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Abstract

Climate change is of concern for both marine biodiversity and the human societies that are
supported by it. Predictive models are required to assess potential responses of socio-
ecological systems to climate change, implement measures to enhance their adaptability,
and ensure the persistence of marine species and the livelihoods that depend on them.
This requires a combination of modelling techniques, making use of a variety of data while
dealing with uncertainty at many stages of the modelling procedure. This thesis explores
the impact of climate change on a marine socio-ecological system, in particular through
climate-induced shifts in species’ distributions. It further aims to explore sources of
uncertainty in projecting models under climate change. Ecological and economic research
techniques are applied to a set of species predominantly inhabiting UK waters, using
projections of climate change for 2050. Ensemble projections suggest polewards shifts in
species at an average rate of 27 and 42 km per decade for demersal and pelagic species
respectively. Uncertainties concerning alternative, valid data sources and modelling
procedures, notably species distribution models, contribute variation to predictions, and a
multi-model approach is advocated to incorporate uncertainties and prevent bias through
model selection. Predictions help identify increased risk of over-fishing through bycatch
and indicate likely changes in environmental suitability of protected areas. Results also
demonstrate how an index of agreement may be used to promote the tractability and
application of projections by non-specialist communities. Furthermore, total maximum
catch potential within UK waters is predicted to decrease by 2050, resulting in a median
decrease in profitability between 2005 and 2050 of 10%, dependent on alterations in key
costs such as fuel price. This thesis highlights the tight link between climate change
impacts at ecological and socio-economic levels. Although adaptive capacity might be
enhanced by switching gear or altering fishing patterns, rebuilding fish stocks to
sustainable level will both improve their resilience to multiple threats and improve the

resilience of fishers to withstand changes in distribution and catch.
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Chapter 1: Introduction

The oceans cover 71 percent of the Earth’s surface and are host to an estimated 50-80% of
all life on Earth. They contain some of the most productive ecosystems, vast natural
resources and unique habitats and further play a vital role in regulating the Earth’s
climate. However, the integrity of the marine environment is increasingly threatened by
human-induced overexploitation, habitat destruction, pollution, and invasions by exotic
species. This intensifying anthropogenic degradation of the marine environment is of
concern not only due to the intrinsic value of the biodiversity that inhabits it, but also due
to its critical role in supporting human societies. In 2009, 148 million tonnes of seafood
from capture fisheries and aquaculture entered the human food chain, contributing 16.6
percent of the global animal protein intake by humans (FAO 2012). In 2008, commercial
fisheries and aquaculture contributed over US $217.5 billion to the global economy (FAO
2012), while non-extractive uses such as marine ecotourism further contributed
substantially to local economies (Dharmaratne et al. 2000; Gallagher & Hammerschlag
2011). Not only do marine ecosystems provide important ecosystem services, they are
central to coastal peoples worldwide, their heritage, religious and cultural values.
However, obtaining a detailed understanding of the effects and interactions of
anthropogenic impacts can be challenging. Marine research is expensive and logistically
difficult due to the size and remoteness of the biome and many marine scientists depend
on technology such as boats, submersibles and scuba equipment, thereby adding costs to
projects exceeding that typically experienced by terrestrial ecologists. Furthermore, not
only do the effects of climate change represent added threats to the marine environment,
they contribute a layer of uncertainty to the impacts of other threats, fisheries
management plans or conservation measures. The development and application of
models that allow exploration of the range of possible responses of the oceans and marine
biodiversity to climate change is therefore a vital step in adapting and mitigating its
impacts on both marine biodiversity and the human societies which depend on it. This
section introduces research areas and ideas that have shaped the thesis, informed
methodologies and highlighted knowledge gaps to prompt the specific research questions

that will be addressed in subsequent chapters.



Chapter 1: Introduction

1. Species Response to Climate Change

1.1. Observed Effects of Climatic Variability

Species have been observed as responding to climate change throughout evolutionary
history (Harris 1993). However, there is growing concern for their ability to survive
under the higher temperatures and rate of climate change currently observed and
predicted (Schneider and Root 1998). Global climate models (GCMs) predict significant
warming around the globe, ranging from 1.1 to 6.4°C by 2100 (IPCC 2007b) and making
the Earth warmer than at any point in the past 1-40 million years (Houghton et al. 2001).
An estimation of future climate envelopes has predicted 15-37% of species in a sample
spanning a range of regions and taxa to be ‘committed to extinction’ (Thomas et al. 2004),

although the magnitude of such estimates have been challenged (Botkin et al. 2007).

In the marine environment, fishermen and scientists have observed prevailing weather
conditions to be influencing the state of fish stocks for over 100 years (Cushing 1982).
There is growing concern over the impact of climate change on marine systems, with
longer-term shifts in the conditions caused by climate change, such as temperature and
hydrological cycles, moving outside the bounds of previous climatic variability with which
changes and adaptations in marine communities have been associated (Root et al. 2003;
Beaugrand 2004; King 2005). Furthermore, climate change is likely to interact with other
factors driving change in marine communities, such as removal by fisheries of predators
or prey, release of endocrine disrupting substances into the ecosystem and removal of
essential habitat from it. Coastal habitat is being lost and water extraction is leading to
altered river-flow into estuaries. However, organisms may respond and potentially adapt
to these changes in a number of ways (Rose 2005; Brook et al. 2008), discussed here with

particular reference to marine organism

1.1.1.  Phenology

Climate change may result in changes in species’ morphologies, such as body size and
behaviour, and a potentially linked alteration in genetic frequencies (Cheung et al. 2012;
Thomas et al. 2001; Parmesan and Yohe 2003). However, evidence from Pleistocene
glaciations has shown that species are more likely to exhibit ecological responses to
climate change, such as shifts in range distributions, than evolutionary responses, through

local adaptation (Bradshaw and Holzapfel 2006). Mechanisms promoting acclimation,
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such as a phenological shift in body function within an organism’s lifetime, may thus be
more likely than changes on a biochemical or genetic level, signifying adaptation
(Parmesan et al. 2000). Climate change may, for example, lead to modification of
phenology, periodic biological phenomena, so that critical phases remain synchronized
with climatic alterations. For example, phenophases of the spawning season have been
shown to be negatively correlated with mean Sea Surface Temperature (SST) the
preceding winter for 27 species in the North Sea (Greve et al. 2005), while earlier spring
migrations have also been noted (Sims et al. 2001; Clarke et al. 2003). Phenological
responses are highly taxon or species specific, resulting from sensitivity to climatic
fluctuations as well as factors such as temperature, light or food availability (Edwards and
Richardson 2004). Altered phenology and timing of development may also lead to altered
dispersal. For species whose offspring develop in the water column, for example, the
duration of the larval stage will determine the length of time larvae are subject to

movement by the currents (O’Connor et al. 2007).

1.1.2.  Biogeographical Shifts

If changes in environmental conditions are too pronounced to result in acclimatisation by
adjusted life cycles, a species’ density at a location may change due to polewards or
upwards range shifts associated with movement to areas within its metabolic limits,
thereby initialising a biogeographic shift (Parmesan and Yohe 2003; Beaugrand 2009).
Population-level movements, brought about by the ratio of colonisations at northern or
upper altitudinal boundaries to extinctions at southern or lower altitudinal boundaries
(Parmesan et al. 1999) have been observed across regions and taxa, both currently
(Deutsch et al. 2008; Tingley et al. 2009) and in the past (Graham and Grimm 1990;
Ashworth 1996). As the paleoecological record is further dominated by individualistic,
species responses to climate (Hannah et al. 2002), this phenomenon is likely to lead to
new species assemblages (Graham and Grimm 1990; Harborne and Mumby 2011). Marine
examples of shifting distributions due to climate change are more striking than their
terrestrial counterparts due to their greater rapidity (Parmesan and Yohe 2003; Edwards
and Richardson 2004; Cheung et al. 2009), although it has recently been proposed that
terrestrial species’ distribution shifts have been greatly underestimated (VanDerWal et al.
2012). For example, Beaugrand et al. (2009) described northward movement in calanoid
copepod zooplankton assemblages in the North Atlantic at a mean rate of up to 23.16 km
per year over 48 years, compared to the 0.6 km yr! polewards shift observed for

terrestrial species for a range of terrestrial taxa in diverse habitats (Parmesan and Yohe
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2003). These changes in planktonic communities were paralleled by a northward
migration of both commercial and non-commercial fish species (Brander 2003; Beare et al.
2004; Perry et al. 2005). In the European continental shelf, a response to warming has
been demonstrated in the abundances of 72% of the 50 most common species UK waters
(Simpson et al. 2011), while immigrant species such as sailfin dory, Zenopsis conchifer, and
big-eyed tuna, Thunnus obesus, have also recently been recorded around the southern
coast of the UK for the first time, correlated with temperature data for the North Atlantic
(Stebbing et al. 2002). These distribution shifts reflect the influx of tropical marine
species to subtropical regions that have been observed elsewhere (Arvedlund, 2009;

Fodrie et al.,, 2010).

1.1.3.  Changes in Nutrient Production and Productivity

Climate change is predicted to have a predominantly negative effect on nutrient supply
and production due to reduced vertical mixing (Sarmiento et al 2005). Satellite
observations of ocean chlorophyll indicate that global ocean primary production has
declined by more than 6% since the early 1980s (Gregg 2003). Although it has been
suggested that increased stability of the water column may have a balancing positive effect
on production at higher latitudes (Behrenfeld et al. 2006), 70% of the global decline in
primary production occurred at high latitudes, especially in the northern hemisphere
(Sarmiento et al. 2005). Using empirical models for a set of seven biomes in a comparative
modelling study using six Atmosphere-Ocean Global Circulation Models (AOGCMs),
Sarmiento et al. (2005) further predicted a small global increase in marine chlorophyll and
primary production for 2050 and 2090, compared to a pre-industrial emissions control
scenario. This result masked large regional differences, such as decreases in the North
Pacific and increases in three of four low latitude basins (Sarmiento et al. 2005). However,
contrasting these results, Steinacher et al. (2010) estimated a decrease in global mean
primary productivity of between 2 and 20% by 2100, relative to preindustrial conditions.
Although regional variation was also found, with increases predicted in the Southern
Ocean, the predictions for a global decrease was consistent across 4 global coupled carbon
cycle climate models (Steinacher et al. 2010). The complexity of trophic systems makes it
difficult to establish reliable predictive relationships between primary and secondary
production and fisheries production (Brander 2010). Furthermore, changes in production
at higher trophic levels may also result from direct climatic impacts on both reproduction

and growth.
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Temperature may impact the success and thus locality of spawning at both local and large
scales (Rose 2005; Snickars et al. 2010), as well as recruitment, (Portner 2001;
Drinkwater 2005), larval development, and duration (Clarke et al. 2003; O’Connor et al.
2007). Within the Bristol Channel, the significant role of seawater temperature in
determining growth and/or abundance has been identified for sea bass, Dicentrarchus
labrax, (Henderson and Corps 1997), dab, Limanda limanda (Henderson & Seaby, 1994)
and sole, Solea solea (Henderson and Seaby 2005). Significant correlations have also been
found between cod, Gadus morhua, recruitment or growth (Brander 1995; Pértner 2001)
and temperature fluctuations, consistent with results obtained from growth experiments

and rearing in enclosures (Bjornsson and Steinarsson, 2002).

1.1.4.  Pathogens and Invasive species

As many pathogens are temperature sensitive, climate change is projected to impact
disease in both marine organisms and humans (Harvell et al. 2002). Although some cold-
water salmonid diseases are favoured by low temperatures (Holt et al. 1989), growth rates
of many marine bacteria, fungi and highly toxic phytoplankton varieties, such as
Prorocentrum and Chattonella, are positively correlated with temperature (Harvell et al
2002). The increasing frequency and spatial distribution of phytoplankton blooms and
fish kills in coastal seas globally since the 1970s have also been attributed to the
eutrophication of coastal waters by human activity and increasing global temperatures
(Pinnegar et al. 2008). The occurrence of harmful algal blooms in the North Sea is thus
predicted to increase over the next 100 years due to projected increases in precipitation in
Britain, the subsequent increase in the freshwater pulse released at the coast and

intermittent salinity stratification (Peperzak 2003).

Greater incidence of pathogens may also have indirect effects on marine organisms.
Phaeocyctis blooms, for example, regularly affect the coastlines of northern France,
Belgium and the Netherlands. Although not themselves toxic, degeneration of the bloom
leads to the formation of an anoxic, mucilaginous layer on the seabed and the mass
suffocation of juvenile fish. Individuals may also become increasingly susceptible to
pathogens under thermal stress (Harvell et al. 2002) and altered patterns of disease may
release a species from, or impose, a major source of population regulation (Harvell et al

2002; Brander 2010).
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Although there is little data to assess whether climate change will facilitate invasions by
favouring introduced over native species, as with pathogens, global warming may relax
the constraints posed by inhospitable climatic conditions in a recipient region, to which
novel species are already being transported by human activity (Southward et al. 1995;
Stachowicz et al. 2002). For example, an increase in mean annual SST and winter water
temperatures in Long Island Sound (Connecticut, USA) was found to facilitate the
establishment and persistence of invaders from warmer climates due to differential
responses by native and non-native ascidians to inter-annual variation in temperature. As
the initiation of recruitment in the non-native species was strongly negatively correlated
with early March temperature, it was able to recruit earlier with warming temperatures,
conferring an advantage as the outcome of competition among sessile invertebrates is

often determined by the order of habitat colonisation (Stachowicz et al. 2002).

1.1.5.  Regime shifts

Regime shifts reflect a substantial shift from one dynamic regime to another and have
been used to describe large, step-like switches in the abundance and composition of
plankton and fish (Beaugrand 2004; Hjermann et al. 2007), often related to bottom-up
changes in productivity (Drinkwater et al. 2010). An example of a regime shift was
described in the northern Pacific Ocean, associated with changes in atmosphere
circulation and temperature due to large-scale hydro-climatic changes. This involved
rapid alteration of phytoplankton and zooplankton production and composition and a
change in the dominant species from commercially valuable shrimp and crabs to highly
productive gadoids in large areas of the Berring Sea and the Gulf of Alaska. There were
also concurrent increases in salmon production in Alaskan regions and decreases in

California, Oregon and Washington (De Young et al. 2004).

1.2. Dominant factors and mechanisms involved in the species’ responses climate

change

Assessment of the effects of climate change therefore involves disentangling an intricate
web of climate-mediated physical variables, other external variables, and the life-history
and food-web stages at which these may impact. Although temperature has been
proposed as the most influential climate variable in determining large scale fish and

shellfish distribution (Clarke et al. 2003), the effects of atmospheric climate change also

10
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manifest themselves through factors such as ocean circulation, acidity, salinity and the
density structure of the water column. There is therefore considerably uncertainty in the
way these oceanographic variables will act and how they might interact with one another
and external factors, such as fishing pressure. Although frequently assumed to
progressive, and linear (Brander 2007), responses may also be non-linear (Ottersen et al.
2010), for example, when exceeding a threshold value causes a major change in species

composition, production and dynamics (Beaugrand 2004).

Furthermore, the biological impact of increases in environmental variables, such as
temperature, will depend on the physiological sensitivity of organisms to its change (Scott
and Johnston 2012). For example, species in tropical regions have narrower thermal
tolerances and live closer to their tolerance limits than those in polar or temperate regions
(Deutsch et al. 2008). Thus although it has been predicted that biological change might be
concentrated in areas where temperature changes are largest, such as at high latitudes
and altitudes (Root et al. 2003), this might not be the case if the thermal tolerance of
species is proportional to the magnitude of the temperature variation they experience.
Evaluating the effect of rapidly changing climate on species’ survival and distributions
therefore requires linking the geographic pattern of climatic change to the physiological

sensitivity of study organisms (Deutsch et al. 2008).

The ecological effects of climate patterns and change can be categorised as direct or
indirect (Ottersen et al. 2004, 2010). A direct effect involves a direct response to a climate
pattern by a synchronized environmental phenomenon, acting on physiology, behaviour,
growth, development, reproductive capacity, mortality and distribution (Brander 2007).
Indirect effects, on the other hand, do not directly affect a population’s biology or involve
several intermediary steps between the climate pattern and ecological trait. Indirect
effects might alter the productivity, structure and composition of the ecosystem on which

fish depend for food and shelter (Greve et al. 2001; Beaugrand 2004).

1.2.1.  Direct Effects

i. Temperature

Global atmospheric temperature and carbon dioxide concentrations are rising, with 11 of

the last 12 years (1995 - 2006) ranking among the warmest since 1850 in terms of global
surface temperature, and a 100 year trend of 0.74°C (0.56 - 0.92°C with 90% uncertainty)

11



Chapter 1: Introduction

from 1906 to 2005 (IPCC 2007a). Although temperature increase is widespread across
the globe, there is strong geographic variation between latitudes, with Arctic regions
showing temperature increases at two times the global rate (IPCC 2007a). The next two
decades are projected to show an increase of about 0.2°C warming per decade if
greenhouse gas (GHG) and aerosol concentrations remain constant at year 2000 levels,
with a further warming of about 1°C per decade expected (IPCC, 2007). Following this
period, temperature projections vary depending on the emissions scenarios used, such as
the 2000 IPCC Special Report on Emissions Scenario, SRES. Surface warming then varies
between a 0.6 and 4.0°C temperature change by 2000-2099 relative to 1980-1999) (IPCC,
2007). Air temperature rises are causing simultaneous warming of the world’s ocean
(Levitus et al. 2000; Fukasawa et al. 2004). Although the most significant warming is
expected in the upper 500 - 800m (Bernal 1993), observations since 1961 have shown
average temperature to be increasing to a depth of at least 3000m (Levitus et al. 2000).
Regional increases in ocean temperature have also been documented in the south-west
Pacific Ocean, North Atlantic (Bindoff and Church 1992; Parrilla et al. 1994) and the
Mediterranean Sea (Bethoux et al. 1990). Temperature is thought to be the climatic

variable which has the dominant effect on marine ecosystems (Drinkwater et al. 2010).

Ectothermic animals are adapted to and depend on the maintenance of a characteristic
temperature window within their natural environment (Pértner 2001). The importance
of this is indicated by the fact that, contrasting mammals and birds, no ectothermic species
is known to occur over the widest temperature range possible, from polar latitudes to the
tropical regions. The ‘law of tolerance’ (Shelford 1931) was extended by Schwerdtfeger
(1977) to describe the changing performance of organisms within the optimum, pejus and
pessimism phases of the tolerance range, with respect to environmental factors. The pejus
and pessimism temperature describes a species’ or population’s high and low temperature
thresholds respectively and are found well within the range encompassed by the critical
temperature (Frederich and Portner 2000). The lower heat tolerance in metazoan
compared to unicellular eukaryotes and bacteria suggest that temperature limitations are
imposed by complex systems rather than single molecular processes (Portner 2001). The
increased metabolic rate and performance achieved by greater complexity (Hemmingsen
1960; White et al. 2006) may therefore be offset by greater thermal sensitivity. Recent
comparisons of the mechanisms characterizing thermal intolerance have led to the general
conclusion that oxygen limitation and a decrease in the ability to perform aerobically
(aerobic scope) characterize the first line of thermal intolerance in water breathing

animals at both ends of the thermal envelope (Portner et al. 2000; Portner 2001). At

12
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temperatures beyond the maximum critical temperature, anaerobic metabolism sets in
and survival is time-limited (Frederich and Poértner 2000; Portner and Knust 2007). In
colder waters, oxygen supply to tissues is optimized by a shift in haemoglobin isoforms
and oxygen binding properties, allowing lower oxygen affinities and higher uploading
potential. Mitochondrial densities increase, allowing greater aerobic capacity and meeting
energy demands (van Dijk et al. 1999). As temperatures decrease further, towards the
lower critical temperature (Tc), ventilation and circulation become insufficient to cover
mitochondrial demand, leading to the breakdown of oxygen transport and aerobic

metabolism, and functional failure.

As activity and especially reproduction occur in a narrower thermal window than
mitochondrial maintenance, the ecologically relevant temperature limits are those of
thermal tolerance rather than the critical range (Pértner 2001). Thermal tolerance limits
may change through acclimatisation or adaptation (Scott and Johnston 2012). A trade-off
between adaptation for wider thermal tolerances and reduced oxygen limitation and
fecundity and growth may therefore result in reduced body size, larger individuals
frequently experiencing greater thermal sensitivity than smaller ones (Portner and Knust
2007). These findings are supported by food-unlimited laboratory experiments where the
maximum attainable weight of a 3-year old cod increased almost linearly with
temperature from 3 - 6°C, before levelling off and reaching a maximum at about 8.5°C
(Bjornsson and Steinarsson 2002). Species may also vary in their ability to adapt to
temperature change because aerobic scope can be defined by motor activities. More active
species of fish and octopus have a higher aerobic scope and critical temperatures

compared with sessile Antarctic species (Portner et al. 2000).

The effect of sea water warming on marine life will depend on the position of the current
habitat in the thermal tolerance range of each species or population, and whether a change
in ambient temperature falls within adaptable limits. While increases in water
temperature may promote growth and reproduction in cooler regions, similar increases
may have negative consequences in warmer regions. In Cod, for example, increasing SST
corresponding to increases in recruitment at baseline temperatures less than 5°C, but
decreases in recruitment at baseline temperatures greater than 8.5°C (Drinkwater 2005).
Tolerance limits may further depend on the extent of diurnal and seasonal temperature
fluctuation already experienced. For example, cold-adaptation in polar stenotherms has

led to fewer red blood cells, oxygen binding proteins (Nikinmaa 2002), and enzymes that
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are especially sensitive to temperature. These species are thus likely to be ill-prepared to

cope with even minor increases in environmental temperature (Portner et al. 2000).

Temperature may also act indirectly on a species’ survival and distribution by influencing
phenology and dispersal. As temperature affects the rate of egg and larval development,
warmer temperatures decrease the chance of predation at this phase in the life cycle. As
the duration of the larval stage will determine the length of time they are subject to
movement by currents, increased temperature will indirectly affect population
connectivity, community structure and regional to global patterns of biodiversity
(O’Connor et al. 2007). Although coupled physical-biological models have been used to
suggest that larval transport can establish the range of marine species regardless of local
environmental conditions, such as temperature, (Gaylord and Gaines 2000) care would
need to be taken in predicting possible range shifts if establishment in a particular habitat

does not result in reproduction.

ii. Salinity

In most fish species, salinity determines key factors of reproduction, such as egg
fertilisation, yolk sac reabsorption, early embryogenesis, swim bladder inflation and larval
growth, and is also a controller of growth in larger fish (Boeuf and Payan 2001; Mountain
and Kane 2010). Climate-induced changes in salinity are hypothesised as becoming
increasingly important. Although ground water discharge, projected to increase with
increasing precipitation, contributes only 6% of influx to the ocean floors, its salt load is
50% greater than that of rivers. If the increased salt load is not offset by increased water
volume, ocean salinity could increase, with projected implications for the thermohaline
circulation and formation of dense water (Peterson et al. 2002). This increase, and its
interaction with temperature, is hypothesised to have important consequences for aquatic
ecosystems, with lower and higher relative salinities resulting in higher development and
growth rates in marine and freshwater species respectively (Boeuf and Payan 2001) and
influencing distribution (Maes et al. 1998). Salinity varies with freshwater input, showing
both seasonal variation and long-term trends. For example, in Bridgewater Bay, UK, the
total number of fish species was found to decline with increasing salinity, with fish
distribution also being affected. Conversely, a 2°C increase in average shallow water
temperature in Bridgewater Bay, combined with increased river flow, decreasing salinity
by 2 ppt, was projected to increase the average number of fish species caught by 6.3 per

annum, a 10% increase (Henderson 2007).
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As with temperature, preferred ranges and response to change in salinity are highly
species specific (Boeuf and Payan 2001). In tilapia (Oreochromis spilurus), a salinity
change from 0 to 36.6 psu in salt water had no effect on growth when increased
progressively over 120 hours (Jonassen et al, 1997). In chum salmon (Oncorhynchus
kata), however, increasing salinity to 33.5 psu during rearing resulted in increased growth
(Kojima et al. 1993). Higher growth rates are almost always observed in intermediary
saline conditions (brackish water, 8-20 psu) for both freshwater and saltwater species,
and are usually correlated with a lower standard metabolic rate. This preference is
reflected in the use of coastal waters as nurseries for many fish species. Although the
cause of increased growth is unclear, hypotheses for the mechanism of responses include:
control of food intake (many species adapting food ingestion to external water salinity)
and thus the central nervous system; better food conversion efficiencies and control of
hormones, involved in both growth control and osmoregulatory processes (Boeuf and

Payan 2001).

However, the effects of salinity change observed in lab experiments have frequently been
brought about by changes greater than those observed in nature. Once outside the river
plumes of incoming freshwater, the North Sea mostly varies between 33 and 34 psu, with
much of the ocean being about 35psu. Upper and lower values are likely to be found in the
Mediterranean, which may reach 38 psu, and the Arctic, at around 24.8psu (S. Dye, pers
com.). The direct effects of salinity may therefore be negligible in comparison to those of
other climatic variables. However, a greater impact may be exerted indirectly or in
synergy with variables such as temperature and acidity; although ocean mixing and
stratification are predominantly temperature mediated, lower salinities may increase
stratification of the water column in areas such as the North Sea (S. Dye pers com.),

increasing phytoplankton and zooplankton production (Pershing et al. 2005).

iii. Acidification

Ocean acidification describes the change in ocean calcium chemistry and the decrease in
pH in response to rising atmospheric CO2. Over the last 200 years, the oceans have
absorbed about 25% of CO; released into the atmosphere by human activities (Sabine et
al. 2004). Following dissociation of CO; to H*and OH- ions, this has affected ocean surface
pH, the concentration of bicarbonate (HCO3) and carbonate (COs32-) ions, reduced the
saturation state, and moved the saturation horizons of calcium carbonate (CaCO3)

minerals to the ocean surface (shoaling) (Beadman et al. 2009). Seawater currently has an
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average pH of 8.1 (7.8 - 8.2), 0.1 units lower than before the industrial revolution (Caldeira
and Wickett 2003). Predictions based on realistic scenarios for future CO; emissions
suggest that ocean pH will decrease by a further 0.3 - 0.4 units by 2100, and 0.77 units by
2300 (Caldeira and Wickett 2003). The rate of change in oceanic pH this century is
therefore likely to be the most rapid experienced by marine organisms for 65 million years
(Turley et al. 2009). Although effects on marine organisms are varied (Turley et al. 2009;
Kroeker et al. 2010), their magnitude and importance is highlighted by their potential
socio-economic impacts. For example, the reduction in growth and calcification caused by
a doubling in atmospheric CO; has been projected to lead to a 10 - 25% loss in shellfish
landings. This equates to a loss of £24.4 - 61 million per year and 1000-3000 job losses
(Turley et al. 2009).

Ocean acidification is predicted to most significantly impact calcifying organisms, with
observations in naturally acidified ecosystems indicating shifts away from calcareous
species (Fabricius et al 2011; Kroeker et al 2011), which are impacted both
physiologically and by dissolution of their calcium carbonate structures. Susceptibility to
dissolution will depend on a structure’s mineral form, the ampophous calcite laid down by
some species having a greater susceptibility to dissolution than aragonite and calcite
(Turley et al. 2009). For example, studies have found reduced calcification and increased
incidence of shell malformation in the microscopic plants coccolithophores when grown at
high CO; level (Langer et al. 2006; Feng et al. 2008; Beadman et al. 2009). Future
projections of the global aragonite saturation state also indicate that 70% of cold-water
corals may experience under-saturation and dissolution of aragonite skeletons, in some
areas as early as 2020 (Orr et al. 2005; Guinotte et al. 2006). This might further cause

breakdown of reef structure and habitat loss (Turley et al. 2007).

All marine species maintain an internal homeostasis by exchange of ions with the
environmental. The influence of CO; levels on this process may affect maintenance costs
in both calcifies and non-calcifies (Portner 2008). Deep sea fish and cephalopods are
known to be particularly sensitive to increases in external CO; and disruption of their pH
homeostasis is predicted to lead to respiratory stress, reduced aerobic capacity and
impaired function with reduced oxygen binding (Ishimatsu et al. 2004). Studies on sea
urchins, which have no impermeable membrane to isolate them from the surrounding
water, have shown an inability to compensate for longer-term changes in ocean
acidification, or maintain their internal pH balance for longer than 7 days at pH 7.4,

resulting in loss of body functions (Miles et al. 2007). At CO; levels 220 ppm higher than
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current levels, they exhibited reduced growth rates and survival over several months
(Shirayama and Thornton 2005). Brittlestars exhibited muscle wastage at pH 7.7, due to a
trade-off to increase calcification rates (Wood et al. 2008), and reduced juvenile success,
fertilisation, larval growth and development have also been documented with decreasing
pH (Dupont et al. 2008; Havenhand et al. 2008). Conversely, despite being vulnerable at
early life stages, crustaceans have been shown to be better able to compensate for changes
in pH (Pane and Barry 2007) and organisms such as Neries worms are thought to be less
vulnerable due to compensation mechanisms developed to cope with periodic drops in pH

in their current environment (Widdicombe and Needham 2007).

Acidification may also impact species indirectly, through the food chain, and altered
growth rates and thus competitive dynamics in acidified conditions have been shown to
drive significant ecosystem shifts (Kroeker et al. 2012). Furthermore, acidification may
alter various biogeochemical processes and pathways. For example, the performance and
distribution of key benthic organisms, such as bioturbating species, which mediate
nutrient cycling within the sediment and their supply to the pelagic community may be
affected (Wood et al. 2008). A change in structure and function of microbial communities
may also reduce nitrification (Widdicombe and Needham 2007) and ammonia oxidation
rates, causing accumulation of ammonia instead of nitrate. A shelf-ecosystem model has,
for example, been used to predict a 20% decrease in pelagic nitrification by 2100
(Blackford and Gilbert 2007). Although large uncertainties exist in future projections,
with other studies predicting increases in photosynthesis, nitrogen fixation and growth
rates in the nitrogen fixer Trichodesmium with increasing CO; (Levitan et al. 2007), the
physiological responses of individual species to acidification could indirectly lead to

profound ecosystem changes in an acidified ocean.

Despite the ability of the ocean to buffer CO; change and neutralize the increase in H+ ions
by calcium carbonate sediments, this process takes tens of thousands of years (Ridgwell
and Zeebe 2005; Archer and Brovkin 2008). It may be possible that species will adapt to
acidification despite its rapid rate, as is suggested by investigation of responses to the best
analogue for current ocean acidification, the Palaeocene-Eocene Thermal Maximum
(PETM). The PETM was one of the Palaesogene hyperthermals, a series of events between
58 and 52 million years ago which have left sedimentary records indicative of large carbon
inputs associated with a transient temperature rise (Dickens et al. 1995). Although these
biogeochemical changes were associated with migratory responses in plankton such as

foraminifers and coccolithophorids, (Sluijs et al. 2007), this adaptive response was not
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paralleled in the benthic community, which faced extinction dependent on the degree of
calcification (Turley et al. 2009). As marine organisms normally regulate their internal pH
levels at a particular level (e.g. pH 7.4 - 7.9 for haemolymphs) they have evolved a number
of mechanisms that allow pH changes to be buffered, thereby preventing damages to
internal processes and functioning. However, these have only been observed on short
time scales and it is unclear how long such energetically costly mechanisms can last
(Turley et al. 2009) or their implications on the energy budget and key aspects of
population dynamics (Wood et al. 2008).

Further to the uncertainty surrounding projected effects of ocean acidification, they will
likely be exacerbated by temperature change. Not only are organisms stressed by
increasing temperatures less likely to acclimatize, adapt or recovery from lowered pH
levels, acidification is exacerbated at higher temperatures, when a greater proportion of
water molecules dissociate to H* and OH- ions (Roessig et al. 2004). A more intimate link
between these two variables was seen in the edible crab Cancer pagurus, where a 1% CO;
increase caused significant reduction in oxygen partial pressure in the haemolymph, as
well as a 5°C downwards shift of the upper thermal limits of aerobic scope (Metzger et al.

2007).

1.2.2.  Indirect Effects

i. Depth

Although direct changes in depth due to climate change are only likely to impact shallow
water and coastal species, through sea level rise, a species’ distribution is also bounded at
certain depths (Close et al. 2006; Froese and Pauly 2011). A depth range may be
characterised by particular levels of temperature, oxygen concentration, food availability
and predation pressure in both freshwater and marine environments (Henderson and
Seaby 2005) and changes in these factors may therefore influence distribution. Perry et al.
(2005), for example, found that most of the 15 species observed to exhibit a shift in
latitude between 1978 and 2001 in the North Sea in relation to warming also shifted in
depth. Although this result was perhaps unsurprising given that depth in the North Sea is
positively correlated with latitude and species may therefore only change depth following
a latitudinal shift, a further six species, including plaice (Pleuronectes platessa) and cuckoo
ray (Leucoraja naevus) moved deeper with warming but showed no change in latitude

(Perry et al. 2005). Further to this, 14 of 19 demersal fish species assemblages in the
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North Sea were found to show a significant deepening response over the 25 years from
1980 to 2004 at a rate of about 5.5 m decade -1 (range: 0.6 - 14m decade -1). Furthermore,
while cold-water species deepened faster, warm water species exhibited shallowing over

time (Dulvy et al. 2008).

If species show morphological and physiological adaptations to living at particular depths
(e.g. Helfman et al., 1997), their capacity to shift their vertical range might be reduced. An
adaptation or preference for certain depths may furthermore only be expressed at
particular stages of the life-cycle, such as in perch, who select shallower water for
spawning in a trade-off between the positive effects of temperature on development and
the negative effects of solar radiation on the eggs (Huff et al. 2004). The ecological effects
of deepening may therefore be more significant for ecologically or geographically
restricted species which are unable to deepen or shift to stay within the preferred
temperature range, such as eelpout in the Wadden Sea (Portner and Knust 2007) and
species in the North Sea, where habitats greater than 80m in depth are restricted to

relatively small areas (Dulvy et al. 2008).

il. Ocean Currents and Stratification

Currents are driven by tides, wind in the upper ocean layers and the fluxes of heat, salinity
and water density which drive the thermohaline circulation (the deep water (> 200)
conveyed in slow, large-scale circulations. With projected increases in stratification and
decreased formation of mixed layers, halting convective flow, many global climatic models
predict a weakening and possible complete breakdown of the thermohaline circulation,
especially in the Atlantic Ocean. Alterations in currents are likely to have important
consequences for species dispersal, a key aspect of recruitment success (Drinkwater et al.
2010). Altered current patterns may also affect a species’ ability to move, through active
migrate or passive dispersal, and benefit from the potential fitness advantage conferred by
changing water temperature and climate patterns (Drinkwater 2005). The impact of
currents on a species’ persistence and dispersal may therefore increase with altered
environmental suitability; Whereas the first observation of a species in a novel area may
be caused by currents or chance invasion and occurrence may therefore not always denote
settlement, warming temperatures may increase the likelihood of successful
establishment, with particularly important implications for the spread of invasive species.
Altered currents may also influence water temperature, for example, through the slowing

of the Gulf Stream (Minobe et al. 2008).
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Although stratification is predicted to increase with warming ocean temperature, (Hegerl
and Bindoff 2005), the impact on primary production may be positive or negative
depending on the type of biome (Beaugrand 2009). Thus while in sub-polar regions,
where strong mixing limits primary production, greater stratification may stimulates
primary production, in areas which are permanently stratified (tropical regions), an
increase tends to reduce primary production, with variations within seasons also being
possible (Beaugrand 2009). Increased stratification in the Pacific may also increase the

frequency of El Nino and thus more extreme climatic variation (Roessig et al. 2004).

iii. Primary production and Trophic Interactions

It may be argued that the most widespread effects of climate on the dynamics of marine
systems are indirect (Walther et al. 2002). It may further be debated whether ecosystems
and individual populations are controlled by top-down or bottom-up processes; Predators
or prey resources exerting more influence on population growth rate respectively (Cury
and Pauly 2000). However, as there is globally a greater proportion of fish biomass in
regions with high primary productivity, such as sub-Arctic seas and upwelling areas of
continental shelves (Hunt. Jr and Mckinnell 2006), the main global pattern of control is
likely to be bottom-up, rather than the absence of predators, who are often abundant in
the same regions. On a more regional scale, predators might be a major controlling

mechanism (Ottersen et al. 2010).

Bottom-up control has been indicated in several studies (Henderson 2007; Hjermann et al.
2007; Ottersen et al. 2010) and supported by both modelled and empirical work (Ware
and Thomson 2005; Chassot et al. 2010; Blanchard et al. 2012). In upwelling systems, for
example, fish production appears to be controlled by enrichment, concentration and
retention processes, which are in turn governed by climatic factors. As temperature rises
should intensify upwellings, global fish production may decrease due to reductions in the
concentration and retention processes (Walther et al. 2002). Trophic interactions may
further influence the response and acclimatisation of higher trophic level species to
climatic change through temporal synchrony and trophic coupling (Greve et al. 2001; De
Young et al. 2004). For example, the number of fish caught in Bridgewater Bay, UK, each
year was found to increase over a 25 year period, a 2°C increase in inshore seawater
temperature corresponding to a 10% increase in total species richness (Henderson 2007).

This increase was supported by a corresponding increase in the prey resource, linked to a
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high North Atlantic Oscillation over this period. The subsequent food-limitation on fish
abundance was indicated by a decrease in both species richness and total number in the

following years (Henderson 2007).

The survival of fish larvae during the planktonic stage is thought to depend strongly on the
availability of sufficient food (Brander et al. 2010). Hjort (1914) proposed that the year
class strength in marine fish is determined at yolk reabsorption when the first-feeding
planktonic larvae have not yet fully developed their foraging abilities and are therefore
most vulnerable to starvation. The major prey of first-feeding fish larvae are usually
copepod eggs and nauplii, which themselves are often linked to the production of diatoms
(Fortier et al. 1995). Cushing (1974) subsequently coupled Hjort’s concept of a critical
feeding period with a model explaining the movement and duration of the spring and
autumn diatom blooms in temperate waters, the critical depth model (Gran and Braarud
1935; Sverdrup 1953), to propose the mismatch hypothesis, highlighting the importance

of a spatio-temporal match between consumers and their resources.

The verity of the mismatch hypothesis has been debated, with Bollens et al. (1992)
arguing that a delay between reproduction of some early spawning species and the peak
reproduction of copepods in summer provides evidence that match/mismatch of early
larvae to prey is only of secondary importance in determining spawning strategy. In these
cases, spawning may be determined by constraints such as small larval predation and
optimal feeding during metamorphosis (Bollens et al. 1992), and would thus force certain
species to produce larvae in regions or time periods of poor feeding conditions (Fortier
and Gagné 1990). It may alternatively be the case, however, that these early spawning
species are especially vulnerable to match/mismatch of their prey species (Fortier et al.
1995) which will more strongly determine year-class strength due to their timing
occurring further along the distributional tails of any peak abundance and thus increasing
the likelihood of food limitation. Likewise, the timing between occurrence of fish larva
and their prey may be especially critical in seasonally ice-covered arctic and sub-arctic
seas, where the season of biological productivity is short (Cushing 1975). The proposed
impact on year class size of climate-induced alterations in timing of spawning and the
resulting trophic mismatch of predators and prey was recently confirmed on the basis of
remote satellite sensing and a long-term dataset of haddock recruitment (Platt and Frank

2003).
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However, adaptation to climate change may make it difficult to distinguish factors limiting
species distributions and thus predict likely responses to change. Although fish show
characteristic temperature preference windows, their preference may be modified by
environmental factors. Fish with restricted food supplies may be more likely to occur in
cooler waters, which result in lower metabolic demands (Moyle and Cech 2004) rather
than exhibing an altered distribution that coincides with maximal prey production.
Increasing temperatures may also reduce the maximum attainable size of fish (Cheung et

al. 2012) and thereby decrease the importance of food limitations on population growth.

It therefore seems difficult to make conclusions on the relative importance of direct versus
indirect predictors of fish species distribution. If direct influences are stronger than the
indirect ones, climate-induced responses will be independent (Greve et al 2005),
enhancing the specificity of species’ responses rather than coupled community responses
(Beaugrand and Reid 2003; Edwards and Richardson 2004). Dinoflagellates, for example,
may respond both physiologically to temperature changes that affect their adult mortality,
reproduction, respiration and development, and indirectly, if warming enhances stratified
conditions and/or if these conditions appear earlier in the season (Edwards and
Richardson 2004). If other species, such as diatoms, are less impacted by temperature-
induced changes on physiology than by the variables such as day length and light intensity,
their phenology may stay relatively fixed in time (Edwards and Richardson 2004),
resulting in trophic mismatch. Therefore although it seems clear that climate induced
changes in phenology and production will affect ecosystem functioning, with
consequences for fish whose life cycles are synchronized with the seasonal production of
their prey, the contribution of this factor on higher trophic level species abundance and

distribution at higher trophic levels is harder to elucidate (e.g. Sims et al., 2001).

iv. Synergistic Effects

The relative importance of top-down versus bottom up control may be extrapolated to the
anthropogenic impacts on the marine environmental, highlighting the importance of
distinguishing between the effects of different drivers of change and understanding the
linkages and interactions between them. Fishing may directly alter the demographic
structure of populations, or act indirectly, for example by damaging breeding grounds
(Planque et al. 2010). Its combined effect with climate has been proposed as explaining
stepwise changes in fish dominance and ecosystem shifts (Beaugrand et al. 2003). Thus

although the dominant effect of the environment on long-term fluctuations of fish stocks in
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upwelling systems is generally accepted (Cushing 1982), there is often uncertainty as to
the relative influences on shorter term or more localised events. While Hutchings and
Myers (1994), for example, used scientific reasoning to show that the northern cod
collapsed solely due to overfishing, Rose et al. (2000) showed the same event to have a
strong environmental component. Furthermore, an apparent range shift of smaller, warm-
water tolerant species, for example in the North Sea, may result either from the increased
availability of previously inhospitable habitat in winter and spring (Dulvy et al. 2008) or
from predator release following over-exploitation of their commercially exploited
predators (Daan et al. 2005). The interaction of fishing with stock reactions to
environmental change may thus have implications for predicting future distributions,
abundances and formulating management plans. For example, north and south regions of
the North Sea may host different abundances of some commercial species due to higher
rates of fishing mortality in the south (Dulvy et al. 2008), rather than a causal difference in
habitat suitability. In this case, predictions based on assessment of environmental

suitability by relative abundance may be incorrect.

The most important effects of fishing are proposed as being the depletion of spawning
stock biomass and the truncation of the age-size structure of stocks (Hsieh et al. 2006).
These decrease both the temporal and spatial window of reproduction (Beaugrand 2009)
and likely reduce the resilience of a stock to environmental variability (Cury et al. 2003).
For example, although it has been hypothesized that warming waters will enable cod to
move northwards from the North Sea, along the Labrador coast, this projection is
dependent on healthy cod stocks to the south. If fishing reduces cod stocks to a minimum,
there may be insufficient individuals remaining to drive increased production, expand and
thus derive any benefit from increasing temperatures and habitat suitability. The
importance of considering the multiple, synergistic effects acting on fish stocks was also
highlighted in the case of the North East Atlantic cod. The exploitation rate of this species
increased steadily from the 1950s (ICES 2004), prompting concern by ICES from 1969.
This concern was, however, dissipated due to the optimism expressed by scientists in
1985 based on several successive years of high survey indices of 5-month old cod (1983 -
1985) (Nakken 1998). However, the failure of expected population increase due to lack of
capelin (cod’s main food), and resulting high levels of cannibalism and low individual

growth led to cod catch at the end of the 1980s being the lowest of record.

The preceding sections have thus shown that there are many physical and biochemical

variables involved in translating the effects of global climate change to the marine
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environment, its communities and populations. Furthermore, there are a variety of ways
in which these variables can act, introducing considerable uncertainty into any attempt to
predict their possible effects on marine species. Examples and evidence above have
shown that there are two ways in which populations and thus communities may change in
response to climate (Genner et al. 2004). The first of these will depend on the bioclimatic
envelope, the climatic space, of a species, which will be directly determined by an
individual’s physiology, transferring to population or species level changes in abundance
and distribution. The second mechanism emphasises interactions, with individual and
population level change in survivorship, dispersal, fecundity and behaviour cascading to
the community and ecosystem level. The challenge in predicting future species’ responses
to climate changes therefore seems to be the incorporation of these two areas, and this

will be investigated in the following section.

2. Species distribution modelling

The earliest examples of species distribution modelling found in the literature are thought
to be the niche-based crop predictions by Henry Nix (Nix et al. 1977). A workshop in 1988
and resulting publications (Verner et al. 1986; Margules and Austin 1991), prompted an
increasing number of species distribution models to be developed, supported and
enhanced by concurrent advances in computer and statistic sciences and by the strong
theoretical support to predictive ecology as the ‘more rigorously scientific, more
informative and more useful ecology’ (Peters 1991). Since this time, the predictive
modelling of species distributions has become recognised as an innovative tool to explore
a wide range of questions in ecology, biogeography, evolution, conservation science and

climate change research.

Species distribution models (SDMs) are empirical models relating field observations to
environmental predictor variables, based on statistically or theoretically derived response
surfaces (Guisan and Zimmermann 2000). They thus predict the range of a species as the
manifestation of environmental characteristics that limit or support the organism of
interest and are based on ecological niche theory. The fundamental ecological niche can
be defined as the environmental conditions under which a species can survive and grow
Hutchinson (1957), thus defining a species’ ecological properties and potentially
incorporating all abiotic variables affecting it (Austin et al. 1990) but no biotic limiting

factors, such as competition for resources. The area within a fundamental niche into
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which a species is restricted by biotic interactions is described as its realized niche (Austin
et al. 1990; Guisan and Zimmermann 2000). Thus while the fundamental niche should
vary spatially but remain environmentally intact, the realized niche may vary in both
geographical and environmental space when subject to the same climatic variation. It has
been suggested that limitations to the species distribution modelling procedure are
encountered when ecological theory is not fully integrated into the modelling process and
that insights from the theory should be used in a more systematic way to underpin
decisions made during the modelling process (Guisan and Thuiller 2005; Stewart-Koster

etal 2012).

Species Distribution Models can be classified as either static or dynamic. While static
models provide time-independent equilibrium predictions as a function of environmental
variables, dynamic models predict time-dependent responses to a changing environment
(Prentice and Solomon 1991). Within these categories, models can be described as
correlative, which bases predictions on correlations between observed distributions and
environmental variables, or mechanistic, which aims for a physiological simulation of the
mechanism defining a species’ range (Pearson and Dawson 2003). As correlative models
are based on the premise that the best indicator of a species’ environmental requirements
is its current distribution, the species’ envelope is characterized based on the realized
niche. Conversely, models aiming to find a more mechanistic relationship between
climatic parameters and species responses aim to identify the fundamental niche by
modelling physiologically limiting mechanisms in a species’ climatic requirements
(Heikkinen et al 2006; Beaumont et al. 2008). Models based on mechanistic
considerations may therefore be more robust under changed environmental conditions
than those based on currently observed correlations, which may not apply in the future.
Jiménex-Valerde et al. (2008) thus defined realized and potential distributions
(corresponding to realized and fundamental niches respectively) to delineate aspects of
modelling methodologies, formulating a conceptual framework for model design and

selection in ecology and application.

Distinction between niche types therefore implicitly involves distinction between
incorporating biotic or abiotic predictors. However, it has been suggested that ‘in most
ecological gradients, the majority of species appear to find one direction to be physically
stressful and the other to be biologically stressful’ (Brown et al. 1996). This was
subsequently demonstrated for a latitudinal gradient by McArthur (1972) and has also

been investigated through in situ experiments in barnacles (Connell 1961; Wethey 1984)
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and foxes (Tannerfeldt et al. 2002). For example, Connell (1961) found evidence
indicating that the upper limits of existence on the intertidal zone by the barnacle
Chthamalus stellatus resulted from physical factors such as tolerance limits to heat and
dessication. Lower limits, however, were principally determined by competition with the
barnacle Balanus balanoides, which grows faster than C. stellatus, eliminating it by
smothering, undercutting or crushing its young and thereby limiting distribution on the
lower intertidal zone (Connell 1961). Although the extent of interspecific competeition
between red and arctic foxes is debated, with evidence often being inconclusive (e.g.
Linnell et al. 1999), Tannerfeldt et al. (2002) focussed on the level of individual territories
to show that interspecific interference competition can influence the southern distribution
of Artic foxes through their exclusion from breeding sites in low latitude habitat. As higher
altitude sites have lower food availability, it has been suggested that this small scale
behavioural effect might scale up to have a significant impact at the population level for

the smaller arctic fox (Tanerfeldt et al. 2002).

