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Abstract  
 

The Gram-positive bacterium Streptomyces coelicolor, is one of the main genetic 

model organisms in the phylum of the Actinobacteria. Streptomyces bacteria are soil 

dwelling filamentous bacteria with a complex life cycle consisting of multigenomic 

hyphae that then form unicellular spores. Bacterial cell shape determination has been 

influenced heavily by the discovery that bacteria have a number of eukaryotic 

cytoskeletal homologues as well as a number of accessory proteins unique to 

prokaryotes. As cell shape determination is dependent on the sites of insertion of new 

cell wall material, this is characteristically organised and driven by cytoskeletal 

proteins. 

 Streptomyces coelicolor hyphal growth occurs through apical extension where new 

cell wall material is placed at the tips. This growth is driven in part by the 

cytoskeletal protein DivIVA. Here we characterise a novel Streptomyces cytoskeletal 

protein, Scy, encoded by the locus sco5397. Scy is a large protein with a novel coiled-

coil 51-mer repeat structure. To study Scy, a scy knockout mutation was generated. 

The phenotype of the scy mutant suggests that it plays a significant role in cell shape, 

growth and chromosome positioning. Translational fluorescent protein fusions to scy 

were made and the subcellular localisation of Scy was determined to be strongly at 

growing hyphal tips. Further clarified here, Scy overexpression can recruit DivIVA 

protein and the cell wall synthesis machinery to new apical sites. The reciprocal is 

also shown whereby DivIVA overexpression can recruit Scy to new apical sites. 

Further to this in vivo and in vitro experiments were performed to determine that Scy 

and DivIVA interact, as well as the protein FilP encoded downstream of scy.  The 

work here along with work in the field suggests that Scy forms part of a Tip 

Organising Centre (TIPOC) that alongside DivIVA, FilP, and numerous other 

proteins controls apical growth in the filamentous Streptomyces. 
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1 Inroduction 
 

Streptomyces coelicolor is a Gram-positive bacterium that was originally isolated from the 

soil. The genus Streptomyces has received great attention due to its ability to produce 

secondary metabolites such as antibiotics whose antimicrobial activity is believed to confer 

a competitive advantage over other soil occupying bacteria (Bibb, 2005). The 

streptomycetes exhibit two mechanisms of growth; firstly they can grow and disperse by 

vegetative growth that does not exhibit fully completed cell division. The second form of 

growth leads to formation of specialised aerial hyphae that then divide to form large 

numbers of highly resistant spores (Anderson, and Wellington, 2001). The understanding 

of the developmental biology of S. coelicolor has progressed enormously in recent years, 

aided enormously because the S. coelicolor genome project was completed in 2002 

(Bentley et al., 2002). The completion of the genome project confirmed that S. coelicolor 

is more genetically complex with a larger genome and a higher number of regulatory genes 

in comparison to other bacteria. So far the study of morphologically defective mutants has 

provided fascinating insights into the complexity of signalling and regulation involved in 

the processes of aerial hyphae formation and sporulation (Flärdh, and Buttner, 2009). 

However, by comparison little is known about the most important factors involved with the 

formation of hyphae during vegetative growth. 

Bacteria show a large diversity in terms of their cell shapes, with morphologies varying 

from spherical coccoid shaped bacteria, to rods, spiral shapes, stalked ends, crescents and 

filamentous shapes (Cabeen, and Jacobs-Wagner, 2005). Cell shape to a large extent is 

maintained by the tough peptidoglycan cell walls of bacteria. Peptidoglycan cell walls also 

characteristically protect bacterial cells from osmotic pressure created from differing 

osmolarities of the cytoplasm and the extracellular environment (Lederberg, 1956; Weidel, 

and Pelzer, 1964). A large number of the genes that have been shown to be important in 

the maintenance of cell shape have been found to be enzymes that are related to the 

function of cell wall synthesis (Spratt, 1975; Nelson, and Young, 2000; Blumberg, and 

Strominger, 1974). This includes the penicillin binding proteins (PBPs) that are involved in 

the final steps of peptidoglycan synthesis. However, it is emerging that the cell wall 

synthesis machinery depends upon cytoskeletal proteins that significantly contribute to cell 

shape and morphology primarily by directing sites of new cell wall insertion (Jones et al., 

2001; Ausmees et al., 2003; Erickson et al., 1996; Errington, 2003; Typas et al., 2011; 

Mattei et al., 2010). 
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Cytoskeletal proteins are defined as having the capacity to form filamentous polymers in 

vivo and in vitro, from only the original monomeric protein. The structure does not have to 

maintain stability as many cytoskeletal filaments exhibit dynamic assemblies and 

disassemblies in response to signals (Shih, and Rothfield, 2006). Eukaryotic cells have 

three different classes of cytoskeletal proteins that form filaments in vivo and in vitro; the 

actin filaments, the microtubules and the intermediate filaments (Goodson, and Hawse, 

2002; Desai, and Mitchison, 1997; Steinert, and Roop, 1988). Prokaryotes have been 

shown to contain homologous proteins that are distantly related to each of the three classes 

of eukaryotic cytoskeletal proteins (Nogales et al., 1998; van den Ent et al., 2001; 

Ausmees et al., 2003). Prokaryotes also seem to have novel cytoskeletal proteins that are 

not found in eukaryotes (Ingerson-Mahar, and Gitai, 2012), raising the possibility that 

there might be more unidentified cytoskeletal proteins in prokaryotes. The bacterial 

cytoskeletal proteins drive different factors in the form of cell shape determination, cell 

division and chromosome segregation (Michie, and Löwe, 2006). Bacteria are now 

regarded as being more than just “bags of enzymes” with complex cellular organisation in 

which cytoskeletal elements play a huge role.   

In bacteria the tubulin homologue FtsZ is associated with cytokinesis. For example in E. 

coli polymerisation of FtsZ in symmetrical cell division leads to formation of a ring at the 

midpoint of the cell (the “Z ring”) (Bi, and Lutkenhaus, 1991). The “Z ring” is the site 

where cell division is initiated, new cell wall insertion is triggered and invagination of the 

membrane occurs (Lutkenhaus, 1993). In many rod shaped bacteria the actin-like MreB 

family of proteins form helical filaments that facilitate lateral cell wall growth (Jones et al., 

2001). The use of fluorescent vancomycin to visualise sites of nascent peptidoglycan 

synthesis revealed that cell wall assembly in B. subtilis occurs in a helical pattern 

consistent with helices of an MreB-family protein (Daniel, and Errington, 2003). MreB is 

absent in coccoid shaped bacteria and therefore they do not exhibit lateral cell wall growth 

and use FtsZ to direct new cell wall insertion and to divide into equal sized daughter cells.  

Due to its complex division cycle and filamentous growth Streptomyces coelicolor is a 

fitting model organism in which to study cytoskeletal proteins. Though much is still 

unknown, a rapidly increasing catalogue of S. coelicolor cytoskeletal proteins is being 

compiled (Table 1). Due to the complex morphological division of aerial hyphae of the 

Streptomyces into spores there is a large amount of interest in the process of sporulation 

and partitioning of chromosomes into separate spores. Most of the cytoskeletal proteins of 

S. coelicolor so far researched have been involved in these processes, to which a model of 

13 

 



                                                                                               

their localisation patterns are shown in Figure 1. The S. coelicolor homologue of FtsZ 

seems to have a role in the division of the aerial hyphae into spores by positioning the 

sporulation septa (McCormick et al., 1994). The S. coelicolor MreB homologues appear to 

play a role in spore maturation (Burger et al., 2000; Mazza et al., 2006; Heichlinger et al., 

2011). This is quite a different role of MreB in comparison to its function of driving lateral 

cell wall synthesis in rod shaped bacteria (Jones et al., 2001). In Streptomyces the 

processes of chromosome segregation and condensation seem to be aided by homologues 

of the ParA, ParB, SMC and FtsK cell division proteins (Kim et al., 2000; Dedrick et al., 

2009; Jakimowicz et al., 2002; Jakimowicz et al., 2005a; Jakimowicz et al., 2007; Kois et 

al., 2009; Wang et al., 2007). 

Table 1: Proteins with a possible cytoskeletal/cytoskeleton-associated role in Streptomyces coelicolor. 

Protein Name SCO Number Possible Function Reference(s) 

FtsZ SCO2082 Cell division, septum 

positioning 

(McCormick et al., 

1994; Grantcharova 

et al., 2003; 

Willemse et al., 

2011a) 

SsgA SCO3926 Cytoskeletal 

regulatory protein 

(Kawamoto et al., 

1997; van Wezel et 

al., 2000; Noens et 

al., 2005) 

SsgB SCO1541 Cytoskeletal 

regulatory protein 

(Kormanec, and 

Sevcikova, 2002; 

Keijser et al., 2003; 

Sevcikova, and 

Kormanec, 2003; 

Noens et al., 2005; 

Willemse et al., 

2011a; Xu et al., 

2009) 

MreB SCO2611 Spore maturation (Burger et al., 2000; 

Mazza et al., 2006; 

Kleinschnitz et al., 

2011) 

Mbl SCO2451 Spore maturation (Mazza et al., 2006; 
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Heichlinger et al., 

2011) 

ParA SCO3886 Chromosome 

condensation/ 

segregation 

(Jakimowicz et al., 

2006; Jakimowicz et 

al., 2007; Kim et al., 

2000) 

ParB SCO3887 Chromosome 

condensation/ 

segregation 

(Jakimowicz et al., 

2002; Jakimowicz et 

al., 2005a; Kim et 

al., 2000) 

DivIVA SCO2077 Apical Growth (Flärdh, 2003a) 

SMC SCO5577 Chromosome 

condensation/ 

segregation 

(Dedrick et al., 2009; 

Kois et al., 2009) 

ScpA SCO1770 Chromosome 

condensation/ 

segregation 

(Dedrick et al., 2009; 

Kois et al., 2009) 

ScpB SCO1769 Chromosome 

condensation/ 

segregation 

(Dedrick et al., 2009; 

Kois et al., 2009) 

FtsK SCO5750 Chromsome 

segregation 

(Wang et al., 2007) 

AbpS/FilP SCO5396 Vegetative growth (Bagchi et al., 2008) 

Streptomyces 

Cytoskeletal Protein 

(Scy) 

SCO5397 Polarised growth and 

cell division 

(Kelemen Lab, 

University of East 

Anglia)(Walshaw et 

al., 2010), This Work 
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S. coelicolor features apical growth to which none of the already discussed proteins have 

been implicated. Apical growth is unusual in comparison to growth performed by most 

other bacteria , although bacterial examples of apical growth have been shown for even rod 

shaped bacteria including the actinomycete Corynebacterium (Letek et al., 2009; Letek et 

al., 2008) or Mycobacterium (Kang et al., 2008), or recently, members of the Rhizobiales, 

such as Agrobacterium tumefaciens (Brown et al., 2012). The filamentous growth of 

Streptomyces is more similar to growth featured by filamentous fungi. Cytoskeletal 

Figure 1: Positioning of a number of S. coelicolor cytoskeletal proteins in the process of 
extension and cell division where the aerial hyphae divide into spores (Adapted from Flärdh & 
Buttner, (2009), with information from Kois et al., (2009), Jakimowicz et al., (2005a). A) The cell 
shape determining factor DivIVA is involved in apical growth. In the aerial hyphae DivIVA 
disappears and FtsZ forms helices that then go on to mark the regular positions of sporulation 
septa. MreB later forms at sporulation sites and envelopes the spore wall and functions in spore 
maturation. B) ParA which can be associated with some hyphal tips, later in the aerial hyphae 
goes on to form helical filaments that place the nucleoid associated factor ParB at regular 
positions of one foci per spore forming compartment. SMC appears at a similar stage to ParB, 
which it does not localise as regularly as, and then disappears before ParB disappears. FtsK 
maybe involved in DNA transport across the separating sporulation compartments. 

 

A 

B 
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proteins play an important role in growth of filamentous fungi normally by forming centres 

of organisation at the polar sites that drive elongation of the cells (Xiang, and Plamann, 

2003; Harris, 2008); however, Streptomyces likely have evolved different mechanisms due 

to the large divergence between these groups of organisms, but it seems that cytoskeletal 

proteins also play a role in the developmental biology of S. coelicolor and its filamentous 

growth. Therefore, apical growth represents a relatively novel biological process in which 

to study. At the present, apical growth in S. coelicolor has been shown to be dependent on 

the bacterial cytoskeletal protein DivIVA (Flärdh, 2003b; Flärdh, 2003a). In S. coelicolor 

divIVA was found to be an essential gene and a knockout could not be achieved unless 

divIVA was provided in trans. Reduction of DivIVA to approximately 10% of normal 

levels, resulted in the phenotype of irregular curly shaped hyphae and apical branching. 

Whereas overexpression of DivIVA resulted in tip swelling and hyperbranching. A 

DivIVA-EGFP translational fusion localised to bright foci at hyphal tips to the same 

positions in which the cell wall is inserted. Time-lapse imaging showed that DivIVA-

EGFP localised to future branch points significantly before new branch emergence 

(Hempel et al., 2008). Collectively these observations suggest that DivIVA directs polar 

cell wall insertion in Streptomyces.  

Located downstream of the scy gene characterised here, is a gene filP encoding another 

potential cytoskeletal protein, FilP, first identified and believed to resemble intermediate 

filament proteins from eukaryotes (Bagchi et al., 2008). However, recently it has  been 

predicted that FilP is not intermediate filament-like, but instead contains a novel type of 

coiled-coil repeat (Walshaw et al., 2010). The scy gene upstream of filP, very likely 

encodes a novel Streptomyces coelicolor cytoskeletal protein (abbreviated to Scy).  

Based on bioinformatics data (Walshaw et al., 2010) Scy is an example of a novel 

cytoskeletal protein with a 51-mer repeat unit, which can also be found in FilP. Previously 

in the Kelemen lab it was found that a partial mutation (K110) in the scy gene resulted in 

defects with hyphal morphology and possibly growth at the tips of the hyphae. This mutant 

was seen to have short aerial hyphae and branching spore chains. DNA distribution was 

not even throughout the formation of the spores. Although the aerial hyphae are affected 

more, vegetative growth also showed a knotted phenotype showing Scy could be involved 

in general hyphae development.  

Summarised in the following sections of this chapter is a current insight into firstly the 

understanding of the developmental biology of the Streptomyces, followed by a review of 
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cytoskeletal proteins in prokaryotic organisms and finally concluding with a review of 

cytoskeletal proteins and their role specifically in Streptomyces. 

   

1.1 Streptomyces coelicolor, a model organism for bacterial development 
 

1.1.1 The life cycle of Streptomyces coelicolor 
 

While many bacteria divide by binary fission in a symmetric manner, Streptomyces 

coelicolor has a complex life cycle consisting of multiple stages of growth and 

sophisticated structures (Figure 2). The development of S. coelicolor beginning from a 

spore, starts with the emergence of either a single or two germ tubes (Jyothikumar et al., 

2008). The germ tubes grow out by extension in the tips, occasionally branching so that 

they form a complex mass of mycelium. New cell wall material is laid down at the tips and 

is similar to apical growth featured by filamentous fungi (Daniel, and Errington, 2003; 

Flärdh, 2003b). This growth is accompanied by and is proportional to the rate at which the 

DNA can be replicated and chromosomes doubled. The hyphae are essentially 

multigenomic, with relatively rare, widely spaced septa. Cell division does not occur in the 

vegetative hyphae, with tip extension and branching allowing expansion of the mycelia 

(Chater, 1993; Flärdh, 2003b). On an agar plate, growth occurs from the surface 

penetrating the substrate to form a vegetative mycelium. A number of factors including 

developmental signalling cascades, stress response and nutrient limitation in the substrate 

media, trigger the older parts of the vegetative mycelium to give rise to aerial hyphae. 

Aerial hyphae break through the surface tension of the aqueous environment of the 

substrate media to rise into the air (Kelemen, and Buttner, 1998). The aerial hyphae appear 

on an agar plate after 2-4 days as a fuzzy white surface. Initially aerial hyphae also grow as 

multigenomic structures. The aerial hyphae reach a point where they stop growing. They 

then lay down septa that divide the hyphae into prespore compartments, containing a single 

chromosome. The prespore compartments change shape and their wall thickens. At the 

same time as spores are formed, a grey polyketide pigment is produced. The production of 

spores at 4-6 days of growth on agar therefore coincides with a grey appearance on the 

surface of the colony (Kelemen et al., 1998; Davis, and Chater, 1990; Chater et al., 1989). 
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1.1.2 The S. coelicolor genome  
 

The S. coelicolor genome is 8,677,507bps long, and consists of 7,825 predicted genes. The 

single chromosome is linear in structure, GC rich and contains a centrally located 

replication origin (oriC) with a conserved core of genes flanked by terminal inverted 

repeats (Bentley et al., 2002). The genome was sequenced from a set of ordered Supercos-

1 clones containing ~37.5kb fragments (Redenbach et al., 1996). These cosmids have also 

been useful in creating gene knockouts by replacing genes with antibiotic resistance 

cassettes that can then be used for homologous recombination in S. coelicolor. The 

terminal ends of the chromosome show instability such that most of the essential genes of 

S. coelicolor are distributed in a central core (Bentley et al., 2002; Volff, and 

Altenbuchner, 1998). The unstable ends contain non-essential genes such as those 

encoding secondary metabolite production. The central core shows synteny with other 

Actinomycetes such as Mycobacterium tuberculosis and Corynebacterium diphtheriae 

(Bentley et al., 2002). Reinforcing suggestions that this part of the genome is conserved, 

Figure 2: Life cycle of Streptomyces coelicolor. Unicellular spore (A), followed by germ tube 
emergence where tip extension and branching in the vegetative hyphae (B) leads to the 
development of a complex mass of mycelium (C). Aerial hyphae (D) form from older parts of 
the vegetative hyphae. Septation of the aerial hyphae (E), later leads to development of 
prespore compartments (F), that divide to form unicellular spores (A). Image courtesy of 
Gabriella Kelemen. 
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whereas the terminal regions have undergone more changes. There have been many 

potential gene duplications, leading to different isoforms of proteins that possibly could be 

involved in different stages of growth (Bentley et al., 2002). It has been predicted that 

12.3% of S. coelicolor genes encode regulatory proteins. This is reflected by S. coelicolor 

containing large numbers of putative sigma factors, sensor kinases, response regulators and 

DNA binding proteins (Bentley et al., 2002). Having large numbers of regulatory genes 

helps to explain the high complexity of S. coelicolor development. Other prominent genes 

include those encoding for production of secondary metabolites, transporter proteins and 

secreted enzymes (Bentley et al., 2002) consistent with S. coelicolor’s competitive role in 

the soil. Sequencing of the S. coelicolor genome has been crucial for the understanding of 

its biology and for providing a more practical genetic platform to study this organism.             

   

1.1.3 Important developmental genes  
 

There are a number of important genes that play a significant role in S. coelicolor 

development and mutants of two sets of genes called bld and whi have been rigorously 

studied to understand S. coelicolor development. The consequence of a mutation in a bld 

gene results in colonies that do not form aerial hyphae so that they appear not to have the 

fuzzy morphology seen in the wild-type strain (Chater, 1993), therefore in part bld genes 

control the erection of aerial hyphae. A mutation in a whi gene results in colonies that do 

not complete sporulation, so they do not change to the grey colour of mature spores and 

hence appear white (Ryding et al., 1999), therefore the whi genes act to control formation 

of spores from the aerial hyphae. Not surprisingly the majority of the bld and whi genes 

encode regulatory/signalling proteins. Some other important gene classes have also been 

identified; firstly the ram genes specify the production of a hydrophobic surfactant that 

allows the aerial hyphae to break the surface tension associated with air-water interfaces. 

The gene classes encoding the chaplins and the rodlins allow the formation of a 

hydrophobic surface structure that coats developing aerial hyphae enabling them to erect 

into a non-aqueous environment (Elliot et al., 2003; Claessen et al., 2003; Claessen et al., 

2002) . 

 

1.1.4 A complex regulatory/signalling pathway controls aerial hyphae development 
 

The bld genes are believed to act as a signalling cascade that leads to aerial hyphae 

formation (Figure 3). One of the overall effects of bld gene signalling is the release a 
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surfactant called SapB that allows the aerial hyphae to break the surface tension and erect 

into the air (Willey et al., 1991).  However, the phenotypic consequences of a bld mutation 

are in most cases dependent on the type of media in which a strain is grown on. Classical 

bld mutants lack aerial hyphae development when grown on a rich medium such as R2YE 

(For R2YE recipe visit Kieser et al., (2000)), yet replacement of the carbon substrate from 

glucose to mannitol can in cases remove the bald phenotype (Chater, 1993). The bld genes 

could potentially form a signalling cascade as the mutants form a hierarchy where it is 

possible to complement an “earlier acting” bld gene mutant when grown adjacent to a 

“later acting” bld gene mutant. Whereas an “earlier acting” bld gene mutant cannot 

complement a “later acting” bld gene mutant. However, this model is not able to 

accommodate all the bld genes, omitting bldB, bldI, bldL, and bldN. It is therefore likely 

that the control of aerial hyphae initiation is more complex than the model shown in Figure 

3. Yet based on the identities and functions known currently for the bld genes and a clear 

hierarchical progression there must be some form of integration of all the signals to then 

lead to aerial hyphae development. 

 

 
The model of bld signalling begins with the transport of an extracellular signalling 

molecule to initiate aerial hyphae development. The oligopeptide importer function of bldK 

encoded proteins is believed to import an as yet unidentified extracellular signalling 

Figure 3: The bld genes form a signalling cascade that leads to production of surface proteins 
needed for erection of the aerial hyphae (taken from Chater & Chandra, (2006)). A large 
proportion of the bld genes form a hierarchy in which it is possible to complement earlier 
mutants with later mutants but not complement later with earlier. 
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molecule indirectly produced as a result of bldJ (Nodwell et al., 1996; Nodwell, and 

Losick, 1998). Propagation of the signal from bldK dependent import of “signal 1” to bldA 

is currently unknown. However, the identity of bldA is a leucine tRNA that recognises the 

rare codon UUA (Lawlor et al., 1987). The active form of the tRNA increases at the later 

stages of morphological differentiation allowing translation of proteins using this leucine 

codon (Leskiw et al., 1993). Bioinformatic, transcriptomic and proteomic data suggest that 

bldA is a pleiotropic regulator affecting 2-3% of genes in the genome that contain the UUA 

codon (Li et al., 2007a; Chater, and Chandra, 2008; Kim et al., 2005; Hesketh et al., 2007). 

However, the lack of aerial hyphae resulting from a mutation in bldA is mostly due to the 

loss of the transcriptional activator AdpA. The bald mutant bldH is actually a mutant of the 

gene encoding AdpA (Takano et al., 2003). AdpA has been mostly studied in the closely 

related species S. griseus (Ohnishi et al., 1999; Ohnishi et al., 2005). The full regulon of 

AdpA in S. griseus or S. coelicolor has not been uncovered (Yamazaki et al., 2004; Chater, 

and Chandra, 2008); however, some of the potential targets are genes for proteases (Kato et 

al., 2005; Kato et al., 2002; Tomono et al., 2005), protease inhibitors (Kim et al., 2005), a 

developmental sigma factor SsgA (Hirano et al., 2006), the gene ramR (Yamazaki et al., 

2003; Ueda et al., 2005; Xu et al., 2010) and bldN (Yamazaki et al., 2000).     

The remaining bld genes not yet discussed, mostly play crucial roles in orchestrating 

transcriptional regulatory cascades that control developmental progression. The links 

between these bld gene functions, in order to establish a pathway are not clear despite the 

fact that a number of them fit into the hierarchal model discussed earlier and for example 

bldB and bldI can loosely be placed into an approximate complementation group (Willey et 

al., 1993). The link between bldH and bldG is not clear. The bldG phenotype is caused by 

the absence of a protein showing sequence similarity to a family of anti-anti-sigma factors 

from Bacillus and Staphylococcus species (Bignell et al., 2000).  Downstream of bldG is a 

putative anti-sigma factor. However, there is no sigma factor ORF downstream or close by 

to bldG. Both bldG and the anti-sigma factor encoding gene are upregulated at the time of 

aerial hyphae formation and antibiotic production, consistent with a role in controlling 

aerial hyphae development (Bignell et al., 2000). It seems that a sigma factor under 

regulation of BldG is the alternative stress response sigma factor, σH, how this affects 

aerial hyphae formation is uknown (Sevcikova et al., 2010).   

The genes bldG and bldH are both necessary to allow for the transcription of an 

extracytoplasmic RNA polymerase sigma encoded by bldN (Bibb et al., 2000). However, 

despite working downstream in the signalling pathway from bldG and bldH, bldN did not 
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fit into a complementation group of bld mutants. Previously bldN had been defined as a 

whi mutant because certain point mutations lead to a lack of sporulation, whereas it was 

later found a null mutant was completely deficient in aerial hyphae formation. Hence 

differing point mutations can affect the degree of activity of σBldN (Bibb et al., 2000). As 

bldN transcription is dependent on bldG there is likely another sigma factor that is 

controlled by bldG and therefore enabling expression of bldN. In S. venezulae it has 

recently been shown that bldN has a downstream anti-sigma factor, RsbN, that prevents 

premature sporulation (Bibb et al., 2012). It was shown that the bldM gene is a direct target 

for σBldN (Bibb et al., 2000). The bldM gene encodes a member of the FixJ subfamily of 

response regulators, but is unusual in that its putative phosphorylation site, aspartate-54 is 

not required for BldM function (Molle, and Buttner, 2000). A bldM mutant fits into the 

same complementation group as bldD. The bldM loci was originally classed as a whi gene, 

due to a number of mutant alleles that result in a lack of sporulation but normal production 

of aerial hyphae (Ryding et al., 1999). As the null mutant is bld, this suggests that BldM is 

active in different stages of S. coelicolor growth. A sensor kinase for BldM has not yet 

been identified, along with the lack of importance of aspartate-54 it is currently not clear 

how BldM functions (Molle, and Buttner, 2000).  

Mutants of the locus bldC are in a complementation group downstream of the bldG locus. 

The gene positioned at the bldC locus encodes for a member of the MerR family of DNA 

binding proteins. A bldC mutant is defective in aerial hyphae production and shows a 

reduction in the production of the antibiotics actinorhodin and undecylprodigiosin (Hunt et 

al., 2005). To which it has been attributed to be needed for the normal transcription of 

activator genes required for production of these antibiotics. The transcription of bldC is 

constitutive, and no direct links to activation of other bld genes have been found, therefore 

its role in developmental morphogenesis is unclear. 

The bldD gene along with bldM is in the final complementation group preceding 

production of SapB. The gene bldD encodes a transcription factor that is similar to the 

Helix-turn-helix-3 DNA binding proteins (Elliot et al., 1998; Kelemen et al., 2001), also 

including SinR that acts a repressor for genes essential for entry into sporulation in B. 

subtilis (Mandic-Mulec et al., 1995). BldD was previously shown to act as a repressor for 

expression of the genes whiG, bldN, bdtA and sigH (Elliot et al., 2001; Kelemen et al., 

2001). Searches based on a proposed BldD binding consensus sequence also suggested it 

binds upstream of bldG as well as a number of sigma factors (Touzain et al., 2008). BldD 

was also shown to act as a repressor controlling its own expression (Elliot et al., 1998). 
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Recently the BldD regulon was investigated using ChIP-chip and it was found that there 

were a potential of ~127 transcriptional units that are BldD targets (den Hengst et al., 

2010). These include the genes bldA, bldC, bldH/adpA, bldM, bldN, ssgA, ssgB, ftsZ, 

whiB, whiG, smeA-ssfA, nsdA, cvn9 and leuA, showing that BldD affects a lot of different 

developmental process. 42 BldD targets encode regulatory proteins showing that BldD is a 

pleiotropic regulator in S. coelicolor. BldD is expressed at its highest levels during 

vegetative growth, as it represses a number of developmental genes it blocks aerial hyphae 

formation. BldD expression is reduced in the aerial hyphae hence releasing the repression 

on developmental genes needed to progress through the developmental cycle.   

Mutants of bldB do not fit into the hierarchical model of complementation. Also, bldB 

mutants are special because they are bald and deficient in antibiotic production on both 

minimal media and rich media (Merrick, 1976). The protein encoded by bldB is likely a 

member of an actinomycete specific protein family (Eccleston et al., 2006). The function 

of proteins in this family is currently unknown. It is likely that whiJ is also in this family of 

proteins. BldB could include a helix-turn-helix DNA binding motif suggesting it could 

potentially be a transcription factor (Pope et al., 1998). It is also likely that BldB forms  

oligomers, most likely dimers (Eccleston et al., 2002). Overexpression of BldB results in a 

block in sporulation (Eccleston et al., 2006), suggesting BldB plays a critical role in the 

regulation of morphogenesis in Streptomyces development. 

Aerial hyphae formation is enabled due to the ability of S. coelicolor to release a 

hydrophobic surfactant SapB that lowers surface tension as well as being able to coat the 

hyphae in novel hydrophobic structures. As mentioned above classical bld mutants lack 

aerial hyphae development when grown on a rich medium such as R2YE, yet on a minimal 

medium many are no longer bald (Chater, 1993). As the bld cascade leads to production of 

SapB, there must be an alternative SapB-independent pathway to aerial hyphae formation 

on minimal medium (Figure 4). This alternative pathway is due to the action of a family of 

hydrophobic secreted proteins called the “Chaplins”. The chaplins form an aerial surface 

structure believed to consist of amyloid-like filaments (Elliot et al., 2003; Claessen et al., 

2003). Loss of all the chaplin encoding genes results in a strain that on minimal medium is 

less able to form aerial hyphae as on rich medium (Capstick et al., 2007). A mutant losing 

all chaplin encoding genes and SapB production is bald under all conditions (Capstick et 

al., 2007). Along with the rodlin proteins, SapB and the chaplins form a hydrophobic 

sheath that enables the aerial hyphae to break the surface tension of water-air interfaces 
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and erect into the air (Claessen et al., 2004; Claessen et al., 2003; Capstick et al., 2007; 

Kodani et al., 2004). 

 

 
Production of SapB coincides with the time in which aerial hyphae form (Willey et al., 

1991). It was then found that SapB was absent in bld mutants but present in whi mutants. 

Surprisingly purified SapB was able to restore aerial hyphae growth to bld mutants (Willey 

et al., 1991). The rapid aerial mycelium (ram) gene cluster ramCSAB was shown to be 

responsible for the synthesis and modification of SapB (Kodani et al., 2004). The ram 

genes in S. coelicolor were originally identified due to their ability to accelerate aerial 

hyphae formation when cloned into Streptomyces lividans (Ma, and Kendall, 1994; Keijser 

et al., 2000). The gene ramR encodes a response regulator that activates expression of 

ramCSAB (Ma, and Kendall, 1994; Nguyen et al., 2002; O'Connor et al., 2002). RamC is 

similar to proteins involved in the maturation of lantibiotic peptides (Kodani et al., 2004). 

The lantibiotic-like structure of SapB is believed to be produced firstly by production of a 

42 amino acid peptide encoded by ramS, that is subsequently modified by RamC to form 

the mature SapB that acts a surfactant peptide (Kodani et al., 2004). Sequence analysis of 

the ramA and ramB genes suggest that they could make up an ABC transporter protein, to 

which could function as a specific route for SapB export from the cell (Ma, and Kendall, 

1994). It is currently believed that due to the ability of purified SapB to restore aerial 

hyphae growth to bld mutants (Willey et al., 1991) that it is a surfactant that coats the 

hyphae and enables them to break the surface tension associated with air-water interfaces. 

If SapB is provided extracellularly then most bld mutants regain the ability to form aerial 

Figure 4: Model of the progression of developmental genes and their importance for aerial 
hyphae formation on either rich or minimal media (taken from Capstick et al., (2007)). 
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hyphae. Yet these mutants still fail to form spores, suggesting that SapB only has a 

structural role and the intracellular signalling events needed to progress to the point of 

sporulation are not achieved (Willey et al., 1991; Tillotson et al., 1998). The intricate 

details of SapB formation and assembly on the hyphae are currently unknown.  

Electron microscope images of the surface of Streptomyces spores and aerial hyphae 

showed that they appeared to have a ‘basketwork’ pattern of filaments that make up the 

hydrophobic surface (Hopwood, and Glauert, 1961). The layer of the surface consisting of 

these patterns is called the ‘rodlet’ layer and is dependent on the two groups of proteins, 

the chaplins and the rodlins (Claessen et al., 2004). The chaplin proteins are a group of 

proteins all containing a conserved chaplin domain, as well as having a secretion signal. 

There are five short chaplins containing only one chaplin domain; ChpD, E, F, G and H. 

There are also three long chaplins containing two chaplin domains and a sorting signal; 

ChpA, B and C (Elliot et al., 2003; Claessen et al., 2003). The expression of the chaplin 

genes coincides with aerial hyphae and is restricted to aerial structures. The sorting signal 

on long chaplins enables covalent attachment to the cell wall. Whereas it is believed that 

the long chaplins anchor short chaplins to the cell wall (Claessen et al., 2003; Elliot et al., 

2003). The long chaplains themselves are believed to be anchored to the cell wall by  

sortase enzymes (Duong et al., 2012). Purified chaplin proteins self assemble into amyloid-

like filaments, whereas their absence from S. coelicolor depletes the aerial hyphae and 

spores of the same filament covered rodlet layer (Claessen et al., 2003; Claessen et al., 

2004; Sawyer et al., 2011). There are two homologous rodlin proteins in S. coelicolor, 

RdlA and RdlB (Claessen et al., 2002). S. coelicolor lacking the Rodlin proteins, lacks the 

characteristic ‘rodlin layer’ of filaments and has only fine fibril structures on the aerial 

hyphae and spores (Claessen et al., 2004; Claessen et al., 2002). Whereas the lack of 

chaplins results in aerial hyphae defects, a lack of the rodlins does not affect aerial hyphae 

formation (Claessen et al., 2004). Therefore, it is believed that the chaplins are the 

hydrophobic structure seen on electron microscope images. It is believed that the rodlins 

do not themselves form the rodlet layer but somehow assemble the chaplins into the 

characteristic rodlet surface structures (Claessen et al., 2004). 

Currently nothing is known about whether the chaplins and SapB interact with each other. 

However, as shown it is clear that both are vital in the formation of the aerial hyphae 

allowing them to break surface tension. Yet it seems that SapB is more important on rich 

media whilst the Chaplins are only required for aerial hyphae formation on minimal media 

(Capstick et al., 2007).   
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1.1.5 Regulation of sporulation  
 

Different whi mutations can block the process of sporulation at different developmental 

points. Mutations of early acting whi genes fail to achieve sporulation septa. The early whi 

genes are whiA, B, G, H, I and J (Chater, 1972)(Figure 5). Mentioned later, SsgA and SsgB 

also block septum formation in the aerial hyphae (Keijser et al., 2003; van Wezel et al., 

2000). Whereas some later acting whi genes morphologically produce spores but are 

deficient in the grey spore pigment. All of the early whi genes are necessary for the 

production of a late spore specific sigma factor, σF, as well as whiE that encodes proteins 

that synthesize the grey spore polyketide pigment. Sporulation seems to be tightly 

regulated with a number of checkpoints that need to be passed, depending on the input of 

many different signals. 

Experimental data places whiG as the earliest acting whi gene, with mutations in whiG 

showing no signs of development towards sporulation (Chater, 1972; Chater, 1975; Chater, 

1993). As a progression whiG (Figure 5) comes before whiH, which comes before whiA,B 

that then come before whiI in terms of the early acting whi genes (Chater, 1975). The 

promoter of whiG  is a target for BldD binding, however, the consequence of this is 

unknown as whiG mRNA is present at all times, suggesting that it is regulated post-

transcriptionally (Elliot et al., 2001; Kelemen et al., 1996). The locus whiG encodes a 

sigma factor which is believed to play a pivotal role in the initiation of sporulation (Chater 

et al., 1989). Three of the direct targets for WhiG regulation are the early acting 

sporulation genes whiH, whiI and whiA (Ryding et al., 1998; Ainsa et al., 1999; Kaiser, 

and Stoddard, 2011). A whiH mutant shows loosely coiled aerial hyphae that are slightly 

fragmented though fail to produce wild-type spores (Chater, 1972). The locus whiH 

encodes a transcription factor protein similar to the transcriptional repressor protein GntR 

in B. subtilis (Ryding et al., 1998). This could suggest that it responds to metabolic 

conditions. WhiH is autoregulatory, repressing its own transcription, though no other 

targets have been identified as yet (Ryding et al., 1998). It could be possible that WhiH 

senses a signal following aerial hyphae formation that allows it to relieve repression of 

genes or lead to activation of genes that mediate changes needed for sporulation. A whiI 

mutant is similar in phenotype to whiH and seemingly has fragmented aerial hyphae, 

though whiI mutants form abnormally widely spaced sporulation septa (Chater, 1972). The 

locus whiI encodes an atypical response regulator protein, lacking some of the conserved 
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residues in the phosphorylation pocket. It is not adjacent to a histidine kinase and as yet no 

cognate histidine kinase has been identified (Ainsa et al., 1999). WhiI likely acts as a 

transcriptional repressor to its own promoter. Though transcription of whiI increases at the 

same time as sporulation suggesting that this repression is somehow relieved (Ainsa et al., 

1999). Though currently no direct targets of WhiI are known, transcriptome analysis of 

wild-type S. coelicolor in comparison to mutant variations of whiI revealed 45 genes 

whose transcriptional expression was altered (Tian et al., 2007). A number of these genes 

were analysed and found to encode products that were involved in spore maturation. 

          
WhiA transcription is directly controlled by the sigma factor WhiG, WhiA then binds 

directly to WhiG and inhibits WhiG directed transcription (Kaiser, and Stoddard, 

2011).WhiA and WhiB have been seen to effects each other’s level of transcription in a 

currently unknown mechanism (Jakimowicz et al., 2006). Both WhiA and WhiB represent 

a seemingly independent pathway to WhiH and WhiI, though they could possibly be 

providing the changes that signal allowing WhiI and WhiH to lose their autoregulatory 

functions and adopt activating functions (Chater, 2001). Mutants of the whiA locus have 

tightly coiled aerial hyphae that are longer than normal spore chains, there are no 

sporulation septa present (Chater, 1972; Chater, 1975). Mutants of the whiB locus are 

Figure 5: Regulation of sporulation in Streptomyces, adapted from Kaiser and Stoddard, 
(2011), with information from Chater, (2001), den Hengst et al., (2010), Flärdh et al., 
(2000). Inactive WhiG is in brackets, whereas active WhiG is represented as σWhiG. The 
early whi genes whiA,  B,  G, H, and I are responsible for transition from aerial growth to 
DNA condensation, septation and spore maturation (WhiJ not shown on diagram). 
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similar to mutants of the whiA locus, with tightly coiled long aerial hyphae lack sporulation 

septa (Chater, 1972; Chater, 1975). These phenotypes are believed to result from 

uncontrolled growth, suggesting that WhiA and WhiB signal growth cessation that is 

needed before aerial hyphae can form septa and divide (Flärdh et al., 1999; Ainsa et al., 

1999). The gene whiA encodes a protein whose function is likely as a transcription factor, 

as well as a direct inhibitor of WhiG (Kaiser, and Stoddard, 2011). whiA like genes are 

conserved across Gram-positive bacteria and are maintained in similar operons with other 

conserved genes of unknown function (Ainsa et al., 2000). WhiA has two DNA binding 

domains that likely allow it to function as a transcription factor positively regulating its 

own promoter as well as binding to parABp2 and it could possibly regulate other genes 

involved in sporulation (Ainsa et al., 2000; Kaiser et al., 2009; Kaiser, and Stoddard, 

2011). The gene product of whiB is the founding member of a novel protein family that are 

conserved across the Actinobacteria, which have been named the WhiB-like (Wbl) family 

(Soliveri et al., 2000). Also, included in this family is the product of the locus whiD (Molle 

et al., 2000). The actual function of the Wbl proteins is currently unclear, they all contain 

four cysteine residues in an arrangement that are suggestive of metal binding and redox 

sensitivity (Soliveri et al., 2000). In fact WhiD and other Wbl proteins have been shown to 

bind oxygen sensitive [4Fe-4S] clusters (Crack et al., 2009; Jakimowicz et al., 2005b; 

Alam et al., 2007; Singh et al., 2007). Two contrasting putative functions of Wbl proteins 

have been put forward, they could either be oxygen sensitive transcription factors based on 

their small size and positions of α-helical regions (Davis, and Chater, 1992; Soliveri et al., 

2000). The alternative and based on more recent data suggests that they may function as 

disulphide reductases based on their redox sensitive cluster (Alam et al., 2007; den Hengst, 

and Buttner, 2008; Jakimowicz et al., 2005b; Singh et al., 2007). Mutations in whiJ can be 

white mutants, though oddly a full deletion of whiJ is able to sporulate (Chater, 1972; 

Gehring et al., 2000; Chater, and Chandra, 2006; Ainsa et al., 2010). It appears that whiJ 

with its flanking genes (sco4542 and sco4544) could possibly form a regulatory system 

that is capable of repressing sporulation until an unknown signal is present (Ainsa et al., 

2010)           

 S. coelicolor has one FtsZ homologue which forms cytoskeletal structures that allow 

septum positioning and division of the aerial hyphae into spores (discussed in more detail 

later) (McCormick et al., 1994; Schwedock et al., 1997). FtsZ is a whi gene as knockouts 

fail to sporulate (McCormick et al., 1994). The ftsZ gene has 3 promoters; however, the 

large increase in ftsZ transcription at the time of sporulation is associated with the ftsZ2p 
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promoter that is upregulated at the same time (Flärdh et al., 2000). The upregulation of 

ftsZ2p is dependent on the presence of all of the early whi genes, whiA, B, G, H, I and J 

(Flärdh et al., 2000). To which all of the early whi gene knockouts tested (all but whiJ) do 

not have the regular ladders of ‘Z rings’ associated with wild-type aerial hyphae 

(Grantcharova et al., 2005). Due to the similarities in phenotypes of an ftsZ2p mutant and a 

whiH mutant, it has been suggested that WhiH may activate ftsZ2p (Chater, 2001; Flärdh et 

al., 2000). If ftsZ is put under a constitutive promoter then it can be seen to complement 

whiA, B, G, H, I and J mutants to forming spores, albeit in some cases not wild-type-like 

spores (Willemse et al., 2011b). Reinforcing an idea that these genes are crucial for correct 

temporal and spatial expression of ftsZ. Another family of genes that are important in the 

development of the aerial hyphae are the SsgA-like proteins (SALPs), this family of 

proteins occurs only in morphologically complex actinomycetes (Traag, and van Wezel, 

2008). In fact SsgA and SsgB have been implicated in direct placement of FtsZ and 

therefore control a key step in cell division of the aerial hyphae (Willemse et al., 2011a).   

Following sporulation septation, there are three important late acting sporulation genes, 

being whiD, whiE and sigF. Whereas an early acting whi gene mutant fails to produce 

sporulation septa, whiD mutants do achieve formation of sporulation septa suggesting that 

whiD acts at a later stage. A whiD mutant can also form spores; however, these spores are 

abnormal, being irregular in size, having irregular spore wall deposition and the spores 

were prone to lysis and lacked the level of resistance of wild-type spores (Chater, 1972; 

Molle et al., 2000). As mentioned above WhiD is a Wbl protein that has been shown to 

bind oxygen sensitive [4Fe-4S] clusters. This could mean the WhiD detects redox changes 

and result in a switch that allows the later stages of sporulation to occur (Chater, 1972; 

Jakimowicz et al., 2005b; Molle et al., 2000). Expression of sigF, encoding the late spore 

specific sigma factor, σF, depends on all of the early whi genes, whiA, B, G, H, I and J 

(Kelemen et al., 1996). The mutant of the gene sigF produces a white phenotype where the 

spores are deformed in comparison to the wild-type. They exhibit smaller size, have 

thinner walls, have uncondensed chromosomes and lack some of the high resistance 

characteristics of wild-type spores (Potuckova et al., 1995). σF encoded by sigF is similar 

to σB of  Bacillus subtilis, which is involved in stationary phase gene expression and stress 

response (Boylan et al., 1993; Potuckova et al., 1995). σF seems to be only involved in 

morphological differentiation associated with spore formation in S. coelicolor (Potuckova 

et al., 1995). No direct targets of σF are currently known; however, one of the two whiE 

promoters is indirectly activated by σF (Kelemen et al., 1998), though it is anticipated that 
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there are more genes that are direct targets for σF. The locus whiE consists of eight genes, 

the removal of which gives a phenotype similar to the wild-type in its ability to form 

spores. However, the spores produced lack the grey colour, but in every other way are 

indistinguishable from the spores of the wild-type (Chater, 1972; McVittie, 1974). Six of 

the genes in the whiE locus show homology to genes involved with the synthesis of 

polyketide antibiotics, these genes are responsible for synthesising the grey polyketide 

spore pigment that gives spores a distinctive grey colour (Davis, and Chater, 1990).       

    

1.1.6 Antibiotic/secondary metabolite production 
 

The streptomycetes are noted for their production of a large proportion of commercially 

available antibiotics. These antibiotics are believed to be produced by the Streptomyces as 

a result of ecological pressures. Therefore, it is not surprising that the production of most 

antibiotics coincides with the growth of aerial hyphae and nutrient limitation. With 

antibiotics believed to play a competitive role, giving the streptomycetes an advantage over 

other microorganisms and acting as a defence mechanism (Chater, 2006). The 

aminoglycoside antibiotic, streptomycin was the first antibiotic to be discovered from 

Streptomyces species (Waksman et al., 1946). This antibiotic produced by S. griseus was 

important in treating Tuberculosis infections and arguably led to the discovery of many 

more antibiotics from Streptomyces species. Notably Streptomyces coelicolor produces the 

antibiotics undecylprodigiosin and actinorhodin that are responsible for the red and blue 

pigmented colours that give the organism its name (Rudd, and Hopwood, 1979; Wright, 

and Hopwood, 1976; Feitelson et al., 1985). S. coelicolor has been a valuable model for 

the study of antibiotics as they are produced coinciding with developmental stages and are 

linked to the developmental regulatory mechanisms. One of the notable mechanisms of 

regulation of antibiotic production is using the leucine tRNA encoded by bldA. This is 

most obvious due to the presence of TTA codons in many antibiotic regulatory and 

synthetic genes, as well as the notable lack of antibiotics in a bldA mutant (Bentley et al., 

2002; Chater, 2006; Merrick, 1976). Other than antibiotics, the Streptomyces produce 

notable secondary metabolites. These include, geosmin which is a chemical responsible for 

the smell of the soil (Cane et al., 2006; Gerber, and Lechevalier, 1965). As well as the grey 

polyketide responsible for the grey colour of Streptomyces spores (Davis, and Chater, 

1990). The current known antibiotics and secondary metabolites produced by the 

Streptomyces demonstrates the potential biological activities that these molecules can 
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perform and illustrates their importance in the potential production of compounds for 

pharmaceutical use. 

 

1.2  Bacterial cytoskeletal proteins  
 

1.2.1 Tubulin homologue-FtsZ 
 

The bacterial cell division protein FtsZ shares homology with the eukaryotic cytoskeletal 

protein tubulin. This homology is not in the form of sequence similarity but is due to the 

two proteins sharing a 3D structure (Figure 6) (Nogales et al., 1998; Erickson, 1998). 

Thus, suggesting that an FtsZ/tubulin cytoskeleton was present in the last common 

ancestor. FtsZ proteins are highly conserved across most bacteria and archaea (Erickson, 

1997; Wang, and Lutkenhaus, 1996). They are also present in eukaryotic organelles, 

notably chloroplasts (Vitha et al., 2001; Erickson, 1997). However, most mitochondria 

seem to have lost FtsZ and carry out cell division through the use of eukaryotic dynamin 

(Erickson, 2000).  

 
The polymerisation of FtsZ is similar to the way in which tubulin polymerises (Erickson et 

al., 1996). Similarly to tubulin, FtsZ polymerisation depends on GTP binding and 

hydrolysis (Bramhill, and Thompson, 1994). FtsZ acts as a GTPase, whereby bound to 

GTP forms filaments but as GTP is hydrolysed to GDP, FtsZ polymers can disassemble. 

Thus, in an intracellular environment rich in GTP, FtsZ is able to assemble into filaments 

(Romberg, and Levin, 2003; Mukherjee, and Lutkenhaus, 1998). In most bacteria FtsZ 

polymerisation is associated with cytokinesis. For example in E. coli polymerisation of 

FtsZ in symmetrical cell division leads to formation of a ring, the “Z ring”, at the midpoint 

of the cell (Stricker et al., 2002). The “Z ring” is the site where cell division is initiated and 

Figure 6: Alignment of the 3D 
structures of an α/β tubulin dimer and 
an FtsZ homodimer shows a 
conserved fold (taken from 
Carballido-Lopez & Errington, 
(2003)). 
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invagination of the membrane occurs (Lutkenhaus, 1993). The positioning of the Z ring 

classically can be determined by two factors: the positioning of the DNA in the cell, as 

well as the Min system (Harry, 2001; Raskin, and de Boer, 1997). The nucleoid occlusion 

model consists of the idea that the position of the replicated nucleoids and the association 

determines the position of the “Z ring”, in some cases this involves Noc proteins that 

associate with the nucleoid and inhibit Z ring formation nearby (Wu et al., 2009). After 

DNA replication, segregation of the DNA leads to the mid cell position of the cell being 

unoccupied by DNA and thus the position that FtsZ forms (Margolin, 2000). The Min 

system consists of a number of extraordinary oscillatory proteins that form concentration 

gradients that determine Z ring placement at the middle of the cell (discussed in more 

detail later) (Yu, and Margolin, 1999). There is increasing evidence that FtsZ rings are 

produced by spiral-like intermediate structures (Ben-Yehuda, and Losick, 2002; Michie et 

al., 2006; Sun, and Margolin, 1998). These spirals are generally distributed as helices 

around the long axis, condensation of the helice could then lead to the formation of the ring 

structure seen at cell division sites. FtsZ itself may generate some of the force needed to 

constrict the cell at the division site, as FtsZ was found to be able to constrict liposomes in 

vitro (Osawa et al., 2008). The properties of FtsZ to form at the division site and generate a 

constrictive force are also dependent on GTP hydrolysis (Li et al., 2007b; Jimenez et al., 

2011).  

 
In E. coli, FtsZ as well as a number of other proteins are needed to form the divisome 

(Figure 7) that actually leads to cell division and invagination. Formation of the Z-ring 

itself needs two other proteins, FtsA and ZipA to stabilise filament formation and tether 

Figure 7: FtsZ rings and associated cell division proteins in E. coli (taken from Shih & 
Rothfield, (2006)). The macromolecular complex is important in driving the associated 
membrane and cell wall changes needed for the process of cell division. 
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FtsZ to the membrane (Pichoff, and Lutkenhaus, 2002). ZipA has an N-terminal membrane 

embedded domain that could act as an anchor to the C-terminal FtsZ interacting domain, 

therefore reinforcing FtsZ ring placement at the membrane (Ohashi et al., 2002; Pichoff, 

and Lutkenhaus, 2002; Hale et al., 2000; Liu et al., 1999). FtsA is considered to be within 

the MreB family of proteins and is capable of forming filaments (Szwedziak et al., 2012). 

The exact mechanism of FtsA contribution to the divisome is unclear; however, its ability 

to polymerise into filaments is needed for normal function. The formation of a Z-ring then 

recruits proteins such as FtsI, FtsW, FtsK, FtsN, FtsL/DivIC, FtsQ/DivIB and AmiC 

(Errington et al., 2003). The action of this multi-molecular complex then drives the 

changes associated with membrane constriction and cell wall synthesis associated with cell 

division. The FtsI protein is a penicillin binding protein that is involved in peptidoglycan 

synthesis at the cell division site creating the cell wall at future poles (Spratt, 1977). The 

function of the FtsW protein is as a transporter across the cytoplasm of lipid-linked 

precursors for peptidoglycan synthesis such as lipid II (Mohammadi et al., 2011). FtsK is 

believed to function in ATP-dependent translocation of DNA through a closing septum to 

aid chromosome segregation (Aussel et al., 2002; Bath et al., 2000). FtsN has been shown 

to interact with the peptidoglycan synthase PBP1B as well as being able to stimulate the 

murein synthesis activity of PBP1B (Muller et al., 2007; Ursinus et al., 2004). Therefore, it 

is likely that FtsN’s role is to modify or control murein synthesis at the cell division site. 

FtsL and FtsL like DivIC are transmembrane proteins, however, the exact function of these 

proteins is unknown other than that they are important to cell division and may contribute 

importantly to protein-protein interactions at the division site (Guzman et al., 1992; Levin, 

and Losick, 1994). The function of FtsQ and FtsQ like DivIB is unknown, though crystal 

structure data has revealed that the α-domain of FtsQ has similarity to polypeptide 

transport-associated domains (van den Ent et al., 2008; Beall, and Lutkenhaus, 1989). It is 

likely that the role of FtsQ is to assist in the assembly of the outer membrane proteins 

needed for cell division. AmiC is an enzyme involved in the cleaving of murein crosslinks 

(Heidrich et al., 2001). Unlike other amidases it is localised to the septal ring (Bernhardt, 

and de Boer, 2003), showing that murein remodelling is necessary to allow cell division to 

occur. Other important components of the divisome that may help in FtsZ bundling are 

ZapA (Gueiros-Filho, and Losick, 2002; Low et al., 2004) and ZapC (Hale et al., 2011), as 

well as ZapA interacting ZapB (Galli, and Gerdes, 2012).  The divisome components 

across bacterial species appears to vary, with several other important proteins, for example 
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EzrA (Levin et al., 1999) and SepF (Hamoen et al., 2006) in B.subtilis, underlying that the 

divisome has been adapted across bacterial species.     

In addition to FtsZ there are other FtsZ-like proteins in bacteria that are diverse across 

bacteria and archaea and are putatively speculated to have a role in membrane remodelling 

(Makarova, and Koonin, 2010). There are also plasmid encoded FtsZ homologs involved 

in plasmid segregation, the most studied being TubZ (Larsen et al., 2007). TubZ has an 

accessory protein TubR that helps it mediate interaction with plasmid DNA (Ni et al., 

2010). TubZ forms double helical filaments that resemble ParM filaments more than FtsZ 

filaments (Aylett et al., 2010), suggesting that TubZ was able to evolve a different filament 

structure to FtsZ as well as a quite different function.     

  

1.2.2 Actin homologues and MreB 
 

A number of cytoskeletal proteins have been discovered in bacteria that are homologs of 

the eukarytotic cytoskeletal protein actin. These proteins share a conserved actin fold with 

eukaryotic actin in which the 3D structure is highly similar (van den Ent et al., 2001; van 

den Ent et al., 2002; Roeben et al., 2006). The actin-like cytoskeletal proteins in bacteria 

that have been most studied include; the cell-shape determining protein MreB (Jones et al., 

2001), the plasmid partitioning protein ParM (Jensen, and Gerdes, 1997) and a recently 

discovered magnetosome-postioning protein MamK (Komeili et al., 2006). A comparison 

of the 3D structures of actin and prokaryotic actin homologues MreB and ParM is shown 

in Figure 8. The ATPase domain is the most conserved characteristic of prokaryotic actin 

to eukaryotic actin (Bork et al., 1992). Prokaryotic actin homologues MreB, ParM and 

MamK have all been shown to polymerise into filamentous structures similar to F-actin 

(van den Ent et al., 2001; van den Ent et al., 2002; Komeili et al., 2006; Jones et al., 2001). 

Similarly filament assembly and disassembly is controlled by ATP binding and hydrolysis. 

There are also a number of non-cytoskeletal proteins in bacteria that are considered in the 

actin family, including the cell division protein FtsA and the heat shock protein DnaK (van 

den Ent, and Löwe, 2000; Bork et al., 1992). Recently a bioinformatic study found 35 

actin-like protein families in bacterial genomes that have conserved 5 signature motifs, 

though they are not considered to be actin or MreB (Derman et al., 2009). This suggests 

that actin-like proteins maybe more diverse and spread across bacterial groups than first 

realised. Discussed below are the filamentous, cytoskeletal actin homologues MreB and 

ParM and their role in bacterial cell biology. 
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One of the most common family of actin-like proteins in bacteria are the MreB family of 

proteins (Carballido-Lopez, 2006a). MreB proteins were originally defined as a cell shape-

determining factor leading to acquisition of a rod shape or other more complex cell shapes 

other than spherical shaped cells (Daniel, and Errington, 2003). As such MreB is absent in 

coccoid shaped bacteria. In the rod shaped Gram-positive bacterium, Bacillus subtilis, the 

two MreB family proteins; MreB and Mbl are both important in cell shape determination 

(Varley, and Stewart, 1992; Abhayawardhane, and Stewart, 1995; Jones et al., 2001). The 

MreB and Mbl proteins have been shown to localise as helical cords that follow the cell 

membrane and extend from the septum to the cell poles (Figure 9)(Jones et al., 2001). The 

pitch of Mbl helices is slightly longer than for MreB suggesting that they form separate 

and distinct patterns of localisation. The differing results on cell shape from mutants of 

both MreB and Mbl and their differing localisation patterns suggests that they contribute to 

different aspects of the cell shape of Bacillus subtilis (Abhayawardhane, and Stewart, 

1995; Jones et al., 2001). The use of fluorescent vancomycin that stains sites of nascent 

peptidoglycan synthesis, revealed that cell wall assembly in B. subtilis occurs in a helical 

pattern (Daniel, and Errington, 2003). This is dependent on the Mbl protein, whereby the 

formation of the Mbl helices is dynamic with the cell cycle and elongates in parallel with 

cell growth (Figure 9)(Daniel, and Errington, 2003). Due to the insertion of new material 

in the cell wall, the cell wall then undergoes continuous helical twisting in the opposite 

direction to helical growth by Mbl, therefore relieving torsional stress (Figure 9). The 

nature of MreB formation and localisation has been called into question as Cryo-electron 

Tomography was applied on rod shaped cells and long helical filaments were not visible 

Figure 8: Alignment of the conserved 3D structures of actin, MreB and ParM. Taken from 
Carballido-Lopez & Errington, (2003). I and II represent the two domains, whereas A and 
B represent the separation into two subdomains. 
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(Swulius et al., 2011), suggesting a rethink about the precise structure of MreB is needed. 

Instead it is now believed that MreB forms shorter discontinuous structures that are moved 

around the cell circumference by being closely coupled with the cell wall synthetic 

machinery that acts like a motor (van Teeffelen et al., 2011; Garner et al., 2011; 

Dominguez-Escobar et al., 2011). 

 
The mreB genes of both B. subtilis and E. coli are organised such that they are positioned 

adjacent to two other genes mreC and mreD (Doi et al., 1988; Levin et al., 1992; Varley, 

and Stewart, 1992). This organisation is similarly conserved across most bacteria such that 

mreB is in a clustered operon with mreCD (Carballido-Lopez, and Errington, 2003). E. coli 

MreB forms helical localisation patterns similar to that of MreB and Mbl of B. subtilis and 

there is increasing evidence that MreB in E. coli controls cell wall material insertion 

(Kruse et al., 2005; Kruse et al., 2003; De Pedro et al., 2003). MreC and MreD are also 

coupled to MreB function in E. coli and the depletion of either prevents correct MreB 

localisation in vivo (Kruse et al., 2005). It is also likely that MreB, MreC and MreD form a 

complex based on interactions between MreC with both MreB and MreD in vitro (Kruse et 

al., 2005). Similarly to E. coli, in C. crescentus it is the MreB protein encoded from an 

mreBCD operon that contributes to cell wall synthesis (Figge et al., 2004; Dye et al., 

2005). It seems likely that cell wall synthesis is coordinated through MreB cytoskeletons 

by atleast the established interactions of MreC with cell wall synthetic enzymes such as 

penicillin-binding protein 2 (Kruse et al., 2005; Leaver, and Errington, 2005; Dye et al., 

Figure 9: Mbl localisation as helices and formation of the cell wall. Taken from 
Carballido-Lopez & Errington, (2003).  A) Helcial path of Mbl (Green) and insertion of 
new wall material (Purple). B) To avoid torsional stress the cell wall twists as it elongates 
(Broad Arrows).  New cell wall is inserted with Mbl (Red), older cell wall from A) is now 
moved due to the cell wall twisting (Purple). C) New cell wall is continually added in the 
helical path of Mbl (Black), and older cell wall material further unwinds (Red)(Purple). 
Small arrows indicate Mbl growth. 

 

A 

B 
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2005; De Pedro et al., 2003). In addition to a potential complex is another protein that is 

important with regard to MreB and lateral cell wall insertion/shape determination, which is 

the co-localizing protein RodZ (Shiomi et al., 2008; Bendezu et al., 2009; Alyahya et al., 

2009). Rodz spans the membrane and reaches into the periplasm, the cytoplasmic end of 

RodZ can interact with MreB (van den Ent et al., 2010). Components of the complex are 

expanding and also include murein biosynthetic enzymes, to which MurG makes a strong 

interaction with MreD (White et al., 2010). This expanding evidence shows that MreB 

proteins play an important role in cell shape determination in bacteria through a complex in 

a similar way as FtsZ forms a complex. However, MreB proteins have also been linked 

with other possible functions, for example they have been shown to have a possible role in 

cell polarity localising certain proteins to the cell poles (Gitai et al., 2004; Jyothikumar et 

al., 2008; Shapiro et al., 2002). There is also substantial evidence that MreB homologues 

have a role in chromosome segregation (Gitai et al., 2004; Kruse et al., 2003). 

In typeII plasmid partitioning systems, partitioning of the plasmids are carried out by actin-

like ATPases, to which ParM is the most understood (Jensen, and Gerdes, 1997; Jensen, 

and Gerdes, 1999). There are three components in the plasmid partitioning system of 

plasmid R1. There is parM encoding the actin-like protein ParM that acts as an assembling 

filament and physically moving the plasmid DNA (Moller-Jensen et al., 2003; Moller-

Jensen et al., 2002). There is parC which is a cis-acting centromeric site needed for protein 

attachment to the plasmid. There is also parR which encodes a protein that binds parC and 

links the ParM protein to the plasmid DNA (Jensen, and Gerdes, 1997). Newly replicated 

plasmid DNA close to midcell positions is forced to opposite sides of the cell by the force 

of ParM assembly (Figure 10). To which, ParM assembles at a cap with an ATP-bound 

ParM monomer. Insertion of a new monomer is dependent on the cap monomer 

hydrolysing ATP to ADP, therefore all the ParM monomers in the filament are bound to 

ADP besides the terminal monomer (Garner et al., 2004). Correct ParM formation depends 

on a process of dynamic instability where terminal ParM is stabilised by interaction with 

ParR bound to plasmid R1 DNA, only ParM filaments with a cap on each end will stably 

polymerise and thus push the two plasmids to opposite sides of the cell (Garner et al., 

2004; Garner et al., 2007). Following ParM assembly and plasmid partitioning to daughter 

cells, ParM filaments disassemble 
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1.2.3 Intermediate filament-like protein CreS  
 

The Gram-negative bacterium Caulobacter crescentus is a model of bacterial development 

and cellular differentiation. There are two differing cell types that are generated by a 

combination of asymmetrical division and subsequent cellular differentiation. A motile 

“swarmer” cell possessing a single polar flagellum allows dispersal of C. crescentus in an 

aquatic environment. However, it cannot initiate DNA replication and cell division. 

Cellular differentiation results in the production of a non-motile “stalked” cell, consisting 

of a single polar stalk. This cell acts as a predivisional cell, allowing DNA replication and 

cell division. Asymmetrical cell division of the stalked cell produces two compartments 

that result in the production of a new swarmer cell and a new stalked cell (Wheeler et al., 

1998).  

C. crescentus during stationary phase growth is also capable of producing extended helical 

spiral shaped cells.  The gene required for the determination of the crescent or helical cell 

shape characteristic of a wild-type C. crescentus cell is creS (Ausmees et al., 2003). 

Knockouts of the gene creS, resulted in a straight rod shaped cell. The protein encoded by 

creS, crescentin, was localised in vibroid shaped cells to form a pole to pole filament along 

the concave side of the cell. Similarly in the helical cells crescentin formed a helical 

filament that ran alongside the inner curvature of the spiral (Ausmees et al., 2003).  

Figure 10: Showing the plasmid R1 
partitioning system involving the actin-like 
protein ParM which pushes apart newly 
replicated plasmids. Taken from Shaevitz 
& Gitai, (2010). Unstable ParM filaments 
form (red). These are stabilised (blue) by 
ParR (yellow) bound to R1 plasmid DNA 
(green). A ParM filament stabilised at both 
ends can elongate and push the replicated 
plasmid DNA to opposite ends of the cell. 
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Localisation of crescentin and its necessity for generation of a vibroid or helical cell shape, 

strongly suggests that crescentin has some form of structural role as a cytoskeletal protein. 

Sequence analysis and in vitro analysis suggests that crescentin is a bacterial equivalent to 

the intermediate filament proteins of eukaryotes (Ausmees et al., 2003). Intermediate 

filaments have a characteristic domain organisation. They consist of four central heptad 

repeat coiled-coil domains surrounded by non-coiled-coil “head” and “tail” domains 

(Strelkov et al., 2003). Crescentin has a similar domain organisation of the four central 

heptad repeat coiled-coil regions. There is also sequence similarity of between 25% 

identity and 45% similarity of crescentin with the eukaryotic intermediate filament protein 

cytokeratin 19, as well as 24% identity and 40% similarity with the eukaryotic intermediate 

filament protein nuclear lamin A (Ausmees et al., 2003). In eukaryotic intermediate 

filament proteins the so called “head” and “tail” domains do not generally show high 

sequence conservation so these regions are not detected in crescentin (Strelkov et al., 2003; 

Ausmees et al., 2003). Crescentin does share similarities in terms of the biochemical 

properties of the intermediate filament proteins. Purified histidine-tagged crescentin 

spontaneously assembled into filaments without the addition of nucleotides or co-factors, 

Figure 11: Crescentin the Caulobacter crescentus cytoskeletal protein. Adapted from 
Taken from Ausmees et al., (2003). A) Immunolocalisation of crescentin in a crescent 
shaped cell. B) A representation of the helical localisation of crescentin to the inner 
curvature of a vibriod shaped C. crescentus cell. C) Comparison of domain organisation of 
predicted coiled-coils (grey rectangles) of crescentin to human intermediate filament 
proteins nuclear lamin A and cytokeratin 19. 
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this being characteristic of intermediate filaments as opposed to actin and microtubules 

which require additional factors for assembly (Desai, and Mitchison, 1997; Ausmees et al., 

2003; Korn et al., 1987). Crescentin’s ability to result in a curved cell shape appears to be 

facilitated by its in vivo ability to form filaments that are connected to the membrane, that 

when detached compress into helical shapes. It is believed that the pressure applied from 

its mechanical compressive properties to one side of the cell result in a local release of 

strain that produces a gradient of elongation rates favouring higher elongation on the 

opposite cell. Therefore, the cell inserts peptidoglycan at different rates and this results in a 

maintained curvature (Cabeen et al., 2009). Crescentin does not act alone in a Caulobacter 

cell and one of the proteins that may affect crescentin is MreB, possibly providing a 

connection to the cell envelope (Charbon et al., 2009). Crescentin is also affected by an 

enzyme called Ctp synthase (CtpS) which may negatively regulate the ability of crescentin 

to cause curvature in the cell (Ingerson-Mahar et al., 2010).                

Quite recently the coiled-coil domain architecture of crescentin and eukaryotic 

intermediate filaments has served as a basis for searching for other possible intermediate 

filament-like proteins in bacteria (Bagchi et al., 2008). These searches have produced 

potential candidates across widely spanning phylogenetic groups, suggesting that the 

intermediate filament-like rod domain architecture could be conserved across bacteria. 

Analysis of a small number of candidates from a possibly more conserved family of 

actinomycete intermediate filament-like proteins, suggest that these proteins have 

biochemical properties similar to intermediate filament proteins and crescentin. Three 

actinomycete intermediate filament-like proteins formed filamentous structures in vitro in a 

similar fashion to crescentin and intermediate filament proteins (Bagchi et al., 2008). 

Differences, however, in the properties of the filaments could suggest that coiled-coil 

proteins in different bacteria can differ in a manner tailored to the function in vivo. Further 

analysis of the Streptomyces coelicolor intermediate filament-like protein AbpS/FilP 

suggest that this protein could be a cytoskeletal protein; however, its function is as yet 

unclear (AbpS/FilP discussed in more detail later) (Bagchi et al., 2008). The candidate 

cytoskeletal proteins identified by Bagchi et al., (2008) as well as the identification of 

crescentin, suggest that prokaryotes have a cytoskeletal system similar to eukaryotes that 

was probably inherited from the last common ancestor.      
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1.2.4 ParA/MinD family of proteins 
 

The ParA/MinD superfamily of cytoskeletal proteins are a family only present in 

prokaryotes with no known homologs in the eukaryotes. They very often show properties 

of cytoskeletal proteins by their ability to self-assemble into long polymeric filamentous 

structures in vitro and in many cases have been shown to form filaments in vivo (Shih et 

al., 2003; Ebersbach, and Gerdes, 2004). They are characterized by a deviant Walker A-

type ATPase motif consisting of the amino acids residues GXGGXHKTS (Koonin, 1993). 

This motif is generally located within the nucleotide-binding P-loop, located near the N-

terminus of the protein. The deviant Walker A-type motif separates them from a large 

number of the non-cytoskeletal Walker-type ATPases, though a very small number of non-

cytoskeletal proteins also have this motif (Shih, and Rothfield, 2006; Koonin, 1993). The 

ParA/MinD superfamily can be divided into the MinD and ParA subgroups. Where the 

MinD subgroup of proteins has been found to be involved in the placement of cell division 

sites within various bacterial models (Shih et al., 2003). The ParA subgroup has been 

found to be involved in the segregation of either plasmid DNA or chromosomal DNA 

(Ebersbach, and Gerdes, 2004; Sharpe, and Errington, 1996; Figge et al., 2003). 

In E. coli mutants of the Min system give rise to a minicell phenotype, with cells lacking 

normal DNA levels (Adler et al., 1967). The proteins in this system; MinC, MinD and 

MinE control division site placement (Margolin, 2001). This is manifested by placement of 

the MinD cytoskeleton. To which this protein is spatially and temporally organised into 

helical oscillations (Raskin, and de Boer, 1999; Shih et al., 2003). It assembles at cell poles 

and oscillates from one pole to the other. This is partly regulated by MinE, which helps 

prevent MinD formation at the mid-cell position (Hale et al., 2001). The oscillations of 

MinD shown in Figure 12, create a concentration gradient where MinD is low in the 

midcell position. MinC mediates an inhibition of FtsZ polymerisation where MinD is 

positioned therefore preventing septum position at the cell poles and in the midcell where 

MinD is deficient, cell division can occur (Dajkovic et al., 2008). C. crescentus has a 

protein MipZ that is a member of the ParA superfamily that functions in a manner similar 

to the min system, inhibiting polymerization of FtsZ and affecting the site of cell division 

(Thanbichler, and Shapiro, 2006). Whereas MinC does not affect the GTPase activity of 

FtsZ, MipZ stimulates the GTPase of FtsZ leading to excessive GDP bound FtsZ and 

depolymerisation. MipZ in a similar way to MinD, forms a polar gradient, where it is 
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highest in concentration at the cell poles and the concentration is lower towards the mid-

cell position (Kiekebusch et al., 2012).       

   

The Type I plasmid partitioning systems such as plasmid F, plasmid P1 and  pB171 that 

have been studied in E. coli generally consist of a partitioning locus consisting of a ParA 

protein, a ParB protein and cis-acting DNA sites parS/parC (Mori et al., 1989; Davis et al., 

1992; Ebersbach, and Gerdes, 2001). Depending on the plasmid segregation system, the 

Walker-type ATPase, ParA, can also go by alternative names SopA or ParF (Mori et al., 

1989; Barilla et al., 2005). The centromere binding protein, ParB, can also go by the other 

names of SopB or ParG depending on the system (Mori et al., 1989; Barilla et al., 2005). 

The ParB proteins link the ParA proteins to the parS/parC sites. The ParA proteins 

involved in plasmid segregation have been shown to form cytoskeletal filaments as well as 

showing oscillatory localisation patterns similar to those observed for MinD proteins 

(Ebersbach, and Gerdes, 2004). The cytoskeletal filaments and dynamic nature of the ParA 

proteins are believed to mediate plasmid partitioning, yet at the moment there is no single 

clear model that describes how ParA proteins mediate plasmid translocation. Though 

possibilities are that oscillations set up concentration gradients for ParB binding at 

alternative poles of the cell, a similar pushing mechanism as to that performed by ParM in 

typeII plasmid partitioning systems or perhaps by ParA association with the nucleoid and 

piggy-backing chromosomal segregation (Shih, and Rothfield, 2006; Szardenings et al., 

2011).   

Figure 12: Dynamic helical MinD and MinE filaments showing cyclical assembly and 
disassembly. Taken from Shih & Rothfield, (2006). MinD-ATP subunits are coloured 
yellow, MinD-ADP subunits are coloured orange and MinE subunits are coloured green. 
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ParA and ParB proteins have been shown to have a role in the segregation of chromosomal 

DNA within the model organisms Bacillus subtilis, Caulobacter crescentus and 

Streptomyces coelicolor (Sharpe, and Errington, 1996; Figge et al., 2003; Jakimowicz et 

al., 2007).  In Bacillus subtilis the genome encoded ParA is named Soj and ParB is named 

SpoOJ. The precise roles of these proteins were for a time unclear, however, more recently 

a mechanism has been proposed in which SpoOJ and Soj are capable of controlling both 

DNA segregation and initiation of chromosomal replication (Figure 13)(Gruber, and 

Errington, 2009). SpoOJ has been shown to bind to a number of parS sites located close to 

the origin (Lin, and Grossman, 1998). SpoOJ has also been shown to be needed for the 

correct segregation of a nucleoid into the prespore compartment prior to sporulation (Wu, 

and Errington, 2003). Soj, however, does not control chromosome segregation, instead it 

can control DnaA; therefore, it controls chromosome replication and sporulation (Lee, and 

Grossman, 2006; Murray, and Errington, 2008). SpoOJ binds to parS sites and then spreads 

laterally for multiple kilobases, binding to DNA in a non-specific manner (Breier, and 

Grossman, 2007). SpoOJ is able to recruit SMC and the other condensing components to 

the replication origin (Gruber, and Errington, 2009), forming a nucleoprotein complex 

therefore facilitating its role in chromosome segregation. SpoOJ also believed to increase 

the ATPase activity of Soj (Leonard et al., 2005), therefore also plays a role in controlling 

Soj and chromosome replication initiation as well.     

  
 

Figure 13: Role of SpoOJ and Soj in controlling Chromosome segregation and replication. 
Taken from Gruber & Errington, (2009). SpoOJ is able to trigger smc/condensin mediated 
chromosome segregation through binding to parS sites around the replication origin. Soj 
can control initiation of DNA replication through DnaA, where dimeric Soj activates DnaA 
and replication, whereas monomeric Soj inhibits DnaA. SpoOJ is able to stimulate Soj 
ATPase activity. spoOJspo and spoOJseg mutants that uncouple the two roles of SpoOJ.   
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1.2.5 DivIVA 
 

DivIVA proteins are novel bacterial cytoskeletal proteins that have been shown to play 

differing roles in cell shape determination in a number of morphologically different 

bacteria. Members of the DivIVA protein family are conserved across Gram-positive 

bacteria (Oliva et al., 2010), but are not present in Gram-negative bacteria, notably this 

includes the model organism E. coli. DivIVA has so far been most heavily studied in 

Bacillus subtilis, but also has been looked at in Corynebacterium glutamicum, 

Streptomyces coelicolor, Streptococcus pneumoniae, and Mycobacterium species. DivIVA 

from B. subtilis has been shown to form higher order oligomeric structures (Stahlberg et 

al., 2004), this together with association of DivIVA with cell wall synthetic machinery 

(Mukherjee et al., 2009) suggest that it is an important bacterial cytoskeletal protein.    

 The divIVA locus in Bacillus subtilis was first identified as a knockout, which causes a 

minicell phenotype similar to that seen in a minC or minD knockout (Cha, and Stewart, 

1997; Lee, and Price, 1993). Overproduction of DivIVA resulted in long filamentous cells 

(Cha, and Stewart, 1997). DivIVA localises to newly emerging cell division sites, as well 

as sites at the cell poles where it remains even after cell division (Edwards, and Errington, 

1997; Edwards et al., 2000). The current model of DivIVA activity suggests that it 

sequesters the cell division inhibitors MinCD to the cell poles allowing cell division to 

occur at central sites (Cha, and Stewart, 1997; Edwards, and Errington, 1997). DivIVA 

itself has not been shown to bind either MinC or MinD, however there is another 

component MinJ which bridges DivIVA and MinD (Bramkamp et al., 2008; Patrick, and 

Kearns, 2008). Only after establishment of the cell division site at midcell (and 

establishment of the new daughter cell pole) does DivIVA localise to the cell division site. 

DivIVA also has a second role, whereby it acts in the process of chromosome segregation. 

In sporulating cells, DivIVA interacts with the chromosome segregation machinery to help 

position the oriC region of the chromosome at the future cell pole that is to become the 

spore compartment (Perry, and Edwards, 2004; Thomaides et al., 2001). 

In actinomycetes, DivIVA proteins have been shown to have a somewhat different role in 

cell shape determination than to the role in Bacillus subtilis. In the organisms 

Mycobacterium smegmatis, Mycobacterium tuberculosis, Streptomyces coelicolor, and 

Corynebacterium glutamicum, DivIVA homologs appear to play a role in apical growth 

associated with long non-spherical cell shapes that are not dependent on MreB (Flärdh, 

2003a; Hempel et al., 2008; Letek et al., 2008; Nguyen et al., 2007; Ramos et al., 2003). 
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Fluorescent vancomycin stains nascent sites of peptidoglycan insertion into the cell wall of 

gram-positive bacteria (Daniel, and Errington, 2003). Staining of the cell walls of 

Mycobacterium smegmatis, Streptomyces coelicolor and Corynebacterium glutamicum 

with fluorescent vancomycin suggests that these organisms insert new cell wall material at 

the tips (Daniel, and Errington, 2003; Flärdh, 2003b; Chauhan et al., 2006). Current 

research suggests that DivIVA in these organisms affects cell wall assembly at apical 

growth sites, this could be by possible interaction with penicillin-binding proteins and/or 

other cell wall synthetic machinery (Letek et al., 2008; Flärdh, 2003a; Hempel et al., 2008; 

Nguyen et al., 2007; Xu et al., 2008). In Mycobacterium, the DivIVA homologue Wag31 

has been shown to make direct contact with penicillin-binding protein 3 (PBP3) 

(Mukherjee et al., 2009). Therefore, making the connection between DivIVA polar 

localisation and its effect on polarised growth in actinomycetes.   

The DivIVA protein from Streptococcus pneumoniae has a somewhat similar localisation 

pattern as that in Bacillus subtilis of localisation to cell division sites and to cell poles 

(Fadda et al., 2007). DivIVA of Streptococcus pneumoniae was also shown to have 

potential interactions with members of the cell division machinery and so is believed to 

play a role in maturation of cell poles (Fadda et al., 2007). However, interestingly 

Streptococcus pneumoniae lacks a Min system suggesting its DivIVA and B. subtilis 

DivIVA could have independently evolved a similar function (Fadda et al., 2007). 

It is emerging that DivIVA may be partly regulated by posttranslational modifications such 

as phosphorylation. It was shown that Wag31 in Mycobacteria is post-translationally 

modified by phosphorylation (Kang et al., 2005; Kang et al., 2008). The phosphorylation 

state of Wag31 was shown to influence an effect on actively growing cells; however, the 

precise mechanism is currently uknown. Recently it has been found that S. coelicolor 

DivIVA is also phosphorylated (Manteca et al., 2011; Hempel et al., 2012). Interestingly 

DivIVA from spherical shaped Streptococcus pneumoniae is also phosphorylated, and cells 

carrying a non-phosphorylatable copy of DivIVA featured an extended cell shape (Fleurie 

et al., 2012; Beilharz et al., 2012). 

Structural studies of DivIVA proteins have currently been limited to only the Bacillus 

subtilis DivIVA protein where the 3D structure has been solved (Oliva et al., 2010). 

Bacillus subtilis DivIVA is 19.5kDa and according to sequence data forms coiled-coil 

structures possibly similar to tropomyosin (Edwards et al., 2000). Analytical 

ultracentrifuge data suggests that DivIVA forms oligomers of 6-8 molecules (Stahlberg et 

al., 2004). Transmission electron microscopy was used to visualised oligomeric structures 
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of DivIVA (Figure 14) (Stahlberg et al., 2004). A 6-8-mer of DivIVA forms a 

characteristic ‘doggy bone’ shaped structure. These ‘doggy bone’ structures form end to 

end dimers that then assemble into higher order long thin wires of ‘doggy bones’. 

Individual wires can then associate with other wires to form 2-D structures, where 

individual ‘doggy bones’ can replace other ‘doggy bones’. Currently the implications of 

oligomerisation of DivIVA on the function of the protein are not very well understood; 

however, DivIVA structures contribute towards its role in cell division placement 

(Muchova et al., 2002).  

