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Abstract 

 

The main objective of this work was to develop a novel drug delivery system 

exploiting special opportunities afforded by synthesis of nanoscale materials to be 

applied inside the colon. It must be robust enough to cope with the adverse 

conditions in the gastrointestinal tract (GI) and be able to reach and release “on 

demand” at the colon area at the right time. In this work, an oral capsule formulation 

with iron oxide nanoparticles (IONs) containing coating was used to transport drug 

and release drug in the colon. 

 

With that in mind, the synthesis of poly (alkylcyanoacrylate) nanocapsules by 

microemulsion polymerisation and magnetic iron oxide nanoparticles (IONs) via a co-

precipitation method were conducted. The key physical properties of the materials 

were characterized employing standard techniques such as HPLC, FTIR, DSC, DLS, 

XRD, TEM and SEM.  Hard capsules filled with model drug, paracetamol, were 

coated with IONs containing coatings (fatty acids and paraffin). The optimum 

composition for the formulation of the coating embedded with the nanoparticles was 

explored with respect to protection of the drug payload from conditions in the GI tract 

as well as for effective release “on demand” using radio-frequency hyperthermia. The 

optimum radiofrequency and the power level for heating the nanoparticles were also 

determined and melting the coating using magnetic nanoparticle hyperthermia. 

 

Results showed that paraffin-based coatings had appropriate properties for this 

application. Finally, taking into account all the results, a design of a novel drug 

delivery system, together with an experimental setup for testing the “release in 

demand” was proposed. The approach is generic, easy to set up and could also be 

applied to many other situations where delivery on demand is required. 
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CHAPTER 1 

Introduction 

1.1 Brief Overview 

"Nano-", the buzz word in modern science, is becoming increasingly used in scientific 

literature. Many “nano-“ words such as nanometer, nanoscale, nanoscience, 

nanotechnology, nanostructure, nanotube etc are becoming commonly used. Nano is 

a prefix and it is derived from the Greek word nanos meaning dwarf, Ever since it 

was recognized that particles on the nano-scale had different and interesting 

properties compared to their bulk phase, vast amounts of research have been carried 

out regarding how they may be applied for different purposes and in different fields of 

interest. The idea of nanotechnology producing nanoscale materials and carrying out 

nanoscale manipulations has been around for quite some time. Nobel Prize winner, 

Richard P. Feynman in his talk titled There’s Plenty of Room at the Bottom (1959) is 

credited for coining the idea. He considered the possibility of direct manipulation of 

individual atoms as a more powerful form of synthetic chemistry than those used at 

the time. It is from that consideration that the idea of nanotechnology was born. 

There is currently no accepted international definition of nanomaterials but many 

authors limit the size of nanoparticles to 50 nm (Kittelson, 2001) or 100 nm (Borm et. 

al, 2006). 

Nanomaterials consist of various nanostructured materials, such as nanoparticles, 

nanocapsules, nanorods or nanoplates. They are already used in consumer 

products, such as sunscreens, healthcare products, textiles and paints. In 

nanomaterials the surface properties dominate over the bulk properties (Alivisatos, 

1996; Hanada et al., 2005; Lia and Zhang, 2009; Puntes et al., 2001). The very large 

surface areas of these materials result in new and improved properties such as 

improved catalytic activity (Hanada et al., 2005), or unique optical (Lia and Zhang, 

2009) and quantum behaviour (Alivisatos, 1996). These properties can be used to 

overcome some of the limitations found in traditional therapeutic and diagnostic 

agents. 
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Even before Feynman, there were already traditional techniques developed in the 

field of interface and colloid chemistry for characterizing nanomaterials. For instance, 

the solution-gelation (sol-gel) process, a wet-chemical technique commonly used to 

synthesise a wide variety of nanomaterials was used by Michael Faraday (1857) to 

synthesise ‘gold sols’ and gold colloids were characterised using ultramicroscopy by 

Richard A. Zsigmondy (1909). 

The magnetic properties of nanocapsules and nanoparticles have attracted much 

interest not only in the field of magnetic recording media such as audio and 

videotape (Coey, 2010), but also in the areas of medical care such as drug delivery 

systems, medical applications including radio frequency hyperthermia, magnetic 

resonance imaging (MRI), medical diagnostics and cancer therapy (Jordan et al., 

1999; Murray et. al, 2000; Mazzola, 2003; Paull et al, 2003; Pankhurst et. al, 2003 

Lecommandoux et al., 2006; and Gannon, et al., 2008). In the last decades, much 

research has been devoted to the synthesis of nanoparticles. Many publications have 

described efficient synthetic routes to shape-controlled, highly stable, and 

monodisperse magnetic nanoparticles, especially in the last few years. Several 

methods including co-precipitation (Laurent et al., 2008), thermal decomposition 

and/or reduction (Guardia et al., 2010a,b), microemulsion synthesis (Thomann et al., 

2005), and sol-gel synthesis (Duraes et al., 2005) can all be directed at the synthesis 

of high-quality magnetic nanoparticles. 

 

1.2 Statement of Problem 

Cancer is one of the most challenging diseases to manage and, while treatments and 

survival rates have improved greatly over the last 30 years, it is still a major challenge 

in the world of medicine. Colorectal cancer (CRC) is the third most common cancer in 

the United Kingdom after breast and lung cancer, with approximately 40,000 new 

cases registered each year resulting high mortality rate (Ferlay et al., 2010). This 

makes it the second most common cause of cancer death in the United Kingdom. 

Occurrence of CRC is strongly related to age, with almost three-quarters of cases 

occurring in people aged 65 or over. In CRC, cells in the colon or in the rectum start 
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to grow in an uncontrolled way, forming a lump called the primary cancer or primary 

tumour. Like other cancers, CRC starts in a small area but can spread to other parts 

of the body to form metastatic tumours. The term CRC covers cancers in both the 

colon (colon cancer) and the rectum (rectal cancer). 

Even though many effective drug treatments have been developed to treat this 

condition, the problem still prevails. The main problem is to deliver the drugs to the 

affected part of the GI tract in adequate doses. Due to poor and ineffective drug 

delivery, many patients have to face the trauma of surgical procedures. At the 

moment, the mode of treatment for this type of cancer is by using targeted 

radiotherapy and surgery.  Surgery is the preferred treatment for people with 

localized cancer. Therefore, targeted drug treatment via chemotherapy has the 

potential of increasing the rate of survival. 

 In many drug delivery systems with the exception of tablets and liquid dosage forms, 

drugs are either encapsulated or entrapped inside or on the surfaces of a coated 

carrier, usually a capsule or some lipid nanostructure entities. This may pose a 

problem in delivery of the drugs into the body due to the complexity of the 

microenvironments inside the body such as the variation of pH as it passes through 

the digestive tract, the microflora of colonic bacteria and various enzymatic activities 

used to degrade the food substrate. Thus, the drug delivery system must be robust 

enough to survive these adverse changes and be able to reach and release at the 

targeted area at the right time. The carriers, especially the lipid-based ones, are 

sometimes made of multilayers of polymers. This layering of polymers may face 

issues of biodegradability and biocompatibility and thus limit their ability to scale up 

for mass production. With the huge changes in the body system, it makes this type of 

controlled release subjected to poor delivery and release of the drugs and thus does 

not always give the intended result. 

With that note, a new way of colonic drug delivery so that the drug is only released at 

the affected part of the GI tract in adequate doses should offer significant benefits. In 

order to achieve this, we propose a new type of solid wax based drug capsule that 

can be administered orally and tracked so that once it reaches the target location the 
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drug can be released by melting the wax using harmless radio-waves as shown in 

Figure 1.1. This can be done by using wax embedded with superparamagnetic iron 

oxide nanoparticles (IONs). What is required is a small hand-held radiofrequency, RF 

coil that produces harmless radio waves. With the device placed over the patient, the 

radio waves produced can then be used to selectively heat the IONs. By doing so, it 

causes the wax on the capsule to melt and so release the drug at the target location 

without damaging the surrounding tissue. Heating of certain organs or tissues to 

temperatures between 41oC and 46oC preferably for cancer therapy is called 

hyperthermia (Jordan et al., 1999). In this work, magnetic nanoparticle hyperthermia 

(MNH) will be employed to melt the wax. MNH heats magnetic nanoparticles using 

harmless RF irradiation by magnetisation reversal processes of the nanoparticles 

(Hegrt et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1 Design of IONs embedded coated capsule loaded with drug and heated 
through applied field forcing the drugs to be released for a new colonic targeted drug 
delivery system. 

 

 

 

Coated Capsule 
Capsule loaded 

with drug 

Exposed to 
RF radiation 

 

Drug release 

Mix with 
Coating 
Material 

ΔT 
 

 

IONs 

Coating Material 
embedded with IONs 

+ 



Introduction Chapter 
1 

 

5 
 

1.3 Objectives  

The main objective of this work is to develop a new, simple and robust targeted drug 

delivery system to be applied inside the GI tract (Figure 1.1). This new system joins 

IONs, magnetic hyperthermia and magnetically triggered. Solid fatty acid and paraffin 

based drug capsules will be embedded with IONs at optimal coating composition. 

The system is designed for a non-invasive physical release mechanism that works 

with a macroscopic, orally-delivered capsule having a universal and relatively simple 

encapsulating coat that can be mass produced. 

In order to achieve the above objective, a number of key activities can be identified: 

 Synthesise and characterise IONs 

 Investigate the loading of IONs that gives the most efficient heating. 

 Formulate the optimum composition for the fatty acids and paraffins and IONs 

to be used as coating materials to coat the capsule.  

 Find the optimum radiofrequency and the power level for heating the IONs 

with MNH 

 Study drug release under different environmental conditions which mimic the 

GI tract 

 Propose a new and simple colonic targeted drug release system. 

 

1.4 Scope of Thesis 

 

As mentioned above, the main objective of this work is to develop a new, simple and 

robust targeted drug delivery system to be applied inside the GI tract. In order to 

achieve this, a range of key problems will be investigated. Therefore, to facilitate the 

understanding of the work done, this thesis will be presented and divided into 8 

chapters.   

Chapter 1 covers the introduction for the overall work together with the basic 

concepts and terminology related to nanomaterials. A brief overview, the problem 
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statements, gaps and how to fill the gaps plus the objective of the work will also be 

outlined. 

 

Chapter 2 of the thesis provides a more detailed background to the work by 

presenting a literature review on the work published, mainly on nanoparticles (the 

major component of nanomaterials) and drug delivery. This chapter is a modest 

attempt to give a review of some of the past and recent advances these rapidly 

expanding areas, through the total literature for both of these fields is vast  and it 

would be impossible to cover it comprehensively here.  

 

Chapter 3 covers the materials and methodology aspects of the work. This includes 

the chemicals, a brief overview of scientific equipment or techniques and 

methodologies that are involved in undertaking the investigation. 

 

Chapter 4 describes an initial attempt to prepare poly (alkylcyanoacrylate) 

nanocapsules via microemulsion polymerization. A region of water-in-oil 

microemulsion stabilised by non-ionic surfactant was identified and used as a 

template. Monomers were then added into the microemulsion template in order to 

obtain nanocapsules. The prepared nanocapsules were intended for use in the 

delivery of drugs. In addition, the use of pseudoternary phase diagrams to locate the 

microemulsion region and the compositions of the template will also be described in 

this chapter.  

 

Chapter 5 describes the synthesis of the magnetic nanoparticles namely iron oxide 

nanoparticles (IONs) via a co-precipitation process. The resulting IONs were 

characterised using standard equipment and procedures. From these results, some 

of their physical properties will be elucidated and presented.  
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Chapter 6 discusses the formulation work on the proposed capsule to be used in the 

drug delivery system. Various compositions of fatty acids, paraffins and nanoparticles 

needed to coat the capsule were deployed in order to find the optimum composition 

for further tests. The optimum radiofrequency and the power level for heating 

employing MNH will also be described. This chapter also covers the study of 

dissolution of the capsules to release drug. The sensitivity and responsivity to pH and 

temperature of the capsules, using buffer solutions and bile salts, will be presented 

and discussed.  

 

Chapter 7 will describe findings from visual observation of MNH of coated capsules. 

Information from visual observation should shed more light on the heating, melting 

and solubilising behaviour of the coated capsules. This chapter will begin by 

describing the work done to visually observe the behaviours of coated capsules 

towards heating by hyperthermia. The coated capsule in this part of the work will be 

subjected to different environments in order to visually observe its behaviour under 

applied magnetic fields. The visual observation will be done by using a thermal 

imaging camera, video camera and fibre-optic thermosensors. This chapter ends by 

proposing a simple experimental set up for drug release system and discussing the 

experimental results from the proposed set up. 

 

Chapter 8 ends the thesis by summarising the main conclusions of the presented 

work as well as an outlook on future research directions. 
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CHAPTER 2 

Literature Review 

 

2.1 Nanomaterials 

2.1.1 Does size matter? 

This question reminded the author of her’s thesis about first day of lectures she 

attended for her colloid chemistry class many years back. The professor asked the 

above question in his opening remark on the topic about the importance of surfaces 

for small particles. Clearly, the answer to this question is quite obvious: bigger things 

always dominate the smaller ones. But then, there is a saying that goes ‘less is 

more’. According to the professor, this polemic can be clarified by considering the 

following task.  

 

Consider a spherical particle, for example water, having a radius of 1.0 cm. 

Reapportion the particle by subdividing it, first, into an array of spheres, each with a 

radius half that of the original sphere. Then in the next subdivision, the radius of each 

of the spheres will be cut into half again. In the following subdivision, the radius will 

be halved again, and so on. The results of such reapportioning are shown in Table 

2.1 (Hiemenz, 1986). It can be shown that after 25.62 halvings of all spheres, one 

water molecule per sphere is reached.  From the Table 2.1 or by using equation 1, 

the radius of the water molecules after 25.62 halvings of the spheres can be 

evaluated. The radius is found to be 0.193 nm. However, the radius of a water 

molecule from the van der Waals b value is about 0.145 nm. The difference in value 

for the radius, points out the fact that the characterization of any material may be 

sensitive to the size of the sample. 
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Table 2.1 The parameters after cutting a sphere of water each time by halves until n 
times (Hiemenz, 1986). 

_________________________________________________________________________________ 

Cut Number,n Radius, Rn Number of water molecules  Total surface  

   (cm)   per sphere     energy (J) 

_________________________________________________________________________________ 

     0            1.0                        1.38 x 10
23

    9.07 x 10
-5

 

     1     5 x 10
-1

         1.75 x 10
22

                1.81 x 10
-4 

 

     2     2.5 x 10
-1

          2.18 x 10
21

              3.62 x 10
-4 

 

     3    1.25 x 10
-1

          2.73 x 10
20 

  7.27 x 10
-4

          

     .          .      .             .          

     n       
 

 
 
 

               

 

 
      

             

  
                                 

               

_________________________________________________________________________________ 

      
 

 
 
 

                                                                                              

 

Another observation is using the definition of specific area of a substance, Asp. For a 

uniform sphere, Asp is given by equation 2. This equation clearly shows the reciprocal 

effect of surface area with the radius. This also explains the increase in total surface 

energy of water when its radius is reduced (Table 2.1). 

    
    
    

   
     

 
 
   

  
  

 

  
                                                            

Both of the phenomena, namely the difference in the radius of the water molecule 

and the inverse proportionality of the surface energy with the radius, answer the 

above question. Yes, size does matter and it is because of this point that 

nanomaterials, being in the nanometer scale, have received much attention by the 

scientific community. 
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2.1.2 What is a Nanomaterial? 

Materials that are downsized into smaller components exhibit different properties 

from their bulk properties. A new group of materials or particles is encountered when 

the sizes are in the range of nano-scale. The interesting mesoscopic properties of 

this group of material have opened up a new frontier in science and especially in the 

field of colloidal science. Just how small is it? As a way of illustration, in order to 

appreciate the effect of the size difference, the sizes of several natural nanomaterials 

and biological components are compared as shown in Figure 2.1 (Buzea, 2007). 

From the figure, it can be visualised that a strand of hair (60 micrometer) must be cut 

or sliced about 60000 times in order for it to be equivalent to 1 nanometer.  Also a 

sheet of paper is about 100,000 nanometers thick. It is analogous to comparing the 

size of a marble to the size of the Earth. It is also noteworthy to observe, as will be 

shown later in Figure 2.9, that the smaller nanomaterials coincide with the size of 

those of proteins. This opens up new application of nanomaterials into biological 

systems. 

 

Figure. 2.1 Size comparison of nanomaterials to biological components (extracted 

from Buzea, 2007) 

Materials in the nano-scaled range have existed on earth for millions of years and 

have been used by mankind for thousands of years. Soot, for example is a product of 

the incomplete combustion of fossil fuels and vegetation. It has a particle size in the 
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nanometer-micrometer range and therefore falls partially within the nanoparticle 

domain. It is safe to say that every human has, in some way or another, been 

exposed to this kind of nanometer sized foreign particles. We inhale them with every 

breath and consume them with every food or drink. These inhaled nanomaterials 

(such as aerosols and dust) may or may not pose a potential health risk. If they do, 

we humans are lucky that our in-built bodily systems are there to fight and protect us 

from these potentially harmful materials. Initially, it may be thought that such 

nanoscaled materials, which are similar in size to viruses, would not pose any danger 

to the human body. It is because, unlike viruses, they lack the ability to replicate. 

However, some nanoparticles do penetrate the human skin and enter the circulatory 

and lymphatic systems just like viruses.  

 

Nanoparticles formed the largest part of the nanomaterials group and can be made 

from many available materials with at least one dimension below 100 nm. The 

increasing uses of nanoparticles in scientific and industrial applications have not only 

led to a better understanding of their physical and chemical properties but also the 

invention of new equipment and techniques. The development of new equipment and 

techniques has made it possible to characterise and visualise nanometer sized 

structures which was impossible before. A major breakthrough was the invention of 

the electron microscope in the 1930s. Two such instruments are the scanning 

electron microscope (SEM) and transmission electron microscope (TEM).  

 .  
Through SEM and TEM, the surface morphologies, shapes and sizes of 

nanoparticles can be elucidated to shed information about their behavioural pattern. 

In order to achieve any desired application properties, nanoscientists attempt to 

control and tailor the dimensions, shapes, structures, surfaces and interface 

properties of nanomaterials. These result in more engineered and functionalized 

nanomaterials. Figures 2.2 and 2.3 illustrate the beauty and complexity of the SEM 

and TEM images, respectively of this minute world of nanoparticles. 
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Figure 2.2 SEM images of the Fe3O4@C core–shell nanomaterials prepared under 
various initial amounts of glucose: (a) 0 mmol, (b) 0.25 mmol, (c) 0.5 mmol and 
(d) 1.0 mmol (adapted from Zheng et al., 2012). 
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Figure 2.3. TEM images of different sized Fe3O4 nanoparticles (adapted from Ma et 
al., 2004). 
 

The benefits and positive effects of nanoscale particles, especially in drug delivery, 

will be described in the following section. But prior to that, understanding of the 

various types of nanoparticle that exist naturally or manmade becomes essential in 

order to facilitate understanding of their behaviour and benefits. 

 

2.1.3 Forms of Nanomaterials 

Nanoscaled materials can be separated into different structures and forms depending 

on the size, the material used, and purpose intended. These are biologic, polymer, 

silicon-based, carbon and metallic structures. Some of these forms are listed below:   

 Liposomes 

 Nanocapsules 

 Dendrimers 

 Micelles 

 Nanotubes/Fullerenes 

 Quantum dots 
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 Metal nanoparticles 

 Magnetic nanoparticles 

Table 2.2 shows some drug delivery technologies together with the materials and 

different forms of nanostructures that are associated with them (Hughes, 2005). 

Table 2.2. Nanoscale drug delivery technologies (Hughes, 2005) 

Drug delivery technology Materials Nanostructure forms 

Biologic Lipids Vesicles, nanotubes, rings; 

Peptides Nanoparticles 

Nucleic acids  

Polysaccharides 

Viruses 

Polymeric Poly(lactic acid) Vesicles, spheres, nanoparticles 

Poly(glycolic acid) Micelles, dendrimers 

Poly(alkylcyanoacrylate)  

Poly(3-hydroxybutanoic acid) 

Poly(organophosphazene) 

Poly(ethylene glycol) 

Poly(caprolactone) 

Poly(ethylene oxide) 

Poly(amidoamine) 

Poly(L-glutamic acid) 

Poly(ethyleneimine) 

Poly(propylene imine) 

Silicon based Silicon Porous, nanoparticles 

Silicon dioxide Nanoneedles 

Carbon based Carbon Nanotubes, fullerenes 

Metallic Gold Nanoparticles, nanoshells 

Silver  

Palladium 

Platinum 

 

It is these structures that are responsible for their benefit and endless opportunity in 

many areas of research and fields of study. These structures have and will continue 

to generate a number of advancements throughout the years. 
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2.1.4 Application of Nanomaterials 

The potential applications of nanomaterials are enormous. They include in the fields 

of electronic, biomedical, health care and agriculture. This vast potential has been 

meticulously illustrated by Tsuzuki (2009) as shown in Figure 2.4.  

 

 

Figure 2.4 Application of Nanoparticles (Tsuzuki, (2009). 

 

2.1.5 Synthesis of Nanomaterials 

Depending on the form of nanomaterials and their applications, numerous 

methodologies can be applied in order to synthesize them. The basic requirements 

are to obtain the appropriate size, shape and surface morphology in order for them to 

perform at their optimal level. Beija and co-workers (2012) have tabulated some of 
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the preparation methods involving some organic nanoparticles of relevance for drug 

delivery. The table is partially adopted here as shown in Table 2.3 for a quick view 

and way of illustration of the numerous preparation routes available. 

 

Table 2.3 The method of preparation for some nanoscaled particles (Beija et al., 
2012). 

Type Method 

Liposome Film casting and rehydration of this film + extrusion 

Polymersomes Solvent switch method Film casting and rehydration of the 

film 

Polymeric micelles Direct organization or controlled aggregation in a solvent 

Layer-by-Layer systems Electrostatic interaction between oppositely charged 
polyelectrolytes 

Solid Lipid Nanoparticle Freezing of an emulsion of lipids heated above melting 

point of lipids 

Polymer nanoparticle   

 

 

Capsules 

Polymerization of monomers by emulsion process or 

starting from existing polymers, nanoprecipitation, gelation 

or emulsion process  

Nanocapsules: Interfacial polymerization of monomers or 

phase inversion process with emulsions of polymers 

Dendrimers Convergent or divergent synthesis 

 

Two of the most common and important synthetic preparation pathways, namely 

microemulsion polymerisation and coprecipitation, which are crucial in this thesis, will 

be elaborated. The literature review on magnetic iron oxide nanoparticle and its 

synthesis via co-precipitation process will be elaborated in this chapter, while the 

review on the preparation of nanocapsules using microemulsion polymerisation will 

be presented in Chapter 4. 
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2.2. Drug Delivery Systems 

2.2.1 What is a drug delivery system? 

A drug delivery system is simply a delivery system that carries a drug throughout the 

body. By this method, only a small amount of the drug reaches the affected area. 

A targeted drug delivery system is a delivery system that delivers and releases the 

drug at a preselected site in a controlled manner. As a consequence, targeted drug 

delivery may result in higher bioavailability of the drug at its preselected site, thus 

reducing both the total dose and the side effects associated with the drug. The ideal 

requirement of a drug delivery vehicle is that it must exhibit non-toxicity, 

biodegradability (Scott et al., 2008), biocompatibility, non-immunogenicity, and also 

be able to avoid being recognised by the host's defence mechanisms (Bertrand & 

Leroux, 2012). 

 

2.3 Nanoscaled Particles in Drug Delivery Systems 

2.3.1 Benefit 

The scientific community is seeking new avenues to utilise the unique properties of 

nanoparticles in order to understand their behaviour and applications. One of the 

major areas that has been investigated quite extensively is in the field of medicine. 

Some of the uses of nanoparticles in medicine (Figure 2.4) include drug delivery 

systems, cancer therapy, hyperthermic treatments and magnetic resonance imaging, 

MRI as contrast agents. Figure 2.5 illustrates how the unique properties of 

nanoparticles can be manipulated. By varying the composition, various types of 

nanoparticle can be prepared or synthesized with their corresponding physical 

properties. This is tuned by adding ligands (such as polymers and proteins) to the 

surfaces of the nanoparticles thus altering the surface properties and functionalities; 

they can then be utilized to target the affected sites or tumours. 

http://www.pharmainfo.net/keywords/targeted-drug-delivery-systems
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Figure 2.5 Schematic of how properties and characteristic of nanoparticles can be 
manipulated while designing nanoparticles for biomedicine applications (Chou et al., 
2011). 

 

2.3.2 History and pioneers 

Discussions on the historical background of the use of nanomaterials or 

nanoparticles for drug delivery should begin with Paul Ehrlich (1854-1915) for his 

concept of a ‘magic bullet’ (Witkop, 1999). Ehrlich's concept of a ‘magic bullet’ was a 

compound that targeted a specific pathogenic organism or cell without harming 

others. Hence, a ‘magic bullet’ would be created able to kill the targeted organism 

exclusively.  Ehrlich’s contribution in this area can be regarded as the beginning of 

targeted drug delivery. His first ‘magic bullet’ was an arsenic-based drug Salvarsan 

(or arsphenamine, or Ehrlich 606) which was used as a cure for syphilis as shown in 

Figure 2.6. 
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 2HCl 

Figure 2.6 The molecular structure for the first ‘magic bullet’, Salvarsan (Lloyd et al., 
2005) 

With all the benefits offered, it is no surprise that one of the areas that has received 

much attention in the area of nanomedicine is drug delivery. This is shown by the 

exponential growth in the number of research articles published in the area of drug 

delivery as shown in Figure 2.7 (http://apps.webofknowledge.com. Date of search: 

October 2013. Search keyword ‘drug delivery’ and ‘nanoparticles’) 

.  

 

Figure 2.7 Scientific publication involving drug delivery using nanoparticles from 
2000 to 2012 (http://apps.webofknowledge.com. Date of search: October 2013. 
Search keyword: ‘drug delivery’ and ‘nanoparticles’) 
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Clearly from the figure, it shows a humble beginning with 136 articles published in 

2000. This number however, rose exponentially to 7349 articles published in 2012.   

The advantages of using nanoparticles in a drug delivery system are due to their 

size, magnetic and electronic properties and can be conveniently broken down as 

follows: 

 The size and surface characteristics of nanoparticles can be easily manipulated. 

Hence, from the delivery point of view, there is no limitation as the diameters of 

nanoparticles are well below that of the biological components (Figure 2.8). This 

enables them to mobilise freely and target specific locations in the body. 

 Nanoparticles, through, their magnetic properties, can be made to control and 

sustain release of the drug during the transportation as well as the location of 

the release.  

 A reduced amount of drug will be required to achieve a particular concentration 

at the targeted area. 

 The amount of drug at non-target areas will also be reduced, thus minimizing 

severe side effects. 

 Various forms of administration including oral, nasal and injection can be 

applied.  

 

Figure 2.8 Nanoparticle systems for drug delivery applications (Arruebo et al., 

2007).  
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The lamellae of swollen phospholipids known as lipid vesicles were the first 

nanotechnology drug delivery systems. These vesicles, which were later known as 

liposomes, have been in the literature for more than 40 years. The initial objective of 

that work was to look for a model for lysosomes (Bangham et al., 1965; and 

Bangham, 1989). With that discovery, liposomes have gained wide acceptance not 

only as a model for a cell membrane but also as potential carriers for transporting 

drugs and macromolecules into the body which are useful for the pharmaceutical and 

healthcare industries. To date (Date of search: October 2013. Search keyword: 

‘liposomes’), a quick search online, show 55,511 articles were published involving 

liposomes since 1960 (http://apps.webofknowledge.com). Narrowing the search, 

within the same period, to liposome and drug delivery as keywords shows 12,169 

articles were found in the literature. This indicates that more than 20 percent of the 

work done using liposomes was related to drug delivery. 

 

As a result of the above findings, many polymeric or inorganic biomaterials for drug 

delivery were developed. In 1976 the first controlled release polymer system for 

delivery of macromolecules was described (Langer & Folkman, (1976). The work 

presented a simple method for incorporating various proteins and other 

macromolecules into non-inflammatory polymers. This is because there has been 

little success in the development of slow release agents for large molecular weight 

compounds. The polymers used in earlier studies, polyvinylpyrrolidone and 

polyacrylamide (Davis, 1972; 1974 and Gimbrone et al., 1974), are often 

inflammatory in animal tissues and usually permit only brief periods of sustained 

release. In this work Hydron, a polymer of hydroxyethylmethacrylate was used. The 

result showed sustained release of protein and other macromolecules from polymeric 

carriers can be achieved over prolonged periods. In this case the sustained release 

of biochemically active macromolecules was achieved for periods exceeding 100 

days. In addition, Hydron did not cause inflammation in the cornea. Indeed, it is the 

basic material used for most modern soft contact lenses. 

