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Abstract

Due to Mréwka [24], polyadic spaces are compact Hausdorff spaces that are
continuous images of some power of the one point compactification a\ of a
discrete space A. It turns out that many results about polyadic spaces hold
for a more general class spaces, as we shall show in this thesis. For a sequence
A= (\;: i € 1) of cardinals, a compact Hausdorff space X is A-multiadic if
it is a continuous image of H a);. It is easy to observe that a A-multiadic
space is A-polyadic, but Whéilller the converse is true is a motivation of this

dissertation.

To distinguish the polyadic spaces and multiadic spaces, we consider (a))!
and Hoz)\i. We investigate two cases regarding A: if it is a successor or a
iel
limit cardinal. For an inaccessible cardinal A\ we clarify by an example that
the polyadic space (a\)? is not an image of HO‘)‘Z‘ Beside this result we
<A
find a model of set theory using Prikry-like forcing to get an analogous result
when A is singular. Although the individual polyadic and multiadic spaces
differ, we show that the class of polyadic spaces is the same as multiadic

class!

Moreover, this dissertation is concerned with the combinatorics of multiadic



compacta that can be used to give some of their topological structure. We
give a Ramsey-like property for the class of multiadic compacta called @,
where A is a regular cardinal. For Boolean spaces this property is equiva-
lent to the following: every uncountable collection of clopen sets contains an
uncountable subcollection which is either linked or disjoint. We give gen-
eralizations of the Standard Sierpinski graph and use them to show that
the property of being k-multiadic is not inherited by regular closed sets for

arbitrarily large k.
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Chapter 1

Introduction

1.1 The classes of dyadic and polyadic spaces

According to a definition due to Alexandroff [1] in 1936, a compact Hausdorff
topological space is called dyadic if it is a continuous image of a Cantor cube
D7, where 7 is some infinite cardinal number. As usual, D7 denotes the
product of 7 copies of a discrete space D = {0,1}. This notion of dyadicity
was a natural generalization of his amazing result in 1926 that asserted that
every compact metric space is a continuous image of the Cantor set D%,
which became as standard that appears in many books of real analysis and
topology, e.g see [10]. Roughly speaking, the class of dyadic compacta is
the smallest class of compacta containing all metric compacta and which is

closed with respect to the Tychonoff product and continuous mappings.

Research that dealt with the concept of dyadicity widened to cover the study
of its topological structure and its generalizations. It showed that the class of

dyadic compacta behaves very nicely with respect to the topological cardinal



invariants. In particular, it is a one parameter class; if X is a dyadic space
of weight 7, and ¢ is one of the topological cardinal functions then ¢(X)

depends only on 7.

Sanin proved [9] that, if X is an infinite dyadic space that is an image of
27 then the smallest possible cardinality for the exponent I is the weight of
X. Another observation concerning the significance of w(X) for an infinite
dyadic space was due to Esenin-Volpin (see [11]) who showed that w(X) is
the least upper bound of the characters of the points of X, i.e w(z) = x(X).
From this follows that a dyadic compactum satisfying the first axiom of
countability is metrizable. Regarding the density, it is shown by Peterson
[21] that a dyadic space having a dense subset of cardinality x must have

weight no greater than 2.

Moreover, in 1941, Marczewski [10] showed, in solving a problem raised by
Alexandroff of whether every compact space is dyadic, that any Cantor cube
D7 satisfies the countable chain condition(i.e every system of disjoint open
sets in it is of at most countable). Hence for every dyadic space X, ¢(X) = Ro.
Since this condition is preserved by continuous maps, he remarked that for
an infinite cardinal k, if ak = k U {oo} is the one point compactification of
the discrete space k, then ¢(ak) = Kk so ak is not dyadic for uncountable .

This gives a simplest example of a non-dyadic space.

The wonderful result of Marczewski regarding the cellularity was the genesis
behind a new class of spaces introduced by Mréwka [24] in 1970 that con-
cerned spaces of uncountable cellularity. Mréwka generalized the notion of
dyadicity to the k-polyadic class which is the class of all compact Hausdorff
spaces that are continuous images of some power of the one point compacti-

fication ak of discrete space k. Here for cardinals x, ), (ax)* is the product
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of X copies of ak, endowed with the product topology. He asserted that a
polyadic space of weight & is dyadic iff 2 < kK < ¥y !. At the end of his paper
he raised the question whether any compact space X is a k-polyadic for a
suitable cardinal k. The class Z2% of polyadic compacta was further studied

by many topologists such as Marty [23], Gerlits [12], [13], and Bell [4].

Marty [23] answered affirmatively a question of Mréwka [24] as to whether
there exists a first countable compact space that is not polyadic. He showed
that a separable compactum can be polyadic iff it is metrizable. The Marty
studies of the topological structure of the &% class was followed by Gerlits
[12] who proved that the character and the weight of a polyadic compactum

coincide.

In 1978 Gerlits [13] identified the class &% to be the smallest class that
contains the one point space D(1) and that is closed with respect to Hausdorff
continuous images and topological products of compact spaces and such that
for any system {R; : i € I} of polyadic spaces there exists a polyadic space
which is a compactification of the topological sum Z R;. In that paper he
also investigated the relationship of the usual topoléeglical cardinal functions
for that class, he ended up with the result that asserts that the class Z%

is a two-parameter class. In particular, the values of any cardinal invariant

of polyadic space can be computed from its cellularity and its tightness.

1
Ldefine a metric d on aX§ such that d(f,g) = Z on d;(fi,g;) where Vi, d} is a metric

new
defined on aj as:

0 otherwise.

d;<fi7gi>={ Hfi#g



Regarding the topological structure of closed sets of type G, he showed that
a compact Gy subset of a polyadic compactum is polyadic. This result was

an analogue of a result given by Efimov [8] for dyadic spaces.

In this thesis we generalize the class of polyadic spaces to one that consists
of all compact Hausdorff spaces that are continuous images of the product
Homi of the one-point compactification of a discrete spaces k; for i € [
;fd for any sequence & = (k; : ¢ € I) of cardinals. We call the class of
these spaces the multiadic compacta, .Z%. As a first natural step for this
thesis we should distinguish the classes of polyadic and multiadic spaces. It
easy to show that k-multiadicity of any compact space implies k-polyadicity
but whether the converse is true is the key investigation of this research.
Specifically, we are interested to know whether the s-polyadic space, (ak)!
is an image of H k.
i<l

To answer this query we split it into two cases, when « is a limit cardinal or
when k is a successor cardinal. When « is a weakly inaccessible cardinal, we
study some of the topological cardinal functions for the classes of polyadic
and multiadic spaces to show that for a sequence (k; : i < k) where k; < K
for all + < K, there exists no maps from H ar; onto (ak)”®. For the singular
case we use Prikry-like forcing to show tz}?gt there is no such map.

During the research we demonstrate that many theorems which were orig-
inally proved for dyadic and polyadic spaces remain true for the class of
multiadic spaces, although they are slightly different according to their car-

dinal invariants. We also give a result about a measure of multiadicity that

states: Suppose A is a cardinal and let (\; : ¢ < ¢*) and (k; : j < j*) be

10



increasing sequences with the limit A such that [*| > [j*|. Then H ak; is
i<
a continuous image of H Qa\;.
i<ir

1.2 Relevance To Banach space Theory

A related class of spaces are the Uniform Eberlein Compacta that were in-
troduced by Benyamini and Starbird in 1976 [5]. An Eberlein Compact is a
space homeomorphic to a weakly compact subspace of a Banach space and
a Uniform Eberlein Compact is a space homeomorphic to a weakly compact
subspace of a Hilbert space. In 1977, Benyamini, Rudin and Wage in [6]
showed that for an infinite cardinal x, a Uniform Eberlein Compact space of
weight at most x are precisely the images of closed subspaces of o1 (k)“. Here
o1(k) is the w™ power of the compact subspace of {0, 1}* which consists of
the characteristic functions of subsets of x of cardinality at most one. At the
end of their paper, they raised a question of whether any Uniform Eberlein
Compact space of a given weight x is a continuous image of the universal

space o1 (k)¥.

In order to answer the above question of the existence of a universal Uniform
Eberlein Compact space of a given weight x, Bell introduced in [4] a property
called a property @), where \ is a regular cardinal. For a Boolean space X
(space that has a clopen base) this property is equivalent to the following:
Every collection O of clopen sets in X of size A contains a subcollection
O’ of size A which is either linked or disjoint. By linked we mean that
the intersection of any two disjoint element in O’ is nonempty. He showed
that all polyadic spaces fulfill the property J5. Then he used the standard

Sierpinski graph on w; to construct a counterexample to the Benyamini,
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Rudin and Wage question showing that ax“ is not a universal preimage
for Uniform Eberlein Compact spaces of weight at most x. He concluded
from his example that the property of being polyadic is not a regular closed
hereditary property. In particular, there exists a closed set of the polyadic
space (awi)? that does not satisfy property Q... As a consequence of Bell’s
example the property of being multiadic is not a regular closed hereditary

property although this analogue is refuted in the case of dyadic spaces.

Beside these results, Bell also applied the standard Sierpinski graph to prove
that the property S on w; that deals with a single family of open sets of
a topological space X is equivalent to the property of Knaster that states:
every uncountable collection of its open sets contains an uncountable linked
subcollection. He provided an example of a polyadic space that does not

have property S.

Some questions related to our class can be posed here: Does any multiadic
space satisfy property 0,7 Is it still true that for any regular cardinal A > N,
the property S, is equivalent to K7 Does there exist another model where
the properties K, and S, are not equivalent? This dissertation answers
these questions. We study a generalization of the Sierpinski graph to get
the equivalence of the properties K, and S, and to give an example of a
multiadic space that has property ), that does not satisfy property K
hence not property S,.

In 2007 there was a revival in this area by Aviles [2] who showed that! for any
set I' the unit ball of [,(I") in its weak topology is an example of a Uniform

Eberlein space that is a continuous image of the full oy (I')“. To justify this

!We shall define [,(T") and B(T) in section 1.4.3.
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result, Aviles proved that the unit ball of [,(I') is homeomorphic in its weak
topology to a closed subset B(T') of the Tychonoff cube [—1,1]'. Then Aviles
proved that B(I") is a continuous image of o1(I")* by exhibiting a mapping
as a composition of many continuous functions. In the case where I' is of
size wy, Aviles used the standard Sierpinski graph to provide an example of
two equivalent norms in a nonseparable [,(I"), whose closed unit balls are not
homeomorphic in the weak topology and do not satisfy property (Q.,). In
particular, he showed the existence of equivalent norms in the nonseparable
l,(I') whose closed unit balls are not homeomorphic in the weak topology.
This is refuted with the separable spaces, since the balls of all separable
reflexive Banach spaces are weakly homeomorphic [3]. In this thesis we used
the generalized standard Sierpinski graphs to give analogous results at regular

cardinals larger than wy.

1.3 The structure of this Thesis

We have organised this dissertation into 5 chapters. Let us now briefly de-

scribe the contents of these chapters:

We begin in chapter 2 by giving the notion of multiadic spaces and some of
their basic properties. We prove that every multiadic space is polyadic. In
this chapter we also prove a result on a measure of multiadicity, Theorem
2.1.12, that shows to what extent the choice of the sequence of cardinals
which are used to show that a certain space is multiadic is important. This
chapter also concerns closed sets of multiadic spaces, in particular closed
sets of type Gs. We conclude that every space X which can embedded as

a closed Gy of a multiadic space is itself multiadic. Moreover, in the end of
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this chapter we study the property of being AD compact and we show that
multiadic spaces X belong to the class of AD compacta. This gives us more

properties of the associated class.

In chapter 3 we define a new cardinal invariant called o—character and com-
pute some cardinals functions of multiadic spaces. By using some of these
cardinal invariants, in particularly the point character and the point o—
character of polyadic and multiadic spaces, we attempt to find differences
between these spaces. We also prove that for some cardinal A\ a polyadic
space X that is an image of (a\)* is not an image of the product of the
a);’s where ()\; 1 i € ) is a sequence of cardinals with limit A\. At the end
of this chapter we divide the class of A-polyadic, for any A, into 2 disjoint
subclasses. First, those spaces which are (\; : i € I')-multiadic for a sequence
of cardinals \; < A, (\; : ¢ € I), with limit A\, while for the other one there

exists no such sequence!

Chapter 4 is concerned with the combinatorics of multiadic spaces. With ar-
guments analogous to Bell in [4] we give some Ramsey properties of multiadic
spaces. We show that the property @), is satisfied by all multiadic spaces by
showing it is an imaging property (it is transferred from a space to all of its
images) and that the product H ak; has property Ry for appropriate value
of \. We also recall an arguméelllt of Mréwka [24] showing that all polyadic
spaces satisfy property W (a space X that has the property: the closure
of the union of arbitrarily many Gy sets of X coincides with its sequential
closure). He used this property to conclude that if X is a compact ordered

space that is not first countable then neither X nor H(X) are polyadic, so it

follows that they are not multiadic either.
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Moreover in this chapter we give generalizations of the standard Sierpinski
graph and we use them to show that under GCH, for any regular cardinal
and any topological space X the two properties S, and K, are equivalent.
By invoking these generalized graphs and property @), we give an example
that shows the property of being an image of Hom;i is not preserved by
el

regular closed sets.

In the final chapter, our motivation is to search whether for a singular cardinal
A there exists an explicit continuous map from Ha)\i —» (Oz)\)’\ for any

i<l

sequence (A\; : ¢ € I) that is cofinal in \. We use Prikry-like extensions
to tackle with this problem and give a negative answer. As we deal with
Prikry forcing, it is convenient to present its definition and some of the basic

properties. This can be seen in section 5.2. We finish chapter 5 by showing

further results in this area and pose an open question relating to our work.

1.4 Notation and Preliminaries

In this section we warm up by outlining some background material needed
for this dissertation. Since we are working with topological spaces and their
cardinal invariants it will be helpful to set two parts in this section for them.
Also we present some definitions regarding Banach spaces as we provided in
the introduction some applications of polyadic spaces that attacked a problem

in Banach spaces.
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1.4.1 General notions and topological spaces

Throughout we assume all spaces are Hausdorff, spaces that have the prop-

erty that distinct points have disjoint neighborhoods.

The following set theoretic notion is adopted: We denote by w,, the at?
infinite order type of a well ordered set. The a* infinite cardinal will be
denoted by N,. Often we interchange w, and N,. w is the smallest infinite
ordinal and cardinal, w is the smallest uncountable ordinal and the cardinal
kT is the smallest cardinal after k. A cardinal k is successor cardinal if K = A"
for some \. A cardinal which is not successor is a limit cardinal. This means
if A < k then A™ < k. A subset B of an ordered set A is said to be cofinal if
it satisfies the following condition: For every a € A, there exists some b € B
such that @ < b. The cofinality of x, denoted cf(k), is the smallest cardinal
A such that x has a cofinal subset of cardinality A\. A regular cardinal is a
cardinal number that is equal to its own cofinality, ¢f(x) = k. An infinite
cardinal which is not regular is called singular cardinal. Note that a singular
cardinal is always a limit cardinal. A regular limit cardinal is called weakly

inaccessible cardinal.

Given two sets X and Y we let Y¥ denote the collection of all Y valued
functions with domain X. So if f € Y then f is a function from X into Y.
The power set of a set X is denoted by P(X). Given a set X we will write
[X]* to mean the collection of all subset of X of cardinality A. The collection

of all subset of X of cardinality less than A will be denoted by [X]<*.

Definition 1.4.1. (Product Spaces) Given a sequence of non empty sets

(X;: i €1), the Cartesian product HXi of the X!s is the set of functions
iel
f defined in I with values for i € I in X;. We always equip X with the

16



Tychonoff topology, where each X; is equipped with some topology. The open

sets in the product topology X are unions (finite or infinite) of sets of the

form HU“ where each U; is open in X; and U; # X, only finitely many
icl

times. The coordinate projections m; : X — X; are defined by m;(f) = f(i)

for each v € I, and are continuous open mappings on X;’s.

Definition 1.4.2. (Boolean Spaces) A compact Hausdorff topological space
X is called Boolean if it is totally disconnected. This means any two distinct

points are separated by a clopen (closed and open) set
(Vx #y e X 3 a clopen set U such that x € U and y € X\U).

Definition 1.4.3. (One-Point Compactification) For any locally compact
topological space X, the (Alexandroff) one-point compactification of X is
obtained by adding one extra point oo and defining the topology on X U{oo}
to consist of the open sets of X together with the sets of the form U U {oc},
where U is an open subset of X and X\U is compact. With this topology,
X U{oo}, is always compact. We denote this compactification by aX .