   

One idea for the ability of DivIVA to localise to polar positions is that the localisation is 

dependent on the geometrical cue of negative membrane curvature (Ramamurthi, and 

Losick, 2009; Lenarcic et al., 2009) such as that found at the ends and the dividing mid-

cell positions of a B. subtilis cell. Although unlikely that a single protein of DivIVA could 

sense membrane curvature it is more likely that the multimers of DivIVA are able to bridge 

the curvature of a membrane. Recently the crystal structure of B. subtilis DivIVA has been 

solved (Oliva et al., 2010). The full length protein could not be solved. However, a crystal 

structure of the N-terminus and a low resolution crystal of the C-terminus were merged to 

make a model of the full length protein (Figure 15). The N-terminal domain was able to 

form a dimer. It was also shown to be important for membrane binding, whereby 

hydrophobic and positively charged residues allow binding. A Phenylalanine residue (F17) 

is considered essential for membrane binding allowing insertion into the membrane. The 

C-terminal crystal structure could only be solved to a lower resolution than the N-terminal, 

but confirmed that the C-terminal forms a coiled-coil, of which a dimer of two coiled-coils 

makes a tetramer with another dimer, this tetramer adds some curvature into the DivIVA 

molecule. Possibly suggesting that it could bend DivIVA proteins so that they could 

contact the membrane several times.    

Figure 14: Assembly of DivIVA into higher order structures. DivIVA proteins form 6-8-mers 
that make a ‘doggy bone’ shaped structure (A).  Individual ‘doggy bones’ form dimers (B) that 
then oligomerise to form long thin wires (C) and two dimensional networks (D). Adapted from 
Stahlberg et al., (2004).   
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There is a second DivIVA-like protein in B. subtilis called GpsB, which contains the N-

terminal domain of DivIVA and has a different C-terminal (Claessen et al., 2008). It has 

been shown that in cooperation with the cell division protein EzrA, GpsB coordinates 

localisation of PBP1 for control of new cell wall incorporation in the processes of both cell 

elongation and cell division. GpsB is also present in the genomes of other Gram-positive 

such as Streptococcus pneumoniae, Staphylococcus aureus and Listeria monocytogenes. 

 

1.2.6 The Structural Maintenance of Chromosomes and MukB proteins 
 

The Structural Maintenance of Chromosomes (SMC) proteins are a family present across 

all eukaryotes, as well as being found in all Gram-positive bacteria and archaea, but are 

found in less than half of the Gram-negative bacteria  (Soppa, 2001). In eukaryotes, SMC 

proteins have been shown to have roles in multiple functions including chromosome 

condensation and cohesion, there is also evidence that they may be involved in DNA 

recombination and repair (eukaryotic SMC functions reviewed in (Ball Jr, and Yokomori, 

2001; Strunnikov, and Jessberger, 1999)). In prokaryotes SMC proteins are involved in the 

processes of chromosome condensation and partitioning (Lindow et al., 2002a; Jensen, and 

Shapiro, 1999). Gram-negative bacteria such as E. coli have a closely related protein to 

SMC proteins, called MukB (Niki et al., 1991). MukB’s structural similarity to SMC, as 

well as knockout phenotype suggest that MukB and SMC proteins are functionally 

analogous in bacteria (Melby et al., 1998; Yamanaka et al., 1994). Strictly speaking SMC 

and MukB proteins in bacteria aren’t cytoskeletal proteins as they do not form filaments. 

However, when first discovered MukB was compared to myosin and kinesin in eukaryotes 

due to its coiled-coil structure with Walker A and B sites in terminal globular heads (Niki 

 
 
Figure 15: A composite model of the structure of a DivIVA tetramer formed from the 
crystal structures of the N-terminal and C-terminal domains. Taken from Oliva et al., 
(2010). The N-terminal domain facilitates formation of a parallel dimer, the C-terminal 
domains can then form an anti-parallel tetramet. 
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et al., 1991). SMC and MukB proteins are the closest currently known bacterial proteins to 

having a motor-like function similar to the motor proteins associated with eukaryotic 

cytoskeletal filaments (Soppa, 2001).The functional role of SMC and MukB proteins in 

chromosome condensation and partitioning in the development of bacteria also makes 

SMC and MukB proteins of worth mentioning within this document.  

The structure of SMC and MukB proteins (Figure 16) from the N-terminus begins with a 

globular domain containing a Walker A nucleotide binding motif. This then leads to two 

coiled-coil domains that are separated by a small globular hinge domain. Following the 

second coiled-coil domain is the C-terminal globular domain that contains a Walker B 

nucleotide binding motif. SMC and MukB proteins form anti-parallel homodimers 

whereby the coiled-coils form anti-parallel dimers and adjacent C and N terminal globular 

heads come together to form the proposed DNA binding molecular motor (Melby et al., 

1998).  The hinge domain allows movement of the coiled-coil domains allowing the shape 

to be either an “open-V” or to lock the two globular heads and form a “folded rod”. This 

flexibility of the hinge region could allow the two globular heads to bind to two separate 

DNA sites and provide movement. Studies with Bacillus subtilis SMC show that it 

preferentially binds single stranded DNA over double stranded DNA (Hirano, and Hirano, 

1998). It has also been shown that in the presence of ATP it leads to the aggregation of 

single stranded DNA. The implications of this finding are currently unknown, though it 

could be that it somehow introduces writhe into DNA molecules through single-stranded 

DNA. In B. subtilis, SMC localises to the edge of the chromosomal DNA and particularly 

at replication forks (Graumann et al., 1998; Lindow et al., 2002b). In addition null mutants 

in smc in B. subtilis are more prone to producing anucleate elongated cells, and are lethal 

when grown at 37˚C (Moriya et al., 1998). Therefore, reflecting that SMC must play a 

crucial role in organising the DNA. In E. coli MukB localised at the same position as oriC 

throughout the cell cycle (Danilova et al., 2007). In E. coli mukB mutants are lethal at 

higher temperature and at lower temperatures have defects in chromosome partitioning 

(Niki et al., 1991). Studies into the eukaryotic SMC complex condensin provide insights 

into SMC function, as condension may work by the coiled-coil arms of the protein looping 

to form a circle around strands of DNA, linking multiple strands that allow chromosome 

condensing and adding a certain amount of rigidity into the condensing chromosome 

(Cuylen et al., 2011). It has also been reported that MukB associates with topoisomerase 

IV in E. coli, the decatanase activity of topoisomerase IV may help unlink segregating 

sister chromatids (Hayama, and Marians, 2010; Li et al., 2010).           
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1.3 Polarisation in bacteria 
 

Polarisation is important in bacteria for control of cell shape and also designating the ends 

of the cells. Cell shape determination in the standard rod shaped bacterium E. coli or B. 

subtilis depends on lateral cell wall synthesis where the positioning is directed by MreB 

homologs (Daniel, and Errington, 2003; Wachi et al., 1987) and cell wall remodelling at 

cell division sites is dependent on FtsZ homologs (Lutkenhaus, 1993; Lutkenhaus, and 

Addinall, 1997). Fitting in with this idea spherical bacteria such as S. pneumoniae lack 

MreB and mediate cell division into identical daughters cells solely by cell wall synthesis 

directed by FtsZ (Koch, 2000). Cell division can be dependent on a Min system, which in 

turn is dependent on polarisation of the Min proteins (Shih et al., 2003). In B. subtilis 

DivIVA plays a role in controlling the Min system and exhibits a polar localisation (Cha, 

and Stewart, 1997; Edwards, and Errington, 1997). Therefore, it is also of relevant note 

that in the actinomycetes where MreB is dispensable for cell shape determination, that a 

mechanism of polarised cell wall extension exists that appears to be heavily dependent on 

DivIVA (Flärdh, 2003a; Hempel et al., 2008; Letek et al., 2008; Nguyen et al., 2007; 

Ramos et al., 2003).  

 

Figure 16: SMC structure and function. (A & B)The model of prokaryotic SMC structure 
based on Electron Micrograph images (taken from Melby et al., (1998). Arrows indicate the 
N→C direction of the polypeptide, with SMC forming antiparallel coiled-coils.  Associated 
terminal domains lock the molecule into a “folded-rod” (A) or unassociated leads to an 
“open-V” conformation (B). C) SMC in the eukaryotic condensin complex (taken from 
Cuylen et al., (2011)). An SMC dimer, one monomer purple the other monomer orange,  is 
the major component of condensing, the SMC coiled-coil arms are able to loop around 
strands of DNA (DNA is black, with Histone complexes attached in grey), enabling linking 
of DNA strands. 

A 

B 

C 

50 

 



                                                                                               

 

 
However, as such as these hard and fast rules (Figure 17) regarding bacterial cell shape are 

important in our understanding of bacterial cell shape determination it really comes as little 

surprise that there is more complexity involved, as well as an increasing list of other 

proteins that may be specific to bacterial groups, that also contribute to cell shape 

determination and/or cell polarity. Interestingly in the actinomycete Corynebacterium 

glutamicum a novel protein has also been identified, RsmP (Fiuza et al., 2010), that is 

overexpressed when DivIVA is depleted. This protein forms cytoskeletal like filaments in 

vivo and in vitro, and was shown to be essential to maintenance of a rod shape. It was also 

demonstrated that RsmP is phosphorylated and a phosphomimetic copy of RsmP primarily 

localised to the cell poles. The precise mechanism in which RsmP contributes to cell shape 

determination, however, remains to be elucidated.  

There are also other examples of bacteria more distantly related than the Gram-positive 

actinomycetes that demonstrate polarisation, Such as the Gram-negative Caulobacter 

crescentus which features a dimorphic life cycle where cell division generates two 

different cell types in the form of a motile swarmer cell and an immotile stalked cell. A 

single flagellum forms on the pole of the predivisional swarmer cell and on the opposite 

side of the predivisional cell a single stalk forms. Therefore, polarity is an important 

Figure 17: Cell Shape Determination and the role of Cytoskeletal Proteins. Adapted from 
Margolin, (2003). MreB (Green) is associated with rod shaped bacteria by means of a helical 
pattern of cell wall remodeling, FtsZ (red) facilitates cell wall remodeling at the cell division 
site. In spherical shaped bacteria cell shape is driven primarily by FtsZ (cell wall extension 
shown in orange). In Acinomycetes, the rod-shaped C. glutamicum lacks MreB and polar 
growth (orange) is governed by DivIVA, as well as in S. coelicolor where DivIVA controls 
apical growth and branching.  
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determinate in being able to form quite different structures on the opposite sides of the pre-

divisional cell. Polarity which appears to contribute to the cell cycle in Caulobacter 

crescentus is determined by a complex series of events involving a few novel polarity 

determining proteins TipN and PopZ (Schofield et al., 2010; Lam et al., 2006; Bowman et 

al., 2010; Bowman et al., 2008; Ebersbach et al., 2008). These proteins appear to be 

important in determining the localisation of replication origins in the segregating 

chromosome in a ParAB system which they help localise to opposite cell poles. Also, 

important in this system is a protein MipZ, which interacts with ParB and therefore the 

origin of the nucleoid (Kiekebusch et al., 2012; Thanbichler, and Shapiro, 2006). A 

cellular gradient of MipZ is established whereby it is most concentrated at the cell poles, as 

it is seen that MipZ interferes with FtsZ polymerisation this forms a system reminiscent of 

nucleoid occlusion. Where the site of cell division is established away from the cell poles 

and the nucleoid and is established in the mid-cell position. Interestingly prior to FtsZ 

positioning to the mid pole it may contribute as well as MreB to peptidoglycan at the cell 

pole associated with stalk synthesis (Divakaruni et al., 2007; Wagner et al., 2005). 

As well as polarisation being important to Caulobacter crescentus, it is also important to 

other members of the alphaproteobacteria such as the Rhizobiales, which grow by budding 

that has an element of polarised growth to it (Hirsch, 1974; Brown et al., 2012). However, 

this represents a relatively unknown mechanism. There are other bacteria for which 

polarised growth may be important for which there is not space to consider here, for a 

particularly good review look at (Brown et al., 2011).        

A possible important factor in cell biology and the formation of polarity is the organisation 

of the membrane. To which there is complexity emerging in terms of the pattern and 

distribution of lipids in the membrane (Owen et al., 2012). Leading to the idea of lipid rafts 

where different types of lipids (such as cholesterol, saturated sphingolipids and 

phospholipids) may accumulate in different parts of the membrane, thereby changing the 

packing densities and affecting membrane protein positioning. Curvature of the membrane, 

such as cell poles, implemented by the bacterial cell wall maybe a mechanism by which 

lipids can separate into different phases (Huang et al., 2006). Possibly important in this 

mechanism is the anionic phospholipid cardiolipin. The use of the stain 10-N-nonyl-3,6-

bis(dimethylamino)acridine (or nonyl-acrydine-orange (NAO)), has been found to 

preferentially mark the position of cardiolipin in the membrane (Petit et al., 1992). When 

used to stain E. coli (Mileykovskaya, and Dowhan, 2000) or B. subtilis (Kawai et al., 

2004) it was found that cardiolipin was more abundantly localised to the septum and poles 
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(the places of more extreme curvature). Cardiolipin was also found to be in abundance at 

the hyphal tips, branch points and anucleate regions of S. coelicolor (Jyothikumar et al., 

2012). Changes in levels of cardiolipin resulted in morphological defects in S. coelicolor, 

some of which are associated with the hyphal tip. If E. coli are forced by chambers into an 

altered cell shape (Renner, and Weibel, 2011), the parts of extreme negative curvature are 

those with the highest abundance of cardiolipin, as well as the pole localising protein 

MinD, suggesting a mechanism by which negative membrane curvature can relocalise 

lipids and proteins. However, the extent to how much lipid rafts affect protein localisation 

has yet to be validated. Be it by lipid distribution or by the actual membrane curvature 

(Lenarcic et al., 2009; Ramamurthi, and Losick, 2009) the poles are important for protein 

localisation. Another mechanism of polarisation is nucleoid occlusion (Wu, and Errington, 

2011; Wu et al., 2009), whereby polar proteins may localise to the poles via the poles 

being DNA free, as seen for the protein PopZ from C. crescentus (Ebersbach et al., 2008).   

 

1.4 Bacterial cytoskeletal proteins in Streptomyces 
 

1.4.1 FtsZ in Streptomyces  
 

Cell division in bacteria requires FtsZ, the bacterial homologue of the eukaryotic 

cytoskeletal protein tubulin. Cell division in coccoid or rod shaped bacteria relies on the 

positioning of FtsZ into a ring around the mid cell. However, S. coelicolor is a filamentous 

bacterium in which binary fission does not occur, making the study of FtsZ of interest. The 

current research into the role of FtsZ in Streptomyces biology is summarised below.       

It has been found that S. coelicolor has a single 399 amino acid long homologue of the cell 

division protein FtsZ. The FtsZ protein in S. coelicolor is highly similar to FtsZ in other 

bacteria, showing 48% sequence conservation to E. coli FtsZ with a further 22% sequence 

similarity (McCormick et al., 1994). FtsZ knockouts are often lethal in bacteria as FtsZ is 

essential for cell division. However, in S. coelicolor surprisingly, an FtsZ mutant is viable. 

Though is lacking the vegetative crosswalls and the sporulation septa, the latter meaning it 

is unable to form spores. This data suggested that FtsZ is directly involved in the formation 

of vegetative crosswalls as well as the sporulation septa (McCormick et al., 1994). An FtsZ 

mutant is viable as growth and transfer of the vegetative hyphae can somehow tolerate the 

absence of vegetative crosswalls.   
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The localisation pattern of FtsZ in S. coelicolor was first observed through 

immunofluorescence (Schwedock et al., 1997). Within the vegetative hyphae only 

occasional widely spaced FtsZ “Z rings” were present. However, in the aerial hyphae FtsZ 

forms into FtsZ rings in a regularly spaced, ladder-like array with the average spacing of 

1.3μm. The formation of the rings is extremely transient and is believed to happen prior to 

late nucleoid condensation, laying down the positioning for future sporulation septa. 

Having marked the position for septal formation and cytokinesis the FtsZ rings then seem 

to disappear (Schwedock et al., 1997).Visualisations of FtsZ through EGFP translational 

fusions revealed that the rings begin with formations of spiral intermediates (Grantcharova 

et al., 2005). The construction of Z rings visualised over time points suggested that FtsZ 

rings were constructed in a multi-step process. The stages of a proposed model of FtsZ 

assembly are shown in Figure 18. The upregulation of FtsZ associated shortly after aerial 

hyphae formation (Flärdh et al., 2000) leads to formation of helical filaments in step B. 

These then give rise to a regular array of FtsZ rings (step C). Shortly after the rings have 

formed septation occurs (step D & E) leading to formation of unigenomic spores (step F) 

(Grantcharova et al., 2005). 

    

 
Time-lapse imaging experiments have shown that FtsZ rings form in the vegetative hyphae 

at variable widely spaced distances, yet ring placement behind the hyphal tip progresses at 

a similar rate at which tip growth occurs (Jyothikumar et al., 2008). The live images also 

suggest that vegetative hyphae Z rings form through spiral intermediates (Jyothikumar et 

al., 2008), yet probably lacking the longer helical filaments observed in the aerial hyphae. 

The placement of the Z ring in S. coelicolor is a complex task and is believed to happen in 

Figure 18: A dynamic model of 
FtsZ assembly through aerial 
hyphae septation and sporulation. 
Adapted from Flärdh & Buttner, 
(2009), with information from 
Grantcharova et al., (2005). 
Progression occurs in the order of 
A→F during development. 

 

A B C D E F 

54 

 



                                                                                               

a positive manner whereby instead of inhibition by a min system, FtsZ must instead be 

recruited. In part this mechanism is unfolding and the two proteins SsgA and SsgB have 

been shown to positively recruit FtsZ (Figure 19)(Willemse et al., 2011a). Whereby SsgA 

localisation in the aerial hyphae precedes SsgB to which SsgB localisation is dependent on 

SsgA. SsgB localisation precedes the localisation of FtsZ in the aerial hyphae, and 

formation of Z rings is dependent on SsgB. Therefore, forming a hierarchical system where 

SsgA recruits SsgB and SsgB recruits FtsZ.     

Imaging of FtsZ has revealed that it is dynamic and has a cytoskeletal role in forming Z 

rings which are important for septum/cross wall formation and constriction of sporulation 

septum. This is crucial for cell division in the Streptomyces; however, this process is also 

dispensable due to the ability of the Streptomyces to grow vegetatively. 

 
 

1.4.2 MreB in Streptomyces  
  

Actin homologous MreB proteins are notably present as cell shape determining factors in 

rod-shaped and other complex bacteria. Despite most actinomycetes lacking MreB 

proteins, S. coelicolor and other members of the genus Streptomyces possess MreB 

homologues (Burger et al., 2000). S. coelicolor has 2 MreB homologues, one MreBSc that 

is encoded in the gene cluster of mreBCD, the other MblSc (Burger et al., 2000; Mazza et 

al., 2006). There is also another MreB like protein encoded by sco6166 which lacks the IB 

and IIB subdomains of actin (Heichlinger et al., 2011). A cytoskeletal function involved in 

sporulation and spore wall formation are the current hypothesis for the function of the 

Streptomyces MreB proteins.  

In many bacteria containing MreB proteins including E. coli and B. subtilis, the mreB gene 

is located as part of an operon also including mreC and mreD (Kruse et al., 2005; Leaver, 

Figure 19: Placement of FtsZ by a positive 
mechanism involving SsgA and SsgB. SsgA 
recruits SsgB. SsgB recruits FtsZ and helps 
tether FtsZ to the membrane. SsgB 
continues to localise with FtsZ, whereas 
SsgA is removed and eventually comes to 
mark the positions of the future 
germinations sites. Adapted from Flärdh & 
Buttner, (2009), Jakimowicz & van Wezel, 
(2012).  
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and Errington, 2005). In B. subtilis the mreBCD cluster is near to valS encoding a valyl-

tRNA-synthetase and folC encoding a folylpolyglutamate synthetase (Margolis et al., 

1993). In S. coelicolor mreB was found to be downstream of valS and folC in an operon of 

similar architecture containing mreC and mreD (Burger et al., 2000). The MreC and MreD 

proteins of Streptomyces coelicolor are similar to those found in E. coli and B. subtilis, 

which have been shown to form a complex with MreB and attach it to the cell wall 

synthetic machinery (Kruse et al., 2005; Leaver, and Errington, 2005; Burger et al., 2000). 

The mreBCD operon is regulated by three promoters, one of which is developmentally 

upregulated at the time at which sporulation occurs (Burger et al., 2000). Knockout 

mutants of the mreB gene found in the mreBCD cluster confirmed that the MreB protein 

was not vital for formation of vegetative hyphae. However, the aerial hyphae of mreB 

mutants swelled and lysed. Transmission electron microscopy showed that the aerial 

hyphae appeared deformed, with a characteristic bloated appearance. Also, the spores 

formed from an mreB mutant were large, had thinner spore walls and had lost their high 

resistance characteristic (Mazza et al., 2006). Strains were generated for overexpression of 

MreB from a thiostrepton inducible tipA promoter. These strains were unable to grow on 

solid media containing thiostrepton. Whereas in liquid culture, with thiostrepton induction 

after 8 hours of normal growth, this lead to swelling and lysis of the hyphae (Mazza et al., 

2006).  

Using an MreB-EGFP fusion protein driven from the endogenous promoter region, the 

knockout of endogenous MreB was complemented. MreB-EGFP was shown to localise at 

the septa in aerial hyphae, followed by a later localisation of MreB at the poles of the 

prespore chains. In more mature spores MreB then went on to completely surround the 

intracellular side of the spore wall forming a ring. Immunogold labelling of MreB and 

electron microscopy showed that MreB is present just underneath, internal to the spore 

wall (Mazza et al., 2006). A comparison of FtsZ and MreB localisation patterns during 

development of the aerial hyphae and sporulation is shown in Figure 20. FtsZ directed 

septal positioning and septum formation occurs before MreB rings form, then FtsZ 

dismantles, whereas MreB localises to poles of prespores and as a ring internal to the 

sporewall.   
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The Knockout mutants and localisation of MreB showed that it is not essential to 

vegetative growth in S. coelicolor, but is more important in the development of the aerial 

hyphae and in sporulation (Mazza et al., 2006). The effect of overexpression suggests that 

the regulation of mreB has to be tightly controlled during development. In addition it was 

found that MreC and MreD also played a role in formation of the spores, as well as some 

of the other genes adjacent to the mreBCD cluster (Kleinschnitz et al., 2011). The role of 

the second MreB protein of S. coelicolor, Mbl, is similar to the role of MreB, mutants of 

mbl exhibit a phenotype of swollen and prematurely germinating spores (Heichlinger et al., 

2011). It is believed that this is a non-redundant function in which Mbl cannot compensate 

for a lack of MreB. However, Mbl also localises in a similar pattern to MreB (Figure 20) 

and is dependant on MreB for localisation, whereas MreB is not dependent on Mbl for 

correct localisation (Heichlinger et al., 2011). The MreB like protein encoded by sco6166, 

is expressed in the vegetative hyphae which is in contrast to the expression of mreB and 

mbl which occurs in the aerial hyphae. However, the effect of Sco6166 on the vegetative 

hyphae is not clear as a sco6166 mutant had a wild-type phenotype (Heichlinger et al., 

2011). Based on the data gathered on MreB and Mbl, MreB and Mbl must perform a 

different function in S. coelicolor than in other bacteria. The fluorescent translational 

fusions suggest that MreB and Mbl does not form helical filaments similar to the way in 

which MreB does in E. coli and B. subtilis (Jones et al., 2001; Kruse et al., 2003). 

However, the effect on aerial hyphae and spores, as well as the localisation data suggest 

Figure 20: Positons of the cytoskeletal proteins MreB or Mbl and FtsZ through the 
development of the aerial hyphae into spores, neither MreB or FtsZ are involved in apical 
growth. Adapted from Flärdh & Buttner, (2009), Carballido-Lopez, (2006b), with information 
from Mazza et al., (2006), Heichlinger et al., (2011). 
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that MreB and Mbl probably play a role in governing cell wall changes, it could possibly 

interact with PBPs or other cell wall synthetic machinery. However, in the vegetative 

hyphae these processes must be governed by a different mechanism.  

    

1.4.3 ParA-ParB of Streptomyces 
 

ParA in Streptomyces coelicolor is of note as a cytoskeletal filament. ParA along with 

ParB are important in chromosome segregation along sporulating aerial hyphae. The study 

of chromosome partitioning is of interest in S. coelicolor as unlike most bacteria studied, S. 

coelicolor has a linear chromosome. This along with the complex division of the aerial 

hyphae suggests that S. coelicolor would need a more complex method of chromosome 

segregation than for example B. subtilis or C. crescentus.    

Regularly in bacteria the origin of replication is located downstream of dnaA, then located 

upstream of dnaA are the partitioning genes parA and parB. Not surprisingly in S. 

coelicolor the parA and parB genes are organised in an upstream location to dnaA (Kim et 

al., 2000). ParA of S. coelicolor shows 55% similarity to Soj of B. subtilis and 49% 

similarity to ParA of C. crescentus. ParB of S. coelicolor shows 41% similarity to SpoOJ 

of B. subtilis (Kim et al., 2000). The S. coelicolor chromosome also contains 24, 16bp 

parS sites, with a large majority of them located close to oriC (Kim et al., 2000; 

Jakimowicz et al., 2002). A partial mutant of parB was found to have problems in DNA 

segregation with 13% anucleate spores. The same phenotype was observed with a deletion 

removing a segment of DNA from both parA and parB. Transcription from one of the 

parAB promoters is upregulated at the time when the aerial hyphae emerge (Kim et al., 

2000). 

In vitro and in vivo data suggest that ParB binds to sites closest to oriC, with the highest 

level of conservation to the predicted parS sequence. In vitro data suggests that ParB itself 

only binds to parS sites weakly, suggesting perhaps additional factors are needed. Due to 

the high density of parS sites close to the origin it is believed that ParB forms high-order 

nuclear protein complexes (Jakimowicz et al., 2002). Using a ParB-EGFP translational 

fusion ParB localisation was visualised both in the vegetative hyphae and the aerial hyphae 

(Jakimowicz et al., 2005a). In vegetative hyphae ParB-EGFP was either associated with 

the hyphal tip at an average distance of 1.4μm away from the tip, or was seen as relatively 

weakly visible irregularly placed foci. However, in aerial hyphae ParB-EGFP formed 

brighter foci that were regularly positioned. These foci are believed to coincide with the 
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position of oriC on each chromosome and corresponding with the time when DNA is 

condensing prior to spore septation. The foci are maintained until after septum formation 

and DNA condensation at which point they disappear (Jakimowicz et al., 2005a).      

A strain of S. coelicolor harbouring a knockout mutation of parA shows abnormal 

chromosome segregation and sporulation septum positioning compared to the wild-type 

(Jakimowicz et al., 2007). It was quantified that 26.1% of spores were anucleate in a parA 

mutant. Surprisingly this is higher than the percentage observed for ΔparB and ΔparAB by 

Kim et al., (2000). The significance of differing observations are questionable when 

considering the likely difficulty in quantifying anucleate spores as well as possible varying 

culture conditions. Jakimowicz et al., (2007) visualised immunostained ParA and found 

ParA to either be found at hyphal tips or extending from the tips as helical filaments. These 

helical filaments had a pitch of ~1.4μm, which interestingly corresponds to about the same 

length as prespore compartments. Based on their results they predicted a model in which 

ParA initially accumulated at the tips of new aerial hyphae, to then spread along growing 

aerial hyphae as a pair of helical filaments. Visualisation of immunostained ParA in either 

a ParB-EGFP strain or an FtsZ-EGFP strain at different developmental time points allowed 

the context of these helical ParA filaments to be formed (Jakimowicz et al., 2007). A 

model for the proposed formation of ParA filaments during sporulation and chromosome 

segregation is shown in Figure 21. Spreading of ParA helices from the tips preceded 

formation of FtsZ spirals. By the time Z-rings had assembled, ParA structures had 

disappeared. ParA helices preceded regular ParB foci assembly and disassembled before 

ParB foci disassembled. ParA filaments did not overlap with ParB foci. However, the study 

of ParB foci in a ParA knockout showed that the usual regular assembly of ParB foci along 

the aerial hyphae was dependent on ParA (Jakimowicz et al., 2007), suggesting that ParA 

could somehow position ParB complexes into the regular pattern observed for ParB-EGFP. 

It was also shown through in vitro studies that ParA positively increased the binding of 

ParB to parS sites. It was found that the ATPase activity of ParA increases ParB affinity 

for parS sites. Removal of the ATPase activity did not effect formation of ParA helices; 

however, there were still the chromosome segregation defects present that are associated 

with a parA knockout mutant. Bacterial two-hybrid data suggested that ParA and ParB 

interact and that this interaction is dependent on the ATPase activity of ParA (Jakimowicz 

et al., 2007). Thus, it seems that ParA has a vital function in controlling the activity and 

assembly of ParB and thus ParA’s absence manifests itself in chromosome segregation 

defects.  
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Recently interest has gathered regarding the regulation of the ParAB system in S. 

coelicolor. An actinobacterial signature protein ParJ was identified, which likely 

contributes to regulation of ParA (Ditkowski et al., 2010). ParJ was shown to interact with 

ParA and was able to depolymerise ParA filaments in vitro, leading to the possibility that 

ParJ helps regulate ParA directed chromosome segregation, possibly in a mechanism 

which triggers ParA to depolymerise after chromosomal segregation has reached a certain 

point. It was identified in C. glutamicum that the polarising protein DivIVA may help 

tether the replication origin to the cell pole via interaction with ParB, this was extended to 

show that S. coelicolor DivIVA also interacts with S. coelicolor ParB (Donovan et al., 

2012). Though this was not an extensive study it may suggest that DivIVA and the cell 

pole of S. coelicolor may contribute to regulation of the ParAB system. Alongside work 

presented here, it was found that the protein Scy the focus of this work, also interacts ParA 

and may be important in regulating ParA by preventing polymerisation of ParA in the 

vegetative and growing aerial hyphae (Ditkowski and Jakimowicz, unpublished). Not 

Figure 21: Developmental formation of ParA filaments and ParB foci in S. coelicolor. 
Adapted from Flärdh & Buttner, (2009), Jakimowicz et al., (2007), with information from 
Jakimowicz et al., (2005a). ParA can be seen in some vegetative cells associated with 
hyphal tips, whereas ParB was visualised at an average distance of 1.4μm from the tips or 
in an irregular faint pattern. ParA forms prior to regular ParB foci formation or 
FtsZ/septum formation, beginning from hyphal tips and spreading down the aerial 
hyphae. Once ParA filaments are formed the ATPase activity is believed to position ParB 
foci. As ParA is believed to form filaments with a regular structure it is believed that these 
filaments provide a positional cue for formation of ParB foci which form at regular 
positions that do not directly overlap with ParA filaments. In a parA mutant, regular ParB 
foci are absent suggesting that ParA helps coordinate ParB foci formation.ParA filaments 
disappear before FtsZ rings are formed and ParB foci remain after the disappearance of 
ParA filaments possibly by association with the chromosome.   
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surprisingly ParAB and chromosome segregation is regulated heavily in order to allow 

correct chromosome segregation of 1 chromosome per future spore in the aerial hyphae.        

 

1.4.4 DivIVA of Streptomyces 
 

The Streptomyces coelicolor genome contains a single DivIVA homologue with a potential 

cytoskeletal-like function. The DivIVA protein in Bacillus subtilis was localized to the cell 

poles, where it sequesters proteins in the Min system, this allows division to occur at 

central sites (Cha, and Stewart, 1997). However, S. coelicolor does not contain a Min 

system. DivIVASC was localized to the sites of peptidoglycan synthesis and based on the 

effect of altered expression on tip formation, could have a role in hyphal tip growth 

(Flärdh, 2003a).  

The DivIVA homologue in S. coelicolor shows high sequence conservation to DivIVA of 

the model organisms Bacillus subtilis and Mycobacterium tuberculosis. DivIVA-like 

proteins in the actinomycetes share a highly conserved N-terminus with B. subtilis and M. 

tuberculosis. In a similar manner they then have a less conserved coiled-coiled region, 

which is only highly conserved towards the C-terminal end of the coiled-coil region. All 

actinomycete DivIVA-like proteins analysed thus far, have an interrupted uncoiled variable 

stretch of sequence within the predicted coiled-coil region (Flärdh, 2003a). Similarly to 

other Gram-positive bacteria divIVASc is located closely downstream from ftsZ. However, 

unlike ftsZ in S. coelicolor, divIVASc was found to be an essential gene and knockouts could 

not be achieved. A divIVASc knockout could only be achieved when an additional copy of 

divIVASc was added in trans. By adding divIVASc in trans under a thiostrepton inducible 

promoter, in the absence of thiostrepton and due to the leaky nature of the promoter, the 

resulting strain K115 had 10% expression of wild-type levels of DivIVASc. Reduction of 

DivIVASc to 10% resulted in the phenotype of irregular curly shaped hyphae. The 

branching pattern was severly disrupted with unusual apical branches forming close to the 

hyphal tips (Flärdh, 2003a). Thiostrepton induction of DivIVASc to 25 fold overexpression 

relative to wild-type levels, resulted in a phenotype in which the cells appeared swollen, 

with them being both shorter and thicker. They were still capable of branching, yet the tips 

appeared remarkably wider and rounder than the rest of the hyphae. Maintaining wild-type 

levels of DivIVASc till after the production of normal hyphae and then overexpressing 

DivIVASc, resulted in tip swelling and hyperbranching. Thus, the DivIVASC protein 
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probably plays a morphological role in tip formation and hyphal branching (Flärdh, 

2003a). 

A DivIVASc-EGFP translational fusion strain driven by the endogenous promoter as well 

as encoding a wild-type copy of divIVASc was used to visualise the localisation of 

DivIVASc (Strain K112). A strain only encoding DivIVASc-EGFP with no wild-type copy 

of divIVASc (Strain K117) was observed to have irregularities in branching and the shape of 

hyphal tips, suggesting an interference of EGFP on DivIVASc function. Both DivIVASc-

EGFP and endogenous DivIVASc together was considered wild-type in phenotype. In this 

strain DivIVASc was localised to bright foci at hyphal tips as well as newly emerging 

branch points (Figure 22A). DivIVASc could not be visualised in the spores; however, was 

present as a foci at the tips of emerging germ tubes (Flärdh, 2003a). This data is similar to 

the pattern observed in S. coelicolor with fluorescently labelled vancomycin staining newly 

forming cell walls (Figure 22C), suggesting a role for DivIVASc in positioning of apical 

growth regions (Daniel, and Errington, 2003; Flärdh, 2003b). The localisation of 

DivIVASc-EGFP in strain K112 was visualised via time-lapse imaging allowing snap shot 

images to generate live cell imaging. This discovered that DivIVASc was localised to future 

branch sites significantly before branch emergence (Hempel et al., 2008). A strain 

comprising of both DivIVASc-EGFP driven from an endogenous promoter and endogenous 

DivIVASc overexpressed from pTipA allowed DivIVASc localisation when overepressed. 

Overexpression of DivIVASc leads to the assembly of multiple foci alongside the lateral 

wall where future branches will emerge (Hempel et al., 2008). Thus, DivIVASc is a 

molecular marker of future branch sites and sites of polar growth.       
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The mechanism by which DivIVA localises and establishes de novo tip formation is a 

subject of much interest. Of course one needs to remember that the M. tuberculosis 

DivIVA homologue Wag31 has already been shown to interact with a PBP protein, 

suggesting that DivIVA can recruit the cell wall synthesizing machinery (Mukherjee et al., 

2009). Streptomyces DivIVA as far as we know hasn’t yet been shown to interact with a 

PBP; however, it was found to interact with an enzyme, CslA that catalyses the synthesis 

of cellulose like beta-glucan-containing polysaccharides at the hyphal tip (Xu et al., 2008). 

A recent paper (Richards et al., 2012) described a possible model of DivIVA foci 

formation and control of apical growth. This model describes a mechanism called Tip-

focused splitting, where they observed that DivIVA foci break away from existing foci to 

establish new branch sites (Figure 22B). This could well be important for DivIVA foci 

propagation and hyphal branching. Also, this paper suggested a mechanism of de novo 

DivIVA foci formation and spontaneous branch formation (Figure 22A), incidentally 

needed for emergence of germ tubes from germinating spores. However, the interplay 

between these two possible mechanisms of DivIVA foci dynamics requires more 

A B 

C 

Figure 22: Localisation of DivIVASc-EGFP and fluorescent vancomycin conjugate (Van-Fl) at 
apical tips. Information from Flärdh & Buttner, (2009), Richards et al., (2012). DivIVA is 
positioned at growing tips and localises at future branch points (before cell wall extension) by 
two possible mechanisms; spontaneous nucleation (A) and Tip-focused splitting (B). Fluorescent 
vancomycin staining can only be seen once a new branch has committed to cell wall extension.  
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experimental biological insight to carefully determine how apical growth occurs in S. 

coelicolor. S. coelicolor DivIVA is also phosphorylated (Manteca et al., 2011; Hempel et 

al., 2012) similarly to DivIVAs from other organisms. It was shown that DivIVA 

phosphorylation resulted in disassembling of DivIVA from the tip and results in relocation 

of DivIVA foci and leads to branching at alternative sites. Alternatively lack of 

phosphorylation of DivIVA resulted in absence of branching. This provides a new 

dimension to DivIVA regulation and its involvement in controlling apical growth (Hempel 

et al., 2012).  

 

1.4.5 SMC in Streptomyces  
  

The issue of chromosome condensation and segregation in S. coelicolor has thus far been 

described in reference to the ParA/B proteins. However, identification of a single 

homologue to the Structural Maintenance of Chromosomes (SMC) protein family has 

revealed a possible alternative and/or redundant pathway to the ParA/B system (Dedrick et 

al., 2009; Kois et al., 2009). Genetic and localisation studies likely suggest that S. 

coelicolor SMC plays a role somewhat similar to that of B. subtilis SMC or MukB of E. 

coli.   

Analysis of the S. coelicolor genome identified a single SMC homologue (Bentley et al., 

2002). The S. coelicolor SMC protein has 47% sequence similarity to B. subtilis SMC and 

retains the same domain architecture (Kois et al., 2009). An smc null mutant was observed 

to have no visible defects in growth or morphology. However, an smc null mutant 

exhibited a chromosome segregation defect with approximately 7-8% anucleate prespore 

compartments (Dedrick et al., 2009; Kois et al., 2009). It was also found that S. coelicolor 

has single homologues to the SMC associated proteins ScpA and ScpB in Bacillus subtilis, 

showing 47% and 44% sequence similarity respectively (Dedrick et al., 2009; Kois et al., 

2009). Double knockouts of scpAB have been shown by two separate groups; however, the 

phenotypic consequence seen was slightly different. Whereas one group observed a 

chromosome segregation defect similar to that for the smc mutant, though with 6.3% 

anucleate prespores (Kois et al., 2009). The other group observed no defects leading to 

anucleate prespores, but did observe a ‘bilobed’ DNA distribution in the spores where 

DNA was irregularly shaped in line with the contour of the spore (Dedrick et al., 2009). 

Either observation suggests that ScpA and ScpB could be associated with SMC in a 

chromosome condensation/segregation function.  
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The smc gene has been subject to numerous combinations of double or even triple 

knockouts with varying genes involving chromosomal segregation or condensation. These 

including the parA and parB genes, as well as ftsK encoding a DNA motor protein that aids 

in movement of chromosomes to either side of an invaginating septum (Wang et al., 2007). 

Quantification of the extent of chromosomal segregation defects was calculated by looking 

at the percentage of anucleate prespores. These knockout studies suggest that SMC and 

ParB possibly act in differing systems that to some extent could be redundant (Dedrick et 

al., 2009; Kois et al., 2009). A double knockout of smc and parA is equal to the phenotype 

of a parA knockout suggesting that smc does not contribute anything to a parA knockout 

strain (Kois et al., 2009). A similar phenotype was seen for the double knockout of ftsK 

and smc (Dedrick et al., 2009). Interestingly a triple knockout of smc, parB and ftsK had a 

lower percentage of anucleate prespores than a double knockout of smc and parB (Dedrick 

et al., 2009). However, the viability of the spores from the triple knockout was 

significantly lower, possibly suggesting that each spore gets DNA, though not necessarily 

the correct allocation of DNA needed. This could make sense when considering FtsK’s 

function in the moving of chromosome ends into the spore compartments just prior to 

septum closure, thus FtsK knockouts can guillotine separating chromosomes (Wang et al., 

2007).   

Immunofluorescence and EGFP fusions have been used to visualise the localisation of the 

SMC protein during development in S. coelicolor (Kois et al., 2009; Dedrick et al., 2009). 

Both methods yielded a similar localisation pattern of SMC foci. In vegetative hyphae 

SMC only forms sporadic foci, suggesting that it does not have an important function in 

the development of the vegetative hyphae. SMC foci were more numerous in the aerial 

hyphae where they increased in number with the increasing length of the aerial hyphae. 

SMC foci were organised irregularly, though seemed to coincide with uncondensed 

chromosomes and as chromosomes condensed SMC foci disappeared. Immunolocalised 

SMC was then combined with fluorescent translational fusions of DnaN, FtsZ and ParB in 

order to determine any possible interaction and identify temporal patterns. The 

combination of immunolocalised SMC and the replisome marker, DnaN-EGFP, suggest 

that SMC foci do not co-localise with replisomes (Kois et al., 2009). Thus, suggesting that 

DNA replication and SMC mediated chromosome condensation are likely to be spatially 

and temporally separated. SMC foci appear before assembly of FtsZ-EGFP into spirals, 

and both FtsZ rings and SMC disappeared quickly after septum formation. This suggests 

that they are both important at the same developmental time; however, no spatial pattern 
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between SMC foci and FtsZ rings was noted (Kois et al., 2009). SMC foci first appear 

before regular ParB-EGFP foci (Figure 23). SMC foci reached their maximum 

number/intensity at the same time that ParB is organised into regularly spaced foci, 

suggesting that it is important that both processes happen in parallel at that developmental 

time point. Following septation, ParB foci remain assembled for longer than SMC foci. 

The organisation of SMC foci and ParB foci are not shared, as SMC is more irregular 

whereas ParB forms at regular places in the middle of the prespore compartment (Kois et 

al., 2009). ParB foci assembly could be affected by the presence of SMC, as in an smc 

knockout ParB foci appear to be significantly weaker (Kois et al., 2009).  

Overall it seems that SMC in S. coelicolor is active in the process of sporulation from 

dividing aerial hyphae. Probably by playing a role in chromosome condensation and/or 

segregation. However, the combinations of knockout mutations of chromosome 

segregation proteins suggests that there are even more possible mechanisms for 

chromosome segregation in sporulating aerial hyphae. Localisation of SMC in relation to 

other developmental proteins suggests that it is involved in chromosome segregation and 

condensation; however, the exact role in combination with other proteins in cell division 

cannot yet be easily described. 

 

 
 

 

Figure 23: Model of localisation of SMC, ParB and ParA during aerial hyphae development. 
Adapted from Flärdh & Buttner, (2009), Kois et al., (2009). SMC foci are most visible during 
stages of DNA condensation occurring at the same stage when regular ParB foci are visible 
performing chromosome segregation, that lasts for longer than SMC is present. 
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1.4.6 FilP/AbpS of Streptomyces 
 

The search performed by Bagchi et al., (2008) for proteins containing domain architecture 

similar to that of crescentin and intermediate filaments yielded three proteins from S. 

coelicolor. These included a protein encoded by sco5396, the homologue of this protein in 

Streptomyces reticuli had previously been shown to bind avicel and had therefore 

previously been named the Avicel Binding Protein (AbpS) in S. reticuli (Walter et al., 

1998). Also, identified was a protein encoded by sco3114, which has a similar sequence to 

AbpS. The search also identified a protein encoded by sco5397 that has been a feature of 

research carried out by the Kelemen lab (University of East Anglia) and is a focus of the 

research to which this literature review is intended for (therefore is described in greater 

detail later). AbpS was shown by Bagchi et al., (2008) to form filamentous structures in 

vitro and in vivo indicating that it possibly plays a cytoskeletal role in S. coelicolor. 

Therefore, they renamed AbpS to FilP (for Filament-forming protein).  

 AbpS was first identified in S. reticuli by its high affinity to avicel meaning that it could 

easily be co-purified alongside avicel (Walter et al., 1998). Avicel is the crystalline form of 

cellulose. The Streptomyces strain S. reticuli is able to grow on medium containing avicel 

as the sole carbon source (Schlochtermeier et al., 1992a). Avicel is the only known 

inducing carbon source for the production of a cellulase that is solely capable of degrading 

avicel, soluble cellulose, cellodextrins and p-nitrophenylcellobioside (Schlochtermeier et 

al., 1992a; Schlochtermeier et al., 1992b). The identification of AbpS implicated this 

protein as having a possible avicel/cellulose receptor function possibly associated with the 

production of the avicelase (Walter et al., 1999; Walter, and Schrempf, 2003; Walter et al., 

1998). The sequence of AbpS was predicted to have a putative C-terminally located 

transmembrane segment. It was shown through FITC labelling and proteinase K 

experiments that AbpS is anchored to the cell wall and protrudes from the hyphae (Walter 

et al., 1998). This was backed up by the use of immunolabelling and microscopic studies 

which suggested that the N-terminal portion of AbpS protrudes from the cell wall where 

the C-terminus is embedded (Walter et al., 1999). The N-terminal section containing the 

avicel binding properties was shown to form α-helical coiled-coils. Crosslinking 

experiments suggested that AbpS oligomerizes into homotetramers that could make the 

functional ‘avicel receptor’ (Walter, and Schrempf, 2003). SCO5396 in S. coelicolor 

shows high sequence conservation to AbpS of S. reticuli, though thus far it remains to be 
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seen how relevant the studies of AbpS in S. reticuli are to its function in S. coelicolor to 

which Bagchi et al., (2008) suggest a somewhat different role for FilP.     

FilP was identified from a wide search of bacterial genomes looking for intermediate 

filament-like rod domains along with the proteins encoded by genes sco5397 and sco3116. 

Further searches were carried out and Bagchi et al., (2008) suggested that FilP was a 

member of a conserved rod-domain protein family in the actinomycetes. From sequence 

analysis, this group of proteins contained a pair of conserved sequence motifs at the N-

terminal borders of the two first coiled-coil segments. Surprisingly SCO3114 and 

SCO5397 proteins were not members of this family of actinomycete rod-domain proteins 

(Bagchi et al., 2008). In support of this  family of actinomycete rod-domain proteins, 3 

candidate proteins, including FilP from S. coelicolor, as well as a protein from 

Mycobacterium bovis and a protein from Janibacter sp, were shown to be able to all form 

filaments in vitro (Bagchi et al., 2008). Purified histidine-tagged forms of the proteins 

spontaneously assembled into filaments without the addition of nucleotides or co-factors, 

this being a similar characteristic of intermediate filaments and crescentin (Ausmees et al., 

2003; Bagchi et al., 2008).  

A C-terminal EGFP fusion to FilP revealed that it appears to form filaments in vivo as well 

as in vitro (Bagchi et al., 2008)(Figure 24). A strain only encoding FilP-EGFP and no 

wild-type copy of FilP was observed to have slight morphological defects. Whereas a 

strain containing both FilP-EGFP and endogenous FilP was considered wild-type in 

phenotype. Not surprisingly then FilP-EGFP with endogenous FilP appeared to form 

longer filamentous structures than FilP-EGFP alone. A description of FilP localisation is 

difficult as it appeared to form filaments at emerged germ tubes as well as in seemingly 

random places along the hyphae. Also, filaments were usually located at apical tip regions. 

Where FilP alone did not form at apical tip regions, only hybrid FilP-EGFP/FilP formed 

here. FilP localisation was present in vegetative hyphae as well as immature aerial hyphae, 

but not much in spore chains. It remains unclear as to how much EGFP interferes with the 

ability of FilP to assemble into higher order structures.  
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A filP knockout was achievable and was described as having slight morphological defects 

associated with the vegetative hyphae, whereas the aerial hyphae appeared wild-type 

(Bagchi et al., 2008). The filP mutant was suggested to be slightly delayed in terms of 

growth rate. Atomic force microscopy of vegetative hyphae of a filP knockout suggested 

that the rigidity of the structure was somewhat weaker than that observed in the wild-type 

(Bagchi et al., 2008). Based on the information provided by Bagchi et al., (2008), it could 

be that FilP seems to have a role in growing vegetative hyphae where it could either 

provide some form of structural support or play a role in apical growth. It is possible that 

FilP may have some form of interaction with DivIVA at hyphal tips. FilP is also known to 

be both phosphorylated (Manteca et al., 2011) and acetylated (Hesketh et al., 2002), but as 

far as we know it is unknown how post-translational modification affects FilP. A 

cytoskeletal role for FilP seems to dispute the finding that AbpS in S. reticuli is an avicel 

receptor/binding protein. It was suggested by Bagchi et al., (2008) that FilP is intermediate 

filament-like, whereas AbpS is believed to have a transmembrane domain that is 

inconsistent with an intermediate filament-like protein (Walter et al., 1998). Based on 

current information at the moment it is unclear the precise role of FilP in S. coelicolor and 

AbpS in S. reticuli. To add further confusion, recent bioinformatics has suggested that FilP 

is not an intermediate filament protein (and likely not a transmembrane protein) and 

instead has a novel coiled-coil periodicity that is similar to the protein Scy encoded by the 

Figure 24: Localisation of FilP-EGFP C-Terminal translational fusion protein. Taken from 
Bagchi et al., (2008).  Strain M145 filP:: pNA432 (filP-egfp),  contains only filP-egfp, 
inoculated on solid media  (A). Strain M145 filP:: pNA859[Ф(filP-egfp)Hyb], contains both 
filP and filP-egfp, inoculated on solid media (B). M145 filP:: pNA859[Ф(filP-egfp)Hyb], 
contains both filP and filP-egfp, inoculated in liquid media (C).   
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upstream gene sco5397 (Walshaw et al., 2010), this coiled-coil structure will be discussed 

in the next section.                      

 

1.4.7 The Streptomyces cytoskeletal protein (Scy)  
 

The protein encoded by the locus sco5397, identified in searches for intermediate filaments 

by Bagchi et al., (2008), in S. coelicolor is located upstream of filP. Current research by 

the Kelemen lab (University of East Anglia, Norwich), suggests that sco5397 encodes a 

novel bacterial cytoskeletal protein that has thus been named Scy (for Streptomyces 

cytoskeletal protein). Based on bioinformatics data (Walshaw et al., 2010), part of Scy 

consists of a novel repeat number unit not seen in the classical heptad Coiled-coil domains 

(Figure 25). Scy is 1326 amino acids long. The N-terminal end of Scy consists of a short 

47 amino acid domain with the classical heptad repeat sequence (Figure 26A). A small 

“hinge” domain then separates the N-terminal coiled-coil domain from a longer coiled-coil 

domain of 1226 amino acids (Figure 26A). It is this domain that contains the novel form of 

non-heptad coiled coil sequences, whereby there is a periodicity of 3.643 (Walshaw et al., 

2010), higher than that of 3.5 of the heptad coiled-coil. This periodicity results in a repeat 

unit of 11-11-11-11-7. This alternate repeat unit results because of the differences between 

the repeat numbers of solvent exposed and non-polar buried residues that make up the 

proposed helical structure. A 51-residue coiled-coil repeat is expected to have spacings 

between the hydrophobic residues of 3, 4, (3, 4, 4) x 4 positions, made of one ‘‘heptad” 

unit and four ‘‘hendecad” units. This domain shows the non-heptad repeat sequence; 

however, the repeats contain 6 possible interruptions to which the consequence is currently 

unknown. It is likely that the novel repeat unit might have implications in the binding 

between Scy and it’s in vivo interacting proteins. Thus, Scy is not an intermediate filament 

or crescentin like protein as these proteins are based on classical heptad repeat coiled-coil 

structures. FilP has a similar domain architecture to Scy with a 51-mer coiled coil (Figure 

26B). Interestingly as well, the coiled-coil protein DivIVA has two coiled-coil segments 

(Figure 26C & D), with the CC2 domain possibly bearing some similarity to a non-heptad 

coiled coil, though it is also a short domain so it is uncertain if the periodicity of the 

hydrophobic residues has as much effect on the pitch of the repeat unit (Walshaw et al., 

2010).     
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It was found that a partial mutation in the scy gene resulted in defects with hyphal 

morphology and possibly growth at the tips of the hyphae. This mutant was seen to have 

short aerial hyphae and branching spore chains. DNA distribution was not even throughout 

the formation of the spores. Although the aerial hyphae are affected more, vegetative 

growth also showed a knotted phenotype showing Scy could be involved in general hyphae 

development. The precise function and interactions of this protein within the 

developmental model Streptomyces coelicolor should be a priority for future 

investigations.              

Figure 25: The classical Coiled-coil is a protein motif that forms two left handed helices with 
heptad amino acid repeats forming every two turns of the helices. The amino acids in the 
heptad repeat are labelled a, b, c, d, e, f, and g where a and d are nonpolar residues which 
allow dimerisation of two helices together. The amino acids e and g are normally polar and 
exposed to aqueous environments, they regularly dictate specificity between two helices 
binding together. Taken from Marson & Arndt, (2004). 

Figure 26: Domain architecture of Scy, FilP and DivIVA. Scy (A) and FilP (B) based on data 
from Walshaw et al., (2010). CC7 (red) represents heptad coiled-coil domains. CC51 (blue) 
represents non-heptad coiled-coil domains. C) DivIVA of B.subtilis has two coiled-coil sections, 
CC1 (red) and CC2 (blue) (based on crystal structure data (Oliva et al., 2010)). D) S. coelicolor 
DivIVA has an extended PQG linker separating the coiled-coils as well as an extended C-
terminus (based on data from Wang et al., (2009). Amino acid residues at borders are labelled. 
 

A 

B 

C 

D 
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1.4.8 Coiled-coil proteins in S. coelicolor 

 

When looking at the complex organism S. coelicolor with a large bacterial genome, it was 

desired to know all the genes/proteins that consist of large stretches of coiled-coils (Table 

2). The list provided by John Walshaw was used for Position-Specific Iterative Basic Local 

Alignment Search Tool (PSI-BLAST) searches here. It was of interest to note the order of 

size. Not suprisingly Scy (SCO5397) was the protein consisting of the longest stretches of 

Coiled-coils. Not suprisingly this was followed by the S. coelicolor SMC (SCO5577) 

protein having been noted that the protein consists of long coiled-coil stretches facilitating 

dimerisation. Also, of significant note in this list are the proteins FilP (SCO5396) and 

DivIVA (SCO2077) which have been mentioned in the introduction as important 

morphogenes. The other genes/proteins in the list have some interest though none with any 

immediate striking significance to the study here. The protein SCO3114 is known to have 

been picked up in the search for intermediate filament like proteins by Bagchi et al., 

(2008).  However, it cannot be ruled out that many of these genes/proteins may have a 

significant role in the biology of S. coelicolor.    

Table 2: Showing the genes/proteins that consist of large (≥90 amino acid residues) coiled-coil stretches 
based on searching for heptad periodicity by John Walshaw. 

SCO 

Number  Identity  

No. Coiled-

coil Residues  

Total Coiled 

coil Regions  Notes  

5397  Scy  1090  13  

Similarity to kinetoplast associated 

protein, kinesin, Neurofilament and 

Plectin  

5577  SMC  494  7  SMC, Condensin  

1407  Hypothetical  408  11  

Similarity to Chromosome 

Segregation ATPase  

2383  Putative Secreted  354  5  

Carbohydrate-binding domain, 

similarity to large adhesin  

4254  Hypothetical  350  7  Low similarity  

1300  Putative Exonuclease  288  7  

MAP7 (Microtubule binding 

domain), Similarity to 

Exonucleases and SMC  

6593  Hypothetical  285  6  P-loop and ALF domain  

5396  AbpS/FilP  215  5  Similarity to Cellulose Binding 
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Protein  

6198  Putative Secreted  209  6  Signal Peptide, ALF domain  

3542  

Integral membrane 

protein with kinase 

activity  154  2  Thymidylate kinase domain  

7327  Histidine Kinase  134  3  

Putative two component Histidine 

Kinase  

2136  Putative Secreted  134  2  Similarity to NLP_P60 Proteins  

5748  Histidine Kinase  128  3  Putative Histidine Kinase  

4202  

Putative NLP/P60 

Secreted Protein  127  2  NLP/P60-family secreted protein  

4793  

Putative NLP/P60 

Secreted Protein  125  2  NLP/P60-family secreted protein  

2077  DivIVA  123  2  DivIVA protein  

2878  Hypothetical  119  2  

Ala Rich, similarity to 

metolloprotease, adhesin, plectin 

and flotillin  

2135  Putative Secreted  115  2  Similarity to NLP_P60 Proteins  

2137  Hypothetical  114  2  DUF901 Superfamily  

4796  

Putative NLP/P60 

Secreted Protein  113  3  NLP/P60-family secreted protein  

606  Hypothetical  113  1  Low similarity  

3114  Hypothetical  112  3  

Similarity to Cellulose Binding 

Protein  

4534  Transmembrane Protein  105  3  

Membrane Spanning, Low 

Similarity  

3534  

Putative large ATP-

binding protein  103  3  

Similarity to RecN, SMC, Myosin 

Heavy Chain, etc  

7021  

Putative NLP/P60 

Secreted Protein  102  2  NLP/P60-family secreted protein  

2168  Hypothetical  98  2  

Similarity to Phage Shock Protein 

and Transcriptional Regulators  

3949  Secreted peptidase  96  3  Possible Metallopeptidase  

5294  

Putative NLP/P60 

Secreted Protein  96  2  NLP/P60-family secreted protein  
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1511  Hypothetical  95  3  Similarity to DNA repair ATPase  

3840  Hypothetical  91  3  

Similarity to Heat Shock Protein 

DnaJ  

3286  Putative Secreted  91  3  

Similarity to Band_7 Protein, 

flotillin  

3285  

Large glycine/alanine 

rich protein  90  3  

Similarity to AAA ATPase, DNA 

repair ATPase  

6405  

Putative DNA 

recombinase  90  2  

Similarity to DNA recombinases, 

resolvases and integrases  

 

1.5 Experimental aims  
 

1.5.1 General aims 

 

In this study we aimed to investigate the role of scy in the biology of the Actinomycete 

Streptomyces coelicolor and to determine any possible role of the novel coiled-coil in the 

functioning of the protein. To achieve this aim the objectives were the following; 

• To generate a null mutant of the scy gene.  

• To study any potential link between scy and the downstream gene filP by making a 

filP mutant and a scy-filP double mutant.  

• To assess the phenotypes of these mutants both macroscopically and 

microscopically. 

• To determine any dependence of any other cytoskeletal proteins, ie DivIVA, ParB 

or FtsZ on Scy by monitoring these proteins in the scy mutant. 

•  To further test the role of Scy in vivo by making translational fusions of scy to egfp 

or mCherry as reporters of subcellular localisation.  

• It was also of interest to compare these localisation patterns with that of FilP and 

DivIVA. 

• To look at the effect of Scy overexpression on the morphology of the hyphae, 

localisation of proteins and/or cell processes. 

• To further characterise any interactions between Scy, FilP and DivIVA using the in 

vivo bacterial two-hybrid system along with the tip localised cytoskeletal protein 

ParA.  
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• To purify Scy, FilP and DivIVA from E. coli and perform biochemical experiments 

to test their pair-wise interactions in vitro. 

• To purify Scy from S. coelicolor and to pull down other proteins that might be 

involved in apical growth. 
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2 Phenotypes of knockouts of the cytoskeletal protein encoding 

genes scy and filP 
 

2.1.1 Introduction 

 

In order to analyse the function of a gene, the first genetic experiment to perform is to 

make mutants in the gene of interest. We wished to study the gene encoding the protein 

Scy and so it was sought to generate a null mutant of the scy gene. As the gene filP, 

encoding the filamentous protein FilP, sits downstream to scy then we also wanted to 

knock this gene out. Also in order to test if there was any potential link between scy and 

the downstream gene filP we wanted to make a scy-filP double mutant. This would also 

allow us to determine if the two genes are redundant and if a double mutant has an additive 

effect. The mutants were made (10.1.42) by using the REDIRECT© PCR-targeting system 

(Gust et al., 2002). The phenotypes of these mutants were studied both macroscopically 

and microscopically.  

   

2.1.2 scy and scy-filP mutants were delayed in growth and development on SFM  
  

For the resulting spore stocks of each of the unmarked mutant strains and the M145 strain, 

the spore titer was determined by making serial dilutions and counting the colony forming 

units on LB plates. The spore concentration of the stocks were the following: the M145 

sporeprep contained approximately 2.7x1010 spores/ml, the filP sporeprep contained 

approximately 9.9x109 spores/ml, the scy sporeprep contained approximately 3.2x109 

spores/ml and the scy-filP sporeprep contained approximately 4.1x109 spores/ml. 

When comparing macroscopic phenotypic characteristics of different Streptomyces strains 

on agar medium it is generally important to control the viable colony density, as both 

development and antibiotic production are effected by colony density. Therefore, to 

minimise density dependent effects we plated equal numbers of spores to the same area of 

the solid medium. For M145 and each of the mutant strains, 106 spores were spread to an 

approximate area of a 3cm equilateral triangle of SFM media. The plates were then 

incubated at 30˚C for up to 6 days and two time points that showed interesting differences 

are presented in Figure 27. Both time points suggest that M145 and the filP mutant develop 

similarly, whereas the scy and scy-filP mutants are more similar to one another than from 

M145 and filP. After 1.5 days growth the M145 and filP strains are white and have 
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produced aerial hyphae, whereas the scy and scy-filP mutants are bald and lack the sign of 

aerial hyphae production. After 3 days growth all four strains sporulated as indicated by 

the dark grey colour that is associated with the grey spore pigment (Davis, and Chater, 

1990). Though there is a significant developmental delay associated with the scy and scy-

filP strains in comparison to M145 and filP. There was no discernable difference between 

M145 and filP or between scy and scy-filP. 

 

 
To further characterise the macroscopic phenotypic differences between the different 

strains it was important to look at growth at lower colony densities, specifically at the level 

of single colonies. For M145 and each of the mutant strains, dilutions were made so that 

approximately 100 viable spores were spread evenly onto SFM medium over the area of a 

petri dish. To keep consistent experimental conditions the volume of media in each petri 

dish was maintained at approximately 30ml. The plates were incubated at 30˚C for 6 Days. 

We spread two plates for each strain, and the colony counts for the two different sets of 

plates are shown in Table 3.  

Table 3: Colony counts of the theoretical ~100 colony plates for each of the strains. The numbers in 
bold represent the plates shown in Figure 28 and Figure 29. Whereas the numbers in regular format 
represent the plates used to observe single colonies in Figure 30. 

Figure 27: Macroscopic observations of the mutant strains reveals scy and scy-filP are 
delayed where as filP was similar to wildtype. 106 spores were inoculated in a confluent 
triangle area on SFM medium and growth was monitored after 1.5 days and 3 days at 30˚C. 
Confluent growth triangles consist of strains M145 wild type (A+E), filP (B+F),  scy (C+G) 
and scy-filP (D+H) mutants. 
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Strain Colonies on Plates 

M145 34, 98 

filP 49, 79 

Scy 45, 72 

scy-filP 106, 109 

 

The colony morphology of the wild-type and the mutant strains was monitored after 3 and 

5 days (Figure 28 and Figure 29). After 3 days growth the wild-type and the filP mutant 

strain were indistinguishable and they both show the powdery appearance that is 

characteristic of the aerial hyphae and the light grey colour indicates sporulation. The scy 

and scy-filP mutants have much less developed colonies that show the “bald” phenotype 

with no aerial hyphal development (Figure 28). 

After 6 days growth the wildtype and filP mutant strain developed into mature sporulating 

colonies with a dark grey, powdery appearance. Whilst the scy and scy-filP mutants 

generated much smaller colonies with a lighter grey colouration after 6 days incubation 

(Figure 29).  

The single colonies of the strains tested were also visualised using low magnification 

microscope (Figure 30). M145 and filP show colonies that are more advanced than scy and 

scy-filP. With M145 and the filP mutant, appearing as mature grey colonies, to which it is 

obvious that there are masses of aerial hyphae producing spores. The scy and scy-filP 

mutant colonies appear smaller in size. Though the images for Figure 30C and Figure 30D 

may be interpreted as looking different, it is obvious by appearance that they have both 

produced aerial hyphae, yet they lack the grey spore pigment, suggesting that they have not 

produced large numbers of spores. Therefore any difference between Figure 30C and 

Figure 30D we assume is not significant and may only result due to differences in light and 

that both strains were cultured on different plates.  
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Figure 28: Single colonies of the mutant strains reveals scy and scy-filP are delayed 
where as filP was similar to wildtype. Single colonies grown at 30ºC for 3 Days, on SFM 
medium. Separate plates shown are A) 98 M145 colonies, B) 79 filP colonies, C) 72 scy 
colonies and D) 109 scy-filP colonies. 

Figure 29: Single colonies of the mutant strains reveals scy and scy-filP are delayed where 
as filP was similar to wildtype. Single colonies grown at 30ºC for 5 Days, on SFM 
medium. Separate plates shown are A) 98 M145 colonies, B) 79 filP colonies, C) 72 scy 
colonies and D) 109 scy-filP colonies.    
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2.1.3 scy and scy-filP mutants were delayed in growth and development on different 

media 
 

As apparent from the literature review, the study of Streptomyces development has been 

heavily catalogued by monitoring the phenotypes of different genetic mutants on varying 

types of media. To characterise the mutant phenotypes we monitored colony morphology 

on different media. SFM media is undefined as it contains hydrolysed soya flour. To 

include media with well defined components we used minimal media supplemented with 

glucose (MMG) or mannitol (MMM) as carbon sources. To test the colony morphology on 

a rich medium we tested growth on a complete media (CM). For M145 and each of the 

mutant strains, dilutions were made so that approximately 100 viable spores were spread 

onto CM, MMM and MMG. As before, to keep consistent experimental conditions the 

volume of media in each petri dish was maintained at approximately 30ml. The plates were 

incubated at 30˚C and observed over a period in excess of 10 days (Figure 31, Figure 32 

and Figure 33). CM is an example of a rich medium. To which classical bld mutants lack 

Figure 30: Colony morphology of the mutant strains reveals scy and scy-filP are delayed 
where as filP was similar to wildtype. Single colonies grown at 30ºC for 6 Days, on SFM 
medium, visualised with a lower magnification microscope. (A) an M145 colony, (B) a 
filP colony, (C) a scy colony and (D) a scy-filP colony. Scale bars are shown. 
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aerial hyphae development when grown on (Chater, 1993). As shown in Figure 31, scy and 

scy-filP are delayed in comparison to M145 and filP in the formation of aerial hyphae on 

CM. However, they do in fact produce aerial hyphae suggesting that they do not share the  

 

 
properties of classical bld mutants. As seen on SFM there is a clear difference between 

growth of M145 or filP to that seen for scy or scy-filP. However, it is not obvious if there is 

a difference between M145 and filP or if there is a difference between scy or scy-filP. 

However, this media could potentially be an interesting media to investigate the 

phenotypes on further. 

Morphogenesis of the aerial hyphae on minimal media containing mannitol (MMM) as 

opposed to that on rich media is controlled slightly differently (Chater, 1993), chaplin 

mutants are more associated with defects in terms of growth of aerial hyphae on minimal 

mannitol containing media (Capstick et al., 2007). As shown in Figure 32, scy and scy-filP 

are delayed in the formation of the aerial hyphae, whereby at this time point they are only 

Figure 31: : Colony morphology of the mutant strains on CM reveals scy and scy-filP are 
also delayed on other media, where as filP was similar to wildtype. Single colonies grown at 
30ºC for 4 Days, on CM medium, visualised with a lower magnification microscope. A) an 
example of an M145 colony from a 52 colony plate B) an example of a filP colony from a 66 
colony plate C) an example of a scy colony from a 26 colony plate and D) an example of 
scy-filP colony from a 35 colony plate. Scale bars are shown. 
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just beginning to form aerial hyphae over the surface of the colony. As seen on SFM there 

is a clear difference between growth of M145 or filP to that seen for scy or scy-filP. 

Whereas both M145 and filP were similar and scy or scy-filP were similar. Based on the 

colour difference of the background of the M145 and filP colonies, they may be secreting 

different levels of antibiotics. 

 
Similarly to other media the observations of the growth of the strains on minimal medium 

containing glucose (MMG) showed that scy and scy-filP are delayed in the formation of the 

aerial hyphae (Figure 33), which form at a later point. As seen on SFM there is a clear 

difference between growth of M145 or filP to that seen for scy or scy-filP. Whereas any 

difference between M145 and filP is not obvious. In Figure 33 scy appears to show clearer 

hints that the aerial hyphae have begun forming whereas scy-filP is not as obvious, 

however, it is not clear if this actually represents a real difference as these changes can 

occur quite rapidly. Because of the way much delayed development of the scy and scy-filP 

mutants on MMG medium it could be interesting to pursue further in terms of monitoring 

the developmental progression of the different strains. 

Figure 32: Colony morphology of the mutant strains on MMM reveals scy and scy-filP 
are also delayed on other media, where as filP was similar to wildtype. Single colonies 
grown at 30ºC for 6 Days, on MMM medium, visualised with a lower magnification 
microscope. (A) an M145 colony from a 25 colony plate, (B) a filP colony from a 23 
colony plate, (C) of a scy colony from a 32 colony plate and (D) a scy-filP colony from 
an 18 colony plate. Scale bars are shown. 
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2.1.4 scy and scy-filP mutants microscopically showed defects in polarised growth and 
cell division   

 

In order to visualise the phenotypes of the hyphae formed by M145, scy, filP and scy-filP 

at a greater resolution optical microscopy using a confocal or epi-fluorescent microscope 

was performed. S. coelicolor has a complex life style generating a three dimensional 

network of branching filaments and spores. In order to visualise a younger stage of 

vegetative growth and to assess the filaments in two dimensions Streptomyces can be 

inoculated onto a surface of a cellophane disc lying on top of an agar medium. This 

method is excellent for monitoring germination and for young branching hyphal networks. 

However, the cellophane can quickly become overgrown and therefore this is not a good 

method for visualising later stages of growth. 

Figure 33: Colony morphology of the mutant strains on MMG reveals scy and scy-filP are 
also delayed on other media, where as filP was similar to wildtype. Single colonies grown at 
30ºC for 6 Days, on MMG medium, visualised with a lower magnification microscope. (A) 
an M145 colony from a 30 colony plate, (B) a filP colony from a 19 colony plate, (C) a scy 
colony from an 11 colony plate and (D) a scy-filP colony from a 23 colony plate. Scale bars 
are shown. 
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Alternatively Streptomyces can be grown between the angle of an inserted coverslip and 

the supporting agar medium. This is associated with the ability to monitor more advanced 

vegetative growth and the development of the aerial mycelium. Part of the coverslip is 

submerged in the substrate material and the other part at the medium/air interface with the 

remainder exposed to the air. Here we used both two strategies to visualise the 

developmental life cycle of the Streptomyces strains analysed here. In addition, we also 

used the nucleic acid stain, propidium iodide (sigma) and the cell wall stain, wheat germ 

agglutinin (WGA) Alexa Fluor® 488 conjugate. Propidium iodide binds to nucleic acids 

by intercalating between bases (Waring, 1965). Once bound to DNA the fluorescence 

profile of propidium iodide changes and the fluorescence increases 20-30 fold (Arndt-

Jovin, and Jovin, 1989), making it a particularly useful DNA stain. The Alexa Fluor® 488 

WGA conjugate binds to sialic acid and N-acetylglucosaminyl residues (Wright, 1984). 

WGA conjugates have been documented to bind to cell wall and septa in Gram-positive 

bacteria (Pogliano et al., 1997). In S. coelicolor WGA conjugate was able to mark the 

position of ladders of sporulation septa in lysozyme treated hyphae (Schwedock et al., 

1997). They also showed that in hyphae that were not treated with lysozyme the stronger 

signal was associated with growing hyphal tips or autolysis. It is believed that WGA binds 

better to smaller oligomers of cell wall but less to fully polymerized cell wall (Allen et al., 

1973). In the experiments here methanol was used as a fixative, which could allow more 

staining with WGA-Alexa488 by damaging the cell wall. Methanol fixation is necessary 

for propidium iodide staining because intact membrance is impermeable to propidium 

iodide.     

Microscopic analysis of different strains on a cellophane surface involved S. coelicolor 

spores of the desired strain being diluted to ~4x 105 spores per plate, induced for 

germination at 50˚C for 10 minutes and sonicated 2 x 15 seconds in order to disperse 

spores. The dilution was then spread across the surface of a cellophane membrane 

positioned onto the SFM medium (as shown in Figure 124). After incubation at 30˚C for 

12-16 hours, 1cm2 squares of cellophane were cut with a razor blade and stained.     

For microscopy of strains grown alongside a glass coverslip, coverslips were inserted into 

streaks of Streptomyces on SFM medium and the plates were incubated at 30˚C (as shown 

in Figure 123). Coverslips were removed at different time points between 2-4 days in order 

to cover the spectrum of the developmental cycle. The hyphae attached to the coverslips 

were then using in a staining procedure. For each of the different types of samples they 
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were first fixed with methanol, washed with water and stained with WGA-Alexa488 and 

propidium iodide. Finally, samples were washed again with water to remove unbound dye.  

The wild-type strain of S. coelicolor M145 was analysed first (Figure 34). Distinct stages 

of S. coelicolor development as depicted in cartoon form were matched with microscopic 

data observed. The life cycle begins from a single spore (Figure 34A&B). Spores of S. 

coelicolor do not stain well with WGA-Alexa488 and so samples from all the following 

figures with spores and later stages of spore development are not shown with the WGA- 

  

 

 

Figure 34: Microscopy of the developmental of wild-type S. coelicolor M145 using WGA-
Alexa488 and propidium iodide shows multiple distinct stages. A single spore (A) and an 
image from coverslip samples (B). Germ tube (C) and a images of germtubes and early 
hyphae from cellophane grown samples (D-G). Branching leads to complex vegetative hyphae 
(H) taken from coverslip samples (I). Aerial hyphae forms from vegetative hyphae (J) and 
undergo various stages from the formation of sporulation septa (L) to the maturation of 
spores (N). Images taken from coverslip samples of pre-divisional aerial hyphae (K), aerial 
hyphae showing sporulation septation (M) and maturing spores (O). Samples were grown on 
SFM at 30˚C for 12-16 hours for cellophane samples and 2-4 says for coverslip samples. 
Samples then stained with WGA-Alexa488 and propidium iodide. (B) Brightfield left, 
propidium iodide (Red) middle, brightfield/propidium iodide overlay right. (D,E,F,G,I) 
Overlayed WGA-Alexa488 (Green)/propidium iodide (Red). (K,M) WGA-Alexa488 (Green) 
top, propidium iodide (Red) middle, Overlayed WGA-Alexa488 (Green)/propidium iodide 
(Red) bottom. (O) Brightfield top, propidium iodide (Red) middle, brightfield/propidium 
iodide overlay bottom. Scale bars are shown. 
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Alexa488 staining. Figure 34C-G shows the stage of germination where germ tubes have 

emerged and the first initial branches of the hyphae filaments begin to form. Note that it is 

also possible for multiple germ tubes to form from a single spore. Typically the hyphal tips 

have a more prominent staining with the WGA conjugate and are generally lacking in 

DNA (Figure 34D-F). Suggesting that the peptidoglycan at the growing hyphal tips are 

different, likely to be less crosslinked, than at the lateral hyphal wall that is more inert. 

However, the tip staining did vary greatly among samples.  

Increasing numbers of branching points lead to an ever increasing complexity of the 

hyphal network (Figure 34H and I). The hyphal distribution and geometry exhibited by the 

wild-type M145 hyphae are generally quite straight with smooth bends or turns. Branch 

points occur occasionally, however, in agreement with  Jyothikumar et al., (2008), branch-

to-branch distances show great variability. 

Often curved aerial hyphae of M145 (Figure 34J) undergo synchronous sporulation 

septation along a tip proximal stretch of the hyphae (Figure 34L), that then later divide and 

form mature spores (Figure 34N). A number of images of different developmental stages 

are shown in Figure 34K,M and O. Hyphae destined to be spore chains show a smooth 

surface that can quite often exhibit a complex curl (Figure 34K). Sporulation septa develop 

synchronously at regular positions along the length of the hyphae (Figure 34M). After 

septation, the DNA becomes more compact in each individual spore compartment and the 

spores undergo a maturation period to form thick walled, highly resistant spores. In Figure 

34O the DNA has condensed and more completely segregated in comparison to Figure 

34M where the septa are visible using the WGA-Alexa488 stain. 

As seen by macroscopic analysis the scy mutant is capable of forming aerial hyphae and 

spores. That means that it is capable of progressing through the stages of the S. coelicolor 

life cycle. However, macroscopical observation suggested that development of the scy 

mutant was delayed, possibly reflecting slower growth or a reduced ability to spread and 

form large scale colony structures. The young vegetative hyphae observed of cellophane 

grown samples do show a number of aberrations associated with an effect on polarised 

growth and hyphal characteristics (Figure 35A-F). One of these aberrations is the frequent 

apical branching or tip splitting (Figure 35B and E) which was rarely seen in the wild-type, 

M145 samples. It appears that the scy mutant may have more abundant branching, which 

matches statistical data recorded in the Kelemen lab (Richard Leggett (Holmes et al., 

2013)), that may in part be due to apical branching or tip splitting or may result from 

branches formed further behind the tip. The tip staining with WGA-Alexa488 is variable, 
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which may or may not be due to the staining procedure rather than the phenotype. 

However, it is noticeable that the tip architecture of the scy mutant is very different from 

the wild-type, M145 which usually has a smooth tip shape, whereas the tips of the scy 

mutant appear more prone to variation and in some examples (Figure 35C) can appear 

more club shaped. The variation in tip shape is probably what accounts for an uneven 

hyphal diameter seen at positions behind the hyphal tip, as hyphal width must be 

determined by the tip diameter at the time in which new cell wall was incorporated in that 

position. As can be seen at later stages of vegetative growth alongside coverslips, (Figure 

35H) the scy mutant appears less straight and smooth than those seen of the wild-type. 

With sharp turns which is consistent with a tip growth defect. The scy mutant has a 

characteristic “wriggly” appearance that can then manifest itself in the form of complex 

knots (Figure 35G and H). The knots can often occur at branch points when the scy mutant 

is grown alongside coverslips. These knots are the likely result of aborted branching 

attempts, which presumably have implications on the overall hyphal dynamics of a 

developing colony.  

The observation above that branches form complex knots of hyphae, could explain the 

reduction in total number as well as a delay in the production of aerial hyphae. However, 

the scy mutant is not “bald”, it was possible to observe occasional yet seemingly rarer 

aerial hyphae that undergo differentiation to form spore chains as can be seen across 

different developmental stages in Figure 35I,J,K and L. Over-branching was not only 

characteristic of the vegetative hyphae but also of the aerial filaments, a trait not normally 

observed for the wild-type. The aerial hyphae could later metamorphose into spore chains 

(Figure 35J,K and L) despite branching generating branching spore chains with defects of 

shape, DNA content and size. Figure 35I, is an example of a structure that is believed to be 

an aerial hyphae prior to sporulation that is a scy equivalent to the M145 structure seen in 

Figure 34K. This could be the case as the WGA-Alexa488 staining is reduced and the 

hyphae have not yet formed septa or segregated the DNA. However, as scy has not been 

subjected to time-lapse imaging it is not known whether the hyphal structures such as the 

one in Figure 35I actually develop into sporechains. The scy mutant is able to form 

sporulation septa in an array of ladders (Figure 35J), but these are not as ordered as the 

wild-type and appear to generate irregularly sized prespore compartments. This could be 

due to the irregular septum positioning as well as the physical constraints to which the 

abnormal shaped hyphae then exert on the prespore compartments. In more mature 

sporulating hyphae (Figure 35K and L) the spores are unusual in shape and have irregular  
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Figure 35: Microscopy of the scy mutant reveals an effect on polarised growth and cell 
division. Images of early vegetative hyphae from cellophane grown samples (A-F) with 
abnormal branching and hyphal defects. Irregular defects seen in vegetative hyphae of 
coverslip samples (G,H) with knotted hyphae and branches. Coverslip samples of pre-
divisional branching aerial hyphae (I), branching aerial hyphae showing sporulation septa 
(J) and irregularly shapped maturing spores (K,L). Samples were grown on SFM at 30˚C 
for 12-16 hours for cellophane samples and 2-4 days for coverslip samples. Samples then 
stained with WGA-Alexa488 and propidium iodide. (A-H) Overlayed WGA-Alexa488 
(Green)/propidium iodide (Red). (I,J) WGA-Alexa488 (Green) left, propidium iodide (Red) 
middle, Overlayed WGA-Alexa488 (Green)/propidium iodide (Red) right. (K,L) Brightfield 
left, propidium iodide (Red) middle, brightfield/propidium iodide overlay right. Scale bars 
are shown. 
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chromosome distribution, where Figure 35K appears to be less developed than Figure 35L 

based on Figure 35K  having less condensed chromosomal DNA. The latter could be the 

result of a DNA segregation defect or a DNA condensation defect. The spore chains of the 

scy mutant are also shorter in comparison to the wild-type, which generally has long  

smooth prespore structures. Despite the branching effect, this could result in sporechains 

that produce fewer spores. There is also a likely reduced production of the aerial hyphae 

that develop into spores due to morphological defects and/or aborted branches which could 

also reduce the number of actual spores that are produced. The microscopic observations 

made in this study suggest that scy is morphologically affected in growth and this is likely 

associated with aberrant tip growth. Also, the scy mutant is affected in the process of cell 

division during sporulation of the aerial hyphae.  

