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Abstract

It is of great medical interest to gain a better understanding of digestion in the
human stomach, not least because of the relevance to nutrient and drug delivery. The
Institute of Food Research has developed the Dynamic Gastric Model, a physical, in
vitro model stomach capable of re-creating the physiological conditions experienced in
vivo.

The aim of this thesis is to examine mathematically digestion in the main body (top
section) of the Dynamic Gastric Model, where gentle wall movements and gastric secre-
tions result in the outside layer of the digesta “sloughing off”, before passing into the
bottom section for further processing. By considering a simplified, local description of
the flow close to the wall, we may gain an insight into the mechanisms behind this be-
haviour. This description focuses on the mixing of two layers of creeping fluid through
temporal instability of the perturbed fluid interface. Some attention is also paid to a
more general study of the surrounding flow field.

Linear, two-fluid flow next to a prescribed, sinusoidally moving wall is found to be
stable in all cases. Studies of thin film flow next to such a wall suggest that the same may
be true of the nonlinear case, although in the case of an inclined wall wave steepening
is found to occur for early times. A linear instability is found for small wavenumber
disturbances when the wall is modelled as an elastic beam or when we include a scalar
material field that acts to alter the surface tension at the interface. An examination of
Navier–Stokes flow of a single fluid through a diverging channel (representing a small
strip through the centre of the main body) reveals that the flow loses symmetry at a
lower Reynolds number than flow through a channel of uniform width. Our results are
interpreted in terms of the Dynamic Gastric Model.
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5.7 When Λ = Ĉ = Γ = Pe2 = 1 and α = 0.1, plots against Pe1 of the critical
wavenumbers, kmax, in the cases Ĝ = 0 and Ĝu1, and kc in the cases Ĝ = 0
and Ĝu1 and the maximum value of the wave speed, cImax, in the cases
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tions when d = 3, plots of ǧ against η when τ̌ = 1, 4 and 8 . . . . . . . . . 139
6.31 When Re → ∞, ∆ = O(Re−1/2), the growth rates plotted against d when

perturbing about the steady, asymmetric solutions, f̌SA and ǧSA. . . . . . 141
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Chapter 1

Introduction

1.1 Physical Motivation

It is of great medical interest to understand the processes governing the availability
of nutrients from food (and drugs) for absorption by the human digestive system, or
gastrointestinal (GI) tract. During digestion, food passes through the mouth and esoph-
agus into the stomach, before moving on to the small and large intestines. Studies
of the passage of food or drugs through the GI tract are generally limited to simple
laboratory experiments, using for instance the paddle dissolution apparatus, or in vivo
measurements, which raise difficulties both physically and ethically. In recent years this
has led to the development of physical, in vitro models of some of the major digestive
organs. Such devices are either static or dynamic; the latter aim to replicate both the
physical and physiological conditions experienced in the respective organs. Amongst
the physical devices produced have been dynamic models of the mouth (Salles et al.,
2007), stomach (Kong and Singh, 2008b), small intestine (Tharakan, 2008) and large
intestine (Spratt et al., 2005). The Netherlands Organisation for Applied Scientific Re-
search Gastro-Intestinal Tract Model is a dynamic system that physically models both
the stomach and small intestine (Krul et al., 2000), although the focus is more on the
small intestine and proximal colon. The focus of this thesis is the Dynamic Gastric
Model (DGM), a physical, in vitro model stomach based at the Institute of Food Re-
search (IFR).

1.1.1 The Human Stomach

The human stomach is a complex organ. Together with the mouth, its role is to break
down food such that nutrients may be released and absorbed into cells via the blood-
stream. A good summary of its physiology can be found in Kong and Singh (2008a).
The stomach is generally divided into two sections (as shown in figure 1.1); the main
body (or body), of which the very top section is called the fundus, and below this, the
antrum, ending in the pylorus. The pylorus leads into the duodenum, which is the top
section of the small intestine. Our work concentrates on a description of the main body,
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Figure 1.1: A figure showing the regions of the human stomach (Kong and Singh,
2008a).

which has received considerably less focus in the literature due to its primary function
as a reservoir for undigested material.

The process of digestion begins even before food enters the stomach, as chewing,
combined with the action of enzymes in saliva, begins to break down a meal. The meal
therefore reaches the stomach as an inhomogeneous mixture, or food “bolus”. The
entry of food provokes the addition of gastric secretions, which enter through the walls
of the main body and are made up of low pH, sterilising acids, salts, enzymes and
water. The food bolus acts as a buffer in terms of pH so that the main body tends to
contain higher pH and higher viscosity material in the bulk surrounded by low pH and
low viscosity material around the outside. The pH may be particularly low close to the
stomach wall. The secretions are combined with very gentle wall movements (as shown
in vivo by Echo-Planar Nuclear Magnetic Resonance Imaging in Marciani et al. (2001)).
The wall motion causes the more hydrated part of the food bolus to “slough off” in
layers and pass into the antrum. This process is sometimes called the “onion peeling”
effect. For this reason there are areas of the food bolus that are not in immediate contact
with enzymes and this stage of digestion is a gradual process.

In the antrum, which has a higher density of smooth muscle, peristaltic waves grind
and compress the digesta against the closed pylorus. The resulting backwash pro-
motes a high shear environment, which causes mixing and significant break down of
the food structure and produces a suspension of soft solid, partially digested food par-
ticles known as “chyme”. The backwash also causes the sorting of particles by size,
so that when the pylorus opens at the very end of a contraction, smaller particles are
preferentially discharged.

Gastric contractions occur at a rate of approximately three per minute and gastric
processing times can vary between around 15 minutes for water to between 45 minutes
and an hour for a full meal (which is generally between 150 ml and 700 ml in volume,
although the stomach capacity can be up to 4 litres). The contraction depth and fre-
quency has been found to be independent of the meal composition, implying that in
the case of a more substantial meal the stomach does more work. The general speed
of digestion in the stomach is regulated by the rate of emptying and can vary greatly
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depending on, for instance, the meal temperature, energy content and viscosity, the
amount of nutrients, sugars or fat present and the food structure and texture (see, for
example, Marciani et al. (2001), Marciani et al. (2007)). On leaving the stomach, the meal
enters the small intestine, where the majority of nutrient absorption takes place.

1.1.2 The Dynamic Gastric Model

Descriptions of the DGM and its use experimentally can be found in Mercuri et al. (2011)
and Wickham et al. (2012). The DGM is an in vitro, computer controlled system, which
is capable of processing real food in real time. The model accounts for the physical,
mechanical and biochemical environment experienced during digestion and is the first
model capable of processing a bolus of food and producing chyme. It can therefore be
regarded as the first model to simulate human digestion from a genuinely physiological
perspective.

Figure 1.2 gives an overview of the design. In this model the term “main body” de-

Figure 1.2: A schematic diagram of the Dynamic Gastric Model (Mercuri et al., 2011).

scribes the entire top half of the machine, whilst the “body” is the part of the machine
that represents the stomach body itself. The body has dimensions of the O(10−1) and is
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modelled by a thermally-jacketed, elastic cone which is surrounded by a heated water
bath. The cone is hydraulically squeezed by cyclic pumping of the surrounding water
to promote the right mixing behaviour (as found in in vivo imaging in Marciani et al.
(2001)). The temperature is set to 37 ◦C as in the in vivo stomach. Prior to an experi-
ment, 20 ml of acid is added to simulate an empty stomach and the added pre-chewed
digesta generally has a volume of around 400 to 450 ml, filling the cone and part of the
plastic cylinder above. Sitting on top of the mixture inside the cone is a cap, or secretion
distributor, from the rim of which a mixture of acids, bases, surfactants and proteolytic
solutions, representing the gastric secretions, is added. The exact distribution and vol-
ume of added secretions is computer controlled. The addition of acid is determined
by dynamically monitoring the pH inside the model and enzyme addition follows in
vivo rates and is therefore governed by the quantity and type of meal being processed.
The conical shape of the body has been chosen to allow for the best flow of secretions
down the sides. A thin layer of low pH and low viscosity material can therefore be
observed at the body wall. The cap itself is free to move as the contractions provide a
volume displacement of around 40 ml. An intervening valve between the main body
and antrum is only closed when the latter is emptying, and thus it is possible to obtain
flux back into the main body (in a way similar to the in vivo stomach).

The antrum part of the machine comprises a vertically moving barrel and piston.
The piston is responsible for both filling and emptying of material. Working in a com-
plementary fashion with the conical geometry of the body, the piston draws the most
hydrated, lower viscosity material from the walls of the main body into the antrum,
simulating the "onion peeling" effect observed in the human stomach. Peristaltic waves
are simulated by periodic movements of the barrel, which has a flexible annulus at its
end, whilst small movements of the piston compensate for any volume changes that
occur. The high shears created by this process result in mechanical breakdown of the
food structure. During emptying the piston moves upwards and chyme exits through
a tube, as shown figure 1.2. During this process smaller particles are more likely to be
ejected, as seen in vivo, whilst larger particles remain for additional processing. The
emptying of chyme from the antrum occurs in a series of pulses over time. Due to the
realistic nature of food processing inside the DGM, the composition and distribution
of the output varies depending on the meal contents. The process ends with a “house-
keeper” wave, as seen in the human stomach, a strong contraction which is responsible
for complete emptying of the stomach contents.

The IFR model provides a screening tool for evaluating novel and existing food-
stuffs, diets and pharmaceutical preparations, and is also an opportunity to develop
new mathematical descriptions of how the stomach works, in this case focussing on the
main body. A mathematical model will give insight into the flow structure within the
IFR model. It will also lead to a better understanding of the mixing of gastric secretions,
a vital process within the digestive system.
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1.2 Building a Mathematical Model

In this thesis we do not attempt to produce an all-encompassing mathematical descrip-
tion of digestive processes in the DGM main body, or to consider the global transport of
material. Such an analysis would need to account for the non-Newtonian, inhomoge-
neous nature of the main body contents and would require computational modelling.
By limiting our analysis to a subset of the set of flows relevant to the DGM main body,
we hope to gain a more general understanding of the underlying mechanisms that
guide, for example, the “onion peeling” effect that is observed in practice. After some
initial work considering a very simple representation of the elastic cone, we choose to
focus instead on a thin region close to the wall. In this analysis we take “digestion” to
mean the mixing of two layers of fluid, in particular through temporal instability of the
fluid interface between the two.

1.2.1 Assumptions

We consider incompressible, isothermal, Newtonian flow and all fluids are taken to be
immiscible and of equal densities. In the majority of our work we do not include the
effects of gravity and so choose not to focus on such phenomena as the Rayleigh–Taylor
instability, which results when a heavier fluid sits above a lighter fluid, or Rayleigh–
Bénard convection, where a layer of fluid is heated from below and can become unstable
due to the effects of buoyancy.

Aside from a brief consideration of a plane polar geometry in the introduction of
chapter 6, in the rest of this thesis we use a Cartesian co-ordinate system. The problem is
simplified through the use of a two-dimensional planar geometry. Such a simplification
does not allow for the Plateau–Rayleigh instability associated with a three-dimensional
stream or jet of water. However, the squat geometry of the DGM main body suggests
that the size of wavelength necessary for such an instability cannot be supported.

Most of our work focuses on inertia-free flow. The non-dimensional Reynolds num-
ber, Re, is defined as the ratio of inertial forces compared to viscous forces in a fluid
and is given by

Re =
UL
ν

, (1.1)

where U and L are the characteristic speed and length scale in the fluid and ν is the
constant kinematic viscosity, which is equal to the dynamic viscosity, µ, divided by
the fluid density, ρ. Estimates for some of these values in the human stomach can be
obtained from Pal et al. (2004). Together with local values for the DGM main body,
this leads us to take a typical length scale to be of the O(10−2) and a typical speed to
be no more than 10−4 ms−1. Kong and Singh (2008a) quote gastric juice as having a
dynamic viscosity of between 10−2 and 2 kgm−1s−1 with a density close to that of water
(approximately 103 kgm−3). The Reynolds number for gastric flow is then estimated to
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have an upper bound of the O(10−1). Any increase in viscosity due to an intake of food
will decrease this estimate further and so we can be confident in claiming that we are a
dealing with a low Reynolds number flow in this analysis.

1.2.2 The Model

An idealised mathematical description of the flow field local to the wall of the DGM
body is shown in figure 1.3. In this description, we envisage a fixed, solid food bolus

Figure 1.3: The model derived from a mathematical idealisation of the flow local to the
wall of the DGM body.

suspended in the centre of the body and surrounded by a layer of homogeneous, liquid
material. A second layer of homogeneous, liquid material is present at the body wall.
These fluid layers are taken to represent two phases of partially digested food mixed
with gastric secretions. The homogeneous nature of these fluids could also incorporate
tablets in powder form, for instance, whose effect on the overall flow field is negligible.
We next focus on a small region close to the body wall, such that any curvature of the
food bolus can be taken to be negligible and the section of liquid between the bolus and
the wall is relatively thin. The problem is therefore simplified to the case of two fluid
flow in a channel, where the interface between the two fluids is taken to be well defined.
In its most complex form this model may include a scalar material field, representing the
propagation of gastric juices. We perturb the fluid interface and examine the temporal
stability to determine whether perturbation growth and interfacial break down is likely
to occur. Such growth is taken as an indication of mixing of the two fluid layers.

We focus on a single possible mechanism for instability in each variation of this
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model considered so that to begin with, we do not include a material gradient. Also,
we initially discount the second wall provided by the food bolus, so that the domain
of the second fluid is taken to be infinite. In this case the liquids may be subject to a
shear-driven, or possibly even a gravity-driven, flow. In chapters 2 and 3 we consider a
prescribed, periodic wall motion. Chapter 3, which uses a thin film approximation, is
the only chapter to deal with a fully nonlinear description of the flow field. Elsewhere
we use a linear approximation. In an effort to promote an interaction between a free-
moving wall and the interface, which it is thought may lead to an instability, chapter 4
focuses on an elastic wall with unprescribed position. In chapter 5 we strive to model
the addition of gastric secretions to the DGM main body by including a scalar material
field, which may act to alter the surface tension at the fluid interface. We also include
the second wall representing the food bolus and consider flow through a fixed channel.
In this case the fluids may be subject to a constant pressure gradient. In chapter 6
we consider a larger scale portion of the DGM flow field in order to gain an insight
into the flow field surrounding, and therefore influencing, our idealised model. Here
we depart from interfacial stability studies and, after some initial studies taking the
Reynolds number to be small, we include the effect of inertia. As a model of the local
flow field in a strip through the middle of the main body, we consider a single fluid
between moving walls in a slowly diverging channel.

1.3 Literature Review

Due to the previously discussed difficulty in making accurate in vivo measurements of
the GI tract, there have been a number of attempts to mathematically model the various
organs. Trelea et al. (2008) considered aroma release during the process of swallowing
food. Nicosia and Brasseur (2002) developed a model of food transport through the
esophagus which allowed for both active and inactive muscle tensions. A general study
of peristaltic flow as a means of transport at zero Reynolds numbers can be found in
Pozrikidis (1987). More specifically, peristalsis has been studied as a mechanism for
movement through the small intestine (Leger, 2005). Other studies considering the
small intestine include Stoll et al. (2000), who studied molecular absorption in relation
to drug uptake, and Tharakan (2008), who used computational fluid dynamics to model
the physical, in vitro Small Intestinal Model. The effect of wall movements on intestinal
absorption was examined in Macagno et al. (1982). More generally, Woollard et al.
(2009) studied solute transport in a wavy channel and noted that their work is relevant
to transport through the gut.

Previous studies of mathematical models of flow in the human stomach are few.
Published work tends to be purely numerical. Two particularly notable papers, which
use the lattice-Boltzmann method, are Pal et al. (2004) and Pal et al. (2007). In the
first of these the effect of antral contraction waves on mixing was examined. Here
mixing was defined by measuring the hypothetical spread of small particles released



8 Introduction

at a known location at a prescribed time. It was found that mixing occurs through a
combination of circulatory motions and jets; the jets propagate in the opposite direction
to the advancing waves. In Pal et al. (2007) the method was extended to consider gastric
emptying and a “gastric emptying Magenstrasse” was found to exist; a narrow passage
which experiences rapid emptying from deep within the fundus. Fluid mixing in a
time-reversible, low Reynolds number environment is considered more generally in
Cartwright et al. (2012), who suggested that non-reciprocal wall motions may be the
cause of mixing in the stomach.

Published papers concerning the stability of interfacial flow are great in number.
An important contribution came from Yih (1967), who considered the instability that
is present for Couette–Poiseuille, channel flow of two fluids of different viscosities. It
was shown that in the absence of inertia or a surfactant at the fluid interface, the solu-
tion is always stable. In this review we concentrate on the analyses of incompressible,
interfacial flow where unstable solutions are found at zero Reynolds number.

Moving away from stability analysis, but still relevant to our work, is the problem of
steady film flow down a fixed sinusoidal wall. In chapter 3 we consider thin film flow
next to a moving sinusoidal wall. Wang (1981) considered the low Reynolds number,
gravity-driven, steady flow of two fluids over a fixed sinusoidal surface, whose corru-
gations have a small amplitude compared to the thicknesses of the fluid domains. The
amplitude and phase shift of the free surface were found to depend on the wavelength
of the wall, as well as the surface tension of the free surface. This work was extended
numerically by Pozrikidis (1988) to account for, amongst other factors, more general
wall amplitudes. Shetty and Cerro (1993) used an asymptotic analysis, valid when in-
ertial and surface tension effects are neglected, to look at the specific case where the
amplitude of the wall is much larger than the film thickness. Wierschem and Aksel
(2003) and Wierschem et al. (2005) focused on the stability of the free surface. They
found that a critical Reynolds number exists, above which unstable solutions occur. A
more detailed description of some of these papers can be found in chapter 3.

Kang and Chen (1995) performed an analogous perturbation analysis to Wang (1981)
for two-layer flow. They found that the largest free surface and interface amplitudes
were seen for a wall with long wavelength, and the largest phase shifts with respect to
the wall were seen for waves whose wavelength is comparable to the thickness of the
lower fluid layer. Luo and Pozrikidis (2006) completed a similar analysis, but for shear-
driven Stokes flow in a channel with one fixed sinusoidal, and one fixed planar wall.
When the interface is surfactant-free, the largest interface amplitudes (those comparable
to the wall amplitude) were seen when the thickness of the film next to the wavy wall
is small compared to the wavelength of the wall. The largest phase shifts were seen for
moderate wall wavelengths compared to film thickness.

Yih (1963) and Benjamin (1957) considered the temporal stability of flow of a sin-
gle fluid down an inclined plane. They found that above a critical Reynolds number
(which depends on the angle of inclination), the flow is unstable to waves with long
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wavelengths. These waves travel at double the speed of the unperturbed flow at the
free surface. The flow of two liquid films, of differing viscosities, moving down an
inclined plane in the absence of surface tension has been shown to be unstable for all
Reynolds numbers (including zero) when the less viscous fluid occupies the region next
to the wall (Loewenherz and Lawrence, 1989; Chen, 1993). The instability is strongest
when the two fluid layers have the same thickness, and the interface is always stable
when the upper fluid thickness is infinite. Including surface tension at either the free
surface or interface is stabilising, particularly for short-wavelength disturbances. These
works imply that some kind of interaction or resonant effect between the interface and
free surface is responsible for the instability. It is suggested that this instability relies
on the fact that the free surface is able to deform and exhibit tangential motions. This
inspires chapter 4.

In chapter 4 we consider the effect of a free-moving elastic wall on a perturbed
fluid interface. There has been a large amount of work focusing on the stability of
two-dimensional, incompressible flow over an elastic or compliant surface. Some of the
earliest papers are those of Benjamin (1960), Landahl (1962) and Benjamin (1963), who
considered the evolution of linear waves in the inviscid boundary layer above an elastic
plate. Lingwood and Peake (1999) revisited this problem and investigated the absolute
instability that occurs above a certain flow speed. This instability was first discovered
by Crighton and Oswell (1991), where a uniform flow was taken above the plate and a
localised forcing applied.

More directly relevant to our work are models where the fluid is viscous. Of par-
ticular relevance to the formulation of the tension in our problem is the work of Luo
and Pedley (1995) and Pedley and Luo (1998), who studied uniform and shear channel
flows, where one section of one of the channel walls is elastic. Here the authors adopt
the practice of assuming that the tension varies by a negligible amount along the beam
and so is taken to be constant. For the case of channel flow between compliant walls it
has been shown that a critical Reynolds number for linear instability exists (Hains and
Price, 1962). The effect of a flexible surface on the Tollmien–Schlichting instability has
also been investigated in some detail (for example in Rotenberry and Saffman (1990)
and Davies and Carpenter (1997)). To our knowledge there have been no studies of the
interaction between an elastic wall and fluid interface, as considered in our chapter 4.
It is worth mentioning that the problem of creeping Couette flow of two fluids sepa-
rated by a membrane has been shown to be linearly stable if tangential movements of
the membrane are neglected (Kumaran and Srivatsan, 1998), but unstable in the long-
wavelength limit if such movements are included (Thaokar and Kumaran, 2002).

The phenomenon of surface tension driven flows was first noted by Thomson (1855).
Many experiments examining these effects have been performed over the years. Most
notable are those of Bénard (1900), in which a thin layer of liquid is heated from be-
low. Above a critical temperature, convection cells (Bénard cells) form. Pearson (1958)
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showed that gradients in surface tension were responsible for the motion in these exper-
iments. Small variations in surface temperature lead to surface tractions and hence fluid
flow. The induced flow, in turn, causes further variations in temperature. The effect is
termed Bénard–Marangoni convection (although Thomson was the first to comment on
surface tension driven flows, they were most famously reported by Marangoni). Scriven
and Sternling (1960) provide a thorough summary of early work on Marangoni (surface
tension driven) effects. It is worth mentioning that in Scriven and Sternling (1964) it
was found that when surface-tension gradients drive convection in a thin fluid layer,
the “zero” wavenumber is always unstable. This instability is known to be present at
long wavelengths or in very viscous fluid layers.

It has been shown that flow of a liquid film down a heated incline has a lower critical
Marangoni number than for a flat wall (Sreenivasan and Lin, 1978). Here the Marangoni
number expresses the sensitivity of the surface tension to thermal effects. In the case of
film flow over a heated, wavy wall, the film is generally less stable than for a flat wall
(Kabova et al., 2006). At times, very thin stable areas of the fluid act to promote heat
transfer, whereas at others vortices are seen within the grooves where fluid is found to
accumulate. Deformation of the film can result and sometimes even rupture. It is also
found that cooling from below leads to a film with uniform thickness.

Also relevant to our work are so-called “doubly-diffusive” problems where convec-
tive motions result from the consideration of two different components with different
diffusivities, for instance heat and salt concentration. When allowing the surface tension
coefficient to vary linearly with respect to both temperature and solute concentration, it
is possible to have two instability modes with different wavenumbers and frequencies
of oscillation (Chen and Su, 1992). Building on work such as that of Chen and Chen
(1994) and taking the limit of zero gravity, Skarda et al. (1998) also mapped the regions
of stability when an imposed temperature gradient induces a concentration gradient.

There has been much work extending the study of thermocapillary flows to two
fluids, and considering the effect of heating on a perturbed fluid interface. Whilst
heating from above is stabilizing for waves of most wavelengths, increased heating from
below lowers the critical Marangoni number for instability (Zeren and Reynolds, 1972).
When heating from below, however, surface tension has been shown to be stabilizing for
short wavelength disturbances (Busse, 1982; Renardy and Joseph, 1985)). Busse (1982)
found that, in addition to solutions in which there are layers of convection cells, other
solutions exist for which one fluid is surrounded by streamlines of the other.

Apart from the heating of fluid, a gradient in surface tension may be provoked
through the addition of an insoluble surfactant to the interface between two fluids.
There have been many studies examining this effect. In particular, it has been shown
that two-layer, zero-Reynolds number, Couette–Poiseuille flow yields unstable solutions
when under the influence of such a surfactant (Frenkel and Halpern, 2002; Halpern
and Frenkel, 2003). Here the surface tension is allowed to depend on the surfactant
concentration, and the Marangoni instability that occurs relies upon the presence of
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a shear flow in the base-state. The regions of stability depend on the wavenumber,
capillary number, layer thickness, and viscosity ratio (although a viscosity difference
between the two fluids is not a necessary condition for instability). Using a lubrication
model, Blyth and Pozrikidis (2004) extended this analysis to consider an inclined plane.
Here a nonlinear analysis revealed evidence of the saturation of the unstable waves, as
well as wave steepening. The problem of two-layer shear flow next to a wall, where
surfactant is present at the interface, was considered by Pozrikidis and Hill (2011).
Here the upper fluid is semi-infinite. Although the majority of this paper considers
a flat, horizontal wall, the authors touch on flow past a fixed sinusoidal wall. An
instability is found for disturbances with long wavelengths, but disappears when the
wall is removed, such that both fluid domains are semi-infinite.

In chapter 5 we consider the problem of instability due to an imposed concentration
gradient in two fluids. This problem is related, but not equivalent, to the case of insta-
bility due to an insoluble surfactant. It is essentially equivalent to the case of instability
due to an imposed temperature gradient.

Chapter 6 of this thesis can be thought of as an extension of the work of Hall and
Papageorgiou (1999). In this paper, the authors consider the case of channel flow where
one of the plane walls moves transversally and periodically in time. They proceed by
seeking a stagnation-point type solution (essentially an unsteady version of the classical
Hiemenz solution) to the full Navier–Stokes equations, finding that for small enough
Reynolds numbers, there exists a unique, periodic, symmetric solution, synchronised
with the wall motion. As the Reynolds number is increased, a bifurcation is observed,
giving rise to a periodic, asymmetric solution. The solution for larger Reynolds num-
bers depends on the amplitude of the wall oscillation. In all cases further bifurcations
are seen, eventually leading to a chaotic flow, but the route to chaos may include a
Feigenbaum cascade or quasi-periodic solutions. A more detailed description of their
work can be found in chapter 6. This work is closely related to two papers. The first
is that of Secomb (1978), who considered a similar problem, but only allowed for wall
oscillations with high and low frequencies or with general frequencies and small am-
plitudes. Secondly, Stuart et al. (1990) used lubrication theory to study the growth of
Tollmien–Schlichting waves in a squeeze bearing with time-dependent walls, finding
that the growth of such waves depends on their wavenumber, the Reynolds number
and whether the plates are being pulled apart or squeezed. Their method, however, did
not extend to time-periodic flows.

There are a number of subsequent papers building on the work of Hall and Papa-
georgiou (1999). Li and Blyth (2009) extended the analysis to deal with an axisymmetric
pipe, Blyth et al. (2003) considered a three dimensional pipe and multiple layers of fluid
were examined in Blyth (2007). Heil and Waters (2006) studied an elastic tube subject
to high frequency, small amplitude oscillations and drew a comparison between their
work and that of Hall and Papageorgiou (1999) in order to make predictions about
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the stability of their symmetric solutions. Blyth and Hall (2003) asked whether analo-
gous self-similar solutions are possible when considering stagnation point flow at a wall
where the solution at infinity is modulated periodically in time. They found that two
modes of solution are possible. For oscillations above a critical frequency regular and
periodic solutions are found, whilst below this frequency, the solution ends in a finite-
time singularity. Espin and Papageorgiou (2009) found that so long as the Reynolds
number is not too large, self-similar branches resembling those found by Hall and Pa-
pageorgiou (1999) exist in a finite channel driven by accelerating walls and Watson et al.
(2008) found similar behaviours when the accelerating walls of the channel are taken to
be porous and a uniform, steady suction is applied.

Also relevant to chapter 6 is the body of research considering squeeze flows. Here
the lubrication approximation is used to describe flow in a channel with squeezing
or separating walls. Particularly relevant are those papers in which the height of the
channel varies, for example Khaled and Vafai (2003), Bujurke et al. (2007). However,
such a rich variety of solutions as mentioned above is not found in these cases. It is also
significant to mention Jeffery–Hamel flow. Here two fixed, inclined plates meet at an
angle. A line source or sink is placed at the intersection of the plates, which induces a
flow that is either divergent or convergent in the radial direction. Several authors have
examined the effect of spatial or temporal perturbations to the overall flow field (Banks
et al., 1988; Hamadiche et al., 1994; McAlpine and Drazin, 1998). The angle between
the plates and the Reynolds number are found to be instrumental in determining the
stability of resulting solutions. A good review of some of these papers and other work
in this area is given in Drazin (1999).

1.4 Mathematical Tools

We next introduce some mathematical tools which are used frequently in the course of
our work.

1.4.1 The Governing Equations

In general, neglecting body forces, the governing equations are the Navier–Stokes equa-
tions and the incompressibility condition,

∂u
∂t

+ u · ∇u = −∇p
ρ

+ ν∇2u, ∇ · u = 0, (1.2)

where, using a Cartesian co-ordinate system, u(x, y, z, t) = (u, v, w) denotes the veloc-
ity field and p(x, y, z, t) the pressure, ρ is the density of the fluid and ν the constant
kinematic viscosity.

Given the gentle mixing that occurs in the DGM main body, as mentioned above, we
may expect the Reynolds number to be very small (Re → 0) and this is the assumption
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made in the majority of this thesis. In this case the Navier–Stokes equations reduce to
the Stokes equations, so that we have

∇p
µ

= ∇2u, ∇ · u = 0, (1.3)

where µ is the dynamic viscosity of the fluid. Assuming two-dimensional flow, equa-
tions (1.3) can be satisfied by introducing the streamfunction, ψ(x, y, t), such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (1.4)

in which case the flow is governed by the biharmonic equation,

∇4ψ = 0, (1.5)

as outlined in Acheson (1990).
An example of the application of these equations (found in later chapters) is the case

of Poiseuille or shear flow. Here we consider a velocity field of the form u = (u(y, t), 0).
In this case the first of the Stokes equations, (1.3), yields

1
µ

∂p
∂x

=
∂2u
∂y2 ,

∂p
∂y

= 0. (1.6)

The second equation implies that p is a function of x and t at most, whilst u is a function
of y and t at most, and hence we must have

∂2u
∂y2 =

1
µ

∂p
∂x

= −G, (1.7)

where µG is the pressure gradient, which may be dependent on t at most.

1.4.2 Boundary Conditions at an Impermeable Wall

At an impermeable wall, y = h(x, t), it is necessary to satisfy the kinematic condition,
which ensures that any fluid particle sitting on the wall must remain on the wall. This
necessitates

D
Dt

(y− h(x, t)) = 0 (1.8)

on y = h. This gives us the impermeability condition,

v(x, h, t)− ∂h
∂t

(x, t)− u(x, h, t)
∂h
∂x

(x, t) = 0. (1.9)
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At a fixed, flat, horizontal wall, where h is constant, this condition reduces to

v(x, h, t) = 0. (1.10)

Alongside this condition we must satisfy a no-slip condition, u · t̂ = ub · t̂, where ub

is the velocity of the boundary and

t̂ =

(
1 +

(
∂h
∂x

)2
)− 1

2 (
1,

∂h
∂x

)
(1.11)

is the unit tangent vector to the wall. We consider a wall that moves vertically at most
so that every part moves parallel to the y-axis and ub = (0, ∂h/∂t). This gives us the
boundary condition

(
1 +

(
∂h
∂x

)2
)− 1

2 (
u(x, h, t) + v(x, h, t)

∂h
∂x

)
=

(
1 +

(
∂h
∂x

)2
)− 1

2
∂h
∂t

∂h
∂x

. (1.12)

Making use of condition (1.9), equation (1.12) may be re-written as

(
1 +

(
∂h
∂x

)2
) 1

2

u(x, h, t) = 0, (1.13)

giving us the condition

u(x, h, t) = 0. (1.14)

1.4.3 Boundary Conditions at an Interface

1.4.3.1 The Stress Condition

In Cartesian co-ordinates the stress tensor, σ, for a Newtonian fluid is given by

σij = −pδij + 2µeij, eij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, (1.15)

where σij is the i-component of stress acting on a surface element with unit normal
pointing in the j-direction. Here i, j = x, y in two-dimensions, p is the pressure, µ is the
constant dynamic viscosity and the Kronecker delta,

δij =

{
1 if i = j
0 if i 6= j

. (1.16)

When two or more fluids are included in our analysis, a stress condition must be
satisfied at the fluid interface, y = η(x, t), say. We assume that the fluids below and
above the interface are known as fluid 1 and 2, respectively. The unit normal vector to



1.4 Mathematical Tools 15

the interface, n̂, points into fluid 1 and the unit tangent vector, t̂, points in the direction
of increasing l, where l is the arc length along the interface. Therefore

n̂ =

(
1 +

(
∂η

∂x

)2
)− 1

2 (
∂η

∂x
,−1

)
, t̂ =

(
1 +

(
∂η

∂x

)2
)− 1

2 (
1,

∂η

∂x

)
. (1.17)

We consider the balance of forces on a small element of the interface, dl (see figure 1.4).
The element is subject to forces due to surface tension, γ, in the tangential direction

Figure 1.4: The force balance on a small interface element, dl, of an interface, y = η(x, t).

and forces exerted by fluids 1 and 2 in the normal direction. Taking the inertia of the
element to be negligible, a force balance gives us

γ(l + dl)t̂(l + dl)− γ(l)t̂(l) + dl (σ1 · n̂− σ2 · n̂) = 0, (1.18)

where σ1 (or σ1ij) denotes the stress tensor in fluid 1 and σ2 (or σ2ij) denotes the stress
tensor in fluid 2. Expanding the first term in Taylor series (neglecting terms of O(dl2)),
dividing the equation by dl, taking the limit as dl → 0 and defining the curvature, κ,
such that −κn̂ = ∂t̂/∂l, this leads to the condition at the interface,

(σ1(x, η, t)− σ2(x, η, t)) · n̂ = γ(x, η, t)κ(η)n̂− ∂γ

∂l
(x, η, t)t̂. (1.19)

Here,

κ =

(
1 +

(
∂η

∂x

)2
)− 3

2
∂2η

∂x2 . (1.20)

It is clear from the second term on the right hand side of (1.19) that a variation in surface
tension along the interface promotes a tangential force (the Marangoni force). This term
represents the phenomena that since a high surface tension is more attracting than a
low surface tension, there tends to be a movement of liquid away from areas of low
surface tension to areas of high surface tension. This is known as the Marangoni effect.
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In the case that surface tension is constant, the stress condition reduces to

(σ1(x, η, t)− σ2(x, η, t)) · n̂ = γκ(η)n̂. (1.21)

1.4.3.2 Other Boundary Conditions

In addition to the stress condition, we must satisfy velocity continuity at a fluid inter-
face, y = η(x, t). This gives us

u1(x, η, t) = u2(x, η, t), v1(x, η, t) = v2(x, η, t), (1.22)

where the subscripts 1 and 2 denote the lower and upper fluid, respectively.
Finally, the kinematic condition must also be satisfied at the moving interface. This

gives us

v2(x, η, t)− ∂η

∂t
(x, t)− u2(x, η, t)

∂η

∂x
(x, t) = 0, (1.23)

where, due to condition (1.22), it makes no difference whether we choose to take the
interface velocity components from fluid 1 or 2.
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Chapter 2

Two-Fluid Flow Next to an
Oscillating Wall

2.1 Introduction

This chapter comprises a first simple attempt at modelling the mechanics of the DGM
main body by considering the response of a flow field and fluid interface between
two creeping fluids next to a sinusoidally moving wall. The model can be thought
of as a local description of the flow in the region close to the wall of the machine,
where the two fluids represent two different phases of partially digested liquid material
mixed with gastric secretions. The representation is taken in the very simplest case
in that the only distinction drawn between the two fluids is that of differing, constant
viscosities. The choice of a sinusoidally moving wall is inspired by the sinusoidally
varying external pressure induced in the water bath surrounding the cone in the DGM
main body (Wickham et al., 2012).

2.2 Problem Description

We consider small Reynolds number, two-fluid flow next to a moving wall, y∗ =

s∗(x∗, t∗), oscillating about y∗ = 0, as shown in figure 2.1. The free interface between
the fluids, y∗ = η∗(x∗, t∗), has the flat equilibrium position y∗ = h. Here stars denote
dimensional variables that have a dimensionless counterpart. We allow a small per-
turbation to the state where the wall and interface are both flat, letting the wall and
interface both vary periodically with x∗, so that

s∗ = εha(ωt∗) sin(k∗x∗), η∗ = h + εh [b(ωt∗) sin(k∗x∗) + c(ωt∗) cos(k∗x∗)] , (2.1)

where 0 < ε � 1 is a small parameter and k∗ and ω are prescribed and denote the
positive, real wavenumber and frequency of the perturbation, respectively. Here the
interface description has been chosen to allow for a phase difference in x between the
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Figure 2.1: The two-fluid problem

wall and interface. The function a is prescribed and the functions b and c are to be
determined. We denote the lower and upper fluid with subscript 1 and 2, respectively,
and let the viscosity in fluid j be µj. The interface has constant surface tension, γ.

We non-dimensionalise using the characteristic length scale h, time scale 1/ω and
viscosity scale µ1, resulting in the non-dimensional parameters

Λ =
µ2

µ1
, Ca =

hµ1ω

γ
, (2.2)

where Λ is the viscosity ratio and Ca is the capillary number. Taking non-starred vari-
ables as non-dimensional, we introduce the stream function, ψj(x, y, t), in addition to the
velocity field, uj(x, y, t) = (uj, vj), and pressure, pj(x, y, t) in fluid j. In non-dimensional
variables we write

s =εa(t) sin(kx), η = 1 + ε [b(t) sin(kx) + c(t) cos(kx)] ,

ψj =ε
[

f j(y, t) cos(kx) + gj(y, t) sin(kx)
]

,

pj =ε
[
p0(t) + mj(y, t) sin(kx) + nj(y, t) cos(kx)

]
, (2.3)

where the forms of the streamfunction and pressure are chosen to satisfy the governing
equations, (1.3) and (1.5), and boundary conditions (1.9), (1.21), (1.22) and (1.23).