 

So far, much of the work on drug delivery concentrated only on delivering drugs into 

the body. The main drawback with these is their inability to differentiate between a 

http://apps.webofknowledge.com/
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normal and diseased cell. This leads to side effects such as stomach ulcers and at 

times hair loss. Because of this, targeting drug delivery systems becomes of high 

interest in order to overcome this drawback. Fortunately, the advancements in 

nanotechology and drug delivery have facilitated the targeting of specific tissues, The 

complex make up of the body system requires the scientific community to focus on 

more complex drug delivery systems capable of triggering drug release in the body in 

response to changes such as pH, colonic transit times and enzymic action (Yatvin et 

al., 1980). The pioneering contributions to cell specific targeting of liposomes 

(Leserman et al., 1980); Heath et al., 1980) were first reported in 1980. Torchilin 

(2005) has schematically illustrated the evolution of liposomes from its beginning of 

discovery to their significant achievements in his review as shown in Figure 2.9.  

 

 

Figure 2.9 Evolution of liposomes from first generation, A to new generation, E  
where (a) is hydrophilic drug; (b) is hydrophobic drug; (c), (d), and (g) are antibodies; 
(e) is PEG; (f) are proteins, (h) are antibody-grafted polymer; (i) protective polymer; 
(j) a protective polymer with antibody; (k) a diagnostic label; (l) positive charge lipid, 
(m) DNA; (n)stimuli-sensitive lipids; (o) stimuli-sensitive polymer; (p) cell-penetrating 
peptide; (q) viral components; (r) magnetic particles; and (s) gold/silver (Torchilin, 
2005). 
 

As mentioned earlier, during their early discovery until the late 80s liposomes have 

had their shortcomings. Therefore there arose a need to find an alternative to 

liposomes that offers better properties to achieve the desired goals.  

 

Many drug carriers have been introduced as alternatives such as polymeric 

nanoparticles (Birrenbach and Speiser, 1976; Couvreur et al., 1979) and albumin-
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based nanoparticles (Marty et al., 1978). These works pioneered by Peter Speiser 

(1976) are focussed on the development of nanomaterials for vaccination purposes. 

This nanomaterial is called a nanocapsule. To date (22/10/2013), a quick search 

online with nanocapsule as the search key word shows only 5454 articles were 

published since 1976 (http://apps.webofknowledge.com). About 4388 articles were 

published after 2005. The slow start from its first publication until 2005 shows that 

much less attention has been given to the topic compared with liposome research. 

Both liposomes and nanocapsules are nanovesicular drug delivery systems. 

Liposomes, as mentioned earlier, consist of layers of phospholipids, while 

nanocapsules comprise of a solid or liquid cavity enveloped by a single polymer 

membrane (Speiser, 1976). The liquid cavity can be oily or aqueous (please refer to 

Appendix A for schematic illustration of nanocapsule). Nanocapsules can be 

prepared by an interfacial polymerisation process of monomers or from preformed 

polymers involving oil-in-water (O/W) or water-in-oil (W/O) emulsions. Nanocapsules 

prepared by polymerisation require the polymerisation of the monomers to proceed 

rapidly. Alkycyanoacrylates have been proposed for preparation of oily and aqueous 

nanocapsules because of their rapid polymerisation, which is within seconds (Khouri 

et al., 1986). 

 

With that, nanomaterials prepared with polymer, poly(alkylcyanoacrylate) (PACA) 

have gained much interest as drug carriers. This is because of its biocompatibility 

and biodegradability (Couvreur et al., 1986). Its ease of polymerisation (Al Khouri et 

al., 1986)) and ability to entrap bioactive compounds such as insulin 

(Watnasirichaikul et al., 2000) are other contributing factors. Nanocapsules of PACA 

were first developed by Couvreur and co-workers (1979). In that work, polymethyl 

and polyethycyanoacrylate were prepared by polymerisation. Monomers of methyl- or 

ethyl-cyanoacylate were added into a micellar (O/W) template comprising of Tween 

20 in acidic condition (pH~3). SEM results showed spherical particles with a diameter 

of 200 nm were formed. The morphological appearance and size were not affected 

by the variation of Tween 20 concentrations. In another work by Al Khouri and co-

workers (1986), a new process for manufacturing polyisobutylcyanoacrylate 

nanocapsules was developed using interfacial polymerisation with an average 

http://apps.webofknowledge.com/
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diameter of about 200-300 nm. Poloxamer 188 was used as the surfactant 

component. Both of these approaches using micellar (O/W) template seemed to pose 

some unwanted reaction between the encapsulated drug and the monomers in the 

core of the micellar structure. For these reasons, attention has been directed to 

investigating the W/O emulsion as the template to prepare PACA nanocapsules (El-

Samaligy et al., 1986). However, the same issues as those faced by O/W emulsion 

were encountered. Later Gasco and Trotta (1986) proposed the use of W/O 

microemulsion as templates to overcome problems encountered using W/O emulsion 

as template. They successfully used isopropyl myristate, Aeosol-OT and butanol to 

prepare the microemulsion but the nanocapsules needed to be separated out from 

the medium due to biodegradability issues. The same procedure was later improved 

by using bicompatible microemulsion systems (Watnasirichaikul et al., 2000). The 

use of biocompatible microemulsion as templates for the preparation of 

nanocapsules by interfacial polymerization are better than the use of size-reduced 

kinetically stabilized emulsions and it also eliminates the necessity of isolating the 

nanocapsules from the reaction medium (Vauthier et al., 2003). 

 

In the investigation by Watnasirichaikul and co-workers (2000), 

polyethylcyanoacrylate nanocapsules containing insulin was reported using 

biocompatible W/O microemulsions. The surfactants are mixtures of Crillet 4 and Crill 

4. In this investigation the region of microemulsion composition was reported using 

phase diagrams. The nanocapsules formed have a mean particle size of 150.9 nm. 

Microemulsion polymerisation is a better choice over emulsion polymerisation. This is 

due to it being more thermodynamically stable and producing smaller and more 

uniform dispersions. It is also formed spontaneously. Just like the limitations faced by 

liposomes, nanocapsules also face the same challenges. The residues of monomers 

and oligomers from the polymerisation process and the possible unwanted reaction 

of the drug molecules with the monomers limit the development and potential of 

nanocapsules (Gallardo et al., 1989).  

 

One other alternative drug carrier that has a promising future and has caught the 

attention of the scientific community is dendrimers. After the amazing discovery by 
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various pioneers, namely Vogtle, Tomalia and Newcome through the 70’s and 80’s, 

these unique molecules, which are sometimes referred to as the polymers of the 21st 

century, have attracted much attention for their use in various application. The well 

defined structure, uniformity in size, surface functionalisation, and stability makes 

dendrimers an attractive polymeric nano-scaled structure for drug delivery compared 

to other nanomaterials, which have an average structure and a range of sizes. 

 

The chemistry of these hyperbranched molecules/polymers, dendrimers, was 

introduced in 1978 by Vogtle and co-workers (Buhleier et al., 1978). In this work, they 

took advantage of the existing iterative process of repeating-step principle used in 

the Host-Guest interaction (Cram et al., 1975). This repetition of similar steps is used 

to construct large molecule cavities that are able to bind guest molecules. With this 

repeating step principle, they managed to bond successive arms or rings in the 

synthesis of noncyclic and cyclic polyaza compounds. They named the two synthetic 

pathways as cascade-like and nonskid-chain-like pathways, respectively. 

 

With the first dendrimers prepared in 1978, it took about 7 years by another pioneer, 

led by Newkome (1985) to report the synthesis of other dendrimers. They named this 

new macromolecule as arborols. In this work they reported the synthesis and spectral 

characterization of [27]-arborol. The number 27 denotes the number of terminal OH 

groups. The synthetic pathways, as shown in Figure 2.10, started by nucleophilic 

substitution of 1-bromopentane by triethyl sodium methanetricarboxylate, 

(NaC(CO2Et)3) in dimethylformamide and benzene. Lithium aluminium hydride was 

used to reduce the ester groups to a triol in a repeating step. The chain ends were 

activated by converting the alcohol groups to tosylate groups with tosyl chloride and 

pyridine. The tosyl groups then served as leaving groups in another reaction with the 

tricarboxylate, forming generation two. The sequence can be repeated to construct 

the next generation i.e. the [27]-arborol by treating the generation two compound with 

tris(hydroxymethyl)aminomethane, (H2NC(CH2OH)3)  in DMSO at 70oC. 

 

 

 

http://en.wikipedia.org/wiki/Dendrimer#_note-5
http://en.wikipedia.org/wiki/Dendrimer#_note-5
http://en.wikipedia.org/wiki/Nucleophilic_substitution
http://en.wikipedia.org/wiki/Nucleophilic_substitution
http://en.wikipedia.org/wiki/Nucleophilic_substitution
http://en.wikipedia.org/wiki/Dimethylformamide
http://en.wikipedia.org/wiki/Dimethylformamide
http://en.wikipedia.org/wiki/Dimethylformamide
http://en.wikipedia.org/wiki/Ester
http://en.wikipedia.org/wiki/Organic_reduction
http://en.wikipedia.org/wiki/Organic_reduction
http://en.wikipedia.org/wiki/Lithium_aluminium_hydride
http://en.wikipedia.org/wiki/Lithium_aluminium_hydride
http://en.wikipedia.org/wiki/Lithium_aluminium_hydride
http://en.wikipedia.org/wiki/Lithium_aluminium_hydride
http://en.wikipedia.org/wiki/Alcohol
http://en.wikipedia.org/wiki/Protective_group
http://en.wikipedia.org/wiki/Protective_group
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Figure 2.10 The synthetic pathways for [27]-arborol (Newkome et al., 1985). 

 

At the same time, another pioneering group, Tomalia and co-workers (1985), have 

independently come up with a way of making batches of dendrimer with a uniform 

molecular weight and size. The group initially named this new class of polymers as 

starburst polymers. The first dendrimers they synthesised were polyamidoamines 

(PAMAMs) by first reacting ammonia with methyl acrvlate and then followed by an 

excess of ethylenediamine. The core molecule being ammonia possesses 3 

hydrogens and therefore could exhibit three branches. At the end of each branch is a 

free amino group that can react with two more methyl acrylate monomers and then 

two more ethylenediamine molecules to make a generation one dendrimer. This 

process is repeated divergently for several generations. After generation nine the 

reaction kinetics drop suddenly and significantly. That is where the chains pack 

together to form a membrane-like globular structure, making it very difficult to grow 

further due to lack of space. This phenomenon is called the ‘starburst effect’. The 

diameter of the globular structure was later determined to be 12.4 nm (Tomalia et al., 

1990),  

 

Generation I 

Generation II 

Generation III ([27]-arborol) 
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As in any nano-sized carriers, the unique properties of dendrimers have found many 

applications such as nano reactors (Turro et al., 1991), drug delivery carriers 

(Newkome et al., 1991; Jansen et al., 1994 and Mohammad et al., 2006), MRI 

(Wiener et al., 1994), immune diagnostics (Singh et al., 1994), and gene delivery 

vectors (Haensler & Szoka, 1993). A quick search up to year 2012, showed that 

more than 20,000 papers were published regarding these amazing dendrimers 

(http://apps.webofknowledge.com). Even though dendrimers have enjoyed many 

successes and advantages, dendrimer-based drug delivery has still got a long way to 

go to enter into the market due to their cytotoxicity properties, the massive effort 

required for the synthesis and the cost implications. More effort and research is 

needed in order for dendrimers to match up to their promises. More recently, 

controlled methods to produce hyperbranched polymers have begun to offer a more 

synthetically-accessible alternative to dendrimers with some similar properties. 

 

Another drug carrier that was adopted in 1999 is the polymersome. Polymersomes 

resembled liposomes in many ways but with increased stability and reduced 

permeability. The first publication on polymersomes by Discher and co-workers 

(1999) reported that polymersomes were 10 times less permeable to water than 

liposomes. In addition the polymersomes prepared from polyethyleneoxide-

polyethylethylene (EO40-EE37), were not only reducing the water permeability but 

were also much tougher by a scale of one order of magnitude. Again, as any drug 

carriers, polymersomes also have their drawbacks. Because of being structurally 

huge and thick, they are not only difficult to add functional groups to but also involve 

tedious synthetic routes in order to form their derivatives. 

 

In 2010, in pursuit of a new generation of smart drug carriers, another drug carrier 

was described. This time they are called dendrimersomes which are derived from 

Janus dendrimers (Borman, 2010; Percec, et al., 2010). As described by Percec and 

co-worker (2010), dendrimersomes also exhibit the best of both worlds in term of 

stability and mechanical strength as those of polymersomes, but highly uniform in 

size, easy to prepare and functionalised. Time will tell whether these particles can 

deliver on their promise. 
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2.3.3 Recent Interest  

As mentioned above, the work on drug delivery has been around for more than 40 

years. But it is in the last decade that the research has really matured due to the 

merging of 3 interdisciplinary areas of science, engineering, and medicine 

(Gianchandani & Meng, 2012). Due to this merging, nanotechnology and 

nanofabrication techniques have allowed drug carriers to be further improved and 

developed. More novel approaches have been made. A quick internet search from 

the web of knowledge website (Date of search: October 2013. Search keyword: ‘drug 

delivery’) for 2010 to 2012 shows a total of 82,288 articles were published in the area 

of drug delivery (http://apps.webofknowledge.com). Narrowing it down to 2012, more 

than 29,704 articles were published or about 36 percent of the total publications. This 

number will surely continue to grow as the interest and impact is ever increasing. 

With all the literature becoming available, it is safe to say that the building blocks in 

designing any drug delivery systems, besides being biodegradable and 

biocompatible, are their ability to: 

 Protect the drug 

 Reduce degradation of the drug 

 Reduce the accumulation of drug at healthy site by precisely target the drug  

 Reduce its toxic level 

 Be environment-responsive 

 Improve stability 

 Properly release the drug naturally or through initiation by external stimuli  

Recently, numerous review papers have also been published pertaining to the 

development and design of drug delivery systems (Gianchandani & Meng, 2012; Kim 

et al., 2012; Couvreur, 2013; Mitragotri, 2013; and Zhang et al.; 2013; and their 

references therein) which again shows the massive attention it has been given. 
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2.4 Colonic Targeted Drug Delivery Systems 

Targeted drug delivery into the colon is highly desirable for local treatment of 

disorders of the large intestines such as ulcerative colitis, Crohn’s disease, and colon 

cancer and systemic delivery of protein and peptide drugs (Oluwatoyin and John, 

2005; Philip et al., 2009). A colonic targeted drug delivery system is expected to 

protect the drug during the transit time in the GI tract and releases it only in the colon. 

This delivery system has the advantages of more effective therapy, a reduced dose 

and reduced undesirable side-effects often associated with high doses (Ashford, et al 

1993 a, b), 

 

2.4.1 GI tract  

The GI tract (Figure 2.11) and its hindrances associated with oral drug delivery have 

been mentioned briefly in chapter 1. Therefore, an overview about it may facilitate 

basic understanding of what is going on in the tract and the digestive system. The GI 

tract can be divided into esophagus, stomach, small intestine and large intestine 

(colon). It can be further classified into upper (esophagus and stomach) and lower 

(small intestine and colon) GI tract. 

 

Figure 2.11 The GI tract (Marieb and Hoehn, 2010) 
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Normally, the digestive system begins when food is consumed and chewed 

repeatedly together with the aid of secreted saliva in the mouth. The enzyme 

amylase produced by the salivary glands is able to break down starches into small 

sugar molecules. The salivary glands also produce the enzyme lipase to begin the 

digestion of fat components in the stomach. The digestion continues in the stomach 

by secreting a very strong acid called gastric juice. The acid denatures proteins and, 

together with the enzyme pepsin breaks them into amino acids. It also kills potential 

harmful microorganisms. It has been reported that the pH of the stomach is in the 

range of 1.0-3.7 depending on the state of the person i.e. fasted and fed state 

(Sonaje et al., 2009; Vertzoni et al., 2005). The digested food will then enter the small 

intestine. 

 

The pH in the intestine has been reported to be in the range 6.0-7.0 (Fallingborg, 

1999; Legen and Kristl, 2003). In the small intestine where absortion takes place, 

enzymes (Orienti et al., 2001) such as trypsin, lactase and lipase, as well as bile 

salts, are present to further breakdown the digested food. Bile salts play an important 

role in the digestive system. Bile salts are sodium salts of the cholic acid. They are 

produced in the liver and stored in the gallbladder before secretion for the digestion 

of fats. They exhibit amphiphilic properties equivalent of surfactants, therefore 

spontaneously form micelles in aqueous environments (Kararli and Gupta, 1992). 

These micelles facilitate the breaking down of fatty materials in the small intestines. It 

has been reported that the absorption of some poorly soluble drugs increase in the 

presence of food (Charman et al.,1993; Crounce, 1961; Hamaguchi et al., 1993). 

One of the two reasons given is due to increase of bile salts in the small intestine. It 

has been found in previous work that the concentration of bile salts in the duodenum 

and jejunum is 2-3 times more in the fed state (10-15 mM) as compare to the fasted 

(3 mM) state (Fausa, 1974; Tangerman, et al., 1983). Later work by Mithani and co-

worker (1996) proposes a model to predict the dependency of the solubility of drugs 

on the concentration of bile salts. An in-vitro model is then proposed that closely 

mimics the conditions in-vivo (Kostwicz et al., 2002). The model provides the 

compositions of the gastrointestinal media that simulate the fed and fasted states as 

shown in Table 2.4. 
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Table 2.4 The compositions of the simulated intestinal fluid (Kostwicz et al., 2002). 

Chemical Fasted State Simulated 
Intestinal Fluid (FaSSIF)  

Fed State Simulated 
Intestinal Fluid (FeSSIF) 

Sodium taurocholate 3 mM 15 mM 

Lecithin 0.75 mM 3.75 mM 

NaOH (pellets) 0.174 g 4.04 g 

NaH2PO4.H2O 1.977 g - 

Glacial Acetic Acid - 8.65 g 

NaCl 3.093 g 11.874 g 

Purified water qs 500 mL 1000mL 

pH of resulting media 6.5 5.0 

 

After going through the small intestine pathway, the material is then passed down 

into the large intestine (colon). The colon is not only larger in size than the small 

intestine but it provides a suitable environment for the growth of most of the 

microflora found in the human intestine. The microflora is a collection of microbes 

colonising a host which in this case is the small intestine and colon (Savage, 1977). 

More than 500 bacterial species, mostly bacteroides, bifidobacterium, and 

lactobacillus, (Hooper et al., 2002) inhabit the intestine and the number increases as 

it reaches the colon as shown in Figure 2.12. Depending on the different factors, the 

time needed for the transit through the GI tract, from the oesophagus to the colon, 

varies from 30-50 hours (Rubinstein, (1995). Finally, in the colon the water from the 

material is further absorbed back into the body and then awaits secretion through the 

anus when the need arises. Essentially, the digestive system is a long tube that runs 

from the mouth to the anus. 

 

Figure 2.12. The microbial densities in the GI tract. 
(http://www.customprobiotics.com/_images/intestinal-microflora-410.jpg) 

http://www.customprobiotics.com/_images/intestinal-microflora-410.jpg
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2.4.2 Capsules 

Oral drug delivery is by far the most popular drug delivery administration due to it 

being noninvasive and patient friendly. Tablets and gelatine capsules are widely used 

in oral drug delivery (La Wall, 1940). Capsule is derived from the Latin Capsula 

meaning small box.  

There are two types of gelatine capsules namely soft and hard (Figure 2.13a and b, 

respectively) capsules (Augsburger, 1995). The soft gelatine capsules are one piece. 

A hard gelatine capsule shell (Figure 2.13b) comprises two sections i.e. the body and 

cap, which are fitted together. In oral drug delivery systems, the drug is filled into the 

body section and closed by using the cap. The shells of the hard capsules are mostly 

made from gelatine though other materials can be used for specialist applications or 

to satisfy religions or ethnic preferences. The standard shape is the traditional bullet 

shape and comes in various sizes. Table 2.5 lists the available sizes and volumes of 

the hard capsules in the market. 

 

Figure 2.13 Type of gelatine capsule (a) soft and (b) hard  

Table 2.5 Dimension of hard gelatine capsule (Stegemann and Bornem, (1999). 

Capsule Size 000 00 0 1 2 3 4 5 

Capsule Volume, ml 1.37 0.91 0.68 0.50 0.37 0. 30 0.21 0.10 

Body 

Cap 

(b) (a) 
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The main advantages of hard gelatine capsules are their ease in swallowing, the 

shell is odourless and tasteless, faster dissolution and absorption in body fluids than 

pills and tablets and the drug can be easily released. Even though they have many 

advantages, they are still subjected to the harshness of the GI tract which warrant 

issues on stability, solubility and proper drug release to be addressed.  

 

2.4.2.1 Capsules in the GI tract 

Capsules, which are taken orally will travel the same path and encounter the same 

environment as the chewed food. The capsules, with the aid of saliva are, pushed 

through the throat into the esophagus and enter the stomach. At this stage, the 

capsules will encounter various enzymes and gastric acid at a low pH condition of 

1.0-3.7. The capsules then enter the small intestine via the duodenum and then 

jejunum and exit through the ileum. Here the capsules will encounter more enzymes, 

microbes at higher pH values of 6.0-7.0. After going through the small intestine, the 

capsules (if still intact) exit the small intestine via the ileum and enter the colon. In the 

colon, the capsules will once again encounter more microbes. 

 

The environment of the GI tract can then be partially summarized as shown in Table 

2.6. From the table, it becomes obvious that the interaction between the capsules or 

any oral delivery formulations and the contents of the GI tract may lead to the 

degradation of the capsules due the different conditions existing in the GI tract. 

Consequently, in order to address this drawback, the makeup of capsules or any oral 

formulations need to be robust, resistant and stable in the GI tract in order to function 

effectively and efficiently. This is vital if the desired objective for the targeted oral 

drug delivery or drug-release system is to be achieved.   
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Table 2.6 The different conditions in the GI tract 

GI tract pH Microbial Densities/g GI Transit, h Length, m 

Stomach Fed 2.0-3.7 102
 - 103 more than 3  

Fasted 1.0-1.9 less than 1  

Small Intestine 6.0- 7.0 104 - 107 3-4 6.0 

Colon 5.5-7.0 109 - 1012 20-40 1.5 

One of the ways to overcome the drawback is by coating the capsule. Coated 

systems against the pH gradient and viscosity of the fluid in the GI tract have been 

well reported (Wilding, 2000). This can be achieved by enteric coating the capsules. 

They are designed to remain intact in the stomach in order to protect the active 

substance from the acidic gastric juice and then release the active substance at the 

target area in the intestine. The ingredients in enteric coating recipes usually 

comprise of enteric film formers, plasticizers, colourants and solubilisers. Polymers 

such anionic polymethacrylates (such as Eudragit L and S) (Hosny, et al., 2002; 

Sonaje et al., 2009) and cellulose based polymers (such as HPMC) (Cole et al., 

2002; Mohamad and Dashevsky, 2006) are widely used for the enteric film formers. 

 

For instance, Sonaje and co-workers (2010) have developed an enteric coated 

capsule for oral delivery of insulin. In this work, hard gelatine capsules are used and 

insulin is filled into capsules. The capsules are then coated with Eudragit® S100 and 

L100-55. The dissolution study shows that both of the enteric coated capsules 

prevented the insulin from contacting the acidic medium of the stomach. As a way of 

illustration, the dissolution graph Figure 2.14 adapted from the study is adopted here. 

From the figure, clearly it shows that at lower pH values (1.2 or 2.5), insulin is 

released immediately by the uncoated capsules and continue to increase as it 

reaches higher pH values. However, for the enteric coated capsules, insulin is only 

released after a lapse of more than 100 and 200 min, for Eudragit L100-55 and S100, 

respectively 
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Figure 2.14 Amount of insulin released from the freeze-dried nanoparticles (NPs) 
and in enteric-coated capsules at different pH values (Sonaje et al., 2010). 

Another recent review (Philip and Philip, 2010) has put forth two different existing 

approaches to withstand the harshness of the environment of the GI tract for colon 

specific drugs delivery (CDDS). They also make comparison between the two 

approaches. The approaches given are listed below:  

1) Primary Approaches for CDDS 

 pH Sensitive Polymer Coated Drug Delivery to the Colon 

 Delayed (Time Controlled Release System) Release Drug Delivery to Colon 

 Microbially Triggered Drug Delivery to Colon 

2. Newly Developed Approaches for CDDS 

 Pressure Controlled Drug-Delivery Systems 

 Novel Colon Targeted Delivery System (CODESTM) 

 Osmotic Controlled Drug Delivery (ORDS-CT) 
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2.5 Magnet, Magnetism and Magnetic Nanoparticles 

 

2.5.1 Background 

 

Permanent magnets are objects that produce their own magnetic field. Only certain 

classes of materials can do this. A phenomenon known as magnetism applied to 

most materials that produce magnetic field in response to an externally applied 

magnetic field. Therefore, magnetic materials are usually classified by their response 

to an externally applied magnetic field. Figure 2.15 shows the descriptions of 

orientations of the magnetic moments in a material in order to identify different forms 

of magnetism behaviour observed in nature. They are dependent on the structure of 

the material, and particularly on its electron configuration. Hence are characterized 

by the presence of magnetic dipoles generated by the spinning of some of their 

electrons. Each of these polarized electrons can be aligned in a parallel or anti-

parallel fashion (Figure 2.15) with respect to the neighbouring ones in the crystal 

lattice. Five basic types of magnetism can be described: diamagnetism, 

paramagnetism, ferromagnetism, antiferromagnetism and ferrimagnetism (Matthew 

and Juang 2005). However, such behaviours are also strongly size-dependent and 

consequently at a particular temperature the magnetic behaviour of any material can 

be altered by tuning its size (Lima et al., 2013). 

 

Figure 2.15 A schematic representation of types of magnetic behaviour (Matthew 
and Juang 2005) 

http://en.wikipedia.org/wiki/Electron_configuration
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2.5.2 Magnetic nanoparticles 

One other interesting development in the use of nanomaterials in drug delivery 

systems is the use of magnetic nanoparticle, and especially superparamagnetic iron 

oxide nanoparticles, (SPIONS). These magnetic nanoparticles are the focus of a 

large part of this thesis whereby they will be used to heat capsules that carry a drug.  

As the name implies, magnetic nanoparticles are nanoparticles that exhibit magnetic 

properties. When a magnetic field of strength, H is applied to any magnetic material, 

its behaviour is well described by a hysteresis loop as shown in Figure 2.16 and is 

generated using the superconducting quantum interference device (SQUID) 

instrument. The magnetisation, M induced by a magnetic field strength, H is shown in 

Equation [1] 

                                                                                       

where   is the magnetic susceptibility. From the curves of Figure 2.16, important 

parameters and properties can be extracted such as the coercivity, remanence, 

saturation magnetization and the type of magnetic material can be further classified. 

 

 

Figure 2.16 Typical hysteresis loop of magnetization, B versus magnetic field of 
strength, H when applied to a magnetic material (Arruebo et al., 2007).  
 

Coercivity, Hc is a measure of the field needed to drive the magnetisation to zero 

after being saturated. This value can be obtained from the area or thickness of the 

curve. In fine particles such as nanomaterials, the coercivity is the property of most 
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interest in order to specify the types of magnetism. While, the remanence 

magnetization, MR, which indicates the magnetisation at zero applied field. Finally, 

the saturation magnetization, MS, is the maximum value of magnetization that the 

material can reach under the effect of sufficiently high magnetic fields. Depending on 

the values of the coercivity and remanence, the magnetic material can be further 

classified as below. 

 

2.5.2.1 Diamagnetism 

Material composed of atoms which have no net magnetic moments is called 

diamagnetic. It is due to the opposing behaviour of orbiting electrons when exposed 

to an applied magnetic field. In such materials all orbital shells are filled and there are 

no unpaired electrons. However, when exposed to a field, a negative magnetization 

is produced and thus the susceptibility is negative (  < 0). From the plot M vs H, a 

negative slope is observed (see red line of Figure 2.16) and magnetisation is zero 

when the no field, H is applied. 

 

2.5.2.2 Paramagnetism 

This class of materials have a net magnetic moment due to unpaired electrons in 

partially filled orbitals. The resulting magnetic field due to the upaired electrons does 

not contrast the applied field but it augments it. This results in a net positive 

magnetization and positive susceptibility (  > 0) (see green line of Figure 2.16). Here, 

again the magnetization is zero when the field is removed.  

 

2.5.2.3 Ferromagnetism 

The atomic moments in these materials make a phase transition to a state of spins 

aligned with parallel or anti-parallel orientations. This gives rise to strong interactions 

and magnetisation. It is called ferromagnetism (see black line of Figure 2.16). 

Ferromagnetic materials exhibit parallel alignment of moments resulting in large net 

magnetization even in the absence of a magnetic field (magnetisation remanence).. 
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2.5.2.4 Superparamagnetism 

Some ferromagnetic materials exhibit superparamagnetism properties at nanoscale 

size domain or the single domain. The blue line of Figure 2.16 shows a 

superparamagnetism behaviour. For a superparamagnetic material, the coercivity, Hc 

and remanence magnetisation, MR is equal to zero. Superparamagnetic materials do 

not present hysteresis meaning that they align immediately to an applied field and 

become randomly aligned when not in an applied field with no remanent 

magnetisation. Superparamagnetic nanomaterials are characterised by two modes of 

relaxations: the Néel and Brown relaxation which are accountable for the two 

different mechanisms of heat generation by magnetic nanoparticles when exposed to 

RF radiation (Brown, 1963).  

