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Abstract  1 

Tendons can broadly be categorised according to their function; those that act purely to position 2 

the limb and those that have an additional function as energy stores. Energy-storing tendons 3 

undergo many cycles of large deformations during locomotion, and so must be able to extend 4 

and recoil efficiently, rapidly and repeatedly. Our previous work has shown rotation in response 5 

to applied strain in fascicles from energy-storing tendons, indicating the presence of helical 6 

substructures which may provide greater elasticity and recovery. In the current study, we 7 

assessed how preconditioning and fatigue loading affects the ability of fascicles from the energy-8 

storing equine superficial digital flexor tendon to extend and recoil. We hypothesised that 9 

preconditioned samples would exhibit changes in microstructural strain response, but would 10 

retain their ability to recover. We further hypothesised that fatigue loading would result in 11 

sample damage, causing further alterations in extension mechanisms and a significant reduction 12 

in sample recovery. The results broadly support these hypotheses, preconditioned samples 13 

showed some alterations in microstructural strain response, but were able to recover following 14 

the removal of load. However, fatigue loaded samples showed visual evidence of damage and 15 

exhibited further alterations in extension mechanisms, characterised by decreased rotation in 16 

response to applied strain. This was accompanied by increased hysteresis and decreased 17 

recovery. These results suggest that fatigue loading results in a compromised helix substructure, 18 

reducing the ability of energy-storing tendons to recoil. A decreased ability to recoil may lead to 19 

an impaired response to further loading, potentially increasing the likelihood of injury.  20 

Keywords: Mechanical testing, fatigue damage, micromechanics, confocal microscopy, 21 

hysteresis.  22 
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1. Introduction 1 

Tendons provide the attachment from muscle to bone, facilitating movement of the limbs during 2 

locomotion. Specific tendons also act as energy stores, stretching and recoiling by up to 16 % 3 

with each stride to decrease the energetic cost of locomotion [1, 2]. To store and release 4 

sufficient energy in a useable form, these tendons need to be more elastic than tendons with a 5 

purely positional function [3, 4]. Such differences in mechanical properties between tendon types 6 

must be conferred by differences in structural organisation and composition. All tendons can be 7 

considered as hierarchical fibre-composite materials, in which type I collagen molecules are 8 

grouped together in a highly ordered fashion, forming subunits of increasing diameter [5], the 9 

largest of which is the fascicle. At the larger hierarchical levels, the collagenous units are 10 

interspersed with a predominantly non-collagenous matrix [6]. While the basic structure of all 11 

tendons is similar, numerous studies have documented structural and compositional differences 12 

between energy-storing and positional tendons [7-12]. 13 

We have previously observed rotation in response to applied strain within fascicles from energy-14 

storing tendons, which suggests the presence of helical substructures [9]. We have previously 15 

proposed that this helical formation may provide a more elastic mechanism for extension and 16 

recoil than the viscous fibre sliding that governs extension in positional tendons [9]. Despite this 17 

specialisation, energy-storing tendons such as the human Achilles and equine superficial digital 18 

flexor tendon (SDFT) are highly prone to injury [13-16]. Injury is thought to occur due to 19 

accumulation of microdamage over the course of many loading cycles, rather than as a sudden 20 

rupture [17]. In support of this, our recent work has demonstrated that cyclic fatigue loading 21 

results in alterations to the fascicle microstructure and response to applied strain [18]. We have 22 

shown that fatigued fascicles rotate less on extension suggesting loss of the helix structure. 23 
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However, if the helix structure is utilised by energy storing fascicles to provide better recoil than 1 

fibre sliding, fatigued fascicles may have reduced ability to recover following extension. In our 2 

previous work we assessed the effect of fatigue on fascicle extension mechanisms. In this study 3 

we now investigate how repetitive loading affects recoil mechanisms within tendon fascicles.   4 

Furthermore, our previous studies compared the microstructural strain response of fatigue loaded 5 

fascicles with fascicles that had experienced no prior loading (controls) [9, 19]. However, when 6 

assessing the loading response of soft tissues such as tendon, it is common practice to apply a 7 

few loading cycles (typically between 10 and 30 [4, 20, 21]) prior to testing to precondition the 8 

sample so it reaches a steady state [22]. Therefore previous studies could not distinguish between 9 

the effects of preconditioning and fatigue loading. Indeed, while preconditioning is universally 10 

accepted as a part of any mechanical testing protocol [23], the processes that occur within the 11 

tissue during preconditioning are not well understood. A few recent studies have demonstrated 12 

that during the first few cycles of loading there is a considerable degree of collagen fibre 13 

realignment and recruitment [24, 25]. However, to the authors’ knowledge, no previous studies 14 

have determined how both preconditioning and fatigue loading affect the microstructural strain 15 

response and recoil capacity of soft tissues. 16 

The aim of this study was therefore to assess the effects of preconditioning and fatigue loading 17 

on extension and recoil mechanisms within fascicles from energy-storing tendons. This provides 18 

a greater understanding of the mechanisms occurring during preconditioning and allows 19 

comparison of fatigue loaded samples to samples which have been preconditioned to reach a 20 

steady state. We have used equine tissue for our studies as the human Achilles and equine SDFT 21 

show remarkable similarities in terms of healthy function and injury risk [26, 27]. 22 
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In this study, we tested the hypotheses that: 1. Preconditioning will alter the microstructural 1 

extension and recoil mechanisms in fascicles, but fascicles will retain their ability to recover 2 

after the removal of load. 2. Cyclic fatigue loading will result in fascicle damage, causing further 3 

alterations in microstructural extension and recoil mechanisms and reduced ability to recover. 4 

