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Abstract

We give some new results about representations of the Hecke algebra 7 ,(S,,)
of type A. In the first part we define the decomposition numbers dy, to be
the composition multiplicity of the irreducible module D" in the Specht mod-
ule S*. Then we compute the decomposition numbers d,,, for all partitions
of the form A = (a,¢,1%) and v 2-regular for the Hecke algebra He.-1(6y).
In the second part, we give some examples of decomposable Specht modules
for the Hecke algebra %z _1(6,,). These modules are indexed by partitions
of the form (a,3,1%), where a,b are even. Finally, we find a new family of
decomposable Specht modules for F'S,, when char(F') = 2.



Introduction

Let &,, be the symmetric group on n letters and let F' be an arbitrary field.
James in [15] studied the representation theory of the symmetric group
algebra F'G,,. This is a specific example of the Hecke algebra % ,(Sy,)
introduced by Dipper and James in [5]. By setting ¢ = 1 in the statement
of results proved for representations of the Hecke algebra, we recover results
in the representation theory for symmetric groups. Many of the theorems
in the symmetric group have an analogue in the Hecke algebra. However,
some theorems do not have an analogue, or the proof is considerably more
complicated.

For each Hecke algebra 77 ,(&,,), we define a family of modules called
Specht modules. If % 4(S,,) is semisimple, these form a complete set of
pairwise non-isomorphic irreducible % ,(&,,)-modules. They are indexed
by the set of partitions of n. Moreover, if 7 4(&,,) is not semisimple, the
simple modules arise as the heads of the Specht modules and are labelled
by a subset of the set of partitions of n. The decomposition number dy,, is
defined to be the composition multiplicity of the irreducible module D" in
the Specht module S* and the decomposition matrix is the matrix whose
entries are the decomposition numbers dy,. For fixed n and quantum pa-
rameter e, the decomposition matrices of the Hecke algebras 7% ,(S,,) will
have a similar structure. In particular, each matrix is lower unitriangular
if the partitions are sorted according to a specific partial order. In general
it is not known how to compute decomposition numbers for Hecke algebras
over fields of positive characteristic. However, Lascoux, Leclerc and Thi-
bon in [20] described an iterative algorithm to compute the decomposition
numbers of the Iwahori-Hecke algebras ¢ ,(6,,) of the symmetric group
in characteristic zero. This algorithm, now known as the LLT algorithm,

was proved later by Ariki in [2]. Knowing these decomposition numbers



in ¢ 4(&,,) provides information about the decomposition numbers for an
arbitrary Hecke algebra. The decomposition matrices of the Hecke algebras
Hr,4(6,,) can be obtained from the decomposition matrix of the Hecke al-
gebras ¢ ,,(6,) by multiplying by an adjustment matrix. So the problem
of computing the decomposition matrices of the Hecke algebras 5 ,(Sy,)
reduces to finding an adjustment matrix, although these are not generally
known. In [16] James gave a conjecture which suggested that for n<pe, the
adjustment matrix should be the identity matrix and his conjecture is closely
related to the celebrated conjecture of Lusztig [21]. Although, James’s Con-
jecture was proved to be true in certain cases given in [9], [8] and [11],
counterexamples to the conjecture and Lusztig’s Conjecture were found this
year by Williamson [33].

Peel in [29] studied the decomposition numbers of Specht modules cor-
responding to hook partitions for symmetric group algebras F'S,, in odd
characteristic p. This study is continued by James in [9] and James and
Mathas in [17] for the Hecke algebra ¢ ,(&, ). Chuang, Miyachi and Tan
in [4] described the decomposition numbers corresponding to rows labelled
by hook partitions with e > 2. We continue this work in this thesis by
studying Specht modules indexed by partitions of the form A = (a,c, 1b).

For the symmetric group &,,, Peel in [30] showed that for characteristic
p # 2 the Specht module S* indexed by a partition X is indecomposable.
Furthermore, James in [15] and Dipper and James in [5] show that if e # 2
or if A is 2-regular then the Specht module S* is indecomposable. Moreover,
James in [14] shows that the F,&,,~module S* is a decomposable module for
the partition A = (5,12). Murphy in [27] continued this case and analysed
the Specht modules labelled by hook partitions by computing the endomor-
phism ring of every such Specht module and determining when the Specht
module is decomposable. Dodge and Fayers in [7] presented a new family of
decomposable Specht modules for the symmetric group algebra F>&,, and
these Specht modules are labelled by partitions of the form (a,3,1%), where
a, b are even. However, we are far from knowing which Specht modules are
decomposable for e = 2.

Now we give a brief description of the contents of each chapter in this
thesis. In Chapter 1 we start by introducing some the background theory
and results of the symmetric group and its Iwahori-Hecke algebra that we

are going to use regularly throughout this thesis. We conclude by giving



definitions and results of the LLT algorithm and adjustment matrix that we
will need in the second Chapter. In Chapter 2 we extend results of Chuang,
Miyachi and Tan. We compute the decomposition numbers dy, for the
Hecke algebra 7 _1(S,,) for Specht modules S* for all A = (a,c,1°). Our
main results are Theorem A and Theorem B which are given at the start
of Section 1 and Theorem C which appears in Section 3. In Chapter 3 we
give analogues of some of the results given in Dodge and Fayers in [7]. We
provide some cases of decomposable Specht modules for the Hecke algebra
Ht,-1(6y,) which are indexed by partitions of the form (a, 3, 1°), where a,b
are even. Our main result is Theorem D which is given at the start of Section
3. In Chapter 4 we present a new family of decomposable Specht modules
for the symmetric group algebra F»&,,. These Specht modules are labelled
by partitions of the form (a,5,1%), (a,7,1%) and (a, ¢, 1°) where a, b are even.

Our main results are Theorems I, IT and III which appear in Section 1.



Chapter 1

Preliminaries

1.1 The symmetric groups

We start by fixing n > 1 and let &,, be the symmetric group acting on the
set {1,2,...,n}.

Definition 1.1.1. For 1 <i < n-1 suppose s; is the basic transposition such
that s; = (4, ¢+ 1) and let S = {s1,...,s,-1}. Then as a Coxeter group, S,

is generated by {s; |1 <i<n -1} with the relations:

s2=1, 1<i<n-1,
SiSj = S;Si, 1<i<gj—-1<n-2,
SiSi+1Si = Si+1SiSi+1, 1<i<n-2.

Every permutation can be written as a product of basic transpositions.

Definition 1.1.2. For the permutation w € &,, we write w =s;,--s;, , where

Siy,---,Si, €S and if k is minimal we say that w has length k& and write

¢(w) = k. Then s;,---s;, is called a reduced expression for w.

k

Definition 1.1.3. An odd permutation is defined to be a permutation that
can be written as a product of an odd number of transpositions. Similarly,
if a permutation can be written as a product of an even number of transpo-

sitions, then it is called an even permutation. The sign of a permutation is



defined as follows:

+1, if o is even,
sgn(o) =
-1, if ois odd

where, 0 € S,, and sgn: &, — {+1,-1}.

Theorem 1.1.4. (Matsumoto)[26, Theorem 1.8] Lets;,,...,s;, andsj,,...,s;,
be elements of S = {s1,...,sp-1} such that s;, ...s; and sj ...s;, are two
reduced expressions in &,. Then write (i1,...,ig) ~p (J1,--.,7k) if one ex-

pression can be be transformed into the other using only the braid relations
(SZ‘SJ‘ =5;S;, fOT 1< i<j—1 <n-2 and SiSi+1Si = Si+1S:Si+1, fOTi = 1, P ,n—2).
Then,

(il,...,ik) ~p (]177]k) < Sjy --+Si, =S5 ---Sjp-
1.2 The Hecke algebra of the symmetric groups

Definition 1.2.1. Suppose R is a commutative domain with 1 and that
q # 0 is an arbitrary element of R. Then the Iwahori-Hecke algebra ¢ =
Hp,q(6y) of &, is defined to be the unital associative R-algebra with gen-

erators 11,715, ..., T,_1 and relations:

(T; - q)(T; + 1) =0, l1<i<n-1,
LT =T51;, 1<i<j-1<n-2,
LT T = T T T4, I1<i<n-2.

Note that: if ¢ =1 in the first relation in the above Definition 3.1 we get
Ti2 =1, which is the same as the defining relations for the symmetric group
ring RG,,. Thus S is isomorphic to the group ring RS,, of &,, [26].

Now we introduce a basis of J7.

Definition 1.2.2. Let w be an element of &,, and let s;, ... s;, be a reduced

expression for w. By Matsumoto’s Theorem 1.1.4, we can define:



Remark 1.2.3. By Matsumoto’s Theorem 1.1.4 the element T, is indepen-
dent of the choice of reduced expression for w and thus is well defined. If
w is the identity element of &,,, we identify T, with 1 = 1 the identity

element of R.
The next lemma gives us the right-hand multiplicative relation for ¢

Lemma 1.2.4. [26, Lemma 1.12] Suppose s is a transposition in S and that
weS,. Then

T - Tws, if L(ws) > l(w),

qus + (q - 1)Twa Zf E(ws) < E(w)
Example 1.2.5. Take w = (1, 3, 2), s = (1, 2). Then ws = (1, 3) and
l(ws) =3>4(w) =2. So

T(1, 3, 2) X T(1, 2) = T(l, 3)-

If w=(1, 2)(2, 3) and s=(2, 3), then ws = (1, 2) and ¢(ws) = 1<l(w) = 2.
So

T, 22, 3) x T2, 3) = 411 2) + (¢ = 1)T(, 3, 2)-
Lemma 1.2.6. [5, Lemma 2.1] Suppose w € S,,. Then T, is invertible

~ ap -1 _ -1 -1p-1 _ ;
in A with inverse T~ =Tg "~ ... T T ", where w = s1S3...55 is a reduced

expression for w, and

T;l = _(1 - (1/Q)) + (1/Q)Ts
for s is a transposition in S.

Lemma 1.2.4 shows that ¢ is spanned by the elements {7}, | w € &,,}
when it is taken as an R-module. The following theorem gives us a basis of

H.

Theorem 1.2.7. [26, Theorem 1.13] The ITwahori-Hecke algebra F of the

symmetric group S, is free as an R—module with basis {T,, | w e &, }.

Definition 1.2.8. We define e to be the smallest positive integer such that
1+g+...+¢° 1 =0. Let e = oo if no such integer exists. In other words, either

g =1 and e is equal to the characteristic of R or ¢ # 1 and ¢ is a primitive



e'" root of unity. e plays the same role as the characteristic of a field in the

representation theory of finite groups.

Definition 1.2.9. Suppose Z = Z[§,{ '], where § is an indeterminate over
Z. Then Az = A7z 4(S,,) is called the generic Iwahori-Hecke algebra of &,,.

Lemma 1.2.10. /26, Corollary 1.17] The algebra % is semisimple.

Theorem 1.2.11. /26, Corollary 1.15] Let F be a field and q € F\{0}.
Define ¢ : Z — F to be the ring homomorphism determined by ¢ — q.
Then

Hg(Gr) 2 Hz@z F

as F—algebras.

1.3 Combinatorics

Definition 1.3.1. A composition of a positive integer n is a sequence of

k
positive integers A = (A\1,..., ;) such that Z A = n.
i=1

Definition 1.3.2. We say A = (A1, \a,..., ;) is a partition of n if the

following conditions hold:

1. Aq, Ag,..., Mg are positive integers and A\ > Ag > --- > Ag.
k
2. Z)\Z =n
i=1

)

Note that: A +n denotes A is a partition of n.

Definition 1.3.3. Suppose A is a partition of n. Then the diagram [A] is
defined by :

Example 1.3.4. The partition A = (4,3,2,1) has a diagram

[A] =




Definition 1.3.5. Suppose A and pu are partitions of n. Then A dominates
w and we write A & p if the following condition holds

J J
Y X2 p, forall j.
-1 il

Note that: We write A > p, if A\> p and A # p.

Example 1.3.6. The dominance relation on the set of partitions when n =5

is given by the diagram:

(5)
|

(4,1)

(3,2)

PN

(2,2,1) (3,1,1)

~

(27 17 17 1)

(1%)

Definition 1.3.7. Suppose [A] is a diagram. Then the conjugate diagram
[)\’] is obtained by interchanging the rows and columns in diagram [\]. We

say N Fnis conjugate to A.

Example 1.3.8. Take A = (4,2,1). Then the diagram of Ais [A] =

and the conjugate diagram [\'] = and so X' = (3,2,12).

Definition 1.3.9. Suppose [A] is a diagram of a partition A\. Then a
A—tableau t is obtained by replacing each node in [A] by one of the inte-

gers 1,2, 3,...,n without repeating.



Note that: A-tableau can be defined as a bijection from [A] — {1,2,...,n}.

Example 1.3.10. Let A = (2,1), so we have the diagram of \ as [A] = ‘

Then all possible tableaux are:

1]2 2|1 1 1 2 2
tlz 3 ‘at2: 3 ‘,t?): 2 3‘at4: ; ‘at'{'): 1 3‘,1(6_ i) ‘

Definition 1.3.11. Let t be a tableau. Then we define its row-stabilizer R,

as follows:
R ={0€&,| for all i, i and o(i) belong to the same row of t}
similarly we can define the column-stabilizer C} as:

Ci={0 €6, | forall j, j and o(j) belong to the same column of t}.

2[3]
5| , then:

Example 1.3.12. If t=

‘Oh»bb—‘

Ri=6{123) xSy xSy

Ct = 6{1,476} X 6{275} X 6{3}

Also,
|R¢| =3!2! 1L

Now we can introduce the tabloid.

Definition 1.3.13. Define an equivalence relation on the set of A-tableaux

by ¢ ~ t5 if and only if
tio =1ty for some o€ Ry,

where the symmetric group &,, acts on tableaux by permuting entries of the
given tableau. Now the tabloid {t} is the equivalence class of t under this

equivalence relation.



Example 1.3.14. If A\ = (2,1), then the different A\-tabloids are

1 2 1 3
=" {ts}=—— {t5} =
3 2

2 3
1

3

2

Note that:

2 3
11
Lemma 1.3.15. Suppose t is a tableau and o is a permutation. Then:

R{U = O’ilR{O'.
Proof. Suppose that 7 € R¢,. Then we have the following:

me R, < {to}r={to}
— {tlomo ' = {t}
— onole Ry

<~ TE O'_lRtO'

O

Lemma 1.3.16. &,, acts on the set of A\—tabloids by {t}o = {to}. This

action is well defined.

Proof. Let {t;} = {tz}, so that t; 7 = to for some 7 € Ry,. Then, o~ '7c €
0 'R0 = Ry, » by Lemma 1.3.15. So, {t; 0} = {t; 70} = {ta0}. O

Definition 1.3.17. Let t be a A-tableau. Then t is row standard if the
entries increase along the rows. The tableau t is a standard tableau if the
rows and columns of t are increasing sequences. The tabloid {t} is standard

if there is a standard tableau in the equivalence class {t}.

Definition 1.3.18. We define a A-tableau of type p to be a tableau of
shape A with u; entries equal to ¢, for each i. A A—tableau T of type u is
said to be row standard if its entries increase along the rows and is said to
be semistandard if the entries increase along the rows and strictly increase
down the columns. We denote the set of row standard A—tableaux of type

i by T (A u) and we denote the set of semistandard A-tableaux of type pu
by To(A, ).

10



Definition 1.3.19. Let A be a partition of n. Define ! to be the row
standard A—tableau with 1,2,... n entered in order along its rows. Define
t\ to be the row standard A-tableau with 1,2,...,n entered in order down

its columns. We denote the permutation that sends t* to ty by wj.

Definition 1.3.20. Suppose \ is a partition of n. The row-stabilizer of t}
is called the standard Young subgroup of &,, with respect to a partition A
and is denoted by &,.

Example 1.3.21. Let A = (3,1) and that w) € &,, be the permutation that
sends t* to ty. Then

oo 1]2]3] {21k 314]

where w)y, = (2,3,4).

Now we let e > 2.
Definition 1.3.22. Let A be a partition of n. Then A is e—singular if for
some ¢ we have

Ai+1 = Ajr2 = -+ = A\jre > 0, otherwise, it is e-regular.

Definition 1.3.23. Suppose A is a partition of n and that [A] is the Young
diagram of A\. Then for each node (i,5) € [A] define the e-residue of (i,j)
by:

res((4,5)) =(j—-i) mod e.

If the e-residue of a node (i, j) is r, we say (i, j) is an r-node. The
e-residue diagram of a partition A is defined to be the diagram obtained by

replacing each node by (5 —i) mod e.

Example 1.3.24. Take )\ = (4,2), e =3. Then the e-residue diagram is

0[1]2]0]
210 '

Definition 1.3.25. The rim of a partition X is defined to be the set of all
nodes (i,7) € [A] such that (i+1,j+1) ¢ [A\]. An e—rim hook of a partition A

is defined to be a connected subset of the rim of A containing exactly e nodes

11



which can be removed from [A] to leave a new Young diagram. The e—core
of a partition X is defined to be the partition formed by repeatedly removing
e—rim hooks until no more e-rim hooks can be removed. The e-weight of a
partition A is the number of e-rim hooks which must be removed from [A]

to get the e—core.

Example 1.3.26. Let \ = (42,2,1), e = 3 then

[\ = . — [ | _,H_

Then the 3—core of X is (12) and it has weight 3.

Definition 1.3.27. Let A\ be a partition of n. For [ > 0, define the Ith
ladder to be the set of nodes of the form {(4,5) € N? | j—i+(i—1)e=1}. The
e—ladder diagram of a partition A is defined to be the diagram obtained by
replacing each node (4, j) in [A] by the number j —i+ (i - 1)e.

Example 1.3.28. Let A\ =(4,3,2) and e = 2. Then the e-ladder diagram of
the partition A is

0[1]2][3]
1/2]3
2]3

Definition 1.3.29. The regularization of \ is the partition A whose Young
diagram is obtained by moving the nodes in [A] as high as possible within

their e-ladders. The partition A? is always e-regular.

Example 1.3.30. If X = (6,2,1%) and e = 2, then A\ = (6,5,1) and their

ladder diagrams are:

1[2]3]4]5]

[A] =

>~
=y
|
‘I\DHO
[\)
w
o
ot

EEEEEE

Now we describe the Specht modules for &,,.

12



1.4 Specht modules

Before studying the Specht modules we need to describe the permutation
module M* of &,, on the Young subgroup 6. Let F be an arbitrary field

of characteristic p > 0. So, we define the permutation module as follows:

Definition 1.4.1. Suppose A is a partition of n. Let M* be the vector
space over F' whose basis elements are {t;},...,{tx}, where {t;},..., {tx}

are A-tabloids, with the action
{t}o ={to}, for 0 €G&,.

Then the M* is called the permutation module corresponding to .

Example 1.4.2. From Example 1.3.14 the set {{t1},{ts},{t5}} is a basis
of M1,

Remark 1.4.3. Let A be a partition of n. Then the permutation module
M? of &, is a cyclic F&,-module generated by any given \-tabloid.

Definition 1.4.4. Let t be a tableau. Then the signed column sum K is
defined as the element of the group algebra F'S,, which is obtained by sum-
ming the elements in the column stabilizer of t and attaching the signature

to each permutation. i.e:

K¢= ) sgn(o)o.
O’EC§

Now we can define the polytabloid as follows.

Definition 1.4.5. Let t be a tableau. Then the polytabloid e¢ associated
with this tableau is defined as

€t = {f}Kt
Remark 1.4.6. 1. If t has columns C1,....,C}, then K factors as

K= Ke,...Kc,.

2. The polytabloid e is said to be standard if the tableau t is standard.

13



Example 1.4.7. Let A = (3,2) and suppose t = :13 i 5‘. Then
Ki=(1-(1,3))(1-(2,4))
and
1 2 5 2 3 5 1 4 5 3 4 5
€t = — — + :
3 4 1 4 2 3 1 2

Remark 1.4.8. A polytabloid depends on the tableau t as well as the
tabloid {t}. In addition, all tabloids involved in e have coefficient +1.

Note that: If A = (n), then €12, = 1 2 - n is the only poly-

tabloid and M? is the trivial F'&,,—module. Previously, we constructed rep-
resentations M?* of &, known as permutation modules. Now we consider

the Specht modules that corresponds uniquely to A.

Definition 1.4.9. For any partition A of n, the Specht module S* is the
submodule of M?* spanned by the polytabloids e;.

Example 1.4.10. Consider A = (n). Then there is only one polytabloid,

which is

Since this polytabloid is fixed by &,,, we see that S is the one-dimensional

trivial representation.
The basis for Specht modules S? is given by next theorem

Theorem 1.4.11. [15, Theorem 8.4] The set {e; |t is a standard A—tableau}
is a basis for the Specht module S*.

Example 1.4.12. If A =(2,1), then standard A\-tableaux are

2], [1]3]
and
1 2 2 3
6{12 -
3 1

14



1 3 2
6{2 = -
2 1

3

Thus the set {e,, e, } is a basis of $(>1).

We now will introduce the irreducible modules [15]. All the results and

these theorems are true over an arbitrary field F' of characteristic p.

Definition 1.4.13. Suppose {t;} and {ta} are A-tabloids. Define the inner
product {,) to be the unique bilinear form on M? such that

Loif{ti} = {t};
0 if {fl} * {’tg}.

({t1},{ta}) =

We are now in a position to state the submodule theorem.

Theorem 1.4.14. [15, Theorem 4.9] The module S*/(S*NSN') is zero or
absolutely irreducible, so if this not zero then SAA SN s the unique mazimal
submodule of S* and S*/(S* 0 S*") is self dual.

Theorem 1.4.15. [31, Theorem 2.4.6] The Specht modules S* give a com-

plete list of irreducible &,—modules over C.

Theorem 1.4.16. [15, Theorem 11.1] Let S* be a Specht module over a
field F of characteristic p>0. Then S*/(S* 0 S*") is non zero if and only
if A is p—regqular.

Definition 1.4.17. Let p > 0 be prime. Suppose A is a partition of n and
that A is p—regular. Then, we define

D = SN(S* n M),

The next theorem is an analogue of Theorem 1.4.15.

Theorem 1.4.18. [13, Theorem 6] The set {D* | X\ p-reqular} gives a

complete list of irreducible S,—modules over a field of characteristic p > 0.

Theorem 1.4.19. [15, Corollary 12.2] Suppose p > 0 is prime. Let A\ be
p—regular. Then S* has a unique top composition factor D* = S*[(S*nS*").
If D is a composition factor of SAnSY then D is isomorphic to D for u>\.
If X is p-singular, then all composition factors of S* have the form D" with
D> A
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Definition 1.4.20. Suppose F' is a field of characteristic p > 0. Let A and
p be partitions of n with u is p-regular. Define dy, = [S)‘ : D*] to be
multiplicity of D as a composition factors of S*. The matrix D = (dry) is

called the decomposition matrix of &,,.

1.5 Representation theory of the Hecke algebra

Now suppose that F' is a field of characteristic p > 0 and that ¢ € F\{0}.
Take = 7 4(Sy,). Recall that e is the smallest positive integer such that
1+qg+..+¢°' =0. Let e = oo if no such integer exists. In this section
we use the definitions of Dipper and James [5]. However, Murphy [28] has
shown that the Iwahori-Hecke algebra .77 is a cellular algebra in the sense
of Graham and Lehrer [12].

1.5.1 Permutation Modules

Definition 1.5.1. Let p be a composition of n. Then define
D, ={de&, |t"dis row standard}

which is a complete set of right coset representatives of the Young subgroup
S, =6, x--x6G, in &, Moreover, the set D, consists the unique
element of minimal length from each coset. Furthermore, if w € &, and
d € D, then {(wd) = {(w) +£(d) and T, = T;, T4 for v = wd € G,,. Hence, each
row standard p-tableau corresponds to a right coset of &, in &,,. for each
such row standard tableau t we define d(t) to be the unique element of &,,
such that t = t*d(t). These elements of &,, are called distinguished coset

representatives.

Example 1.5.2. Let = (2,2). Then a complete list of representatives are

=

and

d(tl) = 17d(t2) = (273)7d(t3) = (273)(374)7d(t4) = (273)(172)7
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d(tS) = (273)(172)(374)7d(t6) = (273)(172)(374)(273)
We come to state the main facts and results in this section. First, we

define an analogue of the permutation modules M* of 7 as follows.
Definition 1.5.3. Suppose A is a composition of n. Define

Ty = Z Tun

U)EG)\

Y\ = Z (_Q)_g(w)Tw-

U)EG)\

We define M* = )52 to be the right .#-module generated by .
Example 1.5.4. Let A =(2,1). Then

zyx=1+Ty,and yy =1-¢ 7).