The filP mutant macroscopically did not differ from the wild-type. However, microscopic 

observations made by Bagchi et al., (2008) suggest that filP displays a different phenotype 

to the wild-type. The microscopic observations made here also suggest that filP differs 

from M145, although with more subtle differences possibly explaining why these 

differences are not manifested at the macroscopic level. 

The young vegetative hyphae observed by microscopy of cellophane grown samples 

(Figure 36A-E) appear to be more similar to the wild-type than the equivalent scy images. 

It does not appear as though there is an affect on the tip architecture of the filP mutant or 

an effect on tip splitting. However, Figure 36D and E show a common hyphal anomaly 

seen in filP mutant where there is a sudden change in direction of the extending hyphae 

and it grows back towards the hyphae it originated from. Samples of later time points of 

the filP mutant grown alongside coverslips exhibit abnormal growth resulting from change 

of direction or “wriggly” looking hyphae with some similar properties to the phenotype 

seen for scy (Figure 36F and G). Perhaps suggesting possibly some form of functional 

overlap between the two proteins encoded by the genes scy and filP. The filP “wriggly” 

phenotype is possibly manifested due to the same reasons that hyphal rigidity are 

decreased in filP as shown by Bagchi et al., (2008). 

The aerial hyphae of a filP mutant was reported by Bagchi et al., (2008), “did not display 

any striking morphological defects”. The aerial hyphae of the filP mutant observed in our 

experiment not surprisingly showed all the similar developmental stages to M145. 

However, it is unclear if the aerial hyphae of a filP mutant have subtle phenotypic 

differences to M145, albeit clearly not as extreme phenotypic differences as those seen for 

scy. An example of a filP aerial hyphae is shown in Figure 36H. Figure 36I shows an  
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example of a filP prespore chain with sporulation septation, suggesting that synchronous 

cell division is not affected. The aerial hyphae of the filP mutant did not exhibit a 

Figure 36: Microscopy of the filP mutant reveals a subtle phenotype associated with 
vegetative growth. Images of early vegetative hyphae from cellophane samples (A-E). (D-E) 
with * marking the positions of irregular turning seen in the filP mutant. Irregular defects 
seen in vegetative hyphae shown from coverslip samples (F,G) with turning defects and 
“wrigglyness”. Images taken from coverslip samples of pre-divisional aerial hyphae (H), 
aerial hyphae showing sporulation septation (I) and maturing spores (J). Samples were 
grown on SFM at 30˚C for 12-16 hours for cellophane samples and 2-4 days for coverslip 
samples. Samples then stained with WGA-Alexa488 and propidium iodide. (A-G) Overlayed 
WGA-Alexa488 (Green)/propidium iodide (Red). (H,I) WGA-Alexa488 (Green) left, 
propidium iodide (Red) middle, Overlayed WGA-Alexa488 (Green)/propidium iodide (Red) 
right. (J) Brightfield left, propidium iodide (Red) middle, brightfield/propidium iodide 
overlay right. Scale bars are shown. 
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branching phenotype like that shown by the scy mutant. The example of a more mature 

prespore chain of filP (Figure 36J) shows a more wild-type phenotype than the equivalent 

stage in the scy mutant. Suggesting that DNA segregation and distribution is not affected. 

If there is any difference then it would be a subtle difference in hyphal shape, while it 

appears that the shape of prespores and spores that are formed are wild-type. It appears that 

our filP mutant displays the same microscopic phenotype as that seen for the filP mutant in 

Bagchi et al., (2008) for both vegetative growth and aerial growth. 

Macroscopically the scy-filP double mutant appeared the same as the scy mutant. However, 

microscopy could still detect some discernible differences. The young vegetative hyphae of 

cellophane grown samples of the scy-filP double mutant (Figure 37A-E) do show a number 

of aberrations associated with an effect on polarised growth and hyphal characteristics 

similar to those seen for the scy mutant. Tip splitting and abnormal tip architecture with 

hyphal width differences are also present in the scy-filP double mutant (Figure 37A, C and 

E). Later stages of vegetative growth alongside coverslips exhibited defects in terms of 

knots and aborted branches similar to that observed in the scy mutant(Figure 37F).  

The scy-filP mutant was capable of producing aerial hyphae and spores (Figure 37G, H and 

I); however, as seen for the scy mutant, there were fewer aerial hyphae that were more 

delayed in formation. In Figure 37G, is an example of a structure that is believed to be an 

aerial hyphae prior to sporulation that is a scy-filP equivalent to the scy structure seen in 

Figure 35J, where the developmental fate of this type of hyphae is not yet clear. In Figure 

37H the aerial hyphae features prominent branches. There are also irregularly placed 

sporulation septa and irregularly shaped prespore compartments in the scy-filP double 

mutant similar to those seen in the scy mutant (Figure 35J). The spore shapes and DNA 

distribution in the spore compartments of the scy-filP double mutant are irregular (Figure 

37I), similar to the equivalent samples of the scy mutant (Figure 35K and L).  

The microscopy data suggests that there is no significant difference between the scy-filP 

and the scy mutants. The scy-filP mutant exhibits the characteristic branches that form 

complex knots and a “wriggly” appearance, together with uneven hyphal width originating 

from abnormal tip architecture. The aerial hyphae are also much shorter than the wild-type, 

a similar feature to that observed for the scy mutant, as well as the other aerial hyphae 

abnormalities such as branching and uneven septum positioning. 

It is interesting to note that the scy-filP mutant is phenotypically more similar to scy rather 

than filP, therefore suggesting that scy is the more dominant gene in terms of phenotypic 

effects. If there is a difference between scy-filP and scy then it is likely far too subtle to  
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Figure 37: Microscopy of the scy-filP mutant reveals an effect on polarised growth and cell 
division similar to the scy mutant. Images of early vegetative hyphae from cellophane 
samples (A-E) with abnormal branching and hyphal defects. Irregular defects seen in 
vegetative hyphae shown from coverslip samples (F) with knotted hyphae and branches. 
Images taken from coverslip samples of pre-divisional branching aerial hyphae (G), 
branching aerial hyphae showing sporulation septation (H) and irregularly shapped mature 
spores (I). Samples were grown on SFM at 30˚C for 12-16 hours for cellophanes and 2-4 
days for coverslip samples. Samples then stained with WGA-Alexa488 and propidium 
iodide. (A-F) Overlayed WGA-Alexa488 (Green)/propidium iodide (Red). (G,H) WGA-
Alexa488 (Green) left, propidium iodide (Red) middle, Overlayed WGA-Alexa488 
(Green)/propidium iodide (Red) right. (I) Brightfield left, propidium iodide (Red) middle, 
brightfield/propidium iodide overlay right. Scale bars are shown. 
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manifest as a discernable difference. There is also the possibility that perhaps scy and filP 

function in the same pathway, with there being a potential overlap in the single 

phenotypes, with scy being the more detrimental to the same pathway, therefore in this 

case it is expected that the double knockout would show more of a scy phenotype. 

2.1.5 Measuring septum length reveals scy and scy-filP septum positioning is disturbed 
 

As the scy and scy-filP mutants displayed irregularly placed sporulation septa and 

irregularly shaped prespore compartments, we decided to to quantify this effect by 

measuring the distance between the sporulation septa in the strains scy, scy-filP and filP. 

The wild-type strain M145 was also quantified as a control strain. This was done using the 

Ziess Axiovision software Rel 4.8 which has a measuring function. The data was collected 

and placed into groups and plotted onto histograms (Figure 38). As can be seen from the 

graphical representation it appears as though the scy and the scy-filP mutants display a 

phenotype with more dispersed sizes of sporulation septa. Statistical analysis of the 

measurements can be seen in (Table 4 & Table 5). There was no significant difference 

between M145 and filP means by T-Test. Nor was there a difference between scy and scy-

filP means. However, scy and scy-filP means were significantly different to M145 or filP. 

Proving that these two strains are affected in the placement of the sporulation septa, 

whereby there was also a greater variation and standard deviation. Therefore, these strains 

are affected in the process of cell division. The separate mutations in scy and filP do not 

appear to be additive as the scy mutation appears dominant to the filP mutation that 

separately did not have an effect and the scy-filP mutant is identical to the scy mutant.  
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Table 4: Analysis of Measurements between Sporulation Septa of M145, scy, filP and scy-filP.  

 M145 scy filP scy-filP 

Sample numbers (n) 420.00 421.00 437.00 438.00 

Total Septum 

Measurements (μm) 

453.78 489.01 472.91 521.19 

Mean Septum 

Measurements (μm) 

1.080 1.162 1.082 1.190 

Variance (μm2) 0.034 0.109 0.050 0.111 

Standard Deviation 

(μm) 

0.185 0.330 0.224 0.333 

Minimum (μm) 0.570 0.340 0.570 0.480 

Maximum (μm) 1.690 2.700 2.000 3.470 

 

 

 

 

Figure 38: Histograms of measured distances between sporulation septa in the strains 
M145, scy, filP and scy-filP shows that scy and scy-filP have a greater variation in septum 
placement. 
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Table 5: Statistical Test Analysis of Measurements between Sporulation Septa of M145, scy, filP and 
scy-filP. First One-tailed F-Tests were performed to test samples for variances. Then, depending on the 
outcome either Two-tailed T-Tests for evaluating sample means were performed assuming Equal or 
Unequal Variances. In this case only scy against scy-filP were deemed to have equal variances. P values 
of less than 0.05 led to rejecting a null hypothesis of equal samples variances (F-Test) or means (T-
Test).   

  M145 Scy filP scy-filP   

M145   1.255E-05 0.901 3.601E-09   

scy 0.000E+00   4.427E-05 0.210 T-Test Two-tail P values 

filP 3.914E-05 1.501E-15   2.825E-08   

scy-filP 0.000E+00 0.406 1.110E-16     

    F-Test One-tail P values     

 

2.1.6 The scy mutant produces fewer spores than M145 
 

Both the macroscopic and microscopic observations suggested that the scy mutant 

produces significantly less spores than M145. The following section details a crude 

analysis to attempt to quantify the production of spores in the scy mutant in comparison to 

M145. 

For M145 and scy, dilutions were made so that approximately a similar number of viable 

spores were spread on SFM medium. To keep consistent experimental conditions the 

volume of medium  in each petri dish was maintained at approximately 30ml and plates 

were incubated at 30˚C for 7 Days. After the incubation period the number of colonies on 

each plate was counted and recorded. To each plate 2.5ml of H2O was added and the 

spores rubbed off with a sterile cotton bud. The liquid was collected from these plates. 

After centrifuging this spore mix the pellet consisting of the spores was resuspended in 1ml 

of 20% glycerol for both. For the resulting spore stocks of each, a series of dilutions were 

made. Dilutions of the factors 5x10-6, 5x10-7,5x10-8 and 5x10-9 were spread with 3 replicas 

for each dilution, onto LB agar plates and incubated at 30˚C for 2 days. Those plates that 

had a countable number of colonies were then quantified. For M145 only the dilutions at 

5x10-7and 5x10-8 dilutions were used, whereas for scy only the dilutions at 5x10-6 and 

5x10-7 were used for spore counts. A representative plate from the 5x10-7 dilution range is 

shown in Figure 39. The average spores per ml as calculated by the analysis in 3 separate 

experiments are shown in Table 6A. The number of colonies to which the spores originated 

from was factored into calculating a ratio of the number of M145 spores produced to scy, 

in an attempt to compare the spore production by both strains. According to this analysis 

M145 produces in a scale of 5-10 times as many spores as scy. This is a crude method of 
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analysis but the large difference detected likely represents an actual difference. As the scy 

mutant is delayed in growth forming less biomass in the incubation period and developing 

less biomass to aerial hyphae and spores, this could account for a decrease in the 

production of spores, as well as a aberrations visualised by microscopy in the process of 

cell division.  

 

Table 6: Calculating the relative number of spores produced by M145 in comparison to the scy mutant. 

A) 

Repeat 

1 

Strain 

 

Average  

(Spores/ml) 

Number of 

colonies spores 

were collected 

from 

Average 

Spores/Colony 

Ratio 

M145/scy 

M145 1.4E+09 380 3.9E+06 5.9 

scy 1.8E+08 280 6.6E+05  

B) 

Repeat 

2 

Strain 

 
 

Average  

(Spores/ml) 

Number of 

colonies spores 

were collected 

from 

Average 

Spores/Colony 

Ratio 

M145/scy 

M145 2.8E+09 543 5.2E+06 9.9 

scy 2.9E+08 550 5.3E+05  

C) 

Repeat 

3 

Strain 

 
 

Average  

(Spores/ml) 

Number of 

colonies spores 

were collected 

from 

Average 

Spores/Colony 

Ratio 

M145/scy 

M145 3.2E+09 979 3.3E+06 4.8 

scy 7.1E+08 1029 6.9E+05  
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2.1.7 Adding scy in trans complements the scy mutant phenotype 
 

An important step in establishing if a phenotypic effect is due to the actual absence of the 

gene is to add a copy of the gene in trans back into the mutant strain. Therefore, if the 

phenotype reverts back to the wild-type then the phenotype is due to a knockout of that 

particular gene. The Kelemen lab had previously constructed a plasmid pIJ8660-Pscy-scy. 

This plasmid is descended from the vector pIJ8660 (Sun et al., 1999) which is able to 

replicate in E. coli, as well as having the property of being able to be conjugated into 

Streptomyces species via containing oriT from RK2 (Pansegrau et al., 1994). This vector 

also has the temperate phage ФC31 int gene and attP site, allowing integration of the 

plasmid at the chromosomal ФC31 attachment site in S. coelicolor. The plasmid pIJ8660 

also contains a selectable marker in the form of aac(3)IV, conferring apramycin resistance. 

The plasmid pIJ8660-Pscy-scy contains the scy promoter fragment generated here 

(10.1.46) with a fragment containing the whole of scy sitting upstream. Due to the 

construction of the plasmid the scy gene has an altered ATG codon instead of a GTG at the 

start codon, as well as an additional adenine as the base prior to the open reading frame. 

These alterations to the endogenous sequences are likely to have a negligible effect on scy 

expression and the functioning of the resulting protein. Therefore, scy should be able to be 

Figure 39: The scy mutant produced fewer viable spores than the wildtype. Viable spores of the 
5x10-7 dilution on LB Agar, after 2 days incubation at 30˚C. Shown is M145 696 colonies (A) 
and scy 79 colonies (B). 
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expressed from its own promoter, however, upon introduction into S. coelicolor located 

chromosomally as a single copy from the ФC31 attachment site.  

Introduction of the plasmids was through the non-methylating E. coli strain E. coli 

ET12567 containing the plasmid pUZ8002 that facilitates conjugation with S. coelicolor 

(MacNeil et al., 1992).  The 1μl of each plasmid stock of pIJ8660-Pscy-scy and the empty 

pIJ8660 vector were electroporated into E. coli ET12567/pUZ8002 cells. Transformants 

were grown on LB with the antibiotics kanamycin and chloramphenicol for 

ET12567/pUZ8002 and apramycin for selection of pIJ8660-Pscy-scy or pIJ8660 plasmids. 

E. coli ET12567 carrying either pIJ8660-Pscy-scy or pIJ8660 were used for conjugation 

into either spores of M145 or scy. Apramycin was used to select for the integration of the 

pIJ8660 vectors into the chromosome. As success of this conjugation is dependent on 

integration as opposed to homologous recombination, successful conjugants were achieved 

with high frequency than the mutant generation experiments. Replica plating wasn’t 

necessary as the pIJ8660 vector can only be maintained stably in the presence of 

apramycin in Streptomyces by insertion into the chromosome. Therefore, this successfully 

generated the strains M145/pIJ8660, scy/pIJ8660, M145/pIJ8660-Pscy-scy and 

scy/pIJ8660-Pscy-scy. Each strain was used for preparation and storage in the form of 

spore preps.  

By the same method as mentioned above the spore preparations of the strains 

M145/pIJ8660, scy/pIJ8660, M145/pIJ8660-Pscy-scy and scy/pIJ8660-Pscy-scy were 

titrated and tested for viable spores on LB. To which the M145/pIJ8660 sporeprep 

contained 1.6x1010 spores per ml. The scy/pIJ8660 sporeprep contained 1.6x109 spores per 

ml. The M145/pIJ8660-Pscy-scy sporeprep contained 1.0x1010 spores per ml. The 

scy/pIJ8660-Pscy-scy sporeprep contained 9.0x109 spores per ml. 

To actually test complementation, the pIJ8660-Pscy-scy strains were tested in comparison 

to the pIJ8660 strains in order to rule out any differences being due to the properties of the 

effect of the pIJ8660 vector on Streptomyces. In the same controlled manner as above, for 

each of the strains dilutions were made so that 106 spores were spread in 15μl of liquid on 

SFM medium. This was to an approximate area of a 3cm equilateral triangle and spread 

with a sterile toothpick. The plates were then incubated at 30˚C for up to 6 Days, two time 

points that were informative are shown in Figure 40. Both time points suggest that 

M145/pIJ8660, M145/pIJ8660-Pscy-scy and scy/pIJ8660-Pscy-scy are similar in 

macroscopic phenotype. Whereas scy/pIJ8660 appears to be clearly different to the other 

strains. After 2 days growth M145/pIJ8660, M145/pIJ8660-Pscy-scy and scy/pIJ8660-
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Pscy-scy appear to have formed aerial hyphae and may be on the verge of producing 

spores. Whereas scy/pIJ8660 could just be initiating aerial hyphae production. After 3 days 

growth M145/pIJ8660, M145/pIJ8660-Pscy-scy and scy/pIJ8660-Pscy-scy appear to have 

formed spores as indicated by the grey spore colour. Whereas scy/pIJ8660 appears to be at 

the stage of aerial hyphae formation without the production of spores. These macroscopic 

observations are already suggestive that the scy phenotype has been complemented. 

 

 
In order to assess if all the attributes to which were earlier associated with a scy phenotype 

have been complemented the DNA stain propidium iodide and the cell wall stain WGA-

Alexa488 were used in combination with microscopy. This was performed in a similar way 

to the M145 and scy mutant strains as mentioned above, where strains were grown on SFM 

alongside coverslips. Time points were observed between 2-4 days in order to cover the 

spectrum of the developmental cycle. However, only a few examples of images are shown 

as the objective is only to assess if the phenotype has been complemented. To which 

examples of both vegetative hyphae and aerial hyphae for each strain are shown Figure 41. 

M145/pIJ8660 appears similar to M145 with nominal differences introduced by the 

pIJ8660 vector and the use of apramycin as a selectable marker. Figure 41A,B and Figure 

41C display examples of M145/pIJ8660 vegetative hyphae and aerial hyphae, respectively.  

Figure 40: Macroscopic observations of the complementing strains shows that adding scy in 
trans can revert the scy mutant to wildtype. 106 spores were inoculated in a confluent 
triangle area on SFM medium and growth was monited after 2 days and 3 days at 30˚C. 
Confluent growth triangles consist of strains M145/pIJ8660 (A+E), scy/pIJ8660 (B+F), 
M145/pIJ8660-Pscy-scy (C+G) and scy/pIJ8660-Pscy-scy (D+H). 
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Figure 41: Microscopic observations of the complementing strains shows that adding scy in trans 
can revert the scy mutant to wildtype. Images of M145/pIJ8660 vegetative hyphae (A,B) and aerial 
hyphae (C) shown from coverslip samples displaying a wild-type phenotype. Images of 
scy/pIJ8660 vegetative hyphae (D,E) and aerial hyphae (F,G) shown from coverslip samples 
displaying a scy mutant phenotype. Images of M145/pIJ8660-scypromscy vegetative hyphae (H,I) 
and aerial hyphae (J) shown from coverslip samples with a wild-type-like phenotype despite 
dosage issues. Images of scy/pIJ8660-scypromscy vegetative hyphae (K,L) and aerial hyphae (M) 
shown from coverslip samples with a wild-type-like phenotype suggesting complementation of the 
scy mutation.  Samples were grown for 2-4 days on agar plates alongside coverslips. Samples then 
stained with WGA-Alexa488 and propidium iodide. All images are overlayed with the two 
channels from WGA-Alexa488 (Green)/propidium iodide (Red). Scale bars are shown. 
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There was no apparent difference between scy/pIJ8660 and scy. To which Figure 41D and 

E display examples of scy/pIJ8660  vegetative hyphae with the characteristics documented 

above for scy. Figure 41F and G show scy/pIJ8660 aerial hyphae with the abnormal 

characteristics of scy aerial hyphae. The strain M145/pIJ8660-Pscy-scy encodes two copies 

of the scy gene. To which it may be expected that there could be issues due to dosage of 

scy. However, there were no striking differences of this strain to M145/pIJ8660. Examples 

of M145/pIJ8660-Pscy-scy vegetative hyphae can be seen in Figure 41H and I, showing no 

obvious defects. An example of an M145/pIJ8660-Pscy-scy aerial hyphae in Figure 41J 

shows normal septum positioning and prespore chain shape. Therefore, it would seem that 

a second copy of scy in this experiment has a negligible effect. It was observed that 

scy/pIJ8660-Pscy-scy was wild-type-like and the attributes of a scy-like phenotype were 

not apparent. Figure 41K and L show examples of scy/pIJ8660-Pscy-scy aerial hyphae, 

showing a smooth shape that is generally seen in the wild-type. Figure 41M shows an 

example of a scy/pIJ8660-Pscy-scy prespore chain with sporulation septa already marked 

and regularly spaced compartments. It also shows a non-branching phenotype. Therefore, it 

seems that the scy strain was complemented by the addition of pIJ8660-Pscy-scy, which 

suggests that the absence of scy is responsible for the phenotypic effects observed in this 

study. Although the scy mutant has had the apramycin resistance gene removed generating 

an in frame scar, it is also possible that the mutant phenotype is caused by a polar effect on 

other genes, for example if a promoter sequence was present in the scy open reading frame. 

However the complementation in this experiment by scy provided in trans would suggest 

that the phenotype is caused by deletion of the scy gene rather than a polar effect on 

downstream genes. 

 

2.1.8 Summary 

 

It was observed that the phenotype of the scy and the scy-filP mutant were different to 

M145 and filP macroscopically. This was seen across varying types of media. Microscopy 

revealed that the scy mutant had a phenotype with effects related to apical growth and 

branching. As well as in the process of cell division in relation to DNA segregation, 

irregular sporulation septation and reduced formation of spores. This same phenotype was 

seen in the scy-filP mutant. However the filP mutant did not have the same properties and 

displayed a more subtle phenotype. Therefore we conclude that the scy-filP mutant 
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phenotype results from  a dominant effect of the scy mutation and it is not possible to 

determine if filP mutation has an additive effect. 
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3 Fluorescent Localisation Studies of Scy 
 

3.1.1 Introduction 

 

In order to determine the function of Scy in vivo, we fused scy to either egfp or mCherry to 

generate constructs expressing translational fusion proteins to the fluorescent proteins 

EGFP (Zhang et al., 1996) or mCherry (Campbell et al., 2002), respectively (for additional 

information see Appendix 11.1). This would allow us to monitor the subcellular 

localisation patterns of the protein. In order to confirm the localisation pattern of Scy, the 

fusion protein was fused to either terminus of Scy and also to different domains in order to 

probe the function of each domain. 

 

3.2 Localisation of Scy using N-terminal fluorescent fusions  
 

3.2.1 EGFP-Scy localises to hyphal tips 

 

The plasmid pIJ8660-Pscy-egfp-scy (pK56; 10.1.46) enables expression of an EGFP-Scy 

fusion protein under the control of the native scy promoter sequence. The vector pIJ8660 

(Sun et al., 1999), enabled the introduction of this plasmid into Streptomyces. In order to 

introduce this plasmid to Streptomyces first we passaged the plasmid through the non-

methylating E. coli strain E. coli ET12567 containing the plasmid pUZ8002 that facilitates 

conjugation into S. coelicolor. Plasmid pIJ8660 carries the attP site and an integrase which 

facilitates integration of a single copy of a Pscy-egfp-scy fragment at the ФC31 attachment 

site into the S. coelicolor chromosome. The plasmid pIJ8660 also contains aac(3)IV 

allowing selection through apramycin resistance. When introduced into the strain M145 

this generates a merodiploid strain carrying scy and egfp-scy. Conjugation efficiencies 

achieved with plasmid pIJ8660-Pscy-egfp-scy were very high. However, 2 representative 

colonies were chosen and propagated further so that spore preparations were generated. 

These 2 colonies were later found to be identical so the results of only 1 colony are shown 

here.  

Spores of M145 carrying pIJ8660-Pscy-egfp-scy were grown on cellophane on top of SFM 

medium (as shown in Figure 124) for 12-16 hours and then visualised using fluorescence 

microscopy (Figure 42). EGFP-Scy localised primarily to the hyphal tips forming bright 

foci. Together with at other positions along the hyphal wall that could correspond to the 
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establishment of new sites for polar cell wall insertion and formation of new branch 

positions. The foci were not always the same size or intensity and occasionally extended 

further behind the tip, for reasons that cannot be explained at this point. Scy is positioned 

at the hyphal tip which is the location of active growth and cell wall extension. However, 

in this experiment samples were removed from their substrate medium, placed onto a 

microscope slide and snapshot images were taken in order to determine if EGFP-Scy was 

associated with growing tips. Live imaging and time lapse microscopy could not be used in 

this experimental setup as transferring the cellophane to a microscope slide and sealing 

with a coverslip depletes the hyphae of substrate medium, air and glycerol as well as nail 

varnish that are used in the mounting procedure would also disturb the growth. Time-lapse 

imaging has been attempted in the Kelemen lab with cellophanes, however, only limited 

videos could be captured due to technical problems such as sample drying out. In the field, 

other laboratories have had more success with live imaging when sandwiching mycelium 

between agar plugs and an oxygen permeable plastic dish, whilst incubating samples in a 

30°C chamber and visualising with an inverted microscope (Jyothikumar et al., 2008).     

Creating a merodiploid strain of S. coelicolor did not disturb hyphal growth. However, 

there were present some minor disturbances such as curling hyphal branches that may 

deem this fusion only partially functional. However, this behaviour could be caused by 

introducing a second copy of scy or by introducing an artificial protein with an EGFP tag 

that may not behave exactly as in the native scenario. To assess whether the EGFP-Scy 

fusion protein was fully functional, pIJ8660-Pscy-egfp-scy was moved into the scy non- 

marked mutant strain. To test whether EGFP-Scy could complement the scy mutation we 

spread identical numbers of spores (106 in 15μl volume spread) of the strains; 

M145/pIJ8660, M145/pIJ8660-Pscy-egfp-scy, scy/pIJ8660 and scy/pIJ8660-Pscy-egfp-scy. 

This was to an approximate area of a 3cm equilateral triangle and spread with a sterile 

toothpick. The plates were then incubated at 30˚C and imaged after two day and three day 

time points (Figure 43). The strain scy/pIJ8660-Pscy-egfp-scy was more like the 

M145/pIJ8660 strain than the scy/pIJ8660 strain so EGFP-Scy did result in a significant 

reversion of the phenotypic effects of a scy mutant back into the phenotype observed for 

the wild-type. This would suggest that the EGFP-Scy fusion protein was able to function in 

a similar manner to the native Scy protein.  However, there was a minor delay with strains 

M145/pIJ8660-Pscy-egfp-scy and scy/pIJ8660-Pscy-egfp-scy in comparison to 

M145/pIJ8660. This could be representative of a partial complementation. As the M145 
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and scy backgrounds carrying pIJ8660-Pscy-egfp-scy look similar this would rule out a 

copy number effect and suggest that the partial complementation effect is due to the EGFP 

fusion protein not acting exactly like the native protein.  

To test whether EGFP-Scy could complement the scy mutation and if all the attributes to 

which were earlier associated with a scy phenotype have been complemented the DNA 

stain propidium iodide and the cell wall stain WGA conjugated to Alexa-488 were used in 

Figure 42: Localisation of EGFP-Scy was to foci at hyphal tips and along the hyphal walls. 
S. coelicolor M145 carrying pIJ8660-Pscy-egfp-scy, was grown for 16 hours on solid SFM 
medium supplemented with apramycin and the samples were viewed by laser-scanning 
confocal microscopy (A-D). Corresponding fluorescence images are left of the respective 
merged fluorescent and brightfield image. Scale bars are shown. 
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combination with microscopy. The strains M145/pIJ8660-Pscy-egfp-scy and scy/pIJ8660-

Pscy-egfp-scy were grown on SFM alongside coverslips (as shown in Figure 123). Time 

points were observed between 2-4 days in order to cover the spectrum of the 

developmental cycle. However, only a few examples of images are shown as the objective 

is only to assess if the phenotype has been complemented. To which examples of both 

vegetative hyphae and aerial hyphae for each strain are shown Figure 44. There were no 

apparent differences of M145/pIJ8660-Pscy-egfp-scy and scy/pIJ8660-Pscy-egfp-scy in 

relation to M145/pIJ8660 (Figure 41) in terms of either vegetative growth or aerial growth. 

Therefore, suggesting that EGFP-Scy functions similarly to Scy in the vegetative hyphae 

grown alongside coverslips or in the development of aerial hyphae and the development of 

spore chains. Also, of note there were seemingly no dosage effects of the copy of egfp-scy 

in addition to the copy of scy in the wild-type.   

 

 

Figure 43: Complementation studies using strains expressing EGFP-Scy shows that adding 
egfp-scy in trans can revert the scy mutant to wildtype. 106 spores were inoculated in a 
confluent triangle area on SFM medium and growth was monitored after 2 and 3 days at 
30˚C. Confluent growth of strains M145/pIJ8660 (A+E), scy/pIJ8660 (B+F), M145/pIJ8660-
Pscy-egfp-scy (C+G) and scy/pIJ8660-Pscy-scy (D+H). 
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3.2.2 mCherry-Scy localises to hyphal tips 

 

To establish the localisation of Scy with an mCherry fusion tag, partly in order to increase 

the flexibility of genetic tools available and also to determine if the protein functioned 

differently (and to perform co-localisation studies) the plasmid pIJ8660-Pscy-mCherry-scy 

(pK57 (Holmes et al., 2013)) was constructed (10.1.47). The plasmid pIJ8660-Pscy-

mCherry-scy is similar to pIJ8660-Pscy-egfp-scy except that it generates an mCherry-Scy 

fusion protein instead of an EGFP-Scy fusion protein. The vector pIJ8660-Pscy-mCherry- 

  

Figure 44: Microscopic observations show that adding egfp-scy in trans can revert the scy 
mutant to wildtype. Microscopy of the scy mutant complementation with pIJ8660-Pscy-
egfp-scy. Images of M145/pIJ8660-Pscy-egfp-scy vegetative hyphae (A) and aerial hyphae 
(B) shown from coverslip samples displaying a wild-type phenotype. Images of scy/pIJ8660-
Pscy-egfp-scy vegetative hyphae (C) and aerial hyphae (D) shown from coverslip samples 
also displaying a wild-type phenotype. Samples were grown for 2-4 days on agar plates 
alongside coverslips. Samples then stained with WGA-Alexa488 and propidium iodide. All 
images are overlayed with the two channels from WGA-Alexa488 (Green)/propidium iodide 
(Red). Scale bars are shown. 
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scy was passaged into Streptomyces via conjugation with E. coli ET12567. When 

introduced into the strain M145 this generates a merodiploid strain carrying Scy and 

mCherry-Scy. Conjugation efficiencies achieved were very high, yet only 2 representative 

colonies were chosen and propagated further so that spore stocks were generated. These 2 

colonies were later found to be identical so the results of only 1 colony are shown here. 

Spores of M145 carrying pIJ8660-Pscy-mCherry-scy were similarly grown on cellophane 

on top of SFM medium for 12-16 hours and then visualised through fluorescence 

microscopy (Figure 45). Interestingly mCherry-Scy similarly to EGFP-Scy, localised 

primarily to the hyphal tips and at other lateral positions along the hyphal wall that could 

Figure 45: Localisation of mCherry-Scy was to foci at hyphal tips and along the hyphal 
walls. S. coelicolor M145/pIJ8660-Pscy-mCherry-scy, was grown for 16 hours on solid SFM 
medium and the samples were viewed by laser-scanning confocal microscopy (A-D). 
Corresponding fluorescence images are left of the respective merged fluorescent/brightfield 
image. Scale bars are shown. 
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correspond to future branch points. Similarly to EGFP, the foci were not always the same 

size or intensity and occasionally extended further behind the tip, for reasons that cannot 

be explained at this point. The mCherry-Scy foci were less bright than the EGFP-Scy foci 

and sometimes suffered problems of photobleaching, accountable to the physical properties 

of mCherry fluorescence in comparison to EGFP. This however, is not recognizable in the 

fluorescent images as the exposure was often set higher to obtain a visible signal. Similarly 

to the hyphae carrying EGFP-Scy there were present some minor disturbances associated 

with hyphal branching that are assumed to result in a similar fashion to the possible partial 

functioning of EGFP-Scy. M145 carrying pIJ8660-Pscy-mCherry-scy were wild-type-like 

and similar in phenotype to M145 carrying pIJ8660-Pscy-egfp-scy which we found was 

still functional despite minor phenotypic effects (Figure 43 and Figure 44). 

 

3.3 Localisation of Scy using C-terminal fluorescent fusions 
 

3.3.1 Scy-EGFP localises to hyphal tips 

 

EGFP fusion proteins represent an important tool in studying protein localisation, though it 

is known in studies of eukaryotic cytoskeletal systems such as the microfilament protein 

actin that EGFP fusions can affect protein function (Westphal et al., 1997; Deibler et al., 

2011; Ballestrem et al., 1998). EGFP fusions can be used to discern in vivo behaviours of 

proteins regardless and in fact the behaviour of different EGFP fusions to complex proteins 

can be used as a dissection tool. Therefore, to verify localisation of Scy in Streptomyces 

and to further dissect the behaviour of this protein in vivo we aimed to generate a C-

terminal fusion of EGFP to Scy (10.1.48). The plasmid pIJ8660-Pscy-scy-egfp enables 

expression of a Scy-EGFP fusion protein. The plasmid pIJ8660-Pscy-scy-egfp was 

mobilised into Streptomyces coelicolor M145. When introduced into the strain M145 this 

generates a merodiploid strain expressing the proteins  
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Scy and Scy-EGFP. Spores of M145 carrying pIJ8660-Pscy-scy-egfp were inoculated onto 

cellophane covering SFM medium and were incubated for 12-16 hours and then visualised 

through fluorescence microscopy (Figure 46). Scy-EGFP, similarly to EGFP-Scy, 

primarily localised to the hyphal tips and at other positions along the hyphal wall that 

likely correspond to future branch points. Consistent with the idea that changing the 

Figure 46: Localisation of Scy-EGFP was to foci at hyphal tips and along the hyphal walls. 
S. coelicolor M145/pIJ8660-Pscy-scy-EGFP, was grown for 16 hours on solid SFM medium 
supplemented with apramycin and the samples were viewed by laser-scanning confocal 
microscopy (A-D). Corresponding fluorescence images are left of the respective merged 
fluorescent/brightfield image. Scale bars are shown. 
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positioning of the EGFP tag may change the in vivo dynamics of the protein behaviour, 

Scy-EGFP foci were less bright and suffered from photobleaching. For the sake of clarity, 

however, the signal is shown in Figure 46 prior to photobleaching. This could result due to 

less uptake of Scy-EGFP with native Scy or possibly less aggregation in comparision to 

EGFP-Scy and therefore Scy-EGFP could form less artificial structures. Scy-EGFP foci 

appear to follow the shape of the hyphal tip more than EGFP-Scy, however this could be 

caused by EGFP-Scy foci being brighter and therefore not resolving the shape of EGFP-

Scy localisation as precisely. A microscopic difference between Scy-EGFP and EGFP-Scy 

is the less present minor disturbances associated with hyphal branching as seen in the 

microscopy (Figure 46), which could be due to less incorporation of Scy-EGFP into native 

structures or a possible more wild-type functioning Scy-EGFP than EGFP-Scy. Scy-EGFP 

was found to complement the phenotype associated with the aerial hyphae of a scy mutant 

in the same was as EGFP-Scy (11.2), so we assume that it is able to function somewhat 

like the native protein. 

 

3.3.2 Fixing and propidium iodide staining of EGFP Scy fusions reveal a difference in N-

terminal and C-terminal  

 

It has long been suggested that polar localisation of proteins may in part depend on the 

positioning of the nucleoid which often does not find itself at the extremes of the cell or the 

at the midcell position (Wu, and Errington, 2011). In order to compare the localisation 

patterns of the EGFP fusions of Scy with DNA, we aimed to compare Scy localisation with 

the DNA stain propidium iodide. Whilst attempting this it was noticed that there were 

differences between M145 strains carrying pIJ8660-Pscy-egfp-scy and pIJ8660-Pscy-scy-

egfp and their ability to withstand downstream treatments. Spores of each strain were 

similarly grown on cellophane on top of SFM medium for 12-16 hours. After which 1cm2 

squares of cellophane were cut with a razor blade and stained as was done for the mutant 

analysis on cellophane. That is they were first fixed with methanol. Following this they 

were washed and stained with propidium iodide. They were washed again to remove 

unbound dye and then visualised through fluorescence microscopy (Figure 47).  

It was observed that EGFP-Scy foci were able to withstand the chemical treatment 

associated with fixing and then staining, whereas Scy-EGFP foci were not visible after 

methanol fixation and PI staining. This could be due to the same reason that Scy-EGFP 

foci were less bright and suffered from photobleaching, perhaps representing a lower 
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abundance of this fusion protein at the hyphal tip complexes. It may also represent the 

dynamic distribution that might be needed with a protein perhaps associated with hyphal 

tip growth when the cells are no longer viable and the tips aren’t growing. Whereas EGFP-

Scy might form aggregates and the dynamics less susceptible to environmental conditions 

or cessation of growth. It is also of note that EGFP-Scy can be found in regions of less 

DNA staining in the cell, consistent with the observations above that the tips are absent of 

DNA. Scy localisation might by influenced by a system analogous to nucleoid occlusion; 

however, EGFP-Scy foci cannot be seen at all hyphal segments that are less staining with 

PI.   

 

 
3.3.3 Scy-mCherry localisation was not discernable in the plasmid pIJ8660-Pscy-scy-

mCherry 

 

To further assess the localisation of Scy with a C-terminal fluorescent fusion/increase the 

genetic toolbox for study (and to perform co-localisation studies), a Scy-mCherry C-

terminal fusion was constructed (10.1.49). The plasmid pIJ8660-Pscy-scy-mCherry 

encodes a Scy-mCherry fusion protein. Being a pIJ8660 derivative the plasmid was 

Figure 47: Localisation of EGFP-Scy and Scy-EGFP with staining and fixing reveal 
differences in the fusion proteins ability to withstand treatment. Localisation of EGFP-Scy 
(A) in green can be seen to form foci at hyphal tips and along the hyphal walls. Green 
signal of Scy-EGFP (B) cannot be visualised in these hyphae. S. coelicolor M145/pIJ8660-
Pscy-EGFP-scy and M145/pIJ8660-Pscy-scy-EGFP, were grown for 16 hours on solid SFM 
medium, samples then fixed with methanol and stained with propidium iodide. The 
samples were viewed by laser-scanning confocal microscopy. All images are overlayed with 
the two channels green (protein) and propidium iodide (Red) then fluorescencent images 
are merged with the brightfield image. Scale bars are shown. 
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mobilised into Streptomyces via E. coli ET 12567/pUZ8002. M145 carrying pIJ8660-Pscy-

scy-mCherry was inoculated onto cellophane covering SFM medium and then visualised 

using fluorescence microscopy (Figure 48). Surprisingly, we could not detect strong foci at 

tip positions (although occasional weak tip signals could be seen) or at sites along the 

hyphal wall. Instead it was observed that there was a weak diffuse mCherry signal 

throughout the hyphae. Introduction of pIJ8660-Pscy-scy-mCherry into the scy mutant 

resulted in a complementation of the scy mutant phenotype suggesting that there might be 

free Scy protein in the hyphae. The lack of tip-localised Scy-mCherry foci in the strain 

carrying pIJ8660-Pscy-scy-mCherry was likely to be the result of the absence of Scy-

mCherry produced. We confirmed the plasmid is correct and that the strain tested 

contained the correct plasmid. Linkers can affect fusion proteins and they might be target 

sites for proteolytic enzymes. Alternatively a linker site might then favour optional 

sequences for an alternative translational start site, which would enable translation of 

mCherry independently of Scy.      

  

 
 

 

 

Figure 48: Scy-mCherry was not detectable at hyphal tips. The Scy-mCherry fusion had a 
weak diffuse signal, red channel (left); with brightfield merged with red channel (right). S. 
coelicolor M145/pIJ8660-Pscy-mCherry-scy, was grown for 16 hours on solid SFM 
medium and the samples were viewed by laser-scanning confocal microscopy. Scale bars 
are shown. 
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3.3.4 Scy-Δlink-mCherry localised to hyphal tips 

 

As the plasmid pIJ8660-Pscy-scy-mCherry did not generate a signal, we wanted to test the 

fusion by removing the His-Met-Gly-Gly-Gly-Gly-Gly linker to assess the localisation of 

Scy with a C-terminal functioning mCherry fluorescent fusion. The plasmid pIJ8660-Pscy-

scy-Δlink-mCherry was constructed (10.1.50) which encodes a fusion to the C-terminus of 

Scy generating a Scy-mCherry fusion protein where Scy is joined to mCherry without a 

glycine linker for spacing as was done previously for the other fusions. Being a pIJ8660 

derivative the plasmid was mobilised into Streptomyces via conjugation with E. coli 

ET12567/pUZ8002. M145 carrying pIJ8660-Pscy-scy-Δlink-mCherry was grown on 

cellophane on top of SFM medium and then visualised using fluorescence microscopy 

(Figure 49). We could clearly identify Scy-mCherry at hyphal tips and at some additional 

lateral positions. This was consistent with the localisation that observed when expressing 

Scy-EGFP, EGFP-Scy or mCherry-Scy. In addition to the strong tip foci we could 

visualise some dispersed red fluorescence throughout the hyphae. Introduction of pIJ8660-

Pscy-scy-mCherry into the scy mutant resulted in a complementation of the scy mutant 

phenotype, suggesting the Scy-mCherry fusion protein was functional. The reasons for the 

difference between constructs carrying a linker or no linker are not clear. It is possible that 

the linker is more prone to proteolysis in certain cases or that alternative translational starts 

sites are used. 

 

3.4 Detection of Scy fluorescent fusion proteins 
 

In order to confirm the successful expression of fusion proteins of Scy to the respective 

fluorescent proteins, cell extracts of S. coelicolor were analysed on SDS-PAGE gels under 

semi-denaturing conditions that allow the folding of the fluorescent proteins and visualised 

using a phosphoimager with settings that could detect the fluorophores. This method of 

fluorescence scanning has been used previously to successfully analyse the expression of a 

ParB-EGFP fusion protein in S. coelicolor (Jakimowicz et al., 2005a). Spores of M145 

carrying either pIJ8660-Pscy-egfp-scy, pIJ8660-Pscy-mCherry-scy, pIJ8660-Pscy-scy-egfp 

or pIJ8660-Pscy-scy-mCherry were inoculated onto cellophane on top of SFM medium for 

18 hours. Cells were then collected from the cellophane surface and were resuspended in a 

Tris-Magnesium buffer. Cells were lysed using FastPrep treatment, which disrupts the cells 
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by vigorous shaking in the presence of <106μm glass particles. The cell extracts were 

centrifuged to separate both pellet and supernatant, of which the pellet was re-suspended in 

the same buffer as before. The supernatants and pellets were then analysed on SDS-PAGE 

gels whereby the samples were not boiled prior to loading therefore preventing 

denaturation of the fluorescent tags and maintaining fluorescence activity (Figure 50). 

Figure 49: Localisation of Scy-Δlink-mCherry was to foci at hyphal tips as well as a more 
diffuse signal in other locations. S. coelicolor M145/pIJ8660-Pscy-scy-Δlink-mCherry, was 
grown for 16 hours on solid SFM medium and the samples were viewed by laser-scanning 
confocal microscopy (A-D). Corresponding fluorescence images are left of the respective 
merged fluorescent/brightfield image. Scale bars are shown. 
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The gel was visualised for EGFP activity by exciting at 488nm and the emission was then 

detected at 532nm (Figure 50A). Similarly to monitor mCherry activity the gel was excited 

at 532nm and the emission was then detected at 555nm (Figure 50B). The expected size for 

the EGFP-Scy fusion protein from pIJ8660-Pscy-egfp-scy was 173.8kDa, there was a 

higher molecular weight band that could correspond with this size. If a fusion protein 

wasn’t present then free EGFP would run at 27.1kDa, which would migrate much further 

in the gel. It was also seen that there were similar high molecular weight bands for 

pIJ8660-Pscy-mCherry-scy (mCherry-Scy; 173.6kDa) and pIJ8660-Pscy-scy-egfp (Scy-

EGFP; 174.1kDa), corresponding to the size of a Scy fluorescent protein fusion. Similarly 

a cell extract from E. coli overexpressing EGFP-Scy (Chapter 7) generated a band at a 

similar position. Therefore, it is reasonable to suggest that these bands are evidence that the 

fusion proteins were successfully being produced in S. coelicolor. It can also be seen that 

there are bands of smaller sizes, these could possibly be products of partial degradation of 

the protein. It is unclear if this reflects proteolytic activity in the hyphae and/or could be 

damaged/dead hyphae or partially proteolysed protein produced when lysing the cells. It is 

Figure 50: SDS-PAGE was used to detect the Scy fluorescent fusion proteins. For analysis 
of the EGFP fusions the gel was excited at 488nm and the emission read at 532nm (A). For 
analysis of the mCherry fusions the gel was excited at 532nm and the emission read at 
555nm (B). A control of the Supernatant of a cell extract of E.coli expressing EGFP-Scy 
was used (Holmes and Kelemen, unpublished) (Lane 1). Also, a control of cell extracts of S. 
coelicolor expressing NepA-mCherry after 40 hours growth was used (Lane 2 & 3). A 
signal can be seen for cell extracts of M145/pIJ8660-Pscy-egfp-scy (Lane 4 & 5). A signal 
can be seen for cell extracts of M145/pIJ8660-Pscy-mCherry-scy (Lane 6 & 7). A signal can 
be seen for cell extracts of M145/pIJ8660-Pscy-scy-egfp (Lane 8 & 9). A high molecular 
weight signal could not be seen for cell extracts of M145/pIJ8660-Pscy-scy-mCherry (Lane 
10 & 11). Samples were separated into both Supernatant fractions (S) and Pellet fractions 
(P). Shown on the left hand side are the positions and sizes of a protein MW marker (not 
visible on images shown) displayed in kDa.  
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interesting to note that the higher proportion of activity of the Scy fusion proteins is in the 

supernatant fractions suggesting that Scy is cytoplasmic or membrane bound. However, the 

activity in the pellet could correspond to insoluble Scy aggregates, cell wall bound Scy or 

Scy from unlysed cells. Strikingly the strain expected to express Scy-mCherry joined by a 

gly linker does not have a high molecular weight band. This could explain why there was 

no significant tip signal corresponding to the localisation of Scy. It would suggest that 

somehow an intact fusion of Scy to mCherry is not present. Perhaps an explanation for this 

could be that either this fusion for some reason is more susceptible to protein degradation 

or it could be that it is not expressed correctly perhaps with translation occurring at a 

methionine located within the linker or at the beginning of mCherry. These results do not 

exclude the possibility that degradation removing the mCherry tag could leave the wildtype 

protein intact and therefore explain why pIJ8660-Pscy-scy-mCherry can complement the 

scy mutant.   

We could, however, detect Scy-mCherry at the tips of the strain expressing Scy-mCherry 

without the penta-glycine linker (Figure 49). Cell extracts from the strain of M145 carrying 

pIJ8660-Pscy-scy-Δlink-mCherry were also analysed on partially denaturing SDS 

Polyacrylamide gels (Figure 51). There was a visible faint higher molecular weight band 

corresponding to the size of a Scy-Δlink-mCherry (173.3kDa) fluorescent protein fusion, 

running at approximately the same size as an mCherry-Scy fusion protein. The Scy-

mCherry fluorescent protein fusion was more visible in the supernatant fraction suggesting 

that it was cytoplasmic or membrane bound. Therefore, it is reasonable to suggest that the 

Scy-mCherry fusion protein was successfully being produced in S. coelicolor backing up 

the microscopy observations. 

 

3.5 Localisation of the N-terminal and C-terminal domains of Scy 
 

3.5.1 The C-terminal domain of Scy can localise to hyphal tips 

 

Scy has two main domains, a small N-terminal heptad coiled-coil domain and a large non-

heptad coiled-coil domain (Walshaw et al., 2010). To test whether the N or C terminal 

domain alone are sufficient for tip localisation we generated egfp fusions to DNA encoding 

either the Scy-N domain or the Scy-C domain (10.1.51). The vectors pIJ8660-Pscy-egfp-

scy-C and pIJ8660-Pscy-egfp-scy-N encode fusions of EGFP to the N-terminus of either 

the Scy-C or the Scy-N domains, respectively. These pIJ8660 derivatives were mobilised 
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into Streptomyces via conjugation with E. coli ET 12567/pUZ8002. Introduction of either 

pIJ8660-Pscy-egfp-scy-C and pIJ8660-Pscy-egfp-scy-N into the scy mutant failed to result 

 
 

in complementation of the scy mutant phenotype (11.2). M145 carrying either pIJ8660-

Pscy-egfp-scy-C or pIJ8660-Pscy-egfp-scy-N was grown on cellophane on top of SFM 

medium and then visualised using fluorescence microscopy (Figure 52). EGFP-Scy-C was 

able to form foci at the hyphal tip and foci along the hyphal wall in a manner similar to 

EGFP-Scy. This signal was also observed in a scy mutant carrying pIJ8660-Pscy-egfp-scy-

C (data not shown) suggesting that the C-terminal domain of Scy is capable of localising 

without the native protein present. EGFP-Scy-N did not generate foci at tip positions or at 

sites along the hyphal wall (Figure 52B). Instead it was observed that there was a weak 

diffuse EGFP signal throughout the hyphae. Therefore, suggesting that EGFP-Scy-N 

cannot localise to apical growth sites even when the native protein is present. The 

expression of truncated EGFP fusions of Scy in cell extracts of S. coelicolor expressing 

EGFP-Scy-N or EGFP-Scy-C were assessed on SDS-PAGE gels under semi-denaturing 

conditions and the fluorophore activity was detected with a phosphoimager. Spores of 

M145 carrying either pIJ8660-Pscy-egfp-scy-N or pIJ8660-Pscy-egfp-scy-C were 

inoculated onto cellophane on top of SFM medium for 18 hours. Cells were collected 

Figure 51: SDS-PAGE was used to detect the 
Scy-Δlink-mCherry fluorescent fusion protein. 
For analysis of the Scy-Δlink-mCherry 
fluorescent fusion the gel was excited at 532nm 
and the emission read at 555nm. A control of 
the Supernatant of a cell extract of 
M145/pIJ8660-Pscy-mCherry-scy was used 
(Lane 1). A signal can be seen for cell extracts 
of M145/pIJ8660-Pscy-scy-Δlink-mCherry 
(Lane 2 & 3). Samples were separated into both 
Supernatant fractions (S) and Pellet fractions 
(P). Shown on the left hand side are the 
positions and sizes of a protein MW marker 
(not visible on images shown) displayed in kDa. 
The arrow shows the size of the higher 
molecular weight band representing a fusion 
protein. 
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from the cellophane surface, lysed and separated into supernatant and pellet fractions as 

described previously (3.4). The samples were then analysed on SDS-PAGE gels whereby 

the samples were not boiled prior to loading therefore preventing denaturation of the 

fluorescent tags and maintaining fluorescence activity. The gel was visualised for EGFP 

activity by exciting at 488nm and the emission was then detected at 532nm (Figure 53). 

The expected size for the EGFP-Scy-C fusion protein would be 165.8kDa, it was seen that 

there were high molecular weight bands for pIJ8660-Pscy-egfp-scy-C corresponding to a 

similar size. These also ran to a similar distance as for M145/pIJ8660-Pscy-egfp-scy as 

well as a cell extract from E. coli overexpressing EGFP-Scy-C which both generated a 

band at a similar position. It is unclear if there is a migration distance difference between 

full length and Scy-C fusions, as the N-terminal is only small and the difference is unlikely 

to be resolved. It can also be seen that there are bands of smaller sizes that could 

correspond to degradation products. For M145/pIJ8660-Pscy-egfp-scy-N, the expected size 

of the EGFP-Scy-N fusion is 36kDa, so not suprisingly there were no higher molecular 

weight bands visible. However, in comparison to the control of EGFP from S. coelicolor 

and EGFP-Scy-N from E. coli, as well as the matching to degradation products in EGFP-

 

Figure 52: EGFP-Scy-C localised to 
hyphal tips whereas EGFP-Scy-N was 
not detectable at hyphal tips. 
Localisation of EGFP-Scy-C to the 
hyphal tips (A); with brightfield (left), 
EGFP fluorescence (middle) and a 
merged image (right). The EGFP-Scy-N 
fusion had a diffuse signal (B); with 
brightfield (left), EGFP fluorescence 
(middle) and a merged image (right). S. 
coelicolor M145 carrying either pIJ8660-
Pscy-egfp-scy-C and pIJ8660 pIJ8660-
Pscy-egfp-scy-N, were grown for 16 
hours on solid SFM medium and the 
samples were viewed by laser-scanning 
confocal microscopy. Scale bars are 
shown. 

 

 

 

B 
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Scy-C it cannot be concluded that the EGFP seen has the small sized Scy-N domain 

attached. In this case the free EGFP from S.coelicolor does not run to the expected size of 

27.1kDa, which could be caused by oligomerisation of EGFP. Perhaps more detailed 

proteomic analysis would be of use to follow up this experiment. Signals for both samples 

can be seen in both Supernatant and Pellet fractions, this is not necessarily dissimilar to the 

full length Scy protein; however, the very highest band of EGFP-Scy-C is more present in 

the Pellet fraction, when it was more visible in the Supernatant fraction of the full length 

protein. Therefore, possibly suggesting that the full length protein needs to be intact for 

correct folding/positioning in the cytoplasm or the membrane.  

 

 
 

3.5.2 Scy-N-EGFP localisation was not discernable in the plasmid pIJ8660-Pscy-scy-N-

egfp 

 

To test whether the N-terminal domain of Scy is unable to localise in S. coelicolor, we 

aimed to generate an EGFP fusion to the C-terminal end of Scy-N. As egfp would be on 

Figure 53: SDS-PAGE was used to 
detect EGFP-Scy-C and EGFP-Scy-N 
fluorescent fusion proteins. The gel 
was excited at 488nm and the 
emission read at 532nm for analysis 
of EGFP fusions. A control of the 
Supernatant of a cell extract of S. 
coelicolor expressing EGFP from 
Psco4002 (Holmes and Kelemen, 
unpublished) (Lane 1). A control of 
the Supernatant of a cell extract of 
M145/pIJ8660-Pscy-egfp-scy (Lane 
2). Controls of Supernatants of cell 
extracts of E.coli expressing EGFP-
Scy-C (Lane 3) and EGFP-Scy-N 
(Lane 4)  (Holmes and Kelemen, 
unpublished). Supernatant (S) and 
Pellet (P) of a cell extract of 
M145/pIJ8660-Pscy-egfp-scy-C (Lane 
5 & 6) shows a high molecular weight 
band corresponding to EGFP-Scy-C. 
Supernatant (S) and Pellet (P) of a 
cell extract of M145/pIJ8660-Pscy-
egfp-scy-N (Lane 7 & 8) shows the 
abolition of a high molecular weight 
band, though EGFP-Scy-N runs to a 
similar height as EGFP (Lane 1).  
 
 

Shown on the left hand side are the positions and sizes of a protein MW marker (not 
visible on images shown) displayed in kDa. The arrow shows the size of the higher 
molecular weight band representing an EGFP-Scy or EGFP-Scy-C fusion protein. 
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the C-terminal side of the sequence encoding the Scy-N domain, it would possibly rule out 

the event that EGFP-Scy-N does not localise because the N-terminal end of Scy-N is 

important for recruitment to a subcellular site. The reason why we thought that this might 

be relevant is that there have been previous reports for DivIVA that suggest that the N-

terminal may significantly contribute to subcellular localisation (Lenarcic et al., 2009; 

Oliva et al., 2010). The plasmid pIJ8660-Pscy-scy-N-egfp was constructed (10.1.53), 

which encodes a fusion of EGFP to the C-terminus of the Scy-N domain expressing Scy-

N-EGFP. The plasmid was mobilised into Streptomyces via E. coli ET 12567/pUZ8002. 

Introduction of pIJ8660-Pscy-scy-N-egfp into the scy mutant failed to result in complete 

complementation of the scy mutant phenotype (11.2). M145 carrying pIJ8660-Pscy-scy-N-

egfp was grown on cellophane on top of SFM medium and then visualised using 

fluorescence microscopy (Figure 54). Scy-N-EGFP similarly to EGFP-Scy-N generated a 

weak diffuse EGFP signal throughout the hyphae. Therefore, ruling out the possibility that 

the failure of Scy-N to localise in the previous experiment was from an abnormality 

generated from the EGFP being positioned on the N-terminus, that is EGFP was not 

necessarily blocking something on the amino terminus of Scy-N. 

 

 
 

 

Figure 54: Scy-N-EGFP was not detectable at hyphal tips. The Scy-N-EGFP fusion had a 
diffuse signal; with brightfield (left), EGFP fluorescence (middle) and a merged image 
(right). S. coelicolor M145 carrying pIJ8660-Pscy-scy-N-egfp, was grown for 16 hours on 
solid SFM medium and the samples were viewed by laser-scanning confocal microscopy. 
Scale bars are shown. 
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3.5.3 Summary 

 

It was observed that fluorescent fusion proteins of Scy localised to the hyphal tips and 

branch sites of Streptomyces. In combination with the phenotypic effects of the scy mutant 

this would suggest that Scy somehow in vivo functions at the hyphal tip possibly with a 

role in cell shape determination and cell extension. Placing of the fluorescent tag on 

different ends of the protein did not change the localisation of Scy to hyphal tips and 

branches, but did show slight differences in complentation and foci formation. Truncations 

of the Scy coiled-coil domains showed that the N-terminal domain is dispensible for 

localisation and that the C-terminal domain may drive Scy to polar sites.  
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4 Scy and its possible role during apical growth and cell 

division 
 

4.1.1 Introduction 

 

As the phenotype of the scy mutant and the Scy localisation data suggested that Scy was 

involved in apical growth, we wanted to explore this further by looking at the apical 

determinat DivIVA or by looking at active cell wall growth. Therefore we wanted to see if 

Scy colocalised at actively growing hyphal tips with DivIVA and/or cell wall synthesis. 

Further we wanted to monitor DivIVA or cell wall synthesis in the scy mutant. We also 

wanted to test the function of Scy further by overexpressing scy and finding the effect of 

overexpression on DivIVA or cell wall synthesis insertion and branching dynamics. As a 

comparison we also replicated DivIVA overexpression experiments from Flärdh (2003a) 

with the intent of combing Scy localisation. As a scy mutant also had defects in terms of 

cell division we also wanted to look at the localisation patterns of the cell division proteins 

FtsZ and ParB to reveal any new insight into this phenotype.   

 

4.1.2 Scy co-localises with DivIVA and sites of new cell wall insertion  

 

As initial analysis suggests that Scy localises at hyphal tips, this is also the location of new 

cell wall insertion as marked by fluorescent vancomycin (Van-Fl) staining (Daniel, and 

Errington, 2003) and localisation of the predicted PBP interacting protein DivIVA (Flärdh, 

2003a). 

Therefore, to determine if Scy is localised to actively growing hyphal tips it was sought to 

monitor Scy localisation in comparison to DivIVA-EGFP or Van-Fl. Because both 

DivIVA-EGFP and Van-Fl emit green fluorescence, for co-localisation studies we had to 

use the mCherry fusions to Scy. The construct pIJ8660-Pscy-mCherry-scy was introduced 

into M145 carrying pKF59 (Flärdh, 2003a), which itself generates a DivIVA-EGFP fusion. 

M145/pKF59/pIJ8660-Pscy-mCherry-scy expressing both mCherry-Scy and DivIVA-

EGFP was grown on cellophane placed on top of SFM medium and after 12-18 hours 

growth the cellophane discs with the growing hyphal filaments were visualised using 

fluorescence microscopy. DivIVA-EGFP and mCherry-Scy co-localised not only at hyphal 

tips but also at sites along the lateral wall (Figure 56). As it has previously been shown that 
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DivIVA-EGFP localises to sites of future tip positions prior to branch formation (Hempel 

et al., 2008) this also suggests that Scy localises to de novo sites of tip formation. To 

monitor new cell wall synthesis, M145/pIJ8660-Pscy-mCherry-scy was grown on 

cellophane placed on top of SFM medium and the growing hyphae were stained with a 

mixture of 1 µg/ml BODIPY FL vancomycin (Molecular Probes) and 1 µg/ml unlabelled 

vancomycin (Sigma) for 5 minutes prior to collection of the sample, which was visualised 

using fluorescence microscopy. mCherry-Scy co-localised with fluorescent vancomycin, 

therefore, Scy marks sites of new cell wall synthesis (Figure 56). Therefore, together with 

its co-localisation with DivIVA, these observations suggest that Scy as well as DivIVA are 

implicated in the placement of the cell wall synthetic machinery and hyphal tip growth.   

 
 

 

Figure 55: Scy co-localises with DivIVA. Localisation of mCherry-Scy foci (in red) overlaps 
with DivIVA-EGFP foci (in green). Co-localisation can be seen merged with the brightfield 
image, whereby both proteins localise to hyphal tips and future branch points (A-D). S. 
coelicolor M145/pKF59/pIJ8660-Pscy-mCherry-scy, was grown for 16 hours on solid SFM 
medium and the samples were viewed by laser-scanning confocal microscopy. 
Corresponding fluorescence images are next to one another and the respective overlayered 
image. Scale bars are shown. 
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To assess the localisation of Scy with a C-terminal fluorescent fusion in comparison to 

DivIVA-EGFP, the plasmid pIJ8660-Pscy-scy-Δlink-mCherry was used. The construct 

pIJ8660-Pscy-scy-Δlink-mCherry was introduced into M145 carrying pKF59 (Flärdh, 

2003a), producing a strain that expresses both Scy-mCherry and DivIVA-EGFP. 

M145/pKF59/pIJ8660-Pscy-scy-Δlink-mCherry was grown on cellophane placed on top of 

SFM medium and then visualised using fluorescence microscopy. DivIVA-EGFP and Scy-

mCherry co-localised at hyphal tips (Figure 57). However, at other locations for example 

along the lateral wall where new branch points may emerge, the co-localisation of 

DivIVA-EGFP and Scy-mCherry was not so obvious. This is likely because the construct 

of pIJ8660-Pscy-scy-Δlink-mCherry as shown in M145 (Figure 49) generates a diffuse 

background signal. The mCherry signal has less intensity than EGFP and the C-terminal 

fusion is also weaker than that seen using the N-terminal mCherry fusion. The weaker 

DivIVA signal associated with future branch sites is not matched by the Scy-mCherry  

Figure 56: Scy co-localises with sites of cell wall insertion. mCherry-Scy (in red) overlaps 
with fluorescent vancomycin staining (in green). Co-localisation can be seen merged with the 
brightfield image whererby Scy and the cell wall machinery localise to hyphal tips (A&B). S. 
coelicolor M145/pIJ8660-Pscy-mCherry-scy, was grown for 16 hours on solid SFM medium 
prior to Van-Fl staining and the samples were viewed by laser-scanning confocal 
microscopy. Corresponding fluorescence images are next to one another and the respective 
overlayered image. Scale bars are shown. 
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Figure 57: A Scy C-terminal fusion protein also co-localises with DivIVA. Localisation of Scy-
mCherry foci (in red) overlaps with DivIVA-EGFP foci (in green). Co-localisation can be seen 
merged with the brightfield image, whereby both proteins localise to hyphal tips and future 
branch points (A-D). However Scy-mCherry has a weaker diffuse signal throughout the hyphae 
other than the intense foci at tip and branch positions. S. coelicolor M145/pKF59/pIJ8660-Pscy-
scy-Δlink-mCherry, was grown for 16 hours on solid SFM medium and the samples were 
viewed by laser-scanning confocal microscopy. Corresponding fluorescence images are next to 
one another and the respective overlayered image. Scale bars are shown. 
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signal, although it is also of note that mCherry suffers from bleaching more than EGFP. 

Regardless, the co-localisation at brighter spots of existing apical sites, suggests the co-

localisation of DivIVA and Scy at hyphal tips, consistent with the hypothesis that Scy 

functions at the growing hyphal tips. 

 

4.1.3 DivIVA and sites of cell wall insertion are aberrant in the scy mutant 

 

The scy mutant was shown to have various abnormalities associated with hyphal tip growth 

and branching. DivIVA and sites of new cell wall insertion marked by Van-Fl co-localise 

with mCherry-Scy suggesting that Scy has a function related to polarised growth and the 

probable complex organisation of proteins and metabolic precursors that are likely to be 

needed to sustain apical extension of the cell. Therefore, the scy mutation could have an 

affect on both DivIVA localisation and cell wall synthesis. To test this, we monitored 

either DivIVA-EGFP or Van-Fl in the scy mutant and compared this to the localisation 

patterns found in the wild-type. In order to monitor DivIVA localisation in the two strains, 

pKF59 carrying divIVA-egfp (Flärdh, 2003a) was moved into the wild-type M145 or a 

truncated scy mutant, K110 generated previously in the Kelemen lab. Both M145/pKF59 

and K110/pKF59 were grown on cellophane placed on top of SFM medium and after 16 

hours growth the hyphal network was then visualised by fluorescence microscopy. It was 

observed that in the wild-type, DivIVA-EGFP localised to the hyphal tip as a single focus 

that followed the smoothly defined curvature of the tip (Figure 58A-C). This is compatible 

with the proposed role of negative membrane curvature at the tip as a possible cue for 

localisation of DivIVA in other biological systems (Ramamurthi, and Losick, 2009; 

Lenarcic et al., 2009). In comparison, in the scy mutant, the DivIVA-EGFP localisation 

pattern was different (Figure 58D-H). That is, DivIVA-EGFP appeared to be less compact 

at the hyphal tip with multiple foci often appearing. This aberrant localisation of DivIVA 

could result in asymmetrical tip curvature  leading to more DivIVA mislocalisation. The 

multiple foci of DivIVA are also likely to give rise to the splitting tips often seen in a scy 

mutant. Multiple and irregular DivIVA foci are also presumably responsible for the uneven 

hyphal diameter seen in a scy mutant.  
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Figure 58: 

DivIVA is mislocalised in 
a scy mutant. Localisation 
of DivIVA-EGFP foci (in 
green) normally 
positioned at hyphal tips 
in M145 (A-C). DivIVA-
EGFP localisation is 
disturbed in a scy mutant 
(D-H), with numerous foci 
that could cause 
morphological difficulties 
and splitting tips. S. 
coelicolor M145/ pKF59 or 
scy/pKF59, was grown for 
16 hours on solid SFM 
medium and the samples 
were viewed by laser-
scanning confocal 
microscopy. 
Corresponding 
fluorescence images are 
next to the respective 
overlayered/merged 
brightfield image. Scale 
bars are shown. 
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To confirm that the DivIVA mislocalisation would also be consistent with aberrant cell 

wall insertion, both M145 and K110 were grown on SFM medium alongside a coverslip 

and hyphae were stained with Van-Fl and propidium iodide, samples were then visualised 

through fluorescence microscopy. It was observed that in M145 (Figure 59A&B), Van-Fl 

strongly stained a tip-proximal portion of the hyphal tip, similar in appearance to the foci 

observed previously for DivIVA-EGFP. However, in the scy mutant a more intense and 

extended Van-FL signal was often seen (Figure 59C-E). Consistent with the DivIVA 

localisation pattern a bulbous and bi-lobed Van-FL signal was often seen marking apical 

branching or tip splitting. It is worth noting that the aberrant staining pattern with Van-Fl 

could reflect either excessive or mislocalised cell wall insertion or could mark places of 

cell wall turnover of damage.   

 
 

4.1.4 Overexpression of Scy generates new polarisation sites 

 

In addition to the characterisation of the scy mutant phenotype, we were also interested to 

perform the opposite experiment, to express scy at a high level. For Scy overproduction in 

Streptomyces, the Kelemen lab had previously constructed a plasmid pCJW93-scy (pK48; 

Figure 204) This plasmid is descended from the vector pCJW93 (Wilkinson et al., 2002), 

which is able to replicate in E. coli, and can be conjugated into Streptomyces species via 

oriT from RK2 (Pansegrau et al., 1994). The vector pCJW93 also contains the replication 

Figure 59: Cell wall insertion is 
altered in a scy mutant. 
Localisation of Van-Fl foci (in 
green) marking cell wall 
remodelling at hyphal tips in 
M145 (A&B). Localisation is 
disturbed in a scy mutant (C-E), 
with at times extended foci and 
foci at splitting tips. S. coelicolor 
M145 or scy, were grown for 2-4 
days on agar plates alongside 
coverslips. Samples then stained 
with Van-Fl and propidium 
iodide. All images are overlayed 
with the two channels from Van-
Fl (Green)/propidium iodide 
(Red). Scale bars are shown. 

 

 

129 

 



                                                                                               

origin oriV from the vector pIJ6021 (Takano et al., 1995) allowing high copy replication in 

Streptomyces, a selectable marker in the form of aac(3)IV, conferring apramycin resistance 

and the thiostrepton inducible tipA promoter (Murakami et al., 1989), as well as the tsr 

gene encoding thiostrepton resistance. The multiple cloning site, downstream of PtipA, was 

where a fragment containing the whole of scy was cloned, in the resulting vector pCJW93-

scy (pK48) (Figure 204). The scy gene has an altered ATG codon instead of a GTG at the 

start codon, unlikely to have an effect on Scy function based on the complementation 

experiment (2.1.7). Insertion of scy resulted in fusion of scy to an N-terminally encoded 6x 

His tag. Also, scy will be expressed from PtipA in a thiostrepton dependent manner.  

Through conjugation pCJW93-scy (pK48) was introduced into M145 or M145/pKF59. 

Apramycin was maintained throughout to prevent loss of the vector which was at times 

experienced to be unstable across multiple generations. M145/pK48 was grown on 

cellophane on top of SFM medium for 16 hours, then the cellophane was transferred to a 

fresh SFM plate containing either thiostrepton (20μg/ml) or no thiostrepton at all (the 

control). Then after 3 hours, induced samples or uninduced samples were visualised 

through confocal microscopy. It can be seen that M145 carrying pK48 with no thiostrepton 

induction is comparable to a wild-type phenotype (Figure 60A), yet it is likely that 

carrying the pK48 vector does slow the growth, possibly by a metabolic price of carrying a 

high copy number vector. In comparison to the wild-type-like uninduced hyphae, 

microscopy performed on hyphae exposed to high levels of thiostrepton revealed quite 

distinctive effects with a large number of new tips emerging, generating numerous short 

and curved branches emerging from the parent hyphal fragment (Figure 60B&C). 

When M145/pKF59/pK48 was grown and exposed to thiostrepton in a similar manner, it 

was possible to follow the localisation of DivIVA-EGFP in response to Scy overproduction 

(Figure 60E&F). As a control, in M145/pKF59/pK48 grown in the absence of thiostrepton, 

DivIVA-EGFP was positioned mostly at existing hyphal tips with a wild-type-like 

morphology (Figure 60D). However, after 1 hour exposure to thiostrepton, multiple 

DivIVA-EGFP foci were seen to localise along the length of the hyphae at ectopic 

locations other than the normal position at the hyphal tips (Figure 60E). This would 

suggest that the increased levels of Scy promoted the de novo formation of DivIVA 

assemblies at new locations, and as DivIVA is likely to promote the local incorporation of 

cell wall material, these DivIVA foci are believed to lead to the high numbers of short 

branches. These short branches formed after 3 hours were seen to have DivIVA-EGFP at 
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their ends (Figure 60F), confirming that the foci of DivIVA-EGFP seen after 1 hour are 

likely the sites of new branch formation.     

 
 

 

Figure 60: Overexpression of Scy was seen to result in over-branching possibly via 
recruitment of DivIVA to ectopic locations. Uninduced M145/pK48 had a wild-type 
phenotype (A); however, when induced for 3 hours was seen to form an overbranching 
phenotype (B&C). When carrying pKF59 uninduced samples (D) had normal DivIVA 
localisation. However after 1hr induction (E) DivIVA localised to many new sites down 
the hyphae and after 3 hours was likely to have resulted in the overbranching that 
resulted (F). S. coelicolor M145/pK48 or M145/pKF59/pK48, were grown for 16 hours 
on solid SFM medium, then either grown in the presence or absence or 20μg/ml 
thiostrepton. The samples were viewed by laser-scanning confocal microscopy. For A-
C brightfield images are displayed, but for D-F corresponding fluorescence images are 
next to the respective overlayered/merged brightfield image. Scale bars are shown. 
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4.1.5 Detection of DivIVA-EGFP from cell extracts of the scy mutant and of the Scy 

overexpressing strain 

 

It was very interesting that both in the case of the scy mutant (Figure 58D-H) and when 

Scy was overexpressed (Figure 60E&F), we found more DivIVA foci than in the wild-

type. It was important to check the levels of DivIVA to see if the amount of DivIVA was 

still relatively constant or if there was a change in cellular levels of DivIVA in response to 

the changing levels of Scy. To do this, we analysed cell extracts from both the scy mutant 

and the scy overproducing strain using SDS-PAGE gels under semi-denaturing conditions 

and visualised DivIVA-EGFP using a phosphoimager with settings that could detect the 

EGFP fluorophore. Spores of M145 or scy (K110) carrying pKF59 were inoculated onto 

cellophane placed on top of SFM medium for 17 hours. Cells collected from the 

cellophane surface were resuspended in a Tris-Magnesium buffer and were lysed through 

FastPrep treatment by vigorous shaking in the presence of glass particles (<106μm). 

Following the crude cell extracts were quantified using a Bio-rad protein assay. The same 

amount of total protein from each sample was then run on an SDS-PAGE gel whereby the 

samples were not boiled prior to loading therefore preventing denaturation of the 

fluorescent tag and maintaining fluorescence activity. The gel was visualised for EGFP 

activity by exciting at 488nm and the emission was then read at 532nm (Figure 61A). 

There was a strong band between the 50 and 75 kDa molecular weight markers that 

corresponds to the size of a DivIVA-EGFP fusion protein. The relative intensity of the 

bands in Figure 61A are; lane 1 is 869.29 and lane 2 is 831.00. The intensity of the bands 

appears to be comparable between M145 and the scy mutant. Therefore, it appears at this 

early stage in the life cycle that the level of DivIVA is very similar in the scy mutant in 

comparison to the wild-type. The observed more DivIVA foci in the scy mutant therefore 

means that either each foci may contain less DivIVA, which is unlikely as the brightness 

appears comparable, or perhaps more DivIVA is drawn into foci from the free DivIVA 

pool in the cell. If in fact DivIVA foci break and disperse more easily from the existing tip 

then it is possible that the extending hyphal tip is then able to accommodate more addition 

of DivIVA into the tip foci from the DivIVA pool, than it may have done had the assembly 

not undergone a splitting event. 

To test the DivIVA levels when Scy was overproduced, spores of M145/pKF59/pK48 were 

inoculated onto cellophanes placed on top of SFM medium for 22 hours. Then, the 

cellophanes were transferred to fresh SFM plates containing either thiostrepton (20μg/ml) 
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or no thiostrepton. Then after 1 or 3 hours, cell material was collected from the cellophane 

surface of all samples. Crude cell extracts were generated as above and were quantified 

using a Bio-rad protein assay. The same amount of total protein from each sample was then 

run on an SDS-PAGE gel with no boiling prior to loading, in order to maintain EGFP 

fluorescence. All samples contained a strong band with the predicted size of 68.4kDa, 

corresponding to DivIVA-EGFP (Figure 61B). The relative intensity of the bands in Figure 

61B are; lane 1 is 785.89, lane 2 is 794.52, lane 3 is 773.93 and lane 4 is 799.43. The  

 
intensity of the bands appears to be comparable between the uninduced and induced 

samples at 1 hour or 3 hour time points. Therefore, it appears that the level of DivIVA does 

not increase with overexpression of Scy and the generation of more DivIVA foci is not due 

to an increase in the amount of DivIVA. As there are more DivIVA-EGFP foci in the 

induced samples this could mean that each foci may contain less DivIVA or perhaps more 

DivIVA is drawn into foci from the free DivIVA pool in the cell. This latter would be 

consistent with the ability to form spontaneous sites for new branch formation instead of 

taking DivIVA from assemblies already present at the hyphal tips. DivIVA appears to 

A B 

Figure 61: SDS-PAGE was used to detect the level of DivIVA-EGFP in a scy mutant and 
when Scy is overexpression. For analysis of DivIVA-EGFP the gel was excited at 488nm and 
the emission read at 532nm. Analysed on 8% acrylamide (A) are comparable signals for 
total cell extracts of either S. coelicolor M145 carrying pKF59 (Lane 1) or the scy mutant 
carrying pKF59 (Lane 2), samples were grown for 17 hours prior to collection. Analysed on 
8% acrylamide (B) are comparable signals for total cell extracts of either S. coelicolor 
M145/pKF59/pIJ6902-scy (Lanes 1-4) grown in the absence (-) or presence (+) of 20μg/ml 
thiostrepton. All samples were grown initially for 22 hours, then either with or without 
20μg/ml thiostrepton for either a further 1 or 3 hours. Shown on the left hand side are the 
positions and sizes of a protein MW marker (not visible on images shown) displayed in kDa. 
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remain at a constant level when Scy is overexpressed,  leading to the possibility that the 

effects of overbranching are  not due to an increase in DivIVA. 

 

4.1.6 Scy directly co-localises with de novo sites of cell wall insertion when Scy is 

overexpressed 

 

The hyperbranching and ectopic DivIVA recruitment when scy is overexpressed, could of 

course be caused by Scy indirectly affecting DivIVA and/or the cell wall synthesis 

machinery by somehow relieving an inhibitory factor. Alternatively Scy could be acting as 

a positive factor, where overexpressed Scy could recruit factors needed for establishment 

of a new branching site. In order to test these two hypotheses, we aimed to visualise Scy 

localisation in a variety of alternative genetic backgrounds for various downstream 

applications. The routinely used pIJ8660 derivatives integrate into the attP attachment site 

in the chromosome and confer resistance to apramycin. In order to introduce a second 

construct into cells that carry a pIJ8660 derivative, we were looking for plasmids that carry 

different resistance markers and integrate at a different chromosomal site. The plasmid 

pMS82 (Gregory et al., 2003) mediates integration into the S. coelicolor chromosome at 

the ФBT1 attachment site, which differs to the ФC31 attachment site found in most other 

Streptomyces integrative vectors. This attachment site, following the introduction of the 

plasmid through conjugation via the non-methylating E. coli strain E. coli ET12567, will 

stably integrate and result in a single copy of the plasmid DNA in the chromosome. The 

plasmid pMS82 also contains a hygromycin resistance cassette as opposed to the 

apramycin cassette commonly used as the marker of choice for Streptomyces manipulation.  

The vector pMS82-Pscy-mCherry-scy was constructed (10.1.54) carrying Pscy-mCherry-

scy in pMS82. The plasmid pMS82-Pscy-mCherry-scy which carries hygromycin 

resistance, therefore allowing combination with strains carrying the pCJW93-scy (pK48) 

vector used for overexpression of Scy. The plasmid pMS82-Pscy-mCherry-scy was 

introduced through conjugation via the non-methylating E. coli strain E. coli ET12567 into 

M145/pK48 and selected apramycin and hygromycin resistant colonies were streaked for 

single colonies followed by spore preparation. 

M145/pK48/pMS82-Pscy-mCherry-scy was grown on cellophane placed on top of SFM 

medium for 16 hours, then the cellophane was transferred to a fresh SFM plate containing 

either thiostrepton (20μg/ml) or no thiostrepton at all (the control). After 3 hours, all 

samples were stained with the mixture of 1 µg/ml BODIPY FL vancomycin (Molecular 
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Probes) and 1 µg/ml unlabelled vancomycin (Sigma) for 5 minutes prior to collection of 

the sample. Samples were visualised through confocal microscopy (Figure 62). 

