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Abstract

The conservation value of traditional agriculture is well recognised in Europe, where
retention and restoration of farming practices that support open-habitat species is a standard
management technique. Elsewhere, however, this value is often overlooked while
conservation attention is directed at natural habitats and forest biota. This thesis assesses the
importance of traditional farming for developing-world biodiversity, using the White-
shouldered Ibis Pseudibis davisoni in Cambodia to investigate practices underpinning
synanthropic relationships, links between farming-dependent species and local livelihoods,
and potential conservation strategies. Ibis status and ecology was investigated by censuses,
foraging observations, prey sampling, experimental exclusion of grazing and burning at
foraging habitats, and experimental protection of nests. Livelihoods were assessed by social
research methods including household income surveys. A literature review found a subset
of threatened bird taxa now dependent on traditional farming following the loss of natural
processes. Agricultural change, driven by external agribusiness and intrinsic livelihood
modernisation, endangers these species, including the ibis. Ibis foraging ecology is closely
associated with local livelihood practices, with favoured dry forest habitats created or
maintained by domestic livestock grazing, anthropogenic fire and rice cultivation. Not all
local practices are beneficial, however: ibis nests are exploited for food by local people, and
nest guardians do not improve nest success (although this requires further testing). White-
shouldered Ibis’s breeding season contrasts with that of the sympatric Giant Ibis
Thaumatibis gigantea, most likely explained by the former’s dry-season-adapted foraging
strategy. Household incomes and livestock capital assets demonstrated that local people
share a dependence on the livelihood practices and dry forest landscape supporting the ibis.
Nevertheless, local livelihood change (such as mechanisation) may uncouple this linkage,
making a potential win-win conservation strategy unviable. Conservation must develop
measures to maintain valuable farming practices before they, and the species dependent on

them, are lost through agricultural transition.
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Introduction

Rice cultivation remains traditional in northern
Cambodia, with harvesting done by hand.



Introduction

1.1. Challenges for agriculture, challenges for conservation

"to address the poverty of a billion people not getting enough food, [and] with
another billion [in population growth] in 13 years' time, you've got to massively
increase agriculture”.

Sir John Beddington, Chief Scientific Advisor, March 2012.

The recent report of the Commission on Sustainable Agriculture and Climate Change
(Beddington et al. 2012) has brought renewed attention to agriculture and its capacity to
meet higher demands for food, vegetable oil and energy crops in the next four decades.
Increasing consumption, driven by population growth and escalating wealth (Godfray et al.
2010), will necessitate a “massive increase” in agricultural output. Achieving this
sustainably is a major concern (McLaughlin 2011; Tilman et al. 2011; Tilman et al. 2002).
Reducing agriculture’s environmental costs has already proved difficult: after several
decades spent documenting biodiversity declines (Carson 1962; Donald 2004; Tucker &
Heath 1994) and attempting to mitigate its impacts (Balmford et al. 2005a; Kleijn &
Sutherland 2003), the sector remains the most damaging to nature (Balmford et al. 2012;
MEA 2005). Reconciling biodiversity protection with accelerating crop demand is now a
key challenge for conservationists (Balmford et al. 2005b), and the likely scale and impact
of agricultural growth calls for better integration of conservation and farming (Adams 2012;
Norris 2008).

1.2. Paradigms of agriculture in conservation

Agriculture’s place in conservation differs between the developed world, particularly
Europe, and the developing world. As most of Europe’s ecosystems are already radically
transformed by agriculture (Donald et al. 2002), protecting the nature value inherent to
farmed and semi-natural landscapes has become a paradigm of European conservation
(Sutherland 2004). Declines in many farmland taxa (Donald et al. 2001; Pywell et al. 2006;
van Swaay et al. 2006) have provoked considerable attempts to integrate conservation into
farming, most notably through European Union agri-environmental schemes (Kleijn &
Sutherland 2003). In parallel, conservation of valuable human-modified, semi-natural
habitats (such as heathland, grassland and fens) frequently adopts low-intensity farming
techniques, many of which have benefited or accommodated biodiversity for centuries or
even millennia (Bignal & McCracken 2000; Kleijn et al. 2006; Sutherland & Hill 1995).
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Elsewhere conservation takes a different viewpoint, particularly in tropical countries of the
developing world, where conserving “wild nature”, in more intact ecosystems, takes
priority. Agriculture and conservation are often considered incompatible in this context
(Tscharntke et al. 2005) as the habitat devastation visible along many agricultural frontiers
generates widespread concern for natural integrity. This shapes conservation foci in the
developing world, with greater attention given to forests rather than other, more open
biomes (Bond & Parr 2010). However, agriculture’s value does receive attention in the
paradigm of countryside biogeography (Daily et al. 2001), which focuses on improving the
agricultural matrix to support (usually forest) species in remnant natural habitat patches
(Perfecto & Vandermeer 2010; Vandermeer & Perfecto 2007). In contrast to Europe, where
conservation promotes agricultural practices benefiting open-habitat species *, efforts in the
developing world generally aim to minimise the impacts of agriculture threatening closed-
habitat species, either by reducing forest conversion and/or degradation, or improving

functional connectivity in fragmented landscapes.

1.3. A new research agenda

New research considers the strategies for enabling increased agricultural production
alongside biodiversity conservation. Land-sparing and land-sharing are two contrasting
options proposed (Fischer et al. 2008; Green et al. 2005). Land-sparing would increase
yields on existing farmland, reducing the need to convert new land for agriculture and
thereby sparing land for conservation. Land-sharing advocates wildlife-friendly practices to
maintain biodiversity within farmland, but likely costs to yield will require that more land
becomes cultivated (Phalan et al. 2011a) if demand for agricultural output cannot otherwise
be alleviated. The relative benefits of these strategies remain contested (Adams 2012;
Fischer et al. 2011; Phalan et al. 2011b), but the debate has promoted a new research agenda
into the compatibility of agriculture and conservation. Conservation scientists now seek
holistic, interdisciplinary approaches to understand: biodiversity retention in farmland;
valuable farming methods; the ecological, social and political conditions that suit alternative
conservation strategies; and mechanisms to integrate conservation into agricultural policy
(Balmford et al. 2012). Amongst the knowledge gaps is a need to understand which and
what types of species benefit from agriculture and the mechanisms that underlie these
patterns (Adams 2012; Norris 2008).

! Open-habitat species are those that once occurred naturally in non-forested biomes such as grasslands,

savannas, and steppe.
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1.4. Synanthropy in agricultural landscapes

Benefits of agriculture are particularly apparent in semi-natural * or extensively farmed 2
landscapes of the developed world, where many species have become closely associated
with human activity (synanthropy). Over several centuries and even millennia, many
species followed the spread of open habitats as agricultural land use expanded (Donald et al.
2002), resulting, in combination with the loss of natural processes, in strong relationships
with agriculture. Farmland resources and ecological functions have become vital to a range
of open-habitat taxa (Attwood et al. 2009; Michael et al. 2011; van Swaay et al. 2006) and
land-management techniques such as livestock grazing, burning and crop rotation,
combined with minimal chemical and mechanical input, create high conservation value
(Bignal & McCracken 1996). Many birds, for example, have come to rely on the high
invertebrate densities, weed seeds, crop residues and spilt grain, animal carcasses and
spatial and temporal habitat heterogeneity provided by low-impact 3, and often traditional,
forms of farming (Fuller et al. 2004; van der Weijden et al. 2010). Population declines with
twentieth-century agricultural modernisation are indicative of many species’ present-day

dependencies on low-impact farming.

Agriculture-dependent species demonstrate a unique nature value inherent to low-impact
farming systems, but much remains to be learnt about this subset of biodiversity. Examples
are most apparent from the developed world, particularly Europe, but with prevalent
research paradigms directing little attention to agricultural landscapes elsewhere, these

phenomena may reflect more than one continent’s idiosyncratic ecology. Isolated cases

! Semi-natural habitats/landscapes are defined for this thesis as those that contain a near-natural selection
of species but are modified and, at least in part, sustained by human activity, so that if management is
removed, the habitat and its species assemblage would likely change e.g. through succession.

2 Extensive farming are modes of production that require little or no labour, chemical or capital inputs
relative to the land area in use. Extensive pastoral farming involves no chemical treatment of pastureland
and has low stocking densities, often over large land areas.

% Low-impact farming/agriculture is defined, for the purposes of this thesis, as modes of production that
have little to moderate ecological impact, therefore minimising the loss of species that occur naturally, or
have become long-established components of the farmed landscape. These modes typically make no or
little use of chemical treatments and advanced farm machinery, instead adopting cropping and
livestocking techniques that, as a by product of farming, maintain or enhance resources for wildlife.
These farming systems are often a precursor to, and contrast strongly with, the highly mechanised, high-
input modes of agriculture now prevalent in much of the developed world (particularly Europe and North

America).



Introduction

from further afield — such as the Sociable Lapwing Vanellus gregarius in Central Asia
(Kamp et al. 2009) — and the long history of agriculture in many parts of the developing
world (Mazoyer & Roudart 2006) suggest synanthropy may not be as uncommon outside of
Europe as has been widely perceived. If this important subset of biodiversity is widespread,
whether it can persist in farmed landscapes undergoing technological change, or be
conserved alongside the development needs of local people, are important questions
(Adams 2012). With increased global production driving agricultural modernisation
(Horlings & Marsden 2011), there is an urgent need to identify the conservation value in
traditional, low-impact farming landscapes, and understand the practices that sustain

agriculture-dependent biodiversity, before they are irreversibly changed.

1.5.  White-shouldered Ibis: a case study

This thesis focuses on the example of White-shouldered Ibis Pseudibis davisoni in a
traditional, mixed farming system of Cambodia. As data for a wide range of synanthropic
species is not yet available, this case study is useful to illustrate conservation issues
surrounding an agriculture-dependent species in the developing world. This Critically
Endangered ibis was selected for this purpose as it: occurs in a wildlife-rich, yet poorly
studied, farming system comprising both low-intensity arable and extensive pastoral
agriculture; is confined to a region likely to undergo imminent, substantial agricultural
change (Yu & Diao 2011); and, given its severe endangerment, requires urgent research to

understand its links with farming.

Prior to this study, crude estimates put the global White-shouldered Ibis population at only
50-250 mature individuals, following a dramatic decline in the twentieth-century (BirdLife
International 2008). Reasons for this population crash are uncertain, but hunting and habitat
loss appear likely factors (BirdLife International 2001), leaving it the most threatened
waterbird in South-East Asia (Tordoff et al. 2005). Although functionally extinct from
Thailand, Myanmar, southern China and Vietnam, and very scarce in southern Laos and
Indonesian Borneo (BirdLife International 2001; Meijaard et al. 2005), the rediscovery of
subpopulations in dry forests of north and east Cambodia confirmed a final stronghold
(BirdLife International 2002; WCS 2004).

Historic records of White-shouldered Ibis indicate use of wetlands, river channels and
cultivated lands (BirdLife International 2001). Anecdotal evidence found the species in

closer proximity to people than other South-East Asian large waterbirds (J.C. Eames and T.
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Evans pers. comm. 2008), provoking suggestions that species is synanthropic and reliant on
foraging habitat grazed by livestock (Buckingham & Prach 2006). Timmins (2008)
postulated that declines in wild ungulates may have altered wetland grazing ecology and
impacted ibis populations, and a study of dry season foraging ecology confirmed the ibis’s
selection of pools with short vegetation, plus the use of forest understorey where bare
ground was available (Wright 2008; Wright et al. 2010). Available data suggested that the
ibis is a dry-season breeder vulnerable to nest robbery and disturbance (Clements et al. in
press-a), but scientific evidence for most of its foraging and breeding requirements was still
lacking at this study’s inception. A workshop was held with governmental and non-
governmental conservation organisations in Phnom Penh, February 2009, to identify and

prioritise the knowledge gaps in White-shouldered Ibis ecology.

1.6. Thesis background

1.6.1. Thesis objectives

This thesis seeks evidence for numerous species depending on developing-world
agriculture, drawing attention to the value of tropical and developing-world farming
landscapes neglected in conservation science. By revealing this distinctive subset of
biodiversity, the thesis aims to inform our knowledge of biodiversity retention in
agricultural landscapes, bring new considerations for the land-sparing versus land-sharing
debate, and deliver wider relevance for the semi-natural habitats paradigm in European
conservation. The thesis considers the case of White-shouldered Ibis to exemplify some of
the ecological mechanisms that underpin synanthropic relationships with agriculture. The
importance of a traditional farming system to local livelihoods is assessed in an attempt to
find synergies between ibis conservation and human well-being; likely impacts of socio-
economic change are also evaluated. In addition, the thesis presents data on White-
shouldered Ibis population status and foraging ecology — informative to conservation and
the study of this species’s synanthropy — and tests the effectiveness of nest-guarding, a

popular but poorly studied intervention that engages local communities in conservation.

1.6.2. Research approach

Relationships between humans and biodiversity are particularly evident in agriculture,
where people and wildlife rely on the same land area, ecosystem services, and often each

other. Synanthropic species provide a prime example of the need to integrate conservation

11
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and development perspectives, as changes to farming livelihoods will affect conservation
intervention and vice versa. This study therefore adopts the interdisciplinary approach now
widely called for in conservation science (Balmford et al. 2012; Campbell 2005; Norris
2008), conducting ecological research alongside livelihood assessment and rural appraisal

methods frequently applied in social sciences.

1.6.3. Study areas

1.6.3.1. Cambodian dry forests

Central Indochina was once dominated by deciduous dipterocarp forests (DDF), but
following deforestation the largest areas remain in north and east Cambodia (CEPF 2007).
Dry forest landscapes comprise a DDF matrix surrounding a mosaic of grasslands, mixed
deciduous and semi-evergreen forests, river channels, and active and abandoned rice
paddies. DDF is typically open in structure, lacking a shrub or middle-storey canopy and
resembling a savannah. The climate is strongly monsoonal with average monthly rainfall as
little as 0.9 mm in the dry season (November—April) and up to 333 mm in the wet season
(May-October; Thuon & Chambers 2006). Waterholes, known locally as trapaengs and of
0.001-3.4 ha (Fig. 1.1.; Wright et al. 2010), occur extraordinarily frequently in the
landscape. Trapaeng and river channel water levels vary seasonally (Thuon & Chambers
2006; Wright et al. 2010), with water drawdown exposing pool and river-bed substrates in

the dry season.

Small villages occur sporadically in the landscape and local people practice low-intensity,
wet-season rice cultivation, supplemented by extensive livestock rearing (namely cattle and
domestic water buffalo) and harvesting of dry forest resources (Clements et al. in press-b;
McKenney & Prom 2002). Poverty is widespread with household consumption in
Cambodian forests estimated at only $329 + 16 per annum (mean + SD; World Bank 2009).
Livestock are released into the forest to feed for most of the year; both people and livestock
permeate the majority of the landscape but their abundance declines with distance from
villages (Wright et al. 2010). The forest understorey is burnt annually to encourage new
graze for their livestock (Stott 1986). Livestock grazing and anthropogenic fire are both

likely to affect the suitability of foraging habitat for ibis.

12
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Figure 1.1. A trapaeng in the mid-dry season, visited by domestic cattle and water buffalo and

showing exposure of heavily grazed and trampled substrate.

Dry forests once supported large populations of mega-fauna, including four wild bovids and
Asian Elephant Elephas maximus (Tordoff et al. 2005; Wharton 1968). Although these
populations have much declined (Loucks et al. 2009), these landscapes still support at least
30 threatened mammals and 19 threatened birds, including the White-shouldered Ibis and
the similarly-threatened Giant Ibis Thaumatibis gigantea (WCS 2009). While livelihood
activities do have an impact (e.g. logging, clearance for agriculture and hunting), larger-
scale habitat conversion for economic land concessions (often plantation agriculture),
infrastructure and settlement are the most serious threats to the dry forest ecosystem, and to
White-shouldered Ibis (BirdLife International 2012; CEPF 2007).

1.6.3.2. Western Siem Pang Important Bird Area

The principal study site was Western Siem Pang Important Bird Area (IBA; Seng et al.
2003) in Stung Treng province, northern Cambodia (14°07'N 106°14'E; Fig. 1.2.). This
138,000 ha area holds the largest known White-shouldered Ibis population — believed,
before this study, to number at least 140 birds (D. Buckingham unpubl. data) — and contains
a typical selection of dry forest habitats. Legal protection has not yet been secured

13
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Figure 1.2. Map of the four main study sites in north and east Cambodia; insets show the

regional context with Cambaodia highlighted in grey in the left-hand inset. Black squares

indicate provincial centres of interest.

(Timmins 2012), but BirdLife International have undertaken small-scale conservation
activities since 2003, employing four staff to undertake basic biodiversity monitoring and
local awareness campaigns (BirdLife International 2009). Sporadic law enforcement,
coordinated with the Forestry Administration, has focused on illegal logging.
Approximately 11,000 people live in 16 small settlements (Ministry of Planning 2007); the
nearest provincial capital (and large market) is c. 75 km from the IBA’s centre and, until
2010, was reachable only by seasonally-passable forest tracks, or by boat along the Kong
River (Fig. 1.2.). The stretch of this river immediately adjacent to Western Siem Pang

(forming part of the Sekong River IBA; Seng et al. 2003) was studied for chapter 5.

1.6.3.3. Other study sites

Research was undertaken at three other sites (Fig. 1.2.) to estimate White-shouldered Ibis
population size and nesting success only. Two of these were protected, dry forest areas:

14
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Kulen Promtep Wildlife Sanctuary, Preah Vihear province (13°58'N 104°53'E), where a
variety of conservation interventions have been undertaken since 2002 (Clements et al.
2010), and Lomphat Wildlife Sanctuary, Ratanakiri province (13°20'N 106°56'E), where
law enforcement began in 2003, and species conservation activities in 2010 (BirdLife
International 2010). A further site, the Mekong Flooded Forest in Kratie and Stung Treng
provinces (13°02'N 106°01'E), is an unprotected area comprising the braided channel of the
Mekong River, surrounded by DDF, mixed deciduous and semi-evergreen forests;
conservation activities have taken place since 2010. Further details of these sites are

provided in the relevant chapters.

1.6.4. Thesis structure

The thesis begins with a discussion of the biodiversity value in developing-world
agriculture (chapter 2), presenting evidence for an assemblage of species depending on
agriculture. Subsequent chapters study White-shouldered Ibis, with chapters 3-5 setting the
ecological context. Chapter 3 presents results of coordinated roost counts, estimating White-
shouldered Ibis population size and assessing the proportion protected within formally
designed sites. Chapter 4 examines White-shouldered Ibis foraging ecology at trapaengs,
considering how the species overcomes water scarcity to breed in the dry season. Chapter 5
compares the foraging strategies of sympatric White-shouldered Ibis and Giant Ibis and
discusses how their use of the mixed farming system may differ. Chapter 6 experimentally
tests the impact of livestock grazing and forest understorey fires on White-shouldered Ibis
foraging habitats, establishing the link between traditional farming practices and ibis
ecology. Chapter 7 examines local livelihoods, ascertaining local people’s reliance on dry
forest resources and farming practices valuable to ibis, and discussing the potential for a
win-win conservation approach. Chapter 8 considers the effectiveness of locally-employed
nest guards and the contexts in which this conservation intervention is most useful. Chapter

9 concludes with a summary and discussion of the thesis findings.

The seven results chapters (chapters 2—8) are written in the form of scientific peer-reviewed
papers. At the time of submission, three chapters were published: chapter 2 (Wright et al.
2012c), with an accompanying correspondence piece (Wright et al. 2012d) given in the
chapter’s Appendix D; chapter 3 (Wright et al. 2012b); and chapter 5 (Wright et al. 2012a).
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Agriculture — a key element for conservation
In the developing world

Sociable Lapwing Vanellus gregarius, a threatened steppic species reliant on
farming. Photo courtesy of Manjeet & Yograj Jadeja.
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Chapter 2: Agriculture and conservation

2.1. Abstract

Conserving biodiversity through supporting or mimicking traditional management of
anthropogenic habitats is a paradigm in the developed world, particularly Europe. It is
rarely applied in developing countries where forest biotas are more common foci. We
quantified the numbers of globally threatened bird species using anthropogenic habitats and
examined scientific literature to identify those that are dependent on low-impact agriculture
in the developing world. Such dependency is distinct from species using farmland to
supplement or move between their remnant natural habitats. We show that low-impact
agriculture is important to a number of threatened open-habitat species in a variety of
farming systems. However, these systems are expected to undergo widespread
transformation due to economic change. Conservation must identify valuable farmed
landscapes and seek new mechanisms to maintain or mimic important land-management
techniques in developing countries. A suite of policy instruments should be considered, to
provide incentives or development benefits that encourage farmers to manage landscapes
for wildlife. The land sparing approach to balancing biodiversity conservation and
agricultural production will be detrimental to those open-habitat bird species dependent on

agriculture; a mix of agricultural land-use types may offer the best compromise.

2.2. Introduction

Anthropogenic landscapes are receiving increasing attention in developing world
conservation (Daily 2001; Edwards et al. 2011; Gardner et al. 2009; Urquiza-Haas et al.
2007). However, outside of developed countries the conservation value of the agricultural
matrix is usually interpreted in terms of its permeability to forest species that retain access
to fragments of natural habitat (Daily et al. 2001; Perfecto & Vandermeer 2010;
Ranganathan et al. 2008). Here we present evidence that anthropogenic landscapes are of
primary importance to a distinct set of mainly open-habitat species. This situation most
commonly arises in ancient farmed landscapes in parts of Europe, Africa and Asia, but also
in recently transformed landscapes where novel human land use has substituted for natural
ecosystem processes. Forest species, the focus of countryside biogeography, use farmlands
as a means of dispersal, a buffer to populations in core natural ecosystems or as a
supplementary resource. For these, farmland is still only second best compared to intact
forest. In contrast, many open-habitat species have come to fully depend on anthropogenic

or semi-natural landscapes where their natural habitat has been entirely lost. Examples of

23



Chapter 2: Agriculture and conservation

this dependency can now be found in the developing world, where conservation approaches

emphasising semi-natural landscapes will have great relevance.

2.3. A developed world conservation paradigm

Anthropogenic landscapes sustain much biodiversity in the developed world, following the
loss and conversion of natural ecosystems over recent millennia. Although progressive
landscape transformation extirpated numerous species (often filtering top predators, large
herbivores, old-growth dependent and some open-habitat species), remaining taxa were able
to exploit these landscapes and the low-impact practices that maintained them, resulting in
dependency in the absence of their natural habitat. Open-habitat species, those once
occurring naturally in non-forested habitats such as grasslands, savannas and steppe, have

developed particularly strong dependencies on anthropogenic and semi-natural habitats.

Twentieth-century mechanization and market transformation brought further ecosystem
change (Donald et al. 2001). Intensified land use resulted in temporal and spatial
homogenization of habitats (Benton et al. 2003), while abandonment of marginal lands
caused ecological succession and further reductions in habitat complexity (Sirami et al.
2008). As a result, reintroducing or mimicking low-impact practices to sustain the
conservation value of semi-natural habitats became a dominant paradigm in European
conservation (Bignal & McCracken 2000; Sutherland & Hill 1995). Traditional
management of forest, fen, anthropogenic grasslands, shrublands and pseudo-steppe
habitats has been widely applied and incorporated into legislation, such as the European

Habitats Directive.

Agriculture in Europe became a particular focus of the semi-natural habitats paradigm.
Heterogeneous agricultural mosaics offer benefits to numerous complementing species
(Fuller et al. 2004), while other taxa require extensively farmed landscapes of less structural
complexity. Legislation such as the European Common Agricultural Policy has incentivised
wildlife-friendly, lower-impact farming to counter the twin threats of agricultural
intensification and abandonment. However, such agri-environmental schemes sometimes
achieve mixed or meagre success due to broad and shallow approaches that minimise
transaction costs at the risk of ignoring important ecological detail (Batary et al. 2011,
Kleijn et al. 2006).
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2.4. Conservation and agriculture in the developing world

By contrast, the semi-natural habitat approach has rarely been applied in the developing
world. While this may be partly due to challenging social and political conditions that limit
policy transfer, dominant schools of thought in developing world conservation also
contribute. Priority is given to closed-habitat species and their frontier forest ecosystems
(Bond & Parr 2010), where agricultural conversion causes considerable primary habitat and
species loss (Sodhi et al. 2010). Policy is dominated by efforts to stem the impacts of
exploitation or land-use change in natural habitats. Agricultural landscapes, when
considered, are typically assessed for their suitability in maintaining or assisting the survival
of forest species, such as studies of wildlife-friendly coffee plantations (Mas & Dietsch
2004). Although in some cases agriculture is treated as an intimate component of
biodiversity conservation (Perfecto & VVandermeer 2010), the focus remains on sustaining
populations of declining natural habitats. Conservation approaches directed primarily at
frontier ecosystems or by countryside biogeography may overlook the importance of

agricultural landscapes for open-habitat species.

Global food demand is increasing due to growing human population but also greater
affluence and changing consumption. Though famine and food security may best be
addressed by resolving food entitlement inequalities (Sen 1981), global demand may
nonetheless double by 2050, outstripping human population increase (Loh 2002). How this
can be met without widespread species extinctions is of great concern, with agricultural
land-use considered one of the greatest threats to global biodiversity (MEA 2005; Sala et al.
2000). The majority of human population and economic growth is occurring in developing
countries where pressures for natural habitat conversion and agricultural intensification are

greatest and expected to escalate (Cincotta et al. 2000; Tilman et al. 2001).

Species already dependent, or increasingly reliant, on farmland due to loss of natural
habitats are at particular risk from agricultural change. It is important to identify and protect
those semi-natural habitats and agricultural landscapes of high conservation value in
developing countries. Here we present evidence that agricultural landscapes support not just
a filtered subset of the biota remaining in extant natural habitats, but rather a unique and
dependent biodiversity. This justifies the wider application of European conservation
approaches to the developing world and influences how habitats are prioritised for

conservation in these countries.
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2.5. Threatened species and low-impact agriculture in the developing world

Globally threatened birds were systematically examined to quantify their associations with
agricultural habitats, followed by an assessment of candidate species and their potential
dependency on farming. The analysis was restricted to birds as there is little comparable
autoecological data for other taxa. Nonetheless, the multitude of evidence from developed
countries suggests that dependencies of non-avian wildlife on agriculture will also occur
more widely. Numerous butterflies (van Swaay et al. 2006), arthropods (Di Giulio et al.
2001), reptiles (Michael et al. 2011), amphibians (Hartel et al. 2010), bats (Boughey et al.
2011) and even sessile organisms such as vascular plants (Haines-Young et al. 2000), rely

on or benefit from management of anthropogenic habitats in the developed world.

Focusing on species of high conservation priority revealed the importance of agriculture to
conservation globally. Habitat associations were collated and quantified across six regions:
Europe, North America, Australasia, Asia, Africa and South America. We searched the
IUCN Red List for Birds database (BirdLife International 2011) using terms consistently
used for status (Critically Endangered, Endangered, Vulnerable or Near Threatened) and
habitat (forest, grasslands, savannas or terrestrial artificial landscapes - which we interpret

as mainly comprising agriculture); these are elaborated in Appendix A (section 2.9.1).

The potential agricultural dependency of candidate bird species was initially assessed using
species accounts of the Red List database (BirdLife International 2011), identifying birds
that make use of food resources or habitat conditions (foraging or breeding) maintained by
farming practices. Where these suggested possible dependency (replacing or substituting,
rather than complementing natural habitats) we sought scientific evidence from primary
literature. Species were considered largely or entirely dependent on agriculture where
approximately > 75% of the population was reliant on an agricultural habitat or practice at
one or more stages of its life history. Population data were obtained from species accounts
or primary literature, but when unavailable the proportion of the species range with
dependency was inferred qualitatively from distribution maps. Our assessment of
agricultural dependencies will be incomplete, particularly for grassland or savanna species,
where species accounts and past autoecological studies have often failed to recognise the
dynamic nature of these systems and the crucial role of human land use. The true

importance of agriculture to dependent species is therefore underestimated.

Although 77% of all threatened or Near Threatened bird species in developing countries use

forest habitats, 28% use terrestrial artificial landscapes (22% in addition to forests and 6%
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in artificial landscapes but not forests). Thirty-three percent of threatened species in Asia
use artificial habitats (Fig. 2.1.), matched by 33% of African and 20% of South American
species, demonstrating that such associations are widespread in the developing world.
Furthermore, 25% of all globally threatened or Near Threatened developing-world birds
occur in grassland or savanna habitats, many of which are modified or maintained by
human land-use. Grassland is especially valuable in Africa, where it is used by 95 of the
144 globally threatened birds (Beresford et al. 2010).

Beyond the use of agricultural and potentially modified habitats presented in Fig. 2.1., we
identified nearly thirty threatened bird species for which there is strong evidence of
dependence on low-impact agriculture in the developing world (Table 2.1.). The number of
examples suggests this is not a trivial pattern and many more cases would be found if
appropriate data were available. We found dependence on anthropogenic landscapes and
habitats across a wide range of open-habitat species and taxonomic groups, from grassland
specialists such as larks and bustards, to birds of prey and waterbirds. These occurred at
both breeding and non-breeding life stages and across all six geographic regions. As in
Europe, open-habitat species worldwide benefit from a variety of resources and

management techniques across a range of farming systems.
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Figure 2.1. The numbers of globally threatened or Near Threatened species using forest,
savanna, grassland or other artificial habitats (primarily agricultural but also including urban,
rural gardens and heavily degraded forest) by region. As individual species may use more than
one habitat and more than one region, the number of species represented in each region is
shown in parentheses. Australasia (Austral.) includes Australia, New Zealand, New Guinea and

Pacific Islands.
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Farming system Species Resource * Status®  Region
Extensive pastoral Jerdon’s Courser Rhinoptilus bitorquatus FH CR South Asia
Liben Lark Heteromirafra sidamoensis NH, FH CR East Africa
Rudd’s Lark Heteromirafra ruddi NH, FH VU Southern Africa
Dupont’s Lark Chersophilus duponti NH, FH NT North Africa
Sharpe’s Longclaw Macronyx sharpei NH, FH EN East Africa
Sierra Madre Sparrow Xenospiza baileyi NH, FH EN Central America
Pastoral Indian Vulture Gyps indicus Ca CR South Asia
Slender-billed Vulture Gyps tenuirostris Ca CR South & South-East Asia
White-rumped Vulture Gyps bengalensis Ca CR South & South-East Asia
Red-headed Vulture Sarcogyps calvus Ca CR South & South-East Asia
St Helena Plover Charadrius sanctaehelenae NH, FH CR South Atlantic islands
Sociable Lapwing Vanellus gregarius NH, FH CR Central Asia
Buff-breasted Sandpiper Tryngites subruficollis FH \s NT South America
Botha's Lark Spizocorys fringillaris NH, FH EN Southern Africa
Pale-headed Brush-finch Atlapetes pallidiceps FH EN South America
Arable and rice Asian Crested lbis Nipponia nippon FH EN Central Asia
Black-necked Crane Grus nigricollis FH, Gr \s VU Central Asia
Hooded Crane Grus monacha FH, Gr g VU East Asia ¢
Yellow-breasted Bunting Emberiza aureola FH, Gr \g VU Asia
Mixed pastoral Northern Bald lbis Geronticus eremita FH CR North Africa, Middle East
and arable Southern Bald Ibis Geronticus calvus FH VU Southern Africa
White-shouldered Ibis Pseudibis davisoni FH CR South-East Asia
Blue Crane Grus paradisea NH, FH, Gr VU Southern Africa
Grey Crowned-crane Balearica regulorum FH, Gr VU South & East Africa
Bengal Florican Houbaropsis bengalensis NH, FH CR South & South-East Asia

Table 2.1. Continued pg.

29.

UOITRAIBSUOD pue 31Ny noLIBy :z Jaydey)d
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http://www.birdlife.org/datazone/speciesfactsheet.php?id=8124
http://www.birdlife.org/datazone/speciesfactsheet.php?id=8168
http://www.birdlife.org/datazone/speciesfactsheet.php?id=8422
http://www.birdlife.org/datazone/speciesfactsheet.php?id=8999
http://www.birdlife.org/datazone/speciesfactsheet.php?id=31029
http://www.birdlife.org/datazone/speciesfactsheet.php?id=30234
http://www.birdlife.org/datazone/speciesfactsheet.php?id=3374
http://www.birdlife.org/datazone/speciesfactsheet.php?id=3383
http://www.birdlife.org/datazone/speciesfactsheet.php?id=3123
http://www.birdlife.org/datazone/speciesfactsheet.php?id=3172
http://www.birdlife.org/datazone/speciesfactsheet.php?id=3059
http://www.birdlife.org/datazone/speciesfactsheet.php?id=8165
http://www.birdlife.org/datazone/speciesfactsheet.php?id=3801
http://www.birdlife.org/datazone/speciesfactsheet.php?id=2797
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http://www.birdlife.org/datazone/speciesfactsheet.php?id=2792
http://www.birdlife.org/datazone/speciesfactsheet.php?id=2782
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Blue Bustard Eupodotis caerulescens NH, FH NT Southern Africa

Great Bustard Otis tarda NH, FH VU Middle East, Central Asia d
Great Indian Bustard Ardeotis nigriceps NH, FH CR South Asia
Saffron-cowled Blackbird Xanthopsar flavus NH, FH VU South America

Table 2.1. Threatened and Near Threatened open-habitat species dependent on low-impact agriculture in the developing world, by farming
system and in taxonomic order *. Sources are given in Appendix B (section 2.9.2). ® Farming system resource of importance to threatened
species: NH = nesting habitat, FH = foraging habitat, Gr = rice/cereal grain and Ca = animal carcasses. NB indicates that the dependence
occurs in the non-breeding season only. ®Threatened status: CR = Critically Endangered, EN = Endangered, VU = Vulnerable and NT = Near

Threatened. “Extent of species’ ranges, in the developing world only. d Species also occurs in developed countries.

! Since publication of this paper, the author has become aware of two other species dependent on agricultural landscapes, the Ethiopian Bush-crow Zavattariornis
stresemanni in pastoral systems of southern Ethiopia (Donald et al. 2012) and Tuamotu Kingfisher Todiramphus gambieri which selects coconut plantations with

burnt understorey to feed on the Niau Atoll of French Polynesia (Coulombe et al. 2011).
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In pastoral systems, domestic livestock may mimic or substitute crucial ecosystem functions
once provided by wild herbivores, now extirpated or scarce. Consequently, many threatened
species, such as larks and terrestrial waders, now appear reliant on livestock for maintaining
habitat suitability in extensive savannas, rangelands and agro-forestry systems (Table 2.1.).
Inappropriate exclusion of livestock from wetland or grassland systems can lead to declines
of dependent biodiversity as has occurred in certain Indian conservation programmes
(Lewis 2003). Domestic livestock can also be a vital food source for carcass-feeders such as
South Asian Gyps and Sarcogyps vultures — so long as diclofenac residue is absent
(Houston 1996; Pain et al. 2003).

Arable systems can provide abundant invertebrate prey, cereal grains and weed seeds,
particularly in low-input cereal and rice farming. Species such as Asian Crested Ibis
Nipponia nippon have benefited from long historical associations with traditional arable
agriculture. Numerous crane species forage on agricultural land benefiting from spilt cereal
grains (Table 2.1.), similar to the use of farmland by Common Crane Grus grus in Europe
(Franco et al. 2000). In Asia, remaining areas of low-to-medium intensity rice cultivation
provide stubbles that support wintering granivorous passerines, such as yellow-breasted
bunting Emberiza aureola. Such production systems are now increasingly rare and
threatened (Gray et al. 2007).

Mixed farming, combining pastoral and arable land-use within a landscape, is particularly
important with its heterogeneity and small-scale complexity providing varied foraging
resources and nest sites (van der Weijden et al. 2010). In Morocco, the Critically
Endangered Northern Bald Ibis Geronticus eremita feeds in a mosaic of extensively grazed
semi-arid littoral steppe and low-intensity, traditionally-cultivated barley fields and fallows
(Bowden et al. 2008). Small-scale cultivation occurs close to, or amongst, littoral steppe
habitat kept open by goats and sheep. This combination of pastoralism and crops create
habitat conditions with a high density of invertebrate and lizard prey accessible to the ibis.
Agricultural intensification associated with human population growth is threatening the

long-term viability of this mixed farming system.

Numerous examples come from ancient, traditional farming systems, where species such as
Asian Crested Ibis and Bengal Florican Houbaropsis bengalensis could shift to agricultural
land uses over centuries or millennia, developing increasing dependency on these systems
as their natural habitats were lost. Other cases have arisen much more recently where new
land-use practices have replaced the key ecosystem processes that open-habitat species

require. The Sociable Lapwing Vanellus gregarius (Fig. 2.2.) became reliant on agriculture
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Figure 2.2. The Critically Endangered Sociable Lapwing Vanellus gregarius (a) which depends
on grazed steppic grasslands (b) during the breeding season. Photographs courtesy of Maxim

Koshkin.

in the twentieth century as the declining influence of native ungulates coincided with the
creation of new rural livelihoods and novel farmed landscapes (Kamp et al. 2009). A large
number of our cases of agricultural dependency come from Asia and Africa. This is perhaps
related both to the ancient history of pastoralism and cereal agriculture in these regions, and
to ecosystem functions now being carried out by livestock following recent extirpations of

native ungulates.

