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Abstract

Biogenically-produced halocarbons play an important role in regional and global biogeochemical 

processes.   These compounds are  short-lived (lifetimes  <6 months)  and so have temporal  and 

spatial variability in their atmospheric distributions.  Marine regions, in particular coastlines, have 

been  identified  as  important  source  regions  for  these  compounds,  and  within  these  regions 

macroalgae (seaweeds) are an important source.  Despite their short lifetime, it is believed that 

biogenic bromocarbons may contribute to stratospheric inorganic bromine (Bry).  Measurement and 

model studies have identified a 6 (1-8) ppt excess of stratospheric Bry  that cannot be accounted for 

via known sources of longer-lived halocarbons.  Tropical regions are believed to play an important 

role in this process, as deep convection may act as a rapid transport mechanism allowing these 

compounds  to  reach  the  upper  troposphere  within  their  atmospheric  lifetimes.   Despite  this 

potential importance, gaps still  remain in our knowledge of halocarbon biogeochemistry in this 

region.  This study provides the first dedicated measurements of tropical macroalgae via laboratory 

incubations of 15 species.  Laboratory studies on temperate macroalgae were also performed, with 

a focus on the impact of exposure and desiccation on halocarbon emissions.  Desiccation-related 

halocarbon emissions are of interest due to a growing seaweed aquaculture industry; seaweeds are 

often  left  to  dry before  processing.   In  situ atmospheric  measurements  of  halocarbons  around 

Malaysia  as  part  of  the  SHIVA  campaign  are  also  reported  here.   A  study  of  halocarbon 

concentrations in Malaysia allowed the identification of different regions characterised by different 

source and atmospheric transport processes.  We identified that strong coastal sources do exist in 

this region, but that their distribution is patchy and model studies should not assume a constant, 

strong coastal source.  Laboratory and field measurements were combined in a final discussion 

providing annual emission estimates for the Malaysian and south east Asian region.  Of particular 

interest is the potential impact of aquaculture, which, if projected expansions in production are met, 

could account for a considerable proportion of future Malaysian annual bromoform emissions.  
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Chapter 1

CHAPTER 1
An introduction to coastal halocarbon production

The  term  'halocarbon'  refers  to  an  organic  molecule  containing  one  or  more  halogen  atoms; 

chlorine (Cl), bromine (Br), iodine (I) or fluorine (F).  This broad group of compounds is usually 

divided into two groups:

• Longer-lived, generally anthropogenically produced, halocarbons.

• Shorter-lived halocarbons, which tend to have a biogenic source.

Anthropogenic  halocarbons,  notably  chlorofluorocarbons  (CFCs)  and  'halons'  (compounds 

containing bromine as well as chlorine and or fluorine e.g. CBr2F2)  became widely used in the 

1930s and 1960s respectively as their inert, non-flammable and non-toxic compounds were ideally 

suited for use in a range of commercial goods including refrigeration systems, air conditioners and 

fire  extinguishers  (Carlisle,  2004).   It  was  this  inert  stability,  the  property  that  made  them a 

commercial  success,  and  which  led  to  their  environmentally  damaging  properties.   These 

compounds were first detected in the atmosphere by James Lovelock in the early 1970s (Lovelock, 

1971; Lovelock et al., 1973).  Shortly after it was reported that they had the potential to destroy 

stratospheric ozone (O3)  (Molina & Rowland,  1974).  However, it  was not until  1985 and the 

discovery of  the  seasonal  ozone  hole  over  Antarctica  (Farman  et  al.,  1985) that  the scientific 

community accepted that, due to their long atmospheric lifetimes (e.g. 100-120 years for CFC-11 

(Montzka  et  al.,  2010)),  CFCs  were  persisting  in  the  atmosphere  long  enough  to  reach  the 

stratospheric ozone layer and provide halogens which were perturbing stratospheric ozone cycling 

(see Section 1.6.4).   In 1987 the Montreal  Protocol was signed,  which,  along with subsequent 

amendments,  sought  to  restrict  and  eventually  ban  the  production  and  consumption  of 

ozone-depleting substances.  The latest World Meteorological Organisation (WMO) and United 

Nations  Environment  Programme  (UNEP)  Scientific  Assessment  of  Ozone  Depletion  report 

published  in  2010,  demonstrates  declining  or  stabilising global  surface  mean mixing  ratios  of 

Montreal Protocol-controlled substances, including CFCs.  Whilst the long lifetime and continuing 

emission from existing chemical and product stocks ensures these compounds will persist in the 

atmosphere for many more years, current and future emissions of these compounds are controlled 

and monitored. 
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Introduction to coastal halocarbon production

Very short-lived (halogenated) substances (VSLS), so termed because their atmospheric lifetimes 

are less than six months (Montzka et al., 2010), are mainly of natural (biogenic) origin.  There are 

some  exceptions:  methyl  chloride  (CH3Cl)  and  methyl  bromide  (CH3Br)  have  mainly  natural 

sources  (CH3Br  has  a  small  contribution  from  anthropogenic  sources  such  as  agricultural 

quarantined shipment fumigants) yet have relatively long atmospheric lifetimes of 1 and 0.8 years 

respectively.   They  contribute  about  17%  of  stratospheric  chlorine  and  30%  of  stratospheric 

bromine respectively  (Fahey & Hegglin, 2010).  There are also anthropogenic sources of VSLS. 

Water chlorination leads to a wide range of bromo- and bromochloro- compounds  (Helz & Hsu, 

1978; Richardson et al., 2010).  Power plants (both fossil fuel and nuclear, coastal and inland), 

desalination plants; waste water treatment and the chlorination of water for public use also produce 

a small (~3% total) but locally significant contribution to VSLS (Quack & Wallace, 2003).  This 

thesis  will  focus on biogenic  VSLS, mainly those produced by macroalgae in coastal  regions. 

These biogenic VSLS can play an important role in biogeochemical cycles (Section 1.6.1), particle 

formation (Section 1.6.2) and atmospheric chemistry including atmospheric oxidising capacity and 

ozone cycling (Sections 1.6.3, 1.6.4).  Table 1 provides a list of biogenic halocarbons studied in 

this thesis, along with their chemical formulae, atmospheric lifetime and where they are discussed 

in this body of work.  

Table 1.  Target VSLS and their atmospheric lifetimes.

Compound Chemical
 formula

Atmospheric
 lifetime / days*

Chapter

3 4 5

Iodocarbons

CH3I 7

CH2I2 0.003

Bromocarbons

CH2Br2 123

CHBr3 24

Mixed bromochlorocarbons

Bromochloromethane CH2BrCl 137

Bromodichloromethane CHBrCl2 78

Dibromochloromethane CHBr2Cl 59

Mixed iodocarbons

Bromoiodomethane CH2BrI 0.04

Chloroiodomethane CH2ClI 0.1

* Atmospheric lifetimes from Montzka et al. (2010).
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Chapter 1

1.1  Terrestrial sources of biogenic halocarbons

Both  terrestrial  and  marine  systems  produce  biogenic  halocarbons,  although  a  wider  range  of 

compounds are produced from marine environments due to the generally higher concentrations of 

halogens in seawater  (Moore & Tokarczyk, 1993).  Volcanoes are also a source of a variety of 

halogenated compounds including methyl halides, chloroform (CHCl3), carbon tetrachloride (CCl4) 

and CFCs  (Frische et al.,  2006; Gribble, 2003).  The main halocarbons produced by terrestrial 

environments, however, are methyl halides, CH3Cl and CH3Br.  The main sources of CH3Cl include 

biomass  burning  and  coastal  salt  marshes  whilst  CH3Br  emissions  have  been  observed  from 

biomass  burning,  peatlands,  rice  paddies,  salt  marshes,  mangroves,  rapeseed,  various  fungal 

processes and woodlands (Montzka et al., 2010).  Marine sources of both CH3Cl and CH3Br exist, 

with production reported for both compounds from phytoplankton cultures (Colomb et al., 2008), 

macroalgae (Baker et al., 2001) and an abiotic photochemical source via dissolved organic matter 

(Moore, 2008).  Due the analytical  systems used in this work CH3Cl and CH3Br could not be 

measured,  but  previous  studies  have  suggested  that  production  of  these  methyl  halides  from 

macroalgae is small and therefore unlikely to contribute greatly to global emission budgets (Baker 

et al., 2001).  
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Introduction to coastal halocarbon production

1.2  Marine sources of biogenic halocarbons

Oceanic emissions account for 90-95% of brominated and iodinated VSLS (Law & Sturges, 2007). 

In  coastal  regions  macroalgal  emissions  dominate  (Section  1.2.1).   However,  other  biotic  and 

abiotic sources exist and will be discussed in Section 1.2.2.  

1.2.1  Macroalgae

Since Bernard Courtois discovered iodine vapours from seaweed in 1811 (see Swain, 2005) many 

halogenated compounds from a range of marine organisms have been discovered.  Burreson et al. 

(1976) reported over 42 halogenated products found in essential oil extracted from the red alga 

Asparagopsis  taxiformis,  including  volatile  halocarbons  such  as  bromoform  (CHBr3)  and 

dibromomethane  (CH2Br2).   This  number  has  since  been  extended  to  over  100  halogenated 

products, many of which were previously unknown (Gribble, 2003).

That these halogenated compounds could have an environmental role was first noted by Lovelock 

in 1975.  He reported concentrations of methyl iodide (CH3I) in the water surrounding kelp beds 

that were up to one thousand times greater than those observed in the open ocean.  A variety of 

studies  soon followed,  demonstrating production and emission of a  range of  halocarbons from 

marine  algae;  ranging  from CH3I  to  1-bromopentane  (e.g.  Gschwend  et  al.,  1985;  Manley  & 

Dastoor, 1987, 1988).  A range of incubations demonstrated production from temperate (Carpenter 

& Liss,  2000;  Nightingale  et  al.,  1995),  polar  (Laturnus,  1995,  1996;  Schall  et  al.,  1994) and 

subtropical (Giese et al., 1999) macroalgae.  Few, if any, investigations into halocarbon production 

by tropical macroalgae were made, this will be discussed in further detail in Section 1.7.4.
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1.2.2  Other marine sources (both biotic and abiotic)

i. Biotic sources

This thesis will focus on halocarbon production from macroalgae.  However, a range of other biotic 

and abiotic sources exist.  Ice algae were reported to produce a range of bromocarbons by Sturges 

et al. (1992),  and other studies have demonstrated a phytoplankton source of volatile halocarbons 

(e.g.  Hughes  et  al.,  2006,  2011;  Scarratt  &  Moore,  1998,  1999).   Halogenated  secondary 

metabolites and haloperoxidase enzymes (Section 1.3.2) have also been reported in some corals, 

sea  squirts,  nudibranches,  bryozoans  and worms  (Gribble,  2003;  Quack & Wallace,  2003 and 

references herein).  However, these groups have not been proposed as sources of atmospherically 

important volatile halocarbons.  Another little-studied group are the marine fungi.  Terrestrial fungi 

are  known to produce methyl  halides  (Watling & Harper,  1998) but  the production of methyl 

halides from marine fungi has not been reported.  

Bacteria have also been shown to produce CH3I  (Amachi, 2008; Amachi et al., 2001; Manley & 

Dastoor,  1988), but  production  of  bromocarbons  has  not  been  reported.   Axenic  macroalgae 

cultures are rarely used for incubation experiments, some macroalgae have been shown to rely on 

natural bacterial assemblages for morphologically 'normal' growth and development  (Spoerner et 

al., 2012).  The possibility that halocarbon production is attributable to epiphytic bacteria or other 

organisms  has  been  proposed.   However,  axenic  macroalgae  cultures,  and microalgae cultures 

treated with prokaryotic inhibitors, still demonstrate halocarbon production  (Manley & Dastoor, 

1988; Sturges et al., 1992).  A range of studies by  Gschwend et al. (1985) on production from 

macroalgal  epiphytes  (both  eukaryotic  and  prokaryotic)  also  suggests  that  the  macroalgae 

themselves  are  responsible  for  a  majority of the observed halocarbon emissions in non-axenic 

cultures.  As measurements from macroalgae either in situ (e.g. Manley & Dastoor, 1987) or from 

culture are nearly always non-axenic, emission estimates will take into account epiphytic bacterial 

contribution.  Bacteria are also believed to be involved in halocarbon breakdown in the marine 

environment (Section 1.4). 
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ii. Abiotic sources

A  photochemical  source  of  CH3I has  been  proposed  on  the  basis  of  laboratory  and  field 

experiments.  Studies by  Moore and Zafiriou (1994) demonstrated  CH3I production in 0.22  μm 

filtered  seawater  irradiated  with  natural  light  levels  which  they  attributed  to  a  non biological 

source.  Filtration at the 0.22 μm  should significantly reduce the microorganism community (Wurl, 

2009), including many nanoplankton species, although some nanoplankton and many bacteria will 

pass  through  this  level  of  filter.   Using  field  measurements,  Happell  and  Wallace 

(1996) demonstrated  CH3I production in regions of low biological productivity, and showed that 

only light  levels  were a significant  predictor  of  CH3I concentrations.   Incubations of  seawater 

samples  collected  in the tropical  Atlantic  by  Richter  and Wallace (2004) also  demonstrated a 

photochemical, non-biologically dependent CH3I source, which they calculated could contribute up 

to 50% of the average sea-air flux.  Abiotic CH3I production is not constant in all oceanic regions. 

Dissolved organic matter (DOM) is involved in the production of  CH3I, and so in coastal areas, 

with higher concentrations of DOM, the abiotic production rate of  CH3I may be up to six times 

greater than in pelagic regions  (Moore & Zafiriou, 1994; Richter & Wallace, 2004).  An abiotic 

source linked to dust inputs to the ocean has also been proposed (Williams et al., 2007), although 

the full impact of this process remains to be quantified.  Further information on abiotic production 

of CH3I is given in Section 1.6.2.  

Abiotic  production  in  surface  seawater  of  several  other  iodocarbons,  diiodomethane  (CH2I2), 

chloroiodomethane (CH2ClI)  and iodoform (CHI3),  was demonstrated by  Martino et  al.  (2009). 

This processes occurs when seawater is exposed to ozone.  Dissolved iodide reacts with ozone to 

form hypoiodous acid (HOI) and molecular iodine (I2), both of which then go on to react with 

DOM to form volatile iodocarbons.  This process was observed in field-collected seawater with a 

range  of  biological  productivity,  and  is  therefore  likely  to  be  a  ubiquitous  source  of  volatile 

iodocarbons in the marine environment.   Nucleophilic substitutions, for example production of 

CH2ClI from CH2I2 and dibromochloromethane (CHBr2Cl) and bromodichloromethane (CHBrCl2) 

from CHBr3, have also been proposed (e.g. Moore & Tokarczyk, 1993).  This is discussed further 

in Section 1.4.
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1.3  Macroalgal production of halocarbons

1.3.1  Accumulation and concentration of halides from seawater

Macroalgae actively take up trace elements through contact with the algal surface or through pores 

in their cell walls (Rodríguez-Castañeda et al., 2006).  With regards to iodine Küpper et al. (1998) 

demonstrated that uptake is linked to apoplastic oxidation, possibly by haloperoxidase-catalysed 

reactions  with  hydrogen  peroxide  (H2O2).   Typical  concentrations  of  bromine  and  iodine  in 

seawater are about 6.6 x 10-3% and 5.1 x 10-6% (by weight) respectively  (Saenko et al., 1978). 

Table 2 presents reported concentrations of bromine and iodine measured in macroalgae species 

from Japan, California and France.  Note, rhodophyte, phaeophyte and chlorophyte are macroalgae 

classes also referred to as red, brown and green algae respectively.  A wide range of values can be 

seen, but it  is clear that  seaweeds can concentrate  halides from seawater,  with reported iodine 

concentrations in Laminaria digitata of up to 30,000 the natural concentration of iodine in seawater 

(Küpper et al., 1998).

Table 2.  Concentration, % dry weight (DW), of bromine and iodine in a range of macroalgae 

species.  nr = not recorded.

Description Bromine Iodine

Rhodophyta Various species, Japana

Various species, Californiab

0.65 (0.02-3.74)

0.70 (0.16-1.24)

0.095 (0.002-0.75)

nr

Phaeophyta Various species, Japana

Various species, Californiab

L. digitata, Francec

0.09 (0.02-0.55)

0.34 (0.14-0.71)

nr

0.12 (0.005-0.56)

nr

0.4-4.7

Chlorophyta Various species, Japana

Various species, Californiab

0.04 (0.02-0.12)

0.36 (0.11-1.06)

0.006 (0.002-0.008)

nr

 a Mean values taken from measurements of 17 rhodophytes, 21 phaeophytes and 5 chlorophytes by 

Saenko et al. (1978).  b Mean values taken from measurements of 10 rhodophytes, 8 phaeophytes 

and 19 chlorophytes by Rodríguez-Castañeda et al. (2006). c (Küpper et al., 1998).
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1.3.2  Production of halocarbons

Once accumulated inside the alga some halides are incorporated into organic compounds.  Two 

production  mechanisms  exist;  methyl  halides  are  produced  via  methyl  transferases  (i)  and 

polyhalogenated compounds via haloperoxidases (ii).

i. Production of methyl halides

The  production  of  methyl  halides  involves  the  methylation  of  halides  with  the  methyl  donor 

S-adenosyl-L-methionine (SAM), a process catalysed by methyl halide transferases (Wuosmaa & 

Hager, 1990).  It has been suggested that methyl halide production is a means of regulating cellular 

halide  levels  by  removing  excess  halides  (Ni  &  Hager,  1999).   However,  a  study  of 

Michaelis-Menten  constants,  Km,  (a  method  of  describing  the  rate  of  enzymatic  reactions)  in 

Manley  (2002) shows  relatively  high  Km values  which  suggests  a  low  affinity  of  methyl 

transferases to halides.  A low affinity could reflect  an abundance of halides but it  could also 

suggest that halides are not the target substrate of these enzymes and that methyl halides could be a 

by-product of other metabolic processes such as the methylated secondary metabolites such as 

steroids and isoprenoids (Manley, 2002).  

ii. Production of polyhalogenated compounds

Vanadium-dependent  haloperoxidases  are  thought  to  be  responsible  for  the  production  of 

polyhalomethanes from macroalgae (Theiler et al., 1978).  Chloroperoxidases are mainly found in 

fungi and are not considered further here.  Bromoperoxidases (BrPO), oxidising Br- and I-, are the 

most common in marine algae, but iodoperoxidases (IPO) which oxidise only I- have also been 

reported  (Manley,  2002).  Haloperoxidases  oxidise  halogens  to  hypohalous  acids,  e.g. 

hypobromous acid (HOBr) in the presence of H2O2 (Wuosmaa & Hager, 1990).  This has been 

demonstrated by  Collen et al. (1994), who reported increasing bromocarbon production with the 

addition of H2O2 to algal incubations, and Pedersen et al. (1996) who reported that the addition of 

sodium azides (at a level to inhibits peroxidase activity and not kill all cells) leads to a decrease in 

halocarbon production.  Further haloperoxidase-catalysed reactions with nucleophilic acceptors, 

such as ketones, then lead to the formation of halocarbons (Wever et al., 1991; Winter & Moore, 

2009).   Further  nucleophilic  substitution  forms  polyhalogenated  compounds;  for  example  the 

production of CHBr3 can occur via multiple bromination of a ketone followed by non-enzymatic 

hydrolysis and liberation of CHBr3 (Beissner et al., 1981).  
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Indirect production has also been proposed.  In this case hypohalous acids are formed as described 

above.  Then they diffuse into the surrounding seawater  where they react  with DOM to form 

halocarbons (Wever et al., 1991).  A reduction in CHBr3 production when DOM was removed from 

incubation seawater, reported by  Manley and Barbero (2001) supports this theory.  Nucleophilic 

halogen  substitution  reactions  may  lead  to  conversions,  e.g.  CHBr3 to  CHBr2Cl,  which  may 

produce a wider suite of halocarbon emissions from macroalgae beds (Tokarczyk & Moore, 1994) 

(Section 1.4).  

1.3.3  Release of halocarbons into the environment due to environmental stress

Reactive oxygen species (ROS) is a term than includes; singlet oxygen (1O2), the superoxide radical 

(•O2
-), H2O2 and the hydroxyl radical (•OH) (Collen & Davison, 1999; Kumar et al., 2011).  The 

term activated oxygen species (AOS) is also used, sometimes interchangeably, with ROS, although 

there are technical differences such as the inclusion of H2O2 under the term ROS.  As the term ROS 

is used in most studies, this term will be used here (see Lesser, 2006) for further details).  The 

production  of  ROS  is  a  constant  process  in  all  living  cells.   However,  if  production  and 

accumulation of ROS goes beyond the capacity of an organism to quench these species and limit 

their  damage  (Lesser,  2006) then 'oxidative stress'  occurs and excess ROS may damage lipids, 

proteins and DNA  (Collen & Davison, 1999).  Reactive nitrogen species, such as  •NO, are also 

involved in oxidative stress (Lesser, 2006), although their involvement in halocarbon chemistry has 

not been reported.  Oxidative stress may be caused by many factors, including, but not limited to; 

nutrient limitation, high light exposure and changes in salinity, temperature and pH (Mata et al., 

2011; Mtolera et al., 1996; Palmer et al., 2005).

That polyhalogenated compounds scavenge H2O2 during their production was identified by H2O2 

addition experiments (Section 1.3.2) aimed at understanding the roles of haloperoxidase enzymes. 

Several early studies demonstrated that production of poyhalogenated compounds was greater in 

incubations conducted in the light compared to those conducted in the dark (Collen et al., 1994; 

Klick, 1993; Nightingale et al., 1995; Pedersen et al., 1996).  In one study, Goodwin et al. (1997a),  

who saw a reduction in CH2Br2 and CHBr3 production by Macrocystis pyrifera with the addition of 

photosynthesis inhibitors, increases in polyhalocarbon compounds is likely linked to the production 

of H2O2 during photosynthesis.  Methyl halides, which are produced by methyl halide transferase 

reactions which do not scavenge H2O2, were not affected by light in studies by Collen et al. (1994) 

and Manley and Dastoor (1987).  Respiration also leads to the production of ROS, and addition of 

respiratory inhibitors to macroalgae incubations also reduce CHBr3 production (Manley & Barbero, 

2001).  
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Intertidal  macroalgae  are  exposed to  oxidative  stresses  during  tidal  exposure  on  a  daily basis 

(Collen & Davison, 1999) and field studies have reported increasing atmospheric concentrations of 

halocarbons over macroalgae beds at low tide (e.g. Carpenter et al., 1999, see also Section 1.6.2). 

As the algae are exposed they are subject to various factors which may cause oxidative stress and 

lead  to  halocarbon  emissions.   Increased  halocarbon  production  during  desiccation  has  been 

reported in several studies  (Bravo-Linares et al., 2010; Nightingale et al., 1995) and is discussed 

further in Chapter 4.

The increased halocarbon flux at low tide could also be linked to physical processes.  As the water 

retreats a thin film is left covering the macroalgae.  Halocarbons and hypohalous acids then diffuse 

into a smaller volume of seawater and higher concentrations may lead to a higher flux into the 

atmosphere.  This is of particular relevance for I2, which has a limited solubility and so is likely to 

volatilise and flux into the atmosphere (McFiggans et al., 2004).

1.3.4  The role of inorganic iodine emissions

In recent years it has been established that macroalgae produce I2 alongside organic iodocarbons 

and that I2 may actually be the dominant iodine-containing species involved in local atmospheric 

chemistry  processes  (Saiz-Lopez  &  Plane,  2004).   Küpper  et  al.  (2008) demonstrated  that 

accumulated iodide in  L. digitata acts as an antioxidant; reacting with ROS and ozone to form 

inorganic iodine species.  At low tides iodide on the kelp surface is in direct contact with ozone and 

reactions between iodide and ozone can lead to a flux of I2 directly into the coastal atmosphere 

(Palmer et al., 2005).  The role of I2 in new particle formation is discussed further in Section 1.6.2. 
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1.3.5  Release of halocarbons into the environment as a chemical defence compound

It is also believed that halogenated compounds may act as a method of chemical defence against 

herbivory or other biological interactions such as epiphytism or disease.  Oxidative bursts have 

been elicited via  the addition of  oligoguluronates,  which are  cell  wall  components  and mimic 

grazing, bacterial or epiphytic damage to algal cell walls  (Küpper et al., 2001).  As described in 

Section 1.3.3, halocarbon and inorganic iodine may act as antioxidant responses to these oxidative 

bursts.   Herbivory  or  simulated  herbivory  (wounding)  has  been  demonstrated  to  increase 

brominating activity by up to 120%  (Palmer et al., 2005) and increases in halocarbon emission 

have also been observed (Nightingale et al., 1995).  As well as the antioxidant response, herbivory 

may  also  lead  to  tissue  and  cell  wounding  and  a  flux  of  internal  halocarbon  stores  into  the 

surrounding seawater (Bravo-Linares & Mudge, 2009).

Aside from herbivory, other biological interactions may lead to increased production and emission 

of halocarbons.  They may be produced in response to, or as protection from, microbial activity 

such as bacterial infection.  The red seaweed Bonnemaisonia hamifera, for example, produces high 

concentrations of halogenated metabolites, and field studies have shown it to host fewer epiphytic 

bacteria than other species in the same area (Nylund et al., 2008).  Little is known about the role 

viruses have to play in halocarbon biogeochemistry.  As viruses release between 108 and 109 tonnes 

of carbon from the global marine pool per day  (Brussaard et al.,  2008) their role in triggering 

halocarbon production or release cellular halocarbon stores may potentially be significant. 
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1.4  Loss processes in seawater

The major loss process for halocarbons in seawater is the air-sea flux (Section 1.5).  Other loss 

processes  in  seawater  include  hydrolysis,  dehalogenation,  halogen  substitution  and  photolysis 

(Quack & Wallace, 2003).  After losses to the atmosphere, photolysis is thought to be the largest 

seawater loss process and hydrolysis the slowest.  Table 3 provides an example of differences in 

estimates lifetimes with respect to different loss processes using CHBr3 as a case study.  These loss 

processes are discussed in more detail after the table.  

Table 3.  Lifetime of CHBr3 with respect to several seawater loss processes

Loss process CHBr3 lifetime / years Source

Flux to atmosphere  0.01 – 0.03 Helz and Hsu (1978)

Photolysis 0.4 – 1.2 Carpenter and Liss (2000)

Bacterial breakdown nr Goodwin et al. (1997b)

Nucleophilic substitution 5 years at 25 °C
74 years at 2 °C

Geen et al. (1992) in 
Quack and Wallace (2003)

Abiotic reductive dehalogenation Observed, 
no data on lifetime

Bouwer et al. (1981)

Hydrolysis 30 – 50 at 25 °C
680 – 1000 at 2 – 4 °C

Quack and Wallace (2003) and 
Goodwin et al. (1997b) 

nr = not reported:   Although  Goodwin et al.  (1997b) reported a lifetime of CH2Br2 relative to 

bacterial  degradation  of  0.05  years  they  did  not  observe  CHBr3 breakdown  via  this  method. 

However, bacterial breakdown of  CHBr3 has been reported by  Bouwer and McCarty (1983) and 

Bouwer et al. (1981), see section iv for further details. 

i. Photolysis

Jones and Carpenter (2005) and Martino et al. (2005) reported photodissociation of CH2I2, CH2ClI 

and bromoiodomethane (CH2BrI) in seawater under natural light in the top few metres of the water 

column.  Breakdown products included I-  and, for CH2I2, CH2XCl (where X = Cl, Br or I).  Martino 

et  al.  (2005) suggest  this source of iodine could contribute significantly to a  marine source of 

atmospheric  iodine  for  iodine  oxide  (IO)  formation.   Photolysis  of  CHBr3 was  considered  by 

Carpenter and Liss (2000).  They determined it to be a potentially important loss process in the top 

1 m (on average – the depth penetration of light will be spatially dependent) of the water column. 

It is likely that photolysis is the largest internal seawater loss process of CHBr3, but it is still much 

smaller than loss via air-sea flux, equating to about 2% of the air-sea flux  (Quack & Wallace, 

2003).
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ii. Nucleophilic substitution (chemical loss)

Bromocarbons undergo nucleophilic attack by chloride ions, for example the destruction of CHBr3 

in  seawater  following  the  steps  outlined  by  Class  &  Ballschmiter  (1988) in  Eqs.  1-3  below. 

Broadly  speaking  it  is  thought  that  in  coastal  regions  direct  biological  production  of  mixed 

bromochlorocompounds is the dominant source whilst nucleophilic substitution may play a more 

important role in deeper oceanic waters (Carpenter & Liss, 2000; Moore & Tokarczyk, 1993).

CHBr3 + Cl- → CHBr2Cl + Br- (1)

CHBr2Cl + Cl- → CHBrCl2 + Br- (2)

CHBrCl2 + Cl- → CHCl3 + Br- (3)

Nucleophilic  substitution  of  iodocarbons  has  also  been  reported,  for  example  by  Jones  and 

Carpenter (2007) who reported the breakdown of iodocarbons, including CH3I, via chlorination and 

hydrolysis.  Loss rates via these processes were a function of seawater temperature as nucleophilic 

substitution of Cl- increases  within increasing temperatures.  They predicted seawater  lifetimes 

based on chemical destruction of 7 weeks at 15 °C and 7 days at 30 °C, faster than the respective 

loss rates for bromocarbons via nucleophilic substitution (Table 3).  

iii. Hydrolysis

Hydrolysis of halocarbons in seawater is a slow process, the lifetime of CHBr3 with respect to 

hydrolysis is thought to be between 680-1000 years at 2-4 °C and 30-50 years at 25 °C (Quack & 

Wallace, 2003 and references herein).  

iv. Bacterial breakdown / reductive dehalogenation

Goodwin et al. (1997b, 1998) demonstrated bacterial breakdown of CH2Br2 in coastal seawater. 

Production of  14CO2 in bacterial  cultures exposed to  14CH2Br2 suggests the use of CH2Br2 as a 

carbon energy source.  Goodwin and coworkers did not observe bacterial degradation of CHBr3 in 

these  experiments.   However,  other  studies  have  demonstrated  the  breakdown  of  a  suite  of 

halogenated  compounds,  including  CHBr3 and  CHBr2Cl,  by  anaerobic  methanogenic  bacteria 

(Bouwer & McCarty, 1983; Bouwer et al., 1981).  They also observed abiotic breakdown under 

sterile aerobic conditions, although this is thought to be much slower than biologically mediated 

reductive dehalogenation. 
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1.5  The sea-air flux of halocarbons

The  sea  to  air  flux  (F)  rate  is  governed  by  processes  on  both  sides  of  the  air-sea  interface, 

commonly described by the Liss and Slater (1974) model.  This model (Eq. 4) assumes that the flux 

rate is related to the total transfer velocities for the system (expressed from either the liquid (Kw) or 

gas phase (Ka)), the concentration in bulk air (Ca) and seawater (Cw), and the gas-over-liquid form 

of the Henry's Law constant (KH).   

(4)

Fluxes of CHBr3 and CH2Br2 are discussed in Chapter 6 Section 6.2.  The flux of these two gases 

can be expressed relative to the Kw, the total transfer velocity based on the liquid phase, and so Eqs. 

5 and 6 can be used to express the sea-air flux of these gases.

(5)

(6)

In Eqs. 5 and 6 H is the dimensionless Henry's law constant, a measure of the solubility of a gas in 

terms of its equilibrium between liquid and gas phases.  Henry's law constants for halocarbons have 

been defined in several studies, e.g.  Moore et al. (1995), which show good agreement  (Sander, 

1999).  The transfer velocity, Kw, is less well quantified and the parametrisation of this factor is the 

largest source of error in the estimation of air-sea halocarbon fluxes (Johnson, 2010).  Wind speed 

(u) is often considered to be the most important factor in calculating the air-sea transfer velocity 

and the parametrisations of Liss and Merlivat (1986) and Wanninkhof (1992) are commonly used 

when  calculating  fluxes.   Temperature  also  plays  a  role,  for  example  it  affects  compound 

diffusivity and the viscosity of the solvent (often defined by its Schmidt number,  Sc)  (Quack & 

Wallace, 2003).  Errors may arise from a number of factors; wind speed parametrisations become 

less reliable at high wind speeds and a number of other factors also affect the flux, including wave 

types,  bubbles,  humidity  gradients  and  surface  films  or  surfactants  (Nightingale  et  al.,  2000). 

Regional  and  global  bromocarbon  fluxes  have  been  derived  from  marine  and  atmospheric 

halocarbon measurements, these are discussed further in Chapter 6 Section 6.2.
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1.6  Role and fate in the atmosphere

Atmospheric lifetimes for VSLS compounds discussed in this body of work were shown in Table 1. 

The major loss process for many of these halocarbons is photolysis and reactions with the OH 

radical (Krysztofiak et al., 2012; Montzka et al., 2010).  Both iodo- and bromocarbons degrade in 

the atmosphere to form reactive species such as iodine and bromine oxides (IO and BrO), HOBr 

and iodine dioxide (OIO) (Mahajan et al., 2010; Saiz-Lopez and Plane, 2004; Tuckermann et al., 

1997).   These  reactive  species  are  very  short  lived  and  during  daylight  halogen  atoms  cycle 

between these reactive forms (see Eqs. 14-16, for example).   In  particular,  Br- and I- are very 

short-lived intermediaries, for example only around 1% bromine in the atmosphere at any one time 

will be Br- (Monks, 2005).

Iodine and its degradation products are very short lived (lifetimes on the order of hours to days) 

and  so  have  a  localised  impact  on  tropospheric  chemistry  (Section  1.6.3)  and  new  particle 

formation (Section 1.6.2).   They do play a global role in biogeochemical  cycling of iodine, as 

discussed in Section 1.6.1.  CHBr3 and its degradation products not only impact local tropospheric 

chemistry (Section 1.6.3) but are also thought to have stratospheric impacts (Section 1.6.4). 

1.6.1  Global biogeochemical cycles and human health.

Iodine deficiency can lead to growth and developmental problems in both humans and animals, 

including;  thyroid  problems  (hypothyroidism),  mental  retardation,  goitre  and  problems  during 

pregnancy (de Benoist et al., 2004; Hetzel & Mano, 1989).  On a local scale a study by Smyth et al. 

(2011) found that I2 emissions from seaweeds may supply a significant fraction of the daily iodine 

intake of people living near the sea.  Globally, marine sources of iodine are also important.  The 

sea-to-air flux of iodine is a major component in global geochemical iodine cycling and marine 

sources of  iodine are  likely to to be the largest  contributor  to atmospheric  iodine that  can be 

deposited in otherwise iodine-limited terrestrial environments (Fuge & Johnson, 1986; Whitehead, 

1984).  
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1.6.2  New particle formation

Iodocarbons undergo rapid photolysis (e.g. Martino et al., 2005) and therefore have a short lifetime 

both in the upper water column and in the atmosphere (Bravo-Linares & Mudge, 2009; Donner et 

al., 2007).    For this reason they contribute mainly to local atmospheric chemistry; providing a 

source for new particle formation in the coastal boundary layer.  Iodocarbon and I2 pulses from 

exposed macroalgae at  low tide have been linked to measured increases in particle bursts,  for 

example during the PARFORCE (New Particle Formation and Fate in the Coastal Environment) 

campaign at  Mace Head,  Ireland  (Mäkelä et  al.,  2002; O’Dowd et al.,  2002a, 2002b).   It  was 

originally thought that these particle bursts could have been due to fluxes of sulphur-containing 

compounds and the production of sulphuric acid, H2SO4.  However, field studies have shown that 

H2SO4 concentrations do not correlate as well  as iodinated compounds with the observed tidal 

cycles and particle bursts  (Greenberg et al., 2005).  Examination of the chemical composition of 

these particles has also shown them to contain iodine (Mäkelä et al., 2002).

Particle bursts are believed to occur at low tide via the following sequence of events.  Firstly, I2 and 

iodocarbons are released from macroalgae at low tide (Sections 1.3.3 and 1.3.4).  Iodocarbons and 

I2 are then photolysed in the atmosphere and reactive iodine is produced.  Whilst CH3I is commonly 

the dominant iodocarbon in the marine boundary layer (MBL), more reactive but less abundant 

iodocarbons, such as CH2I2 and CH2ClI, may contribute as much iodine as CH3I (Saiz-Lopez et al., 

2012 and references herein).  A study by Jones et al. (2010) in the Atlantic Ocean found that the 

contribution of dihalomethanes (CH2I2, CH2ClI and CH2BrI) to regional MBL iodine concentrations 

could  be  3-4  times  greater  than  the  CH3I  contribution.   However,  this  study  also  found  that 

iodocarbon fluxes could not support observed IO levels, emphasising the potential importance of an 

abiotic source (Section 1.2.2).  
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Iodine quickly reacts with ozone to form IO.  Further gas phase self-reactions, or reactions with the 

perhydroxyl radical (•HO2), OH and nitrogen dioxide (NO2) form a range of condensable iodine 

vapours such as HOI, OIO and I2O2 (Grose et al., 2007; O’Dowd et al., 2002a).  These products 

then go on to condense onto existing supercritical embryos, allowing rapid growth and an increase 

in their atmospheric lifetime which leads to a burst of ultra fine particles (McFiggans et al., 2004). 

'Hot spots' of iodine oxides and particle bursts have been identified directly over macroalgae beds 

(Commane et al., 2011; Seitz et al., 2010), suggesting the impact of macroalgae-produced iodine on 

particle formation may be significant but localised.  These particles may then provide condensation 

nucleii  for  other  condensable  vapours,  potentially  growing to  the point  of  cloud condensation 

nucleii (CCN)  (Saunders & Plane,  2005).  Changes to CCN may then change the lifetime and 

albedo of clouds and impact the radiative balance of the earth system (Saiz-Lopez et al., 2012 and 

references herein).

Not  all  macroalgae  species  can  impact  local  particle  formation  in  this  manner.   L.  digitata, 

accumulates and releases a large quantity of iodine, especially in the form of I2.  Particle formation 

has  been  observed  over  exposed  beds  of  L.  digitata,  for  example  during  the  aforementioned 

PARFORCE  campaign.   However,  levels  of  CH3I,  IO  and  OIO  over  beds  of  another  kelp, 

Durvillaea potatorum, are low and it is likely that it has little impact on coastal particle formation 

(Cainey et al., 2007).  Flux chamber studies by  Ball et al. (2010)   also demonstrated substantial 

differences between phaeophyte species; again high I2 emissions were observed from L. digitata 

whilst little, if any, I2 was observed for several Fucus species.

Chamber studies have been used to investigate I2 emissions during exposure (e.g.  Ashu-Ayem et 

al., 2012; Ball et al., 2010; McFiggans et al., 2004).  These are discussed in more detail in 

Chapter 4.  
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1.6.3  Halocarbons and their impact on tropospheric chemistry, in particular ozone chemistry

In all equations below X may be replaced with either Cl or Br.  

i. Tropospheric ozone chemistry

Tropospheric ozone is important with regards to human health, crop viability, general air quality 

(as an important constituent in photochemical smog) and is a greenhouse gas (Seinfeld & Pandis, 

1997).  To understand the role of halocarbons in ozone chemistry we first need to consider its 

production (Eqs. 7-11) and destruction (Eqs. 12-13) (Reeves et al., 2002).