M145/pK48/pMS82-Pscy-mCherry-scy in the absence of thiostrepton induction appears 

wild-type-like with mCherry-Scy and Van-Fl foci predominantly at hyphal tips and 

possible future branch sites (Figure 62A). After 1 hour exposure to thiostrepton, the 

samples had multiple mCherry-Scy and Van-Fl  foci along the length of the hyphae (Figure 

62B), in a fashion similar to the numerous DivIVA-EGFP foci seen when Scy was 

overproduced. Furthermore it was seen after 3 hours of induction that there were many 

new branches established (Figure 62C), which would suggest that the spontaneous 

recruitment of Scy and the cell wall synthetic machinery to new sites along the hyphae led 

to branching. Many of these newly formed branches had an mCherry-Scy foci as well as 

staining strongly with Van-Fl supporting this idea. However, some of the branches were 

left with only an mCherry-Scy foci and did not stain with Van-Fl, this suggests that some 

of the multiple branches that are formed when Scy is overexpressed may become abortive 

and not continue to actively grow. Overproduction of Scy, whilst other factors are limiting 

such as the cell wall synthesis machinery could be the cause of the abortive branching. 

Suggesting that there is then an uncoupling of Scy with actively growing zones. Therefore, 

we may conclude Scy is likely a polarity factor able to positively generate new sites for 

recruitment of DivIVA and/or cell wall synthesis machinery in an as so far unclear 

mechanism. 

 

4.1.7 The effect of DivIVA depletion and overexpression on morphology and Scy 

localisation 

 

The plasmid pMS82-Pscy-mCherry-scy allowed greater flexibility for combination with 

other marked strains and therefore we introduced it into the strains K114 (divIVASC
+/tipAp-

divIVASC
+) and K115 (ΔdivIVASC/tipAp-divIVASC

+) (Flärdh, 2003a). Both of these strains 

carry a copy of divIVA driven by the thiostrepton inducible promoter tipA; however, K114 

carries a native chromosomal copy of divIVA and K115 carries an apramycin resistance 

cassette in place of the divIVA gene. 

As divIVA is an essential gene in S. coelicolor, therefore, Scy localisation cannot be 

studied in the complete absence of DivIVA. Instead K115 carrying pMS82-Pscy-mCherry-

scy was grown on the surface of a cellophane placed on top of SFM medium with 0.1µg/ml 

thiostrepton. Following 14 hours of growth, the cellophane was transferred to an SFM   
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plate lacking thiostrepton and growth was continued for a further 5 hours. It was 

previously shown that K115 in the absence of thiostrepton produces DivIVA at a 10-fold 

lower amount than the wild-type strain M145. After 5 hours of DivIVA depletion (Figure 

63B&C) the hyphae displayed the previously reported branching defects including curly 

hyphae and apical branching (Flärdh, 2003a). The control strain K114 carrying pMS82-

Pscy-mCherry-scy grown in the absence of thiostrepton and therefore expressing close to 

Figure 62: Overexpression of Scy can be seen to influence cell wall insertion directly at 
sites where mChery-Scy is recruited. Uninduced M145/pK48/pMS82-Pscy-mCherry-Scy 
had a wild-type phenotype with Van-Fl (Green) and mCherry (Red) foci at hyphal tips(A). 
However when induced for 1 hours was seen to form multiple new foci of Van-Fl and 
mCherry-Scy at ectopic locations (B). After 3 hours overbranching had resulted with 
mCherry-Scy foci established at tips and in cases Van-Fl staining of the same tips (C). S. 
coelicolor M145/pK48/pMS82-Pscy-mCherry-Scy, were grown for 16 hours on solid SFM 
medium, then either grown in the presence or absence of 20μg/ml thiostrepton. The 
samples were viewed by laser-scanning confocal microscopy. Yellow circle marks positions 
where Scy is detected without aVan-Fl signal. Corresponding fluorescence images are next 
to the respective overlayered/merged brightfield image. Scale bars are shown. 
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normal levels of DivIVA protein, did not display the same hyphal abnormalities as the 

DivIVA depletion strain (Figure 63A). However, it did display the phenotypic aberrations 

associated with the mCherry-Scy fusion protein. In the event of DivIVA depletion Scy 

localisation did not appear to be perturbed and Scy remained at polar sites. It was shown 

that DivIVA can be seen to disperse from the hyphal tip in a scy mutant, however, it seems 

that Scy does not exhibit similar behaviour when DivIVA is depleted. 

To look at the effect of DivIVA overexpression on Scy localisation the strain K114 

carrying pMS82-Pscy-mCherry-scy was studied. Firstly the hyphae were grown for 14 

hours on a cellophane surface on SFM medium in the absence of the inducer. The hyphae 

displayed wild-type morphology (Figure 63A). Then, the cellophane was transferred to an 

SFM plate containing 20µg/ml thiostrepton and grown for a further 3-5 hours, and samples 

were visualised through confocal microscopy (Figure 63D&E). It was seen that the 

previously reported effects of DivIVA overexpression (Flärdh, 2003a) were reproduced: 

swollen hyphal tips forming bulbous structures and the formation of multiple small 

rounded outgrowths. It was seen that mCherry-Scy localised to these small outgrowths but 

the foci had lower intensities perhaps suggesting a titration of uninduced levels of the Scy 

protein. Although it was seen that DivIVA overexpression resulted in formation of new 

tips, comparatively this was a rarer event, by far the greater effect was the dominance of 

DivIVA dependent expansion of the existing hyphal tips resulting in the ballooning effect 

seen. At these swollen existing tips mCherry-Scy could be seen to localise to an aggregate 

that has been previously reported to be a DNA free space that also contains DivIVA 

(Flärdh, 2003a; Wang et al., 2009). It is likely therefore that DivIVA recruits all of the 

machinery needed for tip growth to this aggregate. 

It was previously shown that the effects of DivIVA overproduction can be blocked by 

treatment of the hyphae with the cell wall growth inhibitor bacitracin (Hempel et al., 

2008). The mode of action of bacitracin is to stop the export of lipid II (Stone, and 

Strominger, 1971), needed as a precursor for peptidoglycan synthesis. To analyse the effect 

of DivIVA overexpression on Scy localisation in comparison with cell wall insertion, the 

strain K114 carrying pMS82-Pscy-mCherry-scy was studied. Firstly the hyphae were 

grown for 14 hours on a cellophane surface on SFM medium in the absence of the inducer, 

then were stained with the mix of 1 µg/ml BODIPY FL vancomycin (Molecular Probes)    
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and 1 µg/ml unlabelled vancomycin (Sigma) for 5 minutes prior to collection of the 

sample. It can be seen that K114/pMS82-Pscy-mCherry-scy with no thiostrepton induction 

appears wild-type-like with mCherry-Scy and Van-Fl foci predominantly at hyphal tips 

and possible future branch sites (Figure 64A). When the cellophane was transferred to an 

SFM plate containing 20µg/ml thiostrepton and grown for a further 3 hours and stained 

with Van-Fl, Scy aggregates formed at the hyphal tips co-localising with Van-Fl (Figure 

64B). Therefore, showing that the positioning of Scy aggregates overlaps with the sites of 

growth even at the bulbous form of the hyphal tip that occurs following DivIVA 

overexpression, consistent with the idea that DivIVA recruits all of the machinery needed 

for tip growth to aggregates. To test whether the block of cell wall synthesis had an effect 

on the phenotype observed during DivIVA overproduction, cellophane disks were 

transferred to SFM plates containing either 50µg/ml of bacitracin and no thiostrepton or  

50µg/ml of bacitracin and 20µg/ml thiostrepton and incubated for a further 3 hours 

followed by Van-Fl staining. In the absence of thiostrepton, hyphae look wild-type (Figure 

64C), albeit it is likely that they are not growing as samples left to grow in the incubator 

failed to grow to a confluent lawn. Consistent with this mCherry-Scy and Van-Fl did not 

Figure 63: Localisation of Scy when DivIVA is depleted or overexpressed confirms that Scy is 
associated with Polar sites. Localisation of mCherry-Scy at apical sites in K114 carrying pMS82-
Pscy-mCherry-scy grown in the absence of Thiostrepton and therefore control levels of DivIVA 
(A). When strain K115 carrying pMS82-Pscy-mCherry-scy is grown in the absence of 
Thiostrepton for 5 hours and is depleted of DivIVA expression Scy is not diminished from polar 
sites (B & C). When strain K114 carrying pMS82-Pscy-mCherry-scy is grown in the presence of 
Thiostrepton (20μg/ml) for 3 hours (D) and 5 hours (E) and DivIVA is overexpressed Scy forms 
in an aggregate at the hyphal tips and is recruited to overbranching positions. The samples were 
viewed by laser-scanning confocal microscopy. Fluorescence images of mCherry-Scy (red) are 
next to the respective overlayered/merged brightfield image. Scale bars are shown. 
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stain strongly in these hyphae; however, there was some signal present that may represent 

areas where the hyphae are attempting to grow but failing. It is possible that the block in 

cell wall synthesis also results in death via leaving a gap in the cell wall at previous sites of 

growth. Thiostrepton induced samples also failed to exhibit the effects of DivIVA  

 
overproduction (Figure 64D), consistent with previous observations (Hempel et al., 2008). 

There were no bulging hyphal tips or sites of multiple new branches suggesting that the 

effects of DivIVA overexpression are dependent on new cell wall synthesis. However, 

Figure 64: Scy and cell wall synthesis localisation is affected when DivIVA is overexpressed 
and/or hyphae are exposed to bacitracin. Localisation of mCherry-Scy (Red) or Van-Fl 
(Green) at apical sites in K114 carrying pMS82-Pscy-mCherry-scy grown in the absence of 
Thiostrepton and therefore control levels of DivIVA (A). When strain K114 carrying 
pMS82-Pscy-mCherry-scy is grown in the presence of thiostrepton (20μg/ml) for 3 hours (B) 
and DivIVA is overexpressed, Scy forms in an aggregate at the hyphal tips which co-localises 
with Van-Fl. Alternatively when grown in the presence of bacitracin (50μg/ml) for 3 hours 
(C) and cell wall growth stalls, mCherry-Scy and Van-Fl staining are dimmer and more 
dispersed. When grown in the presence of both thiostrepton and bacitracin for 3 hours (D), 
the effects of DivIVA overexpression cease, despite lack of growth Van-Fl and mCherry-Scy 
visibly mark various locations. The samples were viewed by laser-scanning confocal 
microscopy. Fluorescence images of mCherry-Scy (red), Van-Fl (green) are next to the 
respective overlayered/merged brightfield image. Scale bars are shown. 
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there were quite prominent foci of mCherry-Scy and Van-Fl at both hyphal tips and in a 

manner along the length of the hyphae. However, presumably these do not represent 

actively growing zones, but probably represent where overproduced DivIVA would be 

directing new cell wall insertion sites, that then fail to grow due to bacitracin treatment. A 

possibility is that these sites are marked for cell wall growth, with the presumption that at 

any site of cell wall growth there must be mechanisms of breaking the existing wall to 

allow new synthesis, so may represent sites where cell material has been degraded. This 

could plausibly result in the strong Van-Fl foci seen. It is interesting to note that the 

mCherry-Scy foci are brighter at high levels of DivIVA even in the presence of bacitracin, 

unlike the weaker mCherry-Scy foci seen when bacitracin is present but DivIVA is at 

normal levels. This suggests that overexpressed DivIVA can recruit Scy without the need 

for active growth (this presumably holds true at sites of future outgrowths needed to form 

new branches). 

When DivIVA was overproduced in K114/pMS82-Pscy-mCherry-Scy, there was 

presumably an active recruitment of Scy to the hyphal tips and to new branch sites. 

Therefore,  it was important to establish whether the Scy levels changed during DivIVA 

induction. Spores of K114/pMS82-Pscy-mCherry-Scy were inoculated onto cellophanes 

placed on top of SFM medium for 16 hours. Then, the cellophanes were transferred to 

fresh SFM plates containing either thiostrepton (20μg/ml) or no thiostrepton. After 1 or 3 

hours, cell material was then collected from the cellophane surface and cell extracts were 

generated and were quantified. Equal amount of total protein from each sample was then 

analysed on an SDS-PAGE gel with no boiling to maintain mCherry fluorescence. The gel 

was visualised for mCherry activity using phosphoimager and by exciting at 532nm and 

the emission was then read at 555nm (Figure 65). A strong band corresponding to the 

173kDa mCherry-Scy fusion protein was detected in all samples. The relative intensity of 

the bands; in lane 3 is 152.60, lane 4 is 171.89, lane 5 is 199.07 and lane 6 is 217.79. These 

numbers appears to be comparable between the uninduced and induced samples, however 

we cannot rule out that there might be a slight increase in Scy in response to DivIVA 

overexpression. As there is not a ten-fold increase in the level of Scy with overexpression 

of DivIVA, it is likely that the increase of mCherry-Scy at bulging tips and the recruitment 

of Scy foci to new sites is not due to an indirect increase in the amount of Scy.   
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4.1.8 FtsZ-EGFP mislocalises in a scy mutant 

 

In addition to polarised growth, the scy mutant had a defect in cell division as it formed 

irregularly shaped spore compartments (Figure 35). Therefore, we wanted  to monitor the 

cell division protein FtsZ in order to determine whether FtsZ localisation was Scy 

dependent. The plasmid pKF41 (Grantcharova et al., 2005) enables expression of an FtsZ-

EGFP fusion protein, so this plasmid was introduced into M145 and the scy mutant strains 

through conjugation facilitated by E. coli ET 12567/pUZ8002 and integration of a single 

copy at the ФC31 attachment site. Spores of M145 and scy carrying pKF41 were grown 

between the angle of a coverslip and SFM medium and then visualised through 

fluorescence microscopy. Normal FtsZ rings were detected marking the sporulation septa 

along the length of the aerial hyphae in the wild-type strain (Figure 66). In the scy mutant 

there were fewer aerial hyphae that sporulated and therefore, not surprisingly, many aerial 

hyphae showed abnormal FtsZ localisation. Instead of the ladder like pattern less orderly 

FtsZ filaments were present, often positioned adjacent to the lateral walls of the hyphae. 

This could represent a direct effect of Scy on the localisation pattern of FtsZ or a by 

product of the morphological effects of the scy mutant effecting the hyphal cell wall 

defects. 

 

Figure 65: SDS-PAGE was used to detect 
the level of mCherry-Scy in samples when 
DivIVA overexpression is either induced 
on non-induced. For analysis of mCherry-
Scy the 8% acrylamide gel was excited at 
532nm and the emission read at 555nm. A 
control of the Supernatant of a cell extract 
of M145/pIJ8660-Pscy-mCherry-scy was 
used (Lane 1). Comparable signals are 
visible for total cell extracts of either S. 
coelicolor K114/pMS82-Pscy-mCherry-scy 
(Lanes 3-6) grown in the absence (-) or 
presence (+) of 20μg/ml thiostrepton. All 
samples were grown initially for 16 hours, 
then either with or without 20μg/ml 
thiostrepton for either a further 1 or 3 
hours. Shown on the left hand side are the 
positions and sizes of a protein MW 
marker (Lane 2 (not visible on images 
shown)) displayed in kDa. The arrow 
shows the size of the higher molecular 
weight band representing an mCherry-Scy 
fusion protein.  
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4.1.9 ParB-EGFP mislocalises in a scy mutant 

 

Another phenotype of the scy mutant related to cell division was the irregular distribution 

of DNA in the spore compartments. To test the effect of Scy on DNA segregation, we 

monitored a protein part of the DNA segregation machinery, in this case ParB as a reporter 

of the ParAB system. The strain J3310 (Jakimowicz et al., 2005a) enables the expression 

of a ParB-EGFP fusion protein in M145 where the chromosomal parB allele was replaced 

by parB-egfp. We introduced the scy mutation into the J3310 strain using the knockout 

method described for the generation of the scy mutant. Using the Redirect technology, 

double crossover events were selected by identifying apramycin resistant and kanamycin 

sensitive colonies generating scy::aac(3)IV/parB-egfp. Spores of M145 and scy mutant  

Figure 66: FtsZ localisation is affected in the scy mutant. Localisation of FtsZ-EGFP foci (in 
green) normally positioned as a ladder like array at crosswalls in M145 (A). FtsZ-EGFP 
localisation is disturbed in a scy mutant (B & C), with less ordered filaments that run 
adjacent to the hyphae instead of in rings at future septa. S. coelicolor M145/ pKF41 or 
scy/pKF41, were grown for 44 hours on solid SFM medium in the angle between a coverslip 
and the samples were viewed by laser-scanning confocal microscopy. Corresponding 
fluorescence images are next to the respective overlayered/merged brightfield image. Scale 
bars are shown. 
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strains carrying parB-egfp were grown alongside a coverslip in SFM medium and after 2 

days grothw at 30oC, aerial hyphae were visualised through fluorescence microscopy. 

Regular ParB-EGFP foci were seen in the sporulating aerial hyphae of the wild-type strain, 

whereas in the scy mutant most of the aerial hyphae had a strong dispersed ParB-EGFP 

signal, lacking the bright discrete foci (Figure 67). This could help explain the aberrant 

Figure 67: ParB localisation is affected in a scy mutant. Localisation of ParB-EGFP foci (in 
green) normally positioned as regular foci down sporulating aerial hyphae in M145 (A & 
B). ParB-EGFP localisation is disturbed in a scy mutant (C & D), with a dispersed signal in 
the aerial hyphae. S. coelicolor J3310 or J3310::scy::aac(3)IV, were grown for 44 hours on 
solid SFM medium in the angle between a coverslip and the samples were viewed by laser-
scanning confocal microscopy. Corresponding fluorescence images are next to the 
respective overlayered/merged brightfield image. Scale bars are shown. 
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DNA segregation in the spore chains of a scy mutant suggesting that in the absence of Scy 

the segregation machinery was presumably not functioning correctly. 

 

4.1.10 Summary 

 

Monitoring Scy localisation in comparison to DivIVA or active cell wall insertion as 

marked by Van-Fl suggests that Scy colocalises with sites of active growth at hyphal tips 

and future branch points. Monitoring of DivIVA or Van-Fl in the scy mutant suggest that 

tip and branching defects seen in the scy mutant occur due aberrant or mislocalisation of 

DivIVA and the cell wall synthetic machinery. Overexpression of Scy resulted in de novo 

formation of multiple new branches confirming that Scy has a function related to control of 

tip growth and branching. Localisation of Scy in a DivIVA depletion or overexpression 

background suggested that DivIVA could recruit Scy to active sites but did not rule out 

that Scy could also localise independtly. Mislocalisation of FtsZ and ParB in a scy mutant 

background reveals cellular insights into the aberrations seen with cell division. 

144 

 



                                                                                               

5 Localisation of FilP in Streptomyces 
 

5.1.1 Introduction 

 

As filP sits downstream of scy, it was of interest to be able to verify the localisation of filP 

and to be able to test the localisation of filP in our research. Therefore we constructed 

fusion proteins to FilP to test several combinations. We wanted to look at the localisation 

of FilP in a scy mutant background to determine if Scy affects FilP in vivo. As Scy and 

DivIVA were seen to colocalise at the hyphal tips (Chapter 4) then we wanted to colocalise 

FilP with either Scy or DivIVA. 

 

5.1.2 FilP-EGFP forms filaments 

 

For assessing the localisation of FilP we constructed a filP-egfp fusion (10.1.55). The 

plasmid pIJ8660-PfilP-filP-egfp (pK67) enables expression of a FilP-EGFP fusion protein 

under the control of the native filP promoter sequence. The vector was mobilised into 

Streptomyces via conjugation and integration in the same method as previously discussed 

for pIJ8660 vectors. It was impossible to assess the correct functioning of the FilP-EGFP 

fusion protein, as the filP mutant was so subtle that it wasn’t clear if the fusion protein was 

able to complement the mutant. Spores of M145 carrying pIJ8660-PfilP-filP-egfp were 

grown on cellophane on top of SFM medium for 12-16 hours and then visualised through 

fluorescence microscopy (Figure 68). Similarly to (Bagchi et al., 2008) it was seen that 

FilP-EGFP formed filaments down the hyphae. These were often seen at the sites of inner 

curvature. However not all sites of inner curvature were occupied with FilP-EGFP 

filaments so it is currently unknown what the determining factor for localisation of FilP 

filament formation is. FilP-EGFP signal was also often seen as foci at the hyphal tips. This 

is of course interesting as Scy and DivIVA also localise to the hyphal tips. Signal was also 

present at undefined locations as foci that we predict are aggregates of FilP-EGFP and 

could represent artefacts generated by the EGFP fusion and/or multiple copies of FilP.   
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5.1.3 FilP localisation was monitored in a scy mutant 

 

We were interested to see the filamentation behaviour of FilP-EGFP in the scy mutant 

possibly hypothesizing that FilP-EGFP filaments would be abolished in the scy mutant. 

The plasmid pIJ8660-PfilP-filP-egfp (pK67) was passaged into the scy mutant strain 

through conjugation with E. coli ET 12567/pUZ8002. Spores of scy carrying pIJ8660-

PfilP-filP-egfp were grown on cellophane on top of SFM medium for 12-16 hours and then 

Figure 68: Localisation of FilP-EGFP was to foci and filaments at locations just behind the 
hyphal tips as well as at other undefined locations along the hyphae. Filaments may have a 
preference for forming on the inner curve of a hyphal bend. Large foci may resemble FilP 
aggregates. S. coelicolor M145/pIJ8660-PfilP-filP-EGFP, was grown for 16 hours on solid 
SFM medium and the samples were viewed by laser-scanning confocal microscopy (A-D). 
Corresponding fluorescence images are left of the respective merged fluorescent/brightfield 
image. Scale bars are shown. 
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visualised through fluorescence microscopy (Figure 69). However, there were still FilP-

EGFP filaments in the scy mutant, though we speculate that there may be less FilP-EGFP 

filaments. FilP-EGFP still forms aggregates in the scy mutant and perhaps aggregates more 

in the scy mutant than in the wild-type strain. If FilP-EGFP does form less filaments in the 

scy mutant then this may suggest that Scy helps to promote FilP filamentation. 

Alternatively the effects on cell shape that occur when scy is deleted could act as a 

secondary factor, whereby one of the cues for FilP filament formation is the physical 

structure presented by the cell membrane and cell wall.  

 

 

Figure 69: FilP-EGFP in a scy mutant formed filaments and aggregates at undefined 
locations along the hyphae. Filaments may have a preference for forming on the inner curve 
of a hyphal bend. The strain scy carrying pIJ8660-PfilP-filP-EGFP, was grown for 16 hours 
on solid SFM medium and the samples were viewed by laser-scanning confocal microscopy 
(A+B). Corresponding fluorescence images are left of the respective merged 
fluorescent/brightfield image. Scale bars are shown. 
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5.1.4 Co-localisation of FilP and Scy was observed in vegetative hyphae 

 

To be able to co-localise FilP and Scy, the plasmid pIJ8660-PfilP-filP-egfp (pK67) was 

combined in the same M145 strain as already carrying pMS82-Pscy-mCherry-scy. Spores 

of M145 carrying pIJ8660-PfilP-filP-egfp and pMS82-Pscy-mCherry-scy were grown on  

 
cellophane on top of SFM medium for 12-16 hours and then visualised through 

fluorescence microscopy (Figure 70). There were often co-localising foci of FilP and Scy 

at the hyphal tips. However, FilP-EGFP filaments were not visible. The hyphae although 

resembling wild-type also displayed some of the phenotypic effects seen when the Scy N- 

terminal fusions were introduced. The effect of a Scy fusion as well as a FilP fusion and 

their respective native copies possibly leaves conditions that are too artificial and perhaps 

this is why there were no FilP-EGFP filaments visible. Possibly explaining why FilP-

Figure 70: FilP co-localisates with Scy at apical sites. Localisation of mCherry-Scy foci (in 
red) overlaps with FilP-EGFP foci (in green). Co-localisation can be seen merged with the 
brightfield image, whereby both proteins localise to hyphal tips (A-D). However FilP-EGFP 
filaments were not visible. S. coelicolor M145/pMS82-Pscy-mCherry-scy/pIJ8660-PfilP-filP-
egfp, was grown for 16 hours on solid SFM medium and the samples were viewed by laser-
scanning confocal microscopy. Corresponding fluorescence images are next to one another 
and the respective overlayered image. Scale bars are shown. 
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EGFP shows a different localisation pattern when mCherry-Scy is present (Figure 70) in 

comparison to complete absence of Scy (Figure 69). However, the fact that Scy and FilP 

co-localised at hyphal tips would suggest that they somehow function cooperatively in the 

hyphal tips of Streptomyces. 

 

5.1.5 FilP-mCherry localises differenty to FilP-EGFP 

 

As localisation of FilP-EGFP perhaps generated many artefacts as a result of the fusion to 

EGFP, we sought to localise FilP with a different fluorescent fusion. The construct pKF59 

used for assessing the localisation of DivIVA (Flärdh, 2003a) is of course an EGFP fusion 

so a different tag to FilP would also enable the combination of localisation of FilP and 

DivIVA as well. We constructed the plasmid pIJ8660-PfilP-filP-mCherry (10.1.56), which 

enables expression of a FilP-mCherry fusion protein under the control of the native filP 

promoter sequence. The vector was mobilised into Streptomyces via conjugation and 

integration in the same method as previously discussed for pIJ8660 vectors. Spores of 

M145 carrying pIJ8660-PfilP-filP-mCherry were grown on cellophane on top of SFM 

medium for 12-16 hours and then visualised through fluorescence microscopy (Figure 71). 

Less FilP filaments were seen with the mCherry fusion than with the EGFP fusion. 

Whereas many aggregates were still visible with the mCherry fusion. Perhaps suggesting 

that FilP-mCherry is aberrant at forming the native structures formed by untagged FilP or 

the filaments seen by FilP-EGFP. Although there were less filaments there were 

occasionally visible small basket like structures behind the hyphal tip (Figure 71B). These 

look somewhat different to the FilP-EGFP filaments, instead of forming predominantly on 

one side of the hyphae they seem to encase either side of the hyphal wall. They appeared to 

follow behind the hyphal tips, so pIJ8660-PfilP-filP-mCherry was also introduced into 

M145 already carrying pKF59 (Flärdh, 2003a). Consistent with the observation above, the 

FilP-mCherry baskets followed behind the apical signal seen with DivIVA-EGFP (Figure 

71D&E). It may be that the complex of proteins at the hyphal tip in the form of either Scy, 

DivIVA or any other factors may make contact with FilP structures and promote their 

assembly. There appeared to be no obvious relationship between FilP-mCherry aggregates 

and the localisation of DivIVA-EGFP (Figure 71C,D&E). 
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Figure 71: Localisation of FilP-mCherry was to foci at undefined locations along hyphae as 
well as a more diffuse signal in other locations (A&B). FilP-mCherry (in red) does not 
overlap with DivIVA-EGFP foci (in green) but could localise close to DivIVA-EGFP near 
the tips of some hyphae (C,D&E). Both signals can be seen merged with the brightfield 
image (right). Either S. coelicolor M145/pIJ8660-PfilP-filP-mCherry or 
M145/pKF59/pIJ8660-PfilP-filP-mCherry, was grown for 16 hours on solid SFM medium 
and the samples were viewed by laser-scanning confocal microscopy. Corresponding 
fluorescence images are next to one another and the respective overlayered image. Scale 
bars are shown. 
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5.1.6 FilP-Δlink-mCherry localises similarly to FilP-mCherry 

 

As the generation of a Scy C-terminal fusion with mCherry resulted in a difference 

between having the presence or absence of a linker, we wanted to test a FilP-mCherry C-

terminal fusion without the His-Met-Gly-Gly-Gly-Gly-Gly linker found in pIJ8660-PfilP-

filP-mCherry. We constructed a pIJ8660 plasmid carrying a non-linkered filP-mCherry 

fusion. The plasmid pIJ8660-PfilP-filP-Δlink-mCherry (10.1.57) enables expression of a 

FilP-mCherry fusion protein lacking a glycine linker, driven by the native filP promoter 

sequence. The vector was passaged into Streptomyces via conjugation and integration in 

the same method as previously discussed for pIJ8660 vectors. Spores of M145 carrying 

pIJ8660-PfilP-filP-Δlink-mCherry were grown on cellophane on top of SFM medium for 

12-16 hours and then visualised through fluorescence microscopy (Figure 72). Similarly to 

the FilP-mCherry fusion, less FilP filaments were seen with the Δlink-mCherry fusion than 

with the EGFP fusion. Whereas many aggregates were also still visible with the Δlink-

mCherry fusion. Perhaps suggesting that FilP-Δlink-mCherry is also aberrant at forming 

the native structures formed by untagged FilP or the filaments seen by FilP-EGFP. Like 

FilP-mCherry, FilP-Δlink-mCherry had the small basket like structures behind the hyphal 

tip (Figure 72B). The plasmid pIJ8660-PfilP-filP-Δlink-mCherry was also introduced into 

M145 carrying pKF59 (Flärdh, 2003a). In the strain M145/pKF59/pIJ8660-PfilP-filP-

Δlink-mCherry also formed FilP-Δlink-mCherry baskets just behind the DivIVA-EGFP 

foci (Figure 72D). Similarly there also appeared to be no obvious relationship between 

FilP-mCherry aggregates and the localisation of DivIVA-EGFP (Figure 72C&D). 

Therefore, instead of in the case of Scy, for FilP-mCherry fusions the non-linkered fusion 

and the linkered fusion show no apparent difference. 

  

5.2 Detection of FilP fluorescent fusion proteins 
 

In order to confirm the expression of fusion proteins of FilP to the respective fluorescent 

tags, cell extracts of S. coelicolor were analysed on SDS-PAGE gels under semi-

denaturing conditions and visualised using a phosphoimager with settings that could detect 

the fluorophores. Spores of M145 carrying either pIJ8660-PfilP-filP-egfp, pIJ8660-PfilP-

filP-mCherry or pIJ8660-Pscy-scy-Δlink-mCherry were inoculated onto cellophane placed 

on top of SFM medium for 18 hours. Cell material was then collected from the cellophane 

surface, cells were lysed through FastPrep treatment, by vigorous shaking in the presence  
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Figure 72: Localisation of FilP-Δlink-mCherry was to foci at undefined locations along 
hyphae as well as a more diffuse signal in other locations (A&B). FilP- Δlink-mCherry 
(in red) does not overlap with DivIVA-EGFP foci (in green) but could localise close to 
DivIVA-EGFP near the tips of some hyphae (C&D). Both signals can be seen merged 
with the brightfield image (right). Either S. coelicolor M145/pIJ8660-PfilP-filP-Δlink-
mCherry or M145/pKF59/pIJ8660-PfilP-filP-Δlink-mCherry, were grown for 16 hours 
on solid SFM medium and the samples were viewed by laser-scanning confocal 
microscopy. Corresponding fluorescence images are next to one another and the 
respective overlayered image. Scale bars are shown. 
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of glass particles (<106μm). Following this, the samples were centrifuged, the supernatants 

were collected and the pellets were re-suspended in the same buffer as before. The samples 

were then analysed on SDS-PAGE gels whereby the samples were not boiled prior to  

loading therefore preventing denaturation of the fluorescent tags and maintaining 

fluorescence activity. 

 
The gel was visualised for EGFP activity by exciting at 488nm and the emission was then 

read at 532nm (Figure 73A). Similarly to monitor mCherry activity the gel was instead 

excited at 532nm and the emission was then read at 555nm (Figure 73B). The expected 

size for the FilP-EGFP fusion protein from pIJ8660-PfilP-filP-egfp was 62.3kDa, it was 

seen that there was a higher molecular weight band for M145 carrying pIJ8660-PfilP-filP-

egfp that could correspond to the size of a FilP fluorescent protein fusion. A cell extract 

from E. coli overexpressing FilP-EGFP generated a band at a similar position. Therefore, it 

is reasonable to suggest that this is evidence that the FilP-EGFP fusion protein was 

successfully generated and expressed in S. coelicolor. It can also be seen that there are 

bands of smaller sizes, these could possibly be products of partial degradation of the 

protein. It is unclear if this resembles activity in the hyphae that we see microscopically, or 

could be damaged/dead hyphae or partially proteolysed protein produced when lysing the 

cells. The expected size for the FilP-mCherry fusion protein was 61.8kDa and for FilP- 

Δlink-mCherry was 61.5kDa, both the M145 strains carrying either pIJ8660-PfilP-filP-

mCherry or pIJ8660-PfilP-filP-Δlink-mCherry have a higher molecular weight band that 

Figure 73: SDS-PAGE was used to detect the 
FilP fluorescent fusion proteins. For analysis 
of the EGFP fusions the gel was excited at 
488nm and the emission read at 532nm (A). 
For analysis of the mCherry fusions the gel 
was excited at 532nm and the emission read 
at 555nm (B). A control of a cell extract of 
expressing EGFP from Psco4002 (Holmes 
and Kelemen, unpublished) after 40 hours 
growth was used (Lane 1). A control of 
purified FilP-EGFP from E.coli was used 
(Holmes, unpublished) (Lane 2). A signal can 
be seen for cell extracts of M145/pIJ8660-
PfilP-filP-egfp (Lane 4 & 5). A signal can be 
seen for cell extracts of M145/pIJ8660-PfilP-
filP-Δlink-mCherry (Lane 6 & 7). A signal 
can be seen for cell extracts of 
M145/pIJ8660-PfilP-filP-mCherry (Lane 8 A B 

& 9). Samples were separated into both Supernatant fractions (S) and Pellet fractions (P). 
Shown on the left hand side are the positions and sizes of a protein MW marker (Lane 3, 
not visible on images shown) displayed in kDa. The arrow shows the size of the higher 
molecular weight band representing a fusion protein. 
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likely represents expression of the fusion proteins. This would support the microscopic 

observations that there is little difference between the two constructs. Unlike Scy the 

presence of the Glycine linker on a C-terminal mCherry fusion did not make a difference 

for FilP. It is interesting to note that the higher proportion of activity of the FilP fusion 

proteins is in the pellet fractions suggesting that FilP is possibly insoluble/ forms higher 

order structures or makes contact with the cell wall.     

 

5.2.1 Summary 

 

Monitoring of FilP-EGFP confirmed that this fusion protein forms filaments down the 

hyphae of Streptomyces and occasionally at hyphal tips. We also noticed that FilP-EGFP 

forms aggregates. FilP-EGFP filaments were still present in a scy mutant, however 

filamentation was reduced, but the effects of scy mutation on FilP formation is unclear. Scy 

and FilP fusions colocalise but in an artificial manner due to the non-native scenario in the 

strain studied. FilP fluorescent fusion to mCherry formed structures behind the hyphal tip 

and DivIVA, as well as aggregations in other locations. The localisation pattern of FilP 

fusions suggests some role in apical growth, however the functionality of FilP fusions is 

currently in question.  
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6 Using a Bacterial Two-Hybrid System to Analyse 

Interactions of the S. coelicolor Hyphal Tip  
 

6.1.1 Introduction 

 

As Scy, DivIVA and FilP may all be associated with hyphal tips and all contain coiled-coil 

regions, we wanted to see if they might function together possibly by interaction. In order 

to test protein-protein interactions in vivo in a heterologous host we implemented the use of 

a bacterial two-hybrid system (Karimova et al., 1998; Karimova et al., 2000)(Figure 74). 

The system works by splitting the adenylate cyclase of Bordetella pertussis into two non-

functional parts, T18 and T25. The fusing of these fragments to two separate proteins of 

interest results in a screen whereby if the bait proteins interact then it can allow 

reconstitution of the two fragments into an active adenylate cyclase. As adenylate cyclase 

catalyses the conversion of ATP to cAMP the coupling of this system in an adenylate 

cyclase-deficient strain of E. coli (cya) allows monitoring of a cAMP signal transduction. 

When produced, cAMP activates the cAMP dependent catabolite activator protein (CAP) 

which in turn switches on the lac promoter. The reporter gene lacZ encoding β-

galactosidase can be monitored with a traditional Blue/White screen using X-gal as the 

substrate for LacZ.  

To be able to test our genes of interest in this system and thus study protein-protein 

interactions, the BACTH vectors pUT18C and pKT25 were used (Karimova et al., 

2000)(Figure 205). These vectors both have a multiple cloning site (MCS) downstream of 

DNA encoding either T18 (pUT18C) or T25 (pKT25) domains allowing cloning in fusions 

to the C-terminal end of each CyaA domain. They also encode separate resistance markers 

of ampicillin and kanamycin for pUT18C and pKT25, respectively. The plasmid pUT18C 

is a derivative of the high copy number vector pUC19 (Yanisch-Perron et al., 1985). 

Whereas pKT25 is a derivative of the low copy number vector pSU40 (Bartolome et al., 

1991). Both vectors have separate replicons making them compatible for cotransformation 

in the same host for screening of interactions via β-galactosidase activity.     
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6.1.2 Interactions between full length Scy, DivIVA and FilP in the BTH system 

 

To investigate if the cytoskeletal proteins Scy, DivIVA and FilP interact in vivo, protein 

pairs were tested using the bacterial two-hybrid system. It has already been shown that 

T18-Scy and T25-Scy restored the adenylate cyclase function in a cAMP dependent β-

galactosidase assay (Walshaw et al., 2010) suggesting either parallel homo-dimerisation of 

Scy and/or interactions within a higher order assembly. Previously before in the Kelemen 

lab (unpublished) it has been shown that Scy and FilP interact in the bacterial two-hybrid 

system. We wanted to test the Scy and FilP interaction in this experiment in order to 

compare it to the tests between Scy and DivIVA. The FilP constructs (Holmes et al., 2013) 

used in the experiment can be seen in Figure 209. In order to test the interactions of 

DivIVA we cloned divIVA into pUT18C and pKT25 to generate DNA encoding T18-

DivIVA or T25-DivIVA with T18 or T25 at the N-terminal of DivIVA, respectively 

(10.1.58). 

 
Figure 74: The BACTH Bacterial Two-Hybrid System. Taken from Karimova et al., 
(2000). The Bordetella pertussis adenylate cyclase (CyaA) consists of two domains T25 and 
T18 both needed to catalyse the conversion of ATP into cAMP (A). When these are 
separate the enzymatic activity is lost (B). Heterodimerisation of the T25 and T18 domains 
through interaction of two fused proteins X and Y to either domain, restores the 
enzymatic activity (C). Increased cAMP produced by T25 and T18 binds to CAP. CAP 
bound to cAMP acts as a transcriptional regulator of genes including the lac or mal 
operons (D). This allows the E.coli to utilise lactose or maltose, thus enabling the screening 
of these genes, i.e., the activity of β-galactosidase on X-gal containing media.    
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Displayed in Table 7 are the scores from interactions between T18-Scy against the partners 

of T25-Scy, T25-DivIVA and T25-FilP (Figure 75). T18-DivIVA against the partners of 

T25-Scy, T25-DivIVA and T25-FilP (Figure 76). T18-FilP against the partners of T25-

Scy, T25-DivIVA and T25-FilP (Figure 77). Having tested all the homo- and hetero-pairs 

of proteins it appears that we were able to demonstrate in vivo pairwise interactions 

between all the tested pairs. Interestingly interactions between T25-DivIVA and T18-Scy 

or T18-FilP were reproducibly weaker than between T18-DivIVA and the corresponding 

T25 fusions. As mentioned before (6.1.1), pKT25 is a low copy number vector whereas 

pUT18C is a high copy vector, therefore we can speculate that for successful interactions 

DivIVA had to be supplied in a greater amount than either Scy or FilP. This could be 

explained by effects brought on by oligomerisation of the proteins and the effect that this 

has on the need to bring together the N-terminal domains of the adenylate cyclase in order 

to get a positive reaction. The interaction between T18-Scy and T25-DivIVA in Figure 

75.4 is the same pairing as in Figure 82.3 (shown later), There appears to be a discrepancy 

between the interaction scores, this is likely reflective of repeat experiments where the 

bacterial two-hybrid system may not behave exactly the same way in terms of colour 

development. However, consistently when T18 is fused to DivIVA a greater reaction is 

seen with T25-Scy than the opposite pairings (Compare Figure 75.4 to Figure 76.3 and 

Figure 82.3 to Figure 79.3 where the colour indicates more quickly with a T18-

DivIVA/T25-Scy pairing). A similar discrepancy can be seen with T25-FilP and T18-

DivIVA in Figure 77.4 and Figure 88.3. 

Table 7: Bacterial Two-Hyrid interactions and scores from full length Scy, DivIVA and FilP 
experiments. 

Crossreference pUT18C construct pKT25 construct Interaction Score 

Figure 75.1 pUT18C-zip pKT25-zip +++ 

Figure 75.2 pUT18C pKT25  

Figure 75.3 pUT18C-scy pKT25-scy +++ 

Figure 75.4 pUT18C-scy pKT25-divIVA  

Figure 75.5 pUT18C-scy pKT25-filP ++ 

Figure 76.3 pUT18C-divIVA pKT25-scy ++ 

Figure 76.4 pUT18C-divIVA pKT25-divIVA ++ 

Figure 76.5 pUT18C-divIVA pKT25-filP ++ 

Figure 77.3 pUT18C-filP pKT25-scy ++ 

Figure 77.4 pUT18C-filP pKT25-divIVA  
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Figure 77.5 pUT18C-filP pKT25-filP +++ 

 

 
 

 

Day 1 Day 2 Day 3 

Figure 76: The bacterial two-hybrid system was used to analyse protein:protein interactions 
between Scy, DivIVA and FilP. Transformants of BTH101 was performed with the following 
plasmid pairs; 1) pUT18C-zip + pKT25-zip, 2) pUT18C + pKT25, 3) pUT18C-divIVA + pKT25-
scy, 4) pUT18C-divIVA + pKT25-divIVA, 5) pUT18C-divIVA + pKT25-filP. Three colonies of 
each transformant were streaked on LB solid medium omitting glucose plus X-gal and IPTG. The 
plates were imaged at growth after 1, 2 and 3 days at 30ºC. Blue colour of colonies was indicative 
of interactions as seen in the positive control (1). Whereas colonies that remained pale were 
regarded to be negative as can be seen with the negative control (2). 
 

2) T18 + T25 

1) T18-Zip + T25-Zip 

3) T18-DivIVA + T25-Scy 

4) T18-DivIVA +  T25-DivIVA 

5) T18-DivIVA + T25-FilP 

Day 1 Day 2 Day 3 

2) T18 + T25 

1) T18-Zip + T25-Zip 

3) T18-Scy + T25-Scy 

4) T18-Scy +  T25-DivIVA 

5) T18-Scy + T25-FilP 

Figure 75: The bacterial two-hybrid system was used to analyse protein:protein interactions. 
Transformants of BTH101 was performed with the following plasmid pairs; 1) pUT18C-zip + 
pKT25-zip, 2) pUT18C + pKT25, 3) pUT18C-scy + pKT25-scy, 4) pUT18C-scy + pKT25-
divIVA, 5) pUT18C-scy + pKT25-filP. Three colonies of each transformant were streaked on LB 
solid medium omitting glucose plus X-gal and IPTG. The plates were imaged at growth after 1, 2 
and 3 days at 30ºC. Blue colour of colonies was indicative of interactions as seen in the positive 
control (1). Whereas colonies that remained pale were regarded to be negative as can be seen 
with the negative control (2). 
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6.1.3 Dissection of interactions between Scy and DivIVA domains in the BTH system 

 

The protein DivIVA, from B. subtilis has been recently crystallised (Oliva et al., 2010), 

there are two separate coiled-coil sections; CC1 and CC2 (Figure 78A). CC2 may or may 

not be a 51-mer non-heptad coiled coil similar to the CC51  region of Scy and FilP 

(Walshaw et al., 2010). However, crystallisation was performed by separating DivIVA into 

two separately folding parts, an N-terminal domain and a C-terminal domain (Figure 78B). 

S. coelicolor DivIVA is similar to that of B. subtilis except that it has an extended PQG 

region and C-terminal tail (Figure 78C). For Bacterial two-hybrid studies we wanted to 

narrow down whether the N-terminal half of DivIVA was responsible for Scy interaction 

or the C-terminal half of DivIVA. Therefore, we aimed to separate DivIVA into DivIVA-N 

and DivIVA-C as marked in Figure 78D. Constructs were then generated for either divIVA-

N (10.1.58) or divIVA-C (10.1.60) in pUT18C or pKT25.  

Day 1 Day 2 Day 3 

Figure 77: The bacterial two-hybrid system was used to analyse protein:protein interactions 
between Scy, DivIVA and FilP. Transformants of BTH101 was performed with the following 
plasmid pairs; 1) pUT18C-zip + pKT25-zip, 2) pUT18C + pKT25, 3) pUT18C-filP + pKT25-scy, 
4) pUT18C-filP + pKT25-divIVA, 5) pUT18C-filP + pKT25-filP. Three colonies of each 
transformant were streaked on LB solid medium omitting glucose plus X-gal and IPTG. The 
plates were imaged at growth after 1, 2 and 3 days at 30ºC. Blue colour of colonies was indicative 
of interactions as seen in the positive control (1). Whereas colonies that remained pale were 
regarded to be negative as can be seen with the negative control (2). 

 

2) T18 + T25 

1) T18-Zip + T25-Zip 

3) T18-FilP + T25-Scy 

5) T18-FilP + T25-FilP 

4) T18-FilP +  T25-DivIVA 

159 

 



                                                                                               

 
To investigate the interaction between Scy and DivIVA in vivo, domain pairs were 

monitored in the bacterial two-hybrid system. Displayed in Table 8 are the scores from 

interactions between T18-DivIVA against the partners of T25-Scy, T25-Scy-N and T25-

Scy-C (Figure 79). T18-DivIVA-N against the partners of T25-Scy, T25-Scy-N, T25-Scy-

C and T25-DivIVA as a control (Figure 80). T18-DivIVA-C against the partners of T25-

Scy, T25-Scy-N and T25-Scy-C (Figure 81). T25-DivIVA against the partners of T18-Scy, 

T18-Scy-N and T18-Scy-C (Figure 82). T25-DivIVA-N against the partners of T18-Scy, 

T18-Scy-N and T18-Scy-C (Figure 83). T25-DivIVA-C against the partners of T18-Scy, 

T18-Scy-N and T18-Scy-C (Figure 84). The overall effect seen was the more obvious 

interaction between Scy-C and DivIVA-C with full length versions of DivIVA and Scy, 

respectively, as well as their C domains. Less clear was the effect of DivIVA-N and Scy-N 

which were on the whole less reactive; however, in comparison to the negative control it 

cannot be ruled out that the N-terminal domains contribute towards an interaction. 

Consistently with (6.1.2) it seems that interactions were stronger and developed to a blue 

colour quicker when the T18 fusion was to DivIVA or DivIVA-C. From this experiment it 

seems likely that the C-terminal domain containing the 51-mer coiled-coils contributes 

Figure 78: The architecture of DivIVA. A) DivIVA of B. subtilis has two coiled-coil sections, 
CC1 (red) and CC2 (blue) (based on crystal structure data (Oliva et al., 2010)). B) For 
crystallising B. subtilis DivIVA was separated into two; the N-terminus (red) and the C-
terminus (blue). C) S. coelicolor DivIVA has an extended PQG linker separating the coiled-coils 
as well as an extended C-terminus (based on data from Wang et al., (2009)). D) For narrowing 
down DivIVA interactions we aimed to separate S. coelicolor DivIVA into two, so we separated; 
the N-terminus (red) containing the short Nterm segment, CC1 and PQG (amino acid residues 
1-201), and the C-terminus (blue) containing CC2 and the extended Cterm (amino acid residues 
198-398). Amino acid residues at borders are labelled. 
 

A 

B 

C 

D 
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more strongly to the interaction between Scy and DivIVA than do the heptad coiled-coil N-

terminal domains. 

Table 8: Bacterial Two Hyrid Interactions and scores from Scy and DivIVA truncated domain 
experiments. 

Crossreference pUT18C construct pKT25 construct Interaction Score 

Figure 79.1 pUT18C-zip pKT25-zip +++ 

Figure 79.2 pUT18C pKT25  

Figure 79.3 pUT18C-divIVA pKT25-scy ++ 

Figure 79.4 pUT18C-divIVA pKT25-scy-N  

Figure 79.5 pUT18C-divIVA pKT25-scy-C ++ 

Figure 80.3 pUT18C-divIVA-N pKT25-scy  

Figure 80.4 pUT18C-divIVA-N pKT25-scy-N  

Figure 80.5 pUT18C-divIVA-N pKT25-scy-C  

Figure 80.6 pUT18C-divIVA-N pKT25-divIVA ++ 

Figure 81.3 pUT18C-divIVA-C pKT25-scy +++ 

Figure 81.4 pUT18C-divIVA-C pKT25-scy-N  

Figure 81.5 pUT18C-divIVA-C pKT25-scy-C ++ 

Figure 82.3 pUT18C-scy pKT25-divIVA ++ 

Figure 82.4 pUT18C-scy-N pKT25-divIVA  

Figure 82.5 pUT18C-scy-C pKT25-divIVA ++ 

Figure 83.3 pUT18C-scy pKT25-divIVA-N  

Figure 83.4 pUT18C-scy-N pKT25-divIVA-N  

Figure 83.5 pUT18C-scy-C pKT25-divIVA-N  

Figure 84.3 pUT18C-scy pKT25-divIVA-C ++ 

Figure 84.4 pUT18C-scy-N pKT25-divIVA-C  

Figure 84.5 pUT18C-scy-C pKT25-divIVA-C ++ 
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Day 1 Day 2 Day 3 

Figure 80: The bacterial two-hybrid system was used to analyse protein:protein interactions 
between DivIVA-N and the domains of Scy. Transformants of BTH101 was performed with the 
following plasmid pairs; 1) pUT18C-zip + pKT25-zip, 2) pUT18C + pKT25, 3) pUT18C-divIVA-
N + pKT25-scy, 4) pUT18C-divIVA-N + pKT25-scy-N, 5) pUT18C-divIVA-N + pKT25-scy-C, 6) 
pUT18C-divIVA-N vs pKT25-divIVA. Three colonies of each transformant were streaked on 
LB solid medium omitting glucose plus X-gal and IPTG. The plates were imaged at growth after 
1, 2 and 3 days at 30ºC. Blue colour of colonies was indicative of interactions as seen in the 
positive control (1). Whereas colonies that remained pale were regarded to be negative as can be 
seen with the negative control (2). 

2) T18 + T25 

1) T18-Zip + T25-Zip 

3) T18-DivIVA-N + T25-Scy 

5) T18-DiviVAN + T25-Scy-C 

4) T18-DivIVA-N +  T25-Scy-N 

6) T18-DiviVAN + T25-DivIVA 

Day 1 Day 2 Day 3 

Figure 79: The bacterial two-hybrid system was used to analyse protein:protein interactions 
between DivIVA and the domains of Scy. Transformants of BTH101 was performed with the 
following plasmid pairs; 1) pUT18C-zip + pKT25-zip, 2) pUT18C + pKT25, 3) pUT18C-divIVA + 
pKT25-scy, 4) pUT18C-divIVA + pKT25-scy-N, 5) pUT18C-divIVA + pKT25-scy-C. Three 
colonies of each transformant were streaked on LB solid medium omitting glucose plus X-gal and 
IPTG. The plates were imaged at growth after 1, 2 and 3 days at 30ºC. Blue colour of colonies was 
indicative of interactions as seen in the positive control (1). Whereas colonies that remained pale 
were regarded to be negative as can be seen with the negative control (2).  

2) T18 + T25 

1) T18-Zip + T25-Zip 

3) T18-DivIVA + T25-Scy 

5) T18-DiviVA + T25-Scy-C 

4) T18-DivIVA +  T25-Scy-N 
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Day 1 Day 2 Day 3 

Figure 82: The bacterial two-hybrid system was used to analyse protein:protein interactions 
between DivIVA and the domains of Scy. Transformants of BTH101 was performed with the 
following plasmid pairs; 1) pUT18C-zip + pKT25-zip, 2) pUT18C + pKT25, 3) pUT18C-scy + 
pKT25-divIVA, 4) pUT18C-scy-N + pKT25-divIVA, 5) pUT18C-scy-C + pKT25-divIVA. Three 
colonies of each transformant were streaked on LB solid medium omitting glucose plus X-gal 
and IPTG. The plates were imaged at growth after 1, 2 and 3 days at 30ºC. Blue colour of 
colonies was indicative of interactions as seen in the positive control (1). Whereas colonies that 
remained pale were regarded to be negative as can be seen with the negative control (2). 

2) T18 + T25 

1) T18-Zip + T25-Zip 

3) T18-Scy + T25-DivIVA 

5) T18-Scy-C + T25-DivIVA 

4) T18-Scy-N +  T25-DivIVA 

Day 1 Day 2 Day 3 

Figure 81: The bacterial two-hybrid system was used to analyse protein:protein interactions 
between DivIVA-C and the domains of Scy. Transformants of BTH101 was performed with 
the following plasmid pairs; 1) pUT18C-zip + pKT25-zip, 2) pUT18C + pKT25, 3) pUT18C-
divIVA-C + pKT25-scy, 4) pUT18C-divIVA-C + pKT25-scy-N, 5) pUT18C-divIVA-C + 
pKT25-scy-C. Three colonies of each transformant were streaked on LB solid medium 
omitting glucose plus X-gal and IPTG. The plates were imaged at growth after 1, 2 and 3 days 
at 30ºC. Blue colour of colonies was indicative of interactions as seen in the positive control (1). 
Whereas colonies that remained pale were regarded to be negative as can be seen with the 
negative control (2). 

2) T18 + T25 

1) T18-Zip + T25-Zip 

3) T18-DivIVA-C + T25-Scy 

5) T18-DiviVAC + T25-Scy-C 

4) T18-DivIVA-C +  T25-Scy-N 
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6.1.4 Dissection of interactions between Scy domains and FilP in the BTH system 

 

To compare the interaction between Scy and FilP in vivo with the Scy-DivIVA interaction, 

domains of Scy were monitored in the bacterial two-hybrid system with FilP. Displayed in 

Table 9 are the scores from interactions between T25-FilP against the partners of T18-Scy, 

Day 1 Day 2 Day 3 

Figure 84: The bacterial two-hybrid system was used to analyse protein:protein interactions 
between DivIVA-C and the domains of Scy. Transformants of BTH101 was performed with the 
following plasmid pairs; 1) pUT18C-zip + pKT25-zip, 2) pUT18C + pKT25, 3) pUT18C-scy + 
pKT25-divIVA-C, 4) pUT18C-scy-N + pKT25-divIVA-C, 5) pUT18C-scy-C + pKT25-divIVA-
C. Three colonies of each transformant were streaked on LB solid medium omitting glucose 
plus X-gal and IPTG. The plates were imaged at growth after 1, 2 and 3 days at 30ºC. Blue 
colour of colonies was indicative of interactions as seen in the positive control (1). Whereas 
colonies that remained pale were regarded to be negative as can be seen with the negative 
control (2). 

2) T18 + T25 

1) T18-Zip + T25-Zip 

3) T18-Scy + T25-DivIVA-C 

5) T18-Scy-C + T25-DivIVA-C 

4) T18-Scy-N +  T25-DivIVA-C 

Day 1 Day 2 Day 3 

Figure 83: The bacterial two-hybrid system was used to analyse protein:protein interactions 
between DivIVA-N and the domains of Scy. Transformants of BTH101 was performed with the 
following plasmid pairs; 1) pUT18C-zip + pKT25-zip, 2) pUT18C + pKT25, 3) pUT18C-scy + 
pKT25-divIVA-N, 4) pUT18C-scy-N + pKT25-divIVA-N, 5) pUT18C-scy-C + pKT25-divIVA-N. 
Three colonies of each transformant were streaked on LB solid medium omitting glucose plus X-
gal and IPTG. The plates were imaged at growth after 1, 2 and 3 days at 30ºC. Blue colour of 
colonies was indicative of interactions as seen in the positive control (1). Whereas colonies that 
remained pale were regarded to be negative as can be seen with the negative control (2). 

2) T18 + T25 

1) T18-Zip + T25-Zip 

3) T18-Scy + T25-DivIVA-N 

5) T18-Scy-C + T25-DivIVA-N 

4) T18-Scy-N +  T25-DivIVA-N 

164 

 



                                                                                               

T18-Scy-N and T18-Scy-C (Figure 85). T18-FilP against the partners of T25-Scy, T25-

Scy-N and T25-Scy-C (Figure 86). The overall effect seen was the more obvious 

interaction between Scy or Scy-C with full length FilP. Less clear was the effect of Scy-N 

and FilP which was less. There was no major difference between interactions depending on 

the arrangements of T18 or T25 domains with Scy domains or FilP. However, from this 

experiment it seems likely that the C-terminal 51-mer coiled-coil of Scy contributes more 

strongly to the interaction between Scy and FilP, similar to the effect seen for Scy and 

DivIVA. The obvious experiment that wasn’t carried out here was the dissection of the 

domains in FilP and their contribution to the interaction with Scy. 

Table 9: Bacterial Two Hyrid Interactions and scores from Scy truncated domains and full length FilP 
experiments. 

Crossreference pUT18C construct pKT25 construct Interaction Score 

Figure 85.1 pUT18C-zip pKT25-zip +++ 

Figure 85.2 pUT18C pKT25  

Figure 85.3 pUT18C-filP pKT25-scy +++ 

Figure 85.4 pUT18C-filP pKT25-scy-N  

Figure 85.5 pUT18C-filP pKT25-scy-C ++ 

Figure 86.3 pUT18C-scy pKT25-filP ++ 

Figure 86.4 pUT18C-scy-N pKT25-filP  

Figure 86.5 pUT18C-scy-C pKT25-filP ++ 

 

6.1.5 Dissection of interactions between DivIVA domains and FilP in the BTH system 

 

To test the interaction between DivIVA and FilP in vivo, domains of DivIVA were 

monitored in the bacterial two-hybrid system with FilP. Displayed in Table 10 are the 

scores from interactions between T25-FilP against the partners of T18-DivIVA, T18-

DivIVA-N and T18-DivIVA-C (Figure 87). T18-FilP against the partners of T25-DivIVA, 

T25-DivIVA-N and T25-DivIVA-C (Figure 88). There was a difference in terms of the 

interactions when the arrangement of T18 and T25 domains was changed. With T18- 

DivIVA or T18-DivIVA-C an interaction was observable with full length FilP fused to 

T18. 
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However, these reactions were slower to develop when the arrangement was T18-FilP and 

DivIVA or DivIVA-C were fused to T25. In fact T25-DivIVA-C appeared to be not much 

more than a possible interaction with T25-DivIVA-N and T18-FilP. Less clear was the 

potential interaction of T18-DivIVA-N and T25-FilP which was less than DivIVA or 

Day 1 Day 2 Day 3 

Figure 86: The bacterial two-hybrid system was used to analyse protein:protein interactions 
between FilP and the domains of Scy. Transformants of BTH101 was performed with the 
following plasmid pairs; 1) pUT18C-zip + pKT25-zip, 2) pUT18C + pKT25, 3) pUT18C-scy + 
pKT25-filP, 4) pUT18C-scy-N + pKT25-filP, 5) pUT18C-scy-C vs pKT25-filP. Three colonies of 
each transformant were streaked on LB solid medium omitting glucose plus X-gal and IPTG. The 
plates were imaged at growth after 1, 2 and 3 days at 30ºC. Blue colour of colonies was indicative 
of interactions as seen in the positive control (1). Whereas colonies that remained pale were 
regarded to be negative as can be seen with the negative control (2). 

2) T18 + T25 

1) T18-Zip + T25-Zip 

3) T18-Scy + T25-FilP 

5) T18-Scy-C + T25-FilP 

4) T18-Scy-N +  T25-FilP 

Day 1 Day 2 Day 3 

Figure 85: The bacterial two-hybrid system was used to analyse protein:protein interactions 
between FilP and the domains of Scy. Transformants of BTH101 was performed with the 
following plasmid pairs; 1) pUT18C-zip + pKT25-zip, 2) pUT18C + pKT25, 3) pUT18C-filP + 
pKT25-scy, 4) pUT18C-filP + pKT25-scy-N, 5) pUT18C-filP + pKT25-scy-C. Three colonies of 
each transformant were streaked on LB solid medium omitting glucose plus X-gal and IPTG. The 
plates were imaged at growth after 1, 2 and 3 days at 30ºC. Blue colour of colonies was indicative 
of interactions as seen in the positive control (1). Whereas colonies that remained pale were 
regarded to be negative as can be seen with the negative control (2). 

2) T18 + T25 

1) T18-Zip + T25-Zip 

3) T18-FilP + T25-Scy 

5) T18-FilP + T25-Scy-C 

4) T18-FilP +  T25-Scy-N 
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DivIVA-C in this scenario. Thus, from this experiment it seems likely that DivIVA 

interacts with FilP, it is possible that the C-terminus of DivIVA contributes more to this 

interaction. Similarly to the test of Scy domains, the obvious experiment that wasn’t 

carried out here was the dissection of the domains in FilP and their contribution to the 

interaction with DivIVA. 

Table 10: Bacterial Two Hyrid Interactions and scores from DivIVA truncated domains and full 
length FilP experiments. 

Crossreference pUT18C construct pKT25 construct Interaction Score 

Figure 87.1 pUT18C-zip pKT25-zip +++ 

Figure 87.2 pUT18C pKT25  

Figure 87.3 pUT18C-divIVA pKT25-filP ++ 

Figure 87.4 pUT18C-divIVA-N pKT25-filP  

Figure 87.5 pUT18C-divIVA-C pKT25-filP ++ 

Figure 88.3 pUT18C-filP pKT25-divIVA ++ 

Figure 88.4 pUT18C-filP pKT25-divIVA-N  

Figure 88.5 pUT18C-filP pKT25-divIVA-C + 

 

   

 
 

Day 1 Day 2 Day 3 

Figure 87: The bacterial two-hybrid system was used to analyse protein:protein interactions 
between FilP and the domains of DivIVA. Transformants of BTH101 was performed with the 
following plasmid pairs; 1) pUT18C-zip + pKT25-zip, 2) pUT18C + pKT25, 3) pUT18C-divIVA + 
pKT25-filP, 4) pUT18C-divIVA-N + pKT25-filP, 5) pUT18C-divIVA-C + pKT25-filP. Three 
colonies of each transformant were streaked on LB solid medium omitting glucose plus X-gal and 
IPTG. The plates were imaged at growth after 1, 2 and 3 days at 30ºC. Blue colour of colonies was 
indicative of interactions as seen in the positive control (1). Whereas colonies that remained pale 
were regarded to be negative as can be seen with the negative control (2). 

2) T18 + T25 

1) T18-Zip + T25-Zip 

3) T18-DivIVA + T25-FilP 

5) T18-DivIVA-C + T25-FilP 

4) T18-DivIVA-N +  T25-FilP 

167 

 



                                                                                               

 
6.1.6 Interactions between ParA and cytoskeletal proteins in the BTH system 

 

We received a construct pKT25-parA that has been used in two-hybrid experiments by 

Jakimowicz et al., (2007). ParA has been shown recently to interact with Scy (Jakimowicz 

unpublished). It has also been shown that DivIVA (Jakimowicz et al., 2007) with ParA 

was found to be negative. To investigate if the different domains of DivIVA generated here 

showed an interaction with ParA in vivo protein/domain pairs were monitored using the 

bacterial two-hybrid system. To confirm any results the Scy, FilP and DivIVA experiments 

were all repeated here. Displayed in Table 11 are the scores from interactions between 

T25-ParA against the partners of T18-Scy, T18-Scy-N, T18-Scy-C and T18-FilP (Figure 

89). T25-ParA against the partners of T18-DivIVA, T18-DivIVA-N and T18-DivIVA-C 

(Figure 90). Not surprisingly it was found that the interactions between Scy or Scy-C 

against ParA could be reproduced. Interactions between Scy-N, full length FilP and full 

length DivIVA were not readily detected in line with previous findings. The DivIVA-N 

and DivIVA-C combinations with ParA produced a change in colour perhaps suggesting 

that the individual domains were able to show a sign of a potential interaction not found 

with full length DivIVA. We were only supplied with a T25-ParA construct, whereas it 

may be interesting to test a T18-ParA with some of the constructs. 

 

Day 1 Day 2 Day 3 
Figure 88: The bacterial two-hybrid system was used to analyse protein:protein interactions 
between FilP and the domains of DivIVA. Transformants of BTH101 was performed with the 
following plasmid pairs; 1) pUT18C-zip + pKT25-zip, 2) pUT18C + pKT25, 3) pUT18C-filP + 
pKT25-divIVA, 4) pUT18C-filP + pKT25-divIVA-N, 5) pUT18C-filP + pKT25-divIVA-C. Three 
colonies of each transformant were streaked on LB solid medium omitting glucose plus X-gal 
and IPTG. The plates were imaged at growth after 1, 2 and 3 days at 30ºC. Blue colour of 
colonies was indicative of interactions as seen in the positive control (1). Whereas colonies that 
remained pale were regarded to be negative as can be seen with the negative control (2). 
 

2) T18 + T25 

1) T18-Zip + T25-Zip 

3) T18-FilP + T25-DivIVA 

5) T18-FilP + T25-DivIVA-C 

4) T18-FilP +  T25-DivIVA-N 
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Table 11: Bacterial Two-Hyrid interactions and scores from ParA experiments. 

Crossreference pUT18C construct pKT25 construct Interaction Score 

Figure 75.1 pUT18C-zip pKT25-zip +++ 

Figure 75.2 pUT18C pKT25  

Figure 89.3 pUT18C-scy pKT25-parA + 

Figure 89.4 pUT18C-scy-N pKT25-parA  

Figure 89.5 pUT18C-scy-C pKT25-parA + 

Figure 89.6 pUT18C-filP pKT25-parA  

Figure 90.3 pUT18C-divIVA pKT25-parA  

Figure 90.4 pUT18C-divIVA-N pKT25-parA +? 

Figure 90.5 pUT18C-divIVA-C pKT25-parA +? 

 

 

Day 1 Day 2 Day 3 

Figure 89: The bacterial two-hybrid system was used to analyse protein:protein interactions 
between Scy or FilP and ParA. Transformants of BTH101 was performed with the following 
plasmid pairs; 1) pUT18C-zip + pKT25-zip, 2) pUT18C + pKT25, 3) pUT18C-scy + pKT25-parA, 
4) pUT18C-scy-N + pKT25-parA, 5) pUT18C-scy-C + pKT25-parA, 6) pUT18C-filP + pKT25-
parA. Three colonies of each transformant were streaked on LB solid medium omitting glucose 
plus X-gal and IPTG. The plates were imaged at growth after 1, 2 and 3 days at 30ºC. Blue colour 
of colonies was indicative of interactions as seen in the positive control (1). Whereas colonies that 
remained pale were regarded to be negative as can be seen with the negative control (2). 

2) T18 + T25 

1) T18-Zip + T25-Zip 

3) T18-Scy + T25-ParA 

5) T18-Scy-C + T25-ParA 

4) T18-Scy-N +  T25-ParA 

6) T18-FilP + T25-ParA 
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6.1.7 Summary 

 

Pairwise combinations of proteins in the bacterial two-hybrid system revealed interactions 

between the three coiled-coil proteins Scy, FilP and DivIVA in vivo in an E.coli cell. The 

Scy-DivIVA interaction was dissected further and it was shown that the interaction was 

likely due to the C-terminal domains of each proteins rather than the N-terminal domains 

that were more weakly reactive. The C-terminal domain of either Scy or DivIVA was 

responsible for each protein’s interaction with FilP. It was also confirmed that Scy 

interacted with ParA, however a strong interaction could not be detected between ParA and 

either FilP or DivIVA. We surmise from these interactions that Scy, DivIVA and FilP may 

interact in the hyphal tip of S.coelicolor.  

Day 1 Day 2 Day 3 

Figure 90: The bacterial two-hybrid system was used to analyse protein:protein interactions 
between ParA and the domains of DivIVA. Transformants of BTH101 was performed with the 
following plasmid pairs; 1) pUT18C-zip + pKT25-zip, 2) pUT18C + pKT25, 3) pUT18C-divIVA + 
pKT25-parA, 4) pUT18C-divIVA-N + pKT25-parA, 5) pUT18C-divIVA-C + pKT25-parA. Three 
colonies of each transformant were streaked on LB solid medium omitting glucose plus X-gal and 
IPTG. The plates were imaged at growth after 1, 2 and 3 days at 30ºC. Blue colour of colonies was 
indicative of interactions as seen in the positive control (1). Whereas colonies that remained pale 
were regarded to be negative as can be seen with the negative control (2). 

2) T18 + T25 

1) T18-Zip + T25-Zip 

3) T18-DivIVA + T25-ParA 

4) T18-DivIVA-N +  T25-ParA 

5) T18-DivIVA-C + T25-ParA 
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7 Purification of Coiled-coil Proteins 
 

7.1.1 Introduction 

 

As localisation studies and the bacterial two-hybrid system revealed intriguing results with 

Scy, FilP and DivIVA, we wanted to further study the proteins by purifying them. Protein 

expression from the host is quite often low yield, especially as Streptomyces growth in 

liquid culture is problematic. Therefore we wanted to overexpress and purify the proteins 

from the heterologous host E.coli. Making use of commonly used high expression systems 

and fast growth speed of E.coli.    

 

7.1.2 Overexpression and purification of His-Scy 

 

In order to perform in vitro biochemical experiments such as binding of Scy to other 

proteins, Scy protein needed to be overexpressed and purified in high quantities. 

Previously in the Kelemen lab the plasmids pET21a-scy and pET28a-scy (pGS2) were 

generated (Figure 211). These both were constructed using the Novagen expression vectors 

pET21a and pET28a. They contain origins of replication for high copy number 

propagation in E. coli cells. The plasmid pET28a-scy (pGS2) differs from pET21a-scy by 

encoding a 6xHis-tagged Scy rather than untagged Scy in pET21a. Expression of Scy or 

6xHis-Scy are driven by T7 RNA polymerase dependent and IPTG inducible promoters, 

therefore, transformation of these vectors into an expression strain of E. coli containing T7 

RNA polymerase driven by a lacUV5 promoter, allows IPTG inducible expression of Scy 

or His-Scy proteins. 

Previously in the Kelemen lab, pGS2 was used to overexpress and purify His-Scy by Ni-

affinity chromatography using FPLC. A purification method was developed where cell 

extracts were generated using sonication of cells overexpressing His-Scy and were applied 

to HisTrap HP 1ml (GE Healthcare). HisScy then was eluted using a gradient of increasing 

imidazole concentration. However, it was found that His-Scy did not elute within a narrow 

range of imidazole concentration, instead His-Scy was spread over a large volume of 

eluent. In order to generate a concentrated His-Scy sample, we tested an altered method of 

purification. Plasmid pGS2 was transformed into E. coli BL21 (DE3) pLysS, this latter 

encoding T7 lysozyme, which is an inhibitor of T7 polymerase and therefore prevents 

leaky expression of proteins in the absence of IPTG . A freshly transformed single colony 
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was used to inoculate a 10ml starter culture. Then, 500µl was subcultured into 50ml LB 

and grown to an OD ~0.7. Where upon addition of 1mM IPTG was added to induce 

overproduction of His-Scy. The culture was then incubated at 37˚C shaking vigorously for 

4 hours. At this point the culture was centrifuged and the pelleted cells were then 

resuspended in a low volume of phosphate/salt buffer with a low concentration (10mM) of 

imidazole. The cells were lysed using FastPrep (MP Biomedicals) by shaking at high speed 

with glass beads (<106µm). The remaining unlysed or insoluble cell fraction was 

centrifuged and the supernatant was filtered through a 0.2μm filter in preparation for 

running through an Amersham AKTA FRC FPLC machine. Affinity chromatography 

using a Nickel HisTrap HP 1ml (GE Healthcare) column was used to purify His-Scy. 

Histidine amino acids in proteins have affinity for nickel ions, and a patch of histidine such 

as in a 6xHis (now referred to as just His) tag provides a great enough affinity to be able to 

bind to nickel ions on a solid surface. If a His-tagged protein such as His-Scy in this 

experiment is available in high concentration in a cell extract, then by passing the cell 

extract through a nickel column this can selectively bind the His-tagged protein on the 

column. The remainder of the proteins in the cell extract will pass through the column and 

be discarded. Imidazole which is similar in structure to histidine, can be used to elute a 

His-tagged protein by raising the concentration of imidazole which will displace the bound 

His-tagged protein from the column. 

Instead of the previously used gradient elution, a strategy using step elutions of imidazole 

was approached. Approximately 2-3ml of filtered  cytoplasmic cell extract was loaded onto 

the column with the sample and loading buffer containing 10mM imidazole. Additional 

15ml loading buffer was added for the initial displacement of non-binding proteins. In 

order to displace proteins with a weak affinity to the column, a wash with 20mM imidazole 

buffer was applied for 10ml. His-Scy protein would then be eluted from the column by 

increasing the concentration of imidazole to 250mM for 15ml. A final step was then 

performed by increasing the concentration of imidazole to 300mM for 10ml to elute any 

more tightly bound proteins. A routine 500mM imidazole wash was routinely performed 

post running a purification in order to clean the column of any remaining binding proteins 

and allowing columns to be reused. 

During the FPLC run, the absorbance of the eluted samples was monitored at 280nm. 

Generally proteins absorb light at the wavelength of 280nm due to the presence of amino 

acids with aromatic rings. So an increasing absorbance should correlate with increasing 

amount of protein in solution. The FPLC readout for a His-Scy run can be seen in Figure 
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91. From the UV data we can see two main peaks that are of interest. The large peak in the 

sample load represents most of the cell’s proteins, which did not have an affinity for the 

column, so that they ran straight through. There is a small rise in the 20mM imidazole 

wash which shows proteins with a lower affinity, eluting from the column. The modest 

peak seen in the step up to 250mM imidazole, should be proteins with a higher affinity for 

the column and presumably His-Scy. His-Scy has a low extinction coefficient for 

absorption at 280nm so will not be strongly detected, explaining the small peak (His-Scy = 

12950 M-1 cm-1, BSA = 62865 M-1 cm-1). 

 
To attempt to visualise the proteins eluted from the column a selection of the fractions was 

used in Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The 

gel used was an 8% acrylamide gel, stained with Coomassie blue (Figure 92). It appears 

that the majority of bound His-Scy was eluted in samples B4 and B3 after the rise of 

imidazole concentration to 250mM. However, it is of note that a large amount of His-Scy 

appears not to have bound to the column by the prominent band corrersponding to His-Scy 

in the flowthrough sample A2. 

Figure 91: FPLC Chromatogram readout for purification of His-Scy using a step elution 
strategy. Absorbance data at 280nm of the different eluted samples. 0-15ml represents the 
addition of cell extract with 10mM imidazole buffer. 15-25ml represents an increase in 
buffer to 20mM imidazole. 25-40ml represents a step increase in buffer from 20mM to 
250mM imidazole. 40-50ml is a final rise in Imidazole to 300mM. Blue is the absorbance 
data (mAU) at 280nm. Green represents the change in imidazole concentration. Red 
represents the fractions of eluted samples collected. 
 

Sample Load + 10mM Imidazole 20mM Imidazole 

250mM Imidazole 300mM Imidazole 
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Depending on the further use of  His-Scy, the samples were dialysed against the 

appropriate buffers to remove the imidazole and for buffer exchange. Protein samples were 

quantified using the Bradford assay and were kept at -80oC. 

 
 

7.1.3 Overexpression and purification of His-FilP 

 

To be able to carry out protein based experiments between Scy and FilP we had to 

overexpress and purify FilP protein. Therefore, we generated constructs of pET21a and 

pET28a containing filP (10.1.61). The pET21a construct containing filP would be able to 

express FilP with no tag, whereas the pET28a construct containing filP would be able to 

express a His-tagged version of FilP. 

In order to overexpress His-tagged FilP, the plasmid pET28a-filP was transformed into E. 

coli BL21 (DE3) pLysS. His-FilP overexpressed at a very high level in E. coli, a large 

amount was in the soluble fraction as well as in the insoluble fraction. We purified His-

FilP from the soluble fraction. A freshly transformed single colony was used to inoculate a 

10ml starter culture. After  overnight growth at 37˚C, 500µl was subcultured into 50ml LB 

and grown to an OD ~0.7 (~4 hours). Whereupon 1mM IPTG was added to induce 

overproduction of His-FilP. The culture was then incubated at 37˚C shaking vigorously for 

Figure 92: Purification of His-Scy. SDS-PAGE of the FPLC samples loaded onto an 8% 
acrylamide gel. The control is His-Scy purified previously from E. coli. Preload is an aliquot 
of the cell extract prior to loading onto the FPLC column. Lane notation corresponds with the 
fraction numbers in Figure 91. A2 is from the Flowthrough. B12 is from the wash. B3 to C3 
are from the elution with a step increase to 250mM Imidazole. D13 is from an additional 
elutions at 300mM Imidazole. The gel was stained with Coomassie blue R250. 
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4 hours. The pelleted cells were lysed using FastPrep and the cell debris and insoluble cell 

fraction was removed by centrifugation. The supernatant was filtered through a 0.2μm 

filter prior to loading the 2-3ml of extract  onto the HisTrap HP 1ml (GE Healthcare) 

column of the FPLC AKTA machine. 

Affinity chromatography was performed initially using a gradient elution with an 

increasing concentration of imidazole, as we were unaware of the imidazole concentration 

that would elute the highest proportion of His-FilP. After loading the sample, a further 

15ml of loading buffer and 10ml of buffer containing 27.4mM imidazole was used to elute 

proteins with non-specific or weak binding. His-FilP protein was eluted from the column 

by increasing imidazole concentration over a gradient from 27.4mM to 300mM for 20ml. 

To ensure the buffer was kept at 300mM imidazole for long enough the concentration of 

imidazole was maintained at 300mM for a further ~6.2ml. Any tightly bound proteins were 

eluted with the buffer containing 500mM imidazole for ~20ml. 

 

 

Figure 93: FPLC Chromatogram readout for purification of His-FilP using a gradient 
elution strategy. Absorbance data at 280nm of the different eluted samples. 0-15ml 
represents the addition of cell extract with 10mM imidazole buffer. 15-25ml represents an 
increase in buffer to 27.4mM imidazole. 25-45ml represents a gradient increase in buffer 
from 27.4mM to 300mM imidazole. 45-51.2ml represents a wash using 300mM Imidazole. 
51.2-64ml represents a wash using 500mM Imidazole. Blue is the absorbance data (mAU) 
at 280nm. Green represents the change in imidazole concentration. Red represents the 
fractions of eluted samples collected. 

20mM Imidazole 

Gradient Increase 27.4mM 
Imidazole to 300mM Imidazole 

Sample Load + 
 10mM Imidazole 

Washes with 300mM or 
500mM Imidazole 
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The chromatogram of the purification (Figure 93) shows UV peaks of interest, the 

flowthrough peak, a prominent peak in the wash, followed by an absence of a prominent 

peak in the gradient elution and a sharp peak corresponding to when the imidazole 

concentration was raised to 500mM. To visualise the proteins eluted from the column a 

range of the fractions from the wash, gradient and high imidazole elution were analysed 

using 8% SDS acrylamide electrophoresis gels stained with Coomassie blue (Figure 94). In 

contrast to His-Scy, His-FilP was not visible in the flowthrough (A3) suggesting that all or 

most His-FilP of the cell extract bound to the Ni-column. Although there was a protein 

peak in the wash, this did not correspond to His-FilP (B14-B12). His-FilP appeared to elute 

over an extensive range of the gradient elution step from E5 toF10. When the imidazole 

concentration was raised to 500mM (F11 & F10), a large quantity of His-FilP eluted, 

Figure 94: Purification of His-FilP. SDS-PAGE of the FPLC samples loaded onto 8% 
acrylamide gels. The control is His-FilP purified previously from E. coli via small scale 
isolation. Preload is an aliquot of the cell extract prior to loading onto the FPLC column. 
Lane notation corresponds with the fraction numbers in Figure 93. A3 is from the 
Flowthrough. B15 to B12 is from the wash. B5 to E5 are from the rising gradient of 
Imidazole to 500mM Imidazole. E6 to F12 represents elutions at 300mM Imidazole. F11 
and F10 are elutions at 500mM Imidazole. The gel was stained with Coomassie blue R250. 

 
 

176 

 



                                                                                               

suggesting that although some His-FilP can elute at the lower ranges of imidazole 

concentration, to elute all of His-FilP, high concentration of imidazole is needed. 

In order to elute His-FilP more efficiently, our strategy was to use a single step elution 

with a buffer containing 500mM imidazole. Cell lysate from cells overexpressing His-FilP 

were generated and loaded onto the His-Trap column as before. This was followed by 

washing steps performed as before. His-FilP was eluted from the column by increasing the 

concentration of imidazole to 500mM for 20ml. 

The chromatogram of the purification (Figure 95) shows UV peaks of interest, the 

flowthrough peak, a peak in the wash, followed by a peak corresponding to when the 

imidazole concentration was raised to 500mM. Visualised on an 8% SDS acrylamide 

electrophoresis gel stained with Coomassie blue (Figure 96), His-FilP bound to the column 

strongly (A2), resisting elution in the wash (B13) and only eluting when the imidazole 

concentration was raised to 500mM imidazole (B4-C2).   

