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The Ecology and Behaviour of the Common hippopotamus, 

Hippopotamus amphibious L. in Katavi National Park, Tanzania: 

Responses to varying Water Resources 

Abstract 

Katavi National Park (KNP) is a stronghold for hippopotami in Tanzania. To predict the 
probable effects of future changes in water availability, annual variations in rainfall, 
river level, river discharge, ground water levels and the lateral extent of swamps used 
by hippopotami, were related to annual variations in their  behaviour, distribution and 
abundance  in aquatic shelter sites.   

Rainfall did not change consistently between 1950 and 2010. In contrast river levels 
and flow decreased over between 1990 and 2010. It is concluded that these reductions 
have been caused by an increase in irrigation of rice fields increasingly planted in 
upstream regions of the catchment area.  

Rainfall fell in a pronounced annual cycle. The wet season started in December, 
increased in January, decreased in February reaching an annual peak in March. The dry 
season lasted from May to November. Variation in height, biomass and greenness of 
ground layer swards used by feeding hippopotami, closely mirror this annual pattern of 
rainfall. 

As the dry season progresses hippopotami become increasingly aggregated in 
remaining aquatic shelter sites by day, to wallow and thermoregulate with 
concomitant depletion of the nocturnal feeding grounds close to remaining shelter 
sites.  

Five observation sites were chosen, representing a gradient in the amount of water 
persisting through the dry season. Hippopotami showed spatial differences in their 
activity budgets and the frequency of behavioural events at these sites, which were 
consistent with the way they responded to variation in water availability between 
seasons.  

Extrapolating these findings to predict responses to future changes in global climate 
and land use, I conclude consistent implementation of existing national laws governing 
diversion of water from rivers up-stream of the park will be crucial for maintaining 
vigorous populations of hippopotami in KNP. Similar problems of a catchment area 
scale occur in other National Parks in Africa. 
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Chapter 1: Introduction 

The Ecology and Behaviour of the common hippopotamus, Hippopotamus amphibious 

L. in Katavi National Park, Tanzania: Responses to varying water resources. 

1.0 Introduction 

1.1 Background to the study 

A key reason for failure of mankind to find comparable life on another planetary 

system is that water in an aquatic phase appears to be extremely rare elsewhere in the 

universe. The existence of liquid water is essential for at least some stages of all forms 

of life as we know them here on earth.  However the distribution of water on this 

planet is currently changing at an unprecedented rate as one of the consequences of 

anthropogenically induced climate change.  Predicting how global changes in patterns 

and dynamics of the distribution of water will affect the ecology of living organisms is a 

major preoccupation in science today but cannot be considered in isolation because it 

is being accompanied by and in some cases, is driving major changes in land use. These 

are also impacting on the ecology of the biosphere.  In this thesis I investigate impacts 

on the behaviour and ecology of one of the charismatic members of the mega-fauna: 

the hippopotamus, using a model population in Katavi National Park in Tanzania, East 

Africa. 

Ecology is the scientific study of the distribution and abundance of organisms and the 

interactions that determine it (Begon et al., 2006) modified from Krebs (1972) who 

defined ecology as the scientific study of the interactions that determine the 

distribution and abundance of organisms. This was a development of the definition 

given by Ernest Haeckel in 1869 quoted by Begon et al. (2006) that ecology is the 

scientific study of the interactions between organisms and their environment. The final 

goal of ecology is the understanding of the distribution, abundance and diversity of 

organisms.  

Behavioural ecology or ethoecology is the study of the ecological and evolutionary 

basis for animal behaviour and the roles of behaviour in enabling an animal to adapt 
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both internal (intrinsic) conditions and external (extrinsic) environment (McFarland, 

2006; Martin and Bateson, 2007).  

Behavioural ecology is concerned with functional questions about behaviour, especially 

how particular behavioural patterns contribute to the survival and reproductive 

success of an animal (Krebs and Davies, 1993). It is also concerned with the evolution 

of adaptive behaviour in relation to ecological circumstances (Krebs and Davies, 1993). 

The challenges of ecology include developing an understanding of basic and applied 

problems (Begon et al., 2006), which may be unique and complex due to the variety of 

species of genetically distinct individuals, all living and interacting in changing 

ecosystems. 

Among the current causes for changes to ecosystems are climate changes and land 

transformation due to human activities (Thuiller et al., 2006). Climate change is leading 

to temperature rise, sea level rise and unpredictable and extreme variations in 

precipitation leading to drought and flooding (IPCC, 2001a; 2001b). Such 

environmental problems have ecological impacts (Begon et al., 2006). 

One animal species likely to be highly affected by changes in water flow is the 

hippopotamus because it is semi aquatic. Existing knowledge on hippopotamus 

behaviour and ecology is still inadequate despite their wide distribution in Africa and 

their interactions with humans (Dudley, 1998). A problem of water scarcity in their 

remaining habitats necessitates further understanding of their ecology and behaviour. 

Trends in water and environmental destruction are unlikely to be reversed (Lewison & 

Oliver, 2008) so their effects on wildlife are likely to be persistent. 

Studying how hippopotami respond to the challenge of changing water flow will help 

to increase our understanding of ecological consequences of hydrological challenges. 

Little systematic study with regard to how the behaviour of a hippopotamus changes in 

response to the problem of water scarcity has been made. Population responses 

include variations in distribution and abundance, emigration and immigration, while 
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behavioural responses may include changes in maintenance, social, sexual and 

aggressive behaviours. 

All animals need to absorb water, either in liquid form or derived from their food. They 

require it for ionic regulation, to maintain osmotic homeostasis and some animals also 

use it to achieve evaporative cooling as part of their thermoregulatory strategies. One 

large mammal that relies on submerging in water for convective cooling is the common 

hippopotamus, Hippopotamus amphibious L. Changes in water availability are likely to 

significantly impact this species. In addition to the direct effects of water on the 

physiology of hippopotami, driving behaviours with strong implications for their 

ecology, there are also indirect effects of water availability due to rainfall determining 

the quality and quantity of food available. This leads to a behavioural trade-off 

resulting from selection pressures to optimise both sheltering and grazing. During the 

dry season there is a strong selective pressure to occupy a declining number of aquatic 

shelter sites which results in large numbers of hippopotami aggregating in fewer sites. 

As hippopotami are central place foragers, this leads to faster depletion of feeding sites 

close to the shelter which can, in extreme cases, lead to death by starvation (Mduma et 

al., 1999; Sinclair et al., 2000); increased infanticide (Lewison, 1998) and increased 

disease transmission (Attwell, 1963; Marshall & Sayer, 1976; Turnbull et al., 1991, 

Lembo et al., 2011). Understanding the effects of changes in land and water use 

elsewhere in the catchment is essential to informed planning of Katavi National Park 

policy in the immediate future. To formulate long-term management strategies it is 

also essential to consider predictions of future changes in climate in East Africa region 

and how such changes might combine synergistically or detrimentally with the results 

of land use changes. 

 Existing knowledge on hippopotamus behaviour and ecology is inadequate despite 

their wide distribution in Africa and interactions with humans (Dudley, 1998). Problems 

of water scarcity in their remaining habitats are most appropriately addressed by 

studying their ecology and behaviour which will further help to increase our 
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understanding of wider ecological consequences of hydrological challenges. Population 

responses include variations in distribution and abundance, emigration and 

immigration, while behavioural responses may include changes in maintenance, social, 

sexual and aggressive behaviours. Few systematic studies focusing on behavioural 

changes of hippopotami in response to the problems of water scarcity have been 

made.  

Hippopotami live in close association with water in lakes, rivers, streams and swamps 

(Dunstone & Gorman, 2007). Alterations to their environment due to agriculture, 

deforestation and enhanced or decreased water flow may therefore threaten their 

survival (Dunstone and Gorman, 2007) if their aquatic habitats become less suitable.  

This study is on the behavioral ecology of the common hippopotamus in response to 

varying water resources, one of the environmental problems in Katavi National Park 

(NP), in south western Tanzania. It has been prompted by an increase in human impact 

around the Park and the anticipated climate change on the environment. Findings are 

intended to help prepare the park management to address the environmental 

problems related to water scarcity. 

1.2 Study objectives  

There have been noticeable changes in the eco-hydrology of Katavi NP in recent years. 

This study is concerned with declining water resources and their consequences for the 

behaviour and ecology of hippopotami. The study compares the behaviours of 

hippopotamus populations in five habitats within the Park with differing conditions of 

water availability and during different seasons of the year. Rainfall in the region is 

strongly seasonal.  

A crucial question in ecology concerns the factors that cause fluctuation in species 

abundance (Begon et al., 2006). Among the factors responsible is the availability of 

resources. In this study, the distribution and density of hippopotami is examined along 

a wetness gradient in Katavi National Park to quantify spatial and temporal variations 
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in hippopotami density between and within study sites and whether these might be 

related to food resources. An additional aim is to examine whether or not the total 

hippopotami populations in Katavi NP have changed significantly over recent decades. 

Given the sensitivity of hippopotami to natural disturbances and human-mediated 

threats, hippopotami were considered a good model species in which to examine the 

effects of both natural and anthropogenic factors on population size and behavioural 

responses to varying water resources. The extent to which animals experiencing 

important changes in their environment can compensate for such changes by altering 

their behaviour is also considered.  

1.3 Justification for the study. 

Katavi National Park is fed by the perennial Katuma River, which over approximately 

the last 13 years has been subject to declining water flows leading to earlier drying of 

the river and its tributaries. Human use of water in the upper catchment of the river 

and above the boundary jurisdiction of the Park has affected the water resources and 

in 2004 led to serious water scarcity when the river stopped flowing in August. The 

flow has since recovered but human impact may still be resulting in water scarcity in 

the park. 

Behavioural responses of hippopotami to water scarcity have not been studied in 

Katavi. Due to their high dependence on water, variations of water resources are 

predicted to affect their behaviour. Studying such effects was central to this work. The 

study therefore had the following objectives: 

I. To infer from patchy records of rainfall and river flow, changes from 1990 in 

the annual amount of water entering Katavi NP.  

II. To study spatial and temporal variation in vegetation community attributes 

in Katavi in relation to seasonal drying. Such attributes include ground 

vegetation cover, sward greenness, height and grass plant mass.  

III. To establish how varying water resources in Katavi National Park affect the 

distribution and behaviour of hippopotami.  
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IV. To study whether the population size of hippopotami has changed in Katavi 

since 1980s.  

2. Relevance of the study 

2.1 Scientific relevance 

Ecological conditions in which animals live keep on changing. Animals interact with 

other animals and with their environment and may adapt to the changing conditions 

(Martin & Bateson, 2007). Resources such as water or food may become scarce and 

each species may respond differently. A lot remains to be learnt about the diversity 

and function of behaviour in response to a changing resource (Martin & Bateson, 

2007). Information generated from this study will increase understanding of the 

ecology and behaviour of one of the most charismatic species of large mammal in 

Africa.  

The study will add to our knowledge of such responses to changing resources and will 

increase understanding of the extent to which the species can respond plastically to 

environmental change and also what the tipping points of sustainability might be. The 

social life of hippopotami is relatively little known due to their aggressive behaviour 

(Eltringham, 1999; Blowers et al., 2008). This study will provide insights into this gap in 

our knowledge of social interactions between hippopotami.  

2.2 Relevance to the management of Katavi National Park 

Effective management of wildlife populations depends largely upon understanding and 

predicting their habitat requirements and accurately assessing habitat quality. The 

effects of the decline in standing water levels within Katavi need to be assessed 

(TANAPA, 2002; Meyer et al, 2005; Katavi, 2008). Similarly, assessment of past rainfall 

patterns and dynamics of the hippopotami populations need to be undertaken in order 

to ensure proactive management (TANAPA, 2002; Meyer et al., 2005; Mlengeya et al., 

2008). Studying how hippopotami respond to the varying water resources is essential 

in understanding how they cope with their changing environment.  
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3. Organisation of the thesis 

This thesis has been divided into nine Chapters. Chapter 1 gives the study objectives 

and explains the relevance of the study. Chapter 2 introduces the study species and 

describes the study area and sites including the biology and ecology of hippopotami 

and background information on the study area. 

Chapter 3 deals with water resources including rainfall, river flow and discharge, 

variation in underground water levels and expansion and shrinking of the major water 

bodies.  Chapter 4 is about food resources in the study sites including sward height, 

grass biomass, grass greenness and ground vegetation cover.  

Chapter 5 investigates about hippopotami abundance, distribution, immigration and 

emigration in relation to the study sites and the park. Chapter 6 investigates 

hippopotami behavioural activities in the five animals study sites. Chapter 7 

investigates behavioural events in the five animal study sites. Chapter 8 analyses the 

relationships between hippopotami abundance and behaviour and water and food 

resources. Chapter 9 is a general discussion of the whole study and general conclusions 

and recommendations from this study.  

Some water quality measurements are presented in Appendix 1 as a complement to 

the Chapter 3. 
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Chapter 2: Study species, area and study site 

1.0 Target species 

1.1 The common hippopotamus 

The common hippopotamus, Hippopotamus amphibious L. in the family 

Hippopotamidae is the third largest and heaviest land mammal after elephants, 

Loxodonta Africana (Annon.) and white rhinos, Ceratotherium simum (Burchell) 

(Grover, 1972; Laursen & Bekoff, 1978). The name hippopotamus comes from the 

Greek words ‘hippos’ and ‘potamus’ meaning horse and river respectively. 

Hippopotami are even-toed ungulates, hoofed mammals in the order Artiodactyla. 

Members of the family Hippopotamidae are non-ruminants artiodactyls whose mode 

of life makes them unique in Africa among the large mammals (Cerling et al., 2008). 

The other member of the family Hippopotamidae is the much smaller (about 200 - 300 

kg) pygmy hippopotamus, Choeropsis liberiensis. The pygmy hippopotamus is limited to 

a very restricted range in West Africa. It is a shy, solitary forest dweller and currently 

classed as rare (Saragusty et al., 2010b).  

Hippopotami were once widespread across wet habitats throughout Africa (TAWIRI, 

2001; Lewison, 2007; Lewison & Oliver, 2008), particularly in lakes and rivers of sub-

Saharan Africa (Grey & Harper, 2002; Cerling et al., 2008). The hippopotamus 

population in Africa was described as widespread and secure in 1996 (Lewison & 

Carter, 2008), however, there have been substantial population changes in the 

countries where they occur. Exploitation and habitat loss are reported to have reduced 

hippopotamus populations by 7-20% over the past two decades (Lewison and Oliver, 

2008). Threats to hippopotami through exploitation for meat, retaliatory killing and 

habitat loss are likely to continue, and have already led the animal to be listed by IUCN 

as vulnerable (Lewison & Oliver, 2006) from lower risk or least concern in 1996. This is 

described in more detail in Section 1.5 of this Chapter.  

The populations of many of the large mammals in Africa are decreasing (Owen-Smith & 

Mills, 2006). The bush meat trade is one of the explanations for these population 
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declines across many parts of Africa (East, 1999; Brashares et al., 2004). From census of 

large mammals conducted in Tanzania from the 1980s to 2009, most species have 

declined with the exception of elephants and giraffes which maintained relatively 

stable populations across Tanzania (Stoner et al., 2006). Hippopotami population size 

was stable across most areas. 

1.2 Ecology and importance of the hippopotamus as a keystone species  

The hippopotamus is an instantly recognisable animal with a barrel-shaped body (Plate 

2.1). Their height is 140-165 cm; males weigh 1600-3200 kg and females 655-2344 kg 

(Kingdon, 1982; Millar & Zammuto, 1983; Estes, 1992). Males are 119- 302 cm long 

with mean average of 270 cm while the female length ranges from 183- 302 cm with 

mean average of 272 cm (Eltringham, 1999). Hippopotami have two essential 

requirements; water in which to submerge and nearby grassland for foraging 

(Jablonski, 2004).   

 
Plate 2.1: The common hippopotami (Hippopotamus amphibious L.) at Lake Katavi in 
Katavi NP, Tanzania 
 

Hippopotamus life span is between 35-50 years with animals in captivity living longer 

(Laws and Clough, 1966; Sayer and Rakha, 1974; Eltringham, 1999). Age at maturity for 

females has been estimated at nine to ten years (Millar & Zammuto, 1983; Graham et 
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al., 2002). Sayer and Rakha (1974) recorded puberty and maturity for female 

hippopotami at the age of seven and eight years respectively. However, the ages at 

which a half of the female population reached puberty and maturity were 11 and 13 

years respectively, while in males puberty started at six years and maturity was 

reached at eight years (Sayer and Rakha, 1974). 

Mating mainly takes place in water. Females first conceive at about nine years (ranging 

between 7 and 15 years) and calve at two-year intervals. Breeding in hippopotami is 

not strictly seasonal (Estes, 1992), but most conceptions occur in the dry season and 

birth peaks during the wet season. Female hippopotami have an average of 10-12 

reproductive pregnancies during their lifetime (Lewison, 1998), with a gestation period 

of 6-8 months.  

An expectant female separates from the rest of the herd and keeps away for a couple 

of weeks. Calving occurs in shallow water or on land and a newborn is helped by the 

mother to the land (Sayer & Rakha, 1974). Normally a single calf is born (Laws and 

Clough, 1966; Sayer & Rakha, 1974; Eltringham, 1999). Newborns are relatively small 

weighing about 25-55 kg (Sayer & Rakha, 1974; Eltringham, 1999). During this time 

they become fiercely defensive of the calf and can be dangerous to people. They are 

also aggressive towards other hippopotami whether territorial males or her own grown 

offspring. 

Suckling of young takes place in water and on land. Lactation takes between 10-12 

months, but some hippopotami have post-partum oestrus. A quarter of females 

examined during long term study in Uganda in the late 1950s to the early 1960s were 

pregnant and lactating (Laws & Clough, 1966). 

A young hippopotamus begins to eat grass at about three weeks but continues to 

suckle for a year (Sayer & Rakha, 1974). Generally, weaning takes place from between 

six and eight months, with most calves being fully weaned by 12 months of age. 
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Hippopotami have an enlarged, chambered stomach similar to ruminants (Arman & 

Field, 1973) although, unlike ruminants, they do not chew the cud (Eltringham, 1999) 

and hence are referred to as pseudo ruminants (Estes, 1992; Eltringham, 1999; Cerling 

et al., 2008). The pseudo ruminant’s stomach can effectively ferment grasses and other 

low quality foods (Arman & Field, 1973; Eltringham, 1999; Grey & Harper, 2002).  In the 

hippopotamus stomach, two anterior diverticula and a large median chamber are 

responsible for fermentative digestion while the posterior chamber secretes gastric 

juice (Arman & Field, 1973). Despite their watery environment, hippopotami do not 

feed on aquatic vegetation to a great extent (Eltringham, 1999) and rather feed 

primarily on terrestrial vegetation (Kingdon, 1982; Eltringham, 1999; Grey and Harper, 

2002; Cerling et al., 2008). Their diet consists mainly of grasses (Kingdon, 1982; 

Eltringham, 1999; TAWIRI, 2001); however, some current studies have reported that 

they may feed on dicotyledonous plants to a significant extent (Boisserie et al., 2005; 

Cerling et al., 2008). Studies using stable isotope ratios (13C/12C) have shown higher 

fractions of C3 (trees, shrubs and forbs) biomass than estimated from previous 

observations (Bocherens et al., 1996; Boisserie et al., 2005, Cerling et al., 2008), 

emphasizing that they are not strictly grazers. Mugangu and Hunter (1992) reported 

instances of hippopotami in Virunga National Park in DRC Congo feeding more 

extensively on aquatic vegetation as a response to food shortage. Mugangu and Hunter 

(1992) and Grey and Harper (2002) reported hippopotami feeding on macrophytes 

aquatic vegetation to some extent in Lake Naivasha, Kenya, but aquatic plant remains 

formed a negligible proportion of their faeces. Field (1970) reported hippopotami 

eating the floating plants of the Nile cabbage (Pistia stratiotes) though it is unlikely that 

many were eaten. Holmes (undated) in the film titled “Hippos out of water” by the BBC 

showed that during the dry season, hippopotami fed on sausage-like fruits (Kigelia 

Africana), dried grass and leaves in Luangwa National Park, Zambia.  

There have also been reports of carnivory in hippopotami (Dudley, 1998), however, 

these incidents are reported as rare and are thought of as fulfilling a nutritional need 

because vegetation often lacks essential nutrients or trace elements (Eltringham, 1999; 
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Grey and Harper, 2002). Hippopotami have a lifestyle which is energy-efficient and thus 

eat about 40 kg of grass a night which is only 1-1.5 % of their body weight (Eltringham, 

1999; Grey and Harper, 2002; Clauss et al., 2007).  

Hippopotami begin to commute to inland pastures shortly before dark, along 

branching paths up to 3-5 km long, up to a maximum of 10 km (Estes, 1992; 

Eltringham, 1999). After grazing for up to five hours, they return to the shelter before 

dawn (Estes, 1992). Though when feeding hippopotami are solitary, young calves and 

sub adults accompany their mothers, remaining with them until almost full grown at 

about 6-8 years. Females with new born young remain in water for several days for 

protection of a calf against possible attacks from predators. 

Most feeding takes place on land at night followed by animals resting and digesting in 

water during most of the day. A large portion of ingested material is therefore 

defecated directly into water. Due to this tendency, hippopotami are considered as 

transporters of organic matter mediated through their gut (Eltringham, 1999; Grey and 

Harper, 2002; Spinage, 2012). The transported materials become available in a semi-

processed form to aquatic consumers (Spinage, 2012). In Congo DRC, decline of hippo 

populations in Virunga National Park (Hart and Mwinyihali, 2001), resulted in decline of 

fish stocks because hippopotami dung provide nutrients for fish. 

Ecologically, hippopotami play an important role in the ecosystem. Removal of 

hippopotami in Ruwenzori National Park in Uganda resulted in the increase of large 

mammals such as buffalo, elephants and waterbuck while that of bushbuck and 

warthog decreased (Eltringham, 1974).  

Grazing by hippopotami may also influence plant community composition. Culling of 

hippopotami in Queen Elizabeth National Park in Uganda resulted in botanical changes 

such as decreases in grass basal cover, increases in bare ground and change in grass 

species composition, with tussock grasses such as Sporobolous pyramidalis increasing 

as a result of hippopotami removal (Thornton, 1971). Vegetation changes which may 
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be associated with the combined effects of hippopotami grazing and fire across other 

parts of Africa have also been reported by Olivier and Laurie (1974).  

Humans are the major predator of hippopotami while lions, hyena and crocodiles 

predate the young (Estes, 1992). Hippopotami mainly defend themselves and attack 

using large, long, sharp lower canines (Estes, 1992). 

1.3 Water dependence and hippopotamus biology 

Ecology requires attention to details of other aspects of the biology of a species apart 

from distribution and abundance (Begon et al., 2006).  This section is intended to draw 

attention to some adaptations of hippopotami to their habitats. Hippopotami are 

unusual in being genuinely amphibious and this has a fundamental effect on their 

physiology and way of life (Eltringham, 1999). Water is required for their 

thermoregulation and animals are thus never found far from water (Cerling et al., 

2008).  

Hippopotami are well-adapted to aquatic life (Cerling et al., 2008; Herbison and Frame, 

2008) which makes them unique in Africa among the large mammals (Eltringham, 

1999; Cerling et al., 2008). Studies using oxygen isotope ratios (18O/16O) have shown 

that hippopotami are the most oxygen-depleted mammals, which directly reflects their 

semi-aquatic habitat (Bocherens et al., 1996; Cerling et al., 2008). Oxygen isotope 

analysis can help to provide information on mammal water balance and 

thermoregulatory strategies. 

Hippopotami have unique skin consisting of a thin epidermis with no sweat glands.  

And as a result, they lose water much more quickly than other mammals (Jablonski, 

2004). Out of water hippopotami risk rapid dehydration and overheating in hot 

weather (Estes, 1992). They must therefore retreat to water to keep their bodies cool 

because they do not sweat (Eltringham, 1999).  

Hippopotami skin is almost hairless and they do not have sebaceous glands, but have 

mucus secreting glands which produce a thick oily pink fluid which helps to keep their 
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skin moist (Saikawa et al., 2004). Although the fluid secreted is not strictly sweat, 

because it is produced by sub-dermal glands (Eltringham, 1999), it acts like sweat in 

helping to control body temperature. It is also thought to have antiseptic properties 

(Eltringham, 1999). The secretion is alkaline with pH 8.5-10.5 (Saikawa et al., 2004) and 

with two pigments; red and orange. The pigments act as sunscreen and have antibiotic 

function because, even at lower concentration to that of the hippopotamus skin, they 

can inhibit the growth of pathogenic bacteria Pseudomonas aeruginosa and Klebsiella 

pneumonia (Saikawa et al., 2004) and shield hippopotami from harmful ultraviolet rays.  

The hippopotamus core body temperature is around 36°C (Luck and Wright, 1959; 

1963; Cena, 1964; Noirard et al., 2008) and in order to reduce sun exposure, they have 

to move in water and bathe when environmental temperatures increases. 

The large and wide head of the hippopotami has eyes, nostrils and ears set on the top, 

allowing them to partly submerge. Hippopotami can swim and dive well and their 

negative buoyancy allows them to walk along the bottom of water. When they are 

completely submerged their slit-like nostrils and ears are sealed off (Estes, 1992; 

Eltringham, 1999). 

As an adaptation to its aquatic environment the feet are hoofed with membranes 

stretching between each of the four toes, helping the hippopotami to move through 

water. The fat beneath the skin is also an adaptation to its watery environment, 

making this large animal buoyant enough to float easily.  

Young hippopotami can suckle under water by taking a deep breath, closing the nostrils 

and ears and wrapping their tongue tightly around the teat. They are reported to 

suckle in the same way while on land. While in water, newborn calves can climb on the 

back of their mother to rest.  
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1.4   Hippopotami behaviour  

Hippopotami are highly gregarious, contact species and are territorial only when in the 

water (Olivier and Laurie, 1974; Estes, 1992). Males defend territories against other 

bulls but only if they challenge the incumbent male. Territories are established to 

defend mating rights rather than food which explains why they are non-territorial away 

from water. Females are non-territorial and are not necessarily confined to a single 

territory, although most return to the same area of water after grazing. A territorial 

system is not obvious and general mixing of individuals of all ages and both sexes can 

give the impression that territories are not held (Olivier and Laurie, 1974), however, 

more intensive studies have confirmed hippopotami territoriality (Klingel, 1991).   

There are no social bonds between the adults within a group despite the fact that 

hippopotami lie in close contact with each other. The social bonds are between the 

mothers and daughters (Blowers et al., 2008). Males form separate bachelor groups.  

1.5 Hippopotami distribution in Africa (historical data) 

Hippopotami are among those species faced with vulnerability to extinction in Africa 

(Lewison and Oliver, 2006; Lewison and Oliver 2008). Their populations in most sub-

Sahara African countries have declined in response to human disturbance (Lewison, 

2007). They were once found throughout sub-Saharan Africa, although only estimated 

historic distributions are available. Currently, their distribution is primarily 

concentrated in a few parts of Eastern and South-eastern Africa where populations 

tend to occur in high densities (Lewison and Oliver, 2006; Lewison, 2007; Herbison and 

Frame, 2008). According to the World Conservation Union (IUCN), in many countries 

where hippopotami occur, their populations are declining (Fig. 2.1). In 1996, the 

species was categorised at lower risk or least concern by IUCN. By the late 1990s their 

numbers were estimated at only 170,000 individuals (Eltringham, 1999). Ten years 

later in 2006, hippopotami were listed as vulnerable (Lewison and Oliver, 2006). The 

declines have been attributed to two anthropogenic activities; habitat losses, as 

wetlands are converted to agricultural development and unregulated hunting for meat 
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and ivory from the large canines and incisors (Lewison, 2007; Lewison and Oliver, 

2008). Trampling and crop raiding by hippopotami led to early and determined efforts 

to exterminate them (Herbison and Frame, 2008; Kendall, 2011).  

In countries such as Zambia, hippopotamus population surveys conducted between 

2005 and 2008 are showing some improvement in their population size (Wilbroad and 

Milanzi, 2010). Zambia has the highest population size of any African country (Lewison, 

2007; Lewison and Oliver, 2008) (Fig. 2.1).  

 

Fig. 2.1: Hippopotami population trends in Africa according to IUCN 2004. Source: 

Lewison and Oliver, 2008 
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2.0 Study area 

2.1 Background to Katavi National Park  

Katavi National Park (herein after referred to as the Park), with an area of about 

4,471km2, is located in Mpanda district, south western Tanzania, in the newly 

established Katavi Region (Fig. 2.2). The Park is located at 6°35'-7°05'S and 30°45'-

31°25' E. Katavi National Park is Tanzania’s third largest national park after Ruaha and 

Serengeti (TANAPA, 2002; Meyer et al., 2005; Katavi, 2008; TANAPA, 2008). Together 

with the neighboring game and forest reserves, it contains many different ecosystems 

covering an area of about 25,000 km2 (Banda et al., 2007; Borgerhoff-Mulder, et al., 

2007; TANAPA, 2008; Mlengeya et al., 2008). The Park is one of the richest wildlife 

areas in Tanzania and was first recognised and protected in 1911 by the Germans as 

the Bismarck Hunting Reserve. It was upgraded to Rukwa Game Reserve by the British 

in 1957 (KRCD, 2004; TANAPA, 2005). The area was gazetted as a National Park in 1974 

(Caro, 1999a; TANAPA, 2002) with an area of 2,253km2. In 1996, several hunting areas 

were amalgamated with Katavi and it hence attained its present size (TANAPA, 2002; 

KRCD, 2004; TANAPA, 2008). The Park is named after Katabi, the legendary Chief spirit 

of the Wabende tribe who lived in Katavi. 

Katavi encompasses a combination of ecological habitats ranging from woodlands, 

seasonally-inundated grasslands, riverine grassland and wetlands. Altitude ranges from 

820 m a.s.l. in the valley floor to 1,560 m a.s.l on adjacent mountains of the 

escarpment surrounding the Park.  The area is characterised mostly by alluvial soils 

(black cotton soils) on the plains and by red loams and red soils elsewhere (Banda et 

al., 2007).  

The Park, being part of the extensive Katavi-Rukwa system, is renowned for its high 

biological richness. The ecological interest of the Park comes from a combination of 

factors including its size, diversity of habitats and the abundance and variety of its 

fauna and flora (TANAPA, 2008; Mlengeya et al., 2008). The Katavi area consists largely 

of Miombo (Brachystegia) dry forest habitat characterised by Acacia, Combretum, 
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Commifora, Grewia, Kigelia, Pterocarpus, Brachystegia, Julbernadia, Isoberlinia and 

Terminalia tree species (Rodgers, 1979; Caro et al., 2005). Miombo is deciduous 

woodland occurring in the largely unimodal rainfall areas of East and Central Africa on 

old acidic sand soils (Rodgers, 1978). Some plant inventory work in the ecosystem has 

been conducted (Mwangulango, 2003) and plant communities described (Meyer and 

Mwangulango, 2004). Under the shade of woodlands, the grass species are dominated 

by Themeda triandra (Forsk), Pennisetum polystachion (L.), Chloris gayana (Kunth), 

Dactyloctenium aegyptium (L.), Digitaria brazzae (Franch.) Stapf and Panicum repens 

(L). 

 

Fig. 2.2: Map of Tanzania showing location of Katavi NP and some Parks and Reserves. 

Source: Katavi NP/KRCD, 2009. Key: NP = National Park, GR = Game Reserve 

N 
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The Katavi landscape is comprised of seasonally-flooded grassland plains interspersed 

with Brachystegia (Miombo) woodland on the well-drained hill sides. The major grass 

types on the elevated or hilly areas include species such as Aristida kelleri (Hack.), 

Brachiaria brizantha (A. Rich.) Stapf, Digitaria brazzae (Franch.) Stapf, Eragrostis patens 

(Oliv.), Melinis repens (Willd.) Zizka, Sporobolus sanguineus (Rendle), Cloris virgata 

(Sw.), Themeda triandra (Forssk) and Cyperus involucratus (AGM).  

The major geophysical features of the Park include two seasonal lakes, Katavi in the 

north and Chada in the centre. The Katuma River flows across the plains connecting the 

lakes. Within the Park, there is an extensive network of floodplains, other rivers and 

wetlands. These hydrological features all drain southwards into Lake Rukwa. Seasons 

define much of the eco-hydrology of the Park (Meyer et al., 2005; TANAPA, 2008; 

Mlengeya et al., 2008). The seasonal lakes are reduced to grasslands during the dry 

season swelling into shallow lakes with the onset of rains. There are some seasonal 

creeks, swamps and swampy wetlands which retain and supply water to the flora and 

fauna of the Park in the dry season. These include Paradise and Katisunga swamps.  

The major grass types in the seasonal lakes are Hyparrhenia hirta (L.) Stapf, 

Echinochloa pyramidalis (Lam.) Hitchc. and Chase, Echinochloa crus-pavonis (Kunth) 

Schult, Sporobolus fimbriatus (Trin.) Nees, Sporobolus pyramidalis (Lam.) Hitchc., 

Themeda triandra (Forsk.), Heteropogon contortus (L.) P. Beauv. ex Roem. & Schult. , 

Digitaria ternata (A. Rich.) Stapf. and Pennisetum polystachion (L.) Schult. In the 

transition zone of the lake-floodplain-woodland, the grass layer is short (up to 30 cm) 

and dominated by species including Sporobolus fimbriatus, Echinochloa pyramidalis, 

Tribulus terrestris (L.) and Polygonum salicifolium (Willd.). 

Fresh water swamps at springs and adjacent to rivers are dominated by grasses, 

rushes, sedges and aquatic plants including Cyperus papyrus (L.), Phragmites 

mauritianus (Kunth), Leersia hexandra (Sw.), Pennisetum purpureum (Schumach.), 

Echinocloa crus-pavonis, Echinocloa pyramidalis, Sporobolus fimbriatus, Typha 

domingensis (Pers.) Steud., Pistia stratiotes (L.), Nymphaea caerulea (Sav.), Cyperus 
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dives (Delile), C. articulates (L.), C. involucratus (Rottb.) and Mimosa pigra (L.). Others 

are Aeschynomene cristata (Vatke Var.), Neonotonia wightii (Am.) Lackey and Kotschya 

capitulifera (Baker) Dewit &P. A. Duvign. 

Various large and small animals depend on swamp and marsh grazing during the dry 

season for water and grazing on palatable grasses.  

2. 2 Suitability of Katavi as a hippopotamus study site 

It has been reported that Katavi is among those areas that support the greatest 

concentrations of hippopotami in Tanzania (Caro, 1999b; TANAPA, 2002). According to 

aerial census data collected during the late 1980s to early 2000s in seven wildlife areas 

in Tanzania, including Katavi, most populations of all large herbivores such as 

hippopotami declined in some parts of the country (Stoner et al., 2006). The survey 

further suggested that despite a network of protected areas in Tanzania and the 

conservation commitment, some large herbivores such as hippopotami populations 

need more conservation attention in order to remain stable. A preliminary foot survey 

was conducted in Katavi in 2004 (Stoner et al., 2006; Waltert et al., 2008).  

Katavi National Park is among the sites that supports one of the healthiest 

hippopotami populations in Tanzania and harbours about 13% of the hippopotami 

population in Tanzania according to 2001 aerial census (TAWIRI, 2001). The Park 

provides suitable habitat with water for resting during the day and grazing grounds for 

feeding at night. Katavi is little disturbed by human activities. However, despite these 

attributes, land use practices in the areas adjacent to the Park and in the upper 

catchment of the main river are likely to have negative impacts on the water supply. 

2.3 Challenges of water availability in Katavi 

This research was not intended as a study of the hydrology or water resources of the 

Park. However, estimates of the amount of available water resource were made 

because behavioural response to water availability is the focus of the research. Water 

availability (quantity) has not been quantified systematically in the past.  
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Figure 2.3: Map of Katavi NP and adjacent areas showing hydrography of study sites: 

Source: Katavi NP, 2009 and data collected during this study. NP= National Park, 

S=Springs, R= River. 

 

Katavi depends heavily on rain and river water received from outside the Park area in 

the catchment of the Katuma River (Fig. 2.3). Although rainfall in the upper catchment 

at Katuma is about 1500 mm per year, it is exceeded by evapotranspiration (Meyer et 

al., 2005). According to Peterson (1973) and Wilhelm (1993) as quoted in 2005 (Meyer 

et al., 2005), rates of evaporation of standing water in lakes and pools in tropical 

regions such as Katavi can reach 2000 mm year-1. As such, there is great pressure on 

the water resources of the Park.  
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The Park has six rivers of which the Katuma River is dominant (Fig. 2.3). The upper 

catchment areas of all the rivers are outside the Park, mainly to the North and East. 

Katuma River feeds the shallow Lake Katavi in the north of the Park, the Katisunga 

flood plains and Lake Chada, which also receives water from the Kapapa River (Fig. 2.3). 

Katuma and Kapapa Rivers join to form the Kavuu River. Kavuu River is the outlet for 

Lake Chada and flows towards Lake Rukwa. The most important areas which have high 

concentrations of animals, especially during the dry season (July-November), are Lakes 

Katavi, Chada and the Katisunga Plains (Caro, 1999b; 1999c). The others are Paradise 

Springs and along the Katuma, Kavuu and Kapapa rivers. Springs are another very 

important source of water in the Park and support a variety of species (Meyer et al., 

2005; Mlengeya et al., 2008). 

In recent years, the rivers feeding the Park, particularly the Katuma, have been drying 

in September or early October, approximately two months earlier than previous years 

when they dried in November. The situation has become much more severe since the 

early 2000 (Meyer et al., 2005). The availability of standing water in Katavi appears to 

be decreasing at a substantial rate (Lewison, 1996; 1998; Meyer et al., 2005; TANAPA, 

2008). The most affected wildlife species include the hippopotamus. Declining surface 

water levels in Katavi have been reported anecdotally by park staff, but no data were 

collected before the 1990s (TANAPA, 2005). 

Among possible reasons for the earlier drying of the Katuma River are deforestation 

and illegal damming of rivers upstream for irrigation of rice farms before the rivers 

enter the Park. In the Park, these competing demands on water resources have caused 

a noticeable drop in the water levels of the lake and wetland habitats in the Park for 

about 0.5 m between the 1990s and early 2000s (TANAPA, 2002; Meyer et al., 2005; 

Mlengeya et al., 2008; Caro et al., 2011). Intensive damming and irrigation systems in 

many villages in the drainage catchment area appear to be reducing the quantity and 

duration of water flow. As a result, this directly affects the availability of water for the 
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flora and fauna downstream. Agricultural practices upstream also result in increased 

siltation of the Katuma River and other rivers and lakes.  

Water supply is a key issue for the sustainability of Katavi National Park and the Rukwa 

Basin. This forms the context for the research presented in this thesis.  

2.4 Climate and rainfall patterns  

The National Park is defined as a climatically homogenous biome and the rainfall 

pattern is slightly bimodal (Banda et al., 2007) with wet periods in late November to 

January and March to April. The average annual rainfall for the period of nine years 

from 1997 to 2005 was 927 mm ± 126 mm (SD) (Meyer et al., 2005; TANAPA, 2008). 

Rainfall patterns are given in more detail in the introduction to Chapter 3. The inter-

annual rainfall pattern and its effect on the hydrology are yet to be fully understood. 

2.5 Human impacts on habitats  

Currently, most wildlife is under human pressure (Haynes, 1998; Mwamfupe, 1998; 

Sherbinin & Freudenberger, 1998; Caro, 1999a; Songorwa, 1999; Madulu, 2001; Adams 

and Hutton, 2007). Human population increase around the Park is high, partly due to 

the influx of people from other areas for trade, settlement, agriculture and small-scale 

mining. Land is being cleared for agriculture while logging and deforestation are on the 

increase. From the mid-1970s, agro-pastoralists from northern Tanzania began moving 

to areas adjacent to Katavi. This has added further pressure to the Park and its 

resources, particularly to the North and South-west (TANAPA, 2008; Mlengeya et al., 

2008).  

Illegal and uncontrolled logging in the river catchments is increasing (TANAPA, 2005; 

Meyer et al., 2005). Slopes are deforested for logging and agriculture leaving top soils 

bare and susceptible to soil erosion. Hardwoods are harvested for timber (Schwartz et 

al., 2002; Caro et al., 2005). The major impact of human activity is abstraction of water 

for irrigation in the upper catchment of the Katuma River, the impact of this on water 

resources of the Park is the subject of Chapter 3.  
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3.0 Study sites 

Five observation sites were selected for recording behaviour, abundance, immigration 

and emigration of hippopotami. These were distributed in four main areas of the Park 

with varying availability of water resources over one annual cycle of wet and dry 

season. The selected areas spanned a wetness gradient due to different sources of 

water and retention properties of each site which represent different habitat types (a-

e). The five sites are described (Table 2.1, Fig. 2.4, Fig.2.5 and Plates 2.1-2.5). Each 

selected study site was treated separately as they contained independent populations 

of hippopotami which did not mix. 

 

Fig. 2.4: Map of Katavi showing animal observation and recording sites. Grasslands are 

areas used by hippopotami for foraging. Source: Katavi NP and data collected during 

this study. 
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Table 2.1 Summary of main features of study site  

 

 

a. WETTEST Paradise Springs. The perennially wet eastern tributary of the main 

Katuma River in riverine forest at the junction of the Kapapa River and Paradise 

Springs. This served as a control site due to the availability of water resources 

throughout the year.  

 

The Paradise Springs study site is swampy grassland predominantly fed by 

perennial springs, receiving water from the springs within it and also from the 

Kapapa River which is perennial at this point as it emerges from the forest. It tends 

to retain some water throughout the year, although during the dry season water 

levels may fall dramatically. The study site is c. 5 ha surrounded by a total swamp 

and grassland area estimated at 50 km2 (Plate 2.1).    

 

The swampy area is separated from the main sandy grassland by a line of palm 

trees in the mouth of the spring. One side of the palms is perennially wet due to 

springs and the river, while the other side tends to dry out during the dry season 

because it depends on the rains. Further from the swamps to the grassland is black 

cotton soil grassland with scattered shrubs and trees starting within about one 

kilometre of the springs.  

 

Site name GPS Position Location Main source of water

36M0323694

UTM9233964

36M0299625

UTM9237125

36M0281050

UTM9258933

36M0303007

UTM9236110

36M0307464

UTM9233962

River + Springs

Springs only

River + Springs

River only

River only

Paradise Springs

Ikuu Springs

Lake Katavi

Ikuu River

Lake Chada

Adjacent Kapapa River

Adjacent Katuma River

Upperstream Katuma River

Along Katuma River

Downstream Katuma River
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Plate 2.1: Paradise (Wettest)                                   Plate 2.2: Ikuu Springs (Wet) 

 

Plate 2.3: Lake Katavi (Wet)                                    Plate 2.4: Ikuu Bridge (Dry) 

 

Plate 2.5: Lake Chada (Driest) 

Plates 2 (1-5) Photographs showing descriptions of each of the five hippopotami 

study sites in Katavi NP, Tanzania 
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Fig. 2.5: Vegetation map of Katavi NP showing location of hippopotami observation 
sites in relation to the surrounding vegetation types. Source: Katavi NP. Key: Ikuu B = 
Ikuu Bridge, Paradise S = Paradise Springs 
                                     

b. WET Ikuu springs: this site is predominantly spring-fed grassland. The area is also 

partly fed by the main Katuma River (only when in flood) which runs dry during the 

dry season. The springs supply water throughout the year to the hippopotamus 

shelter and the adjacent swamps. The spring area therefore remains relatively wet 

throughout the year. The total area of the spring is estimated at 0.5 km2. The study 

site is surrounded mainly by the Katisunga grassland plains where most foraging 

took place and open woodland (Plate 2.2). 