 

2.5.2.4.1 Néel relaxation 

Néel relaxation occurs when the magnetic nanoparticle remains stationary and the 

moment rotates within the crystal. The Néel relation time,    is given by (Rosensweig 

2002): 

 

    

  
   

  
   
    

 
   
   

                                                                     

 

2.5.2.4.2 Brown relaxation 

Brownian relaxation occurs when a magnetic nanoparticle physically rotates within 

the medium, hindered by the viscosity of the medium, which tend to counter the 

rotation of particles. This resulted in heat dissipation through the frictional interaction 

between the particle and its surrounding medium. The Brownian relaxation time,    is 

given by (Rosensweig 2002): 
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where    is the viscosity of the medium, K the Boltzmann constant, T the absolute 

temperature. VH is the hydrodynamic volume of the particle, VM is the magnetic 

volume of the particle and K is the anisotropy constant 

 

As mentioned above, magnetic nanoparticles offer excellent choice in drug delivery in 

various ways. Beside their sizes and the benefit that comes with it, their magnetic 

properties also offer another advantage. When a magnetic field is applied, they can 

be remotely controlled externally. In this way drug can be tagged along with the 

particle and can be transferred to a specific targeted site. The magnetic nanoparticles 

can be made to resonate by an external magnetic field, resulting in a remarkable 

heating effect. This can be applied to hyperthermia treatments and releasing of drug 

at the targeted area. 

 

In most drug delivery systems, the drug that is administered is mostly nonspecific. 

This nonspecificity may lead to side effects as the drug, which is cytotoxic, is 

distributed all over the body, thus attacking not only the affected area but also the 

nonaffected area or healthy cells in the body. Therefore, there is a need to develop a 

delivery system that is more localized and reaches the targeted site so that the drug 

can be released at the affected site and at the right time. Magnetic nanoparticles, 

with their novel properties, are proposed to overcome such shortcomings. This 

prompted the scientific community to investigate the use of magnetic nanoparticles 

as carriers to target specific sites back in the late 1970s. Credit however, goes to 

much earlier contributions by Gilchrist and co-workers (1957), followed by Meyers 

and co-workers (1963) and Turner and co-workers (1975). Later in the 1970s more 

defined microstructure of magnetic materials were extensively investigated (Widder 

et al., 1978; Zimmerman et al., 1978; Mosbach & Schröder, 1979; Kato et al., 1984; 

Gupta et al., 1989; and Häfeli et al., 1994). These investigations were all focussed 

only on magnetic carriers of micro-size, such as microspheres, with a two prong 

strategy namely reducing the drug distribution in order to reduce the side effects and 

localizing the drug at the targeted area more efficiently. In all of these studies the 

drug carriers in the form of ferrofluid were administered intravenously. In this way, 



Literature Review Chapter 
2 

 

44 
 

issues such as instability come into play due to aggregation and clogging. It is also 

known that bare magnetic materials are easily oxidised and loses their magnetism. 

By coating these magnetic materials with organic materials such as polymers and 

surfactants, or layers of inorganic material, it protects them from the surrounding 

environment and thus facilitates the stabilization of the magnetic materials (Mehta et 

al., 1997). This enabled them have a longer circulating period. 

 

Literature showed that Lübbe and co-workers (1996) were the pioneers in using 

magnetic nanoparticles in animal models. The magnetic nanoparticles used were 

ferrofluids prepared by wet chemical methods from iron oxides and hydroxides. 

Anhydroglucose polymers were then used to coat the nanoparticles in order to 

stabilize them. They concluded that the ferrofluid is not only safe but it can also be 

used for cancer treatment together with high-energy magnetic fields. Since then, 

many works followed suit such as in swine (Goodwin et al., 1999; 2001; and 

Wiekhorst et al., 2006), in rabbits (Alexiou et al., 2000; 2006), in cats using magnetic 

liposomes (Kuznetsov et al., 2001) and in human immune cells (Steinfeld et al., 

2006).  

 

Due to several advantages of oral route administration over the parenteral route of 

administration, some development of the use of magnetic nanoparticles as oral 

delivery was also reported (Feng & Chien, 2003; Whitehead et al., 2004; and Cheng 

et al., 2006). This route is non-invasive, pain minimising, patient-friendly and does 

not require an expert to administer it (Feng & Chien, 2003). It is, however, subjected 

to the harsh proteolytic degradation of the gastrointestinal (GI) tract. Historically, the 

discovery of insulin in 1921 by Banting, a Nobel Prize winner in medicine, acted as 

an impetus to the research on delivering drugs orally. With that discovery, insulin 

became the first widely used injection drug. It later became the model drug for oral 

delivery (as used in Chapter 4).  

 

With that in mind, Whitehead and co-workers (2004) described a method that used 

mucoadhesive intestinal patches to deliver insulin into the systemic circulation. The 

mucoadhesive patches, which protect the insulin from proteolytic degradation of the 
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GI tract, are filled in hard gelatine capsules (Figure 2.17a). Due to the size of the 

capsules, they are assessed by a jejunal administration method. The capsules then 

release the patches in the intestine (Figure 2.17b). The patches stick to the wall of 

the intestine and release the insulin (Figure 2.17c and d). The results show that the 

patches induce hypoglycemia.  

 

Figure 2.17 The illustration of the patches (a) filled in the capsule, release in the 
intestine (b), stick to the wall of the intestine (c) and releasing the insulin (d) 
(Whitehead et al, 2004). 
 

Later on in another related work, built on a previous finding (Chen and Langer, 1997) 

using a magnetic field on magnetite containing liposomes, Cheng and coworkers 

(2006) have prepared insulin and magnetic nanoparticles encapsulated with PLGA 

by an evaporation process in a double emulsion. It was then administered orally on 

mice. The results also showed improvement on the hypoglycemic effect, in the 

presence of an external magnetic field, of the mice that were administered orally. 

 

2.5.3 Recent Interest 

A quick internet search (Date of search: October 2013) on magnetic nanoparticles 

used as search keywords between 2010 and 2013 shows 22,137 articles have been 

published during that period(http://apps.webofknowledge.com). An equivalent search 

but with drug delivery shows 3,033 articles with 280 articles published in 2013. 

http://apps.webofknowledge.com/


Literature Review Chapter 
2 

 

46 
 

Interestingly, the search for magnetic nanoparticles in oral delivery resulted in only 1 

article published in 2010. The search results indicate that while the work on magnetic 

nanoparticles is still proliferating, the work on their application in drug delivery and 

especially in oral delivery is still much to be desired.  

 

Recent interests are still focussing mainly on preparing the ideal or smart magnetic 

nanoparticle or carrier to address the drawback of magnetic nanoparticles for drug 

delivery (Chen et al.; Shaw et al.; and Qu et al., 2013). Issues such as low stability, 

coating, bioavailabilty, pH sensitivity, stimuli responsiveness to electric field and 

temperature, cytotoxicity, mathematical modelling and commercialization are still 

being scrutinized.  Amongst the investigations which address the issue of coating are 

by Gillich and co-workers (2013) and Wang and co-worker (2013) using dendrimers 

and polymers, respectively for coating the magnetic nanoparticles. In the latter work, 

Wang and co-workers (2013) have successfully prepared magnetic nanoparticles 

coated covalently with Pluronic 85 copolymers. They reported that magnetic 

nanoparticles obtained are smaller in size, better dispersed, more stable, have higher 

drug-loading capacity, and better sustained release. Curcumin was used as the 

model drug in their work.  

 

In another related work, Wang and co-workers (2010), addresses not only the issue 

of coating but also the issue of pH-sensitivity with albendazole as the drug 

component. In this work, pH-sensitive magnetic hydrogels as the carrier are prepared 

from alginate-chitosan beads containing magnetic nanoparticles. Their swelling 

behaviour was studied and it was concluded that the pH-sensitive magnetic beads 

can be applied for drug targeting in the GI tract. 

 

One pioneering contribution is the preparation of magnetic nanoparticles from natural 

resources. This work by Chamundeeswari and co-workers (2013) reported the 

preparation of iron nanoparticles, which are usually prepared from inorganic sources, 

from goat blood using an incineration method. Chitosan coupled with folic acid was 

then used to coat the nanoaprticles to form bionanocomposite. Physicochemical 

studies were done on the biocomposites. They concluded that for the treatment of 
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cancer this magnetic bionanocomposite may be an economical alternative compared 

to the already commercially available products which are mostly toxic. 

 

The use of magnetic nanoparticles for oral delivery was also recently reported by 

Bakandritsos and co-workers (2010). By using self-emulsifying technology, they have 

prepared stable ferrofluid nanomaterials with a low value of the saturation 

magnetization of 4.1emu/g. The cytotoxicity studies on rodent fibroblasts show no 

affected cell activity over 24 h incubation. They concluded that such systems might 

have a potential use for oral delivery of poorly soluble compounds.  

 

Finally, a solid lipid vehicle magnetised by the presence superparamagnetic iron 

oxide nanoparticles, SPIONS was reported for targeted and controlled lung drug 

delivery (Upadhyay et al., 2012). In this report, the drug and melted glycerol 

behenate (lipid) were emulsified with Pluronic F-68 and heated to 900C. The resulting 

samples were then freeze-dried and jet-milled to produce the desired particle size for 

inhalation delivery. The dried samples were then filled into hydroxypropyl 

methylcellulose (HPMC) capsules and placed into the Aeroliser Dry Powder Inhaler 

(DPI) device. Budesonide was used as the model drug. The results showed an 

accelerated drug release at the hyperthermia temperatures and the lipid system 

showed promise for controlled delivery as an effective drug carrier for lung cancer 

treatment. 

 

2.6 Iron Oxide Nanoparticles, IONs 

The advantages of using nanoscaled materials such nanoparticles in a drug delivery 

system have been described above. They are due to their unique size, optical, 

magnetic and electronic properties (Tari et al., 1979; Masart, 1981; and Poizot et al., 

2000). Magnetic nanoparticles in particular, with diameter <20nm exhibit stable 

magnetic properties  which can be utilised to control and sustain release of the drug 

during the transportation as well as the location of the release. It is therefore no 

surprise that magnetic nanoparticles have vast potential in application such as in 
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drug delivery, hyperthermia cancer treatment, and magnetic resonance imaging 

(MRI) (Crayton and Tsourkas, 2011; and Mahmoudi et al., 2011). 

IONs are the widely used magnetic nanoparticles and have captured significant 

scientific and industrial interest in recent years. They are the much sought 

nanoparticle ever since it was prepared by Massart (1981).They exist in two main 

forms namely magnetite (Fe3O4) and its oxidized form maghemite (γ-Fe2O3). Due to 

their importance, especially Fe3O4, vast effect has been focussed on developing the 

technique and processes for mass production and to obtain a monodispersed shape 

and size (Kotitz et al., 1999; Kim and Park, 2005; and Amit et al., 2011). The main 

reason for their attraction is due to their superparamagnetic properties. Thus, IONs 

are also commonly known as superparamagnetic iron oxide nanoparticles or 

SPIONS. Other magnetic materials such as Cu, Co and Ni received limited attention 

because they suffer from being toxic in nature and more easily oxidised (Cho et al., 

2007). 

Bare Fe3O4 nanoparticles are however easily subjected to oxidation to give 

maghemite (γFe2O3) as shown in the reaction below:  

2Fe3O4 + ½ O2 → 3(γ-Fe2O3) 

Both materials display superparamagnetic properties, however, they are also prone 

to aggregation due to their small sizes. These two phenomena resulted in poor 

magnetism and poor colloidal behaviour. In order to address this limitation, proper 

coating of the nanoparticles has shown improved properties. In addition, the coating 

also allows further functionalization of the nanoparticles to enhance their biological 

and medical application (Zhao et al., 2005; and Xie et al., 2006).  

 
A few recent works are cited here such as the synthesis of pectin coated Fe3O4 

nanospheres by a sonochemical method (Dai et al., 2013), magnetic activated 

nanoparticles to respond to external stimuli for drug release (Kong, et al., 2013), 

using amino acids as a linker and spacer between Fe3O4 and a fluorescent molecule, 

fluorescein isothiocyanate  (Alireza et al., 2013). An interesting development is the 

introduction of a new concept called nano metal oxide frameworks (MOFs) using iron, 
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that are able to entrap drugs that existing drug carriers could not (Horcajada et al., 

2010) is also cited here. 

 

2.7 Synthesis of IONs 

2.7.1 Chemical Co-Precipitation 

 

Various approaches have been developed to prepare magnetic Fe3O4 nanoparticles 

such as via high-temperature decomposition of iron precursors such as iron acetate, 

acetyl acetate, carboxylate and carbonyl (Jeong et al., 2007; Redl et al., 2004; Sun et 

al., 2002; 2004), sonochemical method (Dai et al., 2013; Vijayakumar et al., 2000) 

and involving ferrous and ferric ions co-precipitation (Massart, 1981; Kim et al., 2001; 

and Harris et al., 2003). The chemical co-precipitation method is the most 

conventional method to obtain Fe3O4 or Fe2O3 (Massart, 1981; and Massart et al., 

1995). This is because it is simple and very convenient to prepare, either at room or 

elevated temperature. Salt solutions (such as chlorides, nitrates, sulphates etc) of 

Fe2+ and Fe3+ in molar ratio of 1:2 are mixed together. The mixtures are then titrated 

with basic solutions (such as KOH, NaOH or NH4OH) to achieve a pH value of 10 

under inert conditions. The Fe3O4 nanoparticles formed in this way however suffer 

from being polydispersed and are not very stable. Willis and co-workers have shown 

that oleic acid is excellent in producing stable Fe3O4 nanoparticles (2005). Therefore, 

oleic acid is added to the above resulting mixtures.  

 

By employing this method it has been reported that the values of the magnetization 

saturation, Ms, are found to be in the range of 30-50 emu/g, lower than the bulk value 

of 90 emu/g (Lu et al., 2007). The large gap is due to the size, shape and 

composition of the nanoparticles prepared. Notwithstanding, the chemical co-

precipitation has many advantages such as the ability to synthesise large quantities 

of nanoparticles, but at the expense of control over particle size and monodispersity.  
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2.8 Magnetic Nanoparticle Hyperthermia 

What is hyperthermia? The term is derived from Greek words which mean 

‘overheating’. Hyperthermia is a promising approach to cancer treatment. It is a term 

used for the act of raising the whole body or certain parts of the body or tissues or 

organs to temperatures between 41 – 46 oC (Hergt et al., 2006). This can be 

achieved by heating in several ways such as water bath (Yatvin et al., 1978), 

electrodes (Strohbehn, 1983) and microwaves (Franconi et al., 2011). The problem 

encountered with the application of hyperthermic treatments is that it is difficult to 

heat the local tumour region without simultaneously killing the normal tissue. The 

higher temperatures can kill a great number of tumour cells, and in principle, tumour-

specific hyperthermia can kill all types of tumour cells.  

 

Some researchers have proposed the concept of intracellular hyperthermia and have 

developed submicron magnetic particles for inducing hyperthermia (Jordan et al., 

1993; Mitsumori et al., 1996). This concept is based on the principle that under an 

alternating magnetic field (AMF), a magnetic particle can generate heat by hysteresis 

loss. Therefore, if magnetic nanoparticles are used to heat the subject, it is called 

magnetic nanoparticle hyperthermia. The IONs serve as mediators and help induce 

heat to the local tumours. When exposed to an external magnetic field, the 

mediators’ magnetic moments oscillate, whereby the electromagnetic energy is 

converted into heat (magnetic entropy change) (Ito et al., 2005) to destruct the 

tumour. In other words, the application of an external magnetic field of sufficient 

strength induces a magnetization in the nanoparticles and then, by applying a field 

alternating with high enough frequency, the magnetization of the particles is 

continuously reversed, which translates into a conversion from magnetic to thermal 

energy. This heat is released to the immediately surrounding diseased tissue. Brown 

and Néel relaxations are the dominant means of the thermal power dissipation. Both 

relaxations take place simultaneously but, to achieve high heating rates the Néel 

relaxation must not be allowed to dominate.  

 

By considering Néel and Brown relaxations process to occur simultaneously, the 

effective relaxation time of    is given by: 

http://www.sciencedirect.com/science/article/pii/0360301683904194


Literature Review Chapter 
2 

 

51 
 

 

 
  

 

  
  

 

  
                                                                     

Therefore, the power dissipation, P for a monodispersion in an RF field of amplitude, 

H and frequency, f  is given by: 

          
    

    

          
                                            

where    is the permeability of free space,    is the magnetic susceptibility. By 

dividing Equation 5 with the mass of magnetic crystal, the specific power absorption 

(SPA) (also called the specific absorption rate, SAR) is obtained i.e.: 

     
   
 

  

  
                                                              

where, C is the volumetric heat capacity of the sample, VS is the sample volume, and 

m is the mass of magnetic material in the sample. Figure 2.18 is adopted from Lima 

and co-workers (2013) to illustrate this phenomenon as variation of the particle size. 

It also should be noted that superparamagnetic materials are capable of generating 

higher levels of heat at lower fields. Hergt and co-workers (1998) reported a SPA 

value of 45Wg−1 at 6.5 kAm−1 and 300 kHz which extrapolates to 209 Wg−1 for 

14kAm−1, compared to 75Wg−1 at 14 kAm−1 for the best ferromagnetic magnetite 

sample. 

 

 

Figure 2.18 Calculated SPA versus d curves of nanoparticles dispersed in toluene 
for an alternating magnetic field with H0 = 13 kA/m and f = 250 kHz, and assuming 
the magnetic parameters characteristics of Fe3O4 nanoparticles with size dispersion 
of σ = 0.20 (Lima et al., 2013). 
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Yatvin and co-workers reported the first work on treatment using hyperthermia 

(1978). In that study, liposomes containing dipalmitoyl phosphatidylcholine (DPPC) 

and distearoyl phosphatidylcholine with transition temperature, TC, values of 41 and 

54 oC, respectively, were prepared at variable concentration. The basic strategy of 

the work is to exploit the liquid to crystalline TC of lipids. Lipid systems are very 

sensitive to temperature. This is due to their non-ionic nature that lead to 

spontaneous structural changes to isotropic, liquid crystal, gels etc upon temperature 

changes (Paphadjopoulus et al., 1973). Earlier studies had shown that normal cells 

start to damage at about 42 °C (Crile, 1962). Therefore, in order to achieve the 

targeted therapeutic effect, just a few degrees above physiological temperature is 

required. The result showed that maximum killing of E-coli was seen with liposomes 

preincubated in the range 42 to 46 oC. From that pioneering contribution, work on 

hyperthermia then explores other approaches to heating such as cathode, 

microwaves, ultrasound and lasers as reviewed by Guardia and co-workers (2012).  

 

It has been mentioned earlier that credits for the early work on hyperthermia with 

magnetized microparticles being heated by an external magnetic field, goes to a 

much earlier contribution by Gilchrist and co-workers (1957).  This was followed by 

Meyers and co-workers (1963) and Turner and co-workers (1975). More defined 

microstructures of magnetic materials were later extensively investigated in the late 

1970s (Widder et al., 1978; Zimmerman et al., 1978; Mosbach and Schröder, 1979; 

Kato et al., 1984; Gupta et al., 1989).  

 

In 1993, Jordan and co-workers were claimed to be the first group to report the safe 

H-field amplitudes and frequencies of RF radiation for excitation of magnetic 

nanoparticles for application in humans. At the same time, Chan and co-workers 

(1993) have also carried out similar research work which contributed to a thorough 

application of hyperthermia in the treatment of tumours. Most of the stated 

investigations above were carried out by using the parenteral route in administrating 

the active ingredient (drug). However, there are only limited studies of hyperthermia 

treatment via oral administration. One of the examples of hyperthermia with 

magnetised particles that was carried out via oral administration was performed by 
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Cheng and co-workers (2006). In this study, the result revealed a prolonged transit 

time of magnetic particles when an external field is applied to the intestine. This in 

turn extended the residence time in the small intestine and increased the absorption 

which led to improved delivery (Cheng et al., 2006). 

 

In the context of hyperthermia with magnetised nanoparticles iron oxides Fe3O4 

(magnetite) and γ -Fe2O3 (maghemite) are frequently employed. These materials 

have been regarded as safe to humans. In addition, the human tissues are also 

transparent to the magnetic field when RF radiation is applied to them (Tiihonen et 

al., 1991). Nanoparticles absorb radiofrequency in the region of 100 kHz-1 MHz, and 

their SPA dictates the effectiveness of their heating (Hergt et al., 2006) as explained 

earlier. 

 

The limited study of orally-administered hyperthermia treatments with magnetic 

nanoparticles and the excellent safety profile of the used materials have paved a 

route for further exploration which serves as another main aim of this study, which is 

discussed in Chapters 5-7. 
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CHAPTER 3 

Materials, Equipment and Methodologies  

 

3.1 Materials 

Table 3.1 List of chemicals  

Experiment Substances Source 

 n- Hexane Sigma Aldrich 

 Cyclohexane Sigma Aldrich 

 Toluene Sigma Aldrich 

 Methyl Acetate Sigma Aldrich 

 Ethyl Oleate Sigma Aldrich 

 SPAN 20 Sigma Aldrich 

 TWEEN 80 Sigma Aldrich 

Microemulsion Insulin Sigma Aldrich 

 Sucrose Sigma Aldrich 

 1-Butanol Sigma Aldrich 

 Iron (II) Sulphate Heptahydrate Alfa Aesar 

 Iron (III) Chloride Hexahydrate Alfa Aesar 

 Ammonium hydroxide Sigma Aldrich 

 Oleic Acid Sigma Aldrich 

 Ethanol Sigma Aldrich 

 Hydrochloric Acid Sigma Aldrich 

DLS Toluene Sigma Aldrich 

TEM Chloroform  Sigma Aldrich 

SEM   Ethanol Sigma Aldrich 

DSC n-Octadecane Sigma Aldrich 

 Indium Sigma Aldrich 

 Paracetamol Sigma Aldrich 

 Sodium Cholate Sigma Aldrich 

 Sodium Taurocholate Sigma Aldrich 

Dissolution Test Sodium dihydrogen phosphate Sigma Aldrich 

 Sodium Chloride Sigma Aldrich 

 Sodium Hydroxide (pellets) Sigma Aldrich 

 Hydrochloric Acid Sigma Aldrich 

UV & FTIR Acetone Sigma Aldrich 

 Sodium dihydrogen phosphate Sigma Aldrich 

 Acetonitrile Sigma Aldrich 

HPLC Orthophosphoric Acid Sigma Aldrich 

 C18 (2) column Phenomenex 
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3.2 Equipment and methodology 

 

3.2.1 Introduction  

 

The term microscope derives from Ancient Greek language: small (mikros) and to 

look or see (scopein). It has been around for several centuries. The first microscope 

invented was the optical or light microscope. It uses visible light (located at the 

bottom of the instrument) which is passed through the object. Glass lenses are used 

to focus the light that is passed through the platform (sample stage) where the object 

is placed on a glass slide covered with a glass cover. The image of the object is 

observed through the eyepiece or ocular of the microscope. Since the optical 

microscope uses visible light, what is observed is dependent on the wavelength of 

the light. This limits the range and clarity of the images especially at high 

magnification when an object is observed under an optical microscope. For practical 

purposes, the diffraction limit means that the smallest objects that can be observed 

are about 0.5-1 µm. This prompted the introduction of the electron microscope in 

1931 by Max Knoll and Ernst Ruska (www.nobelprize.org/nobel_prizes/physics/ 

laureates/1986/ruska-bio.html). 

 

3.2.1.1 Transmission electron microscope, TEM 

 

In TEM (Figure 3.1), the same principle as in an optical microscope is applied but it 

uses electrons instead of light. As the name implies, electrons are transmitted 

through the sample materials, usually nanomaterials, or thin films. TEM provides 

information on the morphology and size of the samples investigated. An electron 

source, located on top of the instrument, emits electrons. The electrons then travel 

through evacuated chambers. The electrons in the chambers are focussed by using 

electromagnetic lenses thus creating a beam that accelerates further down through 

the object. After passing through the object, the unscattered (or transmitted) 

electrons hit the fluorescent screen at the bottom of the instrument and produce the 

desired image. The lower wavelength of electrons compared with visible light  allows 

better resolution than with an optical microscope, and especially at higher 

http://en.wikipedia.org/wiki/Max_Knoll
http://en.wikipedia.org/wiki/Ernst_Ruska
http://www.nobelprize.org/nobel_prizes/physics/%20laureates/1986/ruska-bio.html
http://www.nobelprize.org/nobel_prizes/physics/%20laureates/1986/ruska-bio.html
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magnification, allowing objects to be imaged down to the nanoscale and in the best 

HR TEM instruments right down to atomic resolution. 

 

 

Figure 3.1 Comparison of light microscope, LM, transmission, TEM and scanning 
electron microscope, SEM (http://cmrf.research.uiowa.edu/transmission-electron-
microscopy) 
 
 

In this work, samples containing IONs in chloroform are dropped carefully onto a 

circular cooper grid. The grid is then placed onto a sample holder and inserted into 

the electron beam, between the condenser and apertures, through a vacuum seal. 

The samples then interact with electrons and the images appear on a fluorescent 

screen. The images are captured with a digital camera. The morphology and size of 

the synthesized particles were observed using transmission electron microscope 

(TEM, Jeol-JEM 2000EX).  

 

 

 

 

http://cmrf.research.uiowa.edu/transmission-electron-microscopy
http://cmrf.research.uiowa.edu/transmission-electron-microscopy
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3.2.1.2 Scanning electron microscope, SEM 

 

The invention of the scanning electron microscope, SEM soon followed after the 

invention of TEM. As the name implies, SEM uses an electron beam to scan the 

surface of the samples. It uses a focused beam of electrons to generate a variety of 

signals at the surface of solid samples. The signals that derive from electron-sample 

interactions, provides information on the samples surface morphology. Electrons 

impacting onto a material result in a number of interactions with the atoms of the 

target sample. Accelerated electrons can pass through the sample without 

interaction, undergo elastic scattering and can be in elastically scattered as shown in 

Figure 3.2. 

 

 

Figure 3.2 When the incident energy of the electron beam collide with a sample, a 
variety of electrons (auger, secondary and back-scattered), X-rays (characteristic and 
Bremsstrahlung), light (cathodoluminescence) and heat (phonons) are emitted. 
(http://serc.carleton.edu/research_education/geochemsheets) 
 

In SEM, back scattered electrons, secondary electrons, characteristic X-ray and 

chathodoluminescence produced after collision with the samples are used for the 

imaging of samples to get its surface morphology and 3D-impression. In most 

applications, data are collected over a selected area of the surface of the sample with 

areas in micro-scale, approximately 1 cm to 5 microns, in width. Unlike TEM, atomic 

scale imaging cannot be done using SEM, due to their lower magnification. The 

resolution of SEM is 0.4 nanomaters while TEM is 0.05 nanometers. 

http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
http://serc.carleton.edu/research_education/geochemsheets
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In this work, all the samples, after being properly cleaned, rinsed, dehydrated, and 

dried were coated with gold (thickness of 15nm) by a Polaran SC7640 sputter gold 

coater (Quorum Technologies) at an accelerating voltage of 2.2 kV prior to imaging. 

Care was taken by using disposable gloves and tweezers to prevent unwanted 

deposits. The sample was sprinkled on a carbon tape mounted on an aluminium 

SEM stub. After coating, the sample specimens were imaged in the high vacuum 

sample chamber equipped with electron optic column and electronics console. The 

SEM instrument employed was a JEOL JSM - 5900LV Scanning Electron Microscope 

(JEOL Ltd, Japan) fitted with a Tungsten filament.  

 

3.2.2 DLS particle size analyzer 

 

Dynamic Light Scattering (sometimes referred to as Photon Correlation 

Spectroscopy) is one of the most popular methods for measuring the size of 

particles. It is about the measurement made from particles suspended within a liquid. 

When a light (usually a laser) is passed through the liquid placed in a sample cell, it 

is scattered in all directions (Figure 3.3) (Hiemenz, 1986). This is known as Rayleigh 

scattering. The scattered light is measured by a detector.  

 

 

Figure 3.3 A schematic illustration of DLS setup 
 
When the light is scattered in all directions from many different particles, some waves 

are bound to cancel each other and some may constructively interfere with each 

other. This phenomenon is called destructive and constructive interference as shown 
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in Figure 3.4A and B, respectively. If the interference is a destructive one, the net 

intensity detected is reduced (Figure 3.4A). If they interfere constructively, the 

intensity is enhanced. 

 

 

Figure 3.4 Illustration of (A) destructive and (B) constructive interference resulting in 
the variation of the intensity detected (http://www3.nd.edu/~rroeder/ame60647/ 
slides/dls.pdf). 
 

The intensity of the scattered light by a single small particle is expressed as a ratio 

i.e. I/Io, where I is the intensity of scattered light and Io is the intensity of the incident 

light. This ratio is called the Rayleigh ratio, Rθ is given by: 

 

    
 

    
  

          

   
   

  

 
 
 

  
     

    
 

 

  
 

 
 
 

                                

 

where, 

λ = wavelength of the light. 

R = distance to the particle 

n = refractive index of the medium 

d = diameter of the particle 

 

The Rayleigh approximation shows that the intensity of the scattered light varies 

directly with the sixth power of d and inversely with the fourth power of λ. What this 

http://www3.nd.edu/~rroeder/ame60647/%20slides/dls.pdf
http://www3.nd.edu/~rroeder/ame60647/%20slides/dls.pdf
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means is that in a mixture with large differences in particle size, the contribution of 

the smaller size to the total light scattered is very small. This makes it difficult for DLS 

to perform accurate measurement in polydisperse samples. Also a higher scattering 

intensity is observed when the wavelength of the light is reduced. 