However, although including predictor variables representing the presence or absence of
known competitors in a model has been shown to significantly improve its predictive
abilities (Leathwick and Austin 2001; Anderson et al. 2002), the inclusion of other species
might also coincide with physical variables that have not been incorporated into or
accounted for in the model. The question of whether a significant interaction is critical for
inclusion in a model is therefore a debatable one, and one that is related to the question of

scale of the study and model design.

2.1. Considerations in Model Design

The choice of methods for species’ distribution modelling is extensive and increasing.
Methods vary in how they model the distribution of the response, select predictor
variables, weight variable contributions, allow for interactions and predict the actual
geographic patterns of occurrence (Guisan and Zimmermann 2000; Elith et al. 2006). This
variation necessarily brings considerable uncertainty into the models and the range of
outputs they produce. Methodologies will further be shaped by the type of data required
for specific procedures, and that which is obtainable. Model selection should be
determined by study objectives, thereby ensuring the ecological theory behind certain
techniques, its assumptions and inherent uncertainties are suitable and sufficient to

produce realistic and accurate predictions.
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2.1.1. Direct or Indirect Variables, Generality or Precision?

To obtain a species distribution prediction, a dataset of species presence or abundance
must be related to one or more environmental predictors. These may be divided into
those that have a direct or indirect effect on species distribution or are resources (Austin
2007). Whereas direct gradients are environmental parameters, such as temperature and
pH, that have physiological importance but are not consumed, resource gradients refer to
matter and energy consumed by plants and animals, such as nutrients and light. Indirect
gradients may act through a series of steps and have no direct physiological importance to
a species’ growth or survival, although they correlating well to observed species patterns.
Although climatic variables are recognised as being particularly useful in species
distribution modelling due to their coinciding with physiological tolerances, results have
been improved by addition of topographic features, such as slope and elevation, which
may modify how individual organisms experience a particular climatic regime (Parra et al.
2004). Elevation would not, however, be suitable for modelling future projections, as

elevation-temperature associations break down under climate change.

To characterise a niche mechanistically, a species’ distribution should be related to direct,
causal predictors. As these factors are often difficult or expensive to measure, they are
often sampled from digital maps, such as for elevation-sensitive spatial interpolations of
climate station data (Thornton et al. 1997). This process may introduce uncertainties
through interpolation errors, lack of sufficient station data and the fact that standard
climatic stations might not reveal biologically relevant microclimates, decreasing the
precision of predictions due to spatial uncertainty. Soil, nutrient and geology maps are
even more difficult to derive. Contrasting this, indirect, topographic variables may be used
to replace a combination of different resource and direct gradients (Guisan et al. 1999)
and may be generated with little loss of precision from relatively accurate digital elevation
models. As equivalent topographic positions may, however, encompass a different set of
direct and resource values in different locations, under the ‘law of relative site constancy’
(Walter & Walter, 1953, cited in Guisan & Zimmermann, 2000), a model using such
predictors is geographically limited and cannot be extrapolated to different geographic
areas without incurring substantial error. Conversely, models parameterized with
physiological, direct and resource predictors can be applied more generally and are thus
applicable to a wider geographic or temporal range, assuming negligible adaptation. The
choice of model predictors may therefore involve a trade-off between precision and

generality, affecting its applicability for particular uses. Although mechanistic models
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might involve loss of precision and perhaps accuracy, physiologically based variables are
frequently used in broad scale predictions, as topographic variables might lose predictive

power at such coarse resolutions.

2.1.2. Scale

Related to the issue of generality and precision is that of scale. The scale of a study and
model may be expressed independently as both the resolution and the extent of a study
area; modelling a large area does not necessarily imply a coarse scale. Not only must both
these components be explicitly addressed, but the resolution and extent of both species
and predictor datasets must also be appropriate and compatible to ensure a model’s
validity. There may be mismatch between the resolution of sampled species data and that
of the environmental predictors, which may be at too large a resolution to be meaningfully
related to the occurrence of a particular species (e.g. Guinotte et al, 2006). Patterns
observed at one scale may also be undetectable at another, both within a study site and
over a larger area including the study site (depending on resolution and extent
respectively). Van Horne (2002) showed how constraining the extent of a study can result
in incorrect interpretation of results if only part of an important environmental gradient is
sampled. Sampling must be undertaken throughout a potentially range-limiting predictor

gradient to ensure the adequate observation of the response curve (Van Horn 2002).

Pearson & Dawson (2003) proposed a hierarchical model framework, whereby
distributions were influenced by increasingly local factors as resolution increased and
extent decreased, providing conditions at higher levels in the hierarchy were satisfied.
While climate was hypothesised as having a dominant influence on distribution at a
continental scale, at more local scales, topography and land-cover types were suggested to
become increasingly important given suitable climates (Pearson and Dawson 2003).
Predictor variables with inappropriate resolutions but which are potentially influential in
determining occurrence may be remediated by techniques of downscaling, interpolation

and aggregation.

2.1.3.  Complexity or Simplicity?

A trade-off running parallel to that of generality versus precision or specificity concerns
model complexity and tractability (Thuiller et al. 2008). It has been suggested that certain

newly developed techniques are better able to parameterize complex relationships, such
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as the interactions between predictor variables possible using GBM, MARS-INT and
BRUTO (Wisz et al. 2008), therefore producing more robust predictions (Elith et al., 2006;
Tsoar et al.,, 2007). However, although complex models may have greater power, inclusion
of more parameters may not make them closer to the truth or improve model accuracy.
They are also data hungry and can seldom be used when data is limited (Guisan and

Thuiller 2005; Wisz et al. 2008).

It has been proposed that complex models are likely to be more accurate at finer
resolutions (specificity) and would generalize poorly (Drake et al. 2006), whereas simple
models will offer useful and parsimonious solutions at a broader scale (generality)
(Thuiller et al. 2008). This distinction is reflected in the disparity between modelling
realized and potential niches, as complex techniques may be more suitable to measure the
realized distribution than simple ones, which may better estimate potential distribution
(Jiménez-Valverde et al. 2008). It may also be argued that interpretation of results from
model comparison studies (e.g. Elith et al, 2006; Wisz et al, 2008) may vary on
consideration of methodological and theoretical considerations. Thus, techniques able to
establish a more complex fit between dependent and independent variables will over-fit
the presence data more strongly, resulting in smaller predicted extents of occurrence than
those suggested by simpler techniques. If these techniques are subsequently analysed
using presence/absence data, a greater number of the true absences in the validation data
are likely to be predicted as absences by complex techniques, leading to the conclusion
that complex techniques are more accurate than simpler ones (Jiménez-Valverde et al
2008). Considerations on the appropriateness of models of different complexities must
therefore be taken into account when defining SDM objectives and interpreting results
(Jiménez-Valverde et al. 2008). Although an attempt has recently been made to
compromise the trade-offs of precision versus generality and complexity versus simplicity,
the resulting hybrid models are data-hungry and require a detailed knowledge of
ecological processes that is rarely available for large numbers of species and regions

(Thuiller et al. 2008).

2.1.4.  Number of Variables

The idea of quantity and its impact on quality must therefore be considered in the
selection of predictor variables as the addition of environmental predictors may not
improve a prediction’s sensitivity or precision (Elith et al. 2006). The models DOMAIN

and BIOCLIM, for example, have shown a clear effect of the number of input variables, with
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results becoming less accurate with addition of predictors (Hijmans and Graham 2006). A
method that takes into account the number of predictors included may therefore be
beneficial. GAM and MAXENT, using variable selection and weightings, have been shown

to be less influenced by number of predictors (Hijmans and Graham 2006).

Additional problems may be caused if too many predictors result in novel combinations of
variables, and distribution is under-predicted because a variable is outside what is
observed in the current climate (Hijmans and Graham 2006), potentially leading to
inaccurate forecasts of decreasing range size. This problem might be overcome in
methodologies that use both presence and absence/pseudo-absence data in predictions
(e.g. GAM, Maxent). Here, some of the ‘new’ environmental space should be correctly
identified as suitable if the conditions are closer to those found for presence observations
than those sampled for predicted absences, enabling prediction under novel
environmental combinations. This highlights the theoretical and technical considerations
required to ensure accurate and meaningful predictions despite differences in available

data and modelling technique.

2.1.5. Presence or Presence - Absence Data?

While presence-absence SDMs use presence-absence data to generate statistical functions
and discriminative rules, presence-only methods define the environmental envelope
around locations where a species has been recorded, which may then be compared to the
environmental conditions of the background area. Presence only methods are therefore
likely to predict potential distributions that more closely resemble the fundamental niche
of a species, whereas presence-absence data will likely reflect the present natural
distribution derived from the realized niche. Obtaining valid data confirming a species is
absent from a locality is difficult (Gu and Swihart 2004) and frequently unaffordable. The
increasing abundance of data recorded without sampling schemes or compiled from
museum and herbarium collections, where absences cannot be reliably inferred and
datasets contain sampling biases has thus promoted the development of methodologies
that can exploit the potential of presence-only data. However, while comparative studies
have concluded that no single algorithm can be identified as performing better than all
others under all circumstances (Brotons et al. 2004), it has been proposed that algorithms
able to handle ‘true’ datasets (eg. GLMs; ANN) perform better and are more reliable and
useful than presence-only methods (eg. ENFA; BIOCLIM) (Brotons et al. 2004; Martinez-

Meyer 2005; Lobo et al. 2008). Presence-only methods may also introduce inaccuracies

30



Chapter 1: Introduction

through the interaction of ecological characteristics with species prevalence. For example,
fitting presence data obtained from good quality, scarce habitat may bias models if the
relative importance of a suitable habitat is over-weighted by many more observations in
other habitat types. Inclusion of absence data has been found to be especially useful for
modelling wide-ranging, tolerant species (Brotons et al. 2004), and GLMs have been found
to be more accurate than presence-only ENFA models when species used all optimal
habitats with a high probability and sub-optimal habitats with a low probability (Hirzel et
al. 2002).

The advantages of absences are lost when assumptions are not upheld and their validity is
questionable. Presence is a probabilistic function predominantly affected by species
abundance and detectability. Failing to detect a species does therefore not confirm its true
absence from a cell. The inherent assumption that absence indicates areas where species
are not present due to negative species-environmental relationships may also fail to hold
due to habitat population dynamics, fragmentation, dispersal or historic distribution
(Brotons et al. 2004). Despite the greater accuracy of GLMs over ENFA mentioned above,
it was also found that ENFA was likely to outperform GLM in scenarios where a species did
not occupy all available, suitable habitat (Hirzel 2001). Presence only models are
therefore more suitable for constructing models of potential habitat when it would not be
appropriate to judge false positive predictors as failures. For example, if absence at a
particular locality are caused by factors not included in the model, such as dispersal
limitations, biotic interactions or incorrect assessment (Pearson and Dawson 2003;

Pearson et al. 2007).

However, presence-absence methods have been adapted and improved, using a binomial
response and random samples of the study area’s background environment as ‘non-use’ or
‘pseudo-absences’ (Stockwell and Peters 1999; Zaniewski et al. 2002). It then becomes
possible to assess how much model predictions differ from random expectations (Boyce et
al. 2002; Hirzel et al. 2002). In a comprehensive comparison of modelling methods by
Elith et al. (2006), no support was given to presence-only methods that did not attempt to
classify a species’ distribution relative to its background environmental. Conversely,
newer modelling methods that characterize the background environment (such as
Maxent) outperformed classical presence only methods (BIOCLIM, LIVES, DOMAIN) as
well as regression-based models (GAM, GLM) (Elith et al. 2006). Care must be taken,
however, in relating absence data to model output, as the kind of absence data used for

model calibration condition the characteristics of the species distribution described by
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model results (Jiménez-Valverde et al. 2008). While the realized distribution cannot be
characterized without true absence data within a species’ environmentally suitable limits,
due to biotic factors or dispersal limitations (Lobo 2008), if the aim is to estimate potential
distribution, absences should come from environmental conditions known to be
unsuitable for the species, avoiding those caused by non-environmental factors (Chefaoui

and Lobo 2008).

2.1.6. Sample Size and Extent

A further important consideration in model design is the quantity of data required to make
accurate and reliable predictions. Studies have frequently observed decreasing model
accuracy and increasing variability in predictive accuracy with decreasing sample size
(Kadmon et al. 2003; Hernandez et al. 2006; Wisz et al. 2008). This may be caused by the
increasing levels of uncertainty and weight carried by outliers with decreasing sample size
and the need for large samples to describe complex relationships among environmental
variables. For example, It has been suggested that a sample size of 22 caused models to be
descriptive and hypothesis generating only, rather than predictive (Williams and Hero
2001), and that a sample of greater than 250 independent points is required to maximise
accuracy (Pearce and Ferrier 2000). However, studies of biodiversity are necessarily
frequently based on incomplete data. The technique of environmental niche and species

distribution modelling has emerged as a solution to this challenge (Martinez-Meyer 2005).

The efficient use of data in generating a prediction can be split into two components. The
first of these describes the rate at which accuracy increases with data efficiency, while the
second specifies the maximum accuracy achievable with a model (Stockwell and Peterson
2002; Hernandez et al. 2006), with a quick convergence to an asymptote at high accuracy
being ideal. When this asymptote is reached will depend on the study areas and the
species, the quality and spatial resolution of environmental and species occurrence data
and the modelling method itself. The variation in model sensitivity to sample size was
highlighted in a significant effect of sample size, algorithm and their interaction being
observed on the AUC test statistic, in a comparison of 12 model algorithms (Wisz et al.
2008). The algorithms DOMAIN and LIVES, for example, were classed as insensitive to
sample size, compared to MARS and BRUTO, which were classed as highly sensitive.
Maxent was found to have moderate sensitivity to sample size, although still giving the
highest predictive ability at low sample sizes (10) and second highest at sample sizes of 30

and 100 (Wisz et al. 2008).
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It has been suggested that the number of species sample points is less important than their
distribution and overall density, which might be especially influential for widespread
species with broad niches (Stockwell and Peterson 2002; Kadmon et al. 2003). If
distribution in space is biased and observations are clustered in a small part of a species’
range, the ecological requirements of a species may be mis-represented. It has, for
example, been suggested that Bioclim is unsuitable for use with small sample sizes (Tsoar
et al. 2007) as it does not extrapolate beyond the bounds of the environmental conditions
at known locations of occurrence, the envelope defining conditions therefore expanding
with occurrence data (Hernandez et al. 2006). Variation in sampling bias for different taxa
may also in part explain the variation in predictive ability of models across species
(Stockwell and Peterson 2002; Kadmon et al. 2003; Ready et al. 2010). Sampling bias may
be especially significant for marine offshore organisms as in-shore areas are often
sampled at a higher rate than offshore areas. It was, for example, proposed that a low
ROC-AUC value for John dory, Zeus faber, might be caused by the fact that it lives over a
greater range than the other species studied, exhibiting sampling bias if data were
restricted to a few regions (Ready et al. 2010). Modelling inaccuracies may also be
introduced if taxonomic uncertainty leads to the inclusion of environments to which
different populations (potentially taxa) might be adapted (Ready et al. 2010), as in the
case of the Pacific sardine, Sardinops sagax, which has genetically identified sub-

populations in different parts of its distribution (Grant et al. 1998).

2.2.  Model Assumptions

As both species and environmental data reflect a snap-shot in time and space, SDMs work
on the key assumption that the species is in pseudo-equilibrium with its environment
(Guisan and Thuiller 2005). If this assumption is not upheld, the observed realized niches
used for predictions in a model do not represent a species’ environmental tolerance limits.
Svenning and Skov (2004) showed that the ratio of realized to potential range size for
many European tree species was 50%, with the distribution of many species being
strongly controlled by dispersal constraints on post-glacial expansion (Svenning and Skov
2004). A model that closely fit observed distribution would thus underestimate the
potential range. However, other modelling studies have supported the hypothesis that
continental-scale distributions are principally supported by climate and that many species
distributions can be assumed to be in equilibrium with current climate at the macro-scale,

although the finer details of distribution may not be identified (Pearson et al. 2002). The
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main criticisms of Species Distribution Modelling stem from the inability to uphold this

assumption of equilibrium, due to the following key parameters.

2.2.1. Biotic Interactions

A species’ distribution is restricted by environmental limits on survival as well as
competition for resources with other species. Not only are the effects of biological
interactions difficult to model in a general way, future projections are complicated by the
likelihood that, following range shifts, species will encounter interactions currently
unobservable in nature. Incorporating indirect impacts of climate change on a species’
distribution by factoring in prey species will likely improve model accuracy due to the
more responsive nature of lower trophic levels to environmental variation (Ottersen et al.
2010), and the fact that many commercially exploited marine species are likely to be more
influenced by bottom-up than top-down processes (Henderson 2007; Hjermann et al

2007; Ottersen et al. 2010).

2.2.2.  Evolutionary Change

Modelling species’ distribution shifts under changed environmental conditions
incorporates the assumption that adaptation rates will be slower than extinction rates and
ecological niches will therefore be conserved. This assumption has been shown to be
species dependent, and although some insect species have indicated an evolutionary
response to climate change, with enhanced dispersal abilities (Thomas et al. 2001), the
physiological limitations of others appear unaffected by evolutionary processes over long
time scales (Huntley et al. 1989). There have also been examples of changes in life history
and phenotypic traits of some fish species in response to fishing pressure (Law 2000),
although this might have more impact on the actual rate of range shifting in response to
environmental change, rather than the magnitude of shift (Cheung et al. 2008), causing the
temporal aspect of predictions to be conservative. Bioclimatic envelope models are
therefore most appropriate for species unable to undergo rapid evolution, such as long-
lived species, and those that react slowly to variability, such as arctic and alpine flora

(Guisan and Zimmermann 2000).
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2.2.3. Species Dispersal

The extent to which a species can occupy a projected range under altered environmental
conditions will rely on its ability to disperse or migrate. Persistence in a changing
landscape will therefore rely on the rate of appearance and spatial arrangement of habitat
patches as well as on the species’ capacity for reproduction and dispersal under the
altered environmental conditions. Species distribution models frequently assume ‘no
dispersal’ or ‘unlimited dispersal’ (Thuiller 2004; Thomas et al. 2004). They therefore
ignore mechanisms driving species demography, assuming that the relationship between
observed occurrence and environmental conditions provides a good surrogate for
demographic processes. Making an assumption on dispersal could have serious
consequences from a management perspective, for example if the rate of change in local
conditions outpaces the migration capabilities of species with limited dispersal abilities
(Pounds et al. 1999). Furthermore, decreasing dispersal abilities, exacerbated by current
levels of habitat modification and fragmentation, will reduce predicted potential habitat,
exacerbating the disparity between a species’ fundamental and realized niche. However,
there have been recent advances in coupling bioclimate envelope models with dynamic
population models in both terrestrial (Brook et al. 2009) and marine environments

(Cheung et al. 2008).

The simplest method of incorporating dispersal into a model assumes identical dispersal
rates (Midgley et al. 2006). However, as the migration capacity of a population depends
on its individual dynamics, this assumption is seldom likely to hold. Alternatively,
migration can be defined through the processes of fecundity, dispersal, recruitment and
population growth (Thuiller et al. 2008). Dispersal will also change according to
environmental suitability and therefore the carrying capacity (K) at each location (Cheung
et al. 2008; Keith et al. 2008). If carrying capacity for each spatial cell of a modelled
distribution is determined from the probability of occurrence per species, as defined by
environmental predictors, future carrying capacity can be determined by species
distribution projections models under future environmental/ climate projections.
Combining modelling of carrying capacity with a dynamic population model that measures
the change in relative abundance of a species in terms of, for example, its growth,
extirpation and age-specific dispersal, then allows location-specific changes in abundance
to be determined given constraints on dispersal and growth (Cheung et al. 2008; Keith et
al. 2008). Keith et al. (2008) further incorporated density dependence into a species

distribution models by using a ceiling model to reduce survival and growth independently
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for each life stages whenever a population exceeded the carrying capacity of its habitat
patch (Keith et al. 2008).

With the greater dispersal abilities likely in the marine habitat, the extent of future
distributions under alternative climatic scenarios may be dictated to a greater extent by
climatic parameters than in the terrestrial environment. This was supported by the
finding that the magnitude of predicted distribution range shift for over 1 200
commercially exploited fishes and invertebrate varied little under variation in intrinsic
rate of population increase, larval dispersal and settlement (Cheung et al. 2008). The rate
of range shifting may be more sensitive to specific population dynamics such as larval
production and dispersal. However, as species distribution models under future climatic
scenarios are frequently modelled over long-time scales (e.g. 30 to 100 years) the impact
of population dynamics acting at a yearly time scale may have little effect on these
predictions. For example, changes in the distribution ranges above were further found to

be insensitive to population parameter values (Cheung et al. 2008).

2.3. Model Evaluation

The difficulties of model selection may be compounded by model comparison approaches
and their perceived shortcomings (Jiménez-valverde and Lobo 2007; Lobo et al. 2008).
Firstly, the meaningfulness in model comparison using an AUC value or Kappa statistic
may be doubted. AUC evaluates how well model predictions discriminate between
locations where observations are present and those where they are absent, and is one of
the most widely use threshold-independent evaluators of model discriminatory power
(Fielding and Bell 1997). AUC values range between 0 and 1, with 0.5 indicating model
performance to be equal to that of a random prediction. Interpreting this value, if AUC =
0.7, the predicted value at a location where a species is present will have a predicted
suitability value higher than those where the species has not been recorded 70% of the
time (Wisz et al. 2008). Although it has been suggested that an average test gain greater
than 0.75 may be considered useful, an AUC of 0.82 for 6000 presence points may still
results in 41 230 pixels being incorrectly described as present (Lobo et al. 2008). Kappa
statistics, measuring the agreement between observed and predicted distributions, are
thought to indicate reliable predictions if equal or less than 0.6 (Elith et al. 2006; Tsoar et
al. 2007). However, this value is still achievable with under- or over- prediction levels of
40% for a species that occupies half of the territory. In the case of a rare species
occupying 5% of its territory, a kappa value of 0.6 could mean an over-prediction of 102%

(a doubling of its distribution area) or an under-prediction of 44% (nearly half the
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distribution of the species is not predicted) (Jiménez-Valverde et al. 2008). Discrimination
between models may therefore be based on the subjective ranges of indices that only
measure whether the agreement between predicted and observed distribution is
significantly different than expected by chance (Jiménez-Valverde et al. 2008). Evaluation
of model results would therefore be biased in preference of complex techniques due to
their potential to over-fit models to training data. However, AUC values remain useful in
determining variation in partitioned datasets, thereby highlighting potential sampling bias

in a dataset (Ready et al. 2010).

Secondly, evaluation of model performance may be affected by a species’ relative
occurrence as the probability of including false absences when selected at random
increases at small extents. At large extents, random absence data are more likely to be
environmentally distant from the presence domain, leading to a low commission error
(false positive prediction) (Lobo et al. 2008). It has been argued that, as long as presence
data are predicted reasonably well, it is easy to obtain high AUC values if evaluation data
contain absences selected from a very large area, only part of which is occupied (Wisz et
al., 2008). As widely dispersed, generalist species are present but unsampled in many grid
cells, the prior probabilities in present and background sets do not differ substantially,
reducing accuracy and causing generalist species to be relatively poorly predicted
(Brotons et al. 2004, Elith et al,, 2006). This was highlighted in the significant relationship
found between model performance (AUC) and the spatial extent of a species distribution,
tolerance and marginality, which was independent of sample size (for models Bioclim,

Domain, GARP and Maxent (Hernandez et al., 2006).

Thirdly, differences between modelling procedures may preclude the value of model
comparison. For example, in comparing presence versus absence techniques, whereas a
low number of presence points may prevent presence-only evaluators assessing the
overall quality of the model, presence-absence methods are still able to rely on the fit
between predicted and observed absences. Scarce data would thus cause a presence-only
model to be classed as poor by evaluators, whereas one using presence-absence data
might obtain an intermediate score. Model choice must take into account the likely biases
involved in model evaluation together with desired uses and characteristics of the sample
data. In some cases, species distribution models might be better advanced by
improvements in the biological occurrence data than by more complex modelling

approach (Lobo, 2008).
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3. Climate Modelling

Climatic variables such as maximum and minimum temperature and precipitation have
been proposed as being particularly informative in species distribution modelling due to
their coinciding with a species’ physical tolerances (Parra et al. 2004). A strong
foundation in physical principles and a tested ability to reproduce observed climate has
given confidence to the ability of climate models to provide credible quantitative estimates
of future climate change, improving the applicability of climatic variables in predicting
future distributions. However, this confidence is higher for some variables, such as
temperature, than for others, such as precipitation. Incorporation of climate into a model
and it projection into the future will contribute sources of uncertainty additional to those
surrounding the biology of an organisms and the nature of the modelling process

(Beaumont et al. 2008).

Although current climatic data may be obtained through observation, data at a fine (< 1
km?) spatial resolution are frequently necessary to capture environmental variability,
especially in mountainous areas and others with steep climatic gradients. Interpolation
and modelling may therefore be required to obtain a full dataset of current climate, or
‘climatic surface’ (Hijmans 2005). Not all climate models are equally reliable, and the
quality of the surface may also vary spatially, depending on the local climate variability in
an area, geographical characteristics, the quality and density of observations and the

degree to which a spline can be fitted through them (Hijmans 2005).

3.1. Climate Models

Climate models are numerical models based on equations of physical laws that describe
the earth’s radiation budget and the dynamics of the atmosphere and ocean. Although
simple energy-balance models have been used to simulate the response of the global
climate system to increasing greenhouse gas (GHG) concentrations, a hierarchy of models
now exists. Coupled Atmosphere Ocean General Circulation Models (AOGCMs) and nested
Regional Circulation Models (RCMs) provide the most sophisticated way to make
geographically and physically consistent estimates of climate change (Randall et al. 2007).
Simple climate models (SCMs) are more computationally efficient than their more complex
counterparts and have been used to investigate future climate change in response to many

GHG emissions scenarios. These models have the benefit that uncertainties can be
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concatenated, potentially allowing the climate and sea level results to be expressed as
probabilistic distributions, something that becomes more difficult with AOGCMS due to

computational expense (Randall et al,, 2007).

An Atmospheric General Circulation Model (ACGM) may be combined with an Ocean
General Circulation Model (OGCM) and those concerning sea ice and evapotranspiration
over land to form the basis of full climate models such as HadCM3; and CM2.X. These
AOGCMs are designed to produce the best representation of a system’s dynamics and their
major limitation is caused by high computational costs, which prevent systematic
explorations of projection uncertainties and variations both within and amongst climate
models. For example, in applying data from climate models to species distribution models,
projections of species ranges for 26 bio-energy crops within Europe was found to differ
significantly in both magnitude and direction when using four different climatic models
(Tuck et al. 2006). These variations may be caused by parameterization differences, such
as how processes concerning water vapour and ocean mixing may be represented, or by
differences in how models incorporate feedback of individual variables and their

strengths.

3.2. Downscaling

General Circulation Models provide realistic representations of large-scale climatic
variables, with atmospheric and ocean models frequently having horizontal resolutions of
300km and 125-250km and vertical resolutions of 10-30 vertical levels and 200-400m
respectively (Beaumont et al. 2008). For global assessments, or those with low sub-grid
scale variations, the regional information provided by an AOGCM may be sufficient.
However, GCMs alone are unable to give good descriptions of local or regional processes
(Benestad 2004). For example, the Hadley Centre’s HadCM3 model is resolved at a spatial
resolution of 2.5° latitude x 3.75° longitude (Fowler et al 2007), whereas many
applications by end users occur over much smaller scales. Climate data must therefore be
downscaled by Dynamical Downscaling (DD), using a Regional Climate Model (RCM), or by

Statistical Downscaling (SD).

Regional Climate Models use the outputs of the GCM to provide the initial conditions and
lateral boundaries so that high-resolution RCM simulations can be derived for selected

time periods. While the GCM simulates the response of the global circulation to large scale
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forcing, the RCM accounts for sub-GCM scale forcing (such as complex topographics and
land cover heterogeneity) in a physically based way while also enhancing the fine-scale
simulation of atmospheric circulation and climate variables. RCMs can typically decrease
data predictions to a scale of 10-20km or less (Fowler et al. 2007). The skill of an RCM
largely depends on the driving GCM and the presence and strength of regional scale
forcing (Fowler et al. 2007; Beaumont et al. 2008). Studies in Europe and New Zealand,
where topographic effects on temperature and precipitation are prominent, have
therefore reported more skilful downscaling than those in the US Great Plains and China,
where regional forcing is weaker (Wang et al. 2004). Further limitations include the lack
of two-way interactions and feedback between the models and the tendency for RCMs to
exhibit internal variability due to non-linear dynamics not associated with boundary
forcings. As dynamical downscaling is also computationally expensive, models have
frequently been restricted to ‘time slices’, usually involving a 30 year period from 1961-
1990 as a baseline/control period and from 2070-2100 for a changed climate. Pattern
scaling has thus been developed to allow assessment of climate for other periods. In this
case, changes are scaled according to the temperature signal modelled for the intervening

period, assuming a linear pattern of change (IPCC 2010).

Statistical Downscaling methods construct scenarios by adopting empirical relationships
that have been calibrated from observations and applied using predictor fields from the
GCM (Schmidli et al. 2007). They therefore rely on the concept that regional climates can
be predominantly determined by a stochastic and/or deterministic function between
large-scale atmospheric variables (predictors) and local or regional climate variables
(predictands). Regional climate is therefore conditioned in the form R = F(X), where R =
the local climate variable being downscaled, X = the set of large-scale climate variables and
F = a function which relates the two and which is typically established by training and
validating the models using point observations or gridded reanalysis data. The simplest
method of statistical downscaling, the ‘perturbation’ method, involves the application of
GCM-scale projections in the form of change factors (CFs) (Fowler et al. 2007). Here, the
difference between the control run and future GCM simulations are applied to baseline
observations by adding or scaling the mean climatic CF to each day. Although this method
is easily applicable to several GCMs to produce a range of climatic scenarios, it assumes
the spatial pattern of change will remain constant and that GCMs are more able to
accurately simulate relative change than absolute values, assuming a constant bias
through time (Fowler et al. 2007). More sophisticated SD methods included the use of

regression models and neural networks, also subject to key assumptions.
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Statistical downscaling methods are more straightforward than dynamical downscaling
and have frequently been used in sensitivity studies and for rapid assessments of multiple
climate change scenarios when RCM outputs are unavailable. However, they have also
been viewed as difficult to interpret, fail to include the uncertainties inherent in GCM
projections (IPCC 2010) and have been found to underestimate variance and poorly
represent extreme events (Fowler et al. 2007). Thus while downscaled scenarios based on
one GCM or emissions scenario translated into an impact study may give the impression of
increased resolution and thus confidence in the projection, alternative downscaling
methods may lead to variation in climate scenario projections comparable to differences

due to alternate emission scenarios (Haylock et al. 2006).

It is therefore being increasingly recognized that a comprehensive, reliable impact study
must stem from multiple GCM outputs (IPCC, 2010). Ensemble averaging, involving the
averaging of results or weighting of each simulation depending on its skill, may filter out
biases of individual models, only retaining errors that are generally pervasive (Randall et
al, 2007). Results thus obtained may compare better with the observed climatology than
individual models (Giorgi & Mearns, 2002). This technique does, however, come with its
own set of uncertainties as the ensemble average may be bias by particularly poor models.
High order variability, such as that brought about by extreme events may also be lost and

an average may represent a state that does not exist in nature.

3.3.  Scenarios of future climate change

Climate scenarios are plausible representations of the future that are consistent with
assumptions about future emission of GHGs and other pollutants and with our
understanding of the effect of increased atmospheric concentrations of these gases on
global climate. They are constructed to determine the impacts of climate change on the
environment and resources and may be either based on ‘idealized’ scenarios or on
simulations derived by integrating climate models with a particular projection of GHG

concentrations, or emissions scenario (Beaumont et al. 2008).

‘Idealized’ scenarios denote specified changes in particular climatic variables across a
certain area. This may be a 2°C increase in temperature or 5% increase in precipitation. A
range of scenarios may be investigated, for example to identify thresholds at which species

exhibit vulnerability to climate change and thus their sensitivity (Williams et al. 2003). As
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the change in the climatic predictor is specified, idealized scenarios do not allow the
temporal response of a species to be investigated. The method also implies a uniform
change in climate variables across the study area (Beaumont et al. 2008), and may be
more suitable in areas where climate models give poor simulations, such as over steep

climatic gradients, or are poorly resolved, such as over islands.

Emissions scenarios are incorporated into climate models by first of all using
biogeochemical models to convert estimates of future GHG emissions into changes in GHG
concentrations, and then prescribing these concentrations into the future (Beaumont et al,
2008). Changes to the system may be introduced through one of the following methods:

1. The Equilibrium method provides a change in climate following a doubling of
carbon dioxide (IPCC, 1990)

2. The Transient method involves the evolution of modelled states (such as
temperature, pressure and soil moisture) over time as GHGs gradually increase in
the atmosphere. The model is initialized, usually reflecting pre-industrialized
conditions around 1850 and two experiments are then run:

a. A control model, run from 1850 to the present day without any climate
forcing terms, assesses the natural variability within the model;
b. A perturbation experiment, involving re-running the model while changing

forcing variables to reflect observed or predicted changes in gases.

While different realizations of a model reflect the uncertainties in the initial state of the
model, the relative differences between the realizations and the realizations and the

control reflect the impact of variable forcing.

The Equilibrium method, whereby the state of a species may be assessed according to a
specified change, suffers similar shortcomings to idealized scenarios (Beaumont et al
2008). Transient models, on the other hand, involve the gradual changing of forcing
rather than a sudden change to an alternative state. This may occur in an idealized way,
such as a periodic 1% increase in carbon dioxide, or more realistically, using scenarios
such as the SRES scenarios developed by the (IPCC 2007a), which describe different
demographic, social, technological and environmental developments (Nakicenovic et al,
2000). For example, a study may present a range of outcomes from possible climate
change scenarios by modelling both a conservative and an extreme scenario (Beaumont
and Hughes 2002; Thuiller et al. 2005). However, the variability introduced into a model

by climate change scenarios will vary depending on the time frame being studied. For the
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first few decades of the 21st century, the choice of emissions scenario has little effect on
the projected climate (Jenkins and Lowe 2003). Within this time frame, variation in a
species distribution model will more likely result from uncertainty in climate models and
species’ characteristics (Beaumont et al. 2008). As the time horizon increases, so too will
the variation caused by emission scenario. Therefore although these scenarios allow a
range of plausible impacts of future climate change on resources and the environment to
be determined, the uncertainty prevalent in the degree of GHG increase may still pose
substantial challenges for environmental management and policy making. As studies
undertaken in this thesis make predictions up to 2050, they focus on projections made
using the SRES A2 scenario. This scenario describes a global mean surface temperature
rise of around 1.7-4.4°C during the 21st century, in response to atmospheric carbon
dioxide concentrations of about 700 ppm (IPCC 2000). The A2 scenario has been assessed
as being the most realistic, in particular in terms of its emission intensity, per capita

income and energy intensity (Tol 2005).

4.  The Effect of Climate Change on Marine Fisheries in the UK

Commercial fishing is an important socio-economic activity in coastal regions of the UK
and Ireland. The fishing sector in the UK directly employ approximately 12 212 people,
with some coastal communities having a job dependency of over 20% on this sector. Many
commercially important fish species have, however, been over-exploited, and while total
landing into the UK peaked at 1.1 million tonnes in 1930, by 2009 they had decreased to
580 tonnes. This fall occurred despite a concurrent fishery expansion and increase in
fishing power by an order of magnitude (Englehard 2008) and coincided with changes in
the structure of fishery landings and a move in markets towards low trophic level, low

prices species (Pinnegar et al., 2002).

Observed and predicted ocean-atmospheric changes are further likely to affect future fish
and shellfish production, bringing increasing challenges to maintaining sustainable, long-
term fisheries management. As mentioned above, warming has been seen to influence the
distribution of species in UK waters (Clarke et al., 2003; Dulvy et al., 2005), and will likely
lead to the changes in the productivity and catch potential predicted elsewhere (Cheung et
al. 2010). Species such as haddock and mackerel have responded to increasing
temperatures by moving northwards, leading to the 2010 ‘mackerel war’ between Iceland

and the EU, and protests against high Icelandic quotas for mackerel. There is also
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evidence that warm-water species are moving into UK and Irish waters, opening up new
fishing opportunities. UK waters have, for example, seen new or expanding fisheries for
sea bass, red mullet, John Dory, anchovy and squid, and fisheries in Ireland are investing in
new technologies to more effectively exploit the opportunities offered by boarfish, which

is moving into the area (Pinnegar et al., 2002).

As fish and seafood are traded globally, the changes in fisheries production resulting from
climate change will also impact trade patterns, markets, and access agreements.
Greenland is one of a few fisheries expected to benefit significantly as result of climate
change (Cheung et al. 2009) and the access agreements and imports, in particular to the
UK and Ireland, are likely to become increasingly important to markets and consumers. A
Fisheries Partnership Agreement has, for example, recently been concluded between the
EU community and Greenland for the period 2007-12 which allows vessels from Germany,
Denmark, UK, Spain and Portugal to fish in Greenland waters, an agreement that

represents an investment of 15.8 million Euros.

The economic consequences of climate change for fisheries may further manifest
themselves through changes in the price and value of catches, fishing costs, fisher’s
incomes, earnings to fishing companies, discount rates and economic rents (ie. The surplus
after all costs, including ‘normal’ profits, have been covered) as well as through the global
economy. Furthermore capital costs may be affected if increases in severity and frequency
of extreme weather events increases damage and loss of gear, of through necessary
adaptation to the quantity, composition and distribution of fisheries resources (Pauly et al.
2005). However, many of these costs may be complex and difficult to predict. Several
studies have looked at the economic consequences for fishing fleets under increasing fuel
costs. Although the contribution of fuel to overall fishery costs vary, they frequently
represent a major proportion, reaching up to 60% in case such as the commercial fisheries
of Hong Kong (Sumaila et al. 2007) and representing 25% of the value of EU live fish and
shellfish landings in 2008 (COM, 2006). Further to this, the energy performance of fishing
fleets has often declined over time, and may continue to do so, due to the need to search

longer and fish deeper in offshore waters as coastal stocks decline (Pauly et al. 2002).

Fisheries and aquaculture policy makers must therefore develop strategies and decision
making models to adapt to climate change under the uncertainty concerning its direct and
indirect impacts, while also accounting for social and economic uncertainty. The overall

impacts of CC will thus depend on the changes themselves as well as the vulnerability of a
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country/ region and the strategies available to a fishing community to adapt to change.
Fisheries in low latitude regions such as West Africa have been predicted to be affected
most by climate-related shifts in species distributions and catch potential (Cheung et al.
2010), a region where this sector is also a vital source of protein and income to
impoverished societies with few alternative income sources and low adaptability. Insights
from adaptive ecosystem management and new institutional economics suggest that
building resilience into human and ecological systems is the optimal way to deal with
future surprises and unknowable risks from climate change (Tompkins and Adger 2003).
Societies must therefore enhance their response capacity to face the effects of future
climates that might lie outside their experienced range, leading to challenges both at the
level of natural resource management, as well as that of international agreements and

actions.

The UK has been suggested as having a low sensitivity to climate change and a very low
vulnerability of its national economy (Allison et al. 2009) and can therefore be described
as fairly resilient. Despite this estimate, climate change related impacts on marine fishes
and invertebrates will lead to both winners and losers in UK and Irish fisheries.
Adaptation will involve changing patterns of production and consumption at local levels,
while responding to preference patterns in the wider EU and USA (Failler 2007). As the
price of fishmeal has grown in conjunction with its use in aquaculture (Merino et al. 2010)
fish farms will further have to decrease their costs of production, replacing fishmeal with
alternative protein sources. Fishing fleets will need to increase in efficiency and reducing
their environmental impacts in response to the volatility of fuel prices and taxes aimed at
lowering carbon emissions. It may, however, frequently be the case that ‘adaptive capacity’
is limited and fishers preferentially leave the sector rather than adapt (Tidd et al. 2011).
Furthermore, although the adaptive capacity of the UK seafood industry and markets is
thought to be high, there is concern that those communities with the highest economic and
job dependency on fisheries will also be those to feel the physical impacts of climate
change most acutely. These communities may already suffer relatively high levels of
deprivation and geographic isolation and are likely to experience greater changes in
flooding, temperature and precipitation than inland communities, as well as rises in sea
level, wave heights and rates of erosion. It is therefore these communities that might face
challenges in successful adaptation and have been suggested as a key policy priority in

adaptation to climate change (Zsamboky et al. 2011).
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5. Thesis Background, Aims and Hypotheses

Species distribution models have become important tools to explore the ecological effects
of climate change. Evidence and discussion presented above have made it clear that
consideration of uncertainties and variation in modelling approaches and data sources
must be taken into account in study design and the application of outputs. However, the
additional challenges of working in the marine environment, such as a prevalence of scare
and unreliable data, has caused the development and application of SDMs, their rigorous
testing, evaluation and assessment of their appropriateness to a particular research
problem to lag behind that in the terrestrial sphere. For example, when applying species
distribution models to address specific research questions, few studies have applied a
multi-model approach to assess the effects of future climate change on marine species.
Furthermore, in exploring the potential effects of climate change on a natural resource,
such as fish stocks, there seems to be a great potential to link ecological, species
distribution modelling with socio-economic modelling to explore how the effects of

climate change may be translated from one system to another.

This thesis aims to address some of the knowledge gaps mentioned above using the tools
of species distribution modelling and cost benefit analysis. A model comparison study will
also be undertaken using models designed to ameliorate issues of data quality and
quantity common in the marine environment. The robustness of projections will be
examined, model performance will be assessed using test statistics and the usability and
practical application of the approaches and their outputs will also be considered.
Furthermore, the relative uncertainty contributed to model outputs by variations in input
data, such as climate models and downscaling methods will be investigated. Bearing these
potential uncertainties and variabilities in mind, the suite of modelling approaches will be
applied to investigate the impact of climate change on marine species, with a focus on
North East Atlantic regions. Specifically, this thesis aims to investigate the potential direct
and indirect impacts of climate change on the distributions of threatened and
commercially targeted species in the waters around the U.K. and also on the efficacy of
Protected Areas. It then aims to bring together species distribution modelling and cost-
benefit analysis, attempting to extrapolate some of the issues of climate change and
investigate potential effects on the UK fishing industry. As this thesis explores areas of
research of direct interest to fisheries managers, policy makers and conservation
practitioners, it also aims for a policy-relevant output that might be understood and

utilised by the non-modelling community.
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Given previous studies and observations, it is hypothesized that species distributions will
alter with climate change. Specifically, marine species in the North Sea and North East
Atlantic are expected to experience increased environmental suitability in the northern
reaches of their ranges, resulting in overall northwards movement. Changes in
environmental suitability are also hypothesized to impact the suitability of protected areas
for specific species, although whether this will be positive or negative will depend on their
location within a species’ range and environmental envelope. UK waters are thus likely to
become increasingly hospitable for both more southerly distributed, such as
Mediterranean, species and particular invasive species. Consequentially, the potential
catch of the most common commercially targeted species in the North Sea is also
predicted to change, altering the profitability of UK fisheries. However, the range of
modelling methodologies, data sources, and post-model processing techniques that will be
incorporated into this study are expected to contribute variation and uncertainty to model
outputs and conclusions. The relative magnitude of these uncertainties remains unknown
and its impact on outputs and questions posed will be an important factor in addressing

the above hypotheses and applying the work of this study.

5.1. Thesis structure

The five principal thesis chapters (chapters 2 - 6) are written in the form of peer-reviewed
papers. At the time of submission, chapters 2 and 3 were published, and Chapter 5
accepted for publication by Aquatic Conservation. Chapter 2 undertakes a model
comparison study and provides the technical groundwork and model validation on which
subsequent chapters are based. Chapters 3 and 4 focus on applying the models to make
future projections and explore potential climate change impacts on marine species. They
focus on a set of threatened and commercially targeted species respectively and species
specific indicators of change. In addition to this, both chapters investigate the sensitivity
of model outputs to specific variations and uncertainties in the modelling procedure.
Building on findings in these chapters, Chapter 5 sought to explore how results from
multi-model approaches could be presented to enhance understanding in the non-
modelling community and make them most useful in a policy context. Finally, Chapter 6
explores how findings presented in previous chapters may impact the fishing industry

within UK waters, and possible means of adapting to climate change.
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Abstract

Species distribution models are important tools to explore the effects of future global
change on biodiversity. Specifically, AquaMaps, Maxent and the Sea Around Us project
algorithm are three approaches that have been applied to predict distributions of marine
fishes and invertebrates. They were designed to cope with issues of data quality and
quantity common in species distribution modelling, and especially pertinent to the marine
environment. However, the characteristics of model projections for marine species from
these different approaches have rarely been compared. Such comparisons provide
information about the robustness and uncertainty of the projections, and are thus
important for spatial planning and developing management and conservation strategies.
Here 1 apply the three commonly used species distribution modelling methods for
commercial fish in the North Sea and North Atlantic, with the aim of drawing comparisons
between the approaches. The effect of different assumptions within each approach on the
predicted current relative environmental suitability was assessed. Predicted current
distributions were tested following data partitioning and selection of pseudoabsences
from within a specified distance of occurrence data. As indicated by the test statistics,
each modelling method produced plausible predictions of relative environmental
suitability for each species, with subsequent incorporation of expert knowledge generally
improving predictions. However, because of the differences between modelling
algorithms, methodologies and patterns of relative suitability, comparing models using
test statistics and selecting a ‘best’ model are not recommended. I propose that a multi-
model approach should be preferred and a suite of possible predictions considered if

biases due to uncertainty in data and model formulation are to be minimised.

1. Introduction

Many pressures are currently affecting the marine environment and driving change in
species composition and distribution. Fisheries are removing fishes at a rate considered to
be unsustainable (Pauly et al 2002), while essential habitat is being damaged or
destroyed, for example through sand and gravel extraction, or chemically altered through
release of endocrine-disrupting substances. Furthermore, concern over the impact of
climate change on marine ecosystems is increasing (Root et al. 2003), with longer-term
shifts in mean environmental conditions and climatic variability moving outside the

bounds within which adaptations in marine communities have previously been associated
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(Beaugrand 2004; King 2005). The altered abundances and novel distributions resulting
from these ocean-atmospheric changes (Southward et al. 1995; Stebbing et al. 2002; Perry
et al. 2005; Beaugrand 2009) may severely change the biological and environmental
functioning of ecosystems or food webs, the goods and services derived from them, and

conservation and resource management.

Species distribution modelling is widely used to study and predict the ecological effects of
climate change (Beaumont and Hughes 2002; Pearson and Dawson 2003; Hijmans and
Graham 2006; Thuiller et al. 2008; Cheung et al. 2009). It uses statistically or theoretically
derived response surfaces to relate observations of species occurrence or known tolerance
limits to environmental predictor variables (Guisan and Zimmermann 2000), thereby
predicting a species’ range as the manifestation of environmental characteristics that limit
or support its existence at a particular location. It is thus grounded in ecological niche
theory. The environmental conditions under which a species can survive and grow and
which therefore define the ecological properties of a species are described as the
fundamental ecological niche (Hutchinson 1957) or a species’ potential distribution. The
area within a fundamental niche into which a species is restricted due to the effects of
competition and other biotic interactions is described as its realized niche (Austin et al.
1990; Guisan and Zimmermann 2000), or distribution. To make use of the diversity of
available data, a wide range of species distribution models (SDMs) have been proposed
[see Guisan and Thuiller (2005) and Franklin (2009) for an overview], approaches varying
widely in data requirements, mechanisms used and model performance (Guisan and
Zimmermann 2000; Elith et al. 2006; Austin 2007; Wisz et al. 2008). The extent to which
models are able to capture a species’ realized or fundamental niche may thus vary

depending on the modelling approach or data requirements.

When choosing and applying an SDM, it is therefore important to understand its
performance, assumptions, characteristics and uncertainties, as well as how these might
be affected by data availability and quality. Ideally, an SDM is developed from the
relationship between direct or indirect environmental predictors and datasets of species
presence and absence obtained by targeted surveys. Comprehensive data are, however,
seldom available and instead frequently represent a restricted, patchy or biased view of
species’ distributions, leading to problems when data-driven modelling techniques are
used to generate distribution predictions. Furthermore, it has been suggested that
presence-absence data attribute superior performance, for example as measured by test

statistics, to an SDM and thus a more reliable prediction (Hirzel 2001; Brotons et al. 2004;
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Martinez-Meyer 2005; Lobo et al. 2008). This would not be the case, however, if absence
at a particular location is caused by factors not included in the model, such as dispersal
limitations, biotic interactions or incorrect assessment (Pearson and Dawson 2003;
Pearson et al. 2007). Distributions predicted from recorded species’ occurrence
(presence) only may thus be more suitable for constructing models of potential
environmental suitability. Several studies show that SDM model accuracy decreases and
variability in predictive accuracy increases with decreasing size of the species occurrence
dataset (Stockwell and Peterson 2002; Kadmon et al. 2003; Hernandez et al. 2006; Wisz et
al. 2008). These issues of data paucity and quality are especially pertinent in the marine

environment (Macleod et al. 2005; Kaschner et al. 2006).