 

Many mammals use this site for dry season watering. The area surrounding the 

springs depends on rain as the major source of water and is also fed by the main 

Katuma River which bisects the grassland plain just above Ikuu Springs. There are 

also minor scattered springs which supply water as small pools, particularly during 

the dry season.  

RiverParadise 
S.

Lake Chada 
Lake Katavi 

Ikuu Spring 

Ikuu B. 
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c. WET Lake Katavi. The wetter northern swamps at Lake Katavi. The area is mainly 

swampy and retains water for longer periods than Lake Chada. The area includes 

Lake Katavi which receives higher rainfall than other study sites (1000-3000 mm 

year-1) and is the entry point into the Park for the Katuma River.  

 

The Lake Katavi study site is predominantly swampy grassland fed by the Katuma 

River and from minor seasonal streams and springs. The grassland swells to swamp 

with the onset of rains while being reduced to dry grassland during the dry season. 

The area has some water holes which may retain some water during the dry season 

and which are used as shelters for hippopotami. During long drought, the holes 

may dry out completely. One water hole c. 5 ha was chosen for observing 

hippopotami. The total ‘lake’ area surrounding the site is estimated at 70 km2 (Plate 

2.3). The area is surrounded by Miombo woodland.  

 

d. DRY Ikuu Bridge. Drier south-western riparian, seasonal grassland on the 

Southwest of Katisunga plains in the Ikuu area. Rainfall is between 800-900 mm 

year-1. The site is fed mainly by the riparian seasonal Katuma River. It is surrounded 

by sparse woody vegetation cover.  

 

This site dries out almost completely during the dry season although it may retain 

water in a few water pools in the river bed. One of these water pools was 

monitored at Ikuu Bridge. The total area of the study site and adjacent grassland is 

estimated at 0.25 km2 (Plate 2.4). The area is surrounded by Miombo woodland 

and patches of grassland. Foraging takes place partly in this area but mostly in the 

nearby grasslands. 

 

e. DRIEST Lake Chada. Driest western Miombo woodland on the south west of the 

Park. This area receives relatively low rainfall (800-900 mm year-1), has less open 

water bodies except the ‘lake’ and hence retains little water after the rains.    
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The Lake Chada study site is open swampy grassland seasonally fed from rivers. The 

area is at the confluence of two rivers, Katuma and Kapapa. Both rivers are 

seasonal at this point, the area swelling into a swamp with the onset of rains, but 

reduced to dry grassland during the dry season. Some muddy pools remain during 

the dry seasons which become shelter sites for hippopotami. One such pool of c. 5 

ha in area immediately after the rainy season but declining to less than 100 m2 by 

the end of the dry season was monitored as a hippopotami sheltering site. The 

study site is surrounded by c. 40 km-1 of swampy grassland and woodland on the 

edge of grassland (Plate 2.5).  

 

Several factors were considered for selecting the study sites. The areas are 

representative habitats of the Park which are wet and dry plains and forests. They 

were also selected according to accessibility all year round and for having been 

previously censused hippopotami. The main criterion for choosing these sites was 

varying availability of water resources. 

At the five animal behaviour sites, sward height, greenness and ground vegetation 

cover were also measured within foraging range of the hippopotami to estimate the 

food resources. Water resources were quantified in a further seven sites. Water quality 

was measured in twenty six sites described in introductions of Appendix 1 and Chapter 

3 and vegetation monitored as are described in Chapter 4. 
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Chapter 3: Rainfall, river flow and discharge and soil saturation 
 

1. Introduction 

Water resources raise some of the most important issues facing human beings (Coe & 

Birkett, 2004). Fresh water is critically scarce in many parts of Africa (UNEP, 2008). This 

is due to extremes in rainfall, high soil moisture deficits, increases in human population 

and dependence on irrigation. Water scarcity in some areas is becoming common due 

to climate change (IPCC, 2001; Coe and Birkett, 2004) and in some regions; scarcity is 

expected to become more acute. Problems of freshwater availability in Africa are 

complicated by highly variable precipitation (UNEP, 2008). This calls for a need to 

quantify water resources and their variability. Although field data are most commonly 

and accurately used for water resource analysis (Coe and Birkett, 2004) obtaining data 

consistently from remote regions can be very challenging.  

Water crises in protected areas in Tanzania, with emphasis on the Katavi-Rukwa 

ecosystem, have been reviewed by Elisa et al. (2010). Little information on water 

resources exists for Katavi National Park yet water is one of the key issues in the 

management of the Park and the wider Rukwa Basin. The amount of water entering 

and remaining in the Park and flowing downstream to the Lake Rukwa basin appears to 

have been decreasing over recent years (TANAPA, 2005; Meyer et al., 2005; Mlengeya 

et al., 2008). Preliminary work on rainfall and water resources in Katavi, including 

partial measurements of water flow, has been conducted by Lewison (1996; 1998). 

Most of the data from that study are yet to be analysed by the Park authorities. The 

most important document to date is an unpublished report on water scarcity by Meyer 

et al. (2005) that brings together patchy data on rainfall and water levels over the 

period 1997/8-2004/5.  

The research presented here is not intended as a detailed study of the hydrology or 

water resources of the Park. However, the size of the surface water resource has been 

measured because behavioural responses by hippopotami to water availability are the 

focus of this research.  Water and distance to water affect the activity budget and 
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strategies of hippopotami (Lewison and Carter, 2004), and hence their behaviour 

patterns.  

 

Previous data have been compared with data gathered during this study to estimate 

the likely scale of any recent changes in the amount of water received by the Park. This 

has been achieved by using the scant water level records available at Regional Water 

Offices, rainfall and water level data collected as part of routine monitoring by Katavi 

Park staff and rainfall and flow data collected during 2009 and 2010 for this study. 

 

Groundwater is an important source of water for the Park and springs support a variety 

of species (Meyer et al., 2005; Mlengeya et al., 2008) particularly in the dry season. 

Springs of groundwater are numerous in the Park and make an unmeasured 

contribution to the total water resource. Many ground water sources are in remote 

areas and access is limited during the wet season. This study did not attempt to 

estimate the size of the contribution of groundwater to the water resource of the Park.  

1.1 Rainfall in Katavi 

Katavi National Park and the adjoining ecosystem is defined as a climatically 

homogenous biome with a slightly bimodal rainfall pattern (Banda et al., 2007) with 

wet periods in late November or December to January and in March to April. The 

average annual rainfall for the nine years from 1997 to 2005 was 927 ± 126 mm (Meyer 

et al., 2005; 2006; Katavi 2008).  

Lower altitude areas within the area of the Park receive 800-900 mm of rainfall per 

year and higher altitudes receive about 900-1000 mm (TANAPA/WD, 2004) (Fig. 3.1). 

The area to the north of the Park which includes the upper catchment of Katuma River 

receives between 1000 – 3000 mm of rainfall per year (IRA, 2004) as quoted in Meyer 

et al. (2006). 
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Fig. 3.1: Rainfall regions in Katavi National Park and adjacent areas. Source: Katavi NP, 
2009. 
 
 

1.2 Surface drainage pattern  

The drainage catchments of all the six rivers that flow in the Park are mainly outside 

the Park boundary, mostly to the North and East. Katuma River dominates the surface 

drainage of the Park flowing into the shallow basin of Lake Katavi in the northern part 

of the Park, the Katisunga flood plains and then Lake Chada, which also receives water 

from the other rivers.  The outflow from Lake Chada in the southern part of the study 

area is called Kavuu River which then flows further south towards Lake Rukwa (Fig. 

3.2). Lake Katavi, the Katisunga Plains and Lake Chada are the most important areas for 

concentrations of animals in the Park, especially during the dry season (July-early 

November). Other key wildlife areas lie along the Katuma, Kavuu and Kapapa rivers. 

These areas also support high concentrations of animals in the dry season (TANAPA, 

2002; Meyer et al., 2005). Areas where water is supplied by springs also support a 

variety of species (Meyer et al., 2005; Mlengeya et al., 2008) (Fig.3.2).



 

Fig. 3.2:  Major sources of water in Katavi National Park, Tanzania. Source: Katavi NP, 2009.

Park Headquarters 

Mlele Station 

L. Katavi 
Katuma 

Lake Chada 

Mongwe 

Ikuu 

Katisunga Plains Kapapa R. 

Paradise Springs 



1.3 Soil moisture deficit 

With air temperatures varying between about 25 and 30°C, rates of evapo-

transpiration exceed rainfall leading to high soil moisture deficits, particularly during 

the dry season in the hottest months of September and October (Meyer et al., 2005; 

Shorrocks, 2007). This leads to a negative water balance in the dry season (Shorrocks, 

2007). According to Wilhelm (1993) as quoted in Meyer et al. (2005), rates of 

evaporation of standing water in lakes and pools in tropical regions can reach 2000 mm 

per year. Peterson (1973) reported evaporation about four times the annual rainfall 

received in the Tarangire ecosystem in Tanzania. With the driest areas of the Park 

receiving an average of 927 mm rainfall per year, the soil deficit is likely to be more 

than double the amount of rainfall received.  

1.4 Aims and hypotheses  

Anecdotal evidence suggests that the amount of water entering the Park via Katuma 

River has declined in recent years. This is tested using patchy historical data plus new 

data collected during this study. Rainfall data are used to detect changes in rainfall 

patterns that could explain any changes in river flow. Changes in flow that cannot be 

explained by rainfall might be linked to human impacts on flow in the upper 

catchments of the rivers that supply the Park.  

The study also quantifies the water resource in key areas of the Park, including each of 

the five sites where hippopotami have been studied, to test for relationships between 

wetness both geographically and seasonally and the distribution, abundance and 

behaviour of the animals. Water also affects the size of the food resource for 

hippopotami so the availability of pasture is explored in Chapter 4. 

Direct measurements of water depth in rivers and soils and of river discharge have 

been made over wet and dry seasons and in a range of sites to test the following 

hypotheses: 
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H1: Rainfall in the study area has declined over the last six decades  

H2: River water levels in the study area have decreased over the last two decades  

H3: Water level varies between the five animal study sites  

H4: Water resources in the Park vary seasonally as discharge decreases and vary along  

 the river 

H5: Tributaries with less human interference flow for more months and show less flow  

 rate differences between seasons 

 

2. METHODS 

2.1 Study sites are described in Chapter 2 

2.2 Rainfall measurements 

Daily measurements of rainfall at the Park Headquarters at Sitalike, Ikuu Springs, 

Mongwe Ranger Post (R/P) and at Mlele (Fig. 3.3) are made as part of the routine 

ecological monitoring program of the Park. The longest and best continuous rainfall 

record started in the 1997/8 hydrological year (running from July to June of the 

following year) for the Park Headquarters. Data are sparse for the other stations 

(Meyer et al., 2005). Some historical records were obtained from the Katavi-Rukwa 

Conservation and Development Project (KRCD) and some from the 1950s (taken from 

Lewison, 1998) were obtained from the Regional Government Office. Records from the 

1950s are by calendar years not hydrological years. Rainfall records for the upper part 

of the Katuma catchment area were obtained from Mpanda District Water Authority. 
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Fig. 3.3: Katavi National Park, Tanzania, showing rainfall and river measuring sites. 
Source: Katavi NP and data collected during this study. NP = Katavi National Park, R = 
River, R/P = Ranger Post. 
 
At the Park Headquarters, a complete weather station, WS2350 with data logger, is 

used to record rainfall, wind speed, barometric pressure, temperature and humidity. 

Rainfall is collected in a standard Regenmesser 471003 stainless steel rain gauge with 

an internal 25 mm scaled plastic measure and a capacity of 165 mm.  For the present 

study, additional gauges were installed in early 2000 in three stations. These were at 

Ikuu Springs, Mongwe and Mlele (Fig. 3.3).  Daily rainfall data collected for this study 

were therefore from four stations distributed widely over the Park and rainfall at 

Katuma Village in the upper catchment was measured by the District Water Authority. 

 

Katuma 

Iloba 

Kabenga R. 

Sitalike Bridge 

Mongwe R/P 

Park outflow (Kavuu) 

Ikuu Springs 

Ikuu Bridge 
Katisunga 
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2.3 River levels 

River level at Sitalike and Ikuu Bridge on Katuma River (Fig. 3.3. and Table 3.1) was 

measured as part of Park monitoring from 1990-1994 and again from 2005 at Sitalike 

and from 2009 for Ikuu Bridge to the present day.  No other historical water level data 

were located. 

For this study, river levels were measured at six additional sites.  The locations of the 

eight sites in total and their main features are shown on Fig. 3.3 and in Table 3.1.  Sites 

included the Katuma River at its inflow and outflow from the Park, sites near Lakes 

Katavi and Chada and two tributaries of Katuma River.   The choice of station took into 

account the problems of access to remote areas and difficulty or impossibility of vehicle 

access in the wet season.   

Permanent water depth measuring staffs made from angle iron were installed in sites 

where these did not already exist (in Kabenga, Iloba, Kapapa, Katavi Inflow and Park 

Outflow).  Water depth was recorded on every visit that was made for measuring river 

discharge (Section 2.4). 
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Table 3.1: Locations of sites for river level measurements made in Katavi NP, Tanzania. 

 

Site name GPS 
Coordinates 

(UTM system) 
and altitude (m 

a.s.l.) 

Distance 
(km) 

downstream 
from source 

of main 
river 

Description of the site 

Main river 

Katuma Village 36M 0294723 
9266730    
Alt. 1094  

15 The unfarmed upper catchment 
at a river bridge in Katuma 
village 

Iloba Village 36M 0261919 
9281260  
Alt. 1010  

18 The farmed upper catchment at 
a river bridge in Iloba village 

Katavi Inflow 36M 0277023 
9263437  
Alt. 972 

40 Inflow to  Katavi NP near the 
Park’s northern boundary 

Sitalike Bridge 36M 0294723 
9266730  
Alt. 944  

66 Downstream Lake Katavi at 
Sitalike Bridge 
 

Ikuu Bridge 36M 0303007 
9236110  
Alt. 919  

105 Downstream Katisunga Plains at 
Ikuu Bridge 

 

Park Outflow 
(Kavuu) 

36M 0306553 
9223665  
Alt. 916  

125 The outflow from the study 
area at Kavuu corner, 
downstream Lake Chada 

Tributaries 

Kabenga 
tributary 

36M 0292490 
9266421  
Alt. 963  

67 A tributary that joins Katuma 
River below Sitalike. Measured 
at Kabenga Bridge near Sitalike 
Bridge 

Kapapa 
tributary 

36M 0320294 
9248365  
Alt. 961  

110 A major tributary that joins 
Katuma River above the Park 
Outflow. Measured at Kapapa 
Bridge 

 

Note: Distance of tributaries are from source of the main river to where they join the 
Katuma River 
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2.4 River discharge 

River discharge was measured using the area-velocity method in the seven of the 

stations described for river level measurements. River discharge was not measured in 

Katuma Village in the high catchment but river levels were recorded. Most of the seven 

sites had road bridges from which flow measurements were made.    

Channel cross sectional area 

Channel (to bank full) cross sectional areas were surveyed in Katavi Inflow and Kavuu 

Outflow (the two un-bridged sites) during October/November 2009 in the peak of the 

dry season when river flows were at their lowest or river beds were dry. Surveying of 

the channel cross sectional area of bridged sites was possible at times when there was 

flow in the channel.  Channel depth was measured at 2 m intervals across the channel 

and cross sectional areas were calculated as the sum of the areas (depth x 2 m width 

interval) of rectangular and triangular sub-sections. 

 

River discharge 

Measurements were made in all sites every two weeks.  Velocity measurements 

started in December 2009 because until end of November 2009, water was yet to start 

flowing in Katuma River. However, there was some flow in the Kapapa tributary. In 

some places, water movements were noted, but were not strong enough to be 

recorded using the flow meter.  

Flow velocity was measured at mid-depth using MFP126-S Geopack advanced flow 

meters. 

River discharge, equal to the product of the cross sectional area of the river (A) 

occupied by water and its mean velocity (µ), was calculated as: 

Q=Aµ 

Where Q= Discharge (m3 s-1), A= Cross-sectional area of the portion of the river 

occupied by the water (m2) and µ= is the average flow velocity (m s-1). 
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2.5 Seasonal change in soil water depth 

Seasonal change in soil water depth in piezometer tubes was estimated in four of the 

animal behaviour sites and in Katisunga Plains.  At each site, three piezometer tubes 

were installed in randomly chosen starting positions that were at equal distance from 

the river or other main water source. Water level either below or above the soil surface 

was recorded twice every month.  

Piezometer tubes were made using perforated PVC pipes. These had a diameter of 10 

cm and a total length of 210 cm. The length of the tube inserted into the ground was 

190 cm and the length above the ground level was 20 cm. Water levels were recorded 

by inserting a measuring rod into the tube. Readings were taken as the distance from 

the point where the rod came into contact with water and the soil surface. Water 

depths above ground level were recorded by placing a measuring rod upward from 

ground level and recording water depth.  Readings from each set of three piezometer 

tubes were averaged. 
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3. Results 

3.1 Rainfall  

From historical rainfall records from the 1950s to 2010 for the Sitalike area in Katavi, 

there have been fluctuations in rainfall (for example, the exceptionally high total 

rainfall of 2100 mm in 1979) but there has been no overall trend with time  (r = 0.028 n 

= 58 NS) (Fig. 3.4).  

 

 

The driest years in Katavi have been 1980, 1983, 1992, 2004 and 2005 (Fig. 3.4).  Mean 

annual rainfall over the period 1950-2010 (58 years) was 854 ± 36.21 mm. The decade 

with lowest rainfall was 1980-1989 with a mean of 650 ± 199 mm (Fig. 3.5).  
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Fig. 3.4: Total annual rainfall (mm) recorded in Katavi NP from 1950-2010 
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A 13-year almost continuous rainfall record exists for the Park Headquarters at Sitalike. 

The highest total annual rainfall here was 1221 mm (in 1997/98) and the lowest was 

804 mm (in 2006/2007) (Fig 3.6).  Particularly high rainfall was recorded in 1997/8 and 

2001/2 (Table 3.2).  
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Fig. 3.5: Mean annual rainfall by decade since the 1950s. Error 
bars are standard errors around the decadal average. 
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Fig. 3.6: Total annual rainfall (hydrological years from July to June) 
for Katavi NP recorded from 1997/98 to 2009/10 at Park 
Headquarters at Sitalike, Katavi NP, Tanzania. ** No records were 
taken in April-June 2007/8 so the total is an underestimate. 
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Table 3.2: Total monthly rainfall (mm) at Park HQ, Sitalike in Katavi National Park, Tanzania (1997/8-2009/2010 hydrological years) 

 
Month 

1997/8 1998/9 1999/00 2000/01 2001/02 2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10 

July 0 0 0 0 0 0 0 0 0 0 3 0 0 

August 0 0 0 0 0 0 0 0 0 0 13 0 0 

September 5 4 4 0 0 0 0 18 0 0 0 0 16 

October 25 14 36 104 55 0 44 10 14 8 35 17 9 

November 233 21 195 157 78 177 15 142 85 178 155 167 95 

December 349 118 32 108 120 249 177 248 47 150 139 180 198 

January 250 168 117 109 319 145 155 142 193 169 175 157 112 

February 32 26 180 84 66 16 164 71 135 78 87 212 171 

March 173 363 153 210 209 244 152 264 128 128 326 120 283 

April 123 124 90 53 132 65 147 28 158 77 - 106 37 

May 32 2 0 26 33 0 0 3 179 13 - 26 18 

June 0 0 0 2 0 0 0 0 0 4 - 0 0 

Total 1221 840 806 853 1012 895 855 926 938 804 932 983 939 

Mean 102 70 67 71 84 75 71 77 78 67 104 82 78 

SE 35 32 22 20 28 29 23 28 22 21 36 2 27 
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The 13-year average seasonal rainfall pattern at Sitalike was slightly bimodal with one 

wet season from November to April, but with highest peaks in January and March and 

less in February (Fig. 3.7).  March was the wettest month.  

 

This study began in August 2009, so in terms of relating water resources to animal 

behaviour, rainfall in 2009/10 is of greatest interest (Table 3.3).  In 2009/10, rainfall 

stopped earlier in the season (in April) than in the previous year. May 2010 had a total 

rainfall of 18 mm compared with 26 mm for May 2009 (Tables 3.2 and 3.3).  Generally, 

2008/9 was slightly wetter at Park Headquarters than the following year although both 

years were around average in terms of the 13-year record. Animal behavior was 

therefore studied over a period with average rainfall. There was no rainfall from July to 

September 2010 at any of the four stations.  

Table 3.3: Monthly total rainfall (mm) for four stations in Katavi NP, Tanzania during 
the study period, hydrological years 2008/9 and 2009/2010. 
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Fig. 3.7:  Average monthly rainfall at Park HQ , Katavi NP, 
Tanzania over  the hydrological years 1997/8 to 2009/10 

2008/2009 Jul-08 Aug-08 Sep-08 Oct-08 Nov-08 Dec-08 Jan-09 Feb-09 Mar-09 Apr-09 May-09 Jun-09

Park HQ 0 0 0 17 167 180 157 212 120 106 26 0

Ikuu Springs 0 0 0 15 97 42 28 35 47 152 20 0

Mongwe R/P 0 0 0 2 51 65 189 103 125 45 0 0

Mlele 0 0 0 83 149 122 156 142 206 282 1 9

2009/2010 Jul-09 Aug-09 Sep-09 Oct-09 Nov-09 Dec-09 Jan-10 Feb-10 Mar-10 Apr-10 May-10 Jun-10

Park HQ 0 0 16 9 95 198 112 171 283 37 18 0

Ikuu Springs 0 0 4 2 126 135 152 219 286 50 0 0

Mongwe R/P 0 0 0 0 144 165 103 227 112 19 0 0

Mlele 0 0 13 8 149 272 219 231 256 62 2 0
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Over the study period, total annual rainfall (Fig. 3.8) and monthly rainfall as totals and 

averages (Table 3.3. and Fig. 3.9) varied greatly between the four gauging stations. 

 

 

 

Total monthly rainfall recorded over the study period in each of the sites is presented 

in Fig. 3.10.  Values plotted in Fig. 3.10 are correlated with river discharge in Section 3.4 

to test the closeness of rainfall-flow relationships.  

0

200

400

600

800

1000

1200

1400

Mongwe R/P Park HQ Ikuu Springs Mlele

To
ta

l r
ai

n
fa

ll 
(m

m
) 

Recording  stations 
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Fig. 3.9: Mean monthly rainfall for 2008/9 and 2009/2010 from 
named sites in Katavi NP, Tanzania. 
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Fig. 3.10: Total monthly rainfall over the study period (September 2009 to September 
2010) at the five rain gauging stations in Katavi NP with locations shown on Fig. 3.3.  
The footnote on each graph indicates how rainfall data from the site have been 
matched to river discharge data for testing rainfall-flow relationships in Section 3.4.   
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3.2 River Levels 

A 10-year record of river levels exists for Sitalike Bridge (Fig. 3.11 and Fig. 3.12).  At 

Sitalike Bridge, there were marked differences in annual mean river level over the ten 

sampling years (F9, 112= 5.589, p < 0.0001) with much lower river levels in 2005-2009.   

 

Maximum river level occurred from March to May during the rainy season and 

minimum levels occurred in July to November during the dry season (Table 3.4). 

Table 3.4: Annual maximum and minimum river levels recorded from 1990 to 2010 in 
Katuma River at Sitalike Bridge near the Park Headquarters in Katavi NP, Tanzania.  
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Fig. 3.11: Comparison of ten years annual mean river levels at Sitalike 
Bridge along Katuma River, Katavi NP, Tanzania. Error bars ±SE indicate 
variations between sampling months. ** No river level records exist for 
the period 

Sitalike Bridge River levels 
  a        b            a         b  

c 

f 

b 

Year Annual  max level (m) Month with max level Annual min level (m) Month with min level Seasonal range (m)

1990 2.34 April 0.4 October, November 1.9

1991 1.73 April 0.2 August 1.5

1992 1.83 May 0.41 November 1.4

1993 1.66 March 0.01 October 1.7

Mean 1.89 0.26 1.63

2005 1.12 March 0.1 July 1

2006 0.41 May 0.03 August 0.4

2007 0.51 April 0.05 August 0.5

2008 2 April 0 September, October 2

2009 0.82 May 0 October 0.8

2010 1.65 April 0.2 September 1.5

Mean 1.09 0.06 1.03

c        d         e 
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There has been a decline in the mean annual maximum river level at Sitalike Bridge 

between the early 1990s and the late 2000s (Table 3.4).  While mean level was 1.89 m 

in the early 1990s, the level  for the late 2000s is 1.09 m  being a decline of 0.8 m. 

Between 2005 and 2009 the River has experienced low annual maximum river levels 

and the river bed was dry in September and October in 2008 and in 2009. However, 

2010 river levels were higher than those recorded in 2005-2007 and 2009.  (Table 3.4).  

Monthly river levels in 2010 were higher than 9-year mean for most months although 

from October levels were lower than 9-year average for the months (Fig. 3.12). Over 

the study period, river levels at Sitalike were slightly higher than average over the wet 

season and lower than average in the dry season.  

 

Annual mean river levels at Ikuu Bridge (about 40 km downstream of Sitalike) for six 

years are shown in Fig. 3.13.  At 0.84 ± 0.19 m, the average river level in 2010 appeared 

lower than in previous years although there were no significant differences between 

the six years (F5, 58 = 2.049, p = 0.087 NS). 
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Fig. 3.12: Comparison of monthly mean river depth at Sitalike Bridge 
during 2010 with the 9-year average river depth in the same site. Error 

bars are  ± SE 
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Seasonal trends similar to Sitalike Bridge were observed at Ikuu Bridge, where the river 

stopped flowing in October 2010 (Fig. 3.14).  Water levels at Ikuu Bridge from January 

to March 2010 were much lower than the mean over the previous six years (Fig. 3.14).  

Mean river levels in April and May 2010 were, however, slightly higher than the six-

year average for these months.  
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Fig. 3.13: Comparison of six years annual mean river level at Ikuu 
Bridge along Katuma River, Katavi NP, Tanzania. Error bars ±SE 
indicate variations between sampling months. ** No river level 
records exist for the period 
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F5, 58 = 2.049, p = 0.087 NS 
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Fig. 3.14: Comparison monthly mean river depth at Ikuu  during  2010 
with the 5-year  average river depth in the same site. Error bars are ± SE 
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For the years in which measurements were made at Ikuu Bridge, maximum annual 

level usually occurred in March with minimum levels in August and September (Table 

3.5). In 2010, annual maximum level at Ikuu Bridge was slightly higher than the average 

level for 1990-1994 (Table 3.5). The River did not run dry at Ikuu Bridge between 1990 

and 1994 but its minimum level in October 2010 was below 10 cm and not flowing.  

Dry season water level over the study period was therefore extremely low. 

Table 3.5: Maximum and minimum river levels measured at Ikuu Bridge, Katavi NP.              

 

3.3 River discharge  

The total volume of river water that entered the Park via Katuma River and its two 

tributaries from October 2009 to September 2012 was 9.77 x 108 m3 yr-1.  River 

discharge increased steadily downstream until Sitalike Bridge (Fig. 3.15), then 

decreased.  

 

Year Annual  max level (m) Month with max level Annual min level (m) Month with min level Seasonal range (m)

1990 2.02 March 0.87 October, November 1.2

1991 1.12 January 0.82 September, October 0.3

1992 1.65 March 0.72 October 0.9

1993 1.72 March 0.57 October 1.2

1994 1.69 March 0.52 September 1.2

Mean 1.64 0.70 0.96

2010 1.75 April 0.05 August, September 1.7
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Fig.3.15: Annual total river discharge along Katuma River and the 
Kapapa and Kabenga tributaries October 2009-September 2010 in 

Katavi NP and catchment areas. 
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With the exception of the Kapapa tributary, there were marked seasonal changes in 

river discharge (t94 = -6.114 p < 0.0001) (Fig. 3.16), with highest discharges during the 

six rainy months.  Discharge varied significantly between sites (F7, 95 = 4.686 p < 

0.0001).  

 

 

River discharge, as expected, varied significantly between sampling months (F11, 95 = 

4.427 p < 0.0001), with significant increase in discharge during the rainy months of 

January- June compared to drier months (July-December), Fig. 3.17.   
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Fig. 3.16: Seasonal variations in river discharge at seven sampling 
sites during dry season (July-December 2009) and wet season 

(January-June 2010) in Katavi NP, Tanzania. 
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Although discharge was not measured in Katuma Village near the source of the river in 

the upper catchment, water was flowing in the channel over the entire study period.  

However, there was no flow at Iloba Village below Katuma Village by the end of August 

and in September 2010 even though there was still flow upstream.   River flow at 

Sitalike Bridge, Ikuu Bridge and the Park Outflow stopped during September and 

October 2009 and started flowing again during the second part of December 2009. The 

Kapapa tributary had flow throughout the year but the Kabenga ran dry during the 

second part of July 2010.  The percentage of days when flow was estimated to have 

occurred in each site is shown in Fig. 3.18. 
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Fig. 3.17: Monthly river discharge (m3 month-1) at seven sites (five along 
Katuma River and two tributaries) October 2009-September 2010 in Katavi 
NP and catchment areas, Tanzania  
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3.4 Rainfall-River discharge relationships 

Relationships between river discharge and anticedant rainfall at the nearest upstream 

rain gauge (with the exception of Katuma) are presented in Fig. 3.19.   

At Iloba in the upper catchment, there was a close and strong correlation between 

rainfall and river discharge (r = 0.75, n = 20 p < 0.001). River discharge increased as the 

rainfall peaked and dropped as the wet season ended (Fig. 3.19 (a)).  

Rainfall and river discharge where the Katuma River enters the Park showed a similar 

pattern (Fig. 3.19 (b)), but discharge varied much less closely with rainfall (r = 0.45, n = 

20 p < 0.05). As rainfall stopped, there was a corresponding decrease in river discharge.  

At Sitalike Bridge, there was no correlation between rainfall and river discharge (r = -

0.14, n = 20 NS) (Fig. 3.19 (c)).  Discharge at Ikuu Bridge showed a strong correlation 

with upstream rainfall (r = 0.84 n = 20 p < 0.001) (Fig. 3.19 (d) and the same occurred at 

Kavuu where Katuma River leaves the Park (r = 0.72, n = 20 p < 0.001) (Fig. 3.19 (g)).  
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Fig. 3.18: Percentage number of days in a year (October 2009-
September 2010) with water flow at the sampling stations in 
Katavi NP, Tanzania and in the upper catchment of Katuma River. 
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Fig. 3.19: (a-g): Correlation between rainfall and river discharge at five study sites along 
Katuma River and two tributaries in Katavi NP, Tanzania. Sites are ordered according to 
distance downstream from the source of the Katuma River.  Key: d/s represents 
distance downstream from the source of Katuma River. 
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Flow in the Kabenga tributary corresponded positively with rainfall (r = 0.78, n = 20 p < 

0.001) (Fig. 3.19 (e)) but in the Kapapa tributary, there was no correlation at all (r = -

0.08, n = 20, NS) (Fig. 3.19 (f)).  Correlations are summarised in Table 3.6. 

Table 3.6: Summary of Pearson correlations between rainfall and river discharge at 
named study sites 

Site name Distance d/s (km) r-value n-value p-value 

Iloba Village 18 0.75 20 0.001 

Park Inflow 40 0.45 20 0.05 

Sitalike Bridge 66 -0.14 20 NS 

Kabenga (tributary) 67 0.78 20 0.001 

Ikuu Bridge  105 0.84 20 0.001 

Kapapa (tributary) 110 -0.08 20 NS 

Park Outflow 125 0.72 20 0.001 

 

3.5 The Park inflow and outflow balance  

Katuma River plus its two tributaries discharged a measured total of 1.72 X 109 m3yr-1 

of water into Katavi National Park between October 2009 and September 2010 (Fig. 

3.20). The contribution from Katuma River was 1.33 x 109 m3 yr-1 with the Kapapa and 

Kabenga tributaries contributing a total of 3.86 x 108 m3 yr-1.  

Water volume in Katuma River increased downstream until Sitalike Bridge when a large 

loss to flow was recorded (Fig. 3.15).  This was despite addition of tributaries at 

Kabenga near Sitalike and the Kapapa River at Lake Chada.  Over the year, the volume 

of water measured leaving the Park (at the Outflow site) was only about one third of 

the water volume of 5.91 x 108 m3 yr-1 measured at Sitalike. 

The amount of water flowing out of the Park via the Kavuu outflow was 2.14 X 108 m3 

yr-1 over the same period.  In terms of surface river flows only, the Park thus had a 

negative water balance from October 2009 to September 2010 of 1.50 x 109 m3yr-1. 

This balance was therefore used in the Park with a proportion lost by evapo-

transpiration and evaporation from open water and soils. 
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3.6 Seasonal change in soil water depth 

Generally, there was most variation in soil water level at Lake Katavi which was the 

only site that flooded (between February and April 2010) submerging the tubes. Soil 

water level remained below the surface in all other sites (Fig. 3.21). The driest month 

was November and in November 2009, the soil water level was between 150 cm and 

180 cm below ground.  
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Fig. 3.20: Total river discharge recorded along Katuma River and two 

tributaries (shown in lighter shading) from October 2009 to 
September 2010 in Katavi NP, Tanzania. 

Along Katuma R. Tributaries



 

74 
 

 

Ikuu Springs and Lake Chada were the driest sites with soil water 1 m or more below 

ground all year.  Soil water depth in Katisunga Plains, one of the major feeding grounds 

for hippopotami, varied seasonally and although the site did not flood, soil was 

saturated below about 20 cm in the wet season (Fig. 3.21).   Soil in Katisunga Plains and 

in Paradise Springs flooded quickly in response to rains but dried slowly.   Although not 

recorded because access was impossible, there was evidence that Paradise Springs 

flooded between February and April.  

The two wettest sites in terms of soil moisture were thus Paradise Springs and Lake 

Katavi and the two driest sites were Ikuu Springs and Lake Chada. 
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4. Discussion 

4.1 Rainfall 

With a 10-year average annual rainfall of around 920 mm, Katavi is probably wetter 

than other semi-arid savannah ecosystems such as Hwange National Park in Zimbabwe 

(about 700 mm yr-1) and Ruwenzori National Park in Uganda with about 720 mm yr-1 

(Valeix, 2011). Katavi is thought to benefit from convective rainfall (Meyer et al., 2006).  

The spatial pattern of rainfall in the Katavi region is, however, very patchy with much 

higher rainfall (1000 - 3000 mm yr-1) in the mountainous upper catchment of the main 

river that feeds the Park.  Southern parts of the Park receive the least rainfall due to 

their leeward position in relation to an escarpment (TANAPA, 2002, Meyer et al., 

2006).  Water scarcity does not necessarily occur in these areas though because of 

water supplied by Katuma River and its two main tributaries. 

The longest record of rainfall inside the Park is for Sitalike, the Park Headquarters, and 

the 13-year record shows no trend in annual totals since 1997.  Similarly, there is no 

trend since the 1950s in records from outside the Park.  Caro (2008) who studied 

changes and declines in large mammal populations around Katavi concluded that there 

has been a small increase in rainfall in the Park since the 1970s and significant 

increases near the south east boundary of the Park. The IPCC (2001) subjectively 

predicts that anthropogenically induced climate change and land transformations will 

lead into an increase of up to 7 % in rainfall by 2050 in the East Africa Region 

(McDonald et al., 2012).  However, rise in temperatures of about 0.7 oC in Africa 

between 1900 and 2005 (IPCC, 2007; Collier et al., 2008) are likely to have impacts on 

rainfall in the future (IAASTD, 2009). 

There is no evidence that rainfall has changed over the recorded period so low rainfall 

cannot explain the unusually low river levels that occurred from the mid-2000s.  

Hypothesis one that rainfall in the study area has declined over the last six decades is 

therefore refuted as rainfall has not declined significantly over the last six decades. 
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4.2 River levels 

Current river levels are lower than in the early 1990s but were particularly low around 

2004/2005 when Katuma River stopped flowing for almost three months in the dry 

season.  Water levels in the River at Ikuu in the middle of the Park and downstream on 

the Katisunga Plains, one of the major dry season feeding grounds for herbivores 

experienced especially severe declines. Low rainfall did not, however, explain years or 

periods of water scarcity.   According to Meyer et al. (2005) and Caro et al. (2011), 

declines in water levels between the late 1990s and 2004 tend to coincide with the 

building of locally-constructed and illegal dams to store or divert water for irrigation in 

the upper catchment of Katuma River.  Rice in particular is cultivated and this is a very 

water demanding crop.  A similar situation has occurred in Ruaha National Park in 

Tanzania where rice cultivation and much larger-scale internationally-funded dams 

have led to the complete drying of the once perennial Great Ruaha River during the dry 

season (Kashaigili et al., 2006; Mtahiko et al., 2006; Epaphras et al., 2008; Kendall, 

2011).  Further evidence implicating human impact on water resources in Katavi is that 

in 2010, water levels in the Park appeared to recover during the wet but not the dry 

season. Recovery corresponded with regular visits in 2010 by water authorities to 

inspect upstream dams to ensure that they did not block downstream flow.  Follow up 

visits probably persuaded farmers to release more water into the flow of Katuma River. 

Additionally, rainfall in 2010 was slightly lower than the previous year yet river levels 

were higher. However, dry season monthly flows were below average of the respective 

sites (Fig. 3.12 and Fig. 3.14). 

Despite some recovery in 2010, mean river levels in the late 2000s at both Sitalike and 

Ikuu have declined against their 1990s means and at present, Katuma River runs dry 

during some months (Lewison, 1998; Meyer et al., 2005; Caro et al., 2011).  Water 

scarcity during the dry season challenges animals that meet their water requirement 

mostly from surface waters (Douglas-Hamilton, 1973).  The distribution of animals 

(Western, 1975) and their behaviour is likely to be affected, particularly during the dry 

season. This has started to be experienced elsewhere in Tanzania: in Ruaha NP (Barnes, 
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1983; Kashaigili et al., 2006; Epaphras et al., 2007; 2008), Lake Manyara NP (Fryxell and 

Sinclair, 1988) and Mikumi NP (Senzota and Mtahiko, 1990).  

River levels between 2005 and 2009 support hypothesis that river water levels in the 

study area have decreased over the last two decades. However, river levels in 2010 at 

Sitalike do not support the hypothesis because 2010 was higher than previous years 

but still less than long term mean levels. Mean river levels also declined between early 

1990s and late 2000s.  

4.3 River discharge 

There was flow in Katuma River near its source throughout the study period although 

in August and September, the River ran dry downstream at Iloba and was dry where 

the Katuma flows into the Park.  Losses to flow between Katuma Village and Iloba 

which had the greatest effect on the Katuma during the dry season are interpreted as 

off-take from illegal dams for irrigation. Similar kind of water off-take has been 

affecting other parks such as Tarangire NP (Gereta et al., 2004a), the Mara River 

ecosystem in the Serengeti (Gereta et al., 2003) and Ruaha NP (Kashaigili et al., 2006; 

Mtahiko et al., 2006; Epaphras et al., 2007; 2008). In Rubondo NP in Lake Victoria in 

Tanzania, water levels are threatened by water up take for hydroelectricity dams (Elisa 

et al., 2010).  Similarly, in Kenya, agricultural expansion in the Mara Region has 

affected the hydrologic aspects of the Mara River basin in Kenya and Serengeti in 

Tanzania (IUCN, 2000; Gereta et al., 2002; Kanga et al., 2011a; 2011b). In Asia, similar 

use of water resources resulted in some rivers running dry for some months during the 

dry season (Jablonski, 2004). Such kind of water uses has led to calls for more 

utilization of underground waters (MacDonald et al., 2012), as surface waters are 

unlikely to meet growing demands of the growing populations in Africa. This is coupled 

with the predicted declines in river flows due to projected increase in global 

temperatures (IPCC, 2001). 

In terms of total annual discharge, Katuma River accumulated flow downstream until 

Sitalike when the total flow volume in the River decreased.    This downstream pattern 



 

78 
 

is affected by the Park’s downstream sequence of very large seasonal swamps, Lake 

Katavi, Katisunga Plains and Lake Chada. These areas flood forming open water during 

the wet season and recede to dry savannah grassland during dry seasons.  The swamps 

function as water stores accumulating water in the wet season and releasing water to 

downstream flow in the dry season.  This pattern is likely to be essential for sustaining 

dry season flows in Katuma River. 

Downstream water volume approximately doubled between where Katuma River flows 

into the Park and Sitalike. This increase may reflect additions of run-off from northern 

woodlands that receive high rainfall. 

Between Sitalike and Ikuu Bridge, flow volume in the River decreased despite receiving 

water from the Kabenga tributary.  The contribution from the Kabenga was relatively 

small and over the period of this study, the tributary stopped flowing during the dry 

season. The Kabenga drains cultivated land near the village of Sitalike and human 

impacts on flow are very likely.  Reduced flow at Ikuu Bridge was more probably 

because the upstream flow recorded at Sitalike Bridge discharges into Katisunga Plains 

where losses via evapo-transpiration from the very large and flat plains will be 

enormous.  The same process must have occurred in the shallow basin of Lake Chada in 

the southernmost part of the study area. 

Rates of evaporation in the tropics are usually much higher than precipitation 

(Peterson, 1973; Wilhelm, 1993 as quoted in Meyer et al., 2005; Shorrocks, 2007) so 

water inputs to such areas will be greater than the downstream outflow and this is 

reflected in Katuma River’s overall negative water balance in the Park.  These natural 

processes leading to water loss probably explain the relatively low river discharge at 

the outflow to the Park compared to the inputs to the Park. Example of such water 

losses from tropical wetlands have been linked to fluctuations in water levels in Lake 

Naivasha in Kenya (Boar, 2006). Despite water losses, the seasonal swamps in the Park 

conserve and regulate water resources releasing water slowly to further downstream 

in the dry season.  
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The Kapapa tributary had a substantial discharge throughout the study period. This 

river arises from a forested sub-catchment that is much less influenced by human 

activities than the Kabenga.  Although rainfall patterns were similar in the Kapapa and 

Kabenga sub catchments, the Kabenga had no flow during the peak of the dry season 

which may be linked to illegal cutting of forest.  Forest clearance is on the increase 

outside the Park boundary and the water retaining capacity of the catchment is likely 

to be decreasing as a result. This adds a further human influence that is consistent with 

the recent changes and geographical variations in the flow and the duration of flow in 

Katuma River. 

4.4 Relationships between rainfall and river discharge  

There is a time lag between rainfall and river discharge response (Gordon et al, 1992).  

This is complex and the lag time is influenced by channel morphology, gradient, soils, 

infiltration rates and vegetation. In this study, a time lag of two weeks resulted in some 

fairly close correlations between rainfall and discharge. This suggests that inputs from 

ground water-fed springs are very much less important than direct rainfall in sustaining 

the flow of Katuma River. Correlations were not detected in two sites which were 

Sitalike Bridge and the Kapapa.  Lack of correlations between rainfall and river 

discharge at Sitalike might be linked to water retention upstream in seasonal Lake 

Katavi although there was a rainfall-flow correlation at Ikuu Bridge, which is 

downstream Katisunga Plains where retention of flow would also have occurred.  

