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Abstract

We give some new results about representations of the Hecke algebra HF,q(Sn)

of type A. In the first part we define the decomposition numbers dλν to be

the composition multiplicity of the irreducible moduleDν in the Specht mod-

ule Sλ. Then we compute the decomposition numbers dλν for all partitions

of the form λ = (a, c,1b) and ν 2–regular for the Hecke algebra HC,−1(Sn).

In the second part, we give some examples of decomposable Specht modules

for the Hecke algebra HC,−1(Sn). These modules are indexed by partitions

of the form (a,3,1b), where a, b are even. Finally, we find a new family of

decomposable Specht modules for FSn when char(F ) = 2.



Introduction

Let Sn be the symmetric group on n letters and let F be an arbitrary field.

James in [15] studied the representation theory of the symmetric group

algebra FSn. This is a specific example of the Hecke algebra HF,q(Sn)

introduced by Dipper and James in [5]. By setting q = 1 in the statement

of results proved for representations of the Hecke algebra, we recover results

in the representation theory for symmetric groups. Many of the theorems

in the symmetric group have an analogue in the Hecke algebra. However,

some theorems do not have an analogue, or the proof is considerably more

complicated.

For each Hecke algebra HF,q(Sn), we define a family of modules called

Specht modules. If HF,q(Sn) is semisimple, these form a complete set of

pairwise non-isomorphic irreducible HF,q(Sn)–modules. They are indexed

by the set of partitions of n. Moreover, if HF,q(Sn) is not semisimple, the

simple modules arise as the heads of the Specht modules and are labelled

by a subset of the set of partitions of n. The decomposition number dλµ is

defined to be the composition multiplicity of the irreducible module Dµ in

the Specht module Sλ and the decomposition matrix is the matrix whose

entries are the decomposition numbers dλµ. For fixed n and quantum pa-

rameter e, the decomposition matrices of the Hecke algebras HF,q(Sn) will

have a similar structure. In particular, each matrix is lower unitriangular

if the partitions are sorted according to a specific partial order. In general

it is not known how to compute decomposition numbers for Hecke algebras

over fields of positive characteristic. However, Lascoux, Leclerc and Thi-

bon in [20] described an iterative algorithm to compute the decomposition

numbers of the Iwahori-Hecke algebras HC,q(Sn) of the symmetric group

in characteristic zero. This algorithm, now known as the LLT algorithm,

was proved later by Ariki in [2]. Knowing these decomposition numbers
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in HC,q(Sn) provides information about the decomposition numbers for an

arbitrary Hecke algebra. The decomposition matrices of the Hecke algebras

HF,q(Sn) can be obtained from the decomposition matrix of the Hecke al-

gebras HC,w(Sn) by multiplying by an adjustment matrix. So the problem

of computing the decomposition matrices of the Hecke algebras HF,q(Sn)

reduces to finding an adjustment matrix, although these are not generally

known. In [16] James gave a conjecture which suggested that for n<pe, the

adjustment matrix should be the identity matrix and his conjecture is closely

related to the celebrated conjecture of Lusztig [21]. Although, James’s Con-

jecture was proved to be true in certain cases given in [9], [8] and [11],

counterexamples to the conjecture and Lusztig’s Conjecture were found this

year by Williamson [33].

Peel in [29] studied the decomposition numbers of Specht modules cor-

responding to hook partitions for symmetric group algebras FSn in odd

characteristic p. This study is continued by James in [9] and James and

Mathas in [17] for the Hecke algebra HC,q(Sn). Chuang, Miyachi and Tan

in [4] described the decomposition numbers corresponding to rows labelled

by hook partitions with e ≥ 2. We continue this work in this thesis by

studying Specht modules indexed by partitions of the form λ = (a, c,1b).

For the symmetric group Sn, Peel in [30] showed that for characteristic

p ≠ 2 the Specht module Sλ indexed by a partition λ is indecomposable.

Furthermore, James in [15] and Dipper and James in [5] show that if e ≠ 2

or if λ is 2–regular then the Specht module Sλ is indecomposable. Moreover,

James in [14] shows that the F2Sn–module Sλ is a decomposable module for

the partition λ = (5,12). Murphy in [27] continued this case and analysed

the Specht modules labelled by hook partitions by computing the endomor-

phism ring of every such Specht module and determining when the Specht

module is decomposable. Dodge and Fayers in [7] presented a new family of

decomposable Specht modules for the symmetric group algebra F2Sn and

these Specht modules are labelled by partitions of the form (a,3,1b), where

a, b are even. However, we are far from knowing which Specht modules are

decomposable for e = 2.

Now we give a brief description of the contents of each chapter in this

thesis. In Chapter 1 we start by introducing some the background theory

and results of the symmetric group and its Iwahori-Hecke algebra that we

are going to use regularly throughout this thesis. We conclude by giving
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definitions and results of the LLT algorithm and adjustment matrix that we

will need in the second Chapter. In Chapter 2 we extend results of Chuang,

Miyachi and Tan. We compute the decomposition numbers dλµ for the

Hecke algebra HC,−1(Sn) for Specht modules Sλ for all λ = (a, c,1b). Our

main results are Theorem A and Theorem B which are given at the start

of Section 1 and Theorem C which appears in Section 3. In Chapter 3 we

give analogues of some of the results given in Dodge and Fayers in [7]. We

provide some cases of decomposable Specht modules for the Hecke algebra

HC,−1(Sn) which are indexed by partitions of the form (a,3,1b), where a, b

are even. Our main result is Theorem D which is given at the start of Section

3. In Chapter 4 we present a new family of decomposable Specht modules

for the symmetric group algebra F2Sn. These Specht modules are labelled

by partitions of the form (a,5,1b), (a,7,1b) and (a, c,1b) where a, b are even.

Our main results are Theorems I, II and III which appear in Section 1.
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Chapter 1

Preliminaries

1.1 The symmetric groups

We start by fixing n ≥ 1 and let Sn be the symmetric group acting on the

set {1,2, . . . , n}.

Definition 1.1.1. For 1 ≤ i ≤ n−1 suppose si is the basic transposition such

that si = (i, i + 1) and let S = {s1, . . . , sn−1}. Then as a Coxeter group, Sn

is generated by {si ∣ 1 ≤ i ≤ n − 1} with the relations:

s
2
i = 1, 1 ≤ i ≤ n − 1,

sisj = sjsi, 1 ≤ i < j − 1 ≤ n − 2,

sisi+1si = si+1sisi+1, 1 ≤ i ≤ n − 2.

Every permutation can be written as a product of basic transpositions.

Definition 1.1.2. For the permutation w ∈ Sn we write w = si1⋯sik , where

si1 , . . . , sik ∈ S and if k is minimal we say that w has length k and write

ℓ(w) = k. Then si1⋯sik is called a reduced expression for w.

Definition 1.1.3. An odd permutation is defined to be a permutation that

can be written as a product of an odd number of transpositions. Similarly,

if a permutation can be written as a product of an even number of transpo-

sitions, then it is called an even permutation. The sign of a permutation is
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defined as follows:

sgn(σ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

+1, if σ is even,

−1, if σ is odd

where, σ ∈Sn and sgn ∶Sn Ð→ {+1,−1}.

Theorem 1.1.4. (Matsumoto)[26, Theorem 1.8] Let si1 , . . . , sik and sj1 , . . . , sjk

be elements of S = {s1, . . . , sn−1} such that si1 . . . sik and sj1 . . . sjk are two

reduced expressions in Sn. Then write (i1, . . . , ik) ∼b (j1, . . . , jk) if one ex-

pression can be be transformed into the other using only the braid relations

(sisj = sjsi, for 1 ≤ i<j−1 ≤ n−2 and sisi+1si = si+1sisi+1, for i = 1, . . . , n−2).

Then,

(i1, . . . , ik) ∼b (j1, . . . , jk)⇔ si1 . . . sik = sj1 . . . sjk .

1.2 The Hecke algebra of the symmetric groups

Definition 1.2.1. Suppose R is a commutative domain with 1 and that

q ≠ 0 is an arbitrary element of R. Then the Iwahori-Hecke algebra H =

HR,q(Sn) of Sn is defined to be the unital associative R-algebra with gen-

erators T1, T2, . . . , Tn−1 and relations:

(Ti − q)(Ti + 1) = 0, 1 ≤ i ≤ n − 1,

TiTj = TjTi, 1 ≤ i < j − 1 ≤ n − 2,

TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i ≤ n − 2.

Note that: if q = 1 in the first relation in the above Definition 3.1 we get

T 2
i = 1, which is the same as the defining relations for the symmetric group

ring RSn. Thus H is isomorphic to the group ring RSn of Sn [26].

Now we introduce a basis of H .

Definition 1.2.2. Let w be an element of Sn and let si1 . . . sik be a reduced

expression for w. By Matsumoto’s Theorem 1.1.4, we can define:

Tw = Ti1 . . . Tik .
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Remark 1.2.3. By Matsumoto’s Theorem 1.1.4 the element Tw is indepen-

dent of the choice of reduced expression for w and thus is well defined. If

w is the identity element of Sn, we identify Tw with 1 = 1R the identity

element of R.

The next lemma gives us the right-hand multiplicative relation for H :

Lemma 1.2.4. [26, Lemma 1.12] Suppose s is a transposition in S and that

w ∈ Sn. Then

TwTs =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Tws, if ℓ(ws) > ℓ(w),

qTws + (q − 1)Tw, if ℓ(ws) < ℓ(w)

Example 1.2.5. Take w = (1, 3, 2), s = (1, 2). Then ws = (1, 3) and

ℓ(ws) = 3 > ℓ(w) = 2. So

T(1, 3, 2) × T(1, 2) = T(1, 3).

If w = (1, 2)(2, 3) and s = (2, 3), then ws = (1, 2) and ℓ(ws) = 1< ℓ(w) = 2.

So

T(1, 2)(2, 3) × T(2, 3) = qT(1 2) + (q − 1)T(1, 3, 2).

Lemma 1.2.6. [5, Lemma 2.1] Suppose w ∈ Sn. Then Tw is invertible

in H with inverse T −1w = T −1
sk
. . . T −1

s2
T −1
s1

, where w = s1s2 . . . sk is a reduced

expression for w, and

T −1
s
= −(1 − (1/q)) + (1/q)Ts

for s is a transposition in S.

Lemma 1.2.4 shows that H is spanned by the elements {Tw ∣ w ∈ Sn}

when it is taken as an R-module. The following theorem gives us a basis of

H .

Theorem 1.2.7. [26, Theorem 1.13] The Iwahori-Hecke algebra H of the

symmetric group Sn is free as an R–module with basis {Tw ∣ w ∈Sn}.

Definition 1.2.8. We define e to be the smallest positive integer such that

1+q+ ...+qe−1 = 0. Let e = ∞ if no such integer exists. In other words, either

q = 1 and e is equal to the characteristic of R or q ≠ 1 and q is a primitive
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eth root of unity. e plays the same role as the characteristic of a field in the

representation theory of finite groups.

Definition 1.2.9. Suppose Z = Z[q̂, q̂−1], where q̂ is an indeterminate over

Z. Then HZ =HZ,q̂(Sn) is called the generic Iwahori-Hecke algebra of Sn.

Lemma 1.2.10. [26, Corollary 1.17] The algebra HZ is semisimple.

Theorem 1.2.11. [26, Corollary 1.15] Let F be a field and q ∈ F /{0}.
Define ϕ ∶ Z Ð→ F to be the ring homomorphism determined by q̂ z→ q.

Then

HF,q(Sn) ≅HZ ⊗Z F

as F–algebras.

1.3 Combinatorics

Definition 1.3.1. A composition of a positive integer n is a sequence of

positive integers λ = (λ1, . . . , λk) such that
k∑
i=1

λi = n.

Definition 1.3.2. We say λ = (λ1, λ2, . . . , λk) is a partition of n if the

following conditions hold:

1. λ1, λ2, . . . , λk are positive integers and λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λk.

2.
k∑
i=1

λi = n

Note that: λ ⊢ n denotes λ is a partition of n.

Definition 1.3.3. Suppose λ is a partition of n. Then the diagram [λ] is
defined by :

[λ] ∶= {(i, j) ∣ i, j ∈ Z,1 ≤ i,1 ≤ j ≤ λi}.
Example 1.3.4. The partition λ = (4,3,2,1) has a diagram

[λ] = .

7



Definition 1.3.5. Suppose λ and µ are partitions of n. Then λ dominates

µ and we write λ ⊵ µ if the following condition holds

j∑
i=1

λi ≥
j∑
i=1

µi for all j.

Note that: We write λ ⊳ µ, if λ ⊵ µ and λ ≠ µ.

Example 1.3.6. The dominance relation on the set of partitions when n = 5

is given by the diagram:

(5)

(4,1)

(3,2)

(2,2,1) (3,1,1)

(2,1,1,1)

(15)
Definition 1.3.7. Suppose [λ] is a diagram. Then the conjugate diagram

[λ′] is obtained by interchanging the rows and columns in diagram [λ]. We

say λ
′
⊢ n is conjugate to λ.

Example 1.3.8. Take λ = (4,2,1). Then the diagram of λ is [λ] =

and the conjugate diagram [λ′] = and so λ
′
= (3,2,12).

Definition 1.3.9. Suppose [λ] is a diagram of a partition λ. Then a

λ–tableau t is obtained by replacing each node in [λ] by one of the inte-

gers 1,2,3, . . . , n without repeating.
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Note that: λ–tableau can be defined as a bijection from [λ] Ð→ {1,2, ..., n}.
Example 1.3.10. Let λ = (2,1), so we have the diagram of λ as [λ] = .

Then all possible tableaux are:

t1 =
1 2
3

, t2 =
2 1
3

, t3 =
1 3
2

, t4 =
3 1
2

, t5 =
2 3
1

, t6 =
3 2
1

.

Definition 1.3.11. Let t be a tableau. Then we define its row-stabilizer Rt

as follows:

Rt = {σ ∈ Sn ∣ for all i, i and σ(i) belong to the same row of t}
similarly we can define the column-stabilizer Ct as:

Ct = {σ ∈ Sn ∣ for all j, j and σ(j) belong to the same column of t}.

Example 1.3.12. If t =
1 2 3
4 5
6

, then:

Rt =S{1,2,3} ×S{4,5} ×S{6}

Ct =S{1,4,6} ×S{2,5} ×S{3}.

Also,

∣Rt∣ = 3! 2! 1!.
Now we can introduce the tabloid.

Definition 1.3.13. Define an equivalence relation on the set of λ–tableaux

by t1 ∼ t2 if and only if

t1 σ = t2 for some σ ∈ Rt1

where the symmetric group Sn acts on tableaux by permuting entries of the

given tableau. Now the tabloid {t} is the equivalence class of t under this

equivalence relation.
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Example 1.3.14. If λ = (2,1), then the different λ–tabloids are

{t1} = 1 2

3
, {t3} = 1 3

2
, {t5} = 2 3

1

Note that:
2 3

1
=

3 2

1

Lemma 1.3.15. Suppose t is a tableau and σ is a permutation. Then:

Rtσ = σ
−1Rtσ.

Proof. Suppose that π ∈ Rtσ. Then we have the following:

π ∈ Rtσ ⇐⇒ {tσ}π = {tσ}
⇐⇒ {t}σπσ−1 = {t}
⇐⇒ σπσ−1 ∈ Rt

⇐⇒ π ∈ σ−1Rtσ

Lemma 1.3.16. Sn acts on the set of λ–tabloids by {t}σ = {tσ}. This

action is well defined.

Proof. Let {t1} = {t2}, so that t1 π = t2 for some π ∈ Rt1 . Then, σ−1πσ ∈

σ−1Rt1σ = Rt1 σ by Lemma 1.3.15. So, {t1 σ} = {t1 πσ} = {t2 σ}.
Definition 1.3.17. Let t be a λ–tableau. Then t is row standard if the

entries increase along the rows. The tableau t is a standard tableau if the

rows and columns of t are increasing sequences. The tabloid {t} is standard
if there is a standard tableau in the equivalence class {t}.
Definition 1.3.18. We define a λ–tableau of type µ to be a tableau of

shape λ with µi entries equal to i, for each i. A λ–tableau T of type µ is

said to be row standard if its entries increase along the rows and is said to

be semistandard if the entries increase along the rows and strictly increase

down the columns. We denote the set of row standard λ–tableaux of type

µ by T (λ,µ) and we denote the set of semistandard λ–tableaux of type µ

by T0(λ,µ).
10



Definition 1.3.19. Let λ be a partition of n. Define t
λ to be the row

standard λ–tableau with 1,2, . . . , n entered in order along its rows. Define

tλ to be the row standard λ–tableau with 1,2, . . . , n entered in order down

its columns. We denote the permutation that sends tλ to tλ by wλ.

Definition 1.3.20. Suppose λ is a partition of n. The row-stabilizer of tλ

is called the standard Young subgroup of Sn with respect to a partition λ

and is denoted by Sλ.

Example 1.3.21. Let λ = (3,1) and that wλ ∈ Sn be the permutation that

sends tλ to tλ. Then

t
λ =

1 2 3
4

, tλ =
1 3 4
2

where wλ = (2,3,4).
Now we let e ≥ 2.

Definition 1.3.22. Let λ be a partition of n. Then λ is e–singular if for

some i we have

λi+1 = λi+2 = ⋅ ⋅ ⋅ = λi+e > 0, otherwise, it is e–regular.

Definition 1.3.23. Suppose λ is a partition of n and that [λ] is the Young
diagram of λ. Then for each node (i, j) ∈ [λ] define the e–residue of (i, j)
by:

res((i, j)) = (j − i) mod e.

If the e–residue of a node (i, j) is r, we say (i, j) is an r–node. The

e–residue diagram of a partition λ is defined to be the diagram obtained by

replacing each node by (j − i) mod e.

Example 1.3.24. Take λ = (4,2), e = 3. Then the e–residue diagram is

0 1 2 0
2 0

.

Definition 1.3.25. The rim of a partition λ is defined to be the set of all

nodes (i, j) ∈ [λ] such that (i+1, j+1) ∉ [λ]. An e–rim hook of a partition λ

is defined to be a connected subset of the rim of λ containing exactly e nodes
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which can be removed from [λ] to leave a new Young diagram. The e–core

of a partition λ is defined to be the partition formed by repeatedly removing

e–rim hooks until no more e–rim hooks can be removed. The e–weight of a

partition λ is the number of e–rim hooks which must be removed from [λ]
to get the e–core.

Example 1.3.26. Let λ = (42,2,1), e = 3 then

[λ] = Ð→ Ð→ Ð→ .

Then the 3–core of λ is (12) and it has weight 3.

Definition 1.3.27. Let λ be a partition of n. For l ≥ 0, define the lth

ladder to be the set of nodes of the form {(i, j) ∈ N2 ∣ j − i+(i−1)e = l}. The
e–ladder diagram of a partition λ is defined to be the diagram obtained by

replacing each node (i, j) in [λ] by the number j − i + (i − 1)e.
Example 1.3.28. Let λ = (4,3,2) and e = 2. Then the e–ladder diagram of

the partition λ is

0 1 2 3
1 2 3
2 3

.

Definition 1.3.29. The regularization of λ is the partition λR whose Young

diagram is obtained by moving the nodes in [λ] as high as possible within

their e–ladders. The partition λR is always e–regular.

Example 1.3.30. If λ = (6,2,14) and e = 2, then λR = (6,5,1) and their

ladder diagrams are:

[λ] =
0 1 2 3 4 5
1 2
2
3
4
5

, λR =
0 1 2 3 4 5
1 2 3 4 5
2

.

Now we describe the Specht modules for Sn.
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1.4 Specht modules

Before studying the Specht modules we need to describe the permutation

module Mλ of Sn on the Young subgroup Sλ. Let F be an arbitrary field

of characteristic p ≥ 0. So, we define the permutation module as follows:

Definition 1.4.1. Suppose λ is a partition of n. Let Mλ be the vector

space over F whose basis elements are {t1}, . . . ,{tk}, where {t1}, . . . ,{tk}
are λ-tabloids, with the action

{t}σ = {tσ}, for σ ∈ Sn.

Then the Mλ is called the permutation module corresponding to λ.

Example 1.4.2. From Example 1.3.14 the set {{t1},{t3},{t5}} is a basis

of M (2,1).

Remark 1.4.3. Let λ be a partition of n. Then the permutation module

Mλ of Sn is a cyclic FSn-module generated by any given λ–tabloid.

Definition 1.4.4. Let t be a tableau. Then the signed column sum Kt is

defined as the element of the group algebra FSn which is obtained by sum-

ming the elements in the column stabilizer of t and attaching the signature

to each permutation. i.e:

Kt = ∑
σ∈Ct

sgn(σ)σ.

Now we can define the polytabloid as follows.

Definition 1.4.5. Let t be a tableau. Then the polytabloid et associated

with this tableau is defined as

et = {t}Kt.

Remark 1.4.6. 1. If t has columns C1, ....,Ck , then Kt factors as

Kt =KC1
....KCk

.

2. The polytabloid et is said to be standard if the tableau t is standard.
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Example 1.4.7. Let λ = (3,2) and suppose t =
1 2 5
3 4

. Then

Kt = (1 − (1,3))(1 − (2,4))
and

et =
1 2 5

3 4
−

2 3 5

1 4
−

1 4 5

2 3
+

3 4 5

1 2
.

Remark 1.4.8. A polytabloid depends on the tableau t as well as the

tabloid {t}. In addition, all tabloids involved in et have coefficient ±1.

Note that: If λ = (n), then e12...n = 1 2 ⋯ n is the only poly-

tabloid andMλ is the trivial FSn–module. Previously, we constructed rep-

resentations Mλ of Sn known as permutation modules. Now we consider

the Specht modules that corresponds uniquely to λ.

Definition 1.4.9. For any partition λ of n, the Specht module Sλ is the

submodule of Mλ spanned by the polytabloids et.

Example 1.4.10. Consider λ = (n). Then there is only one polytabloid,

which is

1 2 ⋯ n

Since this polytabloid is fixed bySn, we see that S
λ is the one-dimensional

trivial representation.

The basis for Specht modules Sλ is given by next theorem

Theorem 1.4.11. [15, Theorem 8.4] The set {et ∣ t is a standard λ–tableau}
is a basis for the Specht module Sλ.

Example 1.4.12. If λ = (2,1), then standard λ–tableaux are

t1 =
1 2
3

, t2 =
1 3
2

and

et1 =
1 2

3
−

2 3

1

14



et2 =
1 3

2
−

2 3

1

Thus the set {et1 , et2} is a basis of S(2,1).

We now will introduce the irreducible modules [15]. All the results and

these theorems are true over an arbitrary field F of characteristic p.

Definition 1.4.13. Suppose {t1} and {t2} are λ–tabloids. Define the inner

product ⟨, ⟩ to be the unique bilinear form on Mλ such that

⟨{t1},{t2}⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if {t1} = {t2};
0 if {t1} ≠ {t2}.

We are now in a position to state the submodule theorem.

Theorem 1.4.14. [15, Theorem 4.9] The module Sλ/(Sλ⋂Sλ⊥) is zero or

absolutely irreducible, so if this not zero then Sλ∩Sλ⊥ is the unique maximal

submodule of Sλ and Sλ/(Sλ ∩ Sλ⊥) is self dual.

Theorem 1.4.15. [31, Theorem 2.4.6] The Specht modules Sλ give a com-

plete list of irreducible Sn–modules over C.

Theorem 1.4.16. [15, Theorem 11.1] Let Sλ be a Specht module over a

field F of characteristic p > 0. Then Sλ/(Sλ ∩ Sλ⊥) is non zero if and only

if λ is p–regular.

Definition 1.4.17. Let p > 0 be prime. Suppose λ is a partition of n and

that λ is p–regular. Then, we define

Dλ = Sλ/(Sλ
∩ Sλ⊥).

The next theorem is an analogue of Theorem 1.4.15.

Theorem 1.4.18. [13, Theorem 6] The set {Dλ ∣ λ p–regular} gives a

complete list of irreducible Sn–modules over a field of characteristic p > 0.

Theorem 1.4.19. [15, Corollary 12.2] Suppose p > 0 is prime. Let λ be

p–regular. Then Sλ has a unique top composition factor Dλ = Sλ/(Sλ∩Sλ⊥).
If D is a composition factor of Sλ∩Sλ⊥ then D is isomorphic to Dµ for µ▷λ.

If λ is p–singular, then all composition factors of Sλ have the form Dµ with

µ▷ λ.

15



Definition 1.4.20. Suppose F is a field of characteristic p > 0. Let λ and

µ be partitions of n with µ is p–regular. Define dλµ = [Sλ ∶ Dµ] to be

multiplicity of Dµ as a composition factors of Sλ. The matrix D = (dλµ) is
called the decomposition matrix of Sn.

1.5 Representation theory of the Hecke algebra

Now suppose that F is a field of characteristic p ≥ 0 and that q ∈ F /{0}.
Take H =HF,q(Sn). Recall that e is the smallest positive integer such that

1 + q + ... + qe−1 = 0. Let e = ∞ if no such integer exists. In this section

we use the definitions of Dipper and James [5]. However, Murphy [28] has

shown that the Iwahori-Hecke algebra H is a cellular algebra in the sense

of Graham and Lehrer [12].

1.5.1 Permutation Modules

Definition 1.5.1. Let µ be a composition of n. Then define

Dµ = {d ∈ Sn ∣ tµ d is row standard}
which is a complete set of right coset representatives of the Young subgroup

Sµ = Sµ1
× ⋅ ⋅ ⋅ × Sµk

in Sn. Moreover, the set Dµ consists the unique

element of minimal length from each coset. Furthermore, if w ∈ Sµ and

d ∈ Dµ then ℓ(wd) = ℓ(w)+ ℓ(d) and Tv = TwTd for v = wd ∈ Sn. Hence, each

row standard µ-tableau corresponds to a right coset of Sµ in Sn. for each

such row standard tableau t we define d(t) to be the unique element of Sn

such that t = t
µ d(t). These elements of Sn are called distinguished coset

representatives.

Example 1.5.2. Let µ = (2,2). Then a complete list of representatives are

t1 =
1 2
3 4

, t2 =
1 3
2 4

, t3 =
1 4
2 3

, t4 =
2 3
1 4

, t5 =
2 4
1 3

, t6 =
3 4
1 2

and

d(t1) = 1, d(t2) = (2,3), d(t3) = (2,3)(3,4), d(t4) = (2,3)(1,2),
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d(t5) = (2,3)(1,2)(3,4), d(t6) = (2,3)(1,2)(3,4)(2, 3).
We come to state the main facts and results in this section. First, we

define an analogue of the permutation modules Mµ of H as follows.

Definition 1.5.3. Suppose λ is a composition of n. Define

xλ = ∑
w∈Sλ

Tw,

yλ = ∑
w∈Sλ

(−q)−ℓ(w)Tw.

We define Mλ = xλH to be the right H –module generated by xλ.

Example 1.5.4. Let λ = (2,1). Then
xλ = 1 + T1,and yλ = 1 − q

−1T1.

Lemma 1.5.5. [5, Lemma 3.2] Suppose λ is a composition of n. Then Mλ

is a free R-module with basis {xλTd ∣ d ∈ Dλ}. Moreover, if d ∈ Dλ and

si = (i, i + 1) for some 1 ≤ i < n, then:

xλTdTsi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qxλTd, if i, i + 1 belong to same row of tλ d,

xλTdsi , if the row index of i in t
λd is less than

the row index of i + 1,

qxλTdsi + (q − 1)xλTd, otherwise.

1.5.2 The Specht module of H

The Specht module is contained in the permutation module Mλ = xλH .

Definition 1.5.6. Suppose λ is partition of n. Define cλ ∈H by

cλ = xλTwλ
yλ′ = ∑

u∈Sλ′

(−q)−ℓ(u)xλTwλu.

Define the Specht module Sλ by Sλ = cλH .

Example 1.5.7. Take xλ =
1 2
3

, then xλTwλ
=

1 3
2

. Then

cλ = xλTwλ
(1 − q−1T1) = 1 3

2
− q−1

2 3
1

.
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Now we can write the basis of Sλ.

Lemma 1.5.8. [5, Theorem 5.6] The Specht module Sλ is a F–free module

with a basis

{cλTd ∣ tλwλd is standard}.
This basis is called the standard basis of Sλ.

Now we define the inner product.

Definition 1.5.9. Define the inner product ⟨, ⟩ to be the unique bilinear

form on Mλ such that:

⟨xλTd, xλTu⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
qℓ(d) if d = u;

0 otherwise

where d,u ∈ Dλ. This inner product extends linearly to Mλ, so ⟨, ⟩ is a

symmetric and non-degenerate bilinear form on Mλ.

Theorem 1.5.10. [5, Lemma 4.9] Suppose λ is a partition of n. Then

Sλ/(Sλ ∩ Sλ�) is zero or an absolutely irreducible self-dual H –module.

Definition 1.5.11. For each partition λ of n, define Dλ to be the right

H –module Sλ/(Sλ ∩ Sλ�).
From Theorem 1.5.10 we can state the following corollary

Corollary 1.5.12. Suppose λ is a partition of n. Then either Dλ = 0 or

Dλ is an absolutely irreducible and self-dual H –module.

Theorem 1.5.13. [5, Theorem 7.7] Suppose λ is a partition of n and that

H is semisimple. Then

{Sµ ∣ µ is a partition of n}
is a complete set of non-isomorphic irreducible H –modules.

Lemma 1.5.14. Suppose λ is e–regular. Then Dλ ≠ 0.

Theorem 1.5.15. [5, Theorem 7.6] Let F be a field. Then

{Dλ ∣ λ a partition of n and λ is e–regular}
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is a complete set of inequivalent irreducible H -modules. All these irreducible

H –modules are self-dual. Moreover, if λ and µ are partitions of n with λ

e–regular and Dλ is a composition factor of Sµ, then λ ⊵ µ, and Dλ occurs

in Sλ with multiplicity 1.

Definition 1.5.16. Let λ and µ be partitions of n with µ e–regular. Then,

we define dλµ = [Sλ ∶ Dµ] to be the composition multiplicity of Dµ in Sλ.

