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Abstract 

Coccolithophores are one of the important groups of phytoplankton in the global 

oceans, which makes it important to know how this group will react to changes in 

their environment due to climate change. Modellers already recognized their 

importance and included this group independently in global biogeochemical models. 

This study assesses the effect of light, temperature and nutrient availability on five 

coccolithophores, performing a range of laboratory experiments. The results of these 

experiments were then used to change the parameterisation of coccolithophores in 

the global biogeochemical model PlankTOM10. Furthermore, the model was 

validated in two ways, using a database of coccolithophore biomass measurements 

from the field and measurements of surface calcium carbonate derived from satellite 

data. 

Temperature effects on growth depend a great deal on the coccolithophore species. 

E. huxleyi (both, a subtropical and a temperate strain) and P. carterae grew best 

around 20°C, whereas G. oceanica and C. leptoporus had optimum temperatures 

above 25°C and still grew well at the maximum temperature tested in the 

experiments. E. huxleyi was the species with the highest growth rates (µmax=0.98 for 

the subtropical strain and µmax=0.97 for the temperate), followed closely by G. 

oceanica and C. leptoporus (µmax=0.91 in both species). P. carterae (µmax=0.77) had 

a noticeably lower maximum growth rate than the other coccolithophores. An inverse 

relationship with growth rate was found for all measured cellular components (POM, 

PIC, Chl a) as well as for cell volume in P. carterae. 

Coccolithophores are good competitors at high light intensities, having optimum 

growth light intensities above 180 µmol photons m-2 s-1. The temperate strain of E. 

huxleyi and the species G. oceanica showed the lowest optima at 350 µmol photon 
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m-2 s-1. C. leptoporus (Iopt=500 µmol photon m-2 s-1) and P. carterae (Iopt=600 µmol 

photon m-2 s-1) had higher optimum growth light intensities and the subtropical strain 

of E. huxleyi (Iopt=900 µmol photon m-2 s-1) grew best at the highest light intensity 

applied in this study. Only one strain of E. huxleyi showed light inhibition in its 

photosynthetic activity that was well above the detection limit in P-I curves up to 

2000 µmol photons m-2 s-1. Apart from a well-known decrease in Chl a/C ratio with 

increasing light intensity, little variation in the concentration of cellular components 

(POM, PIC) was observed.  

Nutrient experiments were carried out in a chemostat with two strains of E. huxleyi 

and one G. oceanica. Phosphorus limitation led to an increase in cell volume (112-

157%) and particulate organic carbon (21-54%) in E. huxleyi and G. oceanica, 

relative to cultures grown under nitrogen limitation. Comparison of uptake rates for 

phosphate and nitrate with other phytoplankton groups showed that both species are 

very good competitors for phosphate and relatively poor competitors for nitrate. 

The initial PlankTOM10 model simulation overestimated biomass compared with a 

new observational database, and underestimated surface calcium carbonate compared 

with satellite data. Changing the coccolithophore parameterisation in PlankTOM10, 

based on the laboratory results, did not lead to significant improvements relative to 

the observations. However, the response of the model to the parameter changes could 

be explained either directly from the changed parameters, or indirectly from changes 

in the model ecosystem.  
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1 Introduction 

1.1 Primary production in the world’s oceans 

Photosynthesis is the process by which CO2 and H2O are used to form organic matter 

with the help of sunlight. As organic compounds are formed from inorganic 

molecules this process provides primary production of organic matter, the basis of all 

food chains. Photosynthesis is the main driver of this primary production. Primary 

production in the oceans is dominated by phytoplankton, microscopic algae and 

cyanobacteria. The term plankton is derived from the Greek word planktos, meaning 

“errant” or “drifter”, as those organisms typically flow with the currents and have 

limited potential for autonomous motility. In addition to the distinction in different 

families, phytoplankton are also divided into size classes (Sommer 1998). The 

smallest organisms, ranging from 0.2 to 2 µm cell diameter, belong to the 

picophytoplankton. Cells with a length between 2 and 20 µm form the 

nanophytoplankton whereas the microphytoplankton consists of cells with a diameter 

of 20 to 200 µm. Some phytoplankton species build colonies out of multiple cells 

which reach even bigger size.  

Although the photosynthetically active biomass in the world’s oceans only accounts 

for 0.2% of the total global active biomass (Falkowski et al. 1998), annual net 

primary production in the oceans (58±7 Pg C/year) (Buitenhuis et al. 2013) is similar 

to that on land (56.4 Pg C/year) (Field et al. 1998). This is explained by the 

difference in turnover time between photosynthetically active organisms on land and 

in the ocean. The turnover time of phytoplankton (2-6 days) is many times faster than 

the turnover time of terrestrial plants (on average 19 years) (Field et al. 1998).  

Primary production in the oceans is highly regulated by the availability of chemical 

elements that are essential for the build-up of biomass, although other factors such as 

light or temperature can be regulating as well. The two most important elements in 

the regulation of marine primary production are nitrogen and phosphorus (Libes 

2009). Nitrogen is a vital component of amino acids (building blocks for proteins) 

and nucleic acids (building blocks for DNA and RNA), phosphorus is an essential 

part of phospholipids (major component of cell walls) and as phosphate ester in 

nucleotides (energy carrier ATP) or polynucleotides (RNA and DNA). Most of the 

nitrogen in the ocean is present as N2 (95%), and therefore is not available for most 
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phytoplankton due to the strong triple bond between the two nitrogen atoms. The few 

species that are able to break this bond are called diazotrophs and constitute the 

major source of reactive nitrogen (Nr) in the form of ammonium NH4
+ (Libes 2009). 

A smaller amount of Nr enters the ocean by atmospheric deposition and river input. 

Another important process in the cycling of Nr is the remineralization of particulate 

organic nitrogen (PON) back into dissolved inorganic nitrogen, mainly through 

solubilisation and ammonification. First, PON is degraded to dissolve organic 

nitrogen (DON) through fragmentation. This DON can then be further degraded to 

ammonium in a process called ammonification (Libes 2009). The recycled inorganic 

nitrogen is formed throughout the water column and brought back to surface waters 

by mixing. This recycled nitrogen fuels a fraction of the total primary production 

called regenerated production (Dugdale & Goering 1967). Some phytoplankton - like 

the coccolithophores E. huxleyi, C. braarudii and C. leptoporus (Benner & Passow 

2010) for example – are also able to utilize organic nitrogen compounds, adding to 

the regenerated production. In contrast, the fraction fuelled by nitrogen from nitrogen 

fixation, terrestrial and atmospheric sources is called new production. To enable 

estimations of new production, it is custom to calculate it based on nitrate 

incorporation and regenerated production based on ammonium incorporation (Eppley 

& Peterson 1979). This is possible as most recycled nitrogen is found in the form of 

ammonium, whereas most nitrate comes from terrestrial and atmospheric sources. 

Eppley and Peterson (1979) also introduced the f-ratio, the ratio of new to total 

production. This ratio is very variable, ranging from 10% to 20% in oligotrophic 

waters to 50% under phytoplankton bloom conditions. The global mean ratio is 

estimated at 14% (Chavez & Toggweiler 1995). The main sinks for reactive nitrogen 

from the ocean are denitrification and emission of N2O to the atmosphere (Libes 

2009). During denitrification, organic matter is oxidised using nitrate as electron 

donor and reducing it to N2 via a series of reactions (Libes 2009).  

Regarding phosphorus, the main source of new material to the ocean is river runoff, 

dust deposition playing an important role in some regions as well (Libes 2009). 

Similar to nitrogen, recycling of particulate organic material also plays an important 

role and some phytoplankton – the coccolithophores Emiliania huxleyi and 

Coccolithus braarudii for example – are able to utilize organic phosphorus 

compounds directly. The only sink for phosphorus in the ocean is sedimentary 

deposition. 
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Carbon is another important constituent for primary production. However it is very 

abundant in the ocean, in the form of dissolved inorganic carbon (HCO3
-, CO3

2- and 

CO2), that it is not a limiting factor. The biological CO2 uptake from the surface 

ocean by phytoplankton is termed the biological carbon pump, in contrast to the 

solubility pump – the physical processes that govern the exchange of carbon between 

atmosphere and ocean (Raven & Falkowski 1999). After cell death of the 

phytoplankton, some of the organic matter sinks out of the euphotic zone (the zone 

where enough light for photosynthesis is available). Most of this organic matter 

forms aggregates with other particles before sinking out of the euphotic zone 

(McCave 1984). Estimates for this flux range between 7-9.8 Pg C/year (Libes 2009). 

During this sinking process most of the organic matter is remineralized by bacteria. 

However, all matter that is remineralized below the thermocline is removed from 

interaction with the atmosphere for decades up to more than 1000 years (Libes 

2009). About 0.2 Pg C/year or 2-3% of the initial flux is buried in deep sea sediments 

and is kept from atmospheric interactions for even longer timescales (Libes 2009). 

Considering these three nutrients, it was found early in the last century that their 

relative ratios to each other are approximately constant in marine plankton (Redfield 

1934). The average atomic ratio of carbon to nitrogen to phosphorus in plankton,  

known as the Redfield ratio, is 106 to 16 to 1 throughout the ocean, similar to the 

ratio of 140:20:1 that Redfield found in seawater (Redfield 1934). However, in 

individual plankton groups and species the ratio can deviate substantially from this 

ratio, in particular if a species is growing under nutrient limitation (Arrigo 2005). 

Nutrient limitation in plankton is governed by Liebig’s law of the minimum whereby 

the nutrient with the scarcest availability controls phytoplankton growth (Falkowski 

et al. 1992), although resource co-limitation is found in some regions as well (Arrigo 

2005). Based on Liebig’s law, nutrient limited growth in phytoplankton is described 

by the Monod-Model (Monod 1949), resting upon Michaelis-Menten-kinetics, as a 

function of the external concentration of the limiting substrate (equation 1-1), where 

µ and µm are the current respectively the maximum growth rate, s is the external 

concentration of the limiting nutrient and Ks is the saturation constant for this 

nutrient, the concentration at which the organism is growing at a rate of µm/2 

(Equation 1.1). 

1.1 
μ

μm
=s/(Ks+s) 
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The nutrient uptake rate can be described by similar model, displacing growth (µ and 

µm) by uptake rate (V and Vm) (Droop 1973). 

Most oceanic regions are shown to be nitrate limited, phosphate- and iron-limitation 

is known in some areas as well (Mather et al. 2008, Moore et al. 2013). Different 

phytoplankton groups have developed adaptions to nutrient limitation, diazotrophs 

for example are not affected by nitrate limitation due to their ability to utilize N2 and  

and coccolithophores are known to have a particularly high affinity for phosphate 

which facilitates phosphate uptake at low phosphate concentrations (Riegman et al. 

2000). 

As indicated above, physical factors such as light availability and temperature can 

limit primary production in the ocean as well. Light is attenuated as soon as it comes 

in contact with water. A small amount is immediately reflected by the water surface; 

within the water body light is absorbed by water and its dissolved and particulate 

constituents. Light intensity in the water decreases exponentially with depth, as 

formulated in the Lambert-Beer law (Equation 1.2) 

1.2 Iz=I0×e-k×z 

, where Iz is the light intensity at depth z, I0 is the light intensity at the surface and k 

is the attenuation coefficient of light in seawater. One general response of 

phytoplankton to changes in light intensity is the regulation of the cellular pigment 

concentration, such as the photosynthetic pigment chlorophyll a for example 

(Richardson et al. 1983). At low light intensity, more chlorophyll is needed to 

achieve the same level of photosynthetic activity as at high light intensity. Based on 

this, the ratio of chlorophyll a to particulate organic carbon can give an indication to 

which light intensity phytoplankton is adapted. High values are found under low light 

condition, whereas the ratio is relatively small if the phytoplankton grows under high 

light condition. As phytoplankton is subjected to water motions it can easily be 

mixed down in deeper water layers where too much light has already been absorbed 

to support photosynthesis. The depth at which photosynthesis can still be supported 

is approximately where 1% of the initial irradiation is still available, the water 

column from the surface to this depth is known as the euphotic zone. In the clearest 

oceans this zone reaches down to a maximum of 200 meters (Sommer 1998). 
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Phytoplankton is not able to grow efficiently if they are mixed out of the euphotic 

zone for longer time periods.  

The possibility that this occurs is determined by the sinking rate of the phytoplankton 

and the depth over which it is mixed (Sommer 1998). The sinking velocity can be 

estimated using Stoke’s Law (Equation 1.3) 

1.3 v= 2g*r2(ρ'-ρ)

ρ*ɳ*ɸ
 

, where v is the sinking velocity (in m s-1), g is the gravity acceleration (9.8 m s-2), r 

is the radius of a sphere with identical volume to the phytoplankton cell, ρ’ is the 

density of the sinking cell, ρ is the density of the water (both in kg m-3), ɳ is the 

dynamic viscosity of the water (in kg m-1 s-1) and ɸ is a dimensionless parameter for 

form drag that has to be included if the cell shape deviates from a sphere.  

Stoke’s Law describes sinking velocity in unperturbed water, but wind often leads to 

turbulent mixing in the water column. This mixing can extend over the whole water 

column or down to a so-called pycnocline, where density differences cause 

separation of the surface and the deep water. The density differences which lead to 

this stratification are created by temperature differences (thermoclines), warmer 

water being less dense than colder water, or differences in salinity (haloclines), less 

saline water sitting on top of more saline water (e.g. through influx of fresh water 

(rainwater, ice melt or river water)). As the depth of turbulent mixing decreases 

relative to the sinking velocity of phytoplankton, the loss in phytoplankton biomass 

due to sinking below the pycnocline increases. The number of individuals still in the 

mixed water layer at timepoint t can be described by equation 1.4 

1.4 Nt=N0*e
-v*t

z  

, where Nt is the number of individuals at timepoint t, N0 is the number of individuals 

at timepoint 0, v is the sinking velocity (in m d-1), and z is the depth, down to which 

turbulent mixing occurs (Sommer 1998). If a phytoplankton population in the surface 

layer is persistent, growth at least compensates for these loses. The mixing depth at 

which phytoplankton production matches the losses of biomass integrated over the 

full depth interval is known as the critical depth, in contrast to the compensation 

depth at which phytoplankton production equals losses of biomass (Sverdrup 1953). 
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Sverdrup’s critical depth hypothesis for the initiation of phytoplankton blooms 

assumes a logarithmic decrease in primary production, corresponding to the decrease 

in available light with depth, and a constant respiration in order to calculate the 

critical depth (Figure 1-1). 

 
Figure 1-1: Primary production (dp) and respiration (dr) with depth. Primary production rates 
decrease with depth from rate c to rate a, whereas respiration is constant at rate b. Dc is the 
compensation depth at which primary production equals respiration, f is the critical depth at 
which total primary production (area aced) equals total respiration (area abfd) integrated over 
this depth interval. Figure from Sverdrup (1953). 

 
If the mixed layer depth falls below this critical value, no phytoplankton blooms can 

develop. To realize the estimated trends in primary production and respiration, the 

hypothesis makes further assumptions: 

• the top layer is thoroughly mixed 

• turbulence is strong enough to distribute plankton evenly throughout this 

layer 

• plankton is not nutrient limited within this layer 

• the extinction coefficient k for solar radiation is constant in the top layer 

• only the energy of light between 420 and 560 nm is considered for 

photosynthesis 



 

 7   

 

• the rate of photosynthesis is proportional to the energy of the radiation 

• the light energy level at the compensation depth is known 

Some of these assumptions are questionable and the hypothesis has been criticised a 

number of times. Sverdrup offered some criticism himself, he noted that zooplankton 

grazing may have a substantial impact on primary production which is not accounted 

for in his hypothesis and that advection of phytoplankton may also play a role in 

bloom formation (Sverdrup 1953). Later, Smetacek and Passow (1990) noted that 

respiration in Sverdrup’s model included zooplankton as well, whereas it is not 

included in primary production and that respiration is not constant over all depth 

levels but dependent on growth rate, depth and the ability of phytoplankton species 

to react fast to changes in the mixed layer depth. Behrenfeld (2010) observed that 

bloom initiation in the subarctic Atlantic occurs when mixed layer depth is at its 

maximum and that net population growth is inversely related to growth rate of 

individual phytoplankton species, both findings incompatible with Sverdrup’s 

hypothesis. In turn, he proposed his Dilution-Recoupling hypothesis (Behrenfeld 

2010) and further hypotheses for the initiation of phytoplankton blooms have been 

introduced (Chiswell 2011, Taylor & Ferrari 2011), indicating the complexity of this 

topic.  

Temporal patterns in primary productivity are observed as phytoplankton is affected 

by seasonal changes in nutrient availability and physical conditions such as light and 

temperature. Nutrient limitation generally increases with decreasing latitude due to 

increased stratification resulting in less nutrient replenishment to the surface ocean 

from deeper water masses (Libes 2009). On the other hand, with increasing latitude 

less light becomes available as the angle of incidence in radiation increases (Libes 

2009). Based on these observations the ocean can be divided into 4 biogeochemical 

domains – the polar, westerly, trade and coastal – in each major ocean basin, with 

distinct characteristics (Longhurst et al. 1995). In the polar domain (>60° N and S) 

primary production is light limited during winter during which time nutrients can be 

replenished in the surface water through mixing with deeper water layers. When 

solar irradiance increases at spring and the ice cover melts, primary production can 

increase to high levels quite rapidly (Libes 2009). In the westerlies domain (30-60° N 

and S) primary production is also light limited early in the year, growth is initiated as 

increasing insolation and decreasing wind stress lead to a shoaling of the pycnocline 
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above the critical depth for phytoplankton growth. Primary production eventually 

becomes nutrient limited towards summer and only occurs at low levels until first 

storm events bring new nutrients from deeper water in autumn by water mixing. 

Towards winter primary production becomes light limited once more as the sun 

angle, and therefore insolation, decreases (Libes 2009). In the trades domain (30° N 

to 30° S) seasonality is very weak. Primary production is nutrient limited through 

long periods of the year due to strong stratification. Trade wind intensification during 

boreal summer leads to brief episodes of uplift of the thermocline in the eastern 

Atlantic, leading to a temporary increase in primary production (Libes 2009). The 

coastal domain is controlled by tidal mixing, formation of fronts and river discharge, 

all processes bringing new nutrients to the surface ocean and facilitating primary 

production (Libes 2009). An interesting phenomenon that occurs in stratified waters 

is a deep chlorophyll maximum, where a high concentration of chlorophyll a is found 

in the pycnocline if the boundary is still within the euphotic zone (Anderson 1969, 

Kimor et al. 1987, Furuya 1990, Estrada et al. 1993). This can occur at depths down 

to 120 m and is explained by the differences in nutrient concentrations between the 

separated water masses, with low concentration in the surface ocean above the 

pycnocline and higher concentration in the pycnocline and the water layer beneath it 

(Banse 1987). Phytoplankton can adapt to the low light intensity in these regions by 

regulating its cellular chlorophyll concentration, further increasing the chlorophyll 

concentration relative to other depth levels, and thereby take advantage of the higher 

nutrient concentrations in the pycnocline. 

1.2 Pelagic calcification and the role of coccolithophores 

Coccolithophores are a group of phytoplankton, a component of the 

nanophytoplankton (Falkowski et al. 2004). Another characteristic of 

coccolithophores extends their importance for the carbon cycle as they are calcifying 

organisms, forming a layer of CaCO3 around their cells (Figure 1-2).  

The major groups of planktonic calcifiers are coccolithophores, foraminifera (both 

secreting CaCO3 in the form of calcite) and pteropods which secret CaCO3 as 

aragonite (Kleypas et al. 2006). On a short term calcification is a source of CO2 to 

the ocean (Equation 1.5) (Balch et al. 1992). 
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1.5 Ca+++2HCO3
-
→CaCO3+CO2+H2O 

On the long term however, calcification is thought to act as a sink for carbon as it 

increases the sinking of organic matter into the deep sea (Buitenhuis et al. 2001). 

Estimations of annual carbonate production differ quite significantly from 0.7 Pg 

C/year (Milliman et al. 1999) to 1.6 Pg C/year (Balch et al. 2007). This discrepancy 

is due to the approach of estimation; Milliman et al. calculated their estimate based 

on alkalinity whereas Balch et al. calculated it from primary production 

measurements based on a fixed ratio of photosynthesis to calcification. 

 

Figure 1-2: Scanning electron micrographs (taken by Jeremy Young) showing relative size of 
different coccolithophores. A. Helicosphaera carteri B. Coccolithus braarudii C. Calcidiscus 
quadriperforatus D. Calcidiscus leptoporus E. Umbilicosphaera foliosa F. Gephyrocapsa oceanica 
H. Emiliania huxleyi H. Oolithotus fragilis I. Umbilicosphaera hulburtiana J, Umbilicosphaera 
sibogae . 

 
This particulate inorganic carbon adds to the amount of buried material after cell 

death. Estimates for this downward flux of calcium carbonate range between 0.25 Pg 

C/year (Moore et al. 2004) and 1.8 Pg C/year (Murnane et al. 1999), suggesting that 

the annual production might be even higher than the estimates. In principle, the 
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export flux should be less or equal the rate of production. It is thought that up to 70% 

of the production might be exported (Moore et al. 2004). As the CaCO3 is much 

more resistant to degradation, a greater percentage of the surface ocean production 

(0.1 Pg C/year, 6-14% of annual production) reach the deep sea and are buried in the 

sediments (Berelson et al. 2007). Furthermore, the inorganic carbon aggregates with 

organic material, as studies have shown significant correlation in the downward flux 

of these two components (Klaas & Archer 2002). More than 80% of the global flux 

of organic material into the deep sea is associated with calcium carbonate (Klaas & 

Archer 2002). The CaCO3 significantly adds to the weight of the organic matter, as 

the CaCO3 has a far higher density then the organic matter alone, thus having a 

ballasting effect and increasing the sinking speed of the material (Ploug et al. 2008). 

Therefore, a higher percentage of this organic matter is buried in the sediments 

(Buitenhuis et al. 2001). Considering this role, coccolithophores and foraminifera are 

more important than pteropods, as the aragonite from pteropods is much more 

affected by dissolution than the calcite from the two other groups (Klaas & Archer 

2002). The relative importance of photosynthetic calcifiers (coccolithophores) over 

heterotrophic calcifiers (foraminifera) in the carbonate export is not well established 

(Berelson et al. 2007). Estimates for foraminiferal carbonate export are in the range 

of 0.4-0.9 Pg C/year (Schiebel 2002). These are within the range (0.25 to 1.8 PG 

C/year) estimated for coccolithophores as reported earlier in this paragraph. 

However, proportions of coccolithophores and foraminifera within the carbonate flux 

show significant variation on regional and temporal scales (Schiebel 2002). 

Coccolithophores show a global distribution, with some species (e.g. Emiliania 

huxleyi, Gephyrocapsa oceanic) occasionally forming extensive algae blooms 

(Holligan et al. 1983, Balch et al. 1991, Fernandez et al. 1993, Holligan et al. 1993). 

Four biogeographic zones have been identified for coccolithophore distribution: 

subarctic/subantarctic, temperate (transitional), subtropical (central) and tropical 

(equatorial) (Figure 1-3) (McIntyre & Be 1967, Winter et al. 1994). Highest species 

diversity can be found in the tropical and subtropical zone, decreasing towards higher 

latitudes (McIntyre & Be 1967). Emiliania huxleyi is the only species which can be 

found in all the biogeographic zones, also being the most abundant species in most 

areas (McIntyre & Be 1967, Winter et al. 1994).  
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Figure 1-3: Coccolithophore biogeographical zones. I tropical, II subtropical, III transitional 
and IV subarctic/subantarctic from McIntyre and Be (1967). 

 
However, Emiliania huxleyi is also one of the smallest coccolithophore species, 

building relatively light CaCO3 structures. Therefore its importance for the ballasting 

effect of coccospheres might be less than that of larger and more heavily calcified 

species (Young & Ziveri 2000, Buitenhuis et al. 2001, Ziveri et al. 2007). 

On an evolutionary timescale the first coccolithophores appear in the fossil record of 

Triassic sediments, about 225 million years ago (Bown et al. 2004). Since then 

coccolithophores show a relative uniform increase in diversity in the fossil record, 

interrupted by short extinction events at the Triassic/Jurassic, Jurassic/Cretaceous 

and Cretaceous/Tertiary boundaries - especially the Cretaceous/Tertiary event was 

disastrous, as 85% of all coccolithophore species went extinct (Bown et al. 2004). 

Events of increased speciation can also be found, mainly in the late Triassic, early 

Jurrasic and Tithonian-Berriasian periods, whereas most modern coccolithophores 

evolved in the Paleogene period between 40 and 60 million years ago(Bown et al. 

2004). The most abundant coccolithophore, Emiliania huxleyi, is a descendant of the 

Genus Gephyrocapsa, first appearing about 270000 years ago (Geisen et al. 2004). 

This Genus dominated the world’s oceans since the early Pleistocene (between 2.6 
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Million and 780000 years ago) until it was gradually displaced by Emiliania huxleyi 

during the last 85000 years (Geisen et al. 2004). 

1.3 Coccolithophores and climate change 

Due to human activity we are experiencing major changes to the global climate at the 

moment. This climate change will have serious effects on the world’s oceans as well, 

altering marine ecosystems. The best known effect is that the rise in the 

concentrations of CO2 and other greenhouse gases in the atmosphere leads to an 

increase in temperatures as more of the outgoing radiation is intercepted and radiated 

back to our planet. The oceans are a heat sink, as water has much more heat inertia 

than air, so that more than 80% of the additional heat so far has entered the ocean 

(Tyrrell 2011). This increase in oceanic temperature will have further effects, as it is 

mostly associated with surface waters. In many areas of the world’s ocean, vertical 

mixing between surface and deep water is a major source of nutrients. As nutrients at 

the surface get depleted through phytoplankton activity, exchange with deep, nutrient 

rich water replenishes these nutrient pools. An increase in surface temperature will 

lead to an increase in stratification, strong separation of water masses with different 

densities, as the density of the surface water is decreased. This stratification will 

inhibit vertical mixing and the nutrient pools in these surface waters will be 

replenished more slowly. Therefore phytoplankton will have to adjust to very low 

nutrient concentrations. The increased stratification will also change the light 

environment in which the phytoplankton are growing. Phytoplankton is transported 

by water movements, due to their small size they are mixed within the surface water 

layer. As the stratification increases and the maximum depth to which the 

phytoplankton is mixed gets shallower, the mean light intensity available for 

photosynthesis increases. 

Another effect of the increased CO2 level in the atmosphere is that, as a result, the 

oceans take up more CO2 as well to stabilise the CO2 equilibrium between 

atmosphere and ocean. In the ocean CO2 reacts with water to form H2CO3, which 

then dissociates into HCO3
- and CO3

2- according to equilibrium between these three 

compounds (Equation 1.6).  

1.6 CO₂+H₂O⇌H₂CO₃⇌H⁺+HCO₃⁻⇌H⁺+CO₃²⁻ 
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The dissociation constants of H2CO3 (the concentrations in mol/L at which half of 

the original reactant has dissociated) are K1=9.1*10-7 for the dissociation of H2CO3 

to HCO3
- and K2=6.2*10-10 for the dissociation of HCO3

- to CO3
2-(Pilson 1998). 

From equation 1.5 it is clear that the equilibrium is dependent on the pH as H+ is 

produced in both dissociation steps. At the current pH in the ocean, 8.1 on average 

(Hofmann and Schellnhuber 2010), most of this inorganic carbon is present as HCO3
- 

(Figure 1-4).  

 
Figure 1-4: Concentrations of the components of the oceans carbonate buffer system versus pH 
for DIC=2000 µmol L -1, S=35 and T=25°C. Modified after Hofmann and Schellnhuber (2010). 

 
As ocean acidifaction occurs, the concentration of H+ increases and shifts the 

carbonate equilibrium to the left hand side in order to decrease [H+]. Looking at 

Figure 1-3 this process in particular affects the concentrations of CO2 and CO3
2-, 

increasing the first and decreasing the latter. This is highly significant for calcifiers 

such as coccolithophores as the calcium carbonate saturation Ω (omega) in seawater 

is dependent on the CO3
2- concentration, the concentration of Ca2+ and the solubility 

product K*sp of the two ions (Equation 1.7). 
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Decreasing the concentration of CO3
2- will lead to decreased calcium carbonate 

saturation levels in the ocean and resulting from that, higher levels of dissolution of 

structures such as the shells of coccolithophores. This issue has received 

considerable attention among scientists over the last decade (Riebesell et al. 2000, 

Zonderan et al. 2001, Sciandra et al. 2003, Leandros and Geider 2005, Langer et al. 

2006, Iglesias-Rodriguez et al. 2008, Feng et al. 2008, Langer et al. 2009, Casareto et 

al. 2009, De Bodt et al. 2010, Lohbeck et al. 2012).  

Laboratory studies focussed on the species E. huxleyi in particular, but the results 

give an inconclusive picture. Although most studies (Riebesell et al. 2000, 

Zondervan et al. 2001, Feng et al. 2008, De Bodt et al. 2010) observed a decrease in 

the production of calcium carbonate (CaCO3) parallel to an increase in the 

production of particulate organic carbon (POC), another study (Sciandra et al. 2003) 

showed a decrease in POC as well as in CaCO3. Furthermore, Iglesias-Rodriguez et 

al. (2008) observed an increase in both, CaCO3 and POC production. This could be 

explained by the fact that different strains of E. huxleyi were utilized in these studies. 

In a study comparing four different strains of E. huxleyi, Langer et al. (2009) 

observed that these strains showed different reactions to ocean acidification 

regarding production of CaCO3 and POC. Laboratory with other coccolithophore 

species also indicate variability in the response to ocean acidification. Whereas G. 

oceanica showed the same response as E. huxleyi in the two studies by Riebesell et 

al. (2000) and Zondervan et al. (2001), Casareto et al. (2009) observed an increase in 

both, POC and CaCO3 production rates in P. carterae and Langeret al. (2006) found 

different responses in C. leptoporus (non-linear relationship in CaCO3 production 

and constant POC production rates) and C. pelagicus (no changes in CaCO3 or POC 

production rates). Another point to keep in mind is that all the studies mentioned in 

this paragraph were short term experiments and do not take the process of adaptive 

evolution into account. In two 500-generation selection experiments with E. huxeyi, 

Lohbeck et al. (2012) showed that CaCO3 production in cultures after 500 

generations was significantly higher than in cultures after short term acclimatisation 

to high CO2, but still lower than in cultures grown at ambient CO2 levels. 
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To simulate the impacts of climate change on phytoplankton, and also specific 

groups of phytoplankton, computer models are used. 

1.4 Modelling coccolithophores 

To get an indication how climate change might affect the ocean and its ecosystems, 

global biogeochemical models are developed and tested against available field data 

to validate model simulations. These computer models of the world’s oceans allow 

us to ask questions that could not be addressed with data alone, e.g. quantifying 

interactions between different processes or extrapolating data over space and time.  

The first global biogeochemical simulations were started in the early 1990’s (Najjar 

et al. 1992, Maier-Reimer 1993) advancing current atmosphere-ocean general 

circulation models (AOGCMs) which model the physics in the ocean and the 

atmosphere including interactions between the two compartments. In 1995 the 

International Geosphere-Biosphere Program (IGBP) initiated a first comparison of 

ocean carbon-cycle models (OCMIP) (Doney et al. 2003). During the first phase 

(OCMIP-1) between 1995 and 1998, four ocean carbon-cycle models were compared 

for their simulations of natural and anthropogenic CO2 and C-14. The second phase 

(OCMIP-2) was carried out between 1998 and 2002 and compared the simulations of 

13 models, also including a common biological model. The current phase (OCMIP-

3) added three more topics to the project, comparing interannual variability, ocean 

inverse-basis modelling and automating model-data comparison.  

The first biogeochemical models by Maier-Reimer and Najjar et al. included one 

group of phytoplankton. However, different species of phytoplankton may function 

in diverse ways. Several studies in the last decade have started to divide this single 

model phytoplankton into several individual groups, using the approach of plankton 

functional types (PFT’s) (Aumont et al. 2003, Gregg et al. 2003, Le Quéré et al. 

2005). The concept of plankton functional types was first put forward by Falkowski 

and colleagues (Falkowski et al. 2003). It divides plankton in distinct groups, based 

on their biogeochemical metabolism. The initial concept is relatively vague and there 

have been different classifications of PFT’s. Le Quéré and colleagues therefore 

suggested additional criteria for distinguishing PFT’s. A PFT should have a distinct 

biogeochemical role, it should be controlled by an exclusive set of physiological 

requirements, the PFT’s behaviour should have important effects on other PFTs and 

the PFT should be of quantitative importance in at least some areas of the world’s 
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ocean (Le Quéré et al. 2005). The significance of coccolithophores in the global 

carbon cycle suggests their incorporation as an individual group in global 

biogeochemical models and there have already been a number of studies 

incorporating coccolithophores as a functional group in models (Le Quéré et al. 