Formation of •HO2 via oxidation of carbon compounds with •OH.  Here carbon monoxide (CO) is 

given as an example, but  many volatile organic  compounds (VOCs) also play a role in ozone 

formation.

Formation of atomic oxygen via reactions between the •HO2 and NOx (NOx = NO and NO2).
¤

Formation of ozone via reactions between molecular and atomic oxygen.  M represents a third body 

which absorbs the excess energy from this reaction has heat.  Commonly N2 or O2, M may also 

represent particles or trace gases.

Loss via photolysis in the presence of water vapour.  This is the major atmospheric chemical loss 

process, although ozone is also lost via deposition to the surface.

¤ In these equations the bracketed oxygen suffix refers to the electron state of the oxygen atom.  O(3P) or 
“triplet P” is the ground state of atomic oxygen, here the oxygen atom has 2 unpaired electrons.  O(1D) or 
“singlet D” is the first excited state of atomic oxygen.
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The balance between production and loss processes (Eqs. 7-13) determines whether a region is a 

source or  a sink.  The MBL may act as an important sink due to a lack of NOx sources (transport 

and industry are major sources) and a high humidity (Read et al., 2008).  The prevalence of halogen 

oxides is also thought to play an important role.  Bromo- and iodocarbons released in the MBL are 

oxidised to form halogen oxides  (XO, where XO = IO or  BrO).   Halogen oxides can impact 

tropospheric ozone chemistry via a number of processes:

1.  Catalytic ozone destruction via halogen oxidation and halogen oxide self reactions (Eqs. 14-16) 

(Read et al., 2008).

2.   Perturbation  of  the HO2/OH ratio (Eqs.  17  and 18)  which  suppresses  ozone  formation  by 

impacting Eqs. 7-10. (Von Glasow et al., 2004).

3.  Suppression of NOx due to reactions with halogen nitrates  (Sander et al., 1999).  It should be 

noted that halogen oxides also decrease the NO/NO2 ratio via Eq. 19.  However the production of X 

during this reaction means this process is unlikely to lead to increased ozone production (Platt and 

Hönninger, 2003; Read et al., 2008).
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ii. Other tropospheric chemistry processes

As OH radicals are often involved in removal of greenhouse gases and other pollutants from the 

atmosphere  (Tang et al., 1998) reactions between halogen oxides and HO2,  as described in the 

previous section, may also impact these processes.  

BrO is also thought to affect atmospheric processing of dimethyl suphide (DMS) (von Glasow & 

Crutzen, 2004).  DMS is a climatically important gas that plays a role in marine aerosol and CCN 

formation and potentially planetary albedo and climate regulation.  In polar regions BrO is also 

thought  to  be  involved  in  mercury  chemistry.   Observations  of  ozone  loss  and  simultaneous 

depletion of mercury have been linked to bromine.  Processes are though to include Eqs. 20-22 

which show the oxidation of bromine to form BrO (Eq. 20) which is then involved in the oxidation 

of mercury (Eqs. 21 and 22)  (Goodsite et al., 2004).  Mercury products from these reactions are 

more likely to undergo deposition, increasing the amount of mercury in the snow pack and also, 

potentially, the amount of bio-available mercury (Brooks et al., 2006).  

1.6.4  Halocarbons and stratospheric ozone

Biogenic  bromocarbons have  short  atmospheric  lifetimes  (Table  1)  as  they  are  susceptible  to 

chemical destruction or wash out in the troposphere.  Despite this, studies suggest that they do 

provide reactive bromine species (Bry) to the stratosphere via direct source gas (SG) injection or via 

their breakdown product gases (PG).  Stratospheric balloon-borne measurements have reported an 

excess of Bry above the known anthropogenic input (Dorf et al., 2006; Salawitch, 2006; Salawitch 

et al., 2005).  These measurements have been supported by similar results from chemical transport 

model studies (e.g. Hossaini et al., 2012b).  The latest estimations, based on both observations and 

model  studies,  suggest  a  total  contribution  of  VSLS  to  stratospheric  bromine  of  6  (1-8)  ppt 

(Montzka et al., 2010), a substantial amount compared to the total stratospheric Bry abundance of 

around 20-25 ppt (Dorf et al., 2008; Yang et al., 2005).  
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Once in the stratosphere, halogens catalyse ozone loss via several destruction cycles.  In low and 

mid latitudes Cycle 1 dominates (Eqs. 23-25).  In polar regions less solar radiation is available for 

the production of atomic oxygen from ozone and O2, and there is also a greater abundance of ClO, 

therefore Cycles 2 and 3 dominate  (Fahey & Hegglin, 2010; Newman & Pyle, 2002).  All three 

cycles require sunlight.  In  polar regions this is demonstrated by an increase in ozone loss during 

the spring, when sunlight activates ClO which has formed on the surface of polar stratospheric 

clouds (PSCs) during the polar winter (Farman et al., 1985), hence the excess ClO driving cycles 2 

and 3  in  this  region.   These  cycles  are  catalytic,  and  so  one  halogen  atom may  catalyse  the 

destruction of many ozone molecules before it is lost from the stratosphere.  

Cycle 1:

  

Cycle 2:

Cycle 3:

ClO may also react with BrO either via Eq. 31 or Eqs. 32 and 33.  Br and Cl then react with ozone 

as Eqs. 23 and 24.  (Bloss et al., 2001; Chipperfield & Pyle, 1998)

                                             

Stratospheric bromine inputs  are less than those for chlorine, but Bry species have a higher ozone 

depleting potential.  One reason for this is that processes which remove halides from forms where 

they can destroy ozone, e.g. the production of HX and XONO2, are less effective for bromine as 

BrX and BrONO2 are less stable than their chlorine equivalents (Daniel et al., 1999).  
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The stratospheric ozone layer provides protection for plants and animals from harmful UV light 

(U.S.  E.P.A,  2006).   Natural  ozone  cycling  was  disrupted  by  the  addition  of  anthropogenic 

chlorine-containing  compounds,  such  as  CFCs (as  discussed  in  the  opening  paragraph of  this 

chapter), leading to an enhanced loss of stratospheric ozone.  The contribution of anthropogenic 

chlorine and bromine to stratospheric halogen loading is now controlled by the Montreal Protocol, 

and  many  of  these  anthropogenic  source  gases  have  stabilising  or  decreasing  atmospheric 

concentrations (Montzka et al., 2010).  Potential future effects of VSLS are discussed in Section 

1.8.  

1.7  The importance of tropical coastal halocarbon emissions

Due  to  their  short  atmospheric  lifetime  and  biogenic  sources  VSLS  have  a  patchy  global 

distribution.  Extensive field measurements have identified regions that are important in terms of 

global emissions.  The tropics, in particular tropical coastlines, are thought to be important in terms 

of halocarbon sources, chemistry and stratospheric impact.  

1.7.1 The coastal zone: An important halocarbon source region

Globally, coastlines have been shown to be an important halocarbon source region, this is largely 

thought to be due to macroalgae beds found in coastal regions (e.g. Carpenter et al., 1999; Ekdahl 

et al., 1998; Manley & Dastoor, 1987) although high bromocarbon concentrations have also been 

reported in coastal regions where there is little or no macroalgae, such as Cape Verde (O’Brien et 

al., 2009).  High coastal and shelf seawater bromocarbon concentrations have been reported from 

several research cruises (e.g. Butler et al., 2007; Carpenter et al., 2009).  A review by Quack and 

Wallace (2003) attributed 29% of global CHBr3 emissions to open ocean waters,  48% to shelf 

waters and 23% to coastal waters.  Another region where high halocarbon concentrations have been 

observed  is  upwelling  regions,  with  elevated  concentrations  potentially  linked  to  increased 

biological  productivity.   However  the  biological  and  physical  processes  that  contribute  to 

halocarbon sources and sinks in these regions are not fully understood, and from the data available 

it  is  thought  that  they  are  unlikely  to  contribute  significantly  to  global  halocarbon  budgets 

(Carpenter et al., 2009; Quack & Wallace, 2003; Quack et al., 2007).  Upwelling regions are not 

considered further within the remit of this work.  
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With respect to the tropics, Butler et al. (2007) assimilated data from several research cruises and 

estimated that the tropics contribute two thirds of open ocean CHBr3 emissions.  Other meridional 

transect surveys have shown similar peaks in halocarbon production in tropical waters  (Quack & 

Wallace, 2003 and references herein). Tropical coastlines have also been highlighted as potentially 

strong source regions; for example Yokouchi et al. (2005) measured CHBr3 mixing ratios up to 40 

ppt near tropical island coastlines.  Measurements of CH3I also suggest  the tropical ocean is a 

year-round source of this compound, compared to higher latitude waters which may sometimes act 

as a sink  (Happell & Wallace, 1996).  Chapter 5 Section 5.3.3 includes more detail, including a 

table comparing open ocean and coastal data for CH2Br2, CHBr3 and CH3I, with particular focus on 

tropical regions.  Chapter 6 (in particular, Table 2) also includes a comparison of calculated fluxes 

and annual emissions from several studies.

1.7.2 Tropical deep convection 

In tropical regions areas of deep convection can transport halocarbons and their product gases from 

the MBL to the tropical tropopause layer (TTL) within a few hours, quicker than the atmospheric 

turnover of these compounds (Krysztofiak et al., 2012).  Once in the TTL the likelihood of washout 

occurring is greatly reduced and these compounds may be transported into the stratosphere, making 

the tropics an important source region for VSLS contributions to stratospheric bromine (Montzka et 

al., 2010).  In particular the tropical West Pacific is proposed as a strong source region, potentially 

accounting for 55% of the bromine from CHBr3 transported to the stratosphere (Aschmann et al., 

2009).  This region is discussed in Chapters 5 and 6.  Model studies focusing on the tropics suggest 

that deep convective regions may lead to up to 28% of surface CHBr3 and up to 70% of surface 

CH2Br2 reaching the TTL (Gettelman et al., 2009).  Another model study by Hossaini et al. (2010) 

suggests potential contributions from SGs and PGs; with 2.7 ppt of stratospheric bromine from 

direct SG injection of VSLS and 0.4-1.7 ppt of stratospheric bromine from PG injection.  The PG 

contribution is harder to determine due to a lack of above-detection limit observations and a high 

solubility of many PGs leading to a variable atmospheric lifetime that is highly dependent on their 

location (Montzka et al., 2010).  
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1.7.3  Tropical macroalgae

Aquaculture is an important global industry with macroalgae produced for consumption and a wide 

range of products, including: phycolloids, agar, carrageenans and alginates (Ask & Azanza, 2002). 

Aquaculture  is  commercially important,  in  2006 the  industry  was worth  about  US$7.2  billion 

(FAO, 2008).  Currently, about 97% of Asian seaweed production is monoculture crops (where one 

species is farmed intensively) and this type of aquaculture is a fast growing global farming sector, 

with increases of around 8% per year (Bouwman et al., 2011; Buck & Buchholz, 2004; Chopin et 

al., 2001).  Growth is driven by numerous factors, including the use of macroalgae as a biofuel and 

for carbon sequestration (Kheshgi et al., 2000; Singh et al., 2011).  Compared to terrestrial biofuels, 

macroalgae do not compete with food crops for space or require  intensive water  inputs  whilst 

providing  high  productivity  and,  in  some cases,  year  round biomass  with low cost  harvesting 

procedures (Aresta et al., 2005).  Macroalgae may also be utilised in integrated aquaculture.  Here 

they remove waste nutrients and reduce the environmental impact of fish and shellfish fisheries 

(Neori, 2007).   Further details on tropical aquaculture in Malaysia and south east Asia are provided 

in Chapter 6 Section 6.2.  

Aquaculture may impact regional halocarbon emissions in several ways.  Firstly an increase in the 

volume of halocarbon sources (macroalgae) is likely to increase halocarbon emissions.  In the 

South East  Asian  region  rhodophyte  genera  such  as  Kappaphycus,  Eucheuma,  Gracilaria and 

Gelidium are commonly farmed (Zemke-White & Ohno,  1999).  These species have not been 

quantified  in terms  of  their  halocarbon production rates.   In  addition,  farming practices  could 

exacerbate halocarbon production from macroalgae.  Aquaculture macroalgae are more likely to 

suffer from epiphytism, wounding, grazing and disease (Ask & Azanza, 2002).  As discussed in 

Sections 1.3.3 and 1.3.5, halocarbon release may increase in response to these processes, either via 

an oxidative stress response or due to production as a grazing or epiphyte deterrent. 

Harvested  seaweeds  are  generally  'dewatered'  (dried)  before  processing,  especially  in  tropical 

regions where there is adequate heat and sunlight to enable drying before the algae rots.  Even in 

commercial aquaculture processes this still involves spreading the seaweed out in the sun to dry for 

several days (Phang et al., 2006).  As Section 1.6.2 showed, the flux of halogenated compounds 

during tidal exposure of temperate macroalgae has been the focus of numerous studies.  However, 

the  effects  of  longer  exposure  periods  on  halocarbon  production  is  less  well  understood. 

Desiccation is discussed further in Chapter 4.  
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1.7.4  Knowledge gaps and the need for regional measurements

Despite the potential importance of the tropics with regards to global halocarbon budgets fewer 

measurements  have  been  made  in  this  region.   In  situ  measurements  are  important  as  many 

processes  involved in  halocarbon production,  transport  and  destruction  cannot  be  extrapolated 

between regions.  Seawater temperature, for example, is an important factor in loss process reaction 

rates.   For  example,  hydrolysis  and nucleophilic  substitution rates  are faster in  warmer waters 

(Jones & Carpenter, 2007; Moore & Groszko, 1999).

Biological production of halocarbons can also vary between regions.  As previous temperate and 

polar  research  has  consistently  shown  large  variations  in  emissions  both  between  and  within 

macroalgal species, species-specific measurements in different geographical regions are needed. 

Different  macroalgal  species  are  found  in  different  climatic  regions,  which  could  lead  to 

differences in halocarbon production and emission rates.   The ratio  of  rhodophytes  relative to 

phaeophytes and chlorophytes is also greater in the tropics (Santelices et al., 2009), and kelps are 

only found in deeper  waters  (Graham et  al.,  2007)  where they are less  likely to contribute  to 

particle formation.  Aquaculture is common in the tropics, and is set to increase (Section 1.7.3). 

Seaweed farms perturb the natural diversity and biomass of certain macroalgal species, potentially 

altering halocarbon emissions.  Environmental conditions also vary, for example the occurrence 

and rate of herbivory is believed to be greater in the tropics (Cronin et al., 1997).
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1.8  Halocarbons in a changing world

Current  VSLS  emissions  make  a  “small  but  non-negligible”  impact  on  stratospheric  ozone 

chemistry  (Montzka et al., 2010), but future climate change could alter this contribution.  Changes 

to sea surface temperature, salinity, wind speed, mixed layer depth, pH and nutrients may all affect 

both biological halocarbon production (Section 1.3.3) and/or the sea-air flux of these halocarbons 

(Section 1.5) (Bravo-Linares & Mudge, 2009; Hense & Quack, 2009).  

Atmospheric  transport  may  also  change  with  a  changing  climate,  as  demonstrated  by 

chemistry-climate  model  studies.   Dessens  et  al.  (2009) demonstrated  moderate  increases  in 

bromine in the TTL in a warmer world due to strong convection, leading to a 1-2 ppt increase in 

stratospheric bromine. A subsequent  study by  Hossaini  et al.  (2012a) reported increases in SG 

injection of VSLS of 0.3-1 ppt, depending on which climate change scenario was used.  They 

attributed this increase to changes in tropical deep convection and OH chemistry.  They did not 

take into account changes in biological productivity, which may change in a warmer climate, or the 

potential  effect  of  changing sea  surface  temperatures  and mixed layer  depth on the  sea-to-air 

halocarbon flux (Hense & Quack, 2009). 

1.9  Key research questions and thesis structure

With the aim of building upon the current knowledge base, as described in this chapter, this thesis 

will focus on the following overarching aim:

Improving our understanding of halocarbon production 

in tropical and temperate coastal zones.  

Figure 1 outlines the research aims and objectives for each research chapter (3-5) as well as links 

between these chapters that help bring together the individual research strands.  Chapter 6 brings 

together information from all chapters to discuss the current and projected future contribution of 

natural and farmed macroalgae to Malaysian and south east Asian halocarbon emissions. 

Each chapter includes its own methodology section as each chapter involves different measurement 

and analytical techniques.  An overview of methodological techniques used is provided in Chapter 

2, alongside a description of two method development activities carried out during this research.
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Figure 1. Thesis outline.
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CHAPTER 2
A methodology overview and method development

2.1  Introduction

Throughout  this  thesis  several  analytical  methods  will  be used  to  determine  picomolar  (10-12) 

concentrations of halocarbons in seawater and air samples.  All these methods follow the same 

basic principles; a sample is collected, analytes of interest are removed from the bulk sample via 

pre-concentration,  they  are  separated  using  gas  chromatography (GC)  and then  identified  and 

quantified via mass spectrometry (MS).  Fig. 1 provides an overview of the methods used in each 

chapter  to  allow  a  comparison  of  the  different  techniques  used  for  each  strand  of  research. 

Individual experimental designs and nuances are discussed in their respective chapters, alongside 

relevant system characterisations such as detection limits and precision.  

This chapter will also discuss two other method development activities that were conducted during 

the experimental activities discussed in this thesis.  Section 2.2 covers the effect of storing seawater 

samples on observed halocarbon concentrations.  Section 2.3 provides further information on the 

flux chamber used to provide some data for Chapter 4. 
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Figure 1.  An overview of the key stages in the analysis of seawater and air samples for halocarbon concentrations and a comparison of different techniques used 

for each chapter.
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2.2  The effects of storage on seawater samples

Seawater  is  a  complex  sample  matrix:  various  biologically  (e.g.  production  by  plankton), 

chemically  (e.g.  nucleophilic  substitution)  or  physically  (e.g.  photolytic  breakdown)  mediated 

changes  to  halocarbon  concentrations  may  occur  in  samples  collected  in  the  field,  altering 

concentrations prior to analysis.  Several methods are used to 'fix' seawater samples, that is, to halt 

biological activity so concentrations of biologically-affected compounds remain the same as they 

were upon collection.  Common methods include treatment with mercuric chloride to poison the 

sample or  filtration  to remove  microorganisms.   The use of  mercuric  chloride as  an effective 

method for preserving halocarbon samples has not been demonstrated.  The use of filtration has 

three main issues; firstly the analysis of volatile halocarbons in seawater requires the need to keep a 

sample isolated from air between collection and analysis.  Filtration must therefore be done with 

care to prevent ingress of air.  Secondly, filtration may not be 100% effective at removing all 

biological activity (some bacteria, for example, may still be present).  As described in Chapter 1 

Sections  1.2.2  and  1.4  bacteria  may  mediate  both  halocarbon  production  and  loss.   Thirdly, 

filtration (as well as the use of poisons) may damage the cells causing a flux of halocarbons into the 

seawater.  Little is known, or published, regarding these methods for storing seawater.  For this 

reason,  seawater  measurements  are  usually  measured  as  soon  as  possible,  necessitating  the 

transportation of analytical equipment (e.g. GCMS) into the field.  This is a costly process, and, as 

demonstrated in Chapter 5 Section 5.4, may limit our ability to collect data in certain regions.  An 

alternative is the use of sorbent tubes (see Hughes et al., 2012).  With this technique halocarbons 

are purged from the seawater and trapped onto sorbent tubes (similar to those used for air samples 

in  Chapter  4).   However,  this  technique  still  requires  compressed  gases  for  purging  and  the 

facilities  to keep tubes cooled during storage and transport.  The use of tubes for the analysis of all 

halocarbons is also untested, for example problems with CH3I storage on tubes has been identified 

in our laboratory.  
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With this in mind, a series of experiments were conducted at UEA on natural seawater taken from 

an aquarium containing temperate seaweeds.  Four experiments were conducted:

• E1 & E2: Seawater samples were collected in amber bottles with ground glass stoppers by 

first rinsing the bottle in the seawater then filling via immersion until the bottle overflowed 

and adding the stopper to remove any remaining air from the sample.  Samples were not 

filtered.  Bottles were stored in the dark at 15 °C.  E1 was conducted first followed the next 

day by E2.

• E3:  Seawater samples were collected into 100 ml gas-tight glass syringes (ground glass 

barrel, Luer lock closure) via Tygon and ¼ inch diameter PFA tubing and then filtered into 

a second syringe via a GF/F filter (see Chapter 3 Section 3.2.4).  Samples were stored in 

the dark at 4 °C.

• E4: Sampling as E3 but samples stored in the dark at 15 °C.

The results of these experiments (Figs. 2 and 3) were variable.  In some instances little or no 

change was observed, (e.g. CH3I and CH2ClI in all 4 experiments).  For other compounds changes 

in measured concentration were observed.  For example, CHBr2Cl, CHBr3 and CH2I2 increased in 

E1 but not E2, despite the use of identical experimental protocols.  Filtering into syringes which 

were then stored at 15 °C still resulted in increasing concentrations of CHBr3 and CH2I2.  However, 

this change was not seen in filtered samples stored at  4  °C.  The results of these, preliminary, 

experiments  suggest  that  whilst  filtering  and  chilling  helps  to  reduce  changes  in  halocarbon 

concentrations further work would be needed to provide a method that provides a fully consistent 

response between experiments.  Based on these results seawater samples taken from incubation 

experiments in Chapter 3 were analysed immediately to reduce the chance of changes occuring 

between sampling and analysis. 
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Figure  2.  Changes  in  halocarbon concentration  (pmol  l-1)  during E1 and  E2:,  storage  of 

seawater in amber ground glass-stoppered bottles.   Error bars are the range of  duplicate 

sample measurements.  Original in colour.  
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Figure  3.  Changes  in  halocarbon concentration (pmol  l-1)  during E3 and E4,   storage  of 

seawater  in  100  ml  glass  syringes.   Error  bars  are  the  range  of  duplicate  sample 

measurements.  Original in colour.  

2.3  Flux chambers

To provide data on halocarbon emissions from exposed macroalgae canister samples were taken 

from a flux  chamber  (Chapter  4 Section 4.2.7).   The flux chamber  (Fig.  4) comprised a  35  l 

polypropylene  (PP)  storage  box  (Really  Useful  Boxes®,  www.reallyusefulproducts.co.uk) 

measuring 370 x 310 x 280 mm (internal diameter) with two Swagelok ports fitted half way up the 

side of each box, one on each end.  Ports were sealed during equilibration time (30 minutes) and 

connected  to  a  canister  and  pump for  sampling.  In  2011 the  chambers  were modified  by  the 

addition of a small, battery powered hand-held fan to the inside top of the chamber to assist with 

the  circulation  of  air  inside  the  chamber  and  the  achievement  of  equilibrium  between 

sample/substrate  and  the  atmosphere  inside  the  chamber.   Whilst  we  could  not  determine  if 

equilibrium had been reached within our 30 minute flux chamber coverage time, maintaining a 

constant time allows for relative comparisons between chamber results, as described in  Sartin et al. 

(2001)
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Flux chambers were sealed over our target areas for 30 minutes before a sample was taken, a time 

also used by  Sartin et  al.  (2001;  2002).  It  was  hoped this  would provide a balance between 

allowing a measurable concentration of halocarbons to flux into the chamber headspace without 

causing too large an increase in temperature within the chamber.  Temperature increases within flux 

chambers of up to +15 °C have been reported (Dimmer et al., 2001) over a variety of (sometimes 

unspecified)  time  scales.   We  measured  the  increase  in  temperature  within  the  flux  chamber 

compared to ambient air on 8 occasions, covering different sites and meteorological conditions. 

The mean temperature increase was +4.1 °C and increases ranged from +0.9 °C to  +7.9 °C.
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Figure  4.  Flux  chambers.  Swagelok  sample  port  and  battery-powered  fans  are  visible. 

Whenever possible mud/sand was banked around the sides of the chamber to help seal the 

box.
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Due to recent interest in the effect of UV on chamber results investigating methane (CH4) fluxes 

from terrestrial  plants  (Beerling et  al.,  2008; Bloom et  al.,  2010) we tested the impact  of our 

chamber material on both UV and visible light spectra.  A Macam SR9910 UV spectroradiometer 

(Macam Photometrics Ltd.) was used to test the UV spectra beneath the flux chamber and several 

other materials.  A Biospherical Instruments Inc. light meter model QSL-2102 was used to perform 

the same task for photosynthetically active radiation (PAR, 400-700 nm).  Both light meters were 

set up in a UV light bench (constructed in-house) containing UVA (Q-Panel lab UVA-340, 40 W) 

and UVB (Q-Panel lab UVB-313, 40 W) lamps.  The bench also delivered PAR (400-700 nm) via 

cool  fluorescent  bulbs  (Philips  Master  TLD  Reflex,  840  Cool  White,  58  W).   The 

spectroradiometer was set to scan through wavelengths between 280 and 400 nm.  

The list of materials tested is displayed in Table 1.  Three scans were conducted for each material, 

the mean value for these three scans (demonstrating the ability of these materials to transmit UV) 

are shown in Fig. 5 (UVB, 280-314 nm) and Fig. 6 (UVA, 315-400 nm).  Standard deviation did 

not exceed ±0.01 for any triplicate groups.   Both figures show the same results.  UV levels were 

highest  inside  Tedlar,  glass  and  quartz  containers,  and  lowest  under  acrylic.   Polyethylene 

terephthalate (PET) and PP plastics displayed a range of transparency to UV, potentially linked to 

thickness.  For example, PP transmitted more when a thin tuppaware box was used compared to the 

flux chamber whose walls were roughly double the thickness.  The acrylic box, which showed the 

lowest transmission of UV, was also the thickest material.   

The effect of these materials on blocking visible light was also investigated (Fig. 7) under both 

natural light (Panel a) and the same light bench as used for the UV experiments (Panel b).  Again, 

acrylic  showed the greatest  reduction  in  light  levels,  with  most  other  materials  transmitting a 

significant percentage of ambient light.  A small decrease in light levels was observed under the 

flux chamber when it was placed in natural (UEA roof) light conditions (Fig. 7, Panel a).

The choice of a PP box provided a low-cost chamber that was easily available and also light-weight 

and rugged for ease of use in the field.  The results of these tests demonstrated that the selected PP 

flux chamber reduced the quantity of visible and UV light available inside the chamber by ~25% 

and ~33% respectively.  However, the results provide reassurance that the chamber had little effect 

on the spectral distribution of light.  Both visible and UV light was transmitted into the chamber 

allowing for semi-natural conditions to be experienced by samples within.
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Table 1. Materials tested for ability to transmit UV and visible light. 

Material Source Thickness

Thick PP Flux chamber (used in Chapter 4) 4 mm

Thin PP Plastic tuppaware (kitchen use) 2 mm

PET Plastic water bottles, two brands ~1.5 mm

Acrylic Box built for lab use 6 mm

Tedlar Tedlar sampling bag (SKC Inc., USA) <1 mm

Glass Erlenmeyer flask 2 mm

Quartz Erlenmeyer flask 2 mm

37



Figure 5. UVB transmission through possible flux chamber materials (Table 1).  Measurements were taken under a light bench providing a constant UV and 

visible light source as described in the main body of the text.  Original in colour. 
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Figure 6. UVA transmission through possible flux chamber materials (Table 1).  Measurements were taken under a light bench providing a constant UV and 

visible light source as described in the main body of the text.  Original in colour. 
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Figure 7. Transmission of visible light through potential flux chamber materials investigated (a) on the UEA roof and (b) under a light bench.  Blue dashed lines 

in (b) represent the mean light level within the light bench.
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CHAPTER 3
Halocarbon production by tropical macroalgae

3.1  Introduction

As described in Chapter 1 Sections 1.2 and 1.3, a number of incubation studies have investigated 

the production and emission of methyl halides and polyhalogenated compounds from polar and 

temperate macroalgae (Baker et al., 2001; Carpenter et al., 2000; Goodwin et al., 1997a; Gschwend 

et al., 1985; Laturnus, 1995; Manley & Dastoor, 1988; Marshall et al., 1999).  Such studies have 

helped to quantify the production of halocarbons by macroalgae and develop our understanding of 

the  complexity  and  variability  involved  in  these  biogenic  processes.   The  broad  suite  of 

halogenated  compounds  found  in,  and  released  from,  algae  are  thought  to  act  as  a  defence 

mechanism (Chapter  1,  Section  1.3.5).   They  help  protect  macroalgae  from grazing;  control 

bacterial, fungal and microalgal epiphytes; and limit fungal and bacterial infection (La Barre et al., 

2010;  Paul  &  Pohnert,  2010;  Weinberger  et  al.,  2007).   It  is  also  believed  that  halogenated 

compounds  act  as  antioxidants,  as  discussed  in  Chapter  1  Section  1.3.3  and  1.3.4.   This  is 

consistent  with  previous work which  suggests  that  environmental  stresses  such  as  desiccation, 

salinity and nutrient depletion influence halocarbon emission rates (Bondu et al., 2008; Mata et al., 

2011; Nightingale et al., 1995).  

These  macroalgal  emissions  may  impact  local  and  regional  atmospheric  chemistry.   The  role 

organic and inorganic iodine species (e.g. I2, CH3I and CH2I2) play on local atmospheric chemistry 

was discussed in Chapter 1 Section 1.6.  Briefly they have three important impacts; they provide a 

route  for  iodine,  an  essential  element  for  human  health,  to  reach  land;  they contribute  to  the 

production of ultrafine aerosol particles and so potentially contribute to the number and distribution 

of cloud condensation nucleii and the atmospheric radiation balance; and they alter the balance of 

oxidising radicals in the troposphere, thereby changing the oxidising capacity of the atmosphere 

and its ability to processes other gases, including pollutants and greenhouse gases  (Saiz-Lopez et 

al., 2012 and references therein).  Bromine-containing compounds are also involved in tropospheric 

(Chapter 1 Section 1.6.3) and stratospheric (Chapter 1 Section 1.6.4) chemistry.  
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Temperate regions have been the subject of various field studies demonstrating the importance of 

biogenic halocarbons (e.g. Carpenter et al., 1999; O'Dowd et al., 2002a, b).  The short atmospheric 

lifetime of biogenic halocarbons, on the order of days to months, alongside geographical variation 

in  biogenic  sources  leads  to  temporal  and  spatial  heterogeneity  in  biogenic  production  and 

atmospheric mixing ratios.  However, the tropical coastal region remains little-studied despite the 

potential importance of tropical regions in terms of halocarbon emissions and transport (Chapter 1 

Section 1.7).  Current hypotheses suggest tropical emissions may be particularly important due to 

deep stratospheric convective systems (Chapter 1 Section 1.7.2).  These systems may provide a 

rapid transport mechanism delivering short-lived halocarbons and their product gases to the upper 

troposphere/lower stratosphere (Quack et al., 2004; Salawitch, 2006).  Research cruises in tropical 

waters, however, have tended to consider emissions from oceanic, shelf sea and upwelling areas 

(Quack & Suess, 1999; Quack et al., 2004, 2007), and no study to date has focused on emissions 

from coastal  tropical  macroalgae.  However, the tropical  coastal  zone has been identified as a 

potentially  strong  source  region  by  Yokouchi  et  al.  (2005)  who  measured  up  to  40  ppt  of 

atmospheric  CHBr3 along the  coast  of  tropical  islands  and a  decreasing abundance relative  to 

longer-lived  halocarbons  such  as  dibromomethane  (CH2Br2)  away  from  the  coast;  a  pattern 

indicative of a localised coastal source such as macroalgae.  Differences may also exist between 

tropical  and  other  regions  with  regards  to  macroalgae  abundance  and  species  distribution,  as 

discussed in Chapter 1 Sections 1.7.3 and 1.7.4.  

This chapter presents the first dedicated study of halocarbon production by a range of tropical 

macroalgae.  Alongside this work it also discusses the effects of incubation time on calculated 

production  rates  (Section  3.3.1)  and  compares  tropical  algal  production  rates  with  data  from 

temperate and polar species (Section 3.3.4).  Production rates for temperate and polar species were 

generally taken from the existing literature, but several temperate species were also incubated using 

the same method for a direct comparison.  Work from this chapter can also be seen in Leedham et 

al. (2013).  
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3.2  Methodology 

3.2.1  Malaysian macroalgae sample collection

In September and October 2011, 15 tropical macroalgae species were collected from several sites 

on the western coast of Peninsular Malaysia; including an intertidal reef, an aquaculture site and a 

mangrove stand (Fig. 1).  Kappaphycus alvarezii  was purchased from a small aquaculture site at 

Pangkor  Island,  Ulva reticulata  was collected  from a  shrimp farm and  Gelidium elegans was 

obtained from the University of Malaya (UM) hatchery where it is cultivated for use in aquaculture 

experiments.  All other species were naturally occurring in the coastal environment and obtained 

from rock pools exposed at low tide or by snorkeling in water up to 1 m deep (see full details in 

Table 1).  Care was taken to select intact, healthy looking specimens with a minimum of epiphytes. 

Species attached via a holdfast were removed by carefully cutting the holdfast from the substrate, 

ensuring minimal  damage.   One to four  species  were collected during each sampling trip and 

returned to the UM hatchery facility where they were stored in large tanks of aerated seawater 

which were changed about every 3 days.  Samples were used within a week of collection.  Prior to 

each incubation replicates of an individual species were chosen, again, only undamaged specimens 

were  selected.   In  most  cases  triplicate  samples  were  chosen,  but  for  several  incubations  the 

quantity of collected material only allowed duplicate measurements (see Table 1).  

As previous experiments have shown that different sections of some of the larger algae release 

different amount of halocarbons  (Laturnus, 1996) single whole plants, or multiple smaller plants 

for  filamentous or  mat  forming algae,  were used.   In  each case,  samples  of  similar  mass and 

appearance were selected.  Cladophora sp., a mat forming alga, was removed in small sections 

maintaining the mud substrate to minimise disturbance, and a separate control containing mud and 

seawater was used for this incubation.  Samples from Cape Rachado often had small sea anemones 

attached,  these  were  gently  removed.   An  individual  incubation  on  anemones  alone  (species 

unknown) showed no appreciable halocarbon production (data not shown).  Photographs of typical 

algal specimens can be seen in Fig. 2. 
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Figure 1. Location of sampling sites Peninsular Malaysia.  

 = Kuala Lumpur (laboratory)

● = sampling sites:

1. Seaweed farm, Pangkor Island, Perak.

2. Shrimp farm, Kuala Selangor, Selangor. 

3. Mangroves, Morib, Selangor.  

4. Port Dickson, Negeri Sembilan; including Cape Rachado, Pantai Dickson and Pantai 

Purnama.
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Figure 2. Photographs of tropical seaweeds incubated in Malaysia in 2011.  Details of each species are given in Table 1. 



Table 1.  Tropical macroalgae investigated, their collection sites and sample details. n = number of replicates used in incubation study.

Species Collection site Collection date Incubation date Sample composition n

Rhodophyta

Gelidium elegans UM culture 17.10.11 18.10.11 Single specimen 3
Gracilaria changii Morib mangrove 19.09.11 21.09.11 Single specimen 3
Gracilaria salicornia 1 Morib mangrove 19.09.11 21.09.11 Single specimen 3
Gracilaria salicornia 2 Pantai Dickson 17.10.11 18.10.11 Single specimen 3
Kappaphycus alvarezii Seaweed farm, Pulau 

Pangkor
12.09.11 15.09.11 Single specimen 3

Phaeophyta

Padina australis Pantai Purnama 29.10.11 01.11.11 Selection of small plants 2
Sargassum baccularia Pantai Purnama 29.10.11 01.11.11 Single specimen 2
Sargassum binderi Cape Rachado 06.10.11 13.10.11 Single specimen 3
Sargassum siliquosum Pantai Purnama 29.10.11 01.11.11 Single specimen 2
Turbinaria conoides Cape Rachado 06.10.11 10.10.11 Single specimen 3

Chlorophyta

Bryopsis sp. Pantai Purnama 29.10.11 01.11.11 Selection of small plants 2
Caulerpa racemosa Cape Rachado 06.10.11 09.10.11 Single specimen 3
Caulerpa sp. Cape Rachado 06.10.11 09.10.11 Single specimen 3
Cladophora sp. Pantai Dickson 05.10.11 09.10.11 Section of algal mat 3

Ulva reticulata Shrimp farm, Kuala 
Selangor

21.09.11 23.09.11 Selection of small plants 3
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3.2.2  Temperate macroalgae sample collection

Between January and August 2012 six temperate species were incubated to provide a comparison 

between temperate and tropical species using the same incubation and GCMS analytical method. 

Six species were collected from West Runton on the North Norfolk coast.  As with tropical species, 

only whole, intact and healthy looking specimens were selected.  Specimens were returned to UEA 

within  two  hours  where  they  were  sorted  and  gently  cleaned  to  remove  sand  and  epiphytic 

organisms before being placed in large tanks of artificial seawater made using Seachem Marine 

SaltTM (Seachem,  USA)  and  distilled  water  which  was  aerated  using  two  aquarium  pumps 

connected to airstones. Salinity was checked regularly and maintained at 32-34.  Tanks were stored 

in a constant temperature room held at 13  °C (±0.5 °C) with a light level of 180 μmol photons 

m-2  s-1 and a 14:10 light:dark cycle.  Samples were used within five days of collection.  Table 2 

provides details of  the species,  incubation dates  and sample information.  The results of these 

incubations are used in Section 3.3.4 and also in Chapter 4 Section 4.3.5.

Table 2. Temperate macroalgae investigated, their incubation dates and sample details. 

n = number of replicates used in incubation studies. 

Species Incubation 
date

Sample 
composition

n

Rhodophyta

Corallina officinalis 23.01.12 Single specimen 3

Porphyra sp. 16.02.12 Single specimen 3

Polysiphonia fucoides 29.06.12 Single specimen 2

Phaeophyta

Fucus vesiculosus 01.08.12 Single specimen 3

Chlorophyta

Ulva intestinalis 23.01.12 Selection of small 
plants

2

Ulva lactuca 29.06.12 Single specimen 2
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3.2.3  Incubation protocol 

Gas-tight incubation vessels comprised modified 500 ml Erlenmeyer flasks and Dreschel tops as 

described by Hughes et al. (2011).  The Dreschel outlets were capped with 0.2 µm Minisart® filters 

(Sartorius,  UK) and plastic  Luer-type taps.   During incubations all  Luer taps were closed and 

during sample removal one was opened to allow the flask to re-equilibrate to atmospheric pressure, 

the filter preventing the ingress of bacteria, dust or other foreign matter.  Filtered seawater (400 ml, 

0.2 µm filtered) collected from a coastal site near to Kuala Lumpur was added to each flask leaving 

a 300 ml headspace.  Seawater from this site was used for each incubation for standardisation. 

Algal samples were gently blotted dry and weighed before they were added to the flasks to obtain 

fresh weight  values for  use  in production calculations.   Two control  flasks  containing filtered 

seawater only were used for each incubation.