 

 

The correlation function, G    of the scattered intensity is the exponential decaying 

function of the correlator time delay  . The equation is given below; 

 

                                                                            

 

where   is the time difference of the correlator. For monodisperse and polydisperse 

samples, G    is expressed as Equation 3 and 4, respectively 

 

                      
   

  
     

 

 
                                    

 

                  
                                                          

 

where,  

 

A = the baseline of the correlation function 

B = intercept of the correlation function 

D = translational diffusion coefficient which is the velocity of Brownian motion 

g1( ) = the sum of all the exponential decays contained in the correlation function  

n = refractive index of dispersant 

λo = wavelength of the laser 

θ = scattering angle 

 

Therefore, the size of the particle is obtained from the translational diffusion 

coefficient, D from the correlation function Equation 3 by using the Stokes-Einstein 
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equation. Assuming spherical particles, the translational diffusion coefficient is shown 

as; 

  
   

    
                                                                             

where, 

Kb = Boltzmann constant 

T = Temperature 

  = viscosity 

d = hydrodynamic diameter of the particle 

 

The size distribution obtained is a plot of the relative intensity of light scattered by 

particles in various size classes. It is often represented in terms of number, volume 

and intensity percent as shown in Figure 3.5.  

 

 

 

Figure 3.5 Illustration of the number, volume and intensity distributions of a  mixture 
of two different particle sizes present in equal numbers (http://www.nbtc.cornell.edu) 
 
 

In this work, the nanoparticle size distributions were measured using the supplied 

software Particle Size Analyzer (ZETA-SIZER, MALVERN Nano-ZS90) with HeNe 5 

mW laser at 173o. The nanoparticles were dispersed in toluene and filled into a 
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cuvette. The cuvette was placed into the holder and illuminate by a laser beam. The 

scattered light was measured by a detector.  

 

3.2.3 X-ray powder diffraction 

 

When William Conrad Rontgen first discovered x-rays, nothing was known about their 

exact nature (1895). It was initially thought that they would exhibit wave-like nature. It 

wasn’t until 1912, Friedrich and co-workers performed the first diffraction experiment 

using a copper sulphate single crystal. They obtained a diffraction pattern and 

concluded that x-rays must be electromagnetic radiation.  

 

Bragg diffraction was first proposed by William Lawrence Bragg (1912) when they 

discovered the principle of constructive interference of X-rays which have been 

scattered from a set of parallel lattice planes. Figure 3.6 shows X-rays are diffracted 

by the crystal planes an angle (glancing angle) twice the angle of incidence, θ.  

 

 

 

Figure 3.6 X-ray are diffracted by a crystal lattice at an angle (glancing angle) twice 
the angle of incidence, θ. 
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Consider an incoming X-ray beam will be scattered by lattice point A as shown in 

Figure 3.7a. 

 

 

 

Figure 3.7 X-ray diffraction by a crystal lattice. (a) An incoming X-ray will be 
scattered by lattice point A at an angle twice the glancing angle (θ). (b) Multiple 
lattice planes with spacing d will scatter incoming X-rays by an angle θ according to 
Bragg’s Law (Equation 1). 
 

Constructive interference occurs between waves at points A and B if the distances 

AC and DB are equal. Successive planes also scatter in phase (Fig 3.7b) on the 

condition that the path difference is an integral number of wavelengths, i.e. obeys the 

equation: 

  nλ = 2d sinθ        [1] 

which is the Bragg’s Law, where d is the spacing of the planes, θ is angle, λ is the 

wavelength of the scattered X-ray and n is an integer. Diffraction from any set of 

lattice planes can only occur at the angles predicted by Bragg’s law. The peaks 

(referred to as reflections) observed in diffraction patterns are labelled using Miller 

indices (h k l). As a way of illustration Figure 3.8 shows the shaded region of Miller 

indices. 

 

X-Ray 1 

X-Ray 2 
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Figure 3.8 Several atomic planes shown by the shaded region in a simple cubic 

crystal 

 

In this work, the IONs were analyzed for phase composition using a XRPD, Thermo 

ARL Xtra model (Switzerland) using using Cu-Kα radiation (λ = 1.540562 Å). The 

samples were pressed into a sample holder to generate a flat and smooth plane 

surface. The samples were then exposed to an X-ray beam with voltage of 45 kV and 

a current 40 mA. All XRPD experiments were performed at step scan of 0.01o and 1 

second for every step.  

 

3.2.4 UV-visible spectroscopy 

 

Figure 3.9 shows the full electromagnetic spectrum. However, our eyes can only see 

the visible light. Passing visible light through a prism, a typical rainbow is observed 

namely VIBGYOR (violet, indigo, blue, green, yellow, orange, red) which consists of 

seven different colours. Each colour has a different wavelength ranging from 400-800 

nm.  
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Figure 3.9 The electromagnetic spectrum of light 

 

The UV region ranges from 190 to 400 nm. The UV-visible spectrometer is the 

equipment that is used to measure the absorption of UV or visible light. The 

absorption of light in the UV-visible region, depending on the amount of energy, can 

cause the excitation of electrons from lower to higher energy levels within molecular 

orbitals. The shape of the spectrum depends on the properties of the molecule.  

 

UV-visible spectroscopy is also use to determine the concentration of substances by 

using the Beer-Lambert law. According to the law, the absorbance is proportional to 

the concentration of the substance in solution and is expressed in the form of the 

following equation: 

 

                                                                                        

 

where, 

 

A = absorbance 

l = optical path length, i.e. dimension of the cell or cuvette 

c = concentration of solution  

  = molar extinction, which is constant for a particular substance at a particular 

wavelength 
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From the equation, a calibration curve of absorbance versus concentration is plotted 

and the concentration of an unknown substance can be determined by measuring its 

absorbance. Nowadays, this technique is widely used for dissolution testing of tablets 

and capsules in the pharmaceutical industry. It was used for this purpose in Chapter 

7. 

 

In this work, the drug used in the dissolution studies was paracetamol.  In order to 

quantify the drug content in a medium sample, each sample was scanned at a 

wavelength of 243 nm. Prior to quantifying the drug content, calibration curves were 

constructed by using standard solutions of drug in the corresponding medium or 

buffer. The drug was weighed accurately in a weighing boat then transferred into a 

dry volumetric flask. Then the solution was made up to the desired volume. Once the 

drug solution (stock solution) was prepared, 1, 2, 3, 4, 5 ml aliquots of the stock 

solution were transferred into separate 10 ml volumetric flasks for dilution. A further 

amount of medium was added to each volumetric flask to obtain a series of 10 ml 

solutions for the calibration.  

 

The series of solutions were analyzed with a Perkin-Elmer Lambda XLS UV/VIS 

spectrophotometer (USA). The average absorbance readings were plotted against 

the respective drug concentrations to get a calibration line. Each point in the 

calibration line was an average value of three measurements as shown in Appendix 

B. 

 

 

3.2.5 FTIR spectroscopy 

 

Fourier Transform Infrared spectroscopy, FTIR is the IR spectroscopy of choice. Just 

as in many spectroscopy techniques, IR radiation is used to pass through a sample. 

Some of the IR radiation is absorbed by the sample and some may just transmit. The 

pattern of absorption and transmission results in a spectrum and creates a molecular 

fingerprint of the sample. As the name implies, no two compounds produce the exact 

same IR spectrum. 
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IR radiation is another form of radiation found in the electromagnetic spectrum with a 

wide range of 13,000 to 10 cm–1, or wavelengths from 0.78 to 1000 μm. It is further 

divided into three smaller areas; near, mid and far IR. The most frequently used in 

much experimentation is the mid IR ranging from 4000 to 400 cm-1. The main 

objective of IR spectroscopic analysis is to determine the functional groups in the 

sample 

 

In a molecule the total energy is the sum of the contributing energies due to the 

movement or motion of bonds in the molecule i.e., 

 

                                                                      

 

Theoretically, all atoms in the molecule are in continuous vibration. The major types 

of molecular vibrations are stretching and bending as shown in Figure 3.10 for the 

CH2 group (Silverstein et al., 1981). These stretching and bending motions, together 

with rotational motions lead to the absorption peaks observed in the spectrum.  An 

example of these absorption peaks together with their respective wavenumber is 

shown in Figure 3.11 (Lu et al., 2012). 

 

 

Figure 3.10 The vibrational modes for a nonlinear group, CH2 (Silverstein et al., 
1981). 
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Figure 3.11 FT-IR spectra of 6 nm (a) oleic-acid-capped Fe3O4 nanoparticles, and 
(b) carboxyl–PEG–phosphoric-acid-stabilized Fe3O4 nanoparticle (Lu et al., 2012).  

In this work, the measurement was carried out on a Fourier transform infrared 

spectrometer (BRUKER IFS 66/S) in the range 4000-500 cm−1 (wavenumber), with 

16 scans at a resolution of 2 cm-1. The samples of the synthesised magnetic 

nanoparticle were dried in vacuo and analysed as a solid powder. Acetone was used 

to clean the crystal area of the ATR plate. The powdered samples were then placed 

directly onto the ATR crystal.  

 

3.2.6 Superconducting quantum interference device, SQUID 

 

Magnetic nanoparticles are nanoparticles that exhibit magnetic properties just like in 

any magnet, such as the magnetic flux which flows through space.  A SQUID is the 

most sensitive magnetometer for detecting the magnetic flux. The device has been 

used to detect weak magnetic field, current, voltage, and magnetic susceptibility. It 

consists of a loop of superconductor with one or more Josephson junctions, called 

weak links. British physicist Brian David Josephson, now a retired professor at 

the University of Cambridge, discovered the Josephson effect, invented the 

Josephson junction, and SQUID in 1962. He was later awarded the 1973 Nobel Prize 

for his discovery. Josephson junctions are barriers between two superconductors 

where electric current (known as Josephson current) can flow through them.  

http://en.wikipedia.org/wiki/Emeritus
http://en.wikipedia.org/wiki/University_of_Cambridge
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From the SQUID instrument, magnetic curves (such as in Figure 3.12) are generated 

and important parameters and properties can be extracted such as the coercivity, 

remanence, saturation magnetization and the type of magnetic material can be 

further classified. 

 

 

Figure 3.12 Hypothetical magnetization versus magnetic field curve for 
superparamagnetic (SPM) and ferro- or ferromagnetic nanoparticles (FM) where the 
coercive field (HC), the saturation magnetization (MS) and the remanent 
magnetization (MR) parameters are indicated (Figuerola et al., 2010). 
 
 
Upon application of a magnetic field to a ferromagnetic material, the resulting curve is 

well described by a hysteresis loop (shown as blue lines in Figure 3.12). This loop is 

characterised by three distinct parameters: coercivity, remanence magnetisation and 

saturation magnetisation. The first parameter i.e. coercivity, Hc is related to the area 

or thickness of the curve. In fine particles such as nanomaterials, the coercivity is the 

property of most interest. It has been found that as the particle size is reduced, the 

coercivity increases to a maximum and then decreases toward zero as shown in 

Figure 3.13 (Akbarzadeh et al., 2012). When the coercivity becomes zero such 

particles become superparamagnetic and have no hysteresis. 
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Figure 3.13 Schematic repsentation of the coercivity-size relations of small particles 
(Akbarzadeh et al., 2012). 
 
The second parameter is the remanent magnetization, MR, which indicates the 

magnetisation at zero applied field. The third is the saturation magnetization, MS, 

which is the maximum value of magnetization that the material can reach under the 

effect of sufficiently high magnetic fields. For a super paramagnetic material, Hc and 

MR is equal to zero.  

 

In this work, magnetisation data was taken using a Quantum Design MPMS SQUID 

VSM Magnetometer (San Diego, USA) at 300 K using a field range of ±7 T. The 

equipment is located at University College of London. The samples of the 

synthesised magnetic nanoparticle were dried in vacuo and analysed as a solid 

powder.  

 

3.2.7 Differential Scanning Calorimetry, DSC 

 

The law of conservation of energy states that energy can neither be created nor 

destroyed, but can be transferred into different forms. One of the forms is heat, q. 

Thermodynamics is the subject that deals with thermal transfer of energy. If heat is 

absorbed, the process is called endothermic. If heat is released, it is called 

exothermic.  

 

DSC is a reliable method for measuring the above as well as the thermal transitions 

and other thermodynamics properties of materials. In DSC the material is subjected 
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to continuous heating and at some points its phase changes. A classic example is 

ice. Upon heating, it melts at a transition temperature of 0oC and further heating, it 

vaporized at a transition temperature of 100oC. These two transition temperatures 

are called the melting and boiling point, respectively. Melting point is often measured 

using a simple melting point apparatus. However, the value is not precise and difficult 

to reproduce. By using DSC, the melting points are obtained from a calibrated and 

highly precise system. In addition, it also provides more information about the 

sample. Besides the changes in the transition temperature, it should also be noted 

that changes in the phases also occur from solid to liquid to gaseous phase. Data 

from DSC also allows other thermodynamic properties such as the latent heat, heat 

capacity, heat of transitions, heat of polymerization etc to be elucidated. The data 

from DSC, the heat flow, (       is plotted against temperature, T.  

 

Figure 3.14 shows typical transitions and phase changes when an amorphous 

material is subjected to continuous heating. The material undergoes a glass 

transition, followed by crystallization, melting and finally at higher temperature, it may 

undergo oxidation or decomposition  

 

 

Figure 3.14 DSC curves when an amorphous material is heated continuously. 

 

Usually in a standard DSC, the temperature of the furnace is raised and lowered in a 

linear fashion. This has certain issues of overlapping peaks and it is difficult to 

interpret the data. These issues can be corrected by using a Modulated Temperature 
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DSC (Gill et al., 1993).  Modulated Temperature DSC, MT-DSC is for DSC 

techniques where a non-linear heating or cooling rate is applied to the sample. This 

is to separate the kinetic from the thermodynamic data, and therefore removes the 

kinetic noises and the overlapping of peaks. 

 

In this work, thermograms were recorded with a modulated temperature DSC 

(Q2000, TA Instrument, Newcaslte USA) at a preselected uniform scan rate of 2oC 

min-1, 60 sec for the modulation period and ± 0.318oC for the amplitude (unless 

otherwise specified). 

 

Samples of the coatings were weighed (1 to 3 mg) into pinhole aluminium pans 

(Perkin Elmer) to allow the removal of excessive moisture in the sample in order to 

minimize influence of water content on the sample’s properties. Temperature and cell 

constant calibration of DSC were performed using indium, n-octadecane and tin. The 

transition temperature was determined as onset temperature by extrapolation to the 

baseline of the peaks as a function of temperature. The latent heat was determined 

from the area under the transition peak by comparison with a known standard namely 

indium. 

 

3.2.8 Thermogravimetric Analysis, TGA 

 

Thermogravimetric Analysis (TGA) measures the changes in the sample weight of a 

material caused by the chemical or physical processes as a function of temperature 

or time in a controlled atmosphere. Measurements are used primarily to determine 

the composition of materials and to predict their thermal stability at temperatures up 

to 1000°C. The technique can characterize materials that exhibit weight loss or gain 

due to decomposition, oxidation, or dehydration. 

 

In this work, samples were heated from room temperature up to 100oC at heating 

rate of 10oC per minute and held isothermally for at least 15 minutes before 

continuing the heating ramp up to 700oC. The instrument used was a TGA Q5000 

(TA Instruments, Newcastle, USA). 
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3.2.9 Hyperthermia studies 

 

3.2.9.1 Magnetherm system 

Figure 3.15 shows the schematic representation of the set up for hyperthermia 

studies (www.nanotherics.com).  

Thermocouple

Cooling 
Water

Computer

Function 
Generator

DC Power

OscilloscopeSample Holder

P
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 W
 E R

 

Figure 3.15 Schematic representation of hyperthermia system setup 
(www.nanotherics.com) 
 

The Magnetherm is a device used to measure the heating effects of magnetic 

nanoparticles for hyperthermia applications. It is portable and only requires a water 

bath for cooling purposes. This device also offers a wide range of heating 

frequencies. Five different capacitor blocks and two coils (lengths 3 and 5 cm) 

provide for 10 different frequency options ranging from 100 – 1000 kHz. The 

frequencies are nominally: 110 (25), 168 (17), 176 (23), 262 (23), 335 (17), 474 (11), 

523 (20), 633 (9), 739 (16), 987 (12) kHz. The numbers in brackets are the maximum 

field strength for each frequency and are given in mT. These values are within the 

accepted literature values for successful hyperthermia and are reported to be safe for 

humans - in the range 0.1-1 MHz (Atsumi et al., 2007). 

 

http://www.nanotherics.com/
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The temperature of the setup was maintained at 37oC which is the temperature of 

human body. This was done in anticipation of the experimentation to be performed 

mimicking the GI tract later in the thesis.It was observed that when in use there was a 

general  heating effect resulting from the RF coil. This could be balanced via the 

cooling effect of a recirculating water bath, the temperature of which was adjusted by 

trial and error until a stable equilibrium temperature of 37oC was achieved. This was 

repeated at each different frequency/power setting and the results tabulated for 

future reference (Table 3.2) 

 With the circulating water bath set at 30.5oC and the RF coil on full power (6 

scope divisions Vp/p for 164.8 kHz) the resulting steady-state temperature of 

37oC was achieved inside the polystyrene insulating chamber after 15 

minutes. This was measured using the type T-thermocouple and  meter 

provided with the instrument (Rapid 328DMM) 

 The sample heated to 37oC using a second water bath and measured using a 

second type T-thermocouple 

 When the sample and polystyrene insulating chamber were fully equilibrated 

to 37oC, the power to the RF coil was turned down to minimum using the 

Course Voltage knob and the sample quickly transferred and inserted in the 

insulating chamber. The RF coil power was then adjusted back to the desired 

power setting. 

 

Table 3.2 The temperature of the circulating water bath needed to maintain a steady 
temperature of 37oC at different frequencies.  

Frequency, kHz Temperature set at circulating wath bath, oC 

109.9 20.0 

164.8 30.5 

329.6 10.0 

  

173.9 35.0 

521.3 17.5 

737.5 20.0 
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3.2.9.1.1 Heating effect of ferrofluid 

 

The experimental setup for this work is shown in Figure 3.16. In this work, the same 

amounts of IONs with different particle sizes in the ferrofluid were poured into the 

eppendorf vial. A type T-thermocouple probe is inserted into the vial and the other 

end of the thermocouple terminal was attached to a computer via the thermocouple 

input of a ‘MyPCLab’ AD converter module. This was read using a custom-written 

LabView data logging routine, which displayed the data in real time and also wrote it 

to a DAT file for future use. This was imported to Excel for display and data 

processing. 

 

 

 

Figure 3.16 The magnetherm setup for hyperthermia studies. 

 

Insulated sample 
holder  

Thermocouple 

Signal 

Generator 

Oscilloscope 

Circulating water 

bath 

Second water 

bath 



Materials, Equipment and Methodologies Chapter 
3 

 

90 
 

The eppendorf vial was then inserted into an insulated holder and placed directly into 

the sample aperture. The sample aperture was 44 mm in diameter. Care was taken 

to make sure the centre of the sample was located at the center of the coil (where the 

magnetic flux is highest). The temperature was set at 37oC by a circulating water 

bath. The thermal heating effect, due to the IONs, was monitored for 600 seconds. 

The experiment was done at 6 different frequencies using 2 different coils.  

 

3.2.9.1.2 Heating effect of IONs embedded in coatings 

 

In this work, IONs with a particle size 10 nm were mixed with the coating materials in 

a beaker. The resulting mixtures were heated slightly above the respective melting 

point of the coating materials and the molten mixtures were then homogenised using 

a Ultra-Turrax T8 micro homogeniser with a S8N-5G dispersing tool for 10 min. The 

homogenised mixtures were placed in a water bath controlled between 40- 45oC. To 

investigate the effect of ION loading, samples of 0.5 ml coating containing IONs at 2, 

4, 6, 8 and 10 percent by weight, were filled into eppendorfs vials. The vials are then 

inserted into the insulated sample holder and the resulting heating effect was 

monitored as described in 3.1.8.1. 

 

3.2.10 Dissolution studies 

 

Dissolution is a process whereby a solid solute enters a solution. Therefore, drug 

dissolution by definition is the amount of drug that enters the solution under 

standardized temperature and solvent composition (Qureshi and McGilveray, 1999). 

It is crucial for the development of drugs and is also an essential tool for quality 

control. The pioneers in this work were Noyes and Whitney (1897) more than a 

century ago. The salts used were benzoic acid and lead chloride as the solid solutes. 

The molten salts were poured into test tubes containing glass rods. From the results, 

they then proposed a relationship for the dissolution rate of solid solutes i.e.  
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where        represents the rate of dissolution, k is a constant, Cs is the equilibrium 

solubility of the solid and C is the concentration of solid in equilibrium at time t.  

 

Dissolution testing is an official test used by pharmacopeia’s for evaluating drug 

release. It was introduced as a USP method in the 1970s for oral tablets and 

capsules (Cohen et al., 1990). The basket method (USP apparatus I) became the 

first official dissolution test in 6 monographs of the USP. This was later followed by 

the paddle method (apparatus II), the reciprocating cylinder (apparatus III) and the 

flow-through cell (apparatus IV) in 1978, 1991, and 1995, respectively (Maddineni et 

al., 2012). 

 

In this work, a model drug, paracetamol, was filled inside hard gelatine capsules. The 

capsules were then coated with fatty acid (or paraffin) embedded with IONs. The 

capsules are then subjected to various dissolution media at variable pH values and 

temperatures. The pH of the dissolution media was prepared at pH 1.2 and 7.4, using 

0.1 M HCl and phosphate buffer, respectively. The medium at pH 1.2 represents the 

acidic conditions in the stomach and phosphate buffer pH 7.4  mimics conditions in 

the intestine. The temperature of the dissolution bath was set at 37 ± 0.5oC at 50 

rotations per minute. The dissolution test was performed for 2 h at pH 1.2. After the 

end of 2 h, the medium was changed to pH 7.4 and the test  continued. At certain 

intervals throughout the test period, 10 ml of medium was taken out for analysis and 

replenished with a fresh 10 ml medium. An aliquot of the removed dissolution 

medium was then used to determine the concentration of the drug. The drug 

concentration was determined by using a Perkin-Elmer Lambda XLS UV/VIS 

spectrophotometer (USA) at 243 nm (please refer to section 3.1.4 for the 

methodology). 

 

Dissolution tests were performed using BP Apparatus I (D8000, Copley Scienfitic 

Ltd., Nottingham, UK) with the basket method as shown in Figure 3.17. All dissolution 

tests were carried out in triplicate. 
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Figure 3.17 The BP Apparatus I using basket method. 

 

3.2.11 High Performance Liquid Chromatography, HPLC 

HPLC is a specialised separation technique using the chromatography process in 

order to separate components in a mixture. Figure 3.18 shows the setup of a basic 

HPLC system (Bird, 1989). Its components include a solvent(s) reservoir, pump, 

syringe (injector), injection valve, column, detector and recorder. 

 

.Figure 3.18 A typical set up of HPLC system (Bird, 1989). 
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A liquid solvent(s) or eluent(s) is driven throughout the system by a high pressure 

pump. The procedure starts by injecting a liquid sample through the sample injection 

valve. The injected sample flows together with the eluent over a column packed with 

a solid adsorbent material called the stationary phase. Each substance eluted from 

the column is then detected by a detector. How well an analyte in the sample is 

separated depends on the interaction of each of the analytes with the stationary 

phase and the eluent. If the interaction is weak, the analytes flow off the column in a 

short amount of retention time. If the interaction is strong, then the retention time is 

long. 

The equipment used was either Beckman System gold (Beckman Coulter, Inc, USA) 

comprising 507e-autosampler, 126-solvent module, and 168-diode array detector or 

a Perkin Elmer 200 series comprising autoinjector, quaternary pump and 785 UV 

detector. In-line solvent degassers were used on both systems. 

  

3.2.12 Dip coating of capsules 

 

The experimental setup for the dip coating process is shown in Figure 3.19. In this 

work, 10 % by weight of IONs were mixed with the coating materials in a beaker.  
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Figure 3.19 The experimental setup for the dip coating process. (Inset: capsules 
dipped into the mixture using custom-made suction tube). 

 

The resulting mixtures were heated slightly above the respective melting point of the 

coating materials and the molten mixtures were then homogenised using a Ultra-

Turrax T8 micro homogeniser with a S8N-5G dispersing tool for 10 min. The 

homogenised mixtures were placed in a water bath controlled between 40- 45oC. 

Using custom-made suction tubes (see inset of Figure 3.19), the capsules were 

sucked at the end of the suction tube using a membrane type vacuum pump. The 

capsules were then dipped layer by layer into the mixtures reversing the capsules to 

complete coating. The coated capsules were then allowed to harden overnight at 

room temperature.  
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From the above results, the thickness of each layer is measured and its amount of 

IONs is weigh and tabulated in Table 3.3.  

 

Table 3.3 The thickness of the layers and the amount of IONs for each dipping. 

Layer/Dip Thickness, mm Amount of IONs, mg 

 Mixed FA* Eicosane Mixed 

E:D** 

Mixed 

FA* 

Eicosane Mixed 

E:D** 

1 0.82 1.02 0.67 8.81 8.81 9.28 

2 1.17 1.17 1.01 10.67 10.41 13.41 

3 1.52 1.87 1.72 16.72 16.52 17.52 

*FA = Fatty Acid; **E:D = Eicosane:Docosane 
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CHAPTER 4 

 

Microemulsions as Template for the Preparation of Poly 

(alkylcyanoacrylate) Nanocapsules for Drug Delivery System via 

Microemulsion Polymerisation Method 

 

4.1 Introduction 

This chapter describes our initial attempt to prepare poly (alkylcyanoacrylate) 

nanocapsules via microemulsion polymerization. A region of water-in-oil 

microemulsion stabilised by non-ionic surfactant was identified and used as a 

template. Monomers were added into the microemulsion template in order to obtain 

nanocapsules. The prepared nanocapsules were intended for use in the delivery of 

drugs. In addition, the use of pseudoternary phase diagrams to locate the 

microemulsion region and the compositions of the template will also be described in 

this chapter.  

 

4.2 Surfactant 

Surfactants or surface active substances are a group of compounds with amphiphatic 

structures that is they contain in one structure, both hydrophilic groups (normally 

called their heads) and hydrophobic groups (normally called their tails). Compounds 

with these amphipathic structures are among the most demanded products in the 

chemical industries such as pharmaceuticals, cosmetics, detergents, paints, dye 

stuffs, pesticides, fibers and plastics (Rosen, 1978). Figure 4.1 shows a typical 

surfactant having both hydrophilic head and hydrophobic tail. In industry, surfactants 

are used either as essential additives or processing aids or in many cases as only a 

minor part of particular systems or formulations, although can have a dramatic effect 

on properties. 
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Figure 4.1. Structure of a typical surfactant (in this case a sodium palmitate (Na+-

OOC(CH2)14CH3)) (http://oregonstate.edu/instruct/bb350/textmaterials/02/Slide08.jpg) 

 

4.2.1 Types of Surfactants 

Surfactants are generally categorized, depending on the nature of their polar head 

group into four types (Kalyanasundaram & Thomas, 1977): 

I. Anionic – a surfactant molecule that can dissociate to yield a surfactant 

ion whose polar group is negatively charged. Example: Sodium dodecyl 

sulphate (C12H25SO4
-Na+)  

II. Cationic – a surfactant molecule that can dissociate to yield a surfactant 

ion whose polar group is positively charged. Example: 

Dodecyltrimethylammonium bromide (C12H25N
+Me3Br-) 

III. Nonionic – a surfactant molecule whose polar group is not electrically 

charged. Example: Dodecylalcohol ethoxylate 

http://oregonstate.edu/instruct/bb350/textmaterials/02/Slide08.jpg
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IV. Amphoteric – a surfactant molecule for which the ionic character of the 

polar group depends on solution pH. Example: Sulfobetaines 

 

Mostly, surfactants have crystalline structures and when a solvent, commonly water 

is added to the surfactant molecule, the crystalline molecules create their own 

interface by forming monolayers, micelles, vesicles and lyotropic liquid crystal in 

order to remove a portion of their structure from contact with the solvent 

(Kalyanasundaram & Thomas, 1977). Surfactant aggregates, on the other hand, can 

form separate thermodynamic phases such as emulsions or microemulsions. 

 

4.2.2 Microemulsion 

Microemulsions are colloidal dispersions of either water-in-oil and oil-in-water 

stabilised by amphiphiles (surfactants). They are transparent, homogenous, and 

isotropic dispersions. Microemulsions were brought to the attention of the scientific 

community beginning in the late 1940’s by Schulman and a series of collaborators 

(Hoar & Schulman, 1943; Schulman et al., 1948, 1949). Since then numerous 

attempts have been made to investigate various aspects of microemulsions from the 

treatment of microemulsions as colloidal systems (Adamson, 1969; Ahmad et al., 

1974) to more theoretical contributions (Reiss, 1975). Recent contributions have 

been directed towards industrial application, due to its unique properties, including 

encapsulation and controlled drug delivery, preparation of bactericidal and vaccine 

formulations (Boman et al., 1996) as well as for the preparation of cosmetics and 

pharmaceutical products (Bangham, 1995;  Talsania et al., 1997).  Microemulsions 

have merits over other vehicles or solvents due to their improved stability, 

solubilisation characteristics and ease in preparation. Microemulsions require only a 

minimal input of energy for their formation compared to size-reduced kinetically 

stabilised water-in-oil emulsions. 
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Figure 4.2 shows a schematic illustration of typical microemulsions. They are 

categorised into 3 types namely oil-in-water (O/W), bicontinuous and water-in-oil 

(W/O) (http://www.google.co.uk/imagesTYPESofmicroemulsion).  