2005, Gregg & Casey 2007). However, the correlation of these model results with 

field and/or satellite data needs to be improved. To improve this correlation, the 

simulation of the physiology with model equations and parameters needs to be 

representative of the functional group. Laboratory experiments offer the opportunity 

to examine the effects of univariant environmental conditions on organisms. There 

have been a number of studies on the effects of climate change parameters on 

coccolithophores, but so far most of the research has focussed on Emiliania huxleyi. 

This is the most abundant coccolithophore species, but as mentioned above its role in 

the carbonate export and the ballasting effect of coccospheres is thought to be 

smaller than that of other species. 

1.5 Thesis aims and objectives 

The aim of this thesis was to examine the effect of the three environmental 

parameters temperature, light and nutrient availability on five species of 

coccolithophores. In addition possible intraspecific differences in the response of two 

strains of Emiliania huxleyi isolated from different biogeographic zones were 

investigated, as those have been observed in the response of this species to changes 

in the carbonate system (Langer et al. 2009).  Chapter 2 gives an overview of the 

different techniques that were used during the laboratory experiments and the 

statistical analysis that was applied to compare datasets. Chapter 3 describes the 

results of experiments investigating the effect of temperature and aims to test the 

following hypotheses: 

• Emiliania huxleyi has a wider temperature range for growth than other 

coccolithophores. 

• A temperate strain has a lower optimum temperature than a subtropical strain 

of the same species. 

• Concentrations of particulate cell components (POM, PIC, Chl a) and cell 

volume show an inverse relationship to growth rate, as cells growing at a low 

rate have more time to acquire biomass and increase their cell size. 
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Chapter 4 addresses the effect of light on coccolithophores, based on laboratory 

experiments, and focuses on the following hypotheses: 

• A temperate strain has a higher maximum ratio of Chlorophyll a to organic 

carbon and is more sensitive to high light inhibition than a subtropical strain 

of the same species. 

• Coccolithophores are better adapted to high light intensities compared with 

other groups of phytoplankton. 

In chapter 5, the effects of changes in the ratio of nitrogen to phosphorus on 

coccolithophore growth are discussed on the basis of chemostat experiments 

conducted in the laboratory, concentrating on three hypotheses: 

• Coccolithophores grow well under both nitrate and phosphate limitation. 

• Coccolithophores increase cell volume under phosphorus limitation, as 

previously suggested in literature. 

• Coccolithophores are good competitors for phosphate compared with other 

phytoplankton groups. 

Chapter 6 comprises a modelling study for which the results from the laboratory 

experiments, discussed in the previous three chapters, were used to modify the 

parameterisation of coccolithophores in the global biogeochemical model 

PlankTOM10. This study also includes a validation of the model output with a global 

database of coccolithophore biomass measurements from the field and surface 

concentrations of particulate inorganic carbon derived from satellite measurements. 

Although not a hypothesis, the results are discussed based on the expectation that:  

• Including more physiological data to parameterise the model leads to 

improvement of the model relative to observations 

Chapter 7 summarises the results of the four previous chapters, addressing the 

different hypotheses laid out previously, and gives an outlook on future research that 

needs to be carried out. 

The thesis ends with two appendices. Appendix A gives details of medium 

composistion. Appendix B is a published paper describing a new database of 

coccolithophore biomass in the global ocean. 
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2 Methodology 

2.1 Coccolithophores 

Six different strains of coccolithophores (Figure 2-1, Table 2-1) were used. All 

strains were unialgal but not axenic. 

 
Table 2-1: Coccolithophore strains obtained from Roscoff Culture Collection (strain prefix 
RCC) and Plymouth Marine Laboratory (strain prefix PLY) 
Coccolithophore strain Biogeography Oceanic origin 

Emiliania huxleyi  

RCC1229 

Temperate 58° 42’ N, 3° 21’ E 

North Sea 

Gephyrocapsa oceanica 

RCC1314 

Temperate 44° 60’ N, 5° 1’ W 

North Atlantic  

Coccolithus braarudii 

RCC1197 

Temperate 49° 31’ N, 0° 41’ W 

North Atlantic (English Channel) 

Pleurochrysis carterae 

PLY406 

Temperate Coordinates unknown 

North Atlantic (English Channel) 

Emiliania huxleyi  

RCC963 

Subtropical 8° 20’ S, 141° 15’ W 

Equatorial South Pacific 

Calcidiscus leptoporus 

RCC1150 

Subtropical 14° 49’ N, 67° 3’ W 

Equatorial North Atlantic 

 
Stock cultures were grown in seawater-based K/2 medium after Keller (Keller et al. 

1987) as modified by Ian Probert (recipe in Appendix). Stock cultures were kept in 

MLR 351 Plant Growth Chambers (Panasonic Biomedical Sales Europe BV, 

Loughborough, UK), temperate strains at 17°C, 65 µmol photon m-2 s-1 and a 14:10 

light:dark-cycle, subtropical strains at 22°C, 120 µmol photon m-2 s-1 with a 14:10 

light:dark-cycle. These are the conditions at which the algae are grown at the Culture 

Collections. Light intensity in the incubators had been measured with a Scalar PAR 

Irradiance Sensor QSL 2101 (Biospherical Instruiments Inc., San Diego, USA).  
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Figure 2-1: Global distribution (point of origin) of coccolithophore strains used in the 
experiment. (A) Emiliania huxleyi RCC1229, (B) Coccolithus braarudii RCC1197, (C) 
Pleurochrysis carterae PLY406, (D) Gephyrocapsa oceanica RCC1314, (E) Calcidiscus leptoporus 
RCC1150, (F) Emiliania huxleyi RCC963 
 

2.2 Temperature  

Cultures were grown in a custom-made Temperature Gradient Bar (Buitenhuis 

submitted) at 13 different temperatures in 50 ml culture tubes with 45 ml K/2 

medium. Replicate cultures (2-4 depending on the growth rate of the cultures) from 

each temperature were sampled for cell concentration, particulate organic 

carbon/nitrogen, particulate organic phosphorus, particulate inorganic carbon and 

chlorophyll a. A detailed description of the experimental setup is given in chapter 3. 

 

 

E 

A 

B C 

D 

F 

200 km 2000 km 



 

 20   

 

2.3 Light  

Cultures were grown in Erlenmeyer flasks with 400 ml K/2 media in growth 

chambers at 4-6 different light intensities. At all light intensities samples of 4 

replicate cultures were taken to measure the photosynthetic activity via 

photosynthesis-irradiance curves. Following this measurement each culture was 

analysed for cell concentration, particulate organic carbon/nitrogen, particulate 

organic phosphorus, particulate inorganic carbon and chlorophyll a. A detailed 

description of the experimental setup is given in chapter 4. 

2.4 Nutrients 

Cultures were grown in chemostats under nitrate or phosphate limitation. The 

overflow of the chemostats was collected in a bottle containing formaldehyde 

solution to immediately preserve the coccolithophore cells. The overflow was 

sampled at 4 time points for cell concentration, particulate organic carbon, nitrogen 

and phosphorus, particulate inorganic carbon and chlorophyll a. A detailed 

description of the experimental setup is given in chapter 5. 

2.5 In Vivo Fluorescence 

Growth in the cultures was monitored by measuring invivo fluorescence in a Turner 

10-AU Field Fluorometer. This is a fast and easy method which has shown good 

correlation with chlorophyll a concentrations or cell number in previous studies 

(Tunzi et al. 1974, Slovacek & Hannan 1977, Brand et al. 1981, Karsten et al. 1996, 

Gustavs et al. 2009). A shortcoming of this method is that the relationship between 

chlorophyll a concentration and the measured fluorescence varies between different 

species and within species under different growth conditions (Slovacek & Hannan 

1977). To overcome this problem fluorescence measurements were compared to cell 

numbers, measured in a Coulter Counter. 
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2.6 Cell concentration 

Cell numbers and volumes were analyzed with a Coulter Multisizer 3 (Beckman 

Coulter Ltd., High Wycombe, UK).  

 
Figure 2-2: Schematic of the Coulter Counter principle (from the Multisizer Brochure). The 
aperture with an internal and an external electrode and filled with electrolyte solution is 
immerged into the sample. As subsamples of the original sample are transported through 
aperture, particles displace a volume of electrolyte and create voltage pulses which are 
processed through an analog and a digital pulse processor to convert them into information on 
cell concentration and –volume in the sample. 

 
The coulter principle is that particles suspended in an electrolyte solution are drawn 

to an aperture separating two electrodes (Figure 2-2). The voltage applied between 

the electrodes creates a “sensing zone”. Particles that pass through the aperture 

displace their own volume of electrolyte, increasing the impedance of the aperture 

and creating a pulse which is processed. The pulse is directly proportional to the 

volume of the particle that produced it. Analysis of these pulses creates a size 

distribution of the sample in cell number, volume and diameter (Beckman Coulter 

2009).  

Each analysis consisted of three samples measured in the Multisizer. For each sample 

0.5 ml of culture was diluted with 9.5 ml of 0.2 µm filtered seawater (the electrolyte 

solution). Samples were acidified by addition of HCl to give a final concentration of 

3.6 mM  to remove coccoliths and accurately measure cell volume (Buitenhuis et al. 

2008). After placing a sample in the Multisizer the instrument was set to carry out 

three replicate measurements of 500 µl subsamples. 

sample 
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2.7    Particulate organic carbon and nitrogen 

Particulate organic carbon (POC) and nitrogen (PON) were analyzed with an Exeter 

Analytical CHN analyzer (Verardo et al. 1990).  

Samples of 5-7 ml culture (depending on experiment) were filtered onto 

precombusted (4-6 hours at 450°C to remove organic material on the filter) 13 mm 

diameter GF/F filters and stored at -80°C until analysis (maximum 300 days). The 

first step after defrosting was to acidify samples and 3 medium blanks in an 

evacuated dessicator over 50 ml hydrochloric acid for 12 hours to remove the 

inorganic carbon, without affecting the particulate organic carbon (Verardo et al. 

1990).  

 
Figure 2-3: Volumetric test for POC analysis with E. huxleyi RCC1229, comparing unacidified 
samples for total carbon with acidified samples and acidified samples with added particulate 
inorganic carbon to enable direct comparison with total carbon samples. Blue and red bars 
represent the mean of triplicates for total carbon and acidified samples for each tested sample 
volume. Whiskers indicate the standard deviation.   

 
A test was carried out to determine the minimum sample volume necessary for 

accurate POC/PON measurements. For this, two sets of triplicate samples for a range 

of sample volumes (1 ml to 15 ml) were taken from a culture of E. huxleyi RCC1229 

with a cell concentration of 8.05*105 cells/ml. One triplicate of each set was acidified 

for 24 hours whereas the other one remained unacidified, enabling measurements of 

total carbon (TC) in the culture. For sample comparison, a particulate inorganic 
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carbon (PIC) content (measured from samples of the same culture using flame 

atomic absorption spectrometry as described in chapter 2.9) was added to POC 

measurements to balance it with TC measurements. However, this test showed that 

the duration of the acidification step suggested in the protocol was too long, as the 

combined concentrations of POC and PIC in the acid fumed samples was much 

lower than the TC concentrations in unacidified samples (Figure 2-3). It also showed 

that, at the measured cell concentration, 3 ml of sample were sufficient to ensure 

satisfactory measurements. At a sample volume of 1 ml measurements of fumed 

samples were noticeably lower and showed a higher variation. Another test was 

carried out with varying durations of acidification, to find the optimum duration of 

the acidification step. As in the volumetric test, a PIC content analysed from the 

same culture of E. huxleyi was added to measurements of fumed POC samples to 

enable comparison with unfumed samples from the same culture analysed for TC. 

The test revealed that an acidification step of 12 hours, after addition of PIC, 

compared very well with untreated samples (Figure 2-4).  

 
Figure 2-4: Acidification test for POC analysis with E. huxleyi RCC1229, comparing unacidified 
samples and samples that were acidified for different periods of time. Bars indicate mean of 
triplicate samples, whiskers the standard deviation. 

 
Coming back to the general protocol, , the filters were dried for 24 hours at 60°C 

after the acidification step, folded and placed in tin capsules in 96 well microplates.  
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The samples were analyzed with a CE440 CHN analyser (Exeter Analytical, North 

Chelmsford, USA). During CHN analysis samples are combusted in pure oxygen 

under static conditions (Figure 2-5). The generated gases pass through a copper 

column that reduces oxides of nitrogen to N2. The gases then enter a mixing volume 

chamber to ensure homogenity before passing through a series of thermal 

conductivity detectors. Two traps between the detectors remove H2O, then CO2. The 

differential signal between the detectors adjacent to each of the traps is proportional 

to the concentration of the corresponding compound. The remaining gas (now only 

consisting of the carrier gas helium and nitrogen) passes through another 

conductivity detector and is compared to a reference cell through which pure helium 

flows. The difference in the output signals gives the nitrogen concentration (Exeter 

Analytical 2005).  

 
Figure 2-5: Schematic of CHN analysis (from Exeter CE440 Elemental Analyser brochure). 
Samples are combusted in the Combustion Tube in pure oxygen and then transported to the 
reduction tube, using helium as carrier, where oxides of nitrogen are reduced and residual 
oxygen is removed. In the mixing volume the sample gases are homogenized before this mixture 
is released into the array of thermal conductivity detectors. Two traps remove H2O respectively 
CO2 and the concentrations of hydrogen and carbon are calculated based on the signal 
differences at the two ends of each trap. The remaining mix of helium and nitrogen passes 
through a thermal conductivity cell and is compared to a pure helium standard to give the 
nitrogen concentration. 

 
To calculate the amount of organic carbon and nitrogen in the samples, the 

instrument was calibrated with acetanilide (C6H5NH(COCH3)) standards of known 
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weight as this substance has a similar C/N ratio (C/N=8) to that of phytoplankton 

(C/N=6.625 after Redfield 1934) (Nollet 2007).  

2.8    Particulate organic phosphorus 

Particulate organic phosphorus (POP) in coccolithophore cultures was analyzed to 

enable comparison of the ratios of organic carbon, nitrogen and phosphorus against 

the Redfield ratio, which is the average molecular ratio of carbon, nitrogen and 

phosphorus in phytoplankton (Redfield 1934). POP was measured by high 

temperature dry combustion (HTDC) (Andersen 1976, Aspila et al. 1976).  

Samples were taken at 4 time points in all experiments; single samples during the 

temperature- and nutrient experiments and triplicate samples during light 

experiments. In each case 20 ml of culture was filtered onto 25 mm diameter 

Whatman GF/F filters. The samples were stored at -80°C until the day of analysis 

(maximum 300 days).  

Table 2-2: Recipe for POP Mixed Reagent 
100 ml Ammonium Molybdate (12 mM)  

250 ml Sulfuric acid (4.8N)  

100 ml Ascorbic acid solution (153 mM) Reagent should turn pale yellow colour 

50 ml Potassium antimonyl tartrate (509 µM)  

 

At the start of the analysis, samples and triplicate medium blanks were placed in 50 

ml culture tubes and dried at 70°C for one hour before breaking down the POP into 

orthophosphate (PO4) in an oven at 500°C for one hour. The first drying step is 

carried out to accurately measure the dry weight of the material before analysis and 

could have been skipped in this case as analysis was done based on filtered volume 

rather than weight. After the samples had cooled down 1 ml 1N HCl and 10 ml DI 

water were added and the samples were heated under pressure in an autoclave at 

104°C for two hours. After the samples had cooled down once more, 2.5 ml aliquots 

of Mixed Reagent (Table 2-2) were added, the tubes were briefly vortexed and then 

stored in the dark for 30 minutes before analysis with a LAMBDA 25 

spectrophotometer (PerkinElmer, Waltham, USA) at 885 nm based on the method by 

Murphy and Riley (Murphy & Riley 1958). This gives the molybdenum in the mixed 

reagent time to react with the orthophosphate in the sample, giving the solution a 

blue colour. To calibrate the spectrophotometer a series of 6 KH2PO4 standards  
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(0, 0.025, 0.05, 0.1, 0.15, 0.2 µmol PO4) were used. For this, different volumes of 

1000 µM KH2PO4 were spotted onto GF/F filters and the standards were treated in 

the same way as the samples including the high temperature incubation at 500°C. 

The measurement of the standards gave a linear regression that could be used to 

calculate the orthophosphate concentration in the samples.   

2.9    Particulate inorganic carbon 

Particulate inorganic carbon (PIC) was derived from particulate calcium. This was 

analysed using flame atomic absorption spectrometry (van Bleijswijk et al. 1994), to 

determine the Ca2+ concentration based on the absorption of light of a certain 

wavelength by atoms in ground state (Robinson et al. 2005). From this the amount of 

particulate inorganic carbon (PIC) was calculated based on a 1:1 ratio of Ca2+:PIC 

(van Bleijswijk et al. 1994). 

Samples were filtered on polycarbonate filters (0.8 µm pore size) and stored at -80°C 

until analysis (300 days maximum). For the analysis, samples and media blanks were 

placed in 6 ml HCl (0.1 M) for 15 hours to extract the calcium. The Ca2+ 

concentration in the extract was then measured in an inductively coupled plasma 

optical emission spectrometer (Vista-PRO Simultaneous ICP-OES, Varina Inc., Palo 

Alto, USA).  

 
Figure 2-6: schematic view of ICP-OES analysis. The sample is pumped through a nebulizer 
before being ionized by electrons and argon ions. These reactions give off radiation which is 
analysed by the spectrometer and can be converted into concentrations for different molecules 
providing an adequate calibration was carried out prior to the analysis. 
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In this process electrons and argon ions, created through electromagnetic ionization 

of argon gas, collide with the nebulised sample leading to its ionization (Figure 2-6). 

The sample compounds lose electrons and recombine repeatedly in the ICP-OES 

plasma, giving off radiation at characteristic wavelengths for different molecules 

(e.g. calcium). This radiation is then analyzed in the ICP-OES optical spectrometer. 

Before sample measurement the instrument was calibrated using 6 CaCl2 standards 

of known concentration (range 0-800 µM). 

Prior to the experiments a test run was carried out to estimate the sample volume 

necessary for this analysis. Four replicate samples of 6 different volumes were taken 

from a culture of E. huxleyi RCC1229, analysed and compared against a theoretical 

CaCO3 content (Figure 2-7). This theoretical concentration was based on a weight of 

0.28 pg C for each individual coccolith (Young & Ziveri 2000) and 15 coccoliths per 

cell (Paasche 2001). This test showed that a sample volume of minimum 8 ml (at a 

cell concentration of 8*105 cells/ml) gives good agreement with expected levels of 

CaCO3. 

 
Figure 2-7: Volumetric test for PIC analysis, comparing it with theoretical PIC(pg C/cell) 
calculated from 0.28 pg C/coccolith (Young and Ziveri 2000) and 15 coccoliths/cell (Paasche 
2001) 
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2.10 Chlorophyll a 

Samples for Chlorophyll a analysis were taken at 4 times during all experiments; 

single samples during the temperature- and nutrient experiments and triplicate 

samples during the light experiments. Aliquots (8 ml) were filtered onto 25 mm 

diameter Whatman GF/F filters, the filters were snap frozen in liquid nitrogen and 

stored at -80°C until analysis. 

For the analysis, chlorophyll was extracted in 90% acetone (prepared fresh for each 

analysis). The samples and three filter blanks were placed in scintillation vials with 

10 ml of 90% acetone, gently shaken and vortexed. After this, the samples were left 

at 4°C in the dark for 24 hours to extract the chlorophyll. The fluorescence of 

samples was measured in a LS45 Fluorescence Spectrometer (PerkinElmer, 

Waltham, USA) at an excitation wavelength of 440 nm and an emission wavelength 

of 680 nm (Rebeiz 2002).  

The bandwith of both, excitation- and emission slit was 10 nm. To account for 

chlorophyll derivatives in the samples, two drops of 8% HCl were added to the 

cuvettes after the initial fluorescence measurement and the sample was measured 

once again. This value was then substracted from the initial fluorescence value. 

To calculate chlorophyll a concentrations from sample fluorescence, a series of 5 

chlorophyll a standards (0, 50, 100, 250, 500 µg/L) from spinach  

(SIGMA product C5753) was measured before the samples and the linear regression 

of these standards was used to calculate the chlorophyll a concentration in the 

samples.  

2.11 Statistical comparison 

Datasets of all measured parameters were analysed for significant differences 

between pairs of coccolithophores using the Mann-Whitney U test  

(Mann & Whitney 1947). It is a non-parametric test, suitable for non-normally 

distributed data, testing the null hypothesis that two datasets are the same against an 

alternative hypothesis that they are different. This is the case if the calculated p-value 

falls below the limit of 0.05. The tests were carried out using the statistical software  

R Studio Version 0.94.110. 
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3 Effect of temperature on coccolithophores 

3.1 Introduction 

Global climate change will bring considerable change to the marine environment; the 

temperature in the world’s ocean will increase as a direct result of climate change. 

This makes it important to know about the effects of temperature on marine 

organisms, to be able to explain and predict future changes in marine ecosystems. 

Temperature dependence of growth in phytoplankton has been studied extensively 

over the last 50 years. (Eppley 1972) suggested that individual species show highest 

growth at their optimum temperature with decreased growth rates at higher and lower 

temperatures, but that the temperature dependence of phytoplankton assemblages 

could be generalised to an exponential relationship. This exponential relationship has 

been widely used in ocean biogeochemical and ecosystem models. However, 

alternatives have been suggested in other studies – such as linear relationships for 

individual species (Raven & Geider 1988, Montagnes & Franklin 2001, Montagnes 

et al. 2003) or optimum-function relationships for assemblages (Schoemann et al. 

2005).  

Previous studies have shown that temperature can have a significant effect on 

coccolithophores and the growth optimum in coccolithophores seems to be closely 

related to biogeography. In a study by (Buitenhuis et al. 2008) Coccolithus braarudii, 

a cold-water species, and the globally distributed Emiliania huxleyi were the only 

species to show significant growth below 10°C . As suggested by the differences in 

biogeography – E. huxleyi having a much broader distribution than C. braarudii – E. 

huxleyi showed growth over a wider range of temperatures, growth rates only 

decreasing at 25°C, whereas C. braarudii did not grow at temperatures above 20°C 

(Buitenhuis et al. 2008). In contrast, three subtropical species (Calcidiscus 

leptoporus, Gephyrocapsa oceanica, Syracosphaera pulchra) did not grow very well 

below 10°C, only C. leptoporus showed minimal growth at 9°C (Buitenhuis et al. 

2008). C. leptoporus grew over a considerable narrower range of temperatures than 

the other species, showing growth up to 25°C, whereas growth in G. oceanica and S. 

pulchra continuously increased up to the maximum temperature of 25°C (Buitenhuis 

et al. 2008). Other studies broadly support the observations by Buitenhuis et al. 

(2008), reporting an increase in growth rate with temperature, but over a narrower 
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range of temperatures (Sorrosa et al. 2005, Schouten et al. 2006, Satoh et al. 2009). 

Buitenhuis et al. also looked into the question what growth model would be best to 

represent the temperature dependence of growth in coccolithophores, comparing a 

linear relationship with exponential (Eppley 1972) and optimum-type correlations 

(Schoemann et al. 2005). They found that the linear and the exponential model best 

reproduced their laboratory data and the introduction of an additional parameter with 

the optimum growth model did not improve the model fit (Buitenhuis et al. 2008). 

Regarding the effect of temperature on coccolithophore calcification, Ca2+-uptake of 

E. huxleyi has been measured at 10°C and 20°C (Sorrosa et al. 2005) respectively 

12°C and 20°C (Satoh et al. 2009). Both studies reported a higher uptake rate and 

increased coccolith production at higher temperature. Furthermore, cell volume has 

been shown to decrease with temperature, along with an increase in growth rate in E. 

huxleyi and G. oceanica (Sorrosa et al. 2005, Satoh et al. 2009).However, a study by 

Balch et al. (1992) showed higher calcification rates in the same species at 15°C than 

at 20°C together with increased photosynthetic activity at 15°C. An earlier study 

(Paasche 1968) could explain this inconsistency, Paasche found an increased number 

of calcified cells between 18°C and 24°C compared with 7°C, 12°C and 27°C. It 

could be that the optimum temperature for calcification in E. huxleyi is at 15°C 

which the two studies by Sorrosa et al. (2005) and Satoh et al. (2009) did not 

measure. 

The aim of the research presented in this chapter is to provide a broader picture of 

the effect of temperature on coccolithophores, by including more species than most 

of the other studies and examining the effects on more levels – namely growth, cell 

volume and cellular concentrations of chlorophyll a, particulate organic carbon, 

particulate organic nitrogen, particulate organic phosphorus and particulate inorganic 

carbon derived from particulate calcium.  

3.2  Methodology 

The experiments were carried out with six different strains of coccolithophores (see 

Figure 2.1) in a custom-made temperature gradient bar (TGB, Figure 3-1) 

(Buitenhuis submitted). One end of the TGB is cooled by a water chiller, whereas the 

other end is heated. This creates a temperature gradient over 13 slots for 50 ml 

culture tubes; the TGB consists of five rows (A to E) of these slots. All slots are 
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illuminated by individual LEDs. LEDs of the five rows are controlled separately and 

the LEDs of each row can be regulated in groups (Slot 1-6 and 7-13). Light intensity 

in the TGB can be regulated in two ways.  

 

Figure 3-1: Temperature Gradient Bar providing 5 rows (A to E) of 13 slots for plankton 
cultures (50 ml culture tubes). 

 
Light level of the LED-groups can be adjusted using the thermal gradient bar 

controller and the light intensity can be tuned further by changing the distance 

between LEDs and the TGB. A glass plate at the base of the TGB prevents 

condensation of water at the cold end of the TGB due to the effect of the warm LEDs 

and the cold TGB.  

Two experiments were carried out, growing cultures in seawater based K/5. In both 

cases, the light intensity was set to 300 µmol photon m-2 s-1. The experiment with 

two strains of E. huxleyi and the G. oceanica used a gradient from 1°C to 29°C and 

the experiment with C. leptoporus and P. carterae used a gradient from 0°C to 32°C. 

Growth was monitored by invivo fluorescence, measuring fluorescence directly in the 

culture tubes after mixing the culture gently by hand. Towards the end of the 

logarithmic growth phase, after the cultures had reached a sufficient cell density (at 

least half of the maximum fluorescence yield) after 3 to 9 days depending on species 

and growth temperature, a set of samples was taken for analysis of POC/PON, PIC, 

Chl a (8 ml each), POP (20 ml) and cell concentration (including cell volume 

measurement). This criterion of sufficient cell density was used to ensure there was 

enough material for the different analyses and the volumes of culture taken for each 

sample was restricted due to the 50 ml culture volume. If growth in a culture started 

to decrease before sampling, indicating that the culture reached the end of its 

logarithmic growth phase, and still had an insufficient cell density, it was refreshed 
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with new medium coinciding with the current growth rate. At most temperatures 4 

consecutive cultures of each coccolithophore were sampled. However, in some cases 

towards the cold end of the temperature range cultures took a long time to reach a 

sufficient level of cell concentration and only 2-3 sets of samples were obtained. 

After the end of the experiment samples were analysed via CHN analysis 

(POC/PON), flame atomic absorption spectrometry (PIC), spectrofluorometrically 

(Chl a), high temperature dry combustion combined with the molybdenum blue 

method (POP) and Multisizer (cell concentration).  

Three different equations for growth (µ) as a function of temperature were compared 

- a linear equation (Equation 3.1), an exponential equation after Eppley 1972 

(Equation 3.2) and an optimum equation after Schoemann et al. 2005 (Equation 3.3) 

3.1.µmax=µmax,0°C+slope×T 

3.2.µmax=µmax,0°C×Q10
(T/10) 

3.3.μmax=μoptexp(-((T-Topt)
2/dT2)) 

, where µmax is the maximum growth rate at a certain temperature T, µmax, 0°C is the 

theoretical maximum growth rate at 0°C, T is the temperature in degree Celsius, Q10 

is the temperature coefficient – a measure of the rate of change of a physiological 

parameter as a consequence of increasing the temperature by 10°C, µopt is the growth 

rate at the optimum temperature, Topt is the optimum temperature and dT is the 

temperature interval of growth. 

Parameters and their standard errors were estimated with a nonlinear model fitting 

function using the statistical software RStudio Version 0.94.110. To compare the fit 

of the three equations to the original data, Akaike’s Information Criterion (AIC) was 

calculated (Equation 3.4) (Burnham & Anderson 1998) 

3.4.AIC=nobslog(σ2)+2nparam 

, where nobs is the number of observations, nparam is the number of parameters and 

3.5.σ2=1/(nobs-nparam)× ∑+µobs-µfit,2 

, where µobs is the observed growth rate at each temperature and µfit is the 

corresponding estimated growth rate from each of the model fits. The AIC is a 

measure of how well a certain model fits to a dataset relative to other models. The 



 

 33   

 

model with the lowest AIC value is the one that depicts a data set best. The 

difference between models is significant if the AIC values differ by more than 2. 

However, it does not give information about how well the model fits in an absolute 

sense.  

3.3 Results and Discussion 

Growth rates 

Of all tested coccolithophores, the subtropical strain of E. huxleyi (RCC963) grew at 

the lowest temperature of 4°C (µmax, 4°C=0.17,Table 3-1). The temperate strain of  

E. huxleyi (RCC1229, µmax,6.5°C=0.26,Table 3-1) and G. oceanica 

(µmax,6.5°C=0.29,Table 3-1) grew first at 6.5°C whereas P. carterae showed no signs 

of growth until 8°C (µmax,8°C=0.3,Table 3-1). C. leptoporus did not start growing until 

10.5°C (µmax, 10.5°C=0.26,Table 3-1). The growth of E. huxleyi at low temperatures 

parallels the results from Buitenhuis et al. (2008) where E. huxleyi was one of two 

species growing at temperatures below 10°C. The data also fits well with the species 

global distribution, growing in subarctic and subantarctic waters (McIntyre & Be 

1967). P. carterae and C. leptoporus do not appear in those areas being observed in 

temperate water which fits with their minimum growth temperature in this study. For 

C. leptoporus these observations are also supported by the results from Buitenhuis et 

al. (2008). However, the low minimum growth temperature in G. oceanica was 

unexpected. This species is thought to be a warm water species, replacing E. huxleyi 

as the most dominant species at temperatures above 25°C (McIntyre & Be 1967). A 

possible explanation could be that the strain used in this experiment was isolated 

from 45°N in the North Atlantic and grown in cultures at 17°C for the last 15 years. 

Strains from higher latitudes might be better adapted to low temperatures, even if the 

species is thought to be a warm water organism. Furthermore, a long period in 

culture gives good opportunity for mutations in phytoplankton strains that might 

enable better adaption to cold temperatures. 

All the coccolithophores tested showed an increase in growth with increasing 

temperature up to an optimum temperature above which growth rates started to 

decrease again (Figure 3-2). For the two strains of E. huxleyi this optimum 

temperature was at 23.5°C (µmax, 23.5°C=0.98 for E. huxleyi CC963 and  

µmax, 23.5°C=0.97 for E. huxleyi RCC1229, Table 3-1) and the growth rate in these two 
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strains was higher than in the other species up to this temperature. At higher 

temperatures G. oceanica started to show higher growth rates, growing faster  

(µmax, 25°C=0.91 for G. oceanica) than E. huxleyi RCC1229 at 25°C (µmax,25°C=0.79), 

the optimum temperature for G. oceanica. At 27.5°C it also grew faster (µmax, 

27.5°C=0.9) than E. huxleyi RCC963 (µmax, 27.5°C=0.59).  

 

Figure 3-2: Coccolithophore growth rates. (A) E. huxleyi RCC963, (B) E. huxleyi RCC1229,  
(C) G. oceanica, (D) C. leptoporus, (E) P. carterae, (F) combined data of all strains. Points show 
individual measurements, the line represents an optimum model fit through the data. For model 
parameters see Table 3.2. 