The closest relationships were expected in sites with the least upstream human impact 

on flow, for example in the Kapapa tributary.   There was, however, no detectable 

relationship between rainfall and discharge in the Kapapa.  Rainfall (gauged in Mlele) 

stopped in May but the Kapapa continued to flow throughout the study period with 

maximum discharges recorded in January to March (maximum rainfall was in 

December, January and March). Lack of correlations might have been due to the long 

distance to the rain gauge which was on the top of the escarpment, the complication of 

the network of streams that drain the escarpment or a large contribution from water 
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retained in its sub-catchment being released slowly.  Dry season flow in the Kapapa 

was higher in relation to its wet season flow than in any other site. This suggests that 

water released from sub-catchment makes a large contribution to the dry season flow 

of this tributary.  Springs have great local importance for wildlife in Katavi and two 

spring-fed sites are studied in the animal behaviour work. The contribution of 

groundwater to the flow of the main Katuma River is, however, unknown.  According to 

MacDonald et al. (2012) and IAH (2012) ground water is a major source of fresh water 

in Africa with the greatest reserves in North African countries. In Tanzania and 

elsewhere in East Africa, however, aquifers are very deep and inaccessible (MacDonald 

et al., 2012) and open waters and rivers most usually result from runoff from surface 

drainage catchments.  This is consistent with observations made in this Chapter in that 

significant contributions of groundwater within the boundary of the Park to the flow of 

the Katuma during the dry season are unlikely, given the observed drying of the River.  

In appendix 1 basic water quality monitoring data are presented which do not indicate 

any signals from base flow but this is also the case downstream from known springs 

such as Paradise Springs so does not preclude there being ground water input to the 

river.  

 

4.5 Seasonal changes in soil water depth 

Lake Katavi was the only site where flooding was measured.  It is probable that 

flooding also occurred at Paradise Springs although this was not recorded because the 

site was not accessible at the time when peak levels occurred at other sites.  Soil water 

depth responded to rainfall. This is probably because ground water is driven by 

recharge from the catchments (McCallum et al., 2011) which depend on rainfall.  

Rainfall, surface runoff and underground water inflow are the major determining 

factors for underground water levels (Cook et al., 2008). These sources of water in the 

ground have also been reported by Yuretich (1982) and Olago et al. (2009) in Kenya to 

determine water availability in East African rift valley lakes and hence underground 

water depth. In the Katisunga Plains, water level rose quickly in response to the 
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beginning of the wet season. However, water levels did not go above ground at the 

measuring site.  Soil wetness at Ikuu Springs and Lake Chada increased more steadily in 

response to rain than in the plains and did not decline as dramatically in the dry season 

as at the other three sites (Fig. 3.21).  

On the three sites that responded most quickly to rains that fell in January and April 

2010 (Lake Katavi, Paradise Springs and Katisunga), underground water levels dropped 

quickly after May 2010.  The rate of soil drying was greatest in Katisunga, followed by 

Lake Katavi. Paradise Springs dried at a much slower rate.  Differences in the rates at 

which the sites wetted or dried were obvious during visits to the sites and these 

differences are reflected well in the data collected from the piezometer tubes.  

Differences between the absolute wetness or dryness of the five sites are reflected less 

well by soil water depths because tubes were not positioned in the wettest parts of 

each site. The wettest parts of each site were the least accessible, usually the most 

vegetated with swamp grasses and often used by large animals (buffalo and elephant). 

The difference in elevation between the piezometer locations and the lowest and 

wettest point at each site also varied between sites.  However, wetting and drying 

rates are reliable and the absolute soil water levels measured also serve to show that 

within areas used by hippopotami, in the dry season soils in some sites were not 

saturated until about 1.5 - 2 m below ground.  

The results of this Chapter describe the seasonality of wetness along the Katuma River 

and the five sites in which hippopotamus behaviour was studied and will be linked to 

aspects of their distribution, abundance and behaviour in Chapter 8.    

5. Conclusions 

Amount of annual rainfall in the Katavi area have not changed consistently over the 

last 60 years. Although there have been relatively wet and relatively dry years, there is 

no overall trend. Years for the present study, 2009 and 2010 were about average in 

terms of total rainfall.  
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Low rainfall does not therefore explain observed declines in river level, flow volume or 

flow duration in some key wildlife areas of the Park.   Particularly low river levels 

reported in the 1990s and 2000s (Meyer et al., 2005) were not due to low rainfall.   

Increased water scarcity is unlikely to be related to increases in evaporation or 

evapotranspiration because air temperatures recorded at the park have remained 

relatively the same since monitoring in the Park began in 1997/8. However, a general 

long term trend in Africa as a whole indicate rise in temperature between 1900 and 

2005 (IPCC, 2007; IAASTD, 2009) and decreased precipitation.  

Although essential to the wildlife ecology of the Park, particularly locally in areas such 

as Paradise Springs, groundwater is not thought to be significant in terms of sustaining 

the flow of Katuma River. Evidence for this is in the dry-season drying of the river and 

that river discharge is related to rainfall in almost all sites along the river.  Ground 

water resources in the Park have not been quantified partly because of the remote 

locations of springs.  This creates a gap in our knowledge about this important water 

source.  

Declines since the 1990s in flow duration of the river and early drying of the river 

observed in this study implicate upstream loss of flow to small-scale illegal irrigation in 

the upper catchment of the river.  Deforestation in the catchment remains a concern 

because of the resulting reduced capacity of soils and vegetation to retain wet season 

rainfall. Water scarcity may well continue in the Park.  To safe guard the habitats of the 

Park and wildlife, there is a great need to continue monitoring river flows so that Park 

management can react and perhaps exploit deep ground water when surface flows are 

low.  
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Chapter 4: Hippopotami Food Resources 
 

1. Introduction 

This work is about hippopotami ecology and behaviour in relation to water resources. 

Study sites were chosen to span a wetness gradient assuming that food resources 

would be available and accessible to hippopotami in each of the sites. This chapter 

tests this assumption. Food availability is likely to vary from site to site and change over 

the course of seasons. Hippopotami are mainly herbivores (Arman and Field, 1973) and 

feed mainly on terrestrial vegetation (Laws, 1968; Field, 1970; Kingdon, 1982; 

Eltringham, 1999; Lewison and Carter, 2004) with a diet that consists mainly of grass. 

Measures of grass and other low-growing herbaceous species biomass have therefore 

been made seasonally in each of the five hippopotami study sites. Species cover, 

height, and greenness measurements were made seasonally in four of the hippopotami 

study sites and one feeding site.  

The distribution of Katavi vegetation is mainly explained by geology, soils and relief 

(TANAPA/WD, 2004; Meyer et al., 2006). Katavi is almost exclusively situated in the 

Rukwa Rift Valley which is part of the East African Rift Valley (TANAPA/WD, 2004, 

2004). Most of the surface area is 800-900 m a.s.l. and the Park is characterized by a 

flat and undulating terrain. In the northwest, southwest and northeast elevation 

increases to 1100 m a.s.l. (TANAPA/WD, 2004, 2004). Most soils in Katavi are alluvial 

originating from the plains and deposited in the valley bottom over the last 3 million 

years (Meyer et al., 2006). A major part of Katavi thus consists of young quaternary 

alluvial layers (Meyer et al., 2006). Generally, soils have high sand content and are 

rather infertile (TANAPA/WD, 2004, 2004). The soils are also acidic with very low 

organic content (Frost, 1996). 

Katavi National Park is located almost entirely in the Miombo woodland which covers 

more than 70% of the Park. Miombo woodlands dominate the southern Africa region 

(Ryan & Williams, 2011). Apart from a diverse tree community (Coates Palgrave et al., 

2002), Miombo harbours common grasses such as Hyparrhenia, Andropogon, Loudetia 

and Digitaria and the Miombo may support up to 20% of the grazer feeding or grass 
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biomass (Frost, 1996). Grass biomass decreases with increasing tree biomass (Frost, 

1996). Grassland on open plains in Katavi is dominated by grasses (Poaceae) and other 

herbaceous (non woody) plants or forbs (Meyer et al., 2005; 2006). Cyperaceae 

(sedges) and Juncaceae (rush) also occur. Savannas are characterized by a continuous 

cover of annual and perennial grasses and an open canopy of trees resistant to 

drought, fire and browsing.  There may also be an open shrub layer. Grasses vary 

considerably in height within the grasslands.  

Savanna grassland (herein referred to as grassland), is a major terrestrial biome with C4 

plants (in which carbon dioxide fixation occurs predominantly by the Hatch-Slack 

pathway (Cammack et al., 2008)) being the majority and with few and scattered C3 

plants (in which CO2 fixation occurs predominantly by the reductive pentose phosphate 

cycle) (Beerling & Osborne, 2006; Cammack et al., 2008). C4 plants are reported to 

dominate because they successfully inhabit hot, dry environments and have very high 

water-use efficiency compared to C3 plants; C4 pathways can double C3 photosynthesis 

(Mayhew, 2009). Tropical savannas or grasslands are associated with uneven annual 

rainfall ranging from 760 – 1270 mm and a wet and dry climate. Rainfall in Katavi is 

strongly seasonal with the wet season followed by about five dry months.  

About 25% of Katavi National Park area is savanna grassland on open plains (Fig. 5.1). 

The plains form the main feeding and resting habitats for hippopotami (and other 

herbivores). The grass available from the plains and woodlands in Katavi is therefore 

estimated to cover about 45% of the total Katavi area.  
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Fig. 5.1: Major vegetation types in Katavi National Park: Source: Katavi KRCD, 2006 

Savanna ecology is influenced by periodic fires as well as rainfall and grazing (Ryan & 

Williams, 2011). Fire may influence grassland species composition and structure (Bond 

et al., 2005; Bowman et al., 2009). Edwards & Allan (2009) found correlations between 

areas of the country burnt and two year cumulative rainfall in Australia. It has been 

reported that under annual burning, Miombo woodland is converted to grassland 

(Furley et al., 2008), and that fire frequency determines tree cover. Katavi grasslands, 

as for other areas in savannas, are exposed to and strongly influenced by fires (Meyer 

et al., 2006).  

Seasonality (wet and dry seasons) and grazing are likely to affect the food resource 

available to hippopotami. As with water availability, vegetation is an essential 

environmental resource for hippopotami and is likely to affect their behaviour on 

temporal and spatial scales. Apart from water resources, vegetation has been listed as 

the other limiting factor for hippopotami (Harris et al., 2008; Wilbroad and Milanzi, 

2010; Chansa et al., 2011). This was the basis for including vegetation in this behaviour 

study. Hippopotami observation sites and vegetation study sites were located within 



 

86 
 

savanna grassland of Katavi or the edges of Miombo woodland because these habitats 

are used for resting and feeding.  

Hippopotami require aquatic habitat (Field, 1970) and forage primarily at night (Laws, 

1968). This leads to spatial and temporal constraints on their foraging behaviour 

(Lewison and Carter, 2004). It has long been reported that their diet consists mainly of 

grasses (Kingdon, 1982; Eltringham, 1999; TAWIRI, 2001). Grass expansion in Africa 

during the Pliocene has been linked to success of early hippopotami (Boisserie & 

Merceron, 2011). However, some current studies have reported that they feed on 

dicotyledons vegetation to an extent too (Boisserie et al., 2005; Cerling et al., 2008; 

Harris et al., 2008). Mugangu and Hunter (1992) reported minor quantities of dicots in 

hippopotami diet in Zaire (DRC Congo). Grey and Harper (2002) reported hippopotami 

feeding on macrophytes or aquatic vegetation when plant stands were abundant in 

shallow water in Lake Naivasha, Kenya. More studies in East and Central Africa and 

Lake Turkana in Kenya using stable carbon ratios (analysis of hippopotami teeth 

enamel and hair tissues) showed a higher fraction of dietary non grass food materials 

in hippopotami diet than estimated by traditional observations (Cerling et al., 2008; 

Harris et al., 2008).  

Hippopotami select short grassland for feeding (Lock, 1972; McCarthy et al., 1998; 

Harrison et al., 2007), mainly with swards less than 15 cm tall (Lock, 1972; McCarthy et 

al., 1998; Spinage, 2012) but are non-selective in terms of grass species they eat 

particularly during scarcity. Nevertheless, some studies have reported them as 

selective grazers (Chansa et al., 2011). They ingest both standing dead as well as green 

material (Meyer et al., 2005). Lewison was quoted by Meyer et al. (2005) reporting that 

in times of scarcity in Katavi, hippopotami ate short grass unselectively ingesting sand, 

found later during postmortem analysis of stomach content. Harrison et al. (2007) 

reported highest hippopotami feeding intensity in areas with low growing grass in 

Malawi. Hippopotami cannot forage in tall grassland because they are unable to chop 

and grind their food but tears of by gripping using their lips (Spinage, 2012). In Malawi, 
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highest grazing intensity was recorded by Harrison et al., (2007) in areas of flood plain 

and flood plain grassland with grass height at around 15 cm. Due to this feeding 

strategy, sward heights were measured in this study because this is also a measure of 

forage availability.  

There have been reports of carnivory in hippopotami (Dudley, 1998). However, these 

are reported as rare and are thought to be fulfilling a nutritional need of hippopotami 

as vegetation often lacks essential nutrients or trace elements (Eltringham, 1999; Grey 

and Harper, 2002). Grasses in Miombo have low nutrient contents due to poor nutrient 

in the soils (Ryan, 2011).  

Hippopotami mainly feed at night (Laws 1968; Field, 1970; Kingdon, 1982; Eltringham, 

1999; Lewison and Carter, 2004; Chansa et al., 2011), but this study was not focused on 

feeding ecology and the study was restricted to day time behaviour only. Day time 

feeding is however, one of the behaviour traits recorded during this study. It has been 

reported that hippopotami employ foraging strategies that respond to vegetation 

characteristics such as vegetation quality, quantity and distance to water source 

(Lewison and Carter, 2004). This necessitated the study of vegetation in Katavi, 

particularly grasses in order to explain the possible relationship with hippopotami 

abundance and behaviour both on a temporal and spatial basis.  

Ecological studies often involve measuring sward height (Stewart et al., 2001) and 

biomass. Sward height and biomass have been used as predictors of available pasture 

(Sharrow, 1984), and have been reported to closely correlate. It has been reported that 

biomass estimation by harvesting is costly and destructive (Reese et al., 1980). 

However, due to costs concerns, allometric relationships can be used to estimate 

understory biomass (Andariese & Covington, 1986). Despite costs or destruction 

concerns, biomass estimation has been found and remains essential (Reese et al., 

1980). According to Guevara et al. (2002), plant destruction during biomass estimation 

is important and worthwhile. 
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Biomass has been reported by Collins & Weaver (1988) as the best indicator of the 

amount of material available for grazers. Biomass measures have also been reported to 

have many uses in the study and management of plant communities (Collins & Weaver, 

1988), hence its adoption during this study, instead of measures of grass production 

that would involve much more frequent sampling effort than available in the present 

study. 

In order to support the study on behavioural responses of hippopotami, some 

vegetation resources parameters were studied as forage forms a second important 

component in hippopotami habitat apart from water resources. Among the parameters 

measured in this study were plant mass (biomass + standing dead mass), sward height, 

percentage cover by vegetation and greenness in the five sites where hippopotami 

behaviour was observed. In vegetation sampling, some attention was paid to the 

selection of grazing sites for hippopotami or near resting sites. These were expected to 

help explain the patterns of behaviour observed. While results for food resources are 

presented in this Chapter, relationships between food resources and hippopotami 

distribution and abundance, immigration, emigration and behaviour are discussed in 

Chapter 8. 

1.1 Aims and hypotheses 

The aim of this work is to test the prediction that hippopotami resting sites have all 

year round feeding grounds and that their distribution and behaviour is not limited by 

feeding opportunity. It was anticipated that the effects of water and food availability 

on hippopotami distribution and behaviour cannot be separated. The major objective 

for plant sampling was to quantify total plant mass, biomass (g dry weight m-2) and 

standing dead mass (g dry weight m-2) in the five hippopotami key resting or shelter 

areas (behaviour recording sites). The study was also aimed at estimating variations in 

sward height, greenness and percentage ground cover between the feeding grounds in 

or near hippopotami’s resting sites. The study therefore tested the following 

hypotheses: 
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Hypothesis1: Green plant mass is available throughout the year within 5 km of all the 

 sheltering or resting sites 

Hypothesis2: Sward height is not limiting hippopotami availability of ground biomass 

feeding. 

Hypothesis3:  Plant biomass is the same in the five hippopotami study sites. 

Hypothesis4: There are seasonal variations in plant mass in the study sites 

Hypothesis5: Grass species dominate the ground vegetation community of the 

 hippopotami feeding areas. 

2 Methods 

2.1 Site selection 

This section gives descriptions that focus on the vegetation community present in each 

site, ordered in decreasing wetness. The main features of the sites are summarised in 

Table 5.1 and a map is shown as Fig.5.2. Each site has a different source or sources of 

water and taken as a whole, represent well the habitats of the National Park. All 

vegetation study sites were within 5 km of hippopotami resting or sheltering sites. 

Sward height, greenness, cover and plant mass (biomass and standing dead mass) were 

estimated for each of the sites. Sites are described in Chapter 2. 

Table.5.1: Summarised descriptions of study sites in Katavi National Park.  

 
 

Site Name Location Main source of water

a) Paradise Springs Adjacent Kapapa River Perennially River + Spring fed

b) Ikuu Springs Adjacent Katuma River Perennially spring fed

c) Lake Katavi Katuma River (Northern site) Seasonally River + Some minor spring fed

d) Ikuu River Along Katuma River Seasonally river fed

e) Lake Chada Katuma River (Southern Site) Seasonally river fed
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Fig. 5.2: Map of Katavi National Park showing five vegetation study sites. 

 

Sward height, percentage greenness and percentage cover, were also monitored at an 

additional site, Katisunga Plains. This was added because of its size, and importance as 

a dry season feeding ground for a large numbers of herbivores in the Park, including 

hippopotami in the Ikuu sampling areas. Katisunga is predominantly flood plain 

grassland fed by the main Katuma River and some springs. The area covers about 250 

km2. The area has small dendritic channels that receive water from surrounding areas. 

The area was selected for sward height and greenness measurements because it is a 

major feeding ground for a large number of hippopotami from nearby hippopotami 

resting sites. The site was added to pair with Ikuu Bridge for measurements because 

the Ikuu Bridge resting site is a narrow (about 30 m) riparian strip. Many hippopotami 

tracks lead from Ikuu Bridge to Katisunga which is about 2.5 km from the Ikuu Bridge 

hippopotami resting site (Fig. 5.2).  

Katisunga plains

Ikuu Springs

Ikuu Bridge

Katavi outflow
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2.2 Sampling frequency 

Plant mass, biomass and dead mass were measured seasonally.  Samples were taken in 

August/September 2009, (the driest months), January-March 2010 (the wet season) 

and May 2010, during the end of long rains, the wettest period. The last samples were 

taken in August 2010 to represent the beginning of the next dry season. 

Sward height, percentage cover by ground vegetation and sward greenness were 

sampled monthly from October 2009 to September 2010. In February, March and April 

2010, Paradise Springs was completely inaccessible and vegetation data are therefore 

missing.  

2.3 Cover (%) by ground vegetation. 

Vegetation cover was measured within the same quadrat used for sward height 

measurements in Section 2.4. While sampling sward height, percentage coverage of 

vegetation was estimated within the quadrat’s 1 X 1 m area. This was done visually by 

estimating the proportion of the quadrat covered by vegetation and by bare ground. 

2.4 Sward height 

Sward height was measured using a sward stick. A sward stick is a calibrated 1.5 m 

metal rod in a 30 cm diameter disc made of aluminium sheet with a hole at the middle 

for sliding the disc along the metal rod. The disc area was 0.07 m2 and weighed 0.41 kg 

and had a thickness of 2.5 mm. The rod was attached to the disc using soft wire string. 

The rod was calibrated to the nearest 5 cm, but more exact reading was done by 

reading to the nearest cm on the corresponding 5 m tape measure. When the sward 

height was relatively very low, only the tape measure was used to record the height as 

the disc was not effective in such cases. This was repeated using disc to calibrate the 

two methods. 

At each site, a randomly selected plot measuring 100 m x 100 m was selected within 

which ten randomly selected sub-plots were located and measurements conducted for 

sward height.  Sub-plot points were obtained by using a table of random numbers. At 
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each of the ten sub-plots, a 1 x1 m quadrat was placed and sward height was measured 

at each corner. Measurement was carried out by lowering the sliding disc on the rod 

until the disc rested on the sward.  

Average sward height was obtained by calculating the mean of the forty corners of the 

ten 1 X 1 m quadrats.  

2.5 Sward greenness 

Sward greenness was estimated within the same quadrat used for sward height 

measurements described in Section 2.4. Sward percentage greenness in the quadrat 

was estimated visually by observing and estimating the contribution of green 

vegetation to vegetation in the quadrat. 

 

2.6 Plant mass, biomass and standing dead mass 

Plant mass, biomass and standing dead mass were measured by cutting, drying and 

weighing vegetation in three replicates measuring 25 cm X 25 cm quadrats in each site. 

Quadrats were positioned at random within 100 m X 100 m sampling area.  

All vegetation in each quadrat was clipped. Within each quadrat, only stems that 

emerged from within the quadrat area were included in the sample. Plant litter and 

any other material that was not rooted in the quadrat was removed. Thereafter, all 

attached stems were clipped at soil level and divided into green, living stems and 

standing dead stems. Stems were classed as living if 5% or more of their surface 

appeared green. Any herbaceous, non-grass species were sampled and kept separately.  

Living stems, standing dead stems and other species were bagged separately and kept 

in labeled paper envelopes and air dried for 10 days. Envelopes were stored in a dry 

place before later oven drying at 60oC to constant weight and then weighing to the 

nearest 0.01 g on a Mettler top pan balance. Results are expressed as means of the 

three replicate quadrats scaled to per m2. A total of 60 quadrat samples were collected 

over the study period. The total number of plant species was recorded for each 

quadrat giving a measure of species richness in each of the foraging sites. 
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2.7 Data analysis 

Data were summarised and analysed using SPSS statistical software PASW 18 and the 

Microsoft Excel data analysis tool. Results were summarised as monthly, seasonal and 

annual means with their standard errors, correlations were performed using Pearson 

correlations and differences between sites or groups of sites were analysed using one 

way ANOVA. 
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3 Results 

3.1 Cover (%) by ground vegetation. 

Mean annual cover by ground vegetation varied between 50 ± 7.0 % at Lake Katavi and 

58 ± 8.0 % at Ikuu Springs (Table 5.2). Cover by ground vegetation varied between 

months (F11, 44 = 39.001, p < 0.0001), and did not show significant variations between 

sites. Annual maximum cover by ground vegetation was recorded at Ikuu Springs while 

the minimum at 13 % was recorded at Lake Chada (Table 5.2). 

Table 5.2: Summarised cover (%) by ground vegetation recorded at named study sites 
from October 2009-September 2010 in Katavi NP (% cover was not measured at Ikuu 
Bridge). 

Study site Annual maximum 
cover (%) by ground 
vegetation 

Annual minimum 
cover (%) by ground 
vegetation 

Mean annual cover 
(%) by ground 
vegetation 

Paradise Springs 89 27 55 ± 8 

Ikuu Springs 93 20 58 ± 8 

Lake Katavi 84 19 50 ± 7 

Lake Chada 88 13 55 ± 8 

 

Some grass vegetation was present in all the study sites throughout the study period. 

Maximum vegetation cover was recorded in April 2010 at Ikuu Springs (93 ± 0.8 %) and 

the least was in October 2009 at Lake Chada (13 ± 1.9 %) (Fig.5.3) 
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3.2 Sward height 

Mean annual sward height ranged from 27 ± 6 cm at Lake Katavi to 32 ± 6 cm at Ikuu 

Springs (Table 5.3). Vegetation was generally tallest in April and May and varied 

between months (F11, 44 = 22.079, p < 0.0001), but not between the study sites. The 

maximum sward height of all sites was recorded at Ikuu Springs in April 2010 (68 ± 5.9 

cm). The shortest sward height was 3.0 cm recorded at Lake Chada in October 2009 

and September 2010 (Table 5.3 and Fig. 5.4). 

 
Table 5.3: Summarised sward height (cm) recorded from October 2009 to September 
2010 at the named study sites in Katavi NP.  

Study site Annual maximum 
Sward height (cm) 

Annual minimum 
Sward height (cm) 

Mean Annual 
sward height (cm) 

Paradise Springs 66 5 31 ± 7 

Ikuu Springs 68 6 32 ± 6 

Lake Katavi 58 5 27 ± 6 

Lake Chada 61 3 30 ± 6 
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Fig. 5.3: Mean monthly cover (%)by ground vegetation in the four vegetation 
sampling sites in Katavi NP, Tanzania. Error bars are ± 1SE around monthly 

mean. 
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The sward height in Katisunga Plains (Fig. 5.5) was within the range of other sites 

varying between 6.0 ± 1.3 cm in September 2010 and 82 ± 4.8 cm in April 2010. The 

annual mean sward height was 34 ± 8.0 cm.  

 

0

10

20

30

40

50

60

70

80

M
ea

n
 ±

SE
 m

o
n

th
ly

 s
w

ar
d

 h
ei

gh
t 

(c
m

) 
 

Sampling months 

Fig. 5.4: Mean monthly sward height (cm) for ground vegetation in the four 
sampling sites in Katavi NP, Tanzania. Error bars are ± 1SE around monthly mean 
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Fig. 5.5: Mean monthly sward height measured at Katisunga 
Plains site from October 2009-September 2010 in Katavi NP, 
Tanzania. Error bars are ± 1SE around monthly mean. 
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3.3 Greenness of vegetation 

The maximum greenness was recorded at Ikuu Springs and Lake Chada while the 

minimum of 11 % was recorded at Lake Katavi and Lake Chada (Table 5.4). Mean 

annual greenness varied between 56 ± 9.0 % at Lake Katavi and Paradise Springs to 61 

± 9.0 % at Ikuu Springs (Table 5.4). Sward greenness varied significantly between 

months (F11, 44 = 86.603, p < 0.0001) (Fig. 5.6). However, greenness did not vary 

between sites. 

Table 5.4: Summarised greenness (%) of vegetation from October 2009-September 
2010 at the four named study sites in Katavi NP  

Study site Annual 
maximum 
greenness (%) 
of vegetation 

Annual minimum 
greenness (%) of 
vegetation 

Mean annual 
greenness (%) of 
vegetation 

Paradise Springs 88 27 56 ± 9 

Ikuu Springs 96 16 61 ± 9 

Lake Katavi 94 11 56 ± 9 

Lake Chada 96 11 58 ± 10 

 

Vegetation was therefore at least 5% green, which corresponds to the definition of 

living for the purpose of this study, in all the study sites all the year round. Maximum 

greenness was recorded at Ikuu Springs and Lake Chada in March and April 2010 with 

96 %. Minimum greenness was recorded at Lake Katavi in September 2010 (11 ± 2.0 %) 

and at Lake Chada in August 2010 (11 ± 2.7 %). Mean monthly greenness values are 

presented in Fig. 5.6. 
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Greenness of vegetation at Katisunga Plains varied between 11 ± 3.5 % in September 

2010 to 97 ± 0.4 % in March 2010 with an annual mean of 60 ± 10 % (Fig. 5.7). 
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Fig. 5.6: Mean monthly  greenness (%)  of vegetation in the four listed vegetation 
sampling sites in Katavi NP, Tanzania. Error bars are ± 1SE around monthly mean. 
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Fig. 5.7: Mean monthly greenness (%) of vegetation at Katisunga Plains site 
in Katavi NP, Tanzania. Error bars are ± 1SE around monthly mean. 
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3.4 Plant mass, biomass and standing dead mass 

The highest mean seasonal plant mass recorded was 960 g dry weight m-2 in May 2010 

at Lake Chada.  The lowest was 66 g dry weight m¯2 at Ikuu Springs in August 2009 

(Fig.5.8). Paradise Springs was inaccessible in January 2010, so no data are available. 

Mean plant mass varied significantly between the four sampling seasons (F3, 19 = 4.388, 

p < 0.02). However, there were no significant differences in mean plant mass between 

study sites. 

Maximum annual plant mass was 2880 g dry weight m-2 recorded in May 2010 at Lake 

Chada while the minimum annual plant mass was 198 g dry weight m-2 recorded in 

August 2009 at Ikuu Spring (Table 5.5). Ground vegetation was present in all seasons 

and in all sites sampled. 

Table 5.5: Summarised annual maximum and minimum plant mass (g dry weight m-2) 
from August 2009-August 2010 at the four named study sites in Katavi NP. 

Sampling site Annual maximum plant mass  

(g dry weight m-2) 

Annual minimum plant mass 

 (g dry weight m-2) 

Paradise Springs 1233  301 

Lake Katavi 1967  492 

Ikuu Springs 2165  198 

Ikuu Bridge 1684 793 

Lake Chada 2880 594 
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Mean seasonal biomass varied between the four sampling seasons (F3, 19 = 3.923, p < 

0.028). However, there were no significant differences in seasonal biomass between 

study sites. Variations in mean seasonal biomass and standing dead mass for individual 

study sites are presented in Fig. 5.9.  
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Fig. 5.9: Comparison of mean seasonal biomass and standing (Stg) dead mass (g dry wt. 
m-2) for the named study sites August 2009-August 2010 in Katavi NP, Tanzania. Error 
bars are ±SE around the seasonal sampling mean. 
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The mass of standing dead stems did not vary seasonally between study sites. The 

highest seasonal mean standing dead mass was at Lake Katavi in May 2010 (378 g dry 

weight m-2), while the least was also at Lake Katavi in August 2009 (6 g dry weight m-2) 

(Fig. 5.9). The ratio of living to dead stems is shown in Table 5.6. 

Table 5.6: Summary of annual mean biomass, standing dead mass and the ratio of biomass to 
standing dead mass in the five named study sites August 2009 to September 2010 in Katavi NP. 
Error bars are ±SE around annual mean. 

Site Annual mean 
biomass (g) 

Annual mean standing 
dead mass (g) 

Ratio of biomass to 
standing dead mass 

Paradise Springs 757  ± 269 132 ± 44 6 : 1 

Ikuu Springs 1126 ± 495 54 ± 33 21 : 1 

Lake Katavi 849 ± 171 290 ± 252 3 : 1 

Ikuu Bridge 1056 ± 247 229 ± 121 5 : 1 

Lake Chada 1316 ± 585 199 ± 116 7 : 1 

 

Ikuu Springs was the site with the highest ratio of biomass to standing dead mass 

(Table 5.6).  Lake Katavi had the lowest ratio. 

3.5 Species richness of the sward. 

A total of ten low-growing plant species were found across all five sites. Grasses 

represented about 62% of the species found (Table 5.7). Number of grass and 

herbaceous species did not differ significantly between study sites. However, number 

of grass and herbaceous species varied significantly between the four sampling 

sessions (F3, 56 = 3.108 p = 0.034 and F3, 56 = 5.648 p = 0.002 respectively)   (Fig. 5.10).   

Table 5.7: Maximum number of grass and herbaceous species recorded in Katavi NP      

Sampling site Number of grass species Number of herbaceous species 

Paradise Springs 5 3 

Lake Katavi 4 5 

Ikuu Springs 4 4 

Ikuu Bridge 5 4 

Lake Chada 4 4 
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4. Discussion 

4.1 Ground cover 

For an organism to reproduce and maintain a viable population, the basic needs (food, 

cover, space and water) must be available in the appropriate quantity and quality 

(Fulbright and Ortega, 2006). One of the prerequisites for habitat management is 

therefore to identify limiting factors and optimum levels for food, cover, space and 

water (Johnson, 1980). The type and availability of these requirements are likely to 

have some impacts on hippopotami behaviour, abundance and movements on 

temporal and spatial scales.  

The results of this chapter make a link between hippopotami behaviour, distribution 

and abundance with feeding resources. The correlations presented in Chapter 8 show 

that sward height, cover by ground vegetation and greenness of vegetation correlated 

inversely with some hippopotami characteristics such as abundance, immigration, 

emigration and behaviour. There were no correlations with some other characteristics 

such as hippopotami aggregations with vegetation variables.  Details of such 

correlations are presented in Chapter 8. 

All sampling sites had cover by grass and several herbaceous plants during the whole 

period of this study. Despite variations in the amount of ground cover, during the 

driest period, at least 10 % of the ground in each site was covered with green forage. In 

terms of vegetation cover, forage was thus geographically available all year in all of the 

sites. However, such availability depends on other sward characteristics such as 

minimum sward heights required for optimal foraging and bite size. Vegetation cover 

did not vary between sites, despite variations in wetness between sites. Rainfall in East 

Africa controls much of forage (McNaughton, 1985; Sinclair, 2000).  Although rains 

stopped after the rain season, its impact in sustaining forage was assisted with local 

factors during the rest of the year. This might account for the availability of cover all 

year. 
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4.2 Sward height 

Some studies have found that the quantity and quality of food for herbivores and other 

key processes in ecology (such as plant succession) in grass ecosystems are affected or 

may be affected by sward height (Stewart et al., 2001). For some animal species, such 

as cattle and their calves, feeding rate (intake per bite and rate of intake) is sensitive to 

sward height (Hodgson, 1981; Laca et al., 1992). It has also been reported that 

hippopotami feeding rate seems to be affected by sward height (Lock, 1972; Olivier 

and Laurie, 1974; Harrison et al., 2007), preferring and foraging successfully in short 

grass with sward height at about 15 cm. Sward height correlated inversely with 

hippopotami density for both juvenile and adults. More hippopotami were recorded 

when swards were shorter. However, this is not necessarily a causative relationship 

because hippopotami select short swards. However, very short swards may be limiting. 

In Katavi, very short sward led to hippopotami eating grass mixed with sand (Meyer et 

al., 2005) probably due to inability to select using their lips. Foraging height of 

hippopotami tends to close with that of wildebeest in the Serengeti where mechanistic 

model and field observations showed that they maximize energy intake on swards 

between 3 and 10 cm (Wilmshurst et al., 1999). Wildebeest were observed preferring 

short and intermediate swards of moderate greenness. However, selectivity of forage 

was higher towards greenness and not on grass height (Wilmshurst et al., 1999). There 

are various sward characteristics which may explain the reasons for the hippopotami 

preferring short swards. These are discussed in Chapter 9. They include morphology of 

hippopotamus, dentition (Lock, 1972; Spinage, 2012) and sward quality or digestibility, 

assimilation and handling or bite rates (Fryxell, 1991; Hassall et al., 2001; Drescher et 

al., 2006).   

Grazing intensity among hippopotami in Liwonde NP, Malawi was highest in the sites 

with sward height around 15 cm high. The lowest grazing was in sward heights of up to 

50 cm high. It was proposed by the authors that habitat type had a greater effect on 

hippopotami grazing than distance from water (Harrison et al., 2007). In the coastal 

grassland of Transkei, South Africa, greatest concentrations of forage biomass were 



 

105 
 

recorded in the shortest swards (Shackleton, 1990), as grazing marginally reduce the 

biomass (Shackleton, 1991). This might explain why hippopotami tend to feed on short 

swards, apart from its morphology.  They are likely to get more net energy by feeding 

in the short swards with more digestible biomass rather than longer swards. This is in 

line with forage maturation hypothesis (Fryxell, 1991).  

Sward heights in Katavi averaged between 30 and 40 cm. This can be considered as 

above optimum height for hippopotami and therefore was inaccessible for grazing 

during half of the year. The months of January to June supported taller swards which 

might have been well above the optimal for hippopotami. Forage may not have been 

available near their shelter sites. However, grazing pressure by other ungulates such as 

buffalo and zebra may transform tall grasslands into patches of varying sward heights 

(Kanga, 2011) and hence make it accessible for foraging. In Masai Mara Game Reserve 

in Kenya, hippopotami have been effective in maintaining short swards and are said to 

be important in vegetation dynamics (Kanga, 2011). Also alternate feeding between 

areas by hippopotami may have been essential in resource utilization as inaccessible 

sward at an area at one time becomes accessible at a later season. This may enable 

forage to be available to other ungulates at most of the time during the year by 

resource partition (Schoener, 1974; McNaughton, 1985). Similarly, many herbivores 

are known to migrate in response to a varying resource such as forage (Wilmshurst et 

al., 1999). 

Hippopotami select certain areas for grazing. Due to the sward height recorded during 

most of the wet season, they might have been foraging in other areas. In Lundi River, 

Gonarezhou NP, in Zimbabwe, hippopotami used areas close to the river during the 

wet season and foraging further away during the dry season (O’Connor & Campbell, 

1986) possibly due to sward height.  Shackleton (1992) in Mkambati Game Reserve in 

South Africa found that grazing in areas which had long swards was very low. Similar 

observation has been reported in Malawi (Harrison et al., 2007). In Ruaha NP, 

Tanzania, more hippopotami raided crops during the rainy season (Kendall, 2011), 
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probably because of sward height being higher than their optimum heights. Sward 

heights are also associated with maturity of the grasses. As the grasses mature their 

tensile strength increases hence reducing digestibility (Hassall et al., 2001), this might 

be the reason for hippopotami preferring short, previously grazed swards.  

In general, all the study sites were affected by burning and rapid drying of grasses. 

Some of the areas such as the Katisunga plains were burnt to avoid hot fires during the 

peak of the dry season. This affected the sward height and quality as estimated 

arbitrarily by levels of greenness. This also forced some animal species particularly 

hippopotami to concentrate their feeding in fewer areas hence reducing sward height 

at a much faster rate.  

 

At Ikuu Springs, maximum sward heights were recorded in March and April. Sward 

heights dropped abruptly in May-July probably due to increased concentration of 

animals at the beginning of the dry season (May–July 2010). Animals of various species 

congregated at the site for feeding and watering at the springs and Katuma River. After 

burning of adjacent areas, the number of animals grazing at Ikuu Springs increased and 

this led to more utilization hence reducing the sward height at a much faster rate. This 

is consistent with the inverse correlations between vegetation variables and 

immigration and emigration reported in Chapter 8. 

 

Ikuu Springs was used heavily as a dry season refuge. Before the start of the dry 

season, animals were few and scattered. With the beginning of dry the season, animals 

started to congregate at Ikuu Springs possibly in anticipation of the coming dry season. 

During this time (May to July), the main Katuma River nearby had some flowing water, 

and hippopotami that moved here contributed to the rapid decrease in sward height. 

 
In the Katisunga plain, maximum sward height was recorded in April but dropped 

rapidly in May-July, most probably due to heavy grazing and fires. Throughout the year, 

the Katisunga Plain was used by various animal species, more so when rains stopped 
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and water levels receded. After the end of the rains, water levels dropped rapidly. Also, 

the impact of early burning which took place in late May and June and accidental fires 

were observed to affect sward height.  

 

At Paradise Springs and Lake Katavi, there were slow decreases in sward height mainly 

due to low densities of animals. During May-July, animals were still scattered and the 

number was still low hence underutilization of the area. During managed burning, 

these areas were not affected because they were still greenish and wet. This caused 

fires not to affect the sward heights in these two study sites. At Lake Chada, there was 

an increase in the number of animals and rapid rates of drying, which affected sward 

heights during the months of May-July. 

 

In all the areas, sward height responded quickly to the onset of rains in November. 

Before November, green vegetation was still supported by remaining river waters in 

muddy pools; springs and some areas had some green vegetation after the previous 

burning. Because of this, all the sites responded in the same way. 

 

It can therefore be concluded that at some point in the year, sward height was limiting 

in the feeding of hippopotami near their shelter sites. However, this does not indicate 

that there was less or no food as the vegetation study concentrated in the areas near 

their shelter sites. Animals had more foraging ground to feed from further from the 

shelters but would have to expend more energy in travelling and time. 

 

4.3 Greenness of Vegetation  

Vegetation greenness was taken as an indication of sward quality, with more greenness 

reflecting increased quality. Some green forage was available in all study sites in Katavi 

during the study period despite seasonal reduction in percentage greenness. In the 

Serengeti, green forage was recorded during the dry months only in high rainfall areas 
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(McNaughton, 1985) within the Park. There were correlations between hippopotami 

density and greenness of the vegetation. These are discussed in Chapter 8. 

 

The year round greenness of forage in Katavi was partly contributed to by springs, 

minor water pools and some areas that were burnt towards the beginning of the dry 

season producing green shoots during the dry season. However, rainfall was a major 

dictating factor for plant greenness. In the study of utilization of natural pastures by 

wild animals in the Rukwa valley, Tanzania (Foster & FitzGerald, 1964), it was found 

that grazing pressure results in pasture rejuvenation. They observed that sequence of 

animals, heavier ones followed by lighter ones, use the different pastures in rotation 

during the year and as a result, alternate periods of optimum use and rest occur, and 

the harmful effects of overgrazing do not appear. This can explain why the 

hippopotami use the short swards which rejuvenate in the course of their feeding 

(Shackleton, 1992). Dry periods favor the fauna whereas extremely wet ones are 

unfavorable (Foster & FitzGerald, 1964; O’Connor & Campbell, 1986). This can further 

explain that during the wet season, green forage may be plenty but inaccessible to 

animals. The grass rejuvenation principle might help to explain why green vegetation 

was recorded throughout the study period, in addition to water and effects of burning. 

Hippopotami do not eat selectively (Lewison, 2004) as quoted in Meyer et al. (2005), 

therefore it is also probable that food was available at all times despite a decline in 

green plant mass. 

 

In the Serengeti, foraging by wildebeest was found to be influenced by sward 

greenness rather than sward height (Wilmshurst et al., 1999), preferring moderate 

greenness regardless of season. However, because greenness increases with age of the 

sward, this led to the wildebeest preferring short to intermediate swards which have 

moderate greenness. During wildebeest migrations, the animals foraged on green flush 

of grasses stimulated by localized rainfall (Wilmshurst et al., 1999). This is thought to 

be a strategy of maximizing energy intake. 
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Hypothesis one is therefore accepted in that green plant mass was available 

throughout the year within 5 km of all the hippopotami sheltering or resting sites. 

4.4 Plant mass, biomass and standing dead mass 

The highest total plant mass was recorded in May at Lake Chada which was the driest 

site, however, this coincided with the end of the rains. In January, Ikuu Spring (the 

second wettest site) recorded the second highest plant mass over the whole study 

period. The least plant mass was recorded in August at Ikuu Springs and Paradise 

Springs, both wet sites. Plant mass did not therefore correspond closely to the wetness 

of the site, but rather to rainfall. As it was with sward height, all the sites responded in 

the same way in terms of plant mass. Wetness was however concentrated at the 

resting site while foraging took place at a much larger area around the shelter site. The 

impact of wetness might have been less of forage, hence plant mass. It has also been 

reported that forage in east Africa mainly depends on rainfall (McNaughton, 1985, 

Sinclair et al., 2000). 

Low plant mass in the two wettest areas might have been contributed to by controlled 

burning of the areas during June. After burning, biomass concentrations become 

temporarily low for some few months (McNaughton, 1985; Shackleton, 1990). Some 

possible explanation for low plant mass at Ikuu Springs might be due to the effect of 

grazing. During August, the area is grazed by animals going to and from the springs and 

water pools along the Katuma River for watering. Similarly, Paradise Springs is highly 

used by hippopotami and other grazers for feeding and watering. Their feeding impact 

is thought to have contributed to low plant mass during the dry season. The highest 

biomass was at Lake Chada and was probably due to a low intensity of grazing.  

