sources of errors, i.e., the error derived
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Figure 4.4: (a) Temporal mean residuals and (b) standard deviation of the residuals in µatm be-
tween neural network estimates and independent data points obtained from the SOCAT v2 gridded
observations (Bakker et al., 2014) for the period from 1998–2007. Pixels that have a value in (a)
but not in (b) indicate where only 1 observation in time is available.

from discretizing the original observations into monthly 1◦×1◦ bins and the error of the

neural network method to interpolate the data in time and space. There are sources of

uncertainty, such as the pCO2 measurement error that are not accounted for here, as they

are assumed to be small compared to accounted sources of uncertainty.

For the discretizing error assosiated with the gridding of the observations, a value of 5

µatm is used as reported by Sabine et al. (2013), while the RMSE value of about 10 µatm

(see table 4.1) is adopted for the interpolation error. When computing next the error of the

mean over a larger scale regions, it is inappropriate to assume that each of the estimates is

independent, as these errors are spatially correlated, hence the effective number of degrees

of freedom has to be adjusted to those grid boxes, that are not correlated.

To estimate the discretization error associated with gridding for each RECCAP/Ocean

Inversion region, the spatial decorrelation length scale of 400 km estimated by Jones et al.

(2012) is used to compute the effective number of degrees of freedom. The uncertainty

of the mean is then estimated by dividing the standard deviation by the square root of this

number. The effective number of degrees of freedom is the number of data points that are

not correlated, i.e. those that have a distance further than the given decorrelation length.

This results in an uncertainty between 1 µatm and 2 µatm for the individual regions.
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To estimate the spatial mean of the neural network error for each RECCAP/Ocean In-

version region, the spatial correlation is estimated by analysing the semi–variogram of the

pCO2 residuals (see e.g. Kalkhan, 2011). For each RECCAP/Ocean Inversion region (see

table 4.2 for region borders), the pCO2 residuals are first divided into 5 randomly cho-

sen mutually–exclusive ensembles, with the exception of the subtropical North Atlantic,

where a total of 10 ensembles is used, due to the larger amount of data. These ensembles

are random subsamples of the entire residual pool. For each ensemble, the semi–variance

of the residuals and their point–to–point Haversine distance matrix is computed, and then

an exponential function of the form:

y = a+ b · exp

(
−x
c

)
(4.1)

is fitted to the semi–variogram in order to estimate the correlation length (parameter c)

between the residuals. The variables a, b and c are adjusted to minimize the misfit be-

tween the distance variable (x) and the semi–variance (y). The semi–variograms are very

sensitive to extreme values of the residuals. Therefore, Chauvenet’s criterion (see e.g.

Glover et al., 2011) is used to reject extreme values prior to the computation and the fit.

The potential biasing effect of their removal is accounted for by using several different

ensembles per region.

Figure 4.5 shows the semi–variograms of all ensembles in the Atlantic Ocean. Cor-

relation lengths of the residuals vary between 9 km, where the ensembles are well below

the distance between 2 neighbouring grid boxes, and 532 km. However, in all cases the

semi–variogram shows a large lag 0 correlation, (semi–variance at 0 km distance varies

between 20–60 µatm2 within the different ensembles in the different regions) indicating

the residuals within one grid cell are correlated with each other, leading to a substantial

reduction of the degrees of freedom. Similar to the discretizing error the uncertainty of

the mean is then estimated by dividing the RMSE of 10µatm by the square root of the

effective number of degrees of freedom, i.e. those grid boxes that have a distance further

than the calculated decorrelation length. This results in an uncertainty estimate between

different regions ranging from 1 µatm to nearly 4 µatm.

Adding the error from the gridding and the neural network together, and assuming a
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Figure 4.5: Empirical semi–variograms of randomly chosen ensembles of the residuals as a func-
tion of distance in (a) the subpolar North Atlantic with a median decorrelation length of 430 km,
(b) subtropical North Atlantic with a median decorrelation length of 166 km, (c) the Equatorial
Atlantic with a median decorrelation length of 532 km and (d) the South Atlantic with a median
decorrelation length of 9 km. Region borders are listed in table 4.2.

mean error of 0.2 µatm for the atmospheric pCO2 (Takahashi et al., 2009), yields a total

∆pCO2 error for the 4 regions between 2 and 6 µatm. With a mean gas transfer rate in the

Atlantic Ocean of 0.05 mol C · m−2 · yr−1 · µatm−1 (Takahashi et al., 2009) this results

in a flux error between ±0.03 and ±0.06 Pg C · yr−1 for the individual RECCAP/Ocean

Inversion regions and an overall basin error of ±0.07 Pg C · yr−1 calculated by standard

error propagation.

Furthermore, following Sweeney et al. (2007), a random error of 30% in the gas–

transfer velocity is assumed. For the long term mean estimate of the Atlantic Ocean

(–0.45 Pg C · yr−1 from 44◦S to 79◦N and west of 30◦E) the error due to the piston

velocity uncertainty is ±0.13 Pg C · yr−1. This results in a total uncertainty estimate for

the Atlantic Ocean of ±0.15 Pg C · yr−1, or roughly 33%, with the largest contribution

stemming from the uncertain gas transfer velocity.



4.4 Decadal mean pCO2 and air–sea CO2 flux 99

Figure 4.6: Maps of (a) the decadal mean surface ocean pCO2 and (b) the CO2 flux density in mol
C · m−2 · yr−1 for the Atlantic Ocean. Negative flux densities indicate CO2 uptake by the ocean.

4.4 Decadal mean pCO2 and air–sea CO2 flux

The decadal mean sea surface pCO2 (figure 4.6 (a)) shows lowest values in the northern

North Atlantic, especially the Labrador Sea, the Greenland Sea and the Norwegian Sea

with pCO2 below 320 µatm and in the mid latitudes, along the Gulf Stream and North

Atlantic Current (see figure 1.5) and in the South Atlantic south of 30◦S. The highest

pCO2 values can be identified in the Equatorial Atlantic, in the North Atlantic along the

North Equatorial Current and the tropical and subtropical South Atlantic northwards of

30◦S. Further high values are estimated at 60◦N around the Irminger Basin and 30◦N in

the subtropical North Atlantic along the Canaries Current.

The high equatorial pCO2 area appears to be strongly asymmetric, in agreement with

previous studies (Takahashi et al., 2009). Bakker (1998) investigates the relation between

the surface ocean circulation, as well as heat exchange, and the sea surface fCO2 pat-

tern. Bakker (1998) draws the conclusion, that northwards of the Equator, the northwards

transport of high fCO2 waters along the Equatorial Current, and rainfall within the inter–

tropical convergence zone contribute to the asymmetric distribution. Southwards of the

Equator the subtropical gyre experiences a heat gain, hence the high sea surface fCO2,
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whereas in the northern hemisphere, the subtropical gyre describes a net heat loss re-

gion. Similar as described in Bakker (1998), warming of surface waters increases the

pCO2 along the Canaries Current in the northern hemisphere, and the Benguela Current

in the southern hemisphere. In contrast, North Atlantic Current waters move northwards

and initially high pCO2 decreases towards the north, linked to the cooling of the surface

water.

The decadal mean pCO2 distribution from the neural network method is generally very

similar to that estimated by Takahashi et al. (2009), with some important exceptions (fig-

ure 4.7). To produce this comparison plot, the estimates are binned to the same resolution

(4◦×5◦) as the original climatology of Takahashi et al. (2009). Furthermore, the estimates

are corrected to the year 2000 by subtracting 4.5 µatm on the basis of the assumption that

the surface ocean follows an atmospheric trend of 1.5 µatm per year (Takahashi et al.,

2009) and the fact that the estimate is centered around 2003. The strongest differences

can be identified in the high latitudes of the North Atlantic within the Labrador Sea, the

Greenland Sea and the Norwegian Sea. For the entire Atlantic a mean difference of 0.38

µatm and a RMSE of 6.45 µatm is calculated. In the South Atlantic, the largest differences

occur, where the least amount of observations are available.

Given the overall small bias and the low RMSE between the two different methods

to interpolate the data, it appears that the long–term mean surface ocean pCO2 can be

robustly estimated from the available observations.

The CO2 flux density (figure 4.6 (b)) largely follows the pCO2 pattern, although with

some notable differences. Overall, the North Atlantic is a strong sink for atmospheric CO2

in the mid and high latitudes, whereas the low latitudes act as a source for atmospheric

CO2. The strongest CO2 uptake in the North Atlantic occurs along the Gulf Stream and

the North Atlantic Current, as well as in the Labrador, Norwegian, and Greenland Seas,

and in the South Atlantic south of 30◦S.

The estimates suggest a decadal mean flux of –0.44±0.15 Pg C · yr−1 for the Atlantic

Ocean from 44◦S to 76◦N and 100◦W to 19◦E (–0.45±0.15 Pg C · yr−1 from 44◦S to

79◦N and west of 30◦E). This is in good agreement with Schuster et al. (2013) who

provided a ”best” estimate of –0.49±0.11 Pg C · yr−1 (derived from the mean fluxes of

the pCO2 climatology and the Ocean Inversion fluxes within the RECCAP project).
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Table 4.2 lists the long–term mean fluxes for the Atlantic Ocean as well as for the

four individual ocean RECCAP/Ocean Inversion regions considered by Schuster et al.

(2013). While the basin average flux is well within the uncertainty range of the best

estimate from Schuster et al. (2013), the subtropical North Atlantic (18◦N to 49◦N) mean

flux is just outside the uncertainty range of the RECCAP best estimate, however their

combined uncertainties overlap. In general, the neural network fluxes are close to those

of the pCO2 climatology of Takahashi et al. (2009) with the exception of the subtropical

South Atlantic (44◦S to 18◦S) where the long term mean flux is closest to the results of

the Ocean Inversion and the Ocean Biogeochemical Models. The main carbon sink region

is estimated to be the high latitude North Atlantic with strong uptake throughout the year

and a decadal average uptake of –0.20±0.07 Pg C · yr−1, with general agreement between

methodologies.

It has to be noted here that there is a mix between methods, and they are strictly not

comparable (descriptions as well as strengths and weaknesses of each method individu-

ally have been introduced in section 1.2.1 and section 1.6). Observation–based estimates

(e.g. Takahashi et al., 2009) and atmospheric inversions provide an estimate of the con-

temporary air-sea flux, while process based model estimates provide an estimate of the

anthropocentric air-sea CO2 flux including carbon derived from river output. One would

therefor expect somewhat stronger model fluxes, however, table 4.2 reveals the weakest

carbon uptake by the ocean models. On the one hand this might indicate that the actual

discrepancy between model and observation based estimates is actually larger than it ap-

pears in table 4.2, but on the other hand also could indicate that the Atlantic Ocean river

input of carbon is much smaller than estimated on a global scale.

In chapter 2, four sensitivity runs were introduced, where the input data products were

replaced, in order to test the sensitivity of the results to the product chosen. Comparing

the decadal mean flux of –0.45±0.15 Pg C · yr−1 (from 44◦S to 79◦N and west of 30◦E)

to the results derived from the sensitivity runs SR1–4 reveals that the choice of input

data products does not significantly influence the long term mean result (see table 4.3).

The decadal mean fluxes from the sensitivity runs range from –0.41±0.14 (SR2) up to

–0.48±0.16 Pg C · yr−1 (SR4) and are therefore well within the estimated uncertainty

range.
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Figure 4.7: Difference in the surface ocean pCO2 in µatm between the decadal mean neural net-
work estimates (this study), corrected to the year 2000, and the estimates from the climatology
of Takahashi et al. (2009). Positive differences indicate higher pCO2 for the neural network es-
timates. The neural network estimates have been interpolated to the 4x5 ◦ grid of the Takahashi
climatology.

Table 4.3: Summary of the sensitivity runs as described in section 2.1.2 (SR1 – SSS climatology;
SR2 – MLD climatology; SR3 – SODA SST and SR4 – no chlorophyll–a) in comparison to the
SOM-FFN standard run, including temporal mean CO2 flux, flux trends and the standard deviation
of the inter–annual variability (std(IAV)). Results indicate that the sensitivity runs are within the
combined uncertainty, i.e., are not statistically different from the standard run, with the exception
of the CO2 flux trend of SR2, indicating the sensitivity of the method to changes in the mixed layer
product.

sensitivity run temporal mean CO2 flux CO2 flux trend std(IAV)
[Pg C · yr−1] [Pg C · yr−1 · decade−1] [Pg C · yr−1]

standard run -0.45±0.15 -0.15±0.04 ±0.036
SR1 -0.44±0.14 -0.19±0.03 ±0.029
SR2 -0.41±0.14 -0.26±0.03 ±0.031
SR3 -0.44±0.15 -0.14±0.04 ±0.036
SR4 -0.48±0.16 -0.23±0.04 ±0.036

4.5 Seasonality

The seasonal cycle of the 10–year mean sea surface pCO2 exhibits strong latitudinal dif-

ferences (figure 4.8). The weakest seasonal signals are found north of 60◦N, south of 40◦S

and near the Equator from 10◦S to 10◦N. The temperate North Atlantic (40◦ to 60◦N) has

a distinct seasonal cycle with high pCO2 from October to April and low values from May
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Figure 4.8: Hovmöller plot of the zonally averaged long term mean seasonal cycle of (a) pCO2 in
µatm and (b) the CO2 flux density in mol C ·m−2 · yr−1. Negative (blue) fluxes indicate an ocean
CO2 sink.