 

 

Figure 4.2 Types of microemulsion 

(http://google.co.uk/imagesTYPESofmicroemulsion) 

These colloidal dispersions are also sometimes called nanoreactors. They can be 

used to carry out chemical reactions and, in particular, to synthesise nanomaterials. 

By controlling the parameters of the synthesis, these nanoreactors can be used as 

template to produce tailor-made products down to a nanoscale level with new and 

special properties (Eastoe and Warne, 1996; Lopez-Quintela, 2003). One such 

example is microemulsion polymerisation. Due to their small and uniform droplet size, 

they can form nanomaterials via polymerisation processes (Watnasirichaikul et al 

2000). In addition, if biocompatible oils and surfactants are used for the formation of 

the microemulsion, the need to separate the nanomaterials from the reaction medium 

following polymerisation when emulsion systems are used may be eliminated 

(Vauthier et al., 2003). 

 

 

 



Microemulsions as Template for the Preparation of Poly(cyanoacrylate) Nanocapsules 
for Drug Delivery System via Microemulsion Polymerisation Method 

Chapter 4 

 

102 
 

4.2.2.1 Nonionic microemulsion system 

In this work, the phase behaviour of stable W/O microemulsion regions formed by 

non-ionic surfactants was investigated. Non-ionic surfactant is an attractive choice 

due to its mild effect and low cost as compared to other types of surfactants. The 

W/O microemulsion region was chosen due to its vast potential in the pharmaceutical 

industry and because it’s potential has not been getting the attention it deserves 

compared to the O/W systems. We were particularly interested in its potential to 

incorporate biological molecules into the aqueous phase. It is also well known that 

non-ionic surfactants with the right combination of water and oil produce 

microemulsion regions without the need of using co-surfactant in some cases which 

would probably be beneficial to minimise protein denaturation in such systems.  

Candau and co-workers (1999) reported that microemulsion regions were found in a 

hydrophilic-lipophilic balance, HLB domain ranging from 8 to 11 using non-ionic 

surfactants such as Arlacel 83 and G1096.  Recently, it has been reported that a 

mixture of non-ionic surfactants with a lower HLB value of about 7.1 produce a stable 

W/O microemulsion region (Wan et al., 2010). The nonionic surfactants used were 

Tween 80 and Span 80.  Similar HLB values (7-8) with cosurfactant were favourable 

in order to produce a balanced microemulsion using sorbitan monolaurate (Crill 1) 

and polyoxyethylene (20) monooleate (Crillet 4 Super) (Alany et al., 2000).  

 

4.3 What is microemulsion polymerization? 

As the name implies, microemulsion polymerisation is the polymerisation reaction 

taking place in a microemulsion system. Basically, polymerisation reactions can be 

carried out by adding monomers to an acidic aqueous solution medium containing 

surfactant under mechanical stirring. The system is left for polymerisation under 

increasing pH of the medium until the desired products are obtained. The reaction 

proceeds through anionic mechanism since it is initiated in the presence of 

nucleophilic initiators like OH-, CH3O
-, CH3COO- and CN-. The nanocapsules are 

then collected by centrifugation. Depending on the type of aqueous solution of 
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surfactants (polymerisation medium) used the process is called emulsion or 

microemulsion polymerisation. 

As mentioned above, polymerisation may be achieved by incorporating a monomer in 

either the dispersed or continuous phase of the microemulsion. If this reaction takes 

place at the interface between the two phases, this process is called interfacial 

polymerisation. The interfacial polymerisation technique is the method use to prepare 

oily and aqueous-type nanocapsules surrounded by polymer membrane. 

 

4.3.1 Oily nanocapsules 

If the acidic polymerisation medium is an O/W system with an additional water-

miscible organic solvent such as ethanol or acetone, then oily-type nanocapsules will 

be produced (Chouinard et al., 1991; Gallardo et al., 1993; Yordanov and Bedzhova, 

2011). This type is preferred as carriers of lipophilic and oil-soluble molecules. Work 

by Chouinard and co-workers (1991), reported the production of nanocapsules with 

diameter of 200 nm by interfacial polymerization of isohexylcyanoacrylate (IHCA) 

monomer in an oil-in-water system. The effect of various parameters on the size of 

the nanocapsules was also reported. 

 

4.3.2 Aqueous nanocapsules 

As stated earlier in Chapter 2, Gasco and Trotta (1986) were the first to propose an 

interfacial polymerisation in W/O microemulsion systems which resulted in the 

production of aqueous nanocapsules. This was later improvised by using 

biocompatible W/O microemulsions using ethylcyanoacrylate as a monomer 

Watnasirichaikul et al., 2000). This type of aqueous nanocapsule is preferred for 

hydrophilic and water-soluble compounds such as many materials of bio origin like 

DNA, proteins etc. This is because the delivery of these materials is associated with 

low bioavailabilty due to proteolytic degradation (Zhou and Wan Po, 1991). 

Encapsulation is therefore important because it has been demonstrated that 

encapsulation within particulate delivery systems could protect peptides from 
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proteolytic enzymes (Damge et al., 1997). Hillaireau and co-workers (2007) used poly 

(isobutylcyanoacylate) aqueous nanocapsules to encapsulate mono- and oligo- 

nucleotides. They also showed that the presence of cationic polymers facilitated the 

encapsulation of the hydrophilic nucleotides.  

 

4.4 Objective 

The main objective of the work was to locate and characterise a microemulsion 

region, especially for W/O systems, that could be used to design a potential 

microemulsion polymerization to form nanocapsules. With that in mind, preliminary 

studies of the microemulsion region stabilised by nonionic surfactants were 

undertaken by;  

1. Constructing typical phase diagrams consisting of water/non-ionic 

surfactant with various oils as the third component. 

2.  Assessing a suitable composition from the phase diagram and 

investigating the particle sizes and stability. 

3. Selecting a microemulsion template system for further investigation into 

microemulsion polymerization. 

4. Preparation of poly (alkycynoacrylate) nanocapsules using the selected 

microemulsion template.  

5. Incorporation of a model protein drug into the system and assessment of 

encapsulation and release 
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4.5 Methods 

The overall experimentation for the preparation of nanocapsules using W/O 

microemulsion as a template is shown in Figure 4.3. 

 

Figure 4.3 Experimental flow chart 
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4.5.1 Construction of phase diagrams 

The basic idea is to understand and predict what phases will be stable in a system 

when  the temperature, pressure, and composition are defined  and how those 

stability relations will change as the prescribed parameters are varied. Ternary or 

three-component phase diagrams are essentially equilateral triangles. This triangle is 

a section cut from a three-dimensional figure. As a way of illustration, Figure 4.4 

shows a typical three-component phase diagram consisting of compound A, B and C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 A typical 3-component phase diagram with component A, B and C 

 

At any point in the triangle, the compositions of A, B, and C must add up to 100 

percent. At any apex, one component is 100 percent, while both others are zero. 

Along the line connecting A and C, the composition of B must be zero. The line AC is 
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also referred to as B-free axis. The point D shows the ratio of A to C and moving 

along the line from D to B indicates that the ratio of A to C is kept constant 

throughout the line, but with increasing proportion of B added. Note the arrow moving 

from A to B, the composition of A is decreasing as it approaches B and vice versa if 

the arrow moves from B to A.  

In this work, the phase diagrams were determined on a clear/turbid criteria basis by 

mixing two of the components and titrating with the smallest amount of the third 

component. The samples were then thoroughly mixed to homogeneity with a vortex 

mixer, centrifuged and then allowed to reach equilibrium at a specific temperature in 

a water bath. The phases were then examined by visual inspection between cross 

polarisers. An estimated region of the phases can then be made by this method by 

noting the turbid and clear compositions. 

 

4.5.2 Dynamic light scattering measurements 

In this work, 2 ml of selected microemulsion samples were prepared and kept in the 

water bath at 25oC overnight to equilibrate. A Zetasizer Nano Series (Malvern 

Instruments, Worcestershire, UK) set at 25oC were used to measure the droplet size.  

The measurement were made in triplicate. 

 

 

4.5.3 Preparation of poly (ethyl 2-cyanoacrylate) PECA nanocapsules by 

interfacial W/O microemulsion  

 

In this work, the PECA nanocapsules were prepared following the method used by 

Watnasirichaikul and co-workers (2000). 200 mg of ethyl 2-cyanoacrylate monomer is 

dissolved in 600 mg of chloroform. The mixture was then mixed with 10 ml of 

selected microemulsion template and mechanically stirred at 700 rpm overnight at  4 

oC for the polymerisation process to take place. The nanocapsules were then isolated 

from the microemulsion medium by repeated washing in ethanol. The nanocapsules 
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were centrifugated to remove residual oil and surfactant and were then freeze-dried 

for 48 hours. The mechanism referring to the polymerisation is shown in Figure 4.5 

(Yordanov and Bedzhova, 2011). 

 

 

Figure 4.5 The mechanism of poly (ethyl 2-cyanoacrylate) PECA polymerisation 
(Yordanov and Bedzhova, 2011). 

 

4.5.4 Preparation of poly (ethyl 2-cyanoacrylate) nanocapsules containing 

insulin  

In this work, the nanocapsules containing insulin were prepared following the same 

method as above (4.5.4) but, for this work, the aqueous component of the 

microemulsion template was replaced with an aqueous solution of insulin having a 

concentration 100 units/ml and a pH 7.4. 
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4.5.5 Assessing level of insulin entrapment 

In this work, 1.6 g of the polymerised insulin microemulsion was diluted with 10 ml of 

water. The pH is adjusted to pH 2.5 using hydrochloric acid. 300 µl of this dispersion 

were mixed with 300 µL of solution containing methanol and water at 80:20 (v:v) at 

pH 2.5. The mixture was then centrifuged. The supernatant was then injected into the 

HPLC equipment using a C18 column (Luna 5  m C18 (2), 150 mm x 3.0 mm; 

Phenomenex). The mobile phase used contained a mixture of acetonitrile and 

sodium dihydrogen phosphate at a weight ratio of 23.5 % by weight. The pH was 

adjusted to 2.5 using orthophosphoric acid. The column was maintained at 50oC and 

the flow rate at 0.5 ml/min. The eluent was monitored at a wavelength of 214 nm. 

The percent entrapment of insulin was calculated from the difference between the 

total amount of insulin added to the polymerisation template and the untrapped 

amount measured in the supernatant.   

 

4.5.6 In Vitro release study 

A previously reported method to determine in vitro release of insulin was adopted in 

this work (Watnasirichaikul et al., 2002). The release of insulin from the polymerised 

material was carried out by diluting 63.0 mg of dry polymer with encapsulated insulin 

to 20 ml with PBS (pH 6.8) which was subsequently stirred at 50 rev/min in a water 

bath (37oC). Samples of 200 ul were removed at various times and released insulin 

was analysed by HPLC as described above for the determination of encapsulated 

insulin. The release was monitored for 8 h at this pH. Release was also studied as 

described above at pH 1.2 (mimicking the GI tract condition) for 2 hours. 

 

4.6 Results and Discussion 

The results and discussion will be presented in 4 parts. The first part covers the 

investigation of microemulsion region stabilized by non-ionic surfactants by 

construction of phase diagrams. The second part, the dynamic light scattering 

measurements are presented. The third part, characterisation of poly(ethyl-2- 
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cyanoacrylate) nanocapsules. Finally, insulin entrapment and release were 

discussed. 

4.6.1 Phase Diagrams 

In order to understand the association behaviour of microemulsions, a preliminary 

investigation of the phase behaviour employing solvent/non-ionic surfactants with 

different types of oil as the third component was carried out. The solvents were water 

and insulin solution. The following results and discussion of the phase diagrams were 

reported in all of the three solvents.  

4.6.1.1 Water/Nonionic Surfactant systems 

In these investigations, two nonionic surfactants with similar HLB values as Crill 1 

and Crillet 4 super were employed. The nonionic surfactants were Tween 80 and 

Span 20. Crill and Crillet are suitable for topical preparation, while Tween and Span 

are usually used for preparation of food products. Tween 80 (HLB = 15) and Span 20 

(HLB = 8.5) were chosen since they have been previously described in the literature 

(Constantinides and Scalart, 1997; Hickey et al., 2010). They are readily available 

and their colloidal structures have been characterized by many groups (Aizawa, 

2009; Alany et al. 2001; Krauel et al. 2005; Shukla et al., 2004). Figure 4.6 shows the 

location of the one phase isotropic region for water/Span20/Tween 80. It was 

observed that both of the Tween 80 and Span 20 were completely miscible in each 

other. The isotropic solution region was found to be extending fully from the water-

free axis towards the water apex. A maximum water solubility of 24 weight percent of 

water was observed at Tween 80/Span 20 weight ratio of 60/40. This observation is 

in agreement with the previously reported result (Alany et al. 2001).  
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Figure 4.6 Pseudoternary diagram for water/Span 20/Tween 80 systems showing 
the isotropic region. 

 

4.6.1.2 Water/Span 20:Tween 80/1-Butanol  systems 

The ratio (i.e. 60/40 of Tween 80/Span20) was then used as the mixed nonionic 

surfactant apex and titrated with a third component containing 1-butanol as shown in 

Figure 4.7. The figure showed a similar pattern of the isotropic region to that of the 

water/Tween 80/Span 20 system (Figure 4.6) but, with a slightly reduced amount of 

the maximum water solubility of 20 weight percent. The maximum water solubility 

occurs at 1-butanol/Tween 80:Span 20 (60:40) weight ratio of 30/70. This suggested 

that a higher amount of mixed surfactant was required to achieve the maximum water 

solubility and to form the colloidal structures.  

 

 

 

Span 20 

Tween 80 Water 

Isotropic 

Region 

60/40 (Tween 80/Span 20) 

10 

20 

30 

40 

50 

60 

70 

80 

90 

50 

50 



Microemulsions as Template for the Preparation of Poly(cyanoacrylate) Nanocapsules 
for Drug Delivery System via Microemulsion Polymerisation Method 

Chapter 4 

 

112 
 

 

 

Figure 4.7 Pseudoternary diagram for water /Tween 80:Span 20/1-Butanol systems 

4.6.1.3 Water/Span 20:Tween 80/1-Butanol/Oil system 

For the formation of W/O microemulsion, methyl acetate and ethyl oleate were then 

added separately as the oil component in systems containing water and Tween 

80/Span20 (60/40):1-butanol (70:30) as shown in Figure 4.8. The system with methyl 

acetate (solid line, Figure 4.8) showed a total miscibility of the mixed surfactant and 

1-butanol component in both of water and methyl acetate. The microemulsion region 

was seen to be projecting in an inwards manner from the mixed surfactant/1-butanol-

free axis starting from both water and methyl acetate apices.  
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Figure 4.8 Pseudoternary diagram for water/Span 20:Tween 80/1-Butanol /Oil 
systems ( methyl acetate, ___ and ethyl oleate, .......) 

The microemulsion region for ethyl oleate (dotted line, Figure 4.8) however showed a 

different behaviour.  The region seemed to cover almost two thirds of the mixed 

surfactant/1-butanol apex and projecting upwards from the ethyl oleate-free axis with 

a maximum ethyl oleate solubility of 80 percent by weight. The figure also showed a 

partial miscibility of the mixed surfactant/1-butanol component in both water (60 %) 

and ethyl oleate (70 %).  

4.6.1.4 Insulin/Span 20:Tween 80/1-Butanol/Ethyl Oleate system 

The dotted line of Figure 4.9 showed a microemulsion region when water was 

replaced with insulin solution. The region was observed to shrink towards the 

solvent-free axis with a maximum insulin solution solubility of about 20 % by weight. It 
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occurred at an ethyl oleate/(Tween 80:Span/1-butanol) weight ratio of 50/50. It was 

also observed that the solubility region at the ethyl oleate-free axis did not occur in 

this system. This suggests that the presence of ethyl oleate is vital for the formation 

of microemulsion when insulin is present. 

 

Figure 4.9 Pseudoternary diagram for solvent/Span 20:Tween 80/1-Butanol/Ethyl 
oleate systems. The solvents are water, ___ , and insulin solution, ......  

Overall, it may be summarised that the solubility area of the microemulsion regions  

have been located in the systems studied. The region with the presence of insulin 

however, has some detrimental effect on the solubility area of the microemulsion 

region. This is expected due the large size of the insulin structure. Therefore, ethyl 

oleate is needed if insulin is to form a microemulsion in this system. 
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4.6.2 Dynamic light scattering measurements 

In order to elucidate the different types of colloidal structures present in the prepared 

microemulsion, DLS measurements were carried out to determine the particle size 

and distribution. For the light scattering measurements of these mixed non-ionic 

surfactant microemulsion systems, two lines at a constant weight ratio of 

surfactant/oil of 50/50 and 90/10 were taken. The line at the 50/50 weight ratio shows 

limited solubility in water of less than 20 percent, while the other line at the 90/10 

shows complete miscibility in water (see Figure 4.8). The droplet size of each of the 

composition is obtained from the particle size distribution described as intensity 

percent from the DLS measurements. To illustrate this, Figure 4.10 showed the 

droplet size distribution described as intensity percent for sample at 50:50 (mixed 

surfactant/1-Butanol:Methyl Acetate) for H2O/Tween 80:Span 20/1-Butanol/Methyl 

Acetate containing at 5 weight percent of water. Similar exercises were used for the 

other compositions and their droplet size with the variation of water content is shown 

in Figure 4.11. 

 

Figure 4.10 The particle size distribution by DLS of microemulsion droplet described 
as intensity percent (%) at 5 weight % of water. 

The solid line of Figure 4.11 shows the variation of the droplet size with the weight 

percentage of water for the methyl acetate system at the weight ratio of 50/50. The 

sizes of the droplets showed an upward trend from 4.5 to 7.5 nm with the increment 

of water content. These values are in agreement with the previously reported result 

i.e. from 3.9 to 13.1 nm for systems containing mixtures of Tween 80 with soya bean 
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oil (Constantinides and Scalart, 1997). For the 90/10 weight ratio (dotted line, Figure 

4.11), showed a similar increasing trend but a marked increase in the values of the 

droplet size of more than 100 nm.  

 

Figure 4.11 Droplet size for 50:50 ( ___ ) and 90/10 ( ...... ) (mixed surfactant/1-

But:MeAc) for  H2O/Tween 80/Span 20/1-Butanol/Methyl Acetate systems. 

It is also worth mentioning of the sudden increase in the value of the particle size 

occurring at 10 percent for both systems. The sudden increase in the value of the 

particle size at 10 percent of water is satisfying since similar observations were made 

by previous workers (Shah & Hamlin, 1971; Friberg & Buraczewska, 1978). They 

suggested that at that concentration of water, the first inverse micelles are formed or 

the increase in size shows a change in association behaviour to form a bicontinuous 

system. This is further substantiated by Krauel and coworkers (2005) and Hickey and 

co-wokers (2010) whom reported that at water percentage between 5 to 10 percent, 

W/O microemulsion was formed. However, as the water content was further 

increased the W/O microemulsion changes to that of bicontinuous type.   

4.6.3 Characterisation of poly (ethyl- 2-cyanoacrylate) nanocapsules 

Finally from the above results, the phase diagrams using W/O microemulsion 

stabilised by non-ionic surfactants were further used as microemulsion templates for 

the interfacial polymerisation of poly (ethyl - 2-cyanoacrylate) nanocapsules. This is 
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due to the biocompatibility of the oil (ethyl oleate) and surfactants (Tween 80 and 

Span 20) used as reported by Damge and co-workers (1987). In this system it 

consisted of a mixture of Tween 80:Span 20 (60:40/w:w), ethyl oleate and water as 

the aqueous component. The locations and compositions of the selected 

microemulsion used for further characterisations are shown as dots at points P1, P2, 

and P3 in Figure 4.12 and Table 4.1, respectively. 

 

Figure 4.12 The points P1, P2, and P3 selected as templates for interfacial 
cyanoacrylate polymerisation.  
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Table 4.1 The compositions of selected points P1, P2 and P3. 

 Percent by Weight 

 Water Mix Surfactant:1-Butanol Ethyl Oleate 

P1 13 52 35 

P2 16 66 18 

P3 30 62 8 

 

Figure 4.13 shows the FTIR spectrum of the prepared poly (ethyl 2-cyanoacrylate) 

nanocapsules after washing and freeze drying.  

 

Figure 4.13 FTIR spectrum of poly (ethyl 2-cyanoacrylate). 

The observed FTIR spectrum is similar to those reported in the literature for this 

material (Ariasa et al., 2001; Han et al., 2008). It shows the typical absorption peaks 

for the carbonyl C=O ester (1739 cm-1), C≡N groups (weak, 2246 cm-1) and C-H 

(2855-2988 cm-1). The rest of the peaks observed at lower wavenumbers were due to 

C-H bending (1370-1669 cm-1) and the stretching and bending of the C-CO-C group 
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(1110-1246 cm-1). One striking observation was the absence of prominent absorption 

peaks at around 1600-1650 cm-1. These peaks would be due to the presence of C=C 

functional group. This is satisfying because this functional group is only observed in 

the ethyl 2-cyanoacrylate monomer and disappears in the poly (ethyl - 2-

cyanoacrylate) due to the formation of polymer chain as reported by Han and co-

workers (2008). From the FTIR results, it may therefore be concluded that the 

polymerisation of ethyl - 2-cyanoacrylate was completed.  

Figure 4.14 shows the morphologies of the prepared nanocapsules at points P1, P2, 

and P3. All of the three compositions showed a porous honeycomb structure 

indicative of a bicontinuous type of microemulsion rather than a high yield of discrete 

nanocapsules, although some nanoscale product was also evident. The size 

presented by intensity percent for the microemulsion template and the prepared 

nanocapsules at different compositions P1, P2 and P3 is tabulated as shown in Table 

4.2. 
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Figure 4.14 SEM images of nanocapsules at compositions P1, P2 and P3 showing 
porous structures at magnifications 6500, 2700 and 10000x, respectively.  

From the table, the size of the microemulsion template measured by DLS was found 

to be more than 300 nm. This again suggested that a bicontinuous type of 

microemulsions was formed. The size of the prepared nanocapsules was found to be 

large (> 140 nm). The value of 140 nm is close to the reported value of 150 nm 

(Watnasirichaikul et al., 2000) using Crillet 4 and Crill 4 as the non-ionic surfactants. 
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The observed value is however smaller compared to the reported average value of 

250 nm (Krauel et al., 2005) using Crill 1 and Crillet 4 super. This may be due to 

different non-ionic surfactants used namely Crill 1, Crill 4, Crillet 4 and Crillet 4 super. 

In this work, Span 20 and Tween 80 were used. It is known that non-ionic surfactants 

are sensitive to temperature. Therefore, the differences may be attributed to a 

difference in temperature at which the samples were measured. 

Table 4.2 The mean diameter, in nm, of the templates and nanocapsules from DLS 
measurement extracted from the scattering data using intensity calculation from the 
Malvern software. S.D. = standard deviation. 
 

 
Compositions 
 

Microemulsion 
Size (nm) 

S.D. 
 

Nanocapsules 
Size (nm) 

S.D. 
  

  

 
P1 393 5.4 147 4.2 

   

 
P2 381 0.5 190 0.9 

   

 
P3 336 2.3 178 2.7 

   

 

4.6.4 Characterisation of poly (ethyl 2-cyanoacrylate) nanocapsules with insulin 

The same composition at point P1 (Figure 4.12) was chosen to prepare nanocapsules 

with insulin. From the DLS measurement, the size of the nanocapsules with insulin 

was found to be 178 nm. To determine the amount of insulin entrapped in the 

nanocapsules, reversed phase HPLC was carried out on the combined washings 

from the synthesis. Figure 4.15 shows the chromatogram for insulin in the 

supernatant (free drug). From the HPLC study, the concentration of insulin in the 

supernatant was found from the area of the peak at the retention time 4.33 min.  
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Figure 4.15 HPLC chromatogram for insulin in the supernatant separated by C18(2) 
column at an elution rate of 0.5 ml/min, 50oC, 214 nm.  

Using the calibration graph for pure insulin (Figure 14.16), by using this formula: 

                     
                      

          
        

it was found that more than 85 % of the insulin was entrapped in the polymer during 

synthesis. 

 

Figure 4.16 Calibration curve for pure insulin 
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Figure 4.17 a and b shows the percent drug release of insulin entrapped in the 

cyanoacrylate polymer at pH values of 1.2 and 6.8, respectively. The result showed 

that the percent of drug release reached more than 50 % after 30 min elapsed in the 

pH 1.2 medium, while a release of more than 80 % entrapped insulin in less than 60 

min for the pH 6.8 medium. These suggested that while the polymer was able to 

entrap a good amount of insulin, they were not able to prolong the release of drug for 

long at both pHs. The polymer was quite unstable, even under these mild conditions, 

and degraded to liberate the insulin. It is likely that this was greatly assisted by the 

honeycomb nanostructuring of materials produced. This might have some future 

interest for drug delivery applications, even though it was not the discrete 

nanocapsule structure sought in this work.  
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Figure 4.17 The drug release curve for insulin entrapped in the cyanoacrylate 
polymer measured at 37 oC in (a) pH 1.2 and (b) PBS buffer (pH 6.8). The values 
represent mean ± S.D. in triplicate measurements. 

4.7 Conclusion 

From the above results, it can be concluded that the microemulsion templates are 

most likely of bicontinuous type. This resulted in the production of large 

nanocapsules and a large amount of nanostructured honeycomb type material.  

These results did not meet the targeted objectives of this work, namely smaller 

particle size and high yield of clearly defined capsules.  

 

From the In Vitro release study, it has showed that the majority of entrapped insulin 

can be released quite rapidly from the highly porous nanostructured solids. Their 

inability to prolong drug release in both of pH media rendered it unfavourable for 

application as a drug delivery material in the GI tract.  With that, this part of the work 

was halted in favour of a different drug delivery approach using magnetic 

hyperthermia (though staying within the general theme of nanomaterials for drug 

delivery). A new project has started by using superparamagnetic iron oxide 

nanoparticles (IONs) to cause heating when exposed to RF frequency magnetic 

fields. We are attempting to use this to control drug delivery so that a drug could be 

delivered “on demand” by exposure to magnetic fileds triggerinf release. This 
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required the synthesis of IONs via a co-precipitation method and will be presented in 

the next chapter. 
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CHAPTER 5 

Synthesis and Characterization of Magnetic Iron Oxide 

Nanoparticles 

 

5.1 Introduction 

In Chapter 2, nanomaterials, nanoparticles, their different forms, synthesis and 

applications in drug delivery was introduced. In this chapter, the synthesis and 

characterisation of one type of nanoparticles namely magnetic iron oxide 

nanoparticles, IONs will be presented. Some of their properties and important 

parameters will also be described.  

 

5.2 Objectives 

The objective of this work, concerned with the preparation and characterization of 

IONs via chemical co-precipitation in order to gain further insight into the 

understanding of the structure and behaviour of iron oxide nanoparticles. Specifically, 

this work was designed to: 

 Synthesize IONs by using a chemical co-precipitation method 

 Determine the structure of the IONs 

 Characterise the surface nature and magnetization of the IONs 

 Investigate the effect of oleic acid content during the synthesis of IONs 

This work was required to provide material for the magnetic hyperthermia studies 

(see Chapter 6) and to help with understanding the behaviour and properties of the 

materials during those studies. 
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5.3 Synthesis of IONs 

The procedure for the synthesis of IONs via co-precipitaion followed a previously 

published method by Lopez and co-workers (2005). Two salt solutions containing 

18.0 gm of iron (II) sulphate heptahydrate and 34.0 gm of iron (III) chloride 

hexahydrate, dissolved in 175 and 200 ml of water, respectively were prepared 

separately. The two salt solutions were thus mixed in a molar ratio of 1:2. After 

mixing, the mixtures were then titrated with 88 ml 30 % ammonium hydroxide under 

vigorous mechanical stirring at 333 rpm in a stirred reactor to achieve a pH value of 

10 under inert conditions (N2). Immediately, 8 ml of oleic acid was added to the 

alkaline solution and the mixture stirred for 1 h at 25oC. The resulting emulsion was 

heated up to 95 oC. This is converted iron hydroxide to magnetite. As soon as the 

desired temperature was reached the suspension, now called ferrofluid was cooled 

down to room temperature.  

1M of HCl was added to 10 ml of the ferrofluid to obtain a pH value of 2. A dark 

precipitate was obtained. The solution was decanted and the dark precipitate was 

resuspended, washed and centrifuged three times with water until the supernatant 

reached a pH value of 7. The precipitate was further resuspended and washed three 

times with ethanol. Finally, the precipitate was dried in a vacuum dessicator. 