The matrix D = (dλµ) is called the decomposition matrix of H and this

matrix is upper unitriangular matrix and has the form

Dµ

Sλ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

1

⋱

1

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note that: if e =∞ then {Sµ ∣ µ is a partition of n} are irreducible and

the decomposition matrix is identify matrix.

Definition 1.5.17. Suppose H = B1 ⊕ ⋅ ⋅ ⋅ ⊕Bs, where each Bi is an inde-

composable two-sided ideal. Then B1, . . . ,Bs are called the blocks of H .

Lemma 1.5.18. [26, Corollary 2.22] Every irreducible H –module is a com-

position factor of exactly one block. Moreover, all composition factors of the

Specht module Sλ lie in the same block. So we can say that two Specht

modules lie in the block if their composition factors lie in the same block.

Corollary 1.5.19. Suppose λ and µ are partitions of n with µ e–regular.

Then the Specht module Sλ can have a composition factor Dµ only if Sλ and

Sµ lie in the same block.

Recall that the definition of an e–core was given in Definition 1.3.25.

Then

Theorem 1.5.20. (The Nakayama conjecture). Let λ and µ be partitions

of n. Then the H –modules Sλ and Sµ belong to the same block of H if

and only if λ and µ have the same e–core.
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Now we introduce some useful results about decomposition matrices and

decomposition numbers. Recall Definition 1.3.29 for regularization, then we

can state the following theorem.

Theorem 1.5.21. [16, Theorem 6.21] Let λ and µ be partitions of n, with

µ is an e–regular partition. Then

� [Sλ ∶ DλR] = 1;
� [Sλ ∶ Dµ] = 0 if µ ⋭ λR.

Now we give theorems for computing decomposition matrices indexed by

partitions of e–weight 0 and 1.

Theorem 1.5.22. [16, Theorem 6.4]

Let λ be a partition of n and λ be an e–core. Then dλµ = 0 for every

e–regular partition µ which is distinct from λ.

Theorem 1.5.23. [16, Theorem 6.5]

Suppose λ(1), λ(2), . . . , λ(e) are partitions of weight 1 with e–core ν and

that λ(1) ⊳ λ(2) ⊳ ⋅ ⋅ ⋅ ⊳ λ(e). Then, for 1 ≤ i<e dλ(i+1)λ(i) = 1 and dλ(i)λ(j) = 0

for i ≠ j, j − 1.

1.5.3 The LLT algorithm

Let q be a primitive eth root of unity in C where e ≥ 2. Then there exists

a recursive algorithm that determines the decomposition matrices of the

Iwahori-Hecke algebra HC,q(Sn). The algorithm was first published in 1996

[20] where Lascoux, Leclerc and Thibon claimed to solve the decomposition

matrices of HC,q(Sn) but this claim was proved since in [2] by Ariki. This

recursive algorithm is called now the LLT algorithm. This section shows

how to calculate the decomposition matrices of HC,q(Sn) using the LLT

algorithm. Recall the Specht modules of H are indexed by partitions λ of

n, also recall the irreducible modules Dµ, where µ is an e–regular partitions

of n. Let dλµ = [Sλ ∶ Dµ] be the composition multiplicity of Dµ in Sλ and

D = (dλµ) be the decomposition matrix of HC,q(Sn). Now we describe the

LLT algorithm.

Definition 1.5.24. Let λ be a partition. A node x is said to be addable if

x ∉ [λ] and [λ ∪ x] is the diagram of a partition and a node x ∈ [λ] is said

to be removable if [λ/x] is the diagram of a partition.
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Now let v be an indeterminate over C and let Fv denote the C(v)–vector
space with basis the partitions of n, for all n ≥ 0. Let λ, ν be partitions.

If the e–residue diagram of ν is formed by adding s nodes to the e–residue

diagram of λ, all of residue r, then we write λ
s∶r
Ð→ ν. Define

(λ) ↑rs= ∑
λ

s∶r
Ð→ν

vNr(λ,ν)ν

where

Nr(λ, ν) = ∑
γ∈[ν]/[λ]

(#{γ′ ∶ γ′ is an addable r–node of ν above γ}−
#{γ′ ∶ γ′ is a removable r–node of λ above γ }).

We extend this definition linearly in order to define B ↑sr for B ∈ Fv.

The algorithm works by calculating the crystallized decomposition matrix

ofHC,q(Sn) which is a lower unitriangular matrix defined in [20] with the

same structure as the decomposition matrix of HC,q(Sn), but whose lower

triangular entries are elements of vN[v]. By Ariki’s Theorem [2], the decom-

position matrix of HC,q(Sn) is then obtained by setting v = 1. Let dλν(v)
be the entry of the crystallized decomposition matrix in the row indexed

by the partition λ and the column indexed by the e–regular partition ν. If

ν is an e–regular partition of n, define [Bc(ν)] = ∑
λ⊢n

dλν(v)λ ∈ Fv, where

we associate this with the column of the crystallized decomposition matrix

indexed by ν. Since the LLT algorithm is recursive, we assume that we know

[Bc(τ)] where τ is a partition of m and either m < n or m = n and ν ⊳ τ .

This is reasonable, since if n = 1 the crystallized decomposition matrix is

simply the identity matrix. Now [Bc(ν)] is found by the LLT algorithm as

follows.

1. Write the e–ladder diagram of ν and construct the partition τ by

removing all nodes of maximal ladder number. Suppose there are s

such nodes and they have common e-residue r.

2. Assume we know [Bc(τ)] and set Cν = [Bc(τ)] ↑rs. Then Cν is of the

form

Cν = ∑
ν⊵µ

cµν(v)µ = [Bc(ν)] + ∑
ν⊳µ

αµν(v)[Bc(µ)] (1.1)
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where αµν(v) ∈ N[v + v−1] and cµν(v) ∈ N[v, v−1].
3. Find the largest partition, µ0, such that cµ0ν(v) ∉ vN[v] and ν ≠ µ0. If

no such partition exists then Cν = [Bc(ν)] and we are done. Otherwise,

αµ0ν(v) is the unique polynomial in v+v−1 such that the coefficient of

vi in αµ0ν(v) is equal to the coefficient of vi in cµ0ν(v), for all i ≤ 0.

Replace Cν by the element Cν − αµ0ν(v)[Bc(µ0)] and repeat step (3)

until all the coefficients cµν(v) belong to vN[v] for all ν ⊳ µ.
Example 1.5.25. Let ν = (4,2) and e = 2. We want to find [Bc(ν)] so

1. Find τ . The e–ladder diagram of ν is

0 1 2 3
1 2

and the e–residue diagram of ν is

0 1 0 1
1 0

.

Then τ is obtained by removing one node of residue 1. Thus τ = (3,2).
2. We find that

[Bc(τ)] = (3,2) + v(3,12) + v2(22,1).
So we calculate Cν = [Bc(τ)] ↑11

0 1 0
1 0

+ v

0 1 0
1
0

+ v2
0 1
1 0
0

1 ∶ 1
ÐÐ→

0 1 0 1
1 0

+ v
0 1 0
1 0 1

+ v

0 1 0 1
1
0

+ v2

0 1 0
1
0
1

+ v2
0 1
1 0
0 1

+ v3

0 1
1 0
0
1

.

Hence, Cν has the right form so

[Bc(ν)] = (4,2) + v(32) + v(4,12) + v2(3,13) + v2(23) + v3(22,12).
Example 1.5.26. Let ν = (7) and e = 2. We want to find [Bc(ν)] so
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1. Find τ . The e–ladder diagram of ν is

0 1 2 3 4 5 6

and the e–residue diagram of ν is

0 1 0 1 0 1 0 .

Then τ is obtained by removing one node of residue 0. Thus τ = (6).
2. We find that

[Bc(τ)] = (6) + v(5,1) + v(4,12) + v2(3,13) + v2(2,14) + v3(16).
So we calculate Cν = [Bc(τ)] ↑01

0 1 0 1 0 1 + v
0 1 0 1 0
1

+ v

0 1 0 1
1
0

+ v2

0 1 0
1
0
1

+ v2

0 1
1
0
1
0

+ v3

0
1
0
1
0
1

1 ∶ 0
ÐÐ→

0 1 0 1 0 1 0 +
0 1 0 1 0
1 0

+ v

0 1 0 1 0
1
0

+ v

0 1 0 1 0
1
0

+ v2
0 1 0 1
1 0
0

+ v

0 1 0
1 0
0
1

+ v2

0 1 0
1
0
1
0

+ v2

0 1 0
1
0
1
0

+ v3

0 1
1 0
0
1
0

+ v3

0
1
0
1
0
1
0

.

Hence, Cν is not of the right form because the partition µ = (5,2) has the
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coefficient 1 ∉ vN[v]. Thus, αµν(v) = 1. So, we subtract [Bc(5,2)] from Cν

and we get

(7) + (5,2) + 2v(5,12) + v2(4,2,1) + v(3,2,12) + 2v2(3,14) + v3(22,13) + v3(17)
− [(5,2) + v(5,12) + v2(4,2,1) + v(3,2,12) + v2(3,14) + v3(22,13)]
= (7) + v(5,12) + v2(3,14) + v3(17).

Now this is of the correct form. Hence,

[Bc(ν)] = (7) + v(5,12) + v2(3,14) + v3(17).
In Chapter 2, we assume e = 2 and use a slight variation of the LLT

algorithm to compute decomposition numbers. If τ is an e–regular partition

of m, then if 0 ≤ r<e and s ≥ 1 we have

[Bc(τ)] ↑rs= ∑
µ⊢m+s

αµν(v)[Bc(µ)]
where αµν(v) ∈ N[v + v−1].
Lemma 1.5.27. Suppose ν is an e–regular partition of m and that there

exist 1 ≤ s and 0 ≤ r<e such that rows 1,2, . . . , s of [ν] contain a removable

r–node and the partition τ formed by removing these s nodes is e–regular.

Then

[Bc(τ)] ↑rs= ∑
ν⊵µ

cµν(v)µ = [Bc(ν)] + ∑
ν⊳µ

αµν(v)[Bc(µ)] (1.2)

where αµν(v) ∈ N[v + v−1].
Proof. Since [Bc(τ)] ↑rs= ∑

µ⊢m+s
αµν(v)[Bc(µ)] it is sufficient to show that if

[Bc(τ)] ↑rs= ∑
µ⊢m+s

cµν(v)µ, then cνν(v) = 1 and cµν(v) = 0 if ν ⋭ µ. We have

[Bc(τ)] = ∑
τ⊳σ

dστ (v)τ,
where dττ = 1. Then

τ ↑rs= ν + ∑
ν⊳µ

βµν(v)µ
and if τ ⊳ σ then since ν is formed by adding nodes to the first s rows of τ

then any partition µ̃ formed by adding s nodes to σ will have the property

that ν ⊳ µ̃.
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1.5.4 Adjustment matrices

Let F be a field of positive characteristic and recall e ≥ 2 is the smallest

positive integer such that 1 + q + ... + qe−1 = 0 with e =∞ if no such integer

exists. In particular, if e = ∞ then the decomposition matrix is simply

the identity matrix. Thus, suppose e is finite and assume H0 = HC,q(Sn)
where q is a primitive eth root of unity in C. Let D be the decomposition

matrix of HF,q(Sn) and D0 be the decomposition matrix of H0 which can

be computed by using the LLT algorithm [22].

Theorem 1.5.28. There exists a square lower uni-triangular matrix A

whose entries are non-negative integers such that

D =D0A.

Then A is called an adjustment matrix.

Remark 1.5.29. Let µ be an e–regular partition and suppose B(µ) is the
column of the matrix D and B0(µ) is the column of the matrix D0 both of

them indexed by µ. If λ is an e–regular partition, then

B(λ) = B0(λ) +∑
λ⊳ν

ανλB0(ν)
where ανλ(v) ∈ Z≥0.
Theorem 1.5.30 ([3],Corollary 6.3). The decomposition matrix D depends

only on e and char(F ), not on the choice of q.

In general the adjustment matrices are not known. However if part of

the decomposition matrix of H is known, we can use it to find part of the

adjustment matrix. The next example comes from [16, Appendix 1].

Example 1.5.31. Consider e = 2 and n = 5. Assume we known D0 by the
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LLT algorithm which is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(5) (4,1) (3,2)
(5) 1 . .

(4,1) . 1 .

(3,2) . . 1

(3,12) 1 . 1

(22,1) . . 1

(2,13) . 1 .

(15) 1 . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The adjustment matrix A is

⎛⎜⎜⎜⎝
(5) 1 . .

(4,1) . 1 .

(3,2) 1 . 1

⎞⎟⎟⎟⎠
.

The decomposition matrix D =D0A is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(5) (4,1) (3,2)
(5) 1 . .

(4,1) . 1 .

(3,2) 1 . 1

(3,12) 2 . 1

(22,1) 1 . 1

(2,13) . 1 .

(15) 1 .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Chapter 2

Some results for

decomposition numbers for

HC,−1(Sn)

2.1 The decomposition numbers for all partitions

of the form λ = (a, c, 1b).

2.1.1 Notation

Throughout this section we assume that e = 2 and that F = C, that is

H =HC,−1(Sn). The work in this chapter will appear in [1].

Definition 2.1.1. Define Γ to be the set:

Γ ∶= {(a, c,1b) ∣ (a, c,1b) is a partition of some integer n }
where a, b, c are positive integers.

In this section, we write a ≡ c to denote a ≡ c mod 2 for all a, c ≥ 0.

Definition 2.1.2. Let λ be a partition of n. Then ℓ(λ) denotes the number

of non–zero parts of λ. We define the set:

ΓR = {ν is a partition ∣ ν is 2–regular and either ℓ(ν) = 2 or ℓ(ν) = 3}.
The Specht modules that we consider in this section will be labelled by

partitions λ such that λ ∈ Γ.
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Definition 2.1.3. If ν is 2–regular, then we define [Bc(ν)]Γ = ∑
λ⊢n
λ∈Γ

dλν(v)λ
which we associate with the column of the crystallized decomposition matrix

indexed by ν corresponding to only the rows indexed by partitions in Γ.

Lemma 2.1.4. Suppose ν is a partition of n with ν 2–regular and that

ℓ(ν) ≥ 4. Then [Bc(ν)]Γ = 0.
Proof. Let λ ∈ Γ and suppose σ is a 2–regular partition of n. Now from

Theorem 1.5.21 the decomposition numbers dλσ = [Sλ ∶ Dσ] can only be

non–zero when σ ⊵ λR. Since λR has the form either λR = (x′, y′, z′),
λR = (x′, y′) or λR = (x′) for some x′, y′, z′ then if σ ⊵ λR then σ has

the form σ = (x) or σ = (x, y) or σ = (x, y, z) for some x, y, z.

2.1.2 Statement of main theorems

Our main results are the following theorems:

Theorem A. Suppose ν = (x, y, z) ∈ ΓR. Then

1. Suppose x ≡ y /≡ z. Then

[Bc(x, y, z)]Γ =
y−z−1

2∑
f=0

x−y−2
2∑

k=0

v⌊
y−2f+2k+1

2
⌋(x − 2k − 1, z + 2 + 2f,1y−2f+2k−1)

+

y−z−1
2∑

f=0

x−y−1∑
k=0

αk(x − k, z + 1 + 2f,1y−2f+k−1)

where αk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v⌊

y−2f+k−1
2

⌋, if k even,

v⌊
y−2f+k+3

2
⌋, if k odd.

2. Suppose x /≡ y /≡ z. Then

[Bc(x, y, z)]Γ =
y−z−1

2∑
f=0

x−y−1
2∑

k=0

v⌊
y−2f+2k−1

2
⌋(x − 2k, z + 1 + 2f,1y−2f+2k−1).
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3. Suppose x /≡ y ≡ z. Then

[Bc(x, y, z)]Γ =
y−z−2

2∑
f=0

x−y∑
k=0

αk(x − k, z + 2 + 2f,1y−2f+k−2)

+

y−z−2
2∑

f=0

x−y−1
2∑

k=0

v⌊
y−2f+2k+1

2
⌋(x − 2k, z + 1 + 2f,1y−2f+2k−1)

where αk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v⌊

y−2f+k−2
2

⌋, if k even,

v⌊
y−2f+k+2

2
⌋, if k odd.

4. Suppose x ≡ y ≡ z. Then

[Bc(x, y, z)]Γ =
y−z−2

2∑
f=0

x−y−2
2∑

k=0

v⌊
y−2f+2k−2

2
⌋(x − 2k, z + 2 + 2f,1y−2f+2k−2)

+

y−z−2
2∑

f=0

x−y−2
2∑

k=0

v⌊
y−2f+2k+4

2
⌋(x − 2k − 2, z + 2 + 2f,1y−2f+2k)

+

y−z−4
2∑

f=0

x−y∑
k=0

v⌊
y−2f+k−1

2
⌋(x − k, z + 3 + 2f,1y−2f+k−3)

+

y−z−2
2∑

f=0

x−y−2∑
k=0

v⌊
y−2f+k

2
⌋(x − k − 1, z + 3 + 2f,1y−2f+k−2)

+

x−y−1∑
k=0

v⌊
y+k+1

2
⌋(x − k, z + 1,1y−1+k).

Theorem A describes [Bc(ν)]Γ, where ℓ(ν) = 2 or ℓ(ν) = 3. The case

where ℓ(ν) = 1 was considered by James and Mathas [5, Theorem 3.2], [26,

p112].

Theorem 2.1.5. [5, Theorem 3.2] Suppose e = 2 and that ν is 2–regular

and let ν = (x). Then

� If x is odd, then

[Bc(x)]Γ =
x−1
2∑

k=0

vk(x − 2k,12k).
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� If x is even, then

[Bc(x)]Γ = x−1∑
k=0

v⌊
k+1
2
⌋(x − k,1k).

Definition 2.1.6. Let λ be a partition. We say that λ is a hook partition

if λ has the form (n − j,1j) where 0 ≤ j<n.

The next theorem describes the decomposition numbers corresponding

to rows labelled by hook partitions, where e = 2.

Theorem 2.1.7. [4, Theorem 1] Suppose e = 2 and αn
j = (n − j,1j) is a

hook partition. Let (αn
i )R = (n − i, i) be the regularization of αn

i . Then, for

0 ≤ j ≤ n − 1

dαn
j
(αn

i
)R(v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v⌊
j

2
⌋, if i ≤ j<n − i and j ≡ i,

v
j+1
2 , if i<j<n − i and j /≡ i ≡ n ≡ 0,

v
j

2
+1, if i<j<n − i and j /≡ i /≡ n ≡ 0.

Furthermore, dαn
j
ν(v) = 0 for all other 2–regular partitions ν.

Combining Lemma 2.1.4, Theorem A and Theorem 2.1.5 we obtain the

second result which gives the composition factors of Sλ for λ ∈ Γ.

Definition 2.1.8. If λ is a partition, define Br(λ) = ∑
ν 2-regular

dλν(v)ν which

we associate with the row of the crystallized decomposition matrix corre-

sponding to Sλ.

Theorem B. Suppose λ = (a, c,1b) ∈ Γ and λ is not a hook partition. Then

1. Suppose a ≡ b /≡ c. Then

Br(λ) = a−1∑
y=c
y≡c

n−y∑
x=max{a,a+b−y+1}

x/≡c

v⌊
b
2
⌋(x, y,n − x − y).
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2. Suppose a ≡ b ≡ c. Then

Br(λ) = a−1∑
y=c−1
y/≡c

n−y∑
x=max{a+1,a+b−y+2}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y)

+

a−1∑
y=c+1
y/≡c

n−y∑
x=max{a,a+b−y+1}

x≡c

v⌊
b+2
2
⌋(x, y,n − x − y)

+

a−2∑
y=c
y≡c

n−y∑
x=max{a,a+b−y+2}

x≡c

v⌊
b
2
⌋(x, y,n − x − y)

+

a∑
y=c
y≡c

n−y∑
x=max{a+2,a+b−y+2}

x≡c

v⌊
b+4
2
⌋(x, y,n − x − y).

3. Suppose a /≡ b. Then

Br(λ) = a−1∑
y=c
y≡c

n−y∑
x=max{a,a+b−y+1}

x≡c

αb(x, y,n − x − y)

+
a∑

y=c
y≡c

n−y∑
x=max{a,a+b−y+2}

x/≡c

βb(x, y,n − x − y)

+
a∑

y=c+1
y/≡c

n−y∑
x=max{a,a+b−y+3,y+1}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y)

+

a−1∑
y=c−1
y/≡c

n−y∑
x=max{a+1,a+b−y+3}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y)

+

min{a−1,b+1}∑
y=c+1
y/≡c

v⌊
b+2
2
⌋(a + b − y + 1, y, c − 1)

where αb =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v⌊

b+4
2
⌋, if c /≡ a,

v⌊
b
2
⌋, if c ≡ a,

where βb =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v⌊

b
2
⌋, if c /≡ a,

v⌊
b+4
2
⌋, if c ≡ a.

Combining Theorem B and Theorem 2.1.7, we obtain the decomposition
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numbers for Specht modules Sλ where λ ∈ Γ.

2.2 Proof of Main theorems

2.2.1 Proof of Theorem A

Before proving Theorem A, we state some relevant results.

Theorem 2.2.1. (Row and column removal)[5, Theorem 1.2] Suppose λ =

(λ1, ....., λi) and ν = (ν1, ...., νj) are two partitions of n and ν is 2–regular.

1. If λ1 = ν1 then dλν(v) = d(λ2,.....,λi)(ν2,....,νj)(v).
2. If i = j then dλν(v) = d(λ1−1,.....,λi−1)(ν1−1,....,νj−1)(v).
Let [Bc(ν)]3 = ∑

ℓ(λ)≤3
dλν(v)λ ∈ Fv which we identify with the portion

of the column of the crystallized decomposition matrix indexed by ν corre-

sponding to only the rows containing partitions with at most 3 parts.

Proposition 2.2.2. [23, Theorem 3.1]

Suppose e = 2 and that ν = (ν1, ν2) is a two part 2–regular partition of n.

If ν1 is odd and ν2 is even, then for ν2 ≥ 2

[Bc(ν)]3 = (ν1, ν2) + v(ν1, ν2 − 1,1) + v2(ν1 − 1, ν2,1).
Proof of Theorem A We prove this theorem by induction on n and on

the dominance order ⊵. Theorem A is trivially true for n = 0,1. So suppose

ν ∈ ΓR is a partition of n where n ≥ 2 and that Theorem A holds for all

partitions σ ∈ ΓR where σ ⊢ m<n or σ ⊢ n and ν ⊳ σ. Suppose that 0 ≤ r<e

and that for some s ≥ 1, the first s rows of [ν] have a removable r–node. Let

τ be the partition whose diagram is formed by removing these s nodes from

[ν]. By the induction hypothesis, we know [Bc(τ)]Γ. Note that if λ ∈ Γ

and λ0
s∶r
Ð→ λ then λ0 ∈ Γ. Hence to find [Bc(ν)]Γ we first want to consider

[Bc(τ)]Γ ↑rs.
Definition 2.2.3. Suppose ν is a partition of n. Define Ξ = Ξ(ν) to be the

set

{µ ⊢ n ∣ ν ⊳ µ, µ is 2–regular, µ lies in the same block as ν, ℓ(µ) ≤ 3}.
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From equation 1.2, we have

[Bc(τ)]Γ ↑rs= [Bc(ν)]Γ + ∑
ν⊳µ

αµν(v)[Bc(µ)]Γ
where αµν(v) ∈ N[v + v−1]. We look for the coefficients cµν(v) of µ in

[Bc(τ)]Γ ↑rs, where µ ∈ Ξ. If cµν(v) ∈ vN[v] for all µ ∈ Ξ, then [Bc(ν)]Γ =
[Bc(τ)]Γ ↑rs. Otherwise, we find the largest partition µ0 ∈ Ξ such that

cµ0ν(v) ∉ vN[v] and replace ∑
ν⊵µ

cµν(v)µ by ∑
ν⊵µ

cµν(v)µ − αµ0ν(v)[Bc(µ0)]Γ.
We repeat until all coefficients cµν(v)µ ∈ vN[v] for all µ ∈ Ξ. Now, we have

4 cases to consider. Throughout we assume ν = (x, y, z) ∈ ΓR, that is ν is

2–regular and ℓ(ν) = 2 or ℓ(ν) = 3.

Case 1: x ≡ y /≡ z
The Young diagram of ν is:

[ν] = 0 i

1 j

0 j

where i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if z even,

1, if z odd,

where j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if z even,

0, if z odd.

Let τ be the partition obtained by removing the highest i–node from ν.

Hence τ is obtained by removing one node of residue i. So

τ = (x − 1, y, z).
By the induction hypothesis

[Bc(x − 1, y, z)]Γ =
y−z−1

2∑̃
f=0

x−y−2
2∑̃

k=0

v⌊
y−2f̃+2k̃−1

2
⌋(x − 2k̃ − 1, z + 1 + 2f̃ ,1y−2f̃+2k̃−1).
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Now we find [Bc(τ)]Γ ↑i1. To do this, we add one node of residue i to each

partition (x− 2k̃ − 1, z + 1+ 2f̃ ,1y−2f̃+2k̃−1) in all ways such that we obtain a

partition which appears in [Bc(ν)]Γ.
0 1 j

1 j

j

1∶i
Ð→ v0

0 1 j i

1 j

j

+ v

0 1 j

1 j i

j

+ v2+i

0 1 j

1 j

j

i

.

Hence

[Bc(τ)]Γ ↑i1 =
y−z−1

2∑̃
f=0

x−y−2
2∑̃

k=0

v⌊
y−2f̃+2k̃−1

2
⌋(x − 2k̃, z + 1 + 2f̃ ,1y−2f̃+2k̃−1)

+

y−z−1
2∑̃

f=0

x−y−2
2∑̃

k=0

v⌊
y−2f̃+2k̃+1

2
⌋(x − 2k̃ − 1, z + 2 + 2f̃ ,1y−2f̃+2k̃−1)

+

y−z−1
2∑̃

f=0

x−y−2
2∑̃

k=0

v⌊
y−2f̃+2k̃+3+2i

2
⌋(x − 2k̃ − 1, z + 1 + 2f̃ ,1y−2f̃+2k̃)

=

y−z−1
2∑̃

f=0

x−y−2
2∑̃

k=0

v⌊
y−2f̃+2k̃+1

2
⌋(x − 2k̃ − 1, z + 2 + 2f̃ ,1y−2f̃+2k̃−1)

+

y−z−1
2∑̃

f=0

x−y−1∑̃
k=0

α
k̃
(x − k̃, z + 1 + 2f̃ ,1y−2f̃+k̃−1)

where α
k̃
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v⌊

y−2f̃+k̃−1
2

⌋, if k̃ even,

v⌊
y−2f̃+k̃+3

2
⌋, if k̃ odd.

Note that if l = 2k̃ + 1, then

⌊y − 2f̃ + 2k̃ + 3 + 2i
2

⌋ = ⌊y − 2f̃ + l + 3
2

⌋
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since,

i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if y odd,

1, if y even.

Now we show that in this case [Bc(ν)]Γ = [Bc(τ)]Γ ↑i1. Let µ ∈ Ξ. We

look for the coefficient of µ in [Bc(τ)] ↑i1. If µ ∈ Ξ, then µ has one of the

following three forms:

[µ1] =
0 j i

1 j

0 j

or [µ2] =
0 j

1 j i

0 j

or [µ3] =
0 j

1 j

0 j i

.

For each µk, where 1 ≤ k ≤ 3, there is a unique partition σk such that σk

is obtained by removing an i–node from µk.

Each partition µ1 comes from a partition σ1 such that:

[σ1] =
0 j

1 j

0 j

1∶i
Ð→ v0

0 j i

1 j

0 j

.

Thus the coefficient of µ1 in [Bc(τ)] ↑i1 is the same as the coefficient of

σ1 in [Bc(τ)] which is in vN[v]. Each partition µ2 comes from a partition

σ2 such that:

[σ2] =
0 j

1 j

0 j

1∶i
Ð→ v

0 j

1 j i

0 j

.

Thus the coefficient of µ in [Bc(τ)] ↑i1 is the coefficient of σ2 in [Bc(τ)]
multiplied by v which is in vN[v]. Each partition µ3 comes from a partition

σ3 such that:

[σ3] =
0 j

1 j

0 j

1∶i
Ð→ v2

0 j

1 j

0 j i

.

Thus the coefficient of µ3 in [Bc(τ)] ↑i1 is the coefficient of σ3 in [Bc(τ)]
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multiplied by v2 which is in vN[v]. Since cµν(v) ∈ vN[v], for all µ ∈ Ξ,

we have [Bc(ν)]Γ = [Bc(τ)]Γ ↑i1 as required. Hence, we have shown that

Theorem A holds for all partitions described in Case 1.

Case 2: x /≡ y /≡ z
First, suppose that z > 0. The Young diagram of ν is:

[ν] = 0 i

1 i

0 i

where i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if z even,

0, if z odd.

Let τ be the partition obtained by removing three i–nodes from ν. So

τ = (x − 1, y − 1, z − 1).
By the induction hypothesis

[Bc(x−1, y −1, z −1)]Γ =
y−z−1

2∑̃
f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃−2

2
⌋(x−2k̃ −1, z +2f̃ ,1y−2f̃+2k̃−2).

Now we find [Bc(τ)]Γ ↑i3. To do this, we add three nodes of residue i to

each partition (x− 2k̃ − 1, z + 2f̃ ,1y−2f̃+2k̃−2) in all ways such that we obtain

a partition which appears in [Bc(ν)]Γ.
0 1 j

1 j

j

3∶i
Ð→ vi

0 1 j i

1 j i

j

i

where j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if z even,

1, if z odd.
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Hence

[Bc(τ)]Γ ↑i3 =
y−z−1

2∑̃
f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃−2+2i

2
⌋(x − 2k̃, z + 1 + 2f̃ ,1y−2f̃+2k̃−1)

=

y−z−1
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃−1

2
⌋(x − 2k̃, z + 1 + 2f̃ ,1y−2f̃+2k̃−1)

since

i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if y even,

1, if y odd.

