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Abstract 

 

Within this thesis, a highly effective one-pot methodology (based around the use of 

the organocatalyst pyridinium triflate) has been developed for the highly cis-selective 

synthesis of N-aryl 3-aryl-aziridine-2-carboxylates as racemates in yields of up to 80 %. 

This methodology has been extended by the use of a highly acidic C2 symmetric 3,3’-

anthracenyl functionalised BINOL triflylphosphoramide organocatalyst, which allows for 

the formation of the desired cis- N-aryl 3-aryl-aziridine-2-carboxylates in an effective and 

highly enantioselective manner (affording the desired materials in yields of up to 81 %, 

and e.e.s of >99 %). 

Utilising the methodology developed within the first part of the thesis, enantio- and 

isotopically enriched cis- N-aryl 3-aryl-aziridine-2-carboxylates have been synthesised in a 

regioselective manner; with deuterium selectively introduced at the C2, and/or C3 

positions of the aziridine ring with generally >90 % isotopic enrichment. Further to this, 

these aziridines have been submitted to ring opening methodologies in order to produce 

enantiomerically enriched α-amino acid derivatives bearing regioselectively introduced 

deuterium labels (with generally >90 % isotopic enrichment), in yields of up to 97 %, and 

e.e.s of up to 97 %,  

Finally, these methods have been combined in order to synthesise 5 target 

molecules consisting of functionalised enantioenriched α-amino acid derivatives bearing 

multiple isotopic labels including deuterium, 15N, and 18O, in what has become known as 

the ‘Dialled In’ methodology. 
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A Note on Terminology 

 

Throughout this thesis, the several non-standard prefixes are given to novel aziridines 

according to the following convention: 

 

• rac- (a racemic aziridine). 

• cis- (an enantiomerically enriched aziridine in which the protons/deuterons at the 

C2 and C3 positions are orientated in a cis- relationship. i.e. they are on the same 

face of the molecule). 

• trans- (an enantiomerically enriched aziridine in which the protons/deuterons at 

the C2 and C3 positions are orientated in a trans- relationship. i.e. they are on 

opposite faces of the molecule). 
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Section 1: Introduction 

Chapter 1: Deuterium and Labelled Compounds 

1.1: Deuterium: Origins and Early History 

 Deuterium is one of three isotopes of hydrogen, containing one proton and one 

neutron within its nucleus. Much rarer than so called ‘light hydrogen’ (protium), deuterium 

in its natural abundance exists at ~ 0.015 %.1 Most deuterium in existence is contained in 

the form HOD (with D being deuterium), as partially enriched water. It is believed that the 

vast majority of deuterium in existence today was formed around 10 minutes after the Big 

Bang, and has remained fairly constant since.1 

The existence of deuterium was originally suspected after the discovery of 

irregularities during the determination of the mass of hydrogen. The research group of 

Aston et al in Cambridge had developed the first mass spectrograph, publishing the designs 

in 1919.2 With this new instrumentation, the group determined the atomic weight of 

hydrogen, and therefore recorded the mass of a single hydrogen nucleus. Also around this 

time, W. Noyes of the University of Illinois determined the average atomic weight of two 

hydrogen atoms (i.e. one hydrogen molecule). The results of these two groups were 

inconsistent, and were interpreted by some as evidence for the existence of a heavier 

isotope of hydrogen.3 After this, direct evidence of the existence of deuterium was supplied 

by a study of the atomic spectrum of hydrogen; with a line being shown which was 

consistent with a hydrogen atom of mass two. This work by Urey, Brickwedde, and 

Murphy, was carried out in 1931 at Columbia University. After showing the existence of 

this new isotope by atomic spectroscopy, they distilled liquid hydrogen near to the triple 

point in order to isolate a sample.4 However, this experiment led to a much smaller amount 

of deuterium than they expected. Urey (in collaboration with Washburn) went on to obtain 

deuterated water (enriched by ‘a few percent’)4 by electrolytic distillation in late 1931.5  

By 1933, G. N. Lewis had improved upon the electrolytic method, producing essentially 

pure heavy water via successive concentrations.6  

Once it became evident that this new isotope could be isolated and potentially used, 

debate began as to what it should be named, and how nomenclature would change to 

accommodate it. One suggested method was devised by Professor R. W. Wood, who 

suggested that the new isotope should be named bar-hydrogen, and given the symbol Ħ.7 

However, this was disregarded due to the potential difficulty in naming more complex 

molecules containing the new isotope. Thus the method settled on by the community was 

that suggested by Urey et al; namely that the new isotope should be referred to as 

deuterium (from the Greek deuteros, meaning second), and that the most abundant isotope 
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should be referred to as protium (from protius, meaning first).8 The symbol settled on for 

deuterium was also coined by Urey et al originally being H2, before becoming the now 

more commonly recognised 2H (or D). 

It is also worthy of note the lengths to which researchers were willing to go in order 

to gain a grasp of the new isotope; some resorting to drinking heavy water in order to note 

its effects (and taste).9 

 
1.2: Industrial Production of Deuterium 

As discussed above, the initial method for obtaining deuterium in a pure form 

involved the distillation of liquid hydrogen at near to its triple point (this being the point at 

which a compound exists in all three states simultaneously).4 However, this was 

problematic not only due to the inherent dangers of holding hydrogen at its triple point, but 

also due to the low yield of the process. This was improved somewhat by the method of 

repeated hydrolytic concentrations, developed by Lewis et al;6 and by 1934 Norsk Hydro 

had entered into a collaboration with the physicist Leif Trondstad (of the Norwegian 

Institute of Technology) to industrially produce heavy water utilizing the hydrolysis 

equipment from their Haber-Bosch process plant. By the end of 1935, the plant was 

producing 99 % pure heavy water in kilogram scales.10 

During the Second World War, development of heavy water production was seen 

as an important area by the Allies, due to the potential uses of heavy water as a moderator 

for nuclear fission. Research in the USA and Canada led to the development of a catalytic 

exchange process (the Trail process) for the enrichment of water from 0.015 % D (natural 

abundance) through to 2.3 %, followed by electrolysis to produce 99.8 % enriched water. 

This system involved the use of both Pd/C and Ni/Al catalysis in a stepwise process.11 

A modified version of the Trail process, known as the Dual Temperature Sulfide 

Process has been used in modern times for the production of heavy water. By using 

hydrogen sulfide as an exchange material, a metal catalyst is no longer required within the 

enrichment system. Liquid HOD is passed through an exchange unit (containing hydrogen 

sulfide), and deuterium is exchanged with protium from hydrogen sulfide to produce HSD 

and water. The mono-deuterated hydrogen sulfide is then passed over further mono-

deuterated water at low temperature, enriching the water as it does, and reproducing 

hydrogen sulfide. This process has the advantage of not requiring a catalyst, and also 

allows the hydrogen sulfide to be contained within a closed system. By combining three 

cycles of exchange, the modern Bruce Plant in Ontario is capable of producing enrichment 

from natural abundance (0.015 %) to 25 %. This is then taken to 99.85 % via distillation 

(Figure 1).10  
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However, due to overproduction (the plant was capable of producing 700 tonnes of 

deuterium oxide a year, requiring 340 000 tonnes of feed water to produce one tonne of 

deuterium oxide) the plant was decommissioned in 1997; after stocks were deemed 

sufficient for the foreseeable future.12 

 

 
Figure 1: Modern Production of D2O (Dual Temperature Sulfide Process) 

 
1.3: Properties of Deuterium, Deuterium Oxide, & the Deuteron 

Being an isotope of hydrogen, the deuterium nucleus (the deuteron) contains one 

proton, and one neutron. Therefore, the deuteron has a mass of 2.014 u, whereas the proton 

(standard hydrogen nucleus) has a mass of 1.007 u, making the ratio md/mp = 1.99901 i.e. a 

deuteron has roughly twice the mass of a proton.13  

This difference in mass has several consequences upon the properties of deuterated 

compounds. The most notable of these for chemists being the potential difference in the 

force constant (which can be related to the bond energy) of C-H and C-D bonds.14 This 

potential difference comes about due to an alteration in Zero Point Energy (ZPE being the 

lowest possible energy within a quantum mechanical system, i.e. the ground state energy) 

caused by the difference in mass between protium and deuterium (ZPE is related to 

vibrational frequency, which in turn is related to the masses involved within the bond, See 

Figure 3, Equation 3, within 1.4: Deuterium and the Kinetic Isotope Effect).  

This property gives rise to the Kinetic Isotope Effect, and a detailed treatment can 

be found below. Although the difference in ZPE between isotopes can be observed in all 

elements, the difference in relative mass between deuterium and hydrogen is the largest 

observed, and therefore the subsequent effects are the most significant. 

When present in compounds such as deuterium oxide, subtle differences can be 

observed compared to the non-deuterated version of the compound. For example, 

deuterium oxide has a density that is approximately one tenth higher than that of water (the 

density of deuterium oxide is 1.107 g/mL at 25 °C, compared to 1.0 g/mL for water) with a 

boiling point of 101.4 °C, and a melting point of 3.8 °C.15,16 One notable practical 

difference between water and deuterium oxide comes from the viscosity of deuterium 
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oxide. Being more viscous than water (deuterium oxide has a viscosity of 1.245 relative to 

water at 20 °C)17 makes deuterium oxide hygroscopic;18 meaning that when handling and 

working with heavy water, anhydrous conditions should be observed to prevent effective 

‘dilution’ of deuterium oxide with water.4 It is worth noting that in general, the physical 

and chemical properties of a deuterated material are essentially the same as those of the 

proteo equivalent. 

The main property of the deuterium nucleus of interest to organic chemistry is the 

nuclear spin, which is denoted as I. This is due to the relationship between a nucleus’ spin 

properties and NMR spectroscopy. In order to be active in NMR a nucleus must have net 

spin. This is a property derived from the contents of the nucleus, and thus can be predicted 

roughly using the following rules. A nucleus with an odd mass number will, in general, 

have a half integral spin (I = ½). A nucleus with an even mass number and an odd charge 

number will, in general, have an integer spin (I = 1). Finally, a nucleus with an even mass 

number and an even charge number will have zero spin (I = 0, NMR inactive). Deuterium 

has an even mass number (2), and an odd charge number (one proton within the nucleus); 

therefore I(2H) = 1. This integer spin has the effect of generating three spin energy levels 

when the nucleus is placed within a magnetic field (as ∆mi = 1, mi = 1, 0, -1).19 The effect 

of these three energy levels is shown in spin-spin coupling. For example, a proton adjacent 

to a deuteron can experience three distinct spins from the deuteron. Thus three energy 

levels are experienced by the proton within its excited spin state, giving rise to a triplet 

signal in the proton NMR. 

Within 13C-NMR, another property of the deuteron can be seen. 13C-NMR is 

generally acquired as a proton decoupled spectra. This involves saturating the spin of the 
1H nuclei within the molecule, thus removing any coupling. This is possible as the resonant 

frequency of 13C- and 1H-nuclei are sufficiently different. However, decoupling for 1H 

does not decouple 2H from 13C-NMR. This is due to the differing magnetogyric ratios of 
1H and 2H. Magnetogyric ratio (γ) arises from the spin of the nucleus, and is a differing 

property for each. This property can be related through to the frequency of the NMR 

transition through the equation shown below (Figure 2); and thus can affect the decoupling 

frequency required for each nucleus. This effect is seen in standard 1H-decoupled 13C-

NMR using CDCl3. The carbon signal from CDCl3 is clearly split by the adjacent deuteron, 

despite the 1H-decoupling (this also demonstrates the effect of I = 1, as the C signal is split 

into three lines of equal intensity). 
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Figure 2: Properties of some Common Nuclei 

 
1.4: Deuterium and the Kinetic Isotope Effect 

 As noted above, deuterium and protium bonds can be shown to differ in their force 

constants. This effect often leads to changes in the kinetics observed within a reaction (i.e. 

rate changes within the reaction). Generally termed the Kinetic Isotope Effect (KIE), the 

magnitude of this effect can be derived utilising the following equation: KIE = kH/kD 

where kH and kD are the reaction rate constants for the proteo and deutero forms of the 

reaction respectively.20 For the purposes of this treatment, KIE will be split into two parts: 

primary (1°) KIE, and secondary (2°) KIE. Primary KIEs arise from the direct breaking, or 

formation, of a bond to, or from, deuterium (e.g. dissociation of DCl); whereas 2° KIEs 

arise when deuterium is present, but remote from the reaction centre (e.g. enzymatic N-

demethylation where N-CD3 is present, compared to N-CH3). 

The simplest case to consider to demonstrate primary KIE is that of the dissociation 

of a chemical bond X-H, or X-D, where X is simply an undefined bonding partner. The 

bonding can be represented by a potential energy surface, with the intermolecular bonding 

distance determined by the lowest point of the surface (Figure 3). The bonding of both X-H 

and X-D can be represented with the same surface, as the surface is unchanged by isotopic 

substitution. This is due to inter- and intra- molecular forces relying upon attraction and 

repulsion effects between nuclei and electrons; not upon the mass (i.e. nuclei and electrons 

can be treated separately, the Born-Oppenheimer approximation). 
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Figure 3: The relationship between ZPE21 and mass; and related equations 

 

 This approach (based upon classical mechanics) suggests that since the two bonds 

share the same potential energy surface, they should share the same dissociation energy; 

and in fact, that the relative rates of dissociation should only differ depending on the 

frequency of the bond. From classical mechanics, we can relate the frequency (ν) of 

vibration of chemical bonds to the force constant (k, related to the strength) of the bond, 

and the reduced mass of the system (µ). The equations demonstrating this relationship are 

shown above (Figure 3, Equations 1 & 2). However, changes in dissociation energy related 

to frequency do not account for the extent of the rate changes noted with the KIE. 

Therefore another effect must be involved. 

 From quantum mechanics it can be demonstrated that in reality the lowest point of 

any harmonic oscillator (i.e. the chemical bond) is not at the lowest point of the potential 

energy curve. The lowest actual point lies at the minimum plus the Zero Point Energy 

(ZPE) of the system. The ZPE can be represented by Equation 3 (Shown in Figure 3) 

where ν is the frequency of the oscillator.  

As shown in Equations 1 and 2 (shown in Figure 3) above, we can relate frequency 

to the mass of the system. Thus X-D has a lower ZPE than that of X-H (again, where X is 

an undefined bonding partner), and therefore higher dissociation energy. This effect is 

large enough to account for the variations involved within the primary KIE. 

In general, the size of the primary KIE can vary between 1 and 16.22 This variation  

is observed in both polar and free radical processes.22  For example, the values calculated 

for the bromination of acetone and nitromethane; and the acid base behaviour of 

nitroethane are 7.7, 6.5, and 10 respectively.23-25 An example of the KIE in free radical 

reactions is the reaction of CH3
. with H2 and D2; the reaction being three times faster with 

H2 at 182 °C (relating to a KIE of 4-5 at 25 °C).26 
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Secondary KIE, as stated above, are effects upon a reaction which take place where 

deuterium is remote from the bond being broken. The primary area of study into these 

effects involves their presence within SN2 type reaction processes where deuterium is α- to 

the reaction centre. Although the focus of KIE investigations has been to probe these SN2 

reactions more fully, the work has also led to several accepted theories of what causes 

secondary KIE. 

As secondary KIE are effects which arise in reactions where deuterium is remote 

from the bond being broken, the rate change must come about as a result of differences 

within the transition state of the reaction, brought about by the presence of deuterium. 

Several research groups including those of Jensen and Poirier have looked into this, and 

determined that, like the primary KIE, secondary KIE arises from changes in the ZPE. 

These differences in ZPE are widely believed to be caused by changes in vibrational 

frequencies during the transition state.27,28  

Although it is accepted that changes in vibrational frequencies are responsible for 

the change in ZPE of the transition state, the type of vibrational change responsible is a 

matter of some debate.29-32 However, despite debate upon the exact nature of these 

vibrational changes, several correlations have been drawn from experimental data.  

It has been demonstrated that the degree of separation between the leaving group, 

and the entering group within the transition state of an SN2 reaction will affect the degree 

and even the direction of the secondary KIE. This so-called ‘looseness’ of the transition 

state affects the energy of the out of plane bending motion of the α-hydrogen (or 

deuteron). If a transition state has a so called ‘loose’ transition state (i.e. a larger distance 

between the entering and leaving groups), the difference in the energy of vibrational 

motions within the transition state will be the same, or lower than the starting material. 

Therefore, ‘loose’ transition states tend to lead to ‘normal’ secondary KIE, thus, kH/kD > 1, 

thus, the rate of reaction is slower with the deutero starting material than the proteo (Figure 

4). Vice versa, a ‘tight’ transition state will lead to high energy out of plane H bending (see 

Figure 4), leading to an increased ZPE. This has the effect of reducing the difference 

between the activation energy of the proteo and deutero reactions, thus reducing the 

secondary KIE.  In some cases, this can be to the extent that the KIE becomes inverse i.e. 

kH/kD < 1, a rate increase is seen upon deuterium substitution (Figure 4). 
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Figure 4: The αααα-secondary KIE and ‘looseness’ of the SN2 Transition State 
 

Recent work by Wolfe and Kim32 suggested that in reality, the C-H stretching 

frequency is of greater importance in examples where inverse secondary KIE is observed. 

This, if established, would have had implications for the assignment of transition state 

structure by KIE effects. However, work by Poirier et al has shown that although the 

contribution to KIE from stretching vibrations is significant for small uncomplicated 

substrates (i.e. the transfer of a methyl group), the contribution from bending vibrations 

greatly outweighs this effect in larger or more complicated systems (i.e. ethyl groups or 

higher).30 In practice, measurements of secondary KIE within reactions have been used to 

probe the structure or geometry of various transition states (not only SN2), both in theory, 

and in experiment. For example, Houk et al have utilised secondary KIE to interpret 

calculated geometries of the transition state of the Cope rearrangement.33 

 
1.5.1: Synthesis of Deuterated Compounds: Introduction 

 When considering the deuteration of organic compounds, there are two approaches 

which must be taken into account; these being pre-synthetic and post-synthetic 

incorporation. Both have potential advantages and disadvantages. For example, using a 

pre-deuterated starting material has the advantage of simplicity, as several deuterated 

substrates are available commercially.34 However, introducing isotopic enrichment early in 

a synthesis can lead to loss of the isotope during subsequent reactions (i.e. through 

exchange processes with solvents or reagents, or through low yielding reactions within an 



 9 

ongoing synthesis). It is for this reason that pharmaceutical process laboratories tend to 

lean towards incorporating deuterium at a late stage, or ideally as the last step, in a 

synthetic sequence. 

 
1.5.2: Synthesis of Deuterated Compounds: Pre, and Mid Synthesis Incorporation 

 The frequently used methods for incorporating deuterium during an organic 

synthesis follow established synthesis procedures. For this examination the procedures can 

be split into acid-base methods, reduction methods, and hydrogenation methods. 

 The simplest method for incorporating deuterium into organic substrates is via 

simple base catalysed exchange of enolisable or base labile positions. A good example of 

this is the work of Eames et al, and their investigations into the production of various α-

deuterated profens (2-aryl propionic acids, Scheme 1). Utilising 15 equivalents of d4-

methanol, and a catalytic amount of base, the desired esterified starting material (i.e. (2)) 

underwent α-H/D exchange via an intermediate enolate to give the deuterated product (i.e. 

(3) and subsequently (4)) in >95 % deuterium incorporation.35  
 

 
Scheme 1: Synthesis of 2-deutero-2-phenyl propionic acid (4), and related materials by Eames et al 

 

Moving on, an interesting example of reduction methods being utilised in order to 

selectively introduce deuterium was recently published by Lebreton et al.36 The group 

were attempting to synthesise deuterated tropinone species (12) and (13) (shown in 

Scheme 2). In order to facilitate this, it was decided to synthesise deuterated 2,5-

dialkoxytetrahydrofuran species (10) and (11) (via reductive deuteration of (8) or (9) with 

lithium aluminium deuteride, followed by cyclisation; yielding (10) in 55 %, and (11) in 77 

%) as an intermediate step before undertaking the classical Robinson synthesis of 

tropinones, affording (12) in 50 % yield, and (13) in 62 % yield (Scheme 2). 
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Scheme 2: Synthesis of deuterated tropinones (12) and (13) by Lebreton et al, and the Robinson 

synthesis of tropinone 
 

The work of Jones et al concerned with the transfer deuteration of double bonds is 

a good example of a reductive hydrogenation technique.37 By treating para-

bromocinnamic acid (14) with palladium or rhodium based catalysts under microwave 

conditions, >95 % deuterium incorporation could be achieved regioselectively in either the 

7- position (15), 2-, 3- positions (16), or  2-, 3-, and 7- positions (17) (Scheme 3). The 

deuterium source for these reactions was a combined mixture of potassium deuteroformate 

in deuterium oxide. However, potassium deuteroformate in water was also successful; 

suggesting the deuterium source within the reaction is the formate itself.  
 

 
Scheme 3: Transfer hydrogenation and catalytic dehalogenation reactions, incorporating deuterium, 

by Jones et al 
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 As mentioned above, these examples are representative of the general methods used 

in order to incorporate deuterium within a synthesis. However, there is significant scope to 

adapt synthetic methods in order to incorporate deuterium, and as the breadth of organic 

synthesis is so large, this is not covered in greater detail here.38-43 

 
1.5.3: Synthesis of Deuterated Compounds: Post Synthesis Methods 

 For the purposes of this examination, the methods for incorporating deuterium into 

organic molecules in a general and potentially post synthetic manner can be split into four 

categories: acid mediated exchange, base mediated exchange, heterogeneous metal 

catalysed exchange, and homogeneous metal catalysed exchange. Each of these areas will 

be examined in turn. 

 
1.5.3.1: Synthesis of Deuterated Compounds: Post Synthesis Methods – Acid Catalysed 

H/D Exchange 

 The main class of acid catalysed H/D exchange reactions in common use are the 

High Temperature Dilute Acid (HTDA) reactions developed by the group of Werstiuk et 

al. Initially, the procedure involved treatment of the desired substrate with dilute acetic 

acid in deuterium oxide, at temperatures above or around 250 °C. This was followed by a 

second exchange reaction with 10 % DCl in D2O. This method has been applied to the 

exchange reactions of benzene derivatives, allowing for exchange of only the aromatic 

protons of benzene, biphenyl, 1,2-dimethylbenzene, and 1,3-dimethylbenzene. The 

deuterium incorporation levels achieved ranged from 88 % for benzene, through to 98 % 

for 1,2-dimethyl benzene (Figure 7).44 Further to this work, Werstiuk et al have applied 

HTDA methods to polycyclic aromatics (such as: anthracene, phenanthrene, pyrene, and 

1,2’-binapthyl),45 anilines, phenols,46 and alkenes.47 

 
Figure 7: Initial application of the HTDA H/D exchange methodology of Werstiuk et al 

 

 HTDA procedures have also been utilised in a more selective manner in order to 

produce deuterated aromatics. For example, Sasaki et al have utilised 10 % DCl in D2O to 
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produce selectively deuterated antidepressants imipramine (18), and desipramine (19).48,49 

Selective d4-deuteration of (18) at the 2-, 6-, 13-, and 15- positions (producing (21)) was 

achieved by simple HTDA methods (Scheme 4). Deuterium incorporation levels were 

good, reported as >95 % at all desired positions; d8- (23), and d4-1,3,12,14- (25) 

imipramine were also synthesised via HTDA methods with good deuterium incorporation 

of 88 % and 95 % respectively (Scheme 4). 
 

 
Scheme 4: Selective deuteration of imipramine (18) and desipramine (19) 

 

 Moving on from the HTDA methodology, Lewis acids have been utilised in 

combination with Brønsted acids for H/D exchange. For example, early work in this area 

carried out by Garnett et al utilised methyl aluminium chloride, or ethyl aluminium 

chloride as the catalyst (in ca. 5 % loading), with deuterated benzene as the deuterium 

source (Scheme 5). Deuterium incorporation from this reaction was good, with reported 

values of >95 %; however, the reaction required extremely strict anhydrous conditions be 

maintained, in addition to requiring the use of pyrophoric Lewis acids.50,51 
 

 
Scheme 5: Deuteration of aromatic substrates with a mixed Brønsted/Lewis acid catalyst carried out 

by Garnett et al 
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More recently, Wahala et al have utilised boron trifluoride : phosphoric acid 

complex in D2O for the synthesis of d6-daidzein (27) (Scheme 6). Interest in this 

compound is due to its potential as an anti-cancer drug. The synthesis of (27) was carried 

out at 100 °C, with the reaction time being ~7 days. This procedure yielded the d6- product, 

with an isotopic incorporation of 86 % (Scheme 6).52 
 

 
Scheme 6: Synthesis of d6-daidzein (27) carried out by Wahala et al 

 

 Attempts have also been made to make use of acidic polymer resins in order to 

catalyse H/D exchange reactions. Foremost among these is the work on Nafion®. Nafion® 

has been used to selectively introduce deuterium into the 3-position of the antimalarial 

chloroquine (29) in >99 % incorporation (Scheme 7).53 However, recent work utilising 

polymer bound acids under supercritical water conditions have shown improvements 

compared to the aforementioned method.54 
 

 
Scheme 7: Synthesis of 3-deuterochloroquine (30) utilising Nafion® as the catalyst 

 

In general, HTDA, polymer supported, and Lewis acid catalysed procedures have 

all shown potential for the incorporation of deuterium into compounds. However, there are 

various issues with these methodologies. Mainly, the harsh reaction conditions required in 

order to achieve a good level of deuterium incorporation (i.e. temperatures ranging from 

120 °C to 300 °C, in the presence of strong acids), and also the inability to selectively 

introduce deuterium at specific positions (i.e. most of the reactions introduce deuterium 

into multiple, rather than distinct, positions). Therefore, this area of H/D exchange is not 

seeing as much interest in recent years; although some work concerned with increasing the 

selectivity of these methods is still being carried out.55 
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1.5.3.2: Synthesis of Deuterated Compounds: Post Synthesis Methods – Base Catalysed 

H/D Exchange 

Recent developments in base catalysed exchange reactions are characterised by the 

development of supercritical exchange; relying upon the physical properties of 

supercritical water or supercritical deuterium oxide. At, or close to the triple point, the 

dissociation constant of water is much greater than at room temperature. This in turn leads 

to a much higher concentration of the deuteroxide anion than is present below the triple 

point. Also, under supercritical conditions (T > 375 °C, P > 218 bar), water will solubilise 

most organic substrates. The use of supercritical exchange in organic substrates has seen 

significant interest, and is the subject of several patents.56,57 

Experimentally, the groups of Junk and Evilia have demonstrated the use of 

supercritical water combined with small amounts of base in order to perform deuteration of 

organic substrates. For example, dibenzothiophene (31) was deuterated by Evilia et al with 

an average of 70 % deuterium incorporation at all ring positions (Scheme 8). Aliphatic 

substrates (i.e. 2-methyl pentane) also underwent deuteration, although incorporation was 

low, and reaction conditions were harsh (20 % deuterium incorporation at methyl 

positions, 0.16 M KOD, D2O, 150 min, 380 °C).58 The protocol employed by Junk et al 

was similar; substrates being treated with small amounts of sodium deuteroxide solution in 

deuterium oxide at high temperatures (ca. 400 °C). However, Junk et al tended to use 

extended reaction times from 1 – 24 h.59 

 
Scheme 8: Supercritical exchange protocol employed by Evilia et al 

 

Although supercritical exchange can be considered a general procedure, several 

functionalities are incompatible with the high temperature conditions required for 

exchange to occur. For example, the method has been shown to be unsuitable for ethers, 

ketals, acetals, nitriles, and aryl azo compounds.60 Also, the high temperatures and 

pressures involved are inherently hazardous. The hazards of synthesising deuterated 

molecules at such high temperatures and pressures to the chemist are significant (i.e. 

failure of equipment at high pressure, leading to injury). Potentially, these hazards could be 

reduced by the use of flow chemistry, as reactions are carried out on a much smaller scale, 

reducing the severity of any such failure of equipment.  
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To this end, the work of Hartonen et al is of interest. Hartonen demonstrated a 

supercritical flow type system, which allowed for the deuteration of both eugenol, and 4-

hydroxyacetophenone.61 This method had several advantages over the traditional batch 

type supercritical deuteration reactions. For example, the contact time at high temperature 

was reduced to around 4 minutes, allowing for less temperature degradation of the 

substrates. One disadvantage of this procedure however, was that a range of deuteration 

products were noted (i.e. d0,d1,d2…etc); although increasing the reaction temperature did 

lead to a bias towards higher levels of deuterium incorporation (Figure 8). 
 

 
Figure 8: Isotopic Exchange Under Flow Conditions; demonstrated by Hartonen et al 

 

 In summary, the use of base catalysed exchange, and in particular utilising 

supercritical water, is disadvantaged by the need for high reaction temperatures (these 

typically being ca. 400 °C), high reaction pressures (typically >218 bar), and the 

subsequent need for specialised equipment. The requirement of high temperatures also 

precludes the use of this method with certain substrates (i.e. ethers, ketals, acetals, nitriles, 

and aryl azo compounds). However, these disadvantages have been overcome to a degree 

by the use of flow chemistry. Flow chemistry allows both a reduction in contact time at 

high temperature, and the use of small reaction vessels (thus reducing the danger inherent 
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with high pressures). Despite this, flow chemistry methods still show disadvantages; 

primary among these being the generation of a range of deuterated products (i.e. d0, d1, 

d2…etc), as opposed to generation of a discreet deuterated material. 

 
1.5.3.3: Synthesis of Deuterated Compounds: Post Synthesis Methods – Heterogeneous 

Metal Catalysed H/D Exchange 

 The development of heterogeneous metal catalysis for hydrogen/deuterium 

exchange reactions has primarily focused upon palladium and platinum based catalyst 

systems. Investigations were first carried out by Garnett et al in the 1960s,62 and the area 

has seen significant research interest since. 

The mechanism of H/D exchange for both platinum and palladium systems with 

D2O has been studied extensively; concluding that palladium favours an associative 

exchange mechanism,63 whereas platinum preferentially undergoes a dissociative π-

complex mechanism (Figure 9).  

 
Figure 9: Associative, and dissociative, heterogeneous metal catalysed hydrogen exchange mechanisms 

 

The difference between these mechanisms is small, and can be demonstrated if the 

deuteration of a general aromatic substrate is considered. Thus, both mechanisms rely upon 

initial π-complex adsorption of the aromatic substrate to the metal surface. At this point, 

the aromatic ring is parallel to the metal, and in the case of the associative mechanism, is 

attacked by a previously chemisorbed deuteron (from the dissociative chemisorption of 

D2O or deuterium gas). In the case of the dissociative mechanism, it is believed that the 

aromatic forms a σ-bond with the metal, rotating through 90° to do so. The carbon-metal 

bond then undergoes a dissociative attack by a chemisorbed deuteron, and the substrate 

returns to the original π-bonded state.64 Experimentally, palladium containing catalyst 
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systems have a higher affinity for H/D exchange at aliphatic hydrogen, whereas platinum 

based catalyst systems have a higher affinity for H/D exchange upon the aromatic itself.65 

With respect to the experimental application of heterogeneous palladium and 

platinum catalysts for hydrogen exchange; activation of the catalysts is generally required 

in order for the system to be effective. There are several general methods of catalyst 

activation which can be applied; these being hydrothermal activation, hydrogenation, or 

self-activation (reduction of the surface with an organic molecule e.g. benzene).66 Each of 

these activation methods, and examples of their experimental application, are detailed 

below. 

Hydrothermal activation of heterogeneous metal catalysts, for hydrogen/deuterium 

exchange reactions, relies upon the increase in the rate of dissociation of water (or D2O) at 

elevated temperature and pressure (typically 250 °C, 4-5 MPa).67 This effect allows the 

heterogeneous metal catalyst (generally systems based upon Pd(0) or Pt(0)) to undergo 

oxidative addition into the H-OH (or D-OD) bond, generating a Pd(II) or Pt(II) 

intermediate species. This intermediate species then undergoes dissociation to form the 

active +M-H (+M-D) cation (Figure 10).  
 

 
Figure 10: Generation of an active +M-H (or +M-D) species for hydrogen/deuterium exchange 

 

An example of this in use is the work of Schaaf et al, who demonstrated the use of 

palladium on carbon and D2O to deuterate aliphatic hydrocarbons with >95 % 

incorporation.68 These reactions required high temperatures in order to allow for activation 

of the catalyst; namely up to 290 °C. Similar to this is the work of Oshima et al, who 

showed that full deuteration of cyclooctane (33) was achieved by treatment with 2 mol % 

Pd/C and D2O for 12 hours. Again, this reaction required high temperature (250 °C) to 

allow for activation of the palladium on carbon catalyst (Scheme 10).69 

 
Scheme 10: Hydrothermal activation of Pd or Pt based catalysts for H/D exchange 
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Similar reactions utilising heterogeneous platinum based catalysts under 

hydrothermal conditions have also been studied; however, platinum based catalysts show a 

higher affinity for exchange of aromatic hydrogen over aliphatic. For example, Matsubara 

et al have demonstrated the use of platinum (IV) oxide under hydrothermal conditions for 

the deuteration of various substrates,70 including polystyrene (35), giving a high degree of 

deuterium incorporation upon the aromatic rings (Scheme 10).71 

The second general method of catalyst activation is treatment of the catalyst with 

hydrogen (or deuterium) prior to the reaction. Recently however, Hirota and Sajiki have 

developed a method for the in situ activation of the heterogeneous metal catalyst species 

(in this case, palladium, or platinum, on carbon).72 

 Initially, the hydrogen/deuterium exchange reaction of diphenylmethane (36) at 

room temperature with 10 % by weight Pd/C in D2O was attempted. No exchange was 

observed, as would be expected with the unreduced (inactive form) metal catalyst. When 

H2 gas was placed over the reaction (ca. 0.45 eq vs. substrate), adsorption of the in situ 

formed D2 allowed for 95 % deuteration of the benzylic position after 3 days. This 

procedure proved to be generally applicable, giving generally good deuterium 

incorporation of between 40 and 99 % selectively at benzylic positions (Figure 11). 

 

 
Figure 11: Deuteration of the aliphatic positions of various substrates utilising 10 mol % Pd/C and 

D2O; by Sajiki et al 
 

Sajiki et al also carried out a broad study on the applicability of this procedure to 

substrates bearing various functionalities. Utilising 10 mol % Pd/C, and D2O, it was found 

that the system tolerated amides (41), esters (42), phenols (43), amines (44), and acids (45) 

(Figure 11); allowing for deuterium incorporation of, in general, >70 %. However, the 

reaction was limited to substituted benzene derivatives.73 
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Further development of this method was carried out utilising platinum on carbon as 

the heterogeneous metal catalyst. Due to the selectivity of platinum for promoting 

exchange at aromatic positions, Pt/C allowed for introduction of deuterium into the 

aromatic ring positions of substituted benzene derivatives in up to 98 % (Figure 12).65 
 

 
Figure 12: Deuteration of various aromatic substrates utilising 5 mol % Pt/C and D2O; by Sajiki et al 

 

Sajiki et al have also applied this exchange system successfully to the deuteration 

of (S)-phenylalanine (51) in the β-position, affording 98 % deuterium incorporation. 

However, an elevated reaction temperature of 110 °C was required (Scheme 11). Despite 

the high temperature, no racemisation of the starting material occurred during the reaction. 

These conditions were also successful in obtaining deuterated tyrosine derivatives (Scheme 

11, (52) and (53)).74 
 

 
Scheme 11: Deuteration of (S)-phenylalanine (51), (S)-tyrosine (52), and (S)-4-tert-butoxyphenylalanine 

(53) utilising 10 mol % Pd/C in D2O; by Sajiki et al 
 

Also recently, the work of Derdau and Atzrodt of Sanofi-Aventis has demonstrated 

that by utilising sodium borodeuteride to activate the heterogeneous metal catalyst by 

reduction, the need for an H2 atmosphere as detailed in the previous paragraphs could be 

eliminated. This is advantageous due to the hazards of H2 within a laboratory. It was 

shown that H/D exchange could proceed with good deuteration (c.a. 70 %) of various 

benzene derived substrates with as little as 5 mol % sodium borodeuteride (Scheme 12).75 
 

 
Scheme 12: Deuteration of phenylbutyric acid (54) utilising heterogeneous metal catalysed hydrogen 

deuterium exchange; by Derdau and Atzrodt 
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Further to this, experiments utilising microwave heating have resulted in an 

increase in deuterium uptake at shorter reaction times.76 For example, the H/D exchange 

reaction of 3-aminobenzoic acid (54) was carried out under both thermal, and microwave 

conditions at 150 °C. After 2 hours, the microwave mediated reaction showed increased 

deuterium incorporation, with an average incorporation of 85 % over the four aromatic 

positions, compared to 55 % for the thermal reaction (Scheme 13). 
 

 
Scheme 13: Thermal, and microwave mediated H/D exchange reaction of 3-aminobenzoic acid (54) 

utilising 10 mol % Pd/C 
 

As a final note on heterogeneous palladium and platinum based catalytic systems 

for H/D exchange; it has been noted by Sajiki et al that utilising a mixed palladium and 

platinum on carbon catalyst can lead to a synergistic effect; increasing deuteration levels, 

and also allowing for deuteration of both aliphatic and aromatic positions (Scheme 14).77 
 

 
Scheme 14: Increased deuterium incorporation within 4-propyl benzoic acid (55) upon the use of a 

mixed palladium/platinum on carbon catalyst, in D2O; by Sajiki et al 

 
1.5.3.4: Synthesis of Deuterated Compounds: Post Synthesis Methods – Homogeneous 

Metal Catalysed H/ D Exchange 

The application of homogeneous metal catalysed exchange was developed around 

1960, one such example of this being the work of Garnett et al, who demonstrated that 

aromatic systems (i.e. bromobenzene, nitrobenzene, naphthalene, and acetophenone) 

underwent H/D exchange after treatment with a sodium (or potassium) 

chloroplatinite/deuterium oxide system modified by the addition of ca. 10 equivalents of 

hydrochloric acid. The acid was required in order to prevent precipitation of the metal 

catalyst. This system showed deuterium incorporation ranging from 8.5 % up to 90 %, with 

reaction times ranging from 2 to 10 h at 130 °C.78,79 Selected results are shown below 
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(Scheme 15). It is also worthy of note that, strictly speaking, sodium or potassium 

chloroplatinite are not true catalysts, due to the stoichiometric amounts required. 

 
Scheme 15: Deuteration of aromatic substrates utilising a sodium, or potassium chloroplatinite system; 

by Garnett et al 

 
1.5.3.4.1: Homogeneous Metal Catalysed H/D Exchange – Iridium (II) catalytic systems 

Today, the area which is of most interest in homogeneous metal catalysed H/D 

exchange is that based upon iridium (I) and (II) catalysts. Within Ir(II) catalysed H/D 

exchange chemistry, particularly of note is the work of Bergman et al, who developed a 

methodology utilising [Cp*(PMe3)IrH(CD2Cl2)] [B(C6F5)Me] (56) in low temperature H/D 

exchange. This system removed the requirement for the addition of mineral and organic 

acids which had been commonplace within the work of Garnett discussed previously (and 

within later work concerned with halide salts of Iridium).80 Utilising d6-benzene as the 

deuterium source, 2 mol % (56) allowed for deuteration of aromatic and aliphatic 

substrates in levels of between 40 – 97 % (Scheme 16).81 

 
Scheme 16: Hydrogen/deuterium exchange reactions of methane, toluene, and ferrocene, catalysed by 

(56); by Bergman et al 
 

However, (56) was shown to decompose readily (via an ‘unknown mechanism’)81 

at temperatures above -20 °C, producing the trihydride species [Cp*(PMe3)IrH3]
+. 

Therefore, [Cp*(PMe3)IrCl2] (57) was synthesised as an air stable catalyst specifically for 

homogeneous hydrogen/deuterium exchange reactions. (57) was shown to be an active 
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exchange catalyst; with deuterium incorporation being demonstrated with highly water 

soluble organic materials (58) – (63), utilising D2O as the deuterium source (Figure 13). 
 

 
Figure 13: H/D exchange reactions of substrates (58) to (63), catalysed by 5 mol % (57) 

 

However, despite successfully catalysing the incorporation of deuterium, (57) 

proved vulnerable to decomposition by disproportionation (Figure 14).82 In fact, no further 

deuterium exchange was observed when reaction times were over 40 h at 135 °C. This was 

shown to be due to the formation of [Cp*(PMe3)2IrCl][Cl] (64) and [Cp*IrCl2]2 (65), 

driven by the formation of the ionic species (64), due to the polar nature of the solvent. 

Interestingly, (64) proved to be catalytically active for deuterium exchange (albeit to a low 

level); however a 1:1 mixture of (64) and (65), i.e. the decomposition product of (57), was 

inactive. This placed a limit of 40 h on reaction times, and thus a limitation on the catalyst.  
 

 
Figure 14: Decomposition pathways of (57) 

 

Unfortunately, when utilised in the H/D exchange reactions of primary alcohols e.g. 

n-propanol, (57) decomposed to form [Cp*(PMe3)Ir(CO)(Et)][Cl] (66). This was 

hypothesised to be due to the in situ oxidation of the substrate alcohol to the corresponding 

aldehyde; which could then undergo C-H activation to form an acyl complex with the 

catalyst (Figure 14). From this point, facile decarbonylation of the ligand would form the 

observed product (66). 
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Hoping to improve upon (56), and (57), and eliminate the disproportionation issue, 

Bergman et al synthesised a series of iridium based catalysts incorporating chelating Cp*-

phosphine bridged ligands (Figure 15). However, only (71) and (72) proved active in 

deuterium exchange reactions; deuterating diethyl ether to 33 % and 40 % respectively 

(compared to the value of 36 % for the previous catalyst (57)).82 As well as showing no 

significant improvement in activity compared to (57), (71) and (72) also underwent 

decomposition. Unfortunately, the decomposition products could not be identified readily 

as they appeared to be non-active in both 31P- and 1H-NMR. 
 

 
Figure 15: Cp*-phosphine bridged catalysts synthesised by Bergman et al for hydrogen/deuterium 

exchange reactions 
 

 Further to their work on water soluble catalysts for exchange, Bergman et al also 

applied a previously synthesised C-H activation catalyst to the issue of 

hydrogen/deuterium exchange reactions, which allowed the use of non-aqueous 

conditions.83 This catalyst was the trihydride species [Cp*(PMe3)Ir(H3)OTf] (73).84 

Initially, d1-methanol was used as the deuterium source; however, a test deuteration of 

benzene utilising d1-methanol and (73) showed no deuterium incorporation. Switching the 

deuterium source to d4-methanol interestingly did show deuterium exchange into benzene 

of 95 %. This result suggesting that the deuterium source in the reaction came from C-D 

bond activation followed by transfer. Further to this, switching to d6-acetone as the 

deuterium source increased incorporation levels further still (99 % D incorporation into 

benzene at 135 °C). Screening of (73) (utilising d6-acetone) with a broad range of 

substrates showed a tolerance for functionality; with successful substrates including 2,6-

dimethylpyridine, N-phenylacetamide, methyl benzoate, and ferrocene (Figure 16). 
 

 
Figure 16: H/D exchange with substrates bearing differing functionality, utilising (73), and d6-acetone; 

by Bergman et al 
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 Having taken note of the work of Bergman et al, Peris et al developed a further 

catalytic method for deuterium exchange, utilising iridium(II) based species, bearing N-

heterocyclic carbene ligands.85 The pro-catalyst iridium halide species (74) was treated 

with silver triflate in solution to generate the active species (75) (Figure 17), which could 

then utilise either d4-methanol, or d6-acetone as a deuterium source (d4-methanol afforded 

greater deuterium incorporation with shorter reaction times) (Figure 17).  

Interestingly, no decomposition of (75) was observed during the deuteration of 2-

propanol; unlike the deuteration reactions of primary and secondary alcohols attempted by 

Bergman et al, utilising (57), which resulted in decomposition of the catalyst or the 

substrate (See Figure 14). 

 
Figure 17: Selected results for H/D exchange reactions using (75); carried out by Peris et al 

 

In summary, while Ir(II) catalysts have shown potential for H/D exchange, and in 

general, high deuterium incorporation (i.e. 98 % deuteration of ferrocene utilising 5 mol % 

(73)); methods tend to rely upon high reaction temperatures (90 °C – 135 °C within the 

examples given), and do not allow much selectivity when introducing deuterium into 

molecules. They also tend to rely upon either difficult to synthesise catalysts, or catalysts 

which are unstable (i.e. (56), or (57)), and thus difficult to use in a robust synthetic 

procedure. 

 
1.5.3.4.2: Homogeneous Metal Catalysed H/D Exchange – Iridium (I) catalytic systems 

The development of the now ‘state of the art’ of homogeneous metal based 

catalysis for hydrogen/deuterium exchange reactions (i.e. systems utilising iridium(I) 

catalysts)86, began with the observation by Heys et al that [(PPh3)2IrH2(Me2CO)2]BF4 (76) 

could catalyse the incorporation of deuterium into various heteroatom containing organic 

compounds. For example, treatment of tert-butoxybenzene with 2.5 mol % (76) under 1 

atm of D2, gave selective deuteration at the 2-, and 6- positions with overall 90 % 
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incorporation.87 Further work by Heys et al expanded upon this study, hoping to gain an 

understanding of the scale of the observed ortho- directing effect (Scheme 17).88  
 

 
Scheme 17: Deuteration of aromatic substrates catalysed by 20 mol % (76) 

 

As shown in Scheme 17, the observed ortho- directing effect was found to be 

relatively ‘stronger’ than the directing effects of the R- substituents at the para-position 

relative to the carbonyl group; with deuterium incorporation occurring at the ortho- 

position relative to the carbonyl (as opposed to the meta- position relative to the carbonyl 

i.e. the ortho- position relative to the range of directing groups). 

 Seeking to improve on this procedure, Hesk et al utilised Crabtree’s catalyst89 

[(cod)Ir(PCy3)(Py)]PF6 (77) in order to facilitate deuteration of substituted acetanilides in 

dichloromethane, with D2 as the deuterium source (Scheme 18). It was observed that the 

reaction was relatively insensitive to substituent effects, affording generally high 

deuterium incorporation (between 70 % and 90 %), and that the regioselectivity of the 

reaction was high (with deuteration only being seen at the ortho- position of the aromatic, 

relative to the carbonyl substituent). A few exceptions to this were observed, including OH 

substituted acetanilides, which underwent deuteration to a poor level of only 21 % 

(attributed to low solubility in the reaction solvent), and para-cyano substituted 

acetanilides, which underwent no appreciable deuteration (presumably due to coordination 

of the -CN group to the metal centre of the catalyst).90 
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Scheme 18: Hydrogen/deuterium exchange reactions of substituted acetanilides utilising 5 mol % (77); 

by Heys et al 
 

 The selectivity of the Ir(I) based systems towards incorporation of deuterium in the 

ortho- position relative to carbonyl functionalities was first rationalised by Heys et al. 

Their work demonstrated that (76) selectively catalysed hydrogen exchange three bonds 

away from the directing heteroatom, whereas Crabtree’s catalyst (77) showed selectivity 

four bonds away (See Figure 18 and Schemes 17 & 18). 
 

 
Figure 18: Structures of (76) and (77); and the regioselectivity of their hydrogen/deuterium exchange 

reactions 
 

The rationale forwarded by Heys et al for this effect was based upon the formation 

of two different metallacycle species within the catalytic cycle, depending upon the 

catalyst employed; these being a 6-membered cycle when (77) was employed, and a 5-

membered cycle when (76) was employed. To prove this, Heys et al employed two 

catalysts with differing stereochemistry about their metal centres, [Ir(cod)(PPh3)2]BF3 (78) 

and [Ir(cod)(dppe)]PF6 (79), and compared the regioselectivity observed when each 

catalyst was utilised within the deuteration of ethyl 1-napthoate (80).  

It was believed that by introducing two bulky phosphine ligands (in the case of 

(78)), trans-stereochemistry around the metal centre would be preferential; meaning that if 

the 5-membered metallacycle was formed, the substrate would be in a differing plane to 

the large triphenylphosphine ligands. Whereas, in order to form the 6-membered 
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metallacycle, cis-stereochemistry of the triphenylphosphine ligands would be required, 

which is disfavoured by sterics. Therefore preferential formation of the 5-membered 

metallacycle would lead to selectivity three bonds away from the directing heteroatom 

(Figure 19). In the case of (79), the bidentate phosphine ligand would form cis-

stereochemistry around the metal centre (due to the tethered nature of each phosphine), and 

the reduced size of the phosphine would reduce the steric hindrance to the formation of a 

6-membered metallacycle; thereby allowing deuteration at the position four bonds away 

from the directing group (Figure 19). 
 

 
Figure 19: Mechanistic rationale for ortho- exchange and general catalytic cycle for (77), (78), & (79) 

 

This rationale was found to be correct, as with (78), deuterium was incorporated 

selectively at the C2 position of ethyl 1-napthoate (90 % D incorporation, (81)), whereas 

with (79), 54 % incorporation was seen at C2, and 35 % at C8 (Figure 20). Therefore, it 

was concluded that the relative steric bulk, and orientation of the ligands about the metal 

centre is the cause for the selectivity of the exchange reactions detailed.91 
 

 
Figure 20: Deuteration of ethyl 1-naphthoate utilising (78), or (79) and D2; by Heys et al 



 28 

 Although these catalysts (i.e. the Crabtree, and Heys types) allow for a broad range 

of exchange reactions, they do have some disadvantages i.e.: high catalyst loading (some 

examples require equimolar loading or higher), and difficulty in removal of the catalyst 

from the crude material (due to high loading). Some progress has been made towards 

reducing these problems by the development of a polymer bound form of (77), (82). The 

use of a polymer bound catalyst allows purification by simple filtration; as opposed to the 

difficult chromatographic separation of a large amount of homogeneous catalyst. (82) was 

produced by treatment of Crabtree’s catalyst (77) with commercially available polystyrene 

bound triphenylphosphine. Displacement of both the cyclooctadiene, and pyridine ligands 

leads to formation of the polymer bound species. (82) is stable at -20 °C for up to 2 

months, and shows similar activity to the free catalyst (Figure 21).86,92  
 

 
Figure 21: H/D exchange reactions catalysed by polymer bound Crabtree’s catalyst (82) 

 

 Further to the work of Heys et al, the groups of both Kerr and Powell have 

investigated the use of carbene ligands to produce an Ir(I) H/D exchange catalyst with 

higher stability, and hopefully increased activity. In the case of Kerr et al, the carbene 

chosen was 1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene (IMes), and the phosphine 

ligands chosen were triphenyl (catalyst (83)), tribenzyl (catalyst (84)), and dimethylbenzyl 

(catalyst (85)).93 In the case of Powell et al, the system was based upon bis-

methylimidazole-2-ylidene, with an n-butylphosphine ligand (catalyst (86)).94 Both 

systems showed high activity for H/D exchange reactions, however, a direct comparison 

reveals that the Powell system requires a loading of 2.2 equivalents of the catalytic species 

(technically not a true ‘catalyst’ due to the required stoichiometric loading), whereas, the 

Kerr systems only require 5 mol % loading. Also, a direct comparison of deuterium 

incorporation levels with the same substrate shows that, in general, the Kerr system was 

more effective (Scheme 19). 
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Scheme 19: Direct comparison of the carbene catalysts produced by Powell et al, and Kerr et al 

 

Not only did the carbene catalysts show good reactivity, they were also air stable, 

making them more attractive to work with in a laboratory environment. Kerr et al went on 

to demonstrate the effectiveness of their system by performing deuteration of the Sanofi-

Aventis drug nilutamide. Treating nilutamide (89) with 2.5 mol % of (83), and D2 gas in 

DCM gave, in the majority, selective single deuteration of 98 % in 1 hour at room 

temperature (Scheme 20).95 
 

 
Scheme 20: Deuteration of nilutamide (89) utilising 2.5 mol % (83), and D2; by Kerr et al 

  
1.5.3.4.3: Homogeneous Metal Catalysed H/D Exchange - Rhodium based catalytic 

systems 

 The use of rhodium based homogeneous H/D exchange catalysts was first reported 

by Garnett et al, utilising rhodium trichloride (no stoichiometry given) to catalyse isotopic 

hydrogen exchange in simple aromatic systems (i.e. benzene, and toluene), with no major 

selectivity (Figure 22). However, it was shown that the reactions were much slower than 

with the corresponding chloroplatinite (Scheme 15) or iridium based systems.96,97 

 
Figure 22: H/D exchange reactions catalysed by rhodium trichloride; by Garnett et al 
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 Soon after this report, Otsuka et al published their work on the isolation of two 

rhodium based H/D exchange catalysts. These being RhH[P(iPr)3]3 (91), and the dimeric 

species Rh2H2(µN2)[P(Cy)3]4 (92). These were shown to catalyse incorporation of 

deuterium in a relatively non-selective manner over simple ring systems (i.e. benzene, 

toluene, anisole, and pyridine (Scheme 21)).98 
 

 
Scheme 21: Deuteration of pyridine utilising 2 mol % (91); by Otsuka et al 

 

The mechanism for the exchange cycle that was proposed involved oxidative 

addition of D2O to the metal centre, followed by reductive elimination of partially 

deuterated water to produce (93). The substrate is then added to the metal centre by 

oxidative addition, and finally, the deuterated substrate is expelled via reductive 

elimination. This regenerates the active catalyst ready for the addition of a second 

molecule of D2O (Figure 23). 
 

 
Figure 23: Proposed catalytic cycle for the deuteration of simple ring systems by (91); proposed 

Otsuka et al 
 

More recently, Brookhart et al demonstrated that a rhodium based system 

[Cp*Rh(CH2CHSi(CH3)3)2] (94) was active in catalysing H/D exchange from d6-benzene 

to aromatic and aliphatic systems. These included aniline, ferrocene, di-tert-butyl ether, 

and cyclopentene (Figure 24).  
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Figure 24: Deuteration of aromatic and aliphatic substrates catalysed by (94); by Brookhart et al 

 

This method is interesting as it appears to occur via a ‘shuttle’ process, in which 

deuterium is first transferred to the silyl ligands of (94), then transferred to the substrate 

after C-H activation (Figure 25). Evidence for this process was provided by monitoring the 
1H-NMR signals related to the vinyl silane ligands, while the catalyst was heated at 78 °C 

in a deuterated solvent (in this case, d6-benzene). A significant reduction in the 1H-NMR 

signals for the silane ligands was observed after 4 hours. The signals for the silane ligands 

were then noted to increase in intensity when a substrate was added, and heating was 

continued for a further week.99 
 

 

Figure 25: Proposed ‘shuttle’ process for the deuteration of aromatic and aliphatic systems catalysed 

by (94); by Brookhart et al 
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As a final note, there are many differing metal centred catalysts in the literature 

which have shown potential for H/D exchange;100-105 however, in the majority these have 

not been developed for the synthetic production of deuterated substrates, and are much less 

widely discussed within the literature. Therefore these are not explored in more detail here. 

In summary, metal based homogeneous catalysis of hydrogen/deuterium exchange 

is potentially the most widely researched form of deuterium incorporation reaction. Of 

these catalysts, Ir(I) based systems are currently the ‘state of the art’, as generally they 

allow for regioselective introduction of deuterium, due to the ortho- exchange effect. Ir(I) 

systems also allow for high levels of deuterium incorporation (i.e. >70 %), and do not 

require the high reaction temperatures, and specialised equipment, utilised in HTDA, or 

supercritical exchange procedures. However, these metal based catalysis systems tend to 

utilise D2 or deuterated solvents as the deuterium source; both of which are expensive, and 

carry environmental concerns when compared to the use of D2O. 

 
1.6: Applications of Deuteration and the Kinetic Isotope Effect in Mechanism and 

Metabolism Studies 

 Deuterium labelling has proven an invaluable tool in the study and elucidation of 

reaction mechanism and the metabolism of synthetic and natural compounds in vivo. 

Several representative examples of the potential uses of deuterium in this manner are 

discussed below. 

 Deuterium labelling has found significant use within synthetic chemistry for the 

elucidation of reaction mechanisms. For example, the synthesis of para-tert-

butylcalix[4]arenes developed by Gutsche et al has been investigated utilising deuterated 

substrates in order to track the course of the reaction. The reaction involves the pyrolysis of 

a precursor mixture formed from the condensation of tert-butyl phenol and formaldehyde, 

catalysed by sodium hydroxide (Scheme 22). This mixture contains predominantly para-

tert-butylcalix[8]arene (95), and therefore it was postulated that para-tert-

butylcalix[4]arene (96) could be formed from this via a fragmentation recombination 

reaction, or via a pinching of the para-tert-butylcalix[8]arene, followed by separation into 

two para-tert-butylcalix[4]arene moieties (the molecular mitosis pathway).  

A mechanistic study was devised to test these two pathways; involving use of a 1:1 

mixture of fully deuterated para-tert-butylcalix[8]arene and fully proteo-para-tert-

butylcalix[8]arene. By undertaking the pyrolysis reaction with this mixture, if molecular 

mitosis was the only pathway, the resulting products would be either fully proteo- or fully 

deutero- para-tert-butylcalix[4]arene; whereas if fragmentation was occurring, scrambling 

of the labels would ensue, forming a range of partially deuterated para-tert-
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butylcalix[4]arenes. If only fragmentation was occurring, the ratio of products would be a 

predictable quantity, as shown in Scheme 22. 
 

 
Scheme 22: Modified Zinke procedure for the synthesis of para-tert-butylcalix[4]arene, and 

mechanistic study; by Gutsche et al 
 

Gutsche et al found that the ratios of deuterated and proteo-para-tert-

butylcalix[4]arenes produced suggested that neither fragmentation nor molecular mitosis 

were the only pathway in effect; and in reality, both pathways occur to a certain extent.106 

 In order to utilise deuterium labelling within in vivo metabolism studies, reliable 

techniques are required for the identification of deuterated metabolites within complex 

mixtures. In practice, this is facilitated by the use of labelled compounds differing from the 

parent compound by at least two mass units. This has the effect that when the compound is 

dosed as a 1:1 mixture with the parent molecule, two characteristic mass ions are seen 

within the mass spectrum; each with the same isotopic splitting pattern, and a mass 

difference of at least two. This technique allows metabolites of the substrate to be easily 

identified within complex mixtures, as this characteristic motif is carried throughout. 

An example of this in use is the study of the metabolism of benzylamine in rats 

carried out by Mutlib et al. By dosing a 1:1 mixture of natural abundance and d7- 

benzylamine, or natural abundance and d2- benzylamine, they were able to follow the 

metabolism through a rat model (Figure 26). By sampling bile, blood, and urine with MS, 
13C, and 1H-NMR, the metabolites formed at various stages were structurally assigned, and 

the pathways by which they were formed, traced. This was possible due to the ability to 
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determine loss of the deuterium labels, corresponding to loss of hydrogen within the parent 

molecule, and also structural assignment by NMR, and MS-MS techniques. The group has 

published various facets of their work in a series of papers.107-110 
 

 
Figure 26: The rat metabolism routes of benzylamine elucidated by Mutlib et al 

 
1.7: Labelling of Molecules for Pharmaceutical Effect 

 Potentially, the introduction of deuterium into a pharmaceutical molecule can 

convey several benefits. The two main examples of this being: extended half life within the 

body (due to reduced metabolism rates via kinetic isotope effects), and the potential to alter 

(or disfavour) metabolism routes, again via kinetic isotope effects. 

An interesting example of a reduction in metabolism rate via deuteration is that of 

the Merck antibacterial combination MK0641/MK0642 (consisting of 2-proteo-3-fluoro-

D-alanine (97) in combination with pentizidone (98)). (97) had shown low acute toxicity in 

vitro. However during metabolism by D-amino acid oxidase (DAO) in vivo 3-fluoro 

pyruvate (99) was seen to be produced. Unfortunately, (99) was found to be in equilibrium 

with 3-fluoro lactate (100) (Scheme 23); which has been shown to cause myelin 

vacuolation within the brain. In order to slow metabolism of (97), and allow clearance of 

the metabolic (99) produced to keep the levels of (100) below the concentrations 

implicated in myelin vacuolation, it was decided to deuterate (97) at the α-position, thus 

producing 2-deutero-3-fluoro-D-alanine (101) (Scheme 23). Initial clinical trial results 

proved promising,111 with a kinetic isotope effect of 2.8 relative to DAO in vitro.  
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Scheme 23: Initial metabolism of (97) and (101), demonstrating slowed metabolism of (101) to toxic 3-

fluoro lactate (100) 
 

A more recent example of deuteration being used to disfavour a metabolism route 

is that of selectively deuterated paroxetine (CTP-347) (102), for which Concert 

Pharmaceuticals have been awarded a patent.112 Initially, research interest in standard 

paroxetine (103) was due to its potential use as a treatment for hot flushes. However, 

during metabolism of (103) a metabolite structure (104) (Scheme 24) was formed which 

can cause irreversible inhibition of CYP2D6. This P450 cytochrome is responsible for 

metabolism of many drugs; therefore patients taking certain drugs could not use paroxetine 

(103) due to build up of toxic metabolites. The metabolism of paroxetine (103) involves 

cleavage of the dioxymethylene bridge contained within the molecule. As this cleavage is 

an enzymatic oxidative process, it was believed that replacing the dioxymethylene group 

with a deutero-dioxymethylene group, the rate of formation of (104) would be reduced, 

due to a kinetic isotope effect slowing the oxidative process (Scheme 24). 
 

 
Scheme 24: Proposed Mechanism for Inhibition of CYP2D6 by (104), a metabolite of paroxetine (103) 
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Indeed, CTP-347 (102) was found to exhibit greatly reduced inhibition of CYP2D6 

when compared to paroxetine.112 When submitted to clinical trials, phase I results indicated 

that the use of CTP-347 (102) substantially preserved the enzyme’s (CYP2D6) activity in 

patients.113 

Various other examples of deuterated pharmaceuticals have arisen in the last 15 

years, with research interest within the last 5 years growing significantly. Areas of research 

include pain medication (deuterated (±)-cis-tramadol (105),114 Sepracor Inc.), and HIV 

protease inhibitors (deuterated atazanavir (CTP-518, (106)),115-117 and darunavir (107),118 

Concert Pharmaceuticals) (Figure 27). 
 

 
Figure 27: Structures of the deuterated pharmaceuticals (105), (106), and (107) 

 

Due to the current interest in the area of deuterated compounds and the potential 

benefits of deuterated pharmaceuticals; the author believes it is only a matter of time 

before one or more of these potentially advantageous compounds pass clinical trials, and 

become readily available on the market. However, there are several patent issues related to 

the production of deuterated pharmaceuticals. For example, does changing a single nucleus 

from protium to a deuteron upon a patented molecule constitute a departure from the 

patent? Therefore, pharmaceutical companies have become much more wary of the 

isotopic constitution of their patented molecules in order to ensure maximum protection. 

Despite these issues, the possibility of developing tailored deuteration in order to induce 

pharmaceutical effects within molecules will be sure to affect the course of pharmaceutical 

development for years to come. 



 37 

Chapter 2: Organocatalysis 

2.1 Organocatalysis: A Brief Early History 

As a topic, the field of organocatalysis is concerned with the use of organic 

molecules as catalysts to either allow reaction, or to induce stereoselectivity within a 

reaction. The definition of an organocatalyst being: “…catalysts (usually small organic 

molecules) with low molecular weights (<1000g/mol) where a metal is not part of the 

active principle”.119 

The most well known early example of organocatalysis is the use of (S)-proline 

(108) by Hajos et al in 1974 to catalyse the formation of the optically active symmetric 

diketone (109) via an asymmetric aldol cyclisation (Scheme 25).120  
 

 
Scheme 25: Organocatalytic asymmetric aldol reaction of symmetric driketone species (109) utilising 3 

mol % (S)-proline (108); by Hajos et al 
 

Despite the high stereoselectivity and excellent yield achieved by Hajos et al within 

the reaction detailed above, the general use of organocatalysis in synthesis was not seen 

within the literature until the mid 1990s; when a series of papers were independently 

published by Denmark et al, Shi et al, and Yang et al; concerned with the use of chiral 

ketones as catalysts for the epoxidation of trans-alkenes. 

The mechanism of these epoxidation reactions involves oxidation of the catalyst 

ketone with Oxone®, producing a reactive dioxirane species. This species subsequently 

oxidises the substrate alkene, producing the desired epoxide, and regenerating the ketone 

catalyst (Scheme 26).121 The proposed spiro transition state allows for both retention of the 

configuration of the alkene starting material, and provides some explanation as to the 

enantioselectivity observed when chiral ketones are utilised.122 
 

 
Scheme 26: Proposed spiro transition state within the epoxidation of alkenes catalysed by the 

formation of an intermediate dioxirane species; by Houk et al 
 

The initial papers by the groups of Yang et al and Shi et al reported e.e’s ranging 

from 5 – 87 %, and 70 – 95 % respectively for a range of substrate trans-alkenes. Both 
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groups relied upon the use of chiral ketones as catalysts; with Yang et al utilising the C2-

symmetric ketone (110), and Shi et al utilising a fructose derived ketone (111). Direct 

comparison of the two reports within the synthesis of trans-stilbene oxide (112) shows that 

both methods were effective, generating moderate to excellent e.e.s, and good yields 

(Scheme 27).122,123 
 

 
Scheme 27: Syntheses of trans-stilbene oxide (112) utilising 1 equivalent (110) or 3 equivalents (111), 

proceeding via a dioxirane intermediate; by Yang et al and Shi et al 
 

 However, these reactions by Yang et al and Shi et al were not truly catalytic, due 

to the stoichiometric loading of (110) and (111) required; whereas, Denmark et al reported 

the formation of (R,R)-(112), in 85 % yield, and 58 % e.e., catalysed by 10 mol % of the 

fluoroketone species (113), again with trans-stilbene as the substrate (Scheme 28).124 
 

 
Scheme 28: Synthesis of (R,R)-(112) catalysed by 10 mol % (113); by Denmark et al 

 

 Further to these initial reactions, Corey et al and Jacobsen et al independently 

published the first examples of catalysts which utilised a hydrogen bonding activation 

mechanism. These Schiff base catalysts ((114) Jacobsen et al; (115) Corey et al, Scheme 

29) were employed in asymmetric Strecker type reactions. Both catalysts and methods 

performed well, forming their desired products (116) and (117) with high yields (80 – 96 

% for Corey, 65 – 92 % for Jacobsen), and e.e.’s (50 – 88 % for Corey, 70 – 91 % for 

Jacobsen). The successful initial catalyst structures are shown below (Scheme 29).125,126 



 39 

 
Scheme 29: Catalysts and examples of asymmetric Strecker type syntheses independently developed by 

Corey et al and Jacobsen et al 
 

The two ‘landmark’ publications which saw organocatalysis begin to be widely 

utilised were published in 2000. The work of List et al was the first of these ‘landmark’ 

papers, and contained the first use of (S)-proline (108) as a catalyst for asymmetric aldol 

reactions (Scheme 30).127 This publication is significant in the development of 

organocatalysis, as it demonstrates the wider use of the methodology proposed by Hajos et 

al; i.e. utilising (S)-proline as a catalyst for asymmetric aldol reactions (see Scheme 25). 
 

 
Scheme 30: List et al example of the first asymmetric cross aldol reaction utilising catalytic (S)-proline 

 

The second ‘landmark’ publication was by MacMillan research group, and 

concerned iminium catalysis of asymmetric Diels-Alder reactions.128 The catalyst system 

was a chiral imidazolidinone salt (118), designed to mimic Lewis acid catalysis. (118), 

when reacted with α,β-unsaturated aldehydes, gave optically active iminium ions, which 

were utilised as effective dieneophiles, and afforded chiral non-racemic products (Scheme 

31). For example, but-2-ene-1-al was treated with 5 mol % (118), and cyclopentadiene, in 

methanol / water at 23 °C for 16 hours, affording a 1:1 mixture of the (2S)-exo and (2S)-

endo products in 75 % yield, and 86 % (exo) and 90 % (endo) e.e. respectively. 
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Scheme 31: Initial asymmetric Diels-Alder reactions, catalysed by 5 mol % (118) by MacMillan et al 

 

This paper also demonstrated the advantages of organocatalytic methods; as wet 

solvent, relatively inexpensive catalysts, and aerobic conditions could all be used, and still 

afford the desired product in high yields and with excellent stereochemical control. As well 

as this, the term organocatalysis was coined within the text; introducing for the first time 

this potential new area into the literature. 

It was from this point onwards that organocatalysis became widely researched; with 

a large number of groups interested in exploiting the potential chemistry, and new 

developments within this field. This can be graphically demonstrated by considering the 

number of papers reported utilising ‘organocatalysis’ as a key word appearing in the 

literature. A basic Scifinder® search for the key word ‘organocatalysis’ shows that since 

2000 until the present day (Dec 2011), over 4000 papers have been published related to 

organocatalysis. 
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Figure 25: Graph showing the number of papers published since 2000 containing the keyword 

‘organocatalysis’ (Data from Scifinder, searching CAPLUS and MEDLINE databases, Dec 2011) 
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2.2.1: Organocatalysis: General Activation Mechanisms & Selected Examples - 

Introduction  

Within the remit of organocatalysis, many different reactions and catalyst systems 

have been developed. However, in depth analysis of the literature shows that the vast 

majority of organocatalytic reactions can be defined by five common modes of activation. 

These activation modes are summarised below (Figure 26), and each will be discussed in 

more detail below, including examples of the reactions which they are utilised within. 
 

 
Figure 28: Summary of the generic activation methods in organocatalysis 

 
2.2.2: Organocatalysis: General Activation Mechanisms & Selected Examples – Enamine 

Catalysis 

One of the first papers to be grouped into the category of organocatalysis was the 

development of an asymmetric aldol reaction, catalysed by (S)-proline, carried out by List 

et al (see Scheme 30). Although at the time this reaction was discovered, rather than 

designed; subsequent analysis has led to an understanding of this activation mode. By 
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examining a general carbonyl substrate for the aldol reaction with a molecular orbital 

(MO) approach, it can be demonstrated that the activation provided by enamine catalysis is 

most likely activation of the HOMO of the reactant (Figure 29). 
 

 
Figure 29: MO energy level diagram demonstrating activation of the substrate HOMO by enamine 

formation 
 

As outlined in Figure 29 above, enamine formation populates a non-bonding orbital 

within the substrate. This orbital is higher in energy than that of the HOMO of the original 

carbonyl species, activating the substrate towards electrophilic attack, leading to the 

increased nucleophilic character observed. 