The whole procedure was repeated but adding different amount of oleic acid; 10, 6 

and 4 ml. Figure 5.1a-c depicts the experimental setup and the final products in the 

synthesis of IONs.  
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Figure 5.1 The synthesis of IONs via co-precipitation method showing (a) the 
experimental setup, (b) IONs in solution form (ferrofluid) and (c) in dried and ground 
form. 

 

5.4 Results and discussion 

5.4.1 TEM of IONs 

Figure 5.2 shows the TEM images of IONs synthesised using different amounts of 

oleic acid. It was observed that IONs prepared using this method showed slight 

nonuniformity in terms of shape and size and are therefore polydisperse.  
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Figure 5.2 TEM images showing the IONs prepared by co-precipitation method with 
(a) 4, (b) 6, (c) 8, and (d) 10 ml of oleic acid, respectively. 
 

 

5.4.2 DLS of IONs 

 

DLS was employed as an additional method to determine the particle size and 

distribution. Figure 5.3a-c showed the particle size distribution described as number, 

intensity and volume percent, respectively for IONs synthesised with different amount 

of oleic acid.  
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Figure 5.3 The particle size distribution by DLS of IONs described as (a) number, (b) 
intensity and (c) volume %, respectively. 
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The figures showed that the range of size distributions varies when using the 

number, intensity and volume percent as the y-axis. The size range is however found 

to be wider for the intensity and volume percent compared to the number percent.  

The distribution by number percent also shows a higher percent values of 21 - 30 %. 

With that, in this work the size distribution represented by number percent is chosen 

to describe the mean size of the nanoparticle, since it is ultimately the number of 

particles undergoing magnetisation on RF field that will control hyperthermia heating.  

 

As mentioned above, the sizes presented by the number percent are chosen to 

represent the mean sizes of the IONs. These sizes are then compared with that of 

equivalent data but from the TEM measurement as shown in Table 5.1. From the 

result, the hydrodynamic diameter measured by DLS was found to be larger than the 

size determined from TEM. This is expected since the hydrodynamic diameter 

includes the oleic acid stabilising ligand layer and the iron oxide nanoparticle core. 

For convenience, the mean diameter of IONs obtained for 4, 6, 8 and 8 ml of oleic 

acid by DLS in Table 5.1 is rounded to 20, 16, 12, and 10 nm from this point onward, 

when discussing the properties and behaviour of the particles. 

 

Table 5.1 The mean diameter of IONs from TEM and DLS measurement. For TEM, 
the particles were measured from the micrographs in order to elucidate mean and 
standard deviation (S.D.). PDI is the polydispersity index. 

Amount of Oleic Acid 

in the synthesis (ml) 

Mean diameter ± S.D., nm 

TEM DLS     PDI 

4 
8.7 ± 3.8 20.4 ± 1.5   

0.39 

6 
6.9 ± 3.1 16.3 ± 2.5   

0.27 

8 
5.3 ± 2.7 11.5 ± 1.5   

0.27 

10 
3.1 ± 1.5  10.2 ± 2.0  

0.42 

 

 

5.4.3 X-ray powder diffraction 

  

Figure 5.4 shows X-ray diffraction, XRD patterns of the IONs with particle size 20 nm. 

It was observed that a series of peaks occurred at different 2θ values. The XRD 
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peaks observed were at 2θ = 30.03, 35.46, 43.04, 57.07, and 62.81o. These peaks 

correspond to (220), (311), (400), (422), and (440) Bragg reflections, respectively. 

Among these peaks, it was observed that three strong peaks stood out, the strongest 

one being the (311) Bragg reflection at 2θ = 35.46o followed by (440) and (220).  

 

 

Figure 5.4. XRD pattern of IONs with particle size of 20 nm. 
 

For the iron oxide nanoparticles with particle size of 16, 12 and 10 nm, similar XRD 

pattern at various 2θ were observed with the strongest peak at (311) Bragg 

reflection. The parameters for all of the three strong XRD peaks at (220), (311), and 

(440) were calculated for their d-spacing values and intensity ratio, I/I1. These values 

were then tabulated and compared with those of standard iron oxide as presented in 

the JCPDS Card Number 19-629, 4-755, and 13-534 for standard magnetite, γ-

maghemite and hematite, respectively as shown in Table 5.2. 

 

From the table, the type of iron oxide nanoparticle can be inferred. This can be 

achieved by comparing each of the d-spacings for every particle size at different 

Bragg reflection angles with the standard data. For instance, for the particle size at 

20 nm, the d-spacings at (220), (311), and (440) peaks give a value of 2.974, 2.529 

and 1.478 Å, respectively. These values, when compared to the standard data, 
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closely matched that of the corresponding standard cubic phase of magnetite of 2.97, 

2.53, and 1.49 Å (Table 5.3). This illustrated that the XRD pattern for the iron oxide 

nanoparticle with particle size 20 nm is that of magnetite. Similar comparison was 

performed for the rest of the particle sizes and it can be summarised that again in 

each case it matched that of the magnetite pattern. However, it is worth noting here 

that for the particle size of 10 nm, the pattern may resemble that of γ-maghemite. 

This might be reasonable since magnetite easily converts to γ-maghemite upon 

oxidation. However, since the values for the size of the particles are incredibly similar 

and that it is near impossible to state with conviction whether it is magnetite or γ-

maghemite. It is clear that none of the samples resemble that of standard hematite, 

since the hematite XRD pattern has no peaks at (311) and (440) (see Table 5.3).  

 

Table 5.2 XRD experimental data at different particle sizes and comparing them with 
the standard iron oxide data from JCPDS Card 
 

     *JCPDS Card Number 

     19-629 

magnetite 

4-755  

γ-maghemite 

13-534 

hematite 

Lattice 

(hkl) 

Particle 

Size 

(nm) 

2θ I/I1, expt dexpt 

(Å) 

I/I1  

 

d 

(Å) 

I/I1  

 

d  

(Å) 

I/I1  

 

d 

(Å) 

 

(220) 

20 30.03o 31.42 2.974  

30 

 

2.97 

 

 

34 

 

2.95 

 

 

8 

 

1.26 

 

16 30.14 o 31.31 2.963 

12 30.13 o 33.95 2.964 

10 30.13 o 34.61 2.964 

 

(311) 

20 35.46 o 100 2.529  

100 

 

2.53 

 

 

100 

 

2.52 

 

- 

 

No 

peak 

16 35.44 o 100 2.531 

12 35.41 o 100 2.533 

10 35.41 o 100 2.522 

 

(440) 

20 62.81 o 47.09 1.478  

40 

 

1.49 

 

53 

 

1.48 

 

- 

 

No 

peak 

16 62.83 o 49.70 1.478 

12 62.86 o 47.09 1.477 

10 62.86 o 52.66 1.479 

*JCPDS Number Card for magnetite, γ-maghemite and hematite are shown in Appendix C. 
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5.4.4 FTIR of IONs 

The Fourier transform infrared spectroscopy (FTIR) analysis was performed on dried 

powders to characterize the functional group and the surface characteristics of the 

iron oxide nanoparticles. Figure 5.5 showed FTIR spectra of iron oxide nanoparticles 

prepared by co-precipitation. The spectrum showed the presence of organic peaks. 

The peak at ~3284 to 3325 cm-1 observed in the spectrum is attributed to the -OH 

group. The peaks at ~2900 and ~2800 cm-1 are due to the stretching vibrations of -

CH2 and -CH3 in oleic acid. The peak at ~1709 cm -1 is due to the vibration of the 

carbonyl group, C=O of oleic acid.  The peak at ~1500 and ~1600 cm-1 is the 

vibration of C=C in oleic acid. The peaks at ~1500 and ~1400 cm-1 are attributed to 

the vibration of -CH. Finally, the peak at ~ 540 cm-1 relates to an Fe−O bond vibration 

of the iron oxide nanoparticles. Taken together, this provides strong evidence for the 

presence of a stabilising ligand of adsorbed oleic acid on the IONs surface. 

 

 

Figure 5.5 The FTIR spectra of IONs with amount of oleic acid (OA) at 4, 6, 8 and 10 

ml. 
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5.4.5 Magnetic behaviour 

 

The behaviour of magnetic materials, M in the presence of an applied field, H is well 

described by the characteristic sigmoidal shape of the M-H curve known as a 

hysteresis loop. This loop is characterized by a parameter called coercivity which is 

related to the thickness of the curve. Dealing with fine particles, the coercivity is most 

important, and it is strongly size-dependent. It has been reported that as the particle 

size is reduced, the coercivity increases to a maximum and then decreases toward 

zero (Akbarzadeh et al., 2012; Zhao et al., 2009).  

 

Figures 5.6a-d showed the hysteresis loops for different sizes of the synthesised 

magnetic nanoparticles. The hysteresis loops were measured with an applied field of 

70000 Oersteds (Oe) which is equivalent to 7 T. Figure 5.6a shows the hysteresis 

loop for the magnetic nanoparticle with diameter of 20 nm. The curve increased 

sharply from the origin and then reduces its slope until it reaches a plateau 

representing the saturation magnetization. It is observed that the value for the 

saturation magnetization (Ms) is 77 emu/g when the applied field reaches 2000 (oe), 

and the coercitivity (Hc) approximately is zero Oersteds (oe). Figures 5.6b-d show 

similar pattern of the curves as in Figure 5.6a but at 16, 12, and 10 nm, respectively.  
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Figure 5.6 Magnetic hysteresis of IONs with particle size of (a) 20 nm, (b) 16 nm, (c) 
12 nm, and (d) 10 nm, measured using a Quantum Design MPMS SQUID VSM 
Magnetometer (San Diego, USA) at 300 K using a field range of ± 70000 Oe (± 7T).  
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In order to quantify further these observations, equivalent data but at different sizes 

was tabulated as shown in Table 5.3. From the table, it was observed that the value 

of Ms increases with the increment of the size of the particle. This is expected due to 

the surface disorder as explained in a previous report (Rao et al., 2007). This result is 

very satisfying as it is known that larger particle should exhibit higher magnetisation. 

This observation is also in agreement with the observed behaviour previously 

reported by Khandar and co-workers (2011) by synthesising similar magnetic 

nanoparticle but in organic solvents. It is also worth noting here that the value for bulk 

magnetite nanoparticles is 100 emu/g and the Ms values depending on the particle 

size may reach up to 80 percent of the bulk saturation value as reported in the 

literature (Cornell and Schwertmann, 1996). The value of 77 emu/g for the 20 nm 

particles is very close to this. From the table it also indicated that the iron oxide 

nanoparticles synthesised by the co-precipitation method has zero coercivity but high 

saturation magnetization value. This indicates that the sample becomes 

superparamagnetic and exhibit superparamagnetism behaviour (Jiang et al., 2004). 

 

This means that the nanoparticles become magnetic in the presence of an external 

applied field, but will be spontaneously demagnetized once the applied field is 

removed. Therefore, these nanoparticles have zero coercivity and have no 

hysteresis. This spontaneous ‘switching on’ and switching off’ ability gives them the 

unique advantage in working in biological environments i.e. applying magnetic field 

only when needed and at an appropriate time or interval.  

 

Table 5.3 The values of saturation magnetisation and coercivity at different particle 
size. 

Oleic 

Acid, ml 

Size, 

nm 

Saturation 

magnetisation, Ms 

(emu/g) 

Coercivity, 

Hc 

4 20 77 0 

6 16 59 0 

8 12 59 0 

10 10 58 0 
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5.4.6 TGA analysis 

 

Figure 5.7 shows the TGA curve in air for 10 nm IONs. The weight loss curve shows 

three step inflections in the temperature range of 40-700 oC. The first step of weight 

loss occurs at 40–200 °C. This due to the endothermic loss of surface OH groups in 

IONs (Chu et al. 2007). The maximum weight loss occurs in the second step. The 

combustion of oleic acid begins at a temperature higher than 200 °C, and is nearly 

completed around 400 °C. The final weight loss occurred when the temperature was 

higher than 500 °C. A previous work has shown that the Fe3O4 will transfer to Fe2O3 

by surface oxidation when the temperature is higher than 500 oC (Xuan et al., 2007). 

Therefore, from the TG analysis, the weight ratio of the Fe3O4 core is about 80.0 % 

by weight, the remainder (20.0 %) being the oleic acid surface ligands. These data 

were then used to calculate the density of oleic acid molecules on the nanoparticle 

surface by taking into account the density of magnetite (5.24 g/cm3) and the 

nanoparticle diameter (3.1 nm) The formula by Chang and co-workers (2009) is 

adopted here to calculate the surface density. From the formula, the calculated 

density is 1.44 oleic acid molecules per nm2 (refer to Appendix F for calculations).  

 

 

Figure 5.7 TGA curve for IONs at particle size of 10 nm. 
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5.5 Conclusion 

 

The use of magnetic nanoparticles such as IONs in the medical field has paved new 

ways into targeting and controlled drug delivery. Hence, it is imperative to prepare 

IONs with the proper properties such as the correct size, shape and magnetic 

capability in order to get the optimum output from them. In this work, IONs have been 

successfully prepared via co-precipitation of Fe2+
 and Fe3+

 with aqueous ammonium 

hydroxide solution.  Their structure and composition are characterized by TEM, DLS, 

XRD and FTIR. The TEM image showed that the iron oxide nanoparticles are 

polydisperse while the XRD pattern showed that the iron oxide nanoparticles exhibit 

a cubic crystalline structure. The average particles sizes were also found to be 

decreasing with the increment of the content of oleic acid. The magnetism of the iron 

oxide nanoparticles was also dependent on the content of the oleic acid. The value of 

the maximum saturation magnetization, MS is 77 emu/g at the lowest oleic acid 

content and 58 emu/g at the highest oleic acid content. Finally the iron oxide 

nanoparticles prepared in this work, via co-precipitation method showed 

superparamagnetic behaviour at room temperature as shown by the hysteresis loop 

observed.  

 

It should be emphasised that there are many alternative approaches to making 

higher quality new monodisperse IONs (Sun et al., 2004), but that these are much 

more complex and yield low amounts (often only 10’s  of mg). In this work, a very 

simple approach was used requiring only low toxicity and pharmaceutically approved 

chemicals. The method is also scalable. Here it was used on a 10 to 20 g scale, but it 

could easily be done on an industrial scale. This is essential, bearing in mind the 

amount required for subsequent studies and the envisaged end use, which would 

require low cost mass production. 
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CHAPTER 6 

Developing Nanoparticle containing Capsule Coatings  

for Magnetic Hyperthermia 

6.1 Introduction 

In order to develop a capsule coating that can be melted by magnetic hyperthermia, it 

is necessary to investigate the nanoparticle loading required to achieve adequate 

heating and the thickness of the coating required to protect the capsule until release 

is required. In this work, combinations of coating materials, i.e. fatty acids, paraffins 

and IONs in various proportions were investigated in order to optimise the 

formulation for the targeted releases purposes. The optimisation was focused on the 

susceptibility of the coating formula upon exposure to a radiofrequency field. The 

power level for heating employing magnetic nanoparticle hyperthermia, MNH will also 

be described. This chapter ends by reporting the results from dissolution studies on 

the coated capsules. 

 

6.2 Objectives 

The aim of this study was to investigate the utility of hyperthermia treatment using 

magnetised IONs. To do this, the hard capsules were coated with various amounts of 

IONs in the coating layers. The addition of IONs allowed the capsules to be heated at 

an appropriate time, in order to release the drug, by exposure of the capsule to an 

external magnetic field. 

 

In order to achieve the aim of this study, the specific objectives were:  

 To assess the effectiveness of fatty acids and paraffins as coating materials. 

 To formulate an optimum composition of the coating materials and IONS to be 

embedded in the coatings.  
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 To find the optimum radiofrequency and the power level for heating the IONs 

with MNH 

 

 

6.3 Results and Discussion 

 

In order to find the optimum coating materials, the materials must melt at a safe and 

accessible hyperthermia temperature but also withstand the heat of normal body 

temperature and the various pH gradients of the environment in the GI tract. These 

are crucial and become the determining factors for a good and robust coating. 

Therefore, a good coating should be resistant to body temperature, but melt at a 

temperature not too high to achieve by external excitation. It should also be pH 

insensitive due to the wide ranging pH variation through the GI tract. Results of the 

thermal properties of the investigated coating materials individually and as mixtures 

will be presented in the following sections. 

 

6.3.1 Thermal analysis of individual coating materials and their mixtures 

 

In this work, an investigation was carried out to find the optimum composition 

(mixtures) to coat the capsule. Two saturated fatty acids, namely lauric and myristic 

acids, were chosen and were subjected to heating, individually as well as their 

mixtures at different mole ratios. The two fatty acids differ only in the number of 

carbon in the hydrocarbon chain i.e. C14 and C12; an increase of 2 methylene (CH2) 

groups. The other material investigated were paraffins, namely eicosane (C20H42) and 

docosane (C22H46).  

 

6.3.1.1 Individual fatty acids 

 

Both of the fatty acids i.e lauric and myristic acid are solid at room temperature. 

Solids will melt when subjected to continuous heating. They will change from the 

solid state to the liquid state when the heating temperature reaches the melting point 

or the fusion temperature.  



Developing Nanoparticle containing Capsule Coatings for Magnetic 
Hyperthermia 

Chapter 
6 

 

147 
 

 

Figures 6.1a and b showed the DSC curves for the individual fatty acids when 

subjected to continuous heating. Figure 6.1a showed the DSC curve for myristic acid.  

 

 

 

Figure 6.1 DSC curve for (a) myristic acid and (b) lauric acid 
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From the curve, a sharp peak is observed at 56.7oC. The total area under the curve 

which corresponds to the latent heat of fusion for myristic acid was found to be 200.3 

J/g with a melting point of 53.7oC. Part b of Figure 6.1 showed equivalent data, but 

for lauric acid. A similar trend in the curve was observed as for that depicted in Figure 

6.1a. The peak occurred at 44.6oC and the latent heat of fusion was found to be 

195.2 Jg-1 with a melting point of 43.1oC. From the results, it showed that the melting 

point and the latent heat for myristic acid are higher compared to lauric acid. This 

difference in the melting point is due to myristic acid having a longer hydrocarbon 

chain length when compared to lauric acid: a difference of 2 CH2 groups which 

translates to about 0.252 nm in length. It is known that when any solid materials are 

heated, their atoms move rapidly due to increase in the kinetic energy. At the phase 

transition temperatures, when the atoms have acquired enough energy, the materials 

change from their original solid state to liquid state. With that, myristic acid which is a 

longer fatty acid requires more latent heat compared to lauric acid in order for phase 

transition to take place. The difference is 5 J g-1. 

 

6.3.1.2 Individual paraffins 

 

Similar procedures were repeated for the individual paraffins namely eicosane 

(C20H42) and docosane (C22H46). Figure 6.2a and b showed the DSC curves for 

docosane and eicosane, respectively. From the DSC curves, a sharp peak at 44.7oC 

was detected for docosane (Figure 6.2a) and 40.1oC was detected for eicosane 

(Figure 6.2b). The latent heat for docosane was calculated to be 251.2 Jg-1 with a 

melting point of 43.7oC, while for the eicosane counterpart the melting point was 

observed at 37.8oC with a latent heat of 259.5J/g. 
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Figure 6.2 DSC curve for (a) docosane and (b) eicosane 

 
The values of the melting point and latent heat observed for both of the paraffin and 

fatty acids are in good agreement with the values reported in the literature 

(Domalski and Hearing, 1996; van Miltenburg et al., 1999).  
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6.3.2 Thermal analysis of mixtures 

 
It is known that mixtures do not only exhibit different properties compared to their 

single component but also can usually be produced at lower cost. The superiority in 

performance for mixtures is largely due the synergistic interaction amongst the 

mixtures molecules. Many contributions on mixtures have been reported in the 

literature such as in surfactant systems (Clint and Walker, 1975; Hamdan and Laili, 

1995), triglycerides (Deman et al., 1983), lipids (Mabrey and Sturtevant, 1976), and 

fatty acids (Cedeno et al., 2001; Costa et al., 2007; Inoue et al., 2004)) 

 

6.3.2.1 Mixtures of fatty acids 

 

Figure 6.3 showed the DSC curves for the mixture of lauric acid and myristic acid at 

different mole ratios. From these curves, the melting point of each ratio of myristic 

acid was elucidated and further plotted as shown in Figure 6.4. With that information 

becoming available (Figure 6.4), the behaviour of these mixtures becomes obvious. 

The result showed that the melting point in the mixture of the two fatty acids was 

always lower than the individual fatty acid. This agrees closely with the values 

reported in the literature (Cedeno et al., 2001). In addition, the melting point values of 

the mixtures were also observed to be decreasing in a crescent manner with the 

increment of mole percent of myristic acid with three distinct regions. The first region 

commences from 0 and 30 mole percent of myristic acid. Followed by the second 

region within 30-50 and finally the third region continue onward from 50 to 100 mole 

percent of myristic acid. This result is in good agreement with previously reported 

work (Costa et al., 2007).  
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Figure 6.3 DSC curves for the mixture of myristic acid and lauric acid at different 

mole percent  

 

 

Figure 6.4 The melting points for the mixture of lauric and myristic acid at different 
mole percent of myristic acid showing the 3 distinct regions. 
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60:40 were chosen as shown in Figure 6.5. The results showed that in both of the 

systems, the melting points dropped slightly with the increment of ION content. This 

suggests that the effect of IONs on the melting points of the mixtures is small but 

quite significant, given the necessity to keep the melting point above, but not too far 

above, body temperature. 

 

 

Figure 6.5 The variation of melting point values for C12:C14 mixtures with the 
percent by weight of IONs at (a) C12:C14 (40:60) w/w (b) C12:C14 (60:40) w/w  
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Figure 6.6 The melting points for the mixture of eicosane and docosane at different 
mole percent of docosane showing 5 possible regions. 
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(a), eicosane, (b), docosane and (c), its mixture. A similar trend in the dependency of 

melting points with the increment of IONs content was observed illustrating little or no 

dependency of melting point in the presence of IONs for the eicosane system. 
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However, for docosane, there was a slightly larger decrease in the melting point 

effect as the amount of IONs was increased. 

 

Figure 6.7 The melting point values for (a) eicosane, (b) docosane and (c) its mixture 
at 40:60 (w:w)  upon addition of variable amounts of IONs. E and D represent 
eicosane and docosane, respectively.   

 

6.3.3 Hyperthermia studies 
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frequencies of RF radiation produced by an external RF device (magneTherm) using 

two different coils turn were applied in order to observe the heating effect. 
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6.3.3.1 Frequencies with 9 turn coil  

 

In this part of the work, only IONs were used in order to observe their heating ability. 

When a magnetic field at various frequencies is applied, the IONs, being 

superparamagnetic, will gain magnetism and start to oscillate. This oscillation will 

then generate heat during exposure to the magnetic field. The heating temperature 

was then measured and plotted. The values for the frequencies, voltage, current and 

magnetic field for the 9 turn coil are shown in Table 6.1. 

 

Table 6.1 Values of frequencies, voltage, current and magnetic field for the 9 turn coil 
(www.nanotherics.com) 
 

Nominal Frequency,  

(kHz) 

DC power supply 

Voltage (V) 

DC power supply 

Current (A) 

Magnetic field 

(mT) 

173.9 14.6 12.2 23.0 

521.3 22.5 11.0 24.0 

737.5 17.3 7.3 17.0 

 

Figures 6.8a-c showed the time-dependent temperature curves for each of the 

particle sizes at 173.9, 521.3, and 737.5 kHz with 9 turn coil. It was observed that all 

of the figures showed a nonlinear relationship for all four of the particle sizes at all 

three different frequencies. Heating rates are higher initially, but progressively slow 

down and eventually the temperature equilibrates. Presumably this is the 

temperature at which heat loss to the environment is equal to heat input from the 

hyperthermia heating effect 

 

As shown in Figure 6.8a, after being exposed for 600 seconds, the maximum 

temperature ranged from 50.2 to 71.2oC. The maximum temperature reached 71.2 oC 

for the particle size at 10 nm. Figure 6.9 summarised the results obtained from both 

Figures 6.8b and c where the maximum temperatures are plotted against their 

corresponding sizes and frequencies after 600 seconds exposure time.  

 

http://www.nanotherics.com/


Developing Nanoparticle containing Capsule Coatings for Magnetic 
Hyperthermia 

Chapter 
6 

 

156 
 

 

Figure 6.8 The heating curves at (a) 173.9, (b) 521.3, and (c) 737.5 kHz  
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Figure 6.9 The variation of maximum heating temperatures at different particles size 
and frequencies with 9 turn coil after 600 seconds exposure.  

 

With the information available from the figure, the heating behaviour became more 

obvious. A direct relationship was observed for the maximum heating temperatures 
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temperature, it showed a higher value. This behaviour was observed at all of the 

three frequencies (Figure 6.9). It was also observed from the figure that the particle 

size at 10 nm showed the highest heating temperature at all three frequencies. The 

highest heating temperatures for all of the particle sizes occurred at 521.3 kHz.  
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Table 6.2 The rate of heating for the first 100 seconds and the maximum 
temperature after 600 seconds of exposure. The highlighted box at 521.3 kHz 
indicates the highest rate after 50 seconds of exposure time. 

Frequency, kHz Size, nm Rate at Maximum Temperature, oC 
after 600 sec 0 sec 50 sec 100 sec 

 
173 

20 0.14 0.12 0.04 65.0 

16 0.16 0.08 0.08 61.2 

12 0.08 0 0 50.5 

10 0.40 0.10 0.04 71.2 

 
521.3 

20 0.80 0.28 0.18 94.2 

16 0.54 0.24 0.16 92.7 

12 0.14 0.12 0.12 71.2 

10 0.78 0.26 0.20 95.0 

 
737.5 

20 0.36 0.14 0.10 82.8 

16 0.58 0.14 0.10 80.5 

12 0.58 0.10 0.06 67.0 

10 0.76 0.22 0.18 88.8 

 

 

6.3.3.2 Frequencies with 17 turn coil 

The same procedure was applied for the corresponding 17 turn coil. For this coil, 

turn, the values for the frequencies, voltage, current and magnetic field are tabulated 

in Table 6.3. It should be noted here that the three frequencies used here were 

different from those with the 9 turn coil. 

 

Table 6.3 Values of frequencies, voltage, current and magnetic field for 17 turn coil 
(www.nanotherics.com) 
 

Nominal Frequency, 

(kHz) 

DC power supply 

Voltage (V) 

DC power supply 

Current (A) 

Magnetic field  

(mT) 

109.9 26.5 12.4 25.0 

165.1 21.5 8.2 17.0 

330.3 31.1 7.9 17.0 

 

Similar patterns from the hyperthermia curves were observed at these frequencies 

and the corresponding parameters either calculated or extracted from the 

hyperthermia curves are summarized and tabulated as shown in Table 6.4. 
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Table 6.4 The rates of heating during the first 100 seconds for all the frequencies 
and the maximum temperature achieved after 600 seconds of exposure. The 
highlighted box at 330.3 kHz indicates the highest rate after 50 seconds of exposure 
time. 

Frequency, kHz Size, nm Rate at Maximum Temperature, oC 
after 600 sec 0 sec 50 sec 100 sec 

 
109.9 

20 0.14 0.06 0.10 59.7 

16 0.02 0.04 0 50.8 

12 0.04 0 0 47.2 

10 0.04 0 0  50.7 

 
165 

20 0.30 0.10 0.04 55.3 

16 0 0.04 0.04 45.1 

12 0 0 0 41.6 

10 0.04 0.06 0 45.2 

 
330.3 

20 0.52 0.16 0.14 77.4 

16 0.18 0.02 0.04 50.5 

12 0.14 0.02 0 46.9 

10 0.14 0.04 0 54.2 

 

From Table 6.4, much lower temperatures at the maximum exposure time were 

observed. The highest maximum heating temperature reached after 600 seconds of 

RF exposure was about 77.4 oC for the particle size at 20 nm and at a frequency of 

330.3 kHz. This is followed by 10 nm with a maximum temperature of 54.2 oC at the 

same frequency but with a higher heating rate after 50 seconds of exposure.  

Figure 6.10 showed the variation of temperature at different particle sizes and 

frequencies after 600 seconds of exposure time. This demonstrated the effect of the 

particle size on heating at all three frequencies. From the figure, it was observed that 

the highest temperature for all three compositions occurred at 330.3 kHz. Also at the 

frequencies with the 17 turn coil, the particle size of 20 nm showed the highest 

temperature at all of the frequencies. This pattern was repeated for the 9 turn coil. As 

the particle size decreased from 20 to 12 nm, the final temperature also decreased. 

The temperature however, increased again at 10 nm. Since it was observed that the 

rate of heating and the maximum temperature were highest for all of the particle 

sizes at 330.3 kHz, the particle size at 10 nm was chosen for further testing instead 

of 20 nm. The reason for the selection is due the heating rate after 50 seconds of 

exposure and size factor of the IONS. It has been shown (see Table 6.4) that the rate 

after 50 seconds exposure was highest for the particle size 10 nm. Also the larger 
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size may be hazardous and harmful to the body (Veiseh et al., 2010). With these 

findings, the particle size of 10 nm at 330.3 kHz was chosen for further testing due to 

its highest rate of heating after 50 seconds of exposure. 

 

 

Figure 6.10 The variation of maximum heating temperatures at different particles 
size and frequencies with 17 turn coil after 600 seconds of exposure.  