Flasks were transferred to an incubator at 35 °C which provided 120-130 µmol photons m-2  s-1 

constant light via fluorescent tubes (Philips).  Jones and Carpenter (2005) reported UV photolysis 

of CH2I2, CH2BrI and CH2ClI with lifetimes of 10 minutes (±1 min), 4.5 hours (±40 mins) and 9 

hours  (±2  hours)  respectively,  lifetimes  that  could  be  significant  within  the  4  and  24  hour 

timescales of our incubations. However, no UVA or UVB light was measured in the incubator 

(Keng et al., 2013) and we therefore conclude that UV photolysis is negligible. Incubations lasted 

24 hours, 40 ml samples were removed for analysis after 4 (t4) and 24 hours (t24).  Samples were 

removed directly into 100 ml gas-tight syringes (ground glass barrel, Luer closure) using a Luer tap 

port  near the base of each flask, taking care to prevent ingress of air.  Samples were analysed 

immediately.  After t4 the 40 ml removed for sampling was not replenished to avoid dilution or 

nutrient addition effects.  After t24 macroalgae samples were re-weighed but no significant changes 

were noted for any of the incubations.  Dry weight was calculated by drying samples for 3 days in 

an oven at 60 °C followed by 24 hours in a desiccator; a method used extensively by the UM algal 

lab.  Losses to the headspace were estimated by calculating the solubility of each halocarbon with 

data from Sander (1999) and using this to compute partitioning between seawater and headspace. 

Percentage  losses  to the  headspace  at  t24  varied between 3  and 13.5% for  all  gases  with the 

exception of CH3I, for which the calculated loss was 30%.
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3.2.4  Purge and trap (P&T) system

Analysis was carried out via purge and trap pre-concentration followed by gas chromatography 

mass spectrometry (GCMS).  After addition of an internal standard (Section 3.2.5) samples were 

passed through a 25 mm diameter WhatmanTM 0.7 µm filter directly into a purpose-built purge and 

trap (P&T) system (Fig. 3), described most recently for halocarbon analysis by Hughes et al. (2006, 

2008).  The system was constructed of glass and stainless steel and has a proven suitability for the 

analysis of halocarbons without loss or contamination problems.  A flow of oxygen-free nitrogen, 

OFN,  (BOC)  scrubbed  of  organic  contaminants  using  a  hydrocarbon  trap  (Alltech®)  passed 

through a frit into the glass purge tube containing the seawater sample.  Samples were purged for 

15 minutes in a 40 ml min-1 flow of OFN.  Purging efficiency is dependent on the Henry's Law 

coefficient  (H),  the  concentration  in  air  divided  by  the  concentration  in  water  at  equilibrium 

(Moore et  al.,  1995).  Low molecular weight compounds are purged more efficiently from the 

water sample than those with higher molecular weights.  Purging efficiencies ranged from ~90% 

for CH3I to ~70% for CHBr3, in line with that reported by others using a similar technique (Chuck 

et  al.,  2005;  Hopkins,  2010).   Purging  efficiencies  were  accounted  for  as  calibrations  were 

conducted via the P&T system (Section 3.2.5).  Purge flow rates were checked daily to ensure 

consistency and the P&T system was frequently checked for leaks using the liquid leak detector 

SNOOP® (Swagelok, London).  Periodic cleaning of the purge tube, replacement of the glass wool 

trap and conditioning of the hydrocarbon traps were conducted to maintain system performance.

The gas stream then passed through a glass wool trap to remove aerosols and was dried using two 

Nafion® counterflow driers (PermaPure, USA) with a 100 ml min-1 counterflow flow rate arranged 

in series.  Target analytes were pre-concentrated on a empty stainless steel sample loop held at 

-150 °C in the headspace of a thermostatically controlled liquid nitrogen-filled dewar.  A VICI® 

Valco 6 port valve controlled flows of gases to the trap during trapping and injection. 
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Figure 3. Purge and trap (P&T) system built at UEA.  Letters denote: 

A = Hydrocarbon-scrubbed OFN purge gas.

B = Purge vessel.

C = Luer port (sample enters here).

D = Glass wool trap.

E = Two Nafion® counterflow driers in series.

F = VICI® Valco 6 port valve.

G = Stainless steel trap.

H = Liquid nitrogen (trapping) or boiling water (injection) dewar.  Liquid nitrogen headspace 

cooling was used, the dashed line represents the level of liquid nitrogen in the dewar.  For 

injection the trap was fully submerged in boiling water.

I = Flow of high purity helium to sweep the trapped sample to the GC along a heated transfer 

line.

J = In-house built electronics controlled the liquid nitrogen thermostat and heated transfer 

line.
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3.2.5  GCMS analysis

After  the 15 minute P&T period the trap was immersed in boiling water  and the halocarbons 

volatilised into a stream of CP grade helium (BOC) and transferred to an Agilent 6890 GC via a 

transfer line heated to 96 °C.  A 60 m DB-VRX column (0.32 mm diameter, 1.8 µm film thickness, 

J&W  Ltd.)  provided  separation  of  all  target  halocarbons  with  the  following  temperature 

programme: isothemal for 5 minutes at 40 °C, increasing to 200 °C at 20 °C min-1, held at 200 °C 

for 2 minutes before increasing to 240 °C at 40 °C min-1 and remaining isothermal at 240 °C for 4 

minutes.  Allowing for P&T time, data collection and oven cooling two samples could be analysed 

per hour. 

An Agilent  5973 quadrupole Mass Selective Detector was connected to the GC and was run in 

electron ionisation (EI) selective ion monitoring (SIM) mode.  SIM allows the creation of a custom 

sequence where the detector is set to filter out defined target masses (m/z values) for a set period of 

time.  Reducing the masses to be identified at any one time increases the time the detector can 

dwell on each m/z value, therefore increasing the sensitivity of the system.  Each compound was 

identified using two target  ions and retention times identified from the analysis of commercial 

standards (Section 3.2.5).  The 1 SD (standard deviation) precision of the system was around 13%. 

The detection limit of the complete system, at 1-6 pmol L-1 (halocarbon dependant), was below the 

background halocarbon concentrations seen in the seawater control. 

Table 3 provides a list of compounds (in order of elution from the column) which were quantified 

via this method.  Their retention times and the m/z values used to identify them are also included in 

this table.  Chapter 1 Table 1 provided further information on these compounds. 
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Table 3. Halocarbons quantified during tropical macroalgae incubations.  Halocarbons are 

listed in order of elution.

Halocarbon Chemical 
formula

Retention 
time

Target ions 
(m/z values)

Methyl iodide CH3I 6.8 142, 127

Bromochloromethane CH2BrCl 8.7 130, 93

Dibromomethane CH2Br2 10.3 174, 174

Bromodichloromethane CHBrCl2 10.4 83, 85

Chloroiodomethane CH2ClI 10.7 176, 127

Dibromochloromethane CHBr2Cl 11.8 129, 127

Bromoiodomethane CH2BrI 12.03 222, 141

Bromoform CHBr3 13.06 173, 175

Diiodomethane CH2I2 13.48 268, 141

Internal standards (Section 3.2.5)

Deuterated methyl iodide CD3I 6.8 145, 127
13C-dibromoethane 13C2H4Br2 12.05 109, 107
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3.2.6  Calibration and use of internal standards

Perfluorotributylamine  (PFTBA),  an  internal  MS  standard  provided  by  Agilent,  was  used  to 

autotune the MS system after significant changes, e.g. system downtime.  Commercial standards 

(generally Sigma-Aldrich®, UK) were used to calibrate  the system for sample analysis.   Neat 

(purity 97-99%) standards were diluted gravimetrically in a serial dilution in high purity methanol 

to produce primary, secondary and tertiary ('working') standards.  Neat standards were sealed and 

refrigerated in the dark at ~4 °C.  Diluted standards were stored in sealed 4 ml amber glass vials at 

-18 °C.  Working standards were capped with Mininert™ tops (Valco Instruments Co. Inc.) which 

allowed syringe access, without the removal of the cap, through a septum valve which can be 

pressed shut  to form a leak-tight  closure when not in use.   To calibrate the system microlitre 

(generally between 2-50 µl) volumes of the tertiary methanolic standards were added directly to 40 

ml of 0.2 µm filtered seawater which had been pre-purged with hydrocarbon-scrubbed, compressed 

air (BOC) for at least 24 hours.  Standards were added directly to the seawater in an 100 ml glass 

syringe,  taking  care  to  avoid  ingress  of  air,  to  mimic  sample  injection  into  the  P&T system. 

Multi-point  calibrations  containing  at  least  4  concentration  values  spanning  the  expected 

concentration range were regularly conducted.  Calibrating in this way provided a calibration of the 

complete  system, including purging efficiencies or any losses that  may occur during drying or 

trapping.  It therefore provided a more accurate result than calibrating only the detector.  Values 

were blank corrected and a regression line plotted between these points was used to derive the 

relationship between concentration and peak area.  Calibrations were accepted if the R2 value of 

this line fell above 0.9, generally R2 values were between 0.95-0.99.

Small  fluctuations  in  sensitivity  occur  over  time,  to  reflect  these  changes  synthetic  surrogate 

analytes were used to allow constant monitoring of sensitivity relative to recent calibrations.  Two 

methanolic internal standards, deuterated methyl iodide (CD3I) and 13C-dibromoethane (13C2H4Br2) 

(Table  3)  were prepared  gravimetrically in the  same way as  the  calibration  standards.   These 

compounds were used as they occur in extremely low natural concentrations and so would not be 

affected by natural fluctuations between samples.  Small volumes (typically 2.5  µl) of a mixed 

internal standard were added to each sample immediately prior to analysis.  Working solutions of 

these internal standards were checked daily or every two days for contamination by injection into a 

pre-purged water sample.  Fresh working solutions were prepared regularly.  
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The mean daily internal standard peak area was used to correct each individual sample using Eq. 1 

where the corrected target analyte peak area (TAcorr) is calculated from the raw target analyte peak 

area (TAraw)  using the daily mean internal  standard peak area (ISav)  and the individual  internal 

standard peak areas for each sample (ISs).   Internal  standards that fell outside a distinct  range, 

usually ±1SD, were not used to prevent distorting the data.

(1)

Fig. 4 shows the response of 13C2H4Br2 during the data collection period discussed in this chapter. 

Panel  a  shows the peak area  response  for  13C2H4Br2 for  consecutive  sample numbers  between 

55-250.  Samples 1-54 did not include the internal standard or were not part of this experiment (e.g. 

system installation tests).  A decrease then plateau in system sensitivity following the initial set up 

and autotune is visible.  The decrease is likely due to accumulation of decomposition products 

within the body of the MS and  degradation or deformation of the filament (G. Mills, pers. comm.). 

Small increases in sensitivity following subsequent tunes (blue lines) can also be seen in Panel a. 

Panel b shows the same data grouped into days.  Variation within each day, which can be corrected 

for using the surrogate analytes, is clearly visible.  Generally a decrease in sensitivity was seen 

during each day.  Where a decrease was seen it fell between 0.7-49% (mean 16%) for CD3I and 

4-39% (mean 19%) for  13C2H4Br2.   This daily sensitivity drift  is  somewhat reversible,  with an 

increase  between the  last  sample  of  one  day  and the  first  of  the  next  commonly  seen.   This 

reversible drift has been potentially attributed to a build up of non-target analytes within the MS 

ionisation chamber (C. Hughes, pers. comm.).

Whilst the drift in the internal standards significantly correlated (Pearson's r = 0.84, p=3.09 x 10-35, 

Fig. 5) the use of both an early (CD3I at ~6.8 minutes) and later (13C2H4Br2 at ~12 minutes) eluting 

compound allowed IS  correction  for  the  range  of  target  analytes.  Different  halocarbons  may 

respond differently within the analytical system; for example, CH3I has a higher purging efficiency 

than some of the later eluting and less volatile compounds, such as CHBr3. 
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Figure 4. Variations in the peak area of the  13C2H4Br2 surrogate analyte from September to November 2011.  ■ represent individual samples displayed (a) in 

sample number order and (b) for each day.  Blue lines represent autotunes of the GCMS due to instrument shut down or maintenance.  Gaps represent times 

when the GCMS was run without addition of the internal standard (e.g. blanks or air samples).  This is shown in more detail in (b) where x = days where no 

samples were run and - = days where samples were run without the internal standard (usually analysis of air samples). Only one GCMS shutdown period 

occurred during the experimental period, marked by the black horizontal line in (b).  Original in colour.
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Figure 5. Correlation between peak area response of both surrogate analytes (CD3I and 
13C2H4Br2) over the 2011 fieldwork season (September-November 2011).  Original in colour. 
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3.3  Results and discussion

3.3.1  The effect of incubation time on production

Production rates for 10 of the 15 species were calculated at t4 and t24 (see Appendix 1).  Table 4 

shows  the  ratio  between  these  values  for  each  species.   Over  50%  of  measurements  were 

significantly  higher  at  t4  compared  to  t24  (Student's  t-test,  p=0.05,  on  data  which  were  first 

log-normalised to pass Kolmogorov-Smirnov tests of normality at p=0.05).  Exceptions were the 

two Caulerpa species, both of which showed low overall production rates of less than 5 pmol g 

FW-1  hr-1 for all halocarbons.  Both time periods show the same trends, with strong and significant 

correlations (R2 = 0.43-0.98, p=0.05) between individual halocarbon and species datasets at t4 and 

t24  (Fig.  6).   No individual  halocarbon displayed a  distinctive  trend that  may have  indicated 

non-biogenic loss or production processes, this will be discussed in more detail later.  As the t4 and 

t24 datasets both show the same patterns, from here on only the t24 dataset, which contains data for 

a greater number of species, will be discussed.  

Table 4.  Ratio t4:t24 halocarbon production (pmol g FW-1 hr-1) rates.  nm = not measured, x 

= at one or both time points compound not detected.  Production by P. australis, S. baccularia, 

S. siliquosum and Bryopsis sp. was not measured at t4.

Species CH3I CH2BrCl CH2Br2 CHBrCl2 CH2ClI CHBr2Cl CH2BrI CHBr3 CH2I2

G. elegans 2.32 3.05 2.00 5.70 3.65 2.96 6.72 7.83 7.86

G. changii 2.72 16.47 11.80 3.56 7.20 3.25 13.26 3.95 3.16

G. salicornia 1 3.22 5.16 3.34 1.77 8.71 1.26 6.84 3.29 6.85

G. salicornia 2 2.36 12.45 10.87 4.36 13.08 3.71 26.36 5.39 14.72

K. alvarezii nm 0.51 0.54 0.96 0.57 0.85 1.52 3.38 4.17

S. binderi 1.45 3.04 3.10 0.73 2.95 1.40 7.87 2.61 10.76

T. conoides 0.68 0.91 2.21 3.04 0 1.81 1.15 2.13 1.03

C. racemosa 4.98  x 0.59 x 1.75 1.39 1.51 2.07 1.91

Caulerpa sp. 0.93 x 0.08 x 1.75 1.39 1.51 2.07 1.91

Cladophora sp. 0.57 1.54 3.62 0.71 0.38 2.08 2.22 2.14 0.36

U. reticulata x  x 2.39 4.99 8.81 6.14 4.39 6.68 6.75
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Figure 6. Correlation between log-normalised production (pmol g FW-1 hr-1) at t4 and t24 for (a) individual halocarbons and (b) seaweed species. 
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3.3.2  Halocarbon production by tropical macroalgae

T24 production values for each species are represented graphically in Fig. 7.  Panels in Fig. 7 are 

ranked in order, with the highest individual halocarbon emission rate at the top.  CH2BrCl emission 

was  low  for  all  species  and  none was  detected  from  Bryopsis  sp.,  Sargassum  siliquosum, 

U. reticulata. Padina australis  and  Sargassum baccularia.  U. reticulata and  Caulerpa racemosa 

showed no discernible production of CH3I and CHBrCl2 respectively.  Otherwise, all other species 

produced all halocarbons.  The bromocarbons, CH2Br2  and CHBr3,  were produced ubiquitously. 

Generally CHBr3 was produced in the highest quantities, followed by CH2Br2.  The exceptions to 

this  were  the  chlorophytes,  Caulerpa  sp.,  C.  racemosa,  and  Cladophora  sp.,  which  produced 

CH2Br2 at a similar or faster rate than CHBr3.  

The rhodophyte  Gracilaria changii  was the strongest  CHBr3 producer  with an average CHBr3 

production rate of 1129 pmol g FW-1 hr-1 (range 1037-1272 pmol g FW-1 hr-1)  Another Gracilaria 

species, Gracilaria salicornia was also a strong halocarbon producer.  G. salicornia was incubated 

twice, using specimens collected from two different sites within a month of each other (Table 1). 

Mean CHBr3 production in September (G. salicornia 1) was 478 pmol g FW-1 hr-1 but variability 

was high, with individual incubations revealing rates ranging from 82 – 875 pmol g FW-1 hr-1.  The 

second incubation (G. salicornia 2) also demonstrated high production with a mean CHBr3 rate of 

595 pmol g FW-1 hr-1  and a range of 298 – 791 pmol g FW-1 hr-1.  Overall, the rhodophytes we 

tested tended to be the strongest producers, with K. alvarezii also producing CHBr3 at a strong rate 

(512.03 pmol g FW-1 hr-1, range 479-558 pmol g FW-1 hr-1). 
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Figure 7. Halocarbon production by tropical macrophytes measured at t24. Bars are mean 

production of biological replicates (n=2 or 3, see Table 1) with error bars the 1σ standard 

deviation.  Colour of bars and bracketed letter indicates: red (R) = rhodophyte, brown (P) = 

phaeophyte and green (C) = chlorophyte.  'nm' is 'not measured' and 'nd' is 'not detected'. 

(a) G. salicornia was incubated twice (see Table 1).  Original in colour.
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High intra-species variability was also seen amongst replicates in previous studies. Carpenter et al.

(2000) saw replicate differences within a factor of 2, which they attributed, in part, to fluctuations 

in light and temperature as their incubations were conducted outdoors. However, fluctuations in 

environmental  variables  cannot  explain  all  the  variation  as  our  study  was  conducted  under 

laboratory-controlled light and temperature conditions and variations of the magnitude reported by 

Carpenter et al. were also observed in our study. Variability was also observed in other incubations 

conducted under  controlled conditions,  for  example Collen et  al.  (1994)  reported a  percentage 

standard deviation on repeated incubations of up to 129%. This large variability is likely due to 

variations  in  both  background  seawater  concentrations  and  biological  variability  between 

replicates. Giese et al. (1999) reported CHBr3 variations in their seawater controls of ~10% and 

Laturnus et al.  (1996) reported varying production rates from different sections of algal tissue, 

with, on average, blades producing more CHBr3 than stipes.  Variability has been attributed to 

differences  in  environmental  history  (grazing  pressure,  stress,  age)  of  different  samples  (e.g. 

Carpenter et al., 2000). An example of the effect of age can be seen in Mairh et al. (1989) where 

increasing internal iodine concentrations in older chlorophytes are reported.  Variability between 

replicates is discussed further in Section 3.4.  

Generally species that were strong bromocarbon producers also produced relatively high levels of 

other halocarbons.  This was demonstrated by assigning each species a rank (1 lowest, 15 highest) 

for CHBr3 production.  They were then ranked again, independently, for CH2Br2 production, then 

for CH3I and so on.  The resulting spread of ranks are displayed as box and whisker plots in Fig. 8. 

Separate groups can be seen; prolific producers include the rhodophytes and Turbinaria conoides, 

phaeophytes are in the middle and chlorophytes are generally weaker producers.  The strongest 

bromocarbon producer in this study,  G. changii,  also showed considerable  production of  other 

halocarbons, with CH2I2  production up to 300 times greater than most of the chlorophytes and 

CH2Br2  production  2-30 times  greater  than many of  the  other  species  studied.   Some species, 

however,  displayed  a  wide  range  of  ranks.   Bryopsis,  for  example,  was  one  of  the  strongest 

producers of CH2ClI with a rank of 13/15 but the weakest producer of CHBrCl2 with a rank of 1/15.
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Figure 8. Production rank box and whisker plots for all halocarbons emitted by each seaweed species. Production data in pmol in g FW-1 hr-1 at t24 were used to 

rank the seaweeds for their production of each halocarbon.  The lower and upper limits of the boxes represent the 25th and 75th percentiles, the horizontal lines 

are median values and whiskers represent the 10th and 90th percentiles.  Species are ordered by class (rhodophyte, phaeophyte, chlorophyte) and alphabetically 

with these groups.  
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Whilst  the  rhodophytes  produced  large  quantities  of  bromocarbons,  some  of  the  phaeophytes 

ranked highly  for  iodocarbon  production.   To investigate  further,  the  proportions  of  bromine, 

chlorine and iodine emitted as halocarbons by each species was calculated and Table 5 shows the 

results with species ranked in order of decreasing total halogen emissions.  T. conoides was the 

strongest producer of all iodine-containing compounds, with a CH2I2 production rate almost double 

that for CHBr3.  Another phaeophyte, P. australis, showed a stronger production rate for CH3I than 

for  the  bromocarbons.   The  phaeophytes  in  general  showed  a  stronger  propensity  towards 

production of iodinated compounds, the mean percentage iodine emission for phaeophytes was 

35% compared to 8% for rhodophytes.  This corresponds to temperate studies  which reported 

strong iodocarbon emissions from temperate macroalgae such as  Laminaria (kelp) (Carpenter & 

Liss, 2000; Küpper et al., 2008).  Chlorophytes also produced a higher percentage of iodine (18%) 

compared to the rhodophytes, but as overall production rates were lower for these species their 

contribution to local iodine chemistry is probably of less importance.  In temperate regions kelps 

and other phaeophytes  often dominate algal  biomass in shallow coastal  waters (Graham et  al., 

2007; de Vooys et al., 1979), but in tropical regions rhodophytes and chlorophytes are often more 

common (Santelices  et  al,  2009).   This  may potentiall  shift  the balance  of  emissions  towards 

brominated species. 

Table  5.   Total  picomoles  of  halogens  emitted  as  halocarbons  during  incubations  and 

percentage contribution from bromine, chorine and iodine.  Species are arranged in order of 

decreasing total halogen emissions.  

Species Total 
halocarbons 

emitted / pmol

%Br %Cl %I

G. changii 1730945 89.2 4.5 6.3

K. alvarezii 1557254 84.4 11.7 3.9

G. salicornia (mean) 835449 87.6 6.4 6.0

T. conoides 435637 50.0 7.7 42.3

Bryopsis sp. 107250 79.9 8.8 11.4

S. binderi 62711 78.4 18.9 2.8

G. elegans 39696 83.9 12.8 3.3

S. siliquosum 36865 76.9 11.6 11.5

U. reticulata 33761 86.1 12.5 1.4

S. baccularia 20996 73.9 15.7 10.4

P. australis 11449 42.2 9.2 48.7

C. racemosa 12614 63.4 19.6 17.1

Caulerpa sp. 9312 73.4 17.8 8.8

Cladophora sp. 5312 64.8 21.9 13.3
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With the exception of Bryopsis, the chlorophytes were the weakest producers, with production rates 

for all halocarbons below 30 pmol g FW-1 hr-1.  Bromocarbons were still produced in the highest 

quantities, but production rates for iodinated and mixed bromochloro- compounds were generally 

less than 1 pmol g FW-1 hr-1  for  Ulva,  Caulerpa, and  Cladophora spp..  In common with many 

chlorophytes,  Bryopsis species are fast growing and opportunistic, with the potential to rapidly 

colonise an area.  It  has  been suggested that  halogenated metabolites within algal  tissues help 

protect  against  epiphytes  or  grazers  (Paul  & Pohnert,  2010),  perhaps  the  stronger  halocarbon 

emissions from these species helps protect the algae, facilitating their rapid growth (see 'ideas for 

further research' in Chapter 6 Section 6.4).  

Potential  triggers  for halocarbon emissions, such as grazing or oxidative stress,  do not help to 

explain  why  different  species  found  in  the  same  environment  and  subjected  to  similar 

environmental conditions show such high variability in their halocarbon production rates.  It  is 

possible that some species may rely on other metabolites, for example some tropical  Caulerpa 

species are reported to use high concentrations of sesquiterpenoid metabolites to deter herbivores 

(Paul  et  al.,  1987).   The  Caulerpa species  we studied all  showed low halocarbon production, 

however  no other  metabolites  were investigated.   T. conoides also  stood out  from the general 

pattern of rhodophyte > phaeophyte > chlorophyte with respect to production rates.  T. conoides is 

in  the  same  phylogenetic  family  (Sargassaceae)  as  the  weaker  producing  Sargassum species 

reported  here.   Variations  between  class,  genus  and  species  are  not  unexpected;  despite  the 

overarching terms 'seaweeds' or 'macroalgae', this group of organisms are an evolutionary diverse 

group, and the evolution and genetic control of halocarbon production is poorly understood.

In the literature to date halocarbon production has been expressed as production in picomoles or 

nanograms per unit of fresh weight (FW), dry weight (DW) or sometimes both, per unit of time. 

Fresh  weight  may provide  an  easier  basis  for  scaling  up  to emission  estimates  as  they better 

represent natural  biomass,  whereas dry weight potentially provides easier comparisons between 

algal species as some algae contain much higher water content than others.  The ranking procedure 

used for Fig. 8 was repeated using production expressed per gram of DW instead of FW.  FW and 

DW derived ranks are displayed alongside FW/DW ratios in Table 6.  Despite the range of FW/DW 

ratios seen in this study the ranks assigned to each species and the overall pattern of weak or strong 

producers remains the same whether fresh or dry weight is used.  
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Table 6. Changes in mean 'production rank' when calculating production using fresh or dry 

weight.  Species are ordered in increasing percentage DW. 

Species t24 mean rank DW as 
% of  FWFW DW

C. racemosa 2.5 5.6 4.3

Caulerpa sp. 2.7 6.8 4.8

Bryopsis sp. 8.3 8.6 5.9

G. salicornia 1 9.6 11.2 8.0

G. elegans 8.6 6.2 8.7

Cladophora sp. 2.3 1.3 8.9

K. alvarezii 12.4 13.5 9.8

U. reticulata 3.7 2.3 11.4

G. changii 12.3 11.0 11.4

P. australis 6.3 7.1 12.6

S. binderi 8.6 7.4 12.9

S. siliquosum 8.6 7.3 14.3

T. conoides 13.3 12.8 14.4

S. baccularia 6.1 6.0 15.4

G. salicornia 2 10.7 10.0 27.0
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3.3.3  Correlations between biogenic halocarbons

Halocarbon correlations from incubation studies could improve our understanding of biological 

links between halocarbons and their production mechanisms.  All log-normalised production values 

for each halocarbon (except CHBrCl2 which failed normality tests even after log-normalisation) 

were correlated against one another (Fig. 9) and tested using Pearson's correlation coefficient  (r). 

Significant  correlations  (p=<0.05)  were  common  for  the  polyhalogenated  halocarbons  but  the 

mono-halide CH3I correlated only with two other iodinated compounds, CH2ClI and CH2I2.  The 

strongest correlations were seen for the bromine-containing halocarbons, especially CHBr3, CH2Br2 

and CHBr2Cl with R2 values between 0.79-0.94 (p=<0.001).  The weakest correlations that passed 

the Pearson's correlation coefficient test included correlations between several of the bromine and 

iodine containing species, for example CHBr3 and CH2I2 (R2 = 0.48, p=0.004) and CH2ClI and 

CHBr2Cl (R2 = 0.32, p=0.027).  Our correlations support previous work to define the biochemical 

production of halocarbons.  As described in  Chapter 1 Section 1.3.2 methyl halides, in this case 

CH3I,  are  produced  via  a  methyltransferase-mediated  reaction  between  halides  and 

S-adenosyl-L-methionine (SAM), whereas the production of di- and tri-halogenated compounds 

involves vanadium-dependent haloperoxidases (Bravo-Linares et al., 2010; Goodwin et al., 1997a). 

Manley  (2002)  summarising  his  own  and  others'  research,  concluded  that  polyhalomethane 

production is functional, with polyhalogenated compounds acting as antioxidants, but that methyl 

halide  production  does  not  seem to  serve  a  function  and  is  possibly  a  by-product  of  normal 

metabolism. This difference in functionality supports the lack of correlation we observe between 

these two groups of halocarbons.  However, despite the lack of statistical correlations between the 

production rates of CH3I and the majority of other halocarbons, strong producers (e.g. Gracilaria 

spp.) produced large quantities of CH3I and polyhalogenated compounds.  This suggests that links 

may exist  between these two production mechanisms.   Further  research into potential  linkages 

between these two production pathways and the mechanisms that control or trigger them is needed. 
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Figure 9. Halocarbon correlation plots of log-normalised production (pmol g FW-1 hr-1)
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The highest  correlation (R2 = 0.94, p<0.001) is between CHBr3 and CHBr2Cl.  Tokarczyk and 

Moore  (1994)  suggested that  CHBr2Cl  could  be formed from CHBr3  in  laboratory  cultures  of 

diatoms,  although their  study did not see a  time lag between CHBr3 and CHBr2Cl production. 

Although some evidence for the formation of CHBr2Cl from CHBr3 may be seen in this study, the 

ratio of CHBr3:CHBr2Cl decreases from ~18:1 at t4 to ~11:1 at t24, the incubation time (max 24 

hours) is less than the lifetime of CHBr3 with respect to nucleophilic substitution (5 years at 25 °C, 

see  Chapter  1  Table  3)  and  so  we  would  not  expect  this  process  to  influence  our  results. 

Production of CH2ClI from CH2I2 has also been proposed on the basis of data from incubations and 

the natural environment  (Jones & Carpenter, 2005; Tokarczyk & Moore, 1994).  Here CH2I2 and 

CH2ClI have a relatively strong correlation (R2 = 0.64, p<0.001) but we did not see a change in 

ratio between t4 and t24.  Overall, it seems that direct biogenic influence, either through direct 

biogenic halocarbon production or extracellular production via the emission of hypohalous acids 

which react with organic matter (Manley, 2002) is the important factor determining halocarbon 

concentrations in these incubations. 

Atmospheric abundance ratios, typically from research cruises, are often used to determine regional 

and global oceanic halocarbon fluxes (O'Brien et al., 2009; Yokouchi et al., 2005).  Ratios from this 

study are compared to observed atmospheric halocarbon ratios in Chapter 5.
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3.3.4  Comparison with temperate and polar halocarbon production 

Given that  this  is  the  first  dedicated  study of  halocabon production  by tropical  macroalgae  it 

seemed pertinent to compare these results with existing data for temperate and polar macroalgae. 

CHBr3 and CH3I were selected for this comparison and production values were assimilated from 21 

existing papers.   Where production was expressed only per gram of DW production rates were 

converted (following Carpenter et al., 2000) using DW-FW conversion ratios in Baker et al. (2001) 

and Bravo-Linares et al. (2010).  The resulting production value ranges are displayed alongside the 

results from our study in Fig. 6 .  Data collected from temperate incubations using an identical set 

up to the tropical incubations (Section 3.2.2) were also included.  Appendix 2 contains figures 

showing all species included in these studies in order of increasing production of CH3I and CHBr3. 

A simplification  of  these  figures  is  shown  in  Fig.  10.   Where  errors  were  quoted  alongside 

production rates these have been translated to error bars on Fig. 6.  Determining error or variability 

from other studies was not always possible, but, as discussed in Section 3.3.2, previous studies 

have reported intra-species variability of a similar magnitude to those shown in this study 
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Figure 10. Halocarbon production reported in this and previous studies for CH3I and CHBr3.  ■ = this study, error bars = 1σ standard deviation.  ● = previous 

studies (black outline = study may include subtropical or tropical strains). Published values were from the following sources:  Carpenter et al. (2000); Collen et al. 

(1994); Ekdahl et al. (1998); Giese et al. (1999); Goodwin et al. (1997a); Itoh and Shinya (1994); Itoh et al. (1997); Klick (1993); Laturnus (1996); Laturnus et al. 

(2004); Manley and Dastoor (1987); Manley et al. (1992); Marshall et al. (1999); Pedersen et al. (1996); Schall et al. (1994).
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The results of the literature comparison (Fig. 10) show a large range of production values, spanning 

from negligible or no production to 100 pmol g FW-1 hr-1 for CH3I and 6000 pmol g FW-1 hr-1  for 

CHBr3.   Phaeophytes  displayed  the  highest  mean  production  rates  for  CH3I,  followed  by 

rhodophytes.   The chlorophytes showed a considerably lower mean rate;  0.3 pmol  g FW-1 hr-1 

compared to around 10 and 4 pmol  g FW-1 hr-1 for phaeophytes  and rhodophytes respectively. 

Conversely, chlorophytes were, on average, the strongest CHBr3 producers, with a production range 

of  0-6000 pmol g FW-1 hr-1  (mean 307) compared to 0-3000 (mean 160) pmol  g FW-1 hr-1  for 

phaeophytes and 0-5000 (mean 288) pmol g FW-1 hr-1 for rhodophytes.  These differences between 

classes may provide assistance in creating emissions budgets if the distribution of chlorophytes, 

phaeophytes and rhodophytes in an area is known (see Chapter 6 Section 6.2).  Species that were 

recorded as producing no CH3I or CHBr3 are not displayed in Fig. 10, but the percentage of species 

that did not produce CH3I was higher than for CHBr3 at ~26% compared to ~10%.  The percentage 

standard deviation across the whole CH3I and CHBr3 datasets was similar for both halocarbons at 

for CH3I and 328 for CHBr3. 

Sequential measurements from the same incubation flask in this study have highlighted the effect 

incubation time may have on calculated production.  The incubation times used by the studies 

included in Fig. 10 ranged from 30 minutes to 48 hours, so the incubation time could explain some 

of  the  variability  between  studies  investigating  the  same  or  similar  species.   Marshall  et  al. 

(1999) and Itoh et al. (1997) observed decreases in halocarbon concentrations between 3-48 hours 

in incubations conducted both in light and dark conditions, both papers proposed biological loss 

processes.  Marshall et al. (1999) conducted further experiments and attributed losses to microbial 

breakdown whilst  Itoh  et  al.  (1997)  suggested  re-adsorption  of  the halocarbons onto the algal 

surface followed by degradation.  Our results, which show higher mean production at t4 compared 

to t24 support these previous findings.  The higher values at t4 may also be attributed to incubation 

preparation,  a  'burst'  of  halocarbon emissions upon immersion into the incubation flask due to 

stress/exposure when the samples are weighed and checked may be unavoidable.  Manley and 

Dastoor  (1987)  suggested  that  iodine  limitation  in  the  incubation  seawater  could  account  for 

decreases in CH3I production as incubations progress.  However, as macroalgae can accumulate 

iodine to far greater concentrations that seawater, up to 30,000 times greater for some Laminaria 

sp.,  (Küpper et al., 1998 and references herein) this seems unlikely in our 24 hour incubations. 

Results from several other studies report the opposite effect, with increasing production seen in 

longer incubations (e.g. Bravo-Linares et al., 2010).  It is possible that longer incubation times in 

enclosed systems may subject the algae to physiological stresses, such as nutrient depletion, build 

up of exudates or pH shifts, which may cause increases in halocarbon emissions  (Mtolera et al., 

1996).  These varying results suggest that incubation effects may be species or incubation set up 

specific.  
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Our production rates for CH3I and CHBr3 were within the range of values quoted in the existing 

literature.  For CH3I and CHBr3 all but one to two species (Papenfusiella kuromo (Itoh et al., 1997), 

Gracilaria cornea (Ekdahl et al., 1998), Bryopsis sp. and Caulerpa sp. (this study)) fell within +/- 1 

SD around the mean for each class (red, brown, green).  Methodological differences could have 

affected the emission rates recorded; for example Itoh et al. (1997) cut disks out of some algae 

samples for use in incubations which may have triggered defensive emissions leading to the high 

CH3I production observed.  

Three genera which had been intensively studied,  Fucus,  Laminaria and Ulva, are highlighted in 

Fig. 10 to show variability within these groups.  The spread of results recorded for species from 

these three genera measured from different locations and under different conditions is considerable. 

This variability is probably due to two factors.  Firstly, differences in measurement techniques, 

such as incubation times, could impact calculated production, as discussed previously.  Secondly, it 

is possible that species which share evolutionary traits, and so are grouped in the same genus, can 

demonstrate differences in physiology.  Several studies have measured species from the same genus 

using the same experimental technique and seen differences in CHBr3 production of up to 10 ppt 

between  species  from the  same  or  similar  locations  (Carpenter  et  al.,  2000;  Laturnus,  1996). 

Thereby, it seems possible that similar species from different locations could show differences in 

production rates beyond that which may be attributable to different experimental protocols.  
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3.4  Conclusions

1. Incubations of 15 tropical macroalgae species showed variable production rates covering 

several orders of magnitude.  Brominated halocarbons were dominant, and rhodophytes 

produced  the  most  bromocarbons.   Phaeophytes  and  chlorophytes  showed  a  stronger 

propensity towards iodocarbon production, although emissions in general were low for the 

majority of chlorophytes we studied. 

2. Our  measurements  at  two  time  points  during  a  24  hour  incubation  demonstrate  that 

incubation time can also have an impact on determined production rates; production rates 

were higher at t4 compared to t24. For this reason, comparisons between individual studies 

should be made with caution.  

3. Nonetheless, data from previous studies were compared to our tropical data and the range 

of production values was similar.  As the tropical dataset is considerably smaller than that 

for polar and temperate species  only preliminary conclusions may be drawn at this time. 

However, from our dataset it seems that tropical species are, on average, not individually 

stronger producers of halocarbons than their temperate and polar counterparts.  Differences 

in  spatial  distribution  may,  instead,  drive  geographical  differences  in  regional  coastal 

halocarbon  emissions;  for  example,  a  higher  propensity  toward  strong-producing 

rhodophytes (natural or farmed) in tropical regions.

3.4.1  Further work

Ratios between halocarbons seen in these incubations will be compared to observed atmospheric 

halocarbon ratios in Chapter 5.

CHBr3 and CH2Br2 production by tropical macroalgae will be used to derive “bottom up” emission 

estimates  from  Malaysian  and  South  East  Asian  coastal  environments  in  Chapter  6.   The 

contribution of current and projected future aquaculture will also be discussed. 
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CHAPTER 4
Halocarbon production by macroalgae during 

desiccation

4.1 Introduction

Many seaweed species commonly experience periods of desiccation or drying.  These processes 

could be natural, for example regular exposure and resubmersion of seaweeds in the intertidal zone. 

They could  also be anthropogenically driven,  for  example prolonged desiccation when farmed 

seaweed is harvested and left to dry before processing.  These two processes are very different, yet 

both may cause physiological stress to the algae.  Tidal variations in exposure are natural but only 

certain organisms are adapted to the rapid changes in temperature, light levels and salinity that can 

occur in a tidal region.  Organic and inorganic halide compounds, in their role as antioxidants, may 

be part of this adaptation strategy in macroalgae (Chapter 1 Section 1.3.3).  Conversely, prolonged 

desiccation during an aquaculture harvest may push the seaweed beyond its natural ability to cope 

with desiccation, and so may result in a different pattern of halocarbon emissions.

4.1.1 Natural tidal desiccation

In the unique environment  of the intertidal  zone sessile  organisms have to be adapted to both 

submersion and exposure.  Whilst exposure is a natural occurrence for intertidal seaweeds it can 

still  place abiotic  stress  on  the algae;  this  has  been demonstrated by studies  which  show that 

individuals from the same species grow faster when continually submerged compared to those that 

are exposed as part of daily tidal cycles  (Williams and Dethier, 2005).  The length and extent of an 

individual  plant's  exposure  depends  on  weather  conditions  (such  as  humidity  or  wind),  tidal 

patterns, and the position of the seaweed on the shore.  This last factor is of particular importance, 

and it believed that the ability to cope with desiccation is a strong determinant in zonal positioning 

and extent of an individual species' range within the tidal region (see summary in Lobban et al., 

1985).
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Exposure periods cause stress  to macroalgae in several  ways.   Light  levels  will  increase with 

excessive light causing photoinhibition and a reduction in photosynthesis. Briefly, photoinhibition 

involves  damage  to  the  reaction  centre  of  photosystem II  (PSII),  which  can  be  irreparable  if 

excessive light conditions persist (Adir et al., 2003 and references herein).  Increased exposure to 

UV will also occur, potentially causing permanent damage to pigments and tissues (Lüning, 1990). 