 
C. leptoporus had its optimum temperature at 24°C (µmax, 24°C=0.91,Table 3-1) 

And growth exceeded growth in both strains of E. huxleyi at the high end of the 

temperature range (µmax,29°C=0.69 for C. leptoporus, µmax,29°C=0.24 for E. huxleyi 

RCC963 and µmax,27.5°C=0.25 for E. huxleyi RCC1229,Table 3-1). P. carterae grew at 

similar rates as C. leptoporus and G. oceanica at temperatures between 10.5°C and 

17°C (Table 3-1). However, it had its optimum temperature at 19°C (µmax, 19°C=0.77) 

at a noticeably lower temperature and a lower level than the other two species. 
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Comparing these results with literature, it confirms the findings of Buitenhuis et al. 

(2008) for differences between G. oceanica and E. huxleyi. They also observed 

higher growth rates in E. huxleyi at temperatures below 25°C. At 25°C, G. oceanica 

showed higher growth rates. Comparing with the study by Sorrosa et al. (2005), 

where two different methods for growth rate calculations were used (optical density 

and cell number measurements), there is an agreement for growth rates based on 

optical density measurements, G. oceanica showed similar growth rates to E. huxleyi 

at 25°C in both studies. On a cell number basis however, Sorrosa et al. (2005) 

showed higher growth rates in Emiliania huxleyi, compared with G. oceanica at all 

tested temperatures from 10-25°C. The method based on invivo fluorescence used in 

this study compares much better with Sorrosa’s estimates based on optical density 

measurements, which is not surprising given that these methods depend significantly 

on the chlorophyll concentration in cells and this may change over the course of an 

experiment and is not taken into account when calculating growth based on cell 

number measurements. Sufficient acclimatisation to the experimental conditions 

would have circumvented this issue, but Sorrosa et al. (2005) do not mention any 

acclimatisation in their paper. The results for C. leptoporus contrast with the findings 

of Buitenhuis et al. (2008), where neither of the two strains of this species grew at 

25°C. However, this could be explained by intraspecific differences. The strain 

RCC1150 used here is a subtropical strain, and might be better adapted to high 

temperatures as the two strains used by Buitenhuis et al. (2008), NS10-2 and N482-1, 

are more temperate strains. Unfortunately there is no literature data available for 

comparison on P. carterae. The fact that it grows considerably slower than the other 

species in this study may be explained by the larger cell size as larger organisms tend 

to have lower metabolic rates (Marañón et al. 2013). Its optimum temperature also 

fits well with its more temperate origin.  

 

 



 

 

 

 

 
 
Table 3-1: Mean growth rates of tested coccolithophore strains over a temperature range from 0 to 30.5°C. The growth rate at the optimum temperature for each 
species is indicated in red. Zero values indicate temperatures at which no growth was observed in the coccolithophore; dashes indicate temperatures where growth 
was not tested in these particular species. 

 

 

 

 

 

Tempera

ture (°C) 0 1 4 6.5 8 9.5 10.5 11 12 13 14 14.5 15.5 16 17 18.5 19 19.5 21.5 22 23.5 24 25 27 27.5 29 30.5 

E. hux. 

RCC963 - 0 0.17 0.28 - 0.48 - - 0.60 - - 0.72 - - 0.81 - 0.87 - 0.96 - 0.98 - 0.97 - 0.59 0.24 - 
E. hux. 

RCC1229 - 0 0 0.26 - 0.47 - - 0.55 - - 0.67 - - 0.81 - 0.84 - 0.92 - 0.97 - 0.79 - 0.25 - - 
G. oc. 

RCC1314 - 0 0 0.29 - 0.41 - - 0.24 - - 0.43 - - 0.52 - 0.58 - 0.84 - 0.85 - 0.91 - 0.90 0.63 - 
C. lept. 

RCC1150 0 - - - 0 - 0.18 - - 0.32 0.35 - 0.38 0.48 - 0.50 - - - 0.65 - 0.91 - 0.82 - 0.69 - 
P. Car. 

PLY406 0 0 0 - 0.22 - 0.23 0.34 - 0.37 0.37 - - 0.39 0.51 - - 0.77 - 0.73 - - 0.63 - 0.54 - 0.27 

3
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Following the approach of Buitenhuis et al. (2008), three different growth models 

were fitted through the individual growth data sets and the combined data set. Based 

on these three different models a series of parameters were estimated for the different 

data sets (Table 3-2). Both, linear and exponential growth model give estimates for 

the maximum growth rate at 0°C and there were noticeable differences in the 

estimates. The estimates from the exponential model seem to be more realistic as it is 

generally accepted that phytoplankton show an exponential increase with 

temperature at the low end of their temperature range for growth. Model predictions 

for  µmax,0°C were considerably higher in the two strains of E. huxleyi (µmax,0°C=0.39 

for E. huxleyi RCC963 and µmax,0°C=0.42 for E. huxleyi RCC1229), indicating better 

growth at low temperatures compared with the other three species. This again 

supports its wide biogeographical distribution, occurring in subarctic and 

subantarctic waters. The modelled potential growth rate at 0°C in C. leptoporus 

(µmax, 0°C=-0.24) was substantially lower than that of the other species. At the other 

end of the temperature range, G. oceanica and C. leptoporus seem to be the best 

adapted species as the optimum model suggested a very high optimum temperature 

(Topt=24.3 for G. oceanica and Topt=26.7 for C. leptoporus) and model predictions 

for P. carterae and the two strains of E. huxleyi were markedly lower (Topt=21.7 for 

P. carterae, Topt=20.1 for E. huxleyi RCC963 and Topt=19.6 for E. huxleyi 

RCC1229). However, the modelled growth rate at this optimum temperature was 

highest in the two E. huxleyi strains (µopt=0.92 for E. huxleyi RCC963 and µopt=0.93 

for E. huxleyi RCC1229). P. carterae had the lowest modelled growth rate 

(µopt=0.66) at its optimum temperature. The modelled Q10 value, however, was 

markedly higher in C. leptoprus (Q10=1.93) than in the other coccolithophores. This 

is partly explained by the fact that Q10 is repressed by values above Topt and C. 

leptoporus has the highest Topt in this study. Indeed, when looking at Table 3.2 it is 

noticeable that the order from highest to lowest value is the same in the model 

predictions for Q10 and Topt, C. leptoporus > G. oceanica > P. carterae > E. huxleyi 

RCC963 > E. huxleyi RCC1229. Therefore, Q10 was also modelled using only the 

growth data up to Topt, and in this case P. carterae (2.57±0.23) and C. leptoporus 

(2.55±0.25) showed the highest predicted values, indicating that these species might 

be better able to adjust to increasing temperatures than the other species.  



 

 

 

 
 
 
 
 
 
Table 3-2: Growth parameters derived from three different growth models. All estimates plus or minus standard error. 
 

 Linear model Exponential model Optimum model 

strain Slope µmax, 0°C  µmax,0°C  Q10 µopt Topt dT 

E. huxleyi RCC963 0.017 ± 0.004 0.39 ±0.07 0.48 ± 0.06 1.22 ± 0.07 0.92 ± 0.02 20.1 ± 0.3 11.9 ±0.5 

E. huxleyi RCC1229 0.015 ± 0.004 0.42 ± 0.08 0.51 ± 0.07 1.19 ± 0.08 0.93 ± 0.03 19.6 ± 0.3 10.5 ± 0.5 

G. oceanica RCC1314 0.027 ± 0.003 0.09 ± 0.07 0.30 ± 0.04 1.46 ± 0.09 0.85 ± 0.02 24.3 ±0.5 11.8 ± 0.8 

C. leptoporus RCC1150 0.040 ± 0.003 -0.24 ± 0.07 0.14 ± 0.023 1.93 ± 0.14 0.80 ± 0.03 26.7 ± 1.3 12.6 ± 1.5 

P. carterae PLY406 0.016 ± 0.004 0.17 ± 0.07 0.27 ± 0.05 1.31 ± 0.11 0.66 ± 0.03 21.7 ± 0.5 11.2 ±0.7 

all 0.020 ± 0.002 0.26 ± 0.04 0.38 ± 0.03 1.30 ± 0.04 0.82 ± 0.02 21.8 ±0.3 12.2 ± 0.5 
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Predictions for Q10 were noticeably lower in G. oceanica (2.03±0.11), but higher 

than in the two strains of E. huxleyi (1.70±0.07 for E. huxleyi RCC963 and 1.68±0.07 

for E. huxleyi RCC1229). C. leptoporus also showed the broadest predicted 

temperature range for growth (dT=12.6), however it was not significantly different 

from the other coccolithophores.  

The maximum growth rate at 0°C for the combined data (µmax,0°C=0.38±0.03), 

predicted with the exponential model, was higher in this experiment than in the study 

by Buitenhuis et al. (2008) who reported µmax,0°C=0.22±0.09 from their exponential 

model. The main explanation is likely to relate to the differences in light intensity 

between this study (300 µmol photon m-2 s-1) and the earlier study  

(180 µmol photon m-2 s-1 during most experiments). A further reason could be that 

two strains of E. huxleyi, a species growing relatively well at low temperatures, were 

used in this study whereas only one strain was used in the other study. Additionally, 

differences in G. oceanica strains may play a role. As mentioned earlier, G. oceanica 

NS6-2 didn’t grow below 10°C in the study by Buitenhuis et al. (2008) whereas  

G. oceanica RCC1314 showed significant growth at 6.5°C in this study.  

The modelled Q10 value for the combined data on the other hand was lower in this 

study compared with Buitenhuis et al (2008), possibly related to the higher maximum 

growth rate at 0°C as this might have decreased the change in growth rate used to 

calculate Q10 with the model. Optimum temperature and the temperature range for 

growth in coccolithophores are similar in both studies. However, the growth rate of 

coccolithophores at the optimum temperature is higher in this study compared with 

Buitenhuis et al. This difference in growth is again most likely explained by 

differences in the light environment and inclusion of two strains of the fast growing 

species E. huxleyi in this study. 

The relative model fit to the data was assessed by calculating and comparing 

Akaike’s Information Criterion (Table 3-3). For all data sets the optimum model 

fitted significantly better than a linear or the exponential model. This is in contrast to 

Buitenhuis et al. (2008) who found in their study that linear and exponential model 

fitted their data significantly better than the optimum model. This contrast might be 

explained by the fact that Buitenhuis et al. (2008) had a maximum temperature of 

25°C in their study. However, as shown in this study growth significantly decreases 
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in many coccolithophores only above 25°C and this decrease in growth rate 

substantially favours the optimum growth model over the linear and exponential 

growth models. 

 
Table 3-3: AIC values (Equation 3.4) for three types of growth model fitted through the 
individual data sets and the combined data set. The best model fit for each dataset is indicated 
in red. 

 Linear model Exponential model Optimum model 

E. hux. RCC963 -15.88 -11.32 -105.77 

E. hux. RCC1229 0.48 2.96 -81.41 

G. oc. RCC1314 -47.82 -40.5 -81.37 

C. lept. RCC1150 -62.77 -52.98 -68.74 

P. car. PLY406 -28.58 -25.35 -67.2 

All -68.25 -52.66 -186.88 

 

To compare the best model fit for significant differences between the 6 data sets 

growth was estimated for a temperature range from 0 to 30°C for all five 

coccolithophores using the optimum models (Figure 3-2). The data was tested for 

normality using the Anderson-Darling test. The data set for E. huxleyi RCC1229 

(p=0.0538) was the only one that was normally distributed. In all other cases (E. 

huxleyi RCC963 p=0.027, G. oceanica RCC1314 p=0.001, C. leptoporus RCC1150 

p=0.0008, P. carterae PLY406 p=0.008, combined data set p=0.006) the null 

hypothesis of a normal distribution was rejected. 

Based on these results the Mann-Whitney U test, a nonparametric test for  

non-normally distributed data, was used to compare the optimum growth models for 

the different data sets (Table 3-4). The modelled data for P. carterae showed the 

most significant differences with three other data sets, E. huxleyi RCC963 (p=0.007), 

E. huxleyi RCC1229 (p=0.045) and the combined data set (p=0.048) (Table 3-4). 

These significant differences between data sets are due to the low growth rates of P. 

carterae compared with the others, explained by its relatively large size.Besides 

these differences between the data set for P. carterae and other data sets, there was 

only one more significant difference between the modelled data for C. leptoporus 

and E. huxleyi RCC963 (p=0.018). This is most likely due to the differences in 

growth at low temperatures where this strain of E. huxleyi has noticeably higher 

growth rates than C. leptoporus. 



 

 

 

 
 
 
 
 
 

Table 3-4: Comparison of optimum models for the 6 data sets (Mann-Whitney U test, p values). The values that show significant differences between models are 
shown in red. 

 
 E. huxleyi RCC1229 G. oceanica RCC1314 C. leptoporus RCC1150 P. carterae PLY406 all 

E. huxleyi RCC963 0.7 0.1 0.02 0.007 0.2 

E. huxleyi RCC1229  0.3 0.07 0.05 0.6 

G. oceanica RCC1314   0.4 0.2 0.8 

C. leptoporus RCC1150    0.8 0.2 

P. carterae PLY406     0.05 
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Cell volume 

The effect of temperature on the volume of the coccolithophore cell (after removing 

the surrounding coccosphere) differed between the tested species (Figure 3-3). In 

most cases (E. huxleyi RCC963, E. huxleyi RCC1229, G. oceanica and C. 

leptoporus) no trend in average cell volume was observed. The cell volume in P. 

carterae showed a U-type tendency, decreasing from low temperatures to 19°C and 

starting to increase again at higher temperatures (Figure 3-3 E). This trend in P. 

carterae had been expected for all 5 coccolithophores, showing an inverse 

relationship to growth rate. At low growth rates, organisms have more time to build 

up biomass which is reflected in a larger cell volume. Sorrosa et al. (2005) found this 

trend in E. huxleyi and G. oceanica,however it has been shown that cell volume in 

coccolithophores can be very variableand dependent on nutrient concentration for 

example (Riegman et al. 2000), which might explain the variation found in this 

study. Cultures were kept as semi-continuous cultures, keeping them within the 

logarithmic growth phase, but nutrient concentrations still vary in this type of culture 

which may have affected the coccolithophores. Comparing mean cell volume of the 

different coccolithophores, the two strains of E. huxleyi showed similar (p=0.88), 

relatively low volumes (26 µm3/cell in E. huxleyi RCC1229 and 28 µm3/cell in E. 

huxleyi RCC963), significantly lower than in G. oceanica (p=9*10-12 for both strains 

of E. huxleyi) and C. leptoporus (p=3*10-12 for both strains). G. oceanica (142 

µm3/cell) and C. leptoporus (135 µm3/cell) had 5-6 times larger cells and cell volume 

was not significantly different (p=0.9). The mean cell volume in P. carterae (628 

µm3/cell) was significantly higher than that of all other coccolithophores  

(p≤1.5*10-11).  
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Figure 3-3: Cell volume of different coccolithophores grown over a range of temperatures. (A) 
Emiliania huxleyi RCC963, (B) Emiliania huxleyi RCC1229, (C) Gephyrocapsa oceanica 
RCC1314, (D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis carterae PLY406. Dots 
indicate triplicate measurements at different timepoints. The black line in Figure 3-3(E) is the 
best fit through the data with equation and coefficient of determination given in the upper left 
hand corner. 

 
Surprisingly, G. oceanica had a higher mean cell volume than C. leptoporus. With 

regard to the observed growth rates the opposite would have been expected, C. 

leptoporus at lower growth rates having more time to build up biomass, and literature 

values indicate that C. leptoporus is larger than G. oceanica (Stoll et al. 2002). 

However, no cell size measurements could be found for the strain of C. leptoporus 

used in this study and it is known that strains of this species can vary considerably in 

size (Young 1998).  Comparison of cell volume with other literature data is much 

more difficult due to the fact that most studies give coccosphere cell volumes 

including the calcified coccoliths whereas decalcified cells were measured here. One 

study with comparable measurements (Stoll et al. 2002), gives the cell diameter of 

uncalcified cells and the values in the data here are slightly higher for E. huxleyi and 

10 15 20 25

0
20

40
60

(A)

10 15 20 25

0
20

40
60

(B)

15 20 25

0
10

0
20

0
30

0 (C)

10 15 20 25

0
10

0
20

0
30

0 (D)

10 15 20 25

0
40

0
80

0

(E) y = 628.3-496.4x+442.5x
2 +239.6x

3

R2 = 0.72

Temperature (oC)

C
el

l v
ol

um
e 

( µ
m

3 /c
el

l)



 

44 

 

G. oceanica, however C. leptoporus had a noticeable smaller cell diameter in this 

study(Table 3-5). This is possibly due to strain specific differences. 

 
Table 3-5: Comparing cell diameter of three coccolithophores measured in this study with values found in 

literature. 

Coccolithophore Cell diameter (µm)  

This study 

Cell diameter (µm)  

Stoll et al. (2002) 

E. huxleyi 4.05 3.48 

G. oceanica 7.12 5.09 

C. leptoporus 7.05 11.34 
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Particulate organic matter 

Comparing the elemental composition of different coccolithophores (Figure 3-4 to 

Figure 3-6), E. huxleyi RCC1229 showed slightly lower values (984.2 fmol C/cell, 

98.51 fmol N/cell and 7.34 fmol P/cell), than E. huxleyi RCC963 (1256.4 fmol 

C/cell, 124.22 fmol N/cell and 9.63 fmol P/cell). C. leptoporus (2705.4 fmol C/cell, 

235.55 fmol N/cell and 24.77 fmol P/cell) had lower values than G. oceanica (4216.5 

fmol C/cell, 361.06 fmol N/cell and 40.51 fmol P/cell) and P. carterae showed the 

highest values of all tested species (18219.7 fmol C/cell, 2225.24 fmol N/cell and 

162.38 fmol P/cell).  

 

Figure 3-4: Cellular content of particulate organic carbon in coccolithophores grown over a 
range of temperatures. (A) Emiliania huxleyi RCC963, (B) Emiliania huxleyi RCC1229, (C) 
Gephyrocapsa oceanica RCC1314, (D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis 
carterae PLY406.  Dots indicate triplicate measurements of different sampling days. The black 
line in Figure 3-4(E) is the best fit through the data with equation and coefficient of 
determination given in the upper left hand corner. 

 
The relative differences between the species were anticipated from the differences in 

growth and cell volume, as species with lower growth rates had more time to build 

up biomass and cell volume. The results for E. huxleyi are well within the range of 
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concentrations found in other studies (472 to 4250 fmol C/cell, 43 to 379 fmol N/cell 

and 1.8 to 6 fmol P/cell) (Muggli & Harrison 1996, Price et al. 1998, Riegman et al. 

2000, Zondervan et al. 2002, Harris et al. 2005, 2009, Kaffes et al. 2010, Loebl et al. 

2010). Literature comparison for C. leptoporus was not conclusive. POC content fell 

within the range of literature values (2500 to 5167 fmol C/cell), but PON content was 

below literature estimates (342 to 929 fmol N/cell) and POP content higher (5.5 to 

16.8 fmol P/cell). However, this comparison is based on only one study by (Langer et 

al. 2012). 

 

Figure 3-5: Cellular content of particulate organic nitrogen in coccolithophores grown over a 
range of temperatures. (A) Emiliania huxleyi RCC963, (B) Emiliania huxleyi RCC1229, (C) 
Gephyrocapsa oceanica RCC1314, (D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis 
carterae PLY406.  Dots indicate triplicate measurements of different sampling days. The black 
line in Figure 3-5(E) is the best fit through the data with equation and coefficient of 
determination given in the upper left hand corner. 

 
No strong trends were found considering POC, PON and POP in four of the five 

species, both strains of E. huxleyi, G. oceanica and C. leptoporus (Figure 3-4, Figure 

3-5 and Figure 3-6).  P. carterae showed a similar U-type correlation with increasing 

temperature in all three parameters as for cell volume (Figure 3-4 E, Figure 3-5 E 
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and Figure 3-6 E). However, the slope of the decrease from 8°C to 21°C and increase 

from 21°C to 28°C was more pronounced than the trend in cell volume. For POC and 

PON, the datasets of all coccolithophores were significantly different from each 

other (Table 3-6), only the POP datasets of the two strains of E. huxleyi showed no 

significant differences (p=0.18).  

 

Figure 3-6: Cellular content of particulate organic phosphorus in coccolithophores grown over a 
range of temperatures. (A) Emiliania huxleyi RCC963, (B) Emiliania huxleyi RCC1229, (C) 
Gephyrocapsa oceanica RCC1314, (D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis 
carterae PLY406.  Dots indicate triplicate measurements of different sampling days. The black 
line in Figure 3-6(E) is the best fit through the data with equation and coefficient of 
determination given in the upper left hand corner. 
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Table 3-6: Statistical comparison of data on particulate organic matter in five coccolithophores grown over a range of temperatures using the Mann-
Whitney U test. shown are p-values, significant differences are indicated in red. 

 E. huxleyi 
RCC1229 

G. oceanica 
RCC1314 

C. leptoporus 
RCC1150 

P. carterae 
PLY406 

E. huxleyi RCC963       POC 

                                       PON 

                                       POP 

0.02 

0.02 

0.18 

2.6*10-15 

2.0*10-10 

2.9*10-11 

4.1*10-8 

0.02 

8.1*10-9 

>2.2*10-16 

>2.2*10-16 

>2.2*10-16 

E. huxleyi RCC1229     POC 

                                       PON 

                                       POP 

 >2.2*10-16 

8.9*10-10 

1.9*10-12 

4.8*10-12 

5.1*10-5 

3.2*10-11 

>2.2*10-16 

1.4*10-11 

4.7*10-13 

G. oceanica RCC1314  POC 

                                       PON 

                                       POP 

  1.7*10-3 

1.3*10-4 

2.8*10-3 

3.4*10-13 

2.1*10-15 

3.3*10-10 

C. leptoporus RCC1150 POC 

                                        PON 

                                        POP 

   >2.2*10-16 

3.2*10-14 

1.5*10-11 

4
8
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No data was found in the literature on trends of coccolithophore elemental 

composition with temperature, but it was expected that concentrations would follow 

changes in cell size very closely as suggested by (Marañón et al. 2013).  

Interestingly there is still a trend in POC and POP with temperature in P. carterae 

when normalized to cell volume (Figure 3-7). It had been assumed that the trends 

observed in elemental composition when normalized to cell number were due to 

differences in cell volume, so that no trends would be noticeable in the data when 

normalized to cell volume. An explanation might be that cells became nitrogen 

limited at the end of the growth phase, despite the addition of fresh nutrients, and the 

algae started to store intracellular phosphorus and carbon. 

 

Figure 3-7: Cellular content of particulate organic carbon and particulate organic phosphorus, 
normalized for cell volume, in Pleurochrysis carterae. 

 
When calculating concentrations normalized to volume the picture was very 

different. The mean concentrations in POC, PON and POP were highest in the two 
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significantly), P. carterae showing more similarity to the two E. huxleyi. Regarding 

POP the picture was reversed - G. oceanica showing a higher concentration than P. 

carterae, close to the mean concentration of E. huxleyi RCC963. C. leptoporus had 

considerable lower concentrations in all three particulate organic components per 

volume than the other tested coccolithophores.  

Compared with other phytoplankton groups, coccolithophores generally have a 

higher carbon content per volume than dinoflagellates, (Menden-Deuer & Lessard 

2000) reported a range of 5.83 to 24.75 fmol C/µm3, and diatoms, (Mullin et al. 

1966) reported a range from 10 to 15 fmol C/µm3. The nitrogen content is in the 

same range as reported for dinoflagellates (0.71 to 4.21 fmol N/ µm3) (Menden-

Deuer and Lessard, 2000). 

 
Table 3-7: Mean concentrations of particulate organic matter normalized to cell volume and 
elemental relationship derived from these concentrations. 

 POC (fmol/µm3) PON (fmol/µm3) POP (fmol/µm3) C:N:P 

E. huxleyi RCC963 45 ± 14 4 ± 2 0.4 ± 0.1 113:10:1 

E. huxleyi RCC1229 37 ± 9 4 ±2 0.3 ±0.1 123:13:1 

G. oceanica RCC1314 30 ± 8 3 ±2 0.3 ± 0.1 100:10:1 

C. leptoporus RCC1150 20 ± 7 2 ±1 0.2 ±0.1 100:10:1 

P. carterae PLY406 29 ± 5 4 ± 2 0.2 ± 0.1 145:20:1 

All coccolithophores 32 ± 9 3 ± 1 0.3 ± 0.1 107:10:1 

 
Having analysed the concentrations of all these components of particulate organic 

matter, it is interesting to calculate the ratios between the components and compare 

them to the well-known Redfield ratio (C:N:P=106:16:1), the mean ratios found in 

phytoplankton (Redfield 1934). No major differences could be found between the 

tested coccolithophores (Figure 3-8). Only a small difference was observed in the 

POC/POP ratio, where the two strains of E. huxleyi (145±34 E. huxleyi RCC963, 

143±35 E. huxleyi RCC1229) showed higher values than the other species (121±27 

G. oceanica, 117±23 C. leptoporus, 119±32 P. carterae). Regarding the other two 

ratios, POC/PON was slightly higher in C. leptoporus (14±8) than in the other 

coccolithophores (11±2 E. huxleyi RCC963, 10±2 E. huxleyi RCC1229, 11±4 G. 

oceanica, 8±1 P. carterae) whereas the ratio of PON/POP was somewhat lower in C. 

leptorus (11±5) compared with the others (15±5 E. huxleyi RCC963, 14±4 E. huxleyi 
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RCC1229, 13±5 G. oceanica, 14±4 P. carterae). POC/POP and POC/PON ratios 

were slightly higher than expected from literature, though not significantly different 

(POC/POP 44-128, POC/PON 5.2-7.9), whereas the PON/POP ratio fell within the 

expected range (5.6-18) (Price et al. 1998, Quigg et al. 2003).   

Compared with the Redfield ratio, all coccolithophores showed a higher ratio of 

POC/PON than the ratio observed by Redfield. The ratio of POC/POP was close to 

Redfield in G. oceanica, C. letoporus and P. carterae, but higher in the two strains 

of E. huxleyi. The ratio of PON/POP was lower than the Redfield ratio in all 

coccolithophores. This indicates that coccolithophores have considerably higher 

carbon requirements and slightly higher phosphorus requirements than other 

phytoplankton, most likely related with the cellular machinery for calcification. 

However, it might make them more susceptible to phosphate limitation. This will be 

discussed in detail in chapter 5. 

 

Figure 3-8: Ratios of particulate organic matter components in coccolithophores grown over a 
range of temperatures. (A) particulate organic carbon / particulate organic nitrogen, (B) 
particulate organic carbon / particulate organic phosphorus, (C) particulate organic nitrogen / 
particulate organic phosphorus. Bars show mean ratios for each coccolithophore, whiskers 
indicate standard deviation and red lines the mean ratios after Redfield (1934). 
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Chlorophyll a 

As in previous sections, P. carterae was the only coccolithophore were a trend in 

chlorophyll a with growth temperature was notable per cell (Figure 3-9).  

 

Figure 3-9: Cellular concentration of chlorophyll a in coccolithophores grown over a range of 
temperatures. (A) Emiliania huxleyi RCC963, (B) Emiliania huxleyi RCC1229, (C) 
Gephyrocapsa oceanica RCC1314, (D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis 
carterae PLY406.  Dots indicate triplicate measurements of different sampling days. The black 
line in Figure 3-8(E) is the best fit through the data with equation and coefficient of 
determination given in the upper left hand corner. 

 
Mean concentrations were lowest in E. huxleyi RCC963 (120.0±45.4 fg/cell) and E. 

huxleyi RCC1229 (115.1±18.2 fg/cell), again similar in both strains. In contrast to 

trends in the data discussed in the previous sections of this chapter, C. leptoporus 

(334.6±146.2 fg/cell) showed higher levels of chlorophyll a compared with G. 

oceanica (283.7±84.5 fg/cell). P. carterae (4984.9±1506.7 fg/cell) had a 

significantly higher level than any of the other coccolithophores. These mean 

concentrations per cell indicate a grouping of the coccolithophores into three classes, 
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which is substantiated by statistical comparison of the datasets (Table 3-8). The two 

strains of E. huxleyi form a class and are significantly different from the three other 

coccolithophores. G. oceanica and C. leptoporus also show no significant 

differences in chlorophyll a concentration, but are significantly different from P. 

carterae.   

Literature comparison is only possible for E. huxleyi in this case, concentrations fall 

well within the broad range of values reported (67 to 310 fg/cell) (Paasche 1969, 

Muggli & Harrison 1996, Harris et al. 2005, Suggett et al. 2007). 

 
Table 3-8: Comparison of cellular chlolrophyll a concentration in five coccolithophores using 
the Mann-Whitney-U test. Shown are p-values of paired comparisons, significant differences in 
red colour. 
 E. huxleyi 

RCC963 

E. huxleyi 

RCC1229 

G. oceanica C. leptoporus P. carterae 

E. huxleyi 

RCC963 

 0.8 9*10-10 6*10-9 2*10-13 

E. huxleyi 

RCC1229 

  3*10-10 1*10-7 5*10-10 

G. oceanica    0.3 5*10-13 

C. leptoporus     1*10-14 

 
The chlorophyll to particulate organic carbon ratio provides an important parameter 

in algal physiology, as it indicates the organisms photosynthetic capabilities  

(Figure 3-10).  
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Figure 3-10: Ratio of chlorophyll a to particulate organic carbon in coccolithophores grown 
over a range of temperatures. Bars show mean ratios for each coccolithophore and whiskers 
indicate standard deviation. 

 
This was significantly higher in P. carterae (0.04±0.02; p≤3*10-6) then in the other 

coccolithophore species. The ratios for E. huxleyi (0.01±0.005 for E. huxleyi 

RCC963 and 0.009±0.003 for E. huxleyi RCC229) are within the range of values 

reported in literature (0.008 to 0.025) (Muggli & Harrison 1996, Harris et al. 2005). 

The considerable higher Chl a/C ratio in P. carterae can be explained by the larger 

cell size and the so-called package effect (Finkel & Irwin 2000). This effect implies 

that, with a constant ratio of chlorophyll to volume, each Chl a molecule has a 

smaller chance of absorbing light in a large cell than in a small cell. It has already 

been shown in diatoms that intracellular concentration of Chl a increases with cell 

size, balancing out the package effect to a certain degree (Finkel 2001). 
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Particulate inorganic carbon 

One particular characteristic of coccolithophores is that they produce a layer of 

plates around their cells made up of calcium carbonate (CaCO3). Due to its ballasting 

effect, discussed in chapter 1, it is an important parameter in the study of 

coccolithophores. The trends in cellular concentration of particulate inorganic carbon 

(PIC) in this study matched the trends observed in the other cellular parameters 

(Figure 3-11). The only coccolithophore for which a distinct trend was observed was 

P. carterae, again showing a U-formed tendency with increasing temperature.  

 

Figure 3-11: Cellular content of particulate inorganic carbon in coccolithophores grown over a 
range of temperatures. (A) Emiliania huxleyi RCC963, (B) Emiliania huxleyi RCC1229, (C) 
Gephyrocapsa oceanica RCC1314, (D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis 
carterae PLY406.  Dots indicate triplicate measurements of different sampling days. The black 
line in Figure 3-8(E) is the best fit through the data with equation and coefficient of 
determination given in the upper left hand corner. 

 
Most differences between strains were significant (Table 3-9); only P. carterae was 

not significantly different from G. oceanica and C. leptoporus due to its wide range 

of cellular PIC concentrations along its U-shaped trend. 
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A previous study suggested that cold temperatures would stimulate calcification in E. 

huxleyi (Sorrosa et al. 2005), but another study specified that this would only occur 

under phosphate limitation and no change was observed under nutrient replete 

conditions (Satoh et al. 2009), supporting findings in this study where cells were 

grown in semi-continuous cultures to avoid nutrient limitation. 

Mean concentrations, as in most other measured parameters, was lowest in the two 

strains of E. huxleyi (15.04±11.65 pg C/cell in E. huxleyi RCC963 and 5.28±2.39 pg 

C/cell in E. huxleyi RCC1229). Despite its large cell volume P. carterae had 

relatively low PIC concentrations (42.23±35.96 pg C/cell), higher than found in C. 

leptoporus (33.70±13.46 pc C/cell) but lower than in G. oceanica (57.08±32.96 pg 

C/cell). PIC concentrations in E. huxleyi are within the range reported in literature 

(2.46 to 28 pg C/cell) (Riegman et al. 2000, Stoll et al. 2002, Zondervan et al. 2002, 

Kaffes et al. 2010), whereas concentrations found in G. oceanica and C. leptoporus 

show lower concentrations than reported in literature (186 pg C/cell respectively 70 

to 1600 pg C/cell) (Stoll et al. 2002, Langer et al. 2012).  

