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Summary paragraph 6 

Ozone-depleting substances emitted through human activities cause large-scale damage to the 7 

stratospheric ozone layer, and influence global climate. Consequently, the production of many 8 

of these substances has been phased out; prominent examples are the chlorofluorocarbons 9 

(CFCs), and their intermediate replacements, the hydrochlorofluorocarbons (HCFCs). So far, 10 

seven types of CFC and six types of HCFC have been shown to contribute to stratospheric 11 

ozone destruction1,2. Here, we report the detection and quantification of a further three CFCs 12 

and one HCFC. We analysed the composition of unpolluted air samples collected in Tasmania 13 

between 1978 and 2012, and extracted from deep firn snow in Greenland in 2008, using gas 14 

chromatography with mass spectrometric detection. Using the firn data, we show that all four 15 

compounds started to emerge in the atmosphere in the 1960s. Two of the compounds continue 16 

to accumulate in the atmosphere. We estimate that, before 2012, emissions of all four 17 

compounds combined amounted to more than 74,000 tonnes. This is small compared with 18 

peak emissions of other CFCs in the 1980s of more than one million tonnes each year2. 19 

However, the reported emissions are clearly contrary to the intentions behind the Montreal 20 

Protocol, and raise questions about the sources of these gases. 21 

 22 
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Letter 1 

Since the discovery of the “ozone hole” over Antarctica3 much progress has been made in 2 

understanding the causes and implications of this phenomenon. Decomposition products of 3 

mostly anthropogenic halogenated organic compounds such as the chlorofluorocarbons 4 

(CFCs) have been confirmed as the main cause for ozone depletion in the stratosphere4. The 5 

“Montreal Protocol on Substances that Deplete the Ozone Layer” came into force in 1989 6 

and, including a number of subsequent amendments, has since been very successful in 7 

reducing the production of many of these compounds on a global scale2. The first-stage 8 

replacements for CFCs were hydrochlorofluorocarbons (HCFCs). HCFCs are more 9 

susceptible to chemical break down in the lower atmosphere before reaching the stratosphere, 10 

but are still able to deplete ozone. The production of CFCs has been phased out in both 11 

industrialised and developing nations, with a total global ban on production (except for some 12 

exempted purposes and intermediate products) achieved by 2010. Continued production of 13 

HCFCs is allowed under transitional arrangements within the Montreal Protocol. 14 

Our observations on air samples collected in remote regions of the atmosphere show the 15 

presence of four previously undetected Ozone Depleting Substances (ODSs). We have 16 

identified and quantified CFC-112 (CFCl2CFCl2), CFC-112a (CF2ClCCl3), CFC-113a 17 

(CF3CCl3) and HCFC-133a (CF3CH2Cl) in the atmosphere (Figure 1). We have reconstructed 18 

their past abundances from air extracted from deep polar firn which can provide a “natural 19 

archive” of atmospheric composition up to about a century back in time5. Our firn air 20 

measurements suggest that all four newly reported compounds are anthropogenic (see also 21 

Supplementary Information), with insignificant atmospheric abundances before the 1960s. 22 

More recent information comes from analyses of archived samples collected since 1978 at the 23 

remote observatory at Cape Grim, Tasmania6,7. In late 2012, CFC-113a was the most 24 
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abundant of the four gases at 0.48 parts per trillion molar (ppt), followed by CFC-112 at 0.44 1 

ppt, HCFC-133a at 0.37 ppt and CFC-112a at 0.07 ppt. Also apparent from Figure 1 is that 2 

the increases observed in Tasmania lag behind those inferred from firn air collected in 3 

Greenland (NEEM project8). This lag reflects that the dominant source for these gases is in 4 

the northern hemisphere where most industrialised countries are located. Because mixing of 5 

old and more recent air in the firn smoothes out short term variations9, a more quantitative 6 

evaluation of hemispheric differences is difficult. Nevertheless the firn data suggest entirely 7 

anthropogenic origins of the four compounds as they are not detectable in air dated from 8 

before the 1960s. 9 

It is evident from Figure 1 that CFC-112 and CFC-112a show a similar evolution, suggesting 10 

that they might have been produced conjointly. Their atmospheric abundances increased from 11 

the 1960s until the mid 1990s; subsequently we find a slow decrease in global abundances, 12 

similar to previously reported CFCs where production has been increasingly reduced under 13 

the Montreal Protocol. Between around 2005 and 2010 we have observed a temporary 14 

slowing in the rate of decline for CFC-112 and CFC-112a. This period was however followed 15 

by a renewed decrease in 2011 and 2012. 16 

Most notable is the temporal evolution of CFC-113a (Figure 1) as it contrasts with those of 17 