Remark 1.4.4. We will show in the proof of Lemma 2.1.5 that if X 1is
Hausdorff then so is aX.

Definition 1.4.5. (Polyadic Space [24]): For any cardinals k, 7, a Hausdorff
space X 1is polyadic if it is a continuous image of some power of the one-point

compactification of a discrete space, denoted by ar”.
Remark 1.4.6. ax is a 0-dimensional space (contains a base of clopen sets).

Definition 1.4.7. (Countable Chain Condition (ccc)) A topological space
(X, 1) satisfies ccc if every family of pairwise disjoint open subsets of X is

at most countable.
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Definition 1.4.8. (First Countable) Let X be a topological space and let
r € X. X is said to be first countable at x if x has a countable neighborhood
base (local base). Notice that this means that there is a sequence (Bp)new Of
open sets such that whenever U is an open set containing x, there isn € w
such that x € B, C U. The space X is said to be first countable if for every
r € X, X is first countable at x.

Definition 1.4.9. (Metrizable Space) A topological space (X, T) is said to
be metrizable if there is a metric d such that the topology induced by d is T.

Definition 1.4.10. (Zero Set) A subset H of X is called a zero set provided
there exists a continuous f: X — [0,1] such that H = f~1(0).

Definition 1.4.11. A Gy set is a countable intersection of open sets.

Remark 1.4.12. A subset A of a compact Hausdorff space X, is a closed G
iff there exists a continuous function f: X — [0,1] such that A= f~1(0).

Definition 1.4.13. (Regular Closed) We say that a subset A of a topological
space is regular closed if A is the closure of an open set (i.e. A = Int(A)).

1.4.2 Cardinal functions and inequalities

Cardinal functions (or cardinal invariants) are functions on topological spaces
that return cardinal numbers. They are widely used in topology as a tool for
describing various topological properties. Throughout this dissertation, we
are dealing with several cardinal invariants. It will be helpful to highlight the
standard terminology and notation of such cardinal invariants. An obvious
cardinal function is a function which assigns to a set A its cardinality, denoted

by |A|. The most frequently used cardinal functions here are, w(X), x(z, X),
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X(X), d(X) and ¢(X) that denote the topological weight, the character at
a point x € X, the character of X, the density and the cellularity of a

topological space X, respectively. We use [18] and [10] as references.

Definition 1.4.14. The smallest possible cardinality of a base is called the
weight of the topological space X and it is denoted by w(X).

Remark 1.4.15. X is a compact metrizable space iff w(X) = w.

Definition 1.4.16. The character at a point x in a space X, is defined to be
X(x, X) = min{|B,| : B, is a local base for x € X},
The character of the space is defined to be

X(X) = sup{x(z,X):2 € X}

= min{k : every point in X has a neighborhood base of size < k}.
Remark 1.4.17. If X is first countable then x(X) = w.
Definition 1.4.18.
d(X) =min{|S|: SC X and S =X, }
15 called the density of X.

Definition 1.4.19. A collection C of open sets of the topological space X
1s called a cellular family if the members of C are pairwise disjoint. The

cellularity of X is
c(X) =sup{|C| : C cellular in X}}

Proposition 1.4.20. 1. Engelking [10]: If for each i € I the w(X;) <
u >Ry and || < p, then w(HXi) < p.

il
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2. Engelking [10]: If for each i € I the x(X;) < u > Rg and |I| < u, then
X(H Xi) < p.

iel
3. Hewitt-Marczewski-Pondiczery [22, 16, 26]: If d(X;) < p > Ry for all
i €1 and |I| < 2", then d(H X;) < p (i.e for example, the product of

i€l
at most continuum many separable spaces is separable).

1.4.3 Banach spaces

Definition 1.4.21. Let X be a topological vector space and let X* be its dual
space that consists of all continuous linear functionals from X into the base
field R or C. This is a normed space, with ||¢|| = sup{|o(x)| : |lz| < 1}
where ¢ € X*. The weak topology on X is the weakest topology (the topology
with the fewest open sets) such that all elements of X* remain continuous.
Explicitly, a subbase for the weak topology is the collection of sets of the
form ¢~ (U) where ¢ € X* and U is an open subset of the base field R or
C. In other words, a subset of X is open in the weak topology if and only if
it can be written as a union of (possibly infinitely many) sets, each of which

is an intersection of finitely many sets of the form ¢—(U).

Definition 1.4.22. Let X be a normed space and X** = (X*)* denote the
second dual space of X. There is a natural continuous linear transformation

J: X — X defined by
J(z)(¢) = ¢(x) for every x € X and ¢ € X™.

That is, J maps x to the functional on X* given by evaluation at x. As a

consequence of the Hahn-Banach theorem, see e.g. [10] , J is norm-preserving
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(i.e., |J(z)|| = ||z]|) and hence injective. The space X is called reflexive if

J is bijective.

Definition 1.4.23. (I,(I') Spaces) Let I' be a set of reals and p a real number
where 1 < p < oo. (') is the family of all sequences (x, : v € I') where
each x, € R and Z |z4|P < oo (which means that for any countable set

~yel’
A={y: =z, # 0}, 3n € N such that Z|x7|p < n) . The real-valued
YEA
operation || - ||, defined by ||z||, = (Z |2, |P)/? defines a norm on l,. In fact,

~yel'
1,(T") is a complete metric space with respect to this norm, and therefore it is

a Banach space.

Remark 1.4.24. The Banach space 1,(I') is an example of a reflexive space.

Aviles [2] in his paper analysed the unit ball of [,(I") as follows: From the
reflexivity of [,(I') and the fact that the closed unit ball of a reflexive Banach
space is compact in the weak topology [7], we get that the closed unit ball
By, of [,(I") is compact in the weak topology. In fact, By is homeomor-

phic to the following closed subset of the Tychonoff cube [—1,1]':

B(I) = {x e-L1" ) fayl < 1}.

yel’

Precisely, the function h : By )y — B(I") given by h(x), = sign(x), - [2,|? is

continuous in both directions, and bijective, therefore it is a homeomorphism.

Hence by definition of an Eberlein compact, a class of the Eberlein compacts
are the spaces homeomorphic to closed subsets of some B(T'). If p = 2 we
get Uniform Eberlein compacts. The space ox(I'), the compact subset of

{0, 1}" which consists of the functions with at most & nonzero coordinates (k
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a positive integer) is an example of a Uniform Eberlein compact. Namely, let
C be the closed subset of B(I') consisting of functions that have at most k
non-zero coordinates. Then we can define a homeomorphism function ¢ from
the closed subset Cj of B(I') to ox(I") by replacing each non-zero coordinate

of each sequence z of C} by one. That is

1 ifx, #0

0 otherwise.

Cb(x)v =
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Chapter 2

Multiadic Spaces

In this chapter we construct a new class of spaces which are called multiadic
spaces. We will study some basic properties of these spaces that are in com-
mon with dyadic and polyadic spaces. Beside these results we will prove a
theorem inspired by a result of Shapirovskii which will then allow us to ap-
proximate the measure of multiadicity of various spaces. Also we investigate
closed subsets of multiadic spaces and we show that the property of being
multiadic is inherited by closed G subsets of multiadic spaces. Finally we

show that the property of being AD-compact is satisfied by multiadic spaces.

2.1 Notion of Multiadicity

Let us first give two generalizations of the notion of a polyadic space and

discuss the difference between them.

Definition 2.1.1. For any sequence & = (k; : i € I) of cardinals, a Haus-
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dorff space X is multiadic if it is a continuous image of the product H QK
iel
of the one-point compactification of discrete spaces k; for i € I. We say X

18 R-multiadic.

It is easy to see that for a sequence ® = (k; : ¢ € I) if 2 < r; < Vg, then
a space is kR-multiadic iff it is dyadic. This is because if 2 < k; < Ny then
ak; is a compact metric space - since every finite space is metric (you can
just let distance = 1 for any two distinct points). Hence, ak; is an image
of 2¢, say by a map f;. Now we can form a map f from the product of 2¢
along the index set I to the product of ak; by letting f(zg,z1,... 2 ...) =
(fo(xo), fi(x1), ... fi(x;),...). The second part of the statement holds since
for each i, we can define a map from ax; onto {0,1} by 0 +— 0, ak;\0 +— 1,
hence H ak; — 28

iel
Also if for all i € I, k; = k then a space is k-multiadic iff it is k-polyadic.

Moreover, we can observe that the multiadicity implies polyadicity if we allow

large enough k, similarly like in the following example:

Example: Any (X, : n € w)—multiadic space is X,-polyadic. Let X =
(aX,)¥ and Y = HaNi. Consider the map ® : X — Y which is defined

€W

by
f(n) if f(n) <N,

00 otherwise.

O(f)(n) =

It is obvious that this map is surjective. We claim that ® is continuous. Let
U = H U; be a basic open set in Y. So there exist a finite set F' C w such
€W

that U; # aX; if i € F and U; = a¥; otherwise. We only need to check

whether the i projection of the inverse image of U when it contains oo in
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the ith position of U, is open in aX,. Since {co} € Uj;, there exist a set

L; C X, such that N;\ L; is finite and U; = L; U {oo}. Therefore

mi(@7H(U)) = {oo} U (R,\R;) Umy(21(Ls)).

This set is open in aX, as [R,\((R,\®;) U m;(®71(L;)))| equals the size of
N;\ L; which is finite. Hence Y = H al; is N, -polyadic.

€W
The question arises, whether X is an image of Y7 Later in Section 3.2.1, we

will see that a space defined analogously to X using a weakly inaccessible

cardinal X in place of X, can’t be an image of the analogously defined Y.

Corollary 2.1.2. If X is multiadic then it is polyadic.

Proof: Say X is an image of HOH%. Let x = sup{k; : @ € I}. For each
iel
1 € I we can define a continuous map from ax — ax; that maps § +— (8

if < kK, otherwise it maps [ to oo. This gives a continuous map from
(ar)! — HOU%, Hence X is polyadic. B

iel
In the beginning of this section we have observed that the class of multiadic

spaces includes the polyadic and dyadic spaces also as a consequence from

the previous Corollary, the multiadic spaces are polyadic. The point is to

¢

distinguish the measure of “polyadicity “ and "multiadicity , i.e. the least
x such that (ak)¥ maps onto X versus the sequence (k; : i € I) such that

H ak; maps onto X.

iel

Definition 2.1.3. We will denote by pu—multiadic, a multiadic space X
which is a continuous image OfHOélii with sup{|r;| : 1 € I} < p.

iel
Corollary 2.1.4. Any u—multiadic space is a continuous image of (au)! for

some 1.
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The proof is analogous to the proof of Corollary 2.1.2.

2.1.1 Basic properties of multiadic spaces

Here we concentrate on some general properties of the class of multiadic
compacta such as that multiadic spaces are O-dimensional spaces and that
the class of multiadic spaces is closed under continuous maps and products

and finite sums.

Lemma 2.1.5. All multiadic spaces are Boolean.

Proof: The conclusion follows because any multiadic is polyadic. We given
a direct proof for completeness. First we shall prove that for any cardinal &
with discrete topology, the one point compactification ax is Boolean. Then
since all necessarily properties for Boolean spaces are productive and they

are preserved under a continuous mapping, we can finish the proof.

1. ak is compact: Consider any open cover of ak. One of these sets contains
oo and it is in the form G U {oo}, where k\G is finite. So we need only
finitely many more of the open cover sets to cover £\G and thus have a finite
subcover for ak.

11. ak is Hausdorff. Let z,y € ak. If x,y # oo, since k is discrete, then
the singleton points {z}, {y} are disjoint neighborhoods of = and y in . So
the only question is whether we can separate any point x € k from oco. Let
G = k\{z}. Its complement is closed and compact in k. Thus G U {0} is
open in ax which is separated from the open set {z}.

111. ak is O-dimensional: It contains a basis of clopen sets namely: all sin-
gleton points together with the sets of the form G U {oo}, where x\G is
finite.H
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Lemma 2.1.6. For any sequence (k; : i € I) the class of (k; : i € I)-

multiadic spaces is closed under continuous Hausdorff images.

Proof: Suppose that X is (k; : ¢ € A\)-multiadic. Thus H ak; 1s a preimage
iex
of X under a continuous map f. Let g be a continuous function from X onto

a Hausdorff space Y. Thus Y is a continuous image of H ak; under f o g.
iex
Hence, Y is (k; : ¢ € A\)-multiadic. W

Lemma 2.1.7. Suppose that { X }ses is a family of multiadic spaces and each
X is (ki 1 € Is)-multiadic. Then HXS is (ki 1€ I, s € S)-multiadic.

seSs

Proof: For each s € S there exists a continuous map f, from the product
H ar; of the one-point compactification of a discrete spaces x; onto the
il

Hausdorff space X,. Consider the Cartesian product X = H X, and define

s€S
a map [ as follows

f:HHomf—>X

seSiels

{xs}ses i> (fs(l’s))seS'

Clearly, f is a surjective map. Moreover, f is continuous: if O is an open
basic subset of X, there exists a finite set F' C S such that U; # X only for
s € F. So O can be written as O = H U, x H X,. For such F' consider

seF seS\F
W = {Hfs_l(Us) X H Homf}. Clearly that by the continuity and
seF seS\F 1€l
surjectivity of f where s € S, f;'(U,) is an open set in H ak; and for s ¢
iel,
F, f7Y(X,) = H ak;. Since we have that H f1(U,) is a finite product of

i€l seF
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open sets in H ar;, therefore, W is a typical open set in Tychonoff topology
i€l

HHomf which contains f~!(0). Hence HXS is (ki : i €I, s €8)-

SES i€l ses Z

multiadic. B

Definition 2.1.8. [10] Suppose that to every o in a set ¥ directed by the
relation < corresponds a topological space X,, and that for any o,p € X
satisfying p < o a continuous mapping 7 @ X, — X, 1s defined; suppose
further that w8m5 = w7 for any o,p,7 € ¥ satisfying T < p < o and that
w7 = idx, for every o € X. In this situation we say that the family S =

{ X5, 75, X} is an inverse system of the spaces X, .

An element {z,} of the Cartesian product H X, is called a thread of S if
oeX
70 (r,) = x, for any p,o € X satisfying p < o, and the subspace of H X,

ceEX
consisting of all threads of S is called the limit of the inverse system S and

is denoted by [imS.

Proposition 2.1.9. The limit of an inverse system S = {X,, 75,3} of mul-
tiadic spaces X, is a closed subspace of the Cartesian product H X,.

ceEY
Proof: This follows because the same is true for any compact spaces, see

Engelking [10].

2.1.2 On a measure of multiadicity

Here we prove a theorem showing to what extent it matters which sequence
of cardinals we use to show that a certain space is multiadic. For example,
can we replace a given sequence by a cofinal sequence with the same limit?

Firstly we should mention the following definition:
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Definition 2.1.10. (Shapirovskii) For a compact space X, consider a system
A={A,: a €L} of families of subsets of X. Define

A= A{A: ael} ={(V{m(4): aeL}:Ac ][] A}

a€el

We say that a system A = {A,: o € L} is orthogonal if § ¢ A2

For all « € L, let f, : X — Y, be a continuous surjective map. The diagonal
map f = A{fo:a€eLl}: X — H Y, is defined as the following sequence:

1(@) = (fula).

Theorem 2.1.11. ( Shapirovskii [30] ) The diagonal map f = A{fs : a €
L}: X — H Y, is surjective if and only if the system § = {F, : o € L} is

acL
orthogonal, where F,, = {f,*(y) : v € Yo}, a € L.