Lemma 1.5.5. /5, Lemma 3.2] Suppose X is a composition of n. Then M*
is a free R-module with basis {x\Ty | d € Dy}. Moreover, if d € Dy and

s; = (i,1+ 1) for some 1 <i<n, then:

qraTy, if i, i+ 1 belong to same row of £*d,

22Ty, , if the row index of i in t\d is less than
A TgTs, =
the row index of i + 1,

qr Tys, + (¢ - D)xp\Ty,  otherwise.

1.5.2 The Specht module of 7

The Specht module is contained in the permutation module M? = 2\ 7.
Definition 1.5.6. Suppose A is partition of n. Define c) € # by

ex=0Tuyn = Y. () My Ty

UEG/\I
Define the Specht module S* by S* = ¢y .
é 2 ‘, then x)\T,, = 1/3 ‘ Then

Example 1.5.7. Take x) =

- 1[3]  4[2]3
ex=23Tp, (1- ¢ 'TY) = g |
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Now we can write the basis of S*.

Lemma 1.5.8. /5, Theorem 5.6] The Specht module S* is a F—free module
with a basis
{eaTy | " wyd is standard}.

This basis is called the standard basis of S™.
Now we define the inner product.

Definition 1.5.9. Define the inner product (,) to be the unique bilinear
form on M?* such that:

¢ D if d =g
(xxTq, 22\Ty) =
0 otherwise

where d,u € Dy. This inner product extends linearly to M?, so (,) is a

symmetric and non-degenerate bilinear form on M.

Theorem 1.5.10. [5, Lemma 4.9] Suppose X is a partition of n. Then
SA(S* 0 SN s zero or an absolutely irreducible self-dual J—module.

Definition 1.5.11. For each partition A of n, define D* to be the right
A~module $*/(S* n SM).

From Theorem 1.5.10 we can state the following corollary

Corollary 1.5.12. Suppose X is a partition of n. Then either D* = 0 or
D? is an absolutely irreducible and self-dual 7#—module.

Theorem 1.5.13. [5, Theorem 7.7] Suppose X is a partition of n and that

F is semisimple. Then
{S"| w is a partition of n}

is a complete set of non-isomorphic irreducible F—modules.
Lemma 1.5.14. Suppose X is e-reqular. Then D # 0.

Theorem 1.5.15. [5, Theorem 7.6] Let F' be a field. Then

{D*| X a partition of n and X is e-regular}

18



is a complete set of inequivalent irreducible 7€ -modules. All these irreducible
FC—modules are self-dual. Moreover, if A and p are partitions of n with A
e—reqular and D* is a composition factor of S*, then A& u, and D> occurs

in SN with multiplicity 1.

Definition 1.5.16. Let A and p be partitions of n with p e-regular. Then,
we define dy, = [S* : D*] to be the composition multiplicity of D* in S,
The matrix D = (d),) is called the decomposition matrix of J# and this

matrix is upper unitriangular matrix and has the form

DH

Note that: if e = co then {S* | p is a partition of n} are irreducible and

the decomposition matrix is identify matrix.

Definition 1.5.17. Suppose 77 = B1 & --- & B, where each B; is an inde-
composable two-sided ideal. Then Bi, ..., Bs are called the blocks of .77.

Lemma 1.5.18. /26, Corollary 2.22] Every irreducible 7—module is a com-
position factor of exactly one block. Moreover, all composition factors of the
Specht module S» lie in the same block. So we can say that two Specht

modules lie in the block if their composition factors lie in the same block.

Corollary 1.5.19. Suppose A and p are partitions of n with u e—reqular.
Then the Specht module S* can have a composition factor D* only if S and

SH lie in the same block.

Recall that the definition of an e—core was given in Definition 1.3.25.
Then

Theorem 1.5.20. (The Nakayama conjecture). Let A and p be partitions
of n. Then the S—modules S* and S* belong to the same block of H if

and only if A and p have the same e—core.
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Now we introduce some useful results about decomposition matrices and
decomposition numbers. Recall Definition 1.3.29 for regularization, then we

can state the following theorem.

Theorem 1.5.21. [16, Theorem 6.21] Let A and u be partitions of n, with

w is an e—regular partition. Then
e [$*: DV =1;
o [S*:DH] =0 if pit AE.

Now we give theorems for computing decomposition matrices indexed by

partitions of e~weight 0 and 1.

Theorem 1.5.22. [16, Theorem 6.4]
Let X be a partition of n and X be an e—core. Then dy, = 0 for every

e—regular partition p which is distinct from \.

Theorem 1.5.23. [16, Theorem 6.5]

Suppose XD NP A€ gre partitions of weight 1 with e—core v and
that A > A®) b oo p MO Then, for 1 <i<e dy@ny o = 1 and dy@yyg) =0
fori+g,j-1.

1.5.3 The LLT algorithm

th root of unity in C where e > 2. Then there exists

Let g be a primitive e
a recursive algorithm that determines the decomposition matrices of the
Iwahori-Hecke algebra ¢ ,(&,,). The algorithm was first published in 1996
[20] where Lascoux, Leclerc and Thibon claimed to solve the decomposition
matrices of ¢ 4(S,) but this claim was proved since in [2] by Ariki. This
recursive algorithm is called now the LLT algorithm. This section shows
how to calculate the decomposition matrices of ¢ 4(S,) using the LLT
algorithm. Recall the Specht modules of # are indexed by partitions A of
n, also recall the irreducible modules D*, where 1 is an e-regular partitions
of n. Let dy, = [S* : D*] be the composition multiplicity of D* in S* and
D = (dy,) be the decomposition matrix of ¢ 4(&,). Now we describe the
LLT algorithm.

Definition 1.5.24. Let A be a partition. A node z is said to be addable if
x ¢ [A] and [Auz] is the diagram of a partition and a node x € [A] is said

to be removable if [A\z] is the diagram of a partition.
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Now let v be an indeterminate over C and let F,, denote the C(v)-vector
space with basis the partitions of n, for all n > 0. Let A, v be partitions.
If the e—residue diagram of v is formed by adding s nodes to the e-residue

diagram of A, all of residue r, then we write A 2, v. Define

() te= X Wy

)\—:)V

where

N,(\v)y= > (#{7, .~ is an addable r—node of v above v}-
ve[VI\[A]

#{~ :~ is a removable r—node of A above v }).

We extend this definition linearly in order to define B 1) for B € F,.
The algorithm works by calculating the crystallized decomposition matrix
of ¢ ¢(6,) which is a lower unitriangular matrix defined in [20] with the
same structure as the decomposition matrix of ¢ 4(S,,), but whose lower
triangular entries are elements of vN[v]. By Ariki’s Theorem [2], the decom-
position matrix of ¢ 4(&,,) is then obtained by setting v = 1. Let dy,(v)
be the entry of the crystallized decomposition matrix in the row indexed
by the partition A and the column indexed by the e-regular partition v. If
v is an e-regular partition of n, define [B.(v)] = ). dx,(v)A € F,, where

A1
we associate this with the column of the crystallized decomposition matrix

indexed by v. Since the LLT algorithm is recursive, we assume that we know
[B.(7)] where 7 is a partition of m and either m <n or m =n and v > 7.
This is reasonable, since if n = 1 the crystallized decomposition matrix is
simply the identity matrix. Now [B.(v)] is found by the LLT algorithm as

follows.

1. Write the e-ladder diagram of v and construct the partition 7 by
removing all nodes of maximal ladder number. Suppose there are s

such nodes and they have common e-residue 7.

2. Assume we know [B.(7)] and set C, = [B.(7)] 1. Then C, is of the

form

Cy =3 () =[Be(V)] + 3 oy (v)[Be()] (1.1)

v 127
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where ay,, (v) € N[v+v7'] and ¢, (v) € N[v,v71].

3. Find the largest partition, 10, such that ¢, (v) ¢ uN[v] and v # po. If
no such partition exists then C,, = [ B.(v)] and we are done. Otherwise,
a0 (V) is the unique polynomial in v +v7! such that the coefficient of
v* in ., (v) is equal to the coefficient of v* in ¢, (v), for all i <O0.
Replace C, by the element C,, — ., (v)[Be(p0)] and repeat step (3)
until all the coefficients c,,, (v) belong to vN[v] for all v > p.

Example 1.5.25. Let v = (4,2) and e = 2. We want to find [B.(v)] so

1. Find 7. The e-ladder diagram of v is

0[1]2]3]
1]2

and the e-residue diagram of v is

0[1]o[1]
10 '

Then 7 is obtained by removing one node of residue 1. Thus 7 = (3, 2).

2. We find that
[B.(7)] = (3,2) +v(3,1%) +v*(2%,1).

So we calculate C,, = [B.(7)] 11

0[1]0] 0]1
0[1]0] 2 o[1]o]1] [o]1]o
110 +v|1] +lelllO 0T
0] 0]
0[1]o[1] (1)1‘0‘ 0]1 (1)(1)
+ov|1 +0? B +0?[1]0]+03 .
= 0 0
0 1 UEL

Hence, C, has the right form so

[B.(v)] = (4,2) +v(3%) +v(4,1%) +v*(3,1%) + v%(2%) + v3(2%,1%).

Example 1.5.26. Let v = (7) and e =2. We want to find [B.(v)] so
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1. Find 7. The e-ladder diagram of v is

[0]1[2]3[4[5]6]

and the e—residue diagram of v is

Lof1]o]1]o]1]0]

Then 7 is obtained by removing one node of residue 0. Thus 7 = (6).

2. We find that
[B.(7)] = (6) +v(5,1) + v(4,12) +v*(3,1%) + v*(2,1%) + 3 (15).

So we calculate C,, = [B.(7)] 19

0[1]0]1]
roTil0 a0 1]+o 2t l0lLl0], g
1 —
— 10}
0]
0[1]0] 0/1] 1
1 L 0]
+ 0% +220 +0°
0] ER 1]
1] o 0]
— 1]
0/1/0]1]0]
1.0 [o[io[1]o1T0]+ [otilolifo],
i 110 [
0]
0o/1[o]1]0] 0[1]0]1] (1)10‘
2 0
+ovl|1 +0°1110 +o
0] 0 0]
— — 1]
0]
0[1]0] 0[1]0] 0f1 1]
11 11 110 10
+v2]0] +v2]0] +03 0]+ 1]
11 11 1] 10
10} 10} 0] 11
10}

Hence, C), is not of the right form because the partition p = (5,2) has the

23



coefficient 1 ¢ vN[v]. Thus, a,,(v) = 1. So, we subtract [B.(5,2)] from C,

and we get

(7) +(5,2) +20(5,1%) +v%(4,2,1) + v(3,2,1%) + 20%(3,1%) + v3(2%,1%) + 3 (17)
—[(5,2) +v(5,1%) +v%(4,2,1) + v(3,2,1%) + v*(3,1%) + v3(2%,1%)]
= (7) +v(5,1%) + v*(3,11) + 03 (17).

Now this is of the correct form. Hence,
[Be(v)] = (7) + v(5,1%) + v*(3,1%) + v*(17).

In Chapter 2, we assume e = 2 and use a slight variation of the LLT
algorithm to compute decomposition numbers. If 7 is an e—regular partition

of m, then if 0 < r<e and s > 1 we have

[Be(M] 1= >0 auw(v)[Be(p)]

pEm+s
where ay,, (v) e N[v+v7!].

Lemma 1.5.27. Suppose v is an e—reqular partition of m and that there
exist 1 < s and 0 < r<e such that rows 1,2,...,s of [v] contain a removable
r—node and the partition T formed by removing these s nodes is e—reqular.
Then

[Be()] 1= X ()= [Be()] + 3y (0)[Be ()] (1.2)

| 2>974 |27
where o, (v) € N[v+v71].

Proof. Since [Be(7)] 5= Y. auw(v)[B(p)] it is sufficient to show that if

pEm+s

[Bo(T)] 1= > cu(v)p, then ¢, (v) =1 and ¢, (v) = 0 if v ¥ . We have

pEm+s

[B.(7)] = Z dyr(V)T,

T>O

where d.- =1. Then
Th=v+ Y Bu(v)u

VDL

and if 7 > o then since v is formed by adding nodes to the first s rows of 7
then any partition & formed by adding s nodes to ¢ will have the property
that v > [i. O
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1.5.4 Adjustment matrices

Let F' be a field of positive characteristic and recall e > 2 is the smallest
positive integer such that 1+ ¢+ ... + ¢! = 0 with e = oo if no such integer
exists. In particular, if e = oo then the decomposition matrix is simply
the identity matrix. Thus, suppose e is finite and assume 4 = At 4(Sy,)
where ¢ is a primitive e’ root of unity in C. Let D be the decomposition
matrix of 5 4(6,) and Dy be the decomposition matrix of % which can
be computed by using the LLT algorithm [22].

Theorem 1.5.28. There exists a square lower uni-triangular matriz A

whose entries are non-negative integers such that
D = DyA.

Then A is called an adjustment matriz.

Remark 1.5.29. Let p be an e-regular partition and suppose B(p) is the
column of the matrix D and By(u) is the column of the matrix Dy both of
them indexed by p. If A is an e-regular partition, then

B(\) = Bo(A\) + X aun Bo(v)

A>v
where ay,)\(v) € Zsg.

Theorem 1.5.30 ([3],Corollary 6.3). The decomposition matriz D depends

only on e and char(F'), not on the choice of q.

In general the adjustment matrices are not known. However if part of
the decomposition matrix of 5 is known, we can use it to find part of the

adjustment matrix. The next example comes from [16, Appendix 1].

Example 1.5.31. Consider e =2 and n = 5. Assume we known Dg by the
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LLT algorithm which is

(6) (41) (3,2)

(5) 1

4,1) | - 1 .
(3,2) . . 1
(3,12) | 1 : 1
(22,1) | . . 1
(2,13) | . 1

1 \1

The adjustment matrix A is

6) (1
@ |. 1
B2 \1 .1

The decomposition matrix D = DyA is

6) 41 ,2)

(5) 1
(4,1) . 1 :
(3,2) | 1 : 1
(3,12) | 2 : 1
221 | 1 . 1
(2,13) | . 1

@ \1
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Chapter 2

Some results for

decomposition numbers for

%(C,—l(gn)

2.1 The decomposition numbers for all partitions
of the form )\ = (a,c, 1%).
2.1.1 Notation

Throughout this section we assume that e = 2 and that F' = C, that is
S = At -1(6,). The work in this chapter will appear in [1].

Definition 2.1.1. Define I' to be the set:
I :={(a,c,1°) | (a,c,1°) is a partition of some integer n }

where a, b, c are positive integers.
In this section, we write a = ¢ to denote a = ¢ mod 2 for all a, ¢ > 0.

Definition 2.1.2. Let \ be a partition of n. Then ¢()\) denotes the number

of non—zero parts of A\. We define the set:
' = {1 is a partition | v is 2-regular and either ¢(v) = 2 or £(v) = 3}.

The Specht modules that we consider in this section will be labelled by
partitions A\ such that A eI
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Definition 2.1.3. If v is 2-regular, then we define [B.(v)]r = >_ dy,(v)A

A1
el
which we associate with the column of the crystallized decomposition matrix

indexed by v corresponding to only the rows indexed by partitions in I.

Lemma 2.1.4. Suppose v is a partition of n with v 2—regular and that
(v)>4. Then [B.(v)]r=0

Proof. Let A € I' and suppose o is a 2-regular partition of n. Now from
Theorem 1.5.21 the decomposition numbers dy, = [S* : D?] can only be
non-zero when o > A Since A? has the form either A\ = (2,9, 2"),
M= (2,y) or AE = (2') for some 2',y', %" then if ¢ > A then ¢ has

the form o = (z) or o = (z,y) or o = (z,y, z) for some z,y, z. O

2.1.2 Statement of main theorems

Our main results are the following theorems:
Theorem A. Suppose v = (x,y,2) e . Then

1. Suppose x =y # z. Then

y—z-1 z-y-2
2 2 | 4=2f32ke1 2f+2k+1 2f+2k-1
[Be(z,y,2)]r = > ol o -2k-1,2+2+2f,1Y" )
f: k=0
—z— 1
2 —Y-
+ Z Z ap(x = kyz+ 1+ 2f,1972/h1y
=0 k=0
ol 2+k_1J, if k even,
where oy, = y-2f+k+3
o ifk odd.

2. Suppose x #y # z. Then

y—2-1
2
[Be(z,y,2)r = ) v (:U Ok, z+ 1+ 2f 1972+2k-1y,
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3. Suppose x #y=z. Then

y—z 2 _
[B (33 y,z) Z Zak(:v k,z+2+2f,1Y" 2f+k- 2)

f=0 k=0
y; z-y
Z Z -2 +2k+ (.%' 2/€Z+1+2f 19~ 2f+2k— 1)
f=0 k=0

Wl 2+k_2J, if k even,
where ay, =

y—2f+k+2

= ifk odd.

4. Suppose x =y =z. Then

2 242k 2|
|:B (1’ y,Z)]F Z ’Utyi (.%' 2k z+2+2f 13/ 2f+2k- 2)
=0 k=0
y—z2-2 z-y-2
2 2 +2k+
" Z ULM (m o — 22+2+2fly 2f+2k)
=0 k=0
y—z—4

2 IT7Y f+
+ ) R (:c k,z+3+2f,1972/k=3)

20 =0
Y 272$ y-2
2 —Yy- f+
N Sl (wm k1, 2+ 34 2,192 h2)
20 k=0
zy-1 +k+
+ lykl(x k,z+1,1971%F),
k=0

Theorem A describes [B.(v)]r, where ¢(v) = 2 or ¢(v) = 3. The case

where ¢(v) =1 was considered by James and Mathas [5, Theorem 3.2], [26,
p112].

Theorem 2.1.5. [5, Theorem 3.2/ Suppose e = 2 and that v is 2—regular
and let v =(z). Then

e If x is odd, then

z—1

[Bu(a)]r = 3 v (a - 2k, 120,

k=0
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e If x is even, then
=1l n k
[Be(2)]r = > ol 2 (@ -k, 1%).
k=0

Definition 2.1.6. Let A be a partition. We say that X\ is a hook partition
if A has the form (n - j,17) where 0 < j<n.

The next theorem describes the decomposition numbers corresponding

to rows labelled by hook partitions, where e = 2.

Theorem 2.1.7. [/, Theorem 1] Suppose e = 2 and o = (n - j, 1) is a
hook partition. Let (a)f = (n—1i,i) be the regularization of . Then, for
0<j<n~-1

UL%J, if i1<j<n—1i andj=1,
da?<a?)R(’U): v%, if i<j<n-—iand j#i=n=0,
U%H, if i<j<n—iand j#i#n=0.
Furthermore, da;}V(U) =0 for all other 2—regular partitions v.

Combining Lemma 2.1.4, Theorem A and Theorem 2.1.5 we obtain the

second result which gives the composition factors of S* for A eT.

Definition 2.1.8. If A is a partition, define B,(A) = >*  dy,(v)r which

v 2-regular
we associate with the row of the crystallized decomposition matrix corre-

sponding to S*.
Theorem B. Suppose A = (a,¢,1°) €' and X is not a hook partition. Then

1. Suppose a=b#c. Then

a-1 n-y

BN =Y > 5@, y,n -2 - y).

yig z=maz{a,a+b-y+1}
v= z#e
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2. Suppose a=b=c. Then

a-1 n-y b2
BT‘()\): Z Z ULTJ(x,y,n—x—y)

y=c—1z=maz{a+1,a+b-y+2}

y#c x#c

a-l n-y b+2
+ 2. W2 @y n-2-y)
y=c+1 z=maz{a,a+b-y+1}
=c

yfc z
a—2 n-y le
+ Z UQ(x7y7n_$_y)
Z;E x:maz{(;,gg—b—y+2}
a n-y b+4
Y ey
Y=C r=maz{a+2,a+b-y+2}
y=c T=C

3. Suppose a #b. Then

a-1 n-y
Br()‘): Z Z ozb(x,y,n—x—y)
Y=C€ z=maz{a,a+b-y+1}
y=c¢ r=c
a n-y
+Z Z 5b(x7y7n_x_y)
Y=Cr=maz{a,a+b-y+2}
y=ce x#c

a n-y b+2
s D o7
y=c+1l z=maz{a,a+b-y+3,y+1}
y#c T#c

J(x7y7n_$_y)

a-l n-y b+2
B
y=c-1z=maz{a+1l,a+b-y+3}

y#c x#c
min{a-1,b+1} be2

+ > vlTJ(a+b—y+1,y,c—1)

l@,yn-z-y)

y=c+1
y#c
b+4
T ifcta
where ayp = ’ ’
b .
ULQJ, if c=a,

v if ¢ £ a,
where By, = . fe#
ol if ¢ = a.

Combining Theorem B and Theorem 2.1.7, we obtain the decomposition
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numbers for Specht modules S* where X € T.

2.2 Proof of Main theorems

2.2.1 Proof of Theorem A

Before proving Theorem A, we state some relevant results.

Theorem 2.2.1. (Row and column removal)[5, Theorem 1.2] Suppose X =

(Ay ey Ni) and v = (11, ....,v5) are two partitions of n and v is 2-regular.
1. If A1 = vy then dyy(v) = dix,,..... ) (w2 (V)

2. Ifi=j then dx,(v) = dx,-1,... \-1) (1 -1,ny-1) (V)

Let [Be(v)]s = >, dx(v)A € F, which we identify with the portion
£(N)<3
of the column of the crystallized decomposition matrix indexed by v corre-

sponding to only the rows containing partitions with at most 3 parts.

Proposition 2.2.2. [23, Theorem 3.1]
Suppose e =2 and that v = (v1,12) is a two part 2—regular partition of n.

If vy is odd and vs is even, then for vy > 2
[Be(V)]3 = (v1,v2) +v(vi, 12 - 1,1) +v2(V1 -1,19,1).

Proof of Theorem A We prove this theorem by induction on n and on
the dominance order . Theorem A is trivially true for n =0,1. So suppose
v e TR is a partition of n where n > 2 and that Theorem A holds for all
partitions o € I'® where o - m<n or o - n and v > 0. Suppose that 0 < r<e
and that for some s > 1, the first s rows of [v] have a removable 7—node. Let
7 be the partition whose diagram is formed by removing these s nodes from
[v]. By the induction hypothesis, we know [B.(7)]r. Note that if A € T’
and Ao 2%, X then Ao € I'. Hence to find [B.(v)]r we first want to consider

[Be(7)]r 15

Definition 2.2.3. Suppose v is a partition of n. Define = = Z(v) to be the

set
{prn|v>u, pis 2-regular, u lies in the same block as v, £(u) < 3}.
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From equation 1.2, we have

[Be(T)Ir 1= [Be()]Ir + 3y (0)[Be(w)]Ir

v
where a,,(v) € N[v+v™']. We look for the coefficients c,, (v) of u in
[Be(7)]r 15, where p e 2. If ¢, (v) € uN[v] for all p € =, then [B.(v)]r =
[Bc(7)]r 15. Otherwise, we find the largest partition pp € E such that
cuor(v) ¢ vN[v] and replace Y. ¢ (V)p by D ¢ (V)i = g (V) [Be(1o) -

v v
We repeat until all coefficients ¢, (v)p € vN[v] for all 4 € Z. Now, we have

4 cases to consider. Throughout we assume v = (z,y,z) € I'?, that is v is
2-regular and ¢(v) =2 or 4(v) = 3.

Case l: x=y#z2

The Young diagram of v is:

O ‘i‘
hd =1 ‘j‘
0f~]j]
0, if z even,
where i =
1, if z odd,
1, if z even,
where j =

0, if z odd.

Let 7 be the partition obtained by removing the highest i—node from v.

Hence 7 is obtained by removing one node of residue i. So
T = (17_'1,y,2)-

By the induction hypothesis

2 2 T B _ o
[Be(z-1,y,2)]r = T (- 2k -1, 2+ 14 2 10722
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Now we find [B.(7)]r 1i. To do this, we add one node of residue i to each
partition (z -2k -1,z +1+2f,1¥"2/+2k=1) in all ways such that we obtain a

partition which appears in [B.(v)]r.