Now we show that in this case [Bc(ν)]Γ = [Bc(τ)]Γ ↑i3. Let µ ∈ Ξ. We

look for the coefficient of µ in [Bc(τ)] ↑i3. If µ ∈ Ξ, then µ has the form:

0 j i

1 j i

0 j i

.

Now we see that, for µ ∈ Ξ there is a unique σ such that σ is obtained

by removing three i-nodes from µ. The partition µ comes from a partition

σ such that

[σ] = 0 j

1 j

0 j

3∶i
Ð→ v0

0 j i

1 j i

0 j i

.

Thus the coefficient of µ in [Bc(τ)] ↑i3 is the same as the coefficient of σ

in [Bc(τ)] which is in vN[v]. Since cµν(v) ∈ vN[v], for all µ ∈ Ξ, we have

[Bc(ν)]Γ = [Bc(τ)]Γ ↑i3.
Secondly, suppose z = 0. This implies x is even and y is odd. We separate

this case into two cases. First, when y > 1. In this case the Young diagram

of ν is:

[ν] = 0 1
1 1

.

Let τ be the partition obtained by removing two highest 1–nodes from ν.

So

τ = (x − 1, y − 1).
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By the induction hypothesis

[Bc(τ)]Γ =
y−3
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃−3

2
⌋(x − 2k̃ − 1,2 + 2f̃ ,1y−2f̃+2k̃−3)

+

y−3
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃+2

2
⌋(x − 2k̃ − 2,2 + 2f̃ ,1y−2f̃+2k̃−2)

+

y−3
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃

2
⌋(x − 2k̃ − 1,1 + 2f̃ ,1y−2f̃+2k̃−2).

Now we find [Bc(τ)]Γ ↑12. To do this, we add two nodes of residue 1 to

each partition (x − 2k̃ − 1,2 + 2f̃ ,1y−2f̃+2k̃−3), (x − 2k̃ − 2,2 + 2f̃ ,1y−2f̃+2k̃−2)
and (x−2k̃−1,1+2f̃ ,1y−2f̃+2k̃−2) in all ways such that we obtain a partition

which appears in [Bc(ν)]Γ.
0 1 0
1 0

1

2∶1
Ð→ v0

0 1 0 1
1 0 1

1

.

0 1 1
1 0

0

2∶1
Ð→ v−1

0 1 1
1 0 1

0
1

.

0 1 0
1 1

0

2∶1
Ð→ v0

0 1 0 1
1 1

0
1

.

Note that: in the second case, that is when

(x − 2k̃ − 2,2 + 2f̃ ,1y−2f̃+2k̃−2) 2∶1
Ð→ (x − 2k̃ − 2,3 + 2f̃ ,1y−2f̃+2k̃−1)

we do not get a partition when k̃ = x−y−1
2

and f̃ = y−3
2
. We split this formula
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into two cases to obtain

[Bc(τ)]Γ ↑12 =
y−3
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃−3

2
⌋(x − 2k̃,3 + 2f̃ ,1y−2f̃+2k̃−3)

+

y−3
2∑̃

f=0

x−y−3
2∑̃

k=0

v⌊
y−2f̃+2k̃

2
⌋(x − 2k̃ − 2,3 + 2f̃ ,1y−2f̃+2k̃−1)

+

y−5
2∑̃

f=0

v⌊
x−2f̃−1

2
⌋(y − 1,3 + 2f̃ ,1x−2f̃−2)

+

y−3
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃

2
⌋(x − 2k̃,1 + 2f̃ ,1y−2f̃+2k̃−1).

(2.1)

Now we can see that:

y−3
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃−3

2
⌋(x − 2k̃,3 + 2f̃ ,1y−2f̃+2k̃−3)

=

y−1
2∑̃

f=1

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃−1

2
⌋(x − 2k̃,1 + 2f̃ ,1y−2f̃+2k̃−1).

(2.2)

Also

y−5
2∑̃

f=0

v⌊
x−2f̃−1

2
⌋(y − 1,3 + 2f̃ ,1x−2f̃−2)

=

y−5
2∑̃

f=0

x−y+1
2∑

k̃=x−y+1
2

v⌊
y−2f̃+2k̃−2

2
⌋(x − 2k,3 + 2f̃ ,1y−2f̃+2k̃−3).

(2.3)

and

y−3
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃

2
⌋(x − 2k̃,1 + 2f̃ ,1y−2f̃+2k̃−1)

=

y−5
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃−2

2
⌋(x − 2k̃,3 + 2f̃ ,1y−2f̃+2k̃−3)

+

x−y−1
2∑̃

k=0

v⌊
y+2k̃

2
⌋(x − 2k̃,1,1y+2k̃−1).

(2.4)
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Now if we calculate (2.3)+(2.4), then we get the formula:

y−5
2∑̃

f=0

x−y+1
2∑̃

k=0

v⌊
y−2f̃+2k̃−2

2
⌋(x − 2k̃,3 + 2f̃ ,1y−2f̃+2k̃−3) +

x−y−1
2∑̃

k=0

v⌊
y+2k̃

2
⌋(x − 2k̃,1,1y+2k̃−1).

(2.5)

Finally, note that

y−1
2∑̃

f=1

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃−1

2
⌋(x − 2k̃,1 + 2f̃ ,1y−2f̃+2k̃−1)

+

x−y−1
2∑̃

k=0

v⌊
y+2k̃

2
⌋(x − 2k̃,1,1y+2k̃−1)

=

y−1
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃−1

2
⌋(x − 2k̃,1 + 2f̃ ,1y−2f̃+2k̃−1)

since y is odd. Hence, we can write the formula (2.1) as

[Bc(τ)]Γ ↑12 =
y−3
2∑̃

f=0

x−y−3
2∑̃

k=0

v⌊
y−2f̃+2k̃

2
⌋(x − 2k̃ − 2,3 + 2f̃ ,1y−2f̃+2k̃−1) + (2.5) + (2.2)

=

y−1
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃−1

2
⌋(x − 2k̃,1 + 2f̃ ,1y−2f̃+2k̃−1)

+

y−3
2∑̃

f=0

x−y−3
2∑̃

k=0

v⌊
y−2f̃+2k̃

2
⌋(x − 2k̃ − 2,3 + 2f̃ ,1y−2f̃+2k̃−1)

+

y−5
2∑̃

f=0

x−y+1
2∑̃

k=0

v⌊
y−2f̃+2k̃−2

2
⌋(x − 2k,3 + 2f̃ ,1y−2f̃+2k̃−3).

Now in this case [Bc(τ)]Γ ↑12= [Bc(ν)]Γ + ∑
ν⊳µ

αµν(v)[Bc(µ)]Γ, where

αµν(v) ≠ 0 for some µ ∈ Ξ.

Lemma 2.2.4. Let ν = (x, y) where x is even and y is odd and suppose that

µ ∈ Ξ. Then µ has the form

[µ] = 0 0 1
1 0 1

= (x − 2j, y + 2j), 0<j
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or

[µ] = 0 0 1
1 0 1
0 1

= (x − 2j, y + 2j − 2m,2m), j ≥ 0, m > 0.

Now recall that τ = (x − 1, y − 1). Let µ ∈ Ξ. We want to look for the

coefficient of µ in [Bc(τ)] ↑12. Firstly, take the first case for µ which is

µ ∈ {(x − 2j, y + 2j)}.
For each µ, there is a unique partition σ such that σ obtained from

µ by removing two nodes of residue 1. Now µ come from the partition

σ = (x − 2j − 1, y + 2j − 1) such that

[σ] = 0 0
1 0

2∶1
Ð→ v0

0 0 1
1 0 1

.

So the coefficient of µ in Bc(τ)] ↑12 is the same as the coefficient of σ in

[Bc(τ)] which is in vN[v]. Secondly, let µ ∈ {(x − 2j, y + 2j − 2m,2m)∣j ≥
0, m > 0}. There are three possible partitions σ such that σ is obtained

from µ by removing two nodes of residue 1.

[σ1] =
0 0
1 0
0 1

2∶1
Ð→ v0

0 0 1
1 0 1
0 1

.

So the coefficient of µ in Bc(τ)] ↑12 is the same as the coefficient of σ1 in

[Bc(τ)] which is in vN[v].

[σ2] =
0 0
1 1
0 0

2∶1
Ð→ v−1

0 0 1
1 0 1
0 1

.

So the coefficient cµν(v) of µ in Bc(τ)] ↑12 might not lie in vN[v].

[σ3] =
0 1
1 0
0 0

2∶1
Ð→ v−2

0 0 1
1 0 1
0 1

.

So the coefficient cµν(v) of µ in Bc(τ)] ↑12 might not lie in vN[v].
Now we look at the coefficients of σ2 = (x − 2j − 1, y + 2j − 2m,2m −

1) and σ3 = (x− 2j, y + 2j − 2m− 1,2m− 1) in [Bc(τ)]. By using Proposition
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4.2.2 we see that:

the coefficient of σ2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v, if j = 0 and m = 1,

0, otherwise.

the coefficient of σ3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v2, if j = 1 and m = 1,

0, otherwise.

Therefore, if µ = (x, y−2,2) or µ = (x−2, y,2) then αµν(v) = 1 and αην(v) = 0
for all other η ∈ Ξ. Note that if x = y + 1 then (x − 2, y,2) is not a partition.

In this case αµν(v) = 1 for µ = (x, y − 2,2) and αην(v) = 0 for all other η ∈ Ξ.

So if x ≠ y + 1 then

[Bc(ν)]Γ = [Bc(τ)]Γ ↑12 −[Bc(x, y − 2,2)]Γ − [Bc(x − 2, y,2)]Γ.
And if x = y + 1 then

[Bc(ν)]Γ = [Bc(τ)]Γ ↑12 −[Bc(x, y − 2,2)]Γ.
Now we find [Bc(x, y − 2,2)]Γ and [Bc(x − 2, y,2)]Γ by using the induction

hypothesis:

[Bc(x, y − 2,2)]Γ =
y−5
2∑̃

f=0

x−y+1
2∑̃

k=0

v⌊
y−2f̃+2k̃−3

2
⌋(x − 2k,3 + 2f̃ ,1y−2f̃+2k̃−3). (2.6)

And

[Bc(x − 2, y,2)]Γ =
y−3
2∑̃

f=0

x−y−3
2∑̃

k=0

v⌊
y−2f̃+2k̃−1

2
⌋(x − 2k̃ − 2,3 + 2f̃ ,1y−2f̃+2k̃−1). (2.7)

Hence, if x ≠ y + 1 we subtract (2.6) and (2.7) from [Bc(τ)]Γ ↑12 we get:

[Bc(ν)]Γ = [Bc(τ)]Γ ↑12 −[Bc(x, y − 2,2)]Γ − [Bc(x − 2, y,2)]Γ
=

y−1
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃−1

2
⌋(x − 2k̃,1 + 2f̃ ,1y−2f+2k̃−1).
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And if x = y + 1 then

[Bc(ν)]Γ = [Bc(τ)]Γ ↑12 −[Bc(x, y − 2,2)]Γ
=

y−1
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃−1

2
⌋(x − 2k̃,1 + 2f̃ ,1y−2f+2k̃−1).

Second, if y = 1.

In this case the Young diagram of ν is:

[ν] = 0 1
1

.

Let τ be the partition obtained by removing the two 1–nodes from ν. So

τ = (x − 1)
and this is not covered by the induction hypothesis in Theorem A. Thus, we

use Theorem 2.1.5 to find [Bc(τ)]Γ.

[Bc(τ)]Γ =
x−2
2∑̃

k=0

vk̃(x − 2k̃ − 1,12k̃).
Now we find [Bc(τ)]Γ ↑12. To do this, we add two nodes of residue 1 to

each partition (x − 2k̃ − 1,12k̃) in all ways such that we obtain a partition

which appears in [Bc(ν)]Γ.
0 1 0
1

0

2∶1
Ð→ v0

0 1 0 1
1

0
1

.

Hence,

[Bc(τ)]Γ ↑12 =
x−2
2∑̃

k=0

vk̃(x − 2k̃,12k̃+1).

Now we show that in this case [Bc(ν)]Γ = [Bc(τ)]Γ ↑12. Let µ ∈ Ξ. We
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look for the coefficient of µ in [Bc(τ)] ↑12. If µ ∈ Ξ, then µ has the form:

0 0 1
1

.

Now we see that, for µ ∈ Ξ there is a unique σ such that σ is obtained by

removing two nodes of residue 1 from µ. The partition µ comes from a

partition σ such that

[σ] = 0 0
2∶1
Ð→ v0

0 0 1
1

.

Thus the coefficient of µ in [Bc(τ)] ↑12 is the same as the coefficient of σ

in [Bc(τ)] which is in vN[v]. Since cµν(v) ∈ vN[v], for all µ ∈ Ξ, we have

[Bc(ν)]Γ = [Bc(τ)]Γ ↑12.
Hence, we have shown that Theorem A holds for all partitions described

in Case 2.

Case 3: x /≡ y ≡ z
The Young diagram of ν is:

[ν] = 0 i

1 i

0 j

where i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if z even,

1, if z odd,

where j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if z even,

0, if z odd.

Let τ be the partition obtained by removing the highest two i–nodes

from ν. So

τ = (x − 1, y − 1, z).
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By the induction hypothesis

[Bc(x−1, y −1, z)]Γ =
y−z−2

2∑̃
f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃−2

2
⌋(x−2k̃ −1, z +1+2f̃ ,1y−2f̃+2k̃−2).

Now we find [Bc(τ)]Γ ↑i2. To do this, we add two nodes of residue i to each

partition (x− 2k̃ − 1, z + 1+ 2f̃ ,1y−2f̃+2k̃−2) in all ways such that we obtain a

partition which appears in [Bc(ν)]Γ.

0 1 j

1 j

j

2∶i
Ð→ v0

0 1 j i

1 j i

j

+ v1+i

0 1 j i

1 j

j

i

+ v2+i

0 1 j

1 j i

j

i

.

Hence,

[Bc(τ)]Γ ↑i2 =
y−z−2

2∑̃
f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃−2

2
⌋(x − 2k̃, z + 2 + 2f̃ ,1y−2f̃+2k̃−2)

+

y−z−2
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃+2i

2
⌋(x − 2k̃, z + 1 + 2f̃ ,1y−2f̃+2k̃−1)

+

y−z−2
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃+2+2i

2
⌋(x − 2k̃ − 1, z + 2 + 2f̃ ,1y−2f̃+2k̃−1)

=

y−z−2
2∑̃

f=0

x−y∑̃
k=0

αk(x − k̃, z + 2 + 2f̃ ,1y−2f̃+k̃−2)

+

y−z−2
2∑̃

f=0

x−y−1
2∑̃

k=0

v⌊
y−2f̃+2k̃+1

2
⌋(x − 2k̃, z + 1 + 2f̃ ,1y−2f̃+2k̃−1)

where α
k̃
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v⌊

y−2f̃+k̃−2
2

⌋, if k̃ even,

v⌊
y−2f̃+k̃+2

2
⌋, if k̃ odd.
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Note that: if

i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if y even,

1, if y odd,

then ⌊y−2f̃+2k̃+2i
2

⌋ = ⌊y−2f̃+2k̃+1
2

⌋. Moreover, if l = 2k̃ + 1, then ⌊y−2f̃+2k̃+2+2i
2

⌋ =
⌊y−2f̃+l+2

2
⌋.

Now we show that in this case [Bc(ν)]Γ = [Bc(τ)]Γ ↑i2. Let µ ∈ Ξ. We

look for the coefficient of µ in [Bc(τ)] ↑i2. If µ ∈ Ξ then µ has one of the

following forms:

[µ1] =
0 j i

1 j i

0 j

or [µ2] =
0 j i

1 j

0 j i

or [µ3] =
0 j

1 j i

0 j i

.

For each µk, where 1 ≤ k ≤ 3, there is a unique partition σk such that σk

is obtained by removing two i–nodes from µk.

Each partition µ1 comes from a partition σ1 such that

[σ1] =
0 j

1 j

0 j

2∶i
Ð→ v0

0 j i

1 j i

0 j

.

So the coefficient of µ1 in [Bc(τ)] ↑i2 is the same as the coefficient of σ1 in

[Bc(τ)] which is in vN[v]. Each partition µ2 comes from partition σ2 such

that

[σ2] =
0 j

1 j

0 j

2∶i
Ð→ v

0 j i

1 j

0 j i

.

Thus the coefficient of µ2 in [Bc(τ)] ↑i2 is the the coefficient of σ2 in [Bc(τ)]
multiplied by v which is in vN[v]. Each µ3 comes from a partition σ3 such
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that

[σ3] =
0 j

1 j

0 j

2∶i
Ð→ v2

0 j

1 j i

0 j i

.

Thus the coefficient of µ3 in [Bc(τ)] ↑i2 is the the coefficient of σ3 in

[Bc(τ)] ↑i2 multiplied by v2 which is in vN[v].
Since cµν(v) ∈ vN[v], for all µ ∈ Ξ, we have [Bc(ν)]Γ = [Bc(τ)]Γ ↑i2.

Hence, we have shown that Theorem A holds for all partitions described in

Case 3.

Case 4: x ≡ y ≡ z

The Young diagram of ν is:

[ν] = 0 i

1 j

0 i

where i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if z even,

0, if z odd,

where j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if z even,

1, if z odd.

Let τ be the partition obtained by removing the i–node from ν. So

τ = (x − 1, y, z).
By the induction hypothesis
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[Bc(x − 1, y, z)]Γ =
y−z−2

2∑̃
f=0

x−y−2
2∑̃

k=0

v⌊
y−2f̃+2k̃−2

2
⌋(x − 2k̃ − 1, z + 2 + 2f̃ ,1y−2f̃+2k−2)

+

y−z−2
2∑̃

f=0

x−y−2
2∑̃

k=0

v⌊
y−2f̃+2k̃+3

2
⌋(x − 2k̃ − 2, z + 2 + 2f̃ ,1y−2f̃+2k−1)

+

y−z−2
2∑̃

f=0

x−y−2
2∑

k=0

v⌊
y−2f̃+2k̃+1

2
⌋(x − 2k̃ − 1, z + 1 + 2f̃ ,1y−2f̃+2k̃−1).

Now we find [Bc(τ)]Γ ↑i1. To do this, we add one node of residue i to each

partition (x−2k̃−1, z+2+2f̃ ,1y−2f̃+2k−2), (x−2k̃−2, z+2+2f̃ ,1y−2f̃+2k−1) and
(x− 2k̃ − 1, z + 1+ 2f̃ ,1y−2f̃+2k̃−1) in all ways such that we obtain a partition

which appears in [Bc(ν)]Γ.
0 1 j

1 j

i

1∶i
Ð→ v0

0 1 j i

1 j

i

+ v

0 1 j

1 j i

i

.

0 1 i

1 j

j

1∶i
Ð→ v−1

0 1 i

1 j i

i

+ vi

0 1 i

1 j

j

i

.

Note that: in this case when we add one node of residue i such that

(x − 2k̃ − 2, z + 2 + 2f̃ ,1y−2f̃+2k−1) 1∶i
Ð→ (x − 2k̃ − 2, z + 2 + 2f̃ + 1,1y−2f̃+2k−1)

we do not get a partition when k̃ = x−y−2
2

and f̃ = y−z−2
2

.

0 1 j

1 i

j

1∶i
Ð→ v0

0 1 j i

1 i

i

+ vi

0 1 j

1 i

j

i

.

Hence,
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[Bc(τ)]Γ ↑11 =
y−z−2

2∑̃
f=0

x−y−2
2∑̃

k=0

v⌊
y−2f̃+2k̃−2

2
⌋(x − 2k̃, z + 2 + 2f̃ ,1y−2f̃+2k̃−2)

+

y−z−2
2∑̃

f=0

x−y−2
2∑̃

k=0

v⌊
y−2f̃+2k̃

2
⌋(x − 2k̃ − 1, z + 3 + 2f̃ ,1y−2f̃+2k̃−2)

+

y−z−2
2∑̃

f=0

x−y−4
2∑̃

k=0

v⌊
y−2f̃+2k̃+1

2
⌋(x − 2k̃ − 2, z + 3 + 2f̃ ,1y−2f̃+2k̃−1)

+

y−z−4
2∑̃

f=0

v⌊
x−2f̃−1

2
⌋(y, z + 3 + 2f̃ ,1x−2f̃−3)

+

y−z−2
2∑̃

f=0

x−y−2
2∑̃

k=0

v⌊
y−2f̃+2k̃+3+2i

2
⌋(x − 2k̃ − 2, z + 2 + 2f̃ ,1y−2f̃+2k̃)

+

y−z−2
2∑̃

f=0

x−y−2
2∑̃

k=0

v⌊
y−2f̃+2k̃+1

2
⌋(x − 2k̃, z + 1 + 2f̃ ,1y−2f̃+2k̃−1)

+

y−z−2
2∑̃

f=0

x−y−2
2∑̃

k=0

v⌊
y−2f̃+2k̃+1+2i

2
⌋(x − 2k̃ − 1, z + 1 + 2f̃ ,1y−2f̃+2k̃)

=

y−z−2
2∑̃

f=0

x−y−2
2∑̃

k=0

v⌊
y−2f̃+2k̃−2

2
⌋(x − 2k̃, z + 2 + 2f̃ ,1y−2f̃+2k̃−2)

+

y−z−2
2∑̃

f=0

x−y−2∑̃
k=0

v⌊
y−2f+k̃

2
⌋(x − k̃ − 1, z + 3 + 2f,1y−2f+k̃−2)

+

y−z−2
2∑̃

f=0

x−y−2
2∑̃

k=0

v⌊
y−2f̃+2k̃+4

2
⌋(x − 2k̃ − 2, z + 2 + 2f̃ ,1y−2f̃+2k̃)

+

y−z−4
2∑̃

f=0

x−y∑̃
k=0

v⌊
y−2f̃+k̃−1

2
⌋(x − k̃, z + 3 + 2f̃ ,1y−2f̃+k̃−3)

+

x−y−1∑̃
k=0

v⌊
y+k̃+1

2
⌋(x − k̃, z + 1,1y−1+k̃).

Note that if

i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if y even,

0, if y odd,
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then

⌊y − 2f̃ + 2k̃ + 3 + 2i
2

⌋ = ⌊y − 2f̃ + 2k̃ + 4
2

⌋ and ⌊y − 2f̃ + 2k̃ + 1 + 2i
2

⌋ = ⌊y − 2f̃ + 2k̃ + 2
2

⌋.
Now we come to show that in this case [Bc(ν)]Γ = [Bc(τ)]Γ ↑i1. Consider

µ such that µ ∈ Ξ. We look for the coefficient of µ in [Bc(τ)]Γ ↑i1. Recall

τ = (x−1, y, z). Let τ ′ = (x−1−z, y−z). By using Proposition 4.2.2 we have

[Bc(τ ′)]3 = (x − 1 − z, y − z) + v(x − 1 − z, y − z − 1,1) + v2(x − 2 − z, y − z,1).
Hence by Theorem 2.2.1,

[Bc(τ)]3 ↑i1 = [(x − 1, y, z) + v(x − 1, y − 1,1 + z) + v2(x − 2, y,1 + z)] ↑i1
= v0(x, y, z) + v(x − 1, y + 1, z)
+ v(x, y − 1,1 + z) + v(x − 1, y − 1,2 + z)
+ v(x − 2, y + 1,1 + z) + v2(x − 2, y,2 + z).

If µ ∈ Ξ, then the coefficient of µ in [Bc(τ)] ↑i1 lies in vN[v]. Hence, we

have shown that Theorem A holds for all partitions described in Case 4.

This completes the proof of Theorem A.

2.2.2 Proof of Theorem B.

Now we come to prove the second of our results.

Proof of Theorem B We prove this theorem by using Theorem A.

From Theorem A, we may deduce the following lemmas.

Lemma 2.2.5. Suppose a ≡ b /≡ c. Then (a, c,1b) appears in [Bc(x, y, z)]Γ
if and only if (a, c,1b) = (x−2k, z +1+2f,1y−2f+2k−1) where a ≡ x /≡ y /≡ z for

some 0 ≤ f ≤ y−z−1
2

, 0 ≤ k ≤ x−y−1
2

and in this case it occurs with coefficient

v⌊
y−2f+2k−1

2
⌋ = v⌊

b
2
⌋.

Lemma 2.2.6. Suppose a ≡ b ≡ c. Then (a, c,1b) appears in [Bc(x, y, z)]Γ
if and only if (a, c,1b) has one of the three forms below:
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� If (a, c,1b) = (x − 2k − 1, z + 2 + 2f,1y−2f+2k−1) where a /≡ x ≡ y /≡ z
for some 0 ≤ f ≤ y−z−1

2
, 0 ≤ k ≤ x−y−2

2
and in this case it occurs with

coefficient v⌊
y−2f+2k+1

2
⌋ = v⌊

b+2
2
⌋.

� If (a, c,1b) = (x−2k, z+1+2f,1y−2f+2k−1) where a ≡ x /≡ y ≡ z for some

0 ≤ f ≤ y−z−2
2

, 0 ≤ k ≤ x−y−1
2

and in this case it occurs with coefficient

v⌊
y−2f+2k+1

2
⌋ = v⌊

b+2
2
⌋.

� If (a, c,1b) = (x− 2l, z + 2+ 2f,1y−2f+2l−2) where a ≡ x ≡ y ≡ z for some

0 ≤ f ≤ y−z−2
2

, 0 ≤ l ≤ x−y
2

and in this case it occurs with coefficient

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v⌊
y−2f+2l−2

2
⌋ = v⌊

b
2
⌋, if l = 0 ,

v⌊
y−2f+2l+2

2
⌋ = v⌊

b+4
2
⌋, if l = x−y

2
,

v⌊
y−2f+2l−2

2
⌋ + v⌊

y−2f+2l+2
2

⌋ = v⌊
b
2
⌋ + v⌊

b+4
2
⌋, otherwise.

Lemma 2.2.7. Suppose a /≡ b /≡ c. Then (a, c,1b) appears in [Bc(x, y, z)]Γ
if and only if (a, c,1b) has one of the four forms below:

� If (a, c,1b) = (x−2k, z+1+2f,1y−2f+2k−1) where a ≡ x ≡ y /≡ z for some

0 ≤ f ≤ y−z−1
2

, 0 ≤ k ≤ x−y−2
2

and in this case it occurs with coefficient

v⌊
y−2f+2k−1

2
⌋ = v⌊

b
2
⌋.

� If (a, c,1b) = (x − 2k − 1, z + 2 + 2f,1y−2f+2k−1) where a /≡ x /≡ y ≡ z
for some 0 ≤ f ≤ y−z−2

2
, 0 ≤ k ≤ x−y−1

2
and in this case it occurs with

coefficient v⌊
y−2f+2k+3

2
⌋ = v⌊

b+4
2
⌋.

� If (a, c,1b) = (x − 2k − 1, z + 3 + 2f,1y−2f+2k−2) where a /≡ x ≡ y ≡ z for

some 0 ≤ k ≤ x−y−2
2

and 0 ≤ f ≤ y−z−2
2

and in this case it occurs with

coefficient

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v⌊

y−2f+2k
2

⌋ = v⌊
b+2
2
⌋, if f = y−z−2

2
,

2v⌊
y−2f+2k

2
⌋ = 2v⌊

b+2
2
⌋, if 0 ≤ f ≤ y−z−4

2
.
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� If (a, c,1b) = (x − 2k − 1, z + 1,1y+2k) where a /≡ x ≡ y ≡ z for some 0 ≤

k ≤ x−y−2
2

and in this case it occurs with coefficient v⌊
y+2k+2

2
⌋ = v⌊

b+2
2
⌋.

Lemma 2.2.8. Suppose a /≡ b ≡ c. Then (a, c,1b) appears in [Bc(x, y, z)]Γ
if and only if (a, c,1b) has one of the four forms below:

� If (a, c,1b) = (x−2k−1, z+1+2f,1y−2f+2k) where a /≡ x ≡ y /≡ z for some

0 ≤ f ≤ y−z−1
2

, 0 ≤ k ≤ x−y−2
2

and in this case it occurs with coefficient

v⌊
y−2f+2k+4

2
⌋ = v⌊

b+4
2
⌋.

� If (a, c,1b) = (x−2k, z+2+2f,1y−2f+2k−2) where a ≡ x /≡ y ≡ z for some

0 ≤ f ≤ y−z−2
2

, 0 ≤ k ≤ x−y−1
2

and in this case it occurs with coefficient

v⌊
y−2f+2k−2

2
⌋ = v⌊

b
2
⌋.

� If (a, c,1b) = (x− 2l, z + 3+ 2g,1y−2g+2l−3) where a ≡ x ≡ y ≡ z for some

0 ≤ g ≤ y−z−4
2

, 0 ≤ l ≤ x−y
2

or g = y−z−2
2

and 1 ≤ l ≤ x−y−2
2

and in this

case it occurs with coefficient

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v⌊

y−2g+2l−1
2

⌋ = v⌊
b+2
2
⌋, if l = 0 or l = x−y

2
or g = x−y−2

2
. ,

2v⌊
y−2g+2l−1

2
⌋ = 2v⌊

b+2
2
⌋, otherwise .

� If (a, c,1b) = (x − 2k, z + 1,1y+2k−1) where a ≡ x ≡ y ≡ z for some 0 ≤

k ≤ x−y−2
2

and in this case it occurs with coefficient v⌊
y+2k+1

2
⌋ = v⌊

b+2
2
⌋.

Now we will prove the case (1) in Theorem B in detail.

Proposition 2.2.9. If a ≡ b /≡ c then:

Br(λ) = a−1∑
y=c
y≡c

n−y∑
x=max{a,a+b−y+1}

x/≡c

v⌊
b
2
⌋(x, y,n − x − y).

Proof. Suppose a ≡ b /≡ c. Then, from Lemma 2.2.5 the partitions (a, c,1b)
occur in [Bc(x, y, z)]Γ as (x−2k, z+1+2f,1y−2f+2k−1) for 0 ≤ f ≤ y−z−1

2
, 0 ≤

k ≤ x−y−1
2

where x > y > z ≥ 0 and a ≡ x /≡ y /≡ z. In this case the coefficient

is v⌊
y−2f+2k−1

2
⌋. Now we find all x, y such that there exist f, k where 0 ≤ f ≤

y−z−1
2

, 0 ≤ k ≤ x−y−1
2

satisfying these equalities:
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� a = x − 2k,

� c = z + 1 + 2f ,

� b = y − 2f + 2k − 1,

� a + c + b = x + y + z.