2. Materials and Methods 5 

2.1 Sample Collection and Preparation 6 

Forelimbs distal to the carpus were collected from half- to full-bred, skeletally mature, 7 

Thoroughbred horses (aged 3 to 6 years, n = 10), euthanased at a commercial equine abattoir. We 8 

have previously shown an intact helical fascicle structure in tendons from this young age group 9 

[9]. Only tendons which had no macroscopic evidence of previous tendon injury at post-mortem 10 

examination were included in the study (approximately 1 in 20 SDFTs harvested show evidence 11 

of injury). The SDFT was dissected free from the limbs from the level of the carpus to the 12 

metacarpophalangeal joint, and wrapped in tissue paper dampened with phosphate buffered 13 

saline, and then in aluminium foil. Samples were stored frozen at -20 °C in sealed bags within 24 14 

hours of animal death for up to 6 months. It has previously been shown that one freeze-thaw 15 

cycle does not affect tendon mechanical properties [28]. On the day of testing, the tendons were 16 

allowed to thaw at room temperature and fascicles (8-12 fascicles per tendon, approximately 25 17 

mm in length, diameter of 0.2 - 0.4 mm) were isolated from the mid-metacarpal region of the 18 

tendon by cutting with a scalpel longitudinally through the tendon (Fig. S1). Fascicle hydration 19 

was maintained by storing the fascicles on tissue paper dampened with Dulbecco’s Modified 20 

Eagles Medium (DMEM).  Fascicle diameter was measured continuously along a 10 mm region 21 

in the mid-portion of the fascicle using a laser micrometer, scanning perpendicular to the fascicle 22 
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[10]. The smallest diameter recorded was used to estimate fascicle cross sectional area, assuming 1 

a circular cross section. While previous studies have demonstrated that fascicle cross section 2 

within the equine SDFT may be irregular [29], we have previously demonstrated that assuming a 3 

circular cross section to calculate cross sectional area results in an overestimation of 4 % [10]. 4 

All experiments were performed at room temperature. Fascicles were observed carefully during 5 

each experiment to ensure that only one fascicle was being tested. 6 

2.2 Mechanical testing protocols 7 

Fascicles were stained with the collagen stain 5-([4,6-Dichlorotriazin-2-yl]amino)fluorescein 8 

hydrochloride (5-DTAF) at a concentration of 2 mg/ml  in 0.1M sodium bicarbonate buffer, pH 9 9 

for 20 min. Following staining the fascicles were washed in 2 changes of DMEM for 20 min. 10 

Fascicles from each tendon were then randomly assigned to 3 groups: control (n = 3 per tendon), 11 

preconditioned (PC; n = 3-4 per tendon) and fatigue loaded (FL; n = 3-4 per tendon). Control 12 

samples remained unloaded, while PC and FL samples were secured in custom made chambers 13 

at a resting grip-to-grip distance of 10 mm [30]. Each chamber was placed in a materials testing 14 

machine (Electropuls E1000, Instron) and a preload of 0.2 N was applied to remove any slack 15 

from the sample and determine the resting length. We have previously shown that fascicle failure 16 

strain is more consistent between samples than failure stress [10], and so to determine the 17 

appropriate load to apply for the subsequent cyclic tests, one loading cycle to a displacement of 1 18 

mm (10 % strain, equivalent to 50% of predicted fascicle failure strain) was applied, and the 19 

maximum load reached at this displacement was recorded. A cyclic creep test was then 20 

performed for either 30 cycles for PC samples or 1800 cycles for FL samples at 1 Hz, using the 21 

load recorded at 10 % strain as the maximum load for each cycle, and 0.2 N as the minimum 22 

load. During each test, force and displacement data were recorded at a frequency of 100 Hz. The 23 
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displacement at 0.2 N in the last cycle was used to calculate the increase in sample length in both 1 

the PC and FL groups. We chose to apply 30 loading cycles to samples in the PC group, as we 2 

have previously shown that this is within the primary phase of the creep curve, but provides a 3 

relatively stable curve compared to the first few cycles of loading [18]. 1800 loading cycles was 4 

applied to the FL group as this has previously been shown to be sufficient to induce mild damage 5 

within SDFT fascicles, but is well below the average number of cycles to failure, which we have 6 

shown to be in excess of 16,000 cycles in this tendon type [18], and so would be within the 7 

secondary portion of the creep curve. 8 

2.3 Calculation of Hysteresis 9 

To determine the extent of damage with FL, the percent increase in hysteresis from cycle 30 (end 10 

of PC) to cycle 1800 (end of FL) was calculated from the mechanical testing data (GraphPad 11 