0 1‘.”.”: ..... ‘j‘ 0 1‘.”.”: ..... ‘j ‘i‘ 0 1‘ ........... e ‘j
1 ....... ‘] ‘ Ef> UO 1 ....... ‘] ‘ vy 1 ....... ‘j ‘Z
| | |
0 1‘.”.”: ..... ‘j
R
+o?t [
F
K2
Hence
uzlw
2 —2f+2k 1 2 f+2k—1
[B.(T)]r 1% = Z > ol Ww -2k, z+1+2f 1Y )
f=0 k=0
U g2
* R (o~ 1,2 24 2 1u-2 2kt

y—2f+2k+3+2i

Y
2 2 N _ U
+ Y Y W T w2k -1, 2 14 2f 19722

2 —2f+2k+
- S Wl (ol 1,24 24 2f, 12042k

f=0 k=0
S oyl - _ o
+ Soap(z -k, z+1+2f, 197241
f=0 k=0
L vlyﬂfjilJ if k& even,
where a; = o Fiis ~
oL i odd,

Note that if [ = 2k + 1, then

y-2f+2k+3+2, y-2f+1+3

e I B
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since,
|0, if y odd,
1=
1, if y even.
Now we show that in this case [Be(v)]r = [Be(7)]r 5. Let pe Z. We
look for the coefficient of u in [B.(7)] 4. If € =, then u has one of the

following three forms:

N R ‘j‘l‘ O e ‘j‘
[Ml]zl ................. ‘j‘ or [,u2]:1 ................. ‘j‘l‘
0l ‘j‘ 0l ‘j‘
O e ‘j‘
or [Mg]zl ..................... ‘]‘
ol T717]

For each puy, where 1 < k < 3, there is a unique partition oy, such that o
is obtained by removing an i—node from pi.

Each partition g comes from a partition oy such that:

0 ..... ‘] ‘ b 0 ..... ‘] ‘ i ‘
[o1] = | L[ ‘ j ‘ il ST . ‘ j ‘ )
O ‘] ‘ 0 ‘] ‘

Thus the coefficient of 1 in [B.(7)] 1 is the same as the coefficient of
o1 in [B.(7)] which is in vN[v]. Each partition g comes from a partition

o9 such that:

0 ..... ‘J ‘ y O e e ‘j ‘
[o9] = | L[ ‘j‘ P T P ‘j‘l‘
0l ‘j‘ i ....... j

Thus the coefficient of p in [B.(7)] 1% is the coefficient of o9 in [Be(T)]
multiplied by v which is in vN[v]. Each partition u3g comes from a partition

o3 such that:

0 ..... ‘j ‘ o O e ‘] ‘
[o3] =] 1] ‘ j ‘ il P ‘] ‘
0l ‘] ‘ 0l ‘] ‘ i ‘

Thus the coefficient of u3 in [B.(7)] 1% is the coefficient of o3 in [B.(T)]
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multiplied by v? which is in vN[v]. Since ¢, (v) € vN[v], for all y € =
we have [B.(v)]r = [Be(7)]r 1} as required. Hence, we have shown that
Theorem A holds for all partitions described in Case 1.

Case2: x#y#z

First, suppose that z > 0. The Young diagram of v is:

N R ‘i‘
[V] = ‘i‘
0l ‘i‘

1, if z even,

0, if z odd.

where 7 =

Let 7 be the partition obtained by removing three i—nodes from v. So
T=(x-1l,y-1,z-1).

By the induction hypothesis

2 y=2f+2k-2

[Bo(z-1,y-1,2-1)]r = T (p 2k -1, 2+ 2f 1V 2422,

Now we find [B.(7)]r t5. To do this, we add three nodes of residue i to
each partition (z -2k -1,z +2f,1¥"2/*26=2) in all ways such that we obtain

a partition which appears in [B.(v)]r.

0 1 ................. y y
gy R U NG
Lo ‘] ‘ 3 N
i i

|0, if z even,
where j =

1, if z odd.
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Hence

y—z2-1 z-y-1

. 2 2 ofioh-242i ~ B o

Bo(MIeth= Y Y o7 (g m 2k 2 14 2f, 197220
f=0 k=0
y—2—1 z-y-1
2 2 T _ } o

- T (- 2k, 2+ 1+ 2f 1972 2R

f=0 k=0

since

Z.:

0,
1, if y odd.

if y even,

Now we show that in this case [Be(v)]r = [Be(7)]r 15 Let pe = We
look for the coefficient of y in [B.(7)] 15. If 1 € Z, then p has the form:

0

1

0

Now we see that, for p € = there is a unique o such that ¢ is obtained

by removing three i-nodes from p. The partition p comes from a partition

o such that
O ‘]‘
[U]:l ................. ‘j‘
0f~]j]

) O ................................... ‘]‘Z‘
ﬂ)'UO | BRIV IV ‘]‘Z‘
0~ Tj[d]

Thus the coefficient of p in [B.(7)] 1% is the same as the coefficient of o

in [B.(7)] which is in vN[v]. Since ¢, (v) € vN[v], for all € =, we have

[Be()]r = [Be(T)]r 15.

Secondly, suppose z = 0. This implies x is even and y is odd. We separate

this case into two cases. First, when y > 1. In this case the Young diagram

of v is:

0

[v]

1

Let 7 be the partition obtained by removing two highest 1-nodes from v.

So

T=(x-1,y-1).

37



By the induction hypothesis

y=3 z-y-1
2 2 T _ R o
[Be(T)]r =, v[%J(QE_2]{;_1’2+2f’1y—2f+2k—3)
f=0 k=0
y-3 z—y-1
2 2 —2f+2k+ - B .
n Z U[%J(QJ—2]{—2,2+2f,1y72f+2k72)
f=0 k=0
y=-3 z-y-1
23 ~2f+2k - - -
- T (g m 2k 1,14 2, 1922y
f=0 k=0

Now we find [B.(7)]r 13. To do this, we add two nodes of residue 1 to
cach partition (z — 2k — 1,2 + 2, 1v-2/*2k=3) (3 — ok — 2,2 + 2, 1v-2/+2k-2)
and (z-2k-1,1+2f, 13/’2f+2l:“"2) in all ways such that we obtain a partition
which appears in [B.(v)]r.

0 1‘ ............ ‘0‘ 0 1‘ ................. ‘0‘1‘
1] ‘0‘ 21 ¢ | 1] ‘0‘1‘
—> U
1 1
0 1‘ ................. ‘1‘
o[l [ORE
1] ‘0‘ 21 4 1 ‘0‘1‘
; — o]
f 0
: i
O 1] 0l1
0 1‘ ............ ‘0‘ T ‘ ‘ ‘
N [1] 21 o [
oo :
0]
: 0

Note that: in the second case, that is when
(z-2k-2,2+2f, 1y—2f+2/%—2) 2L (z -2k -2,3+2f, 1y—2f~+2/§—1)

we do not get a partition when & = x_Ty_l and f = yT_?’ We split this formula
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into two cases to obtain

y 3 x— -1

[B (T)FTQ Z UM(x Qk 3+2f 19~ 2f+2k- 3)

k\
ke C
C.okq
C)

2 L1!—2f+

+
]
<

o -2k - 2,3+ 2f, 1972/ +2k-1y
(2.1)

T

oo
Eal
i
o

+

L (g 21,3 42,1772

z-y-=1
2

NGRINGE

[y 2f+2k

+

v V(2 - 2k, 1+ 2f, 1972/ +2k-1y,

k=0

*Hhx
o

Now we can see that:

y-3 z-y—1

2 T 2 oy
S W (o), 34 2f, 1720423y

<
ke ()

DR

k=0

1 z—y-1

2 = 2f+2k 1
v

(2.2)

8

Vo - 2k, 1+ 2f, 1972/ +2k-1y

T:
—_
ESl

Also

o (- 1,34 2,17°272)

y=5 z-y+1 (2-3)
2 2 "
-y R (g ok 3 4 of 102023,

and

-

y-3 z-y-

N

y 2f+ k

ol l(z -2k, 1+ 2f, 1v-2/+2k-1)

~

=0 k=0
y—5

z—y—1

2 2 +
-3 S R (g o) 34 2, 172423y (2.4)
=0

~
I
o

-

T

y—
2

2
i o5
k=0

1,
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Now if we calculate (2.3)+(2.4), then we get the formula:

y=5 z-y+1 z—y—1
2 2 Fr 2 Y 5 -
3 L (4 ot g4 of 1w 2T v2ke3) > 55 (2 — 2k, 1, 194201,
f=0 k=0 k=0
(2.5)
Finally, note that
y=1 z—y-1
2 2 _of.
Y ol (g ok, 14 2f, 1022
f=1 k=0
T-—y—
2 Yy
+ 3 Wl )
k=0
y=1 z-y-1
2 2 f+
-3 S W (g ok 14 2, 12 2Ly
f=0 k=0
since y is odd. Hence, we can write the formula (2.1) as
%3 z—y—-3
2f+2k
[B.(7)]r 14 = Zvy o -2k - 2,3 +2f,1972+21) | (2.5) 1 (2.2)
f=0 k=0
y-1 z—y-1
2 2 +
S Y I (ol 14 2f 1922
f=0 k=0
gég 17373
f+
P ok - 2,34 2f 10202
f=0 k=0
y=5 z-y+1
2 2 +
N T2 (o 34 o f, 1v-2T 2R3y,
f=0 k=0

Now in this case [B.(7)]r 13= [Bc(¥)]r + Y. o (v)[Be(p)]r, where

[
au(v) # 0 for some p € 2.

Lemma 2.2.4. Let v = (z,y) where x is even and y is odd and suppose that

weZ. Then u has the form

0 .......................... 0 1 . . .
(1] = 01] 0] ‘=(w—2j,y+2j), 0<j
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or

O [ ermmmmmee e ‘0‘1‘
(1] =1 H -------- [0]1] = (z-2j,y +2j—2m,2m),j >0, m >0,
0 ....... 1

Now recall that 7 = (z -1,y = 1). Let u € E. We want to look for the
coefficient of ;1 in [B.(7)] 1. Firstly, take the first case for p which is

e {(.%'—2],:[/4'2])}

For each pu, there is a unique partition o such that o obtained from
by removing two nodes of residue 1. Now p come from the partition
o=(x-2j-1,y+2j-1) such that

O ‘0‘20 N R ‘0‘1‘
[U]_l ............ ‘O‘ v T . ‘0‘1‘ :

So the coefficient of p in B.(7)] 1} is the same as the coefficient of ¢ in
[Bc(7)] which is in vN[v]. Secondly, let u € {(z - 2j,y + 25 — 2m,2m)|j >
0, m > 0}. There are three possible partitions o such that o is obtained

from p by removing two nodes of residue 1.

O ‘0‘2.1 [ ‘0‘1‘
[o1] = 1] ‘0‘ 200 [ ‘0‘1‘
ol ‘1‘ 0l ‘1‘

So the coefficient of u in B.(7)] 13 is the same as the coefficient of o1 in
[B(7)] which is in vN[v].

O ‘0‘2.1 O ‘0‘1‘
[oo] =[ 1] ‘1‘ ikt S T PR ‘0‘1‘
0l ‘0‘ ol ‘1‘

O ‘1‘2.1 O ‘0‘1‘
[og] =| L] ‘0‘ i I DR ‘0‘1‘
0l ‘0‘ ol ‘1‘

So the coefficient c,,, (v) of  in B.(7)] 13 might not lie in vN[v].
Now we look at the coefficients of o9 = (x —2j — 1,y + 25 — 2m,2m —
1) and 03 = (z-27,y+2j-2m—1,2m—1) in [B.(7)]. By using Proposition
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4.2.2 we see that:

. v, ifj=0and m=1,
the coefficient of o9 =
0, otherwise.

v, ifj=1and m=1,

the coefficient of o3 =
0, otherwise.

Therefore, if = (x,y-2,2) or pp = (x-2,y,2) then ay, (v) = 1 and o, (v) =0
for all other n € Z. Note that if x =y + 1 then (z —2,y,2) is not a partition.
In this case ay, (v) =1 for p = (z,y-2,2) and oy, (v) = 0 for all other n € Z.
Soif x # y +1 then

[Be(W)]r = [Be()Ir 13 ~[Be(z,y = 2,2)]r = [Be(z - 2,9,2)]r.
And if 2 =y +1 then
[Be()]r = [Be(7)Ir 13 ~[Be(z,y - 2,2)]r.
Now we find [Be(z,y —2,2)]r and [B.(x - 2,5,2)]r by using the induction

hypothesis:

2 y=2f+2k-3

[Be(z,y-2,2)]r = Y T (2 - 2k, 3+ 2F, 1972263y (9.6)
f=0

And

2 T 2 ook ~ ~ -~
SO W (p m 2k - 2,3+ 27, 122y (97
f=0

Hence, if z # y + 1 we subtract (2.6) and (2.7) from [B.(7)]r 13 we get:

[Be()]r = [Be(n)]r 13 ~[Be(z,y = 2,2)]Ir - [Be(x - 2,9,2)]r

1 z—y-1 o
2 y=2f+2k-1

T (1 2k, 1+ 2, 197221,

i
I

o
ESl
i

o
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And if z =y + 1 then

-3 S Wl B ofh 14 2, 122k,

Second, if y = 1.

In this case the Young diagram of v is:

[V]:(l) ............ ‘1‘

Let 7 be the partition obtained by removing the two 1-nodes from v. So

T=(x-1)

and this is not covered by the induction hypothesis in Theorem A. Thus, we
use Theorem 2.1.5 to find [B.(7)]r.

M

T—

v';(x -2k -1, 121:“‘).

ol

[Be(T)]r =

I
Il

0
Now we find [B.(7)]r 1. To do this, we add two nodes of residue 1 to
each partition (x — 2% -1, 12]”“) in all ways such that we obtain a partition

which appears in [B.(v)]r.

01 0] (1) (e 0]1]
a =Ll
o] i
Hence,
[Bo(r)]r th= 3 o (a — 2k, 12571,
k=0

Now we show that in this case [Be(v)]r = [Be(7)]r 13- Let pe = We
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look for the coefficient of p in [B.(7)] 13. If € Z, then p has the form:

O ‘0‘1‘.
1

Now we see that, for u € = there is a unique o such that o is obtained by
removing two nodes of residue 1 from p. The partition g comes from a

partition ¢ such that

o] =[0]r0) 2 (SOl

Thus the coefficient of u in [B.(7)] 13 is the same as the coefficient of o
in [B.(7)] which is in vN[v]. Since ¢, (v) € vN[v], for all € =, we have
[Be(v)]r = [Be(T)]r 13-

Hence, we have shown that Theorem A holds for all partitions described

in Case 2.

Case 3: v #y==z2

The Young diagram of v is:

O ‘ i ‘
[I/] S I T D ‘ i ‘
0f~]j]
0, if z even,
where i =
1, if z odd,
1, if z even,
where j =

0, if z odd.

Let 7 be the partition obtained by removing the highest two i—nodes

from v. So

T=(x-1,y-1,2).
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By the induction hypothesis

[Be(x-1,y-1,2)]r Z ZQ:

Now we find [B.(7)]r T2. To do this, we add two nodes of residue 7 to each
partition (z—2k—1,z+1+2f,1¥"2/+2k=2) in all ways such that we obtain a

-2 +2k

Vr-2k-1,2+1+2f, 1972 +2k-2)

partition which appears in [B.(v)]r.

01 H 01 [ 517 (1)1 ______ m """" FiKa
L[] 2 o (1G]] ot 1
i i n
0 1‘ .......... ‘]‘
s E=rin
+ v
F
K2
Hence,
uz?m
2 +
B = 3 Y o552 ok 2 1 24 2f, 12202

f=0 k=0
y—2-2 xz-y-1

. 22: 22: = 2f+2k+21

Vo -2k, 2 + 1+ 2f, 1972/+2k-1)

v
f=0 k=0
y—z-2 x-y-1
2 2 2f+2k+2+22
+ T (- 2k -1, 2 + 24+ 2f, 1972 2Ly
f=0 k=0
y—z-2
2 Ty
= S ap(w—k,z+2+2f, 1972 F2)
f=0 k=0
y—z—2 z-y—-1
2 2 2f+2k+1
+ T (= 2, 2+ 1+ 2f, 1972 2Ly
f=0 k=0
b ol 2+k_2J, if & even,
where aj = i -
52 i E odd.
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Note that: if
0, if y even,

1, if y odd,

Z.:

then Ly72f§2lz‘+2ij = [y72f+2];+1j. Moreover, if [ = 2k + 1, then [73/7#*22’;*2*2” =

2
—2f+1+2
|22 )

Now we show that in this case [Be(v)]r = [Be(7)]r 1. Let pe = We
look for the coefficient of y in [Be(7)] 15. If u €  then p has one of the

following forms:

[N ‘]‘Z‘ [N ‘]‘Z‘
[,ul]:l ................. ‘j‘l‘ or [,ug]:l ..................... ‘]‘
- ‘j‘ - ‘j‘l‘
[ ‘]‘
or [M3]:1 ..................... ‘]‘Z‘
0 ]jli]

For each puy, where 1 < k < 3, there is a unique partition oy, such that oy

is obtained by removing two i—nodes from py.

Each partition g comes from a partition o such that

0 ..... ‘j ‘ v 0 ...... ‘] ‘ i ‘
[o1] = | L[ ‘j‘ = T . ‘j‘l‘
0l ‘] ‘ 0l ‘] ‘

So the coefficient of p1 in [B.(7)] 15 is the same as the coefficient of o7 in
[Bc(7)] which is in vN[v]. Each partition pug comes from partition o2 such
that

0 ..... ‘j ‘ . O [-orermmemmee e ‘j ‘ i ‘
[o9] = | L[ ‘ j ‘ B I T P ‘] ‘ )
0l ‘] ‘ 0l ‘] ‘ i ‘

Thus the coefficient of up in [B.(7)] 14 is the the coefficient of oy in [B.(7)]

multiplied by v which is in vN[v]. Each p3 comes from a partition o3 such
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that

0 s ‘j ‘ v O e e ‘j ‘
[o5] =| L[ ‘j‘ il T P ‘]‘Z‘
0f - [j] 0[]

Thus the coefficient of p3 in [B.(7)] 1% is the the coefficient of o3 in
[B(7)] 1% multiplied by v? which is in vN[v].

Since ¢, (v) € vN[v], for all € =, we have [B.(v)]r = [Be(T)]r 15
Hence, we have shown that Theorem A holds for all partitions described in
Case 3.

Case 4: r=y==z

The Young diagram of v is:

O ‘ i ‘
[I/] =1 ‘ j ‘
0l ‘ i ‘
1, if z even,
where i =
0, if z odd,
0, if z even,
where j =

1, if z odd.

Let 7 be the partition obtained by removing the i—node from v. So

T=(x-19,2).

By the induction hypothesis
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y—2-2 x-y-2
2 2

_2f 2k
[Be(z - 1,5, 2)]r = R

Vo -2k -1,z +2+2f, 1v-2+2k-2)

2 y—2f+2k+ ~ ~ 5
£ W (g s 0k - 2, 4 24 2 192 2R

y—2f+2k+1

+ T (@ — 2k - 1,2 4 1+ 2f 1V 2T P2k,

Now we find [B.(7)]r 1}. To do this, we add one node of residue i to each
partition (z—2k—1, z+2+2f, 1972/ +26=2) (2 _9k—-2 z+2+2f 1¥~2/*2k-1) and

(z-2k-1,z+1+2f, 1y_2f~+2]~“_1) in all ways such that we obtain a partition
which appears in [B.(v)]r.

0 1‘.”.”: ..... ‘j‘ 0 1‘ ................. ‘j ‘i ‘ 0 1‘ ................. ‘j
1] ‘] ‘ Ef; 0 1] ‘j ‘ vy 1 ....... ‘j ‘Z
0 0 0
011
0l1 ‘ ............ ‘Z ‘ 0 1‘ ................. ‘ Z‘ . -.”y” ‘j ‘ ‘Z
] S O i B P KA R
j ] "

Note that: in this case when we add one node of residue 7 such that
(2-2k-2,z+2+2f 122N I (o _9f 9 2 u 4 of 41,1V A2

o T a-y-2 P y-2-2
we do not get a partition when k = === and f = ¥=—.

2
01 .................
01 51 01 [ [ T4] P g
1 B i o |1 [ ] \ o
J z 1]
Hence,
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y—z-2 z-y-2

B ti= Y Y ol

f=0 k=0

| uz2fr2k-2 2f+2k 2

o - 2k, 2 + 2+ 2f, 1972/ +2k=2)

2 2 _of4
S ok o1,z 4 34 2f, 12 e2k2)

f=0 k=0
y—2-2 xz—y—-4
2 2 —2f+2k+ ~ ~ 7ol
- R 0k — 2,2 + 34 2f, 192 +2k-1
f=0 k=0
y—z-4
2 z—2f-1 ~ 9F_3
+ Z o2 J(y,z+3+2f,1x_ f_)

LG (0 ok -2,z + 24 2, 19242

L_g__ f+2k+

- B ol oy 142, 1v2 2R
f=0 k=0
y—;—Q x—g—Q

ﬂ—2f+2k+1+21

+ ol Vo -2k —1,2+1+2f, 192 +2F)
f=0 k=0

y—2-2 z-y-2

2 2 f+
_ B ol g0 o f, 1u2Tvk-2)

f=0 k=0

y_z_QJ:yQ
2 -y~ f+

b3S W ko1, e 3 2f, 102 E2)

f=0 k=0

2 2 —2f+2k+
» B (o 2,24 24 2f, 102 2Ry

rzy |2 2f+k— L

2
+ Y ST @k 2+ 34 27, 1v-2f k=3

Note that if
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then

y—2f+2]§:+3+2i
2

y—2f +2k+4
2

y—2f +2k+1+2i
2

y—2f +2k+2
2

| I=1 |and | I=1 -

Now we come to show that in this case [B.(v)]r = [B.(7)]r 1. Consider
p such that € =. We look for the coefficient of y in [B.(7)]r 1. Recall
7=(x-1,9,2). Let T = (x-1-2z,y—z). By using Proposition 4.2.2 we have

[BC(T/)]g:(x—l—z,y—z)+v(x—1—z,y—z—1,1)+v2(x—2—z,y—z,1).
Hence by Theorem 2.2.1,

[B.(M) ]zt =[(z-1,y,2) +v(z-1,y-1,1+2)+v*(z - 2,y,1 +2)] 1}
=00z, y,2) +v(x -1,y +1,2)
+o(r,y-1L,1+2)+v(z-1,y-1,2+2)
+o(z-2,y+1,1+2)+0v3(z-2,9,2+2).

If y € Z, then the coefficient of y in [B.(7)] 1} lies in vN[v]. Hence, we

have shown that Theorem A holds for all partitions described in Case 4.

This completes the proof of Theorem A.

2.2.2 Proof of Theorem B.

Now we come to prove the second of our results.

Proof of Theorem B We prove this theorem by using Theorem A.

From Theorem A, we may deduce the following lemmas.

Lemma 2.2.5. Suppose a =b# c. Then (a,c,1%) appears in [B.(z,y,2)]r
if and only if (a,c,1°) = (x =2k, z+ 1+ 2, 1972/*2k"1) where a =z # y # 2 for

a1 —y-1 ) . ) . .
some 0 < f <¥5—= 0<k < == and in this case it occurs with coefficient

vl%J _ vl%J

Lemma 2.2.6. Suppose a =b=c. Then (a,c,1%) appears in [B.(z,y,2)]r

if and only if (a,c,1°) has one of the three forms below:

20



o If (a,c,1°) = (x =2k = 1,2+ 2+ 2f 1V 214261y where a # . =y # 2

for some 0 < f < yfgfl, 0<k< %ﬂ and in this case it occurs with

. y—2f+2k+1 b+2
coefficient ol ==l

o If (a,c,1%) = (z =2k, 2+ 1+ 2,1y 2/*2k=1y where a = x # y = 2 for some

0<f< %72, 0<k< %TZH and in this case it occurs with coefficient
y—2f+2k:+1J be2 |
2 2

ol =l

o If (a,c,1%) = (=21, 2+ 2+ 2f,1972/*2=2) where a = x = y = 2 for some

—2-2 - . . . . .
0< f<¥5—=, 0<1< Y and in this case it occurs with coefficient

vlﬁgﬂﬁJ = vng, ifl=0,

y=2f+21+2 bid . _
Ul‘ 2 J:ULQJ Zfl:%,

y—2f+21-2 y—2f+21+2

T bed |

Pl , otherwise.