Proof: (<) Suppose 0 € AF, so there are L many F, such that there

intersection is empty (i.e ﬂ F, =10). For each o € L choose y, € Y, such
a€l

that f7'(ya) € Fa and ﬂ fi'(ya) = 0. Consider y = (y, : « € L).
acl

This y can’t be in f(X) as otherwise dz € X such that f(z) = (fa.(z) :
a € L) = (y, : @« € L). Hence (Va € L) fo(x) = y, which implies that
(Vo) z € £, (ya) and so z € ﬂ f ' (ya), a contradiction.

a€el

(=) Suppose f is not surjective, so Jy = (y.) € HYO‘ such that Vz €
a€el

X, f(x) = (fa(2)) # (ya) = (Va), and (Vo € L) = ¢ f7'(ya), which

means ﬂ F, =0, again is a contradiction. H
acl
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Theorem 2.1.12. Suppose A is a cardinal and let (\; : i < *) and (k; : j <

J*) be increasing sequences with limit A such that |i*| > |j*|. Then H QK
i<i*
s a continuous image of H a\;.
i<i*

Proof: The proof is divided into two main parts. Firstly, for a fixed v < ¢*

we attempt to define a continuous map such that ax., is an image of H Qal;.
i<i*
So fix v < j*. Since (\; : i < i*) is cofinal in A, let i(y) = min{i :

ky < Ai}. Consider for each 5 € Ay, FZ.%) such that if 8 < k., Fiﬁ('y) =
{z € H a; o z(i(y B} and for B € (ai(7)\k,) consider F5) = {z €
H a/Z\Q ) > k4 }. It is clear that the collection {F : B € Kyt U
;z‘??y) is pairwise disjoint family of closed sets in H a); and for 8 < oo, Fiﬁ(v)
is also open. Define a function v, : H a\, — Oé</£,y such that

i<i*

Uy 1 F =B, 4y | FSy = oo
¢. Claim 1: 1, is surjective.

Let £ € ak,, then any f € F J ) © H a); is sufficient to show surjectivity,
1<1*
as Fgm is the preimage of £ under ..

1. Claim 2: 1), is continuous.

Let U be an open set in ax,. Firstly if oo ¢ U, then w U F’B =
geU
{z € H aN; ) € U}, hence 97 1(U) is open. Secondly, if oo € U then

7<g*
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U = ak,\W where W is finite. So

Since W is also finite in \;(,), @A) \W, is open in a;(,y. Therefore ¢~ (U)
is a typical open set in H a);, and hence 1., is continuous.

1<K

Secondly, we shall define a continuous map ¢ : H a\; —» H ar;. Firstly
i<i* J<j*
by induction on j* choose a strictly increasing sequence (i(y) : v € j) so

that for v limit, i(y) = min{¢ < i* : &, < A\;} and for the successor step
S(y)=~v+1,let i(y+1) =min{i < *: ko431 < \; and i(7)) < i}) to avoid
the occurrence of two cardinals from «,’s in one cardinal in \;. This is possible
since |i*| > |j*|. By using Theorem 2.1.11 the map ¢ exists iff the system
J={J, :v € j*} is orthogonal, where Vy € j* T, = {¢;'(y) : y € ary}. In
our case Jy = {FZ%) B e )\1(7)} U F;@) If A C j*isfinite and forally € A

take any element z, € J,. We claim that ﬂxv # (). The reason is that
yeEA

Vy € A, 3B, such that z,, = FZ/?Z/) Let f be the element in H a)\; such that
i<i*

Vy € A, f(y) = B,. Therefore the intersection of any countable members
of J is non-empty. This shows that J is orthogonal, and hence such map

exists.A

2.2 The topological structure of closed sub-

sets of | | aK;.
1ET
Later in Chapter 4 we will expose an example showing that the property of

being multiadic is not inherited by regular closed sets. Does this argument
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apply for a closed G of a multiadic space? In this section we shall see that
the property of being multiadic is preserved by closed Gs. First we give an
example of a closed set of a multiadic space that is still multiadic, just to

give us an idea about the structure of closed subsets of multiadic spaces.

Example: A closed subset of the multiadic space X = H a,, which is

new
multiadic.

For few,let Lg={f € X: f(B) € {B,00}}. Note that each Lz is closed.
Consider the set Y = ({Lg: S € C} where C is any infinite subset of w. Y

is closed because it is an intersection of closed sets.

Moreover, Y is (X, : n € w)—multiadic as will be shown. Define a map

P - H aX,, — Y such that

new

fB) ifp¢c
o((f)(B) = f(B) ifpeCandf(B)=p
00 if € C and f(B) # 5.

It is evident that ® is surjective.
Claim: ¢ is continuous.

Let U be an open set in Y. Then there exists a finite set F' C w such that U; #
a;, if i € Fandifi ¢ F, U; = aX;. We need only to check if Uz = {o0}, for
some 8 € C' N F, otherwise ®(U) is open. But m3(®~(U)) = (aRp)\{5}

is an open set in aNg, hence @ is continuous. W

Theorem 2.2.3 gives the structure of the preimage of any regular closed subset

C' of multiadic spaces (i.e. C' is the closure of its interior). Similar theorem
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was proved by Marty for the Polyadic spaces. Before we giving its proof we

need to the following:

Definition 2.2.1. Let X = H X,. A support of a function f defined on

a€A

S C X is defined to be a set B C A such that f(x) = f(y) for every x,y € S
withx | B=y | B (x | B is the restriction of x to B). A support of a subset
F C X is defined to be a set B C A such that if for all x € F,y € X and
x| B=y| B theny e F.

Lemma 2.2.2. [23] Let {X, : a € I} be a collection of spaces each having
density character at most . Then every reqular closed subset o f the product

X has a support of cardinality not exceeding p.

This is a generalization of a result of Ross and Stone [29], who only worked

with = Ny bu the proof for arbitrary p is analogous.

Theorem 2.2.3. Every reqular closed set F in a u—multiadic space X of
weight T 1s a reqular closed subset C' of Homz-, having support B of cardi-

1ET

nality which does not exceed the weight of X.

Proof. : We shall prove later, in Theorem 3.2.1 that a (k; : ¢ € I)-multiadic

space of weight 7 is a continuous image of H ar; (without loss of generality
1ET
let assume p < 7). Hence there is a continuous map f of Homi onto X
1ET
where 7 is the weight of X. Suppose that F' is a regular closed subset of X,
then F' = U where U is an open in X. By the compactness of X, f is a
closed map. Let C'= f~1(U). Therefore f(C') C U, by the continuity of the
map f and f(C) 2 U, by the closeness of f. Hence f(C) = U. Since for

all i, d(akr;) < p and by a generalization of Ross and Stone theorem, every
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regular closed subset of the product Homi has a support of cardinality
1ET

not exceeding p, therefore f~1(U) has a support B with |B| < u < 7, as

for any topological space its density character on exceed its weight. Thus

F=F[B)x(]] ar:). ®

ieT\B
Before we are going to give other results regarding closed sets of type Gy let

us give the following;:

Theorem 2.2.4. Marty [25]: Let {X, : « € A} be a collection of spaces each
having density character not exceeding p. Let F' be a subset of the product
X. Then F is a zero-set if and only if F = (F | B) x (X | A\B), for some
set B C A such that |B| < p and F | B is a zero-set in X | B.

Theorem 2.2.5. FEvery closed Gs-set F' in a p—multiadic space X with
w(X) = 7 is a continuous image of C' X HCW% where C'is a closed Gs-set
1ET
in Hcmj, and |I| does not exceed the weight of X.
jer
Proof: We shall prove later, in Theorem 3.2.1 that a (k; : ¢ € I)-multiadic
space of weight 7 is a continuous image of H ar; (without loss of generality
1ET

p < 7.) Hence there is a continuous map f of HOU‘% onto X. Since F' is
1ET

a closed Gs in a compact space, F is a zero set. Thus f~![F] is a zero-set.

Consequently, by Theorem 2.2.4, f~'[F] = ((f~Y(F)) | B) x H ak;, where
ieT\B
|B] < u < 7,and (f~![F]) | Bis a closed Gs-set in Ha/@'j. |
jeB
This does not ensure that every closed G-set in a multiadic space is multiadic

because we do not know enough about (f~'[F]) | B, for example if it is

multiadic or not. Hence this result is a weaker result than the one in the
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class of dyadic spaces which was obtained by Efimov [8] who proved in 1965,
that:

Theorem 2.2.6. Every closed Gs of a dyadic space is dyadic.

In proving his theorem he showed that for 7 > Ny every regular closed set
in D7 is of type (G5 and every regular closed subset of D7 is homeomorphic
to the whole space D”. However, this is not the case for Halii and not
even for a polyadic (ax)™. In 1978, a similar result was shovxlfgi for polyadic
spaces by Gerlits [13], who proved that a closed Gy of a polyadic space is
polyadic. Since the situation of multiadic spaces is similar to the case of the
polyadic ones, we obtain analogous results for multiadic. The idea of the
proof of Theorem 2.2.7 is to factorize any G of a multiadic compactum into

a compact Gy of a dyadic space and another multiadic space as we shall see

in the proof.

Theorem 2.2.7. A compact Gs-set of a (k; : i € I)-multiadic compactum

where for all i, r; > Ny is 21 x (k; : i € I)-multiadic.

Proof: Let X be a Hausdorff continuous image of H ak;. Since the inverse
il
image of a closed G5 under a continuous surjective map is a Gy too, it is

enough to show that if C' C H ak; is a closed Gg then C'is 27 x (k; : i € I)-
il
multiadic.

Since HOM@' has clopen base, we can assume that C' is the intersection of

iel
countably many clopen sets, i.e C' = ﬂ O,, where O, is clopen in H QK.
n<w el
Each basic set B in H ak; is of the form B = H b; where for a finite subset
iel iel

Ig of I, b; # ak; and either b; is finite or cofinite, otherwise b; = akx;. Let
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for i € Ig, K;(B) = b; if b; is finite and otherwise K;(B) = ak;\b;. K;(B)

is a finite set in ak; and co ¢ K;(B). Since O, is compact then for each

n € w the clopen set O, is the union of a finite family of base sets, say

O, = U Bj. Consider for each i € I, K;(O,) oo U{KZ(B]”) : J <ky}and
J<kn

K; = U K;(O,,). Clearly Vi € I, K; C (ak;)\{oo} and |K;| < w < K;. Now

n<w
we shall use an idea of Gerlits [13].

Claim 1: Let p,q € Hcmi, p € C. Assume that for each i € I if p(i) # q(1)
i€l
then {p(i), ¢(i)} N K; = 0. Then q € C.
Proof: Suppose not; ¢ ¢ C. There is some n such that p € O, and q ¢ O,,.
Since H ak; is Hausdorff, there exists a basic clopen set B C O,, in H Qak;
icl icl
such that p € B, ¢ ¢ B and an ¢* € [ with p(i*) € m(B) = B+, q(1*) ¢
mix(B) = Bys. One of the sets B;+, B is contained in the set K+, hence
{p(i),q(i)} N K;» # 0, a contradiction. W

Now fix an arbitrary point z € H [oki\(K; U {o0})], so for each i, z; ¢

el
{0} UK;. Let L; = K;U{z}U{oc}, F =CnN HLi‘ Since for each
el
i€ 1,|L;] <w, the space H L; is homeomorphic to 2! (as mentioned in the

iel
introduction). Hence F is an image of 2! by applying the Efimov result 2.2.6.

Define ¢ : F' x H(omi\Ki) — HOU%' so that

el i€l

y(i) if (i) = 2

x(i) otherwise.

¢(z,y)(i) =

Claim 2: ¢ is continuous.
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Since ¢ is continuous iff for each 7, ¢; = m; o ¢ is continuous, we should
show that for any singleton point 8 of ak;, ¢; ' ({8}) is a clopen set in F x
Hami\Ki. Let Y = Homi\K,-. For each i € I let m;|F be the projection

i€l iel

of F into the i*" factor space and m;|Y" the projection of H ar;\K; into the
i€l

ith factor space.

If B # 2 then ¢;'({8}) = [m '|[F({=}) N (m 'Y ({BY)] U IF({B})) is
a clopen set. Also when 3 = z;, ¢;'({8}) = m; '|F({z:}) Na; Y ({2} is
clopen. This proves the claim. B
Claim 3: ¢(F x Homi\Ki) =C.
iel

I. Assume that p € C. Let p’ be the point in H ak; such that

iel
z  ifp(i) ¢ K;

.
p(i) =

p(i) if p(i) € K.
For each i € I we can easily check that p/'(i) € L;. Using Claim 1 on the

point ¢ = p’ we get p’ € C. Thus p’ € C’ﬂHLZ» = F. Denote by p” € HCW'%'
iel icl
the point

P = (i) i pli) ¢ K.

Clearly that for each i € I,p"(i) ¢ K;, hence (p/,p") € F x Homi\Ki. Now
icl

we have to show that ¢(p/,p") = p. If p/(i) ¢ K; then p'(i) = z;, p"(i) =

p(i) and ¢(p',p")(i) = p(i); if p'(i) € K; then p'(i) = p(i), p"(i) = 2 and

o(p',p") (i) = p(7). Since this is for all ¢ € I, we have therefore ¢(p/, p") = p.
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I1. Let us make sure that the image of any point (p,p’) € F' x H ar;\ K; must
icl

be in C. Let ¢ = ¢(p,p’). Since p € F,sop € C. Ifi € I and p(i) = p'(i)

then (i) = p(2). If p(i) # q(i) then p(i) = z; and q(i) = p'(i). But p'(i) ¢ K;,

therefore {p(i),q(i)} N K; =0; by Claim 1 ¢ € C. &

Hence C is the continuous image of multiadic space 2! x H ak;. 1
el

2.3 Multiadic spaces are AD-compact spaces

The notion of AD compact was introduced by Plebanek [25] in 1995. In this
section we show that the properties of being AD compact is satisfied by all
multiadic spaces. In the beginning we give a definition of an adequate family

of subsets of a nonempty set X.

Definition 2.3.1. (Talagrand [31]) An adequate family A C P(X) of a
nonempty set X s a family that satisfies

(i) A€ A and B C A implies B € A;

(i) given A C X, if every finite subset of A is in A then A € A.

For any space X, the power set P(X) can be identified with the Cantor cube
D¥ (mapping A to x4). Thus every subfamily A of P(X) can be treated as a
subset of DX associated with the induced topology. The space X generated
by an adequate family A will be written as K (.A).

According to the definition due to Plebanek [25] a compact space X is called
AD-compact if it is a continuous image of some adequate compact space. He
showed that the space (ar)* is AD-compact. In particular he proved that the
property of being AD-compact is productive and that ax is homeomorphic

to K(A) where A = {A C k: |A] < 1}. The same proof can be used to
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show that every s-multiadic space of weight  is a continuous image of K (.A)

for some A C P(X), as we now show.

Let A ={A C k: |A| < 1} be identified with a subset of 2®. Note that
A is an adequate family. We can see that A is a closed subspace of 2":
We shall concentrate on the case y € A° with |y| = 2, say «, 8 € y. Then
W ={we2": w,=wsg=1}is an open set in 2" containing y which is
disjoint from A. The compact space ak is homeomorphic to K (A) under the

continuous mapping f : ak — A, defined by

f(00) = xo, f(B) = xqs) for B < K, where x denotes characteristic function..

It follows that for a sequence (k; : 4 € I) with supremum k&, the space
H ak; is adequate as witnessed by some family A C P(k). As a consequence
iel

of adequacy for multiadic spaces, we can get more results for the class of

multiadic compacta that follow from Plebanek’s Theorem:

Theorem 2.3.2. Plebanek [25] For an adequate compact K = K(A), where
A C X, and for a continuous mapping g from K into a space L such that
X(L) < 7, there exists Y C X such that |Y| < 7 and g(ANY) = g(A) for all
Ae K.

Corollary 2.3.3. (a) If X is a multiadic space of weight k then there is an
adequate family A C P(k) such that X is a continuous image of K(A).
(b) For every multiadic space X, x(X) = w(X).

Proof: (a) Applying Plebanek’s Theorem it is enough to recall that if A is
an adequate family in P(X) and Y C X then ANY ={ANY : Aec A} is
adequate.

(b) Since w(K(ANY)) < |Y]|, and topological weight is not increased by

continuous surjection of compact spaces, we have that x(X) = w(X). B

39



Corollary 2.3.4. If K is k-multiadic then every closed Gs subspace of K is
AD-compact as witnessed by a family A C P(k).

This follows because the same is true for any AD-compact [see Plebanck [25]].
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Chapter 3

Identifying multiadic spaces by

their cardinal invariants

The contents of this chapter fall into three parts. The first part concerns
the difference between polyadic and multiadic spaces while the second part
discusses some cardinal functions of multiadic spaces and their relationships.

Finally we give a characterization of the multiadic class.

3.1 Non-homeomorphic spaces

Two cardinal invariants will be studied in this section to distinguish polyadic
spaces and multiadic spaces. More precisely, we are going to consider (aX,)“

and H aX,, from the point of view of the point character x(p, X), and the

n<w

point o—character, ox(p, X), of a point p € X.
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3.1.1 o-character of polyadic and multiadic spaces.