Figure 4.9: Zonally averaged difference in the long term mean seasonal cycle of the surface ocean
pCO2 between the neural network estimates (this study), corrected to the year 2000 and those from
the climatology of Takahashi et al. (2009). Positive differences indicate higher partial pressures of
CO2 in the neural network based estimates.

to September. By contrast, the subtropical Atlantic between 10◦N to 40◦N and 10◦S to

40◦S has low partial pressures in winter and a seasonal maximum in the warmer summer

months.

The mean seasonal cycle of the neural network–based estimates of the sea surface

pCO2 agrees relatively well with the seasonal cycle estimated by Takahashi et al. (2009),

but substantial differences exist at the regional level (figure 4.9). Again, the SOM–FFN

estimates are corrected to the year 2000 in order to be comparable. The strongest differ-

ence can be identified in the high latitude North Atlantic, where a stronger seasonal cycle
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Figure 4.10: Hovmöller plots of the mean seasonal cycle of the zonally averaged sea surface pCO2

driven by (a) the non–thermal component, such as changes in circulation, mixing, and biology,
and (b) the thermal component, i.e., the changes in temperature. Figure (c) and (d) show the
non–thermal and thermal component respectively for the Takahashi et al. (2009) climatology. The
decadal mean pCO2 has been added to both components.

is estimated by the SOM–FFN compared to the pCO2 climatology. The SOM–FFN values

are higher in winter and lower in summer, and differences exceed 10 µatm. In comparison,

the differences throughout the Atlantic Ocean are mostly within the calculated RMSE of

the method.

To determine the drivers behind the seasonal cycles, the long–term mean seasonal

cycle of the SOM–FFN results and the Takahashi et al. (2009) climatology are split in

each grid cell into a thermal and into a non–thermal component (see equations 1 and 2 in

Takahashi et al., 2002).

The former is driven by the seasonal changes in temperature and is computed on the

basis of the well known temperature sensitivity of pCO2 (see equation 2 in Takahashi

et al., 1993), i.e., assuming a 4% change in pCO2 per unit change in SST. The same SST

product as used for the network training is employed for the computation of the thermal
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component. The non–thermal component is computed by the difference between the mean

seasonal cycle and the thermal component.

The seasonal cycles of the thermally and non–thermally driven partial pressures tend

to cancel each other (figure 4.10), consistent with previous analyses (Takahashi et al.,

2002; Sarmiento and Gruber, 2006). In both hemispheres the non–thermally driven pCO2

decreases in the warmer summer months due to increasing biological production and re-

duced vertical mixing resulting in increased stratification. The thermally driven seasonal

cycle on the other hand follows the increase in sea surface temperature and causes an

increase in the sea surface pCO2 due to a reduced solubility of CO2. Comparing figure

4.10 with figure 4.8 reveals that the non–thermal seasonal cycle of the sea surface pCO2

dominates over the thermally driven seasonal cycle polewards of 40◦N. In contrast, the

seasonal cycle in the subtropical North and South Atlantic is driven by the thermal pCO2

component. The thermal and non–thermal driven seasonal cycle of the equatorial band

and in the South Atlantic south of 35◦S compensate each other, resulting in little seasonal

variability within each band. This is in good agreement with the climatology of Takahashi

et al. (2009) illustrated in figure 4.10 (c) and (d).

The seasonal cycle of the CO2 flux is largely driven by the seasonal cycle of the

sea surface pCO2 with only modest modifications by the seasonal cycles of wind and

solubility (figure 4.8 (b)). In large areas of the high latitude North Atlantic (∼ 60◦N)

in winter, the sea surface pCO2 is supersaturated, whereas in spring and summer the sea

surface pCO2 strongly decreases due to biological activity. This is less pronounced in the

air–sea flux, due to the seasonal variability of atmospheric pCO2 and winds. The most

negative flux densities, i.e. the strongest uptake of CO2 by the ocean, can be identified in

most northern latitudes and in the subtropics of the northern and southern hemisphere in

winter. The neural network estimates shows a strong seasonal CO2 outgassing in summer

in the northern subtropics, driven by the increasing pCO2, with a 6–month difference in

the southern hemisphere.

4.6 CO2 trends and inter–annual variability

The main driving variable for trends in the sea surface pCO2 is the atmospheric CO2,

but within the study period the neural network estimates show that these trends are not
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Figure 4.11: Maps of linear trends (a) in sea surface pCO2 relative to that in the atmosphere
and (b) in the CO2 flux over the period 1998–2007. The relative trend in sea surface pCO2 was
computed by subtracting the atmospheric mean trend. Areas with cross–hatch indicate where the
trend is outside the 95% confidence level (p ≥ 0.05). Trends were derived by first applying a 12
month running mean to each pixel to deseasonalize the data and then calculating the slope of a
linear fit to these deseasonalized data.

in parallel. Across large areas of the Atlantic, the 10–year trend of surface ocean pCO2

is estimated to be lower than that of atmospheric pCO2 (figure 4.11 (a)), but there are

notable exceptions. In this plot, the atmospheric pCO2 trend has been subtracted from

the long–term mean sea surface pCO2 trend for each 1◦×1◦ pixel, so that positive values

indicate a rate of sea surface pCO2 increase faster than of the atmosphere and vice versa

for negative values. Table 4.1 shows that the bias between estimates and observations is

fairly constant at each year individually, suggesting that trends are captured well where

observations exist.

The strongest increase in ocean surface pCO2 relative to that in the atmosphere is

found in the North Atlantic poleward of 40◦N along the Gulf Stream and North Atlantic

Current. Here, the neural network suggests an increase in sea–surface pCO2 of more than

twice the atmospheric increase. Metzl et al. (2010) investigated the sink trend over a

similar time period (2001 to 2008) in the North subpolar gyre (53◦N to 57.5◦N, 45◦W

to 35◦W and 57.5◦N to 62◦N, 40◦W to 25◦W). These authors found a particularly strong

increase in the winter sea surface fCO2 of 5.8±1.1 and 7.2±1.3 µatm · yr−1. While this

is much stronger than suggested here (see figure 4.11), both studies agree on the North
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Atlantic subpolar gyre having a trend towards a stronger increase of the sea surface pCO2

over the ∼2000 to ∼2007 period. McKinley et al. (2011) found a similar trend toward a

weaker undersaturation in their subtropical seasonally–stratified region around 40◦N for

the period 1993 until 2005, but did not identify a significant trend in the subpolar gyre

over the same period. This may reflect differences in the time period, as their analyses

with an earlier start, i.e., pre 1990, also suggest a trend toward a weaker undersaturation.

Decadal trends in surface ocean pCO2 in the Labrador Sea and some parts of the

Icelandic Sea were much smaller than in the atmosphere, leading to an overall small trend

for the entire region north of 40◦N. As the low latitudes of the North Atlantic (0 to 40◦N)

have close to zero trend relative to the atmosphere, the entire North Atlantic pCO2 trend

of 1.80±0.77 µatm · yr−1 is also very close to that of the atmosphere of 1.90±0.34 µatm

· yr−1 from 1998 through 2007.

As expected from the uptake of anthropogenic CO2 by the surface ocean, the majority

of the ocean pCO2 trend stems from the non–thermal part, i.e., the increase in surface

ocean DIC. Splitting the trend into thermal and non–thermal component shows on aver-

age a linear trend of 1.46±1.75 µatm · yr−1 for the non–thermal component, while the

thermally driven trend is on average 0.37±1.47 µatm · yr−1. However, given their uncer-

tainty, they are not statistically different from zero. The small difference in the increase in

surface ocean pCO2 relative to the atmosphere results in an almost steady strength of the

Atlantic carbon sink over time north of the Equator (–0.01±0.02 Pg C · yr−1 · decade−1).

Trends for the South Atlantic show a weaker increase in the sea surface pCO2 relative

to the atmosphere with the exception of the eastern South Atlantic and parts along the

South American coast. On average, surface ocean pCO2 increased only by 0.98±0.97

µatm · yr−1 over the 1998 through 2007 period, resulting in a carbon sink increase of

–0.14±0.02 Pg C · yr−1 · decade−1. Similar to the North Atlantic, the non–thermal

component of the pCO2 with an average trend of 0.76±1.30 µatm · yr−1 appears to be

stronger compared to 0.19±0.79 µatm · yr−1 of the thermal component, but given their

uncertainty, both trends are again indistinguishable from zero.

Taking the North and South Atlantic together, the trend over the entire study re-

gion is one toward a stronger sink over the 10–year period with an overall mean trend

of 1.46±0.76 µatm · yr−1 and a flux trend of –0.15±0.04 Pg C · yr−1 · decade−1.
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The sensitivity runs (see table 4.3) reveal that trend estimates are barely influenced by

the choice of the input data product, with the exception of SR2, i.e., where the ECCO2

MLD product was replaced with the de Boyer Montegut (de Boyer Montegut et al., 2004)

MLD climatology. While pCO2 trends are statistically indistinguishable between the

neural network estimate (1.46±0.76 µatm · yr−1) and SR1–4 (1.42±0.59, 1.25±0.48,

1.48±0.77 and 1.37±0.73 µatm · yr−1 respectively), this is not always true for the fluxes.

Here, SR2 reveals a flux trend (–0.26±0.03 Pg C · yr−1 · decade−1) outside the com-

bined uncertainty interval with the neural network estimate (–0.15±0.04 Pg C · yr−1 ·

decade−1).

It is not possible to conclude from the data whether the 10–year trends identified here

are part of truly long–term trends (30 years or longer), or whether they are part of decadal

time–scale fluctuations (Thomas et al., 2008; Gruber, 2009; McKinley et al., 2011). The

most recent studies by McKinley et al. (2011) and Fay and McKinley (2013) suggest the

latter to be the case. The authors show that short term trends on timescales similar to this

study are significantly influenced by the chosen start and end year and strongly reflect

climate mode signals such as ENSO and NAO. However, 50–year trends in heat storage

(Levitus et al., 2012) and interior ocean oxygen changes in the North Atlantic (Stendardo

and Gruber, 2012) indicate that this region has been subject to multi–decadal changes,

particularly in the subpolar gyre. It is also tempting to point out that the resulting pattern

of a decreasing sink in large areas of the North Atlantic and an increasing sink in the

South Atlantic appears to be mirrored in the observation of a faster rate of accumulation

in anthropogenic CO2 in the South compared to the North Atlantic (Wanninkhof et al.,

2010). One needs to be careful, though, as the surface ocean trends are for the sum of

natural and anthropogenic CO2, while the ocean interior trends are for anthropogenic

CO2 only.

The largest year–to–year variability in sea surface pCO2 is found within the North

Atlantic north of 40◦N and in the eastern Equatorial and South Atlantic. In contrast, the

subtropics in both hemispheres show much less year–to–year variability.

Integrating the monthly air–sea CO2 flux estimates for each year over the Atlantic

Ocean reveals the largest year–to–year differences during the second half of the study

period (figure 4.12 (a)), where annual mean fluxes range from –0.39±0.13 Pg C · yr−1
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Figure 4.12: (a) Seasonal and annual mean fluxes from 1998–2007 in the Atlantic Ocean (44◦S to
79◦N and west of 30◦E). Dark blue shows the results for the northern hemisphere winter months
(DJF), light blue the spring months (MAM), light red the summer months (JJA), dark red the
autumn months (SON). The annual mean flux is plotted as a black line on top. (b) inter–annual
variability (calculated using a 12 month running mean) for the northern hemisphere (blue line),
the southern hemisphere (red line) and the entire Atlantic Ocean (black line). The decadal mean
has been removed from the IAV.

in 2001 up to –0.56±0.18 Pg C · yr−1 in 2006. Figure 4.12 (b) illustrates the inter–

annual variabilities (IAV) for both hemispheres and the entire Atlantic Ocean. The IAV,

calculated as a 12 month running average, is fairly constant from 1998 to 2004 with a

weak flux decrease in the northern hemisphere counterbalanced by a weak increase in

the southern hemisphere. After 2004 the Atlantic Ocean sink increases mainly due to

increases in the southern hemisphere. The standard deviations of the IAV (calculated as

a 12 month running average and further detrended) for the Atlantic Ocean north of the

Equator, south of the Equator and the entire basin are ±0.02 Pg C · yr−1, ±0.02 Pg C ·

yr−1 and ±0.04 Pg C · yr−1 respectively, which indicates limited inter–annual variability

in the Atlantic Ocean in both hemispheres.