Model complexity is another important factor affecting the performance of SDMs. Complex
models are suggested to be more effective (Elith et al. 2006; Tsoar et al. 2007; Wisz et al.
2008) and more accurate at finer resolutions (Kimmins et al. 2008). However, including
more parameters or fitting complex response curves may result in a model that
generalizes poorly (Drake et al. 2006), becoming less applicable to areas at a broader
scale. Greater complexity also often reduces model transparency, which is important for
the effective testing and reviewing of model outputs and soliciting additional information
to improve model predictions. The complexity and transparency of a selected model may
therefore depend not only on its perceived robustness but also on the specific application

and the community by which it is being implemented.

Maxent, AquaMaps and the Sea Around Us Project model are three approaches commonly
used to model distributions of marine fishes and invertebrates (Close et al. 2006; Kaschner
et al. 2006; Bigg et al. 2008; Cheung et al. 2009; Ready et al. 2010). The Maxent software
package (Phillips et al. 2006; Phillips and Dudik 2008) was designed to overcome the
problems of small sample sizes in presence-only datasets (Pearson 2007). The AquaMaps
procedure, based on a Relative Suitability Model (Kaschner et al. 2006) and the Sea Around
Us Project model were also designed to overcome the lack of data and knowledge for many
marine species. Generative modelling approaches, such as Maxent, may, however, be more
vulnerable to biases from the skewed distribution of sampling effort present in many
‘opportunistically’ collected datasets, especially those with limited data-points. In these
instances, discriminative methods (defined here as distribution models which restrict a
species distribution, from a potential extent that encompasses the entire study area, based
on a set of filters determined by known parameters, environmental or habitat

preferences), such that developed by the Sea Around Us Project (Close et al. 2006), might
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produce the more valid results. The incorporation of ‘expert information’ may also
overcome this problem (Ready et al. 2010). Expertinformation may be defined as "habitat
use information that is not directly available as raw data; published information about
habitat use or preference that is based on quantitative investigations of species occurrence
in relation to environmental knowledge” (Ready et al. 2010). It may be incorporated into
a modelling procedure in various forms of knowledge such as species’ behaviour, known

depth range or geographic limits.

This study aims to assess the abilities of three statistical modelling approaches,
representing a spectrum of theoretical frameworks and data-requirements, to predict
current distributions of a range of marine species. Mentioned above, these are the
correlative, presence-only modelling approaches Maxent (Phillips et al 2004;

http://www.cs.princeton.edu/~schapire/maxent) and AquaMaps (Kaschner et al; Ready

et al 2010 http://www.aquamaps.org), and the discriminative approach developed for the

Sea Around Us project (Close et al. 2006; http://www.seaaroundus.org). The comparison

not only focuses on the perceived value of a modelling procedure as indicated by test
statistics, but also considers the usability and practical application of the approaches and

their results.

2. Methods

2.1. Model Construction

2.1.1. Maxent

Maxent (Phillips et al. 2004) uses a generative approach (Phillips et al. 2006) to estimate
the environmental co-variates conditioning species presence and bases the final
prediction on the principle of maximum entropy. This specifies that the best
approximation of an unknown distribution is the probability distribution with maximum
entropy, subject to the constraints imposed by the sample of species presence
observations (Phillips et al. 2006). Maxent has been shown to compete well with
alternative approaches (Phillips et al. 2006; Pearson 2007), perform better than classical
presence-only methods (Elith et al. 2006) and perform well with small sample sizes
(Pearson et al. 2007). Models were constructed using Maxent version (3.3.3e) with default

parameters for a random seed, regularization parameter (1, included to reduce over-
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fitting), maximum iterations (500), convergence threshold (0.00001) and maximum
number of background points (10000 points which have not been recorded as present).
Selection of environmental features and their relative contribution to each iteration of the

model was also carried out automatically.

2.1.2. AquaMaps

The AquaMaps approach to modelling species’ distributions was based on a global
distribution tool for marine mammals (Kaschner et al. 2006), and has now been applied to
a large number of marine fishes (see FishBase (Froese and Pauly 2011). AquaMaps uses
simple, numerical descriptors of species relationships with environmental variables to
predict distributions from publically available, global occurrence databases. This
methodology does not allow complex, non-linear interactions to be fit between predictors,
but aims for transparency and understanding in the wider, non-modelling, community

while also explicitly promoting incorporation of expert judgement.

Predicted current distributions are generated multiplicatively from a suite of
‘environmental envelopes’ over each cell in a study area. This produces a cell value
between 0 and 1, representing the relative suitability of that cell for the specified species.
The relationship between species occurrence and environmental limits is specified by a

trapezoidal distribution (Fig. 2.1.).

Puax1 4

Relative
Environmental
Suitability
(RES)

Mina Minp Maxp Maxa
Habitat Predictor

Figure 2.1. Trapezoidal species’ response curve, showing absolute minimum (Mina) and
maximum (Maxs) and  preferred minimum (Minp) and maximum (Maxp) levels of a
environmental predictor, and the Relative Environmental Suitability, the highest obtainable

value being 1 (Puax) (modified from Kaschner et al.,, 2006).
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The trapezoidal distribution represents a compromise between the likely uni-modal
annual distributions exhibited by restricted range species, and the more bi-modal
distribution of migratory species. To create environmental envelopes, occurrence data are
associated with environmental variables to find absolute and ‘preferred’ preference

ranges and calculated as shown in Table 2.1.

Table 2.1. Rules used to compute environmental envelopes (Mina, Minp, Maxp, Max, (Fig.
2.1.)) in AquaMaps (Ready et al, 2010) and its application in calculating cell probability

values for a particular environmental variable at a location (x).

Envelope value Description/ Calculation

Mina Absolute minimum value at which the species is observed OR the 25t
percentile of the environmental values -1.5 x the interquartile range

(whichever is lower)

Minp Preferred minimum, the 10t percentile of the environmental values
Maxp Preferred maximum, the 90t percentile of the environmental values
Maxa Absolute maximum value at which the species is observed OR the 25th

percentile + 1.5 x the interquartile range (whichever is greater)

Condition of x Value/ Calculation of cell probability value

X < Mina 0

Miny <x < Minp  (x - Mina) / (Minp — Min,)
Minp<x < Maxp 1

Maxp<x < Maxa (Maxa-x)/(Maxa - Maxp)

X = Maxx 0

It is therefore assumed that (relative) environmental suitability is uniformly high
throughout the preferred parameter range, with a probability of 1. Those values lying
outside the observed minimum or maximum (representing critical predictor limits for a
species) are assigned a value of 0, while between these two thresholds, relative
environmental suitability decreases linearly. Having calculated probability distributions
for each predictor, overall environmental suitability can be computed by the geometric

mean of all probability distributions, assuming equal influence weighting of predictors.

Expert opinion was incorporated into Maxent and AquaMaps to give refined predictions
by eliminating (‘clipping’) areas that were currently outside known occurrence ranges,

including reported occurrence/absence in large ocean basins [delineated by the United
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Nations’ Food and  Agricultural  Organisation  (FAO) statistical  area,

www.fao.org/fishery/area/search/en] or depth limits reported in FishBase. This avoided

over-prediction of relative environmental suitability in areas where species are known not

to occur, or which are unsuitable due to depth.

2.1.3. The Sea Around Us Project Model

The Sea Around Us Project model (Close et al. 2006; Cheung et al. 2008) was specifically
developed to address a need for predicting distribution ranges of commercial fish and
invertebrates. The approach employs a discriminative method, applying a set of key
environmental predictors, ‘filters’, to reduce a species’ potential range. Firstly, an ‘FAO
filter’ was applied to restrict a species on the basis of its current verified presence in the
18 FAO statistical areas. Subsequently, the distribution was refined by a filter specifying
the latitudinal limits of a species’ putative ‘normal’ distribution range. Information for
both these filters is available for most fish species on FishBase. The third filter was a
‘range-limiting polygon’, which was applied to restrict species to a more specific level,
thereby preventing occurrence in semi-enclosed seas which are located within specified
FAO areas and latitudinal ranges but which are unsuitable, for example, due to low salinity
values. Data for this filter was obtained from FAO publications

(http://www.fao.org/fishery/species/search/en), FishBase (www.FishBase.org),

SealifeBase (www.SealifeBase.org (Palomares & Pauly, 2011)) and the Sea Around Us

project database (www.seaaroundus.org). A ‘depth range’ filter for demersal species was

ascertained using the maximum and minimum depth where juvenile and adults are most
often found. This range, available from FishBase may be calculated as the range within
which approximately 95% of the biomass occurs. Both latitudinal and depth filters were
further refined by defining a species’ relative occurrence throughout the respective range,
assuming a triangular distribution. The model allowed for seasonal differences in the
latitudinal centroid of the distribution for migratory pelagic species (Lam et al. 2008). To
improve a distribution prediction based on a species’ association with different habitats, a
habitat preference filter was applied. This assumes that the relative abundance of a taxon
within a cell unit is in part determined by a fraction derived from the number of habitats
(e.g. coral reefs; seamount; estuaries; see Cheung et al. 2008) it associates with inside that
cell, and how far the association effect will extend from that habitat. Extension from a
habitat is calculated as a function of a taxon’s body size. Finally, an ‘equatorial
submergence filter’ was implemented to account for the tendency for cold-water species

to deepen in regions with warm surface waters (Ekman 1953; Dulvy et al. 2008).
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2.1.4. Species Data

A set of commercially exploited fish species were chosen, reflecting a diversity of
environmental preferences and life history traits. These were as follows: Molva molva
(Ling); Merlangius merlangus (Whiting); Gadus morhua (Atlantic cod); Melanogrammus
aeglefinus (Haddock); Merluccius merluccius (European Hake); Scomber scombrus (Atlantic
mackerel); Pleuronectes platessa (European plaice); Pollachius pollachius (Pollack);
Pollachius virens (Saithe); Psetta maxima (Turbot); Solea solea (Common Sole); Sardina
pilchardus (European pilchard); Sprattus sprattus (European sprat); Scopthalmus rhombus
(Brill). Species occurrence data were obtained from the three global online databases: the
International Council for Exploration of the Sea (ICES) EcoSystemData database

(http://ecosystemdata.ices.dk); the Ocean Biogeographic Information System (OBIS)

(Vanden Berghe, 2007; http://www.iobis.org) and the Global Biodiversity Information
Facility (GBIF) (http://data.gbif.org), all last accessed in 2010.

Occurrence records were spatially aggregated at the level of 0.5° latitude x 0.5° longitude
to give a binary value of presence or absence for each cell. As these data sources are prone
to error, for example, due to data being amalgamated from many sources or not being
recorded with a date, data were checked and rigorously filtered using further information
on species environmental preferences and geographic limits, obtained from FishBase and
alternative data sources (FAO 2011; Whitehead et al. 1986; Ojaveer et al. 2003; HELCOM
2009). Points were removed if they were: 1. Located on land; 2. Located outside a verified
FAO area (unless contiguous with points lying within a verified FAO area); 3. Located
outside expert defined geographic range extents (obtainable as latitudinal and
longitudinal limits from FishBase); 4. Located in the Baltic Sea if a species’ persistence
there was unverifiable (using FishBase, Whitehead et al, 1986; Ojaveer et al, 2003;
HELCOM, 2009; FAO Fact Sheets: www. fao.org).

2.1.5. Environmental/ Oceanographic data

Environmental/ oceanographic variables were prepared on a 0.5° latitude x 0.5° longitude
resolution global grid, comprising 259,200 cells of which 179,904 contain some area of
ocean. Data were publically available and compiled primarily by the Sea Around Us Project
(See Table 2.2.). The use of particular environmental variables in the SDM was based on

data availability and biological relevance.
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Table 2.2. Environmental/ Oceanographic predictors input into AquaMaps and Maxent.

Variable

Description

Source

Bathymetry

Sea Surface
Temperature

(SST)

Sea Bottom
Temperature
(SBT)
Salinity

Ice

Primary

Productivity

Distance to

Coast

Minimum and Maximum Depth

Mean annual sea surface
temperature (° Celsius) for the

period 1982 - 1999

Mean annual sea bottom
temperature (° Celsius) for the
period 1982 - 1999

Mean annual surface salinity for

the period 1982 - 1999

Mean annual proportional ice
cover (by area on a scale of 0.00
- 1.00, for the period 1990 -
1999. Inverse distance weighted
interpolation was performed to
fill missing data values in a small
number of coastal cells

(approximately 1000 cells).

Mean annual primary production
in mgCm-2 day-! for the period
1997-2004. Generated from
remotely sensed chlorophyll-a
concentrations using an
approach described in Carr et al.
(2006).

Nearest distance of each cell to

the coast

ETOPO2 2 min resolution bathymetry
dataset (NOAA 2006)

Climatology published by NOAA
(NOAA 2007) produced following
methods described by Reynolds and
Smith (1995).

Sea Around Us Project, unpublished
data.

2001 World Ocean Atlas (Conkright et
al)

U.S. National Snow and Ice Data

Centre (Cavalieri et al.)

European Joint Research Council
(http://marine.jrc.ec.europa.eu/made

available by Frédéric Mélin).

Sea Around Us Project, unpublished
data

80



Chapter 2: Model prediction and assessment

2.2. Model Evaluation

Model predictions were tested using the Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) plot test statistic. This was implemented using the ROCR
package (Sing et al. 2007, http://rocr.bioinf.mpi-sb.mpg.de), R version 2.10.1, with the ROC

curve being plotted as the true positive rate, (estimated as the number of true positives/
number of positive samples) against the false positive rate, (estimated as the number of
false positives/ number of negative samples). AUC is a widely used test statistic which
allows a threshold-independent measure of model performance and can be calculated
using pseudoabsences from a random sample of background pixels rather than true
absences. It may be interpreted as the probability that a randomly chosen presence site is
ranked above a random background site, indicating the quality of site ranking according to
suitability (Phillips et al. 2006). A random ranking has on average, AUC = 0.5 and AUC >
0.75 is suggested as providing a useful amount of discrimination between sites where a
species is present and those where it is absent (Elith et al. 2006). Due to the lack of
independent test datasets, models were assessed internally, by 4-fold cross validation
(Fielding and Bell 1997). Occurrence datasets for Maxent and AquaMaps were thus split
into 4 sub-sets, each containing a randomly selected 75% of points for model training, and
a corresponding 25% for model testing. As no ‘true’ absence points were available and
using randomly selected points from the entire study areas may artificially inflate the AUC
statistic if the geographic area of the study is large (Lobo et al. 2008) or the area of
suitable environmental space is small relative to the study area, pseudoabsence points
were randomly selected from within specified distances of presence points using buffers
(Fig. 2.2.). This allowed more valid comparisons between species if AUC values are
influenced by relative predicted range area and the distance of pseudo-absence points to
presence points. During selection of environmental variables, model runs were tested
using global pseudoabsences and those selected from within 2000km, 1000km and 500km
buffers whereas only global and 1000m pseudoabsence points were used in testing final
models for all species. Maxent models were further run to perform model cross validation
internally, using a random test percentage of 25%. ROC-AUC values were produced for
each of 4 subsets of occurrence datapoints by plotting the ROC curve as sensitivity against

1 - specificity (the fraction of the total study area predicted present).
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Figure 2.2. Diagram representing the selection of pseudoabsence data points from within

1000m of species occurrence data.

Model assessment was supplemented with the Point Biserial Coefficient (PBC) (Zheng and
Agresti 2000; Elith et al. 2006). PBC was calculated as a Pearson’s correlation coefficient
between the observation in the occurrence dataset (presence (1) or pseudo-absence (0))
and the prediction and therefore takes into account how far the prediction varies from the
observation. This addresses the concern that the AUC test statistic may not always reflect
a model’s ability to prioritise areas in terms of their environmental suitability relative to
alternative models (Austin 2007; Lobo et al. 2008). Predictions were further inspected
visually and compared to plotted occurrence data in order to assess their plausibility with
respect to the known distribution and areas of environmental suitability outside known

occurrence range (overprediction).

A subset of species was investigated to undertake a model selection process and
determine the sensitivity of predicted species distribution to environmental variables
using the Maxent and AquaMaps modelling procedures. These species include the
demersal species P. platessa and M. molva and the pelagic species S. pilchardus and S.
scombrus. Models were run following sequential removal of variables according to the
degree of autocorrelation between them, as indicated by Pearson’s correlations. They
were then evaluated using AUC and PBC test statistics to enable the selection of a final set

of input data.
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3. Results

3.1. Model selection

Final environmental variables selected for the Maxent and AquaMaps modelling
algorithms were as follows: salinity, sea surface temperature, sea bottom temperature,
minimum bathymetry, ice concentration and primary productivity. Minimum bathymetry
was omitted for pelagic species due to its biological irrelevance and propensity to
misleadingly restrict range predictions in these species. It was, however, substituted with
distance to coast to account for the fact that many pelagic species are restricted to coastal
habitats at certain stages in their life cycle and may not persist in the open ocean despite

its seeming environmental suitability.

The AUC values from Aquamaps predictions are above 0.75 and vary over a relatively
small range of values (with the exception of P. Pollachius) (See Appendix, Table 2.1, for a
summary of key statistics). Although test statistic values vary with the buffer used to
generate pseudo-absences, with a few exceptions, the pattern of difference is similar
across buffers for both AUC and PBCs. Pelagic species (S. rhombus and S. pilchardus)
showed less variation in test statistics according to environmental variables included in
the AquaMaps models. Maxent models also showed less variation in AUC value with
different sets of environmental variables, variation instead mostly resulting from using

different sets of pseudoabsences.

3.2. Model comparison

3.2.1. Maxent

Cross-validation using sub-sets of data and Maxent’s automated validation test showed
relatively little variation in the AUC statistic (e.g. maximum difference in AUC values of
0.01 and 0.009 in S. rhombus and P. pollachius respectively). The quality of predictions, as
indicated by test statistics, was also relatively consistent across species, with the most

noticeable deviation in AUC value being shown by G.morhua (AUC = 0.944).

Test statistic values decreased when calculated using pseudoabsences restricted to 1000m

from presence points, although the extent of the difference varied between species and
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were generally smaller for demersal species (Fig. 2.3. a). While M. molva, for example,
varied little in model performance (indicated by test statistics) the greatest difference was
seen in S. pilchardus. AUC value decreased from 0.998 to 0.793 when pseudoabsences from
a global and 1000km buffered distribution were used respectively. PBC values also varied
little across species (Fig. 3. a), with little difference between values tested with ‘global’ and

‘1000km buffer’ pseudo-negatives other than for the pelagic species S. pilchardus and S.

scombrus.
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Figure 2.3. Test statistic values for all species, calculated using pseudoabsences from within
a global distribution or those restricted to within 1000km of presence points. Test statistic
values are calculated as the Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC) plot test statistic, and the Point Biserial Coefficient (PBC) for each
model (Maxent, Refined Maxent (following clipping of predictions by depth for all species

other than pelagic species (S. pilchardus, S. sprattus, S. scombrus), AquaMaps, Sea Around Us

Project model.
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With the exception of P. pollachius and P. virens, AUC values generally dropped following
clipping by depth in the Maxent refined prediction, when tested using global pseudo-
absences (Fig. 2.3. b). The extent of this decrease was slight, although varied between
species and fell most for those species restricted to the shallowest depths. Thus while M.
molva was clipped only to a depth of 1000m and AUC values decreased slightly by 0.004, P.
maxima and S. rhombus, which were clipped to 70m and 50m decreased by 0.101 and
0.193 respectively (using 1000m buffers). The same was true for PBC values, although
frequently the use of a buffer made more difference to this value than the depth clipping of

the prediction, for example in M. merluccius and S. solea.

3.2.2. AquaMaps

The AquaMaps methodology showed a greater response in AUC value to the data subset
used in model training and testing. With the exception of a subset of P. pollachius (AUC =
0.871) all subsets still obtained high values of 0.944 or greater. This modelling approach
also showed greater variation between species, with the most robust, or highest
performing, models, as indicated by the test statistics, being obtained for the pelagic
species S. sprattus. Although another pelagic species (S. pilchardus) showed the next
highest AUC values, this result was not paralleled by PBC values (Fig. 2.3. c), highlighting
the difference in test statistic obtainable when binary presence/absence data are

considered as opposed to actual values.

As with Maxent, refinement of predictions by depth clipping produced little difference in
PBC and AUC values other than in P. maxima (decreases in PBC and AUC of 0.127 and
0.096, respectively) and S. rhombus, whereas the reduction in PBC with the 1000m buffer
was more pronounced than in Maxent evaluations and showed wider variation between
species. The use of the 1000m buffer has a less marked effect on test statistics in depth

clipped predictions. These patterns are reflected in the high (>0.75) AUC test statistic.

There seemed to be no significant effect on the test statistic of number of occurrence
points for either modelling method, although the variation in occurrence dataset size was
not great (between 445 and 1323 occurrence data points). P. pollachius, M. molva, M.
merlangus and P. platessa gave consistently high test statistics across AquaMaps, Maxent
and their refined models, also when tested with different sets of pseudonegatives. Test
statistics for S. solea and M. merluccius varied most following model clipping by depth and

use of a buffer in pseudoabsence selection. Although all achieving AUC > 0.97 using global
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pseudoabsences, the pelagic species showed large decreases in performance relative to
other species following implementation of a buffer, and this was most pronounced in

Maxent.

3.2.3. Sea Around Us Project Model

The Sea Around Us Project methodology exhibited greater variation in test statistics than
both Maxent and AquaMaps, with the AUC and PBC test statistics showing mostly parallel
patterns of change across species (Fig. 2.3. d). Values decreased consistently following
implementation of a buffer, with larger decreases in results for M. merluccius and S.
pilchardus compared to other species (AUC decrease = 0.173 and 0.184 respectively, PBC
decrease = 0.263 and 0.372 respectively). This reflects a similar pattern of results found in
these two species in AquaMaps and, to a lesser extent, Maxent. Some AUC values for
predictions for the Sea Around Us Project method compared well to AquaMaps and Maxent

(such as P. pollachius and the pelagic species S. sprattus, S. pilchardus and S. scombus).

Variation was, however, observed in the relative performance of the three models for
particular species. In almost all cases, the AquaMaps algorithm produced the least
constrained prediction, and thus the greatest distribution ranges, although these were
reduced following refinement by depth for demersal species. Maxent occasionally
resulted in over-prediction in the Baltic Sea (e.g. P. pollachius; P. virens) with respect to
verified occurrence data and other sources (see methodology). While M. merlangus was
predicted consistently well across models, M. molva obtained lower test statistics in the
Sea Around Us Project model relative to other species, failing to meet the 0.75 threshold

AUC and with PBC scores below 0.333.

Overall, although the three models did not vary greatly in the area, or extent of occurrence,
predicted for each species, differences lay in the detailed pattern and values of predicted
suitability within this area (Figures 2.4.-2.6.). While Sea Around Us Project predictions
were characterised by relatively low levels of suitability, they were contrasted most
strongly by AquaMaps, which frequently produced uniformly high predictions across the
range, only decreasing in relatively suitability around the periphery of the predicted

range, as seen, for example, in P. platessa (Fig. 2.4.).
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Figure 2.4. Predicted distributions of relative environmental suitability (0 -1) for

Pleuronectes platessa using a) Maxent b) AquaMaps c) Sea Around Us Project model
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Figure 2.5. Predicted distributions of relative environmental suitability (0 -1) for Molva
molva using a) Maxent b) AquaMaps c) Sea Around Us Project model
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Figure 2.6. Predicted distributions of relative environmental suitability (0 -1) for Scomber

scombrus using a) Maxent b) AquaMaps c) Sea Around Us Project model
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4. Discussion

4.1. Uncertainties and assumptions

This study aimed to draw comparisons between three commonly used models for
obtaining distribution predictions of marine species. Uncertainties are introduced into a
multi-model procedure by differences in the data-types used, how the models are
parameterized and the actual modelling mechanisms used. Confidence in species
occurrence data may, for example, be lowered by sampling bias and taxonomic
uncertainty, whereas data on species tolerance limits and expert judgement may be biased
by limited experimental data and incomplete or out-dated knowledge. Further uncertainly
is caused by inherent assumptions of any species distribution modelling procedure, such
as the assumption that a species is in pseudo-equilibrium with its environment (Guisan
and Thuiller 2005). Upholding this assumption ensures that the observed realized
distribution used in making predictions or setting environmental filters represents the
absolute environmental limits of a species’ range, and that true potential range is not
under-estimated by closely fitted, biased, distribution data (Svenning and Skov 2004). The
assumption may not be upheld when models fail to take into account biotic interactions
that prevent species occupying otherwise seemingly suitable environmental space. It has
been suggested, however, that many species distributions can be assumed to be in
equilibrium with current climate at the macro scale, although the finer details of the
distribution may not be identified (Pearson et al. 2002). An attempt to counter this
problem was made here by including all occurrence data available rather than restricting
points to a specific time period or region. While this may introduce uncertainty as to
whether current distributions fail to reflect potential movement of species population due
to stock depletion in commercially exploited fisheries, it is hoped that it will contribute to
capturing the species true limits of environmental tolerance. It is also assumed that there
has been no adaptation towards climatic variation over the period for which data has been
amalgamated. Although this might seem reasonable over a short time span, bias may be
introduced if, as is frequently the case in compiled online datasets, there is no date
associated with a species occurrence record. In this instance, models parameterized on
known tolerance limits and expert opinion may be more suitable at depicting current

distributions.
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4.2. Model Characteristics

While predicted distribution ranges from AquaMaps, Maxent and the Sea Around Us
Project model show general agreement, there are consistent differences in predictions
resulting from differences in input data and model structure (Table 2.3.). Although test
results from ROC-AUC and PBC values vary between species, models tested with pseudo-
negatives selected from both a global and restricted (1000m buffer) distribution obtained
AUC values indicating performance which is better than random [in all but one case (M.
merluccius, Sea Around Us Project)], and may be considered potentially useful (> 0.75, Elith

etal.,, 2006).

The generally high test statistic values obtained for Maxent predictions are consistent with
its use elsewhere (Elith et al. 2006; Hernandez et al. 2006; Wisz et al. 2008). The lesser
variation between test results for partitioned datasets in Maxent than AquaMaps also
indicates a greater robustness of this procedure to the particular dataset used and thus to
outliers and possibly erroneous datapoints. However, although high model performance
suggests accuracy and reliability in predictions of species distribution made by Maxent, it
may also be caused by the tendency of Maxent to over-fit the occurrence data of the
sample, for which it has been criticised (Jiménez-Valverde et al. 2008). It has also been
suggested that complex models, such as Maxent, are likely to be more accurate at finer
resolutions (specificity), but would generalize poorly in predicting potential distributions
at large spatial scale (Drake et al. 2006; Jiménez-Valverde et al. 2008) whereas simpler
models, such as AquaMaps, will offer useful and parsimonious solutions at a broader scale
(generality) (Thuiller et al. 2008). This agrees with the tendency, seen here, of Maxent to
produce more constrained predictions than AquaMaps, and indicates that test statistics
should not be used as definitive indicators of model performance, but should be assessed

together with visual inspection of the distributions and expert knowledge.

This analysis agrees with Ready et al. (2010) that a ‘black-box’ use of complex SDM
programmes such as Maxent may act as a barrier to users who are not expert, and may
also hinder the potential for alteration by experts and thus perhaps their actual practical
use and application. Maxent and AquaMaps models were refined by ‘expert’ review of a
distribution map subsequent to a prediction, by ‘clipping’, and may thus not necessarily
involve a detailed knowledge of a modelling procedure. Despite this, the ability to easily

investigate and manipulate the environmental envelope for each variable in the AquaMaps
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approach aids the incorporation of expert judgement and checking for errors caused by

potential outlying or erroneous occurrence data points.

Table 2.3. Summary of general model characteristics for the original models of Maxent and

AquaMaps and the Sea Around Us Project model, inferred from results.

Characteristic Maxent AquaMaps Sea Around Us
Project
Relative Relatively even Dominated by areas Dominated by
environmental allocation from high of uniformly high area with low
suitability values to low suitability. suitability following suitability values.
clipping by depth.
Extent of predicted Intermediate Least constrained Most constrained.
distribution constraint before before clipping.
clipping.
Under-prediction with None pre clipping, None pre clipping, Some e.g. M.
respect to occurrence  some in refined some in refined molva
data Maxent. AquaMaps.
Variation in AUC/ PBC Low Higher n/a
value in response to
partitioned training/
testing data
Variation in AUC/ PBC Low Intermediate High

value across species
Species data
(minimum)

requirements

Model complexity

Species occurrence
points, presence

only.

Complex: Statistical,
generative method
enabling predictor
variable weighting,
modelling of
interactions and
complex response

curves.

Species occurrence
points, presence

only.

Simple: Assumes a
trapezoidal
distribution and
equal weighting of

predictor variables.

Knowledge of
general
geographic range,
habitat and depth
preferences.
Simple:
Discriminative
approach using a
set of key
ecological

predictors.
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The Sea Around Us Project method requires the least amount of point data, and its
predicted distributions are generally more restricted relative to those predicted using the
other two approaches. However, inherent differences in input data and the way
environmental limits and parameters are defined under this approach further seem to
prevent the valid comparison of the relative performance of these three models. Thus
while the test data subset form a representative sample of the training data used to
generate predictions in both Maxent and AquaMaps, a Sea Around Us Project prediction is
generated using environmental and geographic limits and thus independently from the
occurrence dataset, precluding the selection of the most accurate, reliable ‘best’ model by
direct comparison of test statistics. Particularly, spatial auto-correlation between the
presence data for distribution predictions and that for calculation of test statistics may
over-estimate the performance of Maxent and AquaMaps relative to the Sea Around Us
project method. For example, in modelling M. molva (Fig. 2.5.) and M. merluccius using the
Sea Around Us Project approach, regions were predicted as being unsuitable despite
coinciding with species occurrence data points, resulting in the models obtaining low AUC
and PBC values (M. molva: AUC = 0.657; PBC = 0.147 with buffer, M. merluccius: AUC =
0.667, PBC = 0.087). This is, however, likely due to the fact that, being tested but not
trained on environmental data associated with occurrence points, the minimum depth
restriction imposed by the Sea Around Us Project filter excludes areas retained by the
other models. The discrepancy presented a valid difference between the two types of data
driving the approaches (species occurrence data and tolerance limits) and one that
confidence in data quality did not justify eliminating. Minimum depth restrictions were
therefore retained in the Sea Around Us Project methodology although that for M. molva
was reduced from 100m due to the presence of immature individuals up to a depth of 15m
(Whitehead et al. 1986). Following this adjustment, the predicted distribution for M.
molva has an AUC that is more consistent with other species and methods. Similarly, the
differences between data-types and their effect on test statistics was highlighted following
incorporation of expert knowledge in Maxent and AquaMaps predictions for P. maxima
and S. rhombus (Fig. 2.6.). The substantial depth restrictions of these species (of 70m and
50m respectively) encompassed areas where occurrence data are found and therefore

likely result in the relatively low test statistics obtained.

Difficulty therefore lies in the relative confidence in data used for model training and
testing. Although occurrence data for S. rhombus indicate its realized niche to be
throughout the North Sea, its habit of living on sandy or mixed sea bottoms, only to a

depth of 50m (FishBase), questions its long-term persistence in the deeper areas indicated
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by occurrence data. If the aim is to model a species’ potential niche, where it can
reproduce and persist and is not dependent on access to other (shallower) habitats, it may
therefore be more suitable to restrict predicted distributions to the more conservative
estimate, despite the wider distribution suggested as the observed, realized niche. If
projecting predictions in time or space, it does, however, seem wise to take into account
both range predictions as containing useful information about the species environmental

requirements and tolerances.

Discrepancies between predicted relative suitability in the Baltic Sea further highlight
differences in the methodologies and algorithms of the three models. The most accurate
predictions for the suitability of the Baltic Sea for particular species, according to verified
occurrence data and other sources (see Section 2. Methods) were produced by AquaMaps
and the Sea Around Us Project model. This likely resulted from the equal weighting given
to each environmental variable such that the effect of salinity was considered in equal
proportion to other predictors in these two models. Maxent, by contrast, attributes a low
contribution by salinity to the prediction, the suitability of other environmental variables
in this area may compensate for an unsuitable salinity value, resulting in predicted
distribution in areas a species is known not to occur. Comparing the two correlative
species distribution models used here, AquaMaps is therefore more robust than Maxent to
uncertainty in the relative influence of environmental predictor variable due to its simple,

multiplicative approach which assigns equal weighting to each predictor.

4.3. Interpretation of test statistics and the problem of model comparison

Further to the problem, mentioned above, of comparing models based on different data
sources, in reference to complex SDM techniques such as Maxent, it was suggested that
model testing statistics using presence-(pseudo)absence data might produce artificially
high values for more restricted distribution predictions as a greater number of absences
or ‘pseudo-absences’ are likely to be predicted as absent. This characteristic would lead to
the conclusion that complex techniques are more accurate than simpler ones, precluding

any useful comparison between modelling approaches.

Furthermore, although Maxent models generally produce higher AUC values than those
produced by AquaMaps, this is seldom the case using the PBC statistic. This disparity

raises questions whether either value allows a useful and valid comparison across
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modelling procedures. Although calculation of AUC scores may be highly influenced by
the total modelling area, larger areas increasing the likelihood that pseudoabsences will be
more distant in environmental space and decreasing commission error (Lobo et al. 2008),
in this case the study area remained consistent. Evaluation of perceived model
performance may, however, also be affected by a species’ relative occurrence. This is
consistent with the observation that the test statistics for AquaMaps fell when all species
were tested using pseudoabsences taken from a restricted area (within a buffer of 500 or
1000m of observed presence points). The decrease in AUC value followed by
incorporation of depth limits in the distribution predictions (using Maxent and
AquaMaps) do not, however, support the hypothesis that AUC values will increase with
decreasing predicted extents of occurrence. This loss of model performance following
depth clipping is rarely seen when test statistics are calculated using pseudoabsences
restricted to particular distances from presence points, refined models then performing
consistently better than the originals. The exceptions to this are shown by P. maxima and
S. rhombus, whose substantial depth restrictions (of 70m and 50m respectively)
encompass areas where occurrence data-points are found, likely resulting in lower test
statistics if presence points from outside these restricted areas are used in their
calculation. Results obtained here using global pseudoabsences therefore contrast those
obtained by Ready et al. (2010), who found the AquaMaps approach to be generally
favourable to the inclusion of expert knowledge in the form of defined depth preferences.
It is thus proposed that, in this case, the perceived performance of expert reviewed, or

‘refined’ predictions may be subject to characteristics of model testing statistics.

As it has been suggested that the focus on predictive performance should be broadened to
encompass ecological realism and model credibility to the user community (Franklin
2009), it is also important not to become over-focused on data errors and model fit. When
selecting environmental variables in this study, for example, minimum bathymetry was
included although it did not consistently improve test statistics as the vertical (depth)
gradients of temperature and oxygen are considered important factors limiting demersal
species distributions (Pauly 2010). A misunderstanding of ecological relevance may thus
lead to errors in model specification despite seemingly high test statistic values. Biological
relevance should therefore be considered both in model selection and when assessing the

applicability of the three models used.

As undertaken here, it is suggested that a range of AUC/ PBC statistics should be calculated

in order to assess the scope for variation and possibly contrasting results. Although a
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range of values may then only allow broad conclusions to be drawn, it is argued that the
greater understanding of the model evaluation process and any differences will facilitate
reasoned judgement in model evaluation. In conclusion, it is proposed that the refinement
of AquaMaps and Maxent predictions by expert opinion do represent more accurate
representation of species’ distributions, agreeing for the most part with occurrence data
and the predictions produced by the Sea Around Us Project model. It should be noted,
however, that AUC values are useful in determining the amount of variation in predictions
caused by partitioned datasets, emphasising the degree of influence of possible outlying

points and the robustness of the model to the occurrence data (Lobo et al. 2008).

5. Conclusions

Uncertainties inherent in both specifying and testing species distribution models indicate
that expert review is a vital part of the SDM process. Although the modelling approaches
employed here may lose precision in assuming that species distributions are dictated by a
general and restricted set of environmental variables, in modelling marine species, for
which data and ecological knowledge are frequently scarce, a general approach would
seem advisable. Expert review allows models to be refined and developed with increases
in knowledge or data, and the ease at which this may be done, by a variety of non-

specialist users, will be enhanced by a transparent and intuitive procedure.

The three modelling approaches produced predictions of relative environmental
suitability which were plausible given the occurrence data of each species. This analysis
does not, however, indicate whether there are differences in the capabilities of each model
to portray specific features of the distribution, such as the pattern of relative
environmental suitability. In conducting this comparison doubts were raised as to the
validity of direct comparisons between models. Striving to find the best model, as
indicated by test statistics would therefore risks substantial inaccuracies if wrong
selection of alternative data sources of model design are made. Differences between
modelling procedures that mask uncertainty as to true suitability values should therefore
be retained and used to view the range of plausible predicted distributions for a species. It
is proposed that a multi-model ensemble approach is most suitable for investigating
distribution ranges, especially in the marine environment where modelling is likely to be

hampered by issues of data quality.
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Appendix

Table 2.1. Test statistic values for all species, calculated using pseudoabsences from within
a global distribution or those restricted to within 1000km of presence points. Test statistic
values are calculated as the Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC) plot test statistic and the Point Biserial Coefficient (PBC) using Maxent,
AquaMaps and the Sea Around Us Project model. Predictions made using AquaMaps and
Maxent also show test statistics for Refined predictions, those following clipped by depth, for

each species.
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Maxent P. pollachius M. molva
No of training points (75%) 445 474
AUC1 0.9760 0.9800
AUC2 0.9800 0.9820
AUC3 0.9840 0.9780
AUC4 0.9850 0.9820
Average AUC 0.9813 0.9805
AUC (calculated externally) 0.9986 0.9985
AUC 1000km buffer 0.9888 0.9962
Refined prediction, Average AUC 0.9989 0.9948
Refined prediction, AUC 1000km buffer 0.9892 0.9923
Global PBC 0.7461 0.7706
PBC 1000km buffer 0.7371 0.7672
Refined prediction, Average PBC 0.7464 0.7703
Refined prediction, PBC 1000km buffer 0.7381 0.7679
AquaMaps

AUC1 0.9537 0.9574
AUC 2 0.8791 0.9753
AUC3 0.9757 0.9677
AUC4 0.9578 0.9644
Average AUC 0.9416 0.9662
AUC, 1000km buffer 0.9175 0.9317
Refined prediction, Average AUC 0.9663 0.9707
Refined prediction AUC 1000km buffer 0.9388 0.9603
PBC1 0.8493 0.8446
PBC 2 0.8791 0.8667
PBC 3 0.9072 0.8750
PBC 4 0.8575 0.8820
Average PBC 0.8733 0.8671
PBC, 1000km buffer 0.7709 0.7579
Average P clipped 0.8593 0.8700
PBC 1000 buffer clipped 0.8073 0.8455
Sea Around Us Project model

AUC1 0.9985 0.7202
AUC2 0.9994 0.7420
AUC3 1.0000 0.7092
AUC4 0.9960 0.7154
Average AUC 0.9985 0.7217
AUC 1000km buffer 0.9645 0.6570
PBC1 0.7282 0.2984
PBC2 0.7476 0.3009
PBC3 0.7650 0.2853
PBC4 0.7442 0.2587
Average PBC 0.7462 0.2858
PBC 1000km buffer 0.6840 0.1472
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M. molva S.solea  P. maxima S. rhombus . pilchardus
(minimum depth 15m) 496 504 519 522
n/a 0.9810 0.9770 0.9790 0.9780
n/a 0.9780 0.9790 0.9810 0.9760
n/a 0.9780 0.9770 0.9790 0.9780
n/a 0.9790 0.9790 0.9710 0.9760
n/a 0.9790 0.9780 0.9775 0.9770
n/a 0.9984 0.9985 0.9999 0.9979
n/a 0.9655 0.9880 0.9878 0.7933
n/a 0.9753 0.8866 0.7977 n/a
n/a 0.9531 0.8871 0.7944 n/a
n/a 0.7431 0.7894 0.8026 0.9601
n/a 0.7054 0.7727 0.7778 0.7344
n/a 0.7396 0.6844 0.5841 n/a
n/a 0.7088 0.6727 0.5679 n/a
n/a 0.9780 0.9443 0.9795 0.9784
n/a 0.9565 0.9699 0.9449 0.9827
n/a 0.9790 0.9657 0.9766 0.9907
n/a 0.9549 0.9489 0.9705 0.9869
n/a 0.9671 0.9572 0.9679 0.9847
n/a 0.8760 0.8645 0.9297 0.9280
n/a 0.9527 0.8610 0.8091 n/a
n/a 0.9333 0.8461 0.7907 n/a
n/a 0.8266 0.7830 0.8821 0.8402
n/a 0.8218 0.8250 0.8158 0.8614
n/a 0.8028 0.8560 0.8946 0.8711
n/a 0.7987 0.8244 0.8327 0.8987
n/a 0.8125 0.8221 0.8563 0.8679
n/a 0.6919 0.6356 0.7692 0.7562
n/a 0.7990 0.6953 0.6188 n/a
n/a 0.7520 0.6523 0.5814 n/a
0.9124 0.9845 0.8892 0.8460 0.9553
0.9490 0.9792 0.8893 0.8532 0.9688
0.9431 0.9848 0.8928 0.8479 0.9765
0.9402 0.9934 0.8874 0.8570 0.9477
0.9362 0.9855 0.8897 0.8510 0.9621
0.8172 0.9231 0.8720 0.8037 0.7888
0.5337 0.6606 0.6119 0.5103 0.6705
0.5393 0.6641 0.6252 0.5364 0.6968
0.5365 0.6577 0.6470 0.5255 0.7104
0.4879 0.6841 0.6429 0.5345 0.7000
0.5244 0.6666 0.6318 0.5267 0.6944
0.3165 0.5692 0.6045 0.4620 0.4317
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S. sprattus M. merluccius P. platessa M. merlangus P. virens
584 619 619 623 691
0.9760 0.9740 0.9740 0.9740 0.9770
0.9780 0.9760 0.9750 0.9760 0.9790
0.9750 0.9750 0.9760 0.9740 0.9770
0.9750 0.9710 0.9740 0.9730 0.9790
0.9760 0.9740 0.9748 0.9743 0.9780
0.9952 0.9941 0.9964 0.9998 0.9935
0.9741 0.9376 0.9794 0.9901 0.9722
n/a 0.9912 0.9900 0.9918 0.9922
n/a 0.9540 0.9755 0.9818 0.9741
0.7518 0.7859 0.7785 0.7720 0.7768
0.7294 0.6856 0.7545 0.7573 0.7465
n/a 0.7855 0.7770 0.7684 0.7773
n/a 0.6889 0.7537 0.7543 0.7485
0.9814 0.9778 0.9769 0.9782 0.9544
0.9985 0.9573 0.9648 0.9746 0.9567
0.9951 0.9669 0.9720 0.9695 0.9677
0.9943 0.9775 0.9585 0.9673 0.9601
0.9923 0.9699 0.9681 0.9724 0.9597
0.9262 0.8237 0.9521 0.9494 0.9043
n/a 0.9653 0.9664 0.9714 0.9656
n/a 0.8692 0.9605 0.9525 0.9371
0.8678 0.8702 0.8645 0.8618 0.8320
0.9006 0.7989 0.8424 0.8568 0.8615
0.9017 0.8495 0.8461 0.8649 0.8734
0.9066 0.8586 0.8404 0.8314 0.8582
0.8941 0.8443 0.8484 0.8537 0.8563
0.7477 0.6308 0.8116 0.8061 0.7415
n/a 0.8359 0.8402 0.8421 0.8527
n/a 0.6934 0.8292 0.8093 0.7905
0.9653 0.8455 0.8896 0.9879 0.9564
0.9542 0.9406 0.9125 0.9972 0.9587
0.9529 0.9563 0.9146 0.9973 0.9381
0.9682 0.9482 0.9184 0.9901 0.9383
0.9601 0.9226 0.9088 0.9931 0.9479
0.9179 0.6670 0.8496 0.9575 0.9188
0.7937 0.4204 0.6245 0.7420 0.6652
0.7756 0.6472 0.6245 0.7500 0.6247
0.7831 0.7054 0.6149 0.7691 0.6119
0.8099 0.6819 0.6447 0.7294 0.6292
0.7906 0.6137 0.6272 0.7476 0.6328
0.7186 0.0868 0.5647 0.7079 0.6058
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S. scombrus M. aeglefinus G. morhua
926 873 1323
0.9610 0.9630 0.9460
0.9580 0.9610 0.9480
0.9610 0.9630 0.9430
0.9530 0.9610 0.9380
0.9583 0.9620 0.9438
0.9847 0.9930 0.9951
0.8679 0.9674 0.9727
n/a 0.9353 0.9847
n/a 0.9099 0.9680
0.9336 0.7321 0.7682
0.7629 0.6807 0.7366
n/a 0.6970 0.7721
n/a 0.6349 0.7376
0.9727 0.9660 0.9474
0.9700 0.9622 0.9371
0.9813 0.9635 0.9430
0.9758 0.9763 0.9461
0.9750 0.9670 0.9434
0.8845 0.9255 0.8937
n/a 0.9310 0.9644
n/a 0.9082 0.9333
0.7842 0.8207 0.7653
0.8141 0.8287 0.7635
0.8247 0.8360 0.7489
0.8006 0.8442 0.7804
0.8059 0.8324 0.7645
0.6701 0.7531 0.6678
n/a 0.7808 0.7759
n/a 0.7213 0.7262
0.9926 0.9591 0.9796
0.9932 0.9394 0.9686
0.9939 0.9532 0.9753
0.9908 0.9546 0.9644
0.9926 0.9515 0.9720
0.9256 0.9155 0.9475
0.7834 0.6755 0.7004
0.8306 0.6431 0.6432
0.8062 0.6913 0.6824
0.8053 0.6951 0.6619
0.8064 0.6762 0.6720
0.6882 0.6154 0.6561
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Species occurrence record

Figure 2.1. Occurrence records for a) P. platessa b) M. molva c) S. scombrus collated from
GBIF, OBIS and the ICES EcoSystemData database and cleaned according to the procedure
detailed in the Methods section.
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Abstract

Global climate change is affecting the distribution of marine species and is thought to
represent a threat to biodiversity. Previous studies project expansion of species range for
some species and local extinction elsewhere under climate change. Such range shifts raise
concern for species whose long-term persistence is already threatened by other human
disturbances such as fishing. However, few studies have attempted to assess the effects of
future climate change on threatened vertebrate marine species using a multi-model
approach. There has also been a recent surge of interest in climate change impacts on
protected areas. This study applies three species distribution models and 2 sets of climate
model projections to explore the potential impacts of climate change on marine species by
2050. A set of species in the North Sea, including seven threatened and ten major
commercial species were used as a case study. Changes in environmental suitability in
selected candidate protected areas around the UK under future climatic scenarios were
assessed for these species. Moreover, change in the degree of overlap between
commercial and threatened species ranges was calculated as a proxy of the potential
threat posed by overfishing through bycatch. The ensemble projections suggest
northward shifts in species at an average rate of 27 km per decade, resulting in small
average changes in range overlap between threatened and commercially exploited species.
Furthermore, the adverse consequences of climate change on the environmental
suitability of protected areas were projected to be small. Although the models shows large
variation in the predicted consequences of climate change, the multi-model approach
helps identify the potential risk of increased exposure to human stressors of critically
endangered species such as common skate (Dipturus batis) and angelshark (Squatina

squatina).

1. Introduction

The last 100 years have seen significant changes in the global climate that are very likely
to be attributed to anthropogenic greenhouse gas emissions (IPCC 2007). Mean global
surface temperature has increased by approximately 0.1 °C per decade since the late
1950s and is projected to be 1.4 - 2.1 °C above pre-industrial levels by 2050 (IPCC 2007),
with temperatures increasing in the Arctic at almost twice the global rate in the last
century. Furthermore, the ocean is becoming more acidic and less oxygenated (IPCC

2007; Deutsch et al. 2011). Climate change has been observed to be having a profound
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effect on both marine and terrestrial biodiversity (Root et al. 2003; Parmesan and Yohe
2003; Hobday et al. 2006), and this trend is expected to continue, with associated changes
in species compositions (Stralberg et al. 2009), distributions (Parmesan and Yohe 2003)
and phenological patterns (Fitter and Fitter 2002). Concern over the impact of climate
change in the marine environment is also increasing, with longer-term shifts in mean
environmental conditions and climatic variability moving outside the bounds within
which adaptations in marine communities have previously been associated (Beaugrand
2004). The changes in abundances and distributions that result from these ocean-
atmospheric changes may severely impact the biological and environmental functioning of
ecosystems or food webs (Harborne and Mumby 2011), the goods and services derived
from them and conservation and resource management (Cheung et al. 2010; Sumaila et al.