Here we introduce a new cardinal invariant not usually considered in the

literature, but needed in our proof of Theorem 3.1.2.

Definition 3.1.1. A local o-base of a point p in an infinite topological space
X s defined to be a family F of nonempty closed non-singleton sets in X

such that every infinite open neighborhood of p contains a member of F.
ox(p, X) = min{|F| : F is alocal c—base of p € X}
1s the o—character of p in X.

ox(X) =sup{ox(p, X): p€ X}
15 the o- character of X.

Theorem 3.1.2. Let k be a singular cardinal such that cf(k) = w. Then

(ar)® and (ak)® are not homeomorphic.

Proof: We attempt to distinguish the two spaces by the o—character of a

particular point.
Claim: If p = co € ax then ox(p, ak) = w.

Proof of the Claim Let p = co and let {x; : i € w} be a cofinal set in &.
Consider B = {b; : b; = ar\z;}. Here b; is closed in ax since we deal with
the discrete topology on k. Every neighborhood of {oo} in ak is of the form
U U {oco}, where k\U is finite. Thus for every U there is i € w such that
b; C U. Namely, it suffices to choose x; large enough that it is bigger than all
the finitely many points of x which are not in U. Hence B is a local c—base

of {oo}. Therefore ox (00, ak) < w.
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On the other hand, we have to show that every local o-base of a point p
has size at least w, i.e. ox(p, ar) > w. Suppose for contradiction there is a
finite local o—base of {o0}, say B = {b; : ¢« < m}. For each i < m fix one
point r; such that r; # {oo} from b;. Consider U’ = r\{r; : i < m}. So
U = U"U{oo} is a neighborhood of {oco} which is not a superset of any of
bis. Hence ox(p, k) = w. This proves our claim.

*

Continuation of the proof. Let oo},

oo}, be the points that contain infinity
everywhere in (ak)® and (ak)¥ respectively. Since in the product space the
basic open sets are determined by finite partial functions, so oy (0o, (ak)") =

max{w, k} = k and oy (o0, (ak)¥) = w.

Moreover, every point p € k has ox(p, ax) = k. This is due to the fact that
for the singleton point p in k, infinite open sets containing this point are of
the form A U {p} for some infinite set A C x or of the form ax\F for some
finite /" and p ¢ F. Therefore {H U {p} : H is finite C x} forms a c—basis
at p and it is a local o-base of smallest cardinality. Thus

w ifp=o0

ox(p,ar) = e
k ifpek.

Now consider any ¢ € (ak)”. If ¢ = co¥ then we have proved ox(oco%, (ak)®) =

*
K?

k. Suppose ¢ # ook, so al least on one coordinate say i, q(i) # oo. Hence
ox(q(i), (ar)) = k. By the definition of the product space, ox(q, (ak)®) >
ox(q(i),ar) = k. Since there are k£ many basic open neighborhoods of ¢ in
(ar)", we clearly have ox(q, (ax)®) < k and hence ox(q, (ak)” = k. Simi-

larly, for g € (ak)® and q # oo, ox(q, (ar)” =k

Finally, suppose for contradiction that there is a homeomorphic function

0: (ar)” — (akr)". Let p= o0} € (ak)”. So ox(p, (ak)”) = w and hence
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ox(0(p), (ak)") = w (noting that oy is preserved by homeomorphism), which

contradicts the previous result about points in (ax)®. B

Theorem 3.1.3. Let k be a cardinal with cf (k) = w < k and let (k; : i € w)
be an increasing sequence of cardinals to k, such that cf(k,) = A\, > w. Then
the product H(mi is not homeomorphic to (ak)¥, although the o-character

1EW

of both of them is k.

Proof: First we have to calculate the o—character of each point in H QaK;.
1EW
Let us consider 4 cases:

1. If p contains no oo in its coordinates then ox(p, H akr;) =sup{k;: i €
€W
w} = k.

2. If p contains oo everywhere then ox(p, H ar;) =sup{\; : i € w} = A,
€W
3. If p consists finitely many coordinates that are oo say the maximum
one is the m' coordinate, then ox(p, H ar;) = max{An, Ky}
S
4. If p consists infinitely many coordinates that are oo, then ox(p, H aK;) =

1Ew

Aw-

Now suppose for contradiction that there is a homeomorphism
v (ar)Y — Homi.

Let p = oo}, € (k) be the point that contains co everywhere. We have seen
from the previous Theorem that ox(p, (ak)¥) = w, however, there exists no
point in H ak; that has o—character omega, which is a contradiction. W

1EW
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3.1.2 Character of polyadic and multiadic spaces.

We would like to thank Istvan Juhész for pointing out the statements of
Theorem 3.1.4 and Theorem 3.1.7, for which we supplied the proofs here.
These theorems can be used to give a different proof (supplied by us) to our

Theorem 3.1.3.

Theorem 3.1.4. The character of every point in X = (ak)¥ is either w or

K.

Proof: Case 1: Let X’ be the collection of points in X that do not have
infinity in their coordinates. In this case we can think of every element of
the space X’ as a function f from w to x such that for every n, f(n) € k. (%)
The basic open sets then are determined by finite partial functions, i.e. func-
tions ¢ which have domain equal to a finite subset of w and satisfy the
condition (x). We can denote by [g] the set of f such that g is a subset of f,
i.e. f is a function which extends g. Thus the point character of each f in
X’ is the smallest number of basic open sets such that their intersection is
exactly {f}. In this case it will actually be countable since each f is obtained

as the intersection of [f [ n| for all n in w.

Case 2: Suppose that f € X contains at least one coordinate that is infinity.
Let A ={n: f(n) # <}, B={n: f(n) = oo} # 0. The basic

open sets in general for (ax)“ are in the form H U, where for finite set

necw

F Cw, U, # ak and either U, is open in k if n € A or U,, = U}, U {0} if
n € B where U], is open in k and x\U] is compact; and for n ¢ F, U, = ak.

Thus there are several kinds of basic open sets around f.

1. There are countably many basic open set of the form [g] where ¢ is a finite
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partial function from A to k.

2. Let n € B. Such an n exists because B # (). For each finite H C &
consider the set (U#) = {g € (ar)*: g(n) € (k\H)U{oo}}. Then (U7 is
a basic open set in (ak)* containing co. There are k£ many choices for such

a set, as there are xk many sets H.

Now suppose that () # F C B is finite. Then for any {H; : ¢ € F'} finite

subsets of k, we have that H(/{\Hz) U {oo} x Hom is a basic open set
ieF i¢F
containing f, and {f} is the intersection of all of these x many open sets.
On the other hand, {f} is not the intersection of any subfamily of < x many
such sets. Namely, suppose {H(K\H]) U {oo} x Hom Dy < yx <K} s
ieF i¢F
such family. Then |U{H; : i € F,v < v*}| < k. Therefore there is
eer\U{H;: i € F,y <v*}. Fixi € F. Let ¢g(i) = € and g(n) = f(n) for
n ¢ e. Hence g # f but g € ﬂH(/{\H;’) U {oo} x prodigrak. This means

i€l

that {f} # N ]J(x\H) U {o0} x [Jar. ®

icF i¢F

Corollary 3.1.5. The character of the polyadic space X = (ar)® is k.

Corollary 3.1.6. The point character of each point in the polyadic space
(aN,)¥ is either w or N,,.
Theorem 3.1.7. The character of every point in'Y = H aX, isw, N, where

necw
neworN,.

Proof: Case 1: We apply the same logic as in case 1 in Theorem 3.1.4 when

y € Y does not have infinity in any of its coordinates and thus x(y,Y) = No.

Case 2: Suppose y € Y such that B = {n : y(n) = co} # 0. So we have

to investigate two cases. Firstly, if B is finite. Let m = max(B) and we
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shall prove that x(y,Y) = X,,. It is clear that the form of all basic open
sets containing y are in the same form as in case 2 of Theorem 3.1.4. Since
for each n € B, there are X,, many choices for a basic open set in the form
(U their intersection is co in n—th coordinate. Thus there are ¥, many

choices for a basic open set in H a,, so that the intersection of these N,,

necw
many open sets contains oo in all coordinates in B. Hence x(y,Y) < N,,.

By a similar argument as in the end proof of case 2 of Theorem 3.1.4, we get

Xx(y,Y) > W,,. Therefore, x(y,Y) = N,,.

Secondly, if the cardinality of B is infinite. For simplicity, consider y to be
a point that has oo everywhere in Y say y = co*. For any finite F' C B, let
[ = max(F'). By the above argument, there are ¥; choices for an open basic
set that contains oo in N,,, n € F. Thus the minimum number of the open
sets of that form whose intersection is only {co*} is W,,. Otherwise if there
are only N, k < w choices for (UX)" in X,, where n < w, then there are only

N, choices for (U,Zrl)’ in N, 1; which is a contradiction.

Theorem 3.1.8. The two spaces X = (aX,)* and Y = HaNn are not

new
homeomorphic to each other.

Proof: Suppose for contradiction that there is a homeomorphism F' : ¥ — X.
Let y € Y be the point that contains only one infinity in the m‘* position.
So x(y,Y) = N, and hence x(F(y),X) = N,, which contradicts Theorem

3.1.4 as there is no such element in X. B

Note: This theorem is actually implied by Theorem 3.1.3.
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3.2 Cardinal Invariants of Multiadic spaces

In this section we investigate some cardinal functions of the multiadic com-
pacta and their relations. For example one result shows that a multiadic
space X is p-multiadic iff ¢(X) < p and an analogous result concerns the
density character. We also prove that if the weight of a p-multiadic com-

pactum is > pu, then its weight equals to its pseudo-character.

Theorem 3.2.1. Suppose J O 7. Then every (k; : j € J)-multiadic space
X, having weight T, is a continuous image ofHa/@- (ieitis (kj: j€T)-

1ET
multiadic).

Proof: Suppose that f is a continuous map of Homj onto X for some
jeJ

cardinal J and cardinals (x; : j € J). Since J D 7, then 7 < |J|. Since

the Tychonoff cube I"™ where I denotes the interval [0, 1] is universal for all

Tychonoff spaces of weight m > N, [10], we can consider X as a subspace of

I™. Let m¢ be the projection of I™ onto Iz = I for every £ € 7. Consider
F=A{meof: e}

By a classical theorem [10] (every real-valued continuous function on a prod-
uct of compact spaces has a countable support), each member of F has a

countable support say D¢. Let D = U D,. Here |D| = 7. Consequently,

&<t
f has a support D of cardinality 7, as if f(x) # f(y) where z,y € X with

v D=y DthenV§ <7x|De=yl D so(meof)(z)=(meo f)(y), and
hence f(x) = f(y). Hence there is a continuous map of H ak; onto X. A

1ET

In the case where J C 7 we get an analogous result to above result as fom;
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is a continuous map of H ak; onto X where 7 is the projection of H QaK;,
1ET 1ET
onto H QK.
jeJ
Another important cardinal invariant is the density character. The following
proposition is proved by Engelking in [10] for u = Yy and the proof for

arbitrary p is analogous.

Proposition 3.2.2. Engelking [10] : Let {X; :i € I} be a collection of
spaces such that d(X;) < p for alli € I and |I| < 2*. Then the cardinality
of every family of mutually disjoint nonempty open subsets of the product
X = HXi does not exceed p, i.e. c¢(X) < p.
il
Proof: Let {O;},c; be a family of pairwise disjoint non-empty open subsets
of the product X = HXZ" Without loss of generality we can assume that
{O;}jes consists of mlgrlnbers of the canonical base for X, i.e., that for every
j € J there exist a finite set I; C I and a family {O} };c; where O} is an open
subset of X; and O} = X; if i ¢ I;, such that O; = HOf
il

Assume that |J| > u; obviously, we can suppose that |J| < 2#. The set
IL=U I I; also has cardinality < 2*, so that the Cartesian product H X;

i€lp
contains, by the Hewitt-Marczewski-Pondiczery Theorem 1.4.20, a dense sub-

set A of cardinality < p. The family { H Of }j .7 consists of non-empty open

i€ly
subsets of H X;. Since O; = H Og X H X; for every j € J, the members
1€l i€l 1€l /Iy

of { H Of }je , are pairwise disjoint and since every member contains an el-
i€lp
ements of A, it follows that |J| < |A| < p, which contradicts our assumption

that [J| > p. B
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The following results might be known, as they relate to well known concepts.

However we could not find the proofs in print, hence we include them here.

Observation 3.2.3. There is a family of open disjoint sets in ak of size k.

This can be illustrated by the family of all singleton points, since they are
clopen and disjoint sets in ak of size k. A more general result is given in the

following theorem:

Theorem 3.2.4. Let X be a topological space. If ¢(X) < k then there is no

continuous map from X onto ak.

Proof: Suppose for a contradiction that there is a continuous map f :
X — ak. Let 4 = {{i} : i < Kk} be the system of all pairwise disjoint open
sets of the singleton points in ak. Since f is continuous then B; = f~1({i}) is
an open set in X and hence 8 = {B; : i < k} is a disjoint family of open sets
of size k. Therefore ¢(X) = sup{|y| : 7 is a disjoint family of open sets in X} >

k, which contradicts our assumption. l

Theorem 3.2.5. If k < A, then there is no continuous map from (ak)® onto

(aN)¥.
Proof: Suppose there is a continuous map f that maps (ak)” onto (a\)*.

For any cardinal x, c¢((ak)) = k. It follows from Observation 3.2.3, ¢(ak) >

K, since c(ak) is clearly < k we have c(ak) = k.

Since for any infinite cardinal k, d(ax) = k so by 3.2.2, ¢((ak)¥) < k. Also
the family O = {O,, : n € w}, where O,, = {z € (ar)* : (1) = n} is a

disjoint open family of size k, so ¢((ak)”) > k and hence ¢((ak)¥ = k.
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Since Vi € w the projection map m; : (a\)¥ — aA defined by (z;)ic, —
x; is continuous and surjective, we get that the composition function ; o
f: (ar)¥ — a) is also continuous and surjective map. By applying Theo-

rem 3.2.3, we must have c¢((ax)¥) > A, which contradicts above claim that

c((ar)¥)=r. B

Observation 3.2.6. If Kk < A, then there is no continuous map from ak

onto al.

Theorem 3.2.7. Let (k; : i € I) be a sequence of distinct cardinals of limit
1. Then every collection of pairwise disjoint nonempty open subsets of a

p-multiadic space X has cardinality at most . Hence ¢(X) < p.

Proof: Suppose that f is a continuous map of Homi onto X for some
il
cardinal I with |I| < p and each r; < p. Let O be a collection of mutually
disjoint nonempty open subsets of X with |O| > p. Then f~O] = {f 1G] :
G € O} is a collection of mutually disjoint nonempty open subsets of H QaK;
el
and |[f7'O]| > p. However, this is a contradiction with 3.2.2, since the

density character of each ak; is at most p. W

Theorem 3.2.9 is an analogous result to Gerlits [12] that shows a polyadic
compactum X is pu—polyadic iff ¢(X) < u. Before giving the proof of our

theorem we have to recall the following theorem due to him:

Theorem 3.2.8. [12] : If X and Y are compact Hausdorff spaces and f :
X — Y s a continuous and surjective, then there exists a compact subspace

C C X such that f(C) =Y with ¢(C) < c(Y).

Theorem 3.2.9. If X is p-multiadic and c¢(X) < & for some £ such that
(Ng <& < p), then X is E-multiadic.
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Proof: Let f be a continuous mapping from the space K = Homi onto
the space X with sup{k; : @ € I} < pu. By Gerlits’s result 3.Z2€.I8, we can
find a compact subspace K’ C K, f(K') = X,¢(K') < £ Thus for the
space K; = m(K') C ak;, we have ¢(K;) < & and so there exists a set
L;, K; C L; C ak;, L; is homeomorphic to a); for some A\; < &. Naturally
K' C H L; and this shows that X is {—multiadic indeed.
iel

One of the generalizing notion is of polyadicity was introduced by Gerlits in
1973. The generalized class is called -adic. Denote by W*(£) the ordered
topological space of the ordinal numbers < ¢ for an ordinal £&. A topological
space is said to be &-adic iff it is a continuous image of a power of the space
W*(€). It can be seen that, for an ordinal &, «|¢| is a continuous image of
W*(£), so a polyadic space which is an image of «|¢| is necessarily &-adic
(corresponding for successor ordinal {v + 1} = (7,7 + 1) — =, and oo
otherwise). Gerlits asserted that for an ordinal £ if X is a Hausdorff -adic

then, ¢(X) < x(X) . By applying his result we get the following:

Corollary 3.2.10. If X is p—multiadic and x(X) < & such that (Ry < & <
i), then X is E—multiadic.