Let n = x+y+ z so that z = n−x−y. Now x = a+2k and as 0 ≤ k ≤ x−y−1
2

and 0 ≤ f ≤ 2y+x−n−1
2

, then a ≤ x ≤ a + x − y − 1, that is y + 1 ≤ a ≤ x.

Moreover, since c = n − x − y + 1 + 2f , then n − x − y + 1 ≤ c ≤ y and this

implies n− c−y+1 ≤ x and c ≤ y. Furthermore, since b = y −2f +2k−1, then

n−x−y ≤ b ≤ x−2 implies n−b−y ≤ x and b+2 ≤ x. Also, x > y > n−x−y ≥ 0

and this can be written as y<x<n − y and x > n − 2y. Now we have:

c ≤ y ≤ a − 1 and x ≤ n − y, where y ≡ c.

Also, x must satisfy the following inequalities:

� x ≥ a.

� x ≥ n − c − y + 1.

By replacing n = a + b + c, this case can be written as x ≥ a + b − y + 1.

� x ≥ b + 2.

Since n = a + b + c we can write b + 2 = n − c − a + 2, but y + 1 ≤ a then

b+2 = n− c−a+2 ≤ n− c−y+1. Thus, if x ≥ n− c−y+1, then x ≥ b+2.

� x ≥ y + 1.

If x ≥ a, then x ≥ y + 1, because y + 1 ≤ a.

� x > n − 2y.

Since c ≤ y, then n − 2y ≤ n − 2c<n − 2c + 1 ≤ n − c − y + 1. So, if

x ≥ n − c − y + 1, then x > n − 2y.

� x ≥ n − b − y.

Since n = a + b + c, then n − b − y = a + c − y, but c ≤ y. Thus n − b− y =

a + c − y ≤ a. So, if x ≥ a, then x ≥ n − b − y.

Hence all conditions above are satisfied if x ≥max{a, a+b−y+1}. Note that
v⌊

y−2f+2k−1
2

⌋ = v⌊
b
2
⌋
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where b = y − 2f + 2k − 1. Hence,

Br(λ) = a−1∑
y=c
y≡c

n−y∑
x=max{a,a+b−y+1}

x/≡c

v⌊
b
2
⌋(x, y,n − x − y).

Case (2) of Theorem B follows in the same way by Lemma 2.2.6.

Proposition 2.2.10. If a ≡ b ≡ c then:

Br(λ) = a−1∑
y=c−1
y/≡c

n−y∑
x=max{a+1,a+b−y+2}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y)

+
a−1∑

y=c+1
y/≡c

n−y∑
x=max{a,a+b−y+1}

x≡c

v⌊
b+2
2
⌋(x, y,n − x − y)

+
a−2∑
y=c
y≡c

n−y∑
x=max{a,a+b−y+2}

x≡c

v⌊
b
2
⌋(x, y,n − x − y)

+
a∑

y=c
y≡c

n−y∑
x=max{a+2,a+b−y+2}

x≡c

v⌊
b+4
2
⌋(x, y,n − x − y).

Proof. Let a ≡ b ≡ c. Then, from Lemma 2.2.6 the partitions (a, c,1b) occur
in [Bc(x, y, z)]Γ in three cases as follows:

1. First case, (a, c,1b) occurs in [Bc(x, y, z)]Γ as (x − 2k − 1, z + 2 +

2f,1y−2f+2k−1) for 0 ≤ f ≤ y−z−1
2

, 0 ≤ k ≤ x−y−2
2

where x > y > z ≥ 0 and

a /≡ x ≡ y /≡ z. In this case the coefficient is v⌊
y−2f+2k+1

2
⌋ = v⌊

b+2
2
⌋. By

finding all x, y such that there exist f, k where these properties, we see

that
a−1∑

y=c−1
y/≡c

n−y∑
x=max{a+1,a+b−y+2}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y).

2. Second case, (a, c,1b) occurs in [Bc(x, y, z)]Γ as (x−2k, z+1+2f,1y−2f+2k−1)
for 0 ≤ f ≤ y−z−2

2
, 0 ≤ k ≤ x−y−1

2
where a ≡ x /≡ y ≡ z. In this case the

coefficient is v⌊
y−2f+2k+1

2
⌋ = v⌊

b+2
2
⌋. By finding all x, y such that there
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exist f, k where these properties, we see that

a−1∑
y=c+1
y/≡c

n−y∑
x=max{a,a+b−y+1}

x≡c

v⌊
b+2
2
⌋(x, y,n − x − y).

3. Third case, (a, c,1b) occurs in [Bc(x, y, z)]Γ as (x−2l, z+2+2f,1y−2f+2l−2)
where a ≡ x ≡ y ≡ z for some 0 ≤ f ≤ y−z−2

2
, 0 ≤ l ≤ x−y

2
and in this case

it occurs with coefficient

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v⌊
y−2f+2l−2

2
⌋ = v⌊

b
2
⌋, if l = 0 ,

v⌊
y−2f+2l+2

2
⌋ = v⌊

b+4
2
⌋, if l = x−y

2
,

v⌊
y−2f+2l−2

2
⌋ + v⌊

y−2f+2l+2
2

⌋ = v⌊
b
2
⌋ + v⌊

b+4
2
⌋, otherwise.

This case gives two cases:

(a) Firstly, when (a, c,1b) = (x − 2k, z + 2 + 2f,1y−2f+2k−2) for 0 ≤

f ≤ y−z−2
2

, 0 ≤ k ≤ x−y−2
2

where a ≡ x ≡ y ≡ z. In this case the

coefficient is v⌊
y−2f+2k−2

2
⌋ = v⌊

b
2
⌋. By finding all x, y such that there

exist f, k where these properties, we see that

a−2∑
y=c
y≡c

n−y∑
x=max{a,a+b−y+2}

x≡c

v⌊
b
2
⌋(x, y,n − x − y).

(b) Secondly, when (a, c,1b) = (x − 2k − 2, z + 2 + 2f,1y−2f+2k) for

0 ≤ f ≤ y−z−2
2

, 0 ≤ k ≤ x−y−2
2

where a ≡ x ≡ y ≡ z and in this case

the coefficient is v⌊
y−2f+2k+4

2
⌋ = v⌊

b+4
2
⌋. By finding all x, y such that

there exist f, k where these properties, we see that

a∑
y=c
y≡c

n−y∑
x=max{a+2,a+b−y+2}

x≡c

v⌊
b+4
2
⌋(x, y,n − x − y).
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Proposition 2.2.11. Suppose a /≡ b. Then

Br(λ) = a−1∑
y=c
y≡c

n−y∑
x=max{a,a+b−y+1}

x≡c

αb(x, y,n − x − y)

+

a∑
y=c
y≡c

n−y∑
x=max{a,a+b−y+2}

x/≡c

βb(x, y,n − x − y)

+

a∑
y=c+1
y/≡c

n−y∑
x=max{a,a+b−y+3,y+1}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y)

+

a−1∑
y=c−1
y/≡c

n−y∑
x=max{a+1,a+b−y+3}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y)

+

min{a−1,b+1}∑
y=c+1
y/≡c

v⌊
b+2
2
⌋(a + b − y + 1, y, c − 1)

where αb =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v⌊

b+4
2
⌋, if c /≡ a,

v⌊
b
2
⌋, if c ≡ a,

where βb =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v⌊

b
2
⌋, if c /≡ a,

v⌊
b+4
2
⌋, if c ≡ a.

Proof.

First suppose that a /≡ b /≡ c. Then, from Lemma 2.2.7 the partitions (a, c,1b)
occurs in [Bc(x, y, z)]Γ in four cases as follows:

1. First case, (a, c,1b) occurs in [Bc(x, y, z)]Γ as (x−2k, z+1+2f,1y−2f+2k−1)
for 0 ≤ f ≤ y−z−1

2
, 0 ≤ k ≤ x−y−2

2
where x > y > z ≥ 0 and a ≡ x ≡ y /≡ z.

In this case the coefficient is v⌊
y−2f+2k−1

2
⌋ = v⌊

b
2
⌋. By finding all x, y such

that there exist f, k where these properties, we see that

a−2∑
y=c
y≡c

n−y∑
x=max{a,a+b−y+1}

x≡c

v⌊
b
2
⌋(x, y,n − x − y).

2. Second case, (a, c,1b) occurs in [Bc(x, y, z)]Γ as (x − 2k − 1, z + 2 +
2f,1y−2f+2k−1) for 0 ≤ f ≤ y−z−2

2
, 0 ≤ k ≤ x−y−1

2
where a /≡ x /≡ y ≡ z. In

this case the coefficient is v⌊
y−2f+2k+3

2
⌋ = v⌊

b+4
2
⌋. By finding all x, y such
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that there exist f, k where these properties, we see that

a∑
y=c
y≡c

n−y∑
x=max{a+1,a+b−y+2}

x/≡c

v⌊
b+4
2
⌋(x, y,n − x − y).

3. Third case, (a, c,1b) occurs in [Bc(x, y, z)]Γ as (x − 2k − 1, z + 3 +

2f,1y−2f+2k−2) where a /≡ x ≡ y ≡ z for some 0 ≤ k ≤ x−y−2
2

and

0 ≤ f ≤ y−z−2
2

and in this case it occurs with coefficient

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v⌊

y−2f+2k
2

⌋ = v⌊
b+2
2
⌋, if f = y−z−2

2
,

2v⌊
y−2f+2k

2
⌋ = 2v⌊

b+2
2
⌋, if 0 ≤ f ≤ y−z−4

2
.

This case gives two cases

(a) Firstly, when (a, c,1b) = (x − 2k − 1, z + 3 + 2f,1y−2f+2k−2) for

0 ≤ f ≤ y−z−4
2

, 0 ≤ k ≤ x−y−2
2

where a /≡ x ≡ y ≡ z. In this case the

coefficient is v⌊
y−2f+2k

2
⌋ = v⌊

b+2
2
⌋. By finding all x, y such that there

exist f, k where these properties, we see that

a−1∑
y=c+1
y/≡c

n−y∑
x=max{a+1,a+b−y+2,y+1}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y).

(b) Secondly, when (a, c,1b) = (x − 2k − 1, z + 3 + 2f,1y−2f+2k−2) for
0 ≤ f ≤ y−z−2

2
, 0 ≤ k ≤ x−y−2

2
where a /≡ x ≡ y ≡ z and in this case

the coefficient is v⌊
y−2f+2k

2
⌋ = v⌊

b+2
2
⌋. By finding all x, y such that

there exist f, k where these properties, we see that

a−1∑
y=c−1
y/≡c

n−y∑
x=max{a+1,a+b−y+3}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y).

4. fourth case, (a, c,1b) occurs in [Bc(x, y, z)]Γ as (x−2k−1, z +1,1y+2k)
where a /≡ x ≡ y ≡ z for 0 ≤ k ≤ x−y−2

2
and in this case the coefficient is

v⌊
y+2k+2

2
⌋ = v⌊

b+2
2
⌋. By finding all x, y such that there exist f, k where

these properties, we see that

min{a−1,b}∑
y=c−1
y/≡c

v⌊
b+2
2
⌋(a + b − y + 1, y, c − 1).
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New we summarize this case, if a /≡ b /≡ c, then

Br(λ) = a−2∑
y=c
y≡c

n−y∑
x=max{a,a+b−y+1}

x≡c

v⌊
b
2
⌋(x, y,n − x − y)

+
a∑

y=c
y≡c

n−y∑
x=max{a+1,a+b−y+2}

x/≡c

v⌊
b+4
2
⌋(x, y,n − x − y)

+

a−1∑
y=c+1
y/≡c

n−y∑
x=max{a+1,a+b−y+2,y+1}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y)

+

a−1∑
y=c−1
y/≡c

n−y∑
x=max{a+1,a+b−y+3}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y)

+

min{a−1,b}∑
y=c−1
y/≡c

v⌊
b+2
2
⌋(a + b − y + 1, y, c − 1).

(2.8)

Now suppose a /≡ b ≡ c. Then, from Lemma 2.2.8 the partitions (a, c,1b)
occur in [Bc(x, y, z)]Γ in four cases as follows:

1. First case, (a, c,1b) occur in [Bc(x, y, z)]Γ as (x−2k−1, z+1+2f,1y−2f+2k)
for 0 ≤ f ≤ y−z−1

2
, 0 ≤ k ≤ x−y−2

2
where x > y > z ≥ 0 and a /≡ x ≡ y /≡ z.

In this case the coefficient is v⌊
y−2f+2k+4

2
⌋ = v⌊

b+4
2
⌋. By finding all x, y

such that there exist f, k where these properties, we see that

a−1∑
y=c
y≡c

n−y∑
x=max{a+1,a+b−y+1}

x≡c

v⌊
b+4
2
⌋(x, y,n − x − y).

2. Second case, (a, c,1b) occurs in [Bc(x, y, z)]Γ as (x−2k, z+2+2f,1y−2f+2k−2)
for 0 ≤ f ≤ y−z−2

2
, 0 ≤ k ≤ x−y−1

2
where a ≡ x /≡ y ≡ z. In this case the

coefficient is v⌊
y−2f+2k−2

2
⌋ = v⌊

b
2
⌋. By finding all x, y such that there exist

f, k where these properties, we see that

a−1∑
y=c
y≡c

n−y∑
x=max{a,a+b−y+2}

x/≡c

v⌊
b
2
⌋(x, y,n − x − y).

3. Third case, (a, c,1b) occurs in [Bc(x, y, z)]Γ as (x−2l, z+3+2g,1y−2g+2l−3)
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where a ≡ x ≡ y ≡ z for some 0 ≤ g ≤ y−z−4
2

, 0 ≤ l ≤ x−y
2

or g = y−z−2
2

and

1 ≤ l ≤ x−y−2
2

and in this case it occurs with coefficient

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v⌊

y−2g+2l−1
2

⌋ = v⌊
b+2
2
⌋, if l = 0 or l = x−y

2
or g = x−y−2

2
. ,

2v⌊
y−2g+2l−1

2
⌋ = 2v⌊

b+2
2
⌋, otherwise.

This case gives two cases:

(a) Firstly, when (a, c,1b) = (x − 2k, z + 3 + 2f,1y−2f+2k−3) for 0 ≤ f ≤
y−z−4

2
, 0 ≤ k ≤ x−y

2
where a ≡ x ≡ y ≡ z. In this case the coefficient

is v⌊
y−2f+2k−1

2
⌋ = v⌊

b+2
2
⌋. By finding all x, y such that there exist

f, k where these properties, we see that

a∑
y=c+1
y/≡c

n−y∑
x=max{a,a+b−y+3,y+1}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y).

(b) Secondly, when (a, c,1b) = (x − 2k − 2, z + 3 + 2f,1y−2f+2k−1) for
0 ≤ f ≤ y−z−2

2
, 0 ≤ k ≤ x−y−2

2
where a ≡ x ≡ y ≡ z and in this case

the coefficient is v⌊
y−2f+2k+1

2
⌋ = v⌊

b+2
2
⌋. By finding all x, y such that

there exist f, k where these properties, we see that

a∑
y=c−1
y/≡c

n−y∑
x=max{a,a+b−y+3}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y).

4. Fourth case (a, c,1b) occurs in [Bc(x, y, z)]Γ as (x − 2k, z + 1,1y+2k−1)
where a ≡ x ≡ y ≡ z for 0 ≤ k ≤ x−y−2

2
and in this case the coefficient is

v⌊
y+2k+1

2
⌋ = v⌊

b+2
2
⌋. By finding all x, y such that there exist f, k where

these properties, we see that

min{a−1,b+1}∑
y=c−1
y/≡c

v⌊
b+2
2
⌋(a + b − y + 1, y, c − 1).

New we summarize this case, if a /≡ b ≡ c, then
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Br(λ) = a−1∑
y=c
y≡c

n−y∑
x=max{a+1,a+b−y+1}

x≡c

v⌊
b+4
2
⌋(x, y,n − x − y)

+

a−1∑
y=c
y≡c

n−y∑
x=max{a,a+b−y+2}

x/≡c

v⌊
b
2
⌋(x, y,n − x − y)

+

a∑
y=c+1
y/≡c

n−y∑
x=max{a,a+b−y+3,y+1}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y)

+

a∑
y=c−1
y/≡c

n−y∑
x=max{a,a+b−y+3}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y)

+

min{a−1,b+1}∑
y=c−1
y/≡c

v⌊
b+2
2
⌋(a + b − y + 1, y, c − 1).

(2.9)

Hence, by combining equations 2.8 and 2.9 we get: If a /≡ b, then
Br(λ) = a−1∑

y=c
y≡c

n−y∑
x=max{a,a+b−y+1}

x≡c

αb(x, y,n − x − y)

+
a∑

y=c
y≡c

n−y∑
x=max{a,a+b−y+2}

x/≡c

βb(x, y,n − x − y)

+
a∑

y=c+1
y/≡c

n−y∑
x=max{a,a+b−y+3,y+1}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y)

+
a−1∑

y=c−1
y/≡c

n−y∑
x=max{a+1,a+b−y+3}

x/≡c

v⌊
b+2
2
⌋(x, y,n − x − y)

+

min{a−1,b+1}∑
y=c+1
y/≡c

v⌊
b+2
2
⌋(a + b − y + 1, y, c − 1)

where αb =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v⌊

b+4
2
⌋, if c /≡ a,

v⌊
b
2
⌋, if c ≡ a,

where βb =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v⌊

b
2
⌋, if c /≡ a,

v⌊
b+4
2
⌋, if c ≡ a.
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2.3 Decomposition numbers for HF,q(Sn)

Suppose that F is a field of an arbitrary characteristic p ≥ 0 and let e be

the smallest positive integer such that 1 + q + ... + qe−1 = 0. If e = ∞, then

the Hecke algebra H is semisimple, so we assume throughout that e ≥ 2 is

finite. Define F to be the vector space over C with basis the partitions of n

for all n ≥ 0. For a partition ν ⊢ n, let [Bc(ν)]F,q denote the column of the

decomposition matrix of HF,q(Sn) indexed by the partition ν, that is

[Bc(ν)]F,q = ∑
λ⊢n

dλνλ.

If s ≥ 1 and 0 ≤ r<e, define

(λ) ↑rs= ∑
λ

r∶s
Ð→ν

ν

and extend linearly to define B ↑sr for all B ∈ F .

Proposition 2.3.1. [26, P116] Suppose λ is a partition. Then

[Bc(λ)]F,q ↑sr=∑
µ

αµλ[Bc(µ)]F,q
for some αµλ ∈ Z≥0.

Let H = HF,q(Sn) and that H0 = HC,q̂(Sn), where q̂ is a primitive

eth root of unity in C. Recall that the decomposition matrix of H0 can be

computed by using the LLT algorithm.

Theorem 2.3.2. [26, Theorem 6.35] Suppose D is the decomposition matrix

of H and D0 is the decomposition matrix of H0. Then there exists a square

unitriangular matrix A where entries are non-negative integers such that

D =D0A.

Corollary 2.3.3. Let λ and ν be partitions of n with ν e–regular. Then

[Sλ
∶ Dν]H0

≤ [Sλ
∶ Dν]H .
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Now let q = −1. Suppose that ν = (x, y, z) and that ℓ(ν) = 3. Note that

in the proof of Theorem A, in all cases we had

[Bc(τ)]Γ ↑sr= [Bc(ν)]Γ.
Hence, if λ ∈ Γ and ℓ(ν) = 3, we have

[Sλ
∶ Dν]H0

≥ [Sλ
∶ Dν]H .

Combining this with Corollary 2.3.3, we have the following results.

Theorem C. Suppose that H =HF,−1(Sn), that λ ∈ Γ and that ν = (x, y, z)
with ℓ(ν) = 3. Then

[Sλ
∶ Dν]H0

= [Sλ
∶ Dν]H

and these decomposition numbers are given by Theorem B.
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Chapter 3

Decomposable Specht

modules for the Hecke

algebra

In this Chapter, we find some cases of decomposable Specht modules for

the Hecke algebra HC,−1(Sn) which are indexed by partitions of the form

(a,3,1b), where a, b are even.

3.1 Background

Recall that Sn is the symmetric group on n letters and Sλ is the Specht

module indexed by a partition λ. Now for any e ≠ 2, the Specht modules

Sλ for the Hecke algebra H =HF,q(Sn) is indecomposable [30],[15],[5]. If

e = p = 2, Murphy in [27] shows which Specht modules labelled by hook par-

titions of the form (n−a,1a) are decomposable. Moreover, Dodge and Fayers

in [7] found a new family of decomposable Specht modules for the symmetric

group algebra F2Sn and these decomposable Specht modules are labelled

by partitions of the form (a,3,1b), where a, b are even. They found which

Specht modules Sλ had a summand isomorphic to an irreducible Specht

module Sµ by considering homomorphisms between Specht modules. They

assumed that Sµ is irreducible and found when there are homomorphisms

γ ∶ Sµ → Sλ and δ ∶ Sλ → Sµ′ such that δ ○γ is non-zero. Recall the following

result:

Lemma 3.1.1. Suppose M and N are A–modules, for some algebra A. If
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M is irreducible and we have homomorphisms γ ∶ M → N and δ ∶ N → M

such that δ ○ γ = IdM , then M is a summand of N .

Proof. Let C = ker(δ). We claim that N ≅ M ⊕ C. First note that

M/ker(γ) ≅ Im(γ), so since M is irreducible, and γ ≠ 0 we have Im(γ) ≅M .

Now suppose that x ∈ Im(γ) ∩ ker(δ). Then x = γ(a), some a ∈ M . Now

a = δ(γ(a)) = δ(x) = 0 so x = γ(a) = 0. Hence, Im(γ) ∩ ker(δ) = {0}. By the

rank-nullity Theorem,

dim(N) = dim(Im(γ)) + dim(ker(δ))
so N = Im(γ) + ker(δ). Hence, N = Im(γ)⊕ ker(δ) ≅M ⊕C.

So the results of Dodge and Fayers show that Sµ occurs as a summand

of Sλ, since Sµ ≅ Sµ′ [7, Lemma 2.1] if p = 2 and Sµ is irreducible, so δ ○ γ

is the identity on Sµ. They stated the following theorem:

Theorem 3.1.2. [7, Theorem 3.1] Let λ = (a,3,1b) be a partition of n,

where a, b are positive even integers with a ≥ 4, and suppose µ is a partition

of n such that Sµ is irreducible. Then Sλ has a direct summand isomorphic

to Sµ if and only if one of the following holds.

1. µ or µ′ equals (u, v), where v ≡ 3 mod 4 and (u−v
a−v
) is odd.

2. µ or µ′ equals (u, v,2), where (u−v
a−v
) is odd.

Now we explain how Dodge and Fayers construct homomorphisms be-

tween Specht modules with more details. Let µ and λ be partitions of n and

consider HomFSn
(Sµ, Sλ). Assume H = FSn where F is a field of char-

acteristic p ≥ 2. Recall that the Specht module Sλ is a submodule of Mλ,

so any homomorphism from Sµ to Sλ can be written as a homomorphism

from Sµ to Mλ. From Definition 1.3.18 recall that T (µ,λ) is the set of

row-standard µ–tableaux of type λ, and T0(µ,λ) is the set of semistandard

µ–tableaux of type λ. For each A ∈ T (µ,λ), James defines a homomorphism

ΘA ∶M
µ Ð→Mλ over any field and we do not need the exact definition here.

Let Θ̂A denote the restriction of ΘA to the Specht module Sµ.

Theorem 3.1.3. [15, Lemma 13.11 and Theorem 13.13] The set

{Θ̂A ∣ A ∈ T0(µ,λ)}
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is linearly independent. If either e ≠ 2 or µ is 2–regular, then {Θ̂A ∣ A ∈
T0(µ,λ)} also spans HomFSn

(Sµ,Mλ).
For any pair (d, t) such that d ≥ 1 and 1 ≤ t ≤ λd+1, there is a homomor-

phism ψd,t ∶ M
λ Ð→Mν , where the composition ν depends on λ,d, t. Now

to check whether the image of a homomorphism θ ∶ Sµ z→ Mλ lies in Sλ,

we use the Kernel Intersection Theorem below.

Theorem 3.1.4. [15, Corollary 17.18] Let λ be a partition of n. Then

Sλ = ⋂
d≥1

1≤t≤λd+1

Ker(ψd,t).

This provides a strategy for computing HomFSn
(Sµ,Mλ) by finding all

linear combinations θ of the homomorphisms Θ̂A such that ψd,t ○ θ = 0 for

every d, t.

Definition 3.1.5. Let X be a multiset of positive integers. We define Xi to

be the number of is in X. If X and Y are multisets, we write X ⊔Y for the

multiset with (X ⊔ Y )i = Xi + Yi for all i. Moreover, if A is a row-standard

tableau, we denote the multiset of entries in row j of A by Aj. In particular,

we write Aj
i for the number of entries equal to i in row j of A.

The next theorems show how to compute the composition ψd,t○Θ̂A when

A ∈ T (µ,λ).
Theorem 3.1.6. [10, Lemma 5] Let λ and µ be partitions of n, A ∈ T (µ,λ),
d ≥ 1 and 1 ≤ t ≤ λd+1. Suppose S is the set of all row-standard tableaux

which can be obtained from A by replacing t of the entries equal to d + 1 in

A with ds. Then

ψd,t ○ΘA = ∑
S∈S

∏
j≥1

(S
j
d

A
j
d

)ΘS .

The tableaux S in Theorem 3.1.6 are not necessarily semistandard, so

it can be difficult to compute homomorphism spaces. The next theorem

helps to express a tableau homomorphism in terms of semistandard homo-

morphisms.

Theorem 3.1.7. [10, Lemma 7] Let µ be a partition of n and λ a compo-

sition of n, and suppose i, j, k are positive integers with j ≠ k and µj ≥ µk.

Consider A ∈ T (µ,λ), and let S be the set of all S ∈ T (µ,λ) such that:
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� S
j
i = A

j
i +A

k
i ;

� S
j
l
≤ Aj

l
for every l ≠ i;

� Sl = Al for all l ≠ j, k.

Then

Θ̂A = (−1)Ak
i ∑
S∈S

∏
l≥1

(Sk
l

Ak
l

)Θ̂S .

Example 3.1.8. Let λ = (2,2,1) and µ = (3,2) and p > 0. We want to find

HomFSn
(Sµ, Sλ). So

T0(µ,λ) = {A1 =
1 1 2
2 3

,A2 =
1 1 3
2 2

}
now if Θ ∶ Sµ → Mλ then Θ = αΘA1

+ βΘA2
for some α,β ∈ F . If we

identify a tableau A with the corresponding homomorphism Θ̂A then by

using Theorem 3.1.6 we get

ψ1,1 ○ Θ̂A1
= 3

1 1 1
2 3

+
1 1 2
1 3

.

Now we use Theorem 3.1.7 to move 1 from row 2 to row 1 in
1 1 2
1 3

then

we get

ψ1,1 ○ Θ̂A1
= 3

1 1 1
2 3

−
1 1 1
2 3

= 2
1 1 1
2 3

.

Similarly by applying Theorem 3.1.6 we get

ψ1,1 ○ Θ̂A2
=

1 1 3
1 2

,

then we use Theorem 3.1.7 to move 1 from row 2 to row 1 and we get

ψ1,1 ○ Θ̂A2
= −

1 1 1
2 3

hence if ψ1,1 ○ Θ̂ = 0 then 2α − β = 0. Also, by applying Theorem 3.1.6 we

get

ψ2,1 ○ Θ̂A1
= 2

1 1 2
2 2
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and

ψ2,1 ○ Θ̂A2
=

1 1 2
2 2

hence 2α + β = 0. Now if p ≠ 2, then β = 0 and 2α = 0, so α = 0. Thus,

the only solution is α = β = 0. If p = 2, then β = 0 and 2α = 0, which is it

true for any α. So the homomorphism space is one dimensional, spanned by

Θ( 1 1 2
2 3

).
Definition 3.1.9. Let µ be a partition, and suppose that S and A are row-

standard µ–tableaux of the same type. We say that S dominates A if we

can obtain A from S by repeatedly swapping an entry of S with a larger

entry in a lower row and re-ordering within each row. We write S ⊵ A.

The following theorem gives that a linear combination of row-standard

homomorphisms is non-zero without needing to go through the full process

of expressing it.

Theorem 3.1.10. [7, Lemma 4.6] Let µ be a partition of n and λ a com-

position of n, and A ∈ T (µ,λ). If

Θ̂A = ∑
S∈T0(µ,λ)

aSΘ̂S ,

then aS ≠ 0 only if S ⊵ A.

We now show how to compute the composition of homomorphisms be-

tween two Specht modules.

Definition 3.1.11. Let x1, x2, . . . , xm be non-negative integers such that
m∑
i=1

xi = x. We say ( x
x1,x2,...,xm

) for the corresponding multinomial coefficient

which is defined to be ( x
x1,x2,...,xm

) = x!
x1! x2! ... xm!

.

Theorem 3.1.12. [7, Proposition 4.7] Let λ,µ, ν be compositions of n, S

be a λ–tableau of type µ and let A be a µ–tableau of type ν. Consider X be

the set of all collections X = (Xij)i,j≥1 of multisets such that

∣Xij ∣ = Sj
i for each i, j, ⊔

j≥1

Xij = Ai for each i.

For X ∈ X , let UX denote the row-standard λ-tableau with (UX)j = ⊔i≥1X
ij .
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Then

ΘA ○ΘS = ∑
X∈X

∏
i,j≥1

(X1j
i +X

2j
i +X

3j
i + . . .

X
1j
i ,X

2j
i ,X

3j
i , . . .

)ΘUX
.

By using Theorem 3.1.12 we can compute composition of homomor-

phisms between two Specht modules. Hence, we may use the technique of

Dodge and Fayers to describe certain decomposable Specht modules.