CFC-112 and CFC-112a as well as those of all other CFCs with known atmospheric histories. 18 

This compound has continuously grown in abundance from the 1960s to 2012. It is 19 

particularly interesting as its behaviour is dissimilar to that of its isomer CFC-113 20 

(CF2ClCFCl2) which has been decreasing in abundance for more than a decade2.  21 

The fourth ODS in Figure 1, HCFC-133a, also exhibits an unusual behaviour. It appeared in 22 

the atmosphere before CFC production was being replaced on a large scale by HCFCs. It is 23 

thus likely that its sources are to some degree unrelated to CFC replacement. Also notable is 24 
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an accelerated increase starting in 2004, which was then interrupted from mid-2008 to mid-1 

2010. These variations may be due to one or few large industrial emitters changing production 2 

procedures and/or product ranges. In more recent years we observe a strong growth and 3 

atmospheric abundances of HCFC-133a increased by 45 % in the last 2.5 years of the record. 4 

The estimation of global emissions of these ODSs from the inferred time trends requires 5 

knowledge of their atmospheric lifetimes. Only in the case of HCFC-133a has an estimate 6 

been published (4.3 years2). Stratospheric lifetimes of CFCs are essentially identical to their 7 

total atmospheric lifetimes2. We use measurements of these gases in air samples collected in 8 

the stratosphere and apply a previously described methodology10,11. This method allows the 9 

estimation of the stratospheric lifetime of an unknown compound to be inferred from its 10 

correlation with a compound of known stratospheric lifetime. We utilise the correlations of 11 

the newly reported compounds with that of CFC-11 assuming a recommended lifetime of 45 12 

years for the latter2. The resulting lifetimes are similar to that of CFC-11 with 51 years for 13 

CFC-112 (uncertainty range from 37 to 82 years), 44 years for CFC-112a (28 – 98 years), 51 14 

years for CFC-113a (27 – 264 years), and 35 years (21 – 92 years) for HCFC-133a. In 15 

agreement with 2 the stratospheric lifetime of HCFC-133a is much longer than its overall 16 

atmospheric lifetime. As with other HCFCs its loss is dominated by the reaction with the OH 17 

radical which occurs mainly in the troposphere. 18 

Another important quantity that can be inferred from stratospheric measurements is the Ozone 19 

Depletion Potential or ODP which “represents the global ozone loss due to release of a 20 

particular molecule relative to a reference molecule (generally CFC-11)”12. We infer semi-21 

empirical ODPs of 0.88 (uncertainty range 0.62-1.44) for CFC-112, 0.88 (0.50-2.19) for CFC-22 

112a, and 0.68 (0.34-3.79) for CFC-113a. Taking into account that CFC-11 is a strong ODS, 23 

this implies that the three new CFCs are comparably dangerous to stratospheric ozone on a 24 
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per kg basis. For HCFC-133a we determine an ODP of 0.02 (0.00-0.12) which does not 1 

significantly differ from zero within uncertainties, but agrees with the range listed in the 2 

Montreal Protocol (0.02-0.06). We conclude that its ODP is comparatively low (i.e. < 0.12) as 3 

is expected for an HCFC.  4 

The estimates of the lifetimes, in combination with the Cape Grim observations and a 2-D 5 

chemical transport model13, enable us to infer the global emissions (Figure 1). Compared to 6 

other ODSs, which can have mixing ratios of up to hundreds of ppt, the abundances of these 7 

gases have remained small. Their temporal evolution however reveals that emissions of up to 8 

3,100 tonnes per year are required to explain their individual atmospheric abundances in 9 

recent years. Apart from the apparent small rise in the mid-2000s, emissions of CFC-112 and 10 

CFC-112a have fallen continuously since the early 1990s. This contrasts with CFC-113a, for 11 

which emissions did not decline and in fact more than doubled from 2010 to mid-2012, as 12 

well as for HCFC-133a, for which emissions approximately tripled after 2009. Summing all 13 

emissions inferred from the Cape Grim record until mid-2012, we find that at least 19,600 14 

tonnes of CFC-112, 20,500 tonnes of CFC-113a, and 30,500 tonnes of HCFC-133a must have 15 

entered the atmosphere. For CFC-112a no Cape Grim data are available prior to 1999 because 16 

of storage problems with the type of canisters used. We therefore combined emissions 17 

inferred from firn air trends with the available Cape Grim record to estimate cumulative 18 

emissions of at least 3,600 tonnes.  19 

These four ODSs all fall under the Montreal Protocol. Some production has been reported to 20 

the United Nations Environment Programme (UNEP) Ozone Secretariat but publicly available 21 

data on these particular gases are exceedingly sparse or non-existent. It is notable that there 22 