In the following theorem we prove a result similar to an unpublished argument

of Mréwka [see [23]].

Theorem 3.2.11. Fvery u—multiadic space X having density character & is

E—multiadic.

Proof: Suppose that £ > p. Since ¢(X) < d(X), it is obvious that an
p—multiadic space X is é—multiadic by 3.2.9. Thus let ¢ < p and let D be
a dense subset of X of cardinality ¢, D = X. Since X is p—multiadic, there
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is a continuous map f of Hom,- onto X for some cardinal I and cardinals
iel
{k;: i € I} satisfying sup{k; : i € I} < pu. Let S C HOU% so that |S| =¢
iel
and f[S] = D. Then |m;[S]| < € for every i € I. Consequently, for every

i € I, m;[S] is homeomorphic to a subspace of a); for some \; < £. Consider

the product of the subspaces a\;, H a);. It is clear that H a)\; is a subspace
i€l iel
of HOM@' with sup{\; : i € I} < ¢ < p. Thus D is a continuous image of
i€l
S C H a); with sup A\; = €. Since f[H a\;] is compact so it is closed. Thus

icl = icl

D C f[H a\] and X = f[H a);]. Therefore X is € —multiadic. W
iel iel
Regarding the pseudo-character of a multiadic space X, we shall now see

that w(X) = ¥x(X). This result is a similar to Esenin-Volpin’s theorem for

dyadic spaces and Marty’s theorem for polyadic spaces.

Definition 3.2.12. The pseudo-character of a space Y s defined to be the
smallest cardinal X\ such that for every y € Y, y has a pseudo base of size

< \. By pseudo base we mean that for every y € Y there is a collection O,
of open subsets of Y for which {y} =) O,.

The following proposition due to Marty about the pseudo-character and the
weight is the main key in proving Theorem 3.2.14.

Proposition 3.2.13. Marty [253] : Let {X; :i € I} be a collection of spaces
each having weight at most p and let X = H X;. For every continuous map

iel
f from X into a space Y having pseudo-character X\, there is a subspace Xy

of X of weight at most max{yu, A} and such that f[X] = f[X]. Moreover, if
X is compact, then f[X] has weight not exceeding max{u, A}.
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Theorem 3.2.14. Let p < &. An p—multiadic space has pseudo-character
< & if and only if it has weight < &.

Proof: This direction < is obvious, since the pseudo character of a space
never exceeds its weight. For the other direction, let X be an py—multiadic
space such that the pseudo-character of X is at most £&. So there exists is

a continuous map [ from HCW‘% onto X for some cardinals k;’s, I with
i€l
sup{r; : @ € I} < p. Since Hcmi is compact and Vi € I, ak; has
i€l
weight at most p, we can apply Proposition 3.2.13 directly to get our de-

sired conclusion.ll

3.2.1 HO‘)‘Z' is not a preimage of (a)\)* for a weakly
i<\
inaccessible cardinal A\

This section is devoted to show that for a weakly inaccessible cardinal \ the

polyadic space (aA)* is not a continuous image of H a; where (\; 1 i < \)
<A
is a sequence of cardinals with limit A\. Hence (a))* is not (\; : i < A)-

multiadic. The key idea of the proof of this theorem is due to Gerlits [12]

who relies on a cardinal function called ¢(X).

Definition 3.2.15. According to Gerlits [12] the cardinal function ¢(X) for
a topological space X is defined by

¢(X) =min{k: ifU is a disjoint open system in X, then |U| < k}.
Recall that the cellularity of X is defined as
c(X) =sup{|U| : U is a disjoint open system in X }.
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To clarify the difference between ¢(X) and ¢(X) take the following example.
If for all open disjoint families ¢/ in some space X, [U| < X,, for some n < w
then ¢(X) = ¢(X) < N,. But if there is ¢, C X such that U, is disjoint and
[U,| = N, then ¢(X) = N, and ¢(X) = RF. Simply, if ¢(X) is attained i.e
there is U a family of open disjoint sets of E of size ¢(X), then ¢(X) = ¢(X)™.
Otherwise ¢(X) = ¢(X). Hence ¢(X) < ¢(X).

This shows a difference between polyadic spaces and multiadic spaces. For
instance, for the polyadic space Y = (N,)¥, ¢(Y) = XF and ¢(Y) = N,
meanwhile, for a multiadic spaces it is not necessarily that ¢(X) and ¢(X)

are different. Take X = H aX;; then ¢(X) = ¢(X) = N,,.
SH)
Without defining multiadic spaces, Gerlits [12] actually discusses when a

multiadic space is polyadic as we can see in his following theorem:

Theorem 3.2.16. [12] : Let A\ > w be a regular cardinal, a polyadic com-
pactum X 1is the continuous image of a product Hoz)\i with Ay < X\ (i € I)
icl

iff ¢(X) <A\

Example: Suppose that A > w is a regular limit cardinal, i.e A is weakly
inaccessible. Let (\; : i € A) be a sequence of regular cardinals increasing to
A. By Gerlits” Theorem 3.2.16 a polyadic space X is the continuous image
of a product HO‘Ai iff ¢(X) < . Consider X = (a\)*. For each v € A, let

1EA

U, ={s € (a)N)?: s(1) =~}. Then the family Y = {U, : v € A} is a family
of A many disjoint open sets. Hence ¢(X) = AT > A. Thus the topological
space X can not be (\; : i € \)—multiadic by Theorem 3.2.16.

Corollary 3.2.17. For a weakly inaccessible cardinal A\, there exists no con-
tinuous map from HO‘)"' onto (a\)*.

1EA
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Another version of Theorem 3.2.16 for A which is not necessarily regular will

be proved in Lemma 3.2.18.

Lemma 3.2.18. Let (\; : i € I) be a sequence of cardinals such that Vi, A\; <
X and E is an image of (a\)!. Then if ¢(E) < X\ then E is (\; : i €
I —multiadic.

Proof: Let f be a continuous mapping from the space (a))! onto the space
E with ¢(F) < A. Hence ¢(E) < A. Applying Gerlits’s result 3.2.8, there
exists a compact subspace K° C (a\)!, f(K°) = X with ¢(K°) < A\. Thus
for the projection map m;(K°) = K; C a), we have ¢(K;) < A and so there
exists a compact subspace L; such that K; C L; C a\. L; is homeomorphic
to a\; for some )\; < A. Therefore, K C Ha)\i and this shows that X is
iel
(\; : i € I)—multiadic indeed. W
Note that Lemma 3.2.18 is weaker than the analogue of Theorem 3.2.16,

so for example we can not use it to prove that (aX,)“ is not an image of

H aN,,.

n<w

Corollary 3.2.19. For any topological space E, if ¢(E) = X = ¢(E), then E
is a polyadic space which is a continuous image of (a\)! iff E is (\; : i €

I)—multiadic with A\; < \.

3.3 The class of multiadic compacta

Due to Gerlits [13], the class of polyadic compacta is the smallest class con-
taining D(1), closed with respect to continuous mappings and topological

products of compact spaces and such that for any system {R; : i € I} of
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polyadic spaces there exists a polyadic space which is a compactification of

the topological sum Z R;. In this section we identify the class of multiadic

iel
spaces 4 € with the class of polyadic spaces! This is actually already con-
tained in Corollary 2.1.2, but here we give an alternative proof which at the

same time satisfies the family properties of the class .Z% .

From the result 3.2.17 in the previous section, we split the polyadic class
PE€ of fixed A into two kinds of spaces. One that are (\; : ¢ € I)-multiadic
and spaces that are not (\; : ¢ € I)-multiadic for a sequence of cardinals

Theorem 3.3.1. .#Z% is the smallest class O of topological spaces such that:
a. D(1) € O, where D(1) is the discrete space of one point;
b. O is closed under arbitrary topological products;
c. O s closed under continuous Hausdorff images;
d. Given any system {R;; © € I} C O there exists a space R € O which is a
compactification of the topological sum Z R;.

iel
Proof: Firstly, =: We should prove that .#% satisfies (a) — (d). Here we
only need to prove only (d) as we have proved (b), (¢) in Theorem 2.1.7, 2.1.6
respectively. Suppose we have a system {R;; i € I} C O such that for each
i € I there is a continuous map f; : H oz/\z. — R;. Let J =J {JZ- (1€ I},

JE€J;
and \; =sup {\: : j € J;} for each j € J. Now for each i € [ :

[T — [] o) - R
jeJ JEJ;

Denote by R the one-point compactification of the topological sum Z R;,
iel
say R = Z R; U {oor}. Hence R is the continuous image of the product
iel
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space all| x H a\; given by the following map
jeJ

(iv(xj)ief) = fi(@j)jeJ) & (Ooa(xj)jeJ) = OOR.

Since O is closed under arbitrary topological products and under continuous

Hausdorff images, R € .Z%€ .

Secondly, <: Gerlits [13] proved that any element of O is in Z% so it is in
ME. 1

From Theorem 3.3.1 we conclude that the class of multiadic compacta .# %€
is the same as the class of polyadic compacta &% that was introduced
by Gerlits [13]. This is because [13] proved that Z% is exactly the class
O mentioned in Theorem 3.3.1. So A€ = &#%. Therefore we have the

following:

PC = ME

-polyadic

Figure 3.1: A representation of .#Z%

For each X € 2%, let A = min{\ : (a\)” — X for some 7}. Suppose
there is a sequence of cardinals (\; : ¢ € I) such that sup(\; : i € [) = A. It
does not follow that X is (\; : ¢ € I)-multiadic. This means that for each
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A, the class of A-polyadic spaces is divided into 2 disjoint subclasses. First,
those spaces which are (\; : ¢ € I)-multiadic for a sequence of cardinals

Ai < A, (A @ i € I), with limit A\, while for the other one there exists no such

sequence.
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Chapter 4

Ramsey theoretic graphs and

associated spaces

Ramsey’s Theorem has been generalized in many ways, giving rise to an area
of combinatorial mathematics known as Ramsey theory. In this chapter we
are focusing on studying some Ramsey theoretic properties that are satisfied
by multiadic compacta. The properties are called @)\, R, and property Wj.
These notions were introduced by Bell [4] and Mréwka [24] respectively. We
also study properties K and S,. We give the generalizations of the Standard
Sierpinski graph and use them to give examples of polyadic spaces that do
not satisfy K, for various regular cardinals A\. Furthermore we show that
under GCH the two properties Sy and K, are equivalent for any topological

space X and any regular cardinal A > w;.
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4.1 Properties R) and Q)

Inspired by an argument by Bell in [4], we in this section prove a Ramsey-like
property for multiadic spaces, called property Q5. This property for Boolean
spaces is equivalent to property R,. Before starting our work, it is convenient
to present some definitions and results that will be used in this section and

a proof of one fundamental theorem which will be used a couple of times.

Definition 4.1.1. For n < w, a collection O of sets is n-linked if for each
O C O with |0 =n, O # 0. We abbreviate 2-linked by linked. A A
system is a collection O of sets for which there exists a set R (called the root
of the A-system) such that if A and B are any two distinct elements of O,
then AN B = R. A standard fact is the following lemma due to Shanin:

Lemma 4.1.2. (Delta system Lemma) Suppose that S is a set of finite
sets such that cf(|S|) > wy. Then there is a " C S such that |S'| = |S| and
S’ is a A-system.

Proof: For any element of S there is a natural number n which is the
cardinality of that element. Since the cofinality of |S| is at least wy, there
must be some n and S* with |S*| = |S| such that a € S* = |a] = n. By

induction on n, we shall show that the lemma holds. Let A = |S].

The trivial case n = 0, when the only set in S* is the empty set, can not

happen as S* is supposed to be uncountable.

If n = 1 then each element of S* is distinct, and has no intersection with the

others, so R = () and S’ = S*.

Suppose n > 1. If there is some x which is in A many of S* then take

S** = {a\{z} : x € a € §*}. Obviously this has size A and every element has
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n — 1 elements, so by the induction hypothesis there is some S’ C S** of size
A such that the intersection of any two elements is same fixed R. Obviously
{a U{z} : a € 9’} satisfies the lemma, since the intersection of any two

elements is R U {z}.

On the other hand, if there is no such = then we can inductively construct a
sequence (a; : i < A) such that each a; € S* and for any ¢ # j,a; Na; = 0.
Take any element for ag. For the given sequence (a; : ¢ < «), consider
A= U a;. Since v < A, |A| < X and each q; is finite. Obviously each
elem;l% of Aisin only < X\ elements of S* so there are A many of elements of
S* which are candidates for a, and we can continue. Since the intersection

of any two elements of the constructed sequence is ), this sequence satisfies

the lemma. W

Notation: For an infinite cardinal \, we write A — (I1,--- ,,)? if whenever
the doubletons of ), i.e. [A|%, are partitioned into sets Ay, - - , A,, then there
is 1 <7 <r and a subset C of A\ with cardinality /; which is homogeneous for

Ay, e, [C]? C A;. In the case [} = -+ = [, we use the shorthand A\ — (1)

The above partition calculus arrow notation is very powerful in giving a
unified expression to the two following fundamental results in Combinatorics,

see e.g.[22].
Theorem 4.1.3. (Ramsey theorem) For any positive integer n, we have

w— (w)

n*

Theorem 4.1.4. (Dushnik-Miller) For an infinite reqular cardinal X\, we
have

A= (\w)?
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Definition 4.1.5. (Property Ry) Let X be a cardinal. We say that a space has
property Ry if every family of its clopen sets of cardinality \ has a subfamily

of cardinality X which is either linked or disjoint.

The following lemma was asserted without proof by Bell in [4].

Lemma 4.1.6. (Bell [4]) Let ¢f(\) > wy and let {X; :i € I} be a collection
of Boolean spaces such that every finite product of them satisfies property R).
Then HXZ' has property R).
i€l

Proof: Suppose that there is a collection O = {O,, : @ < A} of clopen sets
in HXi and we need to find a subcollection of O of cardinality A which is
eitllleei" linked or disjoint. All O,’s are compact and therefore each O,’s is
the finite union of basic open sets. Thus all clopen subsets of the product of
Boolean spaces only depend of finitely many coordinates. Therefore for each
«, there exists a finite set Fi, C I such O, = H U and for @ € F,, UY # X;
and U = X, otherwise. <

Consider G = {F,, : « < A}. This is a collection of finite sets, so it contains
a A-system of size A\, by Lemma 4.1.2. Say D C G is a A-system of size A
with root R, and let D = {F,, : o € A} for some set A of size \. Now we will

work with the projections of the O,’s to the product HXZ" Clearly these

i€R
projections are clopen in HXZ" On this finite product HX,- we can thin
i€R i€R

out the collection of clopen sets so that we left with A sets that are either
linked or disjoint and therefore, to complete the proof we only need to go
back to the full space. The corresponding subcollection of the O, will have

the desired property.
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Since the family {H U : a € A} has a subcollection of size A which is either
i€R
linked or disjoint, we have to study two cases:

Firstly, suppose that B C A is of size A and {H U : o € B} is a linked sub-
i€R
collection of {H UZ:a€ A}. Soforalla # § € B, there is an element z €
i€R
(H Uurn H UP). Thus we can extend the range of z to be an element of
i€R i€R
H X, as follows:
il
For i € I\R we have U* = X; or U’ = X;. Certainly U* N U’ # (. Let
w(i) € U* N UP and define y € HX" by putting
il
z(i) ifieR

u(i) otherwise.

y(i) =

So, y € O, N Og and hence the collection {0, : a € B} is a linked subcollec-
tion of H X;.

Secondly, suppose that for some A* € [A]* and for any o # 3 in A* we have

H usn H U’ = 0. Since

1ER 1€ER
[ToenI[vi=0=JJurn]]V’ =0 = 0anOs=0;
1ER i€ER el el

therefore {O, : a < A*} is a disjoint subcollection of contradiction with the

fact that there is no disjoint subcollection of O of size \. B

Theorem 4.1.7. For any sequence (k; : i € I) of cardinals and any regular
cardinal A > w, every finite product of one-point compactification spaces from

(ak; = i € I) has property R).
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Proof: This result is implied by Bell’s Theorem [4] that asserts every finite
product of ak has property R,, as R, is an imaging property. However,
we include a proof here as the proof given by Bell is quite sketchy. For

every finite subset S C I, we shall prove that H akg has property Ry. Let
seS
B = {bg : B < A} be a collection of clopen sets of Homs of cardinality .

seS
Assume that B does not contain a linked subfamily of cardinality A and we

try to construct a disjoint subfamily of cardinality A. For each 8 < A, bg

is the union of finitely many, say mg < w, basic clopen sets r? in Hom;s.

s€S
Without loss of generality let us say mg = m is fixed. Let n = |S|. Since

a basic clopen subset of aky is either a finite or a co-finite set, bg can be
written in the following form:
b= U= UTT# )
<m <m k<n

where for all i < m and all k < n either 77 (k) is a finite subset of x; which
without loss of generality can be assumed to be of a constant size for every
B < Xor r?(k) N k; is a co-finite subset of &; for every § < A and |r;\r? (k)|
is fixed for each k.