Although the MO treatment suggests that the formation of an enamine intermediate 

should activate the nucleophile, it does not account for the observed enantioselectivity 

during the initial aldol reactions carried out by List et al. Within the initial study, e.e.’s as 

high as 97 % were noted for the condensation of acetone with isobutaldehyde in the 

presence of 30 mol % of an (S)-proline catalyst (Scheme 32).127 List et al hypothesised that 

the high enantioselectivity arose due to the acid functionality contained within the (S)-

proline catalyst. In effect, proline was acting as a bifunctional catalyst; both activating the 

nucleophile, and engaging the electrophile through hydrogen bonding. This can be 

demonstrated if the Zimmerman-Traxler transition state (119) is considered (Scheme 32). 
 

 
Scheme 32: (S)-proline catalysed aldol condensation of acetone and isobutaldehyde to produce (120); 

demonstrated by List et al 
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As the Zimmerman-Traxler transition state demonstrates, the hydrogen bonding 

interaction between the electrophilic aldehyde and the catalyst can strongly favour 

formation of a chair-like transition state, from which the stability of the pseudo-equatorial 

isopropyl substituent ensures nucleophilic attack from only one face. This interpretation 

was further reinforced by computational calculations, carried out by List et al, showing the 

Zimmerman-Traxler transition state detailed above is indeed favoured energetically.129 

 This (S)-proline mediated enantioselective activation mechanism has been 

employed in many differing aldol-type reactions, for example, both enolendo and enolexo 

intramolecular aldolisations have been shown to be catalysed via enamine formation. The 

work of Danishefsky et al and Agami et al are good examples of these 6-enolendo 

intramolecular aldolisation reactions (i.e. Hajos-Parrish-Eder-Sauer-Wiechert type 

reactions). Independently, Danishefsky et al and Agami et al showed that for certain 

substrates, utilising (S)-phenylalanine (121) as the catalyst species furnished higher e.e.’s 

than the traditional (S)-proline catalyst (108) within these reactions (Scheme 33).130,131  
 

 
Scheme 33: 6-enolendo aldolisation reaction catalysed by (S)-proline (108) or (S)-phenylalanine (121) 

by Danishefski et al 
 

It is worthy of note that (S)-phenylalanine (121) retains the same structural motif as 

(S)-proline (108) in its retention of both amine and acid functionality, allowing for the 

formation of ordered Zimmerman-Traxler transition states. Initially, this transition state 

was at odds with the generally accepted mechanism of the Hajos-Parrish-Eder-Sauer-

Wiechert reaction, however, subsequent 18O-labelling studies by List et al,132 and 

computational studies by Houk et al,133,134 have been published in support of the enamine 

mechanism suggested by List et al. 

Cross aldolisation reactions can also be catalysed via enamine formation. Of 

particular interest is the development of cross aldol reactions involving α-hydroxycarbonyl 

substrates. These reactions are of particular use due to the traditional difficulty in 

synthesising anti-1,2-diols. Although anti-1,2-diols can be produced via Sharpless 
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asymmetric dihydroxylation,135 the potential of using a simple hydroxycarbonyl starting 

material, along with a cheap, readily available catalyst, holds considerable attraction. To 

this end, the work of List et al shows that again utilising (S)-proline as a catalyst, anti-1,2-

diols can be produced with good levels of enantio-, regio-, and diastereoselectivity and 

with moderate yields of ca. 60 % (Scheme 34).136 
 

 
Scheme 34: Anti-1,2-diol formation via cross aldol reactions catalysed by (S)-proline; by List et al 

 

The cross aldolisation reaction has found use in natural product synthesis as well as 

general synthetic chemistry.137-139 For example, Li et al utilized a cross aldolisation 

reaction within a novel synthesis of the side chain of brassinolide (122) (Scheme 35).140  
 

 
Scheme 35: Application of the organocatalytic asymmetric cross aldolisation reaction within the 

synthesis of the side chain (123) of brassinolide (122); by Li et al 
 

While optically active proline is effective, and still commonly used as an 

organocatalyst for cross aldol reactions, many other organocatalysts have been developed 

in attempts to offer improved reactivity, enantioselectivity, and ease of use. Although not 

strictly utilising a new catalyst, the work of Shan et al is an interesting example. Shan et al 

demonstrated that the enantioselectivity, and yields, of (S)-proline catalysed aldol reactions 

could be increased via the addition of chiral diols. For example, the addition of 20 mol % 

of (S)-BINOL ((124), (S)-1,1’-binaphthyl-2,2’-diol) to the cross aldol reaction of 

benzaldehyde and acetone led to an increase in e.e. of the afforded product (R)-(125) of up 

to 22 % (72 % e.e. afforded with no (124)) (Scheme 36). 
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Scheme 36: Observed increase in e.e. of the cross aldol reaction product (125) between acetone and 

benzaldehyde upon addition of 20 mol % (S)-(124); by Shan et al 
 

Interestingly, the enantiomer of (124) added had no effect upon the chirality of the 

product, with both enantiomers of (124) affording (R)-(125), with no noticeable loss of 

e.e.; suggesting that the chirality of the product was being determined by the catalyst, as 

opposed to the chiral diol.  

This hypothesis was tested by utilising 20 mol % (S)-(124) as a chiral additive, 

while using 30 mol % (±)-proline as the catalyst; again in the cross aldol reaction of 

benzaldehyde and acetone. In line with the hypothesis, the e.e. of the afforded product (R)-

(125) was seen to fall dramatically, from 94 % to 5 % (Scheme 37). Thus it was concluded 

that the addition of (124) leads to the formation of a ‘supramolecular complex’ between the 

substrate, chiral diol, and (S)-proline catalyst which favours attack from one face of the 

substrate during the reaction, leading to the observed increase in e.e. (Scheme 37).141 
 

 
Scheme 37: Observed loss in enantioselectivity upon use of (±)-proline in the cross aldol reaction of 

benzaldehyde and acetone, and proposed ‘supramolecular complex’; by Shan et al 
 

 Examples of other catalysts for cross aldol reactions are also prevalent in the 

literature; these include: polymer bound (S)-proline species ((126), Benagalia & Cozzi et 

al),142,143 bisprolinamide species ((127), Zhao et al),144 and bifunctional C2-symmetric 1,1-

binaphthyl derived species ((128), (129), Maruoka et al);145,146 these catalysts are shown in 

Figure 30. 
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Figure 30: Organocatalyst species employed in cross aldol reactions by Benagalia et al, Zhao et al, and 

Maruoka et al 
 

Enamine catalysis has also found use within the Mannich reaction. The Mannich 

reaction proceeds via the condensation of two carbonyl components and an amine, 

affording β-amino carbonyl compounds, and is widely used within organic synthesis.  

The first example of an efficient three-component, asymmetric, organocatalysed, 

Mannich reaction was demonstrated by List et al in 2000.147 Utilising an (S)-proline 

catalyst, List et al carried out reactions between acetone, para-anisidine, and various 

aliphatic or aromatic aldehydes utilising 35 mol % proline (Scheme 38); these reactions 

afforded enantioenriched β-aminoketones (e.g. (130)) in yields ranging from 35 – 90 %, 

and with e.e.’s ranging from 70 – 96 % (Scheme 38). This methodology has also been 

employed within the synthesis of optically active α-hydroxy-β-aminoketones, utilising α-

hydroxyketones as starting materials, again by List et al (Scheme 38).148 
 

 
Scheme 38:  3-component, asymmetric, organocatalysed mannich reactions; by List et al 
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Further to the work by List et al, Barbas et al have carried out research concerned 

with the use of multiple aldehydic substrates within asymmetric three component Mannich 

reactions, catalysed by (S)-proline (Scheme 39). Interestingly, a catalyst screen within the 

report by Barbas et al suggested that proline itself was the most effective catalyst for these 

reactions. For example, within the synthesis of β-formyl-α-amino ester (131) (Scheme 39), 

no catalyst screened performed better than (S)-proline; the closest rival being trans-4-tert-

butoxy (S)-proline, which gave a slightly improved yield of 91 %, but required a longer 

reaction time of 4 hours (compared to 3 hours required with (S)-proline).149 
 

 
Scheme 39: Asymmetric Mannich reactions catalysed by 5 mol % (S)-proline; by Barbas et al 

 

 The final area within organocatalytic enamine catalysis is that of α-

functionalisation of carbonyl compounds. These reactions include α-amination (producing 

α-amino acids or amino alcohols, of interest in life sciences),150 α-oxidation (potentially 

useful within natural product synthesis, e.g. total synthesis of brevicomin (132), (133)),151 

α-halogenation (in particular, α-fluorination, potentially producing synthons for the 

synthesis of oxidation resistant drugs),152,153 and α-sulfenylation (producing materials 

potentially of interest within biological systems, e.g. for the inhibition of zinc containing 

enzymes).154,155 These reactions, and the examples referenced above are summarised in 

Scheme 40, however a complete review of α-functionalisation reactions is also available in 

the literature by Jørgensen et al.156  



 48 

 

Scheme 40: Summary of selected αααα-functionalisation reactions which proceed via enamine catalysis 

 
2.2.3: Organocatalysis: General Activation Mechanisms & Selected Examples – Iminium 

Catalysis 

As noted within the introduction to this section (See Organocatalysis: A Brief Early 

History), MacMillan et al were responsible for the development of iminium catalysis as a 

general activation mode in 2000 (selected work outlined in Scheme 31) as part of a 

directed effort to produce a catalyst system which would mimic Lewis acid catalysis.  

Lewis acid catalysis relies upon lowering the LUMO of a system by coordination 

of a Lewis acid to a suitable lone pair containing functional group (for example, an 

aldehyde, or ketone). This coordination leads to increased polarisation of the carbon 

heteroatom bond within the Lewis basic functional group (for example, increased 

polarisation of the carbon oxygen bond within ketones); which in turn leads to the lowering 

of the LUMO of the substrate.  
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Within iminium catalysis, lowering of the LUMO energy comes about due to 

formation of the formally positively charged iminium species; leading to increased 

polarisation of the carbon nitrogen bond (analogous to the increased polarisation seen 

within Lewis acid coordination), decreasing the energy barrier to reaction, and thus 

activating the substrate (Figure 31). 
 

 
Figure 31: Comparison of the similarities between Lewis acid and iminium LUMO activation 

 

 When published in 2000 by MacMillan et al, the majority of their iminium catalysis 

work was focussed upon applications within Diels-Alder cycloaddition reactions; utilising 

the imidazolidinone catalyst (118) (see Scheme 31).   

One example of the use of iminium catalysed Diels-Alder chemistry is contained 

within the total synthesis of (+)-hapalindole-Q (138) by Kinsman and Kerr, published in 

2003, utilising the MacMillan imidazolidinone salt (118) (Scheme 41).157 Despite the 

relatively low yield of this reaction, the complex intermediate produced by this Diels-Alder 

cycloaddition, from achiral starting materials, makes this reaction attractive. 
 

 
Scheme 41: Synthesis of (+)-hapalindole-Q utilising an iminium catalysed Diels-Alder cycloaddition 

step to form intermediate (139); by Kinsman and Kerr  



 50 

Various other catalysts been developed which take advantage of the polarisation 

effect of iminium catalysis in order to activate substrates within the context of the Diels-

Alder reaction; including: polymer bound,158 fluorous,159 C2-symmetric binaphthyl,160 and 

(further to the MacMillan et al initial work) imidazolidinone128 based catalysts. 

 The use of iminium catalysis within conjugate addition reactions has also seen 

significant development. For example, the Michael addition of carbon based nucleophiles 

has been a subject of much research; initially observed by Yamaguchi et al in 1991, it was 

demonstrated that the addition of dimethyl malonate to α,β-unsaturated aldehydes 

(including hexenal) could be catalysed by the lithium salt of (S)-proline, via intermediate 

iminium formation (Scheme 42).161 

 
Scheme 42: Initial iminium ion catalysed Michael additions, utilising (S)-proline lithium salt; by 

Yamaguchi et al 
 

The Yamaguchi et al publication was the first of several developing various 

methods and catalysts for Michael addition reactions; an interesting example among these 

being the methodology developed by Jørgensen et al which was published initially in 

2003.162 Utilising 10 mol % of the imidazolidinone (140), prepared from (±)-

phenylalanine, as the catalyst; the conjugate addition of various malonates upon enone 

substrates was carried out (Scheme 43). However, the use of the malonate as the reaction 

solvent was required; and furthermore, significant lowering of the diastereoselectivity was 

noted when unsymmetrical malonates were employed (see synthesis of (141), Scheme 43). 
 

 
Scheme 43: Asymmetric, organocatalysed, Michael additions utilising symmetrical and unsymmetrical 

malonates; by Jørgensen et al 



 51 

In 2006, Jørgensen et al published further examples of iminium catalysed conjugate 

addition to α,β-unsaturated aldehyde substrates, which were carried out with a view to 

synthesising compounds of pharmaceutical interest; included within these were the 

syntheses of the antidepressants (-)-paroxetine (103) (intermediate (142)) and (+)-

femexotine (143) (intermediate (144)) (Scheme 44).163 
 

 

Scheme 44: Iminium catalysed conjugate addition to αααα,ββββ-unsaturated aldehydes, within syntheses of 

pharmaceutically interesting products (103) and (104); by Jørgensen et al 
 

The use of iminium catalysis within conjugate addition reactions is not limited to 

carbon nucleophiles however. Nitrogen, oxygen, and sulfur containing nucleophiles within 

the Michael addition have all been reported, examples of which have again been published 

by (but are not limited to) Jørgensen et al.164-166 For example, it has been demonstrated by 

Jørgensen et al that the pyrrolidine catalyst (137) (see Scheme 44) can facilitate the 

asymmetric conjugate addition of nitrogen heterocycles, such as 1,2,4-triazole (145) to 

aliphatic aldehydes, in yields of ca. 80 %, and e.e.s of > 90 % (Scheme 45). 
 

 
Scheme 45: Organocatalytic, asymmetric conjugate addition of 1,2,4-triazole (145) to aliphatic 

aldehydes; by Jørgensen et al 
 

 A further interesting example is the organocatalysed conjugate addition of 

hydrogen to unsaturated aldehydes within transfer hydrogenation reactions. The first 

example of this was developed by List et al. The initial method utilised the Hanzsch ester 

(146), and 5 mol % dibenzylammonium trifluoroacetate (147) as the catalyst. This 
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methodology allowed for the organocatalytic transfer hydrogenation of α,β-unsaturated 

aldehydes (such as 4-(nitrophenyl)acrylaldehyde (148) and 4-methylpentenal (149)), in 

yields of ca. 90 % (Scheme 46). However, the reaction generated racemic products. 
 

 
Scheme 46: Racemic organocatalysed transfer hydrogenation reactions catalysed by 5 mol % (146); by 

List et al 
 

The above methodology was subsequently improved upon via the use of the chiral 

imidazolidinone salt (150), and the modified Hantzsch ester (151), which afforded the 

desired reaction products in similar yields of ca. 90 %, but also 90 – 96 % e.e. (Scheme 

47). For example, treatment of 3-phenylbut-2-enal with 10 mol % (150), and 1.02 eq (151) 

afforded the desired product of the form of (152) in 77 % yield, and 95 % e.e..167  
 

 
Scheme 47: Organocatalytic hydrogen transfer reaction developed by List et al 

 

The examples shown above are a selection of the reactions that have been 

developed utilising iminium catalysis. Further examples and discussion can be found 

within the literature in review format.168 

 
2.2.4: Organocatalysis: General Activation Mechanisms & Selected Examples – Hydrogen 

Bonding Catalysis 

 Electronically, the activation of substrates via hydrogen bonding comes about due 

to inductive polarisation of the π-system of the hydrogen bond acceptor substrate, caused 
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by formation of the hydrogen bond. This polarisation brings about a lowering of the 

LUMO energy within the hydrogen bonded substrate, thus promoting nucleophillic attack 

(Figure 32). This effect can be viewed as analogous to the polarisation noted upon 

coordination of a Lewis acid to a Lewis basic substituent (See 2.2.3: Iminium Catalysis). 
 

 
Figure 32: Comparison of the similarities between Lewis acid and hydrogen bonding LUMO activation 

 

 Originally, the use of hydrogen bonding as a form of organocatalysis stemmed 

from two realisations; these being that hydrogen bond donors could both enhance reactivity 

within a reaction (due to the polarisation effect detailed above), and also that they allowed 

for highly ordered assemblies and transition states (Figure 33). These initial reports by 

Hine et al,169 and Etter et al,170 paved the way for the development of a generalised 

approach to hydrogen bond catalysis, and further to this, asymmetric reactions based upon 

the highly ordered assemblies and transition states allowed by hydrogen bonded 

intermediates. 
 

 
Figure 33: Highly organised molecular assemblies of 1,3-bis-(2-methoxyphenyl)urea with itself (153), 

and 1,3-bis-(3-nitrophenyl)urea with furan (154), promoted by hydrogen bonding; proposed and 

observed by Etter et al 
 

Examples of both the polarisation and ordering effects of hydrogen bonding 

catalysis can be found within the work of Jacobsen et al.171 Jacobsen and Vachal have 

reported that urea and thiourea containing peptide compounds (155) and (156) catalyse the 

asymmetric Strecker hydrocyanation of aldimine and ketoimine substrates, affording the 
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desired products in e.e.s of between 86 and 99 %; although yields were not reported for 

these reactions (Scheme 48). 

 
Scheme 48: Asymmetric Strecker hydrocyanation of aldimine and ketoimine substrates, catalysed by 1 

mol % (155) or (156); carried out by Jacobsen et al 
 

The exact mechanism of activation within the above reactions was initially 

unknown; however, subsequent structure activity studies showed that only the urea (or 

thiourea) functionality of (155) or (156) was required for reaction to be observed. It was 

also found that by increasing the steric demands of the environment around the urea 

functionality (within (155) or (156)), higher enantioselectivity could be induced within the 

reaction. These observations directly support the hypothesis that the substrate is both 

activated, and held within an organised conformation (allowing favoured attack from one 

face), via hydrogen bonding interactions with the catalyst (Figure 34). 
 

 
Figure 34: Representation of the structure provided by hydrogen bonding of (155) to an imine 

substrate, and steric hinderence to attack from one face of that substrate 
 

 Following on from the development of the asymmetric Strecker hydrocyanation of 

ketoimines, and the subsequent elucidation of the hydrogen bonding mode of action of the 
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catalysts (155) and (156), Jacobsen et al developed an asymmetric organocatalytic 

Mannich reaction,172 with the new hydrogen bonding catalyst (157). Utilising 

functionalised N-tert-butoxycarbonyl aldimines and aliphatic silyl enol ethers as substrates, 

together with 5 mol % (157), Jacobsen et al achieved yields of the desired Mannich 

adducts ranging between 87 and 99 %, along with e.e.s of ca. 90 % (Scheme 49).173 
 

 
Scheme 49: Asymmetric Mannich reactions catalysed by 5 mol % (157); carried out by Jacobsen et al 

 

Jacobsen et al have also applied hydrogen bonding organocatalysis to nitro-

Mannich reactions.174 Utilising a similar catalyst to the previous examples, functionalised 

with an amide side group (catalyst (158)), the reaction of nitroalkanes to N-tert-

butoxycarbonyl imines in yields ranging from 85 – 99 %, syn:anti selectivity of ca. 15:1, 

and e.e.’s of the predominant syn diastereomer ranging from 92 – 95 % (Scheme 50). 
 

 
Scheme 50: Enantioselective nitro-Mannich reaction catalysed by 10 mol % (158); carried out by 

Jacobsen et al 
 

As demonstrated by the above examples, the Jacobsen type catalyst (represented 

by, but not limited to (155), (156), (157), and (158)) shows reactivity within many classes 

of reaction. This has led to Jacobsen stating that the subtype could be classified as a 

‘privileged’ catalyst.175 Usually applied in pharmacology, this classification implies that 

the structure is capable of catalysing many different processes, and is further supported by 

the reported use of these catalysts within acyl-Pictet-Spengler,176 cyanosilylation,177 and 

hydrophosphonylation178 reactions; although these are not discussed in detail here. 
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2.2.5: Organocatalysis: General Activation Mechanisms & Selected Examples – SOMO 

Catalysis 

A relatively new activation method within organocatalysis is the field of SOMO 

catalysis. Pioneered by MacMillan et al in 2006,179 SOMO catalysis was inspired by 

consideration of the differing frontier molecular orbital systems which characterise 

enamine and iminium catalysts. In general, iminium catalysis is based upon lowering the 

LUMO energy of the system via polarisation of a carbon-nitrogen bond; and the system 

contains a minimum of two π-electrons (Figure 31). In enamine catalysis, the energy of the 

HOMO is increased, and the system tends to contain four π-electrons (Figure 29). SOMO 

catalysis is based upon oxidation of enamine type systems, thus producing a radical 

cationic species with a minimum of three π-electrons (Figure 35). 
 

 
Figure 35: General SOMO catalysis frontier MO diagram 

 

 Direct evidence for the generation of the radical cation species involved within the 

transition state of a SOMO catalysed reaction has recently been provided by Engeser et al 

(Figure 36).180 By treating a typical MacMillan imidazolidinone catalyst (134) with 

phenylacetaldehyde (160) within a reaction vessel equipped with an online ESI mass 

spectrometer, Engeser et al were able to monitor the formation of the intermediate enamine 

(161). When this intermediate was treated with a one electron oxidant, (tris(p-

bromophenyl)aminiumhexachloroantimonate  (162)), the online mass spectrum showed a 

new peak at m/z 348.2, i.e. the required m/z for the radical cation species (163). Further 

treatment of this species with styrene, and a subsequent oxidation, yielded the coupling 

product (164) (Figure 36). 
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Figure 36: Catalytic cycle for the formation of (164), and MS evidence for the presence of the radical 

cationic species (163) 
 

In general terms, SOMO reactants (i.e. cationic radical species generated from 

enamines) will react with substrates containing electron-rich π-systems, so-called 

SOMOphiles. One such example of this was demonstrated by MacMillan et al during the 

initial publication of SOMO catalysis. They demonstrated that allylsilane (165) will react 

with aldehydes such as cyclohexanecarbaldehyde (166) in the presence of 20 mol % of the 

imidazolidinone catalyst (167) and 2 equivalents of cerium ammonium nitrate (CAN) in 

order to form the formal allylation product (168) in 75 % yield, and 94 % e.e. (Scheme 51). 
 

 
Scheme 51: Catalytic cycle, and selected results for the SOMO allylation reaction; by MacMillan et al 
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 Further to allylation reactions, MacMillan et al have also demonstrated the use of 

SOMO catalysis for vinylation reactions, utilising potassium fluoroborate species as the 

SOMOphile reagents. This reaction type has the advantage that the final product is not 

only enantioenriched, but that the alkene functionality is selectively of trans orientation 

due to the Peterson (trans) elimination step involved within the mechanism (Scheme 

52).181 For example, treatment of propanal (169) with potassium trifluoro(styryl)borate 

(170) in the presence of 20 mol % of the imidazolidinone catalyst (167) afforded the 

desired product (E)-(171) in 72 % yield, and 94 % e.e. (Scheme 52). 
 

 
Scheme 52: SOMO vinylation reaction including a Peterson elimination step; carried out by 

MacMillan et al 
 

A number of ring forming and cascade reactions have also been developed by 

MacMillan et al with the aim of quickly incorporating, and establishing, complexity within 

organic molecules. Utilising both nucleophilic attack and a further [4+2] cycloaddition 

step, MacMillan et al synthesised a range of multicyclic compounds, utilising a one pot 

SOMO catalysed cascade reaction.182 For example, treatment of styrene (172) and 3-(4-

methoxyphenyl)propanal (173) with 20 mol % (134) afforded the desired bicyclic product 

(174) in a yield of 76 %, with a diastereomeric ratio of 20:1 (with syn predominant), and an 

e.e. of 94 % for the major syn diastereomer (Scheme 53). 
 

 
Scheme 53: Synthesis of syn-(174) via a SOMO cascade reaction; by MacMillan et al 
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 The mechanism of this reaction relies upon initial enamine formation to give (175). 

This is then subjected to a one electron oxidation in order to form the SOMO reagent 

(176). This then undergoes nucleophilic attack by a suitable SOMOphile (in this case, 

styrene) forming the intermediate (177). (177) can then undergo a further one electron 

oxidation, generating the formal cationic species (178); which is set up for stereoselective 

nucleophilic ring closing, followed by rearomatisation of the phenyl ring, generating (179). 

Hydrolysis of the enamine then generates the desired product (174) (Scheme 53 & 54).  

The stereoselectivity of the reaction comes about due to the potential formation of a 

‘chair like’ transition state shown in Scheme 54 as (180). This state allows both bulky 

phenyl groups to adopt pseudo-equatorial positions, and ensures that the nucleophilic 

attack by the phenyl ring will occur favourably from one face. 
 

 
Scheme 54: Mechanism of formation of (174), showing the chair-like transition state (180) 

 

A further recent example of a SOMO cascade reaction is that of the bio-mimetic 

synthesis of steroid like molecules. Similar to the biosynthesis of steroids from squalene 

oxide via a ‘chair-boat-chair’ conformation, these polycyclisation reactions were shown to 

be possible in yields of between 56 – 63 %, and e.e.s of up to 93 % (Scheme 55).183,184  
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Scheme 55: Biomimetic synthesis of (182) via a SOMO polycyclisation reaction; by MacMillan et al 

 

It is worthy of note that SOMO catalysis is still an emerging area within 

organocatalysis, with the possibility arising to combine the activation mode with other 

branches of chemistry in order to create unique reactions. For example, the combination of 

SOMO catalysis and photochemistry.185 

  
2.2.6: Organocatalysis: General Activation Mechanisms & Selected Examples – 

Counterion Catalysis 

The final activation mode to be discussed here is that of counterion catalysis. 

Although only a recent discovery, several new reactions utilising this approach have been 

developed. Within counterion catalysis, there are two general fields of research. One of 

these is ACDC (asymmetric counterion directed catalysis) developed by List et al.186  

This methodology involves use of a chiral catalyst salt, TRIP (183). Activation of 

the carbonyl containing substrate (i.e. aldehyde or ketone) occurs via iminium formation 

with the morpholino component of the catalyst salt. The chiral anionic portion of the 

catalyst salt then facilitates a steric directing effect to subsequent reaction upon the 

iminium species, thus favouring attack from one face (Figure 37). List et al have also 

applied this concept to transition metal based chemistry.187 
 

 
Figure 37: Representation of the formation of a ‘chiral ion pair’ between the iminium ion and 

phosphate anion formed by the treatment of benzaldehyde with TRIP (183) 
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An example of the use of ACDC and TRIP is the transfer hydrogenation of α,β-

unsaturated aldehydes performed by Meyer and List. The method allowed for the 

enantioselective reduction of these α,β-unsaturated aldehydes in good yields and excellent 

e.e.s (Scheme 56).186 For example, 3-(4-toluyl)butenal was treated with 20 mol % (184), 

and 1.02 equivalents (151), affording the desired reduced product in 87 % yield, and 98 % 

e.e.. 

 
Scheme 56: TRIP anion directed asymmetric transfer hydrogenation by Meyer and List 

 

The second form of counterion catalysis can be described as a hydrogen bonding 

catalysis mode. However, as the name suggests, the difference from traditional hydrogen 

bonding catalysis comes about in the fact that the hydrogen bonding encourages 

dissociation of a suitable leaving group anion from the substrate; thus allowing a chiral ion 

pair to form between the now cationic substrate and the chiral anionic catalyst complex. 

This methodology was first elucidated by Jacobsen et al, while investigating the 

reaction mechanism of their urea/thiourea containing hydrogen bonding catalysts (see 

2.2.4: Hydrogen Bonding Catalysis) when employed upon the intramolecular cyclisation of 

hydroxylactam substrates (Scheme 57).188 It was shown that treatment of the 

hydroxylactam species (185) with trimethylsilyl chloride led to displacement of the 

hydroxy group with chlorine. The activated substrate (186) then underwent interaction with 

the hydrogen bonding donor group of the catalyst (189) leading to weakening of the carbon 

halogen bond within the substrate (186). This weakening occurred to such a degree as to 

cause dissociation, forming the subsequent chiral ion pair (187) (Scheme 57).  
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Scheme 57: Jacobsen counterion catalysis in the synthesis of harmicine derivative (188) 

 

Polycyclisation reactions of multiply unsaturated systems have also been shown to 

be catalysed via counterion catalysis, one example of such is shown in Scheme 58 below. 

Jacobsen et al have demonstrated that by including aromatic groups within the periphery of 

a thiourea based hydrogen bonding catalyst, an interaction can occur between the cationic 

π-system of the substrate intermediate, and the aromatic upon the catalyst. This interaction 

both stabilises the substrate, and holds it into a position amenable for enantioselective 

cyclisation to occur (which is catalysed by formation of a chiral ion pair (191) with catalyst 

(190)) (Scheme 58). Using this method, Jacobsen et al synthesised steroid-like compounds 

in yields ranging from 54 – 72 %, and e.e.s ranging from 89 – 94 % (Scheme 58).189 
 

 
Scheme 58: Polycyclisation reaction catalysed by (190); demonstrated by Jacobsen et al 

 
2.3: Organocatalysis: Chiral Brønsted Acid Catalysts 

 As the body of this thesis is concerned with the use of chiral strong Brønsted acids 

as organocatalysts, this section will focus upon the forms of chiral Brønsted acids that have 

been developed for asymmetric synthesis. Examples related to the use of chiral Brønsted 
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acids in the synthesis of aziridines have been excluded from this section and are covered in 

Chapter 3: Aziridines and Aziridination.  

The major class of chiral Brønsted acid catalysis are those based upon the optically 

active 1,1’-binaphthyl scaffold, which is often substituted at the 2,2’-positions with OH, to 

form BINOL (124). Further substitution can also be carried out at the 3,3’-positions. These 

axially chiral molecules are conformationally rigid due to steric interactions between the 

corresponding hydrogen atoms at the 8,8’-positions (Figure 38). Thus, these scaffolds are 

attractive starting points for the development of a chiral acid, due to potential of 

substitution, and lack of interconversion. 
 

 
Figure 38: Representation of the axial chirality of 1,1’-binaphthyl-2,2’-diol, showing the steric 

interaction between the 8,8’-hydrogens 
 

The first examples of chiral Brønsted acid catalysts of the type discussed above 

were simple phosphoric acids, (formed by treating (S)- or (R)-BINOL with phosphorus 

oxychloride and HCl) developed independently by the groups of Terada et al and Akiyama 

et al, and applied originally to asymmetric Mannich reactions. Initially, studies had been 

carried out upon the reaction of (192) with (193), utilising the phosphoric acid binaphthyl 

derivative (R)-(194), and were carried out by Akiyama et al (Scheme 59); however, no 

enantioselectivity was observed within the reaction product (195).190  
 

 
Scheme 59: Initial Brønsted acid catalysed Mannich reaction carried out by Akiyama et al 

 

Further to this initial example, utilising (R)-(196) and (R)-(197) (formed by 3,3’-

substitution of (194) with bulky aromatic groups), Akiyama et al and Terada et al 

independently demonstrated that chiral non-racemic Brønsted acids catalysed the 

asymmetric Mannich reactions of both aromatic, and N-Boc protected imines, affording the 
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Mannich products with yields and e.e.s as high as 100 % and 96 % respectively (Akiyama 

et al)190, and 99 % and 98 % respectively (Terada et al)191 (Scheme 60). 

 

 
Scheme 60: Brønsted acid catalysed asymmetric Mannich reactions; by Terada et al 

 

Subsequent to this work, the mechanism of stereoselectivity within the Mannich 

reactions detailed above was elucidated further by Terada and Gridnev et al, who 

concluded that a hydrogen bonding interaction between substrate and catalyst could be 

responsible. Therefore, in order to induce high stereoselectivity, free rotation around the 

hydrogen bond had to be restricted (Figure 39). This hypothesis accounts for the lack of 

stereoselectivity in the initial Mannich reaction carried out by Akiyama et al utilising (R)-

(194) (see Scheme 59); as no bulky substitution at the 3,3’-positions was present within 

(R)-(194) to prevent free rotation of the imine about the hydrogen bond.192 
 

 
Figure 39: Representation of free rotation about a hydrogen bond, and its inhibition within the 

Mannich reactions of Akiyama et al and Terada et al 
 

Chiral phosphoric acids have also been shown to catalyse aza-Diels-Alder reactions 

in an enantioselective manner. For example, Akiyama et al have shown that by treating the 

aldimine substrate (198) derived from benzaldehyde and 2-amino-4-methylphenol, and 

Danishefsky’s diene (199), with 10 mol % of the 3,3’-substituted BINOL phosphoric acid 
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(200) the desired cycloaddition product could be formed in a yield of 99 %, with a 

corresponding e.e. of 80 % (Scheme 61).193 

 
Scheme 61: Synthesis of Diels-Alder adduct (201) utilising 5 mol % (R)-(200); by Akiyama et al 

 

Akiyama et al have also utilised chiral Brønsted acids in the aza-Diels-Alder 

reactions of Brassard’s diene (202); in particular, with the aldimine (198). In general 

cycloaddition reactions with Brassard’s diene are a synthetic challenge due to the reactivity 

and lability of the substrate, and therefore they are usually low yielding. Within their 

attempts to develop an enantioselective catalytic version of this cycloaddition, Akiyama et 

al attempted to use various catalysts, including a bis-9-anthryl BINOL derived phosphoric 

acid (203), which had shown to be the most effective catalyst during a catalyst screen for 

the aza-Diels-Alder reaction.194 However, although yielding the desired product (204) in 

72 % yield, and 92 % e.e., it was found that alteration of the catalyst via formation of its 

pyridinium salt (205) increased the yield of (204) to 87 % while maintaining a comparable 

e.e. (Scheme 62). It was believed that this increase in yield was due to the reduction in acid 

strength between the free acid, and the salt, thus reducing decomposition of the substrate 

diene.195  

 
Scheme 62: Synthesis of Diels-Alder cycloadduct (204) utilising 3 mol % (R)-(203), or (R)-(205) 
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This reduction in decomposition was proven via an NMR experiment; monitoring 

the decomposition of Brassard’s diene (202) in the presence of either (203) or (205) after 

one hour. In the presence of (203), only 12 % of the Brassard’s diene was intact after this 

time, whereas, in the presence of (205), 75 % of the initial Brassard’s diene remained. 

A further interesting example of the use of chiral BINOL derived phosphoric acids 

is that of the ‘Friedel-Crafts like’ alkylation of an imine substrate developed by Terada et 

al. Utilising imines such as (206), and a diazoacetate (i.e. ethyl or tert-butyl diazoacetate) 

as the alkylating agent, in the presence of 2 mol % (R)-(203) the reaction afforded the 

desired alkylated products in yields of between 62 and 89 %, and e.e.s of between 91 and 

97 % (Scheme 63). 

This reaction is worthy of interest as treatment of an imine with a diazoacetate and 

a protic catalyst is a commonly used method of producing aziridines i.e. the aza-Darzens 

aziridination reaction (see Chapter 3: Aziridines & Aziridination). In this case however, 

Terada et al had demonstrated a formal alkylation of the imine, as opposed to aziridine 

formation. Terada et al hypothesised that the reaction proceeded via an addition 

elimination pathway, invoking an intracomplex deprotonation step in order to explain the 

suppression of the aza-Darzens reaction (Scheme 63).194 

 
Scheme 63: Examples of the ‘Friedel-Crafts like’ alkylation reaction developed by Terada et al, and 

the hypothesised intracomplex deprotonation mechanism 
 

 As the area of chiral Brønsted acid catalysis has grown, it has become an attractive 

proposition to produce more highly acidic chiral Brønsted acids; in order to allow 

protonation of less basic substrates, such as carbonyl compounds. This area was first 

approached by Yamamoto et al, who amended the traditional BINOL derived phosphoric 
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acid motif to contain a strong electron withdrawing functionality in the form of a 

trifluoromethane sulfonamide group (Figure 40),196 thus decreasing the pKa of the system 

to ca. -1 when compared with the less acidic pKa of ca. 1 – 2 (ca. 13 – 14 in acetonitrile) 

typical of a standard BINOL derived phosphoric acid. It is worthy of note that N-

triflylphosphoramide based catalysts were designed to have pKa values of ca. 7 in 

acetonitrile.197 

 
Figure 40: Representation of the general form of BINOL derived phosphoric acids and N-

triflylphosphoramides 
 

The higher acidity of these N-triflylphosphoramide containing BINOL derived 

catalysts was demonstrated by Yamamoto et al who carried out a direct comparison 

between the N-triflylphosphoramide catalyst (207), and a traditional phosphoric acid 

catalyst (208) within the scope of the Diels-Alder reaction. Treating ethyl vinyl ketone 

(209) and diene (210) (Scheme 64) with the BINOL derived phosphoric acid catalyst 

(208), no reaction was observed. However, upon treatment under the same conditions 

utilising the BINOL derived N-triflylphosphoramide catalyst (207), a yield of ca. 10 % of 

the racemic endo cycloaddition product (211) were obtained. However, upon optimisation 

of the 3,3’-substitution of the catalyst, a yield of 95 % and e.e. of 92 % of the endo 

addition product were achieved with catalyst (212).196 The observed higher activity is 

believed to come about as a direct result of the increased ability of the N-

triflylphosphoramide catalyst to protonate the less basic ketone carbonyl. 



 68 

 
Scheme 64: Direct comparison of the phosphoric acid based catalyst (208) and the N-

triflylphosphoramide catalysts (207) and (212) within the Diels-Alder reaction of (209) with (210) 
 

 Further to the Diels-Alder cycloaddition, BINOL derived N-triflylphosphoramides 

have also been employed by Yamamoto et al within 1,3-dipolar cycloaddition reactions.198 

Utilising nitrone starting materials such as (213), Yamamoto et al were able to demonstrate 

organocatalysed cycloaddition with ethyl vinyl ether catalysed by 5 mol % of the chiral 

BINOL based N-triflylphosphoramide catalyst (214) affording, in general, good to 

excellent yields of 66 – 99 %, and e.e.s ranging from 56 – 93 % (Scheme 65).  
 

 
Scheme 65: 1,3-dipolar cycloaddition reaction, catalysed by 5 mol % (214); by Yamamoto et al 

 

These results are worthy of note due to the ability of (214) to catalyse the reaction 

at lower temperatures than the methodology previously reported by Jørgensen et al 

(utilising BINOL derived aluminium Lewis acid catalysts, at temperatures of ca. -25 °C); 

and also, the reaction afforded endo products as the major diastereoisomer (as opposed to 

the exo materials afforded within the Jørgensen method, Scheme 66).199 
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Scheme 66: 1,3-dipolar cycloaddition catalysed by 10 mol % (216); reported by Jørgensen et al 

 

Further to the reactions detailed above, Rueping et al have also reported an 

enantioselective organocatalytic Navarov reaction. Utilising 2 mol % of the BINOL 

derived N-triflylphosphoramide (218) (Scheme 67), Rueping et al demonstrated that yields 

ranging from 45 – 88 %, and e.e.s of ~90 % were readily achievable; with various 

functionality tolerated, including aromatic, halogenated, and ether linkages (Scheme 67).200  
 

 
Scheme 67: Examples of the catalytic asymmetric Nazarov reaction developed by Rueping et al 

 

 The mechanism of these Nasarov reactions is an initial protonation of the carbonyl, 

leading to a 4π conrotatory electrocyclic ring closure (219) (as predicted by the 

Woodward-Hoffman rules), followed by proton elimination (220), and finally protonation 

of the intermediate (221) to produce the desired product (222) (Scheme 68). 
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Scheme 68: Mechanism of the asymmetric Nazarov reaction developed by Rueping et al 

 

Moving away from cyclic reactions, Brønsted acid phosphoramides have also been 

employed for enantioselective protonation reactions. Yamamoto et al have developed an 

asymmetric protonation of cyclic silyl enol ethers in order to produce the corresponding 

asymmetric carbonyl compounds.201 For example, treatment of (223) with 10 mol % (S)-

(224), and 1.1 equivalents of phenol led to the asymmetric protonation of (223), affording 

(S)-(225) in 99 % yield, and 91 % e.e. (Scheme 69). 
 

 
Scheme 69: Asymmetric protonation reactions utilising 5 mol % (224); by Yamamoto et al 

 

 It was found that a stoichiometric achiral proton source was also required in order 

for the asymmetric protonation to be successful. This achiral proton source was believed 

by Yamamoto et al to serve two functions within the reaction. Firstly to act as a source of 
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proton to regenerate the asymmetric Brønsted acid species; and secondly to facilitate the 

removal of the silyl protecting group from the substrates. Within the work of Yamamoto et 

al, phenol was utilised in this role; as it has an affinity for silyl groups which is much 

higher than that of the conjugate base of the asymmetric Brønsted acid (224) (utilised as 

the chiral proton source).  

The necessity of the achiral proton source was demonstrated by treating (226) with 

a stoichiometric amount of the asymmetric Brønsted acid, (224). After 2 days, no reaction 

had been observed. By addition of a stoichiometric amount of acetic acid, the reaction was 

then seen to be complete within 2 hours, yielding (227) in 99 % yield, and 88 % e.e.. This 

result suggests the reaction is proceeding by an initial formation of a chiral ion pair (228) 

(carried out by (224)), followed by removal of the silyl group by the achiral proton source, 

generating the chiral product (227) required (Scheme 70). 
 

 
Scheme 70: Proposed mechanism of the asymmetric protonation reaction, showing generation of the 

chiral ion-pair (228); proposed by Yamamoto et al 
 

Further to the reactions outlined above, BINOL based phosphoric acids, and N-

triflylphosphoramides (and their derivatives), have been utilised in many other reaction 

types and are the subject of several dedicated reviews.202-204 

 Worthy of note at the end of this section is the further development of novel chiral 

Brønsted acids (Figure 53); some of which are stronger even than the N-

triflylphosphoramides described above. For example, the synthesis of bis(sulfuryl)imide 

based Brønsted acids (JINGLEs) by Berkessel et al. These catalysts were based upon 

initial work by List,205 and Giernoth et al,206 which led to the production of so-called 

BINBAM species; examples of the general structure of both JINGLEs (229) and 

BINBAMs (230) are shown in Figure 41. 
 

 
Figure 41: General structures of the JINGLE (229), and BINBAM (230) type novel, chiral Brønsted 

acids 
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Chapter 3: Aziridines & Aziridination 

3.1: Aziridines: Introduction 

 Aziridines in general are classified as saturated three membered heterocycles, 

containing one nitrogen atom. The simplest example of which is aziridine itself, otherwise 

known as ethylene imine, or azacyclopropane.  

Despite the apparent simplicity of the aziridine ring system, the bonding within the 

ring is unusual; this being due to the strain inherent within producing the required bond 

angles. If traditional sp3 hybridisation is considered, the bond angles required within the 

ring system (60 °) are impossible. Thus, in order to accommodate these tight bonding 

angles, the σ-bonds gain p-orbital character. This p-character leads to the observation of so 

called ‘banana bonds’, or bent bonding between the ring substituents. This mixing has the 

subsequent effect of leading to an increase in the s-orbital character of the C-R and N-R 

bonds, leading to shorter bond lengths. The increased s-character can also be implicated in 

the decreased basicity of the nitrogen lone pair in aziridines; the observed pKa of the 

aziridinium ion being 7.98, compared to common values of acyclic secondary amines 

which are generally ca. 11.207 

The reactions of aziridines tend to be focussed upon relieving the steric ring strain 

placed upon the system by the required bonding angles. The strain inherent within the 

aziridine ring system is similar to that found within cyclopropane systems c.a. 27 

kcal/mol.207 Thus aziridines can be seen to undergo various ring opening reactions with 

nucleophiles. 

 From a synthetic chemistry view, aziridines are the nitrogen equivalent of epoxides; 

and like their oxygen counterparts, are highly useful synthetic intermediates within 

synthetic organic chemistry. Also, due to the inclusion of the aziridine ring in various 

natural, and biologically active, compounds, aziridines themselves are seen as a valuable 

target of synthetic chemistry. Despite their potential uses, aziridines tend to be utilised less 

within this remit, due, in part, to the lack of efficient or easy to use methods of synthesis 

that are available. 
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3.2: Aziridines: An Overview of General Synthesis Methods 

 In general, there are three traditional methods by which aziridines can be 

synthesised. These being: transfer of nitrogen to olefins, amine cyclisation reactions, and 

transfer of carbon to imines. 

 The transfer of nitrogen to olefins is an attractive method of synthesising aziridines, 

due to the direct nature of the transformation, and also the high availability of unsaturated 

starting materials. On an initial look, this method seems analogous to the oxygen atom 

transfers which are commonly used to produce epoxides. However, systems which are 

effective in these epoxidation reactions tend to not be effective within aziridination 

systems; for example porphyrin based epoxidation systems208-210 are generally of limited 

use within aziridination reactions. 

The principal method for undertaking nitrogen additions to olefins involves 

utilising nitrenes or nitrenoids as the nitrogen source. This in itself presents issues when 

considering the stereoselective production of aziridines. The issue comes about due to the 

nature of the nitrene starting material used. Nitrenes can exist in both singlet and triplet 

states, and both states will undergo aziridine formation with a different mechanism. Thus, 

singlet nitrenes will undergo aziridination with a concerted process, allowing for 

stereoselectivity within the reaction. However, triplet nitrenes will undergo a two step 

aziridination process, thus allowing time for free rotation about the carbon bond, and the 

potential loss of any stereoselectivity (Figure 42).211 
 

 
Figure 42: The two addition mechanisms of a nitrene to an olefin 

 

In 1991, Evans et al disclosed the use of (N-(p-

toluenesulfonyl)imino)phenyliodinane (231), and copper (I) (e.g. (Cu(MeCN)4ClO4 (232)) 

or (II) (e.g. Cu(acac)2 (233)) catalysts as an aziridination system for both electron rich (e.g. 

prop-1-enylbenzene (234)), and electron deficient (e.g. ethyl cinnamate (235)), olefins 

(Scheme 71).212  
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Scheme 71: Initial publication of the use of (231) and Cu(I) (232) or Cu(II) (233) catalysts in order to 

synthesise aziridines from electron-rich (234) and electron-deficient (235) olefins; by Evans et al 
 

This was followed with publications in 1993 by both Evans et al and Jacobsen et al 

concerned with the enantioselective synthesis of aziridines utilising (231) and Cu(I) 

catalysts functionalised with chiral ligands ((S,S)-(236) by Jacobsen et al, (S,S)-(237) by 

Evans et al, Scheme 72).213,214 These systems both allow stabilisation of the singlet nitrene, 

and thus facilitate enantioselective aziridination reactions.  
 

 
Scheme 72: Enantioselective syntheses of aziridines (238) and (239) utilising (231) as a stabilised singlet 

nitrene; carried out by Evans et al, and Jacobsen et al 
 

While these reactions allow for the production of aziridines in generally good 

yields (16 – 89 % Evans et al, 50 – 79 % Jacobsen et al), and in some cases e.e.’s (19 – 97 

% Evans et al, 30 – 98 % Jacobsen et al), the use of isolated hypervalent iodine species 

such as (231) can be difficult and in some cases dangerous (some of these materials have 

been reported as explosive).215  

The use of hypervalent iodine species has been improved somewhat in recent times 

by the development of methods for generating nitrenes in situ, thus avoiding isolation. The 

work of Dauban et al is of note in this area. They have shown that N-(p-toluenesulfonyl)-p-

toluenesulfonimidamide (240) when treated with iodosylbenzene (241) will generate the 

nitrene species (242) in situ,216 which can be subsequently transferred to olefinic substrates 

(catalysed by the Cu(I) species Cu(CH3CN)4PF6 (243)). This reaction allowed for the 
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production of aziridines in yields of between 35 – 96 % and d.e. as high as 50 % (Scheme 

73).217 

 
Scheme 73: In situ generation of the nitrene species (242), and Cu(I) catalysed transfer of (242) to 

olefins to form aziridines; by Dauban et al 
 

An interesting example of aziridine synthesis by addition of nitrogen to a double 

bond is that of the work of Maycock et al. Utilising the Gabriel-Cromwell reaction 

process,218 that is, an addition-elimination route to aziridines (See synthesis of trans-(244), 

Scheme 74), the group were able to synthesise precursors in a short total synthesis of (+)-

bromoxone (245) (Scheme 74).219 
 

 
Scheme 74: Synthesis of (+)-bromoxone; an example of cyclisation of amines to form aziridines 

 

The aziridine synthesis demonstrated in Scheme 74 leads into the second and 

potentially more attractive area of aziridine synthesis; that concerned with the cyclisation 

of amines bearing a leaving group. These methods rely upon a 1,2-arrangement of the 

amine to the leaving group, allowing a 3-exo-tet cyclisation to take place (as can be seen 

within intermediate (246), Scheme 74). Typically, substrates for this type of aziridine 

synthesis include 1,2-amino halides, and 1,2-azido alcohols. 
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For example, De Kimpe et al have demonstrated that treatment of N-substituted 

imines (247) – (249) (derived from 2-bromo-2-methylpropylamine hydrobromide (250) 

and substituted benzaldehydes, Scheme 75) under basic conditions leads to the formation 

of racemic aziridines (e.g. (251) – (253), Scheme 75) via intramolecular displacement of 

bromide.220 Using this method, yields of 51 – 85 % have been obtained. 
 

 
Scheme 75: Base catalysed synthesis of aziridines (251) – (253) via intramolecular displacement of 

bromide 
 

Further to this example, various other halide displacement procedures for the 

synthesis of racemic aziridines have been reported, including the use of β-halo-amino 

esters (e.g. (254)) by Boukhris et al. 221 This methodology allowed for the synthesis of 

racemic N-hydroxy 2-cyano-aziridine-2-carboxylates (e.g. (255)) in moderate yields of 

between 58 and 65 % (Scheme 76). 

 

Scheme 76: Cyclisation of ββββ-halo-amino esters (254) to form N-hydroxy 2-cyano-aziridine-2-

carboxylates (255) by Boukhris et al 
 

 Related to the above examples, the work of Concellón et al utilising α-amino-α-

chloro ketamines is a good example of utilising an amine cyclisation method in order to 

produce enantiopure aziridines (Scheme 77). The reaction proceeds via reduction of the 

starting material ketamine (for example, (256)) with sodium cyanoborohydride, generating 

an intermediate species (such as (257)), which undergoes spontaneous intramolecular 

cyclisation to afford the desired enantioenriched aziridine (based upon (258)). Although 

this method does allow for the production of enantiopure aziridines in e.e.s of up to 95 %, 

it requires the use of enantiopure ketamine species, which is far from ideal as they have 

been shown to decompose in ca. 24 hours at -10 °C.222 
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Scheme 77: Selected examples of the cyclisation of amino-αααα-chloro ketamines to produce 

enantioenriched aziridines; by Concellón et al 
 

The final major methodology utilised in the synthesis of aziridines relies upon the 

transfer of carbon to an imine. The major reaction type within this area being those 

reactions termed as aza-Darzens reactions. The aza-Darzens mechanism is essentially a 

reversible nucleophilic attack upon the C=N bond of an imine, followed by a 3-exo-tet 

cyclisation step, which is generally favoured, and typically irreversible (Figure 43).223  
 

 
Figure 43: The aza-Darzens mechanism for aziridination 

 

Commonly utilised substrates within aza-Darzens reactions include 

carbenes/carbenoids,224 ylides,225 and α-haloenolates.226 These reactions have been widely 

exploited within the synthesis of aziridines due to the broad range of compatible substrates 

available, and also, the possibility of producing chiral non-racemic aziridines via the use of 

either a chiral imine,227 chiral nucleophile,228 or chiral catalyst.223 

The aza-Darzens reaction was first employed as early as 1969 in the synthesis of 

the phenyl substituted aziridine-2-carboxylate species (259).229 This single reaction by 

Deyrup involved the use of ethyl chloroacetate (260) as the nucleophile, producing the 

desired aziridine (259) with a cis:trans ratio of ca. 9:1, and in a yield of 36 % comprising 

both the cis- and trans- products (Scheme 78). This initial work led into the development 

of a general method by Wartski in a publication containing the aza-Darzens reaction of a 

range of imines and esters to give aziridine-2-carboxylates (Scheme 78).230 



 78 

 
Scheme 78: Initial aza-Darzens type aziridinations carried out by Deyrup, and Wartski et al 

 

As the main body of this thesis is concerned with the utilisation of alkyl 

diazoacetates as the nucleophilic substrate for the chiral non-racemic production of 

aziridines, this area will be discussed in more detail in the following paragraphs.  

 
3.3.1: Aziridination: Aziridination with Alkyl Diazoacetates - Introduction 

 Although the ring closure step within the aza-Darzens reaction is generally 

favourable (and thus a driving force for the reaction), the initial nucleophilic attack of a 

diazoacetate onto an imine to form the intermediate species will not occur through simple 

mixing. This is due to the relatively weak nucleophilicity of alkyl diazoacetates (due to 

both resonance stabilisation, and inductive effects, Figure 44). Thus, in order to allow the 

formation of aziridines via this method, some form of catalysis is required. This catalysis 

usually takes the form of an acid; be it a Lewis, or Brønsted acid species.  
 

 
Figure 44: Resonance stabilisation of alkyl diazoacetates, and demonstration of Lewis acid and 

Brønsted acid activation of N-substituted imines 
 

Both Brønsted and Lewis acid activation rely upon the lowering of the LUMO of 

the imine due to polarisation of the carbon nitrogen bond, thus increasing the 

electrophilicity of the imine carbon. This is analogous to the activation mode found within 
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the area of iminium catalysis (see Figure 31, and 2.2.3: Organocatalysis: General 

Activation Mechanisms & Selected Examples – Iminium Catalysis). 

 
3.3.2: Aziridination: Aziridination with Diazoacetates - Lewis Acid Catalysis 

 The catalytic application of Lewis acids within the scope of the aza-Darzens 

reaction was initially reported in the mid 1990s, by Brookhart and Templeton et al 

(although the use of copper(II) triflate had been explored by Jorgensen et al at a similar 

time).231 Carrying out a wide ranging study using common Lewis acids upon the formation 

of aziridines, Templeton and Brookhart were able to show that 10 mol % boron trifluoride, 

aluminium trichloride, and titanium tetrachloride catalysed the formation of racemic 

aziridines from various N-substituted imines (Scheme 79), and ethyl diazoacetate (EDA, 

(261)), in yields of between 42 and 93 %.232  
 

 
Scheme 79: Selected examples of the Lewis acid catalysed aziridination chemistry demonstrated by 

Templeton and Brookhart et al 
 

In the majority of cases, the reaction shown in Scheme 79 yielded predominantly, 

or only, the cis-aziridine; however, it is worthy of note that two by-products (262) and 

(263) (Scheme 80) were also present within the reaction. Templeton and Brookhart 

hypothesised that the formation of these enamine by-products could be accounted for by 

migration of either hydride (forming (262)), or the R group from the imine (forming 

(263)). This hypothesis was supported by the observation that when differing aryl 

substituents were utilised, electron withdrawing groups favoured the aziridine formation; 

whereas, aziridine formation was suppressed when electron donating substituents were 

used (Scheme 80), in line with the migratory aptitude of each group. 
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Scheme 80: Proposed mechanism of formation of the observed enamine by-products (262) and (263) 

within the aziridination reactions of Templeton and Brookhart et al 
 

The understanding of the mechanism of aziridination and enamine formation by 

Templeton and Brookhart has been further added to by the studies of Jørgensen et al. 

Based upon reactivity, crystal studies, and trapping experiments utilising various metal 

catalysts, Jørgensen et al proposed that various mechanisms are in effect (Scheme 81); the 

predominant difference between these being either Lewis acid action of the metal centre, 

or, the formation of a formal metal-carbene complex between the catalyst and the 

diazoacetate reagent (Scheme 81).233,234 
 

 
Scheme 81: Mechanism of Lewis acid catalysed aziridine formation by Jorgensen et al, Templeton et al, 

and Brookhart et al 
 

The main advantage and attractive feature of the initial work by Templeton and 

Brookhart was the relative simplicity and generality of the procedure. This attractive 

property led on to further developments within the area; for example, the work of Mayer et 
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al utilising boron trifluoride diethyl etherate as the catalyst for an aza-Darzens type 

synthesis of racemic aziridine-2-carboxylate esters (i.e. (264), Scheme 82), utilising 

phenyldiazomethane (265) as the carbon source. This reaction allowed for virtual 

elimination of the migration enamine by-products (due to the low migratory aptitude of the 

ethyl carboxylate functionality present in intermediate (266)), and was applicable to 

various Lewis acids, including Yb(OTf)3, Zn(OTf)2, AlCl3, TiCl4, SnCl4, and Cu(OTf)2 

based systems. Yields from aziridination utilising these Lewis acids were moderate to 

excellent, with reported isolated yields of 45 – 90% (Scheme 82).235 
 

 
Scheme 82: aza-Darzens aziridination to form N-substituted aziridine-2-carboxylate ester (264); and 

suppression of the migration product (267) 
 

 Although the methods shown so far are, in general, effective, the enantioselective 

synthesis of aziridines via Lewis acid promoted mechanisms remained limited to the use of 

chiral starting materials. Indeed, initial attempts by Jørgensen et al into the use of chiral 

ligands (i.e. (268)) appended to a Lewis acid catalyst were disappointing, affording e.e.s of 

between 16 - 32 %, when utilising alkyl diazoacetates as the carbon source (Scheme 83).236 
 

 
Scheme 83: Synthesis of chiral non-racemic aziridine (269) utilising a copper centred Lewis acid 

catalyst appended with the chiral ligand (R)-(268), carried out by Jørgensen et al 
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 Leading on from these previous and disappointing results, Wulff et al published an 

asymmetric synthesis of aziridines that employed a polycyclic optically active ring system 

(VAPOL, (270)) appended with a boron Lewis acid.237 Formed by treating (S)-VAPOL 

(S)-(270) with borane tetrahydrofuran complex, initially the structure of the catalyst (S)-

(271) was not entirely certain (Scheme 84).  
 

 
Scheme 84: Reaction conditions reported for the synthesis of catalyst species (271) 

 

However, treatment of phenyl-N-benzahydryl imine with ethyl diazoacetate (261) 

in the presence of 10 % of the catalyst species (271) led to the formation of the 

corresponding asymmetric aziridine, in a cis:trans ratio of >50:1, yield of 74 %, and e.e. of 

98 %. This result was by far the best achieved for an asymmetric Lewis acid catalysed 

aziridination published up to that point. Within the publication, it was noted that catalyst 

loadings as low as 1 % could be employed; however, optimal reaction conditions involved 

the use of 2.5 mol % of the catalyst species (271). Subsequent to this initial result, this 

methodology was applied to various N-benzahydryl imines, with good results achieved in 

general (Scheme 85).  
 

 
Scheme 85: Asymmetric aziridination reactions carried out utilising 10 mol % (271) reported 

by Wulff et al 
 

Further to this work, Wulff et al carried out a detailed study to attempt to identify 

the active catalyst species. It was found that the catalyst species (271) formed from 
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treatment of (S)-VAPOL with borane tetrahydrofuran complex was in fact a mixture of 

various borate species, formed due to decomposition of the borane tetrahydrofuran starting 

material.238 Thus, screening was carried out of various borate esters in order to find the 

most effective. This was found to be triphenyl borate, and subsequently, treatment of (S)-

VAPOL (270) with 3 equivalents of triphenyl borate led to the formation of a new catalyst 

mixture (272), which was believed to consist of the mesoborate species (273), and the 

pyroborate species (274) (Scheme 86).239 However, further investigations concluded that, 

under aziridination conditions, these disparate species ((273) and (274)) were converted 

into a single boroxinate species (275) which is, to date, believed to be the active species 

(Scheme 86).  
 

 
Scheme 86: Proposed composition of the catalyst mixture (272), and structure of the boroxinate (275) 

 

This throws up an interesting debate as to whether the catalyst is in fact acting as a 

Lewis acid, or a Brønsted acid species. If the latter conclusion is correct in that (275) is the 

active catalytic species, then the catalyst is actually proceeding via a Brønsted acid 

activation mode (Figure 45). 
 

 
Figure 45: Potential Lewis acid activation of a simple N-substituted imine by (273), or Brønsted acid 

activation by (275) 
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3.3.3: Aziridination: Aziridination with Diazoacetates - Brønsted Acid Catalysis 

 Within the area of catalysis, it can be argued that the proton is in fact the simplest 

and most readily available Lewis acid. Thus a logical extension of the previously discussed 

aziridination techniques is the use of Brønsted acid catalysts for the activation of 

aziridination substrates. The first method of aziridination to take advantage of the proton as 

a catalyst was that of Johnston et al. Initially, concern was raised within the research for 

the potential efficacy of a catalytic proton source, due to the generation of a stoichiometric 

basic product during the aziridination reaction, however, these were proven unfounded. 

 Efforts originally focussed upon the use of acetic acid; however, it was found that 

the addition of acetic acid had no discernable effect upon the reaction. Despite this, when 

trifluoroacetic acid was added to the reaction, the desired aziridine was formed in a yield of 

63 % as a single diastereomer. Carrying on from this initial result, Johnston et al found that 

utilising acids with decreased pKa led to an increase in the reaction rate; and thus 

trifluoromethane sulfonic acid (triflic acid, (276)) was found to be the most effective 

option (Scheme 87).240 
 

 
Scheme 87: Initial Brønsted acid catalysed aziridinations reported by Johnston et al 

 

Testament to the effectiveness of the method developed by Johnston et al, the 

methodology is still in use in recent times. For example, recent work by Maruoka et al 

utilised triflic acid (276) as the catalyst for the synthesis of trisubstituted aziridines based 

upon the use of N-α-diazoacyl camphorsultam (277) as the carbene source. After testing 

various catalysts including BF3.Et2O, and acetic acid, Maruoka et al found that by utilising 

20 mol % triflic acid (276), the desired aziridines could be formed in moderate to good 

yields of 50 – 74 % (74 % yield of (278)); also, the reaction showed a significant degree of 

diastereoselectivity, with trans:cis ratios as high as 20:1 (trans:cis >20:1 (278), Scheme 

88).241 
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Scheme 88: Aziridination reaction utilising N-αααα-diazoacyl camphorsultam by Maruoka et al 
 

Related to these examples is the methodology developed by Bew et al utilising 

pyridinium triflate (279).224 The use of such a salt was shown to have several advantages 

over the use of triflic acid (276). The most prominent of these being ease of handling, and 

the lack of strict anhydrous reaction conditions required. It was shown that by utilising 10 

mol % (279), structurally diverse N-substituted aziridine-2-carboxylates were able to be 

formed in good to excellent yields (71 – 90 %), from the corresponding imine and either 

tert-butyl (280), or ethyl (261), diazoacetates. The reaction was also found to produce, in 

most cases, exclusively cis-aziridines, with no trace of the trans- products seen.  

Alongside this method, Bew et al also developed the use of the fluoronium cation 

as a catalyst for aziridination reactions. Utilising N-fluoropyridinium triflate (281) as the 

catalyst source, again along with suitable imines and alkyl diazoacetates (tert-butyl (280) 

or ethyl (261)), the desired N-substituted aziridine-2-carboxylate esters were formed in 

moderate yields of ca. 65 %. Also included was the synthesis of rac-chloramphenicol 

(282), with the key aziridination step affording a yield of 60 % (Scheme 89).242 
 

 
Scheme 89: Selected aziridination reactions utilising pyridinium triflate (279) and N-fluoropyridinium 

triflate (281) as catalysts, by Bew et al 
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Moving away from the production of racemic aziridines, Maruoka et al 

demonstrated the use of (R)-BINOL derived dicarboxylic acids (e.g. (283), Scheme 90) as 

catalysts for a highly diastereo- and enantio- selective aziridination procedure, utilising N-

aryldiazoacetamides (e.g. (284)) and N-Boc imines, within which e.e.s of up to 97 % were 

reported (Scheme 90).243  
 

 

Scheme 90: Asymmetric synthesis of (285), utilising an (S)-BINOL dicarboxylic acid catalyst (283); 

developed by Maruoka et al 
 

The strategy utilised by Maruoka et al was based upon the work of Terada et al 

(and further work by Maruoka et al),194,244 who had shown that chiral Brønsted acids could 

enable a Friedel-Crafts type reaction between N-acyl imines and alkyl diazoacetates (See 

2.3: Organocatalysis: Brønsted acid catalysis, Scheme 63). However, within the Maruoka 

procedure shown in Scheme 90, modification of the diazo substrate to reduce the acidity of 

the α-proton (pKa N-phenyldiazoacetamide = ca. 26.0,267 pKa ethyl diazoacetate = 20.7)245 

biased the reaction mechanism towards the production of aziridines (Scheme 91). More 

intriguing is the observed trans- selectivity of these reactions. The proposed cause of this 

unusual selectivity was the potential steric interaction between substituents within the 

transition state. This is believed to lead to preferential formation of a rotomer containing an 

antiperiplanar arrangement of the carboxamide and aryl groups, thus leading to the 

observed trans- selectivity within the product. 

 
Scheme 91: Mechanisms leading to both the proton abstraction, and cyclisation products observed 

within the methodology detailed in Scheme 90 
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 Moving on from this methodology, Akiyama et al developed the use of chiral (R)-

BINOL phosphoric acids as catalysts for asymmetric aziridination reactions. It was found 

that substitution of the BINOL scaffold of the catalyst at the 3,3’- positions with bulky silyl 

groups produced the best suited catalyst (R)-(287) for these reactions.246 Utilising imines 

derived from phenyl glyoxal as the substrates, and ethyl diazoacetate as the carbon source, 

2.5 mol % (R)-(287) allowed the synthesis of asymmetric aziridines (of the type shown in 

Scheme 92) in yields ranging from 84% to quantitative, with e.e.s  ranging from 92 – 97 % 

(Scheme 92).246 

 
Scheme 92: Asymmetric aziridination method developed by Akiyama et al 

 

 Further to this work, Maruoka et al have recently developed a methodology which 

yields hitherto difficult to synthesise trisubstituted aziridines, utilising an (S)-BINOL 

derived N-triflylphosphoramide catalyst (288). Based upon the use of oxazolidinone 

functionalised diazoacetates, the procedure allowed for the production of trisubstituted 

aziridines in cis:trans ratios of up to 20:1, yields of up to 91 %, and e.e.s between 74 and 

95 % (Scheme 93).247  

 
Scheme 93: Selected work by Maruoka et al showing asymmetric aziridination, and kinetic resolution 

procedures 
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Interestingly, when reaction times were extended, enantioselectivity was observed 

to increase, with a corresponding decrease in yields. Analysis of the reaction via mass 

spectrometry led to the realisation that a hydrolytic ring opening was taking place. This 

effect was exploited to a certain extent by the subsequent development of a kinetic 

resolution in situ, utilising adventitious water within the reaction (Scheme 93). 

 The above examples (along with the potential inclusion of the Wulff et al catalytic 

system) are the only published Brønsted acid catalytic enantioselective methods of 

producing aziridines. However, within the research group of Bew et al, work has been 

ongoing towards the development of an enantioselective Brønsted acid catalysed 

procedure. 

 Utilising the N-triflyl phosphoramide catalyst (289), functionalised at the 9,9’-

positions with 9-anthracenyl groups, the protocol involves the treatment of various readily 

available N-aryl imines with either ethyl (261), or tert-butyl (280), diazoacetates with as 

low as 0.1 mol % (289) in order to form the desired N-substituted aziridine-2-carboxylate 

esters in high yields (78 – 98 %) and e.e.s (71 – 98 %) (Scheme 94). It is worthy of note 

that the aziridine products were produced in exclusively the cis- form, and also, various 

functionality was tolerated with little loss of e.e. or yield (For example; aromatic, electron 

withdrawing, electron donating, halogenated, heteroaromatic, and bicyclic, substrates are 

tolerated). With regard to the catalyst, as it is a stable single species, which does not 

require activation; purification and characterisation are viable (unlike the catalyst species 

utilised by Wulff et al).  

 
Scheme 94: Selected asymmetric aziridination reactions by Bew et al 
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Further development of this methodology is the subject of this thesis, and will be 

discussed in much greater detail in the following chapters. 

  
3.4.1: Aziridines: Utilisation in Synthesis 

 The chemistry of aziridines and their utilisation within organic synthesis protocols 

is dominated by their ring opening reactions. These reactions are predominantly favoured 

due to the reduction in the steric ring strain inherent within the aziridine (ca. 27 kJ mol-

1).207 In general terms, nucleophilic ring opening of aziridines can take place with a variety 

of nucleophiles including those based upon carbon, oxygen, sulfur, nitrogen, hydrogen, or 

halogens. Several reviews have been focussed upon these reactions, significant examples 

of these being those by Hu,248 and Davis et al.249 The following paragraphs will show a 

small selection of the possible ring opening reactions, along with selected examples 

demonstrating the applied uses of these methods; also a brief discussion of the factors 

which influence the reactivity of aziridines towards these nucleophiles is included. 

 
3.4.2: Aziridines: Utilisation in Synthesis – Reactivity and Activation 

 The reactivity of aziridines towards various nucleophiles is influenced by the 

classic determinants of reactivity. The electronegativity of the nitrogen component 

polarises the bonding within the cycle, thus activating the carbon substituents towards 

nucleophilic attack. Determination of which carbon (in an asymmetric aziridine) will 

undergo reaction can be carried out with consideration of the steric hindrance and 

electronic effects brought about by the inherent substitution of the reaction centre; thus 

attack will take place at the least hindered, most highly charged, centre. It is worthy of note 

that, in general, high regioselectivity can be achieved within nucleophilic ring openings. 

 Also requiring consideration is the effect of the N-substituent upon the reactivity of 

the aziridine. Considering the electronics of the system, a quandary arises. In general, in 

order to achieve aziridine formation (considering the generally applied aza-Darzens 

mechanism) a nucleophilic nitrogen is required; thus, an electron donating substituent will 

increase the rate of aziridine formation. However, considering nucleophilic ring opening, 

an electron donating substituent is disadvantageous, due to a reduction in the polarisation 

of the aziridine ring, and thus a lack of electrophilic character on the aziridine ring carbons 

C2 and C3 (Figure 46). 
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Figure 46: Demonstration of the effect of N-substitution with electron withdrawing, or electron 

donating groups upon aziridine formation (via an aza-Darzens mechanism), and nucleophilic ring 

opening reactions 
 

 Further consideration is also required regarding the transition state of the ring 

opening reaction. In general, electron withdrawing N-substituents are favourable, as they 

are capable of stabilising the resulting negative charge from ring opening under basic 

conditions, and also destabilising the positive charge relating from protonation of the ring 

nitrogen during ring opening under acidic conditions. Aziridines which are capable of 

these two functions tend to be of much greater reactivity towards nucleophilic attack, and 

thus have been termed as ‘activated’ aziridines.250 For those aziridines containing 

substituents or electronic properties which are not amenable to ring opening (NH being the 

simplest of these unactivated species), it is sometimes possible to induce reactivity via 

coordination, protonation, or indeed other methods of generating a partial, or formal, 

positive charge upon the ring nitrogen, such as quaternisation (Figure 47). 
 