2011).

The effects of climate change on threatened or endemic species (those unique to a defined
geographic area) are of particular concern. These species are frequently restricted to
relatively small areas and population sizes and may have highly specific environmental
requirements, likely reducing their adaptive capacity to climatic change (Lawton et al
1994). In addition, lack of knowledge or data concerning the abundance, dispersal and life
history characteristics of threatened species is common. Recent years have thus seen an
increase in studies attempting to assess how climate change might impact threatened and
endemic species in terrestrial environments (Thomas et al. 2004; Thuiller et al. 2006; Hu
and Jiang 2011) and how conservation goals and actions should adapt in a changing
climate (Fuller et al. 2008; Hagerman et al. 2010; Cianfrani et al. 2011). There are far
fewer studies, however, that attempt to assess the impacts of environmental and climate
change on threatened marine vertebrate species. This is likely due to the issue of scarce
and unreliable data available for the marine environment (Kaschner et al 2006).
Furthermore, there has been little attempt to assess the interactions between climate

change and other anthropogenic stressors, such as fishing, on threatened marine species.

Climate and ocean changes may also affect threatened species by influencing the efficacy
of measures designed to protect them. Specifically, marine protected areas are a major
tool to conserve marine biodiversity (Toropova et al. 2010) and have been shown to
enhance population resilience to climate-driven disturbance (Micheli et al. 2012).
However, their effectiveness may itself be influenced by climate change. For example,
future climate change has been predicted to reduce the amount of suitable environmental

space for particular species that falls within current protected areas (Coetzee et al. 2009;
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Cianfrani et al. 2011), thereby reducing its future conservation value. There is a need to
increase the robustness and enhance resilience of protected areas to climate change
(Conroy et al. 2011; Lemieux et al. 2011). By assessing the degree of future environmental
change within proposed protected areas, conservation planning may thus be used to

protect against biodiversity loss (Dockerty et al. 2003; Rose and Burton 2009).

Species Distribution Modelling has been widely used to predict the potential impacts of
climate change on both terrestrial (Araujo et al. 2006; Hijmans and Graham 2006; Elith et
al. 2010) and marine species (Cheung et al. 2009; Albouy et al. 2012; Blanchard et al.
2012). The bioclimatic envelope is defined here as a set of physical and biological
conditions suitable for a given species (Cheung et al. 2008) and is frequently obtained by
using statistically or theoretically derived methods to associate current climatic variables
with species occurrences. By predicting a species’ current range as the manifestation of
environmental characteristics that limit or support its existence at a particular location, a
shift in that range may be elucidated by assessing shifts of the bioclimatic envelope under
climate change scenarios. Species Distribution Models (SDMs) are able to predict species’
distributions with presence only data and also perform well under small sample sizes (see
(Guisan and Zimmermann 2000; Guisan and Thuiller 2005; Elith et al. 2006) for an
overview of methods). Applications of SDMs have been criticised (Botkin et al. 2007) and
it is acknowledged that some SDMs over-simplify the mechanisms determining species’
distributions. However, recently developed modelling approaches have increasingly
addressed these criticisms (Kearney et al. 2010; Cheung et al. 2011). SDMs also remain
useful in exploring the possible magnitude and direction of species’ distribution shift
under climatic change. Furthermore, key uncertainties in using SDMs to assess climate
change impacts on marine biota, which stem from the differences in the structure of the
SDMs and the underlying climate forcing, can be explored by comparing outputs from
multiple SDMs and climate models. Using multiple SDMs with a range of complexity, data
requirement and statistical mechanisms is therefore a more robust way to assess species’
distributions (Jones et al. 2012). Climate scenarios developed from multiple models are
also considered to be more robust than using a single model as climate models vary in
complexity and reliability, with uncertainty being introduced by data input as well as
interpolation method. There is therefore a need to compare future species’ distribution
predictions made using alternative SDM algorithms, Global Climate Models (GCMs) and
species’ occurrence/ environmental tolerance data. The uncertainties in outputs resulting
from these variations help us understand the range of potential predictions, the extent of

agreement between them as well as possible extremes.
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This study aims to assess the potential impact of climate change on a set of threatened
species [under the International Union for Conservation of Nature (IUCN) Red List of
Threatened species] predominantly inhabiting the North Sea, Northeast Atlantic and
Mediterranean Sea. These species are primarily threatened by overfishing through being
by-catch of commercially important fisheries (Ellis 2005; Dulvy et al. 2006; Ellis et al.
2009; IUCN 2011). They are vulnerable to fishing due to particular life history
characteristics which make them intrinsically sensitive to overexploitation, such as large
body sizes, late maturation and consequential slow rates of population increase (Dulvy et
al. 2003; Cheung et al. 2005). I express the level of impacts on these threatened species in
terms of changes in range area, changes in environmental suitability throughout the
species’ ranges and within key protected areas around the UK, and of the possibility of
bycatch. The latter is indicated by the predicted range overlap between threatened
species and commercially exploited species. I hypothesize that the relative suitability of
protected areas for threatened species would change as climate and ocean conditions
change, thus influencing their efficacy in protecting threatened species. If both the
threatened and targeted species respond similarly in direction and magnitude of
distribution shift, the range overlap between species will remain similar under climate
change. In contrast, if the response to climate change is species specific (Edwards and
Richardson 2004; Portner and Knust 2007) and varies to a large degree, change in overlap
may be expected. 1 examine these hypotheses by using three modelling approaches,
AquaMaps, Maxent and the Dynamic Bioclimate Envelope model (DBEM) (Cheung et al.
2011; Jones et al. 2012), to project future changes in distributions of threatened and
commercially exploited species in the North Sea, and their changes relative to the
distributions of example protected areas. I also examine uncertainty of the projections.
Finally, I discuss the implications of results found on the threat facing these species, their

likely persistence and on the conservation value of protected areas.

2. Methods

2.1. Modelling Approaches

[ applied three Species Distribution Models to predict the distributions of seven
threatened and ten targeted fish species (Table 3.1). The SDMs are summarized here and
described in greater detail in the supplementary methods, Appendix 2, and publications

indicated. Two of these, Maxent (Phillips et al. 2006) and AquaMaps (Kaschner et al.
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2006), apply a statistical approach to model species’ distributions. These models were
designed to overcome the problems of small sample sizes in presence-only datasets
(Pearson et al. 2007) and the lack of data and knowledge for many marine species
respectively. Maxent (Phillips et al. 2004) and AquaMaps (Kaschner et al. 2006) both use
generative approaches to estimate the environmental co-variates conditioning species’
presence from presence only occurrence data and a suite of environmental variables.
Using presence only data enabled the potential of the increasing quantity of publically
available, presence only datasets to be explored and was also considered more
appropriate as recorded absence at a location may not reflect true absence or may not
result from tolerance limits of environmental variables included in the models. While
Maxent applies a complex methodology, based on the principle of maximum entropy,
AquaMaps uses simple, numerical descriptors of species’ relationships with
environmental variables to predict distributions from occurrence databases (see
supplementary information). Species’ current distributions (averaged over 30 years from
1971 to 2000) were predicted by associating species’ occurrence data with averaged
‘current’ environmental data (1971 - 2000), thereby obtaining a bioclimatic envelope for
each species. Models trained on the set of current environmental data were then
‘projected’ by applying them to the same environmental variables representing future

climate.

Expert opinion was incorporated into Maxent and AquaMaps to refine predictions by
eliminating (‘clipping’) areas that were currently outside known occurrence ranges,
including reported occurrence/absence in large ocean basins [delineated by the United

Nations’ Food and  Agricultural  Organisation  (FAO) statistical  area,

www.fao.org/fishery/area/search/en] or depth limits (Jones et al. 2012). The use of large
ocean-basin and wide depth limits in ‘clipping’ considered both the current and potential
future-shifted distribution. The ‘clipping’ procedure avoided over-prediction of relative
environmental suitability in areas of the world where species are known not to occur, or
which are unsuitable due to depth. Although depth was included in each model to retain
the relative environmental suitability due to depth, maximum tolerance limits may be
over-estimated in Maxent and AquaMaps due to the relatively low resolution of depth and
occurrence data, in particular at the edge of the continental shelf, thereby over-predicting
range extent. Maximum depth limits obtained from Fishbase (Froese and Pauly 2011)
were increased by 50% in predictions for both time periods. This allowed for the

deepening of species with ocean warming that has been observed (Dulvy et al. 2008) while
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preventing difference in predictions between the two time periods being inflated by

applying different depth cut off points.

The third model, DBEM (Cheung et al. 2011), combines statistical and mechanistic
approaches in predicting species’ distributions. It attempts to avoid the bias that might be
introduced by the skewed distribution of sampling effort present in many datasets
collected sporadically. Firstly, the associated Sea Around Us Project model (Close et al.
2006) is used to predict a species’ current distribution based on a set of ‘filters’, restricting
a distribution based on known parameters, geographic limits or habitat preferences.
Filters were applied for FAO area, habitat, latitudinal limits and depth. The DBEM then
uses the predicted current distribution to define a species’ bioclimatic envelope by its
‘preference profile’ (the relative suitability of different environmental values) for each
environmental variable. Change in a species’ relative abundance following changing
environmental conditions is then simulated by incorporating a population growth model
(Cheung et al. 2008) as well as ecophysiological parameters (Cheung et al. 2008, 2011)
(see supplementary information). Comparison between model hindcast and historical
distribution changes of fishes and invertebrates from the 1970s to the 2000s in the Bering
Sea and Northeast Atlantic suggest that DBEM has significant predictive skills for species
distribution shifts in these regions (Barange et al. 2010).

2.2. Species’ occurrence data

Two sets of species were selected to investigate how altered range distributions under
climate change might impact species that are threatened by overfishing through bycatch. I
assume that the degree of range overlap between a commercially targeted species and one
classified here as ‘threatened’ is an indication of bycatch potential of the threatened
species. Ten commercially targeted demersal species, being the top nine fish species and
the top invertebrate species by value of landings that were caught by fleets in UK waters in
2006 - 2010 (Marine Management Organisation, MMO) (MMO 2011), were included (Table
3.1). Although some of these species may also be listed as endangered, for example under
the IUCN Red List (IUCN 2011), they are still considered main commercial species by the
fisheries. A further set of species of conservation concern, henceforth ‘threatened’, was
chosen from the IUCN Red List of Threatened Species (IUCN 2011), the Convention for the
Protection of the Marine Environment of the North-East Atlantic (‘'OSPAR’ Convention)
List of Threatened and/or Declining Species (OSPAR 2008), and the UK Biodiversity Action
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These species are specifically

threatened by bycatch and have ranges restricted to the North Sea, East Atlantic Ocean

and Mediterranean Sea (Table 3.1).

Table 3.1. Commercially targeted and threatened species selected for the study. (OSPAR:

Convention for the Protection of the Marine Environment of the North-East Atlantic; BAP: UK

Biodiversity Action Plan.)

Commercially targeted species

Scientific name Common Name Landed Value 2010
(£ million)
Nephrops norvegicus Norway lobster 95.3
Lophius piscatorius Anglerfish/Monkfish  38.5
Melanogrammus aeglefinus Haddock 36.2
Gadus morhua Atlantic cod 28.6
Solea solea Common Sole 14.0
Pollachius virens Saithe 12.4
Merluccius merluccius European Hake 10.2
Lepidorhombus whiffiagonis ~ Megrim 10.1
Merlangius merlangus Whiting 9.4
Microstomus kitt Lemon sole 6.3
Threatened species
Scientific name Common Name IUCN Red List Other lists
Dipturus batis Common skate Critically Endangered OSPAR, BAP
Squatina squatina Angelshark Critically Endangered OSPAR, BAP
Raja undulata Undulate ray Endangered BAP
Rostroraja alba White skate Endangered OSPAR, BAP
Leucoraja circularis Sandy ray Vulnerable BAP
Raja clavata Thornback ray Near Threatened OSPAR
Scyliorhinus stellaris Nursehound Near Threatened

Species occurrence data were obtained from three global online databases: the

International Council for Exploration of the Sea (ICES) EcoSystemData database

(http://ecosystemdata.ices.dk); the Ocean Biogeographic Information System (OBIS)
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(Vanden Berghe, 2007; http://www.iobis.org) and the Global Biodiversity Information

Facility (GBIF) (http://data.gbif.org), all last accessed in 2011. Occurrence records were
spatially aggregated on a 0.5° latitude x 0.5° longitude grid and rigorously filtered
according to criteria detailed in Jones et al. (2012). This minimised recording errors due
to data being compiled from many sources and gave a binary value of presence or absence
of each species for each cell. Maps showing the distribution of occurrence records for each

species are shown in the thesis Appendix.

2.3. Projecting distribution shifts under climate change

A range of environmental oceanographic variables for predicting species’ distributions
were chosen, including bathymetry, sea surface temperature (SST), sea bottom
temperature (SBT), salinity, sea ice concentration, primary productivity, and distance to
coast. The DBEM used additional variables mentioned previously. Ocean oceanographic
variables were interpolated onto a 0.5° latitude x 0.5° longitude global grid using the
nearest-neighbour method. Models were trained for each of 2 sets of average annual
climatic data covering 1971 - 2000, the period corresponding as far as possible to the
average climatic conditions over which occurrence data were compiled. For Maxent and
Aquamap, predictions were subsequently projected into the future using a 30 year average
centred on 2050. For DBEM, the model simulates changes in distribution over an annual
time-step from 1971 to 2050. Environmental datasets (including physical variables as well
as O, concentration, pH and primary productivity) were obtained from Geophysical Fluid
Dynamics Laboratory’s Earth System Model (GFDL ESM2.1, (Dunne et al. 2010)) and a
further set of physical climate data (including SST, SBT, salinity and ocean advection)
obtained from the World Climate Research Program (WCRP) Coupled Model
Intercomparison Project phase 3 (CMIP3) multi-model dataset (http://esg.linl.gov:8080).

These data represented an ensemble of 12 different models that assessed by the fourth
assessment of the Intergovernmental Panel on Climate Change (IPCC AR4), henceforth
referred to as CMIP3-E. Both climatic datasets were modelled under the SRES A2
emissions scenario and are thus characterised by a heterogenous world with a
continuously increasing global population and regionally orientated economic

development (IPCC 2000).

The changes in range of the seven threatened species were predicted under two scenarios

of dispersal: no dispersal and full dispersal. Under the no dispersal scenario, distributions
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of the species were restricted to their predicted current range only and the species could
not colonize areas outside its current distribution. In contrast, under the full dispersal
scenario, a species’ distribution could shift into all potentially suitable environmental
space using Maxent and AquaMaps and, in the case of DBEM, all suitable environmental
space within the projected dispersal range (Cheung et al. 2008). The scenario of no
dispersal here represents a precautionary, conservative view and, following this
assessment, the scenario of full dispersal is used throughout, agreeing with the observed
ability of marine aquatic organisms to disperse under environmental change (Perry et al.

2005; Henderson 2007).

A range of thresholds of minimum environmental suitability were applied to investigate
the effect of excluding cells with lower levels of predicted environmental suitability on the
analysis. Specifically, predicted environmental suitability values that are lower than the
specific threshold equal 0. Thus, specific thresholds determine the extent of a species’
most suitable (core) range. Thresholds are frequently used to transform the continuous
predictions of relative suitability produced in species distribution modelling into
predictions of presence/absence. There are several methods for selecting thresholds and
their possible impacts on predicted distributions have been explored and discussed in the
literature (Fielding and Bell 1997; Liu et al. 2005; Nenzén and Araudjo 2011). However,
there is currently no consensus on the most suitable and stable method for applying
thresholds to species’ range projections (Nenzén and Araujo 2011). As such, occurrence
datasets for each species were split into 75% and 25% for model training and testing,
respectively, and used to find the threshold that maximised accuracy of the model in
predicting the observed occurrences/absences of a species (maximum training sensitivity
plus specificity) (Liu et al. 2005). This was implemented using the ROCR package in R
(Sing et al. 2007). Three fixed thresholds, of 0.05, 0.5 and 0.7, were applied to investigate
the effect of increasingly restricting distributions and the implications for conclusions

drawn from analysing the predicted distributions.

2.4. Latitudinal centroids
Based on the results from the full dispersal scenario for each model, the average degree of

range shift was calculated for each species in 2050 (average of 2036 to 2065) relative to

1985 (average of 1971 to 2000). This was done for each SDM, climatic dataset and each of
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the 4 thresholds and was calculated using an equation for distribution centroids, equation

(1) (Cheung et al. 2009):

C= Z?:l Lati ' Abdl
T 3L Abd,

(1)
where Lat; is the latitude of the centre of the spatial cell (i), Abd is the predicted relative
abundance in the cell, and n is the total number of cells (Cheung et al. 2009). The
difference between latitudinal centroids in projected and reference years was then

calculated in kilometres (km) using equation (2) (Cheung et al. 2011):

/s
Distance shift (km) = (Lat,, — Latn)m X 6378.2

(2)

2.5. Range overlap analysis

[ used the degree of range overlap between the threatened species and the top 10
commercially targeted species in UK waters selected above as a proxy for investigating the
degree of threat by overfishing through bycatch. [ measured the potential overlap
between the distributions of each threatened species with that of each targeted species

using the Schoener’s D index (Renkonen 1938; Schoener 1968), calculated by:

1
D(px'py) =1- Ezl |px,i - py,il

(3)
where py;and p,;denote the probability assigned in a species distribution model computed

for species x and y to grid cell i respectively.

This index quantifies the degree of overlap between two probability distributions or
predictions of relative suitability, ranging from no overlap (0) to identical distributions
(1), and is equivalent to the percent similarity index as proposed by Renkonen (1938)
(Renkonen 1938). It has further been suggested as being best suited to computing niche
overlaps from potential species’ distributions (Rédder and Engler 2011). A value of 0.1

was added to all 1985 values (D) to avoid extremely large percentage values caused by
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very low overlap in 1985 relative to the difference. The final overlap value thus

represented the percentage difference in overlap relative to the 1985 value.

2.6. Environmental suitability in protected areas

[ calculated the changes in environmental suitability for the threatened species in
candidate protected areas within and around the UK, Dutch or German waters. A set of
candidate Special Areas of Conservation (cSACs) (JNCC 2011) that cover a range of habitat
types and latitudinal distributions were selected (Fig 3.1.). These sites were also chosen
as being of appropriate size to the resolution of predicted species’ distributions.
Candidate SACs have been proposed but are yet to be adopted by the European
Commission and formally designated by the local governments. They are designated for
habitats and species listed on the Habitats Directive and include those areas considered to
be in most need of conservation at a European level (Council Directive 92/43/EEC of 21

May 1992 on the conservation of natural habitats and of wild fauna and flora 1992).
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Figure 3.1. Candidate Special Areas for Conservation included in this study.

Under the Habitats Directive, Member States must take measures to maintain or restore
natural habitats and wild species listed on the Annexes to the Directive at a favourable
conservation status, introducing robust protection for habitats and species of European

importance (Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural
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habitats and of wild fauna and flora 1992). These cSACs include the Dogger Bank (UK,
German and Dutch), Haisborough, Hammond and Winterton, together with North Norfolk
Sandbanks and Saturn Reef (HHW & NNS), the Central Oyster Grounds (COG) (Dutch),
North-West Rockall Bank, and Hatton Bank (Fig. 3.1.). Relative environmental suitability
values of my sample of species for all grid cells within each cSAC were obtained for 1985
and 2050. The relative suitability values for each species were standardized for each
model across all cSACs, resulting in a value scale between 0 and 1. The change in relative
environmental suitability between 1985 and 2050 (2050 value - 1985 value) was

calculated for each 0.5°latitude x 0.5° longitude cell within a cSAC.

3. Results

Outputs from GFDL ESM2.1 suggest an average warming trend in the North Sea (Large
Marine Ecosystems of the World 2012) from 1960 to 2065, with high interannual
variability (Fig. 3.2.). The pattern is similar for SST and SBT, which is to be expected given
that the North Sea is relatively shallow (average depth = 90m). Average SST increases
between 1985 and 2050 is 0.77°C and 1.27°C based on projections from GFDL ESM2.1 and
CMIP3-E, respectively.
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Figure 3.2. Temperature trends from 1970-2065 in the North Sea.

Sea Surface Temperature (SST) and Sea Bottom Temperature (SBT) trends in the North Sea

were averaged over all cells at a 0.5°latitude x 0.5° longitude resolution.
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3.1. Latitudinal centroids

Almost all models predicted northwards shifts in latitudinal centroid for the seven
threatened species (Fig. 3.3.a) and 10 commercially exploited species (Fig. 3.3.b). Overall,
my analysis projected that the distribution centroids of all species are expected to shift
towards higher latitude from 1985 to 2050 under the SRES A2 scenario. The difference
in poleward shift between commercially targeted and threatened species was not found to
be significant when tested within each SDM model and climate dataset combination (two
sample Wilcoxon test, p-value > 0.05, using species as replicates [Commercially Targetted:
10; Threatened: 6]) (Appendix 1. Fig. 3.1.). The median projected rates of poleward range
shift are 167.0 and 185.6 km over 65 years, corresponding to 26 and 28 km decade! for
commercially exploited and threatened species, respectively (Fig. 3.3.b). There is,
however, variation within species predictions. For example, from 1985 to 2050, the
predicted centroid distribution shift for L. circularis ranges from 8.9 km to 450km
northwards while that for R undulata ranges from 32 km southwards to 247 km
northwards.  Contrasting these projections, three out of six SDM/GCM model
combinations predict a >600km northwards centroid shift for S. stellaris for the same
period. R. alba was projected to shift at the fastest rate amongst the seven threatened
species, reaching a maximum of 1046 km northwards by 2050 (threshold = 0.7). There is
considerable variation in the predicted rate of range shift between SDMs, and to a lesser
extent, between climate forcing used. However, no significant difference was found
between latitudinal shifts projected using different SDM models within each of the two
climate datasets, for both commercially targeted and threatened species (two sample
Wilcoxon test, p-value > 0.05, using species as replicates [Commercially Targetted: 10;

Threatened: 6]).
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Figure 3.3. Shifts in latitudinal centroid for threatened and commercial species.

Projected change (in km) in latitudinal centroid from 1985 to 2050 across the six SDM and
climatic dataset combinations for a) each threatened species b) threatened and commercial
species, grouped. Thick bars represent median values, the upper and lower ends of the box
the upper and lower quartiles of the data, and the whiskers the most extreme datapoints no
greater than 1.5 times inter-quartile range from the box. Points that are more extreme than

whiskers are represented as circles.
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3.2. Predicted changes in range area

Changes in area of predicted suitable environmental space between 1985 and 2050 vary
considerably, both between species and models (Fig. 3.4.). Maxent and DBEM in general
project net gains or no change in range area while AquaMaps frequently predicts net
losses. More specifically, L. circularis, R. clavata and S. stellaris, were projected to have a
net loss in range area by 2050 using 3 out of 6 model SDM-GCM combinations. While a net
loss in range area is also seen in R. alba using the DBEM with CMIP3-E data, it contrasts
the prediction with GFDL data that shows a net gain. The trend of predicted range area
also varies between different climate forcing for D. batis, S. squatina and R. alba.
Furthermore, the highest predicted gain (53.08%) and loss (22.44%) in area as a
percentage of the 1985 range area were both predicted for L. circularis. The outlying
points in Figure 3.4. are caused by L. circularis and D. batis, which are predicted to increase
their range area by 53.08% and 42.17% respectively, using the DBEM model. These larger
increases in range area are due to the DBEM- CMIP3-E model combination predicting

greater range expansions to the northeast and West Atlantic than is seen for other models.
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Figure 3.4. Changes in range area.
Range loss and gain assuming no dispersal and full dispersal, respectively, between 1985 and

2050 for each SDM using GFDL and CMIP3-E climatic datasets.
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3.3. Analysis of Range Overlap

The overall median change in range overlap between threatened and commercial species
(expressed as a percentage of the 1985 overlap value), across models and thresholds, is
relatively small (+/- 4%). However, selected model/ threshold combinations projected

large changes in overlap (exceeding +/- 50%) (Fig. 3.5.).
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Figure 3.5. Changes in range overlap between species. Range of predicted changes in overlap
(Schoener’s D) as a percentage of 1985 overlap value for each commercial species with all
threatened species. Values shown include all threatened species, SDMs, climatic datasets and

thresholds.

All commercial species are predicted to decrease in overlap for at least one threatened
species and modelling scenario. In contrast, all but two commercial species are, on
average, projected to overlap more in predicted range with threatened species by 2050
(Supporting Information Table 3.1). The notable exception is L. piscatorius, which
decreases in median overlap (median= -3.0%), particularly with D. batis (median = -0.7%,
min = -61.1%) (Appendix 1. Fig. 3.2.a), R. clavata (median = -7.5%, min = -55.6) and S.
stellaris (median = -5.8%, min = -51.7%). R. alba was projected to have the greatest

increases in median range overlap across commercial species (mean = 4.9%). This species
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may thus be most likely to experience an increase in range overlap with the set of
commercial species under climate change. S. squatina, on the other hand, was projected to
have predominantly small, negative changes in median overlap across all commercial
species (mean = -2.7%) and with only low variation between median values across species
(-6% < x < 1%) (Appendix 1. Fig. 3.2.b). D. batis shows a small average change in median
values (0.1%) but also varies most across all commercial species (-61.1% < x <34.2%).
The commercial species showing the maximum increase in range overlap by 2050 is N.

norvegicus (61.4%, overlap with R. alba, using a 0.5 threshold).

3.4. Change in relative suitability of key protected areas

The overall average change in relative environmental suitability (RES) over the protected
areas is small, ranging between -0.03 and 0.09 from 1985 to 2050 (environmental
suitability values lying between 0 and 1) (Fig. 3.6.a). All species except S. stellaris were
projected to have almost no median change in overall environmental suitability across all
protected area sites. However, some species and SDM-GCM combinations show larger
projected change in relative environmental suitability between 1985 and 2050. The
greatest mean increase in RES across all ¢SACs was, for example, projected for S. stellaris
(0.08). This species, as well as S. squatina, with a mean increase in RES of 0.06 and
minimum prediction of -0.008, is thus likely to experience an average increase in
environmental suitability over all the cSACs by 2050. These proposed increases are
reflected in the Dogger Bank, with relatively consistently high and increasing relative
environmental suitability values for S. squatina and S. stellaris across climate forcing and
SDMs (Appendix 1. Fig. 3.3.). In contrast, R. clavata shows a median decrease in relative
environmental suitability across all cSACs. Although averaging a small, positive change in

relative environmental suitability (0.002), R. alba shows a wide range of variation.
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Figure 3.6. Environmental suitability in assessed candidate Special Area of Conservation
(cSAC). a) Average difference in relative suitability (2050 - 1985), b) average relative

environmental suitability values in 1985 for each threatened species in all assessed cSACs.

Comparing absolute values of predicted environmental suitability in 1985 (Fig. 3.6.b) is
important as the impact of projected changes in RES will likely depend on how suitable
that environmental space is currently for a particular species. For example, while the
potential decrease in environmental suitability for R. clavata is accompanied by a mean
environmental suitability in 1985 that is relatively high (0.43), the small potential increase

(0.67) or decrease (-0.90) seen for R. alba accompanies a low average environmental
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suitability (0.05). A potential decrease in RES may therefore have more adverse effect on
R. alba than R. clavata. The broad range of RES change observed for R. alba results from a
strong predicted future increase in suitability of the Hatton Bank, using CMIP3-E data
(Appendix 1. Fig. 3.4.), and a strong predicted decrease in suitability of the Rockall cSAC
(Appendix 1. Fig. 3.5.). There are thus considerable variations in predictions between
SDMs. This is highlighted in the case of D. batis, which shows consistencies in patterns of
RES across cSACs within the modelling procedures but variation in the values of RES
between models. D. batis is predicted to have highly suitable environmental space and no
future decrease in RES in all SACs using AquaMaps (Appendix 1. Table 3.2). Although
positive, predictions for D. batis are generally lower in Maxent, showing an average
decrease in the future. Using DBEM, suitability predictions of D. batis in 1985 are low or
decreasing, other than in Rockall. Similar patterns of variation in trends predicted by the
three SDMs were projected for S. squatina and S. stellaris. In general, environmental
suitability for the threatened species in most SACs was projected to improve slightly under
climate change. Specifically, areas in the Rockall cSAC are projected to improve for

threatened species in the future (Appendix 1. Fig. 3.5.).

3.5. Sensitivity Analysis

The projected range shifts were generally robust to different threshold values, although
variations in the projections between different thresholds are high for selected species
(Fig 3.7.). A notable difference in latitudinal shift caused by applying different thresholds
to 1985 and 2050 distribution is seen in R. alba and R. clavata using the DBEM model.

For the most part there is also strong agreement in the patterns of overlap values between
threshold predictions, with more variation caused by differences in SDMs and GCMs.
Variation in overlap change was frequently seen using a 0.7 threshold. For example,
whereas the overlap of predicted ranges for L. circularis and M. kitt was predicted to
increase by 11.4% of that in 1985, using a 0.7 threshold and averaged across SDMs and
GCMs, this decreases to < 2.5 % when a larger range of environmental suitability area is
taken into account. Conversely, overlap for R. alba and S. solea was predicted to increase
by 4% < x < 6% using most thresholds but decrease by 1.3% when ranges were reduced

using the most restrictive threshold (0.7).
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Figure 3.7. Latitudinal centroid change with thresholds. Difference in latitudinal centroids
(2050 minus 1985 values, in km) using different threshold to restrict predictions made using
AquaMaps, Maxent and DBEM. Thresholds applied include the three fixed thresholds (0.05,
0.5 and 0.7) and that that of maximum training sensitivity plus specificity (Max S+S).

4. Discussion

Analyses and results presented here highlight the variation in projections that can be
obtained using different SDMs and GCMs in predicting species’ distributions. For example,
although differences between models in projecting northwards latitudinal shifts were not
found to be significant, there are characteristic differences between predictions that
reflect differences in model approaches and mechanisms. For example, the DBEM predicts
a wider range of northwards movement across species, likely reflecting the incorporation
of species specific values for intrinsic population growth, larval dispersal and adult
migration. However, uncertainties and assumptions are inherent in any modelling

procedure, in particular those projecting under novel, non-analogous climatic scenarios. It

129



Chapter 3: Threatened Species

is therefore important to consider a range of plausible outcomes rather than applying only
one prediction model. [ thus further work for terrestrial species that proposes more
robust predictions can be made by applying a multi-model or ensemble approach (Aratjo
and New 2007). Here, general trends from a suite of model combinations as well as

individual projections or outliers are considered and discussed.

4.1. Latitudinal centroid shift

My projected northward shifts in species’ distributions supported the hypothesis for
poleward shifts in response to climate change. They also agree with observed changes for
marine species in the last few decades (Perry et al. 2005; Dulvy et al. 2008; Simpson et al.
2011). In particular, my projected rate of latitudinal centroid shifts corresponds well to
observations in the North Sea (Perry et al. 2005), where, out of 36 species examined, six
species showed boundary shifts in relation to both climate and time at a rate of 22 km
decadel. The projected rate of shift is smaller than that from a previous study that applies
DBEM to model distribution shift of over 1000 species of marine fishes and invertebrates
(Cheung et al. 2009). This difference is likely due to the inclusion of pelagic species by
Cheung et al. (2009), which are modelled using higher dispersal abilities in the DBEM
model while the set of threatened species included in this study were all demersal, with
lower dispersal abilities. As temperature gradients are dynamic and heterogeneous across
the world, predicted rates of range shift will also vary according to the regions studied.
The greater shift predicted here than observed for terrestrial species (0.6 km yr1
(Parmesan and Yohe 2003)) was also expected due to the lower constraints on dispersal
in the sea. Furthermore, two measures of thermal shifts used by Burrows et al. (2011)
showed that both the ‘velocity’ of climate change (the geographic shifts of isotherms over
time) and the shift in seasonal timings of temperature to be higher in the ocean than on
land at particular latitudes. The velocity of climate change was also less patchy in the sea
than on land (Burrows et al. 2011). This disparity likely also accounts for greater
observed and predicted distribution shifts seen in marine versus terrestrial species

(Parmesan and Yohe 2003; Perry et al. 2005; Cheung et al. 2009; Burrows et al. 2011).
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4.2. Changes in range area and overlap

Changes in range area under climate change may have important implications for species
persistence. The association between patch area and extinction risk is one of the most
ubiquitous observations in ecology (MacArthur and Wilson 1967) and has served as the
basis for concepts central to conservation science, such as species area relationships, and
population viability analysis. For example, one of the criteria employed by the IUCN Red
List to define the level of threat (Criteria B) faced by a species is based on the extent of
occurrence or area of occupancy (IUCN 2001). Although it is frequently assumed that
marine species have wide geographic ranges, 55% of skate species are endemic to single
zoogeographic localities (McEachran and T 1990) and 70% have ranges spanning less than
20 degrees of latitude, a proxy for geographic range size (Dulvy et al. 2003). Therefore,
although results presented here did not show a marked climate-driven decrease in
predicted range, contrary to projections for terrestrial species (Townsend Peterson et al.
2002; Hu and Jiang 2011), it would seem wise to take into account any potential decrease

in range area and evaluate the range of predicted values rather than the median or mean.

While species are predicted to lose some of their range in at least one model prediction,
the actual proportion of range being lost might also be informative, especially if more
information on the dispersal capabilities and observed current distribution becomes
available. While, for example, S. squatina is predicted by two models to reduce in overall
range, given full dispersal, both values are relatively small. D. batis, on the other hand, is
predicted to lose 11.6% of its current suitable environmental space using one SDM/GCM
model combination. However, the two Critically Endangered species assessed here, L.
circularis and D. batis, may also experience net gains in suitable environmental space, of
10.24% and 40.95% respectively with particular model combinations. The differing
response of these two Critically Endangered species to climate change may thus likely
depend on the relative dispersal ability of each species. For example, if D. batis is able to
fully exploit new areas of potential environmental suitability it may overcome concurrent
projected losses in suitable environmental space. Overall, as both threatened and
commercially exploited species were projected to shift northward simultaneously, the
alteration in their overlap change was low except for selected species. Particularly, this
study raises concern at increased threat from bycatch for R. alba, which potentially

increases in overlap with all commercial species for at least one SDM/GCM combination.
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4.3. Protected area suitability

This study suggests that a change in climate will not result in an overall, unidirectional
change in the relative environmental suitability of marine protected areas. This is
generally because of the large variation in the predicted changes in relative environmental
suitability between model combinations. Due to this variation across SDMs in assessing
the likely protection afforded by a particular protected area to particular species, the
magnitude of difference in relative environmental suitability across different SDMs and
climate models seems of less importance than the actual identification of change in
suitability by a model. Applying the precautionary principle, the possibility for decrease in
environmental suitability of threatened species in protected areas should therefore be
noted, thereby using the range of predictions to help identify the possible species and

areas of concern.

Consistencies in patterns of the relative environmental suitability change between models
for different SACs suggest that these inter-variations stem from characteristics of each
modelling procedure, their mechanisms and algorithms. These differences might, for
example, result in the majority of cells in a predicted distribution being given
characteristically higher, or lower, values, explaining why predictions made using
different climate forcing frequently show greater similarity than those made using the
same climate forcing but different SDMs. Thus, a multi-model approach can capture
structural uncertainty of projections in species distributions and suitability of candidate

protected areas for particular species under climate change.

4.4. Sensitivity and uncertainty

Analyses and results presented here highlight the variation in future projections that can
be obtained using different SDMs and GCMs in predicting species’ distributions. For a
threatened species, variations in predictions may thus present the best and worst-case
scenarios for the potential range under climate change. The variations in outputs are
mainly driven by the algorithm by which the SDMs predicted species’ distributions. For
example, while the high environmental suitability values and equal weighting of variables
in AquaMaps projections make this model less sensitive to temperature change, Maxent,
which weights temperature as being the dominant predictor of distribution will be more

sensitive to warming. As the relative response of species to change in one or other of the
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environmental variables and the possible interactions between them is highly uncertain,
both projected responses should be considered. Thus, a multi-model or ensemble model
approach helps quantify the variability in projections. In addition, the skill of a model in
predicting changes in distribution could be assessed using model hindcasts and historical
distribution data, rather than relying on the assumption that the models perform equally
well in making future as current species distribution predictions. For example,
comparison of historical projection of rate of range shift of exploited species in the Bering
Sea and North Sea by DBEM showed a significant agreement between model outputs and
observed rate of range shift (Cheung et al. 2012). Such model assessments could be

applied to compare model preferences in future studies.

The implementation of a threshold value can often have a notable impact on conclusions
drawn using species distribution or bioclimatic envelope models (Fielding and Bell 1997;
Pearson et al. 2007; Nenzén and Aradjo 2011). In this case, changes in latitudinal
centroids were found to be robust to a range of thresholds. Alternative SDMs or climate
forcing resulted in greater variations in my projections than the use of thresholds. Thus
for this set of marine species, for which data paucity and reliability are an issue, the use of
thresholds is not justified. The setting of thresholds would only allow reliable conclusions
to be drawn if adequate data are available and a species is known to preferentially inhabit
the most environmentally suitable habitat following range contraction from its historic
distribution. Without sufficient data revealing each species’ actual historical distribution,
all model outcomes were considered as equally valid, both in analysing latitudinal

centroids and range overlaps.

A number of assumptions are made in Maxent, AquaMaps and the DBEM to deal with
issues of data scarcity and quality that are especially common for marine organisms.
Although data were rigorously quality controlled to ensure maximum reliability (see
(Jones et al. 2012)), the approaches do not incorporate ecological processes or biological
interactions. Although the DBEM greatly advances the capabilities of modelling marine
organisms in explicitly accounting for population growth and dispersal, none of the
models account for predation pressure and food availability. As is common in bioclimatic
envelope models, I also assume no adaptation to projected changes in environmental

conditions.

A central criticism of species distribution and bioclimatic envelope modelling lies in the

assumption that a species is in pseudo-equilibrium with its environment (Guisan and
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Thuiller 2005). To ensure that this assumption was upheld here, all available valid
occurrence data on each species was included to obtain as near as possible the species’
absolute environmental tolerance limits. However, each of the species investigated here
are thought to have been recently restricted to areas which do not adequately reflect their
historic distribution for reasons other than change in environmental suitability, such as
fishing and other human disturbances. Predictions made using these data are therefore
unlikely to represent the actual current distribution of each species, potentially biasing
estimates of a species’ environmental tolerance limits and environmental envelopes.
However, dated occurrence data recorded between 2000 and 2011 (ICES BTS surveys,
including all beam trawl surveys) show that predicted distributions are within the historic
distribution. Historic data thus supports the environmental tolerance limits and
envelopes obtained using data obtained from a recently recorded distribution, following
range contraction. Although range contraction may have consequences for the future
dispersal of these species within patterns of suitable environmental space, accurate
hypotheses and conclusion could not be made due to lack of comprehensive sampling
effort across the entire historic range in recent years. A beneficial addition to this work
would therefore involve a wider sampling across historic ranges and the compilation of a

current observed dataset for each of these species.

Applying the precautionary principle, particularly for threatened species, it is advisable to
consider the ranges of predictions in addition to the means, considering, for example, best
and worst case scenarios. This is especially important for the two Critically Endangered
species, D. batis and S. squatina, for which the ability to respond to climatic change or
novel threats is expected to be limited by their putative restriction as small populations in
areas which are not optimal and from which dispersal might be limited. Species that have
shifted in distribution or increased in abundance in warmer years have previously been
observed to be those with faster life history traits, with smaller body sizes, faster
maturation and smaller sizes at maturity (Perry et al. 2005; Simpson et al. 2011). This
result would be expected if the difference in rate of movement shown by particular taxa
resulted from differential rates of population turnover. The threatened species assessed
here are, however, characterised by slower life history traits, with larger sizes and later
maturation rates than most species in the commercially exploited group, yet their
environmental envelope is shown to shift more. If dispersal and distribution shift are
linked to life history traits, even though threatened species are here predicted to show a
greater median northward shift than commercial species, whether they actually will be

able to disperse to occupy predicted potential ranges is unknown. The study of these
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species and the threat to them posed by climate change would therefore benefit from an
assessment of their observed shift over time and their capacity to disperse and whether or
not this might be promoted by the implementation of particular protected areas. If further
work were to extend the modelling of marine species beyond 2050, and a policy-relevant
time-scale, it might also be beneficial to assess the variation in outputs produced by a
range of SRES or RCP (Representative Concentration Pathways, developed for the IPCC 5t

Assessment Report) scenarios.

5. Conclusion

Evaluating the possible effects of climatic change on species’ distributions using
bioclimatic envelope models is a useful tool to gain insight on how species might respond
under future climatic change. In particular, the ability to make this assessment for
threatened species marks an important contribution amid calls for conservation planning
to take an adaptive response to enhance the resilience of protected areas and the
biodiversity within them to climate change. Although all species investigated in this study
are predicted to move northwards by 2050, the effect of climate change on range areas
and the suitability of a set of protected areas for this set of threatened species is less
detrimental than would be expected based upon studies of similar changes in the
terrestrial environment. This study highlights the variation in future projections
according to the SDM and GCM used. As variation stems from characteristics of the models
themselves, projections from multiple models better capture model uncertainties and
allow identification of a best and worst case scenario of change. For critically endangered
species and those facing high levels of threat, it is particularly important to treat
predictions with caution in this way. In the marine environment, there exist many
unknowns and uncertainties concerning species, their habitats and the threats they face.
A multi-model approach enables a precautionary approach when considering the
persistence of threatened species given their uncertain responses to future climate

change.
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Figure 3.1. Shifts in latitudinal centroid for threatened and commercial species.

Projected change (in km) in latitudinal centroid from 1985 to 2050 using each of the six SDM
and climatic dataset combinations, for both threatened species and commercial species.
Thick bars represent median values, the upper and lower ends of the box the upper and lower
quartiles of the data, and the whiskers the most extreme datapoints no greater than 1.5
times inter-quartile range from the box. Points that are more extreme than whiskers are

represented as circles.
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Difference in range overlap, (Schoener’s D) as a percentage of the 1985 overlap value,

between commercial species and a) Dipturus batis b) Squatina squatina.

Thick bars

represent median values, the upper and lower ends of the box the upper and lower quartiles

of the data, and the whiskers the most extreme datapoints no greater than 1.5 x inter-

quartile range from the box. Points that are more extreme than whiskers are represented as

circles.
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Table 3.1. Median difference in range overlap, (Schoener’s D) as a percentage of the 1985 overlap value, between threatened and commercial species.

Minimum, maximum and average overlap values are given for threatened species and average and overall median overlap values for commercial species.

G. L. L. M. M M M. N. P. S. Min  Max {:Zf;:sge

morhua piscatorius whiffiagonis aeglefinus kitt merlangus merluccius norvegicus virens solea  value value species
D. , -3.0 -0.7 2.0 -25 1.8 -0.1 2.8 0.4 5.8 -5.2 -61.1 342 0.1
batis
L'. . -2.8 -1.5 -0.6 39 08 7.5 0.7 1.1 7.5 0.3 -32.6 417 1.7
circularis
aRiba 8.3 -2.6 5.5 9.7 6.0 9.5 3.3 0.3 9.8 -08 -255 614 4.9
R -2.2 -7.5 0.5 -1.6 15 1.4 -2.7 -0.9 -1.7 -1.3 -55.6 33.0 -1.4
clavata
R -4.7 0.2 -0.7 -55 -45 -0.6 3.2 -0.9 -3.1 -29 -32.7 315 -1.9
undulata
S . -3.7 -5.8 -5.0 -5.2 -3.6 -0.6 -1.1 -1.6 -1.2 0.7 -349 34.0 -2.7
Squatina
S . 6.4 -5.8 -4.4 3.7 1.2 -0.1 -0.6 -1.0 7.1 1.1 -51.7 33.21 0.8
stellaris
Total 1.3 -5.5 1.1 1.8 2.7 3.8 1.3 0.8 3.7 -0.2 -349 34.0 1.1
average
Total

-2.03 -3.03 0.59 1.14 1.25 1.97 0.75 -0.43  3.79 -1.04

Median
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Table 3.2. Environmental Suitability values in 2000 and differences (2050 - 2000) for D.
batis in all cSACs for each SDM/GCM combination

SDM AquaMaps AquaMaps Maxent Maxent
CMIP3-

GCM GFDL CMIP3-E GFDL E

1985 values

Dogger Bank 1.000 1.000 0.414 0.230
1.000 1.000 0.404 0.230

1.000 1.000 0.444 0.283

1.000 1.000 0.464 0.282

1.000 1.000 0.416 0.230

1.000 1.000 0.412 0.230

1.000 1.000 0.549 0.295

1.000 1.000 0.497 0.288

1.000 1.000 0.493 0.289

1.000 1.000 0.449 0.287

1.000 1.000 0.386 0.262

1.000 1.000 0.521 0.291

Central Oyster Grounds 1.000 1.000 0.354 0.251
1.000 1.000 0.368 0.251

Haisborough, Hammond, Winterton and 1.000 1.000 0.492 0.231
North Norfolk Sandbanks and Saturn Reef 1.000 1.000 0.521 0.307
1.000 1.000 0.501 0.234

1.000 1.000 0.492 0.228

Hatton Bank 0.854 0.854 0.061 0.043
0.871 0.871 0.062 0.043

0.881 0.881 0.071 0.051

0.906 0.906 0.073 0.051

0.912 0.912 0.072 0.079

0.915 0.915 0.073 0.079

0.884 0.884 0.071 0.073

0.904 0.904 0.073 0.073

0.898 0.898 0.071 0.080

0.871 0.871 0.070 0.073

0.899 0.899 0.073 0.087

0.893 0.893 0.073 0.087

Rockall 0.994 0.994 0.718 0.430
0.997 0.997 0.715 0.523

0.990 0.990 0.299 0.442
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DBEM DBEM AquaMaps AquaMaps Maxent Maxent DBEM DBEM
CMIP3- CMIP3- CMIP3-

GFDL E GFDL CMIP3-E GFDL E GFDL E

Difference in environmental suitability (2050-
1985)

0.000 0.040 0.000 0.000 -0.014 0.027 0.000 0.003
0.000 0.034 0.000 0.000 -0.023 0.022 0.000 0.002
0.000 0.035 0.000 0.000 -0.022 0.002 0.000 0.003
0.000 0.029 0.000 0.000 -0.027 0.002 0.000 -0.029
0.000 0.030 0.000 0.000 -0.005 0.027 0.000 -0.030
0.000 0.033 0.000 0.000 -0.023 0.021 0.000 0.002
0.000 0.044 0.000 0.000 -0.058 -0.017 0.000 0.003
0.000 0.025 0.000 0.000 -0.076  -0.017 0.000 -0.025
0.000 0.000 0.000 0.000 -0.078 -0.023 0.000 0.000
0.000 0.022 0.000 0.000 -0.044  -0.022 0.000 -0.022
0.000 0.030 0.000 0.000 -0.032 -0.012  0.000 0.002
0.000 0.057 0.000 0.000 -0.077  -0.018 0.000 0.004
0.000 0.039 0.000 0.000 -0.015 -0.021  0.000 0.002
0.000 0.037 0.000 0.000  -0.025 -0.022  0.000 0.002
0.000 0.000 0.000 0.000 -0.080 -0.031 0.000 0.050
0.000 0.000 0.000 0.000 -0.083 -0.030 0.000 0.036
0.000 0.000 0.000 0.000 -0.085 -0.031 0.000 0.039
0.000 0.000 0.000 0.000 -0.089 -0.054 0.000 0.047
0.000 0.000 0.000 0.000 -0.005 -0.008 0.000 0.000
0.000 0.000 0.000 0.000  -0.005 -0.008 0.000 0.000
0.000 0.000 0.000 0.000 -0.002 0.000 0.000 0.000
0.000 0.000 0.000 0.000 -0.003 0.000 0.000 0.000
0.000 0.000 0.000 0.000 -0.003 -0.009 0.000 0.000
0.000 0.000 0.000 0.000 -0.003 -0.009 0.000 0.000
0.000 0.000 0.000 0.000 0.000 -0.008 0.000 0.000
0.000 0.000 0.000 0.000 0.000 -0.009 0.000 0.000
0.000 0.000 0.000 0.000 -0.001 -0.001 0.000 0.000
0.000 0.000 0.000 0.000 0.000 -0.008 0.000 0.000
0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000
0.000 0.000 0.000 0.000 0.000 -0.001  0.000 0.000
0.136 0.163 0.000 0.000 -0.031 -0.042 0.019 0.048
0.154 0.183 0.000 0.000 -0.026  -0.073 0.021 0.051
0.199 0.237 0.000 0.000 -0.023 -0.034 0.027 0.066
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Appendix 2

Supplementary methods

Maxent

Maxent (Phillips et al. 2004) uses a complex generative approach (Phillips et al. 2006) to
estimate the environmental co-variates conditioning species’ presence from presence only
occurrence data and a suite of environmental variables. The final prediction is based on
the principle of maximum entropy, which specifies that the best approximation of an
unknown distribution is the probability distribution with maximum entropy, subject to the
constraints imposed by the sample of species’ presence observations (Phillips et al. 2006).
Maxent has been shown to compete well with alternative approaches in terms of model
testing statistics (Elith et al. 2006; Phillips et al. 2006) and is robust to small sample sizes
(Pearson et al. 2007). Models were constructed using Maxent version 3.3.3e with default
parameters for a random seed, regularization parameter (1, included to reduce over-
fitting), maximum iterations (500), convergence threshold (0.00001) and maximum
number of background points (10000 points which have not been recorded as present).
The relative contribution of environmental variables to each iteration of the model was
also carried out automatically. The model trained on the set of environmental variables
representing the current time period was then ‘projected’ by its application to a set of the

same environmental variables representing future climate.