Prism). 12 

2.4 Determination of extension and recoil mechanisms 13 

The microstructural strain response of the control samples was assessed within 1 hour of 14 

staining. The strain response of samples in the PC and FL groups was assessed immediately after 15 

loading. Each fascicle was fixed into the tensile straining rig at a resting grip-to-grip length of 10 16 

mm. Each fascicle was viewed under the laser scanning confocal microscope (TCS SP2, Leica 17 

Microsystems GmbH, Wetzlar, Germany) using a x20 objective (HC PL Fluotar, Nikon, 18 

Kingston-Upon-Thames, UK). Fascicle alignment and orientation was checked under brightfield 19 

settings and the grips were slowly moved apart and the sample monitored visually until a small 20 

amount of tension was applied, which was signified by the fascicle slightly lifting off the base of 21 

the rig [18, 31]. This corresponded to a load of approximately 0.1 N (range: 0.05 - 0.15 N). A 22 
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grid of four squares, each 50 µm × 50 µm, was bleached onto the samples as described 1 

previously [9]. The laser intensity was then reduced to the imaging range, and the sample imaged 2 

in the same focal plane with the same objective lens at a resolution of 2048 × 2048 pixels
2
, with 3 

each pixel measuring 0.18 x 0.18 µm
2
. A focal plane 20-25 µm within the fascicle was chosen as 4 

images at this depth had the greatest clarity. A strain of 4 % was then applied to the fascicle at a 5 

rate of 1 % sec
−1

, and the grid was re-imaged. The sample was returned to the test start position 6 

and the grid re-imaged. This process was repeated, straining to a value of 8 % before once again 7 

returning to 0 % strain and re-imaging. There was a hold time of approximately 1 minute before 8 

imaging at each increment whilst the focal plane was located; it has previously been shown that 9 

this is sufficient time for the majority of stress relaxation to occur [9, 19]. 10 

2.5 Image analysis 11 

Images from the confocal experiments were processed using the analysis software Image J 12 

(1.34s, National Institute of Health, USA) as described previously to generate coordinates of the 13 

grid corners and single pixel traces of the left-most y line and bottom x line [9, 18]. These data 14 

were used to calculate a series of grid measures, representing local longitudinal strain, transverse 15 

strain, fibre sliding and grid rotation, as described previously [9, 18]. 16 

To assess the ability of fascicles to recoil after the application of strain, the percent recovery of 17 

fibre extension, transverse strains, fibre sliding and grid rotation was calculated following return 18 

from a 4 % and 8 % applied strain, relative to the initial 0 % position. 19 

2.6 Statistical Analysis 20 

The distribution of the data was tested using a D’Agostino-Pearson test for normality (GraphPad 21 

Prism). Data were non-normally distributed and were therefore subjected to Kruskal-Wallis tests 22 
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followed by Dunn's multiple comparison post-hoc analysis. Statistical significance was taken as 1 

p<0.05. Data are displayed as mean±SEM. 2 

3. Results 3 

3.1 Effect of Preconditioning 4 

Samples in the PC group increased in length after cyclic loading from a resting grip to grip 5 

length of 10.43±0.32 mm to 10.63±0.19 mm, corresponding to an average length increase of 1.90 6 

%. When visualising the samples under the confocal microscope, there were no discernible 7 

differences in the appearance of the control and PC groups (Fig. 1a-f). 8 

When considering the micromechanical response, there were no significant differences in any of 9 

the measured extension mechanisms as a result of PC, with fibre extension, sliding and rotation 10 

reaching similar values to controls (Fig. 2). However, PC caused a large and significant 11 

reduction in the compressive strains that were measured perpendicular to the loading axis in 12 

control samples (p<0.01; Fig. 2b). Correspondingly, Poisson’s ratios were 0.91 ± 0.45 and 1.58 ± 13 

0.32 in control samples at 4 % and 8 % strain respectively, decreasing to 0.46 ± 0.53 and 0.10 ± 14 

0.24 after PC.  15 

Recovery of fibre extension, transverse strains and rotation did not differ between control and PC 16 

samples (Fig. 3). However, percent recovery of fibre sliding was significantly reduced as a result 17 

of PC after both 4 % and 8 % applied strain (Fig. 3d). 18 

3.2 Effect of Fatigue Loading 19 

 FL resulted in a more substantial increase in sample length with an average length, post-loading, 20 

of 11.00±0.62 mm, which corresponds to an increase of 5.48 % compared to starting conditions. 21 
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Samples in the FL group exhibited low levels of fatigue damage, characterised by the appearance 1 

of a small number of kinked fibres and widening of the inter-fibre space (Fig. 1g-i).  2 

Differences in fascicle micromechanics post FL were more pronounced. As seen in PC samples, 3 

levels of fibre extension were somewhat decreased compared to controls, but this was not 4 

significant (Fig. 2a). The reduction in the large compressive transverse strain was similar to that 5 

seen in PC samples, reaching significance at 8 % applied strain (p<0.01; Fig. 2b). Surprisingly, 6 