 
Figure 47: Unactivated and activated ring opening reactions; also potential activators of unactivated 

aziridines 



 91 

3.4.3: Aziridines: Utilisation in Synthesis – Ring Opening Reactions 

 As mentioned within the introduction to this section, various nucleophiles have 

been applied to the ring opening reactions of aziridines. 

 Carbon nucleophiles which have found use within these reactions include alkyl and 

aryl carbanions, enamines, olefins and enolates, and cyano species. One such example is 

provided by Nenajdenko et al, who have shown that treatment of N-tosyl aziridines (such 

as (290)) with Grignard reagents leads to, in the majority of cases, regiospecific ring 

opening to only give β-aryl amines, in 63 – 89 % yields (Scheme 95).251  
 

 
Scheme 95: Regioselective ring opening of N-tosyl aziridines via treatment with aryl magnesium 

bromides in order to form ββββ-aryl amines; demonstrated by Nenadjenko et al 
 

Further to this example, Pineshi et al have demonstrated that with the introduction 

of a chiral (S)-BINOL derived ligand (292) into copper catalysed ring opening reactions 

utilising alkylzinc species, addition products showing enantiomeric excesses of up to 83 % 

can be achieved (Scheme 96).252 
 

 
Scheme 96: Enantioselective ring openings by Pineshi et al 

 

 A final example of carbon nucleophile use is that of cyanide. Although due to 

relatively weak nucleophilicity, cyanide requires activation of most aziridine species, its 

use as a nucleophile is widely popular due to the potential α- or β- amino acid products, 



 92 

depending upon the regioselectivity of the ring opening reaction. For example, the work of 

Farrás et al and Romea et al demonstrates that via an aziridine intermediate, it is possible 

to interconvert α-amino acid species into their equivalent β-form. Utilising N-nosyl 

aziridines (such as (293), synthesised by treatment of the desired α-amino alcohol (e.g. 

(294)) with nosyl chloride, followed by base catalysed ring closure), the group were able to 

demonstrate a regioselective nucleophilic ring opening with sodium cyanide as the 

nucleophile, resulting in formation of the desired β-cyano species (e.g. (295)), which could 

then be hydrolysed via treatment with concentrated hydrochloric and acetic acids to form 

the desired β-amino acid species (e.g. (296)) (Scheme 97).253 
 

 

Scheme 97: Conversion of αααα-amino acids to ββββ-amino acids by Farrás et al 
 

Moving away from carbon based nucleophiles, oxygen centred nucleophiles such 

as alcohols, hydroxyl compounds, and carboxylates have also been used to ring open 

aziridines. One of the most extensive publications in recent times related to these substrates 

has been the use of cerium ammonium nitrate (CAN, (297)) in order to catalyse the 

regioselective addition of alcohols, or water, to aziridines. First published by 

Chandrasekhar et al this mild procedure involved the treatment of various N-tosyl 

aziridines with 10 mol % CAN (297), and either water, or methanol in order to afford the 

ring opened products in yields of up to 95 %. As would be expected, ring opening was 

regioselective for the less hindered CH2 of the aziridine ring, as opposed to the substituted 

carbon; however, this broke down to some extent when sterically undemanding 

substitution was present (Scheme 98).254 
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Scheme 98: Ring opening of aziridines utilising 10 mol % CAN (297) as the catalyst, and H2O or 

methanol as the nucleophile; demonstrated by Chandrasekhar et al 
 

One further interesting example of the use of oxygen based nucleophiles is that of 

the work of Iqbal et al.255 This work involved the ring opening of an aziridine intermediate 

(298) as the key step within the synthesis of analogues related to tripeptide based HIV 

protease inhibitors such as those shown in Scheme 99.  
 

 
Scheme 99: Ring opening of aziridine intermediate (298), and observed selectivity; carried out by Iqbal 

et al 
 

The key points from the procedure shown in Scheme 99 are the use of para-

toluenesulfonic acid (299) as the catalyst for the addition of water or alcohols to the 

aziridine in order to facilitate the ring opening reaction, and also the stereoselectivity, as 

the reaction took place with the expected inversion of stereochemistry at the position of 

attack (Scheme 99). 

The addition of sulfur based nucleophiles to aziridines follows a similar course to 

that of oxygen, however, some subtle differences are to be noted. For example, the work of 

Leeuwen et al concerned with the addition of thiophenols to C2-C3 substituted N-H 

aziridines shows interesting differences in reactivity to those expected. It was shown that 

the addition of various thiophenols to these unactivated aziridines took place under 
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relatively mild conditions with no catalyst employed (Scheme 100). With consideration 

this reactivity is to be expected, due to the possibility of protonation of the aziridine 

nitrogen (pKa generic aziridines ca. 7.98,207 pKa thiophenol 6.62),256 thus activating the 

ring carbons, and allowing attack of the generated sulfur nucleophile.257 
 

 
Scheme 100: Addition of sulfur nucleophiles to unactivated NH aziridines by Leeuwen et al 

 

 Azido compounds have many applications within organic synthesis, so a logical 

extension to the ring opening chemistry of aziridines is that of the addition of azides. One 

such example of this addition was developed by Hou et al, utilising trimethylsilyl azide, N-

tosyl aziridines, and TBAF as an activator. This method generated the desired ring opened 

azido compounds (Scheme 101) in yields of between 83 – 99 %. The reaction was also 

shown to proceed regioselectively, with nucleophilic attack occurring predominantly at the 

least hindered ring carbon, as expected.258 

 The role of TBAF within the reaction is believed to be that of an exchange catalyst, 

allowing for stabilisation of the negative charge upon nitrogen within the transition state of 

the reaction, resulting from ring opening. 

 
Scheme 101: Ring opening of N-tosyl aziridines with trimethylsilyl azide; developed by Hou et al 

 

Various other methods are available within the literature for the addition of azides 

to aziridines, including the utilisation of sodium azide and CAN (297) shown by 

Chandrasekhar et al, utilising similar reaction conditions to those shown in Scheme 98.254 
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 The addition of halides to aziridines can afford various useful substrates for further 

synthesis, as well as interesting products in their own right. One such example of this is the 

work of Lee et al. As part of a project to produce oxazolidinones (such as (300)) via ring 

opening of aziridines,259 Lee et al demonstrated the production of chloro functionalised 

oxazolidinones in yields ranging from 83 to 90 %, from N-substituted aziridines bearing 

alcohols (such as (301)) (Scheme 102).260 Treatment of the starting material aziridine (301) 

with sodium hydride and phosgene led to an intermediate bicyclic aziridine species (302), 

which activated the unhindered C3 carbon to nucleophilic attack from chloride, in order to 

produce the desired oxazolidinone species (300) in a regiospecific manner. 

 
Scheme 102: Synthesis of substituted oxazolidin-2-ones via ring opening of N-substituted aziridines 

 

 While not essentially a nucleophile, the reductive hydrogenation of aziridines is of 

significant interest due to the possibility of producing unnatural α-, or β- ‘amino acid-like’ 

products, via relatively simple procedures. The hydrogenolysis of the C-N bond within 

aziridines has been shown to be regioselective in many cases, with varying catalysts 

producing cleavage at specific centres within the molecule of interest.  

 One such example of the application of regioselective hydrogenolysis of aziridines 

is the work of Satoh et al.261 Utilising a previously developed procedure by Kim et al,262,263 

the treatment of various N-aryl trisubstituted aziridines (of the type shown in Scheme 103) 

with palladium hydroxide on carbon (303) under hydrogen gave the desired amine 

products (ring opened from the least hindered carbon) with retention of stereochemistry, in 

excellent yields of between 93 and 99 % (Scheme 103).  
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Scheme 103: Regioselective hydrogenolysis of N-aryl trisubstituted aziridines, promoted by 

Pd(OH)2/C; demonstrated by Satoh et al 
 

 However, in order to achieve these results, stoichiometric amounts of (303) were 

required, with 100 – 300 % by weight (303) employed. Reduction of loading was said to 

led to significant reductions in yield (no values available), which was not corrected by 

increased reaction time. Presumably this is due to inhibition of the catalyst by the amine 

species produced within the reaction cycle.264 

 Further to this work is the synthesis of β-amino esters containing quaternary centres 

from aziridine-2-carboxylate esters (i.e. (304), as shown in Scheme 104), carried out by 

Davis et al.265 It was found that Raney nickel was the most efficient catalyst for the ring 

opening, and gave regioselective ring opening to the desired β-amino esters (such as (305)) 

in up to quantitative yield (Scheme 104).  
 

 

Scheme 104: Hydrogenolysis of N-tosyl aziridine-2-carboxylate ester (304) to form ββββ-amino ester (305) 

with retention of stereochemistry; demonstrated by Davis et al 
 

 The examples shown above are a small selection of those which have been 

developed within the area of aziridine ring opening. Further examples will be examined in 

the due course of the research contained within this thesis, and are also available within the 

literature, as discussed previously.248,249 
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Section 2: Results and Discussion 

Chapter 4: Pyridinium Triflate Catalysed Aziridinat ion Reactions, the One-pot 

Method, and Asymmetric Aziridinations 

4.1.1: Pyridinium Triflate Catalysed Aziridination Methods - Introduction 

Traditionally, the synthesis of aziridines has relied upon the utilisation of methods 

which require sensitive, and often toxic, metal based catalytic systems; be it with the 

inclusion of metal based Lewis acids (such as BF3, AlCl3, TiCl4; the work of Templeton et 

al),232 or homogeneous metal catalysts (e.g. Cu(OTf)2 systems; the work of Jørgensen et 

al).213,231 However, the recent push towards ‘green chemistry’ and organocatalysis has led 

to the development of various new methods, including the work of Johnston et al into the 

use of triflic acid.240,241 Despite the slightly greener profile of using non-metal based 

systems such as triflic acid, the potential experimental issues become focussed upon ease 

of use and applicability (i.e. the methods developed by Johnston et al still require the use 

of dry solvents and anhydrous conditions in order to produce the desired aziridine 

products). Thus the development of easy to use, ‘green chemistry’ methods for the 

production of aziridines is a potential area of development. 

Recent work within our research group has been concerned with developing new 

aziridination methodologies along the lines mentioned previously. We have developed the 

use of pyridinium triflate (279)224 and N-fluoropyridinium triflate (281),242 as stable, easy 

to use, organocatalysts for the production of racemic (predominantly) cis-aziridines in an 

efficient procedure from easily synthesised imine based starting materials, and alkyl 

diazoacetates (see Scheme 89). This reaction fits with the ethos of ‘green chemistry’ as it 

features high atom economy, and the only by-product is nitrogen gas. 

As part of our continuing development of this methodology, various advances have 

been made towards improving the accessibility and ease of use of these procedures, and 

these are reported herein. 

 

4.1.2: Pyridinium Triflate Catalysed Aziridination Methods – Development of the One-pot 

Procedure 

 Within the organic chemistry environment, hundreds of reactions and procedures 

are published every year. However, not all of these find use within the laboratory 

environment. This can be for a variety of reasons; predominant among these are cost, 

availability of materials, and ease of use.  

Previously, the cost effective (and readily available) salt pyridinium triflate has 

proven an effective catalyst for the synthesis of racemic structurally diverse aziridines. 
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Thus, treatment of preformed N-substituted imines with 10 mol % pyridinium triflate (279) 

and 1.1 equivalents of ethyl diazoacetate (261) or tert-butyl diazoacetate (280), has been 

shown to afford the desired racemic N-substituted cis-aziridine-2-carboxylate esters in high 

yields.224 These reactions are believed to proceed via an aza-Darzens type mechanism (See 

3.3: Aziridination with Alkyl Diazoacetates).229,230,232  

However, the potential for simplification of this method with the development of a 

one-pot procedure was a tempting target. Thus, it was hypothesised that a one-pot 

procedure could be developed using the requisite N-substituted imine starting materials 

(aldehyde and amine) under reaction conditions which would allow formation of the 

desired imine in situ; which could then undergo formation of the desired cis-N-substituted 

aziridine carboxylate ester (Scheme 105). 

 

 
Scheme 105: Proposed one-pot synthesis of cis-N-substituted aziridine carboxylate esters, showing the 

intermediate imine formation 

 

 Initial attempts towards the one-pot aziridination were focussed upon the use of 

benzaldehyde (306) and 2-tert-butoxy aniline (307). Treatment of these with pyridinium 

triflate (279), and tert-butyl diazoacetate (tBDA, (280)), over flame dried 4 Å molecular 

sieves, in anhydrous chloroform, led to the formation of the desired cis-aziridine rac-(308) 

in a yield of 67%. The identity of the product was confirmed by the presence of two 

doublets within the 1H-NMR spectrum at 3.1 and 3.6 ppm, corresponding to the C2 and C3 

protons (Scheme 106). Initially, the reaction times appeared longer than those of the 

previously developed method starting from imines (ca. 12 hours as opposed to 6 hours 

reported previously).224 

 
Scheme 106: Synthesis of rac-(308) via a one-pot aziridination reaction 

 

On repeat of the reaction, it was observed that stirring was inhibited by the 

molecular sieves; leading to the use of pre-powdered flame dried molecular sieves as the 
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desiccant. This allowed for much more efficient stirring of the reaction, and subsequently, 

a reduced reaction time (ca. 8 hours). It is also the author’s observation that vigorous 

stirring of unpowdered molecular sieves can lead to breakdown of their integrity, 

potentially releasing captured water; which although potentially recaptured, could allow 

for decomposition of the intermediate imine within the reaction.  

The generality of this one-pot method was confirmed upon the successful synthesis 

of several aziridine-2-carboxylate esters containing differing functionality upon the C3 

phenyl substituent. First among these was the synthesis of an aziridine-2-carboxylate 

bearing 2-pyridyl functionality at the C3 position, rac-(309) (Figure 48). Indeed, 

application of the previously described conditions for the one-pot aziridination was 

successful, affording the desired cis-aziridine rac-(309) in a yield of 85%; with formation 

confirmed by both 1H-NMR spectroscopy (two new doublets were seen at 3.1 and 3.6 ppm, 

corresponding to the C2, and C3 hydrogens (Figure 48)) and MS, with the required mass 

ion being detected at m/z 369.1. 

Further to this, confirmation was required of the cis- nature of the product aziridine. 

Thus examination of the 1H-NMR spectrum of rac-(309) revealed coupling constants of 

6.8 Hz for both ring hydrogens at the C2 and C3 positions (As shown in Figure 48). This is 

within the expected range for cis-aziridines, which are commonly found to show vicinal 

coupling constants (J2,3) of 5 – 9 Hz; whereas the values for the corresponding trans-

aziridines are expected to be much lower (commonly between 2 and 6 Hz).266 

 
Figure 48: 1H-NMR spectrum of rac-(309) showing the desired coupling constants for C2-H and C3-H 
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Considering the aforementioned increased reaction time of the one-pot aziridination 

system when compared to the previously developed method,224 it was decided to assess the 

rate of imine formation presuming the reaction proceeded via an aza-Darzens mechanism 

(Scheme 107). Thus, the addition of pyridine-2-carboxaldehyde to a prepared solution of 2-

tert-butoxy aniline (307) and pyridinium triflate (279), over 4 Å molecular sieves, was 

carried out immediately before the addition of tBDA (280). However, the rate of imine 

formation was such that vigorous gas evolution (potentially N2) was observed immediately 

upon the addition of the alkyl diazoacetate (280). Presumably, the evolution of N2 is a 

result of the ring closure of the intermediate addition product, leading to the formation of 

rac-(309). It can therefore be concluded that imine formation is very rapid in this case 

(Scheme 107). 

 
Scheme 107: Observed rapid rate of imine formation, demonstrated by the rapid evolution of N2 

during the formation of rac-(309) via an aza-Darzens mechanism 

 

This observed rapid rate of imine and aziridine formation noted within the reaction 

above (Scheme 107) potentially could be due to the electronic withdrawing capabilities of 

the 2-pyridyl functionality; thus leading to increased electrophilic character at the carbonyl 

carbon of both pyridine-2-carboxaldehyde, and the intermediate imine. Also, potentially 

the pyridyl ring nitrogen could protonate under the reaction conditions (pKa pyridyl 

nitrogen ca. 28; pKa pyridinium 3.4);267 thus leading to the double cationic species shown 

in Scheme 108. This would lead to much greater nucleophilicity of the intermediate imine; 

affording the higher rate of reaction observed. 

 

 
Scheme 108: Potential formation of a double cationic species leading to a rate acceleration in imine 

formation 

 

Further to the synthesis of rac-(309), the one-pot aziridination procedure proved 

successful in synthesising several aziridine-2-carboxylate esters containing differing 

functionality upon the C3 position; including aromatic, halogenated, and bicyclic systems. 
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The results of these aziridinations are summarised in Figure 49 below. In general, these 

reactions were successful; with the desired aziridines obtained in all cases in good to very 

good yields of 64% to 85%. However, in the majority of cases, yields were roughly 5 to 

10% lower than the corresponding aziridinations using isolated preformed imines; this is 

believed to be due to the fixed reaction time of 6 hours employed within this screen. It was 

also observed that no trans-aziridine product was produced within any of the examples 

shown in Figure 49 either within the crude material, or after purification by column 

chromatography. 

 
Figure 49: Aziridines rac-(308) to rac-(317) produced by one-pot aziridination 

 

 Characterisation of the above aziridines, and confirmation of the cis-

stereochemistry, was predominantly carried out via 1H-NMR spectroscopic analysis of the 

C2-H and C3-H doublets present within each product. The vicinal coupling constants of 

these being between the required range of 5 – 9 Hz for a cis-aziridine. MS and HRMS also 

confirmed the desired aziridine products, with peaks detected at the required m/z for all of 

the above aziridines (e.g. rac-(312), C2-H 3.11 ppm, J2,3 6.8 Hz; C3-H 3.49 ppm, J3,2 6.8 

Hz; m/z, found 393.2174 [M+H]+, theoretical 393.2173 [M+H]+). 

Several interesting results arose within the range of aziridines shown in Figure 49; 

including the synthesis of rac-(310), which is potential precursor to the antibiotic natural 

product chloramphenicol (282);268 and also, the synthesis of rac-(313), which via a similar 

route could become a viable precursor to another antibiotic compound, thiamphenicol 

(322).269 The synthesis of rac-(+)-chloramphenicol (282) has previously been 
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demonstrated utilising similar starting materials within the thesis work of Pesce,268 and 

within a publication by Bew et al (Scheme 109, and see 3.3.3: Aziridination: Aziridination 

with Diazoacetates - Brønsted Acid Catalysis: Scheme 89).242 However, the use of rac-

(310) within a synthesis of (282) has not been attempted, and will be the subject of future 

investigations. 

 

Scheme 109: Synthesis of rac-(+)-chloramphenicol (282) by Bew et al, utilising an aziridine 

substrate similar to rac-(310) 

 

One other interesting result came out of the aziridinations shown in Figure 49, this 

being within the synthesis of rac-(315). During this synthesis, it was noted that a by-

product was present; this was subsequently found to be the bis-aziridine rac-(318) (Scheme 

110). Tailoring of the stoichiometry of the one-pot reaction (2.2 equivalents tBDA (280), 

and 2.2 equivalents 2-tert-butoxy aniline (307)) allowed for predominant formation of rac-

(318), leading to the observed yield of 65% shown in Scheme 110. 

 

 
Scheme 110: Synthesis of mono- and bis- aziridines rac-(315), (318), and (319), from 

terephthalaldehyde (321) 
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Having synthesised the symmetric bis-aziridine rac-(318), an intriguing target was 

the synthesis of a differentiated bis-aziridine, bearing differing ester functionality. Thus, 

rac-(319) was synthesised via a three step, one-pot procedure involving the addition of 

1.05 equivalents isopropyl diazoacetate (iPrDA (320)) to a solution of terephthalaldehyde 

(321), 2-tert-butoxy aniline (307), and 10 mol % pyridinium triflate (279), over powdered 

4 Å molecular sieves, in dichloromethane. When the reaction was deemed complete 

(monitoring was carried out by 1H-NMR spectroscopy, observing formation of the 

aziridine doublets at 3.03 and 3.46 ppm), ca. 16 hours, a further equivalent of 2-tert-butoxy 

aniline (307), and 1.1 equivalents of tBDA (280) were added, and the reaction was left to 

proceed to completion. Again monitoring of the reaction by 1H-NMR spectroscopy showed 

consumption of the imine, and formation of C2-H and C3-H doublets at 3.03 and 3.46 ppm 

respectively. After purification, rac-(319) was obtained in a 50% yield.  

 Although the main body of this thesis is dedicated to the production of asymmetric, 

isotopically enriched aziridines and related products, the author feels that the background 

development of previously demonstrated aziridination reactions is worthy of note. This is 

due to the continued application of these methods for the synthesis of racemic aziridine 

standards (for use within HPLC, or NMR) throughout the project. Thus, reactions referred 

to as following standard one-pot aziridination conditions can be assumed to follow the 

general procedure outlined in Scheme 111, and detailed within the general procedures in 

the experimental section. 

 
Scheme 111: General scheme of the racemic one-pot aziridination reaction 

 

4.2.1: One-pot Asymmetric Aziridinations – Introduction 

 Having developed a methodology for the one-pot synthesis of racemic aziridines 

utilising pyridinium triflate as the catalyst, the next consideration was to extend the one-pot 

methodology to the production of non-racemic aziridines. 

 As has been previously demonstrated within the research group of Bew et al, (and 

in particular, within the work of Pesce),268 application of the N-triflyl phosphoramide 

catalyst (289) based upon BINOL (as a strongly protic (pKa ca. -1)197 catalyst for 
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aziridinations), has led to a robust methodology for the production of a wide range of cis-

N-substituted aziridine carboxylate esters in high yields (88 to 98%) and enantiopurities 

(79 to 98% e.e.’s) (see 3.3 Aziridination with diazoacetates, and Scheme 112). This 

method utilised predominantly N-phenyl imines as the starting materials. Thus the 

possibility of utilising a one-pot procedure from the composite aldehydes and amines 

would lead to an increase in the already wide applications of this robust procedure. 

 

 
Scheme 112: Asymmetric synthesis of cis-N-substituted aziridine carboxylate esters utilising the N-

triflyl phosphoramide catalyst (289) by Pesce268 

 

 The development of a one-pot asymmetric aziridination method from aldehydes 

and amines was also seen as an important target in the development of the methodology, as 

at the time of the work, no example of such a reaction was available within the literature. 

Since the time of the work's completion, a recent publication by Wulff et al has elucidated 

a one-pot synthesis of aziridine-2-carboxylates utilising an (S)-VAPOL boroxinate catalyst 

(275) (see 3.3.2: Aziridination: Aziridination with Diazoacetates - Lewis Acid Catalysis, 

Scheme 86; and Scheme 113). However, the method developed within the following pages 

differs slightly from that of Wulff et al in the fact that a pure protic catalyst is used (as 

opposed to a boroxinate species).237-239,270 

 

Scheme 113: One-pot asymmetric aziridination reactions utilising the VAPOL catalyst (275) developed 

by Wulff et al270 
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4.2.2: One-pot Asymmetric Aziridinations – Synthesis of aziridines cis-(309) to cis-(317) 

 Initial efforts towards developing a one-pot asymmetric aziridination reaction were 

focussed upon the one-pot synthesis of cis-(309). Moving forward from the methodology 

developed previously (utilising pyridinium triflate as the catalyst), and combining this with 

the asymmetric aza-Darzens aziridination methodology developed by Pesce (Scheme 

112);268 a one-pot reaction was attempted between pyridine-2-carboxaldehyde (323), 2-

tert-butoxy aniline (307), and tert-butyl diazoacetate (tBDA (280)); utilising the strongly 

protic catalyst (289) at -60 °C over powdered 4 Å molecular sieves (Scheme 114).  

 

 
Scheme 114: Proposed one-pot synthesis of aziridine carboxylate ester cis-(309) from pyridine-2-

carboxaldehyde (323), 2-tert-butoxy aniline (307), and tert-butyl diazoacetate (280) 

 

Initially, catalyst loading was maintained at 1 mol % (S)-(289); which had 

previously been shown to be effective in the aziridination of 2-tert-butoxy-N-(pyridin-2-

ylmethylene)aniline with tert-butyl diazoacetate (forming the desired aziridine carboxylate 

ester cis-(309) (Shown in Scheme 114) in 98% yield, and 95% e.e.).268 

The synthesis of cis-(309) proceeded to completion in a time of 24 hours, as shown 

by monitoring of the appearance of aziridine C2-H and C3-H doublets at 3.12 and 3.64 

ppm within the 1H-NMR spectrum. The crude product was isolated by filtration straight 

from the reaction through a plug of silica gel; eluting with diethyl ether. This allowed for 

removal of the catalyst from the impure material. The resulting solution was evaporated to 

dryness, and submitted to flash column chromatography on silica. Subsequent 1H-NMR 

spectroscopic analysis confirmed the cis-stereochemistry of cis-(309) via the vicinal 

coupling constants of the C2-H, and C3-H doublets present at 3.12 and 3.64 ppm 

respectively; these both being J2,3: 6.8 Hz, which is consistent with the expected 5 – 9 Hz 

value for a cis- aziridine.266  13C-NMR spectroscopy (appearance of the C2 and C3 carbon 

signals at 48.4 & 46.8 ppm), MS (m/z 369.1 [M+H]+), and HRMS ([M+H]+ theoretical m/z 

369.2173, found m/z 369.2176) analysis also confirmed that the desired aziridine had been 

produced with an excellent yield of 96% (Scheme 115). The enantioselectivity of the 

reaction was quantified by submitting a sample of cis-(309) to chiral HPLC analysis, 

running against rac-(309) (produced via the one-pot pyridinium triflate catalysed 

aziridination reaction developed); the e.e. of cis-(309) was shown to be 96%. 
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Scheme 115: One-pot asymmetric synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-3-(pyridin-2-

yl)aziridine-2-carboxylate; cis-(309) 

 

The asymmetric one-pot procedure was extended to further examples based upon 

the aziridines produced from the racemic one-pot aziridination protocol (rac-(310) – rac-

(317); see 4.1.2: Development of the one-pot procedure). Syntheses of cis-(310) – cis-

(317) were carried out under the same conditions utilised in the synthesis of cis-(309). This 

was successful for cis-(314) and cis-(317), however in the majority the reaction was 

deemed too slow at 1 mol % catalyst loading, as reaction times were prohibitive (~5 days). 

Therefore, in these cases, catalyst loading was increased to 5 mol % (S)-(289). At this 

loading, the reactions were seen to proceed smoothly within 36 – 48 hours, with good to 

very good yields (61% - 93%), and high e.e.s (74% – 99%) (Figure 50). 

 

 
Figure 50: Aziridines cis-(310) to cis-(317) produced via an asymmetric three component one-pot 

aziridination protocol, catalysed by 5 mol % (S)-(289) 

 

As had been the case with rac-(310) – rac-(317), aziridines cis-(310) – cis-(317) 

were characterised by 1H-NMR spectroscopy via the C2-H and C3-H doublets (which also 

confirmed the cis- stereochemistry of the products, with coupling constants within the 5 – 

9 Hz range expected for cis- aziridines). The enantiopurity of aziridines cis-(310) – cis-

(317) was measured by chiral HPLC, running against the corresponding racemic aziridine.  



 107 

However, although chiral HPLC allowed the enantiopurity of the product aziridines 

to be confirmed, at this stage no confirmation of the absolute stereochemistry of these 

aziridines was possible. Unfortunately, no examples similar enough to these existed within 

the literature in order to compare αD, and no crystal structure was available. Thus the 

stereochemistry shown in Figure 50 (and throughout the thesis) should be considered as 

relative stereochemistry. Attempts have been made to elucidate the absolute 

stereochemistry of the aziridines produced through computational and spectroscopic 

methods, and these are discussed in Chapter 8: Spectroscopic and Computational 

Investigations. 

Further to this, it proved difficult to gain good separation of the enantiomers of cis-

(314) by chiral HPLC, or GC techniques. Therefore, it was decided to remove one tert-

butyl group from the molecule as this, it was believed, would allow for a longer retention 

time upon the chiral HPLC column (due to the greater polarity of a free OH substituent), 

thus allowing for better separation of enantiomers. This insight came about as a result of 

consulting the online application guide for the Chiralpak AD-H column; which suggested 

that compounds with a free OH tended to give good separation.274 

The method by which this cleavage was discovered was essentially serendipity; as 

the required product was isolated by column chromatography while attempting a ring-

opening reaction of cis-(314) (see Chapter 7; and Scheme 116). 

 
Scheme 116: Serendipitous synthesis of cis-(324) 

 

Although 1H-NMR and 13C-NMR spectroscopic analysis of cis-(324) made it clear 

that a tert-butyl group had been removed from the starting material aziridine, initially there 

was uncertainty as to which tert-butyl group had been removed. The structure of the 

product was elucidated by IR spectroscopy, as an absorption band was clearly shown at 

3408 cm-1, well within the expected range for phenolic stretching. Also, a broad peak was 
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visible in the 1H-NMR spectrum, at 6.54 ppm (Figure 51). Although this is slightly low for 

a phenolic peak, it is much closer to the acceptable range than that of a carboxylic acid 

(typically 12 – 14 ppm). This was further confirmed by the C=O peak at 166.4 ppm within 

the 13C-NMR spectrum, which was not significantly shifted from that of the starting 

material, found at 167.2 ppm. If the ester had been cleaved to give a free acid, this peak 

would be expected to shift towards a higher ppm due to the increased deshielding effect of 

the carboxyl functionality. 

 
Figure 51: 1H-NMR, and chiral HPLC data for compound cis-(324) (NMR correlation data for 

compound cis-(324) can be found in Appendix 1) 

 

Further to this spectroscopic evidence, the cleavage of ethers to give phenolic 

functionality via the use of para-toluene sulphonic acid has precedence within the 

literature. For example, Wiemer et al have utilised similar conditions in order to cleave 

methoxymethyl ether protecting groups during the syntheses of schweinfurthin 

analogues.275 

Cleavage of a tert-butyl group from aziridine cis-(314) yielded cis-(324), which 

was much more amenable to HPLC separation; allowing an e.e. of 90% to be recorded. As 

the e.e. is unlikely to have increased within the course of the cleavage reaction, it can be 

reasonably assumed that this e.e. can be transposed onto the starting material, cis-(314). 
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4.2.3: One-pot Asymmetric Aziridinations – Synthesis of bis-aziridines cis-(318) and cis-

(319)  

Having secured a synthesis of cis-(317) (Figure 50, 70% yield, 90% e.e.), a 

synthesis of the bis-aziridine cis-(318) was attempted, utilising one-pot aziridination 

conditions, but with corresponding adjustments in the stoichiometry of tBDA (280). This 

afforded the desired product cis-(318) in a very good 75% yield, and an excellent 99% e.e. 

(Scheme 117).  
1H-NMR spectroscopy confirmed the presence of cis-(318), with C2-H and C3-H 

peaks present at 3.03 and 3.46 ppm respectively, with integrations relating to 2 protons 

each. MS and HRMS also confirmed the presence of the desired aziridine, with mass ions 

being detected at 679.4 [M+Na]+, and 657.3895 (theoretical 657.3898). Interestingly, the 

C2-H signals for both aziridines overlap perfectly, with only one doublet seen, with a J2,3 

of 6.7 Hz; suggesting a cis- conformation about the C2 – C3 positions of each aziridine.266 

However, the C3-H signals at 3.46 ppm do not overlap perfectly, suggesting a different 

environment around the C3 position in each aziridine. 13C-NMR also suggests slight 

differences between each aziridine; with two signals being seen for the carbonyl 

functionalities at 167.1 and 167.0 ppm; and also, four peaks seen relating to the C2 and C3 

carbons (47.6, 47.5, 47.4, 47.3 ppm). Potentially, these peaks could be caused by the 

presence of a meso form of the diaziridine; which would account for the doubling of the 

C2 and C3 peaks seen within NMR spectroscopy. 

 

 
Scheme 117: Asymmetric syntheses of cis-(318), and cis-(319) 

 

With cis-(318) in hand, a strategy was made for the synthesis of the differentiated 

bis-aziridine cis-(319). Within the synthesis of rac-(319) this had been achieved via a 

stepwise aziridination, limited by introduction of 1.05 equivalents of (320), followed by a 

further 1.1 equivalents of (280). In this case however, the method required the reaction to 

be kept at low temperature in order to increase the enantioselectivity of the reaction. Thus, 

1 equivalent of 2-tert-butoxy aniline (307) was introduced to 1 equivalent 
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terephthalaldehyde (321) at room temperature, followed by cooling to -60 °C, and addition 

of 1.05 equivalents of iPrDA (320). Upon completion of the first aziridination, (determined 

by 1H-NMR spectroscopy) a further 1 equivalent of 2-tert-butoxy aniline (307) and 1.1 

equivalents of tBDA (280) were added. However, upon addition of the second equivalent 

of 2-tert-butoxy aniline (307), aziridine formation was observed by 1H-NMR spectroscopy 

to slow prohibitively. 

This reduction in reaction rate could be due to capture of the catalytic proton by 2-

tert-butoxy aniline (307). If the relative pKa values of an N-substituted imine (pKa = 24.3, 

in DMSO)267 and aniline (pKa = 30.5, in DMSO)267 are compared it can be seen that the 

aniline has a higher pKa, and thus is likely to protonate to a greater extent than the imine. 

At room temperature, the fall in the rate of reaction due to this effect is not observed. This 

can be explained by rapid imine formation consuming all present 2-tert-butoxy aniline. 

However, at the low temperature conditions utilised within the above reaction, 

imine formation is likely to be slowed, thus allowing capture of the catalytic protons within 

the reaction by free 2-tert-butoxy aniline (307) to become significant (Scheme 118). 

 

 
Scheme 118: Proposed mechanistic rationale for the rate reduction effect observed during the synthesis 

of cis-(319), showing potential proton capture by residual 2-tert-butoxy aniline at -60 °C 
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In order to circumvent this effect, after the first aziridination was seen to reach 

completion (monitoring the appearance of C2-H and C3-H by 1H-NMR) the reaction was 

warmed to 0 °C, followed by addition of 2-tert-butoxy aniline (307). After stirring at this 

temperature for 12 hours, the imine formation appeared to be well advanced, and the 

reaction was cooled to -60 °C once again, followed by addition of tBDA (280). 

The aziridination proceeded successfully from this point, eventually yielding 35% 

of isolated product after a reaction time of 72 hours; however, this was increased to 65% 

considering recovered imine and starting materials. Upon submitting cis-(319) to chiral 

HPLC analysis, an e.e. of 85% was realised. 

 

4.2.4: One-pot Asymmetric Aziridinations – Hypothesis upon the Enantioselectivity of the 

Asymmetric One-pot Aziridination Reaction 

 Throughout the syntheses detailed in the previous sections high enantioselectivities 

have been shown, with only cis-aziridines being observed. It is also the case that when 

utilising pyridinium triflate (279) to generate racemic aziridines, only cis-aziridines were 

produced. This is in agreement with the observed results during the use of (289) and (279) 

within the thesis work of Pesce.268  

 The high cis- selectivity of these aziridination reactions can be rationalised by 

considering Newman projections of the initial attack of tert-butyl diazoacetate upon a 

simple imine of the type employed within the previous reactions (For example (325), 

which is derived from benzaldehyde and 2-tert-butoxy aniline). In order for the desired 

aziridination reaction to occur (325) must be protonated, and therefore we must consider 

the protonated form of (325) within any Newman projections. This adds a further 

consideration to the analysis, as both the diazo group of the attacking diazoacetate and the 

protonated imine nitrogen, carry positive charge. Therefore, upon approach it is reasonable 

to assume these two groups will adopt a trans- orientation to one another in order to gain 

maximum separation between the like charges, leading to four possible orientations of 

approach (See Figure 52). However, steric interactions must also be considered. 

Interactions between the bulky N-2-tert-butoxy phenyl substitution of imine (325), and the 

tert-butyl group of tert-butyl diazoacetate are highly disfavoured; thus, only two possible 

approaches of the diazoacetate to the imine are observed (Figure 52). These lead to two 

possible cis- aziridines, which are enantiomers of one another (i.e. the racemic product 

observed upon use of pyridinium triflate (279) as the aziridination catalyst). 
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Figure 52: Newman projections of the attack of tert-butyl diazoacetate upon the protonated form of 

imine (325) 

 

 A high degree of enantioselectivity has also been observed in aziridination 

reactions utilising (289) as the catalyst. In an attempt to rationalise the mechanism by 

which this selectivity occurs, molecular modelling of the interaction between the 

protonated form of imine (325) within catalyst (S)-(289) during the transition state has 

been carried out at the MM2 theory level. Although a low level of theory, this model 

should allow a basic understanding of the shape of the intermediate species (326) believed 

to be formed between (S)-(289) and (325) upon proton transfer (Scheme 119, and Figure 

53). 

 

 
Scheme 119: Protonation of (325) by (S)-(289) to form the intermediate ion-pair (326) 
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Figure 53: ‘Front’ and ‘Side’ views of the MM2 optimised structure for the intermediate (326) 

comprised of the anionic form of catalyst (S)-(289) and the protonated form of imine (325) 

 

 As shown in Figure 53, (325) is predicted to fit well within the cavity created by 

the ‘shielding’ 3,3’-(9-anthracenyl) groups upon the catalyst (S)-(289). The orientation of 

the imine within the cavity could potentially be explained by the formation of a hydrogen 

bond between the anionic nitrogen of the catalyst, and the NH of the imine intermediate; 

also, potentially hydrogen bonding could occur between the delta positive hydrogen of the 

imine CH, and the lone pairs upon the carbonyl oxygen of the catalyst, forming a double 

hydrogen bonded transition state (Figure 54). Transition states such as this have been 

invoked in various situations previously; including the work of List et al into the use of 

asymmetric counterion directed catalysis with TRIP (183) (see 2.2.6: Counterion 

Catalysis, Figure 37),186,187 and the work of Akayama et al and Terada et al into 

asymmetric Mannich reactions (See 2.3: Organocatalysis: Chiral Brønsted Acid Catalysts, 

Figure 39).192 

 
Figure 54: Representation of the potential double hydrogen bonded transition state within 

intermediate (326) 

 

Further to this, evidence for the presence of a chiral intermediate similar to (326) 

arising from the interaction of catalyst (S)-(289) with an N-substituted imine substrate has 

been provided by CD spectroscopy, and is discussed in Chapter 8: Spectroscopic and 

Computational Investigations. 
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 If a chiral intermediate species such as (326) is indeed formed between the chiral 

catalyst (289) and protonated imines, it becomes obvious that the nucleophilic attack of 

any diazoacetate will preferentially occur from the unshielded face of the imine, thus 

leading to the high enantioselectivity which is observed within the aziridination reactions 

utilising (289). It is also reasonable to assume (as the aziridination reactions utilising (298) 

are still highly cis- selective) that the same Newman analysis of the approach of a 

diazoacetate to the intermediate discussed earlier in this section still holds true (Figure 55). 

 
Figure 55: The two possible approaches of tert-butyl diazoacetate to the imine (325) whilst within the 

cavity of (S)-(289); showing the steric disfavouring of the approach which would produce trans- 

aziridine 

 

Potentially, the analysis within this section could be extended to provide 

predictions upon the absolute stereochemistry of the aziridines produced utilising (S)-

(289); however, no prediction has been made, as no experimental confirmation of the 

absolute stereochemistry of these aziridines has been possible thus far. Therefore, all 

graphical representation of chiral non-racemic aziridines throughout this thesis should be 

considered relative stereochemistry. Attempts have been made to elucidate the absolute 

stereochemistry of these aziridines utilising spectroscopic and computational techniques, 

and these are detailed within Chapter 8: Spectroscopic and Computational Investigations). 

 

4.3.1: Development of a Flow Reactor Based Aziridination Procedure – Introduction and 

Advantages 

 When comparing flow chemistry to traditional batch type chemistry, the most 

striking difference is the way product is produced. Within batch type chemistry, each 

reaction is distinct; producing an amount of product after a set reaction time. Flow 
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chemistry differs in the fact that a product stream is produced; resulting in a smaller 

amount of product, but produced continuously.  

 
Figure 56: Schematic diagram of a basic flow chemistry reactor 

 

The advantages of flow chemistry type procedures are pronounced; and include 

such factors as low catalyst contact time (reducing the potential for side reactions), reduced 

need for solvents and less waste (important factors in green chemistry), and less manual 

manipulation of hazardous materials and reagents. However, the disadvantages of flow 

chemistry are also reasonably strong; foremost among these being the sometimes 

prohibitive cost of setting up a flow reactor system (For example, the Sigma-Aldrich 

micro-reactor system, a commercial flow reactor retails at £18 800).273 

 As a proof of concept for the robustness of the aziridination procedures developed 

within this research, a flow reactor system was built (based upon HPLC equipment), 

capable of producing aziridines, with a view to ease of synthesis in the future. 

 

4.3.2: Development of a Flow Reactor Based Aziridination Procedure – Chemical Basis 

for the Flow System 

As has been demonstrated by Bew et al, the aziridination of phenyl substituted and 

derived imines with various alkyl diazoacetates in the presence of pyridinium triflate (279) 

is a facile and high yielding procedure.224 It is this basis upon which any potential flow 

reaction could be built. In order to utilise this methodology within a flow setting, an 

immobilised catalyst was required. A suitable immobilised pyridinium triflate based 

catalyst had previously been reported by Pesce,268 prepared by treatment of commercially 

available polystyrene bound DMAP (327), with triflic acid (276) (Scheme 120).  

 

 
Scheme 120: Synthesis of polymer bound pyridinium triflate (328) by Pesce 
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The polystyrene immobilised catalyst (328) was washed with dichloromethane 

prior to use in order to remove any unreacted triflic acid, and was confirmed to be present 

by ATR-IR spectroscopy; with bands consistent with N-H stretching (3242 cm-1), C=N 

stretching (1552 cm-1), and sulfonyl asymmetric stretching (1283 – 1163 cm-1).  

In order to test the effectiveness of the polymer bound catalyst (328), a test 

aziridination in batch mode was carried out (Scheme 121). Treatment of imine (329) with 

ca. 10 mol % (328) (stoichiometry could not be accurately predicted due to approximation 

of the surface coating of the resin), and EDA (261) led to the production of the desired 

aziridine rac-(330) in a 78% yield at room temperature in 16 hours. 

 
Scheme 121: Batch aziridination of (329) utilising polymer bound catalyst (328) 

 

 Confident that the catalyst (328) was effective under batch conditions, it was 

decided to attempt to utilise it under flow conditions; thus the next step was to develop the 

required hardware for the flow reactor. 

 

4.3.3: Development of a Flow Reactor Based Aziridination Procedure – Sourcing and Set-

up of the Reactor 

 As noted above, the main disadvantage of flow chemistry for an academic 

laboratory environment is the prohibitive cost of the flow reactor itself. Within this 

context, it was decided to utilise readily available HPLC equipment in order to produce a 

flow reactor capable of synthesising aziridines. 

 HPLC equipment already possesses many of the desirable features of a flow 

system: i.e. solvent resistant fittings and pumps, high pressure capability, finely 

controllable pump and valve equipment, detector capability, and an interface with software 

to facilitate control and method development. 

 The HPLC used within the flow system was a Beckman Gold System modular 

HPLC, equipped with a 128 series pump module, and 129 series diode array detector. In 

order to allow for introduction of the reactants, the system was fitted with a standard 

Rheodyne® valve, containing a 5 mL sample loop. The use of a Rheodyne® valve enabled 

the reagents to be introduced after the pumps, preventing potential corrosion of the pump 
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heads and seals. In order to determine when the reagents had passed through the system, 

the diode array detector was set up to monitor at the standard wavelengths for UV 

detection, 298 nm and 254 nm. The reaction chamber was provided by stripping and 

repacking a 10 x 0.7 cm analytical HPLC column with the polymer bound catalyst (328) 

(Figure 57). This column was kept under dichloromethane when not in use in order to 

remove the need for long column flushing times before use. 

 
Figure 57: The basic flow system setup, based upon a Beckmann System Gold HPLC; and the 

repackaged 10 x 0.7 cm analytical HPLC column 

 

 As it has been shown, the pyridinium triflate catalysed aziridination protocol 

(utilising preformed imines) previously developed by Bew et al is tolerant to moisture and 

air;224 therefore, no attempt was made to dry, or vigorously degas the solvents used 

(although, solvents were sonicated before use). However, prior to use, the system was 

flushed with dichloromethane in order to remove any air bubbles present, as is standard 

practice within HPLC. 

 

4.3.4: Development of a Flow Reactor Based Aziridination Procedure – Synthesis of a 

Racemic Aziridine via a Flow Chemistry Procedure 

 The initial test aziridination was similar to that demonstrated previously in Scheme 

113, utilising imine (331) (derived from aniline, and 4-nitro benzaldehyde) and EDA 

(261). The system was set up at a flow rate of 0.5 mL min-1, and the reagents premixed in 
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dichloromethane to a volume of 5 mL at a concentration of ca. 0.26 mmol/mL (Scheme 

122). 

 
Scheme 122: Initial flow aziridination attempted; utilising N-(4-nitrobenzylidene)aniline (331), ethyl 

diazoacetate (261), and polymer bound catalyst (328) 

 

Pre-mixing of (331) and EDA does not bias the reaction; as a catalyst is required to 

sufficiently lower the activation energy and allow reaction between (331) and ethyl 

diazoacetate (261) (see 3.3.1: Aziridination: Aziridination with Alkyl Diazoacetates – 

Introduction, Figure 44). Ideally, in a second generation reactor, mixing would occur 

within the system, however, for the purpose of this proof of concept, pre-mixing was 

adequate. After injection, the system was run until the detector returned to a stable 

baseline; while the output of the system was collected and the solvent removed under 

reduced pressure.  

The dried material from the flow reactor was analysed by 1H-NMR spectroscopy, 

which revealed partial conversion of the starting materials to the desired aziridine. The 

characteristic doublets present within the spectrum at 3.18 and 2.66 ppm corresponding to 

the C2 and C3 protons were integrated to the imine proton signal, giving a ratio of roughly 

1:2, suggesting around 33% conversion. Also, the coupling constants of the C2-H and C3-

H peaks were 6.9 and 6.9 Hz respectively, suggesting the production of cis-aziridine.266 

Also present within the 1H-NMR spectrum were peaks relating to starting materials; i.e. the 

imine CH singlet present at 8.4 ppm (ethyl diazoacetate peaks were not present within the 

NMR spectrum, due to evaporation under high vacuum). 

Although the conversion within this initial reaction was not high (ca. 33%), this test 

shows that passing the starting materials shown in Scheme 122 over catalyst (328) is a 

potential method of inducing an aza-Darzens aziridination reaction. To increase the 

conversion and yield of this process, the flow rate of the system was reduced to increase 

retention times. However, reduction of the flow rate below 0.5 mL min-1 did not lead to 

any appreciable change in conversion. Manual calculation of the flow rate at this point 

suggested that at below 0.5 mL min-1, the pump was not reliable to hold a steady rate, thus 

reduction of the flow rate was not effective in increasing contact time. 

Despite the low conversion of this initial reaction, the demonstration of the 

principle is clear. With further development of the equipment used, it should be possible to 
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optimise all parameters of this flow reaction (i.e. retention time, concentration etc), leading 

to the possibility of continuous production of aziridines. However, further development or 

optimisation of the system was not carried forward due to developments concerned with 

the work discussed in the following chapters. 

 

4.3.5: Development of a Flow Reactor Based Aziridination Procedure – Suggestions for 

Future Work 

 The main development which could be considered for the system is the introduction 

of more finely controlled pump apparatus. It is the author’s belief that increasing the 

contact time of the reaction will lead to higher conversion of the starting materials. A 

further improvement could potentially be the use of in-line introduction of reagents; as 

opposed to injection via a Rheodyne® valve. This would allow concentrations of reagents 

to be kept low, thus preventing potential overloading of the reaction chamber, and allowing 

for more complete reaction (Figure 58). 

 

 
Figure 58: Demonstration of potential column overloading arising from starting material injection via 

a Rheodyne valve; and comparison with continuous low level starting material injection 

 One final suggestion could be the use of in-line monitoring such as the IR in-line 

monitoring and optimisation techniques developed by Ley et al.274,275 These techniques 

allow for continuous monitoring of the reaction output, enabling changes to be made to the 

system and their effects analysed immediately; also, through correlation of the IR output 

with the Beer-Lambert Law, concentrations of each component in the product stream can 

be calculated immediately. For example, Ley et al have utilised this technique to develop 
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and optimise conditions for the fluorination of various aliphatic and aromatic compounds 

including (332) and (333) shown in Scheme 123; utilising a continuous flow system. 

 
Scheme 123: Schematic representation of the flow system utilised by Ley et al within the synthesis and 

optimisation of the fluorination reactions of various starting materials including (332) and (333) 
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Chapter 5: Studies towards the Synthesis of C2-deuterated Aziridines 

5.1.1: Development of Deuteration Techniques – Introduction 

 As shown within Chapter 1, there are many methods for introducing deuterium into 

an organic compound (See 1.5: Synthesis of deuterated compounds); although the majority 

of these focus upon introducing deuterium at a late stage of a synthesis, and tend to show 

poor selectivity for specific positions within a substrate. The exception to this rule is the 

H/D exchange chemistry of Ir(I) based catalysts.89-91 These have been shown to selectively 

introduce deuterium 5 or 6 bonds away from a directing carbonyl group (See 1.5.3.4.2). 

However, for the purposes of aziridination chemistry, the most useful deuteration positions 

are the ring carbons, C2 and C3, which are 2 or 3 bonds away from the carbonyl 

functionality. 

 The main aim of this project was to develop a selective, accessible and easy to use 

deuteration technique. Initially, efforts were concentrated upon the production of 

deuterated alkyl diazoacetate starting materials, which would be suitable for application 

within our aziridination methodologies (Scheme 124). This would allow introduction of 

deuterium at the beginning of the synthesis; relying upon the stability of the ring carbons to 

exchange in order to maintain deuteration levels throughout ongoing reactions. For the 

purposes of our methodology, it was decided to attempt to use deuterium oxide as a 

deuterium source, due to the relative ease of handling, and reduced cost compared to pure 

deuterium gas, which has been used in H/D exchange reactions previously.86,92,95  

 
Scheme 124: Proposed synthesis of C2-deuterated aziridines from deuterated alkyl diazoacetates 

 
5.1.2: Development of Deuteration Techniques – Deuteration of Ethyl diazoacetate  

 Initially, deuteration efforts were focussed upon ethyl diazoacetate (EDA, (261)). 

The main reason for this was the ready availability of commercial EDA; ensuring a ready 

supply of starting material for future work. As the α-position of EDA is vulnerable to 
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exchange, it was decided to attempt a simple base catalysed exchange reaction with 

deuterium oxide (Scheme 125). 

 

Scheme 125: Proposed base catalysed H/D exchange mechanism for the αααα-position of ethyl diazoacetate 

(261) 

 

Thus, a deuteration of EDA (261) was attempted; utilising a catalytic amount of 

potassium carbonate in a biphasic mixture of diethyl ether, and deuterium oxide. After 

stirring vigorously for 16 hours, the layers were separated, and the organic layer was 

carefully evaporated to remove the solvent, without evaporating the desired product. The 
1H-NMR spectrum of this crude material showed that to a certain extent, deuterium had 

been incorporated into the desired α-position (Figure 59). The deuterium incorporation 

level was determined by consideration of the relative integrations of the CH3 (1.30 ppm), 

CH2 (4.22 ppm) and residual CH (4.70 ppm) peaks to be 21% (Figure 59). 

However, this level of deuterium incorporation was not deemed high enough to 

move on to the next step. It was also noticed that recovery of the EDA was lower than 

would be expected; potentially due to base catalysed hydrolysis of the ester due to the 

conditions and reaction time employed, leading to loss of the resulting diazocarboxylic 

acid species within the deuterium oxide during work up. 

Therefore, a further reaction was attempted; treating EDA (261) again in the 

presence of potassium carbonate and excess deuterium oxide, however, in this case, two 

reaction cycles of 30 minutes were employed. This yielded α-deuterated EDA (334) in a 

75% yield, and more importantly, with a deuterium incorporation of >90% determined by 
1H-NMR spectroscopy (Figure 59).  
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Figure 59: 1H-NMR of EDA- d (334) after one, and two, reaction cycles 

 

Interestingly, when the sample was submitted to 13C-NMR spectroscopy, several 

signals appeared to be ‘missing’ from the spectrum. These being those related to the α-

carbon (expected at 46 ppm), and also the carbonyl signal. The loss of the α-carbon signal 

can be attributed to to signal splitting by deuterium (See 1.3: Properties of Deuterium, 

Deuterium Oxide, and the Deuteron), and also the effects of relaxation.  

This splitting effect comes about due to the nuclear spin of a deuteron, which has a 

value of 1. This generates three distinct energy levels when the deuteron is placed within a 

magnetic field, meaning during spin-spin coupling, an adjacent nucleus (in this case, 13C) 

can experience the effect of three distinct spins; generating a triplet signal (Figure 60).276 

 
Figure 60: Representation of the spin energy levels of the deuteron, giving rise to a triplet signal in 13C-

NMR 

 

Therefore, the α-C signal within EDA-d (334) should appear as a triplet. However, 

the effect of deuterium coupling also leads to a loss of signal intensity, as each peak of the 

triplet has 1/3 intensity; thus leading to the loss of the signal within the baseline of the 

spectrum (Figure 61). 
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Figure 61: 13C-NMR of EDA (261) and EDA-d (334) 

 

Satisfied that the exchange procedure would function adequately to supply our 

research, the next step was to attempt the previously developed aziridination 

methodologies utilising α-deuterated EDA (334). 

 

5.1.3: Development of Deuteration Techniques – Initial Aziridination Reactions 

 With α-deuterated EDA (EDA-d (334)) in hand, a test aziridination was required in 

order to establish any potential difficulties in utilising deuterated alkyl diazoacetates 

(compared to the conventional proteo- form) within the aziridination protocols. Therefore, 

a one-pot racemic aziridination of benzaldehyde (306), 2-tert-butoxy-4-methoxy aniline 

(335), and EDA-d (334) was attempted (Scheme 126). During this first reaction, best 

possible conditions were used; i.e. all glassware was flame dried and allowed to cool under 

nitrogen, dichloromethane was freshly distilled from calcium hydride, and the reaction was 

carried out in a sealed vial under nitrogen. 

 
Scheme 126: Racemic aziridination reaction utilising EDA-d to produce aziridine rac-(336) 
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Gratifyingly, after 16 hours, 1H-NMR spectroscopy revealed new peaks believed to 

correspond to the desired product, and the reaction was halted. After purification by flash 

column chromatography, further analysis revealed the production of the desired aziridine 

in a yield of 45%. 

 
Figure 62: 1H-NMR of rac-(336), indicating deuteration of the C2-position 

 

 As shown in Figure 62, the 1H-NMR spectrum revealed residual proton to be 

present at the C2-position (characterised by the small residual doublet at 2.97 ppm), 

however, integration of the residual C2-H and C3-H (3.41 ppm) peaks revealed deuterium 

incorporation of 91%. Interestingly, theory suggests that the C3-H peak should appear as a 

triplet (due to spin coupling with the adjacent deuteron at the C2 position).276 However, 

experimentally this is not the case. This can be explained by the fact that although the 

coupling constants for H-D couplings are proportional to those of H-H coupling, they are 

reduced by a factor of ca. 7 (due to the differences in the H and D magnetogyric ratios 

(Figure 2)).276 Thus, the coupling constant for the C3-H to the C2-D can reasonably be 

expected to be ca. 0.9 Hz. Therefore, the triplet appears as a broad singlet within the 1H-

NMR spectrum. 

Further evidence for the deuteration of rac-(336) was provided by MS, which, 

under ESI conditions provided the mass ions shown in Figure 63 for both [M+H]+, and 

[M+Na]+. 
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Figure 63: LC-MS data for rac-(336) showing [M+H]+ and [M+Na]+ 

 

Interestingly, although in most senses this reaction behaved as a standard 

aziridination reaction, the rate of reaction appeared to be slightly slower than that of the 

equivalent proteo- aziridination. Potentially, this could be due to a secondary kinetic 

isotope effect (See 1.4: Deuterium and the Kinetic Isotope Effect).  

Secondary kinetic isotope effects come about when deuterium is not directly 

involved within the bond making/breaking step of a reaction, and have been shown to 

result primarily from changes in the vibrational frequencies (and thus the Zero Point 

Energies (ZPEs)) present within the transition state of a reaction (Figure 64).27,28 In this 

case, the changes in vibrational frequency (and thus ZPE) come about as a result of 

hybridisation changes within the C-D bond.277 These changes occur at only one point 

during the aziridination reaction (assuming an aza-Darzens mechanism is in effect); this 

being nucleophilic attack of EDA-d (334) upon the N-benzylidene-2-tert-butoxy-4-

methoxyaniline (337) formed in situ, passing through TS1 (338). Although deuterium is α- 

to the ring closure of the intermediate (339), eliminating N2, no rehybridisation occurs; 

thus TS2 (340) can be discounted as the source of a secondary KIE (Figure 64). 
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Figure 64: Energy surface diagrams representing the origins of secondary KIE’s from changes in ZPE; 

and representations of the transition states during the formation of rac-(336) from which a secondary 

KIE could arise 

 

Therefore, a very basic prediction as to if the observed loss of reaction rate is due to 

a secondary KIE can be made if the ZPEs of TS1 (338), and EDA-d (334) are calculated. If 

∆ZPE(deutero) is greater than ∆ZPE(proteo) then the reaction will be slower in the deutero- 

form, due to the increased activation energy of the reaction (i.e. a normal KIE). If 

∆ZPE(proteo) is greater than ∆ZPE(deutero) then an inverse KIE should be in effect. In order to 

calculate the ZPEs, a transition state minimisation was carried out at the B3LYP/6-31g 

level of theory within Gaussian ’09 for TS1 (338), followed by frequency calculations for 

both the proteo- and deutero- forms. It should be noted that this calculation did not include 

a conformational search, or consider the effects of solvation, it was simply to provide a 

basic level of understanding.  The results are shown in Figure 65. 
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Figure 65: Calculated ZPEs for proteo- and deutero- TS1 (338); also proteo- and deutero- ethyl 

diazoacetate (261) & (334) 

 

 As shown in Figure 65, the changes in ZPE calculated with Gaussian suggest that a 

very small inverse secondary KIE may be in effect, which suggests that reaction should be 

very slightly faster with EDA-d (334) as opposed to EDA-h (261). Experimentally 

however, this was not seen to be the case; thus it can be concluded that either another 

factor is causing the longer reaction times observed (and potentially masking the inverse 

KIE), or higher level calculations are required in order to observe the potential normal 

secondary KIE. However, literature suggests that the presence of an inverse KIE is more 

likely upon rehybridisation from sp2 to sp3.277 

Having successfully synthesised the C2 deuterated aziridine rac-(336), the racemic 

one-pot C2-deutero aziridination methodology was expanded by the synthesis of aziridines 

bearing 4-fluorophenyl, 4-bromophenyl, 4-nitrophenyl, and 4-cyanophenyl functionalities 

upon the C3 position (rac-(341) – rac-(344)). These reactions proceeded well, with all 

complete within 16 hours. The results of these aziridinations are presented in Figure 66. 

 
Figure 66: Results for the syntheses of aziridines rac-(341) to rac-(344) 
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 As shown in Figure 66, the deuterium incorporation levels within rac-(341) to rac-

(344) (determined by integration of the C3-H to the residual C2-H peak within the 1H-

NMR spectra) remained fairly constant throughout the range of aziridines; suggesting that 

the final level of deuterium incorporation within the product is a measure of the initial 

incorporation of deuterium within the starting material EDA-d (334) (ca. 93%, Figure 61). 

Also, experimental error within the determination of deuterium incorporations by 1H-NMR 

spectroscopy should be considered. 1H-NMR integration can be considered to be accurate 

to within ca. 5%, thus an error of ± 5% should be taken into account.278 

 At this point it was considered prudent to elucidate the cis-character of the 

deuterated aziridines (rac-(340) − rac-(344)) produced with the above method. During 

previous proteo- aziridinations utilising the same reaction conditions, only cis- aziridines 

had been formed (4.1.2: Development of the one-pot procedure, Scheme 106, Figure 49). 

This had been proven by the characteristic coupling constants of 5 – 9 Hz of the C2-H and 

C3-H peaks within 1H-NMR spectra of the products.266 In this case however, 1H-NMR 

confirmation of the cis-conformation of rac-(340) − rac-(344) was obtained via only the 

coupling constant of the residual C2-H doublet, present within each spectrum. These again 

were within the expected range of 5 – 9 Hz.266 

Further confirmation of the cis- relationship about the C2 − C3 positions was 

sought via single-crystal structure analysis. Thus, crystallisation of rac-(340) – rac-(344) 

was attempted. Success was achieved in compound rac-(342) after crystallisation from 4:1 

40 – 60 petroleum ether : diethyl ether, with the crystals obtained as colourless plates. The 

X-ray crystal structure confirmed the cis-relationship around the C2 – C3 positions.  

 
Figure 67: ORTEP representation of the X-ray crystal structure of rac-(342) showing cis-

stereochemistry around the C2 – C3 positions 
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However, confirmation of the deuteration level within rac-(342) was not possible 

utilising the crystallographic equipment available at the time. This is due to the structure 

being acquired using X-ray diffraction, as opposed to neutron scattering. During X-ray 

diffraction to determine a crystal structure, the diffraction occurs between the X-rays and 

the electron clouds around individual atoms of a molecule; thus, information upon the 

isotopes contained within a molecule is not acquired. Neutron scattering occurs due to 

interactions with nuclei rather than electrons, thus each isotope generates a different 

interaction with the neutron source. This allows isotopic enrichment to be determined.279  

These experiments are only able to be carried out at either nuclear facilities, or particle 

accelerators (such as the UK National Synchrotron; the Diamond Light Source located at 

the Harwell Science and Innovation Campus in Oxfordshire).280 

 

5.1.4: Development of Deuteration Techniques – Attempted Deuteration of Pyridinium 

Triflate 

 Having demonstrated that the racemic one-pot aziridination protocol was tolerant to 

the use of EDA-d (334), it was considered prudent to test for a possible H/D exchange 

reaction between pyridinium triflate (279), and EDA-d (334); due to the potential decrease 

in deuterium incorporation within aziridine products if such an exchange reaction was 

occurring (Figure 68). 

 
Figure 68: Proposed mechanism of H/D exchange between pyridinium triflate (279), and EDA-d (334), 

leading to decreased deuterium incorporation within EDA-d (334) 

 

In order to test the potential for H/D exchange, an NMR experiment was carried 

out. One equivalent of pyridinium triflate (279) was mixed with one equivalent EDA-d 

(334) in anhydrous deuterated chloroform (dried over 4 Å molecular sieves); and an initial 
1H-NMR spectrum was recorded. The solution was then stirred within the NMR tube for 

36 hours, with 1H-NMR spectra being acquired at intervals. Integration of the residual CH 

peak at 4.70 ppm against the known peak for the CH2 group (4.17 ppm) revealed a 

reduction in deuterium incorporation upon the EDA-d (334) from the initial value of ca. 

99% (Figure 68, Spectra 1); this reduction was equivalent to loss of approximately 15% of 

the initial deuteration after 36 hours; suggesting gradual equilibration of deuterium 

between pyridinium triflate and EDA (Figure 69). 
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Figure 69: 1H-NMR experiment to determine if H/D exchange occurs between pyridinium triflate (279) 

and EDA-d (334) 

 

 Although the H/D exchange reaction appears to be slow, this could potentially 

represent a route for an undesired decrease in deuterium incorporation within the C2-

deutero aziridines produced using pyridinium triflate (279) as the catalyst. Therefore, it 

was decided to investigate the possibility of producing deuterated pyridinium triflate 

(PyTf-d (345)). 

To achieve this, freshly prepared, recrystallised, and dried pyridinium triflate was 

treated under scrupulously dry conditions with deuterium oxide. After 50 minutes stirring, 

the deuterium oxide was removed under reduced pressure, utilising a nitrogen backfilled 

rotary evaporator. The resulting solid was treated with a further two cycles of deuterium 

oxide before redissolving the solid material in freshly distilled acetonitrile, drying over 4Å 

molecular sieves, filtration, and removal of the solvent. The resulting free flowing solid 

PyTf-d (345) was stored under nitrogen in a dry box until it was required (Scheme 127). 

 
Scheme 127: Attempted deuteration of pyridinium triflate (279) to form pyridinium triflate-d (345) 

 

Analysis of the PyTf-d (345) was attempted by both LC-MS, and HRMS; however, 

LC-MS (under ESI conditions) proved inconclusive, due to solvent contamination peaks at 

low mass present within the background of the spectrum (coming from contamination of 

the instrument itself). Also, treatment of PyTf-d (345) under nano electrospray HRMS 
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conditions was unable to provide conclusive evidence for the presence of deuterated 

pyridinium triflate; with the predominant ion found at m/z 80.2, consistent with a proteo- 

pyridinium ion. However, due to the acidity of the N-H or N-D bond (pKa of pyridinium = 

3.4 in DMSO)267 it is not unreasonable to envisage H/D exchange under ionising 

conditions, such as those present in HRMS and MS analysis. 

 

5.1.5: Development of Deuteration Techniques – Test Aziridination to form rac-(342) 

Catalysed by Deuterated Pyridinium Triflate (345) 

 Despite the lack of conclusive evidence for the deuteration of pyridinium triflate; it 

was decided to carry out a simple one-pot C2-deutero aziridination in order to test the 

reactivity of the new catalyst; PyTf-d (345) (Scheme 128). 

 
Scheme 128: Test aziridination to produce rac-(342) utilising pyridinium triflate- d (345) 

 

The reaction was seen to proceed by 1H-NMR, and the resulting purification gave 

rac-(342) in a 45% yield after 6 hours. However, subsequent analysis of this product 

showed no significant change in deuteration level; with deuterium incorporation into rac-

(342) roughly following that of the EDA-d (334) as noted previously (>90%). 

In hindsight, this lack of change in deuteration level is expected, due to the 

relatively slow rate of H/D exchange noted within the NMR experiment shown in Figure 

69 (15% H/D exchange over 36 hours); and also the fact that pyridinium triflate is only 

present in 10 mol %, rather than the one equivalent present within the NMR experiment. 

Thus the effects of any exchange reaction between pyridinium triflate and EDA under 

reaction conditions are likely to be negligible. 

Despite this, the deuteration of pyridinium triflate did have one unexpected effect 

upon the reaction; a significant reduction in reaction rate was noted. After 6 hours, the 

equivalent formation of rac-(342) catalysed by PyTf-h (279) had reached ca. 60% yield 

(opposed to the 45% yield noted above, Scheme 128).  Similar to the effect noted when 

changing from the use of EDA (261) to EDA-d (334), this slowing of the reaction was 

believed to result from primary kinetic isotope effects, and is examined in more detail 

below (See 5.1.6: Determination of a potential primary kinetic isotope effect). 
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5.1.6: Development of Deuteration Techniques – Determination of a Potential Primary 

Kinetic Isotope Effect 

 During the test aziridination to form rac-(342) utilising pyridinium triflate-d (345) 

as the catalyst, a marked decrease in the rate of reaction was noted. Initially it was thought 

this could be due to experimental error; however, it was decided to investigate this effect 

by carrying out two parallel aziridinations, differing only in the use of either pyridinium 

triflate-h (279), or pyridinium triflate-d (345), monitoring each by 1H-NMR spectroscopy, 

and calculating a rate for the aziridination reaction. 

 

 
Scheme 129: The two one-pot aziridination reactions studied within the rate experiment 

 

Two parallel one-pot aziridinations were set up (Scheme 129), and allowed to 

equilibrate at 25 °C for 30 minutes in order to allow formation of the required imine 

intermediates. At this stage, EDA-d (334) was added, and an initial 1H-NMR spectrum of 

each reaction was acquired. The reactions were staggered by 10 minutes in order to allow 

the NMR analysis at similar reaction times. From this point, 1H-NMR spectra were 

acquired at hourly intervals.  

When the reactions were deemed complete, analysis of the 1H-NMR data allowed 

the percentage composition of each reagent at each stage to be calculated (Figure 70). This 

was achieved by relating the integrations of the aldehyde COH peak (9.92 ppm), the imine 

CH peak (8.40 ppm), and the aziridine C3 peak (3.35 ppm). 
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Figure 70: Comparison of the aziridination reactions forming rac-(342), catalysed by (279) and (345) 

 

The reaction catalysed by (345) shows a much shallower decrease in the presence 

of imine, which corresponds to a much shallower increase in the presence of aziridine than 

that seen in the reaction catalysed by (279). This potentially indicates a slower reaction. In 

order to confirm this, an estimation of the rate of each reaction was calculated. For the 

purpose of the rate calculation, it was assumed that the rate of aziridine formation is 

dependent upon the rate of disappearance of imine (as the alkyl diazoacetate is in excess 

within the reaction, any potential effects from concentration of this reagent can be 

discounted), and that the rate determining step is the dissociation of H+ (or D+) from the 

pyridinium triflate, and subsequent protonation of the imine intermediate (Scheme 130). 
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Scheme 130: Proposed mechanistic rationale for the observed reduction in reaction rate upon use of 

pyridinium triflate- d (345) opposed to pyridinium triflate-h (279); an aza-Darzens mechanism for 

aziridine formation is presumed to be in effect 

 

In order to calculate rate, the concentration of imine within the reaction mixture at 

each time was required. As the initial amount of aldehyde present within each reaction was 

known, the concentration of imine at each stage could be calculated from percentage 

composition (Data shown in Appendix 3). The reciprocal of these concentrations was then 

plotted against time, and the regression lines of the two data sets gave the rate constant of 

each reaction (Figure 71). 

 
Figure 71: Calculation of the rate constants for the PyTf-h (279), and PyTf-d (345), catalysed 

formation of rac-(342) 



 136 

 From the regression analysis data, an estimate of the kinetic isotope effect within 

the reaction was calculated. It was noted that the rate of reaction was approximately 9 

times slower on changing from pyridinium triflate-h (279) to pyridinium triflate-d (345). 

Although this value is toward the higher end of primary kinetic isotope effects (See 1.4: 

Deuterium and the Kinetic Isotope Effect),22 taking into consideration the inherent potential 

for error in calculations from NMR data, this value could vary by ca. ± 5%.278 Also, this 

value is calculated from the overall reduction of reaction rate observed upon the use of 

pyridinium triflate-d (345) in the place of pyridinium triflate-h (279). Thus it is probable 

that this value includes several primary kinetic isotope effects throughout the reaction 

mechanism.  