AquaMaps

In contrast, the AquaMaps approach to modelling species’ distributions uses simple,
numerical descriptors of species’ relationships with environmental variables to predict
distributions from occurrence databases. Environmental envelopes for each variable are
calculated by associating occurrence data with current environmental variables to find the
absolute and ‘preferred’ preference ranges (calculated as shown in (Kaschner et al. 2006;
Jones et al. 2012)), with the relationship between species’ occurrence and environmental
limits being specified by a trapezoidal distribution (Kaschner et al. 2006; Ready et al.
2010; Jones et al. 2012). While relative environmental suitability is therefore assumed to
be uniformly high through the preferred parameter range (with a probabliy of 1), values
lying outside the observed minimum and maximum are assigned a probability of 0.

Suitability decreases linearly between the two thresholds. Predicted current
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distributions/ environmental suitability are generated multiplicatively from a suite of
‘environmental envelopes’ over each cell in a study area. Resulting cell values lie between
0 and 1 and represent the relative suitability of that cell for the specified species. The
environmental envelopes obtained for a 30 year centred average on 1985 were then
applied to environmental datasets representing future climatic scenarios. This
methodology does not allow complex, non-linear interactions to be fit between predictors
and assumes they carry equal weight in predictions. Although simple, AquaMaps allows
better transparency and understanding in the wider, non-modelling, community while

also explicitly promoting incorporation of expert judgement.

Expert opinion was incorporated into Maxent and AquaMaps to refine predictions by
eliminating (‘clipping’) areas. Area eliminated were those outside known occurrence
ranges, reported occurrence/absence in large ocean basins [delineated by the United
Nations’ Food and  Agricultural  Organisation (FAO) statistical  area,

www.fao.org/fishery/area/search/en] or beyond species specific depth limits (Jones et al.

2012). This avoided over-prediction of relative environmental suitability in areas of the
world where species are known not to occur, or which are unsuitable due to depth, the
limits of which may be over-estimated in Maxent and AquaMaps due to the relatively low
resolution of depth and occurrence data, in particular at the edge of the continental shelf.
Maximum depth limits obtained from Fishbase (Froese and Pauly 2011) were increased by
50% in predictions for both time periods. This allowed for the deepening of species with
ocean warming that has been observed (Dulvy et al. 2008) while preventing difference in
predictions between the two time periods being inflated and biased by applying different
depth cut off points.

Dynamic Bioclimate Envelope Model (DBEM)

Contrasting the above approaches, the Dynamic Bioclimate Envelope Model (DBEM)
(Cheung et al. 2008, 2009, 2011) combines statistical and mechanistic approaches in
predicting species’ distributions. Firstly, we employed the Sea Around Us Project

(http://www.seaaroundus.org/) (SAUP) model, which was developed to address the need

for distributional ranges of commercial fish and invertebrates for mapping global fisheries
catches and studying the impacts of fisheries on the world’s marine ecosystems. The SAUP
model [55] applies a set of environmental ‘filters’ to delimit a species’ current distribution
to a realistic range from a potentially global distribution. Filters use known geographic or

environmental tolerance limits to restrict a species’ potential distribution and were
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obtained for FAO areas, latitudinal limits (with a further range-limiting filter preventing
occurrence in semi-enclosed seas) and depth limits and habitat preference. For further
details on the application of filters see (Close et al. 2006; Jones et al. 2012). From this
distribution, the DBEM defines the species’ bioclimatic envelope by its ‘preference profile’
(the relative suitability of different environmental values) for each environmental
variable. Preference profiles were thus created by overlaying environmental data from
1971 - 2000 with maps of current relative abundance produced using the Sea Around Us
Project model (Close et al. 2006; Jones et al. 2012). Variables incorporated into the DBEM
include sea surface temperature, sea bottom temperature, coastal upwelling, salinity,
distance from sea-ice and habitat types (coral reef, estuaries and sea mounts) (for full

description see (Cheung et al. 2009, 2011)).

The DBEM differs from other Bioclimatic Envelope Models (BEMs) in simulating changes
in a species’ relative abundance by incorporating a logistic population growth model
(Cheung et al. 2008) as well as ecophysiological parameters. First of all, the model
simulates how changes in temperature, oxygen content (represented by O, concentration)
and pH would affect fish and invertebrate growth, determined by the difference between
anabolism and catabolism (Cheung et al. 2011), using an algorithm derived from the von
Bertalanffy growth function (VBGF) (von Bertalanffy 1951). The VBGF parameters are
subsequently used to determine change in carrying capacity in each 0.5° latitude x 0.5°
longitude cell. Carrying capacity is expressed as a function of recruitment and expected
biomass per recruit, the later being determined using a size-based population model. The
model assumes a population’s spatial and temporal dynamics to be determined by its
species specific intrinsic population growth, larval dispersal and adult migration (Cheung
et al. 2008, 2011). Larval dispersal and adult migration are assumed to follow ocean
currents, with the distance and direction of movement a function of predicted pelagic
larval duration (based on an empirical equation (O’Connor et al. 2007)). Intrinsic
population growth rate is dependent on the growth rate and carrying capacity of the
species, which is determined by the species’ environmental preference profile and the
resulted environmental suitability. Environmental suitability is expected to be positively
correlated with carrying capacity for each species. Carrying capacity values for each
environmental predictor are then combined multiplicatively to obtain a final value of

environmental carrying capacity for a species.
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Chapter 4

Predicting the Impact of Climate Change on

Commercially Targeted Species in UK Waters

A paper formed from this chapter will be submitted to

Journal of Applied Ecology
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Chapter 4: Commercially Targeted Species

Abstract

Global climate change is affecting the distribution of marine species, with both range
expansions and local extinction being observed and predicted. For commercially targeted
species, range shifts may alter the geographic distribution of fish and shellfish production
and potential catches. This will bring increasing challenges to maintaining sustainable,
long-term fisheries management, influencing the allocation of fishing rights and quotas
and the efficacy of managed, or protected, areas. Few studies have assessed the effects of
climate change on commercially targeted species in UK waters. Furthermore, none are
known to have applied a multi-model approach to assess the range and uncertainty of
potential projections. In this study, three species distribution models were used to
explore the potential impacts of climate change on the distribution of commercially
targeted species in the North Sea by 2050. Future changes in environmental suitability of
Marine Protected Areas were also assessed. Ensemble projections suggest northward
shifts in species at an average rate of 42 and 26 km per decade for pelagic and demersal
species respectively. Climate change was further found to negatively affect the suitability
of Marine Protected Areas for species they were designed to protect, although the extent
of this change was small. Distribution shifts were robust to alternative downscaling
techniques although results highlight the variation of predicted consequences of climate
change between species distribution and biophysical models. The inherent uncertainty in
modelling the environment and making environmental suitability predictions necessitates
a multi-model approach to fully explore the potential effects of climate change on marine

species.

1. Introduction

Global climate models (GCMs) predict warming around the globe to range from 1.1 to 6.4
°C by 2100 (IPCC 2007) making the Earth warmer than at any point during the past 1-40
million years (IPCC 2001). Air temperature rises are causing simultaneous warming of the
world’s ocean (Levitus et al. 2000; Fukasawa et al. 2004). Although the most significant
warming is expected in the upper 500 - 800m (Bernal 1993), observations since 1961
have shown average temperature to be increasing to a depth of 3000m (Levitus et al
2000). Species have been responding to climate change throughout evolutionary history
(Harris 1993). However, there is growing concern for their ability to survive under the

higher temperatures and rates of climate change currently observed and predicted
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(Schneider and Root 1998; Root et al. 2003). In general, marine species experiencing
changing environmental conditions exhibit changes in morphology (Thomas et al. 2004),
phenology (Fitter and Fitter 2002; Root et al. 2003) and shifts in distribution or density
(Parmesan and Yohe 2003). Evidence from Pleistocene glaciations has shown that species
are more likely to show an ecological response to climate change, for example through
temperature-induced changes in fitness impacting a population’s density and distribution,
than evolutionarily, through local adaptation. Mechanisms promoting acclimation, such as
poleward or northward bio-geographical shifts (Parmesan and Yohe 2003), may thus be

more likely than changes on biochemical or genetic levels (Parmesan et al. 2000).

In the marine environment, species distribution shifts have been observed and are
predicted to occur more rapidly than their terrestrial counterparts (Parmesan and Yohe
2003; Edwards and Richardson 2004; Cheung et al. 2009; Burrows et al. 2011). This may
result from fewer barriers to dispersal or the fact that ectothermic, marine animals are
adapted to and depend on the maintenance of a characteristic temperature window within
their natural environment (Portner 2001; Sunday et al. 2012). Empirical and theoretical
studies have thus shown that marine fish and invertebrates tend to undergo shifts in
distributions according to the changing environmental conditions, in a direction that is
generally towards higher latitudes and deeper water (Stebbing et al. 2002; Perry et al
2005; Dulvy et al. 2008; Cheung et al. 2012a).

For commercially exploited marine species, changes in primary productivity and shifts in
distribution are of particular interest due to their influence on the spatial distribution of
future fish and shellfish production. This will likely lead to changes in catch potential,
bringing increasing challenges to the maintenance of sustainable, long-term fisheries
management (Cheung et al. 2010; Chassot et al. 2010). For example, the distribution of the
yellow croaker (Larimichthys polyactis) has been predicted to move northwards under a
2.5°C temperature rise, expanding its area of occupancy out from the South China Sea into
Japanese waters (Cheung et al. 2008a). Although fisheries productivity was predicted to
remain unchanged, overall there was a marked change in the geographic distribution of
potential catches. Thus North Korea and Japan experienced increases in predicted catches,
rather than China and South Korea, who currently take the majority of catch (Cheung et al

2008a).

In the UK shelf seas, warming has been seen to influence the distribution of species (Clarke

et al, 2003; Dulvy et al., 2005), likely leading to the changes in productivity and catch
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potential predicted in a study by Cheung et al. (2010). Furthermore, the North Sea has
been identified as a hotspot of societal vulnerability in coastal zones (Parry et al. 2007).
For example, species such as haddock and mackerel have responded to increasing
temperatures by moving northwards, leading to disagreements between Iceland and the
EU in 2010, and protests against high Icelandic quotas for mackerel (Cheung et al. 2012b).
However, there is also evidence that warm-water species are moving into UK and Irish
waters, opening up new fishing opportunities (Cheung et al. 2012b). In the North Sea,
species richness of the fish fauna increased from 1985 to 2006 in conjunction with large
scale patterns and climate change (Hiddink and ter Hofstede 2008). Warm-adapted
species such as anchovy and pilchard have also increased in abundance since 1925 (Beare
et al. 2004). Species such as Bib (Trisopterus luscus) have shifted their northern range
boundary by as much as 148km per decade (Perry et al. 2005) and UK waters have seen
new or expanding fisheries for sea bass, red mullet, John Dory, anchovy and squid.
Fisheries in Ireland are furthermore investing in new technologies to more effectively
exploit the opportunities offered by boarfish, which is moving into the area (Pinnegar et

al., 2002).

Shifts in distribution of commercially exploited species have the potential to compromise
the effectiveness of spatial management areas, or marine protected areas (MPAs). In the
North Sea, a particular type of MPAs may be established as a technical measure for
management of commercial fish species under the European Union Common Fisheries
Policy. Closure to fisheries can thus be set for specific time periods, vessels and gears, or
to protect certain vulnerable species or habitats. For example, the North Sea ‘Plaice Box’
was set up to protect juveniles plaice which were typically concentrated in the shallow
inshore waters and were experiencing high mortality in the beam trawl fishery, in
particular from the smaller mesh sizes used for targetting sole. The Plaice Box remained
open to smaller fishing vessels if they used certain gears and catch specifications.
However, surveys in the Wadden Sea have shown that 1-group plaice are now completely
absent from the area where they were once abundant (Engelhard et al. 2011), likely due to
warming-related changes in productivity in the region. Although many MPAs in the North
Sea have failed to reach their management objective, such as the increased abundance of
adult individuals, closed areas implemented elsewhere, such as in the Georges Bank, have
led to increased abundance of some species (Murawski et al. 2000). Although the effects
of management can be difficult to extract from natural variations, warming is likely to
further reduce the effectiveness of these areas for species management. Estuarine sites, in

particular are likely to experience dramatic changes in temperature and river flow in the
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next decade, altering their suitability as protected habitat for particular species. For
example, around the UK and Ireland, most fishery closures are estimated to experience a

2-3 °C temperature rise over the next 80 — 100 years (Cheung et al. 2012b).

This study aims to assess the potential impact of climate change on a set of commercial
fish and invertebrate species in the North Sea, North East Atlantic and Mediterranean Sea.
This is done using the tool of Species Distribution Modelling, and thereby assessing the
shifts of a species’ bioclimatic envelope under climate change scenarios. In order to make
modelled outputs as robust as possible, predictions were made using three different
Species Distribution Models (SDMs). These were the generative models Maxent (Phillips
et al. 2006; Phillips and Dudik 2008) and AquaMaps (Kaschner et al. 2006, 2011) and the
discriminative Dynamic Bioclimate Envelope Model (Cheung et al. 2011). These models
have been previously described and tested (Jones et al. 2012) and applied to a set of
threatened species in the North Sea (Chapter 3, Jones et al. 2013, in press). Although it is
acknowledged that SDMs over-simplify the processes and influences governing a species’
distribution, if they are used heuristically and the range of uncertainty produced by
alternative SDMs is taken into account they remain useful tools in exploring the effect of

climate change on species range shifts.

Further to the variation produced by different SDMs, projected changes in ocean
conditions resulting from alternative climate models may also affect predicted species
distribution shifts. Scenarios developed from multiple climate and earth system models
are thus considered to be more robust than using a single model. Therefore, although
variation in GCM used has been shown to cause less uncertainty than variation in SDM
(Jones et al. 2013), climate data from two Global Climate Models (GCMs) were used in
modelling species distributions. Furthermore, some Global Climate Models are criticised
for poorly resolving the topography and dynamics of the coastal shelf sea. The process by
which modelled and observational climatic data are downscaled to obtain datasets of
resolution relevant to a particular study introduces a potential source of uncertainty into
the modelling process. For example, the GFDL model may poorly resolve the topography
and dynamics of the coastal shelf due to the relatively coarse resolution of its downscaling
method. [ therefore also aimed to investigate the sensitivity of the modelling procedure
and outputs obtained to variation in downscaling methodology by comparing outputs
derived from a statistically downscaled GCM and that from a pattern scaling regional

climate model.
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The impact of climate change on these species is here investigated in terms of the change
in environmental suitability throughout the species range, which is used to calculate the
shift in latitudinal and depth centroids for each species range. I also investigate the impact
of climate change on static protected areas designed to manage specific commercial
species. | hypothesise that the change in relative environmental suitability caused by
climate change will result in polewards shifts in species distributions, indicated by the
latitudinal centroids. A poleward shift is predicted to coincide with a deepening as species
move into cooler water. [ also hypothesise that the relative environmental suitability of
protected areas will change with changing ocean and climate conditions, thus affecting
their efficacy at managing particular species. I discuss the possible implications of these

findings for fisheries.

2. Methods

2.1 Modelling Approaches

Following on from using Species Distribution models to explore the key effects of climate
change on threatened species in Chapter 3, this study applies SDMs to 34 species of
commercially targeted fish (Table 4.1). The models Maxent, AquaMaps and the DBEM,
described in greater detail in chapters 2 and 3, Supplementary methods, are summarized
here. Maxent (Phillips et al. 2006) and AquaMaps (Kaschner et al. 2006; Jones et al. 2012),
contrasted in their relatively complexity, both use generative approaches to estimate the
environmental co-variates conditioning species’ presence from presence only occurrence
data and a suite of environmental variables. As described in Chapter 2, expert opinion was
incorporated into predictions made using Maxent and AquaMaps by ‘clipping’ to location
within known FAO and depth limits. Maximum depth limits obtained from Fishbase
(Froese and Pauly 2011) were increased by 50% in predictions for both time periods. This
allowed for the deepening of species with ocean warming that has been observed (Dulvy
et al. 2008) while preventing difference in predictions between the two time periods being
inflated by applying different depth cut off points. The Dynamic Bioclimatic Envelope
Model (DBEM) (Cheung et al. 2011), on the other hand uses the associated Sea Around Us
Project model (Close et al. 2006) to predict a species’ current distribution based on a set of
‘filters’, restricting a distribution based on known parameters, geographic limits or habitat
preferences. Filters were applied for FAO area, habitat, latitudinal limits and depth. The

DBEM then uses the predicted current distribution to define a species’ bioclimatic
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envelope by its ‘preference profile’ (the relative suitability of different environmental
values) for each environmental variable. Change in a species’ relative abundance
following changing environmental conditions is then simulated by incorporating a

population growth model (Cheung et al. 2008b) as well as ecophysiological parameters.

2.2 Species occurrence data

A set of 34 species of commercially exploited fish and invertebrates were selected for this
study (Table 4.1). These species comprised 90% of demersal and 93% of pelagic species
by weight, and 94% and 98% by value respectively, of species landed by UK vessels into
the UK in 2010 (MMO 2011). Nephrops norvegicus was selected as representing the
largest catch by value of shellfish by UK fleets into the UK, at 38% (MMO 2011). Other
species were selected because of the possibility of their providing new fishing

opportunities following potential shifts in their distribution (Cheung et al. 2012b).

Table 4.1. Commercially targeted fish and invertebrates selected for the study.

Species Common Name Value (£ million) 2010
(MMO 2012)

Clupea harengus Atlantic Herring 10.3

Dicentrarchus labrax European seabass 4.8

Engraulis encrasicolus European anchovy -

Glyptocephalus cynoglossus Witch flounder 1.2

Gadus morhua Atlantic cod 28.6

Hippoglossus hippoglossus Atlantic halibut 1.3

Limanda limanda Common dab -

Lophius piscatorius Angler/ Monkfish 38.5

Lepidorhombus whiffiagonis ~ Megrim 10.1

Melanogrammus aeglefinus Haddock 36.2

Mullus barbatus Red mullet -

Microstomus kitt Lemon sole 6.3

Merlangius merlangus Whiting 9.4

Merluccius merluccius European hake 10.2

Molva molva Ling 5.7

Micromesistius poutassou Blue Whiting 1.0
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Mullus surmuletus
Nephrops norvegicus
Platichthys flesus
Pleuronectes platessa
Pollachius pollachius
Pollachius virens
Psetta maxima
Reinhardtius hippoglossoides
Sardina pilchardus
Scophthalmus rhombus
Scomber scombrus
Solea solea

Sprattus sprattus
Trisopterus esmarkii
Trisopterus luscus
Trisopterus minutes
Trachurus trachurus

Zeus faber
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Surmullet

Norway lobster/ Langoustine
Flounder

European plaice
Pollack

Saithe

Turbot

Greenland halibut
European pilchard

Brill

Atlantic mackerel
Common sole
European sprat
Norway pout

Pouting

Poor cod

Atlantic horse mackerel

John Dory (Atlantic)

95.3

3.3
3.5
12.4
34

0.6
1.6
82.0
14.0

1.8

Species occurrence data were obtained from three global online databases: the

International Council for Exploration of the Sea (ICES) EcoSystemData database

(http://ecosystemdata.ices.dk); the Ocean Biogeographic Information System(OBIS)

(Vanden Berghe, 2007; http://www.iobis.org) and the Global Biodiversity Information

Facility (GBIF) (http://data.gbif.org), all last accessed in 2011. Occurrence records were
spatially aggregated at the level of 0.5° latitude x 0.5° longitude and rigorously filtered

according to criteria detailed in Jones et al. (2012). This minimised recording errors

frequent in compiled databases due to data being compiled from many sources and gave a

binary value of presence or absence of each species for each cell.

Maps showing the

distribution of occurrence records for each species are shown in the thesis Appendix.

2.3. Environmental predictors and climate models

A range of environmental oceanographic variables for predicting species distributions

using Maxent and AquaMaps were chosen (Jones et al., 2012). These variables were:

bathymetry, sea surface temperature (SST), sea bottom temperature (SBT), salinity; ice;
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primary productivity, and distance to coast. Two sets of oceanographic variables were
obtained, from Geophysical Fluid Dynamics Laboratory’s Earth System Model (GFDL
ESM2.1, Dunne et al. 2010) and physical climate data averaged from an ensemble of 12
different CMIP3 models that are assessed by the fourth assessment of the
Intergovernmental Panel on Climate Change (IPCC AR4) (CMIP3-E). The latter was
obtained from the World Climate Research Program (WCRP) Coupled Model

Intercomparison Project phase 3 (CMIP3) multi-model dataset (http://esg.linl.gov:8080).

This would allow the variation in predicted distributions resulting from alternative
climate datasets to be assessed for this set of species. Both datasets represented the A2
climate scenario, thus being characterised by a heterogenous world with a continuously
increasing global population and regionally orientated economic development (IPCC
2000). The oceanographic variables were interpolated onto a 0.5° latitude x 0.5° longitude
global grid using the nearest neighbour method. Models were trained on climatic data
averaged over a 30 year period centred on 1985, which corresponded as far as possible to
the average climatic conditions over which species occurrence data were compiled.
Environmental envelopes obtained for each climatic dataset were then projected into the

future using a 30-year average centred on 2050.

In order to explore the effect of alternative climate model down-scaling techniques on
distribution predictions, a high resolution dataset of GFDL 2.1 SST for each 30 year time
slice was obtained using the spatial climate scenario generator ClimGen through the
Community Integrated Assessment System (CIAS) model portal (Warren et al. 2007). The
GFDL ESM2.1 data had been interpolated from its original 1° resolution (at latitudes
higher than 30°N and 30°S) using a nearest neighbour method (Cheung et al. 2011). This
avoids complicated assumptions concerning the relationship between coarse resolution
model outputs and downscaled values. ClimGen contrasts this method by applying a
‘pattern-scaling’ approach. Taking the modelled GFDL temperature output from the
reference period, ClimGen calculates the difference between this and projection period,
then applying the difference to observed temperature data (HadSST2 (Rayner et al. 2005))
at a finer resolution than the original GFDL data. Assuming a linear increase, ClimGen may
therefore produce a downscaled temperature prediction for a particular time-slice. As
only SST was available using ClimGen, predictions run were compared with those run
using statistically downscaled GFDL 2.1 data using both SST only and the full set of

variables.
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2.4. Distribution centroids

Latitudinal centroids were calculated for each species within each SDM-GCM combination

using an equation for distribution centroids, equation(1) (Cheung et al. 2009):

C= 2?21 Latl- : Abdl

(1)
Where Lat; is the latitude of the centre of the spatial cell (i), Abd is the predicted relative
abundance in the cell, and n is the total number of cells (Cheung et al. 2009). Similarly, the
above equation was used to calculate the depth centroid for each time period, substituting
latitudinal value with that for depth of the spatial cell (i). Shift in depth was then
calculated as the difference between the depth in each time period (2050 - 1985),
resulting in positive values indicating a deepening for that species. The difference between
latitudinal centroids in projected and reference years was then calculated in kilometres

(km) as (Cheung et al. 2011):

7
Distance shift = (Lat,, — Lat,,) 180 X 6378.2

(2)
2.5. Environmental Suitability in Fisheries Boxes

The potential effects of climate change on static areas of conservation or fisheries
management was investigated using the UK Fishery Exclusion Areas, ‘boxes’ as a case
study. Although there are a number of areas closed to fishing in the North Sea, none of
these exclude all fishing activities and they were established for a range of purposes, such
as protecting juveniles of a particular species, seabirds, or accidental bycatch. The relative
success and failures of these boxes are contested, but although evidence is sparse for
northern temperature regions, large scale studies of south European MPAs have shown
instances of increased abundance of targeted individuals as well as spill over effects.
However, any protection they may afford in the future is likely to further vary with
changes in potential environmental suitability under climate change. The ‘boxes’
investigated in this study, and the species they were designed to protect are detailed in

Table 4.2 and shown in Figure 4.1.
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[ calculated the changes in environmental suitability within the Fisheries Boxes for the
species they were specifically designed to manage. Relative environmental suitability
values for all grid cells in the prediction were standardized across both years to give
values lying between 0 and 1, thus allowing comparison between models. The change in
relative environmental suitability between 1985 and 2050 (2050 value - 1985 value) was

calculated for each 0.5°latitude x 0.5° longitude cell within a Fisheries Box.

Table 4.2. Fisheries Boxes in UK waters and their aims for management

Fisheries Exclusion Area Rationale

Irish Sea To protect cod spawning
areas

Trevose To protect cod spawning
areas

Norway Pout To protect juvenile

whitefish, esp haddock,
whiting, cod and saithe from
industrial fishing for Norway
Pout as the small mesh nets
used produces a bycatch of
young whitefish

Mackerel To protect juvenile mackerel
from trawling and purse
seining. Targeting of
mackerel within the box is
only permitted by
handlining, and mackerel
bycatch limits are set for
vessels fishing for other
species.

Plaice To reduce discards of
juvenile plaice and sole,

protecting nursery grounds.
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[ ] irish Sea Cod Box
I:l Norway Pout Box
l:l Trevose Closure
I:l Plaice Box

l:l Mackerel Box
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Figure 4.1. Fisheries Boxes
Areas closed for fishery management purposes in the UK and Ireland, including the Irish Sea

Cod box, Trevose Closure, Mackerel box, Plaice box and Norway Pout box (Source: UKCP).

2.6. Model Assessment using Hindcast Data

The SDMs were further applied to GFDL data forced with historical climate data (GFDL
hindcast). By comparing outputs obtained with previously observed shifts in distribution
and depth, [ examined the abilities of a modelling package to project environmental
envelopes into alternative climatic conditions. However, any discrepancy between
observations and model hindcasts could originate from uncertainties in the SDM used or
the GCM. To test whether the SDM can accurately reproduce observed species shifts or
occurrences would require a greater set of historically modelled, or ideally observed,
climatologies. However, as hindcast data are only available for one model, and observed
data were limited to SST, the methodology applied here represents an important first step
in assessing the abilities of the SDMs additional to test statistics, whose limitations have
been widely discussed in the literature (Lobo et al. 2008). GFDL hindcast SST data were
first compared to observed SST data from HadISST2 (Rayner et al. 2005) in order to
compare the modelled historic climatology. Hindcast projections were made for demersal
species in order to make comparisons with available observations that largely consisted of

changes in depth. As hindcast data were only available from 1959 - 2004, climatologies
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were averaged over 20 years to prevent overlap between time slices. Models were thus
trained on a 20 year average centred on 1990 and projected on a 20 year average centred

on 1970.

3. Results

3. 1. Latitudinal Centroids

My analysis projected that the distribution centroids of the 36 species investigated are
expected to shift polewards from 1985 and 2050 using the SRES A2 scenario of climate
change (Fig. 4.2). Overall, median projected rates of shift are significantly greater for
pelagic than demersal species (Mann-Whitney U test: p-value < 0.01), at 277 and 168 km
respectively over 65 years (Shapiro-Wilk tests and quantile-quantile plots were used to
assess normality of data). This corresponds to a northward shift of 42 and 26 km decade-1,
respectively. When latitudinal shifts from each model are analysed individually, only the
DBEM shows significant differences between pelagic and demersal species (Mann-
Whitney U test: p-value < 0.01). For pelagic species the prediction of northward shift was
found across all SDM-GCM combinations, with variation being shown in the magnitude of
predicted shift within species. In particular, although S. scombus has a predicted median
poleward shift similar to S. sprattus, the magnitude of variation around this median is
about three times greater (range = 1849 and 604 respectively) (Fig. 4.3a). In general,
DBEM predicts the greatest polewards shifts for pelagic species (S Fig. 4.1).

Although all demersal species were predicted to show a median northward shift, there
were variations within species using different SDMs, and, to a lesser extent, GCMs. In
particular, although Maxent and Aquamaps consistently predicted positive (northwards)
shifts, some demersal species were predicted to move south using the DBEM, most
frequently using CMIP3-E data (Fig. 4.3b). For example, the greatest southwards shift was
projected for S. Rhombus (-215), despite having a median projected shift of 117 km
northwards. The greatest variation in range shift is predicted for Z Faber, (153 km
southward - 428 km northward). For several species, such as M. kitt and D. labrax, there is
good consensus in both the direction and magnitude of range shift between models.
Contrasting pelagic species, the DBEM in general predicts smaller polewards shifts for
demersal species (S Fig. 4.2), with greater variation than Maxent and AquaMaps, which

again show good consensus using both climatic datasets.
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Figure 4.2. Shifts in latitudinal centroid for grouped demersal and pelagic species.

Projected change (in km) in latitudinal centroid from 1985 to 2050 across SDMs and climatic
datasets for species grouped as demersal and pelagic. Thick bars represent median values,
the upper and lower ends of the box represent the upper and lower quartiles of the data, and
the whiskers represent the most extreme data points no greater than 1.5 times the inter-
quartile range from the box. Points that are more extreme than whiskers are represented as

circles.
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Figure 4.3. Shifts in latitudinal centroids
Projected change (in km) in latitudinal centroids from 1985 to 2050 across SDMs and

climatic datasets for a) pelagic species and b) demeral species.
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3.2. Depth

The median change in depth centroids over all demersal species and model combinations
was predicted to be positive, implying a deepening of species, although small (0.12 m per
decade) (Fig. 4.4). However, this value masks a large variation between species that is
seen across model combinations. Although most species are predicted to show a median
deepening between 1985 and 2050 under the SRES A2 scenario, changes in depth
centroids show fewer consensuses in direction than predicted latitudinal shifts.
Specifically, each species is predicted to shallow and deepen when different model
combinations are applied (S Table 4.1). Of the four species predicted to experience the
greatest shallowing, three of these, M. Poutassou, R. hipoglopssoides and H. hippoglossus
had the greatest depth of centroids in 1985 using all six model combinations, with L.
piscatorius appearing in 10 deepest centroids. No relationship was found between the
prediction rate of shallowing and the latitudinal centroids value in 1985 or the degree of

poleward movement.

3.3. Fisheries Boxes

The median change in Relative Environmental Suitability (RES) values (lying between 0
and 1) across all SDM-GCM model combinations for the specific species analysed in each
Fisheries Box was small (Fig. 4.5). Median values indicate a general decrease in relative
environmental suitability by 2050, ranging between -0.08 and 0. Median values of relative
environmental suitability for each SDM-GCM combination in 1985 and 2050, the
differences between time periods and the range of difference across each Fisheries Box,
are given in Supplementary Table 4.2. The largest median decrease in relative
environmental suitability (ARES) across all models is shown by Cod in the Trevose Box
(ARES = -0.12), with a median decreases in RES throughout the Trevose Closure being
predicted using all model combinations (S Table 4.2). Likewise, Cod is predicted to
experience a decrease in environmental suitability in the Irish Cod Box, with agreement in
the direction of change across all models except using AquaMaps and Maxent with GFDL
data. Although these decreases in RES are accompanied by high median initial (1985) RES
values in the Trevose Box, 1985 RES values in the Irish Sea Cod Box are predicted to be
lower. In particular, AquaMaps and Maxent-GFDL do not show the high suitability values
they characteristically achieve in other Fishery Boxes. However, these predicted

suitabilities are contrasted by the DBEM, which although characteristically predicts low
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values of environmental suitability in other Fishery Boxes, predicts suitability values more

consistent with the other modelling procedures in the Irish Sea Box.
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Figure 4.4. Shifts in depth centroid for demersal species.

50

Projected change (in m) in depth centroids from 1985 to 2050 across SDMs and climatic

datasets for demersal species. Thick bars represent median values, the upper and lower ends

of the box represent the upper and lower quartiles of the data, and the whiskers represent

the most extreme data points no greater than 1.5 times inter-quartile range from the box.

Points that are more extreme than whiskers are represented as circles.
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the assessed Fisheries Boxes.

Greater variation in the direction of change in relative environmental suitability under
climate change is predicted for Sole in the Plaice Box. Sole shows the most positive
predicted change in RES, although variations are seen between Maxent, which predicts the
area to, in general, increase in RES, and the DBEM, which predicts a decrease. A similar
pattern is seen in predictions for Plaice in the Plaice Box. However, although predictions of
change for Plaice and Sole show a spread of similar magnitude to Cod in the Irish Box
(0.88, 0.81 and 0.82 respectively), while greatest variations for Cod are produced between
predictions using different models, both Plaice and Sole show wide variations across the
cells of the Plaice Box using one model combination, such as Maxent - CMIP3-E (Plaice’s

ARES = 0.7) and AquaMaps - GFDL (Sole’s ARES = 0.61) (S Table 4.2).

In the Norway Pout Box, all four whitebait species which the Box was set up to protect, as
well as Norway pout itself are predicted to experience similar changes in environmental

suitability, with the greatest spread of change across the fisheries box being predicted
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using Maxent. For example, Maxent with GFDL data predicted a median increase in
environmental suitability across the fisheries box for Whiting (ARES = 0.02) and Cod
(ARES = 0.01). Aside from this variation in environmental suitability change across the
Norway Pout Box seen for Maxent, there is good agreement between SDM-GCM
combinations in the degree of environmental suitability change (median values between -
0.13 and 0.02 for all species). The SDM models show characteristics patterns of RES

magnitude across the species (S Figure 4.3).

The only pelagic species to have been investigated in relation to its environmental
suitability in protected areas shows similar patterns of change and characteristic RES
values across models. Specifically, the area is in general predicted to decrease by a small
amount (median ARES = -0.008), with strong agreement in the direction of change

between models and relatively low variation in predicted change across the Mackerel Box.

3.4. Sensitivity Analysis

Sea surface temperature values obtained using the spatial climate scenario generator
ClimGen were characteristically higher across the study area (average 13.0 °C) than those
output by the GFDL model (average 12.0°C) (Fig. 4.6, a and b). As models were
independently trained and projected for each SST dataset, this disparity should not affect a
comparison of the effect of the two datasets on model output parameters. There were also
regional variations in the rate of warming between the two models (Fig. 4.6, c-d), with
GFDL showing greater average warming than ClimGen (0.85°C and 0.65°C respectively).
The most striking difference between the climatologies is seen in the North Sea and
Norwegian Sea. In the finer scale predictions produced by ClimGen, the Eastern and
Northern North Sea, Celtic-Biscay shelf and Norwegian Sea show a similar temperature
increase of 0.4 - 0.8°C between the two time periods. This is contrasted in the GFDL
climatology, which shows greater temperature increases in these areas, in particular,

areas of the Norwegian Sea increasing by 1.2 - 1.6°C.

Overall, the Species Distribution Models were found to be sensitive to differences in the
downscaling technique applied to climate data, with latitudinal centroids being predicted
to show smaller median northwards shifts between 1985 and 2050 using ClimGen than
GFDL SST data, for all SDMs (Fig. 4.7), thus agreeing with the slower rates of warming

predicted in the former. This difference was found to be significant for AquaMaps (Mann
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Whitney p-value < 0.01), Maxent (Mann Whitney p-value < 0.01) and DBEM (two sample t-
test p-value < 0.01). Latitudinal shifts predicted using only SST and bathymetry data have
median values greater than those using all environmental variables, although the latter

show a greater range of predictions across species, in particular using Maxent and DBEM.

Figure 4.6. Comparison of Sea Surface Temperature

Sea surface temperature in 1985 a) modelled data from GFDL ESM2.1 b) observed data from
HadSST2, and the difference in SST across the study areas between 1985 and 2050 using
data from c) GFDL ESM2.1 d) ClimGen
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3.5. Model Assessment using Hindcast Data

A time series of GFDL hindcast modelled SST data and HadISST observed SST shows
strong agreement in the inter-annual variability between the two data sources (Fig. 4.8).
There is, however, a mismatch in the overall temperature values, with HadISST observed
data typically having a value ~ 1.5 degrees higher than those of the GFDL hindcast data
between 1959 and 2004 (Fig. 4.8). As when creating projections using GFDL and ClimGen
SST data, because SDMs will be both trained on and projected using GFDL hindcast, this
difference is thought to be of less importance than the replication of temperature variation
between years and the identification of a temperature trend. GFDL hindcast data thus
indicated a decrease in water temperature in the North Sea between 1970 and 1990 for
both SST (-0.13 °C) and SBT (-0.2 °C). Although this accompanied a concurrent decrease in
temperature in the more northerly Norwegian Sea (SST: -0.18 °C, SBT: -0.56 °C),
temperatures in the Celtic-Biscay shelf increased slightly (SST: 0.56 °C, SBT: 0.59 °(C).
Furthermore, the direction of temperature change varied for different cells in the study

area between 1970 and 1990 (S Figure 4.4).
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Figure 4.8. Temperature trends from 1959-2005 in the North Sea.
Sea Surface Temperature (SST) trends in the North Sea averaged over all cells at a 0.5°

latitude x 0.5° longitude resolution from GFDL hindcast and HadISST observed data.
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The mean deepening response of the set of demersal species to modelled climate change
from 1970 to 1990 was 3.6 m decade -1, averaged over all three SDMs. Individually, the
mean deepening was 4.6 m, 5.0 m and 1.3 m for AquaMaps, Maxent and the DBEM
respectively. Median values, however, were lower, at 0.09, -0.73 and 1.2 m respectively,
and some species show a tendency to move into shallower water from 1970 to 1990 (Fig.
4.9a). In particular, all models predict a slight shallowing of D. labrax (median = -1.4 m)
and plaice is predicted to shallow by 27 m using Maxent over this period. The median
values for Maxent also indicates a general shallowing of the species assemblage (-0.73 m).
There are also discrepancies between models in the direction of change for individual
species, with DBEM predicting the opposite shift to Maxent and AquaMaps, for example for
P. maxima, P. platessa, M. Merluccius and M. aeglefinus (S Table 4.3).

The latitudinal shift of the demersal species assemblage is in general predicted to be
negative (mean = -49km decade!) (Fig. 4.9b), indicating a general southwards shift of the
species assemblage between 1970 and 1990.  Although this value reflects very large
southward movement in a couple of species, in particular P. platessa and M. merlangus
using Maxent, the median change in latitudinal centroid across all species and model
combinations also indicates a southward shift (-6.5 km decadel). The discrepancies
between the three SDMs are reflected in the individual median values, at 12.22 km decade-
L and 0.78 km decade-! southward, and 0.41 km decade-! northward for AquaMaps, Maxent
and the DBEM respectively, between 1970 and 1990. As with the deepening response,
there is much variation in the direction and magnitude of latitudinal shift between species
and models, with the largest southward movement being projected with Maxent.
However, while no relationship was found between initial latitudinal centroids and the
degree of latitudinal shift in AquaMaps and DBEM, in Maxent, the species showing the
greatest southwards shift are those with the most northerly distributions (S Figure 4.5).
For example, while more northerly species such as P. virens, P. platessa and G. morhua
show southwards shifts of 1921, 1694 and 913 km from 1970 to 1990 respectively, those
with more southerly latitudinal centroids or a more geographically spread distribution
show lesser shifts. For example, Z. faber is predicted to move south by 196 km while S.
rhombus is predicted to move northwards by 167km. No relationship was found between
the magnitude of depth shift and latitudinal shift. Further investigation of the response of
the species assemblage to each variable of the hindcast data individually showed the
southward shift to be exhibited across all variables, although most strongly in sea bottom

temperature and primary productivity.
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4. Discussion

This study represents the second application of a set of species distribution and global
climate models to marine vertebrate species. It highlights the sensitivity of commercially
exploited fish species in the North Sea to climate change. As found in a previous
application to threatened marine vertebrates (Chapter 3), this work emphasizes the
variation in distribution predictions and output parameters achievable using a range of
equally valid distribution models, climatic datasets and downscaling techniques. In
assessing the future distributions of a set of commercial species, predictions such as these
provide the foresight to inform management plans and measures that might contribute to
enhancing the resilience and adaptability of fisheries in UK waters by allowing
consideration of future scenarios of change. Given the importance of fishery adaptability
and the potential expense of management measures in terms of implementation and lost
revenue from fisheries, the variability in predictions and their sensitivity to different input
datasets is important. If uncertainty in assumptions, datasets and modelling approaches is
ignored in favour of tractability and uni-directional predictions, the utility of species
distribution modelling in making decisions for lasting or future results may be lost and
decisions made risk being misplaced. I therefore assess the range of predictions made,
looking at the consequences for application in terms of general trend from the suite of

models as well as potential outliers.

4.1. Distribution centroids of Future Climate

Predictions of northward shifts in distribution made here support the hypotheses for
poleward movements in response to climate change that are frequently made for both
terrestrial and marine species. My results further agree with the distribution shifts for
marine species observed in the last few decades (Stebbing et al. 2002; Perry et al. 2005;
Macleod et al. 2005; Dulvy et al. 2008; Simpson et al. 2011). In particular, results are
similar to findings observed in the North Sea between 1978 and 2001 (Perry et al. 2005),
where, out of 36 demersal species examined, six species showed boundary shifts in
relation to both climate and time at a rate of 22 km decade-?, thus corresponding well to
the 26 km decade-! projected range shift for demersal species found here. The greater
range shift found here for pelagic species agrees with their greater motility and ability to
span a wider range of locations and temperature ranges due to the ability to migrate.

Pelagic species are also expected to show greater range shifts due to the faster rate of
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warming near the sea surface, where these species are found, than near the sea bed. This
disparity in rate of shift agrees with Cheung et al. (2009), where range limits for pelagic
and demersal species were projected to shift poleward by a median of 127 km for pelagic
species (n = 209) and 47 km for demersal species (n = 857). The difference in magnitude
of shift between this study and Cheung et al. (2009) likely reflects the greater number of
species, covering a global range, the measurement of rate of shift at the range margin and
the use of a different high range SRES scenario of climate change (A1B) in Cheung et al.
(2009). AquaMaps and Maxent individually did not, however, predict significantly
different range shifts for pelagic and demersal species. This differences in result is
unlikely to be caused by the addition of dispersal in the DBEM, as any area suitable in
terms of environmental parameters is predicted as present by AquaMaps and Maxent
whether dispersal was thought to be achieved or not. Instead, the disparity is likely due to
the incorporation of seasonal change in distributions of pelagic species by the DBEM while
AquaMaps and Maxent predictions were based on annual average conditions only. By
modelling a summer and winter distribution, the extremes of the thermal tolerance limits
of these species, for example brought about for different environmental requirements in
summer and winter due to breeding, would not be lost by annual averaging and the overall
environmental tolerances are likely to be broader. By failing to account for the ability to
span a wider range of climates in different season, Maxent and AquaMaps as applied here
have likely led to an underestimation of potential range shift. It is recommended that
future work should model pelagic, migratory species in both seasons, combining these
predictions to obtain a distribution map over an entire year. This would prevent
information on the true environmental envelope being lost when forming an annual value

for environmental variables.

The greater range of predictions resulting from the DBEM for both pelagic and demersal
species may reflect the greater sensitivity of this model to inter-annual fluctuations in the
climate data. Specifically, while Maxent and AquaMaps train and project the
environmental envelope on a 30 year average of each environmental variable, the DBEM
creates a time series of projections, which are then averaged over the same 30 years. It is
likely, that in applying an environmental envelope or preference profile to each year
individually, outputs such as latitudinal shifts are more affected by inter-annual
fluctuations in the DBEM. The southward shifts predicted for example for S. rhombus may
thus reflect periods of cooling that have resulted in strong southward shifts and are
translated more directly into the average shift value than in Maxent and AquaMaps, whose

prior averaging evens out periods of cooling.
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4.2. Fisheries Boxes

Whether the establishment of MPAs can lead to increase in abundance, age, size and
fecundity of depleted stocks will depend on a number of factors, in particular the role of
natural mortality and recruitment relative to scales of exploitation, as well as the nature of
the target species concerned, the size of the MPA and enforcement issues. Further to these
issues, a future change in climate over time may severely impact the suitability of a
protected area for specific species, rendering them ineffective for protection and
management purposes. Data analysed here support the hypothesis that a change in
climate will result in a change in the relative environmental suitability of marine protected
areas for particular species. Median values of change in relative environmental suitability
for each Fisheries Box are zero or negative, indicating a decline in the environmental
suitability for each species looked at. Assuming there are no changes in alternative
management strategies for the species investigated, this implies a potential decrease in
abundance of each species within the PA due to environmental change and a decline in the
benefits of this management strategy. However, change in environmental suitability of
species being commercially targeted in a Fisheries Box may also influence their future
utility as a management tool. For example, although the Norway Pout is predicted to
experience 0 median change in RES in the Norway Pout Box, the range of predictions
encompass both predicted increases and decreases. If fisheries were to follow movement
of Norway Pout stocks, the efficacy of the Fisheries Box in protecting particular species

from the effects of industrial fishing for Norway Pout may be further reduced.

However, despite negative median values, there is variation in the change in
environmental suitability across each protected area and according to the SDM and GCM
used. Thus it is also possible that Fisheries Boxes might offer some resilience to climate
change, providing a degree of protection to particular species. This is especially likely to
be the case if the pressures of environmental change and fishing combine synergistically
to negatively impact a species, its growth and reproduction. The degree of protection
afforded will thus depend on the relative pressures attributable to both climate change
and fishing outside and within the protected area. For example, if the climatic change
within a Fisheries Box is relatively low compared to elsewhere in a species’ range, and
fishing pressure is reduced, the Box might provide valuable buffering and spill-over
effects. For the species investigated here, this buffering capacity may be most likely
provided by the Plaice Box for Sole. Although the relative environmental suitability for

this species varies according to the SDM used, with DBEM and AquaMaps predicting low
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and high RES respectively, increases in RES at certain locations within the Fisheries Box
are predicted for both climatic datasets using Maxent and AquaMaps. In the case of Cod,
more precaution should be taken in assessing the protection afforded by the Irish and
Trevose Boxes in the future. In these cases, there is a more consistent prediction for
decreasing environmental suitability. This might be due to their position nearer the edge
of Cod’s range, contrasted by the Norway Pout Box, which, lying to the east of UK, show a
greater initial environmental suitability in 1985 and lesser tendency to decrease in

suitability, using Maxent and AquaMaps.

4.3. Sensitivity Analysis

The disparity between median latitudinal shift modelled using only GFDL SST and
bathymetry and those using the whole suite of environmental variables is likely due to the
more restrictive effect of using a greater number of variables on the range shift, as well as
the greater rate of change for SST than, for example, SBT and salinity. For example,
locations that become suitable in 2050 due to warming SST may still be rendered
unsuitable by other environmental variables. The extent of restrictions by variables other
than SST varies between species distribution models. For example, distributions predicted
using AquaMaps shows lower rate of latitudinal shifts because not all environmental
variables, which were equally weighted in AquaMaps, were projected to become suitable
for the species. Conversely, the greater range of latitudinal shift across species projected
by Maxent may reflect the less restricted distribution constructed by variable weighting of
different environmental factors. As the DBEM required all environmental variables to be
input in order for a model output to be produced, variables other than SST were
maintained at a constant level. In assessing outputs produced, it seems likely that this may

have had the effect of restricting the prediction.