Poisson's ratios were slightly negative in FL samples, with values of -0.08 ± 0.38 and -0.1 ± 0.41 7 

at 4 % and 8 % applied strain respectively. Fibre sliding was slightly increased in the FL group 8 

compared to PC and control samples, but this did not reach significance (Fig. 2c). However, in 9 

agreement with previous results [18], FL resulted in decreased rotation, with significantly 10 

reduced levels compared to PC and control groups at 8 % applied strain (p<0.05, Fig. 2d). 11 

Percent hysteresis increased after 1800 cycles of fatigue loading compared to 30 preconditioning 12 

cycles, increasing from an average of 10.9±1.7% to 16.8±1.4% (p<0.01, Fig. 3a). This reduction 13 

in elasticity at the fascicle level was mirrored by reduced recovery of all microstructural 14 

extension mechanisms. The percent recovery of fibre extension showed a significant reduction in 15 

FL samples compared to both control and PC samples (p<0.05, Fig 3b) and recovery of fibre 16 

sliding was significantly less compared to controls, at both 4 % and 8 % applied strain (p<0.01; 17 

Fig. 3d). FL also resulted in a decreased recovery of rotation, which was significantly different to 18 

the control group after 4 % strain, and significantly lower than both the control and PC groups 19 

after 8 % applied strain (p<0.05, Fig. 3e). By contrast, there was no difference in the percent 20 

recovery of transverse strains between groups (Fig. 3c). 21 

4. Discussion 22 
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In support of the hypotheses, the data show that both preconditioning and fatigue loading result 1 

in alterations to SDFT fascicle microstructural strain response with greater alterations observed 2 

in fatigue loaded samples. Preconditioned samples retained most of their ability to recoil, while 3 

fatigue loading was associated with increased hysteresis, visible regions of damage, and a 4 

significantly reduced ability to recoil within the timeframe studied. 5 

When interpreting the results, the level of stress applied and number of loading cycles needs to 6 

be considered, as well as the time period between loading and imaging. Preconditioning is often 7 

used to reach a steady state before performing further mechanical testing and to remove any 8 

influence from prior loading [4, 24, 25]. Studies have indicated that it is important to 9 

precondition samples to levels equivalent to the stresses and strains that will be applied during 10 

the test procedure in order to elicit a consistent response [32, 33]. In the current study, the 11 

preconditioning strain of 10 % exceeds the highest strain applied (8 %) during analysis of the 12 

microstructural strain response. Whilst it has been shown that a steady state may not be reached 13 

until in excess of one hundred cycles have been completed [34], a typical preconditioning step 14 

usually consists of between 10 and 30 cycles [4, 20, 24]. 15 

The results are likely affected by the time between cyclic loading and imaging, and recovery 16 

time. There was a period of approximately 15 minutes between removing the samples from the 17 

loading chambers and straining under the microscope, and recoil capacity was assessed 18 

approximately 1 minute after unloading. If the reductions in recovery are due to a decreased 19 

recoil speed rather than absolute recoil ability, this time period may not have been sufficient to 20 

allow full recovery of cyclically loaded samples. Indeed, it has previously been shown that, at 21 

longer timescales, the effects of preconditioning are at least partially reversible, with 22 

significantly reduced preconditioning effects after 30 minutes of recovery [35, 36]. It is therefore 23 
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possible that, had the preconditioned samples been left to recover for longer, they would have 1 

exhibited a similar microstructural strain response to that seen in control samples. However, it is 2 

unlikely that fatigue loaded samples would have been able to recover fully over a longer time 3 

period due to the observed matrix damage, although some degree of recovery may have been 4 

possible. 5 

4.1 Preconditioning effects 6 

The increased sample length measured during preconditioning is characteristic of the creep 7 

response [37], and is thought to occur predominantly due to sliding between adjacent fibres and 8 

fibrils within the fascicle [38]. However, the absence of any apparent damage in preconditioned 9 

samples correlates with the gross mechanical data, all suggesting that the preconditioning 10 

protocol loaded the fascicles within their elastic limit. Nevertheless, preconditioning does seem 11 

to result in some alterations in the microstructural strain response, with a non-significant 12 

decrease in fibre extension and significantly decreased transverse strains compared to unloaded 13 

controls. These data support previous studies, which have reported reductions in fibre diameter 14 

and fibre rearrangement during stress relaxation [39, 40]. It is possible that a small number of 15 

loading cycles is sufficient to result in fibre extension which was not reversed during the short 16 

time period between loading and visualisation on the confocal microscope (approximately 15 17 

minutes). This may account for some of the increase in length observed as a result of 18 

preconditioning, and leave no remaining capacity for further fibre extension. 19 

The large compressive strains measured perpendicular to the loading axis in control samples are 20 

similar to those reported previously [9, 18, 19]. These large reductions in diameter are thought to 21 

be due to exudation of fluid from the matrix [19, 41]. The large decrease in these strains seen in 22 
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preconditioned samples suggests that only a relatively small number of loading cycles are 1 

required to force fluid out of the matrix, and that this process is complete within 30 cycles of 2 

loading. Further, fascicles do not seem able to imbibe fluid during the short period between 3 

loading and imaging. Fluid movement within tendon has not been studied in vivo, but several 4 

studies have reported significant extrusion of fluid from tendon as a result of both cyclic and 5 

static loading [42-44], supporting the results of the current study.  6 

While preconditioning did not result in alterations in the levels of fibre sliding, there was a 7 

significant reduction in recovery of fibre sliding in preconditioned samples compared to controls. 8 