are a number of caveats to the Montreal Protocol. In addition to officially granted exempted 23 

uses, reporting does not have to include intermediate species, as well as estimates of fugitive 24 
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emissions or trace amounts released in the production of other ODSs. And although it is 1 

mandatory to report production for chemical feedstock, UNEP is not allowed to release the 2 

feedstock component to the public. 3 

CFC-113a, for example, has been listed as an "agrochemical intermediate for the manufacture 4 

of synthetic pyrethroids" in a list of Montreal Protocol exemptions in 2003. This is possibly 5 

related to its use in the production of the insecticides cyhalotrin and tefluthrin14. There have 6 

however been no publicly accessible reports of actual CFC-113a production to UNEP. 7 

Another possible explanation here is that the Montreal Protocol does not require isomeric 8 

compounds to be reported separately. Therefore its production could have been reported as 9 

“CFC-113”. CFC-113a and HCFC-133a are also intermediates in two of the processes to 10 

produce the widely-used refrigerants HFC-134a17 and HFC-12518.  11 

CFC-112 and -112a may have been used as feedstock chemicals for the production of 12 

fluorovinyl ethers15 and also as solvents for cleaning electronic components16. For CFC-112 13 

some production has been reported but only small quantities and only between 1989 and 14 

2001. No reports have been released for the production of CFC-112a (or it may have been 15 

reported as CFC-112) and only one report for HCFC-133a production in 2010. 16 

It cannot be concluded whether the observed atmospheric abundances of these ozone 17 

depleting gases are due to their use as feedstock and chemical intermediates and subsequent 18 

fugitive emissions, or even due to production that is not sanctioned by the Montreal Protocol.  19 

Given that emissions of two of these gases have been increasing considerably in recent years, 20 

it may be time to both investigate the origins of these compounds. To ensure the long-term 21 

efficacy of the Montreal Protocol it might be worth reconsidering its reporting regime, 22 

including the differentiation of isomeric forms. 23 

 24 
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Methods summary 1 

All samples were processed by cryogenically extracting and pre-concentrating the trace gases, 2 

followed by their gas chromatographic separation and detection with a high-sensitivity mass 3 

spectrometer. The system has been described in detail 9 as have the collection details of the 4 

samples originating from Cape Grim (from 1978 to 2012 in this study), Greenland (firn air 5 

from the NEEM project, collected in 200819), and the extra-tropical stratosphere (2009 and 6 

2010, between 9 and 20 km). Storage problems of CFC-112a were overcome by the use of 7 

SilcoTM-treated sample containers after 1999. 8 

The physics of trace gas transport in the NEEM firn was modelled with a multi-gas approach 9 

as previously described20. This model was inter-compared satisfactorily with other state of the 10 

art models8. The atmospheric time trends were then inferred from firn air concentration data 11 

using a recently improved inverse method21 which accurately reconstructs long-term trends in 12 

past atmospheric abundances from firn air measurements. 13 

The exact methodology for the estimation of stratospheric lifetimes and ODPs includes a 14 

correction for the slower vertical transport in the stratosphere as compared to the troposphere, 15 

which influences the spatial distribution of the reported compounds. For instance, an air 16 

parcel at an altitude of 21 km may have entered the stratosphere some years before the 17 

collection date, and tropospheric abundances of trace gases could have changed during that 18 

period. We here apply corrections using mean stratospheric transit times derived from 19 

measurements of sulphur hexafluoride10. For more information on methods, calibrations, firn 20 

and emission modelling and additional data please see the Supplementary Information. 21 
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Figure legends 7 

Figure 1. Atmospheric histories and global emissions of CFC-112 (A), CFC-112a (B), CFC-8 

113a (C), and HCFC-133a (D). The range from northern hemispheric trend reconstructions 9 

(originating from firn air collected in Greenland in summer 2008, see supplement for further 10 

information) is displayed as dashed lines. Diamonds represent averages of measurements of 11 

individual samples (collected at Cape Grim between 1978 and 2012) with 1 σ standard 12 

deviations as error bars. The black solid line is the model fit through this southern 13 

hemispheric time series that was used to infer the emissions (red line, right-hand axis) and 14 

their 1 σ uncertainties (red dashed lines). CFC-112a was found to be unstable in the type of 15 

storage canisters used for Cape Grim samples before 1999 and the temporal trend and 16 

emissions for the earlier part of the record were inferred using firn data (red dotted line). As 17 

mixing of air in the firn smoothes out short term variations these CFC-112a emissions are not 18 

directly comparable to the Cape Grim data but both estimates agree within the uncertainties 19 

for the overlap period. 20 
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Figure 1. 2 