These developing-world cases provide wider relevance for the semi-natural habitats
paradigm. New and stronger dependencies are likely as agriculture continues to replace
habitats and ecosystem processes in these countries. Developing-world farming systems
may support a growing set of distinct taxa, although open-habitat species may still be lost
where they occupy an ecological niche not substituted by human land-use, or where
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agricultural change is particularly severe. Further research is needed into the value of low-
impact agriculture in the developing world, particularly for non-avian taxa, so that

agriculture’s importance is better understood and valuable landscapes are identified.

2.6. Prospects for low-impact agriculture and associated biodiversity

Low-impact agriculture benefits a suite of threatened species in the developing world but is
under threat from economic change. Escalating food prices create incentives for agricultural
investment by new, external actors (Godfray et al. 2010) bringing infrastructure and high-
input production methods that cause rapid land-use transition. The consequences of
industrialised agriculture for greenhouse gas emissions and environmental problems (such
as salinization, aquifer depletion and soil erosion), combined with increasing costs of
inorganic fertilizers, may challenge the long-term viability of industrial agriculture (MEA
2005). However, economic drivers and the current failure of markets to capture externalities
will probably sustain these models in the short to medium term. This represents an
immediate threat to low-impact agriculture and could bring losses to open-habitat

biodiversity.

Although large-scale industrial agriculture can benefit national economies and increase food
production, it often threatens the livelihoods and social stability of rural communities (Cook
2009; MEA 2005). Corrupt institutions lacking transparency and accountability, weak land
tenure and marginalised status can leave rural communities vulnerable to land concessions,
land grabbing and mass-privatization of common resources (Cotula et al. 2009). These
factors threaten wildlife-compatible pastoral economies in semi-natural grassland and
savanna ecosystems causing conversion to ranching or cereal agriculture (Norton-Griffiths
1995). For example, land conversion in the Tonle Sap floodplain of Cambodia is eroding
customary land rights and replacing pastoralism and traditional rice farming with intensive,
irrigated rice cultivation, putting Bengal Florican at serious risk of extirpation (Gray et al.
2007).

Where high-input agriculture threatens both people and wildlife, conservation could attempt
to halt, or at least delay, land-use transition by empowering rural communities. In such
cases, supporting social justice and local land-use entitlement could provide a win-win
scenario that advances the mutualistic goals of biodiversity and livelihood protection,
enabling low-impact agriculture to persist, at least in the short term. Conservation goals

may be particularly closely aligned with livelihoods when other opportunities are limited,
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such as in infertile marginal lands or hostile environments. However, economic changes and
greater access to technology and markets will still encourage transition to more profitable,
higher-yielding practices (Lambin et al. 2001), even where the impacts of external actors

can be alleviated.

Small-scale farming is being championed as an alternative to industrial models.
Characterised by low mechanical or chemical inputs with high crop complexity and high
labour intensity, this form of agriculture could deliver greater productivity in relation to
land area and provide a more sustainable means of future food supply (Perfecto &
Vandermeer 2010). New models from both the development and conservation agendas
propose that small-scale agriculture could achieve greater food production, food security,
ecological and social resilience and poverty reduction (FAO 2007; IAASTD 2009), as well
as promoting biodiversity conservation (Knoke et al. 2009; Perfecto & Vandermeer 2010).
Nevertheless, achieving these socio-economic goals will require that existing small-scale
farming systems are developed (Hazell et al. 2007), making the prospects for wildlife
dependent on low-impact agriculture unclear. Intensification of production may prove
detrimental to species dependent on extensive techniques, and with nearly one third of the
human population living on small farms (Hazell et al. 2007) the impacts of agricultural

development could be considerable.

2.7. The conservation response: applying the semi-natural habitats approach

The widespread transformation of low-impact agriculture appears likely, whether through
extrinsic actors or internal agricultural development. Where threatened biodiversity is
dependent on agriculture, minimising the threat of rapid industrialisation is a crucial first
step. However, merely defending community entitlements to resist land-grabbing by
external actors may not guarantee the status quo in the face of economic pressures and
technological opportunities. Conservation should prepare for intervention, developing and
adopting a range of policy mechanisms with the aim of maintaining, supporting or
mimicking beneficial land management; thereby transferring the semi-natural habitats
paradigm to the developing world. Effective interventions must be harmonised with socio-
economic policies to ensure social development is not prevented (Adams et al. 2004).
Curtailing economic growth or constraining livelihood opportunities could result in

stakeholder discontent or threaten a policy’s long-term viability.
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Various policy measures offer economic opportunities, incentives or development benefits
to stakeholders, including: market enhancements such as certification schemes; community-
based ecotourism; payments for environmental services; direct payments for conservation
and conservation concessions (Bennett 2000; Ferraro & Kiss 2002). Such instruments could
reward farmers for the take-up or continuation of valuable agricultural practices sustaining
open-habitat species. Education to raise awareness of sustainable land management and
resource use combined with disincentives for bad practice, such as enforcement of wildlife
protection legislation and compulsory public disclosure of practices will also be important
(Bruner et al. 2001). In many cases, policy measures would support rather than replace
existing livelihoods, though compensation may be required for lost opportunities of
developing higher-yielding, higher-impact agriculture. The need to quantify the costs of
wildlife-friendly farming is recognised in the developed world (House et al. 2008), but
elsewhere these costs and the necessary levels of compensation or incentive deserve further

research.

Conservation of the Endangered Sharpe’s Longclaw Macronyx sharpei in Kenya is
beginning to adopt the semi-natural habitat approach. The species requires short-sward
grassland maintained by livestock, a habitat being lost to both agro-business- and
smallholder-scale arable cultivation (Muchai et al. 2002). Land purchases are alleviating the
threat of habitat conversion and grazing lets, administered by the community, provide
income while creating suitable habitat conditions. At a larger scale, sheep-rearing is being
advocated to provide a livelihood alternative and deliver habitat management for
conservation (P. Matiku pers. comm.). Training and marketing is provided to encourage
uptake of sheep-farming, supplemented by bee-keeping and an emerging eco-tourism

scheme to provide further livelihood development.

Appropriate policy instruments will be highly context dependent. The pace of economic
development, land entitlement of farmers, political transparency, complexity of stakeholder
relations, strength of institutions and empowerment of local people are all important
considerations (Salafsky et al. 2001). European policies such as agri-environmental
schemes may be relevant in some instances, particularly where institutions are well-
developed and legitimate. However, geographical transfer of policy measures will require
assessments of their suitability under different social, political and economic conditions.
The ability to undertake conservation of open-habitat species in agricultural landscapes will
also depend on finding sustainable sources of funding — a challenge to be addressed for

species conservation in general. Where financial resources are scarce and priorities have to
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be drawn, the decision on whether to conserve biodiversity in natural versus anthropogenic
landscapes should be based on evidence regarding relative threat, conservation value, cost
and likelihood of success.

2.8. Reconciling conservation and global food production

Protecting biodiversity in the face of projected rises in food demand is a challenge. To
reconcile the aims of conservation and agricultural development, conservation has proposed
a trade-off between two approaches: wildlife-friendly farming and land sparing (Ewers et al.
2009; Green et al. 2005; Phalan et al. 2011b). The former attempts to conserve species on
farmland but with costs to yield, therefore requiring more land in cultivation. The latter
would intensify agriculture to increase yields, reducing the need to convert further natural
habitat to agriculture (Balmford et al. 2005). This trade-off can potentially be resolved using
a model examining the response of species population density to agricultural yield. Where
increases in yield cause steep (concave) declines in population density, land sparing through
intensification is most appropriate as it gives greater regional species abundance for a given
level of agricultural yield (Green et al. 2005; Phalan et al. 2011b).

However, this model assumes population density is always maximal in an existing and
available natural habitat, with lower densities in all forms of agriculture and a monotonic
decline with increasing yield 1. This does not apply to those open-habitat species now
dependent on agriculture, for which natural habitats or processes are absent and maximal
density occurs along the gradient of human land-use and agricultural yield. While
agricultural intensification, offset by land sparing, may be an appropriate strategy in frontier
ecosystems (Sodhi et al. 2010), elsewhere it may heighten the risk of extinction for biota
reliant on low-impact agriculture. This form of agriculture is the only option for such
species, at least in the absence of large scale restoration of natural habitats and ecosystem
function. A further limitation is the model's assumption that meeting human need depends
solely on the volume of agricultural production. While markets may drive increased
production, human welfare is often better served by resilient livelihoods, social security and

adequate entitlements, all of which can be threatened by intensified industrial agriculture.

! This statement is erroneous and this mistake was noticed after publication. The model does not make
assumptions about where population density is maximal and considers a range of density-yield curves.
Nevertheless, the majority of species so far used to illustrate the model have demonstrated maximal
density in an existing available natural habitat, which does not apply to open-habitat species. The

implications of this are discussed further in section 2.9.4 Appendix D.
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Conservation strategies that provide not just for forest species, but also agriculture-
dependent species, will require a mixture of intensification, land sparing and extensive low-
impact agriculture that should be optimised for any particular region (Fischer et al. 2008).
Agriculture’s paradoxical nature, as both a great threat to biodiversity and a valuable land-
use that sustains open-habitat species (van der Weijden et al. 2010), would be better
represented by such a compromise. We have shown that agricultural dependency is
widespread across the developing world; however, uncertainty remains as to its relative
frequency and regional variability. An urgent task for conservation is to identify the land-
use practices and anthropogenic landscapes important to biodiversity and to develop the

mechanisms to maintain them before they are lost through land-use change.

2.9. Appendices

2.9.1. Appendix A: Details of search terms for the analysis of bird species habitat
associations using the IUCN Red List for birds database.

We systematically examined the habitat associations of globally threatened birds species
listed in the IUCN Red List for birds database (BirdLife International 2011) using search
terms available within BirdLife International’s online Data Zone resource. Terms for region
included Europe, North America, Australasia, Asia, Africa and South America, with the
latter three combined to create overall statistics for the developing world. Habitat terms

99 ¢¢ 99 ¢

were “forest”, “grasslands”, “savannas” and “terrestrial artificial landscapes”.

No search terms for agricultural land-uses were available in the Data Zone resource,
therefore we used terrestrial artificial landscapes as a proxy that combines agricultural land,
plantations and rural gardens, but may also include urban areas as well as former
subtropical/tropical forest lands heavily-degraded by combinations of logging, pastoralism,
swidden agriculture and collection of fuelwood and construction timber by local
communities. The considerably greater global land area covered by crops and grazing
pastures (48%) compared to settlement (1%; Erb et al. 2007) justifies this application.
While we acknowledge that some associations with terrestrial artificial landscapes will not

represent use of agricultural areas, such errors are likely to be minor.

Bird species of grassland and savanna were considered in our analysis because of the
importance of human land use, particularly agriculture, in these ecosystems. Above

precipitation thresholds savannas are unstable systems maintained free from woodland
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cover by fire and herbivory (Sankaran et al. 2005). Though savannas in low rainfall regions
may be more stable states, degree of woody cover is nevertheless affected by fire and
grazing. Human activity may threaten some of these climatically limited grasslands and
savannas (Krapovickas & Giacomo 1998) but it is increasingly recognised that many have
been modified by historical human land use or are of entirely anthropogenic origin (White
et al. 2000). Examples of anthropogenic savannas, converted from forest by human use of
fire, include those of the Indian sub-continent, tropical Australia and New Guinea, North
America and the Mediterranean (Keeley 2002; Lunt et al. 2006; Naveh 2007; Saha 2003).
Human influenced savannas in Africa have been influenced by fire and pastoralism for
millennia (Smith 1992). Elsewhere, humans have extended the altitudinal range of montane
grasslands through forest clearance and livestock grazing (Bredenkamp et al. 2002) or have

replaced the role of native ungulates in semi-natural grassland or savanna ecosystems.

2.9.2. Appendix B: Primary literature sources for species demonstrating a dependency on
low-impact agriculture in the developing world (Table 2.1.), listed by species in

alphabetical order of common name.

Asian Crested Ibis Nipponia nippon

Li, X., Li, D. (1998). Current state and the future of the crested ibis (Nipponia nippon):
a case study by population viability analysis. Ecological Research 13: 323-333.

van der Weijden, W., Terwan, P., Guldemond, A. (2010). Farmland Birds Across the
World. Lynx Edicions, Barcelona.

Bengal Florican Houbaropsis bengalensis

Gray, T.N.E., Chamnan, H., Collar, N.J., Dolman, P.M. (2009). Sex-specific habitat
use by a lekking bustard: conservation implications for the critically endangered
Bengal Florican (Houbaropsis bengalensis) in an intensifying agroecosystem. Auk
126: 112-122.

Gray, T.N.E., Collar, N.J., Davidson, P.J.A., Dolman, P.M., Evans, T.D., Fox, H.N.,
Hong, C., Ro, B., Seng, K.H., van Zalinge, R.N. (2009). Distribution, status and
conservation of the Bengal Florican Houbaropsis bengalensis in Cambodia. Bird
Conservational International 19: 1-14.

Black-necked Crane Grus nigricollis

Bishop, M.A. (1996). Black-necked crane (Grus nigricollis). Pages 184-194 in C.D.
Meine, and G.W. Archibald, eds. The Cranes: Status Survey and Conservation
Action Plan IUCN, Gland, Switzerland.

Blue Bustard Eupodotis caerulescens
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Moreira, F. (2004). Distribution patterns and conservation status of four bustard species
(family Otididae) in a montane grassland of South Africa. Biological Conservation
118: 91-100.
Blue Crane Grus paradisea
Allan, D.G. (1995). Habitat selection by Blue Cranes in the Western Cape Province
and the Karoo. South African Journal of Wildlife Research 25: 90-97.
Botha’s Lark Spizocorys fringillaris
BirdLife International (2011) IUCN Red List for birds. Available from
http://www.birdlife.org. Accessed 25/11/2011.
Maphisa, D.H., Donald, P.F., Buchanan, G.M., Ryan, P.G. (2009). Habitat use,
distribution and breeding ecology of the globally threatened Rudd’s Lark and
Botha’s Lark in eastern South Africa. Ostrich 80: 19-28.
Buff-breasted Sandpiper Tryngites subruficollis
Lanctot, R.B., Blanco, D.E., Dias, R.A., Isacch, J.P., Gill, V.A., Almeida, J.B., Delhey,
K., Petracci, P.F., Bencke, G.A., Balbueno, R.A. (2002). Conservation status of
the Buff-breasted Sandpiper: historic and contemporary distribution and
abundance in South America. Wilson Bulletin 114: 44-72.
Dupont’s Lark Chersophilus duponti
Seoane, J., Justribo, J.H., Garcia, F.R., J., Rabadan, C., Atienza, J.C. (2006). Habitat-
suitability modelling to assess the effects of land-use changes on Dupont’s lark
Chersophilus duponti: a case study in the Layna Important Bird Area. Biological
Conservation 128: 241-252.
Great Bustard Otis tarda
Hildago de Trucios, S.J. (1990). World status of the Great Bustard (Otis tarda) with
special attention to the Iberian peninsula populations. Miscellania zoologica 14:
167-180.
Great Indian Bustard Ardeotis nigriceps
Dutta, S., Rahmani, A.R., Jhala, Y.V. (2011). Running out of time? The great Indian
bustard Ardeotis nigriceps - status, viability, and conservation strategies. European
Journal of Wildlife Research 57: 615-625.
Grey Crowned-crane Balearica regulorum
Meine, C.D., Archibald, G.W. (1996). The Cranes: Status Survey and Conservation
Action Plan. IUCN, Gland, Switzerland.
Hooded Crane Grus monacha

See Grey Crowned-crane.
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Indian Vulture Gyps indicus
Houston, D.C. (1996). The Effect of Altered Environments on Vultures. Pages 327-336

in D. Bird, D. Varland, and J. Negro, eds. Raptors in Human Landscapes:
Adaptations to Built and Cultivated Environments. Academic Press, London.
Pain, D.J., Cunningham, A.A., Donald, P.F., Duckworth, J.W., Houston, D.C., Katzner,
T., Parry-Jones, J., Poole, C., Prakash, V., Round, P.D., Timmins, R. (2003).
Causes and effects of temporospatial declines of Gyps vultures in Asia.
Conservation Biology 17: 661-671.
Jerdon’s Courser Rhinoptilus bitorquatus
Jeganathan, P., Green, R.E., Norris, K., Vogiatzakis, I.N., Bartsch, A., Wotton, S.R.,
Bowden, C.G.R., Griffiths, G.H., Pain, D.J., Rahmani, A.R. (2004). Modelling
habitat selection and distribution of the critically endangered Jerdon’s courser
Rhinoptilus bitorquatus in scrub jungle: an application of a new tracking method.
Journal of Applied Ecology 41: 224-237.
Liben Lark Heteromirafra sidamoensis
Donald, P.F., Buchanan, G.M., Collar, N.J., Dellelegn Abebe, Y., Gabremichael, M.N.,
Mwangi, M.A.K., Ndang'ang'a, P.K., Spottiswoode, C.N., Wondafrash, M. (2010).
Rapid declines in habitat quality and population size of the Liben (Sidamo) Lark
Heteromirafra sidamoensis necessitate immediate conservation action. Bird
Conservation International 20: 1-12.
Spottiswoode, C.N., Wondafrash, M., Gabremichael, M.N., Dellelegn Abebe, Y.,
Mwangi, M.A.K., Collar, N.J., Dolman, P.M. (2009). Rangeland degradation is
poised to cause Africa’s first recorded avian extinction. Animal Conservation 12:
249-257.
Northern Bald Ibis Geronticus eremita
Bowden, C.G.R., Smith, K.W., El Bekkay, M., Oubrou, W., Aghnaj, A., Jimenez-
Armesto, M. (2008). Contribution of research to conservation action for the
northern bald ibis Geronticus eremita in Morocco. Bird Conservational
International 18: S74-S90.
Pale-headed Brush-finch Atlapetes pallidiceps
Oppel, S., Schaefer, H.M., Schmidt, V., Schroder, B. (2004). Habitat selection by the
pale-headed brush-finch (Atlapetes pallidiceps) in southern Ecuador: implications
for conservation. Biological Conservation 118: 33-40.
Red-headed Vulture Sarcogyps calvus

See Indian Vulture.
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Rudd’s Lark Heteromirafra ruddi

Maphisa, D.H., Donald, P.F., Buchanan, G.M., Ryan, P.G. (2009). Habitat use,
distribution and breeding ecology of the globally threatened Rudd’s Lark and
Botha’s Lark in eastern South Africa. Ostrich 80: 19-28.

Saffron-cowled Blackbird Xanthopsar flavus

Petry, M.V., Kriger, L. (2010). Frequent use of burned grasslands by the vulnerable
Saffron-Cowled Blackbird Xanthopsar flavus: implications for the conservation of
the species. Journal of Ornithology 151: 599-605.

Sharpe’s Longclaw Macronyx sharpei

Muchai, M., Lens, L., Bennun, L. (2002). Habitat selection and conservation of
Sharpe's longclaw (Macronyx sharpei), a threatened Kenyan grassland endemic.
Biological Conservation 105: 271-277.

Sierra Madre Sparrow Xenospiza baileyi

Cabrera-Garcia, L., Montes, J.A.V., Weinmann, M.E.E. (2006). Identification of
priority habitats for conservation of the Sierra Madre sparrow Xenospiza baileyi in
Mexico Oryx 40: 211-217.

Slender-billed Vulture Gyps tenuirostris

See Indian Vulture.

Sociable Lapwing Vanellus gregarius

del Hoyo, J., Elliot, A., Sargatal, J. (1996). Handbook of the Birds of the World,
Volume 3: Hoatzin to Auks. Lynx Edicions, Barcelona.

Kamp, J., Sheldon, R.D., Koshkin, M.A., Donald, P.F., Biedermann, R. (2009). Post-
Soviet steppe management causes pronounced synanthropy in the globally
threatened sociable lapwing Vanellus gregarius. Ibis 151: 452-463.

Southern Bald Ibis Geronticus calvus

Manry, D.E. (1985). Distribution, abundance and conservation of the bald ibis

Geronticus calvus in Southern Africa. Biological Conservation 33: 351-362.
St Helena Plover Charadrius sanctaehelenae

McCulloch, N. (2009). Recent decline of the St Helena Wirebird Charadrius

sanctaehelenae. Bird Conservation International 19: 33-48.
White-rumped Vulture Gyps bengalensis
See Indian Vulture.

White-shouldered Ibis Pseudibis davisoni *

! Chapters 5-6 now provide a detailed demonstration and discussion of the White-shouldered Ibis’ likely

dependence on farming.
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Wright, H.L., Buckingham, D.L., Dolman, P.M. (2010). Dry season habitat use by
critically endangered white-shouldered ibis in northern Cambodia. Animal
Conservation 13: 71-79.

Wright, H.L., Vorsak, B., Collar, N.J., Gray, T.N.E., Lake, I.R., Phearun, S., Rainey,
H.J., Vann, R., Ko, S., Dolman, P.M. (2010). Establishing a national monitoring
programme for White-shouldered Ibis in Cambodia. Ibis 152: 206-208.

Yellow-breasted Bunting Emberiza aureola

BirdLife International (2011) IUCN Red List for birds. Available from

http://www.birdlife.org. Accessed 25/11/2011.

2.9.3. Appendix C: Response to this paper by Phalan et al. (2012), entitled Agriculture as
a key element for conservation: reasons for caution (reproduced here with permission from
Ben Phalan) and presented as published in Conservation Letters; this is not the work of the

author.

We agree with Wright et al. (2012a; [chapter 2]) that it is important to consider species of
open habitats when assessing the impact of agricultural policy on landscapes where such
species occur. However, there are at least four reasons why conservationists should be
cautious about the idea that agriculture is a key element for conservation in the developing

world (or indeed anywhere):

(1) Observing that most individuals of some bird species make use of agricultural habitats at
some stage of their life history is insufficient to tell us whether preserving those habitats is
desirable for the long-term conservation of other biodiversity, of all birds or even of those
species themselves. All species have survived without agriculture for most of their
evolutionary history. Most species which are now found largely on agricultural land use
non-agricultural habitats as well, including open natural and semi-natural habitats. The
methods we implemented in a recent analysis (Phalan et al. 2011b) assess the proportion of
species which would benefit most from maximising the area of low-yielding agriculture,
maximising the area of natural habitat by producing the same quantity or value of
agricultural goods from a smaller area of high-yielding agriculture, or an intermediate
strategy. Our approach depends upon measurements of population density across a range of
land uses (and not, as Wright et al. incorrectly state, an assumption that “population density

is always maximal in an existing and available natural habitat, with lower densities in all

! This project report is another output of this thesis’s research, published in Ibis to present preliminary

results and update on research progress.
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forms of agriculture and a monotonic decline with increasing yield””). The paper by Wright

et al. does not present any such measurements.

(2) Decisions about land use have off-site consequences (Phalan et al. 2011a). There might
be landscapes where data suggest the best way to conserve certain species is to attempt to
“fossilise” some low-yielding farming practices. However, sparing low-yielding farmland in
the face of rapidly rising demand for farm products would require us to accept agricultural
expansion or yield increases elsewhere, with impacts on other species. Our approach offers
a method to quantify those leakage effects on particular species, and on wider groups of
species. Some of these other groups may have an even smaller proportion of species that
tolerate agriculture than do birds. For example, low levels of cattle grazing might maintain
open habitats suitable for some birds, but might not be compatible with the conservation of

the native herbivores that previously created such conditions.

(3) Intervention to keep constant those farming practices in low-yielding agricultural
landscapes that allow birds to live in them is difficult. Species with most individuals
currently living on agricultural land are at risk from future changes in agricultural
technology and the demand for different crops. Of the bird species identified by Wright et
al. as being “dependent on low-impact agriculture,” many are in fact threatened by changes
in small-scale agriculture, and not just by large-scale “industrial” agriculture. Liben Lark
Heteromirafra sidamoensis is an example, where relatively small changes in farming

practices by local people have taken the species close to extinction (Donald et al. 2010).

(4) There is an alternative to being constrained by current patterns of land use: habitat
restoration might be an effective way of conserving some species in landscapes where most
or all natural habitats have been converted. Once again, expanding or re-creating areas of
natural habitat will be practical only if increasing production elsewhere reduces demand for
farmed land. Density-yield analyses of the type we advocate would help to clarify whether
such a restoration-based approach might be appropriate, not just for a handful of bird

species but for a broader sweep of the regional biota.

2.9.4. Appendix D: Response to Phalan et al. (2012), entitled Low-impact agriculture
requires urgent attention not greater caution: response to Phalan and colleagues and

presented as published in Conservation Letters (Wright et al. 2012b).

Phalan et al. (2012) set out to present four reasons for caution when considering agriculture

in developing-world conservation. However, contrary to their suggestion, our paper (Wright
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et al. 2012a; [chapter 2]) emphasised not those species that make use of agricultural habitats
at some stage of their life history, but those whose populations depend on agriculture. We
agree that the agricultural dependence of birds does not indicate that other biodiversity will
follow the same pattern; although birds are widely used as proxies, their congruence is
incomplete and scale-dependent (Prendergast et al. 1993; Schulze et al. 2004). We know
from Europe that distinctive and highly valued assemblages of plants and invertebrates now
depend on semi-natural habitats created by traditional farming practices that substituted for
lost natural processes. Large mammals are unlikely to show such a response. Crucially
however, the loss of large herbivores and extirpation of ecosystem functions they provided
often resulted in the dependency of open-habitat birds on agricultural practices, where these
mimicked the processes that species require. While it is obvious that species evolved prior
to the advent of agricultural transformation, this is not useful when their natural habitats are
now absent. Like Phalan et al., we also advocate restoration of large scale natural ecosystem
dynamics, but this is not immediately practical in many regions. Not preserving species in
the semi-natural and farmed habitats in which they occur risks their loss in the short to
medium term. The paradigm of semi-natural habitats, essential to European conservation,

therefore has wide application in developing countries also.

Phalan et al. are correct to point out that, within the constraints of finite land resources and
increasing demands for food, any action to conserve one set of species must be traded off
against other biodiversity. Their trade-offs model (Green et al. 2005; Phalan et al. 2011a)
provides an appropriate starting point to examine the optimal balance of land-sparing versus
land-sharing. We urge the wider adoption of such models in regions of contrasting biota and
land-use history for which different trade-offs may apply. At least some degree of land-
sparing may be crucial in frontier regions where the emphasis is on conservation of forest
biota. In contrast, responses to anthropogenic land use may differ in grassland and savanna
biomes and landscapes with a long history of human transformation, particularly in systems
of extensive pastoralism and traditional cereal cultivation. The choice between land-sparing
and wildlife friendly farming should not be simplified into a dichotomy; a mixed approach
may conserve the broadest range of a region’s biota, especially in regions with contrasting
habitats. Furthermore, strategies must also account for a range of other, often context-
specific, social, political and ecological considerations that the simple trade-offs model does
not yet incorporate (Phalan et al. 2011a; Phalan et al. 2011c); for example the size, range
and conservation significance of individual species’ populations. Advocating a single

strategy may therefore be unhelpful, particularly beyond the regional scale.
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Contrary to the suggestion by Phalan et al., we have not advocated “fossilising” low-impact
farming practices. Rather, we made clear (Wright et al. 2012a; [chapter 2]) that threats of
land-use transformation come not just from the land-grabbing of external actors, but also
from within rural communities. Conservation must design mechanisms that are compatible
with social and economic change, not defend uneconomic agricultural systems. The
conservation imperative therefore, is to urgently identify those cases where agriculture
currently sustains valuable biodiversity, and to develop instruments to maintain or mimic
such land use while supporting development (see also Fischer et al. 2012). Our paper
highlighted both the threat to farming practices valuable to agriculture-dependent species
and the challenges in maintaining them; these are reasons why conservation should pay

urgent attention to beneficial farming systems, not reasons for caution.
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First census of the White-shouldered Ibis
Pseudibis davisoni reveals roost-site mismatch

White-shouldered Ibises Pseudibis davisoni at a wet
season roost.

Presented here as published for the short communication:
Wright, H.L., Collar, N.J., Lake, I.R., Net Norin, Rours Vann, Sok Ko, Sum Phearun,
Dolman, P.M. (2012). First census of white-shouldered ibis Pseudibis davisoni reveals

roost-site mismatch with Cambodia’s protected areas. Oryx 46: 236-239.
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3.1. Abstract

The population size of the Critically Endangered White-shouldered Ibis Pseudibis davisoni
has always been poorly known. The first-ever census across Cambodia in 20092010 using
simultaneous counts at multiple roost sites found substantially more birds than previously
estimated, with a minimum of 523 individuals. The census allowed a revised global
population estimate of 731-856 individuals, increasing hope for the species’ long-term
future. However, the largest subpopulations are imminently threatened by development and

C. 75% of the birds counted in Cambodia occurred outside protected areas.

3.2. Introduction and methods

Cambodia is a stronghold for threatened biota in South-East Asia (CEPF 2007), with a
protected-area system covering 31% of the country’s land area (FAO 2010). However, with
status and distributional data lacking for much of Cambodia’s wildlife (Neou 2004),
protected areas may not provide adequate coverage for certain key species, a problem
frequently found in other parts of the world (Beresford et al. 2010; Brooks et al. 2004;
Rodrigues et al. 2004). The first-ever census of the Critically Endangered White-shouldered

Ibis Pseudibis davisoni reveals a new instance of this issue.

Considered one of the most threatened waterbirds in Indochina (BirdLife International
2001), the White-shouldered Ibis was widespread in the region until the 20th century. Now
confined to Cambodia and adjacent southern Laos, plus one river in Indonesian Borneo
(BirdLife International 2011), in 2000 it was assigned Critically Endangered status, with the
population assessed at only 330 mature individuals in 2010 (BirdLife International 2011).
Four major subpopulations were identified in Cambodia as biodiversity surveys achieved
greater coverage of the country (BirdLife International 2006; Timmins 2008). However,

population assessments remained informal, with no previous coordinated censuses.

In 2009 we implemented the first coordinated census to quantify subpopulations throughout
Cambodia. White-shouldered Ibises are solitary dry-season breeders, becoming gregarious
in the wet season (May—October) when they roost together in trees. Simultaneous wet-
season roost counts can therefore provide minimum population numbers. We located roosts
in and around the four sites known to hold most ibises: Kulen Promtep Wildlife Sanctuary,

Lomphat Wildlife Sanctuary, the central section of the Mekong River * between Kratie and

! Since publication, this site has been renamed the Mekong Flooded Forest.
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Stung Treng towns, and Western Siem Pang Important Bird Area (Fig. 3.1.). Although
complete coverage of these sites (totalling more than 960,800 ha) could not be achieved, all
locations known or believed to hold important numbers of ibises were prioritised and

intensively searched with assistance from local informants.

Nine coordinated counts took place over July—December 2009 and July—October 2010 at
approximately monthly intervals. Observers remained a suitable distance from roosts to

avoid disturbance, although this prevented distinguishing immatures from adults.
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Figure 3.1. Known White-shouldered Ibis subpopulations in Cambodia and their
recorded/estimated size. Pie-charts are scaled to population size and show percent of birds
occurring within protected (dark grey) and unprotected (pale grey) areas. Figures inside pie-
charts were obtained from roost counts, figures beside pie-charts are estimates. Stippled
polygons represent protected areas.  Roost count September 2010; ® roost count October
2010; “roost count October 20101; roost count September 2010; * Timmins (2006); hr, Gray
pers. comm. 2011; éBird et al. (2007); ' HLW unpublished data; ** Wildlife Conservation Society

unpublished data.
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Knowledge of roost locations steadily improved (from 18 in July 2009 to 39 in October

2010), making the counts increasingly comprehensive.

3.3. Results and discussion

The largest total count was 523 in October 2010, the final census; however, few additional
birds were accumulated in the final three censuses. Despite only including four areas, this
new minimum number exceeds the global population estimates of 330 mature individuals
(BirdLife International 2011) and < 500 individuals of all ages (Timmins 2008). However,
74% of the ibises were at roosts outside the boundaries of protected areas. Western Siem
Pang and the Mekong River central section, currently unprotected, together accounted for
58% of the ibises censused. At Lomphat 46% of birds were at roosts outside the demarcated

Sanctuary.

Peak site counts provide a preliminary indication of the relative size of the four
subpopulations (Fig. 3.1.): 226 birds in Western Siem Pang, 187 at Lomphat, 124 on the
Mekong River central section and 34 at Kulen Promtep. Although these peaks were not
obtained simultaneously, all were in September—October 2010. The minimum distance
between sites is 47 km, and as yet we have no evidence that the ibises move this far. Count
fluctuations within sites appeared unrelated to counts at other sites, being attributable

instead to short-distance movements and changes in favoured roosts.

Combining roost census data with estimates for other, smaller populations, we propose that
there is a minimum Cambodian population of 691-736 (Fig. 3.1.). Other populations have
not yet been counted accurately but available data (for the Mekong River north section) and
expert judgement (for Eastern Siem Pang, Mondulkiri Protected Forest, Rovieng district,
Phnom Prich Wildlife Sanctuary, Seima Protection Forest and Tonle Sap floodplain) allow

estimates to be made.

Given the increasingly comprehensive coverage of biodiversity inventories it is unlikely
that further large subpopulations will be discovered in Cambodia. However, fuller coverage
of the Mekong River central section could potentially reveal 100-200 more birds (R.J.
Timmins pers. comm. 2011) and diffuse, lower-density populations may remain undetected
elsewhere, particularly in Mondulkiri and Ratanakiri provinces. These putative populations

are not included in our estimates.
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The Indonesian population has been estimated at only 30—100 (BirdLife International 2011)
and is decreasing (Meijaard et al. 2005); with no recent surveys its current size is uncertain.
Although no records have come from Laos since the 1990s the proximity of Western Siem
Pang birds to Xe Pian National Protected Area (across the border), plus minimal survey
effort at the latter, suggests small numbers could still persist. We provisionally estimate
there are 10—20 ibises in Laos. In Vietnam sightings have gone from few to almost none
since the 1990s (R. Craik pers. comm. 2011). The species is now probably only a non-
breeding visitor from Cambodia and thus Vietnam does not contribute to our figures. We

therefore estimate a minimum global population of 731-856 birds *.

This total is larger than previously estimated, providing hope that the long-term future of
the species can still be secured. Nevertheless, these increased numbers reflect improved
coverage and rigour of surveys rather than population recovery, and the species is still
greatly threatened. Only 25.9-28.4% of White-shouldered Ibises occur in legally protected
areas in Cambodia; globally the proportion is 25.9-26.8%. Western Siem Pang, currently
the most important site, is unprotected and plantations will convert the majority of habitat
by 2020 (BirdLife International 2010). Proposed dams threaten Lomphat Wildlife Sanctuary
(BirdLife International 2010) and the unprotected Mekong River central section, which also
faces encroaching human settlement (Timmins 2008). With 63—73% of the known global
population in three imminently threatened sites and probably continuing declines in other
areas, the White-shouldered Ibis is still Critically Endangered. Securing the Western Siem

Pang and central Mekong subpopulations is now essential.

Given the large proportion of Cambodia already in reserves, the distributional mismatch
between White-shouldered Ibis roosts and the country’s protected-area system is
unfortunate. Protected area designations have prioritised the least impacted habitats furthest
from settlement, whereas the ibis requires human-influenced habitats, feeding in seasonal
pools grazed by livestock and in traditional agricultural fallows (Wright et al. 2010a;
Wright et al. 2010b; [chapter 5]). If establishment of further protected areas is not possible,
then special management zones (integrating human use and biodiversity protection) and

conservation concessions, not yet attempted in Cambodia, could provide alternatives.