This could be as a result of permanent deformation, which would be surprising after a small 9 

number of loading cycles. However, it is likely that fibre sliding exhibits time-dependent 10 

behaviour as this mechanism is modulated by the non-collagenous inter-fibre matrix, the 11 

behaviour of which highly time-dependent [45]. A longer time period between cyclic loading and 12 

analysis of recoil capacity in preconditioned samples may therefore have resulted in increased 13 

recovery of fibre sliding.  14 

It is well established that fibre sliding is the predominant mechanism for extension in tendons 15 

with a purely positional function [9, 19, 46]. However, our previous work has demonstrated 16 

relatively low levels of fibre sliding in the energy-storing SDFT; extension in this tendon type 17 

appears to be governed by unwinding of helical substructures, indicated by sample rotation, a 18 

mechanism that we propose provides greater elasticity [9]. There was a small reduction in 19 

rotation in preconditioned samples, but this was not significant, and samples retained the 20 

majority of their ability to recoil. These results suggest that the fascicular helix structure 21 

maintains its integrity during preconditioning. 22 
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4.2 Effect of Fatigue Loading 1 

Fatigue loading resulted in marked alterations in fascicle behaviour compared to both control and 2 

preconditioned samples, with fatigue loaded samples exhibiting a further increase in length 3 

compared to those in the preconditioned group. This was accompanied by alterations in fascicle 4 

appearance, with mild to moderate damage evident in fatigue loaded samples. This damage was 5 

consistent with that reported previously, with the presence of irregular fibre kinks and widening 6 

of the interfibre space [47-50]. These visual differences were accompanied by some alterations in 7 

extension mechanisms and a marked reduction in the fascicles' immediate ability to recoil and 8 

recover, characterised by increased hysteresis and decreased percent recovery of grid 9 

deformation parameters. 10 

Levels of fibre extension were similar between preconditioned and fatigue loaded samples. 11 

However, fatigue loading resulted in reduced recovery of fibre extension. This may be indicative 12 

of permanent deformation within these samples, suggesting that the fibres have been stretched 13 

beyond their elastic limit. This could be due to increased levels of fibril sliding, or alternatively 14 

caused by unwinding of the helix substructures such that they are no longer able to recoil 15 

efficiently. 16 

Small transverse strains were measured in both preconditioned and fatigue loaded samples. 17 

Surprisingly, positive transverse strains were measured in some fatigue loaded samples, leading 18 

to average Poisson’s ratios that were slightly negative. This may be because the fibres in some 19 

samples were observed to pull apart during loading (see Fig. 1i), possibly due to reduced 20 

integrity of the interfibre matrix. Recovery of transverse strains did not vary significantly in any 21 
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of the test groups. However, considering these data are calculations of a percentage of a very 1 

small value, they are likely to be highly influenced by any variability or error in the data.  2 

Levels of fibre sliding appeared to increase in fatigue loaded samples compared to 3 

preconditioned samples and controls, although this was not significant. This apparent increase in 4 

fibre sliding may be indicative of damage initiation within the matrix. Further, recovery of fibre 5 

sliding was significantly reduced in fatigue loaded samples, suggesting that fibre sliding may 6 

have reached irreversible levels. Previous studies have shown that fatigue damage is often 7 

characterised by widening of the inter-fibre space [47, 49, 51], suggesting that damage has 8 

occurred between the collagen fibres. Indeed, some fatigue loaded samples demonstrated 9 

increased spacing between fibres, which was associated with greater levels of fibre sliding in 10 

those particular samples.  11 

In agreement with previous findings [52], fatigue loading caused a significant reduction in levels 12 

of rotation compared to both control and preconditioned groups, indicating alterations to the 13 

helix substructures as a result of repetitive loading. This was accompanied by decreased recovery 14 

and increased hysteresis in these samples. The significant reduction in recovery of rotation 15 

resulting from fatigue loading may indicate that the alterations in helix substructure caused by 16 

repetitive loading decrease the ability of fascicles from energy-storing tendons to elastically 17 

stretch and recoil. Interestingly, these results are similar to the decreased ability to recover 18 

observed in fascicles from aged SDFTs [9]. Tendons from older individuals will have undergone 19 

a larger number of loading cycles during the lifetime of the animal, and therefore there is more 20 

likely to be microdamage present in aged tendons, resulting in a reduced ability to recover, 21 

similar to that seen in fatigue loaded samples. 22 
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The results of this study show that preconditioning of soft tissues results in alterations in fascicle 1 

microstructural strain response, with the largest alterations seen in the reduction of transverse 2 

strains, likely due to fluid exudation and collagen fibre recruitment and realignment. This may 3 

result in a more ordered structure more able to manage further applications of load. It also clear 4 

that preconditioning has little effect on fascicle extension and recovery mechanisms, with the 5 

lower recovery of fibre sliding in these samples possibly due to the viscous nature of the 6 

interfibre matrix that governs this response. When comparing fatigue loaded with preconditioned 7 