This Atlantic Ocean low variability is further confirmed by the sensitivity runs (see
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Figure 4.13: Annual mean fluxes within (a) 5◦×5◦ boxes along the UK-Carribean line as used by
Watson et al. (2009). Blue bars in (b) indicate the annual average CO2 flux density co-located to
observations and red bars indicate the average flux density for the entire area in (a). Both red and
blue bars are calculated from the SOM-FFN estimates presented in this chapter.

table 4.3), ranging from ±0.03 Pg C · yr−1 (SR1, SR2) to ±0.04 Pg C · yr−1 (SR3,

SR4), indicating that the result is not sensitive with regards to the data choice. This

shows that the main findings are statistically indistinguishable from those derived without

chlorophyll–a (SR4), indicating the possibility to expand the analysis period back in time

in future studies.

Somewhat in contrast to the basin-wide findings here, Watson et al. (2009) found

strong variability along the UK-Caribbean line based on in-situ observations between

2002 through 2007. Figure 4.13 (b) illustrates the findings of this study for the same region

(illustrated in figure 4.13 (a)) as investigated in Watson et al. (2009). Blue bars indicate

the average flux density for only those grid boxes where co-located observations exist, to

be comparable to Watson et al. (2009), whereas red bars show the average flux density

for the entire area, both estimated by the SOM-FFN outputs. Blue bars indicate roughly

0.2-0.3 mol C · m−2 · yr−1 larger uptake fluxes than identified in Watson et al. (2009),

which can be explained by the difference in wind products (CCMP in this study compared

to NCEP/NCAR in Watson et al. (2009)) and gas transfer formulations (Sweeney et al.

(2007) in this study compared to Nightingale et al. (2000) in Watson et al. (2009)). Year–

to–year variabilities within the blue bars, however, compare well with the findings in

Watson et al. (2009), indicating strong variability in the observations that are not reflected

in the basin–wide estimates. This is further confirmed by the red bars. When observations

are extrapolated to the entire area in figure 4.13 (a), a large amount of variability is lost,

resulting in a damping of the uptake minimum minus uptake maximum from ∼ 0.8 mol
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Figure 4.14: (a) Temporal evolution of the pCO2 (in µatm) in the subtropical (20◦N to 30◦N;
40◦W to 50◦W) and (b) in the subpolar box (50◦N to 60◦N; 30◦W to 40◦W). The black line
shows the spatial average pCO2 within each 10◦×10◦ box. Red triangles illustrate the average
sea surface pCO2 from the gridded SOCAT v1.5 database, within each box where observations
are available and the green triangles represent the average of the neural network pCO2 of those
1◦×1◦ pixels which have co–located pCO2 observations in SOCAT v1.5. (c) pCO2 anomalies (left
axis in µatm – detrended and smoothed using a 12 month running average filter) of the SOM-FFN
estimates in (a) and (b) compared to the NAO index (right axis – smoothed using a 12 month
running average filter). The dashed line shows the anomaly for the subtropical box, the dotted line
for the subpolar box and the green line illustrates the NAO index.

C · m−2 · yr−1 (blue bars) to ∼ 0.2 mol C · m−2 · yr−1 (red bars). On the one hand,

this might indicate, that results over larger areas are ”too smooth” and do not reflect the

observed variability, however, on the other hand this also indicates that temporal and

spatial heterogenity of the observations plays an important role and needs to be accounted

for, when estimating the year–to–year variability of the integrated CO2 flux.

Inter–annual variability of the sea–surface pCO2 in the North Atlantic has previously

been linked to variations in the North Atlantic Oscillation (NAO) (e.g. Gruber et al., 2002;

Schuster and Watson, 2007; Thomas et al., 2008). Here, the effect of the NAO is inves-

tigated by focusing on two 10◦×10◦ boxes, one located in the subtropical North Atlantic

(20◦N to 30◦N and 40◦W to 50◦W) and the other in the subpolar North Atlantic (50◦N
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to 60◦N and 30◦W to 40◦W). Figure 4.14 illustrates the pCO2 estimate and their anoma-

lies for each box together with the NAO index. Results show a weak, but significant (p

≤ 0.05) positive correlation in the subtropics (R=0.32) and a negative correlation in the

subpolar box (R=–0.31). This pattern is consistent with that identified by Thomas et al.

(2008) on the basis of a modeling study (see also summary by Gruber (2009), the re-

cent multi–model analysis by Keller et al. (2012), and time–series analyses (e.g Gruber

et al., 2002; Bates, 2007) for the BATS site). The correlation patterns are derived from

the neural network estimates, hence the NAO signal stems from the signal of the input

data. Clearly, an important driver are the NAO–associated SST anomalies, but these are

strongly modified by the various physical and biogeochemical changes that are driven by

the NAO–induced changes in heat fluxes and windstress (see e.g. Keller et al., 2012).

4.7 Summary and conclusion

A novel 2–step neural network approach is used to create monthly ocean surface pCO2

fields from 1998 through 2007 in the Atlantic Ocean using the SOCAT v1.5 pCO2 mea-

surements. Independent testing indicates that the estimates are accurate to within 22.8

µatm for the entire Atlantic Ocean, with an improved fit of 16.2 µatm for data south of

40◦N. The results of this study suggest a decadal mean CO2 flux from 1998 through 2007

of –0.45±0.15 Pg C · yr−1 for the Atlantic Ocean from 44◦S to 79◦N and west of 30◦E.

This result is in good accordance with the recent assessment from the RECCAP project

(Schuster et al., 2013). The strongest seasonal variability in the predicted sea surface

pCO2 and air–sea fluxes was identified within the subtropics in the northern and southern

hemisphere, i.e., the zones where the temperature effect dominates the seasonal cycle of

sea surface pCO2.

Trends in sea surface pCO2 suggest that in large areas poleward of 40◦N the rate of

increase in oceanic pCO2 was faster then the atmosphere, leading to a regional weakening

of the carbon sink strength. However, this is counterbalanced on the basin scale by weaker

surface ocean pCO2 trends elsewhere in the North Atlantic. The South Atlantic, in con-

trast to the North Atlantic, shows an increasing carbon sink strength throughout the study

period. In total, the Atlantic Ocean carbon sink increased by –0.15±0.04 Pg C · yr−1 ·

decade−1 during 1998–2007. The standard deviation of the inter–annual variability of the
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spatially integrated CO2 flux within the study period in the Atlantic Ocean was ±0.04 Pg

C · yr−1 with both low inter–annual variability in the southern hemisphere (±0.02 Pg C ·

yr−1) and in the northern hemisphere (±0.02 Pg C · yr−1).

It would be beneficial to extend the study period to further investigate responses to cli-

mate modes such as the NAO and to investigate multi–decadal variabilities. The absence

of chlorophyll–a permits to prolong the analysis period and this option will be explored in

subsequent work. However, chlorophyll–a is a simple, but important proxy representing

the relation between biology and pCO2 and our results provide no evidence that chloro-

phyll can be neglected when considering longer timescales. Chlorophyll–a is available

from models before the launch of satellite observations, but these products to–date have

not achieved sufficient reliability.

The pCO2 product shows that the data collection and synthesis effort of the marine

carbon community makes it possible to investigate the seasonal to inter–annual variability

of the ocean carbon sink on a basin–scale based on observations. Future measurements

are expected to increase the accuracy of such observation–based estimates, and further

improvements of the methods used to model the observations will result in providing

better historical estimates and more accurate products for these important fluxes.



Chapter 5

Variability of the global ocean

carbon sink

”The brightest flashes in the world of thought are

incomplete until they have been proven to have

their counterparts in the world of fact.”

(John Tyndall)



In this chapter the 2–step SOM–FFN pCO2 and CO2 flux results, derived from the

method presented in chapter 2, are presented for the global ocean from 1998 through

2011. Firstly, the quality of the pCO2 product is determined by examination of the pCO2

residuals, between the SOM–FFN estimates and gridded observations of the SOCAT v2

database (Bakker et al., 2014). Secondly, the SOM–FFN pCO2 estimates are validated

with independent timeseries products. It will be shown that the global ocean contemporary

uptake flux and the anthropogenic CO2 uptake flux, calculated from the ocean net flux

plus the riverine–derivedd carbon flux, are in good agreement with recent studies. In this

chapter, the sea surface pCO2 trends and the CO2 flux variability will be examined for

the global ocean, as well as the four major ocean sub–basins, namely the Atlantic Ocean,

the Pacific Ocean, the Indian Ocean and the Southern Ocean, and the main driver for the

global ocean sea surface pCO2 variability within the study period will be investigated.

Finally, the air–sea CO2 flux estimates will be used to estimate the anthropogenic carbon

budget from 1998 through 2011.

5.1 Residuals and validation

The neural network pCO2 estimates for the global ocean obtain a good fit when compared

to the SOCAT v2 data. Table 5.1 reveals a mean r2 of 0.88, a root mean squared error

of 12.05 µatm and a small overall bias of –0.12 µatm over the entire time period from

1998–2011 for a total of 105196 gridded observations. This good fit further holds for

each year individually with an r2 ranging from 0.84 to 0.90, a RMSE ranging from 9.89

µatm to 15.79 µatm and an annual bias within ±1 µatm (table 5.1).

The temporal mean pCO2 residuals for each pixel, shown in figure 5.1, reveal a non–

uniform distribution in space. The largest model to observation discrepancies occur in the

high latitudes of both hemispheres, in regions with strong horizontal gradients such as on

the Patagonian shelf, in the eastern Equatorial Pacific and the eastern Equatorial Atlantic,

as well as in the Gulf Stream and North Atlantic Current region. Open ocean regions

and gyres show a better fit between the SOM–FFN pCO2 estimates and the SOCAT v2

gridded data product. The spatial patterns in the standard error of the residuals (figure 5.1

(b)) suggest, that these discrepancies have likely been caused by variabilities within the

pCO2 data that are uncorrelated to the variabilities within the chosen set of input data and
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Table 5.1: Statistical measures of the comparison of the neural network–based estimates of pCO2

with the SOCAT v2 gridded observations (Bakker et al., 2014)

Period r2 RMSE [µatm] bias [µatm] # data
1998-2011 0.88 12.05 -0.12 105196

1998 0.89 10.85 0.36 5923
1999 0.87 13.63 -0.07 4039
2000 0.85 15.79 -0.05 4827
2001 0.87 15.61 -0.90 4624
2002 0.88 11.41 -0.12 6582
2003 0.85 11.53 0.08 6993
2004 0.88 11.20 -0.18 8085
2005 0.89 10.91 -0.32 9243
2006 0.88 11.88 0.10 11153
2007 0.87 11.99 -0.37 11111
2008 0.90 11.51 -0.11 9504
2009 0.84 12.86 0.29 9650
2010 0.88 9.98 -0.39 9234
2011 0.88 12.42 -0.11 4228

can therefore not be fully reconstructed.

5.2 Validation with independent observations

To check the goodness of fit of the global SOM–FFN pCO2 estimates, they are com-

pared with available observations from moorings and timeseries stations (available from

http://cdiac.ornl.gov/oceans/Moorings/), which are not included in SOCAT v2 and hence

have not been used to train the feed–forward neural network. The geographical location

and the statistical comparison of all stations can be found in table 5.2. The gridded SOM–

FFN estimates are generally not centred at the exact geographical position of timeseries

stations. Therefore the values at the four closest surrounding grid–boxes are interpolated

to the exact location of the timeseries station, weighted by their distance, to compare them

to each station. The sea surface pCO2 for stations BATS (Bates, 2007; Gruber et al., 2002)

and K2 (Wakita et al., 2010) has been calculated from the reported DIC and TALK con-

centrations using CO2SYS as explained in section 3.3.1 of this thesis. All other timeseries

stations (listed in table 5.2) report either calculated or directly measured sea surface pCO2

or fCO2. If fCO2 was reported it has been converted to pCO2 using equation 2.1, using

reported pressures and temperatures.