Despite these points, literature values for primary kinetic isotope effects relating to 

acid-base behaviour (i.e. the deprotonation of pyridinium triflate, and protonation of the 

intermediate imine) include the KIE value of 10 calculated for the acid base behaviour of 

nitroethane (as determined by Wynne-Jones et al),22 and the KIE value of 8.7 for the 

protonation of (4-methoxy)methylstyrene (as determined by Richard et al);281 suggesting 

that the value of 9 calculated above is feasible. 

This experiment clearly demonstrates a significant loss in reaction rate upon the use 

of deuterated pyridinium triflate as the catalyst for aziridination. This, coupled with the 

apparent lack of improvement in deuterium incorporation into the product aziridines, led to 

the conclusion that (345) was a less efficient aziridination catalyst than (279); thus, efforts 

were focussed upon improvement of the drying and storage conditions of both pyridinium 

triflate (279), and the deuterated alkyl diazoacetates employed within the C2-deutero 

aziridination chemistry. This is due to it being believed that loss of the deuteration level 

within the starting material alkyl diazoacetates (due to exchange with either residual water, 

or atmospheric water vapour) was the greatest issue in keeping deuterium incorporation 

high within the desired aziridines. 

 

5.1.7: Development of Deuteration Techniques – Initial Development of Asymmetric 

Deuterated Aziridination Reactions and the Synthesis of cis-(350) 

 Having investigated the use of deuterated alkyl diazoacetates in order to form 

deuterated racemic aziridines; the next step of development was to adapt existing 

asymmetric, and one-pot asymmetric, aziridination procedures to utilise these substrates. 

 It was decided to begin development of these syntheses utilising the N-triflyl 

phosphoramide catalyst (S)-(347), derivatised at the 3,3’-positions with pyrene; allowing 

for considerable steric bulk around the 1,1’-binaphthyl scaffold (Figure 72). 
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Figure 72: MM2 optimised structure of the protonated form of imine (348) within catalyst (S)-(347), 

demonstrating the ‘shielding’ effect of the 3,3’-pyrene substitution 

 

 As had been shown within the work of Pesce,268 it was hoped that the large, planar 

pyrene functionalities of (347) would act effectively as lateral ‘shields’ to the protonated 

imine substrate during the transition state, thus favouring nucleophilic attack from one face 

only. The MM2 optimised protonated structure of N-(4-bromobenzylidene)-2-tert-butoxy-

4-methoxyaniline (348) within the catalyst (S)-(347) is shown in Figure 72, demonstrating 

the shielding effect of the pyrene substitution. 

For continuity within these development reactions, it was decided to keep the 

substrate the same throughout. To this end, it was decided that the synthesis of ethyl 3-(4-

bromophenyl)-1-(2-tert-butoxy-4-methoxyphenyl)-2-deuteroaziridine-2-carboxylate (cis-

(342), see Figure 66) would be employed as the model aziridination system. At this point a 

desired target for e.e. was set to 90%; as high enantioselectivity within the aziridination 

reaction was considered to be a major aim.  

 Thus, a temperature variation study was carried out using chloroform as the solvent 

in order to test the levels of enantioselectivity possible. Deuterated chloroform was chosen 

due to the effectiveness of chloroform as the solvent within previous asymmetric 

aziridinations (See 4.3: One-pot asymmetric aziridinations, and the work of Pesce),268 

while deuterated chloroform allowed monitoring of the reaction by 1H-NMR spectroscopy. 

The temperature screen ranged from -20 °C to -63 °C, and the results of this study are 

shown in Scheme 131. 
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Scheme 131: Initial temperature study for the synthesis of cis-(342) utilising (S)-(347) 

 

The study showed that e.e. of cis-(342) increased from a baseline level of 45% at -

20 °C to a maximum of 65% at -40 °C and -63 °C. Unsurprisingly, reduction of the 

reaction temperature led to significant increases in reaction times, up to a maximum of 12 

days at -64 °C. A similar effect had been observed within the thesis work of Pesce, who 

noted an increase of reaction time from 10 to 24 hours upon decrease of reaction 

temperature from – 20 °C to – 80 °C (within the aziridination reaction shown in Scheme 

132, utilising the 3,3’-anthracenyl catalyst (S)-(134)).268 

 

 
Scheme 132: Temperature study carried out by Pesce upon the aziridination of N-(pyridin-2-

ylmethylene)aniline, catalysed by the 3,3’-anthracenyl substituted catalyst (S)-(289) 

 

Having investigated various temperatures utilising the pyrene based catalyst (347), 

unfortunately the desired e.e. of 90% had not been achieved. Therefore it was decided to 

attempt the synthesis of cis-(342) utilising the 3,3’-anthracenyl substituted catalyst (289). 

This choice was based upon the trends seen within the work of Pesce,268 which had shown 

9-anthracenyl substitution at the 3,3’-positions of the BINOL scaffold of the catalyst to be 

generally the most effective substitution for inducing high e.e. within the aziridination 

reactions attempted (Scheme 133).  
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Scheme 133: Catalyst study carried out by Pesce, demonstrating the effect of altering the 3,3’- 

substitution of the catalyst species268 

 

Therefore, a synthesis of cis-(342) was carried out utilising 5 mol % (S)-(289) at 

just below the freezing point of chloroform, -63 °C (as had been employed by Pesce, see 

Scheme 112).268 The results of this reaction are shown in Scheme 134. 

 

 
Scheme 134: Test aziridination carried out near the freezing point of chloroform catalysed by (S)-

(289), producing cis-(342) 

 

 Unfortunately, although the enantioselectivity of this reaction was closer to the 

desired 90% e.e., a further increase was desired. After re-examining the previous work; it 

was decided to bring the test aziridine structure more into line with those synthesised 

previously (See 4.2: One-pot asymmetric aziridinations) i.e. altering the amine used to 2-

tert-butoxy aniline (307), and the alkyl substitution upon the alkyl diazoacetate to tert-

butyl. 

Therefore, α-deuteration of tert-butyl diazoacetate (280) was carried out utilising 

the previously developed procedure (see 5.1.2: Deuteration of ethyl diazoacetate, and 

Scheme 135 below). Gratifyingly, the desired deuterated tert-butyl diazoacetate (tBDA-d, 

(349)) was afforded in 85% yield, and more importantly, >95% deuterium incorporation 

determined by 1H-NMR spectroscopy (Scheme 134). 
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Scheme 135: Synthesis of, and 1H-NMR data for, (349) confirming deuterium incorporation 

 

With (349) in hand, the one-pot aziridination reaction of 4-bromobenzaldehyde 

(346), 2-tert-butoxy aniline (307), and tBDA-d (349) was carried out, utilising 10 mol % 

(S)-(289) with chloroform-d as the solvent at -63 °C (Scheme 136). These conditions were 

chosen based upon the high yields (61 to 93%) and e.e.s (74 to 98%) obtained during the 

asymmetric syntheses of the proteo-aziridine-2-carboxylates discussed previously (see 

4.2.2: Asymmetric one-pot aziridinations). 
 

 
Scheme 136: One-pot C2-deutero aziridination reaction between 4-bromobenzaldehyde (346), 2-tert-

butoxy aniline (307), and tert-butyl diazoacetate-d (349); catalysed by 10 mol % (S)-(289) 

 

However, although these conditions afforded cis-(350) with a good e.e. of 87%, an 

increase was still desired. Thus, it was decided to alter the reaction solvents in an attempt 

to gain the required increase in e.e.. Solvents for this study were chosen in an attempt to 

lower the minimum temperature that could be achieved before the freezing point of the 
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solvent was reached (Scheme 137); while maintaining the presence of solvents which had 

proven effective within the work of Pesce. Therefore, the use of ethereal solvents was not 

considered, as these had shown poor compatibility with the aziridination protocols 

developed by Pesce.268 

 
Scheme 137: Solvent and temperature study utilising catalyst (S)-(289) 

 

 Utilising lower temperatures with differing solvents did not necessarily lead to 

higher enantioselectivities, as demonstrated in Scheme 137. An interesting case of this 

being the use of 1:1 chloroform : toluene; which although allowing for a significant 

decrease in reaction temperature, did not lead to a corresponding increase in enantiomeric 

excess. 

 More importantly to the development of the method, the use of an 8:2 mixture of 

chloroform:dichloromethane allowed for a reaction temperature of -80 °C, a reaction time 

of ca. 72 hours, and an e.e. of 92% within the cis-(350) product. This was not only above 

the desired target of 90%, but deuterium incorporation within the product was shown to be 

excellent, measured by 1H-NMR spectroscopy as >95%. Further evidence for the presence 

of cis-(350) was provided by MS and HRMS, with mass ions detected at m/z 447.1 

[M+H] +, and 447.1388 (theoretical 447.1388). 

  

5.2.1: Asymmetric Synthesis of C2-deuterated Aziridines – Introduction 

 Having satisfied the initial major goal of developing a methodology capable of 

producing C2 deuterated aziridines in a highly enantioselective manner via a one-pot 

reaction; expansion of the applicability of the asymmetric C2-deutero aziridine synthesis 

was desired. Thus, substrate screening was carried out for the reaction using pre-formed 



 142 

imines. Carrying out the reaction in this way allowed the imine formation to be checked for 

potential reactivity issues before adding in the complications of a one-pot procedure. 

Therefore, reactions within this section follow the general method shown in Scheme 138. 

 
Scheme 138: General scheme for the synthesis of asymmetric C2 deuterated aziridines 

 

5.2.2: Asymmetric Synthesis of C2-deuterated Aziridines – Synthesis of cis-(350) to cis-

(359), cis-(363), and cis-(367) to cis-(370) 

 The first substrate screen focussed upon utilising phenyl, para-fluorophenyl, and 

para-chlorophenyl substitution at the C3 position. Thus, aziridines cis-(351) and cis-(352) 

(Figure 73) were synthesised utilising the asymmetric protocol; however, cis-(353) was 

synthesised utilising a one-pot asymmetric aziridination. It was also decided to repeat the 

synthesis of cis-(350) in order to test for any differences within the reaction outcome when 

starting from an imine instead of the one-pot procedure. The results of these reactions are 

shown in Figure 73. 

 
Figure 73: Asymmetric syntheses of C2 deuterated aziridines cis-(350) to cis-(353) 

 

As shown in Figure 73, these aziridinations proceeded with reasonable yields of 

between 55% and 87%, and in general, good to excellent e.e.s (67 – 95%). A point of 
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interest is the loss of some deuterium incorporation within the syntheses of cis-(352) and 

cis-(353). It is believed that this came about during the reactions as a result of inadequate 

initial deuteration of the starting material alkyl diazoacetate.  

Interestingly, the repeat synthesis of cis-(350) from the requisite imine (2-tert-

butoxy-N-(4-bromophenylmethylene)phenylamine) as opposed to a one-pot process led to 

very similar results. Identical yields of 87% were achieved with the stepwise and one-pot 

methods, while e.e. was seen to slightly improve upon changing from one-pot to a stepwise 

synthesis. However, the difference in e.e. was essentially negligible (c.a. 3%). 

 In order to determine the enantiomeric excess of the above aziridines, chiral HPLC 

analysis was undertaken, utilising a Chrialpak AD-H chiral column. Determination of the 

peaks of interest was carried out by running each aziridine against the corresponding 

racemic aziridine as a standard. Initially, these aziridine standards were deuterated in order 

to be sure of peak identification. However, racemic aziridines were also synthesised in the 

proteo- form, and it was shown that the desired peaks overlapped well with the deutero- 

versions (Figure 74). 

 
Figure 74: Demonstration of the overlap of peaks within chiral HPLC for cis- & rac-(350) 

 
1H-NMR, 13C-NMR, IR, MS, HRMS, and specific rotation data was collected for 

each of the above aziridines, with deuterium incorporations being confirmed by 1H-NMR 

spectroscopy (via integration of the C3-H and residual C2-H peaks) as well as HRMS 

analysis. Selected data from the characterisation of cis-(350) (discussed below) is included 

in Appendix 4, demonstrating the effects of deuterium incorporation. 
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 Within the 1H-NMR spectra of cis-(350), the characteristic doublets for C2-H and 

C3-H (expected at 3.02 and 3.39 ppm)268 were no longer present; as would be expected 

with replacement of the C2-H with a deuteron. Instead, a singlet was present at 3.35 ppm, 

integrating to one proton, consistent with C3-H. The cis- stereochemistry of (350) was 

confirmed by the coupling constant of the residual C2-H doublet (6.9 Hz), which was well 

within the 5 - 9 Hz range expected with a cis- aziridine.266 Examination of the 13C-NMR 

spectrum of cis-(350) shows the C2 carbon peak (expected at 47.5 ppm)268 has vanished 

into the baseline, as was seen with the deuteration of alkyl diazoacetates; due to deuterium 

coupling splitting the desired peak into three lines, each with one third intensity.276 HRMS 

data also demonstrates the incorporation of deuterium; with the major peak at 447.1388 

corresponding to [M+H]+ (theoretical 447.1388), whereas, the peak corresponding to the 

proteo- form of cis-(350) (m/z 446.1305 [M+H]+) is not present within the data, suggesting 

high deuterium incorporation levels. 

Similar effects to those detailed above were also noted in the data acquired for cis-

(351) – cis-(353), with singlets observed for C3-H in the 1H-NMR spectra. These peaks 

integrated to 1H, and were found at chemical shifts of 3.43, 3.42, and 3.44 ppm 

respectively. The residual C2-H peaks within the 1H-NMR spectra of cis-(351) – cis-(353) 

confirmed the cis- stereochemistry about the C2 and C3 positions, with J2,3 coupling 

constants of 6.8, 6.7, and 6.7 Hz respectively.  HRMS also confirmed the presence of the 

deuterated products cis-(351) – cis-(353), with [M+H]+ peaks found at m/z 369.2283 (cis-

(351), theoretical 369.2289), m/z 387.2185 (cis-(352), theoretical 387.2189), and m/z 

403.1889 (cis-(353), theoretical 403.1893). 

Having successfully synthesised monohalogenated C2-deuterated cis-aziridines 

(350) – (353), it was decided to synthesise a deuterated pentafluorophenyl substituted 

aziridine cis-(354) (Scheme 139), similar to cis-(314) (see Figure 50). As previously it had 

proven difficult to separate cis-(314) under chiral HPLC conditions, the tert-butyl ester of 

the aziridine cis-(354) was cleaved utilising previously discussed methodology (Scheme 

116) in order to give the phenolic species cis-(355) which was more amenable to chiral 

HPLC analysis. 

 
Scheme 139: Synthesis of cis-(354) and cis-(355) via a one-pot asymmetric aziridination procedure 

followed by tert-butyl ether cleavage 
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 Gratifyingly, the desired aziridine cis-(354), and deprotected aziridine cis-(355) 

were produced in yields of 82% and 67% respectively, while deuterium incorporation 

remained at the >95% level present within the starting material tBDA-d (349) throughout 

the synthesis. This stability of the isotopic enrichment level was seen to be a critical 

finding, as it suggests the stability of the C2, and potentially, the C3 positions to isotopic 

exchange; which was essential if the deuterated aziridines produced were to be employed 

in further syntheses. 

 Satisfied thus far with the syntheses attempted, the next set of substrates to be 

tested were the electron withdrawing substituents para-nitrophenyl, and para-cyanophenyl. 

Again starting from the requisite imines (2-tert-butoxy-N-(4-nitrophenylmethylene) 

phenylamine, and 2-tert-butoxy-N-(4-cyanophenylmethylene)phenylamine)), the syntheses 

of cis-(356) and cis-(357) (Figure 75) were attempted utilising 10 mol % (S)-(289), in 8:2 

deuterated chloroform : dichloromethane, at -80 °C. The reactions proceeded well, yielding 

cis-(356) in 95%, and cis-(357) in 65% yields. Enantioselectivities were also high, as 

shown in Figure 75, with cis-(357) showing an excellent e.e. of 99% when run against a 

racemic standard by chiral HPLC. 

 
Figure 75: Synthesis results for cis-(356) and cis-(357); and chiral HPLC trace for cis-(357) 

 

It was noted that during column chromatography, cis-(356) was seen to crystallise 

from a mixture of diethyl ether and petroleum ether. Therefore, purified cis-(356) was 

treated under similar conditions in order to recrystallise the material. The resulting crystals 

of cis-(356) were submitted for X-ray analysis, yielding in the crystal structure shown in 

Figure 76 (Full crystal data shown in Appendix 5). This structure clearly shows the cis- 

relationship of the C2 and C3 substituents of the aziridine. Confirmation of this cis- 
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relationship is important due to the potential difficulties of measuring coupling constants 

for the residual C2-H doublet within the 1H-NMR spectra of these deuterated materials. 

Unfortunately, confirmation of the absolute stereochemistry of the aziridine produced was 

not provided, as the crystal was shown to be a racemate. 

 
Figure 76: ORTEP representation of the X-ray crystal structure of cis-(356) 

 

The next substrates to be tested were heteroaromatic, and polycyclic systems. 

These being the 2-naphthyl, 2-pyridyl, and 9-anthracenyl based N-aryl imines shown in 

Scheme 140).  

 
Scheme 140: Attempted syntheses of 3-(2-naphthyl), 3-(9-anthracenyl), and 3-(2-pyridyl) functionalised 

aziridine-2-carboxylates cis-(358) to cis-(360) 

 

From these three substrates two reactions were successful; with the 2-naphthyl (cis-

(358)), and 2-pyridyl (cis-(359)) derived aziridines being obtained in 85%, and 82% yields 

respectively. Chiral HPLC analysis of these compounds revealed excellent enantiomeric 

excesses of 90% and 99% respectively; and excellent deuterium incorporation of >95% 

(Figure 77). 
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Figure 77: Results of the syntheses of cis-(358) and cis-(359) catalysed by 10 mol % (S)-(289) at -80 °C 

 

The synthesis of the 3-(2-pyridyl) aziridine-2-carboxylate cis-(359) proceeded 

rapidly, with vigorous gas evolution being visible even at the low reaction temperature of  

-80 °C. This rate acceleration could be due to protonation of the pyridyl ring leading to the 

highly reactive intermediate (361), which has more electrophilic character at the imine 

carbon; thus increasing the rate of attack of the weakly nucleophilic alkyl diazoacetate 

(Scheme 141). The formation of (361) is supported by the relative pKa values of the imine 

nitrogen (pKa ~ 24, in DMSO)267, the pyridyl nitrogen (pKa ~ 28, in DMSO)267, and the 

catalyst (289) (pKa ~ -1)197. These values show that the catalyst (289) is acidic enough to 

protonate both nitrogen positions, with the ring nitrogen protonating first, followed by the 

imine nitrogen. 

 
Scheme 141: Formation of the dicationic species (361), potentially leading to accelerated nucleophilic 

attack by tert-butyl diazoacetate-d (349) 

 

Unfortunately, the attempted synthesis of the 3-(9-anthryl)aziridine-2-carboxylate 

(360) was unsuccessful, with no aziridination being observed after 72 hours. A repeat of 

the reaction utilising the one-pot procedure gave the same results, with imine being formed 

successfully, but no further reaction to the aziridine being observed (Scheme 142).  

 
Scheme 142: Attempted syntheses of the 3-(9-anthryl) substituted aziridine-2-carboxylate cis-(360) 
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There are two potential reasons for the lack of reaction seen during the attempted 

synthesis of cis-(360). The first of these being that free rotation of the anthracenyl group 

could lead to steric disfavouring of the required angles for nucleophilic attack upon the 

imine (361) (Figure 78), effectively preventing approach of the weakly nucleophilic alkyl 

diazoacetate (in this case tBDA-d (349)). 

 
Figure 78: Hartee-Fock optimised structure of the anthracenyl functionalised imine (361) and 

representation of the disfavoured nucleophilic attack, due to free rotation of the 9-anthracenyl group 

  

The second potential reason for the lack of reaction is that the 9-anthracenyl group 

of the imine (361) may be simply too large to be accommodated by the catalyst (S)-(289). 

As has been hypothesised previously (See 4.2.4: Hypothesis upon the enantioselectivity of 

the asymmetric one-pot aziridination reaction), substrate imines are believed to be 

accommodated within the steric ‘shielding’ of the 3,3’-(9-anthracenyl) functionalities of 

the catalyst (289). Thus potentially, if the 9-anthracenyl functionality of the imine (361) 

encounters significant steric interactions with the catalyst, preventing approach, 

protonation may not occur; resulting in the lack of reaction observed. This potential effect 

can be shown visually by considering the MM2 minimised structure of catalyst (S)-(289), 

showing the ‘shielding’ effect of the 3,3’-(9-anthracenyl) functionalities (Figure 79). 

 
Figure 79: MM2 optimised structure of (S)-(289), and representation of the potential steric interaction 

of the 9-anthracenyl group of imine (361) with the ‘shielding’ 3,3’-(9-anthracenyl) groups of (S)-(289), 

potentially preventing approach and protonation 
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 Having synthesised aromatic, heteroaromatic, mono- and poly- halogenated, 

bicyclic, nitro, and cyano functionalised enantioenriched C2 deuterated aziridines, the final 

C3 functionalisation to be tested was a masked phenolic group. To this end, 4-

hydroxybenzaldehyde was reacted with Fmoc chloride in order to produce the masked 

hydroxy species ((362), Scheme 143) in accordance with literature procedures.282 (362) 

was submitted to the asymmetric one-pot C2-deutero aziridination procedure, utilising 1 

equivalent of 2-tert-butoxy aniline (307), 1.1 equivalents of tBDA-d (349), and 10 mol % 

(R)-(289) at -80 C.  The desired aziridine cis-(363) was obtained in a yield of 78%, with a 

deuterium incorporation of >85%. Somewhat disappointingly however, the enantiomeric 

excess of cis-(363) was shown to be only 66%. 

 
Scheme 143: Synthesis of (362) and C2-deuterated aziridine cis-(363) 

 

 As the aziridination reaction that had been developed seemed tolerant to changes 

upon the C3 substitution, the next logical step was to test the tolerance to C2 substitution; 

that is, the use of differing deuterated alkyl diazoacetates apart from tBDA-d (349). 

Therefore, a series of six aziridinations were attempted utilising various alkyl diazoacetates 

(Scheme 144); these being iso-propyl diazoacetate-d (iPrDA-d (364)), allyl diazoacetate-d 

(365), and propargyl diazoacetate-d (366). iPrDA-d (364) was prepared utilising the same 

approach as that applied to the synthesis of EDA-d (334) and tBDA-d (349), that is 

treatment with excess deuterium oxide, and potassium carbonate (See 5.1.2: Deuteration of 

ethyl diazoacetate); whereas allyl diazoacetate-d (365) and propargyl diazoacetate-d (366) 

were prepared during the work of Bachera which is not included here.283 
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Scheme 144: Asymmetric aziridination reactions attempted utilising αααα-deuterated iso-propyl (364), 

allyl (365), and propargyl (366) diazoacetates 

 

 Disappointingly, the reactions attempted utilising (366) were seen not to proceed 

either at -80 °C, or room temperature. However, reactions with iPrDA-d (364) and allyl 

diazoacetate (365) were successful, and the products of these are shown in Figure 80. 

 

 

Figure 80: Deuterated aziridines cis-(367) to cis-(370) synthesised utilising αααα-deuterated iso-propyl 

(364), and allyl (365), diazoacetates 

 

 As shown within these examples, the reaction seems to be tolerant to the 

structurally diverse alkyl diazoacetates, with good yields (50 – 80%), and good 

enantiomeric excesses (60 - 96%) achieved. It should be noted that the loss of deuterium 

incorporation (expected at >90%, found to be >70%), and potentially e.e. within cis-(370) 

came about due to experimental error, wherein an iso-propanol leak occurred, 

contaminating the reaction. 

 Characterisation of the aziridines shown in Figure 80 was carried out 

predominantly by 1H-NMR spectroscopy, 13C-NMR spectroscopy, and HRMS analysis. 

Aziridine formation was confirmed by the presence of the C3-H singlet (3.62 ppm cis-

(367); 3.52 ppm cis-(368); 3.49 ppm cis-(369); 3.42 ppm cis-(370)) within the 1H-NMR 

spectra, while integration of these peaks against the residual C2-H peaks enabled 

calculation of the deuterium enrichment levels. The coupling constants of the residual C2-

H peaks also confirmed the cis- stereochemistry of the aziridines, with the coupling 
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constants being well within the 5 – 9 Hz range expected for a cis- aziridine (6.8, 6.6, 6.4, 

and 6.5 Hz respectively).266 

Incorporation of the differing alkyl diazoacetates was confirmed by the 

characteristic CH(CH3)2 septet of iso-propyl diazoacetate (4.81 ppm cis-(367); 4.87 ppm 

cis-(368)), or the signals for the allyl-CH and allyl-CH2 of allyl diazoacetate (5.72-5.56, 

and 4.49-4.33 ppm respectively within cis-(369); 5.72-5.58, and 4.50-4.30 ppm 

respectively within cis-(370)). 

Final confirmation of the synthesis of aziridines cis-(367) − (370) was provided by 

HRMS, with mass ions being detected at the required m/z values (cis-(367) 356.2082 

[M+H] + (theoretical 356.2079); cis-(368) 380.2079 [M+H]+ (theoretical 380.2079); cis-

(369) 378.1923 [M+H]+ (theoretical 378.1922); cis-(370)  431.1 [M+H]+ (sample was not 

sent for HRMS due to low deuterium incorporation, quoted value is for ESI-MS). 

 Finally, it was decided to attempt a one-pot deuterated asymmetric aziridination 

utilising 2-tert-butoxy-4-methoxy aniline (335), 4-nitrobenzaldehyde, and α-deuterated 

tert-butyl diazoacetate (349), producing the aziridine cis-(373). Gratifyingly, the reaction 

was successful, leading to a good yield of 65%, and an e.e. of 95%. (Scheme 145).  

 

 
Scheme 145: Synthesis of N-substituted aziridine-2-carboxylate ester cis-(373) 

 

This reaction was designed to test the differences in e.e. which occur upon 

changing the amine substituent within the one-pot reaction; as within the work of Pesce, 

the use of (335) had been shown to reduce the e.e. of aziridines it was included within by 

ca. 5% compared to 2-tert-butoxy aniline (Scheme 146).268 Thus, the e.e. of 95% achieved 

was unexpected. 

 
Scheme 146: The effect of utilising 2-tert-butoxy-4-methoxy aniline in the place of 2-tert-butoxy aniline 

within the asymmetric aziridination work of Pesce 



 152 

The synthesis of cis-(373) was also considered important as it had been shown by 

Bew et al that with the inclusion of the N-(4-methoxy-2-tert-butoxy)phenyl substituent, the 

subsequent aziridine was amenable to cleavage of the N-substitution; thus yielding the NH 

aziridine product (374) (as shown in Scheme 147). This potential cleavage of the N-

substitution was a critical step in the synthesis of rac-(+)-chloramphenicol (282) from an 

aziridine similar to cis-(373) (Scheme 147).224  

 
Scheme 147: Synthesis of NH aziridine (374), and rac-(+)-chloramphenicol (282) from an aziridine 

similar to cis-(373); carried out by Pesce268 

 

5.2.3: Asymmetric Synthesis of C2-deuterated Aziridines – Summary and Conclusions 

 In summary, within this chapter the syntheses of various C2 deuterated 

enantioenriched aziridine-2-carboxylates have been demonstrated. Evidence (including 

HRMS and 1H-NMR) has been presented to show high levels of deuteration (in the main 

>95%). As well as high deuterium incorporations, the enantioselectivity of the reaction is 

high, with enantiomeric excesses as high as 99% demonstrated (i.e. the synthesis of tert-

butyl 1-(2-tert-butoxyphenyl)-3-(pyridin-2-yl)-2-deuteroaziridine-2-carboxylate; cis-

(359)). Also, tolerance for varying substitution on all positions of the aziridine ring has 

been demonstrated; i.e. differing alkyl diazoacetates (ethyl, tert-butyl, iso-propyl, and 

allyl), differing amine constituents (N-(2-tert-butoxy-4-methoxy)phenyl; N-(2-tert-

butoxy)phenyl), and differing starting aldehydes (incorporating aromatic, polycyclic, 

heteroaromatic, halogenated, and electron withdrawing functionalities). 

 Within the development of this method, various phenomena have been investigated 

including the possibility of both primary (5.1.6: Determination of a potential primary 

kinetic isotope effect) and secondary (5.1.3: Development of deuteration techniques – 

Initial aziridination reactions) kinetic isotope effects arising from the use of either 

deuterated pyridinium triflate, or deuterated alkyl diazoacetates. 
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Scheme 148: General scheme for the deutero aziridination chemistry developed thus far 

Logically, the next step of development of the project would be the synthesis of C3 

deuterated aziridines utilising the one-pot asymmetric aziridination protocol, and studies 

towards this goal are included within the following chapter. 
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Chapter 6: Studies towards the Synthesis of C3- and C2-, C3-deuterated Aziridines 

6.1.1: Synthesis of Deuterated Aldehydes – Introduction 

 In a similar manner to the synthesis of C2-deuterated aziridines, the approach taken 

to develop C3-deuterated aziridines involved the introduction of deuterium within the 

synthesis as opposed to the use of H/D exchange onto pre-synthesised aziridines. In order 

to facilitate this, formyl deuterated benzaldehydes were required. A search of the literature 

yielded several general methods, utilising readily available starting materials including: 

reduction of either carboxylic acids or esters, with deuterated lithium aluminium hydride 

followed by re-oxidation (Fitzpatrick et al),284 or formation of an intermediate 

morpholinoacetonitrile, or dithiane derived species which could be deprotonated and 

subsequently quenched with deuterium (Kirby et al, Chikashita et al).285,286 These 

methodologies are summarised in Scheme 149. 

 

 
Scheme 149: Summary of the general methods within the literature for the production of formyl 

deuterated benzaldehyde derivatives 

 

 The method chosen was based upon the work of Kirby et al,285 involving the 

production of morpholineoacetonitrile species (Scheme 150). This procedure relies upon 

the ability of the intermediate morpholino species to stabilise a negative charge; allowing 

deprotonation and quenching with deuterium oxide in order to generate the subsequent 

deuterated morpholino species, which can then be hydrolysed to afford the desired formyl 

deuterated aldehyde. 
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Scheme 150: Synthesis of formyl deuterated aldehydes by Kirby et al 

 

This method was chosen as the intermediate morpholino species are crystalline 

solids allowing easy handling, and may also be stored for extended periods of time. This 

methodology had also been utilised in recent publications; including the synthesis of 15N-

labelled β-deuterated phenylalanine by Curley et al,286 which suggested it was a reliable 

method.  

 

6.1.2: Synthesis of Deuterated Aldehydes – Morpholinoacetonitrile Methodology 

 As an initial test of the Kirby conditions,285 it was decided to synthesise a range of 

deuterated benzaldehyde derivatives that had been successfully employed as the proteo- 

form within the asymmetric one-pot aziridination methodology described in Chapter 5. 

Hence, benzaldehyde, 4-fluorobenzaldehyde, 4-chlorobenzaldehyde, 4-nitrobenzaldehyde, 

4-cyanobenzaldehyde, 4-benzyloxybenzaldehyde, and cyclohexylcarbaldehyde were 

treated according to the methods shown in Scheme 151. During these initial reactions, 

extreme care was taken due to the procedure requiring the addition of perchloric acid to 

morpholine. However, it was found that the addition is only mildly exothermic, and no 

violent reactions were noted.  

 

 
Scheme 151: Synthesis of morpholinoacetonitrile species (374) - (380) 

 

 The production of the desired morpholinoacetonitrile species was confirmed 

predominantly by 1H-NMR and 13C-NMR spectroscopy, with final confirmation by 

HRMS. Of particular interest within the 1H-NMR spectra were the CH peaks relating to the 

central carbon (4.82 ppm (374), 4.78 ppm (375), 4.78 ppm (376), 4.89 ppm (377), 4.87 

ppm (378), 4.75 ppm (379), 3.07 ppm (380)) as it was loss of this signal which would 
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indicate deuteration of the morpholino species. As would be expected, the COH peaks for 

each aldehyde starting material were no longer present. 

Having synthesised the required precursors (374) – (380), the deuteration and 

hydrolysis reactions shown in Scheme 150 were carried out upon 2-morpholino-2-phenyl 

acetonitrile (374) (Scheme 152). The reaction appeared to proceed smoothly, with 

deuteration being observed by 1H-NMR spectroscopy (via a reduction of intensity of the 

CH peak at 4.82 ppm). However, when hydrolysis of the intermediate (382) was attempted, 

the final yield of formyl deuterated benzaldehyde (383) was a disappointing 45%. Despite 

this, >90% deuterium incorporation by 1H-NMR spectroscopy was achieved. 

 

 
Scheme 152: Synthesis of formyl deuterated benzaldehyde (383), utilising the Kirby et al methodology 

 

6.1.2: Synthesis of Deuterated Aldehydes – Further Comments 

 Although the above methodology was successful in synthesising deuterated 

benzaldehyde, results were difficult to obtain in a consistent manner. Yields of all steps of 

the procedure varied significantly (± 15%) with each repeat; in some cases, hydrolysis of 

the deuterated morpholino species would lead to complete, or partial reversal of the 

deuteration; leading to recovery of a partially, or fully proteo- aldehyde. 

 At a similar time to this research, further work was ongoing under a similar project 

within the research group; leading to the availability of deuterated aldehydes in a more 

reliable manner. Thus, use of the Kirby procedure285 was discontinued, in favour of the 

deuterated aldehydes produced by the work of Bachera, involving treatment of the desired 

aldehyde with sodium cyanide, in D2O, for 5 days. 283 

 

6.2.1: Asymmetric Synthesis of C3-deuterated Aziridines – Introduction 

 Having demonstrated the synthesis of deuterated benzaldehyde (383), and with 

various deuterated aldehydes available from the work of Bachera,283 the next step was to 

attempt the asymmetric synthesis of C3-deuterated aziridine-2-carboxylates utilising the 

methodology developed in Chapter 5.  

As confidence in the one-pot aziridination methodologies had grown with their 

further development, it was decided to utilise one-pot procedures in the synthesis of the 
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following aziridines. One-pot methodology also allowed for minimum exposure of the 

deuterated aldehyde substrates to air and moisture, in the hope that deuteration levels 

would remain high within the ongoing synthesis. 

 At this point, the aim of the project had been extended into development of the one-

pot aziridination and deuteration techniques in order to enable a ‘dialled in’ approach to 

aziridine synthesis (Appendix 7). i.e. selective incorporation of deuterium at the C2 or C3 

positions in high levels could be chosen (or ‘dialled in’) via use of either deuterated 

aldehydes or alkyl diazoacetates; along with selectivity of enantioenrichment, with 

enantiomers able to be selectable via the use of either the (S)- or (R)- enantiomers of the 

catalyst (289). 

 

6.2.2: Asymmetric Synthesis of C3-deuterated Aziridines – Synthesis of aziridines cis-(383) 

to cis-(388), cis-(392) to cis-(393), and cis-(398) to cis-(399) 

 The first reaction attempted within this group was the one-pot asymmetric C3-

deutero aziridination of benzaldehyde-d (382) with 2-tert-butoxy aniline (307), and tBDA 

(280). The results of this reaction are shown in Scheme 153. 

 

 
Scheme 153: One-pot asymmetric synthesis of C3 deuterated aziridine cis-(383) 

 

The reaction proceeded as expected, yielding the desired aziridine cis-(383) in a 

yield of 65% and e.e. of 88%. Further to this, subsequent 1H-NMR spectroscopic analysis 

revealed the C3-deuterium incorporation to be >90%. The 1H-NMR spectrum is shown in 

Figure 81, and it can clearly be seen that the doublet for C3-H (expected at 3.43 ppm) has 

been suppressed. A comparison with the 1H-NMR spectrum of the C2-deutero aziridine 

cis-(351) shows that the singlet remaining for the aziridine ring hydrogen atom switches 

position between those expected for C3-H (3.43 ppm) and C2-H (2.97 ppm), depending 

upon which position is deuterated, as would be expected. 
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Figure 81: 1H-NMR data for cis-(383), and comparison of the C2-H, and C3-H singlets present within 

the 1H-NMR spectra of cis-(351) and cis-(383) 

 

 A further point of interest within the 1H-NMR spectrum of cis-(383) was the 

coupling constant of the residual C3-H doublet, this being 6.6 Hz. This value is within the 

range of expected vicinal coupling constants for a cis-aziridine (5 – 9 Hz),266 and also 

offers good correlation with the proteo- version of cis-(222) synthesised by Pesce (J2,3 = 

6.7 Hz);268 confirming the cis- stereoselectivity of the reaction. 

Having demonstrated the one-pot asymmetric synthesis of a C3-deuterated 

aziridine, the next step was to test the tolerance of the procedure to differing C3 

substitution. To this end, aziridines cis-(384) to cis-(388) were synthesised (under the 

conditions shown in Scheme 153) utilising halogenated deuterated aldehydes 4-

fluorobenzaldehyde-d, 4-bromobenzaldehyde-d, 4-chlorobenzaldehyde-d, 3-

chlorobenzaldehyde-d, and 2-chlorobenzaldehyde-d. The results of these are shown in 

Figure 82. 
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Figure 82: Halogenated C3-deuterated aziridines cis-(384) to cis-(388) 

 

 As can be seen from the yields and enantioselectivities shown in Figure 82, some 

substrates performed better than others, with cis-(384) and cis-(388) providing the best 

overall results, with yields of 72% and 65% respectively, and high e.e.s of 86% and 83%. 

Deuterium incorporation was universally high among the set, in the main being a 

conservative >90% obtained by integration of the C2-H singlet peak present within the 1H-

NMR spectra of cis-(384) – cis-(388) (found at 3.03, 3.04, 3.01, 3.05, and 3.08 ppm 

respectively) against the residual C3-H doublet. The coupling constants of the residual C3-

H doublet also confirmed the cis-stereochemistry of the C2 and C3 substitution in cis-(384) 

– cis-(388), with coupling constants of 6.5, 6.8, 6.7, 6.8, and 6.7 Hz respectively. 

 The formation of the desired aziridines cis-(384) – cis-(388), and the presence of 

deuterium within the structures was also confirmed by HRMS; with [M+H]+ ions being 

detected for each product at the required m/z (cis-(384) 387.2192; cis-(385) 447.1391; cis-

(386) 403.1889; cis-(387) 403.1893; cis-(388) 403.1894). 

 Having synthesised halogenated C3-deuterated aziridines, the next set of substrates 

to be attempted were those bearing C3-electron withdrawing substituents. To this end, cis-

(392) and cis-(393) were synthesised utilising 4-nitrobenzaldehyde-d, and 4-

cyanobenzaldehyde-d. 
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Figure 83: Syntheses of C3-deutero aziridines cis-(392) and cis-(393) bearing C3 electron withdrawing 

substituents 

 

As shown in Figure 83, cis-(392) and cis-(393) were produced in moderate yields 

of 53% and 41% respectively, with very good enantioselectivity observed (93% and 89% 

e.e. respectively). More relevantly to the project, deuterium was incorporated at the C3 

position in enrichment levels of >95% and >90% respectively, as determined by 1H-NMR 

spectroscopy; which also confirmed the cis-stereochemistry of aziridines cis-(392) and cis-

(393), with coupling constants for the residual C3-H doublets being 6.2 and 6.7 Hz 

respectively; well within the 5 – 9 Hz range expected for a cis-aziridine.266 

 It was noted at this stage that both yields and the achieved enantioselectivities of 

the aziridines produced appeared to be lower than the corresponding C2 deuterated 

aziridines produced vide supra. The decrease in yield could be brought about as a result of 

slower reactions due to a secondary kinetic isotope effect during imine formation.  

 Secondary KIE in this case would come about as a result of changes in the Zero 

Point Energy of the relevant transition state, arising from differences in the vibrational 

frequency of the formyl C-D or C-H bond. These differences become significant upon 

changing the hybridisation of the C-H or C-D bond. Thus, the relevant transition states 

within imine formation are the initial nucleophilic attack of the amine upon the aldehyde 

carbonyl, and the elimination of water to form the imine (Figure 84).  

In order to provide evidence for this potential secondary KIE, Gaussian calculations 

of the relevant transition states resulting from the reaction of 4-cyanobenzaldehyde with 2-

tert-butoxy aniline (307) were carried out (Figure 85). This allowed calculation of the 

vibrational frequencies of the formyl C-H and C-D bonds during the transition states TS1 

(394) and TS2 (395), and thus calculation of the differences in Zero Point Energy between 

the proteo- and deutero- forms.  
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Figure 84: Gaussian calculations (carried out at B3LYP/6-11g theory level) and comparison of the 

ZPEs of TS1 and TS2 during imine formation in both proteo- and deutero- form 

 As shown in Figure 84, the ∆ZPE between the proteo and deutero forms of TS1 is 

very small (ca. 0.5 kJ/mol), suggesting little, or no KIE is present at this step. ∆ZPE for 

TS2 is also very small (ca. 0.06 kJ/mol), suggesting the presence of a small, normal 

secondary KIE. However, when taken together, these two effects essentially cancel out; 

suggesting that either a higher level of theory is required to account for the KIE, or another 

effect is present. It is worthy of note that the calculations used did not take into account 

conformers of the transition states, or the effects of solvation. Thus, the results of the 

calculation only allow for a very basic prediction.  

 Despite the lack of evidence from computational work, evidence for the reduced 

rate of imine formation leading to increased reaction time was provided by the synthesis of 

cis-(392) via the preformed imine N-(2-tert-butoxyphenyl)-4-nitrobenzimidoyl deuteride 

(397). The use of (397) as the starting material led to a significantly reduced reaction time 

of ca. 48 hours; as opposed to ca. 72 hours for the one-pot approach (Scheme 154).  
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Scheme 154: Comparison of the required reaction times for the synthesis of cis-(392) utilising one pot, 

or stepwise synthesis routes; demonstrating the potential presence of a secondary KIE within the one-

pot procedure 

 

Thus (with the decrease in reaction time when (397) was utilised as starting 

material, as evidence), it can be concluded that the increased reaction times observed when 

utilising deuterated aldehydes come about as a result of slower initial imine formation; 

potentially due to a secondary KIE. 

 Following on from the above examples, it was decided to attempt aziridinations 

utilising a range of alkyl diazoacetates. To this end, one-pot aziridinations were attempted 

utilising 4-bromobenzaldehyde-d; and EDA (261), or iPrDA (320), as the carbon sources. 

Carrying out the standard one-pot asymmetric aziridination protocol, aziridines cis-(398) 

and cis-(399) were produced (Scheme 155). 

 
Scheme 155: Compounds cis-(398) and cis-(399) 

 

 Characterisation of cis-(398) and cis-(399) was predominantly carried out by 1H-

NMR spectroscopy, and HRMS; with the desired C2-H singlet present in the 1H-NMR 

spectra of both cis-(398) and cis-(399) at 3.10 ppm. Incorporation of the desired alkyl 

diazoacetates was confirmed by the presence of the characteristic CH(CH3)2 septet of the 

iso-propyl residue (in the case of cis-(398)) at 4.89 ppm; or the CH2 multiplet (4.21-3.87 
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ppm) and CH3 triplet (1.09 ppm) of the ethyl residue in the case of cis-(399). 1H-NMR 

spectroscopy also allowed confirmation of the cis-stereochemistry of (398) and (399), with 

both showing residual C3-H doublets with coupling constants of 6.6 and 6.5 Hz 

respectively. HRMS provided final confirmation of the synthesis of cis-(398) and cis-

(399), with [M+H]+ ions found at the required m/z (cis-(398) found: 433.1233, required: 

433.1232; cis-(399) found: 419.1082, required: 419.1075). 

Interestingly, there was no noticeable drop in enantioselectivity in changing from 

the use of tert-butyl diazoacetate (i.e. cis-(385), Figure 82, 83% e.e.) to iso-propyl 

diazoacetate (i.e. cis-(398), Scheme 155, 84% e.e.); as expected, however, a roughly 10% 

loss in enantioselectivity was experienced upon changing to ethyl diazoacetate (i.e. cis-

(399), Scheme 155, 74% e.e.). This loss in e.e. upon switching to ethyl diazoacetate was 

expected as a similar effect was noted by Pesce during the synthesis of chiral non-racemic 

N-substituted aziridine-2-caboxylate esters (Scheme 156).268  

 
Scheme 156: Demonstration of the loss of enantioselectivity upon switching from tert-butyl 

diazoacetate to ethyl diazoacetate; carried out by Pesce 

 

This effect can be rationalised by consideration of the MM2-minimised structure of 

the imine 4-bromo-N-(2-tert-butoxyphenyl)benzimidoyl deuteride (400) (formed from 4-

bromobenzaldehyde-d, and 2-tert-butoxy aniline) within the cavity of catalyst (S)-(289) 

(Figure 85). This demonstrates the high steric demand around (400) during the transition 

state; thus, attack from the disfavoured face of (400) is more likely with an alkyl 

diazoacetate bearing a less bulky alkyl substituent i.e. ethyl vs. tert-butyl or iso-propyl, 

leading to the observed lower e.e.s. 
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Figure 85: Front and side MM2 minimised structures of imine (400) within the cavity of (S)-(289), 

demonstrating the steric demand about the C=N bond 

 

6.2.3: Asymmetric synthesis of C3-deuterated Aziridines – General Remarks 

 Having switched from the use of deuterated alkyl diazoacetates to deuterated 

aldehydes, it was found that generally the developed one-pot methodologies for aziridine 

formation were tolerant to this change, with yields of 41 - 72% and e.e.s of 64 - 93% 

achieved. However, several points of interest arose during this screen. It was found that, in 

general, yields were lower, and reaction times longer when deuterated aldehydes were used 

in the place of deuterated alkyl diazoacetates. This is presumed to be due to a secondary 

kinetic isotope effect when utilising deuterated aldehydes, although computational work 

has not provided conclusive evidence for this. 

The secondary kinetic isotope effect is presumed to come about during imine 

formation, meaning that the imine formation is significantly slower with a deuterated 

aldehyde. This effect, when compounded by the low reaction temperatures required, led to 

increased reaction times (Figure 84). As during the project the aim was to develop a useful 

procedure, many reactions were cut short due to long reaction times, meaning that 

possibly, these yields would be increased if reaction times had been allowed to run beyond 

72 hours. To a certain extent this was confirmed by carrying out the synthesis of cis-(392) 

from a preformed deuterated imine (Scheme 154). The subsequent asymmetric 

aziridination was then seen to proceed in a shorter reaction time of ca. 48 hours, along with 

a yield more consistent with those expected. 

Throughout the syntheses shown during this chapter, deuterium incorporation was 

high, and the incorporation levels stable; again confirming the stability of the aziridine C2 

and C3 carbons to H/D exchange. The aziridines synthesised were able to be stored on the 

bench at room temperature for several weeks with no appreciable deterioration, and when 

stored at reduced temperature under nitrogen, the products seem to be stable over an 

extended period (>12 months). This property becomes important when the potential uses of 
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aziridines as intermediates in synthesis are considered, and especially, the potential uses of 

deuterated aziridines. 

 

6.3.1: Asymmetric Synthesis of C2-, C3-deuterated Aziridines – Introduction 

As both deuterated aldehydes and deuterated alkyl diazoacetates were now 

available, and having developed a pool of experience in synthesising and purifying 

deuterated aziridine products; at this point the aim of developing a ‘dialled in’ 

methodology for the synthesis of aziridines was becoming more feasible. 

 Having demonstrated the synthesis of both C2 and C3 deuterated aziridines, the 

next development was a combination of the two methods in order to produce C2-, C3-, di- 

deuterated aziridines. The following aziridinations were carried out in an attempt to 

demonstrate the potential to choose single or double deuteration within the asymmetric 

aziridine product, which was a key aim of the ‘dialled in’ methodology. 

 

6.3.2: Asymmetric Synthesis of C2-, C3-deuterated Aziridines – Synthesis of aziridines cis-

(401) to cis-(408) 

 The first di- deuterated aziridine to be synthesised utilising the one-pot asymmetric 

aziridination protocol was the simple phenyl derivative cis-(401). The reaction was carried 

out utilising standard one-pot methods, leading to the production of the desired aziridine in 

a yield of 72% and an enantiomeric excess of 67% (Scheme 157). 
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Scheme 157: Synthesis of cis-(401), and expansion of the 2.8 – 3.6 ppm region of the 1H-NMR spectra 

of cis-(351), cis-(383), and cis-(401) showing the effect of deuteration at the C2, C3, and C2-C3 

positions 

 

 As shown in Scheme 157, confirmation of the deuterium incorporation levels 

within cis-(401) was provided by 1H-NMR spectroscopy. Clearly, both C2-H (expected at 

2.9 ppm) and C3-H (expected at 3.4 ppm) doublets had been suppressed.268 Integration of 

the residual C2-H and C3-H peaks at 2.98 and 3.42 ppm showed deuterium incorporation 

of >90% at both C2 and C3 positions, although this value should be considered to contain 

an error of ca. 5% due to potential error within the integration of 1H-NMR spectra.278 The 

presence of cis-(401) was further supported by HRMS, and LC-MS, both showing peaks at 

m/z 370(.2348) consistent with the doubly deuterated [M+H]+ ion. 

 One point of interest is the loss of enantioselectivity within cis-(401) (e.e. 67%) 

when compared to the equivalent C2 or C3 deuterated aziridines cis-(351) (e.e. 81%) and 

cis-(383) (e.e. 88%). Intrigued by this, and wishing to demonstrate the applicability of the 

aziridination methodology, further aziridinations were carried out, focused upon producing 

halogenated aziridines cis-(402) and cis-(403), along similar lines of inquiry as used in 

previous chapters (See 5.2.2 and 6.2.2). 
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Figure 86: Synthesis and HRMS data for C2-C3 doubly deuterated aziridines cis-(402) and cis-(403) 

 

 As can be seen in Figure 86, both cis-(402) and cis-(403) were produced in 

reasonable yields of 69% and 68% respectively. These are in line with those expected, with 

little difference between these materials and the corresponding C3 deuterated aziridines 

cis-(384) (C3-d 4-fluorophenyl substituted, 72% yield), and cis-(385) (C3-d 4-

bromophenyl substituted, 65% yield). 

 Confirmation of the synthesis of cis-(402) and cis-(403) was obtained primarily by 
1H-NMR spectroscopy and HRMS; with integration of the residual C2-H and C3-H peaks 

(3.03 and 3.45 ppm, cis-(402); 3.04 and 3.42 ppm, cis-(403)) confirming >90% deuterium 

incorporation in both products at the C2 and C3 positions; and HRMS showing [M+H]+ 

peaks at m/z values consistent with C2-C3 deuteration (cis-(402) found 388.2252, required 

388.2252; cis-(403) found 448.1376, required 448.1378; see Figure 86). 

 Perhaps unexpectedly (considering the loss of e.e. seen within the synthesis of cis-

(401)), the enantioenrichment of the C3-para-bromophenyl aziridine cis-(403) was higher 

than that seen within the corresponding C3 singly deuterated species cis-(385) (83% e.e.), 

bringing the results back into line with those of the C2-deuterated product cis-(350) (95% 

e.e.). This is an unusual result, as it suggests that within this example, single deuteration of 

the C3 position has a significantly adverse effect upon the enantioselectivity of the 

reaction, which is subsequently reversed upon deuteration of both the C2 and C3 positions 

(Figure 87). 
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Figure 87: Comparison of the yields and e.e.s achieved with C2, C3, and C2-C3 deuteration of 

aziridines bearing C3-para-bromophenyl substitution 

 

 With a view to investigating the effects of varying substitution patterns upon the C3 

position, a set of C3-chlorophenyl substituted C2-C3 deuterated aziridines were 

synthesised, cis-(404) to cis-(406). Figure 88 shows the results of these syntheses. 

 

 
Figure 88: Effect of varying substitution position on yields and e.e. of chloro- substituted mono- and di- 

deuterated aziridines 

 

 As can be seen, the enantioselectivities of these reactions were of the same order as 

those of the corresponding C3-deuterated aziridines (64 – 71%, cis-(386) – cis-(388)), with 

a similar pattern emerging concerning the effect of substitution position. That being the 

enantioselectivity of the reaction drops as ring substitution position is changed from 4- to 

2-, with e.e. decreasing in the order 4- > 3- > 2-.  
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 The final C3 substitution to be tested was that of an electron-withdrawing 

functionality. Thus, cis-(407) was synthesised, furnished with an electron-withdrawing C3-

(para-nitro)phenyl group, from 4-nitrobenzaldehyde-d, 2-tert-butoxy aniline (307), and 
tBDA-d (349). cis-(407) was afforded in a 57% yield from the one-pot aziridination 

procedure, while 1H-NMR spectroscopy confirmed a deuterium incorporation of >90% at 

both the C2 and C3 positions (via integration of the residual C2-H and C3-H peaks at 3.13 

and 3.50 ppm respectively). HRMS also confirmed the C2- C3- deuteration, with the 

[M+H] + ion found at m/z 415.2196 (theoretical m/z 415.2197) 

Gratifyingly, the enantioselectivity of the reaction was excellent, with an e.e. of 

97% confirmed by chiral HPLC analysis (Figure 89). This e.e. was unexpected, as it was 

higher than those achieved previously with both the C2-deutero (cis-(356), 88% e.e.) and 

C3-deutero (cis-(392), 93% e.e.) derivatives of this aziridine. 

 
Figure 89: Yield, e.e., and chiral HPLC trace for cis-(407) 

 

 The final test to be carried out upon the tolerances of the deuterated aziridination 

protocol was that of variation of the C2 substitution. Thus the synthesis of cis-(408) a C2-

C3- di-deuterated C3-(para-bromo)phenyl-substituted aziridine bearing a C2-iso-propyl 

ester (synthesised from 4-bromobenzaldehyde-d, 2-tert-butoxy aniline (307), and iPrDA-d 

(364)) is shown in Scheme 158. 

 

 
Scheme 158: One-pot asymmetric synthesis of cis-(408) 
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 The reaction proceeded well, with a yield of 76%, and an e.e. of 87%. Deuterium 

incorporation within cis-(408) was determined by the integration of the residual C2-H 

(3.09 ppm) and C3-H (3.46 ppm) peaks within the 1H-NMR spectrum as >90%. 

Incorporation of the desired C2 iso-propyl ester was confirmed by the presence of the 

characteristic CH(CH3)2 septet of the iso-propyl residue at 4.89 ppm within the 1H-NMR 

spectrum. Finally, the presence of the di-deuterated species cis-(408) was confirmed by 

HRMS, with [M+H]+ ions detected at m/z 434.1296 (theoretical 434.1294). 

 

6.4: Conclusions upon the synthesis of C2-, C3-di-deuterated Aziridines, and the overall 

‘Dialled in’ Methodology 

 As is demonstrated in this chapter, various C2, C3 di-deuterated aziridines have 

been synthesised using a one-pot asymmetric aziridination procedure, generating 

deuterated products in moderate to good yields (51 – 76%), and good to excellent 

enantiomeric excesses (52 – 97%).  The reaction has been shown to be tolerant to aromatic 

(Scheme 157), halogenated (Figures 86 – 88), and electron-withdrawing substituents 

(Figure 89), and also tolerant to the alteration of the alkyl diazoacetate used as the substrate 

carbon source (Scheme 158). 

 To this end, in this and the previous chapter, a ‘dialled in’ approach (Appendix 7) 

has been adopted for the integration of deuterium selectively into the C2, C3, or C2 and C3 

positions of aziridines, in a highly enantioselective procedure. The development present in 

this, and the preceding chapter (See Chapter 5: Studies towards the synthesis of C3-

deuterated Aziridines) led to the possibility of selecting the enantiomer, substitution, 

deuterium position, and alkyl diazoacetate substitution desired; and synthesising the 

corresponding aziridine in good yields, and in high enantioselectivity (Scheme 159). 

 
Scheme 159: Summary of the ‘dialled in’ synthesis of deuterated aziridines 
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The next development of this procedure was to attempt ongoing syntheses of 

materials from these aziridines, in order to test the potential viability of the ‘dialled in’ 

approach to the syntheses of useful materials, or natural products. The attempted utilisation 

of these aziridines in ongoing syntheses is the subject of the following chapter. 
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Chapter 7: Studies towards the ‘Dialled in’ Synthesis of Deuterated αααα-amino acid 

Derivatives 

7.1.1: Synthesis of Deuterated α-amino acids – Introduction 

 With the ongoing development of methods for the production of deuterated 

enantioenriched aziridines discussed within the previous chapters, it was decided to 

investigate the possibilities of utilising these as starting materials for the synthesis of 

potentially useful amino acids.  

 As described within the introduction of this text, the ring-opening chemistry of 

aziridines is a very large area of ongoing research, and as such it was decided to search for 

available chemistry which could be of use with the deuterated aziridines on hand. The 

chemistry which was settled on was that developed by Lee et al into the regioselective 

ring-opening of aziridines by molecular hydrogen catalysed by palladium. Kim et al found 

that treatment of aziridines with Pd(OH)2/C and hydrogen gas led to selective ring-

opening, breaking the nitrogen C2 bond, and forming an α-amino species.258-261 

 It was hoped that application of this methodology to the aziridine products obtained 

vide supra would lead to regioselective ring-opening, and thus, selective production of 

deuterated α-amino acid species. It was also anticipated that the deuteration levels obtained 

from the aziridine synthesis would be translated effectively into high levels of selective 

deuterium incorporation within the subsequent α-amino acid species. It is worthy of note 

that up to this point it had proven impossible to assign the absolute stereochemistry of the 

aziridines produced via the developed aziridination methodology. Thus, within the 

following work, the products and aziridines are referred to depending on the sign of their 

optical rotation. It is also noted within the experimental section which enantiomer of the 

catalyst (289) the starting aziridines were synthesised from. 

 

7.1.2: Synthesis of Deuterated α-amino acids – Synthesis of (409) to (428) 

 With the aim of producing α-amino acids, it was decided to attempt the ring-

opening methodology of Kim et al upon cis-(351); a C2 deuterated aziridine with simple 

C3 phenyl substitution. Kim et al had utilised stoichiometric amounts of palladium 

hydroxide on carbon in order to facilitate their hydrogenolysis reaction; however, in our 

case, it was decided initially to treat the aziridine under milder conditions. Thus, 20 mol % 

palladium hydroxide on carbon was employed, and the reaction was carried out under 43 

psi H2 at 30 °C (Scheme 160). Ethyl acetate was used as the solvent, as this offered the 

best solubilisation of the starting material. 
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Scheme 160: Synthesis of (+)-(409) 

 

 After 12 hours the uptake of hydrogen gas was seen to cease; suggesting 

completion of the reaction. After the reaction mixture was filtered through Celite® (in order 

to remove the catalyst), and the solvent was removed under reduced pressure, 1H-NMR 

spectroscopy revealed the reaction mixture to be remarkably clean; with only starting 

material and product present. Subsequent purification by column chromatography gave the 

desired product (409) in an excellent 93% yield.  

Deuterium incorporation within (409) was established by the relative integrations 

of the β-CH2 and residual α-CH peaks within the 1H-NMR spectrum at 3.11 and 4.20 ppm 

respectively; and was determined to be >85% (initially, a low deuterium content aziridine 

sample (>85%) was used as we were unsure that the reaction would work), a result which 

suggests no loss of deuterium incorporation during the hydrogenolysis reaction. Further 

evidence for the synthesis of (409) (and the presence of deuterium) was provided by LC-

MS and HRMS; with the required [M+H]+ ion being found at m/z 371(.2443) (theoretical 

[M+H] + m/z 371.2439). 

 Initially, it proved difficult to obtain an enantiomeric excess measurement for 

(409), as the enantiomers were inseparable utilising the Chiralpak AD-H chiral HPLC 

column available at the time. However, upon use of a differing HPLC column (Chiralcel 

OD, with a gradient CO2/iso-propanol system as the mobile phase), the e.e. was confirmed 

as 80%; this is within the experimental error of full retention of enantiopurity from the 

initial starting material (cis-(351), 81% e.e.). 

 Although the hydrogenolysis worked well, and only one major product was 

isolated, at the time uncertainty persisted as the nature of the regioselectivity of the 

hydrogenolysis reaction had not been confirmed. In order to confirm the regioselectivity of 

the ring-opening, and in order to move towards proving the generality of the method, it 

was decided to synthesise the β-deutero and α,β-deutero versions of (409), these being 

(410) and (411) respectively. The results of these reactions are summarised in Scheme 161. 
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Scheme 161: Synthesis of compounds (-)-(410) and (+)-(411) 

 

 As shown in Scheme 161, the yields of (410) and (411) were both excellent (92% 

and 90% respectively), along with good enantioselectivities of 71% e.e. and 70% e.e. 

respectively; demonstrating reasonable retention of stereochemistry from the starting 

materials cis-(383) (88% e.e.), and cis-(401) (67% e.e.). 

Deuterium incorporation within (410) and (411) was confirmed both by 1H-NMR 

integration (an error of ca. 5% should be considered due to the insensitivity of 1H-NMR 

integration),278 and mass spectrometry (LC-MS and HRMS), with [M+H]+ peaks being 

detected for (246) and (247) at 371(.2442), and 372(.2431) respectively. 

 The primary concern at this point was confirmation of the regioselectivity of the 

reaction. Analysis of the structures of (409), (410) and (411) allowed several predictions 

about which peaks would be expected within the 1H-NMR spectra between 2.5 and 5 ppm, 

i.e. the expected range for the α- and β- protons, along with the NH (Figure 90).288,289 

 

 

Figure 90: Predictions of the peaks within the 2.8 – 5 ppm range of the 1H-NMR spectra of the αααα- and 

ββββ- amino products from the ring-opening of (351), (383), and (401) 
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 With the predictions in hand, the α-selectivity of the ring-opening reaction was 

confirmed by comparison of the 1H-NMR spectra of (409), (410), and (411). COSY and 

HSQC data was also collected for compound (410), allowing the coupling within the 

molecule to be assessed. Thus, the 2.8 – 5 ppm region of the 1H-NMR spectrum of (409) 

contained one peak. This pair of doublets corresponds to the diastereotopic β-hydrogen 

atoms (3.11 ppm, 2H), however, the NH (expected at 4.80 ppm, 1H), was not present 

(possibly due to exchange). Despite this, the spectrum was still consistent with the 

predictions shown in Figure 90 for the α-amino product. Whereas, within the 1H-NMR 

spectrum of (410), the 2.8 – 5 ppm region contains three peaks (with relative integrations 

of 1:1:1), consistent with the NH (4.80 ppm), the singly deuterated β-position (3.11 ppm), 

and the final peak corresponding to the α-CH (4.19 ppm). Again, these are consistent with 

the expected peaks for the α-amino product. COSY coupling also supported these 

assignments, and is included in Appendix 6 along with 1H-NMR, 13C-NMR, and HSQC 

spectra of (410). Finally, as expected, the 1H-NMR spectrum of (411) contains two peaks 

within the region of 2.8 – 5 ppm; corresponding to the NH (4.80 ppm), and singly 

deuterated β-CH2 (3.11 ppm), consistent with the α-amino product. 

 
Figure 91: Comparison of the 2.8 – 5.0 ppm range of the 1H-NMR spectra of (409), (410), and (411) 

 

 Having demonstrated that the ring-opening hydrogenolysis behaved in the desired 

manner; and that the deuterium incorporation and, on the whole, enantioenrichment of the 

products (inherited from the starting material aziridines) was conserved during 
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hydrogenolysis; the substrate range was expanded to include bicyclic and heteroaromatic 

aziridines produced with the one-pot aziridination methodology. Therefore, cis-(201) and 

cis-(202) were submitted under the same reaction conditions detailed above (Scheme 160), 

those being 43 psi H2 at 30 °C for 12 hours. The results of these reactions are shown in 

Scheme 162.  

 
Scheme 162: Synthesis results for (+)-(412), (+)-(413) 

 
1H-NMR spectra of (412) and (413) confirmed the regioselectivity of the ring-

opening reaction to produce α-amino acids, with both compounds showing diastereotopic 

AB doublet peaks with integrations of 2H (at 3.29, and 3.40 ppm respectively) 

corresponding to the β-CH2 group present within each compound. Integration of these 

peaks against the residual α-CH peak at 4.31 and 4.28 ppm respectively confirmed 

deuterium incorporations of >90% for both compounds, roughly equal to that of the 

starting materials cis-(358) and cis-(359). 

The yields and enantioselectivities of the reactions were also good, although, a 

significant loss of enantiopurity was discovered upon chiral HPLC analysis of (+)-(412) 

(77% e.e. compared to 85% e.e. for the starting material, cis-(358)). This was unexpected, 

as the entering group at the C3 position is a hydrogen atom, therefore the stereochemical 

information at the C3 position is lost (as it is no longer chiral). Thus, any inversion or 

scrambling of stereochemistry must occur at the C2 position. However, it is unlikely that 

this is occurring through a simple acid catalysed racemisation, as the deuterium 

incorporation within (412) remains high; which would not be the case if acid catalysed 

racemisation were in effect, due to the relative abundances of protons vs. deuterons 

(Scheme 163). 
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Scheme 163: Mechanism of the acid catalysed racemisation of amino acids, demonstrating loss of 

deuterium 

 

Further development of the ring-opening methodology was carried out by the 

reactions of the para-chlorophenyl substrates cis-(195), cis-(225), and cis-(240) under the 

ring-opening conditions shown in Scheme 160. These conditions afforded the desired 

mono- and di- deuterated, α-amino products (414), (415), and (416) (see Figure 92) in 

excellent yields of 95%, 92%, and 98% respectively.  

 

 
Figure 92: Results for the syntheses of (414), (415), and (416) 

 

Deuterium incorporation within the examples shown in Figure 92 was again found 

to be high, with deuterium levels of >90% for (414) − (416) inclusively, as determined by 
1H-NMR spectroscopy (determined by the relative integrations of the β-CH2 (3.06 ppm), 

and α-CH (4.19 ppm) peaks). Unfortunately measuring the enantiomeric excess of these 

compounds by chiral HPLC analysis proved difficult with the columns and utilities 

available at the time. Analysis was attempted with standard solvent-based HPLC, as well 

as supercritical CO2 based systems, but none were capable of separating the two 

enantiomers to a sufficient degree to allow assignment of enantiomeric excess. Despite 

this, as the majority of syntheses within this chapter demonstrate, it is reasonable to 

consider that the enantiomeric excesses shown for the starting materials will have been, 

within reason, unaltered by the ring-opening reaction. Thus, it can be inferred that the e.e.s 

of (414) – (416) were ca. 67%, 71%, and 77% respectively. 
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Undeterred by the inability to separate the 4-chlorophenyl derived amino acid 

species, a further halogenated substrate was submitted to the ring-opening procedure; this 

being cis-(352). The reaction was successful, affording the desired para-

fluorophenylalanine derivative (417) in 95% yield (Scheme 164). 

 

 
Scheme 164: Synthesis of (417) from cis-(352) utilising 20 mol % Pd(OH)2/C 

 

 The regioselectivity of the ring-opening was confirmed by 1H-NMR spectroscopy, 

with AB doublet peaks present within the 1H-NMR spectrum at 3.09 ppm, integrating to 

2H, corresponding to the desired diastereotopic β-CH2 group of the α-amino product 

(417). Deuterium incorporation was also confirmed by 1H-NMR spectroscopy, with the 

relative integrations of the β-CH2 signal (3.09 ppm) and residual α-CH (4.19 ppm) 

showing deuterium incorporation of >90%. 

Unfortunately, separation of this compound proved difficult with the HPLC 

materials and methods available. Thus, it was decided to attempt a similar methodology as 

was applied in the case of the C3-pentafluorophenyl aziridine-2-carboxylate cis-(355) 

(Chapter 5, Scheme 139); this being removal of one tert-butyl group in order to deliver the 

required retention time for separation of enantiomers by chiral HPLC. 

 A literature search revealed a multitude of methods available for the cleavage of 

tert-butyl esters (it was decided to focus upon the ester functionality, as it was believed 

cleavage would be more facile, and therefore require milder conditions than those required 

for ether cleavage). A variety of these reactions were attempted, and the conditions 

employed are shown in Scheme 165.290-293 
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Scheme 165: Attempted hydrolysis of the tert-butyl ester of (417) 

 

 Generally, the methods shown in Scheme 165 were either entirely unsuccessful or 

produced product mixtures which were too complex to afford the desired material in a 

useful state, or yield. However, one interesting observation came about during the reaction 

with trifluoroacetic acid (TFA). Monitoring by TLC, it appeared that the starting material 

had been consumed within ca. 2 hours. 1H-NMR spectroscopy of a sample supported this 

fact, but after a basic work up, analysis revealed complete recovery of the starting material. 

It was believed that this was due to salt formation, which was reversed during the basic 

work up, regenerating the starting material (Scheme 166). 

 

 
Scheme 166: Formation of the TFA salt of (417), and subsequent regeneration of (417) 

 

The method which was eventually settled upon was treatment of the starting 

material (417) with neat formic acid, stirring at room temperature for 36 hours. TLC 

analysis revealed that the starting material was consumed, and after purification by 

reversed phase chromatography, the desired product (418) was identified by 1H- and 13C- 

NMR spectroscopy, IR spectroscopy, and HRMS analysis. The 1H-NMR spectrum clearly 

showed the loss of a tert-butyl group, with only one peak seen within the expected range of 

a tert-butyl group, at 1.35 ppm, integrating to 9H; while the required peaks for the 

diastereotopic β-CH2 group (integrating to 2H) was present at 3.06 ppm. This was 

consistent with the 13C-NMR spectrum, which contained only one peak corresponding to 

the tertiary carbon of the remaining tert-butyl group at 82.2 ppm. IR analysis showed the 
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appearance of an absorbance band at a frequency of 2717 cm-1, which is within the range 

of the O-H stretch within a free carboxylic acid (typically 2500 – 3300 cm-1); and finally, 

LCMS, and HRMS confirmed the presence of the [M+H]+ ion of (418) at a mass of m/z 

333(.1723), consistent with the desired deuterated product (Scheme 167). 

 

 

Scheme 167: Synthesis of the αααα-amino free acid product (-)-(418) 

 

Removal of the tert-butyl group increased the polarity of the molecule sufficiently 

to increase the retention time of (418) upon HPLC analysis to allow for separation of the 

enantiomeric peaks; thus, determination of the enantiomeric excess gave a value of 89%; 

this result is within the experimental error of full retention of enantiopurity from the 

aziridine starting material cis-(352). Therefore, it can be reasonably inferred that the e.e. of 

the intermediate protected amino acid (417) was between 80% and 89%. The low yield of 

this reaction was believed to come about as a result of the potential decomposition of the 

product due to the harsh reaction conditions required to remove the tert-butyl group. 