 

 

Figure 95: FPLC Chromatogram readout for purification of His-FilP using a step elution 
strategy. Absorbance data at 280nm of the different eluted samples. 0-15ml represents the 
addition of cell extract with 10mM imidazole buffer. 15-25ml represents an increase in 
buffer to 27.6mM imidazole. 25-45ml represents a step increase in buffer from 27.6mM to 
500mM imidazole. Blue is the absorbance data (mAU) at 280nm. Green represents the 
change in imidazole concentration. Red represents the fractions of eluted samples collected. 
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7.1.4 Overexpression and purification of His-DivIVA 

 

In order to perform in vitro experiments with Scy and DivIVA (and possibly including 

FilP) we needed to overexpress and purify DivIVA protein. Therefore, we generated 

constructs of pET21a and pET28a containing divIVA (10.1.62). The pET21a construct is 

designed to be able to express DivIVA with no additional tag. Whereas the pET28a 

construct should express  His-tagged DivIVA. 

In order to overexpress His-tagged DivIVA, the plasmid pET28a-divIVA was transformed 

into E. coli BL21 (DE3) pLysS. It was quickly found that the majority of the 

overexpressed protein was in the insoluble fraction. Therefore, a strategy of lysing the cells 

with urea buffers was used in order to increase the amount of soluble protein.  

A freshly transformed single colony was used to inoculate a 10ml starter culture. Then, 

5ml was subcultured into 500ml LB and grown to an OD ~0.7, whereupon 1mM IPTG was 

added to induce overproduction of His-DivIVA. 

Figure 96: Purification of His-FilP. SDS-PAGE of the FPLC samples loaded onto an 8% 
acrylamide gel. The control is His-FilP purified previously from E. coli. Preload is an 
aliquot of the cell extract prior to loading onto the FPLC column. Lane notation 
corresponds with the fraction numbers in Figure 95. A2 is from the Flowthrough. B13 is 
from the wash. B5 to C11 are from the elution with a step increase to 500mM Imidazole. 
The gel was stained with Coomassie blue R250. 
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The culture was then incubated at 37˚C shaking vigorously overnight. At this point the 

large volume of culture was centrifuged in 2 aliquots in an Avanti® J-26XP Beckman 

Coulter high speed centrifuge. The pelleted cells were then resuspended in 10ml of urea  

 
buffer. The resulting resuspension was then sonicated, lysing the cell material. The 

remaining unlysed or insoluble cell fraction was removed by centrifugation at high speed 

and aliquots of the supernatant were frozen. Small scale Ni-NTA columns (Qiagen) were 

used to purify DivIVA through step elutions.  600μl   sample was loaded on the Ni-NTA 

column in a urea buffer pH 8.0 followed by washes with 2.4ml of urea buffer pH 6.3 and 

1.8ml of urea buffer pH 6.1. His-DivIVA protein was then eluted from the column in a low 

volume of two 400μl with urea buffer pH 4.5. A final elution was carried out with a further 

300μl of pH 4.5 urea buffer. Samples were visualised on 8% SDS acrylamide 

electrophoresis gels stained with Coomassie blue (Figure 97). Not clearly visible, but due 

to the high concentration of protein in the preload, the column was unable to support 

binding all His-DivIVA in the sample, however, this was fine as the desire was to saturate 

Figure 97: Purification of His-DivIVA. SDS-PAGE of the FPLC samples loaded onto an 
8% acrylamide gel. The control is His-DivIVA purified previously from E. coli (Lane 1). 
Preload is an aliquot of the cell extract before loading on the Ni-NTA (Lane 2). Lane 3 is 
from the Flowthrough. Lane 4 and 5 are from the wash with Urea pH 6.1 buffer. Lane 6 
and 7 are from the wash with Urea pH 6.3 buffer. Lane 8, 9 and 10 are from the elution 
with Urea pH 4.5 buffer. The gel was stained with Coomassie blue R250. 
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the column. As can be seen in the elution fractions (Lane 8 & 9), His-DivIVA was bound 

to the column and eluted with urea buffer at low pH. 

 

7.1.5 Overexpression and purification of His-DivIVA-C 

 

As in the bacterial two-hybrid experiments the C-terminal domain of DivIVA interacted 

strongly with Scy, we also sought to overexpress and purify DivIVA-C by generating 

constructs of pET21a and pET28a containing divIVA-C. The pET21a construct containing 

divIVA-C to express DivIVA-C with no tag and the pET28a construct containing divIVA-C 

to express a His-tagged version of DivIVA-C. 

In order to overexpress His-tagged DivIVA-C, the plasmid pET28a-divIVA-C was 

transformed into E. coli BL21 (DE3) pLysS. Soluble His-DivIVA-C was overexpressed  at 

a very high level in E. coli. For large scale preparations, a freshly transformed single 

colony of E. coli BL21 (DE3) pLysS carrying pET28a-divIVA-C was used to inoculate a 

10ml starter culture, which was subcultured into 50ml LB and grown to an OD ~0.7. 1mM 

IPTG was added to induce overproduction of His-DivIVA-C and the culture was incubated 

at 37˚C shaking vigorously for 4 hours. Cells were collected and lysed using FastPrep and 

the insoluble cell fraction was removed by centrifugation. The supernatant was filtered 

through a 0.2μm filter in preparation for an FPLC purification. 

Affinity chromatography using an Amersham AKTA FRC FPLC machine and a Nickel 

HisTrap HP 1ml (GE Healthcare) column was used to purify His-DivIVA-C. Due to the 

success of step elution strategies for both His-Scy and His-FilP, for His-DivIVA-C we did 

not attempt a first gradient elution strategy and went straight to a strategy using step 

elutions of imidazole. As before, approximately 2-3ml of extract was loaded onto the 

column with the sample and loading buffer at 10mM imidazole. Washes with 15ml of 

loading buffer and  10ml of buffer with 27.6mM imidazole was applied. The elution was 

with 5ml of buffer with 300mM imidazole followed by 20ml of buffer with 500mM 

imidazole. 
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The chromatogram of the purification (Figure 98) shows UV peaks of interest, the 

flowthrough peak, a small peak in the wash, followed by a number of peaks corresponding 

to when the imidazole concentration was raised to 300mM and 500mM. The fractions were 

analysed on a 10% SDS acrylamide electrophoresis gel stained with Coomassie blue 

(Figure 99). His-DivIVA-C bound to the column strongly (A2) and resisted elution in the 

wash (B12). The initial peak in the chromatogram corresponding with sample B4, likely 

represents more contaminating protein eluting from the column. The majority of the 

elution of His-DivIVA-C coming in the later peak following the rise to 300mM imidazole 

and not clearly discriminated in the gel is the continued elution when imidazole 

concentration was raised to 500mM (B3-C3). 

 

Figure 98: FPLC Chromatogram readout for purification of His-DivIVA-C using a step 
elution strategy. Absorbance data at 280nm of the different eluted samples. 0-15ml 
represents the addition of cell extract with 10mM imidazole buffer. 15-25ml represents an 
increase in buffer to 27.6mM imidazole. 25-30ml represents a step increase in buffer from 
27.6mM to 300mM imidazole. 40-50ml is a final rise in Imidazole to 500mM. Blue is the 
absorbance data (mAU) at 280nm. Green represents the change in imidazole concentration. 
Red represents the fractions of eluted samples collected. 
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7.1.6 Summary 

 

The proteins Scy, FilP and DivIVA as well as the C-terminal domain of DivIVA were all 

expressed and purified from E.coli. For Scy, FilP and DivIVA-C aqueous purification was 

achieved through an FPLC machine. For DivIVA urea purification was found to be most 

efficient. Availability of the proteins allows us to analyse them in vitro in downstream 

applications. 

Figure 99: Purification of His-DivIVA-C. SDS-PAGE of the FPLC samples loaded onto a 
10% acrylamide gel. Preload is an aliquot of the cell extract prior to loading onto the 
FPLC column. Lane notation corresponds with the fraction numbers in Figure 98. A2 is 
from the Flowthrough. B12 is from the wash. B5 to B1 are from the elution with a step 
increase to 300mM Imidazole. C1 to C4 are from the elution with a step increase to 
500mM Imidazole. The gel was stained with Coomassie blue R250. 
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8 Protein Interactions Studies 
 

8.1.1 Introduction 

 

As the bacterial two-hybrid system revealed interactions between Scy, FilP and DivIVA, 

we wanted to confirm these interactions by using in vitro biochemical experiments. 

Therefore we performed pelleting ultracentrifugation assays with pairwise combinations of 

proteins. We also tried to use co-affinity pull down experiments between proteins. In order 

to verify that Scy and DivIVA were involved in the same in vivo complex in cells of 

Streptomyces we also wanted to overexpress Scy from Streptomyces coelicolor and pull 

down any interacting proteins, whereby we could use an anti-DivIVA antibody to detect 

the presence of DivIVA in elutions.   

 

8.2 Pelleting ultracentrifugation assay of Coiled-coil proteins 
 

To demonstrate direct interactions between Scy, DivIVA and FilP in vitro, purified 

proteins were  analysed using a pelleting assay. The conditions that we used had previously 

been used to demonstrate an interaction between MreB and RodZ (van den Ent et al., 

2010).  

This particular technique is of use for studying proteins that are able to form oligomeric 

structures, which can be separated by pelleting using ultracentrifugation The proteins 

purified in the previous chapter were dialysed against the buffer of 20mM Tris, 200mM 

NaCl, 10mM MgCl2, pH 8.0 buffer.  The concentrations of the proteins used were DivIVA, 

3.073µM; Scy, 1.266µM and FilP, 6.718µM. Although initial attempts were made to 

perform pelleting assays at 1:1 molar ratio, we did have a problem of detecting DivIVA at  

µM concentrations. Therefore, without attempting 1:1 stochiometry the final protein 

concentrations in the pairwise mixes were the following: DivIVA, 1.5µM; Scy, 0.65µM 

and FilP, 3.3µM.  For the ultracentrifugation assays the purified proteins were first 

incubated at 30°C for 20 minutes. They were then spun at 100,000rpm for 30 minutes at 

4°C in a Beckman Optima TLX Ultracentrifuge using a Beckmann Coulter TLA 100 Fixed 

Angle Rotor. After ultracentrifugation both the pellet and the supernatant of the Scy, 

DivIVA, FilP, Scy-DivIVA, Scy-FilP and DivIVA-FilP mixtures were analysed on a 10% 

SDS Polyacrylamide gel (Figure 100). Scy and FilP formed higher order assemblies that 

were pelleted using ultracentrifugation. DivIVA, on the other hand, did not pellet under the 
183 

 



                                                                                               

conditions we used. However, Scy pulled DivIVA to the pellet fraction which confirms the 

interaction between these two proteins. Similarly, FilP pulled DivIVA to the pellet 

fraction, also confirming their interaction in vitro. Both Scy and FilP were in the pellet 

fractions after ultracentrifugation and therefore this technique was unable to demonstrate a 

direct in vitro interaction between these two proteins. 

 
To further analyse the interaction between Scy and DivIVA we wanted to test direct 

interaction between Scy and the C-terminal domain of DivIVA. Both Scy and DivIVA-C 

were used in an ultacentrifugation assay after the proteins were dialysed against 20mM 

Tris, 200mM NaCl, 10mM MgCl2, pH 8.0 buffer. The proteins used in the assay were 

DivIVA-C, 36.344µM (3µl used) and Scy, 0.747µM (25µl used). As before,  the purified 

proteins were first incubated at 30°C for 20 minutes followed by centrifugation at 

100000rpm for 30 minutes at 4°C in a Beckman Optima TLX Ultracentrifuge using a 

Beckmann Coulter TLA 100 Fixed Angle Rotor. After ultracentrifugation both the pellet 

and the supernatant fractions of Scy, DivIVA-C and a Scy-DivIVA-C mixture were 

analysed on a 10% SDS Polyacrylamide gel (Figure 101). Not surprisingly Scy pulled 

DivIVA-C to the pellet fraction which confirms that DivIVA-C is sufficient for interaction 

with Scy. 

Figure 100: Pelleting Ultracentrifugation assay of Scy, DivIVA and FilP. SDS-PAGE of the 
Ultracentrifugation samples that were loaded onto a 10% acrylamide gel.  Whereby; Scy was 
mixed with buffer (Lane 1 & 2), with DivIVA (Lane 7 & 8) or FilP (Lane 9 & 10). DivIVA was 
mixed with buffer (Lane 3 & 4) or with FilP (Lane 11 & 12). FilP was mixed with buffer (Lane 5 
& 6). Samples were separated into supernatant (S) and pellet (P) fractions.  
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Previously it has been shown that DivIVA from Bacillus subtilis could bind to the 

membrane and pelleted during ultracentrifugation when mixed with with liposomes (Oliva 

et al., 2010). We wanted to test whether S. coelicolor DivIVA, DivIVA-C and/or Scy 

would bind to liposomes in vitro. It was also of interest to see if Scy would complex with 

DivIVA and liposomes. It was previously shown that the C-terminus of DivIVA alone 

would not be able to bind to liposomes and that full length DivIVA is required (Oliva et 

al., 2010). The concentrations of the proteins used were DivIVA; 3.073µM (20µl used), 

Scy; 1.099µM (20µl used) and DivIVA-C; 11.857µM (20µl used). The liposomes used in 

this experiment were prepared by resuspending phosphatidyl choline in the experimental 

buffer followed by sonication to aid liposome formation generating a non-homogenous 

range of liposomes. The proteins were mixed either with 15µl 1mg/ml liposomes and 

buffer or just buffer to a total of 55µl reactions. For the ultracentrifugation assay the 

purified proteins with and without liposomes were first incubated at 30°C for 

approximately an hour to stimulate interactions. They were then spun at a lower speed of 

65000rpm for 12 minutes at 4°C in accordance with Oliva et al., (2010) in a Beckman 

Optima TLX Ultracentrifuge using a Beckmann Coulter TLA 100 Fixed Angle Rotor. This 

time and speed was sufficient to pellet the liposomes. After ultracentrifugation Scy, 

DivIVA, DivIVA-C, Scy-DivIVA, Scy-DivIVA-C mixtures all with and without lipsomes 

were analysed on a 10% SDS Polyacrylamide gel (Figure 102). Without liposomes Scy did 

not enter the pellet, which was useful as at the higher rotation speeds Scy spun down in the 

pellet fraction and we wanted to assess Scy binding to the liposomes. Suprisingly we did 

not see DivIVA pellet with the liposomes. Nor did DivIVA-C or Scy, or any of the  

Figure 101:  Pelleting Ultracentrifugation assay of Scy and DivIVA-C. SDS-PAGE of the 
Ultracentrifugation samples that were loaded onto a 10% acrylamide gel.  Whereby; Scy 
was mixed with buffer (Lane 1 & 2) or with DivIVA-C (Lane 5 & 6). DivIVA-C was mixed 
with buffer (Lane 3 & 4). Samples were separated into supernatant (S) and pellet (P) 
fractions. 
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mixtures. This was unfortunate as we were expecting DivIVA to pellet in our similar 

conditions to Oliva et al., (2010). However, the liposomes used by Oliva et al., (2010) 

were from an E. coli extract so they may have been more like lipids encountered in a 

bacterial cell. Also, we tried extruding lipids of set sizes (0.2µm or 0.4µm) and this did not 

generate liposome interactions (data not shown), however, we did not have filters at our 

Figure 102: Pelleting Ultracentrifugation assay of Scy, DivIVA and DivIVA-C with 
Lipsomes. SDS-PAGE of the Ultracentrifugation samples that were loaded onto a 10% 
acrylamide gel. Samples with addition (+) of Liposomes or absence of Liposomes (-) are 
noted above image. Mixtures also included; Scy with buffer (Lane 1, 2, 3 & 4), with 
DivIVA (Lane 13, 14, 15 & 16) or with DivIVA-C (Lane 17, 18, 19 & 20). DivIVA with 
buffer (Lane 5,  6,  7 & 8). DivIVA-C with buffer (Lane 17, 18, 19 & 20). Samples were 
separated into supernatant (S) and pellet (P) fractions. 
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disposal of the 1µm sizes that might reflect more the size of the bacterial cell diameter and 

the conditions used by Oliva et al., (2010). It is worth noting as well that in accordance 

with a theory that DivIVA recognises negative membrane curvature (Lenarcic et al., 2009; 

Ramamurthi, and Losick, 2009), binding of DivIVA to liposomes in this experiment would 

be primarily be on a membrane with positive curvature. 

 

8.3 Co-Pull down of Coiled-coil proteins 
 

Following two-hybrid analysis, to further characterise interactions between coiled-coil 

proteins, pull-down assays were performed. The general idea behind these types of 

experiments were that one protein of a pair would be able to bind to an affinity column, 

whilst the other would not have affinity to the column. However, if the two proteins were 

to interact then the protein without affinity for the column would be able to bind onto the 

column via interaction with the other partner (Brymora et al., 2004; Vikis, and Guan, 

2004). As previously shown, we generated overexpression construct for the production of 

both His-tagged and non-tagged Scy, DivIVA and FilP. These constructs enabled us to test 

pair-wise interactions using a His-tagged protein with a non-tagged potential partner. At 

this point let it be noted that these experiments are intended to compliment the bacterial 

two-hybrid experiments and any other experiments to detect protein-protein interactions. 

However, pull-down assays like any experimental technique have limitations (Mackay et 

al., 2007; Wissmueller et al., 2011). Therefore, whilst attempting these experiments we 

intended to use appropriate experimental controls. 

 

8.3.1 Coaffinity of His-FilP and Scy  

  

The strategy in this experiment was to bind His-FilP from a cell lysate onto the Ni-affinity 

column and then to be able to assess the co-purification of untagged Scy from a separate 

cell lysate. Firstly E. coli BL21 pLysS (DE3) carrying either pET28a-filP or pET21a-scy, 

were inoculated and 10ml subcultures were grown to an OD ~0.7. 1mM IPTG was added 

to induce overproduction at 37°C for 4 hours. Cells were collected and lysed using 

FastPrep and the insoluble cell fraction was removed by centrifugation. The supernatant 

containing His-FilP was applied onto the Ni-NTA column (600µl). Following washes 

twice with 600µl of buffer to remove unbound proteins, the supernatant containing 

untagged Scy was passed through the column (600µl). After further washes (four times 
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with 600µl of buffer), specifically bound proteins were eluted  with 2X300µl of 500mM 

imidazole buffer. The fractions were analysed by SDS-PAGE (Figure 103A) confirming 

that in addition to His-FilP, Scy was detectable in the elution fractions. As we don’t have 

Scy antibody, the presence of Scy was based on the high molecular weight band detectable 

in the elution fractions.  

This experiment was repeated again but with the strategy to bind a His-FilP containing cell 

lysate onto the column and then to be able to assess the co-purification of untagged EGFP-

Scy passed through in a separate cell lysate. The reason why we did this was because we 

did not have an antibody against Scy therefore wanted to tag Scy with a fluorescent tag we 

could monitor using semi-denaturing SDS-polyacrylamide gels. We generated pET21a-

egfp-scy (10.1.64) to express non-tagged EGFP-Scy. In order to perform co-purification 

firstly E. coli BL21 pLysS (DE3) carrying either pET28a-filP or pET21a-egfp-scy, were 

inoculated and 10ml subcultures were grown to an OD ~0.7. 1mM IPTG was added to 

induce overproduction at 37°C for 4 hours. Cells were collected and lysed using FastPrep 

and the insoluble cell fraction was removed by centrifugation. The supernatant containing 

His-FilP was applied onto the Ni-NTA column (600µl). Following washes twice with 

600µl of buffer to remove unbound proteins, the supernatant containing untagged EGFP-

Scy was passed through the column (600µl). After further washes (four times with 600µl 

of buffer), specifically bound proteins were eluted  with 2X300µl of 500mM imidazole 

buffer.  Finally the fractions were analysed by SDS-PAGE without boiling the samples so 

to maintain the fluorescence of EGFP-Scy. After the electrophoresis the gel was scanned 

for fluorescence activity using a phosphoimager prior to staining with Coomassie (Figure 

103B). As can be seen there was EGFP-Scy protein in the elution fractions, however, it 

was only detectable on the gel via its fluorescence. This is likely to occur because this 

construct perhaps does not express EGFP-Scy as well as untagged native Scy was 

expressed in E. coli. The detection of fluorescence was in this case stronger than by 

Coomassie staining. 
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8.3.2 Coaffinity of His-DivIVA and Scy  

 

The strategy in this experiment was to bind His-DivIVA onto the column and then to be 

able to assess the co-purification of untagged Scy passed through from a separate cell 

lysate. However, with this experiment because DivIVA was often in the insoluble fraction, 

we attempted a different strategy of purifying His-DivIVA under denaturing conditions 

(7.1.4) and loading on refolded (10.1.37) purified DivIVA protein. We needed a cell lysate 

of overexpressed untagged Scy, so E. coli BL21 pLysS (DE3) carrying pET21a-scy was 

grown in 10ml subcultures to an OD ~0.7. 1mM IPTG was added to induce overproduction 

at 37°C for 4 hours when the cells were collected and lysed using FastPrep. After 

centrifugation the supernatant was applied (600µl) onto the Ni-NTA column that was 

previously loaded with His-DivIVA (600µl). After several washes (four times with 600µl 

Figure 103: Pull Down Co-affinity of His-FilP and Scy or EGFP-Scy.  

A) SDS-PAGE of the pull down co-affinity experiment testing His-FilP and Scy, samples 
loaded onto an 8% acrylamide gel. Scy supernatant flowthrough (Lane 1). After Scy 
addition, beginning wash (Lane 2). After Scy addition, finishing wash (Lane 3). His-FilP 
+ Scy elution fractions (Lane 4&5).  MW marker is a Biorad precision plus protein All 
Blue Standards sample (kDa sizes listed left, Lane 6). His-FilP preload (Lane 7). Scy 
preload (Lane 8).  

B) SDS-PAGE of the pull down co-affinity experiment testing His-FilP and EGFP-Scy, 
samples loaded onto an 8% acrylamide gel. EGFP-Scy preload (Lane 9). After EGFP-Scy 
addition, beginning wash (Lane 10). After EGFP-Scy addition, finishing wash (Lane 11). 
His-FilP + EGFP-Scy elution fractions (Lane 12&13). MW marker is a Biorad precision 
plus protein All Blue Standards sample (kDa sizes listed left, Lane 14). His-FilP control 
(Lane 15). His-Scy control (Lane 16). The top panel is the part of the gel containing 
EGFP-Scy, excited at 488nm and the emission read at 532nm. 
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of buffer) the column was eluted twice with 300µl of 500mM imidazole buffer and the 

fractions were analysed by SDS-PAGE (Figure 104A). Togerther with His-DivIVA, Scy is 

detectable in the elution fractions. 

 

 
This experiment was repeated again but with the strategy to bind His-DivIVA onto the 

column and then to use untagged EGFP-Scy from cell exracts. Firstly E. coli BL21 pLysS 

(DE3) carrying pET21a-egfp-scy was cultured to an OD ~0.7, when 1mM IPTG was added 

to induce overproduction at 37°C for 4 hours. After collecting the cells, they were lysed 

using FastPrep and the insoluble fraction was removed by centrifugation. After 

equilibrating the Ni-NTA column with buffer, 600µl of His-DivIVA solution was passed 

through the column. Following washes (three times with 600µl of buffer) 600µl of 

untagged EGFP-Scy supernatant was passed through the column. Following further 

Figure 104: Pull Down Co-affinity of His-DivIVA and Scy or EGFP-Scy.  

A) SDS-PAGE of the pull down co-affinity experiment testing His-DivIVA and Scy, 
samples loaded onto an 8% acrylamide gel. Scy supernatant flowthrough (Lane 1). After 
Scy addition, beginning wash (Lane 2). After Scy addition, finishing wash (Lane 3). His-
DivIVA + Scy elution fractions (Lane 4&5).  MW marker is a Biorad precision plus protein 
All Blue Standards sample (kDa sizes listed left, Lane 6). His-DivIVA preload (Lane 7). 
His-Scy control (Lane 8). 

B) SDS-PAGE of the pull down co-affinity experiment testing His-DivIVA and EGFP-Scy, 
samples loaded onto an 8% acrylamide gel. EGFP-Scy supernatant flowthrough (Lane 9). 
After EGFP-Scy addition, beginning wash (Lane 10). After EGFP-Scy addition, finishing 
wash (Lane 11). His-DivIVA + EGFP-Scy elution fractions (Lane 12&13). MW marker is a 
Biorad precision plus protein All Blue Standards sample (kDa sizes listed left, Lane 14). 
His-DivIVA control (Lane 15). His-Scy control (Lane 16). The top panel is the part of the 
gel containing EGFP-Scy, excited at 488nm and the emission read at 532nm. 
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washes, proteins were eluted with 2x300µl of 500mM imidazole buffer. Finally the 

fractions were analysed by SDS-PAGE without boiling the samples so to maintain the 

fluorescence of EGFP-Scy, which was detected by phophoimager prior to staining with 

Coomassie (Figure 104B). In addition to His-DivIVA, EGFP-Scy is detectable in the 

elution fractions on both the fluorescence scanned image and on the Coomassie stained gel. 

 

8.3.3 Non-tagged Scy also has affinity to the nickel column 

 

As a control experiment to those performed already we had to demonstrate that untagged 

Scy did not bind to a Ni-NTA column. To this effect, a cell lysate of overexpressed 

untagged Scy was generated as before using E. coli BL21 pLysS (DE3) carrying pET21a-

scy. The cell lysate then was loaded onto the Ni-NTA column (600µl) directly and after 

several washes identical to those performed in the experiments using His-DivIVA or His-

FilP. Bound samples were eluted twice with 300µl of 500mM imidazole buffer and the 

fractions were analysed by SDS-PAGE (Figure 105A). To our surprise, Scy protein was 

detectable in the elution fractions suggesting that non-tagged Scy had affinity to the Ni-

NTA column used. 

We also tested the possible binding of untagged EGFP-Scy to the Ni-NTA column. A cell 

lysate of overexpressed untagged EGFP-Scy was generated using E. coli BL21 pLysS 

(DE3) carrying pET21a-egfp-scy as before. Soluble cell extract was introduced to the Ni-

NTA column (600µl) and after several washes identical to those perfomed in the previous 

experiments we eluted the bound proteins  with 2x300µl of 500mM imidazole buffer. The 

fractions were analysed by SDS-PAGE without boiling the samples to maintain the 

fluorescence of EGFP-Scy. Fluorescence was detected by scanning the gel in a 

phosphoimager prior to staining with Coomassie (Figure 105B). Clearly, EGFP-Scy was 

detectable in the elution fractions of both the scanned image and the Coomassie stained 

gel. 

These control experiments confirmed that both non-tagged Scy and non-tagged EGFP-Scy 

had some affinity to the columns we used. Therefore the appearance of Scy or EGFP-Scy 

in the elution fractions in Figure 103 and Figure 104 is not necessarily indicative of 

positive interaction between Scy and FilP or Scy and DivIVA. 
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8.3.4 Coaffinity of His-Scy and DivIVA  

 

We tried to test the interaction between Scy and DivIVA using coaffinity so that His-Scy 

was loaded onto the Ni-NTA column and non-tagged DivIVA was tested for in vitro 

interaction.  

In this experiment 200µl of already purified His-Scy was first loaded onto the Ni-NTA 

column. After three washes with the loading buffer we applied cell lysate generated from  

E. coli BL21 pLysS (DE3) carrying pET21a-divIVA overexpressing non-tagged DivIVA 

(600µl). Cell extract containing overproduced DivIVA was generated as before using the 

denaturing urea buffer and so it was dialysed against phosphate/salt buffer with 10 mM 

imidazole prior to applying it to the Ni-NTA column. After washes four times with 600µl 

of buffer to remove unbound proteins, bound proteins were eluted with 300µl of 500mM 

Figure 105: Pull down of Scy or EGFP-Scy control. 

A) SDS-PAGE of the pull down experiment testing Scy, samples loaded onto a 10% 
acrylamide gel. Scy supernatant flowthrough (Lane 1). After Scy addition, beginning wash 
(Lane 2). After Scy addition, finishing wash (Lane 3). MW marker is a Biorad Prestained 
SDS-PAGE Standards Broad Range sample (kDa sizes listed left, Lane 4). Scy elution 
fractions (Lane 5&6).  His-Scy control (Lane 7). Scy preload (Lane 8). 

B) SDS-PAGE of the pull down experiment testing EGFP-Scy, samples loaded onto an 8% 
acrylamide gel. EGFP-Scy supernatant flowthrough (Lane 9). After EGFP-Scy addition, 
beginning wash (Lane 10). After EGFP-Scy addition, finishing wash (Lane 11). EGFP-Scy 
elution fractions (Lane 12&13). MW marker is a Biorad precision plus protein All Blue 
Standards sample (kDa sizes listed left, Lane 14). His-Scy control (Lane 15). EGFP-Scy 
preload (Lane 16). The top panel is the part of the gel containing EGFP-Scy, excited at 
488nm and the emission read at 532nm. 
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imidazole buffer. The fractions were analysed by SDS-PAGE (Figure 106A). DivIVA was 

detectable in the elution fractions as assessed by comparisons with the molecular weight of 

previously purified His-DivIVA. 

To perform the control experiment, we applied cell lysate containing overexpressed 

DivIVA onto the column in the absence of His-Scy.  The cell lysate was generated in the 

same way as above and all steps were identical apart from that no His-Scy was loaded onto 

the Ni-NTA column. When the fractions were analysed by SDS-PAGE (Figure 106B), 

DivIVA could be detected in the elution samples suggesting that similarly to Scy, DivIVA 

also had affinity to the column used. This suggested that our strategy to confirm the direct 

interaction between Scy and DivIVA using affinity co-elution was not conclusive due to 

the fact that both Scy and DivIVA had affinity to the columns even in the absence of a His-

tag.  

 
 

 

 

Figure 106: Pull Down Co-affinity of His-Scy and DivIVA or Pull down of DivIVA 
control. 
A) SDS-PAGE of the pull down co-affinity experiment testing His-Scy and DivIVA, 
samples loaded onto an 8% acrylamide gel. DivIVA supernatant flowthrough (Lane 1). 
After DivIVA addition, beginning wash (Lane 2). After DivIVA addition, finishing wash 
(Lane 3). His-Scy + DivIVA elution fractions (Lane 4&5).  MW marker is a Biorad 
Prestained SDS-PAGE Standards Broad Range sample (kDa sizes listed right, Lane 6). 
His-DivIVA control (Lane 7). His-Scy preload (Lane 8). 

B) SDS-PAGE of the pull down experiment testing DivIVA, samples loaded onto an 8% 
acrylamide gel. DivIVA supernatant flowthrough (Lane 9). After DivIVA addition, 
beginning wash (Lane 10). After DivIVA addition, finishing wash (Lane 11). DivIVA 
elution fractions (Lane 12&13). MW marker is a Biorad Prestained SDS-PAGE 
Standards Broad Range sample (kDa sizes listed right, Lane 14). His-DivIVA control 

  

A B 

193 

 



                                                                                               

8.3.5 Coaffinity of His-Scy and DivIVA-C  

 

There was a strong interaction between the C-terminal domain of DivIVA, DivIVA-C and 

Scy when the bacterial two hybrid assay was used. Therefore we wanted to test whether we 

could demonstrate direct, in vitro interaction between these two proteins using affinity co-

elution.  

Purified His-Scy was first loaded onto the Ni-NTA column (200µl) followed by several 

washes as before. A Cell lysate was generated from E. coli BL21 pLysS (DE3) carrying 

pET21a-divIVA-C, where DivIVA-C was overproduced using the same non-denaturing 

conditions as was used for FilP or Scy production before. This cell lysate was then added 

to the Ni-NTA column (600µl) where His-Scy was immobilised. After four washes, the 

bound proteins were eluted with 2x300µl of 500mM imidazole buffer and the fractions 

were analysed by SDS-PAGE (Figure 107A). DivIVA-C protein was likely to be present in 

the elution fractions as it is comparable to a purified His-DivIVA-C control. 

As a control, we tested whether the untagged DivIVA-C was binding to the Ni-NTA 

column in the absence of a His-tagged binding partner. So, cell lysate containing 

overexpressed DivIVA-C was loaded onto the column in the absence of His-Scy. Column 

fractions were collected as before and were analysed by SDS-PAGE (Figure 107B). There 

appears to be a band present in the elutions that corresponds to DivIVA-C. However, in 

elution lanes 4 and 12 there was indication of a greater amount of DivIVA-C in the elution 

when His-Scy was present than in the control. Therefore, this suggests that DivIVA-C have 

bound to Scy in this experiment. To verify the presence of  DivIVA-C in the elution 

samples, we used a Western blot using an anti-DivIVA antibody. The samples from Figure 

107 were used as well as the full length DivIVA experiment as a control (Figure 106), 

whereby they were separated on a 10% acrylamide gel. The gel was then used to blot onto 

a membrane. The blot was incubated first in primary antibody. The primary antibody used 

was an anti-DivIVA antibody raised in a rabbit (Wang et al., 2009). The blot was then 

washed and incubated with the secondary antibody. The secondary antibody was 

Horseradish peroxidase-linked anti-rabbit IgG. As can be seen (Figure 107C) DivIVA-C 

was detectable in the presence of His-Scy but less so in the absence of His-Scy. However, 

for full length DivIVA, DivIVA was detectable both in the presence and absence of His-

Scy. Suggesting that DivIVA-C was pulled down with His-Scy. 
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8.3.6 Coaffinity of His-Scy and FilP  

 

Following on from the previous experience of both Scy and DivIVA binding to the Ni-

affinity column in the absence of a His-tag, we tried to change the buffer conditions to 

reduce or eliminate the binding of the coiled-coil proteins to the column matrix. To test a 

possible interaction between Scy and FilP, we aimed to immobilise His-Scy to the Ni-NTA 

His-Scy + DivIVA-C elution fractions (Lane 4&5).  MW marker is a Biorad Prestained SDS-
PAGE Standards Broad Range sample (kDa sizes listed right, Lane 6). His-DivIVA-C control 
(Lane 7). His-Scy preload (Lane 8). 

B) SDS-PAGE of the pull down experiment testing DivIVA-C, samples loaded onto a 10% 
acrylamide gel. DivIVA-C supernatant flowthrough (Lane 9). After DivIVA-C addition, 
beginning wash (Lane 10). After DivIVA-C addition, finishing wash (Lane 11). DivIVA-C 
elution fractions (Lane 12&13). MW marker is a Biorad Prestained SDS-PAGE Standards 
Broad Range sample (kDa sizes listed right, Lane 14). His-DivIVA-C control (Lane 15). 

C) Western blot of the coaffinity samples for DivIVA (Figure 106) and DivIVA-C. Samples 
were loaded onto a 10% acrylamide gel and used in SDS-PAGE. The SDS-PAGE gel was then 
used in Western blotting with a primary anti-divIVA antibody and an anti-rabbit HRP-IgG 
secondary antibody. Peroxidase activity was measured by chemiluminescence and 
development on an X-ray film. His-Scy was either preloaded on the column (+) or not loaded 
as a control (-). The DivIVA samples correspond with Lane 4 (+) and Lane 12 (-) from Figure 
106. The DivIVA-C samples correspond with Lane 4 (+) and Lane 12 (-) from Figure 107. 
Preload cell extract samples containing either DivIVA (Preload from experiment in Figure 
106A) or  DivIVA-C (Preload from experiment in Figure 107A) overexpressed were loaded as 
well as samples containing His-DivIVA (Lane 7, Figure 106A) or His-DivIVA-C (Lane 7, 
Figure 107A). 

Figure 107: Pull Down Co-affinity of His-Scy 
and DivIVA-C or Pull down of DivIVA-C 
control. 
A) SDS-PAGE of the pull down co-affinity 
experiment testing His-Scy and DivIVA-C, 
samples loaded onto a 10% acrylamide gel. 
DivIVA-C supernatant flowthrough (Lane 1). 
After DivIVA-C addition, beginning wash 
(Lane 2). After DivIVA-C addition, finishing 
wash (Lane 3). 
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column and test the binding of non-tagged FilP. We increased the imidazole concentration 

to 50 mM in the loading and wash buffers and we included 20 mM MgCl2 in the buffers to 

reduce the weak ionic interactions.  

 

 
Purified His-Scy was immobilised to the column (500µl of diluted sample) and cell lysate 

from E. coli BL21 pLysS (DE3) carrying pET21a-filP overexpressing non-tagged FilP was 

passed through the column (450µl). After washes elution samples were taken using 

2x300µl of 500mM imidazole buffer. The fractions were analysed by SDS-PAGE and FilP 

was clearly detectable in the elution samples (Figure 108A). As a control, cell extract 

containing overexpressed non-tagged FilP was applied to the Ni-NTA column (450µl) and 

the washes and elution was performed as before. The fractions were analysed by SDS-

PAGE. There was no or negligible FilP in the elution fractions (Figure 108B). This 

suggested that the changes in the buffer conditions applied eliminated the binding of FilP 

to the column without a His-tag. Therefore, the presence of FilP in the elution samples 

where the column was pre-loaded with His-Scy suggest in vitro interaction between Scy 

and FilP. 

Figure 108: Pull Down Co-affinity of His-Scy and FilP or Pull down of FilP control. 
A) SDS-PAGE of the pull down co-affinity experiment testing His-Scy and FilP, samples 
loaded onto a 10% acrylamide gel. His-FilP control (Lane 1). FilP preload (Lane 2). His-Scy 
preload (Lane 3). MW marker is a Biorad Prestained SDS-PAGE Standards Broad Range 
sample (kDa sizes listed left, Lane 4).  His-Scy + FilP elution fractions (Lane 5&6).  His-Scy 
flowthrough (Lane 7). After His-Scy addition, beginning wash (Lane 8). After His-Scy 
addition, finishing wash (Lane 9). FilP supernatant flowthrough (Lane 10). After FilP 
addition, beginning wash (Lane 11). After FilP addition, finishing wash (Lane 12). 

B) SDS-PAGE of the pull down experiment testing FilP, samples loaded onto a 10% 
acrylamide gel. His-FilP control (Lane 13). FilP preload (Lane 14). MW marker is a Biorad 
Prestained SDS-PAGE Standards Broad Range sample (kDa sizes listed left, Lane 15). FilP 
elution fractions (Lane 16,17&18).  His-FilP, flowthrough (Lane 19). After FilP addition, 
beginning wash (Lane 20). After FilP addition, finishing wash (Lane 21). 
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8.4 Pull down of Scy from S. coelicolor 
 

8.4.1 Scy overexpression and purification from S. coelicolor   

 

In order to overexpress Scy in S. coelicolor we used the plasmid pCJW93-Scy (Figure 

204), previously generated by the Kelemen lab. The scy gene is driven by the PtipA 

promoter that is a thiostrepton inducible promoter. In pCJW93 preceding the NdeI site of 

the polylinker region there is a His-tag sequence, allowing the production of a His-Scy 

fusion protein. The plasmid also contains a thiostrepton resistance gene (tsr), an apramycin 

resistance gene (aac(3)IV) and the replication origin oriV from the vector pIJ6021 (Takano 

et al., 1995) allowing high copy replication in Streptomyces. 

Introduction of the plasmid into Streptomyces was through E. coli ET12567/pUZ8002 

generating S.coelicolor M145/pK48. We needed a large stock of spores from this strain in 

order to inoculate liquid cultures. 50μl of an M145/pCJW93-Scy spore stock (~5x109 

spores/ml) was used to inoculate 50ml TSB-PEG medium containing apramycin for the 

selection of the plasmid. The culture was grown at 30°C, shaking at 310rpm for 24 hours 

generating the starter culture for our experiment. 2ml of this culture was then used to 

inoculate a new 50ml TSB-PEG medium. The culture was grown at 30°C, shaking at 

310rpm in the presence of apramycin for 13.5 hours. At this point the cells were 

considered to be in the exponential growth phase. Thiostrepton (20μg/ml) was added to 

induce the tipA promoter in pCJW93, thereby to overexpress Scy and the culture was 

grown for a further 5 hours. Cells were collected by centrifugation and were washed with 

10mM imidazole buffer A. In our initial trial experiments cells were lysed by using 

FastPrep, that breaks the cells by vigorous shaking in the presence of glass particles 

(<100µm). However, we found that more reproducible and complete lysis was achieved by 

using sonication of the cells. Sonication disrupts the cell membrane and wall to release 

protein. Fractions were separated by centrifugation and the supernatant was filtered and 

used in an FPLC-purification. 
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 A 

Nickel HisTrap HP 1ml (GE Healthcare) column was used with an Amersham AKTA FRC 

FPLC machine for affinity chromatography. Approximately 2-3ml of extract was loaded 

onto the column with 10mM imidazole buffer A, the combined flow running to 15ml. A 

10ml wash was carried out whereby the imidazole concentration was raised to 20.2mM. A 

gradient of rising imidazole concentration was then applied, from 25ml to 35ml the 

concentration increased from 20.2mM to 300mM. The absorbance of the eluted liquids at 

280nm was monitored and plotted against the fraction numbers (Figure 109). From the UV 

data we can see three peaks that are of interest. The large peak in the sample load 

represents most of the cell’s proteins, which did not have an affinity for the column, so that 

they ran straight through. The peak in the 20.2mM imidazole shows proteins with a lower 

affinity, eluting from the column during the wash step. Whereas the large peak seen in the 

rising gradient at approximately 102.8mM imidazole concentration, should be proteins 

with a higher affinity for the column.  His-Scy was expected in this latter samples. 

Selected samples were analysed using 8% SDS-PAGE stained with Biosafe G250 

Coomassie blue (Figure 110).   

Figure 109: FPLC Chromatogram readout for purification of His-Scy from S. coelicolor 
using a gradient elution strategy. Absorbance data at 280nm of the different eluted samples. 
0-15ml represents the addition of cell extract with 10mM imidazole buffer. 15-25ml 
represents an increase in buffer to 20.2mM imidazole. 25-35ml represents a gradient 
increase in buffer from 20.2mM to 300mM imidazole. Blue is the absorbance data (mAU) at 
280nm. Green represents the change in imidazole concentration. Red represents the 
fractions of eluted samples collected. 

Sample Load + 10mM Imidazole 20.2mM Imidazole 

Gradient Increase 20.2mM 
Imidazole to 300mM 
Imidazole 

Washes 
with 
300Mm 
Imidazol
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The predicted size of Scy from StrepDB (StrepDB, strepdb.streptomyces.org.uk/) is 146.4 

kDa. However, the size of our induced Scy is likely to be slightly bigger due to the His tag. 

The control of Scy appears to have a band between the size markers 250 kDa and 150kDa 

and this band is visible  in the elution samples C1-C5. The gel appears to indicate that a 

small amount of Scy came off the column in the 20.2mM imidazole wash (B11). However, 

most of the Scy appears to have eluted in fractions C1-C5. There are many other bands that 

are present in C1-C5. The identity of these is unknown and the explanation for their 

presence could be that either the purification procedure was not efficient or that they are in 

fact proteins that have eluted at the same time as Scy and they are potentially proteins that 

formed a complex with Scy.  

 

 

 

 

 

 

Figure 110: SDS-PAGE of the FPLC samples loaded onto an 8% acrylamide gel. MW 
marker is a Biorad precision plus protein standard sample (kDa sizes listed left). Preload is 
an aliquot of the cell extract prior to loading onto the FPLC column. The control is His-Scy 
purified from E. coli. Lane notation corresponds with the fraction numbers in Figure 109. 
A3 is from the flowthrough. B11 is from the wash. B1 to C5 are from the rising gradient of 
imidazole to 300mM imidazole. The gel was stained with Biosafe G250 Coomassie blue. 
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8.4.2 Crosslinking Scy in vivo 

 

To identify S. coelicolor proteins that might interact with Scy at the growing hyphal tip, we 

could analyse the previous samples where proteins that co-eluted with His-Scy could 

potentially be Scy partners. However, this assumed that the Scy-partner interaction 

survived the conditions used for cell lysis and affinity purification. To attempt to purify 

something that interacts with Scy in vivo but with an affinity too low to allow co-

purification in FPLC, we decided to use a reversible chemical crosslinker to fix the Scy-

partner interactions throughout the purification procedure. 

 

 
Two sets of cultures were grown so that one set could later be chemically crosslinked and 

one set left uncrosslinked. In this experiment the culture conditions used were slightly 

different, these changes were mostly to attempt to increase the yield of Scy protein by 

preventing aggregations of cells that could be inaccessible to thiostrepton. For each 50ml 

TSB-PEG medium, 60μl of an M145/pCJW93-scy spore stock was introduced after 

inducing germination in 500μl 2xYT at 50°C for 10 minutes. The conical flask  also 

Figure 111: FPLC Chromatogram readout for purification of crosslinked His-Scy using a 
gradient elution strategy. Absorbance data at 280nm of the different eluted samples. 0-15ml 
represents the addition of cell extract with 5mM imidazole buffer. 15-25ml represents an 
increase in buffer to 15.3mM imidazole. 25-35ml represents a gradient increase in buffer 
from 15.3mM to 300mM imidazole. Blue is the absorbance data (mAU) at 280nm. Green 
represents the change in imidazole concentration. Red represents the fractions of eluted 
samples collected. 
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contained a metal coil to break apart cell aggregates. The cultures were grown at 30°C, 

with vigorous shaking at 310rpm maintaining apramycin selection for 21.5 hours. 

Thiostrepton (20μg/ml) was used to induce the TipA promoter in pCJW93, thereby to 

overexpress His-Scy and the culture was grown for further 5 hours. 

Cells were collected by centrifugation and washed with a buffer 50mM NaH2PO4,50mM 

NaCl, pH 9. To chemically crosslink Scy with its potential partners we used the chemical 

Dimethyl 3,3’-dithiobispropionimidate (DTBP; Sigma). This chemical reacts with amine 

groups, due to its structure it bifunctionally reacts linking neighbouring amine group side 

chains to each other. The spacer arm length of DTBP is 11.9 Å (8 atoms). DTBP is a 

reversible crosslinker, as reducing agents such as DTT or βmercapto-ethanol will abolish 

the disulfide groups within the crosslinker and therefore liberate the interacting partner 

proteins. To cells removed from the culture that we wanted to crosslink, we added DTBP 

at a concentration of 20mM in a phosphate buffer at pH 9. Cells were incubated for 30 

minutes with the crosslinker and finally 100mM Tris pH 8 was added to stop the reaction 

and scavenge of any unused DTBP. Tris having an amine group would sequester any 

unused DTBP. Alternatively for the culture set that was not to be crosslinked, the DTBP 

and Tris steps were omitted and the cells were washed in 10mM imidazole buffer A. DTBP 

crosslinked cells were also washed in 10mM imidazole buffer A so that the cells were kept 

in similar solutions. Both the crosslinked and the non-crosslinked cells were then lysed by 

sonication as before. 

FPLC was used to purify His-Scy as before, apart from the 5mM imidazole in the loading 

buffer and the 15.3mM imidazole in the washes. A gradient of rising imidazole 

concentration was then applied, from 25ml to 35ml where the concentration increased from 

15.3mM to 300mM. The FPLC readout for the crosslinked sample is shown in Figure 111, 

whereas the FPLC readout for the non-crosslinked sample can be seen in Figure 114. 
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For the crosslinked samples a number of the fractions corresponding to the positions of the 

280nm absorbance peaks were analysed using SDS-PAGE. Two sets of aliquots of the 

crosslinked samples were taken, one set was treated with dithiothreitol (DTT) at 37°C for 

30 minutes prior to loading using a dye containing β-mercaptoethanol. The other set was 

not treated with DTT and was loaded with 4x loading dye that did not include β-

mercaptoethanol. The samples were then analysed on separate gels (Figure 112 and Figure 

113). Dithiothreitol and β-mercaptoethanol are chemical agents that can reduce the 

disulphide bonds of the DTBP crosslinker and therefore separate the proteins that were 

crosslinked. 

Fractions of the non-crosslinked samples were also analysed using SDS-PAGE, 8% 

(Figure 115) or 12% (Figure 116). These samples were also treated with DTT and the 

loading dye used did contain β-mercaptoethanol. 

Figure 112: SDS-PAGE of the reduced crosslinked FPLC samples loaded onto an 8% 
acrylamide gel. Using reducing conditions of incubation with 100mM DTT and 4x loading dye 
with β-mercaptoethanol. MW marker is a Biorad precision plus protein standard sample 
(kDa sizes listed left). The control is His-Scy purified from E. coli. Preload is an aliquot of the 
cell extract prior to loading onto the FPLC column. Lane notation corresponds with the 
fraction numbers in Figure 111. A2 is from the flowthrough. A7 and A8 are from the peak 
following addition on the column. B11 is from the wash. B1 to C4 are from the rising gradient 
of imidazole to 300mM imidazole. The gel was stained with Biosafe G250 Coomassie blue. 
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A comparison of the FPLC UV absorption readouts for the crosslinked and the non-

crosslinked samples shows some similarities and some differences. Both FPLC readouts 

have a large peak in the sample load, which represents most of the cell’s proteins, which 

did not have an affinity for the column, so that they passed straight through. The 

crosslinked sample contains another peak shortly after the majority of proteins have run 

through. These being in the A7 and A8 fraction positions. This is an unusual peak that is 

not present in the non-crosslinked sample. It is currently unknown why this peak is present. 

Though it could be hypothesised that the His-tag which is present on the N-terminal amine 

end of the protein could be crosslinked and behaves differently, however, it is unlikely that 

this is the case for this peak as a similar peak had been produced from a non-crosslinked 

Scy sample (data not shown). The crosslinked sample has an extremely visible peak in the 

15.3mM imidazole wash, whereas there is a small rise in the non-crosslinked sample 

during the 15.3mM imidazole wash, which can only be seen clearly by zooming in on the 

image. The peak in the wash is likely to represent proteins with a weaker affinity for the 

column. It is perhaps a little unexpected that the wash for the crosslinked sample appears to 

have eluted more protein. The crosslinked sample if successfully crosslinked, then we  

Figure 113: SDS-PAGE of the unreduced crosslinked FPLC samples loaded onto an 8% 
acrylamide gel. Samples were loaded using loading dye without β-mercaptoethanol. MW 
marker is a Biorad precision plus protein standard sample (kDa sizes listed left). The control 
is His-Scy purified from E. coli. Preload is an aliquot of the cell extract prior to loading onto 
the FPLC column. Lane notation corresponds with the fraction numbers in Figure 111. A2 is 
from the flowthrough. A7 and A8 are from the peak following addition on the column. B11 is 
from the wash. B1 to C4 are from the rising gradient of imidazole to 300mM imidazole. The 
gel was stained with Biosafe G250 Coomassie blue. 
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would expect any Scy partner proteins to be crosslinked and bound tightly to Scy. Both the 

crosslinked and the non-crosslinked samples have a peak in the imidazole gradient which 

likely represents imidazole displacing histidine residues. The non-crosslinked peak 

coincides with 107mM imidazole, however, it appears to be a broad peak around this 

concentration of imidazole. Whereas the crosslinked sample has a peak at 97mM 

imidazole. However, as the peaks for both are broad the difference in imidazole 

concentration is unlikely to be significant. The gel images of the FPLC-eluted samples 

show interesting results. A direct comparison of both the non-crosslinked and the 

crosslinked samples on an 8% acylamide gel (Figure 115 and Figure 112 respectively) 

shows differences between the two samples. The control on both forms a distinctive band 

between the 150 and 250kDa markers. The peak in the load in the crosslinked samples 

(fractions A7 and A8) appears to contain Scy eluting at an earlier stage than expected. 

There are also a number of other bands present, these could be explained as proteins co-

eluting with Scy or could just be the remaining samples that were in the tail end of the 

large load peak. The fraction (B12) in the non-crosslinked sample does not appear to have  

Figure 114: FPLC Chromatogram readout for purification of non-crosslinked His-Scy using 
a gradient elution strategy. Absorbance data at 280nm of the different eluted samples from a 
non-crosslinked sample. 0-15ml represents the addition of cell extract with 5mM imidazole 
buffer. 15-25ml represents an increase in buffer to 15.3mM imidazole. 25-35ml represents a 
gradient increase in buffer from 15.3mM to 300mM imidazole. Blue is the absorbance data 
(mAU) at 280nm. Green represents the change in imidazole concentration. Red represents 
the fractions of eluted samples collected. 
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any strong bands. Whereas the wash fraction (B11) in the crosslinked sample does appear 

to have Scy and some lower weight bands that could be co-eluting proteins. Both the 

imidazole gradient washes for the crosslinked (fractions C1,C2,C3,C4) and non-

crosslinked (fractions C2,C3,C4,C5) samples appear to have eluted Scy. The non-

crosslinked Scy elution appears to be more concentrated; however, a certain amount of Scy 

appears to have been lost in the load peak of the crosslinked sample. Interestingly there 

appears to be a larger number of bands in the crosslinked imidazole gradient elutions 

(fractions C1,C2,C3,C4) than the non-crosslinked imidazole gradient elutions (fractions 

C2,C3,C4,C5). We predict a number of these bands are due to the crosslinking enabling a 

number of in vivo Scy interacting proteins to have a high enough affinity for Scy that they 

are present in the high imidazole elutions, whereas in the non-crosslinked samples these 

have probably not bound with Scy/associated complexes in the column. 

Analysing the non-reducing gel of the crosslinked samples (Figure 113) confirms that the 

crosslinking has been successful. All of the samples appear to have the presence of a 

supershifted band, which is much bigger than the 250kDa size marker. It is likely that these 

are crosslinked proteins that are unable to travel far on a gel as their combined weights 

Figure 115: SDS-PAGE of the non-crosslinked FPLC samples loaded onto an 8% 
acrylamide gel. Using reducing conditions of incubation with 100mM DTT and 4x loading 
dye with β-mercaptoethanol. MW marker is a Biorad precision plus protein standard 
sample (kDa sizes listed left). The control is His-Scy purified from E. coli. Preload is an 
aliquot of the cell extract prior to loading onto the FPLC column. Lane notation 
corresponds with the fraction numbers in Figure 114. A2 is from the flowthrough. A7 is 
from after addition on the column. B12 is from the wash. C1 to C6 are from the rising 
gradient of imidazole to 300mM imidazole. The gel was stained with Biosafe G250 
Coomassie blue. 
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make them too heavy. However, there is a blurring effect, which can probably be explained 

as being due to the variation in sizes created in crosslinking proteins. The crosslinked 

elutions appear to have many more proteins than the non-crosslinked, the high number of 

proteins means that the crosslinked proteins probably would not create very defined bands 

on a non-reduced gel. For example if there had been 2 proteins as well as Scy, the different 

variations of crosslinking would probably create a fair number of bands. The fact that so 

many proteins are pulled out through crosslinking suggests that Scy could possibly interact 

with a large number of different proteins in vivo. It’s also interesting to note that the Scy 

control forms 2 distinct bands in the crosslinked non-reduced sample. The distance 

migrated of the higher molecular weight band was used to calculate an approximate size of 

this band of 270kDa, which is consistent with the size of a Scy dimer. It was previously 

unknown how Scy assembles in vivo, but this strongly hints that it forms at least dimeric 

multimers. The amino acid sequence of Scy has one cysteine residue. Due to the two bands 

on the SDS-PAGE, it is likely one band represents dimers of Scy linked by a disulphide 

bond, whereas the other band likely represents single, fully reduced Scy. 

 

 
The reason that the non-crosslinked samples were analysed on both a 12% acrylamide and 

an 8% acrylamide gel, is that we wanted visualise some proteins at lower molecular 

Figure 116: SDS-PAGE of the non-crosslinked FPLC samples loaded onto a 12% acrylamide 
gel. Using reducing conditions of incubation with 100mM DTT and 4x loading dye with β-
mercaptoethanol. MW marker is a Biorad precision plus protein standard sample (kDa sizes 
listed left). The control is His-Scy purified from E. coli. Preload is an aliquot of the cell 
extract prior to loading onto the FPLC column. Lane notation corresponds with the fraction 
numbers in Figure 114. A2 is from the flowthrough. A7 is from after addition on the column. 
B12 is from the wash. C2 to C8 are from the rising gradient of imidazole to 300mM 
imidazole. The gel was stained with Biosafe G250 Coomassie blue.  
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weights. There do appear to be some extra bands at the lower molecular weights that are 

not visible on the 8% acrylamide gels. The non-crosslinked samples appear to have a 

number of candidate bands that would be interesting to identify. The crosslinked sample 

also contains a number of additional bands that would also be interesting to identify. 

 

8.4.3 Western blot analysis of pulled-down proteins 

 

To confirm that His-Scy was being purified by FPLC we used a Western blot. A selection 

of the elution and wash fractions from the non-crosslinked protein samples from Figure 

114 were first separated on an 8% acrylamide gel. The proteins were then blotted onto a 

membrane, which was incubated first with the primary antibody, an anti-His antibody 

raised in a mouse. The blot was then quickly washed and incubated with the secondary 

antibody, an anti-mouse heavy chain antibody raised in a goat. This antibody was an LI-

COR IRdye 800CW antibody labelled with a fluorophore that is excited by light at 780nm. 

The blot was visualised with an Odyssey Infrared Imaging System. This system uses two 

colour detection where the blot is viewed with the fluorescent channels 680nm and 780nm. 

The Odyssey software generated an image with 780nm emission seen as green and 680nm 

emission as red (Figure 117). A quantitative measurement of the relative intensities of the 

bands to the control is shown in Figure 118. This shows that the greatest amount of signal 

measured was in the C5 and C4 samples, which corroborates the stained SDS-PAGE gel 

(Figure 115) where C5 and C4 appear to have the most eluted His-Scy, suggesting the 

visible higher molecular weight band in both gels is the same. 

It can be seen that there are bands from the Western blot that are visible in the co-elutions 

(Figure 117). These are comparable in size to the control of Scy that was purified from E. 

coli. It is the His-tag in which the primary antibody is specific for, so it can definitely be 

said that the protein that can be seen on the Western blot is a His fusion, or just has a large 

number of histidine residue repeats. However, it is likely that it is His-Scy in the elutions 

due to the positions of the bands. The preload sample does not have a visible band. There 

must be His-Scy in the preload as this is the same cell extract just taken before FPLC. So it 

is likely that the lack of appearance of a band is due to the Scy being in a much less 

concentrated form and therefore the fluorescence is not strong enough to be visible. There 
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is also no band in the 20.2mM imidazole, which we said that there was a faint band in the 

SDS-PAGE (Figure 115). This could be due to the fluorescence being too low to detect. 

Alternatively a hypothesis is that the Scy in the 20.2mM imidazole wash is the endogenous 

Scy. For this hypothesis to be true Scy would have to be forming multimers in vivo, so 

therefore we might expect that His-Scy would co-elute some endogenous Scy. We might 

also expect this to be true for the samples that aren’t the wash and this cannot be ruled out 

Figure 118: Quantitative measurement of fluorescence intensity at 780nm wavelength 
excitation, measured using an Infrared Odyssey imaging system. Fluorescence was measured 
from bands of samples from the Western Blot in Figure 117. 

Figure 117: Western blot of the FPLC samples from Figure 114. Samples were loaded onto 
an 8% acrylamide gel and used in SDS-PAGE. The SDS-PAGE gel was then used in 
Western blotting with a primary anti-His antibody and an LI-COR IRdye 800CW anti-
mouse secondary antibody. Fluorescence was measured after excitation at 780nm (Green) 
and 680nm (Red). MW marker is a Biorad Prestained SDS-PAGE Broad Range standard 
(kDa sizes listed left). Preload is an aliquot of the cell extract prior to loading onto the 
FPLC column. The control is His-Scy purified from E. coli. 
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for these samples as well. For a number of the SDS-PAGE gels there does appear to be a 

doublet of bands in the position of Scy that could represent both purified His-Scy and co-

purified endogenous Scy. 

 

 
To check if DivIVA was being co-purified with His-Scy in the FPLC we used a Western 

blot using an anti-DivIVA antibody. The non-crosslinked protein samples from FPLC in 

Figure 114 were used as well as the crosslinked samples from Figure 111. Whereby they 

were separated on a 10% acrylamide gel. The gel was then used to blot onto a membrane. 

The blot was incubated first in primary antibody. The primary antibody used was an anti-

DivIVA antibody raised in a rabbit (Wang et al., 2009). The blot was then washed and 

incubated with the secondary antibody. The secondary antibody was Horseradish 

Figure 119: Western blot analysis of His-Scy non-crosslinked and crosslinked samples to 
detect DivIVA co-purification.  

Western blot of the FPLC non-crosslinked samples from Figure 114 (A) and the FPLC 
crosslinked samples from Figure 111 (B). Samples were loaded onto a 10% acrylamide gel 
and used in SDS-PAGE. The SDS-PAGE gel was then used in Western blotting with a 
primary anti-divIVA antibody and an anti-rabbit HRP-IgG secondary antibody. 
Peroxidase activity was measured by chemiluminescence and development on an X-ray 
film. MW marker is Biorad Prestained SDS-PAGE Broad Range standard (kDa sizes listed 
left). Preload is an aliquot of the cell extract prior to loading onto the FPLC column. The 
control is His-DivIVA purified from E. coli. 

 

 

A 
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peroxidase-linked anti-rabbit IgG. No relevant bands were detected in the elution samples 

of the Western blot of the non-crosslinked samples (Figure 119A). Whereas for the 

Western blot of the crosslinked samples, there were several bands present that may 

correspond with DivIVA, potentially modified DivIVA or degradation products of DivIVA 

(Figure 119B). Therefore, suggesting that DivIVA was co-purified with His-Scy from the 

Ni-NTA column. Therefore, in amongst the potential complex formed by crosslinking Scy, 

DivIVA is a member. 

 

8.4.4 Summary 

 

Use of a pelleting assay allowed us to monitor pelleting of DivIVA with either Scy or FilP 

under the conditions tested. Suggesting an in vitro interaction between DivIVA and Scy 

and between DivIVA and FilP. DivIVA-C was also able to pellet with Scy suggesting an 

interaction. Scy, DivIVA or DivIVA-C were unable to pellet with lipids in the conditions 

tested. However more experiments should be performed to verify if these proteins interact 

with the lipid membrane and perhaps use the membrane as a cue for localisation. In co-pull 

down experiments we were able to demonstrate an interaction between Scy and FilP, as 

well as an interaction between Scy and DivIVA-C, however this experimental technique 

had many technical problems that prevented us from dissecting all combinations of 

proteins. Scy pulled down from cells of S.coelicolor also pulled down other proteins and 

reaction of these with anti-DivIVA antibody suggests that Scy and DivIVA are members of 

the same complex in the in vivo environment of S.coelicolor.  
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9 Discussion 
 

The bacterial cytoskeleton is a somewhat novel concept. Central to the emergence of this 

field was the discovery of eukaryotic cytoskeletal homologues in prokaryotes. This has led 

to the conclusion that cytoskeletal proteins were present in the last common universal 

ancestor (Faguy, and Doolittle, 1998; van den Ent et al., 2001). It might also be expected 

that since the divergence from the last common ancestor that bacteria would have evolved 

their own specialised cytoskeletal proteins or evolved to have very different cytoskeletal 

proteins. As far as we are aware, a long repetitive non-heptad coiled-coil containing 

protein that may be considered directly homologous to Scy is unique to filamentous 

actinomycetes. The filamentous actinomycetes have quite unique development and 

morphological states. It is not suprising then that a unique cytoskeleton and cell shape 

determining factors might be needed for actinomycete development. Therefore, mutating 

the gene encoding a possible cytoskeletal protein such as Scy in S. coelicolor might be 

thought to affect morphology. As such we found that mutating scy and/or filP appears to 

affect the morphology and growth of S. coelicolor. Mutations in these genes have been 

assessed in this report and together with work here and by others in the Kelemen lab it is 

now known that a double mutant can also be tolerated. The ability to complement the scy 

mutant using a copy of scy added in trans suggests that the scy mutant phenotype is due to 

the absence of this gene. The filP mutant was not complemented here, but had been 

complemented by Bagchi et al., (2008). Due to the similarity of our strain microscopically 

to their strain it is likely that they are genetically similar. Creating a scy-filP double mutant 

dispels a potential theory that the two genes act in a functionally redundant manner in a 

process that is essential for Streptomyces development, in which both cannot be tolerated 

being lost. However, it is likely that these two genes are involved in similar functions 

though maybe to a certain extent mutually exclusive as they have non-identical phenotypes 

(and localise differently). In terms of the effect on growth, it appears that scy deletion is 

more detrimental than filP deletion, as the hyphae are far more distorted. This may suggest 

that perhaps Scy has a more important role in the development of S. coelicolor. It is 

possible that the proteins encoded by scy and filP function in a similar process during 

development, to which Scy has a more dominant role.  

The phenotypic consequences of the genetic alterations created in the mutants has been 

assessed both macroscopically and microscopically on SFM media and initially only 

macroscopically on CM, MMM and MMG. At certain time points macroscopically the scy 
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and scy-filP double knockout mutant strains are reminiscent of bld or whi mutants. 

However, the scy and scy-filP double knockout mutant strains are more likely just delayed 

in growth, as their appearance on confluent plates for spore preparation, where they had 

been grown for longer, appeared to be grey. They formed spores enabling us to prepare 

spore preparations, so they are not whi mutants (and therefore neither are they bld). Across 

rich media and minimal media they were delayed in aerial hyphae production, so this 

indicates an overall delay as opposed to defects associated with bld genes, SapB or the 

chaplins. The microscopic observations made here suggest that the scy mutant and the scy-

filP double mutant produce less spores than the M145 wild-type. An attempt to quantify 

the scy mutant spore production in comparison to M145 was attempted, to which the result 

suggests that in the same time period the scy mutant produces less spores. It seems possible 

that this may be manifested by the production of less aerial hyphae by the substrate 

vegetative hyphae. As well as shorter aerial hyphae. It is currently not thought that scy 

mutants produce large numbers of non-viable spores. However, the irregularities in the 

resulting septum positioning and spore shapes would be thought to produce non-viable 

spores and how this is circumvented is unknown. It is possible that the scy mutant still 

maintains correct chromosome segregation and spore wall formation. Whereby the spores 

would be irregular in shape but the normal mechanisms of development for the segregation 

and compaction of DNA as well as the spore wall formation are able to compensate for 

shape irregularities. Possibly by more active ParA (Jakimowicz unpublished), ParA in B. 

subtilis was found to alter the initiation of DNA replication (Lee, and Grossman, 2006; 

Murray, and Errington, 2008) and perhaps a scy mutant replicated the DNA more often and 

so this ensures that each spore will contain at least a single viable chromosome. It would 

also be interesting to perform experiments to determine if the spores formed from the scy 

mutant are less resistant to extreme environmental conditions than the wild-type spores. 

The localisation of developmental proteins FtsZ and ParB was perturbed in a scy 

background, suggesting defects associated with cell division. Presumably ParB 

mislocalisation provides an insight into the chromosome segregation defects seen 

microscopically in a scy mutant. It is possible that FtsZ mislocalisation could cause aerial 

hyphae branching seen in a scy mutant, as in E. coli FtsZ mislocalisation facilitates 

branching (Potluri et al., 2012). However, aerial hyphae branching could also be brought 

on before this by mislocalisation of DivIVA/cell wall synthesis placement. There are 

different experiments that could be performed to analyse the phenotype of the different 

mutants. Perhaps it would be interesting to change the carbon substrate to avicel, as FilP 
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was suggested to be an Avicel-binding protein in S. reticuli (Walter et al., 1998). It would 

be interesting to see if the mutants are effected when grown on a substrate such as 

lignocellulose, as this is a carbon substrate that is commonly in high amounts in the natural 

soil environment of S. coelicolor (Kieser et al., 2000).  

It was previously reported that the filP mutant, had less rigid hyphae and so could be 

involved with cell wall integrity (Bagchi et al., 2008). Based on the hyphal width 

irregularities, apical branching and possible greater number of branch points, the knotted 

aerial branches, “wriggly” hyphae (which at some level is shared with the filP mutant) and 

abnormal aerial hyphae, it is very likely that the Scy protein has a function involved with 

cell wall integrity. This is likely to be some form of cytoskeletal protein role associated 

with hyphal tip growth as this is where Streptomyces hyphae extend (Flärdh, 2003b). 

Based on the knowledge of FilP and the scy mutant phenotype, we thought Scy could be 

involved in tip formation, with a function involved with the protein DivIVA. It is 

interesting to know that a scy mutant has an effect on the placement of DivIVA or the cell 

wall synthesis machinery (marked by Van-Fl), consistent with the defects in apical growth. 

However, the mutant observations were not enough evidence alone for this and we wanted 

to be able to localise Scy to determine if it had a direct effect, rather than a secondary 

effect on transcription of a direct player or on the nucleoid (that may impart information to 

the tip). 

FilP has previously been localised by Bagchi et al., (2008). It was informative to localise 

Scy and place this protein in the context of S. coelicolor development. This project aimed 

to create translation fusions of egfp and mCherry to scy. Based on the knockout phenotype 

of a scy mutant and as well as its putative novel coiled-coil containing amino acid 

sequence it was of significant interest to determine its subcellular localisation. At this time 

it appears that Scy localises to the hyphal tips of S. coelicolor, as well as at future branch 

positions and sites of the germinating spores. As the hyphal tips are the main site of cell 

wall growth this could mean that Scy functions at the hyphal tip in a process related to new 

cell wall insertion. It is currently unclear as to the most suitable way to study Scy 

localisation, as we tried translational fusions but have not tried immunolocalisation. 

Already informative are the N-terminal fusions to Scy of the reporter proteins EGFP and 

mCherry. These appear to be partially functional as they are able to complement a scy 

mutant. However, they appear to also have abnormalities that are not seen in the wild-type 

strain. Perhaps reflected by the fact that Scy is an important protein for apical growth. Also 

attempted were fusions of the reporters EGFP and mCherry to the C-terminus of the Scy 
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protein. EGFP fused to the C-terminus of Scy was also able to complement a scy mutant. 

This strain is lacking intensive study but it could have the advantage of being more 

natively functional than an N-terminal fusion. However, this advantage appears to come 

with the disadvantage that the fluorescence signal appears to be relatively weaker. It was 

reassuring that it also localised to the hyphal tip of S. coelicolor, increasing the evidence 

that this is the location of Scy in the in vivo environment of Streptomyces. Also, the C-

terminal mCherry fusion directly fused with no linker, also generated a tip localised signal. 

However, it was also seen that a C-terminal fusion of Scy to mCherry when separated with 

a linker was not visible. Perhaps this is indicative of a proteolytic event or that the 

construct is simply translated incorrectly as only a free mCherry protein due to a large 

number of methionine codons encoded at the junction between Scy and mCherry. This as 

well as being able to fully complement a translational fusion could help underline 

problems with using fluorescent proteins as reporters in Streptomyces. As Scy is possibly a 

filamentous protein we were unsure of the effects on polymerisation or folding of the 

protein in the presence of the fluorescent protein tag. It is already known that in many 

cases fluorescent protein tags have a degenerative effect on the normal functioning of the 

protein (Westphal et al., 1997; Deibler et al., 2011; Ballestrem et al., 1998; Wu et al., 

2009; Flärdh, 2003a; Bagchi et al., 2008; Charbon et al., 2011; Hamoen et al., 2006). 

However, this represents a limitation in molecular and cellular biology techniques. The 

nature of protein folding into separate domain structures provides a good chance that a 

given fusion protein will behave with some similarity to the native scenario. Also, due to 

the possibility of the different domains of Scy being responsible for localisation of the 

protein, it was sought to attach a fluorescent fusion to both ends separately. Hopefully 

attaching a tag to either end would allow optimisation of localisation in order to find the 

most suitable reporter system of Scy localisation. It is often seen that different domains of 

a protein are responsible for quite different functions, so as well as localising Scy we 

wanted to determine which domain of Scy may be the most important for its localisation. 

Therefore, we attempted to localise Scy in the case of having truncations of the protein. 

The experiments here suggest that the Scy C-terminal domain containing the novel coiled-

coil repeat could be more important than the N-terminal domain in the localisation of Scy 

to the hyphal tips. This is interesting as it has previously been suggested that the 

localisation of DivIVA to negative membrane curvature was via its N-terminal domain 

(Lenarcic et al., 2009). Although more recently the crystal structure for Bacillus subtilis 

DivIVA has been solved (Oliva et al., 2010) and it was suggested that if DivIVA is able to 
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recognize membrane curvature that the C-terminal domain of DivIVA would probably also 

be important. It is not known if Scy recognizes membrane curvature, or even if it directly 

interacts with the membrane. However, due to the large size of Scy and especially the 

length of the C-terminal domain that this part of Scy could possibly be able to detect the 

curvature of the membrane in a bacterial cell. It cannot be ruled out that the N-terminal of 

Scy is not involved in the localisation of the protein as the configuration of EGFP to the N-

terminal part of the N-terminal domain could prevent it being able to localise. Therefore, 

we thought it would be a good idea to attach the EGFP fusion to the C-terminal side of the 

N-terminal domain of Scy. However, this also did not localise, but it could be with such a 

small domain that a larger fusion protein affects normal folding/functioning.  

Scy appears to co-localise with the apical growth controlling protein DivIVA and the cell 

wall machinery as highlighted by fluorescent vancomycin staining. As DivIVA was shown 

to localise to future branch point positions prior to formation of the branch (Hempel et al., 

2008), this would suggest that Scy is also localised to sites destined to be branches. We 

were unable to discriminate a difference in the localisation pattern of Scy and DivIVA, 

which it would be interesting to know if one protein was first to recruit the other or if 

perhaps they are both initially recruited by another factor, for example SsgA in a 

germinating spore (Noens et al., 2007). It was interesting to test the localisation of FilP, 

where we found that there were some links to the hyphal tip. As the scy mutant was altered 

in phenotype with aspects that indicated it had a role in apical growth we decided to 

monitor DivIVA-EGFP both in a scy mutant and in a Scy overexpression strain. We found 

that DivIVA was mislocalised in a scy mutant sometimes forming multiple foci that were 

less restricted to the hyphal tip dome. It would be interesting to know if DivIVA was 

mislocalised due to a direct interaction with Scy or by the indirect effect of the phenotypic 

abnormalities of a scy mutant. As DivIVA is likely the apical growth factor making direct 

contact with the cell wall machinery it seems more likely that Scy may have a direct 

influence on DivIVA positioning. When Scy was overexpressed we found that it was 

capable of forming multiple new branches via recruitment of DivIVA/and or the cell wall 

synthetic machinery or other factors. This suggesting that Scy does have a direct role in the 

placement of new branch sites when overproduced.  

Here Scy localisation was monitored when DivIVA was depleted or overexpressed. 

Unfortunately it is not possible to study Scy localisation in the complete absence of 

DivIVA, as divIVA is an essential gene (Flärdh, 2003a). In the event of DivIVA depletion 

Scy localisation did not appear to be perturbed and Scy remained at polar sites. DivIVA 

215 

 



                                                                                               

can be seen to disperse from the hyphal tip in a scy mutant. However, it seems that Scy 

does not exhibit this behaviour when DivIVA is depleted. It could be that this reflects that 

it is not possible to truly remove the protein DivIVA from the hyphal tips in this system. It 

could also be suggestive that in an intimate relationship between Scy and DivIVA that Scy 

restricts DivIVA to the hyphal tip dome but that DivIVA does not necessarily restrict Scy 

to the hyphal tip dome. DivIVA targeting to the hyphal tips presumably does not depend 

on Scy by the fact it finds its way to this environment in a scy mutant (although is still 

disturbed). DivIVA from Bacillus subtilis has also been suggested to have the ability to 

determine localisation dependent on the geometrical cue of negative membrane curvature 

(Ramamurthi, and Losick, 2009; Lenarcic et al., 2009). Suggesting it localises by its own 

right. Scy possibly also localises independently of DivIVA and hence this could be why 

Scy is still positioned at the hyphal tips when the expression of DivIVA is depleted. When 

DivIVA was overexpressed, it was found that existing hyphal tips swelled and new branch 

sites were generated, consistent with previous observations (Flärdh, 2003a; Hempel et al., 

2008). We found that the ballooning tips and the new branches recruited Scy. This suggests 

that DivIVA directly recruited Scy or indirectly through other factors, be it other proteins, 

morphological changes of cell shape and/or more active cell wall growth. This was similar 

to the reciprocal effects of overproducing Scy and recruiting DiviVA to new sites. 

However, DivIVA overproduction resulted in swelling of hyphal tips suggesting excessive 

active growth and possible lysis, whereas Scy overproduction did not result in the same 

effect. Suggesting that Scy may only have an effect in placement of sites of active growth 

and not necessarily the amount of active growth.  

As the evidence up to that point suggested that Scy might have a biological role involved 

in apical growth it was also interesting to test if there is a biochemical interaction between 

Scy and FilP/DivIVA. Also, the nature of the proteins consisting heavily of coiled coils 

might also mean that they have possible binding interfaces. Using the bacterial two-hybrid 

technique we looked at interactions between the proteins Scy, DivIVA and FilP. We found 

an indication of a positive reaction between all three proteins, backing up the idea that they 

might form part of a TIPOC. Subsequently we were interested in which part of Scy was 

responsible for interaction with DivIVA. It was found that the C-terminus and not the N-

terminus was more responsible for the interaction. It was also found that the C-terminus of 

DivIVA was responsible for its interaction with Scy. This is interesting as it was found that 

the protein domain of Scy containing the novel 51-mer repeat sequence appears to be 

important for directing Scy to the hyphal tips. DivIVA could have some similarities with 
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Scy suggested by the C-terminal coiled-coil of DivIVA possibly containing a small stretch 

of the 51-mer repeat found in the C-terminal domain of Scy (Walshaw et al., 2010). 

However, if DivIVA has this type of repeat sequence it is hard to predict based on the 

repeat containing sequence being quite short, it could equally be true that it contains 

irregularities in heptad repeats that are not truly reflective of it being a 51-mer repeat. 

Sequences of divIVA and filP have been cloned into plasmids for heterologous 

overproduction in E. coli. Along with Scy vectors already available in the Kelemen lab this 

means that Scy, DivIVA and FilP protein can be purified from E. coli and therefore be 

used for Biochemical studies relating to possible interactions, filament dynamics or 

molecular structure. The egfp fusions to scy have also been cloned in plasmids for 

heterologous overproduction in E. coli for studies where a reporter tag to Scy might be 

useful. We attempted to perform a number of in vitro based techniques to confirm 

interactions seen in the two-hybrid experiments. The co-affinity technique hinted that there 

may have been an interaction between DivIVA-C and Scy and between FilP and Scy. 

Though we had to perform much optimisation of this technique it did give us information 

and suggested that the interactions might rely quite heavily on the conditions. Pelleting 

assays performed with Ultracentrifugation also suggested that Scy and DivIVA interacted, 

as well as FilP and DivIVA, but for technical reasons we could not identify any interaction 

between Scy and FilP. To test if Scy interacted with the membrane we also span Scy down 

in pelleting assays with liposomes. Though we could not detect any pelleted Scy 

interacting with liposomes, we also did not detect DivIVA spinning down with the 

liposomes so this might suggest that there was a problem with the technique, the conditions 

or the protein preparations.  

One of the aims of this report were to overexpress and purify Scy, in which using affinity 

chromatography could co-purify a number of potential in vivo partner proteins from S. 

coelicolor. This appears to have been achieved quite successfully, with His-Scy protein 

successfully expressed and purified from S. coelicolor  carrying pCJW93-scy. The Western 

blot carried out with an anti-His antibody confirms His-Scy was indeed expressed and 

purified, by the presence of a His positive band. In these sets of experiments His-Scy was 

not actually purified completely, as in a large number of elutions there are other bands that 

are not Scy. In fact some of the Scy that we can see in the SDS-PAGE could also be 

endogenous Scy that has co-purified with His-Scy. Low purity was actually in accordance 

with the design of this experiment, as our actual intention was to attempt to purify proteins 

that interact with Scy in vivo, rather than to isolate pure His-Scy protein. It seems likely 
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that we have some candidate bands of proteins that co-eluted with His-Scy due to their 

ability to bind Scy. It also seems reasonably likely that we have some candidate proteins 

that we crosslinked in an in vivo environment with Scy. Due to time restrictions matrix-

assisted laser desorption/ionisation with time of flight analysers (MALDI-TOF) mass 

spectrometry analysis could not be performed on these proteins. MALDI-TOF analysis 

would allow peptide fingerprinting and we would therefore be able to identify the proteins 

that we isolated in this experiment. Any proteins that are identified at a later point from 

this experiment or a similarly designed experiment could be potential Scy partner proteins, 

although not necessarily making a direct contact with Scy but perhaps being present in the 

same molecular complex. The possibility, however, that some of the proteins eluted in their 

own right due to affinity towards the column cannot be easily ruled out. It is interesting 

that bands were identified in the anti-DivIVA Western blot and that these bands were only 

present in the crosslinked samples.  

The co-affinity experiment also raised a number of questions about the biochemistry of the 

Scy protein and its formation in vivo. As can be seen from analysing any cytoskeletal 

protein, it can generally have the potential to form multimers, as well as to form complexes 

with other proteins that regulate or contribute to its function. Scy could infact form 

multimers with other Scy proteins. This could be an explanation for what could be 

endogenous Scy purified with His-Scy from S.coelicolor through pull down, that is it could 

have co-purified due to its ability to bind His-Scy in the column. Scy also binds Scy in the 

BTH experiments suggesting multimer formation. An extremely real possibility for the 

biochemical associations of Scy is that two Scy molecules are joined by a single disulphide 

bond between two cysteine residues making a functional dimer. If Scy is anything like the 

coiled-coil M proteins of Streptococcus or eukaryotic Tropomyosin, it is interesting to note 

that these proteins also form dimers of α-helical coiled-coils (Phillips et al., 1981; Perry, 

2001). Streptococcal M proteins and Tropomyosin dimers associate along the hydrophobic 

backbone of the helix. In a tropomyosin dimer there is a cysteine on both helices, Cys-190, 

which together form a disulphide bond crosslink (Brown et al., 2005). This disulphide 

bond does not disturb the phase of the coiled-coil. Perhaps a crosslink between Scy dimers 

could reinforce dimersitation. 