Generally, plant mass in Katavi grasslands is comparable to other grass lands. Singh & 

Yadava (1974) found that above ground biomass, standing dead and litter showed a 

maximum of 1, 974 g dry weight m-2 in a tropical grassland in India. They found that 

maximum biomass was during the wet season. Ni (2004) found that above ground 

biomass in temperate Northern China had peaks ranging from 20-2021 g dry weight m-
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2 with a mean of 325 g dry weight m-2. As in Katavi, Ni (2004) found that grassland 

productivity and biomass had significant positive relationship with rainfall. In East and 

Southern Africa, similar relationship between rainfall and grasslands has also been 

reported (McNaughton, 1985; Shackleton, 1990; Sinclair, 2000). In Mali, Diarra & 

Breman (1975) found that rainfall is a decisive factor for grass production. In Free 

Orange state, South Africa, plant mass, biomass and dead mass production in grazing 

areas were found to be affected by seasonal rainfall among other factors (Snyman & 

Fouche, 1993). O’Connor (1994) in Gazankulu, South Africa found that abundance of 

dominant grass in African savannas grassland was more responsive to rainfall variability 

than grazing. 

4.5 Species richness of the sward 

Ten species of ground flora were recorded in the study sites. Also there was no 

seasonal change in species composition between and within the study sites. Lack of 

seasonal change in species richness suggests that plants were mostly perennial rather 

than annual. Results showed that grass species dominated the ground flora in foraging 

areas. Species available are important because despite hippopotami being unselective 

during the time of forage scarcity, they have preferences in the grass species. In 

Mkambati Game reserve, Transkei, South Africa ungulates grazed intensively on 

Cymbopogon and Digitaria species (Shackleton, 1992). O’Connor (1994) reported 

Aristida bipartite as unpalatable grass species while in the genera Heteropogon, 

Themeda, Digitaria and Setaria were palatable. Chansa et al. (2011b) observed that 

hippopotami in Luangwa River in Zambia utilized grass species depending on 

availability, although grass species in the genera including Panicum, Urochloa, 

Cynodon, Echinocloa and Hermathria dominated their diet. Also in Zambia, areas with 

Cynodon dactylon and Echinocloa species along Luangwa River were found to harbour 

many hippopotami suggesting that these were most palatable grass species (Wilbroad 

and Milanzi, 2010).  

Although few species were recorded during the present study in the study sites, more 

species have been recorded in Katavi (Mwangulango, 2004). Similarly, species recorded 
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are among those listed as palatable to hippopotami. Despite being unselective, 

presence of more grass than herbaceous species may indicate more choice for the 

hippopotami.   

In Masai Mara, in Kenya (Kanga, 2011), hippopotami were thought to influence 

vegetation dynamics including seasonal variations in grass species due to the effects of 

feeding. This was less so in Katavi as there were no seasonal variations in species 

richness and there was low species variation between study sites. However, this may 

also indicate that effects of hippopotami grazing were not heavier in their feeding sites 

near the hippopotami shelter sites in Katavi, probably due to availability of forage.  

 

5. Conclusions 

Forage accessibility by hippopotami in terms of sward height is not thought to have 

been a major constraint during the dry season. However, during most of the year, 

sward height, were higher than the optimum height preferred by hippopotami. Other 

nearby foraging areas are thought to have been used by hippopotami at times when 

sward heights near shelter sites were much higher. This is because hippopotami tracks 

were see leading to various foraging sites from the shelter sites. This is also due to the 

fact that many large herbivores migrate in response to variations in availability of 

resources. 

Although herbaceous vegetation resource availability and accessibility varied 

seasonally, forage was not thought to be a limiting factor for hippopotami in Katavi 

during the period of this study. Apart from above optimum sward heights in the study 

sites during some months 

Despite seasonal variations in vegetation greenness, hippopotami resting and feeding 

grounds nearby had green swards during the whole year and thus their distribution 

and behaviour were not limited, but may have been affected by grazing opportunities. 

Some green forage plants were available within 5 km throughout the year. Greenness 

which was considered as a measure of forage quality was recorded throughout the 

year. 
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This study was conducted during the average year as rainfall was slightly below the 

previous year but slightly above 13-year average for the park. Water therefore did not 

limit as anticipated during the dry year. This supported plant mass during the whole 

study period. 

Some sward greenness was recorded throughout the year in the hippopotami feeding 

ground or near sheltering sites. As greenness was recorded to represent sward quality, 

it can be argued that despite a decline in percentage greenness during the dry season, 

there was quality forage throughout the year.  

Due to rainfall trends over the last six decades, there is no concern over the availability 

of forage for the hippopotami in Katavi at present, except for the few dry years. There 

is no evidence to suggest that forage will be limiting in the near future if the projected 

climate change will lead into increased precipitation (IPCC, 2001a; 2001b; 2006; IAH, 

2012). This is because forage in East Africa depends largely on rainfall, and remains to 

be the major determinant of forage availability.   

Despite projected increase in rainfall (IPCC, 2001; 2001b; 2006; IAH, 2012); the park 

may be faced with drought if there is no addition of water from the catchments. This is 

because of the higher rates of evapotranspiration as temperatures are set to increase 

(IPCC, 2007a; 2007b; IAASTD, 2009). Projected increase in temperature and rates of 

evapotranspiration coupled with uncontrolled water use may cause the forage to dry 

out much earlier hence leaving the hippopotami with low quality or no forage during 

the years with prolonged drought.  

Short sward particularly if predominantly brown may result in higher travel costs and 

hence lower net energy gain.  

Higher hippopotami density coincided with lowest sward heights. This might be the 

evidence of trade-offs between serving the benefits of aggregating and its foraging 

costs.  
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Chapter 5: Hippopotami abundance, immigration and emigration 

1. Introduction 

Ecology is concerned with two main subjects, distribution and abundance of organisms 

(Krebs, 1972; Begon et al., 2006). Distribution and abundance are linked by interactions 

that determine them. There are spatial and temporal variations in abundance. 

Temporal variations can be between decades, within decades, annual and seasonal. 

Animal abundance is influenced by natality, mortality, immigration and emigration 

(Begon et al., 2006). Long term (generation time) changes in abundance are most likely 

to be influenced by changes in natality and mortality. Short term changes in abundance 

(within generation time) are mainly due to changes in distribution brought by seasonal 

dispersion and migration (immigration and emigration) as animals move in and out of 

their present habitat. Habitat is the place where an organism lives and it includes all 

the resources and conditions present in that area that produce occupancy including 

survival and reproduction (Hall et al., 1997; Krausman, 1999). The relationship between 

animal population density and their habitats has been addressed by ecological theories 

including resource concentration (Root, 1973; Connor et al., 2000).  

Within generation changes in abundance due to immigration, emigration and 

dispersion are often responses to changes in habitat quality. Habitat quality is the 

ability of the environment to provide conditions appropriate for survival and 

reproduction (Fulbright & Alfonso Ortega-S, 2006). The major environmental 

conditions and factors affecting habitat quality include environmental resources (food, 

shelter or space, water) and seasonal changes in weather conditions (temperature, 

wind and rainfall) (Begon et al., 2006; Fulbright & Alfonso Ortega-S, 2006). When 

habitat provides less than that needed it may cause the animal to move from the 

present habitat in search of better habitat.  

Changes in distribution result from variations in abundance between sites. This may be 

due to physiochemical conditions, the type and amount of resources available, the life 
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cycle of the species and the influence of external factors such as competitors and 

predators (Begon et al., 2006)  

Native fauna in Africa is declining (Bouche´ et al., 2011). Natural and human mediated 

disturbances influence abundance and populations (Thuiller et al., 2006; Lewison, 

2007). Climatic factors such as rainfall have many effects on wildlife population 

dynamics (Hone & Clutton-Brock, 2007). For a number of years, hippopotami 

populations in Africa have been decreasing (Lewison and Oliver, 2008), predominantly 

as a result of hunting and habitat loss (Lewison and Oliver, 2008; Kanga et al., 2011a; 

2011b) (Fig. 6.1). Understanding dynamics of small population is essential in 

conservation particularly of endangered species (Begon et al., 2006). This is particularly 

important for species such as hippopotami which in 2006 was categorized as 

vulnerable by IUCN compared with former category of wide spread and secure in 1996 

(Lewison and Oliver, 2008). 

 

Fig. 6.1: Hippopotami population trend in African countries. Source: Lewison and Oliver 
(2008) 

Hippopotami contribute to an ecosystem in a number of ways. They are mega 

herbivores that have large spatial and temporal influences on natural ecosystems 

(Lewison and carter, 2004) by altering physiognomic habitat structure and creating a 

mosaic of habitats for smaller organisms (Field, 1970; Field and Laws, 1970; Kanga et 
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al., 2011a; 2011b). Moderate hippopotami densities can prevent the spread of small 

fires by maintaining habitat mosaics. Hippopotami are therefore often considered as 

keystone species (Eltringham, 1999; Boisserie et al., 2011). High hippopotami density 

has been reported to cause over grazing, erosion and decreased plant and animal 

diversity (Field, 1970; Thornton, 1971; Eltringham, 1974; Chansa et al., 2011a). In 

Queen Elizabeth National Park in Uganda, high density led to the culling of about a half 

of the population size in 1958 (Thornton, 1971; Eltringham, 1999). Hippopotami culls 

were also conducted in Ruwenzori National Park, Uganda (Eltringham, 1974). In 

Zambia, high population density in Luangwa River also led to culling of hippopotami 

(Sayer & Rakha, 1974). In Kruger National Park, South Africa, culling was also carried 

out from 1962 to the late 1980s in order to maintain an optimum density of the 

hippopotami population (Viljoen, 1980; Viljoen & Biggs, 1998). Reduced water depth in 

the shallow lakes in Katavi in the 1990s was thought to have been partly caused by the 

large populations of hippopotami that the Katavi water systems support (Lewison, 

1996). 

Hippopotami have also been involved in conflicts with humans (Dunham et al., 2010; 

Kanga et al., 2011a; 2011b). Hippopotami live in lakes and rivers, some of which border 

human settlements. Human-hippopotami conflicts have led to increased killing and 

culling of hippopotami (Kendall, 2011). In Mozambique, hippopotami have been 

identified as causing the third most deaths due to wildlife in Africa (Dunham et al., 

2010). Hippopotami cause damage to crops (Dunham et al., 2010; Kendall, 2011).  

Effective management and conservation of wildlife populations such as of hippopotami 

requires knowledge of occurrence, abundance and factors that influence spatial and 

temporal patterns of these variables (Thorn et al., 2010). Conservation, particularly of 

threatened species relies on information on their population estimates and trends 

(Collen et al., 2011). Due to spatial and temporal resource distributions, hippopotami, 

as for other animals, make seasonal movements in search of better resources or to 
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escape from major changes in food or climate at the current habitat. This may 

influence abundance both temporally and spatially.  

Protected areas have been regarded as pillars for global conservation efforts (Craigie et 

al., 2010). National Parks are among the key conservation areas for protecting species 

(Thuiller et al., 2006), hence the need to estimate density of hippopotami in Katavi. 

Despite the importance of protected areas, their performance in maintaining 

populations particularly in Africa are still poorly documented (Craigie et al., 2010). 

Protected areas are essential because many wild animals in Africa survive poorly 

outside protected areas due to anthropogenic effects (Caro, 1999; Rannestad et al., 

2006; Stoner et al., 2007). While counting hippopotami in Tanzania in 2001, 80 % of the 

recorded hippopotami were found inside protected areas (TAWIRI, 2001), suggesting 

the species can hardly tolerate human habitation. Recording and estimating density 

helps to identify the most important sites (Olivier and Laurie, 1974). Estimation of 

population size is also the raw material for study of abundance (Begon et al., 2006).  

Hippopotami are widespread in Tanzania but detailed population estimates are lacking 

for most areas (TAWIRI, 2001).  The first country-wide systematic reconnaissance 

flights (SRF) aerial census in Tanzania was conducted in 2001. From minimum total 

counts, 20,079 hippopotami were counted along 20 major rivers and six other water 

bodies (Fig .6.2) (TAWIRI, 2001). The survey concentrated on potential hippopotamus 

habitats, however, some rivers and other potential water bodies were not surveyed 

due to logistical limitations (TAWIRI, 2001). The habitat and activity patterns of 

hippopotami deemed them particularly difficult to accurately count from the air 

(TAWIRI, 2001; Stoner et al., 2006; 2007). Difficulties in counting hippopotami from the 

air and time limitation mean that their numbers were most probably underestimated. 

According to aerial census of 2001, most of the hippopotami were recorded in 

southern and western Tanzania, and about 80 % of these were found in protected 

areas (National Parks and Game Reserves) (TAWIRI, 2001). Important sites were Selous 
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Game Reserve, the Katavi-Rukwa ecosystem, Ugalla and Malagarasi Rivers and the 

Mara River in the Serengeti National Park (Fig. 6.2) (TAWIRI, 2001).  

 

 

Fig. 6.2: Areas surveyed in 2001 for hippopotamus in Tanzania. Source: TAWIRI/CIMU 

2001. 

During the large mammal census undertaken in 1986 in Selous Game Reserve in 

Tanzania, the population for the area was 15,483 while in 1989, an estimated 24,169 

hippopotami were recorded (TAWIRI, 2001). Game (1990) counted hippopotami on the 

major rivers in the same area and estimated a population of 20,598 hippopotami and 

1,189 hippopotami in the Mara River in the Serengeti National Park.  
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Apart from their abundance, hippopotami move overland in search of grazing 

(Eltringham, 1974; 1999; Lewison and Carter, 2004; Harrison et al., 2007). In the course 

of their movement they impact their environment in various ways (McCarthy et al., 

1998). Studying movement of hippopotami to and from their resting or sheltering 

ground was intended to record baseline information on their movements through 

seasonal immigration and emigration in Katavi. Understanding spatial and temporal 

movements will help in acquiring information for proper management and 

management strategies. The study therefore had the following aims: 

1.1 Aims and hypotheses 

The aim of estimating hippopotami abundance in Katavi was to determine if there 

were significant changes in their distribution over the years. 

It was also aimed at assessing changes in hippopotami populations in Katavi National 

Park over recent years and to provide preliminary assessment of seasonal dynamics in 

hippopotamus abundance, immigration and emigration in selected sites in the Park. 

The study involved the following: 

1. Comparing hippopotamus abundance over censuses years 

2. Comparing hippopotamus abundance of adult and juveniles at five study sites. 

3. Comparing rate of emigration and immigration of hippopotami in the five sites  

The study therefore tested the following hypotheses 

H1 The index of the total hippopotamus population in Katavi National Park 

shows a decline over time scales larger than their generation time  

H2 Hippopotamus abundance in Katavi NP varies between seasons  

H3 Patterns of seasonal immigration and emigration of hippopotami in Katavi 

vary between sites  
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2. Methods 

2.1 Aerial and ground counts 

Long term hippopotamus aerial censuses for Katavi exist although they were not the 

primary target species. Few records exist on spatial and temporal variations in 

hippopotamus populations in the Park. 

To estimate the number of hippopotami in Katavi National Park, three methods were 

used; two involved estimating hippopotamus numbers in the whole of Katavi while the 

third was confined to the five study sites. The first two were conducted by Park staff 

and research personnel while the third formed part of this study. Results for each 

hippopotamus counting method are presented and analysed separately. The methods 

were 

a) Aerial counts or census 

b) Minimum total counts 

c) Direct counts 

Aerial counts using Systematic Reconnaissance Flight (SRF) have been conducted in 

Katavi since 1977 using Cessna 206 light aircraft. However, more regular counts began 

effectively in 1987 (Table 6.1). Most of the counts were not specifically for 

hippopotami (with exception of September 2001), but they did provide estimates of 

hippopotami abundance. Wherever possible, two or more aircraft were used 

simultaneously to reduce double counts by finishing the counts in a shortest time 

possible. During these counts, flight height from the ground varied between 60-150 m 

depending on the terrain. Most flights were conducted at 100 m on the plains and 120-

150 m on the hilly or mountainous areas. Inter distance between two transects were 1-

5 km apart depending on required sampling intensity whether reconnaissance or 

detailed. In order to systematically calibrate transect width on the ground, it was 

necessary to indicate respective strips to the observers. This varied between observers 

depending on the height of the eyes of observer above the seat or position that each 

observer adopts while observing (Swanepoel, 2007). In order to confine the 
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observations zone to a strip approximately 150 m wide on the ground, markers were 

attached to the wings of the plane at approximately 50-70 cm apart depending on the 

height of the observer. The markers were individually calibrated for each observer. 

Two observers and a recorder were involved in each plane. 

Table 6.1: Years and months when aerial census were conducted in Katavi 

 

Minimum total count involved ground counts of all hippopotami in the areas in which 

they were seen or known to occur in the park following aerial reconnaissance surveys 

conducted using light aircraft over the whole Park. Shortly after the aerial survey, foot 

counts were made, using different teams for each area to reduce census duration and 

minimize possibilities of double counting. A total of twelve transects for hippopotamus 

counting were established. Counting was conducted in October 2004, 2005 and 2010. 

October was chosen as the hottest month in Katavi with high evapo-transpiration and 

low water levels making hippopotami more obvious. However, due to logistical and 

time constraints during the counts, some areas were not covered and in some larger 

areas only proportions were intensively covered. This is among the sources of possible 

underestimation.  

Direct observation at ground level 

The third method was the one used during this study which involved counting 

hippopotami using 10 X 50 binoculars in behavioural observation sites. Animal counts 

were conducted in estimated quadrats measuring 0.2 km X 0.25 km (200m X 250m) 

making an area of 5 ha (0.05 km2). Estimated total area size of each site is given under 

each site descriptions in Chapter 2 and summarised in Table 6.2. Sites are arranged 

according to predicted wetness gradient. Distance estimation was made using Leica 

LRF 900 Scan laser range finder by Leitz, Wetzlar, Germany.  

 

 
 

1987 1988 1991 1995 1998 2000 2001 2002 2006 2009

October May and November November December October October May November July September

Aerial census Sampling years and months in Katavi
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Table 6.2 Summary of description of study site and their characteristics 

Site  Est. total Size 
(km2) 

Location Main source of 
water 

Paradise Springs 50.0 Adjacent Kapapa River River + Springs 

Ikuu Springs 0.5 Adjacent Katuma River Springs only 

Lake Katavi 70.0 Upper stream Katuma R.  River + Springs 

Ikuu Bridge 0.25 Along Katuma River River only 

Lake Chada 40.0 Downstream Katuma R. River only 

 

2.2 Site selection 

Five sites were chosen for recording hippopotamus numbers. These are the same sites 

as those at which behaviour observations of hippopotami were made. Their main 

features are described in Chapter 2, summarised in Table 6.1 and shown in Fig. 6.3. 

 

Fig. 6.3: Map of Katavi National Park showing hippopotamus observation sites. Key: NP 
= National Park.  

2.3 Data recording 

Observation and counting were conducted at two week intervals within a month from 

September 2009 - September 2010. On each of the two days, counts were conducted 
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three times a day (morning, noon and late afternoon) with 30 minutes for each count 

making a total of six counts a month. Average numbers of hippopotami per site per day 

were calculated and monthly means derived. Adults and juvenile were recorded 

separately. Emphasis was on the following aspects: 

 Temporal changes in abundance (in relation to seasons and months) 

 Spatial differences in abundance between five sites 

The months of June to November were considered as dry season while December - 

May were the wet season months.  

2.4 Data analysis 

Abundance was calculated as the number of hippopotami in each quadrat of 5 ha or 

0.05 km2 at each of the five study sites and hippopotamus density calculated as 

number of individuals km-2 at each of the five sites. 

Correlation and analyses of variance (ANOVA) were performed using the SPSS statistics 

package software (PASW Statistics 18) by IBM. 

Rates of immigration and emigration (expressed as percentage change) were 

calculated as percentage change in abundance derived as number of hippopotami 

during the present month minus number of hippopotami during the previous month 

divided by number of hippopotami during the previous month. 
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3. Results 

3.1 Change in abundance between decades. 

Aerial census data covering the period from 1980s to 2009 were obtained from 

Tanzania Wildlife Research Institute (TAWIRI), Tanzania Conservation Information 

Monitoring Unit (CIMU) and Tanzania Wildlife Conservation Monitoring (TWCM) and 

analysed. Aerial census results indicate fluctuating, declining hippopotami abundance 

(Fig. 6.4). However, the trend is not clear and not significant at 95% (R2 = 0.08 df = 9 p = 

0.43 NS). Changes over the years between 1980s and 2009 were not consistent, the 

population increasing to a peak in November 1991 followed by a decline and second 

peak in 2002. The lowest abundance was recorded in October 2006 (Fig. 6.4).  

 

Data Source: Tanzania Wildlife Conservation Monitoring (TWCM), 1995; 1998; Tanzania 

Wildlife Research Institute/Conservation Information Monitoring Unit (TAWIRI/CIMU, 

2010). 

Summarizing the data for decades (Fig. 6.5), shows that there is not a consistent trend 

in annual censuses of hippopotami abundance (R2 = 0.08, df = 9 P = 0.427 NS). 

However, if fluctuations in abundance are summarised between decades (Fig. 6.5), it is 

apparent that abundance of hippopotami was low in the 1980s, increased significantly 

during the 1990s, but that the decline to 2000-2009 levels was not significant (Fig. 6.5). 
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Data Source: Tanzania Wildlife Conservation Monitoring (TWCM), 1995; 1998; Tanzania 

Wildlife Research Institutes/Conservation Information Monitoring Unit (TAWIRI/CIMU, 

2010). 

3.2 Change in abundance within a decade: minimum total counts  

A total of 4434 hippopotami were counted in October 2004 and 3726 were counted in 

2005 and 4579 hippopotami in 2010 on the same locations (Table 6.3). Using 

percentage of means for each site for the three years did not indicate major changes. 

There was no significant difference in hippopotami abundance between three sampling 

years (F2, 20 = 1.101 p = 0.354 NS). 
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Fig. 6.5: Mean decadal hippopotami abundance in Katavi 
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Table 6.3: Minimum total counts results for hippopotami in Katavi National Park, 
Tanzania 

 

Data Source: Meyer et al., 2005; Katavi National Park Ecological Monitoring Unit., 2010 
Key: **=No data.  Sites are arranged according to magnitude of mean abundance 

 
Locations of all sites are shown on Fig. 2.3 and Fig. 2.4 (Chapter 2) and some GPS 

coordinates for the centre of sites are presented in Appendix 2.   

3.3 Spatial variation in abundance 

Of the areas surveyed, hippopotamus abundance was highest at Ikuu Springs, Upper 

Ikuu Springs, upper Lake Katavi, Paradise Springs and Sitalike (Fig. 6.6). Ikuu Bridge was 

only counted in 2010 when abundance was fourth highest.  

 

Counting Location Mean SE

Count % of mean Count % of mean Count % of mean

Ikuu Springs 1011 91 1052 95 1254 113 1106 75

Upper Ikuu Springs 670 86 654 84 1026 131 783 121

Upper Lake Katavi 850 119 238 33 1050 147 713 244

Paradise Springs 645 102 879 139 369 59 631 147

Sitalike airstrip 561 127 462 105 301 68 441 76

Sitalike Camp 478 124 441 114 239 62 386 74

Sitalike Bridge 219 118 0 0 340 183 186 99

Total 4434 104 3726 88 4579 107.8 4246

Ikuu Bridge ** ** 834 ** **

Lake Katavi ** ** 190 ** **

Kapapa Hills 26 23 ** 25 2
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Fig. 6.6: Mean 3-year hippopotami abundance in selected sites 
using minimum total count data in Katavi NP. Error bars are ± 

1SE around 3-year mean. 
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Mean annual adult hippopotamus abundance varied significantly between study sites 

(F4, 81 = 2.935, p < 0.026) (Fig. 6.7). Adult hippopotamus abundance was highest at Ikuu 

Springs followed by Lake Katavi while Lake Chada had the least. Mean annual 

abundance of juvenile hippopotami varied between sites (F4, 81 = 3.081, p < 0.021) (Fig. 

6.7). Juvenile hippopotamus abundance at Paradise Springs, Lake Katavi and Ikuu 

Bridge was the highest while Ikuu Springs and least at Lake Chada (Fig. 6.7). 

 

3.4 Temporal variations in abundance 

(a) Seasonal variations in abundance 

Abundance among adult hippopotami varied significantly between the dry and wet 

seasons at Lake Katavi, Ikuu Springs and Ikuu Bridge (F4, 82 = 2.905 p = 0.027). 

Abundance was significantly higher in the dry season at Lake Katavi, Ikuu Springs and 

Ikuu Bridge (t80 = -2.183, p < 0.032). However, mean hippopotami abundance on other 

sites did not show any significant seasonal variations (Fig. 6.8). August, September, 

October and November were the driest months of the dry season while January, 

February, March and April were the wettest in the wet season.  

0

20

40

60

80

100

120

140

160

180

200

Paradise Springs Lake Katavi Ikuu River Lake Chada Ikuu SpringsM
ea

n
 ±

SE
 h

ip
p

o
p

o
ta

m
i a

b
u

n
d

an
ce

  5
 h

a-1
  

Study sites 
Fig. 6.7: Mean hippopotami annual abundance in 5 ha plots for adult 

and juvenile hippo in five study sites in Katavi NP, Tanzania. Key: Means 
with the same letter do not differ significantly at p < 0.05. Capital letters 

are for juveniles while lower cases 

Adults Juvenile

a a 

b b 

b 

B B 
A A A 



 

127 
 

Abundance among juvenile hippopotami varied significantly between the dry and wet 

seasons at four out of five study sites (F4, 82= 3.444 p = 0.012). Only at Paradise Springs 

was the difference between seasons not significant (Fig. 6.9). Abundance at other sites 

varied significantly between the wet and dry season (t80 = -2.926 p = 0.019). 
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 (b) Monthly variations in abundance and density 

Abundance varied between months for both adults and juveniles. There were 

significant variations in abundance between months for adult hippopotami (F16, 81= 

3.981 p = 0.0001) and between sites (F4, 81 = 2.938 p = 0.026) (Fig. 6.10).  

Juvenile hippopotami abundance varied significantly between months (F16, 81 = 5.442 p 

= 0.0001). There were also significant differences in monthly abundance between sites 

for juveniles (F4, 81 = 3.142 p = 0.019) (Fig. 6.10).  

Hippopotami abundance at Paradise Springs had steady annual variations in all the 

months, with only small fluctuations. However, there was a common trend at three 

other study sites, Lake Katavi, Ikuu Springs and Ikuu Bridge where density increased 

from September to a peak in November. At Paradise Springs and Lake Chada, some 

similar general trends were observed; however, density did not change significantly as 

at the other three sites (Fig. 6.10).  

From December, with exception of Paradise Springs; density declined in all of the four 

sites and by May, June and July, density was minimal. Decline in density at Ikuu Springs 

and Lake Katavi was much more rapid than other sites. Nevertheless, all sites reached 

their minimum density between April and July (Fig. 6.10). Density started increasing 

again from August, with similar patterns for all sites. 

Abundance in juvenile hippopotami increased during the dry months beginning from 

September as for adults. Density reached its peak in November and December. Density 

trends were as in adults in that it decreased during the wet months of February to July 

before starting to increase in August. Density increase at Ikuu Springs during August-

September 2010 was lower compared to the same period in 2009. Fewer juveniles 

were recorded in 2010. Although density at Paradise Springs did not decrease 

significantly during the wet month of January,  during the dry season from August to 

September 2010 higher densities were recorded compared with the same period in 

2009 (Fig. 6.10).    



 

129 
 

 

Fig. 6.10: Monthly variations in hippopotamus density (May 2009-September 2010) 

among (a) adults and (b) juveniles in the five named study sites in Katavi NP, Tanzania 
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3.5 Immigration and emigration  

Monthly rates of immigration and emigration for both adult and juvenile hippopotami 

at the five study sites are presented in Fig. 6.11. There were significant monthly 

variations in immigration and emigration (F16, 81 = 5.323, p < 0.0001). There were also 

significant seasonal differences in immigration and emigration among adult 

hippopotami (t = 3.566 df = 80, p < 0.001) (Fig. 6.10). Rates of immigration and 

emigration for adult hippopotami did not vary between sites (Fig. 6.11). 

There were significant monthly variations in immigration and emigration among 

juvenile hippopotami (F16, 81 = 3.188, p < 0.0001) (Fig. 6.11). Rates of immigration and 

emigration among juvenile hippopotami did not vary between sites (Fig. 6.11).  

As with variations in abundance, most emigrations were recorded between December 

and July. Immigration was more prominent between August and October. Among all 

sites, Paradise Springs had the lowest rates of immigration and emigration while at 

Ikuu Springs and Lake Katavi the rates were highest (Fig. 6.11).  

 

 

 

 



 

131 
 

Fig. 6.11: Monthly variations in Immigration and emigration of hippopotami in Katavi 
NP for adults and juveniles expressed as number of individuals. Note: different Y-axis 
scale within and between (a) and (b). 
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4 Discussions 

Abundance can vary between decades, within decades, seasonally and spatially.  

4.1 Change in abundance between decades. 

Among the factors which may cause fluctuations in hippopotami abundance over 

greater than a generation time span are habitat loss and incompatible land uses, 

drought (affecting availability of both water and food), poaching (due to increased 

trade in hippopotami meat and ivory) and diseases. The other threat has been 

retaliatory killing due to conflicts with humans (Kanga et al., 2011a; 2011b; Kendall, 

2011). In countries with civil unrest such as Congo DRC, hippopotami populations have 

suffered the most (Lewison and Oliver, 2008; Kendall, 2011). Among these, habitat loss 

and poaching have been listed as being most important (Oliver, 1993; Graham, et al., 

2002; Lewison and Oliver, 2008), leaving their future in jeopardy.  

Diseases such as anthrax has also been reported to affect hippopotami population in 

the Serengeti (Lembo et al., 2011), although its effect on the population has not been 

quantified. In Zambia, anthrax in 1987/8 killed over 4,000 hippopotami in Luangwa 

River affecting its populations (Turnbull et al., 1991). In Kruger NP, South Africa, 

incidences of anthrax in the dry seasons of the early 1990s affected local hippopotami 

populations with relative vulnerability at 2.1% (Viljoen and Biggs, 1998). Rinderpest in 

the early 1900s in Luangwa River in Zambia was thought to have contributed to 

hippopotami scarcity in the 1930s (Attwell, 1963; Marshall and Sayer, 1976), however 

this was disputed by Ford (1971) who suggested the species to be relatively immune to 

the disease. In Katavi, there are no recorded reports of significant effects of either 

disease (Caro, 2008). However, drought in 1988 was the major cause for the decline of 

hippopotamus abundance in Kruger NP in South Africa (Viljoen and Biggs, 1998). 

In Asia, historical extinction of hippopotami was associated with increased seasonality 

in patterns of rainfall and river flows which resulted in rivers remaining dry for several 

months of the year (Jablonski, 2004). In Ruaha NP, Tanzania, hippopotamus 

populations declined by 7.7 % between 2004 and 2007 thought to be due to reduced 
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river flow (Epaphras et al., 2008). Population decline due to reduced water and 

possibly retaliatory killing of hippopotami in Ruaha NP was also reported by Kashaigili 

et al. (2006) and Kendall (2011). 

However, in some areas, there have been increases in hippopotami population despite 

these factors. In Kenya, hippopotamus populations increased between 1997 and 2008 

in the Mara while deteriorating habitats and drought were increasing (Kanga et al., 

2011a; 2011b) due to the presence of microhabitats with water and forage leading to 

the increase. Also, drought and deteriorating habitats reported in Kanga et al. (2011a; 

2011b) are thought to have been temporary and short lived. Prolonged drought and 

habitat loss are likely to be detrimental to hippopotamus population growth. In Kruger 

NP, in South Africa it was observed that the availability of dams in or near the rivers 

and suitable pools in rivers played a key role in maintaining hippopotami density during 

drought or periods of reduced river flows (Viljoen and Biggs, 1998).  Similar 

observations were made in Queen Elizabeth NP in Uganda where seasonal use of 

temporary wallows led to maintaining hippopotami abundance (Field and Laws, 1970). 

Some of their water wallows temporarily dried out after the wet season (Field and 

Laws, 1970). During the dry season hippopotami were confined to river channels, lakes 

and some few permanent water pools. During the wet season, most of the animals 

exploited much of the areas by moving into temporary water pools (Lock, 1972).  

Among the factors that determine abundance include natality, mortality, immigration 

and emigration. There has been a decline in populations of most herbivores in Tanzania 

from the 1980s to the early 2000s (Stoner et al., 2006; 2007). Highest hippopotami 

abundances were recorded in 1991 and 2002. Lowest abundances were in 1987 and 

2006 (Fig. 6.3 and Fig. 6.4). Aerial census data indicate an increase and decline in 

hippopotami abundance in Katavi (TAWIRI, 2001; Caro, 2008). The decline is however, 

not significant. Although hippopotami populations are declining (Lewison and Oliver, 

2008), the Katavi population has remained relatively stable. In 2006, the lowest record 

in hippopotami abundance in Katavi was observed. Abundance peaked up in 2009.  



 

134 
 

Various reasons might explain the increase in abundance. The first is new born 

hippopotami, as represented by the number of young observed. The second is 

immigration from other localities. Lewison (1998) noted that increase in hippopotami 

in early 1990s in Katavi was thought to be due to animals coming in from outside Katavi 

as the result of habitat destruction in the areas bordering the Park. The same might 

help in explaining the current observations, that there is an increasing trend in habitat 

destruction. However, very few hippopotami sites were observed outside the Park and 

hence natality is thought to be the major abundance contributing factor. 

Results have shown that in the 1980s, hippopotami abundance was low before it 

peaked in the 1990s (Fig. 6.4). Since then, in the 2000-2010 decade, abundance has 

declined to a certain extent. However, from aerial census data presented, hippopotami 

population trends are not very clear, partly because hippopotami are irregularly 

recorded through aerial count due to their aggregation habit and most of the time 

during counts they are in or under water (TAWIRI, 2001). Grouping patterns of 

hippopotami make it difficult to count from the air (TWCM, 1995; 1998), hence the 

high standard errors. Large groups may be missed completely and hence affect the 

results. This can help to explain the observed fluctuations in abundance results. 

However, despite the possible influences in estimating abundance, the observed trend 

might be reflecting actual trends on the ground. The 2006 lowest abundance recorded 

might be explained by the severe drought reported during the 2004/5 in Katavi (Meyer 

et al., 2005). Natality in hippopotami is severely affected by drought (Lewison, 2007); 

the effects of this drought might have had an impact during the 2006 counts. Fewer 

females calving, mortality due to drought and under nutrition among both adults and 

juveniles is likely to have affected abundance. Similar factors are thought to have 

affected other years with lower abundance. Human influence by poaching or hunting 

was also cited as another possible reason for the hippopotami mortality (Meyer et al., 

2005), however, this has been shown to have a less significant effect in Katavi (Caro, 

2008).  
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Calving in hippopotami is not strictly seasonal but peaks in calving have been 

associated with increased rainfall (Graham et al., 2002). During drought, proportion of 

hippopotami females likely to conceive declines significantly from about 30 % to 5% 

(Lewison, 2007) due to poor conditions brought by poor nutrition. This may have 

significant influence on the fluctuation of the population. Local drought in Kruger NP 

rivers in 1991/2 led to a decline in hippopotamus population during the following 

census (Viljoen & Biggs, 1998) and can help to substantiate effects of drought on 

population growth.  

Similar fluctuating trends in hippopotamus populations due to different reasons have 

been reported from other protected areas in Africa. In Masai Mara National Reserve in 

Kenya an increase by about 170 % in hippopotami abundance was recorded between 

1971 and 1980. However, between 1980 and 2006, there was no increase within the 

reserve although hippopotamus abundance increased by about 360 % outside the 

reserve (Kanga et al., 2011a; Kanga et al., 2011b). The increase was recorded despite 

deteriorating habitat conditions. This led to the assumptions either that the population 

was increasing or its spatial distribution was being compressed due to range 

contraction (Kanga et al., 2011a; Kanga et al., 2011b). When hippopotami increased, 

other large mammals declined. Similar trends in hippopotami population over the 

decades were recorded in Gonarezhou National Park in Zimbabwe where from 1965-

1982 significant increase was recorded (Zisadza et al., 2010). However, between 1983 

and 1997, a significant decline occurred before increasing again between 1997 and 

2008 (Zisadza et al., 2010). Drought, siltation of rivers and persecution were thought to 

be the major causes for a decline of hippopotami between 1983 and 1997. Contrasting 

trends were recorded in Luangwa River in Zambia where from 1970 to 1987, when a 7 

% increase in hippopotami population was recorded annually (Tembo, 1987). The 

increase led to more than a doubling of population density when compared with the 

density in Queen Elizabeth National Park in Uganda in the late 1950s (Tembo, 1987; 

Eltringham, 1999). However, populations did not increase significantly from 1988. It 

was thought that the population had reached its carrying capacity 100 years after the 
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population was severely affected in the 1890s (Attwell, 1963). In Sabie River, Kruger NP 

in South Africa, drought experienced during the 1991/2 reduced the once growing 

hippopotami population by about 13 % (Viljoen, 1995). Viljoen & Biggs (1998) reported 

several hippopotamus deaths in Kruger National Park South Africa following severe 

drought during 1991/2. Meyer et al., (2005) reported an increase in hippopotami 

carcasses during the 2004 drought in Katavi.  

In Lundi River, Zimbabwe, hippopotami increased by 330 % between 1958 and 1980 

before the population stagnated because of drought and killings (O’Connor & 

Campbell, 1986). In Luangwa River, Zambia, high mortality due to anthrax which killed 

over 4,000 hippopotami between 1987 and 1988 (Turnbull et al., 1991) affected the 

growing population trends reported by Tembo (1987). These may indicate similar 

patterns in the hippopotami population growth between Katavi and elsewhere. Some 

cases of stagnated population due to possibility of reaching carrying capacities include 

wildebeest in the Serengeti (Mduma et al., 1999) and reindeers in Saint Matthew 

Island (Kirkpatrick et al., 1968). In these cases it was thought that environmental 

resources such as food, spaces for basking and wallowing were the causes for reduced 

birth rates. The environmental factors are known to determine the points at which 

population stabilizes (Bothma & Toit, 2010). However, the Katavi population is not 

thought to have reached its carrying capacity, although dry season resting sites are 

shrinking and may be limiting during the dry season.  

Similar trends in increasing and decreasing populations have been observed for 

wildebeest (Connochaetes taurinus Burchell, 1823) in the Serengeti, Tanzania and for 

buffalo (Syncerus caffer Sparrman 1779) in Arusha NP, Tanzania. In the Serengeti, 

wildebeest population increased between 1963 and 1993 and stabilized before 

declining during the 1993-1994 due to drought (Mduma et al., 1999; Sinclair et al., 

2001). Drought was the major reason because 75 % of carcasses observed were found 

to be under nutrition and food supply continued to limit population increase 

particularly during the dry season. Mortality was greatest in wildebeest under one year 
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of age (Sinclair et al., 2001). This could also be the cause for the 2006 lowest 

abundance of hippopotami in Katavi. Mortality of juveniles might have contributed 

significantly to the decline as drought during the previous two years might have 

affected many juveniles. Meyer et al., (2005) observed more hippopotami carcasses 

during the dry season in 2004, which was drier than normal in Katavi. The use of water 

upstream for irrigation contributed to the drought more than rainfall, which was 

average for that year. The year 2006 had the lowest river levels for similar reasons. 

Sinclair (2008a; 2008b) found buffalo populations in the Serengeti to be regulated by 

adult mortality caused by under nutrition as a result of food shortage. However, food 

shortage among ungulates has been described as a general situation in eastern Africa 

(Sinclair, 2008a; 2008b).  

Aerial censuses reported in this study were conducted during different times of the 

year which might contribute to the observed trends. Different conditions prevailing at 

the time of surveys are likely to result in different values of abundance. During the wet 

season, groups in water are likely to submerge and thus be invisible to the observers 

from the aircraft. In Mara River, Tanzania, Olivier and Laurie (1974) found hippopotami  

populations became more dispersed and mean group size decreased after a rise in 

water levels and vice versa. Such variations may lead to differences in abundance 

estimation results. Similar trends were recorded in Liwonde NP in Malawi (Harrison et 

al., 2007). In Katavi NP, similar observations occur. This causes variations in 

hippopotamus density during censusing at different times of the year. Stoner et al., 

(2006) reported that wildlife estimates are likely to fluctuate between counts 

conducted during different seasons. This was based on observations that many 

ungulates congregate more at water sources during the dry seasons. During the wet 

seasons, hippopotami are partly submerged in water hence becoming less detectable. 

Vegetation during the wet season is also responsible for reduced visibility (Stoner et 

al., 2006). In order to increase success, aerial counts in Kruger National Park, South 

Africa have been conducted between June and August at the mid dry season when 

water depth were shallower because of reduced water flow and clearer waters which 
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allowed counting of submerged individuals (Viljoen & Biggs, 1998). In Zimbabwe, aerial 

censuses were conducted in November during the dry season, mainly to increase 

ability of detecting the hippopotami (Zisadza et al., 2010). 

Variations in aerial hippopotami census in Katavi might also be influenced by variations 

in sampling effort or intensity, observers and areas covered during the census. 

Sampling efforts between sampling years varied between years. In 1995, one aircraft 

was used to conduct census in the area of 13,341 km2 including Katavi while in 1998 

three aircrafts were used to census a total area of 12,321 km2 including Katavi, and 

counts were lower despite the apparently greater sampling efforts. This is likely to give 

varying results. In studying abundance of hippopotami in Kruger NP, South Africa 

between 1984 - 1994 it was found that during aerial counts, hippopotamus density was 

significantly lower than estimated during total counts (Viljoen & Biggs, 1998). In order 

to minimize the effects of observers on the counts, Field and Laws (1970) proposed the 

use of the same personnel wherever possible. This can further help to explain the 

observed variations between years. 

However, despite these possible factors for fluctuations, the counts have shown a 

general trend of increase and decline of hippopotami populations in Katavi. There is a 

need to conduct continued census during similar times and seasons from where long 

term results can be comparable. Dry season counts provide more reliable population 

estimates.  

4.2 Change in abundance within a decade 

From minimum total counts between 2004 and 2010, the number of hippopotami has 

remained largely stable with exception of 2005. Water scarcity, reduced natality and 

poaching were thought to have attributed to the 2005 decline (Meyer et al., 2005). 

However, these estimations were minimal, because some areas where hippopotami 

are present were not covered. This is among the sources of underestimation. 
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In 2010, there was an increase in hippopotami abundance when compared to 2004 and 

much larger when compared to 2005. This pattern of abundance supports the report 

that less water in Katavi started to be experienced in 2004 after illegal damming 

upstream the Katuma River (Meyer et al., 2005) refer Chapter 3.  This can help to 

explain the lowest abundance recorded during the 2005 counts reflecting the possible 

effects of 2004/5 drought on hippopotami abundance as drought significantly affects 

natality and survival of hippopotami (Lewison, 2007). In Kruger NP in South Africa, 

localized drought in 1988 in some sections of the rivers, resulted in hippopotami die 

offs, the decrease being reflected in censuses during the following year (Viljoen & 

Biggs, 1998). However, despite damming and subsequent water reduction in Katavi, 

hippopotami abundance increased during the 2010 counts.  