Define an indicator function I : m x n — {0, 1}

16k) = 0 if r’(k) is a finite subset of ry,
1 if the complement of (k) is a finite subset of fy.

For both cases, we apply a A-system lemma for each ¢ < m and k < n, using
the fact that A is uncountable cofinality. Let us assume that R;; is the root
for {r?(k) : B < A} where I(i,k) = 0 and if I(i,k) = 1, let R}, be the root
for {k\r’ (k) : B < A}. Before we complete this proof we have to prove the

following claim:
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Claim 4.1.8. For all i,5 < m there exists H C \ with cardinality \ such
that 8 <~ in H implies r° N rj =0.

Proof of the claim: First fix ¢, < m and then define a case function

b — {1,2,3,6) by v(k) = 21GR3IGH),
Let (S1) be the assumption that for all £ < n with ¢ (k) = 3,

=[Ri C Ry, & (V8 < \) (k) = Ral.

We can without loss of generality assume (S1), otherwise the claim holds
for 4, j immediately with H = A: If not (S1) then there exist £ < n with
Y (k) = 3 such that Ry C R}y and Ry, = (k) (V8 < ). Thus r?(k) C Ry
Also, rj(k) N Rj;, = () for all v as R, is the root of the complements of

. B _ : _
{r](k) : v < A}. Hence r; N7} = () for all 3,7 € A and by putting H = X

the claim is satisfied.

Similarly, we can assume (52) for all £ < n with ¢(k) = 2, where (S2) is the
assumption

S[Rjx C Ry & (VB < \) 7 (k) = Ry).

Finally, we are going to do a case analysis: Define a subset P C [\]? such that
{(B<~}eP iff +f N7r) # 0. We have that A — (A, w)? by Theorem 4.1.4.
Since A is uncountable from the main hypothesis, there is no subcollection of
A of cardinality A that is homogeneous for P. Therefore there is a countably
infinite set A C A with [A]? N P = . Since w — (w)?, we get k < n and an
infinite B C A such that 3 <  in B implies 7 (k)N i (k) = 0. We are going
to show that (k) = 1 by case analysis.

1- Clearly, (k) # 6: Otherwise I(i, k) and I(j, k) are both equal to 1 and
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hence 77 (k) and 7] (k) are co-finite. If Tf(k‘)ﬂ?’j(k‘) = () then rf(k:) C k\r] (k)
B

and thus 77 (k) is finite; a contradiction.

2- (k) # 2: Suppose not: From our assumption 77 (k) N r/(k) = 0. Thus
means that 7} (k) C k\77 (k), so we have Rjz C R!,. Let |R!,| = r. Choose
C ={B,0} € B, D= {y,7%, %} C B, such that if 3 € C and
v € D then g < ~. Thus if g € C, we have:

) (k) € w\rf (k)

ri (k) C R\ (k)

J

and hence, U ri(k) € £\r (k). But this is true for all §’s in C, so we have:
yeD

U ri(k) € k\r?' (k) and,

vyeD

U r] (k) € s\r2 (k).

yeD

By taking the intersection between them, we get:

Uik C s\ (0) 0 (N2 (R). ()

yeD

This gives us Urj(k) C Rj,. From (S2) since ¢(k) = 2 and R;, C R}, so
YeD
not the second part of (S2). This means that there exist § < A such that

Rji # r3(k). So Rjy is a proper subset of rJ(k). Thus |Rj| < [r(k)|, ie.
there is at least one extra element in 7’]@ (k) which is not on Rj;. But Ry is

a root for all 7/ (k) where v < A. Also from the assumption that all r}(k)
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of constant size, we get that |Ry| < |rd(k)| = ] (k)| for all v < A. Hence
] U 77 (k)| > r+1 which implies that |Rj,| > 7+ 1; a contradiction with(*).

yeD

3- Using similar method with (S1) we show that (k) # 3.

4- Hence, 1(k) = 1 which means that both Ry, and Ry are roots for {r (k) :
B < A} and {rj(k) : v < A} respectively. But (k) N rj(k) = 0 so,
Ri. N Rjr = (). We now apply thinning to complete the proof of the claim.
Since there are only finitely many 3’s in A such that 7 (k) N R # 0, remove
these f’s. The remaining f’s are such that (k) N Rjx = 0. For each
remaining [ there exist only finitely many v > § with T‘f (k) nrl(k) # 0.
Finally produce inductively a set H C X\ of cardinality A such that v > § in
H implies 7 (k) N r) (k) = . This proves the claim.

To complete the proof of this Lemma, just apply the claim m? times induc-
tively to get a subset K C X\ with cardinality A such that § < v in K implies
bgNby,=0. W

Definition 4.1.9. (Property Q,) Let A be an uncountable regular cardinal.
We say that a compact space X satisfies property @)y if for every A\ and
every family {Uy, Vataer of open subsets of X with U, C V,,, there exists an
A C X with |A| = A, such that either {V, : a € A} is linked or {U, : a € A}

15 disjoint.

In a Boolean space properties (), and Ry are equivalent as a clopen set B,

can be placed between any open sets U and V such that U C V.

Theorem 4.1.10. For each reqular cardinal A > w, property Qy s satisfied

by all multiadic spaces.
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Proof: This follows from Bell’s theorem in [4] which asserts that the property
@, is satisfied by all polyadic spaces and our theorem Theorem 3.3.1 which
shows A€ = €. 1t can also be proved directly using our Theorem 4.1.7.
Namely: Let A > w be a regular cardinal and X a Hausdorff space such

that for some cardinals x; and 7, X is a continuous image of H ak;. Since
1ET
property @, is an imaging property [4], it suffices to show that H ak; has
1ET
property @Qx. Since for all n, ak, are Boolean spaces, by Lemma 4.1.6 it
suffices to show that every finite product of one-point compactification ax;
has property R). This was proved in Theorem 4.1.7 for any cardinal x, and

for any regular cardinal A > w. B

4.2 Property K, for X and H(X)

We have seen in in section 4.1 Properties (), and Ry which dealt with pairs of
open sets or clopen sets. In this section we consider property K that deals
with a single family of open sets. We show that the family H (X ) of non empty
closed subsets of a regular ccc space X endowed with Vietoris topology has
property K, if H(X) fulfills property @,. This is a generalization of a result
of Bell who proved it for A = wy.

Definition 4.2.1. (Vietoris topology): Let (X, T) be a topological space and
let H(X) be the family of the non-empty closed subsets of X. The Vietoris
topology 7 on H (X)) depends only on the topological structure on X . Its base

1s defined by letting it have a basis consisting of all collections of the form
(V)={FeHX):(VVeV) FnV#0 A Fc| )V}
where V runs over the finite families of open subsets of X.
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Lemma 4.2.2. If H(X) satisfies Property Qy then so does X .

proof: Let {U,,V,}a<cx be a family of pairs of open sets in X such that
U, CV,. For each a < A, consider (U,) and (V,) which are basic open sets
in H(X)

Claim: (U,) C (V,,).

It suffices to show that VF' ¢ (V,,) there is an open set contains F' and disjoint
from (U,). Given such F such that F' ¢ (V,,). Consider two cases: FNV, =
and F NV, # 0.

1. If FNV, = 0 then FNU, = (). This means F' C X\U, and F € (X\U,),
hence (X\Uy,) N (Uy) = 0.

2. Let FNV, # 0. Since from our assumption F ¢ V,, we get F €
(X\Uy,, Va), hence (X\U,, V,) N (U,) = 0. These two cases prove that
(Ua) € (Vo)

Let A € [A]* be a subcollection of {(U,), (V,) }a<x that has for each o, 3 € A
with a # § either (U,) N (Ug) = 0 or (V)N (V) # 0. Suppose {(U,) }aca are
pairwise disjoint. We shall show that the family {U,}aca is pairwise disjoint
in X. Suppose not, if « # € A and U,NUz # () then U, NUj is non-empty
open set. Let x € U, N Up, hence {x} is closed and so {z} € H(X). We can
easily see that {z} € (U,) N (Up), which a contradiction. So {U,}aca are

pairwise disjoint.

Now suppose that {(V,)}aea are linked. Let a # B and (V,) N (V3) # 0.
Let F € (V,) N (Vp), hence F CV,,F C Vs, s0 F CV, NV, F # (. Hence
Vo NV # 0. Therefore {V,}aca is linked. W

Definition 4.2.3. (Hyper-extendible): Property P is called hyper-extendible
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iof it transfers from a Hausdorff space to its Vietoris hyperspace of all non-

empty closed subsets, i.e. if X has property P then so does H(X).

Definition 4.2.4. (Property K) Let A be an uncountable regular cardinal. A
Hausdorff space has property Ky, the property of Knaster, if every collection

of its open sets of cardinality A\ contains a linked subcollection of size \.

Lemma 4.2.5. If X is a Hausdorff space and \ is a cardinal with cf(\) > w
then Property Ky is hyper-extendible.

Proof: Suppose that a Hausdorff space X has property K and let us prove
that so does H(X). Let O = {O, : «a < A} be a collection of open sets
in H(X) of size \. We have to find a subcollection of O of size A such that
each two have non-empty intersection. We can without loss of generality
shrink O,’s to smaller sets. Let us assume that each O, is a basic open set
(V:* © i < ng). Moreover, we can thin out and assume that all n, are the

same value n. Here each V* is an open set from X.

By induction on 7 < n we choose A;’s each of A\ size such that Ag D A; D
-+ Ap_1 and for all ¢ < n, the family {V,* : a € A;} satisfies that each two
have a nonempty intersection. Each time we simply apply the property K

of X.

At the end we claim that {O,, : @ € A,,_1} is a family of pairwise non-disjoint
sets in H(X). So let « and /8 be from A,_;. Hence for each i < n we have
ven Vf is nonempty, say has a point x;. Then F = {z; : i < n} is a
nonempty closed set in X as every finite set in a Hausdorff space is closed.

Thus F' is an element of H(X) and it is easy to see that F'is in O, N Op. B

Lemma 4.2.6. For any cardinal A such that cf(\) > w, a reqular ccc Haus-

dorff space X with Property QQx has Property K.
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Proof: Let C = {V, : a < A} be a collection of open sets in X of size .
Since X is a regular space then for each a@ < X there exist an open set U,
such that U, C V,,. Since X satisfies property @y, there exists an A C X\ with
|A| = A, such that either {V,, : @ € A} is linked or {U, : a € A} is disjoint.
But X is ccc so, the cardinality of {U, : «a € A} is of most countable and
therefore the first possibility must occur. Hence, {V, : o € A} is a linked
subcollection of C, which proves that X has Property K,. B

Corollary 4.2.7. For any cardinal X such that cf(\) > w, if X is a regular
cce space and H(X) has property Qy then H(X) has property K.

Since H (X)) has property Q) so by Lemma 4.2.2 X has property ),. But a
regular ccc space with Property @, has Property K, (Lemma 4.2.6), X has
Property K. Since Property K is hyper-extendible (Lemma 4.2.5), H(X)
has Property K,. B

Corollary 4.2.8. Assume that X and H(X) are as in corollary 4.2.7. Then
H(X) has A-cc, where X is a cardinal such that cf(A) > w.

Remark 4.2.9. In the case where A\ = wy, Corollary 4.2.8 implies that H(X)

18 ccc.

4.3 Property W,

In this section we address the existence of compact spaces that are not mul-
tiadic. Since we have shown P€ = .# %€, in fact we only to discuss if all
compact spaces are polyadic. This is not the case by results of Mréwka in
[24] who gave examples of compact spaces which are not polyadic. For com-

pleteness we include his proofs as they also fit in general context of applying
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combinatorial properties of sequences to make conclusion about topological
spaces. Mrowka’s proof depended on a property called K;. To avoid a con-
fusion between K, for a regular cardinal A and K; we shall denote it by

Wi.

Definition 4.3.1. Let X be a topological space. Given a subset A C X of a

space X, the sequential closure [A]s., is the set
[A]seq = {x € X : 3 a sequence {a,} — z,a, € A}

that is, the set of all points v € X for which there is a sequence in A that

converges to x.

Definition 4.3.2. (Property W) A topological space X satisfies Property
W1 if the closure of the union of arbitrarily many Gs sets of X coincides

with its sequential closure.

Proposition 4.3.3. Suppose that X is a compact space with property Wy
and Y is a continuous image of X, then Y has property Wj.

Proof: Suppose that f: X — Y is a continuous surjection, in particular, it
is a closed map by the compactness of X. Let A be a family of G5 sets in Y,
by continuity, B = {f7}(A) : A € A} is a family of Gs sets. Let B* be the
union of B, by the assumption the closure C' of B* is equal to its sequential
closure. By the closeness of the map f, f(C) is the closure of the union of A.
Call this union A*. If y is in f(C), then f~!(y) is in C' and hence there is a
sequence (), from Bxconverging to f~(y). Then f(z,) is a sequence from
A* converging to y, hence f(C) the closure of A* is equal to its sequential

closure. B
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By applying the above proposition and Mréwka’s theorem [24] that states the
product of compact spaces H ak; verifies property Wy, we get the following

iel
theorem.

Theorem 4.3.4. Property W1 is satisfied by all multiadic spaces.

The above assertion can be used to provide some examples of various spaces
that are not multiadic or polyadic. We first introduce the following definition

and lemma which are needed to explain our examples.

Definition 4.3.5. Let X be a linearly ordered set by <, the order topology

on X is generated by the subbase of "open rays”
(a,00) ={z | a < x}

(—o0,b) ={x | x < b}

for all a,b € X. This is equivalent to saying that the open intervals
(a,b) ={x|a<z<b}

together with the above rays form a base for the ordered topology. The open
sets in X are the sets that are a union of (possibly infinitely many) such open
intervals and rays.

An element u € X is called the least upper bound of a subset A C X, u =
supA, if v < u for every x € A and if any v € X satisfying v < v for every
x € A also satisfies the inequality w < v. The greatest lower bound of a

subset A C X s defined analogously.

Lemma 4.3.6. A map from the hyperspace H(X) of a compact ordered space
X defined by A~ sup(A) is well defined.
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Proof: For each A € H(X), suppose that A has no maximal element. That
means for every a € A, there exists b € A such that b > a. The collection
{(00,a) : a € A} covers A. Since a closed set of a compact space is compact,

A is compact. Therefore there is a finite set C' C A such that U (00,a) = A.

acC
Take ¢ = maxC and hence A C (oo, ¢); a contradiction because ¢ € A.

Therefore 4 a € A such that Vb € A, b < a. Hence A has a maximal element
and sup(A) = max(A) is well defined. W

Lemma 4.3.7. If X is a compact ordered space, then X is a continuous

image of H(X).

Proof: Define a function ® that maps a closed subset A of X to sup(A).
So ®: H(X) — X. This is well defined by Lemma 4.3.6. To show that ®
is continuous, let (a,b) be an open set in X. Then we have to assert that
®~!((a,b)) isopen in H(X). Let C be a closed in X such that C € ®~!((a, b))
and ®(C) =~. So v € (a,b). Hence C N (a,b) # (). Let

A={A: Aisopenin X, a<supA<b& CNA=#0D}.

We claim that A is an open cover for C'in X:

If there is an € in X such that v < ¢ < b then (—o0,e) € A and hence
C C (—o0,¢), otherwise if there is no such an e then b = 7 4+ 1 and hence
(—00,7] = (—00,b). If z € C, x <~ then x € (—00,7), also v € (—o0,7] =

(—00, b), which is open in X, hence we prove our claim.

Since C' is closed in a compact space X, C is compact. Therefore there

exists a finite set {Ay,---, A,} C A such that C' C U A;. Without loss of
i<n
generality Vi < n, C' N A; # (), since otherwise we can throw away the A;.