Having achieved HPLC separation of the enantiomers of (418), the ring-opening 

procedure was expanded further by the use of the electron withdrawing group (C3-(4-

nitro)phenyl) bearing aziridines cis-(356), cis-(392), and cis-(407) as substrates (Scheme 

168). However, an additional complication was identified with these substrates. Due to the 

conditions used to perform the hydrogenolysis of the aziridine ring, reduction of the nitro 

group to give the corresponding amino species could also take place. Despite this, 

application of the previously utilised ring-opening procedure (see Scheme 160) proceeded 

smoothly; with the desired deuterated α-(para-amino)phenylalanine derivatives (419) – 

(421) afforded in excellent 85%, 97%, and 82% yields respectively (Scheme 168). 
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Scheme 168: Synthesis of compounds (419), (420), and (421) 

 

 As had been seen previously during the syntheses of (409) – (411) (Figure 91), the 

presence of deuterium at the α- and/or β- positions of (419) – (421) led to differing 

integration and peak patterns within the 2.8 – 5.0 ppm range within their 1H-NMR spectra; 

supporting the regiospecificity of the ring-opening to form α-amino products. Thus, the 
1H-NMR spectrum of (419) contained an AB doublet at 2.98 ppm, integrating to 2H, 

consistent with the diastereotopic β-CH2; the 1H-NMR spectrum of (420) contained two 

peaks, both integrating to 1H at 4.11 ppm and 3.00 ppm, consistent with the α-CH, and β-

CHD; and finally, the 1H-NMR spectrum of (421) contained a single peak at 2.99 ppm, 

integrating to 1H, consistent with the β-CHD. Within (419) – (421), deuterium 

incorporation (determined by 1H-NMR spectroscopy) was found to be >90%. HRMS also 

confirmed the formation of the desired deuterated products, with mass ions being detected 

at the required m/z values ((419) m/z 386.2551, (420) m/z found 386.2552, (421) m/z found 

387.2612). 

 Gratifyingly, (419) – (421) were amenable to separation by chiral HPLC analysis, 

recording e.e.s of 86%, 89%, and 94% respectively. These were within experimental error 

of full retention of stereochemistry from the starting material aziridines ((356) 88% e.e.; 

(392) 93% e.e.; (407) 97% e.e.). 

 Having demonstrated the applicability of regiospecific hydrogenolysis to the 

aziridine substrates developed vide supra, further ring-openings were carried out utilising 

water as the nucleophile. It was believed that this methodology would yield β-hydroxy-α-
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amino acids; applying the ‘dialled in’ approach could then yield the desired α-, β-, or α,β- 

deutero versions of these β-hydroxy-α-amino acid derivatives. 

 The water-based nucleophilic ring-opening procedure was initially tested upon 

substrates which were unsuitable for hydrogenolysis-based ring-opening. Foremost among 

these were compounds bearing bromine atoms, due to the potential cleavage of these 

during hydrogenolysis.294 Therefore, cis-(385) was treated according to the conditions 

shown in Scheme 169.255 

 

 

Scheme 169: Synthesis of ββββ-deutero-ββββ-hydroxy-αααα-amino acid (-)-(422) 

 

 The reaction was monitored by TLC, and after 16 hours was deemed complete. 

Subsequent work up and purification by column chromatography gave the desired β-

hydroxy-α-amino acid product. This was confirmed by 1H-NMR spectroscopy, with the 

spectrum showing the presence of the β-OH with a singlet peak at 3.32 ppm integrating to 

1H, α-CH at 4.07 ppm (singlet, 1H), and residual β-CH(OH) at 4.95 ppm (also present is 

the requisite peak for the α-NH, at 5.17 ppm). Deuterium incorporation assessed by 1H-

NMR spectroscopy was assigned as >90%. HRMS also confirmed the presence of the 

desired deuterated product, showing [M+H]+ at the required m/z of 465.1495. An e.e. of 

78% by chiral HPLC analysis was obtained for (422), which is within experimental error 

of the 83% e.e. of the starting material aziridine cis-(385). Further to the synthesis of (422), 

hydroxy ring-openings were carried out on the C2-deutero and C2-C3-deutero versions of 

cis-(385) (cis-(350), and cis-(403)), and the results of these are shown in Scheme 170. 

 

 

Scheme 170: Synthesis of αααα- and αααα-ββββ-deutero-ββββ-hydroxy-αααα-amino acid derivatives (423) and (424) 
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 These reactions proceeded well, producing both (423) and (424) in 86% yield. 

Formation of the desired products was confirmed by both 1H-NMR and HRMS; with peaks 

present in the 1H-NMR spectrum of (423) consistent with the α-NH (5.17 ppm, 1H), β-

CH2 (4.93 ppm, 1H) and β-OH (3.33 ppm, 1H); while within the 1H-NMR spectrum of 

(424) only residual peaks for the α- and β-CH groups were found. Unusually, both α-NH, 

and β-OH peaks within the 1H-NMR of (424) have been suppressed, possibly by H/D 

exchange; however, the source of this deuterium is unknown. A comparison of the peaks 

present within the 3.1 − 5.3 ppm regions of the 1H-NMR spectra of (422) – (424) is shown 

in Figure 93 in order to demonstrate the suppression of the α-CH, or β-CH peaks by α-, β-, 

or α-β- deuteration. 

  

 
Figure 93: Comparison of the peaks present within the 3.1 – 5.3 ppm regions of the 1H-NMR spectra of 

(422) – (424) 

 

Further to confirmation of the formation of (423) and (424), deuterium 

incorporation was also measured by 1H-NMR integration; with levels of >90% recorded 

for both compounds. HRMS provided further confirmation of the deuterated products, with 

[M+H]+ ions detected at the required m/z for both compounds ((423) m/z found 465.1495, 

required 465.1494; (424) m/z found 466.1556, required 466.1557). Unfortunately, 

decomposition of these products was found to be rapid; and thus no HPLC separation of 

(423) was possible. However, the e.e. of (424) was shown to be 80% by chiral HPLC. 
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 With the success of these reactions, it was decided to attempt the hydroxy ring-

opening upon other substrates; these being the C3-deutero-C3-(para-fluoro)phenyl 

aziridine cis-(384), and the C2,C3-deutero-C2-isopropoxy ester functionalised aziridine 

cis-(408). These substrates were submitted to the ring-opening procedure as shown in 

Scheme 169, and the desired β-hydroxy-α-amino acid derivatives (425), and (426) were 

obtained (Scheme 171). 

 

 

Scheme 171: Synthesis of ββββ- and αααα-ββββ-deutero-ββββ-hydroxy-αααα-amino acid derivatives (425) and (426) 

 

 As demonstrated within the previous syntheses, yields were good, with (425) being 

afforded in a 75% yield after purification, while (426) was obtained in an 86% yield. The 

enantiomeric excesses of (425) and (426) were 90% and 87% respectively. Assignment of 

the peaks within the 1H-NMR spectra of (425) and (426) was aided by the knowledge 

obtained during the deuteration study of compounds (422) − (424), as the peaks seen 

within these spectra followed similar patterns. Thus, the 1H-NMR spectrum of (425) 

contained peaks relating to the α-NH (5.17 ppm, 1H), α-CH (4.09 ppm, 1H), and β-OH 

(3.30 ppm, 1H); whereas the spectrum of (426) contained peaks relating to the α-NH (5.17 

ppm, 1H), the characteristic CH(CH3)2 (confirming retention of the iso-propoxy group, 

4.94 ppm, 1H), and the β-OH (3.22 ppm, 1H). 

Finally within the exploration of ring-opening methodologies, a set of ring-opening 

reactions were carried out based upon the use of a halide ion as the nucleophile. This 

methodology was provided by Wu et al, whereby the researchers had demonstrated the use 

of iodine and a catalytic amount of thiophenol to achieve the ring-opening of aziridines.295 

The mechanism of the reaction allows this procedure to proceed cleanly, as the only by-

product should be diphenyl disulphide (Scheme 172). 
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Scheme 172: Proposed mechanism for the ring-opening of aziridines by thiophenol and molecular 

iodine by Wu et al 

 

Utilising a modification of the Wu procedure with polymer-bound thiophenol, ring-

openings were carried out upon the C3-(para-nitro)phenyl aziridines cis-(356), and cis-

(392). The reaction conditions and results are shown in Scheme 173. 

 

 

Scheme 173: Syntheses of αααα-, and ββββ-deutero-ββββ-iodo-αααα-amino acid derivatives (427) and (428) 

 

 The relative simplicity of the procedure was unfortunately offset by the rapid 

decomposition of the products; and the first attempts to synthesise these compounds were 

met with failure. However, after careful consideration, the reaction was carried out in the 

dark, followed by filtration and column chromatography, again in the dark, and immediate 

characterisation. This approach led to the results shown in Scheme 173, with (427) and 

(428) afforded in good yields of 86% and 81%.  

Confirmation of the regioselectivity of the ring-opening reaction to form the 

desired β-iodo-α-amino acid derivatives was provided by 1H-NMR spectroscopy. Thus, 

the 1H-NMR spectrum of (427) contained a singlet peak at 5.56 ppm, integrating to 1H, 
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consistent with the β-CH; and a further broad singlet at 5.28 ppm, integrating to 1H, 

consistent with the α-NH. A residual peak for the α-CH was also seen at 4.06 ppm, and 

integration of this against the β-CH peak provided the deuterium incorporation value of 

>90%. The 1H-NMR spectrum of (428) contained two doublets, both integrating to 1H, at 

5.28 and 4.06 ppm respectively. These were consistent with the α-NH, and α-CH. The 

coupling constants of these peaks were 9.7 and 9.7 Hz respectively; suggesting coupling 

between the two, consistent with a regioselective ring-opening to the desired β-iodo-α-

amino species. Again, deuterium incorporation of >90% was quantified by integration of 

the α-CH peak against the residual β-CH at 5.58 ppm. Further evidence for the presence of 

both deuterium and iodine within (427) and (428) was obtained by HRMS, with the desired 

[M+H] + ions being detected at the required m/z of 542.1252 (427) and 542.1253 (428) 

(theoretical 542.1257).  

The enantiomeric excesses achieved were also good, with e.e.s of 84% and 79% 

measured for (427) and (428) respectively. However, comparison of the e.e. of (428) with 

the starting material cis-(392) shows a significant loss of 14%. This was unexpected, as 

(427) shows only 4% loss from the 88% e.e. of cis-(356) which can be accounted for by 

experimental error.  

 

7.1.3: Synthesis of Deuterated α-amino acids – Summary and Conclusions  

 
Scheme 175: Summary of the ring-opening reactions developed vide supra 
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 A summary of the ring-opening reactions developed above is shown in Scheme 

175. In general, three differing ring-opening reactions have been attempted; all of which, in 

the main, allow for the retention of enantioenrichment, and deuterium incorporation, 

inherent within the aziridine starting materials.  

Despite these successes, it is worthy of note that some of the amino acid products 

from these ring-opening reactions are prone to decomposition. Thus care should be taken 

upon synthesis of these compounds to ensure they are stored correctly under inert gas at 

low temperature. 

 The reactions above are a very small range of examples of the ring-opening 

chemistry of aziridines available within the literature (See 3.4: Aziridines: Utilisation in 

Synthesis). Therefore, it may be possible to apply many other ring-opening techniques to 

the aziridines produced by the methodologies developed (vide supra); however, within the 

timescale of this project, no other ring-opening methodologies were investigated. 
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7.2.1: ‘Dialled in’ Asymmetric Syntheses of α-amino acid Derivatives containing Multiple 

Isotopic Labels – Introduction 

 With the chemistry developed so far, the emphasis has been upon probing the 

possibilities and reactivity of the one pot aziridination methods, deuteration techniques, 

and ring-opening chemistries; and synthesising a broad range of materials. However, as the 

chemistry available increased, the ‘dialled in’ approach began to seem more viable (A 

summary of the ‘dialled in’ methodology can be found in Appendix 7). Thus, at this stage, 

several products were chosen as targets; and directed syntheses of these were undertaken 

via the ‘dialled in’ approach. In order to test the ‘dialled in’ methodologies appropriately, it 

was decided to incorporate multiple isotopic labels within the target molecules, and also, to 

generate these targets by a range of the ring-opening chemistry available. The molecules 

chosen are shown in Figure 94. 

 

 

Figure 94: Targets set for testing of the ‘dialled in’ approach to the synthesis of αααα-amino acid 

derivatives bearing multiple isotopic labels 
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7.2.2: ‘Dialled in’ Asymmetric Syntheses of α-amino acid Derivatives containing Multiple 

Isotopic Labels – ‘Dialled in’ syntheses of (429) to (433) 

 The first target to be attempted was the α-deutero-α-15N amino acid derivative 

(429). The ‘dialled in’ approach dictated that the intermediate required was the C2-

deutero-C3-(2-pyridyl)-15N-aziridine-2-carboxylate ester, cis-(434), shown in Scheme 176. 

Thus, according to the ‘dialled in’ methodologies; pyridine-2-carboxaldehyde, 15N-aniline, 

and deuterated tert-butyl diazoacetate (tBDA-d (349)) were submitted to the asymmetric 

one-pot aziridination methodology developed (vide infra), utilising 10 mol % (S)-(289) as 

the catalyst. The results of this reaction are shown below (Scheme 176). 

 

 
Scheme 176: Synthesis of the C2-deutero-15N-aziridine cis-(434) 

 

The reaction proceeded smoothly, and following the established work-up procedure 

and column chromatography, cis-(434) was obtained in an 83% yield. Subsequent analysis 

by 1H- and 13C-NMR spectroscopic techniques, and HRMS, confirmed the presence of 

both the 15N and deuterium labels. 15N is active within 13C-NMR spectroscopy, and with a 

spin (I) of ½, will split 13C lines into two lines of equal intensity.276 This effect can be seen 

when considering the 13C-peak associated with the C3 carbon of cis-(434), which has been 

split into two lines at 47.7, and 47.8 ppm. Confirmation of the C2 deuteration of cis-(434) 

was obtained by 1H-NMR spectroscopy, as the C2-H doublet has been suppressed (residual 

peak present at 3.17 ppm), with the C3-H peak (3.67 ppm, 1H) now a singlet. Relative 

integrations of these peaks suggested deuterium incorporation of >90%, while the cis- 

stereochemistry of cis-(434) was confirmed by the coupling constant of the residual C2-H 

peak, which was found to be 6.9 Hz, well within the 5 – 9 Hz expected for a cis-

aziridine.266 Further to the NMR spectroscopic data, HRMS confirmed the presence of both 

deuterium and 15N, with the desired [M+H]+ ion being found at the required m/z 299.1629 

(theoretical m/z 299.1631). Finally, chiral HPLC of the sample revealed an e.e. of 85%. 

With the intermediate aziridine cis-(434) in hand, the next step was hydrogenolysis 

of the aziridine ring to give the desired product (429) (Scheme 177). This was carried out 

using the standard method developed vide infra. 
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Scheme 177: Synthesis of the αααα-deutero-αααα-15N amino acid derivative (429) 

 

 Although the reaction proceeded smoothly, purification of the final product proved 

difficult, as purification by column chromatography gave some overlap between materials. 

However, the desired chiral non-racemic α-deutero-α-15N-amino acid derivative (429) was 

afforded in a 52% yield, with an e.e. of 84% by chiral HPLC. This value was within the 

range of complete retention of enantioenrichment from the starting aziridine cis-(434) 

(85% e.e.). 

The regioselectivity of the ring-opening hydrogenolysis was confirmed by 1H-

NMR spectroscopy, with a singlet found for the β-CH2 at 3.24 ppm, with an integration of 

2H. 13C-NMR and HSQC experiments provided further confirmation of the α-amino 

product, with a signal indicating coupling between the AB doublet peak corresponding to 

the diastereotopic β-CH2 (3.24 ppm), and the β-CH2 signal at 40.5 ppm within the 13C-

NMR spectrum. This coupling would not be present if the β-amino product had been 

formed, as the presence of the α-deuterium would split and suppress the 13C signal,276 

therefore removing the coupling. Also, if the 40.5 ppm 13C peak were related to the β-

product, coupling with the 15N nucleus would be expected, splitting the signal into two 

lines; which is not the case. Final confirmation of the α-amino product structure was 

provided by a 15N- 1H-HMBC experiment (which provides correlations over two to four 

bonds),276 where a correlation was found between the 15N signal and the β-CH2 group (1H-

NMR, 3.24 ppm), three bonds away. Full NMR spectroscopic data for compound (429) can 

be found in Appendix 8. 

 Deuterium incorporation was determined by integration of the 1H-NMR spectrum, 

with the relative integrations of the β-CH2 signal, and residual α-CH peak giving a value of 

>90% incorporation. Retention of the 15N enrichment, and deuterium incorporation were 

also confirmed by HRMS, with the desired peak for [M+H]+ being present at m/z 301.1791 

(required m/z 301.1787). 

Therefore, with this reaction, the first target molecule for the ‘dialled in’ synthesis 

was obtained in an overall 42% yield over the three-component one-pot asymmetric 
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aziridination and ring-opening steps, with an e.e. of 84%, and deuterium incorporation of 

>90%. 

The next targets to be attempted were the compounds (430) and (431), consisting of 

a β-(para-amino)phenyl functionalised α-amino acid derivative, labelled with α-15N, and 

either α-deuterium (430) or β-deuterium (431). The ‘dialled in’ synthesis method 

employed dictated the required intermediates to be either a C2-deutero, or C3-deutero  C3-

(para-nitro)phenyl-15N-aziridine-2-carboxylate ester (C2-deutero (435), C3-deutero 

(436)). Therefore, 15N-aniline, 4-nitrobenzaldehyde (or 4-nitrobenzaldehyde-d), and 

deuterated tert-butyl diazoacetate (349) (or tert-butyl diazoacetate (280)) were submitted to 

the one-pot asymmetric aziridination protocol utilising (S)-(289) as the catalyst (Scheme 

178). 

 
Scheme 178: Syntheses of the chiral non-racemic C2- or C3-deutero C3-(para-nitro)phenyl- 15N-

aziridine-2-carboxylate esters cis-(435) and cis-(436) 

 

 The results of these aziridinations were reasonable, with yields of 63% and 59% 

respectively. The enantiomeric excesses of the products were good, with a value of 82% 

achieved for cis-(435), and 81% achieved for cis-(436).  

Confirmation of 15N incorporation was obtained by both 15N- 1H- HMBC, and 13C-

NMR spectroscopy for cis-(435), and by 13C-NMR spectroscopy for cis-(436). The 13C-

NMR spectra for both cis-(435) and cis-(436) contained signals relating to either the C3 

position (46.06, 45.99 ppm, cis-(435)), or C2 position (46.67, 46.61 ppm, cis-(436)), split 

into two lines by coupling with the adjacent 15N nucleus. The 1H- 15N-HMBC spectra 

acquired for cis-(435) contained a single 15N peak, and correlations of this nucleus with the 

C3-H (3.52 ppm, 1H-NMR), residual C2-H (3.13 ppm, 1H-NMR), and aromatic protons of 

the N-phenyl group. Deuterium incorporation within cis-(435) and cis-(436) was measured 
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by 1H-NMR spectroscopy, with the relative integrations of the C3-H and residual C2-H 

peaks (cis-(435), 3.52 ppm, and 3.13 ppm respectively), or C2-H and residual C3-H peaks 

(cis-(436), 3.13 ppm, and 3.52 ppm respectively) confirming deuterium incorporation of 

>90% for both compounds. The coupling constants of the residual C2-H (cis-(435), 6.8 

Hz), and residual C3-H (cis-(436), 6.7 Hz) peaks also confirmed the cis- stereochemistry of 

the products, with the values within the range of 5 – 9 Hz expected of a cis-aziridine.266 

Finally, HRMS revealed the desired [M+H]+ ions at m/z 343.1527 (cis-(435)), and m/z 

343.1533 (cis-(436)) (Theoretical m/z 343.1529). 

 With the required C2- or C3-deutero C3-(para-nitro)phenyl-15N-aziridine-2-

carboxylate ester intermediates cis-(435) and cis-(436) in hand, the compounds were 

submitted to the developed hydrogenolysis methodology as dictated by the ‘dialled in’ 

synthesis; with reduction of the nitro group expected alongside the ring-opening reaction 

(Scheme 179). 

 

 

Scheme 179: Syntheses of the αααα- or ββββ-deutero ββββ-(para-amino)phenyl-αααα-15N amino acid derivatives (-)-

(430) and (-)-(431) 

 

 As shown in Scheme 179, the ring-opening reactions proceeded well, in yields of 

70% and 72% for (430) and (431) respectively. As expected, 1H-NMR spectroscopy 

confirmed both the formation of the desired α-amino products and the reduction of the 

nitro functionality. Thus, peaks were present within the 1H-NMR spectra of (430) and 

(431) for either the β-CH2 ((430), 2.91 ppm, 2H), or the α-CH and β-CH ((431), 4.16 ppm, 

1H; 2.96 ppm, 1H, respectively); while both contained a broad singlet peak at 3.60 ppm 

corresponding to the amine functionality.  1H-NMR spectroscopy also revealed deuterium 

incorporation of >90%. 13C-NMR spectroscopy confirmed the presence of 15N in (431), 

with splitting of the peak related to the α-carbon into two signals of equal intensity (58.4 

& 58.3 ppm), due to the presence of the neighbouring 15N nucleus.276 Confirmation of the 

presence of 15N within (430) could not be obtained by 13C-NMR spectroscopy due to the 

presence of the α-deuterium splitting and reducing the α-13C peak into the baseline.  

Finally, HRMS confirmed the formation of both desired compounds, with the presence of 
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[M+H] + at the required m/z of 315.1939 (430), and 315.1939 (431) (Theoretical m/z 

315.1944). 

 Therefore, with these reactions, two further target molecules had been synthesised, 

(430) and (431); overall yields from starting materials for these were 44% (75% e.e., 

>90% deuterium incorporation), and 43% (80% e.e., >90% deuterium incorporation) 

respectively over two steps. 

 The final two products to be synthesised using the ‘dialled in’ approach were to be 

the α-deutero-β-18O-hydroxy-α-amino acid derivatives (432) and (433); both were based 

upon existing aziridines synthesised within the work above, thus the syntheses of these 

intermediates (cis-(352) and cis-(350)) are not discussed here. However, the hydroxyl ring-

openings with 18O- enriched water that were required are shown in Scheme 180. 

 

 

Scheme 180: Syntheses of the αααα-deutero-ββββ-18O-hydroxy-αααα-amino acid derivatives (432) and (433) 

 

 As shown above, both ring-openings were successful, although the yield of (432) 

was lower than had been hoped due to a difficult purification. Despite the disappointing 

yield of (432), both products were afforded with good enantioselectivities of 85% and 95% 

e.e. for (432) and (433) respectively. Deuterium incorporation was also good, with >90% 

incorporation achieved in both cases as measured by 1H-NMR spectroscopy. 1H-NMR 

spectroscopy also confirmed the regioselectivity of the hydroxy ring-opening, with both 

(432) and (433) showing the requisite peak for the β-CH (4.94 ppm (432), 4.87 ppm 

(433)), and residual peak for the deuterated α-position 4.05 ppm (432), 4.03 ppm (433)). 

These peaks were also found to be consistent with the standard β-hydroxy amino acids 

(422) – (425) produced previously, as would be expected. The presence of 18O could not 

be confirmed by NMR techniques, but HRMS confirmed the presence of 18O in both 

compounds, with the required [M+H]+ ions detected at m/z 407.2333 ((432) theoretical m/z 

407.2337), and m/z 467.1536 ((433) theoretical m/z 467.1524). 

 Thus, the final two target molecules had been synthesised; with an overall yield 

(over aziridination and ring-opening) for (432) of 24% (e.e. of 85%, 2H incorporation 

>90%), and for (433) of 63% (e.e. of 95%, 2H incorporation >90%). 
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Chapter 8: Spectroscopic and Computational Investigations 

8.1: Introduction 

 Throughout the work detailed above, several questions arose which required the 

use of spectroscopic and/or computational methods to answer: The first of these being the 

nature of the interaction leading to enantioselectivity within the aziridination reactions; 

and the second being the assignment of the absolute stereochemistry of the chiral aziridine 

products. 

 Investigations into the nature of the aziridination reaction intermediate were fuelled 

by a desire to prove the interaction between the chiral catalyst and the achiral imine. It was 

believed that due to the inherent pKa difference between the highly acidic catalyst (289) 

(pKa ca. -1),197 and the starting material imines (pKa ca. 24),267 protonation of the imine 

would be rapid. However, the nature, or indeed, the presence, of any subsequent 

interactions between the catalyst and iminium species had not been proven. Investigations 

into this phenomenon follow vide infra. 

 Despite obtaining a crystal structure of the enantioenriched aziridine cis-(357) 

produced utilising the methods detailed within this thesis; it had proven impossible to 

determine the absolute stereochemistry transferred to the product aziridines from the 

catalyst (289), beyond the cis- nature of the products. Therefore, it was decided to attempt 

to employ computational chemistry, combined with spectroscopic techniques, in order to 

provide insight into the stereochemistry of the aziridines (and subsequent products) 

produced vide supra. Details of this work are the subject of Section 8.3. 

 

8.2: Determination of a Chiral Intermediate Utilising Circular Dichroism Techniques 

 As has been hypothesised previously (see 4.2.4: Hypothesis upon the 

enantioselectivity of the asymmetric one-pot aziridination reaction) it is believed that the 

enantioselectivity of the one-pot aziridination reactions developed within this work arises 

from the interaction of a starting material imine with the chiral catalyst (289). Due to the 

inherent pKa differences between these species, it is reasonable to presume that 

protonation of the imine will be rapid, producing an intermediate ion-pair species of the 

type shown in Scheme 181. 

 
Scheme 181: Representation of the ion-pair intermediate believed to be formed within aziridination 
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Due to the steric bulk and chiral nature of (289), it was believed that the ion-pair 

formed would itself be chiral, and thus, evidence for its existence could be provided by 

Circular Dichroism (CD) spectroscopy. CD spectroscopy measures the differences in the 

absorption of left or right polarised light within a sample; these differences being caused 

by the chirality of the sample.296 Thus, only chiral materials display a CD spectrum.296 

This method seemed ideal for the purposes of determining the presence of a chiral 

intermediate within the aziridination methodology, as the starting catalyst is chiral, but the 

starting imine is achiral. Thus, a CD spectrum could be acquired of the catalyst (289), 

providing a background. Upon mixing of the catalyst and imine, a further CD spectrum 

could be acquired, from which this background could be subtracted, meaning any residual 

signal would be related to a new chiral intermediate formed from the catalyst and imine 

(potentially the chiral ion-pair intermediate). The simple imine N-benzylidene-2-tert-

butoxyaniline (437) was chosen for this study. 

 To gain information upon the area of interest within the UV visible range, a 

standard UV-Vis spectrum was acquired of (S)-(289); and alongside the CD spectrum of 

(289), these are shown in Figure 95. As can be seen within Figure 98, (289) shows useful 

absorbencies within the range of 410-270 nm, and it was this range which was chosen to 

be investigated. 

 
Figure 95: UV and CD spectra of (S)-(289) 

 Initially, as the reaction between (289) and (437) was believed to be rapid and 

facile, it was decided to simply mix equimolar solutions of the two samples and measure 

the UV and CD spectra related to the mixture. It is worthy of note that upon mixing of the 

two samples, a colour change from colourless to slight yellow was noted within 5 to 10 

seconds, suggesting an interaction between the two compounds. This interaction was 

confirmed by acquiring a UV spectrum of the new mixture, and subtracting the baseline 
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spectra for (289). It is worthy of note that the concentrations of the backgrounds were 

calculated to be equal to the final concentration of the solutions upon mixing; thus 

concentration effects can be discounted from the following analysis. The new spectrum 

showed a general increase in absorbance; and also a shifting of the maximum absorbencies 

at ca. 390 nm, and 370 nm, with the suggestion of a second peak emerging as a shoulder 

from the peak at 370 nm (Figure 96). 

 
Figure 96: UV spectra of (437) and a 1:1 mixture of (289) and (437) 

 Interestingly, it was also noted that these changes in absorbance seemed to recede 

after a short time. Thus, in order to investigate this, a series of UV spectra were taken over 

a period of 8 minutes, with one complete scan being completed in one minute. The results 

are shown in Figure 97. 

 
Figure 97: Time Dependent UV Spectrum of a 1:1 mixture of (289) and (437) acquired over 8 minutes 

 This study appears to suggest that the interaction causing the changes in 

absorbance is decaying over time; this could potentially be explained by decomposition of 
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the intermediate iminium species by hydrolysis. Although the solvent used for the study 

had been stored over molecular sieves, the experiment was not carried out under 

anhydrous conditions, and also, the concentrations involved within the UV experiment 

were very low, meaning little water would be required to cause decomposition (Scheme 

182). 

 
Scheme 182: Potential decomposition of the intermediate ion-pair via imine hydrolysis 

 Despite the apparent decomposition of the iminium intermediate, evidence of an 

interaction had been shown by UV; thus it was decided to go ahead with a similar set of 

experiments with CD spectroscopy. The use of CD spectroscopy would remove achiral 

species from the acquired spectrum, meaning that by subtracting the initial CD spectrum of 

(289) from the acquired data, any residual signal would have to come about due to the 

presence of the intermediate observed within UV spectroscopy; and also, that this 

intermediate would have to be chiral. 

 
Figure 98: CD Spectra of (S)-(289) and a 1:1 mixture of (S)-(289) and (437) 

 Shown in Figure 98 is the initial background CD spectrum of (S)-(289) and also, 

the CD spectrum arising from the 1:1 mixture of (S)-(289) and (437). As is shown, a 

significant change in the CD spectrum is observed; related to this, the spectrum resulting 

from the subtraction of the background spectra for (S)-(289) is shown in Figure 102. The 

subtracted spectrum clearly shows the presence of a chiral intermediate species, with a 

significant peak being observed at 390 nm. Having noted a decomposition of the 
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intermediate species within UV spectrum, it was decided to also investigate this effect 

within the CD spectrum, using the signal at 390 nm as our probe. Thus, in a similar 

experiment to that carried out with UV spectroscopy, a time dependant CD spectrum was 

acquired over 8 minutes, with one spectra being acquired every minute. This spectrum is 

also shown in Figure 99. 

 
Figure 99: CD spectra for a 1:1 mixture of (S)-(289) and (437); and time dependent CD of the 410 – 

370 nm wavelength range 

 Consistent with the UV traces, the CD signal also shows decay back to a baseline 

level over a period of around 8 minutes. This strengthens the theory that the observed 

differences within the UV spectrum arise due to a chiral intermediate, this in turn believed 

to arise due to continued interaction between the chiral catalyst (S)-(289), and the achiral 

iminium species. 

 Unfortunately, despite this evidence for the presence of a chiral intermediate ‘ion-

pair’ between the catalyst and iminium species, CD and UV spectroscopies do not provide 

information into the nature of this interaction; thus no direct conclusions can be drawn 
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from about the structure, or type, of interaction, other than the presence of a chiral 

intermediate. Potentially, NMR studies have the possibility of elucidating this interaction, 

however, this is an area for future work, and has not been covered here. 

 

8.3: Attempted Determination of the Absolute Stereochemistry of cis-(351) and cis-(358) 

via VCD and Computational Methods 

As mentioned vide supra, during the project, despite the use of x-ray diffraction, 

determination of the absolute stereochemistry of the aziridines produced with the 

asymmetric aziridination chemistry developed proved impossible. Thus a differing 

approach was chosen, relying upon the use of VCD (vibrational circular dichroism) 

spectroscopy. VCD is essentially ‘chiral IR’ spectroscopy, utilising circularly polarised 

light and measuring the subsequent interactions with a molecule.297 

As VCD is a CD technique, thus only chiral materials are VCD active, and 

opposite enantiomers will generate mirror image spectra.297 Therefore, if the VCD of each 

enantiomer of a compound is calculated (utilising computational methods) and a 

subsequent VCD of the enantioenriched material is acquired, the two can be matched in 

order to assign stereochemistry. 

Although seemingly simple, the process for calculating a VCD spectrum requires 

consideration. VCD spectra inherently measure vibrational frequencies, and as such, are a 

composite of all accessible vibrational levels, of all conformers, accessible at the analysis 

temperature. Also, the presence of deuterium within the molecules of interest has to be 

considered, due to the difference in vibrational frequencies between deuterium and 

protium.27,28 

Taking the above factors into account, it was decided to begin with an energy 

minimised structure of both enantiomers of cis-(351) and cis-(358); these were calculated 

within Gaussian 09® (utilising the UEA Grace cluster) at the B3LYP/6-31g* level of 

theory.298 Care had to be taken at this stage to ensure the minimised structures were true 

minima, as opposed to saddle points within the energy surface; thus the keyword 

freq=(readiso) was included to ensure the absence of imaginary frequencies (present 

within a saddle point but not within a true minimum), and also that the presence of 

deuterium was taken into account during the analysis. 

These minimised structures were checked to ensure correct convergence within the 

job, and subsequently were submitted to Spartan ‘10® for conformational searching. The 

conformational searches were carried out utilising a molecular mechanics approach, at the 

MMFF level, utilising a Monte-Carlo search method.299 As a large area of conformational 
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space was desired to increase the likely accuracy of the final composite VCD spectrum, 

the energy difference above the initial level was set to +160 kJ mol-1. This generated 18 

distinct conformers for each enantiomer of cis-(351), and 32 distinct conformers for each 

enantiomer of cis-(358). Further to this, searches of up to +1000 kJ mol-1 were carried out, 

with no new conformers being generated. Several examples of the structures of these 

conformers are shown in Figure 100: 

 
Figure 100: Selected conformers of cis-(351) generated by Spartan ‘10® 

Having investigated an area of conformational space, the conformers generated 

were again submitted to Gaussian 09® for DFT energy minimisation, and frequency 

checking; also at this point, VCD calculation was carried out (freq=(readiso,vcd); a typical 

input file can be found in Appendix 9). It is worthy of note that the average CPU time for 

each analysis related to cis-(351) was ~10 hours, and ~20 hours for cis-(358); leading to a 

total of ca. 1640 hours of CPU time; thankfully, the parallel processing available within 

the cluster reduced the actual processing time to between 1 and 9 hours per job. 

Initially, the relevant data from these analyses was the energy of each conformer, 

and these are shown in Figures 101 and 102. The importance of these energies comes 

about due to the need for an understanding of the population of each conformer at the 

temperature of analysis. This is due to the fact that each conformer will produce a unique 

VCD, thus in order to predict the actual VCD, a weighted average was required. In order 

to understand the population of each conformer, a Boltzmann analysis of each enantiomer 

and the related conformers was carried out. The resulting data is also shown in Figures 101 

& 102. 
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Energy Level Conformer Energy (kJ mol-1) Ni/N Energy Level Conformer Energy (kJ mol-1) Ni/N
0 4 -3085257.011 0.0564 0 4 -3085257.011 0.0563
0 8 -3085257.011 0.0564 0 8 -3085257.011 0.0563
1 1 -3085251.283 0.0563 1 1 -3085251.282 0.0562
2 3 -3085250.076 0.0562 2 3 -3085250.076 0.0562
2 7 -3085250.076 0.0562 2 7 -3085250.076 0.0562
3 2 -3085246.068 0.0561 3 2 -3085246.068 0.0561
4 5 -3085245.214 0.0561 4 5 -3085245.214 0.0561
5 6 -3085243.155 0.0561 5 6 -3085243.155 0.0560
6 9 -3085227.263 0.0557 6 9 -3085227.263 0.0557
6 14 -3085227.262 0.0557 6 14 -3085227.262 0.0557
7 13 -3085222.610 0.0556 7 13 -3085222.610 0.0556
8 15 -3085213.260 0.0554 8 11 -3085220.624 0.0555
9 12 -3085212.106 0.0554 9 15 -3085213.260 0.0554
10 10 -3085187.907 0.0548 10 12 -3085212.106 0.0553
10 11 -3085187.907 0.0548 11 10 -3085188.151 0.0548
11 18 -3085162.695 0.0543 12 18 -3085162.695 0.0543
12 16 -3085156.734 0.0542 13 17 -3085156.742 0.0541
12 17 -3085156.743 0.0542 14 16 -3085156.734 0.0541

 
Figure 101: Boltzmann distribution data for both enantiomers of cis-(351) 

 

Energy Level Conformer Energy (kJ mol-1) Ni/N Energy Level Conformer Energy (kJ mol-1) Ni/N
0 8 -3488919.805 0.0317 0 8 -3488919.805 0.0317
0 17 -3488919.805 0.0317 0 16 -3488919.805 0.0317
1 7 -3488919.702 0.0317 1 7 -3488919.702 0.0317
1 16 -3488919.702 0.0317 2 15 -3488919.702 0.0317
2 2 -3488914.280 0.0316 3 1 -3488914.280 0.0316
3 1 -3488913.643 0.0316 4 2 -3488913.643 0.0316
4 5 -3488912.930 0.0316 5 5 -3488912.930 0.0316
4 14 -3488912.930 0.0316 5 13 -3488912.930 0.0316
5 6 -3488912.646 0.0316 6 6 -3488912.646 0.0316
5 15 -3488912.646 0.0316 6 14 -3488912.646 0.0316
6 4 -3488908.829 0.0315 7 4 -3488908.829 0.0316
7 3 -3488908.532 0.0315 8 3 -3488908.532 0.0316
8 10 -3488908.481 0.0315 9 9 -3488908.481 0.0316
9 11 -3488907.943 0.0315 10 10 -3488907.943 0.0316
10 13 -3488906.257 0.0315 11 12 -3488906.257 0.0315
11 12 -3488906.180 0.0315 12 11 -3488906.180 0.0315
12 9 -3488895.988 0.0314 13 20 -3488890.159 0.0313
13 21 -3488890.159 0.0313 14 17 -3488889.601 0.0313
14 18 -3488889.601 0.0313 15 25 -3488885.430 0.0313
15 26 -3488885.430 0.0312 16 26 -3488884.441 0.0313
16 27 -3488884.441 0.0312 17 18 -3488883.626 0.0313
17 19 -3488883.625 0.0312 18 23 -3488875.587 0.0312
18 24 -3488875.587 0.0311 19 24 -3488874.135 0.0311
19 25 -3488874.134 0.0311 20 21 -3488850.908 0.0308
20 22 -3488850.908 0.0308 21 19 -3488847.566 0.0308
21 20 -3488847.566 0.0308 22 22 -3488838.258 0.0307
22 23 -3488838.258 0.0307 23 31 -3488826.878 0.0306
23 31 -3488826.878 0.0305 24 32 -3488823.992 0.0305
24 32 -3488823.992 0.0305 25 28 -3488819.733 0.0305
25 29 -3488819.733 0.0304 26 30 -3488819.676 0.0305
26 28 -3488819.194 0.0304 27 27 -3488819.194 0.0305
27 30 -3488819.194 0.0304 28 29 -3488819.194 0.0305

 

Figure 102: Boltzmann distribution data for both enantiomers of cis-(358) 

 Having calculated the relative population of each conformer within cis-(351) and 

cis-(358), the VCD data also calculated for each conformer could now be treated with a 

weighted average, based upon the calculated Boltzmann distribution, thus generating a 
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prediction of the composite VCD for each enantiomer. The generated VCD spectra are 

shown in Appendix 9. 

 As shown in the generated spectra, the calculated values for each enantiomer are 

mirror images of each other; this is to be expected, as each enantiomer will interact more 

strongly with circularly polarised light of a specific rotation. 

 Unfortunately, at this stage, despite the completion of the calculations required, no 

samples have been submitted to VCD for analysis. This is unfortunate, as the assignment 

of an aziridine produced with a specific enantiomer of the catalyst (289) would allow for 

assignment of both the aziridines produced within this project, and also, the products 

produced from them. However, the work above does demonstrate that such predictions are 

possible, although it remains to be seen to which degree of accuracy the predicted spectra 

would agree with the experimental data. 

 

8.4: Conclusions and Future Work 

 Within the two sections contained within this chapter, evidence of a chiral 

intermediate formed from the interaction between (289) and an imine has been provided 

by CD and UV techniques, and also, computational work has led to the prediction of VCD 

spectra for both enantiomers of cis-(351) and cis-(358). 

 Future work within these areas could increase the value of this data. For example, 

NMR studies of the interaction between (289) and imines could provide useful insight into 

the exact nature of these interactions. Whereas, future stereochemical assignment work 

would be based upon the acquisition of experimental VCD data for compounds cis-(351) 

and cis-(358) in order to test both the accuracy of the computational predictions, and also 

in order to finally assign the absolute stereochemistry of the aziridines produced within the 

work previously discussed in this thesis. 
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Section 3: Experimental 

9.1: General Information and Procedures 

Drying of Solvents and Reagents 

If noted as ‘dry’ or ‘dried’, solvents were treated as follows prior to use: 

acetonitrile was freshly distilled from calcium hydride; chloroform-d and chloroform-h 

were stored in darkened glass over flame dried 4Å molecular sieves; dichloromethane 

(DCM) was freshly distilled from calcium hydride; diethyl ether was freshly distilled from 

sodium wire and benzophenone; propionitrile was distilled from calcium hydride and 

stored over flame dried 4Å molecular sieves; tetrahydrofuran (THF) was freshly distilled 

from sodium wire and benzophenone. All other solvents were used as supplied. 

Unless noted, reagents were used as supplied. However, the following reagents 

were treated as follows before use: phosphorus oxychloride was distilled under reduced 

pressure and stored under a nitrogen atmosphere; tert-butanol was distilled and stored over 

flame dried 4Å molecular sieves; triethylamine was freshly distilled from calcium hydride; 

trimethyl borate was freshly distilled from sodium wire. 

 

Sourcing of the Isotopically Enriched Materials 

 15N-aniline, and 18O-water were purchased from Sigma-Aldrich, stored under 

nitrogen, and used as supplied. Deuterated alkyl diazoacetates (EDA-d, tBDA-d, and 
iPrDA-d) were prepared as per the procedures noted within the text, and within 9.9: 

Syntheses of starting materials, and stored under nitrogen in a dry-box. 

 

Characterisation Methods and Instrumentation 
1H-NMR and 13C-NMR spectra were acquired at 400 MHz and 100 MHz or 300 

MHz and 75 MHz respectively. FT-IR spectra were acquired neat via either thin film, or 

ATR techniques. Low resolution MS spectra were acquired using a Shimadzu 2010A 

LCMS utilised in either ESI or APCI modes. HRMS were acquired via the EPSRC mass 

spectrometry service centre, Swansea. X-ray crystal structures were acquired either via the 

UEA crystallography service, or via the EPSRC X-ray crystal service centre, Southampton. 

Reactions carried out under microwave conditions were performed with a Biotage 

Creator microwave synthesiser. Hydrogenation reactions were carried out using a Biotage 

Endeavour catalyst screening system. 
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Preparation of the Cooling Bath for Asymmetric Aziridination Reactions 

As the asymmetric aziridination reactions require sustained low temperature 

conditions in order to induce the desired level of enantiomeric excess, the use of an 

immersion chiller is recommended. The bath was prepared by the addition of iso-propanol 

to a dewar flask of the appropriate size, within which the chiller arm was submerged. Care 

was taken to ensure the arm was settled firmly into the bottom of the flask, leaving the 

central space free for a large magnetic stirrer. The arm was clamped securely above the 

bath to ensure no movement during the reaction, and the apparatus was placed upon a 

magnetic stirrer plate. Efficient stirring of the bath was essential in order to achieve 

uniform cooling, and also in preventing build up of ice. A thermometer was suspended 

within the bath in order to check the correlation between the temperature of the bath and 

the set temperature of the chiller. Any required offset could then be implemented. At -80 

°C, the bath was reasonably expected to last around two weeks before requiring defrosting, 

and new iso-propanol. However, depending upon the strength of the chiller used, some 

heating of the bath may be observed before this point, and thus the bath may require more 

regular maintenance. 

 

Synthesis of Racemic Aziridines 

 The one-pot methodology was frequently applied to the synthesis of racemic 

aziridines during the project. The method used for these reactions is essentially identical to 

those syntheses detailed in Section 9.8: Synthesis of C2-deutero aziridines rac-(336), and 

rac-(341) to rac-(344). 
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9.2: Synthesis of C2-, C3-proteo Aziridines 

Three component One-Pot asymmetric synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-

3-(pyridin-2-yl)aziridine-2-carboxylate; cis-(309) 

 

Pyridine-2-carboxaldehyde (27.8 mg, 25 µL, 0.26 mmol,), 2-tert-butoxy aniline (307) (43 

mg, 0.26 mmol), and catalyst (S)-(289) (2.2 mg, 0.0026 mmol, 1%) were added to a flame 

dried 2 mL vial under nitrogen. 1 mL of chloroform was added (pre-dried over 4Å 

molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular sieves, and the 

vial was sealed with a PTFE crimp cap. After stirring at room temperature for 6 h, the 

reaction was cooled to -60 °C. After 30 minutes, tert-butyl diazoacetate (280) (40.7 mg, 40 

µL, 0.286 mmol) was added via syringe, and the reaction mixture was stirred at -60 °C, 

monitoring by 1H-NMR spectroscopy until the reaction was deemed complete (~24 h). At 

this point the reaction mixture was filtered through a short plug of silica, eluting with 

diethyl ether. The solvents were removed under reduced pressure, and the residue was 

purified via flash column chromatography (14 % diethyl ether in petroleum ether). A 

sample was submitted to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-

propanol : 8 / 2, 1 mL / min, 5.25 min (1st peak), 7.43 min (2nd peak), 96% e.e.]. The title 

product cis-(309) was a colourless oil afforded in a 96 % yield (92 mg, 0.25 mmol). 1H-

NMR (CDCl3, 400 MHz) δ 8.61-8.45 (m, 1H, ArH), 7.79-7.51 (m, 2H, ArH), 7.18 (ddd, 

1H, J 1.8, 4.9, 6.9 Hz, ArH), 7.09-6.85 (m, 4H, ArH), 3.64 (d, 1H, J 6.8 Hz, C3-H), 3.12 

(d, 1H, J 6.8 Hz, C2-H) 1.37 (s, 9H, C(CH3)3), 1.17 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 

100 MHz) 166.8, 155.6, 148.7, 148.2, 145.8, 135.9, 123.2, 123.1, 122.9, 122.7, 122.5, 

120.9, 81.3, 80.1, 48.4, 46.8, 28.6, 27.6 ppm; [α]D
23 -41.8 (c 1.1 CHCl3); FT-IR (thin film, 

cm-1) 2976, 2908, 1741, 1717, 1589, 1569, 1489, 1450, 1435, 1391, 1365, 1223; MS (ES): 

m/z 369.1 [M+H]+, 391.1 [M+Na]+; HRMS (EI) Exact mass calculated for [C22H29N2O3] 

requires m/z 369.2173 found m/z 369.2176 
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Three component One-Pot asymmetric synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-

3-(4-nitrophenyl)-aziridine-2-carboxylate; cis-(310) 

 

4-nitrobenzaldehyde (49 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) (43 mg, 0.26 mmol), 

and catalyst (S)-(289) (10.8 mg, 0.013 mmol, 5%) were added to a flame dried 2 mL vial 

under nitrogen. 1 mL of chloroform was added (pre-dried over 4Å molecular sieves), 

followed by ~40 mg of freshly powdered 4Å molecular sieves, and the vial was sealed with 

a PTFE crimp cap. After stirring at room temperature for 6 h, the reaction was cooled to -

60 °C. After 30 minutes, tert-butyl diazoacetate (280) (40.7 mg, 40 µL, 0.286 mmol) was 

added via syringe, and the reaction mixture was stirred at -60 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~48 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash 

chromatography (12 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / min, 

5.62 min (1st peak), 9.32 min (2nd peak), 96% e.e.]. The title product cis-(310) was a 

colourless oil afforded in a 93 % yield (99 mg, 0.24 mmol). 1H-NMR (CDCl3, 400 MHz) δ 

8.20 (d, 2H, J 8.7 Hz, ArH), 7.72 (d, 2H, J 8.7 Hz, ArH), 7.11-6.88 (m, 4H, ArH), 3.53 (d, 

1H, J 6.7 Hz, C3-H), 3.14 (d, 1H, J 6.7 Hz, C2-H), 1.35 (s, 9H, C(CH3)3), 1.22 (s, 9H, 

C(CH3)3); 
13C-NMR (CDCl3, 100 MHz) δ 166.9, 148.3, 147.6, 145.8, 135.8, 129.5, 128.9, 

127.8, 126.3, 123.4, 123.1, 122.8, 121.2, 121.0, 81.6, 80.4, 49.2, 47.3, 28.9, 27.9 ppm; 

[α]D
23 -46.47 (c 2 CHCl3); FT-IR (thin film, cm-1) 2977, 2933, 1741, 1714, 1602, 1519, 

1489, 1450, 1343, 1149, 1111; MS (ES) m/z 435.3 [M+Na]+; HRMS (EI) Exact mass 

calculated for [C23H29N2O5] requires 413.2134 found 413.2131. 
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Three component One-Pot asymmetric synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-

3-(4-(trifluoromethyl)phenyl)aziridine-2-carboxylat e; cis-(311) 

 

4-(trifluoromethyl)benzaldehyde (22.6 mg, 17 µL, 0.13 mmol,), 2-tert-butoxy aniline (307) 

(21 mg, 0.13 mmol), and catalyst (S)-(289) (5.4 mg, 0.0065 mmol, 5%) were added to a 

flame dried 2 mL vial under nitrogen. 1 mL of chloroform was added (pre-dried over 4Å 

molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular sieves, and the 

vial was sealed with a PTFE crimp cap. After stirring at room temperature for 6 h, the 

reaction was cooled to -60 °C. After 30 minutes, tert-butyl diazoacetate (280) (20.4 mg, 20 

µL, 0.143 mmol) was added via syringe, and the reaction mixture was stirred at -60 °C, 

monitoring by 1H-NMR spectroscopy until the reaction was deemed complete (~48 h). At 

this point the reaction mixture was filtered through a short plug of silica, eluting with 

diethyl ether. The solvents were removed under reduced pressure, and the residue was 

purified via flash chromatography (12 % diethyl ether in petroleum ether). A sample was 

submitted to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 95 

/ 5, 1 mL / min, 3.98 min (1st peak), 6.06 min (2nd peak), 89% e.e.]. The title product cis-

(311) was a colourless oil afforded in a 83 % yield (47 mg, 0.11 mmol). 1H-NMR (CDCl3, 

400 MHz) δ 7.64 (d, 2H, J 8.2 Hz, ArH), 7.57 (d, 2H, J 8.2 Hz, ArH), 7.06-6.90 (m, 4H, 

ArH), 3.49 (d, J 6.8 Hz, 1H, C3-H), 3.07 (d, 1H, J 6.8 Hz, C2-H) 1.37 (s, 9H, C(CH3)3), 

1.19 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 MHz) 166.8, 148.2, 146.1, 139.7, 130.1, 

129.7, 129.4, 128.6, 125.8, 124.9, 124.8, 124.8, 124.8, 123.5, 123.3, 123.2, 123.1, 121.0, 

81.8, 80.6, 47.6, 47.0, 28.9, 28.0 ppm; [α]D
23 -41.0 (c 1 CHCl3); FT-IR (thin film, cm-1) 

2978, 1844, 1715, 1620, 1593, 1489, 1450, 1392, 1323, 1280, 1159; MS (ES)  m/z 458.1 

[M+Na]+; HRMS (EI) Exact mass calculated for [C24H29F3NO3] requires m/z 436.2094 

found m/z 436.2094. 
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Three component One-Pot asymmetric synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-

3-(4-cyanophenyl)aziridine-2-carboxylate; cis-(312) 

 

4-cyanobenzaldehyde (34 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) (43 mg, 0.26 

mmol), and catalyst (S)-(289) (10.8 mg, 0.013 mmol, 5%) were added to a flame dried 2 

mL vial under nitrogen. 1 mL of chloroform was added (pre-dried over 4Å molecular 

sieves), followed by ~40 mg of freshly powdered 4Å molecular sieves, and the vial was 

sealed with a PTFE crimp cap. After stirring at room temperature for 6 h, the reaction was 

cooled to -60 °C. After 30 minutes, tert-butyl diazoacetate (280) (40.7 mg, 40 µL, 0.286 

mmol) was added via syringe, and the reaction mixture was stirred at -60 °C, monitoring 

by 1H-NMR spectroscopy until the reaction was deemed complete (~48h). At this point the 

reaction mixture was filtered through a short plug of silica, eluting with diethyl ether. The 

solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (14 % diethyl ether in petroleum ether). A sample was submitted 

to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 95 / 5, 1 mL 

/ min, 7.04 min (1st peak), 13.69 min (2nd peak), 99% e.e.]. The title product cis-(312) was 

a colourless oil afforded in a 74 % yield (75 mg, 0.19 mmol). 1H-NMR (CDCl3, 400 MHz) 

δ 7.70-7.60 (m, 4H, ArH), 7.07-6.89 (m, 4H, ArH), 3.49 (d, J 6.8 Hz, 1H, C3-H), 3.11 (d, 

1H, J 6.8 Hz, C2-H) 1.35 (s, 9H, C(CH3)3), 1.20 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 

MHz) 166.5, 148.0, 145.7, 141.0, 131.6, 128.9, 123.5, 123.1, 123.0, 120.8, 111.2, 81.8, 

80.4, 47.5, 46.7, 28.6, 27.7 ppm; [α]D
23 -61.6 (c 0.7 CHCl3); FT-IR (thin film cm-1) 2977, 

2228, 1741, 1713, 1592, 1489, 1450, 1392, 1366, 1261, 1224, 1149; MS (ES) m/z 415.2 

[M+Na]+; HRMS (EI) Exact mass calculated for [C24H29N2O3] requires m/z 393.2173 

found m/z 393.2174. 
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Three component One-Pot asymmetric synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-

3-(4-(methylthio)phenyl)aziridine-2-carboxylate; cis-(313) 

 

4-(methylthio)benzaldehyde (51 mg, 0.26 mmol), 2-tert-butoxy aniline (307) (43 mg, 0.26 

mmol), and catalyst (S)-(289) (10.8 mg, 0.013 mmol, 5%) were added to a flame dried 2 

mL vial under nitrogen. 1 mL of chloroform was added (pre-dried over 4Å molecular 

sieves), followed by ~40 mg of freshly powdered 4Å molecular sieves, and the vial was 

sealed with a PTFE crimp cap. After stirring at room temperature for 6 h, the reaction was 

cooled to -60 °C. After 30 minutes, tert-butyl diazoacetate (280) (40.7 mg, 20 µL, 0.286 

mmol) was added via syringe, and the reaction mixture was stirred at -60 °C, monitoring 

by 1H-NMR spectroscopy until the reaction was deemed complete (~72 h). At this point 

the reaction mixture was filtered through a short plug of silica, eluting with diethyl ether. 

The solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (12 % diethyl ether in petroleum ether). A sample was submitted 

to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 95/ 5, 1 mL / 

min, 5.06 min (1st peak), 9.63 min (2nd peak), 76 % e.e.]. The title product cis-(313) was a 

slight yellow oil afforded in a 72 % yield (78 mg, 0.19 mmol). 1H-NMR (CDCl3, 400 

MHz) δ 7.43 (d, 2H, J 8.4 Hz, ArH), 7.21 (d, 2H, J 8.4 Hz, ArH), 7.03-6.87 (m, 4H, ArH), 

3.42 (d, J 6.7 Hz, 1H, C3-H), 3.01 (d, 1H, J 6.7 Hz, C2-H), 2.44 (s, 3H, SCH3), 1.36 (s, 

9H, C(CH3)3), 1.19 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 MHz) 167.2, 148.1, 146.7, 

137.6, 132.5, 128.7, 126.3, 123.4, 123.3, 123.2, 121.1, 81.5, 80.6, 47.6, 47.3, 28.9, 28.1, 

16.3 ppm; [α]D
23 -35.6 (c 1.4 CHCl3); FT-IR (thin film, cm-1) 2976, 2929, 1743, 1711, 

1592, 1489. 1391, 1365, 1304, 1260; MS (ES) m/z 414.2 [M+H]+, 436.2 [M+Na]+; HRMS 

(EI) Exact mass calculated for [C24H32NO3S] requires m/z 414.2097 found m/z 414.2099. 
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Three component One-Pot asymmetric synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-

3-(perfluorophenyl)aziridine-2-carboxylate; cis-(314) 

 

Pentafluorobenzaldehyde (51 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) (43 mg, 0.26 

mmol), and catalyst (S)-(289) (10.8 mg, 0.013 mmol, 5 %) were added to a flame dried 2 

mL vial under nitrogen. 1 mL of chloroform was added (pre-dried over 4Å molecular 

sieves), followed by ~40 mg of freshly powdered 4Å molecular sieves, and the vial was 

sealed with a PTFE crimp cap. After stirring at room temperature for 6 h, the reaction was 

cooled to -60 °C. After 30 minutes, tert-butyl diazoacetate (280) (40.7 mg, 40 µL, 0.286 

mmol) was added via syringe, and the reaction mixture was stirred at -60 °C, monitoring 

by 1H-NMR spectroscopy until the reaction was deemed complete (~48 h). At this point 

the reaction mixture was filtered through a short plug of silica, eluting with diethyl ether. 

The solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (12 % diethyl ether in petroleum ether). The title product cis-

(314) was a colourless oil afforded in a 74 % yield (87 mg, 0.19 mmol); however, cis-(314) 

proved impossible to separate utilising available chiral HPLC techniques. 1H-NMR 

(CDCl3, 400 MHz) δ 7.14-6.88 (m, 4H, ArH), 3.33 (d, 1H, J 5.6 Hz, C3-H),  3.04 (d, 1H, J 

5.6 Hz, C2-H), 1.40 (s, 9H, C(CH3)3), 1.38 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 MHz) 

167.2, 148.2, 147.7, 147.7, 147.5, 145.3, 144,5, 144.3, 139.3, 139.1, 139.0, 136.0, 135.8, 

135.8, 123.7, 123.1, 122.8, 120.7, 110.5, 110.2, 110.2, 82.1, 80.5, 43.6, 36.8, 28.6, 27.6 

ppm; [α]D
23 -122.7 (c 0.8 CHCl3); FT-IR (thin film, cm-1) 2979, 2933, 1740, 1655, 1594, 

1523, 1500, 1451, 1393, 1369, 1331; MS (ES) m/z 480.1 [M+Na]+; HRMS (EI) Exact mass 

calculated for [C23H25F5NO3] requires m/z 458.1749 found m/z 458.1748. 
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Three component One-Pot asymmetric synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-

3-(4-formylphenyl)aziridine-2-carboxylate; cis-(315) 

 

Terephthalaldehyde (34.8 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) (43 mg, 0.26 

mmol), and catalyst (S)-(289) (5.4 mg, 0.0065 mmol, 5%) were added to a flame dried 2 

mL vial under nitrogen. 1 mL of chloroform was added (pre-dried over 4Å molecular 

sieves), followed by ~40 mg of freshly powdered 4Å molecular sieves, and the vial was 

sealed with a PTFE crimp cap. After stirring at room temperature for 6 h, the reaction was 

cooled to -60 °C. After 30 minutes, tert-butyl diazoacetate (280) (38 mg, 17.5 µL, 0.27 

mmol) was added via syringe, and the reaction mixture was stirred at -60 °C, monitoring 

by 1H-NMR spectroscopy until the reaction was deemed complete (~72 h). At this point 

the reaction mixture was filtered through a short plug of silica, eluting with diethyl ether. 

The solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (12 % diethyl ether in petroleum ether). A sample was submitted 

to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 95/ 5, 1 mL / 

min, 6.94 min (1st peak), 14.85 min (2nd peak), 90 % e.e.]. The title product cis-(315) was a 

colourless oil afforded in a 70 % yield (72 mg, 0.18 mmol). 1H-NMR (CDCl3, 400 MHz) δ 

10.01 (s, 1H, CHO), 7.86 (d, 2H, J 8.3 Hz, ArH), 7.71 (d, 2H, J 8.3 Hz, ArH),  7.11-6.85 

(m, 4H, ArH), 3.52 (d, J 6.8 Hz, 1H, C3-H), 3.12 (d, 1H, J 6.8 Hz, C2-H), 1.35 (s, 9H, 

C(CH3)3), 1.19 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 MHz) 192.2, 166.6, 148.1, 145.9, 

142.6, 135.8, 129.3, 128.8, 123.4, 123.1, 123.0, 120.9, 81.6, 80.3, 47.5, 47.0, 28.6, 27.7 

ppm; [α]D
23 -67.4 (c 2.4 CHCl3); FT-IR (thin film, cm-1) 2976. 2932, 1742, 1701, 1608, 

1592, 1577, 1489, 1450, 1391, 1303, 1279; MS (ES) m/z 418.3 [M+Na]+; HRMS (EI) 

Exact mass calculated for [C24H30N1O4] requires m/z 396.2169 found m/z 396.2170. 
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Three component One-Pot asymmetric synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-

3-(naphthalen-2-yl)aziridine-2-carboxylate; cis-(316) 

 

2-napthaldehyde (40.6 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) (43 mg, 0.26 mmol), 

and catalyst (S)-(289) (10.8 mg, 0.013 mmol, 5%) were added to a flame dried 2 mL vial 

under nitrogen. 1 mL of chloroform was added (pre-dried over 4Å molecular sieves), 

followed by ~40 mg of freshly powdered 4Å molecular sieves, and the vial was sealed with 

a PTFE crimp cap. After stirring at room temperature for 6 h, the reaction was cooled to -

60 °C. After 30 minutes, tert-butyl diazoacetate (280) (40.7 mg, 40 µL, 0.286 mmol) was 

added via syringe, and the reaction mixture was stirred at -60 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~48 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (14 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / min, 

5.11 min (1st peak), 11.66 min (2nd peak), 82% e.e.]. The title product cis-(316) was a 

colourless oil afforded in a 61 % yield (66 mg, 0.16 mmol). 1H-NMR (CDCl3, 300 MHz) δ 

8.02 (s, 1H, ArH), 7.93-7.72 (m, 3H, ArH), 7.64 (dd, 1H, J 1.6, 8.5 Hz, ArH), 7.58-7.35 

(m, 2H, ArH) 7.18-6.85 (m, 4H, ArH), 3.64 (d, 1H, J 6.7 Hz, C3-H), 3.13 (d, 1H, J 6.7 Hz, 

C2-H), 1.39 (s, 9H, C(CH3)3), 1.15 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 166.2, 

146.9, 145.4, 131.9, 131.8, 126.9, 126.6, 126.3, 126.0, 124.9, 124.6, 122.0, 121.9, 121.9, 

120.0, 80.3, 79.3, 46.7, 46.5, 27.7, 26.7 ppm; [α]D
26 -25.6 (c 0.9 CHCl3); FT-IR (thin film, 

cm-1) 2977, 1740, 1708, 1591, 1449, 1413, 1392, 1367, 1261, 1160, 1111; MS (EI)+: m/z 

440.2 [M+Na]+, 857.5 [2M+Na]+; HRMS (EI)+: exact mass calculated for [C27H32NO3]
+ 

requires m/z 418.2377, found m/z 418.2377. 
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Three component One-Pot asymmetric synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-

3-(quinolin-2-yl)aziridine-2-carboxylate; cis-(317) 

 

Quinoline-2-carboxaldehyde (40.8 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) (43 mg, 

0.26 mmol), and catalyst (S)-(289) (2.2 mg, 0.0026 mmol, 1%) were added to a flame 

dried 2 mL vial under nitrogen. 1 mL of chloroform was added (pre-dried over 4Å 

molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular sieves, and the 

vial was sealed with a PTFE crimp cap. After stirring at room temperature for 6 h, the 

reaction was cooled to -60 °C. After 30 minutes, tert-butyl diazoacetate (280) (40.7 mg, 40 

µL, 0.286 mmol) was added via syringe, and the reaction mixture was stirred at -60 °C, 

monitoring by 1H-NMR spectroscopy until the reaction was deemed complete (~24 h). At 

this point the reaction mixture was filtered through a short plug of silica, eluting with 

diethyl ether. The solvents were removed under reduced pressure, and the residue was 

purified via flash column chromatography (14 % diethyl ether in petroleum ether). A 

sample was submitted to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-

propanol : 8 / 2, 1 mL / min, 4.78 min (1st peak), 5.80 min (2nd peak), 98% e.e.]. The title 

product cis-(317) was a colourless oil afforded in a 81 % yield (88 mg, 0.21 mmol). 1H-

NMR (CDCl3, 400 MHz) δ 8.14 (d, 1H, J 8.5 Hz, ArH), 8.07 (d, 1H, J 8.5 Hz, ArH), 7.90 

(d, 1H, J 8.5 Hz, ArH), 7.82 (d, 1H, J 8.1 Hz, ArH), 7.70 (t, 1H, J 7.7, 7.7 Hz, ArH), 7.52 

(t, 1H, J 7.5, 7.5 Hz, ArH), 7.12-6.90 (m, 4H, ArH), 3.82 (d, 1H, J 6.8 Hz, C3-H), 3.21 (d, 

1H, J 6.8 Hz, C2-H) 1.38 (s, 9H, C(CH3)3), 1.18 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 

MHz) 167.0, 156.7, 148.3, 147.7, 145.8, 135.9, 129.6, 128.9, 127.9, 127.8, 126.4, 123.5, 

123.2, 122.9, 121.3, 121.1, 81.7, 80.5, 49.2, 47.4, 29.0, 28.0 ppm; [α]D
23 -78.2 (c 1.7 

CHCl3); FT-IR (thin film, cm-1) 2976, 2931, 1740, 1718, 1618, 1597, 1562, 1489, 1449, 

1426, 1330, 1311, 1227; MS (ES) m/z 419.2 [M+H]+, 441.2 [M+Na]+; HRMS (EI) Exact 

mass calculated for [C26H31N2O3] requires m/z 419.2329 found m/z 419.2329. 
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Three component One-Pot asymmetric synthesis of tert-butyl 3,3'-(1,4-

phenylene)bis(1-(2-tert-butoxyphenyl)aziridine-2-carboxylate); cis-(318) 

 

Terephthalaldehyde (8.8 mg, 0.065 mmol,), 2-tert-butoxy aniline (307) (21 mg, 0.13 

mmol), and catalyst (S)-(289) (5.4 mg, 0.0065 mmol, 5%) were added to a flame dried 2 

mL vial under nitrogen. 1 mL of chloroform was added (pre-dried over 4Å molecular 

sieves), followed by ~40 mg of freshly powdered 4Å molecular sieves, and the vial was 

sealed with a PTFE crimp cap. After stirring at room temperature for 6 h, the reaction was 

cooled to -60 °C. After 30 minutes, tert-butyl diazoacetate (280) (20.4 mg, 20 µL, 0.142 

mmol) was added via syringe, and the reaction mixture was stirred at -60 °C, monitoring 

by 1H-NMR spectroscopy until the reaction was deemed complete (~72 h). At this point 

the reaction mixture was filtered through a short plug of silica, eluting with diethyl ether. 

The solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (12 % diethyl ether in petroleum ether). A sample was submitted 

to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 95/ 5, 1 mL / 

min, 4.47 min (1st peak), 6.01 min (2nd peak), 99 % e.e.]. The title product cis-(318) was a 

colourless oil afforded in a 25 % isolated yield (11 mg, 0.016 mmol; 75 % based on 

recovered material). 1H-NMR (CDCl3, 400 MHz) δ 7.50 (d, 4H, J 3.2 Hz, ArH), 7.14-6.81 

(m, 8H, ArH), 3.46 (dd*, J 3.6, 6.7 Hz, 2H, C3-H), 3.03 (d, 2H, J 6.7 Hz, C2-H), 1.37 (s, 

18H, C(CH3)3), 1.27 (s, 18H, C(CH3)3); 
13C-NMR (CDCl3, 100 MHz 167.1, 167.0, 148.0, 

147.9, 146.9, 146.8, 134.6, 134.6, 127.6, 127.5, 123.3, 123.2, 123.1, 123.0, 121.1, 81.2, 

80.3, 80.3, 47.6, 47.5, 47.4, 47.3, 28.6, 27.8 ppm; [α]D
23 -43.7 (c 0.7 CHCl3); FT-IR (thin 

film, cm-1) 2977, 1745, 1716, 1450, 1367, 1262, 1163; MS (ES) m/z 679.4 [M+Na]+; 

HRMS (EI) Exact mass calculated for [C40H54N2O6] requires m/z 657.3898 found m/z 

657.3895. 

 

*Could potentially contain two doublets, one for the desired product, and one for the 

presence of a small amount of the meso- diaziridine within the product.
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Four component One-Pot asymmetric synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-

3-(4-(1-(2-tert-butoxyphenyl)-3-(isopropoxycarbonyl)aziridin-2-yl)phenyl)aziridine-2-

carboxylate; cis-(319) 

 

Terephthalaldehyde (8.9 mg, 0.065 mmol,), 2-tert-butoxy aniline (307) (11 mg, 6.5 mmol), 

and catalyst (S)-(289) (6 mg, 0.0065 mmol, 10%) were added to a flame dried 2 mL vial 

under nitrogen. 1 mL of chloroform was added (pre-dried over 4Å molecular sieves), 

followed by ~40 mg of freshly powdered 4Å molecular sieves, and the vial was sealed with 

a PTFE crimp cap. After stirring at room temperature for 16 h, the reaction was cooled to -

60 °C. After 30 minutes, iso-propyl diazoacetate (320) (8.5 mg, 8.4 µL, 0.065 mmol) was 

added via syringe, and the reaction mixture was stirred at -60 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point 2-tert-butoxy 

aniline (307) (11 mg, 6.5 mmol) was added, and the reaction was stirred at 0 °C for 12 h; 

after which, the reaction was re-cooled to -60 °C. After 30 minutes, tert-butyl diazoacetate 

(280) (9.3 mg, 9.2 µL, 0.065 mmol) was added via syringe, and the reaction mixture was 

stirred at -60 °C, monitoring by 1H-NMR spectroscopy until the reaction was deemed 

complete (~72 h). At this point the reaction mixture was filtered through a short plug of 

silica, eluting with diethyl ether. The solvents were removed under reduced pressure, and 

the residue was purified via flash column chromatography (12 % diethyl ether in petroleum 

ether). A sample was submitted to chiral analytical HPLC analysis [Chiralpak AD, iso-

hexane / iso-propanol : 95/ 5, 1 mL / min, 4.70 min (1st peak), 6.64 min (2nd peak), 11.47 

min (3rd peak), 15.28 min (4th peak) 85 % e.e.]. The title product cis-(319) was a colourless 

oil afforded in a 35 % overall isolated yield (15 mg, 0.023 mmol; 65 % based on recovered 

material). 1H-NMR (CDCl3, 400 MHz) δ 7.50 (2s, 4H, ArH), 7.00 (m, 8H, ArH), 4.87 (m, 

1H, CH(CH3)2),  3.51 (dd, 1H, J 2.0, 6.7 Hz, C3-H), 3.46 (d, 1H, J 6.7 Hz, C3-H), 3.09 (d, 

J 6.7 Hz, 1H, C2-H), 3.03 (d, 1H, J 6.7 Hz, C2-H), 1.36 (2s, 18H, C(CH3)3), 1.25 (s, 9H, 

C(CH3)3), 1.08 (m, 6H, C(CH3)2); 
13C-NMR (CDCl3, 100 MHz) 167.4, 167.1, 148.0, 

146.8, 146.7, 146.5, 146.4, 134.8, 134.7, 134.4, 127.6, 127.5, 123.2, 123.1, 123.0, 122.9, 

122.9, 122.7, 121.1, 121.0, 81.2, 81.1, 80.3, 80.3, 80.2, 80.168.2, 68.1, 47.8, 47.4, 28.6, 

27.8, 21.7, 21.6 ppm; [α]D
23 -52.3 (c 2 CHCl3); FT-IR (thin film, cm-1) 2978, 2932, 1744, 
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1716, 1592, 1489, 1450, 1391, 1367, 1305, 1262, 1219, 1262; MS (ES) m/z 665.2 

[M+Na]+; HRMS (EI) Exact mass calculated for [C39H51N2O6] requires m/z 643.3742 

found m/z 643.3739. 