[ SIS

Lemma 2.2.7. Suppose a #b# c. Then (a,c,1°) appears in [B.(z,y,2)]r
if and only if (a,c,1%) has one of the four forms below:

o If (a,c,1°) = (z =2k, 2+ 1+ 2,1y 2/*2k=1y where a = . = y # z for some

a1 —y—2 . ) . . .
0< f<¥5—, 0<k< 2= and in this case it occurs with coefficient
—2f+2k-1

gy )

UL

o If (a,c,1°) = (2 =2k — 1,2 + 2+ 2f, 19" 2/*2"1y where a $ x # y = 2

for some 0 < f < y_;_Z, 0<k< w_Ty_l and n this case it occurs with

X y=2f+2k+3 b+4
coefficient ol =l

o If (a,c,1%) = (x =2k = 1,2 + 3+ 2f, 1¥72F*2k=2) where a # x = y = 2 for

some 0< k< &2

2= and 0 < f < %72 and in this case it occurs with

coefficient

ULWJ = UllﬁTQL @ff = y_;_Q ,
21)[1/—22+2kJ _ QU[MTQJ, lfo < f < y—;—4
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o If (a,c,1%) = (x =2k = 1,2+ 1,19*2F) where a # x = y = z for some 0 <
k< %ﬂ and in this case it occurs with coefficient M NSl

2

Lemma 2.2.8. Suppose a #b=c. Then (a,c,1°) appears in [B.(z,y,2)]r
if and only if (a,c,1%) has one of the four forms below:

o If (a,c,1%) = (x-2k—1,2+1+2f,19"2/*2F) where a # x =y # 2 for some

a1 —y—2 . ) . . .
0< f<¥5—, 0<k<Z2= and in this case it occurs with coefficient

Ly72f;2k+4J MJ

v :’U|~2

o If (a,¢,1%) = (x =2k, 2+ 2+2f, 197 21*2=2) where a = x # y = z for some

0<f< y7;72, 0<k< %TZH and in this case it occurs with coefficient
| 42422 12]
v 2 =pl2

o If (a,c,1%) = (x - 21,2 + 3 +2g,1¥"29*2=3) where a = x =y = 2 for some
OSgSy_§_4, 0<l< =t org:y_Tz_2 andlgls”ﬁ‘—g‘Q and in this
case it occurs with coefficient

2 1 ifl=0o0rl=5% org=

y—2g+2l—lJ lb+2J
=v

ol 2 2y-2

2vly72g2+2171J = QUlMTQJ, otherwise .
o If (a,c,1°) = (z - 2k, 2 + 1,19*?*"1) where a = x = y = 2 for some 0 <

i . . . . . y+2k+1 b+2
k< mTyQ and in this case it occurs with coefficient ol =l

Now we will prove the case (1) in Theorem B in detail.
Proposition 2.2.9. Ifa=b#c then:

a-1 n-y b
By(\) =), > w2 l(@,yn -z -y).
E z=maz{a,a+b-y+1}

x#c

e

Proof. Suppose a = b # ¢. Then, from Lemma 2.2.5 the partitions (a, ¢, 1°)
occur in [Be(x,y,2)]r as (z-2k,z+1+2f,1¥2/*2k"1) for 0 < f < y_TZ_l, 0<
k < %H where x >y >2>0and a=x # y # 2. In this case the coefficient

is o5, Now we find all x,y such that there exist f,k where 0 < f <

—yfgfl, 0<k< 17‘12’71 satisfying these equalities:
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e a=ux-2k,
e c=z+1+2f,
e b=y-2f+2k-1,

e a+ct+b=x+y+=z.

Let n=x+y+zsothat z=n-z-y. Nowzr=a+2kandas 0<k < %H

and 0 < f < w, then a < x <a+x-y-1, thatisy+1<a <.
Moreover, since c=n—-z—-y+1+2f, then n—-x -y +1 < ¢ <y and this
implies n—c—y+1 <z and ¢ <y. Furthermore, since b = y—2f +2k -1, then
n-rz-y<b<z-2impliesn-b-y<zand b+2<z. Also,z>y>n-x—-y>0

and this can be written as y<x<n —y and x >n — 2y. Now we have:
c<y<a-1 and z<n-y, wherey =c.

Also, x must satisfy the following inequalities:
e Ir2>a.

ex>n-c-y+1.

By replacing n = a + b + ¢, this case can be written as z>a+b—-y+ 1.

e z>b+2.
Since n=a+b+c we can write b+2=n—-c—a+2, but y+ 1 < a then

b+2=n-c-a+2<n-c—y+1. Thus,ifx>n-c—y+1, then x > b+2.

e x>y+1.

If x > a, then x >y + 1, because y + 1 < a.

o T >n-—2y.
Since ¢ <y, then n -2y <n-2c<n-2c+1<n-c-y+1. So, if

r>2n—-c—y+1, then z>n-2y.

e x>n-b-y.
Since n=a+b+c,thenn-b-y=a+c—y,but c<y. Thusn-b-y=
a+c—-y<a. So,ifx>a,thenx>n-b-y.

Hence all conditions above are satisfied if = > max{a,a+b—-y+1}. Note that

— k—
SR g
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where b=y - 2f + 2k — 1. Hence,

n-y

a-1 b
B.(\) = Z Z ULEJ(m,y,n—x—y).

z=max{a,a+b-y+1}

Yy=c
y=c vhc

Case (2) of Theorem B follows in the same way by Lemma 2.2.6.

Proposition 2.2.10. Ifa=b=c then:

a-1 n-y

b+2
=% T leyaay
y=c—1z=maz{a+1,a+b-y+2}
y#c z#c
a-1 n-y b+2
S5 iy
y=c+1 z=maz{a,a+b-y+1}
y#c r=c
a-2 n-y

+Z Z U[%J(x7y7n_x_y)
Y=C x=maz{a,a+b-y+2}
y=c T=c

n-y

+Z Z ULMTALJ(:U,y,n—x—y).

igx:ma${a+2,a+b—y+2}
- T=C
Proof. Let a =b=c. Then, from Lemma 2.2.6 the partitions (a,c, 1b) occur

in [Be(z,y,2)]r in three cases as follows:

1. First case, (a,c,1°) occurs in [Be(z,y,2)]r as (z — 2k - 1,2 + 2 +
2f,1972/+2k=1) for 0 < f < yé*l, 0<k< %ﬂ where z >y > 2z >0 and
a#x=y# =z In this case the coefficient is e e By

finding all z,y such that there exist f,k where these properties, we see

2
that

a-1 n-y

Z Z UL%J(x,y,n—x—y).

y=c—1 z=max{a+1,a+b-y+2}
y#c x#c

2. Second case, (a,c,1%) occurs in [Be(z,y, 2)|r as (z—2k, z+1+2f, 1¥72/+2k-1)

forOSfS%Q, ngé%w where a = x # y = 2. In this case the
y=2/+2k+1 | [be2|
=v

coefficient is vl 2 2

. By finding all z,y such that there



exist f,k where these properties, we see that

a—1 n-y [ﬂj
v 2 (1@ y,n— 17—'y).
y=c+1l z=max{a,a+b-y+1}

y#c T=C

. Third case, (a,c,1%) occurs in [ Be(z,y, 2)]r as (221, z2+2+2f,1¥72/*2-2)

where a = x =y = z for some 0 < f < y7§72, 0 <1< %% and in this case
it occurs with coefficient
I :vng, ifl=0,
DR 15 if =%,
v[y_2f2+2l_2J + vly_2f2+2“2J = UL%J + ULMTALJ, otherwise.

This case gives two cases:

(a) Firstly, when (a,c,1°) = (z - 2k, 2 + 2 + 2f,1972/*2k=2) for 0 <
fﬁ%, OSkS%MWhereazxzyzz. In this case the
coefficient is vl =521 = yl3], By finding all x,y such that there
exist f,k where these properties, we see that

a—2 n-y

b
My n—z—y).
2J::max{a,a+b—y+2}
T=cC

(b) Secondly, when (a,c,1°) = (z — 2k — 2,2 + 2 + 2f,1¥"2/+2F) for

) —y-2 . .
0< f<¥2=, 0<k< ™= where a =2z =y =z and in this case
y—2f+2k+4 b+4

the coefficient is vl 2 =0l ], By finding all x,y such that

there exist f,k where these properties, we see that
n-y

Z Z ULMTALJ(x’y’n_x_y)-

¢ z=max{a+2,a+b-y+2}
¢ r=c
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Proposition 2.2.11. Suppose a #b. Then

a—1 n-y

B)=2 2 a@yn-z-y)
Y=C g=maz{a,a+b-y+1}
y=c T=C

n-y

a
+Z Z /Bb(x’y’n_x_y)
ga::max{a,a+b—y+2}
z#c
a ny b+2
D SN > B (CA
y=c+1 z=maz{a,a+b-y+3,y+1}
y#c x#c

a—1 n-y
>

y=c—1z=maz{a+1,a+b-y+3}
y#c z#c
min{a-1,b+1}

Ul%J(%y’TL_w—y)

+ > leTQJ(aer—erl,y,c—l)
y=c+1
y#c
ULMTALJ, if c#a,
where ayp = ,
ULEJ, if c = a,
L5] ;
iz if c# a,
where By = bid fef
vlTJ, if c=a.

Proof.

First suppose that a # b # ¢. Then, from Lemma 2.2.7 the partitions (a, ¢, 1°)

occurs in [B.(x,y,z)]r in four cases as follows:

1. First case, (a,c,1%) occursin [Be(z,y, 2)]r as (z—2k, z+1+2f, 1V72/*2k-1)

for OSfSyfgfl, OSkSLHWherex>y>z20andazxzy¢z.

In this case the coefficient is vl * 3> 1 = yl3]. By finding all x,y such

that there exist f,k where these properties, we see that

a—2 n-y b
vl (z,y,mn—z-7)
’y’ y *
Y=C€ g=max{a,a+b-y+1}
y=c x=c

2. Second case, (a,c,1%) occurs in [Be(z,y,2)]r as (z -2k - 1,2 + 2 +

2f,1972F+2k=1) for 0 < f < y7;72, 0<k< %TZH wherea#z#y=2. In

this case the coefficient is v!*™ 72 o5, By finding all z,y such
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that there exist f,k where these properties, we see that

n-y

i > 55 2,y -2 — ).

ga: max{a+1,a+b— y+2}

T#c

3. Third case, (a,c,1%) occurs in [B.(z,y,2)]r as (z -2k — 1,2 + 3 +
2f,1972/+2k=2) ‘where a # = y = z for some 0 < k < x_Ty_Q and

0<f< % and in this case it occurs with coefficient

vly—2f+2kJ —UL%J’ 1ff 2 ’
D e SO J, if0< f<i= 4.

This case gives two cases

(a) Firstly, when (a,c,1°) = (z - 2k — 1,2 + 3 + 2, 1¥72/+2k=2) for

nggy_Tz_A‘, 0<k< 2 where a# 2 =y = 2. In this case the
y-2f+2k

coefficient is vl =51 = ol 5], By finding all z,y such that there

exist f,k where these properties, we see that

a-1 n-y 2]
(m,y,n—x—y).
y=c+1l z=max{a+1,a+b-y+2,y+1}
y#c x#c

(b) Secondly, when (a,c,1°) = (z - 2k — 1,2 + 3 + 2f, 1¥72/+26=2) for
Oéfé¥, Oékéx_Ty_Q where a # 2 =y = z and in this case

y-2f+2k

the coefficient is vl =21 = ol %], By finding all z,y such that

there exist f,k where these properties, we see that

a-1 n-y |22 ]
> > > @,y n-z-y).
y=c-1 :v:max{a+1,a+b7y+3}

y#c z#c

4. fourth case, (a,c,1%) occurs in [Be(z,y,2)]r as (z -2k -1,z +1,19+2k)

J:y2

wherea#zr=y=zfor0<k< and in this case the coefficient is

Ly+2k+2J b+2

v =l By finding all z,y such that there exist f,k where

these properties, we see that

min{a-1,b} b2

> T a+b-y+1,y,c-1).
y=c—1

y#c
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New we summarize this case, if a # b # ¢, then

a—2 n-y

b
BT(A): Z Z fUlQJ(x’yan_x_y)
Z;g x:max{ag+b—y+1}

a n-y b+d
+Z Z ULTJ(x7y7n_m—y)
€ z=max{a+1,a+b—y+2}
¢ T#c
a—-1 n-y b+2
" Z Z vlzj(x,y,n—x—y)
y=c+1l z=max{a+1,a+b-y+2,y+1}
y#c x#e
a-1 n-y
.S D UlMTQJ(m,y,n—x—y)

y=c—1z=max{a+1,a+b-y+3}

Y=
Y=

(2.8)

y#c z#c
min{a-1,b} bao
+ Tl a+b-y+1,y,c-1).
y=c—1
y#c

Now suppose @ # b = ¢. Then, from Lemma 2.2.8 the partitions (a,c, 1)

occur in [B.(z,y,2z)]r in four cases as follows:

1. First case, (a,c,1%) occur in [B.(z,y, 2)]r as (z-2k-1, z+1+2f, 1972/ +2k)
for 0 < f < 4221 OSk:Sx_Ty_Q where x >y>z>0andaftz =y # 2.

2
. . . y=2f+2k+4 b+d
In this case the coefficient is vl 2 P ol

. By finding all z,y
such that there exist f,k where these properties, we see that
n-y

a-1 4
Z Z ULbTJ(x7y7n_x_y)'

Y=C g=max{a+1,a+b-y+1}
y=c T=C

2. Second case, (a,c,1%) occurs in [Be(z,y, 2)|r as (z—2k, z+2+2f, 1V72/*+2k-2)
forOSfSy_Tz_Q, OSkSJC—Ty_l where a =z # y = z. In this case the

y—2f+2k-2

coefficient is vl "= 7 ) = pl3], By finding all z,y such that there exist

f,k where these properties, we see that

a—1 n-y
Z ’UL%J(I',y,n—I'—y).
g$:max{a,a+b—y+2}

x#c

vz
Y=
3. Third case, (a,c,1%) occurs in [Be(z,y, 2)|r as (221, z+3+2g, 1¥729+21=3)
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=y _ y—z-2
, 0<l <=2 or g=“45—= and

—z-4
where a = 2 = y = z for some 0 < g < 4=

1<i< %ﬂ and in this case it occurs with coefficient

y—2g+21-1 b+2 . _ -
S S R S 1fl:00rl:%org:$3212.,

y=2g+20-1 br2 ,
2wl =7 =217 J, otherwise.
This case gives two cases:

(a) Firstly, when (a,c,1°) = (z — 2k, 2z + 3+ 2f,1972/+2k=3) for 0 < f <
y—z2—4

, 0<k< % where a = x =y = z. In this case the coefficient
y—2f+2k-1 b+2

is ol =z =0l By finding all x,y such that there exist
f,k where these properties, we see that

a n-y

Z Z ’Ul%J(I',y,n—x—y).

y=c+1 z=max{a,a+b-y+3,y+1}
y#c x#c

(b) Secondly, when (a,c,1°) = (z — 2k — 2,2 + 3 + 2f, 1¥72/+2k=1) for
ngﬁy_Z_Q, 0<k<iy2 where a = x = y = z and in this case

2
y—2f+2k+1

the coefficient is vl* =3 1 = o157, By finding all z,y such that

there exist f, k where these properties, we see that

a n-y

2 PO

y=c-1 g=max{a,a+b-y+3}

y#c x#c

b+2
2

J(x’y’n_x_y)'

4. Fourth case (a,c,1°) occurs in [B.(z,y,2)]r as (z - 2k, z + 1,192 1)

—y=2 . . . .
where a = x =y = 2 for 0 <k < == and in this case the coefficient is
y+2k+1 b+2

ol Tz =l By finding all z,y such that there exist f,k where

these properties, we see that

min{a—1,b+1}

L1282

(a+b-y+1,y,c-1).
y=c—-1
yfc

New we summarize this case, if a # b = ¢, then

29



a-1 n-y

Br()‘) = Z Z Ul

Y=C z=max{a+1,a+b-y+1}
y=c T=cC

a-1
+2

y=c
Yy=c

b+4
2

J(xayan_x_y)

n-y
vl%J(m,y,n -z -y)
z=max{a,a+b-y+2}
T#c
a n-y b+2
+ Z Z ULQJ(x7y77’L—1'_y) (29)
y=c+1 z=max{a,a+b-y+3,y+1} ‘
y#c T#c
a n-y | 2£2 |
+ Z Z v 2 (%y’n_x_y)
y=c—1 z=max{a,a+b-y+3}
y#c x#c
min{a-1,b+1}

+ > leTQJ(aer—erl,y,c—l).
y=c—1
yfc

Hence, by combining equations 2.8 and 2.9 we get: If a # b, then

a-1 n-y

B,(\) =Y > ap(z,y,n - -y)

Y=C g=max{a,a+b-y+1}
y=c T=c

a n-y
+Z Z Bb(x’y’n_x_y)
2m:max{a,a+b—y+2}
z#c
a n-y
+ > >, ol
y=c+1l z=max{a,a+b-y+3,y+1}
y#c zc

a-1 n-y
>
y=c-1 z=max{a+1,a+b-y+3}
y#c zfc
min{a-1,b+1} bao

+ > vlTJ(a+b—y+1,y,c—1)

b+2
2

J(m,y,n—x—y)

Ul%J(%y’n_x_y)

y=c+1
y#c
ULMTALJ, if c#a,
where ay = b
ULEJ, if c=a,
vl%J, if c#a,
where (5 = o]
vl 2 if c=a.
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2.3 Decomposition numbers for ¢ ,(S,)

Suppose that F' is a field of an arbitrary characteristic p > 0 and let e be
the smallest positive integer such that 1+ ¢+ ...+ ¢! = 0. If e = 0o, then
the Hecke algebra ¢ is semisimple, so we assume throughout that e > 2 is
finite. Define F to be the vector space over C with basis the partitions of n
for all n > 0. For a partition v + n, let [B.(v)]F, denote the column of the

decomposition matrix of % ,(S,,) indexed by the partition v, that is

B(V) Zd)\l/

AFn

If s >1 and 0 < r<e, define

M= > v

Ay
and extend linearly to define B 17 for all B € F.

Proposition 2.3.1. [26, P116] Suppose X is a partition. Then
[Be(M)]Fg 17= ZO‘;M[BC(,UJ)]F,(J
m

for some ) € Zs.

Let A = 1 4(Sy) and that 4 = ¢ ;(6,,), where § is a primitive

e root of unity in C. Recall that the decomposition matrix of % can be

computed by using the LLT algorithm.

Theorem 2.3.2. [26, Theorem 6.35] Suppose D is the decomposition matriz
of 7€ and Dy is the decomposition matrixz of 7. Then there exists a square

unitriangular matrixz A where entries are non-negative integers such that
D = DyA.
Corollary 2.3.3. Let A and v be partitions of n with v e—reqular. Then
(S D"]og <[8%: DLr
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Now let ¢ = —=1. Suppose that v = (z,y,2) and that ¢(v) = 3. Note that

in the proof of Theorem A, in all cases we had
[Be(D)]r 1= [Bew)]r,
Hence, if A €' and ¢(v) = 3, we have
[S*: D] 2[8Y: D"]n.
Combining this with Corollary 2.3.3, we have the following results.

Theorem C. Suppose that = 7 _1(Sy,), that A eI and that v = (z,y, 2)
with £(v) = 3. Then

[S*: D] =[S": D"]w

and these decomposition numbers are given by Theorem B.
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Chapter 3

Decomposable Specht
modules for the Hecke

algebra

In this Chapter, we find some cases of decomposable Specht modules for
the Hecke algebra ¢ _1(6,) which are indexed by partitions of the form

(a,3,1%), where a,b are even.

3.1 Background

Recall that &,, is the symmetric group on n letters and S* is the Specht
module indexed by a partition \. Now for any e # 2, the Specht modules
S for the Hecke algebra ## = #4,(6,,) is indecomposable [30],[15],[5]. If
e = p =2, Murphy in [27] shows which Specht modules labelled by hook par-
titions of the form (n—a, 1) are decomposable. Moreover, Dodge and Fayers
in [7] found a new family of decomposable Specht modules for the symmetric
group algebra F5&,, and these decomposable Specht modules are labelled
by partitions of the form (a,3,1%), where a,b are even. They found which
Specht modules S* had a summand isomorphic to an irreducible Specht
module S* by considering homomorphisms between Specht modules. They
assumed that S* is irreducible and found when there are homomorphisms
v:S* - S8 and §: 5 - S#" such that & o~ is non-zero. Recall the following

result:

Lemma 3.1.1. Suppose M and N are A—modules, for some algebra A. If
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M s irreducible and we have homomorphisms v: M - N and § : N - M
such that 6 o~y = Idys, then M is a summand of N.

Proof. Let C' = ker(d). We claim that N 2 M & C. First note that
M /ker(~) = Im(), so since M is irreducible, and v # 0 we have Im(v) = M.
Now suppose that z € Im(y) nker(d). Then z = y(a), some a € M. Now
a=0(y(a)) =d(x) =0so x=~(a)=0. Hence, Im(v) nker(d) = {0}. By the

rank-nullity Theorem,
dim(N) = dim(Im(y)) + dim(ker(d))

so N =Im(v) + ker(d). Hence, N =Im(y) @ ker(d) = M & C.
U

So the results of Dodge and Fayers show that S* occurs as a summand
of S*, since S* = SH' [7, Lemma 2.1] if p = 2 and S* is irreducible, so § oy
is the identity on S*. They stated the following theorem:

Theorem 3.1.2. [7, Theorem 3.1] Let \ = (a,3,1%) be a partition of n,
where a,b are positive even integers with a >4, and suppose i is a partition
of n such that S* is irreducible. Then S* has a direct summand isomorphic
to S* if and only if one of the following holds.

1. p oor u' equals (u,v), where v=3 mod 4 and (QH’) is odd.

a—v
2. por p' equals (u,v,2), where (Z::}’) is odd.

Now we explain how Dodge and Fayers construct homomorphisms be-
tween Specht modules with more details. Let u and A be partitions of n and
consider Hompg, (S#,S*). Assume % = F&,, where F is a field of char-
acteristic p > 2. Recall that the Specht module S* is a submodule of M?*,
so any homomorphism from S* to S* can be written as a homomorphism
from S* to M?*. From Definition 1.3.18 recall that 7 (u,\) is the set of
row-standard p—tableaux of type A, and 7y(u, ) is the set of semistandard
u—tableaux of type A. For each A € T (u,\), James defines a homomorphism
© 4 : M* —s M over any field and we do not need the exact definition here.
Let @A denote the restriction of © 4 to the Specht module S*.

Theorem 3.1.3. [15, Lemma 13.11 and Theorem 13.13] The set
{04 AeTo(uN)}
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is linearly independent. If either e # 2 or p is 2—reqular, then {@A | A e
To(p, N} also spans Hompg, (S*, M),

For any pair (d,t) such that d > 1 and 1 <t < \gy1, there is a homomor-
phism g : M?* — MY, where the composition v depends on \,d,t. Now
to check whether the image of a homomorphism 6 : S* — M? lies in S,

we use the Kernel Intersection Theorem below.

Theorem 3.1.4. [15, Corollary 17.18] Let X be a partition of n. Then

SA = () Ker(¢ay).
d>1
1<t<Agi1
This provides a strategy for computing Hompg, (S#, M*) by finding all
linear combinations 6 of the homomorphisms © 4 such that g 06 =0 for

every d,t.

Definition 3.1.5. Let X be a multiset of positive integers. We define X; to
be the number of is in X. If X and Y are multisets, we write X uY for the
multiset with (X uY'); = X; +Y; for all i. Moreover, if A is a row-standard
tableau, we denote the multiset of entries in row j of A by A7. In particular,

we write A{ for the number of entries equal to 4 in row j of A.

The next theorems show how to compute the composition 14, 0© 4 when

AeT(p,A).

Theorem 3.1.6. [10, Lemma 5] Let A and p be partitions of n, A€ T (i, \),
d>1 and 1 <t < Agy1. Suppose S is the set of all row-standard tableauz
which can be obtained from A by replacing t of the entries equal to d+1 in
A with ds. Then

GagoO4=3 H(Sg.)@s.

3es o1 VA

The tableaux S in Theorem 3.1.6 are not necessarily semistandard, so
it can be difficult to compute homomorphism spaces. The next theorem
helps to express a tableau homomorphism in terms of semistandard homo-

morphisms.