Rapid temperature changes can also occur when seaweeds are exposed (Lobban et al., 1985).  An 

increase in temperature from solar radiation is common (Burritt et al., 2002), although in winter 

decreasing  temperatures  and  freezing  conditions  may  also  cause  problems  (cold  stress  is  not 

discussed further here).  With many of these stresses, it is the combination of several factors that 

may cause significant damage.  For example, a slight increase in temperature may increase the rate 

of photosynthesis, and therefore confer a benefit on the algae (Lüning, 1990).  However, it is likely 

that this benefit will be offset by other limiting factors, such as inorganic carbon limitation or stress 

from dehydration and evaporation.  As water evaporates from the surface and intracellular spaces 

of the algae the salinity of these solutions will increase.  Osmotic regulation in algae is a complex 

topic, but as a brief introduction; an increase in salinity during exposure disrupts the turgor pressure 

of cells as water flows out of the cells down the osmotic potential gradient.  As the cell begins to 

collapse in on itself the plasmalemma (cell membrane) can tear away from the cell wall causing 

irreparable damage (Kirst, 1989).  Loss of water from these membranes can also cause changes in 

the structure of phospholipid structures.  The now 'leaky' membranes are unable to act correctly as 

selectively permeable barriers, especially during resubmersion (Burritt et al., 2002).

Nutrient uptake may be reduced during exposure.  Of particular importance is the limitation of 

inorganic carbon that may occur as CO2 in the atmosphere is less abundant than the bicarbonate 

carbon source found in seawater (Lobban et al., 1985).  A reduction in available carbon reduces 

available  energy,  and  as  energy  is  needed  to  regenerate  antioxidants  and  power  other 

stress-reduction mechanisms (Burritt et al., 2002) over time a seaweed specimen will become less 

able to cope with exposure.   Unlike vascular plants, macroalgae absorb inorganic ions over their 

entire  surface  when  submerged  in  seawater  (Chapman,  1979) and  so  limitation  of  key 

macronutrients, nitrate (NO3
-) and phosphate (PO4

-), may also occur (Davison & Pearson, 1996). 
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Two key physiological processes, respiration and photosynthesis, generally decrease with exposure. 

Respiration declined immediately or shortly after emersion for all species studied by     Ji and 

Tanaka  (2002),  although  they  found  the  reduction  was  less  extreme  than  for  photosynthesis. 

Increasing  rates  of  photosynthesis  with  exposure  have  been  reported;  Dawes  et  al. 

(1978) measuring  several  species  from  mangroves  and  salt  marshes,  saw  higher  rates  of 

photosynthesis  in exposed samples compared to submerged.   However,  there  are many factors 

during desiccation that can exert a detrimental effect on photosynthetic ability and a decrease in 

photosynthetic capacity is commonly seen in field and laboratory examples  (Pena et  al.,  1999; 

Williams & Dethier, 2005).  A common response to desiccation related stresses such as light stress 

and nutrient limitation is an increase in ROS and oxidative stress, which may be linked to increased 

halocarbon production, as described in the following section (4.1.2).  

4.1.2 Halocarbons and desiccation stress

Intertidal macroalgae cannot avoid emersion and the exposure to heat and light that occur with it. 

Nor can they prevent loss of water via physical processes, as seen in higher plants closing stomata 

to conserve water (Lüning, 1990).  Instead they must provide coping mechanisms to reduce the 

effects of desiccation.  These mechanisms can act to mitigate damage, for example morphological 

adaptation to reduce water loss in species with small surface-to-volume ratios.  Other mechanisms 

act to limit the damage and stress once it occurs.  One strategy to limit damage is the antioxidant 

response  to  oxidative  stress,  an  important  feature  in  macroalgae  desiccation  tolerance. 

Antioxidants reduce damage by quenching production or reducing the flux of ROS before they can 

cause  irreparable  damage  to  cell  constituents   (Lesser,  2006).   Many  previous  studies  have 

demonstrated  increases  in  antioxidants  or  antioxidant  regeneration  activity,  during  periods  of 

dehydration.  The role of halogens as antioxidants was discussed in Chapter 1 Section 1.3.

Previous interest in halocarbon emissions during tidal desiccation has been linked to the role of 

biogenic iodine species in the process IO → particles → aerosols → cloud condensation nucleii 

(CCN) (Chapter 1 Section 1.6.2).  Research at Mace Head, Ireland in 1998-1999 as part of the 

PARFORCE  campaign  (New  Particle  Formation  and  Fate  in  the  Coastal  Environment) 

demonstrated that new particle events, lasting for several hours, coincided with daytime low tides 

and were strongly linked to IO (O'Dowd et al., 2002a, b).  Pulses of bromocarbon emissions have 

also  been  linked  to  tidal  cycles  (Nightingale  et  al.,  1995)  and  a  full  understanding  of  these 

processes is important for accurate quantification of coastal emission budgets.   
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4.1.3 Prolonged desiccation

As the length of emersion increases the effect of the damaging processes described in 4.1.1 may 

become too great for the antioxidant systems to overcome (Burritt  et al., 2002).  In their study, 

Burritt and coworkers saw differences in the ascorbate-glutathione antioxidant response of samples 

from the same species collected from high and low shore positions once subjected to desiccation 

for 12 hours or longer.  Specimens from higher on the shore seemed better able to cope with the 

desiccation  and  displayed a  higher  rate  of  antioxidant  generation.   Little  is  known about  the 

halocarbon response to prolonged desiccation or how it may vary between species.  

Our main interest in prolonged desiccation is due to its links with aquaculture (see also Chapter 1 

Section 1.7.3).  Many farms still use a simple air-drying process in which the harvested seaweed is 

laid  out  in  the  open,  see  Fig.  1.   Understanding  the  emissions  during  commercial  drying  of 

seaweeds is potentially important in our understanding of halocarbon budgets from countries where 

seaweed farming and drying is common such as Malaysia, Indonesia and the Philippines (Neish, 

2003).

Figure 1. Seaweed drying at small-scale farm on Pangkor Island, Malaysia (September 2011). 

Inset shows detail of seaweed in various states of desiccation.
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4.1.4 Aims of this work

Aim

To improve our understanding of bromocarbon emissions during seaweed desiccation.  

This includes:

i. Differences in emissions between species

A large body of work has been produced debating the link between zonation on the shore and 

desiccation tolerance.  This has been observed for individuals from the same species (Burritt et al., 

2002) and between species of the same genus (Collen & Davison, 1999). The degree of tolerance to 

desiccation between species does correlate with their vertical limit in the intertidal zone (Pena et 

al.,  1999),  albeit  as  part  of  a  complex  biological  system.   Morphological  differences  can  be 

important,  Porphyra species are often found high on the shore but desiccate quickly due to their 

large surface area (Ji & Tanaka, 2002).  On the other hand, the filamentous nature of some algae 

may allow water to be trapped between layers or filaments, reducing the amount  of desiccation 

(Jones & Norton, 1979; Kirst, 1989).  This study will mainly concentrate on two morphologically 

different species, Fucus vesiculosus and Ulva intestinalis (Fig. 2) collected from the same position 

on the shore to investigate differences in emissions.  In a separate series of experiments, tropical 

species were investigated using a flux chamber and this data will also be compared to the temperate 

laboratory studies. 

ii. Rewetting

The resubmersion that follows a period of desiccation does not signal the end of potential damage 

to the algae.  Further changes to the structure of the cell membrane as it is rehydrated can increase 

cell damage, and a flux of ROS is often seen at this point (Collen & Davison, 1999).  Terrestrial 

plants are known to include rehydration recovery processes as part of their arsenal of dehydration 

coping mechanisms (Oliver et al., 1998) and a previous study on seaweeds demonstrated a burst of 

halocarbon emissions upon seawater rewetting (Nightingale et al., 1995).  Rewetting could also 

occur with freshwater, for example rainwater.  This reduction in salinity could also affect emissions 

as the osmotic gradient across the cell boundary can be disrupted such that water moves into the 

cells causing them to burst (Lobban et al., 1985).  

Figure 2. F. vesiculosus (left) 

and U. intestinalis (right). 

Images from 

www.algaebase.org (2012).
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iii. Photosynthesis changes and links to halocarbon production

Photosynthesis is critical to both the growth of macroalgae and their ability to respond to stress 

factors  via  (energetically)  active  means.   Photosynthesis  is  therefore  inextricably  linked  to 

desiccation,  and  a  reduction  in  photosynthetic  capacity  may  give  some  indication  that  stress 

processes (as described in Section 4.1.1) are inhibiting algal physiology and that the algae is now 

less equipped to deal with ongoing desiccation stress.  Research into photosynthesis has noted a 

change in the fluorescence quantum yield (Fv/Fm) as an indicator of the state of PSII efficiency 

under stress (Liu & Pang, 2010).  Previous studies, mainly looking at iodine emissions and their 

role in atmospheric chemistry (Cainey et al., 2007; Kundel et al., 2012), have not considered the 

physiological state of the algae during emission tests.  We conducted desiccation experiments in 

which we measured Fv/Fm to investigate links between halocarbon emissions and photosynthetic 

efficiency.  

Figure  3.  West  Runton,  Norfolk.  All  temperate specimens used in desiccation work were 

collected from the area between the red lines. 
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4.2 Methodology

To investigate  the  impact  of  desiccation  on  halocarbon  emissions  a  purpose-built  desiccation 

incubation system was built.  Temperate seaweeds samples (Section 4.2.1) underwent desiccation 

within this system (Section 4.2.2) which provided a controlled flow of air over each sample, the 

outflow of which could be trapped on Markes sorbent tubes (Section 4.2.3).  Sorbent tubes were 

analysed via GCMS (Section 4.2.4). 

4.2.1 Collection of seaweed samples

Samples of F. vesiculosus, U. intestinalis and Porphyra sp. were collected from West Runton on the 

North Norfolk coast.  All samples were collected from a similar position in the intertidal zone (Fig. 

3) and returned to UEA within two hours.  Samples were sorted and gently cleaned to remove sand 

and epiphytic  organisms  before  being  placed  in  large  tanks  of  artificial  seawater  made  using 

Seachem Marine SaltTM (Seachem, USA) and distilled water which was aerated using two aquarium 

pumps connected to airstones.  Salinity was checked regularly and maintained at 32-34.  Tanks 

were stored in a constant temperature room held at 13 °C (±0.5 °C) with a light level of 180 μmol 

photons m-2 s-1 and a 14:10 light:dark cycle.  Samples were used within one week of collection.  
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4.2.2 Incubation flasks and housing

A diagram of the incubation set up can be seen in Fig. 4 and bracketed letters (e.g. (A)) following 

components in the text refer to this figure.  Incubation flasks comprised 1  l wide-necked glass 

Duran® bottles (Schott, USA) with rubber bungs (Fischer Scientific, UK).  Each bung had two 

holes drilled in the centre and two glass tubes, 1 mm wider than the diameter of the drilled holes, 

were threaded through the holes to provide inlet and outlet gas lines.  The inlet line extended to 

about 1 cm above the base of the flask whilst the outlet line extended only half way down to ensure 

the air flow circulated through the entire flask (G + H).  The outlet line of each flask was connected 

to a  ¼ inch Ultra-torr  (Swagelok,  UK) fitting which allowed the sampling tubes to be easily 

connected and disconnected whilst maintaining a gas-tight fitting (I).  Chilled sorbet tubes were 

connected to this outlet when samples were required.  The inlet line provided a flow of compressed 

air from a commercial cylinder (BOC).  This air was first passed through a hydrocarbon trap (A) to 

remove potential contamination before passing to the first flow control system (C).  This loop, 

comprising two three-way valves and two needle valves (Swagelok, UK) allowed a 'high' (250 ml 

min-1) for desiccating and a 'low' (70 ml min-1)  flow for sampling to be established before the 

experiment began and then selected via the switch of a valve during the experiment (referred to 

henceforth as 'desiccating' and 'sampling' flows).  Flow then passed to a series of connecting luer 

taps that allowed flow to each flask to be controlled individually (D).  Each flask was connected via 

Tygon® tubing (Cole-Parmer, UK) (E) and an individual flow control system (F).  These individual 

flow control systems worked in the same way as (C) to allow two pre-determined flows to be 

delivered to each flask.  Safety measures were provided by a pressure relief valve (B) set at 10 psi 

and a Perspex screen in front of the flasks.

After system assembly all connections were leak checked using a flow of helium and an electronic 

leak detector (Agilent, UK).  Flow through the whole system was also checked for consistency to 

ensure there were no leaks or blockages.  No major modifications were made to the system after set 

up, but periodic checks that the flow remained constant throughout the system were made, and the 

liquid leak detector SNOOP® (Swagelok, UK) was also used to check the system was gas tight. 

During  each  experiment  the  outflow  from each  incubation  flask  was  checked  regularily  (see 

Section  4.3.2)  with  an  electronic  flow  meter  (Phenomenex,  Korea) to  ensure  each  flask  was 

receiving  the  correct  volume  of  air.  A  thermometer  attached  to  the  frame  provided  daily 

temperature readings, during the ~5 month spread of experiments temperature varied between 19 – 

22 °C.
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Figure 4. Desiccation chamber diagram, including: 

A Hydrocarbon trap.

B Pressure release valve.

C Flow control system 1 (system comprises two three-way valves and two needle valves 

allowing either a high or low flow to be selected, see main body of text).

D Luer taps to turn flow on/off to individual flasks.

E Mini hose clamp to control flow through Tygon® tubing.

F Flow control system 2 (as C).

G Bung through which glass tubes provide air inlet and outlet to (H).

H Glass incubation vessel, seaweed sample sits at bottom of vessel. 

I Outlet flow of air, sorbent tube was connected here during sampling.
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4.2.3 Sorbent tube sampling

To  measure  halocarbon  emissions  thermal  desorption  tubes  (Markes,  UK)  containing  three 

sorbents; Tenax TA, Carbograph 1TD and Carboxen 1000 arranged in order of increasing sorbent 

strength (as listed here), were used.  The use of tubes for the analysis of halocarbon samples has 

been previously validated at  UEA (Hughes et  al.,  2009; 2012).   Tubes were selected for these 

experiments as they have the potential to provide high time resolution data.  The minimum time 

between sample analyses via our P&T GCMS is 30 minutes, including the time needed to trap and 

preconcentrate the sample.  The only limit with sorbent tube sampling is the time needed to trap the 

sample,  in  this  case  10  minutes.   Air  samples  were  passed  through  the  sorbent  tubes  and 

halocarbons remain trapped on the sorbents  removing them from the bulk air  and providing a 

conveniently sized sample.  A flow meter connected to the tube ensured each sample came from a 

known volume of air.  To facilitate efficient trapping tubes were also wrapped in frozen gel packs 

for the duration of sampling.  The temperature within the gel packs was commonly 0-2 °C with a 

maximum of 5 °C.  Post-sampling, tubes were capped with ¼ inch brass caps and PTFE ferrules 

and stored in a -18 °C freezer until analysis.  

To  retain  all  analytes  passing  through  the  tube  the  sample  volume  must  not  exceed  the 

breakthrough volume (BV), the volume of gas that can be sampled before analytes elute from the 

vent end of the sorbent tube (U.S. E.P.A., 1999).  Markes guidelines (Markes International, 2012) 

give greater safe sampling volumes (SSVs, two thirds of the BV) on Tenax TA and Carbograph 

1TD than the 700 ml sampling volume used in these experiment.  The SSV for CHBr3 is 100 L and 

1.9 l for Tenax TA and Carbograph 1TD respectively.  Data for CH2Br2 was not available, however, 

CHBrCl2 (which has a similar GC elution time) had a SSV of 9 l on Tenax TA.  Markes SSV values 

are determined at 20 °C, far higher than the trapping temperatures used in our experiments. 
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We also conducted two experiments to determine if high concentrations and high flow rates lead to 

breakthrough  of  CHBr3 from the  sorbent  tubes.   These  tests  were  performed  using  seawater 

samples purged using the system described in Chapter 2 Section 2.2 with a sorbent tube, chilled to 

1 °C using a Peltier cooler, in place of the trap (see (Hughes et al., 2009; 2012).  Fig. 5 shows that 

breakthrough of CHBr3 was not seen at concentrations up to ~950 pmol l-1 (Panel a) or at flow rates 

up to 150 ml min-1 (Panel b).  Whilst the sorbent tubes used in desiccation experiments were filled 

with  direct  air  samples,  not  gases  purged  from seawater,  the  response  of  the  GCMS  is  still 

comparable between these tests and the desiccation experiments.  A concentration of ~950 pmol l-1 

corresponds to a peak area response of ~2,500,000.  With the exception of two samples (which fell 

above but close to this value) all other air samples analysed showed responses less than 2,500,000, 

the majority falling well below this value.  Therefore, it seems unlikely that breakthrough posed a 

problem in any of the work discussed in this chapter.  Fig 4a also demonstrates the linear response 

of the system to concentrations higher than generally seen in this work.  Panel b shows that, at flow 

rates up to 150 ml min-1, breakthrough was not observed.  A flow rate of 70 ml min-1 was used 

during this work, well within this range.  Our chosen sampling flow rate of 70 ml min-1 was also 

within the 10-200 ml min-1 range recommended by Markes International (2008).

Previous  investigations  in  our  laboratory  have  shown  that  sorbent  tubes  maintain  stable 

concentrations of bromocarbons for up to 16 months when stored at -18 °C (Hughes et al., 2009) 

the majority of samples for this experiment were analysed within 1-7 days of collection, and all 

were analysed within two weeks.  Due to concerns over the stability of trapped halocarbons and the 

baseline background concentrations of some compounds, only data for CH2Br2 and CHBr3 were 

quantified during this experiment. 

After use, tubes were conditioned in a Markes TC-20™ multi-tube conditioner, which heated the 

tubes for 20 minutes each at 100 °C, 200 °C, 300 °C and 320 °C whilst a flow of clean OFN was 

passed through them.  Once capped, these tubes were stored in the freezer for reuse, thus providing 

ready-chilled tubes for sampling.  With access to over 200 tubes a large number of samples could 

be taken during individual experiments.  1 in 10 tubes was run as a 'blank' (removed from the 

freezer and placed directly into the ULTRA™ racks) to ensure that tube cleaning and storage were 

effective  at  providing  low  background  halocarbon  levels  on  sample  tubes.   'Background' 

halocarbon  concentrations  observed  in  the  blank  tubes  acted  as  a  detection  limit,  tubes  with 

halocarbon concentrations below that which was seen in the blank tubes were treated as zero.  The 

quantity of bromocarbon in the blank tubes was tracked over time to monitor changes, no problems 

with contamination in blank tubes was observed during this set of experiments. 
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Figure 5. Testing Markes sorbent tubes for CHBr3 breakthrough at (a) high concentrations 

and (b) high flow rates.  Two tubes were connected in series: one to collect the sample and a 

second tube to monitor for breakthrough (see main body of text).  Samples were pre-purged 

seawater  samples  spiked  with  a  known  concentration  of  CHBr3.   In  (a)  increasing 

concentrations of CHBr3 were purged at a constant 70 ml min-1 flow rate.  In (b) ~476 pmol 

l-1 of CHBr3 was purged at varying flow rates.  Inset graphs in both panels show the second, 

'breakthrough', tube in more detail.
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4.2.4 Analysis of sorbent tubes

Samples were analysed using a Markes ULTRATM and UNITYTM.  The ULTRATM system provided 

automated analysis of up to 100 tubes arranged in racks of 10 tubes.  Prior to analysis a tube was 

moved into the 'active position' where it was sealed into the path of the helium carrier gas and a 

leak test was performed.  Tubes that passed the leak test were purged at ambient temperature to 

remove residual air, a necessary step to prevent oxidation during the heating process which could 

interfere with analysis  or  reduce sorbent  lifetime.   The tube was then heated to 300 °C for  5 

minutes, allowing the trapped analytes to be desorbed into a flow of helium and transferred along a 

short, insulated line to the UNITYTM  cold trap  held at -10 °C.  Commercially packed cold traps 

(Markes, UK) containing glass wool, Tenax TA, Carbograph 1TD and Carboxen 1000 were used. 

Post-desorption the tube was returned to its position in the ULTRATM racks and the next tube was 

selected.   Whilst  the ULTRATM can hold up to 100 tubes,  to  minimise  losses  or  migration of 

halocarbons within the tubes as they sat  at ambient temperature a maximum of 10 tubes were 

loaded at any one time.  Each batch of 10 tubes included; one blank, 2-3 standards and 6-7 samples. 

The use of Markes DiffLokTM caps reduced diffusion into and out of the tubes whilst they sat in the 

ULTRATM racks.  After trapping of the sample on the UNITYTM cold trap the trap was heated to 300 

°C for 15 minutes to desorb the analytes into a flow of helium and along a 200 °C heated transfer 

line to the GC column.  An Agilent GCMS, as described in Chapter 3 Section 3.2.5, was used for 

analysis.  Sample concentrations were calculated relative to an air standard (SX074) calibrated to 

the NOAA scale (Chapter 5 Section 5.2.5).  The standard was trapped onto chilled sorbent tubes in 

the same manner as sample collection to provide a calibration of the entire analytical system. Tubes 

filled  with  labelled  surrogate  analytes;  deuterated  methyl  iodide  (CD3I)  and  13C-labelled 

dibromoethane (13C2H4Br2) (see Chapter 3 Section 3.2.6) were also used.  During each day sample 

and blank tubes were interspersed with these two types of standard to provide a measure of system 

sensitivity drift throughout the day.  Fig. 5 demonstrates that the system provides a linear response 

to increasing concentration up to and beyond that seen in sampling. 
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4.2.5 Experimental protocols

For each experiment the following protocol was followed:

 Seaweed samples (1-2) were removed alongside seawater from the storage tank and kept, 

submerged, in individual flasks.  F. vesiculosus samples comprised whole, individual plants 

and U. intestinalis samples comprised groups of U. intestinalis fronds.  The use of whole 

plantlets was discussed in Chapter 3 Section 3.2.1.  There was an increase in temperature 

of  5-7  °C  between  storage  and  desiccation  so  samples  were  left  submerged  for 

approximately 1 hour in the laboratory to acclimatise to experimental light and temperature 

conditions.   Similar  changes  in  temperature  were  also  recorded  in  other  studies,  for 

example Kumar et al. (2011).

 Gas supply to the incubation flasks was established to flush existing air from the system. 

Flow rate and leak checks were carried out.  

 Samples were gently blotted dry to remove excess water  and weighed.  Samples were 

immediately placed in individual incubation chambers and the first sample was taken.

 The  flow  of  OFN  to  each  incubation  flask  was  maintained  for  the  duration  of  the 

experiment, alternating between high flow for periods of desiccation and lower flow for 

sampling.  One of two sampling patterns was usually followed; either 10 minutes sampling, 

10  minutes  desiccation  (repeated)  or  10  minutes  sampling,  20  minutes  desiccation 

(repeated).

 For each experiment one flask was used as a control.  Tube sorption efficiency may be 

affected by air moisture levels (Markes International, 2012)  For this reason a small spray, 

~10 ml, of seawater taken from the seaweed storage tank was added to the control flask at 

the start of each experiment to ensure blank samples contained some degree of moisture. 

Control  flasks  were  observed  to  still  contain  signs  of  moisture  at  the  end  of  each 

experiment.  

 At the end of each experiment samples were removed and reweighed.  Dry weight was also 

calculated (see Chapter 3 Section 3.2.3).  Incubation flasks were washed and left to air dry 

between experiments.  

If an experiment involved rewetting the specimen then a pipette was used to delivery ~50 ml of 

water through the outlet glass tube of the flask.  The flask was gently swirled to ensure the seaweed 

was covered and then sampling continued.  This volume was enough to ensure the entire specimen 

was just  covered,  without creating too large a volume of water  that  could physically alter  the 

halocarbon flux.  A detailed list of individual experiments and their conditions can be seen in  

Table 1. 
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Table 1. Summary of desiccation experiments.  Experimental codes are abbreviations of descriptions given in column 2.

Code Description Date of 
experiments

# 
replicates

# control 
samples

Description

Halocarbon production

FS1 F. vesiculosus short 
desiccation

31.01.12 1 1 Samples taken every 10 minutes for 2 hours.

FS2 03.02.12 1 1 Samples taken every 10 minutes for 3 hours.

FS3 14.02.12 1 1 As FS2

FL1 F. vesiculosus long 
desiccation 

12.03.12 2 1 Samples taken every 20 minutes for 8 hours.

FL2 20.03.12 2 1 Samples taken every 20 minutes for 5 hours.

US1 U. intestinalis short 
desiccation

23.02.12 1 1 Samples taken every 10 minutes for 2 hours.

US2 02.03.12 1 1 Samples taken every 10 minutes for 3 hours.

UL U. intestinalis long 
desiccation

14.03.12 2 1 Samples taken every 20 minutes for 8 hours.

P1 Porphyra sp. 
desiccation 

13.06.12 2 1 Samples taken every 10 minutes  for  2 hours  then every 20 minutes  for  5 hours  (total 
desiccation = 7 hours).

URFW1 U. intestinalis 
desiccation followed 

by rewetting in 
freshwater

12.04.12 2 1 Dried for 5 hours.  Samples taken every 10 minutes for 1 hour then specimens rewetted 
with distilled water followed by sampling every 10 minutes for 2 hours (total desiccation = 
6 hours followed by 2 hours rewetted).

URFW2 26.04.12 2 1 Samples taken hourly for 3.5 hours.  Specimens then rewetted with distilled water followed 
by samples taken every 10 minutes for 2.5 hours. 

URFW3 01.05.12 2 1 Samples taken every 20 minutes for 8 hours followed by rewetting with distilled water. 
Samples then taken every 10 minutes for 2 hours. 



Table 1 cont.

Code Description Date of 
experiments

# 
replicates

# control 
samples

Description

Mass loss experiments

FM1 F. vesiculosus mass 
loss during desiccation

21.03.12 3 x Specimens dried as per halocarbon production experiments but removed from desiccation 
chambers and weighed 3 times an hour.FM2 23.03.12 2 x

UM U. intestinalis mass 
loss during desiccation

22.03.12 3 x

Fv/Fm experiments

FP F. vesiculosus 
photosynthetic 

performance during 
desiccation

19.06.12 3 x Specimens dried on laboratory bench in petri dishes. Fv/Fm samples taken twice an hour.

UP1 U. intestinalis 
photosynthetic 

performance during 
desiccation

19.06.12 3 x

UP2 21.06.12 3 x
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4.2.6 Water loss and photosynthesis changes

To  complement  the  halocarbon  emission  incubations  measurements  were  also  conducted  to 

determine the effect of desiccation on both water loss and photosynthesis (also in Table 1).  

i. Mass (water) loss experiments

To determine the rate at which water was lost from F. vesiculosus and U. intestinalis as they dried, 

and  how  this  may  correlate  with  halocarbon  emissions  or  vary  between  species,  mass  loss 

experiments were conducted.  Samples were dried in the incubation system and removed to be 

weighed  at  regular  intervals.   Unfortunately,  due  to  the  need  to  remove  the  samples  before 

weighing  them,  halocarbon  emissions  could  not  be  measured  concurrently,  but  all  system 

parameters remained consistent between mass loss and halocarbon experiments.  The mass loss 

experiment was conducted twice on  F. vesiculosus (FM1 and FM2) and once on  U. intestinalis 

(UM1).  

ii. Photosynthetic capacity during desiccation

To  measure  the  effect  of  desiccation  on  photosynthetic  capacity  a  Walz  'Pulse- 

Amplitude-Modulation' (PAM) fluorometer (Heinz Walz GmbH, Germany) was used.  The PAM 

fluorometer tests how stress has affected PSII by comparing the dark-adapted fluorescence state, 

with a saturated state (achieved by the application of a saturated light pulse to the dark-adapted 

sample so that its reaction centres close).  The resulting value, the maximum potential quantum 

efficiency (Fv/Fm), is lower in stressed samples where more reaction centres are shut and so there is 

less difference between the two states. 
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Due to the need to dark adapt samples before fluorescence measurements can be taken it was not 

practical to desiccate samples within the incubation chambers.  Instead, samples were dried under 

the same light and temperature conditions but in shallow glass petri dishes which were coated in 

black tape to block light from the sides and underneath and placed on a lab bench.  A household fan 

was used to provide movement of air to aid desiccation.  Cooling of air by the fan was within the 

range of laboratory temperatures observed during the experimental period (Section 4.2.2).  Two 

Walz PAM systems were used, a DIVING-PAM and a PHYTO-PAM with EDF attachment, but 

they both provide a photosynthesis reading in the same way.  Specimens were collected and stored 

in the same manner as previous experiments.  The first Fv/Fm measurement of each sample was 

made when the specimen was submerged in a small volume of water from the seaweed storage 

tank.  This water was then removed and the alga weighed.  Periods of desiccation were interspersed 

with periods of 15 minute dark adaptation followed immediately by Fv/Fm measurements.  Dark 

adaptation was provided by covering the petri dish with waterproof thick cardboard.  During UP2 

light and temperature fluctuations in the lab were recorded; light levels varied between 78 and 110 

umol photons m-2 s-1 and the temperature fluctuated between 22.5 and 23.5  °C (light levels were 

measured using a Biospherical Instruments Inc. light meter model QSL-2102). 

4.2.7 Flux chamber experiments

During fieldwork in Malaysia (2010) three tropical macrophytes;  Sargassum baccularia,  Padina 

australis and  Caulerpa sp. were removed from a submerged position in the intertidal region and 

placed on dry sand under a flux chamber, as described in Chapter 2 Section 2.3.  Air samples from 

the flux chamber were collected into canisters and returned to UEA for analysis via NCI-GCMS 

(Chapter 5 Section 5.2.4).

91



Chapter 4

4.3 Results 

Details of individual experiments and the abbreviation that represents them in the following text 

can be found in Table 1. 

Note – displaying desiccation results relative to flow not time

As described in Section 4.2.2 flow rates were altered between periods of sampling and desiccation 

to  create  balance  between  the  flows  needed  to  dry  seaweed  and  those  which  fall  within 

recommended  values  for  sorbent  tube  sampling.   Short  (2-3  hour)  and  long  (up  to  8  hour) 

incubations followed slightly different protocols in terms of the length of time samples were under 

desiccating flow rates (see Table 1).  To account for this, all halocarbon production experiments 

(Figs. 10-14) are expressed in terms of total flow passing through the flask, not incubation time.  It 

is hoped this aids comparison between individual experiments. 

4.3.1 Replicate variability and the use of standardised concentration values

Within halocarbon desiccation experiments (Figs. 8-14 and 17-18) individual replicates showed the 

same pattern of halocarbon production but the magnitude of emission varied considerably.  For 

example, in FL2 the maximum concentration seen in replicate a is about four times higher than that 

seen in replicate b (~100 ppt compared to ~25 ppt).  This is not unexpected, in Chapter 3 Section 

3.3.4  the  variation  between  specimens  in  incubation  studies  was  discussed.   Variations  in 

halocarbon  production  due  to  differences  in  age,  environmental  history  or  natural  biological 

variation were not uncommon in our incubation studies, or the existing literature.  Ball et al. (2010) 

saw up to a factor of 10 difference in I2 emissions from drying seaweeds, which they attributed to 

using samples in different stages of decay.  Selecting only healthy looking specimens in this study 

probably allows better comparisons between results of individual specimens, and also reduces the 

range  of  variability  between  replicates.   As  the  replicate  variability  exists  in  total  measured 

concentration, not pattern of emissions, concentrations have been standardised by assigning the 

initial concentration as 1 and converting subsequent values accordingly.  This should allow clearer 

comparisons  between  experiments.   Figures  containing  standardised  halocarbon  emission  data 

(Figs. 10-14, 17-18) contain the original concentration range to the right of each plot for reference.
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4.3.2  Treatment of potential sources of errors

Calibration of the tube samples used 2-3 tubes filled with a gas standard for every 3-6 sample tubes 

(Section 4.2.4).  The error bars in all figures represent the error associated with this calibration 

method and the variation in chromatographic peak area associated with these standards.  Other 

potential sources of error are listed below, alongside methods to constraint them:

1. Variations in flow rate during the experiment.  The incubation flasks were housed in a 

set up that allowed two flows to be obtained via switching of several valves (Section 4.2.2). 

This  meant  that  desiccating and sampling flows  could be accurately set  prior  to  each 

experiment and selected via a switch of a valve, negating the need to constantly alter flows 

with needle valves or other restrictors during the experiment.  Flow to each flask could also 

be controlled individually and was checked for each flask every 10 minutes during the first 

hour  and then at  least  every 30 minutes  to 1 hour  thereafter.   These methods ensured 

consistent, accurate flows throughout each experiment.

2. Biological variability.  As each point on Figures 8-14 and 17-18 represents one biological 

replicate the variation between samples has been considered in the overall differences in 

concentration through the entire set of experiments (e.g. Section 4.3.6).

3. Errors in the known concentration of the standard.  This remained constant throughout 

the experiment, at 6.1% for CH2Br2 and 4% CHBr3.
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4.3.3 Mass loss experiments

Results of the mass loss experiments can be seen in Table 2.  Two mass loss experiments (FM1 and 

FM2)  were  performed on  F.  vesiculosus,  the  results  of  which  were  similar  and  so  have  been 

averaged in further analyses.  Total percentage water content results were similar to Bravo-Linares 

et al. (2010) who reported 77% for F. vesiculosus and 79% for U. intestinalis.  However, rates of 

water  loss  differed;  Bravo-Linares  et  al.  (2010)  reported  a  faster  rate  of  water  loss  for  F. 

vesiculosus (7.4 % h-1 compared to 4 % hr-1 for U. intestinalis).  As shown in Table 2, both the total 

percentage  water  loss  and  the  percentage  loss  rate  per  hour  were  greater  for  U.  intestinalis. 

Previous studies  (e.g.  Davison & Pearson,  1996)  have suggested that  overlapping algal  fronds 

support water conservation and reduce water loss.  In this experiment a mass of  U. intestinalis 

fronds were spread out to form a mat, perhaps this reduced the protective ability of overlapping 

fronds and increased the rate of water loss.  What we can see from these experiments is that  U. 

intestinalis has a higher water content and, in our desiccation set up, dries more rapidly.  These 

factors will be considered when comparing the differences between halocarbon emission rates of 

different species.  

In  following sections  concentrations  measured  at  each time  point  are  converted  to production 

(pmol g FW-1 hr-1).  To calculate the mass of a sample at each time point during the halocarbon 

desiccation experiments (all FS, FL, US and UL coded experiments) percentage mass loss rates 

from these mass loss experiments (FM and UM) were applied to starting masses from FS, FL, US 

and UL.  Differences in rate of water loss during FM and UM were observed depending on whether 

samples  were  taken several  times  an  hour  (an  analogue  for  FS1-3  and  US1-2)  or  hourly  (an 

analogue for FL1-2 and UL).  This is due to different exposures to 'desiccating' and 'sampling' flow 

rates (see Section 4.2.2).  To account for this, mass loss rates for these two scenarios are also shown 

in Table 2, and the two rates were applied to starting masses as appropriate.  

Table 2. Mass (water) loss rates during desiccation. 

F. vesiculosus U. intestinalis

Percentage water content 75 88

Total percentage water loss (7 hours of desiccation) 77 85

Mean Rate of water loss (% hr-1) 7 12

      % loss rate if 3 samples per hour 4.4 
1σ = 1.2

6.7
1σ = 1.6

      % loss rate if 1 sample per hour 11.0
1σ = 4.1

16.5
1σ = 4.0
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4.3.4 Fv/Fm experiments 

Measurements of changes in photosynthetic capacity during desiccation for both F. vesiculosus and 

U. intestinalis can be seen in Fig. 6.  Care must be taken when comparing Fv/Fm results between 

studies as environmental factors can play a role in determining Fv/Fm.   A higher Fv/Fm for one 

sample does not mean it has a higher photosynthetic capacity than another as variations in light and 

temperature  can  play  a  role  in  determining  Fv/Fm (Walz,  1998).   For  this  reason  optimal  or 

maximum Fv/Fm values for a 'healthy' sample are more a matter of relative measurements in an 

individual experiment than a hard-and-fast rule.  For plants, Fv/Fm values of 0.8 to 0.835 in true 

dark-adapted  samples  have  been  observed  (Walz,  1998),  and  previous  studies  on  algae  have 

reported Fv/Fm values in healthy F. vesiculosus and U. intestinalis samples of ~0.7-0.8 (Lewis et al., 

2001; Magnusson, 1997; Pearson et al., 2000).  Initial measurements of all replicates were made 

when the specimens were submerged in a small volume of seawater, and were around 0.7.  Whilst 

some differences are observed between replicates in Fig. 6, the overall pattern was one of decline, 

with a quicker overall decline in Fv/Fm for UP1 compared to UP2.  In FP a similar pattern was seen 

as in UP1, despite these experiments occurring on different days, with a period of stable Fv/Fm 

measurements followed by significant decreases occurring in hours 3 and 4.  

Several of the replicates showed increases in the final Fv/Fm measurement.  As we could find no 

previous records of this in the literature we attribute it to a sampling artefact.  For comparable 

measurements a constant difference between the PAM and the sample must be maintained.  As the 

algae dried considerably it could have shrunk away from the PAM attachment therefore altering 

readings. 
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Figure 6. Changes in photosynthetic capacity (Fv/Fm) over time during desiccation of (a)       

F.  vesiculosus (FP)  and (b)  U. intestinalis  (UP1  and UP2).   Blue  lines/markers  represent 

individual replicates in each experiment.  Original in colour. 

As described in Section 4.2.6, the Fv/Fm experiments (FP, UP1-2) were conducted on a bench in 

open petri dishes due to the need to dark adapt the samples before each measurement.  Desiccation 

was faster in the Fv/Fm experiments compared to the halocarbon experiments (FS, FL, US and UL) 

and mass loss experiments (FM and UM), possibly as the samples were more exposed in open petri 

dishes compared to enclosed flasks.  For example, the F. vesiculosus percentage mass loss after 3 

hours was ~30% in FM experiments but 54% in FP.  Fig. 7 shows the same Fv/Fm values as Fig. 6 

plotted against percentage water loss (which was measured at several intervals during the Fv/Fm 

experiments).  This allows a measure of comparison between the halocarbon (FS, FL, US, UL) and 

mass loss (FM and UM) experiments and these Fv/Fm experiments.  For  F. vesiculosus it appears 

that significant decreases in Fv/Fm do not begin to occur until about 50-60% of water is lost.  For 

U. intestinalis the photosynthetic response varied, with some replicates showing a decline in Fv/Fm 

at water loss levels between 30 and 40% whilst other replicates did not show significant declines in 

photosynthetic capacity until up to 60% of water had been lost from the algal specimen. 
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Figure 7.  Changes in photosynthetic capacity (Fv/Fm) during desiccation of (a) F. vesiculosus 

(FP) and (b)  U. intestinalis  (UP1 and UP2) where state of desiccation is demonstrated by 

percentage water loss.  Blue lines/markers represent individual replicates in each experiment. 