To increase the evidence that we are looking for to determine if Scy does actually interact 

with other proteins, more experiments could be attempted in the future and possibly 

including Biophysical techniques. Experiments that could be useful are Surface Plasmon 

Resonance or Thermophoresis (Willander, and Al-Hilli, 2009; Jerabek-Willemsen et al., 

218 

 



                                                                                               

2011). These techniques can quantitatively determine the affinity of two proteins towards 

each other. Though they are not direct evidence of their interaction in vivo only in vitro. 

The bacterial two-hybrid experiments using Scy as bait could also yield potential 

protein:protein interactions of Scy if a library was screened, to find new binding partners. 

It would also be desirable to attempt to have a more in vivo experiment, possibly using the 

pull down technique whereby crosslinking of Scy is attempted before the cells are 

disrupted, where Scy may be more in its natural state. However, a more truely in vivo 

technique that could be attempted is Fluorescence Resonance Energy Transfer; however, 

this needs ideal partner pairs of fluorescence tags and also relies on the tags being in close 

enough proximity upon protein:protein binding to allow fluorescence transfer.  

The results collected here as well as the conclusions drawn in (Holmes et al., 2013), have 

led us to propose that polarised growth in S. coelicolor occurs via a complex assembly of 

proteins named the Tip Organising Centre (TIPOC). The TIPOC contains the two proteins 

Scy and DivIVA (Figure 120). As shown here Scy co-localises with DivIVA at these 

centres of activity, seemingly controlling apical growth. Scy co-localisation with DivIVA 

at the hyphal tips is interesting as not only are both of these proteins possibly intimately 

coupled with directing the cell wall machinery, but they are both coiled-coil proteins. It 

remains to be seen if the similar pattern of localisation of Scy and DivIVA reflect their 

similarities as proteins. The precise roles of these proteins are still open to investigation. 

However, they appear to form some form of dynamic complex that is capable of directing 

the synthesis of new cell wall material. The model shown in Figure 120 places DivIVA at 

the inner side of the membrane based on the observations of localisation of DivIVA in B. 

subtilis (Lenarcic et al., 2009; Ramamurthi, and Losick, 2009). Possibly Scy forms a 

structure behind DivIVA; however, equally likely is that they occupy a similar position in 

the extreme of the hyphal tip. However, as in a scy mutant DivIVA disperses from the 

hyphal tip dome, it has been suggested that Scy restricts DivIVA to the end of the tip 

dome. As Scy is a long protein with a predicted length of 190nm, which coincidently is 

compatible with the radius of the hyphal tip, then it could be that Scy forms a structure 

such as that seen in Figure 120 forming ‘spokes’. As the C-terminus of Scy appears to be 

more important for localisation, then perhaps it contacts the membrane. Possibly with the 

N-terminal domain facilitating higher order structure formation with other Scy molecules.  
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It is also sensible to consider some of the other proteins that may form part of the TIPOC 

(Figure 121). In this complex governining apical growth is also FilP; however, its role is 

also currently unknown, though a filP mutant was shown to have reduced hyphal rigidity 

suggesting it may influence the positioning of the cell wall. DivIVA was shown previously 

to interact with CslA, a cellulose synthase like protein that was found to be responsible for 

production of cellulose like beta-glucan-containing polysaccharides at the hyphal tip (Xu et 

al., 2008), suggesting that its possible DivIVA directed functioning may contribute to 

apical growth. Among TIPOC it is likely that there exists PBPs, as presumably these would 

be needed to synthesize extension of the cell wall at the hyphal tip. This is backed up by 

staining with Van-Fl marking the hyphal tips of S. coelicolor (Daniel, and Errington, 

2003). Presumably DivIVA makes contact with a PBP as in M. Tuberculosis the DivIVA 

homologue interacts with a PBP (Mukherjee et al., 2009). However, we cannot rule out 

that perhaps Scy might make direct contact with a PBP or might affect a factor, be it 

DivIVA or another protein, that might make contact with a PBP. This is also backed up by 

the result that Scy co-localises with Van-Fl staining. Conjugation machinery may also be 

part of TIPOC as it has been shown that the protein TraB is localised to the hyphal tip 

(Reuther et al., 2006). TIPOC may also include links to the machinery associated with 

chromosome segregation/separation and cell division. This would include the protein ParA 

 

Figure 120: A Potential Model of the TIPOC in a 
growing hyphal tip of Streptomyces coelicolor. 
Shown as Green dots are the accumulating cell 
wall precursors. Shown in red is DivIVA which is 
believed to make contact with the inner side of 
the membrane possibly localised via negative 
membrane curvature. Shown in Blue is Scy 
which has a predicted length of 190nm and could 
form a structure that helps to stabilise DivIVA 
and the hyphal tip dome. Figure from (Kelemen 
unpublished). 
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which we have shown in BTH here interacts with Scy and is the feature of current study 

(Jakimowicz unpublished). ParB has also been shown to interact with DivIVA (Donovan et 

al., 2012). Presumably their already established localisations at times associated with the 

hyphal tip would also backup inclusion of both ParA and ParB into TIPOC (Jakimowicz et 

al., 2005a; Jakimowicz et al., 2007). Presumably TIPOC has some function in conveying 

signals onto the ParAB machinery to coordinate cessation of growth with subsequent DNA 

segregation associated with sporulation in the aerial hyphae. Presumably this is why we see 

that ParB-EGFP foci are no longer regularly arrayed in the aerial hyphae of a scy mutant 

and the DNA appears to be unevenly segregated into future spore compartments. In the 

aerial hyphae of a scy mutant we also monitored that FtsZ was mislocalised, correlating the 

effect seen of having irregular placement of the sporulation septa in the scy mutant. The 

protein SsgA which along with SsgB is directly involved in placing the FtsZ ring 

(Willemse et al., 2011a), is at times localised to the hyphal tip (Noens et al., 2007), 

perhaps suggesting that it is part of TIPOC and can then affect SsgB and downstream from 

SsgB, FtsZ. However, as far as we know at the moment, no interaction partners have been 

found for SsgA/SsgB/FtsZ amongst the other members of TIPOC. It has recently been 

shown that DivIVA is phosphorylated by AfsK, AfsK has also been shown to localise to 

the hyphal tips (Hempel et al., 2012) and is also a member of TIPOC. Phosphorylation of 

DivIVA may result in redistribution of DivIVA out of the TIPOC. 

A possible mechanism of the interplay between Scy and DivIVA is shown in Figure 122. It 

was suggested that negative curvature was a cue for DivIVA localisation (Lenarcic et al., 

2009; Ramamurthi, and Losick, 2009), whether this is geometrical sensing or recognition 

of specific lipic moieties at this location (Huang et al., 2006) e.g. cardiolipin (Jyothikumar 

et al., 2012). It was reported that branch points mediated by formation of DivIVA were 

normally generated at the convex side of hyphal curvatures (Hempel et al., 2008), which 

incidentally generate negative membrane curvature possibly recruiting DivIVA. However, 

S. coelicolor with its long filamentous cells that typically curve and undulate has many 

sites that exhibit negative curvature but don’t lead to the formation of branches. Therefore, 

a mechanism of controlling DivIVA mediated branch formation must exist. Due to the 

affects of a scy mutant on hyphal branching and Scy overexpression on hyphal branching, 

a possible model can be proposed whereby Scy regulates DivIVA formation by 

sequestering DivIVA assemblies and preventing DivIVA formation at too many locations. 
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Thus, a possible scenario is that there are many sites of high DivIVA affinity via 

geometrical or compositional cues, but normally not all of these sites would lead to active 

cell wall growth as DivIVA might be sequestered to a select number of sites. However, as 

was seen in the scy mutant where there is no Scy, there leads to greater numbers of 

DivIVA foci and active cell wall synthesis, this would be a scenario where DivIVA is not 

sequestered to any sites. At high DivIVA levels, when Scy is at wild-type levels and 

therefore limited to the amount of DivIVA, the excessive branching is caused by 

occupancy of DivIVA at all possible locations. It is then possible that the high abundance 

of DivIVA at all sites then results in excessive recruitment of cell wall synthesis 

machinery, resulting in the ballooning tips seen when DivIVA is overexpressed. 

Alternatively when Scy is overexpressed and DivIVA is at wild-type levels the result is 

that DivIVA is shared between excessive amounts of Scy, therefore resulting in branching 

at more sites. However, assuming that DivIVA is responsible for the active recruitment of 

the cell wall synthesis machinery this would suggest that the lack of excessive DivIVA 

means that these branches do not balloon like those seen for DivIVA overexpression. 

However, instead they cause branches off from newly formed branches referred to as 

“hook on hook”, where DiviVA is shared unevenly between splitting assemblies and 

therefore abortive branches can form where the recruitment of the cell wall synthesis 

Figure 121: The Streptomyces Tip Organising Centre for the selection, establishment and 
maintenance of polarised hyphal extension. The machinery of the Tip organising centre 
presumably makes connections both to the Peptodoglycan (PG) cell wall and the Cell 
Membrane (CM). Figure from (Holmes et al., 2013). 
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machinery becomes limiting (Holmes et al., 2013). In the case of a wild-type scenario of 

normal levels of DivIVA and Scy, Scy assemblies would not be present at all possible sites 

which could attract DivIVA, DivIVA would be sequestered by Scy, meaning not all of the 

possible sites would lead to positioning of active cell wall growth. Instead a refined system 

would exist where branch sites are less frequent as occurs in the wild-type scenario. 

Another important factor for controlling the localisation of DivIVA is AfsK (Hempel et al., 

2012). As suggested by Hempel et al., (2012), AfsK phosphorylates DivIVA and controls 

the in vivo dynamics of DivIVA. This would be by a mechanism in which DivIVA 

phosphorylation would promote disassembly of DivIVA foci at an already established 

hyphal tip. We believe that this could be important for regulation of DivIVA and TIPOC 

and may well impart a mechanism for feedback to the TIPOC when cell wall synthesis 

stalls at the hyphal tips, for example under conditions of nutritional starvation or when the 

tip hits an impassable object. As far as we know there is no reason why our proposed 

models of DivIVA and TIPOC control should be in objection with those of Hempel et al., 

(2012), perhaps Scy control of DivIVA is more linked to fine control of branch 

positioning, whereas AfsK phosphorylation of DivIVA is more associated with feedback to 

the cell wall synthesis machinery. Branching undoubtly is a complex biological process 

and it would seem necessary to have multiple methods of regulation, hence by Scy, 

phosphorylation of DivIVA or any currently unknown mechanism. However, it should be 

pointed out that the theory that DivIVA in a wild-type cell operates by tip focused splitting 

as deduced by the same authors (Richards et al., 2012) is controversial. The only piece of 

evidence for this theory are time-lapse images of DivIVA-EGFP where DivIVA-EGFP 

foci were seen to split from the growing tip and led to formation of new branches. The 

evidence is also based on a DivIVA-EGFP fusion which is not regarded as strictly 

functional as is the native protein, and is viewed in the hyphae in addition with the native 

DivIVA possibly causing problems with dosage of DivIVA (Flärdh, 2003a). The authors of 

(Richards et al., 2012) though admitting that spontaneous formation of new branches could 

occur in synteny with tip focused splitting, are generally dismissive of spontaneous branch 

formation being a major form of mechanism for branching. However, it has long been 

known that new branch formation can occur at great distances behind the actively growing 

hyphal tip, presumably too far away for DivIVA shedding to be considered seriously in 

these cases. According to data collected by Richard Leggett in the Kelemen lab it has also 

been seen that branching occurs most often further behind the existing hyphal tip, where it 

would be more feasible for de novo formation of a TIPOC, rather than DivIVA from split 
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foci waiting in a latent form for a considerable amount of time without stimulating new 

branch formation. Spontaneous nucleation by DivIVA recruitment to sites of possible 

correct geometrical curvature or other cues would be more feasible based on the idea of 

DivIVA being a landmark protein that can localise presumably without the presence of an 

existing DivIVA foci. Spontaneous nucleation must occur for germination of spores to 

begin, as it is considered at this time that there is no DivIVA foci already present, other 

proteins such as SsgA may become important at this point (Noens et al., 2007). 

Due to the complex developmental cycle and filamentous mycelial growth of the 

streptomycetes, there is much ongoing research into the role of cytoskeletal proteins in 

Streptomyces coelicolor. A number of the proteins already studied appear to show novel 

differences to their equivalent counterparts in other prokaryotic models. This makes S. 

coelcolor a particularly interesting organism to work on, as well as it being the model 

organism for studies of polarised filamentous growth in bacteria. To which there is an 

expanding understanding and interest as more factors of a TIPOC are isolated. It is 

interesting to note how factors in the TIPOC such as Scy, DivIVA and FilP are made up of 

coiled-coils. This system does show some similarities with polarised growth observed in 

fungi where coiled-coil proteins have been shown in some cases to be important in 

directing polarised growth (Zizlsperger et al., 2008; Zizlsperger, and Keating, 2010; Valtz, 

and Herskowitz, 1996). As well as coiled-coil proteins involved in other bacterial 

polarisation systems such as RsmP that together with DivIVA control polarised growth in 

C. glutamicum (Fiuza et al., 2010). Cyanobacteria use a coiled-coil protein SepJ that marks 

polar sites required for acquisition of multicellular filaments (Mariscal et al., 2011). C. 

crescentus  also uses coiled-coil proteins for polar functions with the birth scar protein 

TipN (Lam et al., 2006) and proteins involved in directing the formation of polar 

organelles (Obuchowski, and Jacobs-Wagner, 2008; Lawler et al., 2006). Together these 

observations suggest that mechanisms of coiled-coil based polarisation systems have been 

highly advantageous for cell shape determination and cell processes widespread in 

microbial life. 
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Figure 122: Scy is a molecular 
assembler of new polarity centres.  

Scy (blue rods) and DivIVA (green 
circles) are key components of the 
emerging polarity centres at sites 
that are marked by geometrical or 
compositional cues (yellow boxes) 
of the hyphal wall (black lines). 
Due to the lack of selectivity of 
DivIVA to the marked sites, 
DivIVA initiates new tip formation 
(red circles) indiscriminately when 
DivIVA levels reach a certain 
threshold. Scy, the molecular 
scaffold protein controls the 
number of polarity centres by its 
propensity for self-assembly and by 
sequestering DivIVA. The “hook  
 on hook” growth pattern of Scy overproduction (bottom left and centre), where there is 

not enough DivIVA/cell wall synthesis machinery to support active growth at all 
branches so some branches abort. The ballooning tips of DivIVA overproduction (bottom 
right) are also shown where cell wall synthesis machinery is recruited excessively, causing 
branches to bulge. Figure from (Kelemen unpublished). 
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10 Materials and methods 
 

10.1.1 Bacterial strains and plasmids 

 

The strains of E. coli used in this study are listed in Table 12. The stains of Streptomyces 

used in this study are listed in Table 13. The plasmids and cosmids used in this study are 

listed in Table 15.  

   

Table 12: E. coli strains used in this study. 

Strain  Genotype Reference or source 

DH5α F-λ-, endA1, glnV44, thi-1, 

recA1,  relA1, gyrA96, deoR, 

nupG, Φ80dlacZΔM15, 

Δ(lacZYA-argF)U169, 

hsdR17(rK
- mK

+) 

(Hanahan, 1983) 

BW25113 λ-, Δ(araD-araB)567, 

ΔlacZ4787(::rrnB-4), lacIp-

4000(lacIQ),  

rpoS369(Am), rph-1, 

Δ(rhaD-rhaB)568, hsdR514 

(Datsenko, and Wanner, 

2000) 

BL21 (DE3) pLysS F-, dcm, ompT, lon, hsdSB(rB
- 

mB
-), gal, λ (DE3), 

pLysS(cmR) 

(Studier, and Moffatt, 1986) 

ET12567 dam dcm hsdS  (MacNeil et al., 1992) 

BTH101 F-, cya-99, araD139, galE15, 

galK16, rpsL1 (Str r), hsdR2, 

mcrA1, mcrB1 

(Karimova et al., 2000) 

 

Table 13: Streptomyces strains used in this study. 

Strain Genotype Reference or source 

M145 SCP1- SCP2- Pgl+ (Hopwood et al., 1985) 

scy::aac(3)IV M145 scy::aac(3)IV   This work 

filP::aac(3)IV M145 filP::aac(3)IV  This work 

scy-filP::aac(3)IV M145 scy-filP::aac(3)IV   This work 
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scy M145 scy::scar  Kelemen Lab, University of 

East Anglia 

filP   M145 filP::scar  Kelemen Lab, University of 

East Anglia 

scy-filP  M145 scy-filP::scar  Kelemen Lab, University of 

East Anglia 

K110 Δscy(Δ28-381aa)::apr 

derivative of M145 

Kelemen Lab, University of 

East Anglia 

K114 M145 attBpSAM2::pKF58 

[tipAp-divIVASC] 

(Flärdh, 2003b) 

K115 M145 ΔdivIVA::ΩaacC4 

attBpSAM2::pKF58[tipAp-

divIVASC] 

(Flärdh, 2003b) 

J3310 M145 parB-egfp (Jakimowicz et al., 2005a) 

J3310/scy::aac(3)IV J3310 scy::aac(3)IV  This work 

 

Table 14: Oligonucleotide sequences 

Primer 5’-3’ Sequence 

scy Fwd GAAGATTTGCGACCAGGGGACGGATGGGACCGCGCAGTGATTC

CGGGGATCCGTCGACC 

scy Rev AAAGATCTCCAGCAGACACCCAAACCGCCCCGAACGCTATGTA

GGCTGGAGCTGCTTC 

filP Fwd  CTATCACCTCACCCGGTCTCTTTCGACAGGAACCCCATGATTCC

GGGGATCCGTCGACC 

filP Rev CCCCCGCGCAGCCGAAACCGCCCGGGCGCAAGGGCGTCATGTA

GGCTGGAGCTGCTTC 

ScyUP AGGGGCCGGTAGGGTTGGGTGC 

ScyDOWN CTTGGAGATGCGTTCGTCCACC 

FilPUP GAGGCGCTGGAGTCGTTCGAGG 

FilPDOWN GAGGAAGCCCGTGATGATGCCG 

Apra5'reverse GGCGGGATGCGAAGAATGCG 

Apra3'forward CGCACCTGGCGGTGCTCAACG 

Linker1 CTAGACTGATGTACAACGGCGGCGGCGGCGG 

Linker2 TACCGCCGCCGCCGCCGTTGTACATCAGT 

scyprom3-Nde ACCGCCATATGCGCGGTCCCATCCGTCCC 

scyprom4-Bam CTGGAGGATCCCGTACGCGTTCTGTACGACGAGC 
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scyKpn2 CGCGTTGCGCAGCAACTGCTCG 

EGFPLinker1 GATCCTCTAGACATATGGGCGGCGGCGGCGG 

EGFPLinker2 TACCGCCGCCGCCGCCCATATGTCTAGAG 

scy-Nde GATACCATATGGCCGTCTGACGACTTGCCACCC 

scy-Bam GATACGGATCCGCCGAGCAGCTGGTCTCGGACG 

Bsrg-Kpn Linker 1 GTACAACCTCGAGGGCGGCGGCGGCGGCGGGTAC 

Bsrg-Kpn Linker 2 CCGCCGCCGCCGCCGCCCTCGAGGTT 

Kpn-Eco Linker 1 CAGTAGTAGGATATCAAGCTTG 

Kpn-Eco Linker 2 AATTCAAGCTTGATATCCTACTACTGGTAC 

THAbpS_F GGATCATCTAGAGCATATGAGCGACACTTCCCCCTACG 

THAbpS_R GGATCAGAATTCTCAGCGGGACTGCTGGGCCG 

AbpS_Nde_Cterm GGATCACATATGGCGGGACTGCTGGGCCGGGACC 

scyNde1 ACCGCCATATGCGGGGCTACGAGAGCCAGGAGC 

ScyN_FPrev CATGCGCATATGCTGGTACCCGATGTCGCCGC 

THDiv_F  GGATCATCTAGAGCATATGCCGTTGACCCCCGAGGACG 

THDiv_R GGATCAGAATTCTCAGTTGTCGTCCTCGTCGATCAGGAACC 

DivN_STOPEco CATGCGAATTCTAGCCGCCGGGGCCGCCCTGACC 

DivN_RevNdeEco CATGCGAATTCTGCATATGGCCGCCGGGGCCGCCCTGACC 

DivCC51_ForwXbaN

de 

GGATCAGTCTAGAGCATATGGGCGACAGTGCCGCCCGCGTGC 

DivCC51_STOPEco CATGCGGAATTCTAGCGCAGGTCCTCGACCTTGCG 

DivcoilF/PET GGATCACATATGGGCCCCGGCGGCGACAGTGC 

div_nde GATACCATATGGTTGTCGTCCTCGTCGATCAGG 

THDiv_coilR GGATCAGAATTCGAGTTGTCGTCCTCGTCGATCAGG 

EGFPseq GGGTCTTGTAGTTGCCGTCG 

mCherryseq CGTACATGAACTGAGGGGAC 

mCherryseq2 GAGCCGTACATGAACTGAGG 

pET28a(+)-1 ATCCGGATATAGTTCCTCCTTTCAG 

pET28a(+)-2 CCGATCTTCCCCATCGGTGATGTCG 

pUC18 Direct CGCCAGGGTTTTCCCAGTCACGACG 

pUC18 Reverse TTTACACATTTATGCTTCCGGCTCG 

TH Scy F4 CGCGAGGAGGCCGAGCGCAC 

TH Scy R4 CCGTCTGACGACTTGCCAC 

THScy_T18 CGGATGTACTGGAAACGGTG 

FP-BsrGI TTACTTGTACAGCTCGTCCATGCCGAGAG 

FP-Nde CGTAACATATGGTGAGCAAGGGCGAGGAGC 
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Tfd GATTTTCAACGTGAAAAAATTATTA 

 

Table 15: Plasmid/Cosmid DNA used in this study. 

Plasmid  Genotype Reference or source 

pIJ773 aac(3)IV oriT bla (Gust et al., 2002) 

pIJ790 araC-ParaB, γ, β, exo, cat, 

repA101ts, oriR101 

(Gust et al., 2002) 

pUZ8002 RK2 derivative with a 

mutation in oriT 

(Kieser et al., 2000) 

St8F4 Supercos-1 Cosmid with a 

33.9Kbp chromosomal 

fragment with scy and 

filP.  

Redenbach et al., 1996 

St8F4/scy::aac(3)IV Cosmid St8F4 with 

scy::aac(3)IV allele 

This Work 

St8F4/filP::aac(3)IV Cosmid St8F4 with 

filP::aac(3)IV allele 

This Work 

St8F4/scy-filP::aac(3)IV Cosmid St8F4 with scy-

filP::aac(3)IV allele 

This Work 

St8F4/scy::scar Cosmid St8F4 with 

scy::scar allele 

Kelemen Lab, University 

of East Anglia 

St8F4/filP::scar Cosmid St8F4 with 

filP::scar allele 

Kelemen Lab, University 

of East Anglia 

St8F4/scy-filP::scar Cosmid St8F4 with scy-

filP::scar allele 

Kelemen Lab, University 

of East Anglia 

pIJ8660 ori pUC18, aac(3)IV, oriT 

RK2, int ФC31, attP, 

Promoterless egfp  

(Sun et al., 1999) 

pIJ8660-Pscy-scy Plasmid pIJ8660 with 

Pscy-scy 

Kelemen Lab, University 

of East Anglia 

pIJ8660-Pscy Plasmid pIJ8660 with 

Pscy 

This Work 

pCJW93-egfp-scy Plasmid pCJW93 with 

egfp-scy  

Kelemen Lab, University 

of East Anglia 

pIJ8660-Pscy-egfp-scy (pK56) Plasmid pIJ8660 with 

Pscy-egfp-scy 

This Work 
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pIJ6902-mCherry-scy Plasmid pIJ6902 with 

mCherry-scy 

Kelemen Lab, University 

of East Anglia 

pIJ8660-Pscy-mCherry-scy (pK57) Plasmid pIJ8660 with 

Pscy-mCherry-scy 

This Work 

pIJ8668 ori pUC18, aac(3)IV, oriT 

RK2, Promoterless egfp 

(Sun et al., 1999) 

pAZ1 A pIJ8668 derivative 

containing the EGFP 

linker formed by 

EGFPLinker1 and 

EGFPLinker2 

Kelemen Lab, University 

of East Anglia 

pUC18 ori pBR322, rep (pMB1), 

lacZ, bla 

Genscript 

pUC18-scyCterm Plasmid pUC18 with the 

PCR product of the last 

1000bp of scy 

This Work 

pAZ1-scyCterm-egfp Plasmid pIJ8668 with the 

PCR product of the last 

1000bp of scy fused to 

egfp 

This Work 

pIJ8660-scyCterm-egfp Plasmid pIJ8660 with the 

PCR product of the last 

1000bp of scy fused to 

egfp 

This Work 

pIJ8660-Pscy-scy-egfp  Plasmid pIJ8660 with 

Pscy-scy-egfp 

This Work 

pIJ8660-PnepA-nepA-mCherry Plasmid pIJ8660 with 

PnepA-nepA-mCherry 

Kelemen Lab, University 

of East Anglia 

pIJ8660-scyCterm-mCherry Plasmid pIJ8660 with the 

PCR product of the last 

1000bp of scy fused to 

mCherry 

This Work 

pIJ8660-Pscy-scy-mCherry Plasmid pIJ8660 with 

Pscy-scy-mCherry 

This Work 

pIJ8660-scyCterm-Δlink-mCherry Plasmid pIJ8660 with 

scyCterm-mCherry and 

This Work 
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with no glycine linker. 

pIJ8660-Pscy-scy-Δlink-mCherry  Plasmid pIJ8660 with 

Pscy-scy-mCherry and 

with no glycine linker. 

This Work 

pKF59 pEGFP-1 derivative with 

divIVA promoter and gene 

cloned upstream of egfp. 

(Flärdh, 2003a) 

pMS82 ori pUC18, hyg, oriT 

RK2, int ФBT1, attP 

(Gregory et al., 2003) 

pMS82-Pscy-mCherry-scy 

(pK66) 

Plasmid pMS82 with 

Pscy-mCherry-scy 

This Work 

pIJ8660-Pscy-egfp-scy-C Derivative of pIJ8660-

Pscy-egfp-scy with the N-

terminal domain removed 

This Work 

pIJ8660-Pscy-egfp-scy-N Derivative of pIJ8660-

Pscy-egfp-scy with the C-

terminal domain removed. 

This Work 

pIJ8660-Pscy-scy-N-egfp Derivative of pIJ8660-

Pscy-scy-egfp with the C-

terminal domain removed. 

This Work 

pGEM-T Easy ori pBR322,  f1 ori, lacZ, 

bla 

Promega 

pGEM-T Easy-filP pGEM-T Easy with filP This Work 

pAZ1-filP-egfp Plasmid pIJ8668 with 

filP-egfp 

This Work 

pUC8.9-scy Plasmid pUC18 with the 

8.9Kbp EcoRI fragment 

with scy and filP from 

St8F4 

Kelemen Lab, University 

of East Anglia 

pUC18-PfilP Plasmid pUC18 with the 

2.1Kbp BamHI fragment 

with scyCterm and 

filPNterm from St8F4 

This work 

pAZ1-PfilP-filP-egfp Plasmid pIJ8668 with 

PfilP-filP-egfp 

This Work 

pIJ8660-PfilP-filP-egfp Plasmid pIJ8660 with This Work 
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PfilP-filP-egfp 

pIJ8660-PfilP-filP-mCherry Plasmid pIJ8660 with 

PfilP-filP-mCherry 

This Work 

pIJ8660-PfilP-filP-Δlink-mCherry   Plasmid pIJ8660 with 

PfilP-filP-mCherry with 

no linker. 

This Work 

pUT18C pUC19 derivative with 

T18 domain upstream of 

MCS. 

(Karimova et al., 2000) 

pKT25 pSU40 derivative with 

T25 domain upstream of 

MCS. 

(Karimova et al., 2000) 

pUT18C-zip pUT18C  with leucine 

zipper 

(Karimova et al., 2000) 

pKT25-zip pKT25  with leucine 

zipper 

(Karimova et al., 2000) 

pUT18C-scy pUT18C  with scy (Walshaw et al., 2010) 

pUT18C-scy-N pUT18C  with scy-N (Walshaw et al., 2010) 

pUT18C-scy-C pUT18C  with scy-C (Walshaw et al., 2010) 

pKT25-scy pKT25 with scy (Walshaw et al., 2010) 

pKT25-scy-N pKT25 with scy-N (Walshaw et al., 2010) 

pKT25-scy-C pKT25 with scy-C (Walshaw et al., 2010) 

pUT18C-filP pUT18C  with filP Kelemen Lab, University 

of East Anglia 

pKT25-filP pKT25 with filP Kelemen Lab, University 

of East Anglia 

pUT18C-divIVA pUT18C  with divIVA This Work 

pKT25-divIVA pKT25 with divIVA This Work 

pUT18C-divIVA-N pUT18C  with divIVA-N This Work 

pKT25-divIVA-N pKT25 with divIVA-N This Work 

pUT18C-divIVA-C pUT18C  with divIVA-C Kelemen Lab, University 

of East Anglia 

pKT25-divIVA-C pKT25 with divIVA-N This Work 

pKT25-parA pKT25 with parA (Jakimowicz et al., 2007) 

pET21a ori pBR322, T7 Promoter, 

lacI, bla, ori f1  

Novagen 
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pET28a ori pBR322, T7 Promoter, 

His•Tag coding sequence, 

lacI, kan, ori f1 

Novagen 

pET21a-divIVA Plasmid pET21a with 

divIVA 

This Work 

pET28a-divIVA pET28a  with divIVA 

generating His-divIVA 

fusion 

This Work 

pET21a-filP Plasmid pET21a with filP This Work 

pET28a-filP pET28a  with filP 

generating His-FilP fusion 

This Work 

pGEM-T Easy-divIVA-C pGEM-T Easy with 

divIVA-C 

This Work 

pET21a-divIVA-C Plasmid pET21a with 

divIVA-C 

This Work 

pET28a-divIVA-C pET28a  with divIVA-C 

generating His-DivIVA-C 

fusion 

This Work 

pET21a-egfp-scy Plasmid pET21a with 

egfp-scy 

This Work 

pET28a-egfp-scy Plasmid pET28a with 

egfp-scy generating His-

EGFP-Scy fusion 

This Work 

 

10.1.2 Solid media  

 

The agar used is Formedium(TM) agar made by Formedium Ltd. 

 

SFM or alternatively referred to as MS medium (Hobbs et al., 1989)-  

This medium was used to grow Streptomyces strains and for phenotypic analysis of 

Streptomyces strains. 

Mannitol  30g 

Soya Flour  30g 

Tap Water 1500ml 

Agar 30g 
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6g of soya flour and 6g of agar was deposited in five 500ml Duran Bottles. Mannitol was 

dissolved in tap water, then 300ml was poured into each bottle. The media was then 

autoclaved twice. 

 

Lennox Broth (LB) Agar (Kieser et al., 2000)- 

This medium was used for growing E. coli and for Spore titrations of Streptomyces strains. 

Agar 16g 

Tryptone 16g 

Yeast Extract 8g 

NaCl 8g 

Glucose 1.6g 

dH2O up to 1600ml 

4g of agar was deposited in four 500ml Duran Bottles. The other ingredients were 

dissolved in dH20, then 400ml was poured into each bottle and the media was autoclaved. 

 

Minimal Medium Mannitol (MMM) (Kieser et al., 2000)- 

This Medium was used for phenotypic analysis of Streptomyces strains. 

Agar 16g 

L-asparagine 0.8g 

K2HPO4 0.8g 

MgSO4.7H20 0.32g 

FeSO4.7H2O 

Mannitol 

0.016g 

8.0g 

dH2O up to 1600ml 

4g of agar was deposited in four 500ml Duran Bottles. The other ingredients were 

dissolved in dH20, adjusted to pH 7.0-7.2 with orthophosphoric acid then 400ml was 

poured into each bottle and the media was autoclaved. 

 

Complete Medium (CM), modified from Kieser et al., (2000)- 

This Medium was used for phenotypic analysis of Streptomyces strains. 

Agar 5g 

K2HPO4 2.5g 

NaCl 0.25g 

MgSO4.7H20 0.25g 
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Peptone  

Yeast Extract 

Casamino Acids 

Glucose 

1.0g 

0.5g 

0.75g 

12.5g 

dH2O up to 1600ml 

2.5g of agar was deposited in two 500ml Duran Bottles. The other ingredients were 

dissolved in dH20, adjusted to pH 7.0-7.2 with orthophosphoric acid then 250ml was 

poured into each bottle and the media was autoclaved. 

 

Minimal Medium Glucose (MMG), change from Mannitol in MMM to Glucose– 

This Medium was used for phenotypic analysis of Streptomyces strains. 

Agar 24g 

L-asparagine 0.6g 

K2HPO4 0.6g 

MgSO4.7H20 0.24g 

FeSO4.7H2O 

Mannitol 

0.012g 

12g 

dH2O up to 1200ml 

3g of agar was deposited in four 500ml Duran Bottles. The other ingredients were 

dissolved in dH20, adjusted to pH 7.0-7.2 with orthophosphoric acid then 300ml was 

poured into each bottle and the media was autoclaved. 

 

10.1.3 Liquid Media 

 

Lennox Broth (LB) (Kieser et al., 2000)-  

Used for growing E. coli. 

Tryptone 10g 

Yeast Extract 5g 

NaCl 5g 

Glucose 1g 

dH20 up to 1000ml 

The mixture was dispensed in either 10ml or 50ml volumes and then autoclaved. 
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SOB (Gust et al., 2002)- 

Used to grow E. coli BW25113/ pIJ790, with the addition of L-arabinose allows efficient 

PCR targeting of S. coelicolor cosmids. 

Tryptone 10g 

Yeast Extract 2.5g 

NaCl (5M) 1ml 

KCl 0.093g 

MgCl2 (1M) 5ml 

MgSO4 1.23g 

dH2O up to 500ml 

The mixture was dispensed in 10ml volumes and then autoclaved. 

 

2X YT (Kieser et al., 2000)- 

Used for inducing germination of Streptomyces spores prior to conjugation. 

Bactotryptone 16g 

Yeast Extract 10g 

NaCl 5g 

dH2O up to 1000ml 

The mixture was dispensed in 10ml volumes and then autoclaved. 

 

Tryptone Soya Broth (TSB) and Polyethylene Glycol (PEG) (Kieser et al., 2000)- 

Used for overexpression of His-Scy in S. coelicolor, PEG is used as a dispersing agent. 

TSB 7.5g 

PEG 12.5g 

dH20 up to 250ml 

The mixture was dispensed in 50ml volumes and then autoclaved. 

 

10.1.4 Antibiotic concentrations 

Table 16: Antibiotic concentrations used in this study. 

 

 

Antibiotic 

 

Stock 

(mg/ml) 

Streptomyces (final 

concentration μg/ml) 

E. coli (final 

concentration μg/ml) 

SFM LB 

Ampicillin 100 - 100 
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Apramycin 100 50 50 

Chloramphenicol 25 - 25 

Hygromycin 50 50 50 

Kanamycin 100 50 50 

Spectionomycin 100 50 100 

Thiostrepton 50 0.1-20 - 

Nalidixic Acid 25 25 - 

Bacitracin 50 50 - 

 

 

10.1.5 Solutions and buffers 

 

10x DNA loading dye (100 ml)- 50 ml 100% Glycerol; 10 ml 0.5 M EDTA pH8.0; 5 ml 1 

M Tris pH7.4; 35 ml dH20; Autoclave; 0.005 g Xylene Cyanol; 0.05 g Bromophenol Blue. 

 

4x Protein loading dye (10 ml)- 2 ml 1 M Tris pH6.8, 4 ml 100% Glycerol, 2 ml β 

Mercaptoethanol, 0.8 g SDS, 40mg Bromophenol Blue, 1.5 ml dH2O. 

 

10x SDS-PAGE running buffer (1 L)- 144 g Glycine, 30 g Tris, 10g SDS, 1 L dH2O. 

 

50x TAE pH7.5 (2 L)- 484.4g Tris, 164.08g Sodium Acetate, 74.4g EDTA, up to 1L 

dH2O. 

 

Tris-magnesium buffer- 20mM Tris pH 8, 10mM MgCl2 

 

Phosphate buffer- 50mM Na2HPO4, 50mM NaCl pH 8.0 

 

Tris-NaCl buffer- 20mM Tris, 200mM NaCl, pH 8.0 

 

10.1.6 Agarose gel electrophoresis of DNA 

 

DNA was subjected to electrophoresis on agarose gels after addition of 1/10 volume of 10x 

loading dye. Agarose gels were prepared (with the addion of 0.5 μg/ml ethidium bromide 

to stain the gel) and run submerged with 1xTAE buffer. Routinely, 0.7% gels were used, 
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although >0.7-1% gels were used for analysis of smaller fragments. Gels were 

photographed with UV light illumination using a BioRad transilluminator. 

 

10.1.7 PCR for generation of cloning sequences 

 

All PCR reactions were performed using a BioRAD DNA Engine® Peltier Thermal Cycler. 

PCR reactions for cloning fragments were a 50µl total volume or for colony PCR were 

prepared in master mix and aliquoted to 10µl volumes. The PCR mixes generally consisted 

of; Promega Go Taq Polymerase Buffer (1x), dNTPs (0.25mM), MgCl2 (2.5mM), dimethyl 

sulphoxide (5%), upstream primer (1pmol), downstream primer (1pmol), template DNA or 

cells from a colony and Promega Go Taq Polymerase (1.25u).  

For cloning purposes or colony PCR screening, the following PCR cycle conditions were 

used, with variable annealing temperatures, extension times and cycles: 

1. Denaturation 96ºC, 5 minutes. 

2. Deanturation 92ºC, 1 minutes. 

3. Primer Annealing xºC, 30 seconds.            repeat cycles  

4. Extension 72ºC, x seconds. 

5. Final Extension, 72ºC, 5 minutes. 

6. Cool down 20˚C, 5 minutes.  

Generally for colony PCR screening 30 cycles were performed and for generating cloning 

fragments this was lowered to 25 cycles to lower the chances of mutations. Typically 

extension times were designed for 30 seconds per 500bp of the expected fragment size. 

Annealing temperature was normally 55°C; however, this would routinely have been 

optimised for each PCR.   

 

For PCR amplification of the aac(3)IV cassette in the mutant generation the program was 

edited to include to different cycles so that the conditions used were: 

1. Denaturation 94ºC, 2 minutes. 

2. Deanturation 94ºC, 45 seconds. 

3. Primer Annealing 50ºC, 45 seconds.            10 cycles  

4. Extension 72ºC, 90 seconds. 

5. Denaturation 94ºC, 45 seconds. 

6. Primer Annealing, 55ºC, 45 seconds.            15 cycles.      

7. Extension, 72ºC, 90 seconds. 
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8. Final Extension, 72ºC, 5 minutes.  

PCR products were analsed by agarose electrophoresis gel (10.1.6). The bands containing 

the knockout disruption cassettes were excised and then purified by use of the QIAquick 

PCR purification kit protocol from the QIAquick Spin Handbook (QIAGEN, 2006). This 

protocol uses a QIAquick column with a Silica membrane for binding of DNA in high salt 

buffer and elution with low salt buffer or water. 

 

10.1.8 Klenow treatment of PCR products 

 

For generation of blunt ended PCR fragments; following the PCR, 46µl of the fragment 

formed was incubated at 37˚C with 2 units of Roche Klenow Enzyme for 15 minutes at 

37˚C. Klenow or the large fragment of DNA polymerase as it is also known, has 3’ → 5’ 

exonuclease activity useful for removing poly-A overhangs generated during PCR. This 

was followed by addition of 1/10 volume of 10x loading dye. Then, incubation at 65˚C for 

5 minutes. The DNA was then loaded onto an agarose gel and analysed by electrophoresis. 

 

10.1.9 Restriction digest  

 

Restriction digests for preparation of DNA fragments were a 200µl total volume consisting 

of; miniprep DNA or PCR DNA (passed through a G75 sephadex column prior to 

digestion), Restriction Digestion Buffer (1x) and Restriction Enzyme (15U). Commonly 

restriction enzymes were sourced from F. Hoffmann-La Roche Ltd and New England 

Biolabs (UK) Ltd. Where recommended from the enzyme supplier restriction digests also 

contained BSA protein. Restriction digests were incubated at 37˚C for 4-5 hours. This was 

followed by addition of 1/10 volume of 10x loading dye. Then, incubation at 65˚C for 5 

minutes. They were then loaded onto an agarose gel and separated by electrophoresis.  

Restriction digests for analysis of plasmids were a 20µl total volume consisting of; 

miniprep DNA, Restriction Digestion Buffer (1x) and Restriction Enzyme (5U). 

Commonly restriction enzymes were sourced from F. Hoffmann-La Roche Ltd and New 

England Biolabs (UK) Ltd. Where recommended from the enzyme supplier restriction 

digests also contained BSA protein.  Restriction digests were incubated at 37˚C for 1.5-3 

hours. This was followed by addition of 1/10 volume of 10x loading dye. Then, incubation 

at 65˚C for 5 minutes. They were then loaded onto an agarose gel and analysed using 

electrophoresis.  
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10.1.10 Isolation of DNA fragments from agarose 

 

Digested DNA was analysed by agarose electrophoresis gels. The bands containing the 

fragments were visualized using long-wavelength UV light (310 nm) and excised with a 

razor blade. DNA was then purified by use of the Qiagen QIAquick Gel Extraction kit 

protocol from the QIAquick Spin Handbook (QIAGEN, 2006). This protocol uses a 

QIAquick column with a Silica membrane for binding of DNA in high salt buffer and 

elution with low salt buffer or in this case water.  

 

10.1.11 Annealing of oligonucleotides prior to ligation 

 

To anneal oligonucleotides, 9 μl of each oligonucleotide with a concentration of 50 

pmol/μl was mixed and incubated at 100ºC for 5 minutes. Followed by cooling quickly on 

ice. Then, 2 μl of 10x SB Buffer was added, followed by gentle vortexing and incubation 

for 15 minutes at 37ºC. An aliquot of 2 μl was added to the appropriate ligation mixture. 

10x SB buffer- 600 mM NaCl, 100 mM Tris, pH 7.6. 

 

10.1.12 Ligation of DNA fragments 

 

A molar ratio of approximately 3:1 of linearised insert to vector DNA fragments were set 

up and mixed into a final volume of 13μl, made up to the final volume with analytical 

grade H20. The mixture was vortexed and incubated for 2 minutes at 65ºC. The mix was 

cooled on ice prior to the addition of 1.5μl of 10x ligation buffer and 0.5μl 3U/μl T4 DNA 

ligase from Promega. The mixture was incubated overnight on ice in a 4ºC temperature 

controlled room. 

   

10.1.13 Transformation of competent E. coli cells by electroporation 

 

A single colony of the appropriate E. coli strain was used to inoculate 10ml of LB 

supplemented with the appropriate antibiotics. This culture was then grown overnight at 

either 30˚C or 37˚C, shaking 270rpm. The overnight culture was diluted 100-fold and used 

to inoculate a fresh media (usually either 10ml or 50ml). The subculture was incubated at 

either 30˚C or 37˚C, shaking 270rpm, to an OD600 of ~0.7. The culture was then 
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centrifuged and the cell pellet was collected. The cells were then washed two times with 

ice cold 10% glycerol and resuspended to a final volume of ~100-250µl in 10% glycerol. 

For introduction of linear DNA, plasmid or cosmid DNA, 50µl of E. coli cell suspension 

was mixed with 1-3μl of the DNA. Alternatively for introduction of ligation mix, the 

ligation mix was first desalted through a G-75 Sephadex column, 50µl of E. coli cell 

suspension was mixed with 5μl of the desalted ligation mix. Following mixture of cells and 

DNA, electroporation was then quickly carried out in a 0.2cm ice cold electroporation 

cuvette using a BioRad Gene Pulser II set to: 200Ω, 25µF and 2.5kV. 1ml of ice cold LB 

was added to shocked cells and subsequently they were incubated for approximately an 

hour at either 30˚C or 37˚C. The transformed cells were plated out onto LB agar plates 

containing the appropriate antibiotics and incubated at either 30˚C or 37˚C. (Modified from 

Gust et al., (2002))  

 

10.1.14 Transformation of competent E. coli cells by chemical competence 

 

A single colony of the appropriate E. coli strain was used to inoculate 10ml of LB 

supplemented with the appropriate antibiotics. This culture was then grown overnight at 

either 30˚C or 37˚C, shaking 270rpm. The overnight culture was diluted 100-fold and used 

to inoculate a fresh media (usually either 10ml or 50ml). The subculture was incubated at 

either 30˚C or 37˚C, shaking 270rpm, to an OD600 of ~0.4-0.6. The culture was then 

centrifuged and the cell pellet was collected. The cells were then washed 1 times with 

10mM NaCl solution. The resulting cell pellet was then resuspended in 30mM CaCl2, 

10mM RbCl2 solution. The cells were then incubated on ice for 30-60minutes. The cells 

were then collected by centrifugation and resuspended to a final volume of ~100-250µl in 

30mM CaCl2, 10mM RbCl2 solution. For introduction of linear DNA, plasmid or cosmid 

DNA, 50µl of E. coli cell suspension was mixed with 1-3μl of the DNA. The mixture was 

then incubated on ice for 30 minutes. Followed by a heat shock with an incubation at 42˚C 

for 1 minute. A cold shock of 5 minutes on ice was followed. 500µl of LB was added to 

the shocked cells and subsequently they were incubated for approximately an hour at either 

30˚C or 37˚C. The transformed cells were plated out onto LB agar plates containing the 

appropriate antibiotics and incubated at either 30˚C or 37˚C.   
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10.1.15 Isolation of plasmid DNA from E. coli 

 

The following method is a modification of a method described by (Ish-Horowicz, and 

Burke, 1981). A smaller scale miniprep used 3ml total of cells, whereas a large scale 

maxiprep used 50ml of cells. The cells were grown overnight at 37˚C, shaking (200rpm) in 

either 10ml or 50ml of LB, inoculated with a single colony. Cells were harvested by 

centrifugation and resuspended in either 100μl or 1ml of ice cold solution I (50mM 

Tris/HCl pH8 + 10mM EDTA). The resuspended cells were then gently mixed with either 

200μl or 2ml of solution II (200mM NaOH + 1% SDS) and incubated on ice for 5 minutes. 

150μl or 1.5ml of solution III (5M Potassium Acetate pH5.5) was added, mixed vigorously 

and left on ice for 10 minutes. The mixture was centrifuged for 5 minutes and the 

supernatant was extracted with an equal volume of phenol:chloroform (1:1,v/v). 3μg/ml 

RNase was added and the nucleic acid solution was incubated at 37˚C for approximately 

40-60 minutes. The nucleic acid was then extracted from the RNase with an equal volume 

of phenol:chloroform (1:1,v/v). The nucleic acid was precipated by adding an equal 

volume of isopropanol. The nucleic acid was separated by centrifugation, washed in 70% 

(v/v) ethanol, dried and redissolved in dH20.           

 

10.1.16 Sequencing ready reactions 

 

All sequencing ready reactions were performed using a BioRAD DNA Engine® Peltier 

Thermal Cycler. Sequencing reactions were carried out using a BigDye Terminator v3.1 

Cycle Sequencing Kit, Applied Biosystems. Reactions were a 10µl total volume generally 

consisted of; dimethyl sulphoxide (5%), primer (0.5pmol), template DNA, Sequencing 

Buffer (1x), 1µl HBD (Makes final concentration = 25mM Tris pH 9.0, 1mM MgCl2) and 

1µl Big Dye v3.1. The following cycle program was used;  

1. Denaturation 96ºC, 5 minutes. 

2. Deanturation 96ºC, 16 seconds. 

3. Primer Annealing 50ºC, 10 seconds.            25 cycles  

4. Extension 60ºC, 4 minutes. 

5. Cool down 20˚C, 5 minutes.  

Products were then sent to Genome Enterprise Limited (The Genome Analysis Centre, 

Norwich Research Park, Norwich, NR4 7UH, UK) for sequencing. 
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10.1.17 Disruption of S. coelicolor cosmid DNA 

 

Cosmid DNA was transformed into E. coli BW25113/pIJ790. A single colony of E. coli 

BW25113/pIJ790 carrying the cosmid was grown up in 10ml LB in the presence of 

chloramphenicol and kanamycin at 30ºC overnight.  This was used to inoculate 10ml SOB 

containing the same antibiotics and L-arabinose (10mM), the inducer of the lambda Red 

recombinase genes. Competent cells were generated after 5 hours growth and disruption 

cassettes were introduced by transformation using electroporation. Successful 

recombinants were selected on LB plates containing apramycin at 37ºC. Single colonies 

that grew after 1 day were inoculated in 10ml LB cultures overnight at 37ºC, in the 

presence of apramycin and kanamycin and cosmids were isolated. To obtain homogenous 

cosmid DNA, cosmid DNA was then transformed by electroporation into E. coli strain 

DH5α and DNA was then isolated from a single colony of the transformants. 

 

10.1.18 Generating a spore stock of S. coelicolor 

 

To generate a concentrated stock of S. coelicolor spores a single colony was resuspended 

in dH2O and spread onto an SFM plate with any appropriate antibiotics. The plate was 

incubated at 30°C for about 5 days or until confluent lawns of grey spores were visible. 

Spores were harvested in 5ml of sterile H2O with a sterile cotton bud. The collected spores 

were then centrifuged for 5 minutes at 4,500rpm and the supernatant discarded. The pellet 

was resuspended in 20% glycerol and stored at -20ºC. The viable spore concentration was 

determined by plating out a dilution series on LB agar plates.   

 

10.1.19 Conjugation into S. coelicolor 

 

E. coli ET12567/pUZ8002 was used for conjugation of oriT containing vectors to S. 

coelicolor. The strain E. coli ET12567/pUZ8002 was always grown in the presence of 

kanamycin which maintains pUZ8002 and chloramphenicol where resistance is carried for 

chromosomally. E. coli ET12567/pUZ8002 was used in the transformation procedure with 

the desired cosmids/plasmids for the conjugation. Single colonies of E. coli 

ET12567/pUZ8002 carrying the conjugation vectors were grown up overnight in 10ml LB 

containing kanamycin, chloramphenicol and the antibiotic needed to select for the 

cosmid/plasmid of interest. Growth was carried out at 37˚C, shaking 270rpm. The 
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overnight culure was diluted 100-fold into a fresh 10ml LB plus the same antibiotics. The 

subculture was incubated at 37˚C, shaking 270rpm, to an OD600 of ~0.4-0.6. The cells were 

then washed 2 times with ice cold LB and resuspended to a final volume of ~1-2.5ml. 

Simultaneously, approximately 108 of the desired Streptomyces spores were activated for 

germination by heating at 50˚C for 10 minutes in 500µl of 2xYT and then cooled shortly 

on ice. A 500µl volume of the donor E. coli cell suspension was then mixed with the 

recipent Streptomyces spore solution. Following centrifugation, the E. coli/Streptomyces 

mix was used to make 4 serial 10x dilutions. 100μl of each serial dilution was plated on 

SFM (For knockout generation; with 3 repeats for each dilution). Plates were incubated at 

30ºC overnight. After 1 nights incubation (~14-18 hours) each of the plates were overlaid 

with nalidixic acid and the antibiotic needed to select for the cosmid/plasmid of interest. 

The plates were then allowed to grow for about 4-7 days at 30ºC. In the case of knockout 

generation the exconjugants were subject to replica plating to test for those with single or 

double crossovers. Whereas for integrative vectors the exconjugants were directly picked 

and streaked for single colonies on SFM plates plus nalidixic acid and the antibiotic needed 

to select for the cosmid/plasmid of interest. Followed by setting up of a confluent plate for 

spore preparation, usually grown on SFM plates with the antibiotic needed to select for the 

cosmid/plasmid of interest and omitting nalidixic acid. 

 

10.1.20 Replica plating  
 

To isolate double crossover apramycin marked mutants, the conjugation plates were replica 

plated. This involved using a sterile velveteen cloth to transfer spores from the SFM plate 

onto an LB agar plate plus kanamycin and nalidixic acid. Followed by another transfer of 

the remaining spores on the cloth onto an LB agar plate plus apramycin and nalidixic acid. 

The LB agar plates were incubated at 30ºC for 2 days. Potential double crossover colonies 

that were missing from the kanamycin plates but present on the apramycin plates were then 

isolated from the original SFM plate and spread for single colonies onto SFM plates plus 

apramycin and nalidixic acid. These plates were then grown at 30ºC for about 5 days, 

followed by another round of replica plating to confirm the identity of double crossovers. 

Successful doublecrossover colonies were then used to spread for setting up of a confluent 

plate for spore preparation.  

  

244 

 



                                                                                               

10.1.21 Chromosomal DNA extraction from S. coelicolor 

 

In order to generate Chromosomal DNA the spores of different strains were grown on a 

cellophane surface on LB solid medium plus Glycine (0.5%). In the range of 107 Spores of 

the desired strain were added to two plates per strain and spread across the total area of the 

cellophane. The plates were incubated at 30˚C for 48 hours. After which cell material was 

scraped off the surface of the cellophane and added to tubes containing ~100µl volume of 

425-600 micron acid washed glass beads, combining the two plates of each strain to one 

tube. Then, 500µl of Tris-EDTA Buffer was added to each tube (10mM Tris/HCl pH 8, 

50mM EDTA). The cells underwent one 20 second blast with a FastPrep®-24 Tissue and 

Cell Homogenizer machine (MP Biomedicals) set at 4 m/s. Following this the cell material 

was more dispersed and 60µl of Lysozyme (100mg/ml stock) was added, the samples were 

then incubated on ice for 10 minutes and 37˚C for 10-30 minutes. 100μl of 10% SDS was 

added and the cell lysis solution incubated at 60˚C for approximately 20 minutes. The 

supernatant from the cell lysates was extracted with an equal volume of phenol:chloroform 

(1:1,v/v). The nucleic acid was then further cleaned with two extractions with equal 

volumes of chloroform. The nucleic acid was precipated by adding an equal volume of 

100% (v/v) ethanol. The precipitated DNA was fished out with a glass rod, washed in 

100% (v/v) ethanol, then 70% (v/v) ethanol, then 100% (v/v) ethanol, air dried and 

redissolved in 200-400μl dH20. 

 

10.1.22 Coverslip microscopy setup 

 

Microscopic analysis of different strains involved growing S. coelicolor between the angle 

of a coverslip and nutrient agar medium (Figure 123). Spores of the desired strain were 

spread into confluent patches on SFM medium (plus any antibiotics). A glass coverslip 

22x22mm with a thickness of 0.13-0.17mm was inserted at approximately 45˚ to the 

medium. The plates were incubated at 30˚C for 2-4 days to which at varying times 

coverslips were removed and stained for microscopic analysis. 
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10.1.23 Propidium Iodide and Wheat Germ Agglutinin-Alexa488 staining of coverslip 

samples 
 

Removed coverslips were fixed with 100% methanol for 1 minute. Sterile H2O was used to 

wash the coverslips, followed by application of WGA Alexa Fluor® 488 conjugate 

(50μg/ml) and propidium iodide (25μg/ml) to each coverslip on the growth line. The 

samples were incubated for 30 minutes under dark conditions. After which the dyes were 

removed with dH2O and the slides were mounted onto microscope slides (76 x 26mm 

(thickness 1.0 – 1.2mm).  

 

10.1.24 Cellophane microscopy setup 

 

Microscopic analysis of different strains involved growing S. coelicolor on a cellophane 

surface on SFM solid medium (Figure 124). Spores of the desired strain were diluted to 

~4x 105 spores per plate, induced for germination at 50˚C for 10 minutes and sonicated 2 x 

15 seconds in order to disperse the spores. The dilution was then spread across the surface 

of a cellophane ontop of SFM medium (plus relevant antibiotics). The plates were 

incubated at 30˚C for 14-16 hours. After which 1cm2 squares of cellophane were cut with a 

razor blade and mounted onto microscope slides with 20% glycerol. Samples were sealed 

with Coverslips 22x22mm with a thickness of 0.13-0.17mm on a microscope slide (76 x 

26mm (thickness 1.0 – 1.2mm). Alternatively cellophanes were stained. 

Figure 123: Plate Setup for growth of Streptomyces inbetween the angle of a coverslip 
inserted into agar media in a petri dish. Following growth of Streptomyces the coverslip 
was removed and either stained or directly placed face down between a microscope slide 
and a coverslip. 
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10.1.25 Propidium Iodide, Wheat Germ Agglutinin-Alexa488 and/or Fluorescent 

Vancomycin staining of cellophane samples 
 

 
Cellophane squares were placed onto pre-cut filter paper with cell material facing upwards. 

Cellophanes were fixed by soaking ~300μl of 100% methanol for 1 minute. Sterile H2O, 

500μl was used to wash the cellophanes, 15μl of WGA Alexa Fluor® 488 conjugate 

(50μg/ml) and propidium iodide (25μg/ml) droplets were placed onto a solid surface. 

Cellophanes were then placed onto droplet (cell material facing upwards still). The 

samples were incubated for 30 minutes under dark conditions. After which the dyes were 

removed with dH2O. The cellophanes were then mounted with 20% glycerol onto 

microscope slides. 

For staining with fluorescent vancomycin, cellophane samples prior to collection were 

simply incubated with 10µl droplets of 1 µg/ml BODIPY FL vancomycin (Molecular 

Probes) and 1 µg/ml unlabelled vancomycin (Sigma) placed ontop of the sample for 

5 minutes, in dark conditions. Samples were then collected and either directly mounted 

onto microscope slides or were stained with propidium iodide as mentioned above.  

 

10.1.26 Microscopy 

 

Samples were visualised by using an Axioplan 2 Imaging E (Carl Zeiss) Universal 

microscope with an An AxioCamMR camera. Using a Plan Apochromat 100x/1.40 Oil 

(440780) objective. Filters used were FS 38 GFP and FS 45 TxR. Alternatively samples 

were visualised by using a Leica TCS SP2 [Leica Microsytems CMA GmbH, Wetzlar, 

Germany] laser-scanning confocal microscope.  

 

Figure 124: Plate Setup for growth of Streptomyces ontop of a cellophane placed above agar 
media in a petri dish. Following growth of Streptomyces the cellophane was cut and either 
stained or directly placed face up between a microscope slide and a coverslip.  
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10.1.27 Overexpression and depletion experiments 

 

For overexpression experiments strains were grown on cellophanes on SFM medium (plus 

any relevant antibiotics), usually with an overnight growth of 14-18 hours. Then, the 

cellophane was transferred to a fresh SFM plate containing either thiostrepton (20μg/ml) or 

the control which had no thiostrepton (also with relevant antibiotics and possibly plus or 

minus bacitracin 50µg/ml). The plates were then grown for a further 1-5 hours. Cellophane 

samples were then used for microscopy or generation of cell extracts. 

For K115 based depletion experiments strains were grown on cellophanes on SFM (plus 

any relevant antibiotics) plus 0.1µg/ml of thiostrepton, usually with an overnight growth of 

14-18 hours.Then, the cellophane was transferred to a fresh SFM plate containing either no 

thiostrepton for the depleted sample or 0.1µg/ml thiostrepton for the control sample (also 

with relevant antibiotics). The plates were then grown for a further 1-5 hours. Cellophane 

samples were then used for microscopy or generation of cell extracts.  

 

10.1.28 Generating cell extracts of Streptomyces fluorescent fusion samples 

 

In order to monitor the fluorescence signal of the fusion proteins the spores of different 

strains were grown on a cellophane surface on SFM solid medium plus relevant antibiotics. 

In the range of 107 Spores of the desired strain were added to 2-3 plates per strain and 

spread across the total area of the cellophane. The plates were incubated at 30˚C for 14-18 

hours. After which, cellophanes had enough cell material to be directly collected or 

cellophanes may have been moved onto different plates depending on the experimental 

setup (e.g. with or without thiostrepton). When samples were collected cell material was 

scraped off the surface of the cellophane and added to tubes containing ~100µl volume of 

<106 micron acid washed glass beads, combining multiple plates of each strain to one tube. 

Then, 100-200µl of Tris-Mg Buffer was added to each tube (20mM Tris pH 8, 10mM 

MgCl2). The cells underwent five 30 second blasts with a FastPrep®-24 Tissue and Cell 

Homogenizer machine (MP Biomedicals) set at 6.5 m/s. The cells were centrifuged for 30 

seconds at a low speed of 2,000rpm and the supernatant transferred to new tubes. The 

supernatant was further centrifuged at high speed at 13,000 rpm for 15 minutes, after 

which the supernatant was added to new tubes leaving a pellet fraction which was 

resuspended in 100µl of Tris-Mg Buffer. 
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10.1.29 Bacterial two-hybrid assay 

 

The bacterial two-hybrid assay was performed by cotransforming the E. coli strain 

BTH101 with pUT18C vectors encoding relevant T18 domain fusion proteins together 

with pKT25 vectors encoding relevant T25 domain fusion proteins. Cotransformant strains 

were grown on LB solid medium omitting glucose. The medium contained the antibiotics 

ampicilin and kanamycin. The medium was supplemented with 0.5 mM of IPTG allowing 

induction of the lac promoter and expression of the fusion protein. The medium was also 

supplemented with 40 μg/ml X-gal, to allow for visualisation of a positive interaction 

through the increased activity of β-galactosidase. The plates were imaged at growth after 1, 

2 and 3 days at 30ºC and the appearance of blue colonies was looked for. 

 

10.1.30 Overexpression of proteins from E. coli 

 

The strain BL21 pLysS (DE3) will enable high levels of protein expression as the pET21a 

or pET28a vectors put the cloned in gene under the control of a T7 promoter. BL21 pLysS 

(DE3) can express T7 RNA polymerase via the lac UV5 promoter which is IPTG 

inducible. A freshly transformed single colony was routinely used to inoculate a 10ml 

starter culture that would be grown overnight at 37˚C shaking rigorously (270rpm). Then, 

100µl or 500µl was subcultured into 10ml or 50ml LB, respectively. The cultures were 

then grown usually at 37˚C shaking rigorously (270rpm) to an OD ~0.7. Whereupon 

addition of 1mM IPTG was added to induce overproduction of the desired protein. The 

culture was then continued specifically at 37˚C shaking rigorously for 4 hours or overnight. 

At this point the culture was centrifuged and the cells pelleted and lysed freshly or 

resuspended in the desired buffer and frozen -80°C using liquid N2. 

 

10.1.31 E. coli cell lysis procedure 

 

For 50ml/10ml overnight or 4 hour cultures, culture material was centrifuged at 5000rpm 

for 5 minutes at 4°C, the supernatant discarded and the cells resuspended in 5ml/800µl of 

appropriate buffer. For lysis 800-1000µl of resuspended pellets were placed in screw cap 

tubes containing ~0.1ml acid washed glass beads (<106µm) and fast prepped for three x 30 

second bursts at 6.5m/s, with 5 minute rests in between, using a FastPrep®-24 Tissue and 

Cell Homogenizer machine (MP Biomedicals). Cells were centrifuged at 2000rpm for 30 
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seconds at room temperature and the cell material was removed from the beads pellet and 

added to new tubes. Cell material was commonly centrifuged 13000rpm for 15-20 minutes 

at 4°C to pellet unlysed cells and the insoluble fraction. The supernatant was added to new 

tubes and then used directly for downstream applications. 

For large scale 500ml cultures of His-DivIVA expressing cells. The large volume of 

culture was centrifuged in two 250ml aliquots added to Nalgene centrifuge canisters and 

centrifuged at 7000rpm for 15 minutes at 4°C in an Avanti® J-26XP Beckman Coulter 

centrifuge with a Beckman JLA 16.250 J-lite® Series Rotor (no. 06U 3339). The 

supernatant was removed and each pellet was initially resuspended in 5ml of NP1-10 lysis 

buffer, the pellets were then combined in one canister and made up to a total volume of 

125ml with NP1-10 lysis buffer. Centrifugation was repeated at 7000rpm for 15 minutes at 

4°C. The supernatant was removed and the single pellet was resuspended in 10ml of urea 

buffer 8.0. The sample was then sonicated for 10 x 10 seconds, with 1 minute pauses on ice 

inbetween. The lysed cell suspension was then added to a 50ml Nalgene centrifuge canister 

and centrifuged at 14000rpm for 20 minutes at 4°C in an Avanti® J-26XP Beckman 

Coulter centrifuge with a Beckman JA-25.50 Rotor (no. 07E 321). The resulting 

supernatant was removed and aliquoted, aliquots were frozen with liquid N2 and stored -

80°C. 

 

10.1.32 Overexpression of His-Scy from S. coelicolor 

 

Scy was overexpressed from S.coelicolor from TSB-PEG liquid cultures. There are two 

methods either with an initial culture in TSB-PEG or with an initial germination of spores 

in 2xYT, to attempt to prepare the cells for exponential growth.  

For two sets of TSB-PEG cultures the following was carried out in sterile conditions. The 

50ml TSB-PEG culture (containing apramycin) was inoculated with 50μl of spore stock of 

M145/pCJW93-scy. The culture was then incubated at 30°C for 24 hours, shaking at 310 

rpm. 2ml of this culture was transferred into a new 50ml TSB-PEG liquid culture 

containing apramycin. The subculure was then incubated at 30°C for 16 hours, shaking at 

310 rpm. After 16 hours 10 μg/ml of thiostrepton was added to the culture for induction or 

Scy expression. Incubation resumed at the previous conditions for 5 hours. 

Alternatively to pre-germinate the spores the procedure is as followed, in sterile conditions. 

500μl of 2 YT was added to a screw cap tube. 60μl of spore prep was also added to the 

tube. The spore solution was vortexed to mix and then incubated at 50ºC for 10 minutes. 
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The sample was then cooled on ice. The spore solution were then transferred to a 50ml 

coiled TSB-PEG flask (containing apramycin). The flask was incubated at 30ºC, 310rpm 

for 21 hours. Then thiostrepton (20μg/ml) was added to the culture. The flask was then 

incubated at 30ºC, 310rpm for 5 hours. 

 

10.1.33 Preparing a cell extract from S. coelicolor  

 

Buffer A = 50mM NaH2PO4 + 500mM NaCl + 10mM Imidazole, pH 8.0. 

 

For protein extraction by sonication the following was performed, the sample was kept on 

ice in between steps. The culture was added to a 50ml centrifuge tube. The cell suspension 

was centrifuged at 4500rpm for 5 minutes. The supernatant was discarded. The pellet was 

resuspended in 40ml of Buffer A. The sample was centrifuged at 4500rpm for 5 minutes. 

The supernatant was again discarded. The pellet was resuspended in 40ml of Buffer A. The 

resuspended samples was centrifuged again at 4500rpm for 5 minutes. The supernatant was 

again discarded. A 5ml Buffer A + protease inhibitor solution was made (4.6ml of Buffer 

A, 0.2ml of 100mM Pefabloc SC inhibitor, 0.2ml Pefabloc SC protector). 1ml of buffer 

plus protease inhibitor was added to pellet. Sample vortexed to mix. The cell suspension 

was sonicated for 30 seconds. Another 1ml of buffer plus protease inhibitor was added, 

then the sample was sonicated two x 30 seconds. Another 1ml of buffer plus protease 

inhibitor was added, then the sample was sonicated three x 30 seconds. The sample was 

centrifuged for 1 minute, 4500rpm. The sample was again sonicated for two x 30 seconds, 

aiming at the pellet generated by centrifuging. The sample was centrifuged at 5000rpm for 

5 minutes. The supernatant was transferred to multiple eppendorf tubes. The sample was 

centrifuged 13,000rpm for 20 minutes. The supernatants were combined from the 

eppendorfs upon being transferred into a new tube. The supernatant was then used for 

purification by FPLC.  

 

10.1.34 FPLC HisTrap nickel affinity chromatography 

 

Buffer A = 50mM NaH2PO4 + 500mM NaCl + 10mM Imidazole, pH 8.0. 

Buffer B = 50mM NaH2PO4 + 500mM NaCl + 300mM Imidazole, pH 8.0 

Buffer C = 50mM NaH2PO4 + 500mM NaCl + 500mM Imidazole, pH 8.0 
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From an E. coli or S. coelicolor cell lysate carrying overexpressed His-tagged protein, the 

supernatant was passed through a 0.2 μm filter before being loaded onto a HisTrap HP 1 

ml (GE Healthcare) column on an Amersham AKTA FRC FPLC machine. Affinity 

chromatography was then used to purify His-tagged proteins normally through either step 

elutions or gradient elutions whereby the initial flowthrough was added at 5-10mM 

imidazole concentration, at a flow speed of 0.2ml/minute. The column was washed with a 

20-30mM imidazole concentration and an increased flow speed of 0.5ml/minute to remove 

any unbound protein. The bound His-tagged protein was then eluted from the column by 

increasing the concentration of imidazole and reducing the flow speed back to 

0.2ml/minute. In step elutions this was to either 300mM or 500mM imidazole. 

Alternatively gradient elutions were used where the gradient was slowly increased from the 

wash concentration to either 300mM or 500mM imidazole. The column was also usually 

further washed in 500mM imidazole Buffer C following purification. Fractions containing 

the His-tagged protein were identified using SDS-PAGE. 

 

10.1.35 Ni-NTA column affinity purification of His-DivIVA with denaturing conditions 

 

Urea buffer 8.0 = 7M Urea, 0.1M Na2HPO4, 0.01M Tris-Cl, pH 8.0 

Urea buffer 6.3 = 8M Urea, 0.1M Na2HPO4, 0.01M Tris-Cl, pH 6.3 

Urea buffer 6.1 = 8M Urea, 0.1M Na2HPO4, 0.01M Tris-Cl, pH 6.1 

Urea buffer 4.5 = 8M Urea, 0.1M Na2HPO4, 0.01M Tris-Cl, pH 4.5 

 

To equilibrate the Qiagen Ni-NTA spin column, 600µl of urea buffer pH 8.0 was added 

and centrifuged 3100rpm for 2 minutes at room temperature with the lid open. The flow 

through was discarded and 600µl of the BL21 pET28a-divIVA supernatant sample from 

cell lysis was added to the column, 10.5µl supernatant was held back to be used as a 

preload sample. The column was incubated at room temperature for 1 minute and 

centrifuged 1400rpm for 5 minutes at room temperature with the lid closed. The flow 

through was collected. The column was washed four times with 600µl of urea buffer pH 

6.3, each time by centrifuging 3100rpm for 2 minutes at room temperature with the lid 

open. The flow through was collected after each wash (W1-W4). The column was then 

washed three times with 600µl of urea buffer pH 6.1 by centrifuging 3100rpm for 2 

minutes at room temperature with the lid open. Flow through was collected after each wash 

(W5-7). The protein was eluted from the column two times with 400µl of urea buffer pH 
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4.5, following each addition the column was incubated at room temperature for 1 minute. 

The column was centrifuged 1400rpm for 3minutes at room temperature with the lid 

closed. Flow through samples were collected (E1-E2). Protein was eluted further with 

300µl of urea buffer pH 4.5 by centrifuging 3100rpm, 2 minutes, room temperature with 

the lid open and flow through was collected (E3). 

 

10.1.36 Ni-NTA column co-affinity purification 

 

Samples of His tagged or non-tagged proteins were prepared in varying ways (mentioned 

in results). His-tagged protein samples were applied to the column in such a way as to then 

provide the non-tagged protein samples to test their ability to bind. To equilibrate the 

Qiagen Ni-NTA spin column, 600µl of NP1-10 lysis buffer was added and centrifuged 

3100rpm for 2 minutes at room temperature with the lid open. The flow through was 

discarded and the His-tagged protein sample was added to the column, 30µl supernatant 

was held back to be used as a preload sample. The column was incubated at room 

temperature for 1 minute and centrifuged 1400rpm for 5 minutes at room temperature with 

the lid closed. The flow through was collected. The column was washed two-three times 

with 600µl of NP1-10 lysis buffer, each time by centrifuging 3100rpm for 2 minutes at 

room temperature with the lid open. The flow through was collected after each wash (W1, 

W2...W3). Then, the non-tagged protein sample was added to the column, 30µl supernatant 

was held back to be used as a preload sample. The column was incubated at room 

temperature for 1 minute and centrifuged 1400rpm for 5 minutes at room temperature with 

the lid closed. The flow through was collected. The column was washed three-four times 

with 600µl of NP1-10 lysis buffer, each time by centrifuging 3100rpm for 2 minutes at 

room temperature with the lid open. The flow through was collected after each wash 

(W3/W4, W5...W6...W7). The bound protein was then eluted from the column two-three 

times with 300µl of NP1-500 elution buffer, following each addition the column was 

incubated at room temperature for 1 minute. The column was centrifuged 1400rpm for 3 

minutes at room temperature with the lid closed. Flow through samples were collected (E1, 

E2...E3). In control experiment cases where no His-tagged protein was used, the His-

tagged protein binding step was missed out and instead the non-tagged protein was added 

directly onto the column. The buffers used were; 

Phosphate buffer = 50mM Na2HPO4 + 50mM NaCl pH 8.0 

NP1-10 lysis buffer = 50mM Na2HPO4 + 300mM NaCl + 10mM Imidazole, pH 8.0 
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NP1-500 elution buffer = 50mM Na2HPO4 + 300mM NaCl + 500mM Imidazole, pH 8.0 

 

For the optimised His-Scy plus non-tagged FilP experiment the buffers used were; 

Loading/Wash buffer = 50mM Na2HPO4 + 300mM NaCl + 50mM Imidazole + 20mM 

MgCl2, pH 8.0 

Elution buffer = 50mM Na2HPO4 + 300mM NaCl + 500mM Imidazole + 20mM MgCl2, 

pH 8.0 

 

10.1.37 Protein sample buffer exchange 

 

To exchange buffers protein samples were placed in 2ml screw cap tubes and sealed with a 

porous membrane. They were then placed in a floater and inverted against the buffer of 

choice for a period of 2-4 days with the buffer being changed 2-3 times. The membrane 

used was Spectrum (R) Spectra/Por (R) Molecularporous membrane tubing, 3 membrane. 

It has an MWCO (Molecular Weight Cut Off) of 3500 Daltons. 

 

10.1.38 Protein concentration determination 

 

In the range of 10-15µl of Protein sample was made up to 1000µl with dH20 and the 

addition of 200µl of Bio-Rad Protein Assay. After mixing and 5 minutes incubation at 

room temperature, the absorbance was determined at 595nm in a Spectrophotometer 

(Hitachi U-1100). This was then compared with a standard line of BSA concentrations 0-

15µg/ml and an estimate of the concentration of protein in the sample was calculated 

and/or the molar concentration of purified protein was estimated.  

 

10.1.39 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

 

Fluorescent protein cell extracts samples were treated in conditions that were able to semi-

denature proteins. This included using protein loading dye (diluted to 1x) including SDS 

and β-mercaptoethanol. In order to maintain the conformation of the fluorescent proteins 

and therefore their fluorescent activity, samples were not boiled prior to loading. For full 

denaturing gels proteins were mixed with protein loading dye (diluted to 1x) including 

SDS and β-mercaptoethanol, then boiled at 100˚C for 5minutes prior to loading.   
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For full reducing conditions needed to reduce disulphide bonds in a DTBP crosslink, the 

samples were incubated with 100mM DTT at 37ºC for 20 minutes. Then, addition of 

protein loading dye (diluted to 1x) including β-mercaptoethanol and boiling at 100ºC for 5 

minutes were used.  

 For nonreducing conditions in order to maintain disulphide bonds such as in DTBP 

crosslinks, protein loading dye (diluted to 1x) that does not include β-mercaptoethanol was 

used and the DTT step omitted. Samples were still boiled at 100ºC for 5 minutes. 

Table 17: Recipe of an 8% Acrylamide Resolving Gel used in this study. 

Compound Stock Concentration Volume used Final Concentration 

Acrylamide 30% 2.66ml 8% 

Tris pH8.8 1.5M 2.5ml 0.375M 

SDS 10% 0.1ml 0.1% 

Freshly made APS  25% 0.04ml 0.1% 

TEMED >99% 0.006ml ~0.04% 

dH20  4.634ml  

 

Table 18: Recipe of a 3.75% Acrylamide Stacking Gel used in this study. 

Compound Stock Concentration Volume used Final Concentration 

Acrylamide 30% 0.5ml 3.75% 

Tris pH6.8 1M 0.5ml 0.125M 

SDS 10% 0.04ml 0.1% 

Freshly made APS  25% 0.016ml 0.1% 

TEMED >99% 0.004ml ~0.04% 

dH20  3ml  

 

SDS-Polyacrylamide gels were made using a higher percentage acrylamide resolving layer 

(8% recipe shown in Table 17) and a 3.75% acrylamide stacking layer (Table 18). For 

higher percentage gels the amount of acrylamide and dH20 were adjusted. Gels were 

placed in a tank containing 1% SDS running buffer. Samples were loaded and the gel run 

at 200 Volts, for 45-60 minutes depending on the running distance desired. For 

visualisation of fluorescent proteins, following running, the gels were immediately 

transferred to a BioRAD Molecular Imager FX. For visualisation of mCherry proteins, gels 

were excited with 532nm and the emission read at 555nm. For visualisation of EGFP 

proteins, a BioRAD external laser attached to the BioRAD Molecular Imager FX was used 

to excite the fluorophore at 488nm and the emission was then read at 532nm. Subsequently 
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gels were fixed by incubating in fixing solution (10% methanol, 7% acetic acid) for 1 hour 

with gentle agitation. Then, gels were stained with Colloidal Coomassie blue R250 for a 

minimum of 1 hour with gentle agitation. Gels were destained by boiling in dH20. The gels 

were then viewed with white light illumination using a BioRad transilluminator.  

 

10.1.40 Western blotting  

  

Prior to performing a Western Blot samples were separated on SDS-PAGE gels (in some 

cases the samples used were treated differently either with/without DTT, but were treated 

with β-mercaptoethanol). After the gels had been removed from the tank. Per gel 2 thick 

pieces of filter paper (Bio-Rad Extra Thick Blot Paper, Protean® XL Size, Catlog No. 

1703969) were cut to a size of 9.1cm x 6.5cm. A PVDF membrane (Membrane; 

HybondTM-P Protein Transfer, PVDF Transfer Membrane, Amersham Pharmacia 

Biotech, Version RPNF L/98/03) was cut to the same size and soaked in 100% methanol 

for 30 minutes coinciding with the end of the running of the SDS-PAGE gel. The 

membrane was then placed in transfer buffer (Transfer buffer = 20% Methanol, 3.03% 

Tris, 14.4% Glycine) for 30 minutes. The gel was simultaneously equilibrated in transfer 

buffer at the same time as the membrane, in a separate container. After 25 minutes the 

filter paper was placed in transfer buffer for the remaining 5 minutes. The filter paper, 

membrane and gel on the apparatus were then arranged from bottom to top; Anode, layer 

of filter paper, acrylamide gel, membrane and remaining layer of filter paper. Air bubbles 

were rolled out prior to the cathode being placed. The transfer was run at 10-15 volts for 1 

hour. The membrane was then carefully removed  from the Transblot and placed in 

blocking solution for 2 hours, rocking at room temperature. The membrane was then 

washed with TBST. The membrane was then placed in blocking solution with the addition 

of the primary antibody and incubated in the cold overnight, rocking gently. The 

membrane was then washed 3 times for 5 minutes each at room temperature in TBS + 

0.1% Tween-20 with gentle rocking. The membrane was then incubated in TBST solution 

+ secondary antibody at room  temperature with gentle rocking for a minimum of 2 hours 

(this incubation was performed with protection from light if necessary). The membrane 

was then washed 3 times for atleast 10 minutes each at room temperature in TBS + 0.1% 

Tween-20 with gentle rocking (plus protection from light if necessary). (For Odyssey the 

TBS + 0.1% Tween-20 was removed and the membrane was further washed 2 times for 5 

minutes each at room temperature in TBS (without Tween-20)). The membrane was then 
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used for detection either through scanning on an Odyssey Infrared Imaging System or 

though X-ray film developing. Developing was carried out in Dark conditions. Whereby 

10ml of Solution A was mixed with 10ml of Solution B. Approximately half was added to 

the membrane. The membrane was then incubated for 2 minutes at room temperature, 

manually shaking. The solution was then poured away, the dry membrane was wrapped 

tightly in cling film and placed in an autorad cassette, where the probed membrane was 

exposed to an X-ray film (Fuji film Super RX NIF blue), the X-ray radiograph film was 

then developed using a Konika SRX-101A Photon Imaging System. 

Western Blot solutions; 

 

Transfer Buffer- Tris 25mM, Glycine 150mM, 10% methanol  

 

TBS- 10mM Tris-HCl, 150mM NaCl, pH 7.5 

 

TBST- TBS with 0.1% Tween-20, pH 7.5 

 

Blocking Buffer- TBST with 4% milk 

 

Luminol- 0.44g Luminol in 10ml DMSO. Store 110µl aliquots -20˚C. 