Increase in the hippopotami abundance in Katavi can be seen as small, but, it is a 23 % 

increase in abundance over five years and thus the increase is fairly substantial. Larger 

increases have been reported in Zambia (Tembo, 1987; Wilbroad and Milanzi, 2010), 

Zimbabwe (O’Connor and Campbell, 1986) and Kenya (Kanga et al., 2011a; 2011b). In 

Liwonde NP in Malawi, hippopotami population increased by 54 % during a period of 

16 years from 1987 to 2003 after which there was no noticeable increase (Harrison et 

al., 2007).  

In the Katavi hippopotamus population, there is a near balance in the forces 

determining abundance. Natality and immigration were slightly higher than mortality 

and emigration hence a small increase in population abundance over years compared 

to a 7 % annual increase recorded in Zambia (Tembo, 1987). This is supported by the 

fact that there were many calving incidences and calves observed during the study 

period, while observed dead hippopotami were very limited in number when 

compared with the population of hippopotami in each of the study sites. Increase in 

abundance from 2005 to 2010 may help to support this suggestion.  The increase in 

abundance occurred despite natural mortality or human induced mortality reported in 

Katavi (Caro, 1999a; Meyer et al., 2005). Increase of hippopotami in Zambia was after 
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severe declines in the early 1900s due to diseases, hunting and drought (Marshall and 

Sayer, 1976). 

There may be underestimation of abundance using minimum total counts due to its 

limitations. However, despite any shortcomings, obtained results shows that the 

hippopotamus populations in Katavi are stable and has not varied significantly over the 

years. Repeated aerial census between 1977 and 2009 and transect counts from 1995 

in Katavi have indicated declines in other large mammals; however, hippopotami is not 

among the declining species (Caro 2011, Caro et al., 2011).  

Results also indicate some important patterns in distribution and abundance of 

hippopotamus in Katavi NP. The most important sites where higher abundances were 

recorded were the sites which had water during the dry season such as Ikuu and 

Paradise Springs. Also, microhabitat provided by artificial water pools at some drier 

sites such as Ikuu Bridge and at Lake Katavi enabled hippopotami to reside during the 

dry season. 

Counting hippopotami using ground transects is efficient although costly, slow and 

time consuming (Tembo, 1987; TWCM, 1995; 1998; TAWIRI, 2001; Kanga et al., 2011a), 

hence minimum total counts presented in this Chapter were necessary. Some 

consistency has been noted in hippopotami counting using ground surveys during the 

three years records and more detailed estimates in change of abundance were derived 

from minimum total counts (Table 6.2). In Queen Elizabeth NP in Uganda, counts using 

boats proved to be effective as repeated counts of submerging or hiding hippopotami 

were possible (Field and Laws, 1970). This helps to emphasize the usefulness of ground 

transects. 

Several factors may have contributed to the observed stability and small increase in 

hippopotami abundance. Forage is one of the most important requirements for 

hippopotami apart from water (Sinclair et al., 2000; Harrison et al., 2007). There has 

been no significant decline in rainfall in Katavi, and therefore it can be assumed that 

food has been available throughout the sampling years. This has possibly led to 
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increasing population despite decline in water levels. Timing of food supply and 

availability (phenology) is listed as one of the factors which determine birth seasons in 

tropical ungulates (Sinclair et al., 2000). Due to this, it is probable that hippopotamus 

timing of birth has largely been determined by food supply which has been stable over 

the years, hence the increase in population. Prolonged drought would have led to 

shortened period of food supply and hence affect the birth success of hippopotami. 

However, this has not been reported over the census time with the exception of the 

year 2004. 

Mortality, both natural and through hunting and diseases were ruled out as affecting 

hippopotami population apart from 2004 where ‘many’ carcasses were reported 

(Meyer et al., 2005). Hippopotami were not on the list of most hunted species in Katavi 

(Caro, 2009; Caro et al., 2011), and hence an increase in abundance despite damming 

and decline in water level or reduced flow. 

According to Waltert et al. (2008), Katavi National Park has an estimated 5694 

hippopotami or a density of 1.33 hippopotami km-2. This abundance equals the one in 

Kruger NP in South Africa where 2,600 counted in the 1998 in an area of 19,485 km2 

was considered as stable population (Viljoen & Biggs, 1998), while the entire country 

had an estimated 5,000 hippopotami (Eltringham, 1999). Katavi with an area of 4,700 

km2 can thus be considered to have a more viable population. Factors such as reduced 

natality during some years are thought to be a natural phenomenon, not entirely due 

to temporarily limiting resources. This is because reduced natality has also been 

reported among hippopotami in zoos (Pluhacek, 2008). Reduced natality among 

hippopotami in captivity occurred despite controlled environment and habitat which 

provide optimal physiological conditions for hippopotami (Wheaton et al., 2006). This 

may help to explain further the stability and smaller increases in Katavi hippopotami.  

Drought remains to be a major threat to hippopotami populations as indicated by 

other studies reported in Section 4.1 and 4.2 and the possible effects experienced in 

2005 counts. Prolonged low or no river flows might exacerbate this even further apart 
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from inadequate forage, as rainfall which determines forage availability has remained 

largely unchanged over the past six decades.  

4.3 Spatial variations in abundance 

Density and abundance of hippopotami varied between sites. Adult hippopotami 

density and abundance was highest at Ikuu Springs and Lake Katavi. Lake Chada had 

the least adult density among the five sites. Paradise Springs and Ikuu Bridge were the 

intermediates. This observation might be explained by nature of the study sites as 

discussed in Chapter 2. Caro (1999a) observed higher hippopotami densities at Lake 

Chada and Lake Katavi.  

The distribution of large mammals is influenced by a number of factors including 

vegetation, permanent or temporary surface water, fire, predators and human 

activities (Field & Laws, 1970). There are several factors which make a site suitable for 

hippopotami. Availability of water, particularly during the dry season is one of the 

major pre-requisite for occupation of a site by hippopotami (Graham et al., 2002; 

Dunstone & Gorman, 2007; Jablonski, 2004). Nearby foraging grounds is another major 

requirement (Viljoen & Biggs, 1998; Eltringham, 1999; Harrison et al., 2007). Apart 

from stationary waters, sites with slow moving waters such as river bends, river 

confluence and lagoons increase the suitability of the sites for hippopotami (Chansa & 

Milanzi, 2011). Areas of slow and relatively shallow, gently sloping banks are favoured 

as it enables hippopotamus to lie half immersed while resting (Laws & Clough, 1966; 

Field, 1970, Olivier & Laurie, 1976; Viljoen & Biggs, 1998). Spatial variations among 

hippopotami in other areas in Africa have been high e.g., in Kruger National Park 

(Viljoen & Biggs, 1998) and in Zambia, (Wilbroad & Milanzi, 2010). 

Selection of suitable sites by hippopotami is emphasized by observations in Zambia and 

South Africa where in Kruger NP, 94 % of its population was recorded in six rivers. Out 

of the six rivers, 81 % was recorded in three rivers (Viljoen & Biggs, 1998). In Zambia, 

about 62 % of its entire hippopotami population of 40,000 were located in Luangwa 

River out of nine lakes and dams and 18 rivers surveyed (Wilbroad & Milanzi, 2010). 
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Within Luangwa River about 76 % of its hippopotami population was found in river 

bends (Chansa & Milanzi, 2011). Similar patterns were observed in Tanzania while 

surveying abundance of hippopotami where 80 % of its population were concentrated 

in some few rivers in southern and western parts of the country within protected areas 

(TAWIRI, 2001). These emphasize the importance of habitat selection by hippopotami.  

Slow flowing waters at the river bend are the possible reasons for the Ikuu Bridge site 

to accommodate many hippopotami almost throughout the year despite being in a 

drier part without a substantial nearby foraging ground. Hippopotami prefer 

structurally suitable pools to pools which are closer to foraging areas (Smithers, 1984). 

This emphasizes the importance of water and shelter sites to hippopotamus.  

The wettest site, Paradise Springs was the most suitable for hippopotami among the 

five sites. This is because it provided water and forage throughout the year and thus 

hippopotamus abundance was maintained. However, as resources are likely to vary 

over seasons (Western, 1975; Western & Lindsay, 1984; Fryxell & Sinclair, 1988), sites 

which provide resources during the dry seasons are highly important. This was 

represented by sites such as Ikuu Springs where hippopotami took refuge during the 

dry season. Although Lake Katavi, Lake Chada and Ikuu Bridge provided refuge to 

hippopotami during the dry season, they were not as ‘suitable’ as Ikuu and Paradise 

Springs. This is because their waters were more seasonal and hence in case of 

prolonged drought they are likely to dry out and force the animals to disperse to other 

locations which are not easily available, especially during the dry season.  

Between the two, water and forage, the former has been listed as the factor which 

determine distribution of mammals (Western, 1975; Smithers, 1984; Western & 

Lindsay, 1984; Fryxell & Sinclair, 1988; Gereta & Wolanski, 1998; Wolanski & Gereta, 

2001). In Katavi, Ikuu Springs and Lake Katavi were the sites with the highest 

abundance. However, these had temporary high abundance. The wettest site at 

Paradise maintained higher abundance due to provision of forage and water 

throughout the year. The two driest sites supported hippopotami during the dry 
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season due to the presence of microhabitats which provided shelter for the 

hippopotami, without which the sites would have been inhospitable over the dry 

season. Similar observations were recorded in Kruger NP (Viljoen & Biggs, 1998) where 

dams and water pools along the river helped to maintain abundance during the dry 

season. Similar observations of hippopotamus using temporary shelter were recorded 

in Uganda (Field & Laws, 1970; Lock, 1972; Eltringham, 1999).  

Availability of water particularly during the dry season is thought to have contributed 

to the observed variation in hippopotami abundance between sites. High 

hippopotamus variance in abundance at the two sites Ikuu Springs and Lake Katavi may 

be explained by bigger monthly fluctuations in water availability, the factor which 

might have contributed to the observed results. Paradise Springs being the wettest site 

had the highest water supply throughout the year hence maintained relatively constant 

hippopotami abundance throughout the year (Fig. 6.6). This is because resources, 

mainly water and forage availability, dictates seasonal movements of mammals 

(Western, 1975; Western & Lindsay, 1984; Fryxell & Sinclair, 1988). This can help to 

explain the observations at Lake Katavi and Ikuu Springs where abundance was 

seasonal.  

Among juvenile hippopotami, Paradise Springs was the site with the highest density 

while Ikuu Spring was the least. This observation is linked to the availability of water 

resources and nature of use of the areas by hippopotami.  Paradise Springs was the site 

with highest supply of water throughout the year, whereas Ikuu Springs was mainly a 

dry season refuge for adult hippopotami hence, it had fewer juveniles than any other 

site. Availability of water throughout the year at Paradise Springs was a possible reason 

for calving throughout the year and hence more juveniles unlike Ikuu Springs (Fig.6.6, 

Fig. 6.7 and Fig. 6.8). At Ikuu Springs, being a dry season refuge, few mating events 

were observed and this would have led to fewer juveniles. 

Spatial variations in hippopotami may reflect environmental variables such as water 

and vegetation. In Luangwa River in Zambia, hippopotami density distribution was 
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reported to be influenced by diversity of grass species, biomass and grazing capacity 

(Chansa et al., 2011b). Wilbroad & Milanzi (2011) reported influence of grass species 

and abundance on hippopotami distribution and abundance in Zambia. Harrison et al. 

(2007) reported hippo abundance to relate to vegetation type in Malawi. 

In Katavi, abundance was highest in the sites that provided water during the dry 

season, while it was lower in the driest site. During the wet season abundance was 

more evenly spread over many areas of the Park. This suggests that water supply to the 

sites was a major factor for the observed trends. Wildlife distribution in general 

responds to and depends mainly on surface waters (Douglas-Hamilton, 1973), and 

distribution reflects variations in water availability (Western, 1975). Hippopotami 

distribution is likely to be particularly affected because the rivers tend to dry out 

between September and November. The hippopotami then select sites with dry season 

water availability. Nevertheless, the site which had more water supplies throughout 

the year, Paradise Springs was not the site with highest abundance, but it did have the 

most constant abundance throughout the year.   

Apart from water and forage availability, humans may also affect hippopotami 

distribution and abundance (Caro et al., 1998). In Okavango Delta, Botswana, it was 

observed that hippopotami avoided some suitable habitats due to poaching and 

hunting. Indigenous and crocodile hunters used hippopotami meat as baits for 

crocodiles (McCarthy et al., 1998). However, this is not thought to be the case for 

Katavi, where availability of water largely determined differences in abundance 

between sites.  

4.4 Temporal variations in abundance 

(a) Seasonal variations in abundance 

Hippopotami abundance varied between seasons at Lake Katavi and Ikuu Springs. At 

these sites, high abundances were recorded during the dry season. Availability of 

spring water at Ikuu Springs and water pools at some locations at Lake Katavi were the 

major reason for the observed seasonal variation in abundance. During the wet season, 
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hippopotami dispersed to other resting sites. Similar observations were made by 

Olivier and Laurie (1974) in the Mara River, Serengeti where hippopotami groups were 

found to disperse as water levels in the river increased. Seasonal pattern has been 

reported for different large mammals (Coe et al., 1976; Western, 1975; Western & 

Lindsay, 1984; O’Connor & Campbell, 1986; Fryxell & Sinclair, 1988), with movements 

being in search of quality forage or water (Senzota & Mtahiko, 1990).  

Despite having the highest abundance, Ikuu Springs was mainly used as a dry season 

refuge. With the onset of rainfall in November, the group at the site dispersed leaving 

very few individuals until after the end of the wet season. Similar observations were 

made at Lake Katavi. The group size and abundance increased with the decrease in 

water levels. This led to significant seasonal variations in hippopotami abundance at 

the two sites (Fig. 6.7).  

 

At Paradise Springs, the wettest site, hippopotami did not enter or leave the site in 

large numbers during the dry or wet seasons. This was the main cause for lack of 

significance in seasonal changes in abundance at the site. At Ikuu Bridge and Lake 

Chada sites, effects of microhabitat played a crucial role in maintaining hippopotami 

abundance over the cause of seasons (Fig. 6.7). This was due to the availability of water 

pools in the two sites which were used by hippopotami as resting sites well into the dry 

season. Many hippopotami at the pools remained throughout the year hence the 

seasonal variations in abundance was minimal. 

Among the factors that are responsible for seasonal variations in abundance are food, 

shelter and water availability (Coe et al., 1976; Western, 1975; Western & Lindsay, 

1984; Fryxell and Sinclair, 1988). These affect habitat quality on a seasonal basis. 

Habitat quality is the ability of the environment to provide appropriate conditions for 

persistence of organism (Hall et al., 1997; Krausman 1999). Food for hippopotami is the 

major limiting factor where water is not limiting (Harrison et al., 2007). In habitats 

where hippopotamus are found, poor availability of daytime sheltering space during 
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the dry season can regulate their abundance (Olivier and Laurie, 1974; Tembo, 1987; 

Harrison et al., 2007).  Chansa et al. (2011b) reported hippopotami density to be 

influenced by grass species diversity and grass biomass which determined grazing 

capacity. However, in Katavi, seasonal variations were mainly observed to be due to 

water at the shelter sites and much less due to forage. 

Apart from food resources, during the dry season, water scarcity and higher 

temperatures (Manteca & Smith, 1994) are the other major environmental parameters 

which are likely to influence hippopotami distribution, abundance and behaviour. In 

Katavi, sites with least wetness and a single source of water were more affected by 

seasonal variations in hippopotami abundance than the sites with more wetness or 

multiple sources of water.  

Seasonal variations in hippopotamus distribution and abundance have been reported 

in different studies mainly in response to environmental variables (water and food).  

Shift in hippopotami abundance and distribution was reported by Harrison et al. (2007) 

in Shire River in Malawi. Hippopotami moved into temporary water sources which 

occurred as the wet season advanced. Although the river was perennial, this led to 

seasonal variations in abundance. Similarly, such seasonal patterns were reported in 

Queen Elizabeth NP in Uganda (Field and Laws, 1970, Lock, 1972).  

Water availability was therefore the main cause for seasonal variations in abundance. 

Lack of seasonal variations in abundance at Paradise Springs was due to availability of 

water throughout the year within the site. Little variations at Ikuu Bridge and Lake 

Chada were contributed by microhabitat conditions which existed during the study 

period. At these two sites, water pools which went well into the dry season made the 

sites habitable for hippopotami throughout the year, although less so at Lake Chada.  

(b) Monthly variations in abundance 

Paradise Springs was the only site where few monthly variations in abundance among 

the five study sites were recorded (Fig. 6.9). At this site, hippopotami abundance 

remained relatively constant throughout the year. However, in the rest of the sites, 



 

148 
 

maximum abundances were recorded in August, September, October and November 

during the dry season months before declining again in December after the onset of 

rainfall. Months between February and July recorded minimum abundance in the four 

sites. Similar observations are reported from Mara River, Serengeti (Olivier & Laurie, 

1974) and similar areas. Harrison et al. (2007) reported shift in hippopotami abundance 

in Liwonde National Park, Malawi, due to increasing water in the main river.  

The beginning of dry season saw more hippopotami congregating at the study sites 

hence increasing abundance. At Paradise Springs, few animals dispersed and increased 

distance between them but the majority did not move out of the study site, hence little 

variation in monthly abundance. 

 

Many large herbivores move out of their habitats during the transition of seasons in 

response to resource availability or quality (Western, 1975; Western & Lindsay, 1984; 

Fryxell & Sinclair, 1988). Wetter sites particularly Paradise Springs provided optimum 

resources throughout the year. This was also observed in drier sites but which had 

some microhabitats within them providing water during the dry season where 

hippopotami were recorded throughout the year. Monthly variations in abundance 

were mainly due to the changing water availability.  

During aerial censuses reported in this study, highest abundance was recorded in 

November.  This was during the period when hippopotami congregated just before 

they dispersed following the rains. This shows that the trend has been relatively the 

same over the last three decades, because water availability mainly depends on rainfall 

which has not changed significantly. 

Abundance of juvenile hippopotami increased during the dry season months. Peaking 

of juvenile abundance during the dry months was observed to be a result of both 

returning immigrants and natality during the wet season. Natality was seen to 

contribute to this due to the number of young hippopotami observed as the dry season 

started. However, Ikuu Springs was different from other sites. This was due to the low 
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number of juveniles. The site was dominated by adults, probably male hippopotami 

with few juveniles. The site was thought to be difficult for young hippopotami possibly 

due to crowding. This is the only site during the study period, where juvenile 

hippopotami carcasses with wounds were observed. Five in total were seen. 

At Paradise Springs, natality increased the number of juvenile. Although calving was 

more regular during the wet season, hippopotami were seen calving throughout the 

year, except at Ikuu Springs. 

A quick decline in abundance at Ikuu Springs and Lake Katavi in November and 

December was due to the re-occurring of water pools after the beginning of rains. At 

Lake Katavi, after the swamps swelled in December, most hippopotami spread out to 

other shelter sites. Density decline at other sites occurred more slowly (Fig. 6.9).  

Seasonal movements of large herbivores during the transition months in the season 

are a response to changing resources (Western, 1975; Barnes, 1988; Senzota & 

Mtahiko, 1990). This is also thought to be the reason for the observed monthly 

variations in Katavi. 

4.5 Immigration and Emigration 

Among the five study sites, Paradise Springs was the site which showed the lowest 

rates of immigration and emigration for both adults and juvenile hippopotami. This was 

followed by Lake Chada and Ikuu Bridge. Ikuu Springs and Lake Katavi recorded the 

highest rates of immigration and emigration. Many large herbivores migrate seasonally 

in search of resources mainly water and forage (Fryxell & Sinclair, 1988), with migration 

happening during transition between the dry and wet season. Migration is the 

response to seasonal change in resources availability or quality (Western, 1975; 

Western & Lindsay, 1984; Fryxell & Sinclair, 1988). This can be a major reason for little 

variation in rates of immigration and emigration at Paradise, the wettest site, where 

resources changed only slightly over the wet and dry season. In response to changing 

habitat conditions, animals may also seek a new shelter. In Liwonde NP in Malawi, 

hippopotami moved to temporary shelter as water in the main river increased 
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(Harrison et al., 2007). This was also observed at one site in Katavi, Ikuu Bridge where 

hippopotami abundance declined during the wet season as the river waters flowed 

much faster. This is because hippopotami mainly avoid fast moving waters. In Luangwa 

River in Zambia, about 76 % of hippopotami population concentrated in river bends or 

meanders (Chansa et al., 2011a) to avoid fast flowing waters. Seasonal variations in 

hippopotami distribution and abundance due to immigration and emigration in 

response to variation of environmental resources has been reported in different 

studies including in the Mara River, in the Serengeti (Olivier & Laurie, 1974), Malawi 

(Harrison et al., 2007), in Kenya (Kanga et al., 2011a; 2011b), Okavango in Botswana 

(McCarthy et al., 1998), in Lundi River in Zimbabwe (O’Connor and Campbell, 1986) and 

Zambia (Chansa et al., 2011b). East (1984) indicated a positive correlation between 

large herbivore abundance or biomass and rainfall. Tall swards may limit hippopotami 

foraging ability and thus are likely to compel hippopotami to immigrate and emigrate 

because of their morphology (Spinage, 2012). In Malawi, hippopotami avoided areas 

with taller swards while feeding (Harrison et al., 2007).  

At Paradise Springs, more and reliable water from the springs and the river was 

available throughout the year compared to other sites. Wet swamps at Ikuu Springs 

were only crowded over the dry season. At other study sites, water levels went well 

below the surface during the dry season and in others only muddy pools remained. 

This determined the rates of immigration and emigration of each site. The observed 

low rates of immigration and emigration at Paradise were because of hippopotami 

avoiding fast moving or deep waters. In Liwonde NP in Malawi, increase in water in the 

Shire River caused hippopotami to move into temporary water sources as the wet 

season advanced (Harrison et al., 2007). Similar patterns were observed at Paradise 

Springs where despite availability of water, they moved and spread further as water 

levels increased, avoiding the deeper sites. Similar avoidance of fast moving waters 

during the wet season was observed at Ikuu Bridge. 
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Hippopotami at Ikuu Springs, being a dry season refuge started aggregating in Late July, 

probably in preparation for the next dry season. By November 2009, the site area was 

crowded. After the first rains in Late November more than 90% of the population had 

moved out of Ikuu Springs. The site remained with few hippopotami until the following 

July when the dry season started. At this site, water springs seemed to play a crucial 

role in immigration and emigration.  

Ikuu Springs was the site with the highest abundance, with abundance peaking during 

the dry season. Lake Katavi had the second highest abundance. Similar conditions to 

Ikuu Springs were observed. Congregation of hippopotami resulted from the expansion 

and contraction of Lake Katavi waters. Onset of rains saw the majority of hippopotami 

disperse to the rest of the lake while contraction led to congregation of hippopotami 

into the remaining water pools. Water in these pools is thought to have come from 

springs within the ‘lake’ area and waters remaining from the Katuma River.  

Ikuu Bridge had less immigration and emigration of hippopotami due to the micro 

habitat at this site, because a water pool remained throughout the year which later 

into the peak of dry season remained as a muddy pool. The pool sustained a good 

number of both adult and juvenile hippopotami throughout the year. The pool is 

thought to have affected the normal immigration and emigration of hippopotami from 

this site. 

Similar conditions to that at Ikuu Bridge were observed at Lake Chada, although the 

pools were much smaller than the former. In all, in river sections without muddy pools 

during the dry season, hippopotami migrated to other places. 

5. Conclusions and recommendations 

Although hippopotami abundance in Katavi has increased and declined over a period of 

generations, the decline is not significant. It can therefore be concluded that the Katavi 

hippopotami population has remained relatively stable over the period of 1980-2010. 



 

152 
 

Although aerial census indicated noticeable fluctuations, minimum total counts 

conducted on the ground indicate a slight increase in Katavi hippopotami abundance. 

Despite some fluctuations in the hippopotami abundance in Katavi, and despite 

reduced water flows in the Park, the picture is not gloomy for Katavi hippopotami 

abundance because there has been some population increase. This is an indication that 

the population is likely to increase if conservation efforts are increased. 

There were seasonal variations in hippopotami abundance at the study sites. This was 

particularly so in study sites with a single source of water for the hippopotami. 

Hippopotamus distribution varied over seasons. Water was the main factor in the 

distribution of hippopotami. Wettest site with water supply throughout the year had 

relatively constant number of hippopotami while drier sites which had water during 

the dry season attracted large number of hippopotami during the dry season from 

other nearby sites. Availability of water was thought to be determinant of how the 

animals were distributed. 

Differences in hippopotami distribution are related to differences in shelter site 

conditions. Study sites with dual sources of water particularly during the dry season 

favoured higher abundance. The distribution of hippopotamus populations was 

therefore determined by the availability of suitable day living space, with animals 

moving into the preferred temporary water sources in the wet season and retreating 

back into their previous sites when temporary sites started to dry up. This was not the 

case for the wettest site.  

Seasonal patterns in immigration and emigration of hippopotami did not vary between 

sites. There were similar patterns in movements although the number was highly 

dependent on the water conditions of the individual sites. The wettest sites had 

minimum immigration and emigration due to availability of water and forage resources 

throughout the year.  
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Chapter 6: Spatial and temporal variations in hippopotami behavioral activities 

1. Introduction 

Behaviour is the way an animal responds to stimuli in its environment (Raven et al., 

2008). Environment may be either internal or external. Stimuli may include detection 

of food, water, or other resources such as mate, predators or enemies. Behavioural 

ecology is defined as the study of the ecological and evolutionary basis for animal 

behaviour and its roles in enabling an animal to adapt to its environment (Dunstone 

and Gorman, 2007). The final goal of ecology is to understanding the distribution and 

abundance of organisms (Begon et al., 2006). It thus deals with interactions that 

determine distribution and abundance, many of these interactions involve behaviours. 

Animals occupy different environments with diverse challenges which affect their 

survival and reproduction (Raven et al., 2008); with both internal and external 

environment shaping the way an animal behaves.  

Any change to the habitat of animals is likely to have some impacts on individuals and 

populations. Different species respond differently to impacts of habitat destruction 

(Maclean et al., 2006), but any change is likely to be manifested through behaviour. 

Environmental change is reported to cause simultaneous responses in population 

dynamics, gene frequency and morphology of some species (Coulson et al., 2011). 

Large animals for instance, have been found to behave differently in hunted and un-

hunted areas, with those in hunted areas being more easily disturbed (Caro, 1999a). 

Hippopotami are reported to avoid suitable habitats due to poaching (McCarthy et al., 

1998) and also respond by increasing their aggressiveness (Patterson, 1976). Marshall 

& Sayer (1976) observed hippopotami becoming more timid during the cropping 

program in Luangwa, Zambia. However, their external environment is not the only 

influence causing changes in behaviour. Coulson et al. (2011) have reported that same 

species populations living in different environments differ genetically or 

phenotypically. Studies of genetics in human twins reveal similarities in some 
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behaviours independent of environment (Raven et al., 2008), emphasizing the role of 

the internal environment in influencing behaviour. 

Hippopotami are regarded as keystone species in river and lake habitats (Eltringham, 

1999; Boisserie et al., 2011). Hippopotami are among animals which have the tendency 

of aggregated dispersion (contagious or clumped distribution) (Begon et al., 2006). This 

is a patchy distribution brought about by patchy distribution of resources which enable 

them to enhance their reproduction and survival. Patchy resource distribution is both 

spatial and temporal (Begon et al., 2006). Resources therefore vary with location and 

time. A major factor which brings hippopotami together to aggregate, particularly 

during the dry season, is water resources. This is because the animals are rather 

solitary when on the feeding ground. Variations to their resting habitats due to 

variations in water regimes are likely to alter the way they respond. As introduced and 

discussed in Chapter 3 of this study, it is thought that water challenges in Katavi are 

exaggerated by habitat destruction particularly in the catchment and areas adjacent to 

the Park. 

Hippopotami live in close association with rivers, streams and lakes (Graham et al., 

2002; Dunstone & Gorman, 2007; Dunham et al., 2010). These places are used as 

suitable and safe resting places mainly during the day time. Alterations to their 

environment affect them differently in different sites. Reactions to the changing 

conditions in sheltering or resting and feeding grounds are likely to be manifested 

through their behaviour. Due to various reasons, water supplies to the hippopotami 

resting and feeding sites in Katavi NP have been fluctuating over the last twelve years 

from the early 2000 (Lewison, 1996; 1998; Meyer et al., 2005) as reported in Chapter 3 

of this study. This decrease in water is likely to affect the behaviour of hippopotami. 

Observation of their behaviour might indicate some of the resulting effects of water 

dynamics on hippopotami at the study area. Behaviors observed are not likely to be the 

direct result of water dynamics only, but may serve as indicators. This is because it is 

not always the case that behaviour shown by individuals reflects adaptive response to 
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the environment (Raven et al., 2008). Both nature (instinct) and nurture (experience) 

play significant roles. Animals have therefore been reported to alter their behaviour as 

a result of previous experience or learning (Raven et al., 2008).  

Hippopotami are animals with some spatial and temporal environmental limitations. 

Foraging behaviour is influenced by availability of aquatic habitats for resting (Field, 

1970), and mainly occurs at night (Laws, 1968; Lewison & carter, 2004). Temperature, 

forage and water are therefore among key requirements in determining their activity 

patterns. 

There have been different reports on the decline of hippopotami populations from 

various areas in Africa (Caro, 1999a; Stoner et al., 2006; Lewison and Oliver, 2008).  

Understanding their behavioural changes at local levels would help inform 

conservation measures under the changing environments. Katavi is one of the areas in 

Tanzania which supports large concentrations of hippopotami. If there is a negative 

impact of any change on the Katavi population, this could be indicative of changes 

across the country. Changes in the Katavi water regime are leading to early drying of 

the water sources in the Park. Drought is regarded as one of the factors that can limit 

populations of species (Raven et al., 2008). This is often mediated by behavioural 

responses such as increased competition for limited remaining wet sites. 

There have also been hippopotami-human conflicts due to crop raiding or human 

killings resulting from changing habitat conditions in the protected areas. Although this 

conflict is not yet serious in Katavi, it occurs in other areas (Kendall, 2011; Nyirenda et 

al., 2011). Dunham et al. (2010) reported such conflicts in Mozambique and across 

Africa. Hippopotami live in rivers which sometimes border human settlement hence 

causing conflicts outside the protected areas (Dunham et al., 2010; Kendall, 2011). 

Timely and pro-active management is needed, bearing in mind the current shrinking of 

suitable habitats due to water related challenges and encroachment of protected areas 

by human settlement and agriculture. Information from studies like the present one 

could help our understanding of hippopotami behaviour and could help to plan so as to 
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avoid or alleviate such conflicts. Studying hippopotami behavioural activity pattern can 

be important in informing their conservation and management.  

Behaviour patterns can be divided into activities or states and events (Martin and 

Bateson, 2007). Both are dealt with in this study. However, for convenience, the two 

have been separated into two different Chapters; events are dealt with in Chapter 7. 

Activities or states and events were recorded separately in order to record as many 

behaviour categories as possible. Behaviour activities are behaviour patterns of 

relatively prolonged duration such as body posture, sleeping, feeding, moving or 

resting (Martin and Bateson, 2007) as opposed to events which are of relatively short 

duration such as body movement, scratching, barking or other vocalization. The major 

feature of behaviour activities is their duration, how long they last in a certain time 

frame. For events, the major feature recorded is the frequency of occurrence.  

1.1 Aims and hypotheses 

There have been reports of decreasing amount of water entering and remaining in the 

Park leading to earlier drying of water bodies (Chapter 3). This is likely to affect species 

that depend on water. The aim of this study was to observe how the behaviour of 

hippopotami changes in relation to the decreased water supply, particularly during the 

dry season.   

The main aim was to study the impact of reduced water flow on the behaviour of 

hippopotami (Hippopotamus amphibious), between different study sites and different 

seasons. The study therefore tested the following hypotheses: 

H1 There are variations in behaviour patterns between hippopotami at different 

study sites in Katavi. 

H2 Hippopotami rest more in the dry than wet season 

H3 More time is spent feeding in the dry than wet season 

H4 Social behaviour of hippopotami is displayed more in the wet season 

H5 There are spatial and seasonal variations in hippopotami aggregation  
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2 Methods 

2.1 Site selection 

Five observation sites were selected in Katavi NP for hippopotami data recording. 

These were distributed in areas with varying habitat conditions as representative of the 

different habitats in the Park. The areas selected were expected to span the wetness 

gradient due to different sources of water and retention properties for each site. 

Locations of the sites are shown in Fig. 7.1 and characteristics are as described in 

Chapter 2. 

 

Fig. 7.1: Map of Katavi NP showing location of five behaviour study sites. 

2.2 Data recording 

From September 2009-September 2010, at each of the five sites selected for 

hippopotami behaviour observation, two days each month were spent in recording 

behaviour and aggregation of hippopotami. Animal behaviour was recorded in a 

quadrat measuring 0.2 km X 0.25 km (200 m X 250 m) making an area of 0.05 km2.  

Paradise Springs

Lake Chada

Katuma River
Kabenga River

Ikuu Springs

Ikuu Bridge

Kapapa River

Park HQ

L. Katavi
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This study is based on directly observed behaviour. At each of the sites, observations 

were carried out from a vehicle or on foot from a hidden position in order to minimize 

interference. Animals were watched either directly or using a pair of binoculars, 

distances were minimized consistent with health and safety constraints. If hippopotami 

were disturbed for any reason, behaviour recording stopped until they appeared to 

calm or settle and ignore the cause of disturbance. 

The study was conducted between 0600 and 1930 hours for safety reasons. 

Observations in the wet season were made between December 2009 to May 2010 and 

in June to November 2010 for the dry season. Activity scans were conducted in 30 

minute blocks, six times a day from 0700 to 1930 hours at approximately 0700-0730, 

0900-0930, 1100-1130, 1500-1530, 1700-1730, 1900-1930 hours. Total time for activity 

scans was three hours per day for two consecutive days each month each site. In total, 

activity patterns were observed for 390 hours. Adult and juveniles behaviours were 

recorded separately. 

Observations were only recorded at the specific sheltering or resting grounds shown in 

Fig. 7.1 and described in Chapter 2. Behavioural activities recorded were resting, 

standing, walking, feeding and passive touching. Aggregation was also recorded during 

wet and dry seasons. These behavioural categories were defined as: 1) resting: lying on 

water bank or on land without leg movements. In this state, they were immobile and 

may be passively touching each other. 2) Standing: also involved staying stationary 

with no or very limited leg movements. For some analyses resting and standing were 

combined as one category of no leg movement behaviour. 

3) Walking: all activities on land involving leg movements, except when feeding, 

including searching for feeding sites. 4) Feeding: involving head movements associated 

with cutting and ingesting food. 5) Passive touching was a social activity involving non 

aggressive lips or body contact between hippopotami. It was significantly longer than 

active touching dealt with in behavioural events. 
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Aggregation of hippopotami was estimated from distances measured as the inter-

individual distance between two randomly selected individual hippopotami in a study 

site. At most, a total of 25 pairs of hippopotami were randomly selected for sampling 

from which inter-individual distances were recorded.  

Two recording methods were used to record behaviour and complemented each other 

due to their importance. These were as follows: 

1. Direct recording or logging into a palm top Psion Logix 10 computer using the 

software ‘Observer Mobile’ professional system for field observations. The Psion 

uses the Observer XT mobile kit for the Psion Work about Pro. Before recording in 

the field, a coding scheme (ethogram) was designed on the laptop. In the scheme, 

every subject and behaviour to be recorded was specified. The coding scheme was 

transferred to the palm top computer. At the end of each session, data from the 

palm top computer were transferred onto the laptop PC which has been installed 

with the Observer XT base package for Windows. Data were summarised using the 

Observer software installed into the PC. 

2. Recording onto data sheets. Data sheets were used as a backup or alternative to 

the handheld equipment. While using these, data were recorded and entered onto 

a PC after every session in the field.  

Before actual recording, video recording was conducted. Videos were used to 

record behaviour before recording started (during the preliminary observations) to 

measure intra observer reliability. Video was also occasionally used when recording 

was not done using the palmtop. Videos gave an exact visual record of behaviour 

before actual recording. Video records were useful for recording and noting 

behavioural activities that were very rapid. Similarly, videos helped to capture 

behaviour that might have been missed by the palmtop or data sheet method. 

Despite its advantages, video recording was not used as the primary recording 

medium or to supplement the palm top and data sheet. Videos were only used for 
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familiarization and consistency in training before actual behaviour recording 

started. 

Recording methods  

Sampling rules 

Behavior observations were made predominantly by scan sampling according to Martin 

& Bateson (2007) and Lehner (1996). A group of hippopotami was rapidly scanned for 

five minutes and the behaviour of each animal recorded at that instant. This was 

followed by a recession of five minutes before recording continued for another five 

minutes until the 30 minutes period ended.  

Recording rules  

Behaviour sampling was conducted according to Martin and Bateson (2007) and 

Lehner (1996) using continuous (all occurrences) recording for the behaviour 

categories identified or coded. This measured true frequencies and durations and 

times at which behaviour patterns started and stopped, making it possible to record 

several different categories of behaviour simultaneously. It employed continuous 

sampling, divided into successive time intervals. 

2.3 Data analysis 

Data were summarised into frequency tables and analyses including 1-way ANOVA, 2-

way ANOVA, t-tests and correlations were performed. 

Seasonal variations were tested using t-tests. Spatial and temporal variations were 

analysed using analysis of variance (ANOVA) while multiple factors were analysed using 

2-way Analysis of Variance. Relationships were tested using correlations.   
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3. Results  

3.1 Comparison of activity budget between adults and juveniles 

Adult hippopotami spent about 46.7 ± 1.3% of their day time resting and 9.0 ± 0.4% 

standing making a total time of about 56% with no active leg movements (Fig. 7.2). 

19.1 ± 1.2% was spent walking and 20.7 ± 1.2% feeding making a total time of about 

40% moving. 4.3± 0.6% was spent on social activities mainly touching each other.  

Juvenile hippopotami spent about 39.7 ±1.6% resting, significantly less than adults (Fig. 

7.2), and 11.2 ±0.7% standing significantly more than adults, making a total of about 

51% with no leg movements (in resting state). 17 ±1.2% of juvenile hippopotami time 

during the day was spent walking while 17.9 ± 0.9% was spent in feeding making a total 

time of 35.6% moving, slightly less than that of adults. 13.4 ± 1.1% was spent in 

touching activities, which was significantly higher than for adults (Fig. 7.2). 

Some activity budgets varied significantly between adults and juvenile hippopotami. 

Adults spent more time resting and feeding than juveniles (t24 = 3.999, p < 0.002 and t24 

= 4.659, p < 0.004), while juvenile spent more time standing (t24 = -2.796, p < 0.010) 

and touching (t24 = -7.403, p < 0.0001) than adults. However, there were no significant 

differences between age groups in time spent walking (Fig. 7.2). 
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3.2 Seasonal variations in activity budget. 

There was significantly more time spent walking (t33 = 3. 923, p < 0.001) and touching 

(t33 = 3.386, p < 0.002) during the dry than wet season among adult hippopotami in 

Katavi, and more feeding (t33 = -2.421, p < 0.02) in the wet season (Fig. 7.3 (a)). There 

were no significant variations over the wet and dry seasons for resting and standing. 
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Juvenile hippopotami spent more time walking (t33 = 2.335, p < 0.026) and touching (t33 

= 2.214, p < 0.034) during the dry than wet season. Feeding activity (t33 = -2.436, p < 

0.02) as for adults, increased significantly during the wet season, whereas there were 

no significant variations between the seasons for resting and standing among juveniles 

(Fig. 7.3 (b)). 

3.3 Monthly variations in activity budget  

The activity budget of adult hippopotami showed significant monthly differences for 

resting (F12, 389 = 3.193, p < 0.0001), walking (F12, 389 = 3.891, p < 0.0001), feeding (F12, 389 

= 2.013, p < 0.022) and touching (F12, 389 = 6.554, p < 0.001). Standing activities showed 

some variations but such monthly variations were not significant. Activity frequency for 

both adults and juveniles is summarised in Appendix 2 and shown in Fig. 7.4. 

Juveniles showed significant monthly differences in activity budget for resting (F12, 389 = 

2.168, p < 0.013), walking (F12, 389 = 2.431, p < 0.005) and touching (F12, 389 = 5.484, p < 

0.0001). Standing and feeding did not vary significantly between months for juvenile 

hippopotami. 

Maximum frequency of resting among adult hippopotami was recorded in March, 

while the minimum was recorded in September 2009 (Appendix 3, Fig. 7.4). However, 

the range between the highest and lowest for all the months was small (13.2%). In 

October, February, April and May there was also higher frequency of resting although it 

did not vary significantly between months. Standing among adult hippopotami was 

highest in November and lowest in March. Nevertheless, the months of September, 

December, January and February are the months in which higher frequencies for 

standing were recorded (Appendix 3, Fig. 7.4). 

Juvenile hippopotami rested more in October although less than adults, while they 

rested least in January, significantly less than for adults. Maximum standing was in 

December while minimum standing was in October and July (Appendix 3, Fig. 7.4). 
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Fig. 7.4: Mean monthly variations in frequency of activities (September 2009-
September 2010) among adult and juvenile hippopotami in Katavi NP, Tanzania. Note: 
Means not showing the same letter differ by p < 0.05.  
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Walking among adult hippopotami was more frequent in September 2009. June and 

July were the months with the least walking. Feeding in June and July were the highest 

among all months. October recorded the lowest feeding frequency among adult 

hippopotami (Appendix 3, Fig. 7.4). 

Walking among juveniles was higher in September 2009 than in all other months, while 

it was at its lowest in July and June. Feeding among juvenile was higher in July and 

April. Minimum feeding was recorded in October followed by September 2010 

(Appendix 3, Fig. 7.4). 

Touching among adult hippopotami was most frequent in November, closely followed 

by September 2009. Least touching was recorded in April and March (Appendix 3, Fig. 

7.4) 

Maximum touching among juvenile hippopotami was in June, while minimum touching 

was in April followed by March (Appendix 2, Fig. 7.4). 

3.4 Time specific activity budgets 

Some components of the activity budget varied significantly with time of the day in all 

study sites during both the wet and dry season (Fig. 7.5). Resting, standing, walking, 

feeding and touching varied significantly at different times of the day over the study 

period (Fig. 7.5).  

Both adult and juvenile hippopotami at Ikuu Bridge showed significant variations in all 

components of their activity budgets at different times of the day (Table 7.1).  

All activities at Lake Chada varied significantly over different times of the day for both 

adult and juvenile hippopotami (Table 7.1).  
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Fig. 7.5: Variations in mean behavioural activities for (a) adult and (b) juvenile 
hippopotami between different times of the day during the dry and wet seasons in 
Katavi NP, Tanzania. Key: ***= p < 0.001, **=p < 0.01, *= p < 0.05. 
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With exception of touching, adult hippopotami at Lake Katavi showed significant 

differences with time of the day (Table 7.1). All activities at Lake Katavi site varied 

significantly over different day times for juvenile hippopotami (Table 7.1).  