The differences in latitudinal centroids shift seen using all models with GFDL SST and
ClimGen SST are likely due to variations in the amount and spatial distribution of warming
seen over the study region between the two climatologies. For example, the greater
warming in the northern extent of many species ranges (such as the Norwegian Sea) seen
using GFDL ESM2.1 SST data is likely to increase the environmental suitability for many
species in this area. As the calculation of latitudinal centroids reflects the magnitude of
environmental suitability, this greater warming would drive a stronger poleward shift. It

is thus hypothesised that inputting a full dataset downscaled using the ClimGen
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methodology would produce more conservative projections of median latitudinal shift
across this set of demersal species. The most resilient model to this change in SST
climatology is the DBEM. These results highlight the variation in outputs obtainable using

alternative downscaling techniques on the same climate dataset.

4.4. Model Assessment using Hindcast Data

The average deepening response of 3.6 m decade-! for this set of demersal species between
1970 and 1990 corresponds well to results previously observed. Dulvy et al. (2008), for
example, found the demersal fish assemblage of the North Sea, composed of 28 species, to
deepen significantly at a rate of ~3.6 m decade-1 between 1980 and 2004. These observed
depth shifts were seen to vary from year to year (species being shallowest in the cool mid
1980s and deepest in the peak warming in the mid-1990s) whilst corresponding to
temperature change over a longer time scale (Dulvy et al. 2008). However, the average
value that indicates deepening masks variation between species, with all models
projecting shallowing for some species. Although this could be due to the difference in
species set used here and in Dulvy et al. (2008), this likely also results from the difference
in temperature change between the two studies. Thus while between 1970 and 1990,
GFDL hindcast data predicted a slight decrease in temperature through much of the study
area, there was a 1.6 °C increase in SBT over the 25 years (1980 - 2004) reported in Dulvy
etal (2008).

Other studies report observed northwards shifts in species distribution in response to
warming. Perry et al. (2005), for example, found demersal species in the North Sea to
move between 48 and 403 km from 1977 to 2001, with 13 out of 15 of these shifts being
northward. However, this time period coincided with an observed temperature increase
of 1.05°C (Perry et al. (2005), using data from the ICES Oceanographic Database). The
overall cooling predicted by the GFDL hindcast data may thus explain the unexpected
predicted southward movement of species between 1970 and 1990. This is supported by
the largest southwards shifts being observed for the most northern distributed species in
Maxent, for which temperatures at the northern boundaries of their range are most likely
to become unsuitable on cooling, forcing a southward shift. The predicted trend of
distribution shifts are therefore consistent with modelled temperatures that suggest
partial cooling in the North Sea as well as the Norwegian Sea, while the heterogeneous

nature of this temperature change is also reflected in the variation in species responses.
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Although a deepening response has been found, it is difficult to tell whether this reflects
local warming of shallow waters or results as a product of the latitudinal shift, especially
due to the shallow and variable topography of the North Sea which might prevent a

relationship between depth shift and latitudinal shift being found.

In order to undertake a more rigorous testing and obtain empirical support indicating the
ability of these modelling procedures to re-create observed results, hindcast climatic data
from a greater number of climate models would be useful. Also, hindcast data covering a
greater time period would enable datasets for model training and testing to be obtained
covering a greater time span. This might result in more consistent, unidirectional changes
in temperature between the two time periods used for model projections as well as
allowing modelled results to coincide more precisely with the time frame of observed
species shifts. A datasets of historic and current observed temperature change would also
allow comparison to observations of distribution and abundance shifts obtained from
research surveys. This would be beneficial in testing the abilities of the whole modelling
procedure to historic species movements or the changes in the centroid of their
distributions. Results could also be compared to those obtained by Englehard et al. (2008)
and Simpson et al. (2011).

5. Conclusions

This study demonstrates the importance of considering sources of variation in modelling
approaches and data inputs when projecting species distributions under climate change.
Comparing results from multiple models and data sets increases our understanding of the
relationship between distribution shifts and changes in different environmental
conditions. Specifically, this study suggests distributions of pelagic species to be most
sensitive to climate change, potentially having a larger impact on their fisheries, for
example, through disputes in quotas of transboundary stocks. The possible movement of
demersal species to deeper waters may also affect their catchability. If catches are then
reduced, fishermen may have to develop alternative strategies to maximise fishing output,
such as targeting species that might be moving to shallower or more accessible waters,
employing different gears, or altering fishing location. Results from this study provide
information for government and industry to develop scenarios of such impacts and
identify adaptation options. Such application is illustrated by the analysis of the UK

Fisheries Boxes. Particularly, the changing environmental suitability of these Fisheries
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Boxes is important due to the potential for synergistic impacts of fishing and climate
change on fish stocks. The positioning of these Boxes within a particular species’ range
likely influences how its relative habit suitability might alter with climate change and thus
its continued efficacy as a management tool. This study provides useful information to
formulate and apply management strategies such that the efficacy of each Box for the
particular species they are designed to protect is enhanced both currently and in the

future.
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Figure 4.3. Environmental suitability in the Norway Pout Box.

Environmental suitabilities predicted in 1985 and 2050 for the Norway Pout Box for a)
Whiting b) Cod c) Saithe d) Haddock, using AquaMaps, Maxent and the DBEM, with GFDL

and CMIP-E data.
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Table 4.1.

Changes in latitudinal centroid shift, in kilometres, using each species distribution model with both GFDL and CMIP3-E climate data.

AquaMaps, AquaMaps, Maxent, Maxent, DBEM, DBEM,
Species GFDL (km) CMIP3-E (km) GFDL (km) CMIP3-E(km) GFDL(km) CMIP3-E(km) Median
D. labrax 2.73 2.60 0.78 -0.10 -5.26 -2.22 0.34
G. cynoglossus -23.98 -0.91 0.48 19.20 33.67 14.05 7.27
G. morhua -0.82 8.84 3.00 11.35 3.97 591 494
H. hippoglossus -10.85 -71.06 2.21 9.22 -3.05 -56.14 -6.95
L. limanda 0.91 6.11 1.72 3.64 1.37 1.76 1.74
L. piscatorius -28.24 -4.22 -11.13 0.07 -49.75 -8591  -19.69
L. whiffiagonis -9.10 0.52 -2.93 5.12 1.21 -6.69 -1.21
M. aeglefinus 2.73 10.98 0.24 10.98 -0.41 12.05 6.85
M. barbatus -5.37 -5.96 -10.01 -8.17 -0.22 6.44 -5.67
M. kitt 5.09 9.60 -2.29 4.60 3.56 2.07 4.08
M. merlangus -0.15 2.07 0.83 2.38 1.96 2.33 2.01
M. merluccius -21.01 -9.51 -3.86 8.79 -1.03 11.47 -2.45
M. molva -3.63 7.95 0.03 12.04 5.45 10.57 6.70
M. poutassou -86.79 -72.62 -79.22 -28.80 -6.06 6.73  -50.71
M. surmuletus -8.93 -4.66 -6.16 1.40 -0.18 6.41 -2.42
N. norvegicus -18.19 2.71 -5.64 0.89 -1.15 1.49 -0.13
P. flesus 2.04 1.28 -4.14 -2.36 1.35 2.06 1.32
P. maxima 0.48 1.06 0.23 1.04 0.04 0.67 0.57
P. platessa 6.30 10.67 -6.21 1.20 421 3.99 4.10
P. pollachius 0.14 2.64 0.99 3.75 0.11 1.07 1.03
P. virens 2.28 7.79 2.63 8.84 -0.98 1.00 2.45
R. hippoglossoides -20.93 -68.28 -15.52 -13.98 10.95 846 -14.75
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AquaMaps, AquaMaps, Maxent, Maxent, DBEM, DBEM,
Species GFDL (km) CMIP3-E (km) GFDL(km) CMIP3-E(km) GFDL(km) CMIP3-E(km) Median
S. rhombus 0.30 0.82 -0.79 -0.25 -0.12 1.71 0.09
S. solea 0.56 1.01 -1.89 0.82 5.66 11.04 0.92
T. esmarkii -1.22 6.63 1.42 9.93 2.18 1.98 2.08
T. luscus 0.94 2.09 0.88 3.28 0.05 2.78 1.52
T. minutus -5.20 9.65 5.43 12.94 -0.65 4.70 5.06
Z. faber -2.78 -0.41 -1.09 0.60 6.67 7.54 0.09
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Table 4.2.

Median values of relative environmental suitability for each SDM-GCM combination in 1985 and 2050, the median differences between time periods and

the range of difference across each Fisheries Box.

AquaMaps, AquaMaps, Maxent, Maxent, DBEM, DBEM,
Species/ Fisheries Box GFDL CMIP3-E GFDL CMIP3-E GFDL CMIP3-E
Cod, Trevose Box Median difference in RES -0.06 -0.14 -0.04 -0.19 -0.15 -0.14
Range of difference in RES 0.02 0.20 0.32 0.17 0.08 0.07
Median standardized RES, 1985 0.98 1.00 0.48 0.56 0.84 0.84
Median standardized RES, 2050 0.91 0.86 0.43 0.36 0.70 0.70
Cod, Irish Sea Box Median difference in RES 0.08 -0.29 0.01 -0.41 -0.12 -0.09
Range of difference in RES 0.09 0.32 0.01 0.41 0.19 0.14
Median standardized RES, 1985 0.64 0.66 0.08 0.72 0.60 0.60
Median standardized RES, 2050 0.72 0.36 0.10 0.33 0.48 0.51
Mackerel, Mackerel Box Median difference in RES 0.00 -0.03 -0.02 -0.21 -0.01 0.00
Range of difference in RES 0.00 0.19 0.27 0.41 0.02 0.00
Median standardized RES, 1985 1.00 1.00 0.34 0.64 0.09 0.00
Median standardized RES, 2050 1.00 0.90 0.32 0.33 0.08 0.00
Sole, Plaice Box Median difference in RES 0.00 0.00 0.12 -0.04 -0.02 -0.02
Range of difference in RES 0.61 0.30 0.49 0.64 0.03 0.04
Median standardized RES, 1985 1.00 1.00 0.60 0.37 0.09 0.09
Median standardized RES, 2050 1.00 1.00 0.77 0.38 0.07 0.07
Plaice, Plaice Box Median difference in RES 0.00 0.00 -0.13 -0.12 0.01 -0.01
Range of difference in RES 0.00 0.51 0.15 0.71 0.04 0.02
Median standardized RES, 1985 1.00 1.00 0.76 0.34 0.18 0.17
Median standardized RES, 2050 1.00 1.00 0.66 0.22 0.19 0.16
Cod, Norway Pout Box Median difference in RES 0.00 0.00 0.02 -0.04 -0.03 -0.04
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Haddock, Norway Pout
Box

Norway Pout, Norway
Pout Box

Saithe, Norway Pout Box

Whiting, Norway Pout
Box

Range of difference in RES
Median standardized RES, 1985
Median standardized RES, 2050

Median difference in RES
Range of difference in RES
Median standardized RES, 1985
Median standardized RES, 2050

Median difference in RES
Range of difference in RES
Median standardized RES, 1985
Median standardized RES, 2050
Median difference in RES
Range of difference in RES
Median standardized RES, 1985
Median standardized RES, 2050

Median difference in RES
Range of difference in RES
Median standardized RES, 1985
Median standardized RES, 2050

0.00
1.00
1.00

0.00
0.00
1.00
1.00

0.00
0.11
0.92
1.00
0.00
0.00
1.00
1.00

0.00
0.06
1.00
1.00

0.48
1.00
1.00

0.00
0.38
1.00
1.00

0.00
0.91
1.00
1.00
0.00
0.45
1.00
1.00

0.00
0.21
1.00
1.00

0.05
0.77
0.80

-0.02
0.09
0.72
0.68

0.00
0.26
0.34
0.42
-0.09
0.16
0.61
0.53

0.03
0.36
0.27
0.34

0.58
0.77
0.67

-0.13
0.89
0.69
0.50

-0.08
0.73
0.50
0.32

-0.07
0.59
0.57
0.48

-0.05
0.75
0.44
0.45

0.04
0.19
0.16

-0.03
0.04
0.16
0.13

-0.03
0.05
0.17
0.14

-0.03
0.04
0.15
0.13

-0.06
0.10
0.33
0.27

0.06
0.20
0.16

-0.03
0.04
0.16
0.13

-0.03
0.06
0.18
0.14

-0.04
0.05
0.17
0.13

-0.06
0.11
0.33
0.28
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Table 4.3.
Deepening responses of demersal species, in meters, between 1970 and 1990 using

Aquamaps, Maxent and the DBEM with GFDL hindcast data.

AquaMap Maxent DBEM Mean

TaxonName (m) (m) (m) (m)
D. labrax -1.44 -2.92 -0.78 -1.71
G. cynoglossus -23.11 -1.46 -1.79 -8.79
G. morhua 0.69 -26.03 1.34 -8.00
H. hippoglossus -21.52 -9.50 5.68 -8.45
L. limanda -1.19 -6.19 2.88 -1.50
L. piscatorius 28.01 17.26 -6.16 13.04
L. whiffiagonis 3.55 4.92 1.87 3.44
M. aeglefinus -4.53 -13.75 12.04 -2.08
M. kitt -3.68 -14.62 4.19 -4.70
M. merlangus -0.55 -10.19 2.42 -2.77
M. merluccius 37.52 15.84 -6.49 15.62
M. molva 5.79 0.97 10.60 5.79
M. poutassou 131.60 332.07 20.06 161.25
N. norvegicus 12.33 0.76 2.39 5.16
P. flesus -1.35 1.12 2.08 0.62
P. maxima -1.46 -6.38 0.50 -2.44
P. platessa -3.84 -26.55 4.96 -8.48
P. pollachius 0.31 -1.10 411 1.11
P. virens -3.11 -15.84 2.51 -5.48
R

hippoglossoides 66.32 27.44 -14.21 26.52
S. rhombus 0.08 -0.64 0.90 0.11
S. solea -0.20 -2.20 -1.28 -1.23
T. esmarkii 2.90 2.45 9.12 4.83
T. luscus 0.32 -1.44 4.99 1.29
T. minutus 2.57 -1.48 3.19 1.43
Z. faber 10.86 -3.27 0.47 2.69
median 0.20 -1.47 2.41 0.37
mean 9.11 9.97 2.52 7.20
max 131.60 332.07 20.06 161.25
min -23.11 -26.55 -14.21 -8.79
Decadal change

median 0.10 -0.73 1.20 0.18
mean 4.56 4.99 1.26 3.60
max 65.80 166.04 10.03 80.62
min -11.56 -13.28 -7.10 -4.39
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Abstract

The inherent complexity of the environment is such that attempts to model it must
operate under simplifications and assumptions. Considering predictions from alternative
models, with a range of assumptions and data requirements, therefore provides a more
robust approach. The intractability and uncertainty resulting from a suite of predictions
may hinder the application of science in policy, where a single prediction with little
ambiguity or uncertainty would be most desirable. Few studies modelling species’
distributions attempt to present multi-model outputs in a format most useful to the non-
modelling community, and none of these have done so for the marine environment. The
problem of uncertainty is particularly prevalent in predicting the distribution of invasive
alien species under climate change. As invasive alien species are one of the main drivers
of biodiversity loss and may incur significant economic costs, the benefit of applying
predictions to highlight areas of possible establishment and inform policy and
management may be large. We apply an ensemble prediction to assess the distribution of
suitable environmental space for the Pacific oyster, Crassostrea gigas, in UK waters both
currently and in the future. The ensemble incorporates predictions from three species
distribution models, using data from two global climate models. We develop a method
highlighting the agreement of the ensemble, further applying threshold values to retain
information from constituent predictions in the final map of agreement. Ensemble
predictions made here suggest that Pacific oyster will experience an opening of suitable
environmental space in northern UK waters, reaching the Faroe Islands and the eastern
Norwegian Sea by 2050. Environmental suitability will increase with warming
temperatures in the English Channel and Central North Sea for this species. The
approaches applied here can be incorporated into risk assessment frameworks for

invasive species, as stipulated in the Convention on Biological Diversity.

1. Introduction

Science is often relied upon to help inform environmental policy-making and to provide
answers in the face of political controversies. From the decision-maker’s perspective, the
most desirable form of advice would constitute a single prediction or projection with little
ambiguity or uncertainty. Currently there is a tendency to expect that the introduction of
better and more complete data will necessarily facilitate better and more effective policy-

making. This is exemplified by calls for more research following politically sensitive or
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environmentally controversial decisions. However, while I do not dismiss the need for
environmental policy to be founded on sound evidence, I stress that there is sometimes a
limit to what science can realistically offer and it is often unwise to delay decisions while
awaiting better, or more accurate data. The complexity of the natural world is such that
modelling must, by necessity, be reductionist. Unambiguous answers are rarely achieved
and for pragmatic reasons modellers must make assumptions and simplifications, with
even the most complex models being approximations of a real system (Collins et al., 2012).
Different modellers may also favour particular modelling frameworks/formulations with
their inherent biases and peculiarities. Furthermore, rarely are a suite of equally-plausible

models tested and compared.

The wealth of methodologies for dealing with ecological complexity or uncertainty may
not only lead to confusion, but also to criticism and scepticism among the non-modelling
community. For example, model comparison studies have demonstrated the variation in
outputs achievable using different Species Distribution Models (SDMs) (Aradjo et al,
2005; Aratjo and New, 2007, Pearson et al., 2006) and with inputs from alternative global
climate projections (Jones et al, 2013). A multi-model procedure (an ‘ensemble’ of
models) is advocated in Jones et al. (2012) rather than assuming that any one model gives
a ‘true’ picture of the ecosystem. For biological or ecosystem projections, the best possible
policy outcome will often be achieved not by limiting outlook to a perceived ‘best’ model.
Instead, a range of available projections from a variety of validated methodologies and

sources should be taken into account.

If variability in predictions is great enough to cause confusion or misunderstanding, the
utility of a multi-model approach in guiding policy will be limited and may even hinder the
decision making process. In such instances, the use of techniques to summarise the
discrepancies and concordances within an ‘ensemble’ framework would seem desirable
for presenting the maximum amount of information in a single figure. The statistical
‘ensemble’ approach’ was pioneered by ] Willard Gibbs in 1878 as an idealisation
consisting of a large number of copies of a system, considered all at once, each of which
represents a possible state that the real system might be in at some specified time.
Ensemble methods aim to obtain better predictive performance than could be obtained
from any of the constituent models runs, and the approach has become particularly
prevalent among physical and meteorological modellers that participate in the
Intergovernmental Panel on Climate Change (IPCC 2007). It has been argued that

significant improvements in the robustness of a forecast can be achieved if an ensemble
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approach is used and the results are analysed appropriately (Aradjo and New 2007). A
non-ecological study has further shown that as long as individual forecasts contain some
independent information, combined forecasts would yield lower mean error than any of
the constituent forecasts (Bates and Granger 2012). There are several methodologies for
constructing ensemble forecasts (Araujo et al. 2006; Aratjo and New 2007; Marmion et al.
2009; Coetzee et al. 2009; Diniz-Filho et al. 2009) and these have been widely explored in
species distribution modelling (Araujo et al. 2006; Pearson et al. 2006; Prasad et al. 2006;
Carvalho et al. 2011). Several of these methods attempt to find the central tendency of
forecasts through measures such as the mean or median (Aradjo et al. 2005; Marmion et
al. 2009). They attempt to distinguish the ‘signal’ of the combined predictions from the
‘noise’ surrounding it that might be associated with individual model error and
uncertainty. Alternatively, an ensemble of predictions can be used to define the bounding
box (Aradjo and New 2007). This method identifies the range in forecasts from the
ensemble members and the maximum area of predicted distribution, without quantifying
the probability distribution or conditional probabilities. No ensemble average or

confidence limits around the average are calculated.

Here I demonstrate the application and utility of a non-statistical ensemble approach
considering the example of the Pacific oyster, Crassostrea gigas. The Pacific oyster is
native to Japan and east Asia but has been introduced intentionally to countries such as
Australia, France, United States and the United Kingdom for aquaculture, and is now the
most widely farmed and commercially important oyster in the world. Within the UK, 1400
tonnes of Pacific oyster were grown in aquaculture facilities in 2006 (GB Non-Native
Species Secretariat (NNSS), 2012). Pacific oyster was deliberately introduced for
commercial purposes after Ministry of Agriculture, Fisheries and Food (MAFF) trials in the
1960s and early 1970s had indicated that the species required temperatures clearly in
excess of those in British waters for successful reproduction in the wild (Mann 1979;
Utting and Spencer 1992). Accordingly, hatchery-produced seed were produced in large
numbers for commercial rearing. However, natural recruitment has since occurred within
the British Isles, although with regional differences. Some local recruitment occurred in
estuaries of south-west England and north Wales following unusually warm summers in
1989 and 1990 (Spencer et al. 1994) and there are now well established ‘wild’ adult
populations. To date, there have been no substantiated records of spatfall in Scottish
waters although maturation of the gonad and gamete release have been noted occasionally
during atypically warm weather and in shallow, sheltered sea lochs (Maggs et al. 2010).

However, in 2005, temperatures in Strangford Lough, Northern Ireland, reached those
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sufficient to allow spat development and settlement, and were reflected by high

frequencies of ages classes recruited in 2005 (Guy and Roberts 2010).

Despite the economic benefits, wild establishment of Pacific oyster may cause significant
economic losses by outcompeting native species of bivalves, especially native oysters
Ostrea edulis, as well as mussels and cockles. In the Wadden Sea, for example, Pacific
oyster has been seen to displace mussel fisheries in some areas (Nehls et al. 2006) and it
has been suggested that their reefs may cause major shifts in the community of benthic
filter feeders, with subsequent negative effects on bird populations (Smaal et al. 2005).
Furthermore, the presence of their sharp shells on the intertidal zone and mudflats may

deter human leisure activities, thus negatively affecting tourism.

There are several terms used for describing species persisting outside their native range.
Non-native refers to all species that have been deliberately or accidentally introduced to
an area from their native range (Kolar and Lodge, 2001). While non-native species that
establish themselves in a new range but do not cause negative impacts are referred to as
naturalised or non-invasive (Kolar and Lodge, 2001), the term ‘invasive alien species’ is
used to describe those that cause, or have the potential to cause, harm to the environment,
economies, or human health (Global Invasive Species Programme, 1999). Invasive alien
species are identified as one of the main drivers of biodiversity loss and ecosystem
malfunction (Mcneely 2001; Underwood et al. 2003; Molnar et al. 2008). With good
evidence that climate change favours the spread of some non-native species (Stachowicz
et al. 2002; Sax et al. 2007), the interaction between invasive alien species and climate
change is thus becoming a pressing issue for conservation and fisheries economics.
Although the extent to which the non-native Pacific oyster may affect UK native species
and habitats is poorly understood, the increasingly favourable conditions caused by
warming seawater temperatures are likely to benefit this species and promote its further
spread. The UK is bound by international agreements such as the Convention on
Biological Diversity, the United Nations Convention on the Law of the Sea, The Convention
on the Conservation of Migratory Species of Wild Animals (Bonn, 1979), The Convention
on the Conservation of European Wildlife and Natural Habitat (Bern, 1979), the EC
Habitats and Species Directives, as well as the EU Water Framework Directive and Marine
Strategy Framework Directive. All of these aim to protect biodiversity and most include
provisions aimed at preventing the further introduction of, or control of, non-native

species, especially those that pose a risk to native or protected species (JNCC 2012).
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Furthermore, the total cost of invasive alien and non-native species to the UK economy
(both terrestrial and aquatic) is estimated at £1.7 billion per annum (Williams et al. 2010).
Aquatic molluscs alone are thought to cause damages of $1 billion per year in the US
(Pimentel 2005). Therefore early warning systems to highlight potentially invadable
areas by species could be a useful first step in any proposed management, monitoring or
prevention plan. This would seem especially useful in the case of Pacific oyster, for which
no management plan exists and thus the most desirable route to preventing spread would
be enhanced bio-security and vigilance against further deliberate and accidental
introductions. The first UK Climate Change Risk Assessment (CCRA) published in January
2012 (a requirement under the UK Climate Change Act 2008) specifically argued that a
more statistically rigorous and defensible study was needed of projection techniques for
non-native aquatic species, as this report could only manage a very crude attempt at
predicting future distribution. Species Distribution Models (SDMs) have been used to
predict the distribution of environmental suitability for other non-native marine species in
Europe (e.g. Chinese mitten crab, Eriocheir sinensis (Herborg 2007)) and have further been
used to inform management efforts aimed at identifying areas at risk of zebra mussel
(Dreissena polymorpha) invasion in the western United States (Drake and Bossenbroek
2004). Here I aim to explore the application of an ensemble model approach and its utility
in assessing the potential threat by an invasive species. Concurrently, | attempt to provide
predictions of projected environmental suitability for the Pacific oyster in a format useable

by policy makers and the non-modelling community.

2. Methods

Predictions of relative environmental suitability in UK for both current and future time
periods were generated for the Pacific oyster using three different Species Distribution
Models (SDMs) and outputs from two distinct Global Climate Models (GCMs). The Species
Distribution Models were AquaMaps (Kaschner et al. 2006; Ready et al. 2010), Maxent
(Phillips et al. 2006), and the Dynamic Bioclimate Envelope Model (DBEM) (Cheung et al.
2011). These models (described in detail in Chapter 3, Appendix 2) have been shown to
produce plausible predictions of species’ current distributions given occurrence data,
which are used in model testing (Jones et al. 2012). Furthermore, comparisons between
model hindcast and historical distribution changes of fishes and invertebrates from the
1970s to the 2000s in the Bering Sea and Northeast Atlantic suggest that DBEM has
significant skill in predicting distribution shifts in these regions (Cheung et al. 2012).

204



Chapter 5: Ensemble Modelling

AquaMaps and Maxent are statistical models, which differ in complexity but which both
generate predictions of a species’ relative environmental suitability by associating
presence-only data on a species’ occurrence with a set of environmental variables.
Species’ occurrence data were obtained from two global online databases: the Ocean

Biogeographic Information System (OBIS) (http://www.iobis.org) and the Global

Biodiversity Information Facility (GBIF) (http://data.gbif.org), all last accessed in 2011.

Occurrence records were rigorously filtered to minimise the recording error likely in using
data compiled from many sources. Thus, additional information on species’
environmental preferences and geographic limits (Fishbase, Froese and Pauly, 2011; FAO

fact sheets: http://www.fao.org/fishery/species/3514/en; The Marine Life Information

Network (MarLIN) www.marlin.ac.uk) was used to remove occurrence points located on
land or outside expert-defined geographic ranges (obtained as latitudinal and longitudinal
limits from FishBase) or FAO areas’. Occurrence data were spatially aggregated at the
level of 0.5° latitude x 0.5° longitude, giving a binary value of presence or absence for each

cell. Occurrence records following cleaning are shown in the Appendix, Figure 5.1.

Environmental datasets were obtained at 0.5 latitude x 0.5 longitude resolution from the
Geophysical Fluid Dynamics Laboratory’s Earth System Model (GFDL ESM2.1, (Dunne et al.
2010)). These included sea surface temperature, sea bottom temperature, salinity,
primary productivity and depth. A further set of physical climate data were obtained from
an ensemble of 12 different CMIP3 models that were assembled under the auspices of the
fourth assessment of the Intergovernmental Panel on Climate Change (IPCC AR4). These
were obtained from the World Climate Research Program (WCRP) Coupled Model
Intercomparison Project phase 3 (CMIP3) multi-model dataset (http://esg.linl.gov:8080).

Both climatic datasets were modelled under the SRES A2 emissions scenario and are thus
characterized by a heterogenous world with a continuously increasing global population
and regionally orientated economic development (IPCC 2000). Environmental envelopes
generated by each model were used to predict the distribution of Pacific oyster, using a 30
year average of environmental data centred on 1985 (1970 - 2000), representing the
current time period. This was then applied to a 30 year average centred on 2050 (2035 -

2065), representing the future, under climate change.

The DBEM, and associated Sea Around Us Project model contrast the above approaches by
firstly defining a species current distribution based on the following geographic and
environmental tolerance limits: FAO area, latitudinal and depth ranges and habitat

preferences (Close et al. 2006; Jones et al. 2012). This distribution is then used to define
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the species’ bioclimatic envelope by its ‘preference profile’, formed by overlaying current
1970 - 2000 averaged environmental data over the maps of current relative suitability. In
projecting the bioclimatic envelope under scenarios of climate change, the DBEM
incorporates the effects of oxygen level and acidification on species growth through
incorporation of ecophysiological model components and a logistic population growth
model (Cheung et al. 2011). As diffusion and advection are important factors determining
the dispersal of pelagic larvae (Gaylord and Gaines 2000; Bradbury and Snelgrove 2001)
the DBEM also explicitly represents larval dispersal using an advection-diffusion-reaction
model (Cheung et al. 2008). This determines change in relative larvae abundance over
time by passive diffusion and current-driven movements based on pelagic larval duration
(PLD) and ocean current velocity data. PLD, expressed in days, is calculated from an
empirical equation established from a meta-analysis of PLD from 72 species of fish and
invertebrates (O’Connor et al. 2007) which takes into account, for example, temperature
and larval development type (Cheung et al. 2008). Diffusion is characterized by a diffusion
parameter, while advection is characterized by the two current velocity parameters which
describe the east-west and north-south current movement. A detailed description of this
methodology and the algorithms and parameters used are given in Cheung et al. (2008).

Annual average current fields were obtained from the NOAA/GFDL Coupled Model 2.1.

Predictions from each model and time period were standardized to give values lying
between 0 and 1 and representing the relative environmental suitability of each cell of the

study area for Pacific oyster.

The centroid of the distribution predicted for each time period (Latitudinal centroids) was
calculated for predictions made using each SDM-GCM combination and threshold using the
equation (1) (Cheung et al. 2009):
o ™ Lat; - Abd;

X Abd;

(1)
Where Lat; is the latitude of the centre of the spatial cell (i), Abd is the predicted relative
environmental suitability in the cell, and n is the total number of cells (Cheung et al,
2012). The difference between latitudinal centroids in projected and reference years was

then calculated in kilometres (km) (Cheung et al. 2011):

T
Distance shift (km) = (Lat,, — Lat,) 180 X 6378.2

(2)
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Where Lat, and Laty, are the latitudinal centroids in 2050 and 1985 respectively, and

6478.2 km is the approximated equatorial radius of the Earth.

Further to predicting shifts in latitudinal centroid of a distribution, potential changes in
range area between reference and projected years was calculated as the difference in the

number of cells with environmental suitability > 0 (number in 2050 — number in 1985).

Model predictions were combined using a ‘bounding box’ method, retaining the
information from each prediction using an index of model agreement. When applying
species distribution models to an environmental problem there may be an element of
perceived risk and cost. For example, the cost of acting on a forecast that gave a restricted
estimate of invasion potential might be high if a non-native species had particularly
damaging environmental effects. This idea was introduced into the ensemble forecasting
process by applying thresholds. Thresholds may be used to transform the continuous
predictions of relative suitability produced by SDMs into predictions of presence/absence.
There are several methods for selecting threshold values, although there is currently no
consensus on the most suitable method for applying thresholds to species’ range
projections (Liu et al. 2005; Nenzén and Araujo 2011). For example, if a low threshold is
set, low values of environmental suitability will be converted into potential ‘presence’
areas. When investigating the spread of the Pacific oyster, such a technique could be
beneficial in making a precautionary prediction of potentially invadable areas and
assessing the species that might suffer the negative impact of invasion. However, if the
main focus is to implement a strategy of prevention or mitigation, areas of incorrect
prediction might incur considerable and unnecessary costs that might be better deployed
elsewhere. Here, each of the six predictions in an ensemble was converted from a
probability distribution to a binary prediction of presence or absence using one of three

threshold cut off values, providing a range of invasion outcomes.

The first threshold chosen was one that maximizes the accuracy of the model in predicting
the observed occurrences/ absences (maximum training sensitivity plus specificity
(MaxS5)), as indicated in model testing. To find this value, occurrence data were split in
two, with 75% being used to train and 25% to test the model. Model testing was
implemented using the ROCR package in R (Sing et al. 2007), a package designed for
evaluating and visualising classifier performance using R. Two fixed thresholds, of 0.5 and
0.7 were also chosen. These would produce more constrained predictions by retaining

only cells with predicted relative environmental suitability values higher than the 50th
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and 70t percentile respectively of the relative environmental suitability distribution.
Predicted environmental suitability that is lower than the specified threshold value was
thus allocated a value of 0, while values higher were allocated a value of 1. Having
obtained a set of occurrence predictions across all model combinations for each threshold,
projections within each set were summed to produce an index of agreement ranging
between 0 and 6. This would result in a map that not only displays the maximum agreed
areas of prediction but also the extent of agreement across 0.5° lat. x 0.5° long. cells in the
study area. Similarly, thresholds were used to retain information on the magnitude of
change in presenting ensemble maps of the difference in relative environmental suitability
(ARES) values between projection and reference time periods (2050 - 1985, values
ranging between -1 and 1). Having calculated ARES for each SDM-GCM combination, cut
offs of £0.1, +0.2 and 0.4 were applied to create binary predictions as described above.
These cut off values reflected the range of ARESs found while also allowing information on
the degree of change to be portrayed in the map of agreement. These were summed across
all SDM-GCM combinations to produce an index of agreement potentially ranging from -6
(maximum agreement of a decrease in environmental suitability across models) to 6
(maximum agreement of an increase in environmental suitability). As the index aimed to

portray agreement of change, cells predicted to show no change remained at 0.

3. Results

Sea surface temperature in UK waters is predicted to rise by an average of 0.49°C (5%)
using GFDL ESM 2.1 data and by 0.99°C (10%) using CMIP3 data from 1985 to 2050.
Almost all model combinations predict a northward range shift for Pacific oyster across its
range between 1985 and 2050 (median = 467km). The threshold applied to predictions
makes little difference to the median prediction of range shift across SDM and climate
datasets (Figure 5.1a), although variation in predictions is seen across thresholds within
SDM and climate dataset, in particular using AquaMaps (Table 5.1). The median
latitudinal shift is also predicted to vary across SDMs, with Maxent predicting the most
conservative median value and the smallest range (Figure 5.1b). However, the extent of
difference between predictions of latitudinal shift using alternative SDMs is dependent on
both the climate dataset and threshold used (Table 5.1). Thus while results within SDM
are relatively consistent using IPCC data at different threshold levels, the greatest

differences in latitudinal shift are caused by alternative species distribution models. Using
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GFDL data, the difference between SDM predictions increase with more restrictive

(higher) threshold values.

Within UK waters (represented by the UK Exclusive Economic Zone (EEZ)) only AquaMaps
and the DBEM, applied to GFDL climate data predicted an increase in the number of 0.5°
latitude x 0.5° longitude cells containing suitable environmental space (the range area)
between 1985 and 2050, and thus range expansion across thresholds (Table 5.2). Using
CMIP3-E data, a slight decrease in range area was predicted in some cases, while

predictions from Maxent do not show change in range area within the UK EEZ.

Table 5.1. Predicted latitudinal shifts in km using AquaMaps, Maxent and the DBEM with
each threshold (Maximum Sensitivity + Specificity (MaxSS), 0.5 and 0.7 fixed thresholds) and
climate dataset (GFDL and CMIP3-E)

AquaMaps Maxent DBEM Maximum

Difference
GFDL, MaxSS 644.09 451.78 431.94 212.15
GFDL, 0.5 859.95 466.99 465.98 393.97
GFDL, 0.7 1067.07 444,39 445.71 622.68
Maximum difference 422.98 22.60 34.05
(GFDL)
CMIP3-E, MaxSS 290.50 487.55 667.81 487.23
CMIP3-E, 0.5 308.26 488.78 688.52 488.20
CMIP3-E, 0.7 433.42 466.31 594.11 466.44
Maximum difference 142.92 22.47 94.40
(CMIP3-E)

An example of the change in environmental suitability that contributes to the predicted
northward shifts in latitudinal centroid is shown for all SDMs with GFDL data and using
the MaxSS threshold in Figure 5.2. Here, in particular using AquaMaps and Maxent, an
increase in environmental suitability in seen in the central North Sea, and around the
northern coast of Norway and Scotland, while a slight decrease in environmental

suitability is seen south of the UK and towards the Mediterranean.
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Figure 5.1. Shift in latitudinal centroids for Pacific Oyster. Change in latitudinal centroid
(2050-1985) in km a) across different thresholds for all SDM-GCM combinations b) across
different SDM models for both GCM datasets and all thresholds.

Maps of agreement of Pacific oyster presence amongst the six combinations of SDM-GCMs
in 2050 are shown in Figure 5.3, panels 13, 2a, 3a. Here royal blue (0) denotes areas with
no prediction of occurrence using any model, rather than no agreement between models.
These projections also show the difference in maximum agreement when applying
different thresholds. Thus, in applying a relatively low threshold, maximum sensitivity
plus specificity, the outputs show high agreement in predicted environmental suitability
throughout the southern North Sea and English Channel as well as coastal waters around
the UK and the west coast of France. This area of maximum agreement decreases as the
thresholds become more restrictive (i.e. panels 2a and 3a), with the highest agreement
under the 0.7 threshold being predominantly restricted the south-west, south and south-
east coasts of England and Wales. Larger areas of agreement were obtained for outputs in
2050 than 1985, indicating the increased suitability of the North Sea, Norwegian coast and
waters around Scotland and Northern Island to Pacific oyster under climatic change. This

is highlighted in Figure 5.3, panels 1b, 2b, 3b, which show the agreement of change in
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environmental suitability (2050-1985) across threshold cut off values of 0.1, 0.2, and 0.4,
respectively. There is a prevalence of positive differences in RES, with decreases in RES
values predominantly being restricted to the English Channel and southern European
waters. Although maximum agreement (-6 or 6) in ARES was not achieved in UK waters,
there is relatively high model agreement in > 0.1 ARES (RES values lying between 0 and 1),
in particular three or four models predicting positive change around the west and north
coasts of Scotland and west coast of Norway. Three models also predict increasing
environmental suitability change of > 0.4 ARES in the north-east Irish Sea. There was
relatively poor agreement between models predictions in the Skagerrak, Kattegat, Baltic

and coastal waters of the Mediterranean seas.

Table 5.2. Potential change in area, calculated as the number of 0.5° latitude x 0.5°
longitude cells predicted as suitable in 1985 and 2050 in the UK EEZ using each threshold:
Maximum Sensitivity + Specificity (MaxSS), 0.5 and 0.7 fixed thresholds.

MaxSS 0.5 0.7

threshold threshold threshold

1985 2050 1985 2050 1985 2050
AquaMaps, GFDL 277 307 246 298 210 235
AquaMaps, CMIP3-E 307 307 303 298 289 280
Maxent, GFDL 320 320 320 320 320 320
Maxent, CMIP3-E 320 320 320 320 320 320
DBEM, GFDL 175 221 122 136 93 109
DBEM, CMIP3-E 230 230 201 186 148 150
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Figure 5.2. Predicted distributions of relative environmental suitability for Pacific Oyster. Predictions made for the Pacific oyster using GFDL
Topaz ESM2.1 data and species distribution models 1) AquaMaps 2) Maxent C) DBEM with the maximum sensitivity + specificity threshold and
depicting a) relative environmental suitability (0-1) in 1985 and b) difference in relative environmental suitability (2050 - 1985 values).
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Figure 5.3. Ensemble predictions for Pacific oyster using AquaMaps, Maxent and DBEM and environmental data from GFDL ESM 2.1 and CMIP3-E. a)
Agreement in relative environmental suitability predicted for 2050 and threshold cut off values set at 1) maximum sensitivity + specificity 2) 0.5 3) 0.7.
Cells with no prediction using any models remain at 0 (blue). b) Agreement in change in relative environmental suitability values between projection
(2050) and reference (1985) time periods, with threshold cut off values set at 1) +0.1 2) +0.2 3) +0.4. Within each threshold, cells predicted to show no

change across all models remain at 0 (white).
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4. Discussion

Overall, my findings suggest that UK waters are projected to become more suitable for
Pacific oyster population, potentially allowing further expansion of oyster distribution.
Although an increase in suitable environmental space for the Pacific oyster is predicted
within the UK Exclusive Economic Zone for some model combinations, range expansion
may also occur through colonization of currently suitable but un-occupied areas. Also
consistent with hypotheses of potential range expansion for Pacific oyster are the
predictions of increased environmental suitability within the range, in particular reflected

in the calculation of latitudinal centroids.

Prior to applying the ensemble approach, results presented here highlight the variability
in projections obtainable using different SDM and GCM combinations. Although
predictions contrast previous studies that found the DBEM to predict the greatest
distributional shifts (Jones et al. 2013), results are consistent with the inclusion of
dispersal, the influence of which depends on species specific parameters of dispersal. As
the Pacific oyster is sedentary, no adult movement is included. Variation between SDMs
agrees with previous studies suggesting differences to be predominantly influenced by the
specific model characteristics and techniques applied (Jones et al. 2012). However,
projections from AquaMaps and the DBEM show a larger amount of variation to be caused
by the climate dataset used (GFDL or CMIP3-E). This may result from the varying ability of
the GCMs to model the shelf sea and coastal regions where the Pacific oyster is
predominantly found. In this case, Maxent is more robust to variations in the climate data.
However, as many uncertainties exist in predicting environmental and oceanographic
change in shelf seas, considering impacts from different predictions is important. This
work may thus benefit from the inclusion of datasets from additional climate models,

discussed below.

Applying predictions from Species Distribution Models to assess invasive alien species or
develop management plans would benefit from systematic ground-truthing and continued
monitoring to assess the rate of spread of a species into predicted suitable areas. Although
using occurrence data following previous range expansion into UK waters more accurately
portrays locations that Pacific oyster might currently inhabit, some of these areas may not
be currently inhabited due to dispersal limitation in the time period this area has become

suitable. For example, no records of occurrence were obtained for the East Coast of
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Scotland, although the environmental envelopes generated here predicted suitable
environmental space for both the current and future time period. For this reason also,
absence data would not contribute valid information on the environmental preferences of
an invasive alien species. Although absence data might contribute useful information for
species occupying their entire environmental niche space, these data would be misleading
if absence at a location were caused by factors not used in constructing an environmental
envelope, such as dispersal. These maps therefore provide information on sites of likely
invasion both currently and under climate change. This information may be subsequently
informed and refined using spatially explicit information on suitable substrate for the
Pacific oyster. For example, although Pacific oyster can be found on mud and sand-mud
substrate, settlement and invasion may be more likely in areas of hard or rocky substrates,
on which they preferentially attach (FAO 2013). Although the benefits of applying Species
Distribution Models to invasive alien species and the foresight obtainable are highlighted
here, this application also demonstrates one of the difficulties in modelling species for
which no systematic sampling has been undertaken, or for which locations of occurrence

may be rapidly changing.

Given the variability in both model algorithms and output characteristics (Jones et al
2012), a consensus approach to ensemble forecasting was not considered appropriate in
this case, and unlikely to match the truth (Thuiller et al. 2004; Aratjo and New 2007). A
method of compiling predictions more analogous to the bounding box method was
therefore applied. The ensemble maps compiled provide a useful method of conveying the

uncertainty and variation in species distributions resulting from a multi model approach.

However, it is important to note that the set of Species Distribution Models and Global
Climate Model projections applied here does not provide comprehensive coverage of
model characteristics and possible sources of variability. Variation and uncertainty may
result from SDMs according to their complexity, data requirements and algorithms.
Similarly, uncertainty is introduced into GCMs due to the current climate, downscaling
method, greenhouse gas emission scenario, and the climate model itself. Thus while an
ensemble allows variability according to differences in component models to be captured,
certain model similarities cause other variability to be excluded. For example, although
the ensemble compiled here takes into account differences in species environmental
envelopes, the data and mechanisms used to construct them, none of the SDMs consider

inter-specific interactions or evolutionary adaptation, all relying on the assumption that a
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species is in pseudo-equilibrium with its environment. This assumption may not be
upheld if models fail to take into account biotic interactions that prevent species
occupying otherwise suitable environmental space, or in the case of modelling a species
for which there is little, or outdated, data, as discussed above. Furthermore, both climate
models from which data were obtained are global and may be criticized for poor
resolution of the topography and dynamics of the coastal shelf sea. The utility of spatial
projections that do not incorporate the full ranges of uncertainty has been cautioned
against (Planque et al. 2011). However, this ensemble technique presents information as a
range of possibilities, thereby providing a useful method to project climate-shifted
distributions that can be updated and refined as alternative techniques and data become
available. Further exploration of this example in the UK shelf sea may thus benefit from
incorporation of a down-scaled regional climate model, ground-truthing of input data and
incorporation of further predictors such as substrate, as suggested above. Although
climate data may also incorporate systematic bias (Stock et al. 2011), no bias correction
was undertaken for this study due to insufficient observation data for all environmental
variables incorporated in this study. However, both building and projecting species
distribution models using modelled climate data, ensured a consistency that minimised

the effect of this source of bias on conclusions drawn.

With the exception of Maxent, which was found to be insensitive to changes in predicted
range size using this set of thresholds, the use of thresholds enables some of the
information contained in the prediction (the probability distribution) to be maintained
while being converted into a simpler, more easily communicated, policy-relevant format.
An application may be informed by a threshold selected according to the costs and risks
involved in addressing a particular environmental problem. For an invasive alien species,
this would involve weighing up the costs involved with preventing establishment
compared to economic losses following establishment and costs of management or
eradication. Eradication programmes can be very expensive. For example, the cost of
eradication of the current (very small) UK population of carpet sea squirt (Didemnum
vexillum) from marinas was estimated at £2.4 million in a recent study for the UK
Department for Environment Food and Rural Affairs (Pinnegar, 2012). If the carpet sea
squirt were to spread over the whole of the UK, then the overall cost of eradication could
rise to £72 million (Williams et al,, 2010). Eradication of Pacific oyster would be even
more costly. On the other hand, range expansion of Pacific oyster may favour the

development of highly profitable oyster farming. The risk of ecological impacts from
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invasion of Pacific oyster and the economic benefits from oyster farming needs to be

properly assessed; approaches employed here would be useful for such an assessment.

A set of thresholds may also be treated as a range of scenarios on extent of spread of a
particular species. It is here emphasized that decision-making may be aided and policy
enhanced through consideration of a range of the available science and the extent of
agreement between alternative model formulations, rather than the use of a perceived
‘best’ model. Ensemble models may provide a useful solution for policy making for the
future when there is uncertainty concerning the reliability and accuracy of data and model
outputs or disparity in the assumptions of particular models. However, the ensemble
approach should not be viewed as an alternative to improving and developing models and
collecting better data. In modelling a changing environment, data may be continually
updated and models refined. Whilst this is occurring, ensemble forecasts can go some way
to providing confidence and thereby prevent inaction due to uncertainty and barriers in

understanding between modellers and environmental policy makers.

5. Conclusions

Ensemble predictions made here suggest that Pacific oyster will experience suitable
environmental space as far north as the Faroe Islands and the eastern Norwegian Sea by
2050. In the worst case scenario, there is substantial agreement in this prediction
between Species Distribution Models and alternative climatic datasets. A potential
northward movement will also coincide with a decrease in environmental suitability in the
English Channel and an increase in the southern and central North Sea. However, whether
the species will be able to fully exploit this potential environmental niche will depend on
its ability to disperse and settle. A more optimistic possibility is suggested by limiting
areas of potential environmental suitability to only the most suitable environmental space.
In this case, although areas around the North of Scotland, Shetland and Faroe Islands are
still predicted as suitable both currently and in the future, there is less agreement between
models. Predictions such as these may thus be combined with analyses of the perceived
costs and risk of establishment and eradication to target management plans most
efficiently. They would further facilitate application of the precautionary approach to non-
native species that is emphasised in the Convention on Biological Diversity (CBD) when

there is lack of firm scientific evidence. This technique may be usefully incorporated into
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frameworks such as the ‘GB risk analysis mechanism’, developed to promote risk

assessment and the precautionary approach, as stipulated in the CBD.
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Modelling the Profitability of UK Fisheries
Under Climate Change
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Abstract

Over-exploitation and economic underperformance are widespread in the world’s
fisheries, exacerbated by problems such as over-capacity and fuel price fluctuations.
Global climate change is further affecting the distribution of marine species, presenting
additional challenges to fisheries management. Projected species’ range shifts thus raise
concern for both the persistence of biodiversity and the fisheries that target them.
However, despite the recent surge in species distribution modelling, few studies have
attempted to extrapolate bioclimatic projections to assess the impact of climate change on
the socio-economic sphere. This study thus investigates the potential implications of
climate-induced changes in relative environmental suitability and fisheries catch potential
on UK fisheries by linking species distribution modelling with cost-benefit analyses, using
a set of key species in UK waters as a case study. Furthermore, we develop a set of
scenarios and apply a multi-model approach to explore the economic sensitivity of UK
fisheries, as well as key sources of uncertainty in the modelling procedure. This study
applies three species distribution models and two sets of climate data in modelling
species’ relative environmental suitability. It further uses two alternative algorithms and
sets of primary productivity data to calculate projected maximum catch potential.
Scenarios applied here thus include alternative predictions of change in maximum catch
potential as well as the altered responses in terms of net present value over a 45 year
period depending on fuel price, discount rate and government subsidies. Results suggest
that the total maximum catch potential will decrease within the UK EEZ by 2050 using all
model combinations. Extending these predictions into the cost benefit analysis results in a
median decrease in net present value of 10%. Net present value over the study period
decreases further when trends of fuel price change are extrapolated into the future,
becoming negative when capacity-enhancing subsidies are removed. Despite the variation
in predictions resulting from alternative models and data input, the direction of changes in
net present value according to each scenario is robust. This study highlights key factors
influencing future profitability of UK fisheries and the importance of enhancing adaptive

capacity in UK fisheries and their resilience to climate change.
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1. Introduction

Fishing is an important socio-economic activity throughout the world. The global fishery
sector employs almost half a billion people (FAO 2010) and contributes US$230 billion to
the global economy (Dyck and Sumaila 2010). Furthermore, fishing provides over 20% of
the per capita animal protein to 1.5 billion people (FAO, 2009). In the UK and Ireland,
commercial fishing continues to be an important socio-economic activity. The fishing
sector in the UK directly employ approximately 12 000 people, some coastal communities
having a job dependency of over 20% on this sector. However, many commercially
important fish species have been over-exploited, and while total landings into the UK
peaked at 1.1 million tonnes in 1930, by 2010 they had decreased to 600 000 tonnes
(Cheung et al. 2012a). This fall occurred despite a concurrent fishery expansion and

increase in fishing power by an order of magnitude (Englehard 2008).