 
Table 3-9: Comparison of cellular PIC concentration in five coccolithophores using the Mann-
Whitney-U test. Shown are p-values of paired comparisons, significant differences in red colour. 
 E. huxleyi 

RCC1229 

G. oceanica C. leptoporus P. carterae 

E. huxleyi 

RCC963 

5*10-8 6*10-9 4*10-8 4*10-6 

E. huxleyi 

RCC1229 

 7*10-11 9*10-12 9*10-13 

G. oceanica   0.02 0.09 

C. leptoporus    0.9 

 
The significant variation regarding PIC concentration in C. leptoporus between the 

studies by Langer et al. (71 to 145 pg C/cell) and Stoll et al. (1600 pg C/cell) could 

indicate the potential for significant intraspecific variability although differences in 

the analysis might have played a role as well.  
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Langer et al. (2012) calculated PIC as the difference between CHN measurements of 

total carbon and particulate organic carbon, whereas (Stoll et al. 2002) based it on 

calcium analysis via flame atomic absorption spectrometry.    

To indicate the relative importance of calcification in different coccolithophores, the 

ratio of PIC to POC was calculated. The calcium carbonate coccoliths can have very 

different shapes and/or thickness, affecting the relative concentration of PIC to POC. 

No notable responses to changes in temperatures were found and the ratio in most of 

the tested coccolithophores was relatively similar (Figure 3-12).  

 

Figure 3-12: Ratio of particular inorganic carbon to particulate organic carbon in 
coccolithophores grown over a range of temperatures. (A) Emiliania huxleyi RCC963, (B) 
Emiliania huxleyi RCC1229, (C) Gephyrocapsa oceanica RCC1314, (D) Calcidiscus leptoporus 
RCC1150, (E) Pleurochrysis carterae PLY406.  Dots are ratios of the two parameters derived 
from measurements of the same culture.  

 
However, P. carterae showed significant lower ratios (mean 0.2±0.1; p≤1*10-10) 

compared with the other species. E. huxleyi RCC1229 had higher ratios (mean 

0.4±0.1), but those were still significantly lower (p=2*10-11 for E. huxleyi RCC963, 

p=1*10-9 for G. oceanica and p=2*10-10 for C. leptoporus) than those of the other 

three coccolithophores (1.0±0.3 in E. huxleyi RCC963, 1.1±0.4 in G. oceanica and 
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1.1±0.4 in C. leptoporus). The low ratio in P. carterae compares well with the ratio 

found in another study (Casareto et al. 2009). This species tends to have very thin 

coccoliths around its cell. In addition, it is considerably larger than the other tested 

coccolithophores, resulting in a lower surface/volume ratio of the cell. The PIC/POC 

in E. huxleyi RCC1229 is relatively low, but similar ratios have been found in 

another study (Feng et al. 2008). However, in general the ratio is reported to be 

between 0.6 and 2.25 (Riebesell et al. 2000, Zondervan et al. 2002, Sciandra et al. 

2003, Delille et al. 2005, Langer et al. 2009, De Bodt et al. 2010, Lohbeck et al. 

2012), the ratio found in E. huxleyi RCC963 falling within the range. The ratio in G. 

oceanica is reported to be similar to the one in E. huxleyi, but PIC/POC in C. 

leptoporus is lower in this study than suggested in literature (2.0 to 2.5) (Langer et 

al. 2006, Langer et al. 2012). This could be due to strain-specific differences but it 

might also be explained by the presence of uncalcified cells in the culture which 

were observed and would only attribute to the POC pool, thereby decreasing the ratio 

of PIC/POC.  

3.4 Conclusions 

This study showed that coccolithophores have a relatively wide range of growth 

temperatures but generally do not grow very well at temperatures below 10°C. The 

species E. huxleyi and P. carterae are well adapted to temperatures between 10 and 

23°C, whereas G. oceanica and C. leptoporus perform best at temperatures above 

23°C. The increase in seawater temperature due to climate change could therefore 

bring changes to coccolithophore community composition. This study has shown 

that E. huxleyi has its growth optimum slightly above 20°C and G. oceanica and C. 

leptoporus grow better than E. huxleyi at temperatures above 25°C. If temperatures 

in a region exceed 25°C over longer time periods, G. oceanica or C. leptoporus 

could therefore displace E. huxleyi as dominant species. These two species have a 

higher ratio of PIC/POC than E. huxleyi and a community shift towards these two 

species could increase the importance of the coccolithophore ballasting effect as 

more of the heavy calcium carbonate is available relative to POC. 

Little change in the ballasting function of coccolithophores can be expected from 

changes in the cell volume and cell composition in this stdy. No relationship was 

detected between temperature and cell volume or cellular composition in most 

coccolithophores. Only P. carterae showed an increase in those parameters with 
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decreasing growth rate at both ends of the temperature spectrum applied in this 

study. However ratios between the components did not changealthough trends in the 

other species could have been obscured by the high variability in the measurements, 

due to possible nitrogen limitation in some cultures despite the approach of semi-

continuous cultures.  

Some indication for storage of intracellular carbon and phosphorus was found in P. 

carterae, something not previously known in coccolithophores. 

Comparing coccolithophores with diatoms, another very important group of 

phytoplankton shows that diatoms are the dominating group regarding growth over 

the full spectrum of temperatures. At similar cell size to P. carterae, diatoms have a 

maximum growth rate which is five times higher (Sarthou et al. 2005). The 

maximum growth rate for diatoms as a group is still about two times higher than the 

one found for coccolithophores in this study, although the overall cell size is 

significantly larger in diatoms (Sarthou et al. 2005). The range of growth 

temperatures for this group is very variable (Sophie Chollet, personal 

communication), and it seems unlikely that climate change will lead to a change in 

the seasonality found today in temperate regions, where diatoms dominate early in 

the year and coccolithophores develop blooms after diatoms become nutrient limited.  
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4 Effects of light on coccolithophores 

4.1 Introduction 

The increase in temperature in the world’s oceans due to climate change will have an 

indirect effect on the light environment of phytoplankton. As the changes in 

temperature will be more pronounced in the upper layers of the ocean (Kirk 1988), it 

will reinforce temperature differences between water masses and intensify 

stratification. As an effect of the intensified stratification the mixed layer depth, the 

depth at which the surface ocean is separated from the deep water by a pycnocline 

which prevents mixing, will decrease and therefore increase the mean growth light 

irradiance which phytoplankton are exposed to.  

Blooms of Emiliania huxleyi are most commonly observed in waters with a shallow 

mixed layer depth between 10 and 20 meters where the average light intensity within 

the mixed layer can exceed 500 µmol photon m-2 s-1 (Nanninga & Tyrrell 1996, 

Tyrrell & Taylor 1996). This suggests that high light intensities might be one 

requirement for bloom formation in Emiliania huxleyi (Tyrrell & Taylor 1996).  

This is supported by laboratory studies with this coccolithophore where growth was 

observed to saturate between 200 and 300 µmol photon m-2 s-1 and did not decrease 

up to the highest light intensities of 800 µmol photon m-2 s-1 (Nielsen 1997, Harris et 

al. 2005). In another study, growth in Emiliania huxleyi was reported to continuously 

increase up to a maximum light intensity of 2000 µmol photon m-2 s-1 (Brand & 

Guillard 1981). In the same study, growth of Gephyrocapsa oceanica and 

Pleurochrysis carterae (under is former name Hymenomonas carterae) saturated at 

around 1000 µmol photon m-2 s-1, whereas growth of Calcidiscus leptoporus (under 

its former name Cyclococcolithina leptopora) was already saturated at 200 µmol 

photon m-2 s-1 (Brand & Guillard 1981). The general trend of growth rate with 

increasing light intensity in these studies fit the general theory that growth in 

phytoplankton as a function of light intensity can be described using a Poisson 

function (MacIntyre et al. 2002) that calculates a probability distribution of growth 

rates at different light intensities around a known maximum growth rate (see chapter 

4.2 for further details). Photosynthetic activity as a short term response was found 

not to be light inhibited in Emiliania huxleyi even at the highest tested irradiances of 

1700-2500 µmol photon m-2 s-1 (Balch et al. 1992, Nanninga & Tyrrell 1996). 
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However, Emiliania huxleyi also grows well at low light intensities down to  

15 µmol photon m-2 s-1 (Zondervan et al. 2002). Cell volume, and with it the 

concentration of particulate organic matter, is reported to increase with increasing 

light intensity (van Bleijswijk et al. 1994, Muggli & Harrison 1996, Zondervan et al. 

2002). On the other hand, Chlorophyll a concentration is reported to decrease 

relative to organic carbon with increasing light intensity (Harris et al. 2005), 

supporting the general theory for phytoplankton that more chlorophyll is produced at 

low light intensity to take full advantage of the light that is available (MacIntyre et 

al. 2002). As calcification is also an energy-consuming process it is light-dependent 

as well (Anning et al. 1996). Laboratory studies thus far have found an increase in 

calcification with light intensity (Nimer & Merrett 1993, Zondervan et al. 2002). 

However, it seems to be much less light-dependant than photosynthesis, saturating at 

lower light irradiances between 50 and 100 µmol photon m-2 s-1 (Paasche 1998, 

Zondervan et al. 2002). 

The aim of the research presented in this chapter is to provide a broader picture of 

the effect of light on coccolithophores, by including more species than most of the 

other studies and examining the effects on more levels – namely growth, cell volume 

and cellular concentrations of chlorophyll a, particulate organic carbon, particulate 

organic nitrogen, particulate organic phosphorus and particulate inorganic carbon 

derived from particulate calcium. Furthermore, the photosynthetic activity of these 

species was measured through photosynthesis versus irradiance curves. 

4.2 Methods 

Cultures (500 ml in 1 L Erlenmayer flasks) were grown in K/5-medium after the 

recipe of Keller and colleagues (Keller et al. 1987) in Sanyo MLR 350H (operated 

without humidity control) and 351 Culture incubators, temperature and light/dark-

cycle set according to the stock culture condition of each coccolithophore (chapter 

2). The light was set to the highest possible intensity (700 and 900  

µmol photon m-2 s-1 (Sanyo MLR 350H, respectively Sanyo MLR 351)). Growth 

light intensity was adjusted to lower light levels using layers of neutral density filter. 

Experiments with the two strains of E. huxleyi were carried out at 5 light levels (25, 

65, 180, 350 and 900 µmol photon m-2 s-1), as was the experiment with G. oceanica 

(25, 65, 180, 350 and 700 µmol photon m-2 s-1). Experiments with C. leptoporus and 

P. carterae were conducted at 6 light levels (25, 65, 180, 350, 600 and 900  
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µmol photon m-2 s-1). Growth in the cultures was monitored by measuring invivo 

fluorescence in a Turner 10-AU Field Fluorometer. When the fluorescence (as an 

indicator for cell density) had reached 1/2 of the maximum yield, and the culture was 

still in logarithmic growth phase, a sample was taken for measurements of 

photosynthesis versus irradiance to construct P-I-curves. These were obtained by 

measuring oxygen evolution in culture samples at different light intensities using two 

Oxygraph control units with DW1 Liquid-Phase Oxygen Electrode Chambers 

(Hansatech Instruments, King’s Lynn, UK), each chamber comprising a 2.5 ml 

reaction vessel, a water jacket and an electrode (Clark type polarographic sensor). 

The electrodes were calibrated prior to each P-I-curve measurement using a 2-point 

calibration with 100% and 0% O2 saturated culture medium. The 100% saturation 

was obtained by using 0.8 µm filtered culture and shaking it by hand for 2 minutes. 

For the 0% saturation 10 mg of the reducing agent sodium dithionite (Na2S2O4) was 

added to medium in the reaction vessel, producing a concentration of 0.02 mol/L. 

After calibration, the oxygraphs were run with K/5 medium for 20 minutes, as the 

instruments had problems readjusting to higher oxygen levels after measuring the 

standard with 0% saturation. The signal overestimated the correct concentrations in 

the new sample and needed approximately 15 minutes to reach the correct level. As 

the oxygen consumption by the electrode disc produces an oxygen depleted layer 

above the cathode and the rate of consumption of the disc is greater than the 

diffusivity of oxygen through liquid, the sample was stirred continuously with a 

magnetic stirrer to replenish this suboxic layer. Also, since the oxygen concentration 

in water is anti-correlated with temperature, the sample temperature was held 

constant using the water jacket that was connected to a FP30 water circulator 

(JULABO GmbH, Seelbach/Germany). The P-I-curves were carried out at the same 

temperature as the culture growth temperature.  As the cell concentration in the 

cultures was too low to obtain a clear signal, samples were concentrated 10-15 fold 

to 50,000 – 10,000,000 cells/ml by filtration, according to Multisizer measurements 

done immediately before. However, this step was omitted with P. carterae, as the 

initial culture already gave good signals for oxygen evolution. The samples were 

placed in the pre-calibrated Oxygraph reaction vessel and exchange of oxygen with 

the surrounding atmosphere was minimized using a plunger that closes the reaction 

vessel to the atmosphere. Oxygen evolution was measured at 9 different light 

intensities (0, 2, 25, 65, 150, 315, 600, 1300 and 2000 µmol photon m-2 s-1) for  
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10 minute periods. E. huxleyi RCC1229 was not measured at 150, 315 and 1300 

µmol photon m-2 s-1 as the addition of more light intensities was only decided after 

the experiment with this strain. 

The first 5 minutes were used to let the sample adjust to the new light environment 

while minutes 5 to 10 were taken to calculate the change in oxygen concentration 

over time. As the Oxygraph system does not take salinity into account in its 

calibration, a salinity correction was applied to the results after the measurements 

(Equation 4.1), where S is the salinity and T the temperature in Kelvin (Benson & 

Krause 1984).   

4.1 Correction factor = EXP(- S(0.017674 - 10.754/T + 2,140.7/T2)) 

The corrected oxygen concentrations were used to calculate rates of net primary 

production, i.e. the oxygen trend in samples over the 5 minutes following 

acclimatisation at each light intensity. Hereafter, rates were normalized to cellular 

chlorophyll a and organic carbon content and upscaled to daily rates.  

Following P-I curve measurements, the culture was sampled for POC/PON, PIC, Chl 

a (10 ml, triplicate samples) and POP (20 ml, triplicate samples) and cell 

concentration. See Chapter 2 for measurement protocols.   

A dynamic photosynthesis equation, combining the dynamic photosynthesis equation 

developed by Geider and colleagues (Geider et al. 1997) and a steady state light 

inhibition equation (Platt et al. 1980) that was reformulated to match the dynamic 

photosynthesis equation, was fitted to the compiled P-I curve data of each species to 

derive a set of important parameters related to P-I curve measurements (Equation 

4.2). 

4.2 Pc=Pcm[1-exp(
-α./0∗2∗θ	

3.4 )] exp 7-β./0∗2∗θ3.4 8 − resp 

Where Pc is the carbon-specific rate of photosynthesis (per day), Pcm is the light 

saturated photosynthesis rate normalized to carbon (per day), αchl is the chlorophyll a 

specific initial slope of the P-I curve (in g C g-1 Chl m2 µmol-1 photons), I is the light 

irradiance for which Pc is calculated (in µmol photons m-2 s-1) , Ɵ is the chlorophyll 

to carbon ratio in the algae (in g Chl a g-1 C), βchl is the chlorophyll a specific 

negative slope of the P-I curve at high light intensities - indicating high light 
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inhibition (in g C g-1 Chl m2 µmol-1 photons) and resp is the rate of respiration (per 

day). All parameters on the right hand side, except Ɵ, were fitted to the data by 

minimising the residual sum of squares. The Chl/C ratio Ɵ was a fixed parameter, 

based on measured chlorophyll and particulate organic carbon concentrations.  

A Poisson function (Equation 4.3) was fitted to the growth data as a function of 

irradiance (MacIntyre et al. 2002). 

4.3 µ=µm(1-exp(-I/KI))  

Here µ is the specific growth rate at a certain light intensity (per day), µm is the 

maximum growth rate (per day), I is the growth light intensity (µmol photon m-2 s-1) 

and KI is the light saturation parameter (µmol photon m-2 s-1).  

The growth data was tested for normal distribution using the Anderson-Darling test. 

Since none of the distributions were normal, they were tested for significant 

differences using the Mann-Whitney U test. 

4.3 Results and Discussion 

Growth 

All five coccolithophores grew over the full range of light intensities tested  

(Figure 4-1). At the lower end of the tested range (25 µmol photon m-2 s-1),  

G. oceanica and P. carterae showed the highest growth rate (µmax=0.37±0.03 in 

both species) slightly higher than growth of E. huxleyi RCC1229 (µmax=0.31±0.03). 

Growth of E. huxleyi RCC963 (µmax=0.16±0.02) and C. leptoporus 

(µmax=0.15±0.06) was noticeably lower at 25 µmol photon m-2 s-1 than in the other 

species.  

The differences in growth pattern are most likely due to the biogeographical 

background of the coccolithophores. Whereas E. huxleyi RCC1229, G. oceanica and 

P. carterae were all isolated from sites in the temperate North Sea, the other two 

species were isolated from sites in the subtropical Atlantic (C. leptoporus) 

respectively the subtropical Pacific (E. huxleyi RCC963) where light intensities in 

the water column are higher and these two coccolithophores should therefore be 

better adapted to high light intensity and less competitive at low light. This 

difference between temperate and subtropical coccolithophores was also found in the 
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light intensity at which cultures showed their highest growth rates. For E. huxleyi 

RCC963 (Iopt=900 µmol photon m-2 s-1) – the only coccolithophore that didn’t show 

high light inhibition of growth during the experiments - and C. leptoporus (Iopt=500 

µmol photon m-2 s-1) this was noticeably higher than for two temperate 

coccolithophores E. huxleyi RCC1229 (Iopt=350 µmol photon m-2 s-1), G. oceanica  

(Iopt=350 µmol photon m-2 s-1). Interestingly P. carterae  

(Iopt=600 µmol photon m-2 s-1), the third temperate species, grew best at the high end 

of the range of light intensities. 

 

Figure 4-1: Growth of different coccolithophores over a range of light intensities. (A) Emiliania huxleyi 

RCC963, (B) Emilinia huxleyi RCC1229, (C) Gephyrocapsa oceanica RCC1314, (D) Calcidiscus leptoporus 

RCC1150, (E) Pleurochrysis carterae PLY406, (F) combined dataset. Points are growth rates of individual 

coccolithophore cultures based on In vivo fluorometry, lines are growth models fitted through the data with 

the equation given in the upper right hand corner 

 

Comparing these results with published findings (Brand & Guillard 1981), 

differences in Iopt can again be explained by the biogeography of species used. Brand 

and Guillard (1981) carried out their experiments with subtropical strains from the 

Sargasso Sea that are likely to be better adapted to high light conditions than 
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temperate strains. The Iopt which Brand and Guillard (1981) reported for G. 

oceanica, P. carterae and E. huxleyi is higher than the one found in this study where 

temperate strains of the same species were used. Furthermore, the results for the 

subtropical E. huxleyi in this study matches well with the results from Brand and 

Guillard, showing no high light inhibition of growth. Like Brand and Guillard, we 

also found a lower Iopt in C. leptoporus compared with other subtropical 

coccolithophore strains. 

Highest growth rates were observed in G. oceanica (µopt=1.02±0.07), somewhat 

higher than in both strains of E. huxleyi (µopt=0.88±0.09 for E. huxleyi RCC963 and 

µopt=0.84±0.1 for E. huxleyi RCC1229) and C. leptoporus (µopt=0.81±0.03) which 

showed similar maximum rates of growth. The lowest growth rates were found in P. 

carterae (µopt=0.62±0.009). The optimum growth rate for E. huxleyi compares well 

with literature data of earlier studies (MacIntyre et al. 2002, Harris et al. 2005). The 

fact that P. carterae showed lower growth rates than the other tested 

coccolithophores is explained when cell size is taken into account. This species was 

the biggest of the tested coccolithophores and a well-supported theory states that 

growth rates decrease with cell size above a cell volume of 50-100 µm3 (Marañón et 

al. 2013). The main reason for this is that, as cell volume increases, resources must 

cover longer distances from the cell surface to the site of metabolic processing which 

is thought to decrease nutrient uptake in larger cells (Raven 1995). A decrease in the 

density of enzymatic units or in light absorption may contribute to the decrease in 

growth rate as well (Marañón et al. 2013). Maximum growth rate in C. leptoporus 

was higher than expected as this species is also significantly larger than E. huxleyi 

and G. oceanica. However, cell volume in C. leptoporus is only slightly above the 

threshold found by Marañón et al. (2013) and below this threshold they report an 

increase in growth rate with cell volume (Marañón et al. 2013). This is due to the 

fact that at a lower cell volume less space is available for scalable components 

involved in metabolism and biomass production, as non-scalable components such as 

membranes and nucleic acids occupy an increasing fraction of the cell (Raven 1994). 

Another reason is, that the density of membrane transport sites increases with cell 

surface (Marañón et al. 2013). Although cell volume in G. oceanica was not 

measured during this experiment, previous measurements showed that its cell size 

was very similar to that of E. huxleyi. Overall, growth rates in coccolithophores are  
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lower than those found in diatoms but higher than the rates reported for 

dinoflagellates (MacIntyre et al. 2002).   

The growth rates for P. carterae and G. oceanica were significantly different from 

most of the other datasets (Table 4-1). These two coccolithophores show the lowest, 

respectively highest µopt, explaining this observation. Interestingly though, growth in 

P. carterae was very similar to the dataset for E. huxleyi RCC1229. This might be 

due to the slope of the growth vs. irradiance curve at low irradiances in those two 

coccolithophores being lower than in the three other species. Growth rates in E. 

huxleyi RCC1229 were significantly different from G. oceanica and C. leptoporus. 

Again, this could be explained by the growth vs. irradiance relationship at low light 

intensities. 

Table 4-1: Statistical comparison, using the Mann-Whitney U test, of growth data from coccolithophores 

grown over a range of light intensities. Shown are p-values from the analysis, values which suggest significant 

differences (p<0.05) are in red colour. 

 E. huxleyi 

RCC1229 

G. oceanica 

RCC1314  

C. leptoporus 

RCC1150 

P. carterae 

PLY406 

Combined 

dataset 

E. huxleyi 

RCC963 

0.34 0.007 0.52 0.01 0.24 

E. huxleyi 

RCC1229 

 0.0003 0.46 0.68 0.1 

G. oceanica 

RCC1314  

  0.003 9.2e-5 0.017 

C. leptoporus 

RCC1150 

   0.01 0.46 

P. carterae 

PLY406 

    0.001 

 

Comparison with other groups of phytoplankton shows a general trend that diatoms 

have higher maximum growth rates than coccolithophores, whereas it is lower in 

dinoflagellates (Brand & Guillard 1981, Richardson et al. 1983). 
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Cell volume 

Unfortunately no measurements of cell volume could be made during the light 

experiment with G. oceanica due to the Beckman Coulter Counter being broken at 

the time when this experiment was carried out. Cell counts were made 

microscopically, using an Utermöhl chamber, without measurements of cell volume 

due to time constraints. 

 

Figure 4-2: Cell volume of different coccolithophores grown over a range of light intensities. (A) Emiliania 

huxleyi RCC963, (B) Emilinia huxleyi RCC1229, (C) Calcidiscus leptoporus RCC1150, (D) Pleurochrysis carterae 

PLY406.  

 
Cell size analysis from the other experiments showed significant differences between 

all four coccolithophores (p≤0.004). No noticeable trend with light intensity was 

observed in most cases (Figure 4-2). However, a step increase in cell volume from 

180 µmol photon m-2 s-1 to 350 µmol photon m-2 s-1 was observed in E. huxleyi 

RCC1229 (Figure 4-2 B). This increase is most likely due to a measurement error as 

no similar trend was observed in any of the other cellular components measured. 

Possibly, the addition of acid prior to the Coulter Counter analysis was forgotten or 

the amount of acid was not sufficient to remove the complete coccosphere.  
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From the literature, an increase in volume with light intensity (Muggli & Harrison 

1996) had been expected, similar to the trend found in E. huxleyi RCC1229. 

However, a similar trend as in cell volume had also been expected for other cellular 

components, in particular particulate organic matter (more room for scalable 

components involved in metabolic activity in larger cells) (Marañón et al. 2013) and 

particulate inorganic carbon (more coccoliths required to complete coccosphere in 

bigger cells). A potential higher concentration of chlorophyll a  

(chl a) due to the increase in cell volume could have been counteracted by a decrease 

in chl a concentration with increasing light intensity (see section on chl a in this 

chapter for details on the theory). As this was not observed in E. huxleyi RCC1229, 

the trend in cell volume was attributed to a measurement error rather than showing a 

real trend. Unfortunately, Muggli and Harrison (1996) include no data on particulate 

organic or –inorganic matter to compare with this study. Looking at the study by 

Muggli and Harrison, it seems that this phenomenon might be related to Iron 

concentrations rather than light intensity. They reported a significant decrease in 

volume if E. huxleyi was grown under Fe-stress compared to cultures grown under 

Fe-rich conditions (Muggli & Harrison 1996). Possibly, sampling occurred under Fe-

replete conditions in cases of high cell volume whereas cultures with low cell 

volume were Fe-limited. In general, cell volume measurements for both strains of E. 

huxleyi compare very well with other studies (Sunda & Huntsman 1995, Muggli & 

Harrison 1996). 

Particulate organic matter (POM) 

Cellular concentrations in the three measured components of particulate organic 

matter remained constant with increasing light intensity in all coccolithophores 

tested (Figure 4-3, Figure 4-4 and Figure 4-5). However, in some cases, particularly 

the concentrations of particulate organic nitrogen and particulate organic phosphorus 

(Figure 4-4 and Figure 4-5), there was noticeable variability in the data although the 

variability for the triplicate samples was low. This variability removed some 

significant differences that might have occurred between the two strains of E. huxleyi 

and G. oceanica, as these strains are of similar size and differences between them are 

small. Still, significant differences between the two strains of E. huxleyi were found 

regarding POC and PON concentrations (p≤0.03), E. huxleyi RCC963 showing 

lower concentrations. G. oceanica showed significant differences in POC and POP 
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concentrations to E. huxleyi RCC963 (p≤0.02). Concentrations of all POM 

components were significantly higher in C. leptoporus and P. carterae, significantly 

larger species, than in the three other coccolithophores (p≤0.002) and concentrations 

in P. carterae were also significantly higher than in C. leptoporus (p≤1.5e-5). 

 

Figure 4-3: Cellular concentration of particulate organic carbon in coccolithophores grown over a range of 

light intensities. (A) Emiliania huxleyi RCC963, (B) Emilinia huxleyi RCC1229, (C) Gephyrocapsa oceanica 

RCC1314, (D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis carterae PLY406. Dots are means of triplicate 

samples, whiskers indicate the standard deviation within each group of triplicates. 

 
The constant concentrations in particulate organic matter are in agreement with a 

study by Harris and colleagues which found no significant changes in E. huxleyi 

POC and PON per cell grown over a range of light intensities from 50 to 800 µmol 

photon m-2 s-1 (Harris et al. 2005). Overall, concentrations of POC and PON in both 

strains of E. huxleyi are within the range of concentrations found in other studies 

(Zondervan et al. 2002, Harris et al. 2005). However, the constant concentrations in 

POC are in contrast to the POC vs. light relationship found in diatoms, where 

Anning and colleagues found an increase in cellular POC when changing growth 

light intensity from 50 to 1200 µmol photon m-2 s-1 (Anning et al. 2000).  
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Figure 4-4: Cellular concentration of particulate organic nitrogen in coccolithiphores grown over a range of 

light intensities. (A) Emiliania huxleyi RCC963, (B) Emilinia huxleyi RCC1229, (C) Gephyrocapsa oceanica 

RCC1314, (D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis carterae PLY406. Dots are means of triplicate 

samples, whiskers indicate the standard deviation within each group of triplicates. 

 

Concentrations for all the measured particulate organic matter fractions were highest 

in P. carterae, and significantly higher than in C. leptoporus which had higher 

concentrations than the two strains of E. huxleyi and G. oceanica. The three latter 

coccolithophores had similar concentrations in all particulate organic matter 

components. This correlates well with the differences in cell volume found in the 

experiments, the big P. carterae cells also showed the highest concentrations in 

particulate organic matter.  
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Figure 4-5: Cellular concentration of particulate organic phosphorus in coccolithophores grown over a range 

of light intensities. (A) Emiliania huxleyi RCC963, (B) Emilinia huxleyi RCC1229, (C) Gephyrocapsa oceanica 

RCC1314, (D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis carterae PLY406. Dots are means of triplicate 

samples, whiskers indicate the standard deviation within each group of triplicates. 

 

The ratios between the three components of particulate organic matter also showed 

no significant trend with increasing light intensity (Figure 4-6, Figure 4-7 and  

Figure 4-8). Keeping in mind the noticeable variability in cellular PON and POP 

concentrations, these seem to be well correlated with each other, as the variability in 

the PON/POP ratio is much lower in most cases. Significant differences were found 

between C. leptoporus and the other coccolithophores in most cases (p≤0.02), this 

species showing lower ratios. The only insignificant differences were found in the 

POC/PON ratios, in comparison with E. huxleyi RCC1229 and P. carterae (p≥0.28). 

POC/PON ratios in P. carterae were also significantly lower than in E. huxleyi 

RCC963 and G. oceanica (p≤0.001). These relatively low ratios of POC/PON in E. 

huxleyi RCC1229 and P. carteri, together with insignificant differences in POC/POP 

relative to E. huxleyi RCC963 and G. oceanica, explains the significantly higher 
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ratios in PON/POP in these two species compared with the other coccolithophores 

(p≤0.005).  

 

Figure 4-6: Ratios of particulate organic carbon to particulate organic nitrogen in coccolithophores grown 

over a range of light intensities. (A) Emiliania huxleyi RCC963, (B) Emilinia huxleyi RCC1229, (C) Gephyrocapsa 

oceanica RCC1314, (D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis carterae PLY406.  

 

Ratios of POC/POP and PON/POP showed noticeably higher variability in E. 

huxleyi RCC1229, than in the other coccolithophores (Figure 4-6 B and Figure 4-8 

B). As the POC/PON ratios in this strain showed less variation, the observed 

variability in the other two ratios seems to be related to POP concentrations. As the 

N/P ratio in the media (N/P=16) was higher than the mean PON/POP in most 

coccolithophores (Figure 4-9), some cultures could have been phosphate limited at 

the point of sampling, leading to lower concentrations of POP relative to POC and 

PON and therefore increasing variability in POC/POP and PON/POP ratios. 
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Figure 4-7: Ratios of particulate organic carbon to particulate organic phosphorus in coccolithophores grown 

over a range of light intensities. (A) Emiliania huxleyi RCC963, (B) Emilinia huxleyi RCC1229, (C) Gephyrocapsa 

oceanica RCC1314, (D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis carterae PLY406.  

 
The constant ratios of particulate organic matter compare well with the study carried 

out by Harris and colleagues who found no significant differences in E. huxleyi 

POC/PON grown over a range of light intensities from 50 to 800 µmol photon m-2 s-1 

(Harris et al. 2005).  
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Figure 4-8: Ratios of particulate organic nitrogen to particulate organic phosphorus in coccolithophores 

grown over a range of light intensities. (A) Emiliania huxleyi RCC963, (B) Emilinia huxleyi RCC1229, (C) 

Gephyrocapsa oceanica RCC1314, (D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis carterae PLY406.  

 

Mean ratios between the three components of particulate organic matter were similar 

in all five coccolithophores (Figure 4-9). The mean POC/PON ratio was higher in all 

coccolithophores (7.85 in E. huxleyi RCC1229 to 11.23 in G. oceanica) than the 

ratio of 6.6 derived by Redfield (1934), no significant differences were found 

between the tested coccolithophores (Table 4-2). The ratios are also slightly higher 

than the ones found by Harris and colleagues (Harris et al. 2005) but within the range 

reported in bigger reviews (Quigg et al. 2003, Finkel et al. 2010). Ranges in the 

mean POC/POP (62.34 in C. leptoporus to 118.57 in P. carterae) and PON/POP 

ratio (7.89 in C. leptoporus to 18.7 in E. huxleyi RCC1229) covered the value which 

Redfield reported in his study as mean ratios (POC/POP: 106, PON/POP: 16) 

(Redfield 1934) and are also within the ratios reported for haptophytes in 

comparative reviews (Quigg et al. 2003, Finkel et al. 2010).  
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Table 4-2: Mean ratios between the cellular concentrations of POC, PON and POP in 5 coccolithophores. 

Numbers give the mean ratios plus/minus the standard deviation. 