samples, it is evident that an extended period of loading results in alterations to the fascicle 8 

extension mechanisms, characterised by a decrease in sample rotation. This decreased rotation is 9 

accompanied by increased hysteresis, and a reduction in recovery speed once load has been 10 

removed. 11 

It is important to consider the physiological relevance of these findings. It is clear that fatigue 12 

damage accumulates far more rapidly in vitro than in vivo, most likely due to a combination of 13 

gripping effects, test parameters that may not entirely mimic the in vivo loading environment and 14 

a lack of healing capacity [53, 54]. However, the damage observed in the fatigue loaded group is 15 

similar to that seen in tendons which have been fatigue loaded in vivo [47-49, 55]. Further, we 16 

observed that fatigue loading resulted in changes in microstructural strain response consistent 17 

with those seen in in vivo aged tendon [9]. These findings suggest that, although the timescales 18 

may differ, in vitro observations are representative of in vivo fatigue. Decreased recoil speed and 19 

increased hysteresis as a result of fatigue loading are likely to reduce energy return during 20 

locomotion, and increase the risk of microdamage occurring to the tissue. These changes may 21 

reduce the mechanical competence of the tissue and also alter cell response to loading, which 22 

may lead to clinical injury. 23 
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4.3 Conclusions 1 

Previous work has indicated the presence of helical substructures within fascicles from energy 2 

storing tendons, which are associated with a greater ability for fascicles to elastically stretch and 3 

recover [9]. These structures appear to be compromised as a result of cyclic fatigue loading, 4 

indicated by a reduction in sample rotation. This is associated with increased hysteresis and 5 

incomplete recovery, suggesting that fatigue-induced alterations in the helix substructure in 6 

fascicles from energy-storing tendons reduce their ability to recoil. This may help to explain how 7 

fatigue damage affects tendon properties and injury risk in vivo.  Elucidation of the effect of 8 

fatigue damage on fascicle substructure will aid in the development of novel treatment strategies 9 

and preventative measures. 10 

Acknowledgements: This work was supported by a project grant (prj/752) from the Horserace 11 

Betting Levy Board.  12 

  13 



  

18 

 

References 1 

 2 

[1] Alexander RM. Energy-saving mechanisms in walking and running. J Exp Biol 1991;160:55-3 

69. 4 

[2] Stephens PR, Nunamaker DM, Butterweck DM. Application of a Hall-effect transducer for 5 

measurement of tendon strains in horses. Am J Vet Res 1989;50:1089-95. 6 

[3] Lichtwark GA, Wilson AM. Is Achilles tendon compliance optimised for maximum muscle 7 

efficiency during locomotion? J Biomech 2007;40:1768-75. 8 

[4] Batson EL, Paramour RJ, Smith TJ, Birch HL, Patterson-Kane JC, Goodship AE. Are the 9 

material properties and matrix composition of equine flexor and extensor tendons determined by 10 

their functions? Equine Vet J 2003;35:314-8. 11 

[5] Kastelic J, Galeski A, Baer E. The multicomposite structure of tendon. Connect Tissue Res 12 

1978;6:11-23. 13 

[6] Kannus P. Structure of the tendon connective tissue. Scand J Med Sci Sports 2000;10:312-20. 14 

[7] Birch HL, Worboys S, Eissa S, Jackson B, Strassburg S, Clegg PD. Matrix metabolism rate 15 

differs in functionally distinct tendons. Matrix Biol 2008;27:182-9. 16 

[8] Birch HL. Tendon matrix composition and turnover in relation to functional requirements. Int 17 

J Exp Pathol 2007;88:241-8. 18 

[9] Thorpe CT, Klemt C, Riley GP, Birch HL, Clegg PD, Screen HR. Helical sub-structures in 19 

energy-storing tendons provide a possible mechanism for efficient energy storage and return. 20 

Acta Biomater 2013;9:7948-56. 21 

[10] Thorpe CT, Udeze CP, Birch HL, Clegg PD, Screen HRC. Specialization of tendon 22 

mechanical properties results from interfascicular differences. J R Soc Interface 2012; 9 3108-17. 23 

[11] Thorpe CT, Streeter I, Pinchbeck GL, Goodship AE, Clegg PD, Birch HL. Aspartic acid 24 

racemization and collagen degradation markers reveal an accumulation of damage in tendon 25 

collagen that is enhanced with aging. J Biol Chem 2010;285:15674-81. 26 

[12] Franchi M, Quaranta M, Macciocca M, De Pasquale V, Ottani V, Ruggeri A. Structure 27 

relates to elastic recoil and functional role in quadriceps tendon and patellar ligament. Micron 28 

2009;40:370-7. 29 

[13] Ely ER, Avella CS, Price JS, Smith RK, Wood JL, Verheyen KL. Descriptive epidemiology 30 

of fracture, tendon and suspensory ligament injuries in National Hunt racehorses in training. 31 