In general, root mean squared errors (RMSE) at the different stations are similar to
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Figure 5.1: Temporal mean residuals (a) and standard deviation of the residuals (b) in µatm
between neural network estimates and SOCAT v2 gridded observations (Bakker et al., 2014) for
the period from 1998–2011.

those calculated from the SOCAT v2 dataset (see table 5.1) ranging from 11 to 15 µatm,

with the exception of the Irminger Sea (Olafsson, 2007) and K2 (Wakita et al., 2010)

stations, where the residuals show a larger spread of 25 to 27 µatm. There is a mainly

negative mean offset between the SOM–FFN pCO2 and all independent stations ranging

from –1 µatm up to –7 µatm, with the exception of BATS (Bates, 2007; Gruber et al.,

2002) and K2 (Wakita et al., 2010) where the offset is positive. At stations where the

largest RMSE’s were identified (K2, Irminger Sea) the bias is small. The input parameters
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Table 5.2: Statistical comparison between the neural network estimates, and data from timeseries
and mooring stations. Stations include the Bermuda Atlantic Timeseries Station (BATS) (Bates,
2007; Gruber et al., 2002), the Hawaiian Ocean Timeseries station (HOT) (Dore et al., 2009),
the European Station for Timeseries in the Ocean (ESTOC) (González-Dávila et al., 2007), the
Irminger Sea station (Olafsson, 2007), the PAPA mooring (Sutton et al., 2013) and the K2 time-
series station (Wakita et al., 2010)

Station location time period RMSE [µatm] bias [µatm]
BATS 32.17◦N, 64.50◦W 1998 through 2009 14.57 4.79
HOT 22.75◦N, 158.00◦W 1998 through 2010 11.44 -4.30

ESTOC 29.04◦N, 15.50◦W 1998 through 2009 14.50 -7.15
Irminger 64.30◦N, 28.00◦W 1998 through 2006 24.97 -0.99

PAPA 50.12◦N, 144.83◦W 2007 through 2010 11.70 -6.36
K2 47.00◦N, 160.00◦E 2007 through 2009 26.80 0.63

at these two stations (located furthest north of all stations) are not able to fully reconstruct

the sea surface pCO2 variability, hence the neural network estimate is close to the SOCAT

v2 mean of this region (which resembles the mean at both stations) in order to reduce the

mean squared error between estimates and SOCAT v2 pCO2 observations (see chapter 2).

Figure 5.2 shows the visual comparison between two of the longest running timeseries

stations and the SOM–FFN estimates, i.e., the combined record from BATS (Bermuda At-

lantic Time Series Station) and Hydrostation ”S” (Bates, 2007; Gruber et al., 2002) and

the Hawaiian Ocean Timeseries station (HOT, Dore et al., 2009). Both timeseries stations

provide near monthly coverage over the time period. While the seasonal cycle is fairly

well captured at both stations, the winter minimum at BATS appears to be underestimated

in the SOM–FFN estimates, as identified in the Atlantic Ocean study (chapter 4). It is

remarkable that although the network was trained with data from the SOCAT v2 database

(data marked with blue triangles from the MOSEAN and WHOTS stations), the compar-

ison shows a better agreement with the independent HOT data (figure 5.2 (d)), likely due

to the large amount of data within the same province, hence the MOSEAN and WHOTS

data have less weight. The MOSEAN and WHOTS station data in SOCAT v2 have been

further flagged as bad data in a version 2 release note.

5.3 Uncertainty of the air–sea CO2 flux

Similar to the Atlantic study in chapter 4, the uncertainty of the air–sea pCO2 flux stems

from the error in the estimated ∆pCO2 and the uncertainty of the gas transfer coefficient
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Figure 5.2: Long term seasonal cycle and mean seasonal cycle of the neural network estimates
compared to BATS Hydrostation ”S” (Bates, 2007; Gruber et al., 2002) (a)–(b) and HOT (Dore
et al., 2009) (c)–(d) timeseries stations. Grey shading shows the uncertainty based on the RMSE
of the SOM–FFN estimate. Pink shading shows the standard deviation of the the mean seasonal
cycle for each timeseries station. Blue triangles show co–located observations available in SOCAT
v2. Blue triangles close to the HOT Station are from the combined timeseries of the MOSEAN
and WHOTS stations, whereas data close to the BATS station are from individual cruises.

(Takahashi et al., 2009). Therefore, the global flux uncertainties are based on 3 main

sources, namely the uncertainties derived from the gridding of the underway observations

into 1◦×1◦ bins, The uncertainty derived from the spread between gridded observations

and SOM–FFN pCO2 estimates and finally, the uncertainty of the gas transfer formula-

tion, conducted for the 11 global RECCAP/Ocean Inversion regions. These regions are

illustrates in figure 5.3 based on Gurney et al. (2008).

The discretization or gridding error is estimated using the global mean decorrelation

length scale of 400 km by Jones et al. (2012). Dividing the standard deviation of 5 µatm

as reported by Sabine et al. (2013) by the total number of effective degrees of freedom,

where the effective number of degrees of freedom is the number of data points that are not

correlated, i.e. those that have a distance further than the given decorrelation length. This

results in an uncertainty ranging from about 1 µatm to 2 µatm for the individual regions.

In order to estimate the error derived from the neural network approach for each REC-

CAP/Ocean Inversion region, the spatial correlation is determined by analysing the semi–

variograms of the residuals (see figure 5.4) within each region. For each RECCAP/Ocean

Inversion region, the residuals are first divided into 5 randomly chosen mutually–exclusive
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Figure 5.3: Map of the Ocean Inversion regions as illustrated in Gurney et al. (2008). Ocean
region numbers, as they are used in this thesis, are enlarged for better visualization.

ensembles, with the exception of the subtropical/temperate North Atlantic and the sub-

tropical/temperate North Pacific (regions (1) and (6) in figure 5.3), where a total of 15

ensembles is used, due to the larger amount of data, the subpolar Atlantic Ocean (region

(5) in figure 5.3), where 10 ensembles are used and the northern and souther Indian Ocean

(region (10) and region (11) in figure 5.3), where only 3 ensembles are used, due to the

data sparsity within this region from 1998 through 2011. An exponential function is then

fit to the semi–variogram, according to equation 4.1, resulting in autocorrelation lengths

between 10 km and 957 km for the individual regions. In all cases the semi–variogram

shows a large lag 0 correlation, reducing the effective number of degrees of freedom.

Overall this results in a pCO2 uncertainty for each region individually ranging from 1

µatm to 7 µatm, based on dividing the RMSE of the global residuals (12.05 µatm, see

table 5.1) by the square root of the number of decorrelated data points.

Adding the error from the data gridding and the SOM–FFN mapping together, and

assuming a mean error of 0.2 µatm for the atmospheric pCO2 (Takahashi et al., 2009),

yields a total ∆pCO2 uncertainty for the 11 regions between 2 and 9 µatm. With a global

mean gas transfer rate of 0.05 mol C · m−2 · yr−1 · µatm−1 (not accounting for regional

variability) this results in a flux uncertainty between ±0.02 and ±0.11 Pg C · yr−1 for

the individual regions and a global mean uncertainty of ±0.19 Pg C · yr−1 calculated by

standard error propagation. This is roughly 12% of the estimated SOM–FFN based long

term mean integrated carbon flux (–1.54 Pg C · yr−1), which will be introduced in the
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Figure 5.4: Empirical semi–variograms of randomly chosen ensembles of the residuals as a func-
tion of distance for the 11 RECCAP/Ocean Inversion regions (a)–(k). Correlation lengths range
from 10 km in the South Atlantic (region (8) in figure 5.3) to 957 km in the subpolar North Atlantic
(region (5) in figure 5.3)

subsequent section.

To estimate the uncertainty of the gas transfer velocity, four of the most commonly

used gas transfer velocity estimates from Wanninkhof (1992) (equation 5.1), Wanninkhof

and McGillis (1999) (equation 5.2), Nightingale et al. (2000) (equation 5.3) and Sweeney

et al. (2007) (equation 5.4) are used. These formulations are:
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kw = 0.31 · u2 · (Sc/660)−0.5 (5.1)

kw = 0.0283 · u3 · (Sc/660)−0.5 (5.2)

kw = (0.333 · u+ 0.222 · u2) · (Sc/600)−0.5 (5.3)

kw = 0.27 · (Sc/660)−0.5 · u2 (5.4)

The uncertainty is then computed from the standard deviation of the four resulting flux

densities, leading to a global mean uncertainty of ±0.62 Pg C · yr−1 which is roughly

40% of the long term mean integrated carbon flux (–1.54 Pg C · yr−1, excluding the

Arctic Ocean).

Combining the above uncertainties using standard error propagation yields ±0.65 Pg

C · yr−1 for the long term mean flux estimate, or roughly 42%. This is slightly less than

the suggested 50% by Takahashi et al. (2009).

5.4 Long term mean pCO2 and air–sea flux in the global ocean

The highest pCO2 values can be identified in the tropical zones of the global ocean, par-

ticularly in the eastern Equatorial Pacific upwelling area, the northern Indian Ocean, as

well as along the Californian Current and in the high latitude North Pacific (figure 5.5).

Considering the long term mean pCO2 from 1998 through 2011, these high partial pres-

sure areas are supersaturated resulting in a positive, or outgassing flux, of carbon dioxide

from the ocean into the atmosphere (see figure 5.5). The lowest sea surface pCO2 values

are found in the high latitude North Atlantic, along the Gulf Stream, along the Kuroshio
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Figure 5.5: Map of (a) temporal mean surface ocean pCO2 and (b) CO2 flux density in mol C
· m−2 · yr−1 for the global ocean (excluding the Arctic Ocean). Negative flux densities indicate
CO2 uptake by the ocean.

Current and North Pacific Current and in the subtropical bands of the southern hemi-

sphere. These regions correspond to the global ocean’s major sink regions according to

the 14–year averaged SOM–FFN pCO2 based air–sea flux estimates.

The long term mean pCO2 patterns largely follow the climatology patterns of Taka-

hashi et al. (2009). The comparison of the global SOM–FFN pCO2 estimates with the

Takahashi et al. (2009) climatology yields a RMSE of 6.13 µatm and a mean difference

of 0.98µatm. These numbers are very similar to those obtained in the Atlantic Ocean
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study in chapter 4. Figure 5.6 shows the difference between the SOM–FFN pCO2 esti-

mates averaged onto the 4◦×5◦ grid and the Takahashi et al. (2009) climatology. The long

term mean pCO2 estimates are centred between 2004 and 2005 and therefore need to be

corrected to the year 2000. Unlike the Atlantic study in chapter 4, this is done by remov-

ing 4.5 times the actual atmospheric trend for each grid box. The atmospheric pCO2 trend

is computed from the GLOBALVIEW-CO2 (2011) data, which were converted to pCO2.

The comparison shows that the largest differences between the year 2000 corrected SOM–

FFN pCO2 and the Takahashi et al. (2009) climatology occur in the high latitudes of both

hemispheres and the Equatorial Pacific. The differences in the Equatorial Pacific are likely

linked to the circumstance, that Takahashi et al. (2009) removed observations from ENSO

years from their analysis, while the SOM–FFN estimates include observations in ENSO

years.

The 14–year averaged integrated CO2 flux, derived from the SOM–FFN method, is

estimated to be –1.54±0.65 Pg C · yr−1 (excluding the Arctic Ocean), which is close

to the estimate of Takahashi et al. (2009) corrected for under sampling of –1.6±0.9 Pg

C · yr−1. However, these global flux estimates refer to different reference years, as the

SOM–FFN based flux estimate is centred in 2004, whereas Takahashi et al. (2009) uses

a reference year 2000. The SOM–FFN based estimate refers to the contemporary air–sea

flux, as there is no direct way to distinguish between the natural and the anthropogenic

component when estimates are derived from observations directly. However, considering

the natural outgassing flux of riverine carbon of 0.45±0.18 Pg C · yr−1 (Jacobson et al.,

2007) and additionally adding an air–sea flux of –0.12±0.06 Pg C · yr−1 for the Arctic

Ocean (Schuster et al., 2013), an estimate of the anthropogenic carbon flux of –2.11±0.68

Pg C · yr−1 is derived for the period 1998 through 2011, which is close to recent estimates

(e.g. Wanninkhof et al., 2013b).

Temporal mean air–sea CO2 flux estimates for the global ocean and the individual

ocean basins are summarized in table 5.3 and will be discussed in the following subsec-

tions.
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Figure 5.6: Difference in the surface ocean pCO2 in µatm between the decadal mean neural net-
work estimates (this study), corrected to the year 2000, and the estimates from the climatology
of Takahashi et al. (2009). Positive differences indicate higher pCO2 for the neural network esti-
mates.

Table 5.3: Temporal mean CO2 fluxes, CO2 flux trends and the standard deviation of the inter–
annual variability (std(IAV)) for the major ocean basins and the global ocean, summarized from the
text. Basin–wide uncertainties were calculated using standard error propagation of the individual
uncertainty estimates derived for the 11 RECCAP/Ocean Inversion regions as presented in section
5.3. Trends were estimated from the slope of a linear fit, applied to the 12–month running averaged
timeseries of the basin–wide integrated data. Trend uncertainties are estimated from the standard
deviation of the residuals of the linear fit. The standard deviation of the IAV (std(IAV)) was
estimated from the standard deviation of the 12–month running averaged and detrended timeseries.

basin temporal mean CO2 flux CO2 flux trend std(IAV)
[Pg C · yr−1] [Pg C · yr−1 · decade−1] [Pg C · yr−1]

global ocean -1.54±0.65 -1.09±0.13 ±0.13
Pacific Ocean -0.41±0.31 -0.29±0.13 ±0.12
Atlantic Ocean -0.54±0.16 -0.36±0.03 ±0.04
Southern Ocean -0.23±0.09 -0.36±0.07 ±0.06
Indian Ocean -0.35±0.10 -0.13±0.02 ±0.02

5.5 Seasonality

Figure 5.7 (a) shows the seasonal cycle of the zonally averaged CO2 flux density of the

entire Pacific Ocean north of 44◦S. The Equatorial Pacific is a strong outgassing region

throughout the entire year, linked to the Ekman upwelling of carbon–rich waters from

deeper layers. There is a distinct temperature–driven seasonal cycle in the lower latitudes

(equatorwards of 40◦N an 40◦S) of both hemispheres resulting in wintertime uptake of
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Figure 5.7: Seasonal cycle of the air–sea flux density for the 4 major ocean basins, namely (a) the
Pacific Ocean, (b) the Atlantic Ocean, (c) the Southern Ocean and (d) the Indian Ocean. Negative
or blue values indicate uptake of CO2 by the ocean.