Species POC/PON POC/POP PON/POP 

E. huxleyi RCC963 10.4±2.4 106±34 10.9±4.5 

E. huxleyi RCC1229 7.9±3.5 117±42 18.7±9.3 

G.oceanica 11.2±5.8 95±26 9.8±4.1 

C. leptoporus 7.9±1.7 62±19 7.9±1.9 

P. carterae 8.1±0.9 118±20 15.0±2.1 

 

 

Figure 4-9: Mean ratios of particulate organic matter components in coccolithophores grown over a range of 

light intensities. (A) POC/PON, (B) POC/POP, (C) PON/POP. Bars show the mean ratios for each 

coccolithophore, whiskers indicate the standard deviation and the vertical lines represent the mean ratios 

reported by Redfield 1934. 

 

Significant differences were found in the ratios of POC/POP and PON/POP between 

C. leptoporus and P.carterae. The lower ratios in C. leptoporus indicate that this 

species has higher requirements for phosphate than P. carterae. This could be due to 

the fact that C. leptoporus has higher phosphate requirements for its calcification 

machinery, as this species is known to produce a high amount of CaCO3 relative to 
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POC (Langer et al. 2006) whereas the ratio between the two components is reported 

to be low in P. carterae (Casareto et al. 2009). The results are in accordance with 

ratios observed during the temperature experiments discussed in chapter 3 and 

indicate that coccolithophores have higher requirements for carbon and phosphorus 

than other phytoplankton, due to requirements of the cellular calcification 

machinery. 

Chlorophyll a 

In most experiments the cellular concentration of chlorophyll a showed an 

exponential decrease with increasing light intensity (Figure 4-10). This trend in 

chlorophyll a concentration vs. light has also been found in other coccolithophore 

and diatom studies (Anning et al. 2001, Harris et al. 2005, Suggett et al. 2007).  

 

Figure 4-10: Cellular concentration of chlorophyll a in coccolithophores grown over a range of light 

intensities. (A) Emiliania huxleyi RCC963, (B) Emilinia huxleyi RCC1229, (C) Gephyrocapsa oceanica RCC1314, 

(D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis carterae PLY406. Dots are means of triplicate samples, 

whiskers indicate the standard deviation within each group of triplicates. 
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At low light intensities, cells need to invest more in the production in chlorophyll a 

to be able to take full advantage of the available light. As more light becomes 

available, the cells are able to move energy and nutrient resources away from the 

process of chlorophyll a production to the build-up of biomass, thereby decreasing 

the cellular chlorophyll a concentration. Interestingly, the cellular concentration in E. 

huxleyi RCC963 remains constant over the complete range of light intensities tested 

(Figure 4-10 A).   

Differences in chlorophyll a concentrations between the 5 coccolithophores again 

mirror the picture found concerning cell volume. The biggest coccolithophore (P. 

carterae) also had significantly higher cellular concentrations of chlorophyll a than 

all other coccolithophores (p≤0.004). C. leptoporus, intermediate in size, also 

showed intermediate chlorophyll a concentrations, significantly higher than the two 

strains of E. huxleyi and G. oceanica (p≤0.04), whereas these three, with comparable 

cell size, also had very similar cellular levels of chlorophyll a at most of the tested 

light intensities. Chlorophyll a concentrations in E. huxleyi compare well with 

concentrations reported in other studies (Harris et al. 2005, Suggett et al. 2007). A 

study by Price and colleagues reported significantly higher concentrations, but they 

also reported a much higher cell volume for their calcifying E. huxleyi which 

counteracts the difference in chlorophyll a (Price et al. 1998). 
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Figure 4-11: Ratios of chlorophyll a to particulate organic carbon in coccolithophores grown over a range of 

light intensities. (A) Emiliania huxleyi RCC963, (B) Emilinia huxleyi RCC1229, (C) Gephyrocapsa oceanica 

RCC1314, (D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis carterae PLY406. 

 

The ratios of chlorophyll a to carbon again indicates an increased investment in 

chlorophyll a production over biomass production in a low light environment, as it 

showed an exponential decrease with increasing light intensity in all experiments 

(Figure 4-11). Even in E. huxleyi RCC963, where no decrease was observed in 

cellular concentrations, the Chl/C ratio decreases with increasing light intensity 

under low light conditions (Figure 4-11 A). Nevertheless, the decrease in Chl/C in 

this coccolithophore is small compared with the trend in the other experiments.  

P-I-curves 

In all cases photosynthesis initially increased with light intensity up to a saturating 

light intensity (Figure 4-12). This saturating light intensity was at 315 µmol photon 

m-2 s-1 in G. oceanica, C. leptoporus, P. carteri and low light acclimated E. huxleyi 

RCC963. The higher saturating light intensity in E. huxleyi RCC1229 (600 µmol 
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photon m-2 s-1) is insufficiently constrained due to lack of measurements. The 

saturation irradiance increased to 600 µmol photon m-2 s-1 with increasing growth 

light intensity in E. huxleyi RCC963 and P. carteri. The saturating light intensity in 

the other coccolithophores compares well with another study on E. huxleyi which 

reported a saturating irradiance level of 300 µmol photon m-2 s-1 (Nimer & Merrett 

1993). However, other studies reported saturation at 150 µmol photon m-2 s-1 

(Zondervan et al. 2002) and above 500 µmol photon m-2 s-1 (Balch et al. 1992, 

Nanninga & Tyrrell 1996). The low saturation level reported by Zondervan and 

colleagues is explained by the fact that the maximum light intensity was at 150 µmol 

photon m-2 s-1 in this study, so the actual saturating irradiance might be higher than 

this. The higher saturating light intensity in the studies by Balch and colleagues and 

Nanninga and Tyler is explained by the relatively high growth light irradiance in 

those studies.  

 

Figure 4-12: Photosynthesis-Irradiance curves of coccolithophores grown at different light intensities. (A) 

Emiliania huxleyi RCC963, (B) Emilinia huxleyi RCC1229, (C) Gephyrocapsa oceanica RCC1314, (D) Calcidiscus 

leptoporus RCC1150, (E) Pleurochrysis carterae PLY406. Dots represent means from three P-I curves, colours 

indicate the growth light intensity as described in the legend. 
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Maximum photosynthetic activity was noticeably less variable with growth light 

intensity in C. leptoporus (Pmax,25=0.574, Pmax,700=0.485) and E. huxleyi RCC963 

(Pmax,25=0.951, Pmax,350=1.012) than in other species. However, there was an evident 

decrease in Pmax in E. huxleyi RCC963 between 350 µmol photon m-2 s-1 

(Pmax=1.012) and 900 µmol photon m-2 s-1 (Pmax=0.592) growth light irradiance. The 

other three coccolithophores showed more variability, G. oceanica (Pmax,25=0.283, 

Pmax,350=0.851) and E. huxleyi RCC1229 (Pmax,25=0.335, Pmax,350=1.039) reaching an 

optimum photosynthetic activity at 350 µmol photon m-2 s-1 whereas P. carteri 

(Pmax,25=1.928, Pmax,350=0.544) had its optimum at 25 µmol photon m-2 s-1. Initially it 

had been anticipated that Pmax would be constant with light intensity after correction 

for chlorophyll and carbon, possibly showing slightly higher values at optimum 

growth light conditions. An explanation might be the variability in the growth state 

which the algae were in at point of measurement. Semi-continuous culturing assured 

that cultures were in the exponential growth phase, but cell concentration differed 

which might have affected the cultures performance during the P-I curve 

measurement. The high Pmax in P. carteri was unexpected. A lower value had been 

anticipated as this was the biggest coccolithophore in this study with the lowest 

growth rates. A possible explanation for this could be the omission of the filtration 

step prior to P-I curve measurements to concentrate samples. Despite efforts to 

perform the filtration at low pressure (below 0.17 atm), this appears to have stressed 

the algae, leading to decreased photosynthetic activity relative to unconcentrated and 

non-stressed P. carteri. This is supported by the fact that Pmax was lower than µmax in 

E. huxleyi RCC1229, G. oceanica and C. leptoporus, whereas it should be higher to 

allow for dark respiration during the dark period. Furthermore, although Pmax was 

higher than µmax in E. huxleyi RCC963, it was lower than the value of 1.06 to 3.58 

reported in another study (Nielsen 1997). 

A steady decrease in αchl was observed in E. huxleyi RCC963 during this study 

(αchl
25=1.65e-5, αchl

900=1.08e-5). Similar results have been found in an earlier study 

with E. huxleyi where αchl decreased by 19.5% over a range of light intensities from 

30 µmol photons m-2 s-1 to 800 µmol photons m-2 s-1 (Nielsen 1997). However, the 

relative decrease was higher (34.6%) in this study, possibly indicating a competitive 

advantage at low light intensities in this strain. In E. huxleyi RCC1229, αchl 

decreased from cultures grown at 25 µmol photon m-2 s-1 (αchl=4.07e-5) to cultures 
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grown at 180 µmol photon m-2 s-1 (αchl=4.69e-6) but then increased again towards the 

highest growth light intensity to higher levels than observed under low light growth 

(αchl
900=5.62e-5). This is most likely explained by errors in the measurements. The 

rates of respiration in the dark could have been overestimated if not enough time had 

been given for the oxygraphs to readjust to higher oxygen concentrations following 

the standard with 0% saturation, leading to a higher value for αchl. The experiment 

with E. huxleyi RCC1229 was the first one for this study, and the experimental 

setupwas refined subsequently. In G. oceanica αchl increased initially from cultures 

grown at 25 µmol photon m-2 s-1 (αchl=4.65e-6) to cultures grown at 65 µmol photon 

m-2 s-1 (αchl=1.24e-5) and decreased from there on to lowest levels in cultures grown 

at 700 µmol photon m-2 s-1 (αchl=7.44e-6). This could indicate that photosynthesis in 

G. oceanica is significantly constrained at low growth irradiance. No obvious trends 

were found in C. leptoporus and P. carterae, however in both cases the highest α 

was measured at 350 µmol photon m-2 s-1 (αchl
CL=1.25e-5, αchl

PC=2.48e-4). This 

could be correlated to the point of saturation for photosynthesis (300 µmol photon m-

2 s-1), with the algae performing best when grown at an irradiance close to this point. 

High light inhibition (expressed by the parameter β) was observed in most 

coccolithophores, however at minimal levels (3.86e-7 to 5.33e-9). Yet, P. carteri did 

not show any high light inhibition of photosynthesis apart from the culture grown at 

25 µmol photon m-2 s-1 (β=1.09e-8). This supports results of other studies with E. 

huxleyi that found no signs of high light inhibition (Balch et al. 1992, Nanninga & 

Tyrrell 1996), giving coccolithophores a competitive advantage over diatoms and 

dinoflagellates at very high light intensities (Zondervan 2007).  

Respiration was highest in E. huxleyi RCC963 (0.214 to .0341) and only slightly 

lower in E. huxleyi RCC1229 (0.160 to 0.239). G. oceanica and P. carterae again 

had lower, similar levels of respiration (0.099 to 0.189 respectively 0.082 to 0.171) 

whereas C. leptoporus had noticeably lower rates of respiration than the other 

coccolithophores (0.001 to 0.045). To some extent this supports the theory that 

respiration is linked to cellular growth and species with lower growth rates, like C. 

leptoporus, also show lower respiration rates. Interestingly, the species with the 

lowest growth rate (P. carterae) still has relatively high rates of respiration. This 

might again be explained by the fact that samples of P. carteri were not concentrated 

prior to the measurement and therefore not stressed. 
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Comparing the photosynthetic parameters of the 5 coccolithophores indicates that E. 

huxleyi RCC963 was the most active, showing the highest values in all parameters 

(Table 4-3), almost twice as high as in most other coccolithophores. Rather than an 

overestimation in this strain, it is more likely due to a parameter underestimation in 

the other strain, E. huxleyi RCC1229. In addition,  the αchl in E. huxleyi RCC963 

compare well with literature data (Nielsen 1997).  

Table 4-3: Photosynthetic parameters for different coccolithophores.  

 Respiration (day
-1

) α
Chl

 (g C g
-1

 Chl 

m
2 

µmol
-1

 

Pmax (day
-1

) β (g C g
-1

 Chl m
2
 

µmol
-1

 photon) 

Ɵmax (g Chl g
-1

 

C) 

E. huxleyi 

RCC963 

0.29±0.04 1.2e-5±2e-6 1.03±0.07 1.6e-7±5.6e-8 0.014±0.003 

E. huxleyi 

RCC1229 

0.16±0.06 6.8e-6±3.2e-6 0.55±0.14 1.3e-8±5.4e-8 0.02±0.018 

G. oceanica 

RCC1314  

0.15±0.03 7.1e-6±1.6e-6 0.48±0.04 7.7e-8±3.2e-8 0.015±0.012 

C. leptoporus 

RCC1150 

0.02±0.02 5.7e-6±9.6e-7 0.45±0.03 7.8e-9±1.5e-8 0.019±0.015 

P. carterae 

PLY406 

0.1±0.07 5.7e-6±2e-6 0.85±0.12 0±3.8e-8 0.02±0.016 

 

Particulate inorganic carbon 

Cellular concentrations of particulate inorganic carbon remained constant with 

increasing light intensity in all the coccolithophores (Figure 4-13). Concentrations of 

PIC per cell in E. huxleyi RCC963 were significantly different from the other 

coccolithophores (p≤0.007) as were concentrations in C. leptoporus (p≤0.001)  and 

P. carterae (p≤0.001). Concentrations in E. huxleyi RCC1229 and G. oceanica 

showed no significant differences (p=0.18).  

Average PIC concentrations compared well with concentrations reported in another 

study (Zondervan et al. 2002), although they found a significant increase in inorganic 

carbon concentration from 30 µmol photon m-2 s-1 to 80 µmol photon m-2 s-1 in E. 

huxleyi (Zondervan et al. 2002). They also observed an increase in POC with 

irradiance, so this difference is likely explained by an increase in cell volume. Other 

studies found an increase in calcification rate with light intensity (Balch et al. 1992, 

Nimer & Merrett 1993), but these studies relied on short-term incubations without 

acclimation of the cultures.  
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Figure 4-13: Cellular concentrations of particulate inorganic carbon in coccolithophores grown over a range of 

light intensities. (A) Emiliania huxleyi RCC963, (B) Emilinia huxleyi RCC1229, (C) Gephyrocapsa oceanica 

RCC1314, (D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis carterae PLY406. Dots are means of triplicate 

samples, whiskers indicate the standard deviation within each group of triplicates. 

 

Concentrations were highest in C. leptoporus, P. carterae showed intermediate 

concentrations whereas the two strains of E. huxleyi and the G. oceanica had 

similarly low concentrations. The coccosphere of P. carterae is relatively thin, 

whereas C. leptoporus produces very thick coccospheres. This explains the lower 

concentrations measured in P. carterae relative to C. leptoporus, although cells of P. 

carterae are larger than those of C. leptoporus.  
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Figure 4-14: Ratios of particulate inorganic carbon to particulate organic carbon in coccolithophores grown 

over a range of light intensities. (A) Emiliania huxleyi RCC963, (B) Emilinia huxleyi RCC1229, (C) Gephyrocapsa 

oceanica RCC1314, (D) Calcidiscus leptoporus RCC1150, (E) Pleurochrysis carterae PLY406. 

 

These observations on the coccospheres of C. leptoporus and P. carterae are also 

mirrored in the relationship between particulate inorganic carbon and particulate 

organic carbon (Figure 4-14). The ratio between these two components is 

significantly lower in P. carterae than in all other tested coccolithophores (p≤0.002). 

As in most other measured variables, the values for the two strains of E. huxleyi and 

the G. oceanica were similar, falling within the range of ratios reported in other 

studies for E. huxleyi (Zondervan et al. 2002). The ratios in C. leptoporus were 

significantly higher than in the other coccolithophores (p≤0.01). 

4.4 Conclusions 

No changes in particular organic or inorganic cellular components were observed 

with increasing light intensity, in contradiction to other studies with E. huxleyi 

showing an increase in organic and inorganic carbon and organic nitrogen with light 

intensity (Zondervan et al. 2002, Harris et al. 2005). This increase might have been 

counteracted by nutrient limitation in this study. An increase in particulate organic 
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matter with increasing light intensity would also follow the trend observed in 

diatoms (Anning et al. 2000).  

Coccolithophores seem to be better competitors under high light conditions 

compared with diatoms and dinoflagellates. Optimum growth light intensity for 

coccolithophores in this study were higher than the mean optimum irradiances for 

the other two groups of phytoplankton (Richardson et al. 1983), indicating that 

coccolithophores have a competitive advantage over other phytoplankton groups at 

high light intensities. This assumption is supported by the fact that blooms of E. 

huxleyi are often observed during mid-summer at relatively high surface irradiance 

(Balch et al. 1991, Fernandez et al. 1993). On the other hand, many coccolithophores 

seem to operate relatively poor at low light intensities, as the shallow slope of P-I 

curves in cultures grown at low light indicate. E. huxleyi appears to be better adapted 

to low light intensities however. On the other hand, a comparative study of different 

phytoplankton groups found no significant differences in the growth-irradiance 

relationship between coccolithophores, diatoms and dinoflagellates and pointed out 

the importance of the biogeographic background of species instead (Brand & 

Guillard 1981), which is supported by the current study where subtropical strains of 

coccolithophores grew slower than temperate strains at low light intensities. It could 

be that biogeography is more important than group specific differences in defining 

the competitive position of phytoplankton regarding irradiance, but more studies are 

necessary to resolve this question. 
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5 Effects of nutrients on coccolithophores 

5.1 Introduction 

An increase in oceanic surface temperature due to climate change will have indirect 

effects on the concentration of nutrients for phytoplankton. Stratification in large 

areas of the ocean will intensify, decreasing the mixing rate between surface water 

and deep water. This will reduce nutrient replenishment from the deep ocean into the 

surface waters. At the moment the water column in many areas of the world’s oceans 

is stratified during the summer months as the temperature in the surface ocean is 

considerably higher than in the deeper waters. During this period, nutrient 

concentrations in the surface waters are diminished by phytoplankton primary 

production. In temperate and polar regions, the temperature in the surface decreases 

during winter, disrupting the stratification and mixing the water column, thereby 

replenishing nutrient concentrations in the surface from the deep waters. An increase 

in stratification will prevent this winter mixing in some places as the water column 

will be stratified the whole year round. Phytoplankton will therefore have to cope 

with very low nutrient concentration all through the year.  

Blooms of E. huxleyi usually occur in waters with low nitrate (minimum 0.08 µM, 

Van der Waal et al. (1995))and phosphate concentrations (minimum 0.1 µM, Van 

der Waal et al (1995)) (Balch et al. 1991, Fernandez et al. 1993, Holligan et al. 1993, 

Van der Wal et al. 1995, Buitenhuis et al. 1996, Iglesias-Rodriguez et al. 2002) and it 

is known that they often directly follow a diatom bloom after these have decreased 

nutrient concentrations in the water (Margalef 1978). Laboratory studies have shown 

that E. huxleyi is a very good competitor for phosphate, having one of the highest 

affinities for phosphate recorded in phytoplankton so far (Riegman et al. 2000). In 

contrast, its affinity for nitrate is low compared with other phytoplankton, suggesting 

that it could be a poor competitor at low nitrate concentrations (Riegman et al. 2000). 

Concentrations of particulate organic and inorganic carbon increased with decreasing 

growth rate under phosphorus limitation in the study by Riegman et al. (2000), 

whereas no such effect was found in cultures grown under nitrogen limitation. The 

increase in particulate inorganic carbon was more pronounced than the increase in 

organic carbon and reflected an increase in the PIC/POC ratio (Riegman et al. 2000). 

This is supported by another study (Paasche 1998), although Paasche found similar 

results for cultures grown under nitrate limitation, contrerary to the observations of 
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Riegman et al (2000). Cells of E. huxleyi also show a significant increase in cell size 

at low growth rates under P-limitation (Paasche 1998, Riegman et al. 2000), whereas 

it decreases under N-limitation at low growth rates (Riegman et al. 2000, Sciandra et 

al. 2003). 

The aim of the research presented in this chapter is to provide a broader picture of 

the effect of nutrient availability on coccolithophores, by including more species 

than most of the other studies and examining the effects on more levels – namely 

growth, cell volume and cellular concentrations of chlorophyll a, particulate organic 

carbon, particulate organic nitrogen, particulate organic phosphorus and particulate 

inorganic carbon derived from particulate calcium. 

5.2 Methods 

Cultures were grown in nitrogen-limited (N:P 3:1 with [NO3]=288 µM and  

[PO4]=90 µM) and phosphorus-limited (N:P 80:1 with [NO3]=1440 µM and 

[PO4]=18 µM) chemostats in a constant temperature room at 11°C and continuous 

light (to ensure steady state in the culture without a dial cycle) of  

150 µmol photon m-2 s-1 (Figure 5-1).  

The medium was artificial seawater medium, with nutrients added based on K/2 

medium (Keller et al. 1987). The concentration of the limiting nutrient in the 

medium was set according to the recipe as the concentration of the non-limiting 

nutrient was increased to match the desired ratio of nitrogen (N) to phosphorus (P). 

Furthermore, NH4Cl was not added to the medium, so that NaNO3 was the sole 

nitrogen source.  

Tubes, bottles, medium, etc. was autoclaved at 121°C for 30 minutes and assembled 

in a flow cabinet to minimize contamination. To start each chemostat culture 

1000000 cells of stock culture grown in K/2 medium were added to each 50 ml 

culture vessel. The complete arrangement was then carefully transported and set up 

in the constant temperature room. 

Two experiments were carried out, testing the effects of the two nutrient ratios on 

three strains of coccolithophores in each. The two strains of E. huxleyi and the G. 

oceanica were studied in the first experiment. The second experiment was intended 

to focus on the three larger species C. leptoporus, C. braarudii and P. carterae. 

Unfortunately the second experiment had to be terminated before any sampling was 

possible, due to issues with the peristaltic pump.  
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Figure 5-1: Setup of chemostats in the 11°C constant temperature. 1. Medium bottles, 2. Peristaltic pump,  
3. Air pump, 4. Culture vessels, 5. Water bath with waste bottles 

 
In the experimental setup, medium was pumped through culture vessels using a 

Watson-Marlow 323E peristaltic pump and silicon tubing for peristaltic pumps with 

an inner diameter of 0.19 mm (Experiment 1) (Watson-Marlow Bredel Pumps, 

Falmouth, England). After passing through the peristaltic pump, filter-sterilised 

(Sartorius PTFE membrane, 0.2 µm pore size) air was added to the medium flow 

using an aquarium pump. The air bubbles in the medium flow facilitated mixing of 

the coccolithophore cultures as the mix of medium and air entered the culture vessels 

at the bottom.  

The dilution rate in the chemostats was set according to half the maximum growth 

rate observed in the temperature experiment at 12°C (Table 3.1), exchanging a 

certain percentage of the total culture volume each day (0.225 day-1) and thereby 

setting the growth rate for the coccolithophores. The chemostat cultures were 

completely filled with media over the course of 4.5 (Experiment 1) and run for a 
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time period (1.5 weeks) that allowed 2 complete exchanges of medium to give 

cultures time to equilibrate. After this they were sampled on 4 consecutive occasions 

at 4 day intervals for POC/PON, PIC, Chl a (8ml each), POP (15 ml), PO4, NO3 (39 

ml for both analyses together) and cell count. In order not to disturb the state of the 

culture, samples were taken from the culture waste. This was treated with 500µl (1% 

of the maximum volume) 10% formaldehyde solution and kept at 4°C to preserve the 

composition of the algal cells. The formaldehyde solution was buffered to pH 7 with 

hexamine (C6H12N4) as suggested in an earlier study to preserve phytoplankton 

cultures whilst also minimizing the effects of the preservative (Iwasawa et al. 2009). 

However, the formaldehyde interfered with the phosphate measurements (see section 

5.3 on particulate organic matter). 

Analysis of phosphate (PO4) was carried out a similar way as particulate organic 

phosphorus, using a spectrophotometric analysis (Murphy & Riley 1958) but 

omitting the digestion process applied to POP samples. Mixed reagent (2.5 ml, see 

chapter 2.8 for detailed recipe) was added to 10 ml of sample and measured in a 

LAMBDA 25 spectrophotometer (PerkinElmer, Waltham, USA) at 885 nm, after 

calibration with the set of standards introduced in chapter 2. Samples from the 

chemostats with N:P=3 were diluted by a factor of 10, so that the concentrations fell 

within the range of analysis of the method. 

Analysis of nitrate (NO3) was performed using a San++ Automated Wet Chemistry 

Analyzer (Skalar Analytical B. V., Breda/Netherlands). The autoanalyzer measures 

the combined concentration of NO3 and nitrite (NO2 - was neglected in samples of 

this study as none was added to the artificial seawater medium) by a colorization 

method (Wood et al. 1967). In a first step NO3 is reduced to NO2 by passing through 

a cadmium-copper column where cadmium is oxidised to cadmiumhydroxide 

(Cd(OH)2). Following this, NO2 is diazotized with sulphanilamide (C6H8N2O2S) and 

coupled with α-naphthyl-ethylenediamine dihydrochloride (C10H7NHCH2CH2NH2 · 

2HCl) to form a deep-red coloured complex which is measured in a 

spectrophotometer at 540 nm. Samples from the chemostats with N:P=80 were 

diluted by a factor of 10 to ensure that the sample concentrations fell within the 

range of analysis of the method. 

Using the initial concentrations of PO4 and NO3 in the two media and the final 

concentrations in the waste bottles, uptake rates of PO4 and NO3 were calculated for 
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all coccolithophores and treatments, normalizing the differences in concentration for 

cell concentration and growth rate (Equation 5.1)  

5.1 :; = !<]=-!<]>
" ∗ μ 

, where VN is the uptake rate, [N]1 is the initial nutrient concentration, [N]2 the final 

concentration, C the cell concentration in cells/L and µ the growth rate per day 

(equal to the medium flow rate in chemostats). 

5.3 Results and Discussion 

Cell Concentrations and Cell Volume 

Cultures in all chemostats reached significant levels of cell concentration  

(Figure 5-2), indicating that the medium flow rate of 0.225/day was low enough for 

the three coccolithophores to demonstrate their ability to grow under continuous 

light as reported from other studies (Brand & Guillard 1981, Price et al. 1998). 

 

 
Figure 5-2: Mean cell concentration of three coccolithophores during the first chemostat experiment at two 
different ratios of nitrogen to phosphorus (N:P=3 in white and N:P=80 in grey). Whiskers give the 
standard deviation of four triplicate measurements.  
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Cell concentrations in E. huxleyi RCC1229 were noticeably lower than in E. huxleyi 

RCC963 and G. oceanica, but without significant difference in most cases  

(Figure 5-2). The only significant difference in cell concentration was found between 

E. huxleyi RCC1229 and G. oceanica RCC1314 when grown at a N:P-ratio of 3 

(p=0.017). The difference between the two strains of E. huxleyi was also only 

slightly over the p-value threshold (p=0.057). This could have been caused by the 

change to continuous light, E. huxleyi RCC1229 being more affected by the change 

to continuous irradiance compared with E. huxleyi RCC963 and G. oceanica. The 

difference in sensitivity to continuous light between the two strains of E. huxleyi are 

possibly due to the time period which the two strains have been in culture collection. 

Whereas E. huxleyi RCC1229 was extracted in 1998, E. huxeyi RCC963 only came 

to the culture collection in 2004. In culture collection, both strains are grown at a 

14:10 light:dark-cycle to which they adapt with time. One such possible adaption is 

the diel timing of metabolic processes in the light or the dark period (Brand & 

Guillard 1981). This adaption becomes more likely, the longer the algae is in culture 

and it seems that this process is more advanced in E. huxleyi RCC1229, making it 

more sensitive to changes in the light:dark-cycle than E. huxleyi RCC963. The 

difference in sensitivity between E. huxleyi RCC1229 and G. oceanica however, 

cannot be explained by a difference in time span which the two algae have been in 

culture. Interspecific differences could be the important factor in this case. 
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Figure 5-3: Cell concentration of coccolithophores in chemostats with two different ratios of nitrogen to 
phosphorus (N:P=3 and N:P=80) over the course of an experiment with 4 days of sampling. 

 
Cell concentration showed a high standard deviation, but the changes in cell 

concentration in most chemostats showed little overall trend with time (Figure 5-3). 

Cell concentration in both chemostats of E. huxleyi RCC1229 decreased successively 

over time, but the range of decrease is within the range of change observed in the 

other four chemostats and is not necessarily a continuous dilution of the chemostats. 

The time course of cell concentrations in the chemostats for E. huxleyi RCC963 and 

G. oceanica is mostly without any clear trend, except the nitrogen-limited chemostat 

of G. oceanica which is the only one with stable cell concentration. Reasons for the 

variability in the other three chemostats are most likely to be found in the 

experimental setup. For example, the peristaltic pump tubing is subject to heavy 

wear which might have affected the chemostats. However, this phenomenon would 

have resulted in a decrease in the medium flow rate as the tubing is squeezed and this 

would have led to a continuing increase in cell concentration. A more plausible 

explanation might be problems with the tubing that connected the culture vessels 

with the waste bottles. The flow through this tubing might have been slow enough 
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for culture to settle and accumulate in the tubing, decreasing the number of cells that 

reached the waste bottles. On the other hand, if the accumulation of material in the 

tubing approached a certain point the culture flow to the waste bottles might have 

released some of the accumulated material and carried it to the waste bottle which 

would have increased the number of cells there. These two processes together might 

explain the observed variability in cell concentration, although it is interesting that 

this didn’t happen in all chemostats. 

 
Figure 5-4: Mean cell volume of coccolithophores grown in chemostats under two different ratios of 
nitrogen to phosphorus (N:P=3 in white and N:P=80 in grey). Whiskers indicate the standard deviation of 
four triplicate measurements. 

 
An interesting trend was observed comparing cell volume in the N- and P-limited 

chemostats (Figure 5-4). In all three coccolithophores cells were significantly larger 

when grown under P-limitation (p=0.003 for E. huxleyi RCC963, p=0.019 for E. 

huxleyi RCC1229 and p=0.022 for G. oceanica). This has also been observed in an 

earlier study where E. huxleyi grown under P-limitation were on average 40% larger 

than cells grown under N-limitation (Riegman et al. 2000), due to an increased 

concentration of alkaline-phosphatase-complexes, enzyme complexes which remove 

phosphate groups from other molecules, and resulting higher cell volume 

requirements.  
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Particulate organic matter 

In the study by Riegman et al. (2000), the increase in cell volume was accompanied 

by an increase in cellular particulate organic carbon. Indication for this was also 

found in the present study. In all three coccolithophores the cellular concentrations 

of POC were higher under phosphorus limitation compared with cultures grown 

under nitrogen limitation (Figure 5-5). However, the difference was less pronounced 

then reported in the study by Riegman et al. and significant only in E. huxleyi 

RCC1229 (p=0.03). This so called carbon overcomsumption (Toggweiler 1993) has 

been reported from severall other studies with E. huxleyi and C. leptoporus growing 

cultures solely under nutrient limitation or in combination with increased CO2 

(Riegman et al. 2000, Engel et al. 2005, Leonardos & Geider 2005, Borchard et al. 

2011, Langer et al. 2012, 2013). 

 
Figure 5-5: Mean concentrations of cellular POC in three coccolithophores grown in chemostats with two 
different ratios of nitrogen to phosphorus (N:P=3 in white, N:P=80 in grey). Whiskers indicate the 
standard deviation of four triplicate measurements. 

 

It is also notable that POC concentration in all three coccolithophores was 

considerably higher then concentrations measured during the temperature- and light 

experiments (Figure 3-4, Figure 4-3). This is explained by the dilution rate of the 

chemostats, setting a lower growth rate for the coccolithophores than the maximum 

growth rates observed during the temperature- and light experiments.  
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Furthermore, POC concentration in E. huxleyi RCC1229 were significantly higher 

than for the other species grown in chemostats in most cases (Table 5-1). This could 

be a further indication that some error occured with the coulter counter 

measurements and that the cell concentrations for this coccolithophore were 

underestimated. 

Table 5-1: Statistical comparison of mean POC concentrations in coccolithophore chemostats with 
different ratios of nitrogen to phosphorus, using the Wilcoxon rank-sum test. Shown are the calculated p-
values, where a value of p<0.05 indicates significant differences. 

 E. huxleyi RCC1229 vs. 

E. huxleyi RCC963 

E. huxleyi RCC1229 vs. 

G. oceanica 

N:P=3 0.003 0.023 

N:P=80 0.001 0.16 

 
 
A similar observation was made for cellular concentrations of PON (Figure 5-6), 

although the differences between the coccolithophores were not significant  

(Table 5-2).  

