High-Latitude Ocean and Sea Ice Surface Fluxes: Challenges for Climate Research

Bourassa, Mark A., Gille, Sarah T., Bitz, Cecilia, Carlson, David, Cerovecki, Ivana, Clayson, Carol Anne, Cronin, Meghan F., Drennan, Will M., Fairall, Chris W., Hoffman, Ross N., Magnusdottir, Gudrun, Pinker, Rachel T., Renfrew, Ian A., Serreze, Mark, Speer, Kevin, Talley, Lynne D. and Wick, Gary A. (2013) High-Latitude Ocean and Sea Ice Surface Fluxes: Challenges for Climate Research. Bulletin of the American Meteorological Society, 94 (3). pp. 403-423. ISSN 0003-0007

[img]
Preview
PDF (bourassa_etal_high_lat_fluxes_BAMS_2013) - Published Version
Download (1185kB) | Preview

    Abstract

    Polar regions have great sensitivity to climate forcing; however, understanding of the physical processes coupling the atmosphere and ocean in these regions is relatively poor. Improving our knowledge of high-latitude surface fluxes will require close collaboration among meteorologists, oceanographers, ice physicists, and climatologists, and between observationalists and modelers, as well as new combinations of in situ measurements and satellite remote sensing. This article describes the deficiencies in our current state of knowledge about air–sea surface fluxes in high latitudes, the sensitivity of various high-latitude processes to changes in surface fluxes, and the scientific requirements for surface fluxes at high latitudes. We inventory the reasons, both logistical and physical, why existing flux products do not meet these requirements. Capturing an annual cycle in fluxes requires that instruments function through long periods of cold polar darkness, often far from support services, in situations subject to icing and extreme wave conditions. Furthermore, frequent cloud cover at high latitudes restricts the availability of surface and atmospheric data from visible and infrared (IR) wavelength satellite sensors. Recommendations are made for improving high-latitude fluxes, including 1) acquiring more in situ observations, 2) developing improved satellite-flux-observing capabilities, 3) making observations and flux products more accessible, and 4) encouraging flux intercomparisons.

    Item Type: Article
    Faculty \ School: Faculty of Science > School of Environmental Sciences
    University of East Anglia > Faculty of Science > Research Groups > Marine and Atmospheric Sciences
    University of East Anglia > Faculty of Science > Research Groups > Meteorology, Oceanography and Climate Dynamics
    University of East Anglia > Faculty of Science > Research Groups > Climate, Ocean and Atmospheric Sciences
    ?? RGCOASC ??
    Depositing User: Pure Connector
    Date Deposited: 10 Oct 2013 02:34
    Last Modified: 03 Sep 2018 12:30
    URI: https://ueaeprints.uea.ac.uk/id/eprint/43650
    DOI: 10.1175/BAMS-D-11-00244.1

    Actions (login required)

    View Item