Non-dimensionalising and linearising all boundary conditions, the no-slip and kine-
matic conditions at the moving wall, (1.14) and (1.9), give us

∂ f1

∂y
(0, t) = 0, f1(0, t) =

1
k

da
dt

(t),
∂g1

∂y
(0, t) = g1(0, t) = 0, (2.4)

the velocity continuity and kinematic conditions at the interface, (1.22) and (1.23), yield

∂ f1

∂y
(1, t) =

∂ f2

∂y
(1, t), f1(1, t) = f2(1, t),

∂g1

∂y
(1, t) =

∂g2

∂y
(1, t), g1(1, t) = g2(1, t),

(2.5)

db
dt

(t) = k f2(1, t),
dc
dt
(t) = −kg2(1, t), (2.6)
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and the stress condition (1.21), evaluated in the normal and tangential directions to the
interface, implies that

−m1(1, t) + m2(1, t) + 2k
(

∂ f1

∂y
(1, t)−Λ

∂ f2

∂y
(1, t)

)
= − k2b(t)

Ca
,

−n1(1, t) + n2(1, t)− 2k
(

∂g1

∂y
(1, t)−Λ

∂g2

∂y
(1, t)

)
= − k2c(t)

Ca
, (2.7)

and

k2 f1(1, t) +
∂2 f1

∂y2 (1, t) = Λ
(

k2 f2(1, t) +
∂2 f2

∂y2 (1, t)
)

,

k2g1(1, t) +
∂2g1

∂y2 (1, t) = Λ
(

k2g2(1, t) +
∂2g2

∂y2 (1, t)
)

. (2.8)

We perturb about a state of rest so that as y → ∞ the velocity is zero. Hence, the far
field conditions are

∂ f2

∂y
, f2 ,

∂g2

∂y
, g2 → 0 as y→ ∞. (2.9)

2.3 Problem Solution

We solve the non-dimensionalised biharmonic equation, (1.5), subject to conditions (2.4)
and (2.9). Here we non-dimensionalise the Stokes equations, (1.3), from which we may
obtain the pressure. Defining, for brevity,

sy = sinh(ky), cy = cosh(ky), s1 = sinh(k), c1 = cosh(k), (2.10)

and

l1 = c1 + Λs1, l2 = s1 + Λc1, l3 =

(
l22

l12 − 1

)
k2 − 1, l4 =

l22

l12 +
1
k

l2
l1
− 1, (2.11)

the streamfunction and pressure perturbations are defined by

f1 =
1
k

da
dt

cy + A1(t)
(
sy − kycy

)
+ B1(t)ysy, f2 = (A2(t) + B2(t)y) e−ky,

g1 =C1(t)
(
sy − kycy

)
+ D1(t)ysy, g2 = (C2(t) + D2(t)y) e−ky, (2.12)

and

m1 =2k
(

B1(t)sy − kA1(t)cy
)

, m2 = 2kΛB2(t)e−ky,

n1 =2k
(

D1(t)sy − kC1(t)cy
)

, n2 = 2kΛD2(t)e−ky. (2.13)



20 Two-Fluid Flow Next to an Oscillating Wall

From equations (2.5), (2.7) and (2.8), we find that

A1(t) =
l4
l3

da
dt

+
1

2Cal1l3

(
1 + k

l2
l1

)
b(t), B1(t) =

1
l3

da
dt

+
1

2Cal1l3
b(t),

C1(t) = −
1

2Cal1l3

(
1 + k

l2
l1

)
c(t), D1(t) = −

1
2Cal1l3

c(t), (2.14)

and

A2(t) = ek
(

α1
da
dt

+
β1

2Cal1l3
b(t)

)
, B2(t) = ek

(
α2

da
dt

+
β2

2Cal1l3
b(t)

)
,

C2(t) = −
ekβ1

2Cal1l3
c(t), D2(t) = −

ekβ2

2Cal1l3
c(t). (2.15)

Here

α1 =
1
k

c1 − ek +
1
l3

(
l4
(

s1 + k(kek − s1 − c1)
)
− kek

)
,

β1 =

(
1 + k

l2
l1

)(
s1 + k(kek − s1 − c1)

)
− k3ek,

α2 =(ek +
1
l3

(
−l4k(kek − s1) + kek + s1

)
,

β2 =−
(

1 + k
l2
l1

)
k(kek − s1) + k2(kek + s1). (2.16)

Considering the DGM main body, it is relevant to choose a(t) = cos(t) for a standing
wave wall motion. Then (2.6) becomes

db
dt
− h1b(t) = −h2 sin(t),

dc
dt
− h1c(t) = 0, (2.17)

where

h1 =
k

2Cal1l3
(β1 + β2), h2 = k(α1 + α2). (2.18)

We then find that

b(t) = Aeh1t +
h2

(1 + h1
2)

1
2

cos(t + δ), δ = tan−1(−h1), c(t) = Beh1t, (2.19)

where A and B are constants determined by our choice of the initial conditions b(0) and
c(0). It can be shown, after some algebra, that

h1 = −
k
(
Λ(s1

2 − k2) + s1c1 − k
)

2Ca (k2(1−Λ2) + (c1 + Λs1)2)
, (2.20)

and, since it is true that sinh(k) > k and cosh(k) > 1 for k > 0, the numerator is positive
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and

k2(1−Λ2) + (c1 + Λs1)
2 > k2 −Λ2s1

2 + c1
2 + 2Λc1s1 + Λ2s1

2 > 0, (2.21)

and we can conclude that h1 is less than zero for all positive k. Hence the function
c(t) and the exponential term in b(t) always decay, and we approach a stable, periodic
solution for η that is in phase with the wall in x. Plots of h1 show a function that
decreases monotonically with k and letting k→ ∞ in (2.20), we find that h1 → −k.

We choose to consider the case where b(0) = c(0) = 0, so that the interface is flat at
t = 0. This gives us

A = − h2

(1 + h1
2)

, B = 0. (2.22)

Choosing a different initial condition does not change the solution qualitatively, al-
though for a specific choice, namely b(0) = h2/(1+ h1

2), c(0) = 0, the exponential term
disappears from our solution, which is periodic for all time.

We note that the presence of the exponential terms in (2.19) means that the flow
is not subject to the usual Stokes flow time-reversibility. If we take the limit Ca → ∞
(zero surface tension) we find that h1 → 0 and the exponential terms disappear. It
is therefore clear that the non time-reversibility is a result of surface tension acting to
flatten the interface. This means that for a fixed, sinusoidal wall, b(t) and c(t)→ 0 and
the displaced interface relaxes back to the flat rest state, as we would expect.

Since we have shown that h1 is always negative, δ is always positive and the interface
will lag behind the wall in time. As −∞ ≤ h1 ≤ 0, this implies 0 ≤ δ ≤ π/2. A
consequence of this phase shift is that, for the settled solution, the thickness of fluid 1,
η − s, changes with time (except at x = nπ, n ∈ Z, where the thickness is always 1) as
well as x.

Once the solution has settled, the amplitude of b(t), and hence the interface, is ε

when k = 0. The sign of the amplitude depends only on h2 and since

h2 =
(k + Λ) s1 + (1 + Λk) c1

k2(1−Λ2) + (c1 + Λs1)2 , (2.23)

the denominator of which we have already shown to be positive for all k > 0, the
amplitude is greater than zero for all positive k. Plots of h2 show an exponentially
decreasing function and letting k → ∞ in (2.23), we find that h2 → ke−

k
2 . Therefore the

amplitude decreases as k increases and is never larger than the amplitude of the wall.

2.4 Streamline Plots

Figure 2.2 shows typical plots of the streamlines for this problem. We observe two rows
of cells divided by one horizontal and many vertical lines of zero ψ. The bottom set
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Figure 2.2: Typical streamline plots for the two-fluid standing wave problem. Here
k = Λ = 1, Ca = 0.05 and t = π

2 . The wall and interface are shown with thick lines.
Streamlines are shown with thin lines.

of cells appear as open arcs, whilst the top set are closed. Consecutive cells spin in
opposite directions. By altering the various parameters we may slow the flow of one
fluid relative to the second and increasing the wavenumber, k, more cells are found in
the same area.

Since ψ = 0 on the horizontal streamline, it must occur in fluid 2 when f2 = 0.
Therefore, from equation (2.12), its position, y0, in the y-direction in fluid 2 is given by

y0 = −A2(t)
B2(t)

. (2.24)

Figure 2.3 shows typical plots of y0 against Ca and k for y > 1. We find that in both

(a) (b)

Figure 2.3: The position of the horizontal streamline, y0 plotted against (a) Ca when
k = Λ = 1 and (b) k when Λ = Ca = 1. Here t = π

3 .

the cases Ca → ∞ and k → 0, for a given time (except at t = mπ, m ∈ N, where the
horizontal streamline always sits at y = 0), y0 → ∞ so that we only have one set of cells.

Since increasing Ca and decreasing k appear to have a similar effect on the flow field,
this suggests that we require tangential movements of the interface to be comparable
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in size to normal movements for the appearance of a second set of cells. In both cases
normal movements are less constrained, in the former due to a weaker surface tension
and in the latter due to surface tension being felt less strongly due to a larger horizontal
length scale.

2.5 A Single Fluid Next to a Normally and Tangentially Moving
Wall

We briefly consider the simpler case of a single fluid extending up to infinity next to
a moving wall where, as well as allowing normal movements of the wall, y = s, we
allow tangential movements. We suppose that u = εζ cos(kx) sin(t) on y = s for some
constant ζ together with the previous normal oscillations. We assume that the only
mode present in our solution is that for which f j (here f ) appears in the streamfunction,
mj (here m) in the pressure and b(t) in the interface description. In this case the only
boundary conditions are the far-field conditions (2.9) and the conditions at the wall,
(2.4), the first of which (the no-slip condition) is instead given by

∂ f
∂y

(0, t) = ζ sin(t). (2.25)

Solving the non-dimensionalised version of the biharmonic equation, (1.5), subject to
the above conditions, we find that

ψ = ε

(
−1

k
+ (ζ − 1) y

)
e−ky sin(t) cos(kx). (2.26)

In this case, for a horizontal streamline of zero ψ with equation

y = y0 =
1

k(ζ − 1)
, (2.27)

and a second set of cells to appear, we require ζ > 1 and the horizontal movements of
the wall must be larger than the vertical movements.

Likening this model wall to the interface in our two-fluid problem, this result is in
favour of our hypothesis that tangential movements of the interface must be comparable
to normal movements for the appearance of a second set of cells.

2.6 Extension to Other Types of Wall Motion

Since we are working with a linear problem, our work can easily be extended to look
at other wall motions by summing over known solutions (so that the wall motion could
be given by, for instance, a Fourier sum). An interesting alternative case to consider is
that of a travelling wave wall motion, which may also be relevant in terms of the DGM
main body. Here, in non-dimensional variables, we consider the sum of our standing
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wave solution, ψj, j = 1, 2, (taking the only mode to be that for which f j appears in
the streamfunction, mj in the pressure and b(t) in the interface description) plus an
alternative standing wave solution, ψ̄j, such that the wall is described by

y = S = ε sin(kx− t) = εh (sin(kx) cos(t)− cos(kx) sin(t)) . (2.28)

Then, the (again stable) solution for the streamfunction, Ψj in fluid j is given by

Ψj = ψj − ψ̄j. (2.29)

Figure 2.4 shows typical plots of the streamlines for this problem. The interface

(a) (b)

Figure 2.4: Typical streamline plots for the two-fluid travelling wave problem. Here
k = Λ = 1, t = 19π

3 and Ca = (a) 0.05 and (b) 0.01. The wall and interface are shown
with thick lines. Streamlines are shown with thin lines.

moves with a travelling wave wall motion. Once the solution has settled, it is found to
be out of phase with the wall, with a smaller amplitude. The streamline pattern also has
travelling wave form. The streamlines at any moment in time are qualitatively similar
to the pattern seen in the case of a standing wave wall motion, but are tilted towards the
direction of motion. In this case there is no horizontal streamline of zero ψ and instead,
as we increase Ca, the streamlines pattern is tilted to the right and compressed to such
an extent that a second row of closed streamlines is formed, as shown in figure 2.4.

2.7 Discussion

We have performed a linear stability analysis for the flow of two fluids next to a sinu-
soidally moving wall. The introduction of surface tension at the interface removes the
time-reversibility of the flow and exponentially decaying terms are found to be present
in the solution. Once initial transients have decayed, the solution is stable and periodic,
suggesting that an alternative mechanism is needed to induce fluid mixing.

The interface is found to lag behind the wall with a phase difference of between
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zero and π/2. The amplitude of the interface equals the amplitude of the wall when
the wavenumber of the disturbance is zero and decreases as the wavenumber increases.

Streamline plots show a row of closed cells sitting above a row of open cells. The
rows are divided by horizontal and vertical lines on which the streamfunction is equal
to zero. It is suggested that tangential movements of the interface must be comparable
in size to normal movements for the appearance of a second set of cells. More evidence
is found for this suggestion when we consider the case of a single fluid next to a wall
that moves tangentially as well as normally.

We may construct the solution for a travelling wave wall motion from the sum of
two standing wave solutions and find that following the decay of initial transients, the
solution itself has travelling wave form. The pattern of streamline cells is similar to the
standing wave case, but the cells are tilted towards the direction of motion.

We note that our work may be compared to that of Pozrikidis (1987), who considered
Stokes flow moving through a channel with walls that move peristaltically. In particular,
the cells observed in our streamline plots are similar to those found in this paper when
the walls have equal amplitude and move symmetrically about the centre of the channel.

In the next chapter we consider a nonlinear analysis where, instead of two fluids,
we study the flow of a single thin film next to a sinusoidally moving wall with general
amplitude.
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Chapter 3

Thin-Film Flow Next to an
Oscillating Wall

3.1 Introduction

Having considered the linear analysis of a problem in which a sinusoidal wall under-
goes small amplitude oscillations and shown that the fluid interface is stable, it is of
interest to determine whether this is also the case for the nonlinear problem. Here we
may allow for a wall motion with general amplitude. We make progress with such a
model by considering a single thin film rather than two fluids. In the chapter discussion
we then speculate as to how the addition of a second, semi-infinite, fluid layer would
affect the results. We note that modelling the fluid next to the wall as a thin film is a
relevant assumption in terms of the DGM body. In the DGM, as mentioned in chapter
1, the fluid layer at the wall (comprising for the most part of gastric juices) is likely to
be thin. In this chapter we make no assumptions about the x and t dependencies of
the interface, thus allowing for a description that may not necessarily have the same
dependencies as the wall.

3.2 Problem Description

We consider a thin film of fluid of density ρ and viscosity µ flowing next to a moving
wall, y∗ = s∗(x∗, t∗), where starred variables are dimensional variables with a non-
dimensional counterpart. The mean position of the wall is located at y∗ = 0. The free
surface (above which is static air) is at y∗ = η∗(x∗, t∗), and has the flat position y∗ = h
when at rest. We consider two cases (illustrated in figure 3.1). In case (i) the x∗ axis is
horizontal and the characteristic velocity scale, U, is taken to be the typical flow velocity
in the x∗-direction, Lω, where L denotes the typical wavelength of the wall and ω is the
frequency of the wall oscillations. In case (ii) the x∗ axis is inclined at an angle α to the
horizontal and gravity, of magnitude g, is allowed to act vertically downwards. In this
case U is taken to be equal to UN , the Nusselt surface speed for a flat film flowing down
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(a) (b)

Figure 3.1: Schematic diagram of thin film flow of one fluid next to a moving wall. In
case (i) the x∗ axis is horizontal, whilst in case (ii) the x∗ axis is inclined at an angle α
to the horizontal and gravity acts such that the free surface flows with speed UN . The
positions of the perturbed wall, y∗ = s∗(x∗, t∗) and free surface, y∗ = η∗(x∗, t∗), are
shown.

an inclined plane, as derived in Nusselt (1916). Ignoring condensation, UN is given by

UN =
ρgh2 sin(α)

2µ
. (3.1)

Here gravity is accounted for by defining and solving for the shifted pressure,

p̃∗ = p∗ − ρg (x∗ sin(α)− y∗ cos(α)) . (3.2)

In case (i), on the other hand, we simply take p̃∗ = p∗.
We return momentarily to the full Navier–Stokes equations and incompressibility

condition, (1.2), for the velocity field, u∗(x∗, y∗, t∗) = (u∗, v∗) and pressure p̃∗(x∗, y∗, t∗),
and make use of lubrication theory as described in Acheson (1990). We first non-
dimensionalise using the characteristic horizontal length scale L, vertical length scale
h, horizontal velocity U, time scale L/U and pressure scale µLU/h2. This results in the
non-dimensional parameters

Re =
UL
ν

, δ =
h
L

, Ca =
µU
γ

, Bo =
ρgL2δ2

γ
, (3.3)

where ν is the kinematic viscosity, Re is the Reynolds number, Ca is the capillary number
and Bo is the Bond number for the flow. Using the Stokes approximation and assuming
that the fluid is a thin film, we may take Re � 1 and δ � 1 (in fact, given δ � 1, only
the weaker condition δ2Re� 1 is necessary in the following analysis). In order to retain
the effects of surface tension in the stress condition, (1.21), we must assume that γ is
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large (of the O(1/δ3)). We therefore define the O(1) parameter

Ca′ =
Ca
δ3 . (3.4)

From this point, non starred variables are non-dimensional. Given the above assump-
tions, the Navier–Stokes equations and incompressibility condition, (1.2), reduce to, at
leading order,

0 = −∂ p̃
∂x

+
∂2u
∂y2 , 0 = −∂ p̃

∂y
,

∂u
∂x

+
∂v
∂y

= 0. (3.5)

Non-dimensionalising the no-slip and kinematic boundary conditions, (1.14) and
(1.9), at the wall, y = s, gives us

u(x, s, t) = 0, v(x, s, t) =
∂s
∂t

, (3.6)

and the kinematic condition on the free surface, y = η, yields

v(x, η, t)− ∂η

∂t
− u(x, η, t)

∂η

∂x
= 0. (3.7)

Taking the stress condition, (1.21), for the case of one fluid with air above it and non-
dimensionalising, we find that in the directions normal and tangential to the free sur-
face, we have

p(x, η, t) = − 1
Ca′

∂2η

∂x2 ,
∂u
∂y

(x, η, t) = 0. (3.8)

The second of equations (3.5) implies that p̃ is a function of x and t at most (and
so the first of (3.8) gives us an expression for p for all y). We may then solve the first
equation using the conditions on u from (3.6) and (3.8) to give us

u =
∂ p̃
∂x

(
(y− s)2

2
− (y− s)(η − s)

)
. (3.9)

Solving the third of (3.5) for v using the condition on v from (3.6), we find that

v =
∂s
∂t
− ∂2 p̃

∂x2
(y− s)3

6
+

∂

∂x

(
∂ p̃
∂x

(η − s)
)
(y− s)2

2

+
∂ p̃
∂x

∂s
∂x

(
(y− s)2

2
− (η − s)(y− s)

)
. (3.10)

Substituting our expressions for u and v into equation (3.7) and defining the film thick-
ness, H = η − s, gives us the thin film equation,

∂H
∂t
− 1

3
∂

∂x

(
H3 ∂ p̃

∂x

)
= 0. (3.11)
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In case (i) p̃ = p and, using the first of equations (3.8), we obtain

∂H
∂t

+
1
3

∂

∂x

(
H3

Ca′
∂3

∂x3 (H + s)
)
= 0. (3.12)

We note that taking s = ε sin(kx) cos(t) and η = 1 + ε sin(kx)b(t), for 0 < ε � 1 a
small parameter, in equation (3.12) and retaining only terms of O(ε), we find that

db
dt

+
k4b

3Ca′
= − sin(t). (3.13)

We can compare this equation with the equation for b(t), (2.17), in chapter 2. Taking
Λ = 0 in this equation (since y = η is now a free surface) and letting k → δk (and
expanding functions of k using a Taylor series approximation) and t → (1/δ)t, this
leaves us with (3.13) to first order in δ, therefore validating our work.

In case (ii), using (3.1) and given the first of equations (3.8) at y = η and the second
of equations (3.5), we find that equation (3.2) gives us

p̃ = − 1
Ca′

∂2η

∂x2 − 2x + 2δη cot(α). (3.14)

Assuming that either δ cot(α)� 1 or δ cot(α)� 1/Ca′, we may neglect the last term of
this expression and our thin film equation is found to be

∂H
∂t

+
1
3

∂

∂x

(
2H3 +

H3

Ca′
∂3

∂x3 (H + s)
)
= 0. (3.15)

3.3 A Linear Solution

We first seek a linear solution by writing H = 1 + ε f (x, t) where 0 < ε � 1 is a small
parameter and f = O(1). We assume that s = ε sin(kwx) cos(t), where k = kw is the
wavenumber of the wall.

3.3.1 Case (i); Horizontal Thin Film Flow

In case (i), to first order in ε, equation (3.12) yields

∂ f
∂t

+
1

3Ca′
∂4 f
∂x4 +

kw
4

3Ca′
sin(kwx) cos(t) = 0. (3.16)

3.3.1.1 An Analytical Solution

We assume for a moment that f takes the form of the inverse Fourier transform, such
that

f (x, t) =
∫ ∞

−∞
c(k, t)eikxdk where c(k, t) =

1
2π

∫ ∞

−∞
f (x, t)e−ikxdx. (3.17)
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Then since

1
2π

∫ ∞

−∞
sin(kwx)e−ikxdx =

1
4πi

∫ ∞

−∞
e−i(k−kw)x − e−i(k+kw)xdx

=
i

4π
(δ(k + kw)− δ(k− kw)), (3.18)

where δ denotes the delta function, we have that

sin(kwx) =
i
2

∫ ∞

−∞
(δ(k + kw)− δ(k− kw))eikxdk, (3.19)

and equation (3.16) implies that

dc
dt

+
k4

3Ca′
c +

ikw
4

6C′
cos(t)(δ(k + kw)− δ(k− kw)) = 0. (3.20)

If k 6= ±kw, then δ(k± kw) = 0 and c = C0 exp(−k4t/(3Ca′)) for some constant C0, and
these modes decay with time. If k = ±kw we integrate (3.20) with respect to k from
±kw − ε to ±kw + ε and take the limit ε→ 0, finding that

dc
dt
(kw, t) +

kw
4

3Ca′
c(kw, t)∓ ikw

4

6Ca′
cos(t) = 0. (3.21)

If we assume that f = A(t) cos(kwx) + B(t) sin(kwx) and substitute into (3.16) this gives
us

A = A0 exp

(
− kw

4t
3Ca′

)
,

dB
dt

+
kw

4

3Ca′
(B + cos(t)) = 0, (3.22)

for some constant A0, and so the modes depending on cos(kwx) also die out (at the
same rate as modes with k 6= ±kw) and any general initial free surface deflection settles
down to be in phase with the wall in x. We are therefore justified in assuming that the
x-dependence of the free surface is the same as the wall in the linear case.

This therefore suggests an analytical solution of the form

f = < [ig(t) exp(ikwx)] , (3.23)

whereby (3.16) becomes

dg
dt

+
kw

4

3Ca′
(g− cos(t)) = 0, (3.24)

where it is understood that our solution is obtained by taking the real part. Assuming
that the free surface is at rest when t = 0, so that η(x, 0) = 1 and hence

f (x, 0) = − s(x, 0)
ε

= − sin(kwx), (3.25)
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we find that the solution is given by

f =
1

1 + 9Ca′2/kw
8

(
−9Ca′2

kw
8 exp

(
− kw

4

3Ca′
t

)
− cos(t)− 3Ca′

kw
4 sin(t)

)
sin(kwx). (3.26)

Therefore, after the transient has decayed, the solution is periodic in both x and t for
all time. Taking a different initial condition does not affect the behaviour of the settled
solution, but simply alters the length of time before this solution is reached. Recalling
that η = s + 1 + ε f , we find that the larger we take Ca′ or smaller we take kw, the closer
the phase and amplitude of the free surface to the wall. As we decrease Ca′ or increase
kw, the amplitude of the free surface tends to zero.

3.3.1.2 A Numerical Solution

We may also solve (3.16) numerically. The numerical solution has no advantage over
the analytical solution aside from being a useful check on our analytical results and
requiring the use of an interesting numerical scheme. This scheme could be used for
more complicated equations for which an analytical solution is not possible. Letting
wide hats denote the Fourier transform as described in (3.17) and using integration by
parts we find that

∂̂ f
∂x

=
1

2π

∫ ∞

−∞

∂ f
∂x

e−ikxdx =
ik
2π

∫ ∞

−∞
f e−ikxdx, (3.27)

where we assume that f → 0 as x → ±∞. Therefore, taking the transform of (3.16)
gives us

∂ f̂
∂t

+
k4

3Ca′
f̂ +

kw
4

3Ca′
cos(t) ̂sin(kwx) = 0, (3.28)

and each choice of k yields a first order ordinary differential equation for f̂ (k, t). The
“stiff” second term in this equation leads to instabilities when solving numerically using
the Runge–Kutta method (see Trefethen (2000)). We overcome this problem by multiply-
ing (3.28) by an integrating factor and partially solving the equation analytically, such
that

∂

∂t

(
f̂ exp (−Lt)

)
= N exp (−Lt) , L = − k4

3Ca′
, N = − kw

4

3Ca′
cos(t) ̂sin(kwx). (3.29)

Equation (3.29) is then solved using an exponential time differencing (ETD) method, as
outlined in Beylkin et al. (1998). This works by integrating equation (3.29) with respect
to t from tn to tn+1 = tn + ∆t, whereby we obtain an equation for stepping forward in
time,

f̂ (tn+1) = exp (L∆t) f̂ (tn) + exp (L∆t)
∫ ∆t

0
exp (−Lτ)N (k, tn + τ)dτ, (3.30)
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where τ = t− tn. Various ETD schemes arise depending on how the integral in (3.30) is
approximated (see Cox and Matthews (2002)). Letting f̂n = f̂ (tn), the simplest (ETD1)
scheme assumes that N is constant and therefore

f̂n+1 = exp (L∆t) f̂n +
1
L (exp (L∆t)− 1)N (k, tn). (3.31)

For small magnitudes of L this equation is equivalent to taking an Euler step for-
ward. We use the more accurate second-order Runge–Kutta exponential time differ-
encing method (ETD2RK), in which one step of the form (3.31) is taken before using the
approximation

N = N (k, tn) + τ
N (k, tn + ∆t)−N (k, tn)

∆t
+ O(∆t2) (3.32)

in (3.30), giving us the scheme

an = exp (L∆t) f̂n +
1
L (exp (L∆t)− 1)N (k, tn),

f̂n+1 =an +
1
L2∆t

(exp (L∆t)− 1−L∆t) (N (k, tn + ∆t)−N (k, tn)). (3.33)

Here we take ∆t = 10−2.
Figure 3.2 shows typical plots of the settled solution, where we again take η(x, 0) = 1

as our initial condition. The analytical and numerical solutions for the free surface are

(a) (b)

Figure 3.2: In case (i), typical plots of the analytical (dotted line) and numerical (dashed
line) linear solutions for the free surface, η, plotted alongside typical streamlines and the
wall, s = ε sin(kwx) cos(t), (solid line). Here we take η(x, 0) = 1, ε = 0.1, Ca′ = kw = 1
and t = (a) 8π

3 and (b) 256π
65 .

plotted alongside each other and are found to be visually indistinguishable. In a similar
way to in chapter 2, we obtain rows of cells divided by vertical lines of zero ψ. These
cells take the form of open arcs. In some cases we find simply a single row of cells,
whereas in others there are two rows divided by a horizontal line of zero ψ. In all cases
consecutive cells spin in opposite directions. Altering Ca′ and kw, we find that the flow
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differs quantitatively from these plots but not qualitatively. Decreasing Ca′ (increasing
the surface tension coefficient), for example, we find that the flow more often takes the
form of two rows of cells (as shown in 3.2b), and can be likened to flow in a channel
with sinusoidally moving walls, as we might expect.

3.3.2 Case (ii); Inclined Thin Film Flow

In case (ii) our linearised equation for f obtained from (3.15) is

∂ f
∂t

+ 2
∂ f
∂x

+
1

3Ca′
∂4 f
∂x4 +

kw
4

3Ca′
sin(kwx) cos(t) = 0, (3.34)

which is the same as (3.16), but with an additional term (the second) describing the
influence of gravity.

3.3.2.1 An Analytical Solution

Assuming that f takes the form of the inverse Fourier transform described in (3.17) and
making use of (3.19), equation (3.34) yields

dc
dt

+

(
k4

3Ca′
+ 2ik

)
c +

ikw
4

6Ca′
cos(t)(δ(k + kw)− δ(k− kw)) = 0. (3.35)

Then if k 6= ±kw, we find that c = exp(−(k4/(3Ca′) + 2ik)t), and all such modes decay
with time. If k = ±kw, we again integrate from ±kw − ε to ±kw + ε and take the limit
ε→ 0. This gives us

dc
dt

+

(
kw

4

3Ca′
± 2ikw

)
c∓ ikw

4

6Ca′
cos(t) = 0. (3.36)

If we assume that f = A(t) cos(kwx)+ B(t) sin(kwx) and substitute into (3.34), this gives
us

dA
dt

+
kw

4

3Ca′
A + 2kwB = 0,

dB
dt

+
kw

4

3Ca′
(B + cos(t))− 2kw A = 0, (3.37)

and so in this case the modes depending on cos(kwx) do not decay and although any
initial free surface deflection settles down to have the same wavenumber as the wall, it
may not be in phase in x.

We again take an analytical solution of the form (3.23), giving us, on substitution
into (3.34),

dg
dt

+

(
2kwi +

kw
4

3Ca′

)
g− kw

4

3Ca′
cos(t) = 0, (3.38)

where it is understood that we need to take the real part. Supposing that the free
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surface is at rest when t = 0 and so η(x, 0) = 1, we may solve this equation. Defining,
for brevity,

kp = 1 +
kw

8

9Ca′2
+ 4kw

2, kpm = 1 +
kw

8

9Ca′2
− 4kw

2, km = 1− kw
8

9Ca′2
− 4kw

2, (3.39)

we obtain

f =− 3kw
4Ca′

9kpm
2Ca′2 + 16kw

10

(
− exp

(
− kw

4

3Ca′
t

)(
2kwkm cos(kw(x− 2t))

− 1
3Ca′

(
1

kw
4

(
9kpm

2Ca′2 + 16kw
10
)
− kw

4kp

)
sin(kw(x− 2t))

)

+ sin(kwx)

(
kw

4kp

3Ca′
cos(t) + kpm sin(t)

)

+ cos(kwx)

(
2kwkm cos(t)− 4kw

5

3Ca′
sin(t)

))
, (3.40)

and following the decay of some travelling waves (with phase speed 2), the solution
is again periodic in x and t for all time. A different initial condition simply results
in the solution taking a different length of time to reach the settled solution. Since
η = s + 1 + ε f , we find that if Ca′ is taken to be large or kw small, f → 0 and the phase
and amplitude of the free surface tends to that of the wall. For general Ca′ and kw there
is a phase difference in both x and t. As we decrease Ca′ or increase kw, we find that
f → −s and the amplitude of the free surface tends to zero.

3.3.2.2 A Numerical Solution

Taking the Fourier transform of (3.34) gives us

∂ f̂
∂t

+

(
k4

3C′
+ 2ik

)
f̂ +

kw
4

3C′
cos(t) ̂sin(kwx) = 0. (3.41)

This equation can also be written in the form (3.29), where in this case,

L = −
(

k4

3C′
+ 2ik

)
. (3.42)

We may therefore solve using equation (3.30) and the scheme (3.33).
Figure 3.3 shows typical plots of the settled solution taking η(x, 0) = 1. Again

plotting the analytical and numerical solutions for the free surface alongside each other,
we find them to be visually indistinguishable. We find that due to the inclusion of
gravity in the problem, the prevailing flow runs roughly parallel to the wall. In addition
to this base-state flow, there is an O(ε) correction due to the wall motion. Therefore, at
certain times, open arcs appear at x = 0 and ±π at the wall and free surface. The arcs
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(a) (b)

Figure 3.3: In case (ii), typical plots of the analytical (dotted line) and numerical (dashed
line) linear solutions for the free surface, η, plotted alongside typical streamlines and the
wall, s = ε sin(kwx) cos(t), (solid line). Here we take η(x, 0) = 1, ε = 0.1, Ca′ = kw = 1
and t = (a) 2π and (b) 8π

3 .

turn in the same direction as the surrounding flow. Since, at the wall, the arcs appear at
the stagnation points, this implies that fluid particles are restricted from flowing along
and simply stay collected in these areas. Altering Ca′ and kw does not significantly
change these observations.

3.4 A Nonlinear Solution

We now return to our thin film equations, (3.12) and (3.15), with the intention of solv-
ing numerically. Inspired by the periodicity of the linear solution, we use the implicit
finite difference scheme outlined in Tseluiko and Papageorgiou (2006) for the general
equation,

∂H
∂t

+
∂

∂x

(
a1

∂3

∂x3 (H + s)
)
+

∂

∂x
(a2) = 0, (3.43)

with periodic boundary conditions on the finite interval [−π/kw, π/kw], where a1 and
a2 are polynomials in H. We again let s = ε sin(kwx) cos(t), but in this case the param-
eter ε is not necessarily small.

We first discretise in the x direction by writing xi = (i − N)∆x for i = 1, · · · , 2N,
and use the notation Hk = H(xk, t), sk = s(xk, t), where sk is known from the prescribed
wall motion. Here the distance between grid points is ∆x = π/(kwN). This gives us
2N equally spaced grid points in the interval. Since we have imposed H to be periodic,
we may define the points outside the interval by letting H0 = H2N , H−k = H2N−k and
H2N+k = Hk for k > 0. Using central difference approximations of length ∆x, (3.43)
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gives us

∂H
∂t

=F(H), H = (H1, · · · , H2N)
T , F = (F1, · · · , F2N)

T , (3.44)

for

Fk =−
a1 (Hk+1/2) δ3(H + s)k+1/2 − a1 (Hk−1/2) δ3(H + s)k−1/2

∆x

− a2 (Hk+1/2)− a2 (Hk−1/2)

∆x
, (3.45)

where

x1/2 =
1
2
(−L + x1) , xi+1/2 =

1
2
(xi + xi+1) , i = 1, 2, · · · , 2N − 1, (3.46)

and

δ3(H + s)k+1/2 =
δ2(H + s)k+1 − δ2(H + s)k

∆x
,

δ2(H + s)k =
δ1(H + s)k+1/2 − δ1(H + s)k−1/2

∆x
,

δ1(H + s)k+1/2 =
(Hk+1 + sk+1)− (Hk + sk)

∆x
. (3.47)

We next discretise (3.44) with respect to time, writing

Hm+1 −Hm

∆t
= F

(
θHm+1 + (1− θ)Hm

)
, (3.48)

where Hm = H(t = tm), the timestep ∆t = tm+1− tm and θ is some real number in [0, 1],
which we take to be 1. The solution at t = tm+1, Hm+1, is then given by solving (3.48)
iteratively using Newton’s method.

In the calculation ∆x and ∆t change with time and their sizes alter so that a number
of constraints are satisfied, as detailed in Tseluiko and Papageorgiou (2006). In gen-
eral, they are chosen to increase accuracy without rendering the solution unnecessarily
computationally expensive. We let N = 100 and ∆t = 10−2 for the first timestep. If
we choose ∆x and ∆t to be progressively smaller for this initial step and compare the
resulting solutions over time, we find that they converge, suggesting that our results are
consistent.

In Tseluiko and Papageorgiou (2006) it is shown that H is always positive and the
surface of the thin film never touches the wall. Although our problem differs from
theirs since we have included a moving wall, this suggests that the same may be true in
our case.
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3.4.1 Case (i); Horizontal Thin Film Flow

In case (i) (3.12) can be written in the form (3.43) by taking a1 = H3/(3Ca′) and a2 = 0.
We validate our solution by decreasing the wall amplitude, ε, and checking that the
linear and nonlinear solutions converge.

Figure 3.4 shows a typical evolution of the wall and free surface when ε is taken to
be 0.9 and taking the initial condition η(x, 0) = 1. The solution for the free surface is

(a) (b)

(c)

Figure 3.4: In case (i), typical plots of the nonlinear (dash-dotted line) and linear (dashed
line) solutions for the free surface, η, plotted alongside the wall, s = ε sin(kwx) cos(t),
(solid line) when ε = 0.9. Here we take η(x, 0) = 1 and Ca′ = kw = 1. In (a) t = π, (b)
t = 2π and (c) t = 3π.

qualitatively similar to when ε = 0.1 but with a larger free-surface amplitude (especially
initially). The settled solution remains in phase with the wall in x, but is slightly more
noticeably out of phase in time. In addition, unlike in the case of smaller ε, the film
is no longer of constant thickness at x = nπ, n ∈ Z. We also compare the nonlinear
solution to the linear prediction. Although at times the linear solution appears to give
a good approximation for large ε, this is not the case for all kw and Ca′.

As a check on the accuracy of our results and the validity of the periodic solution



38 Thin-Film Flow Next to an Oscillating Wall

for large times, we consider the integrals

I1(t) =
∫ π/kw

−π/kw

Hdx, I2(t) =
∫ π/kw

−π/kw

H2dx, (3.49)

using the trapezium rule, which is found to give a good approximation, especially when
integrating a periodic function over its period. Once the solution has settled, I1 is found
to be constant (to within the accuracy of the program), as we would expect. Plots of I2

give us an indication as to when the solution has settled and afterwards show a periodic
solution.

We focus on a single choice of parameters, namely Ca′ = 0.1 and kw = 1, which we
feel relevant to the DGM. Preliminary work for general values of Ca′ and kw suggested
that the solution is qualitatively similar in all cases. However, a more rigorous study of
the solution for general values would be time consuming, especially for larger values
of Ca′ and smaller values of kw, for which the solution takes a lot longer to settle. We
therefore leave a more thorough examination in (Ca′, kw)-space as a possible topic of
future research. The choice of Ca′ comes from consideration of the values stated in
chapter 1, taking µ to be of the O(10−2) to represent the lower viscosity gastric juice
and U to be of the O(10−4). From Kong and Singh (2008a), we may also take γ to be of
the O(10−2). Then, letting δ = 10−1, a realistic order of magnitude for Ca′ as defined in
(3.3) is 10−1.

Letting I2 i = I2(ti), in figure 3.5 we plot the set of points (I2 i, I2 i+1) for i = 1, ..., 9,
where ti+1 = ti + 2π and t1 is chosen such that the solution has settled. We obtain a

(a) (b)

Figure 3.5: In case (i), when ε = 0.9, C′ = 0.1 and kw = 1, plots of (a) I2 i+1 against I2 i
and (b) ∂H/∂t against H.

single dot, indicating that the period is either 2π or divides 2π. Given our plots of I2,
we conclude that the period is 2π, the same as the wall. We also plot a phase portrait of
∂H/∂t against H for a fixed x, which we choose to be −π/2. Here the time derivative is
given by equation (3.12), in which x derivatives can be obtained by a transformation into
Fourier space. Once the solution has settled, we obtain a closed curve, again indicating
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a periodic solution, at least in the (relatively long) time period that we consider.

3.4.2 Case (ii); Inclined Thin Film Flow

In case (i) (3.15) can be written in the form (3.43) by taking a1 = H3/(3Ca′) and a2 =

2H3/3. The convergence of our solution is checked by decreasing the wall amplitude,
ε, and checking that the linear and nonlinear solutions correspond.

Figure 3.6 shows typical plots of the wall and free surface when ε = 0.9 and η(x, 0) =
1. Similar to case (i), the settled solution is like that when ε = 0.1, but is slightly more

(a) (b)

(c) (d)

Figure 3.6: In case (ii), typical plots of the nonlinear (dash-dotted line) and lin-
ear (dashed line) solutions for the free surface, η, plotted alongside the wall, s =
ε sin(kwx) cos(t), (solid line) when ε = 0.9. Here we take η(x, 0) = 1 and Ca′ = kw = 1.
In (a) t = π

3 , (b) t = 4π
3 , (c) t = 7π

3 and (d) t = 10π
3 .

out of phase in time, leading to more variation in H over a period in x. For early times
we now clearly see the appearance of modes with a different shape and wavenumber to
that of the wall. These modes appear to take the form of a right-travelling wave, which
can sometimes be relatively steep, before settling down. As we increase Ca′, we find
that the wave steepening becomes more severe (see figure 3.7a). It is interesting to note
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(a) (b)

Figure 3.7: In case (ii), a plot of the nonlinear (dash-dotted line) and linear (dashed line)
solutions for the free surface, η, plotted alongside the wall, s = ε sin(kwx) cos(t), (solid
line) when ε = 0.9 and when (a) Ca′ = 100 and t = 3π

15 and (b) the right-hand side of
(3.50) is taken to be zero and t = 9π

120 . Here we take η(x, 0) = 1 and kw = 1.

that we can re-write equation (3.15) as

∂H
∂t

+ 2H2 ∂H
∂x

= − ∂

∂x

(
1

3Ca′
H3 ∂3

∂x3 (H + s)
)

, (3.50)

which, with the right hand side equal to zero, can be compared to the equation ∂H/∂t+
H∂H/∂x = 0, which is known to lead to wave steepening and breaking. Since we do
not see wave breaking in our solution (although the wave front appears to be almost
vertical at times, ∂H/∂x, which seems to be proportional to Ca′, is simply found to be
very large at this point), this suggests that the term on the right hand side of (3.50) is
stabilising and that breaking can only occur in the infinite Ca′ limit.