Theorem 3.1.7. [10, Lemma 7] Let p be a partition of n and X\ a compo-
sition of n, and suppose i,j,k are positive integers with j # k and p; > puy.
Consider AeT (u,\), and let S be the set of all S € T (u,A) such that:
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o S/ =Al+AF;

o Slj < A{ for every l +i;

o St = Al for alll +j,k.
Then

O4= ()™ T TI (il;)c%.

SeS i>1

Example 3.1.8. Let A=(2,2,1) and p = (3,2) and p > 0. We want to find
Hompe, (S*,S). So

11112 11113
Totu ) = {r = o1 2L, - L3

now if © : S# - M* then O = aB® 4, + fO4, for some o, € F. If we
identify a tableau A with the corresponding homomorphism ©,4 then by

using Theorem 3.1.6 we get

A 1111 1112
Yr1004, =3 oT3 2 13 L

Now we use Theorem 3.1.7 to move 1 from row 2 to row 1 in 1 ?1) 2 ‘ then
we get
A 1[1]1] 1]1]1] 1]1]1
Y1004, =3 et ol =2 [af3]

Similarly by applying Theorem 3.1.6 we get

A 1{11(3
P1,1004, = 1 ‘,

then we use Theorem 3.1.7 to move 1 from row 2 to row 1 and we get

1[1]1]
2]3

P1,1004, = -

hence if 11 1 0 © =0 then 2o — B =0. Also, by applying Theorem 3.1.6 we
get

1]1]2]

21004, =2
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and

A 1/1]2
121004, = D |

hence 2a+ 8 = 0. Now if p # 2, then 8 = 0 and 2a = 0, so « = 0. Thus,
the only solution is a = = 0. If p =2, then 5 =0 and 2« = 0, which is it

true for any a. So the homomorphism space is one dimensional, spanned by

oL,

Definition 3.1.9. Let u be a partition, and suppose that S and A are row-
standard p—tableaux of the same type. We say that S dominates A if we
can obtain A from S by repeatedly swapping an entry of S with a larger

entry in a lower row and re-ordering within each row. We write S & A.

The following theorem gives that a linear combination of row-standard
homomorphisms is non-zero without needing to go through the full process

of expressing it.

Theorem 3.1.10. [7, Lemma 4.6] Let p be a partition of n and A a com-
position of n, and A€ T (u,\). If

éA = Z aS(:)Sa
SeTo(p,A)

then ag #0 only if S A.

We now show how to compute the composition of homomorphisms be-

tween two Specht modules.

Definition 3.1.11. Let x1,x9,...,x,, be non-negative integers such that

m

x; = . We say v for the corresponding multinomial coefficient
~ L1,L2,..csTm
1=

which is defined to be ( £ z!

xl,mg,...,mm) 1! x2! . xm!

Theorem 3.1.12. [7, Proposition 4.7] Let \,u,v be compositions of n, S
be a A—tableau of type p and let A be a p—tableau of type v. Consider X be
the set of all collections X = (X"); js1 of multisets such that

|X%) = Sg for each i, j, LI X9 =A"  for each i.

j=1

For X € X, let Ux denote the row-standard \-tableau with (Ux )’ = [ X¥.
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Then L o )
(Xi] + X7 +X§’j +...
1 v2j +3j
XM X% XY

©400s= ) ]I

XeXi,j>1

Jou.
By using Theorem 3.1.12 we can compute composition of homomor-

phisms between two Specht modules. Hence, we may use the technique of

Dodge and Fayers to describe certain decomposable Specht modules.

Example 3.1.13. Take X = (4,3,1%) and p = (6,3). Consider a homomor-
phism o : S@3.1%) _, g(2%1%) We construct this homomorphism in the case

where v = 3. Suppose U is the set of A-tableaux having the form:

2[3]+]

[+ [+ [=]~
*
*

where the *s represent the numbers 2,3,4,5,6. Define

o= Y 6r

TeU

and v : S63) — 31" by 4 = @4+ Op, where A, B € T (p, \) are given
by:

A=1]2]2]2][3]4

?

B=[1]1]1]2[3]4]

Dodge and Fayers showed the following;:
e 0:5" — M and o # 0;
o v: 8% — S* and v % 0;
e govy%0.

Hence, S* has a summand isomorphic to S*.
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3.2 Decomposable Specht modules for Hecke al-
gebra ¢ _1(6,)

In this section, we present some results on the representations of the Hecke
algebra J# = ¢ _1(6,). We first give analogues of some of the results in

section 3.1.

Definition 3.2.1. Let A € T (u,\). We define 14 to be permutation formed
by taking t* 14 to be the row standard A-tableau for which i belongs to row

r when the place occupied by i in t* is occupied by r in A.

Definition 3.2.2. Define the relation ~, on 7 (p, A) by setting A ~, B if row
i of A has the same numbers as row i of B for all i, where A, B €T (p, ).

Definition 3.2.3. Suppose A € T (i, \). We define the homomorphism

Ou: MH > M.
by
@A(xuh) = (1‘)\ Z TlA,)h
Al~p A
for all h e 7.

Suppose A and p are partitions and that © : M* — M*. Let © denote
the restriction of © to S*.

Theorem 3.2.4. [6, Corollary 8.7] Let p be a partition of n and X\ be a
composition of n. Then {© 4| AeTo(\, p)} is a linearly independent subset
of Hom (", M*). If 1 is 2-regular then {©4 | A € To(u,\)} is a basis of
Hom - (S*, M),

Definition 3.2.5. Suppose p is a partition. Let d > 1 and consider ¢ such
that 1 <t < pgs1. Suppose v®* is the composition defined by

Wi +1 if 4= d,
vP = -t ifi=de,
Lbi otherwise.

Let A be the row standard p—tableau of type v®* with all entries in

row i equal to 7, except for i = d + 1, when there are t entries equal to d
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and pg+1 —t entries equal to d +1. We write v4; for the homomorphism
O4: MH - M""". Then we have the following theorem.

Theorem 3.2.6. [5, Theorem 7.5] If p is a partition of n, then

St =N Mﬁl Ker(vq,z)-

d>1 t=1

Now we give the generalization of Theorem 3.1.6 and Theorem 3.1.7. We

define the Gaussian polynomials [g]

Definition 3.2.7. Let a > 0. Define

l+qg+@?+...+¢*" ifa>0;
[a] = '
0 if a=0.

We set

If a >3 >0, define

[Z] ) [/3]!5]i B

Remark 3.2.8. In general we have

SN R R Pt

So since ¢ = -1 we have [g] €Z for all a> 3> 0.

Theorem 3.2.9. [24, Proposition 2.14] Suppose X\ and p are partitions of
n and consider d and t with d > 1 and 0 <t < pge1. Let v = %
A e T(\p) is a row standard tableau. Let S ¢ T(A\,v) be the set of row
standard tableauz obtained by replacing t entries of d+ 1 in A with d. For

. Suppose

SeS andi>1, suppose that B; entries were replaced in row i. Define bg € I

by

bs = H g [?Z]

i>1

where x; is the cardinality of the set {(k,j) | k > i and A(k,j) =d} and y;

70



is the cardinality of the set {j | S(i,7) =d}. Then

V41004 =) bsOg.
SeS

Definition 3.2.10. Let S be a tableau. Recall that Sf is the number of

entries in row j of S which is equal to i. We generalize this by setting
xT

= Z S;-, similarly for other definitions.

Definition 3.2.11. Let A = (A1, ..., \,) be a partition of n and v = (v1, ..., 1)
be a composition of n. Suppose S € T(\,v) and r; # ro with 1 <7,79 < a
and A,; > A\, and d with 1 <d <b. Let

g:{g:(glaQQa"'7gb)|gd:05 525225 andgiSSfl fOI'lSZSb}

For g € G, define U, to be the row-standard tableau obtained by moving all
entries equal to d from row ro to row r; and for ¢ # d moving g; entries equal

to ¢ from row r; to row rs.

Theorem 3.2.12. [25, Theorem 2.7] Suppose A = (A1,...,Aq) is a partition
of n and v = (v1,...,v) is a composition of n. Let S € T(\,v) and that
1,79 satisfy 1 < ry < a and ro = 71 + 1. Suppose that v = r1. Consider
1<d<b. Then

T+ ST+1+1 r+ 7‘+ T+ +
05 = (-1)%" g (1 g SIS 3 e Hqgls 1[ gZ:I@Ug.
geG 1=1 gi
Definition 3.2.13. Let A be a partition of n and let (a,b) be a node in the
diagram of X. The (a,b)" hook length is defined to be
Pab = Ag + Ay —a—b+1.

The following results provide the classification of the irreducible Specht
module for the Iwahori-Hecke algebras 57 in the case where A is e-regular.
Definition 3.2.14. Let I be a field of characteristic p. Define: v, : N —

Z

vp(k/e) +1 if e divides k;
Ve (F) = w(k/e)

otherwise.
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where vp(k) is maximal such that p”P(k)|k for p > 2. If p = 0 then set

vp(k) = 0, for all non-negative integers k.

Theorem 3.2.15. [18, Theorem 4.15] Let \ be a partition of n. Then A
is e-regular and S* is irreducible if and only if ve,(ho.) = Ve p(hi.) for all
nodes (a,c), (b,c) € [\].

Example 3.2.16. Let e = 2 and p = 0. If A\ = (6,3). For all nodes
(a,c),(b,c) € [A] the hook length diagram is

7/6/5/3[2]1]
3121

Now if replace each node (a, ) with the integer v ,(h\.) then we obtain the

diagram

0ol1]olol1]0]
0[1]0

and we see that vo0(h).) = v20(hy.) for all nodes (a,c),(b,c) € [A\]. By
applying Theorem 3.2.15 S (6:3) ig irreducible.

Let A\ = (a,3,1%) then the 2-regularisation of A is given by the next

Lemma.

Lemma 3.2.17. [7, Lemma 2.4] Suppose a >4 and b >2. Then

(a,b+1,2) (a>b)
(b+2,a-1,2) (ac<b).

(a,3,1)% =

Recall the definition of the generic Iwahori-Hecke algebra of &,,. Let
Z =7[§,G'], where ¢ is an indeterminate over Z. Then #% = #% 4(&,,)
is semisimple which implies all Specht modules are irreducible and the set
{S*| A+ n} is a complete set of non-isomorphic irreducible modules. If F
is a field and ¢ € F\{0}, define ¢ : Z — F' to be the ring homomorphisms
determined by ¢ — ¢q. Then

%p,q(Gn) = %Z ®z F

as F-algebras. We state the following lemma:
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Lemma 3.2.18. 1. Let = Z aUéU be a homomorphism 6:5% —
UeT (a,B)

MP in = so that it can be written 6 = Z bRéR so that 0 +
ReTo(a,B)

0 if and only if bp # 0 for some R. Define 6F to be the map in

H(S,) such that §F = > aybt, where ay = p(ay). Then
UeT (o, 8)
oF = Z 53675 and 0F 0 if and only if ER #0 for some R.
ReTo(a,8)

2. Let ¢ = Z ayfy be a homomorphism ¢ : S* — M? and
UeT (e, 8)
w = Z bgés be a homomorphism w : MP — M"Y in s#%. Then
SeT(B,7)
the composition can be written as

Z cTéT for some cp € Z .
TeTo(ayy)

If we have the corresponding maps in Hq(Sy,), then the composition
can be written as

S erbh.
TeTo(e,y)

in the same way, that is, the coefficients are ¢r.

th oot of unity of C and w is a primitive

3. Suppose q is a primitive e
et root of unity of F,. Define oc : Z — C to be the homomorphism
defined by setting pc(q) = q and pp : Z — F), to be the homomor-
phism defined by setting r(§) = w. Suppose z € Z. If pc(z) =0 then

¢r,(2) = 0.
Proof. 1. Working in J#%, from Definition 3.2.3 we have

é(ca) = (xﬁ Z Z QUTIUI)Twaya/
UeT (a,8) U'~pU

=(zs > X bRTi,)Tway.
ReTo(awB) R'~rR

= S duT

weSy,

for some d,, € Z. Now working in ¢ ,(S,,), from Definition 3.2.3 we
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have

éF(Ca) = (xﬁ Z Z (P(au)ler)Twaya/
UeT (a,8) U'mrU

= Z (dw) T

weS,

= (.%'5 Z Z (p(bR)TlR/)Twaya/

ReTo(a,B) R'~rR

= Y p(br)OR(ca).
ReTo(a,B)

So. 67 = Y Babk.
ReTo(a,0)

. Similarly, working in 7%, from Definition 3.2.3 we have

gb(ca) = (xﬁ Z Z aUTlU/)Twaya’-

UeT (a,8) Ul U

w(zg) =y Y. Y bsTig,.

SeT(B,y) S'~rS

Now the composition can be written as

w(p(ca) =w((zs D2 2 avTiy)Tway.)

UeT (a,8) U'~rU

:xv( Z Z bSTlsr Z Z aUTlU/)Twaya’

SeT(Byy) Si~rS UeT (,8) Ui~ U
=Y dyTo

weS,

= Y erfr(e)

TeTo (o)

oYY el ) e

TeTo(a,y) T/ ~T

for some d,, € Z. Now working in % ,(S,,), from Definition 3.2.3 we

have

WF(QSF(CQ)):x'y( Z Z SD(bS)TIS, Z Z SD(QU)TIU,)Twa?/a’

SeT(B,y) S'=rS UeT(B) Ui U

= Z O(dy) T

weS,
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And

> cTéA?:,E(ca):xq/( > > QO(CT)TlT,)Twaya’

TeTo(ey) TeTo(o,y) T'~T
= Z ‘P(dw)Tw'

weSy,

So, w! o ¢! = 2 TeTo (o) ETég.

3. Let ®.(z) be the e cyclotomic polynomial [32]. Then ®.(z) is the
minimum polynomial for ¢ in C. Furthermore, ¢c(®.(¢)) =0 € C and
©r(Pe(G)) = 0 € F,, so oc and ¢p both factor through Z /(®.(q)).
Hence, there are ring homomorphisms p¢ and @ such that the fol-

lowing diagram commutes:

z PF Fp

we Z[(®(q))

pc

C

where 7 : Z — Z [(P.(q)) is the natural projection. Since ®.(x) is
the minimum polynomial for ¢, note that ¢ is injective. Now suppose
that pc(z) = 0 for some z € Z. Since p¢ is injective, z € $(¢), which
implies that pp(2) =Pr(m(z)) =0¢€ F.

U

Corollary 3.2.19. Suppose that Oz : Sg — Mg is a Z—homomorphism
given by

6z T anb.
ReT (o, 8)

Define the F»o&,—homomorphism @F2 : S?ig — Mg by

Or= Y. ¢rar)OF
ReT (,8)
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and the % _1(S,,)~homomorphism Oc : S¢ — Mg by

Oc= Y ¢c(ar)d§.
ReT (,8)

If ©F, 0 then O¢ # 0.
Lemma 3.2.20. Suppose e =2. Then, for m > 0:

2m
o

(7] =0.
%] =
.[217?1]:
™
[

Proof. By using the definition of the Gaussian polynomial. We get
[Zm] ~ [2m]!
11 [1]2m-1]!
—l4q+ o+ P
=1+ +@+¢ + ...+
=0.

Similarly,

1] [2m][2m - 1]

2 [2]
O R R i S 1€ S RE k)
N 1+¢q
A+ A+ P+ P (L + g+ +gP)
N 1+gq
=m.
Similarly
2m+1
[ ml ]:1-+-q-}-q2-i—...-i—q2m72—+-q2m71+q2m
=(1+q)(1 +q2 + q4 + .+ q2m72) + q2m = q2m =1.
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Also,

2m+1]  [2m +1][2m]
[ 2 ] (2]
=1+ + ...+ =m.

Finally,

[Qm] _ [2m][2m - 1][2m - 2]
3 [31[2][1]
Qg+ @+ PP DA g+ P (L g+ + 7P
) (1+g+¢*)(1+q)
O € o ) [ N O e | O I O )
) (1+g+¢*)(1+q)
Q)+ P+ D)L+ g+ L+ (AP )
(1+g+q?)

=0.

3.3 The main results

Recall that the Hecke algebra 7 = ¢ _1(6,,). In this section we state the
main theorem which describes some Specht modules S (@3,1") which have a
summand isomorphic to an irreducible Specht module of the form either
Swv) or §(wv:2) where u is even and v is odd. We assume that the field

has characteristic zero and e = 2. Now we state the main theorem as follows

Theorem D. Suppose \ = (a, 3, 1b) is a partition of n, where a,b are pos-
itive even integers with a > 4 and let p be a partition of n such that S* s

irreducible. If one of the following occurs:

1. If poor ' equals (u,v), where u is even and u > v with v = 3 mod 4
and [Z:g] #0,

2. If  or p' equals (u,v,2), where u is even and v is odd with v > v and
[a2]#0,

then S* has a direct summand isomorphic to S*.
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Lemma 3.3.1. Suppose A = A -1(S,). Let p be a partition of n and
e =2. Suppose S*" is irreducible. Then S* SH

!

Proof. We have SH z D" and since plt = ,u’R we have D = pH'" = g
Thus, S* = SH O

Theorem D is an analogue of Theorem 3.1.2. In order to use some of
Dodge and Fayers’ results, we use the generic Hecke algebra #%z. We find
there are homomorphisms ~ : S# - S* and § : S* - SH" such that 6 o v is
non-zero and S* irreducible. That is enough to show that S* occurs as a
summand of S*, since S* = S* if e = 2 and S* irreducible, so § o v is the
identity on S*.

3.3.1 Irreducible summands of the form S(wv)

In this section, we assume A = (a,3,1°) and u = (u,v), where a,b,u,v are
positive integers with a,b,u even, a >4, u >v, n =a+b+3 =u+v and
v < min{a + 1,b + 3}. Throughout our examples, we identify a tableau T €

T (v, B) with the corresponding homomorphism ©p : S* - M8,

Homomorphism o : $* — S

Consider homomorphisms from S* to SH . where 1 is the conjugate of p. We
begin by constructing such a homomorphism in the case where 3 <v <a-1.

Suppose U is the set of A-tableaux having the form:

1
11 %] %
>

*

where the *s represent the numbers from 2 to u, and the entries are strictly

increasing along each row and weakly increasing down each column.

Example 3.3.2. Let A = (4,3,1?), = (6,3). Then

U={T1,T5,T5,T4,T5,T6, 17,13, Ty, T10, T11, T2, T13, T14, T15, T16, T17, T18 } -
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where

1]2]3]4] 1]2]3]4] 1]2]3]4] 112]3]5]
112]3 112]5 13]5 1/2]3
Tl_i ’TQ_l 7T3_l ’T4_i )
16 16 16 16
1[2]3]5] 1]2]3]5] 1/2]3]6] 1/2]3]6]
12]4 13[4 112]3 12]4
T5_i ’T6:l ’T7:i ’ngi ;
16 16 9] 9]
1/2]3]6] 1]2[3]4] 1]2]3]4] 112[3]5]
13[4 1]3]6 112]6 1]2]6
Tg:l ,T10=l ,T11=i ’le_i )
9] 5] 9] 4]
112[3]5] 1/2]3]6] 1/2]3]6] 112]3]6]
1/3]6 1]2]5 13]5 1]4]5
T13=l ,T14=i ’T15_l 7T16:l )
4] 4] 4] 3]
112]3]5] 1]2]3]4]

14]6 1/5]6

T17=l 7T18—l
3] 3]
Now define
O':Z(':)T.
TeU

Proposition 3.3.3. We have ¢4 00 =0 for each d,t.

Proof. First take v<d<u and t = 1. If T e U, then T contains a single d and
a single d + 1. If these lie in the same row of T', then by Theorem 3.2.9
P10 Or = (1+ q)@U, where U is obtained from T by changing d + 1 into
d and hence g1 o @T = 0. If these lie in the same column of T', then by
Theorem 3.2.9 1g1 o Or = @U, where U has row r and row r + 1 both equal
to , so by using Theorem 3.2.12 we have 1)4 1 o O = 0. Otherwise, there is
another tableau T" € U obtained by interchanging the d and the d+1. Then,
by using Theorem 3.2.9 we have 91 0 (O + O4) = (1 +¢)Og = 0, where S
is the tableau obtained by replacing one entry of d + 1 in T with d . Hence,
Pg100=0.
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Example 3.3.4. Take U as in example 3.3.2 and assume d =4 and ¢ =1
Then: by using Theorem 3.2.9 we get

\)
w

6]

1/)4,1 ° é)Tlﬁ = (1 + Q) =0

[co]ro] ==

where d and d + 1 lie in the same row of T1g. Similarly

[\]

3]6]
3

[\)

P41 007, =

1
1
14
4]

where d and d + 1 lie in the same column of 77. Applying Theorem 3.2.12
we get
Y1007, = 0.

For the case where a single d and a single d + 1 lie in the different row and

column, consider

112[3]4] [1]2]3]4]
. 17 o[07 of17 o[0T 1213 1/2]3
on =y o [o 'L ] :
g1 0 n= |0 |7 1] o) 4] 4]
16 16
112[3]4]
- 1/2]3
1/14,109T4=q4
6]
and so
2[3]4]
A . J112]3
Y110 (01 +O71,) = (1+9) =0.

‘Cm’ﬂk ==

Continuing in this way, we get 94100 =0.

Second take d = v and t = 1. If T' e U, then T contains either a single v
or a single v and a single v + 1 below the first row. If there are a single v
and a single v + 1 below the first row and they occur in the same row of T,
then by Theorem 3.2.9 9, 1 o éT has a factor 1+¢ and hence v, 1 o éT =0. If

these occur the same column of 7', then by Theorem 3.2.9 we get a tableau
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which has the row r and row r + 1 both equal to with coefficient ¢, then
by using Theorem 3.2.12 1), 1 o Or =0. Now if a single v and a single v + 1
below the first row occur in a different row and column then there is another
tableau T € U obtained by interchanging the v and the v+1. Then, by using
Theorem 3.2.9 we have ¢v,l°(éT+é’T) = (1+q)Og = 0, where S is the unique
tableau obtained by replacing one entry of v+1 in T with v. In the case that
there is only a single v below the first row then by Theorem 3.2.9 we get
tableau with a coefficient has a factor ¢(1 + ¢) and thus 1, 1 c o = 0. Hence,
Py,10 Or =0 for all T e U.

Example 3.3.5. Take U as in example 3.3.2 and assume d = 3 and ¢t = 1.
Then, by using Theorem 3.2.9 we get for the case only a single v below the

first row,
1/2]3]3]
A 11213
31007, =bg 5
6]
such that
i>1 Bi
2 1 0 0
1 0 0 0
1 [1]q [o]q [o]q [0]
=q(1+9).
112]3]3]
Hence, 1/)3,1@1“1 =q(1+q) ; 2|3 =0.
6 |

In the case where a single v and a single v + 1 are in the same row below

the first row, then by Theorem 3.2.9 we get

2[3]5]

v = o] o oo

In the case that a single v and a single v + 1 are in the same column below

=(1+q)

‘@’l\’) ==
‘@’l\’) ==



the first row, then by Theorem 3.2.9 we get

Y3100, =¢

‘w’w ==

Applying Theorem 3.2.12 we get 31 0 O, = 0.

In the case where a single v and a single v + 1 in different rows and

columns below the first row. Then by Theorem 3.2.9 we get

112[3]5] 112[3]5]
31007, = ?1) 2|3 and ¢35, 007, = ¢ ?1) 2|3
16 6]
Then
1[2][3]5] [1][2]3]5]
¥31(01, +Or) = :13 213 +q :13 2131 _y,
16 16

If 1<d<wvandt=2, then we have at least one factor of 1+¢ in 1490 Or
and then g9 o O =0 for each T €U by using Theorem 3.2.9.