 

Synthesis of tert-butyl 1-(2-hydroxyphenyl)-3-(perfluorophenyl)aziridine-2-

carboxylate; cis-(324) 

 

To a stirred solution of cis-(314) (40 mg, 0.088 mmol) in 1 mL acetonitrile, in a 4 mL 

Biotage microwave vial, was added para-toluene sulfonic acid (19 mg, 0.096 mmol, 1.1 

eq). 500 µL distilled water was added, the reaction was capped with a PTFE seal, and 

heated to 60 °C for 5 h in a Biotage Creator® microwave synthesiser. After this time the 

reaction mixture was diluted with 10 mL ethyl acetate, washed with 15 mL saturated 

aqueous sodium hydrogen carbonate, and 10 mL brine. The organic layer was dried with 

magnesium sulphate, filtered, and the solvents removed under reduced pressure. The 

resulting material was purified via flash column chromatography (30 % diethyl ether in 

petroleum ether). A sample was submitted to chiral analytical HPLC analysis [Chiralpak 

AD, iso-hexane / iso-propanol : 95/ 5, 1 mL / min, 2.67 min (1st peak), 3.00 min (2nd peak), 

90% e.e.]. The title product cis-(324) was a colourless oil afforded in a 70 % yield (25 mg, 

0.061 mmol). 1H-NMR (CDCl3, 400 MHz) δ 7.13-7.05 (m, 1H, ArH), 6.97 (dd, 1H, J 8.0, 

1.3 Hz, ArH), 6.91-6.81 (m, 2H, ArH), 6.51 (s, 1H, Ar-OH), 3.64 (d, 1H, J 6.2 Hz, C3-H),  

3.09 (d, 1H, J 6.2 Hz, C2-H), 1.40 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 MHz) 166.4, 

151.5, 147.7, 147.6, 147.5, 144.3, 144.3, 144.2, 139.4, 139.3, 139.2, 139.2, 136.1, 126.4, 

120.4, 117.6, 115.7, 83.0, 44.5, 37.1, 27.6 ppm; [α]D
23 17.2 (c 1 CHCl3); FT-IR (thin film 

cm-1) 3408, 1721, 1597, 1523, 1501, 1458, 1370, 1281, 1156; MS (ES) m/z 424.1 

[M+Na]+; HRMS (EI) Exact mass calculated for [C19H17F5NO3] requires m/z 402.1123 

found m/z 402.1129. 
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9.3: Synthesis of C2-deutero Aziridines 

Asymmetric Synthesis of tert-butyl 3-(4-bromophenyl)-1-(2-tert-butoxyphenyl)-2-

deuteroaziridine-2-carboxylate; cis-(350) 

 

(E)-2-tert-Butoxy-N-(4-bromophenylmethylene)phenylamine (85 mg, 0.26 mmol), and 

catalyst (S)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a flame dried 2 mL vial, 

containing ~ 40 mg of freshly powdered 4Å molecular sieves, under nitrogen. 800 µL of 

deuterated chloroform was added (pre-dried over 4Å molecular sieves), and the vial was 

sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was added via syringe through 

the septum, and the reaction mixture was cooled to -80 °C. After 30 minutes, >95 % 

deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (14 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / min, 

4.12 min (1st peak), 7.27 min (2nd peak), 95 % e.e]. The title product cis-(350) was a slight 

green oil afforded in 87 % yield (101 mg, 0.226 mmol). 1H-NMR (CDCl3, 400 MHz) δ 

7.42-7.30 (m, 4H, ArH), 6.97-6.91 (m, 1H, ArH), 6.91-6.82 (m, 3H, ArH), 3.35 (s, 1H, C3-

H), 1.29 (s, 9H, C(CH3)3), 1.16 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 MHz) 167.0, 

148.1, 146.3, 134.6, 131.0, 130.0, 123.3, 123.3, 123.3, 121.6, 121.1, 81.7, 80.6, 47.0, 28.9, 

28.0 ppm; [α]D
23 -23 (c 1.1 CHCl3); FT-IR (thin film, cm-1) 3010, 1770, 1750, 1495, 1395; 

MS (ES) m/z 447.1 [M+H]+, 469.1 [M+Na]+ ; HRMS (EI) Exact mass calculated for 

[C23H28DBrNO3]
+ requires m/z 447.1388 found m/z 447.1388 
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Asymmetric Synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-3-phenyl-2-

deuteroaziridine-2-carboxylate; cis-(351) 

 
 

(E)-2-tert-Butoxy-N-(benzylidene)phenylamine (47 mg, 0.26 mmol), and catalyst (S)-(289) 

(21.6 mg, 0.026 mmol, 10%) were added to a flame dried 2 mL vial, containing ~40 mg of 

freshly powdered 4Å molecular sieves, under nitrogen. 800 µL of deuterated chloroform 

was added (pre-dried over 4Å molecular sieves), and the vial was sealed with a PTFE 

crimp cap. 200 µL of anhydrous DCM was added via syringe through the septum, and the 

reaction mixture was cooled to -80 °C. After 30 minutes, >95% deuterated tert-butyl 

diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) was added via syringe, and the reaction 

mixture was stirred at -80 °C, monitoring by 1H-NMR spectroscopy until the reaction was 

deemed complete (~72 h). At this point the reaction mixture was filtered through a short 

plug of silica, eluting with diethyl ether. The solvents were removed under reduced 

pressure, and the residue was purified via flash column chromatography (14 % diethyl 

ether in petroleum ether). A sample was submitted to chiral analytical HPLC analysis 

[Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / min, 3.81 (1st peak), 7.60 (2nd 

peak), 81 % e.e]. The title product cis-(351) was afforded as a colourless oil in a 65 % 

yield (62 mg, 0.17 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.56-7.48 (m, 2H, ArH), 7.38-

7.27 (m, 3H, ArH), 7.06-6.90 (m, 4H, ArH), 3.43 (s, 1H, C3-H), 1.38 (s, 9H, C(CH3)3), 

1.19 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 167.3, 148.0, 146.7, 135.3, 128.1, 

127.8, 127.5, 123.2, 123.1, 123.0, 121.0, 81.2, 80.3, 47.3, 28.5, 27.6 ppm; [α]D
26 -30.6 (c 1 

CHCl3); FT-IR (thin film, cm-1): 2977, 1746, 1716, 1593, 1490, 1449, 1392, 1367; MS 

(EI)+: m/z 369.2 [M+H]+, 391.2 [M+Na]+; HRMS (EI)+: exact mass calculated for 

[C23H29DNO3]
+ requires m/z 369.2283, found m/z 369.2285 
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Asymmetric Synthesis of tert-butyl 3-(4-fluorophenyl)-1-(2-tert-butoxyphenyl)-2-

deuteroaziridine-2-carboxylate; cis-(352) 

 

(E)-2-tert-Butoxy-N-(4-fluorophenylmethylene)phenylamine (71 mg, 0.26 mmol), and 

catalyst (S)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a flame dried 2 mL vial, 

containing ~ 40 mg of freshly powdered 4Å molecular sieves, under nitrogen. 800 µL of 

deuterated chloroform was added (pre-dried over 4Å molecular sieves), and the vial was 

sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was added via syringe through 

the septum, and the reaction mixture was cooled to -80 °C. After 30 minutes, >95 % 

deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (14 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / min, 

4.01 min (1st peak), 6.20 min (2nd peak), 80% e.e.]. The title product cis-(352) was a 

colourless oil afforded in a 55 % yield (55 mg, 0.143 mmol). 1H-NMR (CDCl3, 400 MHz) 

δ 7.50-7.44 (m, 2H, ArH), 7.04-6.96 (m, 3H, ArH), 6.95-6.87 (m, 3H, ArH), 3.42 (s, 1H, 

C3-H), 1.34 (s, 9H, C(CH3)3), 1.19 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 MHz) 167.1, 

163.7, 161.3, 148.1, 146.5, 131.2, 131.1, 129.9, 129.8, 123.3, 123.2, 121.1, 114.9, 114.7, 

81.6, 80.6, 46.9, 28.9, 28.0, ppm; [α]D
22 -19.1 (c 1 CHCl3); FT-IR (thin film, cm-1) 2977, 

2934, 1743, 1710, 1512, 1489, 1450, 1392, 1368; MS (ES) m/z 387.2 [M+H]+, 409.1 

[M+Na]+ ; HRMS (EI) Exact mass calculated for [C23H28DFNO3]
+ requires m/z 387.2189 

found m/z 387.2189. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 1-(2-tert-

butoxyphenyl)-3-(4-chlorophenyl)-2-deuteroaziridine-2-carboxylate; cis-(353) 

 

4-chlorobenzaldehyde (37 mg, 0.26 mmol), 2-tert-butoxy aniline (307) (43 mg, 0.26 

mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a flame dried 2 

mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-dried over 4Å 

molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular sieves, and the 

vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was added via syringe 

through the septum, and the reaction mixture was cooled to -80 °C. After 30 minutes, >95 

% deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (12 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / min, 

4.45 min (1st peak), 7.34 min (2nd peak), 67 % e.e.]. The title product cis-(353) was a slight 

green oil afforded in a 55 % yield (58 mg, 0.143 mmol). 1H-NMR (CDCl3, 400 MHz) δ 

7.47 (d, 2H, J 9.0 Hz, ArH), 7.30 (d, 2H, J 9.0 Hz, ArH), 7.06-6.91 (m, 4H, ArH), 3.44 (s, 

1H, C3-H), 1.36 (s, 9H, C(CH3)3), 1.25 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 MHz) 

166.9, 148.0, 146.3, 133.9, 133.3, 129.5, 127.9, 123.2, 123.1, 120.9, 81.4, 80.3, 46.6, 28.6, 

27.7 ppm; [α]D
22 24.5 (c 0.05 CHCl3); FT-IR (thin film, cm-1) 2980, 2344, 1742, 1715, 

1593, 1490, 1451, 1341, 1278, 1258; MS (ES) m/z 403.1 [M+H]+, 425.1 [M+Na]+ ; HRMS 

(EI) Exact mass calculated for [C23H27DClNO3]
+ requires m/z 403.1893 found m/z 

403.1889. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 1-(2-hydroxyphenyl)-

3-(perfluorophenyl)-2-deuteroaziridine-2-carboxylate; cis-(354) 

 

Pentafluorobenzaldehyde (40 mg, 0.26 mmol,), 4-tert-butoxy aniline (307) (43 mg, 0.26 

mmol), and catalyst (S)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a flame dried 2 

mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-dried over 4Å 

molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular sieves, and the 

vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was added via syringe 

through the septum, and the reaction mixture was cooled to -80 °C. After 30 minutes, >95 

% deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (14 % diethyl ether in petroleum ether). The reaction product cis-(354) 

was a colourless oil afforded in an 82 % yield (98 mg, 0.21 mmol); however, cis-(354) 

could not be separated with the chiral HPLC techniques available at the time. 1H-NMR 

(CDCl3, 400 MHz) δ 7.09-6.83 (m, 4H, ArH), 3.30 (s, 1H, C3-H), 1.40 (s, 9H, C(CH3)3), 

1.38 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 MHz) 167.2, 148.2, 147.7, 147.7, 147.5, 

145.3, 144,5, 144.3, 139.3, 139.1, 139.0, 136.0, 135.8, 135.8, 123.7, 123.1, 122.8, 120.7, 

110.5, 110.2, 110.2, 82.1, 80.5, 43.55, 36.82, 28.6, 27.6 ppm; [α]D
23 -121 (c 1.1 CHCl3); 

FT-IR (thin film, cm-1) 2979, 2933, 1743, 1738, 1594, 1524, 1502, 1451, 1393, 1369, 

1331; MS (ES) m/z 459.2 [M+H]+, 481.1 [M+Na]+; HRMS (EI) Exact mass calculated for 

[C23H24F5DNO3] requires m/z 459.1812 found m/z 459.1809. 
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Synthesis of tert-butyl 1-(2-hydroxyphenyl)-3-(perfluorophenyl)-2-deuteroaziridine-2-

carboxylate; cis-(355) 

 

To a stirred solution of the optically active starting material cis-(354) (37 mg, 0.081 mmol) 

synthesised using (R)-(289), in 1 mL acetonitrile, in a 4 mL Biotage microwave vial, was 

added para-toluenesulfonic acid (17 mg, 0.087 mmol). 500 µL of water was added, the 

reaction was capped with a PTFE seal, and heated to 60 °C for 5 h in a Biotage Creator® 

microwave synthesiser. After this time, the reaction mixture was neutralised by addition of 

a saturated aqueous solution of sodium hydrogen carbonate. This was extracted with ethyl 

acetate, and the combined organic layers were washed with brine, dried with magnesium 

sulphate, filtered and the solvent removed under reduced pressure. The resulting material 

was purified via flash column chromatography (30 % diethyl ether in petroleum ether). A 

sample was submitted to chiral analytical HPLC analysis [Chiralpak IA, CO2 / iso-

propanol: 5% - 50% over 9 min, 0.7 mL / min, 3.78 min (1st peak), 4.23 min (2nd peak), 92 

% e.e.] The reaction product cis-(355) was a pale brown oil afforded in a 67 % yield (22 

mg, 0.054 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.12-7.04 (m, 1H, ArH), 7.00-6.93 (m, 

1H, ArH), 6.91-6.80 (m, 2H, ArH), 6.54 (s br, 1H, Ar-OH), 3.62 (s, 1H, C3-H), 1.40 (s, 

9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 166.6, 151.6, 147.3, 147.2, 147.1, 144.8, 144.7, 

144.6, 143.6, 143.6, 143.6, 138.9, 138.9, 138.9, 136.2, 126.5, 120.6, 117.9, 115.9, 83.2, 

37.4, 27.9 ppm; [α]D
22 -18.2 (c 1 CHCl3); FT-IR (thin film, cm-1): 2982, 1720, 1597, 1502, 

1458, 1395, 1370, 1277, 1094; MS (EI)+: m/z 425.3 [M+Na]+; HRMS (ASAP)+: exact 

mass calculated for [C19H16DF5NO3]
+ requires m/z 403.1186, found m/z 403.1178. 
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Asymmetric Synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-3-(4-nitrophenyl)-2-

deuteroaziridine-2-carboxylate; cis-(356) 

 

(E)-2-tert-Butoxy-N-(4-nitrophenylmethylene)phenylamine (77 mg, 0.26 mmol), and 

catalyst (S)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a flame dried 2 mL vial, 

containing ~ 40 mg of freshly powdered 4Å molecular sieves, under nitrogen. 800 µL of 

deuterated chloroform was added (pre-dried over 4Å molecular sieves), and the vial was 

sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was added via syringe through 

the septum, and the reaction mixture was cooled to -80 °C. After 30 minutes, >95 % 

deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (14 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / min, 

5.62 min (1st peak), 9.32 min (2nd peak), 88% e.e.]. The title product cis-(356) was a 

yellow oil, afforded in a 95 % yield (102 mg, 0.247 mmol); cis-(356) could be crystallised 

by treatment with 8:2 petroleum ether : diethyl ether. 1H-NMR (CDCl3, 400 MHz) δ 8.17 

(d, 2H, J 6.9 Hz, ArH), 7.69 (d, 2H, J 6.9 Hz, ArH), 7.10-6.83 (m, 4H, ArH), 3.50 (s, 1H, 

C3-H), 1.33 (s, 9H, C(CH3)3), 1.20 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 MHz) 166.5, 

148.1, 147.5, 145.6, 143.2, 129.2, 123.7, 123.3, 123.2, 123.1, 121.0, 82.1, 80.6, 46.8, 28.9, 

28.1 ppm; [α]D
23 -5.33 (c 0.3 CHCl3); FT-IR (thin film, cm-1) 2978, 2933, 1743, 1715, 

1520, 1345; MS (ES) m/z 414.2 [M+H]+; HRMS (EI) Exact mass calculated for 

[C23H28DN2O5] requires  m/z 414.2134 found m/z 414.2131. 
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Asymmetric Synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-3-(4-cyanophenyl)-2-

deuteroaziridine-2-carboxylate; cis-(357) 

 

(E)-2-tert-Butoxy-N-(4-cyanophenylmethylene)phenylamine (72 mg, 0.26 mmol), and 

catalyst (S)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a flame dried 2 mL vial, 

containing ~ 40 mg of freshly powdered 4Å molecular sieves, under nitrogen. 800 µL of 

deuterated chloroform was added (pre-dried over 4Å molecular sieves), and the vial was 

sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was added via syringe through 

the septum, and the reaction mixture was cooled to -80 °C. After 30 minutes, >95 % 

deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash 

chromatography (14 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / min, 

6.19 min (1st peak), 8.75 min (2nd peak), 99% e.e.]. The title product cis-(357) was a slight 

green oil afforded in a 65 % yield (66 mg, 0.17 mmol). 1H-NMR (CDCl3, 400 MHz) δ 

7.72-7.58 (m, 4H, ArH), 7.09-6.88 (m, 4H, ArH), 3.48 (s, 1H, C3-H), 1.35 (s, 9H, 

C(CH3)3), 1.18 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 MHz) 166.6, 148.1, 145.8, 141.1, 

131.8, 129.1, 123.7, 123.3, 123.2, 121.0, 119.2, 82.0, 80.6, 47.0, 28.9, 28.0 ppm; [α]D
23 -

43.93 (c 1.4 CHCl3); FT-IR (thin film, cm-1) 2978, 1520, 1344; MS (ES) m/z 394.1 

[M+H] +; HRMS (EI) Exact mass calculated for [C24H28DN2O3] requires m/z 394.2235 

found m/z 394.2236. 
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Asymmetric Synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-3-(naphthalen-2-yl)-2-

deuteroaziridine-2-carboxylate; cis-(358) 

 

(E)-2-tert-Butoxy-N-(2-napthylmethylene)phenylamine (79 mg, 0.26 mmol), and catalyst 

(S)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a flame dried 2 mL vial, containing 

~40 mg of freshly powdered 4Å molecular sieves, under nitrogen. 800 µL of deuterated 

chloroform was added (pre-dried over 4Å molecular sieves), and the vial was sealed with a 

PTFE crimp cap. 200 µL of anhydrous DCM was added via syringe through the septum, 

and the reaction mixture was cooled to -80 °C. After 30 minutes, >95 % deuterated tert-

butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) was added via syringe, and the 

reaction mixture was stirred at -80 °C, monitoring by 1H-NMR spectroscopy until the 

reaction was deemed complete (~72 h). At this point the reaction mixture was filtered 

through a short plug of silica, eluting with diethyl ether. The solvents were removed under 

reduced pressure, and the residue was purified via flash column chromatography (14 % 

diethyl ether in petroleum ether). A sample was submitted to chiral analytical HPLC 

analysis [Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / min, 4.61 min (1st peak), 

11.01 min (2nd peak), 90% e.e.]. The title product cis-(358) was afforded as a slight brown 

oil in an 85 % yield (92 mg, 0.22 mmol). 1H-NMR (CDCl3, 400 MHz) δ 7.94 (s, 1H, ArH), 

7.81-7.68 (m, 3H, ArH) 7.57 (d, 1H, J 8.5 Hz, ArH), 7.46-7.34 (m, 2H, ArH), 7.01-6.83 

(m, 4H, ArH), 3.57 (s, 1H, C3-H), 1.33 (s, 9H, C(CH3)3), 1.04 (s, 9H, C(CH3)3); 
13C-NMR 

(CDCl3, 100 MHz) 167.4, 148.2, 146.6, 133.1, 133.0, 128.1, 127.9, 127.5, 127.3, 126.2, 

126.1, 125.9, 123.2, 123.2, 123.1, 121.2, 81.5, 80.5, 47.9, 28.9, 27.9 ppm; [α]D
23 -13.93 (c 

2.9 CHCl3); FT-IR (thin film, cm-1) 2977, 1742, 1713, 1592, 1489, 1449, 1392, 1367, 

1332, 1261; MS (ES) m/z 419.2 [M+H]+, 441.1 [M+Na]+; HRMS (EI) Exact mass 

calculated for [C27H31DNO3]
+ required m/z 419.2439 found m/z 419.2441. 
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Asymmetric Synthesis of tert-butyl 1-(2-tert-butoxyphenyl)-3-(pyridin-2-yl)-2-

deuteroaziridine-2-carboxylate; cis-(359) 

 

(E)-2-tert-Butoxy-N-(pyridin-2-ylmethylene)phenylamine (66 mg, 0.26 mmol), and 

catalyst (S)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a flame dried 2 mL vial, 

containing ~ 40 mg of freshly powdered 4Å molecular sieves, under nitrogen. 800 µL of 

deuterated chloroform was added (pre-dried over 4Å molecular sieves), and the vial was 

sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was added via syringe through 

the septum, and the reaction mixture was cooled to -80 °C. After 30 minutes, >95 % 

deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (14 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol: 8 / 2, 1 mL / min, 5.05 

min (1st peak), 7.01 min (2nd peak), 99% e.e.]. The title product cis-(359) was a colourless 

oil afforded in a 82 % yield (79 mg, 0.21 mmol). 1H-NMR (CDCl3, 400 MHz) δ 8.61-8.48 

(m, 1H, ArH), 7.78-7.60 (m, 2H, ArH), 7.24-7.13 (m, 1H, ArH), 7.08-6.88 (m, 4H, ArH), 

3.65 (s, 1H, C3-H), 1.38 (s, 9H, C(CH3)3), 1.23 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 

MHz) 166.8, 155.6, 148.7, 148.2, 145.8, 135.9, 123.2, 123.1, 122.9, 122.7, 122.5, 120.9, 

81.3, 80.2, 48.4, 28.6, 27.7 ppm; [α]D
23 -43.30 (c 3.1 CHCl3); FT-IR (thin film, cm-1) 2977, 

1738, 1715, 1589, 1570, 1489, 1450, 1435, 1392, 1367; MS (ES) m/z 370.1 [M+H]+, 392.1 

[M+Na]+; HRMS (EI) Exact mass calculated for [C22H28DN2O3] requires m/z 370.2235 

found m/z 370.2237. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 3-(4-(((9H-fluoren-9-

yl)methoxy)carbonyloxy)phenyl)-1-(2-tert-butoxyphenyl)-2-deuteroaziridine-2-

carboxylate; cis-(363) 

 

(9H-fluoren-9-yl)methyl 4-formylphenyl carbonate (44 mg, 0.13 mmol), 2-tert-butoxy 

aniline (307) (21.4 mg, 0.13 mmol), and catalyst (R)-(289) (11 mg, 0.013 mmol, 10%) 

were added to a flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform 

was added (pre-dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 

4Å molecular sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous 

DCM was added via syringe through the septum, and the reaction mixture was cooled to -

80 °C. After 30 minutes, >95 % deuterated tert-butyl diazoacetate (349) (20.4 mg, 20 µL, 

0.143 mmol) was added via syringe, and the reaction mixture was stirred at -80 °C, 

monitoring by 1H-NMR spectroscopy until the reaction was deemed complete (72 h). At 

this point the reaction mixture was filtered through a short plug of silica, eluting with 

diethyl ether. The solvents were removed under reduced pressure, and the residue was 

purified via flash column chromatography (18 % diethyl ether in petroleum ether). A 

sample was submitted to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-

propanol: 95 / 5, 1 mL / min, 8.9 min (1st peak), 34.48 min (2nd peak), 66 % e.e.]. The title 

product cis-(363) was a colourless oil afforded in a 78 % yield (61 mg, 0.10 mmol). 1H-

NMR (CDCl3, 300 MHz) δ 7.80 (d, 2H, J 7.4 Hz, ArH), 7.67 (d, 2H, J 7.4 Hz, ArH), 7.57 

(d, 2H, J 8.7 Hz, ArH), 7.44 (t, 2H, J 7.4, 7.4 Hz, ArH), 7.35 (t, 2H, J  7.4, 7.4 Hz, ArH), 

7.17 (d, 2H, J 8.4 Hz, ArH), 7.07-6.92 (m, 4H, ArH), 4.53 (d, 2H, J 7.4 Hz, CH2), 4.34 (t, 

1H, J 7.4, 7.4 Hz, ArH), 3.48 (s, 1H, C3-H), 1.39 (s, 9H, C(CH3)3), 1.22 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 167.2, 153.9, 150.7, 148.1, 146.5, 143.4, 141.5, 133.4, 129.4, 

128.2, 127.4, 125.4, 123.3, 121.1, 120.6, 120.4, 110.0, 81.7, 80.6, 70.6, 46.9, 28.9, 28.0 

ppm; [α]D
26 80 (c 0.1 CHCl3); FT-IR (thin film, cm-1): 2976, 1760, 1712, 1591, 1489, 

1449, 1366, 1253, 1229, 1205, 1159; MS (EI)+: m/z 629.3 [M+Na]+; HRMS (EI)+: exact 

mass calculated for [C38H39DNO6]
+ requires m/z 607.2840, found m/z 607.2900. 
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Asymmetric Synthesis of isopropyl 1-(2-tert-butoxyphenyl)-3-(pyridin-2-yl)-2-

deuteroaziridine-2-carboxylate; cis-(367) 

 

(E)-2-tert-Butoxy-N-(pyridin-2-ylmethylene)phenylamine (66 mg, 0.26 mmol), and 

catalyst (S)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a flame dried 2 mL  Biotage 

microwave vial, containing ~ 40 mg of freshly powdered 4Å molecular sieves, under 

nitrogen. 800 µL of deuterated chloroform was added (pre-dried over 4Å molecular 

sieves), and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, >95 % deuterated iso-propyl diazoacetate (364) (36.6 mg, 36 µL, 0.286 mmol) 

was added via syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-

NMR spectroscopy until the reaction was deemed complete (~72 h). At this point the 

reaction mixture was filtered through a short plug of silica, eluting with diethyl ether. The 

solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (14 % diethyl ether in petroleum ether). A sample was submitted 

to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / 

min, 6.60 min (1st peak), 11.90 min (2nd peak), 92% e.e.]. The title product cis-(367) was a 

colourless oil afforded in a 78 % yield (72 mg, 0.20 mmol). 1H-NMR (CDCl3, 400 MHz) δ 

7.72-7.54 (m, 2H, ArH), 7.17-7.08 (m, 1H, ArH), 7.01-6.93 (m, 1H, ArH), 6.93-6.83 (m, 

4H, ArH), 4.81 (m, 1H, CH(CH3)2), 3.62 (s, 1H, C3-H), 1.29 (s, 9H, C(CH3)3), 1.01 (d, 3H, 

J 6.2 Hz, CH(CH3)2), 0.93 (d, 3H, J 6.7 Hz, CH(CH3)2); 
13C-NMR (CDCl3, 100 MHz) 

167.5, 155.5, 148.9, 148.3, 145.5, 136.1, 123.5, 123.3, 122.9, 122.8, 122.4, 121.0, 80.3, 

68.7, 48.9, 28.9, 21.8 ppm; [α]D
23 -8.5 (c 0.2 CHCl3); FT-IR (thin film, cm-1) 2977, 1738, 

1715, 1589, 1570, 1493, 1451, 1440, 1393, 1365; MS (ES) m/z 356.1 [M+H]+, 378.1 

[M+Na]+; HRMS (EI) Exact mass calculated for [C21H26DN2O3]
+ requires m/z 356.2079 

found m/z 356.2082. 
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Asymmetric Synthesis of isopropyl 1-(2-tert-butoxyphenyl)-3-(4-cyanophenyl)-2-

deuteroaziridine-2-carboxylate; cis-(368) 

 

(E)-2-tert-Butoxy-N-(4-cyanophenylmethylene)phenylamine (74 mg, 0.26 mmol), and 

catalyst (S)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a flame dried 2 mL vial, 

containing ~ 40 mg of freshly powdered 4Å molecular sieves, under nitrogen. 800 µL of 

deuterated chloroform was added (pre-dried over 4Å molecular sieves), and the vial was 

sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was added via syringe through 

the septum, and the reaction mixture was cooled to -80 °C. After 30 minutes, >95 % 

deuterated iso-propyl diazoacetate (364) (36.6 mg, 36 µL, 0.286 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (14 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / min, 

7.40 min (1st peak), 13.10 min (2nd peak), 96% e.e.]. The title product cis-(368) was a 

slight green oil afforded in a 80 % yield (79 mg, 0.21 mmol). 1H-NMR (CDCl3, 400 MHz) 

δ 7.71-7.59 (m, 4H, ArH), 7.07-6.89 (m, 4H, ArH), 4.87 (m, 1H, CH(CH3)2), 3.52 (s, 1H, 

C3-H), 1.33 (s, 9H, C(CH3)3), 1.02 (dd, 6H, J 6.3, 8.9 Hz, CH(CH3)2); 
13C-NMR (CDCl3, 

100 MHz) 167.1, 148.2, 145.4, 140.9, 131.8, 129.1, 123.8, 123.1, 122.8, 120.9, 119.1, 

111.5, 80.5, 69.0, 47.2, 28.9, 21.9, 21.7 ppm; [α]D
23 -37.65 (c 1.7 CHCl3); FT-IR (thin 

film, cm-1) 2925, 2859, 1608, 1494, 1451, 1403, 1262, 1202; MS (ES) m/z 380.2 [M+H]+; 

HRMS (EI) Exact mass calculated for [C23H26DN2O3]
+ requires m/z 380.2079 found m/z 

380.2079. 
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Asymmetric Synthesis of allyl 1-(2-tert-butoxyphenyl)-3-(4-cyanophenyl)-2-

deuteroaziridine-2-carboxylate cis-(369) 

 

(E)-2-tert-Butoxy-N-(4-cyanophenylmethylene)phenylamine (74 mg, 0.26 mmol), and 

catalyst (S)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a flame dried 2 mL vial, 

containing ~ 40 mg of freshly powdered 4Å molecular sieves, under nitrogen. 800 µL of 

deuterated chloroform was added (pre-dried over 4Å molecular sieves), and the vial was 

sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was added via syringe through 

the septum, and the reaction mixture was cooled to -80 °C. After 30 minutes, >95 % 

deuterated allyl diazoacetate (365) (36 mg, 35 µL, 0.286 mmol) was added via syringe, and 

the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR spectroscopy until the 

reaction was deemed complete (~72 h). At this point the reaction mixture was filtered 

through a short plug of silica, eluting with diethyl ether. The solvents were removed under 

reduced pressure, and the residue was purified via flash column chromatography (14 % 

diethyl ether in petroleum ether). A sample was submitted to chiral analytical HPLC 

analysis [Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / min, 12.20 min (1st 

peak), 20.40 min (2nd peak), 87% e.e.]. The title product cis-(369) was a slight green oil 

afforded in a 68 % yield (67 mg, 0.18 mmol). 1H-NMR (CDCl3, 400 MHz) δ 7.64-7.53 (m, 

4H, ArH), 7.00-6.83 (m, 4H, ArH), 5.72-5.56 (m, 1H, allyl-CH), 5.15-5.03 (m, 2H, OCH2), 

4.49-4.33 (m, 2H, allyl-CH2), 3.49 (s, 1H, C3-H), 1.25 (s, 9H, C(CH3)3); 
13C-NMR 

(CDCl3, 100 MHz) 167.2, 148.1, 145.2, 140.5, 131.8, 131.5, 128.9, 123.7, 123.0, 122.6, 

120.7, 118.9, 111.5, 80.3, 65.7, 47.2, 28.6 ppm; [α]D
23 -18.5 (c 1 CHCl3); FT-IR (thin film, 

cm-1) 2963, 2228, 1748, 1610, 1490, 1450, 1392, 1367, 1260; MS (ES) m/z 378.2 [M+H]+; 

HRMS (EI) Exact mass calculated for [C23H24DN2O3] requires m/z 378.1922 found m/z 

378.1923. 
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Three component One-Pot Asymmetric Synthesis of tert-butyl 1-(2-tert-butoxy-4-

methoxyphenyl)-3-(4-nitrophenyl)-2-deuteroaziridine-2-carboxylate; cis-(373) 

 

4-nitrobenzaldehyde (49 mg, 0.26 mmol,), 4-methoxy-2-tert-butoxy aniline (335) (43 mg, 

0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a flame 

dried 2 mL vial, under nitrogen. 800 µL of deuterated chloroform was added (pre-dried 

over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular sieves, 

and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was added via 

syringe through the septum, and the reaction mixture was cooled to -80 °C. After 30 

minutes, >95 % deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) was 

added via syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete. At this point the reaction mixture 

was filtered through a short plug of silica, eluting with diethyl ether. The solvents were 

removed under reduced pressure, and the residue was purified via flash column 

chromatography (14 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 95 / 5, 1 mL / min, 

9.80 min (1st peak), 11.60 min (2nd peak), 95% e.e.]. The title product cis-(373) was a 

slight yellow oil afforded in a 65 % yield (75 mg, 0.17 mmol). 1H-NMR (CDCl3, 300 

MHz) δ 8.20 (d, 2H, J 8.5 Hz, ArH), 7.71 (d, 2H, J 8.5 Hz, ArH), 6.84 (d, 1H, J 8.7 Hz, 

ArH), 6.62 (d, 1H, J 2.7 Hz, ArH), 6.51 (dd, 1H, J 8.7, 2.7 Hz, ArH), 3.75 (s, 3H, CH3), 

3.46 (s, 1H, C3-H), 1.35 (s, 9H, C(CH3)3), 1.21 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 

MHz) 165.4, 154.8, 147.7, 146.3, 142.1, 137.9, 128.0, 121.9, 119.7, 108.5, 106.1, 80.8, 

79.6, 54.5, 45.8, 27.7, 26.8 ppm; [α]D
26 0.6 (c 1 CHCl3); FT-IR (thin film, cm−1): 2978, 

1742, 1605, 1523, 1368, 1345; MS (EI)+: m/z 444.3 [M+H]+, 466.3 [M+Na]+; HRMS 

(EI)+: exact mass calculated for [C24H30DN2O6]
+ requires m/z 444.2239, found m/z 

444.2238. 
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9.4: Synthesis of C3-deutero Aziridines 

Three Component One-Pot Asymmetric Synthesis of tert-butyl 1-(2-tert-

butoxyphenyl)-3-phenyl-3-deuteroaziridine-2-carboxylate; cis-(383) 

 

>95 % deuterated benzaldehyde (221) (27.8 mg, 28 µL, 0.26 mmol,), 2-tert-butoxy aniline 

(307) (43 mg, 0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added 

to a flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added 

(pre-dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å 

molecular sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous 

DCM was added via syringe through the septum, and the reaction mixture was cooled to -

80 °C. After 30 minutes, tert-butyl diazoacetate (280) (40.7 mg, 40 µL, 0.286 mmol) was 

added via syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (14 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / min, 

3.77 min (1st peak), 7.10 min (2nd peak), 88% e.e.]. The title product cis-(383) was a 

colourless oil afforded in a 65 % yield (62 mg, 0.17 mmol). 1H-NMR (CDCl3, 300 MHz) δ 

7.52-7.39 (m, 2H, ArH), 7.32-7.13 (m, 3H, ArH), 7.01-6.79 (m, 4H. ArH), 2.97 (s, 1H, C2-

H), 1.31 (s, 9H, C(CH3)3), 1.12 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 166.1, 

146.9, 145.6, 134.1, 127.0, 126.7, 126.4, 122.2, 122.1, 121.9, 119.9, 80.2, 79.3, 46.2, 27.6, 

26.7 ppm; [α]D
26 26.7 (c 1 CHCl3); FT-IR (thin film, cm-1): 2977, 1746, 1716, 1593, 1490, 

1449, 1392, 1367; MS (EI)+: m/z 369.3 [M+H]+, 391.2 [M+Na]+; HRMS (EI)+: exact mass 

calculated for [C23H29DNO3]
+ requires m/z 369.2283, found m/z 369.2286. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 3-(4-fluorophenyl)-1-

(2-tert-butoxyphenyl)-3-deuteroaziridine-2-carboxylate; cis-(384) 

 

>95 % deuterated 4-fluorobenzaldehyde (40 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) 

(43 mg, 0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, tert-butyl diazoacetate (280) (40.7 mg, 40 µL, 0.286 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (14 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / min, 

3.34 min (1st peak), 6.77 min (2nd peak), 86% e.e.]. The title product cis-(384) was a slight 

green oil afforded in a 72 % yield (72 mg, 0.19 mmol). 1H-NMR (CDCl3, 300 MHz) δ 

7.54-7.46 (m, 2H, ArH), 7.06-6.92 (m, 6H, ArH), 3.03 (s, 1H, C2-H), 1.36 (s, 9H, 

C(CH3)3), 1.22 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 167.1, 148.0, 146.4, 131.0, 

129.7, 129.6, 123.1, 123.1, 120.9, 114.8, 114.5, 81.3, 80.3, 47.1, 28.5, 27.7 ppm; [α]D
26 24 

(c 1.4 CHCl3); FT-IR (thin film, cm-1): 3010, 1744, 1736, 1490, 1163; MS (EI)+: m/z 387.2 

[M+H] +; HRMS (EI)+: exact mass calculated for [C23H28DFNO3]
+ requires m/z 387.2189, 

found m/z 387.2192. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 3-(4-bromophenyl)-1-

(2-tert-butoxyphenyl)-3-deuteroaziridine-2-carboxylate; cis-(385) 

 

>95 % deuterated 4-bromobenzaldehyde (49 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) 

(43 mg, 0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, tert-butyl diazoacetate (280) (40.7 mg, 40 µL, 0.286 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (14 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / min, 

4.01 min (1st peak), 6.68 min (2nd peak), 83% e.e.]. The title product cis-(385) was a slight 

green oil afforded in a 65 % yield (75 mg, 0.17 mmol). 1H-NMR (CDCl3, 300 MHz) δ 

7.49-7.38 (m, 4H, ArH), 7.05-6.92 (m, 4H, ArH), 3.04 (s, 1H, C2-H), 1.36 (s, 9H, 

C(CH3)3), 1.24 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 166.9, 148.0, 146.3, 134.4, 

130.9, 129.8, 123.2, 123.1, 121.4, 120.9, 81.5, 80.3, 47.2, 28.6, 27.7 ppm; [α]D
26 28.4 (c 1 

CHCl3); FT-IR (thin film, cm-1): 2965, 1744, 1595, 1489, 1392, 1367, 1260; MS (EI)+: m/z 

447.1 [M+H]+, 469.1 [M+Na]+; HRMS (EI)+: exact mass calculated for [C23H28DBrNO3]
+ 

requires m/z 447.1388, found m/z 447.1391. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 1-(2-tert-

butoxyphenyl)-3-(4-chlorophenyl)-3-deuteroaziridine-2-carboxylate; cis-(386) 

 

>95 % deuterated 4-chlorobenzaldehyde (19 mg, 0.13 mmol), 2-tert-butoxy aniline (307) 

(22 mg, 0.13 mmol), and catalyst (R)-(289) (10 mg, 0.013 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 400 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 100 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, tert-butyl diazoacetate (280) (20.4 mg, 20 µL, 0.142 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (12 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol: 95 / 5, 1 mL / min, 

4.78 min (1st peak), 7.92 min (2nd peak), 71 % e.e.]. The title product cis-(386) was a slight 

yellow oil afforded in a 67 % yield (35 mg, 0.087 mmol). 1H-NMR (CDCl3, 400 MHz) δ 

7.44 (d, 2H, J 9.0 Hz, ArH), 7.27 (d, 2H, J 9.0 Hz, ArH), 7.03-6.87 (m, 4H, ArH), 3.01 (s, 

1H, C2-H), 1.34 (s, 9H, C(CH3)3), 1.20 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 MHz) 

167.0, 148.1, 146.4, 134.0, 133.4, 129.6, 128.1, 123.3, 123.3, 121.1, 81.7, 80.6, 47.5, 28.9, 

28.0, ppm; [α]D
21 21.8 (c 1 CHCl3); FT-IR (thin film, cm-1) 2977, 1743, 1491, 1367, 1258; 

MS (ES) m/z 403.0 [M+H]+, 425.1 [M+Na]+ ; HRMS (EI) Exact mass calculated for 

[C23H28DClNO3]
+ requires m/z 403.1893 found m/z 403.1889. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 1-(2-tert-

butoxyphenyl)-3-(3-chlorophenyl)-3-deuteroaziridine-2-carboxylate; cis-(387) 

 

>95 % deuterated 3-chlorobenzaldehyde (37 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) 

(43 mg, 0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, tert-butyl diazoacetate (280) (40.7 mg, 40 µL, 0.286 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (96 : 2 : 2 petroleum ether : dichloromethane : diethyl ether). A sample 

was submitted to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-

propanol: 95 / 5, 1 mL / min, 3.99 min (1st peak), 7.98 min (2nd peak), 69% e.e.]. The title 

product cis-(387) was a slight yellow oil afforded in a 65 % yield (68 mg, 0.17 mmol). 1H-

NMR (CDCl3, 300 MHz) δ 7.57-7.54 (m, 1H, ArH), 7.43-7.38 (m, 1H, ArH), 7.28-7.24 

(m, 2H, ArH), 7.05-6.92 (m, 4H, ArH) 3.05 (s, 1H, C2-H), 1.38 (s, 9H, C(CH3)3), 1.23 (s, 

9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 167.2, 148.1, 146.2, 137.6, 133.9, 129.3, 128.4, 

127.9, 126.5, 123.4, 123.2, 123.1, 121.1, 81.8, 80.5, 47.4, 28.9, 28.0 ppm; [α]D
26 18.4 (c 1 

CHCl3); FT-IR (thin film, cm-1): 2978; 1780, 1760, 1527, 1398; MS (EI)+: m/z 403.2 

[M+H] +, 425.1 [M+Na]+; HRMS (EI)+: exact mass calculated for [C23H28DClNO3]
+ 

requires m/z 403.1893, found m/z 403.1893. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 1-(2-tert-

butoxyphenyl)-3-(2-chlorophenyl)-3-deuteroaziridine-2-carboxylate; cis-(388) 

 

>95 % deuterated 2-chlorobenzaldehyde (30 µL, 0.26 mmol,), 2-tert-butoxy aniline (307) 

(43 mg, 0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, tert-butyl diazoacetate (280) (40.7 mg, 40 µL, 0.286 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (96 : 2 : 2 petroleum ether : dichloromethane : diethyl ether). A sample 

was submitted to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol 

: 95 / 5, 1 mL / min, 3.52 min (1st peak), 7.01 min (2nd peak), 64% e.e.]. The title product 

cis-(388) was a slight yellow oil afforded in a 41 % yield (43 mg, 0.11 mmol). 1H-NMR 

(CDCl3, 300 MHz) δ 7.71-7.64 (dd, 1H, J 1.9, 7.5 Hz, ArH), 7.30-7.12 (m, 3H, ArH), 7.00-

6.85 (m, 4H, ArH), 3.08 (s, 1H, C2-H), 1.34 (s, 9H, C(CH3)3), 1.13 (s, 9H, C(CH3)3); 
13C-

NMR (CDCl3, 75 MHz) 167.0, 148.2, 146.1, 133.7, 130.8, 128.7, 128.5, 126.2, 123.2, 

122.9, 122.7, 120.7, 81.1, 80.2, 46.5, 28.6, 27.5 ppm; [α]D
26 52.4 (c 0.86 CHCl3); FT-IR 

(thin film, cm-1): 2977, 2932, 1744, 1719, 1594, 1490, 1476, 1367, 1268, 1165; MS (EI)+: 

m/z 403.3 [M+H]+, 425.2 [M+Na]+; HRMS (EI)+: exact mass calculated for 

[C23H28DClNO3]
+ requires m/z 403.1893, found m/z 403.1894. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 1-(2-tert-

butoxyphenyl)-3-(4-nitrophenyl)-3-deuteroaziridine-2-carboxylate; cis-(392) 

 

>95 % deuterated 4-nitrobenzaldehyde (40 mg, 0.26 mmol,), 2-tert-butoxy aniline (280) 

(43 mg, 0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, tert-butyl diazoacetate (280) (40.7 mg, 40 µL, 0.286 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (14 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 95 / 5, 1 mL / min, 

5.47 min (1st peak), 8.83 min (2nd peak), 93% e.e.]. The title product cis-(392) was a 

yellow oil afforded in a 53 % yield (57 mg, 0.14 mmol). 1H-NMR (CDCl3, 300 MHz) δ 

8.21 (d, 2H, J 6.9 Hz, ArH), 7.72 (d, 2H, J 6.9 Hz, ArH), 7.08-6.91 (m, 4H, ArH), 3.13 (s, 

1H, C2-H), 1.35 (s, 9H, C(CH3)3), 1.22 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 

166.5, 148.1, 147.5, 145.6, 143.1, 129.2, 123.7, 123.3, 123.2, 123.1, 121.0, 82.1, 80.6, 

47.8, 28.9, 28.1 ppm; [α]D
26 55 (c 1.3 CHCl3); FT-IR (thin film, cm-1): 2978, 1742, 1603, 

1520, 1891, 1520, 1491, 1367, 1345; MS (EI)+: m/z 414.3 [M+H]+, 436.2 [M+Na]+; 

HRMS (EI)+: exact mass calculated for [C23H28DN2O5]
+ requires m/z 414.2134, found m/z 

414.2134. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 1-(2-tert-

butoxyphenyl)-3-(4-cyanophenyl)-3-deuteroaziridine-2-carboxylate; cis-(393) 

 

>95 % deuterated 4-cyanobenzaldehyde (10.6 mg, 0.08 mmol,), 2-tert-butoxy aniline (307) 

(13 mg, 0.08 mmol), and catalyst (R)-(289) (7 mg, 0.008 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, tert-butyl diazoacetate (280) (12.5 mg, 12 µL, 0.088 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (14 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 92.5 /7.5, 1.2 mL / 

min, 5.37 min (1st peak), 9.35 min (2nd peak), 89% e.e.]. The title product cis-(393) was a 

slight green oil afforded in a 41 % yield (13 mg, 0.033 mmol). 1H-NMR (CDCl3, 400 

MHz) δ 7.72-7.58 (m, 4H, ArH), 7.09-6.88 (m, 4H, ArH), 3.10 (s, 1H, C2-H), 1.35 (s, 9H, 

C(CH3)3), 1.18 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 MHz) 166.5, 148.1, 145.7, 141.0, 

131.6, 128.9, 123.5, 123.1, 123.0, 120.8, 119.0, 111.2, 81.8, 80.4, 47.5, 28.6, 27.7 ppm; 

[α]D
23 35.1 (c 0.7 CHCl3); FT-IR (thin film, cm-1) 2978, 2310, 1721, 1523; MS (ES) m/z 

394.2 [M+H]+; HRMS (EI) Exact mass calculated for [C24H28DN2O3] requires m/z 

394.2235, found m/z 394.2237. 
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Three Component One-Pot Asymmetric Synthesis of isopropyl 3-(4-bromophenyl)-1-

(2-tert-butoxyphenyl)-3-deuteroaziridine-2-carboxylate; cis-(398) 

 

>95 % deuterated 4-bromobenzaldehyde (40 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) 

(43 mg, 0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, iso-propyl diazoacetate (320) (36.4 mg, 36 µL, 0.286 mmol) was added via 

syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete (~72 h). At this point the reaction 

mixture was filtered through a short plug of silica, eluting with diethyl ether. The solvents 

were removed under reduced pressure, and the residue was purified via flash column 

chromatography (35 % DCM, 3 % diethyl ether in petroleum ether).  A sample was 

submitted to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 95 

/ 5, 1 mL / min, 4.18 min (1st peak), 7.15 min (2nd peak), 84% e.e.]. The title product cis-

(398) was a slight green oil afforded in a 65 % yield (73 mg, 0.17 mmol). 1H-NMR 

(CDCl3, 300 MHz) δ 7.49-7.38 (m, 4H, ArH), 7.07-6.91 (m, 4H, ArH), 4.89 (m, 1H, 

CH(CH3)2),  3.10 (s, 1H, C2-H), 1.34 (s, 9H, C(CH3)3), 1.04 (dd, 6H, J 3.0, 6.3 Hz, 

C(CH3)2); 
13C-NMR (CDCl3, 75 MHz) 167.4, 148.1, 145.9, 134.2, 131.0, 129.8, 123.3, 

123.0, 122.7, 121.6, 120.9, 80.2, 68.5, 46.7, 28.6, 21.6, 21.39 ppm; [a]D
26 24.75 (c 0.4 

CHCl3); FT-IR (thin film, cm-1): 2979, 1746, 1489, 1258, 1194, 1108; MS (EI)+: m/z 433.1 

[M+H] +, 455.1 [M+Na]+; HRMS (EI)+: exact mass calculated for [C22H26DBrNO3]
+ 

requires m/z 433.1232, found m/z 433.1233. 
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Three Component One-Pot Asymmetric Synthesis of ethyl 3-(4-bromophenyl)-1-(2-

tert-butoxyphenyl)-3-deuteroaziridine-2-carboxylate; cis-(399) 

 

>95 % deuterated 4-bromobenzaldehyde (40 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) 

(43 mg, 0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, ethyl diazoacetate (261) (32.6 mg, 32 µL, 0.286 mmol) was added via syringe, 

and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR spectroscopy until 

the reaction was deemed complete (~72 h). At this point the reaction mixture was filtered 

through a short plug of silica, eluting with diethyl ether. The solvents were removed under 

reduced pressure, and the residue was purified via flash column chromatography (35 % 

dichloromethane, in petroleum ether).  A sample was submitted to chiral analytical HPLC 

analysis [Chiralpak AD, iso-hexane / iso-propanol : 95 / 5, 1 mL / min, 5.41 min (1st peak), 

8.86 min (2nd peak), 74% e.e.]. The title product cis-(399) was a slight green oil afforded in 

a 52 % yield (56 mg, 0.135 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.51-7.35 (m, 4H, 

ArH), 7.11-6.88 (m, 4H, ArH), 4.21-3.87 (m, 2H, CH2), 3.10 (s, 1H, C2-H), 1.33 (s, 9H, 

C(CH3)3), 1.09 (t, 3H, J 6.9, 6.9 Hz, CH3); 
13C-NMR (CDCl3, 75 MHz) 167.9, 148.1, 

145.7, 134.1, 131.0, 129.8, 123.4, 122.9, 122.6, 121.7, 120.8, 80.2, 60.8, 46.6, 28.5, 13.9 

ppm; [a]D
24 14.9 (c 0.9 CHCl3); FT-IR (thin film, cm-1): 2978, 1747, 1595, 1489, 1449, 

1366, 1258, 1217; MS (EI)+: m/z 419.3 [M+H]+, 441.3 [M+Na]+; HRMS (EI)+: exact mass 

calculated for [C21H24DBrNO3]
+ requires m/z 419.1075, found m/z 419.1082. 
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9.5: Synthesis of C2-, C3-di-deutero Aziridines 

Three Component One-Pot Asymmetric Synthesis of tert-butyl 1-(2-tert-

butoxyphenyl)-3-phenyl-2,3-dideuteroaziridine-2-carboxylate; cis-(401) 

 

>95 % deuterated benzaldehyde (27.8 mg, 28 µL, 0.26 mmol,), 2-tert-butoxy aniline (307) 

(43 mg, 0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, >95 % deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) 

was added via syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-

NMR spectroscopy until the reaction was deemed complete (~72 h). At this point the 

reaction mixture was filtered through a short plug of silica, eluting with diethyl ether. The 

solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (14 % diethyl ether in petroleum ether). A sample was submitted 

to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 95 / 5, 1 mL 

/ min, 3.77 min (1st peak), 7.17 min (2nd peak), 67% e.e.]. The title product cis-(401) was a 

colourless oil afforded in a 72 % yield (69 mg, 0.19 mmol). 1H-NMR (CDCl3, 300 MHz) δ 

7.53-7.46 (m, 2H, ArH), 7.34-7.21 (m, 3H, ArH), 7.02-6.86 (m, 4H. ArH), 1.35 (s, 9H, 

C(CH3)3), 1.17 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 167.3, 148.0, 146.7, 135.2, 

128.1, 127.8, 127.5, 123.2, 123.2, 123.0, 121.0, 81.2, 80.3, 28.5, 27.6 ppm; [α]D
26 27 (c 0.9 

CHCl3); FT-IR (thin film, cm-1): 2977, 1745, 1714, 1593, 1490, 1449, 1391, 1367; MS 

(EI)+: m/z 370.3 [M+H]+, 392.3 [M+Na]+; HRMS (EI)+: exact mass calculated for 

[C23H28D2NO3]
+ requires m/z 370.2346, found m/z 370.2348. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 1-(2-tert-

butoxyphenyl)-3-(4-fluorophenyl)-2,3-dideuteroaziridine-2-carboxylate; cis-(402) 

 

>95 % deuterated 4-fluorobenzaldehyde (40 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) 

(43 mg, 0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, >95 % deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) 

was added via syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-

NMR spectroscopy until the reaction was deemed complete (~72 h). At this point the 

reaction mixture was filtered through a short plug of silica, eluting with diethyl ether. The 

solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (14 % diethyl ether in petroleum ether). A sample was submitted 

to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 95 / 5, 1 mL 

/ min, 3.91 min (1st peak), 6.08 min (2nd peak), 91% e.e.]. The title product cis-(402) was a 

slight yellow oil afforded in a 69% yield (69 mg, 0.18 mmol). 1H-NMR (CDCl3, 300 MHz) 

δ 7.55-7.46 (m, 2H, ArH), 7.08-6.91 (m, 6H, ArH), 1.37 (s, 9H, C(CH3)3), 1.22 (s, 9H, 

C(CH3)3); 
13C-NMR (CDCl3, 75 MHz 167.1, 164.1, 160.8, 148.0, 146.4, 130.9, 129.7, 

129.6, 123.2, 123.1, 120.9, 114.8, 114.5, 81.4, 80.3, 28.5, 27.7 ppm; [α]D
26 21 (c 1 CHCl3); 

FT-IR (thin film, cm-1): 2978, 1744, 1512, 1490, 1367, 1257, 1160; MS (EI)+: m/z 388.2 

[M+H] +, 410.3 [M+Na]+; HRMS (EI)+: exact mass calculated for [C23H27D2FNO3]
+ 

requires m/z 388.2252, found m/z 388.2252. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 3-(4-bromophenyl)-1-

(2-tert-butoxyphenyl)-2,3-dideuteroaziridine-2-carboxylate; cis-(403) 

 

>95 % deuterated 4-bromobenzaldehyde (49 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) 

(43 mg, 0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, >95 % deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) 

was added via syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-

NMR spectroscopy until the reaction was deemed complete (~72 h). At this point the 

reaction mixture was filtered through a short plug of silica, eluting with diethyl ether. The 

solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (14 % diethyl ether in petroleum ether). A sample was submitted 

to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 95 / 5, 1 mL 

/ min, 4.01 min (1st peak), 6.77 min (2nd peak), 92% e.e.]. The title product cis-(403) was a 

slight green oil afforded in a 68 % yield (79 mg, 0.18 mmol). 1H-NMR (CDCl3, 300 MHz) 

δ 7.45-7.36 (m, 4H, ArH), 7.02-6.88 (m, 4H, ArH), 1.33 (s, 9H, C(CH3)3), 1.20 (s, 9H, 

C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 166.9, 148.0, 146.2, 134.4, 130.9, 129.8, 123.2, 

123.1, 121.4, 120.9, 81.5, 80.3, 28.6, 27.7 ppm; [α]D
26 24 (c 1 CHCl3); FT-IR (thin film, 

cm-1): 2978, 1744, 1715, 1595, 1489, 1392, 1367, 1257; MS (EI)+: m/z 448.1 [M+H]+, 

470.1 [M+Na]+; HRMS (EI)+: exact mass calculated for [C23H29D2BrNO3]
+ requires m/z 

448.1378, found m/z 448.1376. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 1-(2-tert-

butoxyphenyl)-3-(4-chlorophenyl)-2,3-dideuteroaziridine-2-carboxylate; cis-(404) 

 

>95 % deuterated 4-chlorobenzaldehyde (19 mg, 0.13 mmol), 2-tert-butoxy aniline (307) 

(22 mg, 0.13 mmol), and catalyst (R)-(289) (10 mg, 0.013 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 400 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves) followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 100 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, >95 % deuterated tert-butyl diazoacetate (349) (20.4 mg, 20 µL, 0.142 mmol) 

was added via syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-

NMR spectroscopy until the reaction was deemed complete (~72 h). At this point the 

reaction mixture was filtered through a short plug of silica, eluting with diethyl ether. The 

solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (12 % diethyl ether in petroleum ether). A sample was submitted 

to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 95 / 5, 1 mL 

/ min, 5.2 min (1st peak), 7.9 min (2nd peak), 77 % e.e.]. The title product cis-(404) was a 

yellow oil afforded in a 65 % yield (34 mg, 0.085 mmol). 1H-NMR (CDCl3, 400 MHz) δ 

7.47 (d, 2H, J 9.0 Hz, ArH), 7.30 (d, 2H, J 9.0 Hz, ArH), 7.06-6.91 (m, 4H, ArH), 1.36 (s, 

9H, C(CH3)3), 1.23 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 100 MHz) 166.9, 148.0, 146.3, 

133.9, 133.3, 129.5, 127.9, 123.1, 123.1, 120.9, 81.4, 80.3, 28.5, 27.7 ppm; [α]D
21 27.3 (c 1 

CHCl3); FT-IR (thin film, cm-1) 2977, 2932, 1743, 1744, 1593, 1489, 1449, 1391; MS (ES) 

m/z 404.2 [M+H]+, 426.1 [M+Na]+ ; HRMS (EI): exact mass calculated for 

[C23H27D2ClNO3]
+ requires m/z 404.1956 found m/z 404.1952. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 1-(2-tert-

butoxyphenyl)-3-(3-chlorophenyl)-2,3-dideuteroaziridine-2-carboxylate; cis-(405) 

 

>95 % deuterated 3-chlorobenzaldehyde (37 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) 

(43 mg, 0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, >95 % deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) 

was added via syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-

NMR spectroscopy until the reaction was deemed complete (~72 h). At this point the 

reaction mixture was filtered through a short plug of silica, eluting with diethyl ether. The 

solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (96 : 2 : 2 petroleum ether : dichloromethane : diethyl ether). A 

sample was submitted to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-

propanol : 95 / 5, 1 mL / min, 4.19 min (1st peak), 8.01 min (2nd peak), 76% e.e.]. The title 

product cis-(405) was a yellow oil afforded in a 58 % yield (61 mg, 0.15 mmol). 1H-NMR 

(CDCl3, 300 MHz) δ 7.52-7.47 (m, 1H, ArH), 7.38-7.31 (m, 1H, ArH), 7.24-7.16 (m, 2H. 

ArH), 7.00-6.85 (m, 4H, ArH), 1.31 (s, 9H, C(CH3)3), 1.17 (s, 9H, C(CH3)3); 
13C-NMR 

(CDCl3, 75 MHz) 167.1, 148.0, 146.0, 137.5, 133.8, 129.1, 128.3, 127.7, 126.3, 123.2, 

123.0, 122.9, 120.9, 81.6, 28.6, 27.6 ppm; [α]D
26 24 (c 0.9 CHCl3); FT-IR (thin film, cm-1): 

2978, 1744, 1715, 1595, 1490, 1367, 1263, 1160; MS (EI)+: m/z 404.2 [M+H]+, 426.2 

[M+Na]+; HRMS (EI)+: exact mass calculated for [C23H27D2ClNO3 ]+ requires m/z 

404.1956, found m/z 404.1957. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 1-(2-tert-

butoxyphenyl)-3-(2-chlorophenyl)-2,3-dideuteroaziridine-2-carboxylate; cis-(406)  

 

>95 % deuterated 2-chlorobenzaldehyde (30 µL, 0.26 mmol,), 2-tert-butoxy aniline (307) 

(43 mg, 0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, >95 % deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) 

was added via syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-

NMR spectroscopy until the reaction was deemed complete (~72 h). At this point the 

reaction mixture was filtered through a short plug of silica, eluting with diethyl ether. The 

solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (96 : 2 : 2 petroleum ether : dichloromethane : diethyl ether). A 

sample was submitted to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-

propanol : 95 / 5, 1 mL / min, 4.19 min (1st peak), 8.01 min (2nd peak), 52 % e.e.]. The title 

product cis-(406) was a yellow oil afforded in a 51 % yield (53 mg, 0.13 mmol). 1H-NMR 

(CDCl3, 300 MHz) δ 7.71-7.63 (m, 1H, ArH), 7.31-7.12 (m, 1H, ArH), 6.99-6.85 (m, 4H, 

ArH), 1.35 (s, 9H, C(CH3)3), 1.13 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 167.0, 

148.2, 146.1, 133.7, 133.4, 130.9, 128.7, 128.5, 126.2, 123.2, 122.9, 122.7, 120.7, 81.1, 

80.2, 28.6, 27.5 ppm; [α]D
26 35 (c 0.9 CHCl3); FT-IR (thin film, cm-1): 2978, 1745, 1734, 

1491, 1368, 1262, 1163; MS (EI)+: m/z 404.2 [M+H]+, 426.2 [M+Na]+; HRMS (EI)+: exact 

mass calculated for [C23H27D2ClNO3]
+ requires m/z 404.1956, found m/z 404.1956. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 1-(2-tert-

butoxyphenyl)-3-(4-nitrophenyl)-2,3-dideuteroaziridine-2-carboxylate; cis-(407) 

 

>95 % deuterated 4-nitrobenzaldehyde (40 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) 

(43 mg, 0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, >95 % deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) 

was added via syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-

NMR spectroscopy until the reaction was deemed complete (~72 h). At this point the 

reaction mixture was filtered through a short plug of silica, eluting with diethyl ether. The 

solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (14 % diethyl ether in petroleum ether). A sample was submitted 

to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 95 / 5, 1 mL 

/ min, 5.42 min (1st peak), 8.89 min (2nd peak), 97% e.e]. The title product cis-(407) was a 

yellow oil afforded in a 57% yield (61 mg, 0.15 mmol). 1H-NMR (CDCl3, 300 MHz) δ 

8.20 (d, 2H, J 6.9 Hz, ArH), 7.72 (d, 2H, J 6.9 Hz, ArH), 7.07-6.91 (m, 4H, ArH), 1.35 (s, 

9H, C(CH3)3), 1.22 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 166.5, 148.1, 147.5, 

145.6, 143.1, 129.2, 123.7, 123.3, 123.2, 123.1, 121.0, 82.1, 80.6, 28.9, 28.1 ppm; [α]D
26 

65 (c 1 CHCl3); FT-IR (thin film, cm-1): 2978, 1743, 1602, 1520, 1891, 1367, 1345, 1258, 

1159; MS (EI)+: m/z 415.3 [M+H]+, 437.2 [M+Na]+; HRMS (EI)+: exact mass calculated 

for [C23H27D2N2O5]
+ requires m/z 415.2197, found m/z 415.2196. 
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Three Component One-Pot Asymmetric Synthesis of isopropyl 3-(4-bromophenyl)-1-

(2-tert-butoxyphenyl)-2,3-dideuteroaziridine-2-carboxylate; cis-(408) 

 

>95 % deuterated 4-bromobenzaldehyde (40 mg, 0.26 mmol,), 2-tert-butoxy aniline (307) 

(43 mg, 0.26 mmol), and catalyst (R)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-

dried over 4Å molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular 

sieves, and the vial was sealed with a PTFE crimp cap. 200 µL of anhydrous DCM was 

added via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 

30 minutes, >95 % deuterated iso-propyl diazoacetate (364) (36.4 mg, 36 µL, 0.286 mmol) 

was added via syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-

NMR spectroscopy until the reaction was deemed complete (~72 h). At this point the 

reaction mixture was filtered through a short plug of silica, eluting with diethyl ether. The 

solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (35 % dichloromethane, 3 % diethyl ether in petroleum ether). A 

sample was submitted for chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-

propanol : 95 / 5, 1 mL / min, 4.18 min (1st peak), 7.15 min (2nd peak), 87% e.e.]. The title 

product cis-(408) was a slight green oil afforded in a 76 % yield (85 mg, 0.197 mmol). 1H-

NMR (CDCl3, 300 MHz) δ 7.51-7.38 (m, 4H, ArH), 7.07-6.91 (m, 4H, ArH), 4.95-4.83 

(m, 1H, CH(CH3)2), 1.34 (s, 9H, C(CH3)3), 1.04 (dd, 6H, J 3.0, 6.3 Hz, C(CH3)3); 
13C-

NMR (CDCl3, 75 MHz) 167.4, 148.1, 145.9, 134.2, 131.0, 129.8, 123.3, 123.0, 122.7, 

121.6, 120.9, 80.2, 68.5, 28.6, 21.6, 21.4 ppm; [α]D
26 25 (c 1 CHCl3); FT-IR (thin film, cm-

1): 2979, 1746, 1489, 1258, 1194, 1108; MS (EI)+: m/z 434.2 [M+H]+, 456.1 [M+Na]+; 

HRMS (EI)+: exact mass calculated for [C22H25D2BrNO3]
+ requires m/z 434.1294, found 

m/z 434.1296. 
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9.6: Synthesis of C2-, or C3-deutero, and C2-, C3-di-deutero Amino Acids 

Synthesis of tert-butyl 2-(2-tert-butoxyphenylamino)-2-deutero-3-phenylpropanoate; 

(+)-(409) 

 

To a solution of the optically active starting material (-)-cis-(351) (15 mg, 0.041 mmol), 

synthesised using (S)-(289), in 4 mL ethyl acetate was added palladium hydroxide on 

carbon (20 % Pd by weight [6 mg, 0.0081 mmol, 20 %]). The reaction mixture was stirred 

at 30 °C, under 43 psi H2 for ~12 h in a Biotage Endeavour catalyst screening system. The 

reaction was monitored by the uptake of hydrogen gas. When deemed complete, the 

reaction mixture was filtered through Celite®, and the Celite® eluted with ethyl acetate. 

The resulting washings were combined, and the solvent removed under reduced pressure. 

The crude material was purified via flash column chromatography (15 % diethyl ether in 

petroleum ether). A sample was submitted to chiral analytical HPLC analysis [Chiralcel 

OD, CO2 / iso-propanol : 5% – 50% over 9 min, 0.7 mL / min, 2.87 min (1st peak), 3.25 

min (2nd peak), 80 % e.e.]. The title compound (+)-(409) was afforded as a slight brown oil 

in a 93 % yield (14 mg, 0.038 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.31-7.18 (m, 5H, 

ArH), 6.98-6.86 (m, 2H, ArH), 6.64-6.51 (m, 2H, ArH), 3.11 (2d, 2H, J 2.4 Hz, 

diastereotopic β-CH2), 1.34 (s, 9H, C(CH3)3), 1.32 (s, 9H, C(CH3)3) ; 
13C-NMR (CDCl3, 75 

MHz) 172.3, 143.0, 141.3, 136.8, 129.6, 128.4, 126.8, 123.6, 122.0, 116.6, 110.8, 81.4, 

79.5, 38.6, 28.8, 27.8 ppm; FT-IR (thin film, cm-1): 2977, 2931, 1729, 1599, 1509, 1368, 

1254; [α]D
19 6.5 (c 1 CHCl3) MS (EI)+: m/z 371.2 [M+H]; HRMS (EI)+: exact mass 

calculated for [C23H31DNO3]
+ requires m/z 371.2439, found m/z 371.2443. 
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Synthesis of tert-butyl 2-(2-tert-butoxyphenylamino)-3-deutero-3-phenylbutanoate;  

(-)-(410) 

 

To a solution of the optically active starting material (+)-cis-(383) (15 mg, 0.041 mmol) 

synthesised using (R)-(289), in 4 mL ethyl acetate was added palladium hydroxide on 

carbon (20 % Pd by weight [6 mg, 0.0081 mmol, 20 %]). The reaction mixture was stirred 

at 30 °C, under 43 psi H2 for ~12 h in a Biotage Endeavour catalyst screening system. The 

reaction was monitored by the uptake of hydrogen gas. When deemed complete, the 

reaction mixture was filtered through Celite®, and the Celite® eluted with ethyl acetate. 

The resulting washings were combined, and the solvent removed under reduced pressure. 

The crude material was purified via flash column chromatography (15 % diethyl ether in 

petroleum ether). A sample was submitted to chiral analytical HPLC analysis [Chiralcel 

OD-3, CO2 / iso-propanol : 5% - 50% over 9 min, 0.7 mL / min, 2.87 min (1st peak), 3.24 

min (2nd peak), 71 % e.e.]. The title compound (-)-(410) was afforded as a slight brown oil 

in a 92 % yield (14 mg, 0.038 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.41-7.12 (m, 5H, 

ArH), 7.05-6.84 (m, 2H, ArH), 6.66-6.45 (m, 2H, ArH), 4.20 (d, 1H, J 6.2 Hz, α-CH) 3.11 

(d, 1H, J 6.2 Hz, β-CHD), 1.34 (s, 9H, C(CH3)3), 1.32 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 

75 MHz) 172.3, 143.0, 136.8, 129.6, 128.4, 126.8, 123.6, 122.0, 116.6, 110.8, 81.4, 79.5, 

57.7, 28.8, 27.8 ppm; FT-IR (thin film, cm-1): 2977, 2927, 2362, 1729, 1599, 1507, 1368, 

1254; [α]D
22 – 17.5 (c 0.2 CHCl3); MS (EI)+: m/z 371.2 [M+H]; HRMS (EI)+: exact mass 

calculated for [C23H31DNO3]
+ requires m/z 371.2439, found m/z 371.2442. 
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Synthesis of tert-butyl 2-(2-tert-butoxyphenylamino)-2,3-dideutero-3-phenylbutanoate; 

(+)-(411) 

 

To a solution of the optically active starting material (-)-cis-(401) (15 mg, 0.041 mmol) 

synthesised using (S)-(289), in 4 mL ethyl acetate was added palladium hydroxide on 

carbon (20 % Pd by weight [6 mg, 0.0081 mmol, 20 %]). The reaction mixture was stirred 

at 30 °C, under 43 psi H2 for ~12 h in a Biotage Endeavour catalyst screening system. The 

reaction was monitored by the uptake of hydrogen gas. When deemed complete, the 

reaction mixture was filtered through Celite®, and the Celite® eluted with ethyl acetate. 