Example 3.1.13. Take λ = (4,3,12) and µ = (6,3). Consider a homomor-

phism σ ∶ S(4,3,1
2) Ð→ S(2

3,13). We construct this homomorphism in the case

where v = 3. Suppose U is the set of λ-tableaux having the form:

1 2 3 ⋆
1 ⋆ ⋆
⋆

⋆

where the ⋆s represent the numbers 2,3,4,5,6. Define

σ = ∑
T ∈U

Θ̂T

and γ ∶ S(6,3) Ð→ S(4,3,1
2) by γ = Θ̂A + Θ̂B , where A,B ∈ T (µ,λ) are given

by:

A = 1 2 2 2 3 4

1 1 1

;

B = 1 1 1 2 3 4

1 2 2

.

Dodge and Fayers showed the following:

� σ ∶ Sλ Ð→ Sµ′ and σ ≠ 0;

� γ ∶ Sµ Ð→ Sλ and γ ≠ 0;

� σ ○ γ ≠ 0.

Hence, Sλ has a summand isomorphic to Sµ.
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3.2 Decomposable Specht modules for Hecke al-

gebra HC,−1(Sn)

In this section, we present some results on the representations of the Hecke

algebra H = HC,−1(Sn). We first give analogues of some of the results in

section 3.1.

Definition 3.2.1. Let A ∈ T (µ,λ). We define 1A to be permutation formed

by taking t
λ 1A to be the row standard λ–tableau for which i belongs to row

r when the place occupied by i in t
µ is occupied by r in A.

Definition 3.2.2. Define the relation ∼r on T (µ,λ) by setting A ∼r B if row

i of A has the same numbers as row i of B for all i, where A,B ∈ T (µ,λ).
Definition 3.2.3. Suppose A ∈ T (µ,λ). We define the homomorphism

ΘA ∶M
µ
→Mλ.

by

ΘA(xµh) = (xλ ∑
A′∼rA

T1A′)h
for all h ∈H .

Suppose λ and µ are partitions and that Θ ∶ Mµ → Mλ. Let Θ̂ denote

the restriction of Θ to Sµ.

Theorem 3.2.4. [6, Corollary 8.7] Let µ be a partition of n and λ be a

composition of n. Then {Θ̂A ∣ A ∈ T0(λ,µ)} is a linearly independent subset

of HomH (Sµ,Mλ). If µ is 2–regular then {Θ̂A ∣ A ∈ T0(µ,λ)} is a basis of

HomH (Sµ,Mλ).
Definition 3.2.5. Suppose µ is a partition. Let d ≥ 1 and consider t such

that 1 ≤ t < µd+1. Suppose ν
d,t is the composition defined by

ν
d,t
i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µi + t if i = d,

µi − t if i = d + 1,

µi otherwise.

Let A be the row standard µ–tableau of type νd,t with all entries in

row i equal to i, except for i = d + 1, when there are t entries equal to d
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and µd+1 − t entries equal to d + 1. We write ψd,t for the homomorphism

ΘA ∶M
µ →Mνd,t . Then we have the following theorem.

Theorem 3.2.6. [5, Theorem 7.5] If µ is a partition of n, then

Sµ = ⋂
d≥1

µd+1⋂
t=1

Ker(ψd,t).
Now we give the generalization of Theorem 3.1.6 and Theorem 3.1.7. We

define the Gaussian polynomials [α
β
].

Definition 3.2.7. Let α ≥ 0. Define

[α] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + q + q2 + . . . + qα−1 if α > 0;

0 if α = 0.

We set

[α]! =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
[1][2] . . . [α] if α > 0;

1 if α = 0.

If α ≥ β ≥ 0, define

[α
β
] = [α]!
[β]![α − β]! .

Remark 3.2.8. In general we have

[α + 1
β
] = [α

β
] + qα−β+1[ α

β − 1
].

So since q = −1 we have [α
β
] ∈ Z for all α ≥ β ≥ 0.

Theorem 3.2.9. [24, Proposition 2.14] Suppose λ and µ are partitions of

n and consider d and t with d ≥ 1 and 0 ≤ t < µd+1. Let ν = νd,t. Suppose

A ∈ T (λ,µ) is a row standard tableau. Let S ⊆ T (λ, ν) be the set of row

standard tableaux obtained by replacing t entries of d + 1 in A with d. For

S ∈ S and i ≥ 1, suppose that βi entries were replaced in row i. Define bS ∈ F

by

bS =∏
i≥1

qxiβi[yi
βi
]

where xi is the cardinality of the set {(k, j) ∣ k > i and A(k, j) = d} and yi
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is the cardinality of the set {j ∣ S(i, j) = d}. Then

ψd,t ○ΘA = ∑
S∈S

bSΘS .

Definition 3.2.10. Let S be a tableau. Recall that Sj
i is the number of

entries in row j of S which is equal to i. We generalize this by setting

Sr
≤x =

x∑
i=j

Sr
j , similarly for other definitions.

Definition 3.2.11. Let λ = (λ1, ..., λa) be a partition of n and ν = (ν1, ..., νb)
be a composition of n. Suppose S ∈ T (λ, ν) and r1 ≠ r2 with 1 ≤ r1, r2 ≤ a

and λr1 ≥ λr2 and d with 1 ≤ d ≤ b. Let

G = {g = (g1, g2, . . . , gb) ∣ gd = 0, g = Sr2
d
, and gi ≤ S

r1
i for 1 ≤ i ≤ b} .

For g ∈ G, define Ug to be the row-standard tableau obtained by moving all

entries equal to d from row r2 to row r1 and for i ≠ d moving gi entries equal

to i from row r1 to row r2.

Theorem 3.2.12. [25, Theorem 2.7] Suppose λ = (λ1, . . . , λa) is a partition

of n and ν = (ν1, . . . , νb) is a composition of n. Let S ∈ T (λ, ν) and that

r1, r2 satisfy 1 ≤ r1 ≤ a and r2 = r1 + 1. Suppose that r = r1. Consider

1 ≤ d ≤ b. Then

ΘS = (−1)Sr+1
d q−

(S
r+1
d

+1

2
)
q−S

r+1
d

Sr+1
<d ∑

g∈G
qgd−1

b∏
i=1

qgiS
r+1
<i [Sr+1

i + gi

gi
]ΘUg .

Definition 3.2.13. Let λ be a partition of n and let (a, b) be a node in the

diagram of λ. The (a, b)th hook length is defined to be

hab = λa + λ
′

b − a − b + 1.

The following results provide the classification of the irreducible Specht

module for the Iwahori-Hecke algebras H in the case where λ is e–regular.

Definition 3.2.14. Let F be a field of characteristic p. Define: νe,p ∶ NÐ→

Z

νe,p(k) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
νp(k/e) + 1 if e divides k;

0 otherwise.
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where νp(k) is maximal such that pνp(k)∣k for p ≥ 2. If p = 0 then set

νp(k) = 0, for all non-negative integers k.

Theorem 3.2.15. [18, Theorem 4.15] Let λ be a partition of n. Then λ

is e–regular and Sλ is irreducible if and only if νe,p(hλac) = νe,p(hλbc) for all

nodes (a, c), (b, c) ∈ [λ].
Example 3.2.16. Let e = 2 and p = 0. If λ = (6,3). For all nodes

(a, c), (b, c) ∈ [λ] the hook length diagram is

7 6 5 3 2 1
3 2 1

Now if replace each node (a, c) with the integer νe,p(hλac) then we obtain the

diagram

0 1 0 0 1 0
0 1 0

and we see that ν2,0(hλac) = ν2,0(hλbc) for all nodes (a, c), (b, c) ∈ [λ]. By

applying Theorem 3.2.15 S(6,3) is irreducible.

Let λ = (a,3,1b) then the 2–regularisation of λ is given by the next

Lemma.

Lemma 3.2.17. [7, Lemma 2.4] Suppose a ≥ 4 and b ≥ 2. Then

(a,3,1b)R =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(a, b + 1,2) (a > b)
(b + 2, a − 1,2) (a ≤ b).

Recall the definition of the generic Iwahori-Hecke algebra of Sn. Let

Z = Z[q̂, q̂−1], where q̂ is an indeterminate over Z. Then HZ = HZ,q̂(Sn)
is semisimple which implies all Specht modules are irreducible and the set

{Sλ ∣ λ ⊢ n} is a complete set of non-isomorphic irreducible modules. If F

is a field and q ∈ F /{0}, define ϕ ∶ Z Ð→ F to be the ring homomorphisms

determined by q̂ z→ q. Then

HF,q(Sn) ≅HZ ⊗Z F

as F–algebras. We state the following lemma:
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Lemma 3.2.18. 1. Let θ̂ = ∑
U∈T (α,β)

aU θ̂U be a homomorphism θ̂ ∶ Sα Ð→

Mβ in HZ so that it can be written θ̂ = ∑
R∈T0(α,β)

bRθ̂R so that θ̂ ≠

0 if and only if bR ≠ 0 for some R. Define θ̂F to be the map in

HF,q(Sn) such that θ̂F = ∑
U∈T (α,β)

aU θ̂
F
U , where aU = ϕ(aU ). Then

θ̂F = ∑
R∈T0(α,β)

bRθ̂
F
R and θ̂F ≠ 0 if and only if bR ≠ 0 for some R.

2. Let φ = ∑
U∈T (α,β)

aU θ̂U be a homomorphism φ ∶ Sα Ð→Mβ and

̟ = ∑
S∈T (β,γ)

bS θ̂S be a homomorphism ̟ ∶ Mβ Ð→Mγ in HZ . Then

the composition can be written as

∑
T ∈T0(α,γ)

cT θ̂T for some cT ∈ Z .

If we have the corresponding maps in HF,q(Sn), then the composition

can be written as

∑
T ∈T0(α,γ)

cT θ̂
F
T .

in the same way, that is, the coefficients are cT .

3. Suppose q is a primitive eth root of unity of C and w is a primitive

eth root of unity of Fp. Define ϕC ∶ Z Ð→ C to be the homomorphism

defined by setting ϕC(q̂) = q and ϕF ∶ Z Ð→ Fp to be the homomor-

phism defined by setting ϕF (q̂) = w. Suppose z ∈ Z. If ϕC(z) = 0 then

ϕFp(z) = 0.
Proof. 1. Working in HZ , from Definition 3.2.3 we have

θ̂(cα) = (xβ ∑
U∈T (α,β)

∑
U ′∼rU

aUT1U′)Twαyα′

= (xβ ∑
R∈T0(α,β)

∑
R′∼rR

bRT1R′ )Twαyα′

= ∑
w∈Sn

dwTw

for some dw ∈ Z. Now working in HF,q(Sn), from Definition 3.2.3 we
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have

θ̂F (cα) = (xβ ∑
U∈T (α,β)

∑
U ′∼rU

ϕ(au)T1U′ )Twαyα′

= ∑
w∈Sn

ϕ(dw)Tw
= (xβ ∑

R∈T0(α,β)
∑

R′∼rR
ϕ(bR)T1R′ )Twαyα′

= ∑
R∈T0(α,β)

ϕ(bR)Θ̂F
R(cα).

So, θ̂F = ∑
R∈T0(α,β)

bRθ̂
F
R .

2. Similarly, working in HZ , from Definition 3.2.3 we have

φ(cα) = (xβ ∑
U∈T (α,β)

∑
U ′∼rU

aUT1U′ )Twαyα′ .

̟(xβ) = xγ ∑
S∈T (β,γ)

∑
S′∼rS

bST1S′ .

Now the composition can be written as

̟(φ(cα) =̟((xβ ∑
U∈T (α,β)

∑
U ′∼rU

aUT1U′ )Twαyα′
)

= xγ( ∑
S∈T (β,γ)

∑
S′∼rS

bST1S′ ∑
U∈T (α,β)

∑
U ′∼rU

aUT1U′ )Twαyα′

= ∑
w∈Sn

dwTw

= ∑
T ∈T0(α,γ)

cT θ̂T (cα)
= xγ( ∑

T ∈T0(α,γ)
∑

T ′∼rT
cTT1T ′ )Twαyα′

for some dw ∈ Z. Now working in HF,q(Sn), from Definition 3.2.3 we

have

̟F (φF (cα)) = xγ( ∑
S∈T (β,γ)

∑
S′∼rS

ϕ(bS)T1S′ ∑
U∈T (α,β)

∑
U ′∼rU

ϕ(aU )T1U′ )Twαyα′

= ∑
w∈Sn

ϕ(dw)Tw.
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And

∑
T ∈T0(α,γ)

cT θ̂
F
T (cα) = xγ( ∑

T ∈T0(α,γ)
∑

T ′∼rT
ϕ(cT )T1T ′ )Twαyα′

= ∑
w∈Sn

ϕ(dw)Tw.

So, ̟F ○ φF = ∑T ∈T0(α,γ) cT θ̂
F
T .

3. Let Φe(x) be the eth cyclotomic polynomial [32]. Then Φe(x) is the

minimum polynomial for q in C. Furthermore, ϕC(Φe(q̂)) = 0 ∈ C and

ϕF (Φe(q̂)) = 0 ∈ Fp so ϕC and ϕF both factor through Z /(Φe(q̂)).
Hence, there are ring homomorphisms ϕC and ϕF such that the fol-

lowing diagram commutes:

Z

π
$$IIIIIIIIII

ϕC

��

ϕF // Fp

Z /(Φe(q̂))
ϕF

::tttttttttt

ϕC
yytttttttttt

C

where π ∶ Z Ð→ Z /(Φe(q̂)) is the natural projection. Since Φe(x) is
the minimum polynomial for q̂, note that ϕC is injective. Now suppose

that ϕC(z) = 0 for some z ∈ Z . Since ϕC is injective, z ∈ Φe(q̂), which
implies that ϕF (z) = ϕF (π(z)) = 0 ∈ F .

Corollary 3.2.19. Suppose that Θ̂Z ∶ S
α
Z Ð→ M

β
Z is a Z –homomorphism

given by

Θ̂Z = ∑
R∈T (α,β)

aRΘ̂
Z
R.

Define the F2Sn–homomorphism Θ̂F2
∶ Sα

F2
Ð→M

β
F2

by

Θ̂F2
= ∑

R∈T (α,β)
ϕF2
(aR)Θ̂F2

R
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and the HC,−1(Sn)–homomorphism Θ̂C ∶ S
α
C
Ð→M

β
C
by

Θ̂C = ∑
R∈T (α,β)

ϕC(aR)Θ̂C

R.

If Θ̂F2
≠ 0 then Θ̂C ≠ 0.

Lemma 3.2.20. Suppose e = 2. Then, for m > 0:

�
[2m

1
] = 0.

�
[2m

2
] =m.

�
[2m+1

1
] = 1.

�
[2m+1

2
] =m.

�
[2m

3
] = 0

Proof. By using the definition of the Gaussian polynomial. We get

[2m
1
] = [2m]!
[1]![2m − 1]!
= 1 + q + q2 + ... + q2m−2 + q2m−1

= (1 + q)(1 + q2 + q4 + ... + q2m−2)
= 0.

Similarly,

[2m
2
] = [2m][2m − 1][2]
=
(1 + q + q2 + ... + q2m−2 + q2m−1)(1 + q + ... + q2m−2)

1 + q

=
(1 + q)(1 + q2 + ... + q2m−2)(1 + q + ... + q2m−2)

1 + q

=m.

Similarly

[2m + 1
1
] = 1 + q + q2 + ... + q2m−2 + q2m−1 + q2m
= (1 + q)(1 + q2 + q4 + ... + q2m−2) + q2m = q2m = 1.
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Also,

[2m + 1
2
] = [2m + 1][2m][2]
= 1 + q2 + ... + q2m−2 =m.

Finally,

[2m
3
] = [2m][2m − 1][2m − 2][3][2][1]
=
(1 + q + q2 + ... + q2m−2 + q2m−1)(1 + q + ... + q2m−2)(1 + q + ... + q2m−3)

(1 + q + q2)(1 + q)
=
(1 + q)2(1 + q2 + ... + q2m−2)(1 + q + ... + q2m−2)(1 + q2 + ... + q2m−4)

(1 + q + q2)(1 + q)
=
(1 + q)(1 + q2 + ... + q2m−2)(1 + q + ... + q2m−2)(1 + q2 + ... + q2m−4)

(1 + q + q2)
= 0.

3.3 The main results

Recall that the Hecke algebra H =HC,−1(Sn). In this section we state the

main theorem which describes some Specht modules S(a,3,1
b) which have a

summand isomorphic to an irreducible Specht module of the form either

S(u,v) or S(u,v,2), where u is even and v is odd. We assume that the field

has characteristic zero and e = 2. Now we state the main theorem as follows

Theorem D. Suppose λ = (a,3,1b) is a partition of n, where a, b are pos-

itive even integers with a ≥ 4 and let µ be a partition of n such that Sµ is

irreducible. If one of the following occurs:

1. If µ or µ′ equals (u, v), where u is even and u > v with v ≡ 3 mod 4

and [u−v
a−v
] ≠ 0,

2. If µ or µ′ equals (u, v,2), where u is even and v is odd with u > v and

[u−v
a−v
] ≠ 0,

then Sλ has a direct summand isomorphic to Sµ.
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Lemma 3.3.1. Suppose H = HF,−1(Sn). Let µ be a partition of n and

e = 2. Suppose Sµ is irreducible. Then Sµ ≅ Sµ′ .

Proof. We have Sµ ≅ DµR

and since µR = µ′R we have DµR

= Dµ′
R

≅ Sµ′ .

Thus, Sµ ≅ Sµ′ .

Theorem D is an analogue of Theorem 3.1.2. In order to use some of

Dodge and Fayers’ results, we use the generic Hecke algebra HZ . We find

there are homomorphisms γ ∶ Sµ → Sλ and δ ∶ Sλ → Sµ′ such that δ ○ γ is

non-zero and Sµ irreducible. That is enough to show that Sµ occurs as a

summand of Sλ, since Sµ ≅ Sµ′ if e = 2 and Sµ irreducible, so δ ○ γ is the

identity on Sµ.

3.3.1 Irreducible summands of the form S(u,v)

In this section, we assume λ = (a,3,1b) and µ = (u, v), where a, b, u, v are

positive integers with a, b, u even, a ≥ 4, u > v, n = a + b + 3 = u + v and

v ≤ min{a + 1, b + 3}. Throughout our examples, we identify a tableau T ∈

T (α,β) with the corresponding homomorphism Θ̂T ∶ S
α →Mβ.

Homomorphism σ ∶ Sλ Ð→ Sµ′

Consider homomorphisms from Sλ to Sµ′ , where µ′ is the conjugate of µ. We

begin by constructing such a homomorphism in the case where 3 ≤ v ≤ a−1.

Suppose U is the set of λ-tableaux having the form:

1 2 3 v ⋆ ⋆

1 ⋆ ⋆
⋆

⋆

where the ⋆s represent the numbers from 2 to u, and the entries are strictly

increasing along each row and weakly increasing down each column.

Example 3.3.2. Let λ = (4,3,12), µ = (6,3). Then
U = {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18}.
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where

T1 =

1 2 3 4
1 2 3
5
6

, T2 =

1 2 3 4
1 2 5
3
6

, T3 =

1 2 3 4
1 3 5
2
6

, T4 =

1 2 3 5
1 2 3
4
6

,

T5 =

1 2 3 5
1 2 4
3
6

, T6 =

1 2 3 5
1 3 4
2
6

, T7 =

1 2 3 6
1 2 3
4
5

, T8 =

1 2 3 6
1 2 4
3
5

,

T9 =

1 2 3 6
1 3 4
2
5

, T10 =

1 2 3 4
1 3 6
2
5

, T11 =

1 2 3 4
1 2 6
3
5

, T12 =

1 2 3 5
1 2 6
3
4

,

T13 =

1 2 3 5
1 3 6
2
4

, T14 =

1 2 3 6
1 2 5
3
4

, T15 =

1 2 3 6
1 3 5
2
4

, T16 =

1 2 3 6
1 4 5
2
3

,

T17 =

1 2 3 5
1 4 6
2
3

, T18 =

1 2 3 4
1 5 6
2
3

.

Now define

σ = ∑
T ∈U

Θ̂T .

Proposition 3.3.3. We have ψd,t ○ σ = 0 for each d, t.

Proof. First take v<d<u and t = 1. If T ∈ U , then T contains a single d and

a single d + 1. If these lie in the same row of T , then by Theorem 3.2.9

ψd,1 ○ Θ̂T = (1 + q)Θ̂U , where U is obtained from T by changing d + 1 into

d and hence ψd,1 ○ Θ̂T = 0. If these lie in the same column of T , then by

Theorem 3.2.9 ψd,1 ○ Θ̂T = Θ̂U , where U has row r and row r + 1 both equal

to d , so by using Theorem 3.2.12 we have ψd,1 ○Θ̂T = 0. Otherwise, there is

another tableau T
′
∈ U obtained by interchanging the d and the d+1. Then,

by using Theorem 3.2.9 we have ψd,1 ○ (Θ̂T + Θ̂T
′ ) = (1 + q)Θ̂S = 0, where S

is the tableau obtained by replacing one entry of d + 1 in T with d . Hence,

ψd,1 ○ σ = 0.
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Example 3.3.4. Take U as in example 3.3.2 and assume d = 4 and t = 1

Then: by using Theorem 3.2.9 we get

ψ4,1 ○ Θ̂T16
= (1 + q)

1 2 3 6
1 4 4
2
3

= 0

where d and d + 1 lie in the same row of T16. Similarly

ψ4,1 ○ Θ̂T7
=

1 2 3 6
1 2 3
4
4

where d and d + 1 lie in the same column of T7. Applying Theorem 3.2.12

we get

ψ4,1 ○ Θ̂T7
= 0.

For the case where a single d and a single d + 1 lie in the different row and

column, consider

ψ4,1 ○ Θ̂T1
= q0[1

0
]q0[0

0
]q0[1

1
]q0[0

0
]
1 2 3 4
1 2 3
4
6

=

1 2 3 4
1 2 3
4
6

ψ4,1 ○ Θ̂T4
= q

1 2 3 4
1 2 3
4
6

and so

ψ4,1 ○ (Θ̂T1
+ Θ̂T4

) = (1 + q)
1 2 3 4
1 2 3
4
6

= 0.

Continuing in this way, we get ψ4,1 ○ σ = 0.

Second take d = v and t = 1. If T ∈ U , then T contains either a single v

or a single v and a single v + 1 below the first row. If there are a single v

and a single v + 1 below the first row and they occur in the same row of T ,

then by Theorem 3.2.9 ψv,1 ○Θ̂T has a factor 1+q and hence ψv,1 ○Θ̂T = 0. If

these occur the same column of T , then by Theorem 3.2.9 we get a tableau
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which has the row r and row r + 1 both equal to v with coefficient q, then

by using Theorem 3.2.12 ψv,1 ○ Θ̂T = 0. Now if a single v and a single v + 1

below the first row occur in a different row and column then there is another

tableau T
′
∈ U obtained by interchanging the v and the v+1. Then, by using

Theorem 3.2.9 we have ψv,1○(Θ̂T +Θ̂
′

T ) = (1+q)Θ̂S = 0, where S is the unique

tableau obtained by replacing one entry of v+1 in T with v. In the case that

there is only a single v below the first row then by Theorem 3.2.9 we get

tableau with a coefficient has a factor q(1 + q) and thus ψv,1 ○ σ = 0. Hence,

ψv,1 ○ Θ̂T = 0 for all T ∈ U .

Example 3.3.5. Take U as in example 3.3.2 and assume d = 3 and t = 1.

Then, by using Theorem 3.2.9 we get for the case only a single v below the

first row,

ψ3,1 ○ Θ̂T1
= bS

1 2 3 3
1 2 3
5
6

such that

bS =∏
i≥1
qxiβi[yi

βi
]

= q1[2
1
]q0[1

0
]q0[0

0
]q0[0

0
]

= q(1 + q).

Hence, ψ3,1Θ̂T1
= q(1 + q)

1 2 3 3
1 2 3
5
6

= 0.

In the case where a single v and a single v + 1 are in the same row below

the first row, then by Theorem 3.2.9 we get

ψ3,1 ○ Θ̂T6
= q0[1

0
]q0[2

1
]q0[0

0
]q0[0

0
]

1 2 3 5
1 3 3
2
6

= (1 + q)
1 2 3 5
1 3 3
2
6

= 0.

In the case that a single v and a single v + 1 are in the same column below
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the first row, then by Theorem 3.2.9 we get

ψ3,1 ○ Θ̂T14
= q

1 2 3 6
1 2 5
3
3

.

Applying Theorem 3.2.12 we get ψ3,1 ○ Θ̂T14
= 0.

In the case where a single v and a single v + 1 in different rows and

columns below the first row. Then by Theorem 3.2.9 we get

ψ3,1 ○ Θ̂T4
=

1 2 3 5
1 2 3
3
6

and ψ3,1 ○ Θ̂T5
= q

1 2 3 5
1 2 3
3
6

.

Then

ψ3,1(Θ̂T4
+ Θ̂T5

) =
1 2 3 5
1 2 3
3
6

+ q

1 2 3 5
1 2 3
3
6

= 0.

If 1 ≤ d < v and t = 2, then we have at least one factor of 1+q in ψd,2 ○Θ̂T

and then ψd,2 ○ Θ̂T = 0 for each T ∈ U by using Theorem 3.2.9.

Example 3.3.6. Let d = 1 and t = 2. Then by using Theorem 3.2.9

ψ1,2 ○ Θ̂T1
= q(1 + q)(1 + q)

1 1 3 4
1 1 3
5
6

= 0

ψ1,2 ○ Θ̂T3
= q(1 + q)

1 1 3 4
1 3 5
1
6

= 0.

If d = 2 and t = 2, then by using Theorem 3.2.9

ψ2,2 ○ Θ̂T1
= q(1 + q)(1 + q)

1 2 2 4
1 2 2
5
6

= 0
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ψ2,2 ○ Θ̂T5
= q(1 + q)

1 2 2 5
1 2 4
2
6

= 0.

Now take 2 ≤ d < v and t = 1, and consider a tableau T ∈ U . There are a

single d and a single d + 1 below the first row. If these lie in the same row

then by using Theorem 3.2.9 we have at least one factor of 1 + q and then

ψd,1 ○ Θ̂T = 0. If these lie in the same column, then by Theorem 3.2.9 we

have two tableaux; the coefficient of one of them has a factor of 1 + q and

the second has rows r and r + 1 both equal to d and by Theorem 3.2.12

ψd,1 ○ Θ̂T = 0. Otherwise, let T
′
be the tableau obtained by interchanging

the d and the d+1 below the first row. Each homomorphism Θ̂S , where S is

a unique tableau obtained by replacing two entries of d+1 in T with d, that

appears when we apply Theorem 3.2.9 occurs with a coefficient that has a

factor of 1+q and hence ψd,1 ○(Θ̂T +Θ̂
′

T ) = (1+q)Θ̂S = 0. Thus, ψd,2 ○Θ̂T = 0

for all T ∈ U . For example:

Example 3.3.7. Suppose d = 2, t = 1. Suppose there is a single d and a

single d + 1 below the first row and that they lie in the same row. Then by

using Theorem 3.2.9

ψ2,1 ○ Θ̂T1
= q(1 + q)

1 2 2 4
1 2 3
5
6

+ (1 + q)
1 2 3 4
1 2 2
5
6

= 0.

For a single d and a single d + 1 below the first row and lying in the same

column,

ψ2,1 ○ Θ̂T16
= q(1 + q)

1 2 2 6
1 4 5
2
3

+

1 2 3 6
1 4 5
2
2

.

Using Theorem 3.2.12, then ψ2,1 ○ Θ̂T16
= 0. For a single d and a single

d + 1 below the first row and lying in a different row and column,

ψ2,1 ○ Θ̂T2
= q(1 + q)

1 2 2 4
1 2 5
3
6

+

1 2 3 4
1 2 5
2
6
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ψ2,1 ○ Θ̂T3
= q(1 + q)

1 2 2 4
1 3 5
2
6

+ q

1 2 3 4
1 2 5
2
6

such that

ψ2,1 ○ (Θ̂T2
+ Θ̂T3

) = 0.
We are left with the case d = t = 1. Applying Theorem 3.2.9, we get that

ψ1,1 ○ Θ̂T is the sum of homomorphisms labelled by tableaux

1 2 3 v ⋆ ⋆

1 ⋆ ⋆
1

⋆

where the ⋆s denote to the numbers from 3 to u, and the entries are strictly

increasing along rows and weakly increasing down columns. Now we apply

Theorem 3.2.12 to each of these homomorphisms to move the 1 from row 3

to row 2, and then to reorder rows 3, . . . , b+2. We obtain a sum of tableaux

of the form

1 2 3 v ⋆ ⋆

1 1 ⋆
⋆

⋆

but each tableau occurs b
2
times with coefficient −1 and b

2
times with

coefficient 1. Hence, by summing ψ1,1 ○ Θ̂T for each T ∈ U we get zero.