The problem of over-exploitation has been compounded by pollution, habitat degradation
and over-capacity in many fishing fleets. Over-capacity has encouraged the development
of sub-optimal fishing, marginal profitability (Hentrich and Salomon 2006) and the
economic underperformance of global fisheries (Sumaila et al. 2011), with estimated
annual losses on the order of $50 billion in the world’s fishers (WorldBank and FAO 2008).
Many EU fleets have been facing economic problems since 1995 - 2000, exacerbated by
decreasing availability of resources and almost constant fish prices (Abernethy et al
2010). Recent increases in fuel prices have further reduced the economic benefits, with

some fleets operating at a loss (COM, 2006).

The decline in profitability of global fisheries is masked by technological creep and fishery
subsidies, allowing vessels to exploit new fishing grounds in areas progressively deeper
and further from shore (Sumaila 2003; Morato et al. 2006; WorldBank and FAO 2008).
Fishery subsidies may be defined as financial transfers, direct or indirect, from public
entities to the fishing sector, enabling the sector to make more profit than would
otherwise be feasible and significantly enhancing the decline of fishery resources due to
overfishing (Sumaila et al. 2010). Global fishing subsidies have been estimated at US$ 25 -
29 billion, 15- 30% of which are fuel subsidies (Sumaila et al. 2010). Europe provides US$
4.7 billion in subsidies, second only to Asia (Heymas et al. 2011, Sumaila et al. 2010).
However, subsidies that promote fishing resource conservation and management may be
regarded as beneficial and necessary (Milazzo 1998). Fishery subsidies have thus been

categorized by treating fishery resources as renewable natural capital (Munro and
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Sumaila 2002). One can therefore ‘invest’ in it by refraining from fishing and allowing
resources to rebuild to sustainable, profitable levels. Overfishing, on the other hand,
would represent ‘disinvestment’ in the natural capital resource. The three categories of
subsidy identified are 1) beneficial 2) capacity enhancing and 3) ambiguous. Beneficial
subsidies lead to increased fish stocks through programs that invest in natural capital
assets, while the impact of subsidies defined as ambiguous are unknown (Sumaila et al.
2010). Capacity enhancing subsidies artificially increase profits, allowing the
development of fishing capacity and promotion of effort to a point where resources are
over-exploited and long term maximum sustainable benefits are unachievable (Milazzo
1998). These subsidies include capital inputs from public sources that reduce costs or
enhance revenues, such as subsidies on fuel, boat construction and modernization, fishing
port construction and renovation programs, and price and marketing support (Sumaila et

al. 2010).

Added to the challenges of over-capacity and marginal profitability in the world’s fisheries,
marine fisheries productivity will be affected by the changing ocean conditions associated
with climate change (Bakun 1990; IPCC 2007a; Sumaila et al. 2011). For example, changes
in water temperature, biogeochemistry and primary productivity are expected to affect
the productivity and distribution of marine fisheries (Brander 2007; Cheung et al. 2010).
Theoretical and empirical studies have shown that life history, productivity and
distributions of marine ectotherms to be strongly dependent on oceanic variables, such as
temperature (Pauly 1980; Drinkwater 2005; Perry et al. 2005; Portner 2008; Cheung et al.
2012b) with a shift in stock distribution being the most commonly reported ecological
response of marine species to climate change. In the North Sea, marine species have been
observed to have been moving polewards by 22km decade-!in relation to climate (Perry et
al. 2005) and also deepening by 3.6 m decade - (Dulvy et al., 2008). Distribution shifts
such as these have been observed to have influenced community structure (Fodrie et al
2010) and are predicted to result in local extinctions and invasions worldwide (Cheung et

al. 2009).

In addition to wider ecological effects, distribution shifts will likely have important
consequences for the livelihoods of the world’s 36 million fisherfolk (Dulvy et al. 2010) as
well as food security and national economies (Sumaila et al. 2011). The effects of El Nifo
Southern Oscillation (ENSO) events on fisheries may provide insights into the possible
effects of climate change on fisheries. For example, during the 1997-8 El Nifio event,

landings in Chilean and Peruvian pelagic fisheries declined by around 50%, resulting in a
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drop in fishmeal exports by approximately US$ 8.2 billion, negative economic effects and
hardship due to lost jobs and income (Caviedes and Fik 1992). The potential for large-
scale shifts in marine species’ distributions due to climate change has thus been predicted
to result in the redistribution of global catch potential, a proxy for potential fisheries
productivity which takes into account primary productivity and species distributions
(Cheung et al. 2010). Despite a projected increase in global primary productivity of 0.7 -
8.1% by 2050 (Sarmiento et al. 2004), large regional differences will lead to wide variation
in potential fisheries catch. Thus while ocean warming and retreating sea ice may cause
maximum catch potential to increase by 30 - 70% in high latitudes countries, such as
Norway and Greenland, tropical nations such as Indonesia, the US and Chile might
experience declines of up to 40% (Cheung et al. 2010). Changes such as these will bring
increased challenges to long-term fisheries management. As fish stocks shift their
distributions across jurisdictional boundaries, management policies and quota allocations
may become out-dated or contested (Miller and Munro 2004). Disagreements resulting
from species shifts and quota allocations have already been seen for North Sea mackerel
(Cheung et al. 2012a). Furthermore, the economic consequences of climate change for
fisheries may manifest themselves through changes in the price and value of catches,
fishing costs, fisher’s incomes, earnings to fishing companies, discount rates and economic

rents.

It is clear that there will be winners and losers with respect to fisheries and climate
change. For example, while climate change is predicted to have a positive effect on the
fisheries of Iceland and Greenland (Arnason 2007), earnings to the European sardine
fishery are estimated to decrease by up to 1.4% on average per year with rising
temperatures (Garza-Gil et al. 2010). Whether a fishery ‘wins’ or ‘loses’ will depend not
only on the location of the country or region, but also on their vulnerability and ability to
adapt, for example by switching target species, gear types or moving to more marginally
productive areas or even leaving to find employment in other sectors (Sumaila et al

2011).

Here we investigate the potential implications of climate-induced shifts in species’
distributions and fisheries catch potential on UK fisheries by linking species distribution
modelling with cost-benefit analyses. Specifically, we focus on a set of likely consequences
for the profitability of fisheries. It is difficult to predict the complex interaction of changes
in fishers’ behaviour (decision-making), fisheries governance, and the broader social-

economic development. Therefore, we explore alternative scenarios of how the UK
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fisheries would respond to climate change and examine their economic sensitivity (Haynie
et al. 2012). A scenario is described as a narrative or storyline which provides a powerful
tool in developing an understanding of a range of options or plausible alternative futures
(Haward et al. 2012). Rather than focusing on accurate prediction, they enable a variety of
futures to be considered, thereby allowing uncertainties to be explored (Peterson et al
2003). Due to imperfect knowledge of the consequences of climate change in many
contexts, scenarios aid decision making and strategic formulation of policy under social
and environmental change. Qualitative scenarios have been applied for example, to
examine the impacts of climate change, or different conservation/ management strategies
(Pinnegar et al. 2006; IPCC 2007a; Carlson et al. 2011). The scenarios applied here include
a range of alternative responses to shifts in species’ potential catch in terms of fishing
costs, fuel price, discount rates and government subsidies. The sensitivity of results to
changes in discount rates and predictions of change in primary production is also
investigated. Investigation of potential consequences might thus provide the foresight

necessary for adapting and coping with some of the effects of climate change on fisheries.

2. Methods

2.1. Prediction of species’ relative environmental suitabilities

Maps of species’ Relative Environmental Suitabilities (RES) were generated using the
approaches detailed and analysed in Jones et al. (2013), Jones et al. (2012) and Chapter 4
of this thesis: the three Species Distribution Models (SDMs) AquaMaps (Kaschner et al.
2006; Ready et al. 2010), Maxent (Philips et al. 2006) and the Dynamics Bioclimate
Envelope Model (DBEM). The generative models Maxent (Phillips et al. 2006) and
AquaMaps (Kaschner et al. 2006; Ready et al. 2010) apply a statistical approach to
modelling species’ distributions. They predict species’ current distributions (averaged
over 30 years from 1971 to 2000) by associating species’ occurrence data with averaged
‘current’ environmental data (1971 - 2000), thereby obtaining a bioclimatic envelope for
each species. The Dynamic Bioclimatic Envelope Model (DBEM) (Cheung et al. 2011) and
associated Sea Around Us Project model (Close et al. 2006) instead uses a discriminative
approach (Jones et al. 2012), applying a set of ‘filters’ of known geographical or tolerance
limits to delimit a species’ current distribution (Close et al. 2006; Jones et al. 2012). The
DBEM further simulates changes in species relative abundance spatially and temporally by

incorporating population dynamic models with ecophysiological parameters (Cheung et al.
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2011). Cell values for the predicted distributions from each model represent the relative

suitability of each cell for a species.

2.2. Species’ occurrence data

A set of 31 species of commercially exploited fish and invertebrates were selected for
distribution modelling (Table 6.1). As described in Chapter 4, these species comprised
90% of demersal and 93% of pelagic species by weight, and 94% and 98% by value
respectively, of species landed by UK vessels into the UK in 2010, as reported by the
Marine Management Organisation (MMO 2011). Nephrops norvegicus was selected as
representing the largest catch by value of shellfish by UK fleets into the UK, at 38% (MMO
2011). Additional species were selected because of the possibility of their providing new
fishing opportunities following potential shifts in distribution in response to climate
change (Cheung et al. 2012a). Species occurrence data were obtained from global online

databases: the International Council for Exploration of the Sea (ICES) EcoSystemData

database (http://ecosystemdata.ices.dk); the Ocean Biogeographic Information System
(OBIS) (Vanden Berghe, 2007; http://www.iobis.org) and the Global Biodiversity

Information Facility (GBIF) (http://data.gbif.org), accessed in 2011. Occurrence records

were spatially aggregated at the level of 0.5° latitude x 0.5° longitude and rigorously
filtered according to criteria detailed in Jones et al. (2012), resulting in a binary value of

presence or absence of each species for each cell.

2.3 Environmental predictors and climate models

A range of oceanographic variables for predicting species distributions using Maxent and
AquaMaps were chosen as in previous chapters. These variables were: bathymetry, sea
surface temperature (SST), sea bottom temperature (SBT), salinity; ice; primary
productivity, and distance to coast. Two sets of oceanographic variables were obtained,
from Geophysical Fluid Dynamics Laboratory’s Earth System Model (GFDL ESM2.1, Dunne
et al. 2010) and physical climate data from an ensemble of 12 different models obtained
from the World Climate Research Program (WCRP) Coupled Model Intercomparison
Project phase 3 multi-model dataset (http://esg.llnl.gov:8080) (CMIP3).
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Table 6.1. Commercially targeted fish and invertebrates selected for the study and their

landed value in 2010.
Species Common Name Value (£ million) 2010
(MMO 2011)
Clupea harengus Atlantic Herring 10.3
Dicentrarchus labrax European seabass 4.8
Engraulis encrasicolus European anchovy -
Glyptocephalus cynoglossus Witch flounder 1.2
Gadus morhua Atlantic cod 28.6
Hippoglossus hippoglossus Atlantic halibut 1.3
Limanda limanda Common dab -
Lophius piscatorius Angler/ Monkfish 38.5
Lepidorhombus whiffiagonis ~ Megrim 10.1
Melanogrammus aeglefinus Haddock 36.2
Microstomus kitt Lemon sole 6.3
Merlangius merlangus Whiting 9.4
Merluccius merluccius European hake 10.2
Molva molva Ling 5.7
Micromesistius poutassou Blue Whiting 1.0
Mullus surmuletus Surmullet -
Nephrops norvegicus Norway lobster 95.3
Platichthys flesus Flounder -
Pleuronectes platessa European plaice 3.3
Pollachius pollachius Pollack 3.5
Pollachius virens Saithe 12.4
Psetta maxima Turbot 34
Sardina pilchardus European pilchard 0.6
Scophthalmus rhombus Brill 1.6
Scomber scombrus Atlantic mackerel 82.0
Solea solea Common sole 14.0
Sprattus sprattus European sprat -
Trisopterus esmarkii Norway pout -
Trisopterus luscus Pouting -
Trachurus trachurus Atlantic horse mackerel 1.8

Zeus faber

John Dory (Atlantic)
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As no primary productivity data were available for CMIP3, that from GFDL ESM2.1 was
used in calculating maximum catch potential for both climate datasets. Both datasets
represented the A2 climate scenario, thus being characterised by a heterogenous world
with a continuously increasing global population and regionally orientated economic
development (IPCC 2000). This scenario estimates a high best estimate of 3.4°C increase
by 2090-2099 relative to 1980-1999, which, from the six alternatives, is only lower than
the A1F1 scenario (IPCC 2007b). The oceanographic variables were interpolated onto a
0.5° latitude x 0.5° longitude global grid using the nearest-neighbour method. Models
were trained on climatic data averaged over a 30 year period centred on 1985, which
corresponded as far as possible to the average climatic conditions over which species
occurrence data were compiled. Environmental envelopes obtained for each climatic
dataset were then projected into the future using a 30-year average centred on 2050. The

results of these species distribution projections have been presented in Chapter 4.

2.4. Calculating Maximum Catch Potential

Maximum Catch Potential (MCP) was calculated in the following two ways:

Maximum Catch Potential 1

Firstly, Maximum Catch Potential was calculated for each species in both the reference and
projection time periods as a function of the area of a study site and the primary
productivity within that area. As data on marine species abundance is seldom available,
the maximum catch of the time-series was used as a proxy for maximum sustainable yield
(Srinivasan et al. 2010; Froese et al. 2012). Current maximum annual catch of each species
in UK waters was derived from two data sources. Firstly ICES Catch Statistics (1950 -
2010) were used to calculate the mean maximum catch for the highest 10 years, thus
accounting for some inter-annual variation. Secondly, maximum catch data for the UK EEZ
was extracted from a database collated by the Sea Around Us Project (SAUP). This
database presents a time series landings data at a range of spatial scales formed by
applying a rule-based approach to spatially distribute global landings statistics to a grid of
30 minutes latitude x 30 minutes longitude (Watson et al. 2004). The 10 years of highest
catch within the UK EEZ were again averaged for the available years (1950 - 2006). The
value of maximum annual catch, calculated using each dataset for the initial time period ¢t0,

and the change in primary productivity between initial and future (t) time periods (1985
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- 2050) were then used to estimate the Maximum Catch Potential (MCP) in the future
(equation 1). This methodology is supported by both modelled and empirical work which
show potential marine fisheries production to be primarily governed by available primary
productivity (Ware and Thomson 2005; Cheung et al. 2008a; Chassot et al. 2010;
Blanchard et al. 2012). We used an algorithm derived from an empirical equation between
observed maximum catch potential, net primary production and range area to project

future catch potential (Cheung et al. 2008b):

Z(P)i‘t XAi,t

Maximum Catch, = Maximum Catch;, X
Z(P)i,m X Ai.t()

(1)

where P is the total primary productivity in each 0.5° lat. x 0.5° long. cell (i) of a species’

exploitable range and A4 is the area of each cell within that range.

The total future maximum catch estimated for each species was re-distributed over the
study area using predictions of relative environmental suitability from each SDM model
using each set of climate data. During this process, values from the DBEM were
normalised across time periods relative to the maximum relative abundance for the initial
time period, thereby subsequent changes in the overall relative abundance would be
reflected in the catch potential. The percentage difference between Maximum Catch
Potential in 1985 and 2050 for each cell of a species’ distribution was calculated for each
species. These values were then associated with a location-specific dataset of catch weight

and value for UK fishing fleets in the UK EEZ to undertake a cost-benefit analysis.

Maximum Catch Potential 2

Secondly, an alternative method of calculating Maximum Catch Potential was
implemented. This algorithm (MCP 2) incorporated predicted relative environmental

suitability for each species within the EEZ as follows:

%(P X RES), ,

Maximum Catch, = Maximum Catch;, X
L(P XRES)ito

(2)

where RES is the relative environmental suitability in cell i of the study area.
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This method does not re-distribute values over all cells in the study area according to their
relative environmental suitability value, instead retaining aggregate values. Aggregate
values of future maximum catch potential for each species within the UK EEZ were

subsequently incorporated into the cost-benefit analysis.

As there are large uncertainties in the response of primary productivity to climate change
and variations between alternative model simulations (for example, Sarmiento et al. 2005;
Steinacher et al. 2010), the sensitivity of the maximum catch potential algorithm to
variation in projections of primary productivity was explored using equation 2 (MCP2).
An additional dataset of primary productivity was thus obtained from the Medusa model
(Yool et al. 2011), which differs from the GFDL ESM2.1 in terms of model structure, such
as the number of phytoplankton groups incorporated, intial parameter values, resolution
and physical model coupling. Annual estimates from the Medusa model were averaged as

above to obtain average predictions in 1985 and 2050.

2.5. Scenario Development

A set of socio-economic scenarios was developed to assess the potential financial
implications of climate change-induced changes in catch potential for UK fleets fishing in
UK’s Exclusive Economic Zone. Three scenarios were designed based on narratives from
the Alternative Future Scenarios for Marine Ecosystems (AFMEC) scenarios (Pinnegar et
al. 2006), from which alternative trajectories of changes in total catch, potential catch,

fishing cost, and effort were developed.

Scenariol. Increased costs for industry (Baseline)

This scenario depicts a future in which the costs of fishing will increase according to
historical trends. Specifically, fuel costs will increase while annual levels of catch value and
weight remain constant at 2005 levels for every year between 2005 and 2050, therefore
giving a baseline estimate of profitability. The effect of removing capacity enhancing
subsidies (Sumaila et al. 2010) on profitability is then investigated. Capacity enhancing
subsidies have been estimated at £8,331,694 per year for the UK (Sumaila et al. 2010).

Two assumptions of fuel-price change were calculated to reflect average long-term and

short-term rates of increase. To obtain possible projections of future fuel price increase, a
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time series of retail prices of diesel was obtained from the UK Department of Energy and
Climate Change (DECQ)

(www.decc.gov.uk/en/content/cms/statistics/energy stats/prices/prices.aspx). To

extrapolate the historical trend, we corrected for inflation using a Consumer Price Index
(CPD) obtained from the Office for National Statistics

(www.ons.gov.uk/ons/rel/cpi/consumer-price-indices/july-2011 /tsd-june-2011.html),

thereby obtaining the real price of diesel in each year between 1988 and 2011. Having
been converted to base year 2011, real values thus expressed the value of diesel in each
year in prices of 2011. The annual CPI for all items was used to avoid variations in fuel

price being lost due to change already being captured in a fuel specific CPIL.

Linear regressions were carried out to estimate the price of fuel as a function of year. In
order to obtain trends of fuel price increase in the long-term and short-term, linear models
were run for two time periods. The first of these was 1988 - 2011 and the second 2005 -
2011. Model fit was selected according to R-squared and adjusted R-squared values,
resulting in a linear fit being chosen for each model (Rz = 0.92 and 0.65 for the long term
and short term trend respectively) (Fig. 6.1). The equations obtained to increase fuel costs

annually in the required scenarios were as follows.

Long-term trend: Fuel cost=0.27 * (Year - 1988) + 0.58
Short-term trend: Fuel cost = 0.41 * ( Year - 2005) + 1.01

For particular scenarios, total cost of fuel was therefore increased in each year according
to the long-term and short-term fuel trends. To do this, the unit price of fuel was used to
calculate the total number of fuel units (U) consumed. Fuel cost was then calculated for

each year (yr) using equation (3), for example for the long-term:

Fuel costy, = Annual average fuel cost + U X (yr X 2.73)

(3)
As we assume that fishing locations do not change under altered distribution of MCP,

average annual fuel costs calculated for 2005 were assumed to remain constant for all

scenarios.
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1.3

—— Long-term trend: Fuel cost = 2.73 x (Year - 1988) + 0.58
Short-term trend: Fuel cost = 4.126 x (Year - 2005) + 1.01

1.2 .
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Figure 6.1. Changes in retail price of diesel between 1988 and 2011 (DECC) with long-term
and short-term trends fit using linear models according to time values from 1988 - 2011 and
2005 - 2011 respectively. Fuel price is given in real values, in GBE per litre, having been

converted to base year 2011.

Scenario 2. Climate change impacts catch

In this scenario, climate change affects the catch value of each species as a result of
changes in its maximum catch potential, and thereby influenced by changes in marine
primary production. It assumes that catch changes proportionally to projected future
maximum catch potential, while total fishing effort remains constant. An increase in costs
resulting from a rise in fuel cost will be compensated by a proportional increase in
government subsidies, thus ensuring that fuel costs to the fisher remain constant. In other

words, the UK’s public will pay for the cost of increasing fuel price.

Scenario 3. Sustainable future

This scenario reflects the introduction of management measures to ensure that stocks can
continue to be exploited with current levels of fishing effort and furthermore, that stocks

have been rebuilt to levels approximating their Maximum Sustainable Yield (MSY). MSY is
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defined as the maximum use that a renewable resource can sustain without impairing its
renewability through natural growth or replenishment (OECD 2001). As MSY has not
been estimated for many species in the UK EEZ, the maximum catch for each species,
calculated as described above using ICES Catch Statistics, was again used as a proxy. The
percentage difference between maximum catch and catch averaged for 2005 was
calculated and used to adjust predicted future catch for each species, thereby reflecting the
rebuilding of stocks. We therefore assume that catch will be proportional to fish
abundance (as demonstrated by Fernandes et al. submitted), the latter indicated by the
calculated maximum catch potential which was projected using the algorithm described
above (eq. 1). Summing these adjusted catches for each species allowed an estimation of
the future potential catch if current stocks were allowed to rebuild to MSY levels. The
scenario was also run using the baseline catch rates of Increased costs for Industry to

estimate the implications of rebuilt stocks on current catches.

Because fishing effort remains constant, this scenario assumes that fishing costs will not
change in the future. However, as this might over-estimate the additional economic
benefits obtained from increased fish abundance, the scenario was also run allowing fuel

costs to increase according to the additional weight of catch.

Both the Climate Change Impacts Catch and Sustainable Future scenarios were run for each
of the SDM-GCM model combinations and variation between projected NPVs were

compared.

2.6. Cost Benefit Analysis

Cost-benefit analyses were conducted to assess the financial implications of climate
change-induced changes in catches on the UK fisheries fishing in the UK EEZ between
2005 and 2050 under the three economic scenarios. Ex-vessel price of fish was assumed
to be constant because of the difficulty in predicting its changes. Net potential catch values
for each year were calculated as the catch values predicted for each year minus total costs.
Conventional and Intergenerational discounting was then applied to calculate the Net

Present Value of benefits from 2005 and 2050.

Catches in weight and ex-vessel price by year, gear and species from 2000 to 2010 were

obtained from the Fisheries Activity Database of Defra/Cefas. Catches were recorded by

238



Chapter 6: Modelling Profitability

11 gear types: Bottom trawl, mid-water trawl, bottom seine, mid-water seine, drift nets,
fixed nets, pots, lines, picking, dredge, and other nets. Total value of catch was calculated
as the weight x price, summed across all species being investigated and averaged over the
10 years to account for inter-annual variability. Species-specific percentage changes in
maximum catch potential were re-projected from the original 0.5° latitude x 0.5° longitude
onto the ICES statistical rectangles (0.5° latitude x 1.0° longitude) by averaging the catch
from subset of 0.5 x 0.5 degree cells within each ICES statistical rectangle. The percentage
change in maximum catch potential was then used to calculate the annual change in catch
weight and value by species at each ICES rectangle. We therefore assumed the percentage
change in MCP between 1985 and 2050 changed in equal increments for each of the 65
years, that all gears would remain constant in their catchability of each species in the

future and that vessels would not alter their fishing grounds during this time.

Costs of fishing were extracted from a global cost of fishing database (Lam et al. 2011) for
the UK, which recorded the annual costs by gear types. This database comprised of costs
for fuel, repair, labour, depreciation, interest and running costs. Values were converted
from US dollars to Great Britain pounds sterling, using the 2005 average exchange rate,

0.55 (World Bank, 2012 (http://data.worldbank.org/indicator/PA.NUS.FCRF), thereby

corresponding to the time period for which the data had been converted to real values
(Lam et al. 2011). Fishing costs were expressed per unit weight of catch. All costs except
fuel costs were summed to be included in the cost benefit model. Fuel costs were
multiplied by weight at the gear level, obtaining the total costs expended for all fish caught
using each gear. These were summed across years and averaged as for catch value to

account for inter-annual variability.

2.7. Discounting

2.7.1. Conventional Discounting

Conventional discounting was applied to account for the difference attributed to value of
catch currently and in the future to give a Net Present Value (NPV). The NPV over the

study period was calculated using equation (4):

NPV = 31_, VW, (4)
(Sumaila and Walters 2005)
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Where V:is the net benefit in period ¢, and W; is the weight used to discount V; to the net
present value (Sumaila and Walters 2005). The conventional weight, W, in year t is

calculated as:

W, = d* (5)
Where d is the conventional discount factor, calculated from the conventional discount

rate, r, as

1

d = (6)

T+

2.7.2. Intergenerational Discounting

Under intergenerational discounting (Sumaila and Walters 2005) the Net Present Value
(NPV) considers the value of benefits from a resource that are received by the current
generation as well as those received by an annual influx of 1/ (generation time) new
stakeholders (Sumaila and Walters 2005), who renew the valuation of future earnings,
partially resetting the discounting clock. NPV was calculated using equation (4), but

replacing W, with an intergeneration weight W, calculated as in equation (7).

_ e GrgdtT[1-at
W, = d'+ =5— [I—A] (7)

(Sumaila and Walters 2005)

Where 4 = dgz/ d, the ratio between the intergenerational and the conventional discount
factor and where the conventional, or standard, discount factor (d) was given by equation

(8).

1
d= (1+7) (8)

and the future generation discount rate (dg) by equation (9).

1
dfg - (1+rfg) (9)

Where r is the conventional discount rate and ry is the future discount rate. In cases

where dg, = d, this reduces eq. (7) to the formula shown in equation (10).
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t—-1
drgd t

Wi = dt + (10)

(Sumaila and Walters 2005)

2.7.3. Choice of Discount Rate

The choice of discount rate may have considerable effect on the NPV of a project or
assessment. An infinite discount rate attributes no value to profits made in the future, with
the primary concern being the maximising of current annual profits. Conversely, a
discount rate of 0 gives net revenue equal value irrespective of the time period (year) it is
earned in. As 0.03 (3%) is that recommended by the HM Treasury for appraisal and
evaluation for longer term discount rates (projects between 31-75 years long) (HM

Treasury, 2011 (http://www.hm-treasury.gov.uk/data greenbook index.htm, accessed

05/10/12)) while 0.05 represents the average discount rate for 2012

(http://www.bankofengland.co.uk/boeapps/iadb/) as well as the current official Bank
Rate of the Bank of England

(http://www.bankofengland.co.uk/boeapps/iadb/Repo.asp?Travel=NIxIRx, accessed
05/10/12). These rates were applied as r = 0.03 and rf¢ = 0.05 under intergenerational

discounting method.

In order to investigate the effect of varying discount rates on NPV, a sensitivity analysis
was carried out using a lower and upper extreme value of discount rates of 1% and 10%.
Variation will also exist between applying conventional and intergenerational discounting.
When applying intergenerational discounting, it must be decided how to allocate the value
of the future generation discount rate, relative to the standard discount rate. A larger
future discount rate, for example, might represent a greater value placed on benefits
accrued in the present, than by future generations. This might result from uncertainty in
future access to a resource and would result in over-exploitation, such as is seen in many

fish stocks around the world (FAO, 2012)
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3. Results

3.1. Relative Environmental Suitability and Maximum Catch Potential

The majority of species investigated in this study are predicted to experience a decrease in
median relative environmental suitability by 2050 within the UK EEZ (median = -4.66%)
(Fig. 6.2). However, environmental suitability is predicted to increase for a few species
under some SDM-GCM combinations. In particular, European Sea Bass (D. labrax) is
predicted to experience a median increase in RES of 24%, while those for John Dory (Z
faber), Sardine (S. pilchardus) and Monkfish (L. piscatorius) are predicted to increase by

8.01%, 9.32% and 5.73% respectively.
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Figure 6.2. Predicted change in Environmental Suitability.

The percentage difference in total relative environmental suitability within the UK EEZ, for
each species across GCMs and SDMs. Thick bars represent median values, the upper and
lower ends of the box the upper and lower quartiles of the data, and the whiskers the most
extreme datapoints no greater than 1.5 times inter-quartile range from the box. Points that

are more extreme than whiskers are represented as circles.
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Between 2000 and the 2050, primary productivity across all 0.5 latitude x 0.5 longitude
grid cells of the UK EEZ is estimated to decrease by a median of 5% and a mean of 6%
(range: 20% decrease - 7% increase) using the Geophysical Fluid Dynamics Laboratory’s
Earth System Model (GFDL ESM2.1, (Dunne et al. 2010). Using the Medusa model (Yool et
al. 2011) primary productivity across the UK EEZ is predicted to decrease by a median of

44% and a mean of 39% (range: 70% decrease - 0.4% increase).

3.2. Maximum Catch Potential

Overall, the annual maximum catch potential for this set of species is predicted to decrease
between 1985 and 2050 in the UK EEZ using eq. (1) (mean total decrease = 8.3%) (Fig.
6.3).

3.3. Cost-Benefit Analysis

3.3.1. The Scenarios

Scenario 1. Increased Costs for Industry

The total Net Present Value of benefits from the UK fishing fleet over 46 years (2005 -
2050), assuming constant fuel prices, no change in fishing location and catch, and
intergenerational discounting with a conventional discount rate of 0.3% and a future
discount rate of 0.05% is estimated at £2.6 billion. This value decreases to £1.5 billion,
using a discount rate of 0.3% under conventional discounting methods (Appendix, Table
6.1). This represents an overall profitability of 36.2% and 21.2% using intergenerational
and conventional discounting respectively, for the baseline scenario. Increasing fuel
prices according to a long term (1988 - 2011) and short term (2005 - 2011) trend causes
the net profitability of annual catch value to fall by 1.2% and 1.8% respectively between
2005 and 2050. It further increases the cost of fuel as a proportion of the total costs over
the 45 year period (assuming no change in the latter) from 13.8% to 14.7% and 15.1% for
long term and short term trends respectively. In 2050, fuel price increases result in annual
fuel accounting for 15.8% and 16.8% respectively of total costs. These increases are also
reflected in the percentage fuel cost as a proportion of total value. Higher fuel prices
reduce overall profitability, using intergenerational discounting, over 46 years to 35.65%

for the long term fuel price trend and 35.38% for the short term one. The substantial
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Figure 6.3. Predicted total maximum catch potential in the UK EEZ.

1) Maximum Catch Potential in tonnes in 1985, summed for all species and 2) difference in total MCP (2050 - 1985 values) using GFDL
Topaz ESMZ2.1 data and species distribution models a) Maxent b) AquaMaps c) DBEM.
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contribution of subsidies to the profitability of the fishing industry is shown when the
contribution of capacity enhancing subsidies is removed from the cost benefit analysis,

causing profitability to become negative, at -13.09%.

Scenario 2. Climate Change Impacts Catch

This scenario predicts climate change to have a negative impact on catch value, assuming
fishing location remains constant (Fig. 6.4). Although the direction of change in NPV of
benefits is consistent across predictions using different SDMs and climate datasets, the
magnitude of this decrease varies. The majority of variation is spread evenly around a
central tendency (e.g. median decrease in profitability for Scenario 2 = 10%), with outlying
predictions from AquaMaps-GFDL presenting a best case scenario (3% decrease) and

those from DBEM-GFDL present a worst case scenario (19% decrease).
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Figure 6.4. Percentage decrease in Net Present Value of Scenario 2 from Scenario 1 current
catch values (baseline). Results are shown with no increase in fuel price and with fuel price

increasing according to long-term and short-term trends.

This decrease in profitability results in a proportional increase in fuel costs relative to

total profits, from 8.5% at the baseline scenario to a projected median of 9.1% under
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climate change across model combinations. Fuel cost would further increase to 9.8% and
10.1% of profits if fuel price were to increase by the long-term and short-term trends,
respectively. To prevent this further decrease in profitability, subsidies were assumed to
increase, representing a societal cost of climate change impacts on the fishing industry. In
this scenario, by 2050, subsidies must increase by an additional £1.9 million per year for
long term trends, and £2.9 million per year for short term trends, or at a rate of 2% and

3% per year, respectively.

Scenario 3. Sustainable Future

When all costs are assumed to remain constant and catches reflect the rebuilding of stocks
to their maximum levels, a large increase in profitability is observed. Using d = 0.03 and
ds; = 0.05, the NPV over 45 years, assuming catch levels don’t change due to climate change
(at Increased costs for Industry levels), is estimated at 61.7% and 25.5% higher than that
currently. Applying this to NPV calculations made under the Climate Impacts Catch
predictions results in a comparable increase in profitability (median = 59.4%). Taking
into account the additional fuel costs required in obtaining a larger catch likely provides a
more realistic prediction of the profitability of sustainably harvested fish stocks in the UK
EEZ. Thus, median profitability of the NPV assuming the cost of fuel increases according to
catch weight, whereas total costs remain constant, is estimated at 54.1% (range: 51.47 -

55.30).

3.4. Sensitivity Analysis

3.4.1. Maximum Catch Potential

The choice of maximum catch dataset (ICES or SAUP) used to calculate maximum catch
makes no difference to the percentage change in MCP (Fig. 6.5a), although there is
variation in the decrease predicted using CMIP3-E and GFDL climatic data, with the former
predicting a slightly larger decrease (median decrease = -8.02 and -7.73 with GFDL and
CMIP3-E datasets respectively). Although using SAUP data to calculate the actual MCP
values gives a greater spread of results, when tested within SDM and GCM, the differences
between the two maximum catch datasets were also found not to be significant (Fig. 6.5b)

(Kruskal-Wallis test, p = > 0.01, using species as replicates [n=31]).
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Aqiqeayoad Sur[[dpoy :9 1eydey)



Chapter 6: Modelling Profitability

The Species Distribution Model used did not have a significant effect on either the
difference or value of MCP using both sources of maximum catch data, tested within each
climate dataset (Kruskal-Wallis test, p = > 0.01, using species as replicates [n=31]).
Although all species reflect the decreasing trend in total MCP in the UK EEZ (Fig. 6.6a),
there is variation within species across SDM-GCM model combinations. In particular, sea
bass (D. labrax) is predicted to increase in MCP by 18% using the DBEM with GFDL data
while Dab (L. limanda) is predicted to decrease by 21% using AquaMaps and [PCC data.

The decrease in total maximum catch potential predicted using MCP1 (eq. 1) is mirrored
using the alternative algorithm, MCP2 (eq. 2), which predicts a mean total decrease of
10.2% across model combinations. More variation between the algorithms is seen for
individual species. For example, MCP1 predicts a median decreases in MCP for all species.
Introducing environmental suitability into the maximum catch algorithm (MCP2),
however, produces a wider range of predictions across the six model combinations, with
several species showing predicted increases using at least one model combination (Fig.
6.6b). Specifically, sea bass and sardine are predicted to show median increases in

maximum catch potential of 19.2% and 4.2% respectively.

Figure 6.6. (Following page) Change in maximum catch potential in the UK EEZ. Percentage
change in maximum catch potential for each species in the UK EEZ between 1985 and 2050
using a) MCP1 (eq. 1) b) MCP2 (eq. 2) c) MCPZ2 using Medusa primary productivity data.
Results are shown for all SDM and GFDL combinations, with thick bars representing median
values, the upper and lower ends of the box the upper and lower quartiles of the data, and the
whiskers the most extreme datapoints no greater than 1.5 times inter-quartile range from

the box. Points that are more extreme than whiskers are represented as circles.

248



Chapter 6: Modelling Profitability

MCP1 algorithm, GFDL primary productivity data
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Chapter 6: Modelling Profitability

The effect of variation in the MCP algorithm on Net Present Value is shown in Figure 6.7.
In general, incorporating environmental suitability into the maximum catch potential
algorithm (MCP2) results in higher values of percentage profitability. When the effect of
different model combinations has been accounted for, this difference is significant ( p <
0.05, df = 5). Furthermore, the variation resulting from different scenarios is strongly
significant (p < 0.01, df = 5). However, despite variation between MCP algorithms, both
predict decreases in NPV from the baseline scenario for Scenario 2 and increases for

Scenario 3 (Table 6.2).

® Scenario 1
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Figure 6.7. Percent profitability of Net Present Values for each SDM-GCM combination using
the two algorithms for calculating Maximum Catch Potential (MCP1 and MCP2) and
Scenario 1: Increased Costs for Industry, Scenario 2: Climate Change Impacts Catch, and

Scenario 3: Sustainable Future.
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able 6.2. Median Net Present Values across model combinations using MCP1 (equation 1)

and MCPZ2 (equation 2) algorithms.

Scenario 1: Scenario 2: Scenario 3: Scenario 3:
Increased Climate Sustainable  Sustainable
Costs for Change future, future,
Industry Impacts Catch  current fuel future fuel
MCP1 36.18 32.46 59.39 54.19
MCP2, GFDL data n/a 34.84 60.89 55.98
MCP2, Medusadata n/a 32.03 59.72 54.58

3.4.2. Alternative Primary Productivity Dataset

In UK waters, primary productivity is predicted to decrease by an average of 39% using
data from the Medusa model, compared to 5% using data from GFDL ESM2.1. The greater
decrease in primary productivity shown by Medusa data is reflected in predictions of MCP
for each species using the MCP2 algorithm. Thus, all species are predicted to show a
median decrease in MCP (Fig. 6.6.c). However, using Medusa primary productivity data in
calculating maximum catch potential using MCP2 showed that although median
predictions of MCP were consistently lower, this was not always the case for predictions
using each model combination. For example, while the total median percentage changes in
MCP using GFDL and Medusa data are predicted at -5.3% and -34.5% respectively, using
CMIP3-E data, median total decreases are greater using GFDL PP (-11.3%) than Medusa (-
5%) data. This pattern is consistent across MCP predictions for individual species
(Appendix, Table 6.2). Furthermore, the direction of difference is not consistent across

model combinations (Fig. 6.8).
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Figure 6.8. Percent profitability of Net Present Values for each SDM-GCM combination using
the MCP2 algorithm with primary productivity data from GFDL and Medusa for Scenario 1:
Increased Costs for Industry, Scenario 2: Climate Change Impacts Catch, and Scenario 3:
Sustainable Future. Model combinations using GFDL climate data to predict relative

environmental suitability are depicted in black, those using CMIP3-E data in grey.

3.4.3. Discount rate (using MCP1)

As expected, applying higher discount rates decreases the annual net profits obtained
using both conventional and intergenerational discounting (Fig. 6.9), resulting in lower
NPVs calculated over the whole period. Applying intergenerational discounting results in a
lesser drop in annual net benefits over time compared to conventional discounting, with
an increase being observed when low values (e.g. 0.01) of both conventional (r) and future
(rfe) discount rates are applied. Likewise, increasing the conventional discount rate has a
greater effect on NPV than a comparable change in the future discount rate (rfs) (Fig. 6.10).
In general, this variation between NPV using different discount rates within a given model
is greater that between both Increased Costs for Industry and Climate Change Impacts Catch
scenarios and Increased Costs for Industry run with different SDM-GCM model

combinations.
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Figure 6.9. Change in annual net profits between 2005 and 2050 using different
conventional and intergenerational discount rates. Annual net profits are modelled using the
Climate Change Impacts Catch scenario with change in maximum catch potential predicted

using the MCP1 algorithm.

However, although profitability values for different scenarios vary widely depending on
discount rates used, variation is more consistent across scenarios or model combinations
within a chosen discount rate. For example, using Scenario 3, the NPV of AquaMaps-GFDL
varies between 105.7% and 14.78% when different discount rates are applied
(intergenerational: r=0.01, rfs = 0.01 and conventional: r=0.1 respectively). Within each
discount rate, however, the difference between Scenario 1 (AquaMaps-GFDL) NPV and
Scenario 3 NPV only ranges between 6.3% and 41.3%. Therefore although the actual
magnitude of NPV varies widely according to the conventional and future discount rate
applied, the pattern of profitability across scenarios and model combination within

particular discount rates is relatively robust.
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Figure 6.10. Mean changes in percentage profitability of the Net Present Value over a 45
year period using different conventional (r) and future (%) discount rates for Scenario 1, 2
and 3. Error bars show the range of predictions within each scenario across the six model

combinations. (Scenario 2 has only one profitability calculation).

4. Discussion

Projected changes in maximum catch potential using MCP1 are driven by the predicted
decrease in primary productivity across UK waters, using GFDL data. Change in MCP is
determined by area and primary productivity, thus presenting the biomass production
sustainable by predicted levels of lower trophic level production. This reflects previous
findings that indicate primary productivity to be the key driver of production at higher
trophic levels (Ottersen et al. 2010; Chassot et al. 2010; Blanchard et al. 2012). Explicitly
considering primary productivity when making predictions under climate change is thus
crucial if a study aims to predict changes in relative abundance in addition to
environmental suitability.  Although primary productivity was included as an
environmental predictor in projections of environmental suitability, its effect may be

diluted by the inclusion of other variables, or, in the case of models that weight variables,

254



Chapter 6: Modelling Profitability

such as Maxent, down-weighted in its impact on distribution in favour of key variables

influencing distribution, such as temperature.

The influence of variation in maximum catch value and climatic dataset on the percentage
change in MCP across the UK EEZ agrees with what would be expected given the modelling
procedure. Thus as maximum catch potential values calculated using ICES and SAUP
estimates of maximum catch were re-distributed for both time periods across a consistent
area (the UK EEZ), no variation in percentage change was found. However, the alternative
patterns of distribution of relative environmental suitability created using CMIP3-E or
GFDL climate data cause variation in the re-distributions of the total Maximum Catch

Potential over the EEZ.

4.1. Cost-Benefit Analysis

4.1.1. The Scenarios

Scenario 1. Increased costs for Industry

The calculation of profitability here aimed to present a realistic estimate to explore the
potential effects of fuel price and changes in distribution and catch potential of key
targeted species, rather than provide accurate absolute values of NPV. The operating
profit for 2005, as an average of catch between 2000 and 2010 is estimated at 38.9%. This
is higher than the operating profit of the UK fleet calculated by Seafish in 2009, at 25% of
total fleet earnings (Curtis & Brodie, 2011). However, the result lies within the wider
range calculated for different fleet segments, which varied between 3% for the West of
Scotland nephrops over 250kW fleet segment, and 41% for vessels less than 10m (Curtis
and Brodie 2011), although these profits decreased in 2010 (Curtis and Anderson 2012).
Variability between operating profit estimated here and that calculated by Seafish could
be due to a range of factors. For example, as this study aimed to make future projections
specific to particular species, it focussed on a set of key species, rather than calculating
total profitability. If this set of species represented greater value by weight, estimated
profitability would be higher. Opportunity costs are also not accounted for here and
labour costs do not include those of the skipper, which can account for a high proportion

of costs.
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The substantial impact of removing capacity enhancing subsidies, resulting in negative
profitability (-13.1%), agrees with findings and predictions for fisheries worldwide. For
example, in 2004, global fisheries were estimated to have a profitability deficit of $5
billion, compared to the operating profit of $5.5 billion before subsidies were subtracted

(WorldBank and FAO 2008).

Fuel price is estimated to account for 13.8% of the total costs calculated here in 2005.
Although fuel costs can represent up to 60% of the cost of fishing in the commercial
fisheries of Hong Kong (Sumaila et al. 2007a) and purse seiners in NW Africa (FAO 1995;
Sumaila et al. 2008), this result compares well to values for the SE Australian fishery,
calculated at 10-25% of total operating costs (Sumaila et al. 2008). However, despite this
relatively low percentage, fisheries such as the SE Australian fishery and European
fisheries are still experiencing difficulties in the face of increasing fuel costs (COM, 2006).
The influence of fuel cost on profitability is highlighted by the trend of fuel price increase,
which with a more conservative long term price trend, will decrease overall annual
profitability by 1.2% for the year 2050 relative to 2005. Although this study does not take
into account potential change in fish price, predictions by the International Energy Agency
suggest continued rising fuel prices over the next three decades (IEA 2010) and relatively
little or no significant increase at the first point of sale for catches (Abernethy et al. 2010),
thus contributing to the decline in profitability of capture fisheries, as seen here. For
example, although fuel prices for fishers in Cornwall, UK increased by 359% from 1998 to
2008, fish prices remained relatively stable and failed to balance this increased cost
(Abernethy et al. 2010). It should also be noted that growth in aquaculture production in
the last few decades has increased the consumption of species from this source which
were once wild-caught, thereby further reducing prices relative to the cost of fuel inputs
(Sumaila et al. 2007b). The price fluctuations of aquaculture production as well as supply
and demand are thus likely to impact the price of fish in the future and its value at first

point of sale (FAO 2012).

Scenario 2. Climate Change Impacts Catch

Future predictions of Maximum Catch Potential are estimated to decrease the profitability
of UK fisheries irrespective of the modelling procedure or discount rate used. If fishers are
to maintain profitability, they must be able to adapt and cope with this change, increasing
the value of their catch relative to the costs of obtaining it. The simplest method of doing

this would be to increase catch value by improving fish prices at the first point of sale.
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However, as mentioned above, stagnancy of the price of fish has not only prevented fishers
from passing on the increased costs of fishing down the market chain but has also stopped
them benefitting from times of reduced fish supply, when retail prices have not risen as
would be expected (Abernethy et al. 2010). In this event, fishers must act to prevent
decreases in marine production resulting in a drop in profitability. This may be done in

one of several ways.

Fishers may attempt to increase their catch by increasing fishing effort. They may thus
explore new fishing grounds at greater distances from port or fish for longer. However,
the low profitability resulting from altered marine production presented here is further
enhanced by rising fuel prices. As the cost of fuel increases with steaming time, both
distance and time will be limited by costs, with fuel price likely reducing the effort applied
to more distant fishing grounds. For example, Abernethy et al. (Abernethy et al. 2010)
found rapidly increasing fuel price influenced how skippers fished and the amount they
caught in 2008. They employed methods that would reduce fuel consumption, for
example fishing closer to port or only in fine weather. Furthermore, 21% of skippers said
they no longer explored new fishing grounds as they couldn’t take the risk of not catching
anything (Abernethy et al. 2010). Anticipated travel costs due to increased sea surface
temperature and consequential changes in squid distribution have also been observed to
decrease the number of boats targeting squid in fisheries off Monterey Bay, California

(Dalton 2001).