75



Now consider

(Ay,--+, Ay) ={F C X : F closed and (Vi < n), FﬂAi#@&FQUAi}.

i<n

Hence for any closed set F' € (Ay,---, A,) we have that

F C U A; = sup(F) < sup(U A;) <b.

<n 1<n

This is an open basic set in H(X) which contains C. To check that
<A17 T An> C q)il((a’ b)) :

we need to check that for any F' € (Ay,---, A,), sup F' € (a,b), but this is
true by our choice of 4. B

Examples: Property W is not verified by ordered compact spaces that are

not first countable.

If X is not first countable then there is a point 2o € X such that y(zq, X) >
w. Hence either sup{z € X : = < 2y} = 2 and for any countable set A
subset of {x € X : = < xo}, sup(4) < zp or inf{z € X : o <z} = 2y and
for any countable set A subset of {x € X : © > x¢}, inf(A) > zy. To prove
this consider the following 4 cases. Suppose that sup{z € X : =z <z} =y
and inf{z € X : zo <z} = z. Firstly, y < xo and z > xy. This implies that
{zo} = (v, 2) and hence x(z¢, X) = w, a contradiction. Secondly, y < xy and
there exist a countable set A subset of {x € X : = > x}, such that inf(A) =

xo. Then zy = ﬂ (y,a) and so x(xg, X) = w; a contradiction. Similarly for
acA

the third case when we have a countable set A subset of {z € X : = < x},

such that sup(A) = zg and z > zg, ¥y = ﬂ(a, z). Finally, if there exist

acA
two countable A;, A subset of {z € X : z <0} and {z € X : z > x0},

76



respectively such that sup(A4;) = zo = inf(Ay), then ﬂ (a,2) = xg =

a€A;
ﬂ (y,a). Hence x(zg, X) = w.
agAs
Now consider the first case where sup{z € X : = < z9} = x¢ and for

any countable set A subset of {x € X : x < x0}, sup(A) < zy. Here
xg €cd({xr € X x < x0}), and hence {x € X : = < x0} is not closed. Also
if A is a countable subset of {z € X : = < x¢} then

cl(A) = AU {sup(A)}U{inf(A)} C{r e X : = <z}

Hence {x € X : = < ¢} is a sequentially closed non closed subset of X and
{r € X : o < x0} is a union of G5 sets. So X does not coincide with its
sequential closure. Hence X does not satisfies property Wj. Similarly for the
second case where inf{z € X : zy < 2} = x¢ and and for any countable set

A subset of {x € X : x> x}, inf(A) >z .

Corollary 4.3.8. If X is an ordered compact space that is not first countable,
then neither X nor H(X) are multiadic.

Proof: We shall prove non-multiadicity only for H(X), since it is clear for
X from last example. Assume that X is compact ordered, then X is a contin-
uous image of H(X) as in Lemma 4.3.7. Let g be a surjective map defined on

H(X) onto X. Suppose that H(X) is multiadic, so let f : HOU% — H(X)
iel
be a continuous surjective function. Then go f : H ak; — X is continuous
iel
and surjective, which contradicts the assumption on X. W

Corollary 4.3.9. If X is a compact ordered space and H(X) is multiadic,

then X s metrizable.
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Proof: From the last example we have shown that if X is a compact ordered
space with H(X) multiadic, then X must be first countable. So, x(X) = w.
By invoking Theorem 3.2.14 that states x(X) = w(X) for a multiadic space
X, it follows that w(X) = w and therefore X must be metrizable. B

4.4 Generalizations of the Sierpinski graph

In the beginning of this section we recall what Standard Sierpinski graph
means. After that we give generalizations of the Standard Sierpinski graph
using ordering defined by Hausdorff [15] [see chapter 9 of [28]]. Then we con-
sider another property called Sy that also deals with a single family of open
sets. We show that under GCH these properties are equivalent. Some appli-
cations of such properties among multiadic spaces will be provided. Finally,
we use the generalized Sierpinski graphs to give an example of a regular closed

subsets of multiadic spaces of arbitrarily large weight that are not multiadic.

Definition 4.4.1. (Standard Sierpinski graph): Let R be the set of real
numbers, let A C R be of cardinality wy, let < denote the usual ordering on
A and let < denote a well-ordering on A. We say < and < agree on {x,y}

if x <y< x<y. Otherwise, we say that they disagree on {x,y}.

Notation: Let A be defined as in the above definition. Define G C [A]* by
{z,y} € G iff < and < agree on {z,y}. For x € A, we denote the subset of
A where {z,y} € G by J,, that is J, = {y € A: {x,y} € G}.

The key property of the Standard Sierpinski graph G is the following remark.

Lemma 4.4.2. There exists no uncountable A* C A on which either < and

< agree for all of [A']* or on which < and < disagree for all of [A']?.
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The proof of this Lemma is similar to one given later (Theorem 4.4.8). Now

we may assume the following:

Claim 4.4.3. Forx € A, J, and A\J, are both uncountable.

Proof: Let B = {x € A : J, or A\J, is countable}. We have to show
that B is countable and then we will define a set AT C A to be AT = A\B.

Clearly it is exactly in the form:
At ={x e A: J, and A\J, are uncountable}.
with |AT]| = wy. This would complete the proof of the claim.

Suppose for contradiction that B is uncountable. For all x € B either J,
is countable or A\J, is countable. So, either there exist an uncountable
By subset of B such that for all x € By, J, is countable or there exist an

uncountable B subset of B such that for all x € By, A\J, is countable.

Firstly, if x € By then for any a@ < w; choose by induction
Za € Bo\ | (Joy U{zs}).-
B<a
If 8 <o, 24 ¢ Joy s0 {Ta, 73} ¢ G. Hence <, < disagree on {z,,25}. This
can not happen by the second part of Lemma 4.4.2. Therefore By is not

uncountable. Secondly, in an analogous fashion, we get there is no such Bj.

Thus, B is countable. W

Definition 4.4.4. [15] Given an ordinal c, a linear ordering A is said to be
an pio-ordering if, given any two subsets X, Y C A each of cardinality less
than X, and such that X <Y (that is, for all z € X and all y € Y we have
x < y), there is an a € A such that X < a <Y (that is, z < a < y for all
re€XandallyeY).
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Let A, consist of all w,-sequences of 0 and 1, ordered lexicographically, where
W, is the ordinal X,, i.e. if a = (as : € < wy) and b = (be : € < w,) are
two such sequences, a < b if at the first £ with a; # b we have a¢ < be. So
|Ay| = 2%

Let Q, consists of those elements a € A, for which there exists an ordinal
7 < wq such that a, = 1 and a¢ = 0 for all £ > 7; thus a sequence is in Q,
if and only if it has a last 1. Thus Q consists of those w-sequences in which

1 occurs a finite but nonzero number of times.

Theorem 4.4.5. Hausdorff [15]: If X, is a reqular cardinal number then Q,

1S an i -ordering.

The cardinality of Q,: For each £ < w,, let Q, (&) consist of all those elements
a € Q, such that ¢ is the last ordinal such that a; = 1; thus {Qu(€) : £ < wa}
is a partition of Q,. The number of elements of Q, (&) is the same as the
number of subsets of £, by the function mapping each element of Q, (&) to the
set of ordinals less than £ at which its value is 1. Thus if the cardinality of £ is
Ng, Q. (&) has 2% elements. Since for each 3 < «, there are Rg,; ordinals of
cardinality Ng, Q, has a total of > {Ng1-2% : B<a}=>{2%: B<a}
elements since Vg1 < 2%, Now if @ = v + 1 is a successor ordinal, then
Q gamma+1 has exactly 2% elements. So if GCH holds, |Qu| = |Q,41] =
N, =N, and if a is a limit then |Q,| = sup{Ns41 : S < a} =N,. In any

case |Qq| < 28e.

Define R, to be the subordering of A, containing all w,—sequences except
those which are eventually 1. The number of sequences which are eventually

1is sup{2®# : B < a}. Hence under GCH, |R,| = 2%«. It is clear that Q, is

dense in R, as follows. Let p,q are two sequences in R, with p < q. There
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exists a unique ¢ such that p, = ¢, for all v < £ but p¢ = 0 and ¢ = 1.
Define r € Q, such that r, = ¢, for v < { and ¢, = 0 for v > {. Hence
p <r < q. By using the density of Q, in R, we can get the following result:

Lemma 4.4.6. Assume GCH holds. Then for any o > 0, in R, there is no

increasing or decreasing sequence of length wq.1.

Proof: We have |Q,| = N,, and |R,| = 2% = R, ;. Since Q, is dense in
R,, it impossible to find a strictly increasing sequence in R, of order type

Wa+1-

Suppose otherwise, there is a strictly increasing sequence (z5 : [ < Wat1)
in R,. Since Q, is dense in R,, for each 8 < v with 3 < z, there exists
g € Q, such that x5 < gy < z,. Hence (g) : A € wy+1) is an increasing

sequence in Q,, of order type wy41; a contradiction as |Q,| = X,. B

In the following definition we give a generalizations of the Standard Sierpinski
graph. Now we can use the same notation in the generalized graph as we did

in the Standard Sierpinski graph.

Definition 4.4.7. (Generalizations of the Standard Sierpinski graph): Let
R, be the set of cardinality 2%, let A, C R, be of cardinality 2%, let <
denote the usual ordering on A, and let < denote a well-ordering on A,.
We say < and < agree on {z,y} if x <y < = < y. Otherwise, we say that
they disagree on {z,y}.

Notation: Let A, be defined as the definition 4.4.7. Define G C [A,]? by
{z,y} € G iff < and < agree on {x,y}. For x € A,, we denote the subset of
A, where {z,y} € G by J,, that is J, = {y € A: {z,y} € G}. Assume that
forx € A, J, and A
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Theorem 4.4.8. Assume GCH holds. There exists no Al, C R, of size wai1
on which either < and < agree for all of [A']? or on which < and < disagree
for all of [AL)%.

Proof: Suppose not, so there is A/, C R, of size wy41 such that for all of

[A7]? either < and < are agree or <and < are disagree.

Firstly, in the case, where for all z,y € AL, z < y iff x < y , we can
construct an increasing sequence (z,) € (A., <) of length w,y1. Since <
and < are agree, then (z,) an increasing sequence in (A, <) of length w,11

which contradicts Lemma 4.4.6.

Secondly, when < and < are disagree, if we introduce an increasing sequence
(y) € (AL, <) of length wyi1, we get a decreasing sequence (z.,) in (A7, >)
of length w,.1, absurd since there is no decreasing subset of R, of the order

type way1- B

Analogously to the proof of Bell in [4] we can prove that the property of being

r-multiadic is not regular closed hereditary as in the following theorem.

Theorem 4.4.9. Suppose GCH holds. There is a closed subset of the polyadic

space (aw,4+1)? which is not multiadic.

Proof: Let G be the generalized Sierpinski graph on the set w,1. Put U =

{(7.8) : {7, B} € G} C (aw,+1)*. Note that for any 7, f < wyi1, (v,8) €U
iff (v, 8) € U since (v, B) is an isolated point in (aw,,;1)%. For each § < w1,

put Bs; = ({6} X aw,11) U (aw,1 x {0}) and put Us = B; N U. It is clear
that Uy is a clopen set in U.

Now, Us N U, # 0 < {0,7} € G. Indeed, suppose that (z,y) € Us NU,, so
(z,y) € BsNU and (x,y) € B,NU. This implies that (z,y) € ({§} x aw,11)U
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(awyp1 x {0}) and (z,y) € ({7} X awugr) U (awpq1 X {7v}). This holds iff
(z,y) = (&,7) or (z,y) = (7,9). Since (z,y) € U, so {z,y} = {6,7} € G.
Thus the collection F = {U, : o < w41} of subsets of U does not have

neither linked nor disjoint subfamily of size w41, i.e it violates property

R

no subcollection A’ of G of size w1 on which that {U, : a € A’} is linked or

as from the key property of the generalized Sierpinski graph, there is

Wpt1)

disjoint. But property R, is equivalent to property Q. o+1 for the Boolean

Wp+1

space (aw,,;1)?, therefore U is not multiadic by Theorem 4.1.10. B

Corollary 4.4.10. For any regular cardinal k there is a polyadic space of

weight at least k with a regular closed subspace which is not k-multiadic.

Corollary 4.4.11. The property of being k-multiadic is not reqular closed
hereditary.

Now for a regular cardinal \ we give another definition of a Ramsey-theoretic
property called property S, and show analogously to Bell that this property

is equivalent to K .

Definition 4.4.12. (Property Sy) For any regular cardinal A a space X has
property Sy if every collection of size A of its open sets contains a subcollec-

tion of the same size which is either linked or pairwise disjoint.

Similarly to the proof of Bell in [4] we can prove the following proposition.

Proposition 4.4.13. Property S, ., and property K,, ., are equivalent for

a+1 a+1

any space X and any .

Proof: Property K, ., clearly implies property S, .,, so we only need to

+1 +17

prove the other implication. Assume X has property S, ,,. Let O be an open
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collection of sets in X of cardinality w,.1. We need to show it has property

K

waya Dy showing that O does not contain a disjoint subfamily of size wq1.

Suppose not, and let O’ be a disjoint subfamily of O with |O'| = way1. Let G
be the generalized Sierpiriski graph on R, so by GCH |G| = way1. Let ¢ be a

bijection ¢ : [R,]*> — O'. For each z € R,, put U, = U Y({x,y}). Then,
{z,y}ed
for each z € R,, U, is open and, furthermore, the collection {U, : x € R,}

has property that U,NU, # emptyset iff {z,y} € G. Thus property S, ., is
violated by the collection {U, : x € R,} as there is no a linked subcollection
nor a disjoint subcollection of size w,y;. Hence, O must contain a linked

subfamily of size w,11 and therefore X has property K, . B

Lemma 4.4.14. Under GCH, the polyadic space (aw-41)* has Property
Quw, ., but does not have Property S, ..

Proof: From proposition 4.4.13, we only need to show that the polyadic
space (aw,41)” does not satisfy Property K, ,,. The collection O = {O; : i <
w41} of open sets in (aw,41)* where O; = {2 € (aw,41)* @ 2(1) =i} is a

disjoint family of open sets of size w,,; which violates Property K |

Wy+1°
Inspired by Avilés [2], we can prove the following theorem.

Theorem 4.4.15. Assume GCH. Let I' C R, be a set of size wa11 and
1 < p < oo. There ezists an equivalent norm on 1,(I") whose unit ball does

not satisfy Property Q.. ., and hence it is not wWe1-multiadic.

Proof: Consider w,1 as a subset of I and let ¢ : w,11 — [' be a one-to-one
map because |I'| = R,;1. Let G be the generalized Sierpiriski graph on the

set wq41 written in the following form

G ={(7,8) € Was1 X Wap1 : 4(7) < @(B) <=~ < [}

84



Then define an equivalent norm on [,(I') x {,,(I") ~ [,(I") by

1, )" = sup{llzllp, [Yllp, [2al + lys| : (. 8) € G}

It is clear that ||(z,v)| = sup{||z|l,, [|y]l,} < |[(z,y)]| and since

IN

sup{|x,| + [yg| : (v, B) € G} sup{|@,| + [ys| : (v, 8) € T x I'}

< sup{|z,|: v €'} +sup{lys| : B €'}
< Q)P+ s

el BeT
= zllp + llyllp-

Therefore,

Iz, )1l

IN

sup{[[z(lp, lyllp: llzllp + NIyl }

N

<zl + llyll
< C-sup{[lz[ly, [lyllp, } where C'>2

C ()l

This shows that ||.||" is equivalent to ||z||. Now let K be the unit ball of [,(I")
considered in its weak topology and norm | - ||". Fix numbers 1 < & < & <

217%. The families
Us ={(z,y) € K : |zg| + [ys] > &2}, B < wara

Vi = {(z,y) € K : ’-’%’ + ]y5| > &1}, B < watt

are open sets because all the functionals f : [,(I') x [,(I') — R are continuous

in the weak topology. For instance, define f to be f(Z,7y) = |z,| + |y,|. This
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is a functional which is continuous in the original topology by the norm, so
it is continuous in the weak topology. Thus the inverse image of any open
set is open. But f~!(&,00) = {(7,7) : f(T,¥) > &} = Ups, hence Uy is
open. Similarly for V. The two families {Us}gcw, 1 {V5} g<wa,, satisty that
Us C V. Moreover, for any 3,7 € way1, UsNU, = 0 if and only if (8,7) € G
if and only if V3 NV, = 0. Namely, if there is some (z,y) € V3 NV, then

[zs| + |ys| + |24 + |ys] > &+ 6 > 2

and therefore either |z + |z,| > 1 or |yg| + |y,| > 1 and this implies that
if (8,7) € G then ||(z,y)| > 1 (Contradiction since (z,y) € K). Hence
(B,7v) ¢ G. On the other hand, if (5,7) ¢ G then the element (x,y) €
l,(I") x 1,(I" ) which has all coordinates zero except x5 =z, = yg = y, = 27
lies in UgNU,. Thus from the fact that G is the generalized Sierpinski graph
and GCH hold, there is no A C w1 of size wa41 on which {Ug : € A}
is disjoint or on which {V3 : 3 € A} is linked. Therefore, K does not have

property (Qu,.,) and hence, it is not wyi-multiadic. W
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Chapter 5

Some Consistency Proofs

The aim of this chapter is to prove consistently that there can be a singular

cardinal A such that (a)\)* is not an image of H a)\; for any sequence (\; : i €
i<I

I) cofinal in \. We remind the reader that in Corollary 3.2.17, we have proved

the analogous result for a weakly inaccessible cardinal \.