Example 3.3.6. Let d =1 and ¢ = 2. Then by using Theorem 3.2.9

1]1]3]4]
1/11,209T1=Q(1+Q)(1+Q)é L3l g
6]
1]1]3]4]
¢1,20@T3:q(1+q)} 315 =0.
6]
If d=2 and t = 2, then by using Theorem 3.2.9
2[21]4]
Ur200n =q(1+q) 1+ =0

‘@’OT ==
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2001 =q(1+q)

‘@’1\3 ==

Now take 2 <d<wv and t =1, and consider a tableau T € . There are a
single d and a single d + 1 below the first row. If these lie in the same row
then by using Theorem 3.2.9 we have at least one factor of 1+ ¢ and then
Pa1 Op = 0. If these lie in the same column, then by Theorem 3.2.9 we
have two tableaux; the coefficient of one of them has a factor of 1+ ¢ and
the second has rows r and r + 1 both equal to and by Theorem 3.2.12
Ya1 © O7 = 0. Otherwise, let T be the tableau obtained by interchanging
the d and the d+1 below the first row. Each homomorphism @5, where S is
a unique tableau obtained by replacing two entries of d+1 in T with d, that
appears when we apply Theorem 3.2.9 occurs with a coefficient that has a
factor of 1+¢ and hence 141 0 ((:)T+(:)'T) = (1+q)(:)5 = 0. Thus, ¢4 0O =0
for all T' e . For example:

Example 3.3.7. Suppose d = 2, t = 1. Suppose there is a single d and a
single d + 1 below the first row and that they lie in the same row. Then by
using Theorem 3.2.9

1]2[2]4] 1]2]3]4]
A 112]3 1122
¢2,1O@T1:Q(1+Q)5 +(1+q)5 =0.
6] 6]
For a single d and a single d + 1 below the first row and lying in the same
column,
112]2]6] [1]2]3]6]
A 1145 11415
210 Om, = q(1+ ) 2
3] 2]

Using Theorem 3.2.12, then v o @Tm = 0. For a single d and a single

d + 1 below the first row and lying in a different row and column,

2[2]4]

215

1 1]2[3]4]
A 1 1
¢2,1°®T2:C.7(1+Q)i +l
6] 6]

215
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¢2,1°@T3 =q(1+q) +q

‘Ch’l\) — =
‘Ch’l\) — =

such that
1/)2,1 o ((:)T2 + éTg) =0.

We are left with the case d =¢ =1. Applying Theorem 3.2.9, we get that

Y110 éT is the sum of homomorphisms labelled by tableaux

1
1] %] *
1

*

where the *s denote to the numbers from 3 to u, and the entries are strictly
increasing along rows and weakly increasing down columns. Now we apply
Theorem 3.2.12 to each of these homomorphisms to move the 1 from row 3
to row 2, and then to reorder rows 3,...,b+2. We obtain a sum of tableaux

of the form

1
11|+
>

*

but each tableau occurs % times with coefficient -1 and % times with

coefficient 1. Hence, by summing 1)y 1 o Oy for each T e U we get zero.

Example 3.3.8. If d=1, t =1, then by using Theorem 3.2.9

1]1[3]4] 112[3]4]
¢1,1°©T1:Q(1+Q)513 213 +(1+Q)é 113 =0
6] 6]
1]1[3]4] 1]2[3]4]
S E L1 E1 P EX KR
6] 16
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1]1[3]4] [1]2]3]4] [1]2]3]4]
. 1/3]5 1/3]5 1]3]5
¢1,1°@TSZQ(1+Q)1 un =]
16 16 6]
111[3]5] 112[3]5]
¢1,1<>(:)T4=q(1+q)111 213 +(1+q)}1 LNER -
6] 6]
1]1[3]5] 112[3]5]
¢1,1°@T5ZQ(1+Q)?1) 214 +(1+Q)?1) HA o
6] 6]
1[1]3]5] [1]2][3]5] [1]2]3]5]
A 1]3]4 1]3]4 1]3]4
¢1710@T6 :q(1+q)l -l-L :L
16 16 6]
1]1[3]6] 112[3]6]
¢1,1<>(:)T7=q(1+q)111 213 +(1+q)}1 LNER -
5] 5]
1]1[3]6] 112[3]6]
¢1,1°@TSZQ(1+Q)?1) 214 +(1+Q)?1) HA o
5] 5]
1[1]3]6] [1]2[3]6] [1]2]3]6]
wno@T:q(1+q)134 JL[3l4]  _[1]3[4
’ ’ 12 1] 11
9] 9] 5]
111[3]4] [1]2]3]4] [1]2]3]4]
¢110©T1=q(1+q)136 Jsle] _[1]3]6
’ ’ 12 1 1
5] 9] 9]
1]1[3]4] 1]2]3]4]
¢1,1°@THZCJ(1+Q)?1) 210 +(1+Q):13 Sl
5] B
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1]1[3]5] 1]2]3]5]
A 11216 1 6
¢171°®T12:CJ(1+Q)3 +(1+Q)3 =0
4] 4]
1[1]3]5] [1]2]3]5] [1]2]3]5]
A 113]6 1 6 1/3]6
1/1171 ] ®T13 = q(l + q)l + l l
4] 4] 4]
1]1[3]6] 1/2]3]6]
A 11215 1 5
¢171°®T14:CJ(1+Q)3 +(1+Q)3 =0
4] 4]
1[1]3]6] [1]2[3]6] [1]2]3]6]
A 113]5 1 5 1135
1/1171 o ®T15 = q(l + q)l + L L
4] 4] K3
1[1]3]6] [1]2[3]6] [1]2]3]6]
A 1 ) 1 5 1141]5
1/1171 ] ®T16 = q(l + q)l + l l
3] 3] 3]
1[1]3]5] [1]2][3]5] [1]2]3]5]
A 114]6 1 6 1146
¢1,1°®T17:C_I(1+Q)l uE 1
3] 3] 3]
1]1]3]4] [1]2]3]4] [1]2]3]4]
A 1/5]6 1 6 115]6
1/1171 o @T18 = q(l + Q)l -l-i l
3] 3] 3]
Therefore we find that ;1 o o is the sum of homomorphisms labelled by
tableaux
112]3]4] 112]3]5] 1/2]3]6]
A 1135 A 1134 A 1134
Y1007, =7 11007 =7 11007, =7
6] 6] 5]
112]3]4] 112]3]5] 1/2]3]6]
A 1/3]6 A 1/3]6 A 113
Y1,1001, =17 11001, = 110015 =7
H 4] 4]
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1/2]3]6] 112[3]5] 1]2]3]4]
- 114]5 - 1/4]6 - 1/5]6
P1,1007 =7 11001, =5 1,100 =17
3] 3] 3]
Now we use Theorem 3.2.12
1]2[3]4] [1]2]3]4]
- 115 1[1]3
¢1,1°®T3:_i 5]
6] 16
1]12[3]5] [1]2]3]5]
- 1]1]4 1[1]3
¢1,1°®T6:_i 1
6] 16
1]2[3]6] [1]2]3]6]
: 1]1]4 1/1]3
7,1)1,109T9=—i 4
5] 9]
1]12[3]4] [1]2]3]4] [1]2][3]4] [1]2]3]4]
- 1/1]6 113 116 113
L 1 e F 1 N 1
9] 9] 5] 6]
1]12[3]5] [1]2]3]5] [1][2][3]5] [1]2]3]5]
- 1/1]6 113 116 113
L 1 [ F T ]
4] 4] E3 6]
1]12[3]6] [1]2]3]6] [1][2][3]6] [1]2]3]6]
- 1[1]5 113 115 113
L T e N Y
4] 4] 4] 5]
112]3]6] [1]2]3]6] [1]2][3]6] [1]2]3]6]
- 1]1]5 1]1]4 115 11]4
waeOne=Tg S5 TRl 3
3] 3] 4] 9]
112]3]5] [1]2]3]5] [1]2][3]5] [1]2]3]5]
- 1/1]6 1]1]4 116 1]1]4
PiaeOre =T g REIENEY
3] 3] 4] 16
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¢1,1 © ®T18 =

EEERE
‘w’@ [l
EEEE
‘CT:’OJ [l

Hence 91,1 o éT =0.

Now let us take the follows lemma.

Lemma 3.3.9. [7, Proposition 5.2] Let F be a field of characteristic 2.
Suppose X = (a,3,1°) and pu = (u,v), where a,b,u,v are positive integers with
a,b,u are even and let a >4, u>v, n=a+b+3 = u+v and v < min{a+1,b+3}.
Then, Y 7reay (:)g + 0 for each d,t.

Proposition 3.3.10. From Corollary 3.2.19 and Lemma 3.3.9, we get that
o#0.
Homomorphisms v from S* to S

Throughout this section we consider homomorphisms from S* to S*. As-
sume that 3 < v < a—-1. Define A, B to be the u-tableaux of type A as

follows

U I P — 1]2]2]2]3]4] b2
1| 1]1]1]

Bl 1] 1]2]3] 4] b2 .
T [1]2]2

Lemma 3.3.11. ©4 and Op are non-zero, and are linearly independent if
v<b+1.

Proof. By using Theorem 3.2.12, we express ©4 and ©p as linear com-
binations of semistandard homomorphisms such that there is at least one
semistandard tableau appearing in each case. Thus, the homomorphisms
are non-zero. Moreover, if v < b+ 1, then in the expression for © 4 there is
at least one semistandard tableau with two 2s in the first row while there
is no such tableau appearing in the expression for O5. Hence, ©4,05 are

linearly independent. O
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Example 3.3.12. Let A = (4,3,1%) and v = (6,3) then

1/2]2]2]3]4] polil1]1 2[3[4]

A= 1]2]2

By using Theorem 3.2.12

A ol1]1]1[1[3][4] 1[1[1][1]2]3] 41[1[1][1]2]4]
R FIFIE 121274 27213
_g11]1]1]2]2]
1127314 '
A e ll1]1]1]3]4] o1]1]1]1]2[4] o1[1][1][1[2]3]
95 =-13J57573 127213 127214 '

Theorem 3.3.13. Suppose \ = (a,3,1%) and p = (u,v) with a >4 and u > v,

where a,b,u are positive integers. Then

dim Hom(S*, $7) > 1.

Proof. Suppose O = a0 4+8605, where a and 3 € C. Now we find Ya 0® for
all d,t. By Theorem 3.2.9 for all d > 2 we have 141 o O4 = (1 +q)(:)5 =0 and
a0 Op = (1+¢)Og =0, where S (respectively S’) is the unique tableau
obtained by changing 1 of the entries equal to d+ 1 in A ( respectively B)
into d. Now consider d = 2, then by Theorem 3.2.9 we have that

T 1]2]2]2]2]4] b2
T 1]1]1] B

P21 004 = [4]

Similarly, 19 1 0Op = q2(1+q)@5 =0, where S is the unique tableau obtained
by changing 1 of the entries equal to 3 in B into 2. Consider d = 1 and let
t =1,2,3. Then, if t = 1, we get by Theorem 3.2.9 and Lemma 3.2.20
that 1 o O4 = q”[(“”l’)“](i)g = 0 where S is the unique tableau obtained
by changing 2 in first row in A with 1. Also 1, 0 Op = ¢"~2 [Q_T?’]@Sl +
[”11](:)52 =0, where S; is the unique tableau obtained by changing 2 in first
row in B with 1 and S5 is the unique tableau obtained by changing 1 entry

equal to 2 in second row in B with 1. If ¢ = 3, then by Theorem 3.2.9 and
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Lemma 3.2.20 we get

where S is the unique tableau obtained by changing 3 of the entries equal
to 2 in A with 1. Also,

e 3o

=¢"%(0)(1)05 =0,

where S is the unique tableau obtained by changing 3 of the entries equal
to 2 in B with 1.
If ¢t = 2, then by Theorem 3.2.9 we get

1/11720éA:q2v|:a_v+2:|é5¢0 since Og # 0
also,
w12063=[g]@s¢0
where
G [ 1] 2] 3 4] b2
1] (1]1]1]

Now we look for v o0 (aé)A + ﬁ@B). Then

Y120 (aé)A + 5@3) = (a[a _;)+ 2] + ﬁ[;])ég
2(a—v+1)

T e

_v+l ~1_.
a ;+ +5v2 )Og, from Lemma 3.2.20

= (a

Soifwesetazv—landﬁ:—(a—v+1)then,1/)1,20(:):0, O
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After we define the maps v and ¢ and show that 4,00 = 0 and 1)g 07 =0

we come to prove the first case of Theorem D. Recall that

Theorem D(1). Suppose \ = (a,3,1%) is a partition of n, where a,b are
positive even integers with a > 4 and let p be a partition of n such that
SF is irreducible. If p or p' equals (u,v), where u is even and u > v with

v =3 mod4 and [Z::j] £ 0, then S* has a direct summand isomorphic to S*.

Proof. Let S* be irreducible, where pu = (u,v) with v +v = a+ b+ 3 and
suppose that v = 3 (mod 4) and [Z: ] # 0 and that 0 < a—v < u —v which

v

v
give v < min{a—-1,0+3}. We want to show there are homomorphisms
s 2y 6% 2, SH such that wod # 0. Assume 3 < v < a—1 and consider
w = 0. Suppose ¥ = (%)@A - (%f)éB.NOW we use Lemma 3.2.18 to
show that wod # 0. If n is any partition, define S” and M7 to be the

J¢z—modules defined in 1.2.9, so that

ST=S57®zC and M"zM}e®zC.
Define Sy, and My, to be the F»&,-modules, so that

SZQ ST ®zF, and MZQ * M) ®z F.
For a tableau R € T (a,f3) let (:)}Z% define the corresponding homomorphism
0%:5% - Mg
and define @% to be the corresponding homomorphism
(:)g2 : S, — MI%.

Set
v—1

2

a-v+1
2

Dz:Mh Sy by 9z=(—)0%( 0%

also,

@% + @? ifa=0 (mod 4);

. M N A =
0F2‘MF2 SF2 by 19F2 éiQ ifa=2 (m0d4)
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Suppose a =0 (mod 4). Suppose v =4c+ 3 and a = 4d for ¢,d > 0. Then

de+2 4d-4c-2 .
Uz =— i—#@g
= (2¢+1)0, - (2d-2¢-1)6%.
So that ¥ = (2¢+1)04 - (2d - 2¢ - 1)Op and I, = (:)i2 + (:)g?. Define

wZ:S%%Mgl by wZ:Z@%

Tep
and
wFQ:S%ﬁMé by wpg, = ZG)ITTQ
Tep
Then
wzolg = Z bR@% for some bgr € Z.
ReTo(w' )
So that ZUFQOQ?F2 = Z (pFQ(bR)(:)EQ and wod = Z QOC(bR)@R- It
ReTo(p',1) ReTo(w',p)

was shown by Dodge and Fayers [7] that wp, o Op, # 0, so that ¢g, (br) #0
for some R € To(u', 1). By Lemma 3.2.18(3), ¢c(br) # 0 and hence wo # 0.
Suppose a =2 (mod 4). Suppose v =4c+ 3 and a =4d + 2 for ¢,d > 0. Then
set

¥z =(2c+1)04 - (2d-2¢)Op,

so that
¥ =(2c+1)0F - (2d - 2¢)0%

by reducing modulo 2 gives
Op, =02

Again, Dodge and Fayers [7] proved that wp, o ¥p, # 0. Hence wo ¥+ 0
as above. By the argument given it, this shows that S* has a summand
isomorphic to S*.

O

3.3.2 Irreducible summands of the form S(wv:2)

In this section, we show some Specht modules 531 which have a sum-
mand isomorphic to an irreducible Specht module of the form S(“*2) where

u is even and v is odd. Throughout this section we assume that A = (a,3,1%)
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and p = (u,v,2), where a,b,u,v are positive integers with a,b,u even, a > 4,

u>v>2,n=a+b+3=u+v+2and v <min{a—-1,b+1}.

Homomorphisms § : §* - ¥

Consider a homomorphism from S* to SH' . We use non-semistandard tableaux
to construct this homomorphism. Suppose U is the set of A-tableaux having

the form:

ca
*

*

where the *s denote to the numbers from v + 1 to u, and the entries are

weakly increasing along the first row and down the first column.

Example 3.3.14. Let A = (4,3,12), = (4,3,2). Then U = {T'} such that

2[3]4]
112

[coro] =]~

Now define
5= Or.
Tel
Proposition 3.3.15. Suppose \ = (a,3,1°) and p = (u,v,2), where a,b,u,v
are positive integers with a,b,u are even and leta >4, u>v>2, n=a+b+3 =
u+v and v <min{a-1,b+1}. Then, g.06 =0 for each d,t.

Proof. First take d >v and t =1. If T e U, then T contains a single d and a
single d + 1. If these lie in the same row of T', then by Theorem 3.2.9 each
map Og which occurs has a coefficient which has a factor of 1 +¢q. Therefore
Ya1 0 O = 0. If these lie in the same column of T, then by Theorem 3.2.9
get a tableau which has the row r and row r + 1 both equal to with
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coefficient bg = 1 then by using Theorem 3.2.12 941 o O = 0. A similar
argument applies in the cases where 2 < d<v. So we are left with the cases
where d =1 and ¢ € {1,2,3}. If ¢t = 3 then by Theorem 3.2.9 each coefficient

that occurs has a factor of 1+ ¢ and hence 1130 ©7 =0. For example

Example 3.3.16. Take T as in Example 3.3.14. Then by using Theorem
3.2.9 we get

1]1]3]4]
A 31111
o=, [L1l
Y3007 =¢q Ul
3]
1]1]3]4]
1[1]1
=1+ (L +q+q")7
3]

=0.

If t = 2 then by Theorem 3.2.9 the homomorphism 1 2 o Or is labelled
by three tableaux. The coefficient of two of them have a factor of 1+ ¢ and
the third term is

e =[=]=

v
*

*

and this is zero by Theorem 3.2.12. Hence, 112 o @T =0.
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1]2[3]4]
111]2
Example 3.3.17. Take T = 5 . Then, by Theorem 3.2.9
3]
1]1[3]4] 1]2[3]4] 1]1[3]4] 1/2]3
A 21137111 31111 21112 31|11
o=l e L |
V12007 =7 || 3] 11 Tl 11
3] 3] 3] 3]
By using Theorem 3.2.12 we get:
¢1,2°@T=0

If t =1 then by Theorem 3.2.9 the homomorphism 1)y 1 o Or labelled by
three tableaux. The coefficient of one of them has factor ¢+ 1 and the other

two are

11213 ‘1}‘*‘ ....... ‘*‘ 11213 ‘1}‘*‘ ....... ‘*‘
111]1 1112
2] 1]
K M -’
: + :
IS B L]
ca ca
Rl Rl
B B
which by Theorem 3.2.12 is equal to
11213 ‘U‘*‘ ....... ‘*‘ 11213 ‘U‘*‘ ....... ‘*‘
111]1 111]1
2] 2]
3 3
I8 S
11 [+ .
A A
Rl Rl
[+ [+

Hence, 111 0 @T =0.
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1]2[3]4]
111(2
Example 3.3.18. Let T = 5 . Then, by Theorem 3.2.9
3]
1]1[3]4] 1]2[3]4] 1]2[3]4]
. 211[1]2 311]1]1 171]1]2
or - | | |
110071 =¢q 2] 2] 11
3] 3] 3]
1]2]3]4] [1]2]3]4]
B RN ANE
2] 1
3] 3]
By using Theorem 3.2.12 we get:
112]3]4] [1]2]3]4]
A 31111 1/1|1
ooty BRHAT
3] 3]

Now let us take the following lemma.

Lemma 3.3.19. [7, Proposition 6.2] Let F be a field of characteristic 2.
Suppose A = (a,3,1°) and p = (u,v,2), where a,b,u,v are positive integers
with a,b,u are even and let a >4, u>v>2, n=a+b+3=u+v+2 and
v<min{a+1,b0+3}. Then, Yray (:)g 0 for each d,t.

From Corollary 3.2.19 and Lemma 3.3.19, we deduce
Proposition 3.3.20. Suppose \ = (a,3,1°) and p = (u,v,2) with a >4 and
u>v>2. Letn=a+b+3=u+v and v<min{a—-1,b+1}. Then, 6 #0.
Homomorphisms ~ : S# — S*

In this section we consider homomorphisms from S* to S*. Assume that D

is p-tableaux of type A as follows:

ST 1]2]3] b2
D=]111/ - ‘1‘
2
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Proposition 3.3.21. We have g4 o Op=0, for all d,t and Op = 0.

Proof. By using Theorem 3.2.9, if d > 2 then there is at least a factor of
g+ 1 and hence 141 o Op=0.Ifd=1and ¢ = 1,2, then by using Theorem
3.2.9 we get either the homomorphism is labelled by tableau with coefficient
2

[
by a sum of tableaux with more than v 1s in rows 2 and 3, and therefore by

] which is zero by Lemma 3.2.20 or the homomorphism which labelled

Theorem 3.2.12 are zero. If d =1 and ¢ = 3, then by using Theorem 3.2.9 we
get the homomorphism is labelled by tableau with coefficient [2;”] which is
zero by Lemma 3.2.20. By using Theorem 3.2.12 we get the sum of tableaux
and sum two of them we get at leat a factor of 1 and hence Op # 0. For

example, we get at least the next tableau:

L[ 1 [ 1 s e b2
D=| 2] vt
3/4]

Now we prove the second case of Theorem D. Recall that

Theorem D(2). Suppose \ = (a,3,1%) is a partition of n, where a,b are
positive even integers with a > 4 and let p be a partition of n such that S*
is irreducible. If p or u' equals (u,v,2), where u is even and v is odd with

u>v and [Z:z] £ 0, then S* has a direct summand isomorphic to S*.

Proof. Let S* be irreducible, where u = (u,v,2) and suppose that [Z:Z)’] #0

and that 0 < a—v <u—v which give v < min{a—1,b+ 1}. So we have
v S* — SN and §: SN — S*.

The argument that § o~ # 0 is identical to the argument given in proof
of Theorem D(1). O
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Chapter 4

New family of decomposable
Specht modules of F'G,,

In this Chapter, we find a new family of decomposable Specht modules for

the symmetric group in characteristic 2.

4.1 The main results

In this section we state the main theorems which describe some Specht
modules S* which have a summand isomorphic to an irreducible Specht
module of the form S(*?) where u,v are positive integers with v odd and u
even and u > v. We assume that ¢ = 1 and that the field F' has characteristic
2, so that we are working with the symmetric group algebra Fr&,,. We use

the method that we describe in section 3.1.

Theorem 1. Let F' be a field of characteristic 2 and let ¢ = 1. Suppose
A= (a,5,1b) is a partition of n, where a,b are positive even integers and
let u be a partition of n such that S* is irreducible. Suppose u or p' equals
(u,v), where u>v and u is even and v is odd with v < min{a-1,b+ 1} and
(Z:z) is odd. If one of the following condition holds:

e I[fv=7 mod 8,
e I[fv=5 mod8 and a—v =3 mod 4,

then S* has a direct summand isomorphic to S*.
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Theorem II. Let F' be a field of characteristic 2 and let ¢ = 1. Suppose
A= (a,7, 1b) is a partition of n, where a,b are positive even integers and
let i be a partition of n such that S* is irreducible. Suppose u or p' equals

(u,v), where u>v and u is even and v is odd with v < min{a - 1,b+ 1} and

(u_v) is odd and v

a—v

to SH.

7 mod 8. Then S* has a direct summand isomorphic

Theorem 1II. Let F be a field of characteristic 2 and let ¢ = 1. Suppose
A= (a,¢,1°) is a partition of n, where a,b are positive even integers and c is
odd. Let i be a partition of n such that S* is irreducible. Let m be minimal

such that ¢ < 2™. If p or u' equals (u,v), where u > v and u is even and v
is odd with v < min{a - 1,b+ 1} and (*_") is odd and v = -1 mod 2™ and

a—v

a-v=-1 mod2™. Then S* has a direct summand isomorphic to S*.

Let us state the classification of irreducible Specht modules. Let m be
a non-negative integer we say I(m) the smallest positive integer such that
21m) > m.,

Theorem 4.1.1. [19, Main Theorem] Let 1 be a partition of n and Fy be
the field of characteristic 2. Then the Fo&,—module S* is irreducible if and
only if one of the following holds:

e i — i+1 = —1 mod o (iv1—prir2) for each i >1;
o 4 —pi,=-1 mod Wi =riv2) for each i > 1;
o =(2%).

Remark 4.1.2. If p is 2-regular then Theorem 4.1.1 is a special case of
Theorem 3.2.15.

Corollary 4.1.3. Suppose p = (u,v), where u is even and v is odd with

u >v. Let m be minimal such that ¢ <2™. If S* is irreducible, then
u—-v=-1 mod2™.

Now we state some useful results on binomial coefficients modulo 2.

Lemma 4.1.4. [15, Lemma 22.4] Suppose

c=co+2c1+2%co+ - +2M¢,,  where 0 < ¢;<2.

v=vp+ 201 + 2209+ -+ 2™, where 0 < v;<2.
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Then

() ()G - Cr) o2

Hence, (5) 1s divisible by 2 if and only if v; > ¢; for some 1.