Table 7.1: Summary of statistical tests for variations of activity patterns among adult 
and juvenile hippopotami at different times of the day at Katavi NP, Tanzania 

  Adults Juveniles 

  df= 5, 77 df= 5, 77 

Study site Traits F-value p F-value p 

Ikuu Bridge Resting 82.217 0.0001 41.78 0.0001 

 Standing 14.078 0.0001 14.68 0.0001 

 Walking 43.764 0.0001 37.96 0.0001 

 Feeding 39.648 0.0001 30.98 0.0001 

 Touching 4.483 0.001 2.732 0.026 

Lake Chada Resting 39.18 0.0001 25.181 0.0001 

 Standing 10.593 0.0001 3.937 0.003 

 Walking 38.302 0.0001 14.58 0.0001 

 Feeding 49.42 0.0001 35.593 0.0001 

 Touching 11.353 0.0001 7.01 0.0001 

Lake Katavi Resting 25.799 0.0001 17.923 0.0001 

 Standing 6.858 0.0001 7.305 0.0001 

 Walking 20.653 0.0001 11.823 0.0001 

 Feeding 13.792 0.0001 9.619 0.0001 

 Touching ** NS 2.492 0.039 

Paradise  Springs Resting 8.414 0.0001 5.184 0.0001 

 Standing ** NS 2.426 0.043 

 Walking 9.828 0.0001 5.251 0.0001 

 Feeding 10.232 0.0001 8.847 0.0001 

 Touching 4.643 0.001 3.908 0.003 

Ikuu Springs Resting 86.602 0.0001 25.072 0.0001 

 Standing 7.049 0.0001 7.896 0.0001 

 Walking 38.441 0.0001 19.149 0.0001 

 Feeding 31.882 0.0001 25.505 0.0001 

 Touching ** NS ** NS 

Key: ** denotes test not significant at p < 0.05. 

With exception of standing, all other activities showed significant differences over 

times of the day at Paradise Springs (Table 7.1). Juvenile hippopotami at Paradise 

Springs showed significant differences in all activities between times of the day (Table 

7.1).  
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All adult and juvenile activities varied significantly with time of day at Ikuu Springs with 

the exception of touching (Table 7.1).  

 

3.5 Variations of activity budgets between study sites 

Differences in activities between sites are shown in Fig. 7.6. Resting (F4, 389 = 7.459 p < 

0.0001), feeding (F4, 389 = 4.114 p < 0.003) and touching (F4, 389 = 5.852 p < 0.0001) 

among adults were significantly different between study sites. However, there were no 

significant differences in standing and walking between study sites. 

A similar range of activities were different for juvenile hippopotami between the five 

study sites; resting (F4, 389 = 4.254 p < 0.002), feeding (F4, 389 = 3.670 p < 0.006), and 

touching (F4, 389 = 3.112 p < 0.015) had significant differences between sites (Fig. 7.6), 

but so did standing (F4, 389 = 3.188 p < 0.014), leaving walking as the only activity that 

did not show any differences between study sites. 

The most resting among adult hippopotami was recorded at Ikuu Springs and the least 

at Lake Katavi (Fig. 7.6). Juvenile hippopotami at Ikuu Bridge rested more than in other 

sites with a resting frequency less than that of adults. Least resting for juveniles 

occurred at Lake Chada with a frequency slightly lower than that for adults (Fig. 7.6).  

Adult hippopotami spent most time feeding at Lake Katavi, and least at Ikuu Springs 

(Fig. 7.6). Feeding by juveniles was most frequent at Lake Katavi and least at Ikuu 

Bridge closely followed by Ikuu Springs (Fig. 7.6). Touching in adults was highest at 

Paradise Springs and least at Ikuu Springs (Fig. 7.6). Touching in juveniles was more 

frequent at Lake Chada and Ikuu Bridge. Minimum touching between sites occurred at 

Lake Katavi and Ikuu Springs (Fig. 7.6). 
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Fig. 7.6: Summary of mean activity budget for adult and juvenile hippopotami at five 
study sites (September 2009-September 2010) in Katavi NP, Tanzania. Bars not sharing 
the same letter differ by p < 0.05. 
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3.6 Comparison of seasonal variations in activity budget between sites 

Adult hippopotami at Ikuu Bridge exhibited significant seasonal differences in the 

proportion of time spent standing (t5= -3.256, p < 0.023), walking (t5= 8.487, p < 0.001) 

and touching (t5= 3.704, p < 0.014). Resting and feeding did not differ (Fig. 7.7). 

Juvenile hippopotami at Ikuu Bridge showed significant seasonal differences in 

proportion of time spent standing (t5= -3.054, p < 0.028) and touching (t5= 4.273, p < 

0.008). Resting, walking and feeding did not show any seasonal variations (Fig. 7.7). 

Standing and touching (t5= 3.135, p < 0.026 and t5= 2.792, p < 0.038 respectively) were 

the only activities which showed significant seasonal differences among adult 

hippopotami at Lake Chada. Resting, walking and feeding did not vary significantly 

between the wet and dry season (Fig. 7.7).  

Among juveniles, touching activities were the only ones that varied seasonally at Lake 

Chada site (t5 = 2.811, p < 0.037). Resting, standing, walking and feeding did not show 

any significant seasonal differences (Fig. 7.7). 

At Lake Katavi site, resting and walking activities showed significant seasonal 

differences among adult hippopotami (t5= -3.094, p < 0.027 and t5= 3.166, p < 0.025 

respectively). Standing, feeding, and touching did not show any significant seasonal 

differences (Fig. 7.7). 

Juvenile hippopotami at Lake Katavi showed significant seasonal differences in the time 

spent resting (t5= -6.336, p < 0.001). Nevertheless, other activities did not show any 

seasonal variations. Standing, walking, feeding and touching did not vary between the 

wet and dry season (Fig. 7.7). 

There were no significant seasonal differences in activity budget among adult or 

juvenile hippopotami at Paradise Springs over the study period (Fig. 7.7). 
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Fig. 7.7: Spatial variations in activity budget (September 2009- September 2010) 

between five study sites for adult and juvenile hippopotami in Katavi NP, Tanzania.                    

***= p < 0.001, **= p < 0.01, *= p < 0.05  
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3.7 Aggregation 

Comparison of aggregation between sites 

The highest inter-individual distances in the five study sites were at Ikuu Springs, while 

the least were at Paradise Springs and Ikuu Bridge (Fig. 7.8). There were no significant 

differences in inter-individual distances between the five study sites. 

 

 

Seasonal variations in aggregation (inter-individual distances)  

Mean aggregation of hippopotami at Paradise Springs (t84 = 14.992, p < 0.0001) was 

least in the wet season and significantly lower than in the dry season (Fig. 7.9). 

Wet season inter-individual distances were significantly lower at Paradise Springs than 

at the other sites (t84= -9.182 p < 0.0001) (Fig. 7.9). Inter-individual distances during the 

dry season did not vary between the five sites. 
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Monthly variations in hippopotami aggregations 

Aggregation (mean inter-individual distance) varied significantly (F16, 84 = 2.629, p < 

0.003) (Fig. 7.10), with the lowest inter-individual distances during driest months. 

The lowest inter-individual distances between hippopotami were during the dry 

months of October, November and December (Fig. 7.10) with least aggregation 

recorded in May 2009. 
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Monthly variations in aggregation between study sites 

The highest inter individual distances were at Ikuu Springs in May 2010 (4.6 ± 1.3 m) 

followed by Lake Katavi with 3.4 ± 0.5 m in May 2009. The lowest inter-individual 

distances occurred in November 2009 at Lake Katavi (0.3 ± 0.1 m), July 2009 at Ikuu 

Springs (0.4 ± 0.1 m) and in October and November at Ikuu Bridge with 0.4 m in both 

months (Fig.  7.11). 

At Lake Katavi, the highest mean inter-individual distance (about 3.5 m) was in May 

2009 with the lowest (less than 0.5 m) in November 2009. The next lowest was in 

September with 0.5 m. In August and December 2009 the mean inter-individual 

distance was just above 0.5 m. In August and September 2010 it was just less than 2.5 

m. This was greater than the mean inter-individual distance during the same period in 

2009 (Fig. 7.11). 
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Fig. 7.10: Overall mean monthly variations in inter-individual 
distance between hippopotamis in Katavi NP, Tanzania. Bars with the 
same letter are not significantly different at p < 0.05. 
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Fig. 7.11: Mean monthly aggregations (inter-individual distances) between 

hippopotami in five study sites in Katavi NP, Tanzania. 
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Mean monthly distance between individuals at Paradise Springs did not vary greatly 

during the study period compared with the other sites. Nevertheless, the lowest mean 

inter individual distance was in November 2009, this was about 0.5 m. Generally, in 

October 2009-January 2010 mean distances were below 1.0 m. During the other 

months, hippopotami were more than 1.0 m apart but less than 2.0 m apart.  In August 

2010 the mean distance was just below 2.0 m (Fig. 7.11). 

At Lake Chada, the highest mean inter-individual distance of about 3.5 m was in July 

2010. In June 2010, distance was about 2.0 m while in August and September 2010 

mean distance was just less than 2.0 m. In December 2009 the least inter-individual 

distance with a mean of less than 0.5 m apart was recorded. In October and November 

2009 mean distances were just above 2.0 m (Fig. 7.11). 

Low mean inter individual distances between May 2009 and March 2010 was at Ikuu 

Bridge. Within these months, the lowest mean distance of about 1.0 m was in August 

closely followed by February 2010 with mean distance just below 1.0 m apart. In June 

2010, mean distance was 2.0 m. This was closely followed by mean distances just 

below 2.0 m in September and May 2010 while the lowest mean distance of about 0.5 

m was in October and November 2009 and January 2010 (Fig. 7.11). 

At Ikuu Springs the highest mean inter-individual distances (about 4.5 m) were in May 

2010, while the lowest mean distance (less than 0.5 m apart) was in July 2009. Low 

mean distances of less than 1.0 m occurred in October-December 2009. Mean inter-

individual distance of between 1.5 to about 2.5 m were in February, April, June, July, 

August and September 2010 (Fig. 7.11). 

Directions of effects and impacts of reduced water resource to the behavioural activity 

patterns of hippopotamus are summarised in table7.2.
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Table 7.2: Summary of activity budget of the adult and juvenile hippopotami showing the direction of effects of declined water resources

Traits Source of variations Direction of effects of less water Description of variation Direction of effects of less water Description of variation

Resting Seasonal No direction No significant difference between seasons No direction No significant difference between seasons

Monthly Negative Slightly more resting during the wet season months Negative Less during the dry season

Spatial Positive More resting at drier sites (Ikuu Springs and Bridge) Positive More at drier site Ikuu Bridge

Standing Seasonal No direction No significant difference between seasons No direction No significant difference between seasons

Monthly No direction No significant difference between months No direction No significant difference between months

Spatial No direction No significant variations between sites Positive More at drier sites (Ikuu Springs and Lake Chada)

Walking Seasonal Positive More walking during the dry season Positive More walking during the dry season

Monthly Positive More walking during the dry season months Positive Slightly more walking during the dry season months

Spatial Positive More walking at drier sites (Lakes Chada + Katavi) Positive More at drier sites (Lake Katavi and Ikuu Springs)

Feeding Seasonal Negative Less feeding during the dry season Positive Less feeding during the dry season

Monthly Positive Slightly less feeding during the dry season months No direction No significant variations between months

Spatial Negative Less feeding at drier sites (Ikuu Springs and Ikuu Bridge Positive Less at drier sites (Ikuu Springs and Ikuu Bridge)

Touching Seasonal Positive More touching during the dry season Positive More touching during the dry season

Monthly Positive More touching during the dry season months Positive More touching during the dry season months

Spatial Positive Lowest at drier sites (Ikuu Springs), higher at wettest site Positive More at drier sites (Ikuu River and Lake Chada)

Aggregation Seasonal Positive Only the wettest site maintained abundance hence varied aggregation Positive Only the wettest site maintained abundance hence varied aggregation

Monthly Positive More aggregation during the dry season months Positive More aggregation during the dry season months

Spatial Negative Drier sites differed from the wettest site at Paradise Springs Negative Drier sites differed from the wettest site at Paradise Springs

Adults Juveniles
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4. Discussion 

Although adult hippopotami spent more than half of the day time resting, nearly half of 

the day time was spent performing other activities particularly those related to 

feeding. This was slightly less for juveniles, for which feeding represented about 36% of 

their time.  Walking and feeding occupied about the same time in adults and juveniles. 

However, juveniles fed slightly less because juveniles did not always feed when adults 

were feeding. This was the probable reason that more standing and touching were 

recorded in juveniles than adults. Adults spent more time resting than juveniles (Fig. 

7.2). Adults once in their resting sites were more settled than juveniles. Juveniles, apart 

from resting were involved in other activities mainly social. This led to less resting than 

adults. In the study of behavioural responses of captive hippopotami, active behaviours 

for adults and juveniles had a frequency of about 32 % for both groups (Chen et al., 

2010). This is slightly less than that observed in Katavi.  

With the exception of resting and touching, all activities recorded were affected either 

positively or negatively by the availability of water and forage (Table 7.2). Seasonal 

feeding activities were negatively affected as water decreased at the shelter sites 

leading to less foraging near their shelters. Walking and social touching were positively 

affected, increasing as water decreased during the dry season.  

Although there were no significant differences in aggregation between sites, at 

Paradise Springs, there was a difference in aggregation between seasons. This was 

because abundance of animals was relatively constant throughout the year at this site. 

During the wet season, hippopotami spread out, possibly to avoid deeper and fast 

moving waters and increased distances between them. However, most of them were 

within the same study site. In drier sites such as Ikuu Springs and Lake Katavi, 

abundance varied significantly between seasons but their grouping patterns did not 

vary significantly.  
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Minimum inter-individual distances or maximum aggregations were recorded during 

the dry season, increasing steadily as the wet season advanced and maintained during 

the wet season. There was less aggregation as water receded. 

Less water made the animals aggregate more and increase touching and body contacts 

between each other. There was less water and significantly more close contacts during 

the dry than wet season. On some occasions, contacts turned confrontational. 

Touching more during the dry season was due to hippopotami being in closer contact 

than during the wet season when animals spread and dispersed further.  

Aggregations of animals on a site have effects on forage through their consumption, 

trampling and excretion (Drescher et al., 2006). This is more effective in areas where 

animals such as hippopotami live and forage as their aggregations may be higher, 

hence affecting quality, quantity and structure of forage much more quickly. In turn, 

forage structure may affect foraging behaviour (Ginnet et al., 1999; Drescher et al., 

2006); hence, understanding how resources are exploited is crucial (Illius et al., 2002). 

Change in behaviour may be due to increased distances or increased intake rates and 

time spent feeding as may lead to increased resource depletion at foraging sites. This 

can help in explaining variation of distribution of hippopotami in relation to study sites 

and seasons. At the wettest site, hippopotami had more resources hence their 

abundance and degree of aggregation were maintained while at drier sites, they 

aggregated more in wet shelters only during the dry season. This was consistent with 

the results of consequences of aggregation on dynamics of forage (Fryxell, 1991). 

According to the forage maturation hypothesis, among the advantages of hippopotami 

aggregating can be maintaining swards at optimum heights through their feeding and 

hence increased production of young and softer sward tissues (McNaughton, 1979). 

Short swards and emerging shoots have a direct impact on forage intake by 

determining rates of intake and digestion (Fryxell, 1991), as growth and age of forage 

have an inverse relationship with forage quality (Hassall et al., 2001; Drescher et al., 

2006).  
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With the exception of Paradise Springs during the wet season, inter-individual 

distances were not significantly different between sites. Mean inter-individual 

distances at Ikuu Springs were contributed by the fact that from late November 2009, 

most hippopotami moved out of this site leaving behind few individuals until the next 

dry season in July 2010. During the time when fewer individuals remained, grouping 

patterns did not vary in terms of inter-individual distances. This might be the result of 

changing tradeoffs linked to aggregation. As hippopotami are basically solitary when 

foraging, it may be unnecessary to aggregate during the wet season when temporary 

wallows or shelter and forage are available. During the wet season, aggregation is less 

essential as there are more resources so intra-specific competition for optimal length 

sward may be reduced. Hippopotami aggregate more during the dry season to utilize 

the diminishing water resources in the shelter sites but this may have a cost of foraging 

areas near to the shelters becoming depleted.   

Seasonality in behaviour in relation to group size and bonding may differ within 

species, sexes, age groups and individuals (Lehner, 1996). In the Mara River in the 

Serengeti, studies have shown that groups tend to split more often during the wet than 

dry season (Olivier and Laurie, 1974). This may be due to food availability but mainly 

due to water resource availability because group size decreased after a rise in water 

levels. During dry months from October to December the lowest inter-individual 

distances between hippopotami was recorded. This was during the period when most 

of the shelter sites were dry or relatively dry.  

At Paradise Springs, the wettest site, non of the behavioural activity categories differed 

significantly between seasons while some components of behavioural activities varied 

between seasons at the four other sites. Water, forage close to the shelter sites and 

environmental temperatures were the main factors which determined most of the 

activity patterns of the hippopotami. Hippopotami are highly dependent on permanent 

water because of the anatomy and physiology of their skin (Eltringham, 1999; Luck & 

Wright, 1963; Saikawa et al., 2004; Jablonski, 2004), and hence have to forage close to 



 

181 
 

water sources. The limitation requiring them to be close to water sources is that they 

lose water quickly when out of water in hot weather. Luck and Wright (1963) measured 

hippopotami in Uganda losing water through evaporation at about 7.2 - 9.9 mg-1 5 cm-2 

/10 min from their skin at air temperature between 32 – 39oC. They however have to 

maintain their core body temperature at about 36oC (Cena, 1964; Noirard et al, 2008). 

This is likely to be one of the major drivers of diurnal and time specific activity budgets. 

Manteca and Smith (1994) listed environmental temperatures as among the major 

factors affecting activity patterns of mammals. According to Schneider and Kolter 

(2009), temperature between 21-28oC may be optimal for the hippopotami. However, 

in Katavi maximum temperatures of 35oC were recorded during the months of 

September, October and November when water was limiting. With mean annual 

temperatures being between 27 ± 0.8 and 31 ± 0.8oC, it is likely to affect them in their 

activity patterns, particularly in the absence of water.  

Water is central to the diurnal, time specific activity budgets of hippopotami as they 

have to spend their time resting in order to thermo-regulate their bodies. This is 

because they reduce sun exposure by getting into water when environmental 

temperatures become higher (Eltringham, 1999; Noirard et al., 2008). Water 

temperatures, which are relatively stable compared to air temperatures (Noirard et al., 

2008) help to cool the hippopotami. This is despite the fact that water temperatures 

vary with seasons, but less so than air temperatures. Rise in air temperatures and 

absence of water for cooling in some drier sites in Katavi during the dry season of 2009 

led the hippopotami to seek refuge in the shade of trees. Presence or absence of water 

for cooling determined how long hippopotami spent performing particular behavioural 

activities during the day at different times of the year. This is supported by the 

observed differences between the wettest and the drier sites and between seasons.  

Availability of forage near shelter sites was another factor which determined the 

diurnal activity budget of the hippopotami. During the wet season when environmental 

temperatures were cooler and forage was available near the resting sites, hippopotami 
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spent more of the day time feeding than during the dry season when forage was less 

available and temperatures much higher. Conducive temperature and availability of 

forage influences the desire to feed near their shelter sites in order to reduce travel 

distances while maximizing energy intake (Luck and Wright, 1963; O’Connor and 

Campbell, 1986; Spinage, 2012). 

Availability of forage near the shelter sites enabled animals to feed more during the 

day within their sheltering sites in order to fulfill their energy demands. In addition, this 

resulted in more walking while also feeding and so to spending less time resting. 

Hippopotami are primarily night time feeders (Laws, 1968; Lewison and Carter, 2004), 

more day-time feeding may suggest that forage is limiting near shelters during the dry 

season. There is a possibility that a smaller quantity of more fibrous foods are eaten 

during the dry season leading to more time spent digesting while resting. In a study of 

buffalo in Meru, Tanzania, total grazing time per day did not differ between seasons. 

However, ruminating time increased during the dry season as the result of more 

fibrous food (Sinclair, 2008b).  Manteca and Smith (1994) observed varied patterns as 

animals had to alter their activity budget as resources become scarce. This might be 

the cause for less feeding during the day time in dry season. 

Similarly for juveniles, there were less resting and more walking and touching during 

the dry than wet season. This is thought to have been due to less forage and water. 

During the dry season, more time is spent looking for resources than during the wet 

season. Animals had to adjust their behaviour pattern to fit with less resource as 

observed by Manteca and Smith (1994). It is therefore thought there was less time 

foraging due to there being less water. 

This activity of feeding near shelter sites may indicate that the animal had less forage 

during the previous night, possibly due to the distances between shelters and foraging 

grounds or simply taking advantage of forage availability close to where they rested. It 

is probable that hippopotami would utilize a nearby foraging ground if available in 

order to meet their nutritional requirements. Subject to climatic conditions mainly air 
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temperatures, hippopotami feed during the day or lie out of water while basking (Luck 

and Wright, 1963; Spinage, 2012). In Zimbabwe, hippopotami foraged within 1 km of 

the river bank during the wet season, although they had to travel much further inland 

during the dry season (O’Connor and Campbell, 1986), as forage became depleted 

within the 1 km stretch. This can help to explain why hippopotami at drier shelter sites 

in Katavi left just after the first rains in order to be close to their feeding grounds. This 

is because there was less forage near the drier shelter sites particularly during the dry 

season. This led to hippopotami travelling further for foraging. In Uganda, Eltringham 

(1999) and Field & Laws (1970) observed hippopotami creating temporary shelters for 

minimizing travel distances between shelter sites and foraging grounds. Time used for 

travel may influence diurnal activity budgets such as animals having to rest instead of 

feeding.  

Most hippopotami continued to feed near their resting sites after returning from 

foraging and before they started their dusk feeding trips. This was especially frequent 

during the wet season when forage was available near their shelter sites. It was also 

most frequent at the wettest site. In the drier sites, there was less feeding near shelter 

sites due to less forage during the dry season. This led to less feeding being recorded at 

drier sites. Feeding near shelter sites allowed hippopotami to feed, wallow and bask 

with less energy expenditure. This was restricted in the drier sites; hence variations in 

activity budget between sites.  

Impacts of less water on hippopotami led to increased movements among 

hippopotami and increased touching. Hippopotami had to adjust their patterns and 

adopt new patterns in order to cope with the available resources. However, during this 

study, availability of forage and water was well above the expected or previously 

reported levels of drought. Moe drought is likely to have led to a more drastic change 

or variations in behavioural patterns. In Ruaha NP, Tanzania, extended periods of low 

or no river flow disrupted normal behaviour patterns of animals and led to changes in 

their behaviour (Kashaigili et al., 2006).  



 

184 
 

Less resting among adults and juveniles were observed in the dry months of 

September, November and December before increasing in January. Feeding near 

resting sites contributed to variation of activity patterns between different times of the 

day. Availability of food, water resources near resting grounds and environmental 

temperature dictated the activity budget over times of the day. During the morning 

after the animals returned from feeding, they spent some hours basking and moving 

back to water and hence were unsettled. During the hot time of the day most of them 

were resting. Luck and Wright (1963) and Blowers et al. (2008) observed that animals 

keep on basking and getting into water frequently during hot days. In Katavi this was 

mainly observed during the time when water for immersing was available. During the 

late morning to late afternoon most hippopotami were resting. However, during the 

wet season animals spent more day time actively feeding, hence a more spread activity 

budget over the times of the day. 

Variation of activity budget within time of the day is also related to changes in weather 

conditions particularly for the purpose of thermoregulation. As environmental 

temperatures increases, hippopotami move into water while they bask when 

temperatures declines (Eltringham, 1999). Noirard et al. (2008) in Niger found that 

hippopotami basked more when waters were cold.  

Ikuu Springs was the site where the highest resting activity was recorded among adults. 

This is because of the use of the site as there was less feeding ground at this site. 

Hippopotami at Ikuu Springs therefore had to spend more day time resting. However, 

few fed within the site. 

Forage is among the factors that influences activity patterns of hippopotami in various 

ways. In Zambia, Wilbroad and Milanzi (2010) observed that poor pasture at a site 

induced more travelling among hippopotami. This tends to be supported by Manteca 

and Smith (1994) who suggested that less food during the dry season leads to animals 

spending more time traveling and feeding. Hippopotami at the wettest site had forage 



 

185 
 

during most of the time and hence were more active. Feeding by both adults and 

juveniles was highest at Lake Katavi.  

Ikuu Springs, despite being a wet resting site for hippopotami throughout the year, had 

much less foraging opportunities within the shelter site which almost disappeared 

when hippopotami abundance increased.  

5. Conclusions and recommendations 

Some components of activity patterns varied significantly between seasons. Variations 

observed during the dry season are indicators that water dynamics have an impact on 

behaviour patterns of hippopotami in Katavi. 

Differences in wetness between sites show that water had a major influence on 

differences in hippopotami activity patterns between sites. Hippopotami in the wettest 

site showed little seasonal variations in activity patterns and aggregation compared to 

the drier sites.  

Availability of forage and air temperatures are thought to have contributed to the 

observed variations in activity patterns between sites and seasons. 

Availability of water, varying air temperature and availability of forage near resting 

sites determined variations of activity patterns during different times of the day.   

Due to hippopotami depending on water for thermoregulation, it can be concluded 

that most diurnal behavioural patterns responded to thermoregulation constraints 

(Wright, 1964; Noirard et al., 2008). Apart from the need hippopotami have to feed, 

the skin anatomy and physiology can be considered as major determinants of the 

activity budget.  
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Chapter 7: Spatial and temporal variations in behavioural events 

1. Introduction 

Animals interact with their environment in different ways (Lehner, 1996; Raven et al., 

2008) and environment plays a crucial role in shaping behaviour. External and internal 

factors and forces affect the behaviour of individual animals (Raven et al., 2008). 

Behaviours are not random (Lehner, 1996) but are instinct or learned. Sampling 

relative frequency and duration of different behaviours enables quantification of 

behavioural acts (Lehner, 1996). Behavioural acts can be arbitrarily sub divided into 

two categories: activities or states and events. This subdivision depends on the 

duration of the act (Martin and Bateson, 2007). Behavioural activities are presented in 

Chapter 6 and behavioural events in this Chapter. 

 

Events are behavioural patterns of relatively short duration such as vocalization or 

discrete body movements (Martin and Bateson, 2007), as opposed to behavioural 

activities which are behavioural patterns of relatively longer duration such as standing, 

resting or feeding. The major feature of events is their frequency of occurrence while 

duration of activity is the major feature in behavioural activities (Martin and Bateson, 

2007). Behavioural activities are measured as the amount of time taken performing a 

particular activity or activities within a certain period, such as time spent feeding in an 

hour. However, behaviour events are measured in terms of frequency of occurrence 

within a certain period of time such as number of grunts or barking made by an animal 

per minute. 

 

This Chapter is about spatial and temporal variations in events. The wider context of 

this Chapter is given in Chapter Six on behaviour activities. Events were separated from 

behavioural activities to simplify recording. Separating recording of events from 

behavioural activities simplified the recording protocol and improved reliability of the 

data because events being behavioural patterns of short durations were likely to have 

been missed if recorded at the same time as recording behavioural activities. 
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Separating scan sampling for the two fundamental types of behaviour, activities and 

events thus enabled more information to be acquired, as noted by Ruiter (1986), 

Lehner (1996) and Martin and Bateson (2007). 

 

1.1 Aims and hypotheses 

The overall aim of the study is to investigate the impact of a varying water resource on 

the ecology and behaviour of hippopotami. The environment provides for the proper 

development and expression of behaviour (Lehner, 1996). It is therefore through the 

study of such behaviours we can express the impact of environment on hippopotami.  

 

A total of eight events in four categories which are described in section 2.2 were 

measured during this study. These include aggression (threats and biting), sexual 

(courtship and mating), social (active touching and grooming), and maintenance events 

(yawning, rolling, ear flicking and splashing water over the backs). The study therefore 

tested the following hypotheses concerning hippopotami in Katavi. 

H1: There are differences in frequency of behavioural events between adults 

and juveniles.  

H2: There are broad seasonal variations in event patterns  

H3: There are differences in event patterns between study sites 
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2.  Methods 

2.1 Site selection  

The five observation quadrats selected for recording events were the same study sites 

used for recording behavioural activities. Locations of the sites are shown in Fig. 8.1 

and characteristics and criteria for selection are described in Chapter 2. 

 

Fig. 8.1: Sketch map showing hippopotami behavioural events study sites in Katavi NP. 

2.2 Data recording 

Animal observations were made from September 2009-September 2010, at each of the 

five sites selected for hippopotami behaviour observation. Two days each month were 

spent in recording hippopotami behavioural events at each site.  

 

This study is based on directly observed behaviour according to Lehner (1996) and 

Martin and Bateson (2007). At each of the sites, observations were carried out from a 

vehicle or from a hidden position in order to minimize interference. Animals were 

watched either directly or using a pair of binoculars. Observations distances were 

Lake Katavi

Ikuu Springs

Ikuu Bridge
Lake Chada

Paradise Springs

Katuma River

Kapapa River
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minimized but in accordance with health and safety constraints. If hippopotami were 

disturbed for any reason, recording stopped until animals appeared to calm or settle 

and ignore the cause of disturbance. 

The study was conducted between 0600 and 1930 hours for safety reasons. 

Observations in the wet season were made between December 2009 to May 2010 and 

in the dry season from September-November 2009 and June to September 2010. Event 

scans were conducted for 4 h day-1 in 60 minutes blocks, four times a day from 0700 to 

1900 at approximately 0800-0900, 1000-1100, 1600-1700 and 1800-1900 hours for two 

consecutive days each month on each site. In total, events patterns were observed for 

520 hours. Adult and juvenile behavioural events were recorded separately. 

Observations were only recorded at the specific sheltering or resting grounds shown in 

Fig. 8.1 and described in Chapter 2. Four behavioural events categories (aggressive, 

sexual, social and maintenance) were recorded and were sub divided as a) aggressive 

events comprising events defined as: 1) Threats: this comprised confrontation without 

actual fight or attack. Threats involved opening their mouth wide, displaying their jaws 

and moving head, charging and chasing others and excluding others from a resting site 

and 2) biting: which involved use of teeth to attack parts of the body of other 

hippopotami and slashing with a tusk.  

b) Sexual events: this included 1) Courtship: involved a male hippopotamus moving 

towards a female and following it for some time until the female was ready for mating. 

Courtship also included friendly chase in water and 2) Mating: which was the actual 

event of copulation after courtship. C) Social events: these included all non-

confrontational interactions, active touching or contact and grooming when lying down 

as well as when active. d) Maintenance events which were divided into 1) Yawning: 

yawning in vertebrates is the involuntary opening of mouth while taking a deep breath 

of air. It is non-confrontational opening of the mouth upward towards the sky and not 

directed to another individual, seen as a friendly gesture. Possible functions of yawning 

are discussed in Section 4.1   2) Rolling: turning the body round in water or mud. This 
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happens when water is not deep enough to immerse the whole body. Rolling was 

taken as either full roll with movement from one side to another with all four legs in 

the air or half roll where the animal turned half way with at least two legs in the air and 

back again to the same side.  It was thought rolling was aimed at cooling the back.  3) 

Ear flicking: twitching ears vigorously and 4) Water splashing: flicking tail from side to 

side in water in order to splash water over the back. This was thought to be for cooling 

their back when water was not deep enough. At times of drought, mud was also used 

for splashing. Possible functions of ear flicking and water splashing are discussed in 

Section 4.1. 

In the same ways described in Chapter 6, two complementary methods were used to 

record behaviour: direct logging into a palm top Psion Logix 10 computer using the 

Observer Mobile Professional system for field observations software. The Psion uses 

the Observer XT Mobile kit for the Psion Work about Pro and use of data sheets as 

described in Chapter 6. Prior video recording for familiarization were also made as 

described in Chapter 6.  

Recording methods  

Sampling protocol  

Hippopotami behavioural events were monitored mainly by scan sampling according to 

Martin and Bateson (2007) and Lehner (1996). A group of hippopotami was scanned 

rapidly for five minutes and the behaviour of each animal recorded at the instant it 

occurred. This was followed by a pause of five minutes before recording continued for 

another five minutes, until the 60 minutes period ended.  

Recording protocol  

Events were recorded using all occurrence recording divided into successive time 

intervals. This measured frequencies of behavioural event patterns, hence making it 

possible to record several different categories of behaviour simultaneously. 

` 
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2.3 Data analysis 

August, September, October and November were grouped as dry season while January, 

February, March and April were wet season months. Statistical analyses were 

performed using the SPSS statistics package software (PASW Statistics 18) by IBM. Data 

were summarised into frequency tables. 

Seasonal variations were tested using t-tests. Spatial and temporal variations were 

analysed using 1-way analysis of variance (ANOVA) while multiple factors were 

analysed using 2-way analysis of variance. Relationships were tested using correlations.   
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3 RESULTS 

3.1 Comparison of frequency of events for adults and juveniles 

Maintenance events were the most frequent in both adults and juveniles making up a 

total of 89 ± 2.1 % and 81 ± 1.6 % for adults and juvenile respectively (Fig. 8.2). There 

were more social events among juveniles while more aggressiveness was observed in 

adults. There were some sexual events in adults amounting to about 1% of the total 

events observed (Fig. 8.2)  

 

Amongst adults, yawning was the most frequent (33.7 ± 3.2 %) behavioural event (Fig. 

8.3), closely followed by ear flicking. Water splashing was the third most frequent 

event followed by social interactions. Threats and rolling had similar frequency. Events 

involving biting and sexual encounter had the lowest frequency of total events 

recorded for adult hippopotami (Fig. 8.3).   

Ear flicking was the most frequent event in juvenile hippopotami recording a 40.9 ± 2.5 

% of total events. Yawning and social were the next most frequent (Fig. 8.3). There 
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Fig. 8.2: Annual means of behavioural events observed for adult and 
juvenile hippopotami combined for the five study sites in Katavi NP, 

Tanzania. Key: ***= p <0.001, ** = p <0.01, * = p <0.05 
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were significant differences in frequency of water splashing, threats and rolling. There 

were only a few isolated observations of biting by juveniles (0.1 ± 0.1 % of total 

events), and no sexual events among juveniles (Fig. 8.3). 

 

There were significant differences in the frequency of behavioural events between 

adults and juvenile hippopotami (Table 8.1). Of the eight events recorded, yawning was 

the only one for which there was no significant differences between the two age 

groups (t24 = 0.566, p = 0.577). Differences between adults and juveniles were 

significant for all other categories of behavioural events (Table 8.1 and Fig. 8.3). 

Table 8.1: Independent sample t-test for differences in events between adults and 
juvenile hippopotami in Katavi NP, Tanzania 

S/No Factor t-value Df p-value 

1 Threats 4.184 24 0.0001 

2 Biting 3.287 24 0.003 

3 Sexual 5.043 24 0.0001 

4 Social -9.262 24 0.0001 

5 Rolling 3.319 24 0.003 

6 Ear flick -2.744 24 0.011 

7 Splashing 4.123 24 0.0001 
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Fig. 8.3: Annual means of behavioural events observed for hippopotami 
combined for the five study sites in Katavi NP, Tanzania (September 2009-

September 2010). Key: ***= p < 0.001, **= p < 0.01, *=p < 0.05 
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Adults showed more aggressive (threatening and biting), sexual and maintenance 

(rolling and splashing) behaviours while juveniles showed more social behaviour and 

ear flicking (maintenance) (Fig. 8.3).  

3.2 Seasonal variations in events 

Amongst adults, maintenance events were more frequent during the wet season and 

aggression was more frequent during the dry season (Fig.8.4). Sexual events were 

higher during the wet than dry season. Social interaction had relatively similar 

frequency in the two seasons (Fig. 8.4).  

 

Social events amongst juvenile were the only events with significant seasonal 

variations with more social events during the wet season (Fig. 8.5). Although 

maintenance was the most frequent behavioural event, this did not vary seasonally for 

juveniles. There were only a few isolated observations of aggression and these were 

mainly during the dry season and there was no difference between seasons (Fig. 8.5).  
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Fig. 8.4: Variations in frequency of behavioural events observed 
during the dry and wet seasons for adult hippopotami combined for 

the five study sites in Katavi NP, Tanzania. Key: *=p<0.05. 
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For adults, there were differences between wet and dry seasons in biting (t11 = 2.744, p 

< 0.019), sexual events (t11 =-2.216, p < 0.049), yawning (t11 = -4.102, p < 0.002), rolling 

(t11 = 3.972, p < 0.002) and water splashing (t11 = 4.883, p < 0.0001) (Fig. 8.6). 

Aggressive behavioural events (threats and biting) were most frequent in the dry 

season as were the maintenance behaviours of splashing and rolling. Yawning, ear 

flicks, sexual and social behaviour were more common in the wet season (Fig. 8.6).  

There were no significant differences in threats, social events and ear flicking between 

the wet and dry seasons among adult hippopotami (Fig. 8.6). 
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Fig. 8.5: Variations in frequency of behavioural events observed 
during the dry and wet season for juvenile hippopotami combined 

for the five study sites in Katavi NP, Tanzania. Key: *=p<0.05 

Dry Wet

* 



 

196 
 

 

For juveniles, the only significant differences between seasons were in social and water 

splashing events (t11 = - 1.873, p < 0.03) (Fig. 8.7). There were more social events in the 

wet than dry season. As for the adults, there was more splashing during the dry than 

wet season. There were no differences in the other six event categories between the 

dry and wet season (Fig. 8.7).  
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Fig. 8.6: Seasonal variations in events among adult hippopotami in 
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Fig. 8.7: Seasonal variations in events among juvenile 
hippopotami in Katavi NP, Tanzania (September 2009-2010). Key: 
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3.3 Monthly variations in events 

To identify more precisely when within season frequency of events changed, variations 

between individual months were analysed (Fig. 8.8, Fig. 8.9 and Fig. 8.10). There were 

significant monthly variations in all events observed among adult and juvenile 

hippopotami (Table 8.2).  

Table 8.2: ANOVA results for monthly variations in events among adult and juvenile 
hippopotami in Katavi NP, Tanzania 

 
 

Aggressive behaviour peaked in September and October, with most threats among 

adult hippopotami during the months of October and November (Fig. 8.8 and Fig. 

8.10), while April, June and July were the months with least threats among adults (Fig. 

8.10). There were a few isolated threat events among juvenile hippopotami during 

August and October (Fig. 8.10). However, these were not as serious as for adults. No 

threats were recorded in March and April, with few in June, making these months the 

least in threat events among juveniles (Fig. 8.10). 

Biting by adult hippopotami was most frequent in September 2009, August and 

September 2010. Least biting was observed in February and April (Fig. 8.10). Few and 

isolated non serious biting by juveniles occurred in August, September and October 

(Fig. 8.10). However, they were very isolated incidences amounting to less than one 

percent of the total events recorded (Fig. 8.10).  

S/No Factor F-value df p-value F-value df p-value

1 Threats 5.366 12, 258 0.0001 3.322 12, 259 0.0001

2 Biting 4.752 12, 251 0.0001 1.775 12, 252 0.053

3 Sexual 4.162 12, 259 0.0001

4 Social 8.342 12, 259 0.0001 2.43 12, 259 0.005

5 Yawning 2.624 12, 259 0.003 3.4 12, 259 0.0001

6 Rolling 17.1 12, 259 0.0001 2.361 12, 259 0.007

7 Ear flicks 4.29 12, 259 0.0001 4.548 12, 259 0.0001

8 Splashing 7.844 12, 259 0.0001 6.36 12, 259 0.0001

Adults Juveniles
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Fig.8.8: Variations between months in mean frequencies in maintenance, social, 
aggression and sexual behavioural events for adult and juvenile hippopotami in Katavi 
NP. Bars sharing the same letter are not significantly different at p < 0.05. 
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Fig. 8.9: Variations between months in mean frequencies of separate components of 
maintenance behavioural events for adult and juvenile hippopotami in Katavi NP. Bars 
sharing the same letter are not significantly different at p < 0.05. 
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Fig. 8.10: Variation between months in mean frequencies of separate components of 
aggressive behaviour for adult and juvenile hippopotami in Katavi NP, Tanzania. Error 
bars are ± SE around monthly mean. Bars sharing the same letter are not significantly 
different at p < 0.05. 
 
Most sexual events among adult hippopotami in Katavi were observed during the 

middle of the wet season in January and February (Fig. 8.8). Fewest were observed in 

October and November (Fig. 8.8).  

Social events among adults were significantly higher in September and December 

2009, while the least was recorded in June, July and August (Fig. 8.8). Social events 

among juvenile hippopotami were more frequent during the months of December and 

January. Least social events were recorded in August and October (Fig. 8.8). 

Maintenance behavioural events (yawning, rolling, ear flicks and splashing combined) 

showed a clear annual pattern among both adults and juveniles (Fig. 8.8). They slightly 

peaked up in February until July. However, monthly variations were very gentle with no 

sharp increase in frequencies (Fig. 8.8).  
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More yawning in adult hippopotami was recorded in February, March and April while 

the least yawning was recorded in October (Fig. 8.9). Yawning events among juveniles 

also peaked in April but were also high in September 2009 and 2010. Least yawning 

events were recorded in July (Fig. 8.9). 

Most rolling by adult hippopotami was in June and July with generally more in May-

September than December to April (Fig. 8.9). Rolling by juvenile hippopotami was most 

frequent in October, with no rolling recorded in March and April (Fig. 8.9). 

Ear flicking showed a clear annual pattern among adult hippopotami with more flicking 

in April and May and least in November and December (Fig. 8.9). Ear flicking by juvenile 

hippopotami had the highest frequencies in May, closely followed by June, July and 

August (Fig. 8.9). The fewest ear flicks were recorded in December and January. 

Adult hippopotami splashing water on their backs was most frequent during the driest 

months of October and November with least water splashing in March and April (Fig. 

8.9). For juveniles, splashing water was most frequently observed in October and 

January and least in April (Fig. 8.9).  

3.4 Spatial variations in events 

There were significant spatial variations between study sites. With exception of social, 

ear flicking and splashing behaviours for adults, all other event categories differed 

significantly between sites (Table 8.3). 

For juveniles, there were significant variations in social events, yawning, rolling and ear 

flicks between sites (Table 8.3). Threats, biting and water splashing did not vary 

significantly between sites. 
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Table 8.3: ANOVA results for spatial variations in events among adult and juvenile 
hippopotami in Katavi NP, Tanzania 

 
 

Most aggression (threats and biting) between adults was recorded at Ikuu Springs and least at 

Paradise Springs (Fig. 8.11 and Fig.8.13). Similarly, the few, isolated threats by juvenile 

hippopotami were more prominent at Ikuu Springs and least at Paradise Spring (Fig. 

8.11 and Fig.8.13). The even fewer incidences of biting by juveniles followed the same 

pattern (Fig. 8.13). 

Sexual events were most frequent at Ikuu Bridge and Paradise Springs and least at Ikuu 

Springs (Fig. 8.11).  

Lake Katavi and Paradise Springs had the most social events among adult hippopotami 

(Fig. 8.11). Social interaction also was less at Ikuu Springs than at the other four sites 

(Fig. 8.11). Social events among juvenile hippopotami were most frequent at Lake 

Chada. Ikuu Spring had the least social events by juveniles (Fig. 8.11), significantly less 

than other sites. 