! Coordinated roost-counts have continued and expanded since this paper’s publication, providing greater
site coverage and finding more birds. Unpublished data from 2011 now suggest a minimum Cambodian
population of 644 birds, and a likely minimum global population of 827-952 birds. A publication

presenting updated estimates is planned for late 2012, following a fourth year of censuses.
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However, the White-shouldered Ibis is not the only threatened species inadequately served
by Cambodia’s protected areas. The Critically Endangered Gyps and Sarcogyps vultures
and Bengal Florican Houbaropsis bengalensis also have close association with humans
through traditionally managed habitat and resources (Gray et al. 2009; Houston 1996). Such
habitats and resources will be the first to deteriorate with economic development, putting
these species at great risk of extinction. With the intensification of agriculture and
expansion of cash-crop cultivation already a major threat in Cambodia, as across much of

Indochina (CEPF 2007), such species urgently need attention to ensure their survival.
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Chapter 4

Foraging ecology helps resolve the paradox of a
waterbird breeding in the dry season

White-shouldered Ibis Pseudibis davisoni foraging in dry cracked substrate at a
trapaeng (waterhole).
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4.1. Abstract

In contrast to the great majority of waterbirds in central Indochinese dry forests, and
counterintuitively, White-shouldered Ibis Pseudibis davisoni nests in the mid- to late dry
season, when water is scarce. To understand how this species successfully feeds and
provisions chicks at the driest time of year, its diet and habitat use, and the habitat
conditions influencing intake rate and prey density were studied. Ibis foraging observations,
prey sampling and landscape-scale assessment of habitat availability were undertaken over
two breeding seasons at seven, 49 and 58 waterholes respectively. White-shouldered Ibis
avoided foraging in water but used all exposed substrates at waterholes, feeding on
amphibians and small invertebrates. Amphibians were the most abundant prey type in
waterhole substrates and accounted for 81% of overall prey intake. Amphibian prey intake
rates and biomass density were greater in dry than moist and/or saturated substrates. Dry
substrate was also the most widespread habitat type at waterholes in the peak dry season.
By utilising the commonest dry season habitat and prey, and probing into substrate cracks
and holes that other birds cannot readily reach, the ibis may achieve greater feeding success
than other dry forest waterbirds, allowing it to breed when water is scarce. Estimated prey
depletion was non-trivial, as a breeding pair requires nearly twice the amphibian biomass
density at a medium-sized waterhole during the nesting period. Each pair therefore probably
requires multiple waterholes, making landscape-scale habitat protection a necessity, and
human harvesting of amphibians could threaten ibis if the offtake and spatial extent of

collection increases.

4.2. Introduction

Rainfall and wetland hydrology exert important influences on waterbird foraging strategies
and reproduction (Bildstein et al. 1990; Frederick et al. 2009; Kushlan 1986), as seasonally
fluctuating water-levels create variable food abundance and availability (Frederick &
Collopy 1989; Gawlik 2002). Reproductive responses to hydrological regimes may vary
between ecosystems: waterbirds in arid environments may adopt flexible nesting cycles,
coinciding with floodwaters that improve food abundance in otherwise resource-scarce
environments (Halse & Jaensch 1989; Kingsford & Norman 2002). Elsewhere, the breeding
season may correspond with water drawdown, as prey becomes more concentrated and
accessible to feeding birds at receding pools (Frederick & Collopy 1989; Russell et al.
2002). Responses also vary between waterbird species, with different habitats or prey

requirements resulting in contrasting nest success and breeding phenology between
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members of the same family (e.g. egrets; Maddock & Baxter 1991) or waterbirds at a shared
wetland (Berruti 1983).

The tropical dry forests of central Indochina support a distinctive assemblage of large-
bodied waterbird species, including two ibises, two adjutants, two other storks and one
crane (of which five are listed as threatened on the IUCN Red List; BirdLife International
2012a). Many of these species rely on widely distributed seasonal waterholes, where water-
levels fluctuate with the monsoonal climate, exposing substrate as pools diminish in the dry
season (November—April). As in many wetlands, the breeding phenology of dry forest
waterbirds appears closely tied to water availability, as nesting mostly takes place during
the wet season (May-October) or from the late wet to mid-dry seasons (c. September—
February; Clements et al. in press), when pools remain full or largely flooded. However, the
White-shouldered Ibis Pseudibis davisoni (a solitary breeder) is a notable exception, nesting
in the mid- to late dry season (Fig. 4.1.), when water is at its scarcest and many waterholes
completely dry out (Wright et al. 2010). This intriguing reversal of the normal breeding
pattern, contrasting strongly with that of the sympatric Giant Ibis Thaumatibis gigantea
(Keo 2008), indicates that the White-shouldered Ibis must successfully feed and provision

chicks in water-scarce conditions, but how it does so is not yet known.

15 4

10

Nests hatched

0

I
Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Dry season Wet season

Figure 4.1. Frequency of White-shouldered Ibis nests hatched by half-month period in three
breeding seasons from 2008-2011 (n = 47) in Western Siem Pang IBA, a dry forest landscape in
northern Cambodia. Incubation (taking 30.7 + 2.7 days, mean = SD, n = 17) begins as early as
mid-December with chick provisioning during January—May (lasting a further 38.7 + 6.6 days
until fledging, n = 22). Nest trees were located through active searching by field staff and
reports from local people, and were monitored (by ground-based observation) every 5-7 days

to check nest status.
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The White-shouldered Ibis (listed as Critically Endangered by IUCN) underwent a severe
decline in the twentieth century, becoming largely confined to dry forests and river channels
of Cambodia, where 85-95% of the world’s remaining 731-856 birds now occur (Wright et
al. 2012b; chapter 3). Agricultural plantations and infrastructural developments are now the
biggest threats to its survival (BirdLife International 2012b), but its dry forest foraging
habitats, including waterholes, are likely to be sustained by local land management
practices such as grazing by livestock (chapter 6). Studies of broad-scale habitat selection
show that waterholes (“trapaengs”), particularly those with low vegetation, are key
breeding-season habitats for foraging ibis (Wright et al. 2010; Wright et al. 2012a; chapter
5).

But how do foraging White-shouldered Ibis profit from trapaengs at the driest time of year?
To explain this paradox it was predicted that: (1) ibis diet would comprise the most
abundant prey types in this season; (2) as a dry-season breeder, the ibis would forage
successfully in a range of substrate types increasingly exposed by water drawdown at
trapaengs (rather than relying on diminishing pools of water); and (3) ibises would forage
less successfully where tall, dense vegetation restricted access to the ground. These
predictions were tested with measures of ibis habitat use, prey selection, intake rate and
prey biomass density, and estimated prey depletion at trapaengs during the ibis breeding
season. The likely influence of trapaeng hydrology and prey scarcity on ibis breeding in the
mid- to late dry season is discussed, comparing the species’s ecology to that of other dry

forest waterbirds and considering implications for ibis conservation.

4.3. Methods

4.3.1. Study area

Ibis foraging ecology was studied within Western Siem Pang Important Bird Area (IBA),
Stung Treng province, northern Cambodia (14°07'N 106°14'E, Fig. 4.2.). This 138,000 ha
site contains the largest known subpopulation of White-shouldered Ibis, a minimum of 226
birds (Wright et al. 2012b; chapter 3), and comprises deciduous dipterocarp forest, a
savannah-like woodland with an open and annually burnt grassy understorey. The forest is
interspersed with patches of agriculture, grassland and mixed deciduous and semi-evergreen
forests. Rainfall is strongly seasonal, with monthly means as high as 333 mm and as low as
0.9 mm in the wet and dry seasons respectively (Thuon & Chambers 2006). Trapaengs

(0.001-3.4 ha) occur frequently and water-levels, vegetation and habitat heterogeneity vary
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Figure 4.2. Map of the study area in Western Siem Pang Important Bird Area (IBA), illustrating
the distribution of three trapaeng samples surveying ibis intake, prey biomass and habitat
availability (“observation”, “prey-sampled” and “habitat” trapaengs respectively). Observation

trapaengs were also prey-sampled. Inset shows the location of the IBA (dark grey).

spatially and temporally throughout the year (Wright et al. 2010). Drying substrates often
crack into polygonal blocks as the dry season progresses, while foraging Wild Boar Sus
scrofa may also churn up exposed ground (HLW pers. obs.). Although the origin of
trapaengs is unknown, wild ungulates and domestic livestock may help maintain them: their
wallowing removes substrate, and grazing maintains short, sparse vegetation (J.C. Eames
and T.D. Evans pers. comm. 2008). Local villagers rely on natural resources in forest and
trapaengs to sustain their livelihoods (chapter 7); amphibian and swamp eel
(Synbranchidae) harvesting for human consumption takes place at trapaengs in the dry

season.
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4.3.2. Trapaeng habitat and its availability

To examine the relative extent of trapaeng habitat types and their changing availability
across the ibis’s breeding season, a random sample of 58 trapaengs (Fig. 4.2.) were mapped
in the early dry season (November 2009) and again in the subsequent mid-dry season (early
March 2010); early March coincides with peak chick-provisioning time (Fig. 4.1.). As
human activity was expected to have marginal or no impact on habitat extent, this trapaeng
sample was not stratified by distance to nearest settlement. Within each trapaeng,
boundaries of homogeneous habitat patches were sketch-mapped with the aid of a hand-
held GPS and laser rangefinder (Wright et al. 2010). Habitat patches (861 + 1501 m?, mean
+ SD) were primarily defined by habitat moisture, including: water (pools or flooded animal
wallows); saturated substrate (viscous, liquid mud at pool margins or in wallows); moist
substrate (solid but damp earth); and dry substrate (solid with no visible moisture). Within
each moisture class, areas with marked differences in vegetation structure (e.g. short, grazed
grass versus tall sedge stands) were mapped as separate patches. Moisture class and the
height (cm) and cover (%) of vegetation types (comprising grass, sedge, reed, herb and
Sesbania spp.) were visually estimated for each patch; (as in Arriero et al. 2006; Hill et al.
1990) and one observer (HLW) undertook all mapping and data recording. Maps were
georeferenced and digitised in a GIS (ArcGIS 9.3, ESRI 2010) and habitat moisture and
vegetation data were aggregated across multiple patches (following Wright et al. 2010) to
calculate the percentage extent of habitat types per trapaeng. Mean availability of water and
substrate moisture conditions at each trapaeng was compared between early and mid-dry
seasons using paired Wilcoxon tests with Holm adjustment for Type | error rate.

4.3.3. Prey sampling at trapaengs

Prey biomass density of exposed trapaeng substrates was examined by moisture class and
volume of vegetation in habitat patches at 47 trapaengs (Fig. 4.2., 55% overlap with
habitat-mapped trapaengs) in the 2008-09 (n = 20) and 2009-10 (n = 27) breeding seasons.
Prey data were collected using soil cores and summed per habitat patch; prey biomass
density was not estimated at the trapaeng level as placement of cores was not proportional
to habitat area within each trapaeng. In each year, prey sampling took place evenly across
the four-month period late November—early April. Trapaengs were randomly selected after
stratification by their distance to nearest settlement (0-2.9 km, n =11; 3-5.9 km, n =12; 6—
8.9 km n =11; 9-12 km n = 13), as it was anticipated that amphibian and swamp eel

harvesting would impact prey biomass (particularly at trapaengs close to villages).
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However, the survey of trapaeng habitat (above) found that only small-scale harvesting
(evidenced by substrate levered up from the ground) took place in the study area, occurring
at 11 of 58 trapaengs (19%) in the mid-dry season and affecting only 4.2 + 3.3% (mean +
SD) of these trapaengs’ surfaces; harvesting at prey-sampled trapaengs proved even

scarcer, and so its effect on prey biomass was most probably negligible.

Prey samples were collected using ten soil cores per trapaeng, taking three cores from each
substrate moisture class (dry, moist and saturated), or five from each when only two were
present. Preliminary observations suggested the ibis rarely fed in water, so waterborne prey
and benthic substrates were not sampled. Within moisture classes, cores were taken from a
range of vegetation conditions, representative of those observed in trapaengs across the
study area. Cores measured 25 cm x 25 cm surface area and 18 cm in depth (equivalent to
an adult male ibis’s bill length), providing 5.29 m® total sampled volume across all
trapaengs. For each soil core, prey type (amphibians, small invertebrates, crabs, swamp eels
and snakes), size and count were recorded; amphibian identification followed Neang and
Holden (2008). Prey size was classed into body-length intervals of 0-2.49 cm, 2.50-4.99
cm and >=5 cm; items of < 1 cm were rarely consumed and subsequently excluded from
analysis. Means of centigram ash-free dry mass (cg AFDM) per prey type per size class
(Piersma et al. 1994), determined from a sample of specimens collected at trapaengs
(including 21 amphibians, 71 small invertebrates, eight swamp eels and eight crabs), were

used to estimate biomass of all prey items.

Mapping of habitat patches and recording of substrate moisture, vegetation cover and height
followed the procedures for the wider assessment of trapaeng habitat (above). Substrate
microtopography (cracked/holed versus even/uncracked ground) was also recorded per soil
core. Prey sampling data measure biomass density, but biomass availability to ibis may
differ among prey types and substrates, for example being lower in compacted, dry mud
that cannot be probed. Although cores were dug rapidly, biomass density may be slightly
underestimated as some items could have escaped, e.g. amphibians disappearing into deeply
cracked substrates, or swamp eels withdrawing into their burrows within more saturated
substrates. The proportionate contribution of each prey type to overall biomass density (cg
AFDM totalled across trapaengs) was estimated from its contribution in each substrate,
multiplied by the average proportionate extent of that substrate type relative to total

substrate area at the 58 trapaengs mapped in the mid-dry season.
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4.3.4. lbis foraging observations

Ibis activity, habitat use, diet and intake rates were measured at seven of 47 prey-sampled
trapaengs (Fig. 4.2.) during the 2008-09 and 2009-10 breeding seasons. Observations were
spread across a four-month period in each year, from early December to early April,
corresponding with the timing of prey sampling. Five trapaengs (chosen to cover a range of
habitat conditions and to maximise the likelihood of ibis visitation and thus data collection)
were sampled in one year and two in both years, providing nine trapaeng-year observation
periods. Trapaengs sampled in both years were observed in different months under different
habitat conditions in each year. Observation trapaengs were larger with a more even
composition of substrate moisture types compared to trapaengs across the wider landscape
(details in Appendix A, section 4.6.1, Table 4.Al.). Trapaengs were situated along a
gradient of distance to settlement (range 2.52-9.33 km, 5.62 + 2.36 km, mean = SD) and
amphibian and swamp eel harvesting had occurred in three of the nine trapaeng-years, but
once again only very small areas were affected (3.9 £ 3.5 % of the trapaengs’ surfaces) and
anthropogenic prey depletion probably had minimal influence on foraging ibis. Habitat was
mapped, recorded and analysed following protocols used across the wider sample of

trapaengs (above).

One person (HLW) undertook observations from dawn to dusk, for a mean 4.0 £ 0.7
continuous days per site, using a telescope (with 32x magnification) from hides at trapaeng
perimeters. The observer was typically 2-40 m from foraging birds, allowing prey captures
to be seen clearly. Broad spacing of observation trapaengs (range 0.85-21.67 km, Fig. 4.2.)
improved the likelihood of observing multiple birds, as the ibis disperse widely to breed
(HLW unpubl. data). Three trapaengs, including the two in closest proximity, regularly
held flocks of 10-30 birds, so repeated observation of single individuals could be somewhat

minimised; other trapaengs typically hosted 1-3 birds.

Intake rates were obtained from replicate six-minute focal samples (totalling 115.2 hours) of
adult birds (recently fledged juveniles were excluded). For each capture, the type and size
of the prey item was recorded (prey body length visually estimated in relation to ibis bill
length) using the categories applied for prey sampling and biomass measurement. Within
focal observations, the ibis’s use of habitat patches was timed (assisted by markers placed
on habitat patch boundaries), enabling habitat-specific intake rates to be calculated. Focal
observations rotated or alternated between individuals when more than one bird was
present; however, sampling was not fully systematic as it was not possible to track the

movements of all birds while obtaining focal data from one individual, and some

66



Chapter 4: White-shouldered Ibis foraging ecology

individuals were observed repeatedly when no other birds were active or present. As none
of the habitats used by ibis was densely vegetated, there was no bias towards more easily

observed birds or habitats.

Ibis habitat use and activity were recorded by instantaneous scan-samples, scanning all
visible individuals at six-minute minimum intervals (typically between focal samples) to
record their location (habitat patch identification) and foraging (yes/no). Habitat use was
assessed by comparing the proportionate use of habitats (from scan-sample records) to

proportionate availability (from digitised habitat maps) across trapaeng-years.

4.3.5. Analyses

Ibis dietary composition was estimated from the contribution of each prey type to overall
intake rate (across prey types and trapaeng-years, AFDM per minute), derived using the
proportionate contribution of each prey type to overall intake rate in each substrate type
(from focal sample data), multiplied by the proportionate use of that substrate type by ibis,
as indicated by scan-samples. Differences in overall ibis intake rate between substrate
moisture classes (dry, moist and saturated) were compared with Mann-Whitney tests with
Holm adjustment. The effects of substrate moisture and vegetation on ibis intake rates and
prey biomass density were then modelled separately for the ibises’ main prey items:
amphibians and small invertebrates. As intake rates and prey biomass densities were non-
normal and over-dispersed with frequent zeros, both were re-expressed from biomass to
count data so that Poisson or negative binomial errors could be fitted. However, prey items
were standardised to the equivalent number of prey of the smallest size class (for
amphibians, 0-2.49 cm; for small invertebrates, insect larvae of size 0-2.49 cm) using

average AFDM, generating biomass-weighted count data.

The effect of vegetation on ibis intake rates and prey biomass density was considered using
vegetation volume per habitat patch, a composite index combining all vegetation types into
a single metric: V =3 (hix c;), where h; is vegetation height and c; the proportionate cover
of vegetation type i; V was square-rooted in models to reduce leverage. To achieve
comparable vegetation volume ranges in ibis intake and prey biomass datasets, ten habitat
patches (27 soil cores) of V > 9 were removed from the prey biomass dataset. VVegetation
volume and substrate moisture variables were confounded (for intake rate model: rs = 0.46,
n = 1927, P <0.001) with indistinguishable independent effects when included in models

together, probably because water scarcity influences vegetation biomass in the dry season.
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The effects of these variables were therefore modelled separately, in two rounds: the first
compared intake rate and biomass density among classes of substrate moisture; the second
investigated the influence of vegetation volume within the moisture class in which ibis
intake rate was greatest (dry for intake of amphibians, saturated for intake of small

invertebrates).

Intake rate (count of smallest-item equivalents, per habitat per observation, n = 1927) and
biomass density (count of smallest-item equivalents summed across soil cores per habitat
patch, n = 159) were modelled in generalised linear mixed models (GLMMs) with Laplace
approximation (Bolker et al. 2009). Appropriate error distributions available in the
glmmADMB package (Skaug et al. 2012) were compared for each model, and the one
resulting in lowest model Akaike Information Criterion (AIC) was selected for final
modelling (Bolker et al. 2012). First-round models used a log-normal Poisson error —
containing an observation-level random effect to model extra-Poisson variation
(Maindonald & Braun 2010) — or negative binomial error distributions with log link;
second-round models used log-normal Poisson, quasi-Poisson or negative binomial error
distributions (see Appendix B, section 4.6.2, Table 4.A2.). Results were checked for
consistency by re-modelling with alternative error distributions and, where possible, using

another modelling package (Ime4; Bates et al. 2011).

Models of ibis intake rate included the log number of minutes per habitat per observation as
an offset, and models of prey biomass density included the log number of soil cores per
habitat patch as an offset. Sampling date (days since the sampling season began; random
effect) was included in all models to account for potential temporal changes over the four-
month sampling periods. Year and site (trapaeng ID) were included in all models as fixed
and random effects respectively, to account for grouping of prey-sampled habitat patches by
trapaeng (models of biomass density) or repeat visits to observation trapaengs (models of
intake). Differences between all substrate moisture classes were tested by alternating the
order in which classes were included in the models. Fixed effects were assessed by change
in model AIC on their removal (Burnham & Anderson 2002), with an increase in AIC of >

2 units indicating strong support.

The potential magnitude of prey depletion was estimated to examine susceptibility of ibis to
intraspecific competition and human exploitation of prey. For a conservative estimate, prey
biomass density was compared to the predicted prey consumption by one pair of ibis
feeding at one trapaeng for 69 days — the duration of the nesting period (Fig. 4.1.) — in the

mid-dry season. Depletion was estimated for all consumed prey types (prey biomass
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density, cg AFDM) and for that part of the diet comprising amphibians alone (count of
smallest-item equivalents). Three classes of trapaeng size (small, medium, large) were
considered, defined by the lower, middle and upper quartile areas of surveyed trapaengs.
Maximum likely foraging duration per day (assuming 11.8 daylight hours) was estimated
from the percentage of scan-samples recording foraging by ibis in four time brackets (0530—
0859 hr, 0900-1159, 1200-1459 and 1500-1830) — accounting for varying activity patterns
and numbers of observed birds with time of day. Time spent travelling to trapaengs or
visiting nests for chick provisioning could not be gauged; however, these probably occupy
only a small proportion of daily activity and produce only slight overestimation of foraging
time. Average intake rates per substrate moisture type were scaled up to trapaeng level
based on average proportionate use of these types. Prey biomass density averages were
scaled up using average proportionate extent of dry, moist and saturated substrates per

trapaeng in early March.

4.4. Results

4.4.1. Habitat change at trapaengs

The extent of water and dry substrate at trapaengs changed dramatically from the early to
the mid-dry seasons (November—early March, Appendix B, Fig. 4.A1.). Mean water cover
dropped from 79.7% to 5.6% over the four months (Wilcoxon test Vsgsg = 1711, P < 0.001),
while mean dry substrate cover increased from 4.3% to 87.3% (Vsgss = 1711, P < 0.001), by
far the most abundant substrate type. Moist substrate extent did not differ between early and
mid-dry seasons (Vsgss = 662, P = 0.468) but saturated substrate cover decreased
significantly, from 7.9% to 2.2% (Vsgss = 1236, P < 0.001).

4.4.2. Foraging activity and habitat use

Observations at trapaengs provided 5122 records of White-shouldered Ibis activity and
habitat use (including repeat-observation of individuals) from 1477 scan samples (range 69—
287 and mean 146.0 + 80.5 scans per trapaeng-year, = SD). The percentage of records
involving foraging individuals was similar across time-of-day time brackets (Fz 3, = 0.84, P
= 0.484), averaging 80.0 + 8.6% overall (mean percent of records per trapaeng + SD).
Foraging ibis made negligible use of water relative to exposed substrates, with a mean of
only 0.2 + 0.3% of foraging records (per trapaeng = SD) in pools of water at seven
trapaeng-years containing both aquatic and substrate habitats. Ibis fed in all substrate
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moisture conditions (Fig. 4.3.): dry (the commonest), moist and saturated (the scarcest). The
proportion of foraging records for each moisture type was variable across trapaeng-years
but, overall, mean proportionate use of substrates was similar to their mean proportionate
availability (Fig. 4.3.).

4.4.3. Composition of ibis diet and prey biomass density

Amphibians, mostly Microhyla frogs and Paddy Frog Fejervarya limnocharis (typically <5
cm in body length), formed the majority of the ibis’s diet at trapaengs (Fig. 4.4.a),
providing an estimated 80.6% of overall intake. Amphibians were also the most abundant
prey type in trapaeng substrates (Fig. 4.4.b), contributing 53.8% of estimated prey biomass
density (accounting for average extent of substrate types). Small invertebrates accounted for
9.7% of overall intake compared to 20.0% of prey biomass density. No crabs and only one
small swamp eel (Synbranchidae) was caught by ibises, despite together accounting for
21.3% of prey biomass density. Unidentified prey items, probably small invertebrates or

parts of amphibians, comprised 8.8% of overall ibis intake.

4.4.4. Influence of habitat on ibis intake rate and prey biomass density

Overall ibis intake rate (pooled across trapaeng-years and combining all prey types) varied
along the gradient of substrate moisture. Overall intake rate in dry substrate was variable

0.6
0.4

0.2 +

Mean proportion + CI

0.0

Dry Moist Saturated

Figure 4.3. Average, proportionate use of substrate moisture conditions by White-shouldered
Ibis (dark grey) and their proportionate availability (pale grey) in nine trapaeng-year
observations. Proportionate use is determined from scan-sampled foraging records and

availability is relative to total substrate area per trapaeng-year. Bars indicate 95% Cls.
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Figure 4.4. Mean White-shouldered lbis intake rate (a) and mean prey biomass density (b) by
substrate moisture types. Mean intake rate is calculated from 676 focal observations in dry,
623 in moist and 628 in saturated substrates (pooled from nine observations at seven
trapaengs). Mean prey biomass density is calculated from 191 soil cores in dry, 129 in moist
and 123 in saturated substrates (pooled from 47 prey-sampled trapaengs). Column
subdivisions indicate prey type composition as the proportion of overall prey biomass intake
rate (a) and overall prey biomass density in each substrate (b); bars indicate 95% Cl upper

limits. “Small invert.” is small invertebrate; “Eel” is swamp eel.

(Fig. 4.4.2) but marginally higher than that in either moist (Wg7 623 = 197,102.5, P = 0.063)
or saturated (Weze 28 = 226,232.5, P = 0.063; adjusted for Type | error rate) substrates,
while overall intake in moist substrates was greater than in saturated ones (We23 628 =
228,497.5, P < 0.001; Fig. 4.4.a). Intake rate in saturated substrate was low given that this
substrate held a combined biomass density of amphibians and small invertebrates similar to

or higher than those in other substrates (Fig. 4.4.b).
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Ibis intake rate of amphibians differed between all substrate moisture types, being greater in
dry than in moist, and moist than in saturated substrates (Table 4.1., Fig. 4.4.a); these
effects were very well supported as model AIC increased by 234 units when the substrate
moisture term was removed. Amphibian biomass density was also greater in dry than
saturated substrate (Table 4.1., Fig. 4.4.b), and dropping substrate moisture increased this
model’s AIC by 4.90 units. Within dry substrate, amphibian biomass density was lower in
habitat patches with greater square-rooted vegetation volume (Table 4.1., Fig. 4.5.), but
vegetation volume showed no effect on intake of amphibians. A supplementary model
testing the effect of dry-substrate microtopography found that soil cores in cracked/churned-
up dry substrate had greater amphibian biomass density than cores in even/uncracked dry
substrate (dropping this term caused a 5.89-unit increase in model AIC; Appendix B, Table
4.A3.).

Intake rate of small invertebrates was greater in saturated (89.5% of intake of small
invertebrates) than in both moist and dry substrates (Table 4.1., Fig. 4.4.a), and again the
substrate moisture term received strong support, increasing model AIC by 159 units when
removed. Small invertebrate biomass density was greater in moist and saturated substrates
than in dry substrate and model AIC increased by 8.69 units when substrate moisture was
removed from this model. Vegetation volume had no effect on intake rate of small
invertebrates or their biomass density in saturated substrate and was not well supported as a

model term.

4.4.5. Prey depletion

The scenario of a White-shouldered Ibis pair utilising trapaengs over one nesting period (69
days) predicted considerable prey depletion (Table 4.2.). The estimates are conservative as
they considered the mid-dry season (early March), when large areas of foraging substrate
are exposed. Estimated depletion varied with trapaeng size as baseline prey biomass density
was proportionate to trapaeng area. Depletion rates were greater for amphibians than for all
prey combined, a consequence of the ibis’s apparent selection for frogs but more limited use

of small invertebrates, relative to biomass densities.
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(a) Amphibians

Data Term Ibis intake rate models Prey biomass density models
All Substrate moisture  AAIC = 234.00 AAIC =4.90
Dry - -
Moist -0.44 +0.22° - -0.45 +1.09 -
Saturated -1.74 £0.22° -1.30+0.26° -1.86+1.41° -1.42+1.51
Dry substrate Vegetation volume  AAIC = -1.00° AAIC =2.00
-0.13£0.21 -0.79 + 0.70°
(b) Small invertebrates
Data Term Ibis intake rate models Prey biomass density models
All Substrate moisture  AAIC = 159.86 AAIC = 8.69
Dry - -
Moist 0.60 + 0.46° - 0.95 +0.59° -
Saturated 2.59+0.41° 1.99 +0.42° 0.98 +0.64° 0.03 +0.92
Saturated substrate  Vegetation volume  AAIC = -1.60° AAIC=1.15
0.10+0.31 0.5310.62

Table 4.1. Influence of substrate moisture and vegetation volume on White-shouldered Ibis intake rate and biomass density of (a)

amphibians and (b) small invertebrates. Substrate moisture was modelled using all data with dry substrate as the reference class (-);

comparisons of saturated versus moist substrate (given by re-ordering classes in the model) are shown in separate columns. Vegetation

volume effects were modelled in dry substrate for amphibians (676 observations totalling 38.5 hours and 76 habitat patches), and

saturated substrate for small invertebrates (623 observations totalling 33.3 hours and 38 habitat patches). AAIC is the change in Akaike

Information Criterion when the term is dropped from the model. Parameter estimates are given + 95% CL. Further details are in Appendix

B, Table 4.A2. ®Effects are supported as Cl does not cross zero. b Negative AAIC indicates an improvement in model fit when the term is

removed. Positive AAIC indicates a deterioration of model fit.
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Figure 4.5. Effects of square-rooted vegetation volume on biomass density of amphibians (as a
count of smallest-item equivalents) in dry substrate (B —0.79 + 0.70 95% CL). Solid black line is
the fitted relationship predicted by a negative binomial GLMM (based on fixed effects only).
Columns indicate mean biomass density for groups of vegetation volume (zero-value column is

not missing data). Bars indicate 95% CL upper limits; values beyond the axis range are labelled.

Prey depletion (%) by trapaeng size

Small Medium Large

0.08 ha 0.18 ha 0.36 ha
All prey types 279.0 126.6 64.01
Amphibians 395.3 179.4 90.7

Table 4.2. Estimated depletion in prey biomass density at trapaengs of varying size, using a
scenario of trapaeng use by a pair of White-shouldered Ibis over one nesting period. Depletion
of prey biomass density was considered separately for all prey types (cg AFDM, excluding
swamp eels and crabs which were rarely consumed by ibis) and amphibians (count of smallest-

item equivalents).
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45, Discussion

45.1. Prey selection and the role of substrate moisture

White-shouldered Ibises strongly avoided aquatic habitats at trapaengs, contrasting with the
dry season use of water by the sympatric Giant Ibis (Wright et al. 2012a; chapter 5) and the
use of diminishing pools by White Ibis Eudocimus albus (Russell et al. 2002). Nevertheless,
White-shouldered did forage close to water, using substrates exposed by drying pools,
mirroring behaviour by Sharp-tailed Ibis Cercibis oxycerca and Green Ibis

Mesembrinibis cayennensis in Venezuelan savannah wetlands (Frederick & Bildstein 1992).
As predicted, the ibis foraged in a range of substrate moisture conditions — dry, moist and
saturated. Overall, mean proportionate use and availability of these substrates was similar,
but their relative use varied among trapaeng-years; assessing preference for these habitats is
complicated by the close proximity of substrate types within trapaengs and the birds’ use
and movement between them all. Overall intake rate (combining all prey types) did not
differ markedly between all substrate types, but intake and prey biomass density of the prey
types comprising the majority of ibis diet (amphibians and small invertebrates) revealed

stronger effects.

Amphibians contributed eight times more to ibis diet (in terms of biomass consumed) than
any other prey type, and formed 26.8% more of estimated overall intake than suggested by
their contribution to available prey biomass density (across trapaengs, weighted by relative
extent of substrate types). This may partly reflect the inaccessibility of swamp eels and
crabs, which contributed 21.3% of prey biomass density but were not consumed by the ibis.
Swamp eels, for example, are well adapted to drying mud substrates (with fins vestigial or
absent) and can escape down burrows (Hill & Watson 2007), probably beyond ibis bill
reach, while crabs in saturated substrate may also bury themselves or move to water where
ibis do not feed. In contrast, amphibians in firmer, drier substrates may have fewer
opportunities to reach safe depths or escape to the ibis’s less favourable habitats. When
swamp eels and crabs are excluded, amphibians account for 68.3% of available prey
biomass density. Modelling intake rate of ibis feeding on amphibians gave strong support
for an effect of substrate moisture, with the ibis achieving, on average, 25.8% higher intake
of amphibians in dry than in moist substrate, and 78.8% higher intake in dry than in
saturated substrate. Although the effect of substrate moisture was supported to a lesser
extent in models of biomass density, amphibian biomass was, on average, 31.1% greater in

dry than saturated substrate.
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These results suggest that dry substrate is of particular importance to foraging ibis.
Trapaengs may be most attractive in the mid- to late dry season, when this substrate is at
least 20 times greater in extent than in the early dry season. Water occupies the majority of
trapaeng habitat in the early dry season, with the small proportion of exposed trapaeng
substrates comprising mostly moist and saturated ground. Amphibians may more readily
escape from foraging ibis in saturated substrate (e.g. into adjacent pools), perhaps
explaining why intake of amphibians appeared disproportionately low relative to their
biomass in this habitat. High intake rate and biomass density of amphibians in dry substrate
probably relates to the abundance of deep cracks (caused by water drawdown and ground-
drying) and holes (created by foraging Wild Boar), where amphibian biomass density was
higher than in even/uncracked dry substrate. These cracks and holes may be important
refuges for amphibians, providing access to moist, cool conditions away from the hot, dry

ground surface.

In contrast to intake of amphibians, intake of small invertebrates was two times less than
their biomass density would suggest, contributing only 9.7% of overall intake. Nevertheless,
their consumption was not uniform across habitats: models showed strong support for an
effect of substrate moisture with more small invertebrates caught in saturated (43.8% on
average) than moist (32.2%) and dry (24.0%) substrates. Small invertebrates could be
providing a substitute prey source when amphibian resources are depleted and, as substrate
penetrability can influence foraging success (Mouritsen & Jensen 1992), ibises may find
soft saturated substrate most profitable in finding them (more so than harder, moist
substrate where small invertebrates were similarly abundant). However, such a substitution
is perhaps independent of seasonal timing, as date was not well supported in additional,
exploratory models of intake rate (treating date as a fixed effect). Sexual dimorphism could
also be a factor, as the bills of White-shouldered Ibis are, on average, 15% longer in males
than in females (N.J. Collar unpubl. data). Females may therefore be less successful at
probing for amphibians than for small invertebrates, which are typically caught close to the
soil surface (HLW pers. obs.). However, while many ibis species are sexually dimorphic
(Babbitt & Frederick 2007), sex-based feeding specialisations appear rare (del Hoyo et al.
1996), and other explanations for use of small invertebrates may also apply, e.g. chicks may
require more invertebrates relative to other food sources, as is the case for Black Grouse
Tetrao tetrix (Baines et al. 1996).
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4.5.2. The influence of vegetation on ibis foraging ecology

While a landscape-scale study of habitat use found that ibis preferred trapaengs with greater
extent of low (< 25 cm) vegetation (Wright et al. 2010), this study found no evidence for a
direct effect of vegetation on ibis intake across the range of structures observed. Although it
was predicted that tall dense vegetation may restrict ibis habitat accessibility, observation
trapaengs contained mainly unobstructive low or isolated tussocky vegetation so that such
an effect could not be readily tested. Grazing was largely ubiquitous across trapaengs
within the study area (Wright et al. 2010), making it impossible to observe intake rates of
ibis feeding in densely vegetated conditions. A negative effect of vegetation volume on
amphibian biomass density was found in dry substrate. This may be caused by the influence
of vegetation on substrate cohesion and creation of amphibian refuges; for example,
trapaeng plant roots are likely to bind soil, limiting the formation of cracks (for amphibians
to use) as substrates dry out. Grazing by domestic livestock may influence ibis prey
availability where prey biomass is related to vegetation and its removal. Nonetheless, the
effect of vegetation observed here appears not to have influenced ibis catch-rate, suggesting
that lower amphibian abundance may not correspond with lower availability. Direct and
indirect impacts of livestock on ibis foraging ecology deserve further study since well-
managed grazing may prove crucial for White-shouldered Ibis conservation (Wright et al.
2010).

4.5.3. A dry-season-adapted strategy

White-shouldered Ibis is clearly adapted to feed in dry season conditions at trapaengs. Its
avoidance of water but use of all exposed, particularly dry, substrates gives it greater access
to food from the mid- to late dry season. The ibis largely feeds on amphibians, the most
abundant prey in trapaeng substrates, and its curved bill is doubtless an advantage over
other waterbirds’ short or straight bills for capturing infaunal prey in deep cracks and holes.
A curved bill can penetrate further, manoeuvre more easily and withdraw prey intact, as
demonstrated for Eurasian Curlew Numenius arquata (Davidson et al. 1986; Ferns & Siman
1994). This could explain why White-shouldered Ibis are commonly followed and
Kleptoparasitised by Cattle Egrets Bubulcus ibis and Chinese Pond Herons Ardeola bacchus
(HLW pers. obs.). The Giant Ibis is the only other species with comparable bill morphology
in the White-shouldered Ibis’s range, but its wider bill base may make it less effective at

exploiting cracked/holed substrate. This may be one reason for its markedly different
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breeding season (June—November; Clements et al. in press), but study of these species’ wet

season foraging ecology could provide further explanation.

The White-shouldered Ibis’s foraging strategy may explain how it can breed in the peak dry
season, an unusual nesting time when most other dry forest waterbirds either do not breed
or have already fledged chicks. As exposed substrate appears crucial to trapaeng
profitability, ibis chick provisioning (peaking in February—March, Fig. 4.1.) coincides with
greatly receded water levels. This contrasts with other dry season breeders, such as Lesser
Adjutant Leptoptilos javanicus, which begin provisioning chicks from November/December
(Clements et al. in press). The diets of this and other stork species have a greater fish
component than the ibis’s (del Hoyo et al. 1996), perhaps necessitating an earlier breeding
season when water-levels in trapaengs are only partially diminished. Water-levels are
known to influence bird breeding strategies, as illustrated by waterbird coloniality and nest
timing in the Florida Everglades (Kushlan 1986). Greater Adjutant L. dubius may begin
provisioning chicks from late December/January (Clements et al. in press), but dry forest
populations adopt a different strategy to the White-shouldered Ibis, preferring riverine
habitats to trapaengs and nesting colonially (T. Clements pers. comm. 2011). Although
many ibis species nest colonially (del Hoyo et al. 1996), White-shouldered Ibis breeding
pairs are solitary. This may be explained by prey scarcity, forcing the dispersal of pairs
across the dry forest landscape to minimise intraspecific competition; breeding adults
showed signs of territorial behaviour at foraging sites, with confrontations between birds

with nearby nests and other individuals (HLW pers. obs.).