5.1 Non equivalent

Recall from example 3.2.1 that if ) is an inaccessible cardinal then ¢((a))?) =

At so by Gerlits” Theorem 3.2.16 we got the following:

Remark 5.1.1. For a weakly inaccessible cardinal \, (a\)* is not a contin-

uous image ofH a\;. (*)

<A
Our aim is to show that in a forcing extension in which we start with a

cardinal A which is at least inaccessible in V', and make it singular in V|G|,

the formula from (*) still holds. Of course, for such an argument we assume
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that V' is a universe of ZFC' in which there is a cardinal A with the required

properties ( inaccessible, measurable etc).

Let us suppose that we are in such a forcing situation, for example A is
measurable and G is Prikry generic, hence in V[G], A is singular with c¢f(\) =
Ng. Let F be a disjoint family of A\ many open subsets of () in V. From

example 3.2.1 we know that we can take
F={{z €(aN)*: z(1)=8}:8< A}

Lemma 5.1.2. F is still a disjoint family of X many open subsets of (aX)*
in V[G].

Proof: Follows by definition of . B

Now work in V[G] and suppose that (\; : ¢ < i*) is a cofinal sequence in \.
By Gerlits’ Theorem 3.2.16, there is no surjective map from H al; to (aN)r.
i<
Therefore we have proved:
Theorem 5.1.3. Assume the consistency of a measurable cardinal. Then
it is consistent that there is a singular cardinal X such that (a)\)* is not a
continuous image of any Ha)\i where i* = cf(X) and (N\; : i < i) are
i<i*
ordinals or cardinals smaller than A and with limit \.
Theorem 5.1.4. Assume the consistency of a measurable cardinal k with
the Mitchell order o(k) = k*+. Then it is consistent that (aX,)* is not a
continuous image of any H a\; where (\; : i < i*) are ordinals or cardinals
i<i*
smaller than N, and with limit N,,.

Proof: For Theorem 5.1.3, use the Prikry extension [27] on a measurable

cardinal. In this forcing we start with a model V' where A is measurable and
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in the extension V[G] it becomes singular of cf(\) = w. In V[G] we apply
Lemma 5.1.2.

For Theorem 5.1.4 use a Gitik’s extension [14] over a measurable cardinal x
with o(k) = k*T. The proof here is the same but the assumption are that

in V' is measurable with o(k) = k7.

Remark 5.1.5. o(k) = k™ means that the Mitchell order of k is k™.
These notions are not explained here because they require a lot of background

going outside of the scope of this thesis.

5.2 Prikry Forcing

Since we have seen the relevance of Prikry- like extensions in the previous
section, we shall now explore the concrete simplest extension of that type,
namely the Prikry forcing. We devote this section to a review of its proper-

ties. The material in this section can be found in [17].

Definition 5.2.1. A partial order, P = (P, <), consists of a set P together
with a relation that is transitive, reflexive and anti-symmetric. A forcing
notion is a partial order (P, <) with the greatest element 1p. Elements of a
forcing notion are called conditions. We will often abuse notation by writing

p € P rather than p € P.

Definition 5.2.2. Let (P, <) be a forcing notion. A chain in P is a set
C C P such thatV p,q € C (p < q or q <p). p and q are compatible iff

IrePr<pAr<q);
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otherwise they are incompatible (p L q). An antichain in P is a subset A C P
such that ¥p,q € A(p # q — p L q). A partial order (P, <) has the 0 chain

condition 6.c.c. iff every antichain in P has size < 6.

Definition 5.2.3. A subset D of P is called dense if for every p € P there
1s some q € D with ¢ < p.

Definition 5.2.4. A collection Fof non-empty subsets of a partially ordered
set PP is a filter on P if:

1. F is closed upwards. That is if p < q and p € F, then q € F;

1. If p,q € F, then there exists r € F such that r < p and r <q.

Definition 5.2.5. Suppose that M s a countable transitive model of a suf-
ficient amount ZFC* of ZFC'. A set of conditions G C P is generic over
1. G is a filter on P;

it. If D is dense in P and D € M, then GN D # ().

We also say that G is M-generic, or P-generic (over M ), or just generic.

Definition 5.2.6. By induction we define objects that are P-names:
7 is a P-name iff for all (6,p) € 7 for some p € P and & is a P-name.
For a P-name and a filter G, let 7¢ = {0¢ : Ip € G((6,p) € 7)}. Again this

1s a recursive definition. We also set
VIG] = {7 : 7 € V is a P-name}.

Theorem 5.2.7. Let V E ZFC* and P be a notion of forcing. If G 1is
P-generic filter over V', then V|G| E ZFC* and G € V[G].

LOf course ZFC is used to denote the usual Zermelo-Fraenkel axioms of set theory

with Axiom of choice.
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The forcing relation I is defined as follows:

Definition 5.2.8. Let 71,7y, , 7, be P-names and ¢(71, 72, ,7s) be a
sentence in the language of set theory. Then for a condition p € P, p IF
“O(T1, 7o, -+, Tn)” iff for any generic filter G such that p € G, we have V[G] F

o((T1)a, (o), 5 (Tu)a)-

Definition 5.2.9. A partially ordered set (P, <) is separative if for all p,q €
P with p £ q, there exists an r such that r < p that is incompatible with q.

This property is needed to prove that the generic filter G' of PP is not in V.

Proposition 5.2.10. Suppose that P is a separative forcing notion and G is

P-generic over M, for some M a transitive model of ZFC*. Then G ¢ M.

Proof: Suppose otherwise. Let D = P\G. We claim that D is a dense
subset of P. So, given p € P, as P is separative, we can find ¢ and r such that
q L r and both extending p. Not both ¢,r can be in G, as G is a filter, so at
least one has to be in D, proving that D is dense. Since G € M and M is a
model of ZFC, D is in M-as we can evaluate it in M using the operations U, \
which are expressible in M and absolute by transitivity, and the parameter
G which is in M. Since D € M and is dense, we must have GN D # () by G

being generic, a contradiction. W

Now we shall give some definitions relating to measures.

Definition 5.2.11. Let S be a nonempty set. A measure on S is a function
w:P(S) — [0,1] such that

(a) p(0) =0, p(S)=1.

(b) p({a}) =0 for every a € S.
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(d) If {X,, : n €w} isa collection of mutually disjoint subsets of S, then
n((J Xa) =D n(Xa).
n=0 n=0

A consequence of (b) and (d) is that every at most countable subset of S has

measure 0. Hence if there is a measure on S, then S is uncountable.

Definition 5.2.12. A filter F on a set S is a subset of P(S) with the fol-
lowing properties:

1. S isin F, and if A and B are in F, then so is their intersection.

1. The empty set is not in F.

1. If A€ F and A C B, then B € F, for all subsets B of S.

The first two properties imply that a filter on a set has the finite intersection

property.

A collection U of subsets of P(S) is an ultrafilter if is a filter, and whenever
A CP(S) then either A € U or S\A € U. Equivalently, an ultrafilter on S

1s @ maximal filter on S.

An ultrafilter is k-complete if it closed under all intersections of fewer than

K sets.

Definition 5.2.13. A normal measure over a cardinal x is a k— complete
ultrafilter U such that for any sequence (X, :a < k) of elements of U its

diagonal intersection

AocnXo={{<r: €)X} €U,

a<é

Equivalently, if f: k — Kk is such that f(a) < « for most a < k, then there
is a B < k such that f(a) = B for an ultrafilter many o < k.
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Definition 5.2.14. A cardinal is called measurable if it has a normal mea-

sure.

The existence of such a cardinal can’t be prove in ZFC.

Definition 5.2.15. Let xk be a measurable cardinal and let U be a normal
measure over k. Prikry forcing is the poset Py consisting of pairs (s, A) such
that s is finite increasing sequence of ordinals less than k and A C k belongs
to U. A condition (t, B) is stronger than (s, A) if t is an initial segment of
sand AU (s —t) C B, i.e

(t,B) > (s,A) <> s extends t, AU (s—t) C B.

We immediately note that if (s, A) and (¢, B) are compatible, then ¢ is an
initial segment of s or vice versa. We also note that any two conditions
p={(s,A), ¢ = (s,B) with the same first coordinate are compatible. Hence

any antichain if Py has size at most x (i.e. Py has the k*-c.c.).

Proposition 5.2.16. [20] If k is a cardinal of a countable transitive model
of ZEC*, M, P € M satisfies k*-cc in M, then P preserves reqular cardinals
> kT, and also preserves cofinalities > k. If also k is reqular in M, then P

preserves cardinals > K.

This shows that all cofinalities and cardinals above and including x are pre-

served by Py .

Note that Py is not separative, because for some p £ ¢ there is no r < ¢ such
that » L p. Let p = (s, A),q = (s, B) be such that B & A. Then ¢ < p so
p,q are compatible. For all r = (¢, C') with r < ¢, s is an initial segment of

tand CU (t —s) € B & A. Hence r < p and therefore r, p are compatible.
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To make Py separative, one more restriction is required on conditions (s, A)
which is A N (max(s) + 1) = (. The new notion of the Prikry forcing Py is

dense in Py, so they give the same generic.

Definition 5.2.17. A p.o. Pis (< k)-closed, if for every decreasing sequence
of < Kk conditions in the forcing po > p1 > -+, there is a condition that is

below all of them.

Py is not (< k)-closed: Consider the conditions (s;, k) where s; = (0,--- ,4)
for i € w. This is a sequence of w-many conditions, and clearly (s;;1,x) <
(s;, k), but there is obviously no single condition below all the (s;, k): where
(s, Ay such a condition, then s would have to be infinite, which contradicts
the definition of condition. Thus to know that IP;; preserves cardinals below
k we can not apply the theorem [20] that says if P € M, X is a cardinal in M
and P is (< \)-closed then P preserves cofinalities and cardinals < A. The
cardinals < k are preserved by Prikry forcing because of the Prikry Lemma

(Theorem 5.2.19).

Lemma 5.2.18. If G is Py-generic and x = J{s : A (s, A) € G}, then x
is an unbounded subset of k of ordertype w and V|x] = V[G].

An w-sequence, x, is called a Prikry sequence for U. The generic set G' can

easily reconstructed from z by:

G, ={(s,A) € Py : s is an initial segment of x and z\(max(s) +1) C A}.

So, VI[G]| = Vz].

Theorem 5.2.19. Prikry[19] : Suppose that r is measurable and U is a

normal ultrafilter over k. Then for any (s, A) € Py and a formula ¢ in the
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forcing language, there is a B C A with B € U such that (s,B) || ¢ (i.e.
(s,B) IF ¢V (s, B)IF—p).

This implies Lemma 5.2.20 that shows no new bounded subsets are added to

k after the forcing with Py .

Lemma 5.2.20. Every bounded set in V[G] must be in V.

proof: Let A € V|G|, A C k with sup(A) < k. Let 7¢ be a name and p a

condition in Py such that 7¢ = A and assume
plE7 C kK, sup7 < K.

Let ¢ < p, a < k such that ¢ IF 7 C a. Without loss of generality assume
that « is a limit ordinal. By induction on § < a we construct a decreasing

sequence q = qo =" q; =" -+, such that

i. a1 || B € T, given gz, use the Prikry lemma to find gg41.
it. For the limit 8, ¢ <* {q¢, : 7 < B} of length < k. At the end let
o < (B < @)and VB < @, qo || B € 7. Thus the set {f < a: ¢, || B €7}

is bounded and it is in V. Hence cardinals < x are preserved. H

Theorem 5.2.21. Prikry[19]: Suppose that k is measurable and U is a nor-
mal ultrafilter over k. If G is P-generic, then PP preserves cardinals (i.e. the

cardinals of V and V[G] coincide) yet cfV1 (k) = w.

5.3 More results

Let A be a measurable cardinal in V. Let G be a Prikry generic and let
(kn 1 m < w) be a cofinal sequence of A in V[G]. Recall that it follows from
Theorem 5.1.3 that
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Theorem 5.3.1. In V[G], there is no continuous map from H aky, onto

n<w

(a)™.

We would like to explore how low we can go on the exponent of aA and still
get an analogue of Theorem 5.3.1. That is, for which 6 is it true that there

is no continuous map from H ak, onto (aX)?. The following Lemma 5.3.3

nw
shows that for § = 1 is too small. First we will start with the following

Lemma:

Lemma 5.3.2. If (k, : n < w) is a Prikry sequence then there exists a

surjective map

f: Homn—»ozw.

n<w

Proof: Fix a sequence (x, : n < w) € H ak, such that Vn, z, # 0. For
n<w
each n € w, let O, be the set that consists of all points in H ak, which

nw

th

contains (n—1) zeros in the first (n—1) coordinates and x,, in n*"' coordinate.

O, ={(an) € H akp : (an: n<w)=1(0,0,---,0)"x,Azx}.

It is clear that for n # m, O, NO,, = 0. Then we can define f : H ak, —»

nw
aw such that:

n if (a,) € O,

oo otherwise.

fan)n<w) =

We should show it is continuous especially for any open set around co. Let

U = aw\W where W is finite. That means W is closed. Since ¢ 1(W) =
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Umew Om is closed in H (K, its complement is open and it contains ¢~ (U).

n<w
Hence f is as required. B
Lemma 5.3.3. If (k, : n < w) is a Prikry sequence then there exist a

surjective map

f: H Ky = Q.
n<w
Proof: Fix n € w. For each a € &, consider the set F¥ that consists of all

points in H ak, which contains (n — 1) zeros in the first (n — 1) coordinates
n<w

and then # in the rest of other coordinates where 3 € r,,. Obviously, |F?| =
|| IE F = JFY, |Fl =\ Let

0 = {(an) € H aky (a0 n<w)=(0,0,---,0)"(B)azx}.

n<w
O? is open and it contains F?. Also the collection O = UO;? is a pairwise

disjoint family. Therefore there is a bijection between O and A\. Enumerate

O as {Op : [ < A}. Define the required map f : H ak, —» a) as the

n<w
following;:

15} if (an) S O,B

oo otherwise.

f{an)n<w) =

By applying the same argument as in proving the continuity of f in Theorem

5.3.2, we get our conclusion. B

We would like to know if 6 = w would work, that is if in this extension there

is a continuous map from | | ak, to (aX)®. However, for the moment, we

n<w
could not resolve this problem.
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The reader might be tempted to think that to obtain a continuous map from

H ak, onto (aX)?, all we need to do is to take a diagonal of the mapping just

n<w
mentioned. Note, however, that this idea will not work because the require-

ment in Shapirovskii’s Theorem 2.1.11 that the family be orthogonal, is not
satisfied. Consider ¢ : H ak, — (aX)® given by g(a) = (g1(a), g2(a),---).

n<w

Suppose G = {g, : n € w}, where g, = {g,'(y) : y € a\}. If we
want to prove that this is orthogonal, it is sufficient to show that for any
m < w, {g, : m < m} is orthogonal. Given n; < ny < m and A; €

Gnys Az € gn,. Then Ay = g, !(s) for some s € H akn, Ay = g, (t) for

n<ni
some t € H k. This implies that g, '(s) = {a € displaystyle[], ., osn :
n<ng
(fl(a)v fl(a)7 e 7fn1) = 3}7 grtzl(t) = {a S H Qknp - (f2(a)7 f2(a)> T 7fn2> =

n<w

t}. Hence, g, '(s) N gy, (t) # 0 iff sat. Clearly that this is not always true in

our case.
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