Original in colour. 
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4.3.5 Halocarbons emission patterns: submerged vs. exposed macroalgae

Five experiments (FS1-3 and US1-2) started with the algal specimen in the incubation flask whilst 

still submerged in 100 ml seawater (taken from the macroalgae storage tank).  These experiments 

are shown in Fig. 8 (F. vesiculosus FS1-3) and Fig. 9 (U. intestinalis US1-2).  Low  headspace 

concentrations are observed when samples were submerged, followed by a rapid increase in both 

bromocarbons when the  sample  was exposed.   A previous study by  Ashu-Ayem et  al.  (2012) 

investigating I2 emissions in a chamber saw similar effects; low emissions when the sample was 

submerged followed by a strong rapid-onset pulse upon full exposure which lasts 15-20 minutes 

before emissions began to slow or stopped.  

To examine the partitioning between the water and headspace during the submerged portion of 

FS1-3 and US1-2 the dimensionless Henry's Law constant (kcc
H), defined as the ratio of the aqueous 

phase concentration (ca) over the gas phase concentration (cg) was used.  This constant is defined in 

Equation 1, alongside its relationship to the Henry's Law coefficient with respect to solubility (kH), 

where R is the Ideal Gas Constant and T is temperature (in K).  

(1)

Equation 1 was used to calculate aqueous phase bromocarbon concentration in pmol L-1 which 

could then be converted to production rates in pmol g FW-1 hr-1.  Production rate ranges submerged 

samples in FS1-3 and US1-2 are show in Table 3 alongside production rates from exposed samples 

(FS, FL, US and UL experiments) and submerged samples from incubation experiments (details in 

Chapter  3).   Samples  used  for  seawater  incubations  were  collected  from  the  same  site  as 

desiccation  samples  and  GCMS  conditions  post-sample  injection  were  identical.   Two of  the 

seawater  incubations  were  also  conducted  within  a  similar  time  period  as  the  desiccation 

experiments.   The  bulk  of  halocarbon  desiccation  experiments  were  conducted  between  31st 

January and 14th March 2012 and the seawater incubations of U. intestinalis and Porphyra sp. were 

conducted  on  the  24st January  and  16th February  2012  respectively  (Table  1).   However,  the 

incubation of F. vesiculosus was on 30th July 2012.  Previous studies have demonstrated seasonal 

differences in internal halide and halocarbon concentrations  (Itoh & Shinya, 1994), however  we 

assume no significant differences in this study.   No mass loss experiments were conducted on 

Porphyra sp. so this could not be compared quantitatively with its respective seawater incubation.  
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Patterns  remained  the  same  between both  desiccation  and  submerged  incubation  experiments; 

production by  U. intestinalis  was greater than  F. vesiculosus and CHBr3 production was greater 

than CH2Br2.  These results show that at least some of the pulse in halocarbon emissions upon 

seaweed  exposure  is  linked to  emissions  being  directly to  the  atmosphere  as  opposed to into 

seawater followed by sea-air  flux.  This is shown by comparable  production rates in seawater 

incubation experiments and from inferred seawater concentrations (using Henry's Law constants) 

during desiccation experiments (both highlighted in darker blue, Table 3) but lower production 

rates from the headspace of submerged samples (highlighted in light blue, Table 3).   As seawater is 

removed,  emissions  are  into  a  smaller  volume  of  seawater  leading  to  a  larger  bromocarbon 

concentration and therefore a greater flux (McFiggans et al., 2004).  Emissions may also directly 

flux to the atmosphere upon exposure.

However, mean production rates for exposed F. vesiculosus and U. intestinalis  were two to three 

orders  of  magnitude  lower than  production  during  seawater  incubations  for  both  CH2Br2 and 

CHBr3.  The reduced production rates observed from exposed samples could be due to several 

factors.   Firstly, a film of water covering the samples may be trapping some emissions in the 

aqueous phase, as discussed above.  However, as samples were blotted dry to remove  excess water 

before desiccating,  this  seems unlikely.   Secondly,  differences could be due to the use of two 

analytical  techniques.  A comparison between these two experiments  (desiccation and seawater 

incubation) involves a comparison between two analytical techniques:

1. The purging, trapping and direct analysis of halocarbons in seawater (Chapter 3).

2. Trapping of halocarbons on sorbent tubes for subsequent desorption and analysis via a 

commercial Markes system (this chapter).

To further  investigate,  Table  3  also  includes  a  comparison  between seawater  and  atmospheric 

measurements using a different air sampling technique.  Tropical species; S. baccularia, Caulerpa 

sp. and P. australis, were incubated in seawater (Chapter 3) and also placed in flux chambers (see 

Section 4.2.7).  Again, these results show higher production from seawater incubations compared to 

exposed samples.  Finally, it seems unlikely that losses of halocarbons during trapping onto the 

Markes tubes or subsequent storage of the tubes are wholly responsible for differences between 

desiccation experiments and seawater incubations for three reasons:

• Section 4.2.3 (and Fig. 5) demonstrated minimal analyte breakthrough.

• Tube storage without significant losses for up to 16 months demonstrated by Hughes et al. 

(2009).

• Table 3 also demonstrates lower atmospheric measurements for whole air samples.  
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Previous studies have demonstrated high levels of bromocarbons during low tide when in situ 

measurements  have  been  made  in  a  coastal  environment  (e.g.  Carpenter  et  al.,  1999) and,  as 

discussed in the introductory section of this chapter as well as Chapter 1 Sections 1.3.3 and 1.6.2, 

the production of halocarbons in response to exposure and oxidative stress is well documented.  It 

seems  likely  that  some  of  the  disparity  between  calculated  production  from  seawater  and 

atmospheric samples is, at least in part, linked to differences in measurement techniques, this will 

be discussed further in Section 4.4.3.  The need to further our collective understanding of the roles 

different  experimental  and analytical  techniques play in results  observed in different studies  is 

discussed further in Chapter 6 Section 6.4.1.

Figure 8.  Concentration of (a) CH2Br2 and (b) CHBr3 observed in flasks when F. vesiculosus 

specimens are  submerged (blue  background)  and exposed (white  background).  These are 

experiments FS1-3.  Closed circles are algal replicates, open are controls.  Error bars are 

described in Section 4.3.2.  Original in colour.
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Figure 9.  Concentration of (a) CH2Br2 and (b) CHBr3 observed in flasks when U. intestinalis 

specimens are submerged (blue background) and exposed (white background).  These are 

experiments US1-2.  Closed circles are algal replicates, open are controls.  Error bars are 

described in Section 4.3.2.  Original in colour.
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Table 3. Production (pmol g FW-1 hr-1) during desiccation/exposure experiments and seawater 

incubations. 

Experiment
n= individual data points included in range

Production / pmol g FW-1 hr-1

CH2Br2 CHBr3

F. vesiculosus

Desiccation experiments, submerged samples – production 
calculated from inferred seawater concentrations (FS1-3, n=6)

69 - 200 615 - 1140

Desiccation experiments, submerged samples –  production 
calculated from headspace concentrations (FS1-3, n=6)

0.02 - 0.06 0.2-0.4

Desiccation experiments, exposed samples 
(FS1-3 & FL1-2, n=43)

0 - 4 0 - 19

Incubation experiments, submerged samples (t24, n=2) 21 - 122 217 - 954

U. intestinalis

Desiccation experiments, submerged samples – production 
calculated from inferred seawater concentrations  (US1-2, n=4)

30 - 43 183 - 626

Desiccation experiments, submerged samples – production 
calculated from headspace concentrations (US1-2, n=4)

0.01 - 0.02 0.1 - 0.2

Desiccation experiments – exposed (US1-2 & UL1, n=28) 0.4 - 2 1 - 27

Incubation experiments (t24, n=3) 524 - 907 1994 - 2648

Tropical incubations

S. baccularia

Seawater incubation (t24, n=2) 6 - 11 8-13

Desiccation (n=2)* 0.3 0.6

Caulerpa sp.

Seawater incubation (t24, n=3) 1-12 0.4-9

Desiccation (n=1*) 0.02 0.07

P. australis

Seawater incubation (t24, n=2) 6-8 8-9

Desiccation (n=1*) 0.02 0.08
All desiccation flux chamber experiments were comprised of 1 (or 2 in the case of S. baccularia) 

flux chambers under which a seaweed sample was placed for 30 minutes of exposure.  One air 

sample was collected and analysed at least twice, the average of these analyses are provided here. 
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4.3.6  Halocarbons emission patterns during desiccation of macroalgae 

i. F. vesiculosus

The first set of experiments studied the bromocarbon production of  F. vesiculosus over a short 

desiccation period of 2-3 hours (FS1, FS2 and FS3).  Each of these experiments comprised one 

flask containing a seaweed sample and one control flask.  Desiccation over a longer period of up to 

8 hours was investigated in FL1 and FL2, each of which used two samples and one control (full 

details in Table 1).  Results for CH2Br2 and CHBr3  can be seen in Figs. 10 and 11 respectively. F. 

vesiculosus samples showed emission of bromocarbons in all experiments.  The concentrations in 

the sample flasks were significantly higher than in the control at the start of the experiment and 

control flasks maintained low concentrations, 0-2 ppt for CH2Br2 and 0-3.7 ppt for CHBr3, for the 

duration of the incubations.  No consistent increases or decreases with time were seen in any of the 

control flasks despite the fact control flasks had been wetted with a small amount of seawater likely 

to contain halocarbons.  Halocarbon concentrations seen in sample flasks are therefore likely to be 

due to production by the seaweed or release from the surface of the algae, not evaporation of 

seawater.  Regular blank tubes (at least 1 in 10) were run through the analytical system and these 

also failed to show any patterns in background bromocarbon levels.  Any changes in sample flask 

concentrations are therefore attributable to the algal samples.  

In FS1 CH2Br2 concentrations remained steady for the 2 hour duration of the experiment.  In FS2 

and FS3 concentrations rose or remained steady until around 2 hours when they began to increase. 

Concentration in the sample flask was greater than in the control at the end of all three experiments. 

In the 'FL' labelled experiments, which exposed the seaweeds to desiccating conditions for longer 

time periods, the responses of individual specimens can be broadly divided into two groups.  In 

FL1  CH2Br2 concentrations were highest at the start of the experiment, with a general decrease 

from this point onwards.  In FL2 decreases in concentration at the start of the experiment were 

followed by later peaks, up to 4 hours into desiccation.  As only one sample an hour was taken 

during FL2 the peak is only visible in one sample, returning to previous levels by the 5th hour. 

However, peaks of carbon tetrachloride (CCl4), a compound which is not biogenically produced, 

remained the same as previous samples during this peak in CH2Br2 and CHBr3 (data not shown). 

This supports a biological source for this peak and not analytical error.  Concentrations remained 

similar to that at the start for several hours before decreasing.  In the majority of longer desiccation 

samples concentrations had reached, or were close to, control levels within 5 hours of exposure.  
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Short (FS and US) and long (FL and UL) desiccation experiments, varied slightly in their protocol, 

the FL and UL experiments exposed the seaweeds to higher flow rates for a longer period of time 

(see Table 1).  This could help explain some of the difference between replicates, for example the 

period in which emissions increases or remained stable is longer in FS1-3 than in FL1-2 (Fig. 10). 

No differences in the range of concentrations were observed between the FS and FL experiments. 

For example, the range of CH2Br2 concentrations was 6-167 ppt in FS1-3 and 0-163 ppt in FL1-2. 

CHBr3 concentrations were also similar between FS and FL experiments (Fig. 11), as were the 

range of both CH2Br2 and CHBr3 concentrations in US1-2 and UL1 (Figs. 12 and 13).  

The CHBr3  emission patterns (Fig. 11) were similar to that of CH2Br2  for all experiments except 

FS3, in which CHBr3 showed a slightly prolonged period of increase compared to CH2Br2.  This is 

not  unexpected  given  that  incubation  experiments  in Chapter  3  showed a  correlation  between 

CH2Br2 and CHBr3.  A discussion of the relationship between these halocarbons can be found in 

Chapter 3, Section 3.3.3.
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Figure 10. Changes in CH2Br2  concentration during desiccation of  F. vesiculosus.  Left axis 

shows standardised production, floating right axis shows concentration (ppt).  Changes are 

expressed  against  total  flow  (l)  through  the  incubation  system.  Closed  circles  are  algal 

replicates, open are controls.   Time (hours) shown by vertical  pink bars.  Error bars are 

described in Section 4.3.2.  Original in colour.
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Figure 11. Changes in CHBr3 concentration during desiccation of  F. vesiculosus.  Left axis 

shows standardised production, floating right axis shows concentration (ppt).  Changes are 

expressed  against  total  flow  (l) through the  incubation  system.   Closed  circles  are  algal 

replicates, open are controls.   Time (hours) shown by vertical  pink bars.  Error bars are 

described in Section 4.3.2.  Original in colour.
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ii. U. intestinalis 

CH2Br2 and CHBr3 emission by U. intestinalis during desiccation can be seen in Figs. 12 and 13 

respectively.  The first short U. intestinalis incubation (US1) showed similar results to many of the 

F. vesiculosus desiccation incubations in that concentrations of CH2Br2 and CHBr3 peaked at or near 

the start of the experiment and then decreased steadily.  Unfortunately, analytical problems occurred 

and the US1 hour 3 samples were lost.  CHBr3 concentrations in US2 (Fig. 13) show an interesting 

'saw-tooth' double peak within a short period of time, although much of this may be within the error 

range.  It could be that other experiments, where measurements were obtained less frequently, miss 

some of these features.  The longer  U. intestinalis incubation, UL, showed sustained halocarbon 

concentrations that were not seen in many of the FL experiments.  Concentrations of both CH2Br2 

and CHBr3 remained similar to starting concentrations up to 5-7 hours after the experiment began.  

Figure 12.  Changes in CH2Br2 concentration during desiccation of U. intestinalis.  Left axis 

shows standardised production, floating right axis shows concentration (ppt).  Changes are 

expressed  against  total  flow  (l)  through the  incubation  system.   Closed  circles  are  algal 

replicates, open are controls.   Time (hours) shown by vertical  pink bars.  Error bars are 

described in Section 4.3.2.  Original in colour.
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Figure 13.  Changes in CHBr3 concentration of during desiccation of U. intestinalis.  Left axis 

shows standardised production, floating right axis shows concentration (ppt).  Changes are 

expressed  against  total  flow  (l) through the  incubation  system.   Closed  circles  are  algal 

replicates, open are controls.   Time (hours) shown by vertical  pink bars.  Error bars are 

described in Section 4.3.2.  Original in colour.
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iii. Porphyra sp. 

Only one experiment was conducted on  Porphyra sp. in which the two replicates were incubated 

for nearly 8 hours, emissions of both CH2Br2 and CHBr3 can be seen in Fig. 14.  CH2Br2 emissions 

peak at the start of the experiment and decrease steadily until they reach control levels between 2-3 

hours  into  the  experiment.   CHBr3 concentrations  in  the  control  were  higher  than  all  other 

F. vesiculosus and U. intestinalis experiments; the mean control value was ~11 ppt (with a range of 

0-31 ppt) compared to mean control values of between 0.3-5 ppt for the other experiments.  As the 

CHBr3 concentrations in the Porphyra incubations were low, with a mean value of 5.7 ppt and only 

one value falling above 20 ppt, little can be said about significant patterns of CHBr3 emission from 

Porphyra in this incubation due the higher concentrations in the control.  

Figure  14.  Changes  in  concentration of  (a)  CH2Br2 and (b)  CHBr3 during desiccation of 

Porphyra  sp.   Left  axis  shows  standardised  production,  floating  right  axis  shows 

concentration (ppt).   Closed circles  are algal  replicates,  open are  controls.   Changes are 

expressed  against  total  flow  (l) through the  incubation  system.   Time  (hours)  shown by 

vertical pink bars.  Error bars are described in Section 4.3.2.  Original in colour.
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4.3.7 Halocarbon production/emission rates

To compare with other studies; both previous desiccation studies and also seawater incubations 

(Section 4.3.5) a production rate is needed.  To calculate production per gram of fresh weight we 

used  the  mass  loss  experiments  FM1 and  FM2  (total  n=5)  and  UM (n=3).   Mass  loss  rates 

described in Section 4.3.3 were applied to the known starting mass for FS1-3 and FL1-2 to provide 

an  estimated mass  to  correspond with  every  halocarbon measurement.   As  air  was  constantly 

flowing through each flask, and as the total flow through the flask between samples (2.5-5 l) was at 

least double that of the flask volume (1  l) we assume that any bromocarbons measured during 

sampling were released from the seaweed during the 10 minute sampling period.  This information 

can then be used to calculate a production rate in pmol g FW-1 min-1.   This process was then 

repeated for U. intestinalis.

In terms of patterns during the individual desiccation experiments (Figs. 10-13) the patterns of 

emission  peaks  and  declines  remain  the  same  whether  bromocarbon  production  rates  or 

concentrations are used.  The benefit of calculated production values lies in the ability to make 

comparisons between species, and also between this and other studies.  

Firstly, to compare production between species histogram distributions of production values for 

both  F.  vesiculosus and  U.  intestinalis can  be  seen  in  Figs.  15  and  16  respectively.   These 

histograms include production data from FS1-3 and FL1-2 (51 values in total) for  F. vesiculosus 

and US1-2 and UL (34 values) for  U. intestinalis.  For  F. vesiculosus  about 60% of the CH2Br2 

values and 50% of the CHBr3 values are in the lowest bin.  The values that fall within this bin have 

been binned again, and this histogram is superimposed in black.  The main difference between the 

F. vesiculosus (Fig. 15) and U. intestinalis (Fig. 16) histograms is that the spread of values is far 

more even for U. intestinalis than for F. vesiculosus.  The maximum CH2Br2 production rate was 

from a  F. vesiculosus experiment, at ~4 pmol g FW-1 h-1.  However, more production rates over 

1 pmol g FW-1 h-1 were recorded for  U. intestinalis,  and  U. intestinalis also demonstrated the 

highest  CHBr3 production rate at  27 pmol g FW-1 h-1 compared to 16 pmol  g FW-1 h-1 for  F. 

vesiculosus.   A statistical  comparison  was  conducted  on  the  complete  F.  vesiculosus and  U. 

intestinalis datasets (using data from individual experiments: FS1-3, FL1-2, US1-2 and UL).  As 

the data failed normality tests (p=<0.001) a non-paraemtric Mann-Whitney Rank Sums Test was 

used.   The results  showed a  statistically significant  difference  between  F.  vesiculosus and  U. 

intestinalis production rates of both CH2Br2 and CHBr3 (both p=<0.001).  Possible reasons for 

these differences will be discussed in further detail in Section 4.4.1. 
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Figure  15.  Distribution  of  (a)  CH2Br2 and  (b)  CHBr3 production  rates  (n=51)  during 

desiccation of  F. vesiculosus.  Black overlaid histogram represents the distribution of values 

within the first grey bin.
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Figure  16  Distribution  of  (a)  CH2Br2 and  (b)  CHBr3 production  rates  (n=34)  during 

desiccation of U. intestinalis.  
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4.3.8 Rewetting experiments

As described in Section 4.1.2, physiological damage may also be caused by freshwater rewetting of 

the  alga  during  desiccation.   To  investigate  this,  a  series  of  experiments  (URFW1-3)  were 

conducted, rewetting U. intestinalis with freshwater after a period of desiccation were conducted. 

It  was hoped this  may replicate  the effect  of rewetting with rainwater.   Desiccation using the 

incubation set up followed the same principle as for previous experiments (e.g. US1-2 and UL), 

then after a period of desiccation varying from ~3-8 hours (see Table 1) samples were rewetted as 

described in Section 4.2.6.  The results can be seen in Fig. 17 (CH2Br2) and Fig. 18 (CHBr3). 

URFW1 and URFW3 (panels a and c in both diagrams) rewetted the seaweed after a long period of 

desiccation, ~6 and 8 hours respectively.  During URFW1 halocarbon samples were not taken for 

the first 5 hours as the experimental aim was to concentrate on the rewetting process.  However, 

measuring halocarbon emissions for only 1 hour before rewetting makes it difficult to determine 

changes  in  emission  patterns  upon  rewetting  and  for  subsequent  experiments  (URFW2-3) 

halocarbon measurements were taken frequently throughout the entire experiment.  

In URFW3 little change is observed after rewetting, potentially a slight increase in both CH2Br2 

and CHBr3 can be observed.  However, this is of no greater magnitude than other fluctuations 

during the desiccation process, for example URFW3 replicate 'a'  between 5-7 hours.  URFW2, 

however, showed an increase in both CH2Br2 and CHBr3 emissions after freshwater rewetting.  The 

increase in emissions is considerable, rising to over half the maximum emission near the start of the 

experiment.  At the time sampling finished for URFW2 the concentration of CH2Br2 and CHBr3 in 

the flasks appeared to still be increasing.  
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Figure 17. Changes in CH2Br2 

concentration during 

desiccation and freshwater 

rewetting of     U. intestinalis. 

Left axis shows standardised 

production, floating right axis 

shows concentration (ppt). 

Closed circles are replicates, 

open are control.  Error bars 

are described in Section 4.3.2. 

Original in colour.



Figure 18. Changes in CHBr3 

concentration during desiccation 

and freshwater rewetting of     U. 

intestinalis.  Left axis shows 

standardised production, floating 

right axis shows concentration 

(ppt).  Closed circles are 

replicates, open are control.  Error 

bars are described in Section 4.3.2. 

Original in colour.
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4.4 Discussion - the halocarbon response to desiccation

Much of the early work on halocarbon emissions during desiccation was driven by the interest in 

iodine and its role in particulate formation.  Early studies identified tidal cycles in measurements of 

polyhalomethanes  (including CHBr3)  over  seaweed beds,  alongside  bursts  of  iodine-containing 

particles  at  low tide  (Carpenter  et  al.,  1999;  Mäkelä et  al.,  2002).  To investigate  this  further 

chamber  studies  were  used,  commonly using the  phaeophyte  L.  digitata (Cainey  et  al.,  2007; 

McFiggans et al., 2004; Palmer et al., 2005).  Bursts of particulate production linked to emission of 

molecular I2 were reported, but these studies did not include details of the duration of these bursts. 

Often  the  chamber  experiments  altered  environmental  conditions  during  the  duration  of 

desiccation, for example switching ozone or light on and off, making it hard to judge the magnitude 

of these emissions under natural desiccation conditions.  Less work has been done on bromocarbon 

production  during  desiccation.   The  studies  that  are  available  focused  on  natural  halocarbon 

production  in  coastal  waters  and  so  also  did  not  concentrate  on  the  timescale  of  emissions. 

Nightingale  et  al.  (1995) desiccated  algae  for  several  hours  to  mimic  a  tidal  cycle  but 

measurements were made to simulate the resubmergence of seaweeds after exposure, not during 

exposure itself.  A pulse of halocarbon emissions was reported upon reimmersion, but, as described 

in Section 4.1.4 damage can be caused by both exposure and reimmersion, and so the magnitude of 

this  peak  cannot  be  attributed  to  either.   Another  study which  desiccated  and  then  measured 

halocarbon production upon reimmersion saw a general decrease in brominated compounds after 

desiccation but a general increase in iodinated compounds (Bravo-Linares et al., 2010).  Again, this 

response could be linked to reimmersion stress as well as desiccation itself.  Two recent studies 

have looked at the time profiles of emissions during desiccation.  Ball et al. (2010) measured time 

profiles of molecular iodine, I2, in a set of 10 incubations of 7 temperate phaeophytes.  Their results 

showed that, in some incubations, short bursts of I2 did occur near the start of the experiment and in 

others that there was a gentle rise up to higher concentrations of I2.  All experiments in the Ball et 

al. study lasted less than one hour and increases, peaks and decreases were seen within this time. 

Another study, by Kundel et al. (2012), also conducted I2 time series for several species.  Again, 

they saw an I2 response that was either rapid pulses with durational maxima of 20-30 minutes or 

gradually increasing emissions.  Emissions of various iodocarbons were also measured, although 

time series were not reported.  
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Our results build on previous I2 experiments by showing that bromocarbon emissions may also 

display rapid peaks early on in the desiccation process before emissions fall to zero within a few 

hours.  Several replicates in our study showed quickly evolving peaks (e.g. FL2a, US2) which were 

seen  previously (e.g.  Kundel  et  al.,  2012).  The  high  sampling frequency of  our  experiments 

allowed the observation of these bursts which has seldom been possible in previous desiccation 

studies.  

Similarities between the two species included an initial halocarbon burst followed by decreasing 

emissions over time.  The main difference between the two species, despite collecting both species 

from the same site and position on the shore, is a prolonged emission from U. intestinalis (UL1, 

Figs.  12  and  13)  compared  to  F.  vesiculosus (FL1-2,  Figs.  10  and  11).   Emission  patterns 

pre-rewetting in URFW2 and URFW3 (Figs. 17 and 18) act as replicates for UL as they were 

conducted in the same way.  They also show emissions taking longer to decrease than seen in the F. 

vesiculosus experiments.  Sharper peaks in emissions were noted during F. vesiculosus experiments 

compared to  U. intestinalis.   These differences will  be discussed in more detail  in  subsequent 

sections. 
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4.4.1  Variation in desiccation rate between species

Both F. vesiculosus and U. intestinalis demonstrated a relatively linear pattern of water loss, as seen 

in previous studies (Bravo-Linares et al., 2010, Ji & Tanaka, 2002).  Rates of water loss, however, 

differed  between  the  two  species  (Table  2).   After  four  hours  of  desiccation 

F. vesiculosus samples had lost ~35% of their mass, similar to Lüning (1990) who reported water 

loss of 20-30% in fucoid species after 4 hours.  The loss rate was higher for U. intestinalis at ~50% 

after 4 hours.  Morphological differences may explain differences in water loss.  F. vesiculosus, a 

phaeophyte, is a perennial species with a differentiated form comprising air bladders and tough 

hold fasts, stipes and blades.  U. intestinalis, a chlorophyte, is an annual and has a simple form 

comprised of blades or tubes one or two cells thick.  It generally forms dense clumps or mats on the 

shore.  In contrast to our results,  Bravo-Linares et al. (2010) found that  U. intestinalis was better 

than  F. vesiculosus at retaining water due to its structure, trapping water between its fronds to 

prevent it drying out.  In our study,  U. intestinalis was spread out to form a thin mat, potentially 

negating the benefits conveyed by the multiple fronds trapping water.   This could increase the 

surface area of the alga exposed to desiccation, making the  U. intestinalis more like flatter  Ulva 

species, such as U. lactuca and U. pertusa, which had higher rates of water loss in previous studies 

due to their larger surface area  (Bravo-Linares et al.,  2010; Ji and Tanaka, 2002).  This result 

demonstrates that differences between in situ and laboratory conditions may affect experimental 

outcomes.   It  also  provides  a  potentially interesting example  of  how artificial  desiccation,  for 

example during drying of harvested algae to create a market product, may vary from natural tidal 

desiccation.  During commercial drying processes the algae is spread into thin mats to increase the 

speed of drying and ensure drying occurs before rotting (Fig. 1), increasing the rate at which the 

algal biomass dries and potentially increasing the rate of exposure to stress.
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4.4.2 Variation in Fv/Fm between species

To  further  investigate  differences  between  species,  Fv/Fm was  recorded  as  a  measure  of 

photosynthetic health for F. vesiculosus and U. intestinalis.  Other studies have recorded decreases 

in  photosynthesis  with  desiccation  (Pena  et  al.,  1999;  Williams  &  Dethier,  2005), our  study 

supports these findings (Figs. 6 and 7).  When combined, the experiments in this chapter show an 

overall pattern; halocarbon emissions may peak at first emersion but then decrease as water is lost 

and Fv/Fm decreases.  However,  a closer inspection reveals little connection between Fv/Fm and 

halocarbon emissions.  During the first hour the Fv/Fm values for all F. vesiculosus (FP) replicates 

and the majority of U. intestinalis replicates (UP1-2) remained relatively constant or even increased 

slightly.  This has been reported by other studies (Ji & Tanaka, 2002; Kumar et al., 2011; Pena et 

al.,  1999),  and  has  been  attributed  to  a  greater  demand  for  energy  for  desiccation  tolerance 

mechanisms or an increased availability of CO2 as diffusion into the cell is enhanced.  Decreases in 

Fv/Fm began after an hour for some replicates (e.g. in UP1).  In other replicates large decreases were 

not noted until  2-3 hours into the experiment.   A decrease in  Fv/Fm occurs as inorganic carbon 

becomes  limited,  oxidative  damage  affects  the  photosynthetic  apparatus  and  electron  flows 

between PSI and PSII are interrupted (Kumar et al., 2011; Sampath-Wiley et al., 2008).  

Differences in Fv/Fm may also help explain differences between the two species.  U. intestinalis 

dried quicker than  F. vesiculosus but its Fv/Fm did not necessarily decrease quicker (it decreased 

faster in UP1 but not UP2).  Also, halocarbon production decreased more slowly for U. intestinalis 

(UL and URFW2-3) than for  F. vesiculosus (FL1-2).  A potential link between these factors is 

that as  U. intestinalis  has a faster rate of water loss during desiccation it is subjected to a 

higher level of oxidative stress and therefore produces more halocarbons for a longer period 

of time.  The difference in the rate of Fv/Fm decline between UP1 and UP2 could be indicative of 

previous in situ environmental histories affecting laboratory results.  Previous studies investigating 

oxidative bursts show the initial burst to be the largest (Küpper et al., 2001), therefore samples with 

different stress histories may respond differently to laboratory stresses.  
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4.4.3 Reasons for decreasing bromocarbon emissions over time

An initial peak in bromocarbon production, as demonstrated in many of our experiments, is likely 

caused by two factors.  Firstly, direct flux of bromocarbons into the atmosphere/flask headspace as 

opposed to into seawater and then a reduced water-air  flux (Section 4.3.5) and, secondly, as a 

response to the stress the algae is subjected to upon emersion, including increasing light levels and 

temperature  (Section  4.1.1).   However,  this  increase  in  emissions,  which  in  the  majority  of 

experiments occurred at the start of exposure, was short lived, particularly during  F. vesiculosus 

experiments.   As  halocarbon emissions  are  described  as  an  oxidative  stress  response,  and  are 

therefore expected to increase with increasing desiccation/exposure, it may seem counter-intuitive 

that our results show F. vesiculosus emissions decreasing quickly, in some instances within an hour. 

It  is  unlikely  that  halide  limitation  drives  this  decrease  in  emissions  as  seaweeds  concentrate 

halides from seawater (Saenko et al., 1978, Chapter 1 Section 1.3.1), therefore other causes must be 

proposed.  Previous studies (e.g. Burritt et al., 2002) have seen effects, such as a decreasing ability 

to regenerate antioxidants (their study centred on the ascorbate-glutathione antioxidant response), 

when desiccation persists for 12 hours or more.  It seems unlikely that the factors they link to 

decreasing antioxidant capabilities, such as nutrient limitation, are factors in decreasing halocarbon 

emissions  within  1-2  hours.   It  also  seems  unlikely  that  carbon/energy  limitation  drives  our 

observed decrease in halocarbon emissions, as Fv/Fm  values remained stable or even increased 

slightly within the first 1-2 hours of desiccation (Section 4.3.4) and uptake of inorganic carbon may 

increase in the early stages of desiccation (Section 4.1.4).  It also seems unlikely that the majority 

of oxidative damage occurs within the first hour or so, especially as our results show that Fv/Fm 

values begin decreasing later than this.  Therefore, it seems likely that this apparent initial flux is 

largely due to an increased flux as bromocarbons volatilise from the algal surface once the majority 

of seawater is removed and a remaining seawater layer begins to evaporate.  This is supported by 

Table  4  which  slows  lower  production  rates  for  exposed  algae  compared  to  those  submerged 

(although this comparison includes three analytical techniques, see Section 4.3.5).  Although the 

rate of evaporation may be similar  for both species,  U. intestinalis  is  a  stronger bromocarbon 

producer in seawater (Section 4.3.7 and Table 4) and so is likely to have more bromocarbons at or 

near its surface.  This may lead to the larger fluxes compared to F. vesiculosus, even if evaporation 

was an important driver of bromocarbon concentrations observed in the flasks.  However, as other 

studies working on Laminaria (Küpper et al., 2008; Palmer et al., 2005) have reported halocarbons 

as  a  response  to  oxidative  stresses  (such  as  the addition  of  oligoguluronates  which  elicits  an 

oxidative  burst)  it  seems  likely  that  active  production/emission  of  halocarbons  to  cope  with 

desiccation does occur.  In particular, this is supported by the  U. intestinalis experiments where 

emissions remain above the level for the control for several hours.  
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Reasons for the rapid decrease in bromocarbon emissions in F. vesiculosus could be linked to the 

'desensitisation' effect discussed by Küpper et al. (2001) who saw a strong oxidative burst after the 

first treatment with oligoguluronates (which mimic oxidative stress) but no subsequent response for 

up to three hours after the initial response.

 

 4.4.4  The effects of rewetting with freshwater after a period of desiccation

In URFW2 and URFW3 freshwater rewetting was linked to an increase in bromocarbon emissions 

(Figs. 17 and 18).  However, the magnitude of this increase was dependent on the length of time the 

specimen had been exposed for.  In URFW2 the algae were exposed for ~3.5 hours before they 

were rewetted and concentrations of CH2Br2 and CHBr3 returned to levels similar to the start of the 

experiment.  In contrast, algal samples in URFW3 were desiccated for 8 hours and increases in 

emissions were less than half the magnitude of the original peak.  Rewetting in freshwater causes 

an extra osmotic stress to the cells, the larger increase in halocarbon emissions in samples rewetted 

earlier may represent the fact that the algae still had the physiological capability (substantial Fv/Fm 

decreased were observed between 3-6 hours) and/or internal halide, nutrient and energy stores to 

produce a halocarbon response to the stress of freshwater osmotic shock.  It should be noted that 

U.  intestinalis is  a  salinity-tolerant  species  found  in  a  wide  range  of  salinities  in  the  natural 

environment  (Edwards  et  al.,  1988).  Therefore  the  response  of  U.  intestinalis to  freshwater 

rewetting may not represent that of all species. 
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4.5  Conclusions

This study has enhanced our knowledge of bromocarbon release during desiccation of temperate 

macroalgae in the following ways:

1.   A burst of bromocarbons was observed  upon exposure during desiccation  experiments FS1-3 

and US1-2,  linked to both oxidative  stress  and a  direct  bromocarbon flux  into the headspace. 

However care must be taken when comparing production rates of exposed and submerged samples 

where  different  measurement  techniques  (i.e.  seawater  vs.  air  samples)  are  used.   Future 

comparisons should use the same measurement platform for both determining both submerged and 

exposed emissions; taking care to account for the partitioning of bromocarbons into the headspace 

of incubation vessels (see Chapter 3 Section 3.2.3).

 

2.  U. intestinalis dried faster and lost a larger percentage of its water content than F. vesiculosus 

under the conditions of our study.  

3.  Production during exposure was higher for U. intestinalis compared to F. vesiculosus, as seen 

for seawater incubations in Chapter 3.  Patterns of emissions also differed during longer desiccation 

experiments (FL1, FL2 and UL1);  U. intestinalis tended to show prolonged emissions whilst  F. 

vesiculosus showed a peak followed by a rapid decrease in emissions.  As  U. intestinalis is a 

stronger  bromocarbon  producer  perhaps  it  has  larger  bromocarbon  stores  available  to  supply 

prolonged emission.  However, as the halide/halocarbon response of  U. intestinalis to oxidative 

stress is less well known when compared to phaeophytes (e.g. Laminaria, see Section 4.4) further 

work is needed to determine differences in emissions between F. vesiculosus and U. intestinalis.

4.  Decreases in Fv/Fm were variable between replicates experiments of the same species (UP1 and 

UP2)  and  so  conclusive  differences  between  changes  in  Fv/Fm between  F.  vesiculosus and 

U.  intestinalis could  not  be  made.   Changes  in  Fv/Fm did  not  match  changes  in  halocarbon 

emissions. From these results it  seems likely that  a halocarbon pulse upon exposure may be a 

response to short -term stress, such as O3 exposure (Ashu-Ayem et al., 2012) but not the effects of 

prolonged desiccation such as carbon and nutrient limitation or disruption of photosynthesis.    

A desensitisation effect may also play a role. 

4.5.1 Further work

Chapter 6 Section 6.2 emission estimates include a discussion of the changing flux of halocarbons 

to the atmosphere during daily tidal exposure of tropical macroalgae. 
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CHAPTER 5
Atmospheric distribution of halocarbons around 

Malaysia

5.1  Introduction

Alongside the incubation of tropical macroalgae discussed in Chapter 3 a variety of other in situ 

measurements were also made to further our understanding of tropical halocarbon production in the 

coastal zone.  These measurements were made in 2010 and 2011 during two field campaigns, the 

details of which are discussed in Section 5.2.  Results and discussions (Section 5.3 and 5.4) focus 

on  mapping  the  distribution  of  halocarbon  concentrations  in  Malaysia,  linking  this  data  to 

macroalgae incubations and previous ambient measurements.  

Data  used  in  this  chapter  were  collected  during  two campaigns  covering  both  peninsular  and 

eastern Malaysia (Borneo) from a variety of measurement platforms: ground-based sampling, small 

boat near-shore transects, a larger research vessel (R/V Sonne) and a research aircraft (Falcon). 

The SHIVA, 'Stratospheric Ozone: Halogens in a Varying Atmosphere', campaign (SHIVA11) was 

part  of  an  EU  funded  project  (ref:  226224-FP7-ENV-2008-1)  studying  the  oceanic  emission 

strength, atmospheric transport, chemical transformation and contribution to stratospheric inorganic 

bromine of a suite of halogenated VSLS, with a particular focus on the tropical South East Asian 

region.  The project involved measurement and modelling studies to improve our understanding of 

these processes  in terms of both current conditions and potential  future changes to the climate 

system.  For more information see http://shiva.iup.uni-heidelberg.de/. 

5.2 Methodology

Table 1 provides a summary of campaigns, measurements taken, and acronyms that will be used 

herein.  The location column is expanded in Fig. 1, a map of sampling sites.  The two campaigns 

involved a variety of techniques to collect,  store  and analyse samples for the determination of 

halocarbon concentrations in both air and seawater samples.  Table 1 also highlights the techniques 

used and refers to the relevant methodology sections that describe sample analysis techniques in 

further  detail.   Data  collected  by  other  research  groups  during  the  SHIVA campaign  will  be 

compared  to  our  dataset  and,  where  possible,  used  to  extend  our  range  of  halocarbon 

measurements.  Refer to citations in Table 1 for methodologies corresponding to these datasets.  
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Table 1. Measurement platforms, techniques and analytical methods used to map the distribution of halocarbons in Malaysia. 

Campaign 
code

Dates Location
Platform

Sample 
medium

Sample
 collection

Sample analysis and 
responsible scientist/institutions1

JAM10 July – Aug
2010

Peninsular Malaysia:
Langkawi & Port 

Dickson

Ground Air Canisters 
(ambient & flux chamber)

GC-NCIMS in Sept-Oct 2010, Section 5.2.4.