CO2 by the ocean and summertime outgassing. The high latitude North Pacific (north of

40◦N) shows an anti–phased cycle compared to the subtropical cycle. Here, the pCO2 is

drawn down by biological production from late spring to summer.

The seasonal cycle of the Atlantic Ocean (44◦S-79◦N and west of 30◦E) flux density

has been discussed in detail in Landschützer et al. (2013) and chapter 4 of this thesis.

Figure 5.7 (b) shows the seasonal cycle of the Atlantic Ocean flux density, considering

the additional timeperiod from 2008 through 2011. The seasonal cycle is very similar to

that of the Pacific Ocean, as both basins are stretching along similar latitudes. However,

there are significant differences. The equatorial band of the Atlantic Ocean shows lower

partial pressures throughout the entire year than that of the Pacific Ocean. Furthermore,

the band from 40◦N to 60◦N has a much stronger seasonal amplitude in the Pacific Ocean

than in the Atlantic Ocean.

The SOM–FFN based CO2 flux estimates show that the flux density (figure 5.7 (c))

in the Southern Ocean (south of 44◦S) follows a clear seasonal pattern, with CO2 uptake

in the southern hemisphere summer (December to March). In contrast there is outgassing

of CO2 from 50◦S to 65◦S in the southern hemisphere winter (July to October). Only a
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Figure 5.8: Timeseries of the annual mean Integrated air–sea CO2 flux in Pg C · yr−1 (black
line). The gray shading indicates the uncertainty interval estimated in section 5.3. The blue line
represents the estimate from Takahashi et al. (2009), corrected for undersampling. The integrated
flux shows a flux reduction from 1998 through 2001 and a strong flux increase from 2001 onwards.
The processes behind this global variability and trend are discussed for each basin separately in
sections 5.6.1 to 5.6.4.

small band in the northern part of this basin (from 44◦S to 50◦S) remains an uptake region

all year round.

The seasonal cycle of the Indian Ocean (north of 40◦S) flux density (figure 5.7 (d))

shows a distinct equatorial high pCO2 band from 10◦N to 10◦S barely changing through-

out the entire year. Northwards, the neural network estimates show similar high CO2

partial pressures from October to May compared to the Equator, but with an additional

monsoon driven (see e.g. Sarma et al. (2013)) partial pressure increase from May to

October. South of the Equator the Indian Ocean shows a very similar seasonal pattern

compared to the southern hemisphere cycles of the Atlantic and the Pacific Ocean.

5.6 Inter–annual variability and trends

The global air–sea flux undergoes strong year–to–year variabilities within the time period

from 1998 through 2011 with a minimum carbon uptake of –0.87±0.64 Pg C · yr−1 in

2001 and a maximum uptake of –2.19±0.73 Pg C · yr−1 in 2011. Figure 5.8 shows the

timeseries of the contemporary CO2 flux estimated by the SOM–FFN method. The linear

trend evolving within this 14–year time period (linear fit to the estimates, smoothed using

a 12 month running mean filter) is estimated to be –1.09±0.13 Pg C · yr−1 · decade−1.
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Figure 5.9: Linear trends in sea surface pCO2 relative to that in the atmosphere over the period
1998–2011. The relative trend in sea surface pCO2 was computed by subtracting the atmospheric
mean trend. Areas with cross–hatch indicate where the trend is outside the 95% confidence level (p
≥ 0.05). Trends are derived by applying a 12 month running mean to each pixel and are calculated
as the slope of a linear fit.

Uncertainties of the trend are estimated as the standard deviation of the trend residuals

(the smoothed estimates minus the data along the fitted linear trend line). However when

only the start and end year annual mean CO2 flux is taken into account, the trend reduces

to –0.70 Pg C · yr−1 · decade−1 or roughly decreases by 30%, indicating that the global

mean trend over such a short time period is considerably influenced by the inter–annual

variability. This issue has been previously addressed in McKinley et al. (2011) and Fay

and McKinley (2013).

Besides temporal variabilities, regional trend patterns emerge depending on the time

period. Figure 5.9 shows the linear pCO2 trends for each 1◦× 1◦ pixel from 1998 through

2011 with the linear atmospheric trend subtracted from the oceanic trend. The atmo-

spheric pCO2 trend is computed from the GLOBALVIEW-CO2 (2011) data, which were

converted to pCO2. Most areas of the global ocean show a weaker accumulation of carbon

dioxide in the ocean than in the atmosphere, in particular the South Atlantic Ocean and

high latitude areas in both hemispheres. However, regionally, the surface ocean exhibits

the atmospheric partial pressure, e.g. in the high pCO2 areas in the tropics, along the Gulf

Stream and in parts of the South Indian Ocean and South Pacific Ocean.
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Basin–scale variabilities and trends for the major ocean basins individually are dis-

cussed in the next sections.

5.6.1 The Pacific Ocean

Throughout the time period from 1998 to 2011 the Pacific Ocean north of 44◦S undergoes

considerable year–to–year variabilities with an annual integrated uptake flux minimum of

–0.12±0.32 Pg C · yr−1 in the year 2000 and an uptake maximum of –0.64±0.31 Pg C

· yr−1 in 2006. Figure 5.10 (a) shows a reduction in the carbon sink of about 0.5 Pg C

· yr−1 from 1999 through 2001 caused by the La Niña response after the major ENSO

event in 1997–1998, in line with a regional study of Feely et al. (2006) conducted in the

Equatorial Pacific. In general, ENSO patterns appear to be the dominant mode of the

global variability of the SOM–FFN based flux estimate, which will be discussed below in

sections 5.6.5.

The linear trend, derived from the slope of the linear fit to the CO2 flux estimate,

smoothed using a 12 month running mean filter, shows an increase of the carbon sink

of –0.29±0.13 Pg C · yr−1 · decade−1. Splitting the basin into northern and southern

hemisphere reveals, that this trend stems almost entirely from the northern hemisphere

(–0.26±0.06 Pg C · yr−1 · decade−1, compared to –0.03±0.07 Pg C · yr−1 · decade−1

south of the Equator) . Overall, this linear trend estimate is strongly influenced by the La

Niña event in the early years of the period (see figure 5.10). When shifting the start year

of the linear trend calculation to 2003 the Pacific Ocean shows a positive trend, i.e. a trend

towards a decreasing carbon sink of 0.17±0.06 Pg C · yr−1 · decade−1. The inter–annual

variability (1 σ of the deseasonalized and detrended data) is estimated to be ±0.12 Pg C ·

yr−1. The Pacific Ocean numbers are summarized in table 5.3.

5.6.2 The Atlantic Ocean

The Atlantic Ocean variability and trends have been discussed Landschützer et al. (2013)

for the time period 1998 through 2007 and in chapter 4 of this thesis. Landschützer

et al. (2013) identified a steady carbon sink from 1998 up to the year 2004 and further

an increasing carbon sink from 2004 onwards, mainly driven by a strong increase in the

southern hemisphere. This study provides an update of this estimate, by extending the
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time period of the study to December 2011 and by additional observational data in the

SOCAT v2 dataset, in particular for the years 2005 to 2007 (Bakker et al., 2014). Figure

5.10 (b) shows a close to steady carbon flux from 1998 through 2003 and further an

increase in the carbon sink, i.e. one year earlier as identified in Landschützer et al. (2013).

The Atlantic Ocean carbon uptake peaks in the year 2011 with an annual mean uptake of

–0.77±0.19 Pg C · yr−1. The linear trend suggests an increase in the Atlantic Ocean

carbon sink of –0.36±0.03 Pg C · yr−1 · decade−1, which is more than twice the value

obtained in Landschützer et al. (2013) for the period from 1998 through 2007. While the

trend in Landschützer et al. (2013) almost entirely originated in the southern hemisphere,

the extended timeseries shows a similar flux trend in both hemispheres (–0.18±0.01 Pg C

· yr−1 · decade−1 north of the Equator, compared to –0.19±0.02 Pg C · yr−1 · decade−1

south of the Equator). However, the standard deviation of the inter–annual variability

(calculated as the standard deviation of the detrended 12 month running mean monthly

integrated carbon flux in the Atlantic Ocean) remains unchanged compared to the estimate

from Landschützer et al. (2013) of ±0.04 Pg C · yr−1.

5.6.3 The Southern Ocean

The Southern Ocean is the largest of the four basins and remains strongly under–sampled

with respect to its large surface area (see figure 5.1). The SOM–FFN pCO2 based flux esti-

mates for the Southern Ocean show the largest range between flux minimum (–0.02±0.08

Pg C · yr−1 in 2001) and maximum (–0.62±0.13 Pg C · yr−1 in 2011) for all basins (figure

5.10).

The Southern Ocean carbon sink decreases from 1998 to 2001 and from there on

strongly increases until 2011. From 1998 through 2011 the Southern Ocean shows a linear

flux trend of –0.36±0.07 Pg C · yr−1 · decade−1 with moderate inter–annual variability of

±0.06 Pg C · yr−1. Furthermore, the Southern Ocean shows large differences in seasonal

trends. Summer (December, January and February) trends are the least pronounced (–

0.26±0.11 Pg C · yr−1 · decade−1) compared to autumn (March, April, May) trends

(–0.48±0.11 Pg C · yr−1 · decade−1), which illustrates the season with the strongest CO2

flux increase. The Southern Ocean mean CO2 flux, trend and variability are summarized

in table 5.3.
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Figure 5.11: Comparison between the deseasonalized air–sea partial pressure difference of CO2

(∆pCO2 – increasing numbers reflect a stronger pCO2 increase in the atmosphere compared to
the ocean and an increase in the CO2 uptake flux of the ocean) with (a) the natural logarithm of
the deseasonalized chlorophyll–a (log(CHL)) and (b) the natural logarithm of the deseasonalized
mixed layer depth (log(MLD)) in the Southern Ocean between 44◦S and 58◦S

Lenton et al. (2013) found that most of the air–sea CO2 flux between 1990 and 2010

occurs between 44◦S – 58◦S, while the Southern Ocean south of 58◦S has only a small an-

nual net flux. Overall, the Southern Ocean mean flux (–0.23±0.09 Pg C · yr−1) compares

well with the Takahashi et al. (2009) limatology–based estimate from Lenton et al. (2013)

(–0.27±0.13 Pg C · yr−1). Figure 5.9 reveals a clear increase in the air–sea ∆pCO2 south

of 58◦S, whereas north of this latitude trends are less pronounced, relative to the atmo-

spheric mean trend. Therefore the Southern Ocean is further divided into two sub basins

to investigate the CO2 flux trend.

The CO2 trend south of 58◦S is estimated as –0.16±0.02 Pg C · yr−1 · decade−1 from

1998 through 2011. North of 58◦S the ocean uptake of CO2 increases by –0.20±0.06 Pg

C · yr−1 · decade−1, which is stronger compared to south of 58◦S due to the larger surface

area. There is only limited inter–annual variability (±0.02 Pg C · yr−1) south of 58◦S. In

contrast the area north of 58◦S shows stronger inter–annual variability in the air–sea CO2

flux (±0.05 Pg C · yr−1).

A possible explanation for the trends and the variability of the ocean band between

44◦S and 58◦S can be provided by the index polarity of the SAM (see figure 1.9 (c)).