 

Coumaric Acid- 0.15g in 10ml DMSO. Store 60µl aliquots -20˚C. 

 

Solution A- 1ml Tris-HCl pH8.5, 45µl Coumaric Acid, 110µl Luminol, 8845µl dH20 

 

Solution B- 1ml Tris-HCl pH8.5, 6µl 30% Hydrogen Peroxide, 8996µl dH20 

 

For anti-DivIVA experiments the primary antibody was a 1:5000 dilution of anti-DivIVA 

(Wang et al., 2009) and the secondary antibody was a 1:5000 dilution of Horseradish 

peroxidase-linked anti-rabbit IgG (Gift from the Munsterberg Lab). 

The Odyssey system uses two colour detection where the blot is viewed with the 

fluorescent channels 680nm and 780nm. Odyssey Blocking solution was used instead of 

TBST with milk powder. The Odyssey Western blot was performed using a primary 

antibody that was anti-his and raised in a mouse (added as 20ml Odyssey Blocking 

solution + 1/3000 primary antibody (6.6μl) + 0.1% Tween20 (20μl)). The secondary 
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antibody was Goat raised anti-mouse heavy chain from LI-COR (IRDye 800CW) (added 

as 17ml Odyssey Blocking Solution + 1/15000 secondary antibody (1.1μl) + 0.1% 

Tween20 (20μl)). 

 

10.1.41 Ultracentrifugation protein pellet assays 

 

Protein preparations were prepared in a 20mM Tris, 200mM Salt, 10mM MgCl2, pH 8.0 

buffer, were mixed as according to experimental design. The proteins were incubated at 

30˚C for 15 minutes. They were then transferred to Polycarbonate Beckmann Centrifuge 

tubes 5/16 x 13/16 inches (7 x 20mm). They were then centrifuged at 100,000rpm in a 

Beckman Optima TLX Ultracentrifuge using a Beckmann Coulter TLA 100 Fixed Angle 

Rotor for 30 minutes at 4˚C. The supernatant fractions were immediately removed from the 

tubes. The pellet fractions were left to redissolve in the tubes and were manually pipetted 

up and down and transferred to eppendorf tubes. The samples were then run on SDS-

PAGE gels in order to visualise the abundance of each protein in the pellet or the 

supernatant fraction.  

 
10.1.42 Strategy of PCR targeting of scy, filP and scy-filP 

 

To create knockouts of scy, filP and generate a scy-filP double knockout mutation, the 

REDIRECT© PCR-targeting system was applied (Gust et al., 2002). Using S. coelicolor 

chromosomal DNA carried on supercos-1 cosmids, the targeted gene is replaced with a 

resistance cassette generated by PCR using oligonucleotides with 39nt homology 

extensions. The cosmid carrying the target gene is mutagenised in E. coli expressing a 

phage lambda Red recombinase (λ RED)(Datsenko, and Wanner, 2000). This recombinase 

increases homologous recombination of linear fragments, in this case between the target 

gene and the homologous ends of the PCR-generated resistance cassette. The apramycin 

resistance cassette (aac(3)IV) was the template for the production of a linear PCR product 

that due to the incorporated homology extensions on the oligonucleotides can undergo 

recombination with the flanking sequences to scy, filP or scy-filP (Figure 125A). The 

disruption cassette also includes oriT from RK2 (Pansegrau et al., 1994) that allows the 

PCR targeted cosmid to be moved into S. coelicolor via conjugation from E. coli. The 

disruption cassette also carries FLP recognition target sequences (FRT) that at a later point 

can be used for removal of the intervening sequences with an FLP-recombinase. The 
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design and positioning of primers flanking either the scy gene or the filP gene are shown in 

Figure 125B. Primers scy Fwd and scy Rev were used for the scy mutant, primers filP Fwd 

and filP Rev for the filP mutant and the primers scy Fwd and filP Rev for the scy-filP 

double mutant. The predicted result of recombination for each mutant scenario is shown in 

Figure 125.  
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Figure 125: The strategy for knockout generation of scy, filP and scy-filP. (A) Primers 
were designed for the ampilification of an apramycin resistance (aac(3)IV) cassette from 
pIJ773. The primers were designed to anneal to 19 or 20 nucleotides (indicated in black) 
of the disruption cassette and 39 nucleotides that are homologous to the flanking regions 
around scy and filP (red). The cassette also contains FLP recognition target sequences 
(FRT) that can be used for FLP-mediated excision and oriT from RK2. (B) The wild-type 
locus of scy and filP on St8F4 cosmid. The position of the primers used in the PCR shown. 
The predicted scenario for mutants for scy (C) using scy Fwd and scy Rev. For a filP 
mutant (D) with filP Fwd and filP Rev. For a scy-filP mutant (E) with scy Fwd and filP 
Rev.  
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10.1.43 PCR of scy, filP and scy-filP disruption cassettes 

       

To generate the knockout cassettes the PCR reaction was carried out using the template of 

the ~1.3Kb EcoRI-HindIII fragment of pIJ773 (Gust et al., 2003) carrying the apramycin 

resistance cassette. For the scy knockout cassette the primers scy Fwd and scy Rev were 

used. For the filP knockout cassette the primers filP Fwd and filP Rev were used. For the 

scy-filP knockout cassette the primers scy Fwd and filP Rev were used. The PCR was 

performed so that there were 10 cycles with an annealing temperature of 50°C and 15 

cycles with an annealing temperature of 55°C. This was done as the initial template DNA 

would only have 19 or 20nt for the primers to anneal to. In later steps when earlier 

products act as the template and the oligos will be able to anneal along the full length (58-

59nt) higher annealing temperature is used. The PCR product was analysed using a 0.7% 

agarose gel (Figure 126). The apramycin cassette is 1382bp long, the primers add another 

39bps to either side of the cassette making it 1460bps long. The main PCR product (Figure 

126) is in the region of 1400bps long, so this indicates that the PCR reaction was 

successful. The PCR products were then purified using a QIAquick PCR purification kit. 

 
 

10.1.44 Targeting of the St8F4 cosmid      
 

The S. coelicolor genome was sequenced from a set of ordered Supercos-1 clones 

containing ~37.5kb chromosomal fragments (Redenbach et al., 1996). The cosmid St8F4 

contains a 33.9kbp fragment of S.coelicolor chromosomal DNA, which carries the genes 

scy and filP in their native genetic arrangement. The cosmid also encodes the neomycin 

resistance gene (neor) which also confers resistance to kanamycin. Preliminary to the PCR 

targeting, St8F4 was transformed into E. coli BW25113 carrying pIJ790. The pIJ790 

Figure 126: Analysis of the disruption 
cassettes generated by PCR. The PCR 
products were loaded onto a 0.7% agarose 
gel and used in electrophoresis. The PCR 
products generated were the scy mutant 
cassette (Lane 2), the filP mutant cassette 
(Lane 3) and the scy-filP mutant cassette 
(Lane 4). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

2 3 4 1 
bp 
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plasmid carries the lambda Red recombinase genes gam, bet and exo under the L-arabinose 

inducible promoter ParaBAD. The plasmid carries the selectable marker cat, the 

chloramphenicol resistance gene. The plasmid also has a temperature sensitive replicon, 

repA101ts so in order to maintain the plasmid, cells were grown at 30˚C. E. coli 

BW25113/pIJ790 carrying St8F4, expressing the lambda Red recombinase genes were 

made competent and the appropriate PCR cassette was introduced using electroporation. 

Introduction of the disruption cassette in a strain expressing gam, bet and exo should 

enable homologous recombination between the ~39nt ends of the linear PCR cassette and 

the appropriate sites on the cosmid DNA. Successful recombinational events were selected 

on plates containing apramycin. Growth at 37ºC was to insure loss of pIJ790 as further 

recombinational events are undesirable. Around 20-50 colonies grew successfully after 1 

day for each of the disruption cassettes. Cosmid DNA was isolated from four colonies for 

each of the three sets of knockouts. As the recombinational event targets only a proportion 

of the multicopy cosmid in the E.coli BW25113/pIJ790 cells. In order to thoroughly purify 

cosmids carrying the mutant alleles the cosmids from E. coli BW25113 were further 

transformed into E. coli DH5α and clones with the mutant alleles were reselected using 

apramycin. Cosmid DNA then purified from DH5α was used as samples in the subsequent 

experiments. For analysis EcoRI and PstI restriction digestions were performed to confirm 

that the cosmids carried the correct mutations (Figure 127). 

 
 

Figure 127: Confirmation of the mutant 
alleles generated. EcoRI (Lanes 1, 3, 5 
& 7) and PstI (Lanes 2, 4, 6 & 8) 
restriction digests of each cosmid were 
analysed on a 0.7% agarose gel. The 
following cosmids were tested St8F4 
(Lanes 1 & 2), St8F4/scy::aac(3)IV 
(Lanes 3 & 4), St8F4/filP::aac(3)IV 
(Lanes 5 & 6) and St8F4/scy-
filP::aac(3)IV (Lanes 7 & 8).   
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scy 

Figure 128: A) Restriction patterns for EcoRI and PstI on the relevant sections of (A) the 
St8F4 cosmid, (B) the cosmid with scy::aac(3)IV, (C) the cosmid with filP::aac(3)IV  and 
(D) the cosmid with the cosmid with scy-filP::aac(3)IV. The numbers at restriction sites 
were a calculated with 1bp being the 1st nucleotide of the S. coelicolor chromosomal DNA 
insert in St8F4. 
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The expected sizes of the DNA fragments after for EcoRI and PstI restriction digestions of 

the cosmid DNA, in the region of the scy and filP genes, is shown in Figure 128. The 

EcoRI digestion shows a reduction in the size of the EcoRI fragment containing the 

scy/filP alleles for both the St8F4/scy::aac(3)IV and the St8F4/scy-filP::aac(3)IV knockout 

cosmids. For the St8F4/filP::aac(3)IV cosmid the small change in size of the EcoRI 

fragment from the wild-type is not detectable, in order to confirm this disruption cosmid 

the PstI digest is more diagnostic. For St8F4/filP::aac(3)IV cosmid it appears that the 

8344bp wild-type fragment in St8F4 has been replaced by two fragments of the expected 

size ranges of 5602bp and 3192bp. The comparison of the restriction patterns of the 

generated cosmids and the sizes, expected from the genome sequence data confirms that 

the disruption cassettes have been successfully introduced to the St8F4 cosmid and we 

successfully generated the mutant alleles in E. coli. 

 

10.1.45 Introduction of the knockout cosmids into S. coelicolor 
 

Streptomyces can not readily be transformed by electroporation, protoplast transformation 

can be used, however, conjugation is much more efficient (Matsushima et al., 1994). Due 

to S. coelicolor’s intrinsic methyl-specific restriction endonuclease system a non-

methylating strain such as E. coli ET12567 (MacNeil et al., 1992) is needed for successful 

passage of the DNA from E. coli to Streptomyces via conjugation. For conjugation E. coli 

ET12567 must also contain a plasmid, pUZ8002, which can mobilise vectors containing 

oriT in trans. Each of the mutant cosmids generated were moved first into E. coli 

ET12567/pUZ8002 cells. To select for transformants containing the disruption cosmid, 

cells were grown on plates also containing apramycin. Then from E. coli 

ET12567/pUZ8002 the cosmids were mobilised into S. coelicolor M145 by conjugation. 

The exconjugants were selected using apramycin (for the mutant cosmid) and nalidixic 

acid (for the elimination of E. coli).  

The cosmid used cannot replicate in S. coelicolor, therefore the only way possible to 

generate an apramycin resistant colony is by the cosmid undergoing homologous 

recombination with the chromosomal DNA. However, this can result in two outcomes, a 

single recombination event can result in the incorporation of the whole cosmid DNA 

carrying the mutant allele into the chromosome maintaining an intact copy of the gene as 

well as the apramycin cassette; whereas, a second recombination event on the adjacent side 

of the apramycin cassette will result in the replacement of the gene with the apramycin 
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cassette which will be now positioned at the locus of the knocked out gene. As the cosmid 

also carries a neo gene outside of the S. coelicolor DNA sequences, a single crossover 

colony will produce kanamycin resistant colonies whereas a double crossover will generate 

kanamycin sensitive colonies. Therefore, plates carrying the exconjugants were replica 

plated onto LB medium containing kanamycin and apramycin, respectively. The medium 

also contained nalidixic acid to prevent the growth of E. coli. These plates were grown at 

30°C for 2 days. Colonies that grew on apramycin plates but failed to grow on kanamycin 

plates were of interest as these were the colonies where double crossovers had occurred.   

After replica plating we identified 3 scy::aac(3)IV mutants, 3 filP::aac(3)IV mutants and 3 

scy-filP::aac(3)IV double mutants. Each colony was streaked onto SFM plates containing 

apramycin and nalidixic acid. These were incubated for 5 days at 30°C, then were replica 

plated again to confirm that they were kanamycin sensitive and apramycin resistant. A 

number of the plates contained heterogenous looking populations that were heterogenous 

in sensitivity to kanamycin. This can be explained by the ease of contamination with 

spores of single crossover strains. One filP::aac(3)IV knockout was confirmed to be false. 

However, all the others appeared to have likely double crossovers that were apramycin 

resistant and kanamycin sensitive. From the SFM plates that were screened with replica 

plating, a single colony was picked and used to make spore preparations, this enabled the 

strains to be stored at -20°C. 

Introduction of the apramycin cassette to a gene can result in polar effects on downstream 

genes. The aac(3)IV marked cosmids were then used by the Kelemen lab (M. Gillespie) so 

that taking advantage of the FLP recognition target sequences, FLP recombinase was used 

to remove the apramycin cassette from the disruption cosmids. This generated an 81bp 

fragment encoding a 28 amino-acid “scar”. The removal of the apramycin cassette also 

removed oriT that is required for conjugation. The aac(3)IV cassette and oriT was 

reintroduced into the cosmid by replacing the ampicillin resistance gene. The resulting 

cosmids carrying the unmarked mutant alleles were then introduced into the aac(3)IV 

marked Streptomyces strains, whereby the flanking sequences to the “scar” could undergo 

recombination and double crossover events lead to an unmarked knockout mutant where 

the previous aac(3)IV cassette was “flipped” out.  This generated a non-polar mutation and 

enabled further use of apramycin resistance for future knockouts or genetic alterations. The 

unmarked and “non-polar” mutants which are used for phenotypic studies are hence forth 

designated scy (K112), filP, and scy-filP. 
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10.1.46 Generation of a Scy N-terminal EGFP translational fusion 

 

To establish the localisation of Scy we aimed to generate an N-terminal translational 

EGFP-Scy fusion. However, an egfp-scy fusion had previously been generated in the 

plasmid pCJW93-egfp-scy (Hunter and Kelemen unpublished)(Figure 129). This is a 

derivative of the multicopy vector pCJW93 (Wilkinson et al., 2002) whereby an egfp-scy 

fusion is driven by the thiostrepton inducible promoter PtipA (Murakami et al., 1989). The 

fusion sequence was constructed so that the 3’ end of the egfp sequence lacks a stop codon 

and reads into a linker with the amino acid sequence Tyr-Asn-Gly-Gly-Gly-Gly-Gly in 

frame to the 5’ of scy, whereby the first codon of scy has been swapped from GTG to ATG 

(Figure 129B). As this fusion is driven by a thiostrepton inducible promoter in a high copy 

number vector we decided that it would be more suitable to study the localisation of Scy 

when a single copy of egfp-scy was driven by its native promoter sequence. 

To deliver this construct we chose an integrative plasmid pIJ8660 (Sun et al., 1999) which 

as discussed earlier is able to be passeged into Streptomyces species through conjugation 

from E. coli ET 12567/pUZ8002 via oriT. The strategy was to PCR amplify the scy 

promoter sequence, cloning this into pIJ8660.The egfp-scy fusion would then be moved 

downstream of the scy promoter allowing it to be under the direct transcriptional regulation 

of the scy promoter. The scy promoter sequence was amplified from S. coelicolor M145 

chromosomal DNA using the oligonucleotides scyprom3-Nde and scyprom4-Bam 

generating a 385bp product that contained the whole intergenic region between scy and 

sco5398. This PCR product was then treated with the Klenow fragment of DNA 

polymerase to generate blunt ends and the fragment was cloned into the EcoRV site of 

vector pIJ8660 (Figure 130). The DNA fragments used in the ligation to generate pIJ8660-

Pscy can be seen in Figure 131B. After ligation of the fragments the ligation mixture was 

used for transformation of E. coli strain DH5α. The transformants were screened with 

colony PCR (Figure 131D) to find potential clones where the fragment containing the scy 

promoter was cloned in the correct direction to egfp, positive colonies were predicted to 

produce a ~750bp product. Plasmid DNA was then isolated from positive colonies, isolated 

DNA was confirmed by restriction digestion (Figure 131C) to liberate a small BglII 

fragment approximately 422bp in size. Sequencing was also used to verify that the scy 

promoter had indeed been cloned into pIJ8660. Therefore, confirming the product 

generated was the plasmid pIJ8660-Pscy, with the scy promoter upstream of egfp. 
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An NdeI site corresponding with the translational start point of egfp and an EcoRI site at 

the end of the open reading frame of scy were used as restriction sites to lift the egfp-scy 

5.1kb fragment from pCJW93-egfp-scy into the same sites in pIJ8660-Pscy (Figure 130). 

The DNA fragments used in the ligation can be seen in Figure 132B & C. After ligation of 

the fragments the ligation mixture was used for transformation of E. coli strain DH5α. The 

transformants were screened with colony PCR (Figure 132E) to find potential clones where 

the fragment containing egfp-scy was cloned downstream to the scy promoter, positive 

colonies were predicted to produce a ~750bp product. The primers used, however, would 

not be able to differentiate between clones with egfp-scy or just egfp as was found in 

pIJ8660-Pscy, though it is assumed that the digestion of pIJ8660-Pscy was complete and   

CTC GGC ATG GAC GAG CTG TAC AAC GGC GGC GGC GGC GGT ATG CGG GGC  

                      BsrGI        Linker 

TAC GAG              L   Y   N   G   G   G   G   G   M                

Figure 129: pCJW93-egfp-scy encodes an EGFP-Scy fusion driven by a thiostrepton 
inducible promoter in a multicopy plasmid. 

A) The map of pCJW93-egfp-scy including restriction sites, antibiotic resistance genes, 
origins of replication and an inducible promoter sequence.  

B) Sequence of the junctions between egfp and scy. The egfp-scy junction contains a 
glycine linker originally generated by annealing the oligonucleotides Linker 1 and Linker 
2 (highlighted yellow/italics). Restriction site sequences are bold and underlined. The scy 
sequences are highlighted light blue and egfp is highlighted green. 
 

A 

B 
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A 
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PCR of Pscy 

fragment cloned blunt 

end into EcoRV site 

B 

Figure 130: Generation of pIJ8660-Pscy and pIJ8660-Pscy-egfp-scy. 

A) pIJ8660-Pscy is a pIJ8660 derivative containing a Pscy PCR fragment cloned blunt 
end into the EcoRV. B) An egfp-scy fragment was liberated using NdeI and EcoRI from 
pCJW93-egfp-scy. C) Using the enzymes NdeI and EcoRI pIJ8660-Pscy was digested 
and the egfp-scy fragment cloned so that it was put under the direction of the Pscy 
fragment. The restriction sites used in the cloning are underlined in red. 
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1 2 3 1 2 3 4 5 

B C 

Figure 131: DNA Fragments for generation of scy promoter pIJ8660 construct and its 
confirmation by restriction digests.  

A) pIJ8660-Pscy. Sequence of the junctions between the blunt ended PCR product of the 
scy promoter cloned into the EcoRV site of pIJ8660. Restriction site sequences are bold and 
underlined. Primer sequences are marked in italics and with arrows. The Pscy sequences 
are highlighted light blue and egfp is highlighted green. Primers for colony PCR are 
marked (black arrows). 

B) The gel isolated fragments used for construction of pIJ8660-Pscy were analysed on a 
0.7% agarose gel. The fragments used were the Klenow treated PCR fragment containing 
Pscy (Lane 2) and an EcoRV fragment of pIJ8660 (Lane 3). The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1).  

C) The plasmids pIJ8660 (Lanes 2 & 3) and the plasmid pIJ8660-Pscy (Lanes 4 & 5) were 
analysed on a 1% agarose gel. Undigested samples (Lanes 2 & 4) were run together with 
samples digested with BglII (Lanes 3 & 5). The arrow indicates the 422bp fragment 
carrying the scy promoter.  The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

D) Candidate colonies were screened with colony PCR using scyprom4-Bam (Upstream) 
and EGFPseq (downstream) primers and PCR products were analysed on a 1% agarose 
gel. The plasmid pIJ8660 was used as a control template (Lane 2). Candidate colonies are 
shown Lanes 3-15. The arrow indicates the ~750bp PCR product expected. The DNA size 
marker is Lambda HindIII/EcoRI (Lane 1).  

BglII             BamHI   scyprom3-Nde 

AGA TC TGA TTG GAG GAT CCC GTA CGC GTT CTG TAC GAC GAG CCC GGC  

GCG GTT 

AGG GGA CGG ATG GGA CCG CGC ATA TGG CCG ATC GGA TCC TCT AGA ATG 

       scyprom4-Bam        NdeI    

CAT GGT ACC AGA TCT GAC TGA GTG ACC AAA GGA GGC GGA CAT ATG GCC 

             BglII                                  NdeI Start 

 

A 
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Figure 132: DNA Fragments for generation of an EGFP-Scy fusion construct and its 
confirmation by restriction digests. 

A) pIJ8660-Pscy-egfp-scy. Sequence of the junctions between the scy promoter, egfp and 
scy. The egfp-scy junction contains a glycine linker originally generated by annealing the 
oligonucleotides Linker 1 and Linker 2 (highlighted yellow/italics). Restriction site 
sequences are bold and underlined. The Pscy and scy sequences are highlighted light blue 
and egfp is highlighted green. Primers for colony PCR are marked (black arrows). 

B) The gel isolated NdeI/EcoRI fragment of pIJ8660-Pscy used for construction of 
pIJ8660-Pscy-egfp-scy was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker 
is Lambda HindIII/EcoRI (Lane 1). 

C) The gel isolated NdeI/EcoRI fragment containing egfp-scy used for construction of 
pIJ8660-Pscy-egfp-scy was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker 
is Lambda HindIII/EcoRI (Lane 1). 

D) The plasmids pIJ8660-Pscy (Lanes 2 & 3) and the plasmid pIJ8660-Pscy-egfp-scy 
(Lanes 4 & 5) were analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) 
were run together with samples digested with KpnI and EcoRI (Lanes 3 & 5). The arrow 
indicates the 4137bp fragment carrying part of scy. The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1).  

E) Candidate colonies were screened with colony PCR using scyprom4-Bam (Upstream) 
and EGFPseq (downstream) primers and PCR products were analysed on a 0.7% agarose 
gel. Candidate colonies are shown Lanes 2-20. The arrow indicates the ~750bp PCR 
product expected. The DNA size marker is Lambda HindIII/EcoRI (Lane 1).   

 

 

B C D 
1 2 1 2 1 2 3 4 5 

CTC GGC ATG GAC GAG CTG TAC AAC GGC GGC GGC GGC GGT ATG CGG GGC  

                      BsrGI        Linker 

TAC GAG              L   Y   N   G   G   G   G   G   M              

A                            NdeI Start 
CAG GGG ACG GAT GGG ACC GCG CAT ATG GCC ATG  
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bp bp bp 

bp 

269 

 



                                                                                                                      Neil Holmes 

the PCR was able to differentiate between possible ligation of the vector fragments with 

and without the fragment containing egfp-scy. Plasmid DNA was then isolated from 

positive colonies, isolated DNA was confirmed by restriction digestion (Figure 132D) to 

liberate a large KpnI/EcoRI fragment approximately 4137bp in size containing the C-

terminal of scy. Sequencing was also used to verify the junctions between the scy promoter 

and between egfp and scy. Thus, confirming the generation of pIJ8660-Pscy-egfp-scy 

(pK56) with the egfp-scy fusion sequence directly regulated under the native scy promoter 

sequence. 

 

10.1.47 Generation of a Scy N-terminal mCherry translational fusion 

 

To establish the localisation of Scy with a different fluorescent tag, with a different tag it 

was sought to generate an N-terminal fusion of scy to mCherry, similar to the construct 

pIJ8660-Pscy-egfp-scy (pK56). An mCherry-scy fusion had previously been generated in 

the vector pIJ6902-mCherry-scy (Gillespie and Kelemen unpublished)(Figure 133). This is 

a derivative of the integrative vector pIJ6902 (Huang et al., 2005) whereby an mCherry-

scy fusion is driven by the thiostrepton inducible promoter PtipA (Murakami et al., 1989). 

The mCherry fusion sequence was generated by simply replacing the egfp in the egfp-scy 

fusion from pCJW93-egfp-scy sequence with mCherry using the restriction enzymes NdeI 

and BsrGI. This means that the 3’ end of the mCherry sequence lacks a stop codon and 

reads into a linker with the amino acid sequence Tyr-Asn-Gly-Gly-Gly-Gly-Gly in frame 

to the 5’ of scy similarly starting with an ATG codon instead of a GTG (Figure 133B). The 

vector pIJ6902 due to the ФC31 attP and integrase found on this plasmid, it is only 

contained as a single copy on the chromosome. However, the mCherry-scy fusion in 

pIJ6902-mCherry-scy is driven by a thiostrepton inducible promoter, so we decided that it 

would be more suitable to study the localisation of Scy when mCherry-scy was driven by 

its native promoter sequence. 
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To generate an N-terminal mCherry fusion to scy driven by the native scy promoter we 

choose a strategy to move a fragment containing mCherry-scy to our previously generated 

pIJ8660-Pscy plasmid. Similarly to egfp-scy an NdeI site at the start of mCherry and an 

EcoRI site at the end of scy were used as restriction sites to lift the 5.1kb fragment 

containing the mCherry-scy sequence into the same sites in pIJ8660-Pscy (Figure 134). 

The DNA fragments used in the ligation can be seen in Figure 135B. After ligation of the 

fragments the ligation mixture was used for transformation of E. coli strain DH5α. The 

transformants were screened with colony PCR (Figure 135D) to find potential clones 

where the fragment containing mCherry-scy was cloned downstream to the scy promoter, 

positive colonies were predicted to produce a ~1300bp product. Plasmid DNA was then 

Figure 133: pIJ6902-mCherry-scy encodes an mCherry-scy fusion driven by a thiostrepton 
inducible promoter in a multicopy plasmid. 
A) The map of pIJ6902-mCherry-scy including restriction sites, antibiotic resistance 
genes, origins of replication and an inducible promoter sequence.  

B) Sequence of the junctions between mCherry and scy. The mCherry-scy junction contains 
a glycine linker originally generated by annealing the oligonucleotides Linker 1 and 
Linker 2 (highlighted yellow/italics). Restriction site sequences are bold and underlined. 
The scy sequences are highlighted light blue and mCherry is highlighted pink. 
 

A 

B 

GAC GAG CTG TAC AAC GGC GGC GGC GGC GGT ATG CGG GGC TAC GAG 

          BsrGI       Linker  

         L   Y   N   G   G   G   G   G   M                           
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isolated from positive colonies, isolated DNA was confirmed by restriction digestion 

(Figure 135C) to liberate a large KpnI/EcoRI fragment approximately 4137bp in size 

containing the C-terminal of scy. Sequencing was also used to verify the junctions between 

the scy promoter and between mCherry and scy. Thus, confirming the generation of 

pIJ8660-Pscy-mCherry-scy (pK57) with the mCherry-scy fusion sequence directly 

regulated under the native scy promoter sequence.  

 

 

A 

B 

Figure 134: Generation of pIJ8660-Pscy-mCherry-scy. 

pIJ8660-Pscy-mCherry-scy is a derivative of pIJ8660-Pscy. A) An mCherry-scy fragment 
was liberated using NdeI and EcoRI from pIJ6902-mCherry-scy. B) Using the enzymes 
NdeI and EcoRI pIJ8660-Pscy was digested and the mCherry-scy fragment cloned so that it 
was put under the direction of the Pscy fragment. The restriction sites used in the cloning 
are underlined in red. 
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Figure 135: DNA Fragments for generation of an mCherry-Scy fusion construct and its 
confirmation by restriction digests. 

A) pIJ8660-Pscy-mCherry-scy. Sequence of the junctions between the scy promoter, 
mCherry and scy. The mCherry-scy junction contains a glycine linker originally generated 
by annealing the oligonucleotides Linker 1 and Linker 2 (highlighted yellow/italics). 
Restriction site sequences are bold and underlined. The Pscy and scy sequences are 
highlighted light blue and mCherry is highlighted pink. Primers for colony PCR are marked 
(black arrows). 

B) The gel isolated fragments used for construction of pIJ8660-Pscy-mCherry-scy were 
analysed on a 0.7% agarose gel. The fragments used were an NdeI/EcoRI fragment of 
pIJ8660-Pscy (Lane 2) and an NdeI/EcoRI fragment containing mCherry-scy (Lane 3). The 
DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

C) The plasmids pIJ8660-Pscy (Lanes 2 & 3) and the plasmid pIJ8660-Pscy-mCherry-scy 
(Lanes 4 & 5) were analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were 
run together with samples digested with KpnI and EcoRI (Lanes 3 & 5). The arrow 
indicates the 4137bp fragment carrying part of scy. The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

D) Candidate colonies were screened with colony PCR using scyprom4-Bam (Upstream) 
and scyKpn2 (downstream) primers and PCR products were analysed on a 1% agarose gel. 
Candidate colonies are shown Lanes 2-19. The arrow indicates the ~1300bp PCR product 
expected.  The DNA size marker is Lambda HindIII/EcoRI (Lane 1).  

 

 
 

 

B C 1 2 3 1 2 3 4 5 

GAC GAG CTG TAC AAC GGC GGC GGC GGC GGT ATG CGG GGC TAC GAG 

          BsrGI       Linker  

         L   Y   N   G   G   G   G   G   M                           

                           NdeI Start 

CAG GGG ACG GAT GGG ACC GCG CAT ATG GTG AGC AAG GG 

A 
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10.1.48 Generation of a Scy C-terminal EGFP translational fusion 

 

To further verify the localisation of Scy we aimed to generate a C-terminal translational 

Scy-EGFP fusion. In order to be able to do this we needed to use an already generated 

vector, pAZ1 (Kelemen Lab, University of East Anglia)(Figure 136). The vector  

  

pAZ1 is a derivative of pIJ8668 (Sun et al., 1999) containing a linker made by annealing 

EGFPLinker1 and EGFPLinker2 and placing these between the BamHI and NdeI sites of 

egfp in pIJ8668. This linker deleted the NdeI site of egfp and adds an additional NdeI site 

A 

GAT ATC GGA TCC TCT AGA CAT ATG GGC GGC GGC GGC GGT ATG GCC ATG 

         BamHI   XbaI    NdeI       Linker         Start 

                 S   R   H   M   G   G   G   G   G   M 

B 

Figure 136: pAZ1 is a vector with egfp downstream of a multiple cloning site and a glycine 
linker. 

A) The map of pAZ1 including restriction sites, antibiotic resistance genes, origins of 
replication and a glycine linker.  

B) Sequence of the linker and egfp in pAZ1. The glycine linker was originally generated by 
annealing the oligonucleotides EGFPLinker1 and EGFPLinker2 (highlighted 
yellow/italics). Restriction site sequences are bold and underlined. The egfp sequence is 
highlighted green. 
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followed by a linker encoding the amino acid sequence Ser-Arg-His-Met-Gly-Gly-Gly-

Gly-Gly in frame to the 5’ of egfp (Figure 136B). Thus, meaning that pAZ1 is ideal for 

generating C-terminal fusions to EGFP. The strategy to be able to generate a Scy C-

terminal fusion to EGFP was obviously complicated by the need to remove the stop codon 

of scy so that it would be able to read into egfp. So to be able to remove the stop codon 

from scy, it was planned to PCR amplify the end of scy removing the stop codon and 

cloning it into pAZ1. To generate a full length scy-egfp fragment, the C-terminal scy 

fragment fused to egfp would be lifted to pIJ8660, therefore allowing the use in a vector 

able to integrate into the S. coelicolor chromosome. Then, the remainder of scy and the scy 

promoter could be subcloned upstream of the fragment in pIJ8660, making a full length 

fusion with the means to be driven by the native promoter. 

It was aimed that the last 1001bp of scy would be amplified using the primers scy-Bam and 

scy-Nde. The primer scy-Nde would anneal to the C-terminal of scy and remove the stop 

codon and add an NdeI site making it possible to fuse scy in frame to egfp in the vector 

pAZ1. The primer scy-Bam introduces a BamHI site so that the PCR product could be 

digested with BamHI and NdeI for directional cloning (Figure 139). The template used was 

a scy linear fragment from pCJW93-egfp-scy (Figure 132C). For efficient screening for the 

detection of mutations the PCR product was first cloned via BamHI and NdeI into pUC18, 

facilitating blue/white selection for plasmids carrying inserts (Figure 137A & Figure 138). 

After ligation of the fragments the ligation mixture was used for transformation of E. coli 

strain DH5α. Plasmids from successful white colonies were screened with colony PCR 

(Figure 138D) to find potential clones where the a fragment containing scyCterm was 

cloned into pUC18, positive colonies were predicted to produce a ~1000bp product. 

Plasmid DNA was then isolated from positive colonies, isolated DNA was confirmed by 

restriction digest (Figure 138C) to liberate a small  BamHI/NdeI fragment, yet it appeared 

at this stage that it might be slightly smaller than the ~1000bp predicted product. Several 

candidate clones were analysed by sequencing from the multiple cloning site of pUC18 

using the pUC18 reverse primer. However, it was continuously found that there was a large 

deletion of part of the sequence and also point mutations (Figure 137B), these observations 

are not abnormal as generating PCR products of GC rich sequences such as those in S. 

coelicolor is technically challenging. Not shown here, but the Kelemen lab has had 

numerous attempts of PCR with High Fidelity Taq Polymerases. As well the PCR shown 

here was also tried with Roche Applied Science Expand High Fidelity Taq Polymerase 

(Cat. No. 11 732 641 001), use of High Fidelity Taq also generated mutations in this    
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 BamHI           scy-Bam                       Deletion 

GGATCCGCCAGCAGCTGGTCTCGGACGGCACCGGGGAGGCGGAGCGGCT→GCGGGCCGAGG 

CCGCCGACACCGTCGGCTCCGCGCAGCAGCACGCCGAGCAGGTCGACACGCTCATCACGGAG

ACCGCCGCCGAGGCCGACAAGCTGCTCACCGAGGCTCAGCAGCAGGCCCAGAAGACCACCGC

GGACGCCGAGTCGCAGGTCGACACGATGGTCGGCGCGGCCCGCTCGGAGGCCGACCGGATCG

TCCAGGAGGCGACGGTCGAGGGCAACACCCGGGTGGAGAAGGCCCGTACGGACGCGGACGAG

CTGCTGGTCGGCGCCCGCCGGGACGCGACCGCCATAAGGGAGCGCGCGGAGGAGCTGCGCGA

GCGGCTCACCTCCGAGATCGAGGAGCTGCACGAGCGGGCCCGCCGCGAGGCCGCCGAGACGA

TGAAGTCGGCCGGCGACCGCTGCGACGCGCTCATCAAGGCCGCCGAGGAGCAGCTCGCCAAG

GCGGAGGCGAAGGCGAAGGAGCTGGTGTCGGAGGCCAACTCCGAGGCCGGCAAGGTGCGCAT

CGCCGCCGTCAAGAAGGCCGAGGGGCTGCTCAAGGAGGCCGAGCAGAAGAAGGCCACCCTGG

TCCGCGAGGCCGAGGAGCTGAAGGCCGAGGCGGTCCGCGAGGCCCGGGCCACGGTCGACGAG

GGCAAGCGCGAGCTGGAGGTGCTGGTCCGGCGCCGCGAGGACATCAACGCGGAGATCTCCCG 

                                                     BglII 

GGTCCAGGACGTGCTGGAGGCGCTGGAGTCGTTCGAGGCGCCCGGGGGTGCGAAGGACAACG

GGGTGAAGGCCGGAGCGACGGTGGGCGCCCCACGTTCGGGTGGCAAGTCGTCAGACGGCCAT 

                                         scy-Nde          NdeI 

ATG 

           

             

Figure 137:  Generation of pUC18-scyCterm 

A) pUC18-scyCterm is a derivative of pUC18 containing the 864bp scyCterm PCR 
product cloned using BamHI and NdeI. The restriction sites used in the cloning are 
underlined in red. 

B) The sequence of the 864bp scyCterm PCR product generated using the primers 
scy-Nde and scy-Bam. Primer sequences are marked in italics and with arrows. 
Restriction site sequences are bold and underlined. The scyCterm sequences are 
highlighted light blue. “→” marks a deletion produced during the PCR. 

A 

B 

PCR of scyCterm 

fragment cloned into 

BamHI and NdeI 

sites. 
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sequence (~2/1000 bases) as well as others attempted in the Kelemen lab. Suggesting that 

even High Fidelity Taq polymerases can also have problems with the integrity with high 

percentage GC sequences. However, despite the mutations found with Go Taq® 

Polymerase, in the identified clone shown there is a BglII site at the end of scy and the C- 

terminal sequence to this site had no mutations (Figure 137B) making the selected clone 

useful for later steps of cloning. 

 

Figure 138: DNA Fragments for generation of the 864bp scyCterm pUC18 construct and its 
confirmation by restriction digests. 

A) The gel isolated fragment BamHI/NdeI fragment of pUC18 used for construction of 
pUC18-scyCterm was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 

B) The gel isolated BamHI/NdeI fragment of a scyCterm PCR product used for construction 
of pUC18-scyCterm was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 

C) The plasmids pUC18 (Lanes 2 & 3) and the plasmid pUC18-scyCterm (Lanes 4 & 5) 
were analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were run together 
with samples digested with BamHI and NdeI (Lanes 3 & 5). The arrow indicates the 
~1000bp (post sequencing size ~864bp) fragment carrying the PCR amplified scyCterm. The 
DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

D) Candidate colonies were screened with colony PCR using pUC18 Reverse (upstream) 
and scy-Nde (downstream) primers and PCR products were analysed on a 0.7% agarose 
gel. Candidate colonies are shown Lanes 2-19. The arrow indicates the ~1000bp (post 
sequencing size ~989bp) PCR product expected. A blue negative colony was also included 
(Lane 20). The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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Following the scy C-terminal fragment was cloned from the pUC18-scyCterm into pAZ1 

using BamHI and NdeI (Figure 139 & Figure 140). After ligation of the fragments the 

ligation mixture was used for transformation of E. coli strain DH5α. The transformants 

were screened with colony PCR (Figure 140E) to find potential clones which could 

generate an ~1220bp PCR product of scyCterm joined to egfp. Plasmid DNA was then 

isolated from potential clones, isolated DNA was confirmed by restriction digestion 

(Figure 140D) to liberate a small BamHI/NdeI fragment in the 864bp expected from the 

sequenced pUC18-scyCterm clone. Sequencing was also used to verify the junctions 

between scyCterm and egfp. Thus, confirming the generation of pAZ1-scyCterm-egfp with 

the scyCterm in the same reading frame to egfp (Figure 140A).   

 
$ 

Figure 139: Generation of pAZ1-scyCterm. 

pAZ1-scyCterm is a derivative of pAZ1. A) The scyCterm fragment was liberated using 
BamHI and NdeI from pUC18-scyCterm. B) Using the enzymes BamHI and NdeI pAZ1 
was digested and the scyCterm fragment was cloned so that scyCterm was in frame with 
egfp. The restriction sites used in the cloning are underlined in red. 
 

A 

B 
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Figure 140: DNA Fragments for generation of a scyCterm containing pAZ1 consrtuct and its 
confirmation by restriction digests. 

A) pAZ1-scyCterm-egfp. Sequence of the junctions formed between the multiple cloning site, the 
scyCterm fragment and egfp. The scy-egfp junction contains a glycine linker (highlighted 
yellow/italics).  Restriction site sequences are bold and underlined. Primer sequences are marked in 
italics and with arrows. The scyCterm sequences are highlighted light blue and egfp is highlighted 
green. Primers for colony PCR are marked (black arrows). 

B) The gel isolated BamHI/NdeI fragment of pAZ1 used for construction of pAZ1-scyCterm was 
analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

C) The gel isolated BamHI/NdeI fragment containing scyCterm used for construction of pAZ1-
scyCterm was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

D) The plasmids pAZ1 (Lanes 2 & 3) and the plasmid pAZ1-scyCterm (Lanes 4 & 5) were analysed 
on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were run together with samples digested 
with BamHI and NdeI (Lanes 3 & 5). The arrow indicates the 864bp fragment carrying part of 
scyCterm. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

E) Candidate colonies were screened with colony PCR using scy-Bam (upstream) and EGFPseq 
(downstream) primers and PCR products were analysed on a 0.7% agarose gel. Candidate colonies 
are shown Lanes 2-10. The arrow indicates the ~1220bp PCR product expected. The plasmids pAZ1 
(Lane 11) was used as a control template. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

B C D 1 2 1 2 1 2 3 4 5 

         BamHI     scy-Bam  
GA TAT CGG ATC CGC CAG CAG CTG GTC TCG GAC GGC ACC GGG 

          

GCG GAG ATC TCC CGG GTC CAG GAC GTG CTG GAG GCG CTG GAG TCG 

       BglII 

TTC GAG GCG CCC GGG GGT GCG AAG GAC AAC GGG GTG AAG GCC GGA 

GCG ACG GTG GGC GCC CCA CGT TCG GGT GGC AAG TCG TCA GAC GGC  

                                        scy-Nde 

CAT ATG GGC GGC GGC GGC GGT ATG GCC ATG 

 NdeI      Linker           

 H   M   G   G   G   G   G   M 

A 

bp bp bp 
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In order to move the fusion to a vector that will integrate into the S. coelicolor 

chromosome at high efficiency, we moved the scyCterm-egfp fragment to pIJ8660 using 

BamHI and EcoRI (Figure 141 & Figure 142). After ligation of the fragments the ligation 

mixture was used for transformation of E. coli strain DH5α. The transformants were 

screened with colony PCR (Figure 142C) to find potential clones which carried the 

scyCterm fragment, positive colonies were predicted to produce a ~864bp product. Plasmid 

DNA was then isolated from positive colonies, isolated DNA was confirmed by restriction 

digestion (Figure 142B) to liberate a BamHI/EcoRI fragment approximately 2600bp in size 

containing scyCterm-egfp. Thus, confirming the generation of pIJ8660-scyCterm-egfp. 

 

 
 

 

 

 

Figure 141: Generation of pIJ8660-scyCterm-egfp.  

pIJ8660-scyCterm is a derivate of pIJ8660. The scyCterm-egfp fragment was liberated 
using BamHI and EcoRI from pAZ1-scyCterm. Using the enzymes BamHI and EcoRI 
pIJ8660 was digested and the scyCterm-egfp fragment cloned in. The restriction sites used 
in the cloning are underlined in red.  
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The plasmid pIJ8660-Pscy-scy (used in 2.1.7) was used to generate the final construct of 

pIJ8660-Pscy-scy-egfp. The plasmid pIJ8660-Pscy-scy contains the promoter sequence of 

scy that was generated above as well as the full length sequence of scy that is identical to 

the chromosomal sequence except for exchange of a GTG start codon for ATG caused by 

the Psy-scy junction having a CATATG NdeI site insert. The use of an alternative start 

codon was not shown to have a significant effect when complementing the scy mutant 

(Figure 40 & Figure 41). A 4.2kb BglII fragment of pIJ8660-Pscy-scy was moved into 

pIJ8660-scyCterm-egfp using the same enzyme (Figure 143 & Figure 144). Replacing the 

Figure 142: DNA Fragments for generation of a scyCterm-egfp containing pIJ8660 
consrtuct and its confirmation by restriction digests. 

A) The gel isolated fragments used for construction of pIJ8660-scyCterm-egfp were 
analysed on a 0.7% agarose gel. The fragments used were the BamHI/EcoRI fragment 
containing scyCterm-egfp from pAZ1-scyCterm (Lane 2) and a BamHI/EcoRI fragment of 
pIJ8660 (Lane 3). The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

B) The plasmids pIJ8660 (Lanes 2 & 3), pAZ1-scyCterm-egfp (Lanes 4 & 5) and the 
plasmid pIJ8660-scyCterm-egfp (Lanes 6 & 7) were analysed on a 0.7% agarose gel. 
Undigested samples (Lanes 2, 4 & 6) were run together with samples digested with 
BamHI/EcoRI (Lanes 3, 5 & 7). The arrow indicates the 2600bp fragment containing 
scyCterm-egfp.  The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

C) Candidate colonies were screened with colony PCR using scy-Bam (upstream) and scy-
Nde (downstream) primers and PCR products were analysed on a 0.7% agarose gel. 
Candidate colonies are shown Lanes 2-9. The arrow indicates the ~864 bp PCR product 
expected. The plasmids pIJ8660 (Lane 10) and pAZ1-scyCterm-egfp (Lane 11) were used 
as control templates. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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part of the scy C-terminal fragment containing mutations. After ligation of the fragments 

the ligation mixture was used for transformation of E. coli strain DH5α. The transformants 

were screened with colony PCR (Figure 144D) to find potential clones which now carried 

the 364bp Pscy sequence and hence the Pscy-scy containing fragment. Plasmid DNA was 

then isolated from positive colonies, isolated DNA was confirmed by restriction digestion 

(Figure 144C) to liberate a BglII fragment approximately 4236bp in size containing Pscy-

scy. Thus, generating the construct pIJ8660-Pscy-scy-egfp, which carries the scy promoter 

followed by the full length of scy in frame to egfp (Figure 144A). The plasmid was 

confirmed by sequencing to verify the junctions between the scy promoter and between scy 

and egfp. 

 

Figure 143: Generation of pIJ8660-Pscy-scy-egfp. 

pIJ8660-Pscy-scy-egfp is a derivative of pIJ8660-scyCterm-egfp. A) A Pscy-scy BglII 
fragment was liberated from pIJ8660-Pscy-scy using BglII. B) Using BglII, pIJ8660-
scyCterm-egfp was digested and the small fragment replaced with the Pscy-scy BglII 
fragment resulting in a scy-egfp fusion under the direction of Pscy. The restriction sites used 
in the cloning are underlined in red. 

A 

B 
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Figure 144: DNA Fragments for generation of pIJ8660-Pscy-scy-egfp and its confirmation by 
restriction digests. 

A) pIJ8660-Pscy-scy-egfp. Sequence of the junctions between the promoter and the open reading 
frame, as well as the scyCterm fragment and egfp. The scy-egfp junction contains the glycine linker 
from pAZ1 (highlighted yellow/italics). Restriction site sequences are bold and underlined. Primer 
sequences are marked in italics and with arrows. The Pscy and scy sequences are highlighted light 
blue and egfp is highlighted green. Primers for colony PCR are marked (black arrows). 

B) The gel isolated fragments used for construction of pIJ8660-Pscy-scy-egfp were analysed on a 0.7% 
agarose gel. The fragments used were a BglII fragment of pIJ8660-scyCterm-egfp (Lane 2) and a 
BglII containing Pscy-scy from pIJ8660-Pscy-scy (Lane 3).   The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

C) The plasmids pIJ8660-scyCterm-egfp (Lanes 2 & 3), pIJ8660-Pscy-scy (Lanes 4 & 5) and the 
plasmid pIJ8660-Pscy-scy-egfp (Lanes 6 & 7) were analysed on a 0.7% agarose gel. Undigested 
samples (Lanes 2, 4 & 6) were run together with samples digested with BglII (Lanes 3, 5 & 7). The 
arrow indicates the 4236bp fragment containing Pscy-scy.  The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

D) Candidate colonies were screened with colony PCR using scyprom4-Bam (upstream) and 
scyprom3-Nde (downstream) primers and PCR products were analysed on a 0.7% agarose gel. 
Candidate colonies are shown Lanes 2-9. The arrow indicates the ~364 bp PCR product expected. The 
plasmids pIJ8660-scyCterm-egfp (Lane 10) and pIJ8660-Pscy-scy (Lane 11) were used as control 
templates. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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10.1.49 Generation of a Scy C-terminal mCherry translational fusion 

 

To further assess the localisation of Scy with a C-terminal fluorescent fusion a Scy-

mCherry C-terminal fusion was constructed. We did not have an mCherry version of 

pIJ8660 or pAZ1   

 

 
so we made use of a plasmid that was generated to express a C-terminal mCherry fusion of 

NepA (Winter and Kelemen, unpublished). The plasmid pIJ8660-PnepA-nepA-mCherry 

(Figure 146), contains the gene nepA (Dalton et al., 2007) fused to mCherry driven by its 

native promoter. The linker between nepA and mCherry is similar to the linker used in the  

CTG TGG TGG TGG CAT ATG GGC GGC GGC GGC GGT ATG GTG AGC AAG 

                 NdeI       Linker         Start 

                 H   M   G   G   G   G   G   M 

 

G ATA TCG GAT CCC GCA GCG CCG GGA GCT 

         BamHI 

B 

Figure 145: pIJ8660-PnepA-nepA-mCherry is a plasmid with mCherry downstream of a 
glycine linker. Replacement of the PnepA-nepA sequence allows the formation of a desired 
C-terminal mCherry fusion. 

A) The map of pIJ8660-PnepA-nepA-mCherry including restriction sites, antibiotic 
resistance genes, origins of replication and a glycine linker. 

B) pIJ8660-PnepA-nepA-mCherry. Sequence of the upstream region to PnepA and the 
sequence of nepA followed by a linker and mCherry. The glycine linker was originally 
generated by annealing the oligonucleotides EGFPLinker1 and EGFPLinker2 similar to 
pAZ1 (highlighted yellow/italics). Restriction site sequences are bold and underlined. The 
mCherry sequence is highlighted pink. 
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plasmid pIJ8660-Pscy-scy-egfp (Figure 146A). However, in this case there is the NdeI site 

followed by the linker encoding His-Met-Gly-Gly-Gly-Gly-Gly that reads in frame to 

mCherry (Figure 146B). In order to generate C-terminal mCherry fusions the desired gene 

would have to be cloned upstream of the NdeI site. Unfortunately we could not lift the 

entire scy gene together with its promoter from pIJ8660-Pscy-scy-egfp, but instead we had 

to repeat the strategy used for the generation of the Scy-EGFP fusion. Whereby the small 

scyCterm fragment would replace PnepA-nepA, and then finally the large Pscy-scy 

fragment would be used to generate the full length fusion. Therefore, the scyCterm 

fragment was cloned from pUC18-scyCterm into pIJ8660-PnepA-nepA-mCherry using 

BamHI and NdeI, replacing the PnepA-nepA sequence with the scyCterm fragment (Figure 

146 & Figure 147). After ligation of the fragments the ligation mixture was used for  

Figure 146: Generation of pIJ8660-scyCterm-mCherry. 

pIJ8660-scyCterm-mCherry is derivative of pIJ8660-PnepA-nepA-mCherry. A) The 
scyCterm fragment was liberated using BamHI and NdeI from pUC18-scyCterm. B) Using 
the enzymes BamHI and NdeI pIJ8660-PnepA-nepA-mCherry was digested and the PnepA-
nepA fragment replaced with scyCterm fragment, so that scyCterm sequence was in frame 
with mCherry. The restriction sites used in the cloning are underlined in red. 
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Figure 147: DNA Fragments for generation of a scyCterm-mCherry fusion and its confirmation by 
restriction digests. 

A) pIJ8660-scyCterm-mCherry. Sequence of the junctions between the multiple cloning site, the 
scyCterm fragment and mCherry. The scy-mCherry junction contains a glycine linker (highlighted 
yellow/italics). Restriction site sequences are bold and underlined. The scyCterm sequences are 
highlighted light blue and mCherry is highlighted pink. Primers for colony PCR are marked (black 
arrows). 

B) The gel isolated fragments used for construction of pIJ8660-scyCterm-mCherry were analysed on a 
0.7% agarose gel. The fragments used were a BamHI/NdeI fragment of pIJ8660-PnepA-nepA-
mCherry (Lane 2) and a BamHI/NdeI fragment containing scyCterm  (Lane 3). The DNA size marker 
is Lambda HindIII/EcoRI (Lane 1). 

C) The plasmids pIJ8660-PnepA-nepA-mCherry (Lanes 2 & 3) and the plasmid pIJ8660-scyCterm-
mCherry (Lanes 4 & 5) were analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were 
run together with samples digested with BamHI and NdeI (Lanes 3 & 5). The arrow indicates the 
864bp fragment carrying part of scyCterm. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

D) Candidate colonies were screened with colony PCR using scy-Bam (upstream) and mCherryseq 
(downstream) primers and PCR products were analysed on a 0.7% agarose gel. Candidate colonies are 
shown Lanes 2-12. The arrow indicates the ~1100bp PCR product expected. The plasmids pIJ8660-
PnepA-nepA-mCherry was used as a control template (Lane 13). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 
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transformation of E. coli strain DH5α. The transformants were screened with colony PCR 

(Figure 147) to find potential clones carrying ~1100bp PCR product generated from the 

scyCterm-mCherry sequence. Plasmid DNA was then isolated from positive colonies, 

isolated DNA was confirmed by restriction digestion (Figure 147C) to liberate a ~864bp 

BamHI/NdeI fragment containing scyCterm. Thus, confirming the generation of the 

plasmid pIJ8660-scyCterm-mCherry. 

To generate the full length scy fusion to mCherry, a 4.2kb BglII fragment from pIJ8660-

Pscy-scy was moved into pIJ8660-scyCterm-mCherry (Figure 148 & Figure 149). After  

Figure 148: Generation of pIJ8660-Pscy-scy-mCherry. 
pIJ8660-Pscy-scy-mCherry is a derivative of pIJ8660-scyCterm-mCherry. A) A Pscy-scy 
BglII fragment was liberated from pIJ8660-Pscy-scy using BglII. B) Using BglII, pIJ8660-
scyCterm-mCherry was digested and the small fragment replaced with the Pscy-scy BglII 
fragment resulting in a scy-mCherry fusion under the direction of Pscy. The restriction sites 
used in the cloning are underlined in red. 
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Figure 149: DNA Fragments for generation of a Scy-mCherry fusion and its confirmation by 
restriction digests. 

A) pIJ8660-Pscy-scy-mCherry. Sequence of the junctions between the scy promoter, scy and 
mCherry. The scy-mCherry junction contains a glycine linker (highlighted yellow/italics). Restriction 
site sequences are bold and underlined. The Pscy and scy sequences are highlighted light blue and 
mCherry is highlighted pink. Primers for colony PCR are marked (black arrows). 

B) The gel isolated fragments used for construction of pIJ8660-Pscy-scy-mCherry were analysed on 
a 0.7% agarose gel. The fragments used were a BglII fragment of pIJ8660-scyCterm-mCherry (Lane 
2) and a BglII fragment containing Pscy-scy (Lane 3). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

C) The plasmids pIJ8660-scyCterm-mCherry (Lanes 2 & 3), pIJ8660-Pscy-scy (Lanes 4 & 5) and the 
plasmid pIJ8660-Pscy-scy-mCherry (Lanes 6 & 7) were analysed on a 0.7% agarose gel. Undigested 
samples (Lanes 2, 4 & 6) were run together with samples digested with BglII (Lanes 3, 5 & 7). The 
arrow indicates the 4236bp fragment containing Pscy-scy.  The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

D) Candidate colonies were screened with colony PCR using TH Scy F4 (upstream) and TH Scy R4 
(downstream) primers and PCR products were analysed on a 0.7% agarose gel. Candidate colonies 
are shown Lanes 2-11. The arrow indicates the ~835bp PCR product expected. The plasmids 
pIJ8660-scyCterm-mCherry (Lane 12) and pIJ8660-Pscy-scy-egfp (Lane 13) were used as control 
templates.  The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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ligation of the fragments the ligation mixture was used for transformation of E. coli strain 

DH5α. The transformants were screened with colony PCR (Figure 149D) to find potential 

clones which now produced a ~835bp PCR product that can only be generated from the 

full length scy fragment and not the smaller scyCterm fragment. Plasmid DNA was then 

isolated from positive colonies, isolated DNA was confirmed by restriction digestion 

(Figure 149C) to liberate a fragment approximately 4236bp in size containing Pscy-scy. 

Confirming the generation of the plasmid pIJ8660-Pscy-scy-mCherry, carrying the scy 

promoter followed by the full length of scy in frame with the linker and mCherry (Figure 

149A). pIJ8660-Pscy-scy-mCherry was also sequenced to analyse the junctions between 

the scy promoter and scy and between scy and mCherry. 

 

10.1.50 Generation of a Scy-Δlink-mCherry construct 

 

As the plasmid pIJ8660-Pscy-scy-mCherry did not give a definitive signal, we aimed to 

remove the His-Met-Gly-Gly-Gly-Gly-Gly linker. We could not simply replace the 

linkered mCherry fragment with mCherry due to the multiple NdeI sites. Instead we used a 

strategy similar to the other scy C-terminal fusions whereby we used the intermediate 

pIJ8660-scyCterm-egfp, replaced the egfp with non-linkered mCherry and then added in 

the large Pscy-scy fragment later. The egfp intermediate construct was used instead of the 

linkered mCherry to ensure that the linker was replaced by the distinguishable change of 

egfp to mCherry.  The plasmid pBluescript-mCherry (gift from David Widdick) carries the 

mCherry gene and was used to remove an NdeI-BsrGI fragment containing the mCherry 

gene. The NdeI-BsrGI mCherry fragment was used to replace the egfp gene in the plasmid  
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pIJ8660-scyCterm-egfp (Figure 150 & Figure 151). After ligation of the fragments the 

ligation mixture was used for transformation of E. coli strain DH5α. The transformants 

were screened with colony PCR (Figure 151E) to find potential clones which would now 

carry a scyCterm-mCherry fusion that would generate a ~1100bp PCR product, where 

egfp-scy should not generate a PCR product with the primers used. Plasmid DNA was then 

isolated from positive colonies, isolated DNA was confirmed by restriction digestion 

(Figure 151C) to liberate a 726bp fragment containing scyCterm. The plasmid DNA was  

A 
B 

Figure 150: Generation of pIJ8660-scyCterm-Δlink-mCherry. 
pIJ8660-scyCterm-Δlink-mCherry is a derivative of pIJ8660-scyCterm-egfp. A) An 
mCherry fragment was liberated from pBluescripty-mCherry using NdeI and BsrGI. B) 
Using the enzymes NdeI and BsrGI, pIJ8660-scyCterm-egfp was digested and egfp replaced 
with mCherry, so that that scyCterm sequence was in frame with mCherry and the glycine 
linker abolished. The restriction sites used in the cloning are underlined in red. 
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Figure 151: DNA Fragments for generation of pIJ8660-scyCterm-Δlink-mCherry and its confirmation. 

A) pIJ8660-scyCterm-Δlink-mCherry. Sequence of the junctions between the multiple cloning site, the 
scyCterm fragment and mCherry. The scy-mCherry junction lacks a linker with scy reading directly 
into mCherry. Restriction site sequences are bold and underlined. Primer sequences are marked in 
italics and with arrows. The Pscy and scy sequences are highlighted light blue and mCherry is 
highlighted pink. Primers for colony PCR are marked (black arrows). 

B) The gel isolated fragments used for construction of pIJ8660-scyCterm-Δlink-mCherry were 
analysed on a 0.8% agarose gel. The fragments used were a BsrGI/NdeI  fragment of  pIJ8660-
scyCterm-egfp (Lane 2) and a BsrGI/NdeI fragement containing mCherry (Lane 3). The DNA size 
marker is Lambda HindIII/EcoRI (Lane 1). 

C) The plasmids pIJ8660-scycterm-mCherry (Lanes 2 & 3) and the plasmid pIJ8660-scyCterm-Δlink-
mCherry (Lanes 4 & 5) were analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were 
run together with samples digested with BglII (Lanes 3 & 5). The arrow indicates the 726bp fragment 
carrying part of scyCterm. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

D) The plasmids were confirmed by PCR using ScyBam and mCherryseq primers, products were 
analysed an on a 0.7% agarose gel. The templates used were the plasmids pIJ8660-scyCterm-egfp 
(Lane 3), pIJ8660-scyCterm-Δlink-mCherry (Lane 4), pIJ8660-scyCterm-mCherry (Lane 5) and  a 
PCR mix only control (Lane 2). The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

E) Candidate colonies were screened with colony PCR using scy-Bam (upstream) and mCherryseq 
(downstream) primers and PCR products were analysed on a 0.7% agarose gel. Candidate colonies are 
shown Lanes 2-18. The arrow indicates the ~1100bp PCR product expected. The plasmids pIJ8660-
scyCterm-egfp (Lane 19) and pIJ8660-scyCterm-mCherry (Lane 20) were used as control templates.  
The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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used as template DNA in a repeat PCR experiment (Figure 151D) to check that the 

scyCterm-mCherry specific ~1100bp PCR product could be generated, the control template 

of pIJ8660-scyCterm-egfp could not generate the correct sized product, whereas the non-

linkered and linkered mCherry intermediate constructs could. Thus, confirming the 

generation of plasmid pIJ8660-scyCterm-Δlink-mCherry whereby a non-linkered mCherry 

sequence is fused to a scyCterm fragment (Figure 151A). 

BglII 

A 

B 

Figure 152: Generation of pIJ8660-Pscy-scy-Δlink-mCherry. 
pIJ8660-Pscy-scy-Δlink-mCherry is a derivative of pIJ8660-scyCterm-Δlink-mCherry. A) 
A Pscy-scy BglII fragment was liberated from pIJ8660-Pscy-scy using BglII. B) Using 
BglII, pIJ8660-scyCterm-Δlink-mCherry was digested and the small fragment replaced 
with the Pscy-scy BglII fragment resulting in a scy-mCherry fusion with no glycine linker 
under the direction of Pscy. The restriction sites used in the cloning are underlined in red. 
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GCG GAG ATC TCC CGG GTC CAG GAC GTG CTG GAG GCG CTG GAG TCG 

       BglII 

TTC GAG GCG CCC GGG GGT GCG AAG GAC AAC GGG GTG AAG GCC GGA 

GCG ACG GTG GGC GCC CCA CGT TCG GGT GGC AAG TCG TCA GAC GGC  

                                        scy-Nde 

CAT ATG GTG AGC AAG GGC GAG 

 NdeI                 

Figure 153: DNA Fragments for generation of pIJ8660-Pscy-scy-Δlink-mCherry and sequencing of 
subsequent pIJ8660-Pscy-scy-Δlink-mCherry clone. 

A) Sequence of joins in the construct pIJ8660-Pscy-scy-Δlink-mCherry. The scy-mCherry junction 
lacks a linker with scy reading directly into mCherry. Restriction site sequences are bold and 
underlined. The Pscy and scy sequences are highlighted light blue and mCherry is highlighted pink. 
Primers for colony PCR are marked (black arrows). 

B) The gel isolated BglII fragment of pIJ8660-scyCterm-Δlink-mCherry used for construction of 
pIJ8660-Pscy-scy-Δlink-mCherry was analysed on a 0.7% agarose gel (Lane 2). The DNA size 
marker is Lambda HindIII/EcoRI (Lane 1). 

C) The gel isolated BglII fragment containing Pscy-scy used for construction of pIJ8660-Pscy-scy-
Δlink-mCherry was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

D) Candidate colonies were screened with colony PCR using TH Scy F4 (upstream) and TH Scy R4 
(downstream) primers and PCR products were analysed on a 1% agarose gel. Candidate colonies 
are shown Lanes 2-18. The arrow indicates the ~835bp PCR product expected. The plasmids 
pIJ8660-scyCterm-mCherry (no link) (Lane 19) and pIJ8660-Pscy-scy-egfp (Lane 20) were used as 
control templates.  The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

E) Sequencing chromatogram showing the reverse complement of pIJ8660-Pscy-scy-mCherry (no 
link)  sequenced with the mCherryseq primer. Underlined sequences are BglII or NdeI restriction 
sites. 
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To generate the full length scy fusion to a non-linkered mCherry, a 4.2kb BglII fragment 

from pIJ8660-Pscy-scy was moved into pIJ8660-scyCterm-Δlink-mCherry (Figure 152 & 

Figure 153). After ligation of the fragments the ligation mixture was used for 

transformation of E. coli strain DH5α. The transformants were screened with colony PCR 

(Figure 153D) to find potential clones which now produced a ~835bp PCR product that 

can only be generated from the full length scy fragment and not the smaller scyCterm 

fragment. Plasmid DNA was then isolated from positive colonies and was sequenced to 

verify that there was no glycine linkered between the sequence of scy and mCherry (Figure 

153E). Thus, confirming the generation of the plasmid pIJ8660-Pscy-scy-Δlink-mCherry, 

with the scy promoter followed by the full length of scy in frame to mCherry with no 

glycine linker (Figure 153). 

 

10.1.51 Generation of an EGFP-Scy-C translational fusion 

 

To determine if  the C-terminal domain alone was important for localisation we generated 

an egfp fusion to DNA encoding the Scy-C domain. To be able to do this it was aimed to 

use the full length N-terminal EGFP fusion construct pIJ8660-Pscy-egfp-scy (pK56). For 

the egfp-scy-C fusion the aim was that a linker would be inserted between the egfp and the 

beginning of the scy-C sequence replacing the sequence of scy-N. A KpnI site is located in 

the scy gene and marks the border between the sequences encoding the heptad coiled-coil 

N-terminal domain and the non-heptad coiled-coil C-terminal domain of the Scy protein. 

To remove the N-terminal domain and place the C-terminal domain in frame with egfp, a 

linker was designed to be inserted inbetween the BsrGI and the KpnI sites of pIJ8660-

Pscy-egfp-scy (pK56) (Figure 154A). This linker consisted of two primers, Bsrg-Kpn 

Linker 1 and Bsrg-Kpn Linker 2 annealed to one another generating protruding KpnI and 

BsrGI ends. The primers were designed that the linker also contained an XbaI site, which 

would enable the identification of the successful constructs correctly. Also, the triplets 

encoding the amino acid sequence of the linker were designed according to the 

Streptomyces codon preference. Insertion of this linker between the BsrGI and the KpnI 

sites of pIJ8660-Pscy-egfp-scy (pK56) removed the sequence encoding the N-terminal 

domain and generated a fusion whereby egfp reads in frame to sequence encoding the C- 
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terminal domain via a sequence encoding a penta-glycine linker (Figure 154B). The vector 

DNA fragment used in the ligation can be seen in (Figure 156A). Annealing of the primers 

for the linker directly preceded ligation of vector fragment and the linker, the ligation 

mixture was then used for transformation of E. coli strain DH5α. The transformants were  

 

 

GTACAACCTCGAGGGCGGCGGCGGCGGCGGGTAC 

    TTGGAGCTCCCGCCGCCGCCGCCGCC 

BsrGI  XhoI                  KpnI 

B 

A 

Figure 154: Generation of pIJ8660-Pscy-egfp-scy-C. 

A) pIJ8660-Pscy-egfp-scy-C is a pIJ8660-Pscy-egfp-scy derivative with a linker inserted 
between the BsrGI and KpnI site removing the scy-N terminal domain and placing the scy-C 
terminal domain in frame with egfp. The restriction sites used in the cloning are underlined 
in red.  

B) Sequence of the junctions in the construct pIJ8660-Pscy-egfp-scy-C. The egfp-scy-C 
junction contains a glycine linker (highlighted yellow/italics). Restriction site sequences are 
bold and underlined. The scy-C sequence is highlighted blue and egfp is highlighted green. 
Primers for colony PCR are marked (black arrows). 

 

                       BsrGI     XhoI      Linker       

CTC GGC ATG GAC GAG CTG TAC AAC CTC GAG GGC GGC GGC GGC GGC GGG 

                     L   Y   N   L   E   G   G   G   G   G   G 

TAC CAG GCC GAG CAG TTG 

KpnI 

 Y   Q    
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screened with colony PCR (Figure 156C) to find potential clones which now generated a 

~748bp PCR product. Plasmid DNA was then isolated from positive colonies, isolated 

DNA was confirmed by restriction digestion (Figure 156B) with XhoI to generate a 

different pattern including the generation of a short 1117bp fragment and a longer 4147bp 

fragment not present in pIJ8660-Pscy-egfp-scy. The junction between egfp and scy-C was 

also sequenced to verify that a single linker had been added. Thus, confirming the 

generation of pIJ8660-Pscy-egfp-scy-C. 

    CAGTAGTAGGATATCAAGCTTG 

CATGGTCATCATCCTATAGTTCGAACTTAA 

KpnI         EcoRV HindIII EcoRI 

A 

B 

Figure 155: Generation of pIJ8660-Pscy-egfp-scy-N. 

A) pIJ8660-Pscy-egfp-scy-N is a pIJ8660-Pscy-egfp-scy derivative with a linker inserted 
between KpnI EcoRI site removing the scy-C terminal domain and placing a stop codon 
following scy-N. The restriction sites used in the cloning are underlined in red. 

B) Sequence of the junctions in the construct pIJ8660-Pscy-egfp-scy-N. The scy-N 
sequence ends with a stop codon introduced from the linker. Restriction site sequences are 
bold and underlined. The scy-N sequence is highlighted red. Primers for colony PCR are 
marked (black arrows). 
 

GAC ATC GGG TAC CAG TAG TAG GAT ATC AAG CTT GAA TTC 

         KpnI      Stop     EcoRV   HindIII  EcoRI 
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10.1.52 Generation of an EGFP-Scy-N translation fusion 

 

To be able to establish if the N-terminal domain of Scy was able to localise in the absence 

of the C-terminal domain, an egfp-scy-N fusion was constructed. The strategy was to use 

the full length egfp-scy construct and to remove the sequence encoding the C-terminal 

domain and add a stop codon following the sequence encoding the N-terminal domain. 

Therefore, a linker was designed to be inserted inbetween the KpnI and the EcoRI sites of 

pIJ8660-Pscy-egfp-scy (pK56) (Figure 155A). The linker design involved annealing of the 

Kpn-Eco Linker 1 and Kpn-Eco Linker 2 primers which created overhangs corresponding 

to KpnI and EcoRI restriction sites. The linker was designed that it contained the restriction 

sites EcoRV and HindIII which enabled the identification of the successful clones. 

Insertion of this linker between the KpnI and the EcoRI sites of pIJ8660-Pscy-egfp-scy 

(pK56) would remove the C-terminal domain and placed a stop codon following the N-

terminal domain (Figure 155B). The vector DNA fragment used in the ligation can be seen 

in (Figure 156A). The Kpn-Eco Linker 1 and Kpn-Eco Linker 2 were annealed to one 

another directly preceding ligation of vector fragment and the linker, the ligation mixture 

was then used for transformation of E. coli strain DH5α. The transformants were screened 

with colony PCR (Figure 156D) to find potential clones which now produced a ~985bp 

PCR product. Plasmid DNA was then isolated from positive colonies, isolated DNA was 

confirmed by restriction digestion (Figure 156B) with EcoRV which would only be present 

in the linker and thus a single band confirmed the incorporation of the linker. The junction 

between scy-N and the vector was also sequenced to verify that the linker had been added 

in the intended way. Thus, confirming the generation of pIJ8660-Pscy-egfp-scy-N. 
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Figure 156: DNA Fragments for generation of pIJ8660-Pscy-egfp-scy-C and pIJ8660-Pscy-
egfp-scy-N, as well as Digestion of subsequent pIJ8660-Pscy-egfp-scy-C and pIJ8660-Pscy-
egfp-scy-N clones. 

A) The gel isolated fragments used for construction of pIJ8660-Pscy-egfp-scy-C and 
pIJ8660-Pscy-egfp-scy-N were analysed on a 0.7% agarose gel. The fragments used were a 
BsrGI/KpnI fragment of pIJ8660-Pscy-egfp-scy (Lane 2) and a KpnI/EcoRI fragment of 
pIJ8660-Pscy-egfp-scy (Lane 3). The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

B) The plasmids pIJ8660-Pscy-egfp-scy (Lanes 2, 3, 6 & 7), pIJ8660-Pscy-egfp-scy-C (Lanes 
4 & 5) and the plasmid pIJ8660-Pscy-egfp-scy-N (Lanes 8 & 9) were analysed on a 0.7% 
agarose gel. Undigested samples (Lanes 2, 4, 6 & 8) were run together with samples digested 
with XhoI (Lanes 3 & 5) or EcoRV (Lanes 7 & 9). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1) 

C) Candidate colonies carrying pIJ8660-Pscy-egfp-scy-C were screened with colony PCR 
using FP-Nde (upstream) and Bsrg-Kpn Linker 2 (downstream) primers and PCR products 
were analysed on a 0.7% agarose gel. Candidate colonies are shown Lanes 2-12. The arrow 
indicates the ~748bp PCR product expected. The plasmid pIJ8660-Pscy-egfp-scy (Lane 13) 
was used as a control template.  The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

D) Candidate colonies carrying pIJ8660-Pscy-egfp-scy-N were screened with colony PCR 
using FP-Nde (upstream) and Kpn-Eco Linker 2 (downstream) primers and PCR products 
were analysed on a 0.7% agarose gel. Candidate colonies are shown Lanes 2-12. The arrow 
indicates the ~985bp PCR product expected. The plasmid pIJ8660-Pscy-egfp-scy (Lane 13) 
was used as a control template.  The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

 

A B 1 2 3 1 2 3 4 5 6 7 8 9 
bp bp 
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10.1.53 Generation of a Scy-N-EGFP translational fusion 

 

To be able to generate a fusion of scy-N-egfp we needed to use pIJ8660-Pscy-scy-egfp, but 

due to there being two NdeI sites we were not able to simply insert a linker to replace scy-

C. Instead due to the small size of the sequence encoding the N-terminal domain we 

decided to PCR amplify an NdeI fragment that could replace the full length NdeI fragment.  

  
A fragment encoding the Scy-N domain was amplified using the St8F4 cosmid as a 

template for PCR using the oligonucleotides scyNde1 and ScyN_FPrev. The 

oligonucleotides introduced NdeI restriction sites at both ends of the PCR product, when 

digested with NdeI this should leave an approximately 225bp product. The plasmid 

pIJ8660-Pscy-scy-egfp was also digested with NdeI so that the full length scy fragment 

was dropped out. Upon ligation the loss of the full length scy fragment should result in 

replacement with the scy-N PCR fragment (Figure 157 & Figure 158). After ligation of the  

PCR of scy-N 

fragment cloned 

into NdeI site. 

Figure 157: Generation of pIJ8660-Pscy-scy-N-egfp. 

pIJ8660-Pscy-scy-N-egfp is a derivative of pIJ8660-Pscy-scy-egfp. A scy-N fragment was 
amplified using PCR and digested using NdeI. Using NdeI pIJ8660-Pscy-scy-egfp was 
digested and the full length scy fragment replaced with the scy-N  fragment in frame with 
egfp. The restriction sites used in the cloning are underlined in red. 
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            NdeI Start                 scyNde1  

GGG ACC GCG CAT ATG CGG GGC TAC GAG AGC CAG GAG CGA GAG CCG GCG    

 

GCC TTC GAC GGC GGC GAC ATC GGG TAC CAG CAT ATG GGC GGC GGC GGC  

              ScyN_FPrev                 NdeI      Linker 

                                         H   M   G   G   G   G 

GGT ATG GCC ATG 

 G   M 

 

 

A 

Figure 158: DNA Fragments for generation of pIJ8660-Pscy-scy-N-EGFP and sequencing of 
subsequent pIJ8660-Pscy-scy-N-EGFP clone. 

A) Sequence of joins in the construct pIJ8660-Pscy-scy-N-EGFP. Sequence of the junctions between 
the promoter and the open reading frame, as well as the scy-N fragment and egfp. The scy-N-egfp 
junction contains a glycine linker (highlighted yellow/italics). Restriction site sequences are bold and 
underlined. Primer sequences are marked in italics and with arrows. The Pscy sequence is 
highlighted light blue, the scy-N sequence is highlighted red and egfp is highlighted green. Primers 
for colony PCR are marked (black arrows). 

B) Gel isolated fragment of pIJ8660-Pscy-scy-egfp (NdeI) used for construction of pIJ8660-Pscy-scy-
N-EGFP run on a 0.85% agarose gel. The lanes were loaded as follows: 1) ladder; 2) pIJ8660-Pscy-
scy-egfp NdeI digested.  

C) Gel isolated fragment of scy-N PCR product (NdeI) used for construction of pIJ8660-Pscy-scy-N-
EGFP run on a 0.85% agarose gel. The lanes were loaded as follows: 1) ladder; 2) scy-N PCR 
product NdeI digested. 

D) Candidate colonies were screened with colony PCR using scyNde1 (upstream) and EGFPseq 
(downstream) primers and PCR products were analysed on a 1% agarose gel. Candidate colonies are 
shown Lanes 2-12. The arrow indicates the ~586bp PCR product expected. The plasmid pIJ8660-
Pscy-scy-egfp (Lane 13) was used as a control template.  The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

E) Sequencing chromatogram showing the reverse complement of pIJ8660-Pscy-scy-N-egfp 
sequenced with the EGFPseq primer. Underlined sequences are NdeI restriction sites. 

B 1 2 
 

1 2 C 

E 

bp bp 
D 
bp 2 3 4 5 6 7 8 9 10 11 1 12 13 
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fragments the ligation mixture was used for transformation of E. coli strain DH5α. The 

transformants were screened with colony PCR (Figure 158D) to find potential clones 

which now produced a ~586bp PCR product that can only be generated from the scy-N 

fragment being in close proximity to egfp. Plasmid DNA was then isolated from positive 

colonies, isolated DNA was confirmed by sequencing (Figure 158E) to contain the scy-N 

fragment. Thus, confirming the generation of the plasmid pIJ8660-Pscy-scy-N-egfp, with 

the scy-N domain in frame to egfp fused at the C-terminus (Figure 158A). 

 

10.1.54 Generation of pMS82 construct containing Pscy-mCherry-scy 

 

In order to visualise Scy localisation in a variety of alternative genetic backgrounds, 

pMS82 was an ideal candidate in which it was aimed to directly move a fragment 

containing Pscy-mCherry-scy into pMS82 (Figure 159). From pIJ8660-Pscy-mCherry-scy  

 

 
(pK57) a 6.1kb HindIII fragment was excised and cloned into the HindIII site of pMS82 

(Figure 160). After ligation of the fragments and transformation of E. coli strain DH5α, the 

transformants were screened with colony PCR (Figure 160D) where positive clones  were 

Figure 159: Generation of pMS82-Pscy-mCherry-scy. 
pMS82-Pscy-mCherry-scy is a derivative of pMS82. A Pscy-mCherry-scy fragment was 
liberated using HindIII from pIJ8660-Pscy-mCherry-scy and cloned into the HindIII site 
of pMS82. The restriction sites used in the cloning are underlined in red. 
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predicted to produce a ~385bp product of the scy promoter. Potential clones were 

confirmed by restriction digestion to contain the Pscy-mCherry-scy fragment (Figure 

160C), thus, generating pMS82-Pscy-mCherry-scy (pK66) which carries an alternative 

resistance cassette and integrates into an alternative site in the S. coelicolor genome in 

comparison to pIJ8660. 

 
10.1.55 Generation of a FilP-EGFP translational fusion  

 

We generated a filP-egfp fusion in order to investigate the localisation of FilP in 

Streptomyces. The strategy for generating a filP-egfp fusion was to PCR amplify the whole 

of filP lacking a stop codon and clone an NdeI fragment into pAZ1. Then, to this filP-egfp  

A B C 1 2 1 2 1 2 3 4 5 

Figure 160: DNA Fragments for generation of pMS82-Pscy-mCherry-scy and Digestion of 
subsequent pMS82-Pscy-mCherry-scy clone. 

A) The gel isolated HindIII fragment of pMS82 used for construction of pMS82-Pscy-
mCherry-scy was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 

B) The gel isolated HindIII fragment containing Pscy-mCherry-scy used for construction of 
pMS82-Pscy-mCherry-scy was analysed on a 0.7% agarose gel (Lane 2). The DNA size 
marker is Lambda HindIII/EcoRI (Lane 1). 

C) The plasmids pMS82 (Lanes 2 & 3) and the plasmid pMS82-Pscy-mCherry-scy (Lanes 4 
& 5) were analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were run 
together with samples digested with KpnI (Lanes 3 & 5). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

D) Candidate colonies were screened with colony PCR using scyprom4-Bam (upstream) 
and scyprom3-Nde (downstream) primers and PCR products were analysed on a 1% 
agarose gel. Candidate colonies are shown Lanes 2-19. The arrow indicates the ~385bp 
PCR product expected. The plasmid pIJ8660-Pscy-mCherry-scy (Lane 20) was used as a 
control template.  The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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Figure 161: Generation of pAZ1-filP-egfp. 

pAZ1-filP-egfp is a derivative of pAZ1 containing a filP fragment. A) A filP PCR fragment 
was cloned into the multiple cloning site of pGEM-T Easy, which is designed with T 
overhangs for easy incorporation of a Taq polymerase generated PCR product. B) The filP 
NdeI fragment was liberated from pGEM-T Easy-filP. C) Using NdeI, pAZ1 was digested 
and the filP fragment cloned so that filP was in frame with egfp. The restriction sites used in 
the cloning are underlined in red.  