SHIVA11 Nov 2011 Borneo Ground

Small boats

Falcon 

R/V Sonne

Air

Air

Air

Air

Air 

Canisters

Canisters
 

Canisters 

Canisters  

In situ samples

GC-NCIMS in Jan-Mar 2012, Section 5.2.4.

GC-NCIMS in Jan-Mar 2012, Section 5.2.4.

Mills & Oram (UEA)3, GC-NCIMS during campaign. 

Technique as used for ground/small boat samples but 
separate GCMS instrument used.

Atlas (RSMAS)2 .

Robinson (U. Cambridge), µDirac, see Gostlow et al. 
(2010).

1 when data has been obtained from other sources, 2 a description of shipboard air measurements can be found in Tegtmeier et al. (2012), air samples were 

collected between 15.11.11 to 29.11.11 from a pole reaching 4 m out from the port side of the boat 15 m above the sea surface.  3 Samples collected into Pyrex 

flasks and analysed in a manner similar to that described in Section 5.2.3.
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a)

b)

Figure 1a. ● Ground measurements or launch points for small boat transects, including: 

La: Langkawi

PD: Port Dickson, including Cape Rachado, Pantai Dickson and Pantai Purnama

Ku: Kuching

KK: Kota Kinabalu 

sem: Semporna region

Figure 1b.  SHIVA11 campaign activities including R/V Sonne ship track, Falcon aircraft 

base  at  Miri  and  aircraft  range  (see  inset  legend).   Map  b  taken  from 

http://shiva.iup.uni-heidelberg.de/.
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5.2.1  Sampling sites - SHIVA11

This chapter will mainly focus on the results from the SHIVA11 campaign.  From Kuching on the 

19th November 2011 and from Kota Kinabalu (KK) on the 23rd November 2011 a small boat 

conducted a transect out to meet the R/V Sonne at ~20 km from the shore.  Flask samples were 

filled from the bow of the boat at Kuching and from port side stern at KK.  Air samples were taken 

directly at the edge of the boat, about 1-2 m above the sea surface.  Fig. 2 illustrates the vessels 

used in (a) Kuching and (b) KK.  A small boat was also used as part of a three day measurement 

campaign in Semporna:

- Bohey Dulang (BD) - 25.11.11 – hourly samples taken between 09:00 and 16:00 (local time) 

on a small island.

- Small  boat  cruse  (hereafter  abbreviated  to  “semcruise”)  -  26.10.11  –  around  islands, 

mangroves and seaweed colonised areas was conducted between 06:47-13:22 (local time).

Figure 2. Boats used for transects at (a) Kuching and (b) KK during SHIVA11. Full details 

given in Table 1.
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5.2.2  Sampling sites – JAM10

Whilst the majority of this chapter focuses on SHIVA11, comparisons will also be made with the 

JAM10 ('July and August Malaysia') campaign.  This was a small campaign, mainly in conjunction 

with the University of Malaya.  During JAM10 samples were taken at a variety of sites (Fig. 3), 

including  mangrove  stands  (e.g.  Pantai  Dickson),  sandy  beaches  with  heavily 

macroalgae-colonised  intertidal  reefs  (e.g.  Cape  Rachado)  and  areas  without  macroalgae  (e.g. 

Langkawi).  

Figure 3. Sampling locations visited during JAM10.  For further details see Table 1. 
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5.2.3  Sample collection

Restek SilcoCan® air monitoring canisters were used to collect whole air samples in the field. 

Samples were collected into pre-evacuated canisters via a line of PFA tubing (¼ inch diameter) 

connected to the diaphragm valve on the top of the canister.  A small pump (Air Dimensions, Inc., 

USA) connected to a rechargeable 12 V battery allowed filling of the flasks to 40 psi.  Before 

sampling the tubing was flushed for several minutes.  The canister was then connected, filled to 

~30 psi and vented twice to flush the flask.  A third fill to 40 psi provided the sample.  Samples 

were  returned  to  UEA  for  analysis  within  4  months.   A  study  by  Brinckmann  et  al. 

(2012) demonstrated good stability of samples in moist (typical tropospheric H2O mixing levels) air 

for up to five months; including CHBr3 which is less stable in dry air samples.  Water vapour in 

humid samples adsorbs onto the inner wall of the canister, preventing some of the analytes from 

doing so and therefore increasing stability (Dewulf & van Langenhove, 1997).  

5.2.4  Sample analysis 

A Markes Air Server™ allowed the connection of up to 6 canister samples to a Markes UNITY™ 

thermal desorption system (Worton et al., 2008).  Automated sets including blanks, calibrant gas 

samples and air samples could be established and controlled via the UNITY™ software.  After a 

3 minute pre-purge (25 ml min-1) of the sample line a 500 ml sample was collected over 20 minutes 

at 25 ml min-1.  Samples were trapped on a cold trap packed in-house with Carboxen 1003 (used for 

its hydrophilic properties) and held at -30 °C by the use of a Peltier cooling system.  The trap was 

then quickly heated to 300 °C and held at this temperature for 15 minutes to desorb the analytes 

and send them along a 120 °C heated transfer line to the GC column.  

An Agilent 6890 GC with a 105 m (nominal length), 0.32 mm internal diameter, 1μm film Rtx 

502.2 capillary column (Restek) was used for analyte separation. The oven temperature programme 

was set at 35 °C for 8 minutes followed by a temperature ramp at 10 °C min-1 to 150 °C where the 

temperature was held for 10 minutes before a second ramp at 15 °C min-1 to 260 °C where the oven 

was held for 15 minutes.  
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An Agilent 5973 quadrupole MS operating in negative ion chemical ionisation (NCI) mode was 

used for analysis of canister samples.  Chemical ionisation uses a reagent gas, in this instance high 

purity methane, to ionise the sample, resulting in a soft ionisation that generates less fragmentation 

(Kellner  et  al.,  2004).   The  use  of  this  system  for  high  sensitivity  analysis  of  halogenated 

compounds has been reported by  Worton et al. (2008) and the analysis of samples in this work 

follows their protocols.  The system is run in SIM (see Chapter 3 Section 2), monitoring m/z 35 for 

chlorinated compounds, 79 and 81 for brominated compounds and 127 for iodinated compounds 

throughout the chromatographic run.  Peaks are identified via two methods; retention time relative 

to known standards and the use of EI mode to match full mass spectra with known standards and 

spectral libraries (Worton et al., 2008).  Each flask was analysed at least twice.  Point calibration 

was conducted using a gas standard, which is discussed further in Section 5.3.5, introduced to the 

system in the same way as  flask samples via the UNITY™ system.  A working standard was 

sampled at regular intervals during daily sample analyses to help correct for daily sensitivity drift.  

After  use,  flasks  were  connected  to  a  rig,  evacuated  to  ~8x10-2  mb  and  baked  (whilst  under 

vacuum) at 130 °C for at least 12 hours.  10% of flasks are then filled with clean nitrogen and 

analysed  as  a  quality  control  mechanism  to  ensure  minimal  contamination  levels  have  been 

obtained.
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5.2.5  Air standard concentrations, calibrations and intercalibrations

Absolute mixing ratios in the working standard were derived via an ongoing calibration system 

which  involves  the  intercomparison  of  standards  both  at  UEA and  between  UEA and  other 

organisations.  Determining the magnitude of drift in a standard over time is complex; different 

standards may drift at different rates relative to each other and so even multiple intercomparisons 

may not be able to accurately track changes over time.  Intercalibrations also provide some measure 

of drift in standards.  Two standards were used during the work described in this chapter.

i. UEA 'Jana' standard

This was used to calibrate JAM10 analyses.  The standard comprises an aluminium tank filled to a 

high-pressure with non-dried ambient air from Mainz, Germany in April 2004.  Mixing ratios for 

this standard were obtained via comparison with NOAA standards during several intercomparisons 

since  2004.   The  latest  intercalibrations  were  with  the  University  of  York  in  2010  and  the 

University of Cambridge in 2012.  The concentration values used for this work were obtained from 

a 2010 intercomparison.  Our data suggest that there is no significant drift in the Jana standard 

between May 2010 and October 2011 (a period covering the data in this chapter) for the mixed 

bromochlorocompounds (CHBr2Cl, CHBrCl2 and CHBr2Cl) as well as CH2Br2.  CHBr3 does show 

significant drift in the Jana standard (36% between 2008 and 2012), this is corrected for via regular 

comparisons with other NOAA standards.  For the purpose of this work an intercomparison done in 

2010 is timely and is likely to minimise the effects of drift on our results. 

ii. UEA SX074 standard

2011 analyses were run relative to the UEA 'SX074' standard and concentration values are on a 

NOAA scale derived from intercomparisons with standards owned by the University of Cambridge 

as well as other UEA standards.  Samples were analysed in January 2012 and intercomparisons to 

determine concentration values were conducted in March and September 2012.  Based on these 

interomparisons we assume negligible drift in the standard between the start of analyses in January 

2012 and the first intercomparison in March 2012.  
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5.2.6  A comparison of system precision and detection limits

Table 2 contains information on the following parameters, given for each campaign discussed in 

this chapter.  

• Precision of  the system was determined by the variability on replicate  analyses  of  the 

standard and is given as percentage standard deviation (%1σ) for each compound. 

• The  given  error  on  the  standard  concentration  taken  from  the  original  NOAA scale 

numbers and intercalibrations, (Section 5.2.5)

• The detection limit (in ppt) of the system during each campaign.  Five calibrated blank runs 

were used to determine the standard deviation (σ) on the blank mean ( x̄ ) using Eq. 1 

(Kaiser, 1970).

(1)

During JAM10 the variability for CH3I and CHBr3 in particular was higher on the first four samples 

analysed  on  the  first  day,  from this  point  onwards  the  frequency  of  calibration  analyses  was 

increased to reduce variation due to drift, removing this error would reduce overall %1σ to 8.84% 

for CH3I and 15.0% for CHBr3.   
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Table 2.  Precision (%1σ), given error on standard concentrations (1σ) and detection limits (ppt) for two Malaysian campaigns; JAM10 and SHIVA11. n = 

number of standard pairs used to determine precision.
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JAM10 9.88
(n=40)

0.08 0.76 3.90
(n=44)

x 0.05 7.75
(n=43)

0.09 0.15 6.75
(n=44)

0.03 0.09 16.9
(n=43)

0.36 0.92

SHIVA11 8.50
(n=47)

0.76 0.30 3.64
(n=48)

0.004 <0.01 3.39
(n=48)

0.01 0.00 4.01
(n=48)

0.01 <0.01 2.93
(n=48)

0.05 0.06
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5.3 Results and discussion

5.3.1 Data overview

An overview of halocarbon concentrations observed during SHIVA11 is shown in Table 3.  This 

table includes data collected from ground stations, small boats, the Falcon and the R/V Sonne.  Air 

samples collected aboard the Falcon were taken at altitudes ranging from 39 to ~10900 m.  Fig. 4a 

shows the vertical profile of concentrations observed from Falcon samples for four compounds 

(CH2Br2, CHBrCl2, CHBr2Cl and CHBr3).  A decrease in concentration with altitude is observed, as 

also  reported  by  Blake  et  al.  (1997,  1999) and  Park  et  al.  (2010) for  biogenically  produced 

halocarbons with short atmospheric lifetimes.  For the purpose of comparison with ground samples 

we have selected only those samples believed to be taken within the boundary layer, which has 

been approximated at 760 m based on Robinson et al. (2012).  Boundary layer samples can be seen 

in Fig. 4b and it is this subsection of measurements referred to in Table 3 and subsequent analyses 

throughout this chapter. 
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Table 3.  A summary of halocarbon concentrations observed during SHIVA11.  All values in 

ppt.  nr = not recorded.  Values in each grid box show:

mean / ppt

(range)

percentage standard deviation 

Site (n = sample no.) CH3I CHBrCl2 CHBr2Cl CH2Br2 CHBr3

UEA Ground/small boat measurements (SHIVA11)

 Kuching (7) 1.30
 (0.94-1.95)

29.2

0.30
 (0.26-0.37)

13.8

0.22
 (0.2-0.26)

10

1.03 
(0.85-1.42)

17.5

1.46 
(1.27-1.64)

8.6

 KK (5) 2.38 
(1.36-3.54)

41.9

1.0
(0.47-1.67)

52.2

0.61
 (0.33-0.94)

42.7

1.20
(1.13-1.25)

4.6

2.73
 (1.99-3.61)

22.1

BD (8) 1.16 
(0.86-1.42)

15.1

0.39
 (0.20-0.47)

21.7

0.42 
(0.23-0.50)

20.2

1.25 
(1.15-1.38)

6.8

2.65 
(2.12-3.24)

15.4

 semcruise (14) 2.11 
(1.2-3.05)

27.7

0.51
 (0.41-0.63)

14.2

0.50
 (0.35-0.66)

17.7

1.35 
(1.18-1.64)

11.3

2.83 
(1.5-4.27)

30.2

All ground/small boat 
data

1.70
(0.71-3.45)

45.3

0.54
 (0.2-1.67)

54.3

0.47
 (.2-.94)

37

1.28
 (0.85-1.76)

14.7

2.59 
(1.27-4.82)

34.8

Other SHIVA11 measurements - aircraft and shipboard measurements

Falcon aircraft canisters 
<760 m altitude (116) 

(UEA)

nr 0.33 
(0.22-0.67)

21.2

0.30 
(0.17-0.63)

30

1.04 
(0.8-1.5)

13.5

1.68
 (0.82-3.67)

29.3

R/V Sonne canisters 
(195) 

(RSMAS)

0.39 
(0.19-0.78)

23.1

nr 0.28
 (0.11-5.87)

146.4

1.17
 (0.71-1.98)

16.1

2.08 
(0.79-18.42)

65.4

R/V Sonne μDirac 
(227)

(UCAM)

0.32
(0.05-3.39)

112.5

nr nr 0.74
(0.37-1.48)

23

2.82
(1.32-6.81)

30.1
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Figure 4. Vertical distributions of halocarbons sampled at (a) all altitudes and (b) < 760 m 

only.  Data represent UEA canister samples taken aboard the Falcon aircraft (●) or from 

ground/local boat stations (○).
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5.3.2 Differences between SHIVA11 sites

Relatively similar concentration ranges are seen at all ground-based and small boat sites visited 

during SHIVA11 with a CHBr3 concentration range, for example, of 1.5-2.8 ppt (a comparison with 

other  studies  will  be  made  in  Section  5.3.3).   Comparisons  between sites  can  be  made  using 

statistical tests.  A non-parametric ranked ANOVA test was conducted as not all datasets passed 

normality and/or equal variance tests, and some of the sites had a small sample size.  The ranked 

ANOVA test was performed on the ground/small boat sites (Kuching, KK, BD and semcruise). 

Ranked ANOVA tests were performed both on differences between individual halocarbons at each 

site and also on a combined dataset of all halocarbons at each site.  Significant differences (p = 

<0.05) were observed for both sets of tests.   Dunn's post-hoc test (Dunn's test was selected as 

groups did not contain the same amount of data) showed that a large proportion of this significant 

difference could be attributed to differences between Kuching and other sites, in particular KK and 

semcruise.  This is likely due to the lower concentrations observed at  Kuching, which will  be 

discussed in further detail in Section 5.3.5. 

5.3.3 Extending range of halocarbon measurements with other datasets

Data from the Falcon and R/V Sonne, which extend the geographical range of measurements, does 

not greatly increase the range of halocarbon concentrations measured at ground/small boat stations 

during SHIVA11.   One  difference  of  note  was  a  substantially lower  mean CH3I  concentration 

measured in canister samples taken aboard the R/V Sonne when compared to ground/small boat 

samples.  Previous studies have shown a decreasing gradient in atmospheric concentration of CH3I 

away from the coast (Grose et al., 2007 and review by Saiz-Lopez et al., 2012).  Commonly, but 

not exclusively (see Chapter 1, Section 1.7), these high coastal concentrations tend to be recorded 

in  areas  of  macroalgae  colonisation.   No  macroalgae  were  observed from the  launch  sites  at 

Kuching or KK, but floating seaweed debris was observed during the local boat transects which 

could indicate that it is found in, or relatively near, the coastal regions we sampled. 
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CHBr2Cl and CHBr3 measured in canisters from the R/V Sonne (RSMAS) were lower than all 

ground/small boat sites apart from Kuching.  Again, highly productive coastal regions tend to show 

higher concentrations of bromocarbons (Quack & Wallace, 2003; Yokouchi et al., 2005).  One R/V 

Sonne canister CHBr3 measurement of 18.4 ppt is much higher than all other CHBr3 measurements 

made aboard the vessel which fell below ~5 ppt.  If this sample is removed from the dataset the 

CHBr3 mean value measured in canisters aboard the R/V Sonne decreases to 2.0 ppt (range 0.8-7 

ppt) whilst little difference is observed in the mean and range of the other halocarbons listed in 

Table 3.  Aboard the R/V Sonne another measurement technique, the  μDirac, was also used to 

measure halocarbon concentrations.  CHBr3 concentrations measured with the μDirac were slightly 

higher than those measured using the RSMAS canister samples.  Canister samples (analysed by 

UEA)  and  μDirac  CHBr3 measurements  have  agreed  well  in  past  campaigns  (Gostlow et  al., 

2010) and  time  series  of  canister  and  μDirac  samples  taken  aboard  the  R/V Sonne  generally 

correlated well (B. Quack pers. comm. 2012, data not shown).

Falcon measurements were generally lower concentrations than those seen for all other platforms, 

apart from the local boat samples taken at Kuching.  As a decreasing halocarbon concentration with 

increasing altitude is observed (Fig. 4) this is likely due to deriving mean concentrations from a 

range of altitudes.  However, regional patterns (e.g. areas of high and low concentrations) observed 

by  the  Falcon  match  those  from other  measurement  platforms,  this  will  be  discussed  in  the 

following section.  

CH2Br2 concentrations cover a smaller range and have lower standard deviations in all the datasets. 

As the longest lived VSLS discussed in this chapter, with a lifetime of 120 days compared to 7-78 

days for the other halocarbons (Montzka et al., 2010) it is likely to exhibit less spatial and temporal 

variation in concentration than some of the shorter-lived species such as CHBr3. 
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Measurements  were  also  made  at  several  locations  in  Peninsular  Malaysia  during  JAM10. 

Between  2-4  flasks  were  filled  at  each  site.   Table  4  provides  information  on  these  results. 

Concentrations  of  CHBr3 and  CH2Br2 reached higher  values  than  measured  in  Borneo  during 

SHIVA11; CHBr3 ranged from 0.25-14.09 ppt and CH2Br2 0.52-2.28 ppt.  However, at some sites 

(e.g.  Langkawi  S1)  the  percentage  standard  deviation  was  high,  suggesting  that  high  CHBr3 

concentrations were 'events' rather than a background state.  For example, at Langkawi S1, over 48 

hours, CHBr3 concentrations varied from 0.3-14 ppt.   The CH3I  range was closer to that  from 

SHIVA11,  ranging from 0.43  to  2.24 ppt.   These measurements  were made  within  regions of 

potentially strong halocarbon emissions, for example near macroalgae beds at Cape Rachado, and 

therefore higher concentrations may be expected.  Laboratory incubations of species found at these 

sites (see Chapter 3) demonstrated high levels of halocarbon production from many species.  These 

measurements indicate localised emission 'hot spots' which are related to coastal biology.  

Table 4.  A summary of halocarbon concentrations observed during JAM11.  All values in 

ppt.  nr = not recorded.  Values in each grid box show:

mean / ppt

(range)

percentage standard deviation 

Site*

(n = sample no.)
CH3I CHBrCl2 CHBr2Cl CH2Br2 CHBr3

Langkawi S1 (4)$ 3.41
(2.73-5.69)

49.6

0.78
(0.33-1.62)

59.2

0.39
(0.22-0.60)

40.4

1.20
(0.65-2.28)

47.5

3.91
(0.25-14.09)

124.74

Langkawi S2 (2)¤ 1.39
(0.82-1.97)

50.0

0.21
(0.17-0.25)

14.4

0.23
(0.20-0.25)

10.4

1.00
(0.86-1.15)

11.9

1.88
(0.94-2.80)

40.3

Cape Rachado (4) 0.86
(0.43-1.35)

36.4

0.87
(0.29-2.45)

87.4

0.33
(0.16-0.58)

36.8

1.12
(0.92-1.37)

12.82

2.34
(0.76-3.8)

51.8

Pantai Dickson (2) 1.27
(0.84-1.81)

34.7

0.79
(0.49-1.14)

43.1

0.66
(0.41-0.92)

32.2

1.58
(1.21-1.89)

18.5

6.58
(3.11-12.32)

61.9

* See Figs. 1-3). $ A beach site, Fig 3f.  ¤Boats in mangrove/coast area Fig. 3d
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5.3.4 A comparison with previous studies

The range  of  concentrations  shown in  Table  3  are  consistent  with  previous  measurements  of 

halocarbons in the MBL.  Table 5 presents a range of observations from other published studies. 

Our mean CHBr3 concentrations ranged from 1.68 to 2.83 ppt, slightly higher than the mean values 

reported for other tropical research cruises of ~1 ppt (Butler et al., 2007; Carpenter et al., 2009). 

Cruise measurements tend to focus on open ocean or continental  shelf samples and our higher 

measurements  are  consistent  with  stronger  production  and emissions  from coastal  waters  (see 

summary in Quack & Wallace, 2003).  As many research cruise vessels cannot come close to shore, 

small  boat  transects,  such  as  the  ones  conducted  during  SHIVA11,  form  an  important,  and 

potentially  under-utilised,  source  of  information  on  marine  halocarbon  emissions.   CHBr3 

concentrations were lower than the mean value of 7.9 ppt (range 2-27) reported by O'Brien et al. 

(2009) for measurements made at Cape Verde and Yokouchi et al. (2005) who measured up to a 

mean  of 31 ppt near tropical  islands in various locations.  The fact  that coastal concentrations 

higher than those from the open ocean have been identified in regions that do not have high levels 

of seaweed colonisation (Ku and KK from this study and Cape Verde) suggest other sources may 

also play an important role in elevated coastal halocarbon concentrations.  Chapter 1 Section 1.3 

provided information on other potential marine halocarbon sources.
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Table 5.  CHBr3, CH2Br2 and CH3I atmospheric mixing ratios (ppt) from a range of previous studies.  Where available both the mean value and the range (in 

brackets) are shown.  For several studies only the range is given. * = 90% range given.

Location CHBr3 / ppt CH2Br2 / ppt CH3I / ppt Reference

“Tropics” (average from several cruises) 1 (0.4-2.1)* 0.9 (0.6-1.3)* 0.6 (0.2-11)* Butler et al. (2007)

Open ocean data

Tropical and subtropical N. Atlantic 1.7 (0.5-9.9) 1.3 (0.9-1.6) 0.9 (0.6-1.3) Fuhlbrügge et al. (2012)

Equatorial Pacific 1.9 (0.8-3.5) 1.3 (0.5-2) nr Yokouchi et al. (2005)

Equatorial Pacific 17 °N – 14 °S 3.1 (0.5-6.7) 1.7 (1.2-2.2) 1.1 (0.7-1.8) Atlas et al. (1993)

W. Pacific 1.1 (<0.1-2.5) 1 (0.5-1.5) nr Yokouchi et al. (2005)

W. Pacific 1.2 (0.4-10.7) nr nr Quack and Suess (1999)

Tropical Atlantic upwelling 1.1 (0.5-2)* 0.4 (0.2-0.4)* nr Carpenter et al. (2003)

Coastal data

Coastal waters (average from several cruises) 0.8 (0.2-1.99)* 1 (0.6-1.9)* 0.8 (0.4-1.6)* Butler et al. (2007)

Tropical and subtropical N. Atlantic 4.2 – 6.58 1.96 – 3.14 max 3.3 Fuhlbrügge et al. (2012)

Java Island 0.9 (0.4-1.6) 0.9 (0.6-1.5) nr Yokouchi et al. (2005)

Tropical islands (San Cristobal and Christmas Island) 13.8 (1.4-43.6) 2.6 (1.4-7.6) nr Yokouchi et al. (2005)

Cape Verde 7.9 (2-27.2) 1.97 (0.8-1.8) nr O'Brien et al. (2009)

Mace Head, Ireland 6.8 (1-22.7) 1.3 (0.3-3.4) 3.8 (1.3-12) Carpenter et al. (2003)
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5.3.5  Mapping emissions

Figs. 5-9 display the atmospheric distribution of (in order) CH3I, CH2Br2, CHBr3, CHBrCl2 and 

CHBr2Cl around Borneo, determined from measurements made during  the  SHIVA11 campaign. 

Data is taken from UEA local  boat/ground station canisters,  UEA Falcon canisters, R/V Sonne 

canisters (RSMAS) and µDirac measurements (UCAM). 

A few important points to help interpretation of Figs 5-9:

• All values are in ppt.  

• The large  map panel  (at  the  top  of  each  page)  shows all  the available  data  from all 

measurement platforms on the same colour scale.  This map is designed to allow for an 

overall comparison of regional differences in halocarbon concentrations.

• Smaller map panels (a-d) show data collected from an individual measurement technique. 

For example UEA local boat data is shown in map panel a in each figure.  Each smaller 

map has its own colour scale.  This prevents high measurements on one scale obscuring 

patterns that may otherwise be observed from other measurement platforms. 
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No falcon data

Figure  5.  Atmospheric  distribution  (ppt)  of  CH3I  around  Malaysia  determined  from 

measurements made during SHIVA11:

= Local boat or ground samples (UEA)

 R/V Sonne canister samples (RSMAS)

  (continuous) = R/V Sonne μDirac samples (UCAM)

Original in colour.
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Figure  6.  Atmospheric  distribution  (ppt)  of  CH2Br2 around  Malaysia  determined  from 

measurements made during SHIVA11:

= Local boat or ground samples (UEA)

= R/V Sonne canister samples (RSMAS)

 (continuous) =  R/V Sonne μDirac samples (UCAM)

 – = Falcon samples (UEA)

Original in colour.
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Figure  7.  Atmospheric  distribution  (ppt)  of  CHBr3 around  Malaysia  determined  from 

measurements made during SHIVA11:

= Local boat or ground samples (UEA)

= R/V Sonne canister samples (RSMAS)

 (continuous) =  R/V Sonne μDirac samples (UCAM)

 – = Falcon samples (UEA)

Original in colour.
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No µDirac data 

No R/V Sonne canister

   data

Figure  8.  Atmospheric  distribution  (ppt)  of 

CHBrCl2 around Malaysia determined from measurements made during SHIVA11:

= Local boat or ground samples (UEA)

– = Falcon samples (UEA)

Original in colour.
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      No µDirac data 

Figure  9.  Atmospheric  distribution  (ppt)  of  CHBr2Cl  around  Malaysia  determined  from 

measurements made during SHIVA11:

= Local boat or ground samples (UEA)

 –  = Falcon samples (UEA)

Original in colour.
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Studying  the  halocarbon  distribution  around  Borneo  we  see  the  following  patterns  for  all 

halocarbons (Figs. 5-9):

• Low concentrations were observed as the ship passed through the South China Sea (SCS, 

see  Fig.  1  for  reference).   Open  ocean  regions  are  often  characterised  by  lower 

concentrations, see Chapter 1 Section 1.7.  

• These low halocarbon concentrations in the open ocean could be linked to low biological 

productivity in these regions.  Previous studies have found links between chlorophyll-a (as 

a marker of biological activity) and halocarbon distributions in open ocean regions (Arnold 

et al., 2010).  A satellite map of chlorophyll-a concentrations averaged over the SHIVA11 

campaign (Fig. 10) shows lower concentrations in the SCS compared to regions nearer the 

Borneo coast.

• However, low concentrations were also observed close to the coast in the Kuching area 

(south west Borneo) by the local boats and the Falcon.  The R/V Sonne also measured low 

concentrations in this region.

• Higher concentrations were observed as the R/V Sonne traveled northward up the Borneo 

coast and into the Sulu Sea, local boat measurements were also higher at KK compared to 

at Kuching.  This stretch of coastline showed variable production, with some low as well as 

high  concentrations.   Variations  could  be  due  to  changes  in  biological  productivity, 

meteorology or other factors such as river inputs.  This will be discussed in further detail in 

Section 5.3.5.  

• Higher  concentrations  were  also  observed  from  the  Falcon  and  local  boat/ground 

measurements in the Semporna region, an area of extensive macroalgae farms.  Again, this 

is discussed further in Section 5.3.5.  
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Figure  10.   Two week composite  map of  satellite  chlorophyll-a derived from the MERIS 

sensor and based on HYGEOS-POLYMER algorithm. The red line shows the R/V Sonne 

cruise  track and coloured circles  are  in-situ chlorophyll-a concentrations  measured using 

high performance liquid chromatography (HPLC).  Map courtesy of Wee Cheah and Astrid 

Bracher (AWI) and François Steinmetz (HYGEOS), February 2013.  
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5.3.6 Back trajectories and air mass differences between sites

Differences between sites can be investigated further using back trajectories to establish movement 

of air masses in the hours or days preceding sampling.  The Air Resources Laboratory's HYbrid 

Single-Particle  Lagrangian  Integrated  Trajectory  (HYSPLIT)  model  (Draxler  &  Rolph,  2013; 

Rolph, 2013) was used to compute back trajectories using NCEP/NCAR reanalysis data.  The data 

are first generation reanalysis on a 2.5° x 2.5° latitude-longitude grid with a horizontal resolution of 

~210 km and 28 vertical  levels  (Kistler et  al.,  2001).  Back trajectories were performed every 

6 hours  over the 48 hour period preceding 12:00 local  time (LT) (04:00 UTC) on the day air 

samples  were  taken.   A 48  hour  time  period  was  chosen  as  trajectories  become  increasingly 

unreliable the further back they are projected and also as VSLS source regions are believed to be 

relatively local.  This procedure was repeated for three vertical levels; 100 m, 500 m and 1000 m. 

Fig. 11 shows a composite image of HYSPLIT trajectories at three vertical levels for each local 

boat site to demonstrate that, in general, little difference was seen between levels, a trend observed 

for  almost  all  the  back  trajectories  calculated  during  this  period.   Fig.  12  shows  HYSPLIT 

trajectories for 12:00 LT for each day of the R/V Sonne cruise alongside additional trajectories, 

where needed, for local boat/ground and Falcon flights. 

149



Chapter 5

Figure 11.   HYSPLIT back trajectories  for local  boat/ground stations.   Trajectories  were 

computed every 6 hours for 48 hours preceding 12:00 LT.  Trajectories were calculated at 

three vertical levels; 100 m, 500 m and 1000 m.  Colour represents starting time of back 

trajectory (oldest to youngest): red, dark blue, green, turquoise, purple, yellow, blue and red 

again.  Original in colour.
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Figure 12. HYSPLIT back trajectories for R/V Sonne cruise and Falcon flights. = Starting 

back trajectory location for 12:00 LT for each day of the R/V Sonne cruise track, number = 

date (all November 2011) shown. = Starting location for back trajectories for Falcon flights 

that did not coincide with the R/V Sonne.  Again, dates shown next to marker (23 and 26th 

November, 9th December 2011). 
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The back trajectories allow us to identify four regions which support the concentration maps shown 

in Figs. 5-9.  A visual summary showing a basic outline of these regions are shown in Fig. 13 and 

Table 6 provides a summary of measurements taken in each region.  The four regions cover:

Region 1 (R1):

Low concentrations and back trajectories crossing the open ocean as the R/V Sonne crosses the 

SCS. 

Region 2 (R2):

Some of the lowest concentrations were observed in this region – refer back to Section 5.3.2 where 

Kuching data were significantly different to those measured at other local boat/ground stations. 

Back trajectories typically crossed over land or out over the open ocean, but did not travel along 

coastal regions. 

Region 3 (R3):

This region comprises the western Borneo coast.  Back trajectories are predominantly from the 

Sulu Sea, in a northeasterly direction passing close to the Borneo coast.  Some areas of elevated 

concentrations are observed in this region.  

Region 4 (R4):

This region comprises measurements made in the Semporna area, a region known for macroalgae 

aquaculture (Neish, 2003).  Back trajectories come from a similar direction to Region 3.   

Observed halocarbon concentrations in these four regions can now be potentially attributed to local 

sources, air mass history or a combination of factors. To develop this idea the next section will 

utilise relationships between different halocarbons to further investigate the differences between 

these regions.  
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Figure 13.   An overview of  regions  R1=R4 identified using back trajectories,  halocarbon 

concentrations and chl-a concentrations.  See text for further details. 

Table 6. A summary of measurements taken in each of the four regions (R1-4) characterised 

by halocarbon concentrations and air mass back trajectories. x = no data available for this 

region.

R1 R2 R3  R4

R/V Sonne Transect across the 
SCS 15-18/11

18-19/11 Travelling northward 
parallel to the Borneo coast 

x

Falcon x 16/11
19/11

21/11
26/11

23/11
9/12

Local boat/ 
ground station

x Kuching 
19/11

KK 23/11 BD 25/11
semcruise 26/11
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5.3.7 Halocarbon correlations in different regions of Borneo

In  Chapter  3  correlations  between  halocarbons  produced  during  macroalgae  incubations  were 

discussed.   Significant  correlations  (p=<0.001)  between CHBr3,  CH2Br2 and CHBr2Cl  with  R2 

values  between  0.79-0.94  suggested  a  common  biological  source.   Relationships  between 

halocarbons  have  been  exploited  to  provide  information  on  source  regions  and  the  history  of 

sampled air masses (Brinckmann et al., 2012; O'Brien et al., 2009; Yokouchi et al., 2005).  Here we 

use  relationships  between  three  halocarbons,  CHBr3,  CHBr2Cl  and  CH2Br2.,  three  compounds 

which have:

• A common, mainly marine biological, source.

• An assumed constant emission ratio in this region.

• Different atmospheric lifetimes (CHBr3 < CHBr2Cl < CH2Br2). 

Carpenter et al. (2003)  defined scenarios which could be identified using relationships between 

these  three  halocarbons  to  determine  if  they  were  sampling  near  or  at  a  distance  from  the 

halocarbon source region.  A similar technique will be used here, using two relationships to help 

define air masses sampled in Regions 1 to 4. 

  

1. Correlations

Strong  correlations  suggest  a  close  proximity  to  source  regions.   Fig.  14  and  Table  7  show 

correlation  plots  and  associated  information  for  CHBr3 vs  CH2Br2 and  CHBr3 vs  CHBr2Cl. 

Orthogonal  distance regression  (ODR) was used to calculate the regression line slopes as  this 

calculation allows for error in both the x and y variables.  

Both  Pearson  Product-Moment  Correlation  Coefficient  and  Spearman's  Rank  Correlation 

Coefficient can be used as a measure of statistical confidence (p) in these correlations (Table 7). 

Whilst  it  is  commonly  assumed  that  the  Pearson  test  should  be  performed  on  data  that  pass 

normality tests and the Spearman test on data that fail this is not the case,  for non-ranked data 

Pearson's  is  generally  the  test  of  choice  (see  Howell,  2007 for  a  full  description  of  selecting 

statistical correlation tests).  Both tests can be conducted on non parametric data (and many of the 

regional  halocarbon  datasets  failed  Shapiro-Wilk  normality  tests  at  p=0.05)  and  can  provide 

information on the reliability of the correlation, as will be discussed in more detail following Figs. 

14 and 15.  
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2. Two-factor correlations to determine chemical decay

If  measurements  are  taken  at  some  distance  from a  site  and  it  is  assumed  that  diffusion  and 

transport  affect  the  three  halocarbons  equally  then  differences  in  concentrations  are  linked  to 

chemical  decay.   A decay curve  plotted  on  a  plot  of  ln([CH2Br2]/[CHBr3])  vs  ln([CHBr3])  or 

ln([CHBr2Cl]/[CHBr3]) vs ln([CHBr3]) (Fig. 15, Table 8) should demonstrate an increasing ratio of 

ln([CH2Br2]/[CHBr3]) or ln([CHBr2Cl]/[CHBr3]) with decreasing ln([CHBr3]) concentrations.  This 

relationship  exists  as  the  shorter  lifetime  of  CHBr3 leads  to more  pronounced changes  in the 

concentration of  CHBr3 relative to longer lived VSLS (  CHBr2Cl and  CH2Br2).  For example, in 

older or more diluted air there will be relatively more longer-lived CH2Br2 (Yokouchi et al., 2005).  
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Figure 14. Bromoalkane correlations measured during SHIVA11.  Data includes R/V Sonne, 

Falcon and local boat/ground station measurements.  Points are coded according to region 

(see inset legend). See Table 7 for regression line equations.  Original in colour.

Table 7.  Descriptive statistics for bromoalkane correlations displayed in Fig. 14.  The table 

includes ODR line equations; standard deviation (σ) on the slope (m); R2 values; p values for 

Pearson's (pr) and Spearman's (pρ) correlation tests.  

n
CH2Br2 – CHBr3 CHBr2Cl – CHBr3 

Equation
(y = mx + c)

σ m R2 pr pρ Equation σ m R2 pr pρ

R1 17 y = 0.14x + 0.80 0.09 0.11 0.19 0.07 y = 0.04x + 0.11 0.02 0.21 0.07 0.04

R2 49 y = 0.19x + 0.70 0.03 0.54 <0.001 <0.001 y = 0.02x + 0.16 0.02 0.04 0.16 0.05

R3 111 Y = 0.27x + 0.58 0.01 0.80 <0.001 <0.001 y = 0.08x + 0.11 0.01 0.50 <0.001 <0.01

R4 65 Y = 0.22x + 0.67 0.01 0.82 <0.001 <0.001 y = 0.14x + 0.07 0.02 0.51 <0.001 <0.01
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Figure 15. Logarithmic bromoalkane correlations measured during SHIVA11.  Data includes 

R/V Sonne, Falcon and local boat/ground station measurements.  Points are coded according 

to region (see inset legend).  See Table 8 for regression line equations.  Original in colour.

Table 8.  Descriptive statistics for bromoalkane correlations displayed in Fig. 15.  The table 

includes ODR line equations and R2 values.

n

CH2Br2/ CHBr3 v 
CHBr3 

CHBr2Cl/ CHBr3 v 
CHBr3

Equation R2 Equation R2

R1 17 y = -0.92x – 0.07 0.79 Y = -0.90x – 1.90 0.52

R2 49 y = -0.72x – 0.12 0.89 y = -1.22x – 1.62 0.48

R3 111 y = -0.56x – 0.17 0.81 y = -0.66x – 1.56 0.26

R4 65 y = -0.56x – 0.18 0.88 y = -0.59x – 1.29 0.14

Regional  differences  are  clearly shown in  Figs.  14 and 15.   Correlations of  both CH2Br2 and 

CHBr2Cl with CHBr3 are weakest in regions 1 and 2.  Region 1 is an open ocean area where low 

halocarbon production was observed.  Weak correlations are expected, as seen by Yokouchi et al. 
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Regional  differences are  clearly shown in  Figs.  14 and 15.   Correlations of  both  CH2Br2 and 

CHBr2Cl with CHBr3 are weakest in regions 1 and 2.  Region 1 is an open ocean area where low 

halocarbon production was observed.  Weak correlations are expected, as seen by Yokouchi et al. 

(2005) who reported weak or nonexistent correlations at open ocean sites where CHBr3 < 3.5 ppt. 