4.5.4. Prey depletion and ibis conservation

The estimated prey depletion by a single pair of breeding White-shouldered Ibis was
appreciable, with predicted prey intake exceeding prey biomass density, and amphibian
intake nearly double that available, at medium-size trapaengs. Prey replenishment could not
be considered but is unlikely to be a similar order of magnitude to depletion; Microhyla and
Fejervarya frogs mainly spawn in the wet season (Heyer 1973), making breeding
movements and congregations less likely in the late dry season. Although provisional, the
estimates of prey depletion suggest that ibis foraging and breeding success is likely to
depend on access to multiple trapaengs. Accurately quantifying the extent of habitat needed
during breeding would require knowledge of the functional response of ibis intake to prey
density. However, with a plausible assumption that the drop in intake rate caused by a two-

thirds depletion of prey biomass density would force ibis to feed at a different, unexploited
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trapaeng, a breeding pair of ibis may require at least four small (0.08 ha), two medium
(0.18 ha) or one large (0.36 ha) trapaengs (or a combination thereof), and more if the ibis is

largely dependent on amphibian prey.

Prey depletion and scarcity have implications for White-shouldered Ibis conservation. If
each breeding pair requires multiple trapaengs and intraspecific competition causes
population dispersal, habitat needs protection at the landscape scale. Habitat conversion is
now the biggest threat to White-shouldered Ibis (BirdLife International 2012b; Wright et al.
2012b; chapter 3), so extensive areas of dry forest must be safeguarded to secure the
species’s future. Amphibians and swamp-eels are exploited by local people for consumption
for most of the year (Allen et al. 2008). While harvesting, at least in the 2009 dry season,
proved to be small-scale in the study area, this activity may increase in volume and decrease
in selectivity as people respond to declines in other resources, particularly fish (HLW
unpubl. data). Such activity will need monitoring as increased harvests, particularly of
amphibians, could damage ibis foraging and breeding success. Food resource competition
between humans and waterbirds can have disastrous consequences, as the extinction of the

Canarian Black Oystercatcher Haematopus meadewaldoi has demonstrated (Hockey 1987).

White-shouldered Ibis survival is now closely linked to human activity and its impacts in
dry forest landscapes. While the ibis currently benefits from domestic livestock maintaining
important foraging habitats (Wright et al. 2010), livelihood change and economic
development, bringing different land-use practices and/or more intensive natural resource
use (e.g. amphibians), threaten the remaining populations. Even if dry forests and valuable
livelihood practices are protected and sustained, climate change may alter rainfall and
trapaeng hydrology (CEPF 2007), potentially undermining the ibis’s dry-season-adapted
foraging strategy. Further study of these waterholes, focusing on their formation and
optimal configuration, will assist conservation efforts to improve waterhole resilience,

benefiting a suite of enigmatic, large waterbirds.

4.6. Appendices

4.6.1. Appendix A: Characteristics of foraging observation trapaengs

Habitat characteristics and size of trapaengs used for ibis foraging observations were
compared with a larger, landscape-wide sample (n = 58) of habitat-mapped trapaengs to

assess how well they represented conditions found across the study area (Table 4.A1.).
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Some differences between trapaeng samples were apparent, with observation trapaengs
typically larger and having rather more even extent of substrate moisture types (smaller
areas of dry but larger areas of moist and saturated substrates) than the landscape-wide
sample. The extent of pools of water and the vegetation volume of habitat patches appeared
similar between samples. Although observation trapaengs do not perfectly represent
conditions found across the landscape, the more even composition of substrate moisture

types will have aided the assessment of ibis foraging ability across a range of conditions.

Observation trapaengs  Habitat trapaengs

Trapaeng area (ha) 1.06 +0.68 0.33+0.09
Dry substrate (%) 51.7+11.0 87.3+4.8
Moist substrate (%) 27.1+18.9 49+1.8
Saturated substrate (%) 13.7+10.4 22+1.0
Pools of water (%) 7.5+7.6 5.6+3.8
Vegetation volume index 41+1.7 3.614.2

Table 4.A1. Examining potential bias in trapaeng size and habitat conditions at ibis foraging-
observation trapaengs. Mean trapaeng area, habitat extents (percentage of trapaeng area)
and vegetation volume are presented for observation trapaengs and a sample of 58 trapaengs
from across the study area (“habitat trapaengs”) surveyed in early March 2010. All nine
trapaeng-year observations were used to calculate mean trapaeng area, but to ensure
comparability with data from the habitat trapaeng sample, only the five trapaengs observed in
the late dry season (mid-February to early April) were used to calculate mean habitat
characteristics. 95% confidence limits are given as a simple indication of how observation and
habitat trapaeng samples vary (observation trapaeng sample size was too small to conduct
reliable statistical tests, although the difference in trapaeng area between samples was

significant in a Mann-Whitney test, Wy,s5 = 442, P < 0.001).
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4.6.2. Appendix B: Additional results and model parameters
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Figure 4.A1. Changes in extent of water and substrate moisture conditions at 58 trapaengs

between the early (grey) and mid- (white) dry seasons. Asterisks denote significant difference

in habitat extent between seasons shown by paired Wilcoxon tests with Holm adjustment (P <

0.001); NS indicates a non-significant difference and “subs.” is substrates.

(a) Ibis intake rate of amphibians

All data model. Model AIC = 2879.00
Lognormal-Poisson error with log link

Dry substrate model. Model AIC = 1305.00
Lognormal-Poisson error with log link

Term B 95% CL  AAIC Term B 95% CL  AAIC
Intercept -1.51 0.82 Intercept -1.37 1.02
Moisture 234.00 | Vegetation volume -0.13 0.21 -1.00
Dry - - Year -1.00
Moist -0.44 0.22 1 - -
Saturated -1.74 0.22 2 -0.69 0.83
Year 1.00
1 —_ —
2 -0.64 0.65
Random effects: (Date|Site)+(1]1D) Random effects: (Date|Site)+(1]|ID)
(b) Amphibian biomass density
All data model. Model AIC = 300.40 Dry substrate model. Model AIC = 252.77
Lognormal-Poisson error with log link Negative binomial with log link
Term B 95% CL  AAIC Term B 95% CL  AAIC
Intercept -2.67 0.95 Intercept 0.15 0.99
Moisture 4.10 Vegetation volume -0.79 0.70 2.00
Dry - - Year 0.45
Moist -0.35 1.10 1 - -
Saturated -1.77 1.42 2 0.98 1.10
Year 1.70
1 — —
2 0.93 1.05

Random effects: (Date|Site)+(1|ID)

Random effects: (Date|Site)

Table 4.A2. Continued pg. 82.
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(c) Ibis intake rate of small invertebrates

All data model. Model AIC = 2896.98
Negative binomial with log link

Saturated substrate model. Model AIC = 2029.00
Negative binomial with variance = 8y, with log link

Term B 95% CL  AAIC Term B 95% CL  AAIC
Intercept -4.89 3.55 Intercept -0.74 0.91
Moisture 159.86 | Vegetation volume 0.10 0.31 -1.60
Dry - - Year -0.06
Moist 0.60 0.46 1 - -
Saturated 2.59 0.41 2 -0.17 0.59
Year -1.20
1 —_ —
2 0.79 237
Random effects: (Date|Site)+(1|ID) Random effects: (Date|Site)
(d) Small invertebrate biomass density
All data model. Model AIC = 873.35 Saturated substrate model. Model AIC = 210.42
Negative binomial with log link Negative binomial with log link
Term B 95% CL  AAIC Term B 95% CL  AAIC
Intercept -0.46 0.60 Intercept -1.37 2.22
Moisture 8.69 Vegetation volume 0.53 0.62 1.15
Dry - - Year —4.55
Moist 0.95 0.59 1 - -
Saturated 0.98 0.64 2 0.88 1.69
Year 1.19
1 —_ —
2 -0.58 0.64

Random effects: (Date|Site)+(1|ID)

Random effects: (Date|Site)

Table 4.A2. Parameters of White-shouldered Ibis intake rate and prey biomass density models,

for amphibians (a—b) and small invertebrates (c—d) separately. Two models were run for each

of a—d, testing the effect of substrate moisture (using all data) and the effect of vegetation

volume (within dry substrate for amphibian intake and biomass density, and saturated

substrate for small invertebrate intake and biomass density). Error distributions were selected

from preliminary tests of model fit with Poisson; lognormal Poisson; zero-inflated lognormal

Poisson; negative binomial, zero-inflated negative binomial and negative binomial with

variance = O (overdispersion parameter x mean, also known as quasi-Poisson) error

distributions. Dry substrate and year 1 were reference levels; parameter estimates B are given

with 95% CL; AAIC is the change in Akaike Information Criterion when the term is dropped

from the model. “Date” is the number of days since the sampling season began. The structure

of random effects in the model is also indicated, “ID” is the identification number of each

observation, creating an observation-level random effect (lognormal Poisson error).
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Term B 95% AAIC
CL

Intercept -2.00 1.65

Microtopography 5.89
Even/uncracked - -
Cracked/holed 1.83 1.21

Year -1.64
1 —_ —
2 0.42 1.37

Table 4.A3. Parameters of a supplementary model testing the effect of substrate
microtopography on amphibian biomass density in dry substrate. The model used a negative
binomial error distribution with log link, including date and site as random effects.
Even/uncracked substrates and year one were reference levels and parameter estimates B are
given with 95% CL. AAIC is the change in Akaike Information Criterion when the term is

dropped from the model.
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Giant Ibises Thaumatibis gigantea feeding in shallow water at a trapaeng.
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5.1. Abstract

White-shouldered Ibis Pseudibis davisoni and Giant Ibis Thaumatibis gigantea are two of
the most threatened yet poorly known birds of South-East Asia’s dry forests. Anecdotal
evidence suggests these species have an intriguing combination of ecological similarities
and differences, and as they occur sympatrically there may be an opportunity to safeguard
them through joint conservation measures. This study compared their foraging ecology and
proximity to people to unravel their ecological differences and inform conservation.
Landscape-scale habitat use was assessed by recording ibis sightings on journeys through a
75,000 ha dry forest landscape; White-shouldered Ibises were surveyed over 526 journeys
(totalling 17,032 km) and Giant Ibises over 349 journeys (11,402 km). The ibises showed
broadly similar habitat selection, using a range of wetland and terrestrial habitats. Giant
Ibises were more often sighted further from settlements than White-shouldered Ibises, with
maximum sighting frequency predicted at 9.9 km from villages for the former and 8.3 km
for the latter. Giant Ibis may be less tolerant of human disturbance and/or White-shouldered
Ibis may be more dependent on traditional land management practices, but the species’
differing use of abandoned paddy field (a habitat typically near settlement) could also be a
contributing factor. At seasonal waterholes in the dry season foraging Giant Ibis used wetter
microhabitats than White-shouldered Ibis suggesting the species occupy different foraging
niches. We make preliminary observations regarding Giant Ibis breeding strategy and
discuss potential habitat management actions, concluding that although conservation could
address these species simultaneously in deciduous dipterocarp forest landscapes, their
ecological differences must also be taken into account.

5.2. Introduction

Deciduous dipterocarp forests (“dry forests”) of South-East Asia contain a distinctive
assemblage of species including megafauna, such as Asian Elephant Elephas maximus,
Tiger Panthera tigris and Banteng Bos javanicus, and large-bodied birds, such as three
vulture, four stork and one crane species (Baltzer et al. 2001). This biodiversity has suffered
various human impacts, namely hunting, habitat loss and degradation, with at least 60 dry
forest birds, mammals and reptiles classified as threatened on the IUCN Red List in
Cambodia alone (Tordoff et al. 2005; WCS 2009). While conservation resources are being
increasingly directed at this ecosystem, the ecology of the forest and much of its wildlife
remains poorly or only partially understood (CEPF 2007; Songer 2006). Of the dry forest

birds, two species stand out as amongst the most enigmatic, threatened and poorly studied:
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the Critically Endangered White-shouldered Ibis Pseudibis davisoni and Giant Ibis
Thaumatibis gigantea.

These two dry forest ibises experienced dramatic declines in the twentieth century (BirdLife
International 2001) and, although once widely distributed across South-East Asia, their
ranges contracted to become almost entirely confined to Cambodia (BirdLife International
2001). Remaining populations are fragmented and only 250 individual Giant Ibises
(BirdLife International 2012b), and 731-856 individual White-shouldered Ibises (Wright et
al. 2012a; chapter 3) are estimated to remain globally. Conversion of dry forests (for
infrastructure, settlement and agriculture, including plantations) and changing local land
management are projected to cause further, severe declines in ibis populations (BirdLife
International 2012a; b). Conservation action is urgently required to secure these ibises from
extinction, but is likely to depend on a scientific understanding of their ecological

requirements.

White-shouldered Ibis and Giant Ibis exhibit an intriguing mixture of ecological similarities
and differences. The species occur sympatrically in much of their current ranges
(historically they occurred together, or in close proximity, in Cambodia and southern Laos;
BirdLife International 2001) and while their wet season foraging ecology remains poorly
known (BirdLife International 2012a; Keo 2008b), both forage at seasonal wetlands, known
as trapaengs, in the dry season (November—May *, Keo 2008b; Wright et al. 2010). Both
ibises breed solitarily in canopies of dipterocarp trees and no evidence of migration has
been found for either species. Despite these similarities these ibises have contrasting
breeding strategies, with White-shouldered Ibis nesting in the mid- to late dry season
(December—May; chapters 7 and 8) and Giant Ibis in the wet to early dry season (June—
November; Clements et al. in press). Available evidence suggests that breeding White-
shouldered Ibises forage in exposed substrates at drying-out trapaengs (Wright et al. 2010).
However, why the Giant Ibis breeding season differs so markedly is not yet known, and the

habitat use and prey selection of these species has yet to be compared.

The ibises’ overlapping ranges and ecology suggest that carefully designed conservation

measures could attempt to safeguard both species simultaneously. Conservation that

! Elsewhere in the thesis the dry season is stated as November—April and the wet season May—October.
To match the breeding/non-breeding seasons of both White-shouldered Ibis and Giant Ibis, this chapter
considers the dry season to be a month longer. In reality there is not a precise or predictable division

between seasons and April/May and October/November are transitional periods.
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supports local land management practices may benefit both species, particularly the
maintenance of foraging habitat by domestic livestock (Keo 2008b; Wright et al. 2010;
chapter 6). However, adopting such a strategy requires research into the compatibility of the
ibises’ ecological requirements and their interaction with people. This study compares
White-shouldered Ibis and Giant Ibis foraging ecology, examining habitat selection in the

dry forest landscape and microhabitat and prey use at trapaengs.

5.3. Methods

5.3.1. Study area

The study was conducted in a ¢.75,000 ha area within Western Siem Pang and Sekong
Important Bird Areas (IBA; centred on 14°17'N 106°27'E), northern Cambodia (Fig. 5.1.,

@ Thailand

Cambodia

Vietnam _-

=== Country border == Settlement G Agricultural land I Kong River = Settlement

Western Siem Pang — Survey tracks Veal — River tributary —— Main road
and Sekong IBAs on land
* Trapaeng —— Survey tracks on land
== Kong River == Survey tracks [ Forest (all types) ]
by river = Survey tracks by river

Figure 5.1. Location of Western Siem Pang and Sekong IBAs in Stung Treng Province, Cambodia
(a) and extent of survey journeys within the IBAs (b). Map c demonstrates the extent of main
habitat types within the core section of the study area. “Agricultural land” includes

cultivated/stubble and abandoned paddy fields.
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Seng et al. 2003), an unprotected site with at least 226 individual White-shouldered Ibises
and an estimated 80 Giant Ibises (BirdLife International 2012b, Wright et al. 2012a;
[chapter 3]). The area comprised a mosaic of deciduous dipterocarp forest with patches of
grassland (veals), river channels, mixed deciduous and semi-evergreen forest, and active
and abandoned agricultural land (rice paddy) close to settlements. The climate is strongly
monsoonal with monthly average monthly rainfall reaching 333 mm in the wet season and
as low as 0.9 mm in the dry season (Thuon & Chambers 2006). Dipterocarp forest
understorey is burnt annually in the dry season, largely as a result of anthropogenic fires.
Trapaengs occur frequently in the landscape and vary in size (0.001-3.4 ha, Wright et al.
2010). Water drawdown in trapaengs and rivers is dramatic in the dry season, exposing
substrates with varied moisture conditions. Villages were concentrated in the south and east
of the study area (Fig. 5.1.) and inhabited by ¢.10,000 people (Ministry of Planning 2007).

5.3.2. Surveys of ibis habitat use

Ibis habitat selection was examined at the landscape scale by recording ibis sightings along
journeys through the study site. White-shouldered Ibises were recorded during 526 journeys
over 22 months between November 2009 and January 2012; the protocol was expanded to
simultaneously record Giant Ibises, which were surveyed during 349 journeys over 17
months between March 2010 and January 2012 (a subset of White-shouldered Ibis
journeys). Journeys were undertaken systematically as part of travel for wider research and
on-site conservation activities, with up to three observers travelling independently per day.
Journeys were along forest tracks and paths, covering 33.9 £ 18.9 km per journey day
(mean = SD) and were made by motorbike at low speed or occasionally by foot where
tracks were inaccessible; 2.4% of journeys were made by boat along main river channels.
Journeys were made in both the dry and wet seasons and survey effort (km per journey day)
was similar. Survey routes for each journey were noted on datasheets and recorded using a
hand-held GPS.

The survey recorded the location (using a GPS), number, activity and habitat use of ibis
with each sighting. Ibises on or taking off from the ground were assumed to be foraging and
selected for analysis; other activities (such as loafing or preening) may also take place on
the ground but are typically interspersed with foraging bouts and occur in the same habitat
(HLW pers. obs.). Habitat was categorised as river channel; trapaeng; deciduous
dipterocarp forest; veal; cultivated rice paddy; rice paddy stubbles; abandoned paddy field

(unused for more than one season) and mixed deciduous/semi-evergreen forest. The
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placement of forest tracks was largely independent of vegetation or topographical features,
making journeys representative of habitats with the exception of denser semi-evergreen
forest (rarely used by either ibis in mainland South-East Asia; BirdLife International 2012a,
b), river tributaries and isolated areas of wet-season inundation. Although not traversed,
tracks were frequently beside trapaengs, allowing them to be surveyed. Much veal habitat
originated from historic rice cultivation, but swards are typically taller than at more recently
abandoned paddies so these habitats were considered separately; bunds were more apparent
in abandoned rice paddies (typically > 10 cm high) than in veals (typically < 10 cm or

absent), allowing these habitats to be distinguished.

Habitats were mapped with a hand-held GPS during journeys in April 2010. Survey effort
per habitat type was quantified in a GIS (ArcMap 9.3, ESRI 2010) by intersecting journey
tracks onto the habitat segments they traversed. As tracks went beside trapaengs, survey
effort for this habitat was quantified by intersecting tracks through buffers surrounding each
surveyed trapaeng. Buffer size was a factor of trapaeng radius and viewable distance (in
classes of 0, 20, 40, 60 and 80 m) so that large trapaengs visible from far away accounted

for greater survey effort than small trapaengs visible only from close by.

The survey protocol was kept simple so that local field staff and villagers (with low
technical expertise) could collect consistent data; as distances to observed birds were not
recorded data could not be analysed by a distance-sampling approach. Nonetheless, a
preliminary survey did measure the distance from observers to ibises seen on the ground,
showing that ibis detectability varied with habitat (F43, = 2.71, P = 0.046, distance square-
root transformed). Journey distances per habitat segment were therefore multiplied by a
habitat-specific estimated transect strip-width, defined by the average sighting distance (or
an approximated distance for habitats in which no ibises were observed), to calculate both
survey effort and sighting frequency per km?. Estimated transect widths may slightly
underestimate effective strip-width and therefore overestimate sighting density, but this is
unlikely to have caused a directional bias in the findings presented and population densities
were not estimated. Survey areas were aggregated by habitat type and half-month time

periods for analysis.
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5.3.3. Foraging observation at trapaengs *

Ibis microhabitat and prey use were studied at trapaengs by observing foraging ibises
between December and February in two dry seasons (2008—09 and 2009-10) for seven
trapaeng-year observation periods: three trapaengs in one year and two trapaengs in each
of the two years. Trapaengs were selected to contain a complete gradient of moisture
conditions (from pools of water to exposed dry substrate) and maximise the chance of ibis
visitation (confirmed by preliminary surveys) to provide foraging data. Trapaengs surveyed
in both years were observed in different months under novel habitat conditions.
Observations were conducted by one observer using a telescope from hides on trapaeng
perimeters; observations were from dawn until dusk lasting for 3.9 + 0.7 contiguous days

(mean + SD per site).

Trapaeng microhabitats were defined by four moisture conditions: pools of water, and
saturated, moist and dry exposed substrates. Their extents were mapped at each trapaeng by
sketching homogeneous habitat patches (Wright et al. 2010), recording coordinates with a
hand-held GPS and measuring dimensions with a laser rangefinder. Maps were
georeferenced and digitised in a GIS to calculate patch areas and area data were aggregated

to calculate microhabitat extent as a proportion of each trapaeng.

Ibis microhabitat use was measured by instantaneous scan-sampling at six-minute intervals,
recording the activity and location (habitat patch) of all ibises present, the latter aided by
markers placed around habitat patch boundaries. Prey type and size class (0-2.49 cm, 2.50-
4.99 cm and >=5 cm) of each item captured was recorded for ibis individuals during
replicate six-minute focal watches. Items of <1 cm were consumed infrequently and were
therefore excluded from analysis. Prey biomass was estimated using average ash-free dry
mass (AFDM) calculated for a set of prey specimens comprising all prey types and size

classes (Piersma et al. 1994; chapter 4).

5.3.4. Analysis

Landscape-scale habitat selection was examined by log-ratio analysis (Aebischer et al.
1993), comparing proportionate habitat use (from number of sightings) with proportionate
habitat availability (from survey effort area) using half-month period as the unit of

replication. Analysis was conducted in Compos Analysis software (Smith 2005) with log-

! Protocols followed those described in chapter 4, but sample sizes differed.
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ratios weighted by the square-root of total survey effort area per period. Habitat selection
was analysed separately for each ibis species in the dry (White-shouldered Ibis n = 23 half-
month periods, Giant Ibis n = 15) and wet (White-shouldered Ibis n = 17, Giant Ibis n = 16)
seasons. Within the wet season, relative use of trapaengs was compared between ibis
species with a chi-squared test, contrasting numbers of sightings at trapaengs versus non-
trapaeng habitats by pooling records from journeys made after March 2010 (when both ibis

species were surveyed).

To examine the effect of proximity to people on ibis occurrence, ibis sightings and journey
tracks were split using a GIS into five classes of distance to nearest settlement (0-2.49, 2.5-
4.99, 5-7.49, 7.5-9.99 and 10-16 km). The effect of distance to settlement (midpoints of
the five distance classes, treated as a continuous variable) on ibis sighting frequency (count
per distance to settlement class per journey day) was modelled for each ibis species in
GLMs with Poisson-distributed error and log link, with log survey effort area included as an
offset. Sample units with a journey distance of less than 2 km were excluded to ensure
counts were based on adequate survey effort. Non-linear effects of distance to settlement
were tested by square-root transformation. Proximity of individual sightings to the nearest
settlement (calculated in GIS) was also compared between the two species using a Mann-
Whitney test.

The species’ microhabitat and prey use at trapaengs were statistically compared for the
trapaeng-year observations in which both ibis species were observed, ensuring comparable
survey effort and habitat and prey availability. Species’ use of dry versus saturated
substrate, and of water versus other microhabitats combined, were compared using chi-
squared tests of the frequency of scan-sampled individuals per microhabitat type. Intake rate
(centigrams of AFDM per minute) of two prey groups: (1) amphibians and small
invertebrates; and (2) swamp eels and crabs; were calculated using focal watch data and

compared between the two species using Mann-Whitney tests.

5.4. Results

5.4.1. lbis sighting frequency and flock size

A total of 446 White-shouldered Ibis and 66 Giant Ibis sightings were obtained from 17,032
km and 11,402 km of survey journeys respectively; 328 White-shouldered Ibis and 51 Giant
Ibis sightings were of birds seen on or taking off from the ground and assumed to be
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foraging (“sightings” refers to foraging birds henceforth). Sighting frequency of foraging
White-shouldered Ibis per journey day was 0.20 + 0.40 (mean number of sightings per km?
+ SD) compared with 0.06 £ 0.31 for Giant Ibis, and mean flock size per sighting was larger
(Mann-Whitney test W 30851 = 10,142, P = 0.011) for White-shouldered Ibis (5.9 + 15.3
birds, mean = SD) than for Giant Ibis (1.8 + 0.8 birds). White-shouldered Ibis flock size
was greater (Wog 220 = 5939, P < 0.001) in the wet (non-breeding) season (10.1 £ 25.1 birds)

than in the dry (breeding) season (4.1 + 7.3); no such difference was found for Giant Ibis.

5.4.2. Landscape-scale habitat selection

White-shouldered Ibis and Giant Ibis both foraged in a variety of habitats within the dry
forest landscape and both showed marked differences in habitat selection between the dry
and wet seasons (Fig. 5.2.). Both ibises preferred trapaengs in the dry season, particularly
White-shouldered Ibis which breeds in this season. Giant Ibis also made use of river
channels in the dry season, a habitat not used by White-shouldered Ibis in this study. In the
wet season, ibises made more equal use of habitats and were found more frequently in
terrestrial areas than in the dry season. Both species made use of trapaengs, veals and
deciduous dipterocarp forest, but White-shouldered Ibises also used abandoned paddy fields
(19.4% of wet season sightings), where Giant Ibises were not observed in either season.
Trapaengs accounted for a greater proportion of Giant Ibis sightings in the wet season than
for White-shouldered Ibis (47% and 22% of sightings respectively) and use of trapaeng
versus non-trapaeng habitat was greater for Giant Ibis than for White-shouldered Ibis (x*, =
4.01, P = 0.045). Sighting frequency of White-shouldered Ibis at trapaengs in the wet
season was also 79% lower than in the dry season, compared with only a 34% difference for
Giant Ibis. Three habitats appeared unimportant for foraging ibis: one or fewer sightings
were gained (for either species) in rice paddy stubbles and cultivated paddy despite the
large extent of these habitats in parts of the study area; fewer than three sightings came
from mixed deciduous/semi-evergreen forest, perhaps reflecting this habitat’s sparse

distribution in the study area and/or poor representation by survey journeys.

5.4.3. Effect of distance to settlement

Ibis sighting frequency per journey day was positively related to distance to settlement for
both White-shouldered Ibis and Giant Ibis (Fig. 5.3.), with distance to settlement strongly

supported in models for both species; removal of the linear term resulted in Akaike

95



Chapter 5: Comparative ecology of sympatric ibises

White-shouldered Ibis Giant Ibis
a a
77 oRrY 107 prY T
6 —
0.8 1
5 -
4- 06 4
~ 34
o 0.4
£
= 2]
g 0.2
g 7 b
= b c c —t=
2 0 0.0
oy
& 77 wer 107 wer
o
2 6
& 0.8
£ 51 a
-‘U:') 0 S -
» 4 '
31 0.4 l
2 4 a a
0.2 A
1 . a a .
0- 0.0 ===
Forest Aban. Veal Trapaeng River Forest Aban. Veal Trapaeng River

paddy paddy

Figure 5.2. Habitat use of foraging White-shouldered Ibis (dark grey) and Giant Ibis (light grey)
in the dry and wet seasons. The dry season corresponds with the White-shouldered lbis
breeding season and Giant Ibis non-breeding season, the wet season is the reverse. All habitats
were surveyed in each season, missing bars indicate no birds recorded in that habitat type.
Sighting frequency is the average number of foraging ibis sightings per km? per half-month;
bars indicate standard error. Habitat use (log-ratios of use versus availability) did not differ
significantly (P < 0.01) between habitats sharing a common letter (see Appendix in section 5.6.
for mean log-ratio differences and test statistics); river was surveyed too infrequently to
analyse its dry-season selection by Giant Ibis. “Forest” refers to deciduous dipterocarp forest,

“Aban. paddy” is abandoned paddy field.
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Figure 5.3. White-shouldered Ibis (dark grey) and Giant Ibis (light grey) sighting frequency
(number of foraging ibis sightings per km? per journey day), averaged by class of distance to
settlement (a) and predicted by Poisson GLMs (b): White-shouldered Ibis model AIC = 1585.7,
dispersion ratio = 0.77; Giant Ibis model AIC = 376.3, dispersion ratio = 0.31. Bars indicate

standard error and dotted lines indicate 95% confidence intervals.

Information Criterion (AIC) increases of > 2 units (63.0 for White-shouldered Ibis and 13.0
for Giant Ibis), removal of the non-linear term resulted in large AIC increases (96.6 and
22.5 respectively). Predicted White-shouldered Ibis sighting frequency had a steeper
response curve with distance to settlement (Fig. 5.3.; n = 1362, linear term  =-0.68 + 0.17
95% CL, non-linear term 8 = 3.93 + 0.79) than Giant Ibis (n = 904, g = -0.85 £ 0.46, non-
linear term p = 5.41 * 2.34); consequently maximum White-shouldered Ibis sighting
frequency was predicted at 8.3 km from settlements compared with 9.9 km for Giant Ibis.
Further highlighting this difference, the mean distance to nearest settlement of individual
White-shouldered Ibis sightings (5.7 + 3.3, mean + SD) was significantly less than for Giant
Ibis (7.8 = 3.4, W335, = 5474.5, P < 0.001). White-shouldered Ibis sighting frequency
appears to decline after 8.3 km from settlements, but lower sample sizes and overlapping

confidence intervals (at 8.3 km versus maximum settlement distance) suggest this result is
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not robust; using additional classes of 10-12.99 and 13-16 km also did not provide strong

evidence for a decline (and resulted in even smaller sample sizes).

5.4.4. Microhabitat and prey use at trapaengs

White-shouldered Ibis foraging data were obtained in all seven trapaeng-year observations
and Giant Ibis data in two, yielding 777 and 117 scan-samples (3101 and 242 individual
bird records) for these species respectively; scan-samples comprised tens of White-
shouldered Ibis individuals and a minimum of eight Giant Ibises. Crude comparison of
proportionate microhabitat use shows some apparent similarities between the two ibis
species’ at trapaengs in the dry season (Fig. 5.4.); both fed in all exposed substrate types
and showed proportionally greater use of both dry and saturated substrates than moist
substrate. However, relative to other microhabitats, Giant Ibis made greater use of pools of
water than White-shouldered Ibis (x?, = 81.6, P < 0.001) for which only 0.3% of scan-
sampled individuals (across all trapaeng-years) foraged in water. Furthermore, the ibis
differed significantly in their use of saturated relative to dry substrate (x* = 140.7, P <
0.001), with Giant Ibis making greater use of the former and White-shouldered Ibis greater
use of the latter. In terms of proportionate use relative to proportionate availability, White-
shouldered Ibis appeared to prefer dry substrate whereas Giant Ibis appeared to avoid it
(Fig. 5.4.).

Focal sampling at trapaengs yielded 89.7 and 3.46 aggregate hours of foraging observation
data (from 797 and 40 focal watches) for White-shouldered Ibis and Giant Ibis respectively.
Marked differences in diet composition were apparent, with amphibians contributing
greatest biomass for White-shouldered Ibis and swamp eels contributing most to Giant Ibis
diet (Fig. 5.5.). At the two trapaengs where both ibis species were observed, combined
intake rate of amphibians and small invertebrates was significantly greater for White-
shouldered Ibis than for Giant Ibis (W49 40 = 3297, P < 0.001). Conversely, combined intake
rate of swamp eel and crabs was significantly greater for Giant Ibis than for White-
shouldered Ibis (Wyg 349 = 8532, P < 0.001). Prey biomass estimates for a set of ashed prey
specimens suggest the average-sized crab caught by either ibis may hold 2.5 times more
AFDM than the average-sized amphibian, and the average-sized swamp eel may hold over
5 times more, indicating that Giant Ibis are likely to be consuming considerably greater prey

biomass per item caught than White-shouldered Ibis.
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Figure 5.4. Microhabitat use by (a) White-shouldered Ibis and (b) Giant Ibis at trapaengs in the
dry season. Proportionate use (grey columns) and proportionate availability (white columns) of
moisture conditions were averaged across seven trapaengs for White-shouldered Ibis and two

trapaengs for Giant Ibis. Bars indicate standard error.
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Figure 5.5. Mean proportionate contribution of prey types to biomass consumed by White-
shouldered Ibis (dark grey, at seven trapaengs) and Giant Ibis (pale grey, at two trapaengs)

during foraging bouts. Bars indicate standard error.
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5.5. Discussion

White-shouldered Ibis and Giant Ibis showed some broad similarities in foraging ecology,
including habitat use at the landscape scale. Nevertheless, the relative importance of
wetland to terrestrial habitats differed between the species, and contrasting microhabitat and
prey use at trapaengs suggest these species occupy different foraging niches. Giant Ibises
were more often recorded further from settlement than White-shouldered Ibises, suggesting
that these species may have different tolerance levels to human disturbance and/or different
dependency on traditional land management practices (assumed to predominate closer to
settlements) and habitat types. Conservation could be designed to benefit both ibises

simultaneously, but will require careful consideration of their ecological differences.

5.5.1. Landscape-scale habitat selection

White-shouldered Ibis and Giant Ibis used a mixture of dry forest habitat types which varied
with season. These species showed broadly similar habitat use at the landscape scale in
contrast to markedly different breeding strategies. In the dry season, despite rapidly
receding water levels (Wright et al. 2010; chapter 4) both ibises preferred to forage in
wetland habitats, similar to Sharp-tailed Ibis Cercibis oxycerca and Green Ibis
Mesembrinibis cayennensis habitat selection in the Llanos of Venezuela (Frederick &
Bildstein 1992). Mean White-shouldered Ibis sighting frequency was vastly greater at
trapaengs than in any other habitat in the dry season. This species adopts a foraging
strategy well adapted to increasing extents of exposed dry substrates at trapaengs in this

season (chapter 4) and access to trapaengs may be essential for breeding.

Habitat use in the wet season was more equitable, with both ibis species foraging in a range
of wetland and terrestrial habitats. Trapaengs continued to be used, although to a lesser
degree than in the dry season, and the use of open terrestrial habitats (abandoned paddy
field and/or veal) suggests that access to the ground is important, as for most ibis species
reliant on terrestrial habitats (del Hoyo et al. 1996). Keo (2008b) also noted the value of
veals as a Giant Ibis foraging habitat, observing a high wet-season abundance of
earthworms. White-shouldered Ibis was gregarious in the wet season and large
congregations of foraging birds (up to 185 individuals) were observed in veals and
abandoned paddy fields, indicating the importance of protecting such habitats. Apparent
habitat preference and response to settlement proximity may be confounded; abandoned

paddy fields were not found beyond 4.6 km from settlements, so the absence of Giant Ibis
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from this habitat may represent avoidance of villages rather than habitat suitability.
Conversely the apparently greater tolerance of White-shouldered Ibis for settlement
proximity may reflect their greater use of these habitats rather than a differing response to

people per se.

Although White-shouldered Ibises were not observed in river channels, rivers appear to
constitute important foraging habitat elsewhere in Cambodia and Indonesian Borneo (Sozer
& van der Heijden 1997; Timmins 2008). Both species are most likely to forage in river
channels with large extents of exposed mud and/or sand (R.J. Timmins in litt. 2012); such
habitats were rare along surveyed sections of main rivers and seasonal tributary channels in
the wider landscape, perhaps containing the most exposed substrate, were poorly
represented by journeys along forest tracks. More dedicated survey of suitable riverine
habitat would improve knowledge of its selection by both ibis. Nonetheless, the lack of wet-
season sightings along rivers may genuinely reflect prohibitively high water levels, an effect
seen for White-shouldered Ibis along the Mekong River (Timmins 2008).