We use the method of characteristics to analyse equation (3.50) with right hand side
equal to zero. Letting H = H(x(θ), t(θ)) for some parameter θ, we can re-write this
equation as

dH
dθ

=
∂H
∂x

dx
dθ

+
∂H
∂t

dt
dθ

, (3.51)

where

dH
dθ

= 0,
dx
dθ

= 2H2,
dt
dθ

= 1. (3.52)

The third of equations (3.52) implies, without loss of generality, that θ = t. The first im-
plies that H is constant along a characteristic and then the second gives us the equation
of the characteristics, x = ξ + 2H(ξ, 0)2t, for some constant ξ. Supposing that a neigh-
bouring curve has the characteristic equation x = ξ + dξ + 2H(ξ + dξ, 0)2t, this curve
meets the first curve when x and t are the same for both. Equating the two equations,
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we find that wave breaking occurs if t is positive and

t = tb = −
1

4H(ξ, 0)dH/dξ(ξ, 0)
=

1
4εkw cos(kwξ)(1− ε sin(kwξ))

, (3.53)

where we let dξ → 0. Here we recall that H = η − s and s = ε sin(kwx) cos(t) and
let η(x, 0) = 1. The breaking time, tb, marks the moment when H (and therefore η)
becomes multivalued. We note that if we had instead taken η(x, 0) = 1 + ε sin(kwx), so
that the free surface has the same initial shape as the wall, then we could delay breaking
until infinity. The minimum time to break is given when d/dξ (1/tb) = 0, suggesting
that

sin(kwξ) =
1± (1 + 8ε2)1/2

4ε
. (3.54)

If we take ε = 0.9 and kw = 1, then only the second root in (3.54) is relevant and we
find that tb ≈ 0.22. Plots of the solution to (3.50) when the right hand side is taken to
be zero are found to agree with this prediction (see figure 3.7b).

We emphasise that these results are subject to an initially flat free surface and sinu-
soidal wall, which, especially when ε is large, means that we are perturbing the system
quite dramatically. If we were to take a gentler initial condition, such as a wall and free
surface that are just out of phase with each other, then any wave steepening would be
much less pronounced. Equally, we could push the solution even further with a harsher
initial condition, leading to worse steepening.

We again focus on a single choice of parameters to check the validity of our solution
for large times. Preliminary work using other parameter choices, however, suggested
that the periodic solution persists. Taking, in addition to the values quoted in case (i),
ρ to be of the O(103), g to be of the O(10) and α = π/4, we find that a realistic order of
magnitude for Ca′, as defined in (3.3) using (3.1), is 102. We also take kw = 1. Since Ca′

has been chosen to be large and the film thickness varies by a small amount, plots of
both I1 and I2 (as defined in (3.49)) show constant functions and plots of I2 i+1 against
I2 i and ∂H/∂t against H show a single dot (to within the accuracy of our program).
We find no evidence of further wave steepening in our results and the settled solution
persists for as long as we calculate.

3.5 Inclined Thin Film Flow When the Wall is Held Fixed

It is relatively easy for us to adapt our work for case (ii) to examine the case of a fixed
sinusoidal wall inclined at an angle α to the horizontal, by simply taking s = ε sin(kwx)
for all time. Some typical plots of the settled solution for small ε are shown in figure
3.8. We compare our results to those of Pozrikidis (1988), who considered the same
problem. When ε = 0.1, their results suggest that for small surface tension (or in our
case large Ca′) and moderate kw, the free-surface amplitude becomes close to that of
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(a) (b)

Figure 3.8: In the case of thin film flow next to a fixed, inclined sinusoidal wall, a plot
of the settled solution for the free surface, η, (dashed line) and the wall, s = ε sin(kwx),
(solid line) when ε = 0.1, kw = 1 and (a) Ca′ = 0.1 and (b) 100.

the wall (between 0.8ε and 0.9ε) and the free surface is around −10 ◦ out of phase. As
Ca′ is decreased, the amplitude of the free surface decreases relative to the wall and
the free surface lags further behind the wall. When Ca′ is small, the amplitude of the
free surface is somewhere between 0.6ε and 0.75ε and is out of phase by ≈ −30 ◦. The
results of Pozrikidis (1988) are in agreement with our work.

Figure 3.9 shows our results for the settled solution when ε = 0.9. Here the work

(a) (b)

Figure 3.9: In the case of thin film flow next to a fixed, inclined sinusoidal wall, a plot
of the settled solution for the free surface, η, (dashed line) and the wall, s = ε sin(kwx),
(solid line) when ε = 0.9, kw = 1 and (a) Ca′ = 0.1 and (b) 100.

of Pozrikidis (1988) suggests that for large Ca′ and moderate kw, the amplitude of the
free surface reduces to between around 0.75ε and 0.85ε, and lags behind the wall with
a phase shift of around −11◦. For small Ca′, the amplitude should be around half that
of the wall and the free surface around −50 ◦ out of phase. Again, this agrees with our
results.
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Interestingly, we see wave steepening in the nonlinear solution before the settled so-
lution is reached. Wierschem and Aksel (2003) and Wierschem et al. (2005) considered
the stability of thin film flow down a fixed sinusoidal wall for general Reynolds num-
bers, finding that there exists a critical Reynolds number, Recr, above which the steady
solution for the free surface is unstable to perturbations of certain wavelengths. The
value of Recr was found to be proportional to the surface tension coefficient, suggesting
that the only way to obtain unstable solutions (or wave breaking) in the case of Stokes
flow would be to let the surface tension tend to zero (similar to the case of a moving
wall). It was found that Recr is larger than the critical Reynolds number for flow down a
flat wall, showing that the fixed wavy wall is stabilising (a property which may extend
to the moving wavy wall).

3.6 Inclined Thin Film Flow With Stress at the Free Surface

To give us an idea as to whether adding a second fluid above an inclined thin film
would worsen or lessen wave steepening, we briefly consider the idealised addition of
a constant, non-dimensional shear stress, S, to the tangential components of stress, σij,
i 6= j, at the free surface. In this case we solve the non-dimensionalised Navier–Stokes
equations, (3.5), subject to boundary conditions (3.6) and (3.7) and with equations (3.8)
replaced by

p(x, η, t) = − 1
Ca′

∂2η

∂x2 ,
∂u
∂y

(x, η, t) = −S
δ
= −S̃, (3.55)

and the thin film equation becomes

∂H
∂t

+
∂

∂x

(
2
3

H3 +
1

3Ca′
H3 ∂3

∂x3 (H + s)− S̃
2

H2
)
= 0. (3.56)

It is interesting that if we take the wall description to be s = 0 (so that we have a flat
wall), then (3.56) becomes

∂H
∂t

+ 2H2 ∂H
∂x

+
1

Ca′
H2 ∂3H

∂x3 +
1

3Ca′
H3 ∂4H

∂x4 − S̃H
∂H
∂x

= 0. (3.57)

This problem has been studied by Wei (2008), who found that all disturbances decay
regardless of the sign or size of the imposed shear. Taking the first, third and fifth
terms or the first, fourth and fifth terms, (3.57) can be likened to a KDV or KS type
equation, respectively, both of which have solitary wave solutions. This suggests that a
soliton solution to (3.57) is possible. Plots of the free surface show that, taking the initial
perturbation to be sinusoidal, a negative stress of −10 results in a right travelling wave
initially whilst a positive stress of 10 results in a more slowly advancing left travelling
wave (see figure 3.10). In this case, to leading order, u = y

(
2− S̃− y

)
, and so takes the

value 1− S̃ when y = 1, suggesting that waves at the free surface travel to the left if
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(a) (b)

Figure 3.10: In the case of an inclined thin film with stress at the free surface, a plot of
the free surface, η, (dash-dotted line) and the wall, s, (solid line) when s = 0, η(x, 0) =
0.9 sin(kwx), kw = 1, Ca′ = 100, t = 4π

15 and S̃ = (a) −10 and (b) 10.

S̃ > 1 and to the right if S̃ < 1. From equation (3.55), there is a positive velocity gradient
at the free surface if S̃ is negative, and a negative gradient if S̃ is positive. Evidently if
S̃ is positive with magnitude greater than 1, it is possible for the flow to be uphill at the
free surface.

Returning to equation (3.56) and taking s = ε sin(kwx) cos(t), we observe wave
steepening at the free surface initially in a similar way to when S̃ = 0. Some typi-
cal plots are shown in figure 3.11, where ε = 0.9. Once again, we do not see wave

(a) (b)

Figure 3.11: In the case of an inclined thin film with stress at the free surface, a plot
of the free surface, η, (dash-dotted line) and the wall, s = ε sin(kwx) cos(t), (solid line)
when ε = 0.9, η(x, 0) = 0, kw = 1, Ca′ = 100, t = 2π

15 and S̃ = (a) −10 and (b) 10.

breaking, suggesting that the term inversely proportional to Ca′ is stabilising. Like for
the case of a flat wall, taking S̃ = −10 results in a right-travelling wave, whilst S̃ = 10
results in a left travelling wave. The settled solution for the free surface is qualitatively
similar to when S̃ = 0 (discussed previously).

If we instead take a fixed, sinusoidal wall, s = ε sin(kwx), the wave steepening at
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the interface for early times is qualitatively similar to that seen for the case of a moving,
sinusoidal wall. The settled solution is qualitatively similar to when S̃ = 0.

3.7 Discussion

We have considered two cases of thin film flow next to a sinusoidally moving wall. In
case (i) the wall was held horizontal, whilst in case (ii) it was inclined an an angle to the
horizontal and gravity was allowed to act. In each case we derived a thin film equation.

For small amplitudes of the wall we obtained an exact solution. In case (i) the x-
dependence of the free surface is the same as that of the wall, whilst in case (ii) there is
a phase difference between the two. In both cases, after an initial transient has decayed,
the solution for the free surface is periodic in x and t, with a phase and amplitude that
tend to the phase and amplitude of the wall as either the capillary number is increased
or the wavenumber of the wall is reduced. The amplitude of the free surface tends to
zero as the capillary number is decreased or the wavenumber increased. Streamline
plots show rows of cells similar to those found in chapter 2, although in case (ii) they
are superposed with a prevailing flow running roughly parallel to the wall.

It is found that for larger wall amplitudes, the settled solution is qualitatively similar
to the linear solution in both cases, although more variation is seen in the film thickness.
In case (ii) wave steepening may be seen at early times, although breaking can only
occur for an infinite capillary number.

Although we have not found any similar work considering thin film flow next to a
moving sinusoidal wall, there has been a large amount of work considering flow next
to a fixed sinusoidal wall. In the case of an inclined, fixed sinusoidal wall our results
are found to agree with those of Pozrikidis (1988), who considered a similar problem.

When we add a constant shear stress at the free surface in case (ii), this does not
promote wave-breaking. This suggests that if we were to include a second fluid above
the thin film, the solution would be no more likely to include interfacial breakdown
than the solution for the case of a single thin film.

In the next chapter we focus our efforts elsewhere by considering the flow of two
fluids next to an elastic wall. We hope that such a flow will yield unstable solutions.
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Chapter 4

Shear-Driven Flow Next to an Elastic
Wall

4.1 Introduction

The results of the previous chapter do not give us a reason to expect an unstable solution
when considering a semi-infinite fluid sitting above a thin film of different, constant
viscosity, both of which flow past a moving, sinusoidal wall. Rather than focussing
on such a problem, we instead draw inspiration from the work of Chen (1993). Here
unstable solutions are found when considering the flow of a two-layer liquid film down
an inclined plane if the fluid next to the wall is taken to be the least viscous. In this work
it is hypothesised that some kind of interaction between the interface and free surface
is responsible for the instability. Transverse movements of the interface are highlighted
as crucial to this effect.

Returning to the analysis in chapter 2, we might expect to make some progress by
imposing a tangential velocity at the wall, as discussed in the discussion, section 2.5.
Here we would need to allow for two fluids and could take the vertical velocity at the
wall to be zero, so that the wall is flat. However, in this case the solution is found to
remain stable. The main difference between this case and the vertically moving wall
case is that the streamlines are now closed curves. Typical plots of these streamlines are
shown in figure 4.1.

Therefore, in this chapter we choose to consider two-fluid, creeping flow next to a
wall which is modelled as an elastic beam. Since both the beam and interface are free
to move, with positions which are unprescribed, it is hoped that an interaction between
the two may yield unstable solutions. The use of an elastic wall is a fair assumption in
terms of the DGM, since the walls of the body are made of an elastic material.
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Figure 4.1: Typical streamlines for two-fluid flow next to a tangentially moving wall,
with non-dimensional tangential velocity ε cos(kx) cos(t) and zero normal velocity.

4.2 Problem Description

We consider the linear stability of two fluids next to an elastic wall modelled as a beam,
as described in appendix A. The problem is summarised in figure 4.2. The amplitude

Figure 4.2: The problem of two fluids subject to a shear flow, flowing past an elastic
wall.

of the wall, y∗ = s∗(x∗, t∗), is assumed to be of O(ε), where 0 < ε � 1 is a small pa-
rameter and the interface is described by y∗ = η∗(x∗, t∗). Here stars denote dimensional
variables that have a non-dimensional counterpart. We take the subscripts j = 1 and 2
to denote the lower and upper fluid, respectively, and µj is the viscosity in fluid j. The
pressure in the static air below the wall is held at p0. Above the wall, in fluid 1, the
stress tensor σ1, is as defined in (1.15). The traction on the beam due to the surrounding
fluid is

f = σ1 · n̂ + p0n̂, (4.1)

where the unit vector, n̂, points into fluid 1. The governing equations for the wall, the
beam equations (A.10), then become

−EBsxxxx + τsxx =
(
−σ1yy + sx(σ1xy + σ1yx)

)
y=s − p0 + O

(
ε2) , (4.2)
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and

dτ

dx
= −

(
σ1xy + sx(−σ1xx + σ1yy)

)
y=s + O

(
ε2) , (4.3)

where EB is the bending modulus and τ is the tension along the wall, which we take
to be the constant τ0 when x = 0. In addition to modelling the wall using the beam
equations, we also imagine it to be held in place with springs which are held vertical;
this is the “spring model” adopted by Jensen et al. (2002) amongst others. By using this
condition we may continue to consider a wall that is displaced in the y-direction only
and so we may still use the no-slip condition, (1.14). In the base-state we assume a shear
flow. The constant strength of the shear at infinity is taken to be S. The unperturbed, flat
wall and interface descriptions are y∗ = 0 and y∗ = h, respectively, and the unperturbed
pressure is p0 everywhere.

Non-dimensionalising using the characteristic length scale h, time-scale 1/S and
viscosity scale µ1 results in the non-dimensional parameters,

Λ =
µ2

µ1
, Ca =

hµ1S
γ

, E =
EB

h3µ1S
, T =

τ0

hµ1S
, p̂0 =

p0

µ1S
, (4.4)

where Λ is the viscosity ratio, Ca is the capillary number and E, T and p̂0 are the
non-dimensional bending moment, underlying beam tension and underlying pressure,
respectively. Non-starred variables are taken to be non-dimensional and we introduce
the streamfunction, ψj(x, y, t), velocity field, uj(x, y, t) = (uj, vj), and pressure, pj(x, y, t)
in fluid j.

The base-state is denoted with superscript (0). In the case of steady shear flow the
base-state velocity in fluid j is assumed to take the form, uj

(0) = (uj(y)
(0), 0). The Stokes

equations then reduce to the steady version of (1.7). We non-dimensionalise and apply
these equations in fluids j = 1 and 2. We solve for uj

(0), taking a zero pressure gradient
and applying non-dimensionalised versions of the no-slip condition, (1.14), at the wall,
y = 0, and the stress condition, (1.21) and the first of the velocity conditions, (1.22), at
the interface, y = 1, (where the curvature is zero). We also ensure that duj

(0)/dy→ 1 as
y→ ∞. We then find that in the base-state, the streamfunction in fluid j is

ψj
(0) =

(
µ2y2

2µj
+ y(Λ− 1)(j− 1)

)
, (4.5)

Although formally the base-state streamfunction and velocity are unbounded as y→ ∞,
we consider only a local description of the flow field in this analysis. A global analysis
would require a different description and the two descriptions would then need to be
resolved for intermediate values of y.
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4.2.1 Modelling the Tension in the Wall

Non-dimensionalising the beam equations, equation (4.3) gives us

τ = T −Λx + O(ε). (4.6)

Although the tension in the beam formally becomes infinite as x → ±∞, we may argue
that we only consider a local analysis in this problem. However, we run into problems
when substituting (4.6) into (4.2), the resulting equation being very difficult to solve
analytically. We might expect an improvement in the situation if we instead consider a
stagnation point-type flow next to a stretching wall, as seen in Mahapatra and Gupta
(2003). In this case the wall is allowed to move tangentially and the velocity, (u, v),
is taken to be (αx,−αy) away from the wall and (βx, 0) on the wall, for α, β positive
constants, so that a boundary layer is needed at the wall. This problem has the advan-
tage that to leading order τ is independent of x. However, solving for the unknown,
perturbed velocity and particle positions on the stretching wall is far from trivial.

We instead take the approach of Luo and Pedley (1995), and define

τ̃ =
T
Λ

, (4.7)

whereby equation (4.6) can be rewritten

τ = T
(

1− x
τ̃

)
+ O(ε). (4.8)

We now take the large tension limit, τ̃ � 1, so that τ is approximated by the constant
T. Here we assume that the wavelength in x is O(1). Then (4.2) gives us

−Esxxxx + Tsxx =

(
p1 − p0 − 2

(
∂v1

∂y
− sx

∂u1

∂y

))
y=s

+ O
(
ε2) . (4.9)

We note that this approximation breaks down as x → ±∞, and so our solution must
still be thought of as local.

4.2.2 The Perturbed Solution

The base-state solution is perturbed by a time-dependent excitation, denoted with su-
perscript (1), such that

s =εA exp(ik(x− ct)), η = 1 + ε exp(ik(x− ct)),

ψj =ψj
(0)(y) + εψj

(1)(y) exp(ik(x− ct)),

pj = p̂0 + εpj
(1)(y) exp(ik(x− ct)), (4.10)

where k is the prescribed, real wavenumber of the disturbance and c = cR + icI and
A = AR + iAI are the complex wave speed and amplitude of the wall, respectively,



50 Shear-Driven Flow Next to an Elastic Wall

which must both be determined as part of the solution. We introduce A since the wall
position is governed by the beam equation rather than being fully prescribed. The
assumed forms of η, ψj and pj are chosen given the elected wall description and since
we are solving a linear problem with constant coefficients, so that we expect that the
solution will be a linear superposition of modes with the same x and t dependence. We
note that in our solution, we may multiply the interface perturbation by some constant
(so that the perturbation has a small, but arbitrary amplitude), and the above solution in
that sense is non-unique. However, in this analysis, we can treat this constant as being
absorbed into ε.

We non-dimensionalise and linearise all boundary conditions. The no-slip and kine-
matic conditions at the moving wall, (1.14) and (1.9), yield

dψ1
(1)

dy
(0) = −ΛA, ψ1

(1)(0) = Ac, (4.11)

whilst the beam equation, (4.9), gives us

p1
(1)(0) = −Ak2 (k2E + T

)
, (4.12)

where we have used equations (4.11). The velocity continuity and kinematic conditions
at the interface, (1.22) and (1.23), meanwhile, give us

ψ1
(1)(1) = ψ2

(1)(1),
dψ1

(1)

dy
(1)− dψ2

(1)

dy
(1) = 1−Λ, (4.13)

and

ψ2
(1)(1) = c−Λ. (4.14)

Evaluating the stress condition, (1.21), in the directions normal and tangential to the
interface gives us

p1
(1)(1)− p2

(1)(1) + 2ik

(
dψ1

(1)

dy
(1)−Λ

dψ2
(1)

dy
(1)

)
=

k2

Ca
, (4.15)

and

d2ψ1
(1)

dy2 (1) + k2ψ1
(1)(1)−Λ

(
d2ψ2

(1)

dy2 (1) + k2ψ2
(1)(1)

)
= 0. (4.16)

We must also satisfy the far-field conditions

ψ2
(1)(∞) =

dψ2
(1)

dy
(∞) = 0. (4.17)
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4.3 Problem Solution

For brevity we define the functions

sy = sinh(ky), cy = cosh(ky), s1 = sinh(k), c1 = cosh(k), (4.18)

and we let

kb =
Ek2 + T

2
. (4.19)

Non-dimensionalising the biharmonic equation, (1.5), taken in fluids 1 and 2, we solve
subject to boundary conditions (4.11), (4.12), (4.14) and (4.17). To determine the pressure
in each fluid we use the Stokes equations, given by the first of (1.3). The streamfunction
and pressure perturbations in fluids 1 and 2 are then given by the following:

ψ1
(1) =cAcy + B1ysy + A

((
ikb −

Λ
k

)
sy − ikkbycy

)
,

ψ2
(1) =

(
B2 (y− 1) + (c−Λ) ek

)
e−ky.

p1
(1) =− 2ik

(
B1sy − Aikkbcy

)
, p2

(1) = −2ikΛB2e−ky, (4.20)

From (4.13), we find that

B1 =
1
s1

(
− cAc1 + c−Λ− A

((
ikb −

Λ
k

)
s1 − ikkbc1

))
,

B2 =ek
(
−cA

(
k
s1

+ c1

)
+ k

(
c1

s1
+ 1
)
(c−Λ) + c− 1− A

((
ikb −

Λ
k

)
s1 −

ik2

s1

))
.

(4.21)

The amplitude, A, and wave speed, c, are then obtained from equations (4.15) and
(4.16). The amplitude, A, obeys the quadratic equation,

A2 (ikkbα2 + α4)− A (ikkbα3 + α1α2 + (Λs1 + c1) α4 −Λα5)

+ (α1α3 − (Λs1 + c1)Λα5) = 0, (4.22)

where

α1 = Λ (Λs1 + c1)−
i

2Ca
s1, α2 =

c1
2

s1
+ Λ

(
k
s1

+ c1

)
, α3 =

c1

s1
+ k + Λ

(
k

c1

s1
+ 1
)

,

α4 =

(
ikb −

Λ
k

)
(c1 + Λs1)−

ikkb

s1
(1 + Λk) , α5 =

c1

s1
(1 + Λk) + k + 1. (4.23)

This equation may be solved, giving two solutions for A, and for each of these, the wave
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speed, c, is given by

c =
−Aikkb + Λ (Λs1 + c1)− is1/ (2Ca)

−A + (Λs1 + c1)
. (4.24)

4.4 Results

Figure 4.3 shows typical plots of the imaginary parts of the two solutions for the wave
speed. For the first solution, which we label c+ = cR

+ + icI
+ (and which is shown in

(a) (b)

Figure 4.3: Typical plots against k of the two wave speed solutions, (a) cI
+ (solid line)

and (b) cI
− (dashed line). Here Λ = Ca = E = 1 and T = 0.1. The dotted lines represent

the small and large k solutions in each case.

figure 4.3a), cI
+ increases from zero to a maximum as we increase k, before becoming

negative for large enough k. For the second solution, which we label c− = cR
− + icI

−

(shown in figure 4.3b), cI
− is always negative. Therefore, in the former case, for small

wavenumbers (large wavelengths) the solution is unstable and for larger wavenumbers
the solution is stable. In the latter case the solution is stable for all wavenumbers. Also
in figure 4.3 we plot the small k and large k approximations to the wave speeds. For
small k we use Taylor series expansions and the solution is given by

cR
+ =Λ + O

(
k
)
, cI

+ =
1

2Ca
k2 + O

(
k3) ,

cR
− =

1
k
+ O (1) , cI

− = − (TCa + 1)
2ΛCa

+ O
(
k2) . (4.25)

In the small k limit cI
+ is always positive, showing that this mode can always be found

to be unstable if we take k small enough, whilst cI
− is always negative. For large k we

use the approximation s1, c1 ∼ exp(k)/2.
We focus on the more interesting first solution, c+, and plot the maximum value of

cI
+, max(cI

+), and value of k at which this occurs, which we label kmax. In general, in the
cases where kmax increases with the variation of a parameter, the period of wavenumbers
for which cI

+ is positive also increases. Figure 4.4 shows the results of altering Λ whilst
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letting Ca = E = T = 1. We find that both max(cI
+) and kmax, at which it occurs, have a

(a) (b)

Figure 4.4: When Ca = E = T = 1, plots against Λ of (a) max(cI
+) and (b) the critical

value of k at which this occurs, kmax.

maximum with respect to Λ, above and below which both decrease. This suggests that
a viscosity difference is stabilising. In figures 4.5 and 4.6 we increase T and E in turn,
finding that in both cases max(cI

+) and kmax decrease exponentially. This is as we might
expect since the limit T, E→ ∞ corresponds to the case of a rigid wall, in which case the
wall no longer interacts with the interface. We note that unstable solutions may also

(a) (b)

Figure 4.5: When Λ = Ca = E = 1, plots against T of (a) max(cI
+) and (b) the critical

value of k at which this occurs, kmax.

be found for small wavenumbers when we let T be negative (so that the beam is under
compression), but that in reality T would be a function of t and would become positive
once the beam has returned to its natural shape. We therefore do not investigate this
case in any detail. When we set Λ = E = T = 1 and vary Ca, max(cI

+) behaves in
qualitatively the same way as in figure 4.4a, but kmax increases logarithmically with Ca,
before tending to a fixed value for large Ca. Since Ca is inversely proportional to the
surface tension, when Ca is small the interface is rigid whilst when Ca is large the two
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(a) (b)

Figure 4.6: When Λ = Ca = T = 1, plots against E of (a) max(cI
+) and (b) the critical

value of k at which this occurs, kmax.

fluids behave as one. In both cases we no longer have two free boundaries to interact
with each other and a stable solution makes physical sense.

We may re-write the wall description given in (4.10) as

s = εAm exp(i(kx + Aa − kct)), (4.26)

where Aa is the argument of A, and Am is the modulus. From this description we see
that the argument of A gives us the phase difference between the wall and the interface.
Considering a number of typical parameter values, in the case of c+ we find that for
smaller wavenumbers, where the solution is unstable, the wall and interface are out of
phase (Aa is close to π/2 or π or somewhere between the two), whereas in the case of
the always stable c− the wall and interface are close to being in phase. A typical plot
of the two arguments is given in figure 4.7. In the small k limit, assuming that A+ is

Figure 4.7: A typical plot of Arg(A) against k in the case where the solution for the
wave speed c = c+ (solid line) and c− (dashed line). Here Λ = Ca = E = T = 1. The
dotted lines represent the positions where the argument is π

2 , π and 3π
2 .

the solution for A that corresponds to the solution c = c+ and A− is the solution for A



4.5 A Single Fluid Next to an Elastic Wall 55

corresponding to c = c−, we find that

A+ =

(
(1−Λ) +

i
2ΛCa

)
k + O

(
k2) , A− = 1 + O

(
k2) . (4.27)

To leading order, for the fully stable mode, Arg(A−) is zero and the wall is in phase
with the free surface. If Λ = 1, then Arg(A+) = π/2. For Λ < 1, then Arg(A+) =

tan−1 (1/(2ΛCa(1−Λ))) and provided that Ca is not large the argument will be close
to π/2. For Λ > 1, we now have Arg(A+) = π − tan−1 (1/(2ΛCa(Λ− 1))), and the
larger Λ is, provided Ca is not very small, the closer this argument is to π. This analysis
is interesting and suggests that in this problem, a phase difference between the wall and
interface promotes instability at small wavenumbers.

Figure 4.8 shows typical plots of the real part of the two solutions for the wave
speed, cR

+ and cR
−. In both cases the real part is always found to be positive and hence

waves always travel to the right.

(a) (b)

Figure 4.8: Typical plots against k of the two wave speed solutions, (a) cR
+ (solid line)

and (b) cR
− (dashed line). Here Λ = Ca = E = 1 and T = 0.1. The dotted lines

represent the small and large k solutions in each case.

4.5 A Single Fluid Next to an Elastic Wall

We briefly consider the simpler problem of a single fluid extending up to infinity next
to the elastic wall, y = s = εA exp(ik(x − ct)). Since this problem is equivalent to the
Ca → ∞, Λ = 1 limit of our earlier work, we would expect the solution to be stable in
this case. We may solve the non-dimensional versions of the biharmonic equation, (1.5),
and Stokes equations, (1.3) for the streamfunction and pressure perturbations, subject
to boundary conditions (4.11), (4.12) and (4.17). This give us the overall streamfunction
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and pressure solutions,

ψ =
1
2

y2 + εA
(

1
k
− i
(

Ek2 + T
2

)
(1 + ky)

)
exp(−ky + ik(x− ct)), (4.28)

p = p̂0 − εkA
(
Ek3 + Tk

)
exp(−ky + ik(x− ct)), (4.29)

where the wave speed is given by

c =
1
k
− i
(

Ek2 + T
2

)
. (4.30)

Since E and k are always positive, and assuming that T is positive, cI is negative
as expected and the solution is stable. If T is negative (so that the beam is under
compression) and large enough, it is possible for cI to be positive. However, in reality,
as the perturbations grow and the beam returns back to its natural shape, the tension
becomes positive and we do not have unlimited growth of solutions. In our solution
we have assumed that the tension in the beam is constant, and so cannot capture this
behaviour. This supports the idea that in order to obtain unstable solutions we need not
only an elastic wall, but also an interface for this wall to interact with.

Taking the limit Ca → ∞, Λ = 1 in equation (4.24) also gives us (4.30). This is a
useful check on the accuracy of our results.

4.6 The Rigid Wall Limit

We may also check the accuracy of our results by comparing the solution for infinite
E and T to the case of two fluids next to a rigid wall. We should find that the two
solutions are identical.

In the limit E, T → ∞ equation (4.22) yields the two solutions, A→ 0 and

A→
k2 (1−Λ2)+ (Λs1 + c1) (c1 + Λs1)

k (s1 + Λc1) + (c1 + Λs1)
. (4.31)

Equation (4.31) implies that we have a bent beam with an infinite bending modulus,
and therefore bending moment, m. The beam equation, (4.12), gives us

A = − p1
(1)(0)/E

k2 (k2 + T/E)
, (4.32)

which suggests that p1
(1)(0) → ∞ as E → ∞ to support the deflection. From (4.24) we

also find that

c
(Ek2 + T)

→ ik
2 (1− (Λs1 + c1) /A)

, (4.33)

where we divide by (Ek2 + T) due to the appearance of this factor on the right hand
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side of (4.24). The right hand side of (4.33) can be shown to be always negative and
hence cI < 0 (because s1 > k and c1 > 1) and so this mode instantly dies out. We
therefore discount this solution and assume that A→ 0. Then, from equation (4.24),

c→ 1

k2(1−Λ2) + (Λs1 + c1)
2

(
Λ
(

k2(1−Λ2) + (Λs1 + c1)
2 + k(1−Λ)

)
− i

2Ca
(s1 (Λs1 + c1)− k (1 + kΛ))

)
, (4.34)

the imaginary part of which can also be shown to be always negative. Thus we can
conclude that in the stiff plane limit, the solution is always stable. This provides further
evidence that for instability we need both the wall and the interface to be free to move
and interact with each other.

We next consider replacing the elastic wall, y = s, in our problem with a fixed, rigid
wall, y = 0. In this case, we solve the non-dimensional versions of the biharmonic
equation, (1.5), and Stokes equations, (1.3) for the streamfunction and pressure pertur-
bations, subject to boundary conditions (4.13) to (4.17). In addition, satisfying the no
slip and impermeability conditions, (1.14) and (1.10), we find that equations (4.11) and
(4.12) must be replaced by

dψ1
(1)

dy
(0) = ψ1

(1)(0) = 0. (4.35)

The solution is given by

ψ1
(1) =A1

(
sy − kycy

)
+ B1ysy, ψ2

(1) =
(

A2 (y− 1) + (c−Λ) ek
)

e−ky,

p1
(1) =− 2ik

(
−A1kcy + B1sy

)
, p2

(1) = −2ikΛB2e−ky, (4.36)

where

B1 =
1
s1

(−A1 (s1 − kc1) + c−Λ) ,

A2 =ek
(

A1

s1

(
k2 − s1

2)+ c
(

1 + k
(

1 +
c1

s1

))
−
(

1 + Λk
(

1 +
c1

s1

)))
,

A1 =
1

k− c1s1 + Λ (k2 − s1
2)
(−c (c1 + ks1 + Λ (s1 + kc1))

+ Λ (c1 + ks1 + s1 + Λkc1)), (4.37)

and the wave speed is found to be equal to that given by equation (4.34), as we expect.

4.7 Pressure Driven Flow Next to an Elastic Wall

It is fairly easy to alter our work so that instead of shear driven flow, we consider
pressure driven flow. This may be a relevant problem to consider since in the DGM the
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walls of the cone that represents the body are driven by a cyclic pressure forcing in the
surrounding water bath. In this case in the base-state the flow is quiescent. Since the
external pressure in the DGM varies sinusoidally with time (Wickham et al., 2012), we
allow the dimensional pressure below the wall, p0, to undergo a small fluctuation such
that p0 = εA∗(ωt∗) sin(k∗x∗). We then simply replace the characteristic timescale 1/S
with 1/ω when non-dimensionalising, so that the non-dimensional parameters are now

Λ =
µ2

µ1
, Ca =

hµ1ω

γ
, E =

EB

h3µ1ω
, T =

τ0

hµ1ω
. (4.38)

The non-dimensional, perturbed solution is then described by

s =εB(t) sin(kx), η = 1 + εC(t) sin(kx),

ψj =εψj
(1)(y, t) cos(kx), pj = εpj

(1)(y, t) sin(kx). (4.39)

This problem has the advantage that since we no longer have an O(1) base flow, non-
dimensionalising the beam equation (4.3), gives us

τ = T + O (ε) , (4.40)

and we can legitimately neglect the x dependence of τ, which is of an order smaller
than T, without making any extra assumptions.

In this case boundary conditions (4.11) to (4.17) are replaced by the conditions

dψ1
(1)

dy
(0, t) = 0,

dB(t)
dt
− kψ1

(1)(0, t) = 0, (4.41)

p1
(1)(0, t)− A(t) = −B(t)k2 (k2E + T

)
, (4.42)

ψ1
(1)(1, t) = ψ2

(1)(1, t),
dψ1

(1)

dy
(1, t) =

dψ2
(1)

dy
(1, t), (4.43)

ψ2
(1)(1, t) =

1
k

dC(t)
dt

(4.44)

p1
(1)(1, t)− p2

(1)(1, t)− 2k

(
dψ1

(1)

dy
(1, t)−Λ

dψ2
(1)

dy
(1, t)

)
=

k2

Ca
C(t), (4.45)

d2ψ1
(1)

dy2 (1, t) + k2ψ1
(1)(1, t)−Λ

(
d2ψ2

(1)

dy2 (1, t) + k2ψ2
(1)(1)

)
= 0. (4.46)

ψ2
(1)(∞, t) =

dψ2
(1)

dy
(∞, t) = 0. (4.47)

The non-dimensional versions of the biharmonic equation, (1.5), and Stokes equations,
(1.3) are solved for the streamfunction and pressure perturbations, subject to boundary
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conditions (4.41) to (4.47), yielding the solutions

ψ1
(1) =

(
1

2k2 A(t)− kbB(t)
)(

kycy −
(

1−
(

1− k
c1

s1

)
y
)

sy

)
+

1
k

(
dB
dt

cy −
1
s1

(
c1

dB
dt
− dC

dt

)
ysy

)
,

(4.48)

ψ2
(1) =

1
s1

((
1

2k2 A(t)− kbB(t)
) (

s1
2 − k2) (y− 1)− dB

dt

(
1 +

1
k

c1s1

)
(y− 1)

+
1
k

dC
dt

(((1 + k)s1 + kc1) (y− 1) + s1)

)
ek(1−y), (4.49)

and

p1
(1) =

(
1
k

A(t)− 2kkbB(t)
)(

kcy +

(
1− k

c1

s1

)
sy

)
− 2

s1

(
c1

dB
dt
− dC

dt

)
sy, (4.50)

p2
(1) =

Λ
s1

((
1
k

A(t)− 2kkbB(t)
) (

s1
2 − k2)− 2

dB
dt

(
1 +

1
k

c1s1

)
+

2
k

dC
dt

((1 + k)s1 + kc1)

)
ek(1−y), (4.51)

where we again use the notation (4.18) and (4.19), and the system of ordinary differential
equations,

dy
dt
−Qy = R, y =

(
B
C

)
, (4.52)

where

Q =
1
α

(
−kbB1 kC1/(2Ca)
−kbB2/s1 kC2/(2Ca)

)
, R =

A
2k2α

(
B1

B2/s1

)
, (4.53)

and

α = − (c1 + Λs1) (s1 + Λc1) + k
(
1−Λ2) ,

B1 = −k (c1 + Λs1)
2 + k3 (Λ2 − 1

)
, B2 = −k (c1 + Λs1) (s1 + kc1) + k2,

C1 = c1 + Λs1 + k (s1 + Λc1) , C2 = c1 (c1 + Λs1) + Λk. (4.54)

Letting A = cos(t) for a standing wave pressure fluctuation, we may solve the
system (4.52), giving us

B =
kC1

Ca

(
aeβ1t + beβ2t

)
+ α1 cos(t) + α2 sin(t),

C = (kbB1 + 2αβ1) aeβ1t + (kbB1 + 2αβ2) beβ2t + α3 cos(t) + α4 sin(t), (4.55)
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where

α2 =
1
α

(
B1

2k2 − kbB1α1 +
kC1

2Ca
α3

)
, α4 =

1
2α

(
B2

s1k2 −
kbB2

s1
α1 +

kC2

Ca
α3

)
,

α3 =
4kCa2

C1 (2kbB1Ca− kC2)

((
kB2C1

2s1Ca
− kbB1

2
)(

1
2k2 − kbα1

)
+ α2α1

)
,

α1 =
(k2kb/2) (B2C1/s1 − B1C2)

2 + 2kbB1
2Ca2 − kB2C1Ca/s1

k2
(
(2α2Ca− kkb(B2C1/s1 − B1C2))

2 + α2 (2B1kbCa− kC2)
2
) , (4.56)

β1 and β2 are the two roots of the equation

β2 + β
1
α

(
kbB1 −

kC2

2Ca

)
+

k
4α2Ca

kb

(
B2C1

s1
− B1C2

)
= 0, (4.57)

and the constants a and b are determined by the initial conditions on B and C.
Since E and Ca are positive and assuming that T is positive, we may use the property

that s1 > k and c1 > 1 for positive k to show that the coefficients of the second and third
terms of (4.57) are positive. Using this information it is possible to reason that the real
parts of β1 and β2 are always negative (if T is taken to be negative, it is possible for the
real parts to be positive, although, as mentioned previously, in this situation unlimited
growth of the solution is not physical). Therefore the solution is always stable and
once the transients have decayed, we are left with a periodic solution for both B and
C. We therefore find that a periodic pressure forcing leads to a periodic wall motion.
This indicates that a prescribed periodic wall motion is a justifiable assumption when
modelling the hydraulically driven DGM main body.