 

The variation in the heating rate of temperature observed at different particle sizes 
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size, Brown relaxation dominates (Pino and Pelaz, 2012). Therefore, at this juncture 

it is speculated that the increase of the heating temperature with the increment of 

IONs (Figures 6.9 and 6.10) from 12 to 20 nm is due to the dominance of the Brown 

relaxation. The opposite effect exhibited by the particle size at 10 nm is due to 

crossing over from Brown to Néel relaxation. More work needs to be done to 

investigate the effect of various other variables before any conclusive remark can be 

made. This is however, left as a subject for future work. 

 

6.3.3.3 Effect of amount of IONS embedded in the coating on hyperthermia 

behaviour 

Once the above size-dependency result was available it was necessary to investigate 

the optimum amount of IONS to be embedded in the coating materials in order to 

produce the required hyperthermia effect. In this part of the work, IONS with a 

particle size of 10 nm were chosen. The IONS were embedded in the coating at 

different weight % loadings in order to heat the coating when magnetic field was 

applied. The resulting mixtures were then subjected to hyperthermia studies and 

exposed for a maximum 600 seconds at 521.3 and 330.3 kHz.  

 

6.3.3.3.1 Effect at 521.3 kHZ 

6.3.3.3.1.1 Mixture of fatty acids  

In this part of the work, a coating containing a mixture of fatty acids was subjected to 

hyperthermia and not the individual fatty acids. This was because from the DSC 

studies the melting points for lauric and myristic acid are higher than the 

hyperthermia temperature of 42oC (Figure 6.1).  A mixture of lauric and myristic acid 

at 40:60 (by weight ratio) with a melting point of 42.40C (Figure 6.5a) was used as the 

coating for the capsule as explained earlier. Figure 6.11 showed the time-dependent 

temperature curves when the mixed fatty acid/ION nanocomposite was exposed to 

RF treatment at 521.3 kHz.  
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Figure 6.11 The time-dependent temperature curves at different percentage by 
weight of IONs embedded in C12:C14 (40:60 / w:w) exposed to RF at 521.3 kHz  

 

As illustrated in Figure 6.11, exposed in magnetic field for 600 seconds, the 

maximum temperatures reached are in the range between 43.1 to 97.6oC. The 

temperature reached 97.6oC in 600 seconds for mixtures with 10 % by weight of 

IONS. An interesting behaviour is observed whereby at the first 100 seconds of 

exposure, the temperature increases just slightly. After 100 seconds of exposure, it 

was observed that the temperatures increased sharply especially at 8 and 10 percent 

by weight of IONs (Figure 6.11). This phenomenon was due to the fact that during 

the first 100 seconds, the temperature was less than the melting point of the mixed 

fatty acids i.e. 42.4oC. At this stage, the IONs were still embedded in the fatty acid. 

However, once the melting point was reached, after about 100 seconds of exposure, 

the fatty acid melted and released the IONs molecules. Once the IONs are free to 

move and spin, new heating mechanisms become available due to the spin 

relaxation processes, hence the rate of heating increases rapidly. This is the reason 

for the sudden increase in the heating temperature observed after 100 seconds. 
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6.3.3.3.1.2 Eicosane  

Figure 6.12 showed the time-dependent temperature curves exposed to RF 

treatment at 521.3 kHz for the eicosane system. Similar trends in the temperature 

curve behaviour were observed.   

 

Figure 6.12 The time-dependent temperature curves at different percentage by 
weight of IONS embedded in eicosane exposed to RF at 521.3 kHz. Inset is an 
enlargement of the curve from 0 to 100 seconds RF exposure time 
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All of the curves increased sharply up to 200 seconds of exposure and reduced their 

slope from 200 to 600 seconds. The maximum temperatures reached ranged 

between 57.5 and 146.7oC. The temperature reached 146.7oC in 600 seconds for 

mixtures with 10 percent by weight of IONS. Once again, the same phenomenon as 

that of fatty acids was observed whereby during the first 100 seconds, there was a 

sharp increase in the curves especially at 8 and 10 percent by weight of IONs. For 

this coating, it was observed that at less than 15 seconds of exposure, the increase 

in the slope of the curves was slow. However, after 15 seconds of exposure, the 

slopes of curves increased drastically and especially at 8 and 10 percent weight of 

IONs (see inset of Figure 6.12). This can be explained from the fact that at lower than 

15 seconds, the temperatures have not reached the melting point of eicosane which 

is at 38oC. After 15 seconds of exposure, the melting point is reached and the IONs 

start to absorb and transfer energy through multiple mechanisms and thus caused 

the sudden increase in the heating rate and final temperature.  

 

6.3.3.3.1.3 Mixture of eicosane and docosane  

Figure 6.13 shows the time dependent temperature curves for the mixture of 

paraffins. In this system, the maximum temperatures are in the range between 39.5 

and 99.9 oC.  

 

Figure 6.13 The time-dependent temperature curves at different percentage by 
weight of IONS embedded in eicosane and docosane (40:60/w:w) exposed to RF at 
521.3 kHz.  
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6.3.3.3.1.4 Comparison between coatings  

The difference in the heating effect of the three coating materials, namely the mixture 

of lauric acid and myristic acid (40:60/ w:w), eicosane and mixture of eicosane and 

docosane (40:60/w:w) with the percent weight of IONs can be obtained from the 

comparison between Figures 6.11 – 6.13. Figure 6.14 summarised the variation of 

the amount of IONs with the maximum temperatures. It showed that the temperatures 

are increased with the increment of IONs for all of the systems (Figure 6.14). But one 

striking feature is that, overall, in the presence of IONs, the temperatures for the 

eicosane system were the highest. This phenomenon implied that eicosane required 

lesser energy compared to other coating materials in order to raise the same amount 

temperature. Literature however, showed that the values of specific heat capacity for 

eicosane, its mixture with docosane and fatty acids are almost the same which are in 

the range of 2.0-2.5 J/gK (Domalski and Hearing, 1996). This is perplexing and it is 

therefore speculated that the observed heating effect of the coating materials were 

not due to the specific heat capacity of the coating materials but rather on the spin 

relaxation process namely Néel and/or Brown relaxation of the magnetic IONs. In this 

case, eicosane having the lowest melting points among the coatings, melted earlier 

and thus more of IONs are free to oscillate. This causes the Brownian relaxation to 

dominate. For high heating effect, literature has shown that the Brown relaxation 

must dominate the Néel relaxation (Rosensweig, 2002). 

 

Figure 6.14 The variation of maximum temperatures at different percentage by 
weight of IONS embedded in different coatings and coating exposed to RF at 521.3 
kHz.  
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6.3.3.3.2 Effect at 330.3 kHz 

6.3.3.3.2.1 Mixture of fatty acids  

Figure 6.15 showed the time-dependent temperature curves for IONs embedded in 

fatty acid mix exposed to RF treatment at 330.3 kHz. The maximum temperatures are 

from 36.9 to 49.9oC with 10 percent by weight of IONs exhibiting the highest value. 

The curves increase slightly up to about 300 seconds and then increase sharply after 

300 seconds onwards. This was explained earlier, is due to the melting point of the 

fatty acids. Once the melting point is reached the, the fatty acids melt and IONS 

molecules are released, causing more rapid heating. 

 

Figure 6.15 The time-dependent temperature curves at different percentage by 
weight of IONS embedded in C12:C14 (40:60 / w:w) exposed to RF at 330.3 kHz  

6.3.3.3.2.2 Eicosane  

For the eicosane coating, the time-dependent temperature curves were shown in 

Figure 6.16. The curves show a clear distinction from each other and on an upward 

trend with the highest maximum temperature of 108oC observed at 10 percent by 

weight of IONS. After 6 seconds of exposure time, once the melting point of eicosane 

is reached at 38oC, it is obvious that for the 10 percent by weight of IONS,  the curve 

increases sharply (see inset of Figure 6.16).  
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Figure 6.16 The time-dependent temperature curves at different percentage by 
weight of IONS embedded in eicosane exposed to RF at 330.3 kHz. Inset is an 
expansion showing the equivalent data but up to 30 seconds of exposure time.  
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6.3.3.3.2.3 Mixture of eicosane and docosane  

Figure 6.17 showed the time-dependent temperature curves for the mixture of 

paraffins exposed to RF at 330.3 kHz. The maximum temperatures are in the range 

between 45.4 to 84.4oC. Again, the highest maximum temperature of 84.4oC was 

observed at 10 percent by weight of IONs 

 

Figure 6.17 The time-dependent temperature curves at different percentage by 
weight of IONs embedded in a mixture eicosane and docosane at 40:60 (w:w) 
exposed to RF at 330.3 kHz.  
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 Figure 6.18 The variation of maximum heating temperatures at different percentage 
by weight of IONs and coating exposed to RF at 330.3 kHz.  

Finally, the coating materials consisting of eicosane, the mixture of fatty acids and 

mixtures of paraffins at 40:60 by weight, with 10 weight % IONs with a particle size of 

10 nm were chosen for further dissolution testing to study drug release properties.  

The frequencies selected were 521.3 kHz and 330.5 kHz. These were the 

combinations that generated the highest temperatures and heating rates, and are 

thus expected to be the most efficient for RF-triggered drug release. This will be 

described next. 

 

6.3.4 Dissolution studies 

 

Figure 6.19 shows the coated capsule resulted from dip coating process. Various 

thickness for coated capsules shown in Appendix G. 

 

Figure 6.19  Optical images of coated capsules 
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The coating materials consist of eicosane, the mixture of fatty acids and mixtures of 

paraffins at 40:60 by weight, with 10 weight % IONs with a particle size of 10 nm. A   

drug dissolution studies were then carried out on the coated capsules to assess the 

dissolution performances and how well the coatings protected the drug from being 

released until triggered. Paracetamol was used as the drug model. The sensitivity 

and responsivity to pH and temperature of the capsule was tested, using buffer 

solutions and bile salts. Bile salt and buffer solutions were used here to mimic the 

microenvironment of the GI tract of the human body. This was to gain deeper in-vitro 

insight into the delivery and release of drug into the lower GI tract.   

The following goals are important:  

 Assessing the effect of the number of layers of coating 

 Providing different environments that mimic the various compartments of the 

GI tract. 

 Studying the drug release under these different environmental conditions 

In this work, it should be mentioned that the main interest is primarily on prolonging 

and controlling the drug release time and not so much on the amount of drug 

released, which could be altered if required by adjusting the drug loading in the 

capsules. 

 

6.3.4.1 Effect of number of dippings on drug release. 

 

For the dissolution studies, the capsules containing the drug were coated using 

different materials that had been formulated with IONs at 10 percent by weight. It was 

thought that information on the number of layers of coating needed for dipping the 

capsules was essential in order to obtain the optimum number of dipping to provide 

adequate protection and also efficient release when triggered. The capsules were 

dipped three times and at each dip (or layer), a dissolution test was performed in 

various media, pH values and temperatures. This was because as mentioned earlier, 

the capsules will be administered orally and therefore they will undergo the harsh 

environment of the GI tract (see Table 2.6). 
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6.3.4.1.1 Biphasic dissolution test 1 (in pH 1.2 and buffer pH 7.4 at 37 oC) 

 

In vitro drug release studies were conducted at pH 1.2 and 7.4 to simulate in vivo 

conditions in the stomach and small intestine. Figure 6.20a showed the percent drug 

release for the mixed fatty acids coated capsules at pH 1.2 and 7.4. At pH 1.2, the 

results showed that the curve increased sharply after 1 h, for coating with 1 layer of 

dipping. The 2 and 3 layers at this pH show no drug release. At pH 7.4, the 1 layer 

coating continues to increase and release more drug about 60 ± 14.8 percent after 6 

h. For the 2 and 3 layers of dipping, the drug starts to be release slowly after 180 min 

in the dissolution medium at pH 7.4. The maximum drug release was observed to be 

5.6 ± 3.3 %. The dissolution behaviour of the drug contained in the fatty acid coated 

capsules depended on the thickness of the fatty acids layer. It showed that 1 layer of 

coating was not adequate to protect the capsule from the surrounding. Thus, the 1 

layer of dipping provides a poor barrier which allows medium to penetrate or erode 

the layer and cause capsule dissolution. It is not clear whether this leakage is due to 

general porosity/ erosion, or maybe due to individual particles or imperfections in the 

coating causing localised release. This is discussed further in section 6.3.4.1.2 
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Figure 6.20 The percent drug release curves for (a) C12:C14 (40:60) (w/w) and (b) 
eicosane coated capsules coated with 1, 2, and 3 layers embedded with 10% IONs  
in medium pH 1.2 and buffer at pH 7.4 at 37oC . 

 

Figure 6.20b showed the percent drug release at pH 1.2 and 7.4 by using eicosane 

as a coating. The results showed that no drug was released with eicosane even with 

only one dipping layer. This suggests that the paraffin gave a higher quality layer with 

no defects. The same behaviour was observed for the coatings with docosane and 

mixture of eicosane and docosane at 40:60 by weight.  
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6.3.4.1.2 Biphasic dissolution test 2 (in pH 1.2 and FaSSIF pH 6.5 at 37oC) 

 

In these in vitro drug release studies, the dissolution profiles were conducted at pH 

1.2 and 6.5. As mentioned earlier, the media at pH 1.2 represent stomach conditions 

and pH 6.5 is FaSSIF media that mimics the fasted state condition in the intestine. 

The temperature of the dissolution bath was set at 37oC.  

 

Figure 6.21a showed the percent drug release for the mixed fatty acids coated 

capsules at pH 1.2 and 6.5. At pH 1.2, the results showed the curve increased 

sharply after 1 h, for the coating with 1 layer of fatty acid. The 2 and 3 layer coatings 

at this pH show no drug release. At pH 6.5, the 1 layer coating curve continued to 

increase drastically showing release or more drugs; about 90 ± 14.4 percent after a 

period of 6 h. For the 2 and 3 layers of dipping, the drug started to be released slowly 

after 1 h in the dissolution medium at pH 6.5. The percent of drug release was 

observed to be at 9 ± 2.4 % after 6 h. It seemed that the dissolution behaviour of the 

drug contained in the fatty acid coated capsules depended on the thickness of the 

fatty acids layer, as discussed in the previous section.  

 

The dissolution behaviour for different numbers of coating layers for the eicosane 

coated capsules is shown in Figure 6.21b. Similar procedures were performed under 

pH 1.2 and 6.5. The results showed that no drug entered the solution for any of the 

coatings at both pH values. The same behaviour was observed for the coatings with 

docosane and the mixture of eicosane and docosane.  
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Figure 6.21 The percent drug release curves for (a) C12:C14 (40:60) (w/w) and (b) 
eicosane coated capsules coated with 1, 2, and 3 layers embedded with 10% IONs  
in medium pH 1.2 and  FaSSIF at pH 6.5 at 37oC.  

 

From the above results, it shows that 1 layer of coating is not adequate to protect the 

capsule from the acidic, phosphate buffer and FaSSIF conditions, and especially for 

the FaSSIF conditions for the mixture of fatty acids as the coating material. This 

behaviour can be explained by the pKa values of the fatty acids. Most short-chain 

fatty acids have a pKa value of about 4.8 (Kanicky et al., 2000) as shown in Figure 

6.22.  
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Figure 6.22 The effect of chain length on the pKa values of fatty acid (adapted from 
Kanicky et al., 2000). 
 

It was reported that as the chain length is increased, the pKa value also increases. 

These pKa values for fatty acids are crucial to their behaviour in solutions with 

various pH values. Figure 6.23a-c shows the behaviour of fatty acids at different pH 

values (Kanicky et al., 2000).  

 

 

Figure 6.23 The behaviour of fatty acid molecules at (a) low, (b) approximate value 
that of pKa and (c) high pH values (adapted from Kanicky et al., 2000). 
 

 

(c) 
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It shows that at low pH value (~1-2), the fatty acids molecules are un-ionised and the 

polar carboxyl group of the fatty acid is oriented at the air/water interface as shown in 

part a of Figure 6.23. At pH values close to that of pKa, 50 % of the fatty acid 

molecules are ionised and a strong ion-dipole interaction between the carboxyl 

groups occurs (part b, Figure 6.23). These interactions result in the molecules being 

packed closer to each other. However at higher pH values (~9-10), the fatty acids are 

completely ionised and this causes ionic repulsion between the polar groups (part c, 

Figure 6.23). This leads to greater solubility in water. The reported pKa value for 

lauric and myristic acid is 7.5 and 8.2, respectively (Figure 6.22) and the mixture of 

lauric and myristic acids used to coat the capsules are subjected to solutions at pH 

6.5 and 7.4. Since the pH values of the solution are close to that of the pKa value for 

fatty acids, the fatty acid molecules are therefore partially ionised and some are 

readily soluble in the solutions. This explains the behaviour observed when 1 layer of 

fatty acids is coated on the capsules- significant dissolution can cause erosion and 

loss of layer integrity. 

 

Another possible explanation is that under these conditions, a surfactant-like bile 

salts are present at 3 mM. This explanation is only directed for the FaSSIF conditions 

at pH 6.5. At this concentration, the bile salt spontaneously forms micelles in the 

aqueous environment (Norman, 1960; Small, 1971). The result for the 1 layer of 

coating under FaSSIF conditions maybe not only due to the pKa values of fatty acids 

but also due to the presence of bile salt. Bile salts could increase the dissolution rate 

by two possible mechanisms; i) decreasing the interfacial energy between the 

coating and the dissolution medium. This would result in the ability of the medium to 

wet the coating more effectively and increase the contact area available for 

dissolution and ii) the solubilisation effect of the bile salts micelles (Bates et al., 

1966). The second mechanism is a more likely explanation for the observation since 

the concentration of the bile salts used is at the critical micelle concentration where 

micelles are already formed and therefore could interact with the fatty acid molecules 

to form mixed micelles as shown in Figure 6.24.  
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Figure 6.24 A sketch adapted from Tzocheva and co-workers (2012) to illustrate the 
formation of a mixed micelle comprising of surfactant (bile salt) and fatty acid 
molecules (Tzocheva et al., 2012). 
 

On the other hand, the results from eicosane and its mixture with docosane at a ratio 

of 40:60 by weight indicate the high hydrophobicity of the paraffin surfaces. This 

reduces the ability of the dissolution media to wet the coating and there are no 

molecules to ionise at different pH values. The long hydrocarbon chain length of 

eicosane (C20) and docosane (C22) also prohibits it to be solubilised in the micellar 

solution of bile salts when it is in solid state, due to the high energy required to break 

all the Van der Waals bonds and extract a molecule from the surface. This indicates 

that the paraffin coatings prevent drug release better than the fatty acid ones.  

 

6.4 Conclusion 

 

In this work, values of the melting points are elucidated for coating materials: lauric 

acid, myristic acid, lauric + myristic, eicosane, docosane and eicosane + docosane. 

The melting point for each coating material was obtained through thermal analysis 

performed by DSC. In summary, the values of melting points for the mixtures were 

found to be lower than individual components. This also served as guidance to the 

selection of appropriate coating compositions to achieve the desired melting points. It 

was found that the presence of IONs had a small but significant effect on the melting 
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points, probably due to the stabilising ligands (oleic acid) interacting with the coating 

materials to reduce crystallinity and packing order  

 

The hyperthermia study revealed the heating effect of IONs on the coatings to be 

dependent on its particle size. The hyperthermia study performed at 521.3 kHz 

showed that as the particle size of the IONs increases, the heating is also increased.  

However, no direct relationship was observed on the effect of heating between the 

coating materials. This is due to many variables that need to be taken into account 

such as voltage, current, and magnetic field. For future studies, it is recommended to 

investigate the effect of these variables on the heating effect of IONs, so that more 

conclusive comments can be made. 

 

From the dissolution studies, it can be concluded that by manipulating the number of 

layers the drug release can be further controlled and also the release time can be 

prolonged. The result also shows that the type of coating plays a crucial role in 

prolonging the drug release. In this case, the paraffin coatings offer better protection 

than the fatty acids ones. For the subsequent studies, 3 layers of dipping was 

chosen. It was expected that the thicker layer and higher overall ION loading would 

generate more local heating for hyperthermic release.  
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CHAPTER 7 

Demonstrating in vitro “Release on Demand” using  

Magnetic Hyperthermia  

 

7.1 Introduction 

From the studies performed in chapter 6, it was observed that the coated materials 

either melted at a certain temperatures or were solubilised by the bile salts in the 

dissolution media. The melting or solubilisation of the coating thus exposed the 

capsule to the dissolution media. This caused the capsule to dissolve and allowed 

media ingress, which subsequently resulted in the release of the solubilised drug. 

Information from visual observation of coated capsules during RF exposure should 

shed more light on the heating, melting and solubilising behaviour of the coated 

capsule. This chapter will begin by describing the work done to visually observe the 

behaviour of coated capsules during RF heating. The coated capsules in this part of 

the work were subjected to different environments in order to visually observe their 

behaviour under an applied magnetic field. The visual observation was done by using 

a thermal imaging camera, video camera and fibre-optic thermosensors. This chapter 

ends by proposing a simple experimental set up for a drug release system and 

discusses the experimental results that support feasibility of the proposed set up. 

 

7.2 Objectives 

 

The aim of the work was to observe visually the behaviour of the coated capsule 

when a magnetic field is applied. These observations were done on coated capsules 

which were subjected to three different environments. 

 

Using these observations, a new experimental setup for a drug release delivery 

system was proposed. It was hoped that from this new setup, one will be able to; 

 Compare various materials to obtain the best materials or compositions to be 

used to coat the capsule.  
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 Observe the heating effect of embedded IONs in the coating and the 

surrounding dissolution media. 

 Simultaneously study the behavioural pattern of drug release such as the time 

taken for the release process. 

 Elucidate the effect of different frequencies and a magnetic field strengths on 

heating. 

 

7.3 Results and Discussion 

 

7.3.1 Visual and thermal imaging of the hyperthermia effect 

 

The heating, melting, and solubilisation behaviour were observed previously with the 

entire coated capsule is fully immersed in the dissolution media. Equivalent 

information on dry or half-immersed coated capsules was not available. This is 

another impediment to better understanding of the heating, melting and solubilisation 

of the coated capsule. In this part of the work, the coated capsule was subjected to 

three different environments namely in open air, partially and fully immersed in 

dissolution media. 

 

In order to obtain this visual information, it was thought that a similar experiment 

using a hyperthermia system that could be monitored visually using an ordinary 

camera or a thermal imaging video camera should be carried out. Fortunately, such a 

system was readily available within the research group of Prof Q. Pankhurst at 

University College, London, UCL. The experimental setup using the UCL 

hyperthermia system is shown in Figure 7.1. The UCL hyperthermia system consists 

of a Magnetic Alternating Current Hyperthermia, MACH, designed by Resonant 

Circuit Limited, RCL (www.resonantcircuits.com). RCL is a medical technology based 

spin-out company from UCL. The frequency is 1MHz and an AC current of 120 A is 

used. The diameter of the coil is 44 mm and consists of 3 turns with a pitch of 6 mm. 

An IR video camera is connected to the setup to capture thermal images during 

hyperthermia studies.   

 

http://www.resonantcircuits.com/
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Figure 7.1 The experimental setup using the UCL hyperthermia system. 
 

The strength of the magnetic field depends on the distance from the central axis as 

shown in Figure 7.2a. For instance if the distance of the sample is placed 10 mm 

above the center of the coil, the field strength is 6000 A/m (7.5 mT). The maximum 

field strength at the centre of the coil is 7300 A/m (9.2 mT). Both of these values are 

shown by the red line of Figure 7.2a.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2 (a) The variation of magnetic fields with the distance from the centre of 
the coil and (b) The field map for the 3 turn coils with a diameter of 44mm, at 
frequency of 1 MHz and an AC current of 120A (data from P. Southern, UCL) . 
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Figure 7.2b shows the field map at a frequency of 1 MHz and an AC current of 120A. 

The field map illustrates the field observed at a cross section through the central 

plane in the coils. The figure shows the ‘hot spots’ the location of highest field which 

is at the centre of the coil. 

 

7.3.1.1 Coated capsule in open air 

 
The information on the visual and thermal imaging of the heating behaviour of the 

coated capsule in open air can be obtained using the UCL hyperthermia system by 

placing the coated capsule in a weighing boat on top of the coil as shown in Figure 

7.3.  

 

 

Figure 7.3 The experimental setup to observe the heating behaviour of dry coated 
capsule. Insert shows the enlarged image of the coated capsule in a weighing boat. 
 

The weighing boat was placed approximately 10 mm above the coil. At this distance, 

the strength of the magnetic field is about 6000 A/m (see Figure 7.2a). The frequency 
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was 1 MHz and an AC current of 120 A. The image was captured using an Infratec 

VarioCAM HR with a frame capture rate of 5 Hz. 

 

Figures 7.4-7.6 depicted the IR image, photographs and temperature plot of a coated 

capsule in open air at the beginning, the initial melting and the continuous melting at 

higher temperature, respectively for a mixture of fatty acids C12:C14 (40:60/w:w) as 

the coating material. Figure 7.4 showed the data for the coated capsule when the 

maximum temperature reached 36.33oC as recorded by the imaging camera. It was 

observed that the coated capsule was still intact at this temperature.  

 

 

 
 
 
 
 
 
 
 
 
 

 

Figure 7.4 The IR image, photograph and temperature plot at the maximum 
temperature of 36.33oC for the mixture of fatty acids, C12:C14 (40:60/w:w).  

 

The mixed fatty acids 

coated capsule 
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Figure 7.5 showed the data for the coated capsule when the maximum temperature 

reached 42.92oC. It was observed that the coating started to melt at the bottom of the 

capsule which was in contact with the weighing boat. As mentioned earlier the 

melting point for the mixture was  measured using a DSC instrument was 40.28oC 

(please refer to Figure 6.5a).  

 

 

 

Figure 7.5 The IR image and photographs at the maximum temperature of 42.92 oC 
for the mixture of fatty acids, C12:C14 (40:60/w:w).  

The coating starts 

melting 
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In this experiment, the coating started to melt at 42.92 oC, which was about 2 oC 

higher than the melting point.  

 

Figure 7.6 shows the data for the coated capsule when the maximum temperature 

reached 44.79oC. It was observed that the coating did not melt any further at this 

temperature.  

 

 

 

 

 

 

 

 

 

 

 
Figure 7.6 The IR image and photographs at the maximum temperature of 44.79 oC 
for the mixture of fatty acids, C12:C14 (40:60/w:w).  
 

 

The coating does not melt 

any further 
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Figures 7.7-7.9 depict the IR image and photographs of the coated capsule at the 

beginning, the initial melting and the continuous melting at a higher temperature, 

respectively using eicosane as the coating material. Figure 7.7 shows the images for 

the coated capsule in open air when the maximum temperature reached 37.12oC. 

The coated capsule was still intact at this temperature.  

 

 

 

Figure 7.7 The IR image and photographs at the maximum temperature of 37.12oC 
for eicosane.  
 

The eicosane 

coated capsule 
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Figure 7.8 shows the images for the coated capsule when the maximum temperature 

reached 40.73oC. It was observed that the coating started to melt at the bottom of the 

capsule which was in contact with the weighing boat. Again the melting of the coating 

occurred at  2oC  higher than the melting point of eicosane which was  37.79oC as 

determined by the DSC instrument (please see Figure 6.7a).  

 

 

 

Figure 7.8 The IR image and photographs at the maximum temperature of 40.73 oC 
for eicosane.  
 

The coating starts melting 
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Figure 7.9 shows the images for the coated capsule when the maximum temperature 

reached 64.58oC. It was observed that the coating melted completely starting from 

the part that was in contact with the weighing boat and the liquidised coating all run 

off the capsule surface under gravity.  

 

 

 

Figure 7.9 The IR image and photographs at the maximum temperature of 64.58oC 
for eicosane.  

The coated capsule 

continues melting 
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Figures 7.10-7.12 depict the IR image and photographs of a coated capsule at the 

beginning, the initial melting and the continuous melting at higher temperature, 

respectively using the mixture of eicosane and docosane (40:60/w:w) as the coating 

material. Figure 7.10 shows the images for the coated capsule in open air when the 

maximum temperature reached 35.53oC. The coated capsule was still intact at this 

temperature.  

 

 

 

 
Figure 7.10 The IR image and photographs at the maximum temperature of 35.53 oC 
for mixture of eicosane and docosane (40:60/w:w).  
 

The mixed eicosane:docosane 

coated capsule 
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Figure 7.11 shows the images for the coated capsule when the maximum 
temperature reached 41.80oC. It was observed that the coating started to melt at the 
bottom of the capsule which was in contact with the weighing boat. Again the melting 
of the coating occurred at approximately  2oC higher than the melting point of the 
mixture of eicosane and docosane which occurred at 40.10oC (please refer to Figure 
6.7c).  
 

 

 

Figure 7.11The IR image and photographs at the maximum temperature of 41.80oC 
for mixture of eicosane and docosane (40:60/w:w).   

The coating starts melting 
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Figure 7.12 shows the images for the coated capsule when the maximum 

temperature reached 86.90oC. It was observed that most of the coating had melted 

and run off the capsule.  

 

 
Figure 7.12 The IR image and photographs at the maximum temperature of 86.90oC 
for mixture of eicosane and docosane (40:60/w:w).  
 