Example 3.3.8. If d = 1, t = 1, then by using Theorem 3.2.9

ψ1,1 ○ Θ̂T1
= q(1 + q)

1 1 3 4
1 2 3
5
6

+ (1 + q)
1 2 3 4
1 1 3
5
6

= 0

ψ1,1 ○ Θ̂T2
= q(1 + q)

1 1 3 4
1 2 5
3
6

+ (1 + q)
1 2 3 4
1 1 5
3
6

= 0
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ψ1,1 ○ Θ̂T3
= q(1 + q)

1 1 3 4
1 3 5
2
6

+

1 2 3 4
1 3 5
1
6

=

1 2 3 4
1 3 5
1
6

ψ1,1 ○ Θ̂T4
= q(1 + q)

1 1 3 5
1 2 3
4
6

+ (1 + q)
1 2 3 5
1 1 3
4
6

= 0

ψ1,1 ○ Θ̂T5
= q(1 + q)

1 1 3 5
1 2 4
3
6

+ (1 + q)
1 2 3 5
1 1 4
3
6

= 0

ψ1,1 ○ Θ̂T6
= q(1 + q)

1 1 3 5
1 3 4
2
6

+

1 2 3 5
1 3 4
1
6

=

1 2 3 5
1 3 4
1
6

ψ1,1 ○ Θ̂T7
= q(1 + q)

1 1 3 6
1 2 3
4
5

+ (1 + q)
1 2 3 6
1 1 3
4
5

= 0

ψ1,1 ○ Θ̂T8
= q(1 + q)

1 1 3 6
1 2 4
3
5

+ (1 + q)
1 2 3 6
1 1 4
3
5

= 0

ψ1,1 ○ Θ̂T9
= q(1 + q)

1 1 3 6
1 3 4
2
5

+

1 2 3 6
1 3 4
1
5

=

1 2 3 6
1 3 4
1
5

ψ1,1 ○ Θ̂T10
= q(1 + q)

1 1 3 4
1 3 6
2
5

+

1 2 3 4
1 3 6
1
5

=

1 2 3 4
1 3 6
1
5

ψ1,1 ○ Θ̂T11
= q(1 + q)

1 1 3 4
1 2 6
3
5

+ (1 + q)
1 2 3 4
1 1 6
3
5

= 0
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ψ1,1 ○ Θ̂T12
= q(1 + q)

1 1 3 5
1 2 6
3
4

+ (1 + q)
1 2 3 5
1 1 6
3
4

= 0

ψ1,1 ○ Θ̂T13
= q(1 + q)

1 1 3 5
1 3 6
2
4

+

1 2 3 5
1 3 6
1
4

=

1 2 3 5
1 3 6
1
4

ψ1,1 ○ Θ̂T14
= q(1 + q)

1 1 3 6
1 2 5
3
4

+ (1 + q)
1 2 3 6
1 1 5
3
4

= 0

ψ1,1 ○ Θ̂T15
= q(1 + q)

1 1 3 6
1 3 5
2
4

+

1 2 3 6
1 3 5
1
4

=

1 2 3 6
1 3 5
1
4

ψ1,1 ○ Θ̂T16
= q(1 + q)

1 1 3 6
1 4 5
2
3

+

1 2 3 6
1 4 5
1
3

=

1 2 3 6
1 4 5
1
3

ψ1,1 ○ Θ̂T17
= q(1 + q)

1 1 3 5
1 4 6
2
3

+

1 2 3 5
1 4 6
1
3

=

1 2 3 5
1 4 6
1
3

ψ1,1 ○ Θ̂T18
= q(1 + q)

1 1 3 4
1 5 6
2
3

+

1 2 3 4
1 5 6
1
3

=

1 2 3 4
1 5 6
1
3

.

Therefore we find that ψ1,1 ○ σ is the sum of homomorphisms labelled by

tableaux

ψ1,1 ○ Θ̂T3
=

1 2 3 4
1 3 5
1
6

, ψ1,1 ○ Θ̂T6
=

1 2 3 5
1 3 4
1
6

, ψ1,1 ○ Θ̂T9
=

1 2 3 6
1 3 4
1
5

ψ1,1 ○ Θ̂T10
=

1 2 3 4
1 3 6
1
5

, ψ1,1 ○ Θ̂T13
=

1 2 3 5
1 3 6
1
4

, ψ1,1 ○ Θ̂T15
=

1 2 3 6
1 3 5
1
4
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ψ1,1 ○ Θ̂T16
=

1 2 3 6
1 4 5
1
3

, ψ1,1 ○ Θ̂T17
=

1 2 3 5
1 4 6
1
3

, ψ1,1 ○ Θ̂T18
=

1 2 3 4
1 5 6
1
3

.

Now we use Theorem 3.2.12

ψ1,1 ○ Θ̂T3
= −

1 2 3 4
1 1 5
3
6

−

1 2 3 4
1 1 3
5
6

ψ1,1 ○ Θ̂T6
= −

1 2 3 5
1 1 4
3
6

−

1 2 3 5
1 1 3
4
6

ψ1,1 ○ Θ̂T9
= −

1 2 3 6
1 1 4
3
5

−

1 2 3 6
1 1 3
4
5

ψ1,1 ○ Θ̂T10
= −

1 2 3 4
1 1 6
3
5

−

1 2 3 4
1 1 3
6
5

= −

1 2 3 4
1 1 6
3
5

+

1 2 3 4
1 1 3
5
6

ψ1,1 ○ Θ̂T13
= −

1 2 3 5
1 1 6
3
4

−

1 2 3 5
1 1 3
6
4

= −

1 2 3 5
1 1 6
3
4

+

1 2 3 5
1 1 3
4
6

ψ1,1 ○ Θ̂T15
= −

1 2 3 6
1 1 5
3
4

−

1 2 3 6
1 1 3
5
4

= −

1 2 3 6
1 1 5
3
4

+

1 2 3 6
1 1 3
4
5

ψ1,1 ○ Θ̂T16
= −

1 2 3 6
1 1 5
4
3

−

1 2 3 6
1 1 4
5
3

=

1 2 3 6
1 1 5
3
4

+

1 2 3 6
1 1 4
3
5

ψ1,1 ○ Θ̂T17
= −

1 2 3 5
1 1 6
4
3

−

1 2 3 5
1 1 4
6
3

=

1 2 3 5
1 1 6
3
4

+

1 2 3 5
1 1 4
3
6
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ψ1,1 ○ Θ̂T18
= −

1 2 3 4
1 1 6
5
3

−

1 2 3 4
1 1 5
6
3

=

1 2 3 4
1 1 6
3
5

+

1 2 3 4
1 1 5
3
6

.

Hence ψ1,1 ○ Θ̂T = 0.

Now let us take the follows lemma.

Lemma 3.3.9. [7, Proposition 5.2] Let F be a field of characteristic 2.

Suppose λ = (a,3,1b) and µ = (u, v), where a, b, u, v are positive integers with

a, b, u are even and let a ≥ 4, u > v, n = a+b+3 = u+v and v ≤min{a+1, b+3}.
Then, ∑T ∈U Θ̂

F
T ≠ 0 for each d, t.

Proposition 3.3.10. From Corollary 3.2.19 and Lemma 3.3.9, we get that

σ ≠ 0.

Homomorphisms γ from Sµ to Sλ

Throughout this section we consider homomorphisms from Sµ to Sλ. As-

sume that 3 ≤ v ≤ a − 1. Define A,B to be the µ-tableaux of type λ as

follows

A = 1 1 2 2 2 3 4 b+2

1 1 1 1

;

B = 1 1 1 1 2 3 4 b+2

1 1 2 2

.

Lemma 3.3.11. Θ̂A and Θ̂B are non-zero, and are linearly independent if

v ≤ b + 1.

Proof. By using Theorem 3.2.12, we express Θ̂A and Θ̂B as linear com-

binations of semistandard homomorphisms such that there is at least one

semistandard tableau appearing in each case. Thus, the homomorphisms

are non-zero. Moreover, if v ≤ b + 1, then in the expression for Θ̂A there is

at least one semistandard tableau with two 2s in the first row while there

is no such tableau appearing in the expression for Θ̂B . Hence, Θ̂A, Θ̂B are

linearly independent.
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Example 3.3.12. Let λ = (4,3,12) and ν = (6,3) then
A =

1 2 2 2 3 4
1 1 1

, B =
1 1 1 2 3 4
1 2 2

By using Theorem 3.2.12

Θ̂A = −q
3 1 1 1 1 3 4
2 2 2

− q3
1 1 1 1 2 3
2 2 4

− q3
1 1 1 1 2 4
2 2 3

− q3
1 1 1 1 2 2
2 3 4

.

Θ̂B = −[3] 1 1 1 1 3 4
2 2 2

− q2
1 1 1 1 2 4
2 2 3

− q2
1 1 1 1 2 3
2 2 4

.

Theorem 3.3.13. Suppose λ = (a,3,1b) and µ = (u, v) with a ≥ 4 and u > v,

where a, b, u are positive integers. Then

dimHom(Sµ, Sλ) ≥ 1.
Proof. Suppose Θ̂ = αΘ̂A+βΘ̂B, where α and β ∈ C. Now we find ψd,t○Θ̂ for

all d, t. By Theorem 3.2.9 for all d > 2 we have ψd,1 ○ Θ̂A = (1+ q)Θ̂S = 0 and

ψd,1 ○ Θ̂B = (1 + q)Θ̂S′ = 0, where S (respectively S′) is the unique tableau

obtained by changing 1 of the entries equal to d + 1 in A ( respectively B)

into d. Now consider d = 2, then by Theorem 3.2.9 we have that

ψ2,1 ○ Θ̂A = [4] 1 1 2 2 2 2 4 b+2

1 1 1 1
= 0.

Similarly, ψ2,1○Θ̂B = q
2(1+q)Θ̂S = 0, where S is the unique tableau obtained

by changing 1 of the entries equal to 3 in B into 2. Consider d = 1 and let

t = 1,2,3. Then, if t = 1, we get by Theorem 3.2.9 and Lemma 3.2.20

that ψ1,1 ○ Θ̂A = q
v[(a−v)+1

1
]Θ̂S = 0 where S is the unique tableau obtained

by changing 2 in first row in A with 1. Also ψ1,1 ○ Θ̂B = q
v−2[a−v+3

1
]Θ̂S1

+

[v−1
1
]Θ̂S2

= 0, where S1 is the unique tableau obtained by changing 2 in first

row in B with 1 and S2 is the unique tableau obtained by changing 1 entry

equal to 2 in second row in B with 1. If t = 3, then by Theorem 3.2.9 and
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Lemma 3.2.20 we get

ψ1,3 ○ Θ̂A = q
3v[a − v + 3

3
]Θ̂S

= 0,

where S is the unique tableau obtained by changing 3 of the entries equal

to 2 in A with 1. Also,

ψ1,3 ○ Θ̂B = q
v−2[a − v + 3

1
][v
1
]Θ̂S

= qv−2(0)(1)Θ̂S = 0,

where S is the unique tableau obtained by changing 3 of the entries equal

to 2 in B with 1.

If t = 2, then by Theorem 3.2.9 we get

ψ1,2 ○ Θ̂A = q
2v[a − v + 2

2
]Θ̂S ≠ 0 since Θ̂S ≠ 0

also,

ψ1,2 ○ Θ̂B = [v
2
]Θ̂S ≠ 0

where

S = 1 1 1 1 2 3 4 b+2

1 1 1 1

.

Now we look for ψ1,2 ○ (αΘ̂A + βΘ̂B). Then

ψ1,2 ○ (αΘ̂A + βΘ̂B) = (α[a − v + 2
2

] + β[v
2
])Θ̂S

= (α[ 2(a−v+1)2
+ 1

2
] + β[2(v−12 ) + 1

2
])Θ̂S

= (αa − v + 1
2

+ β
v − 1

2
)Θ̂S, from Lemma 3.2.20

So if we set α = v − 1 and β = −(a − v + 1) then, ψ1,2 ○ Θ̂ = 0.
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After we define the maps γ and σ and show that ψd,t○σ = 0 and ψd,t○γ = 0

we come to prove the first case of Theorem D. Recall that

Theorem D(1). Suppose λ = (a,3,1b) is a partition of n, where a, b are

positive even integers with a ≥ 4 and let µ be a partition of n such that

Sµ is irreducible. If µ or µ′ equals (u, v), where u is even and u > v with

v ≡ 3 mod 4 and [u−v
a−v
] ≠ 0, then Sλ has a direct summand isomorphic to Sµ.

Proof. Let Sµ be irreducible, where µ = (u, v) with u + v = a + b + 3 and

suppose that v ≡ 3 (mod 4) and [u−v
a−v
] ≠ 0 and that 0 ≤ a − v ≤ u − v which

give v ≤ min{a − 1, b + 3}. We want to show there are homomorphisms

Sµ ϑ
Ð→ Sλ ̟

Ð→ Sµ′ such that ̟ ○ ϑ ≠ 0. Assume 3 ≤ v ≤ a − 1 and consider

̟ = σ. Suppose ϑ = (v−1
2
)Θ̂A − (a−v+12

)Θ̂B .Now we use Lemma 3.2.18 to

show that ̟ ○ ϑ ≠ 0. If η is any partition, define Sη
Z and M

η
Z to be the

HZ–modules defined in 1.2.9, so that

Sη ≅ Sη
Z ⊗Z C and Mη ≅Mη

Z ⊗Z C.

Define Sη
F2

and Mη
F2

to be the F2Sn–modules, so that

S
η
F2
≅ Sη
Z ⊗Z F2 and M

η
F2
≅Mη

Z ⊗Z F2.

For a tableau R ∈ T (α,β) let Θ̂ZR define the corresponding homomorphism

Θ̂ZR ∶ S
α
Z →M

β
Z

and define Θ̂F2

R
to be the corresponding homomorphism

Θ̂F2

R
∶ Sα

F2
→M

β
F2
.

Set

ϑZ ∶M
µ
Z → Sλ

Z by ϑZ = (v − 1
2
)Θ̂ZA − (a − v + 12

)Θ̂ZB
also,

ϑF2
∶M

µ
F2
→ Sλ

F2
by ϑF2

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ̂F2

A
+ Θ̂F2

B
if a ≡ 0 (mod 4);

Θ̂F2

A if a ≡ 2 (mod 4).
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Suppose a ≡ 0 (mod 4). Suppose v = 4c + 3 and a = 4d for c, d ≥ 0. Then

ϑZ =
4c + 2

2
Θ̂ZA −

4d − 4c − 2

2
Θ̂ZB

= (2c + 1)Θ̂A − (2d − 2c − 1)Θ̂ZB .
So that ϑ = (2c + 1)ΘA − (2d − 2c − 1)Θ̂B and ϑF2

= Θ̂F2

A
+ Θ̂F2

B
. Define

̟Z ∶ S
λ
Z →M

µ′

Z by ̟Z = ∑
T ∈µ

Θ̂ZT

and

̟F2
∶ Sλ
Z →M

µ′

F2
by ̟F2

= ∑
T ∈µ

Θ̂F2

T .

Then

̟Z ○ ϑZ = ∑
R∈T0(µ′,µ)

bRΘ̂
Z
R for some bR ∈ Z.

So that ̟F2
○ϑF2

= ∑
R∈T0(µ′,µ)

ϕF2
(bR)Θ̂F2

R
and ̟○ϑ = ∑

R∈T0(µ′,µ)
ϕC(bR)Θ̂R. It

was shown by Dodge and Fayers [7] that ̟F2
○ ϑF2

≠ 0, so that ϕF2
(bR) ≠ 0

for some R ∈ T0(µ′, µ). By Lemma 3.2.18(3), ϕC(bR) ≠ 0 and hence ̟○ϑ ≠ 0.

Suppose a ≡ 2 (mod 4). Suppose v = 4c + 3 and a = 4d + 2 for c, d ≥ 0. Then

set

ϑZ = (2c + 1)Θ̂A − (2d − 2c)Θ̂B ,

so that

ϑ = (2c + 1)Θ̂ZA − (2d − 2c)Θ̂ZB
by reducing modulo 2 gives

ϑF2
= Θ̂F2

A
.

Again, Dodge and Fayers [7] proved that ̟F2
○ ϑF2

≠ 0. Hence ̟ ○ ϑ ≠ 0

as above. By the argument given it, this shows that Sλ has a summand

isomorphic to Sµ.

3.3.2 Irreducible summands of the form S(u,v,2)

In this section, we show some Specht modules S(a,3,1
b) which have a sum-

mand isomorphic to an irreducible Specht module of the form S(u,v,2), where

u is even and v is odd. Throughout this section we assume that λ = (a,3,1b)
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and µ = (u, v,2), where a, b, u, v are positive integers with a, b, u even, a ≥ 4,

u > v > 2, n = a + b + 3 = u + v + 2 and v ≤min{a − 1, b + 1}.
Homomorphisms δ ∶ Sλ → Sµ′

Consider a homomorphism from Sλ to Sµ′ . We use non-semistandard tableaux

to construct this homomorphism. Suppose U is the set of λ-tableaux having

the form:

1 2 3 v ⋆ ⋆

1 1 2
2
3

v

⋆

⋆

where the ⋆s denote to the numbers from v + 1 to u, and the entries are

weakly increasing along the first row and down the first column.

Example 3.3.14. Let λ = (4,3,12), µ = (4,3,2). Then U = {T} such that

T =

1 2 3 4
1 1 2
2
3

.

Now define

δ = ∑
T ∈U

Θ̂T .

Proposition 3.3.15. Suppose λ = (a,3,1b) and µ = (u, v,2), where a, b, u, v
are positive integers with a, b, u are even and let a ≥ 4, u > v > 2, n = a+b+3 =

u + v and v ≤min{a − 1, b + 1}. Then, ψd,t ○ δ = 0 for each d, t.

Proof. First take d ≥ v and t = 1. If T ∈ U , then T contains a single d and a

single d + 1. If these lie in the same row of T , then by Theorem 3.2.9 each

map ΘS which occurs has a coefficient which has a factor of 1+ q. Therefore

ψd,1 ○ Θ̂T = 0. If these lie in the same column of T , then by Theorem 3.2.9

get a tableau which has the row r and row r + 1 both equal to d with
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coefficient bS = 1 then by using Theorem 3.2.12 ψd,1 ○ Θ̂T = 0. A similar

argument applies in the cases where 2 ≤ d<v. So we are left with the cases

where d = 1 and t ∈ {1,2,3}. If t = 3 then by Theorem 3.2.9 each coefficient

that occurs has a factor of 1 + q and hence ψ1,3 ○ Θ̂T = 0. For example

Example 3.3.16. Take T as in Example 3.3.14. Then by using Theorem

3.2.9 we get

ψ1,3 ○ Θ̂T = q
2[2
1
][3
1
][1
1
]
1 1 3 4
1 1 1
1
3

= q2(1 + q)(1 + q + q2)
1 1 3 4
1 1 1
1
3

= 0.

If t = 2 then by Theorem 3.2.9 the homomorphism ψ1,2 ○ Θ̂T is labelled

by three tableaux. The coefficient of two of them have a factor of 1 + q and

the third term is

[3
1
]

1 2 3 v ⋆ ⋆

1 1 1
1
3

v

⋆

⋆

and this is zero by Theorem 3.2.12. Hence, ψ1,2 ○ Θ̂T = 0.
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Example 3.3.17. Take T =

1 2 3 4
1 1 2
2
3

. Then, by Theorem 3.2.9

ψ1,2○Θ̂T = q
2[2
1
][3
1
]
1 1 3 4
1 1 1
2
3

+[3
1
]
1 2 3 4
1 1 1
1
3

+q2[2
1
]
1 1 3 4
1 1 2
1
3

= [3
1
]
1 2 3 4
1 1 1
1
3

.

By using Theorem 3.2.12 we get:

ψ1,2 ○ Θ̂T = 0

If t = 1 then by Theorem 3.2.9 the homomorphism ψ1,1 ○ Θ̂T labelled by

three tableaux. The coefficient of one of them has factor q +1 and the other

two are

[3
1
]

1 2 3 v ⋆ ⋆

1 1 1
2
3

v

⋆

⋆

+

1 2 3 v ⋆ ⋆

1 1 2
1
3

v

⋆

⋆

which by Theorem 3.2.12 is equal to

[3
1
]

1 2 3 v ⋆ ⋆

1 1 1
2
3

v

⋆

⋆

−

1 2 3 v ⋆ ⋆

1 1 1
2
3

v

⋆

⋆

= 0.

Hence, ψ1,1 ○ Θ̂T = 0.
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Example 3.3.18. Let T =

1 2 3 4
1 1 2
2
3

. Then, by Theorem 3.2.9

ψ1,1 ○ Θ̂T = q
2[2
1
]
1 1 3 4
1 1 2
2
3

+ [3
1
]
1 2 3 4
1 1 1
2
3

+ [1
1
]
1 2 3 4
1 1 2
1
3

= [3
1
]
1 2 3 4
1 1 1
2
3

+

1 2 3 4
1 1 2
1
3

.

By using Theorem 3.2.12 we get:

ψ1,1 ○ Θ̂T = [3
1
]
1 2 3 4
1 1 1
2
3

−

1 2 3 4
1 1 1
2
3

= 0.

Now let us take the following lemma.

Lemma 3.3.19. [7, Proposition 6.2] Let F be a field of characteristic 2.

Suppose λ = (a,3,1b) and µ = (u, v,2), where a, b, u, v are positive integers

with a, b, u are even and let a ≥ 4, u > v > 2, n = a + b + 3 = u + v + 2 and

v ≤min{a + 1, b + 3}. Then, ∑T ∈U Θ̂
F
T ≠ 0 for each d, t.

From Corollary 3.2.19 and Lemma 3.3.19, we deduce

Proposition 3.3.20. Suppose λ = (a,3,1b) and µ = (u, v,2) with a ≥ 4 and

u > v > 2. Let n = a + b + 3 = u + v and v ≤min{a − 1, b + 1}. Then, δ ≠ 0.

Homomorphisms γ ∶ Sµ Ð→ Sλ

In this section we consider homomorphisms from Sµ to Sλ. Assume that D

is µ-tableaux of type λ as follows:

D =

1 1 1 2 3 b+2

1 1 1

2 2

.
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Proposition 3.3.21. We have ψd,t ○ Θ̂D = 0, for all d, t and Θ̂D ≠ 0.

Proof. By using Theorem 3.2.9, if d ≥ 2 then there is at least a factor of

q + 1 and hence ψd,1 ○ Θ̂D = 0. If d = 1 and t = 1,2, then by using Theorem

3.2.9 we get either the homomorphism is labelled by tableau with coefficient

[2m
1
] which is zero by Lemma 3.2.20 or the homomorphism which labelled

by a sum of tableaux with more than v 1s in rows 2 and 3, and therefore by

Theorem 3.2.12 are zero. If d = 1 and t = 3, then by using Theorem 3.2.9 we

get the homomorphism is labelled by tableau with coefficient [2m
1
] which is

zero by Lemma 3.2.20. By using Theorem 3.2.12 we get the sum of tableaux

and sum two of them we get at leat a factor of 1 and hence Θ̂D ≠ 0. For

example, we get at least the next tableau:

D =

1 1 1 v+2 b+2

2 v+1

3 4

.

Now we prove the second case of Theorem D. Recall that

Theorem D(2). Suppose λ = (a,3,1b) is a partition of n, where a, b are

positive even integers with a ≥ 4 and let µ be a partition of n such that Sµ

is irreducible. If µ or µ′ equals (u, v,2), where u is even and v is odd with

u > v and [u−v
a−v
] ≠ 0, then Sλ has a direct summand isomorphic to Sµ.

Proof. Let Sµ be irreducible, where µ = (u, v,2) and suppose that [u−v
a−v
] ≠ 0

and that 0 ≤ a − v ≤ u − v which give v ≤ min{a − 1, b + 1}. So we have

γ ∶ Sµ
Ð→ Sλ and δ ∶ Sλ

Ð→ Sµ′ .

The argument that δ ○ γ ≠ 0 is identical to the argument given in proof

of Theorem D(1).
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Chapter 4

New family of decomposable

Specht modules of FSn

In this Chapter, we find a new family of decomposable Specht modules for

the symmetric group in characteristic 2.

4.1 The main results

In this section we state the main theorems which describe some Specht

modules Sλ which have a summand isomorphic to an irreducible Specht

module of the form S(u,v), where u, v are positive integers with v odd and u

even and u > v. We assume that q = 1 and that the field F has characteristic

2, so that we are working with the symmetric group algebra F2Sn. We use

the method that we describe in section 3.1.

Theorem I. Let F be a field of characteristic 2 and let q = 1. Suppose

λ = (a,5,1b) is a partition of n, where a, b are positive even integers and

let µ be a partition of n such that Sµ is irreducible. Suppose µ or µ′ equals

(u, v), where u > v and u is even and v is odd with v ≤min{a − 1, b + 1} and
(u−v
a−v
) is odd. If one of the following condition holds:

� If v ≡ 7 mod 8,

� If v ≡ 5 mod 8 and a − v ≡ 3 mod 4,

then Sλ has a direct summand isomorphic to Sµ.
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Theorem II. Let F be a field of characteristic 2 and let q = 1. Suppose

λ = (a,7,1b) is a partition of n, where a, b are positive even integers and

let µ be a partition of n such that Sµ is irreducible. Suppose µ or µ′ equals

(u, v), where u > v and u is even and v is odd with v ≤min{a − 1, b + 1} and
(u−v
a−v
) is odd and v ≡ 7 mod 8. Then Sλ has a direct summand isomorphic

to Sµ.

Theorem III. Let F be a field of characteristic 2 and let q = 1. Suppose

λ = (a, c,1b) is a partition of n, where a, b are positive even integers and c is

odd. Let µ be a partition of n such that Sµ is irreducible. Let m be minimal

such that c ≤ 2m. If µ or µ′ equals (u, v), where u > v and u is even and v

is odd with v ≤ min{a − 1, b + 1} and (u−v
a−v
) is odd and v ≡ −1 mod 2m and

a − v ≡ −1 mod 2m. Then Sλ has a direct summand isomorphic to Sµ.

Let us state the classification of irreducible Specht modules. Let m be

a non-negative integer we say l(m) the smallest positive integer such that

2l(m) >m.

Theorem 4.1.1. [19, Main Theorem] Let µ be a partition of n and F2 be

the field of characteristic 2. Then the F2Sn–module Sµ is irreducible if and

only if one of the following holds:

� µi − µi+1 ≡ −1 mod 2l(µi+1−µi+2) for each i ≥ 1;

� µ′i − µ
′
i+1 ≡ −1 mod 2l(µ

′
i+1−µ

′
i+2) for each i ≥ 1;

� µ = (22).
Remark 4.1.2. If µ is 2–regular then Theorem 4.1.1 is a special case of

Theorem 3.2.15.

Corollary 4.1.3. Suppose µ = (u, v), where u is even and v is odd with

u > v. Let m be minimal such that c ≤ 2m. If Sµ is irreducible, then

u − v ≡ −1 mod 2m.

Now we state some useful results on binomial coefficients modulo 2.

Lemma 4.1.4. [15, Lemma 22.4] Suppose

c = c0 + 2c1 + 2
2c2 + ⋅ ⋅ ⋅ + 2

mcm where 0 ≤ ci<2.

v = v0 + 2v1 + 2
2v2 + ⋅ ⋅ ⋅ + 2

mvm where 0 ≤ vi<2.
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Then

(c
v
) ≡ (c0

v0
)(c1
v1
) . . . (cm

vm
) mod 2.

Hence, (c
v
) is divisible by 2 if and only if vi > ci for some i.

Lemma 4.1.5. [15, Corollary 22.5] Let c ≥ v ≥ 1. Then all the binomial

coefficients

(c
v
),(c − 1

v − 1
), ....,(c − v + 1

1
)

are divisible by 2 if and only if c − v ≡ −1 mod 2l(v).

4.2 The Specht modules labelled by (a, 5, 1b)

In this section, we find Specht modules S(a,5,1
b) which have a direct sum-

mand isomorphic to an irreducible Specht module S(u,v), where u is even

and v is odd with u > v. We assume that a, b, u, v are positive even integers

with a ≥ 6. Let n = a+ b+5 = u+v. The regularisation of partitions (a,5,1b)
is given by following lemma.

Lemma 4.2.1. Let a ≥ 6 and b ≥ 2. Then

(a,5,1b)R =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a,5,2) (a > b = 2)
(a, b + 1,4) (a > b)
(b + 2, a − 1,4) (a ≤ b > 2).

Now from Theorem 1.5.21 and Lemma 4.2.1, we see that D(u,v) appears

as a composition factor of S(a,5,1
b) only if (u, v) ⊵ (a,5,1b)R, so we need

u ≥ max{a, b + 2} that is v ≤ min{a + 3, b + 5}. In this section we need

5 ≤ v ≤ a − 1 for maps to be defined and v ≤ b + 1 for independence. Assume

that 5 ≤ v ≤min{a − 1, b + 1}.
4.2.1 Homomorphisms from Sλ to Sµ′

Consider homomorphisms σ ∶ Sλ Ð→ Sµ′ . Suppose U is the set of λ–tableaux

of type µ′ which take the form:
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U =

1 2 3 v ⋆ ⋆

1 ⋆ ⋆ ⋆ ⋆
⋆

⋆

such that the ⋆s are the numbers from 2 to u, and the entries are strictly

increasing along each row and weakly increasing down each column. Now

define

σ = ∑
T ∈U

Θ̂T .

Proposition 4.2.2. We have ψd,t ○ σ = 0 for each d, t.

Proof. First choose v<d<u and t = 1. If T ∈ U , then T contains a single

d and a single d + 1. If these lie in the same row of T , then by Theorem

3.2.9 and Theorem 3.2.12 ψd,1 ○ Θ̂T = 0. Similarly, if these lie in the same

column of T then ψd,1 ○ Θ̂T = 0. Otherwise, there is another tableau T
′
∈ U

obtained by interchanging the d and the d + 1. By Theorem 3.2.9 we have

ψd,1 ○ (Θ̂T + Θ̂T
′ ) = 0. Hence, ψd,1 ○ σ = 0.

Second take d = v and t = 1. Then T ∈ U contains either a single v and a

single v+1 in the first row or a single v and a single v+1 below the first row.

Suppose there is a single v and a single v + 1 below the first row. If these

occur in the same row or the same column of T , then by Theorem 3.2.9 and

Theorem 3.2.12 ψv,1 ○ Θ̂T = 0. Now if a single v and a single v + 1 below the

first row occur in the different row and column then there is another tableau

T
′
∈ U obtained by interchanging the v and the v + 1. By Theorem 3.2.9 we

have ψv,1 ○ (Θ̂T + Θ̂
′

T ) = 0. If there is a single v a single v + 1 in the first row

then by Theorem 3.2.9, ψv,1 ○ Θ̂T = 0. Hence, ψv,1 ○ σ = 0. If 1 ≤ d < v and

t = 2, then we get ψd,2 ○ Θ̂T = 0 for each T ∈ U by applying Theorem 3.2.9.

Now take 2 ≤ d < v and t = 1, and consider a tableau T ∈ U . There

are a single d and a single d + 1 below the first row. If these occur in the

same row or in the same column then by using Theorem 3.2.9 and Theorem

3.2.12 we have ψd,1 ○ Θ̂T = 0. Otherwise, there is a tableau T
′
∈ U formed

by interchanging the d and the d + 1 below the first row. Then by Theorem

3.2.9 ψd,1 ○ (Θ̂T + Θ̂T
′) = 0. Hence, by ψd,2 ○ σ = 0.