5.5.2. Proximity to people

Of the two species, Giant Ibis appeared more limited by proximity to people. Foraging birds
were observed significantly further from settlement for this species and in models the
predicted maximum sighting frequency occurred 1.6 km further from settlements than
White-shouldered Ibis. Keo (2008b) found that Giant Ibis typically nested more than 4 km
from settlements and preferred to forage at trapaengs further from villages, postulating that
disturbance and/or persecution may be greater closer to settlements. White-shouldered Ibis
appears much more accustomed to people, often roosting and nesting in trees in or around
rice paddies — even when in use by people —and is less wary when approached (HLW pers.
obs.). Sightings from the early twentieth century, although sparse, also suggest that White-
shouldered Ibis was found more frequently in cultivated lands than Giant Ibis (BirdLife
International 2001; Thewlis & Timmins 1996). It is possible that White-shouldered Ibis is
more opportunistic in its habitat use, while Giant Ibis may make more specialist use of dry
forest landscapes; alternatively these patterns may reflect an underlying difference in
responses to human disturbance. Irrespective of the mechanism, Giant Ibis would appear
more vulnerable to human activity and settlement in remote areas, while White-shouldered
Ibis’s closer proximity to people and less evasive behaviour may make it more vulnerable to
hunting, a factor that most probably contributed to its decline, particularly in Laos and

Vietnam (BirdLife International 2001). Unchecked habitat conversion, resource extraction,
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human population growth and settlement expansion, issues requiring urgent conservation
action in South-East Asia (CEPF 2007), will threaten both species.

Somewhat contrasting dependencies on traditional land management practices could also
shape these responses to settlement proximity. While both species could benefit from
grazing of foraging habitat by livestock (Keo 2008b; Wright et al. 2010), White-shouldered
Ibis is plausibly more constrained by habitat availability, being a third smaller (in terms of
linear body length; del Hoyo et al. 1996) and considerably shorter in height than Giant Ibis
(HLW pers. obs.). Vegetation growth in trapaengs, veals and deciduous dipterocarp forest
is substantial in the wet season (chapter 6) and may reach more than double White-
shouldered Ibis body height (Wright et al. 2010), potentially restricting this species’s use of
habitats otherwise still accessible to Giant Ibis. More frequent White-shouldered Ibis
sightings in areas closer to settlements could reflect a stronger requirement for grazed
habitat and bare ground, where livestock densities are highest (Wright et al. 2010). The
possible decrease in White-shouldered Ibis sighting frequency beyond 8.3 km from
settlements would further support this. The effect of people and livestock on ibis abundance
deserves further study to understand the potential trade-off between the negative effects of
human disturbance (particularly for Giant Ibis) and the positive effects of land-use
practices. Examining ibis distribution in a study landscape with a steeper gradient of
livestock density and greater maximum distance to settlement than occurred in this study

area would help in clarifying this potential effect.

5.5.3. Foraging ecology at trapaengs

The dry season foraging ecology of White-shouldered Ibis and Giant Ibis has been
examined elsewhere (Keo 2008a; Wright et al. 2010; chapter 4). Having observed only a
small number of Giant Ibises feeding at two trapaengs, this study cannot draw major new
conclusions on this species’s foraging strategy and we limit the discussion to a preliminary
comparison of the two species. Similarities included both species’ use of all exposed
substrate types, and shared use of the amphibian resource at trapaengs. Although Keo’s
(2008b) study (from January to April) found amphibians contributed a major part of Giant
Ibis diet (as is the case for White-shouldered Ibis), this study found them to be of only
marginal importance. However, our survey took place earlier in the dry season when wetter
conditions may have sustained more of the aquatic prey seemingly favoured by this species.
The most notable differences in microhabitat use were the avoidance of water and use of

dry substrate by White-shouldered Ibis, contrasting with Giant Ibis’s greater use of water
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and saturated substrates. Prey use reflected this with the contribution of aquatic prey to
Giant Ibis diet (83% of consumed biomass) far exceeding that in White-shouldered Ibis diet
(0.4%). Average biomass of prey items consumed by Giant Ibis was 263% greater than of
items consumed by White-shouldered Ibis, perhaps explaining the large disparity in body
size between these species, or demonstrating the Giant Ibis’s need to consume sizeable prey

to sustain its large body size.

Despite some similarities in foraging ecology, the contrasting use of wet microhabitats
suggests the ibises may occupy different foraging niches at trapaengs, at least in the early to
mid-dry season. Studies of ibis incidence at trapaengs add further evidence, with Giant Ibis
selecting trapaengs with greater extent of wet mud (Keo 2008b), but White-shouldered Ibis
showing no such selection (Wright et al. 2010). The ibises’ morphology may also point to a
degree of niche separation: the White-shouldered Ibis’s neck is feathered from the body to
the top of its hindcrown, whereas Giant Ibis has feathering along only one-third of its neck-
length. The latter may be an adaptation for a bird that more regularly submerges its head
and upper neck in water or wet mud, although the presence of bare skin may also aid
thermoregulation (Buchholz 1996; Ward et al. 2008). When in shallow water, Giant Ibis
forage by probing with bill slightly agape (Eames 2011, HLW pers. obs.), matching the
technique used by other ibis (e.g. Kushlan 1979) but not witnessed for White-shouldered
Ibis.

5.5.4. Giant Ibis breeding strategy

The wet season foraging ecology of these ibises is still very poorly known (BirdLife
International 2012a; Keo 2008b); examining the ibises’ relative foraging success for wet
season prey types and habitats will inform conservation and shed light on the Giant Ibis’s
breeding strategy. Accessing tall and densely vegetated wet-season habitats may be easier
for Giant Ibis (given its larger body size) compared with White-shouldered Ibis allowing it
to reach the prey-rich earthworm mounds found in deciduous dipterocarp forest and
particularly veals. A longer, thicker bill may also be more effective at probing for
earthworms. Terrestrial habitats, particularly veals, can become inundated in the wet season
and trapaeng water levels increase substantially (HLW pers. obs.; chapter 4). Greater use of
trapaengs in the wet season, a greater tendency to forage in wet microhabitats, and longer
legs and bill all indicate that Giant Ibis may be better adapted to foraging in flooded
conditions. Giant Ibis may therefore have a broader range of suitable wet-season habitat in

which to forage and provision chicks.
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5.5.5. Implications for habitat management

White-shouldered Ibis and Giant Ibis both used a mosaic of habitat types, requiring
protection and management of habitats at the landscape scale. Trapaengs are important
breeding-season habitats for both species, but a range of terrestrial habitats must also be
available, particularly in the wet season. Broadly similar habitat use indicates that
conserving a suite of dry forest habitats will benefit these sympatric ibis species
simultaneously. The use of open habitats such as veals and abandoned paddy fields suggests
these features should be protected and kept open; the latter deserves particular attention as it
occurs in close proximity to settlement and may be particularly vulnerable to agricultural
and urban expansion. Clearings could be created to improve habitat availability in
landscapes dominated by dense dry forest, and managed (e.g. by livestock grazing) to
ensure they remain accessible. Knowledge of the ibises’ wet-season foraging ecology would

be valuable to assist the design and management of these open areas.

Maintaining the extensive rearing of domestic livestock is likely to be important to both ibis
species — a requirement shared with many other threatened species in pastoral and mixed
farming systems (Wright et al. 2012b; chapter 2). Domestic livestock keep sward heights
low at trapaengs, veals and in deciduous dipterocarp forest, maintaining habitat suitability
for White-shouldered Ibis (chapter 6). Domestic buffalo are key grazers at trapaengs and
may also be useful in creating areas of saturated substrate to benefit Giant Ibis (Keo 2008b).
Both ibises will be affected if a reduction in livestock causes long-term ecological
succession and trapaeng sedimentation. Further study should investigate whether
introducing buffalo or cattle in landscapes where both domestic livestock and wild
herbivores are lacking can improve habitat suitability for these species, and whether animal
wallowing may contribute to trapaeng creation. Annual dry season fires are another
component of traditional, dry forest land management resulting in reduced vegetation
height; this could be a benefit to ibises foraging in terrestrial habitats and also deserves

further research.

While conservation could benefit White-shouldered Ibis and Giant Ibis simultaneously, care
should also be taken to ensure that interventions do not overlook their ecological
differences. In particular, safeguarding Giant Ibis is likely to require that large areas of
undisturbed habitat are protected from development and human interference, contrasting
with the White-shouldered Ibis’s potentially stronger need for habitat management. Human
disturbance and hunting risk require close attention in interventions that expand, enhance or

maintain traditional management practices. Equally, maintaining dry-season water levels at
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trapaengs for the benefit of Giant Ibis or other wildlife (Keo 2008b) should not be

undertaken to the extent that the exposed substrates (including dry ground) preferred by
breeding White-shouldered Ibis become scarce or unavailable.

5.6. Appendix: Habitat selection test statistics

(a) White-shouldered lbis

Dry season
Forest Abandoned paddy Veal
Abandoned -4.84+1.32mean+SE - -
paddy t,, =-3.67, P=0.004
Veal —-4.43 +1.30 mean+SE  0.41 +0.88 mean +SE -
t,, =-3.41, P=0.004 t,,=0.47, P=0.690
Trapaeng 7.85+1.73 mean = SE 12.69+1.03mean+SE  12.28 £ 0.93 mean + SE
t,, =4.54, P=0.002 t,,=12.35, P=0.001 t,»=13.30, P=0.001
Wet season:
Forest Abandoned paddy Veal
Abandoned —-2.31+1.83 mean+SE - -
paddy tig =-1.26, P=0.225
Veal -4.51+196meantSE -2.21+2.12 mean+SE -
tig=—2.31, P=0.032 tig=—1.04, P=0.354
Trapaeng -0.61+1.93 mean+SE 1.70+1.67 mean = SE 3.90 £ 1.95 mean £ SE
ti=—0.32, P=0.768 tis=1.01,P=0.274 tig=2.00, P =0.087
(b) Giant Ibis
Dry season
Forest
Trapaeng 8.90 £ 2.06 mean = SE
t;s=4.32, P=0.003
Wet season
Forest Veal
Veal 0.26 + 1.99 mean + SE -
t14,=0.13, P =0.904
Trapaeng 2.10£2.52 mean = SE 1.84 +1.87 mean £ SE

t14=0.83, P=0.428

t12=0.99, P=0.390

Table 5.A1. Mean differences in log-ratio (of habitat use and habitat availability) between

habitat types (rows versus columns), by ibis species (a—b) and season, with t test statistic and

associated P value (calculated using 1000 randomised iterations). “Forest” is deciduous

dipterocarp forest.
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Extensive livestocking practices maintain
foraging habitat for a Critically Endangered
waterbird

Above: domestic buffalo grazing at a trapaeng.
Below: Fire moving through the dry forest understorey.
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6.1. Abstract

Developing-world conservation directs much attention towards frontier forest ecosystems
where agriculture is considered the greatest threat. Despite the significance of high nature
value farming in conservation elsewhere, particularly Europe, less attention is given to
traditional farming systems supporting important biodiversity in the developing world. With
many of these systems at risk from agricultural modernisation, the traditional practices vital
to wildlife require research. The study demonstrates the value of an extensive pastoral
farming system to the Critically Endangered White-shouldered Ibis Pseudibis davisoni,
investigating how grazing and burning provide ibis foraging habitats in a dry forest
landscape. Vegetation change was measured following experimental exclusion of livestock
at waterholes, and of both livestock and fire in deciduous dipterocarp forest (DDF)
understorey; additional field surveys contrasted burnt and unburnt areas of understorey, in
the presence of grazing. Grazing and fire effects were related to foraging ibis by analysing
the impact of vegetation on ibis incidence, at waterholes and in DDF. Across the study
period, vegetation biomass was 92% greater following grazing exclusion at waterholes and
64% greater following grazing and fire exclusion in DDF understorey, where these practices
had additive effects. Incidence of foraging ibis was greater in DDF understorey with less
vegetation, so that ibis would be 65% less likely to forage in DDF following a > 1.5 year
absence of grazing and fire. An impact of grazing on foraging ibis at waterholes was not
discernible, most probably because of ubiquitously grazed conditions at waterholes. The
study concludes that White-shouldered Ibis is likely to depend on extensive livestocking
practices of grazing and burning in Cambodia’s dry forests. Conservation must address how
valuable practices can be maintained given their imminent, probable transformation in this

and other traditional farming systems in the developing-world.

6.2. Introduction

Developing-world agriculture is in transition as the economic forces of globalization
respond to growing food demand, increasing affluence and increasing land scarcity
(Godfray et al. 2010; Lambin & Meyfroidt 2011). In many places, local, traditional farming
systems are being replaced by industrial modes of agriculture as the drive for greater
production takes effect (McCullough et al. 2008; Pingali 2007). Large-scale land
acquisition, privatisation and the failure to internalise many of agriculture’s spillover costs

can all lead to major social and environmental problems (Robertson & Pinstrup-Andersen
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2010; Weis 2010) including the marginalisation of rural peoples (Cotula et al. 2011;
Zoomers 2010) and biodiversity loss (MEA 2005).

Impacts of agriculture have received much attention in conservation science (Norris 2008)
and there is considerable debate on reconciling future food demand with biodiversity
conservation (Fischer et al. 2011; Green et al. 2005; Phalan et al. 2011). In Europe,
agriculture has taken a central place in conservation through the Habitats Directive
(advocating the use of low-intensity farming practices to manage semi-natural landscapes)
and the widely-applied agri-environmental schemes of the Common Agricultural Policy
(Beaufoy 1998; Kleijn & Sutherland 2003). By contrast, conservation in the developing
world has given particular focus to forests (Bond & Parr 2010), where agriculture causes
substantial biodiversity loss (Sodhi et al. 2010). The dominant paradigm of “countryside
biogeography” advocates increasing the permeability and value of the agricultural matrix to
benefit forest species (Daily et al. 2001; Ranganathan et al. 2008). However, there is a need
to assess how farming can benefit biodiversity in its own right (Adams 2012), and evidence
is emerging that agricultural and semi-natural landscapes are vital to a distinct subset of

species occurring outside of forests (Wright et al. 2012b; chapter 2).

Where agricultural land uses have mimicked or substituted for the natural habitats they’ve
replaced, many open-habitat species, including threatened species of conservation priority,
have become dependent on them. Such dependencies are particularly notable in the ancient,
traditionally farmed landscapes of Europe, Africa and Asia, but also in recently modified
landscapes (Wright et al. 2012b; chapter 2). Farmed landscapes of high conservation value
require urgent identification in the developing world, as they are often threatened by both
intensification and land abandonment — twin consequences of agricultural modernisation
(Donald et al. 2001; Sirami et al. 2008). An understanding of the agricultural practices that
underpin synanthropic relationships is needed to inform the design of mechanisms that

maintain or mimic valuable land-management systems.

This study considers a tropical deciduous dipterocarp forest (DDF) landscape in Cambodia,
an open, savannah-like woodland influenced by livestock grazing and associated dry-season
burning in a traditional, extensive farming system. DDF contains some of South-East Asia’s
most threatened birds, mammals and reptiles (CEPF 2007), including the Critically
Endangered White-shouldered Ibis Pseudibis davisoni. Conservation practitioners have
postulated that this species may benefit from and perhaps depend on grazing and burning
practices, which provide access to its foraging substrates (Timmins 2008; Wright et al.

2010). These practices were experimentally controlled to investigate their impact on

111



Chapter 6: Extensive livestocking

wetland and forest understorey vegetation and use these results to explore whether White-

shouldered Ibis indeed benefits from extensive livestocking.

6.3. Methods

6.3.1. Study species

White-shouldered Ibis were once widespread in South-East Asia but declined dramatically,
for unknown reasons, in the twentieth century; 85-95% of the remaining global population
(731-856 birds) occurs in dry forests and along large river channels in north and east
Cambodia (Wright et al. 2012a; chapter 3). During the breeding season (December—May)
ibis rely heavily on seasonal waterholes, known as trapaengs, foraging in exposed
substrates around drying pools (Wright et al. 2010; chapters 4 and 5). In the non-breeding
season the ibis feed and provision their fledglings in open terrestrial habitats, selecting areas

of dry forest with accessible ground (Wright et al. 2010; chapter 5).

6.3.2. Study site

The study took place at Western Siem Pang Important Bird Area (Seng et al. 2003) in
northern Cambodia (14°07'N 106°14'E), containing the largest known White-shouldered
Ibis population (226 birds; Wright et al. 2012a; chapter 3). Frequent trapaengs of 0.001-3.4
ha (Wright et al. 2010) and patches of grassland, mixed deciduous forest and traditional,
low-intensity rice field occur within the dominant DDF. A six-month dry season,
November—April (with mean monthly rainfall as low as 0.9 mm), is followed by monsoonal
rainfall in May—October (up to 333 mm per month; Thuon & Chambers 2006).
Approximately 11,000 people live in this 138,000 ha site (Ministry of Planning 2007),
depending on livestock rearing, traditional rice cultivation and natural resource harvest
(chapter 7). Domestic water buffalo Bos bubalis and cattle Bos taurus indicus are kept as
draught animals and for capital accumulation, and roam freely in the landscape. Cattle
typically graze and trample the forest understorey while buffalo graze, trample and wallow
(henceforth considered collectively as “grazing”) at trapaengs — crucial to both livestock
species for water. People manage the forest for livestock by burning most of the understorey

in the mid- to late dry season (January—April), encouraging new grass growth after rainfall.
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6.3.3. Experimental exclusion of grazing at trapaengs

The influence of grazing on trapaeng vegetation was examined using 6 m x 6 m timber-
fenced exclosures (Fig. 6.1.) over a two-year period. One exclosure was built at each of six
trapaengs in January—February 2009 (set A) and six more trapaengs in January 2010 (set
B), creating treatment plots of vegetation left ungrazed for two years and one year
respectively. Trapaengs were selected to encompass variation in size (0.05-2.32 ha) and

vegetation structure (from bare ground to tall dense sedge stands). Few trapaengs are

burned in the study area so a fire exclusion treatment was not incorporated in this habitat.

Figure 6.1. An exclosure at a waterhole (trapaeng) in the early dry season, eight months after
construction. Domestic buffalo, and to a lesser extent cattle, have wallowed, trampled and

grazed the surrounding trapaeng habitat.

At each trapaeng the exclosure was paired with a 6 m x 6 m control plot placed within 25
m, in the same habitat, and at a comparable distance from the trapaeng centre and margin.
Vegetation biomass was monitored monthly, starting in September 2009 for set A control

plots and January 2010 for set B. Set A exclosures and paired controls were placed in
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identical habitat following visual assessment of vegetation structure and type. For set B,
where vegetation was measured as fences were built, initial vegetation biomass (square-

rooted) did not differ between exclosures and paired control plots (ts = —0.23, P = 0.82).

Vegetation biomass was recorded using a drop-disc (Holmes 1974) weighing 400 g with 25
cm diameter (sufficient to compress rigid Cyperaceae and Sesbania stems) and released
from the level of uppermost vegetation. Drop-disc height (dh, centimetres) provided a
surrogate measure of biomass (b), as square-rooted dry mass and drop-disc height were
strongly related (b = 0.15dh + 0.09, r* = 0.56, n = 22, P < 0.001) for vegetation collected,
dried and weighed at 22 sample points comprising a variety of plant types. To avoid edge
effects, drop-disc measures were taken at 21 points on a central 4 m x 4 m grid within
exclosures and control plots, excluding the outer metre and four corners of the grid. The
predominant vegetation type (grass, rush, sedge, herb, herbaceous bamboo, Sesbania spp.,
shrub and sapling) was recorded at each point unless vegetation occupied < 50% of the

drop-disc surface area, when bare substrate was recorded.

Flooded points with submerged vegetation could not be measured by the drop-disc and were
given biomass values of half the water depth; in non-flood conditions drop-discs
compressed vegetation by 50% on average so half-depth was considered a reasonable
substitute. These cases may have led to slight underestimation of vegetation change
following grazing exclusion, as mean water depth in the wettest months (September—
October) was 3.7 cm higher at controls than in exclosures (Wilcoxon signed rank test Vi, 1,
=21, P =0.01). Deeply submerged vegetation may not have been visible but wet-season
water was typically shallow (13.9 = 13.1 cm, mean + SD of flooded measurement points).
Ground rugosity, demonstrated by drop-disc measurements in bare substrate, was
significantly greater in exclosures (4.2 + 3.7 cm, mean of points with < 50% vegetation)
than at controls (3.4 £ 2.5 cm, Wilcoxon test Wgzg 1418 = 613769, P < 0.001). The mean
difference in rugosity (0.8 cm) was subtracted from all exclosure drop-disc heights to

prevent bias; the resulting negative values (0.4% of data points) were set to zero.

To provide comparable vegetation measures to those collected at burnt and unburnt sites
across the wider forest landscape and when examining ibis incidence (see below),
percentage vegetation cover and average height were visually assessed across the 4 m x 4 m
grid in each exclosure and control plot. These data were aggregated into a composite index
variable representing vegetation volume: V =3 (hjx ¢;) where h; is vegetation height and ¢;

the proportionate cover of vegetation type i. Square-rooted vegetation volume V and drop-
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disc measures of vegetation biomass dh were strongly correlated at trapaengs (e.g. for
January: ry, = 0.78, P = 0.01).

6.3.4. Experimental exclusion of grazing and fire in DDF

The influence of fire and livestock grazing on DDF understorey was examined by
comparing vegetation biomass between eight exclosures — where both fire and grazing were
prevented — and eight grazed—burnt control plots. DDF sites were selected to represent
variable soil condition (sand, gravel and plinthite) and canopy cover (0—25% over
exclosures). DDF exclosures were built in January—February 2009 and paired control plots,
monitored from September 2009, were placed in similar habitat within 25 m of exclosures;
vegetation biomass and vegetation volume were measured following trapaeng protocols.
Square-rooted drop-disc height was again a strong predictor of square-rooted dry mass (b =
0.26dh +-0.13, r> = 0.78, n = 22, P < 0.001). Square-rooted vegetation biomass and
vegetation volume were strongly correlated (e.g. for August, when the ibis uses the forest,
ris = 0.89, P <0.001).

Fire was not tested in an independent treatment, because random variation in fire intensity
and spread, plus its likely aggregative effects on livestock foraging, cannot be replicated at
a small scale: for example, small plots open to livestock but protected from fire may attract
disproportionately high grazing levels once surrounded by burnt habitat compared to more
typical, larger unburnt patches. Grazing and fire were therefore both simultaneously
excluded, with all exclosures protected by 2 m-width firebreaks and all control plots burnt
by the dry season fires. Ground rugosity was significantly higher at exclosures (2.8 + 2.0
cm, mean of points with < 50% vegetation) than controls (2.1 £ 1.5 cm, Wi30.446 = 19995, P
= 0.002); the mean difference (0.7 cm) was subtracted from all exclosure drop-disc heights

and resulting negative values (0.4% of data points) were set to zero.

6.3.5. Assessing the effect of fire in DDF

Fire and grazing are complementary management practices in DDF and rarely occur in
isolation. Nevertheless, understanding their relative impact on vegetation will inform
habitat management for White-shouldered Ibis. To distinguish the effect of fire alone,
understorey vegetation was sampled across the DDF landscape in May 2009, at 65 locations
burnt by fires and at 34 unburnt locations. Burnt sites were randomly selected in a GIS

(ESRI 2006), choosing points within 300 m of forest tracks. Unburnt areas were scarce in
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May so they were surveyed systematically whenever new patches were encountered on
journeys (within 300 m of tracks) through the landscape. Burning occurs arbitrarily and
habitat conditions at unburnt and burnt sites were similar; canopy cover, estimated visually,
did not differ between sites (t7, = 0.40, P = 0.69) and neither did cover of permanent
earthworm mounds (Wes 34 = 886, P = 0.15), a visually estimated proxy of soil condition.
Grazing impact, assessed using an ordinal score (0-3) as the proportion of understorey plant
stems bitten by animals on a 20 m transect, was also similar between burnt (0.62 + 0.81,
mean = SD score) and unburnt sites (0.76 + 0.83; Wgs 34 = 938.5, P = 0.39). Habitat at each
burnt and unburnt site was assessed in four 5 m x 5 m quadrats, placed on alternating sides
of the 20 m transect. Percentage cover and average height of vegetation types were assessed
visually in each quadrat; trees and saplings over 25 cm diameter at breast height were
excluded. Vegetation volume (V, as above) was calculated per quadrat and averaged for

each location.

6.3.6. Effect of vegetation volume on ibis incidence

The potential importance of grazing and fire for White-shouldered Ibis foraging ecology
was predicted by relating observed vegetation volume differences from the fire and grazing
exclusion experiments to models examining the effect of vegetation volume on incidence of
foraging ibis (at trapaengs and in DDF separately). Data for ibis incidence were obtained in
2008 at 95 trapaengs (stratified by size, proximity to settlement and distance to main track)
using strip transects to search for distinctive ibis beak marks in the ground (details in
Wright et al. 2010). Vegetated habitats were examined with care to avoid bias in beak mark
detectability. Ibis foraging locations in DDF were surveyed systematically, using all ibis
sightings (n = 25) made during journeys in the study site in March—May 2008, and

compared to 35 control sites randomly selected (using a GIS) within 300 m of tracks.

Homogeneous habitat patches were sketch-mapped with the aid of a handheld GPS at
trapaengs and in 20 m x 10 m plots at DDF sites. Percentage cover and average height of
vegetation types were visually assessed (trees excluded) to calculate vegetation volume per
patch. Mapped patches were subsequently digitised in a GIS to calculate their area (Wright
et al. 2010) and vegetation volume was averaged across patches, weighted by their area, to

create volume values per trapaeng or DDF site.

116



Chapter 6: Extensive livestocking

6.3.7. Analyses

The effect of grazing exclusion on trapaeng vegetation and of both grazing and fire
exclusion on DDF understorey were modelled in separate generalised linear mixed models
(GLMMs) with normal error and identity link, using the Ime4 package (Bates et al. 2011) in
R (R Development Core Team 2011). Dry season vegetation biomass was modelled for
trapaengs and wet season biomass for DDF, corresponding to White-shouldered Ibis
seasonal habitat preferences (chapter 5). Prior to modelling, exclosure biomass was
compared between 2009 and 2010 to test for an inter-annual increase in trapaeng vegetation
and DDF understorey across the study period; vegetation biomass, averaged per exclosure
for the late wet/early dry season (September—January), was compared between years using
Wilcoxon signed rank tests (trapaeng n = 6, set A exclosures; DDF n = 8). As no difference
was found, set A and B exclosure data did not require separate consideration in the model of

trapaeng vegetation biomass.

Mean vegetation biomass, square-rooted to improve heteroscedasticity, was modelled with
treatment, season and year as fixed effects. Treatment at trapaengs comprised ungrazed
exclosures and grazed controls, and in DDF ungrazed—unburnt exclosures and grazed—burnt
controls. Season was divided into time periods that best represented vegetation change
while maximising sample size (Table 6.1.). Fixed effects were examined by the change in
tested Akaike Information Criteria (AICc) on removal (Burnham & Anderson 2002). Site
was included as a random effect in both models; inclusion of site and year controlled for
non-independence of data caused by repeated measures across years and the pairing of

exclosures and controls at each site (Holt et al. 2011).

The difference in vegetation volume between burnt—grazed and unburnt—grazed DDF sites
in the wider landscape was tested using a Mann-Whitney test. To compare the independent
effects of fire to the effects of fire and grazing combined, the percentage difference in
vegetation volume between burnt—grazed sites and unburnt—grazed sites in May 2009 was
contrasted with the percentage difference at burnt—grazed control plots and ungrazed—
unburnt exclosures in DDF in May 2010. Comparison of relative rather than absolute
differences accounted for uneven rainfall between these years (40% lower in March—early
May 2010 than March—early May 2009), but reliable quantification of their importance was

impossible.

The effect of vegetation volume (fixed effect, square-rooted to reduce leverage) on ibis

incidence was modelled separately for trapaengs and DDF using general linear models with
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Fixed effects Random effect

Model Treatment Season Year Site (no. levels) ? n®
Trapaeng UG vs. G Late wet (Sep—Nov) 1 6 12
2 12 24

Mid-dry (Jan) 1 12

2 12 24

Late dry (Apr) 1 12 24

DDF UG, UBvs. G, B Early wet (May) 2 8 16
Mid-wet (Aug) 2 8 16

Early dry (Nov) 1 8 16

2 8 16

Table 6.1. Structure of models examining the effect of grazing exclusion on trapaeng mean
vegetation biomass and of both grazing and fire exclusion on DDF understorey vegetation
biomass. Site had 12 and eight levels in the trapaeng and DDF models respectively, year had
two levels in each model. Overall sample sizes: n = 94 for trapaeng model; n = 64 for DDF
model. UG = ungrazed, G = grazed, UB = unburnt, B = burnt. * Number of site levels per season

time period and year. ® Number of datapoints per season time period and year.

binomial error for presence-absence data. The effects of grazing and fire exclusion on ibis
incidence in DDF were predicted by applying mean exclosure and control-plot vegetation
volumes to the logistic regression equation of the DDF ibis incidence model. Mean
vegetation volumes were calculated using August 2010 data, achieving greatest overlap
between the incidence (inter-quartile range 5.90-17.27) and experimental exclusion models
(inter-quartile range 6.28-10.85) and representing a time when White-shouldered Ibis
forage in DDF (chapter 5).

6.4. Results

6.4.1. Impact of grazing on trapaeng vegetation

Ungrazed exclosures had greater vegetation biomass (5.4 = 8.0 cm, mean difference £ SD,
91.5%) than grazed control plots across the study period (Fig. 6.2.a), and treatment was a
strong predictor of trapaeng vegetation biomass from late wet to late dry season (Table

6.2.). Vegetation did not accumulate inter-annually, as exclosure biomass was similar in the

118



Chapter 6: Extensive livestocking

25 4

20 +

15 4

10 1

12 1~

10 A

Vegetation biomass (drop-disc cm)

Dry Wet Dry Wet Dry

Figure 6.2. Changing mean vegetation biomass following experimental exclusion of grazing at
trapaengs (a), and grazing and fire in deciduous dipterocarp forest (DDF; b). Six trapaeng and
six DDF exclosures (solid squares) were built with paired control plots (hollow squares) in 2009
(set A). A further six trapaeng exclosures (solid triangles) with paired control plots (hollow
triangles) were built in 2010 (set B). Bars indicate standard error intervals; wet and dry seasons

are indicated by brackets beneath.
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Trapaengs DDF
B 95% CL  AAICc B 95% CL  AAICc

Intercept 3.00 0.64 Intercept 1.61 0.31
Treatment: 16.94 Treatment: 69.02

grazed - - grazed—burnt - -

ungrazed 0.81 0.34 ungrazed—-unburnt  0.73 0.12
Season: 27.51 Season: 61.53

late wet - - early wet - -

mid-dry -0.96 0.40 mid-wet 0.66 0.17

late dry -1.52 0.55 early dry 0.94 0.17
Year: 1.69 Year: 0.55

1 - - 1 - -

2 -0.19 0.46 2 -0.15 0.17

Table 6.2. Parameter estimates for mixed-effects models of square-rooted vegetation biomass
at trapaengs in the late wet to late dry season (model Akaike Information Criterion [AlICc] =
283.10) and deciduous dipterocarp forest (DDF) in the early to late wet season (model AlCc =
40.80). Control plots (grazed at trapaengs, grazed—burnt in DDF) were the reference level for
treatment; late and early wet season were reference levels for season in trapaeng and DDF
models respectively; year 1 was the reference level for the year term in both models. AAICc is

the increase in AICc when the term is removed from the model.

late wet/early dry seasons of both 2009 and 2010 (Vs = 13, P = 0.69) and year had no
effect in the model. However, late dry season rainfall was markedly (40.2%) lower in 2010
than 2009 and, as vegetation biomass probably has a close relationship with rainfall in the
late dry season, the possibility of underlying biomass accumulation cannot be discounted.
Seasonal differences in vegetation biomass were considerable, with season receiving
stronger support than treatment in the model (Table 6.2.). Mean vegetation biomass in
exclosures fell by 75.9% between the late wet (October) to late dry (April) season (the
result of senescence), while the difference between ungrazed exclosures and grazed control
plots was most pronounced in the former time period (10.8 cm mean biomass difference,

119.3% greater) and least apparent in the latter (1.6 cm mean difference, 51.0% greater).
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6.4.2. Impact of grazing and burning on DDF understorey

Ungrazed—-unburnt exclosures had greater understorey vegetation biomass (3.3 + 3.2 cm,
mean difference + SD, 63.5%) than grazed—burnt control plots in DDF (Fig. 6.2.b), and
treatment was a strongly supported predictor of biomass in the early wet to early dry season
(Table 6.2.). Vegetation biomass at exclosures was similar between the 2009 (8.6 £ 3.2 cm)
and 2010 late wet/early dry seasons (9.6 = 4.0 cm, Vgg =6, P = 0.11) and year had no effect
in the model but, again, between-year rainfall differences may have obscured inter-annual
increases in vegetation. Seasonal vegetation change was significant, with mean biomass at
exclosures increasing 83.3% from the early wet to early dry season. Mean vegetation
volume was 145.0% greater at unburnt-ungrazed exclosures than burnt—grazed controls in
the early wet season. This contrasts with the independent effects of fire, which resulted in
34.1% greater mean vegetation volume (Ws465 = 503, P < 0.001, Fig. 6.3.) at unburnt—
grazed sites than at burnt, equally as grazed sites across the DDF landscape.

6.4.3. Vegetation volume and ibis incidence at trapaengs and in DDF

White-shouldered Ibis incidence was negatively related to vegetation volume at DDF sites
(Table 6.3.). The model of ibis incidence in DDF predicted ibis occurrence probabilities (for
August) of 0.16 at ungrazed—unburnt exclosures and 0.81 at grazed—burnt controls. In
contrast, ibis foraging incidence at trapaengs showed no response to vegetation volume
across the range observed at unmanipulated sites (Table 6.3.). Without an effect of
vegetation volume, ibis incidence could not be assessed relative to the effects of grazing

exclusion at trapaengs.
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Figure 6.3. Vegetation volume of burnt (grey) and unburnt (white) sites in DDF in the early wet
season. Vegetation volume is an index comprising vegetation height and cover. Thick
horizontal lines incidicate the median, boxes indicate the interquartile range and error bars

(with associated integers) show the extreme values.

Trapaengs DDF
B 95% CL  AAICc B 95% CL  AAICC
Intercept 0.12 0.74 8.75 4.23
Vegetation volume  ,; 5, 0.63 —2.99 145  42.66

(square-rooted)

Table 6.3. Logistic regression model parameter estimates for the influence of vegetation
volume on incidence of foraging White-shouldered Ibis at trapaengs and in DDF in the late dry
season. AAICc is the increase in model AlCc when the term is removed from the model.
Trapaeng model AlCc = 124.11, dispersion ratio = 1.29. DDF model AlCc = 39.61, dispersion
ratio = 0.63.

6.5. Discussion

Traditional land management appears to be important in maintaining foraging habitat for

White-shouldered Ibis, such that successful conservation of this species is likely to depend
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on the continuation of extensive livestocking practices. Vegetation biomass was
significantly greater with the absence of grazing at trapaengs, and with the absence of both
grazing and fire in DDF understorey, suggesting these practices help to sustain access to the
ground in dry forest habitats. Ibis incidence was negatively related to vegetation volume in
forest understorey, and the predicted likelihood of White-shouldered Ibis using DDF to
forage was considerably lower with grazing and fire practices excluded. A similar effect at

trapaengs could not be detected.

6.5.1. Maintenance of short vegetation by grazing and fire

Livestock grazing and anthropogenic fires may shape forest understorey and trapaeng
habitats in the dry forest landscape. Mean differences across the 17-month exclusionary
period showed that trapaeng vegetation biomass at ungrazed exclosures was nearly double
that at grazed control plots. In DDF, the exclusion of both grazing and fire resulted in nearly
two-thirds greater biomass at ungrazed—unburnt exclosures than at grazed—burnt control
plots over the same period. Similar effects of fire and grazing have been found by
experimental studies in other savannah systems in Asia (Pandey & Singh 1991) and further
afield (Hassan et al. 2008; Peco et al. 2006). The apparently greater contrast between
exclosures and controls at trapaengs than in DDF may relate to greater productivity in the

wetland habitat.

Burning of forest understorey and grazing by livestock are co-occurring practices (the
former providing fresh, late dry season forage for the latter), but habitat management efforts
may benefit from knowledge of their relative, independent importance. The difference in
vegetation volume in DDF between ungrazed—unburnt exclosures and grazed—burnt control
plots in May 2010 (the effect of fire and grazing combined) was considerably greater than
the difference between unburnt and burnt sites in the wider DDF landscape in May 2009
(where fire was assessed in isolation, under equal grazing). This suggests that grazing and
fire had additive effects on understorey vegetation, although the between-year difference in
rainfall of 40% prevents reliable quantification of their relative importance. High rainfall in
2009 may have caused vigorous vegetation growth at burnt sites, reducing their contrast to
unburnt sites in drier years (such as 2010). Additive, and interactive, effects of grazing and
fire on sward biomass have been observed elsewhere, such as South African thornveld
savannah (Mbatha & Ward 2010); interactive effects are likely in Cambodian dry forests
but were beyond the scope of this study.
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Inter-annual accumulation of vegetation was not apparent over the study period at
trapaengs or in DDF, but may have been concealed by rainfall effects. It is unlikely that this
study’s exclosures demonstrated maximum potential vegetation growth as they remained
young relative to the age of trapaengs and DDF stands; a longer study incorporating multi-
year rainfall variation may record further increases in vegetation. Nevertheless, the greater
biomass observed in the absence of grazing and fire was considerable enough to suggest
that short-vegetation habitats would become scarcer without these extensive livestocking

practices.