The resulting washings were combined, and the solvent removed under reduced pressure. 

The crude material was purified via flash column chromatography (15 % diethyl ether in 

petroleum ether). A sample was submitted to chiral analytical HPLC analysis [Chiralcel 

OD-3, CO2 / iso-propanol : 5% - 50% over 9 min, 0.7 mL / min, 2.61 min (1st peak), 3.03 

min (2nd peak), 70 % e.e.]. The title compound (+)-(411) was afforded as a slight brown oil 

in a 90 % yield (14 mg, 0.037 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.33-7.18 (m, 5H, 

ArH), 6.99-6.86 (m, 2H, ArH), 6.65-6.50 (m, 2H, ArH), 3.10 (s, 1H, β-CHD), 1.34 (s, 9H, 

C(CH3)3), 1.32 (s, 9H, C(CH3)3) ; 
13C-NMR (CDCl3, 75 MHz) 172.3, 143.0, 141.3, 136.8, 

129.6, 128.4, 126.8, 123.6, 122.0, 116.6, 110.8, 81.4, 79.5, 28.8, 27.8 ppm; FT-IR (thin 

film, cm-1) 2977, 2927, 2854, 2362, 1729, 1599, 1507, 1368, 1254; [α]D
22 15 (c 1 CHCl3) 

MS (EI)+: m/z 372.2 [M+H]; HRMS (EI)+: exact mass calculated for [C23H30D2NO3]
+ 

requires m/z 372.2429, found m/z 372.2431. 
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Synthesis of tert-butyl 2-(2-tert-butoxyphenylamino)-2-deutero-3-(naphthalen-2-

yl)propanoate; (+)-(412) 

 

To a solution of the optically active starting material (-)-cis-(358) (20 mg, 0.048 mmol) 

synthesised using (S)-(289), in 4 mL ethyl acetate was added palladium hydroxide on 

carbon (20 % Pd by weight [6.7 mg, 0.0096 mmol, 20 %]). The reaction mixture was 

stirred at 30 °C, under 43 psi H2 for ~8 h, in a Biotage Endeavour catalyst screening 

system. The reaction was monitored by the uptake of hydrogen gas. When deemed 

complete, the reaction mixture was filtered through Celite® and the Celite® eluted with 

ethyl acetate. The resulting washings were combined and the solvent removed under 

reduced pressure. The crude material was purified via flash column chromatography (15 % 

diethyl ether in petroleum ether). A sample was submitted to chiral analytical HPLC 

analysis [Chiralcel OD-3, CO2 / iso-propanol : 5% - 50% over 9 min, 0.7 mL / min, 3.91 

min (1st peak), 4.10 min (2nd peak), 77 % e.e.]. The title compound (+)-(412) was afforded 

as a colourless oil in an 80 % yield (16 mg, 0.038 mmol). 1H-NMR (CDCl3, 300 MHz) δ 

7.84-7.72 (m, 3H, ArH), 7.68 (s, 1H, ArH), 7.51-7.32 (m, 3H, ArH), 6.99-6.87 (m, 2H, 

ArH), 6.68-6.57 (m, 2H, ArH), 3.29 (2d, 2H, J 6.0 Hz, diastereotopic β-CH2), 1.30 (s, 9H, 

C(CH3)3), 1.28 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz 172.3, 143.1, 141.5, 134.5, 

133.6, 132.6, 128.4, 128.1, 127.9, 127.8, 127.7, 126.2, 125.7, 123.8, 122.3, 116.8, 111.0, 

81.7, 79.7, 39.0, 29.1, 28.1 ppm; [α]D
22 3.6 (c 1 CHCl3); FT-IR (thin film, cm-1): 2977, 

2927, 2853, 1729, 1599, 1509, 1435, 1391, 1367, 1322, 1255; MS (EI)+: m/z 421.3 

[M+H] +; HRMS (EI)+: exact mass calculated for [C27H33DNO3]
+ requires m/z 421.2596, 

found m/z 421.2596. 
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Synthesis of tert-butyl 2-(2-tert-butoxyphenylamino)-2-deutero-3-(pyridin-2-

yl)propanoate; (+)-(413) 

 

To a solution of the optically active starting material (-)-cis-(359) (25 mg, 0.06 mmol) 

synthesised using (S)-(289), in 4 mL ethyl acetate was added palladium hydroxide on 

carbon (20 % Pd by weight [9.6 mg, 0.014 mmol, 20 %]). The reaction mixture was stirred 

at 30 °C, under 43 psi H2 for ~8 h, in a Biotage Endeavour catalyst screening system. The 

reaction was monitored by the uptake of hydrogen gas. When deemed complete, the 

reaction mixture was filtered through Celite®, and the Celite® eluted with ethyl acetate. 

The resulting washings were combined, and the solvent removed under reduced pressure. 

The crude material was purified via flash column chromatography (15 % diethyl ether in 

petroleum ether). A sample was submitted to chiral analytical HPLC analysis [Chiralcel 

OD-3, CO2 / iso-propanol : 5% - 50% over 9 min, 0.7 mL / min, 3.39 min (1st peak), 3.84 

min (2nd peak), 97 % e.e.]. The title compound (+)-(413) was afforded as a slight brown oil 

in a 64 % yield (14 mg, 0.038 mmol). 1H-NMR (CDCl3, 300 MHz) δ 8.73 (d, 1H, J 4.7 Hz, 

ArH), 8.02-7.60 (m, 1H, ArH), 7.57-7.32 (m, 2H, ArH), 6.77-6.49 (m, 2H, ArH), 3.40 (2d, 

broad, 2H, diastereotopic β-CH2), 1.37 (s, 9H, C(CH3)3), 1.34 (s, 9H, C(CH3)3); 
13C-NMR 

(CDCl3, 75 MHz) 171.6, 143.1, 141.1, 139.6, 125.7, 123.9, 123.0, 122.3, 117.2, 111.2, 

82.3, 80.0, 39.1, 29.1, 28.0 ppm; [α]D
21 22 (c 0.5 CHCl3); FT-IR (thin film, cm-1): 2978, 

2931, 1735, 1598, 1511, 1507, 1368, 1253, 1157; MS (EI)+: m/z 372.3 [M+H]+, 394.2 

[M+Na]+; HRMS (EI)+: exact mass calculated for [C22H30DN2O3]
+ requires m/z 372.2392, 

found m/z 372.2396. 
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Synthesis of tert-butyl 2-(2-tert-butoxyphenylamino)-3-(4-chlorophenyl)-2-

deuteropropanoate; (-)-(414) 

 

To a solution of the optically active starting material (+)-cis-(353) (25 mg, 0.062 mmol) 

synthesised using (R)-(289), in 2 mL ethyl acetate was added palladium hydroxide on 

carbon (20 % Pd by weight [8.7 mg, 0.012 mmol, 20 %]). The reaction mixture was stirred 

at 30 °C, under 45 psi H2 for ~12 h, in a Biotage Endeavour catalyst screening system. The 

reaction was monitored by the uptake of hydrogen gas. When deemed complete, the 

reaction mixture was filtered through Celite®, and the Celite® eluted with ethyl acetate. The 

resulting washings were combined, and the solvent removed under reduced pressure. The 

crude material was purified via flash column chromatography (15 % diethyl ether in 

petroleum ether). A sample was unable to be separated by chiral HPLC by any method that 

was available. The title compound (-)-(414) was a slight green oil afforded in a 95 % yield 

(24 mg, 0.059 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.32-7.18 (m, 4H, ArH), 6.97-6.85 

(m, 2H, ArH), 6.64-6.51 (m, 2H, ArH), 3.11 (2d, 2H, J 2.1 Hz, diastereotopic β-CH2), 1.31 

(s, 18H, 2 C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 171.9, 143.0, 141.1, 135.4, 132.7, 131.0, 

128.5, 123.7, 122.1, 116.8, 110.9, 81.7, 79.6, 37.7, 28.8, 27.8 ppm; [α]D
22 -1.87 (c 0.6 

CHCl3); FT-IR (thin film, cm-1): 2977, 1730, 1599, 1507, 1367, 1255, 1159; MS (EI)+: m/z 

405.2 [M+H]+; HRMS (EI)+: exact mass calculated for [C23H30DClNO3]
+ requires m/z 

405.2050, found m/z 405.2046. 
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Synthesis of tert-butyl 2-(2-tert-butoxyphenylamino)-3-(4-chlorophenyl)-3-

deuteropropanoate; (-)-(415) 

 

To a solution of the optically active starting material (+)-cis-(386) (12 mg, 0.03 mmol) 

synthesised using (R)-(289) in 1 mL ethyl acetate was added palladium hydroxide on 

carbon (20 % Pd by weight (4 mg, 0.006 mmol, 20 %)). The reaction mixture was stirred at 

30 °C, under 45 psi H2 for ~12 h, in a Biotage Endeavour catalyst screening system. The 

reaction was monitored by the uptake of hydrogen gas. When deemed complete, the 

reaction mixture was filtered through Celite®, and the Celite® eluted with ethyl acetate. The 

resulting washings were combined, and the solvent removed under reduced pressure. The 

crude material was purified via flash column chromatography (15 % diethyl ether in 

petroleum ether). A sample was unable to be separated by chiral HPLC by any method that 

was available. The title compound (-)-(415) was afforded as a slight green oil in a 92 % 

yield (11 mg, 0.028 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.25 - 7.15 (m, 4H, ArH), 7.15, 

6.99-6.87 (m, 2H, ArH), 6.65-6.52 (m, 2H, ArH), 4.19 (d, J 6.0 Hz, 1H, α-CH), 3.07 (d, 

1H, J 6.0 Hz, β-CHD), 1.34 (s, 18H, 2 C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 171.9, 

143.1, 141.2, 135.4, 132.8, 131.1, 128.6, 123.8, 122.2, 116.9, 111.0, 81.9, 79.8, 57.8, 29.1, 

28.1 ppm; [α]D
21 -1.38 (c 0.8 CHCl3); FT-IR (thin film, cm-1): 2976, 2927, 1730, 1598, 

1510, 1444, 1391, 1253, 1154; MS (EI)+: m/z 405.1 [M+H]+; HRMS (EI)+: exact mass 

calculated for [C23H30DClNO3]
+ requires m/z 405.2050, found m/z 405.2048. 
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Synthesis of tert-butyl 2-(2-tert-butoxyphenylamino)-3-(4-chlorophenyl)-2,3-

dideuteropropanoate; (-)-(416) 

 

To a solution of the optically active starting material (+)-cis-(404) (15 mg, 0.037 mmol) 

synthesised using (R)-(289) in 1 mL ethyl acetate was added palladium hydroxide on 

carbon (20 % Pd by weight [6 mg, 0.007 mmol, 20 %]). The reaction mixture was stirred at 

30 °C, under 45 psi H2 for 12 h, in a Biotage Endeavour catalyst screening system. The 

reaction was monitored by the uptake of hydrogen gas. When deemed complete, the 

reaction mixture was filtered through Celite®, and the Celite® eluted with ethyl acetate. The 

resulting washings were combined, and the solvent removed under reduced pressure. The 

crude material was purified via flash column chromatography (15 % diethyl ether in 

petroleum ether). A sample was unable to be separated by chiral HPLC by any method that 

was available. The title compound (-)-(416) was afforded as a slight green oil in a 98 % 

yield (15 mg, 0.036 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.25 - 7.14 (m, 4H, ArH), 6.97-

6.86 (m, 2H, ArH), 6.64-6.51 (m, 2H, ArH), 3.06 (s, 1H, β-CHD), 1.34 (s, 18H, 2 

C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 171.3, 143.0, 141.1, 135.3, 132.7, 131.0, 128.4, 

123.7, 122.1, 116.8, 110.8, 81.7, 79.6, 28.8, 27.8 ppm; [α]D
21 -19.0 (c 1 CHCl3); FT-IR 

(thin film, cm-1): 2976, 2927, 1730, 1598, 1510, 1444, 1391, 1253, 1154; MS (EI)+: m/z 

406.1 [M+H]+; HRMS (EI)+: exact mass calculated for [C23H29D2ClNO3]
+ requires m/z 

406.2113, found m/z 406.2103. 
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Synthesis of tert-butyl 2-(2-tert-butoxyphenylamino)-3-(4-fluorophenyl)-2-

deuteropropanoate; (-)-(417) 

 

To a solution of the optically active starting material (+)-cis-(352) (45 mg, 0.116 mmol) 

synthesised using (R)-(289), in 4 mL ethyl acetate was added palladium hydroxide on 

carbon (20 % Pd by weight [16 mg, 0.0233 mmol, 20 %]). The reaction mixture was stirred 

at 30 °C, under 43 psi H2 for ~12 h, in a Biotage Endeavour catalyst screening system. The 

reaction was monitored by the uptake of hydrogen gas. When deemed complete, the 

reaction mixture was filtered through Celite®, and the Celite® eluted with ethyl acetate. The 

resulting washings were combined, and the solvent removed under reduced pressure. The 

crude material was purified via flash column chromatography (15 % diethyl ether in 

petroleum ether). The title compound (-)-(417) was afforded as a slight brown oil in a 95 % 

yield (43 mg, 0.11 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.21-7.12 (m, 2H, ArH), 7.01-

6.86 (m, 4H, ArH), 6.65-6.50 (m, 2H, ArH), 3.09 (2d, 2H, J 5.4 Hz, diastereotopic β-CH2), 

1.34 (s, 18H, 2 C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 172.0, 163.6, 160.3, 143.0, 141.2, 

132.5, 132.4, 131.2, 131.0, 123.7, 122.1, 116.8, 115.3, 115.0, 110.8, 81.6, 79.6, 37.6, 28.8, 

27.8 ppm; [α]D
22 -6.14 (c 1 CHCl3); FT-IR (thin film, cm-1): 2976, 1728, 1599, 1508, 1430, 

1367, 1325, 1253, 1222, 1156; MS (EI)+: m/z 389.3 [M+H]+; HRMS (EI)+: exact mass 

calculated for [C23H3DFNO3]
+ requires m/z 389.2345, found m/z 389.2347. 
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Synthesis of 2-(2-tert-butoxyphenylamino)-3-(4-fluorophenyl)-2-deuteropropanoic 

acid; (-)-(418) 

 

The optically active starting material (-)-(417) (59 mg, 0.152 mmol) was stirred in neat 

formic acid (500 uL) for 36 h. After this time, TLC analysis (20 % diethyl ether in 

petroleum ether) revealed consumption of the starting material. At this point the solution 

was evaporated to dryness, and the residue was purified by reversed phase column 

chromatography (100% water → 100% acetonitrile). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol (containing 1% TFA) : 

90 / 10, 1 mL / min, 9.89 min (1st peak), 12.35 min (2nd peak), 89 % e.e.]. The title 

compound (-)-(418) was afforded as a colourless oil in a 55% yield (28 mg, 0.084 mmol). 
1H-NMR (CDCl3, 300 MHz) δ 7.25-7.16 (m, 2H, ArH), 7.05-6.93 (t, 2H, J 8.6, 8.6 Hz, 

ArH), 6.84-6.61 (m, 4H, ArH), 3.06 (2d, 2H, J 5.4 Hz, diastereotopic β-CH2), 1.35 (s, 9H, 

C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 173.2, 163.7, 160.4, 145.8, 134.6, 132.6, 131.1, 

131.0, 121.1, 120.5, 115.6, 115.4, 115.1, 82.2, 38.0, 27.8 ppm; [α]D
22 -53.9 (c 0.1 CHCl3); 

FT-IR (thin film, cm−1): 2977, 2717, 2334, 1728, 1606, 1510, 1369, 1228; MS (EI)+: m/z 

333.1 [M+H]+ 355.1 [M+Na]+; HRMS (EI)+: exact mass calculated for [C19H22DFNO3]
+ 

requires m/z 333.1719, found m/z 333.1723. 
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Synthesis of tert-butyl 3-(4-aminophenyl)-2-(2-tert-butoxyphenylamino)-2-

deuteropropanoate; (-)-(419) 

 

To a solution of the chiral starting material (+)-cis-(356) (30 mg, 0.073 mmol) synthesised 

using (R)-(289), in 4 mL ethyl acetate was added palladium hydroxide on carbon (20 % Pd 

by weight [10 mg, 0.0145 mmol, 20 %]). The reaction mixture was stirred at 30 °C, under 

43 psi H2 for ~12 h, in a Biotage Endeavour catalyst screening system. The reaction was 

monitored by the uptake of hydrogen gas. When deemed complete, the reaction mixture 

was filtered through Celite®, and the Celite® eluted with ethyl acetate. The resulting 

washings were combined, and the solvent removed under reduced pressure. The crude 

material was purified via flash column chromatography (15 % diethyl ether in petroleum 

ether). A sample was submitted to chiral analytical HPLC analysis [Chiralcel OJ-3, CO2 / 

iso-propanol : 5% - 50% over 9 min, 0.7 mL / min, 3.70 min (1st peak), 4.71 min (2nd 

peak), 86 % e.e.]. The title compound (-)-(419) was afforded as a dark brown/black oil in 

an 85 % yield (24 mg, 0.062 mmol). 1H-NMR (CDCl3, 300 MHz) δ 6.97-6.90 (m, 2H, 

ArH), 6.89-6.78 (m, 2H, ArH), 6.58-6.42 (m, 4H, ArH), 2.98 (2d, 2H, J 4.8 Hz, 

diastereotopic β-CH2), 1.33 (s, 9H, C(CH3)3), 1.32 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 

MHz) 172.5, 145.1, 142.9, 141.5, 130.4, 126.7, 123.7, 122.1, 116.4, 115.2, 110.8, 81.2, 

79.5, 37.7, 28.8, 27.8 ppm; FT-IR (thin film, cm-1) 3374, 2976, 1725, 1599, 1514, 1429, 

1367, 1280, 1253, 1156; [α]D
22 -9.90 (c 1 CHCl3); MS (EI)+: m/z 387.3 [M+H]+; HRMS 

(EI)+: exact mass calculated for [C23H32DN2O3]
+ requires m/z 386.2548, found m/z 

386.2551. 
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Synthesis of tert-butyl 3-(4-aminophenyl)-2-(2-tert-butoxyphenylamino)-3-

deuteropropanoate (-)-(420) 

 

To a solution of the chiral starting material (+)-cis-(392) (30 mg, 0.073 mmol) synthesised 

using (R)-(289), in 4 mL ethyl acetate was added palladium hydroxide on carbon (20 % Pd 

by weight [10 mg, 0.0145 mmol, 20 %]). The reaction mixture was stirred at 30 °C, under 

43 psi H2 for ~12 h, in a Biotage Endeavour catalyst screening system. The reaction was 

monitored by the uptake of hydrogen gas. When deemed complete, the reaction mixture 

was filtered through Celite®, and the Celite® eluted with ethyl acetate. The resulting 

washings were combined, and the solvent removed under reduced pressure. The crude 

material was purified via flash column chromatography (15 % diethyl ether in petroleum 

ether). A sample was submitted to chiral analytical HPLC analysis [Chiralcel OJ-3, CO2 / 

iso-propanol : 5% - 50% over 9 min, 0.7 mL / min, 3.75 min (1st peak), 4.75 min (2nd 

peak), 89 % e.e.]. The title compound (-)-(420) was afforded as a dark brown/black oil in a 

97 % yield (27 mg, 0.071 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.12-6.83 (m, 4H, ArH), 

6.74-6.43 (m, 4H, ArH), 4.11 (s, 1H, α-CH), 3.00 (s, 1H, β-CHD), 1.33 (s, 9H, C(CH3)3), 

1.32 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 172.5, 145.1, 142.9, 141.5, 130.4, 

126.7, 123.7, 122.1, 116.4, 115.2, 110.8, 81.2, 79.5, 57.9, 28.8, 27.8 ppm; FT-IR (thin film, 

cm-1) 2979, 1725, 1624, 1598, 1512, 1437, 1392, 1328, 1257, 1151; [α]D
21 -15.52 (c 1 

CHCl3); MS (EI)+: m/z 387.3 [M+H]+; HRMS (EI)+: exact mass calculated for 

[C23H32DN2O3]
+ requires m/z 386.2548, found m/z 386.2552. 
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Synthesis of tert-butyl 3-(4-aminophenyl)-2-(2-tert-butoxyphenylamino)-2,3-

dideuteropropanoate; (-)-(421) 

 

To a solution of the chiral starting material (+)-cis-(407) (26 mg, 0.063 mmol) synthesised 

using (R)-(289), in 4 mL ethyl acetate was added palladium hydroxide on carbon (20 % Pd 

by weight [9 mg, 0.0126 mmol, 20 %]). The reaction mixture was stirred at 30 °C, under 

43 psi H2 for ~12 h, in a Biotage Endeavour catalyst screening system. The reaction was 

monitored by the uptake of hydrogen gas. When deemed complete, the reaction mixture 

was filtered through Celite®, and the Celite® eluted with ethyl acetate. The resulting 

washings were combined, and the solvent removed under reduced pressure. The crude 

material was purified via flash column chromatography (15 % diethyl ether in petroleum 

ether). A sample was submitted to chiral analytical HPLC analysis [Chiralcel OJ-3, CO2 / 

iso-propanol : 5% - 50% over 9 min, 0.7 mL / min, 3.69 min (1st peak), 4.72 min (2nd 

peak), 94 % e.e.]. The title compound (-)-(421) was afforded as a dark brown/black oil in 

an 82 % yield (20 mg, 0.052 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.05-6.85 (m, 4H, 

ArH), 6.65-6.49 (m, 4H, ArH), 2.99 (s, 1H, β-CHD), 1.33 (s, 9H, C(CH3)3), 1.32 (s, 9H, 

C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 172.5, 145.1, 142.9, 141.5, 130.4, 126.7, 123.7, 

122.1, 116.4, 115.2, 110.8, 81.2, 79.5, 28.8, 27.8 ppm; FT-IR (thin film, cm-1) 3377, 2977, 

2931, 1727, 1624, 1599, 1515, 1367, 1156; [α]D
22 -16.6 (c 1 CHCl3); MS (EI)+: m/z 387.3 

[M+H] +; HRMS (EI)+: exact mass calculated for [C23H31D2N2O3]
+ requires m/z 387.2611, 

found m/z 387.2612. 
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Synthesis of tert-butyl 3-(4-bromophenyl)-2-(2-tert-butoxyphenylamino)-3-hydroxy-3-

deuteropropanoate; (-)-(422) 

 

To a stirred solution of the optically active starting material (+)-cis-(385) (25 mg, 0.056 

mmol) synthesised using (R)-(289), in 1 mL 1:1 acetonitrile : water was added para-

toluene sulphonic acid (11.7 mg, 0.062 mmol), and the resulting mixture was heated to 45 

°C with stirring for 16 h. After this time, the reaction mixture was neutralised by addition 

of a saturated aqueous solution of sodium hydrogen carbonate. This was extracted with 

ethyl acetate, and the combined organic layers were washed with brine, dried with 

magnesium sulphate, filtered, and the solvent removed under reduced pressure. The crude 

material was purified via flash column chromatography (30 % diethyl ether in petroleum 

ether). A sample was submitted to chiral analytical HPLC analysis [Chiralcel OD-3, CO2 / 

methanol : 5% - 60% over 9 min, 0.7 mL / min, 4.01 min (1st peak), 4.44 min (2nd peak), 

78 % e.e.]. The title product (-)-(422) was a slight brown oil afforded in an 88 % yield (23 

mg, 0.049 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.47 (d, 2H, J 8.3 Hz, ArH), 7.30 (d, 2H, 

J 8.3 Hz, ArH), 6.96 (d, 1H, J 7.9 Hz, ArH), 6.85 (t, 1H, J 7.6, 7.6 Hz, ArH), 6.64 (t, 1H, J 

7.6, 7.6 Hz, ArH), 6.49 (d, 1H, J 8.1 Hz, ArH), 4.07 (s, 1H, α-CH), 3.32 (s, 1H, OH), 1.40 

(s, 9H, C(CH3)3), 1.31 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 171.0, 143.5, 141.1, 

139.0, 131.4, 128.4, 123.6, 121.9, 117.9, 111.9, 82.7, 79.8, 63.4, 28.9, 27.7 ppm; [α]D
22 -43 

(c 0.7 CHCl3); FT-IR (thin film, cm-1): 2978, 2931, 1728, 1599, 1509, 1488, 1253, 1156; 

MS (EI)+: m/z 487.2 [M+Na]+; HRMS (EI)+: exact mass calculated for [C23H30DBrNO4]
+ 

requires m/z 465.1494, found m/z 465.1495. 
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Synthesis of tert-butyl 3-(4-bromophenyl)-2-(2-tert-butoxyphenylamino)-3-hydroxy-

2,3-dideuteropropanoate; (-)-(424) 

 

To a stirred solution of the optically active starting material (+)-cis-(403) (20 mg, 0.045 

mmol) synthesised using (R)-(289) in 1 mL 1:1 acetonitrile : water was added para-toluene 

sulphonic acid (9.4 mg, 0.049 mmol), and the resulting mixture was heated to 45 °C with 

stirring for 16 h. After this time, the reaction mixture was neutralised by addition of a 

saturated aqueous solution of sodium hydrogen carbonate. This was extracted with ethyl 

acetate, and the combined organic layers were washed with brine, dried with magnesium 

sulphate, filtered, and the solvent removed under reduced pressure. The crude material was 

purified via flash column chromatography (30 % diethyl ether in petroleum ether). A 

sample was submitted to chiral analytical HPLC analysis [Chiralpak Chiralcel OD-3, CO2 / 

methanol : 5% - 60% over 9 min, 0.7 mL / min,, 4.03 min (1st peak), 4.45 min (2nd peak), 

80 % e.e.]. The title product (-)-(424) was a slight brown oil afforded in an 86 % yield (18 

mg, 0.039 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.47 (d, 2H, J 8.5 Hz, ArH), 7.30 (d, 2H, 

J 8.5 Hz, ArH), 6.96 (d, 1H, J 7.9 Hz, ArH), 6.86 (t, 1H, J 7.7, 7.7 Hz, ArH), 6.64 (t, 1H, J 

7.7, 7.7 Hz, ArH). 6.50 (d, 1H, J 7.9 Hz, ArH), 1.40 (s, 9H, C(CH3)3), 1.31 (s, 9H, 

C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 171.0, 143.5, 141.0, 139.0, 132.5, 131.4, 128.4, 

123.6, 121.9, 117.9, 111.9, 82.7, 79.8, 28.9, 27.7 ppm; [α]D
22 -46.05 (c 0.4 CHCl3); FT-IR 

(thin film, cm-1): 2978, 2931, 1726, 1599, 1508, 1488, 1431, 1392, 1254, 1156; MS (EI)+: 

m/z  488.2 [M+Na]+; HRMS (EI)+: exact mass calculated for [C23H29D2BrNO4]
+ requires 

m/z 466.1557, found m/z 466.1556. 
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Synthesis of tert-butyl 2-(2-tert-butoxyphenylamino)-3-(4-fluorophenyl)-3-hydroxy-3-

deuteropropanoate; (-)-(425) 

 

To a stirred solution of the optically active starting material (+)-cis-(386) (10 mg, 0.028 

mmol) synthesised using (R)-(289) in 1 mL 1:1 acetonitrile : water was added para-toluene 

sulphonic acid (6 mg, 0.031 mmol), and the resulting mixture was heated to 45 °C with 

stirring for 16 h. After this time, the reaction mixture was neutralised by addition of a 

saturated aqueous solution of sodium hydrogen carbonate. This was extracted with ethyl 

acetate, and the combined organic layers were washed with brine, dried with magnesium 

sulphate, filtered, and the solvent removed under reduced pressure. The crude material was 

purified via flash column chromatography (30 % diethyl ether in petroleum ether). A 

sample was submitted to chiral analytical HPLC analysis [Chiralcel OD-3, CO2 / methanol 

: 5% - 60% over 9 min, 0.7 mL / min, 3.28 min (1st peak), 3.77 min (2nd peak), 90 % e.e.]. 

The title product (-)-(425) was a slight brown oil afforded in a 75 % yield (8.5 mg, 0.021 

mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.44-7.36 (m, 2H, ArH), 7.08-6.93 (m, 3H, ArH), 

6.87 (m, 1H, ArH), 6.64 (m, 1H, ArH), 6.52 (d, 1H, J 8.0 Hz, ArH). 4.09 (s, 1H, α-CH), 

3.30 (s, 1H, OH), 1.40 (s, 9H, C(CH3)3), 1.29 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 

MHz) 171.1, 143.6, 141.2, 128.5, 128.4, 123.6, 121.9, 117.9, 115.3, 115.0, 111.9, 82.5, 

79.8, 63.8, 28.9, 27.7 ppm [α]D
22 -20.0 (c 0.7 CHCl3); FT-IR (thin film, cm-1): 2977, 2922, 

2852, 2344, 1727, 1600, 1510, 1477, 1392, 1368, 1253, 1158; MS (EI)+: m/z  405.1 

[M+H] +; HRMS (ASAP)+: exact mass calculated for [C23H30DFNO4]
+ requires m/z 

405.2294, found m/z 405.2287. 
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Synthesis of isopropyl 3-(4-bromophenyl)-2-(2-tert-butoxyphenylamino)-3-hydroxy-

2,3-dideuteropropanoate; (-)-(426) 

 

To a stirred solution of the optically active starting material (+)-cis-(408) (20 mg, 0.045 

mmol) synthesised using (R)-(289), in 1 mL 1:1 acetonitrile : water was added para-

toluene sulphonic acid (9.4 mg, 0.049 mmol), and the resulting mixture was heated to 45 

°C with stirring for 16 h. After this time, the reaction mixture was neutralised by addition 

of a saturated aqueous solution of sodium hydrogen carbonate. This was extracted with 

ethyl acetate, and the combined organic layers were washed with brine, dried with 

magnesium sulphate, filtered, and the solvent removed under reduced pressure. The crude 

material was purified via flash column chromatography (30 % diethyl ether in petroleum 

ether). A sample was submitted to chiral analytical HPLC analysis [Chiralcel OD-3, CO2 / 

methanol : 5% - 60% over 9 min, 0.7 mL / min, 4.12 min (1st peak), 4.50 min (2nd peak), 

87 % e.e.]. The title product (-)-(426) was a slight brown oil afforded in an 86 % yield (17 

mg, 0.039 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.47 (d, 2H, J 6.0 Hz, ArH), 7.30 (d, 2H, 

J 6.0 Hz, ArH), 6.96 (d, 1H, J 9.0 Hz, ArH), 6.85 (t, 1H, J 6.0, 15.0 Hz, ArH), 6.64 (t, 1H, 

J 6.0, 15.0 Hz, ArH). 6.45 (d, 1H, J 6.0 Hz, ArH), 4.94 (dt, 1H, J 6.2, 6.2, 12.5 Hz, 

CH(CH3)2), 1.40 (s, 9H, C(CH3)3), 1.31 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 

171.5, 143.6, 140.9, 138.9, 131.5, 128.3, 123.6, 122.1, 121.9, 118.0, 111.8, 79.8, 77.2, 

69.4, 28.9, 21.6, 21.4 ppm; [α]D
22 -61.1 (c 0.1 CHCl3); FT-IR (thin film, cm-1) 2977, 1599, 

1508, 1488, 1463, 1431, 1367, 1254, 1161; MS (EI)+: m/z  452.1 [M+H]+ 474.1 [M+Na]+; 

HRMS (EI)+: exact mass calculated for [C22H27D2BrNO4]
+ requires m/z 452.1400, found 

m/z 452.1401. 
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 Synthesis of tert-butyl 2-(2-tert-butoxyphenylamino)-3-iodo-2-deutero-3-(4-

nitrophenyl)propanoate; (+)-(427) 

 

To a stirred solution of the optically active starting material (+)-cis-(356) (40 mg, 0.097 

mmol, synthesised using (R)-(289)) solubilised in 1 mL dichloromethane, was added I2 

(11.9 mg, 0.049 mmol), and polystyrene bound benzenethiol (97 mg, ~1.0 mmol g-1, 0.097 

mmol). The resulting mixture was stirred in the dark for 20 minutes. After this time, the 

reaction mixture was filtered, and the solvent removed under reduced pressure. The crude 

material was purified via flash column chromatography (20 % dichloromethane, 10 % 

diethyl ether, in petroleum ether), in the dark. A sample was submitted to chiral HPLC 

analysis [Chiralpak IA, CO2 / iso-propanol 5% - 50% over 9 min, 0.7 mL / min, 4.32 min 

(1st peak), 5.30 min (2nd peak), 84 % e.e.]. The title product (+)-(427) was a yellow oil 

afforded in a 86 % yield (45 mg, 0.083 mmol). 1H-NMR (CDCl3, 300 MHz) δ 8.12 (d, 2H, 

J 9.0 Hz, ArH), 7.71 (d, 2H, J 9.0 Hz, ArH), 7.00 (d, 1H, J 7.9, ArH), 6.83 (t, 1H, J 7.7, 

7.7 Hz, ArH), 6.64 (t, 1H, J 7.7, 7.7 Hz, ArH). 6.34 (d, 1H, J 7.9 Hz, ArH), 5.56 (s, 1H, β-

CHI), 5.28 (s, 1H, NH), 1.48 (s, 9H, C(CH3)3), 1.33 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 

75 MHz) 168.8, 147.8, 147.5, 143.4, 140.7, 129.7, 123.7, 123.6, 122.2, 117.9, 111.3, 83.1, 

80.0, 31.5, 29.0, 27.7 ppm; [α]D
22 87.1 (c 0.7 CHCl3); FT-IR (thin film, cm−1): 2976, 1726, 

1597, 1509, 1507, 1483, 1345, 1251, 1154; MS (EI)+: m/z  542.4 [M+H]+; HRMS (EI)+: 

exact mass calculated for [C23H29DIN2O5]
+ requires m/z 542.1257, found m/z 542.1249. 
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Synthesis of tert-butyl 2-(2-tert-butoxyphenylamino)-3-iodo-3-deutero-3-(4-

nitrophenyl)propanoate; (+)-(428) 

 

To a stirred solution of the optically active starting material (+)-cis-(392) (34 mg, 0.082 

mmol, synthesised using (R)-(289)) solubilised in 1 mL dichloromethane, was added I2 

(10.4 mg, 0.041 mmol), and polystyrene bound benzenethiol (82 mg, ~1.0 mmol g-1, 0.082 

mmol). The resulting mixture was stirred in the dark for 20 minutes. After this time, the 

reaction mixture was filtered, and the solvent removed under reduced pressure. The crude 

material was purified via flash column chromatography (20 % dichloromethane, 10 % 

diethyl ether, in petroleum ether), in the dark. A sample was submitted to chiral HPLC 

analysis [Chiralpak IA, CO2 / iso-propanol 5% - 50% over 9 min, 0.7 mL / min, 4.29 min 

(1st peak), 5.29 min (2nd peak), 79 % e.e.]. The title product (+)-(428) was a yellow oil 

afforded in a 81 % yield (36 mg, 0.066 mmol). 1H-NMR (CDCl3, 300 MHz) δ 8.12 (d, 2H, 

J 8.6 Hz, ArH), 7.71 (d, 2H, J 8.6 Hz, ArH), 7.00 (d, 1H, J 7.9, ArH), 6.82 (t, 1H, J 6.9, 

7.0 Hz, ArH), 6.64 (t, 1H, J 7.0, 7.0 Hz, ArH). 6.33 (d, 1H, J 6.9 Hz, ArH), 5.28 (d, 1H, J 

9.7 Hz, NH), 4.06 (d, 1H, J 9.7, α-CH), 1.48 (s, 9H, C(CH3)3), 1.34 (s, 9H, C(CH3)3); 
13C-

NMR (CDCl3, 75 MHz) 168.8, 147.8, 147.5, 143.4, 140.7, 129.7, 123.7, 123.6, 122.2, 

117.9, 111.3, 83.1, 80.0, 31.5, 29.0, 27.7 ppm; [α]D
22 48.6 (c 0.5 CHCl3); FT-IR (thin film, 

cm−1): 2976, 1726, 1597, 1508, 1456, 1367, 1343, 1252, 1146; MS (EI)+: m/z  542.4 

[M+H] +; HRMS (EI)+: exact mass calculated for [C23H29DIN2O5]
+ requires m/z 542.1257, 

found m/z 542.1253. 
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9.7: Synthesis of Deuterated 15N and 18O containing Aziridines, and Amino 

Acids/Alcohols 

Three Component One-Pot Asymmetric Synthesis of tert-butyl 1-15N-1-phenyl-3-

(pyridin-2-yl)-2- deuteroaziridine-2-carboxylate; cis-(434) 

 

Pyridine-2-carboxaldehyde (27.8 mg, 25 µL, 0.26 mmol), 15N-aniline (23 mg, 0.26 mmol), 

and catalyst (S)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a flame dried 2 mL vial 

under nitrogen. 800 µL of deuterated chloroform was added (pre-dried over 4Å molecular 

sieves), followed by ~40 mg of freshly powdered 4Å molecular sieves, and the vial was 

sealed with a PTFE crimp cap. 200 µL of anhydrous dichloromethane was added via 

syringe through the septum, and the reaction mixture was cooled to -80 °C. After 30 

minutes, >95 % deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) was 

added via syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete. At this point the reaction mixture 

was filtered through a short plug of silica, eluting with diethyl ether. The solvents were 

removed under reduced pressure, and the residue was purified via flash column 

chromatography (20 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 8 / 2, 1 mL / min, 

6.38 min (1st peak), 8.20 min (2nd peak), 85% e.e.]. The title product cis-(434) was afforded 

as a slight brown oil in an 83 % yield (64 mg, 0.216 mmol). 1H-NMR (CDCl3, 300 MHz) δ 

8.56 – 8.51 (m, 1H, ArH), 7.70 – 7.64 (m, 2H, ArH), 7.30 – 7.15 (m, 3H, ArH), 7.09 – 6.98 

(m, 3H, ArH), 3.67 (s, 1H, C3-H), 1.22 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 

166.5, 166.4, 155.2, 155.1, 152.1, 152.1, 148.9, 136.2, 129.2, 123.5, 122.8, 122.7, 122.6, 

120.0, 119.9, 81.7, 47.8, 47.7, 27.8 ppm; [α]D
26 -22.2 (c 1.1 CHCl3); FT-IR (thin film, 

cm−1):2978, 1739, 1717, 1591, 1570, 1489, 1477, 1454, 1435, 1392, 1367; MS (EI)+: m/z 

299.1 [M+H]+, 321.1 [M+Na]+; HRMS (EI)+: exact mass calculated for [C18H20DN15NO2]
+ 

requires m/z 299.1631, found m/z 299.1629. 
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Synthesis of tert-butyl 2-deutero-2-(phenyl-15N-amino)-3-(pyridin-2-yl)propanoate; 

(+)-(429) 

 

To a solution of the optically active starting material (-)-cis-(434) (36 mg, 0.12 mmol) 

synthesised using (S)-(289), in 4 mL ethyl acetate was added palladium hydroxide on 

carbon (20 % Pd by weight [17 mg, 0.024 mmol, 20 %]). The reaction mixture was stirred 

at 30 °C, under 43 psi H2 for 12 h, in a Biotage Endeavour catalyst screening system. The 

reaction was monitored by the uptake of hydrogen gas. When deemed complete, the 

reaction mixture was filtered through Celite®, and the Celite® eluted with ethyl acetate. The 

resulting washings were combined, and the solvent removed under reduced pressure. The 

crude material was purified via flash column chromatography (30 % diethyl ether in 

petroleum ether). A sample was submitted to chiral analytical HPLC analysis [Chiralpak 

ID, CO2 / iso-propanol 5% - 50% over 9 min, 0.7 mL / min, 4.40 min (1st peak), 5.28 min 

(2nd peak), 84 % e.e.]. The title product (+)-(429) was afforded as a colourless oil in a 52 % 

yield (19 mg, 0.0624 mmol). 1H-NMR (CDCl3, 300 MHz) δ 8.57 (d, 1H, J 4.8 Hz, ArH), 

7.60 (td, 1H, J 7.7, 7.7, 1.8 Hz, ArH), 7.22-7.08 (m, 4H, ArH), 6.69 (t, 1H, J 7.3, 7.3 Hz, 

ArH), 6.62 (d, 2H, J 7.3 Hz, ArH), 3.24 (2d, 2H, diastereotopic β-CH2), 1.32 (s, 9H, 

C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 172.5, 157.7, 149.2, 147.1, 146.9, 136.5, 129.2, 

124.0, 121.8, 118.0, 113.6, 113.5, 81.5, 40.5, 27.7 ppm; [α]D
21 4.7 (c 0.6 CHCl3); FT-IR 

(thin film, cm-1): 2978, 1725, 1603, 1502, 1474, 1436, 1368, 1310, 1283, 1160; MS (EI)+: 

m/z 301.1 [M+H]+; HRMS (EI)+: exact mass calculated for [C18H22DN15NO2]
+ requires m/z 

301.1787, found m/z 301.1791. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 3-(4-nitrophenyl)-1-
15N-1-phenyl-3-deuteroaziridine-2-carboxylate; cis-(435) 

 

4-nitrobenzaldehyde (39.2 mg, 0.26 mmol,), 15N-aniline (23 mg, 0.26 mmol), and catalyst 

(S)-(289) (21.6 mg, 0.026 mmol, 10%) were added to a flame dried 2 mL vial under 

nitrogen. 800 µL of deuterated chloroform was added (pre-dried over 4Å molecular 

sieves), followed by ~40 mg of freshly powdered 4Å molecular sieves, and the vial was 

sealed with a PTFE crimp cap. 200 µL of anhydrous dichloromethane was added via 

syringe through the septum, and the reaction mixture was cooled to -80 °C. After 30 

minutes, >95 % deuterated tert-butyl diazoacetate (349) (40.7 mg, 40 µL, 0.286 mmol) was 

added via syringe, and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR 

spectroscopy until the reaction was deemed complete. At this point the reaction mixture 

was filtered through a short plug of silica, eluting with diethyl ether. The solvents were 

removed under reduced pressure, and the residue was purified via flash column 

chromatography (17 % diethyl ether in petroleum ether). A sample was submitted to chiral 

analytical HPLC analysis [Chiralpak AD, heptane / iso-propanol : 97.5 / 2.5, 1 mL / min, 

21.19 min (1st peak), 24.27 min (2nd peak), 82% e.e.]. The reaction product cis-(435) was 

afforded as a yellow oil in a 63 % yield (56 mg, 0.164 mmol). 1H-NMR (CDCl3, 300 MHz) 

δ 8.15 (d, 2H, J 8.9 Hz, ArH), 7.63 (d, 2H, J 8.9 Hz, ArH), 7.31-7.67 (m, 2H, ArH), 7.07 – 

6.93 (m, 3H, ArH), 3.52 (s, 1H, C3-H), 1.15 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 

δ 166.2, 151.9, 147.7, 142.7, 129.5, 129.0, 128.9, 124.0, 123.4, 120.1, 120.1, 82.5, 46.1, 

46.1, 28.0 ppm; [α]D
26 -76.3 (c 0.9 CHCl3); FT-IR (thin film, cm−1): 2979, 1741, 1716, 

1599, 1520, 1490, 1426, 1344, 1253; MS (EI)+: m/z 343.1 [M+H]+; HRMS (EI)+: exact 

mass calculated for [C19H20DN15NO4]
+ requires m/z 343.1529, found m/z 343.1527. 
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Three Component One-Pot Asymmetric Synthesis of tert-butyl 3-(4-nitrophenyl)-1-
15N-1-phenyl-3-deuteroaziridine-2-carboxylate; cis-(436) 

 

95 % Deuterated 4-nitrobenzaldehyde (24 mg, 0.155 mmol,), 15N-aniline (14 µL, 0.155 

mmol), and catalyst (S)-(289) (12 mg, 0.015 mmol, 10%) were added to a flame dried 2 

mL vial under nitrogen. 800 µL of deuterated chloroform was added (pre-dried over 4Å 

molecular sieves), followed by ~40 mg of freshly powdered 4Å molecular sieves, and the 

vial was sealed with a PTFE crimp cap. 200 µL of anhydrous dichloromethane was added 

via syringe through the septum, and the reaction mixture was cooled to -80 °C. After 30 

minutes, tert-butyl diazoacetate (280) (25.3 mg, 25 µL, 0.17 mmol) was added via syringe, 

and the reaction mixture was stirred at -80 °C, monitoring by 1H-NMR spectroscopy until 

the reaction was deemed complete. At this point the reaction mixture was filtered through a 

short plug of silica, eluting with diethyl ether. The solvents were removed under reduced 

pressure, and the residue was purified via flash column chromatography (17 % diethyl 

ether in petroleum ether). A sample was submitted to chiral analytical HPLC analysis 

[Chiralpak AD, heptane / iso-propanol : 97.5 / 2.5, 1 mL / min, 21.14 min (1st peak), 24.74 

min (2nd peak), 81% e.e.]. The reaction product cis-(436) was afforded as a yellow oil in a 

59 % yield (31 mg, 0.0915 mmol). 1H-NMR (CDCl3, 400 MHz) δ 8.16 (d, 2H, J 8.9 Hz, 

ArH), 7.64 (d, 2H, J 8.9 Hz ArH), 7.27-7.19 (m, 2H, ArH), 7.04 – 6.95 (m, 3H, ArH), 3.13 

(s, 1H, C2-H), 1.15 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) δ 166.2, 151.9, 147.7, 

142.6, 129.5, 129.0, 128.9, 124.0, 123.4, 120.1, 120.1, 82.5, 46.7, 46.6, 28.0 ppm; [α]D
26 -

76.7 (c 1 CHCl3); FT-IR (thin film, cm−1): 2979, 1740, 1720, 1599, 1519, 1490, 1426, 

1344, 1253, 1154; MS (EI)+: m/z 343.1 [M+H]+; HRMS (EI)+: exact mass calculated for 

[C19H20DN15NO4]
+ requires m/z 343.1529, found m/z 343.1533. 
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Synthesis of tert-butyl 3-(4-aminophenyl)-2-deutero-2-(phenyl-15N-amino)propanoate; 

(-)-(430) 

 

To a solution of the chiral starting material (-)-cis-(435) (20 mg, 0.076 mmol) synthesised 

using (S)-(289), in 4 mL ethyl acetate was added palladium hydroxide on carbon (20 % Pd 

by weight [10.7 mg, 0.015 mmol, 20 %]). The reaction mixture was stirred at 30 °C, under 

45 psi H2 for ~16 h, in a Biotage Endeavour catalyst screening system. The reaction was 

monitored by the uptake of hydrogen gas. When deemed complete, the reaction mixture 

was filtered through Celite®, and the Celite® eluted with ethyl acetate. The resulting 

washings were combined, and the solvent removed under reduced pressure. The crude 

material was purified via flash column chromatography (20 % ethyl acetate in petroleum 

ether). A sample was submitted to chiral analytical HPLC analysis [Chiralpak AD, iso-

hexane / iso-propanol with 0.1 % DEA : 80 / 20, 1.2 mL / min, 11.56 min (1st peak), 13.34 

min (2nd peak), 75 % e.e.]. The desired product (-)-(430) was afforded as a dark 

brown/black oil in 70 % yield (17 mg, 0.053 mmol). 1H-NMR (CDCl3, 400 MHz) δ 7.09 (t, 

2H, J 7.8 Hz ArH), 6.92 (d, 2H, J 8.4 Hz, ArH), 6.64 (t, 1H, J 7.3, 7.3 Hz, ArH), 6.57-6.50 

(m, 4H, ArH), 2.91 (2d, 2H, diastereotopic β-CH2), 1.29 (s, 9H, C(CH3)3); 
13C-NMR 

(CDCl3, 75 MHz) 172.6, 146.7, 145.2, 130.4, 129.3, 126.5, 118.0, 115.7, 113.6, 113.5, 

81.5, 37.6, 37.5, 27.8 ppm; FT-IR (thin film, cm-1) 2976, 2928, 1724, 1603, 1518, 1501, 

1368, 1310, 1282, 1255, 1157; [α]D
22 -21.1 (c 0.5 CHCl3); MS (EI)+: m/z 315.2 [M+H]+; 

HRMS (EI)+: exact mass calculated for [C19H24DN15NO2]
+ requires m/z 315.1944, found 

m/z 315.1939. 
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Synthesis of tert-butyl 3-(4-aminophenyl)-3-deutero-2-(phenyl-15N-amino)propanoate; 

(-)-(431) 

 

To a solution of the chiral starting material (-)-cis-(436) (19 mg, 0.055 mmol) synthesised 

using (S)-(289), in 4 mL ethyl acetate was added palladium hydroxide on carbon (20 % Pd 

by weight [8 mg, 0.011 mmol, 20 %]). The reaction mixture was stirred at 30 °C, under 45 

psi H2 for ~16 h, in a Biotage Endeavour catalyst screening system. The reaction was 

monitored by the uptake of hydrogen gas. When deemed complete, the reaction mixture 

was filtered through Celite®, and the Celite® eluted with ethyl acetate. The resulting 

washings were combined, and the solvent removed under reduced pressure. The crude 

material was purified via flash column chromatography (20 % ethyl acetate in petroleum 

ether). A sample was submitted to chiral analytical HPLC analysis [Chiralpak AD, iso-

hexane / iso-propanol with 0.1 % DEA : 80 / 20, 1.2 mL / min, 11.60 min (1st peak), 13.33 

min (2nd peak), 80 % e.e.]. The desired product (-)-(431) was afforded as a dark 

brown/black oil in 72 % yield (12.4 mg, 0.0396 mmol). 1H-NMR (CDCl3, 400 MHz) 

δ 7.16 (t, 2H, J 7.9, 7.9 Hz ArH), 6.99 (d, 2H, J 8.5 Hz, ArH), 6.71 (t, 1H, J 7.3, 7.3 Hz, 

ArH), 6.65-6.57 (m, 4H, ArH), 4.16 (d, 1H, J 5.6 Hz, α-CH), 2.96 (d, 2H, J 5.6 Hz, β-

CHD), 1.36 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 172.7, 146.9, 146.9, 145.3, 

130.5, 129.4, 126.5, 118.2, 115.3, 113.7, 113.7, 81.8, 58.4, 58.3, 28.2 ppm; FT-IR (thin 

film, cm-1) 2977, 1724, 1628, 1603, 1502, 1368, 1313, 1281, 1258, 1153; [α]D
22 -28.9 (c 

0.7 CHCl3); MS (EI)+: m/z 315.1 [M+H]+; HRMS (EI)+: exact mass calculated for 

[C19H24DN15NO2]
+ requires m/z 315.1944, found m/z 315.1939. 
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Synthesis of tert-butyl 2-(2-tert-butoxyphenylamino)-3-(4-fluorophenyl)-3-18O-

hydroxy-2-deuteropropanoate; (-)-(432) 

 

To a stirred solution of the optically active starting material (+)-cis-(352) (27 mg, 0.071 

mmol, synthesised using (R)-(289)) in 1 mL dry acetonitrile was added para-toluene 

sulphonic acid (13 mg, 0.078 mmol), and 18O-H2O (14.2 mg, 15 µL, 0.71 mmol). The 

resulting mixture was heated to 45 °C with stirring for 16 h. After this time, the reaction 

mixture was neutralised by addition of a saturated aqueous solution of sodium hydrogen 

carbonate. This was extracted with ethyl acetate, and the combined organic layers were 

washed with brine, dried with magnesium sulphate, filtered, and the solvent removed under 

reduced pressure. The crude material was purified via flash column chromatography (25 % 

diethyl ether in petroleum ether). A sample was submitted to chiral analytical HPLC 

analysis [Chiralpak OD, CO2 / methanol 5% - 50% over 9 min, 1 mL / min, 3.42 min (1st 

peak), 3.73 min (2nd peak), 85 % e.e.]. The title product (-)-(432) was a slight brown oil 

afforded in a 43 % yield (12.4 mg, 0.031 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.49-7.31 

(m, 2H, ArH), 7.09-6.99 (m, 2H, ArH), 6.96 (dd, 1H, J 7.9, 1.4 Hz, ArH), 6.87 (td, 1H, J 

7.9, 7.7, 1.4 Hz, ArH), 6.64 (td, 1H, J 7.9, 7.7, 1.5 Hz, ArH), 6.52 (dd, 1H, J 7.9, 1.5 Hz, 

ArH). 4.94 (s, 1H, β-CH), 1.40 (s, 9H, C(CH3)3), 1.29 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 

75 MHz) 171.1, 143.5, 141.2, 135.7, 128.5, 128.4, 123.6, 121.9, 117.9, 115.3, 115.0, 

111.9, 82.5, 79.8, 73.8, 28.9, 27.7 ppm [α]D
22 -23.3 (c 0.5 CHCl3); FT-IR (thin film, cm-1): 

2977, 2934, 1726, 1601, 1509, 1368, 1392, 1255, 1157; MS (EI)+: m/z  407.1 [M+H]+, 

429.2 [M+Na]+; HRMS: exact mass calculated for [C23H30DFNO3
18O]+ requires m/z 

407.2337, found m/z 407.2333. 
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Synthesis of tert-butyl 2-(2-tert-butoxyphenylamino)-3-(4-bromophenyl)-3-18O-

hydroxy-2-deuteropropanoate; (+)-(433) 

 

To a stirred solution of the optically active starting material (-)-cis-(350) (37 mg, 0.083 

mmol, synthesised using (S)-(289)) in 1 mL dry acetonitrile was added para-toluene 

sulphonic acid (20 mg, 0.083 mmol), and 18O-H2O (16.6 mg, 17 µL, 0.83 mmol). The 

resulting mixture was heated to 45 °C with stirring for 16 h. After this time, the reaction 

mixture was neutralised by addition of a saturated aqueous solution of sodium hydrogen 

carbonate. This was extracted with ethyl acetate, and the combined organic layers were 

washed with brine, dried with magnesium sulphate, filtered, and the solvent removed under 

reduced pressure. The crude material was purified via flash column chromatography (25 % 

diethyl ether in petroleum ether). A sample was submitted to chiral analytical HPLC 

analysis [Chiralpak AD, CO2 / methanol 5% - 50% over 9 min, 1 mL / min, 4.12 min (1st 

peak), 4.43 min (2nd peak), 95 % e.e.]. The title product (+)-(433) was a slight brown oil 

afforded in a 72 % yield (28 mg, 0.060 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.41 (d, 2H, 

J 8.5 Hz, ArH), 7.23 (d, 2H, J 8.5 Hz, ArH), 6.89 (d, 1H, J 7.9 Hz, ArH), 6.79 (t, 1H, J 7.7, 

7.7 Hz, ArH), 6.58 (t, 1H, J 7.7, 7.7 Hz, ArH), 6.43 (d, 1H, J 7.9 Hz, ArH), 4.87 (s, 1H, β-

CH), 1.33 (s, 9H, C(CH3)3), 1.24 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 171.1, 

153.2, 143.6, 141.2, 139.1, 131.5, 128.6, 123.7, 122.1, 118.1, 112.1, 82.9, 80.0, 73.9, 29.2, 

28.1 ppm; [α]D
22 24.8 (c 0.8 CHCl3); FT-IR (thin film, cm-1): 2978, 1726, 1599, 1508, 

1488, 1431, 1392, 1254, 1157; MS (EI)+: m/z  467.1 [M+H]+, 489.2 [M+Na]+; HRMS 

(EI)+: exact mass calculated for [C23H30DBrNO3
18O]+ requires m/z 467.1524, found m/z 

467.1536. 
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9.8: Synthesis of C2-deutero aziridines rac-(336), and rac-(341) to rac-(344) 

Racemic synthesis of ethyl 1-(2-tert-butoxy-4-methoxyphenyl)-3-phenyl-2-

deuteroaziridine-2-carboxylate; rac-(336) 

 

Benzaldehyde (27 µL, 0.26 mmol,), 2-tert-butoxy-4-methoxy aniline (335) (51 mg, 0.26 

mmol), and pyridinium triflate (279) (6 mg, 0.026 mmol, 10%) were added to a flame 

dried 2 mL vial under nitrogen. 1 mL dichloromethane was added, followed by ~40 mg of 

freshly powdered 4Å molecular sieves, and the vial was sealed with a PTFE crimp cap. 

After 30 minutes, >95 % deuterated ethyl diazoacetate (334) (32.6 mg, 30 µL, 0.286 

mmol) was added via syringe, and the reaction mixture was stirred at RT for 16 h. The 

reaction mixture was the filtered through a short plug of silica, eluting with diethyl ether. 

The solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (20 % diethyl ether in petroleum ether). The desired product rac-

(336) was afforded as a colourless oil in a 45 % yield (43 mg, 0.117 mmol). 1H-NMR 

(CDCl3, 400 MHz) δ 7.49 - 7.43 (m, 2H, ArH), 7.30 - 7.17 (m, 3H, ArH), 6.80 (d, 1H, J 

8.7 Hz, ArH), 6.55 (d, 1H J 2.7 Hz, ArH), 6.42 (dd, 1H, J 8.7, 2.7 Hz), 4.03 – 3.85 (m, 2H, 

OCH2), 3.68 (s, 3H, OCH3), 3.41 (s, 1H, C3-H), 1.29 (s, 9H, C(CH3)3), 0.96 (t, 3H, J 7.1, 

7.1 Hz, CH3); 
13C-NMR (CDCl3, 75 MHz) 168.4, 155.8, 149.0, 139.8, 135.3, 128.2, 128.0, 

127.8, 120.9, 109.4, 107.0, 80.6, 60.9, 55.7, 48.2, 28.8. 14.2 ppm; FT-IR (thin film, cm-1): 

2977, 2360, 1747, 1721, 1608, 1582, 1498, 1391, 1367, 1267, 1220; MS (EI)+: m/z 371.1 

[M+H] +, 393.1 [M+Na]+. 
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Racemic synthesis of ethyl 1-(2-tert-butoxy-4-methoxyphenyl)-3-(4-fluorophenyl)-2-

deuteroaziridine-2-carboxylate; rac-(341) 

 

4-fluorobenzaldehyde (28 µL, 0.26 mmol,), 2-tert-butoxy-4-methoxy aniline (335) (51 mg, 

0.26 mmol), and pyridinium triflate (279) (6 mg, 0.026 mmol, 10%) were added to a flame 

dried 2 mL vial under nitrogen. 1 mL DCM was added, followed by ~40 mg of freshly 

powdered 4Å molecular sieves, and the vial was sealed with a PTFE crimp cap. After 30 

minutes, >95 % deuterated ethyl diazoacetate (334) (32.6 mg, 30 µL, 0.286 mmol) was 

added via syringe, and the reaction mixture was stirred at RT for 16 h. The reaction 

mixture was then filtered through a short plug of silica, eluting with diethyl ether. The 

solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (20 % diethyl ether in petroleum ether). The desired product rac-

(341) was afforded as a colourless oil in a 55 % yield (56 mg, 0.143 mmol). 1H-NMR 

(CDCl3, 300 MHz) δ 7.55 – 7.47 (m, 2H, ArH), 7.01 (t, 2H J 8.7, 8.7 Hz, ArH), 6.84 (d, 

1H, J 8.7 Hz, ArH), 6.61 (d, 1H, J 2.7 Hz, ArH), 6.49 (dd, 1H, J 8.7, 2.7 Hz, ArH), 4.11 – 

3.95 (m, 2H, OCH2), 3.75 (s, 3H, OCH3), 3.44 (s, 1H, C3-H), 1.35 (s, 9H, C(CH3)3), 1.06 

(t, 3H, J 7.1, 7.1 Hz, CH3); 
13C-NMR (CDCl3, 75 MHz) 168.2, 155.8, 148.9, 139.4, 129.7, 

129.6, 120.7, 114.9, 114.6, 109.2, 106.9, 80.3, 60.7, 55.4, 47.2, 28.5, 13.9 ppm; FT-IR 

(thin film, cm-1): 2978, 2918, 2851, 1746, 1721, 1606, 1585, 1498, 1391, 1367; MS (EI)+: 

m/z 389.1 [M+H]+, 411.1 [M+Na]+. 
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Racemic synthesis of ethyl 3-(4-bromophenyl)-1-(2-tert-butoxy-4-methoxyphenyl)-2-

deuteroaziridine-2-carboxylate; rac-(342) 

 

4-bromobenzaldehyde (48 mg, 0.26 mmol,), 2-tert-butoxy-4-methoxy aniline (335) (51 

mg, 0.26 mmol), and pyridinium triflate (279) (6 mg, 0.026 mmol, 10%) were added to a 

flame dried 2 mL vial under nitrogen. 1 mL DCM was added, followed by ~40 mg of 

freshly powdered 4Å molecular sieves, and the vial was sealed with a PTFE crimp cap. 

After 30 minutes, >95 % deuterated ethyl diazoacetate (334) (32.6 mg, 30 µL, 0.286 

mmol) was added via syringe, and the reaction mixture was stirred at RT for 16 h. The 

reaction mixture was then filtered through a short plug of silica, eluting with diethyl ether. 

The solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (20 % diethyl ether in petroleum ether). The desired product rac-

(342) was afforded as a slight yellow oil in a 57 % yield (66 mg, 0.148 mmol). The oil 

could be subsequently crystallised by treatment with 20 % diethyl ether in petroleum ether, 

yielding colourless plates. 1H-NMR (CDCl3, 400 MHz) δ 7.42 – 7.31 (m, 4H, ArH), 6.76 

(d, 1H, J 8.7 Hz, ArH), 6.54 (d, 1H, J 2.7 Hz, ArH), 6.42 (dd, 1H, J 8.7, 2.7 Hz, ArH), 4.06 

– 3.88 (m, 2H, OCH2), 3.68 (s, 3H, OCH3), 3.34 (s, 1H, C3-H), 1.28 (s, 9H, C(CH3)3), 1.01 

(t, 3H, J 7.1, 7.1 Hz, CH3); 
13C-NMR (CDCl3, 75 MHz) 168.1, 155.9, 149.0, 139.4, 134.4, 

131.1, 130.0, 121.8, 120.8, 109.4, 107.1, 80.6, 61.1, 55.7, 47.6, 28.9, 14.3 ppm; FT-IR 

(thin film, cm-1): 2977, 2920, 2849, 1747, 1721, 1608, 1583, 1498, 1391, 1367; MS (EI)+: 

m/z 449.1 [M+H]+, 471.1 [M+Na]+. 
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Racemic synthesis of ethyl 1-(2-tert-butoxy-4-methoxyphenyl)-3-(4-nitrophenyl)-2-

deuteroaziridine-2-carboxylate; rac-(343) 

 

4-nitrobenzaldehyde (39 mg, 0.26 mmol,), 2-tert-butoxy-4-methoxy aniline (335) (51 mg, 

0.26 mmol), and pyridinium triflate (279) (6 mg, 0.026 mmol, 10%) were added to a flame 

dried 2 mL vial under nitrogen. 1 mL DCM was added, followed by ~40 mg of freshly 

powdered 4Å molecular sieves, and the vial was sealed with a PTFE crimp cap. After 30 

minutes, >95 % deuterated ethyl diazoacetate (334) (32.6 mg, 30 µL, 0.286 mmol) was 

added via syringe, and the reaction mixture was stirred at RT for 16 h. The reaction 

mixture was then filtered through a short plug of silica, eluting with diethyl ether. The 

solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (20 % diethyl ether in petroleum ether). The desired product rac-

(343) was afforded as a yellow oil in a 59 % yield (64 mg, 0.153 mmol). 1H-NMR (CDCl3, 

300 MHz) δ 8.19 (d, 2H, J 8.8 Hz, ArH), 7.72 (d, 2H, J 8.6 Hz, ArH), 6.83 (d, 1H, J 8.6 

Hz, ArH), 6.62 (d, 1H, J 2.7 Hz, ArH), 6.50 (dd, 1H, J 8.8, 2.7 Hz, ArH), 4.10 – 3.95 (m, 

2H, OCH2), 3.75 (s, 3H, OCH3), 3.52 (s, 1H, C3-H), 1.33 (s, 9H, C(CH3)3), 1.07 (t, 3H, J 

7.1, 7.1 Hz, CH3); 
13C-NMR (CDCl3, 75 MHz) 166.4, 155.0, 147.8, 146.4, 141.7, 137.5, 

128.0, 122.0, 119.5, 108.1, 105.8, 79.5, 60.1, 54.5, 46.2, 27.7, 13.1 ppm; FT-IR (thin film, 

cm-1): 2978, 1742, 1605, 1523, 1368, 1345; MS (EI)+: m/z 416.1 [M+H]+, 438.1 [M+Na]+. 
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Racemic synthesis of ethyl 1-(2-tert-butoxy-4-methoxyphenyl)-3-(4-cyanophenyl)-2-

deuteroaziridine-2-carboxylate; rac-(344) 

 

4-cyanobenzaldehyde (34 mg, 0.26 mmol,), 2-tert-butoxy-4-methoxy aniline (335) (51 mg, 

0.26 mmol), and pyridinium triflate (279) (6 mg, 0.026 mmol, 10%) were added to a flame 

dried 2 mL vial under nitrogen. 1 mL DCM was added, followed by ~40 mg of freshly 

powdered 4Å molecular sieves, and the vial was sealed with a PTFE crimp cap. After 30 

minutes, >95 % deuterated ethyl diazoacetate (334) (32.6 mg, 30 µL, 0.286 mmol) was 

added via syringe, and the reaction mixture was stirred at RT for 16 h. The reaction 

mixture was then filtered through a short plug of silica, eluting with diethyl ether. The 

solvents were removed under reduced pressure, and the residue was purified via flash 

column chromatography (20 % diethyl ether in petroleum ether). The desired product rac-

(344) was afforded as a slight green oil in a 52 % yield (53 mg, 0.135 mmol). 1H-NMR 

(CDCl3, 300 MHz) δ 7.65 – 7.53 (m, 4H, ArH), 6.78 (d, 1H, J 8.7 Hz, ArH), 6.58 (d, 1H, J 

2.7 Hz, ArH), 6.45 (dd, 1H, J 8.7, 2.7 Hz, ArH), 4.06 – 3.88 (m, 2H, OCH2), 3.70 (s, 3H, 

OCH3), 3.43 (s, 1H, C3-H), 1.29 (s, 9H, C(CH3)3), 1.02 (t, 3H, J 7.1, 7.1 Hz, CH3); 
13C-

NMR (CDCl3, 75 MHz) 167.7, 156.1, 148.9, 140.9, 138.8, 131.8, 129.0, 120.7, 119.1, 

111.5, 109.3, 107.0, 80.6, 61.2, 55.7, 47.5, 28.8, 14.2 ppm; FT-IR (thin film, cm-1): 2978, 

2227, 1746, 1609, 1584, 1500, 1391, 1367, 1268, 1222, 1156, 1124; MS (EI)+: m/z 418.1 

[M+Na]+. 
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9.9: Synthesis of Starting Materials 

Synthesis of tert-butyl diazoacetate (280)300 

 

To a 250 mL flame dried round bottom flask, equipped with a magnetic stirrer bar, under 

N2 was added potassium carbonate (14.4 g, 105 mmol). tert-butanol (2 mL, 35 mmol), and 

DCM (120 mL), were added via syringe, and the reaction was cooled to 0 °C with stirring. 

After 5 minutes, bromoacetyl bromide (4.5 mL, 52 mmol) was added dropwise over 5 

minutes via syringe, and the reaction was stirred at 0 °C for a further 10 minutes. After this 

time, the reaction was quenched by the addition of 40 mL water, and extracted with 

dichloromethane (80 mL). The combined organic layers were washed with brine, dried 

with magnesium sulphate, filtered, and the solvent removed carefully under reduced 

pressure. The resulting crude material was redissolved in 120 mL dry THF, and N,N’-

ditosylhydrazine (23.8 g, 70 mmol) was added. The reaction was cooled to 0 °C, and 

allowed to stir for 5 minutes before the dropwise addition of DBU (26.1 mL, 175 mmol) 

via syringe. After stirring for a further 30 minutes, the reaction was quenched by the 

addition of 60 mL saturated aqueous sodium hydrogen carbonate and extracted with 180 

mL diethyl ether. The combined organic layers were washed with brine, dried with 

magnesium sulphate, filtered and the solvent carefully removed under reduced pressure. 