Finally, suppose d = t = 1. By applying Theorem 3.2.9, we have that
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ψ1,1 ○ σ is the sum of homomorphisms labelled by tableaux

1 2 3 v ⋆ ⋆

1 ⋆ ⋆ ⋆ ⋆
1

⋆

where the ⋆s represent the numbers from 3 to u, and where the entries

strictly increase along rows and weakly increase down columns. Now to

move the 1 from row 3 to row 2 we apply Theorem 3.2.12 to each of these

homomorphisms and then to reorder rows 3, . . . , b + 2. We obtain a sum of

homomorphisms indexed by tableaux of the form

1 2 3 v ⋆ ⋆

1 1 ⋆ ⋆ ⋆
⋆

⋆

.

Now each tableau occurs b times in this way, but b is even. Then ψ1,1○σ = 0.

Now we show that σ ≠ 0. So we consider the following Proposition.

Proposition 4.2.3. We have σ ≠ 0.

We need Theorem 3.1.10 to prove this proposition. Consider the semis-

tandard tableau S such that:

S =

1 1 2 v b+7b+8 u

2 b+3b+4b+5b+6

3

4

b+2

.

Let T ∈ U and consider expressing Θ̂T as a linear combination of semi-

standard homomorphisms. By applying Theorem 3.1.10, T contributes to

S only if S ⊵ T . Therefore, we can ignore all T ∈ U for which S ⋭ T . In

particular, we consider only those tableaux in U which have b + 7, . . . , u in
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the first row and b+3, b+4, b+5, b+6 in the top two rows. Now assume that

v ≤ b + 1, then the tableaux T ∈ U that we need to consider are those of the

following forms:

1. Suppose v < i ≤ b + 2. Then

T [i] =

1 2 v i b+7b+8 u

1 b+3b+4b+5b+6

2

v

v+1

î

b+2

.

2. Suppose 2 ≤ i ≤ b + 2 and 3 ≤ k ≤ 6. Then

U[i, k] =

1 2 3 v b+kb+7b+8 u

1 i b+3 ˆb+k b+6

2

î

b+2

.

Note that, the î in the first column means that i does not appear in

that column and ˆb + k in the second row means that b + k does not appear

in that row. First apply Theorem 3.2.12 on the tableau T [i] to move the 1

from row 2 to row 1. We see that of the tableaux appearing in the resulting

expression, the only ones dominated by S are
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T
′[i] =

1 1 2 v b+7b+8 u

i b+3b+4b+5b+6

2

v

v+1

î

b+2

and

T
′[i, j] =

1 1 2 j v i b+7b+8 u

j b+3b+4b+5b+6

2

v

v+1

î

b+2

where 2 ≤ j ≤ v. Now we move the 2 from row 3 to row 2 in T ′[i] by
using Theorem 3.2.12. We obtain five tableaux, but four of these are not

dominated by S. We are left with the tableau

T
′′[i] =

1 1 2 v b+7b+8 u

2 b+3b+4b+5b+6

i

3

v

v+1

î

b+2
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and i − 5 more applications of Theorem 3.2.12 prove that Θ̂T
′′[i] is equal to

Θ̂S. Similarly, we apply Theorem 3.2.12 to T i[i, j], to move the 2 from row

3 to row 2. If j = 2, then the four tableaux obtained are not dominated

by S. If j > 2, then four of the five tableaux obtained are not dominated

by S; the fifth has two rows equal to j , so the homomorphism is zero by

Theorem 3.2.12. Hence, we get that Θ̂T [i] = Θ̂S plus a linear combination

of homomorphisms indexed by tableaux not dominated by S.

Now we apply Theorem 3.2.12 to U[i, k] to move the 1 from row 2 to

row 1. The tableaux obtained that are dominated by S are T ′[i] and the

tableaux

U ′[i, j, k] =

1 1 2 ĵ v b+kb+7b+8 u

j i b+3 ˆb+k b+6

2

î

b+2

where 2 ≤ j ≤ v and i ≠ j. Note that if i < j where i and j are in

the second row, then we write i before j. If i = j then the accompanying

coefficient would be (2
1
) = 0, so this case dose not occur. If i = 2, then

U ′[i, j, k] is a semistandard tableau different from S. If i > 2 then we apply

Theorem 3.2.12 to move the 2 from row 3 to row 2; by ignoring the tableau

not dominated by S and the tableaux with two rows equal to j , then the

only tableau we get is

U
′′[i, j, k] =

1 1 2 ĵ v b+kb+7b+8 u

2 j b+3 ˆb+k b+6

i

3

î

b+2

and i−5 more applications of Theorem 3.2.12 show that Θ̂U
′′[i,j,k] equals

105



a semistandard homomorphism different from Θ̂S .

We conclude that Θ̂U[i,k] = Θ̂S plus a linear combination of homomor-

phisms indexed by tableaux which are either not dominated by S or semi-

standard and different from S. Now by combining the two cases together,

we find that the coefficient of Θ̂S in σ is the total number of tableaux of the

form T [i] or U[i, k], which is (b + 2 − v) + 4(b + 1) which is not zero modulo

2. Hence, we shown that σ ≠ 0 as required.

4.2.2 Homomorphisms from Sµ to Sλ

In this section we consider homomorphisms γ ∶ Sµ → Sλ. Define A,B,C to

be the µ–tableaux of type λ as follows:

A = 1a−v 25 3 4 . . . b + 2

1v

B = 1a−v+2 23 3 4 . . . b + 2

1v−2 22

C = 1a−v+4 2 3 4 . . . b + 2

1v−4 24

Remark 4.2.4. The notation above means that the first row of A contains

a − v entries equal to 1, 5 entries equal to 2 and 1 entry equal to j for

3 ≤ j ≤ b + 2. The second row of A contains v entries equal to 1.

Lemma 4.2.5. Θ̂A, Θ̂B and Θ̂C are non-zero, and are linearly independent

if v ≤ b + 1.

Proof. By using Theorem 3.2.12, we express Θ̂A, Θ̂B and Θ̂C as linear com-

binations of semistandard homomorphisms such that there is at least one

semistandard tableau appearing in each case. Thus, the homomorphisms

are non-zero. Moreover, if v ≤ b + 1, then in the expression for Θ̂A there is

at least one semistandard tableau with four 2s in the first row which there

is no such tableau appearing in the expression for Θ̂B and Θ̂C . Also, in the
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expression for Θ̂B there is at least one semistandard tableau with two 2s in

the first row which there is no such tableau appearing in the expression for

Θ̂C . Hence, Θ̂A, Θ̂B and Θ̂C are linearly independent.

Proposition 4.2.6. 1. If a− v ≡ 7 mod 8, then ψd,t ○ Θ̂A = 0 for all d, t.

2. If a − v ≡ 1 mod 4 and v ≡ 1 mod 4, then ψd,t ○ Θ̂B = 0 for all d, t.

3. If v ≡ 3 mod 8, then ψd,t ○ Θ̂C = 0 for all d, t.

4. If a− v ≡ 3 mod 8 and v ≡ 7 mod 8. Then ψd,t ○ (Θ̂A + Θ̂C) = 0 for all

d, t

5. If a− v ≡ 3 mod 8 and v ≡ 1 mod 8. Then ψd,t ○ (Θ̂B + Θ̂C) = 0 for all

d, t.

6. If a − v ≡ 3 mod 8 and v ≡ 5 mod 8. Then ψd,t ○ (Θ̂A + Θ̂B + Θ̂C) = 0
for all d, t.

7. If a − v ≡ 1 mod 8 and v ≡ 7 mod 8. Then ψd,t ○ (Θ̂A + Θ̂B + Θ̂C) = 0
for all d, t.

8. If a − v ≡ 5 mod 8 and either v ≡ 3 mod 8 or v ≡ 7 mod 8 . Then

ψd,t ○ (Θ̂A + Θ̂B) = 0 for all d, t.

9. If a− v ≡ 7 mod 8 and v ≡ 1 mod 8. Then ψd,t ○ (Θ̂B + Θ̂C) = 0 for all

d, t.

Proof. If d ≥ 2, then from Theorem 3.2.9 we get ψd,1 ○ Θ̂A = ψd,1 ○ Θ̂B =

ψd,1 ○ Θ̂C = 0. Now, if d = 1 then ψ1,t ○ Θ̂A = ψ1,t ○ Θ̂B = ψ1,t ○ Θ̂C = 0 for

t = 1,3,5, because each A,B,C have an odd number of 1s in each row and

use that by Lemma 4.1.4 ( 2m
2j+1
) ≡ 0 for all m,j ≥ 0. Finally, if d = 1 and

t = 2,4, then repeatedly using Lemma 4.1.4 then we have

1. Suppose a − v ≡ 7 mod 8. Then

ψ1,2 ○ Θ̂A = (a − v + 2
2

) 1a−v+2 23 3 4 . . . b + 2

1v

= 0
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and

ψ1,4 ○ Θ̂A = (a − v + 4
4

) 1a−v+4 2 3 4 . . . b + 2

1v

= 0

2. Suppose a − v ≡ 1 mod 4 and v ≡ 1 mod 4. Then

ψ1,2 ○ Θ̂B = (a − v + 4
2

) 1a−v+4 2 3 4 . . . b + 2

1v−2 22

+ (v
2
) 1a−v+2 23 3 4 . . . b + 2

1v

+ (a − v + 3
1

)(v − 1
1
) 1a−v+3 22 3 4 . . . b + 2

1v−1 2

= 0

and

ψ1,4 ○ Θ̂B = (a − v + 4
2

)(v
2
) 1a−v+4 2 3 4 . . . b + 2

1v

+ (a − v + 5
3

)(v − 1
1
) 1a−v+5 3 4 . . . b + 2

1v−1 2

= 0
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3. Suppose v ≡ 3 mod 8. Then

ψ1,2 ○ Θ̂C = (v − 2
2
) 1a−v+4 2 3 4 . . . b + 2

1v−2 22

+ (a − v + 5
1

)(v − 3
1
) 1a−v+5 3 4 . . . b + 2

1v−3 23

= 0

and

ψ1,4 ○ Θ̂C = (v
4
) 1a−v+4 2 3 4 . . . b + 2

1v

+ (a − v + 5
1

)(v − 1
3
) 1a−v+5 3 4 . . . b + 2

1v−1 2

= 0

4. Suppose a−v ≡ 3 mod 8 and v ≡ 7 mod 8. Then by applying Theorem

3.2.9 on A and C we get

ψ1,2 ○ Θ̂A = (a − v + 2
2

) 1a−v+2 23 3 4 . . . b + 2

1v

= 0

and

ψ1,4 ○ Θ̂A = (a − v + 4
4

) 1a−v+4 2 3 4 . . . b + 2

1v

≠ 0.

Also,
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ψ1,2 ○ Θ̂C = (v − 2
2
) 1a−v+4 2 3 4 . . . b + 2

1v−2 22

+ (a − v + 5
1

)(v − 3
1
) 1a−v+5 3 4 . . . b + 2

1v−3 23

= 0

and

ψ1,4 ○ Θ̂C = (v
4
) 1a−v+4 2 3 4 . . . b + 2

1v

+ (a − v + 5
1

)(v − 1
3
) 1a−v+5 3 4 . . . b + 2

1v−1 2

≠ 0.

Hence,

ψ1,4 ○ (Θ̂A + Θ̂C) = 0.
Similarly, we can show all other cases.

Remark 4.2.7. From Proposition 4.2.6, we can write the homomorphisms

in the following table.

v ≡ 1 v ≡ 3 v ≡ 5 v ≡ 7

a − v ≡ 1 Θ̂B Θ̂C Θ̂B Θ̂A + Θ̂B + Θ̂C

a − v ≡ 3 Θ̂B + Θ̂C Θ̂C Θ̂A + Θ̂B + Θ̂C Θ̂A + Θ̂C

a − v ≡ 5 Θ̂B Θ̂A + Θ̂B , Θ̂C Θ̂B Θ̂A + Θ̂B

a − v ≡ 7 Θ̂A, Θ̂B + Θ̂C Θ̂A, Θ̂C Θ̂A Θ̂A

As a corollary of proposition 4.2.6 we consider
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Corollary 4.2.8. We have

dimF HomFSn
(Sµ, Sλ) ≥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2 if v ≡ 3 mod 8 and either a − v ≡ 5 or 7 mod 8

or if a − v ≡ 7 mod 8 and v ≡ 1 mod 8,

1 otherwise.

4.2.3 Composing the homomorphisms

Now we find when Sµ is a summand of Sλ by composing the homomor-

phisms. Let D be the µ–tableau of type µ′

D =
1 2 3 u

1 2 3 v
.

Then we have the following theorem.

Theorem 4.2.9. Suppose T ∈ U , and let x be the entry in the (2,2)–position
of T and z be the entry in the (2,4)–position of T . Then

Θ̂T ○Θ̂A = Θ̂D, Θ̂T ○Θ̂B =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ̂D (x ≤ v<z)
0 (v<x or z ≤ v). Θ̂T○Θ̂C =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ̂D (z ≤ v)
0 (z > v).

Furthermore, Θ̂D ≠ 0.

Proof. From Theorem 3.1.7 we get Θ̂D ≠ 0. Now let T ∈ U we apply Theorem

3.1.12 with S equal to either A or B or C. Suppose X ∈ X . Since each T i is

a proper set, each Xij must be as well. This means that if some integer i ap-

pears in two sets Xkj ,X lj , then the multinomial coefficient (X1j
j
+X2j

j
+X3j

j
+...

X
1j
j

,X
2j
j

,X
3j
j

,...
)

from Theorem 3.1.12 will include a factor (2
1
), which gives 0.

So in order to get a non-zero coefficient in Theorem 3.1.12, we must have

X1j ,X2j ,X3j , . . . pairwise disjoint for each j, which means that we will have

X11
⊔X21

⊔ ⋅ ⋅ ⋅ = {1, . . . , u}, X12
⊔X22 = {1, . . . , v}; (�)

so UX will equal D.

If S = A, the only way to achieve this is to have

X11 = T 1/{1, . . . , v}, X12 = {1, . . . , v}, Xi1 = T i for i ≥ 2.
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Thus we have Θ̂T ○ Θ̂A = Θ̂D.

In the case S = B, let y be the (2,3)–entry of T and z be the (2,4)–entry
of T and z′ be the (2,5)–entry of T . If x > v then we cannot possibly achieve

(�). So we get Θ̂T ○ Θ̂B = 0 in this case. If x ≤ v < y, then the only way to

achieve (�) is to have X22 = {1, x} andX12 = {2, . . . , x̂, . . . , v}, and this yields

Θ̂T ○ Θ̂B = Θ̂D. If y ≤ v<z, then there are three possible ways to achieve

(�), that is we can have X22 = {1, x} or X22 = {1, y} or X22 = {x, y} and

X12 = {2, . . . , x̂, . . . , v} or X12 = {2, . . . , ŷ, . . . , v} or X12 = {1, . . . , x̂, ŷ, . . . , v};
each of these gives a coefficient of 1, and again we have Θ̂T ○ Θ̂B = Θ̂D. If

z ≤ v<z′, then X22 must contain either x or y or z then there are six possible

ways to achieve (�); each of these gives a coefficient of 1, hence we have

Θ̂T ○ Θ̂B = 0. If z′ ≤ v, then X22 must contain either x or y or z or z′ then

there are ten possible ways to achieve (�); each of these gives a coefficient

of 1, hence we have Θ̂T ○ Θ̂B = 0.

In the case S = C, we have

∣X11∣ = a− v + 4, ∣X12∣ = v − 4, ∣X22∣ = 4, ∣X21∣ = 1, Xi1 = T i for i ≥ 3.

X11 must contain either z or z′, so if z > v then we cannot possibly achieve

(�). So we get Θ̂T ○ Θ̂C = 0 in this case. If z ≤ v < z′, then the only way

to achieve (�) is to have X22 = {1, . . . , z} and X21 = {z′}, and this yields

Θ̂T ○ Θ̂C = Θ̂D. Finally, if z
′ ≤ v, then there are five possible ways to achieve

(�); each of these gives a coefficient of 1, and again we have Θ̂T ○Θ̂C = Θ̂D.

Lemma 4.2.10. � The number of tableaux in U is (u−v
a−v
)(u+v−a−1

4
).

� The number of tableaux in U whose (2,2)-entry is less than or equal

to v and (2,3)-entry is greater than v is (u−v
a−v
)(u−a

3
)(v−1

1
).

� The number of tableaux in U whose (2,3)-entry is less than or equal

to v and (2,4)-entry is greater than v is (u−v
a−v
)(u−a

2
)(v−1

2
).

� The number of tableaux in U whose (2,4)-entry is less than or equal

to v and (2,5)-entry is greater than v is (u−v
a−v)(u−a1 )(v−13 ).

� The number of tableaux in U whose (2,5)-entry is less than or equal

to v is (u−v
a−v
)(v−1

4
).
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Proof.

U =
1 2 3 v ⋆ ⋆

1 ⋆ ⋆ ⋆ ⋆
⋆

⋆

where the ⋆s are the numbers from 2 to u. The number of tableaux ∣U ∣ is
found by choosing the a−v entries represented by ⋆ in the first row from the

set {v+1, v+2, . . . , u} which can be done in (u−v
a−v
) ways and the choosing the

four entries in the second row from the remaining entries in the set, which

can be done in (u+v−a−1
4
) ways. Hence, we have (u−v

a−v
)(u+v−a−1

4
) number of

choice of tableaux. Similarly, we can show the other cases.

As corollary of Lemma 4.2.10

Corollary 4.2.11. Let σ = ∑T ∈U Θ̂T and θ = αΘ̂A + βΘ̂B + γΘ̂C where all

congruence are modulo 2. Then

σ ○ Θ̂A ≡ (u − v
a − v

)(u + v − a − 1
4

)Θ̂D.

σ ○ Θ̂B =
⎛
⎝(
u − v

a − v
)(u − a

3
)(v − 1

1
) + (u − v

a − v
)(u − a

2
)(v − 1

2
)⎞⎠Θ̂D

≡ (u − v
a − v

)(u − a
2
)(v − 1

2
)Θ̂D.

σ ○ Θ̂C ≡ (u − v
a − v

)(v − 1
4
)Θ̂D.

Before we prove Theorem I we want to show when in the cases in Propo-

sition 4.2.6 we have δ○γ ≠ 0 for homomorphisms Sµ γ
Ð→ Sλ δ

Ð→ Sµ′ . Assume

Sµ is irreducible, where µ = (u, v) with u+v = a+b+5. Since Sµ is irreducible,

then by Corollary 4.1.3, u − v ≡= −1 mod 8.

1. Suppose a− v ≡ 1 mod 8. If v ≡ 1 mod 8, then a ≡ 0 mod 8 and u ≡ 0

mod 8. Let γ = Θ̂B.

δ ○ γ = (u − v
a − v

)(u − a
2
)(v − 1

2
)Θ̂D.

The first term is odd by assumption, the second binomial coefficient
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is even because u − a ≡ 0 mod 8 and third binomial coefficient is odd.

Hence δ ○ γ = 0. If v ≡ 3 mod 8, then a ≡ 4 mod 8 and u ≡ 2 mod 8.

Let γ = Θ̂C .

δ ○ γ = (u − v
a − v

)(v − 1
4
)Θ̂D.

The first term is odd by assumption, the second binomial coefficient is

even because v − 1 ≡ 2 mod 8. Hence δ ○ γ = 0. Finally, v ≡ 5 mod 8,

then a ≡ 6 mod 8 and u ≡ 4 mod 8. Let γ = Θ̂B .

δ ○ γ = (u − v
a − v

)(u − a
2
)(v − 1

2
)Θ̂D.

The first term is odd by assumption, the second binomial coefficient

is odd because u − a ≡ 6 mod 8 and third binomial coefficient is even.

Hence δ ○ γ = 0.

2. Suppose a− v ≡ 3 mod 8. If v ≡ 1 mod 8, then a ≡ 4 mod 8 and u ≡ 0

mod 8. Let γ = Θ̂B + Θ̂C .

δ ○ γ =
⎛
⎝(
u − v

a − v
)(u − a

2
)(v − 1

2
) + (u − v

a − v
)(v − 1

4
)⎞⎠Θ̂D.

The first term (u−v
a−v
) is odd by assumption, the term (u−a

2
) is even

because u − a ≡ 4 mod 8. The binomial coefficient of (v−1
4
) is even

because v − 1 ≡ 0 mod 8. Hence δ ○ γ = 0. If v ≡ 3 mod 8, then a ≡ 6

mod 8 and u ≡ 2 mod 8. Let γ = Θ̂C .

δ ○ γ = δ ○ γ = (u − v
a − v

)(v − 1
4
)Θ̂D.

The first term (u−v
a−v
) is odd by assumption. The binomial coefficient is

of (v−1
4
) is even because v − 1 ≡ 2 mod 8. Hence δ ○ γ = 0.

3. Suppose a− v ≡ 5 mod 8. If v ≡ 1 mod 8, then a ≡ 6 mod 8 and u ≡ 0

mod 8. Let γ = Θ̂B.

δ ○ γ = (u − v
a − v

)(u − a
2
)(v − 1

2
)Θ̂D.

The first term (u−v
a−v
) is odd by assumption. The term (u−a

2
) is odd

because u − a ≡ 2 mod 8. The binomial coefficient of (v−1
2
) is even

114



because v − 1 ≡ 4 mod 8. Hence δ ○ γ = 0. If v ≡ 3 mod 8. Let

γ = Θ̂A + Θ̂B. Then a ≡ 0 mod 8 and u ≡ 2 mod 8. Then

δ ○ γ =
⎛
⎝(
u − v

a − v
)(u + v − a − 1

4
) + (u − v

a − v
)(u − a

2
)(v − 1

2
)⎞⎠Θ̂D.

The first term (u−v
a−v
) is odd by assumption, the term (u+v−a−1

4
) is odd

because u+v−a−1 ≡ 4 mod 8, the term (u−a
2
) is odd because u−a ≡ 2

mod 8. Hence δ ○ γ = 0. Now Let γ = Θ̂C . Then

δ ○ γ = (u − v
a − v

)(v − 1
4
)Θ̂D.

The term (v−1
4
) is even because v − 1 ≡ 2 mod 8. Hence δ ○ γ = 0. If

v ≡ 5 mod 8, then a ≡ 2 mod 8 and u ≡ 4 mod 8. Let γ = Θ̂B .

δ ○ γ = (u − v
a − v

)(u − a
2
)(v − 1

2
)Θ̂D.

The first term (u−v
a−v
) is odd by assumption. The term (u−a

2
) is odd

because u − a ≡ 2 mod 8. The binomial coefficient of (v−1
2
) is even

because v − 1 ≡ 4 mod 8. Hence δ ○ γ = 0.

4. If a − v ≡ 7 mod 8. If v ≡ 1 mod 8. Then a ≡ 0 mod 8 and u ≡ 0

mod 8. Let γ = Θ̂A. From Corollary 4.2.11

δ ○ γ = (u − v
a − v

)(u + v − a − 1
4

)Θ̂D.

The first term is odd by assumption, the second binomial coefficient

is even because u + v − a − 1 ≡ 0 mod 8. Hence δ ○ γ = 0. Now let

γ = Θ̂B + Θ̂C . From Corollary 4.2.11

δ ○ γ = (u − v
a − v

)⎛⎝(
u − a

2
)(v − 1

2
) + (v − 1

4
)⎞⎠Θ̂D.

The first term (u−v
a−v
) is odd by assumption, but the binomial coefficients

(v−1
2
) and (v−1

4
) are even because v − 1 ≡ 0 mod 8. Hence δ ○ γ = 0. If

v ≡ 3 mod 8, then a ≡ 2 mod 8 and u ≡ 2 mod 8. Let γ = Θ̂A. From
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Corollary 4.2.11

δ ○ γ = (u − v
a − v

)(u + v − a − 1
4

)Θ̂D.

The first term is odd by assumption, the second binomial coefficient is

even because u+ v −a− 1 ≡ 2 mod 8. Hence δ ○γ = 0. Now let γ = Θ̂C .

From Corollary 4.2.11

δ ○ γ = (u − v
a − v

)(v − 1
4
)Θ̂D.

The first term is odd by assumption, the second binomial coefficient

is even because v − 1 ≡ 2 mod 8. Hence δ ○ γ = 0.

Now we prove Theorem I. Recall that

Theorem I. Let F be a field of characteristic 2 and let q = 1. Suppose

λ = (a,5,1b) is a partition of n, where a, b are positive even integers and

let µ be a partition of n such that Sµ is irreducible. Suppose µ or µ′ equals

(u, v), where u > v and u is even and v is odd with v ≤min{a − 1, b + 1} and
(u−v
a−v
) is odd. If one of the following condition holds:

� If v ≡ 7 mod 8,

� If v ≡ 5 mod 8 and a − v ≡ 3 mod 4,

then Sλ has a direct summand isomorphic to Sµ.

Proof. Let Sµ be irreducible, where µ = (u, v) with u+v = a+b+5. Since Sµ

is irreducible, then by Corollary 4.1.3, u− v ≡= −1 mod 8. We would like to

show that in the cases above there are homomorphisms Sµ γ
Ð→ Sλ δ

Ð→ Sµ′

such that δ ○ γ ≠ 0. We take δ = σ.

1. Suppose a− v ≡ 1 mod 8. If v ≡ 7 mod 8, then a ≡ 0 mod 8 and u ≡ 6

mod 8. Let γ = Θ̂A + Θ̂B + Θ̂C . Then

δ○γ =
⎛
⎝(
u − v

a − v
)(u + v − a − 1

4
)+(u − v

a − v
)(u − a

2
)(v − 1

2
)+(u − v

a − v
)(v − 1

4
)⎞⎠Θ̂D.

The first term (u−v
a−v
) is odd by assumption, the term (u+v−a−1

4
) is odd

because u+v−a−1 ≡ 4 mod 8, the term (u−a
2
) is odd because u−a ≡ 6

mod 8. The binomial coefficients of (v−1
2
) and (v−1

4
) are odd because

v − 1 ≡ 6 mod 8. Hence δ ○ γ = Θ̂D.
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2. Suppose a− v ≡ 3 mod 8. If v ≡ 5 mod 8, then a ≡ 0 mod 8 and u ≡ 4

mod 8. Let γ = Θ̂A + Θ̂B + Θ̂C . Then

δ○γ =
⎛
⎝(
u − v

a − v
)(u + v − a − 1

4
)+(u − v

a − v
)(u − a

2
)(v − 1

2
)+(u − v

a − v
)(v − 1

4
)⎞⎠Θ̂D.

The first term (u−v
a−v
) is odd by assumption, the term (u+v−a−1

4
) is even

because u+v−a−1 ≡ 0 mod 8, the term (u−a
2
) is even because u−a ≡ 4

mod 8. The binomial coefficient is of (v−1
4
) is odd because v − 1 ≡ 4

mod 8. Hence δ ○γ = Θ̂D. If v ≡ 7 mod 8, then a ≡ 2 mod 8 and u ≡ 6

mod 8. Let γ = Θ̂A + Θ̂C .

δ ○ γ =
⎛
⎝(
u − v

a − v
)(u + v − a − 1

4
) + (u − v

a − v
)(v − 1

4
)⎞⎠Θ̂D.

The term (u−v
a−v
) is odd by assumption, the term (u+v−a−1

4
) is even be-

cause u + v − a − 1 ≡ 2 mod 8, the binomial coefficient of (v−1
4
) is odd

because v − 1 ≡ 6 mod 8 . Hence δ ○ γ = (u−v
a−v
)(u−1

4
)Θ̂D = Θ̂D.

3. Suppose a − v ≡ 5 mod 8. If v ≡ 7 mod 8. Let γ = Θ̂A + Θ̂B. Then

a ≡ 4 mod 8 and u ≡ 6 mod 8. Then

δ ○ γ =
⎛
⎝(
u − v

a − v
)(u + v − a − 1

4
) + (u − v

a − v
)(u − a

2
)(v − 1

2
)⎞⎠Θ̂D.

The first term (u−v
a−v
) is odd by assumption, the term (u+v−a−1

4
) is even

because u+v−a−1 ≡ 0 mod 8, the term (u−a
2
) is odd because u−a ≡ 2

mod 8. Hence δ ○ γ = Θ̂D.

4. If a − v ≡ 7 mod 8. If v ≡ 5 mod 8, then a ≡ 4 mod 8 and u ≡ 4

mod 8. Let γ = Θ̂A. From Corollary 4.2.11

δ ○ γ = (u − v
a − v

)(u + v − a − 1
4

)Θ̂D.

The first term is odd by assumption, the second binomial coefficient is

odd because u+v−a−1 ≡ 4 mod 8. Hence δ ○γ = Θ̂D. If v ≡ 7 mod 8,

then a ≡ 6 mod 8 and u ≡ 6 mod 8. Let γ = Θ̂A. From Corollary

4.2.11

δ ○ γ = (u − v
a − v

)(u + v − a − 1
4

)Θ̂D.
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The first term is odd by assumption, the second binomial coefficient

is even because u + v − a − 1 ≡ 6 mod 8. Hence δ ○ γ = Θ̂D.

Hence we have shown that if v ≡ 7 mod 8 or v ≡ 5 mod 8 and a−v ≡ 3

mod 4, then δ ○ γ = Θ̂D. This completes the proof of Theorem I.

4.3 The Specht modules labelled by (a, 7, 1b)

In this section, we find Specht modules S(a,7,1
b) which have a direct sum-

mand isomorphic to an irreducible Specht module S(u,v). The argument is

similar to that given in Section 4.2. So, we can assume that λ = (a,7,1b)
and µ = (u, v), where a, b, u, v are positive integers with a, b, u even and v

odd and let u > v, n = a + b + 7 = u + v and 7 ≤ v ≤min{a − 1, b + 1}.
4.3.1 Homomorphisms from Sλ to Sµ′

Consider homomorphisms σ ∶ Sλ Ð→ Sµ′ . We start constructing such a

homomorphism. Suppose U is the set of λ-tableaux having the form:

1 2 3 v ⋆ ⋆

1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆

⋆

such that the ⋆s are the numbers from 2 to u, and the entries are strictly

increasing along each row and weakly increasing down each column. Now

define

σ = ∑
T ∈U

Θ̂T .