The coated capsule 

continues melting 
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From all of the visual observations obtained when the coated capsule was placed in 

open air, it can be summarised that heating by RF hyperthermia to above the melting 

point of the coating materials was able to melt the coatings. The delayed melting of 

the capsules (about 2oC higher) may be due to difference in the  DSC instrument 

which is running under controlled adiabatic conditions, where heat loss is negligible, 

whereas, here in this experiment; it is carried out in open air where heat loss from the 

surface may keep the layer “solid” even though the internal layer temperature is 

slightly higher, as shown by the IR camera. Both of these setups are therefore 

subject to possible experimental inaccuracy.  Secondly, the thermal imaging camera 

used in these setups only measures the surface temperature of the sample. The 

main sample then experiences a different heating temperature than the surface 

temperature. Hence, the thermal imaging camera may report the melting temperature 

a few degrees above what was previously determined from DSC measurements. 

Another observation is that the melting starts from the middle of the capsule body 

which is in direct contact with the weighing boat and spreads outwards towards one 

end of the capsule. This could be due to several factors such as the unevenness of 

the capsule coating or the distribution of IONs embedded in the capsule. While the 

coatings with eicosane and the mixture with docosane melted completely, the 

capsule coated with the mixture of fatty acids hardly melted and stayed intact even 

until completion of the experiment. This is illustrated in Figure 7.13a-c.  

 

 

Figure 7.13 The melting of the coating by the end of experiment for (a) mixture of 
fatty acids, (b) eicosane and (c) mixture of eicosane and docosane as the coating 
materials. 
 

 

(a) (b) (c) 
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7.3.1.2 Coated capsule partially immersed in dissolution media 

Figure 7.14 shows the equivalent setup but with the coated capsule being half-

immersed in the dissolution medium. The dissolution medium used was the 

simulating fasting state (FaSSIF) with a pH at 6.5. In this experiment, a water soluble 

dye bromo-cresol green purchased from BDH replaced the drug. This made it easier 

to visualise the moment of “drug” release. The dye was filled into a capsule. The 

capsule was then coated with coating materials and floated in a container containing 

the dissolution medium. The container was then placed in the middle of the coil. This 

gave an exposure to a higher magnetic strength of about 7300 A/m compared to the 

setup with the coated capsule in the weighing boat. The image was captured using 

the Infratec VarioCAM HR with a frame capture rate of 5 Hz. 

 

 

Figure 7.14 The experimental setup to observe the heating behaviour of coated 
capsules half-immersed in medium. The insert shows an enlarged image of the 
coated capsule half-immersed in the medium. 
 

When compared to the capsules exposed to open air, similiar results were obtained 

when the coated capsule was half-immersed in the dissolution medium. Among the 

three coating materials tested, the eicosane coated capsule was chosen to illustrate 

the behaviour of the half-immersed capsule. 

 

Coated capsule half-

immersed in medium 
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Figure 7.15 illustrates the IR image, photograph and temperature plot for a coated 

capsule half-immersed in the dissolution medium using eicosane as the coating 

material. The image shows that coated capsule was still intact when the maximum 

temperature reached 36.03oC.  

 

  

 

Figure 7.15 The IR image and photographs at the maximum temperature of 36.03oC 
for the eicosane as the coating material.  

 

The eicosane coated 

capsule 

Dissolution media 

(FaSSIF) 
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Figure 7.16 shows the images for the coated capsule when the maximum 

temperature reached 39.04oC. It was observed that the coating started to melt but 

this time it was from the upper part of the capsule and it flowed the coating down to 

the medium. The upper part of the capsule melted earlier compared to the bottom 

part of the capsule because the bottom part was immersed in the media., which has 

a much higher thermal conductivity and specific heat capacity than air, hence it cools 

the capsule much more effectively, delaying the onset of the melting. 

 

 

 

Figure 7.16 The IR image and photographs at the maximum temperature of 39.04oC 
for the eicosane as the coating material.  

The coating starts 

melting 
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Figure 7.17 shows the images for the coated capsule when the maximum 

temperature reached 69.76oC. It was observed that the upper coating of the capsule 

melted completely and flowed down to the medium. Upon further heating, it was 

observed that the dye diffused out into the dissolution medium as shown in Figure 

7.18. 

 

 

 

Figure 7.17 The IR image and photographs at the maximum temperature of 69.76oC 
for the eicosane as the coating material.  

 

The coating continues 

melting 
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Figure 7.18 The diffusion of dye upon further heating of the capsule as indicated by 
the blue colour (bromo-cresol green at pH 6.5) for system in eicosane. 
 
 

Finally, Figure 7.19a-c shows all three of the coated capsules after completion of the 

experiment. Note that the coating was still intact in some parts of the capsule with the 

capsule coated with the mixture of fatty acids being the least affected by the heating.  

 

 

Figure 7.19 The melting of the coating and the diffusion of dye into the medium at 
the completion of the experiment for (a) mixture of fatty acids, (b) eicosane and (c) 
mixture of eicosane and docosane as the coating materials. 
 

For the setup with the coated capsules half-immersed in the dissolution medium, the 

results yielded were similar to those of coated capsules monitored in open air. One 

Dye diffused 

into medium 

(a) (b) (c) 
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important observation was the visual observation of the release of dye, which 

represented the release of drug. One interesting difference was that the melting of 

the coating began from the upper part of the coated capsule in contrast to that for the 

coated capsule in open air, but this is easily understood in terms of thermal mass and 

the coating effect. The video for both open air and half-immersed systems showing 

temperature as a function of time for the IR video recording, are burned into a CD 

and attached in this thesis. 

 

Overall, the findings from both of the setups have successfully provided visual 

information on the heating behaviour of the coated capsules.  

 

7.3.1.3 Coated capsules fully immersed in dissolution media 

 

In order to witness the behaviour of fully immersed coated capsules, visually as well 

as graphically, the experimental setup of the hyperthermia system shown Figure 7.20 

was used.   

 

 

Figure 7.20 The experimental setup to observe the release of drug by visual 
inspection. Inset is the enlarged sample tube showing the position of the coated 
capsule and the two fluoroptic temperature probes. 
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In this experiment the drug was again substituted with bromo-cresol green. Two 

fluoroptic temperature probes (Luxtron FOT Lab Kit) were inserted into the sample 

tubes containing the dissolution medium in order to monitor the temperature (see 

inset of Figure 7.20). The temperatures close to the capsule and in the dissolution 

medium were recorded with these probes at a capture rate of 1 Hz. The coated 

capsule in the sample tube was centrally located in the coil. The frequency was 

1MHz and an AC current of 120 A. The magnetic field was about 7200 A/m (9.1 mT). 

 

The results obtained from this experimental setup are illustrated in Figures 7.21-7.23 

for the three different coatings. Figure 7.21 shows the graphical and visual illustration 

of the variation of temperature with the exposure time for the mixture of fatty acids as 

the coating material.  

 

 

Figure 7.21 The variation of temperature of a capsule coated with a mixture of fatty 
acids (40:60/w:w) with RF exposure time at a frequency of 1MHz. 
 
It was observed that the melting point of the mixture of 40.3oC was not reached in 

this experiment. Even though the melting point was not reached, the dye readily 

diffused into the medium. This was verified by visual observation, captured in the 

photographs shown in Figure 7.21 at three different time intervals. It was also seen 

that some of the coating was still intact on the body of the capsule.  
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Figure 7.22 shows the graphical and visual illustration of the variation of temperature 

with the exposure time for eicosane as the coating material. From the graph, the 

melting point of eicosane of 37.79oC was reached after about 800 seconds of 

exposure.  

 

 

 

 

 

 

 

Figure 7.22 The variation of temperature of a capsule coated with eicosane with RF 
exposure time at a frequency of 1MHz. 
 

Visually it was seen that at this temperature, the coating started to melt and then 

slowly released the dye (blue colour in the dissolution medium). It was also observed 

that the first point of exit for the dye was observed at one of the terminal ends of the 

capsule. As the exposure time increased, more dye was released into the medium 

since more of the capsule was dissolved in the dissolution medium. This was 

indicated by the intensity of the blue colour of the medium increasing with time.  

 

For the mixture of eicosane and docosane as the coating material, similar behaviour 

to that of eicosane was observed, both in term of the curves and visual inspections. 

25 

30 

35 

40 

45 

50 

0 200 400 600 800 1000 1200 1400 

Te
m

p
e

ra
tu

re
 (

o
C

) 

RF exposure time  (sec) 

medium coated capsule 



Demonstrating In Vitro “Release on Demand” using Magnetic Hyperthermia Chapter 
7 

 

203 
 

 

Finally, Figure 7.23a-c showed all three of the coated capsules after completion of 

the experiment. Note that the coating was still intact in some parts of the capsule.  

 

Figure 7.23 The melting of the coating and the diffusion of dye into the media until 
completion of experiment for (a) mixture of fatty acids, (b) eicosane and (c) mixture of 
eicosane and docosane as the coating materials. 
 

The above visual observation when the coated capsule was fully immersed shows 

that the drug (in this case dye) would be released once it came into contact with the 

dissolution media. This is indicated by the dissolution of the dye and the colouring of 

the media. Another observation is that under this condition, the coating began to melt 

once the melting point is reached.  This was not observed in the previous two setups 

(i.e. in open air and half-immersed) where the melting of the coatings occurred above 

the melting points of the coatings. Finally, the observation where the first point of exit 

for the dye is at one of the terminal ends of the capsule is an interesting one. It is 

postulated that it related to the ‘hot spots’ mentioned in Figure 7.2b whereby the 

melting of the coating occurred more  quickly at certain parts of the capsule and thus 

exposed the capsule to the dissolution medium or open air. This may relate to 

variations in the coating thickness, due to the rather crude manual coating procedure. 

. 

(a) 
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7.4 Monitoring in vitro “Release on Demand” under Hyperthermia 

Conditions  

 

Finally with the findings from the formulation, hyperthermia, dissolution studies and 

visual observation at UCL, a new experimental setup was proposed to study the in 

vitro released drug delivery system. The materials chosen to coat the capsules 

consisted of eicosane, and mixtures of fatty acids and paraffins both at a weight ratio 

of 40:60. The dissolution medium was the simulating fasting state at pH 6.5 and 37 

oC, mimicking the intestine condition in the GI tract. The whole system was designed 

as  a non-invasive physical release mechanism that works with an orally-delivered 

capsule having a universal and relatively simple encapsulating coat that can be mass 

produced. 

 

The basic setup follows that of the magnetherm setup (please see Figure 3.15) but 

with an additional UV spectrometer and a My PCLab A/D interface to convert the 

voltage output of the spectrometer into a digital signal that could be filed along with 

the output of 2 thermocouples. Two separate my PClab interface boxes were used, 

since each has only one thermocouple input. 

 

Figure 7.24 shows  the overall schematic representation of the proposed 

experimental setup. A UV spectrometer was attached to the sample holder to 

measure the drug released. A peristaltic pump was used to recirculate the medium 

through the flow cell in the spectrophotometer and back to the sample holder. 
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Figure 7.24 Schematic representation of the experimental setup 

 

The novelty of this setup was also in the use of two separate thermocouples attached 

through the lid of the sample container. One thermocouple was attached directly to 

the coated capsule (it was embedded during the coating process) and the other was 

immersed directly in the medium as shown in Figure 7.25. 

 

 

Figure 7.25 The sample container consisting of two thermocouples connected to the 
coated capsule and the medium solution. 
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The other novelty was the two tubings which were immersed in the dissolution 

medium and connected to a micro cuvette (Figure 7.26). A micro pump was used to 

recirculate medium through the tubing into the cuvette in the UV spectrometer to 

measure the presence of drug release with time. The RF frequencies used were 

521.5 and 330.3 kHz with a magnetic field of 24 and 17 mT, respectively. The sample 

container was then placed into the sample holder as shown in Figure 7.27. 

 

 

 

Figure 7.26 The two tubings from the sample container are connected to a micro 
cuvette. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Micro cuvette 

Tubings from 

sample container 



Demonstrating In Vitro “Release on Demand” using Magnetic Hyperthermia Chapter 
7 

 

207 
 

 
 
 
 
 

.  

 

 

 

 

 

 

Figure 7.27 The experimental setup showing the arrangement of instruments and 
location of the sample holder of the MagneTherm hyperthermia instrument. 
 

Figure 7.28a shows the variation of temperatures with the exposure time for a 

capsule coated with a mixture of fatty acids exposed to RF at 521.3 kHz. It also 

showed the variation of UV absorbance with the exposure time. The dotted (green) 

curve of Figure 7.28a which corresponds to the temperature in the capsule coating 

layer showed a rapid increase up to 39oC during the first 100 seconds and then 

plateaus off at that temperature until 800 seconds.  
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Figure 7.28 The curves of temperatures with exposure time resulting from 
hyperthermia heating by IONs at 10 % by weight in (a) mixture of fatty acid C12 :C14 
(40:60/w:w), (b) eicosane and (c) mixture of eicosane and docosane (40:60/w:w) 
exposed to RF at 521.3 kHz (24 mT). The dotted (green) and solid (red) curves are 
the heating temperatures at the capsule surface and in the dissolution medium, 
respectively. The broken (blue) curve is the variation of the UV absorbance, showing 
the release of drug with exposure time. 
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The solid (red) curve of Figure 7.28a, corresponds to the temperature of the 

dissolution medium, however this shows negligible changes in temperature 

eventhough after the heating of the coated capsule had started. It remained at 37oC 

i.e. the temperature set for the dissolution medium throughout the exposure time.  

 

The melting of the mixture of fatty acids observed at 39oC was not expected since 

previous result from the visual observation at UCL showed that the melting of this 

mixture did not occur. The explanation for this observation is the presence of bile 

salts in the dissolution medium. It is known that bile salts exhibit surfactant properties 

and are capable of forming micelles. Therefore, the solubilisation effect of bile salts 

micelles (Bates et al., 1966) towards the mixture of fatty acids is responsible for the 

observed phenomena. In other words, the coating material is solubilised by the bile 

salts instead of being melted by the heat generated. This exposes the capsules to 

the dissolution media and dissolves the capsule to release the drug.  This was 

supported by the observation of the UV absorbance of the released drug as shown 

by the broken (blue) curve of Figure 7.28a. This curve showed the drug was slowly 

being released after it was being exposed for about 200 seconds. After 650 seconds, 

the entire drug was released even though the capsule temperature had not reached 

the melting point. This observation confirms that the mixture of fatty acids as a 

coating material is inappropriate for this application. 

 

Figure 7.28b showed similar curves as in Figure 7.28a but with eicosane as the 

coating material. The dotted line (green) of Figure 7.28b showed a sudden increase 

in temperature and plateau off at 38 oC after 150 seconds. This observation is 

satisfying since the melting point for eicosane as determined previously by DSC was 

37.79 oC (please refer to Figure 6.7a). It is at 38 oC that the coating starts to melt and 

exposed  the capsule to the dissolution medium, leading to the subsequent release of 

the drug into the medium. It took about 350 seconds for the entire drug to be 

released as shown by the broken (blue) curve of Figure 7.28b. The solid (red) curves 

showed slight variation in temperature of the dissolution medium but this was 

maintained at about 37oC throughout the experiment. 
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Figure 7.28c showed the curves obtained using the mixture of eicosane and 

docosane (40:60/w;w) as the coating material. Once again, the dotted (green) curve 

showed a sudden increase in the temperature up to 40oC in less than 50 seconds. 

The curve then stabilised at temperatures between 40 and 42oC. The melting point 

for this mixture has been previously determined to be 40.1oC (please refer to 6.7c). 

The result showed that the melting point was reached after 50 seconds of exposure 

time. Once it reached the melting point, it began to slowly melt the coating over 500 

seconds. This then led to the exposure of the capsule to the dissolution medium 

which then dissolved the capsule and released the drug. The entire drug was 

released after 650 seconds (see broken (blue) curve of Figure 7.28c). Finally, the 

solid (red) curve of Figure 7.28c shows that the temperature of the medium stayed 

constant at 37 oC throughout the exposure. 

 

Of the three coating materials tested at a frequency of 521.3 kHz, it may be 

concluded that, eicosane is the most suitable coating material, followed by the 

mixture of eicosane and docosane. This is supported by the results obtained from 

Figure 7.28a-c. Eicosane is the better coating material due to the rapid release of the 

drug. The mixture of fatty acids is not suitable as a coating material because of the 

presence of bile salts in the dissolution medium. Another interesting behaviour 

observed from these figures is the temperatures difference between that observed at 

the capsule (dotted (green) curves) and in the dissolution medium (solid (red) 

curves). In all of the figures, the temperature of the dissolution media is maintained at 

about 37oC throughout the experiment even though the heating of the capsules has 

started. It is exciting since this indicates that the heating of the capsules does not 

affect the surroundings material. This is a relief because when applied in the body, 

the heat generated from heating of the capsules at an affected area will not disturb 

the unaffected area or healthy cells of the body. 

 

The same experiments were repeated but at an RF frequency of 330.3 kHz with a 

magnetic field of 17 mT. Figure 7.29a-c showed the curves resulted from exposing 

the different coatings at 330.3 kHz.  
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Figure 7.29 The curves of heating temperatures with exposure time resulting from 
hyperthermia heating by IONs at 10 % by weight in (a) mixture of fatty acid C12 :C14 
(40:60/w:w), (b) eicosane, and (c) mixture of eicosane and docosane (40:60/w:w) 
exposed to RF at 330.3 kHz. The dotted (green) and solid (red) curves are 
temperature at the capsule and of the dissolution medium, respectively. The broken 
(blue) curve is the variation of the UV absorbance of the released drug with exposure 
time.  
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the better coating material followed by the mixture of eicosane and docosane. The 

mixture of fatty acid is again not suitable as coating material because of the problems 

discussed previously. The same behaviour of the temperature at the capsule and the 

dissolution medium was observed which again indicated the heating of the capsules 

did not affect the surroundings much. 

 

 

7.8 Conclusion  

 

The visual observation at UCL was carried out for three different conditions and using 

three different coating materials. This was to see the effect of heating on the coated 

capsules. It can be summarised from the visual observations that the behaviour of 

coated capsules towards heating is dependent on the type of coating materials used, 

the condition of the environment and the location of the sample in the coil. Another 

important observation was the heating of the coated capsule only melted the coating 

and did not rupture the capsule. Therefore, it can be concluded that release of the 

drug was not due to the rupture of the capsule by heat but rather by solubilisation of 

the capsule by dissolution medium, as expected. 

 

Taking into account all the results, an experimental setup for drug monitoring release 

was proposed. It was easy to setup and can be used to study the suitability of 

materials for coating the capsule, the drug release and the heating effects at various 

frequencies, magnetic field etc. The results presented using this proposed setup give 

strong support to its success in achieving the targeted objectives and could be 

applied to many other situations where delivery on demand is required. The magnetic 

nanoparticles embedded in the coating used in this experiment are IONs which are 

easy to prepare and can be mass produced. In addition, the heat generated by IONs 

does not affect the surrounding. This suggests that the heating of the capsule at a 

targeted area in the body will not affect the unaffected area of the body. Finally, a 

capsule is used in this setup to transport the drug. This could be administered orally 

and thus is the preferred form of drug delivery. 

 



Demonstrating In Vitro “Release on Demand” using Magnetic Hyperthermia Chapter 
7 

 

213 
 

7.9 References 

 
http://www.resonantcircuits.com 
 
Atsumi, T., Jeyadevan, B., Sato, Y. & Tohji, K. (2007).Heating efficiency of magnetite 
particles exposed to AC magnetic field. J. Magnetism and Magnetic Materials 310: 
2841-2843.  
 
Bates, T.R., Gibaldi, M., and Kanig, J.L. (1966). Rate of dissolution of griseofulvin 
and hexoestrol in bile salt solutions, Nature, 210: 1331-1333. 

 

 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.resonantcircuits.com/
http://www.researchgate.net/researcher/67986139_T_R_Bates/
http://www.researchgate.net/researcher/65294939_M_Gibaldi/
http://www.researchgate.net/researcher/2686898_J_L_Kanig/


CHAPTER 8 

Conclusions and Future Work 

 

8.1 Conclusions 

 

Overall, this work describes the developments of novel drug delivery system 

exploiting special opportunities afforded by synthesis of nanoscale materials leading 

to a new drug delivery concept. The work started with the preparation of 

nanomaterials via two different methods.  Nanocapsules and iron oxide 

nanoparticles, IONs, were prepared via microemulsion polymerisation and co-

precipitation methods, respectively.  The results of this work have been elaborated in 

Chapters 4 and 5. 

 

Chapter 4 presented the work on preparation of nanocapsule through interfacial 

microemulsion polymerisation in a water-in-oil system. The association behaviour of 

the microemulsion components was presented using typical phase diagrams. The 

particle size and surface morphology of the nanocapsules were investigated using 

DLS and SEM. From the results obtained, the size of nanocapsules was found to be 

large (>140 nm) but they were produced only in very low yield. Most of the material 

formed a kind of porous honeycomb material, as indicated by SEM studies. These 

results did not meet the targeted objectives of this work whereby smaller particle 

sizes and high yield of clearly defined capsules were required.  With that, this part of 

the work was halted in favour of a different drug delivery approach using magnetic 

hyperthermia. This required the synthesis of IONs via a co-precipitation method. 

 

In Chapter 5, IONs were successfully synthesised through a co-precipitation method. 

Several techniques were employed to characterise their properties such as TEM, 

DLS, XRD, SQUID, FTIR and TGA. Various particle sizes of IONs were also 

synthesised using different amounts of stabilising ligand (oleic acid) during synthesis.  

The synthesised IONs demonstrated superparamagnetic properties as shown by the 

absence of a hysteresis loop in the SQUID data and zero coercitivity values. The 

IONs were then used for further studies in this work. This approach to IONs was 
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chosen because it uses only low toxicity compounds which are already 

pharmaceutically approved in the synthesis and, crucially, the methodology can be 

easily scaled up to produce large amounts of particles if required. This is not true, for 

example, for hot injection methods, which use more toxic materials and cannot be 

easily scaled, although they can produce more homogeneous particles. 

 

Chapter 6 exploited two of the IONs properties, their particle size and magnetic 

behaviour, in formulating good coating materials for capsules. The IONs with various 

sizes were embedded in different coating materials. These materials were used to 

coat standard gelatine-based capsules. In order to investigate their thermal 

properties, thermal analysis of the non-embedded coating materials was carried out 

using DSC techniques. After that, IONs of various sizes were embedded in the 

coatings and hyperthermia studies were undertaken. IONs, with their magnetic 

properties were able to generate heat when an RF magnetic field was applied. 

Hyperthermia studies were therefore performed to investigate the heating effects of 

IONs towards the coating materials. Once the information from the hyperthermia 

studies was obtained, capsules containing a model drug were coated with the coating 

materials. The coated capsules underwent dissolution testing at various pH values 

using solutions prepared using acid, phosphate buffer and bile salts. These 

environments mimic that of the GI tract and the dissolution studies were done to 

investigate the ability of the coatings to withstand the environment in the GI tract for a 

certain period of time and their ability to prevent drug release until it is triggered, on 

demand, in the lower intestine via RF hyperthermia. 

 

 

In Chapter 7, the focus of the work was to monitor the effect of heating and melting 

on the coated capsules through the lenses of a thermal imaging camera and video 

camera. Visual images or photographs were captured using three different 

experimental setups. The setups differed in the location of the coated capsules 

relative to the RF coil and their exposure to open air, half-immersed and fully 

immersed in dissolution medium. 
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Finally, taking into account all of the above observations, the grand design of a 

colonic-targeted drug delivery system, together with an experimental setup for testing 

the “release in demand” was proposed. The overall design of the delivery concept 

and the experimental setup is schematically shown in Figure 8.1 The approach is 

generic and could also be applied to many other situations where delivery on 

demand is required. The results presented using this experimental design strongly 

supported its success in achieving drug release under different environmental 

conditions that mimics the GI tract and also allowed the optimum radiofrequency to 

be established. It is easy to set up and IONs embedded in the coating used were 

favourable due to their ease in preparation, cost effectiveness, presumed safety in 

use and mass production potential. Finally, the capsules would be used in this setup 

to transport the drug to the lower intestine. The capsule can be delivered orally which 

is the favoured form of drug delivery wherever possible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 Schematic summarising the results from the new and simple colonic 
targeted drug delivery system.  
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8.2 Future Work 

 

Initial findings from the proposed experimental setup in this work have shown 

promising results and appear to be robust under various conditions. The setup can 

now be readily utilised to study the suitability of materials for coating a capsule, to 

qualitatively determine the drug release together with the time taken and to 

investigate the heating effects at various frequencies. The setup also gives significant 

insight into the biological implications of hyperthermia, whereby it has been shown 

the heat generated by IONs in this configuration does not affect the surroundings 

much. This suggests that the heating of the capsule at a targeted area in the body 

will not affect the unaffected area of the body through non-specific hyperthermia 

effects. 

 

There is still much additional work required to map out completely the optimum 

experimental setup. In order to study the heating effect, many parameters need to be 

taken into account. For instance, various methods to synthesise IONs need to be 

carried out to produce highly monodispersed IONs with different shapes and sizes 

and assess whether this produces larger heating effects. The effect of the magnitude 

of voltage, current, and magnetic field applied should also be looked into. Further 

functionalisation of IONs should also be studied in order for it to be better dispersed 

in the coating materials.  For future studies, it is highly recommended to investigate 

the effect of these variables on the heating effect of IONs in order to understand the 

system in more detail. The study of drug release can be further improved and 

extended to calibrating the spectrophotometer and measuring the volume of the 

recirculating system so that the exact amount of drug released could be quantitated.  

 

The tracking and location of the capsules through the gut so that release can be 

triggered at the correct point should also be looked into. The location of the diseased 

part of the colon or GI tract can be determined by conventional methods such as 

MRI. It is then important to know when the coated capsule reaches the location site 

taking into account the amount of time for the capsule to reach the target after 

swallowing. Since IONs are magnetically active, the capsule can be readily tracked 
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by MRI imaging. It will also be too time consuming, expensive and likely 

uncomfortable for patients to be applied for routine clinical administration. A simple 

and low cost way of detecting the capsule is therefore suggested as another future 

study. This could be achieved using passive UHF RFID (Ultrahigh frequency 

Radiofrequency Identification) tags. By inserting small passive RFID tags inside the 

capsule, it might be possible to locate the capsule with sufficient accuracy using a 

simple hand-held scanner. Alternatively, some kind of frame with multiple detectors 

might be required to provide more accurate spatial positioning via triangulations of 

signals from several detectors. The capsules arrival in the diseased area should be 

readily detected by the back-scattered RF from the tags. This part of the work, 

however, would be an engineering project rather than a chemical one. 

 

The toxicity of the nanoparticles must also be tested for their safe use in human body 

for clinical trial studies. Finally, work should be carried out including model animal 

studies. To date, all of our studies have been in vitro. In order to truly demonstrate 

the potential of this approach, appropriate in vivo studies would be required, starting 

with small rodent studies. Both the magnatherm instrument and the open coil 

geometry at UCL would suitable for this. The capsules would need to be scaled down 

to suitable dimensions and appropriate ethical approval sought, but in principle there 

are no major obstacles to such a study taking place. 
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Appendix 

Appendix A: Nanocarriers for drug delivery 

 

 

 

Figure A.1 Schematic structure of different nanocarriers for drug delivery 

 

 

 

Orive, G., Anitua, E., Pedraz, J.L., and Emerich, D.F. (2009). Biomaterials for 
promoting brain protection, repair and regeneration, Nature Reviews Neuroscience, 
10: 682-692. 
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Appendix B:  XRD pattern for magnetite, maghemite and hematite 

 

 

 
 
Figure B.1 XRD pattern for magnetite, maghemite and hematite (Itoh and Sugimoto, 
2003) 
 
Itoh, H and Sugimoto, T. (2003). Systematic control of size, shape, structure, and 
magnetic properties of uniform magnetite and maghemite particles, Jf Colloid 
Interface Sci.  265: 283-295. 
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Appendix C:  JCPDS Card Number  

 

 

 

Figure C.1 JCPDS Card Number for magnetite (19-629), maghemite (4-755) and 
hematite (13-534). 
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Appendix D:  Calibration curves for dissolution studies at various 

pH. 

 

 

Figure D.1 Calibration curve for paracetamol at pH 1.2 at 243 nm 

 

 

Figure D.2 Calibration curve for paracetamol at pH 7.4 at 243 nm 
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Figure D.3 Calibration curve for paracetamol in FaSSIF at pH 6.5 at 243 nm 
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Appendix E:  Calculation of density of oleic acid on the surface of 

IONs 

 

The surface density of oleic acid was calculated using the formula below (Chang et 

al. 2009). 

 

 Surface density = N/Φ = ρRωA/3Mr(1－ω) 

 

where,  

 

N is the total molecular number of the surface oleic molecules in the sample  

ω is the weight loss ratio,  

A is Avogadro constant,  

Mr is the molecular weight of the surface oleic acid molecules 

Φ is the total surface area of the nanoparticles in the sample 

ρ is the density of the nanoparticles  and  

R is radius of the nanoparticles 
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Chang, Y., Bai, Y.P., Teng, B., and Li, Z.L. (2009). A new drug carrier: Magnetite 
nanoparticles coated with amphipilic block copolymer, Chinese Sci. Bull., 54(7): 
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Appendix F:  Images of coated capsules  

 

 

 

 

 

Figure F.1 Optical images of fatty acid-coated capsules 
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Figure F.2 Optical images of paraffin-coated capsules 

 
 