 
Figure 5-6: Mean concentrations of cellular PON in three coccolithophores grown in chemostats with two 
different ratios of nitrogen to phosphorus (N:P=3 in white, N:P=80 in grey). Whiskers indicate the 
standard deviation of four triplicate measurements. 
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No differences were observed between the two treatments for each coccolithophore. 

This is in contrast to a previous study which found a decrease in cellular PON 

concentration under nitrogen limitation (Riegman et al. 2000), though another study 

found no trend in PON concentration with changing N:P ratios in the medium 

(Leonardos & Geider 2005).  

Table 5-2: Statistical comparison of mean PON concentrations in coccolithophore chemostats with 
different ratios of nitrogen to phosphorus, using the Wilcoxon rank-sum test. Shown are the calculated p-
values, where a value of p<0.05 indicates significant differences. 

 E. huxleyi RCC1229 vs. 

E. huxleyi RCC963 

E. huxleyi RCC1229 vs. 

G. oceanica 

N:P=3 0.133 0.073 

N:P=80 0.095 0.200 

 

This discrepancy could be due to the initial nitrate concentration in nitrogen limited 

chemostats during this study and the study by Leonardos and Geider (2005) being 

relatively high (288 µM respectively 200 µM), whereas Riegman et al. (2000) set the 

initial nitrate concentration in their nitrogen-limited cultures at a considerably lower 

level (25 µM). Although nitrogen was the limiting nutrient in all three studies, it is 

likely that during the experiments by Riegman et al. E. huxleyi had more difficulties 

to acquire nitrate, due to the low initial concentration, and decreased the level of 

cellular PON in response to that. PON concentrations from this study were 

noticeably higher than concentrations obtained from the light- and temperature 

experiments, due to the low growth rate in comparison with the other experiments.  

Analysis of the cellular POP samples revealed significant differences in cellular 

concentrations between the coccolithophores grown under nitrogen-limitation or 

phosphorus-limitation (Figure 5-7, p=0.022 for E. huxleyi RCC963, p=0.004 for  

E. huxleyi RCC1229 and p=0.001 for G. oceanica). This is most likely caused by a 

decrease in POP concentration under low phosphate concentrations, as has been 

reported in previous studies (Riegman et al. 2000, Leonardos & Geider 2005, Langer 

et al. 2012, 2013). However, all measurements of POP in this study are considerably 

higher than the concentrations in other studies and likely to be overestimations due 

to a methodological mistake, so the question if the difference in POP observed in this 

study is due to an increased concentration under nitrogen-limitation or a decreased 

concentration under phosphorus-limitation cannot be answered satisfactorily.  
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Figure 5-7: Mean concentrations of cellular POP in three coccolithophores grown in chemostats with two 
different ratios of nitrogen to phosphorus (N:P=3 in white, N:P=80 in grey). Whiskers indicate the 
standard deviation of four triplicate measurements. 

 
The overestimations of POP concentration are likely due to samples for POP 

analysis being taken from culture waste that had been fixed with 10% formaldehyde. 

Tests showed that the formaldehyde interfered with POP and phosphate 

measurements, by also forming a blue complex with molybdenum and thereby 

increasing the absorption measured in the spectrophotometer.  After these problems 

were encountered during analysis of POP and PO4 samples, a test was carried out 

with different dilutions of buffered and unbuffered formaldehyde in MilliQ water to 

investigate the issue (Figure 5-8). This revealed that the solution of buffered 

formaldehyde, as used during the chemostat experiment, strongly affected phosphate 

measurements at high dilutions. The reason for this phenomenon is unknown at the 

moment and no references to it have been found in the literature.  
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Figure 5-8: phosphate measurements of differnt dilutions (dil.) of buffered (buff.) and unbuffered 
(unbuff.) formaldehyde (FA). Bars show mean of duplicate measurements, whiskers indicate the standard 
deviation. 

 
This effect was neither seen in low dilution of buffered formaldehyde, nor in any 

dilution of unbuffered formaldehyde. Although no additional phosphate is contained 

in hexamine (C6H12N4), the buffer as well as the high degree of dilution seems to 

play a role, but the actual cause remains unresolved for the moment. A correction of 

phosphate concentration was not possible as affected samples showed a deep blue 

colour, giving apparent phosphate concentration above the concentration limits of 

the method. A dilution of the sample, to bring the concentration within the 

concentration range of the method, was not succesfull as the issue only occurred at 

high formaldehyde dilutions.  

This issue has also significant effects on the elemental ratios derived from the 

particulate organic matter measurements. For this reason, only the relationship of 

POC to PON is discussed in this thesis. 

Regarding the correlation of POC with PON, no clear differences were found 

between coccolithophores or between treatments (Figure 5-9). The similarity 

between the two treatments is surprising, as carbon overcomsumption under 

phosphate limitation was observed in all three strains which would suggest a higher 

ratio of POC/PON under phosphate limitation. However, the level of carbon 



 

100 

 

overconsumption was small and might have been masked by the variability in POC 

and PON measurements, so that no differences in POC/PON can be seen between 

treatments. The ratios in all chemostats were higher than the Redfield ratio of 6.6, 

which is commonly observed in coccolithophores. The ratios are at the upper range 

of ratios reported in literature but compare well with ratios found in the light- and 

temperature experiments (Figure 3-8 and Figure 4-6). 

 
Figure 5-9: Ratios of POC to PON in coccolithophores grown in chemostats with two different ratios of 
nitrogen to phosphorus (N:P=3 in white, N:P=80 in grey). Bars show the means of 3-4 triplicate 
measurements, whiskers indicate the standard deviation. 

 

Chlorophyll a 

Analysis of chlorophyll a samples showed a significant difference (Table 5-3) in 

cellular chlorophyll a concentration between E. huxleyi RCC1229 and the two other 

coccolithophores, the first showing higher concentrations (Figure 5-10). This was 

also observed in the cellular POC and PON content and attributed to 

underestimations in the measurements of cell concentration in E. huxleyi RCC1229, 

leading to an overestimation in the calculations of concentrations for cellular 

components.  
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Table 5-3: Statistical comparison of cellular chlorophyll a concentration in coccolithophore chemostats 
with different ratios of nitrogen to phosphorus, using the Wilcoxon rank-sum test. Shown are the 
calculated p-values, where a value of p<0.05 indicates significant differences. 

 E. huxleyi RCC1229 vs. 

E. huxleyi RCC963 

E. huxleyi RCC1229 vs. 

G. oceanica 

N:P=3 0.035 0.044 

N:P=80 0.01 0.007 

 
This is supported by the measured chlorophyll a concentration in E. huxleyi 

RCC1229 during this experiment being noticeably higher than the concentration 

measured in cultures grown at a similar irradiance during an earlier experiment 

looking at the effect of light on this coccolithophore, whereas concentrations in E. 

huxleyi RCC963 and G. oceanica compared well with concentrations measured 

during these light experiments (Figure 5-10 and Figure 4-10).   

 
Figure 5-10: Chlorophyll a concentration in coccolithophores grown in chemostats with two different 
nitrogen to phosphorus ratios (3:1 in white, 80:1 in grey). Bars show the mean of three to four triplicate 
samples, whiskers indicate the standard deviation. 

 
Calculations of the relationship of chlorophyll a to POC indicated no significant 

differences between the three coccolithophores or between the two nutrient levels 

(Figure 5-11). This had been anticipated as these algae are similar in size and had 

already shown fairly uniform ratios during the light experiments (Figure 4-11). The 
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fact that the relationship in E. huxleyi RCC1229 is similar to that of the two other 

strains points again towards an overestimation of chlorophyll a concentrations due to 

underestimated cell concentrations. It is noteworthy that the calculated ratios are 

noticeably smaller than the ratios obtained in the light- and temperature experiments. 

This is due to the higher POC content in all coccolithophores. 

 
Figure 5-11: Ratio of chlorophyll a to POC in coccolithophores grown in chemostats with two different 
ratios of nitrogen to phosphorus (3:1 in white, 80:1 in grey). Bars show the mean of three measurements, 
whiskers indicate the standard deviation. 

 
Particulate inorganic carbon 

Concentrations of particulate inorganic carbon (PIC) varied little between the two 

treatments or between coccolithophores (Figure 5-12). The exception was the 

nitrogen-limited chemostat with G. oceanica, which showed a significantly higher 

PIC concentration than the corresponding phosphorus-limited chemostat (p=0.01) 

and was also significantly different from E. huxleyi RCC1229 grown under nitrogen-

limitation (p=0.02). Initially it was anticipated that G. oceanica would have higher 

concentrations of PIC than the two strains of E. huxleyi, as this had been observed 

during light- and temperature experiments. The PIC concentration in the phosphorus-

limited chemostat of G. oceanica was therefore lower than expected. This could be 

an indication that G. oceanica is decreasing levels of calcification under phosphorus-

limitation or sheds an increased amount of coccoliths into the medium. Earlier 
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studies with E. huxleyi and C. leptoporus had found an increase in cellular PIC under 

phosphorus limitation (Riegman et al. 2000, Langer et al. 2012, 2013). Whereas the 

response in C. leptoporus is coupled to an increased rate of calcification (Langer et 

al. 2012), the results for E. huxleyi are less convincing. The study by Langer at al. 

was carried out with semi-continuous cultures and the observed increase in PIC is 

explained by the difference in growth between the control and the phosphorus-

limited culture (Langer et al. 2013), Riegman et al. (2000) found an increased PIC 

concentration in phosphorus limited cultures, compared with nitrogen-limited 

cultures, but only at very low growth rates. Furthermore, a control is missing to 

answer the question of whether this observation is due to an increased rate of 

calcification under phosphorus limitation or a decreased rate of calcification under 

nitrogen limitation. At growth rates around 0.3/day, similar to the growth rates in 

this study, they find no difference in cellular PIC between nitrogen- and phosphorus 

limited cultures. 

 
Figure 5-12: Concentration of PIC in coccolithophores grown in chemostats with two different ratios of 
nitrogen to phosphorus (N:P=3 in white, N:P=80 in grey). Bars show the mean of 3 to 4 triplicate 
measurements, whiskers give the standard deviation. 
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Interestingly, PIC concentrations in E. huxleyi RCC1229 compare well with 

concentrations in the other coccolithophores (Figure 5-12), whereas it had higher 

concentrations for most of the other cellular components. This could indicate that 

this coccolithophore was shedding more coccoliths into the medium or had a higher 

percentage of naked cells in the chemostats than the other two, decreasing the 

amount of cellular PIC. 

The above hypothesis is supported by the calculations of the relationship of PIC to 

POC, where E. huxleyi RCC1229 shows noticeably lower ratios than the other two 

coccolithophores (Figure 5-13). The ratio in all three algae is considerably lower 

than expected from the temperature and light experiments (Figure 3-12 and 4-14), 

explained by increased shedding of coccoliths into the medium at low growth rates 

as observed in a previous study (Fritz 1999). 

 
Figure 5-13: Ratio of PIC to POC in three coccolithophores grown in chemostats with two different levels 
of nitrogen to phosphorus (N:P=3 in white, N:P=80 in grey). Bars show the mean of three calculations, 
whiskers indicate the standard deviation. 
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Nutrient uptake 

Nutrient measurements showed that the initial concentrations in the two media 

reflected the desired nutrient levels very well and were only slightly higher than the 

expected concentrations ([NO3]=304.9 µM and [PO4]=93.3 µM in medium with 

N:P=3, [NO3]=1465.3 µM and [PO4]=18.7 µM in medium with N:P=80) . 

Measurements of PO4 in nutrient samples taken from the waste bottles treated with 

formaldehyde solution again showed a severe overestimation of concentrations 

(Figure 5-14), most likely due to some interference of the formaldehyde solution 

with the molybdenum used in the analysis. 

 
Figure 5-14: Concentration of NO3 and PO4 in samples from chemostats with different levels of nitrogen 
to phosphorus (N:P=3 in white, N:P=80 in grey). Concentrations labelled “Media” give the initial 
concentrations; concentrations labelled “Culture” the concentrations after nutrient uptake by 
phytoplankton. Also shown are PO4 concentration in samples from those media that had been treated with 
formaldehyde (FA). Bars give the mean of 1 to 6 (PO4 with FA) triplicate measurements, whiskers indicate 
the standard deviation. 

 
For this reason, calculations of PO4 uptake could only be made based on one 

triplicate PO4 analysis for each chemostat where the sample had been taken from the 

culture vessel at the end of the experiment (Figure 5-14) and this showed an 

increased uptake under nitrogen limitation (Figure 5-15). The concentration of PO4 

in this media was higher and therefore more readily available, explaining the higher 

uptake rates. These uptake rates fall within the limits of another, more detailed study 
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(Riegman et al. 2000). Riegman et al. reported a maximum uptake rate of 532.8 fmol 

P cell-1 day-1 in E. huxleyi and a ratio of 705±214 between maximum uptake rate and 

steady state uptake rate. Compared with the diatom Thalassiosira pseudonana, both 

coccolithophores show higher uptake rates and have a competitive advantage (Perry 

1976). 

 
Figure 5-15: Uptake of PO4 for three coccolithophores grown in chemostats with two different levels of 
nitrogen to phosphorus (N:P=3 in white, N:P=80 in grey). Bars show rates calculated from the mean of one 
triplicate PO4 measurements. 

 
Uptake rates for NO3 were similar (around 100 fmol N cell-1 day-1) in most 

chemostats (Figure 5-16), consistent with the similar PON quota. Significant 

differences were only observed between the two treatments in G. oceanica 

(p=0.036).  
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Figure 5-16: Uptake of NO3 for three coccolithophores grown in chemostats with two different levels of 
nitrogen to phosphorus (N:P=3 in white, N:P=80 in grey). Bars show mean rates of 2-4 rate calculations, 
whiskers give the standard deviation. 

 
The uptake rate in E. huxleyi RCC1229 seemed to increase under phosphorus 

limitation, but the differences in rates under nitrogen limitation were not significant 

(p=0.67). Most of these calculated uptake rates are considerably higher than the rates 

reported in an earlier study with E. huxleyi (Riegman et al. 2000). Only the uptake 

rate of G. oceanica under phosphorus limitation (59 fmol N cell-1 day-1) falls below 

the maximum rate of 72 fmol N cell-1 day-1 reported by Riegman et al. (2000).  

Uptake rates are lower than reported for the diatom Cyclotella (273.1 fmol N cell-1 

day-1) (Caperon & Meyer 1972).  

5.4 Conclusions 

E. huxleyi and G. oceanica were grown at half their maximum growth rates in 

chemostats. The POP quota was affected by phosphorus limitation whereas PON 

quota seemed to be unaffected by nitrogen limitation. Both coccolithophores 

increased their cell size under phosphorus limitation coupled with an increase in 

cellular POC concentration. Cellular PIC concentration did not change with nutrient 

limitation, so the ratio of PIC to POC decreased under phosphorus limitation. Taken 

together, all the effects on POM and PIC could indicate that low phosphate 
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concentration in seawater would lead to an increase in coccolithophore weight and 

reinforce export of particulate matter from the surface ocean to the deep sea.  

Uptake rates for PO4 decreased under phosphorus limitation, whereas the uptake rate 

for NO3 showed little significant variation with nutrient limitation. This indicates that 

a low PO4 concentration in the ocean would affect the competitive ability of E. 

huxleyi and G. oceanica. However, both coccolithophores have higher uptake rates 

for PO4 than the one reported for diatoms, whereas the uptake rate for NO3 is lower 

than reported for diatoms. Coccolithophores seem to be more competitive than 

diatoms at low phosphate concentrations, whereas diatoms should dominate at low 

nitrate concentrations. However, coccolithophores are able to utilize organic nitrogen 

as well (Benner & Passow 2010), explaining why coccolithophore blooms are 

usually found to succeed diatom blooms when nitrate and phosphate concentrations 

are both low. 
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6 Modelling coccolithophores in a global biogeochemical model 

6.1 Introduction 

The importance of coccolithophores in global primary production emphasizes the 

importance of knowledge about how this group of phytoplankton will react to shifts 

in their environment due to climate change. Many laboratory studies, including this 

PhD project, have demonstrated that coccolithophores show significant reactions to 

changes in environmental parameters, supporting this effort. 

To explore how coccolithophore biomass and activity, and their impact on processes 

like export and air-sea gas exchange will change in the world’s oceans, 

biogeochemical models that incorporate coccolithophore as a distinct plankton 

functional type (PFT) are a tool for integrating the different components of 

environmental change into one framework (Le Quéré et al. 2005, Gregg & Casey 

2007). This approach of dividing the plankton in models into distinct groups is a 

crucial step as important classes of plankton function differently (Falkowski et al. 

2003). To test the validity of a model its output is compared to recent field data, and 

assessing whether it can reproduce the patterns observed in the oceans. As part of 

Marine Ecosystem Intercomparison Project (MAREMIP) global databases of field 

data were compiled for a series of important PFT’s, including coccolitophores 

(O’Brien et al. 2013, Appendix A), and published as a special issue in the journal  

Earth System Science Data over the years 2012 and 2013. However, a major 

problem with field data is the patchiness of the data regarding location and time of 

the year. Another method for model validation relies on oceanographic research 

satellites (e.g. SeaWIFS, MODIS). These satellites use remote sensing techniques to 

calculate a range of parameters. To isolate coccolithophores from other 

phytoplankton groups, concentrations of particulate inorganic carbon (PIC) 

measured by SeaWIFS and MODIS can be utilized. This parameter is measured 

using an algorithm based on reflected light from the ocean at 440 and 550 nm (Balch 

et al. 2005). However, satellite remote sensing only gives information about the 

surface ocean where light is reflected. As phytoplankton are distributed throughout 

the mixed layer the satellite measurements are missing a substantial part of 

phytoplankton biomass.  

To minimize these issues in model validation, this study combines the two 
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approaches, validating model output against a global data base of coccolithophore 

field measurements and concentrations of particulate inorganic carbon measured by 

the Aqua-MODIS satellite. 

6.2 Methodology 

The distribution of coccolithophores and other related parameters such as CaCO3 

concentration and export production in the world’s oceans was simulated using the 

global biogeochemical model PlankTOM10 (Le Quéré et al. 2005). PlankTOM10 is 

a refined version of PlankTOM5 and encompasses 10 distinct PFT’s: Silicifying 

phytoplankton, calcifying phytoplankton, nitrogen fixers, picophytoplankton, 

Phaeocystis, mixed phytoplankton, microzooplankton, mesozooplankton, 

macrozooplankton and bacteria. PlankTOM10 version 1.02 is embedded in the 

NEMO general circulation model as the physical model (currently working with 

NEMO 3.1), is forced with NCEP daily winds and fluxes and the biogeochemical 

field is initialised with data from the World Ocean Atlas. Limitation by the three 

environmental variables studied in this thesis is embedded in PlankTOM10 in the 

following way: 

• Temperature limitation is based on an exponential growth model (Eppley 

1972). 

• Iron-light colimitation is governed by a dynamical model in which the rate of 

photosynthesis controls cellular iron and chlorophyll synthesis based on their 

quota (Buitenhuis & Geider 2010). 

• Nutrient limitation is based on Liebig’s law of the minimum and follows 

Michaelis-Menten-Kinetics. 

Based on results from laboratory experiments, looking at the effect of temperature, 

light and nutrient concentration on coccolithophores (Chapters 3 to 5), all model 

parameters (Table 6-1) for coccolithophores related to these effects were changed to 

look at all possible combination of the three environmental variables and a model 

run (Table 6-2) was carried out for each combination, all running for one year to 

simulate annual variability in the world’s oceans. 

 

 



 

111 

 

Table 6-1: Parameters in PlankTOM10 that were altered during this study. 

Name of parameter Parameter description 
α Initial slope of photosynthesis vs. irradiance curve  

(g C m2 g-1 Chl µmol-1 photon) 

Θmax  Maximum ratio of Chl a/C 

 (g g-1) 
µmax, 0°C Maximum growth rate at 0°C  

(day-1) 
Q10 Temperature dependence of growth  

 
Km

NO3 Half-saturation coefficient for DIN  

(mol N/L) 
Km

PO4 Half-saturation coefficient for PO4  

(mol P/L) 



 

 

 

 

 

 

Table 6-2: List of conducted model runs showing changes in parameterisation in comparison with the test run. 

Name of model run Description  Changed parameter Initial value  New value 
IP Control run with initial parameterisation    
L Run with changes to light-related parameters Θmax 0.4 0.07 
  α 1.0*10-6 6.2*10-6 
T Run with changes to temperature-related parameters µmax, 0°C 0.7 0.38 
  Q10 1.68 1.66 
N Run with changes to nutrient-related parameters Km

NO3 2.0*10-6 2.2*10-7 
  Km

PO4 1.19*10-7 4.02*10-7 
LT combining runs L and T    
LN combining runs L and N    
TN combining runs T and N    
LTN combining runs L, T and N    
 

1
1

2
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For θmax, α, µmax, 0°C and Q10 the new values were aquired from the laboratory results, 

taking the mean of all tested coccolithophores. The new values for Km
NO3 and Km

PO4 , 

the concentration of NO3 respectively PO4 necessary for the algae to grow at half the 

maximum growth rate, were taken from Riegmann et al. (2000) and unfortunately 

only represent the species E. huxleyi. All model runs with changes in the 

parameterisation were compared to run IP to detect changes in coccolithophore 

biomass, CaCO3 concentration, coccolithophore chlorophyll a and export production. 

Logarithmic conversion of the parameters was used to increase the resolution of the 

graphical output. 

Furthermore, each model run was validated in two ways to test the models ability to 

reproduce patterns found in the field. First, modelled coccolithophore biomass of 

each model run was compared to a global database of coccolithophore biomass 

(O'Brien et al. 2013). Additionally the output was compared to satellite 

measurements of surface ocean PIC concentrations, utilizing the algorithm of Balch 

et al. (2005) mentioned earlier. However, the state variable CACO3 in PlankTOM10 

comprises only those coccoliths that have been shed into the water, whereas the 

satellite measurements include intact coccospheres as well. The cellular PIC was 

added using the model CaCO3/POC ratio of 0.433 (Equation 6.1). 

6.1 Total	PIC=COC*0.433�CACO3 

This relationship between CaCO3 and POC is calculated on the basis of 20 

coccoliths (21.7 fmol CaCO3 per coccolith) per 1 pmol POC (Buitenhuis et al. 

2001). This calculation is based on the species E. huxleyi, but unfortunately not 

enough data is available for other species to justify their inclusion in the calculation. 

To visualize the correlation between model and field/satellite data in Taylor 

diagrams, the model was sampled at locations and times when field/satellite data was 

available. Then, the ratio between the standard deviation of the model and the 

standard deviation of the observations (ơmod/ơobs) and the Pearson correlation 

coefficient R were calculated. 
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6.3 Results and Discussion 

Coccolithophore biomass 

The coccolithophore biomass in the model run with the initial parameterisation  

(run IP) indicates hotspots for coccolithophore production in continental shelf 

regions and in the temperate to subarctic zones of the northern hemisphere  

(Figure 6-1). These hotspots represent major bloom events in the field and their 

distribution compares well with a study that located areas of coccolithophore blooms 

in the world oceans from satellite imagery (Brown & Yoder 1994) and localized field 

studies of coccolithophore blooms off the coast of eastern North America (McIntyre 

& Be 1967, Okada & McIntyre 1979, Balch et al. 1991, Townsend et al. 1994) and in 

the North Atlantic (Holligan et al. 1983, Holligan et al. 1993, Buitenhuis et al. 2001, 

Leblanc et al. 2009). High concentrations of E. huxleyi and G. oceanica were also 

reported in field studies for the subarctic Pacific (Honjo & Okada 1974) and off the 

coast of Japan (Okada & Honjo 1975). Small blooms of E. huxleyi and G. oceanica 

have been reported of the coast of South Africa and Namibia (Mitchell-Innes & 

Winter 1987). However, some coccolithophore blooms suggested by the model run, 

in particular the high biomass in subarctic waters off Russia and northern Europe 

have not been reported in the field. This could be due to a lack of field studies in 

these areas and the low monthly percentage of exposed sea surface, inhibiting 

satellite measurements (Brown & Yoder 1994). 
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Figure 6-1: Coccolithophore biomass, averaged over depth and time, in the model run with the initial 

parameterisation. 

 
In most areas, coccolithophore blooms are favoured by low nutrient concentrations 

(Townsend et al. 1994) and high irradiances (Nanninga & Tyrrell 1996). However, 

blooms have also been observed in waters with higher nutrient concentrations 

(Mitchell-Innes & Winter 1987), where a dominance of diatoms would have been 

assumed. This phenomenon is possibly explained by low concentrations of silica, 

suppressing diatom growth (Brown & Yoder 1994). 

Comparing coccolithophore biomass from this initial model run with the runs 

including changes to the parameters (Table 6-2) reveals interesting changes over 

depth (Figure 6-2).  Changing the light parameters (run L) increased coccolithophore 

biomass over all depth levels, but more distinctly in deeper water layers below 60 m. 

This is due to an increase in the initial slope of the coccolithophore P-I-curve (α) 

that improved coccolithophore performance at low light intensity in deeper waters in 

most of the world’s oceans but also in surface waters at higher latitudes. An effect of 

the decreased maximum Chl a/C ratio (θmax) cannot be found. If this value had 

reached a critically low value it would have resulted in a decrease in biomass, 
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particularly in deeper water layers, as the amount of chlorophyll would have been 

insufficient to maintain the same level of primary production found in run IP. 

Possibly, changes to θmax alone would show a decrease in biomass, but the additional 

changes to α in run L increased biomass more substantially, resulting in an overall 

increase with both changes included. 

 

Figure 6-2: Coccolithophore biomass in the top 300 m, averaged over latitude, longitude and time, from 

different model runs. The colour key indicates the different model runs in the plot. Detailed descriptions for 

the different model runs can be found in Table 6.2. 

 
Decreasing temperature parameters for coccolithophores (run T) decreased the 

overall coccolithophore biomass. This was most likely caused by the decrease in the 

maximum growth rate at 0°C (µmax, 0°C), as the changes to the Q10 value were not 

substantial. It also increased the depth of maximum biomass. This is likely due to a 

switch from temperature limitation to light limitation in coccolithophores on a global 

average. At the depth of the original biomass maximum, coccolithophore production 

is still noticeably controlled by temperature. However, with increasing depth, light 

inhibition in particular becomes more important and the biomass of model runs IP 

and T converge. Below 140 m, biomass concentrations mirrored the simulations from 



 

117 

 

run IP, indicating that coccolithophores were not temperature limited below this 

depth. 

Combining the changes in light and temperature parameters (run LT) intensified this 

deeper maximum, as the light intensity at this depth is likely to be relatively low and 

the change to α improved coccolithophore performance at low light intensities. 

Biomass in the upper water masses was still lower than the one modelled in run IP, 

as the additional changes in light parameters could not cancel out the more 

pronounced effects of the decrease in µmax, 0°C. At deeper levels however, beneath 

140 m, biomass exceeded the one modelled in run IP as light limitation became more 

important and the increase in α increased the biomass at these depths. Compared with 

model runs L and T, biomass in run LT mirrors the trend in run T down to a depth 60 

meters. This shows the importance of temperature limitation over light limitation in 

this region, although the increase in α results in slightly higher levels of biomass in 

run LT. Below 60 meters, biomass in run LT starts to increase relative to biomass in 

run T and mirrors the concentration in run L between 160 meters and 180 meters. 

The zone between 60 and 160 meters is temperature and light co-limited, but light 

limitation becomes increasingly important with depth until coccolithophore 

production becomes solely light limited at 160 meters. Below 180 meters there is a 

slight combined effect of light and temperature limitation which increases biomass 

relative to run L. An explanation for this phenomenon could be that the decreased 

growth rate, due to the decrease in µmax, 0°C, gave coccolithophores time to produce 

more chlorophyll which increased coccolithophore productivity in this zone of light 

limitation. 

Changes to coccolithophore nutrient parameters (run N) considerably increased 

coccolithophore biomass over all depth levels, most pronounced in the surface 

waters, and decreased the depth of the biomass maximum. This indicates that 

coccolithophores were nitrogen limited under the initial parameterisation and 

decreasing the half saturation concentration for nitrate (Km
NO3) significantly 

increased their competitive position. The increase in the half saturation concentration 

for phosphate (Km
PO4) decreased the competitive ability of coccolithophores for 

phosphate uptake, but this had less effect than the changes to Km
NO3, indicating the 

importance of nitrate limitation over phosphate limitation in the ocean. At depths 

below 140 m, run N mirrored run IP as coccolithophores become light limited. 
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Addition of changes in light parameters (run LN) slightly increased coccolithophore 

biomass even further, due to the additional increase in α. But the increase relative to 

run N was slight and indicated a paramount importance of nitrate limitation. As 

found in other model runs with changes to light parameters, biomass remained higher 

than in run IP at depths below 140 m, mirroring run L in the zone of light limitation 

due to the increase in α. 

Combining changes in nutrient parameters with changes in temperature parameters 

(run TN) the model gave biomass estimates lower than the one observed in run IP 

between 0 and 160 meters, closer to levels found in run T than levels in run N and 

demonstrates the importance of temperature- over nutrient limitation. The deeper 

maximum in biomass observed in run T and LT disappeared, coccolithophores might 

be phosphorus limited at this depth due to the increase in Km
PO4.Below 160 meters, 

in the zone of light limitation, biomass in run TN mirrors the biomass found in runs 

IP, T and N. Combining all changes (run LTN) gave higher coccolithophore biomass 

than run TN but still lower than run IP between 0 and 120 meters. In this zone, 

coccolithophores became more temperature limited due to the decrease in µmax, 0°C. 

Below 120 meters, light limitation becomes more important than temperature 

limitation and biomass starts to show higher levels than found in runs without 

changes to light parametersaion, due to the increase in α. Below 160 meters, biomass 

in run LTN were the same as found in run LT with slightly higher biomass than in 

run L and LN below 180 meters. 
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To get a more detailed picture of differences in model runs with changes to the 

parameterisation in relation to run IP, the variation was plotted on a global map with 

biomass being averaged over depth and one year. Comparison of run L with run IP 

showed increases in coccolithophore biomass in most areas of the world’s oceans 

(Figure 6-3). The most pronounced increases are observed in coastal areas where the 

water is likely to contain a large amount of particulate material, decreasing light 

penetration into the water column. The increased competitive ability at low light in 

model run L, due to an increase in α, resulted in a higher biomass in those waters.  

 

Figure 6-3: Differences in coccolithophore biomass, averaged over depth and time, between the model run 

with changes to light parameters and the model run with the initial parameterisation. Changes are shown as 

the difference between the two biomass simulations after logarithmic transformation. 

 
At high latitudes above 45° North and South, a slight decrease in biomass was 

observed. This is explained by the fact that coccolithophores do not play an 

important role in these regions as they are out-competed by diatoms which are much 

better adapted to the low temperatures in these regions . 
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Although changes due to modification of light parameters in the model were 

observed, these are small compared with changes due to modifications of 

temperature- and nutrient parameters. This becomes evident when the differences 

between run L and IP are plotted on the same scale as Figures 6-5 to 6-10 and the 

trends seen in Figure 6-3 become much less pronounced (Figure 6-4). 

 

Figure 6-4: Differences in coccolithophore biomass, averaged over depth and time, between the model run 

with changes to light parameters and the model run with the initial parameterisation. Changes are shown as 

the difference between the two biomass simulations after logarithmic transformation. The scale in this figure 

was adjusted to coincide with figures 6-5 to 6-10. 
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Changes to the coccolithophore temperature parameterisation decreased 

coccolithophore biomass in large areas of the world’s oceans (Figure 6-5) as 

coccolithophore growth at low temperatures was decreased in model run T. Changes 

were most pronounced in areas of coastal upwelling, e. g. off the coast of Chile and 

South Africa, where cold water is transported from deeper levels to the surface and 

the mean temperature over all depth levels is therefore lower than in other regions at 

a similar latitude. An area with a small increase in biomass was found in the 

Antarctic. Coccolithophores only play a minor role in this region, as they are limited 

by low concentrations of iron (Martin et al. 1990). The small increase is due to a 

decreased coccolithophore production in adjacent areas which makes more iron 

available in the region where the small increase was observed. 

 

Figure 6-5: Differences in coccolithophore biomass, averaged over depth and time, between the model run 

with changes to temperature parameters and the model run with the initial parameterisation. Changes are 

shown as the difference between the two biomass simulations after logarithmic transformation. 
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Coccolithophore biomass decreases in coastal areas in model run LT relative to run 

IP (Figure 6-6), whereas an increase was observed in model run L and a decrease in 

run T. This indicates that these areas are more affected by the changes to temperature 

parameters, decreasing growth at low temperatures. In the tropics, where changes to 

temperature parameterisation showed only small effects in model run T, changes to 

light parameterisation were more important and led to an increase in biomass.  