Proposition 4.3.1. We have ψd,t ○ σ = 0.

Proof. Similar argument as in the proof of Proposition 4.2.2.

Now we check that σ ≠ 0. So we state the following proposition.

Proposition 4.3.2. We have σ ≠ 0.
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Proof. We need Theorem 3.1.10 to prove this proposition. Consider the

semistandard tableau S such that:

S =

1 1 2 v b+9 b+10 u

2 b+3 b+4 b+5 b+6 b+7 b+8

3

4

b+2

.

Take T ∈ U and consider expressing Θ̂T as a linear combination of semi-

standard homomorphisms. By Theorem 3.1.10, T contributes to S only if

S ⊵ T . Therefore, we can ignore all T ∈ U for which S ⋭ T . In particular, we

need only consider those tableaux in U which have b+9, . . . , u in the first row

and b + 3, b + 4, . . . , b + 8 in the top two rows. Now we assume that v ≤ b + 1,

then the tableaux T ∈ U that we need to consider are those of the following

forms:

1. Suppose v < i ≤ b + 2. Then

T [i] =

1 2 v i b+9 b+10 u

1 b+3 b+4 b+5 b+6 b+7 b+8

2

v

v+1

î

b+2

.
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2. Suppose 2 ≤ i ≤ b + 2 and 3 ≤ k ≤ 8. Then

U[i, k] =

1 2 3 v b+k b+9 b+10 u

1 i b+3 ˆb+k b+8

2

î

b+2

.

Now we do a similar argument as in the proof of Proposition 4.2.3 by

applying Theorems 3.2.9 and 3.2.12. We get that Θ̂T [i] = Θ̂S plus a linear

combination of homomorphisms indexed by tableaux not dominated by S

and that Θ̂U[i,k] = Θ̂S plus a linear combination of homomorphisms indexed

by tableaux which are either not dominated by S or semistandard and dif-

ferent from S. Now by combining the two cases together, we find that the

coefficient of Θ̂S in σ is the total number of tableaux of the form T [i] or
U[i, k], which is (b + 2 − v) + 6(b + 1) which is not zero. Hence, σ ≠ 0.

4.3.2 Homomorphisms from Sµ to Sλ

In this section we consider homomorphisms γ ∶ Sµ to Sλ. Define A,B,C,D

to be µ-tableaux of type λ as follows:

A = 1a−v 27 3 4 . . . b + 2

1v

.

B = 1a−v+2 25 3 4 . . . b + 2

1v−2 22

C = 1a−v+4 23 3 4 . . . b + 2

1v−4 24
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D = 1a−v+6 2 3 4 . . . b + 2

1v−6 26

Lemma 4.3.3. Θ̂A, Θ̂B, Θ̂C and Θ̂D are non-zero, and are linearly inde-

pendent if v ≤ b + 1.

Proof. By using Theorem 3.2.12, we express Θ̂A, Θ̂B, Θ̂C and Θ̂D as linear

combinations of semistandard homomorphisms such that there is at least one

semistandard tableau appearing in each case. Thus, the homomorphisms are

non-zero. Moreover, if v ≤ b + 1, then in the expression for Θ̂A there is at

least one semistandard tableau with six 2s in the first row which there is

no such tableau appearing in the expression for Θ̂B, Θ̂C and Θ̂D. Also,

in the expression for Θ̂B there is at least one semistandard tableau with

four 2 in the first row which there is no such tableau appearing in the

expression for Θ̂C and Θ̂D. In the expression for Θ̂C there is at least one

semistandard tableau with two 2 in the first row which there is no such

tableau appearing in the expression for Θ̂D. Hence, Θ̂A, Θ̂B, Θ̂C and Θ̂D

are linearly independent.

Proposition 4.3.4. 1. If a− v ≡ 7 mod 8, then ψd,t ○ Θ̂A = 0 for all d, t.

2. If v ≡ 5 mod 8, then ψd,t ○ Θ̂D = 0 for all d, t.

3. If v ≡ 3 mod 8 and either a − v ≡ 3 mod 8 or a − v ≡ 7 mod 8. Then

ψd,t ○ Θ̂C = 0 for all d, t.

4. If a − v ≡ 5 mod 8 and either v ≡ 1 mod 8 or v ≡ 5 mod 8. Then

ψd,t ○ Θ̂B = 0 for all d, t.

5. If a − v ≡ 1 mod 8 and v ≡ 1 mod 8, then ψd,t ○ (Θ̂B + Θ̂D) = 0 for all

d, t.

6. If a − v ≡ 1 mod 8 and v ≡ 3 mod 8, then ψd,t ○ (Θ̂C + Θ̂D) = 0 for all

d, t.

7. If a−v ≡ 1 mod 8 and v ≡ 7 mod 8, then ψd,t○(Θ̂A+Θ̂B+Θ̂C+Θ̂D) = 0
for all d, t.
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8. If a− v ≡ 3 mod 8 and v ≡ 1 mod 8. Then ψd,t ○ (Θ̂B + Θ̂C) = 0 for all

d, t

9. If a− v ≡ 3 mod 8 and v ≡ 7 mod 8. Then ψd,t ○ (Θ̂A + Θ̂C) = 0 for all

d, t.

10. If a−v ≡ 5 mod 8 and v ≡ 3 mod 8. Then ψd,t○(Θ̂A+Θ̂B+Θ̂C+Θ̂D) = 0
for all d, t.

11. If a− v ≡ 5 mod 8 and v ≡ 7 mod 8. Then ψd,t ○ (Θ̂A + Θ̂B) = 0 for all

d, t.

12. If a − v ≡ 7 mod 8 and v ≡ 1 mod 8 . Then ψd,t ○ (Θ̂A + Θ̂C + Θ̂D) = 0
for all d, t.

Proof. The proof follows by case-by-case analysis as in the proof of Propo-

sition 4.2.6.

Remark 4.3.5. From Proposition 4.3.3, we can write the homomorphisms

in the following table.

v ≡ 1 v ≡ 3 v ≡ 5 v ≡ 7

a − v ≡ 1 Θ̂B + Θ̂D Θ̂C + Θ̂D Θ̂D Θ̂A + Θ̂B

+Θ̂C + Θ̂D

a − v ≡ 3 Θ̂B + Θ̂C Θ̂C Θ̂D Θ̂A + Θ̂C

a − v ≡ 5 Θ̂B Θ̂A + Θ̂B Θ̂B , Θ̂D Θ̂A + Θ̂B

+Θ̂C + Θ̂D

a − v ≡ 7 Θ̂A, Θ̂A + Θ̂C + Θ̂D Θ̂A, Θ̂C Θ̂A, Θ̂D Θ̂A

4.3.3 Composing the homomorphisms

Let ∆ be the µ-tableau of type µ′

∆ =
1 2 3 u

1 2 3 v
.

Then we have the following theorem.

Theorem 4.3.6. Suppose T ∈ U , and let xi be the entry in position (2, i+1)
of T , where 1 ≤ i ≤ 6. Then

Θ̂T ○ Θ̂A = Θ̂∆, Θ̂T ○ Θ̂B =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ̂∆ if x1 ≤ v<x3 and x5 ≤ v;

0 if v<x1 and x3 ≤ v<x5.
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Θ̂T ○ Θ̂C =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ̂∆ if x3 ≤ v;

0 if v<x3.
Θ̂T ○ Θ̂D =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ̂∆ if x5 ≤ v;

0 if x5 > v.

Furthermore, Θ̂∆ ≠ 0.

Proof. From Theorem 3.2.12 we get Θ̂∆ ≠ 0. Now we apply Theorem 3.1.12

with T ∈ U and S equal to either A or B or C or D. Suppose X ∈ X .
Since each T i is a proper set, each Xij must be as well. This means that if

some integer i appears in two sets Xkj,X lj , then the multinomial coefficient

(X1j
j
+X2j

j
+X3j

j
+...

X
1j
j

,X
2j
j

,X
3j
j

,...
) from Theorem 3.1.12 will include a factor (2

1
), which gives

0.

So in order to get a non-zero coefficient in Theorem 3.1.12, we must have

X1j ,X2j ,X3j , . . . pairwise disjoint for each j, which means that we will have

X11
⊔X21

⊔ ⋅ ⋅ ⋅ = {1, . . . , u}, X12
⊔X22 = {1, . . . , v}; (�)

so UX will equal ∆.

If S = A, the only way to achieve this is to have

X11 = T 1
∖ {1, . . . , v}, X12 = {1, . . . , v}, Xi1 = T i for i ≥ 2.

Thus we have Θ̂T ○ Θ̂A = Θ̂∆.

In the case S = B, let x2 be the (2,3)-entry of T and x3 be the (2,4)-
entry of T and x4 be the (2,5)-entry, x5 be (2,6)-entry and x6 be (2,7)-entry
of T . If x1 > v then we cannot possibly achieve (�). So we get Θ̂T ○ Θ̂B = 0

in this case. If x1 ≤ v < x2, then the only way to achieve (�) is to have

X22 = {1, x1} and X12 = {2, . . . , x̂1, . . . , v}, and this yields Θ̂T ○ Θ̂B = Θ̂∆.

If x2 ≤ v<x3, then there are three possible ways to achieve (�) is to have

X22 = {1, x1} or X22 = {1, x2} or X22 = {x1, x2} and X12 = {2, . . . , x̂1, . . . , v}
or X12 = {2, . . . , x̂2, . . . , v} or X12 = {1, . . . , x̂1, x̂2, . . . , v}; each of these gives

a coefficient of 1, and again we have Θ̂T ○ Θ̂B = Θ̂∆. If x3 ≤ v<x4, then

X22 must contain either x1 or x2 or x3 then there are six possible ways to

achieve (�); each of these gives a coefficient of 1, hence we have Θ̂T ○Θ̂B = 0.

If x4 ≤ v<x5, then X
22 must contain either x1 or x2 or x3 or x4 then there

are ten possible ways to achieve (�); each of these gives a coefficient of 1,

hence we have Θ̂T ○ Θ̂B = 0. If x5 ≤ v<x6, then there are fifteen possible

ways to achieve (�); each of these gives a coefficient of 1, and again we have
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Θ̂T ○ Θ̂B = Θ̂∆. If x6 ≤ v, then there are twenty-one possible ways to achieve

(�); each of these gives a coefficient of 1, and again we have Θ̂T ○ Θ̂B = Θ̂∆.

In the case S = C we have

∣X11∣ = a − v + 4, ∣X12∣ = v − 4, ∣X22∣ = 4, ∣X21∣ = 3, Xi1 = T i for i ≥ 3.

If x1, x2, x3 > v then we cannot possibly achieve (�). So we get Θ̂T ○ Θ̂C = 0

in this case. If x3 ≤ v<x4, then the only way to achieve (�) is to have

X22 = {1, x1, x2, x3} and X21 = {x4, x5, x6}, and this yields Θ̂T ○ Θ̂C = Θ̂∆.

If x4 ≤ v<x5, then there are five possible ways to achieve (�); each of these

gives a coefficient of 1, and again we have Θ̂T ○ Θ̂C = Θ̂∆. If x5 ≤ v<x6, then

there are 15 possible ways to achieve (�); each of these gives a coefficient

of 1, and again we have Θ̂T ○ Θ̂C = 0. If x6 ≤ v, then there are 35 possible

ways to achieve (�); each of these gives a coefficient of 1, and again we have

Θ̂T ○ Θ̂C = Θ̂∆.

In the case S =D we have

∣X11∣ = a− v + 6, ∣X12∣ = v − 6, ∣X22∣ = 6, ∣X21∣ = 1, Xi1 = T i for i ≥ 3.

X11 must contain either x5 or x6, so if x5 > v then we cannot possibly

achieve (�). So we get Θ̂T ○ Θ̂D = 0 in this case. If x5 ≤ v < x6, then the

only way to achieve (�) is to have X22 = {1, . . . , x5} and X21 = {x6}, and
this yields Θ̂T ○ Θ̂D = Θ̂∆. Finally, if x6 ≤ v, then there are seven possible

ways to achieve (�); each of these gives a coefficient of 1, and again we have

Θ̂T ○ Θ̂D = Θ̂∆.

The proof of this lemma is given by a counting argument similar to that

given in the proof of Lemma 4.2.10.

Lemma 4.3.7. Let xi be (2, i + 1)–entry of T , where 1 ≤ i ≤ 6. Then

� The number of tableaux in U is (u−v
a−v
)(u+v−a−1

6
).

� The number of tableaux in U with x1 ≤ v<x2 is (u−v
a−v
)(u−a

5
)(v−1

1
).

� The number of tableaux in U with x2 ≤ v<x3 is (u−v
a−v
)(u−a

4
)(v−1

2
).

� The number of tableaux in U with x3 ≤ v<x4 is (u−v
a−v
)(u−a

3
)(v−1

3
).

� The number of tableaux in U with x4 ≤ v<x5 is (u−v
a−v
)(u−a

2
)(v−1

4
).
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� The number of tableaux in U with x5 ≤ v<x6 is (u−v
a−v
)(u−a

1
)(v−1

5
).

� The number of tableaux in U with x6 ≤ v is (u−v
a−v
)(v−1

6
).

As corollary of Lemma 4.3.7

Corollary 4.3.8. Suppose all congruences are modulo 2. Then

σ ○ Θ̂A ≡ (u − v
a − v

)(u + v − a − 1
6

)Θ̂∆.

σ ○ Θ̂B = (u − v
a − v

)⎛⎝(
u − a

5
)(v − 1

1
) + (u − a

4
)(v − 1

2
) + (u − a

1
)(v − 1

5
) + (v − 1

6
)⎞⎠Θ̂∆

≡ (u − v
a − v

)⎛⎝(
u − a

4
)(v − 1

2
) + (v − 1

6
)⎞⎠Θ̂∆.

σ ○ Θ̂C = (u − v
a − v

)⎛⎝(
u − a

3
)(v − 1

3
) + (u − a

2
)(v − 1

4
) + (v − 1

6
)⎞⎠Θ̂∆

≡ (u − v
a − v

)⎛⎝(
u − a

2
)(v − 1

4
) + (v − 1

6
)⎞⎠Θ̂∆.

σ ○ Θ̂D = (u − v
a − v

)⎛⎝(
u − a

1
)(v − 1

5
) + (v − 1

6
)⎞⎠Θ̂∆

≡ (u − v
a − v

)(v − 1
6
)Θ̂∆.

Now we prove Theorem II. Recall that

Theorem II. Let F be a field of characteristic 2 and let q = 1. Suppose

λ = (a,7,1b) is a partition of n, where a, b are positive even integers and

let µ be a partition of n such that Sµ is irreducible. Suppose µ or µ′ equals

(u, v), where u > v and u is even and v is odd with v ≤min{a − 1, b + 1} and
(u−v
a−v
) is odd and v ≡ 7 mod 8. Then Sλ has a direct summand isomorphic

to Sµ.

Proof. Suppose Sµ is irreducible, where µ = (u, v) with u + v = a + b + 5.

Suppose that u, v satisfy the given condition (u−v
a−v
) is odd. We need to show
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that there are homomorphisms Sµ γ
Ð→ Sλ δ

Ð→ Sµ′ such that δ ○ γ ≠ 0. Let

δ = σ.

1. Suppose a−v ≡ 1 mod 8. If v ≡ 7 mod 8. Let γ = (Θ̂A+Θ̂B+Θ̂C+Θ̂D).
From Corollary 4.3.8

δ○γ = (u − v
a − v

)⎛⎝(
u + v − a − 1

6
)+(u − a

4
)(v − 1

2
)+(u − a

2
)(v − 1

4
)+(v − 1

6
)⎞⎠Θ̂∆.

The first term (u−v
a−v
) is odd by assumption. The terms (v−1

4
), (v−1

2
) and

(v−1
6
) are odd because v − 1 ≡ 6 mod 8. Also, the term (u+v−a−1

6
) is

even because u + v − a − 1 ≡ 4 mod 8, the terms (u−a
4
) and (u−a

2
) are

odd because u − a ≡ 6 mod 8. Hence δ ○ γ = Θ̂∆.

2. Suppose a − v ≡ 3 mod 8. If v ≡ 7 mod 8. Let γ = Θ̂A + Θ̂C . From

Corollary 4.3.8

δ ○ γ = (u − v
a − v

)⎛⎝(
u + v − a − 1

6
) + (u − a

2
)(v − 1

4
) + (v − 1

6
)⎞⎠Θ̂∆.

The first term (u−v
a−v
) is odd by assumption, the term (u+v−a−1

6
) is even

because u + v − a − 1 ≡ 4 mod 8. The term (u−a
2
) is even because

u − a ≡ 4 mod 8 and the term (v−1
6
) is odd because v − 1 ≡ 6 mod 8.

Hence δ ○ γ = Θ̂∆.

3. Suppose a − v ≡ 5 mod 8. If v ≡ 7 mod 8. Let γ = Θ̂A + Θ̂B. From

Corollary 4.3.8

δ ○ γ = (u − v
a − v

)⎛⎝(
u + v − a − 1

6
) + (u − a

4
)(v − 1

2
) + (v − 1

6
)⎞⎠Θ̂∆.

The first term (u−v
a−v
) is odd by assumption, the term (u+v−a−1

6
) is even

because u + v − a − 1 ≡ 0 mod 8. The term (u−a
4
) is even because

u − a ≡ 2 mod 8 and the term (v−1
6
) is odd because v − 1 ≡ 6 mod 8.

Hence δ ○ γ = Θ̂∆.
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4. Suppose a − v ≡ 7 mod 8. If v ≡ 7 mod 8. Let γ = Θ̂A. Then a ≡ 6

mod 8 and u ≡ 6 mod 8. From Corollary 4.3.8

δ ○ γ = (u − v
a − v

)(u + v − a − 1
6

)Θ̂∆.

The first term is odd by assumption, the second binomial coefficient

is even because u + v − a − 1 ≡ 6 mod 8. Thus δ ○ γ = Θ̂∆. Hence we

have shown that if v ≡ 7 mod 8, then δ ○ γ = Θ̂D. This completes the

proof of Theorem II.

4.4 The Specht modules labelled by (a, c, 1b)

In this section, we assume that λ = (a, c,1b) and µ = (u, v), where a, b, u, v
are positive integers with a, b, u even, a > c, u > v, n = a + b + c = u + v and

c ≤ v ≤min{a − 1, b + 1}.
4.4.1 Homomorphisms from Sλ to Sµ′

Consider homomorphisms σ ∶ Sλ Ð→ Sµ′ . We begin by constructing such

a homomorphism in the case where c ≤ v ≤ a − 1. Suppose U is the set of

λ–tableaux having the form:

1 2 3 v ⋆ ⋆

1 ⋆ ⋆

⋆

⋆

where the ⋆s are the numbers from 2 to u, and in which

� the entries along each row are strictly increasing,

� the entries down each column are weakly increasing.

Now define

σ = ∑
T ∈U

Θ̂T .

Proposition 4.4.1. We have ψd,t ○ σ = 0 for each d, t.
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Proof. Similar argument as in the proof of Proposition 4.2.2

Proposition 4.4.2. We have σ ≠ 0.

Proof. The proof is similar to that given in 4.2.3. Consider the semistandard

tableau S such that:

S =

1 1 2 v b+f2 b+f3 u

2 b+3b+4 b+f1

3

4

b+2

where fj = c + j for all j.

Take T ∈ U and consider expressing Θ̂T as a linear combination of semi-

standard homomorphisms. By Theorem 3.1.10, T contributes to S if S ⊵ T .

Therefore, we can ignore all T ∈ U for which S ⋭ T . In particular, we need

only consider those tableaux in U which have b + (c + 2), . . . , u in the first

row and b + 3, b + 4, . . . , b + (c + 1) in the second row. The tableaux T ∈ U
that we need to consider are those of the following forms:

1. Suppose v < i ≤ b + 2. Then

T [i] =

1 2 v i b+f2 b+f3 u

1 b+3b+4 b+f1

2

v

v+1

î

b+2

.
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2. Suppose 2 ≤ i ≤ b + 2 and 3 ≤ k ≤ c + 1. Then

U[i, k] =

1 2 3 v b+kb+f2 u

1 i b+3 ˆb+k b+f1

2

î

b+2

.

Now we do a similar argument as in proof of Proposition 4.2.3 by ap-

plying Theorems 3.2.9 and 3.2.12. We get that Θ̂T [i] = Θ̂S plus a linear

combination of homomorphisms indexed by tableaux not dominated by S

and that Θ̂U[i,k] = Θ̂S plus a linear combination of homomorphisms indexed

by tableaux which are either not dominated by S or semistandard and dif-

ferent from S. Now by combining the two cases together, we find that the

coefficient of Θ̂S in σ is the total number of tableaux of the form T [i] or
U[i, k], which is (b + 2 − v) + (c − 1)(b + 1) which is odd. Hence, σ ≠ 0.

4.4.2 Homomorphisms from Sµ to Sλ

In this section we consider homomorphisms γ ∶ Sµ Ð→ Sλ. Assume that

c ≤ v ≤ a − 1. Define Ai to be the µ–tableau of type λ as follows

Ai = 1a−v+2i 2c−2i 3 4 . . . b + 2

1v−2i 22i

where 0 ≤ i ≤ c−1
2
.

Lemma 4.4.3. For 0 ≤ i ≤ c−1
2
, Θ̂Ai

are non-zero, and are linearly indepen-

dent if v ≤ b + 1.

Proof. By using Theorem 3.2.12, we express Θ̂Ai
for 0 ≤ i ≤ c−1

2
as linear

combinations of semistandard homomorphisms such that there is at least one

semistandard tableau appearing in each case. Thus, the homomorphisms

are non-zero. Moreover, if v ≤ b + 1, in the expression for Θ̂Ai
we have a

semistandard tableau with (c − 2i − 1) 2s in the first row and this tableau
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does not occur in the expression for Θ̂Aj
, where i ≤ j. Hence Θ̂Ai

are are

linearly independent.

Proposition 4.4.4. Let m be minimal such that c ≤ 2m. If a − v ≡ −1

mod 2m, then ψd,t ○ Θ̂A0
= 0 for all d, t.

Proof. If d ≥ 2, then from Theorem 3.2.9 we get ψd,1 ○ Θ̂A0
= 0. Now, if d = 1

then ψ1,t1 ○ Θ̂A0
= 0 for t1 ≡ 1 mod 2, because each Ai have an odd number

of 1s in each row and ( 2k
2j+1
) ≡ 0 mod 2 for all k, j ≥ 0. Finally, suppose d = 1

and t2 ≡ 0 mod 2. Then we have a − v ≡ −1 mod 2m. Then

ψ1,t2 ○ Θ̂A0
= (a − v + t2

t2
) 1a−v+t2 2c−t2 3 4 . . . b + 2

1v

we apply Lemma 4.1.4, since t2 > a − v + t2 then the binomial coefficient

(a−v+t2
t2
) is divisible by 2 which is zero modulo 2. Thus, ψ1,t ○ Θ̂A0

= 0

4.4.3 Composing the homomorphisms

Now we analysis when Sµ is a summand of Sλ. Let ∆ be the µ–tableau of

type µ′

∆ =
1 2 3 u

1 2 3 v
.

Then we have the following theorem.

Theorem 4.4.5. Suppose T ∈ U . Then

Θ̂T ○ Θ̂A0
= Θ̂∆

Furthermore, Θ̂∆ ≠ 0.

Proof. From Theorem 3.2.12 we get Θ̂∆ ≠ 0. Now apply Theorem 3.1.12

with T ∈ U and S equal to A0. Suppose X ∈ X . Since each T i is a proper

set, each Xij must be as well. This means that if some integer i appears

in two sets Xkj,X lj , then the multinomial coefficient (X1j
j
+X2j

j
+X3j

j
+...

X
1j
j

,X
2j
j

,X
3j
j

,...
) from

Theorem 3.1.12 will include a factor (2
1
), which gives 0.
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So in order to get a non-zero coefficient in Theorem 3.1.12, we must have

X1j ,X2j ,X3j , . . . pairwise disjoint for each j, which means that we will have

X11
⊔X21

⊔ ⋅ ⋅ ⋅ = {1, . . . , u}, X12
⊔X22 = {1, . . . , v};

so UX will equal ∆.

If S = A0, the only way to achieve this is to have

X11 = T 1
∖ {1, . . . , v}, X12 = {1, . . . , v}, Xi1 = T i for i ≥ 2.

Thus we have Θ̂T ○ Θ̂A0
= Θ̂∆.

Lemma 4.4.6. Let xi be (2, i)–entry of T , where 2 ≤ i ≤ c. Then the number

of tableaux in U is (u−v
a−v)(u+v−a−1c−1 ).

As corollary of Lemma 4.4.6

Corollary 4.4.7. Take all congruences modulo 2. Then

σ ○ Θ̂A0
≡ (u − v

a − v
)(u + v − a − 1

c − 1
)Θ̂∆.

Now we prove Theorem III. Recall that

Theorem III. Let F be a field of characteristic 2 and let q = 1. Suppose

λ = (a, c,1b) is a partition of n, where a, b are positive even integers and c is

odd. Let µ be a partition of n such that Sµ is irreducible. Let m be minimal

such that c ≤ 2m. If µ or µ′ equals (u, v), where u > v and u is even and v

is odd with v ≤ min{a − 1, b + 1} and (u−v
a−v
) is odd and v ≡ −1 mod 2m and

a − v ≡ −1 mod 2m. Then Sλ has a direct summand isomorphic to Sµ.

Proof. Suppose Sµ = S(u,v) is irreducible, with u+v = a+b+c. Suppose that

u, v satisfy the given condition that (u−v
a−v
) is odd. We would like to show

that there are homomorphisms Sµ γ
Ð→ Sλ δ

Ð→ Sµ′ such that δ ○ γ ≠ 0. Let

δ = σ.

Suppose a − v ≡ −1 mod 2m. Let γ = Θ̂A0
. γ is a homomorphism from

Sµ to Sλ. Then from Corollary 4.4.7

δ ○ γ = (u − v
a − v

)(u + v − a − 1
c − 1

)Θ̂∆.

The first term is odd by assumption, the second binomial coefficient (u+v−a−1
c−1

) /≡
0 mod 2 because that S(u,v) is irreducible, so from Corollary 4.1.3 u−v ≡ −1
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mod 2m, then u ≡ v−1 mod 2m. Since a−v ≡ −1 mod 2m, then v−a−1 ≡ 0

mod 2m. Thus, binomial coefficient (u+v−a−1
c−1

) ≡ (v−1
c−1
). It is enough to show

that (v−1
c−1
) /≡ 0 mod 2. Now by applying Lemma 4.1.4, we have v − 1 =

2v1 + 4v2 + ⋅ ⋅ ⋅ + 2
mvm + ⋅ ⋅ ⋅ + 2

kvk and c − 1 = 2c1 + 4c2 + ⋅ ⋅ ⋅ + 2
mcm. If v ≡ −1

mod 2m then v = 1+ 2+ ⋅ ⋅ ⋅ + 2m−1 + . . . , so vi = 1 for 0 ≤ i. Hence for modulo

2 (v−1
c−1
) ≡ (v1

c1
)(v2

c2
) . . . (vm−1

cm−1
)(vm

0
), where vi, ci ∈ {0,1}. So if vi ≥ ci for all i,

then (v−1
c−1
) /≡ 0 mod 2.

This concludes the proof of our main results. We also have the following

conjectures. Let F be a field of characteristic 2. Suppose λ = (a, c,1b) and
µ = (u, v), where a, b, c, u, v are positive integers with a, b, u even and c, v

odd such that a > c, u > v, n = a + b + c = u + v and c ≤ v ≤ min{a − 1, b + 1}.
Suppose U is the set of λ–tableaux having the form:

1 2 3 v ⋆ ⋆

1 ⋆ ⋆

⋆

⋆

such that the ⋆s are the numbers from 2 to u, and the entries are strictly

increasing along each row and weakly increasing down each column. Define

σ = ∑
T ∈U

Θ̂T

and define Ai to be the µ–tableau of type λ as follows

Ai = 1a−v+2i 2c−2i 3 4 . . . b + 2

1v−2i 22i

where 0 ≤ i ≤ c−1
2
. Set

γ =

c−1
2∑

i=0

Θ̂Ai
.

Then we have the following conjecture.

Conjecture 4.4.8. Let m be minimal such that c ≤ 2m. Then if a − v ≡ 1
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mod 2m and v ≡ −1 mod 2m, then ψd,t ○ γ = 0 for all d, t.

Conjecture 4.4.9. If a − v ≡ 1 mod 2m and v ≡ −1 mod 2m then we have

homomorphisms γ ∶ Sµ Ð→ Sλ and σ ∶ Sλ Ð→ Sµ′ and σ ○ γ ≠ 0.

If Conjecture 4.4.9 is true, the next conjecture follows immediately.

Conjecture IV. Let F be a field of characteristic 2 and let q = 1. Suppose

λ = (a, c,1b) is a partition of n, where a, b are positive even integers and c is

odd. Let µ be a partition of n such that Sµ is irreducible. Let m be minimal

such that c ≤ 2m. Suppose µ or µ′ equals (u, v), where u > v and u even and

v odd with v ≤ min{a − 1, b + 1} and (u−v
a−v
) is odd and v ≡ −1 mod 2m and

a − v ≡ 1 mod 2m. Then Sλ has a direct summand isomorphic to Sµ.

We believe that similar techniques can be used to prove the following

conjecture which we have shown holds for c = 5,7, although we do not know

how to express the homomorphism γ in terms of the homomorphisms Θ̂Ai
.

Conjecture V. Let F be a field of characteristic 2 and let q = 1. Suppose

λ = (a, c,1b) is a partition of n, where a, b are positive even integers and c is

odd. Let µ be a partition of n such that Sµ is irreducible. Let m be minimal

such that c ≤ 2m. Suppose µ or µ′ equals (u, v), where u > v and u even and

v odd with v ≤min{a − 1, b + 1} and (u−v
a−v
) is odd and v ≡ −1 mod 2m. Then

Sλ has a direct summand isomorphic to Sµ.
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