Figure 5.11 shows the partial pressure difference between the ocean and the atmosphere in

comparison with the chlorophyll–a concentration and the mixed layer depth. High index

polarity of the SAM leads to an increase of the westerly winds resulting in deeper mixing.
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Figure 5.12: Comparison between the deseasonalized sea–air (for better comparison) partial pres-
sure difference of CO2 (∆pCO2 – decreasing numbers reflect a stronger pCO2 increase in the
atmosphere compared to the ocean and an increase in the CO2 uptake flux of the ocean) with
the annual mean Southern Annular Mode (SAM) index (Marshall, 2003) for (a) the Pacific sec-
tor of the Southern Ocean (160◦E to 60◦W and 58◦S to 44◦S) and (b) the Atlantic and Indian
sector of the Southern Ocean (60◦W to 160◦E and 58◦S to 44◦S). Green background indicates
El Niño phases, where the Multivariate ENSO Index (MEI, Wolter and Timlin (2011)) is higher
than 0.5, red background indicates La Niña phases where the MEI is smaller than -0.5 and white
background indicates neutral ENSO phases. The black arrow illustrates the potential timelag of
∼ 3 years between the 1998 high SAM index and the ∆pCO2 minimum as suggested by the
eddy kinetic energy (EKE) response timelag (Morrow et al., 2010). The red linear regression line
illustrates the reduction in the SAM index trend from 1998 onwards

The ∆pCO2 increase and the resulting strengthening of the Southern Ocean carbon sink

is consistent with recent findings from Fay and McKinley (2013). These authors argue

for a strengthening of the Southern Ocean carbon sink linked to the weakening of the

SAM index since the early 2000s. However, the increase in CHL in figure 5.11 (a) and

the increase in MLD in figure 5.11 (b) do not support the argument that this increase

stems from a reduction in vertical mixing. However, MLD might not be a good proxy for

vertical mixing (at least not when considering averages over large regions) and trends in

chlorophyll–a might not be driving the pCO2, but rather be another emerging property.
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Therefore, figure 5.12 (a) and (b) illustrates the ∆pCO2 in comparison to the annual

averaged SAM index directly as well as positive (El Niño - green background) and neg-

ative (La Niña - red background) ENSO phases for (a) the Pacific sector of the Southern

Ocean (160◦E to 60◦W) and (b) the Atlantic and Indian sector (60◦W to 160◦E). From

1965 onwards, the SAM index has continued to increase (see figure 1.9) leading to a peak

in 1998. From 1998 until the mid 2000s, however, the SAM index shows a negative trend,

which was also reported by Fay and McKinley (2013). Fay and McKinley (2013) argue

that the negative index trend in the SAM results in a reduction in the vertical mixing and

in a reinvigoration of the Southern Ocean carbon sink, which is supported by this study.

The ∆pCO2 timeseries in figure 5.12 suggests however, that the pCO2 response to

the SAM is not linear and not consistent throughout all sectors of the Southern Ocean

(see figure 5.12 (a) and (b)). Meredith and Hogg (2006) found anomalously high eddy

kinetic energy (EKE) in the Antarctic Circumpolar Current (ACC) during the 2000–2002

period, which these authors interpret as a 2–3 year lagged response to a significant peak

in the circumpolar eastward wind stress quantified by the SAM. Morrow et al. (2010)

support this conclusion, arguing that the EKE response after the 1998 SAM peak is further

enhanced in the Pacific sector of the Southern Ocean by the La Niña event of 1999. In

general Morrow et al. (2010) found that El Niño events counteract the effect of positive

SAM events, whereas La Niña events enhance positive SAM phases in the Pacific sector

and vice versa in the Atlantic and Indian sector.

It seems plausible that the enhanced EKE in response to the SAM/La Niña peak in

1998 led to enhanced mixing, resulting in a increase in the sea-surface pCO2, peaking in

∼ 2001/2002. This can be identified in both the Pacific, as well as the Atlantic and In-

dian sector, hence arguably, the strong SAM signal dominates over the La Niña response

in the Atlantic and Indian sector. The period between 2002 and 2008 illustrates a fairly

constant ∆pCO2, hence the atmospheric pCO2 increase is leveled by the ocean, poten-

tially due to reduced mixing (compared to the 2000–2002 period) linked to the reduction

of the SAM index after the 1998 event. The last years of the analysis period from 2008

onwards illustrate a strong trend towards enhanced strengthening of the ocean CO2 sink,

particularly in the Atlantic and Indian sector. Throughout the last years of the analysis (∼

2007 onwards), figure 5.12 (a) and (b) suggest a stronger link between ENSO phases and
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the ∆pCO2 variability, i.e., a strong ∆pCO2 decrease during La Niña phases in the At-

lantic and Indian sector, compared to decreasing ∆pCO2 during the 2009–2010 El Niño

phase in the Pacific sector. This is however not completely in line with the EKE response

to ENSO as suggested by Morrow et al. (2010), as these authors argue for an ENSO

response–timelag of 1–2 years, whereas here the best match is found without any timelag.

The previous paragraphs emphasize the potential link between the SAM and ENSO

climate modes to the variability and trends estimated in the Southern Ocean carbon sink.

So far only large scale regions were considered, hence in order to investigate all the pro-

cesses in the Southern Ocean that lead to the reinvigoration of the carbon sink it would

be beneficial to extend the analysis and look at regional variabilities and the response

of all input variables to the SAM and ENSO. Moreover, it would be beneficial to quan-

tify regional effects that lead to a reduction/increase of the Southern Ocean carbon sink,

e.g. driven by surface water cooling/warming, as well as increase/decrease in chlorophyll

linked to regional enhanced/reduced wind or eddy induced mixing. Regional differences

could further shed new light on the counter–intuitive finding, that basin wide both mixed

layer depth and ∆pCO2 are increasing. This is suggested for future work.

5.6.4 The Indian Ocean

Compared to the other ocean basins, the Indian Ocean shows the lowest year–to–year vari-

ability, with a maximum CO2 uptake in 2009 of –0.45±0.10 Pg C · yr−1 and a minimum

uptake in 1998 of –0.28±0.10 Pg C · yr−1. This basin shows the weakest increase in the

carbon sink compared to the other basins from 1998 through 2011 with a linear trend of

–0.13±0.02 Pg C · yr−1 · decade−1. The inter–annual variability is estimated to be±0.02

Pg C · yr−1 and is substantially smaller than e.g. in the Pacific Ocean. Indian Ocean mean

CO2 flux, trend and variability are summarized in table 5.3.

5.6.5 The global ocean

The results of the individual ocean basins shed new light on the variability and trends

identified in figure 5.8. Particularly the strong trend of∼ 1 Pg C · yr−1 is likely a reflection

of intra–decadal processes and not an indication of an inter–decadal trend signal. It is the

result of the 1999–2001 La Niña event, which led to a reduction of the Pacific Ocean (and
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Figure 5.13: Spatial distribution of the amplitude of the first (leading) EOF of the sea surface
pCO2. Data are re–scaled to 2◦ longitude × 2◦ latitude

hence the global ocean) carbon sink of ∼ 0.5 Pg C · yr−1. Furthermore, the peak in the

SAM index in 1998 possibly illustrates the enhanced vertical mixing in the ACC region

with a time lag of ∼ 2–3 years, resulting in an almost saturated Southern Ocean in 2001.

The following reduction of the SAM index potentially suggests a reduction in vertical

mixing and the reinvigoration of the Southern Ocean carbon sink, additionally modified

by ENSO, resulting in a basin–wide trend signal of -0.36±0.07 Pg C · yr−1 · decade−1

for the 1998 through 2011 period. The trend contribution of the Atlantic Ocean is equally

strong compared to the Southern Ocean (-0.36±0.03), where particularly trends in the

South Atlantic appear to be reflected in the faster accumulation of anthropogenic CO2

in the ocean interior (see e.g. Wanninkhof et al., 2010). Finally, Khatiwala et al. (2013)

suggest a trend contribution from atmospheric CO2, attributed to the rise in anthropogenic

CO2, of 0.35 Pg C · yr−1 · decade−1 based on ocean inventory changes.

To investigate the dominant mode of variability within the global ocean, an empirical

orthogonal function (EOF) analysis was conducted. Due to the size of the covariance

matrix the SOM–FFN pCO2 estimates are re–scaled to a coarser spatial resolution of 2◦

longitude × 2◦ latitude. Furthermore, pCO2 fields are deseasonalized, using a 12 month

running average, and detrended by removing the linear trend for each grid box from 1998

through 2011. Figure 5.13 shows the spatial structure of the first or leading EOF. It clearly
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Figure 5.14: Time series of the leading EOF’s of the western Equatorial Pacific (WEQP, 15◦S to
15◦N and west of 160◦W) and the global ocean, as well as the Multivariate ENSO Index (MEI)

shows that the largest amount of variability stems from the western Equatorial Pacific,

which is the region strongly influenced by the ENSO signal. Figure 5.14 compares the

timeseries of the leading EOF from the western Equatorial Pacific and the global ocean

to the MEI (http://www.esrl.noaa.gov/psd/enso/mei/). The comparison shows, that ENSO

is globally the leading mode of variability with a correlation coefficient of 0.85 when

correlating the timeseries of the leading global EOF with the Multivariate ENSO Index.

However, the EOF analysis shows that the leading EOF, which strongly correlates with

the MEI, explains 72% of the total CO2 flux variance in the western Equatorial Pacific

(15◦S to 15◦N and west of 160◦W), but only about 28% of the global variance.

5.7 A global carbon budget (1998 through 2011)

Fossil fuel burning, land use change and cement production are the major contributors

to the increase of CO2 in the atmosphere. Le Quéré et al. (2009) report that between

1959 and 2008 only 43% of the emitted carbon has remained in the atmosphere. This

raises the important questions ”Where does the remainder of the emitted carbon go?”

and ”How variable are these sinks?”. In this chapter, the global ocean anthropogenic

uptake of CO2 was estimated to be –2.11±0.68 Pg C · yr−1 (including the correction

for riverine–derivedd carbon). The global carbon budget can be closed using the global
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Figure 5.15: Global Carbon Budget (a) as the sum of sources (positive) and sinks (negative) for
each year from 1998 through 2011 and (b) for the global ocean CO2 sink and the resulting land
flux individually.

ocean carbon sink numbers, provided that the actual global carbon emissions from fos-

sil fuel burning (Marland et al. (2005); http://cdiac.ornl.gov/trends/emis/meth reg.html),

land use change (Houghton (2003); http://cdiac.ornl.gov/trends/emis/meth reg.html) and

the atmospheric accumulation rate (Ballantyne et al. (2012); Ed Dlugokencky and Pieter

Tans, NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends/) are known.

Figure 5.15 (a) shows the annual mean anthropogenic carbon budget derived from this

study, while figure 5.15 (b) compares the ocean sink (net flux including riverine–derivedd

carbon) with the net land sink (land flux plus land use change) for each year directly. The

net land flux is derived from the emitted fossil fuel, the atmospheric accumulation rate

and the estimated neural network ocean CO2 flux following equation 1.4:
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F′land = Emff − Focean −
dGatm

dt
(5.5)

the net land flux can further be used to calculate the residual land CO2 uptake flux when

substracting land use change. This is calculated via:

Fland = F′land − Emluc (5.6)

In general the net land sink (F′land) is subject to much stronger variability compared to the

ocean carbon sink, ranging from a net outgassing flux in post El Niño 1998 of 1.2±0.7 Pg

C · yr−1 to a strong sink of –3.1±0.8 · yr−1 in 2011. Throughout the period 1998 through

2011, land use change describes a fairly constant source of carbon, leading to a residual

land flux (Fland) ranging from –0.36±0.87 Pg C · yr−1 in 1998 to –4.06±1.01 Pg C · yr−1

in 2011.

Average fossil fuel emissions and land use change combined from 1998 through 2011

are 8.94±0.64 Pg C · yr−1, hence the ocean was taking up on average roughly 24% of

the global emitted CO2 from 1998 through 2011. On average, the atmospheric accumu-

lation rate was –4.13±0.17 Pg C · yr−1, and the resulting average residual land flux was

–2.7±0.9 Pg C · yr−1, hence roughly 46% of the emitted carbon accumulated in the atmo-

sphere, while about 30% of the emitted carbon was taken up by land from 1998 through

2011.

This is in good agreement with the recent carbon budget of Le Quéré et al. (2013) from

2001 through 2011. These authors report emissions from fossil fuels of 8.3±0.4 Pg C ·

yr−1 and from land use change of 1.0±0.5 Pg C · yr−1 and an atmospheric accumulation

rate of –4.3±0.1 Pg C · yr−1. The largest difference stems from the ocean flux component,

which in Le Quéré et al. (2013) is estimated to be –2.5±0.5 Pg C · yr−1. Closing the

budget, Le Quéré et al. (2013) estimate a residual land flux of –2.6±0.8 Pg C · yr−1

within the 2001 through 2011 time period.
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5.8 Summary and conclusion

In this chapter, the SOM–FFN method is used to estimate the sea surface pCO2 on a global

scale from 1998 through 2011. The validation of the results show that they are in good

agreement with observations from the SOCAT v2 database, with a small bias of –0.12

µatm and a RMSE of 12.05 µatm, but also compare reasonably well with independent

timeseries stations and mooring data with a bias ranging from close to zero to –7.15 µatm

and a RMSE ranging between 11.44 µatm and 26.80 µatm.