Region 2, however, is coastal and so higher concentrations may be expected here.  The observed 

weak correlations in Region 2 could be linked to back trajectories crossing over the land, bringing 

diluted air into the sampling region.  As will be discussed further during emission budget estimates 

in Chapter 6 Section 6.2, little data exists on the distribution of macroalgae around the Malaysian 

coast.  We did see macroalgal debris during the Kuching cruise, but low concentrations in this 

region could be indicative of limited macroalgae colonisation.  

Correlations  (Fig.  14)  were  stronger  in  regions  3  and  4  where  air  passed  along  coastlines, 

sometimes crossing Philippine islands to the north.  Air masses sampled in these two regions had 

potentially spent longer in highly productive regions.  The strongest CH2Br2 vs CHBr3 correlation 

was  observed in  Semporna (R4),  known as  an area  of  macroalgae  colonisation  (Phang et  al., 

2010) and also a site of previously high halocarbon measurements  (Pyle et al.,  2011).  Fig 15 

supports R4 as a source region; R4 ln([CH2Br2]/[CHBr3])  vs.  ln([CHBr3])  data is clustered in the 

lower part of the plot, with relatively higher CHBr3 concentration suggesting proximity to source.

As discussed earlier in this section, differences between Spearman and Pearson correlation tests can 

provide further information on the datasets.  As Table 7 shows, R3 and R4 showed statistically 

significant correlations (p= <0.01) for both relationships under both tests, as did the CH2Br2  vs. 

CHBr3 relationship  at  R2.   Stronger  correlation  coefficients  for  Pearson  tests  compared  to 

Spearman are indicative of strong linear relationships.  However, weaker or failed correlations were 

seen at R1 and R2. 

Fisher's z-statistic can be used to determine if statistical significances exist between correlations. 

Performing  Fisher's  z  statistical  test  according  to  Howell  (2007) for  the  Pearson's  pr values 

displayed in Table 7 we produce a matrix (Table 9) which supports the trends discussed earlier. 

Regions 1 and 2 and regions 3 and 4 are grouped, with little or no statistical difference between 

correlations, whilst differences exist between these pairings (R1 and R2 compared to R3 and R4). 

This is of interest as Zhou et al. (2008) observed differences in both mixing ratios and the slope of 

linear  regressions between sites  but  no  significant  differences between the  correlations.   They 

attributed this a pervasive influence of marine air throughout their sampling region, which we do 

not appear to see in our Borneo results.
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The relationship between CHBr2Cl and CHBr3 both for correlations (Fig. 14) and logarithmic ratios 

(Fig. 15) is weaker than the one between CH2Br2 and CHBr3.  Carpenter et al. (2003) also saw a 

weaker relationship for CHBr2Cl vs. CHBr3.  They attributed this to changes in relationship (seen 

by changes in the slope of the regression line) at higher CHBr3 concentrations.  An analysis of the 

combined dataset from R1-R4 shows no difference between the ODR slope for data containing the 

lowest and highest 50% of CHBr3 concentrations (after Carpenter et al., 2003).  Brinckmann et al. 

(2012)  noted  deviations  from  the  general  CHBr2Cl  vs  CHBr3 relationship  pattern  due  to 

unexpectedly high CHBr2Cl mixing ratios in coastal regions.  They attributed this to independent 

sources or a higher emissions of this compound in localised regions of the western Pacific.  As the 

results from seaweed incubations (Chapter 3) showed strong correlations between CHBr2Cl and 

CHBr3 the source of these discrepancies must lie in other (non macroalgal) source regions or in 

other  processes  that  have  yet  to  be  fully  quantified  in  tropical  regions  (e.g.  loss  or  exchange 

processes in seawater).  

Table  9.  Fisher's  z-statistic  test  results  for Pearson  correlation  pr values  determined  for 

CH2Br2 vs. CHBr3 and CHBr2Cl vs. CHBr3 in regions 1-4. z > 1.96 demonstrates a significant 

difference at p=0.05. 

CH2Br2 vs. CHBr3 CHBr2Cl vs. CHBr3

R1 R2 R3 CHBr2Cl R1 R2 R3

R1 R1

R2 1.99 R2 0.89

R3 3.80 2.68 R3 1.42 3.83

R4 4.00 2.97 0.67 R4 1.36 3.46 0
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5.3.8 Three-factor correlations to determine regional emission ratios

Several studies have used more complex relationship calculations to determine region emissions.  A 

principle outlined by  McKeen and Liu (1993) demonstrates that by using three compounds with 

common  sources  and  constant  regional  emission  rates  one  can  also  investigate  the  effect  of 

chemical decay and dilution on sampled air masses and from this information determine regional 

emission ratios.  

Using  the  principles  of  McKeen  and  Liu  (1993)  a  log-log  plot  of  CHBr3/CH2Br2 against 

CHBr2Cl/CH2Br2 for a regional dataset should be bound in an envelope of two lines representing 

two scenarios.  The first  is  a 'dilution line' which has a slope of 1 on a log-log plot.   This is 

representative of a situation where all three species are inert and background concentrations of 

CHBr3 and CHBr2Cl are zero.  The second is a 'chemical decay line' where decay is governed by 

pseudo first order chemical reaction, the slope (m) of which is predicted by Eq. 2 where k is the 

rate constant for each halocarbon, in this case the rate of decay which can be determined from the 

lifetime (τ) of CHBr3, CHBr2Cl and CH2Br2 as shown in Eq. 3.  Commonly the chemical decay line 

slope has been calculated to be 4.89 (e.g. Yokouchi et al., 2005) based on lifetimes of 26, 69 and 

120 days  for  CHBr3,  CHBr2Cl and  CH2Br2 respectively.   Recently,  Brinckmann  et  al.  (2012) 

reduced the slope to 2.84 to represent shorter tropical lifetimes of 16, 29 and 52 days based on 

Hossaini et al. (2010).  

m=
(kCHBr 3

−kCH 2 Br2
)

(k CHBr2 Cl−k CH2 Br2
)

 (2)

                    τ=
1
k

                          (3)
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Previous studies have used the intercept of these two lines to estimate both regional and global 

oceanic  halocarbon  fluxes  by  scaling  the  emissions  to  a  co-emitted  compound  for  which  an 

absolute emission rate is believed to be known with the most confidence, in this case CH2Br2 due to 

its longer atmospheric lifetime.  Fig. 16a shows the data from SHIVA11 overlaid with emission 

estimates from three previous studies.  Point A refers to  Brinckmann et al. (2012) who infer an 

emission ratio of 0.35, 9 (all ratios given as  CHBr2Cl,  CHBr3) using the updated chemical decay 

line  slope  of  2.84  and data  from mid  latitudes  as  well  as  the  tropical  west  Pacific.   Point  B 

represents a ratio of 0.46, 9 taken from O’Brien et al. (2009)  determined from measurements at 

Cape Verde.  Finally, point C is taken from Yokouchi et al. (2005) and represents their ratio of 0.7, 

9 from data collected at a range of sites (including tropical islands and open ocean data).  Both the 

O'Brien and Yokouchi studies use a slope of 4.89.  In Fig 16b dilution and chemical decay lines that 

best fit our data have also been plotted.  The CHBr2Cl, CHBr3 'apex' of Yokouchi et al. (point C on 

both Fig 16a and b) fits our data well when combined with the chemical decay line slope derived 

for tropical sites by Brinckmann et al. (2012).  

Across all studies a regional emission ratio of 9 for  CHBr3 (relative to  CH2Br2) was determined. 

However, differences arise in the CHBr2Cl results which range from 0.35 to 0.7 (again relative to 

CH2Br2).  Carpenter et al. (2003) reported differences in the CHBr2Cl vs. CHBr3 regression slope at 

higher concentrations (as discussed in Section 5.3.6).  Perhaps differences in proximity to emission 

sources between these studies may account for differences in the relationship between  CHBr2Cl 

and other bromocarbons. 

As it is commonly assumed that  macroalgae are an important  halocarbon source it is useful to 

compare this atmospherically-derived ratio (0.7, 9) to that determined from tropical incubations in 

Chapter 3.  Averaging all 15 incubated species the mean incubation ratio is 4 (range 0.2-17) for 

CHBr3/CH2Br2 and 0.3 (range 0.03-1) for CHBr2Cl/CH2Br2.  These ratios are not dissimilar to those 

determined by Carpenter et al. (2000) for a range of temperate species.  When macroalgae are fully 

submerged (as we commonly observed in peninsular  Malaysia)  then the  emissions are  first  to 

seawater, and then to the atmosphere, so observed emissions will be modified according to the 

relative solubility of the gases.  Using the Henry's Law coefficients for halocarbons in seawater 

from Moore et al. (1995) gives relative solubilities for CHBr3/CH2Br2 and CHBr2Cl/CH2Br2 of 1.5 

and 0.8 respectively.  Correcting the above ratios for equilibrium partitioning between water and 

gas phases results in atmospheric emission ratios of 3 and 0.4 respectively for the same halocarbon 

pairs averaged across all species incubated.  In general, these compare well to the emission ratios 

derived from atmospheric concentrations, although macroalgae incubations displayed a wide range 

of ratios highlighting the need for caution when using them to determine 'bottom up' emission 

estimates of regional emissions (Chapter 6 Section 6.2).
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Figure 16. Ratios of [CHBr3/CH2Br2] plotted against [CHBr2Cl]/[CH2Br2] on a log-log scale.  Data points are colour-coded with respect to region (see inset 

legend).  Points A, B and C are described in the main body of text.  Dilution and chemical decay lines (see main body of text) in panel a are taken from 

Brinckmann et al. (2012), O'Brien et al. (2009) and Yokouchi et al. (2005).  Panel b shows these lines (now in grey) with the addition of dilution and chemical 

decay lines derived in this study (black).  Original in colour.  
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5.3.9  Contribution of bigoenic VSLS to stratospheric bromine

As discussed in Chapter 1 Section 1.7.2, tropical regions are believed to be important with regards 

to the capacity of tropical deep convection to transport biogenic VSLS from the MBL to the TTL 

and so act as an important source region for the biogenic VSLS contribution to stratospheric Bry 

(Bry
VSLS) (Aschmann et al., 2009).  The tropical west Pacific, including the region of interest to 

SHIVA,  is situated within the  West Pacific Warm Pool, an area containing some of the warmest 

waters in the world (Anderson et al., 1996).  These warm surface waters provide moist warm air to 

feed strong convective systems which can transport short lived halocarbons to tropical tropopause 

layer  (see  Section  1.7).   Fig.  17.  shows  visible  band  satellite  images  from  the  MTSAT-1R 

geostationsary satellite for 06:00UTC daily from 19th – 25th November 2011, a period covering 

many of the SHIVA measurements.  Large convective clouds appear as bright white clouds on the 

visible satellite images, and are clearly visible within the measurement region, supporting the idea 

that this region can provide convective transport for VSLS to the upper troposphere.  As well as 

physical transport, physical  and chemical loss processes will impact the amount of emitted VSLS 

that reach the upper troposphere, the rest of this section provides preliminary calculations as to the 

percentage of ground-level emissions transported to higher altitudes.  
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Figure 17.  Visible band satellite images from the MTSAT 1R satellite for 06:00 UTC daily from 19th – 25th November 2011.   Images are in chromological order 

left to right and top to bottom.  Images are from the NOAA National Climatic Data Center archives, accesed May 2013 from 

http://www.ncdc.noaa.gov/gibbs/year (NCDC, 2013).
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Current estimates place the contribution of biogenic VSLS to stratospheric bromine at 6 (1-8) ppt 

(Montzka et al., 2010; see also Chapter 1 Section 1.6.4).  As a key aim of the SHIVA project was to 

contribute  to  reducing  the  uncertainty  in  this  figure,  it  seemed  pertinent  to  consider  how the 

atmospheric concentrations discussed in this chapter may contribute to stratospheric BryVSLS.  The 

mean boundary layer mixing ratios for five brominated VSLS calculated from SHIVA11 are shown 

in Table 10.  Refering to modelling work by Hossaini et al. (2012b) we see that approximately 77% 

of bromine from VSLS produced in the tropical boundary layer may form stratospheric BryVSLS. 

Hossaini  et  al.  (2012b)  used  five  VSLS  we  measured  in  Borneo  (CH2Br2,  CHBr3,  CH2BrCl, 

CHBrCl2,  CHBr2Cl),  as  well  as  bromoethane  (C2H5Br)  which  we  did  not  measure.   Our 

calculations,  based only on  the  mean concentrations  observed during SHIVA11 (see  Table  3), 

suggest a preliminarily calculated contribution to stratospheric Bry
VSLS  from measurements made 

around  Borneo  of  ~7  ppt.   Model  results  from  Hossaini  et  al  (2012b)  calculate  a  tropical 

contribution of 4.9-5.2 ppt.  A lower contribution was estimated by Tegtmeier et al. (2012) with an 

average contribution of 0.4 pptv Br and a maximum of 2.3 pptv Br, based on measurements made 

in the west Pacific.  Their results are based only on CH2Br2 and CHBr3, and the reader's attention 

should be drawn to the online reviewer comments for this article, which make a comprehensive 

discussion regarding these low figures and the possibility that they are unusually low due to their 

basis on measurements made during one campaign where Tegtmeier and coworkers observed low 

to moderate oceanic bromocarbon emissions).  Comparing our value (which includes a significant 

number of coastal observations) to the previous studies, a preliminary conclusion would be that 

coastal regions potentially contribute significantly to stratospheric bromine loading in the tropical 

zone.  Our measurements are higher than Hossaini et al. (2012b), who use more spatially averaged 

halocarbon  concentrations.   They  are  also  higher  than  open  ocean  measurements  made  by 

Tegtmeier et al. (2012), although a better comparison may be to compare the contribution from our 

oceanic region (R1) at 5 ppt Br, with our stronger coastal source regions (R3 and R4) at 9 and 10 

ppt Br respectively.  Further calculations to constrain the strength of these emissions are beyond the 

scope of this chapter.  
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5.4 Conclusions – regional halocarbon distributions around Malaysia

Previous studies have commonly used emission estimates derived from the log-log plots discussed 

in Section 5.3.7 to determine global halocarbon emissions, scaling the ratio of CHBr2Cl and CHBr3 

to  global  CH2Br2 emission estimates  from  Montzka et  al.  (2010).  As we derived the same or 

similar ratio as many previous studies this task has not been repeated here.  However, this dataset 

still  provides  useful  information  regarding  regional  atmospheric  distributions  of  halocarbons 

around Borneo, which will be summarised below.  The following chapter (6) will bring together 

results from this study, alongside the incubation work in Chapter 3, to look at regional halocarbon 

emission estimates in more detail.  

Tropical coastal atmospheric halocarbon measurements made in Malaysia fell within the range of 

previous studies (Table 5).  Halocarbon concentrations were higher than tropical open ocean data 

supporting a coastal halocarbon source in these regions (Section 5.3.3).  However, observations 

made during SHIVA11 were lower than some other coastal studies (e.g. Yokouchi et al., 2005). 

Due to the short lived nature of these halocarbons, distribution is patchy (Section 5.3.4).  High 

concentrations were observed in areas of heavy macroalgae colonisation in peninsular Malaysia 

(e.g.  Port  Dickson)  but the impact of  coastal  halocarbon distributions appeared to be spatially 

limited.  Prevailing wind conditions appear to also play a potential role in halocarbon distributions; 

air coming from productive coastlines or islands in the northeast are linked to regions of higher 

halocarbon  concentrations.   However,  reliable  predictions  of  regional  halocarbon  distributions 

cannot be made without first gaining better information on the distribution of macroalgae beds 

around the Malaysian coastline.  

Previous modelling studies  (Pyle et al., 2011; Warwick et al., 2006) have often assumed strong 

emission sources around entire stretches of tropical coastline.  Strong production during laboratory 

incubations  of  tropical  macroalgae  (Chapter  3)  support  this  theory,  in  situ  atmospheric 

measurements do not.  Semporna, a region of large aquaculture sites where rhodophytes (which 

laboratory studies  have determined to be prolific halocarbon producers) are  cultivated, did not 

show significantly higher  concentrations of  halocarbons than other  regions in this,  or  previous 

studies.  Yokouchi et al. (2005), when plotting data from a wide range of coastal and open ocean 

sources on a log-log plot similar to Fig. 16, saw coastal measurements falling on or close to the 

dilution line, an indicator  that  these are  source regions as  the ratios  had not  been affected by 

chemical decay.  Our data from Semporna (which forms part of R4 in Fig. 16) does not follow this 

pattern,  suggesting  influences  of  dilute,  background  air  even  in  regions  of  potentially  strong 

halocarbon sources.  

166



Regional distributions / SHIVA

For logistical reasons it was not possible to make measurements of halocarbon concentrations in 

the seawater around Semporna.  Further work should focus on obtaining both atmospheric and 

seawater samples to provide measurements of in situ halocarbon fluxes.  Our data suggests that 

care should be taken when extrapolating 'bottom up' macroalgae production to produce regional 

emission estimates as additional in situ processes may occur.  For example, halocarbon breakdown 

processes  (e.g.  bacterial  breakdown (Goodwin et  al.,  1997b))  may have a  greater  effect  in the 

tropics  (see Chapter  1 Section 1.4,  1.7 and 1.8).   The need for  further  measurements  of  both 

seawater  and  atmospheric  halocarbon  measurements  are  supported  by  a  weaker  relationship 

between CHBr2Cl and CHBr3 compared to CH2Br2 in coastal regions seen in this study and others, 

which  has not  fully  been  explained  (Brinckmann et  al.,  2012;  Carpenter  et  al.,  2003).   Little 

discussion has also been given to the CH3I or the relationship between iodocarbons and inorganic 

iodine species (such as IO) in this region.   Measurements of this type were made during SHIVA11, 

see Chapter 6 Section 6.4.   

Overall, it seems that 'hot spots' of halocarbon production exist around the Malaysian coastline, 

potentially associated with productive coastal regions such as macroalgae beds.  However, data 

from such regions should not be extrapolated to determine emissions for entire coastal regions. 

Further information on halocarbon sources, sinks and transport in this region are needed to provide 

a full picture of regional halocarbon emission budgets. 
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CHAPTER 6
Regional estimates of annual bromocarbon emissions 

and concluding remarks

6. 1  Introduction 

The aim of this chapter is to bring together knowledge gained in the previous research-focused 

chapters.  It contains three sections:

Section 6.2 calculates annual bromocarbon emission estimates from Malaysia and south east Asia. 

In this section production rates from tropical macroalgae calculated in Chapter 3 are used to derive 

a  bottom up estimate of  emission budgets.   Section 6.2 also considers the impacts of tropical 

macroalgae  aquaculture,  at  both  current  and  predicted  future  levels,  on  regional  halocarbon 

emissions estimates.  This section of work can also be found in Leedham et al. (2013). 

Section 6.3 brings together the outputs from Chapters 3-5 to provide an overview of this thesis. 

Overarching themes and outcomes are discussed.  

Section 6.4 builds on the previous two sections and identifies ideas for further development of this 

research field.  
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6.2  A semiquantitative analysis of the halocarbon flux from macroalgae

The tropical region, especially the Pacific, has often been considered an important source region 

with regards to the global halocarbon budget,  as described in Chapter 1 Section 1.7.  Tropical 

fluxes have been proposed as globally important on the basis of observed high atmospheric mixing 

ratios and surface seawater concentrations, a proposed strong macroalgal source and strong deep 

convective systems  (Butler et al., 2007; Montzka et al., 2010; Pyle et al., 2011; Yokouchi et al., 

2005).  As Chapter 3 provided the first  direct measurements of tropical macroalgal halocarbon 

production it  is  was worthwhile to use the incubation-derived halocarbon production values to 

estimate regional fluxes of CHBr3 and compare these values to existing estimates.  Papers referred 

to multiple times are abbreviated after first use for brevity.  At the end of Section 6.2. all data used 

in these estimates, alongside any assumptions or calculations made, are summarised in Table 1 and 

a comparison with other studies is made in Table 2.

6.2.1  Determining macroalgal biomass

To estimate macroalgal biomass along the Malaysian coastline, biomass transects conducted by the 

University  of  Malaya  (UM)  at  Port  Dickson  (Chapter  3,  Fig.  1)  were  used  (Keng  et  al., 

2013) [Keng13].  Biomass evaluations were made several times over an 18 month period between 

March 2010 and June 2011.  These biomass surveys are entirely the work of UM, but are used in 

the further evaluation presented here.  During each visit triplicate 100-130 m long transects each 

comprising 10 to 13 quadrats were conducted.  All seaweed in each 0.09 m2 quadrat was collected 

and returned to the laboratory to determine total fresh (FW) and dry (DW) biomass as well as 

species  abundance.   Average  biomass  values  during  this  18  month  period  were  7.0,  5.2  and 

0.1 kg FW m-2 for phaeophytes, chlorophytes and rhodophytes respectively.  
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No other published biomass data for the tropics was available for comparison, however  Hameed 

and Ahmed (1999) [HA99] measured localised biomass on the Pakistan coast and provide mean 

annual  biomass  values  of  13.6,  11.0  and  4.1  kg  FW  m-2 for  phaeophytes,  chlorophytes  and 

rhodophytes.  Both studies show the same distribution of biomass: phaeophyte > chlorophyte > 

rhodophyte.  However, total biomass per square kilometre from HA99 is roughly double that of 

Keng13.  Previous studies estimating the contribution made by macroalgae to the global halocarbon 

flux (Gschwend et al., 1985; Nightingale et al., 1995) used biomass values determined from a 1975 

FAO report (Michanek, 1975 - out of print, summary in Naylor, 1976) [Mich75] which estimated a 

global  standing  stock of  phaeophyte  and rhodophyte  biomass of  1.5x1010 and 2.7x109 kg  FW 

respectively.  There are no data for chlorophytes in the Mich75 dataset, and it is biased to species 

that are harvested or farmed for commercial purposes.  A comprehensive discussion of the Mich75 

estimation  and the  errors  attached  to  it,  with  regard  to  temperate  coastlines,  can  be  found in 

Carpenter and Liss (2000) [CL2000] who conclude that it is an underestimation.   Charpy-Roubaud 

and Sournia (1990) defined a potential global coastal area inhabitated by macroalgae of 6.8 x 1012 

m2.  Attempts to distribute the global standing stock given by Mich75 over this area results in 

biomass estimates of ~2.2x10-3 kg FW m-2 for phaeophytes and 3.9x10-4 kg FW m-2 for rhodophytes. 

These are  much lower than both the Keng13 and HA99 estimates.  This is not  unexpected as 

seaweed distribution is variable and errors would arise from scaling in either direction.  On one 

hand, individual biomass studies are likely conducted in areas of high macroalgal biomass and 

therefore enhanced research potential.  On the other, global standing stock estimates are difficult to 

reduce to regional biomass estimates, especially in the tropics given that much of the current data is 

based on temperate and/or economic species.  An example of a potential source of error when 

estimating halocarbon emissions can be seen in the significantly lower proportion of rhodophytes 

in  the  Keng13  database  compared  with  both  HA99  and  Mitch75.   We  have  shown  tropical 

rhodophytes to be prolific producers of halocarbons and an overestimation of rhodophyte biomass 

could therefore lead to an overestimation in emission budgets.  For these reasons, our ability to use 

regional  biomass  data,  albeit  from  one  site,  will  hopefully  benefit  the  following  Malaysian 

emission estimates, and, assuming similar species are found throughout south east Asia, (Phang et 

al., 2008), to a wider regional emission estimate as well.
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6.2.2  Determining regional fluxes and annual emissions

To calculate the potential CHBr3  flux from tropical macroalgae we assume that the coastal area 

covered by macroalgae extends 200 m from the shore with a constant gradient to a water depth of 

6 m (Fig. 1).  Whilst the Keng13 biomass study extended to a maximum of 130 m, for safety 

reasons,  visual  inspection  confirmed  that  seaweed  extended out  beyond  this  depth.   We then 

defined  three  potential  coastal  scenarios.   Within  each  scenario  the  following  assumptions 

remained constant:

Assumption 1 (A1): We assume that seaweeds are distributed evenly along the base of the coastal 

wedge defined in Fig. 1 in the same amount per square metre as recorded in the Port Dickson 

transects.  Tidal ranges are discussed further in individual scenarios.  Errors on biomass studies 

(Keng13) were included in the error associated with our flux rate, see A2.

Assumption 2 (A2): We averaged production rates for phaeophytes, rhodophytes and chlorophytes 

from the incubations conducted in Chapter 3 and multiplied this by the Keng13 biomass data to 

give a production/flux rate of 378 nmol CHBr3 m-2 hr-1.  The main errors associated with this flux 

rate are from the calculated production rates and the estimations of regional biomass from Keng13. 

To account for this, the individual standard deviations on species’ production rates (Appendix 1) 

were propagated with the standard deviation error associated with the biomass studies over an 18 

month period to give a percentage standard deviation (%SD) error on our production rate of 61% 

(range 147-609 nmol CHBr3 m-2 hr-1).  This is similar to the ~70% error on global CHBr3 annual 

emission from macroalgae given by Carpenter and Liss (2000).   A large proportion of this error is 

due to intra-species  variability  observed in  the  incubation  experiments  (see  Chapter  3  Section 

3.3.2) and the patchy distribution of rhodophytes at the Port Dickson sampling site.  This error is 

discussed further in the following sections as this flux rate is used to determine regional emission 

estimates.

Assumption 3 (A3): Taking into account results from Carpenter et al. (2000) [Car2000] who show 

average diel production over a 24 hour light:dark cycle to be only 60% of that under constant 

illumination, we reduce our production values, which were determined under constant light, by the 

same  amount.   Light  and  biogenic  halocarbon  production  was  discussed  further  in  Chapter  1 

Section 1.3.3.  Light levels are also likely to play a role in abiotic halocarbon production (Chapter 1 

Section 1.2.2) which is not considered further here (Section 6.4).
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Assumption 4 (A4): Where emissions are into seawater we assume instant  mixing within this 

volume of water.  We assume that the flux to the atmosphere is the major loss process for CHBr3 in 

seawater since it has a long lifetime in seawater relative to all other known loss processes i.e. 

hydrolysis,  biotic  and  abiotic  reductive  dehalogenation,  halogen  substitution  and  photolysis 

(Chapter 1 Section 1.4).  

Assumption 5 (A5): Flux calculations are made using mean seawater concentrations calculated in 

each scenario and Eqs. 1 and 2 below; where Kw is the transfer velocity expressed from the liquid 

phase and ΔC is the concentration difference between the liquid (Cw) and gaseous (Ca ) phases.  A 

mean atmospheric concentration of 3.2 ppt was determined from the local boat data collected as 

part of the SHIVA11 campaign discussed in Chapter 5 (see Section 5.2.1) to represent a mean 

coastal atmospheric CHBr3 concentration.  The range of CHBr3 concentrations measured was 0.9-6 

ppt. A sensitivity analysis showed that high seawater concentrations (see Scenario 1) dominate the 

flux and that altering the atmospheric concentration within the range observed during SHIVA has 

little effect on the calculated flux rate. The dimensionless Henry's Law constant (H) was calculated 

using a mean 10 ºN-10 ºS latitudinal water temperature of 27 ºC and a mean oceanic surface wind 

speed of 5.47 m s-1 (Quack & Wallace, 2003)  [QW03] and the procedure described in  Johnson 

(2010).   Flux rates and the factors affecting them were discussed in more detail  in Chapter  1 

Section 1.5.  

(1)

(2)  

Assumption 6 (A6): To estimate annual emissions from Malaysia and the south east Asian (SEA) 

region we assume that, as our calculations included both a mean annual seaweed biomass and a 

correction  for  reduced  halocarbon  production  during  darkness,  our  fluxes  remain  constant 

throughout the year.  We use coastal lengths from the World Resources Institute (WRI, 2012) who 

provide comparable data for all countries discussed in this study.  Our definition of SEA includes 

the coastlines of the following countries: Brunei, Burma, Cambodia, Christmas Island, Indonesia, 

Malaysia  (both  peninsular  and eastern),  the  Philippines,  Singapore,  Thailand,  Timor-Leste  and 

Vietnam.  No detailed information is available on the percentage of shoreline that supports seaweed 

in the Malaysian/SEA region.  Based on our limited visual experience we guess that just under half 

the  coastline  may  be  populated  by  seaweeds  and  assign 40%  of  the  coastline  as  potential 

macroalgal source regions (Table 1).  We assume that an even distribution of macroalgae exists 

within this area, in the density reported by Keng13.  
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Figure 1.  Visual representation of the seawater wedge used with assumptions A1-A6 (see 

text) to calculate emission scenarios.  Technique after Carpenter et al. (2000).  

Scenario 1:

Seaweeds are never exposed at low tide and emit constantly into the ‘wedge’ (Fig. 1) of water 

extending 200 m from the shore to a maximum depth of 6 m, a volume of 6x105 l for every metre 

of  coastline.   We assume  the  volume  of  seawater  remains  constant  but  refer  to  the  Car2000 

methodology  whose  calculations  suggest  that,  due  to  tidal  flushing,  daily  mean  CHBr3 

concentration in the seawater wedge is similar to that which would be seen after 6 hours of constant 

emissions into the seawater.  This may be somewhat of an overestimate due to a larger tidal range 

in Car2000; 3 m at Mace Head compared to 1.7 m at Port Dickson.  Under scenario 1 we estimate a 

mean daily CHBr3  concentration of 755 pmol  l-1.   Unfortunately, for logistical reasons seawater 

measurements have not been made in this region (see also Chapter 5 Section 5.4 and this chapter 

Section 6.4).   However,  our  value falls within the range of  coastal  values given by QW03 of 

36-2000 pmol l-1 and is higher than the 388 pmol l-1 mean reported by Car2000 from measurements 

at Mace Head, Ireland (Table 2).  The Car2000 value assumes that a depth of 10 m was reached 

200  m  from  the  shore.   Increasing  our  water  depth  to  10  m  would  reduce  our  seawater 

concentration to 454 pmol l-1, closer to the Car2000 value. 

The resulting mean CHBr3 flux from Malaysian coastal seawater influenced by seaweed beds to the 

atmosphere is 45 (17-73) nmol CHBr3 m-2 hr-1.  Scaling this up to cover Malaysia and SEA (using 

A6) gives an annual flux of 1 (0.3-1.4) Mmol Br yr-1 for Malaysia and 15 (6-27) Mmol Br yr-1  for 

SEA (Mmol is 1 x 106 moles) .  These values are collated in Table 2.  
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Scenario 2:

In this scenario a tidal cycle is applied to the same coastal wedge.  Between 0-50 m from the shore 

macroalgae  beds  are  periodically  exposed  and  submerged  during  a  semi-diurnal  tidal  cycle. 

Between 50-200 m the macroalgae remain constantly submerged.  The volume of water within the 

entire 200 m wedge fluctuates with the tidal cycle, with a maximum tidal range of 1.7 m (from 

Malaysian Admiralty tidal data logs).  We assume that, when exposed, the average production rate 

of 378 nmol CHBr3 m-2 hr-1  (A2) is emitted directly to the atmosphere and when submerged a flux 

rate is calculated using A5.  Scaling up this flux rate using A6 gives an annual emission from 

Malaysia and SEA of 2 and 40 Mmol Br yr-1 respectively.

In this scenario we make no alteration to emissions to account for stress during tidal exposure, as 

discussed  in  Chapter  1  Section  1.3.3  and  1.6.2.   The  impact  of  desiccation  on  bromocarbon 

emissions was investigated in Chapter 4, an increased pulse of emissions was seen, which generally 

lasted  less  than  an  hour.   As  the  range  of  species  studied  in  Chapter  4  was  limited  to  one 

chlorophyte (U. intestinalis) and one phaeophyte (F. vesiculosus), both of which are temperate 

species, data from those experiments will not be applied here.  It is worth noting, however, that 

emissions during exposure may increase due to exposure-related stress.  Further experiments would 

help better constrain this pulse of emissions upon exposure.  

Scenario 3:

In Scenarios 1 and 2 an assumption is made that CHBr3 flushed from the coastal wedge during the 

tidal cycle is effectively lost and does not reach the atmosphere.  However, as the lifetime of CHBr3 

in seawater is on the order of several years (see Carpenter et al., 2009 [Car09];  Hense & Quack, 

2009; and Chapter 1 Section 1.4), CHBr3  flushed from this coastal wedge may still evade to the 

atmosphere.  With this in mind, Scenario 3 assumes all emissions from seaweed (at a rate of 378 

(±61%SD) nmol  CHBr3 m-2 hr-1 (A2))  enters  the  atmosphere without  an  intermediate  step  via 

seawater.  This represents an upper limit estimation and, when combined with scenarios 1 and 2, 

provides a flux rate range to compare to other studies.  The annual emissions from Scenario 3 for 

Malaysia and SEA are 7 (3-12) and 140 (53-224) Mmol Br yr-1 respectively (Table 2).  
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6.2.3  A comparison of estimated fluxes and emissions

The idealised scenarios described above place bounds on the likely coastal emissions from the SEA 

region and can  be  compared to previous estimates  (Table 2).   Comparisons between flux  rate 

estimates  should  be  made  with  caution  as  different  studies  use  different  flux  calculations. 

Numerous factors can affect calculated fluxes, including approximations of wind speed, Schmidt 

number and CHBr3 diffusivity (Chapter 1 Section 1.5).   However, if we compare our flux rate 

range of  17-610 nmol CHBr3 m-2 hr-1 to the median global coastal flux derived by QW03 of 101 

nmol CHBr3 m-2 hr-1  and their global range of 4-430 nmol CHBr3 m-2 hr-1, our values  are not too 

dissimilar.   Our  upper  estimate falls  above  theirs,  however,  our  upper  limit  is  based  upon an 

assumption that all CHBr 3 produced by macroalgae reaches the atmosphere, a likely overestimate 

due  to  seawater  loss  processes  (see  A5).   The  QW03  data  were  heavily  biased  towards 

measurements in temperate and polar regions, and many were taken within the Atlantic, so this 

comparison  suggests  that  tropical  coastlines  are  not  outliers  in  terms  of  global  coastal  fluxes. 

Physical,  chemical  and  biological  processes  will  vary  in  tropical  coastlines  compared  to  their 

temperate and polar counterparts.   A description of potential  differences is given in Chapter 1 

Section 1.7, one example is increased rates of chemical loss processes due to warmer temperatures. 

Comparisons can also be made with Car09 who give a temperate (50-60 °N) coastal flux rate of 10 

(5-13) nmol CHBr3 m-2 hr-1 and Butler et al. (2007) [BTL07] who provide an average global coastal 

flux rate of 9 (<0.1-21) nmol CHBr3 m-2 hr-1.  These flux rates both fall below our Scenario 1 lower 

estimate, however both datasets are from research ship cruises which are very unlikely to represent 

waters directly influenced by macroalgae emissions well.  The potential importance of macroalgae 

in determining coastal fluxes can be seen in a comparison with observations from the Cape Verde 

observatory (16.8 °N, 24.9 °W, tropical Atlantic) where intertidal seaweeds are not abundant.  A 

localised  flux  rate  of  7  nmol  m-2 hr-1,  derived  by  O’Brien  et  al.  (2009) from model  studies 

attempting to replicate local sources of the high atmospheric CHBr3 concentrations observed at 

Cape Verde, is also lower than our range.  In addition, our flux rates are higher than a range of 

open ocean CHBr3 flux rates of 0.1 – 0.5 nmol CHBr3 m-2 hr-1 (BTL07; QW03; Tegtmeier et al., 

2012) (Table 2).  Our calculations suggest that in the tropics, as in temperate regions, there is a 

higher flux rate in a narrow coastal region compared to the open ocean.  

Other chapters in this thesis have also considered differences between halocarbon biogeochemistry 

in different geographical regions.   In Chapter 3 Section 3.3.4 halocarbon production by temperate, 

polar and tropical macroalgae was compared.  Little difference was seen between production rates 

and  it  was  concluded  that  differences  in  biomass  distribution,  for  example,  may  be  a  more 

important driver in geographical differences in halocarbon emissions. 
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A  collection  of  flux  rates  should  be  accompanied  by  estimates  of  total  annual  emissions  for 

meaningful comparisons; a high flux in a narrow coastal band may contribute less than a lower 

open ocean flux covering a large area.  Previous work (e.g. Warwick et al., 2006) has estimated that 

tropical coastlines act as an important global, as well as regional, halocarbon source, so we estimate 

regional CHBr3 emissions based on our flux rates to allow comparisons with regional and global 

emission  estimates.  No other  nation-specific  data  are available  for  comparison,  but  Pyle  et  al. 

(2011) [Pyle11] used atmospheric CHBr3 measurements from inland and coastal sites with back 

trajectory and chemical transport models to estimate SEA regional emissions.  They calculated an 

annual emission from their SEA region of between 180-350 Mmol Br yr-1 (assuming their 'Scenario 

5' emissions are distributed evenly between coastal and open ocean regions).  These values are 

lower than original estimates using a similar model with a coarser spatial resolution (Warwick et 

al., 2006) which predicted  ~7050 Mmol CHBr3  yr-1 using similar scenarios).  This earlier study 

suggested that the tropics must be a dominant source of halocarbon emissions in order to account 

for the observed atmospheric distribution of CHBr3.  Our SEA annual emission range  of 6-224 

Mmol Br yr-1, is lower than Pyle11, with our upper limit similar to their lower estimate.  However a 

number of differences between these studies could account for this disparity.  Firstly, both studies 

define SEA differently, the Pyle11 SEA region covers a larger area and includes more coastline, 

than ours.  Secondly, whilst they do not specify the coastal width used in their model it is likely 

larger than our 200 m strip (scenarios in Warwick et al., 2006, which remain similar in Pyle11, use 

data from QW03 who quote a coastal area up to 2 km from the shore).  It  is highly likely that 

strongly seaweed-influenced fluxes are limited to a coastal zone much narrower than 2 km, and 

should not be extrapolated to cover such a large coastal region.  Elevated concentrations in shelf 

regions are potentially attributable to other sources.  One example, with respect to iodocarbons, is 

abiotic production requiring DOM (Chapter 1 Section 1.2.2).  This process may have a stronger 

source in coastal and shelf waters where there is a higher DOM concentration.  However, abiotic 

production of bromocarbons in this manner has not been reported.  Other coastal sources, such as 

mangroves and coral reefs (see Chapter 1 Section 1.1 and 1.2) remain to be quantified and may 

need to be parameterised independently in model scenarios.  This result highlights an important 

point made by Car09; that to compare coastal fluxes and emissions the community needs to create a 

standardised definition of coastal, shelf and open ocean zones.
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If  one  compares  our  annual  emissions  to  a  wider  dataset  that  provides  global  coastal  annual 

emission estimates ranging from 1600 (CL2000) to 8100 (BTL07) Mmol Br yr-1  (Table 2)  our 

upper  limit  (Scenario 3)  SEA value provides between 2-9% of total  coastal  CHBr3 emissions. 

Previous studies have estimated the contribution of tropical oceans to the global halocarbon budget 

at  ~75% (Palmer and Reason, 2009 (±46%),  Yang et al., 2005).  Our lower value suggests other 

areas, such as the open oceans, may be important in terms of global CHBr3 emissions.  Whilst 

lower CHBr3 fluxes are seen in the open ocean its large area suggests it may provide a significant 

contribution to regional emission budgets.  The impact of coastal and open oceans with respect to 

their  contribution to stratospheric  bromine  in the SEA region was touched upon in Chapter  5 

Section 5.3.8, where the importance of coastal regions was highlighted.   