4.8 Discussion

A linear stability analysis was performed for the case of two-fluid flow next to an elastic
wall, which was modelled using the beam equations. We assumed that variation in
tension is negligible over the region of interest.

There are two solutions for the complex wave speed. For the first the solution is
unstable to small wavenumber disturbances and stable for larger wavenumbers. For the
second the solution is always stable. Our work suggests that a phase difference between
the wall and interface is responsible for the small wavenumber instability.

Letting the viscosity ratio tend to zero or infinity is found to stabilise the first so-
lution. The same is true as the bending moment and beam tension tend to infinity
(corresponding to the case of a rigid wall), or the capillary number tends to zero or
infinity (corresponding to a rigid interface or zero surface tension). In these limits we
propose that the solution becomes stable since we no longer have two free boundaries
that may interact with each other.

It is a little concerning that in the small k approximation, (4.25), neither T nor E
appear in the approximation for c = cI

+. This would suggest that the tension and
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bending moment are negligible in the beam equation, (4.9), in this limit. The concern
is then that the unstable solution may simply be a result of taking the large tension
limit, without which these terms might be larger. However, if we include the next order
(k3) term in our approximation for cI

+, we find that T does appear and that there are
parameter choices that result in cI

+ positive, suggesting that the solution is unstable
where T is included in the analysis. In addition, considering figures 4.5 and 4.6, we find
that max(cI

+) and kmax both depend on T and E. These figures show that the solution
is unstable for not so small values of k, where the tension and bending moment are not
neglected from our solution.

We also note that the assumption T/Λ ≡ τ̃ � 1 made following equation (4.8)
results in a lower bound on the range of valid wavenumbers, k = 2π/λ. As k → 0 the
wavelength λ → ∞, and at the point x = λ we find that x → ∞ and the assumption
breaks down. Specifically we require τ̃ � λ and so k � 2π/τ̃. However, it is still
possible for k to be small enough so that cI

+ is positive but not so small that the solution
is not valid. One such case occurs when Λ = 0.1, Ca = 100, E = 1 and T = 10. Here cI

+

remains positive for wavenumbers up to k = 0.67 (to 2 decimal places). For waves with
wavenumber k = 0.67 the ratio λ/τ̃ ≈ 0.094 � 1 and the large tension approximation
is valid. In fact there is a band of valid wavenumbers for which cI

+ is positive and τ̃ is
sufficiently bigger than λ. This is illustrated in figure 4.9. For each choice of parameters

Figure 4.9: An illustration of the band of wavenumbers for which the unstable solution
for cI

+ is valid. The solid line shows the term λ/τ̃ plotted against k when Λ = 0.1 and
T = 10. The dashed line is k = 0.67, the largest value of k for which cI

+ is positive
when we also take Ca = 100 and E = 1.

the limits of this band varies.
It is relevant that our work can be compared to Thaokar and Kumaran (2002), who

considered the linear stability of two fluids separated by a membrane which is allowed
to move in both the horizontal and vertical directions. In this paper, in a similar way to
mentioned above, the solution was found to be unstable in the small wavenumber limit,
but a lower bound on the wavenumber was necessary. We have found no studies of two
fluid flow next to an elastic wall which consider both a free moving fluid interface and
wall and concentrate on the resulting flow stability, as in our work.
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When we replace the base-state steady shear flow in our problem with a small pe-
riodic pressure forcing below the wall, we find that the solution is always stable and
the wall motion is periodic. This suggests that we are justified in taking a prescribed
periodic wall motion when modelling the DGM main body.

In the next chapter we focus on a different mechanism for instability. We consider
two-fluid flow in a fixed channel under the influence of a scalar material field which
acts to alter the surface tension at the interface.
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Chapter 5

The Interaction of a Scalar Material
Field with Fluid Flow in a Channel

5.1 Introduction

We consider the influence of a scalar material field on creeping flow of two fluids in
a fixed channel as a simple model of the addition of gastric secretions to the DGM.
This material gradient encapsulates the gastric juices, which comprise a mixture of sub-
stances such as acids, salts, enzymes and surfactants. The material acts to alter the
surface tension at the fluid interface, which may induce a flow field due to the the
Marangoni effect. The flow field, in turn, may cause further advection of the material.
It is proposed that this process will promote interfacial break up and instability. In
addition to a (stationary) lower wall, which represents the wall of the DGM body, and
two fluids, which represent two stages of digesting liquid material, our local descrip-
tion now includes an upper wall, which can be thought of as representing the solid,
undigested bolus of food.

5.2 Formulation of the Stability Problem

We consider the linear stability of two fluids separated by a free interface and confined
between two fixed parallel walls at y∗ = 0, h2 (see figure 5.1), where starred variables are
dimensional variables with a non dimensional counterpart. In the base-state the fluid is
subject to a Poiseuille flow with uniform pressure gradient, G, and the unperturbed, flat
interface is located at y∗ = h1, where h1 is constant. The perturbed interface description
is given by y∗ = η∗(x∗, t∗). The subscripts j = 1 and 2 denote the lower and upper fluid,
respectively, and fluid j has viscosity µj.

The interface is subject to chemical activity, encapsulated by a material, whose con-
centration field is Cj

∗(x∗, y∗, t∗), present in the two fluids. Here Cj
∗ = 0 corresponds to

a ground state. The material acts at the interface to alter the surface tension coefficient,
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Figure 5.1: Schematic diagram of two-fluid flow in a channel subject to a Poiseuille
gradient, G. The position of the perturbed interface, y∗ = η∗(x∗, t∗), is shown. The
concentrations at the bottom and top walls are held at C0 and C0 + ∆C, respectively.

γ∗, such that

γ∗ = γ0 + βCj
∗(x∗, η∗, t∗), (5.1)

where γ0 and β are prescribed constants and γ∗ = γ0 represents a clean interface. The
material is transported (see below) and the concentration takes prescribed values C0 at
y∗ = 0 and C0 + ∆C at y∗ = h2. Furthermore, Cj

∗ is continuous at the interface, y∗ = η∗.
The material diffusivity in fluid j is denoted Dj.

We note that in reality, we would expect the surface tension to exhibit a more com-
plicated dependence on any material present in the fluid. However, equation (5.1) can
be thought of as a linearised approximation of this more complicated behaviour. Phys-
ically, we expect that where Cj

∗ models the concentration of, for instance, a surfactant,
a clean interface will have the highest surface tension and an increase in surfactant at
the interface will act to lower the surface tension, since any increase of material will
lower the surface energy and therefore the resistance to external forces. This would
suggest taking β < 0. However, the occurrence of certain chemical processes or protein
interactions may in fact increase the surface tension. In these cases Cj

∗ could model a
concentration of salts, enzymes or pH and we would be justified in taking β > 0.

We non-dimensionalise using the characteristic length scale h2, concentration scale
C0 and surface tension scale γ0. In order to allow us to consider flow in the limit of
zero pressure gradient we take our velocity scale to be γ0/µ1. This results in the non-
dimensional parameters

α =
h1

h2
, Λ =

µ2

µ1
, Ĉ =

∆C
C0

, Γ =
βC0

γ0
, Ĝ =

Gh2
2

γ0
, Pej =

γ0h2

Djµ1
, (5.2)

where α is the depth ratio, Λ is the viscosity ratio, Ĉ, Γ and Ĝ are the non-dimensional
concentration ratio, surface tension gradient and pressure gradient, respectively, and Pej

is the Péclet number in fluid j. Henceforth, non-starred variables are non-dimensional.
We again assume that the Reynolds number is small and introduce the stream-

function, ψj(x, y, t), alongside the velocity field, uj(x, y, t) = (uj, vj), and the pressure,
pj(x, y, t), in fluid j. In addition to the usual governing equations for small Reynolds
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number flow, the concentration field, Cj(x, y, t), evolves according to the advection-
diffusion equation,

∂Cj

∂t
+ uj · ∇Cj =

1
Pej
∇2Cj. (5.3)

The concentration is fixed at the walls such that

C1(x, 0, t) = 1, C2(x, 1, t) = 1 + Ĉ, (5.4)

and since the interface is neither a sink nor a source of material concentration, we must
satisfy concentration continuity and flux continuity at y = η:

C1(x, η, t) = C2(x, η, t),
∂C1

∂y
(x, η, t) = Pe12

∂C2

∂y
(x, η, t), Pe12 =

Pe1

Pe2
. (5.5)

5.2.1 The Base-State Solution

For steady Poiseuille flow in the base-state (denoted with superscript (0)) we assume
that the velocity in fluid j is given by uj

(0) = (uj
(0)(y), 0). In this case the Stokes

equations in each fluid reduce to the steady version of (1.7). Taking these equations in
fluids 1 and 2 and writing them in terms of non-dimensional variables, the base-state
pressure in fluid j is then given by

pj
(0) = p0 − Ĝx, (5.6)

where p0 is a prescribed constant pressure.
Next, we may solve for uj

(0), applying the non-dimensionalised versions of the no-
slip condition, (1.14), at the walls, y = 0 and 1 and the stress condition, (1.19), and
the first of the velocity continuity conditions, (1.22), at the flat interface, y = α (where
the curvature is zero and the surface tension is independent of arc length along the
interface). This results in the base-state streamfunction in fluid j,

ψj
(0) = − Ĝµ1

2µj

(
y3

3
−

y2 (α2(Λ− 1) + 1
)
− 2yα(α− 1)(Λ− 1)(j− 1)

2 (α(Λ− 1) + 1)

)
. (5.7)

We note that had we non-dimensionalised taking the characteristic velocity to be the
characteristic speed of the interface in the basic state rather than γ0/µ1, then this would
fix Ĝ and result in a capillary number replacing this parameter as a measure of the
strength of the flow. However, as mentioned above, in order to consider flow in the
limit Ĝ → 0, we do not use such a scaling. Instead we may choose to consider a
pressure gradient

Ĝ = Ĝu1 =
2 (α (Λ− 1) + 1)

α (1− α)
, (5.8)
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which is equivalent to taking the base-state, horizontal velocity at the interface, uj
(0)(α),

to be unity.
In view of the base-state flow field and (5.3) the base-state concentration must de-

pend linearly on y in each fluid. Then, satisfying conditions (5.4) and (5.5), we find that
in fluid j,

Cj
(0) = 1 + Ĉ

Pej

Pe2

(
y + (Pe12 − 1) α(j− 1)

(Pe12 − 1) α + 1

)
. (5.9)

5.2.2 The Perturbed Solution

The perturbed solution can be described by the base-state (superscript (0)) plus a time-
dependent excitation (superscript (1)), as follows:

(
η, ψj, pj, Cj

)
=
(

α, ψj
(0)(y), pj

(0)(x), Cj
(0)(y)

)
+
(

α, ψj
(1)(y), pj

(1)(y), Cj
(1)(y)

)
E(x, t), (5.10)

where 0 < ε� 1 is a small parameter and we look for a solution of the form

E = ε exp(ik[x− ct]), (5.11)

where k is the known, real wavenumber and c = cR + icI is the complex wave speed
of the disturbance, to be determined as part of the solution. It is understood that
the physical solution is given by the real part of (5.10). As in chapter 4, the interface
perturbation is non-unique and may be multiplied by an arbitrary constant, but this
constant can be treated as being absorbed into ε.

The surface tension on the interface at y = η is given by

γ = 1 + ΓCj(x, η, t). (5.12)

For physical reasons we expect a non-negative surface tension and concentration. The
base-state concentration is only less than 1 when Ĉ is negative and in this case, is clearly
lowest at y = 1. Therefore, considering the base-state, this results in the constraints

Ĉ ≥ −1, Γ ≥ − (Pe12 − 1) α + 1(
Pe12

(
1 + Ĉ

)
− 1
)

α + 1
. (5.13)

As discussed above, we might also expect Γ < 0 in the case where the concentration
field represents, for instance, a surfactant, but it is also justifiable to consider Γ > 0 since
there are certain chemicals whose addition may act to increase the surface tension. If the
concentration perturbations, Cj

(1), grow, clearly concentration is still conserved since,
due to the sinusoidal nature of the excitations, an increase in concentration at one point
in x is balanced by a proportional decrease in another. As the perturbations become
large (no longer O(ε)), our analysis breaks down so that the overall concentration at
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any point is never assumed to be negative.
Non-dimensionalising and linearising the no-slip and impermeability conditions,

(1.14) and (1.10), at the walls, y = 0 and 1, yields the conditions

dψ1
(1)

dy
(0) =

dψ2
(1)

dy
(1) = ψ1

(1)(0) = ψ2
(1)(1) = 0, (5.14)

whilst the velocity continuity and kinematic conditions at the interface, (1.22) and (1.23),
give us

ψ1
(1)(α) = ψ2

(1)(α), Ĝ1 =
Ĝα(α− 1)

2 (α(Λ− 1) + 1)
, (5.15)

dψ1
(1)

dy
(α)− dψ2

(1)

dy
(α) = Ĝ2, Ĝ2 =

Ĝ(Λ− 1)α
(
α2Λ− (α− 1)2)

2Λ (α(Λ− 1) + 1)
, (5.16)

ψ2
(1)(α) = α

(
c + Ĝ1

)
. (5.17)

Noting that differentiating along the interface, ∂/∂l = t̂ · ∇ can be approximated by
∂/∂x when we neglect terms of O(ε) and smaller, the stress condition, (1.19), non-
dimensionalised and evaluated in the directions normal and tangential to the interface,
results in the conditions

p1
(1)(α)− p2

(1)(α) + 2ik

(
dψ1

(1)

dy
(α)−Λ

dψ2
(1)

dy
(α)

)
= αk2Γ1, (5.18)

and

d2ψ1
(1)

dy2 (α) + k2ψ1
(1)(α)−Λ

(
d2ψ2

(1)

dy2 (α) + k2ψ2
(1)(α)

)
= ikΓ2, (5.19)

where

Γ1 = 1 + Γ

(
1 +

Pe12Ĉα

(Pe12 − 1) α + 1

)
, Γ2 = Γ

(
Pe12Ĉα

(Pe12 − 1) α + 1
+ C1

(1)(α)

)
. (5.20)

Lastly, the conditions on the concentration at the walls, (5.4) and interface, (5.5), imply
that

C1
(1)(0) = C2

(1)(1) = 0, (5.21)

(Pe12 − 1) Ĉα

(Pe12 − 1) α + 1
+ C1

(1)(α) = C2
(1)(α),

dC1
(1)

dy
(α) = Pe12

dC2
(1)

dy
(α). (5.22)

Next, we solve the non-dimensionalised version of the biharmonic equation, (1.5),
subject to conditions (5.14), where we may make use of the non-dimensional form of the
first of equations (1.3) in order to determine the pressure. First, we define for brevity
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the following functions:

sy = sinh(ky), cy = cosh(ky), ty = tanh(ky),

sα = sinh(kα), cα = cosh(kα), tα = tanh(kα),

s1 = sinh(k), c1 = cosh(k), t1 = tanh(k), (5.23)

and we also let

α1 = t1 +
k(α− 1)

c1
2 , α2 = t1 +

k(α− 1)
c1

2α
, α3 =

1−Λ
kα

, α4 = k2α2 + 1, (5.24)

and

β1 =
1
α

(
Λ
(

t1 −
k

c1
2

)
− α3α4

)
sα +

1
α

(
α1

(
α3k2α2 +

Λ
kα

)
−Λ

)
cα −

α3

α

(
sα

3 − α1cα
3) ,

β2 =
1
α

(
−t1 +

k
c1

2 − α3α4

)
cα +

1
α

(
α1

(
α3k2α2 − 1

kα

)
+ 1
)

sα +
α3

α

(
cα

3 − α1sα
3) ,

β3 =α2

(
α3k2α2 +

Λ
kα

)
cα −

(
α3α4 +

Λk
αc1

2

)
sα − α3

(
sα

3 − α2cα
3) ,

β4 =α2

(
−α3k2α2 +

1
kα

)
sα +

(
α3α4 −

k
αc1

2

)
cα − α3

(
cα

3 − α2sα
3) . (5.25)

Then the solutions for the disturbance streamfunction and pressure in fluids 1 and 2 are
given by

ψ1
(1) = (A1y + B1) sy − B1kycy,

ψ2
(1) = (A2y + B2)

(
sy − t1cy

)
− (A2 + B2)

k(y− 1)cy

c1
2 , (5.26)

and

p1
(1) = −2ik

(
A1sy − B1kcy

)
, p2

(1) = −2ikΛ
(

A2
(
sy − t1cy

)
− (A2 + B2)

kcy

c1
2

)
.

(5.27)

From conditions (5.15), (5.16), (5.18) and (5.19) we find that

A1 = −B1

α
(1− αktα) +

B2Λ
α

(1− α1tα) + A2Λ (1− α2tα)−
iΓ1

2cα
,

B1 = −B2

(
α3sαcα −

α1

kα

(
cα

2 −Λsα
2))− A2

k
(
(1−Λ)sαcα − α2

(
cα

2 −Λsα
2))− iΓ1sα

2k
,

A2 = − 1
2 (β2β3 + β1β4)

(
β1

(
2Ĝ2 +

iΓ1

kα

(
k2α2 − sα

2))+ β2i
(

Γ2 +
Γ1

kα
(kα− cαsα)

))
,

B2 =
1

2 (β2β3 + β1β4)

(
β3

(
2Ĝ2 +

iΓ1

kα

(
k2α2 − sα

2))− β4i
(

Γ2 +
Γ1

kα
(kα− cαsα)

))
,

(5.28)
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and from (5.17) the wavespeed is given by

c =− Ĝ1 −
i

2αβ1
(sα − α1cα)

(
Γ2 +

Γ1

kα
(kα− cαsα)

)
− β1α (sα − α2cα)− β3 (sα − α1cα)

2α (β2β3 + β1β4)

(
2Ĝ2 +

iΓ1

kα

(
k2α2 − sα

2)
+

β2i
β1

(
Γ2 +

Γ1

kα
(kα− cαsα)

))
. (5.29)

Our solution depends (through c and Γ2) on the unknown C1
(1)(α). In order to

acquire C1
(1)(α) we must solve the advection-diffusion equations, (5.3), which, using

(5.10), gives us

d2Cj
(1)

dy2 + aj(y)Cj
(1) = bj(y), (5.30)

where

aj = ikPej

(
c−

dψj
(0)

dy

)
− k2, bj = −

ikPej
2Ĉ

(Pe1 − Pe2) α + Pe2
ψj

(1), (5.31)

subject to boundary conditions (5.21) and (5.22). Since equations (5.30) comprise of two
second order ordinary differential equations depending on C1

(1)(α), solving these equa-
tions will give us five unknowns. We may fully determine the solution using conditions
(5.21) and (5.22) alongside the condition that results when we evaluate the equation for
C1

(1)(y) at y = α. We note that if the real part of C1
(1)(α) is independent of the pressure

gradient, Ĝ, then the base flow does not affect the stability of the solution. Therefore,
in case (i) below, we first concentrate on the simplest case when the pressure gradient
is zero. In the later case (ii) we will take a non-zero pressure gradient.

5.3 Results

In general, only one significant solution is found for C1
(1)(α) and therefore c (see be-

low). For this solution a small k approximation to c may be shown, using Taylor series
expansions in (5.29), to be given by

c =
Ĝcm

(
α2(Λ− 1) + 1

) (
α2(Λ− 1)− 2α(Λ− 1)− 1

)
α(Λ− 1) + 1

− ikΓcm(α− 1)
(
α2(Λ− 1) + 2α− 1

) ( Pe12αĈ
(Pe12 − 1) α + 1

+ C1
(1)(α)

)
+ O

(
k2) ,

(5.32)
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where

cm =
α(α− 1)

2 (Λ (α4(Λ− 1) + 1)− (α− 1)4(Λ− 1))
. (5.33)

A small k approximation to C1
(1)(α) can be found by performing a small wavelength

analysis, redefining the characteristic length scale in the horizontal direction to be l,
where 0 < δ = h2/l � 1. Here, in order to retain the effects of surface tension in the
problem, the surface tension is scaled such that δγ0 = O(1) and the velocity scales in
the horizontal and vertical directions are taken to be δγ0/µ1 and δ2γ0/µ1, respectively.
The advection-diffusion equation, (5.3), then becomes ∂2Cj/∂y2 = 0 and substituting in
a perturbation of the form given in (5.10) yields the equation ∂2Cj

(1)/∂y2 = 0. Solving
this equation subject to boundary conditions (5.21) and (5.22) and evaluating at y = α,
we find that

C1
(1)(α) = − Ĉα2Pe12 (Pe12 − 1)

((Pe12 − 1) α + 1)2 + O (k) , (5.34)

and so, substituting C1
(1)(α) into equation (5.32), we find that for small k the wave speed

is given by

c =
Ĝcm

(
α2(Λ− 1) + 1

) (
α2(Λ− 1)− 2α(Λ− 1)− 1

)
α(Λ− 1) + 1

−
ikĈΓPe12cmα(α− 1)

(
α2(Λ− 1) + 2α− 1

)
((Pe12 − 1) α + 1)2 + O

(
k2) . (5.35)

Here we note that if we take Γ = 0, α = 0.5 and choose Ĝ = Ĝu1 (as given in equation
(5.8)), then to leading order this can be shown to reduce to

c = 1 +
2 (Λ− 1)2

Λ2 + 14Λ + 1
. (5.36)

This is equivalent to the expression for the wave speed derived in the work of Yih (1967),
who considered the plane Poiseuille flow of two fluids of equal depth and density and
different viscosities in an infinite channel.

5.3.1 Case (i); A Zero Pressure Gradient

In this case we may analytically solve the system (5.21), (5.22) and (5.30). For brevity we
define the functions,

k j = (ikPejc− k2)1/2, j = 1, 2. (5.37)
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The solution for the disturbance concentration in fluid j is then given by 1

Cj
(1) =

Ĉ
(Pe12 − 1) α + 1

(
2

iPe2c2

(
Âj cos

(
k jy
)
+ B̂j sin

(
k jy
))

−
Pej

Pe2c

(
ψj

(1) − 2
iPejc

(
Ajcy −

Bjk + Aj (s1c1 + k) (j− 1)
c1

2 + (c1
2 − 1)(j− 2)

sy

)))
, (5.38)

where we have divided by c since we are only interested in solutions for which c 6= 0
for all k, and

Â1 =− A1,

B̂1 =
1

sin (k1α)

(
Â2

(
cos (k2α)− sin (k2α)

tan (k2)

)
+ A1 (cos (k1α)− cα) + B1ksα

+ (A2(kt1 − 1) + B2kt1)
sin (k2α)

c1 sin (k2)
−
(

A2 (s1c1 + k) + B2k
c1

2 sα − A2cα

))
,

(5.39)

and

Â2 = Â21Â22, B̂2 = − Â2

tan (k2)
+

A2 (kt1 − 1) + B2kt1

c1 sin (k2)
, (5.40)

where

Â21 =− A1

sin (k1α)
+

A1cα − B1ksα

tan (k1α)
− A1ksα − B1k2cα

k1

+ (A2(kt1 − 1) + B2kt1)
cos (k2α)

c1 sin (k2)

(
Pe12k2

k1
− tan (k2α)

tan (k1α)

)
− A2 (s1c1 + k) + B2k

c1
2

(
Pe12kcα

k1
− sα

tan (k1α)

)
+ A2

(
Pe12ksα

k1
− cα

tan (k1α)

)
,

Â22 =
1

cos (k2α)

(
1

tan (k1α)

(
1− tan (k2α)

tan (k2)

)
+

Pe12k2

k1

(
tan (k2α) +

1
tan (k2)

))−1

.

(5.41)

Letting y = α in equation (5.38) when we take j = 1 yields an implicit equation
for C1

(1)(α), which, subtracting C1
(1)(α) from both sides, can be written in the form

f (C1
(1)(α)) = 0 . This equation can be solved for C1

(1)(α) using the secant method
(although Newton’s method is faster to converge, its use would require the derivative
of f (C1

(1)(α))). Here we let the ith guess for C1
(1)(α) and f (C1

(1)(α)) be given by zi and
fi, respectively, where i = 1, 2, · · · . We iterate such that

zi = zi−1 − fi−1

(
zi−1 − zi−2

fi−1 − fi−2

)
, i = 3, 4, · · · , (5.42)

1This solution does not take into account the additional solutions that may be obtained by adding extra
terms proportional to sin(kjy) and cos(kjy) to the complementary function of Cj

(1). These solutions are
discussed in section 5.3.2, but are found not to be relevant to our model.
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where the initial guesses, z1 and z2, are obtained by considering plots of f against
C1

(1)(α) to find the approximate location of any zeros (and are chosen such that |z1 −
z2| � 1). At stage i of the iterative procedure, we define the error,

ei = |Ci − Ci−1|, (5.43)

and we continue iterating until ei is sufficiently small.
Since Ĝ = 0, it is clear that c, Aj and Bj, and therefore Âj and B̂j, are purely imag-

inary functions of C1
(1)(α). Also, from boundary condition (5.17), ψ1

(1)(α) = αc. It is
therefore clear that f is a purely real function of C1

(1)(α). We find a single solution of
interest for C1

(1)(α), which is found to be real.

5.3.1.1 The Infinite Péclet-Number Limit

The above-mentioned solution can be seen analytically if we consider the solution when
the Péclet numbers, Pe1 = Pe2 → ∞ (so that diffusion becomes negligible compared
to advection), for which the advection-diffusion equation, (5.30), gives us Cj

(1)(y) =

−Ĉψj
(1)(y)/c, again assuming that c 6= 0 for all k. Evaluating this equation at y = α

when j = 1 and using boundary conditions (5.15) and (5.17), we find the single solution
for C1

(1)(α),

C1
(1)(α) = −Ĉα. (5.44)

In the infinite Péclet-number limit our work can be compared to that of Frenkel
and Halpern (2002) and Halpern and Frenkel (2003), who considered a linear-stability
analysis of Couette–Poiseuille driven Stokes flow of two fluids of equal density in a
channel with an insoluble surfactant at the interface, and who assumed diffusion to be
negligible. Here two solutions were found for the wave speed, rather than just one as in
our case. In their case, since concentration absorption is allowed at the fluid interface,
velocity is not conserved along the interface (∇l · uj 6= 0, where ∇l denotes the vector
differential operator along the interface) and at y = η, our advection-diffusion equation,
(5.3), is replaced by an independent transport equation,

∂Cj

∂t
+ uj · ∇lCj + Cj∇l · uj = 0. (5.45)

Since perturbations to the interface are small, ∇l points in the x direction to leading
order and differentiation with respect to l may be thought of as differentiation with
respect to x, and y derivatives neglected. Substituting the concentration and velocities
into (5.45) using (5.10) (letting Pe1 = Pe2 → ∞) and considering first order terms in ε
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gives us2

Cj
(1)(α) =

1
c
(
1 + Ĉα

) dψj
(1)

dy
(α), (5.46)

assuming that c 6= 0 for all k. It is clear that in this case we have a quadratic in Cj
(1)(α)

and therefore two solutions for Cj
(1)(α) and hence c. In our case our choice of conditions

at the interface must result in the free surface remaining passive with regards to the
extra mode. Perhaps the reason for this is because we do not have the extra degree
of freedom associated with a concentration that is allowed to move along the interface
(which would mean that rather than the solution depending solely on C1

(1)(α), the
change in concentration along the interface would become important).

5.3.2 Additional Solutions for c

Returning to the solution for general Péclet numbers, we note that in addition to the
single solution mentioned above, there are in fact an infinite number of extra solutions
that may be obtained by adding a solution of the form Ĉj sin(k jy) + D̂j cos(k jy) to the
complementary function for Cj

(1) in (5.38). For these solutions, boundary conditions
(5.21) give us D̂1 = 0, Ĉ1 = Ĉ2 and D̂1 = D̂2 along with the condition that either Ĉ1 = 0
or k j = nπ, for n ∈ Z. If Ĉ1 = 0 then we simply return to the solution (5.38). If k j = nπ,
on the other hand, from (5.37) this implies that

c = − i
Pejk

(
k2 + n2π2) . (5.47)

In this case (5.29) may be used to obtain Cj
(1)(α) (through Γ2) and we may then use the

solution for C1
(1) evaluated at y = α to give us Ĉ1. However, since these extra solutions

are associated with a wave speed with negative imaginary part, as shown in (5.47),
we do not investigate them in any more detail. Furthermore, in Rickett et al. (2013)
the system (5.21), (5.22) and (5.30) is solved numerically using a Chebychev collocation
method and the only solution found is the single solution described above. We therefore
reason that the extra solutions do not appear in practice.

The numerical method also verifies that there are no further solutions for C1
(1)(α).

Evidence for this can also be found in both the small wavenumber and infinite Péclet
number limits of our work, where it is possible to solve analytically and in both cases
only the above mentioned solutions can be found. Since we find that we are able to trace
our general solutions towards the solutions in these limits (either by considering plots of
f against C1

(1)(α) or by observing the correspondence between the solutions for C1
(1)(α)

and the wave speed, c, as we move towards these limits), we have good evidence of their

2Here we note that whilst in Frenkel and Halpern (2002) and Halpern and Frenkel (2003), the uj∂/∂x
term may be neglected since a Galilean transformation is used to consider the problem from the frame of
reference of the interface (so that so ∂/∂t becomes ∂/∂t− uj∂/∂x), in our case this term disappears since it
is of order ε2.
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(a) (b)

Figure 5.2: Typical plots of cI against k in the case Ĝ = 0, illustrating the two possible
forms of solution. Plot (b) shows a close-up of plot (a). Here Λ = Ĉ = Pe1 = Pe2 = 1,
α = 0.1 and Γ = 1 (solid line) and −0.1 (dashed line). The dotted lines represent the
small k solutions in each case.

exclusivity. Furthermore, if a bifurcation from these solutions occurred for some value
of k or Pe1 and Pe2, we would expect to see a physical change in the nature of the flow
at this point due to the extra degree of freedom that would be required, and we have
no reason to expect such a change.

5.3.2.1 The Wave Speed, c, for the Single Solution of Interest

Since, for the single solution of interest, C1
(1)(α) is found to be purely real, equations

(5.20) and (5.29) imply that the solution for c is purely imaginary (c = icI) and there is
no transverse movement of waves, which is as we might expect when the base-state is
zero. In general, plots of cI against the wavenumber, k, can take one of two forms, as
shown in figure 5.2. In the first of these (shown by the solid curve) cI increases from
zero to a maximum as k increases from zero to some particular wavenumber, whilst in
the second (the dashed curve) cI simply decreases as k increases. In both cases cI tends
to some negative value for large k. In the former case the solution is unstable for small
wavenumbers (large wavelengths) and stable for larger wavenumbers. In the latter case
the solution is always stable, irrespective of k. We note that in the case where cI changes
from being positive to negative for increasing wavenumber, a wavenumber must exist
for which cI = 0 and the corresponding wave neither grows nor decays but is held in
position by a balance of all of the forces involved.

Having seen the global view above, we can deduce which form the solution will
take by considering the small k solution, (5.35), with Ĝ = 0. Of the utmost importance
are the parameters α and Λ. In figure 5.3 we have used the small k solution to plot the
line ∂cI/∂k|k=0 = 0 in the (α, Λ) plane, revealing two distinct stability regions. If Γ and
Ĉ both have the same sign, then in the unshaded region 1, the solution is unstable for
smaller wavenumbers, whilst in the shaded region 2, the solution is stable for all k. If Γ
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Figure 5.3: The two stability regions plotted in the (α, Λ)-plane. In region 1 the solution
is unstable (stable) for smaller wavenumbers when Γ and Ĉ have the same (opposite)
sign, whilst in region 2 the solution is stable (unstable).

(a) (b)

Figure 5.4: When Λ = Ĉ = Γ = Pe1 = Pe2 = 1 in the case Ĝ = 0, plots against α of
(a) the critical wavenumbers, kmax, (open circles) and kc (shaded squares) and (b) the
maximum value of the wave speed, cImax.

and Ĉ have opposite signs then in region 1 the solution is always stable, whilst in region
2, unstable solutions are found for small enough k.

Where the solution exhibits unstable behaviour, we label the upper limit on cI , cImax

and the wavenumber at which this occurs, kmax. The critical wavenumber for which
the solution changes from positive to negative is labelled kc, so that cI is positive for
k ∈ (0, kc). To illustrate how kmax, cmax and kc change as as we move away from the
boundary between the two regions, figure 5.4, shows how they depend on α in region
1 when we take Λ = 1 and Ĉ = Γ = Pe1 = Pe2 = 1. We find that as we move away
from the boundary (at α = 0.5) and into region 1, both the wavenumbers kmax and kc

increase, so that there is a larger interval of k for which cI is positive and in which the
maximum value of cI is found at a higher wavenumber. The maximum value of cI also
initially increases as we move away from the boundary, but reaches a peak at a certain
depth ratio, after which decreasing α further results in cImax decreasing.
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(a) (b)

(c) (d)

Figure 5.5: When Λ = Pe1 = Pe2 = 1 and α = 0.1 in the case Ĝ = 0, plots of (a) and (c)
the critical wavenumbers, kmax (circles) and kc (squares), and (b) and (d) the maximum
value of the wave speed, cImax, against Γ and Ĉ.

Although changing the sign of either Γ or Ĉ changes the qualitative nature of the so-
lution, altering the magnitudes does not. As we might expect, varying either parameter
has a very similar effect and when k is small, the magnitude of cI increases when we
increase either of the two parameters and decreases when they are decreased. Where
cI is positive, this results in a larger maximum wave speed (and wavenumber at which
this occurs) and a larger region of positive k when one increases either parameter (see
figure 5.5). We find that for larger values of these parameters cImax increases linearly
with increasing Γ or Ĉ, whereas kmax and kc asymptote to a constant value. As either
Γ→ 0 or Ĉ → 0 we find that the solution is always stable, as we would expect.

Considering equation (5.32), it is clear that since Pe1 and Pe2 are positive by defini-
tion, altering these parameters will not have an effect on which of the two forms of the
solution for cI we obtain. Instead, we focus on the effect on the magnitude of cI . We
plot a fraction that is instrumental in determining how altering Pe12 affects the wave
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Figure 5.6: Plots of the fraction, a, which determines how Pe12 affects cI in the small k
solution, against Pe12 when α = 0.1 (solid line), 0.3 (dashed line), 0.5 (thick solid line),
0.7 (dash-dotted line) and 0.9 (dotted line).

speed for small k. This is the fraction given by

a =
Pe12

((Pe12 − 1) α + 1)2 , (5.48)

and plots are shown in figure 5.6. We find that, assuming that the first term of the small
k solution is not zero (which occurs when Λ = 1 and α = 0.5, for instance), increasing
Pe12 from 1 results in an increase in the magnitude of cI when α < 0.5 and a decrease
when α > 0.5, whilst decreasing has the opposite effect. When α = 0.5, both increasing
and decreasing Pe12 from 1 results in a decrease in the magnitude of cI . Where the
magnitude is increased, however, there is an upper limit, beyond which the solution
tends to zero, so that as either Pe12 → 0 or Pe12 → ∞, the magnitude of cI always tends
to zero. We consider in more detail the case Λ = Ĉ = Γ = 1 and α = 0.1 (see figure
5.7), finding that, in agreement with the above observations, in both the small and large
limits of Pe12, the critical wavenumbers, kmax and kc, and the maximum wave speed,
cImax, all tend to zero, suggesting that the solution is always stable here. Interestingly,
we see peaks in the critical wavenumbers and cImax at an earlier value of Pe12 than the
peak observed in cI for the small k solution. In the case Pe1 = Pe2 → ∞ the evidence
suggests that cI is always less than or equal to zero and the solution always stable. This
can also be seen by considering the small k solution for the wave speed, (5.32), where
C1

(1)(α) is given by equation (5.44), for which we can see that to O(k), the wave speed
is now zero. This suggests that diffusion is necessary for an unstable solution.

We briefly mention a possible mechanism for instability. Streamline plots reveal
closed cells separated by lines of zero ψ, with consecutive cells spinning in opposite
directions (see figure 5.8). If Γ and Ĉ have the same sign, from equations (5.9) and
(5.12), the combined effect of the surface tension gradient and base-state concentration
ratio is to increase the surface tension as η increases. Since a high surface tension is
more attracting than a low surface tension (due to the Marangoni effect), we conjecture
that the Marangoni force will act to accentuate the peaks and smooth the troughs of the
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(a) (b)

Figure 5.7: When Λ = Ĉ = Γ = Pe2 = 1 and α = 0.1, plots against Pe1 of (a) the critical
wavenumbers, kmax, in the cases Ĝ = 0 (open circles) and Ĝu1 (crosses), and kc in the
cases Ĝ = 0 (shaded squares) and Ĝu1 (asterisks) and (b) the maximum value of the
wave speed, cImax, in the cases Ĝ = 0 (open circles) and Ĝu1 (crosses).