Equine Vet J 2009;41:372-8. 32 

[14] Kasashima Y, Takahashi T, Smith RK, Goodship AE, Kuwano A, Ueno T, et al. Prevalence 33 

of superficial digital flexor tendonitis and suspensory desmitis in Japanese Thoroughbred flat 34 

racehorses in 1999. Equine Vet J 2004;36:346-50. 35 

[15] Knobloch K, Yoon U, Vogt PM. Acute and overuse injuries correlated to hours of training 36 

in master running athletes. Foot Ankle Int 2008;29:671-6. 37 

[16] Kannus P, Natri A. Etiology and pathophysiology of tendon ruptures in sports. Scand J Med 38 

Sci Sports 1997;7:107-12. 39 

[17] Riley G. Tendinopathy: from basic science to treatment. Nat Clin Pract Rheum 2008;4:82-9. 40 

[18] Thorpe CT, Riley GP, Birch HL, Clegg PD, Screen HR. Fascicles from energy-storing 41 

tendons show an age-specific response to cyclic fatigue loading. J R Soc Interface 42 

2014;11:20131058. 43 

[19] Cheng VWT, Screen HRC. The micro-structural strain response of tendon. J Mater Sci 44 

2007;42:8957-65. 45 



  

19 

 

[20] Quinn KP, Winkelstein BA. Preconditioning is correlated with altered collagen fiber 1 

alignment in ligament. J Biomech Eng 2011;133:064506. 2 

[21] Woo SL. Mechanical properties of tendons and ligaments. I. Quasi-static and nonlinear 3 

viscoelastic properties. Biorheology 1982;19:385-96. 4 

[22] Fung YC. Biomechanics: Mechanical Properties of Living Tissues. 2nd Ed. ed. New York: 5 

Springer; 1993. 6 

[23] Conza N. Part 3: Tissue Preconditioning. Exp Techniques 2005;29:43-6. 7 

[24] Miller KS, Edelstein L, Connizzo BK, Soslowsky LJ. Effect of preconditioning and stress 8 

relaxation on local collagen fiber re-alignment: inhomogeneous properties of rat supraspinatus 9 

tendon. J Biomech Eng 2012;134:031007. 10 

[25] Miller KS, Connizzo BK, Feeney E, Soslowsky LJ. Characterizing local collagen fiber re-11 

alignment and crimp behavior throughout mechanical testing in a mature mouse supraspinatus 12 

tendon model. J Biomech 2012;45:2061-5. 13 

[26] Innes JF, Clegg P. Comparative rheumatology: what can be learnt from naturally occurring 14 

musculoskeletal disorders in domestic animals? Rheumatol (Oxford) 2010;49:1030-9. 15 

[27] Lui PPY, Maffulli N, Rolf C, Smith RKW. What are the validated animal models for 16 

tendinopathy? Scand J Med Sci Sports 2010;21:3-17. 17 

[28] Huang H, Zhang J, Sun K, Zhang X, Tian S. Effects of repetitive multiple freeze-thaw 18 

cycles on the biomechanical properties of human flexor digitorum superficialis and flexor 19 

pollicis longus tendons. Clin Biomech 2011;26:419-23. 20 

[29] Meghoufel A, Cloutier G, Crevier-Denoix N, de Guise JA. Ultrasound B-scan image 21 

simulation, segmentation, and analysis of the equine tendon. Med Phys 2010;37:1038-46. 22 

[30] Legerlotz K, Jones GC, Screen HRC, Riley GP. Cyclic loading of tendon fascicles using a 23 

novel fatigue loading system increases interleukin-6 expression by tenocytes. Scand J Med Sci 24 

Sports 2013;23:31-7. 25 

[31] Screen HRC, Lee DA, Bader DL, Shelton JC. An investigation into the effects of the 26 

hierarchical structure of tendon fascicles on micromechanical properties. Proc Inst Mech Eng H J 27 

Eng Med 2004;218:109-19. 28 

[32] Cheng S, Clarke EC, Bilston LE. The effects of preconditioning strain on measured tissue 29 

properties. J Biomech 2009;42:1360-2. 30 

[33] Eshel H, Lanir Y. Effects of Strain Level and Proteoglycan Depletion on Preconditioning 31 

and Viscoelastic Responses of Rat Dorsal Skin. Ann Biomed Eng 2001;29:164-72. 32 

[34] Schatzmann L, Brunner P, Staubli HU. Effect of cyclic preconditioning on the tensile 33 

properties of human quadriceps tendons and patellar ligaments. Knee Surg Sports Traumatol 34 

Arthrosc 1998;6 Suppl 1:S56-61. 35 

[35] Graf BK, Vanderby R, Jr., Ulm MJ, Rogalski RP, Thielke RJ. Effect of preconditioning on 36 

the viscoelastic response of primate patellar tendon. Arthroscopy 1994;10:90-6. 37 

[36] Lanir Y, Fung YC. Two-dimensional mechanical properties of rabbit skin—II. Experimental 38 

results. J Biomech 1974;7:171-82. 39 

[37] Sverdlik A, Lanir Y. Time-dependent mechanical behavior of sheep digital tendons, 40 

including the effects of preconditioning. J Biomech Eng 2002;124:78-84. 41 

[38] Goulam Houssen Y, Gusachenko I, Schanne-Klein MC, Allain JM. Monitoring micrometer-42 

scale collagen organization in rat-tail tendon upon mechanical strain using second harmonic 43 

microscopy. J Biomech 2011;44:2047-52. 44 

[39] Screen HRC, Toorani S, Shelton JC. Microstructural stress relaxation mechanics in 45 

functionally different tendons. Med Eng Phys 2012. 46 



  