 
 

A 

B 

C 

PCR of filP fragment 

cloned into T-

overhangs. 
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B 1 2 

C 1 2 3 D 1 2 3 

Figure 162: DNA Fragments for generation of FilP-EGFP fusion in pAZ1 and its confirmation by 
restriction digests.  

A) pAZ1-filP-egfp. Sequence of the junctions between the multiple cloning site, the filP fragment and 
egfp. The filP-egfp junction contains a glycine linker (highlighted yellow/italics).  Restriction site 
sequences are bold and underlined. Primer sequences are marked in italics and with arrows. The filP 
sequences are highlighted orange and egfp is highlighted green. Primers for colony PCR are marked 
(black arrows).  

B) The PCR product generated from using the primers THAbpS_F and AbpS_Nde_Cterm was 
analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

C) The gel isolated fragments used for construction of pAZ1-filP-egfp were analysed on a 0.7% 
agarose gel. The fragments used were the NdeI fragment of pAZ1 (Lane 2) and the NdeI fragment of 
the PCR of filP (Lane 3). The DNA size marker is Lambda HindIII/EcoRI (Lane 1).  

D) The plasmids pAZ1 (Lanes 2 & 3) and the plasmid pAZ1-filP-egfp (Lanes 4 & 5) were analysed on 
a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were run together with samples digested with 
NdeI (Lanes 3 & 5). The arrow indicates the 933bp fragment carrying filP. The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 

E) Candidate colonies were screened with colony PCR using THAbpS_F (upstream) and EGFPseq 
(downstream) primers and PCR products were analysed on a 0.7% agarose gel. Candidate colonies 
are shown Lanes 2-19. The arrow indicates the ~1302bp PCR product expected. The plasmid pAZ1 
(Lane 20) was used as control templates.  The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

F) Sequencing chromatogram showing the reverse complement of pAZ1-filP-egfp  sequenced with the 
EGFPseq primer, shown is filP in frame to egfp, revealing that the NdeI fragment was cloned in the 
correct orientation. 

 

F 

GAT ATC GGA TCC TCT AGA CAT ATG AGC GAC ACT TCC CCC TAC G 

         BamHI   XbaI NdeI/Start      THAbpS_F  

G GTC CCG GCC CAG CAG TCC CGC CAT ATG GGC GGC GGC GGC GGT                                      

        AbpS_Nde_Cterm         NdeI        Linker 

                               H   M   G   G   G   G   G 

ATG GCC ATG 

 M          

A 

4 5 

bp 
bp bp 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
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pAZ1 construct the aim would be to clone in a 2.1 Kbp BamHI fragment originating from 

the cosmid St8F4. This fragment would contain the upstream region to filP including the 

intergenic region between scy and filP, as well as containing the last ~1000bp of the 

scyCterm. Therefore, hopefully ensuring that if the filP promoter extends into the scy open 

reading frame that it will be present in the construct. Lastly the whole of the fusion 

construct was intended to be moved to pIJ8660 as this vector can integrate at a specific site 

in the S. coelicolor chromosome at high efficiency. 

Firstly a filP fragment was generated by PCR using the primers THAbpS_F and 

AbpS_Nde_Cterm. The primer AbpS_Nde_Cterm binds to the 3’ end of filP and would 

remove the stop codon and add an NdeI site making it possible to fuse filP in frame to egfp 

in the vector pAZ1. THAbpS_F anneals to the 5’ end of the filP gene and introduces 

another NdeI site allowing cloning (Figure 161). The template used was the St8F4 cosmid 

which contains a fragment of the S. coelicolor chromosome with scy and filP genes 

encoded. For efficient cloning and screening the PCR fragment containing filP was first 

moved into the commercial vector pGEM-T Easy. The vector pGEM-T Easy is of use for 

cloning PCR products as it is distributed as a linearised fragment with single 3’ thymidines 

at both ends. A PCR product generated with Go Taq® Polymerase will generate 3’ 

adenines at both ends which will be complementary to the thymidine overhangs on pGEM-

T Easy. The vector pGEM-T Easy also facilitates blue/white selection for plasmids 

carrying inserts. Therefore, the PCR product of filP was moved directly into pGEM-T Easy 

without digestion. An aliquot of the PCR product used in the ligation can be seen in Figure 

162B. After ligation of the PCR product and linearised pGEM-T Easy, the ligation mixture 

was used for transformation of E. coli strain DH5α. Plasmids from successful white  

colonies were then confirmed by sequencing the entire insert. We found a clone that 

contained the correct insert of filP with no mutations. Therefore, this clone was used 

further downstream. 

The filP fragment was then lifted with NdeI and moved into the vector pAZ1 to make a 

filP-egfp fusion (Figure 162). After ligation of the fragments the ligation mixture was used 

for transformation of E. coli strain DH5α. The transformants were screened with colony 

PCR (Figure 162E) to find potential clones which now produced a ~1302bp PCR product 

that can only be generated by a filP-egfp fusion. Plasmid DNA was then isolated from 

positive colonies, isolated DNA was confirmed by restriction digestion (Figure 162D) to 

liberate a ~933bp fragment containing filP. Therefore, confirming the generation of pAZ1-

filP-egfp with a filP-egfp fusion. 
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In order to then be able to express filP we wanted to move a filP promoter fragment 

upstream of the filP-egfp fusion generated in pAZ1. To do this we wanted to utilise a 

plasmid pUC8.9-scy which contains an 8.9Kbp fragment from the St8F4 cosmid encoding 

both scy and filP. Conveniently there is a BamHI site located in the C-terminus of scy and 

then there is not another BamHI site until the coding sequence of filP. This BamHI 

fragment 2.1Kbp in length was the desired fragment needed to obtain the filP promoter. 

This 2.1Kbp fragment was first cloned into the vector pUC18 (Figure 163 & Figure 164) to 

verify that it was infact the intended fragment from pUC8.9-scy. After ligation and 

transformation of E. coli strain DH5α. The transformants were screened with colony PCR 

(Figure 164D) to find potential clones which now produced a ~1269bp PCR product that 

can only be generated from the 2.1Kbp fragment in pUC18. Plasmid DNA was then 

isolated from positive colonies, isolated DNA was confirmed by restriction digestion 

(Figure 164C) to liberate a ~2.1Kbp fragment. Furthermore plasmid DNA was sequenced 

to verify that the correct fragment was cloned into pUC18. Therefore, confirming the 

generation of pUC18-PfilP.  

 

 

Figure 163: pUC18-PfilP is a derivate of pUC8.9-scy. The PfilP fragment was liberated using 
BamHI from pUC8.9-scy. Using BamHI pUC18 was digested and the PfilP fragment cloned in. 
The restriction sites used in the cloning are underlined in red. 
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A B C 1 2 3 1 2 1 2 4 5 

E 

bp bp bp 

D 

Figure 164: DNA Fragments for generation of a PfilP containing pUC18 construct and its 
confirmation by restriction digest. 

A) The gel isolated BamHI fragment of pUC18 used for construction of pUC18-PfilP was 
analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda HindIII/EcoRI 
(Lane 1). 

B) The gel isolated BamHI fragment containing PfilP used for construction of pUC18-PfilP 
was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

C) The plasmids pUC18 (Lanes 2 & 3) and the plasmid pUC18-PfilP (Lanes 4 & 5) were 
analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were run together with 
samples digested with BamHI (Lanes 3 & 5). The arrow indicates the ~2121bp fragment 
carrying scyCterm-PfilP-filP. The DNA size marker is Lambda HindIII/EcoRI (Lane 1).  

D) Candidate colonies were screened with colony PCR using pUC18 Reverse (upstream) and 
TH Scy R4 (downstream) primers and PCR products were analysed on a 0.7% agarose gel. 
Candidate colonies are shown Lanes 2-18. The arrow indicates the ~1269bp PCR product 
expected. The plasmids pUC18 (Lane 19) and pUC18-scyCterm (Lane 20) were used as 
control templates.The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

E) Sequencing chromatogram showing of pUC18-PfilP sequenced with the pUC18 reverse 
primer, shown is the BamHI site leading into scyCterm, revealing that the correct BamHI 
fragment was cloned in. Underlined sequence is a BamHI restriction site. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 bp 20 

307 

 



                                                                                                                      Neil Holmes 

 
We then wanted to move the 2.1Kbp fragment containing PfilP from pUC18-PfilP and 

clone it into the BamHI sites in pAZ1-filP-egfp (Figure 165 & Figure 166). After ligation 

and transformation of E. coli strain DH5α. The transformants were screened with colony 

PCR (Figure 166E) to find potential clones which now produced a ~1309bp (1159bp for 

scyCterm +150bp for Tfd) PCR product that can be generated using the Tfd primer located 

upstream in pAZ1 and TH Scy R4 downstream in the 2.1Kbp fragment. We found a 

positive colony that carried a PCR product of the correct site. Plasmid DNA was then 

isolated from the positive colony, isolated DNA was confirmed by restriction digestion 

(Figure 166D) to liberate a ~2.1Kbp fragment. However, despite these confirmations that 

A 

B 

Figure 165: Generation of pAZ1-PfilP-filP-egfp. 

pAZ1-PfilP-filP-egfp is a derivative of pAZ1-filP-egfp. A) The PfilP BamHI fragment was 
liberated from pUC18-PfilP. B) Using BamHI, pAZ1-filP-egfp was digested and the PfilP 
fragment cloned so that filP-egfp could then be driven by the filP promoter. The restriction 
sites used in the cloning are underlined in red.   
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this was the correct construct we later learned from downstream cloning that this construct 

had two BamHI 2.1Kbp fragments cloned in, this was indistinguishable in the BamHI 

restriction digestion. We are unsure of how the PCR product was generated. 

 

 

Figure 166: DNA Fragments for generation of a promoter containing FilP-EGFP fusion in 
pAZ1 and its confirmation by restriction digests. 

A) Arrangement of fragments and BamHI sites in the construct pAZ1-PfilP-filP-egfp. 

B) The gel isolated fragment BamHI fragment of pAZ1-filP-egfp used for construction of 
pAZ1-PfilP-filP-egfp was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 

C) The gel isolated BamHI fragment containing PfilP used for construction of pAZ1-PfilP-
filP-egfp was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

D) The plasmids pAZ1-filP-egfp (Lanes 2 & 3) and the plasmid pAZ1-PfilP-filP-egfp 
(Lanes 4 & 5) were analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) 
were run together with samples digested with BamHI (Lanes 3 & 5). The arrow indicates 
the ~2121bp fragment carrying scyCterm-PfilP-filP. The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1).  

E) Candidate colonies were screened with colony PCR using Tfd (upstream) and TH Scy 
R4 (downstream) primers and PCR products were analysed on a 0.7% agarose gel. 
Candidate colonies are shown Lanes 2-10. The arrow indicates the ~1309bp (1159bp for 
scyCterm + 150bp for tfd)bp PCR product expected. The plasmids pAZ1-filP-egfp (Lane 
11) and pIJ8660-scyCterm-egfp (Lane 12) were used as control templates.The DNA size 
marker is Lambda HindIII/EcoRI (Lane 1). 
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A 

Figure 167: DNA Fragments for generation of pIJ8660-PfilP-filP-egfp and its confirmation 
by restriction digest. 

A) Generation of pIJ8660-PfilP-filP-egfp. Plasmid pIJ8660-PfilP-filP-egfp is a derivative of 
pIJ8660. A PfilP-filP-egfp fragment was liberated using EcoRI and EcoRV from pAZ1-PfilP-
filP-egfp and cloned into the same sites of pIJ8660. Primers for colony PCR are marked 
(black arrows). The restriction sites used in the cloning are underlined in red. 

B) The gel isolated fragments used for construction of pIJ8660-PfilP-filP-egfp were analysed 
on a 0.7% agarose gel. The fragments used were the EcoRI/EcoRV fragment of pIJ8660 
(Lane 2) and an EcoRI/EcoRV fragment containing PfilP-filP-egfp (Lane 3). The DNA size 
marker is Lambda HindIII/EcoRI (Lane 1). 

C) The plasmids pIJ8660 (Lanes 2 & 3) and the plasmid pIJ8660-PfilP-filP-egfp (Lanes 4 & 
5) were analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were run together 
with samples digested with BamHI and EcoRI (Lanes 3 & 5). The arrow indicates the 
~2121bp fragment carrying scyCterm-PfilP-filP. The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

D) Candidate colonies were screened with colony PCR using THAbpS_F (upstream) and 
EGFPseq (downstream) primers and PCR products were analysed on a 0.7% agarose gel. 
Candidate colonies are shown Lanes 2-11. The arrow indicates the ~1302bp PCR product 
expected. The plasmids pIJ8660 (Lane 12) and pAZ1-PfilP-filP-egfp (Lane 13) were used as 
control templates.The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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As the intention was to generate the filP-egfp fusion in pIJ8660 a vector that will integrate 

into the S. coelicolor chromosome at high efficiency, we aimed to move the filP Promoter 

sequence plus the filP-egfp fusion as one fragment with EcoRV and EcoRI to pIJ8660 

(Figure 167). It was here that we detected that this fragment was too large (Figure 167B), 

hinting at multiple fragments. After ligation of the large fragment with a pIJ8660 fragment, 

the ligation mixture was used for transformation of E. coli strain DH5α. The transformants 

were screened with colony PCR (Figure 167D) to find potential clones with a filP-egfp 

fusion, positive colonies were predicted to produce a ~1302bp product. Plasmid DNA was 

then isolated from positive colonies, isolated DNA was confirmed by restriction digestion 

(Figure 167C), however, here it appears that the 2.1Kbp fragment is too bright for a single 

copy. As we then realised that there were two BamHI promoter fragments they were both 

excised and only one cloned back in (Figure 168 & Figure 169). After ligation of the 

fragments the ligation mixture was used for transformation of E. coli strain DH5α. The 

transformants were screened with colony PCR (Figure 169E) to produce a ~961bp product 

that can only be generated upon the re-generation of a filP-egfp fusion to ensure directional 

cloning. Plasmid DNA was then isolated from positive colonies, restriction digests (Figure 

169D) were then performed to verify that there was only one 2.1Kbp BamHI fragment in 

the new clone. Thus, confirming the generation of a correct pIJ8660-PfilP-filP-egfp 

construct. 

Figure 168: Generation of pIJ8660-PfilP-filP-egfp. Plasmid pIJ8660-PfilP-filP-egfp was 
corrected by liberating the two scyCterm-PfilP-filPNterm fragments using a BamHI digestion 
and cloning back in a single scyCterm-PfilP-filPNterm BamHI fragment. The restriction sites 
used in the cloning are underlined in red. 
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B C D 1 2 3 4 5 6 7 1 2 1 2 

Figure 169: DNA Fragments for generation of correct pIJ8660-PfilP-filP-egfp and its confirmation by 
restriction digest. 

A) pIJ8660-PfilP-filP-egfp. Sequence of the junctions between pIJ8660 and scyCterm and filP and egfp. 
The filP-egfp junction contains a glycine linker (highlighted yellow/italics). Restriction site sequences 
are bold and underlined. The scy sequences are highlighted light blue, filP is highlighted orange and 
egfp is highlighted green. Primers for colony PCR are marked (black arrows). 

B) The gel isolated BamHI vector fragment of pIJ8660-PfilP-filP-egfp used for construction of the 
correct pIJ8660-PfilP-filP-egfp was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 

C) The gel isolated BamHI fragment containing PfilP from pUC18-PfilP used for construction of the 
correct pIJ8660-PfilP-filP-egfp was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 

D) The plasmids pIJ8660-PfilP-filP-egfp (incorrect version) (Lanes 2, 3 & 4) and the plasmid pIJ8660-
PfilP-filP-egfp (correct version)(Lanes 5, 6 & 7) were analysed on a 0.7% agarose gel. Undigested 
samples (Lanes 2 & 5) were run together with samples digested with EcoRI (Lanes 3 & 6) or BamHI 
(Lanes 4 & 7). The arrow indicates the ~2121bp fragment.  The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

E) Candidate colonies were screened with colony PCR using THAbpS_F (upstream) and THAbpS_R 
(downstream) primers and PCR products were analysed on a 0.7% agarose gel. Candidate colonies are 
shown Lanes 2-18. The arrow indicates the ~961bp PCR product expected. The plasmids pIJ8660 
(Lane 19) and pIJ8660-PfilP-filP-egfp (incorrect version) (Lane 20) were used as control templates.The 
DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

 

TC GAG ATC TGA TAT CGG ATC CGC ACC CAG ACG CTC GCG GAG GCG 

           EcoRV    BamHI 

G GCC GAC CGG ATC CGT TCG GAG TCG GAG CGC GAG CTG GCC GCC CTC 
             BamHI  

ACC AAC CGC CGC GAC TCC ATC AAC GCG CAG CTG ACC AAC GTG CGC 

GAG ATG CTG GCG TCG CTC ACG GGC GCC GCG GTG GCG GCC GCG CCG 

TCG GTC GAG GAC GAG TCG GTC TCC CGC GGG GTC CCG GCC CAG CAG 

TCC CGC CAT ATG GGC GGC GGC GGC GGT ATG GCC ATG 

          NdeI       Linker       

         H   M   G   G   G   G   G   M      
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10.1.56 Generation of a FilP-mCherry translational fusion 

 

For assessing the localisation of FilP with a different fusion we aimed to generate a FilP-

mCherry construct. The strategy to do this was to isolate an mCherry containing fragment 

from pIJ8660-PnepA-nepA-mCherry and swap egfp in the pIJ8660-PfilP-filP-egfp 

construct. 

 

 

 

A B 

Figure 170: Generation of pIJ8660-PfilP-filP-mCherry. 

pIJ8660-PfilP-filP-mCherry is a derivative of pIJ8660-PfilP-filP-egfp. A) The mCherry 
NdeI/EcoRI fragment was liberated from pIJ8660-PnepA-nepA-mCherry. B) Using NdeI 
and EcoRI, pIJ8660-PfilP-filP-egfp was digested and the mCherry fragment cloned so that 
egfp was replaced by mCherry placed in frame with filP. The restriction sites used in the 
cloning are underlined in red. 
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At the time in the project this was approached it was unclear that there was a problem with 

the initial pIJ8660-PfilP-filP-egfp construct with two 2.1Kbp BamHI fragments. From the 

vector pIJ8660-PnepA-nepA-mCherry an NdeI-EcoRI fragment containing a polyglycine 

linkered mCherry fragment was generated. The precursor construct of pIJ8660-PfilP-filP-

egfp (with two 2.1Kbp BamHI fragments) was then opened up with NdeI-EcoRI and the 

polyglycine linkered mCherry fragment was used to replace the polyglycine linkered 

EGFP fragment (Figure 170 & Figure 171). After ligation of the fragments the ligation and 

Figure 171: DNA Fragments for generation of pIJ8660-PfilP-filP-mCherry and its 
confirmation by restriction digest. 

A) Arrangement of fragments and restriction sites in the construct pIJ8660-PfilP-filP-
mCherry. Primers for colony PCR are marked (black arrows). 

B) The gel isolated fragments used for construction of pIJ8660-PfilP-filP-mCherry were 
analysed on a 0.7% agarose gel. The fragments used were the NdeI/EcoRI fragment of 
pIJ8660-PfilP-filP-egfp (Lane 2) and an NdeI/EcoRI fragment containing mCherry (Lane 3). 
The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

C) The plasmids pIJ8660 (Lanes 2 & 3) and the plasmid pIJ8660-PfilP-filP-mCherry (Lanes 4 
& 5) were analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were run 
together with samples digested with BamHI and EcoRI (Lanes 3 & 5). The arrow indicates the 
~2121bp fragment carrying scyCterm-PfilP-filP. The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

D) Candidate colonies were screened with colony PCR using THAbpS_F (upstream) and 
mCherryseq (downstream) primers and PCR products were analysed on a 0.7% agarose gel. 
Candidate colonies are shown Lanes 2-19. The arrow indicates the ~1184bp PCR product 
expected. The plasmid pIJ8660-PfilP-filP-egfp (Lane 20) was used as a control template. The 
DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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transformation, the transformants were screened with colony PCR (Figure 171D) to find 

potential clones with a filP-mCherry fusion using an mCherry specific downstream primer, 

positives would generate a PCR product with the predicted size of ~1184bp. Plasmid DNA 

was then isolated from positive colonies, isolated DNA was confirmed by restriction 

digestion (Figure 171C), however, here it appears that the 2.1Kbp fragment is too bright 

for a single copy. As we then realised that there were two BamHI promoter fragments they 

were both excised and only one cloned back in (Figure 172 & Figure 173). After ligation 

of the fragments the ligation mixture was used for transformation, the transformants were 

screened with colony PCR (Figure 173E) to produce a ~961bp product that can only be 

generated upon the re-generation of a filP-mCherry fusion to ensure directional cloning. 

Plasmid DNA was then isolated from positive colonies, restriction digests (Figure 173D) 

were then performed to verify that there was only one 2.1Kbp BamHI fragment in the new 

clone. Thus, confirming the generation of a correct pIJ8660-PfilP-filP-mCherry construct. 

   

Figure 172: Generation of pIJ8660-PfilP-filP-mCherry. Plasmid pIJ8660-PfilP-filP-mCherry 
was corrected by liberating the two scyCterm-PfilP-filPNterm fragments using a BamHI 
digestion and cloning back in a single scyCterm-PfilP-filPNterm BamHI fragment. The 
restriction sites used in the cloning are underlined in red. 
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TC GAG ATC TGA TAT CGG ATC CGC ACC CAG ACG CTC GCG GAG GCG 

           EcoRV    BamHI 

G GCC GAC CGG ATC CGT TCG GAG TCG GAG CGC GAG CTG GCC GCC CTC 

             BamHI  

ACC AAC CGC CGC GAC TCC ATC AAC GCG CAG CTG ACC AAC GTG CGC 

GAG ATG CTG GCG TCG CTC ACG GGC GCC GCG GTG GCG GCC GCG CCG 

TCG GTC GAG GAC GAG TCG GTC TCC CGC GGG GTC CCG GCC CAG CAG 

TCC CGC CAT ATG GGC GGC GGC GGC GGT ATG GTG AGC AAG  

          NdeI      Linker 

         H   M   G   G   G   G   G   M           

 C 1 2 1 2 3 4 5 6 7 D B 1 2 

A 

E 

Figure 173: DNA Fragments for generation of correct pIJ8660-PfilP-filP-mCherry and its 
confirmation by restriction digest. 

A) pIJ8660-PfilP-filP-mCherry. Sequence of the junctions between pIJ8660 and scyCterm and filP 
and mCherry. The filP-mCherry junction contains a glycine linker (highlighted yellow/italics). 
Restriction site sequences are bold and underlined. The scy sequences are highlighted light blue, filP 
is highlighted orange and mCherry is highlighted pink. Primers for colony PCR are marked (black 
arrows). 

B) The gel isolated BamHI fragment of pIJ8660-PfilP-filP-mCherry used for construction of the 
correct pIJ8660-PfilP-filP-mCherry was analysed on a 0.7% agarose gel (Lane 2). The DNA size 
marker is Lambda HindIII/EcoRI (Lane 1). 

C) The gel isolated BamHI fragment containing PfilP from pUC18-PfilP used for construction of the 
correct pIJ8660-PfilP-filP-mCherry was analysed on a 0.7% agarose gel (Lane 2). The DNA size 
marker is Lambda HindIII/EcoRI (Lane 1). 

D) The plasmids pIJ8660-PfilP-filP-mCherry (incorrect version) (Lanes 2, 3 & 4) and the plasmid 
pIJ8660-PfilP-filP-mCherry (correct version)(Lanes 5, 6 & 7) were analysed on a 0.7% agarose gel. 
Undigested samples (Lanes 2 & 5) were run together with samples digested with EcoRI (Lanes 3 & 
6) or BamHI (Lanes 4 & 7). The arrow indicates the ~2121bp fragment.  The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 

E) Candidate colonies were screened with colony PCR using THAbpS_F (upstream) and 
THAbpS_R (downstream) primers and PCR products were analysed on a 0.7% agarose gel. 
Candidate colonies are shown Lanes 2-18. The arrow indicates the ~961bp PCR product expected. 
The plasmids pIJ8660 (Lane 19) and pIJ8660-PfilP-filP-egfp (incorrect version) (Lane 20) were 
used as control templates.The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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10.1.57 Generation of a FilP-Δlink-mCherry construct 

 

For assessing the localisation of FilP-mCherry with no poly glycine linker we aimed to 

construct a pIJ8660 plasmid carrying a non-linkered filP-mCherry fusion. The strategy was 

that from the plasmid pIJ88660-Pscy-scy-Δlink-mCherry a fragment containing mCherry 

would be used to swap around the linkered egfp sequence in pIJ8660-PfilP-filP-egfp 

(Figure 174), as the mCherry fragment has no linker it would generate a fusion lacking a 

linker between filP and mCherry. The plasmid pIJ8660-PfilP-filP-egfp was used instead of 

the already generated mCherry version so that we could easily screen for the swap of egfp 

at the same time as ensuring a product with no linker was generated when the mCherry 

containing fragment was inserted. An NdeI-BsrGI fragment containing mCherry was 

liberated from pBluescript-mCherry. The plasmid pIJ8660-PfilP-filP-egfp was digested 

with NdeI-BsrGI to remove the polyglycine linkered EGFP fragment. After ligation of the 

fragments the ligation mixture was used for transformation of E. coli strain DH5α. The 

transformants were screened with colony PCR (Figure 175C) to find potential clones able 

to produce a ~1166bp product that can only be generated with a filP-mCherry fusion, using 

an mCherry specific downstream primer. Plasmid DNA was then isolated from positive 

colonies and was confirmed by sequencing to have a filP-mCherry fusion lacking a linker 

where instead filP reads directly into mCherry. Thus, confirming the generation of a 

pIJ8660-PfilP-filP-Δlink-mCherry construct. 
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A 
B 

Figure 174: Generation of pIJ8660-PfilP-filP-Δlink-mCherry. 

pIJ8660-PfilP-filP-Δlink-mCherry is a derivative of pIJ8660-PfilP-filP-egfp. A) The 
mCherry NdeI/EcoRI fragment was liberated from pIJ8660-Pscy-scy-Δlink-mCherry. B) 
Using NdeI and EcoRI, pIJ8660-PfilP-filP-egfp was digested and the mCherry fragment 
cloned so that egfp was replaced by mCherry placed in frame with filP with no linker. The 
restriction sites used in the cloning are underlined in red. 
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G GCC GAC CGG ATC CGT TCG GAG TCG GAG CGC GAG CTG GCC GCC CTC 

             BamHI  

ACC AAC CGC CGC GAC TCC ATC AAC GCG CAG CTG ACC AAC GTG CGC 

GAG ATG CTG GCG TCG CTC ACG GGC GCC GCG GTG GCG GCC GCG CCG 

TCG GTC GAG GAC GAG TCG GTC TCC CGC GGG GTC CCG GCC CAG CAG 

TCC CGC CAT ATG GTG AGC AAG GGC GAG 

          NdeI             

 

Figure 175: DNA Fragments for generation of pIJ8660-PfilP-filP-Δlink-mCherry and 
digestion of subsequent pIJ8660-PfilP-filP-Δlink-mCherry clone. 

A) pIJ8660-PfilP-filP-Δlink-mCherry. Sequence of the junctions between pIJ8660 and 
scyCterm and filP and mCherry. The filP-mCherry junction lacks a linker with filP reading 
directly into mCherry. Restriction site sequences are bold and underlined. The scy sequences 
are highlighted light blue, filP is highlighted orange and mCherry is highlighted pink. 
Primers for colony PCR are marked (black arrows). 

B) The gel isolated fragments used for construction of pIJ8660-PfilP-filP-Δlink-mCherry 
were analysed on a 0.7% agarose gel. The fragments used were the NdeI/EcoRI fragment of 
pIJ8660-PfilP-filP-egfp (Lane 2) and the NdeI/EcoRI fragment containing mCherry (no link) 
(Lane 3). The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

C) Candidate colonies were screened with colony PCR using THAbpS_F (upstream) and 
mCherryseq (downstream) primers and PCR products were analysed on a 0.7% agarose gel. 
Candidate colonies are shown Lanes 2-18. The arrow indicates the ~1166bp PCR product 
expected. The plasmids pIJ8660-PfilP-filP-egfp (Lane 19) and pIJ8660-PfilP-filP-mCherry 
(Lane 20) were used as control templates. The DNA size marker is Lambda HindIII/EcoRI 
(Lane 1). 

D) Sequencing chromatogram showing the reverse complement of pIJ8660-PfilP-filP-Δlink-
mCherry sequenced with the mCherryseq primer. Underlined sequences are BamHI or NdeI 
restriction sites. 
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           EcoRV    BamHI 
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10.1.58 Generation of DivIVA bacterial two-hybrid constructs 

 

In order to test the interactions of DivIVA in the Bacterial two-hybrid system we aimed to 

clone divIVA into pUT18C and pKT25 to generate DNA encoding T18-DivIVA or T25-

DivIVA with T18 or T25 at the N-terminal of DivIVA, respectively. The strategy to 

generate these fusions was to PCR amplify the whole of divIVA and firstly clone it into 

pUT18C, which is a high copy number plasmid, aiding cloning. Then, subclone the divIVA 

fragment from pUT18C into pKT25 (Figure 176 & Figure 177). The divIVA fragment was 

generated by PCR using the primers THDiv_F and THDiv_R. The PCR product was then 

digested with XbaI and EcoRI and cloned into the same sites in pUT18C (Figure 178). 

After ligation of the fragments the ligation mixture was used for transformation of E. coli 

strain DH5α. The transformants were screened with colony PCR (Figure 178C) to find 

potential clones which could generate a ~1219bp PCR product that carries divIVA. Plasmid 

DNA was then isolated from positive colonies, isolated DNA was confirmed by restriction 

digestion (Figure 178B) to liberate a ~1207bp fragment containing divIVA. Candidate 

clones were picked and the divIVA insert sequenced from two directions. Despite several 

candidates carrying in the range of 2-3 single base pair mutations, one clone was 

sequenced and contained the expected sequence of divIVA. Therefore, confirming this 

clone as the plasmid pUT18C-divIVA, encoding DivIVA fused to the C-terminus of the 

T18 adenylate cyclase domain.  

For reciprocal tests from the lower copy BTH plasmid pKT25, the insert from pUT18C-

divIVA was also cloned into pKT25 using XbaI and EcoRI (Figure 179). After ligation of 

the fragments the ligation mixture was used for transformation of E. coli strain DH5α. The 

transformants were screened with colony PCR (Figure 179C) to find potential clones 

which now carried template for a ~630bp PCR product of the C-terminal sequence of 

divIVA. Plasmid DNA was then isolated from positive colonies, and was confirmed by 

restriction digestion (Figure 179B) to liberate a ~1207bp fragment containing the full 

length of divIVA. Thus, confirming the generation of the plasmid pKT25-divIVA, encoding 

DivIVA fused to the C-terminus of the T25 adenylate cyclase domain.  
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Figure 176: Generation of pUT18C-divIVA and pKT25-divIVA. 

A) pUT18C-divIVA is a pUT18C derivative containing a divIVA PCR fragment cloned in 
via XbaI and EcoRI. B) The divIVA fragment was then liberated using XbaI and EcoRI 
from pUT18C-divIVA and cloned into pKT25 to generate pKT25-divIVA. Both pUT18C-
divIVA and pKT25-divIVA have DNA encoding either the adenylate cyclase domain T18 
or T25, respectively, reading inframe to divIVA. The restriction sites used in the cloning 
are underlined in red.  
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PCR of divIVA 

fragment cloned into 

XbaI and EcoRI sites. 
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CCA AGC TTG  CAT  GCC  TGC  AGG TCG ACT CTA GAG CAT ATG  

              T18                      XbaI       NdeI 

CCG TTG  ACC CCC GAG GAC G 

THDiv_F 

 

 

  GG TTC CTG ATC GAC GAG GAC GAC AAC TGA GAA TTC ATC GAT ATA  
    THDiv_R                       Stop  EcoRI  pUT18C           

Figure 177: Sequence of joins formed in the constructs pUT18C-divIVA and pKT25-
divIVA. 

A) Sequence of junctions in the construct pUT18C-divIVA. The cloned in divIVA fragment 
is fused to DNA encoding the C-terminus of T18 and under the direction of a lactose 
inducible promoter. Restriction site sequences are bold and underlined. The divIVA 
sequences are highlighted salmon pink and T18 is highlighted green. Primers for colony 
PCR are marked (black arrows). 

B) Sequence of junctions in the construct pKT25-divIVA. The cloned in divIVA fragment is 
fused DNA encoding the C-terminus of T25 and under the direction of a lactose inducible 
promoter.  Restriction site sequences are bold and underlined. The divIVA sequences are 
highlighted salmon pink and T25 is highlighted yellow. Primers for colony PCR are marked 
(black arrows). 

GCT GCA GGG TCG ACT  CTA  GAG CAT ATG CCG  TTG  ACC CCC 

              T25      XbaI       NdeI        THDiv_F 

GAG GAC G 

 

  

GG TTC CTG ATC GAC GAG GAC GAC AAC TGA GAA TTC GGC CGT CGT  

    THDiv_R                       Stop  EcoRI  pKT25           

A 

B 
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Figure 178: DNA Fragments for generation of a divIVA pUT18C construct and its 
confirmation by restriction digests. 

A) The gel isolated fragments used for construction of pUT18C-divIVA were analysed on a 
0.7% agarose gel. The fragments used were the XbaI/EcoRI fragment of pUT18C (Lane 2) 
and the XbaI/EcoRI fragment of a divIVA PCR product (Lane 3). The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 

B) The plasmids pUT18C (Lanes 2 & 3) and the plasmid pUT18C-divIVA (Lanes 4 & 5) 
were analysed on a 1% agarose gel. Undigested samples (Lanes 2 & 4) were run together 
with samples digested with XbaI and EcoRI (Lanes 3 & 5). The arrow indicates the 
~1207bp fragment carrying the PCR amplified divIVA. The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

C) Candidate colonies were screened with colony PCR using THScy_T18 (upstream) and 
TH DivIVA R (downstream) primers and PCR products were analysed on a 0.7% agarose 
gel. Candidate colonies are shown Lanes 2-18. The arrow indicates the ~1219bp PCR 
product expected. The plasmid pUT18C-filP was used as a control template (Lane 19).The 
DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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10.1.59 Generation of DivIVA-N bacterial two-hybrid constructs 

 

In order to test the interactions of the N-terminal domain of DivIVA in the Bacterial two-

hybrid system it was aimed to clone a divIVA-N encoding fragment into pUT18C and 

pKT25. This would generate T18-DivIVA-N and T25-DivIVA-N, N-terminal fusions of 

the DivIVA-N domain to T18 or T25, respectively. The strategy to generate these fusions 

was to PCR amplify just the N-terminal fragment of divIVA and firstly clone it into 

pUT18C, then subclone this into pKT25 (Figure 180 & Figure 181). A divIVA-N fragment 

was generated by PCR using the primers THDiv_F and DivN_STOPEco. The PCR product 

Figure 179: DNA Fragments for generation of a divIVA pKT25 construct and its 
confirmation by restriction digests. 

A) The gel isolated fragments used for construction of pKT25-divIVA were analysed on a 
0.7% agarose gel. The fragments used were the XbaI/EcoRI fragment of pKT25 (Lane 2) 
and the XbaI/EcoRI fragment of divIVA (Lane 3). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

B) The plasmids pKT25 (Lanes 2 & 3) and the plasmid pKT25-divIVA (Lanes 4 & 5) were 
analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were run together with 
samples digested with XbaI and EcoRI (Lanes 3 & 5). The arrow indicates the ~1207bp 
fragment carrying the PCR amplified divIVA. The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

C) Candidate colonies were screened with colony PCR using DivcoilF/PET (upstream) and 
THDiv_R (downstream) primers and PCR products were analysed on a 1% agarose gel. 
Candidate colonies are shown Lanes 2-18. The arrow indicates the ~630bp PCR product 
expected. The plasmids pKT25 (Lane 19) and pUT18C-divIVA (Lane 20) were used as 
control templates. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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was then digested with XbaI and EcoRI and cloned into the same sites in pUT18C (Figure 

182). The ligation mixture was used to transform E. coli strain DH5α. The transformants  

 
were screened with colony PCR (Figure 182D) to find potential clones which could 

generate a ~632bp  PCR product that carries divIVA-N. Plasmid DNA was then isolated 

from positive colonies, and was confirmed by restriction digestion (Figure 182C) to 

liberate a ~615bp fragment containing divIVA-N. Candidate clones were picked and the 

divIVA-N insert sequenced. A clone was found that had the expected sequence of divIVA-

N. Thus, confirming this clone as the plasmid pUT18C-divIVA-N, with divIVA-N fused to 

the C-terminus of the T18 adenylate cyclase domain. 

Figure 180: Generation of pUT18C-divIVA-N and pKT25-divIVA-N. 

A) pUT18C-divIVA-N is a pUT18 derivative containing a divIVA-N PCR fragment cloned 
in via XbaI and EcoRI. B) The divIVA-N fragment was then liberated using XbaI and 
EcoRI from pUT18C-divIVA-N and cloned into pKT25 to generate pKT25-divIVA-N. 
Both pUT18C-divIVA-N and pKT25-divIVA-N have DNA encoding either the adenylate 
cyclase domain T18 or T25, respectively, reading inframe to divIVA-N. The restriction 
sites used in the cloning are underlined in red. 
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For reciprocal tests from the lower copy BTH plasmid pKT25, the insert was also moved 

into pKT25 using XbaI and EcoRI (Figure 183). After ligation of the fragments the ligation  

 
mixture was used for transformation of E. coli strain DH5α. The transformants were 

screened with colony PCR (Figure 183D) to find potential clones which could generate a 

~632bp PCR product that carries divIVA-N. Plasmid DNA was then isolated from positive 

colonies, and was confirmed by restriction digestion (Figure 183C) to liberate a ~615bp 

fragment containing divIVA-N. Therefore, confirming the generation of the plasmid 

CCA AGC TTG CAT GCC TGC AGG TCG ACT CTA GAG CAT ATG  

              T18                   XbaI       NdeI 

CCG TTG  ACC CCC GAG GAC G 

THDiv_F 

 

 

  
GGT CAG GGC GGC CCC GGC GGC TAG AAT TCA TCG ATA TA  

    DivN_STOPEco          Stop EcoRI    pUT18C           

GCT  GCA  GGG TCG ACT  CTA  GAG CAT ATG CCG  TTG  ACC CCC 

              T25      XbaI       NdeI        THDiv_F 

GAG GAC G 

 

  

GGT CAG GGC GGC CCC GGC GGC TAG AAT TCG GCC GTC GT  

    DivN_STOPEco          Stop EcoRI    pKT25           

Figure 181: Sequence of joins formed in the constructs pUT18C-DivIVA-N and pKT25-
DivIVA-N. 

A) Sequence of junctions in the construct pUT18C-divIVA-N. The cloned in divIVA-N 
fragment is fused to DNA encoding the C-terminus of T18 and under the direction of a 
lactose inducible promoter. Restriction site sequences are bold and underlined. The divIVA-
N sequences are highlighted red and T18 is highlighted green. Primers for colony PCR are 
marked (black arrows). 

B) Sequence of junctions in the construct pKT25-divIVA-N. The cloned in divIVA-N 
fragment is fused to DNA encoding the C-terminus of T25 and under the direction of a 
lactose inducible promoter.  Restriction site sequences are bold and underlined. The 
divIVA-N sequences are highlighted red and T25 is highlighted yellow. Primers for colony 
PCR are marked (black arrows). 
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pKT25-divIVA-N, with divIVA-N fused to DNA encoding the C-terminus of the T25 

adenylate cyclase domain. 

 

Figure 182: DNA Fragments for generation of a divIVA-N pUT18C construct and its 
confirmation by restriction digests. 

A) The gel isolated XbaI/EcoRI fragment of pUT18C used for construction of pUT18C-
divIVA-N was analysed on a 1% agarose gel (Lane 2). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

B) The gel isolated XbaI/EcoRI fragment of the PCR product containing divIVA-N used 
for construction of pUT18C-divIVA-N was analysed on a 0.85% agarose gel (Lane 2). The 
DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

C) The plasmids pUT18C (Lanes 2 & 3) and the plasmid pUT18C-divIVA-N (Lanes 4 & 5) 
were analysed on a 1% agarose gel. Undigested samples (Lanes 2 & 4) were run together 
with samples digested with XbaI and EcoRI (Lanes 3 & 5). The arrow indicates the ~615bp 
fragment carrying the PCR amplified divIVA-N. The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

D) Candidate colonies were screened with colony PCR using THDiv_F (upstream) and 
DivN_STOPEco (downstream) primers and PCR products were analysed on a 1% agarose 
gel. Candidate colonies are shown Lanes 2-18. The arrow indicates the ~632bp PCR 
product expected. The plasmids pUT18C (Lane 19) and pET28a-DivIVA-EGFP (Lane 20) 
were used as control templates. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

 

1 2 
bp 

1 2 
bp 

3 4 5 

bp 

1 2 
bp 

2 3 4 5 1 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

A B C 

D 

327 

 



                                                                                                                      Neil Holmes 

 
 

10.1.60 Generation of a DivIVA-C pKT25 construct 

 

The construct pUT18C-divIVA-C had already been made (Kelemen lab, unpublished). 

Therefore, in order for reciprocal tests from the lower copy BTH plasmid pKT25, we 

aimed to move a divIVA-C fragment from pUT18C-divIVA-C. From the vector pUT18C-

divIVA-C, using XbaI and EcoRI the sequence containing divIVA-C was inserted into the 

same sites of pKT25 (Figure 184 and Figure 185). After ligation and transformation of E. 

coli, the transformants were screened with colony PCR (Figure 185E) to find potential 

1 2 
bp 

1 2 
bp 

Figure 183: DNA Fragments for generation of a divIVA-N pKT25 construct and its 
confirmation by restriction digests. 
A) The gel isolated XbaI/EcoRI fragment of pKT25 used for construction of pKT25-
divIVA-N was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

B) The gel isolated XbaI/EcoRI fragment containing divIVA-N used for construction of 
pKT25-divIVA-N was analysed on a 0.85% agarose gel (Lane 2). The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 

C) The plasmids pKT25 (Lanes 2 & 3) and the plasmid pKT25-divIVA-N (Lanes 4 & 5) 
were analysed on a 1% agarose gel. Undigested samples (Lanes 2 & 4) were run together 
with samples digested with XbaI and EcoRI (Lanes 3 & 5). The arrow indicates the ~615bp 
fragment carrying divIVA-N. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

D) Candidate colonies were screened with colony PCR using THDiv_F (upstream) and 
DivN_STOPEco (downstream) primers and PCR products were analysed on a 1% agarose 
gel. Candidate colonies are shown Lanes 2-11. The arrow indicates the ~632bp PCR 
product expected. The plasmids pKT25 (Lane 12) and pUT18C-divIVA-N (Lane 13) were 
used as control templates. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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clones which now generated a ~630bp PCR product that carries divIVA-C. Plasmid DNA 

was then isolated from positive colonies, and was confirmed by restriction digestion 

(Figure 185D) to liberate a ~612bp fragment containing divIVA-C. The product generated 

was the plasmid pKT25-divIVA-C, with divIVA-C fused to the C-terminus of the T25 

adenylate cyclase domain. 

 

 

 

Figure 184: Generation of pKT25-divIVA-C. 

pKT25-divIVA-C is a derivative of pKT25. A divIVA-C fragment was liberated using XbaI 
and EcoRI from pUT18C-divIVA-C. Using the enzymes XbaI and EcoRI pKT25 was 
digested and the divIVA-C fragment cloned so that DNA encoding the adenylate cyclase 
domain T25 reads inframe to divIVA-C. The restriction sites used in the cloning are 
underlined in red. 
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GCG GGT TCC TGA TCG ACG AGG ACG ACA ACT CGA ATT CGG CCG    

THDiv_coilR STOP                           EcoRI  pKT25           

GCT GCA GGG TCG ACT CTA GAG GGC CCC GGC GGC GAC AGT GCC  

          T25        XbaI            THDiv_F 

GC 

               

 

  

Figure 185: DNA Fragments for generation of a divIVA-C pKT25 construct and its 
confirmation by restriction digests. 

A) Sequence of junctions in the construct pKT25-divIVA-C. The cloned in divIVA-C 
fragment is fused to DNA encoding the C-terminus of T25 and under the direction of a 
lactose inducible promoter.  Restriction site sequences are bold and underlined. The 
divIVA-C sequences are highlighted blue and T25 is highlighted yellow. Primers for colony 
PCR are marked (black arrows). 

B) The gel isolated XbaI/EcoRI fragment of pKT25 used for construction of pKT25-
divIVA-N was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

C) The gel isolated XbaI/EcoRI fragment containing divIVA-C used for construction of 
pKT25-divIVA-C was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 

D) The plasmids pKT25 (Lanes 2 & 3) and the plasmid pKT25-divIVA-C (Lanes 4 & 5) 
were analysed on a 1% agarose gel. Undigested samples (Lanes 2 & 4) were run together 
with samples digested with XbaI and EcoRI (Lanes 3 & 5). The arrow indicates the ~612bp 
fragment carrying divIVA-C. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

E) Candidate colonies were screened with colony PCR using DivcoilF/PET (upstream) and 
THDiv_R (downstream) primers and PCR products were analysed on a 1% agarose gel. 
Candidate colonies are shown Lanes 2-18. The arrow indicates the ~630bp PCR product 
expected. The plasmids pKT25 (Lane 19) and pKT25-divIVA (Lane 20) were used as 
control templates. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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10.1.61 Generation of FilP overexpression constructs 

 

To be able to overexpress and purify FilP protein, we sought to generate constructs of 

pET21a and pET28a containing filP. The easiest strategy to be able to do this was to make 

use of the two-hybrid construct pUT18C-filP, where we could lift a fragment from and  

 
clone it directly into either pET21a or pET28a (Figure 186 & Figure 187). From pUT18C-

filP an NdeI-EcoRI fragment was moved into pET21a (Figure 188). After ligation of the 

appropriate fragments the ligation mixture was used for transformation of E. coli strain 

DH5α. The transformants were screened with colony PCR (Figure 188C) to find potential 

clones which could generate a ~961bp PCR product that carries filP. Plasmid DNA was 

Figure 186: Generation of pET21a-filP and pET28a-filP. 
pET21a-filP and pET28a-filP are derivatives of pET21a and pET28a, respectively. A) A 
filP fragment was liberated from pUT18C-filP using NdeI and EcoRI. B) Using NdeI and 
EcoRI, pET21a and pET28a were digested and the filP fragment was cloned. The 
restriction sites used in the cloning are underlined in red. 
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then isolated from positive colonies, isolated DNA was confirmed by restriction digestion 

(Figure 188B) to liberate a ~973bp fragment containing filP, confirming the generation of 

pET21a-filP with the filP gene under the direction of a T7 RNA polymerase regulated  

 
 

promoter. For overexpression of His-tagged FilP, the same NdeI-EcoRI fragment 

containing filP was moved into pET28a (Figure 189). After ligation and transformation of 

E. coli DH5α, the transformants were screened with colony PCR (Figure 189D) to find 

potential clones which could generate a ~1146bp PCR product that carries filP. Plasmid 

DNA was then isolated from positive colonies, isolated DNA was confirmed by restriction 

digestion (Figure 189C) to liberate a ~1032bp fragment containing filP. Therefore, 

confirming the generation of pET28a-filP, with the filP gene fused to a DNA encoding a 

A 

B 

Figure 187: Sequences of the junctions in the constructs pET21a-FilP and pET28a-FilP 

A) Sequence of junctions in the construct pET21a-filP. The cloned in filP gene is under the 
direction of a T7 RNA polymerase dependent/lactose inducible promoter. Restriction site 
sequences are bold and underlined. The filP sequences are highlighted orange. Primers for 
colony PCR are marked (black arrows). 

B) Sequence of junctions in the construct pET28a-filP. The cloned in filP gene is fused to 
an N-terminal 6xhis encoding sequence under the direction of a T7 RNA polymerase 
dependent/lactose inducible promoter. Restriction site sequences are bold and underlined. 
The filP sequences are highlighted orange. Primers for colony PCR are marked (black 
arrows). 

 

TT TAA GAA GGA GAT ATA CAT ATG AGC GAC ACT TCC CCC TAC G 

                      NdeI Start     THAbpS_F 

 

TAT ACC ATG GGC AGC AGC CAT CAT CAT CAT CAT CAC AGC AGC GGC CTG 

       Start                  His Tag 

GTG CCG CGC GGC AGC CAT ATG AGC GAC ACT TCC CCC TAC G 

                   NdeI Start     THAbpS_F 

CG GCC CAG CAG TCC CGC TGA GAA TTC GAG CTC CGT 

    THAbpS_R         Stop  EcoRI  pET21a           

CG GCC CAG CAG TCC CGC TGA GAA TTC GAG CTC CGT  

    THAbpS_R          Stop  EcoRI  pET28a           
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6xHis tag at the N-terminus under the direction of a T7 RNA polymerase regulated 

promoter. 

 

 

Figure 188: DNA Fragments for generation of a filP containing pET21a consrtuct and its 
confirmation by restriction digests. 

A) The gel isolated fragments used for construction of pET21a-filP were analysed on a 0.7% 
agarose gel. The fragments used were the NdeI/EcoRI fragment of a filP (Lane 2) and the 
NdeI/EcoRI fragment of pET21a (Lane 3). The DNA size marker is Lambda HindIII/EcoRI 
(Lane 1). 

B) The plasmids pET21a (Lanes 2 & 3) and the plasmid pET21a-filP (Lanes 4 & 5) were 
analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were run together with 
samples digested with XbaI and EcoRI (Lanes 3 & 5). The arrow indicates the ~973bp 
fragment carrying filP. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

C) Candidate colonies were screened with colony PCR using THAbpS_F (upstream) and 
THAbpS_R (downstream) primers and PCR products were analysed on a 0.7% agarose gel. 
Candidate colonies are shown Lanes 2-11. The arrow indicates the ~961bp PCR product 
expected. The plasmids pET21a (Lane 12) and pUT18C-filP (Lane 13) were used as control 
templates. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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10.1.62 Generation of DivIVA overexpression constructs 

 

In order to overexpress and purify DivIVA protein, we sought to generate constructs of 

pET21a and pET28a expressing DivIVA. A similar strategy was designed to that of the 

FilP overexpression constructs, whereby we could make use of the two hybrid construct 

pUT18C-divIVA, where we could lift a fragment from and clone it directly into either 

pET21a or pET28a (Figure 190 & Figure 191). From pUT18C-divIVA an NdeI-EcoRI 

fragment was moved into pET21a (Figure 192). After ligation and transformation of E. coli 

Figure 189: DNA Fragments for generation of a filP containing pET28a consrtuct and its 
confirmation by restriction digests. 

A) The gel isolated NdeI/EcoRI fragment of pET28a used for construction of pET28a-filP 
was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

B) The gel isolated NdeI/EcoRI fragment containing filP used for construction of pET28a-
filP was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

C) The plasmids pET28a (Lanes 2 & 3) and the plasmid pET28a-filP (Lanes 4 & 5) were 
analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were run together with 
samples digested with XbaI and EcoRI (Lanes 3 & 5). The arrow indicates the ~1032bp 
fragment carrying filP. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

D) Candidate colonies were screened with colony PCR using THAbpS_F (upstream) and 
pET28a(+)-1 (downstream) primers and PCR products were analysed on a 0.7% agarose 
gel. Candidate colonies are shown Lanes 2-18. The arrow indicates the ~1146bp PCR 
product expected. The plasmids pET28a (Lane 19) and pET21a-filP (Lane 20) were used 
as control templates. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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DH5α, the transformants were screened with colony PCR (Figure 192D) to find potential 

clones which could generate a ~1410bp PCR product that carries divIVA. Plasmid DNA 

was then isolated from positive colonies, isolated DNA was confirmed by restriction  

 
digestion (Figure 192C) to liberate a ~1199bp fragment containing divIVA, confirming the 

generation of pET21a-divIVA with the divIVA gene with no tag under the direction of a T7 

RNA polymerase regulated promoter. For overexpression and purification of His-tagged 

DivIVA, the same NdeI-EcoRI fragment containing divIVA was moved into pET28a 

(Figure 193). After ligation of the fragments the ligation mixture was used for 

transformation of E. coli strain DH5α. The transformants were screened with colony PCR 

(Figure 193D) to find potential clones which could generate a ~1410bp PCR product that 

carries divIVA. Plasmid DNA was then isolated from positive colonies, isolated DNA was 

Figure 190: Generation of pET21a-divIVA and pET28a-divIVA. 
pET21a-divIVA and pET28a-divIVA are derivatives of pET21a and pET28a, respectively. 
A) A divIVA fragment was liberated from pUT18C-divIVA using NdeI and EcoRI. B) Using 
NdeI and EcoRI, pET21a and pET28a were digested and the divIVA fragment was cloned. 
The restriction sites used in the cloning are underlined in red. 
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confirmed by restriction digestion (Figure 193C) to liberate a ~1199bp fragment 

containing divIVA. Therefore, confirming the generation of pET28a-divIVA, with the 

divIVA gene fused to DNA encoding a 6xHis tag at the N-terminus under the direction of a 

T7 RNA polymerase regulated promoter. 

 

 

A 

B 

Figure 191: Sequences of the junctions in the constructs pET21a-DivIVA and pET28a-
DivIVA 

A) Sequence of junctions in the construct pET21a-divIVA. The cloned in divIVA gene is 
under the direction of a T7 RNA polymerase dependent/lactose inducible promoter. 
Restriction site sequences are bold and underlined. The divIVA sequences are highlighted 
salmon pink. Primers for colony PCR are marked (black arrows). 

B) Sequence of junctions in the construct pET28a-divIVA. The cloned in divIVA gene is 
fused to an N-terminal 6xhis encoding sequence under the direction of a T7 RNA 
polymerase dependent/lactose inducible promoter. Restriction site sequences are bold and 
underlined. The divIVA sequences are highlighted salmon pink. Primers for colony PCR 
are marked (black arrows). 

 

TT TAA GAA GGA GAT ATA CAT ATG CCG TTG ACC CCC GAG GAC G 

                      NdeI Start     THDiv_F 

 

TAT ACC ATG GGC AGC AGC CAT CAT CAT CAT CAT CAC AGC AGC GGC CTG 

       Start                  His Tag 

GTG CCG CGC GGC AGC CAT ATG CCG TTG  ACC CCC GAG GAC G  

                   NdeI Start     THDiv_F 

GG TTC CTG ATC GAC GAG GAC GAC AAC TGA GAA TTC GAG CTC CGT 

    THDiv_R                       Stop  EcoRI  pET21a           

GG TTC CTG ATC GAC GAG GAC GAC AAC TGA GAA TTC GAG CTC CGT  

    THDiv_R                       Stop  EcoRI  pET28a           
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Figure 192: DNA Fragments for generation of a divIVA containing pET21a consrtuct 
and its confirmation by restriction digests. 

A) The gel isolated NdeI/EcoRI fragment of pET21a used for construction of pET21a-
divIVA was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

B) The gel isolated NdeI/EcoRI fragment containing divIVA used for construction of 
pET21a-divIVA was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 

C) The plasmids pET21a (Lanes 2 & 3) and the plasmid pET21a-divIVA (Lanes 4 & 5) 
were analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were run 
together with samples digested with NdeI and EcoRI (Lanes 3 & 5). The arrow indicates 
the ~1199bp fragment carrying divIVA. The DNA size marker is Lambda HindIII/EcoRI 
(Lane 1). 

D) Candidate colonies were screened with colony PCR using THDiv_F (upstream) and 
pET28a(+)-1 (downstream) primers and PCR products were analysed on a 0.7% agarose 
gel. Candidate colonies are shown Lanes 2-11. The arrow indicates the ~1410bp PCR 
product expected. The plasmid pET21a (Lane 12) was used as a control template. The 
DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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10.1.63 Generation of DivIVA-C overexpression constructs 

 

We sought to overexpress and purify DivIVA-C by generating constructs of pET21a and 

pET28a containing divIVA-C. However, the complication with generating these constructs 

was that we could not employ the same strategy as used for the other pET21a and pET28a 

constructs generated for overproducing either DivIVA or FilP because the pUT18C-

divIVA-C construct that was previously generated, did not include an NdeI site at the start 

of the divIVA-C insert. So we aimed to generate a divIVA-C fragment  

Figure 193: DNA Fragments for generation of a divIVA containing pET28a consrtuct and 
its confirmation by restriction digests. 

A) The gel isolated NdeI/EcoRI fragment of pET28a used for construction of pET28a-
divIVA was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

B) The gel isolated NdeI/EcoRI fragment containing divIVA used for construction of 
pET28a-divIVA was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 

C) The plasmids pET28a (Lanes 2 & 3) and the plasmid pET28a-divIVA (Lanes 4 & 5) 
were analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were run together 
with samples digested with NdeI and EcoRI (Lanes 3 & 5). The arrow indicates the 
~1199bp fragment carrying divIVA. The DNA size marker is Lambda HindIII/EcoRI 
(Lane 1). 

D) Candidate colonies were screened with colony PCR using THDiv_F (upstream) and 
pET28a(+)-1 (downstream) primers and PCR products were analysed on a 0.7% agarose 
gel. Candidate colonies are shown Lanes 2-18. The arrow indicates the ~1410bp PCR 
product expected. The plasmid pET28a (Lane 19) was used as a control template. The 
DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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with the desired NdeI and EcoRI restriction sites by PCR amplification. As inserting this 

fragment directly into pET21a or pET28a might prove problematic, we used the 

commercial vector pGEM-T Easy. Where we would then be able to move the divIVA-C 

fragment later into pET21a or pET28a (Figure 194 & Figure 195). The vector pGEM-T 

Easy is useful for cloning PCR products directly as it is a linearised fragment with single 3’ 

thymidines at both ends. A PCR product generated with Go Taq® Polymerase will  

 

Figure 194: Generation of pGEM-T Easy-divIVA-C, pET21a-divIVA-C and pET28a-
divIVA-C. 

A) pGEM-T Easy-divIVA-C is a derivative of pGEM-T Easy containing the divIVA-C PCR 
product cloned into the multiple cloning site which is designed with T overhangs for easy 
incorporation of a Taq polymerase generated PCR product. pET21a-divIVA-C and 
pET28a-divIVA-C are derivatives of pET21a and pET28a, respectively. B) A divIVA-C 
fragment was liberated from pGEM-T Easy-divIVA-C using NdeI and EcoRI. C) Using 
NdeI and EcoRI, pET21a and pET28a were digested and the divIVA-C fragment was 
cloned. The restriction sites used in the cloning are underlined in red. 
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generate 3’ adenines at both ends which will be complementary to the thymidine 

overhangs on pGEM-T Easy. The vector pGEM-T Easy also facilitates blue/white 

selection for plasmids carrying inserts. The divIVA-C fragment was generated by PCR 

using the primers DivcoilF/PET and THDiv_R (Figure 196A) and cloned into the 

commercial vector pGEM-T Easy. After transformation, the white colonies were further 

screened using colony PCR (Figure 196B) to find potential clones which could generate a 

~630bp PCR product that carries divIVA-C. There were numerous colonies that generated 

the expected 
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Figure 195: Sequences of the junctions in the constructs pET21a-DivIVA-C and pET28a-
DivIVA-C. 

A) Sequence of junctions in the construct pET21a-divIVA-C. The cloned in divIVA-C 
fragment is under the direction of a T7 RNA polymerase dependent/lactose inducible 
promoter. Restriction site sequences are bold and underlined. The divIVA-C sequences are 
highlighted blue. Primers for colony PCR are marked (black arrows). 

B) Sequence of junctions in the construct pET28a-divIVA-C. The cloned in divIVA-C 
fragment is fused to an N-terminal 6xhis encoding sequence under the direction of a T7 
RNA polymerase dependent/lactose inducible promoter. Restriction site sequences are 
bold and underlined. The divIVA-C sequences are highlighted blue. Primers for colony 
PCR are marked (black arrows). 

 

TT TAA GAA GGA GAT ATA CAT ATG GGC CCC GGC GGC GAC AGT GC 

                      NdeI Start     DivcoilF/PET 

 

TAT ACC ATG GGC AGC AGC CAT CAT CAT CAT CAT CAC AGC AGC GGC CTG 

       Start                  His Tag 

GTG CCG CGC GGC AGC CAT ATG GGC CCC GGC GGC GAC AGT GC 

                   NdeI Start     DivcoilF/PET 

 

GG TTC CTG ATC GAC GAG GAC GAC AAC TGA GAA TTC GAG CTC CGT  

    THDiv_R                       Stop  EcoRI  pET28a           

GG TTC CTG ATC GAC GAG GAC GAC AAC TGA GAA TTC GAG CTC CGT 

    THDiv_R                       Stop  EcoRI  pET21a           
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PCR product, although there were also colonies with larger PCR inserts likely 

corresponding to insertion of incorrect PCR products (Figure 196A). Analysing the 

plasmids with the correct insert size using sequencing, we identified a clone that contained 

the correct insert of divIVA-C with no mutations. 

Therefore, this clone was used as the source of the divIVA-C fragment, which was then 

lifted with NdeI and EcoRI and was cloned into pET21a (Figure 197). After ligation and 

transformation, transformants were screened with colony PCR (Figure 197D) to find 

potential clones which could generate a ~815bp PCR product that carries divIVA-C. 

Plasmid DNA was then isolated from positive colonies and was confirmed by restriction 

digestion (Figure 197C) to liberate a ~611bp fragment containing divIVA-C, verifying the 

generation of pET21a-divIVA-C carrying divIVA-C sequence with no tag under the 

direction of a T7 RNA polymerase regulated promoter. 

 

 

Figure 196: PCR of a divIVA-C fragment and its identification in the vector pGEM-T Easy. 

A) The DivIVA-C PCR product used for construction of pET28a-divIVA-C was analysed 
on a 1% agarose gel (Lane 2). The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

B) Candidate colonies were screened with colony PCR using TH DivCoil F PET (upstream) 
and TH DivIVA R (downstream) primers and PCR products were analysed on a 1% 
agarose gel. Candidate colonies are shown Lanes 2-18. The arrow indicates the ~630bp 
PCR product expected. A blue negative colony was also included (Lane 19). The plasmid 
pET28a-divIVA (Lane 20) was used as a control template. The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 
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For overexpression and purification of His-tagged DivIVA-C, the same NdeI-EcoRI 

fragment containing divIVA-C was moved into pET28a (Figure 198). The transformants 

were screened with colony PCR (Figure 198D) to find clones which could generate a 

~815bp PCR product that carries divIVA-C. Plasmid DNA was then isolated from positive 

colonies and was confirmed by restriction digestion (Figure 198C) to liberate a ~611bp 

fragment containing divIVA-C verifying the generation of pET28a-divIVA-C. 

Figure 197: DNA Fragments for generation of a divIVA-C containing pET21a consrtuct 
and its confirmation by restriction digests. 
A) The gel isolated NdeI/EcoRI fragment of pET21a used for construction of pET21a-
divIVA-C was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

B) The gel isolated NdeI/EcoRI fragment containing divIVA-C used for construction of 
pET21a-divIVA-C was analysed on a 0.8% agarose gel (Lane 2). The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 

C) The plasmids pET28a (Lanes 2 & 3) and the plasmid pET21a-divIVA-C (Lanes 4 & 5) 
were analysed on a 1% agarose gel. Undigested samples (Lanes 2 & 4) were run together 
with samples digested with NdeI and EcoRI (Lanes 3 & 5). The arrow indicates the ~611bp 
fragment carrying divIVA-C. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

D) Candidate colonies were screened with colony PCR using DivcoilF/PET (upstream) and 
pET28a(+)-1 (downstream) primers and PCR products were analysed on a 1% agarose 
gel. Candidate colonies are shown Lanes 2-11. The arrow indicates the ~815bp PCR 
product expected. The plasmids pET21a (Lane 12) and pET28a-divIVA (Lane 13) were 
used as control templates. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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10.1.64 Generation of EGFP-Scy overexpression constructs 

 

As we had no antibody against Scy, we wanted to be able to overexpress Scy with a protein 

tag that we could monitor. The strategy to make EGFP-Scy expression constructs was to 

move an NdeI-EcoRI fragment carrying egfp-scy from pCJW93-egfp-scy (Hunter and 

Kelemen unpublished) and clone it directly into either pET21a or pET28a (Figure 199 & 

Figure 200). This should then result in the pET21a construct expressing EGFP-Scy with no 

extra tag. Whereas the pET28a construct containing egfp-scy would express a His-tagged 

Figure 198: DNA Fragments for generation of a divIVA-C containing pET28a consrtuct 
and its confirmation by restriction digests. 
The gel isolated NdeI/EcoRI fragment of pET28a used for construction of pET28a-
divIVA-C was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

The gel isolated NdeI/EcoRI fragment containing divIVA-C used for construction of 
pET28a-divIVA-C was analysed on a 0.8% agarose gel (Lane 2). The DNA size marker is 
Lambda HindIII/EcoRI (Lane 1). 

The plasmids pET28a (Lanes 2 & 3) and the plasmid pET28a-divIVA-C (Lanes 4 & 5) 
were analysed on a 1% agarose gel. Undigested samples (Lanes 2 & 4) were run together 
with samples digested with NdeI and EcoRI (Lanes 3 & 5). The arrow indicates the ~611bp 
fragment carrying divIVA-C. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 

Candidate colonies were screened with colony PCR using DivcoilF/PET (upstream) and 
pET28a(+)-1 (downstream) primers and PCR products were analysed on a 1% agarose 
gel. Candidate colonies are shown Lanes 2-17. The arrow indicates the ~815bp PCR 
product expected. The plasmids pET28a (Lane 18) and pET28a-divIVA (Lane 19) were 
used as control templates. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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version of EGFP-Scy. From pCJW93-egfp-scy an NdeI and EcoRI fragment containing 

egfp-scy was inserted into the same sites of pET21a (Figure 201). After ligation and  

transformation the transformants were screened with colony PCR (Figure 201D) to find 

potential clones which now produced a ~1411bp PCR product generated from the C-

terminal of Scy inserted into pET21a. Plasmid DNA was then isolated from positive 

colonies and was confirmed by restriction digestion (Figure 201C) to liberate a ~4137bp 

fragment containing the C-terminal end of scy. This verified the generation of pET21a-

egfp-scy, with egfp-scy with no tag under the direction of a T7 RNA polymerase regulated 

promoter. 

 

 
 Figure 199: Generation of pET21a-egfp-scy and pET28a-egfp-scy. 

pET21a-egfp-scy and pET28a-egfp-scy are derivatives of pET21a and pET28a, 
respectively. A) An egfp-scy fragment was liberated from pCJW93-egfp-scy using NdeI and 
EcoRI. B) Using NdeI and EcoRI, pET21a and pET28a were digested and the egfp-scy 
fragment was cloned. The restriction sites used in the cloning are underlined in red. 
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For overexpression of His-tagged EGFP-Scy, the same NdeI-EcoRI fragment containing 

egfp-scy was inserted into the NdeI-EcoRI sites of pET28a (Figure 202). The transformants 

were screened with colony PCR (Figure 202D) to find potential clones which now 

produced a ~1411bp PCR product that can be generated from the C-terminal part of scy 

inserted into pET28a. Plasmid DNA was then isolated from positive colonies and was  

CTC GGC ATG GAC GAG CTG TAC AAC GGC GGC GGC GGC GGT ATG CGG GGC  

                      BsrGI        Linker 

  

A 

B 

Figure 200: Sequences of joins in the constructs pET21a-egfp-scy and pET28a-egfp-scy. 

A) Sequence of junctions in the construct pET21a-egfp-scy. The cloned in egfp-scy 
fragment is under the direction of a T7 RNA polymerase dependent/lactose inducible 
promoter. Restriction site sequences are bold and underlined. The egfp-scy junction 
contains a glycine linker (highlighted yellow/italics). The scy sequences are highlighted 
light blue and egfp is highlighted green. Primers for colony PCR are marked (black 
arrows). 

B) Sequence of junctions in the construct pET28a-egfp-scy. The cloned in egfp-scy 
fragment is fused to an N-terminal 6xhis encoding sequence under the direction of a T7 
RNA polymerase dependent/lactose inducible promoter. Restriction site sequences are 
bold and underlined. The egfp-scy junction contains a glycine linker (highlighted 
yellow/italics). The scy sequences are highlighted light blue and egfp is highlighted green. 
Primers for colony PCR are marked (black arrows). 

TT TAA GAA GGA GAT ATA CAT ATG GCC ATG  

                      NdeI Start 

TAT ACC ATG GGC AGC AGC CAT CAT CAT CAT CAT CAC AGC AGC GGC CTG 

       Start                  His Tag 

GTG CCG CGC GGC AGC CAT ATG GCC ATG  

                     NdeI  

CTC GGC ATG GAC GAG CTG TAC AAC GGC GGC GGC GGC GGT ATG CGG GGC  

                      BsrGI        Linker 
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confirmed by restriction digestion (Figure 202C) to liberate a ~4137bp fragment 

containing the C-terminal end of scy. This verified the construction of plasmid pET28a-

egfp-scy, with egfp-scy downstream of DNA encoding a 6xHis tag under the direction of a 

T7 RNA polymerase regulated promoter. 

1 2 
A 

bp 

Figure 201: DNA Fragments for generation of an egfp-scy containing pET21a consrtuct 
and its confirmation by restriction digests. 
A) The gel isolated NdeI/EcoRI fragment of pET21a used for construction of pET21a-
divIVA-C was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

B) The gel isolated NdeI/EcoRI fragment containing egfp-scy used for construction of 
pIJ8660-Pscy-egfp-scy was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker 
is Lambda HindIII/EcoRI (Lane 1). 

C) The plasmids pET21a (Lanes 2 & 3) and the plasmid pET21a-egfp-scy (Lanes 4 & 5) 
were analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were run together 
with samples digested with KpnI and EcoRI (Lanes 3 & 5). The arrow indicates the 
~4137bp fragment carrying part of scy. The DNA size marker is Lambda HindIII/EcoRI 
(Lane 1). 

D) Candidate colonies were screened with colony PCR using TH Scy F4 (upstream) and 
pET28a(+)-1 (downstream) primers and PCR products were analysed on a 0.7% agarose 
gel. Candidate colonies are shown Lanes 2-11. The arrow indicates the ~1411bp PCR 
product expected. The plasmids pET21a (Lane 12) and pET21a-scy (Lane 13) were used as 
control templates. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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A 
bp 

1 2 

Figure 202: DNA Fragments for generation of an egfp-scy containing pET28a consrtuct 
and its confirmation by restriction digests. 
A) The gel isolated NdeI/EcoRI fragment of pET28a used for construction of pET28a-
divIVA-C was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker is Lambda 
HindIII/EcoRI (Lane 1). 

B) The gel isolated NdeI/EcoRI fragment containing egfp-scy used for construction of 
pIJ8660-Pscy-egfp-scy was analysed on a 0.7% agarose gel (Lane 2). The DNA size marker 
is Lambda HindIII/EcoRI (Lane 1). 

C) The plasmids pET28a (Lanes 2 & 3) and the plasmid pET28a-egfp-scy (Lanes 4 & 5) 
were analysed on a 0.7% agarose gel. Undigested samples (Lanes 2 & 4) were run together 
with samples digested with KpnI and EcoRI (Lanes 3 & 5). The arrow indicates the 
~4137bp fragment carrying part of scy. The DNA size marker is Lambda HindIII/EcoRI 
(Lane 1). 

D) Candidate colonies were screened with colony PCR using TH Scy F4 (upstream) and 
pET28a(+)-1 (downstream) primers and PCR products were analysed on a 0.7% agarose 
gel. Candidate colonies are shown Lanes 2-18. The arrow indicates the ~1411bp PCR 
product expected. The plasmids pET28a (Lane 12) and pET21a-scy (Lane 13) were used 
as control templates. The DNA size marker is Lambda HindIII/EcoRI (Lane 1). 
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11 Appendix 
 

11.1 Subcellular localisation of proteins using the reporter proteins 

EGFP and mCherry 
 

Subcellular localisation of a protein is often important for dissecting the role of the protein 

in the developmental biology of the organism. The two main cell biology methods for 

establishing the subcellular localisation of a protein are immunolocalisation and 

localisation via a fluorescent tag (Giepmans et al., 2006). Each method has its advantages 

and disadvantages. Immunolocalisation is an important technique that can specifically 

recognize a protein, but requires fixation and permeabilization. This leads to death of the 

cell and potentially to artificial affects caused by the fixation. One of the most used 

fluorescent tags is the Green Fluorescent Protein and its derivatives. Green Fluorescent 

Protein (GFP) is a bioluminescent protein first isolated from the Jellyfish Aequorea 

victoria (Tsien, 1998). GFP has since been developed through mutations to enhanced 

Green Fluorescent Protein (EGFP), which is 35 times brighter than the wild-type protein 

(Zhang et al., 1996). The coding sequence of egfp contains more than 190 silent nucleotide 

changes that were intended for expression of egfp in eukaryotic organisms. However, these 

changes were also beneficial for expression of egfp in S. coelicolor as it reduced the usage 

of rare codons useful for expression of a heterologous gene. This has resulted in the 

utilisation of EGFP as a reporter for gene expression and protein localisation in S. 

coelicolor (Sun et al., 1999). Fusing of a gene and EGFP so that they are translated as a 

single protein can, however, have detrimental effects on proteins folding and behaviour of 

the protein in vivo. 

Similar to GFP is DsRed isolated from a Coral Discosoma sp (Matz et al., 1999; Baird et 

al., 2000). The chromophore of DsRed is subtly different to that of GFP resulting in a shift 

in the maxima of excitation, its emission is shifted to the red part of the spectrum (Gross et 

al., 2000). Similarly to GFP, DsRed has since been optimised, in this case a significant 

change altering the ability of the protein to form tetramers, by generation of a monomeric 

form of the protein (Campbell et al., 2002). The current form of Red Fluorescent protein 

that has been seen to be developed as a tool in Streptomyces research (Flärdh, and Buttner, 

2009) is the monomeric Cherry (mCherry) that we sought to use here. The use of mCherry 
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in S. coelicolor possesses several advantages to EGFP including that there is less auto-

fluorescence in the excitation and emission range of mCherry than there is for EGFP. 

 

11.2 Complementation with EGFP fusions 
 

To further assess the functioning of the various Scy fusions to EGFP. The strains 

scy/pIJ8660-Pscy-efgp-scy, scy/pIJ8660-Pscy-scy-egfp, scy/pIJ8660-Pscy-efgp-scy-C, 

scy/pIJ8660-Pscy-efgp-scy-N and scy/pIJ8660-Pscy-scy-N-egfp were grown on SFM  

 

 
alongside coverslips (as shown in Figure 203). M145/pIJ8660 and scy/pIJ8660 were also 

grown as control strains in order to deem a phenotype as complemented or more similer to 

the scy mutant. Time points of 3 days were observed, in order to catch the part of the 

developmental cycle that would produce spore forming aerial hyphae. In this experiment 

we considered these as a good marker of a wild-type phenotype or scy phenotype, due to 

the very obvious phenotype associated with the aerial hyphae of a scy mutant (Chapter 2).  

Figure 203: Microscopy of the complementation with Scy 
fusions to EGFP. For controls; M145/pIJ8660 (A) was 
used as a wild-type phenotype, and scy/pIJ8660 (B) was 
used as a scy phenotype. The strains scy/pIJ8660-Pscy-
efgp-scy (C) and scy/pIJ8660-Pscy-scy-egfp (D) were 
deemed wild-type in phenotype. The strains scy/pIJ8660-
Pscy-efgp-scy-C (E), scy/pIJ8660-Pscy-efgp-scy-N (F) and 
scy/pIJ8660-Pscy-scy-N-egfp (G) were deemed to be 
similar to a scy phenotype suggesting that these fusions 
don’t complement. Samples were grown for 3 days on 
SFM agar plates alongside coverslips. Images were taken 
using phase contrast. Scale bars are shown. 
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We found that both the full length N and C terminal fusions of Scy to EGFP were able to 

complement the scy mutant. As we had shown that the full length N-terminal could 

complement the aerial hyphae phenotype already (3.2.1), then this shows that the full 

length C-terminal is able to do the same. However we found that none of the truncated 

forms of Scy bound to EGFP were able to complement the phenotype of the aerial hyphae. 

This is of interest as the Scy-C domain fused to EGFP was able to localise to hyphal tips 

(Figure 52), however the lack of complementation suggests that the Scy-N is also 

necessary for the biological function of Scy. As the Scy-N fusions did not localise to the 

hyphal tips (Figure 52 & Figure 54) we were not surprised to find that neither of the Scy-N 

fusions were able to complement the scy mutant. 

 

11.3 Additional constructs 
 

 

Figure 204: The scy overexpression 
vector pCJW93-Scy. 

The vector pCJW93-scy is a high 
copy non-integrative plasmid 
carrying scy under the tipA 
promoter and a fusion to an N-
terminal 6xHis tag. oriT enables 
conjugation from E.coli to S. 
coelicolor. Apramycin and 
thiostrepton resistance are also 
encoded by the plasmid.  
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Figure 205: The BACTH vectors pUT18C and pKT25. 
A) The vector pUT18C contains DNA encoding the T18 domain of CyaA with a C-terminal 
multiple cloning site, allowing the cloning of fragments to generate T18 C-terminal fusions. 
This vector is a high copy number plasmid and can be selected for ampicillin resistance. 

B) The vector pKT25 contains DNA encoding the T25 domain of CyaA with a C-terminal 
multiple cloning site, allowing the cloning of fragments to generate T25 C-terminal fusions. 
This vector is a lower copy number plasmid and can be selected for kanamycin resistance. 

 

A B 

A B 

Figure 206: The Scy bacterial two-hybrid constructs. 

A) pUT18C-scy is a derivative of pUT18C. A scy fragment was cloned into the XbaI and EcoRI 
sites so that the adenylate cyclase domain T18 read inframe to scy. 
B) pKT25-scy is a derivative of pKT25. A scy fragment was cloned into the XbaI and EcoRI sites 
so that the adenylate cyclase domain T25 read inframe to scy. 
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Figure 208: The Scy-C bacterial two-hybrid constructs. 

A) pUT18C-scy-C is a derivative of pUT18C. A scy-C fragment was cloned into the KpnI and 
EcoRI sites with a linker that placed the adenylate cyclase domain T18 read inframe to scy-C. 
B) pKT25-scy-C is a derivative of pKT25. A scy-C fragment was cloned into the KpnI and EcoRI 
sites with a linker that placed the adenylate cyclase domain T25 read inframe to scy-C. 
 
 

Figure 207: The Scy-N bacterial two-hybrid constructs. 

A) pUT18C-scy-N is a derivative of pUT18C. A scy-N fragment was cloned into the XbaI and 
EcoRI sites so that the adenylate cyclase domain T18 read inframe to scy-N. 
B) pKT25-scy-N is a derivative of pKT25. A scy-N fragment was cloned into the XbaI and EcoRI 
sites so that the adenylate cyclase domain T25 read inframe to scy-N. 
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Figure 210: The Novagen vectors pET21a and pET28a. 
A) The plasmid pET21a contains a T7 RNA polymerase dependent/lactose inducible 
promoter with a downstream multiple cloning site allowing cloning of fragments. 
Inducible expression can be driven by IPTG addition in an appropriate E.coli host. The 
Lac repressor is encoded by lacI and Ampicillin resistance is also encoded by the plasmid 
(bla).   

B) The plasmid pET28a contains a T7 RNA polymerase dependent/lactose inducible 
promoter with DNA downstream encoding a 6xhis tag with a multiple cloning site allowing 
cloning of fragments to generate a His tagged fusion protein. Inducible expression can be 
driven by IPTG addition in an appropriate E.coli host. The Lac repressor is encoded by 
lacI and Kanamycin resistance is also encoded by the plasmid (kan).   

 

A B 

Figure 209: The FilP bacterial two-hybrid constructs. 

A) pUT18C-filP is a derivative of pUT18C. A filP fragment was cloned into the XbaI and 
EcoRI sites so that the adenylate cyclase domain T18 read inframe to filP. 
B) pKT25-filP is a derivative of pKT25. A filP fragment was cloned into the XbaI and 
EcoRI sites so that the adenylate cyclase domain T25 read inframe to filP. 
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Figure 211: The Scy overexpression plasmids pET21a-scy and pET28a-scy (pGS2). 

A) The plasmid pET21a-scy contains scy driven by a T7 RNA polymerase dependent/lactose 
inducible promoter in the high copy vector pET21a. Inducible scy expression can be driven 
by IPTG addition in an appropriate E.coli host. The Lac repressor is encoded by lacI and 
ampicillin resistance is also encoded by the plasmid (bla).   

B) The plasmid pET28a-scy (pGS2) contains a 6xhis-scy fusion driven by a T7 RNA 
polymerase dependent/lactose inducible promoter in the high copy vector pET28a. Inducible 
scy expression can be driven by IPTG addition in an appropriate E.coli host. The Lac 
repressor is encoded by lacI and kanamycin resistance is also encoded by the plasmid (kan).   

 

A B 
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