(a) (b)

(c)

Figure 5.8: Streamline plots in the case Ĝ = 0 using regular intervals of ψ (with a
different range of ψ used each time) when ε = 0.01, t = π, Λ = Ĉ = Γ = Pe1 = Pe2 = 1
and α = (a) 0.1, (b) 0.5 and (c) 0.9.
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interface (as illustrated in figure 5.9a). Then, in the cases where the solution is unstable,

(a) (b)

Figure 5.9: An illustration of the effect of the Marangoni force on the fluid interface,
with arrows showing the direction of this force when Γ and Ĉ are (a) the same sign and
(b) opposite signs. Here we write γ(0) = 1 + ΓC(0)

j ΓĈ > 0 ΓĈ < 0.

our plots suggest that the interface sits at the bottom half of the closed streamlines (as
in figure 5.8a) and that the cells spin in a favourable direction (the left cell spinning
clockwise in figure 5.8a, for example) so that peaks in the interface may grow and the
effects of the Marangoni force are accentuated. In the stable cases, on the other hand,
the interface sits at the top half of the cells (as in figures 5.8b and 5.8c), or in the case
of larger wave numbers, the cells may spin in an unfavourable direction, so that the
streamlines restrict the effect of the Marangoni force and the peaks are not allowed to
grow. In some cases this arrangement of streamlines is achieved by an extra row of cells
appearing either below or above the original set. This is the case when α = 0.5 (figure
5.8b), although we note that here, since our problem is not symmetric about the centre
of the channel (due to walls that are not symmetric about the x-axis and the presence
of a surface tension gradient in the base-state), the bottom set of cells is larger with a
stronger flow. If Γ and Ĉ are instead of opposite signs, then their effect is to decrease the
surface tension as η increases. Then we conjecture that the Marangoni force accentuates
the troughs and smooths the peaks (see figure 5.9b). Now when the interface sits at
the bottom half of the cells (or the cells spin in an unfavourable direction), the effects
of this force are restricted, whilst when it sits at the top half (and the cells spin in a
favourable direction), the troughs are allowed to grow. We hypothesise that it is the
Marangoni force that induces the closed flow seen in these plots and that this flow
together with the presence of the walls dictates the position of the fluid interface. We
also find that changing the magnitude of the various parameters can act to change the
horizontal velocity above the interface compared to below, which appears to result in
waves growing or decaying at a different speeds, although the overall stability is not
affected.
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5.3.3 Case (ii); A Non-Zero Pressure Gradient

5.3.3.1 An Analytical Solution

We may solve equations (5.21), (5.22) and (5.30) analytically by making use of parabolic
cylinder functions, a class of special functions also known as Weber functions. First, we
solve the homogeneous versions of (5.30),

d2Cj
(1)

dy2 +
(
ãjy2 + b̃jy + c̃j

)
Cj

(1) = 0, (5.49)

where

ãj =
ikPejĜµ1

2µj
, b̃j = −

ikPejĜµ1
(
α2(Λ− 1) + 1

)
2µj (α(Λ− 1) + 1)

,

c̃j = ikPej

(
c +

Ĝ1(Λ− 1)(j− 1)
Λ

)
− k2, (5.50)

and where Ĝ1 is given in (5.15). Parabolic cylinder functions are defined as solutions to a
differential equation of the form (5.49) (Abramowitz and Stegun, 1964). The differential
equation is most often rewritten as one of the two distinct standard forms of Weber’s
equation,

d2Cj
(1)

dyj
2 +

(
1
4

yj
2 − d̃j

)
Cj

(1) = 0,
d2Cj

(1)

dyj
2 −

(
1
4

yj
2 + d̃j

)
Cj

(1) = 0, (5.51)

where yj and d̃j may be complex. The second of equations (5.51) can be obtained from
the first by letting d̃j → d̃ji and yj → yj exp(−iπ/4). Equation (5.49) may be obtained
from the second of (5.51) by taking

yj = 2
1
2 ã

1
4
j eiπ/4

(
y +

b̃j

2ãj

)
, d̃j = −

i

2ã
1
2
j

(
b̃2

j

4ãj
− c̃j

)
. (5.52)

Independent even and odd solutions of the second of equations (5.51) are given by

Cj
(1)

1 = e−
yj

2

4 1F1

(
1
2

d̃j +
1
4

;
1
2

;
1
2

yj
2
)

, Cj
(1)

2 = yje−
yj

2

4 1F1

(
1
2

d̃j +
3
4

;
3
2

;
1
2

yj
2
)

, (5.53)

where

1F1(a; b; z) =
∞

∑
n=0

(a)nzn

(b)nn!
, (s)n = s(s + 1)(s + 2)...(s + n− 1), s = a, b. (5.54)

Here 1F1(a; b; z) is the confluent hypergeometric function of the first kind (or Kummer’s
function of the first kind). This function is regular at z = 0, single-valued and conver-
gent, except at its poles.
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The general solution of the second of equations (5.51) can be constructed by taking a
linear combination of solutions (5.53) (since they are linearly independent). We therefore
construct the complementary functions to (5.49), Cj

(1)
CF, by writing

Cj
(1)

CF = ÃjCj
(1)

1 + B̃jCj
(1)

2, (5.55)

where Ãj, B̃j are constants. From Abramowitz and Stegun (1964), these complementary
functions are convergent for all yj. We note that the pair of solutions {Cj

(1)
1, Cj

(1)
2}

would not normally be used to directly construct a solution to a physical problem since
they have very similar asymptotic behaviours as yj → ∞. Instead linearly independent
pairs of solutions would be constructed such that certain behaviours are satisfied in the
large yj limit. In our problem, however, y is bounded between 0 and 1 and hence yj is
bounded. Furthermore it is known that Cj1 and Cj2 are well behaved for small yj.

To find the particular integrals to (5.30), we use the method of variation of parame-
ters. Since {Cj

(1)
1, Cj

(1)
2} is a set of fundamental solutions to the homogeneous version

of (5.30) and therefore the general solution of the homogeneous equation is given by
(5.55), for the particular integral, Cj

(1)
PI , we let

Cj
(1)

PI = qj1(y)Cj
(1)

1 + qj2(y)Cj
(1)

2, (5.56)

where qj1 and qj2 are functions to be determined. We next assume that

dqj1

dy
Cj

(1)
1 +

dqj2

dy
Cj

(1)
2 = 0, (5.57)

and substituting Cj
(1)

PI into equation (5.30), remembering that Cj
(1)

1 and Cj
(1)

2 are
solutions to the homogeneous equation, gives us

dqj1

dy
dCj

(1)
1

dy
+

dqj2

dy
dCj

(1)
2

dy
= bj(y). (5.58)

Rearranging equations (5.57) and (5.58), we find that

dqj2

dy
=

bjCj
(1)

1

W(Cj
(1)

1, Cj
(1)

2)
,

dqj1

dy
= −

bjCj
(1)

2

W(Cj
(1)

1, Cj
(1)

2)
, (5.59)

where the Wronskian of Cj
(1)

1 and Cj
(1)

2,

W(Cj
(1)

1, Cj
(1)

2) = Cj
(1)

1

dCj
(1)

2
dy

−
dCj

(1)
1

dy
Cj

(1)
2, (5.60)

is non-zero since Cj
(1)

1 and Cj
(1)

2 are linearly independent. In fact, from the theory of
parabolic cylinder functions, W(Cj

(1)
1, Cj

(1)
2) = 1.

Integrating equations (5.59) with respect to y (using a numerical method such as the
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trapezoidal rule or Simpson’s rule) gives us qj1 and qj2 and the solution to (5.30) is given
by

Cj
(1) = Cj

(1)
CF + Cj

(1)
PI . (5.61)

Here the constants Ãj and B̃j can be found by solving the four equations resulting from
the four boundary conditions given in (5.21) and (5.22). Letting y = α in equation (5.61)
when j = 1 again gives us an implicit equation for C1

(1)(α) which can be solved using
the secant method.

5.3.3.2 A Numerical Solution

Although it is possible to write down an analytical solution to (5.21), (5.22) and (5.30)
when Ĝ 6= 0, we instead choose to seek a numerical solution using the shooting method,
which is much simpler to implement. Writing

Wj(y) = Cj
(1)(y), WDj(y) =

dWj

dy
, Wj(y) =

(
Wj(y)

WDj(y)

)
, (5.62)

in fluid j, we can rewrite equation (5.30) as the first order system,

dWj

dy
=

(
WDj(y)

bj(y)− aj(y)Wj(y)

)
, (5.63)

with boundary conditions, from (5.21) and (5.22),

W1(0) =

(
0

γ1

)
, W2(1) =

(
0

γ2

)
,

ξ1 =
(Pe12 − 1) Ĉα

(Pe12 − 1) α + 1
+ W1(α)−W2(α) = 0, ξ2 = WD1(α)− Pe12WD2(α) = 0, (5.64)

for γ1 and γ2 unknown. From equations (5.31), using (5.20), (5.26) and (5.28), aj and
bj depend in a known way on W1(α) and c, which itself depends on W1(α) and is
computed using (5.29) and (5.20). Given an initial guess for γ1, γ2 and W1(α), we
integrate dW1/dy and dW2/dy from y = 0 and 1, respectively, to α using the fourth-
order Runge–Kutta method. We then compute ξ1 and ξ2 and update our guesses for γ1

and γ2 such that ξ1, ξ2 → 0 using Newton’s method (as described in appendix B). We
update W1(α) using the value computed in the integration. The process is repeated until
the magnitudes of ξ1 and ξ2 are sufficiently small, giving us our numerical solution. By
this method we have reduced the boundary value problem to an initial value problem,
with the aim to satisfy a condition at an endpoint (y = α).

Using this method, we may validate our results from previous case. Letting Ĝ = 0
and plotting the wave speed, we find that the solution is visually indistinguishable
from our earlier results where we used the secant method to solve the implicit equation
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resulting from taking y = α in the solution to the system (5.21), (5.22) and (5.30).
Returning to the case Ĝ 6= 0, we again find only a single solution of interest for

C1
(1)(α). This can be seen if we consider the infinite Péclet-number limit. Here we

find that evaluating the advection-diffusion equation, (5.30), at y = α when j = 1 gives
us C1

(1)(α) = −Ĉψ1
(1)(α)/(c + Ĝ1), where we have divided by c + Ĝ1 since we are

not interested in wave speed solutions with zero imaginary part for all k. Then, using
boundary conditions (5.15) and (5.17), we are left with the single solution (5.44). The
extra solutions described in the case Ĝ = 0 (in section 5.3.2) can again be found in this
case. However, since the imaginary part of the wave speed for these solutions is the
same as in (5.47), they are found to always decay and we do not spend any more time
investigating them.

5.3.3.3 The Wave Speed, c, for the Single Solution of Interest

In general, for the single solution of interest, C1
(1)(α) now consists of an imaginary part

in addition to a real part, so that the wave speed, c, has both a real and an imaginary
part, as we would expect in the case of a horizontal pressure gradient in the base-state.
Plots of the imaginary part, cI , are found to take one of the two forms discussed in the
results for the case Ĝ = 0. In the small k analysis, (5.35), cI does not depend on Ĝ, so
that the regions of stability are the same as those shown in figure 5.3 and the general
solution for cI is not affected qualitatively by varying Ĝ. We find that the quantitative
effect of the addition of a pressure gradient on cI is not straightforward, being a complex
problem in (Ĝ, k, α, Ĉ, Γ, Λ, Pe1, Pe2) parameter space. Furthermore, the results for cI are
not changed substantially from the case Ĝ = 0. The addition of a pressure gradient
simply slightly increases or decreases the magnitude of cI . In our results we choose
to consider the addition of the pressure gradient given in (5.8), which is equivalent
to taking the base-state, horizontal velocity at the interface, given by ∂ψj

(0)/∂y(α), to
be unity. The limited effect on cI can then be seen in figure 5.7, which shows one of
the more notable cases. Of course, a larger pressure gradient will affect the results
more noticeably, but since the qualitative nature of the solution is not affected by letting
Ĝ 6= 0, we choose to focus instead on the real part of the wave speed, cR, in our analysis
and a full study of the effect on cI is a suggested topic for future research. We simply
note that (assuming Γ and Ĉ both positive) in those cases where the addition results in
an increase in the magnitude of <(C1

(1)(α)), the effect appears to be stabilising, whilst
a decrease in <(C1

(1)(α)) is destabilising, although the exact mechanism behind this
effect is not clear.

Plots of the real part of c, cR, against k are found to take one of six forms, as shown
in figure 5.10. In all cases, for large wavenumbers, cR tends to the speed of the base-
state horizontal velocity at the interface. In the first case (shown by the solid curve in
figure 5.10a) cR is independent of k so that waves travel at the speed of the base-state
velocity for all wavenumbers. In the second and third cases (the dashed curve and the
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(a) (b)

Figure 5.10: Typical plots of cR against k in the case Ĝ = Ĝu1, illustrating the six possible
forms of solution. Here plot (a) shows the case Ĉ = Γ = Pe1 = Pe2 = 1, α = 0.1 and
Λ = 1 (solid line), 10 (dashed line) and 0.1 (dash-dotted line), whilst plot (b) shows the
case Λ = Ĉ = Pe2 = 1 and α = 0.1, Pe1 = 10 and Γ = 1 (solid line), α = 0.9, Pe1 = 0.1
and Γ = 1 (dashed line) and α = 0.1, Pe1 = 1 and Γ = 10 (dash-dotted line). The dotted
lines represent the small k solutions in each case.

dash-dotted curve in figure 5.10a) waves with small wavenumbers (large wavelengths)
travel slower and faster, respectively, than the base-state velocity, whilst in the fourth to
sixth cases (seen in figure 5.10b) the small wavenumber speed is that of the basic state
velocity, but it is for moderate k that we see a deviation from this speed. In the fourth
and fifth cases (the solid and dashed curves) the moderate wavenumber speed is greater
than and less than that of the basic-state velocity, respectively, whilst in the sixth case
(the dash-dotted curve) the speed alternates from being less than to greater than the
basic state-velocity as we increase k.

The small k solution, (5.35), is again useful in distinguishing which form of result
we will obtain, and can be used to determine whether the solution takes the second
form, the third form or one of the first and fourth to sixth forms (for which cR is
given by the base-state velocity for small k). We note that in the small wavenumber
solution, cR depends only on α and Λ (and Ĝ, although altering this parameter only
alters the magnitude of the solution), so that once again, these two parameters are
critical in determining the qualitative nature of the solution. Figure 5.11 shows the
curves obtained in the (α, Λ) plane by setting cR|k=0 = ∂ψj

(0)/∂y(α) = 1 in the small
k solution. On these curves, we obtain one of the first and fourth to sixth forms of
solution. We note that one of the curves coincides with the same curve that divides the
stability regions in figure 5.3, suggesting some correspondence between the stability of
the solution and the wave speed of waves at the interface. These curves divide two wave
speed regions. In the unshaded region 1 the wave speed of small wavenumber waves is
less than that of the base-state velocity at the interface, and in the shaded region 2 the
wave speed is greater.

Also from the small k solution, in figure 5.12 we plot cR|k=0 against Λ for various
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Figure 5.11: The two wave speed regions plotted in the (α, Λ)-plane. In region 1 waves
travel slower than the horizontal base-state velocity at the interface for small wavenum-
bers, whilst in region 2 they travel faster. On the dividing lines, small wavenumber
waves travel at the same speed as the base-state velocity.

values of α. The slowest waves in region 1 are found as α moves closer to 0 or 1 and
at the same time Λ moves closer to zero or infinity. In region 2, the fastest waves are
found as Λ becomes very small or large. In both cases there is an upper limit on the
wave speed. For the small Λ limit, the upper limit on the wave speed increases as α

moves closer to 1, whilst for the large Λ limit, the upper limit increases as α moves
towards 0. The largest upper limit shown in these plots occurs when α = 0.1, where
the wave speed tends to 19 for large Λ. This is fairly large compared to 1, the velocity
at the interface in the base-state, when we consider that Benjamin (1957) and Yih (1963)
find that in the case of the flow of one fluid down an inclined plane, small wavelength
waves travel at double the speed of the base flow at the free surface. These papers
can be compared to our solution in the infinite Λ limit, which is essentially the same
case as that of replacing the bottom fluid with air. However, in our case, by choosing
Ĝ = Ĝu1, we force the pressure gradient to be O(Λ) in size. At the interface, this results
in an O(Λ) shear rate, ∂u/∂y, in fluid 1 (explaining the fast travelling waves when Λ is
large) and an O(1) shear in fluid 2, as opposed to the O(1) shear in fluid 1 and O(Λ−1)

shear in fluid 2 that occurs in these papers and our solution in this fluid if the pressure
gradient is O(1).

In the general wavenumber solution we label the wave speed at which the deviation
is greatest from that of the base-state flow, cRdev and the wavenumber at which this
occurs, kdev. We begin by letting Ĉ = Γ = Pe21 = 1 and considering the effects of
varying α and Λ. When we fix Λ and vary α, we find that kdev is always zero except for
when α is close to 0 or 1 (for instance, when α = 0.1 and 0.9) and so the behaviour of
cRdev is given by the small wavenumber solution. In figure 5.13 we plot kdev and cRdev

when we fix α at 0.1 and vary Λ, finding that cRdev has similar behaviour to cR in the
small k solution (as seen in figure 5.12a). As we increase Λ, however, we find that kdev

decreases to zero, suggesting that in the large Λ limit cRdev can again be found from
the small k solution. In the cases where we sit on the dividing lines in figure 5.11 any
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(a) (b)

(c) (d)

Figure 5.12: From the small wavenumber solution, cR|k=0 plotted against Λ in the case
Ĝ = Ĝu1. In (a), and for larger Λ in (b), α = 0.1 (thick solid line), 0.2 (solid line),
0.3 (dashed line) and 0.4 (dash-dotted line), in (c) α = 0.5 and in (d) α = 0.6 (dash-
dotted line), 0.7 (dashed line), 0.8 (solid line) and 0.9 (thick solid line). The dotted lines
represent the lines x = y = 1.

(a) (b)

Figure 5.13: When Ĉ = Γ = Pe21 = 1 and α = 0.1 in the case Ĝ = Ĝu1, plots against Λ
of (a) the maximum deviation from the base-state flow, cRdev, and (b) the wavenumber
at which this occurs, kdev.
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(a) (b)

Figure 5.14: When Λ = Ĉ = Γ = Pe2 = 1 and α = 0.1 in the case Ĝ = Ĝu1, plots
against Pe1 of (a) the maximum deviation from the base-state flow, cRdev, and (b) the
wavenumber at which this occurs, kdev.

deviation away from the speed of the base-state flow at general wavenumbers is found
to be very small (at a level beyond the accuracy of our program). Here we may conclude
that we obtain the first form of solution for cR, so that the wave speed is the same as
that of the basic state flow for all wavenumbers.

When we fix Λ = Ĉ = Γ = Pe2 = 1 and vary Pe1, we find that any deviation away
from the basic-state flow is more noticeable for α closer to 0 or 1. In these cases the
solution for cR takes either the fourth or fifth form, so that it is either greater than or
less than the speed of the base-state flow for moderate wavenumbers. In figure 5.14
we consider the case α = 0.1 and plot cRdev and kdev against Pe1, finding that whilst for
Pe12 < 1 any deviation is so small that we may assume that waves travel at the speed of
the base-state flow for all wavenumbers, as Pe12 increases from 1, cRdev increases from
the base-state flow speed, before decreasing again in the large Pe12 limit. We note that
in the case Pe1 = Pe2 → ∞, C1

(1)(α) is purely real (given by (5.44)) and when Λ = 1
and Ĝ = Ĝu1, we find that cR = 1, the speed of the base-state flow. The corresponding
wavenumber, kdev, on the other hand, is found to decrease as Pe12 increases, so that as cR

tends to the speed of the base-state flow for all wavenumbers in the large Pe12 limit, the
position of the maximum wave speed tends to a constant value. If we instead consider
the case α = 0.9, we find that it is now for Pe12 < 1 that cR deviates from the speed of
the base-state flow, with waves traveling more slowly in this case, whilst for Pe12 > 1,
any deviation is so small that it can be disregarded.

Letting Λ = Pe21 = 1 and α = 0.1, we find that for smaller magnitudes of Ĉ and Γ,
any deviation is small enough to be negligible (and therefore, due to the constraints on
the lower limits of these parameters, (5.13), taking either Ĉ or Γ to be negative produces
no noticeable deviation from the speed of the base-state flow). For larger magnitudes of
Ĉ and Γ we find that cR takes the sixth form, decreasing to a speed less than that of the
base-state flow as we increase the wavenumber before increasing to a greater speed and
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then returning to the base-state flow speed for large wavenumbers. The magnitudes of
both the maximum and minimum in cR increase as Ĉ and Γ increase, as do the critical
wave numbers at which they occur. For large Ĉ and Γ the growth of the maximum
and minimum in cR looks to be linear, whilst the wave numbers at which these occur
asymptotes to a constant value.

We briefly comment on how the previously suggested mechanism for instability
may also be relevant in determining the behaviour of cR. We have already noted that
one of the curves in (α, Λ)-parameter space dividing the regions of slower and faster
travelling waves in the small wavenumber limit (in figure 5.11) is the same curve that
divides the stability regions (in figure 5.3). In the stability analysis this curve represents
the case in which cI = 0, for which we would we would expect the interface to sit at
the centre of the closed streamlines described in the case Ĝ = 0 (and shown in figure
5.8) and the magnitude of the velocity above and below the interface to be the same.
We suggest that either side of this curve, a velocity difference is established in the O(ε)

flow which can act to speed up or slow down interfacial waves, depending on whether
the viscosity ratio Λ is greater than or less than 1. Since the second curve dividing the
wave speed limits in figure 5.11 is the line Λ = 1, it appears that a viscosity difference
is necessary for the interfacial wave speed to deviate from the base-state flow speed
by this mechanism. When Λ = 1, at least for smaller wavenumbers, when the choice
of α, Pe21, Ĉ and Γ results in a wave speed that is different from that of the base-state
flow, in the cases in which cR is found to be slower than the flow speed, cI is found
to have increased with the addition of a pressure gradient, whilst where cR is found to
be faster, cI is decreased. This suggests that a convective instability may be responsible
for any deviation is these cases, so that where cI is increased, energy is propagated
into a turbulent region downstream (not modelled here), causing waves to travel more
slowly, whilst where cI is decreased, energy is drawn less from the system through this
mechanism, resulting in a faster wave speed at the interface. To determine the exact
workings of this mechanism would require further analysis, for instance using Briggs
(1964) method for convective instabilities. However this is outside the scope of this
thesis and a possible future topic of research.

5.4 Removing the Channel Walls

We briefly consider the case where the walls are removed from our problem and a
simple shear flow taken instead in the base-state. Here the vertical length scale, h2, rep-
resents the distance over which the dimensional base-state concentration, varies by one
unit, ∆C, which, if the surface tension gradient is taken to be γ1/∆C, corresponds to the
dimensional base-state surface tension varying by one unit, γ1. The non-dimensional
parameter Γ is now replaced by

Γw =
γ1C0

γ0∆C
, (5.65)
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corresponding to the non-dimensional surface tension gradient and, taking the shear
flow as described in the case of flow next to an elastic wall, (4.5), the non-dimensional
base-state streamfunction and pressure in fluid j are instead described by

ψj
(0) = Ca

(
µ2

µj

y2

2
+ α(Λ− 1)(j− 1)y

)
(5.66)

pj
(0) = p0, (5.67)

where p0 is again a prescribed constant pressure. Here instead of the pressure gradient,
Ĝ, the non-dimensional capillary number,

Ca =
Gµ1h2

γ0
, (5.68)

results, where G is now taken to be the horizontal shear as y→ ∞.
Since we require the disturbance velocities to tend to zero at infinity, the boundary

conditions at the walls, (5.14), are replaced by the far field conditions,

dψ1
(1)

dy
(−∞) =

dψ2
(1)

dy
(∞) = ψ1

(1)(−∞) = ψ2
(1)(∞) = 0. (5.69)

In addition, the velocity continuity and kinematic conditions at the interface, (1.22) and
(1.23), now give us

ψ1
(1)(α) = ψ2

(1)(α) = α (c− αCaΛ) , (5.70)

dψ1
(1)

dy
(α)− dψ2

(1)

dy
(α) = αCa (1−Λ) , (5.71)

replacing equations (5.15) and (5.16).
Then, we again solve the non-dimensionalised version of the biharmonic equation,

(1.5), subject to conditions (5.18), (5.19) and (5.69) to (5.71), where we again use the
non-dimensional form of the first of equations (1.3) to find the pressure. Letting

Γw1 = 1 + Γw

(
1 +

Pe12Ĉα

(Pe12 − 1) α + 1

)
,

Γw2 = Γw

(
Pe12Ĉα

(Pe12 − 1) α + 1
+ C1

(1)(α)

)
, (5.72)

the disturbance streamfunction and pressure in fluids 1 and 2 are found to be

ψ1
(1) =− 1

2 (1 + Λ)
(αiΓw1 − (2αCaΛ + αikΓw1 + iΓw2) (y− α)) ek(y−α),

ψ2
(1) =− 1

2 (1 + Λ)
(αiΓw1 + (2αCa (1−Λ) + αikΓw1 − iΓw2) (y− α)) e−k(y−α), (5.73)
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and

p1
(1) =− ik

(1 + Λ)
(2αCaΛ + αikΓw1 + iΓw2) ek(y−α),

p2
(1) =

iΛk
(1 + Λ)

(2αCa (1−Λ) + αikΓw1 − iΓw2) e−k(y−α), (5.74)

and the wave speed is

c =αCaΛ− i
2(1 + Λ)

Γw1. (5.75)

Given the second of conditions (5.13) and since Λ is always greater than zero, the imag-
inary part of the wave speed is always negative and the flow is found to be stable for all
values of the parameters. We note that since there is no longer a physical length scale in
the vertical direction, the wave speed is independent of k. In addition, c is independent
of C1

(1)(α) and so, solving equations (5.21), (5.22) and (5.30) and letting y = α, we now
obtain an explicit rather than implicit equation for C1

(1)(α).
The stability of the solution is also found to be independent of the base-state flow.

We therefore ignore the pressure gradient (let Ca→ 0) and let k� h2 (whilst fixing α) in
our previous solution for c, (5.29), to compare to the unbounded case. We take the latter
limit since in the dimensional solution the wavenumber always appears in the grouping
kh2, and so taking the walls to infinity can be achieved by letting kh2 → ∞ whilst fixing
h1 and h2. We find good graphical evidence that the resulting growth rate, cI , is also
given by the term multiplying i in (5.75). In addition, a large k analysis reveals that the
two expressions for the imaginary part of c are identical if O(C1

(1)(α)) < exp(2kα)/k,
with plots of C1

(1)(α) clearly showing a lack of exponential behaviour for large k. This
suggests that the presence of walls is necessary for instability.

Returning to the case without walls, in the limit Ca → 0 we find that since the
streamline cells described previously are no longer constrained, the interface is now
always restrained from growing by its position on the closed streamlines (when Γw and
Ĉ are the same sign, the interface always sits at the top half of the cells as in figure
5.8c, whilst when Γw and Ĉ are opposite signs, the interface always sits at the bottom
half of the cells), suggesting a possible reason for the lack of unstable solutions in this
case. The importance of walls for an unstable solution has been noted previously by
Pozrikidis and Hill (2011) when considering the linear stability of simple shear driven
Stokes flow of two fluids in the presence of an insoluble surfactant at the interface. They
commented that a reflected flow propagates from the wall(s) which may act to intensify
waves at the interface. However, since a base flow is not required for unstable solutions
in our case, our instability differs from a surfactant based instability such as theirs and
in fact bears more resemblance to a thermocapillary instability such as that found in the
work of Zeren and Reynolds (1972) and subsequent work.
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5.5 Discussion

We have considered the linear stability of two-fluid channel flow under the influence
of a solute concentration which is linearly proportional (to within a constant) to the
surface tension coefficient.

We have focussed on two cases. In case (i) the pressure gradient was taken to be
zero and in case (ii) it was taken to be non-zero. In case (i) a fully analytical solution is
possible, but requires the solution of an implicit equation using the secant method. A
single solution of interest is found for the wave speed, which is purely imaginary. This
solution takes one of two forms. In the first the solution is unstable for small wavenum-
ber disturbances and stable for large wavenumbers, whilst in the second the solution is
always stable. The depth ratio, α, and viscosity ratio, Λ, are found to be fundamental in
defining the regions of stability, whilst the signs of the concentration ratio and surface
tension gradient are instrumental in determining which of the two forms the solution
takes in each region. In the limit of zero surface tension or concentration gradient the
first solution becomes stable for all wavenumbers. The same is true as the Péclet number
in either fluid tends to zero or infinity, or in the case where the two Péclet numbers are
equal and both tend to infinity. Streamlines are found to be closed cells, each separated
by vertical lines on which the streamfunction is zero. We conjecture that the instability
is a result of the interface sitting in a favourable vertical position on these cells, such
that perturbations are free to grow under the influence of the Marangoni force.

In case (ii) the solution may be obtained through the use of the shooting method.
Again, a single solution of interest is found for the wave speed, which is now complex.
The stability regions are the same as those in case (i). The real part of the wave speed
is found to take one of six forms. In all cases it tends to the speed of the base-state
horizontal velocity at the interface for large wavenumbers. For other wavenumbers the
real wave speed may be greater or less than the base-state velocity, depending on the
choice of parameters. In particular we have plotted the regions in (α, Λ)-space that
govern the real wave speed of small wavenumber disturbances. It is found that one of
the defining curves matches the curve defining the stability regions, suggesting that the
conjectured mechanism for instability may also affect the speed that waves travel.

We find that the presence of the channel walls is necessary for an unstable solution
and compare our work to Pozrikidis and Hill (2011), who drew the same conclusion
in the case of shear driven Stokes flow of two fluids with surfactant at the interface.
We suggest that when the walls are removed, the interface is always restricted from
growing due to its position on the closed streamlines.

Throughout this chapter, we find that in general, the magnitudes reached by cI

and the deviation of cR from the base-state velocity are fairly small. However, this is
simply due to our chosen length and time scales. Changing theses scales, by choosing
a length scale based on the distance over which the surface tension changes by one
unit, for instance, would not alter the results qualitatively, but would simply change the
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numerical scalings multiplying them. Blyth and Pozrikidis (2004) consider the stability
of two fluid Stokes flow in an inclined channel under the influence of an insoluble
surfactant at the fluid interface. It is interesting to compare our results to the work
in this paper, in which the wave growth rate is of a similar magnitude. Similarly to
in our work, unstable modes are found for small wavenumbers. Considering a long
wavelength analysis, Blyth and Pozrikidis (2004) find that when both layers have the
same width, the channel inclination is zero and the viscosity ratio is 0.5, the flow is very
close to being neutrally stable for small wavenumbers, in agreement with our results.
They also find that increasing the viscosity ratio can be stabilising, as we have found
when Γ and Ĉ are of opposite signs.

Our solutions also agree with the findings of other workers in the field of surface
tension driven flow, such as Scriven and Sternling (1964), Busse (1982), Renardy and
Joseph (1985), Frenkel and Halpern (2002) and Halpern and Frenkel (2003). Here, where
surface tension effects are destabilising, it is found to be for long wavelengths, with the
solution found to be always stable for shorter wavelengths. Changes in the viscosity
ratio, channel geometry and direction of surface tension gradient are also found have
great influence on the limits of stability, in agreement with our results.

In the next chapter we consider the more general case of Navier–Stokes flow through
a diverging channel with periodically moving walls.
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Chapter 6

A Slowly Diverging Channel with
Oscillating Walls

6.1 Introduction

In this chapter we relax the assumption that our model only describes the flow very
close to one of the walls of the DGM body and take some time to consider a slightly
more general flow field. Here we limit our study to a single fluid. By taking into
account the two-dimensional flow field surrounding the region considered in previous
chapters, we may gauge its influence on this region. Such an understanding of the flow
field is useful when describing the base-state flow field or solute concentration field in
a more realistic version of the previous chapters.

We briefly consider some general, preliminary results using a two-dimensional,
plane polar co-ordinate system, (r, θ), where u(r, θ, t) = (ur, uθ) denotes the velocity
field (in radial and transverse components) and p(r, θ, t) the pressure. In this case, the
streamfunction, ψ(r, θ, t), is defined by

ur =
1
r

∂ψ

∂θ
, uθ = −

∂ψ

∂r
. (6.1)

Here we consider a very simple representation of the elastic cone constituting the DGM
body in order to gain an (extremely primitive) idea of the overall flow field.

Considering the conical shape of the DGM body, the problem of two semi-infinite,
hinged plates, as described by Moffatt and Duffy (1980), appears to be a good starting
point for our studies. Here a single fluid fills the space between two plates at θ = ±α(t),
0 < α < π/2, which move with angular speed dα/dt. Due to the absence of a length
scale in the radial direction, the streamfunction may be obtained by seeking a similarity
solution to the biharmonic equation, (1.5), in plane polar co-ordinates. This yields the
solution

ψ = −1
2

dα

dt
r2 sin(2θ)− 2θ cos(2α)

sin(2α)− 2α cos(2α)
. (6.2)
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Allowing each of the plates to oscillate about a constant mean position, figure 6.1a
shows a typical plot of the resulting streamlines in the (x, y) plane. Typical particle

(a) (b)

Figure 6.1: For the case of the two hinged plates described by Moffatt and Duffy (1980),
typical plots of (a) the streamlines (thin lines) between the plates (thick lines) and (b)
the particle paths, where each fluid particle’s progress is saved as the plates move and
the walls are plotted when α is at its largest (solid line) and smallest (dashed line).

paths (which differ from the streamlines since the flow is unsteady) are shown in figure
6.1b. These paths are self-similar in the radial direction. For small plate oscillations fluid
particles move back and forth on straight lines. For larger oscillations the trajectories
generally become curved. Particles are projected in the x-direction at increasing speeds
as they near the line θ = 0. Given that α is periodic in time, the position of the particles
can also be shown to vary periodically with time. However, the solution is always
time-periodic, implying that fluid mixing does not occur.

We may build on this model by allowing the two plates to move independently of
each other, so that the problem is now asymmetric about the x-axis and the upper and
lower plates are located at θ = α+(t) and θ = α−(t), respectively. However, by making
the transformation

θ̂ = θ − 1
2
(
α+ − α−

)
, α =

1
2
(
α+ + α−

)
, ψ̂ = ψ +

1
4

r2
(

dα+

dt
− dα−

dt

)
, (6.3)

we may recover the solution for symmetric hinged plates, with the streamfunction given
by ψ̂ and the angular co-ordinate by θ̂. This implies that the asymmetric and symmetric
hinged plate solutions differ only by a time-dependent, solid body rotation. Therefore,
although the asymmetric hinged plate problem allows for some interesting motions (by
allowing the plates to move in a superposition of independent motions, fluid particles
may travel in closed orbits, for example), it does not allow fluid mixing to occur.

A key limitation of the hinged-plates model, therefore, is that fluid mixing does not
occur in any form. It may seem contradictory to expect mixing in time-reversible Stokes
flow in the absence of a fluid interface, for example. However, there are ways to induce
mixing of fluid particles by imposing a certain geometry. The use of non-reciprocal
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motions, for example, can be effective. An interesting example of this can be seen in
Cartwright et al. (2012), in which non-reciprocal movements of eccentric cylinders can
mix a fluid even though the final positions of the cylinders coincide with their initial
positions.

It may be possible to induce fluid mixing in our problem by considering the addi-
tion of a semi-circular free surface at r = R(t), where R changes with time such that
the enclosed sector area is conserved. However, reconciling the resulting boundary con-
ditions on the plates with those on the free surface is far from trivial. In the radial
direction the no-slip boundary condition on the plates and the condition arising from a
moving free surface lead to a discontinuity at the intersection between the two, whilst
in the θ-direction, the boundary condition on the moving plates renders the condition
on the free surface obsolete. In order to make sense of the discontinuity in bound-
ary conditions, it would be necessary either to consider the problem on a microscopic
level or to treat the discontinuity as a singularity (since the velocity gradient must be
infinite here). Hills (2001) considered Stokes flow in a fixed corner with a scraping
circular boundary (or honing circular arc) and overcame the resulting discontinuity by
satisfying the boundary conditions on the walls before discretising the problem and
attempting to approximate numerically the boundary conditions on the arc as closely
as possible. However, this method relies on the existence of an analytic streamfunction,
which cannot be counted upon in our problem. Another possibility is to allow the plates
to stretch such that the radial velocity on each of them is proportional to r. However,
the application of such a method is far from straightforward.

Inspired by the work of Lugt and Schwiderski (1964) and in an effort to include
some element of fluid flow at the walls of the model, we consider a steady solution to
the biharmonic equation, (1.5), in plane polar co-ordinates of the form

ψ = rλ (A sin(λθ) + B sin((λ− 2)θ)) , (6.4)

where A, B and λ are complex constants and it is understood that we take the real
part of ψ for our solution. By taking λ to have both a real and imaginary part and
imposing the boundary conditions ur = 0 and uθ = uθ̃ on the walls θ = ±θ̃, we may
describe the problem of a steady sinusoidal velocity flux across fixed hinged plates.
Here uθ̃ = −∂ψ/∂r(θ = θ̃) is determined by our choice of λ and θ̃. This is effectively
the same problem as that of plates which move with a wave-like motion, but is much
simpler to implement. Some typical streamlines in the (r, θ) plane are given in figure 6.2
as well as a visualisation of these streamlines in the (x, y) plane. We note that it is not
possible to replace any of the streamlines of constant r with a free surface since they do
not satisfy the stress condition, (1.21), in polar co-ordinates. Therefore this solution is
no help in overcoming the above mentioned problems when adding a free surface to the
hinged plates problem. Interestingly, the flux into one of the “cells” (whose boundary
is the x axis, one of the two plates and two of the streamlines of constant r) is given
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(a) (b)

Figure 6.2: For the case of a sinusoidal velocity flux across two fixed hinged plates,
(a) typical plots of the streamlines in the (r, θ) plane and (b) a representation of these
streamlines in the (x, y) plane. In (a) we choose λ = 2 + 10i and θ̃ = π/8 and find that
A = 0 and B = 1/(10 sinh(10π/8)) .

solely by the flux across the relevant portion of the plate. It can be shown that the flux
into such a cell is zero and hence the total flux along the wall is also zero.

Given the complexity of considering a relevant problem in polar co-ordinates, we
again consider a Cartesian co-ordinate system. We also extend our analysis to include
general Reynolds numbers in order to investigate any inertia-related instabilities due
to the moving walls. We consider an extension to the problem of channel flow with
periodically moving walls, as studied by Hall and Papageorgiou (1999). Here the au-
thors consider a stagnation-point type solution to the full Navier–Stokes equations. In
our model we let the channel walls have a small slope, so that we are dealing with an
oscillating, diverging channel. We seek a similarity solution, so that any end effects are
not accounted for. Therefore, the diverging channel can be thought of as modelling the
local flow field in a small strip taken at some point through the middle of the DGM
main body.

6.2 Problem Description

We consider general-Reynolds-number flow in a gradually diverging channel with pe-
riodically oscillating walls at y∗ = ±H∗(x∗, t∗). Here starred variables are dimensional
variables with a non-dimensional counterpart. We define H∗ by assuming a small per-
turbation (denoted by the superscript (1)) to the base-state of oscillating, parallel walls,
y∗ = ±H(0)∗(t∗), (denoted by superscript (0)). This base-state is essentially equivalent
to the problem described by Hall and Papageorgiou (1999). In the work of Hall and
Papageorgiou (1999), however, the frame of reference is taken to sit at the bottom wall,
whilst here it is taken to lie at the centre of the channel. Letting non-starred variables
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be non-dimensional, we write

H∗ = hH(0)(t) + δxH(1)(t), (6.5)

where h is the time-average width of the channel in the base-state, δ is the slope of the
upper wall (as shown in figure 6.3), such that 0 < δ � 1, and H(0) and H(1) are of
O(1). Terms of O(δ2) and smaller are neglected from the wall description. As usual, we

Figure 6.3: Schematic diagram of flow in a diverging channel with a periodic wall
motion. The unperturbed, flat wall position is y∗ = ±H(0)∗(t∗).

introduce the streamfunction, ψ∗(x∗, y∗, t∗), which satisfies the incompressibility condi-
tion, as well as the velocity field u∗(x∗, y∗, t∗) = (u∗, v∗) and pressure, p∗(x∗, y∗, t∗). The
solution for ψ∗ and p∗ is described by the base-state solution plus a small perturbation,
such that

(ψ∗, p∗) =
(

h2ωxψ(0)(y, t), µωp(0)(x, y, t)
)
+ δ

(
h2ωψ(1)(x, y, t), µωp(1)(x, y, t)

)
,

p(0) =
x2

2
p1

(0)(t) + p2
(0)(y, t), ψ(1) = x2ψ1

(1)(y, t) + ψ2
(1)(y, t),

p(1) =
x3

3
p1

(1)(t) + xp2
(1)(y, t) + p3

(1)(t), (6.6)

where ω is the frequency of the wall oscillations and µ is the dynamic viscosity of the
fluid. Here the particular forms of the pressure and the O(δ) streamfunction are chosen
in order to satisfy the governing equations and boundary conditions.