Anthropogenic fires and livestock grazing have long histories in Indochina’s dry forests,
with repeated anthropogenic fires, occurring over several millennia, thought to have shaped
or encouraged DDF (Maxwell 2004; Stott 1988). Livestock grazing may have gained
importance in dry forests more recently, following the twentieth century decline of
historically abundant large wild herbivores such as Banteng Bos javanicus, Gaur B. gaurus,
Wild Water Buffalo B. arnee and Asian Elephant Elephas maximus (Tordoff et al. 2005;
Wharton 1968). Domestic livestock may now be mimicking the ecosystem functions that
wild herbivores once provided (Timmins 2008; Wright et al. 2010) by grazing, wallowing
and trampling at trapaengs and in DDF. These actions may also help to sustain key
landscape features: wallowing and sediment removal by buffalo may be important to the
actual persistence of trapaengs.

6.5.2. Role of grazing and burning in ibis foraging ecology

Grazing and burning are likely to have important consequences for White-shouldered Ibis
foraging ecology, particularly in DDF where ibis incidence was negatively related to
understorey vegetation volume. White-shouldered Ibises were estimated to be two-thirds
less likely to feed in DDF in the mid-wet season when grazing and fire have been absent for
20 months. This may represent the ibises’ foraging preference for exposed ground in DDF
(Wright et al. 2010), as bare substrate was negatively related to vegetation volume. Habitat
accessibility may also contribute, as the ibis stands approximately 35-40 cm high and is
likely to be restricted by tall, dense vegetation with gaps narrower than its body width.
Improved abundance of prey, such as invertebrates, following fire (Orgeas & Andersen
2001) and grazing (Rambo & Faeth 1999) could also occur and requires research. Similar
effects may also occur in dry forest grasslands (veals), which contain similar or greater
volumes of understorey vegetation than DDF (HLW pers. obs.) and are also used by

foraging ibis in the wet season (chapter 5).
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The null effect of vegetation volume on ibis incidence at trapaengs suggests that the
vegetation levels observed in the absence of grazing would not impact foraging ibis. Indeed,
ibis were occasionally observed feeding inside some trapaeng exclosures (including Fig.
6.1.), despite the significant contrast between exclosure and control-plot vegetation.
Ubiquitous, intense grazing at trapaengs in the study site, creating sparsely vegetated
conditions, may have precluded an effect of vegetation volume on ibis incidence in this
habitat. It remains highly plausible that tall dense trapaeng vegetation will restrict ibis from
foraging on the ground (Wright et al. 2010), and longer studies at sites with lower grazing
intensity may reveal the importance of livestock grazing to foraging ibis at trapaengs. DDF
sites, where livestock densities are probably lower and grazing impact less complete, had a
broader range of vegetation conditions than trapaengs examined for foraging, perhaps

making the effect of vegetation on ibis incidence more readily detectable.

Under present study site conditions, the White-shouldered Ibis is unlikely to be limited by
insufficient levels of grazing and burning — most trapaengs are open, and dry-season fires
burn the majority of the forest understorey. Nevertheless, the importance of extensive
livestocking practices may be masked by current conditions, and White-shouldered Ibis
survival may depend on them. With few wild herbivores (the natural landscape engineers)
remaining, the loss of domestic livestock and reduction of anthropogenic fires would
probably cause vegetation to accumulate, inhibiting access to the ground for foraging ibis.
A further indication of this relationship may come from White-shouldered Ibis’s relative
proximity to humans when feeding and breeding, contrasting with other dry forest
waterbirds such as Giant Ibis Thaumatibis gigantea (Keo 2008). Other threatened birds
show similar dependencies on anthropogenic sources of grazing and/or fire, including
Bengal Florican Houbaropsis bengalensis in Asia (Gray et al. 2007), Liben Lark
Heteromirafra sidamoensis in eastern Africa (Donald et al. 2010) and Southern Bald Ibis
Geronticus calvus in southern Africa (Manry 1985). The fate of all these species is closely
tied to traditional management that mimics natural ecosystem functions in grassland and

savannah-like landscapes.

6.5.3. Maintaining livestocking practices for conservation

The apparent role of extensive livestocking practices in maintaining White-shouldered Ibis
foraging habitat illustrates how traditional land management can benefit a threatened
species. Encouraging grazing and burning practices in areas of currently unsuitable habitat

may assist the ibis’s population recovery. Nevertheless, both threatened species and
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traditional livelihood practices are vulnerable to large-scale land-use change. Conversion of
dry forest by external actors to plantation agriculture, infrastructure and settlement threatens
both the ibis (Wright et al. 2012a; chapter 3) and traditional forest livelihoods (Baird 2010;
McKenney et al. 2004). A win-win strategy, linking the protection of traditional livelihoods
to the protection of ibis habitat, may mitigate the threat of major land-use change while

sustaining valuable farming practices.

However, even if external threats are alleviated in the short term, socio-economic
development may reduce the viability of traditional farming, causing livelihood change and
threatening valuable practices in the medium to long term (Wright et al. 2012b; chapter 2).
Restoration of large wild herbivores to their former abundance is likely to be a lengthy and
difficult process, especially in a context of dry forest habitat loss; therefore valuable
ecosystem processes will have to continue being maintained anthropogenically, at least in
the short term. Developing-world conservation must urgently design mechanisms that
maintain, or mimic, beneficial land management practices in the absence of traditional

livelihoods vital in sustaining biodiversity.
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Linking conservation with livelihoods:
a win-win strategy for a threatened waterbird?
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Natural resource use is common place in Cambodian dry forests, here a man weaves a
basket from strips of wild bamboo and a boy fishes at a trapaeng.
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7.1. Abstract

A suite of open-habitat species depend on traditional farming practices in the developing
world. With no natural habitat remaining, these species are severely threatened by imminent
agricultural change. However, there may be opportunities to integrate biodiversity
conservation with local livelihoods where rural communities also rely on traditional
agriculture and face the same external threats as dependent biodiversity. This is examined
for the Critically Endangered White-shouldered Ibis Pseudibis davisoni, which benefits
from traditional livestock grazing and rice cultivation but is threatened by agricultural land
acquisitions in Cambodian dry forests. The study assesses whether livelihoods and the land
uses that benefit the ibis are coupled strongly enough to offer a win-win scenario, whereby
conservation could uphold local land and livelihood entitlements, benefiting both local
communities and the ibis. Income (cash and subsistence) from major livelihood activities
and environmental resources was assessed for 64 households for one year; quantitative and
qualitative evidence of livelihood change was explored through additional questionnaires,
key-informant interviews and focus groups. Average total income was US$333.8 (per
person per household) with rice cultivation providing the second greatest income after
forest use. Livestock were an important capital asset despite yielding low income; herd
value exceeded total income in 48% of households. Environmental income (combining
forest use, fishing and livestock rearing) contributed 2.7 times the community’s total
income from agriculture, demonstrating local dependency on access to the forest. However,
while livelihoods benefit from the same farming practices and landscape as the ibis,
evidence of livelihood change undermines prospects of a win-win strategy. Agricultural
modernisation has accelerated, with a seven-fold increase in hand-tractor purchases in
2005-2010. Patterns of livestock use elsewhere in central Indochina suggest livestock
(particularly buffalo) will decline, uncoupling local livelihoods and the ibis. Livelihood
transition makes a win-win approach, relying on the persistence of traditional farming
techniques, unviable; conservation must therefore seek new mechanisms to maintain or
mimic valuable farming practices lost to agricultural change, without compromising local

development.

7.2. Introduction

The shared threats of human population growth, ecosystem degradation and climate change
to the well-being of people and wildlife provoke continued calls to integrate conservation

and development objectives (Kaimowitz & Sheil 2007; Rands et al. 2010; Sachs et al.
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2009). The agricultural sector is important to this agenda, occupying 38% of the global land
area (World Bank 2012), providing livelihoods for 2.5 billion people in the developing
world (FAO 2012), and driving major biodiversity loss (MEA 2005). With predictions of a
70-110% increase in food demand by 2050 (FAO 2009; Tilman et al. 2011), reconciling
biodiversity conservation and agricultural development is a major challenge (Norris 2008;
Tilman et al. 2002).

Agriculture is often considered simply as a threat to biodiversity in the developing world,
and incompatible with conservation (Tscharntke et al. 2005). However, increasing attention
is being given to farming systems where human land uses have positive impacts for
biodiversity (Fischer et al. 2012; Takeuchi 2010). Evidence is emerging that traditional,
low-impact agriculture has become vital to many open-habitat taxa, where farming practices
have substituted for lost natural processes (Wright et al. 2012b; chapter 2). With no natural
habitat remaining, these species, and the land management they rely on, need urgent
conservation in the context of expanding agribusiness and imminent change from traditional
to more developed agriculture. Furthermore, this unique biodiversity is dependent on some
of the world’s poorest farmers, requiring that conservation also considers the welfare of
rural communities, and how they might be incentivised to continue livelihood practices

supporting biodiversity (Adams 2012).

Local people may share many of the threats facing farming-dependent biodiversity,
particularly agricultural land acquisition by multi-national companies. While some large-
scale agricultural investments create livelihood opportunities (e.g. in participatory markets),
politically marginalised communities often suffer livelihood change, usurpation of
traditional lands and reduced food security (Cotula et al. 2011; Robertson & Pinstrup-
Andersen 2010). Where livelihoods rely on the same farming practices and landscapes that
support threatened species, conservation could address external threats by defending local
land entitlements, mutually benefiting both rural communities and wildlife, at least in the
short to medium term (Wright et al. 2012b; chapter 2). Nevertheless, the viability of this
“win-win” approach remains untested and uncertain. Theoretical synergisms may
oversimplify complex ecological processes and social dynamics in rural landscapes and
communities (Brown 2002; Robinson 1993), making win-win conservation strategies
difficult to realise in practice (McShane et al. 2011). In contrast to shared extrinsic threats,
imminent intrinsic change could undermine the win-win scenario. Access to new markets
and technology may drive local-scale modernisation of traditional agriculture, making

valuable farming practices uneconomic or undesirable to farmers — even if threats from
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external agribusiness are alleviated. Local agricultural change may therefore uncouple
livelihoods and farming-dependent wildlife, putting conservation at odds with human
development interests (Wright et al. 2012b; chapter 2).

Research must evaluate the win-win approach by examining the extent to which wildlife
and people’s livelihoods both rely on the same farming activities and landscapes, and the
likelihood of agricultural change that could undermine this linkage. This study undertook
this assessment for the Critically Endangered White-shouldered Ibis Pseudibis davisoni, a
species with only 731-856 birds remaining globally, confined mostly to Cambodia (Wright
et al. 2012a; chapter 3). The ibis relies on a variety of habitats modified by extensively-
reared livestock and low-intensity rice agriculture, sharing open-access, dry forest
landscapes with poor rural communities (e.g. McKenney et al. 2004). Waterholes, a key
foraging habitat for breeding ibis (Fig. 7.1.A), were once used by an assemblage of large
wild herbivores, including four cattle species and Asian Elephant Elephas maximus
(Wharton 1968). Following extirpation of these megafauna, grazing and wallowing by
domestic livestock now keeps waterhole habitats open, providing access for feeding ibis
(Wright et al. 2010; chapter 6). In the non-breeding season the ibis also forages in forest
understorey and grassland habitats (Fig. 7.1.B) maintained by livestock grazing and
anthropogenic fires (Stott 1986). Abandoned rice paddies, resulting (like many grasslands)
from the periodic shift of cultivation to new land, are also used (Fig. 7.1.B). However, dry
forest landscapes are now being leased to agribusinesses that seek to replace extensive
farming with plantation agriculture, threatening livelihoods (Schneider 2011),
compromising poverty alleviation (Sunderlin 2006) and converting globally-important but
unprotected ibis habitat (Wright et al. 2012a; chapter 3). Conservation may be able to
address this threat to benefit the ibis and local people simultaneously; however intrinsic
change may compound conservation problems, as evidence from dry forests in northeast
Thailand (e.g. Simaraks et al. 2003) questions the persistence of traditional farming

livelihoods.

This paper examines whether the farming activities and dry forest landscape required by
White-shouldered Ibis are of core importance to local livelihoods in a community in
northern Cambodia. The study quantified the contributions of extensive livestock rearing
and rice cultivation to livelihoods, using techniques of household income valuation
(Cavendish 2000; Sjaastad et al. 2005) in 64 households for one year to calculate net

income (cash and subsistence) for all major livelihood activities. Livestock capital assets
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Figure 7.1. Habitat selection by foraging White-shouldered lbis in the breeding (A, December—
May) and non-breeding seasons (B, June—November). Sightings of foraging ibis and their
habitat use were recorded on 459 journeys (33.9 = 16.3 km per journey day, mean  SD), from
November 2009 to March 2011, in a dry forest landscape comprising a mosaic of habitat types.
Survey area (km?) was calculated using transect strip-widths, accounting for differing
detectability of ibis with habitat type (see chapter 5 for details). Mean sighting frequency is the
number of foraging ibis sightings per km? per journey day. Bars indicate 95% Cls. Missing
columns indicate extremely low or no sightings. Habitats sharing a common letter did not
differ significantly in pairwise Mann-Whitney tests with Bonferroni correction (P < 0.03).

“Forest” is deciduous dipterocarp forest, “Aban. paddy” is abandoned paddy field.

were quantified to value additional uses of animal herds (e.g. accruing wealth);
environmental income (comprising all activities derived from natural resources) was
assessed to examine the degree of reliance on the dry forest landscape. The likelihood of
livelihood change is investigated by examining agricultural modernisation and the impacts
of mechanisation in particular, drawing comparisons with similar Thai farming systems.
Together, this evidence was used to assess the viability of a win-win strategy — a useful first
examination of conservation mechanisms for high nature value farming systems of the
developing world — and highlight the challenges for conserving agriculture-dependent

species.
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7.3. Methods

7.3.1. Study area

The study took place within Western Siem Pang Important Bird Area (14°07°N, 106°14’E),
Siem Pang district, Stung Treng province, Cambodia, an unprotected 138,000 ha area with
at least 226 White-shouldered Ibis (Wright et al. 2012a; chapter 3). The site (altitude 55—
186 m asl) is dominated by savannah-like deciduous dipterocarp forest, with patches of
mixed deciduous and semi-evergreen forest along river channels and at higher elevation.
Monsoonal rainfall (1441-2600 mm per annum with 84% falling in the wet season, May—
October; Thuon & Chambers 2006) allows cultivation of wet-season rice and flows into the
Kong River (a major tributary of the Mekong) running along the site’s eastern edge. Large
livestock (buffalo and cattle) roam widely (Wright et al. 2010) relying for much of the year

on the forest’s free grazing land.

The study population comprised Siem Pang, a small district town beside the Kong River,
and eight other settlements selected systematically in a 9 km radius from Siem Pang , west
of the river. Study settlements, containing 7,160 people in total (Ministry of Planning 2007),
were in equal proximity to the forest and were all beside the only main road or Kong River.
Siem Pang had a small market trading basic goods with surrounding villages. The nearest
large market town (Stung Treng, 80 km away) was reached by seasonally-passable forest
tracks, or by boat on the Kong River, until construction of a main road in 2009-2010
allowed year-round road transport. Families had no formal land title to the forest or to most
of their paddy fields. Use of dry forest resources was largely unregulated although small-
scale, poorly-resourced law enforcement by the local Forestry Administration confiscated
illegally-logged timber.

7.3.2. Livelihood data collection

Livelihood activities and products (both inputs and outputs) were identified in a scoping
questionnaire, undertaken in the dry season (January—April 2009) at one in three households
(n = 258) in the nine study settlements; adult household members were interviewed and
when absent the next nearest household was selected. This scoping questionnaire provided
initial contact with the community and contextual information to guide subsequent
household income valuation. Six main livelihood activities were identified: forest resource

use; fishing; extensive livestock rearing (raising buffalo Bos bubalis and cattle Bos taurus
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indicus in the open-access forest and requiring little input); garden produce (fruit,
vegetables and small-scale maize and sugarcane crops) and animals (monogastrics such as
pigs, ducks and chickens); rice cultivation; and wage labour (agricultural, government or
non-governmental organisation [NGOY]) plus business (small-scale transportation or local
market stalls). This list was confirmed through 23 semi-structured key informant interviews
with villagers, government officials (e.g. at village, commune and district levels) and local
development NGO staff (henceforth all are termed “informants”); these interviews also
provided additional contextual information, such as recent livelihood trends and the extent

of illegal activity.

Household incomes were subsequently quantified using structured questionnaires at 70
households selected randomly from the scoping questionnaire sample; attrition resulted in a
final sample of 64, but with no evidence of bias caused by the loss of six households.
Income sources were assessed over one year by two visits to each household, occurring in
the late rice cultivation season (November—December 2009) and late dry season (April—
May 2010). This provided a snapshot of livelihoods, but informants helped to identify
atypical characteristics of the study year. A pilot questionnaire was developed, translated
and tested at households outside of the sample. Questionnaires were conducted with a single
adult member of the household (allowed to differ between visits) informed about the
purpose of the study. Surveys lasted approximately 45 minutes and involved a similar

number of men (45.2%) and women (54.8%).

Questionnaire respondents (henceforth “respondents’) were asked to quantify the
household’s use of products for six-month recall periods, considering cash/barter income,
consumption or use as inputs into other activities. Use of subsistence products, especially
those collected opportunistically, may be difficult to recall over long time-periods (Lund et
al. 2008; McElwee 2008) making their quantities approximate and perhaps underestimated,;
however, products of trivial importance (e.g. medicinal plants and remittances) were
excluded. Respondent anonymity was assured and while 63% of households provided data
on forest products collected illegally (protected animals and high-grade timber), hesitancy
by some respondents suggested these products may be underestimated. The questionnaire
also collected data on household demographics; livestock herd sizes, gains and losses; and

reasons for selling livestock.

All questionnaires were undertaken by a trained Cambodian graduate (SP) with experience
of social research techniques; this author spent 1.5 years living in the community, gaining a

degree of local trust. A local Lao-speaking translator was also used when necessary.
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Nobody of recognised authority was present during data collection, minimising the
likelihood that people withheld information through fear of prosecution or disapproval.
Responses were checked thoroughly during data entry and households were revisited to
clarify inconsistent or evidently erroneous data. Repeat visits to households enabled
information to be cross-checked, particularly when respondents differed from previous

visits.

7.3.3. Assessing livelihood change

An apparent increase in the use of two-wheeled “hand-tractors” for transport and ploughing
was investigated by both quantitative and qualitative techniques, determining the scale and
potential impacts of this mechanisation process. In February 2011, a structured
questionnaire was administered at one in five households in each study settlement (n = 150
in total) to collect data on hand-tractor ownership, purchase date, cost and livestock sold.
Recall periods were up to 11 years, but hand-tractor purchases were a major investment and
proved very memorable to respondents. Focus groups of tractor-owners were held in three
villages (five participants in each), using semi-structured interview guides to discuss the
reasons for purchasing hand-tractors and the subsequent uses of livestock. Evidence was
triangulated by 21 key informant interviews (a subset of the informant interviews described
above), including: a vet; five livestock-owning villagers; two abattoir owners; three hand-
tractor traders and mechanics; six government officials; and four local NGO staff.
Questionnaires were undertaken by a Cambodian graduate. The lead British researcher

(HLW) was present at focus groups and key informant interviews.

7.3.4. Household income accounting and analysis

Household income from each main livelihood activity was calculated over the year using
the “value-added” approach of Sjaastad et al. (2005): net income = gross value of outputs
minus the value of all inputs and costs. Subsistence use was included using cash-income
equivalent values; total net income (henceforth “income”) is therefore a monetary
representation of livelihood value (not cash profit) and negative incomes (deficits) occurred
when total input value exceeded total output value. Barter transactions (e.g. ploughing
draught paid for in rice) were valued using the cash-income equivalent of the payment item.
Monetary values were assigned to all products and transactions using either the household’s
reported cash income values, or average local farm-gate prices applied to product quantities
(Cavendish 2000).
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Local farm-gate prices were obtained by: market surveys in Siem Pang (at the beginning
and end of the study year); a focus group of six local producers and traders; and qualitative
interviews with key informants. Most products had a local farm-gate price (US$1 = 4000
Riel) with the exception of fuelwood, fence poles and rice-straw livestock fodder, which
locals considered to be freely available; these were given imputed values based on
respondents’ willingness to pay for labour to collect them (following Kamanga et al. 2009).
Local prices were used to check the validity of cash income data from respondents; local
price data and household’s own-reported values were broadly consistent and therefore

combined to obtain average prices for each product.

Where inputs to one livelihood activity originated from another, the input was deducted
from the new activity’s gross value and rebooked as an output value of the originating
activity (Cavendish 2002; Rayamajhi et al. 2012). For example, the value of households’
own livestock ploughing draught was deducted from rice cultivation but added to extensive
livestock rearing. A summary of livelihood activity inputs and outputs is given in section
7.6.1 (Appendix A, Table 7.Al.).

The value-added approach does not deduct household own-labour from net income;
estimating such costs is difficult when labour markets are minimal (Babulo et al. 2009) but,
as skilled labour contributed little to livelihoods in this study, the comparison of income
sources was not invalidated. Nevertheless, incomes are presented divided by households’
time-weighted adult equivalent units (AEU), a measure of household size calculated by
summing members’ adult equivalent units — derived from Murthi’s (1994) coefficients of
adult equivalence per sex and age group — multiplied by the proportion of the study year
that they lived in the household (following Cavendish 2002).

Income per household was compared between livelihood activities using a Friedman test
(accounting for household repeated-measures) with Bonferroni-adjusted Wilcoxon tests for
post-hoc analysis. The household sample was then divided into terciles of total income,
allowing comparison of income per livelihood activity between poor (total income below
US$166.9 per AEU, n = 21), medium-income (US$166.9-340.2, n = 21) and rich (>
US$340.2, n = 22) households using Kruskal-Wallis tests with Bonferroni-adjusted Mann-
Whitney tests for post-hoc analysis. Overall income share per livelihood activity was
calculated as the percentage of aggregated income (summed across all households in the
sample or given tercile); negative income values prevented income share calculations at the

household level.
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For livestock, capital-asset value (herd capital) was calculated for the start of the study year
using herd demography data and average local prices per sex, age and animal type. Pigs and
fowl reared at the home were excluded. The asset value accrued over one year (capital
change) was calculated from the net result of value gains (births, recruitment and purchases)
and losses (deaths and sales), for livestock-owning households only. Herd capital, capital
change, births and recruitment, purchases, deaths and sales were each compared between

household income terciles by Kruskal-Wallis and Mann-Whitney tests.

7.4. Results

7.4.1. Value of livelihood activities across households

Income over the one-year study period was variable among households (US$333.8 + 294.2
per AEU per household, mean + SD). Although most households undertook several (4.7 £
0.8) livelihood activities, the six main activities (Fig. 7.2.) were undertaken by > 80% of
households with the exception of wage labour and business (20.3%). The number of
activities undertaken did not differ among income terciles (F,6; = 0.58, P = 0.560), but was
positively correlated with household AEU (rs = 0.29, n = 64, P = 0.020). Household size
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Figure 7.2. Net income by livelihood activity in 64 households for a one-year period (USS per
time-adjusted adult equivalent unit, AEU). Thick horizontal bars indicate the median;
minimum/maximum values beyond the axis range are labelled. Boxes sharing a common letter
are not significantly different (P < 0.03) in Wilcoxon tests with Bonferroni correction; see

section 7.6.2. (Appendix B, Table 7.A2.) for test statistics. Garden produce includes animals

reared at home (e.g. chickens, ducks and pigs).
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was even across income terciles (5.7 £ 1.9 members overall, F,6; = 0.63, P = 0.53), as was
the mean age of members per household (22.7 £ 7.5 years, F, 6 = 0.14, P = 0.873).
Nevertheless, time-adjusted AEU differed (F, ¢ = 4.90, P = 0.011), with rich households
(AEU 4.3 £ 1.5) having lower standardised labour than poor households (AEU 5.8 + 1.9),
primarily owing to more female members. Rice paddy hectarage was similar between

income terciles at 1.7 £ 0.9 ha per household.

Income differed between livelihood activities (Fig. 7.2.; Friedman x% = 95.52, P < 0.001),
with forest resources providing highest income (48.1% of total income across households),
followed by rice cultivation (20.2%) and fishing (15.2%); extensive livestock rearing
created much less income (2.4%). Key informant evidence suggested that collection of
malva nuts and timber (construction and illegal high-grade wood) from the forest was
unusually high in the study year (5/5 stated it was greater than in the previous 2-5 years).
With these products excluded, income from routine forest use (e.g. fuelwood, animals, wild
foods and other plants) remained high (interquartile range US$22.9-81.3) and significantly
greater than for fishing (Wilcoxon Ve, 64 = 1530, P = 0.001) but not rice cultivation (Veses =
930, P = 0.464). Subsistence use accounted for most fishing (95.5 £+ 14.0%), livestock (94.1
+ 21.8%) and rice (92.4 £ 13.5%) products; forest and garden products were split between
subsistence (47.2 + 36.8% and 49.4 + 34.1%, respectively) and cash-income uses. The study
community gained US$14,038.1 total environmental income (combining forest resource,
fishing and livestock rearing incomes from all sampled households) compared to
US$5230.7 from agricultural activities (garden produce and rice cultivation); total

environmental income excluding malva nuts and timber was US$8020.3.

Poor, medium-income and rich households gained different incomes from forest resource
use (Kruskal-Wallis x%, = 35.28, P < 0.001) but similar incomes in other activities (Fig.
7.3.). Mean forest income was 13 times higher in rich than in poor households,
corresponding to rich households’ greater income from routine forest use (Kruskal-Wallis
x% = 20.87, P < 0.001), but particularly malva nuts and timber (Kruskal-Wallis x% = 26.55,
P <0.001), relative to poor households. Rich households also sold significantly more forest
products (70.9 + 35.1%) than poor and medium-income households (35.9 + 36.6% and 50.7
+ 31.0% respectively, Kruskal-Wallis x% = 12.55, P = 0.002). The income share of forest
resources (all products) showed an apparent increase along the gradient of poor (29.0% of
total income), medium-income (40.9%) and rich households (53.3%); however, income

shares of only routine forest resources showed no such trend (34.3%, 19.3% and 29.7%
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Figure 7.3. Net income from livelihood activities for a one-year period per household and by

income tercile: poor (pale grey), medium-income (grey) and rich (dark grey) households. Thick

horizontal bars indicate the median; minimum/maximum values beyond the axis range are

labelled. Boxes sharing a common letter are not significantly different (P < 0.002) in Mann-

Whitney tests with Bonferroni correction); see section 7.6.2 (Appendix B, Table 7.A3.) for test

statistics.

respectively, excluding malva nuts and timber from both forest and total incomes). Results

are consistent with and without AEU standardisation; poor households still only gained

11.1% of rich households’ average forest income when calculated per household instead of

per AEU (7.7% when AEU was used).
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Households owned a mean of 7.1 £ 7.1 (x SD, n = 64) livestock, comprising 3.9 £ 3.5
buffalo and 3.1 £ 5.1 cattle. The capital value of households’ herds averaged US$307.1 +
289.2 per AEU with no difference between income terciles (Fig. 7.4.A, Kruskal-Wallis X%,
= 3.80, P = 0.149). Livestock capital assets typically exceeded total livelihood incomes in
poor and medium-income households (Fig. 7.4.B); livestock herd value in ten (53%) poor
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Figure 7.4. Total livestock herd capital per household (A); the ratio of herd capital relative to
total income per household (B); change in herd capital (C); and the contribution of births and
recruitment, animal purchases, deaths and animal sales to herd capital over the one-year
study period and by income tercile: poor (pale grey), medium-income (grey) and rich (dark
grey). Thick horizontal bars indicate the median, minimum/maximum values beyond the axis
range are labelled. Boxes sharing a common letter are not significantly different (P < 0.032) in
Mann-Whitney tests with Bonferroni correction, analysis in (D) was by four separate Kruskal-
Wallis tests; see Appendix B (Table 7.A4.) for test statistics. (A) and (C) have n = 64, (B)
excluded two households with negative income (n = 62), and (C—D) comprise livestock-owning

households only (n = 53).
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households was more than double total livelihood income. Livestock herd value was
typically less than total income in rich households, but still equivalent to 57.4% of income
on average. Herd capital change over the study year was variable in all income terciles (Fig.
7.4.C), with births, recruitment and deaths (rather than sales) contributing most to herd
value change (Fig. 7.4.D). Animal purchases and sales in the year were rare (seven and
three transactions respectively), involving 1.7 £ 0.8 animals per transaction and eight (15%)
of 53 livestock-owning households. Reasons for selling livestock (in the household
member’s adult lifetime) were largely to support family welfare, living costs or investment
in other capital assets (Fig. 7.5.). Obtaining cash to buy food and household provisions was

most common; at least two households did this to compensate for a poor rice harvest.

7.4.2. Livelihood change

Agricultural mechanisation was demonstrated by accelerating purchases of hand-tractors in
the years 2000—2010, with seven times more purchased in 2010 than 2005 (Fig. 7.6.). Sixty-
three of 150 households (42%) owned hand-tractors in 2011, and 76.2% of these sold

(A) Trade for business
Change to cattle

Lost husbandry capacity
Ageing animal

(B) Wedding
Baby upbringing

Treat illness

Food and living costs

(C) Buy jewellery
Buy hand-tractor
Buy machinery

Build house ]
T T 1

0 5 10 15 20

Frequency of reason given

1

Figure 7.5. Reasons for selling livestock in households’ lifetimes. Livestock sales were
confirmed in 30 households and respondents were asked to give all the reasons for these
sales. Responses relate to livestock husbandry matters (A), support of family members and
living costs (B) and investment in other capital assets (C). “Machinery” includes boats,

motorbikes and rice-milling machines.
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Frequency of purchases

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Figure 7.6. Frequency of hand-tractor (inset) purchases by year from a survey of 150

households.

livestock to assist with the purchase cost (US$1919.4 + 422.3, mean = SD). Households
selling livestock sold 43.2 £ 19.3% of their herds (5.5 £ 2.5 animals) comprising a similar
number of buffalo (2.8 + 2.0) and cattle (2.7 £ 2.5; Wilcoxon V4747 = 513, P = 0.837). All
63 households owning hand-tractors used them for transport and 92.1% ploughed with
them. The machines’ greater draught capacity compared to livestock, and the latter’s
vulnerability to disease, were given as the main factors motivating hand-tractor purchases
by key informants and focus group participants (Fig. 7.6.); disease (specified by a vet to
include foot-and-mouth) was considered the biggest problem for livestock rearing by 7/9

informants.

Qualitative data suggested varied uses for livestock retained following hand-tractor
purchases: 3/6 informants believed that hand-tractor owners continued using livestock for
transport and ploughing but 3/6 believed they no longer fulfilled these functions.
Approximately half of participants in the tractor-owner focus group still used livestock for
these activities on an occasional basis when tractors broke down or they lacked money for
running costs. Beyond draught, testimonials suggested that remaining livestock continued to
fulfil other functions, including capital gain from herd growth. However, disease may
influence households’ decisions to keep livestock (Fig. 7.7.) and 5/6 informants believed

buffalo numbers were declining while cattle were increasing.
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Hand-tractor advantages and purchase motivations

FG1i: Hand-tractors are easier [than livestock] because you don’'t have to go and find them in the
forest and they’re much quicker and stronger. (Tractor owner at a focus group)

FG3i: When livestock die then that’s it, can’t do anything, but hand-tractors can be repaired when they
break. They don’t need looking after like the animals. (Tractor owner at a focus group)

114: Some people look at their buffalo and if a lot are ill then they think it's better to sell them and get a
hand-tractor instead [...] the living thing is a greater risk [...] and they could lose money. (Chief of
commune for 9 years, life-long local resident and livestock owner)

Livestock use after hand-tractor purchases

114: People [...] may still use livestock when they don’t have money for the petrol or repairs to their
tractor. (Chief of commune for 9 years and life-long local resident)

FG3i: It's important to keep the females to get the calves, and to sell them to buy equipment or to pay
for repairs when the tractor breaks. (Tractor owner at a focus group)

FG3iii: | don’t use my ox or oxcart at all anymore [...] if the tractor is broken | get it repaired quickly
instead of using my oxen. (Tractor owner at a focus group)

112: There were more buffalo in the past but several years ago lots of buffalo caught an infectious
disease [...] some people lost all of their buffalo. (Villager and livestock owner, part-time vet and 7
years conservation NGO experience working locally)

FG2ii: | want to keep them [the livestock] to get the offspring [to gain a larger herd] but if the disease is
really bad this year then I'll be forced to sell them. (Tractor owner at a focus group)

Figure 7.7. Testimonials from key informants and tractor-owner focus group participants on
the advantages of investing in a hand-tractor and uses for livestock following hand-tractor

purchases.

7.5. Discussion

7.5.1. Importance of livestock, rice and environmental income

Extensively-reared livestock (buffalo and cattle) were owned by 83% of households, but
earned very little income relative to the diverse range of other livelihood activities (2.4%
income share across households), a result echoed in other Cambodia forest communities
(McKenney et al. 2004). Nonetheless, livestock provided a substantial capital asset, with
herd value exceeding total livelihood income in 48% of households. Animal sales were
made when households required finance to purchase other fixed capital, invest in a
livelihood activity, or for times of particular need. The paucity of livestock sales observed
may relate to their use in times of crisis rather than for regular trade, but high incomes from
malva nuts and timber during the study year could also be a factor. Livestock may provide a

form of insurance during livelihood shortfalls (Moll 2005), particularly in poor households
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where income deficits were 2.3 times more frequent (for any given livelihood activity) than
in rich households. Although increases in herd capital over the year were typically small
and only achieved by 57% of livestock-owning households, tractor-owners” hopes of
breeding more livestock point to the potential for wealth accumulation, with livestock

operating as a “living savings account” (Doran et al. 1979; Moll 2005).

Rice was cultivated by 84% of households and was the second most important income
source (20.2% income share across households). Forest use was the only activity exceeding
income from rice cultivation (48.1% income share), but much of forest income came from
high-value malva nuts and timber, harvested at unusually high levels in the study period.
Excluding these products illustrated likely household income in a more typical year,
showing that rice cultivation and (routine) forest use may be of similar importance (the
latter providing a 20.0% income share). The majority of rice cultivation’s value was derived
from households’ own rice consumption, feeding people and home-reared livestock. Rice is
a staple of the Cambodian diet (Nesbitt 1997) and a core livelihood component in many

Cambodian forest communities (Clements et al. in press; McKenney et al. 2004).

Harvesting of forest products, fishing and extensive livestock rearing (reliant on natural
graze available in the forest) were all common forms of environmental resource use; every
household collected forest resources, 92% fished, and more than three-quarters kept large
livestock. The combined environmental income from these activities (across 64 households)
was 2.7 times greater than agricultural income (rice cultivation and garden produce),
demonstrating the community’s dependence on open-access resources in the dry forest
landscape. The estimate may even be conservative, as respondents may have withheld data
on illegally-collected products (e.g. timber and protected animals) and long recall periods
can underestimate natural resource use (Lund et al. 2008). Environmental income remained
considerable when only routine forest use was considered, becoming 1.5 times greater than
income from agricultural activities. Environmental income is similarly important to other
forest communities of Cambodia and Vietnam (Hansen & Neth 2006; McElwee 2008;
McKenney et al. 2004) and throughout the developing world (Vedeld et al. 2007). However,
while many studies observe inverse relationships between household wealth and forest use
(e.g. Cavendish 2000; Rayamajhi et al. 2012), crude income shares in poor, medium-income
and rich households showed no such a pattern in this community. Rather than rich
households using the forest less, greater income and sale of forest resources (particularly
high-value products such malva nuts and timber) was their defining feature, as incomes

from other livelihood activities were similar across income terciles.
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The farming practices key to White-shouldered Ibis survival also proved fundamental to
local livelihoods: extensive livestock rearing creates grazed habitat for foraging ibis (Wright
et al. 2010; chapter 6) and an important capital asset for local households, while rice
cultivation provides wet-season foraging habitat for ibis (Fig. 7.1.B) and the second largest
income source of dry forest livelihoods. Nevertheless, the overwhelming importance of
environmental income to local people implies that the strongest link between livelihoods
and the ibis is the shared use of dry forest resources and habitats. These results suggest that
conservation could provide mutual benefit to people and ibis by safeguarding livelihoods
and dry forest landscapes from imminent agricultural land acquisitions; however, livelihood

change must also be considered before advocating this win-win strategy.