Lemma 4.1.5. [15, Corollary 22.5] Let ¢ > v > 1. Then all the binomial

(O} (e (0

are divisible by 2 if and only if c —v = -1 mod 2!(¥)

coefficients

4.2 The Specht modules labelled by (a,5,1%)

In this section, we find Specht modules 5@@51") which have a direct sum-
mand isomorphic to an irreducible Specht module S(*?) where u is even
and v is odd with u > v. We assume that a,b,u,v are positive even integers
with a > 6. Let n = a+b+5 = u+wv. The regularisation of partitions (a,5,1?)

is given by following lemma.

Lemma 4.2.1. Let a>6 and b>2. Then

(a,5,2) (a>b=2)
(a,5,1) =1 (a,b +1,4) (a>b)
(b+2,a-1,4) (a<b>2).

Now from Theorem 1.5.21 and Lemma 4.2.1, we see that D) appears
as a composition factor of §(a5,1%) only if (u,v) > (a,5,1°)%, so we need
u > max{a,b + 2} that is v < min{a + 3,b + 5}. In this section we need
5 <wv<a-1 for maps to be defined and v < b+ 1 for independence. Assume

that 5 <v <min{a—-1,b+1}.

4.2.1 Homomorphisms from S* to S*

Consider homomorphisms o : $* — § w Suppose U is the set of A-tableaux

of type i/ which take the form:
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1
1***‘*‘
el

[+ |
such that the s are the numbers from 2 to u, and the entries are strictly

increasing along each row and weakly increasing down each column. Now

define

o= 6.

TeUd

Proposition 4.2.2. We have {4400 =0 for each d,t.

Proof. First choose v<d<u and t = 1. If T € U, then T contains a single
d and a single d + 1. If these lie in the same row of 7', then by Theorem
3.2.9 and Theorem 3.2.12 )4 o Or = 0. Similarly, if these lie in the same
column of T" then 141 o O = 0. Otherwise, there is another tableau T el
obtained by interchanging the d and the d + 1. By Theorem 3.2.9 we have
a1 © (@T + éT’) =0. Hence, 4100 =0.

Second take d =v and t = 1. Then T € U contains either a single v and a
single v+ 1 in the first row or a single v and a single v+ 1 below the first row.
Suppose there is a single v and a single v + 1 below the first row. If these
occur in the same row or the same column of T, then by Theorem 3.2.9 and
Theorem 3.2.12 9, 1 o O =0. Now if a single v and a single v+ 1 below the
first row occur in the different row and column then there is another tableau
T' €U obtained by interchanging the v and the v + 1. By Theorem 3.2.9 we
have 1,1 o (@T + (:)’T) = 0. If there is a single v a single v + 1 in the first row
then by Theorem 3.2.9, 1,1 o O7 = 0. Hence, Yp100=0. If 1<d<vand
t =2, then we get 1490 Op =0 for each T e U by applying Theorem 3.2.9.

Now take 2 < d < v and ¢t = 1, and consider a tableau T € Y. There
are a single d and a single d + 1 below the first row. If these occur in the
same row or in the same column then by using Theorem 3.2.9 and Theorem
3.2.12 we have 94 o Or =0. Otherwise, there is a tableau T' € U formed
by interchanging the d and the d + 1 below the first row. Then by Theorem
3.29 g0 (O + éT’) = 0. Hence, by 94200 =0.

Finally, suppose d =t = 1. By applying Theorem 3.2.9, we have that
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1,1 0 0 is the sum of homomorphisms labelled by tableaux

1
1***‘*‘
1]

*

where the xs represent the numbers from 3 to u, and where the entries
strictly increase along rows and weakly increase down columns. Now to
move the 1 from row 3 to row 2 we apply Theorem 3.2.12 to each of these
homomorphisms and then to reorder rows 3,...,b+ 2. We obtain a sum of

homomorphisms indexed by tableaux of the form

1
11**‘*‘
el

*

Now each tableau occurs b times in this way, but b is even. Then 1)1 100 = 0.
O

Now we show that o # 0. So we consider the following Proposition.
Proposition 4.2.3. We have o 0.

We need Theorem 3.1.10 to prove this proposition. Consider the semis-
tandard tableau .S such that:

b+3b+dbipid

Let T € U and consider expressing O as a linear combination of semi-
standard homomorphisms. By applying Theorem 3.1.10, T' contributes to
S only if S > T. Therefore, we can ignore all T € U for which S % T. In

particular, we consider only those tableaux in &/ which have b+ 7,...,u in
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the first row and b+3,b+4,b+5,b+6 in the top two rows. Now assume that
v < b+ 1, then the tableaux T € U that we need to consider are those of the

following forms:

1. Suppose v <i<b+2. Then

DY E— o4 peford | u]
b+3brabrabo

< [ e]=]m

<
+
—

K

2. Suppose 2<i<b+2 and 3<k <6. Then

2 g ‘ v ‘b+k‘b+ﬂb+8‘ ......... ‘ u ‘
b+ -

o~

Ui, k] =

.‘@

b+2

Note that, the 7 in the first column means that ¢ does not appear in
that column and b+ k in the second row means that b+ k does not appear
in that row. First apply Theorem 3.2.12 on the tableau T[] to move the 1
from row 2 to row 1. We see that of the tableaux appearing in the resulting

expression, the only ones dominated by S are
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T2 s e
i br3bdbiiprd
2]
Tl =
=
and
T2 G o] i prfosd | a|
j [pr3bdbrsbo
2]
Tl = ]
H
m

where 2 < j < v. Now we move the 2 from row 3 to row 2 in 7'[i] by
using Theorem 3.2.12. We obtain five tableaux, but four of these are not

dominated by S. We are left with the tableau

TR E— (o pripd [ a|
b+3b+4b5b+0

£ = |- [e]
Fle | |w|s|o|—
it

&
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and ¢ — 5 more applications of Theorem 3.2.12 prove that éT"[i] is equal to
©g. Similarly, we apply Theorem 3.2.12 to T"[i, ], to move the 2 from row
3 to row 2. If j = 2, then the four tableaux obtained are not dominated
by S. If j > 2, then four of the five tableaux obtained are not dominated
by .S; the fifth has two rows equal to , so the homomorphism is zero by
Theorem 3.2.12. Hence, we get that éT[i] = Og plus a linear combination
of homomorphisms indexed by tableaux not dominated by S.

Now we apply Theorem 3.2.12 to U[i, k] to move the 1 from row 2 to
row 1. The tableaux obtained that are dominated by S are T'[i] and the

tableaux

b+3 ......

‘w (S [
-~

U'li, j, k] =

‘@

b2

where 2 < j < v and ¢ # j. Note that if ¢ < j where ¢ and j are in

the second row, then we write ¢ before j. If i = j then the accompanying

2
1

U'[i,],k] is a semistandard tableau different from S. If ¢ > 2 then we apply

coefficient would be ( ) = 0, so this case dose not occur. If ¢ = 2, then

Theorem 3.2.12 to move the 2 from row 3 to row 2; by ignoring the tableau
not dominated by S and the tableaux with two rows equal to , then the

only tableau we get is

b+

<«
2
f??‘
<
LS |

‘w‘& N | =
<

U"[i,j,k] =

‘ -

HE

and ¢—5 more applications of Theorem 3.2.12 show that éU” i k] equals
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a semistandard homomorphism different from Og.

We conclude that éU[i,k] = Og plus a linear combination of homomor-
phisms indexed by tableaux which are either not dominated by S or semi-
standard and different from S. Now by combining the two cases together,
we find that the coefficient of ©g in o is the total number of tableaux of the
form T'[i] or Ui, k], which is (b+2—v) +4(b+ 1) which is not zero modulo

2. Hence, we shown that o # 0 as required.

4.2.2 Homomorphisms from S* to S*

In this section we consider homomorphisms 7 : S* - S*. Define A, B,C to

be the u—tableaux of type A as follows:

A=|1%v | 25 3 4 e b2
1’U

B=197v+2 93 3 4 e b2
1’072 22

C = [1o7v+4) 9 3 4 . | b+2
1’074 24

Remark 4.2.4. The notation above means that the first row of A contains
a — v entries equal to 1, 5 entries equal to 2 and 1 entry equal to j for

3<j<b+2. The second row of A contains v entries equal to 1.

Lemma 4.2.5. @A, Op and éC are non-zero, and are linearly independent
ifv<b+1.

Proof. By using Theorem 3.2.12, we express © 4, O and O¢ as linear com-
binations of semistandard homomorphisms such that there is at least one
semistandard tableau appearing in each case. Thus, the homomorphisms
are non-zero. Moreover, if v < b+ 1, then in the expression for © 4 there is
at least one semistandard tableau with four 2s in the first row which there

is no such tableau appearing in the expression for Op and O¢. Also, in the
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expression for ©p there is at least one semistandard tableau with two 2s in
the first row which there is no such tableau appearing in the expression for

Oc. Hence, 6 A, Op and O are linearly independent. ]
Proposition 4.2.6. 1. Ifa-v =7 mod 8, then ¢4, o ©4=0 for all d,t.
2. Ifa-v=1 mod4 and v=1 mod 4, then ¢d,t°éB =0 for all d,t.

3. If v=3 mod 8, then g o Oc=0 for all d,t.

4. Ifa—v=3 mod 8 and v=7 mod 8. Theniﬁd,tO(@AwL(:)c):Ofor all
d,t

5 Ifa-v=3 mod 8 and v=1 mod 8. Thenqbd,tO((:)BwL@C):Ofor all
d,t.

6. Ifa-v=3 mod8 and v=5 mod 8. Thenwd7t0((:),4+(:)3+(:)c):0
for all d,t.

7. Ifa—v=1 mod 8 and v =7 mod 8. ThenwdvtO((:)A+(:)B+(:)C):O
for all d,t.

8. Ifa-v =5 mod8 and either v=3 mod8 or v =7 mod8 . Then
Va0 (©4+0p) =0 for all d,t.

9. Ifa-v=7 mod 8 andv=1 mod 8. Thenz/zd,to((:)BJr(:)C):Ofor all
d.t.

Proof. 1f d > 2, then from Theorem 3.2.9 we get g1 © O, = a1 0 Op =
Pa1° éC =0. Now, if d =1 then 9,0 é)A =10 éB =10 éC =0 for
t=1,3,5, because each A, B,C have an odd number of 1s in each row and
use that by Lemma 4.1.4 (QQJTl) = 0 for all m,j > 0. Finally, if d = 1 and
t = 2,4, then repeatedly using Lemma 4.1.4 then we have

1. Suppose a —v =7 mod 8. Then

a_”+2)1“*2 28 | 3 | 4 | ... |b+2l=0

2

P12004 :(

1’U
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and

A - 4
¢m4o@A:(a Z+ )r%“4 2 | 3 b+2|=0
1’U
2. Suppose a—v =1 mod 4 and v =1 mod 4. Then
A a-v+4 —
wLQO@B:( 9 197v 2 3 b+2
11)—2 22
v a-v+2 3
+ (2) 1 2 3 4 b+2
1’U
+(G_T+3XU11)PIH3 92 4 b+2|=0
1t 2
and
A a—v+4\ (V) |, 4evsa
P1,400p = 5 0 1 2 4 b+2
1’U
- -1
+(“ §+5)CH»)191”5 3 | 4 b+2 =0
17t 2
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3. Suppose v =3 mod 8. Then

¢1720é0=(”;2) 1 9 |3 | 4 b+2
1’0—2 22
TN o] e
11}73 23
and
14000 = (Z) e o |3 | 4 b+2
1
T KA
17t 2

4. Suppose a—v =3 mod 8 and v =7 mod 8. Then by applying Theorem

3.2.9 on A and C we get

A - 2
1/11,209A=(a ;+ ) 1e-v+2) 93 3 b+2
1’U
and
. —v+4
draoba= ("7 e 2 beo
1'U
Also,
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A -2
Y1,200¢ = (U2 ) e 2 3 4 | L b2
1’0—2 22
+(a_”+5)(”_3) 195 3 | 4 | ... |b+2]=0
1 1
11)73 23
and
14060 = (Z) v 2 |3 4 b+2
17}
- -1
+(a “5)(” )1H+5 3 | 4 b+2|%0.
1 3
vto2
Hence,
Y140 (éA + @(j) =0.
Similarly, we can show all other cases.
O

Remark 4.2.7. From Proposition 4.2.6, we can write the homomorphisms

in the following table.

v=1 v=3
a-v=1 éB éc
a-v=3 ©B+éc @c
a-v=5H éB éA+éB, (:)(j
a-v=7 @A, éB+éC @A, (:)c

V=D V=

éB AA+éB+éC
éA-Fé)B-FéC @A-f-éc

éB é +éB

O4 O4

As a corollary of proposition 4.2.6 we consider
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Corollary 4.2.8. We have

2 4ifv=3 mod8 and eithera—v=5 or7 mod 8
dimp Hompg, (S*,5*) > orifa-v=7 mod8 andv=1 mod 8,

1 otherwise.

4.2.3 Composing the homomorphisms

Now we find when S* is a summand of S* by composing the homomor-

phisms. Let D be the u—tableau of type u'

11273 s ‘u‘

D=MTals— [v]

Then we have the following theorem.

Theorem 4.2.9. Suppose T' e U, and let x be the entry in the (2,2)—position
of T and z be the entry in the (2,4)-position of T. Then

N N N N N é) r < vz a N @ z<v
1061 -6p,  Oredy={" ) Opobe =P <7
0 (v<zx or z < w). 0 (z>v).

Furthermore, Op #0.

Proof. From Theorem 3.1.7 we get O©p #0. Now let T e U we apply Theorem
3.1.12 with S equal to either A or B or C. Suppose X € X. Since each 7% is
a proper set, each X must be as well. This means that if some integer 7 ap-
pears in two sets X*/, XY then the multinomial coefficient (X)J; JJ))((JQ::;(;J +)
from Theorem 3.1.12 will include a factor (f), which gives 0. A

So in order to get a non-zero coefficient in Theorem 3.1.12, we must have

XY X% X3 ... pairwise disjoint for each j, which means that we will have
XUox2y..={1,... u}, X2ux®2-{1,... v} (1)

so Ux will equal D.
If S = A, the only way to achieve this is to have

XMorh{1,. 0}, XP={1,...,0), XY=Tfori>2.
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Thus we have @T o @A = @D.

In the case S = B, let y be the (2,3)—entry of T"and z be the (2,4)—entry
of T and 2’ be the (2,5)—entry of T'. If x > v then we cannot possibly achieve
(). So we get O7 0O =0 in this case. If z < v < y, then the only way to
achieve (1) is to have X?2 = {1,z} and X2 = {2,...,%,...,v}, and this yields
OroBp=06p. If y < v<z, then there are three possible ways to achieve
(1), that is we can have X?? = {1,z} or X*2 = {1,y} or X* = {z,y} and
X2=02 . 2,...vyor X2={2 ... .9,..., v or X2 ={1,...,%,9,...,0};
each of these gives a coefficient of 1, and again we have OroOp=0p. If
z < v<z', then X2 must contain either z or y or z then there are six possible
ways to achieve (1); each of these gives a coefficient of 1, hence we have
@T o @B =0. If 2/ < v, then X 22 must contain either z or y or z or 2z’ then
there are ten possible ways to achieve (I); each of these gives a coefficient
of 1, hence we have @T o @B =0.

In the case S = C, we have
XU =a-v+d, |X2|=v-4, |X2|=4, |XH|=1, X"=T'for i>3.

X' must contain either z or 2’, so if z > v then we cannot possibly achieve
(). So we get ©7 0O = 0 in this case. If z < v < 2’, then the only way
to achieve (i) is to have X2 = {1,...,2} and X?!' = {2'}, and this yields
Or00¢ = Op. Finally, if 2’ < v, then there are five possible ways to achieve
(1); each of these gives a coefficient of 1, and again we have Or0Oc =6p. O
Lemma 4.2.10. e The number of tableaux in U is (u_v)(“+v_“_1).

a-v 4

o The number of tableauz in U whose (2,2)-entry is less than or equal

to v and (2,3)-entry is greater than v is (Z:g)(“g“)(”;l)

e The number of tableauz in U whose (2,3)-entry is less than or equal
to v and (2,4)-entry is greater than v is (Z:zj)(“;a)(v;l)

o The number of tableauz in U whose (2,4)-entry is less than or equal
to v and (2,5)-entry is greater than v is (u_v)(uia)(vgl).

a—v

e The number of tableauz in U whose (2,5)-entry is less than or equal
tow is (;))("3):
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Proof.

1
1***‘*‘
>

*

where the xs are the numbers from 2 to u. The number of tableaux || is

found by choosing the a—v entries represented by  in the first row from the

set {v+1,v+2,...,u} which can be done in (u:v) ways and the choosing the
a—v

four entries in the second row from the remaining entries in the set, which

u+v£a—1 Z::})) (u+v2a—1

choice of tableaux. Similarly, we can show the other cases. U

can be done in ( ) ways. Hence, we have ( ) number of

As corollary of Lemma 4.2.10

Corollary 4.2.11. Let 0 = Y7y Or and 0 = a® 4 + B@B + 7@0 where all

congruence are modulo 2. Then

UoéAz(u—v)(quv—a—l)éD.

a-—v 4

0000 = (“‘”)(”‘ 1)@D.

a—v 4
Before we prove Theorem I we want to show when in the cases in Propo-
sition 4.2.6 we have oy # 0 for homomorphisms S* 2, 8> R SH . Assume
S* is irreducible, where pu = (u,v) with u+v = a+b+5. Since S* is irreducible,
then by Corollary 4.1.3, 4 —v == -1 mod 8.

1. Suppose a—v =1 mod 8. If v=1 mod 8, then a =0 mod 8 and u =0
mod 8. LetW:@B.

u—v\(u—-a\fv-1\nx
doy= Op.
7 (a—v)( 2 )( 2 ) b
The first term is odd by assumption, the second binomial coefficient
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is even because © —a =0 mod 8 and third binomial coefficient is odd.
Hence d oy =0. If v =3 mod &, then a =4 mod 8 and u =2 mod 8.

Let v = Oc¢.
Son = (u—v)(v—l)éD‘
a—-v 4
The first term is odd by assumption, the second binomial coefficient is

even because v —1 =2 mod 8. Hence § oy =0. Finally, v =5 mod 8§,
then =6 mod 8 and u=4 mod 8. Let v = Op.

u—v\fu—a\({v—-1\nx
o= )0 e
°7 a-v 2 2 p
The first term is odd by assumption, the second binomial coefficient

is odd because u—a =6 mod 8 and third binomial coeflicient is even.

Hence § oy = 0.

. Suppose a—v=3 mod 8. If v=1 mod 8, then a=4 mod 8 and u=0
mod 8. LetW:@BwL@C.

(P G (o o g 2

The first term (Z:z) is odd by assumption, the term (“;“) is even
because u — a = 4 mod 8. The binomial coefficient of (vf) is even
because v—-1=0 mod 8. Hence 6o~y =0. If v=3 mod 8, then a =6

mod 8 and v =2 mod 8. Let Wzé)c.

_ —1\ -
i ()

a—v 4

The first term (z:z) is odd by assumption. The binomial coefficient is

of (U;I) is even because v—1=2 mod 8. Hence j oy =0.

. Suppose a—v=5 mod 8. If v=1 mod 8, then a =6 mod 8 and u=0
mod 8. Let’y:@B.

o= ()0 e

The first term (Z:z) is odd by assumption. The term (“;a) is odd
because u —a = 2 mod 8 The binomial coefficient of (v;) is even
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because v -1 = 4 mod 8. Hence j oy = 0. If v =3 mod8. Let
7=@A+(:)B. Then ¢ =0 mod 8 and v =2 mod 8. Then

R (7 iy R [ G [ ()

The first term (Z::j) is odd by assumption, the term (u“’ga_l) is odd
because u+v—-a—-1=4 mod 8, the term (“;“) is odd because u—a = 2
mod 8. Hence oy =0. Now Let v = O¢. Then

o ()7 e
a—-v 4

The term (”;1) is even because v —1 =2 mod 8. Hence §oy =0. If

v=5 mod 8, then a =2 mod 8 and u =4 mod 8. Leth(:)B.
u—v\fu—a\fv—-1\~
doy= Op.
7 (a—v)( 2 )( 2 ) P

The first term (Z:ﬁ) is odd by assumption. The term (u;a) is odd
because © —a = 2 mod 8 The binomial coefficient of (v;) is even

because v—1=4 mod 8. Hence j o~y =0.

.Ifa-v=7 mod8 Ifv=1 mod8 Then a =0 mod8 and v =0
mod 8. Let v = © 4. From Corollary 4.2.11

507:(u—v)(u+v—a—1)én
a-—v 4

The first term is odd by assumption, the second binomial coefficient
is even because u +v—-a—-1=0 mod8. Hence j oy =0. Now let
v =0Op +O¢. From Corollary 4.2.11

U—v u—a\fv-1 v—1\\ A
dory= Op.
7 (a—v)(( 2 )( 2 )+( 4 )) P
The first term (Z:z) is odd by assumption, but the binomial coefficients

(U;) and (vzll) are even because v —1=0 mod 8. Hence d o~y =0. If

v=3 mod 8, then a =2 mod 8 and v =2 mod 8. Let v = ©4. From
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Corollary 4.2.11

a-v 4

507:(u—v)(u+v—a—1)é[).

The first term is odd by assumption, the second binomial coefficient is
even because u+v—-a—-1=2 mod 8. Hence oy =0. Now let v = Oc.
From Corollary 4.2.11

507:(u—v)(v—1)éD.
a-v 4

The first term is odd by assumption, the second binomial coefficient

is even because v—1=2 mod 8. Hence j oy =0.
Now we prove Theorem I. Recall that

Theorem 1. Let F' be a field of characteristic 2 and let ¢ = 1. Suppose
A= (a,5,1b) is a partition of n, where a,b are positive even integers and
let u be a partition of n such that S* is irreducible. Suppose u or p' equals
(u,v), where u>v and u is even and v is odd with v < min{a-1,b+ 1} and
(Z:z) is odd. If one of the following condition holds:

e I[fv=7 mod 8,
e I[fv=5 mod8 and a—v =3 mod 4,
then S* has a direct summand isomorphic to S*.

Proof. Let S* be irreducible, where p = (u,v) with u+v = a+b+5. Since S*
is irreducible, then by Corollary 4.1.3, u—v == -1 mod 8. We would like to
show that in the cases above there are homomorphisms S* 1, g L SH
such that § oy # 0. We take § = o.

1. Suppose a—v =1 mod 8. If v=7 mod 8, then a =0 mod 8 and u =6
mod 8. Let 7:éA+©B+éC- Then

(Bt S (g N | %

The first term (Z:z) is odd by assumption, the term (”“’Zﬁl) is odd
because u+v—-a-1=4 mod &, the term (u;a) is odd because u—a =6
mod 8. The binomial coefficients of (U;) and (”;1) are odd because

v—1=6 mod 8. Hence jo~v =0p.
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2. Suppose a—v=3 mod&. If v=5 mod 8, then a=0 mod 8 and u =4
mod 8. Let 7:éA+©B+éC- Then

R (0 o G (P G| %

The first term (Z:;’) is odd by assumption, the term (uwla_l) is even
because u+v—-a—-1=0 mod 8, the term (“;a) is even because u—a =4
mod 8. The binomial coefficient is of (121) is odd because v -1 =4
mod 8. Hence joy = Op. If v=7 mod 8, then a=2 mod 8 and u =6

mod 8. Let ’Y=éA+éc-

(9 i R A G|

The term (Z:z) is odd by assumption, the term (”“’;“1) is even be-
cause u+v —a—1=2 mod 8, the binomial coefficient of (vf) is odd
because v —1=6 mod 8 . Hence § o~y = (Z:g)(”j)@D =0Op.

3. Suppose a—v =5 mod8. If v =7 mod8. Let 7:@A+@B. Then
a=4 mod 8 and u =6 mod 8. Then

(1 (R Y O[5 ) £

The first term (*_") is odd by assumption, the term (“H};a*l) is even
a—v
because u+v—-a—-1=0 mod &, the term (uga) is odd because u—a = 2

mod 8. Hence § o~ = Op.