The mean results compare well with results from existing studies. The net air–sea flux

of this study is estimated to be –1.54±0.65 Pg C · yr−1 for the global ocean south of 79◦N,

which adds up to –1.66±0.65 Pg C · yr−1 when the recent Arctic estimate of Schuster

et al. (2013) is included. This number is similar to the undersampling corrected estimate

of –1.6±0.9 Pg C · yr−1 obtained from Takahashi et al. (2009). Including an estimate for

riverine–derivedd carbon (Jacobson et al., 2007) results in an anthropogenic air–sea CO2

flux of –2.11±0.68 Pg C · yr−1, which compares well with the recent estimates of 2.0 Pg

C · yr−1 obtained from Wanninkhof et al. (2013b).

Within the study period from 1998 through 2011, the global integrated flux of CO2

undergoes considerable year–to–year changes. From 1998 through 2011 an increasing

carbon sink of –1.09±0.13 Pg C · yr−1 · decade−1 is estimated, which is however strongly

influenced by intra–decadal signals, such as ENSO and SAM, and is therefore unlikely

part of a long–term trend signal. The strongest flux increase is found in the Atlantic Ocean

and the Southern Ocean with –0.36±0.03 Pg C · yr−1 · decade−1 and –0.36±0.07 Pg C

· yr−1 · decade−1, respectively. While in chapter 4 the Atlantic Ocean sink increase was

almost entirely driven by the southern hemisphere, the prolonged timeseries in chapter 5

reveals an equally strong increase in both hemispheres of the Atlantic Ocean. The strong

increase in the Southern Ocean carbon uptake is potentially linked to the 1998 SAM peak

followed by a weakening of the index polarity of the SAM index.

Throughout the study period, the Pacific Ocean shows the largest standard deviation

of the IAV of ±0.12 Pg C · yr−1. An EOF analysis shows, that this signal is driven by

the ENSO mode, which appears to be the dominant mode of the global sea surface pCO2

variability. The standard deviation of the IAV for the Southern Ocean, the Atlantic Ocean

and the Indian Ocean is estimated to be ±0.06 Pg C · yr−1, ±0.04 Pg C · yr−1 and ±0.02
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Pg C · yr−1 respectively.

Over the 1998 through 2011 period, roughly 24% of the emitted CO2 was taken up by

the ocean. This estimate implies a global average residual land flux of –2.70±0.93 Pg C

· yr−1 over the same period, which accounts for 30% of the emitted carbon. From 1998

through 2011 the land sink has been more variable than the global ocean CO2 sink.

While variabilities within the considered periods of this thesis are mainly driven by

natural climate modes, like e.g. ENSO, which explains roughly 1/4 of the global variabil-

ity alone, the increasing trend in sea surface pCO2 is mainly driven by the anthropogenic

impact on the climate system. However, trends over periods of 10–14 years as presented

in this chapter are not necessarily representative for a longer term trend of several decades,

but are more influenced by naturally occurring intra–decadal variabilities, hence it is ques-

tionable that a linear trend assumption is suitable for trend estimates on short timescales.

The strong reduction of the CO2 uptake in the post 1998 La Niña years strongly shapes the

CO2 flux trends identified. It is therefore essential to distinguish between anthropogenic

trends and natural variabilities in order to predict future increase.

It is essential to understand the variability of the ocean carbon sink in order to accu-

rately quantify the different pathways of emitted carbon, hence the results in this thesis

illustrate that ocean measurements are important not only for the purpose of inferring the

ocean carbon sink, but also for the quantification of the global land sink and the closure

of the global carbon budget. Furthermore, the basin–wide and global sea surface pCO2

maps form an accurate basis to evaluate global biogeochemical models and are suitable to

improve future climate projections.



Chapter 6

General discussions, conclusions and

future research

”Only a Sith deals in absolutes.”

(Obi–Wan Kenobi)



6.1 Summary of the main findings

A new 2–step neural network approach has been developed to overcome most of the lim-

itations of currently used data interpolation methods. The SOM–FFN method is capable

of capturing a large amount of variability due to the non–linear predictor–observation

relationship on a fine 1◦×1◦ spatial grid, which makes it suitable to investigate the inter–

annual variability of the air–sea CO2 flux. The method determines the non–linear rela-

tionships between the surface ocean pCO2 observations and a set of input data to produce

basin–wide sea surface maps of pCO2 on a monthly basis. The network gathers informa-

tion from similar ocean biogeochemical provinces and provides regional pCO2 estimates,

which are then use to investigate the changing distribution of the sea surface pCO2 in the

Atlantic Ocean and the global ocean. The method, however, relies on the assumption that

the ocean carbon sink and its variability can be estimated as a function of proxy data,

which are subjectively chosen. Furthermore, the method relies on ocean carbon measure-

ments in order to establish a correct relationship between input data and target pCO2.

Observations form the basis of the methods and the results presented in this thesis.

Chapter 2 provides an insight on how sea surface pCO2 measurements are obtained, anal-

ysed and quality controlled. Bottle data, collected along the UK–Caribbean section, re-

veal three distinct water masses. The first, west of 55◦W, shows an autumn maximum of

sea surface pCO2. The second, from 24◦W to 55◦W, shows the temperature driven gyre

seasonality with the lowest partial pressures in the cooler winter and spring months and

pCO2 maximum in summer. The third region, east of 24◦W (north of∼ 40◦N), shows the

reversed seasonal cycle influenced by biological production in agreement with Takahashi

et al. (2002). Along the line, DIC and TALK changes counteract the temperature driven

pCO2 increase with contributions to the pCO2 change of all drivers, namely > 200 µatm

from SST and < –200 µatm from DIC and TALK. Changes in freshwater does not have a

strong affect on the sea surface pCO2

The validation of the pCO2 estimates obtained from the method presented in chapter

2, conducted for the Atlantic Ocean from 1998 through 2007 in chapter 4 and the global

ocean from 1998 through 2011 illustrate the great potential of the method to reproduce

available observations from the SOCAT database (Pfeil et al., 2013; Sabine et al., 2013;

Bakker et al., 2014) within a small error margin. Furthermore, no temporal biases exist
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and the error is independent of the available data density. Independent testing shows

that the model–data error increases, however, observations from timeseries stations and

independent data products are reconstructed within a reasonable small error.

The results in chapter 4 and 5 illustrate that the Atlantic Ocean from 1998 through

2007 and the global Ocean from 1998 through 2011 have been major sinks for CO2 on

average (–0.45±0.15 Pg C · yr−1 and –1.54±0.65 Pg C · yr−1, respectively). The sink

strength strongly varies in time and from ocean basin to basin. From 1998 through 2011

the Pacific Ocean shows the strongest variability of all basins (±0.12 Pg C · yr−1, 1σ)

linked to the ENSO climate mode, while the Southern Ocean and the Atlantic Ocean

show the strongest increase in the CO2 flux (–0.36±0.07 Pg C · yr−1 · decade−1 and

–0.36±0.03 Pg C · yr−1 · decade−1, respectively). Trends are sensitive to the chosen

start and end year (Fay and McKinley, 2013), which is reflected in the difference between

trend estimates for the Atlantic Ocean from 1998 through 2007 (–0.15±0.04 Pg C · yr−1

· decade−1) and from 1998 through 2011 (–0.36±0.03 Pg C · yr−1 · decade−1). The

global ocean flux estimates further have the potential to close the global carbon budget

and to provide an estimate of the atmosphere–land flux of CO2 based on ocean CO2

measurements.

6.2 General discussion and conclusions

Until recently, observation–based pCO2 estimates were limited to climatologies (Taka-

hashi et al., 2009) or ocean sub–basins (Telszewski et al., 2009; Nakaoka et al., 2013)

due to methodological limitations and data sparsity. Recently, with increasing numbers

of available observations, new methods were developed to estimate seasonal (Rödenbeck

et al., 2013) as well as the inter–annual variability of the air–sea CO2 flux (Park et al.,

2010). The combined 2–step SOM–FFN method presented in this thesis represents a

novel method within a new generation of statistical approaches to interpolate available

observations in time and space. Similar to Sasse et al. (2013), the global ocean is in a first

step clustered into biogeochemical provinces using a SOM technique, however, the second

step (the FFN) does not assume linearity, hence it is capable to reconstruct large amounts

of variability due to the non–linear input–output relationships. A complete assessment

of the existing methods to create global sea surface pCO2 maps is currently in progress
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(SOCOM – Surface Ocean pCO2 Mapping inter–comparison), which includes the inter–

comparison e.g. of neural network based methods (Sasse et al., 2013; Landschützer et al.,

2013; Nakaoka et al., 2013), estimates derived from empirical relationships (Park et al.,

2010) and from an ocean mixed layer scheme (Rödenbeck et al., 2013).

One important question arising from observational studies is: ”Where do we need to

set the focus for future measurements, to improve current estimates?”. This question can

be answered by looking at figure 1.10, illustrating two major issues:

• there are several ocean areas which remain largely unobserved, particularly in the

southern hemisphere

• the majority of the global ocean has been observed in less than four calender months

Firstly, without ocean sided CO2 observations in certain areas current data interpola-

tion methods and models can not be validated, hence large uncertainties remain regarding

the strength of the ocean carbon sink in unobserved areas. Secondly, without a good sea

surface pCO2 observation coverage in time, the quantification of seasonal as well inter–

annual variabilities remains a challenge. Figure 5.1 reveals, that the high latitude North

Pacific, as well as the Equatorial Pacific and the high latitude North Atlantic Ocean are

amongst the regions with the largest bias and standard deviation of the pCO2 residuals,

although they are well observed compared to the remainder of the global ocean. This

indicates that these regions show pCO2 variability in time, which can not fully be recon-

structed with the chosen input data in chapter 4 and 5. In conclusion, the recommendation

towards the sea surface CO2 measurement community, drawn from this thesis is to make

observations in data–poor areas and to continue the measurement effort in high pCO2

variability areas, such as the high latitude North Atlantic, high latitude North Pacific, and

the Equatorial Pacific.

The quality of surface ocean CO2 observations has been highlighted in chapter 3.

Wanninkhof et al. (2013a) reports uncertainties related to measurements that received a

SOCAT flag A or B of ≤ 2 µatm and ≤ 5 µatm for flags C or D. Currently, however, the

model–observation error exceeds these values (e.g. RMSE in chapter 5 of 12.05 µatm),

hence, in conclusion, it is more favourable to reduce the misfit between pCO2 estimates

and observations, rather than the measurement uncertainty, as the first contributes more to
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Table 6.1: Comparison of the contemporary (observation–based estimates without river input)
and the anthropogenic flux (corrected by the input of riverine carbon) between the SOM–FFN
results with recent studies. Annotations: (a) the flux estimate was derived from the best estimate
of the available RECCAP methodologies; (b) Global Carbon Budget v1.3 numbers were used to
calculate the sink from 1998 through 2011; (c) SOM–FFN estimate including the Arctic Ocean
best estimate of Schuster et al. (2013) of –0.12 Pg C · yr−1 for both the anthropogenic and the
contemporary flux

Time period Anthropogenic Contemporary
or flux flux

reference year [Pg C · yr−1] [Pg C · yr−1]
Wanninkhof et al. (2013b)(a) 1990-2009 -2.0 -
Sasse et al. (2013) 2000 - -1.55±0.32
Takahashi et al. (2009) 2000 -2.0±1.0 -1.6±0.9
Gruber et al. (2009) 1995-2000 -2.2±0.3 -1.7±0.4
Le Quéré et al. (2013)(b) 1998-2011 -2.4±0.5 -
SOM-FFN(c) 1998-2011 -2.11±0.68 -1.66±0.66

the overall uncertainty of the air–sea CO2 flux. This may be achieved e.g. by collecting

more observations in high pCO2 variability areas.

In general the largest source of uncertainty estimated for the air–sea CO2 flux in chap-

ter 4 and chapter 5 stems from the formulation of the gas transfer velocity, reflecting the

disadvantage of the ∆pCO2 method. Hence, in order to reduce the uncertainty of CO2

flux estimates, derived from the ∆pCO2 method, attention needs to be drawn towards the

formulation of the kinetic gas transfer term. It would be favourable for the community

to provide an uncertainty metric regarding different formulation from the literature with

regards to the different wind products.

In general, the uncertainty estimate of the SOM–FFN pCO2 fields provides room for

improvement. So far, regional deviations in the residuals derived from the difference

between SOM–FFN pCO2 estimates and the SOCAT gridded observations have been ig-

nored in the studies conducted within this thesis. Furthermore, decorrelation length esti-

mates of the residuals can be potentially improved by adopting a different approach (see

e.g. Jones et al., 2012).

The global ocean long term mean CO2 flux results (chapter 5) compare well with

recent studies. Table 6.1 lists the global ocean flux estimate derived from the SOM–

FFN method together with recent global estimates of the contemporary and anthropogenic

CO2 flux, as reported in the literature. Although time periods vary for the individual flux

estimates, derived from a variety of methods, the temporal mean carbon flux estimates
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show strong agreement, hence it can be concluded that the global mean SOM–FFN based

CO2 flux provides a robust estimate.