Among adults, yawning events was most frequent at Lake Katavi and least at Paradise 

Springs (Fig. 8.12). Juveniles yawned more at Ikuu Springs while there was least 

yawning at Paradise Springs (Fig. 8.12).  

Adults rolled the most at Paradise Springs and least at Ikuu Bridge and Lake Katavi (Fig. 

8.12). Few rolling incidences were recorded among juvenile hippopotami (Fig. 8.12). 

S/No Factor F-value Df p-value F-value df p-value

1 Threats 8.061 4, 258 0.0001

2 Biting 8.99 4, 258 0.0001

3 Sexual 3.519 4, 258 0.008

4 Social 8.793 4, 259 0.0001

5 Yawning 2.634 4, 258 0.035 7.786 4, 259 0.0001

6 Rolling 2.859 4, 258 0.024 2.689 4, 259 0.032

7 Ear flicks 3.682 4, 259 0.006

Adults Juveniles



 

203 
 

 

Fig. 8.11: Variations of major behavioural event category frequencies between the five 
study sites for adult and juvenile hippopotami in Katavi NP. Error bars are ±SE. Bars 
sharing the same letter are not significantly different at p < 0.05. 
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Fig. 8.12: Mean spatial variations in frequency of individual components of 
maintenance behavioural events for the five study sites in adult and juvenile 
hippopotami in Katavi NP, Tanzania. Error bars are ± SE around annual mean. Bars 
sharing the same letter are not significantly different at p < 0.05. 
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Ear flicking by adult hippopotami varied little between sites. However, there were 

more ear flicking events at Ikuu Bridge than in other sites with fewest at Paradise and 

Ikuu Springs (Fig. 8.12). Juveniles exhibited more ears flicking at Paradise Springs and 

least at Lake Chada (Fig. 8.12).  

Water splashing onto the backs of adults was highest at Paradise Springs and least at 

Ikuu Springs and Lake Katavi (Fig. 8.12). Water splashing by juveniles was also more 

frequent at Paradise Springs and least at Lake Katavi (Fig. 8.12). 

 

. 

 

Fig. 8.13: Mean spatial variations in frequency of individual components of aggression 
behavioural events for the five study sites in adult and juvenile hippopotami in Katavi 
NP, Tanzania. Error bars are ± SE around annual mean. Bars sharing the same letter are 
not significantly different at p < 0.05. 
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3.5 Variations between times of the day 

All event categories varied significantly with time of the day for adult hippopotami and 

most with the exception of threats and biting for juveniles. All other events varied 

significantly between times of the day (Table 8.4 and Fig. 8.14 - Fig.8.17).  

Table 8.4: ANOVA results for variations in events between different sampling times for 
adult and juvenile hippopotami in Katavi NP 

 
Key: NS = Not significant, N/A = Not applicable 

More threats and biting by adults were observed during the morning and mid morning 

between 8-11 am (Fig. 8.14). Social events for adults were mainly at mid-day while 

these were spread throughout the day in juveniles (Fig. 8.16). Sexual events were 

observed mainly during the time when animals had settled after coming back from 

feeding which was between 10 - 11 am and 1600 - 1700 hours (Fig. 8.16). Yawning was 

mainly observed during the morning as the animals were settling and during the late 

afternoon as they were about to move out of water for feeding. Rolling and water 

splashing increased as air temperatures increased. Ear flicks were spread throughout 

the day (Fig. 8.17).  

S/No Factor F-Value df p-value F-Value df p-value

1 Threats 13.66 3, 258 0.0001 NS NS NS

2 Biting 4.34 3, 251 0.005 NS NS NS

3 Sexual 25.91 3, 259 0.0001 N/A N/A N/A

4 Social 8.63 3, 259 0.0001 3.34 3, 259 0.02

5 Yawning 43.7 3, 259 0.0001 19.37 3, 259 0.0001

6 Rolling 15.74 3, 259 0.0001 10.37 3, 259 0.0001

7 Ear flicks 8.47 3, 259 0.0001 5.71 3, 259 0.001

8 Splashing 24.26 3, 259 0.0001 14.25 3, 259 0.0001

Adults Juveniles
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Fig. 8.14: Mean seasonal variations in individual aggression behavioural events 
between different times of the day in (a) adult and (b) juvenile hippopotami in Katavi 
NP, Tanzania. Error bars are ± SE around seasonal mean.  
 

 
Fig. 8.15: Mean seasonal variations in social behavioural events between different 
times of the day (September 2009-September 2010) among (a) adult and (b) juvenile 
hippopotami in Katavi NP, Tanzania. Error bars are ± SE around annual mean.  
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Rolling and water splashing by juvenile hippopotami were mainly observed at mid-day 

and after mid-day and decreased during the evening as the heat receded (Fig. 8.17). 

Ear flicks were almost equally spread out over the day. As with adult hippopotami, 

yawning was mostly recorded in the morning and late afternoon.  

Threats were mainly observed during the morning, mainly in the wet season. Isolated 

incidences of biting during this season were mostly during mid-morning (Fig. 8.17). 

Most of the sexual events observed during the wet season were between mid-morning 

and afternoon. During the dry season, they were much reduced in the morning. 

Yawning during the wet season was most frequent during the morning and late 

evening. In the dry season yawning was more frequent in the late afternoon (Fig. 8.17). 

Few and scattered incidences of water splashing and rolling were spread throughout 

the day during the wet season but were concentrated in the middle of the day during 

the dry season (Fig. 8.17).    
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Fig.8.17: Mean seasonal variations in individual maintenance behavioural events 
between different times of the day in adult and juvenile hippopotami in Katavi NP, 
Tanzania. Error bars are ± SE around seasonal mean.  
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4. Discussion 

4.1 Comparison of behavioural events between age classes 

While resting, the commonest events were ear flicking and water splashing. Yawning 

was more frequent in the early morning when the animals were entering their resting 

sites and during the evening time when they were about to begin their feeding trips. 

Although exact functions of yawning are not clear, it is associated with body 

maintenance or social and agonistic displays.  

Yawning was frequent event among both adult and juvenile hippopotami. This was 

more frequent when sites still had plenty of water. As water receded during the dry 

season less yawning were observed. The availability of water alone cannot be ruled as 

the factor for the occurrence because Paradise Springs with more water recorded the 

least, although Lake Katavi which had the highest also had more water than Lake 

Chada. 

Yawning in vertebrates is the involuntary opening of mouth while taking a deep breath 

of air (Provine, 2005) as a result of fatigue or drowsiness. It is also a response to oxygen 

deprivation and is said to be unstoppable. It happens as a result of tiredness, stress, 

overwork, boredom or lack of stimulation. Yawning is also thought to help keep the 

brain cool. In humans and non-human primates, yawning has been found to be 

contagious (Norscia & Palagi, 2011; Miller et al., 2012). It is also frequent in humans 

and carnivores (Fureix et al., 2011). Socially contagious behaviours such as yawning are 

thought to occur in highly social vertebrates (Miller et al., 2012). Emotional contexts of 

yawning such as agonistic social interactions in primates, potential heat stress in 

budgerigars and general body stress are all triggers of yawning (Fureix et al., 2011). In 

animals such as baboon and guinea pigs; yawning serves as a warning signal.  These 

triggers and functions of yawning may help to explain why most of yawning was 

observed during the morning and before the animals left for feeding trips.  

Some events changed seasonally and were probably triggered by the changing seasons. 

Heat stress, for example, is linked to behavioural responses by dipping into water by 
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hippopotami (Noirard et al., 2008). Social events are also affected as many 

hippopotami particularly males leave their dry season groups during the wet season for 

new resting sites (Olivier and Laurie, 1974; Blowers et al., 2008). Some events such as 

those related to sexual activity were found to be performed in watery conditions hence 

suggesting that without watery environments, such events may not be performed. 

Synchrony in birth among many ungulates is linked to resource availability, mainly food 

and water (Sinclair, 1974; Sinclair et al., 2000; Mduma et al., 1999; Sinclair, 2008a; 

Sinclair, 2008b). With such behavioural responses to resources, it is thought that they 

also played a part in the observed patterns in Katavi. Events were performed based on 

water availability as the seasons changed. More sexual events during the wet season 

might be a strategy for timing of such synchrony (Sinclair et al., 2000). Evidence of 

variations in events between seasons, months and sites indicate the central role of 

water to the behaviour of hippopotami. 

4.2 Seasonal comparison in events  

Hippopotami have a stable body core temperature of around 35.4 ± 0.7 oC (Luck and 

Wright, 1959; 1963; Cena, 1964; Noirard et al., 2008) and maintain their temperatures 

with no 24-hr or diurnal variations. Behavioural patterns are therefore thought to be 

adaptive response to thermoregulation constraints (Luck and Wright, 1963; Wright, 

1964; Eltringham, 1999). They normally move into water for cooling (Eltringham, 1999) 

while basking when cold (Luck and Wright, 1963). In Lundi River, Gonarezhou NP in 

Zimbabwe, hippopotami were often seen basking during cold weather by displacing 

crocodiles from their sites (Kofron, 1993). It is likely that they cannot tolerate a very 

wider range of air temperatures. However, their thermal tolerance may be variable. In 

Niger, behavioural thermoregulation varied with seasons (Noirard et al., 2008) because 

air temperatures varied between 25-50oC while water temperatures varied between 22 

and 31oC. Hippopotami bathed more frequently during the hot days when 

temperatures were higher in the dry season.  
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In a study of heat loss using infrared cameras, it was found that at ambient 

temperature of about 17 oC most of the hippopotami body parts were similar to air 

temperatures. At 21 oC thermal windows became visible (Schneider and Kolter, 2009). 

Thermal windows are brought about by local blood flows to the body surface for the 

purpose of cooling, at 28 oC numerous thermal windows fused. This suggests that 

temperatures well above 30 oC may be stressful for hippopotami. Schneider and Kolter 

(2009) further found that thermal windows in bigger males occurred more rapidly than 

in the younger males and females. This may indicate variation in thermal tolerance 

among individuals. In a study of the rate of evaporation from skin surface, Luck & 

Wright (1963) found that at air temperature between 32-39 oC live hippopotami lose 

water at between 9.1-16.4 mg. /5 cm2/10 min. The rates for dead hippopotami were 

between 11.3-22.4 mg. /5 cm2/10 min. It is therefore essential to dip into water to 

prevent further water loss. The thick oily pink fluid which acts as sweat and helps to 

keep their skin moist (Eltringham, 1999; Saikawa et al., 2004) might be among the 

factors which enable hippopotami to withstand variations in temperatures. 

Nevertheless, cooling by oily secretions is likely to be unsustainable over prolonged 

periods of drought without also cooling in water.  

Although the animals may cool their bodies and brains by surface water evaporation, 

respiration and behavioural responses (Xue & Liu, 2011), larger animals, such as 

hippopotami experience more challenges in regulating their body temperatures. This 

might be one of the reasons for yawning as it is also thought to function as a way of 

cooling the brain (Provine, 2005). However, water for hippopotami remains the major 

and efficient mode for cooling.   

In order to reduce exposure of their bodies to excesses heat, some hippopotami are 

adopting new strategies in behaviour such as using tree shade to avoid heat stress 

when air temperatures were high particularly during the dry season. This happened as 

in some localities where there was no water for cooling hence the hippopotami had to 

seek cover. It is thought that as the water scarcity increases further, animals in more 
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sites may adopt this kind of behavioural responses. Behavioural responses for 

thermoregulation are effective (Noirard et al., 2008; Xue & Liu, 2011).  

Hippopotami were also seen trying to ‘expand’ the wet parts in the shrinking shelters 

when they were drying up in order to lie on wetter parts. Use of feet and trunks to 

search for water from the soft river beds is increasing among elephants in Ruaha NP 

(Kashaigili et al., 2006; Epaphras et al., 2008). This is deviating from the ‘usual’ 

behaviours of depending on surface waters (Douglas-Hamilton, 1973). With increasing 

drought hippopotami might increase their water ‘searching’ ability.    

There were significant variations in events between the wet and dry season. More 

threats, biting, rolling and water splashing were recorded during the dry season. During 

the wet season there were more sexual, ear flicks and yawning events. It can be argued 

that all of the events which were more prominent during the dry season were triggered 

by water reduction. Rolling is mainly thought to function as a way of cooling the back. 

It also may function as a way of scratching of the body.  

Aggression was more frequent and intense during the dry season when resting habitat 

was more crowded. This is also the time when attacks on calves occurred and carcasses 

were observed. They all had wounds suggesting cause of death to be attacks or 

fighting. This supports the findings of Estes (1992) that aggressions during the dry 

season are common among hippopotami. Infanticide, aggression, taking over 

territories and change in dominance among hippopotami occurs mainly when water 

resources are scarce (Oliver and Laurie, 1974; Lewison, 1998). This is supported by the 

observed increase in aggressive behavioural events during the dry season in Katavi. As 

a strategy to water deficit in their resting sites, some hippopotami sheltered under tree 

cover when air temperatures were high and no water for cooling was available. This 

was different from the usual behavioural patterns where they enter water when air 

temperatures are high (Noirard et al., 2008). Resting under tree cover would have been 

in an effort to maintain body core temperatures at optimum. This is likely to have 

increased aggressiveness of some hippopotami as they struggled to use ‘suitable tree 
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cover’ instead of the usual water site.  This study was conducted during a year which 

can be considered as an average rainfall year. The situation is likely to be more severe 

during dry years.  

Ear flicking among adults was more frequent during the wet than dry season. Among 

adults, more ear flicks were observed after the head of the animal emerged from 

water. Hence, it is thought it was for the purpose of getting rid of water from the ears. 

However, during the dry season, ear flicks were also more prominent and were 

probably to get rid of flies. This was because twitching of the ears was observed even 

when animals were lying immobile or asleep, suggesting that it was in response to flies. 

Ear flicks were therefore essential for different purposes during different seasons. 

4.3 Comparison of events between months 

Animals show differential aggressiveness towards kin and non kin members (Waldman, 

1988). Aggressive interactions can limit population growth (Watson & Moss, 1970), and 

is reported as among the factors limiting red grouse density (Watson et al., 1994). In 

hippopotami aggressiveness towards their own calves is common (Chen et al., 2010).  It 

was observed that hippopotami in the dry sites were more aggressive than those in the 

wetter sites which displayed more social behaviours.  

More aggressive events (threats and biting) were observed during the dry than wet 

season. This was in September to November before rains started. Similarly, rolling and 

water splashing were mainly observed during the dry season months. These were 

observed when and where some water was still available between July and November. 

Threats and biting were mainly associated with declining water resources. These 

events happened during attempts to occupy suitable and better places in the shelter 

sites. While feeding in the nearby sites, aggressive events were recorded. Reduced 

water levels therefore appear to be the main cause of aggressions observed. 

Aggression decreased as water depth or water levels increased during the wet season 

months.  
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Sexual events were observed more during the wet season months. However, other 

events including social, yawning and ear flicking did not show as markedly a trend 

between sampling months as aggression and behaviour aimed at cooling (mainly rolling 

and splashing). Despite significant monthly variations in social, yawning, and ear 

flicking, their monthly trends were less abrupt compared with other events.  

Threat and biting events in the wet season were mainly by adult towards others mostly 

initiated by adults probably females with young. Females with calves are highly 

defensive (Estes, 1992). In some instances, two individuals were involved in threats 

against a third one approaching when the ‘pair’ had a calf. However, most threats and 

biting were displayed when a ‘new’ hippopotamus approached a settled group or an 

individual hippopotamus. This was mostly to defend a place from intruding 

conspecifics. Different levels of aggression against unfamiliar conspecifics have been 

reported in pigs, Sus scrofa (Bolhuis et al., 2005). Hippopotami have a confrontational 

approach towards intruders. This mostly took place as the dry season approached and 

hippopotami attempted to regain the resting positions they left during the wet season.  

4.4 Spatial comparison of events  

More sociable or non-confrontational events were observed in sites with more water 

while more confrontational events occurred in sites with limited water supply or during 

the dry season. More threats and biting were recorded at Ikuu Springs. Ikuu Springs 

was mainly used as a dry season refuge and thus was mostly occupied by hippopotami 

during the dry season when water was limiting in other places. It is therefore possible 

that most of the threats and biting were due to scarcity of resting sites. Dominant 

animals seek to occupy the best space available. During the wet season, the site hosted 

very few hippopotami and hence there were fewer aggressive events due to limited 

contact between individuals.  

Ikuu Springs was mostly occupied by adult hippopotami. It is most probable that the 

site harboured more males than females, assumed because there were very few 

juveniles at this site. Males occupy and protect territories. This is the reason for more 
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aggressiveness at the site because dominant individuals were looking for the best 

space. This type of aggregation is reported to be due to lack social structure (Blowers 

et al., 2008). Ikuu Spring was most probably comprised of individual hippopotami 

aggregated in response to water resources and not due to their relatedness. Despite 

the importance of sex determination for ecological and behavioural studies (Beckwitt 

et al., 2002); it proved difficult to accurately determine sex in the field particularly in 

water and for grouped individuals.  

Hippopotami being social animals have more attractions towards related individuals in 

kinship or familiar members of the herd (Blowers et al., 2008). This can explain why 

individuals at Ikuu Springs were seen to have a loose relations or attractions. Non 

dominant males have a tendency of loose attachment to the other members of the 

herd (Olivier and Laurie, 1974). This was probably the explanation for more aggression 

at this site. Hippopotami at sites such as Paradise Spring might be closely related 

because they are less migratory and with more juveniles, indicating close relations with 

their mothers. Familiarity between animal group members is thought to be responsible 

for minimizing aggression among them (Griffiths et al., 2004).  

Lack of water may restrict some behaviour since there was variation of events between 

sites. While Ikuu Springs was the site with more threats and biting, the much wetter 

Paradise Spring was the site with the least aggressive events. Instead, Paradise Spring 

and Ikuu Bridge were the sites with most sexual events of all the sites. Paradise had 

more water throughout the year while at Ikuu Bridge, the sustained water pool created 

conducive microhabitat which lasted throughout the year.  

More social events occurred at Lake Katavi and Paradise Spring sites than at the other 

sites. Fewest social events occurred at Ikuu Springs. This is despite the higher 

abundance of hippopotami at Ikuu Springs than at other sites. This is linked to water 

scarcity in that animals occupied Ikuu Springs only as a refuge, hence limiting some 

behaviour that are performed under normal conditions.  
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There was more rolling and water splashing at Paradise than at other study sites. Least 

rolling occurred at Ikuu Bridge and Lake Katavi while least water splashing was 

observed at Ikuu Spring and Lake Katavi. Both rolling and water splashing were 

observed for the purpose of cooling the backs of animals when water was insufficient 

to immerse the whole body. This represents a behavioural strategy for 

thermoregulation.  

Similar observations were recorded for tail paddling for splashing water over the backs 

of animals. At other sites such as Ikuu Springs, lack of water or soft mud led to 

hippopotami failing to paddle their tails when water levels were very low and animals 

crowded. At Paradise, despite decline in water levels, there was more water and space 

compared with other sites. This led to the observed differences. Water was the main 

limiting factor for some of the events to be performed.  

4.5 Comparison of events between times of the day  

Some behavioural events varied between times of the day for both adult and juvenile 

hippopotami. More threats and biting were observed during the morning time. This 

was the time when animals were re-arranging themselves before resting after return 

from feeding trips. Occupation of a suitable space was a major driving force for threats 

and biting as water resources receded.  

Although isolated incidences of threats and biting were observed among juvenile 

hippopotami, they were not fierce but rather directed towards their age mates. It was 

likely to have been practice or social play possibly mimicking adults. These did not 

seem to inflict injury or any serious impact to the pair involved. At some times, it was 

seen as a form of defense against aggressive adults.  

5. Conclusions and recommendations 

Aggression was highest at the end of dry season, during the driest time of the year and 

more at drier sites. Social and sexual events were frequent between September and 
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February. Yawning and ear flicks peaked at the end of wet season when maintenance 

was at minimum. 

There were variations in events within and between study sites which were mainly due 

to availability of water resources. More aggression was recorded during the dry season 

and in sites with less water. There is a need to monitor hippopotami distribution and 

abundance in more sites particularly in relation to water resources. This is because 

prolonged water scarcity may cause conflicts with human as are likely to migrate into 

crop fields or settlement.  

Stress on hippopotamus populations by water shortage is likely to increase over the 

years because of competition for water outside the park. More and prolonged stress 

on hippopotami is likely to affect them through physiological constraints. Sexual events 

which are linked to population growth are likely to be highly affected in prolonged 

drought. This in turn will affect population growth. 

More aggression brought about by water scarcity is likely to interfere with the usual 

behaviour of hippopotami. Increased aggression is likely to cause more stress among 

the animals. 

Water plays a central role in behaviour among hippopotami. Variation in availability of 

water resources is likely to affect the hippopotami event patterns. Events linked with 

thermoregulation such as rolling and water splashing cost energy and hence increase 

stress for the hippopotami when shelters cannot provide space for rolling and 

splashing. This will increase heat stress and hence physiological interferences. 

Water remains the major driving force in most of hippopotami behaviours. Variation in 

the availability of water at their resting sites is likely to have a significant effect on 

hippopotami behaviour as partly observed during this study.  

 

 



 

219 
 

Chapter 8: Relationships between hippopotami, food and water resources 

1. Introduction 

Hippopotamus are under pressure from habitat degradation and hunting (Lewison, 

2007; Lewison & Oliver, 2008; Kendall, 2011). The way in which they can adjust their 

behaviours contributes to their survival and reproduction (McFarland, 2006), and is 

important. 

The ecology and behaviour of hippopotami respond to environmental variables, 

particularly food and water resources. Hippopotami live in habitats that are prone to 

human and natural impacts. Impacts are likely to change the way hippopotami respond 

at different sites. Anthropogenic and environmental factors have been reported to 

affect hippopotami abundance and behaviour in various ways. Anthropogenic factors 

such has hunting have been reported to cause hippopotami to avoid suitable habitats 

in the Okavango Delta, Botswana (McCarthy et al., 1998), and increase their 

aggressiveness (Patterson, 1976). Hunting has also been reported to make mammals 

more prone to disturbance (Caro, 1999b). 

The major determinant of suitability of habitat is its quality. Habitat quality has been 

defined as the ability to provide conditions appropriate for individual or population 

persistence (Hall et al., 1997). Hippopotami respond to the resource availability in their 

environment. Resources are all things used by an organism (Tillman, 1982). These 

include food, water, cover, space and mates (Fulbright & Alfonso Ortega-S, 2006). 

During dry seasons, grazing for ruminants becomes less available, with reduced 

biomass and of low quality (Manteca & Smith, 1994).  Among adaptations to these 

changes are behavioral responses such as increasing feeding time and wider dispersion 

(Manteca & Smith, 1994). Food is the major limiting factor for hippopotami after water 

(Harrison et al., 2007). In habitats where hippopotami are found, poor availability of 

daytime sheltering space during the dry season can regulate their abundance (Olivier & 

Laurie, 1974; Tembo, 1987; Harrison et al., 2007).   
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Apart from restricted food resources, water scarcity and higher temperatures occur 

during the dry season (Manteca & Smith, 1994) and are likely to influence hippopotami 

distribution, abundance and behaviour.  

The hippopotamus is the most water dependent mammal in Katavi, and is the most 

likely species to be affected by extreme water conditions (Lewison, 1998). Large body 

size and a tendency for large aggregations in turn may have an effect on water 

conditions.   

This Chapter is about the relationships between abundance and behaviour of 

hippopotami and environmental impacts mainly food and water resources. Among 

anthropogenic impacts in tropical regions, habitat loss and disturbance have been 

reported as detrimental to biodiversity (Maclean et al., 2006). Impacts include 

harvesting of forest or woody products, burning and habitat fragmentation. Near 

Katavi, harvesting mainly for timber products and fragmentation through agriculture 

and settlement occurs adjacent to the Park, while burning occurs both within and 

around the park. Consequences to hippopotami have been reduced duration of river 

flow and water levels leading to earlier drying of water sources in the Park. These are 

discussed in Chapter 3 of this study and have also been reported by Lewison (1996; 

1998), Meyer et al. (2005), Caro et al. (2011). 

Water is among the key resources for hippopotami (Harrison et al., 2007). Seasonal 

variations in water levels within tropical swamps are a common feature (Boar, 2006). 

Variations in water flow regimes lead to variations in vegetation regimes particularly 

with respect to availability, quantity and nutritional quality.  

Variations in resource availability affect animals and hence their activity patterns 

(Manteca & Smith, 1994). Distance travelled to and from the feeding grounds 

influences foraging behaviour including selectivity and intake (Lewison & Carter, 2004). 

This study was aimed at understanding how spatial and temporal variations in 

abundance of hippopotami respond to water and vegetation in the Park through 
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immigration and emigration. It was also aimed at studying whether and how these 

variations in resources affect behavioural traits.  

1.1 Aims and hypotheses 

This was aimed at understanding how water regimes impact on hippopotami in Katavi. 

Emphasis was on the following aspects: 

 Temporal and spatial changes in abundance in relation to changes in water and 

food resources 

 Spatial and temporal changes in immigration and emigration 

 Seasonal and spatial variations in aggregation  

 Seasonal changes in behaviour traits in relations to resources.  

The study therefore tested the following hypotheses 

H1:  Hippopotami abundance is linked to water quantity and vegetation 

resources. 

H2: The extent to which hippopotami aggregate is related to seasonal variations 

in water quantity and vegetation resources. 

H3: Rates of immigration and emigration of hippopotami are related to seasonal 

variations in water quantity and vegetation resources. 

H4: Behavioral traits of hippopotami are linked to seasonal variations in water 

quantity and vegetation resources. 

  

2. Methods 

2.1 Study sites 

The same five sites used for behaviour and abundance observations are used here. 

These are described in Chapters 5, 6 and 7. Water and vegetation data were obtained 

from studies reported in Chapter 3 and 4. The study sites are described in Chapter 2. 
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2.2 Data recording 

Data recording and recording methods (sampling and recording rules) were conducted 

as described in Chapters 5, 6 and 7 on behaviour traits following rules according to 

Lehner (1996) and Martin and Bateson (2007). Abundance and water quantity was 

recorded from May 2009-September 2010, a total of 17 (n=17) sampling months.   

2.3 Data analysis 

Data used for analysis and correlating hippopotami and environmental variables are 

described in Chapters 3, 4, 5, 6 and 7.  

Correlations and analyses of variance (ANOVA) were performed using the SPSS 

statistics package software (PASW Statistics 18) by IBM. 
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3. Results 

3.1 Abundance and density 

There were no significant correlations between either adult or juvenile hippopotami 

abundance and rainfall in all study sites. 

Total monthly river discharge was inversely correlated with adult hippopotami density 

at Lake Katavi and Ikuu Springs (Table 9.1, Fig. 9.3(a)), and juvenile hippopotami 

density correlated inversely with river discharge at Ikuu Bridge, Lake Chada and Lake 

Katavi sites (Table 9.1, Fig. 9.3(b)). 

Table 9.1: Summary of Pearson correlations between water variables and hippopotami 
density in the five study sites in Katavi NP, Tanzania 

Site name Water 
variable 

Adults Juveniles 

R-discharge (r) (n) Probability  (r) (n) Probability  

Ikuu Bridge  -0.59 10 NS -0.70 10 0.05 

Lake Chada  -0.57 10 NS -0.77 10 0.01 

Lake Katavi  -0.7 10 0.05 -0.65 10 0.05 

Paradise Springs  -0.52 10 NS -0.17 10 NS 

Ikuu Springs  -0.73 10 0.02 -0.39 10 NS 

River depth       

Ikuu Bridge  -0.44 17 NS -0.38 17 NS 

Lake Chada  -0.39 17 NS -0.52 17 0.05 

Lake Katavi  -0.58 17 0.02 -0.56 17 0.02 

Paradise Springs  -0.27 17 NS 0.2 17 NS 

Ikuu Springs  -0.72 17 0.01 -0.72 17 0.01 

Swamp extent       

Ikuu Bridge  -0.47 17 NS -0.51 17 0.05 

Lake Chada  -0.59 17 0.02 -0.73 17 0.001 

Lake Katavi  -0.65 17 0.01 -0.65 17 0.01 

Paradise Springs  -0.56 14 0.02 -0.50 14 0.05 

Ikuu Springs  -0.75 17 0.001 -0.67 17 0.01 

U-Water table       

Ikuu Bridge  -0.83 11 0.01 -0.81 11 0.01 

Lake Chada  -0.80 11 0.01 -0.92 11 0.001 

Lake Katavi  -0.76 11 0.01 -0.79 11 0.01 

Paradise Springs  -0.39 11 NS 0.37 11 NS 

Ikuu Springs  -0.76 11 0.01 -0.83 11 0.01 

Key: Only significant probability values are shown at a site.  

R-discharge= River discharge and U-Water table = Underground water table. 
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Fig. 9.3: Correlations between water variables and hippopotami density (May 2009-
September 2010) at selected study sites in Katavi NP, Tanzania.  
Note: Values in both x and y axes are different due to variations between 
measurements and between age group. 
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Adult hippopotami density correlated inversely with river depth only at Lake Katavi and 

Ikuu Springs, density decreased with river depth (Table 1; Fig. 9.3c and Fig. 9.4). At a 

river depth of about 1.5 m, abundance was at its lowest. Density among juvenile 

hippopotami correlated inversely with river depth at Lake Chada, Lake Katavi and Ikuu 

Springs (Table 9.1; Fig. 9.3d and Fig. 9.5).  

 

 

Adult hippopotami density correlated inversely with swamp extent (which is the lateral 

limit of soil saturation) at Lake Chada, Lake Katavi, Paradise Springs and Ikuu Springs. 

Ikuu Bridge was the only site where adult density did not correlate with swamp extent 

(Table 9.1, Fig. 9.3(e)). Density of juvenile hippopotami correlated with the areal extent 

of swamp at all the five study sites (Table 9.1, Fig. 9.3(f)). 
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Fig. 9.4: River level and adult hippopotami density 
correlations at Lake Katavi in Katavi NP, Tanzania. 
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Fig. 9.5: River levels and juvenile hippopotami density 
correlations at Lake Katavi in Katavi NP, Tanzania 
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Hippopotami density correlated with underground water depth at 80% of the study 

sites. With exception of Paradise Springs, both adult and juvenile hippopotami density 

correlated inversely with depth of underground water table (Table 9.1, Fig. 9.3g and 

Fig. 9.3h). Rise in water depth coincided with decreasing hippopotami density at the 

site and vice versa.  

When individual sites results were pooled together to obtain overall Katavi results, 

there were significant correlations between adult and juvenile hippopotami and 

density with water quantity variables (Table 9.2). Quantity of water in the study sites 

estimated through river discharge, river depth, extent of swamps and underground 

water depth correlated with both adult and juvenile hippopotami density (Table 9.2). 

Increase in water quantity at the study sites was followed by decrease in hippopotami 

density at the site. The only exception was at Paradise Springs where only swamp 

extent correlated with density and hence density did not change between the dry and 

wet seasons. 

Table 9.2: Correlations between hippopotami densities with water variables 

 Adults Juveniles 

Water variable R-value n-value P-value R-value n-value P-value 

River discharge -0.73 10 0.02 -0.77 10 0.01 

River depth (levels) -0.72 17 0.01 -0.72 17 0.01 

Swamp extent 
(Lateral limit) 

-0.75 17 0.001 -0.73 17 0.001 

Underground water 
depth 

-0.83 11 0.01 -0.92 11 0.001 

 

3.2 Aggregation 

There were inverse correlations between rainfall and mean inter-individual distances 

or aggregation in hippopotami at Paradise Springs (Fig. 9.6). Mean inter individual 

distances decreased as rainfall increased. However, there were no such correlations at 

the other four sites. At Paradise Springs, aggregations correlated with both the current 

month’s rainfall, the previous month’s rainfall and even when the two months rainfall 
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were combined (r = -0.74, r = -0.75 and r = -0.85 respectively with n =17 and p < 0.001). 

This was not the case for the other four sites. 

 

Aggregation did not correlate with river discharge at any of the study sites. However, 

there were correlations between river depth and aggregation at Ikuu Bridge (r = 0.54 n 

= 17 p < 0.05) and Ikuu Springs (r = 0.63 n = 17 p < 0.01) (Fig. 9.7 and Fig. 9.8). No 

correlations were observed between river depth and hippopotami aggregation at the 

other three sites. 

The extent of swamps and underground water depth did not show any correlations 

with hippopotami aggregation at any of the five study sites. 
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Paradise Springs, Katavi NP, Tanzania 
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3.3 Immigration and emigration 

There were no correlations between rates of immigration and emigration and rainfall 

in Katavi for both adults and juveniles at any of the five sites. 

There were no correlations between hippopotami immigration and emigration and 

river discharge, river depth or underground water depth at any of the five sites for 

either adult or juvenile hippopotami. 

Immigration and emigration of adult hippopotami at Ikuu Bridge correlated inversely 

with changes in the extent of swamps (r = -0.52 n = 17 p < 0.05). Immigration and 

emigration at the other four sites did not show any significant correlations. Similarly, 

juvenile hippopotami at Ikuu Bridge were the only ones where immigration and 
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Fig. 9.7: Correlations between river levels and 
hippopotami aggregation at Ikuu Springs in Katavi NP, 
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emigration correlated with seasonal variations in the size of swamps (r = 0.53 n= 17 p < 

0.05). The rest of the sites did not show any correlations. 

3.4 Behavioural traits correlations  

Resting by adults at Lake Katavi (r = 0.70 n = 13 p < 0.01), adult touching at Ikuu Springs 

(r = -0.57 n = 13 p < 0.05) and adult feeding at Ikuu Springs (r = 0.64 n = 13 p = 0.02) 

correlated significantly with rainfall using current and previous month’s rainfall 

combined.  

Juvenile touching at Lake Chada (r = -0.73 n = 13 p = 0.01) and Ikuu Bridge (r = 0.56 n = 

13 p < 0.05) and resting at Lake Katavi (r = 0.93 n =13 p = 0.001) correlated significantly 

with rainfall using current and previous month’s rainfall combined. 

Changes in underground water depth, river depth and size of swamps were the only 

variations in water quantity that had significant effects on hippopotami behaviour at 

the study sites. River discharge had limited impacts on walking, feeding, standing and 

resting at some study sites. 

Walking, feeding, standing, resting and touching by adults correlated with underground 

water depth in the study sites (Table 9.3). Walking, standing and resting by juveniles 

correlated with underground water depth at Paradise Springs and Lake Katavi (Table 

9.3).  
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Table 9.3: Pearson correlation between underground water levels and behavioural 
activities among adult and juvenile hippopotami September 2009- September 2010 in 
Katavi NP, Tanzania  

 
 

River water depth was the other water quantity parameter that had significant impact 

and correlated with behaviour traits in the study sites. Walking, feeding, standing, 

resting and touching by adult hippopotami correlated with water depth (Table 9.4). 

Walking, feeding and standing among juveniles correlated with river depth. 

Table 9.4: Pearson correlation between river water depth and behavioural activities 
among adult and juvenile hippopotami September 2009- September 2010 in Katavi NP, 
Tanzania  

 
 

Behavioural  activity Study site r n p r n p

Walking Ikuu River -0.67 11 0.05

Walking Paradise Spings -0.75 10 0.02 -0.76 10 0.02

Feeding Ikuu River 0.88 11 0.001

Standing Paradise Spings -0.81 10 0.01 -0.79 10 0.01

Resting Lake Katavi 0.94 11 0.001 0.73 11 0.02

Resting Paradise Spings 0.95 10 0.001 0.76 10 0.02

Touching Ikuu River -0.7 11 0.02

Touching Lake Chada -0.65 11 0.02

Touching Lake Katavi -0.76 11 0.01

Touching Paradise Spings 0.67 10 0.05

Adults Juveniles

Behavioural  activity Study site r n p r n p

Walking Ikuu River -0.73 13 0.01

Walking Lake Katavi -0.68 13 0.01

Walking Paradise Springs -0.71 10 0.05 -0.71 10 0.05

Walking Ikuu Springs -0.55 13 0.05

Feeding Ikuu River 0.79 13 0.01 0.62 13 0.05

Feeding Ikuu Springs 0.72 13 0.01

Feeding Paradise Springs 0.62 10 0.05

Standing Lake Katavi -0.62 13 0.05 -0.65 13 0.02

Resting Lake Katavi 0.63 13 0.02

Touching Ikuu River -0.71 13 0.01

Touching Lake Chada -0.67 13 0.02

Touching Lake Katavi -0.6 13 0.05

Adults Juveniles
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The size of swamp correlated with walking, feeding, standing, resting and touching 

among adult hippopotami at some sites (Table 9.5). Feeding, standing, resting and 

touching among juveniles correlated with swamp extent at Paradise, Lake Katavi and 

Lake Chada. 

Table 9.5: Pearson correlation between extent of swamp and behavioural activities 
among adult and juvenile hippopotami September 2009- September 2010 in Katavi NP, 
Tanzania  

 
 

River discharge correlated with walking, feeding, standing and resting by adults at four 

sites (Table 9.6). There were no correlation between river discharge and juvenile 

behavioural traits.   

 
Table 9.6: Pearson correlation between river water discharge and behavioural activities 
among adult hippopotami September 2009- September 2010 in Katavi NP, Tanzania  

 

 

 

Behavioural  activity Study site r n p r n p

Walking Ikuu River -0.73 13 0.01

Walking Lake Katavi -0.63 13 0.02

Feeding Ikuu River 0.64 13 0.02

Feeding Ikuu Springs 0.69 13 0.01

Feeding Paradise Springs 0.69 10 0.05

Standing Lake Chada -0.59 13 0.05

Standing Lake Katavi -0.64 13 0.02 -0.69 13 0.01

Resting Paradise Springs 0.78 10 0.01 0.7 10 0.01

Touching Ikuu River -0.72 13 0.01

Touching Lake Chada -0.71 13 0.01 -0.55 13 0.05

Touching Lake Katavi -0.58 13 0.05

Adults Juveniles

Behavioural  activity Study site r n p

Walking Ikuu River -0.77 10 0.01

Feeding Ikuu Springs -0.68 10 0.05

Standing Lake Katavi -0.64 10 0.05

Resting Lake Chada -0.81 10 0.01

Adults
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3.5 Correlations between hippopotami and vegetation variables 

There were significant inverse correlations between adult and juvenile hippopotami 

density and vegetation variables (sward height, greenness and cover) as summarised in 

Table 9.7. However, hippopotami density did not vary with seasonal variations in plant 

mass (biomass and standing dead mass).    

Table 9.7: Pearson correlations between hippopotami density and vegetation 
variables 

 
Key: **= Not significant 

There were significant inverse correlations between adult and juvenile hippopotami 

immigration and emigration with vegetation variables, sward height, greenness and 

cover as summarised in Table 9.8. There were no correlations between hippopotami 

immigration and emigration with plant mass per unit area. 

Table 9.8: Pearson correlations between vegetation variables and combined adult and 
juvenile hippopotami immigration rates in Katavi NP, Tanzania 

 
 

There were no correlations between vegetation variables and hippopotami 

aggregation. Also, aggregation did not vary with seasonal variations in plant mass.   

There were no correlations between adult hippopotami feeding and any vegetation 

variables. However, feeding in juvenile hippopotami correlated with vegetation 

Vegetation variable R-value n-value P-value R-value n-value P-value

Vegetation sward height -0.521 57 0.0001 -0.539 57 0.0001

Vegetation greenness -0.517 57 0.0001 -0.564 57 0.0001

Vegetation cover -0.504 57 0.0001 -0.544 57 0.0001

Sampling months -0.381 57 0.003 ** 57 NS

Adults Juveniles

Vegetation variable R-value n-value P-value R-value n-value P-value

Vegetation sward height -0.395 57 0.002 -0.413 57 0.001

Vegetation greenness -0.487 57 0.0001 -0.543 57 0.0001

Vegetation cover -0.45 57 0.0001 -0.513 57 0.0001

Adults Juveniles
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variables as summarised in Table 9.9. Feeding in adult and juvenile hippopotami varied 

between study sites (F4, 56 = 7.245, p < 0.0001 and F4, 56 = 5.065, p < 0.002 respectively). 

Table 9.9: Correlations between vegetation variables and juvenile hippopotami feeding 

activities 

 Juveniles 

Vegetation variable R-value n-value P-value 

Vegetation sward height 0.289 57 0.03 

Vegetation greenness 0.315 57 0.02 

Vegetation cover 0.302 57 0.02 
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4. Discussion 

4.1 Abundance and density 

Forage availability for herbivores varies over time (Mduma et al., 1999; Fryxell et al., 

2005) and space (Fryxell et al., 2005). Spatial variations in forage quality and quantity is 

due to varying abiotic factors such as rainfall, elevation or altitude, slope, soils and soil 

nutrients (Drescher et al., 2006) and biotic factors, such as interactions with other 

plants and animals (McNaughton et al., 1997; Drescher et al., 2006).Due to variations 

in abundance, nutritive value and distribution of forage, grazing animals have to decide 

on how to obtain adequate forage to meet their demands (Griffiths & Gordon, 2003), 

including where and how to facilitate rates of food intake.  

Fire is another factor causing variations in forage quality and quantity, structure, 

composition and distribution in the savannah (Stander et al., 1993; Parr & Chown, 

2003). The effects of it is yet to be fully explored (Smith et al., 2005; Hassan et al., 

2007). In the Serengeti NP, fire is used to improve forage quality for large herbivores 

(Hassan et al., 2007). It is also used to prevent accidental hot fires during the dry 

season. Similar practice is in place in Katavi. It temporarily affects food availability 

while facilitating the emergence of new green shoots which become available to the 

grazers. It helps to replace the ageing forage by newer quality forage. However, other 

studies propose that fire does not have major effects on properties of grassland except 

slight stimulation of productivity (McNaughton, 1985).  

Resource concentration is often regarded as the best predictor of population density in 

animals (Connor et al., 2000) as summarised in the resource concentration hypothesis 

(Root, 1973). Hippopotami as with other organisms live in the environment in which 

various resources are likely to influence them. The amount of day living space and 

productivity of food plants have been reported as among the most essential factors 

(Olivier and Laurie, 1974).  The two are reported as essential in hippopotami habitat 

utilization and may limit population increase. 
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Day living space or sheltering sites are mainly associated with provision of water for 

hippopotami. Water and vegetation are therefore the major environmental resources 

likely to affect hippopotami in their environment.  

Water availability to wild animals in Tanzania has been left for nature to determine 

except for human intervention in river discharge (Epaphras et al., 2008). Due to this, 

water available from the underground water table and on the river bed plus surface 

water is crucial to the survival of animals, particularly hippopotami during the dry 

season. This can determine their abundance, movements and distribution and in the 

driest sites, appears to have done this in Katavi National Park.  

In the Serengeti, variations in grazing animal density and abundance correlated with 

grassland productivity rather than rainfall (McNaughton, 1985). This might also be the 

reason why there were no correlations between rainfall and hippopotami density and 

seasonal movements. The effect of rainfall rather than rainfall itself is responsible for 

the seasonal animal movements in and out of resting sites in Katavi. In the Serengeti 

study (McNaughton, 1985), rainfall triggered green forage hence grassland productivity 

and hence grazing animal density and abundance.  

Lake Katavi which was located in riverine swamp and connected to the river by several 

channels and Ikuu Springs, also next to the river, showed some correlations with river 

discharge.  This was possibly due to the rapid spillover effects of water discharged from 

the river which attracted hippopotami movement in and out of their sites, hence 

affecting abundance. The two sites harboured many hippopotami during the dry 

season.  