 

Figure 6-6: Differences in coccolithophore biomass, averaged over depth and time, between the model run 

with changes to temperature and light parameters and the model run with the initial parameterisation. 

Changes are shown as the difference between the two biomass simulations after logarithmic transformation. 
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Changes in the nutrient parameterisation (model run N) increase coccolithophore 

biomass particularly in areas of major ocean gyres (Indian Ocean Gyre, North Pacific 

Gyre, South Pacific Gyre and South Atlantic Gyre) (Figure 6-7), indicating nitrogen 

limitation in these waters at the initial model parameterisation. The North Atlantic 

Gyre is only affected by the changes in parameterisation in a minor way, even 

showing a slight decrease in biomass. It seems that phosphorus limitation is perhaps 

more of an issue in this gyre than in the others. This is in accordance with field 

studies (Read et al. 2000, Bonnet et al. 2008, Mather et al. 2008) which show that the 

model captures the general distribution of nutrient limitation in the world’s oceans 

very well. In other areas of the world’s oceans, the model run comparison indicated 

only slight cases of nitrogen- or phosphorus limitation.  

 

Figure 6-7: Differences in coccolithophore biomass, averaged over depth and time, between the model run 

with changes to nutrient parameters and the model run with the initial parameterisation. Changes are shown 

as the difference between the two biomass simulations after logarithmic transformation. 
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Adding changes in light parameterisation (model run LN) (Figure 6-8) led to minor 

changes relative to comparison of model runs N and IP, again indicating the 

relatively low importance of the implemented changes to the light parameterisation. 

The additional changes increased the biomass in areas of slight nitrate (small 

biomass increase in run N relative to run IP) or phosphate limitation (small biomass 

decrease in run N relative to run IP) that can be found in Figure 6-6, e. g. in the 

tropical Pacific or the tropical and subtropical Atlantic off the African coast. The big 

oceanic gyres however, where run N indicated strongest nitrate (Indian Ocean Gyre, 

North Pacific Gyre, South Pacific Gyre and South Atlantic Gyre) or phosphate 

limitation (North Atlantic Gyre), additional changes due to modification of the light 

parameters are too small to make a clear impact. 

 

Figure 6-8: Differences in coccolithophore biomass, averaged over depth and time, between the model run 

with changes to nutrient and light parameters and the model run with the initial parameterisation. Changes 

are shown as the difference between the two biomass simulations after logarithmic transformation. 
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Combining changes to temperature parameters with changes to nutrient parameters 

(model run TN) preserved the relative trends observed when comparing model runs 

N and IP but decreased the magnitude of positive changes, whereas negative changes 

were intensified(Figure 6-9). The areas of slight nitrogen limitation, where a low 

biomass increase had been observed when comparing model runs N and IP, now 

indicate a decrease in biomass, narrowing the areas of biomass increase down to 4 of 

the oceanographic gyres and decreasing the global averaged biomass relative to 

model run IP as shown in Figure 6-2.   

 

Figure 6-9: Differences in coccolithophore biomass, averaged over depth and time, between the model run 

with changes to nutrient and temperature parameters and the model run with the initial parameterisation. 

Changes are shown as the difference between the two biomass simulations after logarithmic transformation. 
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Combining all three sets of parametric changes (model run LTN) again showed 

results that were similar to run TN (Figure 6-10), as changes to light parameterisation 

had the smallest effect of all the modifications. The main differences are found in 

tropical waters, where phosphate and temperature limitation had induced a decrease 

in biomass but the additional modifications to light parameters reversed this trend 

into a slight increase, due to the increase in α which led to an increase in productivity 

in deeper waters where little light is available. 

 

Figure 6-10: Differences in coccolithophore biomass, averaged over depth and time, between the model run 

with changes to nutrient, light and temperature parameters and the model run with the initial 

parameterisation. Changes are shown as the difference between the two biomass simulations after 

logarithmic transformation. 

 
Comparison of model results with field data compiled in the MAREDAT 

coccolithophore biomass database (O'Brien et al. 2013) showed that PlankTOM10 

does not compare to the biomass distribution in the database very well (Figure 6-11). 

The correlation between model and database was low (R≤0.212) and standard 

deviation in the modelled biomass was lower than the standard deviation in the 

database in most cases (SD(model)/SD(database)≤0.4). Only model runs N 

(SD(model)/SD(database)=0.857) and LN (SD(model)/SD(database)=0.87), the two 
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model runs with the biggest localized increase in biomass relative to run IP, showed 

comparable standard deviation relative to the database. This suggest that changes in 

the model parameters would be a first step forward to bring PlankTOM10 closer to 

field observations considering the standard deviation within the model. However, 

even though this comparison seems discouraging at first given the hope for a good 

representation of coccolithophores in the model, the shortcomings of the MAREDAT 

database have to be taken into account as well. 

 

Figure 6-11: Taylor diagram comparing coccolithophore biomass in the model runs with the MAREDAT 

coccolithophore biomass database. The legend in the upper right hand corner indicates the symbol 

representing each model run in the plot. 
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Although the database include over 55000 observations, its coverage of the world’s 

oceans is quite poor (Figure 6-12 A), showing relatively good coverage in the 

Atlantic but very little in the Pacific and Indian Oceans.  

To look closer at the bad correlation between PlankTOM10 and MAREDAT, a look 

at the global coccolithophore biomass distribution is helpful (Figure 6-12). With the 

initial parameterisation PlankTOM10 overestimates coccolithophore biomass, 

compared with MAREDAT. Some points with data in the MAREDAT database are 

missing in Figure 6-12 B, due to lack of modelling data in these locations. This is 

surprising, as coccolithophore field studies are often carried out in regions and at 

times of high coccolithophore concentration (Balch et al. 1991, Fernandez et al. 

1993, Holligan et al. 1993, Buitenhuis et al. 1996, Buitenhuis et al. 2001, Schiebel et 

al. 2004, Bernard et al. 2009) and the model suggest even higher biomass than found 

in these coccolithophore blooms. It seems therefore necessary to decrease model 

estimates of coccolithophore biomass substantially. Looking at the trends found in 

the model runs with changed parameterisation relative to the original 

parameterisation, changes to the temperature- and phosphate uptake parameters seem 

to have been steps in the right direction, as they decreased coccolithophore biomass.  
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Figure 6-12: Coccolithophore biomass from the MAREDAT database (A) and the model run with initial 

parameterisation, at positions coinciding with the database (B). All data is averaged over depth and time. 

A 
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Coccolithophore chlorophyll a 

Coccolithophore chlorophyll a concentrations in the different model runs revealed 

interesting features (Figure 6-13). All runs with changes to the light parameterisation 

showed noticeably lower concentrations than the other model runs, due to the 

considerable decrease in the maximum ratio of chlorophyll a to particulate organic 

carbon (POC). The similarity in concentration between model runs L, LT and LTN 

relates well to the biomass simulations (Figure 6-2), where the three runs also 

showed comparable concentrations. However, the low concentrations simulated in 

run LN over the first 100 m are in contrast to biomass simulations (Figure 6-2) which 

featured a much higher level than the other runs with changes to light 

parameterisation.  

 

Figure 6-13: Coccolithophore chlorophyll a in the first 300 m, averaged over latitude, longitude and time, 

from different model runs. Detailed descriptions for the different model runs can be found in Table 2 of this 

chapter. 

 
 The increase in biomass in run LN (Figure 6-2) seems to have occurred in tropical 

waters to a great deal. The high light intensity in these regions resulted in a low ratio 

of Chl a/C and therefore, the increase in Chl a relative to the increase in biomass was 
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small. The concentrations in model runs IP, T, N and TN showed a similar 

distribution as found in biomass concentrations (Figure 6-2). However, the relative 

increase in run N compared with run IP is smaller than the increase in biomass, due 

to the fact that a large part of the biomass increase occurred in the subtropics, where 

the ratio of chlorophyll a to POC is relatively low. Therefore the increase in biomass 

resulted in a smaller increase in chlorophyll a concentration. It can also be observed 

that the slope of the increase from the surface to the maximum is sharper in 

chlorophyll a concentration than it is in biomass concentration. This is due to the fact 

that cells grow at higher light intensity at the surface than in deeper water layers, 

resulting in a lower ratio of chlorophyll a to POC. This amplifies the increase in 

chlorophyll a with depth.    

Coccolithophore CaCO3 

The concentration of CaCO3 from detached coccoliths (PlankTOM10 output 

CACO3) showed a different trend than the one observed for biomass, as coccoliths 

are accumulating and aggregating with depth until detachment of coccoliths and their 

dilution arrive at a steady state at around 160 m (Figure 6-14). It is noteworthy that 

this steady state is reached at approximately the same depth in all the model runs and 

this is due to the fact that coccolithophore biomass at this depth is at a comparable 

level in all model runs (Figure 6-2) as coccolithophores become more and more light 

limited. Whereas model runs with changes to light- and/or nutrient parameterisation 

show the same trend relative to model run IP that was observed in the biomass 

estimates, model runs with changes to temperature parameterisation show a different 

trend. Model runs LT (partly), TN and LTN showed higher biomass estimates than 

the model run with the initial parameterisation but lower estimates in detached 

CaCO3 over the whole depth interval. Concentrations are calculated in the model as a 

product of a fixed ratio of PIC/POC, the coccolithophorid productivity and the 

coccolithophorid biomass (Enright et al. 2009). The coccolithophore productivity is 

calculated from the growth rate, and as this growth rate decreased overall, due to the 

decrease in µmax, 0°C, coccolithophore productivity decreased as well and therefore the 

concentration of detached coccoliths relative to coccolithophore biomass in model 

runs with changes to temperature parameterisation. 
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Figure 6-14: CaCO3 from detached coccolithsin the first 300 m, averaged over latitude, longitude and time, 

from different model runs. Detailed descriptions for the different model runs can be found in Table 2 of this 

chapter. 

 
Simulations for coccolithophore CaCO3 (a combination of the model parameters 

CACO3 and COC) mirrored the trend in biomass estimates of model runs with 

changes in parameterisation relative to run IP (Figure 6-15). This is not surprising as 

the amount of coccoliths shed from the coccospheres in the model is small, compared 

with the amount of CaCO3 in intact coccospheres, directly derived from 

coccolithophore biomass.  
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Figure 6-15: Coccolithophore CaCO3 in the first 300 m, averaged over latitude, longitude and time, from 

different model runs. Detailed descriptions for the different model runs can be found in Table 2 of this 

chapter. 

 
As satellite observations only give information about the surface concentration of 

CaCO3, only the first depth level of the model data could be used for the model 

validation with data from the MODIS Aqua satellite. At first glance, the CaCO3 

surface concentration in model run IP (Figure 6-16) looks very different from 

coccolithophore biomass (Figure 6-1), but it has to be taken into account that 

biomass was averaged over all depth levels, so a direct comparison of the two plots is 

not possible as the maximum coccolithophore biomass occurs at depths of 80 to 100 

m (Figure 6-2). High concentrations of surface CaCO3 are simulated in temperate to 

tropical waters in most of the world’s oceans.  
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This is in accordance with the worldwide distribution of coccolithophores, in 

particular E. huxleyi (McIntyre & Be 1967, Winter et al. 1994). 

 

Figure 6-16: Surface concentration of CaCO3 (coccospheres and detached coccoliths), averaged over time, in 

the model run with initial parameterisation.  

 
Noticeably, concentrations are lower in oceanic gyres in the Atlantic and Pacific 

Ocean, where primary production is largely nutrient limited (Mather et al. 2008) and 

in the Arctic and Antarctic where coccolithophore growth might be limited by low 

iron concentration (Falkowski et al. 1998) or outcompeted by diatoms in surface 

waters.  Differences in surface CaCO3 between the model runs with changed 

parameterisation and model run IP showed trends similar to those observed in 

coccolithophore biomass, supporting the findings discussed in the section on 

biomass. 

Comparison of the model data with PIC data from the MODIS Aqua Satellite  

(Figure 6-17) revealed a similar picture to that of the biomass comparison with the 

MAREDAT database. The correlation was low (≤0.195), but the standard deviation 

in relation to the standard deviation in the satellite data was noticeably lower 

(≤0.098) than it had been in the biomass comparison. 



 

135 

 

 

Figure 6-17: Taylor diagram comparing surface CaCO3 in the model runs with PIC data of the MODIS Aqua 

Satellite. The legend in the upper right hand corner indicates the symbol representing each model run in the 

plot. 

 
The difference in standard deviation also becomes apparent when surface CaCO3 in 

model and satellite data are compared on a latitude/longitude grid (Figure 6-18). The 

model shows a very uniform distribution at low levels (Figure 6-18 B), whereas the 

MODIS data indicates a noticeably higher variation (Figure 6-18 A). However, 

satellite observations are likely to be overestimations, as the signal is known to 

include other particulate material as well, such as diatom frustules (Brown & Yoder 

1994, Balch et al. 2005). The concentration of particulate material is especially high 

in coastal areas, where the satellite data shows its maxima. Even so, the model 

doesn’t capture the trends in surface CaCO3 in the open ocean, where interference in 

the satellite data is smaller.  
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Figure 6-18: Surface CaCO3 from the MODIS Aqua satellite (A) and the model run with initial parameterisation 

(B). All data is averaged over time. 

A 
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The contrary results of the model validations, whereas the model overestimates 

coccolithophore biomass compared with MAREDAT it underestimates surface 

CaCO3 compared with MODIS data, are intriguing and two explanations are 

possible, excluding the uncertainties in both measurements. One would be that the 

underestimation of surface CaCO3 relative to MODIS data is linked to the 

concentration of shed coccoliths in surface waters and the model underestimates this 

process of shedding coccoliths that is known to occur frequently in E. huxleyi. The 

model calculates this CaCO3 as the product of the ratio of PIC/POC, coccolith 

dissolution during coccolithophore losses (the sum of the three processes mortality, 

respiration and grazing), sinking rate of CaCO3 and the chemical dissolution of 

coccoliths (Enright et al. 2009). A main point which would lead to a decreased 

concentration of shed coccoliths would be that the ratio of PIC/POC in the model 

(0.433) is set too low. This seems possible, as the ratio is derived from the species E. 

huxleyi, which is known to have a low ratio of PIC/POC. An increase in this ratio 

would increase total CaCO3 in the model even further, as the main part of this is 

calculated as the product of the PIC/POC ratio and coccolithophore biomass. 

Secondly, the model might overestimate coccolithophore biomass at deeper levels 

whereas it underestimates biomass at the surface. This could be investigated by 

comparing model and MAREDAT biomass at the first level of depth, but it seems 

unlikely as calculations of α, which controls coccolithophore production in deep 

waters with low light intensities, based on laboratory results were substantially 

higher than the value under the initial parameterisation and therefore increased 

biomass at these depth levels even further.  

Export of particulate organic matter 

The export of particulate organic matter from the surface to the deep ocean depths, a 

process which is affected by coccolithophores due to their ballast function, shows 

only slight differences between the model runs (Figure 6-19). 



 

138 

 

 

Figure 6-19: Export rates of particulate organic matter, averaged over latitude, longitude and time, from 

different model runs. Detailed descriptions for the different model runs can be found in Table 2 of this 

chapter. 

 
This is interesting, given the different trends in biomass and CaCO3, the main drivers 

of export in coccolithophores, in all the model runs. But it is explained when looking 

at the export rates of coccolithophore CaCO3 and diatom opal (Figure 6-20). Export 

in PlankTOM10 is driven to a large extend by a ballasting effect of opal, whereas 

coccolithophore CaCO3 plays only a small role in the ballasting of particulate 

organic material. However, the difference between export rates for CaCO3 and opal 

seems to be too large compared with literature estimates that suggest a value of 4.6 

for the ratio of export(opal)/export(CaCO3) (Jin et al. 2006). The ratio suggested by 

PlankTOM10 is considerably higher (between 8 and 25, depending on the model 

run).  
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Figure 6-20: Export rates of (A) coccolithophore CaCO3 and (B) diatom opal, averaged over latitude, longitude 

and time, from different model runs. Detailed descriptions for the different model runs can be found in Table 

6-2. 
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6.4 Conclusions 

Comparison of PlankTOM10 results for coccolithophores with a database of biomass 

measurements from the field and surface CaCO3 concentrations derived from 

satellite showed little correlation. While the model overestimated biomass, compared 

with the database, it underestimated surface CaCO3 relative to satellite data. The 

most likely explanation for this is an underestimation of the ratio between PIC/POC, 

which would increase CaCO3 relative to biomass. To bring the model estimates for 

biomass closer to observations, changes to temperature and nutrient parameterisation 

were found to be a promising approach. Furthermore, model results had a lower 

standard deviation than the observations in all simulations, but changes in the 

nutrient parameterisation increased the standard deviation in biomass substantially to 

a level similar to that found in the biomass database. However, it has to be noted that 

neither the biomass database nor the satellite data perfectly represent the actual 

coccolithophore distribution. Whereas the biomass database has a low spatial and 

temporal resolution, satellite observations are affected by other particulate matter 

than CaCO3. 

Comparing different model runs with altered parameterisations showed that changes 

to nutrient parameters had the biggest effect, so that nutrient limitation, in particular 

nitrogen limitation, is the main limiting growth factor for coccolithophores in 

PlankTOM10. The model runs with changes to the nutrient parameterisation relative 

to the model run with the initial parameterisation showed that PlankTOM10 

simulates the situation in the main oceanographic gyres well with regard to nutrient 

limitation. Most of the changes in model output were consistent with expectations for 

the distribution of temperature, light and nutrients over the ocean.  
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7 Summary, general discussion and outlook for future research 

7.1 Thesis summary 

Chapter 3 discussed the effects of temperature on different coccolithophores, 

growing them over a temperature range from 0 to 32°C and sampling the cultures for 

analysis of cellular composition (POM, PIC, Chl a), and focussed on three 

hypotheses: 

• Emiliania huxleyi has a wider temperature range for growth than other 

coccolithophores. 

• A temperate strain has a lower optimum temperature than a subtropical strain 

of the same species. 

• Concentrations of particulate cell components and cell volume show an 

inverse relationship to growth rate. 

 
E. huxleyi is a cosmopolitan species that has been found to numerically dominate 

coccolithophore assemblages over most latitudes. However, it was found that E. 

huxleyi did not have a wider temperature range for growth than other 

coccolithophores. On the other hand, E. huxleyi did show the highest growth rates at 

temperatures up to 23°C. Above this temperature, G. oceanica and C. leptoporus 

were the fastest growing species. P. carterae has a similar temperature range as E. 

huxleyi, but growth in this species is much slower. 

No significant differences in growth were found between the temperate E. huxleyi 

RCC1229 and the subtropical E. huxleyi RCC963. The subtropical species showed 

first growth at a slightly lower temperature than the temperate species and had a 

slightly broader temperature range for growth. E. huxleyi RCC963 also showed 

slightly higher concentrations in all measured cellular components including cell 

volume. These differences were uniform in all components so that stoichiometric 

ratios were not different between the two strains.  

The expected trend of an inverse relationship to growth rate in cellular components 

was only found in one species, P. carterae. None of the other coccolithophores 

showed any noticeable trends. However, due to a large variability in all data, it was 
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not possible to completely reject hypothesis 3 as this variability could have masked 

any trends in the other coccolithophores, all smaller than P. carterae. 

Chapter 4 focussed on the effects of light on coccolithophores, growing them over a 

range of light intensities, testing their photosynthetic performance and sampling them 

for measurement of different cellular components, and the following hypotheses 

were discussed: 

• A temperate strain has a higher maximum ratio of Chl a/C and is more 

sensitive to high light inhibition than a subtropical strain of the same species. 

• Coccolithophores are better adapted to high light intensities compared with 

other groups of phytoplankton. 

 
Some interesting differences were observed between the temperate E. huxleyi 

RCC1229 and the subtropical E. huxleyi RCC963. An increase in cell volume 

between 180 and 350 µmol photon m-2 s-1 in the temperate strain was found, but 

possibly this is due to a measurement error. Chlorophyll a concentrations in E. 

huxleyi RCC1229 showed the expected trend, a sharp decrease at low light intensity 

with increasing irradiance. This was not observed in E. huxleyi RCC963, where the 

measured θmax is relatively low. 

Compared with other phytoplankton, coccolithophores are better adapted to high 

light intensities. Optimum growth light intensity in coccolithophores is higher than 

the one reported for diatoms and dinoflagellates and only slight inhibition of 

photosynthesis was found at light intensities up to 2000 µmol photon m-2 s-1. At low 

light intensities however, coccolithophores seem to be poor competitors, as indicated 

by the relatively low slope α of P-I curves. 

In chapter 5 the effects of nutrient concentrations were investigated, growing 

coccolithophores in nitrogen- and phosphorus-limited chemostats and analysing the 

cultures for cell composition. Three hypotheses were addressed: 

• Coccolithophores grow well both under nitrogen and phosphorus limitation. 

• Coccolithophores increase cell volume under phosphorus limitation. 

• Coccolithophores are good competitors for phosphorus compared with other 

phytoplankton groups. 
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All tested coccolithophores grew well under nitrogen and phosphorus limitation. 

However, cell concentration in the chemostats was more variable than had been 

expected, most likely due to problems with the experimental setup where the tubing 

connecting the chemostats to the waste bottles might have affected cell concentration 

measurements in the waste. 

Cell volume in coccolithophores was in fact higher under phosphorus limitation than 

under nitrogen limitation. It could not be confirmed sufficiently if this difference was 

due to an increase in volume under phosphorus limitation or a decrease in volume 

under nitrogen limitation, as no direct control grown in K/2 with N:P=16 was 

available. However, other studies point towards the first assumption. 

Coccolithophores are better competitors for phosphorus than diatoms, as uptake rates 

for phosphate were higher in this study than have been reported for diatoms. On the 

other hand, they are poor competitors for nitrate as uptake rates for this compound 

were found to be lower than the ones reported for diatoms. 

Chapter 6 takes the results of the laboratory experiments, mentioned in the previous 

chapters, and applies them to change the parameterisation of coccolithophores in the 

global biogeochemical model PlankTOM10. Changes to photosynthesis-related 

parameters had a positive effect on coccolithophore biomass throughout the global 

oceans, whereas the opposite was observed when temperature-related parameters 

were changed. The extent of development was bigger with changes to temperature 

parameters, indicating that temperature limitation plays a bigger role than light 

limitation. Changes to nutrient-related parameters increased coccolithophore 

production in most of the big subtropical gyres, which are known to be nitrogen 

limited and this limitation had been reduced due to a decrease in Km
NO3. Production 

in the North Atlantic gyre was reduced, as this area is known to be phosphorus 

limited and Km
PO4 had been reduced in this model runs. Combination of the different 

changes confirmed the importance of temperature limitation over nutrient- and light 

limitation in PlankTOM10. 

Two different approaches of model validation produced disappointing results. 

Comparison with a global database of coccolithophore biomass showed a low 

correlation, the model overestimating depth-averaged biomass in most areas of the 

world’s ocean.  Comparing surface calcium carbonate in the model with estimates 
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derived from satellite also showed very low correlation. In this case, model results 

underestimated the satellite measurements in most areas. 

7.2 General Discussion and Conclusions 

Coccolithophores are an important group of phytoplankton (Falkowski et al. 2004), 

forming a layer of calcium carbonate plates around their cells. This increases the 

importance of coccolithophores as, besides constituting a noticeable percentage of 

the global marine primary production,  the calcium carbonate aggregates with 

particulate organic matter after cell death, increasing the weight of these particles and 

the fraction of it that reaches the deep sea (Ploug et al. 2008) where it is kept out of 

contact with the atmosphere for long periods. Therefore it is important to know how 

coccolithophores will react to changes in their environment. 

This thesis focussed on the effect of temperature, light and nutrient concentration on 

coccolithophore growth, evaluating these effects through laboratory experiments and 

computer modelling. 

Temperature 

Results from the temperature experiment show that E. huxleyi and P. carteri are two 

species of coccolithophores that are best adapted to seawater temperatures around 

20°C but also grow very well at lower temperatures down to 10°C. These two 

species highlight the different approaches in selection theory in coccolithophores. 

Whereas E. huxleyi is a typical r-strategist, with small cell size and high growth rates 

to react fast to favourable environmental conditions, P. carterae is much more of a 

K-strategist, with lower growth rates but a larger cell volume. This explains why E. 

huxleyi is a species which can form extensive coccolithophore blooms, whereas P. 

carterae is usually found as a small contributor to these blooms. At temperatures 

above 25°C, a community shift in coccolithophores could occur, as other species 

such as G. oceanica and C. leptoporus are much better adapted to these high 

temperatures. This study has shown that G. oceanica and C. leptoporus have a 

similarly broad temperature range of growth as E. huxleyi. The growth range of these 

two species could not be completely captured in this study or a previous one 

(Buitenhuis et al. 2008). Both coccolithophores still grew well at the maximum 

temperatures tested. 
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Compared with diatoms, another major group of phytoplankton, coccolithophores are 

at a competitive disadvantage. The maximum growth rate for diatoms is about two 

times higher than the growth rate of coccolithophores as a group, although diatoms 

show significantly higher cell volumes (Sarthou et al. 2005). Different diatom 

species have an optimum temperature over a wide range and it is unlikely that 

changes in temperature will give coccolithophores an advantage over this group. 

Little changes in the concentrations of cellular components were observed in this 

study. Only P. carterae showed an inverse relationship of cell volume and cellular 

composition with growth rate. However, trends in the other, smaller coccolithophores 

could have been masked by the high variability in the data, most likely due to short 

periods of nitrogen limitation at the end of some batch cultures. This would probably 

have had little effect on measured growth rates, but would have resulted in 

unacclimated cells with a variable cell composition. 

Light 

Coccolithophores are better competitors for light than diatoms and dinoflagellates, 

two other important phytoplankton groups. They have, on a group average, higher 

optimum growth light intensities than the two other groups and show little high light 

inhibition in photosynthesis during short term incubations. An increase in the mean 

growth light intensity due to climate change, as expected for some areas in the global 

oceans (Doney 2006), would strengthen the position of coccolithophores relative to 

the two other phytoplankton groups. 

Besides the expected changes in chlorophyll a with increasing growth light intensity, 

no significant trends in the concentration of cellular components and cell volume 

were observed in coccolithophores, which is supported by literature (Harris et al. 

2005). The steep increase in cell volume in E. huxleyi RCC1229 is most likely due to 

a measurement error. Taking into account the competitive advantage of 

coccolithophores with increasing growth light irradiance, this could indicate an 

increase in coccolithophore biomass and coccolithophore calcium carbonate for the 

future and a higher significance of the coccolithophore ballasting effect. 

Nutrients 

Coccolithophores are shown to be better competitors for phosphate than diatoms, but 

are less competitive then diatoms at low nitrate concentrations. Most areas of the 
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ocean are nitrogen- or iron-limited (Moore et al. 2013), only small areas, such as the 

North Atlantic gyre, are known to be phosphate limited (Mather et al. 2008). A 

decrease in nutrient concentration due to climate change, as expected in some areas 

of the global oceans, is therefore more likely to favour diatoms rather than 

coccolithophores. However, coccolithophores are known to be able to utilize organic 

nitrogen sources as well (Benner & Passow 2010), which has to be taken into 

account.  

Phosphorus-limitation seems to increase cell volume and particulate organic carbon 

in coccolithophores, due to carbon-overconsumption. So, an increase of phosphate-

limitation in some areas could lead to an additional increase in coccolithophore 

biomass in these areas, as coccolithophore are not only in a better competitive 

position regarding growth but are also producing larger cells. Coccolithophore 

calcium carbonate concentration does not seem to be affected in the same way 

however, so the role of the coccolithophore ballasting effect would only be affected 

by changes in growth rate due to increased phosphate-limitation and not by changes 

in cell size. 

Modelling 

Validation of PlankTOM10 did not give satisfactory results, either validated with 

biomass or surface calcium carbonate data. The fact that model predictions 

overestimated the depth-averaged biomass data, whereas it underestimated surface 

calcium carbonate concentrations, indicates that the overestimation in the modelled 

biomass might originate at deeper water levels rather than the surface. At these 

depths, light limitation is likely to be most important, so that a further modification 

of the light parameters for coccolithophores in PlankTOM10 could be necessary. 

Additional analysis of the differences between model biomass and biomass database 

at different depth levels could resolve this issue. It might also be that the model is 

underestimating the process of coccolithophores shedding coccoliths in the water, 

leading to an underestimation in surface calcium carbonate. 

Another issue in the model validation is that neither of the two benchmarks for 

validation is perfect. The biomass database has a relatively low spatial and temporal 

resolution, due to lack of field data in vast areas of the world’s oceans. The surface 

calcium carbonate concentration derived from satellite give a very good spatial and 
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temporal resolution, but measurements are biased by atmospheric corrections and 

other particulate matter in the water such as diatom frustules or calcium carbonate 

from pteropods and foraminifera. To minimize these issues, more field data 

measurements of coccolithophore biomass and calcium carbonate are necessary and 

further validation of satellite measurements with field data. 

7.3 Future Work 

Although there have now been a number of studies on the effects of temperature, 

light and nutrient concentrations on coccolithophores, there are still open questions 

which need to be answered. Most previous studies have focussed only on the 

coccolithophore E. huxleyi. Although this is undoubtedly the most abundant 

coccolithophore in the global oceans nowadays, the temperature increase due to 

climate change could lead to a shift in the coccolithophore community towards 

species better adapted to high temperatures, such as G. oceanica and C. leptoporus. 

This study shed some light on the effect of temperature and light on these two 

species, but unfortunately the nutrient experiment with C. leptoporus crashed so that 

data on the effect of nutrients could only be obtained for G. oceanica and E. huxleyi. 

Further nutrient experiment including C. leptoporus are therefore necessary to study 

the effect of nutrient limitation on this coccolithophore species. Another species of 

interest that needs to be investigated further is the cold-water coccolithophore 

Coccolithus pelagicus. This species is known to be important in arctic and subarctic 

waters (McIntyre & Be 1967), the only other coccolithophore reported from these 

waters being E. huxleyi. Although this species is of high importance in some regions, 

little experimental data is available on its reactions to changes in its environment. 

Furthermore, the studies with C. pelagicus were in most cases carried out with the 

subspecies C. pelagicus subsp. braarudii, a more temperature subspecies (Houdan et 

al. 2006, Buitenhuis et al. 2008, Benner & Passow 2010). The arctic subspecies C. 

pelagicus subsp. pelagicus is difficult to keep in culture and at the moment is not 

available at culture collections to our knowledge. If it was possible to establish this 

coccolithophore in culture, it would be important to determine if it will be able to 

adapt to the expected increase in temperature due to climate change.  

To continue and advance the study of effects of nutritional changes on 

coccolithophores, it will be necessary to examine iron limitation in coccolithophores. 

Although only a nutrient required at low concentrations, iron is nevertheless 
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important in the photosynthetic pathway and low concentrations are known to be 

able to limit phytoplankton production (Street & Paytan 2005). Diatoms are able to 

store iron intracellular (Marchetti et al. 2009), but this has not yet been observed in 

coccolithophores. 

Another route of studies to explore would be multivariate experiments. It is 

important to know about the effects of each single environmental condition to start 

with, but situations like the univariate laboratory experiments do not occur in the 

field. There are always multiple parameters changing at the same time, as for 

example growth light intensity increases and nutrient concentrations decrease in 

areas as an indirect effect of temperature increase. Changes of two or more 

environmental parameters together might have different effects on coccolithophores 

than the effects that each of the parameters alone had on them.  

To improve coccolithophore representation in PlankTOM10, the issue of model 

correlation with the benchmarks for comparison needs to be improved. One major 

point would be to increase the standard deviation in coccolithophore biomass within 

the model, as this has shown noticeable underestimation with the biomass database 

and satellite measurements in this study. After changes to the nutrient 

parameterisation, the standard deviation within the model already compared well 

with the standard deviation in the MAREDAT database, but was still very low when 

compared with surface calcium carbonate concentrations derived from satellite.  
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8 Appendix A: K/2 medium after Keller et al. (1987) modified 

by Ian Probert 

To 994 ml of seawater (pH 8.2, adjusted with NaOH) add:  

Quantity  Compound  Stock solution 
(sterile)  

Final conc. in K 
medium  

O.5ml  NaNO3  48.9542g/litre H2O  288µM  
0.5ml  NH4Cl *  0.535g/litre H2O  5µM  
0.5ml  KH2PO4  4.8992g/litre H2O  18µM  
0.5ml  FeEDTA solution  (see recipe below)  (see below)  
0.5ml  Trace metal solution  (see recipe below)  (see below)  
1.0ml  f/2 vitamin solution  (see recipe below)  (see below)  

* optional  

FeEDTA solution  

To 950ml distilled H2O add:  

Quantity  Compound  Stock solution  Final conc. in K 
medium  

4.3g  (Na)FeEDTA  -  5.85µM  

Make up to 1 litre with milliQ H2O, sterilize (filter 0.22µm) and store in fridge.  