The resulting dark yellow liquid was purified via flash column chromatography (20 % 

diethyl ether in petroleum ether). The production of the desired product (280) was afforded 

as a yellow liquid in 70 % yield (3.45 g, 24.5 mmol). 1H-NMR (CDCl3, 300 MHz) δ 4.61 

(s, 1H, CH), 1.47 (s, 9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 81.6, 46.1, 21.5 ppm; FT-

IR (thin film, cm-1): 2924, 2853, 2106, 1658, 1458, 1370, 1258; HRMS (HEIP)+: exact 

mass calculated for [C6H10N2O2]
+ requires m/z 142.0737, found m/z 142.0736. 
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Synthesis of iso-propyl diazoacetate (320)301 

 

To a 100 mL flame dried round bottom flask, equipped with a magnetic stirrer bar, under 

nitrogen was added potassium carbonate (5.35 g, 39 mmol). iso-propanol (1 mL, 13 

mmol), and DCM  (60 mL), were added via syringe, and the reaction was cooled to 0 °C 

with stirring. After 5 minutes, bromoacetyl bromide (1.7 mL, 19.5 mmol) was added 

dropwise over 5 minutes via syringe, and the reaction was stirred at 0 °C for a further 10 

minutes. After this time, the reaction was quenched by the addition of 20 mL water, and 

extracted with DCM (40 mL). The combined organic layers were washed with brine, dried 

with magnesium sulphate, filtered, and the solvent removed carefully under reduced 

pressure. The resulting crude material was redissolved in 60 mL dry THF, and N,N’-

ditosylhydrazine (8.8 g, 26 mmol) was added. The reaction was cooled to 0 °C, and 

allowed to stir for 5 minutes before the dropwise addition of DBU (9.7 mL, 65 mmol) via 

syringe. After stirring for a further 30 minutes, the reaction was quenched by the addition 

of 30 mL saturated aqueous sodium hydrogen carbonate and extracted with 90 mL diethyl 

ether. The combined organic layers were washed with brine, dried with magnesium 

sulphate, filtered and the solvent carefully removed under reduced pressure. The resulting 

dark yellow liquid was purified via flash column chromatography (20 % diethyl ether in 

petroleum ether). The desired product (320) was afforded as a yellow liquid in 72 % yield 

(1.19 g, 9.36 mmol). 1H-NMR (CDCl3, 300 MHz) δ 5.04 (septet, 1H, J 6.3 Hz, CH(CH3)2), 

4.66 (s, 1H, CH), 1.20 (d, 6H, J 6.3 Hz, CH(CH3)2); 
13C-NMR (CDCl3, 75 MHz) 68.3, 

46.1, 21.8 ppm; FT-IR (thin film, cm-1): 2983, 2939, 2104, 1685, 1467, 1375, 1341, 1249, 

1193, 1103, 991, 744; HRMS (HEIP)+: exact mass calculated for [C5H8N2O2]
+ requires m/z 

128.0580, found m/z 128.0580. 
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Synthesis of deuterated tert-butyl diazoacetate (349) 

 

A 50 mL flame dried round bottom flask under nitrogen was charged with a stirred 

solution of tert-butyl diazoacetate (280) (5 mL, 36.3 mmol) in 5 mL dry diethyl ether, with 

stirring. Potassium carbonate (750 mg, 5.4 mmol) was added, followed by 10 mL 

deuterium oxide via syringe. The resulting biphasic mixture was stirred vigorously under 

nitrogen for 30 minutes at room temperature. After this time, the mixture was transferred to 

a flame dried separating funnel under nitrogen, and the aqueous layer was separated. The 

organic layer was returned to a flame dried round bottom flask under nitrogen, and further 

potassium carbonate (600 mg, 4.3 mmol), and deuterium oxide (7 mL), were added. The 

mixture was stirred vigorously for 30 minutes. At this point the organic layer was 

separated, and the aqueous layer extracted with 20 mL diethyl ether. The combined organic 

layers were washed with brine, dried with magnesium sulphate, filtered, and the solvent 

removed with care under reduced pressure. The desired product (349) was afforded as a 

yellow liquid in 85 % yield (4.38 g, 30.86 mmol). 1H-NMR (CDCl3, 300 MHz) δ 1.47 (s, 

9H, C(CH3)3); 
13C-NMR (CDCl3, 75 MHz) 81.6, 21.5 ppm; FT-IR (thin film, cm-1): 2924, 

2853, 2106, 1658, 1458, 1370, 1258; MS (EI)+: m/z 143.1 [M+H]+. 
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Synthesis of deuterated iso-propyl diazoacetate (364) 

 

A 25 mL flame dried round bottom flask under N2 was charged with a stirred solution of 

iso-propyl diazoacetate (320) (1 mL, 8.01 mmol) in 5 mL dry diethyl ether, with stirring. 

Potassium carbonate (300 mg, 2.17 mmol) was added, followed by deuterium oxide (3 mL) 

via syringe. The resulting biphasic mixture was stirred vigorously under N2 for 30 minutes 

at room temperature. After this time, the mixture was transferred to a flame dried 

separating funnel under N2, and the aqueous layer was separated. The organic layer was 

returned to a flame dried round bottom flask under N2, and further potassium carbonate 

(300 mg, 2.17 mmol), and deuterium oxide (3 mL), were added. The mixture was stirred 

vigorously for 30 minutes. At this point the organic layer was separated, and the aqueous 

layer extracted with 10 mL diethyl ether. The combined organic layers were washed with 

brine, dried with magnesium sulphate, filtered, and the solvent removed with care under 

reduced pressure. The desired product (364) was afforded as a yellow liquid in 83 % yield 

(0.858 g, 6.64 mmol). 1H-NMR (CDCl3, 300 MHz) δ 5.04 (septet, 1H, J 6.3 Hz, 

CH(CH3)2), 1.20 (d, 6H, J 6.3 Hz, CH(CH3)2); 
13C-NMR (CDCl3, 75 MHz) 68.3, 22.0 

ppm; FT-IR (thin film, cm-1): 2983, 2939, 2879, 2109, 1732, 1658, 1458, 1455, 1374, 

1350, 1306; MS (EI)+: m/z 130.1 [M+H]+. 
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Synthesis of deuterated ethyl diazoacetate (334)302 

 

A 25 mL flame dried round bottom flask under N2 was charged with a stirred solution of 

ethyl diazoacetate (261) (3 mL, 27 mmol) in 5 mL dry diethyl ether, with stirring. 

Potassium carbonate (400 mg, 2.9 mmol) was added, followed by 6 mL deuterium oxide 

via syringe. The resulting biphasic mixture was stirred vigorously under N2 for 30 minutes 

at room temperature. After this time, the mixture was transferred to a flame dried 

separating funnel under N2, and the aqueous layer was separated. The organic layer was 

returned to a flame dried round bottom flask under N2, and further potassium carbonate 

(400 mg, 2.9 mmol), and deuterium oxide (6 mL), were added. The mixture was stirred 

vigorously for 30 minutes. At this point the organic layer was separated, and the aqueous 

layer extracted with 20 mL diethyl ether. The combined organic layers were washed with 

brine, dried with magnesium sulphate, filtered, and the solvent removed with care under 

reduced pressure. The desired product (334) was afforded as a yellow liquid in 75 % yield 

(2.33 g, 20.25 mmol). 1H-NMR (CDCl3, 300 MHz) δ 4.22 (q, 2H, J 7.1, 7.1, 7.1 Hz, 

OCH2), 1.30 (t, 3H, J 7.1, 7.1 Hz, CH3); 
13C-NMR (CDCl3, 75 MHz) 60.7, 14.2 ppm; FT-

IR (thin film, cm-1): 2112, 1735, 1700, 1370, 1259, 1180, 1096, 1026, 749; MS (EI)+ m/z: 

114.9 [M]+. 
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Synthesis of 2-tert-butoxy aniline (307)268 

 

2-tert-butoxy nitrobenzene (5 g, 25.6 mmol) was dissolved in 20 mL ethanol and split 

between five 5 mL Biotage Endeavour catalyst screening vials. Palladium on carbon (10 

%, 0.54 g) was added, and the reaction vials were heated to 30 °C, under 45 psi H2, for 24 h 

in a Biotage Endeavour® catalyst screening system. After this time, the reaction was 

deemed complete by monitoring the uptake of H2. The resulting suspensions were filtered 

through Celite®, eluting with diethyl ether. Removal of the solvent under reduced pressure 

afforded the desired product (307) as a dark red oil, which quickly darkened to black, in 93 

% yield (3.91 g, 23.8 mmol). 1H-NMR (CDCl3, 300 MHz) δ 6.96 (dd, 1H, J 7.9, 1.4 Hz, 

ArH), 6.89 (dt, 1H, J 7.8, 7.8, 1.4 Hz, ArH), 6.74 (dd, 1H, J 7.8, 1.7 Hz, ArH), 6.66 (dt, 

1H, J 7.9, 7.9, 1.7 Hz, ArH), 3.72 (br s, 2H, NH2), 1.42 (s, 9H, C(CH3)3); 
13C-NMR 

(CDCl3, 75 MHz) 143.0, 141.2, 123.7, 122.9, 118.1, 115.8, 79.5, 28.9 ppm; FT-IR (thin 

film, cm-1): 2976, 1610, 1499, 1456, 1390, 1366, 1219, 1162, 1034, 898, 765; MS (EI)+: 

m/z ; HRMS (ASAP)+: exact mass calculated for [C10H15NO]+ requires m/z 165.1148, 

found m/z 165.1148. 
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Synthesis of 2-morpholino-2-phenyl acetonitrile (374)285 

 

To a 250 mL round bottom flask equipped with a magnetic stirrer bar, containing 40 mL 

morpholine, was added perchloric acid (5.20 g, 4.5 mL, 51.8 mmol) dropwise over 5 

minutes. After 5 minutes stirring, the resulting solution was heated to 70 °C. At this point, 

benzaldehyde (5.0 g, 4.8 mL, 47.1 mmol) dissolved in 40 mL morpholine was added 

dropwise with care, and the resulting solution was stirred for 2 h at 70 °C. Sodium cyanide 

(2.54 g, 51.8 mmol), dissolved in 15 mL water, was added slowly, and the reaction was 

heated to 90 °C for 1h. After this time, the reaction was allowed to cool slightly before 

pouring onto crushed ice. The resulting precipitate was collected by vacuum filtration, and 

recrystallised from hot ethanol. The desired product (374) was afforded as colourless 

crystals in 81 % yield (7.71 g, 38.15 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.61 – 7.47 (m, 

2H, ArH), 7.47 – 7.32 (m, 3H, ArH), 4.82 (s, 1H, CH), 3.84 – 3.60 (m, 4H, CH2OCH2), 

2.58 (t, 4H, J 4.6, 4.6 Hz, CH2NCH2); 
13C-NMR (CDCl3, 75 MHz) 132.5, 129.1, 128.9, 

128.0, 115.2, 66.6, 62.3, 49.8 ppm; FT-IR (thin film, cm-1): 1452, 1114, 906, 784; MS 

(EI)+: m/z ; HRMS (ASAP)+: exact mass calculated for [C12H15N2O]+ requires m/z 

203.1179, found m/z 203.1178. 
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Synthesis of 2-morpholino-2-(4-fluorophenyl) acetonitrile (375)303 

 

To a 250 mL round bottom flask equipped with a magnetic stirrer bar, containing 40 mL 

morpholine, was added perchloric acid (5.20 g, 4.5 mL, 51.8 mmol) dropwise over 5 

minutes. After 5 minutes stirring, the resulting solution was heated to 70 °C. At this point, 

4-fluorobenzaldehyde (5.84 g, 5.0 mL, 47.1 mmol) dissolved in 40 mL morpholine was 

added dropwise with care, and the resulting solution was stirred for 2 h at 70 °C. Sodium 

cyanide (2.54 g, 51.8 mmol), dissolved in 15 mL water, was added slowly, and the reaction 

was heated to 90 °C for 1h. After this time, the reaction was allowed to cool slightly before 

pouring onto crushed ice. The resulting precipitate was collected by vacuum filtration, and 

recrystallised from hot ethanol. The desired product (375) was afforded as colourless 

crystals in 76 % yield (7.88 g, 35.80 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.50 (dd, 2H, J 

5.2, 8.3 Hz, ArH), 7.08 (t, 2H, J 8.5, 8.7 Hz, ArH), 4.78 (s, 1H, CH), 3.82 – 3.56 (m, 4H, 

CH2OCH2), 2.67 – 2.43 (m, 4H, CH2NCH2); 
13C-NMR (CDCl3, 75 MHz) 164.7, 161.4, 

129.9, 129.8, 128.4, 128.4, 116.0, 115.7, 115.0, 66.5, 61.6, 49.8 ppm; FT-IR (thin film, cm-

1): 1607, 1508, 1453, 1294, 1114, 1005, 918, 728; MS (EI)+: m/z ; HRMS (HNESP)+: exact 

mass calculated for [C12H14FN2O]+ requires m/z 221.1085, found m/z 221.1086. 
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Synthesis of 2-morpholino-2-(4-chlorophenyl) acetonitrile (376)303 

 

To a 250 mL round bottom flask equipped with a magnetic stirrer bar, containing 20 mL 

morpholine, was added perchloric acid (5.20 g, 4.5 mL, 51.8 mmol) dropwise over 5 

minutes. After 5 minutes stirring, the resulting solution was heated to 70 °C. At this point, 

4-chlorobenzaldehyde (6.6 g, 47.1 mmol) dissolved in 20 mL morpholine was added 

dropwise with care, and the resulting solution was stirred for 2 h at 70 °C. Sodium cyanide 

(2.54 g, 51.8 mmol), dissolved in 15 mL water, was added slowly, and the reaction was 

heated to 90 °C for 1h. After this time, the reaction was allowed to cool slightly before 

pouring onto crushed ice. The resulting precipitate was collected by vacuum filtration, and 

recrystallised from hot ethanol. The desired product (376) was afforded as slight green 

crystals in 70 % yield (7.78 g, 32.97 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.48 (d, 2H, J 

8.3 Hz, ArH), 7.38 (d, 2H, J 8.3, ArH), 4.78 (s, 1H, CH), 3.80 – 3.60 (m, 4H, CH2OCH2), 

2.64 – 2.46 (m, 4H, CH2NCH2); 
13C-NMR (CDCl3, 75 MHz) 135.2, 131.1, 129.4, 129.1, 

114.8, 66.5, 61.7, 49.8 ppm; FT-IR (thin film, cm-1): 1491, 1454, 1292, 1114, 1092, 1072, 

1005, 908, 724; MS (EI)+: m/z ; HRMS (ASAP)+: exact mass calculated for 

[C12H13ClN2O]+ requires m/z 237.0789, found m/z 237.0790. 
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Synthesis of 2-morpholino-2-(4-nitrophenyl) acetonitrile (377)285 

 

To a 250 mL round bottom flask equipped with a magnetic stirrer bar, containing 5 mL 

morpholine, was added perchloric acid (2.19 g, 1.9 mL, 21.78 mmol) dropwise over 5 

minutes. After 5 minutes stirring, the resulting solution was heated to 70 °C. At this point, 

4-nitrobenzaldehyde (3 g, 19.8 mmol) dissolved in 25 mL morpholine was added dropwise 

with care, and the resulting solution was stirred for 2 h at 70 °C. Sodium cyanide (1.06 g, 

21.78 mmol), dissolved in 10 mL water, was added slowly, and the reaction was heated to 

90 °C for 1h. After this time, the reaction was allowed to cool slightly before pouring onto 

crushed ice. The resulting precipitate was collected by vacuum filtration, and recrystallised 

from hot ethanol. The desired product (377) was afforded as orange crystals in 83 % yield 

(4.06 g, 16.43 mmol). 1H-NMR (CDCl3, 300 MHz) δ 8.23 (d, 2H, J 8.8 Hz, ArH), 7.74 (d, 

2H, J 8.8 Hz, ArH), 4.89 (s, 1H, CH), 3.81 – 3.59 (m, 4H, CH2OCH2), 2.68 – 2.42 (m, 4H, 

CH2NCH2); 
13C-NMR (CDCl3, 75 MHz) 148.5, 139.7, 129.0, 124.1, 114.2, 66.4, 61.7, 49.9 

ppm; FT-IR (thin film, cm-1): 1607, 1520, 1454, 1345, 1322, 1294, 1112, 1006, 865, 854, 

738, 707; MS (EI)+: m/z ; HRMS (ASAP)+: exact mass calculated for [C12H14N3O3]
+ 

requires m/z 248.1030, found m/z 248.1030. 
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Synthesis of 2-morpholino-2-(4-cyanophenyl) acetonitrile (378)303 

 

To a 250 mL round bottom flask equipped with a magnetic stirrer bar, containing 5 mL 

morpholine, was added perchloric acid (1.27 g, 1.1 mL, 12.6 mmol) dropwise over 5 

minutes. After 5 minutes stirring, the resulting solution was heated to 70 °C. At this point, 

4-cyanobenzaldehyde (1.5 g, 11.4 mmol) dissolved in 25 mL morpholine was added 

dropwise with care, and the resulting solution was stirred for 2 h at 70 °C. Potassium 

cyanide (820 mg, 12.6 mmol), dissolved in 5 mL water, was added slowly, and the reaction 

was heated to 90 °C for 1h. After this time, the reaction was allowed to cool slightly before 

pouring onto crushed ice. The resulting precipitate was collected by vacuum filtration, and 

recrystallised from hot ethanol. The desired product (378) was afforded as colourless 

crystals in 79 % yield (2.04 g, 9.01 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.80 – 7.70 (m, 

4H, ArH), 4.87 (s, 1H, CH), 3.80 – 3.62 (m, 4H, CH2OCH2), 2.65 – 2.48 (m, 4H, 

CH2NCH2); 
13C-NMR (CDCl3, 75 MHz) 137.8, 132.7, 128.7, 118.1, 114.2, 113.3, 66.5, 

62.0, 49.9 ppm; FT-IR (thin film, cm-1): 2230, 1610, 1504, 1412, 1294, 1113, 1006; MS 

(EI)+: m/z ; HRMS (HNESP)+: exact mass calculated for [C13H13N3ONa]+ requires m/z 

250.0951, found m/z 250.0955. 
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Synthesis of 2-morpholino-2-(4-benzyloxyphenyl) acetonitrile (379) 

 

To a 250 mL round bottom flask equipped with a magnetic stirrer bar, containing 5 mL 

morpholine, was added perchloric acid (1.03 g, 0.9 mL, 10.3 mmol) dropwise over 5 

minutes. After 5 minutes stirring, the resulting solution was heated to 70 °C. At this point, 

4-benzyloxybenzaldehyde (2 g, 9.42 mmol) dissolved in 15 mL morpholine was added 

dropwise with care, and the resulting solution was stirred for 2 h at 70 °C. Potassium 

cyanide (675 mg, 10.37 mmol), dissolved in 5 mL water, was added slowly, and the 

reaction was heated to 90 °C for 1h. After this time, the reaction was allowed to cool 

slightly before pouring onto crushed ice. The resulting precipitate was collected by vacuum 

filtration, and recrystallised from hot ethanol. The desired product (379) was afforded as 

colourless crystals in 69 % yield (2.01 g, 6.50 mmol). 1H-NMR (CDCl3, 300 MHz) δ 7.56 

– 7.28 (m, 7H, ArH), 7.00 (d, 2H, J 9.2 Hz, ArH), 5.08 (s, 2H, CH2), 4.75 (s, 1H, CH), 

3.91 – 3.49 (m, 4H, CH2OCH2), 2.77 – 2.38 (m, 4H, CH2NCH2); 
13C-NMR (CDCl3, 75 

MHz) 159.4, 136.6, 129.4, 128.7, 128.2, 127.5, 124.8, 115.4, 115.1, 70.1, 66.6, 61.8, 49.8 

ppm; FT-IR (thin film, cm-1): 1610, 1584, 1509, 1454, 1244, 1176, 1115, 1004, 865, 738; 

MS (EI)+: m/z ; HRMS (ASAP)+: exact mass calculated for [C19H21N2O2]
+ requires m/z 

309.1525, found m/z 309.1602. 
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Synthesis of 2-morpholino-2-cyclohexyl acetonitrile (380)304 

 

To a 250 mL round bottom flask equipped with a magnetic stirrer bar, containing 5 mL 

morpholine, was added perchloric acid (1.48 g, 1.3 mL, 14.7 mmol) dropwise over 5 

minutes. After 5 minutes stirring, the resulting solution was heated to 70 °C. At this point, 

cyclohexanecarbaldehyde (1.49 g, 1.6 mL, 13.3 mmol) dissolved in 10 mL morpholine was 

added dropwise with care, and the resulting solution was stirred for 2 h at 70 °C. Potassium 

cyanide (957 mg, 14.7 mmol), dissolved in 5 mL water, was added slowly, and the reaction 

was heated to 90 °C for 1h. After this time, the reaction was allowed to cool slightly before 

pouring onto crushed ice. The resulting precipitate was collected by vacuum filtration, and 

recrystallised from hot ethanol. The desired product (380) was afforded as colourless 

crystals in 73 % yield (2.02 g, 9.71 mmol). 1H-NMR (CDCl3, 300 MHz) δ 3.80 – 3.58 (m, 

4H, CH2OCH2), 3.07 (d, 1H, J 10.7 Hz, CH), 2.68 – 2.69 (m, 4H, CH2NCH2), 1.96 (d br, 

2H, J 13.2 Hz, CH2), 1.83 – 1.54 (m, 4H, 2 CH2), 1.37 – 0.73 (m, 5H, 2 CH2, CH); 13C-

NMR (CDCl3, 75 MHz) 116.3, 66.6, 64.3, 50.0, 37.0, 30.5, 29.6, 26.1, 25.4, 25.3 ppm; FT-

IR (thin film, cm-1): 1457, 1332, 1294, 1259, 1111, 1009, 927, 862; MS (EI)+: m/z ; HRMS 

(HNESP)+: exact mass calculated for [C12H21N2O]+ requires m/z 209.1648, found m/z 

209.1648. 
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Synthesis of deuterated benzaldehyde (382)305 

 

2-morpholino-2-phenyl acetonitrile (374) (2.5 g, 12.4 mmol) was dissolved in 10 mL dry 

DMF in a 50 mL flame dried round bottom flask under N2. Sodium hydride (60 % in 

mineral oil, washed with hexane before use [1.48 g, 337 mmol]) was added to the reaction, 

suspended in 5 mL dry DMF. The resulting slurry was stirred vigorously under N2 for 1 h. 

At this point, deuterium oxide (1.48 g, 1.4 mL, 74.4 mmol) was added via syringe, and the 

solution was stirred for 10 minutes. The reaction was cooled to 0 °C with an ice bath, 

before thionyl chloride (1.62 g, 0.9 mL, 13.6 mmol) was added slowly via syringe. After 

10 minutes stirring, the reaction was allowed to warm to RT, at which point it was 

extracted with 90 mL diethyl ether. The combined organic layers were washed with 120 

mL water, dried with magnesium sulphate, filtered and the solvent removed under reduced 

pressure. The resulting material was heated to reflux in 2 molar aqueous HCl (25 mL) for 1 

h. After extraction with dichloromethane, drying with magnesium sulphate, filtration and 

removal of solvent, the crude material was purified by column chromatography (20 % 

diethyl ether in petroleum ether). The desired product (382) was afforded as a colourless 

liquid in 45 % yield (0.597 g, 5.58 mmol), and >90 % 2H incorporation (by 1H-NMR). 1H-

NMR (CDCl3, 300 MHz) δ 10.0 (s, residual, CHO), 7.87 (d, J 8.4 Hz, 2H, ArH), 7.62 (t, J 

7.5 Hz, 1H, ArH), 7.51 (t, J 7.5 Hz, 2H, ArH); FT-IR (thin film, cm−1): 1685; MS (EI)+: 

m/z 108.0 [M+H]+. 
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Synthesis of (S)-3,3’-bis(dihydroxyborane)-2,2’-dimethoxy-1,1’-dinapthyl (438)268, 306 

 

To a flame dried 500 mL round bottom flask, charged with 200 mL anhydrous diethyl 

ether, was added N,N,N’,N’-tetramethylethylenediamine (4.43 g, 5.8 mL, 38.2 mmol). n-

butyl lithium (2.5M in hexanes [15.3 mL, 38.2 mmol]) was added with care via syringe, 

and the resulting mixture was stirred at RT for 30 minutes. At this point, (S)-2,2-

dimethoxy-1,1-dinapthyl (4 g, 12.7 mmol) was added quickly in one portion, taking care to 

minimise the exposure of the reaction to air. The reaction was then stirred for 3 h at RT. 

During this time the reaction darkened to a light brown colouration. The flask was then 

cooled to -78 °C using an acetone/CO2 bath, and after 10 minutes at this temperature, 

trimethylborate (9.2 g, 10 mL, 89 mmol) was added at a constant rate via syringe over a 

period of 10 minutes. The reaction mixture was then allowed to warm to RT with stirring 

overnight, taking care not to disturb the bath or flask (as any perturbation of the reaction 

can lead to the formation of a colloid which prevents the reaction from stirring). After 

cooling the reaction to 0 °C with an ice bath, 150 mL 1 molar aqueous HCl was added, and 

the resulting solution was stirred for 1 h. During this time, any solid within the flask 

dissolved, allowing fairly rapid stirring of the reaction. After this time, the organic layer 

was separated, and the aqueous layer was extracted with diethyl ether. The combined 

organic layers were then washed with 1 molar aqueous HCl, brine, dried with magnesium 

sulphate, filtered, and the solvent removed under reduced pressure. The resulting white 

powder was recrystallised from hot toluene (note that the solid precipitated from hot 

toluene to give a very fine powder, rather than a crystalline form. The desired product 

(438) was afforded in 75 % yield (3.83 g, 9.53 mmol) as a very fine white powder. 1H-

NMR (d6-acetone, 300 MHz) δ 8.59 (s, 2H), 8.02 (d, 2H, 8.1 Hz), 7.45-7.40 (m, 2H), 7.39 

(s, 4H), 7.31-7.05 (m, 4H), 3.40 (s, 6H); 13C-NMR (d6-acetone, 75 MHz) 160.6, 138.5, 

138.3, 135.9, 130.7, 129.0, 127.6, 127.4, 125.8, 125.5, 125.1, 124.9, 123.5, 61.1, 60.9 ppm; 

FT-IR (thin film, cm-1): 3428, 2934, 1619, 1587, 1493, 1444, 1410, 1337, 1262, 1219, 

1148, 1017. 

 



 297 

Synthesis of (S)-3,3’-bis(anthracene-9-yl)-2,2’-dihydroxy-1,1’-dinapthyl (439)268 

 

To a 5 mL Biotage microwave vial equipped with a magnetic stirrer bar was added 9-

bromoanthracene (283 mg, 1.07 mmol), (S)-3,3’-bis(dihydroxyborane)-2,2’-dimethoxy-

1,1’-dinapthyl (438) (200 mg, 0.498 mmol), and barium hydroxide (345 mg, 1.09 mmol). 

the vial was sealed with a rubber septum, and the vial was placed under nitrogen on a 

schlenk line. 4 mL 3:1 dioxane:H2O was added, and the mixture was degassed with N2 for 

5 minutes before the addition of tetrakistriphenylphosphine palladium (29 mg, 0.025 

mmol). The vial was sealed with a PTFE crimp cap, and heated at 120 °C in a Biotage 

creator microwave synthesiser for 6 h. After this time, the resulting mixture was 

evaporated to dryness, and redissolved in dichloromethane, washing with 1M(aq) HCl, 

followed by water, and brine. The organic layer was then dried with magnesium sulphate, 

filtered, and the solvent removed under reduced pressure. The resulting crude material was 

filtered through a short column of silica, eluting with 10 % ethyl acetate in petroleum ether 

in order to separate unreacted 9-bromoanthracene. The resulting material was redissolved 

in dichloromethane, and cooled to 0 °C. Boron tribromide (751 mg, 282 µL, 3 mmol) was 

added slowly via syringe, and the reaction was allowed to warm to RT with stirring for 16 

h. After cooling again to 0 °C, the reaction was quenched by the addition of water, and 

extracted with dichloromethane. After washing the organic layer with water and brine, and 

drying with magnesium sulphate; filtering and removal of the solvent under reduced 

pressure gave the crude material. This was purified by column chromatography (25 % - 35 

% DCM in petroleum ether) to give the desired product (439) as a very light brown powder 

in 55 % yield (175 mg, 0.274 mmol) over two steps. 1H-NMR (CDCl3, 300 MHz) δ 8.57 

(s, 2H), 8.21-8.00 (m, 6H), 7.93 (d, 2H, J 7.6 Hz), 7.87 (d, 2H, J 8.3 Hz), 7.68 (d, 2H, J 8.8 

Hz), 7.59 (d, 2H, J 6.0 Hz), 7.57-7.36 (m, 10H), 7.36-7.25 (m, 2H), 5.08 (s, 2H); 13C-NMR 

(CDCl3, 75 MHz) 151.2, 134.1, 133.3, 132.5, 131.7, 131.7, 131.1, 131.0, 129.5, 128.9, 

128.8, 128.7, 128.0, 127.6, 127.4, 126.4, 125.6, 125.1, 124.5, 113.7 ppm; FT-IR (thin film, 
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cm-1): 3527, 3052, 1706, 1624, 1600, 1519, 1497, 1441, 1403, 1382, 1353, 1321; MS (EI)-: 

m/z 637.4 [M-H]- 

 

Synthesis of (S)-3,3’-bis(anthracene-9-yl)-[1,1’]-binaphthalen-2,2’-yl N-triflyl 

phosphoramide (289)268 

 

To a flame dried 50 mL two necked round bottom flask, equipped with a reflux condenser 

and stirrer bar, under N2 was added (S)-(439) (900 mg, 1.41 mmol). This was dissolved in 

5 mL dichloromethane, and cooled to 0 °C with stirring. To this solution was added 

respectively triethylamine (1 g, 1.39 mL, 9.87 mmol), freshly distilled phosphorus 

oxychloride (158 µL, 1.69 mmol), and N,N-4-dimethylaminopyridine (343 mg, 2.81 

mmol). The resulting solution was allowed to warm to RT, with stirring for 2 h. At this 

point, trifluoromethanesulfonyl amide (419 mg, 2.81 mmol) was added, and the reaction 

was diluted by the addition of 10 mL propionitrile. The reaction was then heated to 100 °C 

for 16 h. After this time, the reaction was allowed to cool to RT, and was diluted by 

addition of 40 mL water. The resulting mixture was extracted with 150 mL diethyl ether, 

and the combined organic layers were washed with saturated aqueous sodium hydrogen 

carbonate, 6 molar aqueous HCl, and brine. After drying with magnesium sulphate, 

filtration, and removal of the solvent under reduced pressure, the crude material was 

purified by column chromatography (40 % ethyl acetate in petroleum ether). Subsequently, 

the pure material was redissolved in diethyl ether, and washed with 6 molar aqueous HCl 

to ensure protonation of the product. This gave the desired material (S)-(289) as a very 

light brown solid in 65 % yield (761 mg, 0.917 mmol). 1H-NMR (CDCl3, 400 MHz) δ 8.39 

(s, 1H), 8.33 (s, 1H), 8.06 (d, 2H, J 9.3 Hz), 8.00 (d, 2H, J 8.3 Hz), 7.97-7.85 (m, 3H), 7.78 

(d, 1H, J 8.76 Hz), 7.74-7.46 (m, 10H), 7.46-7.26 (m, 6H), 6.73-6.53 (m, 2H); 13C-NMR 

(CDCl3, 75 MHz) 134.4, 134.1, 132.7, 131.8, 131.7, 131.6, 131.1, 131.0, 130.8, 130.7, 

130.5, 130.4, 130.2, 128.7, 128.3, 128.0, 127.8, 127.7, 127.6, 127.4, 127.2, 127.0, 126.6, 

126.4, 126.2, 125.6, 125.3, 124.9, 122.6, 122.1 ppm; FT-IR (thin film, cm-1): 3052, 1444, 

1402, 1303, 1198, 1199, 1088, 955; MS (EI)-: m/z 830.1 [M-H]-. 
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9.10.1: Appendix 1: COSY and HSQC Correlation Spectra for compound rac-(324) 
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9.10.2: Appendix 2: Crystal Structure Data for compound rac-(342) 

 
 
Identification code                    seant2b 
 
Elemental formula                      C22 H26 Br N  O4 
 
Formula weight                         448.4 
 
Crystal system                         Monoclinic 
 
Space group                            P2 1/c  (no. 14) 
 
Unit cell dimensions           a = 11.3776(5) Å    α = 90 ° 
                               b = 22.6095(11) Å   β = 108.569(5) ° 
                               c =  8.8388(4) Å    γ = 90 ° 
 
Volume                                 2155.34(17) Å3 
 
No. of formula units, Z                4 
 
Calculated density                     1.382 Mg/m 3 
 
F(000)                                 928 
 
Absorption coefficient                 1.934 mm -1  
 
Temperature                            140(1) K 
 
Wavelength                             0.71073 Å 
 
 
Crystal colour, shape                  colourless p late 
 
Crystal size                           0.29 x 0.23 x 0.07 mm 
 
Crystal mounting                       on a glass f ibre, in oil, fixed 
                                       in cold N 2 stream 
 
On the diffractometer: 
 
Theta range for data collection      3.6 to 25.0 ° 
 
Limiting indices                     -13<=h<=13, -2 6<=k<=26, -10<=l<=10 
 
Completeness to theta = 25.0         99.6 % 
 
Absorption correction                  Semi-empiric al from equivalents 
 
Max. and min. transmission             1.125 and 0. 862 
 
Reflections collected (not including absences)     27295 
 
No. of unique reflections = 3789 [R(int) for equiva lents = 0.053] 
 
No. of 'observed' reflections (I > 2 σI )   2607 
 
Structure determined by:    direct methods, in SHEL XS 
 
Refinement:                 Full-matrix least-squar es on F 2, in SHELXL 
 
Data / restraints / parameters       3789 / 0 / 253  
 
Goodness-of-fit on F 2                1.054 
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Final R indices ('observed' data)    R 1 = 0.056, wR 2 = 0.144 
 
Final R indices (all data)           R 1 = 0.082, wR 2 = 0.150 
 
Reflections weighted: 
w = [ σ2(Fo 2)+(0.0787P) 2+2.09P] -1  where P=(Fo 2+2Fc 2)/3 
 
Largest diff. peak and hole            1.63 and -0. 39 e.A -3  
 
Location of largest difference peak    near Br(24) 

 
 
 
Table 1.  Atomic coordinates (x 10 4) and equivalent isotropic 
          displacement parameters (Å 2 x 10 4).  U(eq) is defined 
          as one third of the trace of the orthogon alized Uij 
          tensor.  E.s.ds are in parentheses. 
___________________________________________________ _____________ 
 
             x            y           z            U(eq)     
___________________________________________________ _____________ 
  
N(1)      3947(3)      3376.7(17)   3469(4)       2 20(9)           
C(11)     2990(4)      3475(2)      1979(5)       1 94(10)          
C(12)     2055(4)      3886(2)      1892(5)       2 21(11)          
O(12)     2133(3)      4241.9(14)   3203(4)       2 14(7)           
C(121)    1378(4)      4081(2)      4209(6)       2 49(11)          
C(122)      16(4)      4230(3)      3387(6)       3 48(13)          
C(123)    1914(5)      4473(2)      5653(6)       3 40(13)          
C(124)    1513(5)      3437(2)      4668(6)       2 97(12)          
C(13)     1091(4)      3969(2)       459(5)       2 17(10)          
C(14)     1032(4)      3623(2)      -849(6)       2 48(11)          
O(14)       96(3)      3664.1(16)  -2297(4)       3 28(9)           
C(141)    -967(5)      4002(3)     -2356(6)       3 88(14)          
C(15)     1940(4)      3209(2)      -764(5)       2 40(11)          
C(16)     2913(4)      3139(2)       643(5)       2 48(11)          
C(2)      4876(4)      3841(2)      4087(5)       2 33(11)          
C(21)     5274(4)      3996(2)      5806(5)       2 10(10)          
C(22)     5982(4)      4500(2)      6320(6)       2 43(11)          
C(23)     6390(4)      4662(2)      7885(6)       2 74(12)          
C(24)     6062(5)      4335(2)      9000(5)       2 80(12)          
Br(24)    6582.0(5)    4547.0(3)   11181.6(6)     3 97(2)           
C(25)     5332(4)      3813(2)      8540(6)       2 50(11)          
C(26)     4969(4)      3659(2)      6942(6)       2 65(11)          
C(3)      5184(4)      3263(2)      3437(5)       2 17(11)          
C(31)     5902(4)      2795(2)      4539(6)       2 44(11)          
O(31)     5509(3)      2486.3(15)   5372(4)       3 15(8)           
O(32)     7054(3)      2766.6(15)   4475(4)       2 69(8)           
C(33)     7842(5)      2305(3)      5473(7)       3 81(13)          
C(34)     9111(5)      2395(3)      5383(7)       4 29(15)          
___________________________________________________ _____________ 
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Table 2.  Molecular dimensions.  Bond lengths are i n Ångstroms, 
          angles in degrees.  E.s.ds are in parenth eses. 
___________________________________________________ ______________________ 
    N(1)-C(11)           1.434(5) 
    N(1)-C(2)            1.465(6) 
    N(1)-C(3)            1.439(6) 
    C(11)-C(12)          1.396(6) 
    C(11)-C(16)          1.383(6) 
    C(12)-O(12)          1.390(5) 
    C(12)-C(13)          1.400(6) 
    O(12)-C(121)         1.466(5) 
    C(121)-C(122)        1.524(7) 
    C(121)-C(123)        1.513(7) 
    C(121)-C(124)        1.508(7) 
    C(13)-C(14)          1.380(7) 
    C(14)-O(14)          1.383(5) 
    C(14)-C(15)          1.380(7) 
    O(14)-C(141)         1.417(6) 

    C(15)-C(16)          1.386(6) 
    C(2)-C(21)           1.483(6) 
    C(2)-C(3)            1.512(6) 
    C(21)-C(22)          1.387(7) 
    C(21)-C(26)          1.389(7) 
    C(22)-C(23)          1.361(7) 
    C(23)-C(24)          1.375(7) 
    C(24)-Br(24)         1.890(5) 
    C(24)-C(25)          1.425(7) 
    C(25)-C(26)          1.384(6) 
    C(3)-C(31)           1.493(7) 
    C(31)-O(31)          1.200(6) 
    C(31)-O(32)          1.331(5) 
    O(32)-C(33)          1.472(6) 
    C(33)-C(34)          1.485(7) 

 
    C(11)-N(1)-C(2)       118.6(4) 
    C(11)-N(1)-C(3)       118.1(4) 
    C(3)-N(1)-C(2)         62.7(3) 
    C(12)-C(11)-N(1)      119.7(4) 
    C(16)-C(11)-N(1)      121.5(4) 
    C(16)-C(11)-C(12)     118.6(4) 
    O(12)-C(12)-C(11)     119.6(4) 
    C(11)-C(12)-C(13)     120.2(4) 
    O(12)-C(12)-C(13)     120.0(4) 
    C(12)-O(12)-C(121)    117.9(3) 
    O(12)-C(121)-C(122)   111.1(4) 
    O(12)-C(121)-C(123)   102.1(4) 
    O(12)-C(121)-C(124)   111.9(4) 
    C(123)-C(121)-C(122)  110.4(4) 
    C(124)-C(121)-C(122)  110.0(4) 
    C(124)-C(121)-C(123)  111.1(4) 
    C(14)-C(13)-C(12)     119.8(4) 
    C(13)-C(14)-O(14)     123.7(4) 
    C(13)-C(14)-C(15)     120.3(4) 
    C(15)-C(14)-O(14)     116.0(4) 
    C(14)-O(14)-C(141)    117.8(4) 
    C(14)-C(15)-C(16)     119.8(4) 

    C(11)-C(16)-C(15)     121.3(4) 
    N(1)-C(2)-C(21)       120.0(4) 
    N(1)-C(2)-C(3)         57.8(3) 
    C(21)-C(2)-C(3)       124.2(4) 
    C(22)-C(21)-C(2)      119.1(4) 
    C(26)-C(21)-C(2)      123.1(4) 
    C(22)-C(21)-C(26)     117.9(4) 
    C(23)-C(22)-C(21)     121.8(5) 
    C(22)-C(23)-C(24)     120.1(5) 
    C(23)-C(24)-Br(24)    121.8(4) 
    C(23)-C(24)-C(25)     120.4(4) 
    C(25)-C(24)-Br(24)    117.8(4) 
    C(26)-C(25)-C(24)     117.2(4) 
    C(25)-C(26)-C(21)     122.5(5) 
    N(1)-C(3)-C(2)         59.5(3) 
    N(1)-C(3)-C(31)       116.7(4) 
    C(31)-C(3)-C(2)       120.6(4) 
    O(31)-C(31)-C(3)      125.4(4) 
    O(32)-C(31)-C(3)      110.4(4) 
    O(31)-C(31)-O(32)     124.2(4) 
    C(31)-O(32)-C(33)     115.4(4) 
    O(32)-C(33)-C(34)     106.8(4) 

    
___________________________________________________ ______________________ 
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Table 3.  Anisotropic displacement parameters (Å 2 x 10 3) for the 
          expression: exp {-2 π2(h 2a* 2U11 + ... + 2hka*b*U 12)} 
          E.s.ds are in parentheses. 
    

 
  
         U 11        U 22        U 33         U 23        U 13        U 12 

 
  
N(1)    19(2)     22(2)     24(2)     -2.4(17)   5. 8(17)   1.8(17) 
C(11)   16(2)     23(3)     19(2)      2(2)      5. 6(18)  -2(2)    
C(12)   25(3)     22(3)     24(2)     -3(2)      14 (2)    -3(2)    
O(12)   22.8(16)  21.2(18)  23.7(17)  -3.2(14)   12 .5(14) -1.8(14) 
C(121)  27(3)     26(3)     29(3)     -4(2)      19 (2)    -1(2)    
C(122)  27(3)     44(3)     41(3)     -1(3)      21 (2)     3(3)    
C(123)  34(3)     37(3)     34(3)     -9(2)      16 (2)    -4(3)    
C(124)  33(3)     31(3)     31(3)      1(2)      19 (2)    -5(2)    
C(13)   18(2)     23(3)     27(3)      1(2)      10 (2)     6(2)    
C(14)   17(2)     33(3)     25(3)      1(2)      8( 2)     -3(2)    
O(14)   23.0(18)  52(2)     22.8(18)  -1.0(17)   5. 9(14)   7.3(17) 
C(141)  30(3)     55(4)     28(3)      8(3)      4( 2)      13(3)    
C(15)   21(2)     32(3)     19(2)     -6(2)      8( 2)     -2(2)    
C(16)   21(2)     29(3)     28(3)     -1(2)      12 (2)     5(2)    
C(2)    22(2)     23(3)     25(3)      2(2)      8( 2)      2(2)    
C(21)   18(2)     20(3)     29(3)      3(2)      12 (2)     8(2)    
C(22)   20(2)     24(3)     32(3)      2(2)      13 (2)     5(2)    
C(23)   19(2)     17(3)     39(3)      3(2)     -1( 2)     -6(2)    
C(24)   35(3)     37(3)     14(2)      6(2)      10 (2)     28(2)    
Br(24)  43.6(3)   47.0(4)   24.3(3)   -10.2(3)   4. 7(2)   -2.1(3) 
C(25)   29(3)     24(3)     25(3)      3(2)      12 (2)     0(2)    
C(26)   28(3)     22(3)     28(3)     -6(2)      7( 2)     -2(2)    
C(3)    16(2)     27(3)     23(2)      4(2)      8. 4(19)   2(2)    
C(31)   21(3)     24(3)     29(3)     -4(2)      8( 2)      1(2)    
O(31)   29.9(19)  29(2)     40(2)      7.3(17)   17 .1(17)  2.0(16) 
O(32)   19.6(17)  34(2)     29.0(18)   9.5(16)   10 .5(14)  6.9(15) 
C(33)   30(3)     37(3)     41(3)      10(3)     3( 2)      13(3)    
C(34)   29(3)     50(4)     49(4)      10(3)     12 (3)     13(3)    
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Table 4.  Hydrogen coordinates (x 10 4) and isotropic displacement 
          parameters (Å 2 x 10 3).  All hydrogen atoms were included 
          in idealised positions with U(iso)'s set at 1.2*U(eq) or, 
          for the methyl groups, 1.5*U(eq) of the p arent carbon atom. 
         __________________________________________ ______________________ 
  
                      x           y          z         U(iso)      
         __________________________________________ ______________________ 
  
         H(12A)     -306        3984        2461         52              
         H(12B)      -59        4638        3072         52              
         H(12C)     -444        4160        4111         52              
         H(12D)     2771        4375        6157         51              
         H(12E)     1465        4413        6394         51              
         H(12F)     1847        4880        5324         51              
         H(12G)     1156        3198        3736         44              
         H(12H)     1094        3360        5434         44              
         H(12I)     2377        3342        5126         44              
         H(13)       491        4257         389         26              
         H(14A)    -1538        3998       -3423         58              
         H(14B)     -725        4402       -2044         58              
         H(14C)    -1359        3834       -1640         58              
         H(15)      1900        2977       -1649         29              
         H(16)      3525        2860         691         30              
         H(2)       4799        4179        3370         28              
         H(22)      6185        4735        5575         29              
         H(23)      6891        4994        8201         33              
         H(25)      5110        3586        9282         30              
         H(26)      4503        3317        6616         32              
         H(3)       5301        3282        2386         26              
         H(33A)     7536        1916        5080         46              
         H(33B)     7845        2341        6568         46              
         H(34A)     9661        2106        6037         64              
         H(34B)     9395        2784        5756         64              
         H(34C)     9097        2351        4297         64              
         __________________________________________ ______________________ 
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Table 5.  Torsion angles, in degrees.  E.s.ds are i n parentheses. 
         __________________________________________ ______________________ 
  
         C(3)-N(1)-C(11)-C(16)             41.4(6) 
         C(2)-N(1)-C(11)-C(16)            113.9(5) 
         C(3)-N(1)-C(11)-C(12)           -143.6(4) 
         C(2)-N(1)-C(11)-C(12)            -71.1(5) 
         C(16)-C(11)-C(12)-O(12)         -177.9(4) 
         N(1)-C(11)-C(12)-O(12)             6.9(6) 
         C(16)-C(11)-C(12)-C(13)           -2.4(7) 
         N(1)-C(11)-C(12)-C(13)          -177.6(4) 
         C(11)-C(12)-O(12)-C(121)        -101.5(5) 
         C(13)-C(12)-O(12)-C(121)          82.9(5) 
         C(12)-O(12)-C(121)-C(124)         49.2(5) 
         C(12)-O(12)-C(121)-C(123)        168.0(4) 
         C(12)-O(12)-C(121)-C(122)        -74.2(5) 
         O(12)-C(12)-C(13)-C(14)          178.6(4) 
         C(11)-C(12)-C(13)-C(14)            3.1(7) 
         C(12)-C(13)-C(14)-C(15)           -2.0(7) 
         C(12)-C(13)-C(14)-O(14)          178.2(4) 
         C(13)-C(14)-O(14)-C(141)         -11.6(7) 
         C(15)-C(14)-O(14)-C(141)         168.7(5) 
         C(13)-C(14)-C(15)-C(16)            0.3(7) 
         O(14)-C(14)-C(15)-C(16)         -180.0(4) 
         C(12)-C(11)-C(16)-C(15)            0.7(7) 
         N(1)-C(11)-C(16)-C(15)           175.8(4) 
         C(14)-C(15)-C(16)-C(11)            0.4(7) 
         C(11)-N(1)-C(2)-C(21)            137.4(4) 
         C(3)-N(1)-C(2)-C(21)            -113.8(5) 
         C(11)-N(1)-C(2)-C(3)            -108.8(4) 
         N(1)-C(2)-C(21)-C(22)           -168.8(4) 
         C(3)-C(2)-C(21)-C(22)            121.8(5) 
         N(1)-C(2)-C(21)-C(26)             11.1(7) 
         C(3)-C(2)-C(21)-C(26)            -58.3(6) 
         C(26)-C(21)-C(22)-C(23)            1.0(7) 
         C(2)-C(21)-C(22)-C(23)          -179.1(4) 
         C(21)-C(22)-C(23)-C(24)           -2.5(7) 
         C(22)-C(23)-C(24)-C(25)            2.3(7) 
         C(22)-C(23)-C(24)-Br(24)        -179.0(3) 
         C(23)-C(24)-C(25)-C(26)           -0.5(7) 
         Br(24)-C(24)-C(25)-C(26)        -179.3(3) 
         C(24)-C(25)-C(26)-C(21)           -1.0(7) 
         C(22)-C(21)-C(26)-C(25)            0.8(7) 
         C(2)-C(21)-C(26)-C(25)          -179.1(4) 
         C(11)-N(1)-C(3)-C(31)           -139.0(4) 
         C(2)-N(1)-C(3)-C(31)             111.4(5) 
         C(11)-N(1)-C(3)-C(2)             109.6(4) 
         C(21)-C(2)-C(3)-N(1)             106.6(5) 
         N(1)-C(2)-C(3)-C(31)            -104.9(5) 
         C(21)-C(2)-C(3)-C(31)              1.8(7) 
         N(1)-C(3)-C(31)-O(31)              4.5(7) 
         C(2)-C(3)-C(31)-O(31)             73.2(6) 
         N(1)-C(3)-C(31)-O(32)           -175.3(4) 
         C(2)-C(3)-C(31)-O(32)           -106.6(5) 
         O(31)-C(31)-O(32)-C(33)            2.2(7) 
         C(3)-C(31)-O(32)-C(33)          -178.0(4) 
         C(31)-O(32)-C(33)-C(34)         -173.4(4) 
         __________________________________________ ______________________ 
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Crystal data:  C22H26BrNO4, M = 448.4.  Monoclinic, space group P21/c (no. 14), a = 

11.3776(5), b = 22.6095(11), c = 8.8388(4) Å, β = 108.569(5) °, V = 2155.34(17) Å3. Z = 

4, Dc = 1.382 g cm-3, F(000) = 928, T = 140(1) K, µ(Mo-Kα) = 19.3 cm-1, λ(Mo-Kα) = 

0.71069 Å. 

Crystals are colourless plates.  One, ca 0.29 x 0.23 x 0.07 mm, was mounted in oil on a 

glass fibre and fixed in the cold nitrogen stream on an Oxford Diffraction Xcalibur-

3/Sapphire3-CCD diffractometer, equipped with Mo-Kα radiation and graphite 

monochromator.  Intensity data were measured by thin-slice ω- and φ-scans.  Total no. of 

reflections recorded, to θmax = 25°, was 27295 of which 3789 were unique (Rint = 0.053); 

2607 were 'observed' with I > 2σI.  

Data were processed using the CrysAlisPro-CCD and -RED (1) programs.  The structure 

was determined by the direct methods routines in the SHELXS program (2A) and refined 

by full-matrix least-squares methods, on F2's, in SHELXL (2B).  The non-hydrogen atoms 

were refined with anisotropic thermal parameters.  Hydrogen atoms were included in 

idealised positions and their Uiso values were set to ride on the Ueq values of the parent 

carbon atoms.  At the conclusion of the refinement, wR2 = 0.150 and R1 = 0.082 (2B) for 

all 3789 reflections weighted w = [σ2(Fo
2) + (0.0787P)2 + 2.09P]-1 with P = (Fo

2 + 2Fc
2)/3; 

for the 'observed' data only, R1 = 0.056. 

In the final difference map, the highest peak (ca 1.63 eÅ-3) was near Br(24). 

Scattering factors for neutral atoms were taken from reference (3).  Computer programs 

used in this analysis have been noted above, and were run through WinGX (4) on a Dell 

Precision 370 PC at the University of East Anglia.  
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9.10.3: Appendix 3: Percentage Composition and Rate Calculation Data for the syntheses 

of rac-(342) catalysed by PyTf-h (279), or PyTf-d (345) 
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9.10.4: Appendix 4: 1H-NMR and 13C-NMR spectra; and HRMS spectrum for compound 

cis-(350) 
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9.10.5: Appendix 5: Crystal Structure Data for compound cis-(356) 

 
Table 1. Crystal data and structure refinement details. 
 

Identification code  ST4006 (2010src1036)     
Empirical formula  C23H28N2O5 
Formula weight  412.47 
Temperature  120(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P21/n  
Unit cell dimensions a = 11.8592(7) Å α = 90° 
 b = 10.7332(7) Å β = 96.588(3)° 
 c = 17.2217(10) Å γ  = 90° 
Volume 2177.6(2) Å3 
Z 4 
Density (calculated) 1.258 Mg / m3 
Absorption coefficient 0.089 mm−−−−1 
F(000) 880 
Crystal Lath; light blue 
Crystal size 0.18 × 0.03 × 0.01 mm3 
θ range for data collection 3.79 − 24.99° 
Index ranges −14 ≤ h ≤ 14, −12 ≤ k ≤ 12, −20 ≤ l ≤ 20 
Reflections collected 17789 
Independent reflections 3799 [Rint = 0.0729] 
Completeness to θ = 24.99° 99.4 %  
Absorption correction Semi−empirical from equivalents 
Max. and min. transmission 0.9991 and 0.9842 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 3799 / 0 / 277 
Goodness-of-fit on F2 1.173 
Final R indices [F2 > 2σ(F2)] R1 = 0.0673, wR2 = 0.1139 
R indices (all data) R1 = 0.1286, wR2 = 0.1414 
Largest diff. peak and hole 0.241 and −0.255 e Å−−−−3 
 

Diffractometer: Nonius KappaCCD area detector (φφφφ scans and ωωωω scans to fill asymmetric unit ). Cell determination: DirAx 
(Duisenberg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96.) Data collection: Collect (Collect: Data collection software, R. Hooft, Nonius 
B.V., 1998). Data reduction and cell refinement: Denzo (Z. Otwinowski & W. Minor, Methods in Enzymology (1997) Vol. 276: 
Macromolecular Crystallography, part A, pp. 307−−−−326; C. W. Carter, Jr. & R. M. Sweet, Eds., Academic Press). Absorption 
correction: Sheldrick, G. M. SADABS - Bruker Nonius area detector scaling and absorption correction - V2.10 Structure 
solution: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467−−−−473). Structure refinement: SHELXL97 (G. M. Sheldrick 
(1997), University of Göttingen, Germany).  

 
 

Figure 1. An Ortep representation of the crystal structure ST4006 (2010src1036). Thermal ellipsoids 
are drawn at 50% probability level
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Table 2. Atomic coordinates [× 104], equivalent isotropic displacement parameters [Å2 × 103] and site occupancy factors. 
Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 

 

Atom  x y z Ueq S.o.f. 
 

O1 9072(2) 2006(2) 2479(1) 29(1) 1 
O3 7034(2) 1628(2) 4262(1) 25(1) 1 
O2 8294(2) 91(2) 2569(1) 30(1) 1 
O4 6580(2) −1909(3) −850(2) 46(1) 1 
O5 6784(3) −146(3) −1420(2) 49(1) 1 
N2 6141(2) 1257(3) 2722(2) 25(1) 1 
N1 6632(2) −766(3) −842(2) 33(1) 1 
C12 10830(3) 2760(4) 2197(2) 45(1) 1 
C22 8539(3) 354(3) 4770(2) 31(1) 1 
C17 4186(3) 2953(3) 4317(2) 31(1) 1 
C18 5287(3) 2570(3) 4560(2) 28(1) 1 
C21 6796(3) 444(3) 5461(2) 32(1) 1 
C4 6231(3) 1147(3) 1252(2) 24(1) 1 
C5 6354(3) −148(3) 1255(2) 27(1) 1 
C3 6200(3) 1785(3) 546(2) 28(1) 1 
C20 7247(3) 421(3) 4668(2) 26(1) 1 
C14 5456(3) 1815(3) 3259(2) 25(1) 1 
C8 7169(3) 1951(3) 2615(2) 25(1) 1 
C1 6479(3) −108(3) −114(2) 25(1) 1 
C10 10190(3) 1551(4) 2291(2) 32(1) 1 
C2 6336(3) 1165(3) −140(2) 28(1) 1 
C13 10768(3) 789(4) 2965(2) 42(1) 1 
C11 10024(3) 828(4) 1527(2) 42(1) 1 
C7 6178(3) 1890(3) 1974(2) 26(1) 1 
C16 3711(3) 2747(3) 3557(2) 32(1) 1 
C15 4341(3) 2185(3) 3030(2) 29(1) 1 
C19 5917(3) 1973(3) 4039(2) 25(1) 1 
C9 8222(3) 1207(3) 2559(2) 27(1) 1 
C23 6727(3) −627(3) 4158(2) 30(1) 1 
C6 6485(3) −781(3) 569(2) 30(1) 1 
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Table 3. Bond lengths [Å] and angles [°]. 
 

O1−C9 1.344(4) 
O1−C10 1.483(4) 
O3−C19 1.387(4) 
O3−C20 1.480(4) 
O2−C9 1.200(4) 
O4−N1 1.228(4) 
O5−N1 1.227(4) 
N2−C14 1.431(4) 
N2−C8 1.458(4) 
N2−C7 1.461(4) 
N1−C1 1.469(4) 
C12−C10 1.522(5) 
C12−H12A 0.9800 
C12−H12B 0.9800 
C12−H12C 0.9800 
C22−C20 1.524(5) 
C22−H22A 0.9800 
C22−H22B 0.9800 
C22−H22C 0.9800 
C17−C16 1.382(5) 
C17−C18 1.388(5) 
C17−H17 0.9500 
C18−C19 1.387(5) 
C18−H18 0.9500 
C21−C20 1.522(5) 
C21−H21A 0.9800 
C21−H21B 0.9800 
C21−H21C 0.9800 
C4−C3 1.392(5) 
C4−C5 1.397(5) 
C4−C7 1.485(5) 
C5−C6 1.387(5) 
C5−H5 0.9500 
C3−C2 1.380(5) 
C3−H3 0.9500 
C20−C23 1.515(5) 
C14−C15 1.394(5) 
C14−C19 1.401(5) 
C8−C9 1.495(5) 
C8−C7 1.518(5) 
C8−H8 1.0000 
C1−C2 1.377(5) 
C1−C6 1.380(5) 
C10−C13 1.518(5) 
C10−C11 1.520(5) 
C2−H2 0.9500 
C13−H13A 0.9800 
C13−H13B 0.9800 
C13−H13C 0.9800 
C11−H11A 0.9800 
C11−H11B 0.9800 
C11−H11C 0.9800 
C7−H7 1.0000 
C16−C15 1.379(5) 
C16−H16 0.9500 
C15−H15 0.9500 
C23−H23A 0.9800 
C23−H23B 0.9800 
C23−H23C 0.9800 
C6−H6 0.9500 
 
C9−O1−C10 120.8(3) 
C19−O3−C20 118.1(2) 
C14−N2−C8 114.3(3) 
C14−N2−C7 116.9(3) 



 318 

C8−N2−C7 62.6(2) 
O5−N1−O4 122.9(3) 
O5−N1−C1 118.4(3) 
O4−N1−C1 118.7(3) 
C10−C12−H12A 109.5 
C10−C12−H12B 109.5 
H12A−C12−H12B 109.5 
C10−C12−H12C 109.5 
H12A−C12−H12C 109.5 
H12B−C12−H12C 109.5 
C20−C22−H22A 109.5 
C20−C22−H22B 109.5 
H22A−C22−H22B 109.5 
C20−C22−H22C 109.5 
H22A−C22−H22C 109.5 
H22B−C22−H22C 109.5 
C16−C17−C18 120.3(3) 
C16−C17−H17 119.9 
C18−C17−H17 119.9 
C17−C18−C19 120.0(3) 
C17−C18−H18 120.0 
C19−C18−H18 120.0 
C20−C21−H21A 109.5 
C20−C21−H21B 109.5 
H21A−C21−H21B 109.5 
C20−C21−H21C 109.5 
H21A−C21−H21C 109.5 
H21B−C21−H21C 109.5 
C3−C4−C5 119.1(3) 
C3−C4−C7 117.9(3) 
C5−C4−C7 123.0(3) 
C6−C5−C4 120.3(3) 
C6−C5−H5 119.8 
C4−C5−H5 119.8 
C2−C3−C4 121.0(3) 
C2−C3−H3 119.5 
C4−C3−H3 119.5 
O3−C20−C23 109.9(3) 
O3−C20−C21 110.6(3) 
C23−C20−C21 111.7(3) 
O3−C20−C22 102.2(3) 
C23−C20−C22 111.6(3) 
C21−C20−C22 110.5(3) 
C15−C14−C19 119.3(3) 
C15−C14−N2 121.8(3) 
C19−C14−N2 118.9(3) 
N2−C8−C9 116.8(3) 
N2−C8−C7 58.8(2) 
C9−C8−C7 120.8(3) 
N2−C8−H8 116.0 
C9−C8−H8 116.0 
C7−C8−H8 116.0 
C2−C1−C6 122.4(3) 
C2−C1−N1 118.5(3) 
C6−C1−N1 119.1(3) 
O1−C10−C13 110.3(3) 
O1−C10−C11 109.1(3) 
C13−C10−C11 112.9(3) 
O1−C10−C12 102.2(3) 
C13−C10−C12 110.7(3) 
C11−C10−C12 111.1(3) 
C1−C2−C3 118.5(3) 
C1−C2−H2 120.7 
C3−C2−H2 120.7 
C10−C13−H13A 109.5 
C10−C13−H13B 109.5 
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H13A−C13−H13B 109.5 
C10−C13−H13C 109.5 
H13A−C13−H13C 109.5 
H13B−C13−H13C 109.5 
C10−C11−H11A 109.5 
C10−C11−H11B 109.5 
H11A−C11−H11B 109.5 
C10−C11−H11C 109.5 
H11A−C11−H11C 109.5 
H11B−C11−H11C 109.5 
N2−C7−C4 119.8(3) 
N2−C7−C8 58.6(2) 
C4−C7−C8 121.9(3) 
N2−C7−H7 115.0 
C4−C7−H7 115.0 
C8−C7−H7 115.0 
C15−C16−C17 120.1(3) 
C15−C16−H16 120.0 
C17−C16−H16 120.0 
C16−C15−C14 120.4(3) 
C16−C15−H15 119.8 
C14−C15−H15 119.8 
O3−C19−C18 120.8(3) 
O3−C19−C14 119.2(3) 
C18−C19−C14 119.8(3) 
O2−C9−O1 125.8(3) 
O2−C9−C8 126.3(3) 
O1−C9−C8 107.9(3) 
C20−C23−H23A 109.5 
C20−C23−H23B 109.5 
H23A−C23−H23B 109.5 
C20−C23−H23C 109.5 
H23A−C23−H23C 109.5 
H23B−C23−H23C 109.5 
C1−C6−C5 118.7(3) 
C1−C6−H6 120.7 
C5−C6−H6 120.7 
 

Symmetry transformations used to generate equivalent atoms:  
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Table 4. Anisotropic displacement parameters [Å2× 103]. The anisotropic displacement 
factor exponent takes the form: −2π 2[h2a*2U11 + ... + 2 h k a* b* U12 ]. 
 

Atom U11 U22 U33 U23 U13 U12 

 

O1 24(1)  31(1) 33(1)  0(1) 7(1)  −2(1) 
O3 23(1)  23(1) 28(1)  1(1) 2(1)  0(1) 
O2 30(1)  24(1) 38(2)  −1(1) 6(1)  −1(1) 
O4 68(2)  32(2) 36(2)  −6(1) 3(1)  14(1) 
O5 68(2)  53(2) 30(2)  −5(1) 21(1)  −13(2) 
N2 23(2)  29(2) 23(2)  −3(1) 4(1)  −1(1) 
N1 29(2)  41(2) 30(2)  −6(2) 6(1)  2(2) 
C12 29(2)  52(3) 54(3)  15(2) 2(2)  −4(2) 
C22 27(2)  31(2) 34(2)  1(2) 1(2)  2(2) 
C17 29(2)  31(2) 34(2)  −2(2) 9(2)  6(2) 
C18 29(2)  32(2) 24(2)  0(2) 2(2)  0(2) 
C21 31(2)  33(2) 34(2)  1(2) 6(2)  −2(2) 
C4 21(2)  29(2) 22(2)  0(2) 2(1)  −1(2) 
C5 29(2)  26(2) 26(2)  2(2) −1(2)  2(2) 
C3 28(2)  26(2) 29(2)  0(2) 3(2)  0(2) 
C20 26(2)  23(2) 28(2)  5(2) 1(2)  3(2) 
C14 25(2)  23(2) 28(2)  −3(2) 4(2)  −1(2) 
C8 26(2)  24(2) 26(2)  −4(2) 5(2)  −3(2) 
C1 21(2)  33(2) 23(2)  −5(2) 3(1)  0(2) 
C10 22(2)  41(2) 34(2)  11(2) 6(2)  2(2) 
C2 29(2)  31(2) 23(2)  4(2) 3(2)  −4(2) 
C13 33(2)  48(3) 43(3)  14(2) 0(2)  2(2) 
C11 35(2)  56(3) 37(2)  −1(2) 14(2)  6(2) 
C7 26(2)  25(2) 27(2)  1(2) 3(2)  5(2) 
C16 24(2)  34(2) 37(2)  −1(2) 6(2)  3(2) 
C15 24(2)  31(2) 29(2)  1(2) −1(2)  −1(2) 
C19 23(2)  24(2) 28(2)  −2(2) 7(2)  0(2) 
C9 28(2)  34(2) 20(2)  −1(2) 4(2)  −3(2) 
C23 28(2)  28(2) 33(2)  0(2) 2(2)  −1(2) 
C6 32(2)  26(2) 33(2)  0(2) 2(2)  6(2) 
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Table 5. Hydrogen coordinates [× 104] and isotropic displacement parameters [Å2 × 103]. 
 

Atom  x y z Ueq S.o.f. 
 

H12A 10420 3261 1780 68 1 
H12B 11592 2571 2061 68 1 
H12C 10891 3228 2689 68 1 
H22A 8814 293 4255 46 1 
H22B 8785 −380 5082 46 1 
H22C 8849 1107 5037 46 1 
H17 3756 3359 4676 37 1 
H18 5611 2716 5082 34 1 
H21A 7112 1163 5761 48 1 
H21B 7019 −324 5746 48 1 
H21C 5966 507 5386 48 1 
H5 6347 −597 1730 33 1 
H3 6084 2661 536 33 1 
H8 7273 2760 2902 30 1 
H2 6330 1607 −618 34 1 
H13A 10790 1271 3450 62 1 
H13B 11544 588 2864 62 1 
H13C 10342 16 3016 62 1 
H11A 9633 42 1608 63 1 
H11B 10765 653 1352 63 1 
H11C 9566 1323 1130 63 1 
H7 5713 2667 1903 31 1 
H16 2951 2993 3398 38 1 
H15 4012 2049 2508 34 1 
H23A 5902 −516 4069 45 1 
H23B 6901 −1427 4420 45 1 
H23C 7040 −618 3656 45 1 
H6 6578 −1660 570 36 1 
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9.10.6: Appendix 6: 1H-NMR and 13C-NMR spectra; and COSY, and HSQC Correlation 

spectra for compound (410) 
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9.10.7: Appendix 7: Summary of the ‘Dialled in’ Methodology 
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9.10.8: Appendix 8: 1H-NMR and 13C-NMR spectra; HSQC and 15N- 1H- HMBC 

Correlation spectra for compound (429) 
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9.10.9: Appendix 9: VCD predictions for both cis-enantiomers of compounds cis-(351) 

and cis-(358); and sample Gaussian Input File for cis-(351), Conformer 1 

 

C
al

cu
la

te
d

 W
ei

g
h

te
d

 A
ve

ra
g

e 
V

C
D

 B
as

ed
 O

n
 B

o
ltz

m
an

n
 D

is
tr

ib
u

tio
n

 F
o

r 
2S

,3
S

-(
35

1)

-4
0

-3
0

-2
0

-1
00102030

-1
00

0
-5

00
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

F
re

q
u

e
n

cy
 (

cm
-1

)

∆ε ∆ε ∆ε ∆ε



 335 

 

W
ei

g
h

te
d

 A
ve

ra
g

e 
V

C
D

 B
as

ed
 O

n
 B

o
ltz

m
an

n
 D

is
tr

ib
u

tio
n

 F
o

r 
2R

,3
R

-(
35

1)

-3
0

-2
0

-1
0010203040

-1
00

0
-5

00
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

F
re

q
u

e
n

cy
 (

cm
-1

)

∆ε ∆ε ∆ε ∆ε



 336 

 

C
al

cu
la

te
d

 W
ei

g
h

te
d

 A
ve

ra
g

e 
V

C
D

 B
as

ed
 O

n
 B

o
ltz

m
an

n
 D

is
tr

ib
u

tio
n

 F
o

r 
2S

,3
S

-(
35

8)

-4
0

-3
0

-2
0

-1
00102030

-1
00

0
-5

00
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

F
re

q
u

e
n

cy
 (

cm
-1

)

∆ε ∆ε ∆ε ∆ε



 337 

 

C
al

cu
la

te
d

 W
ei

g
h

te
d

 A
ve

ra
g

e 
V

C
D

 B
as

ed
 O

n
 B

o
ltz

m
an

n
 D

is
tr

ib
u

tio
n

 F
o

r 
2R

,3
R

-(
35

8)

-3
0

-2
0

-1
0010203040

-1
00

0
-5

00
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

F
re

q
u

e
n

cy
 (

cm
-1

)

∆ε ∆ε ∆ε ∆ε



 338 

$Rungauss 
%nproc=12 
%chk=phenylenantiomer_conformer1.chk 
#N b3lyp/6-31g* opt freq=(readiso,vcd) scf=tight test gfinput 
 
Phenyl Aziridine Enantiomer Conformer 1 With Frequency Check and VCD 
 
0 1 
C       -1.832498      0.738915      3.097539 
C       -1.592311      0.781344      1.712424 
C       -2.693858      0.983403      0.858557 
C       -3.951254      1.295187      1.385180 
C       -4.158266      1.290112      2.763333 
C       -3.103103      0.992738      3.619560 
N       -0.286726      0.535771      1.203732 
C        0.850317      1.200190      1.860881 
C        2.099262      0.384991      2.088907 
C        2.046563     -0.973413      2.446310 
C        3.209051     -1.716671      2.666809 
C        4.455778     -1.112234      2.538003 
C        4.538317      0.232429      2.189589 
C        3.371960      0.970412      1.971059 
O       -2.521234      1.025049     -0.500622 
C       -2.886246     -0.167848     -1.236164 
C       -2.259272     -1.458857     -0.687614 
C        0.395783      1.601837      0.466182 
C        1.273424      1.289453     -0.685169 
O        2.087850      2.112375     -1.079835 
O        1.073319      0.047005     -1.194386 
C        1.941824     -0.478090     -2.227983 
C        1.869786      0.354708     -3.512679 
C        1.394977     -1.883253     -2.522604 
C        3.381470     -0.612032     -1.718602 
C       -2.335647      0.076991     -2.651019 
C       -4.410140     -0.324995     -1.350885 
H        0.597529      1.910977      2.643399 
H       -0.165508      2.523344      0.369436 
H        1.079339     -1.463454      2.544786 
H        3.137023     -2.767104      2.935732 
H        5.361410     -1.688598      2.706368 
H        5.509027      0.709600      2.083235 
H        3.458608      2.019437      1.692068 
H       -4.774227      1.546724      0.723117 
H       -5.142270      1.514678      3.166447 
H       -3.263084      0.967885      4.694398 
H       -1.022891      0.505617      3.784754 
H       -2.479686     -2.313320     -1.337161 
H       -2.639732     -1.699847      0.310777 
H       -1.172495     -1.370749     -0.605314 
H       -4.678377     -1.094069     -2.083817 
H       -4.881069      0.617815     -1.650489 
H       -4.856699     -0.622114     -0.396549 
H       -2.534437     -0.766451     -3.320516 
H       -1.255800      0.248502     -2.621779 
H       -2.777313      0.979053     -3.090694 
H        4.015391     -1.129755     -2.446453 
H        3.409423     -1.170052     -0.776345 
H        3.836439      0.362949     -1.519234 
H        1.987413     -2.398966     -3.285612 
H        0.355965     -1.833469     -2.867981 
H        1.389129     -2.497432     -1.614431 
H        2.393364     -0.141266     -4.337280 
H        2.323980      1.341999     -3.387715 
H        0.830420      0.522553     -3.813651 
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