We satisfy the Navier–Stokes equations for general fluid flow (neglecting any body
forces). These are given by the two-dimensional form of the first of equations (1.2).
Differentiating the first component with respect to y∗ and subtracting the second differ-
entiated with respect to x∗, we may eliminate the pressure. We then obtain the vorticity
equation,

∂Ψ∗

∂t∗
+

∂ψ∗

∂y∗
∂Ψ∗

∂x∗
− ∂ψ∗

∂x∗
∂Ψ∗

∂y∗
= ν∇∗2Ψ∗, Ψ∗ = ∇∗2ψ∗ =

∂ψ∗

∂x∗2 +
∂2ψ∗

∂y∗2 , (6.7)

where ν is the kinematic viscosity of the fluid.
Substituting the streamfunction from (6.6) into equation (6.7) and considering the
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leading-order terms and the terms multiplied by δx2, we obtain equations for ψ(0) and
ψ1

(1) respectively,

∂3ψ(0)

∂t∂y2 +
∂ψ(0)

∂y
∂2ψ(0)

∂y2 − ψ(0) ∂3ψ(0)

∂y3 =
1

Re
∂4ψ(0)

∂y4 , (6.8)

and

∂3ψ1
(1)

∂t∂y2 + 2
∂ψ(0)

∂y
∂2ψ1

(1)

∂y2 +
∂ψ1

(1)

∂y
∂2ψ(0)

∂y2 − ψ(0) ∂3ψ1
(1)

∂y3 − 2ψ1
(1) ∂3ψ(0)

∂y3 =
1

Re
∂4ψ1

(1)

∂y4 ,

(6.9)

where the Reynolds number,

Re =
h2ω

ν
. (6.10)

In Hall and Papageorgiou (1999) the streamfunction is defined as nbx(V(η, t)− dH/dt),
where η = y/(bH) − 1, t = nt∗ and the walls are situated at y = 0, 2bH(t). Our
equation (6.8) is equivalent to their equation for V(η, t).

Since ψ2
(1) itself is not needed for our solution, we may simply solve for ψ̂2

(1) ≡
∂ψ2

(1)/∂y . We find ψ̂2
(1) from the Navier–Stokes equations, which are given by the first

of (1.2). Substituting the streamfunction and pressure from (6.6) into these equations,
the terms multiplied by δx and δx0 give us equations to find p2

(1) in terms of ψ1
(1) and

ψ̂2
(1) in terms of p2

(1) respectively,

−2
∂ψ1

(1)

∂t
+ 2ψ(0) ∂ψ1

(1)

∂y
= − 1

Re

(
∂p2

(1)

∂y
+ 2

∂2ψ1
(1)

∂y2

)
, (6.11)

∂2ψ̂2
(1)

∂t
+

∂ψ(0)

∂y
ψ̂2

(1) − ψ(0) ∂2ψ̂2
(1)

∂y
=

1
Re

(
−p2

(1) + 2
∂ψ1

(1)

∂y
+

∂3ψ̂2
(1)

∂y2

)
. (6.12)

By considering the other terms of the Navier-Stokes equations, we may obtain further
equations from which we may fully determine the pressure. However, these equations
are not needed for our analysis.

The above equations are complemented by boundary conditions at the walls. Con-
sidering the kinematic condition at the moving walls, (1.9), the leading-order and O(δ)

terms respectively give us

(
ψ(0)

)
y=±H(0)

= ∓dH(0)

dt
, (6.13)(

ψ1
(1)
)

y=±H(0)
= ∓1

2
dH(1)

dt
. (6.14)

Here we have used the no-slip condition, (1.14), which gives us, considering terms
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multiplied by 1, δx2 and δx0 respectively,(
∂ψ(0)

∂y

)
y=±H(0)

= 0, (6.15)

(
∂ψ1

(1)

∂y
± H(1) ∂2ψ(0)

∂y2

)
y=±H(0)

= 0, (6.16)

(
ψ̂2

(1)
)

y=±H(0)
= −H(1) dH(0)

dt
. (6.17)

Lastly, we choose to take (
p2

(1)
)

y=−H(0)
= 0. (6.18)

We note that it is these boundary conditions that dictate our choice of the O(δ) stream-
function. Replacing x2ψ1

(1)(y, t) in (6.6) by xψ1
(1)(y, t) or xnψ1

(1)(y, t) for 3 < n ∈ N

would satisfy (6.7), but would only satisfy the kinematic condition if the O(δ) wall de-
scription had a different x dependence. We note that the x-dependencies required are as
expected; whilst for the symmetric O(1) channel, we expect that the horizontal velocity
will be odd in x (squeezed away from the centre in both directions), we would expect
that the asymmetric O(δ) correction is even (unidirectionally squeezed). The no-slip
condition necessitates the inclusion of ψ2

(1).

6.3 The Solution at Zero Reynolds Number

In the zero Reynolds number limit it is possible to obtain an analytical solution. Solving
equations (6.8), (6.9), (6.11) and (6.12) subject to boundary conditions (6.13) to (6.18) in
this limit gives us

ψ(0) =
3

2H(0)3
dH(0)

dt

(
y2

3
− H(0)2

)
y, (6.19)

ψ1
(1) =

3

4H(0)3
dH(1)

dt

(
y2

3
− H(0)2

)
y− 3H(1)

2H(0)4
dH(0)

dt

(
y2 − H(0)2)

y. (6.20)

ψ̂2
(1)

= − 1

4H(0)3
dH(1)

dt

(
y2 − H(0)2) (

y2 − 5H(0)2)
+

3H(1)

2H(0)4
dH(0)

dt

(
y4 − 4H(0)2

y2 − H(0)4)
. (6.21)

To leading order, this solution agrees with Hall and Papageorgiou (1999) and so, as
mentioned in their paper, in the horizontal direction the velocity locally takes the form
of Poiseuille flow modulated periodically in time. We might expect to be able to draw
a similar comparison at O(δ).

To derive the solution for steady Poiseuille flow in a slowly diverging channel we



100 A Slowly Diverging Channel with Oscillating Walls

write

(H, u, v, p) =
(

H(0), u(0)(y), 0, p(0)(x)
)

+ δ

(
xH(1),

∂ f (1)

∂y
(x, y),−∂ f (1)

∂x
(x, y), p(1)(x, y)

)
, (6.22)

where

f (1) = x f1
(1)(y) + f2

(1)(y), p(1) =
x2

2
p1

(1) + xp2
(1),+p3

(1)(y), (6.23)

and H(0), H(1), p1
(1) and p2

(1) are constants. This satisfies the incompressibility con-
dition given by the non-dimensional version of the second of equations (1.3). Again,
the forms of the pressure and O(δ) velocities are chosen in order to satisfy the govern-
ing equations and boundary conditions. It is not strictly necessary to include f2

(1), but
we do so in order to compare with our above solution. Its inclusion necessitates the
inclusion of p2

(1). We can think of f2
(1) as a superimposed flow, as noted in Secomb

(1978), who considered a similar problem. We again solve for f̂2
(1) ≡ d f2

(1)/dy since
f2
(1) itself does not appear in our solution. In the limit of Stokes flow the Navier–Stokes

equations reduce to the non-dimensional version of the first of (1.3). Substituting (6.22)
into these equations and considering leading-order terms, terms multiplied by δx and
terms multiplied by δx0, respectively, we find equations for u(0), f1

(1) and f̂2
(1)

,

d2u(0)

dy2 =
dp(0)

dx
, (6.24)

d3 f1
(1)

dy3 = p1
(1), (6.25)

d2 f̂2
(1)

dy2 = p2
(1). (6.26)

Linearising the non-dimensional form of the kinematic condition (1.9), we now obtain(
f1
(1) ± H(1)u(0)

)
y=±H(0)

= 0, (6.27)

whilst the no-slip condition (1.14) gives us, considering leading-order terms, terms mul-
tiplied by δx and terms multiplied by δx0, respectively,(

u(0)
)

y=±H(0)
= 0, (6.28)(

d f1
(1)

dy
± H(1) du(0)

dy

)
y=±H(0)

= 0, (6.29)

(
f̂2
(1)
)

y=±H(0)
= 0. (6.30)
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We note that both sides of equation (6.24) must be constant. Denoting the dimensional
pressure gradient, dp(0)

∗
/dx∗, by −G results in the non-dimensional pressure gradient,

Ĝ =
Gh
µω

. (6.31)

Then, solving equations (6.24) to (6.26) subject to conditions (6.27) to (6.30), we obtain
the solution,

u(0) =− Ĝ
2

(
y2 − H(0)2)

, (6.32)

f1
(1) =

ĜH(1)

2H(0)
y
(

y2 − H(0)2)
, (6.33)

f̂2
(1)

=
p2

(1)

2

(
y2 − H(0)2)

. (6.34)

Here if we again choose to take p2
(1) = 0 at y = −H(0) then we find that p2

(1), and
hence f̂2

(1)
, is zero for all y.

Now that we have completed the analysis, we compare this solution to our small
Reynolds number limit solution, (6.19) to (6.21). Taking H(1) to be independent of t, we
conclude that in this limit, the O(δ) horizontal velocity essentially takes the local form
of Poiseuille flow in a diverging channel modulated periodically in time. Due to the fact
that the O(1) vertical velocity is not zero and the O(1) horizontal velocity depends on
x2, however, there is an extra term in ψ̂2

(1) that does not appear in f̂2
(1)

and ψ̂2
(1) 6= 0

for all y.

6.4 Numerical Method for Arbitrary Reynolds Number

In order to solve the full system (6.8), (6.9) and (6.11) to (6.18), we must seek a numerical
solution. We use the numerical scheme described by Blyth et al. (2003), which is based
on a method of E and Liu (1996). This scheme introduces the non-dimensional vorticity,
Ωk̂ = ∇× u, where k̂ is the unit vector pointing in the direction perpendicular to the
x − y plane, and uses a fourth-order Runge–Kutta method to integrate the equations
of motion with respect to time and a second-order central difference method for repre-
senting derivatives with respect to the vertical co-ordinate. To implement this scheme,
we re-scale, similarly to Hall and Papageorgiou (1999), such that our domain becomes
the region between fixed flat walls. This is done by making the transformation

η =
y

H(X, t)
. (6.35)

We let the vorticity be written in the form

Ω =xΩ(0)(η, t) + δ
(

x2Ω1
(1)(η, t) + Ω2

(1)(η, t)
)

, (6.36)
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so that, defining the operator L ≡ ∂/∂η,

L2ψ(0) = −H(0)2
Ω(0), (6.37)

L2ψ1
(1) = −2H(0)H(1)Ω(0) − H(0)2

Ω1
(1), (6.38)

Ω2
(1) = −2ψ1

(1) − 1
H(0)

Lψ̂2
(1). (6.39)

We choose to focus on the case where H(1) is a (prescribed) constant (the walls
oscillate, but have a fixed slope) and, like Hall and Papageorgiou (1999), we let

H(0) = 1 + ∆ cos(2t), 0 < ∆ < 1. (6.40)

In this case, considering the leading-order terms and terms multiplied by δx2 in the
vorticity equation, (6.7), gives us

∂Ω(0)

∂t
=M(0)(t, ψ(0), Ω(0); Re),

M(0) =
1

ReH(0)2
∂2Ω(0)

∂η2 − 1
H(0)

(
−
(

dH(0)

dt
η + ψ(0)

)
∂Ω(0)

∂η
+

∂ψ(0)

∂η
Ω(0)

)
, (6.41)

and

∂Ω1
(1)

∂t
=M1

(1)(t, ψ(0), ψ1
(1), Ω(0), Ω1

(1); Re),

M1
(1) =

1

ReH(0)2

(
∂2Ω1

(1)

∂η2 − 2H(1)

H(0)

∂2Ω(0)

∂η2

)

− 1
H(0)

(
−
(

dH(0)

dt
η + ψ(0)

)(
∂Ω1

(1)

∂η
− H(1)

H(0)

∂Ω(0)

∂η

)

+
∂ψ(0)

∂η

(
2Ω1

(1) +
H(1)

H(0)
Ω(0)

)
+

∂ψ1
(1)

∂η
Ω(0) − 2ψ1

(1) ∂Ω(0)

∂η

)
. (6.42)

Considering terms multiplied by δx0, the Navier–Stokes equations (given by the first of
(1.2)) give us

∂ψ̂2
(1)

∂t
=M2

(1)(t, ψ(0), ψ1
(1), ψ̂2

(1), p2
(1); Re),

M2
(1) =

1
Re

(
1

H(0)

(
2

∂ψ1
(1)

∂η
+

1
H(0)

∂2ψ̂2
(1)

∂η2

)
− p2

(1)

)

+
1

H(0)

(
∂ψ̂2

(1)

∂η

(
dH(0)

dt
η + ψ(0)

)
− ∂ψ(0)

∂η
ψ̂2

(1)

)
. (6.43)

From the terms multiplied by δx (substituting ∂p2
(0)/∂η from the equations to leading
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order), we find that

Lp2
(1) =Mp

(1)(t, ψ(0), ψ1
(1), Ω(0), Ω1

(1); Re),

Mp
(1) =2Re

(
H(1) ∂ψ(0)

∂t
+ H(0) ∂ψ1

(1)

∂t
−
(

dH(0)

dt
η + ψ(0)

)
∂ψ1

(1)

∂η

)
+ 2H(1)Ω(0) + 2H(0)Ω1

(1), (6.44)

where integrating equations (6.37) and (6.38) with respect to t and using (6.41) and
(6.42) gives us

∂ψ(0)

∂t
= L−2

(
−2H(0) dH(0)

dt
Ω(0) − H(0)2

M(0)

)
, (6.45)

and

∂ψ1
(1)

∂t
= L−2

(
−2

dH(0)

dt
H(1)Ω(0) − 2H(0)H(1)M(0) − 2H(0) dH(0)

dt
Ω1

(1) − H(0)2
M1

(1)

)
.

(6.46)

From the leading-order and O(δ) terms of the kinematic boundary condition, (1.9), we
find that

ψ(0)(η = ±1, t) =∓ dH(0)

dt
, (6.47)

ψ1
(1)(η = ±1, t) =0, (6.48)

whilst the leading-order terms, the terms multiplied by δx2 and the terms multiplied by
δx0 in the no-slip condition, (1.14), give us

∂ψ(0)

∂η
(η = ±1, t) =0, (6.49)

∂ψ1
(1)

∂η
(η = ±1, t) =0, (6.50)

ψ̂2
(1)
(η = ±1, t) =− H(1) dH(0)

dt
. (6.51)

We also choose that

p2
(1)(η = −1, t) = 0. (6.52)

Solving equations (6.41) to (6.44) subject to boundary conditions (6.47) to (6.51) in
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the zero Reynolds number limit now gives us

ψ(0) =
3
2

dH(0)

dt

(
η2

3
− 1
)

η, (6.53)

ψ1
(1) =0, (6.54)

ψ̂2
(1)

=
H(1)

8
dH(0)

dt

(
η4 − 6η2 − 3

)
. (6.55)

This solution may also be obtained by substituting equations (6.19) to (6.21) into (6.6),
replacing y using (6.35) and considering the terms of various orders.

We now discretise our domain in the η direction. Letting the distance between grid
points be ∆η = 2/(N − 1), we define ηi = (i − 1)∆η − 1, for i = 1, · · · , N. This gives
us N regularly spaced points where η1 = −1 and ηN = 1 correspond to the lower and
upper walls, respectively. Given a function, f (η, t), the first and second derivatives with
respect to η are represented by

∂ f
∂η

=
f (η + ∆η)− f (η − ∆η)

2∆η
,

∂2 f
∂η2 =

f (η + ∆η)− 2 f (η) + f (η − ∆η)

∆η2 , (6.56)

discarding terms of O(∆η2) and smaller.
We use the notation f k(η) = f (η, tk) at time tk, where k = 1, 2, 3, · · · and our

timesteps are taken to be of length ∆t. For brevity we let

tn1 = tn +
∆t
2

, tn2 = tn + ∆t, (6.57)

and then, applying a fourth-order Runge–Kutta method to equations (6.37) and (6.41),
we first obtain

Ω(0)
1 = Ω(0)n

+
∆t
2

M(0)
(

tn, ψ(0)n
, Ω(0)n)

, ψ(0)
1 = L−2

(
−H(0)2

(tn1)Ω(0)
1

)
, (6.58)

Ω(0)
2 = Ω(0)n

+
∆t
2

M(0)
(

tn1, ψ(0)
1, Ω(0)

1

)
, ψ(0)

2 = L−2
(
−H(0)2

(tn1)Ω(0)
2

)
, (6.59)

Ω(0)
3 = Ω(0)n

+ ∆tM(0)
(

tn1, ψ(0)
2, Ω(0)

2

)
, ψ(0)

3 = L−2
(
−H(0)2

(tn2)Ω(0)
3

)
, (6.60)

k(0)4 = ∆tM(0)
(

tn2, ψ(0)
3, Ω(0)

3

)
, (6.61)

and then, given the solution at time tn, the O(1) solution at time tn+1 can be described
by

Ω(0)n+1
=

1
3

(
−Ω(0)n

+ Ω(0)
1 + 2Ω(0)

2 + Ω(0)
3

)
+

1
6

k(0)4,

ψ(0)n+1
= L−2

(
−H(0)2

(tn2)Ω(0)n+1)
. (6.62)

For the O(δ) solution applying the Runge-Kutta method to equations (6.38) and (6.42)
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gives us

Ω1
(1)

1 = Ω1
(1)n

+
∆t
2

M1
(1)
(

tn, ψ(0)n
, ψ1

(1)n
, Ω(0)n

, Ω1
(1)n)

,

ψ1
(1)

1 = L−2
(
−2H(0) (tn1) H(1)Ω(0)

1 − H(0)2
(tn1)Ω1

(1)
1

)
, (6.63)

Ω1
(1)

2 = Ω1
(1)n

+
∆t
2

M1
(1)
(

tn1, ψ(0)
1, ψ1

(1)
1, Ω(0)

1, Ω1
(1)

1

)
,

ψ1
(1)

2 = L−2
(
−2H(0) (tn1) H(1)Ω(0)

2 − H(0)2
(tn1)Ω1

(1)
2

)
, (6.64)

Ω1
(1)

3 = Ω1
(1)n

+ ∆tM1
(1)
(

tn1, ψ(0)
2, ψ1

(1)
2, Ω(0)

2, Ω1
(1)

2

)
,

ψ1
(1)

3 = L−2
(
−2H(0) (tn2) H(1)Ω(0)

3 − H(0)2
(tn2)Ω1

(1)
3

)
, (6.65)

k1
(1)

4 = ∆tM1
(1)
(

tn2, ψ(0)
3, ψ1

(1)
3, Ω(0)

3, Ω1
(1)

3

)
, (6.66)

and then

Ω1
(1)n+1

=
1
3

(
−Ω1

(1)n
+ Ω1

(1)
1 + 2Ω1

(1)
2 + Ω1

(1)
3

)
+

1
6

k1
(1)

4,

ψ1
(1)n+1

= L−2
(
−2H(0) (tn2) H(1)Ω(0)n+1 − H(0)2

(tn2)Ω1
(1)n+1)

, (6.67)

and applying to equations (6.43) and (6.44) gives us

p2
(1)n

= L−1Mp
(1)
(

tn, ψ(0)n
, ψ1

(1)n
, Ω(0)n

, Ω1
(1)n)

,

ψ̂2
(1)

1 = ψ̂2
(1)n

+
∆t
2

M2
(1)
(

tn, ψ(0)n
, ψ1

(1)n
, ψ̂2

(1)n, p2
(1)n)

, (6.68)

p2
(1)

1 = L−1Mp
(1)
(

tn1, ψ(0)
1, ψ1

(1)
1, Ω(0)

1, Ω1
(1)

1

)
,

ψ̂2
(1)

2 = ψ̂2
(1)n

+
∆t
2

M2
(1)
(

tn1, ψ(0)
1, ψ1

(1)
1, ψ̂2

(1)
1, p2

(1)
1

)
, (6.69)

p2
(1)

2 = L−1Mp
(1)
(

tn1, ψ(0)
2, ψ1

(1)
2, Ω(0)

2, Ω1
(1)

2

)
,

ψ̂2
(1)

3 = ψ̂2
(1)n

+ ∆tM2
(1)
(

tn1, ψ(0)
2, ψ1

(1)
2, ψ̂2

(1)
2, p2

(1)
2

)
, (6.70)

p2
(1)

3 = L−1Mp
(1)
(

tn2, ψ(0)
3, ψ1

(1)
3, Ω(0)

3, Ω1
(1)

3

)
,

k2
(1)

4 = ∆tM2
(1)
(

tn2, ψ(0)
3, ψ1

(1)
3, ψ̂2

(1)
3, p2

(1)
3

)
, (6.71)

and then

ψ̂2
(1)n+1

=
1
3

(
−ψ̂2

(1)n + ψ̂2
(1)

1 + 2ψ̂2
(1)

2 + ψ̂2
(1)

3

)
+

1
6

k2
(1)

4. (6.72)

The initial conditions (the solution when k = 1) are chosen to be consistent with (6.37)
to (6.39) and the boundary conditions, (6.47) to (6.51). We next consider the boundary
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conditions themselves at time tk. For the leading order solution, from (6.47) and (6.49),

ψ(0)k
(η1) = −ψ(0)k

(ηN) =
dH(0)

dt
(tk),

ψ(0)k
(η0) = ψ(0)k

(η2), ψ(0)k
(ηN−1) = ψ(0)k

(ηN+1), (6.73)

and for the O(δ) solution, from (6.48) and (6.50) to (6.52),

ψ1
(1)k

(η1) = ψ1
(1)k

(ηN) = 0, ψ1
(1)k

(η0) = ψ1
(1)k

(η2), ψ1
(1)k

(ηN−1) = ψ1
(1)k

(ηN+1),
(6.74)

ψ̂2
(1)k

(η1) = ψ̂2
(1)k

(ηN) = −H(1) dH(0)

dt
(tk), (6.75)

p2
(1)k

(η1) = 0, (6.76)

where we introduce fictitious points outside the domain at η0 and ηN+1.
Performing the inversion, L−2, in equations (6.58) to (6.67) involves solving a tridiag-

onal matrix system comprising of the uninverted equations for i = 2, · · · , N− 1 plus the
first two of boundary conditions (6.73) or (6.74). This may be done using the Thomas
algorithm (where we note that although the matrix is diagonally dominant, it is not
strictly diagonally dominant and so we cannot prove that the Thomas algorithm will be
stable, although in practice it is). At each timestep, four such tridiagonal systems for
ψ(0) and four for ψ1

(1) must be solved.
The inversion, L−1, in equations (6.68) to (6.72) may be achieved simply by using the

trapezium rule. In general, using equation (6.44), we may write

p2
(1)k

(η) =
∫ ηmax

−1
Mp

(1)k
(η)dη, −1 < ηmax ≤ 1, (6.77)

and so we may integrate by writing

p2
(1)k

(ηi+1) = p2
(1)k

(ηi) +
1
2

∆η
(

Mp
(1)k

(ηi) + Mp
(1)k

(ηi+1)
)

, i = 1, · · · , N − 1,

(6.78)

giving us an algorithm with which to calculate p2
(1) at every point in η given (6.76).

Here we must make use of the second two of boundary conditions (6.74) when evalu-
ating Mp

(1) at η1 and ηN . Also, in order to calculate Mp
(1), we need to know ∂ψ(0)/∂t

and ∂ψ1
(1)/∂t at η1, · · · , ηN . This can be achieved by performing the two inversions in

equations (6.45) and (6.46). Here the uninverted equations for i = 2, · · · , N − 1, are
supplemented by the first two of boundary conditions (6.73) and (6.74), differentiated
with respect to time. We may again use the Thomas algorithm to invert the resulting
system. At each time step, eight such tridiagonal systems must be solved. The equa-
tions for ψ̂2

(1) in (6.68) to (6.72) when i = 2, · · · , N − 1 are complimented by boundary
conditions (6.75), giving us the solution for ψ̂2

(1) everywhere.
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In the equations for the vorticities in (6.58) to (6.67), since Ω(0) and Ω1
(1) are not

known at the fictitious points η0 and ηN+1, it is only possible to take i = 2, · · · , N − 1,
giving us the solution at η2, · · · , ηN−1. The vorticities at η1 and ηN may be obtained
from equations (6.37) and (6.38) applied when i = 1 and N, making use of boundary
conditions (6.73) and (6.74). For instance, at time step tk we have

Ω(0)k
(η1) = −

2(
H(0) (tk)∆η

)2

(
ψ(0)k

(η2)−
dH(0)

dt
(tk)

)
, (6.79)

Ω(0)k
(ηN) = −

2(
H(0) (tk)∆η

)2

(
ψ(0)k

(ηN−1) +
dH(0)

dt
(tk)

)
, (6.80)

Ω1
(1)k

(η1) = −
2

H(0)2
(tk)

(
ψ1

(1)k
(η2)

∆η2 + H(0) (tk) H(1)Ω(0)k
(η1)

)
, (6.81)

Ω1
(1)k

(ηN) = −
2

H(0)2
(tk)

(
ψ1

(1)k
(ηN−1)

∆η2 + H(0) (tk) H(1)Ω(0)k
(ηN)

)
. (6.82)

At any time, Ω2
(1) can be found from equation (6.39). Here ψ̂2

(1) must be defined at
the fictitious points η0 and ηN+1. From equation (6.43) at η1 and ηN , using boundary
conditions (6.75) differentiated with respect to time as well as boundary conditions
(6.73) and the second two of conditions (6.74), we find that

ψ̂2
(1)k

(η0) = 2ψ̂2
(1)k

(η1)− ψ̂2
(1)k

(η2)

+ ∆η2H(0)2
(tk)

(
p2

(1)k
(η1)− Re

d2H(0)

dt2 (tk)H(1)

)
,

ψ̂2
(1)k

(ηN+1) = 2ψ̂2
(1)k

(ηN)− ψ̂2
(1)k

(ηN−1)

+ ∆η2H(0)2
(tk)

(
p2

(1)k
(ηN)− Re

d2H(0)

dt2 (tk)H(1)

)
.

(6.83)

E and Liu (1996) discuss the numerical stability of this method. The method is
found to have good stability properties for large Reynolds numbers. As either Re → 0
or ∆η → 0, considering equations (6.41) to (6.43), we see that M(0), M1

(1) and M2
(1)

all tend to infinity and we require that ∆t → 0 to maintain accuracy when stepping
forward in time. When Re = 0, the analytic solution may be used. The numerical
consistency of our results is checked by increasing the number of data points in η and t
and ensuring that the resulting solution converges.
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6.5 Results

6.5.1 The Leading-Order Solution

We briefly recount the results for the O(1) solution, as found by Hall and Papageorgiou
(1999).

For sufficiently small Reynolds numbers there exists a unique, stable solution which
is π-periodic in time (synchronised with the O(1) wall motion as described in (6.40)).
As Re → 0 this solution reduces at any point in time to a Poiseuille type flow in the
horizontal direction, as described in the zero Reynolds number section. The stream-
function, ψ(0) is found to be odd with respect to η. In this case we choose the symmetric
initial conditions, ψ(0)1

(ηi) = −ηi(dH(0)/dt(t1)) = 0. The numerical program is run
until a periodic solution is reached. Figure 6.4 shows the zero Reynolds number so-
lution and plots of our numerical solution for the lower wall shear, ∂2ψ(0)/∂η2(−1, t).
When Re = 25, our solution is plotted alongside the solution from Hall and Papageor-
giou (1999), which we plot using digitising software. We find that taking 101 points
in the η-direction and ∆t between 5 × 10−4 and 10−4 is sufficient to produce a close
reproduction.

As Re passes a critical value Rec, which depends on ∆, the flow remains synchro-
nised with the wall motion, but a bifurcation can be observed such that there now exists
a π-periodic, asymmetric solution. This solution remains stable until Re passes a sec-
ond critical value, where it in turn loses stability. The asymmetric solution is not unique
since a second solution may be obtained by replacing η with −η and changing the sign
of ψ(0). In addition to the asymmetric solution, the unstable, symmetric solution still
exists, so that the solution has undergone a pitchfork bifurcation. It is the asymmetric
solution that we focus on in this thesis. Using the trapezium rule, we may plot

I(Re) =
∫ T+π

T
|ψ(0)(0, t)|dt, (6.84)

where the point t = T is taken to be large enough for any initial transients in our
solution to have decayed. This gives an indication of the point at which symmetry is
lost since a symmetric solution will clearly result in I = 0 and so I 6= 0 signifies an
asymmetric solution. We note that comparing our results with Hall and Papageorgiou
(1999), it is clear that they have used the above integrand, rather than ψ(0)(0, t)2, as they
state in their paper. For quicker convergence of our results, we take an asymmetric
initial condition. We choose ψ(0)1

(ηi) = −(ηi + 1)2(ηi − 1)3. As we move closer to the
bifurcation from either below or above, we are required to run the numerical scheme
for increasingly longer times before the solution settles. In figure 6.5 we plot I and the
lower wall shear when Re = 48 for the cases ∆ = 0.45 and 0.65, alongside the results
of Hall and Papageorgiou (1999). We note that it is also clear from our plots, and the
computed values in the rest of their results, that it is the case ∆ = 0.65 that they plot,
rather than ∆ = 0.45, as stated in their paper. We find that as we decrease ∆η, our
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(a) (b)

(c)

Figure 6.4: The leading-order lower wall shear, ∂2ψ(0)/∂η2(−1, t), when Re = 0 (dotted
line), 5 (dashed line) and 25 (solid line), when ∆ = (a) 0.25, (b) 0.45 and (c) 0.65. When
Re = 25, the black circles correspond to the results of Hall and Papageorgiou (1999).

solution converges to that of Hall and Papageorgiou (1999). Taking 401 points in η and
∆t = 10−4 is sufficient to reproduce their results, although to maintain accuracy for
smaller Reynolds numbers it is necessary to take 351 points (since a smaller ∆t is too
computationally expensive).

For large enough wall amplitudes (such as ∆ = 0.65), above a second critical Reynolds
number, Rec2 (which is 60.39 when ∆ = 0.65), the asymmetric solution loses stability
such that successive period doubling of the solution is seen and the solution takes a
Feigenbaum route to chaos. Above a certain Reynolds number, the solution is always
chaotic and below this there exist windows of time-periodic solutions interspersed with
chaotic solutions. For fairly large ∆ (for instance 0.5, 0.55 or 0.6) there is also a second
chaotic attractor, this time originating from a period doubling that originates from a
solution with period 3π. In this case the solution disappears below a certain Reynolds
number. Hall and Papageorgiou (1999) comment that other attractors must exist that
cannot be reached from an initial state of zero flow everywhere (the initial conditions
that give rise to the symmetric solution), and also find other attractors originating from
the zero flow initial state, in particular one that originates from 11π periodic flow at



110 A Slowly Diverging Channel with Oscillating Walls

(a) (b)

(c) (d)

Figure 6.5: For the asymmetric solution, plots of the leading-order lower wall shear,
∂2ψ(0)/∂η2(−1, t), when Re = 48 and the integral I (denoted by squares) when ∆ =
(a) and (b) 0.45 and (c) and (d) 0.65. In 6.5a and 6.5d the black circles and the solid
line respectively correspond to the results of Hall and Papageorgiou (1999). In the plots
of I diamonds correspond to the solution if we instead take the integrand in I to be
ψ(0)(0, t)2.

Re = 87.9. For ∆ small enough (less than 0.4), as Re is increased, there is a Hopf
bifurcation to a quasi-periodic solution, before a Feigenbaum cascade on one of the fre-
quencies again leads to a chaotic solution at large Re. At intermediate ∆ (such as 0.45),
a 4π periodic solution emerges from the quasi-periodic solution, after which chaotic
and 4π solutions alternate, with the solution ultimately remaining chaotic for a large
enough Re.

6.5.2 The First-Order Solution

6.5.2.1 Lower Reynolds Numbers

For the O(δ) solution we take ψ1
(1)1

(ηi) = ψ̂2
(1)1

(ηi) = 0 as our initial conditions.
We first consider smaller Reynolds numbers (Re < Rec) and general ∆. Here we take
201 points in η (except for the case ∆ = 0.65 and Re = 5, where we must take 101
points) and ∆t = 10−4. In figures 6.6, 6.7 and 6.8 we show typical plots for the lower
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wall shears, ∂2ψ1
(1)/∂η2(−1, t) and ∂2ψ2

(1)/∂η2(−1, t), for the zero Reynolds number
solution and our numerical solution. Recalling that we have defined H(1) to be constant,
we choose it to be 0.5. Increasing or decreasing H(1) simply results in the wall shears
having a larger or smaller amplitude, respectively. In general, we find that for low

(a) (b)

Figure 6.6: When H(1) = 0.5 and ∆ = 0.25, the first-order lower wall shears, (a)
∂2ψ1

(1)/∂η2(−1, t) and (b) ∂2ψ2
(1)/∂η2(−1, t), when Re = 0 (dotted line), 5 (dashed

line) and 25 (solid line).

(a) (b)

Figure 6.7: When H(1) = 0.5 and ∆ = 0.45, the first-order lower wall shears, (a)
∂2ψ1

(1)/∂η2(−1, t) and (b) ∂2ψ2
(1)/∂η2(−1, t), when Re = 0 (dotted line), 5 (dashed

line) and 25 (solid line).

enough Reynolds numbers ∂2ψ1
(1)/∂η2(−1, t) and ∂2ψ2

(1)/∂η2(−1, t) are π-periodic, in
a similar way to the O(1) solution. Replacing η with −η, ψ(0) with −ψ(0) and ψ1

(1)

with −ψ1
(1) in equations (6.38), (6.42) and boundary conditions (6.48) and (6.50) results

in the same system of equations. We therefore expect that there exists a solution with
ψ1

(1) odd with respect to η, also in the same manner as the O(1) solution. Therefore
it is no surprise that the π-periodic solution for ψ1

(1) is found to be odd. However,
ψ̂2

(1) is found to be even. As we might expect then, we find that in equations (6.39),
(6.43) and boundary conditions (6.51), we must keep ψ̂2

(1) the same sign in addition
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(a) (b)

(c) (d)

Figure 6.8: When H(1) = 0.5 and ∆ = 0.65, the first-order lower wall shears,
∂2ψ1

(1)/∂η2(−1, t) (shown in (a) with a close up in (b)), and ∂2ψ2
(1)/∂η2(−1, t) (shown

in (c) with a close up in (d)), when Re = 0 (dotted line), 5 (dashed line) and 25 (solid
line).

to the above sign changes to obtain the same system. When ∆ = 0.65 and Re = 25,
∂2ψ2

(1)/∂η2(−1, t) grows exponentially (although ψ̂2
(1) remains even), with peaks and

troughs becoming successively larger at intervals of π in time (so that the solution is
still synchronised with the wall motion). This can be seen by taking the solution about
any peak or trough, multiplying by a constant, m, (which depends on the Reynolds
number) and superposing on top of the solution about the next peak or trough, from
which it can be seen that the two curves are identical (as seen in figure 6.9). This series
of actions describes the solution for all time. More research shows that when ∆ = 0.65,
this behaviour occurs for Re ≥ 8 (to the nearest whole number).

We now consider increasing the Reynolds number further for two different, interest-
ing cases, ∆ = 0.65 and ∆ = 0.25.

6.5.2.2 Higher Reynolds Numbers, Case (i); ∆ = 0.65

We first focus on the case ∆ = 0.65, again taking H(1) to be 0.5. For Re ≤ 37.5 we
find that we must take 201 points in η. For 37.5 < Re ≤ 45 we may take 351 and
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Figure 6.9: In the case ∆ = 0.65, H1 = 0.5 and Re = 25, the solid line shows a plot of the
first-order lower wall shear, ∂2ψ2

(1)/∂η2(−1, t), after taking the solution about a peak
(shown by the dotted line), shifting along by π and multiplying by m = 6.69.

for higher Reynolds numbers, 401 points. In all cases we take ∆t = 10−4. We first
consider the O(δ) solution as Re increases from 25 and passes Rec = 43.77. Up until
Re = 38 (to the nearest whole number), the lower wall shears, ∂2ψ1

(1)/∂η2(−1, t) and
∂2ψ2

(1)/∂η2(−1, t), are qualitatively the same as when Re = 25 (as in figure 6.8).
As we pass Re = 38, ∂2ψ1

(1)/∂η2(−1, t) grows exponentially in the same way as
∂2ψ2

(1)/∂η2(−1, t) in figure 6.8 when Re = 25, with successively larger peaks occurring
at intervals of π in time. Interestingly, if we omit the terms in equation (6.42) in which
∂nψ1

(1)/∂ηn or ∂nΩ1
(1)/∂ηn are multiplied by ∂nψ(0)/∂ηn or ∂nΩ(0)/∂ηn for n = 0, 1

or 2, the solution is no longer unstable, suggesting that these terms are crucial for this
behaviour. In this case plots of ψ1

(1) against η show that the solution is no longer
odd, but appears to change from asymmetric for small t to even as time progresses
(see figure 6.10). Plots of ψ̂2

(1) against η show an asymmetric solution. These results
seem to suggest that the O(δ) solution has bifurcated to an asymmetric solution at a
value of Re lower than 43.77 - the critical Reynolds number for the O(1) solution. We
note that we must use asymmetric initial conditions for the O(1) solution in order to
successfully latch onto this solution. Figure 6.11 shows typical plots of the lower wall
shears. Since the program is run until any transients in the O(1) solution have decayed,
the magnitudes reached in these plots are very large.

Since the coefficients of our governing equations for the O(δ) solution, (6.38), (6.39)
and (6.42) to (6.44), have periodic coefficients, this suggests the use of Floquet theory to
analyse the exponential growth seen in our solutions. Joseph (1976) gives a good sum-
mary of this theory. A description of our method of calculating the Floquet exponent
is given in appendix C. In general, given a particular solution, we perturb about the
underlying periodic solution. Here the underlying solution is the symmetric, π peri-
odic solution that is obtained for smaller Reynolds numbers. We let the perturbation
be given by exp(γt)F+(η, t), where γ = γR + iγI is the Floquet exponent and where
here F+ is a π periodic function. The real part of the Floquet exponent, γR, gives us a
measure of the growth of perturbations to the periodic solution. In figure 6.12 we plot
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(a) (b)

(c) (d)

(e) (f)

Figure 6.10: When ∆ = 0.65 and H(1) = 0.5, plots against η of the first-order solutions,
ψ1

(1) (left panels) and ψ̂2
(1) ≡ (1/H(0))∂ψ

(1)
2 /∂η (right panels), when (a) and (b) Re = 35

and t = 565 and when Re = 40 and t = (c) and (d) 15 and (e) and (f) 265.
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(a) (b)

Figure 6.11: When ∆ = 0.65 and H(1) = 0.5, taking asymmetric initial conditions, typical
plots of the first-order lower wall shears, ∂2ψ1

(1)/∂η2(−1, t) and ∂2ψ2
(1)/∂η2(−1, t), in

the region 38 ≤ Re < 43.77 = Rec. In this case Re = 40. The dashed lines show the
exponential nature of the growth.