Thus although results here predict the decrease in profitability caused by lower maximum
catch potential to be greater than that caused by fuel, findings elsewhere suggest that
fishers respond directly to increased fuel costs (Dalton 2001; Abernethy et al. 2010; Tidd
et al. 2011). This is likely because the change in profits calculated here reflects 45 years of
change in Maximum Catch Potential. Predicted changes in MCP and distribution may
therefore not change enough to impact fisher behaviour over that caused by fuel in a
shorter time frame, such as one year. In the future, there may be more marked responses
in fisher location. For example, as well as average trip length, catch rate has been found to
be significant in influencing fishing location choice in the subsequent year (Hutton et al
2004). However, if the profit margins are tight enough for fishers to show behavioural
responses to increasing fuel prices, any further decrease in profitability is likely to have
severe consequences on fleet/ fishery persistence. If profit margins are more flexible,
future changes in maximum catch potential may overcome the effect of fuel price in the

future and fishermen might fish for longer and further away.
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An alternative strategy for an individual skipper or fishing vessel to address both rising
fuel costs and altered fishing patterns of marine production would be to change fishing
gears. Gears/segments vary considerably in the amount of fuel consumed by a vessel, with
towed gears being more consumptive. For example, of the 11 gear types looked at here
(bottom trawl, mid-water trawl, bottom seine, mid-water seine, drift nets, fixed nets, pots,
lines, picking, dredge, and other nets), the total annual spending in 2009 ranged from 6%
of income for 10m vessels using hooks, to 57% of income for North Sea beam trawlers
under 300kw. In segment differentiations used here, dredging was most expensive in
terms of fuel use, while fixed nets were the least expensive. Choice of gear will thus
depend on its relative fuel consumption as well as the relative value, abundance and
catchability of target species. However, as results here suggest that overall maximum
catch potential within the UK EEZ will decrease, a complete shift in species targeted may
not sufficiently reverse falling profitability. Diversifying in terms of gears and species
targeted would thus seem an optimal adaptation strategy. To improving resilience to
uncertain changes in marine production and input costs, vessels thus need to be efficient,
adaptable in terms of gears deployed and species targeted and resilient to weather and

increasing costs.

Scenario 3. Sustainable futures

Fishing has affected the population size and structure of many commercially targeted
species in the UK EEZ. Results presented here show that although climate change will still
have a negative effect on profit following the rebuilding of fish stocks to sustainable levels,
this profit remains higher than that estimated for current catch levels. The impact of
climate change on future fish populations will therefore depend on how other

anthropogenic threats have been managed and mitigated.

Although results here show the impact of climate change additional to that of current
fishing pressure, they do not account for potential interactions between these factors. A
population with lowered growth rates, weight-at-age and reproductive outputs due to
living in sub-optimal environmental conditions is likely to be less resilient to unfavourable
environmental conditions or provide the surplus production necessary to sustain fishing
pressure, resulting in declining biomass (Reynolds et al. 2001; Cheung et al. 2005).
Sustainably harvested populations will therefore not only be beneficial in terms of
biomass and surplus production, but also in terms of resilience to future climate change

and potentially sub-optimal environmental conditions.
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Therefore despite predictions of decreasing profitability for the UK fishing fleet within its
EEZ, analyses undertaken here suggest that the realised impacts of climate change on the
UK fishing industry will depend on the capacity to adapt. Results presented here highlight
that the key to ensuring adaptation and resilience to climate change in marine fisheries is
to ensure adaptive capacity at all levels. Adaptation to climate change has been defined as
involving an adjustment in ecological, social or economic systems in response to observed
or expected changes in climate stimuli and their effects, in order to alleviate adverse

impacts of change or take advantage of new opportunities (IPCC, 2001).

Households within the EU have been found to have higher than average levels of social and
economic flexibility (Stead 2005; MacNeil et al. 2010), thereby allowing some North Sea
fishing societies to persist through periods of low catches and reduced quotas. However,
the substantial cost to society of artificially maintaining profits through subsidies, thereby
buffering the effects of changing economic and ecological conditions and encouraging
entry into the fishing industry has been highlighted here. If efforts are made to support
the fishing industry by absorbing rising costs through increased subsidies, this cost to
society will increase and the incentive to adapt decrease. The challenge under climate
change is therefore to achieve adaptive capacity without increasing societal cost or
subsidies. Reducing subsidies would encourage energy efficiency and contribute towards
reducing overcapacity, for example through reducing vessel number or fishing effort.
Reduced overcapacity may in turn encourage the rebuilding of fish stocks and biological
resilience (Pauly et al. 2002; Sumaila et al. 2008), with the potential to improve Catch Per
Unit Effort (CPUE). This is corroborated by Arnason (Arnason 2007), who predicted that a
long term reduction in fishing effort could lead to increased sustainable yield and less
chance of stock collapse. However, reducing overcapacity in this way has significant social
implications, in particular for smaller fishing vessels with few adaptation options, and
brings challenges in providing appropriate alternative livelihood strategies in coastal
communities which have high dependencies on the fishing sector. Allowing the price of
fish to fluctuate according to supply and demand would transfer some costs from society
to the consumer and would allow market forces to realistically reflect changing costs to
the industry. However, this also faces challenges if increased price of fish affects demand
or causes fish caught by UK vessels to become more expensive than those imported from
elsewhere. Markets or trade arrangements would also need to be developed or expanded
for fish species new to UK waters, maximising the opportunities from changes in species

distributions and climate.
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4.2. Sensitivity Analysis

The cost-benefit analysis presents an initial attempt at combining predictions made using
species distribution models with economic data and spatially explicit records of catch
weight and value. Although the approach developed here is simplistic, it allows an
exploration of how key factors will impact fishery profitability. Further sensitivity
analysis allowed an exploration of the uncertainties associated with predictions and

highlighted how results may vary with changes in data inputs and model algorithms.

Applying the algorithm MCP1 to predict future changes in maximum catch potential
depends on the assumption that the dominant influence on marine productivity is bottom
up, determined by primary productivity. This assumption may not hold if, for example,
presence of one species in an area prevents another increasing in abundance, or if
overfishing has caused a species to be sufficiently low in abundance in a particular area
that primary production is not limiting and a density dependent response is precluded.
Whether marine production will follow predictions made using MCP1 or MCP2 will thus
depend on this assumption. However, although incorporating relative environmental
suitability in the calculation of maximum catch potential (MCP2) results in greater
variation in predictions from alternative SDM-GCM combinations, median predictions of
change for the majority of species remain negative. This similarity is reflected in
calculations of net present values for different scenarios. Thus although results show that
predictions of NPV are sensitive to the MCP algorithm used, the direction of change for

each scenario is robust.

Further to uncertainties introduced into predictions of relative environmental suitability
by alternative climate models, as mentioned above, here prediction of maximum catch
potential is predominantly determined by primary productivity. Models projecting the
biological response to climate change are less well developed than their physical
counterparts, and there is much uncertainty surrounding how primary productivity will
respond (Hinder et al. 2012). For example, although the temperature sensitivity of
primary productivity for a given chlorophyll content may be the most critical factor
determining oceanic response of PP to climate, there are further large differences between
the AOGCM simulations and thus uncertainties in the predicted biological response

(Sarmiento 2004).
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Here we compared outputs using primary productivity data from two sources to calculate
MCP. Within the UK EEZ, primary productivity was predicted to decrease on average eight
times more using the Medusa model than GFDL. However, comparing outputs using
alterative primary productivity datasets showed that predictions using CMIP3-E data to
calculate relative environmental suitability resulted in higher maximum catch potential
values when combined with Medusa than GFDL primary productivity. Conversely, those
MCP values incorporating the GFDL climate dataset and Medusa primary productivity data
were lower than those using primary productivity from GFDL. As this pattern is not seen
when comparing output from MCP1 (only incorporating primary productivity) and MCP2
(incorporating both primary productivity and relative environmental suitability), it is
unlikely due to the fact that primary productivity is not included in the CMIP3-E
predictions of relative environmental suitability. It may therefore be the spatial pattern of
change in Medusa primary productivity that interacts with predictions of relative
environmental suitability to lessen predicted decreases in maximum catch potential, and
thus net present value. This result highlights the importance of considering a range of
model outputs to assess the uncertainty attributed to different factors in the modelling
procedure. Further work may thus benefit from a more in-depth study of variations in
projected primary productivity, in particular as high resolution projections for continental

shelf seas become available.

4.2.1. Discount rate

Results show that the choice of discount rate can have a substantial effect on conclusions
made if the actual NPV and profitability values are assessed. However, their impact is
minimised when comparing results across scenarios, for the same discount rate. General
conclusions regarding the impact of specific scenarios are therefore robust to the discount
rate chosen. However, it should be noted that the magnitude of variation across models
and thus the differences between prediction of profitability using different scenarios
increases with lower discount rates. Applying a set of conventional and future discount
rates provides a useful way of exploring the effect of possible changes in discount rate on
the Net Present Value of a resource. For example, it has been suggested that low discount
rates favour environmentally sustainable behaviour (Cline 1992; Hasselmann et al. 1997),
but also that uncertainty might increase discount rates, increasing the preference for
money now rather than in an uncertain future. If the added uncertainty imposed by
climate change on resource use and stock persistence increase discount rates, any

tendency to fish sustainably might be reduced, with implications for management.
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4.3. Assumptions in cost-benefit analysis

The cost benefit analysis undertaken here aimed to explore the effect of specific factors on
profitability and was limited in its scope to estimate factors such as when profitability
might decrease below minimum viable levels or how fishers might respond. An important
factor influencing this is opportunity cost. If profits reduce below those to be made in
alternative employment, fishers may leave the fishery. For share fishermen, whose salary
is determined as a proportion of profits, opportunity costs are particularly important in
influencing individual decisions on whether to leave the fishery. However, adaptation
strategies might also involve temporality switching to alternative occupations when

fishing becomes less profitable, such as during winter and bad weather.

Furthermore, ‘other costs’ included in this analysis (including repair costs and labour
costs) were assumed not to change by 2050. Although this is unlikely, predicting their
change is difficult and unlikely to have as much influence on profitability as fuel price.
Added to these uncertainties are those caused by changing environmental phenomena,
which may incur substantial capital costs. For example, the growing frequency of natural
disasters such as floods and storms will increase the vulnerability of fishing communities
through damage to gear and infrastructure and threat to human health (Alison et al.
2009). Increased risk of accidents and damage will push up insurance and likely cause
more fishing days at sea to be lost to bad weather (Lane 2010). Furthermore, this analysis
fails to account for any strategies aimed at decarbonising the fishing industry in line with
commitments to climate change mitigation for increases in marine areas where sulphur-
oxide emission levels are controlled. These factors are likely to further add to the cost of

fuel of influence fishing location.

5. Conclusions

Climate change may influence the profitability of UK fisheries either directly, by altering
the availability of fish to fishers, or indirectly, by altering the costs of inputs to a fishery,
such as fuel and gear maintenance, or the time spent fishing. The decrease in marine
productivity due to climate change projected here will likely lead to future decreases in
total catch value and weight. Thus although environmental suitability within the UK EEZ
may decrease for some species and increase for others, this is not translated to fishery

productivity. The degree to which fishery profitability will decrease will further depend
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on changes in factors such as fuel price and subsidies. Furthermore, it will depend on the
price paid for fish, as well as human behaviour and the opportunity costs of fishing. To
minimise projected decreases in profitability, fisheries need to build adaptive capacity and

diversify, ideally without incurring additional societal costs.
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Appendix

Table 6.1. Table showing the Net Present Value (NPV) and profitability of catch value over a 45 year period (2005 - 2050) under different scenarios and

using standard discount rate 0.03 and future discount rate 0.05. Values in millions of GB £s.

Fuelasa
Total NPV (d = Sum percentage
0.03, dfg = 0.05) Total Fuel Fuel Other  Overall of total
Scenario (GB £, millions) Value 2000 2050 Costs Profitability value
Scenario 1 2562.85 7083.39 13.31 13.31 82.91 36.18 8.46
$1 (standard discounting, d = 0.03) 1500.21 7083.39 1331 13.31 82.91 21.18 8.46
S1 + subsidies -926.97 7083.39 13.31 13.31 82.91 -13.09 8.46
$1 fuel increase, long term trend 2525.11 7083.39 13.36 15.23 82.91 35.65 9.08
S1 fuel increase, short term trend 2505.81 7083.39 13.38 16.20 82.91 35.38 9.40
MCP1
Scenario 2
AgM_GFDL 2447.80 6949.33 1331 13.31 82.91 35.22 8.62
AgM_IPCC 2120.90 6568.40 13.31 13.31 82.91 32.29 9.19
Max_GFDL 2076.56 6516.74 1331 13.31 82.91 31.87 9.62
Max_IPCC 2157.30 6610.82 13.31 13.31 82.91 32.63 9.12
DBEM_GFDL 1830.72 6230.26 1331 13.31 82.91 29.38 9.06
DBEM_IPCC 2239.62 6706.74 13.31 13.31 82.91 33.39 8.93
Scenario 2, fuel increase, long term median 32.46 9.09
AgM_GFDL 2410.06 6949.33 13.36 15.23 82.91 34.68 9.25
AgM_IPCC 2083.16 6568.40 13.36 15.23 82.91 31.71 9.79
Max_GFDL 2038.82 6516.74 13.36 15.23 82.91 31.29 9.87

Ayfiqeyo.d 3uiepoy :9 1erdey)



€LC

Max_IPCC 2119.56 6610.82 13.36 15.23 82.91 32.06 9.73
DBEM_GFDL 1792.98 6230.26 13.36 15.23 82.91 28.78 10.32
DBEM_IPCC 2201.88 6706.74 13.36 15.23 82.91 32.83 9.59
Scenario 2, fuel increase, short term median 31.89 9.76
AgM_GFDL 2390.76 6949.33 13.38 16.20 82.91 34.40 9.58
AgM_IPCC 2063.86 6568.40 13.38 16.20 82.91 31.42 10.13
Max_GFDL 2019.52 6516.74 13.38 16.20 82.91 30.99 10.21
Max_IPCC 2100.26 6610.82 13.38 16.20 82.91 31.77 10.07
DBEM_GFDL 1773.68 6230.26 13.38 16.20 82.91 28.47 10.68
DBEM_IPCC 2182.58 6706.74 13.36 15.23 82.91 32.54 9.92
Scenario 3, current fuel median 31.60 10.10
AgM_GFDL 7330.01 12151.70 13.31 13.31 82.91 60.32 493
AgM_IPCC 6943.13 11700.87 13.31 13.31 82.91 59.34 5.12
Max_GFDL 6925.56 11680.40 13.31 13.31 82.91 59.29 5.13
Max_IPCC 6982.68 1174697 13.31 13.31 82.91 59.44 5.10
DBEM_GFDL 6166.46 10795.86 13.31 13.31 82.91 57.12 5.55
DBEM_IPCC 7062.51 11839.98 13.31 13.31 82.91 59.65 5.06
Scenario 3, corrected fuel median 59.39 5.11
AgM_GFDL 6719.99 12151.70 27.88 27.88 82.91 55.30 10.32
AgM_IPCC 6333.10 11700.87 27.88 27.88 82.91 54.12 10.72
Max_GFDL 6315.53 11680.40 27.88 27.88 82.91 54.07 10.74
Max_IPCC 6372.65 1174697 27.88 27.88 82.91 54.25 10.68
DBEM_GFDL 5556.43 10795.86 27.88 27.88 82.91 51.47 11.62
DBEM_IPCC 6452.48 1183998 27.88 27.88 82.91 54.50 10.60
MCP2 median 54.19 10.70
Scenario 2

AgM_GFDL 2475.89 6982.06 13.31 13.31 82.91 35.46
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AgM_IPCC 2332.15 6814.57 1331 13.31 82.91 34.22
Max_GFDL 2555.97 7075.37 1331 13.31 82.91 36.12
Max_IPCC 2132.00 6581.34 1331 13.31 82.91 32.39
DBEM_GFDL 2238.53 6705.47 1331 13.31 82.91 33.38
DBEM_IPCC 2618.65 7148.41 1331 13.31 82.91 36.63
Scenario 3, current fuel median 34.84
AgM_GFDL 7734.74 12623.31 13.31 13.31 82.91 61.27
AgM_IPCC 7460.65 1230393 13.31 13.31 82.91 60.64
Max_GFDL 7816.34 1271840 13.31 13.31 82.91 61.46
Max_IPCC 7097.47 11880.73 13.31 13.31 82.91 59.74
DBEM_GFDL 7343.83 12167.79 13.31 13.31 82.91 60.35
DBEM_IPCC 7679.45 12558.88 13.31 13.31 82.91 61.15
Scenario 3, corrected fuel median 60.89
AgM_GFDL 7124.71 12623.31 27.88 27.88 82.91 56.44
AgM_IPCC 6850.63 12303.93 27.88 27.88 82.91 55.68
Max_GFDL 7206.31 12718.40 27.88 27.88 82.91 56.66
Max_IPCC 6487.44 11880.73 27.88 27.88 82.91 54.60
DBEM_GFDL 6733.80 12167.79 27.88 27.88 82.91 55.34
DBEM_IPCC 7069.42 12558.88 27.88 27.88 82.91 56.29
MCP2 Medusa median 55.98
Scenario 2

AgM_GFDL 1936.73 6353.80 13.31 13.31 82.91 30.48
Max_GFDL 1819.87 6217.62 1331 13.31 82.91 29.27
DBEM_GFDL 1610.16 5973.26 1331 13.31 82.91 26.96
AgM_IPCC 2461.16 6964.89 1331 13.31 82.91 35.34
Max_IPCC 2259.73 6730.18 13.31 13.31 82.91 33.58
DBEM_IPCC 2823.78 7387.44 1331 13.31 82.91 38.22

Ayfiqeyo.ad 3uiepoy :9 1erdey)



SLC

Scenario 3, current fuel
AqM_GFDL

AgM_IPCC

Max_GFDL

Max_IPCC

DBEM_GFDL

DBEM_IPCC

Scenario 3, corrected fuel
AgM_GFDL

AgM_IPCC

Max_GFDL

Max_IPCC

DBEM_GFDL

DBEM_IPCC

6858.51
7695.42
6548.48
7328.40
6201.67
7997.84

6248.48
7085.39
5938.45
6718.38
5591.64
7387.81

11602.27
12577.50
11241.00
12149.82
10836.88
12929.89

11602.27
12577.50
11241.00
12149.82
10836.88
12929.89

13.31
13.31
13.31
13.31
13.31
13.31

27.88
27.88
27.88
27.88
27.88
27.88

13.31
13.31
13.31
13.31
13.31
13.31

27.88
27.88
27.88
27.88
27.88
27.88

median
82.91
82.91
82.91
82.91
82.91
82.91
median
82.91
82.91
82.91
82.91
82.91
82.91

32.03
59.11
61.18
58.26
60.32
57.23
61.86
59.72
53.86
56.33
52.83
55.30
51.60
57.14
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Table 6.2. Change in maximum catch potential (2050-1985) using GFDL ESM2.1 and CMIP3-E
climatic datasets, GFDL ESMZ2.1 and Medusa projections of primary productivity and 2 algorithms

for maximum catch potential.

Medusa, MCP2 GFDL, MCP2 GFDL, MCP1

GFDL IPCC GFDL IPCC  GFDL IPCC
D.labrax -20.56 25.47 20.28 18.11 6.32 -8.01
G. cynoglossus -43.29 -14.20 -13.92 -19.42 -7.44 -8.25
G. morhua -36.81 -17.14 -7.08 -23.80 -7.84 -7.88
H. hippoglossus -46.36 -10.31 -9.87 -16.30 -7.86 -9.83
L. limanda -36.15 -15.03 -3.03 -19.34 -7.90 -16.19
L. piscatorius -39.04 -0.99 -0.99 -8.06 -5.79 -7.48
L. whiffiagonis -45.25 -5.72 -11.72 -10.96 -7.07 -7.10
M. aeglefinus -41.65 -17.82 -13.84 -24.31 -7.75 -7.80
M. kitt -34.52 -19.12 -0.24  -25.21 -7.97 -15.72
M. merlangus -37.89 -17.95 -2.92 -23.13 -7.95 -8.02
M. merluccius -47.55 -15.36 -17.37 -22.39 -7.51 -7.51
M. molva -36.95 -16.83 -0.11 -23.38 -7.74 -7.74
M. poutassou -44.31 -7.74  -10.76 -12.98 -6.81 -7.84
M. surmuletus -35.25 -10.23 -5.56 -17.71 -7.74 -7.74
N. norvegicus -32.26 -13.08 3.73 -19.57 -7.49 -8.30
P. flesus -28.78 -5.45 5.49 -11.65 -8.12 -8.11
P. maxima -34.04 -7.56 -4.01 -13.27 -7.74 -7.81
P. platessa -33.52 -13.10 -1.11 -17.70 -8.08 -8.50
P. pollachius -46.75 -17.60 -11.19 -23.48 -7.50 -7.63
P. virens -49.07 -16.96 -18.59 -22.85 -7.38 -7.39
S. rhombus -32.91 -23.16 -4.68 -28.01 -8.17 -8.20
S. solea -31.75 -8.67 -5.14  -15.67 -7.97 -7.98
T. esmarkii -45.61 -16.38 -15.02 -23.28 -8.66 -10.57
T. luscus -31.15 0.52 3.38 -7.11 -8.00 -8.02
Z. faber -32.37 2.12 -0.74 -5.61 -7.76 -7.77
C. harengus -34.04 -3.10 -10.91 -10.08 -7.53 -7.50
E. encrasicolus -27.66 0.40 -1.41 -6.61 -7.48 -7.48
S. pilchardus -11.90 0.69 14.06 -6.51 -7.61 -7.38
S. scombus -36.02 -7.62 -11.72 -13.71 -8.32 -7.50
S .sprattus -19.65 -8.27 12.43 -13.17 -7.48 -12.19
T. trachurus -28.12 0.75 -5.22 -6.09 -7.48 -7.58
Total -34.50 -5.05 -5.30 -11.27 -7.61 -9.23
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Recent decades have seen the wide-spread development and application of species
distribution models to investigate the distribution of biodiversity, the spread of invasive
species and the ecological impacts of climate change. Whether due to challenges of data
quality and quantity that are particularly prevalent in the marine environment or the
lesser quantity of research in this area, due to limitations imposed by cost and logistics,
species distribution modelling in the marine environment has previously lagged behind
that for terrestrial species. However, the pressing nature of threats imposed on marine
biodiversity and the additional uncertainty concerning climate-related responses make
species distribution modelling a key tool in marine research and future forecasting. This
potential is reflected in an increase in studies developing and applying species distribution
models in the marine environment over the last year (Albouy et al. 2012; Arcos et al. 2012;
Ballard et al. 2012; Gorman et al. 2012; Russell et al. 2012) and also in the wider use of the
work presented in this thesis. For example, results and data presented here have been
used to inform a government report on the ‘Economics of Climate Resilience’ (DEFRA
2012) and have been incorporated into the Marine Climate Change Impacts Partnership
(MCCIP) Annual Report Cards 2012 (MCCIP, 2012) and 2013 (MCCIP, in press). The
application of predictive models and assessments seems particularly important for shelf
seas and coastal marine ecosystems. Not only are these ecosystems highly dynamic and
impacted by atmospheric, oceanic and terrestrial influences (Holt et al. 2010), they are
also regions of great socio-economic importance, with the majority of the world fish catch
being made in coastal seas (Watson and Pauly, 2001). Furthermore, shelf seas are
warming substantially quicker than the open ocean. For example, sea surface
temperatures in the North Atlantic and UK coastal waters are warming faster than the
global average (Mackenzie and Schiedek, 2007) with the fastest warming occurring in the

English Channel, North and Baltic seas (IPCC, 2006; Marsh and Kent, 2006).

Studies undertaken in this thesis attempted to further the application of predictive species
distribution models, comparing and validating approaches that best suit the study of
marine species and investigating the impact of climate change on species’ distributions.
The linking of species distribution model results with a cost-benefit analysis sought to
exploit a variety of methodologies and spatially explicit data. To my knowledge this is the
first study to link ecological and economic modelling techniques to investigate the
quantitative effects of climate change on the fishing industry in the United Kingdom,
through the availability of fishery resources. Furthermore, this thesis has sought to
present findings in such a way as to make them useable and applicable to the non-

modelling community, to inform policy or management decisions. Although there are
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assumptions integral to this work and limitations that must be considered, it is hoped that
the ideas and modelling approaches discussed in this thesis may be updated and refined as
modelling techniques are developed and more, or better, data become available. The
following sections summarize the key findings of this work before outlining its limitations
and the opportunities for improvement and development. Finally we will discuss the
implication of findings in the wider policy context of fisheries management and adaptation

to climate change.

1. KeyFindings

i) A range of equally valid predictions of species’ current distributions may be

obtained through applying a multi-model approach.

The model comparison study that begins this thesis (Chapter 2) informed subsequent
model applications and interpretation of results. This study found that a suite of varying
predictions of species’ current distributions could be made that were equally plausible
given the available input data and model testing methodologies. Results highlighted the
considerable uncertainty in species specific predictions introduced through the species
distribution modelling procedure, the data input and the algorithms applied. However, as
discussed, difficulties in model testing and its likely bias depending on model
characteristics complicate selection of the most accurate or reliable model. Thus although
an effort was made to rigorously clean and check environmental tolerance limits and
species occurrence data to minimize error in constructing environmental envelopes, the
variations between these data sources, as well as the parameterization and weighting of
environmental variables masked real uncertainties in the true species’ distributions and
their responses to climate change. Testing these predictions and species’ responses to
climate change over time might enable future model testing on a temporal scale. However,
while uncertainties exist in the true response of species to climate change, a multi-model
approach is vital to avoid substantial inaccuracy if assumptions, selection of input data or
model design are mis-informed. This is especially important for the marine environment,
where validating model predictions using empirical data may be difficult due to the
expense and logistical difficulties of obtaining reliable data, and where species’ occurrence
data may thus be hampered by issues of data quality. Applying a suite of models to draw
conclusions from the range of results reflects ideas proposed to achieve a more robust

approach in the terrestrial sphere (Aradjo and New 2007) as well as in climate modelling
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(Stainforth et al. 2005). Although variation resulted from the choice of climatic datasets
and downscaling techniques used to make predictions, the species distribution models
provided the greatest source of variation, with differences reflecting model characteristics

and techniques.

ii) When projecting species’ distributions into the future, including variability from
alternative climate models and distribution modelling procedures allows inherent
uncertainties to be captured and a precautionary approach to assessing the impact of

climate change on species’ distributions applied.

The second key finding relates to the projection of species distribution models under
climate change. Problems of testing species distribution model outputs are enhanced
when projecting models under future climatic scenarios, for which no current analogue
exists, or similarly for invasive species, whose current observed niche may result from
time-limited dispersal. This study thus advocated that, as when modelling current
distributions, aspects of the modelling procedures and key uncertainties should be taken
into account when drawing conclusions concerning climate change impacts. For example,
when modelling commercial and threatened marine species in Chapters 3 and 4, this
involved assessing a range of predictions and treating variations in species specific
indicators of change as best and worst case scenarios. If predictions are used to inform
management decisions, a multi-model procedure allows a precautionary approach to be
taken. For invasive species, which may not have had sufficient time to disperse and fully
exploit their full potential niche, relative environmental suitability maps provide

information on sites of likely invasion both currently and under future climate change.

Chapters 3, 4 and 5 further explored the sensitivity of results to variations in the
application of thresholds and alternative downscaling methodologies. Considering the
effects of input data and post-model processing on conclusions made is vital to prevent
certain assumptions or choice of data leading to incorrect conclusions and misinformed

management decisions or recommendations.

iili) Species’ potential distributions are predicted to move poleward in response to

climate change between 1985 and 2050.

Despite large uncertainties, projections of species’ distributions made throughout the

thesis support hypotheses for a poleward movement of species’ potential ranges under
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climate change. These shifts occurred at rates comparable to those observed for marine
species (Perry et al. 2005; Dulvy et al. 2008; Simpson et al. 2011). Pelagic species are
predicted to show a greater distributional shift in to climate change, due to higher rates of

dispersal.

iv) Protected Areas are predicted to change in relative environmental suitability
under climate change. The direction and extent of change will depend on the species

and model combinations used in predictions.

Change in the relative environmental suitability of protected areas for key threatened
species was predicted to be less detrimental than might be expected given similar studies
for terrestrial species. Although environmental suitability was predicted to change, there
was little consensus in the magnitude and direction of change for particular protected
areas across model combinations. Undertaking a similar analysis of protected areas
designed for particular commercially targeted species highlighted the importance of
considering the changing suitability of protected areas in terms of specific species, as well
as the position of the protected area within that species’ range. Maintaining a range of
predictions from equally plausible models is particularly important in presenting a best
and worst case scenario of change for species under threat or those of commercial
importance. Techniques such as those applied here may thus inform management
strategies that enhance the protection afforded currently and in the future, and the

resilience of species to both climate change and fishing pressure.

v) The profitability of UK fisheries by 2050 will decrease in responses to declining

maximum catch potential for key species in UK waters.

The final key finding of this thesis relates to how predicted changes at a biological or
ecological scale might impact the fishing industry. Results presented here show that
although relative environmental suitability may be projected to increase for some species
using particular model combinations, total maximum catch potential is predicted to
decrease. This decrease is primarily driven by a fall in primary productivity in UK waters
by 2050. The decline in catch potential subsequently leads to a substantial decrease in the
profitability of UK fisheries between 2005 and 2050, with the extent of this decrease
depending on changes in particular costs and the ability to re-build fish stocks to more
sustainable levels. Exploring key influences on the profitability of UK fisheries reflects the

importance of considering a range of possible predictions in predictive modelling
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expressed previously, not only encompassing uncertainties in modelling procedures but
also possible future socio-economic scenarios. As mitigation and adaptation at all levels
investigated in this thesis may incur substantial social and economic costs, explicit
consideration of uncertainty may in future be used to compare such costs with the
likelihood of projections and the degree of risk they pose. The implications and

applications of this work to climate change adaptation are discussed below.

2. Limitations and Further Work

Dealing with uncertainty, in model inputs and projections, and how to present uncertainty
has thus been a recurring theme throughout this thesis. Studying the impacts of climate
change is necessarily restricted by limitations in data and knowledge and, as with any
modelling procedure, involves the simplification of processes and reality using
assumptions. This thesis attempted to take account of uncertainty in its assessments on
the impact of climate change, for example through the ensemble approach applied in
Chapter 5. However, although this approach allowed variation due to differences in
component models to be captured, certain similarities in the models and input data
excluded other sources of variation. There are thus additional uncertainties that challenge
our ability to forecast the future and that might be reduced or incorporated as further

models are developed and data becomes available.

Most notable are those uncertainties in the physical response of climate models, their
resolution and process representation. Surface fluxes, for example, play a significant role
in determining the fidelity of oceanic simulations and link the ocean and atmosphere in
coupled Atmosphere-Ocean General Circulation Models (AOGCMs). However, as total heat
and water fluxes are difficult to observe, they are generally estimated and parameterized
using alternative variables such as SST and winds, thereby introducing large uncertainty
into observational estimates (Randall et al. 2007). Furthermore, climate model error is
not evenly distributed globally, with a large spread of model error occurring in the North
Atlantic due to high SST gradients and poor simulations of the North Atlantic Current
(Randall et al. 2007). Many models also have a warm bias at the eastern edges of tropical
ocean basins, near the continental boundaries. This is associated with insufficient
resolution, leading to problems in the simulation of local wind stress, oceanic upwelling
and under-prediction of the low cloud amounts. As well as varying geographically, error

also varies with depth (Randall et al. 2007). Further to the uncertainties surrounding the
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physical response of climate models (as discussed in Chapter 6) there are challenges in
predicting the biological response of primary productivity to climate. Although this thesis
placed a greater focus on variation in predictions resulting from alternative species
distribution models (which was found to be greater), using more physical and biological
datasets as model inputs might be useful in more accurately assessing the variability

surrounding these data, particularly important for shelf seas.

Modelling continental shelf seas such as the North Sea presents particular difficulties in
climate modelling as the present generation of climate models doesn’t have sufficient
resolution to resolve the shelf topography and many of the processes that influence
primary production in the shelf sea ecosystem (such as run-off, seasonal stratification,
tides, and nutrient recycling) (Adlandsvik 2008; Holt et al. 2009). For example, with the
increased resolution and process representation of a regional model, Holt et al. (2010)
predicted that the effects of climate change effects on the Northwest continental shelf
would be very different to those in the open ocean over the next 100 years (Holt et al.
2010, UKCP09). However, these predictions still contain unexplored uncertainty and
differed from those made using a different regional model by Adlansvik et al. (2008). A
broader ensemble of regionalized scenarios is needed to enable a more reliable
assessment of the effects of future climate change in shelf seas, as well as the uncertainties

involved (Adlandsvik 2008).

The work commenced in this study could therefore be built on as more data become
available. Furthermore, due to data availability for marine environmental variables, all
projections made here used the medium emission scenarios (SRES A2) (Nakicenovic and
Swart 2000). This scenario describes a global mean surface temperature rise of around
1.7-4.4°C during the 21st century, in response to atmospheric carbon dioxide
concentrations of about 700 ppm, and depends on fast development and uptake of new,
efficient technologies and a global population that reaches 9 billion mid-century before
declining. If projections were to be extended beyond 2050, after which the range of
greenhouse gas emissions between scenarios widens significantly as a result of different
socio-economic scenarios (IPCC 2000), it would be beneficial to include a greater number

of climate change scenarios in these studies.

Further to the particular climate signal, the likely impact of climate change resulting from
a particular scenario is related both to the degree of mitigation and also to characteristics

of the exposed system. Although this thesis discusses adaptive capacity in terms of
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resilience and possible responses to climate change, it would be beneficial to integrate
environmental /bio-physical and socio-economic scenarios in a more systematic way that
might be more broadly applied in further studies. For example, the development of
Representative Concentration Pathways (RCPs) scenarios of potential greenhouse
emissions (van Vuuren et al. 2011) has prompted calls for a ‘parallel phase’ of scenario
development whereby integrated assessment modellers and those exploring vulnerability,
impacts and adaptation jointly develop a new set of socio-economic futures (Moss et al.
2010). Methodologies have thus been proposed that incorporate the capacity of a system
to adapt into a framework for climate change scenario analysis (van Vuuren et al. 2012).
Vulnerability to climate change may be assessed as a function of the interaction between
social and biophysical vulnerabilities, thereby enabling comparison across different
communities, fishing fleets and countries. Further to key quantitative variables
investigated here, such as fuel cost, factors that influence adaptive capacity and
vulnerability but that are difficult to quantify may be integrated through the scenario
framework. These factors might include social capital, governance, technological
capabilities and levels of economic development. Although there are several challenges
surrounding this aim, proposed frameworks provide a way to better co-ordinate and
compare studies concerning climate change impacts and assessment across academic
disciplines and research communities, thereby facilitating the assessment and application

of adaptation or mitigation options (van Vuuren et al. 2012).

A further addition to this work might involve investigating the indirect impacts of climate
change by incorporating known predator-prey interactions. Although an area might
become suitable due to changes in climatic conditions, a species’ ability to occupy this area
will also depend on the provision of sufficient food and the occurrence of predators or
competitors. The incorporation of trophic interactions into the speceis distribution
modelling procedure therefore represents a valuable addition to forecasts of species’
distribution shifts and is currently being developed (Fernandes et al. (2013), in press). As
mentioned in above with reference to the Pacific oyster, the accuracy of distribution maps
could also be enhanced by incorporating habitat types. Although habitat is included in the
initial current distribution maps predicted by the DBEM, a greater number of categories
are required to be applicable to many speceis in UK waters. This would be particularly
beneficial for species which require specific habitats to breed, feed or attach to. However,
as a speceis may have different habitat requirements at different points throughout its life,

this may also involve modelling different life history stages separately.
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Further to the trophic interactions between fish and invertebrate species, climate change
is likely to have an impact on the distributions and breeding success of marine mammals,
reptiles and sea birds. For example, although modelling studies of these impacts are at an
early stage, there is evidence that climate-driven changes in both temperature and food
supply are having severe negative impacts on seabirds, with declines in the numbers and
diversity of seabirds breeding in the UK expected (Frederiksen 2006). Herring gulls and
roseate terns, for example, have shown decreases of greater than 50% since the mid-
1990s (Pinnegar et al. 2012). Although studying the impacts of climate change on seabirds
would benefit from knowledge of the distribution of their prey species, species
distribution maps and predictions would need to be carefully combined with abundance
and fisheries data in order to model the combined effects of climate-related and fishery-
related changes in food supply. For example, both fisheries and warming waters are
thought to have caused the decline in sandeel and consequential decline in breeding

success of black-legged kittiwakes and common guillemot (Pinnegar et al. 2012).

For marine mammals also, climate change may have direct effects, such as temperature
induced changes in distribution or the impact of rising sea levels on sea haul out sites
(Learmonth et al. 2006; Kaschner et al 2011), or indirect, with changes in prey
distribution and abundance at lower trophic levels altering species interactions and
trophic pathways. It has been speculated that the marine mammal species that may be
most affected by reduced availability of environmental space following climate-induced
range shifts will be those with relatively narrow environmental requirements (Evans et al.
2010). In in North West Europe these include shelf sea species such as harbour porpoise,
white-beaked dolphin and minke whale. Furthermore, declining abundance of sandeel
may also be responsible for the recent shift in abundance of harbour porpoises from the
northern to southern North Sea (MacLeod et al. 2007). Techniques applied here to assess
the relative environmental suitability of protected areas and the spatial overlap of species’
ranges may thus also be useful in assessing management opportunities to enhance the
resilience of forage fish species and the sea birds and marine megafauna that depend on

them for food.

As mentioned in the Introduction of this thesis, the marine environment and the species
that inhabit it are currently under threat from multiple, anthropogenic sources acting at a
variety of scales. Fisheries are removing predator and prey species while invasive species
are being introduced to novel locations with the potential to unbalance food webs and

disrupt species interactions, while habitats are being lost and polluted. Although studies
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undertaken here consider the possible consequences of climate change, and to a lesser
extent fishing, the combined impact of these factors, and potential interactions between
them have not been investigated. Pressure from multiple stressors such as climate
change, acidification, and overfishing may combine synergistically, exacerbating the
potential threat from each. Future studies would thus greatly benefit from integrating
assessment of these different threats and, if synergistic interactions are poorly
understood, management plans must err on the side of caution in assessing the

adaptability and resilience to each specific threat.

It is evident throughout this thesis and further highlighted in the preceeding paragraphs
that the DBEM model has the capacity to incorpate a greater number of biological
processes and mechanisms than either AquaMaps or Maxent. Inclusion of factors such as
species specific dispersal and trophic interactions represent important advances in the
development of species distribution models and allow a more comprehensive
investigation of direct and indirect impacts of climate change on species’ distributions.
Thus although studies undertaken here have found that all models perform well according
to model testing statistics, the biological justification and ecological reasoning behind the
DBEM give it a strength that the purely statistical models do not have. However, the
species specific data required by the DBEM may not be available for all species. Methods
such as Maxent and AquaMaps therefore continue to have a use and provide a valuable
comparison or first step if little data or knowledge concerning a species’ life-history
parameters and habitat preferences is available. Therefore although I continue to support
the application of a multi-model approach I suggest that a development to this work might
involve factors such as dispersal, pH and oxygen, incorporated mechanistically into the
DBEM, being applied to distribution maps formed from AquaMaps and Maxent and the
outputs compared. Furthermore, experiments to relax the constraints imposed on the
current distributions maps of both statistical models and the SAUP model could be
undertaken. This would allow the potential of species adaptation or acclimatisation and

their impact on future distributions to be investigated.

3. Policy relevance and Adaptation to Climate Change

Uncertainties surrounding the biological and social responses to climate change adds
additional pressure to a policy framework already facing challenges such as overfishing,

overcapacity and discarding. This thesis has attempted to present results in a policy
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relevant format, outlining the uncertainty involved in predictions and presenting best and
worst-case scenarios of change in both the ecological and socio-economic spheres. This
reflects the UK governments’ approach to climate change adaptation, which works to
support people and organisms in preparing for its effects by disseminating information to
the public, stakeholders and policy makers. For example, information on climate change is
amalgamated and disseminated by projects such as the Marine Climate Change Impacts

Partnership (MCCIP, www.mccip.org.uk), UK Status of the Seas Report: Charting Progress

2 (chartingprogress.defra.gov.uk) OSPAR Commission’s Quality Status Reports

(gsr2010.ospar.org). The UK’s Climate Change Act (2008) further aims to enhance

adaptive capacity through regular publication (every five years) of risk assessments and
adaptation plans (such as the 2012 Climate Change Risk Assessment,

www.defra.gov.uk/environment/climate/government/risk-assessment) while also

recognising the need for policies to stimulate and co-ordinate adaptation.

Chapter 6 of the thesis emphasises the importance of adaptation at all levels of the socio-
ecological system, thereby coinciding with the approach to fisheries management taken in
recent UK legislation. The UK Marine and Coastal Access Act (2009) recognises the
complex interactions between marine conservation and resource exploitation and wealth
creation, interactions that will likely become more volatile with climate change. For
example, although the effect of climate change on the relative environmental suitability of
protected areas for particular species was here found to be relatively low, all species were
predicted to show northward shifts in distribution, according to environmental suitability.
Depending on a species’ ability to occupy predicted potential niches, community structure
and food web dynamics may change, negatively impacting a species. Predictions do,
however, highlight factors and changes that must be considered at the
biological/ecological scale for successful adaptation and resilience for both fish and
fisheries. The EU Marine Strategy Framework Directive (2008) as well as ‘Fisheries 2027,
a long-term vision for sustainable fisheries’ (DEFRA 2007) explicitly integrate the goal of
healthy fisheries into the wider ecosystem and socio-economic context, using both an
adaptive and precautionary approach and the application of the ecosystem based
approach to fisheries (EAF) management. The EAF requires fisheries managers to take a
wide range of fisheries impacts into account before defining objectives. It intends to
ensure that the planning, development and management of fisheries will meet social and
economic needs without jeopardizing the options for future generations to benefit from
the full range of goods and services provided by marine ecosystems (FAO 2003). To

achieve this goal, the EAF seeks to develop pressure-state-response models that support
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the decision-making process through indicators. The value of indicators in relation to a
reference or target value may thus guide decisions and management actions. Most specific
issues in EAF relate to the impact of fisheries on the environment and the effect of the
environment on fisheries (Garcia and Cochrane 2005) and understanding of the

relationships and links between these two is therefore key.

Although the overarching principles of the EAF stipulate that aquatic ecosystems’ ability to
support essential services and livelihood must be maintained despite variability,
uncertainty and natural changes in the ecosystem (FAO 2013), explicit consideration of
adaptation to climate change and it's interaction with environmental resilience is not
specifically addressed in this legislation. However, if the relationship between the
environment and fisheries subject to climate change is not adequately understood,
indicators such as those for individual species may either not be achieved or may provide
a misleading assessment of a population’s status. Alternatively, management actions such
as spatially explicit policies and protected areas may not have the desired effect, or their
impact might be masked by those of climate change and environmental variability.
Studies undertaken here highlight ways in which climate change may impact marine
biodiversity and thereby fisheries which depend on it. Taking into account these impacts
is vital if EAF indicators are to be appropriate and effective and the goal to ‘meet social and
economic needs without jeopardizing the options for future generations’ is to be upheld.
Although all key international agreements adopted over the last two decades have
stressed the need for the adoption of the EAF, its implementation has lagged behind
uptake on its concepts and values (FAO 2013). In addition to required changes in
governance systems and processes required for its implementation (Cury et al. 2005;
Jennings 2005), bringing adaptive capacity more to the fore of the EAF and emphasising
the interconnected responses of ecological and socio-economic systems to climate change

may help overcome these barriers.

4.  Adaptive Capacity

The adaptive capacity of the UK fishing industry has been broadly assessed to be high
(DEFRA, 2012), and the cost of adaptation impacts of climate change, such as those
investigated in Chapter 6, relatively low. For example, the annual cost of adaptation in
Europe has been estimated at between 0.03 and 0.15 $ billion, compared to 1.05 to 1.70%
billion for East Asia and the Pacific (Sumaila and Cheung 2009). The fishing industry has
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developed and evolved to operate within a tight policy framework while maximising
profits and realising the value available from temporary and changing fish stocks in
unpredictable weather and economic conditions. Fishers respond to changes in
abundance or distribution of fish stocks by altering their fishing locations, the duration of
trips or by targeting alternative or a range of species. However, there will be large
differences in the scope of vessels and crews across sectors and regions to adapt to or
even benefit from the effects of climate change (Daw et al. 2009). If low adaptive capacity
coincides with regions for which the fishing sector forms a significant part of local
economies, the impact of climate change at the local level may be far greater than that
projected for the UK as a whole. Low adaptive capacity may result from low initial
profitability and capital as well as poor resilience to adverse weather conditions.
Furthermore, an adaptive response may be prevented by barriers at a policy and
institutional level, with quotas, licenses and effort restrictions limiting the short-term
flexibility of fishers (DEFRA, 2012). The potential adaptive responses of fishers to climate

change, and the surrounding policy context, are discussed in the following paragraphs.

If a key commercial species declines in abundance in an area due to decreasing
environmental suitability, fishers may seek to switch target species. However, quota
restrictions may prevent particular species being targeted or restrict effort to below
economically viable levels. Although quotas within the UK are transferable, trading is not
transparent, is limited for owners of small vessels and may incur substantial transaction
costs (Inglis and MacLennan 2010). This barrier might have a positive effect in
encouraging diversification and flexibility by targeting a range of species, including those
that have moved northwards into UK waters and aren’t subject to quota. However,
challenges may still be faced though limitations on gear or time spent at sea. The
proposed introduction of discard restrictions in the Common Fisheries Policy reform may
also restrict mixed vessels, which must avoid the accidental ‘bycatch’ of quota species
(DEFRA, 2012). Although quotas are important in ensuring long term sustainability and
promoting resilience of the fish stocks to environmental change, the lengthy, backward-
looking process of quota allocation may not reflect the exploitable surplus stock following
climate induced distribution shifts (DEFRA, 2012). In the case of mismatch between fish
abundance and quota, fishers may instead opt to ‘follow the fish’, tracking species’
distributional shifts and altering the spatial allocation of fishing effort (Inglis and
MacLennan 2010). However, altering fishing location may also be restricted by

jurisdictional boundaries or forms of Marine Protected Areas.
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The flexibility of fishers to switch target species may also be limited by lack of consumer
demand and market failures for particular species. UK consumer demand for fish is
dominated by cod, haddock, salmon, prawns and tuna and primarily met by imports, with
the UK exporting 85% of fish landed by UK vessels (MMO 2010). This mismatch in
production and demand in the UK restricts the adaptive response of changing target
species and the ability of UK local economies to benefit from a value chain based within
the UK. For example, poor communication between the supply of new, emerging species
and demand may make marketing new species difficult. In particular, the ability of smaller
vessels at remote ports to access larger, international markets may be challenging.
Although there is evidence that preferences are diversifying to include a wider range of
species, this is mostly restricted to niche markets and needs to be further developed to

maximise profits obtainable from new species (DEFRA, 2012).

[t is important to note that short term adaptability does not always imply increased
adaptive capacity to climate change (DEFRA, 2012). Short term decisions to adapt,
coupled with the reduced profits that forced the adaptation decision may reduce long term
investments in vessels and gear. They may also result in neglect in adaptation at other
points of the supply/demand chain that might promote profitability and persistence in the
future. For example, the decision to follow the fish may increase a fisher’s dependency on
fuel, lowering profits if fuel prices increase, for example according to the extrapolated
trends described here. Lowered profits may subsequently further reduce capacity to
introduce more fuel efficient methods, enforcing maladaptation. This may be re-enforced
by fossil fuel subsidies which disproportionally benefit more fuel-intensive,
environmentally damaging fishing practices (Inglis and MacLennan 2010). It thus seems
vital to consider adaptive capacity within the framework of the EAF to ensure that a push
to maintain current profits and socio-economic resilience to environmental change does
not come at the expense of ecological resilience and long term sustainability. This is made
more challenging by the uncertainties surrounding future environmental and socio-
economic change mentioned above, creating confusion over which adaptive strategy to
take. Assessing the degree of certainty of change and the costs of adaptation to that
change may thus be required for effective decision making. Within the EAF framework,
adaptive management to climate change may be continually monitored using indicators at
the pressure, state and response levels, thereby promoting fast decision responses to
changing and uncertain conditions and allowing a suite of possible responses to be
maintained. However, the inherent mistrust of uncertainty and scepticism towards

uncertain forecasts also needs to be overcome to promote adaptive capacity. A range of
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options from different climatic and socio-economic scenarios must be viewed as a suite of
possible scenarios, consideration of which will minimises the surprises and risks climate

change may impose on the marine ecosystem and the people who depend on it.
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Appendix
Occurrence records for each species investigated in this thesis, compiled from the three
global online databases: the International Council for Exploration of the Sea (ICES)

EcoSystemData database (http://ecosystemdata.ices.dk); the Ocean Biogeographic

Information System (OBIS) (Vanden Berghe, 2007; http://www.iobis.org) and the Global

Biodiversity Information Facility (GBIF) (http://data.gbif.org).
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