7.5.2. Evidence and impacts of livelihood change

Livelihood change and the modernisation of agricultural practices was demonstrated by the
seven-fold increase in hand-tractor purchases from 2005-2010; similar mechanisation has
been observed in Preah Vihear province, c. 100 km from the study site (Clements et al. in
press). Hand-tractors provide greater speed, power and convenience than livestock, and
these appeared to be major pull factors of mechanisation. As most purchases were recent
and the study period was short, the impacts of mechanisation on livestock abundance were
not observed directly. Nonetheless, more than three-quarters of tractor-owning households
sold nearly half of their livestock, and more will be sold if tractor ownership continues to
increase. Some tractor owners hoped to retain some livestock in case of breakdowns,
financial shortfalls or to accrue herd capital, but whether growth from remaining stock can

sustain livestock numbers is uncertain.

Tractor owners’ concerns for the health of their herds and anecdotal observation of people
panic-selling buffalo during disease outbreaks (occurring since the study period; Bou
Vorsak pers. comm.), suggest disease is another driver of livestock loss, directly killing
animals but also encouraging further mechanisation. The risks of substantial capital-asset
loss and livelihood shocks when livestock die, such as a lack of ploughing draught for rice
cultivation (Shankar et al. 2012), may be an important push factor in hand-tractor
purchases. Informants suggested buffalo numbers were declining and cattle were increasing;
this may relate to a disproportionate impact of livestock disease on buffalo (agreed by 4/6

informants), as the ratios of cattle and buffalo sold to purchase hand-tractors were similar.
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Evidence of change in other, more developed parts of central Indochina provides an
indication of how livelihoods may progress; buffalo decline is a widespread phenomenon in
Southeast Asia, with an 18.5% drop occurring from 1990-2002 (Nanda & Nakao 2003).
Several decades ago, much of northeast Thailand was similar to the present-day study site,
comprising forest-mosaic landscapes with communities reliant on low-intensity agriculture
and forest access for resources and livestock grazing (Rigg 1993; Vityakon et al. 2004).
From 1976 to 1997, agricultural modernisation (hand-tractors replacing livestock draught
and chemicals replacing livestock manure) and loss of free grazing land contributed to a
36% decline of buffalo (Simaraks et al. 2003; Vityakon et al. 2004). The decline has eroded
traditional uses of livestock, including as capital assets, leading to greater dependence on
monetary institutions and consumer goods (Simaraks et al. 2003). This transition may now

be beginning at this study site.

Livestock declines are likely to affect habitat availability for White-shouldered Ibis, given
its need for grazed foraging habitats (Wright et al. 2010; chapter 6). Although optimal
livestock densities are not yet known, substantial declines may be detrimental, as buffalo
are now the main agent keeping waterholes open, providing the ibis’s key foraging habitat
in the breeding season (chapter 6). Other likely livelihood changes also create conservation
concern. Market access — improved by a new main road — may create commercial
opportunities such as cash cropping (e.g. Hamlin & Salick 2003; Thongmanivong & Fujita
2006), driving livelihoods away from traditional activities that support the ibis. In the longer
term, human population growth will be substantial, as 63.5% of the study site population is
< 25 years old (Ministry of Planning 2007). Population effects on agriculture are complex
and contested (Lambin et al. 2001), but increasing pressure on land to provide food (or cash
with which to purchase it) may drive greater land use for agriculture and/or higher-intensity
production, creating an uncertain future for the ibis. Despite the shared importance of
livestock rearing, rice cultivation and the dry forest landscape to local people and White-
shouldered lIbis, changing livelihoods look set to imminently uncouple this linkage.
Traditional farming practices could become increasingly uneconomic or socially
inappropriate as agriculture is modernised, creating not a win-win scenario but a trade-off

between local development and ibis conservation.

7.5.3. The conservation approach

White-shouldered Ibis is amongst a distinct group of developing-world species depending
on traditional farming systems (Wright et al. 2012b; chapter 2). In the absence of the natural
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processes that historically sustained these species, maintaining or mimicking traditional
practices is a conservation priority. Win-win strategies may appeal where wildlife and
people share a reliance on farming practices or a common threat, and where traditional
livelihoods appear stable (at least in the medium term). However, where access to new
markets and technology is expected within years rather than decades, traditional agriculture
may be rapidly modernised and win-win strategies may be ephemeral. The need to increase
agricultural production, driven by population growth and greater affluence (Godfray et al.
2010), may exert further pressure on some of these farming systems. In these contexts, new
conservation mechanisms are required to continue managing landscapes for farming-
dependent species. Possibilities for incentivising local farmers include direct payments for
conservation, payments for environmental services and market-enhancing certification
schemes (Ferraro & Kiss 2002), but in maintaining traditional livelihoods, the opportunity

costs to local development will need explicit consideration.

7.6. Appendices

7.6.1. Appendix A: Inputs and outputs of household net incomes

Activity

Intermediate inputs / capital costs

Outputs

Forest resources

Fishing

Extensive livestock
. b
rearing

Axe purchase

Chainsaw purchase/running cost
Hand-tractor purchase/running cost
Motorbike purchase/running cost
Own ox-cart draught used (+L)
Other (e.g. push-bike purchase)

Net purchase/repair

Boat repair

Hand-tractor purchase/running cost
Motorbike purchase/running cost
Own ox-cart draught used (+L)

Buffalo/cattle purchases
Rice crop straw (+R)
Ox-cart draught hired ©
Ploughing draught hired ©
Medical treatment

Vet service

Table 7.A1. Continued pg. 151.

Construction timber ®
lllegal timber ®

Grass for roof construction
Bamboo poles

Fence poles

Fuelwood

Rattan

Tree resin

Wild mammals and reptiles
Wild amphibians

Malva nuts ®

Other wild fruits and vegetables

Small fish and eels
Large fish and eels
Fermented fish paste

Buffalo/cattle sales

Own ox-cart draught used

Own ox-cart draught let-out

Own ploughing draught used
Own ploughing draught let-out
Ox-cart/ploughing draught given €
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Garden produce and Pig/chicken/duck purchases Pig/chicken/duck meat/sales
animals Crop seed bought Duck eggs
Rice dust (+R) Fruit and vegetables
Cooked rice (+R) Maize crop ¢
Tool purchase/repair Sugar cane crop d
Medical treatment Crop seed ¢
Vet service
Rice cultivation Rice seed purchase Rice crop ¢
Plough material purchases Rice dust
Hand-tractor purchase/running Rice crop straw
cost/hire
Own ox-cart draught used (+L) Cooked rice for animals
Own ploughing draught used (+L) Rice mill service let-out
Ox-cart/ploughing draught given (+L) Rice seed *

Rice threshing service bought
Rice mill service bought
Labour hired

Table 7.A1. Summary of major inputs and outputs contributing to the net income of five key
livelihood activities valued at 64 households for a one-year period. (+L) indicates products also
booked as outputs of extensive livestock rearing, (+R) indicates products also booked as
outputs of rice cultivation. For wage labour and business respondents stated their salaries or

estimated the profit made from business activities.

® Key informant evidence demonstrated these products were collected in atypically high
quantities during the study year, and that the vast majority of input costs to forest resource
collection resulted from collection of these products. Net income from more routine forest use
(comprising the other forest resource outputs) was calculated with the assumption that
chainsaws, hand-tractors, ox-cart draught and other inputs were only used for timber and
malva nut collection. Net income from routine forest use is therefore a best-estimate rather
than a precise value.

®In contrast to other grazing systems (Babulo et al. 2009; Narain et al. 2008), livestock fodder
was not collected from the forest and so no market price or contingent value was available;
fodder value is therefore not accounted for in extensive livestock rearing and forest resource
use activities per se. However, the value of fodder is indirectly represented by income from
extensive livestock rearing as a whole, and this is incorporated in total environmental income.
Livestock manure was also not collected and quantifying the value of manure from animals
kept haphazardly on rice fields was beyond the scope of the study.

“ To avoid double counting, ox-cart and ploughing draught hired for any of the six livelihood

activities was accounted as an input to extensive livestock rearing and not to the activity that
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required its use. Ox-cart and ploughing draught given to the household was accounted as an
input to the activity that required it and an output of extensive livestock rearing.

d Crop harvests (namely rice) were sometimes in the middle of the study year, therefore crop
and seed use within the study period was inevitably from cultivation seasons both during and
prior to the study. To prevent erroneous counting of outputs from multiple harvests, only
crops and seeds used during the study year (originating from either during or prior to study)
were included, those harvested but unused (e.g. remaining in storage for use in the next

season) were not counted.

7.6.2. Appendix B: Test statistics

Forest Fishing Livestock Garden Rice

Fishing V=1791 - - - -
P<0.001

Livestock V=1892 V =1446
P<0.001 P =0.005

Garden V=1969 V=1523 V=743 - -
P<0.001 P =0.006 P =1.000

Rice V =1557 V=439 V=184 V=1590 -
P =0.008 P =0.004 P<0.001 P<0.001

Wage V=1840 V=1465 V=842 V=1304 V=1038
P<0.001 P=0.027 P =1.000 P=1.000 P=0.008

Table 7.A2. Statistics for paired Wilcoxon tests (Vs464) Of pairwise differences in livelihood
activity net incomes (USS per adult equivalent unit), with Bonferroni adjustment (see Fig. 7.2.
above). These post-hoc tests follow a Friedman test of livelihood activity net incomes
(Friedman x°s = 95.52, P < 0.001). “Forest” = forest resource use. “Livestock” = extensive
livestock rearing. “Garden” = garden produce and animals. “Wage” = wage labour and

business.
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(a) Forest resource use (b) Fishing
Kruskal-Wallis x*, = 35.28, P < 0.001 Kruskal-Wallis x*, = 6.88, P = 0.032
Poor Medium Poor Medium
Medium W=825,P=0.002 - Medium W =134, P=0.091 -
Rich W=21,P<0.001 W =65, P<0.001 Rich W =139, P=0.079 W =195, P=1.000

(c) Extensive livestock rearing

(d) Garden produce and animals

Kruskal-Wallis x>, = 0.24, P = 0.886

Poor Medium

Kruskal-Wallis x>, = 3.00, P = 0.223

Poor Medium

Medium W =206, P=1.000 - Medium W=160,P=0.131 -
Rich W=2125,P=1.000 W=241,P=1.000 Rich W=170.5,P=0.430 W=226,P=1.000
(e) Rice cultivation (f) Wage labour and business
Kruskal-Wallis x*, = 4.61, P = 0.099 Kruskal-Wallis x*, = 5.89, P =0.061
Poor Medium Poor Medium
Medium W=156.5P=0.330 - Medium W=179,P=0.270 -
Rich W =149, P=0.140 W =209, P=1.000 Rich W =166, P=0.063 W =201, P=1.000
(g) Total net income (h) Forest timber and malva nuts
Kruskal-Wallis x*, = 56.00, P < 0.001 Kruskal-Wallis x*, = 26.45, P < 0.001
Poor Medium Poor Medium
Medium W =441, P<0.001 - Medium W =363, P=0.001 -
Rich W =462, P<0.001 W =462, P<0.001 Rich W =422, P<0.001 W =328, P=0.057

(i) Routine forest use

Kruskal-Wallis x*, = 20.87, P < 0.001
Poor Medium
Medium W=253,P=1.000 -
Rich W=391,P<0.001 W=392,P<0.001

Table 7.A3. Statistics for Kruskal-Wallis and post-hoc Mann-Whitney tests (W, with Bonferroni

adjustment) of differences in net income (USS per adult equivalent unit) per income tercile

(poor, medium-income and rich households) for each livelihood activity (a—f), total net income

(g; see Fig. 7.3. above). Comparison of malva nut and timber income (h) and routine forest

income (i), subsets of overall forest use (a), are also included. Poor households n = 21,

medium-income households n = 21 and rich households n = 22.
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(a) Livestock herd capital

(b) Herd capital/total net income ratio

Kruskal-Wallis x% = 3.80, P = 0.149
Poor Medium
Medium W=143, P =0.160 -
Rich W=223 P=1000 W=2875P=
0.520

Kruskal-Wallis x% = 12.66, P = 0.002
Poor Medium
Medium W=197,P=1.000 —

Rich W =307,P=0.031 W=373,P=0.002

(c) Herd capital change

(d) Livestock births and recruitment

Kruskal-Wallis x*; = 2.35, P = 0.308
Poor Medium
Medium W =1225,P=0.670 -
Rich W=104,P=0500 W=1535P=
1.000

Kruskal-Wallis x%, = 2.97, P = 0.227
Poor Medium
Medium W 114=,P=0.400 -

Rich W 102 =, P=0.440 W =166, P =1.000

(e) Livestock purchases

(f) Livestock deaths

Kruskal-Wallis x% = 3.25, P = 0.197
Poor Medium

Medium W =190, P =0.420 -
Rich W =168, P = 0.600

W =160, P =1.000

Kruskal-Wallis x, = 2.68, P = 0.262
Poor Medium
Medium W =151,P=1.000 -

Rich W =182,P=0.580 W =207.5 P=0.430

(9) Livestock sales

Kruskal-Wallis x%, = 2.20, P = 0.332
Poor Medium

Medium W =180.5,P=0420 -
Rich W =152, P =1.000

W =152, P =0.950

Table 7.A4. Statistics for Kruskal-Wallis and post-hoc Mann-Whitney tests (W, with Bonferroni

adjustment) of differences in livestock herd capital (a); ratio of herd capital to total net income

(b); herd capital change in the one-year study period (c); capital gain from livestock births and

recruitment (d); capital gain from livestock purchases (e); capital loss from livestock deaths (f);

and capital loss from livestock sales (g), per income tercile (poor, medium-income and rich

households; see Fig. 7.4. above). All capital values were in USS per adult equivalent unit. Poor

households n = 21, medium-income households n = 21 and rich households n = 22.

7.7. References

Adams, W.M. (2012). Feeding the next billion: hunger and conservation. Oryx 46: 157-158.
Babulo, B., Muys, B., Nega, F., Tollens, E., Nyssen, J., Deckers, J., Mathijs, E. (2009). The

economic contribution of forest resource use to rural livelihoods in Tigray, Northern

Ethiopia. Forest Policy and Economics 11: 109-117.

154



Chapter 7: Local livelihoods

Brown, K. (2002). Innovations for conservation and development. Geographical Journal
168: 6-17.

Cavendish, W. (2000). Empirical regularities in the poverty-environment relationship of
rural households: evidence from Zimbabwe. World Development 28: 1979-2003.

Cavendish, W. (2002). Quantitative Methods for Estimating the Economic Value of
Resource Use to Rural Households. Pages 17-65 in B.M. Campbell, and M.K. Luckert,
eds. Uncovering the Hidden Harvest: VValuation Methods for Woodland and Forest
Resources. Earthscan, London.

Clements, T., Suon, S., An, D., Wilkie, D.S., Milner-Gulland, E.J. (in press). Impacts of
forest conservation policies on local poverty and livelihoods in Cambodia. World
Development.

Cotula, L., Vermeulen, S., Mathieu, P., Toulmin, C. (2011). Agricultural investment and
international land deals: evidence from a multi-country study in Africa. Food Security 3:
99-113.

Doran, M.H., Low, A.R.C., Kemp, R.L. (1979). Cattle as a store of wealth in Swaziland:
implications for livestock development and overgrazing in Eastern and Southern Africa.
American Journal of Agricultural Economics 61: 41-47.

Ferraro, P.J., Kiss, A. (2002). Direct payments to conserve biodiversity. Science 298: 1718-
1719.

Fischer, J., Hartel, T., Kuemmerle, T. (2012). Conservation policy in traditional farming
landscapes. Conservation Letters 5: 167-175.

Food and Agriculture Organisation of the United Nations (FAO) (2009). The State of Food
Insecurity in the World 2009. Economic Crises — Impacts and Lessons Learned. FAO,
Rome.

Food and Agriculture Organisation of the United Nations (FAO) (2012). FAO Statistical
Yearbook 2012. FAO, Rome.

Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty,
J., Robinson, S., Thomas, S.M., Toulmin, C. (2010). Food security: the challenge of
feeding 9 billion people. Science 327: 812-818.

Hamlin, C., Salick, J. (2003). Yanesha agriculture in the upper Peruvian Amazon:
Persistence and change fifteen years down the 'road’. Economic Botany 57: 163-180.
Hansen, K.K., Neth, T. (2006). Natural Forest Benefits and Economic Analysis of Natural
Forest Conversion in Cambodia. Cambodia Development Resource Institute, Phnom

Penh.

155



Chapter 7: Local livelihoods

Kaimowitz, D., Sheil, D. (2007). Conserving what and for whom? Why conservation should
help meet basic human needs in the tropics. Biotropica 39: 567-574.

Kamanga, P., Vedeld, P., Sjaastad, E. (2009). Forest incomes and rural livelihoods in
Chiradzulu District, Malawi. Ecological Economics 68: 613-624.

Lambin, E.F., Turner, B.L., Geist, H.J., Agbola, S.B., Angelsen, A., Bruce, J.W., Coomes,
O.T., Dirzo, R., Fischer, G., Folke, C., George, P.S., Homewood, K., Imbernon, J.,
Leemans, R., Li, X., Moran, E.F., Mortimore, M., Ramakrishnan, P.S., Richards, J.F.,
Skanes, H., Steffen, W., Stone, G.D., Svedin, U., Veldkamp, T.A., Vogel, C., Xu, J.
(2001). The causes of land-use and land-cover change: moving beyond the myths.
Global Environmental Change 11: 261-269.

Lund, J.F., Larsen, H.O., Chhetri, B.B.K., Rayamajhi, S., Nielsen, @.J., Olsen, C.S.,
Uberhuaga, P., Puri, L., Prado, J.P.P. (2008). When Theory Meets Reality - How to do
Forest Income Surveys in Practice. Centre for Forest, Landscape and Planning,
University of Copenhagen, Copenhagen.

McElwee, P.D. (2008). Forest environmental income in Vietnam: household socioeconomic
factors influencing forest use. Environmental Conservation 35: 147-1509.

McKenney, B., Yim Chea, Prom Tola, T., E. (2004). Focusing on Cambodia’s High Value
Forests: Livelihoods and Management. Cambodia Development Resource Institute and
Wildlife Conservation Society, Phnom Penh.

McShane, T.O., Hirsch, P.D., Trung, T.C., Songorwa, A.N., Kinzig, A., Monteferri, B.,
Mutekanga, D., Thang, H.VV., Dammert, J.L., Pulgar-Vidal, M., Welch-Devine, M., Peter
Brosius, J., Coppolillo, P., O’Connor, S. (2011). Hard choices: making trade-offs
between biodiversity conservation and human well-being. Biological Conservation 144:
966-972.

Millennium Ecosystem Assessment (MEA) (2005). Ecosystems and Human Well-Being:
Biodiversity Synthesis. World Resources Institute, Washington, D.C.

Ministry of Planning (2007). Commune Database Version 6.0. Ministry of Planning, Phnom
Penh.

Moll, H.A.J. (2005). Costs and benefits of livestock systems and the role of market and
nonmarket relationships. Agricultural Economics 32: 181-193.

Nanda, A.S., Nakao, T. (2003). Role of buffalo in the socioeconomic development of rural
Asia: current status and future prospects. Animal Science Journal 74: 443-455.

Narain, U., Gupta, S., van 't Veld, K. (2008). Poverty and resource dependence in rural

India. Ecological Economics 66: 161-176.

156



Chapter 7: Local livelihoods

Nesbitt, H.J. (1997). Rice Production in Cambodia. International Rice Research Institute,
Manila.

Norris, K. (2008). Agriculture and biodiversity conservation: opportunity knocks.
Conservation Letters 1: 2-11.

Rands, M.R.W., Adams, W.M., Bennun, L., Butchart, S.H.M., Clements, A., Coomes, D.,
Entwistle, A., Hodge, I., Kapos, V., Scharlemann, J.P.W., Sutherland, W.J., Vira, B.
(2010). Biodiversity conservation: challenges beyond 2010. Science 329: 1298-1303.

Rayamajhi, S., Smith-Hall, C., Helles, F. (2012). Empirical evidence of the economic
importance of Central Himalayan forests to rural households. Forest Policy and
Economics 20: 25-35.

Rigg, J. (1993). Forests and farmers, land and livelihoods, changing resource realities in
Thailand. Global Ecology and Biogeography Letters 3: 277-289.

Robertson, B., Pinstrup-Andersen, P. (2010). Global land acquisition: neo-colonialism or
development opportunity? Food Security 2: 271-283.

Robinson, J.G. (1993). The limits to caring: sustainable living and the loss of biodiversity.
Conservation Biology 7: 20-28.

Sachs, J.D., Baillie, J.E.M., Sutherland, W.J., Armsworth, P.R., Ash, N., Beddington, J.,
Blackburn, T.M., Collen, B., Gardiner, B., Gaston, K.J., Godfray, H.C.J., Green, R.E.,
Harvey, P.H., House, B., Knapp, S., Kimpel, N.F., Macdonald, D.W., Mace, G.M.,
Mallet, J., Matthews, A., May, R.M., Petchey, O., Purvis, A., Roe, D., Safi, K., Turner,
K., Walpole, M., Watson, R., Jones, K.E. (2009). Biodiversity conservation and the
Millennium Development Goals. Science 325: 1502-1503.

Schneider, A.F. (2011). What shall we do without our land? Land grabs and resistance in
rural Cambodia. International Conference on Global Land Grabbing. Land Deals Politics
Initiative, University of Sussex, Brighton, UK.

Shankar, B., Morzaria, S., Fiorucci, A., Hak, M. (2012). Animal disease and livestock-
keeper livelihoods in southern Cambodia. International Development Planning Review
34: 39-63.

Simaraks, S., Subhadhira, S., Srila, S. (2003). The shifting role of large livestock in
Northeast Thailand. Southeast Asian Studies 41: 316-329.

Sjaastad, E., Angelsen, A., Vedeld, P., B0jo, J. (2005). What is environmental income?
Ecological Economics 55: 37-46.

Stott, P. (1986). The spatial pattern of dry season fires in the savanna forests of Thailand.

Journal of Biogeography 13: 345-358.

157



Chapter 7: Local livelihoods

Sunderlin, W.D. (2006). Poverty alleviation through community forestry in Cambodia,
Laos, and Vietnam: an assessment of the potential. Forest Policy and Economics 8: 386-
396.

Takeuchi, K. (2010). Rebuilding the relationship between people and nature: the Satoyama
Initiative. Ecological Research 25: 891-897.

Thongmanivong, S., Fujita, Y. (2006). Recent land use and livelihood transitions in
Northern Laos. Mountain Research and Development 26: 237-244.

Thuon, T., Chambers, M. (2006). Situation Analysis: Stung Treng Province, Cambodia.
Mekong Wetlands Biodiversity Conservation and Sustainable Use Programme,
Vientiane.

Tilman, D., Balzer, C., Hill, J., Befort, B.L. (2011). Global food demand and the sustainable
intensification of agriculture. Proceedings of the National Academy of Sciences 108:
20260-20264.

Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S. (2002). Agricultural
sustainability and intensive production practices. Nature 418: 671-677.

Tscharntke, T., Klein, A.M., Kruess, A., Steffan-Dewenter, 1., Thies, C. (2005). Landscape
perspectives on agricultural intensification and biodiversity — ecosystem service
management. Ecology Letters 8: 857-874.

Vedeld, P., Angelsen, A., Bojo, J., Sjaastad, E., Kobugabe Berg, G. (2007). Forest
environmental incomes and the rural poor. Forest Policy and Economics 9: 869-879.

Vityakon, P., Subhadhira, S., Limpinuntana, V., Srila, S., Trelo-Ges, V., Sriboonlue, V.
(2004). From forest to farmfields: changes in land use in undulating terrain of Northeast
Thailand at different scales during the past century. Southeast Asian Studies 41: 444-472.

Wharton, C.H. (1968). Man, fire and wild cattle in Southeast Asia. Pages 107-167.
Proceedings of the Annual Tall Timbers Fire Ecology Conference. Tall Timbers
Research Station, Tallahassee, FL.

World Bank (2012). World Development Indicators 2012. World Bank, Washington, D.C.
Wright, H.L., Buckingham, D.L., Dolman, P.M. (2010). Dry season habitat use by critically
endangered white-shouldered ibis in northern Cambodia. Animal Conservation 13: 71-

79.

Wright, H.L., Collar, N.J., Lake, I.R., Net Norin, Rours Vann, Sok Ko, Sum Phearun,
Dolman, P.M. (2012a). First census of white-shouldered ibis Pseudibis davisoni reveals
roost-site mismatch with Cambodia’s protected areas. Oryx 46: 236-239.

Wright, H.L., Lake, I.R., Dolman, P.M. (2012b). Agriculture—a key element for
conservation in the developing world. Conservation Letters 5: 11-19.

158



Chapter 8

Experimental test of a conservation intervention
for a highly threatened waterbird
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Local nest guardian and camp, stationed near a White-shouldered Ibis nest.
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8.1. Abstract

Human exploitation and disturbance often threaten nesting wildlife. Nest guarding, a
technique that employs local people to prevent such interference, is being applied to an
increasing number of species and sites, particularly in South-East Asia. Although recent
research has begun to assess nest guarding cost-effectiveness, case-control studies are rare
and the circumstances in which the schemes are most useful remain unclear. The study
experimentally tested the effect of nest guarding for the Critically Endangered White-
shouldered Ibis Pseudibis davisoni, a species exploited opportunistically for food and now
largely confined to dry forests in Cambodia. A randomised sample of 24 and 25 nests were
guarded and unguarded, respectively, at a single site over two years. To assess the potential
for nest guarding in different conservation contexts, the effect of conservation activity as a
whole was investigated by comparing ibis nest failure at four sites with different
intervention histories. Nest guarding had no detectable effect on nest success at the
principal site. Across all sites, nest failure varied by up to 63% but an effect of conservation
activity was not found; nest failure was actually increased by conservation activity at one
site, indicating the need for careful implementation of guarding schemes that benefit only a
small number of people in the local community. Comparison with other studies suggests
nest guarding effectiveness is likely to be context specific and may differ between species
that are exploited opportunistically, such as White-shouldered Ibis, and those routinely

targeted for trade.

8.2. Introduction

Improving nest success is a fundamental conservation measure for many threatened species
including birds (Bell & Merton 2002; Jones 2004) and reptiles, particularly turtles (Spotila
2004). Nests fail for a variety of reasons including human exploitation, disturbance and
predation. Anthropogenic nest failures may be substantial where people utilise nest contents
for food or trade (Tomillo et al. 2008; Wright et al. 2001). Nest exploitation and destruction
can be mitigated through various interventions, including awareness campaigns (Barré et al.
2010; Herrera & Hennessey 2007); conservation payment schemes, often for nest guarding
(Clements et al. 2010; Niesten & Gjertsen 2010); harvesting quotas (Hobbs 2004); law

enforcement (Cahill et al. 2006); or a combination of these (Boussekey 2000).

Nest guarding schemes employ local people to deter human interference at nests. Guard

salaries provide an incentive to report a nest site and ensure its success, rather than
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harvesting its contents. The approach is becoming popular, particularly for the protection of
sea turtle colonies (Ferraro & Gjertsen 2009) and, in South-East Asia, for the protection of
waterbirds (Clements et al. 2010; Sok et al. 2012), parrots (Widmann & Widmann 2008),
raptors (Prawiradilaga 2006; Salvador & Ibanez 2006) and a bustard (Packman 2011).
These species are vulnerable because of their conspicuousness, value or mere proximity to
rural communities depending on natural resources. In Cambodia, for example, twelve
threatened birds and one river turtle species are currently protected by nest guarding
(Clements et al. 2010; Packman 2011; Sok et al. 2012).

Evaluating the effectiveness of interventions is important to ensure that they: achieve
desired goals; do not inadvertently increase problems — for example disturbance-induced
nest failure associated with nest searching and guard presence; and represent efficient use of
resources and time (Ferraro & Pattanayak 2006; Sutherland et al. 2004). Although studies
have begun to assess the effectiveness of nest guarding (e.g. Clements et al. in press;
Ferraro & Gjertsen 2009) this intervention is very rarely tested experimentally. Unlike other
nest protection interventions (Keo et al. 2009; e.g. Kragten et al. 2008), nest guarding
schemes are typically implemented across all monitored nests, leaving no unprotected nests
as a control treatment; evaluation has therefore frequently depended on population trend
data that can be confounded by other factors, such as weather, fluctuation in predator

populations or other conservation activities.

Recent studies of nest guarding effectiveness in Cambodia have shown contrasting results.
Sok et al. (2012) found little effect with three waterbird species, although no control was
included. However, Clements et al. (in press) used a quasi-experimental method that
matched guarded nests in protected areas with unguarded nests in unprotected areas,
determining that nest guarding (perhaps in combination with other interventions and their
impact on community behaviour) successfully increased nest success for two waterbird

species. Clearly the issue requires further study.

The Critically Endangered White-shouldered Ibis Pseudibis davisoni is one of South-East
Asia’s most threatened waterbirds (Tordoff et al. 2005). Using this as a model species, the
study tested the independent effect of nest guarding using a case-control design — the first
randomised experimental test of this intervention. To understand further the circumstances
in which nest guarding may be effective, the rates and causes of nest failure were also
examined across four ibis subpopulations with different conservation histories, investigating
the relative contribution of human interference, and the value of conservation activity

(encompassing a broad range of interventions) in improving nest success. However,
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potentially confounding ecological and social factors, and small sample sizes, render this
aspect of the study preliminary. As the number and scale of nest guarding schemes look set
to increase, this study provides conservation practitioners with new evidence regarding this

intervention’s effectiveness.

8.3. Methods

8.3.1. Study species

White-shouldered Ibis historically occurred across Indochina, but in the twentieth century
the population severely contracted so that 85-95% of the world’s remaining 731-856 birds
are now found in Cambodia (Wright et al. 2012; chapter 3). The species shares its dry forest
habitat with human communities dependent on natural resources and, although not valued
for trade, is exploited opportunistically for food (Sok et al. 2012; HLW pers. obs.). Itis a
solitary, dry-season breeder (December—May), building nests in tree canopies typically 10—
25 m above the ground. Nesting most frequently occurs in open deciduous dipterocarp
forest, forest remnants or isolated trees at rice fallows (Clements et al. in press; HLW
unpubl. data) or in seasonally flooded forest along large rivers (Sok et al. 2012; Sutrisno et
al. 2009).

8.3.2. Study sites

Western Siem Pang Important Bird Area (Seng et al. 2003) in Stung Treng province
(14°07'N 106°14'E) was the principal site and location of the nest guarding experiment.
This 138,000 ha dry forest landscape holds the largest known population of White-
shouldered Ibis, at least 226 birds (Wright et al. 2012; chapter 3). Approximately 11,000
people (Ministry of Planning 2007) live in small settlements concentrated in the centre and
east of the site. Small-scale conservation action has taken place continuously since 2003
with three local staff and a project officer dedicated to waterbird interventions and
monitoring (BirdLife International 2009). A member of the local Forestry Administration
has led the team in law enforcement, tackling exploitation of threatened waterbirds; two

police officers joined the team in 2011.

White-shouldered Ibis nest failure was compared among four study sites (including Western
Siem Pang) along a gradient of conservation activity, varying from multiple measures

applied over several years, to recent, small-scale conservation with few interventions.
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Conservation measures included: ecotourism; nest finding reward schemes; nest guarding;
education and awareness campaigns; community- and ranger-based biodiversity
monitoring; ranger- or police-based law enforcement; and agricultural certification schemes
(BirdLife International 2009; Clements et al. 2010). Using the year that waterbird
conservation began, sites were ranked by duration of conservation activity as a proxy for the

degree of intervention, as follows:

1) Kulen Promtep Wildlife Sanctuary, Preah Vihear province (13°58'N 104°53'E), is a
protected area containing a small subpopulation of White-shouldered Ibis in a dry forest
landscape (Wright et al. 2012; chapter 3). Waterbird conservation began in 2002, and is
undertaken by approximately seven staff. Conservation activity is well developed, with
local people participating in ecotourism, nest finding, nest guarding (including eight bird
species) and an agri-environment scheme (Clements et al. 2010; Clements et al. in press).
Biodiversity monitoring and law enforcement have involved teams of rangers since 2004
and 2006 respectively; the latter has targeted waterbird exploitation amongst other illegal
activities. This site also forms part of Clements et al.’s (in press) nest guarding study, but

involving different study species.
2) Western Siem Pang, ranked as the site with second-longest waterbird intervention.

3) The Mekong Flooded Forest (henceforth Mekong), tracking the Mekong River between
Kratie and Stung Treng towns (13°02'N 106°01'E), has globally significant ibis numbers
(Timmins 2008; Wright et al. 2012; chapter 3) and a short history of conservation activity.
Local conservation awareness remains low (Sok et al. 2012) but two staff coordinated nest
finding, monitoring and guarding of three bird species for two years, in 2008-09 and 2010
11. In 2008-09 guarding was less intensive than at other study sites, as guards were not
present at nests during all daylight hours, but this improved in 2010-11 (Sok et al. 2012).
Law enforcement has comprised one Forestry Administration officer tackling exploitation
of threatened waterbirds in 2008-9 and 2010-11.

4) Lomphat Wildlife Sanctuary, Ratanakiri province (13°20'N 106°56'E), has the second-
highest known population of White-shouldered Ibis (Wright et al. 2012; chapter 3). Law
enforcement by rangers has occurred since 2003 but with low priority given to threatened
waterbirds. Waterbird conservation measures were not adopted until 2010, when four staff
began nest finding, monitoring and patrolling in cooperation with local communities
(BirdLife International 2010). Extensive awareness campaigns and nest protection activities

await implementation.
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With three sites comprising dry forest landscapes and one dominated by braided riverine
channels, environmental conditions are variable and contrasting ecology may contribute to
differences in nesting success. Nevertheless, all sites were predominantly lowland areas
with large expanses of deciduous dipterocarp forest containing patches of other habitat
(semi-evergreen and mixed deciduous forests, open grasslands, active and abandoned rice
paddies). Social context (such as settlement age) and livelihood strategies (such as
dependence on fishing) may also differ between sites, but available evidence suggests that
local motivations for White-shouldered Ibis nest exploitation (driven by consumption rather
than trade) are similar (Sok et al. 2012; HLW pers. obs.) and nest robbery or destruction has
been reported at all sites. A complete control site, lacking any intervention or influence of
people at nests, was not available as no site was free from the influence of local

communities or conservation activity.

8.3.3. Nest finding

Nests were located and monitored for three breeding seasons (2008—2011) at Western Siem
Pang, the primary study site. Elsewhere, nests were monitored for the same three breeding
seasons at Kulen Promtep, two seasons at the Mekong (2008-09 and 2010-11) and one
season at Lomphat (2010-11). Nest sample sizes were constrained by the scarcity of the
study species and few known nests (which are frequently occupied in successive years;
HLW unpubl. data) prior to study inception. Nest reward schemes, applied at all sites,
overcame this by providing a small cash incentive for local people to report nests.
Additional active searching was conducted at old nest sites and new localities where ibis
pairs were seen regularly. Searches were systematic in Western Siem Pang, where four staff
worked full time. As nest sites became known to the staff the contribution of reward-
scheme informants fell from 91% of nests in 2008-09 to 40% in each of the subsequent two
breeding seasons. Staff search effort was less intensive and often opportunistic at the other
three sites, reflecting lower capacity and/or other conservation priorities. Local people
contributed 67% of nest finds at Kulen Promtep, 89% at Lomphat and 100% at the Mekong
across all years. Differences in White-shouldered Ibis density and knowledge of nest
locations resulted in contrasting nest sample sizes across study sites, and may have reduced
the accuracy of nest failure estimates at three sites. The distances from nests to the nearest
settlement did not differ (F395 = 1.79, P = 0.154) between the four study sites, indicating

similar proximity to people.
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8.3.4. Nest monitoring

Field staff were trained to monitor nests consistently at every site, recording nest activity
and overall outcome. Nest guards were also trained to monitor nests twice daily; their
records were corroborated by field staff observations. Monitoring frequency depended on
site capacity; visits were typically every 5-7 days at Western Siem Pang, every 7 days at
Kulen Promtep, and every 3—14 days at the Mekong and at Lomphat. Each monitoring visit
lasted until nest status was identified — usually 30-60 minutes. If no ibis activity was
observed after an hour, staff searched under the nest for evidence of failure. For purposes of
analysis, causes of failure were determined from tangible evidence only and in
circumstances of near or absolute certainty. In cases of scant evidence or subjective
assessment by observers the cause of failure was considered unknown. Anthropogenic
failures were indicated by climbing equipment or felling of the nest tree, but use of
slingshots was undetectable. Reports of nest destruction were accepted when based on
multiple sources or admissions by those responsible. Predation was only recorded when the

event was actually observed.

The impact of high winds was inferred with medium-high probability, using knowledge of
recent weather and likely susceptibility given the nest’s location in the tree canopy.
Premature flight, triggered by unknown causes, was assumed when near-fledged chicks
were found dead beneath the nest with no evidence of predator damage. Partial brood loss
was recorded opportunistically but its prevalence may have been underestimated, as initial
clutch size could not be determined by ground-based observations. The degree to which
different causes of nest failure were detected or under-recorded may have varied slightly
among sites, owing to differences in capacity and frequency of nest visitation. The
attributed causes of nest failure are therefore treated as indications of potential contributory
factors rather than as an accurate measure of their importance. Predation and human

disturbance were most likely to have remained undetected relative to other causes of failure.