Several potential sources of error could affect our calculations which scale up biomass from one 

site  to  cover  the  SEA  region.   One  example  is  the  percentage  of  total  macroalgae  biomass 

comprised of phaeophytes, rhodophytes and chlorophytes.  Data from Keng13 suggests rhodophyte 

biomass is <1% of total seaweed biomass per square metre yet rhodophytes were the dominant 

halocarbon producers during our incubation studies.  For example, increasing rhodophyte biomass 

to 10% in Scenario 1 leads to a doubling of the scenario 1 mean flux rate from 45 nmol CHBr3  m-2 

hr-1 to 93 nmol CHBr3 m-2 hr-1.  This simple test highlights the benefit and need to conduct localised 

biomass studies alongside halocarbon production measurements.  We also recognise, however, that 

Port Dickson was selected for this study in part because of prominent macroalgae colonisation. 

Other coastal areas we inspected along the western Malaysian shore were notably devoid of visible 

seaweed  beds.   Species  selection  was  representative  of  common Malaysian  species,  including 

dominant  genera  such  as  Sargassum and  Gracilaria,  but  a  wide  variety  of  species  remain 

unquantified in terms of  halocarbon emissions.   For example,  only 3 out of the 39 Malaysian 

Sargassum species recorded by Phang et al. (2008) were incubated.  It should also be recalled that 

macroalgae produce CH2Br2 and mixed bromochloro- compounds alongside CHBr3.  These gases 

are also atmospherically important, Hossaini et al. (2012b) suggest they contribute ~1.2 ppt Bry to 

the stratosphere,  a  not-unimportant  amount  compared to the contribution of  ~4.9-5.2 ppt  from 

CH2Br2 and CHBr3 (see also Chapter 5 Section 5.3.8).  Repeating the calculations made for CHBr3 

Section 6.2.2 we estimate the annual emission of CH2Br2 from SEA to be ~2-136 Mmol Br yr-1 

(Tables 1 and 2).  This is not inconsiderable when compared to the same value for CHBr3 (1-140) 

and when one considers the longer atmospheric lifetime of CH2Br2 and, therefore, its potential to 

dominate  over  CHBr3 in  terms  of  the  flux  of  bromine  from  very  short  lived  gases  to  the 

stratosphere.  
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Upon consideration of all factors,  it  seems likely that  macroalgae may play an important  role, 

regionally and within a narrow coastal band.  However, across a larger coastal area emissions from 

tropical coastal macroalgae cannot account for all of the annual emissions predicted by models.

6.2.4  The impact of tropical aquaculture

Having established estimates for current Malaysian/SEA emissions it is of interest to consider how 

these  are  influenced  by  seaweed  mariculture  today,  and  how this  may  change  in  the  future. 

Rhodophyte genera such as Gracilaria, Gelidium and Kappaphycus, which were all found to emit 

large quantities of bromocarbons (Chapter 3, in particular Sections 3.3.2 and Fig. 7) are commonly 

farmed for food or commercial products in SEA (John et al., 2011; McHugh, 2003).

As the seaweed found at Port Dickson is naturally occurring we assume the parameters used to 

calculate  regional  biomass  in  the  flux  calculations  (Table  1)  represent  the  natural  biomass  of 

Malaysia.  We also estimate that current farmed seaweed biomass at ~6000 t DW yr-1 (Neish, 2009; 

Phang et al., 2010) is in addition to this.  Using these parameters to calculate halocarbon production 

from natural and farmed biomass we estimate that aquaculture currently makes up 0.7% of total 

Malaysian biomass but contributes ~2% of Malaysian CHBr3 macroalgae emissions, due to the fact 

that farmed seaweeds in this region are all rhodophytes which are strong emitters of bromocarbons. 

There is a strong interest in increasing the amount of seaweed aquaculture in Malaysia; various 

studies  suggest  the  potential  increase  could  lead  to  a  6  to  11-fold increase  in  the  area  under 

cultivation (Goh & Lee, 2010; Neish, 2009; Phang et al., 2010).  These predictions are based upon 

recent increases in production as well as projections of total cultivatable area.  Increases of this 

magnitude could occur within the next decade, based on recent increases in growth.  If we assume 

naturally  produced  halocarbon  emissions  remain  constant  this  increase  could  lead  to  a 

corresponding increase in the relative contribution of CHBr3 emissions from aquaculture, making it 

responsible for 12-20% of total annual CHBr3 emissions from Malaysian macroalgae.  
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Clearly caveats must be applied to these calculations.  Variations in production rate both within and 

between species (see Chapter 3) may affect our estimated macroalgae emissions.  The percentage 

change estimates for the effects of aquaculture only consider production from macroalgae and not 

other potential  coastal  sources such as benthic  microalgae, phytoplankton or  mangroves.   It  is 

assumed that air-sea gas exchange processes are equal for natural and farmed algae and that the rate 

of these processes will not change in the future.  Many factors, some unique to the coastal region, 

mean determining coastal flux rates are difficult.  These processes include wave damping, drag (in 

shallower  waters  the  ocean  floor  will  exert  a  greater  effect),  higher  wind  speeds,  thermal 

stratification  (increased  warming  by  light  on  shallower   waters),  changes  in  salinity  due  to 

precipitation and increased surfactants  (Upstill-Goddard, 2006 and references herein).  Accurate 

emission  budgets  would also need to include emissions that  may occur  during harvesting and 

post-harvest processing.  We assume halocarbon production from natural and farmed algae is the 

same, despite the fact that artificial aquaculture environment places increased physiological stress 

on the algae due to increased prevalence of pests, disease and/or herbivores; increased light stress 

and potential nutrient limitation (Ask & Azanza, 2002).  

It is also important to consider aquaculture on a global scale.  Around 94% of seaweed production 

within the SEA region occurs in Indonesia and the Philippines (Phang et al., 2010) and market 

analyses suggest  production in all of SEA is likely to increase (Neish, 2009), with consequent 

increases in regional halocarbon emissions.  There are also other important non-tropical producers. 

China is the world leader, harvesting 1.2 million tonnes (DW) of seaweed in 2007, over five times 

the  amount  produced  in  the  entire  SEA region  (Tang et  al.,  2011).   These  potentially  larger 

emissions are, however, at a distance from the region of tropical deep convective systems.  The 

range of cultivated species also differs,  with China producing mainly  Laminaria and  Porphyra 

(Tang et al., 2011).  Laminaria sp.  in particular, are strong producers of iodinated species.  This 

was introduced in Chapter 1 (e.g. Section 1.6.2) and Chapter 3 (Section 3.3.2) also demonstrated 

the  propensity  of  phaeophytes  to  produce  more  iodocarbons  relative  to  rhodophytes  and 

chlorophytes.  A larger percentage of phaeophyte biomass in Chinese aquaculture may mean the 

impact on local atmospheric chemistry may vary between the two regions. 
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Table 1.  A summary of data sources, assumptions and calculations used to determine emission estimates in Section 6.2.  Bracketed letters in the text, e.g. (a), 

refer to the first reference column.  This table is a summary only, more detailed definitions of the processes used in these sections are given in the main body of 

the text.  

Ref Step Data source, assumptions, modifications and notes Value

Section 6.2.1  Determining macroalgal biomass

a Malaysian & south east Asian (SEA) 
seaweed biomass distribution

Keng et al. (2013) mean biomass from an annual study at one site in peninsular Malaysia 
(Port Dickson, see Chapter 3, Fig. 1).

Phaeophytes: 7.0 kg FW m-2

Chlorophytes: 5.2 kg FW m-2 

Rhodophytes: 0.1 kg FW m-2

Section 6.2.2  Determining regional fluxes and annual emissions

b Volume of water impacted by 
seaweed emissions

A wedge of water (see Fig. 1) extending out to 200 m and to a depth of 6 m (supported 
by Port Dickson biomass surveys) containing 6 x105 l of seawater for every metre of 
coastline.  Seaweed density along the base of this wedge is taken from (a).

See Fig. 1

c Area of Malaysian and SEA coastline 
where seaweed is found

Total coastal length from (WRI, 2012).  Based on very limited visual experience we 
estimate just under half (~40%) of Malaysian coastline may contain seaweed and 
assume this % extends to the whole SEA region. Flux rates covers area out to 200 m as 
in (b).

Malaysia: 7.5 x108 m2 
SEA: 1.4 x1010 m2 

d CHBr3 emissions Average rhodophyte, phaeophyte & chlorophyte production rates from our study (pmol 
g FW-1 hr-1) reduced by 60% to account for diel light cycles (Carpenter et al., 2000).  
Production multiplied by biomass (a).

378 (61%SD) nmol CHBr3 m-2 hr-1



Table 1 cont.

Ref Step Data source, assumptions, modifications and notes Value

e Scenario 1: CHBr3 concentration in 
coastal seawater

Macroalgae remain constantly submerged and volume of water remains constant (b). 
Emissions instantly mixed within seawater wedge (b). A loss for tidal flushing assumed 
from Carpenter et al. (2000) is applied.  

755 pmol l-1

f Scenario 1: CHBr3 flux Flux calculated using mean seawater [CHBr3] from (e), mean atmospheric [CHBr3] of 
3.2 ppt from measurements during the SHIVA campaign (Chapter 5), mean 10 ºN-10 ºS 
latitudinal water temperature of 27 ºC and a mean oceanic surface wind speed of 5.47 m 
s-1 (Quack & Wallace, 2003) and the procedure described in Johnson (2010).  A lower 
limit estimate.

45 (17-73) nmol CHBr3 m-2 hr-1

g Scenario 1: Annual emission Flux rate (from f) scaled to annual emission and applied to Malaysian and SEA coastal 
area where seaweed is found (c).

Malaysia: 1 (0.3-1.4) Mmol Br yr-1 
SEA: 15 (6-27) Mmol Br  yr-1

h Scenario 2: Annual emission Flux calculations as for Scenario 1 (d-f) but a tidal range of 1.7 m is applied to alter 
volume of coastal wedge.  Seaweeds between 0-50 m from the shore are periodically 
exposed, increasing flux to atmosphere during this time.  Hourly emissions using this 
varying flux rates are used to calculate a daily and then annual emission for the same 
area (c) as Scenario 1.

Malaysia: 2 Mmol Br yr-1  
SEA: 40 Mmol Br yr-1 

i Scenario 3: Annual emission All mean CHBr3 emissions per square metre reaches the atmosphere with no 
intermediary step via seawater.  Emissions cover same area (c) as Scenarios 1 and 2.  An 
upper limit estimate.

Malaysia: 7 (3-12) Mmol Br yr-1 

SEA: 140 (53-244) Mmol Br yr-1  

Section 6.2.4  Impact of tropical aquaculture

j Emissions from Malaysian 
aquaculture

Current Malaysian farmed biomass and future increases based on: Goh and Lee (2010), 
Neish (2009) and Phang et al. (2010).  Assumes natural emissions are the same as in 
Section 6.2.2 and these remain constant in the future.

Current: ~6000 t 
Potential future: 6 to 11-fold 

increases
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Table 2.  A comparison of seawater concentrations, flux rates and annual emission estimates calculated in this study (Section 6.2) and the existing literature.

Study Geographical region Oceanic zone Information source CHBr3

Seawater concentrations                                                                                                                                                              Seawater concentration / pmol l-1

This study Tropical: Port Dickson, 
Malaysia

Coastal waters to 200 m, macroalgae 
area

Based on Malaysian macroalgae incubations and 
biomass studies (Scenario 1).

755

Tropical: Port Dickson, 
Malaysia

Coastal waters Samples taken over areas containing macroalgae and 
areas without.  

up to ~410

Quack and Wallace 
(2003)

10-40 °N Coastal <2 km from coast ("shore") Review of oceanic and atmospheric measurements, 
various sources.

 36-2000

Carpenter et al. (2000) Temperate: Mace Head, 
Ireland

Coastal waters to 200 m, 5-15 m 
deep, macroalgal area

Site-specific seawater measurements. 388 
(1σ=166)

Shelf waters 2-10 km, 20-45 m deep 
("offshore")

104 
(1σ=12)

Flux rates                                                                                                                                                                              Flux to atmosphere / nmol CHBr3 m-2 hr-1

This study Tropical As previous As previous (Scenario 1 – Scenario 2). 17-610

Tegtmeier et al. (2012) Extratropical and tropical 
western Pacific

Cruise track (mainly open ocean) Seawater & atmospheric cruise data. 0.5

Case study "hot spot" 3-5

Quack and Wallace 
(2003)

Globally averaged Coastal <2 km from coast ("shore") As previous. 101 (4-430)

Shelf waters   4.4 (1-40)

Atlantic Open ocean 0.4

Butler et al. (2007)a Tropical Open ocean Seawater & atmospheric data from seven cruises. 0.4

Global All 9 (<-0.1-21)

Carpenter et al. (2009)a temperate: Atlantic 50-60 °N Coastal Seawater & atmospheric data from two cruises. 10 (5-13)



Table 2 cont.

Study Geographical region Oceanic zone Information source CHBr3

Annual emissions                                                                                                                                                                                                                  Mmol Br yr-1

This study Tropical Malaysia Bottom-up incubations of macroalgae combined with 
site-specific biomass study.  Scenario 2 with Scenario 
1 (min) and 3 (max) in brackets.

2  (0.3-12)

SEA 40 (6-244)

Warwick et al. (2006) Tropical, global All Model estimates attempting to reproduce observed 
atmospheric CHBr3 distributions.  Their Scenario 5 
places emission in tropical oceans.

7050

Pyle et al. (2011) Tropical: south east Asia Coastal A refinement of Warwick et al. (2006) scenarios 
updated using regional atmospheric measurements 
from Borneo.

180

All 350

Carpenter et al. (2009) Global Waters to depth of 180 m Extrapolation of cruise/site specific measurements. 2500

Butler et al. (2007) Global All As previous. 10000

Open ocean 1900

Coastal Total marine emissions with ocean open emissions 
subtracted.

8100

Palmer and Reason 
(2009)

Tropical All Flux value (above) scaled to estimated area of tropical 
oceans.  Assumes no strong, coastal macroalgae 
source.

4350

Quack and Wallace 
(2003)

Global Coastal ("shore") As previous. 2300

Carpenter and Liss 
(2000)

Global Coastal Temperate measurements in macroalgal-rich areas 
scaled up using estimates of coastal length, fluxes and 
macroalgae biomass.

1600

a Original value quoted as nmol CHBr3 m-2 d-1, assumption that daily rate constant over 24 hours and converted as such.
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6.3 A discursive summary of work covered in Chapters 3-5

In this section results from Chapters 3, 4 and 5 will be brought together to provide an overview of 

the research conducted and how it builds on previous data. 

6.3.1  Regional halocarbon distributions around Malaysia

In Chapter 5 halocarbon measurements were made from a research ship, a research aircraft, small 

boats and from ground sites.  Data were combined to create maps of regional emissions around 

Malaysia.   Combining this data with chlorophyll-a satellite data and HYSPLIT back trajectories 

allowed us to outline four regions (Chapter 5 Section 5.3.5).  Statistically significant differences in 

halocarbon  concentrations  and  ratios  in  these  regions  were  attributed  to  differences  in  source 

strength  and  meteorology.   For  example,  region  2  (R2)  was  a  region  of  low  concentrations, 

potentially due to an input of air  from over  the land.  Region 4 (R4)  was a  region of  higher 

concentrations,  potentially due  to  strong halocarbon sources  in  this  area  (Semporna)  which is 

known for its macroalgal aquaculture (Phang et al., 2010).  This links well with incubation studies 

conducted in Chapter 3, the results of which showed strong halocarbon production by a commonly 

farmed rhodophyte, Kappaphycus alvarezii.  Halocarbon ratios were used to explore these regions, 

further, as described in Section 6.3.4.  

6.3.2  Tropical macroalgae – incubations and emission estimates

In Chapter 3 halocarbon production rates for  15 tropical  macroalgae species  were investigated 

using laboratory incubations of macroalgae.  Production of all 9 halocarbons (CH3I, CH2I2, CH2Br2, 

CHBr3, CH2BrCl, CHBrCl2, CHBr2Cl, CH2ClI and CH2BrI) was observed.  CH2BrCl was produced 

in  the  smallest  quantities,  and  production  was  not  observed  for  some  species.   Apart  from 

production  of  CH3I  from  Ulva reticulata,  all  other  halocarbons  were  produced from all  other 

species.
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Variation within replicates of the same species was sometimes considerable.  An extreme example 

being variation between three individual plantlets of  Gracilaria changii collected from the same 

site and incubated at the same time gave production rates ranging from 82 – 875 pmol g FW-1 hr-1. 

Despite this inherent variability, differences between species and class were still seen.  In general, 

the  rhodophytes  were  the  strongest  bromocarbon  producers.   Rhodophytes,  for  example  K. 

alvarezii, are commonly farmed in Malaysia and south east Asia.  This information was used in 

Chapter 6 Section 6.2 to discuss potential impacts of current and predicted future aquaculture on 

regional  halocarbon  emissions  in  south  east  Asia.   Annual  emission  budget  estimates  were 

calculated based on biomass data from one site of peninsular Malaysia and so were made with 

many  caveats.   However,  using  these  preliminary  calculations,  we  estimated  that  due  to  the 

predominance of red algae in aquaculture, aquaculture currently contributes ~2% of Malaysian 

CHBr3 emissions  despite  accounting  for  only  0.7%  of  Malaysian  macroalgal  biomass.   Our 

projections of future aquaculture emissions based on potential aquaculture expansion data suggests 

that  aquaculture  could be responsible  for  up ~12-20% of  total  macroalgal  emissions if  all  the 

predicted cultivatable area in Malaysia was to be realised.   

Strong bromocarbon producers  during incubation studies  were  often strong producers  of  other 

halocarbons too.  This was investigated during the ranking exercise conducted in Chapter 3 Section 

3.3.2.  However, many species showed a spread of rank values and differences were seen between 

difference  classes.   For  example,  phaeophytes  were  strong  iodocarbon  producers,  as  seen  for 

temperate species (Carpenter & Liss, 2000; Küpper et al., 2008).  Chlorophytes were generally the 

weakest  producers,  with  the  exception  of  Bryopsis sp..   As  Bryopsis is  a  fast-growing  and 

opportunistic algae questions may be raised about whether halocarbon production assists in rapid 

colonisation  of  an  area,  perhaps  by  supressing  grazing  or  epiphytes  in  a  similar  way to  how 

halogenated secondary metabolites may act (e.g. Paul & Pohnert, 2010).  Future research ideas are 

discussed in Section 6.4.  

The variation in halocarbon production rates from a range of species collected from a small range 

of sites demonstrates that species-specific halocarbon production measurements should be made, 

and combined with biomass data,  to  best  determine halocarbon emission budgets from coastal 

macroalgae.  A preliminary experiment combining incubation and biomass data is discussed in 

Section 6.2, using data from one site in Peninsular Malaysia.  Differences were observed between 

biomass  data  from several  different  studies  (Section 6.2.1),  highlighting  the need  for  a  better 

understanding  of  regional  biomass  distributions  to   improve  regional  halocarbon  emission 

estimates.
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6.3.3  Macroalgae incubations – comparisons between different studies and methodologies

Measurements were made at two time points during the tropical species incubations which allowed 

us to investigate how incubation time may affect results.  We found that calculated production rates 

did  vary  between  measurements  made  after  4  (t4)  and  24  (t24)  hours.   Over  half  of  the 

measurements made at t4 were significantly higher than corresponding measurements made at t24. 

This could be linked to a variety of factors which were discussed in detail in Chapter 3 Section 

3.3.4 and include re-adsorption of  halocarbons onto the algal  surface, microbial  losses,  abiotic 

losses  (e.g.  nucleophilic  substitution)  and  stress  processes  during  the  incubations.   However, 

patterns remained the same between t4 and t24: the relative amounts of halocarbons produced by 

each algae and the fact that some algae were strong producers and others weak remained the same 

at t4 and t24.  

Our results suggest that care should be taken when comparing production rates between studies, in 

particular  with  regards  to  quantitative  results.   Despite  this  caveat,  we  conducted  literature 

comparisons between our tropical production rates, temperate production rates calculated via the 

same system, and existing temperate and polar data (Chapter 3 Section 3.3.4).  A large range of 

production values were reported in the literature, for example CHBr3 production ranged from little 

or no production to 6000 pmol g FW-1 hr-1.  Production rates from this study were within the range 

of  literature  values  and there was no overall  pattern  to  suggest  tropical  species  were,  overall, 

weaker or stronger halocarbon producers than those from other geographical regions.  From our 

results it seems more likely that the species distribution in an area is an important factor in regional 

differences in halocarbon budgets, as we saw a large range of production values (little or no to over 

1000 pmol g FW-1 hr-1) from 15 species collected from 4 sites.  
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6.3.4  Halocarbon ratios

Ratios  between halocarbons  were  discussed  in  Chapters  3,  4  and 5.   In  Chapter  3  they were 

discussed with regards to halocarbon production during incubations.   Significant correlations were 

common for polyhalogenated halocarbons but not the methyl halide CH3I which only correlated 

with  CH2ClI  and  CH2I2.   This  supports  the  wealth  of  literature  on  halocarbon  production 

mechanisms (Chapter 1 Section 1.3.2) which propose methyl halide production via methyl halide 

transferase-catalysed  methylation  of  halides  and  polyhalocarbon  production  via 

vanadium-dependent haloperoxidase mediated reactions.  Ratios also help investigate the potential 

for  non-biological  production or  conversion between halocarbons (e.g.  Chapter  1 Section 1.4). 

Previous studies have suggested, amongst other processes, conversion from CHBr3 to CHBr2Cl and 

CH2I2 to CH2ClI  (Class & Ballschmiter,  1988; Jones & Carpenter,  2007; Moore & Tokarczyk, 

1994).  Our t4 and t24 incubation results did not conclusively show these conversion processes, in 

the case of CHBr3 to CHBr2Cl this is likely due to the experimental duration (max 24 hours) being 

less than the lifetime of CHBr3 with respect to nucleophilic substitution (5 years at  25  °C, see 

Chapter 1 Table 3).

The  strongest  correlations  during  incubations  were  observed  between  CH2Br2,  CHBr3 and 

CHBr2Cl.  During the desiccation experiments, strong correlations were also observed between 

CH2Br2 and  CHBr3 (Chapter  4  Section  4.3.6).   A  common  biological  source  for  these  three 

halocarbons allowed them to be used to provide information on source regions and air mass history 

around Borneo in Chapter 5 Section 5.3.6, building on previous studies such as Brinckmann et al. 

(2012), Carpenter et al. (2003), O’Brien et al. (2009) and Yokouchi et al. (2005).  Correlations 

between  atmospheric  concentrations  of  these  three  halocarbons  measured  around  Borneo  and 

differences  in  ratios  supported  the  four  regions  we identified  (Chapter  5  Section  5.3.6).   For 

example, stronger correlations and higher halocarbon concentrations were seen in proposed source 

regions, such as the Semporna region.  Three-factor correlations (Chapter 5 Section 5.3.7) provided 

an emission ratio similar to that from previous studies  (Brinckmann et al., 2012; O’Brien et al., 

2009; Yokouchi et al., 2005).  This result supports previous use of these ratios to derive regional or 

global halocarbon emission estimates as similar results have now been seen from data collected at 

several  sites,  including coastal areas with and without (e.g.  Cape Verde) macroalgae and open 

ocean cruises.  
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Of interest is the use of an updated chemical decay line to reflect different atmospheric lifetimes in 

the tropics.  Many processes; biological emissions, the air-sea flux and seawater and atmospheric 

loss  processes,  differ  between  temperate  and  tropical  regions.   Some  of  these  factors  (e.g. 

biological loss processes in seawater) remain unconstrained and many may change with a changing 

climate (Chapter 1 Section 1.8).   Opportunities  for future research will  be discussed further  in 

Section 6.4.

 

6.3.5  Desiccation of macroalgae

Due to proposed links  between halocarbons and oxidative  stress  (Chapter  1 Section 1.3.3 and 

Chapter  4  Section 4.1.2)  the  effect  of  desiccation on halocarbon production  was discussed  in 

Chapter 4.  The main focus of this chapter was the effect of desiccation on halocarbon emissions 

from two common temperate  species;  Fucus vesiculosus and  Ulva intestinalis.   A measure  of 

changing photosynthetic capacity during desiccation was made using Fv/Fm measurements (Section 

4.2.6).   This  study  is  the  first  time  an  attempt  has  been  made  to  describe  some  measure  of 

photosynthetic stress alongside organohalogen emissions.  

When air samples were measured from a flask containing submerged algae that was then exposed 

emissions were seen to increase (Chapter 4 Section 4.3.5). Calculations using Henry' Law constants 

suggests this is, at least partly, due to bromocarbons remaining in the aqueous phase when seawater 

was present in the desiccation flasks. Attempts were made to describe this further by comparing 

with  seawater  measurements  made  during incubations  (those  carried out  in  Chapter  3  Section 

3.2.2).  Mean bromocarbon production from both  F. vesiculosus and  U. intestinalis were 2 to 3 

orders  of  magnitude  greater  in  seawater  than  measurements  made  during  the  desiccation 

experiments  in  Chapter  4.   This  comparison  included  two  measurement  techniques,  seawater 

samples  and  air  samples  trapped  on  sorbent  tubes.   Despite  attempts  to  understand  potential 

differences  between  these  techniques,  for  example  investigating  sorbent  trapping  efficiency 

(Chapter 4 Section 4.2.3) and seawater measurements with whole air canister samples (Chapter 4 

Section 4.3.5), we cannot exclude the fact that differences could be due to the use of two different 

sampling techniques. We conclude that, for successful comparisons between halocarbon production 

rates of submerged and exposed algae, the same measurement technique should be used, ensuring 

that  partitioning  between  the  seawater  and  headspace  is  accounted  for  when  the  algae  is 

submerged.  
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Our desiccation experiments provided information on halocarbon emission patterns immediately 

following exposure.  Halocarbon emissions tended to quickly increase, peak and then decrease 

again.  The overall pattern was that, following exposure, water loss began in a linear manner whilst 

halocarbon emissions increased and Fv/Fm remained stable or increased slightly.  Differences were 

seen  between  species;  halocarbon  production  was  higher  for  U.  intestinalis compared  to  F. 

vesiculosus, and a prolonged period of emissions was observed in a couple of the U. intestinalis 

experiments.   Decreases  in  Fv/Fm  (representing  photosynthetic  stress  and  a  decrease  in 

photosynthetic capacity)  did not correlate with a peak in halocarbon emissions.  From these results 

it seemed likely that a halocarbon pulse upon immediate exposure may be linked to short-term 

stress, such as ozone exposure, but not long term desiccation stresses such as nutrient limitation.  

Freshwater rewetting of U. intestinalis led to an increase in bromocarbon emissions.  However this 

increase was dependent on the length of the preceeding exposure period.  Freshwater rewetting 

would potentially add an extra osmotic stress during desiccation, and could increase the flux of 

halocarbons from exposed algae.  However, this study was conducted on one species of algae, in 

particular one that is somewhat euryhaline (Edwards et al., 1988) and so further studies in this area 

are advised. 
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6.4  Future work ideas

This  section  includes  ideas  for  further  research  that  have  either  been  raised  during  data 

interpretation and discussion in previous chapters, or have come to light during my research over 

the past three years. 

6.4.1  Halocarbon measurement techniques

i. Incubation protocols and temporal variability in halocarbon emissions

Our observed differences between halocarbon production rates measured at t4 compared to t24 

suggest that incubation time may be important  in calculated production rates.   Other analytical 

aspects  that  may  differ  between  studies  have  not  been  considered  here,  and  should  form  a 

component of future work that aims to compare halocarbon production between different species, 

regions or methodological techniques.  For example, McFiggans et al. (2004) noted that increasing 

age led to increasing variability in emissions.  Most incubation studies are short-term and we do not 

fully understand how age or temporal  variability affects halocarbon emissions.  Internal iodine 

concentrations were shown to vary seasonably in temperate macroalgae by Mairh et al. (1989).  In 

tropical regions seasonal differences may be linked to the changing monsoons affecting seawater 

temperatures  which  may,  in  turn,  impact  upon  macroalgal  growth,  abundance  and halocarbon 

emissions. 

ii. Intercalibrations

Whilst  extensive  efforts  have  been  made  in  recent  years  to  conduct  inter-laboratory 

intercalibrations of standards for atmospheric halocarbon measurements  (Jones et al., 2011), it is 

also important to intercalibrate standards for seawater analyses  (Butler et  al.,  2010).  Seawater 

standards  are  made  more  frequently  than  air  standards  (see  Chapter  3  Section  3.2.6  for  a 

description of calibration techniques at UEA), and often need to be kept cool or frozen, making 

intercomparisons potentially more difficult than those involving compressed air canisters (Chapter 

5 Section 5.2.5). However, as previous research have demonstrated the potential importance of 

sampling-induced  artefacts  when  using  liquid  DMS  samples  (Hill  &  Dacey,  2001) these 

intercalibrations should not be ignored if comparisons are to be made between different studies.  
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6.4.2  Halocarbons and their ecosystem role

Chapter  1  Section  1.3.5  introduced  the  potential  role  of  halocarbons  as  a  chemical  defence 

compound and this area has several strands that could form potentially interesting future studies.  If 

bacteria use CH2Br2 as an energy source, as suggested by  Goodwin et al. (1997b), then they are 

likely to also utilise other halocarbons as well.  The role that bacterial breakdown may play has not 

been fully quantified and could form part of a study that helps bridge together Chapters 3 and 5 of 

this thesis.   Whilst these two chapters form useful  studies in their  own right,  the link between 

laboratory  production  of  halocarbons  by  seaweed  (Chapter  3)  and  atmospheric  halocarbon 

concentrations (Chapter  5)  would benefit  from in situ seawater  measurements.   As mentioned 

previously,  seawater  measurements  in  coastal  regions  (such  as  Semporna,  where  higher 

atmospheric concentrations were observed) could not be made.  Measurements at aquaculture sites 

would also be highly beneficial.  Seawater measurements could also include seawater incubations 

to determine the impact of processes, such as abiotic production (Chapter 1 Section 1.2.2) and 

bacterial production, or loss on the tropical coastal halocarbon flux.  

The role of many other tropical ecosystems such as benthic muds and corals have yet to be studied 

with respect to their impact on halocarbon budgets.  Mangrove stands form an important part of 

tropical coastal ecosystems and there is some evidence that they may contribute significantly to 

global  CH3I  budgets  (Manley  et  al.,  2007).   More  could  also  be  done  to  determine  the  role 

halocarbons may play as an epiphyte or grazing deterrent, as discussed in Chapter 3 Section 3.3.2.  
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6.4.3  Halocarbon emissions in a changing climate

Firstly, there is the impact that climate change may have on seaweed biodiversity; distribution and 

other  ecosystem processes,  which is  currently poorly understood  (Harley et  al.,  2012).   These 

changes may impact halocarbon source strengths, as might changes to aquaculture (Section 6.2) 

which may increase the seaweed biomass significantly in certain areas.  Work in this thesis has 

highlighted several potential research areas with respect to aquaculture and halocarbon emissions, 

including; the impact of aquaculture stresses (e.g. disease, nutrient limitation and light stress) , the 

impact of post-harvest processing (e.g. desiccation, Chapter 4) and the production rates of species 

commonly used in aquaculture.

Source strength is not likely to be the only factor in the halocarbon biogeochemical system affected 

by climate change.  As described in Chapter 1 Section 1.8, model studies also suggest that physical 

changes to deep convection and OH chemistry may have an impact on the contribution of biogenic 

VSLS to stratospheric bromine.  In particular, Hossaini et al. (2012a) predict an increase in SG 

injection from biogenic VSLS on 0.3-1 ppt, depending on the warming scenario used. 

Climate  change  aside,  other  anthropogenic  factors  may  impact  emissions  in  the  coastal 

environment in general.  For example, megacities are predicted to be important drivers of change in 

the coastal zone.  Pollution may impact marine and coastal ecosystems, urban heat islands may 

affect atmospheric transport of trace gases and excess nutrients may increase the occurrence of 

algal blooms (von Glasow et al., 2013).  All of these processes may affect VSLS biogenochemical 

cycles and have yet to be investigated.  
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Appendix 1 – Production of halocarbons by tropical macroalgae at two time points in 

a 24 hour incubation, 4 hours and 24 hours.  

All values in pmol g FW-1 hr-1.  
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Species

PRODUCTION at t4 (pmol/g FW/hr)

Gelidium elegans 3.12 2.18 57.42 7.16 2.13 18.11 8.29 294.84 25.14

Kappaphycus alvarezii nm 0.14 121.81 1.98 0.27 65.48 119.07 1731.45 47.73

11.60 1.67 1014.39 10.83 1.57 326.47 710.72 4461.73 333.31

9.36 0.73 875.48 8.47 1.05 171.99 620.30 4264.50 412.91

1.40 0.44 263.21 2.77 1.04 65.32 365.96 1572.33 393.56

3.72 6.14 382.40 14.19 3.98 114.28 50.83 3205.25 74.27

Padina australis not measured at t4

Turbinaria conoides 30.24 0.93 553.71 8.91 nd 22.40 561.78 554.17 501.66

Sargassum baccularia not measured at t4

Sargassum binderi 3.24 0.29 140.91 2.30 0.19 9.52 35.89 118.16 18.12

Sargassum siliquosum not measured at t4

not measured at t4

Caulerpa racemosa 1.14 nd 2.55 nd 0.04 0.21 1.66 3.00 2.33

1.43 nd 0.36 nd 0.02 0.06 0.46 0.67 0.39

0.08 0.02 13.65 0.07 0.01 0.60 0.41 3.08 0.46

Ulva reticulata 0.82 nd 30.45 0.43 0.07 9.36 4.15 157.09 2.30

Species

STANDARD DEVIATION (n=2-3) on PRODUCTION VALUES (above)

Gelidium elegans 0.31 0.49 20.34 1.28 0.22 7.04 2.62 165.87 4.81

Kappaphycus alvarezii nm 0.05 57.91 0.89 0.31 30.33 57.71 335.91 29.82

2.71 0.41 93.25 2.15 0.16 69.13 143.64 189.30 232.54
3.66 0.52 256.29 1.38 0.30 16.72 370.90 477.54 291.94

0.62 0.41 164.91 0.19 0.73 13.62 130.65 209.83 130.64

0.38 0.64 36.29 1.62 1.29 12.46 15.11 577.43 33.77

Padina australis not measured at t4

Turbinaria conoides 6.60 0.28 130.05 0.84 nd 3.88 161.75 105.08 184.48

Sargassum baccularia not measured at t4

Sargassum binderi 0.76 0.16 71.06 2.25 0.07 5.05 16.58 53.46 5.56

Sargassum siliquosum not measured at t4

not measured at t4

Caulerpa racemosa 0.04 0.02 4.16 1.27 0.00 0.05 0.00 0.00 0.00

0.03 nd 2.72 nd 0.03 0.16 0.24 1.54 0.39

1.07 nd 0.51 nd 0.01 0.00 0.11 0.30 0.26

Ulva reticulata 0.13 0.02 11.38 0.07 0.00 0.48 0.21 2.11 0.45

CH3I CH2BrCl CH2Br2 CHBrCl2 CH2ClI CHBr2Cl CH2BrI CHBr3 CH2I2

Gracilaria changii 1

Gracilaria changii 2

Gracilaria salicornia 1

Gracilaria salicornia 2

Bryopsis sp.

Caulerpa sp.

Cladophora sp.
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Species

PRODUCTION at t24 (pmol/g FW/hr)

Gelidium elegans 1.35 0.71 28.65 1.26 0.58 6.11 1.23 37.63 3.20

Kappaphycus alvarezii nm 0.28 226.93 2.07 0.47 76.71 78.39 512.03 11.44

4.27 0.10 86.00 3.04 0.22 100.32 53.59 1129.07 105.55

not measured at t24

0.43 0.08 78.86 1.57 0.12 52.01 53.48 478.44 57.47

1.58 0.49 35.17 3.26 0.30 30.76 1.93 595.04 5.05

Padina australis 11.31 nd 6.57 0.68 0.20 1.33 0.98 8.45 16.06

Turbinaria conoides 44.31 1.02 251.06 2.93 5.74 12.39 490.46 259.91 485.21

Sargassum baccularia 2.38 nd 8.60 0.72 0.15 1.49 1.52 10.82 1.79

Sargassum binderi 2.23 0.09 45.44 3.15 0.06 6.79 4.56 45.26 1.68

Sargassum siliquosum 8.00 nd 18.55 1.27 0.21 3.47 6.67 36.14 6.96

1.28 nd 29.40 0.01 0.50 2.17 21.51 69.15 9.18

Caulerpa racemosa 0.23 0.01 4.35 nd 0.03 0.15 1.10 1.45 1.22

1.54 0.01 4.77 0.08 0.01 0.41 0.57 3.78 0.36

0.14 0.02 3.77 0.10 0.03 0.29 0.18 1.44 1.27

Ulva reticulata nd nd 12.72 0.09 0.01 1.52 0.95 23.51 0.34

Species

STANDARD DEVIATION (n=2-3) on PRODUCTION VALUES (above)

Gelidium elegans 0.47 0.12 6.78 0.52 0.03 2.37 0.38 14.80 1.35

Kappaphycus alvarezii nm 0.12 103.06 1.03 0.26 34.12 47.30 40.77 6.01

0.90 0.06 34.89 0.64 0.10 20.55 24.32 125.83 27.65

not measured at t24

0.11 0.05 32.48 0.28 0.05 13.18 27.84 560.91 6.51

0.36 0.13 11.89 0.24 0.14 1.99 1.07 277.90 1.69

Padina australis 10.09 nd 1.52 0.53 0.01 0.77 0.19 1.22 10.79

Turbinaria conoides 5.43 0.15 172.81 0.71 1.16 3.16 184.14 87.73 65.58

Sargassum baccularia 1.72 nd 3.22 0.54 0.09 0.71 0.51 3.45 0.49

Sargassum binderi 1.24 0.00 5.64 0.87 0.02 0.67 2.33 16.45 1.19

Sargassum siliquosum 3.92 nd 2.60 1.29 0.01 1.10 1.06 15.75 3.58

0.81 nd 5.64 0.01 0.19 0.11 10.57 9.27 1.48

Caulerpa racemosa 0.03 0.00 1.85 nd 0.01 0.04 0.13 0.38 0.28

2.02 0.01 5.96 0.08 0.00 0.55 0.18 4.68 0.09

0.04 0.00 1.07 0.01 0.00 0.15 0.09 0.30 0.22

Ulva reticulata nd nd 3.99 0.03 0.00 0.40 0.23 6.64 0.05
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Appendix 2 – A comparison of halocarbon production by macroalgae from this study 

and the existing literature

These two figures are an extension of Chapter 3 Figure 10 (page 161).  A full description of this 

comparison can be found in Chapter 3 Section 3.3.4.  Briefly, these two figures show CH3I (Fig. 1) 

and CHBr3 (Fig. 2) production in pmol g FW-1 hr-1 for 15 tropical species and 6 temperate species 

(this thesis).  These values have been compared to  production rates for temperate and polar species 

from a range of studies (referenced in Chapter 3 Fig. 10).  Each species is listed by name, in order 

of increasing halocarbon production, with marker colour and shapes defined in the inset figure 

legends.
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Appendix 2, Figure 2 part 1.



Appendix 2, Figure 2 part 2.
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