Trace metal solution  

To 950ml distilled H2O add:  

Quantity  Compound  Stock solution  Final conc. in K 
medium  

37.22g  Na2EDTA.2H2O  -  50µM  
1.0ml  CuSO4.5H2O  2.497g/litre H2O  0.005µM  
1.0ml  Na2MoO4.2H2O  7.2585g/litre H2O  0.015µM  
1.0ml  ZnSO4.7H2O  23.0g/litre H2O  0.004µM  
1.0ml  CoSO4.7H2O  14.055g/litre H2O  0.025µM  
1.0ml  MnCl2.4H2O  178.11g/litre H2O  0.45µM  
1.0ml  H2SeO3  1.29g/litre H2O  0.005µM  
1.0ml  NiCl2.6H20  1.49 g/litre H2O  0.00314µM  

Make up to 1 litre with milliQ H2O, sterilize (filter 0.22µm) and store in fridge.  
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 f/2 Vitamin solution  

To 950ml distilled H2O add:  

Quantity  Compound  Stock solution  Final conc. in K 
medium  

1.0ml  Vit. B12 
(cyanocobalamin)  

0.5g/litre H2O  0.37nM  

1.0ml  Biotin  5.0mg/litre H2O  2.0nM  
100.0mg  Thiamine HCl  -  0.3µM  

Make up to 1 litre with milliQ H2O, filter sterilize into plastic vials and store in 
freezer.  

Sterilization of medium  

(Optional: Heat to 80°C for 2 hours and leave to cool - this should kill most 
organisms but should not chemically modify the medium too much)  

Filter sterilize through 0.22µm filters (e.g. Millipore Steritop units) into sterile 
(autoclaved) polycarbonate bottles.  

For K-ET , add 10-30 ml marine soil extract (ET)  
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Abstract.  

Coccolithophores are calcifying marine phytoplankton of the class 

Prymnesiophyceae. They are considered to play an import role in the global carbon 

cycle through the production and export of organic carbon and calcite.We have 

compiled observations of global coccolithophore abundance from several existing 

databases as well as individual contributions of published and unpublished datasets. 

We make conservative estimates of carbon biomass using standardised conversion 

methods and provide estimates of uncertainty associated with these values. The 

quality-controlled database contains 57 321 individual observations at various 

taxonomic levels. This corresponds to 11 503 observations of total coccolithophore 

abundance and biomass. The data span a time period of 1929–2008, with 

observations from all ocean basins and all seasons, and at depths ranging from the 

surface to 500 m. Highest biomass values are reported in the North Atlantic, with a 

maximum of 127.2 µgCL−1. Lower values are reported for the Pacific (maximum of 

20.0 µgCL−1) and Indian Ocean (up to 45.2 µgCL−1). Maximum biomass values 

show peaks around 60_ N and between 40 and 20_ S, with declines towards both the 

equator and the poles. Biomass estimates between the equator and 40_ N are below 

5 µgCL−1. Biomass values show a clear seasonal cycle in the Northern Hemisphere, 

reaching a maximum in the summer months (June–July). In the Southern 

Hemisphere the seasonal cycle is less evident, possibly due to a greater proportion of 

low-latitude data. The original and gridded datasets can be downloaded from 

Pangaea (doi:10.1594/PANGAEA.785092). 
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1 Introduction 

Marine plankton are the main driver for the global marine cycling of elements such 

as carbon, nitrogen and phosphorus, primarily through the process of carbon fixation 

and nutrient uptake during primary production and subsequent export of organic 

matter to the deep ocean. Modern marine ecosystem models seek to represent the 

functional diversity of marine plankton using the concept of plankton functional 

types (PFTs; Iglesias-Rodriguez, 2002; Le Quere et al., 2005). PFTs are groups of 

plankton with defined biogeochemical functions, for example calcification, DMS 

production or nitrogen fixation. The inclusion of these groups in marine ecosystem 

models provides great potential for improving our understanding of marine processes 

(see for example Dutkiewicz et al., 2012; Marinov et al., 2010; Vogt et al., 2010; 

Manizza et al., 2010), but has also highlighted a need for extensive observational 

datasets for model parameterisation and validation (Hood et al., 2006; Le Quere et 

al., 2005; Anderson, 2005). The MARine Ecosystem DATa (MAREDAT) project (as 

part of the MARine Ecosystem Model Intercomparison Project – MAREMIP) seeks 

to compile global biomass data for PFTs commonly represented in marine ecosystem 

models: silicifiers, calcifiers (including coccolithophores, pteropods and 

foraminifera), DMS-producers, pico-phytoplankton, diazotrophs, bacteria, and three 

zooplankton sizeclasses (micro-, meso- and macrozooplankton). A summary of the 

findings for all groups is presented in Buitenhuis et al. (2013). This paper presents a 

database of global coccolithophore biomass distributions compiled as part of the 

MAREDAT effort. The coccolithophores are a globally occurring group of calcifying 

phytoplankton of the class Prymnesiophyceae (Jordan et al., 2004; Winter and 

Siesser, 1994; Thierstein and Young, 2004). They are thought to play an important 

role in the global carbon cycle due to their contribution to primary production and 

export as well as through calcite production (Iglesias-Rodriguez, 2002; Hay, 2004; 

Jin et al., 2006), with blooms of over 100 000 km2 observed in some ocean regions 

(Brown and Yoder, 1994; Holligan et al., 1993). The coccolithophores have received 

considerable attention in recent years due to their potential sensitivity to climate 

change and particularly ocean acidification (Doney et al., 2009). The decrease in 

carbonate saturation state in the oceans caused by rising atmospheric CO2 is 

generally expected to have negative effects on calcifying marine organisms due to 

the increasing energetic cost of calcification (Hofmann et al., 2010). There have, 

however, been mixed results from experimental and field studies of 
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coccolithophores, with some showing a negative effect of ocean acidification (e.g. 

Beaufort et al., 2011; Riebesell and Zondervan, 2000) whereas others show no 

change or even increased calcification and production (Langer et al., 2006; Iglesias-

Rodriguez et al., 2008). Changes in ocean temperature, stratification and nutrient 

supply are also expected to affect coccolithophore distributions, although again the 

direction of this change is unclear (Hood et al., 2006; Iglesias-Rodriguez, 2002). 

Given these uncertainties, it is more important than ever to understand the current 

distribution of coccolithophores in the global oceans. Remote sensing approaches are 

frequently used to study the distribution of coccolithophore blooms (e.g. Smyth, 

2004; Brown and Yoder, 1994; Iglesias-Rodriguez, 2002; Hirata et al., 2011). The 

reflective properties of the calcitebased coccoliths allow blooms to be observed in 

satellite images (Holligan et al., 1983), providing great potential for improving our 

understanding of coccolithophore distributions on a global scale. There are, however, 

several limitations to this approach. Firstly, satellite images pick up the optical 

properties of the calcite-based coccoliths themselves and do not distinguish between 

living cells and detached coccoliths (Tyrell and Merico, 2004). Secondly, satellite 

data are limited to waters within the optical depth of the satellite and provide no 

information as to the vertical structure of cells within the water column or cells 

occurring below this depth. Finally, more detailed taxonomic information cannot yet 

be obtained from satellite images. There is, therefore, a continuing need for in situ 

observations of coccolithophores in order to better understand their distribution, 

ecology and contribution to global plankton biomass. 

This database compiles existing published and unpublished coccolithophore 

abundance data and provides standardised biomass estimates using species-specific 

conversion factors. We also provide a detailed discussion of our conversion methods 

and quality control procedures and discuss the uncertainties associated with the 

biomass values. Although this dataset was born from the needs of the modelling 

community, we anticipate that it will be of use to scientists from a range of fields 

including biological oceanography, marine ecology, biogeochemistry and remote 

sensing. 
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2 Data 

2.1 Origin of data 

Our data consists of abundance measurements obtained from several existing 

databases (NMFS-COPEPOD, BODC, OBIS, OCB DMO, Pangaea, WOD09, OOV), 

as well as published and unpublished data from a number of contributing authors (P. 

Ajani, H. Andruleit, J. Aristegui, L. Beaufort, M. Estrada, D. Karentz, E. 

Kopczynska, R. Lee, T. Pritchard and C. Widdicombe). Table 1 summarises the 

origin of all datasets, sorted in temporal order. The database contains 58 384 data 

points when all counts of individual taxa are considered separately, which equates to 

11 503 samples of total coccolithophore abundance collected from 6741 

depthresolved stations. Abundance data were standardised to units of cells per litre, 

and ancillary data such as temperature, salinity, chlorophyll and nutrients were 

retained where available. 
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2.2  Biomass conversion 

To convert the abundance data (cell counts per unit volume) to biomass estimates 

(expressed as the concentration of organic carbon per unit water volume), we first 

needed to multiply the abundance data by the average biovolume for each species, 

and then multiplied the resulting biovolume concentration with the average organic 

carbon content per biovolume. We determined cell biovolumes for each of the 

taxonomic groups reported in the database based on an extensive literature survey. 

Coccolithophore taxonomy has been subject to numerous revisions over the time 

span of the dataset, making it challenging to match historical data to current species 
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names and descriptions. For consistency, data entries were matched to currently 

accepted species names following the taxonomic scheme of Jordan et al. (2004) 

wherever possible. Where full taxonomic information was not provided, data were 

matched to the lowest taxonomic group possible.  Data that could not be assigned to 

a particular taxonomic group were categorised as unidentified coccolithophores. We 

identified a total of 195 taxonomic groups for this dataset (Table A3), ranging from 

identifications at the sub-species to the family level. Morphotype information is 

reported for Emiliania huxleyi in only one dataset, and we have therefore chosen to 

use a single biomass conversion factor for all occurrences of this species. 

Additionally, 2258 samples consisted of combined counts of coccolithophores 

without further size or taxonomic information, and 1988 samples contained at least 

some counts of unidentified or partially identified coccolithophores. For our biomass 

conversions, we began by converting only cell counts for which full species or sub-

species identifications were provided. Each species/subspecies was assigned an 

idealised shape (e.g. sphere, prolate  sphere, cone) based on the work of Hillebrand et 

al. (1999)  and Sun (2003) as well as species descriptions in the literature. We then 

estimated cell dimensions (e.g. diameter, length, width) for each taxonomic group in 

order to calculate cell biovolumes (units: µm3). 

Cytoplasm dimensions have been published for very few coccolithophore species, 

with species descriptions usually providing the more easily observed coccosphere 

dimensions only. Observations of 16 species of coccolithophore from  laboratory and 

field studies show cytoplasm diameter varying  from 30 to 90 % of the total 

coccosphere diameter, depending on the species and level of calcification (Table 2); 

naked coccolithophores have also been observed for some species,  although they are 

relatively rare in field samples (Frada et al.,  2012). While these 16 species represent 

only a small fraction (10 %) of the species represented in the database, they include 

some of the more dominant coccolithophores in terms of both abundance and 

frequency of observation: these 16 species together account for an average of  

75 ± 32 % of coccolithophore abundance per sample (median = 92 %), and we 

therefore consider them to be reasonably representative for the purposes of 

estimating coccolithophore biomass. 

Given the lack of data and the lack of consistency among the few available 

cytoplasm measurements, we chose to estimate coccolithophore biovolumes by 
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assuming cytoplasm dimensions to be 60 % of the mean coccosphere dimensions for 

all species - this value represents the midpoint of observed ratios of cytoplasm to 

total coccosphere diameter. These calculations can be expected to overestimate 

organic biomass for species with a higher ratio of coccosphere to cytoplasm volume, 

and underestimate biomass for species with a lower ratio. Biovolumes are calculated 

based on the mid-point of coccosphere dimensions. Uncertainty ranges are provided 

using biovolumes and biomasses calculated from 0.6 × minimum coccosphere 

dimensions and 0.6 × maximum coccosphere dimensions. 

The range of coccosphere dimensions (e.g. diameter, length, width) for each species 

or sub-species in the database was determined based on a literature survey  

(Table A3).  For some datapoints, coccosphere dimensions were provided alongside 

abundance data. In these cases the provided measurements were used in preference to 

our literature-based values. Biovolume estimates were then further converted to 

carbon biomass (units: µg C L−1) using the prymnesiophyte-specific conversion 

factor developed by Menden-Deuer and Lessard (2000). Biovolume and biomass 

values based on the mid-point are hereafter referred to as “mean” biovolume and 

biomass. We assess the likely over- or under-estimation of our mean biomass 

estimates for different species of coccolithophore through a comparison with direct 

biomass measurements as well as biomass values calculated from measured 

cytoplasm dimensions for 16 species (Table 2). 
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For 23 species only a single set of dimensions or a single biovolume value was 

reported in the literature. In these cases, we have assumed the reported values to be 

the mean estimates. Minimum and maximum biovolume values were estimated for 

these species based on the ratios of minimum and maximum biovolume to mean 

biovolume observed for all other species in the database. These ratios were found to 

be 0.5 (± standard deviation of 0.2) for minimum biovolume/mean biovolume, and 

2.1 (±0.8) for maximum biovolume/mean biovolume. For cell counts with 

identifications only to the level of genus or family, or for combined counts of 

multiple species, we calculate minimum and maximum biomass values per cell based 

on the absolute minimum and maximum of all species reported for that taxonomic 

group. Mean biomass values per cell were calculated by taking the mean of all 

reported biomass values for species within the taxonomic group. Taking the mean of 

the biomass values avoided weighting mean biomass values towards a single  

large species. For some genera, however, insufficient species-level data were 

available to calculate biomass using this approach. In these cases we were able to 

obtain a range of coccosphere dimensions from the literature, and calculated 

biovolumes and biomasses based on the mid-point of these values as detailed above 

for the species-specific cell counts. 

For cell counts of unidentified coccolithophores, we have chosen to use a spherical 

coccosphere with diameter of 10 µm (cell diameter of 6 µm) to calculate our mean 

biovolume and biomass estimates. This value was selected based on the diameters of 

species most commonly occurring in the database. The large uncertainty associated 

with this value is taken into account by providing minimum and maximum 

biovolume and biomass estimates based on the absolute minimum and maximum 

values across all species in the database. Following the biomass conversions, data 

were compiled to total coccolithophore biomass per sample for the purposes of 

further analyses. Further taxonomic information is reported in  

the attached dataset (doi:10.1594/PANGAEA.785092) and coccolithophore 

biodiversity patterns will be discussed in O’Brien et al. (2013). 

2.3  Quality control 

Our quality control procedure flagged data based on a number of criteria, with flag 

values (1-4) provided in the data table. Flag 1 was applied to 33 samples that 

included observations of the species Thoracosphaera heimii - this species was 



 

160 

 

originally thought to be a coccolithophore, but further investigations have shown it to 

be a calcified dinoflagellate cyst (Tangen et al., 1982). Flag 2 was applied to 205 

samples for which only biomass values were provided, without corresponding cell 

counts; and flag 3 is applied to 482 samples with integrated water column values 

rather than discrete depth measurements, or to samples for which no depth 

information was provided. Flag 4 was assigned to outliers identified by the statistical 

analyses to be outlined below. 

For the next stage of the quality control process, we removed samples with flags 2 

and 3 and corrected samples with flag 1 to remove counts of T. heimii. For the 

remaining 9194 non-zero samples, we used Chauvenet’s criterion to identify 

statistical outliers in the log-normalized biomass data (Buitenhuis et al., 2013; Glover 

et al., 2011). Based on this analysis, we identified one sample with a biomass value 

with probability of deviation from the mean greater than 1/2n, with n = 8997 being 

the number of non-zero samples (two-sided z score: |zc| = 4.03). This sample is 

denoted by a flag value of 4. 

An additional flag column denotes the quantification method used for determining 

coccolithophore abundance. Of the 9193 non-zero samples included in the database,  

4209 are known to have been analysed using light microscopy, 500 using SEM and 

197 with flow cytometry. For the remaining 4287 the method is unknown. 

Coccolithophore counts from SEM are consistently higher than those obtained using 

light microscopy due to the better identification of smaller and more fragile species. 

For example, Bollmannet al. (2002) found that species such as syracosphaerids, 

small reticulofenestrids, small gephyrocapsids and holococcolithophores are likely to 

be missed in light microscopy analyses. Cell density has been shown to differ up to 

23% between the two methods when analysing samples with large numbers of small 

species such as E. huxleyi, Gephyrocapsa ericsonii and G. protohuxleyi.  

We have made a statistical comparison of abundance and biomass values to 

determine whether a systematic bias can be associated with the enumeration method 

for samples in our database (Table 3, Fig. 1). Our comparison of coccolithophore 

abundance and biomass shows greater differences between methods than would be 

expected from previous comparisons of enumeration methods, but we suggest that 

these differences are likely to be at least partially explained by real differences in 



 

161 

 

coccolithophore abundance and community composition. For example, we expect 

that SEM is more likely to be used for samples with a known portion of small 

coccolithophores which are difficult to identify or enumerate using light microscopy 

alone. Although median biomass from SEM studies is higher by a factor of four than 

the median for light microscopy studies, the highest values reported in the dataset are 

from light microscopy studies. Since the quantification method is unknown for 

nearly 50% of samples, we have chosen to retain SEM data in the gridded dataset 

and all analyses, though users may access a subset of this data from the raw file. In 

contrast, we have excluded 199 datapoints collected using flow cytometry from the 

gridded dataset. These values are significantly higher again than those collected 

using either SEM or light microscopy. 
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Based on our full quality control procedure we removed a total of 888 flagged 

samples for the purposes of our analyses, and a further 32 samples were corrected to 

remove the contribution of T. heimii to total coccolithophore biomass (note: one 

sample contained data for T. heimii only). All data are included in the published raw 

dataset in the event that a user has different requirements for the quality control 

procedure, while the gridded dataset contains the unflagged datapoints only. 

An additional column in the raw dataset denotes the taxonomic level to which 

coccolithophores are identified, as this has a major influence on the level of 

uncertainty associated with our biomass calculations. Coccolithophores identified to 

species level are denoted by the flag value 0, those identified to genus or family level 

as flag value 1, and unidentified coccolithophores as flag value 3. If coccosphere 

dimensions are known, cells identified to genus or family level receive flag value 2, 

and unidentified coccolithophores receive flag value 4. All samples of unidentified or 

partially identified coccolithophores have been included in our analyses and in the 

gridded file. 
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Several datasets report biomass values in addition to abundance data. While we have 

chosen to use our own conversion methods for consistency, it is likely that the 

original biomass values are based on more accurate estimates of cell size. All 

original biomass values are included in the submitted database and can be substituted 

for our estimates if desired. 

3 Results 

Excluding flagged data, the database contains coccolithophore biomass observations 

for 11 503 samples, collected from 6741 depth-resolved stations (Fig. 2). Highest 

coccolithophore abundance is 9.8 × 106 cellsL−1. 2507, or 21.8% of samples, were 

found to be zero values. These data were retained in the dataset, since confirmed zero 

values hold valuable information for the study of plankton distributions. There is, 

however, inconsistency in the reporting of zero values in plankton datasets: often 

abundance data are reported only for a limited range of target groups that are 

expected to be present. There is also likely to be a bias due to sampling focusing on 

areas where coccolithophores are expected to occur. Values reported in the 

subsequent sections are therefore calculated based on non-zero data only. Where 

zerodatapoints are included, this value follows in parentheses. Arithmetic mean 

values are reported plus or minus one standard deviation. We also provide median 

biomass values, as these are less influenced by high values and provide a better 

representation of the central tendency of the data. 
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3.1 Spatial and temporal coverage 

The database includes non-zero coccolithophore observations from the surface to a 

depth of 500m (Fig. 3b, with 83.9% of observations (84.1% with zero values 

included) from the upper 50m and 61.5% (63.3 %) from the upper 10m of the water 

column. Mean depth is 27.0 (±40.5)m and median depth is 10.0 m.  

 

Data are reported from all ocean basins, with 54.4% of samples (58.9% with zero 

values included) from the Northern Hemisphere and 45.4% (40.9 %) from the 

Southern Hemisphere (Table 4). 31.6% of nonzero data are from the Atlantic Ocean, 

40.2% from the Pacific Ocean and 10.4% from the Indian Ocean.  
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Despite the high number of observations reported from the Pacific compared to the 

Atlantic, the spatial coverage of this ocean basin is relatively poor, with many 

observations limited to intensively studied regions in Peruvian and Japanese coastal 

waters. 9.9% of non-zero observations are from the Polar Regions, with 5.1% from 

the Southern Ocean and 4.8% from Arctic waters. Coccolithophores are reported to 

be present in only one sample below 60°S (Table 5, Fig. 4). 

 

 

In contrast, the database contains non-zero observations of coccolithophores in 

Arctic waters up to a maximum of 88.92°N. 46.3% of data are from tropical waters 
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between 20°S and 20°N. Data are reported from the years 1929 to 2008 (Fig. 5). A 

total of 66 non-zero observations are reported for 1929– 1930, with no further 

observations until 1954. 78.7% of observations were collected between 1980 and 

2008, and 51.8% between 1990 and 2008. Data are reported from all months of the 

year in both hemispheres, although relatively few data were collected during the 

winter months (13.6% of all NH data, 15.6% of SH data, Table 4). Northern 

Hemisphere data are strongly biased towards summer observations (38.4% of all 

data). 

 

3.2 Biomass distribution 

3.2.1 Geographical distribution 

Coccolithophore biomass values range from 2.0 × 10−5 to 127.2 µgCL−1. The global 

mean is 0.88 µgCL−1 ± 4.8 µgCL−1 and median biomass is 0.072 µgCL−1. Highest 

median biomass values were recorded in the Southern Hemisphere between 40 and 

50°S (0.77, Figs. 3, 6, Table 5), and in the Northern Hemisphere between 50 and  

60°N. Maximum biomass values show peaks around 60°N and between 40 and 20°S, 

with declines towards both the equator and the poles. Biomass estimates between the 

equator and 40°N are below 5 µgCL−1. The highest biomass estimate of 127.2 

µgCL−1 is for a sample off the Icelandic coast (62.8°N, 20.0°W). Strong differences 

can be observed between the Atlantic and Pacific Ocean, with Atlantic biomass 



 

167 

 

values reaching 127.2 µgCL−1 (mean 1.7 ± 7.5, median 0.12 µgCL−1) compared to 

just 20.0 µgCL−1 in the Pacific (mean 0.3 ± 0.9, median 0.04 µgCL−1). The relatively 

poor spatio-temporal coverage of Pacific Ocean observations, however, may 

contribute to this discrepancy. Indian Ocean biomass values reach a maximum of 

45.2 µgCL−1, with a mean of 1.1 ± 3.4 and median of 0.03 µgCL−1. 

In the Southern Ocean, the maximum biomass value reported is 6.5 µgCL−1, mean 

biomass is 0.19 ± 0.58 µgCL−1 and median biomass is 0.04 µgCL−1. Higher values 

are recorded in the Arctic Ocean, with a maximum of 98.9 µgCL−1, mean of 0.78 ± 

5.7 µgCL−1 and median of 0.05 µgCL−1. 

 

3.2.2 Depth distribution 

Highest biomass values are reported in surface waters and decline with depth  

(Figs. 3b, 6), although biomass values of up to 23 µgCL−1 are still reported at 100m 

depth. Mean biomass for the surface layer (0–10m) is 0.9 ± 5.2 µgCL−1 and median 

biomass is 0.09 µgCL−1. Biomass values below 200m reach a maximum of  
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0.01 µgCL−1. The deepest observations of coccolithophores are at 500m depth, with 

biomasses reaching a maximum of just 0.004 µgCL−1. 

 

3.2.3 Seasonal distribution 

The data show a clear seasonal cycle in the Northern Hemisphere, with biomass 

values reaching just 1.1 µgCL−1 in December and over 100 µgCL−1 in the summer 

months (June– July, Fig. 7). In the Southern Hemisphere the seasonal cycle is less 

evident, possibly due to the greater contribution of data from low latitudes where 

seasonal changes are less pronounced. 

 

3.2.4 Uncertainty 

The expected uncertainty associated with our conversions of cell abundance to 

carbon biomass due to varying cell size is depicted in Fig. 8. Biomass estimates are 

best constrained where detailed taxonomic information is available, and for samples 

containing species for which a limited size range has been reported. Very high 

uncertainty (range of biomass values greater than 5000% of the mean biomass) is 

associated with counts of unidentified coccolithophores. This is to be expected given 

the large range of sizes reported for the approximately 200 known coccolithophore 

species (see Appendix Table A3). 

An additional source of uncertainty, however, is the estimation of cell biovolumes 

from coccosphere dimensions, and is more difficult to quantify. A comparison of our 

biomass estimates based on coccosphere dimensions with estimates from available 

cytoplasm dimensions suggests that we may be underestimating coccolithophore 

biomass values by a factor of up to 5 for some species (Table 2). It is worth noting, 

however, that the cytoplasm dimensions considered here are based on either culture 

specimens (Stoll et al., 2002) or a small number of field samples from the Icelandic 
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Basin (Poulton et al., 2010) and the Mauritanian Upwelling (Franklin et al., 2009). 

For one of the best-studied species, E. huxleyi, our mean biomass estimate of  

13 pgCcell−1 falls within the range of published carbon measurements of 7.8 to 27.9 

pgCcell−1 (Fernandez et al., 1993; van Bleijswijk et al., 1994; Verity et al., 1992), 

while our estimates from the cytoplasm measurements in Table 2 show much lower 

values of 3.5–3.7 pgCcell−1. 
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4 Discussion 

There are many sources of uncertainty associated with our calculations. We have 

attempted to quantify the uncertainty associated with variable cell dimensions by 

providing minimum and maximum biomass values for each datapoint, but this does 

not represent the full range of uncertainty associated with our biomass values. 

The estimation of cell biovolumes from coccosphere dimensions is likely to result in 

additional errors which are at present difficult to quantify. A more accurate 

estimation of coccolithophore biomass will only be possible with improved 

understanding of coccolithophore cytoplasm dimensions (e.g. Stoll et al., 2002), and 

we highlight this as a key data requirement for improved estimates of 

coccolithophore biomass from abundance data. While the routine measurement of 

coccolithophore cell dimensions is a timeconsuming process, there also appears to be 

potential to estimate cell size from coccolith length (Henderiks and Pagani, 2007; 

Henderiks, 2008). 

Few observations of coccosphere dimensions are reported in the literature for most 

species, and the number of cells that have been studied to derive the given ranges is 

rarely reported. Measurements are often from a single geographical location, 

meaning that size variation between strains is not accounted for. There is additionally 

inconsistency as to whether the range of coccosphere sizes reported is the full range 

of sizes that occurs or only those most commonly observed. A further source of 

uncertainty is the generalisation of at times complex geometry to fit a particular 

geometric form. 

The uncertainty ranges provided around our biomass estimates are intended to reflect 

the influence of cell size on coccolithophore biomass. Since these are based on 

cytoplasm dimensions estimated from total coccosphere size, it is unclear whether 

biomass values towards the high end of our uncertainty range are biologically 

realistic. We may expect larger coccospheres to be characterised by a greater 

proportion of inorganic carbon rather than reflecting a constant ratio of cytoplasm : 

coccosphere dimensions. 

While our uncertainty ranges are very high, a comparison of our mean biomass 

estimates to previously published coccolithophore biomass values shows strong 

consistency: our highest mean biomass estimates (i.e., those associated with large  
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E. huxleyi blooms: maximum of 127 µgCL−1) are similar to past estimates from light 

microscopy-based cell counts (e.g. Holligan et al., 1993: 130 µgCL−1), but slightly 

lower than coccolithophore biomass estimates from fatty acid biomarkers in 

mesocosm experiments (de Kluijver et al., 2010: 190 µgCL−1). 

In addition to the errors introduced by the biomass conversion process, a 

considerable degree of uncertainty is already associated with the cell abundance data. 

Coccolithophores can be quantified using several techniques, including visual or 

automated identification from scanning electron microscopy, regular light 

microscopy and light microscopy using cross-polarised light. Additionally, samples 

can be prepared for light microscopy either by filtration or by using the Utermohl 

sedimentation method (Utermohl, 1958). Reid (1980) and Bollmann et al. (2002) 

both concluded that inverted light microscopy is unreliable for determining cell 

densities of small coccolithophores. 

Despite these limitations, the Utermohl method of sedimentation and inverted light 

microscopy remains widely used in studies investigating phytoplankton assemblages, 

and any compilation of global coccolithophore distributions would be incomplete 

without these data. Cell counts from SEM can additionally be unreliable at high cell 

densities, where shedded coccoliths can lead to difficulties in distinguishing 

individual coccospheres (A. Poulton, personal observation). 

The synthesis of datasets obtained from these different methods would be greatly 

improved by further comparative studies similar to those carried out by Bollmann et 

al. (2002), as it is currently unclear to what extent small and rare species are being 

overlooked in different ocean regions as a result of these methodological differences. 

Users of the gridded data file should also take into consideration the sparse nature of 

the original data. Often monthly mean gridded values have been derived from 

relatively few individual datapoints that do not represent the full range of values that 

occur in a given location. We expect to see a bias toward higher biomass values, 

given that studies are often conducted in locations and times of year when blooms 

are expected to occur. 

We have not included estimates of inorganic carbon content in the database, as we do 

not feel that useful estimates of coccolithophore calcite can currently be provided 
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from the abundance data. The ratio of inorganic:organic carbon has been shown to 

vary considerably with environmental and growth conditions (Zondervan, 2007), 

with ratios for the species E. huxleyi alone ranging from 0.26 to 2.3 (van Bleijswijk 

et al., 1994; Paasche, 2002). While some estimates have been made of the 

relationship between inorganic and organic carbon for E. huxleyi-dominated 

communities (e.g. Fernandez et al., 1993; Poulton et al., 2010), the relationship of 

calcite content to biomass for other coccolithophore communities remains less well 

understood. 

The biomass estimates presented here represent a first attempt to assess global 

coccolithophore biomass distributions. While we recognise that the uncertainties 

associated with these biomass estimates are significant, we nevertheless feel that they 

provide a more informative dataset than would a compilation of abundance data 

alone given the large size variation among coccolithophore species. The 

coccolithophores present particular challenges for the compilation and synthesis of 

diverse datasets due to the wide range of methods used for their quantification as 

well as the limited understanding of cell dimensions. The strong biases associated 

with the different methods highlight the need for coccolithophore abundance data to 

be published alongside appropriate metadata to allow users to assess data quality. 

5 Conclusions 

This database represents the largest effort to date to compile coccolithophore 

abundance observations and provide standardised biomass estimates to the scientific 

community. We report our biovolume and biomass conversion procedures in detail 

and discuss the associated uncertainties. We anticipate that this dataset, together with 

others from the MAREDAT special issue, will be a valuable resource for studies of 

plankton distributions and ecology and in particular for the evaluation and 

development of marine ecosystem models. While data are clearly lacking for certain 

regions, the dataset nevertheless represents the largest available compilation of 

global coccolithophore abundance and biomass. We hope to improve the spatial and 

temporal coverage of the dataset as well as the accuracy of biomass conversions as 

additional data become available in the future. 
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Appendix A 

A1 Data table 

A full data table containing all biomass data points can be downloaded from the data 

archive PANGAEA (doi:10.1594/PANGAEA.785092). The data file contains 

longitude, latitude, depth, sampling time, abundance counts and biomass 

concentrations, as well as the full data references. 

A2 Gridded netcdf biomass product 

Monthly mean biomass data have been gridded onto a 360 × 180_ grid, with a 

vertical resolution of 33 depth levels (equivalent toWorld Ocean Atlas depths) and a 

temporal resolution of 12 months (climatological monthly means). This dataset is 

provided in netcdf format for easy use in model evaluation exercises. The netcdf file 

can be downloaded from PANGAEA (doi:10.1594/PANGAEA.785092). This file 

contains total and non-zero abundance and biomass values. For all fields, the means, 

medians and standard deviations resulting from multiple observations in each of the 

1_ pixels are given. The ranges in biomass values due to uncertainties in cell size are 

not included as variables in the netcdf product, but are given as ranges (minimum 

cell biomass, maximum cell biomass) in the data table. 
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