8.3.5. Nest guarding

Nest guarding was implemented experimentally in the 200910 and 2010-11 breeding
seasons at Western Siem Pang. Guarded and unguarded (control) treatments were randomly
applied to 24 and 25 nests respectively, with guards recruited from local communities.
Guards discouraged illegal exploitation or disturbance by threatening to report the

perpetrators to the local Forestry Administration, but did not intervene in natural events
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such as predation. Guards and field staff remained concealed and at least 100 m from the
nest to avoid their presence becoming a source of disturbance. Fourteen nests were -
protected by a single guard each; guards started work within one to three days of nest
discovery (depending on availability), were present during daylight hours and paid US$3.75
per day. Site inaccessibility and/or limited transport availability dictated that guards had to
camp in the vicinity of the other 10 guarded nests; these had two guards to cover the
logistics of camping and guarding (each paid US$4.25 per day), and may therefore have
received greater protection than single-guard nests. Camps were at a sufficient distance
from nests to prevent extra disturbance to nests or to potential nest predators. Distance of
nests to nearest settlement was marginally less at guarded (range 0.48-9.96 km from
settlement, mean 3.7 km £ 2.7 SD) than unguarded (range 0.12-10.84 km, 5.6 km + 3.5,
t39=-1.99, P = 0.054) nests.

8.3.6. Analysis of nest survival

Western Siem Pang data from the 2009-10 and 201011 breeding seasons were modelled to
determine the effectiveness of guarding and the predictors of nest failure. Data quality was
sufficient to model nesting stages separately for (1) the combined incubation and chick-
brooding stage, when the nest was almost constantly attended by at least one adult, and (2)
the late-nestling stage, when both adults stopped sitting or crouching over chicks and were
often absent together. These stages were chosen for two reasons. First, hatching date at
some nests was not reliably determined from ground-based observations until chicks were
large enough to be visible or adult behaviour changed, so that nests failing close to this date
could not reliably be assigned as an egg- or chick-stage failure. Second, it is assumed that
failure may be affected by chick size, adult ibis presence at nests and frequency of

provisioning.

Nest outcome was considered in logistic regression models to predict daily failure rate
(DFR), including the number of exposure days (that the nest was active and monitored) as
the number of binomial trials (Aebischer 1999). The first round of modelling tested the
effects of guarding (guarded/unguarded nests) and breeding season on DFR in each nesting
stage. In the second round, guarding, breeding season and distance to settlement (square-
root transformed to reduce leverage) underwent model selection for the incubation and
brooding stage. Alternative models were evaluated by Akaike Information Criterion
corrected for small sample size (AICc). Model selection was not undertaken for the late-

nestling stage as only one failure occurred. Nesting date, measured as the number of days
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since breeding started (the earliest date that incubation was observed across all nests) to the
date of brooding completion (or failure if earlier) at each nest, was examined during
preliminary analysis but was a poor predictor and not considered further. The relative
importance of variables was indicated by model-averaged parameter estimates (Burnham &
Anderson 2002) and change in model AICc when terms were iteratively dropped from the
best model; an increase in AIC of > 2 units indicated strong support. Overall probability of

nest success was calculated using estimated DFR.

A sensitivity analysis was undertaken to determine the minimum detectable effect size of
guarding with the sample size achieved. Nest outcome and exposure day data were
remodelled ten times, each time with a dummy treatment variable that comprised two
randomly allocated treatment levels and created samples of 24 guarded and 25 unguarded
nests (matching the experiment). Overall nest success confidence intervals (Cl), derived
from DFR estimates and averaged across the ten iterations, demonstrated the boundaries of
a random null effect that were used to calculate the percentage difference in overall success

required to detect an effect of guarding at a.= 0.05 for the incubation and brooding stage.

To compare nest failure prior to and during the nest guarding experiment, data for the
incubation and brooding stage were pooled from the 200911 seasons and compared in
logistic regression models with nests from the 2008-09 (when all nests were unguarded);
models included terms for time period, and both time period and guarding

(guarded/unguarded nests).

Nest sample sizes were smaller at the remaining three study sites than at Western Siem
Pang, but sufficient to make a preliminary comparison of nest failure along the gradient of
conservation activity. DFR per site was predicted using logistic regression models (as
above), with nest success modelled across the entire nesting period (incubation to fledging)
as data from many nests were not sufficient to distinguish individual nest stages. Breeding
season was included as a categorical fixed factor to account for uneven sample sizes by site
and season. Pairwise comparisons of failure rate between sites were made by changing the
reference level of the site variable in the model. The ranking of study sites by conservation
activity was related to site-specific DFR estimates — weighted by total exposure days and

averaged across seasons — by non-parametric correlation with one-tailed probability.
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8.4. Results

8.4.1. Causes of nest failure

A total of 100 White-shouldered Ibis nests, 33 of which failed, were monitored across the
four study sites over three breeding seasons (2008—2011). Causes of nest failure remained
unknown at 19 (58%) nests. Anthropogenic factors accounted for at least nine (27%)
failures, involving nest robbery (4 nests) and, at the Mekong, envy-driven reprisals (5 nests)
for the financial benefits received by nest guards. Strong winds were probably responsible
for three further failures (9%). Premature flight by near-fledged chicks caused one failure
and at least one partial brood loss, although what triggered chicks to bail remained
unknown. Natural predation was confirmed in one complete nest failure, when a Southern
Jungle Crow Corvus macrorhynchos removed all eggs of a clutch in the absence of adult
ibises, and one partial loss of a further brood, when this species predated a newly hatched
chick. Nocturnal predation could not be detected using this study’s methodology and could
have contributed to failures where the cause was unknown. Nest stage durations and the

number of fledglings are given in the appendix, section 8.6.

8.4.2. Predictors of nest survival and the guarding effect

The nest guarding experiment comprised 49 nests over two breeding seasons in Western
Siem Pang and nest guard salary payments totalled US$5,903. Only one failure was
observed in the late-nestling stage, resulting in lower DFR (over both breeding seasons)
than in the incubation and brooding stage (Table 8.1.). Estimated DFR was similar between
nests with and without the guarding treatment (5 = —0.25, CL + 1.14 at guarded relative to
unguarded nests) and between breeding seasons (= 1.12, CL + 1.52 in 2010-11 relative to
2009-11) in the incubation and brooding stage (Table 8.1., Fig. 8.1.). Overall success in this
nesting stage was only 4.5% greater at guarded than unguarded nests in 2009-10, and
14.4% in 2010-11, compared to a minimum detectable effect of 33.5% (for a. = 0.05) given
the study’s sample size. Failure rate also did not differ (in a univariate model) with level of
nest protection (f = —0.14, CL + 1.70 for nests protected by two guardians relative to nests
protected by one). There was no difference in DFR between time periods during and prior
to the guarding experiment (8 =-0.73, CL + 1.04 for 200911 relative to 2008-09); with
guarding also included in this model, there remained no effect of time period and no
difference between guarded/unguarded treatments (5 = —0.64, CL £ 1.20 at guarded relative
to unguarded nests).
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Nest stage Season Guarding Nests Exposure days Failures  DFR DFR 95% ClI Overall nest success Nest success 95% Cl
5009-10 Guarded 9 320 1 0.0035 0.0000-0.0086 0.858 0.685-1.000
Incubation Unguarded 5 196 1 0.0045  0.0000-0.0113  0.821 0.608-1.000
andbrooding . .~ Guarded 15 455 5 0.0106  0.0017-0.0196  0.627 0.421-0.930
Unguarded 14 370 5 0.0136 0.0024-0.0249 0.548 0.331-0.901
AAICc  0.284 -2.124
Guarded 8 185 1 0.0054 0.0000-0.0159 0.873 0.667-1.138
2009-10 Unguarded 10 128 0 0.0000 0.0000-0.0000 1.000 1.000-1.000
Late-nestling
2010-11 Guarded 10 280 0 0.0000 0.0000-0.0000 1.000 1.000-1.000
Unguarded 9 211 0 0.0000 0.0000-0.0000 1.000 1.000-1.000
AAICc -0.534 -1.325

Table 8.1. Estimates of daily failure rate (DFR) and probability of overall success of White-shouldered lbis nests at Western Siem Pang. Incubation

and brooding (model AlCc = 76.19, dispersion ratio = 1.17) and late-nestling stages (model AlCc = 13.39, dispersion ratio = 0.13) were modelled

separately, each containing terms for breeding season and guarding (guarded/unguarded). AAICc is the change in AICc when the term is removed

from the model (negative values indicate an improvement in model fit without the terms).
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Figure 8.1. Daily failure rates of guarded and unguarded nests during the incubation and
brooding stage, by breeding season. Daily failure rates were estimated using a binomial logistic

regression model of nests at Western Siem Pang (Table 8.1.); error bars indicate standard

errors.
Distance to Breeding Akaike
Model # Guarding settlement Season AlCc AAICc  weight
6 72.12 0.00 0.36
2 73.11 0.99 0.22
3 74.07 1.95 0.14
7 74.29 2.17 0.12
4 75.26 3.14 0.07
5 76.19 4.07 0.05
1 76.47 4.35 0.04
Model
averaged B 0.038 0.656 0.818
95% Cl —-0.356-0.433  0.001-1.312 —-0.202-1.839

Table 8.2. Multi-model inference and model averaging of nest failure models using Western
Siem Pang nest data. Akaike Information Criteria (AlCc) and Akaike weights are given for each
candidate nest failure model. Model-averaged parameter estimates (B) were calculated from
all candidate models. Shading indicates inclusion of the variable in the model. AAICc is the
difference in AlCc from that of the best model. Model-averaged parameter estimates (B) are

presented with confidence intervals using unconditional standard errors.
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Model selection using AlCc identified three best-fitting models of nest failure in the
incubation and brooding stage, as two models fell within two AlCc units of the most-
supported model (Table 8.2.). However, breeding season and guarding received no support
following model averaging, and distance to settlement was only weakly supported,;
removing distance to settlement and breeding season from the best model increased model
AICc by 1.95 and 0.99 respectively. Model parameters indicated that DFR was greater with
increasing distance to settlement (Fig. 8.2.). The best model predicted a 0.27 reduction in
probability of overall success of nests located 10 km rather than 1 km from settlement in
2009-10, and a 0.54 reduction over this distance in 2010-11. Models including the distance

to settlement term again found similar DFR among guarded and unguarded nests.

8.4.3. Conservation activity and nest failure

Nest failure was lowest at Kulen Promtep (Table 8.3.), appreciably lower than at Lomphat
and the Mekong and marginally lower than at Western Siem Pang (including guarded and
unguarded nests). The greatest contrast in nest failure was between Kulen Promtep, where
only one (8.3%) of 12 nests failed, and Lomphat, where five (55.5%) of nine nests failed,;
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Figure 8.2. Daily failure rates (DFR) of nests during the incubation and brooding stage by

distance to settlement and breeding season. Breeding season comprises 2009—10 (solid line)

and 2010-11 (dashed line). DFR was predicted by the best-fitting binomial logistic regression

model of nest failure at Western Siem Pang (model 6 in Table 8.2.; model AlCc =72.12,

dispersion ratio = 1.07).
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B 95% CL  AAICc
Intercept -6.29 2.03
Study site: 1.87
Kulen Promtep - -
Lomphat 2.36 2.19
Mekong 2.22 2.10
Western Siem Pang 1.74 2.02
Breeding season: -1.33
2008-09 - -
2009-10 -1.11 1.37
2010-11 -0.19 0.86

Table 8.3. Parameter estimates for a model of White-shouldered Ibis nest failure across the
whole nesting period (incubation to fledging) including study site and breeding season. Kulen
Promtep and 2008—-09 were reference levels for study site and breeding season respectively.
Breeding season is included to account for unequal sample sizes across seasons and study
sites. AAICc is the change in model Akaike Information Criterion (AlCc) when the term is

removed from the model. Model AlCc = 205.49, dispersion ratio = 1.41.

other pairwise comparisons between sites were not well supported. However, study site was
not well supported in an overall model of ibis nest failure rate; removing this term caused a
deterioration in model fit of less than 2 AICc units (Table 8.3.). Site-specific estimates of
nest failure rate were significantly and negatively related to the ranking of sites by
conservation activity (rs = -1.00, P = 0.042; Fig. 8.3.), with greatest failure at the sites with
most recent inception, the Mekong and Lomphat. However, this may not provide evidence
that nest success is enhanced by conservation activity (relative to little or non-intervention),
as five nests failed as a result of recently introduced conservation activity itself (jealousy-
driven destruction of guarded nests at the Mekong), not because conservation was
unsuccessful in alleviating other nest failure causes. Excluding these five nests, study site
was supported as a predictor of ibis nest failure (model fit increased by 2.26 AICc when the
term was removed) but there was no relation between nest failure rate and conservation
activity (rs =-0.80, P = 0.167).

8.5. Discussion

This study reports the first randomised experimental test of nest guarding, using White-
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Figure 8.3. Daily failure rate (DFR) estimates of White-shouldered Ibis nests by study site and
breeding season in order of conservation activity duration. Nests were monitored over three
breeding seasons: 2008—09 (white); 2009—-10 (pale grey); and 2010-11 (dark grey), although
data were not available for every breeding season in Lomphat and at the Mekong. DFR was
estimated using a binomial logistic regression model (Table 8.3.). The number of nests and the
number of exposure days (parentheses) are given above each column; error bars indicate
standard errors. The year that waterbird conservation began at each site is given beneath.
KPWS = Kulen Promtep Wildlife Sanctuary, WSP = Western Siem Pang, Mekong = Mekong
Flooded Forest, LWS = Lomphat Wildlife Sanctuary.

shouldered Ibis as a model species. The intervention proved ineffective for this species in
Western Siem Pang, perhaps reflecting a greater impact of natural predation than of
anthropogenic interference on nests at this site. Nest guarding effectiveness is likely to be
context-specific and may vary between opportunistically exploited species such as White-
shouldered Ibis and other species targeted for trade. Guard payments that accrue to only a
few individuals can be a source of local discontent; implementing nest guarding schemes
may therefore require caution, particularly at sites where intervention is recent and local

conservation awareness is low.

8.5.1. Causes of nest failure

White-shouldered Ibis nest failures were caused by human exploitation, natural predation

and high winds, problems that also affect nesting Giant Ibis Thaumatibis gigantea (Keo et
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al. 2009) and Lesser and Greater Adjutants, Leptoptilos javanicus and L. dubius in
Cambodia (Clements et al. in press; Sok et al. 2012). Quantifying the relative importance of
these causes of failure is not possible, as predation and human disturbance may have been
disproportionately undetected. Furthermore, reward schemes could have ameliorated human
impacts by providing an incentive not to disturb nests; this was most likely at Western Siem
Pang and Kulen Promtep where schemes were applied for longest and with good staff
capacity, creating relatively high local awareness. While failures were anthropogenic in
more than a quarter of cases (64% of known-cause failures), more than half of these were
provoked by resentment towards conservation intervention at the Mekong, perhaps relating

to poor local awareness combined with a lack of guard diligence (Sok et al. 2012).

Natural predation caused failure of at least one nest and brood reduction at another, but may
have caused other, undetected failures also. Fewer nest failures occurred in the late-nestling
stage, perhaps because the chicks were too large to be predated or too advanced to be
abandoned by disturbance-wary parents. Given, however, that humans are more likely to
exploit nest contents at the late-nestling stage than at any other period (owing to greater
conspicuousness in the nest and greater food value of chicks), higher failure during
incubation and brooding suggests natural predation may be a more prevalent cause of nest
failure at Western Siem Pang. Further research should assess the sources and levels of
natural predation on ibis nests and the impact of human disturbance — particularly flushing
adult ibis from nests — on their susceptibility to predation. As more nests are located across
all sites, monitoring will help to quantify the relative contributions of natural predation and
human interference to ibis nest failure, particularly if remote surveillance systems, such as

miniature digital nest cameras, can be applied (Bolton et al. 2007).

Natural predation may also explain the positive relationship between nest failure and
distance to settlement. Predators such as civets and martens are likely to be more abundant
in remote parts of forest owing to strong hunting pressure, largely for trade (Srikosamatara
et al. 1992). The estimated 67% decline in overall nest success from one to 10 km from
settlement (2010-11) may relate to greater mammalian predation at remote nests; such
predation also occurs at Giant Ibis nests in scarcely populated Cambodian dry forests (Keo
et al. 2009). By controlling these predators, it is possible that humans may have indirectly
protected nests close to villages; nevertheless, these conclusions are provisional as distance

to settlement was only weakly supported in models of nest failure.
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8.5.2. Nest guarding effectiveness

The study found little evidence that nest guarding was effective at Western Siem Pang, as
daily failure rates did not differ between guarded and unguarded nests. While it is not
possible to unequivocally conclude a null effect of guarding, the failure to improve nest
success by at least a third (the minimum detectable effect size) calls into question the cost-
effectiveness of the intervention for this species, at this site. Guard salaries were equivalent
to US$246 per nest, indicating the substantial finance required if nest guarding were to be
applied to a large proportion of the dispersed breeding population. The null effect is
unlikely to be a result of ineffective protection, as guards (present during all daylight hours)
were regularly checked on unannounced visits and were seen to intercept passers-by
successfully, suggesting that they would have prevented actual cases of human interference.
Rather, the result provides another indication that natural predation, not human exploitation,
may be the greater threat at Western Siem Pang; attaching plastic baffles to nest trees,
deterring mammalian predators (Keo et al. 2009), could be a valuable alternative to

guarding here.

This study’s results differ from those of Clements et al. (in press), who found that guarded
Lesser Adjutant and Sarus Crane Grus antigone nests had substantially higher success rates
than unguarded nests. While adjutant and crane nests are routinely targeted for trade, White-
shouldered Ibis nests are exploited only opportunistically and for consumption (Sok et al.
2012; HLW pers. obs.); contrasting results may therefore relate to different magnitudes of
exploitation threat, with nest guarding effective at nests of traded species but having little
impact at nests of lower-value species. However, Clements et al. (in press) contrasted
guarded nests in protected areas with unguarded nests in unprotected areas, so that the
apparent positive effect of nest guarding may, in part, also reflect changes to local attitude
and behaviours brought about by other conservation interventions, such as community-

based ecotourism, an agri-environmental scheme and law enforcement.

Empirical tests of conservation interventions face numerous methodological challenges
(Ferraro & Pattanayak 2006). Testing nest guarding at a single site in this study enabled an
assessment of its independent effect, but local awareness of the intervention could have
potentially discouraged exploitation at all nests, guarded or unguarded. While this
“spillover effect” (Pattanayak et al. 2010) cannot be ruled out, DFR did not differ between
seasons during and prior to the nest guarding experiment, suggesting that nest survival was
not uniformly improved in this way. An alternative method is to apply intervention and

control treatments at separate sites, using statistical approaches to control for confounding
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factors (Ferraro & Pattanayak 2006); however, other conservation measures may conflate
with the tested intervention if they occur concurrently and not in controls. In reality, it can
be difficult to identify study communities unaffected by some form of conservation action
or sites not conflated by other activities. The presence of a research team for several years
may itself contribute to local awareness and change local behaviours; analysts must be wary

of such constraints when evaluating interventions.

8.5.3. Conservation activity and nest success

At the larger scale of this study, four sites (among which nests showed a similar mean
distance to settlements) were compared to assess the impact of conservation activity, as a
whole, for White-shouldered Ibis nest success. Failure rates differed between two sites and
were negatively correlated across all four sites with the rank of conservation duration (a
proxy for the degree of activity); overall nest success was 63% lower at the site with least
conservation activity compared to the site with most. However this trend must be treated
with caution, as overall differences among sites were weakly supported. Furthermore, this
trend reflects nest failures caused by conservation activity itself, rather than conservation
alleviating an underlying cause of failure; the correlation was non-significant when these
cases were excluded. This study therefore provides no evidence that conservation activity
enhanced nest success, although detecting any such effect will have been limited by small
sample sizes and potentially confounding differences in ecological and social conditions
across the sites. The result provides some evidence for a potential detrimental effect of
guarding at sites with little previous conservation history, as the jealous destruction of nests
reflects local discontent with the distribution of payments. Nest guarding programmes that
reward only a small proportion of the local community require careful implementation, as
distributive unfairness has the potential to undermine the success of payment schemes
(Sommerville et al. 2010). Improving community engagement measures and guard payment
structures (e.g. payments conditional on nest outcomes) may address perceptions of

unfairness and protect nests from inadvertently increased destruction (Sok et al. 2012).

8.5.4. Nest guarding: a useful tool for exploited species?

With guarding found to be ineffective in this study but effective in another (Clements et al.
in press), the value of this intervention may be context-specific. Although the prevalence of
anthropogenic nest failure could not be readily assessed, it remains likely that opportunistic

nest exploitation, such as that for White-shouldered Ibis, occurs most frequently at sites
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with poor local conservation awareness. Further experimental tests may find that nest
guarding is worthwhile in these circumstances, so long as local disquiet over guard
payments is given careful attention. Nevertheless, nest guarding may be most valuable for
routinely-targeted waterbirds — with a higher trade value than the ibis — that face a greater
threat from next exploitation. Conservation programmes should continue to monitor the
effect of nest guarding schemes, applying a control treatment of unprotected nests wherever

possible, allowing for more comprehensive evaluation of this intervention’s effectiveness.

8.6. Appendix: Nest stage durations and number of fledglings

From the sample of 100 White-shouldered Ibis nests, an average of 1.8 £ 0.6 (mean £ SD)
chicks fledged per successful nest, with 21 March (£ 24.9 days SD) the average fledging
date across all years (the mid/late dry season). Three chicks were raised at six nests; these
fledged an average of 21 days earlier than nests with one or two chicks, although this
difference was not significant. The incubation and brooding stage averaged 43.8 * 2.5 days
combined (mean £ SD, n = 17), with the late nestling stage lasting 25.3 + 6.4 days (n = 27)
and the overall nesting period taking 67.6 + 5.9 days (n = 20). Incubation took an average of
30.4 £ 2.7 days (n = 17), but this estimate is provisional as laying and hatching dates were
hardest to determine accurately using ground-based observations. Ibis nesting duration
(days from incubation to fledging) was shorter than for other dry forest waterbirds, such as
Giant Ibis (Keo et al. 2009) and Lesser and Greater Adjutants in Cambodia (Clements et al.
in press; Sok et al. 2012).
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Conclusions

Via a new main road, the people of Siem Pang district have, for the first time, year-round
road access to the nearest market town and beyond.
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9.1. Key research findings

Agriculture and conservation are commonly seen as incompatible in the developing-world.
Where the conservation value of farming is considered, it is often interpreted only in terms
of its supporting role to biota in remaining natural habitats. This thesis took a different
perspective, studying the value of agriculture to biodiversity now reliant on low-impact,
traditional farming practices. The conservation challenges raised by these synanthropic

species were explored in a detailed case study of White-shouldered Ibis Pseudibis davisoni.

The first chapter of the thesis revealed that a non-trivial number of developing-world birds
are largely or entirely dependent on low-impact farming. Examples came from all regions
of the developing-world and a broad range of, often traditional, farming systems. Crucially,
these synanthropic, open-habitat taxa now lack natural habitats and have therefore become
reliant on agriculture for their survival. They represent a distinctive but threatened subset of
species and demonstrate that, in certain circumstances, agriculture not only retains
biodiversity but in fact holds unique conservation value. Imminent agricultural transition
necessitates greater attention to these farmed landscapes, where conservation may be forced

to adopt mechanisms that maintain or mimic valuable farming practices.

White-shouldered Ibis foraging ecology exemplified synanthropic mechanisms in a
traditionally farmed landscape. 1bis showed multiple associations with farming practices, as
habitat use incorporated a range of anthropogenic and semi-natural habitats. Breeding ibis
almost exclusively fed at trapaengs (waterholes), where vegetation was significantly
reduced by extensively-reared livestock. In the wet season, ibis used veals (grasslands) and
abandoned paddies created by low-intensity cultivation, most likely benefiting from access
to the ground in these artificial clearings. Deciduous dipterocarp forest was also used, where
grazing and fire — both components of the extensive livestocking system — reduced
understorey vegetation, causing a predicted increase in ibis incidence. Finally, foraging
White-shouldered Ibis occurred in closer proximity to people than Giant Ibis Thaumatibis
gigantea, reflecting either a greater tolerance of disturbance, selection of anthropogenic

habitat (abandoned paddy) and/or a stronger reliance on land management practices.

The case of White-shouldered Ibis also illustrated the challenge of reconciling conservation
and livelihood change in low-impact farming systems. Local households derived
considerable income from dry forest resources and the farming practices of benefit to ibis:
rice cultivation provided the second greatest income of any activity and livestock provided

an important capital asset — its value often exceeding total household income. Despite the
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likely reliance of both people and ibis on traditional farming, other evidence erodes the
basis for a win-win conservation strategy: agricultural modernisation, shown by increasing
tractor purchases, may be improving livelihoods but undermines the livestocking system of
benefit to the ibis. Where such socio-economic changes threaten their loss, conservation

will require new mechanisms to sustain valuable farming practices.

9.2. Conservation in developing-world agriculture

9.2.1. Patterns of synanthropy

The thesis presents initial evidence of synanthropy in farming landscapes of the developing
world. Twenty-nine bird species were found to depend on agriculture, but the true number
(and variety of taxa) may be much greater than available evidence can indicate: few studies
have explicitly considered the role of humans in maintaining open and semi-natural
habitats, or the biodiversity value inherent to developing-world agriculture. With data
lacking, it is difficult to detect trends in these synanthropic relationships, but preliminary
observations can be made. Most examples were found in Africa and Asia, perhaps due to
the naturally widespread occurrence of open habitat (Woodward et al. 2004), the long
history of agriculture (Mazoyer & Radar 2006), and/or the similarity of domestic grazers
(particularly bovids) to their wild relatives in these regions; the paucity of examples from
South America is intriguing and deserves further study. Mixed-farming systems may have
particular significance, providing a heterogeneous mix of habitats and resources (van der
Weijden et al. 2010), but pastoral systems also appear important, relating to the valuable
role of grazing — now provided by livestock — for certain ground-dwelling avifauna. Species

such as White-shouldered Ibis may benefit from both of these mechanisms.

9.2.2. Extending the European paradigm?

The thesis findings show wider relevance for a European paradigm: that of maintaining
intermediate farming levels for conservation of biodiversity in anthropogenic or semi-
natural habitats (Sutherland 2004). Where open-habitat taxa are dependent on developing-
world farming, habitat management techniques (e.g. Sutherland & Hill 1995) and scientific
knowledge of farming impacts (e.g. Robinson & Sutherland 2002; Tscharntke et al. 2005)
could be transferred from Europe and the developed world. Research should evaluate the
transferability of European techniques and knowledge by comparing valuable farming

practices and management regimes between regions. European policies, such as agri-
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environmental schemes, have shown mixed success (Kleijn et al. 2006; Kleijn & Sutherland
2003), but when adequately targeted and evidence-based (Batary et al. 2011) they too could
be useful elsewhere. Nevertheless, obvious ecological, social and political differences may
limit the wider applicability of the European experience, and local knowledge will also be
vital. Above all, enhancing conservation research in the developing world, to even partly

match European knowledge of farming systems, would be a worthy goal.

9.2.3. Informing the land-sharing versus land-sparing debate

Conservation science is seeking strategies to reconcile biodiversity conservation with
increased agricultural production (Balmford et al. 2012; Green et al. 2005). Open-habitat
taxa that lack natural habitat will be best conserved by a land-sharing approach, maintaining
or adopting the wildlife-friendly farming practices that they now depend on. Agricultural
intensification, proposed to spare land for nature, would likely assist the extinction of these
species. Farming-dependent species will, of course, only comprise one subset of
biodiversity in a given landscape and land-sparing may conserve other taxa more
efficiently. Determining the best strategy requires detailed assessment of species’
relationships with agriculture; methods examining population densities relative to yield
(Green et al. 2005; Phalan et al. 2011) provide useful tools and deserve application in a

range of contrasting landscapes.

Land-sparing and land-sharing are often proposed as opposing solutions (e.g. Phalan et al.
2011), creating a somewhat unhelpful dichotomy. In circumstances where habitat is uniform
it may be possible to apply a single strategy; for example land-sparing in frontier
ecosystems dominated by forest. However, in complex landscapes containing a mix of
closed, natural and open, semi-natural habitat, species will exhibit contrasting tolerances
and/or dependencies with agriculture, and simplifying conservation need will be less
straightforward. Adopting a single strategy that conserves the largest proportion of a
region’s species will be dangerous if the remainder are lost as a result. A better solution
may be to integrate the two strategies (Fischer et al. 2008; Norris 2008), allowing a broader
range of species to be conserved in heterogeneous landscapes and perhaps also suiting the

varied patterns of land ownership in the developing world (Adams 2012).
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9.3.  White-shouldered Ibis conservation

9.3.1. A dependency on traditional mixed farming?

Historically, wild herbivores such as Wild Water Buffalo Bubalus arnee, Gaur Bos gaurus,
Banteng B. javanicus, Kouprey B. sauveli and Asian Elephant Elephas maximus may have
been important ecosystem engineers (Timmins 2008). Grazing and wallowing at trapaengs
may have sustained open habitat, providing an important ecological service to White-
shouldered and Giant Ibises that require exposed substrates. These grazers may even have
maintained or created these wetlands by preventing succession and removing sediment. The
twentieth-century loss of natural herbivores (CEPF 2007; Loucks et al. 2009) may have
added considerable importance to the role of traditional farming practices in keeping
dipterocarp forests, veals and trapaengs open, with domestic livestock now mimicking the

ecosystem functions once fulfilled by their wild cousins.

With the majority of foraging habitats now shaped or created by local farming, the
persistence of White-shouldered Ibis populations is likely to depend on traditional
agriculture. Although a positive effect of livestock grazing on ibis incidence and dry-season
foraging success at trapaengs could not be shown (concealed in this study by ubiquitously
short vegetation conditions), it is nonetheless likely to be vital. The ibis is known to feed in
places with short or absent vegetation (Wright et al. 2010) and its small body size may limit
its access to habitats with tall, dense vegetation stands (such as those observed in the wet
season or at other sites). A study landscape with a steeper livestock density gradient would
be valuable to assess the relationship between grazing intensity and habitat availability, and
knowledge of optimal livestock densities, and burning regimes, would be particularly

informative to conservation.

9.3.2. Valuable livelihoods with an uncertain future

Following this thesis’s findings, conservation in Cambodia has begun considering ways to
support valuable, dry forest livelihood practices. At the time of writing, a pilot programme
is testing whether the provision of free livestock vaccination encourages local people to

keep their herds, thereby maintaining grazing of dry forest habitats. Recognising the value
of farming is an important step for ibis conservation, with implications not only for habitat
management but also for site designation. Traditional farmlands supporting ibis, as well as

three severely threatened vultures species (Clements et al. in press-a) and Bengal Florican
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Houbaropsis bengalensis (Gray et al. 2009), deserve protection alongside the more natural

habitats that dominate Cambodia’s protected area system.

Nevertheless, even where traditional farmlands are secured, livelihood transition is likely to
become a major threat to White-shouldered Ibis. Evidence from Western Siem Pang and
from northeast Thailand (Simaraks et al. 2003; Vityakon et al. 2004) suggests that
livelihood development is not only imminent but may be profound, including the loss of
free-grazing land and a concomitant decline in domestic buffalo numbers. Conservation
interventions that address just one component of local livelihoods (such as livestock health)
may be overwhelmed by the scale of this modernisation process. Incentives will need to be
more sizeable and comprehensive if traditional grazing and rice cultivation practices are to
be sustained in local communities. Alternatively, conservationists may be forced to take
responsibility for managing dry forest landscapes themselves, for example, maintaining
adequate grazing levels by purchasing livestock herds specifically for habitat management

(at least until wild herbivore populations can be restored).

9.3.3. Further conservation considerations

Maintaining traditional farming practices is only one of several issues for White-shouldered
Ibis conservation to address. While the vast majority of the ibis’s global population is
confined to Cambodia, 75% may occur outside of the country’s protected areas. These
populations need safeguarding from habitat loss as dry forests are under major threat of
conversion to agricultural plantation, infrastructure and settlement (Clements et al. in press-
b). Conservation should also take place at the landscape scale, as the ibis was found to
require a variety of habitat types (which vary with season) and pairs dispersed across the
dry forest to breed — probably reflecting a scarcity of prey at their favoured trapaengs.
Although there was no evidence that the harvesting of amphibians by local people was
currently impacting the ibis, an increase in harvesting (e.g. as other resources diminish) may
lead to competition, with costs to ibis foraging during the breeding season. Human activity
can also impact breeding White-shouldered Ibis, but nest guarding — employing local people
to protect nests — did not improve nest success at the study site. Nest guarding may cause
additional harm where schemes benefit only a small proportion of local communities, or
where local people are unaccustomed with conservation action. Wet season foraging

ecology and the significance of nest predation still require study.
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Many of the thesis findings are of value to White-shouldered Ibis conservation efforts in
Cambodia. These results were presented and discussed at a workshop, hosted by the author
and BirdLife International, in Phnom Penh, January 2012, and attended by staff from
governmental and non-governmental organisations. The main legacy of this study is a
White-shouldered Ibis Coordination Group, established since the workshop to encourage
collaboration between conservation organisations and to continue coordinated activities

such as ibis censuses at roost sites.

9.4. Conserving valuable farmed landscapes of the developing-world

The conservation value of traditionally farmed landscapes is threatened by multiple drivers
of agricultural change. Land acquisitions for externally-sponsored, industrial-scale
plantation agriculture are not unique to the White-shouldered Ibis’s range, and affect many
parts of the developing world (Cotula et al. 2011). Other more local change occurs as
farmers gain access to new markets and technology. The former may reflect far-reaching
economic and political motivations while the latter encompasses local hopes of
development — both powerful agendas that conservation must reconcile with the protection
of farmland biodiversity. Added to this, provisioning an increasingly large and affluent
human population demands widespread agricultural modernisation (Horlings & Marsden
2011), which will no doubt exert further change on these valuable, yet often low-yielding,

farming systems.

Consistent approaches for addressing agri-business expansion and engaging local
stakeholders are not yet forthcoming in conservation, despite close attention to the impacts
of industrial-scale, intensive agriculture (e.g. Sodhi et al. 2010; Tilman et al. 2001) and a
25-year debate on conservation’s role in fostering rural development (Roe 2008).
Empowering local communities to defend their land-use entitlements (Cotula & Mathieu
2008) is one possibility for slowing the advancing frontier of industrial agriculture, but even
where successful, this win-win approach does not guarantee that local people will continue
using wildlife-friendly practices. Sustaining increasingly uneconomic traditional agriculture
while meeting the development needs of local farmers will create a challenging trade-off for
conservation. Although precise mechanisms remain uncertain (Adams 2012), farmers could
be incentivised to maintain wildlife-friendly modes of farming (e.g. through direct

conservation payments) and, where necessary, compensated for opportunity costs.
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Restoring ecosystems is a possible alternative to conservation in low-impact farming
systems (Phalan et al. 2012). However, this may often be impractical in current contexts,
especially where unabated threats drive ecosystems even further from historic conditions
(Hobbs et al. 2009). In the meantime, safeguarding farming’s synanthropic species requires
that conservation maintains, mimics or substitutes the valuable low-impact farming

practices they depend on.

9.5. Next steps

This study provides only a starting point for understanding the value of developing-world
agriculture to open-habitat biodiversity. Much of the thesis has focused on the synanthropic
survival of White-shouldered Ibis which, although a single-species case study, demonstrates
a phenomenon that may be widely overlooked outside of Europe. The prevalence of
agriculture-dependent species needs thorough assessment so that their importance, relative
to other global conservation priorities, can be understood. This research should extend
beyond birds to examine a range of taxa, including both threatened and non-threatened
species. Nevertheless, gaining this knowledge requires that agricultural systems of the

developing-world receive greater attention in conservation science.

As traditional, low-impact farming systems are likely to change dramatically in the coming
decades, research is urgently required to identify and understand the agricultural landscapes
and practices of value to developing-world biodiversity; conservation will need to apply this
knowledge where valuable modes of farming are lost. Many landscapes, particularly those
comprising semi-natural habitats, need considering through a broader lens that
acknowledges the role of humans in managing and sustaining valuable ecosystems. Finally,
the challenges for conserving agriculture-dependent species are multi-faceted and clear
solutions are not yet apparent. By seeking to maintain traditional farming conservation may
be at odds with the development interests of rural communities; interventions are needed
that explicitly and fairly address the balance between the well-being of local people with the

persistence of wildlife.

This thesis highlights that, far from being incompatible with conservation, some farmlands
are in fact critical to open-habitat taxa and deserve closer attention. After the widespread
loss of species with agricultural modernisation, lessons learnt in Europe should be

considered more widely to prevent similar wildlife declines in farming systems across the
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developing world. Open-habitat species are only one component of global biodiversity, but
as agriculture expands and intensifies, they may feel some of the strongest effects of the

increasing human population.
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