γR in the region Re < 43.77 = Rec, showing the points at which the solutions for ψ1
(1)

and ψ̂2
(1) start to grow. Plotting exp(γRπ) alongside the multiplicative constant, m, we

(a) (b)

Figure 6.12: When ∆ = 0.65 and H(1) = 0.5, the Floquet exponent, γR, plotted against
Re in the region Re < 43.77 = Rec when we examine the first-order solutions, (a) ψ1

(1)

and (b) ψ̂2
(1). The dashed line is γR = 0.

find that in the case of the solution for ψ1
(1), the two are in good agreement (see figure

6.13). This suggests that in these cases, the solution is given by the perturbation part of
the Floquet solution itself. When ψ1

(1) is large, equations (6.38) and (6.42) become

L2ψ1
(1) = −H(0)2

Ω1
(1), (6.85)
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and

∂Ω1
(1)

∂t
=M1

(1)(t, ψ(0), ψ1
(1), Ω(0), Ω1

(1); Re),

M1
(1) =

1

ReH(0)2
∂2Ω1

(1)

∂η2 − 1
H(0)

(
−
(

dH(0)

dt
η + ψ(0)

)
∂Ω1

(1)

∂η

+ 2
∂ψ(0)

∂η
Ω1

(1) +
∂ψ1

(1)

∂η
Ω(0) − 2ψ1

(1) ∂Ω(0)

∂η

)
, (6.86)

to be solved alongside boundary conditions (6.48) and (6.50). These equations are equiv-
alent to the equations for the perturbation part of ψ1

(1) in the Floquet analysis (equations
(C.3), (C.4) and (C.8) in appendix C), explaining why this is true. In the case of ψ̂2

(1),

(a) (b)

Figure 6.13: When ∆ = 0.65 and H(1) = 0.5, exp(γRπ) (circles) and m (asterisks) plotted
against Re in the region Re < 49 when we examine the growing first-order solutions,
(a) ψ1

(1) and (b) ψ̂2
(1). The dashed line is m = 1.

below the bifurcation of the solution for ψ1
(1), where ψ̂2

(1) is growing and is therefore
large, equations (6.39) and (6.43) become

Ω2
(1) = − 1

H(0)
Lψ̂2

(1), (6.87)

and

∂ψ̂2
(1)

∂t
=M2

(1)(t, ψ(0), ψ̂2
(1); Re),

M2
(1) =

1

ReH(0)2
∂2ψ̂2

(1)

∂η2 +
1

H(0)

(
∂ψ̂2

(1)

∂η

(
dH(0)

dt
η + ψ(0)

)
− ∂ψ(0)

∂η
ψ̂2

(1)

)
, (6.88)

and boundary conditions (6.51) become

∂ψ̂2
(1)

∂η
(η = ±1, t) = 0. (6.89)
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Here since p2
(1)(η = −1, t) is chosen to be zero, (6.44) gives us that p2

(1) = 0. These
equations are equivalent to the equations for the perturbation part of ψ̂2

(1) in the Flo-
quet analysis (equations (C.5), (C.6) and (C.9) in appendix C). Therefore, at this point
exp(γRπ) and m agree. However, once ψ1

(1) starts to grow, exp(γRπ) and m no longer
agree. This is due to the fact that ψ̂2

(1) depends on the growth of ψ1
(1) as well as any

growth that results independently of ψ1
(1). Since ψ1

(1) and ψ̂2
(1) are of a similar magni-

tude, most of the growth of ψ̂2
(1) must be due to ψ1

(1) and (6.39), (6.43) and (6.44) are
no longer equivalent to the equations for the perturbation in the Floquet analysis.

Just above Re = Rec = 43.77, the bifurcation point for the O(1) solution, we find that
there exists an asymmetric O(δ) solution with qualitatively the same time dependence
as when Re = 25 (as shown in figure 6.8). For this solution the O(1) solution has
become asymmetric. This solution coexists with the unstable asymmetric O(δ) solution
described above, for which the O(1) solution is symmetric. We focus on following the
branch of solutions emanating from the first of these solutions in our analysis. In this
case exp(γRπ) and m for the solution for ψ2

(1) again agree. This can be seen in figure
6.13.

Above around Re = 49, plots of ∂2ψ2
(1)/∂η2(−1, t) do not alter in form, but plots

of ∂2ψ1
(1)/∂η2(−1, t) show an exponentially growing solution with successive peaks

occurring at intervals of 2π in time (see figure 6.14). This indicates that ψ1
(1) behaves

like an exponential multiplied by a function with double the period than that for smaller
Reynolds numbers (at a lower Re than period doubling occurs in the O(1) solution). For

(a) (b)

Figure 6.14: When ∆ = 0.65 and H(1) = 0.5, taking asymmetric initial conditions, typical
plots of the first-order lower wall shears, ∂2ψ1

(1)/∂η2(−1, t) and ∂2ψ2
(1)/∂η2(−1, t), in

the region 49 ≤ Re < 60.39 = Rec2. In this case Re = 50. The dashed lines show the
exponential nature of the growth.

this solution, when using Floquet analysis, F+ is taken to be a 2π periodic function. In
this interval, as well as plots of exp(2γRπ) and m being in good agreement for the
solution for ψ1

(1), exp(γRπ) and m also agree for the solution for ψ2
(1) (see figure 6.15).

Here the magnitude of ψ̂2
(1) is found to be much larger than that of ψ1

(1), suggesting
that a large part of the growth of ψ̂2

(1) is independent of ψ1
(1) and (6.39), (6.43) and
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(6.51) again reduce to (6.87) and are equivalent to the equations for the perturbation in
the Floquet analysis.

(a) (b)

Figure 6.15: When ∆ = 0.65 and H(1) = 0.5, in the region 49 < Re < 60.39 = Rec2, plots
against Re of (a) exp(2γRπ) (circles) and m (asterisks) when we examine the grow-
ing first-order solution for ψ1

(1) and (b) exp(γRπ) (circles) and m (asterisks) when we
examine the growing first-order solution for ψ̂2

(1). The dashed line is m = 1.

For higher Reynolds numbers it is convenient to label the period of the O(1) solution
T(0) and the distance between consecutive peaks in the O(δ) solutions T1

(1) and T2
(1)

in the case of ψ1
(1) and ψ̂2

(1), respectively. Above Re = Rec2 = 60.39, the leading-
order solution doubles in period so that there is a bifurcation to a 2π periodic solution
(T(0) = 2π). As we increase Re further, T(0) doubles again and again. We then have
a period doubling cascade. At Rec2, T1

(1) remains equal to 2π and T2
(1) becomes 2π.

Increasing Re, both ψ1
(1) and ψ̂2

(1) continue to grow, but T1
(1) and T2

(1) also double
again and again (although not necessarily at the same Reynolds number as T(0)).

The behaviour of Tj
(1) up until until the period of ψ(0) has reached 32π is sum-

marised in table 6.1, where we focus on a couple of Reynolds numbers in each interval.
In this region, for our Floquet analysis we take F+ to be an mπ periodic function when
Tj

(1) = mπ, j = 1 or 2. In general, the distance between consecutive peaks matches the
period of the O(1) solution. However, in some cases, we find evidence that the solution
for ψ1

(1) again bifurcates early. It is possible that this occurs in every interval, but un-
fortunately as we move closer to the boundaries at which the the O(1) solution doubles
in period, longer and longer runs are required to obtain the settled solution and it is
not feasible for us to look any closer. Since ψ̂2

(1) depends on ψ1
(1), we would expect

that ψ̂2
(1) also bifurcates early in these instances. However, since ψ̂2

(1) is of a much
larger magnitude than ψ1

(1), this bifurcation is not picked up on in our results. Also
shown in the table are calculated values of exp(γRT1

(1)) and exp(γRT2
(1)), accurate to

two decimal places. We find that these values are in good agreement with the values of
m1 and m2, the values of m calculated in the case of the growing solution for ψ1

(1) and
ψ̂2

(1), respectively. As expected, in all cases, running the programs for longer times and
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Interval of Re Re T1
(1) exp

(
γRT1

(1)
)
= m1 T2

(1) exp
(

γRT2
(1)
)
= m2

60.39 to 74.6 70 2π 17.49 2π 214.41

T(0) = 2π 74 2π 37.30 2π 218.03

74.605 to 78.46 76.5 4π 1.25× 103 4π 5.01× 104

T(0) = 4π 78.2 4π 675.94 4π 5.32× 104

78.465 to 79.199 78.5 8π 1.70× 105 8π 2.81× 109

T(0) = 8π 78.8 16π 4.37× 1011 8π 2.82× 109

79.2 to 79.3545 79.25 16π 2.22× 1012 16π 7.88× 1018

T(0) = 16π 79.34 16π 3.04× 1012 16π 7.87× 1018

79.355 to 79.385 79.36 32π 1.00× 1025 32π 6.20× 1037

T(0) = 32π 79.38 32π 1.01× 1025 32π 6.20× 1037

Table 6.1: When ∆ = 0.65 and H(1) = 0.5, in the region Rec2 = 60.39 < Re, the calculated
values of Tj

(1) and exp(γRTj
(1)), j = 1, 2, when we examine the first-order growing

solutions for ψ1
(1) and ψ̂2

(1).

increasing the number of data points in our program increases the accuracy and hence
the agreement between exp(γRTj

(1)) and mj.
We note that since the equations used in the Floquet analysis are independent of

H(1), γR remains the same regardless of the value that we choose for this parameter.
Equally, increasing or decreasing H(1) is found simply to increase or decrease the mag-
nitude of the lower wall shear proportionally at each point, so that m does not change.
In fact as Re becomes very large, H(1) affects the solution less and less, perhaps because
it becomes less important compared to Re.

It is found that Re = R∞ = 79.4 is the accumulation point beyond which the O(1)
solution is chaotic. Above this value small windows exist for which the solution is
periodic. For instance when Re = 80 (where the period is 20π), 85 (3π) and 86 (6π).
The O(1) solution is found to be chaotic in the case Re = 100. To examine the chaotic
region, we construct the vectors

x(0) =
(

ψ(0)(−0.5, t), ψ(0)(0, t), ψ(0)(0.5, t)
)
− dH(0)

dt
(t) (1, 1, 1) , (6.90)

x1
(1) = e−at

(
Ω1

(1)(−0.5, t), Ω1
(1)(0, t), Ω1

(1)(0.5, t)
)

, (6.91)

x2
(1) = e−bt

(
Ω2

(1)(−0.5, t), Ω2
(1)(0, t), Ω2

(1)(0.5, t)
)

, (6.92)

where a and b depend on Re and are estimated by trial and error as closely as possible
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such that the quantities in the vectors x1
(1) and x2

(1) do not show exponential growth
or decay over time. We use the vector x(0) to compare our results to those of Hall
and Papageorgiou (1999), whose horizontal axis lies in a different position to ours in
the original setup. The O(δ) vectors have been chosen using a sensible physical flow
quantity. Each vector represents a trajectory in a 3-dimensional (x1, x2, x3) space over
time. By considering the intersection with the x1 − x2 plane, we obtain Poincaré cross-
sections. Here n points denotes an nπ periodic solution, a circular plot that “just misses”
(thus creating a spiral shape) denotes a quasi-periodic solution and a collection of points
that forms a complex, self-similar structure is characteristic of a chaotic solution. We
also consider the time series given by the first entry of each vector and, labelling its
value at the ith maximum mi, we plot mi+1/mi for i = 1, 2, · · · against time. We do the
same with the minima. If the time series is nπ periodic, this will result in n straight
lines, whilst a seemingly unstructured plot denotes chaos. We also plot the set of points
(mi, mi+1), giving us a return map. Here n points denotes an nπ periodic solution, filled
lines or sets of lines denote a quasi-periodic solution and a self-similar structure denotes
a chaotic solution. All plots are obtained once the solution has settled and in all cases
we use zero initial conditions.

In figure 6.16 we plot the evolution of the minima and maxima, return maps and
Poincaré cross-section for the O(1) solution when Re = 100. We find that we are able
to reproduce the plots of Hall and Papageorgiou (1999). We obtain good evidence that
above Re = R∞ = 79.4, the O(δ) solution is also chaotic. Figures 6.17 and 6.18 show
the evolution of the minima and maxima, return maps and Poincaré cross-sections for
the O(δ) solution when Re = 100. We see that the evolution of the minima and maxima
is seemingly irregular, whilst the return maps and Poincaré cross-sections exhibit self-
similar behaviour and underlying structure with evidence of folding.

We note that even longer computational runs and the inclusion of even more data
points in our program would allow us to estimate the constants a and b more accurately.
This would then give us a better representation of the chaotic structure glimpsed in our
plots. This is, however, two computationally expensive to include in this thesis and is
left as a possible topic of future research.

In figure 6.19 we summarise the changing behaviour of the O(δ) solution with in-
creasing Reynolds number for the case ∆ = 0.65. We show the onset of exponential
growth in the solution for ψ̂2

(1), the early symmetry-breaking bifurcation of the O(δ)

solution (at which point the solution for ψ1
(1) also grows exponentially) and the early

doubling of T1
(1) in the solution for ψ1

(1), before a T(0) and Tj
(1) doubling cascade (in

which T1
(1) at times doubles before T(0)) leads to a fully chaotic solution.

There is also evidence of small regions for which T1
(1) is much larger than the period

of the O(1) solution. These regions appear to occur at the beginning of the region for
which T(0) = 2π. However, we are not able to define accurately the boundaries of these
regions, and this is left as another possible topic of future research.



6.5 Results 121

(a) (b)

(c) (d)

(e)

Figure 6.16: When ∆ = 0.65, H(1) = 1 and Re = 100, taking t from 100 to 700,
for the leading-order solution, the evolution of (a) the maxima and (c) the minima
of ψ(0)(−0.5, t) − dH(0)/dt(t), (b) and (d) the corresponding return maps and (e) the
Poincaré cross-section obtained by considering the intersection of x(0) with the x1 − x2
plane.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.17: When ∆ = 0.65, H(1) = 1 and Re = 100, taking t from 100 to 700,
for the first-order solution, the evolution of (a) the maxima and (c) the minima of
exp(−at)Ω1

(1)(−0.5, t), (b) and (d) the corresponding return maps and (e), and en-
larged in (f), the Poincaré cross-section obtained by considering the intersection of x1

(1)

with the x1 − x2 plane. In this case a = 0.55 to two decimal places.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.18: When ∆ = 0.65, H(1) = 1 and Re = 100, taking t from 100 to 700,
for the first-order solution, the evolution of (a) the maxima and (c) the minima of
exp(−bt)Ω2

(1)(−0.5, t), (b) and (d) the corresponding return maps and (e), and en-
larged in (f), the Poincaré cross-section obtained by considering the intersection of x2

(1)

with the x1 − x2 plane. In this case b = 0.87 to two decimal places.
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Figure 6.19: A summary of the changing behaviour of the ∆ = 0.65 streamfunc-
tion with increasing Reynolds number, where ψ = xψ(0) + δ(x2ψ1

(1) + ψ2
(1)) and

ψ̂2
(1) ≡ (1/H(0))∂ψ

(1)
2 /∂η. Here nπP denotes an nπ periodic solution, EG a bifurca-

tion to an exponentially growing solution, SBB a symmetry breaking bifurcation and
CS the accumulation point above which the solution is chaotic. T(0) is the period of ψ(0)

and for j = 1 or 2, Tj
(1) is the distance between consecutive peaks in the solution for

ψ1
(1) or ψ̂2

(1).

6.5.2.3 Higher Reynolds Numbers, Case (ii); ∆ = 0.25

We next focus on the case ∆ = 0.25 and again take H(1) to be 0.5. For all Reynolds num-
bers we may take 401 points in η and ∆t = 10−4. In this case the first bifurcation of the
O(1) solution occurs when Re = Rec = 135.6. The O(δ) solution remains qualitatively
the same as shown in figure 6.6 up until Re = 85 (to the nearest whole number).

Above Re = 85 both ∂2ψ1
(1)/∂η2(−1, t) and ∂2ψ2

(1)/∂η2(−1, t) grow exponentially
in the same manner noted when ∆ = 0.65, but with a slower typical growth rate. Typical
plots of the lower wall shears are shown in figure 6.20. In both cases peaks occur at

(a) (b)

Figure 6.20: When ∆ = 0.25 and H(1) = 0.5, taking asymmetric initial conditions, typical
plots of the first-order lower wall shears, ∂2ψ1

(1)/∂η2(−1, t) and ∂2ψ2
(1)/∂η2(−1, t), in

the region 85 ≤ Re < 135.6 = Rec. In this case Re = 90. The dashed lines show the
exponential nature of the growth.

intervals of π in time. Also similarly to when ∆ = 0.65, plots of ψ1
(1) against η show a
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solution that changes from asymmetric to even with time, and plots of ψ2
(1) against η

show an asymmetric solution (see figure 6.21). However, in this case, for even smaller
times we find that ψ1

(1) is odd and ψ̂2
(1) is even and so both have the same properties

as for smaller Reynolds numbers. As time passes, ψ1
(1) becomes asymmetric and this

is eventually noticeable in plots of ψ2
(1), which also becomes asymmetric. Again, this

(a) (b)

(c) (d)

(e) (f)

Figure 6.21: When ∆ = 0.25 and H(1) = 0.5, plots against η of the first-order solutions,
ψ1

(1) (left panels) and ψ̂2
(1) ≡ (1/H(0))∂ψ

(1)
2 /∂η (right panels), when Re = 100 and t =

(a) and (b) 15, (c) and (d) 190 and (e) and (f) 265.

behaviour implies that the O(δ) solution bifurcates to an asymmetric solution at a lower
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value than 135.6, the bifurcation point for the O(1) solution. We must use asymmetric
initial conditions for the O(1) solution in order to latch onto this solution.

In figure 6.22 we plot the real part of the Floquet exponent, γR, in the region Re <

135.6 = Rec for ψ1
(1) and ψ̂2

(1). Here F+ is a π periodic function. Above Re = 85, γR is

(a) (b)

Figure 6.22: When ∆ = 0.25 and H(1) = 0.5, the Floquet exponent, γR, plotted against
Re in the region Re < 135.6 = Rec when we examine the first-order solutions, (a) ψ1

(1)

and (b) ψ̂2
(1). The dashed line is γR = 0.

positive when examining the solution for ψ1
(1), explaining why ψ1

(1) and ψ̂2
(1) grow. We

note that ψ̂2
(1) grows regardless of the fact that the Floquet exponent was found to be

negative. This implies that the growth of ψ̂2
(1) is entirely due to its dependence on ψ1

(1).
This also explains why ψ1

(1) and ψ̂2
(1) are of similar magnitudes. In this case, therefore,

equations (6.39), (6.43) and (6.51) are dominated by ψ1
(1) and are not equivalent to the

equations for the perturbation in the Floquet analysis. Hence in the case of ψ̂2
(1), unlike

ψ1
(1) (for which equations (6.38), (6.42), (6.48) and (6.50) reduce to (6.85)), the solution

is not given by the perturbation part of the Floquet solution itself. This can be seen in
figure 6.23, where plots of exp(γRπ) and the multiplicative constant, m, agree when the
solution is given by the Floquet perturbation and do not agree otherwise.

Above Re = Rec, as in the case ∆ = 0.65, we find that a solution exists for which
the O(1) solution is asymmetric and the O(δ) solution has qualitatively the same time
dependence as in figure 6.6. We follow this branch of solutions rather than the branch
for which the O(1) solution is symmetric and the O(δ) solution is unstable and asym-
metric. Following this solution, above around Re = 160, plots of ∂2ψ1

(1)/∂η2(−1, t) do
not change qualitatively, but plots of ∂2ψ2

(1)/∂η2(−1, t) show an exponentially growing
solution with peaks at intervals of π in time (see figure 6.24). In figure 6.25 we plot
γR for the solution for ψ̂2

(1) in the region 160 ≤ Re < 255, showing the point at which
the solution starts to grow. In this case, like the solution when ∆ = 0.65 for smaller
Reynolds numbers (when Re = 25, for example), ψ̂2

(1) grows independently of ψ1
(1).

Therefore, in this region plots of exp(γRπ) and m now agree (see figure 6.23b), sug-
gesting that (6.39), (6.43) and (6.51) become the system (6.87) and so the solution is now
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(a) (b)

Figure 6.23: When ∆ = 0.25 and H(1) = 0.5, exp(γRπ) (circles) and m (asterisks) plotted
against Re in the region Re > 85 when we examine the growing first-order solutions,
(a) ψ1

(1) and (b) ψ̂2
(1). The dashed line is m = 1.

(a) (b)

Figure 6.24: When ∆ = 0.25 and H(1) = 0.5, taking asymmetric initial conditions, typi-
cal plots of the first-order lower wall shears, ∂2ψ1

(1)/∂η2(−1, t) and ∂2ψ2
(1)/∂η2(−1, t),

in the region 160 < Re < 255. In this case Re = 200. The dashed lines show the
exponential nature of the growth.

Figure 6.25: When ∆ = 0.25 and H(1) = 0.5, the Floquet exponent, γR, plotted against
Re in the region 160 ≤ Re < 255 when we examine the first-order solution for ψ̂2

(1).
The dashed line is γR = 0.
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given by the Floquet perturbation, as we would expect.
Above Re = 255 (to the nearest whole number), we find evidence that the O(δ)

solution takes the form of a quasi-periodic function multiplied by an exponentially
growing function. The O(1) solution bifurcates to a quasi-periodic solution at Re ≈ 544.
This suggests that the O(δ) solution bifurcates at a lower Reynolds number than the
O(1) solution. However, we are not able to verify the accuracy of the solution in this
region.

We may use Floquet analysis in the same way as for the O(δ) solution to perturb
about the O(1), π periodic, asymmetric solution. In general, this is again achieved by
letting the perturbation be given by exp(γt)F+(η, t), where γ = γR + iγI is the Floquet
exponent and F+ is a π periodic function. At the point at which the O(1) solution
becomes quasi-periodic, it is found that a complex-conjugate pair of eigenvalues cross
the γI axis into the γR > 0 plane. Since Floquet analysis gives us the eigenvalue with
the largest real part, this means that whilst the first frequency of the quasi-periodic
solution corresponds to the driving frequency, the second corresponds to the imaginary
part of the Floquet exponent, γI . For even higher Reynolds numbers a period-doubling
cascade occurs on the second frequency, which Hall and Papageorgiou (1999) speculate
leads to chaotic solutions in the large Reynolds number limit.

In figure 6.26 we summarise our analysis of how the behaviour of the O(δ) solu-
tion changes with increasing Reynolds number for the case ∆ = 0.25. We show the
early symmetry breaking bifurcation of the O(δ) solution (at which point this solution
grows exponentially) and, following the stable O(δ) solution above the bifurcation of
the O(1) solution, the onset of exponential growth in the solution for ψ̂2

(1). We also
show the point at which we tentatively suggest that the O(δ) solution behaves like a
quasi-periodic function multiplied by an exponentially growing function, before the
O(1) solution becomes quasi-periodic, at Re ≈ 255.

Figure 6.26: A summary of the changing behaviour of the ∆ = 0.25 streamfunc-
tion with increasing Reynolds number, where ψ = xψ(0) + δ(x2ψ1

(1) + ψ2
(1)) and

ψ̂2
(1) ≡ (1/H(0))∂ψ

(1)
2 /∂η. Here πP denotes a π periodic solution, EG a bifurcation

to an exponentially growing solution, SBB a symmetry breaking bifurcation and QP a
quasi-periodic solution.
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6.6 The Solution for Large Reynolds Numbers and Small Wall
Amplitudes

In their paper Hall and Papageorgiou (1999) predict a simplified asymptotic structure
for the O(1) solution in the large Reynolds number limit when ∆ → 0 in such a way
that Re1/2∆ = O(1). Here a steady streaming flow is found to occur in a boundary
layer close to each wall. This flow is found to persist outside of these layers in the core-
region. We attempt to extend this analysis to the streamfunction variable, ψ1

(1). This is
done in the hope of drawing some more light on the exponentially growing solutions
found in our results for the O(δ) correction (especially those for which the symmetry
of the solution changed with time and suggested an asymmetric solution). Once the
O(δ) solution becomes sufficiently large, the assumption that it is smaller than the O(1)
solution in equations (6.6) is no longer valid and formally, our analysis would need to
be reconsidered. We also wish to better understand the evidence of an exponentially
growing, quasi-periodic solution found in the case ∆ = 0.25. Taking the large Re limit
can be likened to taking the frequency of the wall oscillations, ω, to infinity or, equally,
taking the kinematic viscosity of the fluid, ν, to zero.

6.6.1 Setup

We begin by simplifying our governing equations by letting

ψ(0) = −η
dH(0)

dt
+ H(0)3

f (η, t), (6.93)

and

ψ1
(1) =

3H(0)2
H(1)

2
f (η, t) + H(0)4

g(η, t), (6.94)

where we write ∆ = dRe−1/2 so that H(0) = 1 + dRe−1/2 cos(2t) and we recall that H(1)

is chosen to be constant. Using (6.37) and (6.38), equations (6.41) and (6.42) can be
re-written as

∂3 f
∂t∂η2 + H(0)2

(
∂ f
∂η

∂2 f
∂η2 − f

∂3 f
∂η3

)
=

1

ReH(0)2
∂4 f
∂η4 , (6.95)

and

∂3g
∂t∂η2 +

3H(1)

2H(0)2
∂3 f

∂t∂η2 + 2H(0)2 ∂ f
∂η

∂2g
∂η2 +

(
7H(1)

2
∂ f
∂η

+ H(0)2 ∂g
∂η

)
∂2 f
∂η2

− f

(
7H(1)

2
∂3 f
∂η3 + H(0)2 ∂3g

∂η3

)
− 2H(0)2 ∂3 f

∂η3 g =
1

ReH(0)2

(
∂4g
∂η4 −

H(1)

2H(0)2
∂4 f
∂η4

)
, (6.96)
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with boundary conditions, from (6.47) to (6.50),

f (±1, t) = 0,
∂ f
∂η

(±1, t) =
1

H(0)3
dH(0)

dt
, (6.97)

g(±1, t) = 0,
∂g
∂η

(±1, t) = − 3H(1)

2H(0)5
dH(0)

dt
. (6.98)

We may observe that replacing η with −η, f with − f and g with −g in these equations
results in the same system. This shows that a basic, odd symmetric solution is possible
(the same solution that becomes the unique, periodic solution for small enough Re).

In equations (6.95) and (6.96) the highest derivatives of η are multiplied by Re−1 so
that a solution comprising an asymptotic expansion in powers of Re−1 will not satisfy
one of the boundary conditions at each wall, and the infinite Re solution will not match
the solution for general Re. This suggests a boundary layer region close to the walls
where the solution changes rapidly. We let the boundary layer at each wall have thick-
ness h and close to the walls we define a new variable, ζ, such that, at the upper wall
for instance,

η = 1− hζ, ζ = 0(1). (6.99)

We let f̂ (ζ, t) and ĝ(ζ, t) denote the upper boundary-layer solution. Then (6.95) and
(6.96) give us

1
h2

∂3 f̂
∂t∂ζ2 −

H(0)2

h3

(
∂ f̂
∂ζ

∂2 f̂
∂ζ2 − f̂

∂3 f̂
∂ζ3

)
=

1

Reh4H(0)2
∂4 f̂
∂ζ4 , (6.100)

and

1
h2

∂3 ĝ
∂t∂ζ2 +

3H(1)

2h2H(0)2
∂3 f̂

∂t∂ζ2 −
1
h3

(
2H(0)2 ∂ f̂

∂ζ

∂2 ĝ
∂ζ2 +

(
7H(1)

2
∂ f̂
∂ζ

+ H(0)2 ∂ĝ
∂ζ

)
∂2 f̂
∂ζ2

− f̂

(
7H(1)

2
∂3 f̂
∂ζ3 + H(0)2 ∂3 ĝ

∂ζ3

)
− 2H(0)2 ∂3 f̂

∂ζ3 ĝ

)
=

1

Reh4H(0)2

(
∂4 ĝ
∂ζ4 −

H(1)

2H(0)2
∂4 f̂
∂ζ4

)
,

(6.101)

with boundary conditions, from (6.97) and (6.98),

f̂ (0, t) = 0,
∂ f̂
∂ζ

(0, t) = − h

H(0)3
dH(0)

dt
, (6.102)

ĝ(0, t) = 0,
∂ĝ
∂ζ

(0, t) =
3hH(1)

2H(0)5
dH(0)

dt
. (6.103)

In addition, the boundary-layer solutions, f̂ and ĝ, and core region solutions, f and g,
must match at the edge of the boundary layer as ζ → ∞ (where ζ = O(1/h)) and η → 1.
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We therefore have the matching conditions,

f̂ (ζ → ∞, t) ∼ f (η → 1, t), (6.104)

ĝ(ζ → ∞, t) ∼ g(η → 1, t), (6.105)

and equivalent matching conditions at the edge of the boundary layer at the lower wall,
η = −1.

For a dominant balance between the unsteady and viscous terms in (6.100) and
(6.101) we require the boundary layer at each wall to have thickness h = Re−1/2, so that
close to the upper wall,

η = 1− Re−1/2ζ. (6.106)

Then the second of equations (6.102) and (6.102) imply that f̂ and ĝ must be of O(Re−1).
Given the boundary layer thickness, we expand in powers of Re−1/2 and f̂ and ĝ are
given by the asymptotic expansions,

f̂ =
1

Re

(
f̂0(ζ, t) +

1
Re1/2

(
f̂1T(ζ, t) + f̂1M(ζ)

)
+ O

(
1

Re

))
, (6.107)

ĝ =
1

Re

(
ĝ0(ζ, t) +

1
Re1/2 (ĝ1T(ζ, t) + ĝ1M(ζ)) + O

(
1

Re

))
, (6.108)

where to satisfy equations (6.100) to (6.103), we find that the first order terms must
consist of a time dependent and a time independent part. Here we assume that f̂1T and
ĝ1T are time-periodic with zero mean. Meanwhile, we write the solution in the central
region as

f =
1

Re

(
f0T(η, t) + f0M(η, τ) +

1
Re1/2 f1(η, t) +

1
Re

f2(η, t) + O
(

1
Re3/2

))
, (6.109)

g =
1

Re

(
g0T(η, t) + g0M(η, τ) +

1
Re1/2 g1(η, t) +

1
Re

g2(η, t) + O
(

1
Re3/2

))
, (6.110)

where it is necessary for the leading order terms to consist of both a time dependent
and a time independent part due to the time independent terms in (6.107) and (6.108).
Here, for convenience, we allow for a slow, modulating time-scale, defined by

τ =
1

Re
t. (6.111)

We assume that f0T and g0T are also time-periodic with zero mean.
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6.6.2 The Matching Conditions

Substituting (6.109) and (6.110) into equations (6.95) and (6.96) gives us, to the highest
order,

∂3 f0T

∂t∂η2 = 0, (6.112)

∂3g0T

∂t∂η2 +
3
2

H(1) ∂3 f0T

∂t∂η2 = 0, (6.113)

so that

f0T = A0(t)η + B0(t), (6.114)

g0T = C0(t)η + D0(t), (6.115)

where functions depending only on η are taken to be zero because f0T and g0T have
zero mean over a period. Therefore, considering the time-dependent parts of the largest
terms of the matching conditions, (6.104) and (6.105), we find that

f̂0(ζ → ∞, t) ∼ A0(t) + B0(t), (6.116)

ĝ0(ζ → ∞, t) ∼ D0(t) + E0(t). (6.117)

Considering the time-independent parts, meanwhile, we find that

f0M(1, τ) ∼ 0, (6.118)

g0M(1, τ) ∼ 0. (6.119)

The next order terms of (6.95) and (6.96) give us

∂3 f1

∂t∂η2 = 0, (6.120)

∂3g1

∂t∂η2 − 3H(1)d cos(2t)
∂3 f0T

∂t∂η2 = 0, (6.121)

and so

f1 = A1(t)η + B1(t) + C1(η), (6.122)

g1 = D1(t)η + E1(t) + F1(η). (6.123)

Therefore, the time-independent parts of the next order terms of (6.104) and (6.105)
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imply that

f̂1M(ζ → ∞, τ) ∼ −ζ
∂ f0M

∂η
(1, τ), (6.124)

ĝ1M(ζ → ∞, τ) ∼ −ζ
∂g0M

∂η
(1, τ), (6.125)

whilst the time-dependent parts give us

f̂1T(ζ → ∞, t) ∼ −ζA0(t) + A1(t) + B1(t) + C1(1), (6.126)

ĝ1T(ζ → ∞, t) ∼ −ζC0(t) + D1(t) + E1(t) + F1(1). (6.127)

6.6.3 The Boundary-Layer Solution

Substituting the expansions (6.107) and (6.108) into equations (6.100) to (6.103), the
largest terms give us the following system for f̂0 and ĝ0:

∂3 f̂0

∂t∂ζ2 =
∂4 f̂0

∂ζ4 , f̂0(0, t) = 0,
∂ f̂0

∂ζ
(0, t) = 2d sin(2t), (6.128)

and

∂3 ĝ0

∂t∂ζ2 +
3H(1)

2
∂3 f̂0

∂t∂ζ2 =
∂4 ĝ0

∂ζ4 −
H(1)

2
∂4 f̂0

∂ζ4 , ĝ0(0, t) = 0,
∂ĝ0

∂ζ
(0, t) = −3dH(1) sin(2t).

(6.129)

These equations are supplemented by the matching conditions (6.116) and (6.117). We
note that the first of each of these equations implies that f̂0 and ĝ0 must be finite as
ζ → ∞. Using these conditions and separation of variables, we obtain the solution to
(6.128),

f̂0 =
di

(1 + i)
e2it
(

e−(1+i)ζ − 1
)
+ c.c., (6.130)

where c.c. denotes the complex conjugate. Equation (6.130) together with (6.129) sug-
gests that ĝ1ζζ = A(ζ) exp(2it)+ c.c., and we find that

ĝ0 = −dH(1)e2it
(
(1 + i)

(
e−(1+i)ζ − 1

)
+

i
2

ζe−(1+i)ζ
)
+ c.c.. (6.131)

Considering the next order terms of (6.100) to (6.103), using equations (6.130) and
(6.131), we find that f̂1M and ĝ1M satisfy the equations,

d2
(

4e−2ζ − (1 + i)
(

2e−(1+i)ζ + e−(1−i)ζ
)
+ c.c.

)
=

∂4 f̂1M

∂ζ4 ,

f̂1M(0) = 0,
∂ f̂1M

∂ζ
(0) = 0, (6.132)
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and

d2H(1)
(
−2 (2ζ + 1) e−2ζ + 3iζe−(1+i)ζ + (1 + i)

(
5e−(1+i)ζ + (ζ + 1) e−(1−i)ζ

)
+ c.c.

)
=

∂4 ĝ1M

∂ζ4 −
1
2

H(1) ∂4 f̂1M

∂ζ4 , ĝ1M(0) = 0,
∂ĝ1M

∂ζ
(0) = 0. (6.133)

Here we use the technique of time-averaging, integrating the equations obtained from
(6.100) to (6.103) over a period of π in time. From the remaining terms, we find that f̂1T

and ĝ1T satisfy

∂3 f̂1T

∂t∂ζ2 − 3d2
(
(1 + i)e4ite−(1+i)ζ + c.c.

)
=

∂4 f̂1T

∂ζ4 ,

f̂1T(0, t) = 0,
∂ f̂1T

∂ζ
(0, t) = −3i

2
d2e4it + c.c., (6.134)

and

∂3 ĝ1T

∂t∂ζ2 +
3
2

H(1) ∂3 f̂1T

∂t∂ζ2 + d2H(1)
(

3iζe4ite−(1+i)ζ + (1 + i)e4it
(

6e−(1+i)ζ − e−2(1+i)ζ
)
+ c.c.

)
=

∂4 ĝ1T

∂ζ4 −
1
2

H(1) ∂4 f̂1T

∂ζ4 , ĝ1T(0, t) = 0,
∂ĝ1T

∂ζ
(0, t) =

15i
4

d2H(1)e4it + c.c.. (6.135)

These equations are supplemented by conditions (6.124) to (6.127). We may solve (6.132)
and (6.133) to find that

f̂1M =d2
(
(1 + i)

2

(
e−(1+i)ζ − 1

)
+

(1 + i)
4

(
e−(1−i)ζ − 1

)
+ c.c. +

1
4

(
e−2ζ − 1

)
+

3
2

ζ

)
,

(6.136)

ĝ1M =− d2H(1)
(

i
(

3
4

ζ − 1
)

e−(1+i)ζ +
5(1 + i)

2

(
e−(1+i)ζ − 1

)
+

(1 + i)
8

(
e−(1−i)ζ − 1

)
+

(1 + i)
4

ζe−(1−i)ζ + c.c. +
1
4

ζe−2ζ +
1
2

(
e−2ζ − 1

)
+

11
4

ζ

)
. (6.137)

Here, in order to satisfy the second of the boundary conditions in (6.132) and (6.133),
we require a term multiplied by ζ in f̂1M and ĝ1M, explaining the need for f0M and g0M

in our expansions. Letting f̂1T = B(ζ)e4it+ c.c. and ĝ1T = C(ζ)e4it+ c.c. in (6.134) and
(6.135), we find that

f̂1T =
3(1 + i)d2

4

(
21/2

(
e−21/2(1+i)ζ − 1

)
−
(

e−(1+i)ζ − 1
))

e4it − A0(t)ζ + c.c., (6.138)

ĝ1T =
d2H(1)

4

(
− 115(1 + i)

25/2

(
e−21/2(1+i)ζ − 1

)
+

33(1 + i)
2

(
e−(1+i)ζ − 1

)
+ 3iζe−(1+i)ζ +

(1 + i)
8

(
e−2(1+i)ζ − 1

)
− 12iζe−21/2(1+i)ζ

)
e4it − C0(t)ζ + c.c.,

(6.139)
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where we have made use of the matching conditions (6.126) and (6.127), which imply
that f̂1T and ĝ1T contain a term proportional to ζ as well as terms independent of ζ.

6.6.4 The Core-Flow Solution

Equations (6.114), (6.115), (6.122) and (6.123) may be fully determined by matching with
the upper boundary-layer solution using equations (6.116), (6.117), (6.126) and (6.127),
and by making use of similar conditions at the lower wall, η = −1. These equations,
however, are not needed for our analysis.