Table 6.2 lists the long term mean CO2 flux, as well as variability and trend esti-

mates from the studies conducted in this thesis and recently derived estimates for the ma-

jor global ocean sub–basins from the RECCAP project for comparison. The SOM–FFN

based CO2 flux results show good agreement with the long term mean estimates derived

from the different studies, with the exception of the Southern Ocean.

Although significant differences between methodologies occur, the standard deviation

of the IAV’s reported in the Atlantic Ocean (Schuster et al., 2013) are consistently smaller

compared to the Pacific Ocean (Ishii et al., 2013), which is reflected in the SOM–FFN

results. Results from the Southern Ocean (Lenton et al., 2013) and Indian Ocean (Sarma

et al., 2013) do not include the standard deviation of the IAV, but the maximum value

of the IAV and the IAV amplitude (temporal maximum of the IAV minus temporal min-

imum), respectively. The SOM–FFN derived maximum of the IAV compares well with

models and inversion studies in the Southern Ocean and the IAV amplitude is on the lower

end of the range estimated within the Indian Ocean RECCAP study.

Trend estimates show the largest source of disagreement between the SOM–FFN re-

sults and the RECCAP studies (see table 6.2). This is likely linked to different time

periods investigated. While CO2 flux trends in RECCAP are calculated from 1990 trough

2009, SOM–FFN CO2 trends are for the period 1998 through 2011. This difference in the

investigated time period is particularly pronounced in the Southern Ocean. In conclusion,

short term trends (10–14 years as discussed in this thesis) have to be viewed with caution,

as they are likely influenced by climate modes, such as ENSO, NAO and SAM.

The influence of climate modes, in particular ENSO, NAO and SAM has been dis-

cussed within this thesis in chapters 4 and 5. The phasing of the ENSO event is the main

driver of the CO2 flux variability, explaining roughly 28% of the global variability alone.

This is particularly reflected in the Pacific Ocean IAV estimate (±0.12 Pg C · yr−1, 1σ)

of the air–sea CO2 flux. Increasing air–sea CO2 flux trends in the Southern Ocean from

1998 through 2011 illustrated in chapter 5 are possibly linked to the recent weakening of

the SAM phase as suggested by Fay and McKinley (2013). A weak but significant air–sea

CO2 flux to NAO correlation was further established within the subtropical and subpolar
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North Atlantic in chapter 4, but this signal is weak compared to e.g. ENSO. It can be

concluded, that these links provide a step forward in our understanding of the variability

of the global ocean carbon sink and how future climate variability may effect the global

ocean sink strength.

At last, the SOM–FFN based global air–sea CO2 flux estimates have great potential

to estimate the global land CO2 flux, based on sea surface pCO2 measurements, and to

close the global carbon budget. Within a comparable time–frame, the land flux estimates

in chapter 5 show good agreement with recent estimates from Le Quéré et al. (2013).

6.3 Future research

Several conclusions/outcomes drawn from this thesis deserve further investigation:

• Extension of the SOM–FFN study period would help to establish the response of

the air–sea CO2 flux to climate modes such as ENSO, SAM and NAO and cor-

responding multi–decadal variabilities. Excluding satellite chlorophyll–a from the

SOM–FFN input data sets provides an opportunity to prolong the analysis period

and this option will be explored in subsequent work. Results from the sensitivity

runs in chapter 4 indicate that estimates without chlorophyll–a as an input param-

eter do not significantly change the major findings, however, chlorophyll–a is a

simple, but unique proxy representing the relation between biology and pCO2 and

further tests are needed to establish if chlorophyll can be neglected when consider-

ing longer timescales.

• In order to investigate the recent reinvigoration of the Southern Ocean carbon sink,

it is vital to extend the analysis and look at regional variabilities of both the pCO2

as well as all drivers of the carbonate system in response to the SAM and ENSO

climate modes.

• The largest uncertainty with regards to the integrated air–sea CO2 flux from surface

ocean pCO2 observations stems from the gas transfer formulation. In order to de-

crease the uncertainty of the ocean carbon uptake it is essential to more accurately

quantify the gas exchange parametrization.
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• It would be beneficial to integrate the open ocean estimates of the air–sea CO2

fluxes, presented in this thesis, with high resolution coastal estimates. Recently,

Chen et al. (2013) evaluated data from 165 estuaries and 87 continental shelves and

concluded that the former release roughly 0.1 Pg C · yr−1 whereas the latter take

up –0.4 Pg C · yr−1, highlighting the importance of coastal regions regarding the

global ocean CO2 uptake.

• The 2–step neural network approach (chapter 2) has great potential to be used for

high resolution regional surface ocean pCO2 estimates, e.g. in shelf seas, under

consideration of relevant input data, such as the extend of seasonal stratification, as

derived from the difference between mixed layer depth and the bottom depth.

• The SOM–FFN sea surface pCO2 and air–sea CO2 flux product shows that the data

collection and synthesis effort of the marine carbon community makes it possible to

investigate the seasonal to inter–annual variability of the ocean carbon sink based

on observations. There are, however, gaps in the global surface ocean CO2 obser-

vation network, particularly in the southern hemisphere, that make it impossible to

validate pCO2 estimates in these regions. Hence, the recommendation towards the

sea surface CO2 measurement community is, to obtain measurements in undersam-

pled areas and to continue the measurement effort in high pCO2 variability areas.



Appendix A

List of acronyms

Table A.1: List of acronyms

Abbreviations Description

AABW Antarctic Bottom Water

ACC Antarctic Circumpolar Current

BATS Bermuda Atlantic Timeseries Station

BMU Best Matching Unit

CARBOCHANGE Changes in Carbon Uptake and Emissions by Oceans

in a Changing Climate

CARBOOCEAN Marine Carbon Sources and Sinks Assessment

CARINA Carbon in the Atlantic Ocean

CAVASSOO Carbon Variability Studies by Ships of Opportunity

CCMP Cross Calibrated Multi Platform

CDIAC Carbon Dioxide Information Analysis Centre

CHL Chlorophyll–a

CO2SYS Program Developed for CO2 System Calculations

CRM Certified Reference Material

DIC Dissolved Inorganic Carbon

DJF December, January, February

ECCO2 Estimating the Circulation and Climate of the Ocean Phase 2

Continued on next page
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Table A.1 – continued from previous page

Abbreviations Description

EKE Eddy kinetic energy

ENSO El Niño Southern Oscillation

EOF Empirical Orthogonal Function

ESRL Earth System Research Laboratory

ESTOC European Station for Timeseries in the Ocean

FFN Feed–forward Network

FINP Feed–forward Input Dataset

FINP2 Feed–forward Input Dataset 2

FITR Feed–forward Input Training subset

FIVAL Feed–forward Input Validation subset

FRESH Freshwater

GEOSECS Geochemical Ocean Sections program

GLODAP Global Data Analysis Project

HadCRUT Combined temperature record of the Hadley Centre and the

Climatic Research Unit

HOT Hawaiian Ocean Timeseries station

IAV Inter–annual Variability

IPCC Intergovernmental Panel on Climate Change

JGOFS Joint Global Ocean Flux Study

JJA June, July, August

LDEO Lamont–Doherty Earth Observatory

MAM March, April, May

MEI Multivariate ENSO Index

MLD Mixed Layer Depth

MPR Multi–Parameter Regression

NADW North Atlantic Deep Water

NAO North Atlantic Oscillation

NCAR National Centre for Atmospheric Research

Continued on next page
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Table A.1 – continued from previous page

Abbreviations Description

NCEP National Centres for Environmental Prediction

NOAA National Oceanic and Atmospheric Administration

OACES Ocean–Atmosphere Exchange Study

OBGC Ocean Biogeochemical

PC Principal component

RECCAP Regional Carbon Cycle Assessment and Processes

RMSE Root Mean Squared Error

SAM Southern Annular Mode

sDIC salinity normalized Dissolved inorganic Carbon

SeaWIFS Sea–viewing Wide Field–of–view Sensor

SINP Self–organizing Map Input dataset

SOCAT Surface Ocean Carbon Atlas

SOCOM Surface Ocean pCO2 Mapping inter–comparison

SODA Simple Ocean Data Assimilation

SOM Self–Organizing Map

SOMMA Single–Operator Multi–Metabolic Analyser

SON September, October, November

SOP Standard Operating Procedure

SR1–4 Sensitivity runs 1–4

SSS Sea Surface Salinity

SST Sea Surface Temperature

sTALK salinity normalized Total Alkalinity

TALK Total Alkalinity

VINDTA Versatile Instrument for the Determination of Total Inorganic

Carbon and Titration Alkalinity

VOS Voluntary Observing Ships

WOCE World Ocean Circulation Experiment
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List of symbols

Table B.1: Variables, symbols and description

Variables and symbols Description Standard Units

Chapter 1

subscript abs Absorbed radiation -

superscript em Emitted radiation -

E Energy W · m−2

subscript S Sun -

subscript E Earth -

R Radius m

T absolute Temperature K

D Distance between Sun and Earth m

σ Stefan–Boltzmann constant W · m−2 · K−4

α Earth albedo -

Em Carbon emissions Pg C · yr−1

subscript ff fossil fuel -

subscript luc land use change -

subscript atm atmosphere -

subscript land land surface -

subscript ocean ocean surface -

Continued on next page
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Table B.1 – continued from previous page

Variables and symbols Description Standard Units

F Carbon flux Pg C · yr−1

dG
dt carbon accumulation rate Pg C · yr−1

subscript eq equilibrium -

subscript w water -

K0 Solubility of CO2 mol C · l−1 · atm−1

pA partial pressure of molecule A µatm

[A] concentration of molecule A mol · l−1

A1−3 constants for solubility calculation -

B1−3 constants for solubility calculation -

s salinity -

z film layer thickness m

ε molecular diffusivity m2 · s−1

k gas transfer velocity cm · hr−1

κ transfer resistance factor -

Sc Schmidt Number -

A,B,C,D Constants for Sc calculation -

n Schmidt Number exponent -

ν kinematic viscosity of water m2 · s−1

u∗ friction velocity m · s−1

τRaynolds Raynolds stress Pa

ρ average density kg · m−3

subscript gas in gas phase -

K1, K2 equilibrium constants mol C · l−1

Chapter 2

fA fugacity of a non–ideal gas A µatm

superscript surf surface -

R universal gas constant J · K−1 · mol−1

P barometric pressure Pa

Continued on next page
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Table B.1 – continued from previous page

Variables and symbols Description Standard Units

B,δ viral coefficients -

subscript ds deseasonalised -

subscript clim climatology -

p neural network input vector -

d Euclidean distance -

W weight matrix of a neuron -

subscript i neuron index -

superscript j index of input vector -

subscript n number of input vector elements -

subscript m number of neurons -

S step function -

b network bias -

a network layer output element -

subscript est estimated -

subscript opt optimal -

r ratio %

h modifiable network parameters -

x vector containing network weights -

and biases

J Jacobian matrix -

I Identity matrix -

e vector containing network errors -

µ network learning rate -

fice percentage of ice over %

u wind speed at 10m hight m · s−1

xA mole fraction of a gas A ppm

Chapter 3

N Coulometer reading counts

Continued on next page
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Table B.1 – continued from previous page

Variables and symbols Description Standard Units

b background reading counts · min−1

a acid blank reading counts

ρ density kg · m−3

subscript s seawater sample -

a-e polynomial constants -

γ buffer factor µmol · kg−1

Chapter 4

a,b,c coefficients for exponential fit -

Chapter 5

F’ net Carbon flux Pg C · yr−1
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Körtzinger, A. (1999), Methods of Seawater Analysis, chap. Determination of carbon
dioxide partial pressure (p(CO2)), pp. 149–158, Verlag Chemie.

Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel (2006), World Map of the Kppen-
Geiger climate classification updated, Meteorologische Zeitschrift, 15, 259–263.

Landschützer, P., N. Gruber, D. C. E. Bakker, U. Schuster, S. Nakaoka, M. R. Payne,
T. Sasse, and J. Zeng (2013), A neural network-based estimate of the seasonal to inter-
annual variability of the Atlantic Ocean carbon sink, Biogeosciences, 10, 7793–7815.

Le Quéré, C., R. J. Andres, T. Boden, T. Conway, R. A. Houghton, J. I. House, G. Mar-
land, G. P. Peters, G. R. van der Werf, A. Ahlström, R. M. Andrew, L. Bopp, J. G.
Canadell, P. Ciais, S. C. Doney, C. Enright, P. Friedlingstein, C. Huntingford, A. K.
Jain, C. Jourdain, E. Kato, R. F. Keeling, K. Klein Goldewijk, S. Levis, P. Levy, M. Lo-
mas, B. Poulter, M. R. Raupach, J. Schwinger, S. Sitch, B. D. Stocker, N. Viovy, S. Za-
ehle, and N. Zeng (2013), The global carbon budget 1959-2011, Earth System Science
Data, 5, 165–185.
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Mintrop, L., F. Pérez, M. González-Dávila, J. Santana-Casiano, and A. Körtzinger
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