4. fa-v =7 mod8 If v =5 mod8, then a =4 mod 8 and u = 4
mod 8. Let v = ©4. From Corollary 4.2.11

607:(u—v)(u+v—a—1)éD.
a—v 4

The first term is odd by assumption, the second binomial coefficient is
odd because u+v-a-1=4 mod 8. Hence oy =0Op. If v=7 mod 8,
then ¢ =6 mod 8 and u = 6 mod 8. Let v = ©4. From Corollary

4.2.11 )
507:(u—v)(u+v—a— )éD-

a-—v 4
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The first term is odd by assumption, the second binomial coefficient

is even because u+v—-a—-1=6 mod 8. Hence 607=(:)D.

Hence we have shown that if v=7 mod 8 orv=5 mod 8 and a-v =3

mod 4, then § o~y = ©p. This completes the proof of Theorem 1.

4.3 The Specht modules labelled by (a,7,1%)

(@7.1) which have a direct sum-

In this section, we find Specht modules S
mand isomorphic to an irreducible Specht module $?). The argument is
similar to that given in Section 4.2. So, we can assume that A = (a,7,1%)
and p = (u,v), where a,b,u,v are positive integers with a,b,u even and v

odd and let u>v, n=a+b+7=u+v and 7<v <min{a—-1,b+1}.

4.3.1 Homomorphisms from S* to S*

Consider homomorphisms o : $* — S#. We start constructing such a

homomorphism. Suppose U is the set of A-tableaux having the form:

1
1] %] % *‘*‘*‘*‘
*

*

such that the *s are the numbers from 2 to u, and the entries are strictly
increasing along each row and weakly increasing down each column. Now

define
g = Z (':)T-
TeU
Proposition 4.3.1. We have 14,00 = 0.
Proof. Similar argument as in the proof of Proposition 4.2.2. O

Now we check that o #0. So we state the following proposition.

Proposition 4.3.2. We have o + 0.
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Proof. We need Theorem 3.1.10 to prove this proposition. Consider the

semistandard tableau S such that:

1|2 | e, 0 1019 BH10 | e u
D+3|b+4 | b+5 | b+6 |b+7 | b+8

e CCRE N (OB

b+2

Take T e U and consider expressing Or as a linear combination of semi-
standard homomorphisms. By Theorem 3.1.10, T' contributes to S only if
S > T. Therefore, we can ignore all T' € i for which S ¢ T'. In particular, we
need only consider those tableaux in & which have b+9,...,u in the first row
and b+3,b+4,...,b+ 8 in the top two rows. Now we assume that v <b+1,
then the tableaux T € U that we need to consider are those of the following

forms:

1. Suppose v <i<b+2. Then

1 2 .................................... v 1 b+9 b+10 ....... U

v+l

D e

b2
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2. Suppose 2<i<b+2 and 3<k <8. Then

1 2 3 .................................... v b+k b+9 b+10 ....... U
1| |bi3| - bk| oo b8
2
Uli k] =|
i
b2

Now we do a similar argument as in the proof of Proposition 4.2.3 by
applying Theorems 3.2.9 and 3.2.12. We get that éT[Z-] = Og plus a linear
combination of homomorphisms indexed by tableaux not dominated by S
and that (:)U[i,k] = Oy plus a linear combination of homomorphisms indexed
by tableaux which are either not dominated by S or semistandard and dif-
ferent from S. Now by combining the two cases together, we find that the
coefficient of Og in o is the total number of tableaux of the form T[i] or
Uli, k], which is (b+2-wv) +6(b+ 1) which is not zero. Hence, o # 0.

O

4.3.2 Homomorphisms from S* to S*

In this section we consider homomorphisms ~ : S* to S*. Define A, B,C, D
to be p-tableaux of type A as follows:

A=[19v] 27 | 3 | 4 | ... |b+2.
1’(}

B= 1%7vt% 25 | 3 4 | ... |b+2
1'0—2 22

C=ov4 23 | 3 4 | ... |b+2
11}—4 24
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D= 14 9 3 4 | ... |b+2

11)—6 26

Lemma 4.3.3. @A, @B, éC and ©p are non-zero, and are linearly inde-

pendent if v <b+ 1.

Proof. By using Theorem 3.2.12, we express 6 A, 6 B, O¢ and Op as linear
combinations of semistandard homomorphisms such that there is at least one
semistandard tableau appearing in each case. Thus, the homomorphisms are
non-zero. Moreover, if v < b+ 1, then in the expression for © 4 there is at
least one semistandard tableau with six 2s in the first row which there is
no such tableau appearing in the expression for @B, O¢ and Op. Also,
in the expression for ©p there is at least one semistandard tableau with
four 2 in the first row which there is no such tableau appearing in the
expression for O¢ and O©p. In the expression for O there is at least one
semistandard tableau with two 2 in the first row which there is no such
tableau appearing in the expression for Op. Hence, 6 A, 6 B, O©c and Op

are linearly independent. O
Proposition 4.3.4. 1. Ifa-v =7 mod 8, then ¢4, o ©4=0 for all d,t.
2. If v=>5 mod 8, then g o Op=0 for all d,t.

3. If v=3 mod 8 and either a—v=3 mod 8 ora-v =7 modS8. Then
Va0 Oc =0 for all d,t.

4. If a—v =5 mod 8 and either v =1 mod 8 or v =5 mod 8. Then
Yas0Op =0 for all d,t.

5 Ifa-v=1 mod8 and v=1 mod 8, then TIZ)dﬂgO(éB-f-éD):OfOT all
d,t.

6. Ifa-v=1 mod 8 and v=3 mod 8, theni/zd,tO((:)(;Jr(:)D):Ofor all
d,t.

7. Ifa-—v=1 mod 8 and v =7 mod 8, then ¢d,t°(éA+éB+éc+éD) =0
for all d,t.
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10.

11.

12.

. Ifa-v=3 mod 8 andv=1 mod 8. Thenwd,to((:)BJr(:)C):Ofor all

dt

. Ifa—v=3 mod 8 and v=7 mod 8. Theniﬁd,tO(@AwL(:)c):Ofor all

d,t.

Ifa-v=5 mod 8 andv =3 mod 8. Then ¢d,t°(éA+éB+@C+éD) =0
for all d,t.

Ifa-v=5 mod 8 andv=7 mod8. Then yy;0(0a+0Op) =0 for all
d.t.

Ifa-v=7 mod®& andv=1 mod & . Thenwd7t0((:),4+(:)c+(:)p):0
for all d,t.

Proof. The proof follows by case-by-case analysis as in the proof of Propo-

sition

4.2.6. O

Remark 4.3.5. From Proposition 4.3.3, we can write the homomorphisms

in the following table.

v=1 v=3 ERS v="T
-v=1 éB+éD éc-i-éD @D éA“‘éB
+éC+éD
-v=3 éB'*‘éC éC (:)D @A-f-@c
-v=5h @B éA+éB @B, éD éA+éB
+éC+éD

-v=7 éA7 @A+éc+ép éA7 é(j O4, Op Oy

4.3.3 Composing the homomorphisms

Let A be the p-tableau of type p'

112]3 s ‘u‘

A=al3] [v]

Then we have the following theorem.

Theorem 4.3.6. Suppose T €U, and let z; be the entry in position (2,i+1)

of T,

where 1 <1 <6. Then

R R R R R Oa if 1 <wv<xg and x5 < v;
Or 004 =04, OroOp =
0 if v<x1 and x3 < v<zs.
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N . 6 if x3 < v; N N 6 if x5 < v;
O 0O - N &7 0B - N
0 if v<zs. 0 if x5 > v.

Furthermore, O 0.

Proof. From Theorem 3.2.12 we get Oa # 0. Now we apply Theorem 3.1.12
with T € U and S equal to either A or B or C' or D. Suppose X € X.
Since each T" is a proper set, each X must be as well. This means that if

some integer 7 appears in two sets X*/, X% then the multinomial coefficient
XV x% x589,
( N
XY x25 x5
Jg g o0ty
0.

) from Theorem 3.1.12 will include a factor (f), which gives

So in order to get a non-zero coefficient in Theorem 3.1.12, we must have

XY X% X3 ... pairwise disjoint for each j, which means that we will have
XUox2y..={1,.. u), X2ux®-{1,... v} (1)

so Ux will equal A.
If S = A, the only way to achieve this is to have

xXttorta,. ey, XP={1,. 0}, XUt =T'fori>2.

Thus we have @T o @A = (:)A.

In the case S = B, let x2 be the (2,3)-entry of 7' and z3 be the (2,4)-
entry of T'and x4 be the (2,5)-entry, x5 be (2,6)-entry and x¢g be (2, 7)-entry
of T. If z1 > v then we cannot possibly achieve (f). So we get OroOp=0
in this case. If z; < v < x93, then the only way to achieve (f) is to have
X?22 = {1,21} and X2 = {2,...,4,...,v}, and this yields OroOp = Oa.
If x9 < v<xs, then there are three possible ways to achieve (1) is to have
X22 = {1,z or X2 = {1,250} or X?2 = {x, 29} and X12={2,... . 4,... v}
or X2 ={2,... a4, ...,v}or X2 ={1,...,2,4,...,v}; each of these gives
a coefficient of 1, and again we have @T o @B = @A- If z3 < v<zy4, then
X?2 must contain either x; or x5 or x3 then there are six possible ways to
achieve (1); each of these gives a coefficient of 1, hence we have Or065=0.
If z4 < v<xs, then X?2 must contain either x; or z9 or x3 or x4 then there
are ten possible ways to achieve (1); each of these gives a coefficient of 1,
hence we have ©7 0 Op = 0. If r5 < v<zg, then there are fifteen possible

ways to achieve (1); each of these gives a coefficient of 1, and again we have
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@T 0® B = 6 A- If g < v, then there are twenty-one possible ways to achieve
(1); each of these gives a coefficient of 1, and again we have OroBp=06a.

In the case S = C we have
XM =a-v+4, |XP|=v-4, |X*Z|=4, |XH|=3, X" =T fori>3.

If 21,29, 23 > v then we cannot possibly achieve (). So we get OroBc=0

X2 = {1,21, 29,23} and X?! = {x4, 25,26}, and this yields Oro0O¢ = Oa.

If x4 < v<ws, then there are five possible ways to achieve (I); each of these

in this case. If x3 < v<wzy, then the only way to achieve (i) is to have

gives a coefficient of 1, and again we have Opo é)c =0, If 5 < v<xg, then
there are 15 possible ways to achieve (I); each of these gives a coefficient
of 1, and again we have OroOc =0. If 24 < v, then there are 35 possible
ways to achieve (1); each of these gives a coefficient of 1, and again we have
Or0Oc = On.

In the case S = D we have
|X11|=a—v+6, |X12|:U_67 |X22|:67 |X21|:17 Xil:Ti for > 3.

X' must contain either x5 or xg, so if x5 > v then we cannot possibly
achieve (). So we get ©7 0 Op = 0 in this case. If x5 < v < g, then the
only way to achieve (f) is to have X?2 = {1,...,z5} and X?! = {24}, and
this yields Or00Op = Oa. Finally, if g < v, then there are seven possible
ways to achieve (I); each of these gives a coefficient of 1, and again we have

OroOp=06,. 0

The proof of this lemma is given by a counting argument similar to that

given in the proof of Lemma 4.2.10.
Lemma 4.3.7. Let x; be (2,1 +1)—entry of T, where 1<i<6. Then

e The number of tableaux in U is (Z:g)(“”g“il).

e The number of tableauz in U with x < v<as is (“=")(“:*)(*]")-
o The number of tableaus in U with xa < v<zs is (“~°)(*3*)('5')-
o The number of tableauz in U with z3 < v<zy is (*-°)(*3*)('5')-
o The number of tableauz in U with x4 < v<zs is (“-°)(*;*)(";})-
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e The number of tableauz in U with x5 < v<wzg 18 (Z:g)(“;a)(vgl)

e The number of tableaux in U with ¢ < v is (Z:g)(”gl).

As corollary of Lemma 4.3.7

Corollary 4.3.8. Suppose all congruences are modulo 2. Then

go@)Az(U_v)(quU_a_l)(:)A.

a—-v 6

(e G G (P R B G Y 5

A U—0 u—a\fv-1 v—1\\ A
UO@D_(@—U)(( 1 )( 5 )+( 6 ))GA
u—v\[(v—-1)\x
= OAa.
(a—u)( 6 ) A
Now we prove Theorem II. Recall that

Theorem II. Let F' be a field of characteristic 2 and let ¢ = 1. Suppose
A= (a,7, 1b) is a partition of n, where a,b are positive even integers and
let u be a partition of n such that S* is irreducible. Suppose u or p' equals
(u,v), where u>v and u is even and v is odd with v < min{a-1,b+ 1} and

(Z:z) is odd and v =7 mod 8. Then S* has a direct summand isomorphic
to S*.

Proof. Suppose S* is irreducible, where y = (u,v) with v +v = a + b+ 5.

Suppose that u,v satisfy the given condition ( 7:}’) is odd. We need to show

U
a—
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. ) ’
that there are homomorphisms S* 1, 2 % 8+ such that 6 o v # 0. Let
d=o0.

1. Supposea—-v=1 mod 8. Ifv=7 mod 8. Let vy = (@A+@B+@C+@D).
From Corollary 4.3.8

S (G K (P RO Grp ) 8

The first term (Z:Zj) is odd by assumption. The terms (v;l)’ (v;) and
(Ugl) are odd because v —1 = 6 mod 8. Also, the term (u“’ga_l) is

even because u+v—a—1 =4 mod 8, the terms (u;a) and (u;a) are

odd because u—a =6 mod 8. Hence §o~y = Onx.

2. Suppose a—v =3 mod 8. If v =7 modS8. Let v = ©4 +6¢. From
Corollary 4.3.8

R (G B G O G

The first term (Z:z) is odd by assumption, the term (“H}ga*l) is even

because u+v —-a—-1 = 4 mod 8. The term (u;a) is even because

u—a =4 mod 8 and the term (vgl) is odd because v -1 =6 mod 8.

Hence oy = Oa.

3. Suppose a—v =5 mod 8. If v =7 modS8. Let ~ = 04 +6p. From
Corollary 4.3.8

o= (I[N ) e

The first term (Z:g) is odd by assumption, the term (“”8“71) is even

because ©u+v-a—-1 = 0 mod8. The term (u;a) is even because
u—a =2 mod 8 and the term (”gl) is odd because v -1 = 6 mod 8.

Hence d oy = Oa.
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4. Suppose a—v =7 mod8. If v=7 mod8. Let~=0y4. Thena=6
mod 8 and u =6 mod 8. From Corollary 4.3.8

607:(u—v)(u+v—a—1)é&

a—v 6

The first term is odd by assumption, the second binomial coefficient
is even because u+v—-a—-1=6 mod 8. Thus joy = O©a. Hence we
have shown that if v =7 mod 8, then j oy = ©p. This completes the
proof of Theorem II.

4.4 The Specht modules labelled by (a,c,1?)

In this section, we assume that X\ = (a,¢,1°) and p = (u,v), where a,b,u,v
are positive integers with a,b,u even, a >c, u>v, n=a+b+c=u+v and

c<v<min{a-1,b+1}.

4.4.1 Homomorphisms from S* to S*

Consider homomorphisms o : S* — S#". We begin by constructing such
a homomorphism in the case where ¢ < v < a —1. Suppose U is the set of

A—tableaux having the form:

<[]
>*
>*

*

where the xs are the numbers from 2 to u, and in which
e the entries along each row are strictly increasing,

e the entries down each column are weakly increasing.

Now define

O':Z(':)T.

TeU
Proposition 4.4.1. We have ¢4 00 =0 for each d,t.
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Proof. Similar argument as in the proof of Proposition 4.2.2 O
Proposition 4.4.2. We have o 0.

Proof. The proof is similar to that given in 4.2.3. Consider the semistandard
tableau S such that:

br3brd] - i)

1
2
3

4|

b+2
where fj =c+j for all j.

Take T' € U and consider expressing Or as a linear combination of semi-
standard homomorphisms. By Theorem 3.1.10, T" contributes to S if S T
Therefore, we can ignore all T € U for which S ¥ T. In particular, we need
only consider those tableaux in U which have b+ (¢ + 2),...,u in the first
row and b+3,b+4,...,b+ (c+1) in the second row. The tableaux T € U

that we need to consider are those of the following forms:

1. Suppose v <7< b+ 2. Then

b+

W
i
&
=

ERNEE

]
[y

HEEE
N
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2. Suppose 2<i<b+2and 3<k<c+1. Then

i b+

wW
<
[ &
=
(="

‘MH»—A
~

‘ -

b2

Now we do a similar argument as in proof of Proposition 4.2.3 by ap-
plying Theorems 3.2.9 and 3.2.12. We get that (:)T[Z-] = Og plus a linear
combination of homomorphisms indexed by tableaux not dominated by S
and that (:)U[i,k] = Oy plus a linear combination of homomorphisms indexed
by tableaux which are either not dominated by S or semistandard and dif-
ferent from S. Now by combining the two cases together, we find that the
coefficient of ©g in o is the total number of tableaux of the form T[i] or
Uli, k], which is (b+2-wv) + (c=1)(b+1) which is odd. Hence, o # 0.

O

4.4.2 Homomorphisms from S* to S*

In this section we consider homomorphisms ~ : S* — S*. Assume that

c<v<a-1. Define A; to be the u—tableau of type A as follows

A; = [vr20 9c=2 ) 3 4 L b+2

1v—2i 22i

WhGYGOSiSc;zl.

Lemma 4.4.3. For 0<1i < %, éAi are non-zero, and are linearly indepen-
dent if v<b+1.

Proof. By using Theorem 3.2.12, we express é)Ai for 0 <14 < % as linear
combinations of semistandard homomorphisms such that there is at least one
semistandard tableau appearing in each case. Thus, the homomorphisms
are non-zero. Moreover, if v < b+ 1, in the expression for © A, we have a

semistandard tableau with (¢ —2i - 1) 2s in the first row and this tableau
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does not occur in the expression for ©4;, where 7 < j. Hence © 4, are are

linearly independent. O

Proposition 4.4.4. Let m be minimal such that ¢ < 2™. Ifa-v = -1
mod 2™, then g4 o éAo =0 for all d,t.

Proof. 1f d > 2, then from Theorem 3.2.9 we get 141 o éAo =0. Now, ifd=1
then 914, o éAo =0 for ;1 =1 mod 2, because each A; have an odd number
2§f1) =0 mod 2 for all k,j > 0. Finally, suppose d =1
and 5 =0 mod 2. Then we have a —v = -1 mod 2". Then

of 1s in each row and (

ja-vtiz gc=t2 | 3 4 o b+2

A a—1v+ty
’lzz)l,tg()@Ao:( )

to

1’U

we apply Lemma 4.1.4, since to > a — v + t9 then the binomial coefficient

(“_f;h) is divisible by 2 which is zero modulo 2. Thus, 914004, = 0

O

4.4.3 Composing the homomorphisms

Now we analysis when S* is a summand of S*. Let A be the y-tableau of

type p'

112]3 s ‘u‘

A=al3[ [v]

Then we have the following theorem.

Theorem 4.4.5. Suppose T' eU. Then
O 06, = O
Furthermore, Oa #0.

Proof. From Theorem 3.2.12 we get ©a # 0. Now apply Theorem 3.1.12
with 7 e U and S equal to Ag. Suppose X € X. Since each T" is a proper
set, each X% must be as well. This means that if some integer i appears
in two sets X%/, X% then the multinomial coefficient (X)’; JJ;]ZT;?J] 7+) from
Theorem 3.1.12 will include a factor @), which gives 0. o
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So in order to get a non-zero coefficient in Theorem 3.1.12, we must have

XY X% X3 ... pairwise disjoint for each j, which means that we will have
XMux2y.e={1,. ul, XPux®-{1,... v}

so Ux will equal A.
If S = Ag, the only way to achieve this is to have

Xm0}, XB={1,...0}), X'=T'fori>2.

Thus we have @T o éAo = éA- O

Lemma 4.4.6. Let z; be (2,1)—entry of T', where 2 <i <c. Then the number
of tableaux in U is (”_”)(“+U—a—1)_

a-v c—1

As corollary of Lemma 4.4.6

Corollary 4.4.7. Take all congruences modulo 2. Then

UOéAOE(u—v)(quv—a—l)éA.

a-v c—1
Now we prove Theorem III. Recall that

Theorem 1II. Let F' be a field of characteristic 2 and let ¢ = 1. Suppose
A= (a,c, 1b) s a partition of n, where a,b are positive even integers and c is
odd. Let i be a partition of n such that S* is irreducible. Let m be minimal
such that ¢ < 2™. If p or p' equals (u,v), where uw > v and u is even and v
is odd with v < min{a - 1,b+1} and (") is odd and v = -1 mod 2™ and
a-v=-1 mod2™. Then S* has a direct summand isomorphic to S*.
Proof. Suppose S* = S(") ig irreducible, with w+v = a+b+c. Suppose that
u,v satisfy the given condition that (Z:z) is odd. We would like to show
that there are homomorphisms S* 1, g L SH such that & o v # 0. Let
d=o0.

Suppose a —v = -1 mod 2. Let v = éAo- v is a homomorphism from
S* to S*. Then from Corollary 4.4.7

607:(u—v)(u+v—a—1)éA'
a—v c—1

The first term is odd by assumption, the second binomial coefficient (““;:Til) #

0 mod 2 because that $(*“?) is irreducible, so from Corollary 4.1.3 u—v = -1
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mod 2™, then u =v—-1 mod 2™. Since a—v =-1 mod 2™, thenv—-a-1=0
mod 2™. Thus, binomial coefficient (”“C’:i”*l) = (zj ) It is enough to show
that (Zj) # 0 mod 2. Now by applying Lemma 4.1.4, we have v — 1 =
2v1 + 4vg +---+2mvm+---+2kvk and ¢—1=2¢cy +4¢cg +---+2"¢,,. fv=-1
mod 2™ then v =1+2+---+2™ 14+ ... sow; =1 for 0 <i. Hence for modulo
2 (Zj) = (Zi)(g)(?z:)(vg), where v;,¢; € {0,1}. So if v; > ¢; for all i,

then (Zj) #0 mod 2.
U

This concludes the proof of our main results. We also have the following
conjectures. Let F be a field of characteristic 2. Suppose A = (a,c,1°) and
= (u,v), where a,b,c,u,v are positive integers with a,b,u even and c,v
odd such that a >c, u>v,n=a+b+c=u+v and c<v<min{a-1,b+1}.

Suppose U is the set of A-tableaux having the form:

1
1] ‘*‘
Il

*

such that the *s are the numbers from 2 to u, and the entries are strictly

increasing along each row and weakly increasing down each column. Define

o= Y 6r

TeU

and define A; to be the u—tableau of type A as follows

A; = o7V ge2i ) 3 4 | ... |b+2

11}—21' 22i

where 0 <7 < ‘3;21 Set
Y= O,
=0
Then we have the following conjecture.

Conjecture 4.4.8. Let m be minimal such that ¢ <2™. Then ifa-v =1
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mod 2™ and v = -1 mod 2™, then Y4407 =0 for all d,t.

Conjecture 4.4.9. Ifa-v =1 mod 2™ and v = -1 mod 2" then we have

homomorphisms v : S — S* and o : S — SH and o oy #0.
If Conjecture 4.4.9 is true, the next conjecture follows immediately.

Conjecture IV. Let F be a field of characteristic 2 and let ¢ = 1. Suppose
A= (a,c, 1b) is a partition of n, where a,b are positive even integers and c s
odd. Let i be a partition of n such that S* is irreducible. Let m be minimal
such that ¢ <2™. Suppose p or p' equals (u,v), where u>v and u even and
v odd with v < min{a - 1,b+ 1} and (!"7) is odd and v = -1 mod 2™ and

a-v=1 mod 2™. Then S* has a direct summand isomorphic to S*.

We believe that similar techniques can be used to prove the following
conjecture which we have shown holds for ¢ = 5,7, although we do not know

how to express the homomorphism ~ in terms of the homomorphisms 6 A;-

Conjecture V. Let F be a field of characteristic 2 and let ¢ = 1. Suppose
A= (a,c, 1b) is a partition of n, where a,b are positive even integers and c s
odd. Let i be a partition of n such that S* is irreducible. Let m be minimal
such that ¢ <2™. Suppose p or p' equals (u,v), where u>v and u even and
v odd with v <min{a-1,b+1} and (V_7) is odd and v=-1 mod 2™. Then

S* has a direct summand isomorphic to SH.
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