Integrating the equations resulting from the next order terms of (6.95) and (6.96)
over a period π in time, and because f0T and g0T have zero mean in time and f2 and g2

are assumed to be periodic in time, we find that

∂3 f0M

∂τ∂η2 +
∂ f0M

∂η

∂2 f0M

∂η2 − f0M
∂3 f0M

∂η3 =
∂4 f0M

∂η4 , (6.140)

∂3g0M

∂τ∂η2 +
3H(1)

2
∂3 f0M

∂τ∂η2 + 2
∂ f0M

∂η

∂2g0M

∂η2 +

(
7H(1)

2
∂ f0M

∂η
+

∂g0M

∂η

)
∂2 f0M

∂η2

− f0M

(
7H(1)

2
∂3 f0M

∂η3 +
∂3g0M

∂η3

)
− 2

∂3 f0M

∂η3 g0M =
∂4g0M

∂η4 −
H(1)

2
∂4 f0M

∂η4 . (6.141)

From (6.118), (6.119), (6.124) and (6.125) and similar matching conditions at the lower
wall, η = −1, equations (6.140) and (6.141) are accompanied by the boundary condi-
tions,

f0M(η = ±1) = 0,
∂ f0M

∂η
(η = ±1) = −3

2
d2, (6.142)

g0M(η = ±1) = 0,
∂g0M

∂η
(η = ±1) =

11
4

d2H(1). (6.143)

Letting f0M = (3d2/2) f̌ and g0M = (3d2/2)H(1) ǧ, as well as τ = (3d2/2)−1τ̌, in equa-
tions (6.140) to (6.143), we may re-write the system as

∂3 f̌
∂τ̌∂η2 +

∂ f̌
∂η

∂2 f̌
∂η2 − f̌

∂3 f̌
∂η3 =

1
Res

∂4 f̌
∂η4 , Res =

3d2

2
,

f̌ (η = ±1) = 0,
∂ f̌
∂η

(η = ±1) = −1, (6.144)

and

∂3 ǧ
∂τ̌∂η2 +

3
2

∂3 f̌
∂τ̌∂η2 + 2

∂ f̌
∂η

∂2 ǧ
∂η2 +

(
7
2

∂ f̌
∂η

+
∂ǧ
∂η

)
∂2 f̌
∂η2 − f̌

(
7
2

∂3 f̌
∂η3 +

∂3 ǧ
∂η3

)

− 2
∂3 f̌
∂η3 ǧ =

1
Res

(
∂4 ǧ
∂η4 −

1
2

∂4 f̌
∂η4

)
, ǧ(η = ±1) = 0, ǧη(η = ±1) =

11
6

. (6.145)

Here Res is the steady-streaming Reynolds number. This system can be thought of as
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our original forced system, (6.95) to (6.98), but with a steady forcing from the walls. Like
the general case, this system allows a solution that is odd in η. For small d (equivalent
to small Reynolds numbers) the system (6.144) and (6.145) suggests that we expand as
follows:

f̌ = f̌1 + d2 f̌2 + O(d4), (6.146)

ǧ = ǧ1 + d2 ǧ2 + O(d4). (6.147)

Then, to leading order we are left with the viscous terms so that the solution is given by

f̌ =
1
2
(
η − η3)+ O(d2), (6.148)

ǧ =− 11
12
(
η − η3)+ O(d2). (6.149)

6.6.5 Stability of the Odd Steady-Streaming Solution

The linear stability of the steady, odd solution may be analysed by writing

f̌ = f̌SS(η) + f̌P(η, τ̌), (6.150)

ǧ = ǧSS(η) + ǧP(η, τ̌), (6.151)

for f̌P, ǧP small. For small d f̌SS and ǧSS are given by (6.148) and (6.149), whilst for
general d they satisfy the steady form of equations (6.144) and (6.145). The resulting
boundary value problem may be solved using the Matlab solver bvp4c with a symmetric
initial guess. Then, neglecting terms of order smaller than f̌P or ǧP, (6.144) and (6.145)
give us

∂3 f̌P

∂τ̌∂η2 +
∂ f̌SS

∂η

∂2 f̌P

∂η2 +
∂ f̌P

∂η

∂2 f̌SS

∂η2 − f̌SS
∂3 f̌P

∂η3 − f̌P
∂3 f̌SS

∂η3 =
1

Res

∂4 f̌P

∂η4 ,

f̌P(η = ±1, t) = 0,
∂ f̌P

∂η
(η = ±1, t) = 0, (6.152)

and

∂3 ǧP

∂τ̌∂η2 +
3
2

∂3 f̌P

∂τ̌∂η2 + 2
∂ f̌SS

∂η

∂2 ǧP

∂η2 + 2
∂ f̌P

∂η

∂2 ǧSS

∂η2 +

(
7
2

∂ f̌SS

∂η
+

∂ǧSS

∂η

)
∂2 f̌P

∂η2

+

(
7
2

∂ f̌P

∂η
+

∂ǧP

∂η

)
∂2 f̌SS

∂η2 − f̌SS

(
7
2

∂3 f̌P

∂η3 +
∂3 ǧP

∂η3

)
− f̌P

(
7
2

∂3 f̌SS

∂η3 +
∂3 ǧSS

∂η3

)

− 2
∂3 f̌SS

∂η3 ǧP − 2
∂3 f̌P

∂η3 ǧSS =
1

Res

(
∂4 ǧP

∂η4 −
1
2

∂4 f̌P

∂η4

)
,

ǧP(η = ±1, t) = 0,
∂ǧP

∂η
(η = ±1, t) = 0. (6.153)
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These equations may be solved using the method described in section 6.4. Here we use
the initial conditions, f̌P(η, 0) = (η + 1)2(η − 1)2, ǧP(η, 0) = 0. Again, numerical con-
sistency is checked by increasing the number of grid points in our numerical program.
Since our solutions are found to converge, we can be sure that our results are accurate.

Hall and Papageorgiou (1999) find that the odd solution loses stability to a steady,
even mode (so that, overall, the solution is asymmetric). This suggests that we may
write f̌P = A f (η) exp(S f τ̌) and ǧP = Ag(η) exp(Sgτ̌) and consider log( f̌Pηη(−1, τ̌))

and log(ǧPηη(−1, τ̌)), the gradient of which, once the solution has settled in time, will
give us the (real) growth rates, S f and Sg. We seek an approximation to the value of d
(and therefore the Reynolds number) for which the growth rates change from negative
to positive and the symmetric solution loses stability.

Plots of S f and Sg against d are given in figure 6.27. We find that f̌SS loses symmetry

(a) (b)

(c) (d)

Figure 6.27: When Re→ ∞, ∆ = O(Re−1/2), the growth rates, S f and Sg ((a) and (c) and
close up in (b) and (d)), plotted against d when perturbing about the steady, symmetric
solutions, f̌SS and ǧSS. The dashed line in (d) shows a best fit line through the data
points.

for d between 3.39 and 3.40, in agreement with Hall and Papageorgiou (1999) (who find
d = 3.39). We note that from our plots it appears that d is closer to 3.40 than 3.39, but
that greater accuracy could only be achieved by increasing the number of grid points
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in the numerical program. Hall and Papageorgiou (1999) note that Watson et al. (2008)
(whose results are noted to be unlikely to be correct to 3 significant figures) also find
d to be 3.40. Surprisingly, in the case of ǧSS, symmetry is lost at an earlier value than
f̌SS (at d = 2.52 to 2 decimal places). Examination of ǧP reveals that in this case too,
stability is lost to an even mode (see figure 6.28).

(a) (b)

Figure 6.28: When Re → ∞, ∆ = O(Re−1/2), ǧP plotted against η when perturbing
about the steady, symmetric solutions, f̌SS and ǧSS. Here t = 20 and (a) d = 2 and the
solution is stable and (b) d = 3 and the solution is unstable.

We next consider the full equations, (6.144) and (6.145), which may also be solved
using the method described in section 6.4, again being careful that our solutions con-
verge when we increase the number of grid points in our program. Above the bi-
furcation of the O(δ) solution we must use asymmetric initial conditions ( f̌ (η, 0) =

−(η + 1)2(η − 1)3, ǧ(η, 0) = 0) to obtain the asymmetric solution for ǧ. In these equa-
tions, above the bifurcation in the case of the O(1) solution, the inclusion of nonlinear
terms restrict unlimited growth of f̌P, resulting in a stable asymmetric solution. In the
O(δ) system, however, there are no such nonlinear terms present and the growing even
mode is unbounded. Here the solution grows exponentially for all time (see figure 6.29,
where we plot log(ǧηη(−1, τ̌)) against τ̌ just above the bifurcation of the O(δ) solution,
obtaining a linearly increasing function once the solution has settled). We note that the
boundary conditions in the system (6.145) are still satisfied, but since ǧP is growing
exponentially with time, the solution for ǧSS (which has gradient 11/6 at η = ±1) is
eclipsed by comparison. If we substitute (6.151) into equation (6.145) whilst assuming
that ǧP � ǧSS, f̌SS (and f̌SS � f̌P), we find that to first order, the slope of ǧ is zero
at η = ±1. This can also be seen in figure 6.30, where we find that the solution for ǧ
appears to change from odd to asymmetric to even in η with increasing τ̌ as the relative
sizes of ǧSS and ǧP change.

We have therefore found a mechanism by which it is possible for the O(δ) solution
to bifurcate to an asymmetric solution before the O(1) solution found by Hall and
Papageorgiou (1999). This also suggests that had we included nonlinear terms in our
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Figure 6.29: When Re→ ∞, ∆ = O(Re−1/2), starting with asymmetric initial conditions
when d = 3, log(ǧηη(−1, τ̌)) plotted against τ̌.

(a) (b)

(c)

Figure 6.30: When Re→ ∞, ∆ = O(Re−1/2), starting with asymmetric initial conditions
when d = 3, plots of ǧ against η when τ̌ = (a) 1, (b) 4 and (c) 8.
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analysis for the O(δ) solution, we would obtain a stable asymmetric solution above this
bifurcation.

This analysis is greatly helpful in understanding the exponentially growing solu-
tions found in our numerical results for general Re and ∆. Moreover, we have confirma-
tion that in the cases when we obtain a growing, even solution for ψ1

(1) (at a Reynolds
number below the bifurcation of the O(1) solution to an asymmetric solution) our so-
lution is in fact asymmetric here. If we had solved the full nonlinear equations for
ψ1

(1) rather than using a linear approximation, we would expect to obtain a π-periodic,
asymmetric solution at this point. Since ψ̂2

(1) is even for small Re, when this solution
loses stability to an even mode, the symmetry is not changed. When the odd ψ1

(1) loses
stability and becomes asymmetric, however, its appearance in the equations for ψ̂2

(1)

means that ψ̂2
(1) clearly becomes asymmetric. We can therefore conclude that this is the

point at which the O(δ) solution becomes asymmetric.
Since ∆ = dRe−1/2, when ∆ = 0.25, our above analysis predicts that the asymmetric

bifurcation of the O(1) solution occurs at Re = 3.392/∆2 + · · · ≈ 184, compared with
the value of Re ≈ 135.6 found from the numerical calculations (we must take ∆ less than
around 0.15 for a very close match). The bifurcation of the O(δ) solution is predicted
to occur at Re = 2.522/∆2 + · · · ≈ 102 compared to Re ≈ 85 from the numerical calcu-
lations and so we find that we have as good an agreement as Hall and Papageorgiou
(1999).

6.6.6 Stability of the Asymmetric Steady-Streaming Solution

We next perform a similar linear stability analysis on the steady, asymmetric solution
which occurs when d is greater than 3.39, writing

f̌ = f̌SA(η) + f̌P(η, τ̌), (6.154)

ǧ =ǧSA(η) + ǧP(η, τ̌). (6.155)

Here we change the initial conditions in the boundary value problem for f̌SA and ǧSA

appropriately to obtain f̌SA and find that it is possible to obtain a steady, asymmetric
solution for ǧSA. This suggests that above the bifurcation of the O(1) solution, as well
as the unstable asymmetric solution for ǧ, there also exists a stable asymmetric solution
for which the equivalent O(1) solution is stable asymmetric.

Hall and Papageorgiou (1999) note that the O(1) steady, asymmetric solution loses
stability, via a Hopf bifurcation, to a periodic mode. Since this mode is periodic on the
timescale τ � t, where t is the timescale of the wall forcing, this means that there are
two different periodicity timescales and the overall flow is quasi-periodic. We therefore
write f̌P = A f (η) exp(S f τ̌) and ǧP = Ag(η) exp(Sgτ̌), where S f = S f R + iS f I and
Sg = SgR + iSgI for S f R, S f I , SgR and SgI real. At a bifurcation to a quasi-periodic
solution, a pair of complex conjugate eigenvalues with imaginary parts equal to ±iS f I

or ±iSgI cross the imaginary axis into the S f R > 0 or SgR > 0 plane. Therefore, above a
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certain d, S f and Sg have an imaginary as well as a real part and we are required to find
best fitting lines through the peaks of f̌Pηη(−1, τ̌) and ǧPηη(−1, τ̌) using polynomial
interpolation before taking the logarithm of these lines in order to obtain the growth
rates, S f R and SgR.

Figure 6.31 shows plots of S f R and SgR against d. We find that f̌SA loses stability for

(a) (b)

(c) (d)

Figure 6.31: When Re → ∞, ∆ = O(Re−1/2), the growth rates, S f R and SgR ((a) and
(c) and close up in (b) and (d)), plotted against d when perturbing about the steady,
asymmetric solutions, f̌SA and ǧSA. The dashed line in (d) shows a best fit line through
the data points.

d between 6.09 and 6.10, which is again in closer agreement with Watson et al. (2008)
(who find that the critical d is 6.09) than Hall and Papageorgiou (1999) (who find that
d = 5.99). Again, increasing the number of grid points in our program may improve our
estimate. We find that in the case of ǧSA, again the bifurcation occurs early and stability
is lost at an earlier value than f̌SA (at around d = 4.74 to 2 decimal places). Like for
the O(1) solution, stability is lost to a periodic mode (see figure 6.32). Interestingly,
the distance between peaks is not the same for the O(δ) and O(1) solutions, suggesting
that S f I 6= SgI . Although the distances vary slightly depending on d, to 2 significant
figures, we find that in the O(1) case, the period in τ̌ of the destabilising mode is 3.4,
whilst in the O(δ) case, it is 3.2. Since t = 2/(3∆2)τ̌, taking ∆ = 0.25, for example, this
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Figure 6.32: When Re → ∞, ∆ = O(Re−1/2), ǧPηη(−1, τ̌) plotted against τ̌ when per-
turbing about the steady, asymmetric solutions, f̌SA and ǧSA, when d = 5.

predicts that the O(1) solution loses stability to a mode with a period of around 36 in t,
compared to around 34 for the O(δ) solution.

We again consider the full equations, (6.144) and (6.145). Just below the bifurcation
of the O(δ) solution to a growing, quasi-periodic solution, we find that we are able to
latch onto the stable, asymmetric solution for the O(δ) solution. Above the bifurcation,
we again find that unlike in the case of the O(1) solution where the inclusion of nonlin-
ear terms prohibit unlimited growth, in the case of the O(δ) solution, the periodic mode
grows exponentially (see figure 6.33, where we have plotted log(p(ǧηη(−1, τ̌))), where
p(y) defines the peaks of y, obtaining a linearly increasing function once the solution
has settled). Above the bifurcation of the O(1) solution to a quasi-periodic solution, we
find that our program still naturally detects the exponentially growing, quasi-periodic
O(δ) solution.

(a)

Figure 6.33: When Re→ ∞, ∆ = O(Re−1/2), starting with asymmetric initial conditions
when d = 5, log(p(ǧηη(−1, τ̌))) plotted against τ̌ (where p(y) defines the peaks of y).

Relating these findings back to our numerical results in the case ∆ = 0.25, our
suspicions that we obtain a quasi-periodic solution for the O(δ) solution at a lower
Reynolds number than the O(1) solution seem to be justified. Again, had we solved
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the full nonlinear equations for the O(δ) correction, we would expect that the solution
would remain stable above the bifurcation.

When ∆ = 0.25, the O(1) solution is predicted to bifurcate to a quasi-periodic solu-
tion at Re = 5.992/∆2 + · · · ≈ 574, compared with Re ≈ 544 from the numerical calcula-
tions. The O(δ) solution, meanwhile, is predicted to bifurcate at Re = 4.742/∆2 + · · · ≈
359, in comparison with our tentative estimation of Re ≈ 255 from the numerical results.

A summary of how the solution changes with increasing d in the Re → ∞, ∆ =

O(Re−1/2) limit is shown in figure 6.34. Shown is the early symmetry breaking bifur-
cation of the O(δ) solution and, following the steady, asymmetric O(δ) solution above
the symmetry breaking bifurcation of the O(1) solution, the point at which the O(δ)

solution becomes quasi-periodic before the O(1) solution.

Figure 6.34: A summary of the changing behaviour of the Re → ∞, ∆ = O(Re−1/2)
streamfunction with increasing d, where ψ = xψ0) + δ(x2ψ1

(1) + ψ2
(1)), ψ(0) =

−ηdH(0)/dt + H(0)3
f and ψ1

(1) = −3H(0)2
H(1) f /2 + H(0)4

g. Here SBB denotes a sym-
metry breaking bifurcation and QP a quasi-periodic solution.

For d above 5.99 f̌ undergoes successive period doubling and there is a Feigenbaum
cascade to chaos. This leads Hall and Papageorgiou (1999) to suggest, with reference
to the case ∆ = 0.25, that chaotic solutions can indeed be found for all ∆ if Re is taken
large enough. We might expect the same to be true for the O(δ) solution.

6.7 Discussion

We have built on the work of Hall and Papageorgiou (1999), who considered general-
Reynolds-number fluid flow in a channel with periodically oscillating walls. Here it was
found that for small Reynolds numbers a unique, periodic, symmetric solution exists
and the solution is synchronised with the wall motion. As the Reynolds number in-
creases, a bifurcation to a periodic, asymmetric solution can be observed, before further
bifurcations eventually lead to a chaotic solution. On route to chaos the solution may
include a Feigenbaum cascade or quasi-periodic solutions, depending on the wall am-
plitude. In our case we have considered walls that vary gradually. We have satisfied the
vorticity equation by assuming a similarity solution for the leading order and perturba-
tion streamfunction. This leads to a series of partial differential equations that depend
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on time and the vertical co-ordinate only. At zero Reynolds number, it is possible to
solve analytically and we can draw a comparison between our solution and Poiseuille
flow in a diverging channel modulated periodically in time.

For an arbitrary value of the Reynolds number, Re, we have solved using a fourth-
order Runge–Kutta integration in time and second-order central differences in space.
Concentrating on two different wall amplitudes, we find that the sequence of behaviours
for increasing Re mirrors the behaviour of the leading order solution. In fact, our results
indicate that for the perturbed, symmetric channel, the solution loses symmetry at a
lower Reynolds number than the solution for the unperturbed, symmetric channel and
also suggest early period doubling and quasi-periodicity. However, in these cases we
find that the perturbation solution grows exponentially. An examination of the solution
in the large Reynolds number, small wall amplitude limit reveals that such growth is a
result of having solved linearised approximations to the equations for the perturbation
streamfunction (since we have assumed that the channel walls vary slowly). A result
of this growth is that the similarity solution ceases to exist for the linear approximation
and we are required to solve the full equations.
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Chapter 7

Conclusion

7.1 General Conclusions

With a view to gaining a better understanding of fluid mixing in the physical, in vitro
DGM, we have attempted to produce a simple, two-dimensional mathematical model,
relevant to the main body. We have been especially interested in describing the “onion
peeling” effect, which results when gastric secretions hydrate the food bolus. Work-
ing together with wall movements, these secretions cause the lower viscosity material
around the edge of the bolus to “slough off”, before a background flow draws this
material into the antrum. All fluids were assumed to be homogeneous, immiscible, in-
compressible, isothermal and Newtonian with equal, constant densities. An analysis of
characteristic values inside the DGM suggested that the Reynolds number is very small
(of the O(10−1)), and so we initially took our governing equations to be those of Stokes
flow.

Given the complexity of modelling the global flow in the DGM main body, we de-
cided to focus our attention on a local description of the flow close to the wall. Our
primary concern then became the temporal stability of a perturbed fluid interface be-
tween two fluids, which represented two separate phases of partially digested food
mixed with gastric secretions. In chapter 2 a first attempt at modelling such a problem
comprised two-fluid flow next to a sinusoidal wall, which moved with small amplitude
in a prescribed way. This wall represented the body wall. After the decay of an ini-
tial transient, the solution is found to be stable and periodic, and the phase difference
between the wall and interface is between zero and π/2. The amplitude of the inter-
face is largest (equal to the amplitude of the wall) for small wavenumber disturbances.
Streamline plots reveal two rows of closed cells and in this case it is hypothesised that
transverse motions of the interface must be comparable in size to normal motions for
appearance of the second row.

Larger wall amplitudes were studied in chapter 3, where we considered the flow
of a single thin film next to a sinusoidally moving wall. The wall was held horizontal
in case (i), and inclined at an angle to the horizontal in case (ii), where gravity was
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included in the analysis. After the decay of an initial transient the solution is again
found to be periodic. In case (i) the x-dependence of the interface is always the same
as the wall, whereas in case (ii) this is not necessarily true. For small wavenumbers of
the wall and large capillary numbers the phase and amplitude of the interface tend to
that of the wall (and here the interface amplitude is largest). Rows of cells similar to
those seen in earlier chapters are observed in streamline plots in case (i). In case (ii)
these cells are superposed with a prevailing flow that runs roughly parallel to the wall.
Wave steepening can be observed at early times in case (ii), but breaking only occurs
for an infinite capillary number. We briefly studied the solution when a constant shear
stress was added at the free surface. The results suggested that including a second fluid
above the thin film will not worsen wave steepening such that breaking occurs.

In chapter 4 we investigated two-fluid flow next to an elastic beam, moving with
small amplitude. An instability is found at small wavenumbers for one of the two so-
lutions for the wave speed. The instability appears to coincide with a phase difference
between the wall and interface and also seems to require both the wall and interface
to be free to move. Our solution necessitated that the tension in the beam was approx-
imated as constant, resulting in a lower bound on the range of valid wavenumbers.
However, amongst this range there still exist small wavenumbers for which the solution
is unstable. In a brief study of a periodic pressure forcing below the elastic wall, it is
relevant to the DGM that this promotes a periodic wall motion.

In chapter 5 we included a second wall, which represented the solid, undigested
food bolus. We studied the problem of flow through a channel with fixed walls under
the influence of a scalar material field, which represented the gastric secretions. The
concentration of material was taken to be linearly proportional (to within a constant)
to the surface tension at the interface. A single solution is found for the wave speed.
Depending on the parameter choices, the solution is either stable for all wavenumbers
or unstable for small wavenumbers. It is conjectured that the instability results when the
interface sits in a favourable position on the single row of closed cells that correspond
to the streamlines. Here interfacial perturbations are free to grow under the influence
of the Marangoni force. We have found evidence that the presence of channel walls is
necessary for this instability and hypothesised that in the case without walls, growth
of the interface is always restricted by its position on the closed streamlines. For large
wavenumbers waves always travel at the speed of the base-state horizontal velocity at
the interface. For other wavenumbers they may travel faster or slower depending on the
choice of parameters. For small wavenumbers there is found to be a correspondence
between the stability regions and regions of faster or slower wave speed.

Lastly, in chapter 6, we extended our analysis to include the region surrounding that
studied in previous chapters. Such an analysis is necessary to gauge the influence of
the wider flow field on the previously studied region. In an initial study using plane
polar co-ordinates to consider the flow of a single fluid between semi-infinite, hinged
plates, it was found to be difficult to induce mixing of fluid particles in such a geometry
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under the assumption of creeping flow. We therefore chose to consider Navier–Stokes
flow and, building on the work of Hall and Papageorgiou (1999), we investigated flow
through a gradually diverging channel as a model of the local flow field in a strip
taken through the middle of the main body. For small Reynolds numbers a unique,
periodic, symmetric solution exists. As the Reynolds number, Re, is increased, we find
evidence that there is a bifurcation to an asymmetric solution at a value of Re that is
lower than for the case of an unperturbed channel. Increasing the Reynolds number
further, for smaller wall amplitudes a bifurcation to a quasi-periodic solution may be
seen. In general, a Feigenbaum cascade leads to chaos for higher Reynolds numbers.
Our results also suggest early period-doubling and early quasi-periodicity in the case of
the diverging channel compared to the uniform-width channel. The occurrence of early
bifurcations in our results was accompanied by an exponentially growing solution. This
growth was shown to be due to taking a linear approximation in the equations for the
perturbation streamfunction.

7.2 Relation of Results to the DGM Main Body

Since the layer of gastric juice at the wall of the DGM body is likely to be thin and
the idealised mathematical description in chapters 2 to 5 considers flow in a thin layer
close to the body wall, we are particularly interested in a wall with long wavelength
(small wavenumber). The small wavenumber instability found in chapters 4 and 5 is
therefore particularly relevant. In both chapters 4 and 5 typical parameter values for
the DGM suggest that an unstable solution is possible. In the DGM the thin layer of
material found at the wall tends to have low pH and low viscosity, comprising for the
most part of gastric juice, whilst the liquid material in the bulk tends to be of higher
pH and higher viscosity. This suggests that the viscosity ratio, Λ, will be greater than
one. In chapter 4, since none of the other parameters will be zero or infinite, we are
well within the range of values for the unstable mode to occur. In chapter 5 the thinness
of the layer next to the wall also suggests that the depth ratio, α, can be taken to be
much less than one. If the material gradient in chapter 5 is taken to represent the pH of
simulated secretions, the above suggests that the concentration ratio, Ĉ, will be positive.
In certain situations an increase in pH may facilitate certain chemical processes that
increase the surface tension. Here the surface tension gradient, Γ, may also be taken to
be positive. Alternately, should we take the material gradient to represent the presence
of a surfactant found in the gastric juice, then this would suggest that Ĉ and Γ are
both negative. We therefore have two examples where Ĉ and Γ have the same sign. An
examination of figure 5.3 confirms that in these cases, the solution is likely to be unstable
for small wavenumbers in our region of interest. Interestingly, figure 5.11 also suggests
that the unstable waves will travel slower than the horizontal base-state velocity at the
interface. We have therefore gained evidence that both the presence of an elastic wall
and the addition of simulated gastric secretions may be instrumental for the growth of
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perturbations at the interface between fluid phases close to the wall of the DGM body.
Consequently both are likely to be important for fluid mixing.

In chapter 6, since we now consider a region that spans the entire width of the DGM
body, we may be justified in taking a larger typical length scale than that previously
quoted (perhaps of the O(10−1)). In the case of a liquid meal, such as water, the dynamic
viscosity is likely to be lower than our quoted value for gastric juice and it may be
possible for the Reynolds number to reach values of the O(10). In such a case the early
symmetry breaking bifurcation found in our solution may be relevant, suggesting that
it might be possible for the system to support an asymmetric, periodic flow field.

7.3 Open Questions

There are a number of open questions arising from our results. In chapter 4 we were
unable to map fully the regions of valid, unstable solutions in parameter-space. Per-
haps a more relevant problem would be to examine how the stability of the solution
is affected if we allow the tension to vary over the length of the beam so that there is
no longer a limit on the range of valid solutions, although it is likely that this would
require a full numerical analysis. The results in chapter 5 highlight the need for a more
thorough examination of the influence of the pressure gradient on the growth rate of
disturbances. These results also point to a convective instability as a possible mecha-
nism for any changes due to an altered pressure gradient, and we suggest the method
of Briggs (1964) for further investigation.

The majority of chapters in this thesis have dealt with a linear analysis. The only
exceptions to this were in the introduction of chapter 6, where we considered some
simple results in plane polar co-ordinates, and chapter 3, where in order to progress we
assumed that we were dealing with a thin film. It would be particularly interesting to
consider the linear stabilities found in chapters 4 and 5 in terms of a nonlinear regime
and to investigate any new instabilities that may arise. It would also be worth returning
to the diverging channel problem studied in chapter 6 without linearising the equations
for the perturbation streamfunction. Together with a more thorough examination of the
space of solutions, this would give a clearer picture of the nature of early bifurcations
when comparing to the case of a uniform-width channel.

In our work we have considered a simplified picture of the flow-field in the DGM
body. There is scope to improve on our idealised model. The unstable solutions found in
chapter 5 motivate further research in which a more complicated relationship between
surface tension and chemical activity is considered, moving walls are reintroduced and,
perhaps together with a nonlinear analysis, steepening or breaking waves may be ob-
served at the interface. This would be a good likeness to the “onion peeling” effect
observed in the stomach and DGM. In addition, it would be interesting to allow for
concentration absorption at the fluid interface as in Frenkel and Halpern (2002) and
Halpern and Frenkel (2003). This would give rise to a second solution for the wave
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speed. It is also worth noting that in chapter 5 the base-state concentration field and in-
terfacial perturbation are imposed, whilst in the DGM body a concentration field is fully
established through the flow. This concentration field may then act to perturb and pos-
sibly destabilise the fluid interface. A further improvement on our model could be the
addition of either a sinusoidal flux of concentration at the walls or an imposed, uniform
concentration pool at one end of the channel, which is advected using a Poiseuille-type
flow. It would then be interesting to see how the advancing profile would affect an ini-
tially flat interface. Due to the difficulty of attempting to solve this problem analytically,
the governing equations would likely need to be solved numerically, using a boundary
integral method to account for the moving interface.

Alternatively, an improved model could use a phase field or diffuse-interface type
method. Here a fixed grid is used, such that the fluid interface and any concentration
discontinuity at this interface are treated as continuous and distributed over a thin
area. Modelling the interface in this way would be a much easier task than tracking a
moving free-boundary with a moving grid. In these methods, in general, the force due
to surface tension may be calculated at each grid point using the field properties and
the effect of this force on the fluid continuum is encapsulated through an extra term in
the Navier–Stokes equations. In addition, the advection-diffusion equation is replaced
with a continuum advection-diffusion equation (Cahn–Hilliard type equation).

In this thesis we have focussed on a local description of the flow in the DGM main
body. It would be interesting to couple this small-scale description with a global anal-
ysis, such as that considered in terms of the human stomach by Pal et al. (2004) and
Pal et al. (2007) using the lattice-Boltzmann method. Such a model would typically be
more concerned with the transportation of material and would lend itself naturally to
the validation of results using experimental data from the DGM.

The possibility also exists to model the antrum section of the DGM. Preliminary
work investigating flow through a two-dimensional channel with small occlusions has
revealed peaks in the shear stress on a circular element of fluid located at the centre
of the channel. Future studies could include a calculation of the stress on a solid,
suspended particle as a model of the stress experienced by a particle of food in the
machine.
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Appendix A

Derivation of the Beam Equations

We derive the boundary condition at a thin, elastic wall, y = s(x, t), modelled as a
beam. We allow only small perturbations away from the state where the wall is flat, so
that s = O(ε), where 0 < ε � 1 is a small parameter. We begin by considering a small
element, dl, where l is arc length along the wall. Due to the deformation, this element
is subject to an external force, f, per unit length, an in-plane tension, τ, in the tangential
direction, transverse shear tension, q, in the normal direction and a bending moment,
m, as shown in figure A.1. Neglecting terms of O(ε2) and smaller, the unit normal and

Figure A.1: The forces and moments on a small element, dl, of the elastic wall, y = s.

tangential vectors to the curve y = s are given by

n̂(−sx, 1), t̂ = (1, sx), (A.1)

where the unit normal vector to the curve is taken to point upwards.
Assuming that the element is in equilibrium (has negligible inertia), a force balance

gives us

τ(l + dl)t̂(l + dl) + q(l + dl)n̂(l + dl)− τ(l)t̂(l)− q(l)n̂(l) + fdl = 0. (A.2)

Expanding in Taylor series about l, neglecting terms of O(dl2) and smaller and dividing
by dl, we obtain

τ
dt̂(l)

dl
+

dτ(l)
dl

t̂ + q
dn̂(l)

dl
+

dq(l)
dl

n̂ + f = 0. (A.3)
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The curvature of the element, κ, is defined such that dt̂/dl = −κn̂. This implies that to
leading order,

κ = −sxx. (A.4)

By differentiating the quantities n̂ · t̂ = 0 and n̂ · n̂ = 1 with respect to l we can also
deduce that dn̂/dl = κt̂. Therefore, the normal and tangential components of (A.3) are
respectively

−κτ +
dq
dl

+ f · n̂ = 0,
dτ

dl
+ qκ + f · t̂ = 0. (A.5)

A moment balance about l in the anticlockwise direction gives us

q(l + dl)dl −m(l + dl) + m(l) = 0, (A.6)

which, dividing by dl, implies that

q =
dm
dl

. (A.7)

We assume that the beam is under a state of plane stress (there are no forces acting in
the z-direction, where z points in the direction of t̂× n̂), as described in Prescott (1961)
and Howell et al. (2009). Here, since the longitudinal stresses in the beam are found
to be much larger than the transverse stresses, it is assumed that σyy may be neglected
compared to σxx. It is then found that σxx = κEy, where E is Young’s modulus (a
measure of the stiffness equal to the tensile stress divided by the tensile strain of the
beam) and so the net moment on a cross-section A of the beam is given by

m =
∫∫

A
yσxxdydz = κEI = κEB, (A.8)

where the second moment of inertia of A about the z-axis is

I =
∫∫

A
y2dydz, (A.9)

and EB > 0 is the bending modulus. Here we choose m to be positive at a maximum,
i.e. where sxx is negative. Since the wall is only deformed by a small amount, we may
assume that differentiation with respect to l (along the arc) is the same as differentiation
with respect to x. Then, neglecting terms of O(ε2) and smaller and substituting in q and
κ, equations (A.5) become the beam equations,

−EBsxxxx + τsxx = −f · n̂,
dτ

dx
= −f · t̂ on y = s. (A.10)
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Appendix B

Newton’s Method As Used in the
Shooting Method

We describe Newton’s method, as used in chapter 5 for finding a γ such that ξ(γ)→ 0,
where

ξ (γ) =

(
ξ1

ξ2

)
, γ =

(
γ1

γ2

)
. (B.1)

Here ξ depends on γ since ξ1 and ξ2 depend on our guesses for γ1 and γ2. We increment
γ1 and γ2 by small changes s1 and s2 respectively, so that

ξ(γ + s) = ξ(γ) + s · J(γ), s =

(
s1

s2

)
, J = ∇ξ, (B.2)

where we neglect terms of O(s2) and smaller. Here we may compute the (1, 1) entry of
the Jacobian, J, for instance, by writing

∂ξ1

∂γ1
(γ1, γ2) =

ξ1(γ1 + δ, γ2)− ξ1(γ1, γ2)

δ
, (B.3)

where 0 < δ� 1. In this equation, to compute ξ1(γ1 + δ, γ2), we must integrate dW1/dy
from y = 0 to α with the initial guess γ1 replaced by γ1 + δ to give us W1(α), but may
use the earlier results of integrating dW2/dy from y = 1 to α to give us W2(α). In order
to move ξ1 and ξ2 towards zero, we now let ξ(γ + s) = 0 in (B.2), giving us

s · J = −ξ(γ). (B.4)

Since J and ξ are known, (B.4) may be solved using Gaussian elimination to obtain s.
Our updated guess for γ is then given by γ + s.
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Appendix C

Calculating the Floquet Exponent

In chapter 6 we calculate the Floquet exponents for our solution. A good summary
on the subject of Floquet theory can be found in Joseph (1976). The method is as
follows. We use the technique described in Hall and Papageorgiou (1999), assuming
that the solution comprises a base state (subscript B) and a much smaller perturbation
(subscript P), both functions of η and t. When examining the solution for ψ1

(1), we let(
ψ1

(1), Ω1
(1)
)
=
(

ψ1
(1)

B, Ω1
(1)

B

)
+
(

ψ1
(1)

P, Ω1
(1)

P

)
, (C.1)

whilst, when examining the solution for ψ2
(1), we take(

ψ̂2
(1), Ω2

(1), p2
(1)
)
=
(

ψ̂2
(1)

B, Ω2
(1)

B, p2
(1)

B

)
+
(

ψ̂2
(1)

P, Ω2
(1)

P, p2
(1)

P

)
. (C.2)

In the case Re < Rec we take ψ(0) to be the symmetric, π periodic solution, whilst for
Re ≥ Rec it is taken to be the asymmetric, nπ periodic solution, where n = 1, 2, 3, · · ·
depends on the Reynolds number. The base solution in (C.1) or (C.2) can then be
thought of as the underlying periodic solution for ψ1

(1) or ψ̂2
(1).

Substituting (C.1) into equations (6.38) and (6.42) and (C.2) into (6.39), (6.43) and
(6.44), to leading order we obtain the same equations but for the base solutions, whilst
to first order, we find equations for the perturbations,

L2ψ1
(1)

P =− H(0)2
Ω1

(1)
P, (C.3)

∂Ω1
(1)

P

∂t
=M1

(1)
P(t, ψ(0), ψ1

(1)
P, Ω(0), Ω1

(1)
P; Re),

M1
(1)

P =
1

ReH(0)2
∂2Ω1

(1)
P

∂η2 − 1
H(0)

(
−
(

dH(0)

dt
η + ψ(0)

)
∂Ω1

(1)
P

∂η

+ 2
∂ψ(0)

∂η
Ω1

(1)
P +

∂ψ1
(1)

P
∂η

Ω(0) − 2ψ1
(1)

P
∂Ω(0)

∂η

)
, (C.4)
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and

Ω2
(1)

P =− 1
H(0)

∂ψ̂2
(1)

P

∂η
, (C.5)

∂ψ̂2
(1)

P

∂t
=M2

(1)
P(t, ψ(0), ψ̂2

(1)
P; Re),

M2
(1) =

1

ReH(0)2
∂2ψ̂2

(1)
P

∂η2 +
1

H(0)

(
∂ψ̂2

(1)
P

∂η

(
dH(0)

dt
η + ψ(0)

)
− ∂ψ(0)

∂η
ψ̂2

(1)
P

)
, (C.6)

p2
(1)

P =0, (C.7)

where we have used that p2
(1)(η = −1, t) = 0. From (6.48), (6.50) and (6.51), these

equations are accompanied by the boundary conditions,

ψ1
(1)

P(η = ±1, t) = 0,
∂ψ1

(1)
P

∂η
(η = ±1, t) = 0, (C.8)

and

∂ψ̂2
(1)

P

∂η
(η = ±1, t) = 0. (C.9)

We note that the Floquet analysis for ψ̂2
(1) does not depend on ψ1

(1), only on ψ(0).
We solve equations (C.3), (C.4) and (C.8) or (C.5), (C.6) and (C.9) using the same

method as for the full equations, using general, asymmetric initial conditions which
satisfy the boundary conditions. Where the O(1) solution is nπ periodic, the coefficients
of (C.3) to (C.6) are nπ periodic and so, on the basis of Floquet theory, we may write(

ψ1
(1)

P, Ω1
(1)

P

)
= eγt

(
ψ1

(1)+(η, t), Ω1
(1)+(η, t)

)
+ c.c,

ψ1
(1)+(η, t + nπ) = ψ1

(1)+(η, t), Ω1
(1)+(η, t + nπ) = Ω1

(1)+(η, t), (C.10)

or (
ψ̂2

(1)
P , Ω2

(1)
P

)
= eγt

(
ψ̂2

(1)+
(η, t), Ω1

(1)+(η, t)
)
+ c.c.

ψ̂2
(1)+

(η, t + nπ) = ψ̂2
(1)+

(η, t), Ω2
(1)+(η, t + nπ) = Ω2

(1)+(η, t), (C.11)

where γ = γR + iγI is the Floquet exponent in each case and c.c. denotes the com-
plex conjugate. Letting S(t) be the perturbation part of the lower wall shear, either
∂2ψ1

(1)
P/∂η2(−1, t) or ∂2ψ̂2

(1)
P/∂η2(−1, t), we have

S = eγtS+(t) + c.c. = 2r(t)eγRt cos(γIt + θ(t)), S+(t + nπ) = S+(t), (C.12)

where we let S+ = r(t) exp(iθ(t)).
In the cases where ψ1

(1) or ψ2
(1) either has period nπ, or behaves like an exponential
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to a real power multiplied by a function with period nπ, we consider the change in the
wall shear over time intervals of length nπ. Using the second of equations (C.12),

log (S(t + nπ))− log (S(t)) = γRnπ + log
(

cos(γI(t + nπ) + θ(t))
cos(γIt + θ(t))

)
, (C.13)

and so, since it must be true that γI = 0, γR (the growth rate of the perturbation) is
given by

γR =
1

nπ
log
(

S(t + nπ)

S(t)

)
. (C.14)

We note that there exist a whole family of eigenvalues, γ, and that this method gives us
the eigenvalue with the largest real part.

When ψ1
(1) or ψ2

(1) behaves like an exponential to a real power multiplied by a func-
tion with period mπ (where m is some integer multiple of n), since S+ is nπ periodic,
it must be true that a complex conjugate pair of eigenvalues cross the γI axis into the
γR > 0 plane such that their real part is greater than the single eigenvalue on the γR

axis and <(exp(iγIt)) is mπ periodic. This implies that γI = ±2/m. In this case we
instead consider an interval of length mπ and we find that

γR =
1

mπ
log
(

S(t + mπ)

S(t)

)
. (C.15)

To check the validity of this method, we may apply the same technique to (6.41) and
(6.37), the equations for ψ(0), perturbing about the π periodic, symmetric solution for
ψ(0) in the region around the bifurcation, Re = Rec. In this case our equations for the
perturbation depend on the base state. Since it is the π periodic, asymmetric solution
that is the most attracting for Re > Rec, to ensure that we obtain the symmetric solution
for this base state, we must solve in the half-interval from η = −1 to 0, specifying that
at η = 0 the base state solution and its second derivative with respect to η are zero.
We then extend to the full interval by symmetry. We find that, as expected, as we cross
Re = Rec, the Floquet exponent changes from negative to positive as the solution for
ψ(0) changes from symmetric to asymmetric.
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