20 

 

[40] Screen HRC, Seto J, Krauss S, Boesecke P, Gupta HS. Extrafibrillar diffusion and 1 

intrafibrillar swelling at the nanoscale are associated with stress relaxation in the soft 2 

collagenous matrix tissue of tendons. Soft Matter 2011;7:11243-51. 3 

[41] Reese SP, Weiss JA. Tendon Fascicles Exhibit a Linear Correlation Between Poisson's 4 

Ratio and Force During Uniaxial Stress Relaxation. Journal of Biomechanical Engineering 5 

2013;135:034501-. 6 

[42] Helmer KG, Wellen J, Grigg P, Sotak CH. Measurement of the spatial redistribution of 7 

water in rabbit Achilles tendon in response to static tensile loading. J Biomech Eng 8 

2004;126:651-6. 9 

[43] Han S, Gemmell SJ, Helmer KG, Grigg P, Wellen JW, Hoffman AH, et al. Changes in ADC 10 

caused by tensile loading of rabbit achilles tendon: evidence for water transport. J Magn Reson 11 

2000;144:217-27. 12 

[44] Hannafin JA, Arnoczky SP. Effect of cyclic and static tensile loading on water content and 13 

solute diffusion in canine flexor tendons: an in vitro study. J Orthop Res 1994;12:350-6. 14 

[45] Ciarletta P, Ben Amar M. A finite dissipative theory of temporary interfibrillar bridges in 15 

the extracellular matrix of ligaments and tendons. J R Soc Interface 2009;6:909-24. 16 

[46] Khodabakhshi G, Walker D, Scutt A, Way L, Cowie RM, Hose DR. Measuring three-17 

dimensional strain distribution in tendon. J Microsc 2013;249:195-205. 18 

[47] Neviaser A, Andarawis-Puri N, Flatow E. Basic mechanisms of tendon fatigue damage. J 19 

Shoulder Elbow Surg 2012;21:158-63. 20 

[48] Fung D, Sereysky J, Basta-Pljakic J, Laudier D, Huq R, Jepsen K, et al. Second Harmonic 21 

Generation Imaging and Fourier Transform Spectral Analysis Reveal Damage in Fatigue-Loaded 22 

Tendons. Ann Biomed Eng 2010;38:1741-51. 23 

[49] Fung DT, Wang VM, Laudier DM, Shine JH, Basta-Pljakic J, Jepsen KJ, et al. Subrupture 24 

Tendon Fatigue Damage. J Orthop Res 2009;27:264-73. 25 

[50] Shepherd JH, Legerlotz K, Demirci T, Klemt C, Riley GP, Screen HR. Functionally distinct 26 

tendon fascicles exhibit different creep and stress relaxation behaviour. P I Mech Eng H 2013. 27 

[51] Fung DT, Wang VM, Andarawis-Puri N, Basta-Pljakic J, Li Y, Laudier DM, et al. Early 28 

response to tendon fatigue damage accumulation in a novel in vivo model. J Biomech 29 

2010;43:274-9. 30 

[52] Thorpe CT, Riley GP, Birch HL, Clegg PD, Screen HR. Fascicles from energy-storing 31 

tendons show an age-specific response to cyclic fatigue loading. J R Soc Interface 2014;In Press. 32 

[53] Ker RF, Wang XT, Pike AV. Fatigue quality of mammalian tendons. Journal of 33 

Experimental Biology 2000;203:1317-27. 34 

[54] Lichtwark GA, Cresswell AG, Newsham-West RJ. Effects of running on human Achilles 35 

tendon length-tension properties in the free and gastrocnemius components. J Exp Biol 36 

2013;216:4388-94. 37 

[55] Shepherd JH, Screen HRC. Fatigue loading of tendon. Int J Exp Path 2013;94:260-70. 38 

 39 

  40 



  

21 

 

Figure Legends 1 

Figure 1. Images at 0 %, 8 % applied strain and return to 0 % strain in control (a-c), PC (d-f) and 2 

FL groups (h-i). Damage indicators are highlighted in images from FL samples, with dotted lines 3 

showing widening of the inter-fibre space, and arrows indicating fibre kinking. 4 

Figure 2. Local longitudinal strain (a), transverse strain (b), fibre sliding (c) and grid rotation (d) 5 

at 4% and 8% applied strain in non-loaded (□), PC (▒) and FL (■) samples. Data are displayed 6 

as Mean ± SEM. Significance is indicated by *: * p<0.05; **p<0.01. 7 

Figure 3. Percent hysteresis at cycle 30 and cycle 1800 in fatigue loaded samples (a) and percent 8 

recovery of grid deformation parameters: local longitudinal strain (b), transverse strain (c), fibre 9 

sliding (d) and grid rotation (e) in non-loaded (□), PC (▒) and FL (■) samples. Data are 10 

displayed as Mean ± SEM. Significance is indicated by *: * p<0.05; **p<0.01; ***p<0.001. 11 
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