On the other hand, at Ikuu Bridge, river discharge did not have an impact on 

hippopotami density. This was mainly due to an artificial water pool that retained 

water and later in the dry season became a muddy pool. The pool retained about the 

same number of hippopotami as in the wet season. Direct impacts of river discharge 

during the rainy season therefore did not significantly alter hippopotami density, but 

instead, local impacts related to site topography had an overriding effect. Some river 
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discharge events lasted only for a few days but swamps retained water for much 

longer. River depth, size of swamp and underground water depth were more sustained 

and their impacts were felt by the rising depth of water at the hippopotami resting 

sites. 

Paradise Springs was somewhat different to the rest of the sites because its dual 

sources of water were more perennial and the site therefore had more water than the 

other four sites. The impact of rise and decline in underground water was less obvious 

in the hippopotami at the site. 

There were inverse correlations between vegetation sward height and hippopotami 

density. Increase in hippopotami density was associated with decrease in sward height. 

This was in agreement with earlier observations that hippopotami select patches with 

shorter swards (McCarthy et al., 1998; Harrison et al., 2007). However, this is not 

necessarily a cause and effect relationship. Increase in sward height which in turn 

corresponded with increase in greenness and cover, had similar inverse correlations 

with density. Therefore, the two had similar effects to the abundance as sward height. 

Nevertheless, hippopotami density and abundance did not vary with seasonal 

variations in plant mass per unit area. This was contrary to observations by Chansa et 

al. (2011b), who reported that hippopotami responded to the foraging or grazing 

intensity in the river or surrounding grassland in Luangwa River in Zambia. However, it 

might have been due to response to the sward height.  

Hippopotami select short grass with the height of about 15 cm (Lock, 1972; Olivier and 

Laurie, 1974, Harrison et al., 2007). This means that variations in sward height are likely 

to affect their distribution and abundance. Availability of nearby feeding grounds is 

crucial because hippopotami travel only short distances from water to feeding grounds 

(O’Connor & Campbell, 1986; Viljoen & Biggs, 1998). Chansa et al. (2011b) reported 

hippopotami travelling up to five kilometers in search for food. 
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In order to estimate preferred foraging sward height, Lock (1972) during examination 

of hippopotami tracks found that they graze in areas of short grass less than 15 cm. 

This led to the suggestion that this sward height might be optimal as their canine and 

incisors are not designed for grazing. Their teeth are simple, blunt, cusped and 

bunodont hence are incapable of chopping and grinding as effectively as other grazers 

(Spinage, 2012). Instead, hippopotami use their sharp edged, horny lips to grasp the 

grass and pull it off by jerking the head (Lock, 1972; Spinage, 2012). Pulling attempts 

often results in uprooting loosely rooted grass. However, it is not explained in Lock 

(1972) how sward height was measured. Also, sward height estimation was made 

based on the area where hippopotami tracks ended, but did not actually measure them 

foraging at 15 cm. Harrison et al. (2007) in Liwonde NP in Malawi used visual 

estimation to record sward height. Study by Lock (1972) formed the basis for the 

optimal sward height of 15 cm being referred to by several authors (McCarthy et al., 

1998; Harrison et al., 2007; Spinage, 2012). The present study used the standardized 

method of sward stick. Use of different methods for estimating sward height might be 

a source of variation. In measuring sward height using sward stick, several factors may 

influence results. These include height, density and strength of the stem. Sward 

structure may vary in terms of sward chemistry, architecture and species composition 

(Drescher et al., 2006). During the present study in Katavi, variations in forage species 

between study sites were relatively small as represented by a number of species for 

each site. 

Although 15 cm has been reported as optimal foraging sward height for hippopotami, 

in Liwonde NP in Malawi, feeding by hippopotami was also recorded in the sward 

between 15 and 50 cm although grazing intensity was lower when compared with that 

of sward height around 15 cm (Harrison et al., 2007). In Katavi, actual feeding and signs 

were recorded in the sward height of up to 30 cm at foraging and shelter sites. In 

Malawi, grazing intensity decreased as distance increased from the river, being higher 

near the river (Harrison et al., 2007).  This tends to agree with the central place 

foraging theory  for hippopotami (Lewison and Carter, 2004) which is the special case 
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of the marginal value theorem (Charnov, 1976) in which distance from the river 

influenced hippopotami foraging decisions of the energetically most effective feeding 

site. As per optimal foraging theory (Pyke et al., 1977; Allaby, 2004), animals tend to 

maximize intake of forage per unit time especially for hippopotami which faces 

temporal constraints in their feeding. Equally, the theory proposes that foraging 

decisions are influenced by physical and environmental constraints which are food 

intake or availability constraints and digestibility or processing constraint (Fryxell, 1991; 

Wilmshurst et al., 1994; Bergman et al., 2001). When foraging farther from the river, 

they increases intake which is the most effective in terms of net energy and searching 

effectiveness (Lewison & Carter, 2004). In such instances, hippopotami may become 

less selective and may feed on slightly longer swards.  

In hippopotami, however, morphological constraints remain an important reason for 

preferring short swards. In Queen Elizabeth NP, Uganda, hippopotami were relatively 

common in most areas with varying sward heights (Field & Laws, 1970). This may signal 

that they may be feeding on slightly different sward heights.  

In a study on foraging behaviour of Brent geese (Riddington et al., 1997; Hassall et al., 

2001), captive geese took larger bites and had higher intake rates when feeding on 6 

cm swards than on shorter ones. Similarly, in the field they preferred 6 cm sward to 

longer or shorter swards.  This supported the forage maturation hypothesis. Bos et al. 

(2005) found that intake rates in Brent geese increased exponentially with sward 

height preferring plots with highest nitrogen contents. They concluded that forage 

quality was an important factor determining patch choice. 

Hippopotami foraging on shorter swards might be due to trading off between 

availability of shorter, high quality and longer, low quality swards. Due to their 

morphology and ineffective chopping and grinding, shorter, higher quality swards are 

beneficial. Energy gains may be optimized by selecting patches with intermediate 

vegetation biomass and height (Wilmshurst et al., 1994; Durant et al., 2004). 

Hippopotami are effective in fermenting their forage due to their long food retention 
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time.  According to Lewison & Carter (2004), daily intake and gut capacity per body 

weight is lower than other herbivores of similar size due to long gut retention time and 

good assimilation (Arman & Field, 1973). Despite lack of rumination, fermentative 

digestion in hippopotamus is effective (Spinage, 2012). Low biomass swards are 

effectively processed although intake rates are low, unlike high biomass swards where 

intake rates are high but processing efficiency is low (Hassall et al., 2001). However, 

very short swards may be limiting particularly during the dry season. In Katavi, very 

short swards led to hippopotami consuming short swards with sand during the dry 

season (Meyer et al., 2005). Size and structure of grass stems affects rates of foraging 

and may affect foraging behaviour (Drescher et al., 2006b). Size and quality of forage 

varies as the result of grazing (Agreil et al., 2005), and may lead to less selectivity in 

consumption as observed by Meyer et al. (2005). In a study of sheep, as vegetation size 

and structure declined due to grazing, they increasingly took larger bites in 

compensating nutritive values (Agreil et al., 2005). In such a situation, animals like 

hippopotami are likely to feed unselectively in short mixed swards.  However, the 

foraging areas which are used by hippopotami   are also used by other herbivores. 

There are effects of various herbivores using the same resources (McNaughton, 1985) 

as they utilize resources differently often preferring different sward heights and 

different times of the day so partitioning resources (Schoener, 1974). Short swards 

created by hippopotami attract smaller antelopes (Field and Laws, 1970; Lock, 1972), 

hence decreasing the height further. 

Increased sward height can indirectly indicate increase in the amount of food available, 

although higher sward heights can have a limiting impact on feeding by hippopotami. 

This is because the sward becomes morphologically inaccessible to the feeding 

hippopotami. Reported preferred sward height becomes a limiting factor as the 

hippopotami cannot easily access such a longer sward.  This might have been the 

reason for the observed correlations between sward height and abundance and 

aggregation. 
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McNaughton (1985) reported that grazing animals in the Serengeti adjusted their 

densities in relations to grassland productivity. Productivity was estimated in terms of 

biomass and that actual productivity was found to be closely related to grazing 

intensity. This might help to explain the inverse correlations between hippopotami 

density and vegetation variables observed during this study in Katavi NP.  

4.2 Aggregation  

Aggregation is common among mammals (Blowers, et al., 2010). It involves a balance 

between both pros and cons of living in a group (Krebs & Davies, 1993). These may 

include reducing risk of predation, lowering thermoregulation energetic costs and joint 

care of young (Blowers et al., 2008). 

Paradise Springs was the only site where there were correlations between rainfall and 

the size of hippopotami aggregations. Lack of correlations between rainfall and 

aggregation at the other four sites might have been because the impacts of rainfall at a 

particular site were not felt at that site but further downstream or indirectly because 

of local topography. 

However, at Paradise Springs, rainfall was measured immediately upstream and it is 

very probable that the impact was felt at the study site which, contributing to the 

correlations between rainfall and aggregation at Paradise Springs. Similarly, availability 

of more water at Paradise Springs than the other sites might have explained the 

observed correlations. It is probable that impacts of water at the site concealed rainfall 

effects. At Paradise Springs, water levels responded to rainfall more quickly than on 

other sites because soils were already likely to be saturated by spring water. 

Increases in river depth near Ikuu Springs corresponded with increase in inter-

individual distances between hippopotami at the site. At a river depth of about 1.5 m, 

least aggregation was recorded.  This coincided with the period when most 

hippopotami were dispersing to other resting sites during the rainy season. The most 

crowding occurred when river depth was lowest during the dry season. Rise in water 
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level in Mara River in the Serengeti leads to dispersal of the hippopotamus population 

and decreased group size (Olivier and Laurie, 1974). 

A similar aggregation pattern to Ikuu Springs was observed at Ikuu Bridge. However, 

during the dry season, hippopotami congregated at a large water pool along the river 

which remained throughout the year. This was unlike Ikuu Springs where perennial 

water springs provided wetter shelter for hippopotami during the dry season. The rest 

of the river ran dry with the exception of water pools which remained along several 

sections of the river bed; however, their sizes were much smaller than the pool at Ikuu 

Bridge.  

There were observed correlations between river depth and aggregation at Ikuu Bridge 

and Ikuu Springs. This was probably due to the way the sites depended on the main 

Katuma River for water. Ikuu Bridge depends on the river only for its water. Ikuu 

Springs depends on the springs and indirectly on the river which is nearby. However, 

the effects of the Katuma may quickly be felt by hippopotami at Ikuu Springs. Rise of 

river level is likely to trigger hippopotami to disperse from Ikuu Springs.  

Hippopotami spend most of their day time in water (Olivier & Laurie, 1974; McCarthy 

et al., 1998; Eltringham, 1999). Day living space has been discussed as important and is 

probably a limiting factor on abundance (Olivier & Laurie, 1974). Hippopotami also 

select water where they can submerge or shallow waters where they can move 

through or raft. River bends, lagoons, river mouths and open grassland plains with 

hippopotami food such as Cynodon and Echinocloa grass species have been reported to 

be favorable habitats (Wilbroad & Milanzi, 2011). These environmental relationships 

are essential to hippopotami. 

4.3 Immigration and emigration 

Rates of immigration and emigration among adult hippopotami did not correlate with 

rainfall. This might be because of distances to rain gauges and the extent of local soil 

saturation as already discussed.  
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4.4 Behaviour traits 

From the observations recorded during this study, it seems most of the hippopotami 

responded to seasonal change in the extent of swamps, underground water table and 

river depth. These factors had a direct influence on behaviour, abundance and 

movements. River discharge tended to have indirect effects. This is probably because 

the impact of river discharge was mediated by local variations in the physical size and 

topography of resting sites and the extent of soil saturation by ground water.  

4.5 Correlations between hippopotami and vegetation variables. 

Although differences in vegetation might be expected between years, vegetation 

greenness as measured by satellite imagery in Katavi was relatively stable (Pelkey, 

Stoner & Caro, 2000; Stoner et al., 2006), and is reported to have increased only 

slightly during the time frame that surveys were conducted during the early to the mid-

2000. 

Vegetation variables have impacts on spatial variation in hippopotamus abundance and 

distribution. In Luangwa River in Zambia, abundance and distribution was influenced by 

diversity of grass species, grass biomass and grazing capacity (Chansa et al., 2011b; 

Wilbroad and Milanzi, 2010). Harrison et al. (2007) reported hippopotamus abundance 

was related to vegetation types in Malawi. 

Grasslands have temporal and spatial variation in both quality expressed as protein 

content or digestibility and quantity measured as mass per unit area (Fryxell, 1991; 

Drescher et al., 2006). Forage quality of grasses decreases with its age (Hassall et al., 

2001; Drescher et al., 2006). As the grasses mature, tensile strength increases 

correlated with a decline in their digestibility (Hassall et al., 2001). Equally, nitrogen 

contents in the swards decreases as sward height increases (Hassall et al., 2001). 

Temporal dynamics of forage quantity and quality of grasslands is best explained by 

forage maturation hypothesis (Fryxell, 1991; Drescher et al., 2006). The hypothesis 

states that net absorption rates are maximized on patches of intermediate plant 

biomass. This can help to explain the preference of hippopotami for the short swards 
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and repeated grazing on the same pasture. Grazing stimulates productivity of grasses 

with intermediate grazing being more effective (McNaughton, 1985). This can also help 

to explain why hippopotami were resting more during the dry season, probably in an 

attempt to keep on digesting forage ingested during the previous night as during the 

dry season digestibility declines. During the wet season, while in their resting ground 

they fed more frequently during the day time as digestion was much faster and 

temperature much cooler.  

Some vegetation variables (sward height, greenness and ground cover) were found to 

correlate inversely with hippopotami density, immigration and emigration. More 

hippopotami were recorded when sward heights and cover by vegetation were low 

compared to months when sward heights and vegetation cover were higher. Similarly, 

immigration and emigration of hippopotami were linked to sward heights (Table 5.8 

and 5.9). This is a further confirmation of the effects of sward height on the feeding 

preferences of hippopotami. Seasonal variations in intensities of herbivory in South 

Africa (Shackleton, 1992) with the dry season having higher rates were linked with 

maturation of the sward.  Similar conditions are thought to have influenced Katavi 

because hippopotami selected short swards. Raiding of short crops in Ruaha NP, 

Tanzania during the wet season (Kendall, 2011) is consistent with hippopotami 

avoidance of tall swards in the Park. Short swards have higher biomass (Shackleton, 

1990) and are likely to have been the major feeding resource for hippopotami during 

the time when swards heights were above optimum. This might be similar to 

observations by O’Connor and Campbell (1986) in Zimbabwe where hippopotami used 

different areas for grazing during different times of the year, probably due to sward 

height and condition. These observations are also in line with those by Harrison et al. 

(2007) in Malawi where hippopotami changed their foraging areas following sward 

heights as the seasons changed. These correlations tend to further support 

observations in Section 4.2 that at some point, vegetation variables had influence on 

hippopotami abundance, immigration and emigration.  
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6.0 Conclusions 

Availability of water at resting sites affected hippopotami abundance, movements and 

behaviours. During the wet months for example, more hippopotami were foraging than 

during the dry season months. This was because rainfall controls much of forage and 

directly or indirectly, water availability. Distribution of hippopotami was largely 

determined by the availability of the two resources.  

Sward height, greenness and vegetation cover had correlated with seasonal 

hippopotami density, immigration and emigration. This indicates the importance of 

these measurements to hippopotami behavioural study as they are thought to have a 

causal relationship.  

It can be concluded that water and vegetation variables had effects on hippopotami 

abundance, aggregation, immigration and emigration. These affected the animals in 

various ways and magnitude.  

This study has provided preliminary insights for both management and conservation of 

hippopotami and its habitat in Katavi. It is hoped that it will form part of monitoring for 

the Park. 
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Chapter 9: Overall Discussion 

The overall aim of this thesis has been to investigate the behavioural and ecological 

responses of the common hippopotamus, Hippopotamus amphibious L. to varying 

water resources in Katavi National Park, Tanzania. In this final discussion I synthesise 

results from the previous chapters interpreting them in relation to closely related 

studies elsewhere to identify possible threats to hippopotami in Katavi National Park. I 

conclude by briefly discussing possible ways of alleviating such threats. It has become 

increasingly obvious that the ecology of Katavi, as of many other National Parks in 

Africa, can only be appropriately understood in the context of the topography, ecology 

and land use of the whole catchment area in which the park is located. Key mitigation 

strategies are not therefore necessarily within the jurisdiction of Park authority alone. 

I will first review how variation in water availability affects the basic physiological, 

behavioural and ecological aspects of hippopotami biology.  This leads to consideration 

of the major anthropogenic factors of global climate change and of land and water use 

in the wider catchment area and how they might cause changes in water availability in 

the park concluding that the future of hippopotami in Katavi National Park has political 

implications as well as being a biological and hydrological issue. 

9.1 Effects of Reduced Water on the Biology of Hippopotami. 

All forms of life in the known universe require water to extents that vary with life stage 

and according to the hydrological properties of environments to which the life form 

has adapted.   Hippopotami require water for several reasons. Firstly as for most large 

mammals living in hot tropical environments, they need it to drink and so maintain 

internal osmotic and ionic homeostasis. Secondly unlike most other large mammals in 

Africa, they also need it to maintain thermal homeostasis. They achieve this partly by 

perspiring to achieve evaporative cooling but to a much greater extent than most other 

African terrestrial mammals, they also need water for conductive cooling. Access to 

aquatic shelter sites in which to take refuge from high ambient air temperatures is a 
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vital requirement for their thermoregulation (Louw & Seely, 1982; Noirard et al., 2008). 

This results in a core body temperature of about 36°C (Luck and Wright, 1963; Cena, 

1964; Noirard et al., 2008).  Immersion in water is also used to reduce the effects of 

exposure to direct solar radiation (Eltringham, 1999; Noirard et al., 2008).  When 

exposed to higher temperatures out of water, hippopotami lose water rapidly at about 

7.2 - 9.9 mg/5 cm2/10 minutes (Luck and Wright, 1963), become less active and in 

extreme cases may die from dehydration.  Because of these stringent 

thermoregulatory requirements hippopotami spend most of the day in aquatic shelters 

and forage predominantly during cooler nights. When hippopotami in the River Niger 

in Niger were exposed to air temperatures up to 50°C they spent less time exposed 

(Noirard et al., 2008) with ecological as well as behavioural consequences (Manteca 

and Smith, 1994). 

In Katavi NP,  as shelter sites dried out after the rainy season, hippopotami in the 

remaining wet shelters changes their behaviour, most conspicuously by immigrating 

into these more permanent water bodies from surrounding areas that were 

submerged during the rainy season but progressively dried out as the dry season 

progressed.  A reverse emigration occurred soon after the start of the next wet season. 

There was thus an annual cycle in the dispersion pattern of hippopotami in Katavi NP 

with the populations being most dispersed during the wet season from December to 

April then exhibiting a consistent trend of increased aggregation as most of the wet 

areas dried out between July and December. In the permanent water bodies this 

change in water availability was mirrored by an increase in the distance between 

individuals during the wet season, followed by a progressive decrease in inter-

individual distance in the shelters as more animals immigrated into them during the 

dry season.   

The more crowded conditions during the dry season were accompanied by higher 

levels of aggression, as indicated by increased frequency of threats and biting 

behaviour in the dry season, especially in the drier study sites such as Ikuu Springs 
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compared with wetter ones such as Paradise Springs. Such increased aggressiveness 

can result in serious fights, potentially leading to injury or even death (Estes, 1992; 

Lewison, 2007). In the drier sites the hippopotami also spent more time on 

maintenance behaviours such as splashing and rolling and less time on diurnal  feeding,  

as they did at all sites at drier times of the year.  

 Reproductive behaviour can also be affected by typically severe reductions in water 

availability.    In this study reproductive behaviour, including courtship and mating, was 

less frequent during the dry season at most sites, except at the wettest site at Paradise 

Springs where these behaviours continued throughout the dry season. As mating and 

calving mostly take place in water, reductions in its availability can result in decreased 

natality rates. During low rainfall and drought years the proportion of females likely to 

conceive can drop from 30% to only 5%, with the consequence that a hippopotamus 

population can crash because of this , together with abrupt increases in mortality 

(Lewison, 2007). 

9.2 Indirect Effects of Water Reduction Mediated Via Changes in the Quantity and 

Quality of Food. 

Quantity of Foods and the Mechanics of Feeding by Hippopotami  

All large grazing animals ingest different sized bites and hence have different foraging 

efficiencies, when feeding on swards of different lengths, reflecting the constraints of 

their mandibular morphology.  Hippopotami resemble avian grazers such as geese and 

ducks in that they use their hard, toughened lips to first grip a part of the sward, then 

pull by lifting the head to break it (Lock, 1972; Spinage, 2012). They are thus unlike 

other African Artiodactyla (e.g. antelopes) which have teeth only on the lower jaw, or 

perissodactyla (e.g. zebra with teeth on both mandibles). The result of these 

mechanical constraints is that hippopotami have a strong preference for swards of 

from 15cm (Lock, 1972) to 30 cm (Harrison et al., 2007) so are sometimes  referred to 

as “short grass grazing specialists” (Dudley, 1998).  It is important to note that there is 

considerable inconsistency and sometimes rather qualitative methodologies used for 
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measuring sward height.  In this study a standard design of dropped disc sward stick 

was used to measure temporal variation in sward height (Sharrow, 1984; Stewart et al., 

2001) as discussed in Chapter 4. Analyses of these data showed that in the dry season 

mean ward height of swards hippopotami were known to graze, varied from 3 - 7 cm at 

the end of the dry season to 60 - 70 cm at the end of the wet season.  Both heights 

were well outside the range preferred by hippopotami, suggesting that their feeding 

could be constrained for opposite reasons in the two seasons.  During the dry season 

swards were at times too short for effective bite size, potentially resulting in nutrient 

deficiencies, while towards the end of the wet season biting efficiency could potentially 

be reduced by being unable to crop such long swards effectively as a result of not 

having teeth suitable for biting such long tough fibrous tissues.  

 Wildebeest, zebra and other large herbivores in the Serengeti, have evolved 

behaviours to overcome this difficulty by creating grazing lawns (McNaughton, 1985) 

as they have evolved spatially specific grazing patterns to prevent selected swards from 

growing higher than the optimal length by grazing the lawns to the preferred length in 

a regular temporal sequence to prevent them from becoming too long. There is some 

evidence that hippopotami similarly “manage” the length of selected feeding grounds 

as “lawns” at around 15 cm (Lock, 1972; Oliver and Laurie, 1974). Drought at such sites 

can constrain plant growth resulting in swards shorter than at the preferred length 

leading to less efficient grazing and reduced food intake rates. The difficulty 

hippopotami can experience when feeding on longer than optimal length swards is 

evidenced by hippopotami in Ruaha NP, Tanzania, in the wet season, raiding crops 

instead of feeding on long swards within the park when these grew above 30cm 

(Kendall, 2011). Whether the choice to feed outside the Park was driven by being more 

deterred by above optimal height swards within the Park or by attraction to crops at a 

particularly favourable stage of their life cycle outside the park, is not clear. Most crop 

damage occurred in relatively short swards, suggesting that sward height was a more 

important criterion for selecting feeding sites than species of plant (Kendall, 2011). 



 

249 
 

Rainfall determines the amount of available forage for many ungulates in East Africa 

(McNaughton, 1985; Sinclair, 2008).  The observed relative stability of hippopotamus 

populations at Katavi between 1980s and 2010 might be associated with relatively 

stable forage availability which reflects consistent trends in rainfall during this period.   

9.3 Sward Quality 

 Food quality, which can only be defined in terms of the performance of the species of 

herbivore concerned (Crawley, 1983) is often a more important driver of herbivore 

feeding behaviour than is the quantity of food available. Quality which represents 

nutrition is central to most aspects of ecology of animals (Parker et al., 2009). There is 

now extensive evidence supporting the “nitrogen hypothesis”, as reviewed by White 

(1983b). This is relevant to the present study because differences in forage quality with 

increases in maturity (and height) underpin the “Foliage Maturation Hypothesis” 

(Fryxell et al., 2004). This postulates that vertebrate grazers face a trade-off between 

higher intake rates on longer swards and both higher digestibility and higher nitrogen 

content of shorter swards,  resulting in an inverted concave relationship between 

herbivore assimilation rates and sward maturation.  Such a relationship has also been 

found for avian herbivores such as Brent geese (Hassall et al., 2001), wapiti 

(Wilmshurst et al., 1994) and grazing mammals in the Serengeti (McNaughton, 1985; 

Sinclair, 2001)  It may also underpin the preference  by hippopotami for a restricted 

range of sward heights.  

Growth and development of ground layer plants, which determine food quality for 

hippopotami, are very sensitive to annual changes in soil moisture, which in turn is 

strongly influenced by variations in the intensity and periodicity of rainfall. Although 

the total annual rainfall in Katavi has remained relatively stable since 1950s, there have 

been some significant deviations both in total and timing of rainfall which can directly 

cause changes in mortality as in 2004 (Meyer et al., 2005) where a prolonged drought 

caused a significant increase in mortality of hippopotami, it can also cause reductions 
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in both quality and quantity of food to the extent that death by starvation has been 

recorded in different parks in Africa. 

Major natural demographic incidences among ungulates in Sub-Saharan Africa have 

been associated with drought and hence food scarcity. Examples include hippopotami 

death in Kruger NP, South Africa in 1991/2 (Viljoen & Biggs, 1998), wildebeest deaths 

during 1993/4 in the Serengeti (Mduma et al., 1999) and hippopotami in Katavi (Meyer 

et al., 2005). Mortality of adult buffaloes in Serengeti was caused by drought resulting 

in under-nutrition as the result of food shortage (Sinclair, 2008). A decline in 

hippopotami between 1983 and 1997 in Gonarezhou NP in Zimbabwe was attributed 

primarily to drought together with siltation and persecution in adjacent communal 

areas (Zisadza et al., 2010). 

9.4 Trade-offs 

Trade-offs occurs when two fitness correlates, which may be for example physiological, 

behavioural or life history traits, are negatively correlated with each other. 

Hippopotami are subject to a number of trade-offs which can be influenced by the 

availability of water. For example hippopotami forage within zones of, on average, 3.2 

km diameter around their shelters (Viljoen & Biggs, 1998; Chansa et al., 2011b; Lock, 

1972; O’Connor & Campbell, 1986) but this varies with water availability. In the dry 

season longer foraging journeys are made (O’Connor & Campbell, 1986).  The normal 

life cycles of ground layer plants involves senescence and die back under adverse 

meteorological conditions such as when reduced soil moisture restricts new growth. 

Grazing herbivores further deplete the height and biomass of senescing swards, in the 

case of hippopotami as central place foragers (Lewison & Carter, 2004), in a gradient of 

decreasing severity with distance from their day time shelters. Therefore the distance 

travelled to feeding grounds varies between seasons with longer distances travelled in 

the dry season which are most difficult for females leading easily tired offspring. This 

leads to a behavioural trade-off between reduced ingestion rates and higher travel 

costs, both in time and energy.  On swards nearer the shelters, ingestion is constrained 
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by swards being of sub-optimal height but compensated for by low travel costs 

compared with feeding at more distant feeding grounds with higher travel costs but 

closer to optimal length swards, resulting in higher ingestion rates. Male hippopotami 

in Uganda have found a way of solving this dilemma by creating temporary wallows 

during the dry season in order to reduce the distance travelled (Field & Laws, 1963; 

Lock, 1972; Eltringham, 1999). Having to find alternative but sub-optimal, shelter sites 

nearer the forage grounds can increase conflicts with other groups of hippopotami or 

even with humans.  

Hippopotami experience another potential trade-off that is even more obviously 

influenced by variations in water availability. This is the trade-off, which occurs as the 

dry season progresses, between aggregating in more permanent aquatic shelters with 

costs of increased crowding, more aggressive behaviours, higher depletion of foraging 

grounds, increased intra-specific competition for both space in the shelter and for food 

and increased transmission rates of diseases but very significant thermoregulatory and 

hence survivorship benefits. The alternative being staying more widely dispersed in 

temporary wet season shelters, with increased risk of overheating as the wet season 

shelters dry out and of higher mortality due to desiccation but with the benefits of less 

competition, aggression, and a lower risk of disease transmission (Turnbull et al., 1991; 

Viljoen, 1995; Viljoen & Biggs, 1998; Lembo et al., 2011). 

Evidence for such a trade-off comes from comparing the most highly aggregated group 

in  the two driest of the five study sites, Ikuu Springs and Lake Katavi  sites, where there 

was significantly more fighting compared with the more widely spaced group in the 

less crowded wettest site at Paradise Springs where the animals fought less. The 

decision of when to move into wetter, more permanent, shelters will be strongly 

determined by the timing and extent of variations in river levels. Exceptional droughts 

can have a potentially catastrophic effect when they result in a large proportion of 

usually permanent shelter sites drying earlier in the year,  as happened at Katavi in 
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2004 when rivers ran dry in August with consequently higher than average mortality of 

hippopotami. 

9.5 Potential Future Changes in Supply of and Demand for Water by Hippopotami. 

This study demonstrates the importance of both adopting a catchment wide 

perspective on what appear superficially to be more localised conservation issues and 

also of placing these in the context of global environmental change. Two of the biggest 

environmental challenges to society in the 21st Century are global climate change and 

world food security. Both are relevant to this study.  

9.6 Possible Consequences of Predicted Changes in Global Climate 

According to the IPCC (2001; 2007), climate change is likely to result in increased global 

temperatures and decrease predictability of rainfall. Africa will be highly affected 

(UNEP, 2010). Increase in precipitation intensities in the tropics are predicted due to 

warming of the atmosphere (IAH, 2012). However, evapotranspiration is also expected 

to increase by 5-10% due to increased temperatures.   Although wildlife may respond 

to global climate change by acclimatization, evolutionary adaptation and moving into 

refuges (Wright et al., 2009), this would only be possible for hippopotami provided that 

adequate water was available for cooling. Although absolute annual totals of rainfall 

may remain the same or increase, projected changes in temporal distribution of rainfall 

are likely to result in more variable river discharge, soil moisture and shortages of fresh 

water IAH (2012). 

Uncertainty in climatic driving processes (Hulme et al., 2005; APF, 2007; Collier et al., 

2008; Toulmin, 2009) presents  challenges in accurately predicting how climate change, 

particularly of rainfall,  is going to affect Africa.  Average temperatures for the whole of 

Africa are predicted to increase by 2oC by 2100 when compared with temperatures in 

the 1990s. Some parts of the continent are expected to experience an increase 

between 3 - 6oC by 2100 (APF, 2007; IPCC, 2007). In eastern Africa the predicted 

increase in temperature is by 1.5 to 4oC. Currently, drier sub-tropical regions, northern 

and southern Africa are becoming increasingly drier with increasingly variable and 
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unpredictable rainfall and storms (APF, 2007; IPCC, 2007; Collier et al., 2008). Eastern 

Africa is predicted to get wetter due to increase in rainfall by up to 15 % or more by 

2100 from 1990s rainfall (IPCC, 2007; UNEP, 2008; Collier et al., 2008) The whole 

continent is expected to experience increased frequency and intensity of drought and 

flooding (Collier et al., 2008). Between 1970 and 2000 East Africa has faced at least one 

major drought a decade (UNEP, 2008).  

Global climate change could affect animals in Katavi NP in several ways.  The 

convective rainfall which dominates the Katavi region is predicted to increase (IPCC, 

2007). This increase will however be largely offset by simultaneous increases in 

evapotranspiration, resulting in predictions of no net change in the current annual 

water balance. If in the Katavi region the predicted increase in variance of rainfall 

resulted in some years in there being a shorter wet season with heavier rainfall events 

the consequence would be to increase the length of the dry season causing extended 

drought conditions which would not only affect availability of drinking water for many 

animals, including hippopotami, but would also for them, pose additional 

thermoregulatory problems which they might not be able to meet. This could result in 

drought induced reductions in natality and increased mortality, so potentially changing 

their long term population dynamics.    

Such adverse effects could be made more severe by the predicted increase in average 

air temperature.  These are unlikely to be in the form of a uniform increase in all daily 

temperatures but more probably will occur as increases, by e.g. 5 to 6oC, on some days 

and little or no increase on others. Such temperature rises could potentially cause 

animals to reach, or exceed, their physiological thermal tolerance limits, potentially 

resulting in thermally induced mortality (Thuiller et al., 2006). The importance of 

considering changes in variance of meteorological conditions is reinforced by the 

possibility that extreme rainfall and temperature stresses could act simultaneously, 

potentially with multiplicative consequences.  
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9.7 Potential Indirect Effects of Predicted Global Climate Change on Hippopotami 

Changes in patterns of rainfall will also affect hippopotami indirectly if they influence 

the availability of food resources (Thuiller et al., 2006). Increases in rainfall are 

predicted to occur within the wet season, so would not alleviate the indirect problems 

of reduced availability encountered during the dry season. This is because forage in 

East Africa depends mainly on rainfall (McNaughton, 1985) 

9.8 Changes in Land and Water Use at a Catchment Area Scale 

Changes in land and water use in the upper parts of the catchment area of the rivers 

flowing into Katavi NP reflect recent changes in agricultural practices implemented by 

communities in the upstream part of the Katuma catchment area.  If these changes 

were to reduce the flow of water into the park all the potential direct adverse effects 

of increased aggregation discussed could be intensified.  The risks of such problems 

caused by changes in land and water use outside the National Park could be further 

exacerbated by global climate change.  

Human disturbances to the catchment area by clearing vegetation and removal of 

debris from river beds has resulted in altered flow patterns and severe changes to river 

structure and function (Brierley et al., 1999).  Use of water upstream and clearance of 

forest in the catchment area may result in Katavi NP and its wildlife experiencing water 

at levels lower than required for hippopotami to thermoregulate effectively. The 

recent reductions in river flow are partly caused by reduced soil water holding capacity 

brought by clearing woodland from parts of the catchment area and partly due to 

changes in farming practices. As a result of both these processes river flow levels and 

duration are declining significantly, rendering hippopotami more susceptible to 

prolonged droughts which naturally would be expected to occur about once a decade. 

The increased risk of critical reductions in river flows are likely to be exacerbated by 

climate change because the predicted increase in temperature would increase 

evaporation rates and thereby decrease surface water runoff.  
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Forest clearance is occurring despite forest conservation being a priority for many 

conservation efforts in Tanzania (Banda et al., 2006). These processes started in the 

Katavi catchments within the last two decades with clear impacts on reduced river flow 

which led to proposals for protection of downstream ecosystems (Appan, 1989; Callow 

et al., 1990).  

Various possibilities have been considered to mitigate effects of the recorded 

reductions in river flow from 2004 – 2009 caused by changes in farming practice 

involving  diversion of water upstream of the Park to irrigate recently constructed rice 

paddies deleteriously altering the water balance of Katavi NP Surface reservoirs have 

been tested by Park authorities without success. The use of wind powered bore holes 

was not considered due to discontinuity of supply resulting from variable wind speeds, 

problems of attracting non-target species and concentrated depletion of forage in large 

areas round the bore hole.  

9.9 Management and Policy Implications 

Indirect Effects of Predicted Climate Change on Food Availability 

If as a result of increased variance of rainfall events, signs of feeding grounds becoming 

excessively depleted were detected, some manipulation of both quantity and quality of 

forage could potentially be achieved  using controlled burning.  There is a need of 

monitoring the length of hippopotamus foraging tracks to detect whether they had 

become longer than the maximum of 10 km (Estes, 1992; Eltringham, 1999) at which 

starvation and death from unsustainable foraging travel costs may occur. Burning 

savannah as a management practice is currently used extensively in Katavi to reduce 

the fuel load and hence the temperature and incidence of fires later in the dry season. 

This management tactic is employed just after the end of the rainy season, usually in 

May and June, when swards are at their highest and in least preferred upper height 

range selected by hippopotami. If changes in rainfall patterns started to reduce 

availability of forage within the optimal range, then potentially prioritising burning to 

target hippopotamus feeding grounds within 3.5 km of known shelter sites could be 
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increasing favourability of their habitat during the rest of the dry season without 

detrimental effects on other species in the Park.  Fire is known to rejuvenate swards 

and encourage new shoots. Burning of early dry season foraging near shelter sites 

could alter the ingestion rate-travel costs trade-off thereby increasing foraging 

efficiency of the hippopotami.  

Changes in Other Parts of the Catchment Area  

It is now apparent that changes in land and water use elsewhere in the catchment are 

central to recent changes in hydrology and hence the behaviour and ecology of 

hippopotami in Katavi NP.  A system of governance is therefore required which can 

potentially address problems caused by the reduction in water flow at source.   As the 

upper catchment area of the Katuma is not within the jurisdiction of the National Park 

authorities they cannot interfere directly with the communities damning the river.  In 

2010, there was some reversal of the recent trend of reduced flows as a result of 

efforts by National Park and authorities of the Rukwa regional government to inspect 

and reduce the number of illegal diversion dams on the river Katuma upstream of the 

Park, constructed to supply irrigation water.  Diverting river flow in this way is illegal in 

Tanzania according to National Water Policy 2002 and Water Resources Management 

Act 2009 (URT, 2002; URT, 2009a; 2009b). Implementation of the act in the upper 

Katuma catchment area resulted in a resumption of significantly higher river levels in 

the Park during the wet season in 2010 but future such lobbying may become less 

effective as a result of repetition. 

  While it is desirable that the Katavi National Park should continue to lobby the Rukwa 

regional government to persuade local governments to continue enforcing the national 

Water Use Act it is recognised that this may not be a sustainable solution to the 

problem. Breaches of National Law which reduce starvation and increase well-being of 

the communities that benefit from diverting water from a river for crops may in time 

be overlooked on economical and humanitarian grounds. 
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The problem of diverting river flows upstream of National Parks is widespread in Africa 

where about 85 % of water is used in agriculture (Downing et al., 1997)  On a very 

localized scale such diversion of upstream river flows could be regarded as helping in a 

very small way to mitigating problems of world scale food security.  African National 

Parks which depend on water from beyond their boundaries include Ruaha NP 

(Epaphras et al., 2007; 2008), Serengeti (Gereta et al., 2003), Tarangire (Gereta, et al., 

2004a), Kruger NP- South Africa (Viljoen, 1995; Viljoen & Biggs, 1998) and Liwonde NP-

Malawi (Harrison et al., 2007).   Most of the parks facing such catchment area 

challenges were created to protect big game rather than the whole ecosystem being 

given priority (TANAPA, 2008). Many national parks in Africa depend on water the 

sources located in public lands outside their boundaries. Use of water in Africa is 

projected to increase sharply over the coming decades (MacDonald et al., 2012). In the 

Serengeti in Tanzania, the Mara River is the main river but depends on water from 

neighbouring Kenya (Gereta et al., 2003). Use of water upstream is increasing 

challenges in managing the Serengeti because political solutions to the problem would 

require international agreements.  

Similar catchment area problems exist within Tanzania. In Ruaha NP the catchment 

area and sections of the main Ruaha River above the Park are under human pressure 

leading to drying of this “life line” river (Epaphras et al., 2008). In Northern Tanzania 

Tarangire NP, which depends on waters form the main Tarangire River, is also faced by 

similar challenges during the dry season as the source of the river is outside the park 

and under human pressure (Gereta et al., 2004b). Conflicts over fresh water are 

increasing and are likely to continue as human population increases rapidly (Arthington 

et al., 2006). 

 A theoretically possible solution to the problem in Katavi could be to provide 

alternative sources of water for the animals. As a matter of policy however, Tanzania 

National Parks Authorities do not provide artificial water holes for wildlife (Peterson, 

1973; Epaphras et al., 2008) as is practiced in Tsavo NP in Kenya because of the 
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problems discussed in Section 9.8 Surface reservoirs have been tested during pilot 

studies in Katavi by Park authorities in 2005 but proved impracticable. 

 Conservation of whole catchment areas by involving communities might be an 

affordable alternative approach. Community based conservation outside the protected 

areas has been regarded as a possible cornerstone of currently acceptable forms of 

protection (Weladji & Tchamba, 2003; Hilborn et al., 2006). I propose that a local 

community based conservation approach could result in a more sustainable solution to 

the problems in Katavi NP. 

9.10 Overall Conclusions 

This study has increased our understanding of how the behaviour and ecology of 

hippopotami respond to changes in the availability of water. It provides more informed 

insights into hippopotamus responses to reduced water availability at several levels of 

biological organisation. These insights can assist when deciding priorities for the 

management and conservation of hippopotami in Katavi.   Although this study was 

restricted to only one year, the data collected can form a base line for future 

monitoring in the Park.  A key conclusion from this study is that adopting a catchment 

area basis for water management is absolutely essential for the conservation of 

hippopotami in Katavi National Park.  Maintaining year round river flows is one of the 

most important tasks required to ensure the future wellbeing of this flag ship 

population of hippopotami in Tanzania. 

World food security problems are nowhere more obvious than in Africa where millions 

of people die of malnutrition and associated illnesses annually.  Any change in 

agricultural practice which results in higher productivity is therefore potentially 

favoured politically. Rice is not an indigenous food plant in Africa but can provide 

higher yields than traditional food plants. However this increased productivity comes 

with an increased aquatic cost to other land uses further downstream because changes 

in agricultural practice can potentially conflict with their water requirements. In Katavi 

NP these include water needed for conservation of a species that is the most sensitive 
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to changes in river flow, the hippopotamus.  It can be argued that conservation of such 

a charismatic member of the continent’s megafauna could increase the quality of life 

for visitors to the park both from elsewhere in Tanzania but also from overseas.  Others 

could however oppose such arguments by arguing that the survival of people is a 

higher priority than increasing the quality of life of others. 

This poses a moral dilemma. There is good evidence that flow rates of the Katuma 

River have decreased since 1990 in response to increased diversion of river flow to 

irrigate rice crops. Effects of a natural drought, exacerbated by upstream river 

depletion, in 2004 resulted in increased numbers of hippopotamus deaths in the Park 

(Meyer et al., 2005). This interpretation was confirmed by the increase in river levels in 

2010, when lobbying by the Park Authorities at Regional government level led to firmer 

imposition by local government officials, of national laws on water use. The analyses 

presented in this thesis of responses by hippopotami to reduced water availability 

indicate that continuation of recent trends in increased diversion of water upstream of 

the Park could potentially jeopardize the long term sustainability of viable 

hippopotamus populations in the Park   

Because protecting lives is a higher political priority than increasing the quality of lives, 

the lobbying approach used in 2010 cannot be relied upon indefinitely. Another form 

of compromise, possibly involving persuading upstream communities to switch back to 

less water dependent crops, better adapted to predicted future variability in rainfall, 

probably combined with providing economic compensation for changes in their 

cropping practices can be more effective.  However, fund for such subsidies are 

unlikely to be provided by the Tanzanian Government.  

A theoretically possible solution would be to generate more income within the local 

catchment area by increasing revenue from increased numbers of visitors to Katavi NP. 

At present this is limited by infra-structural constraints of transport to and 

accommodation within the Park.  If access to the Park were increased for overseas 

visitors, it may be possible to persuade overseas donors to invest the initial capital to 
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“pump prime” such a green tourism scheme and have a more user friendly and 

sustainable approach where water use can be balanced between outside users and in 

the park.  

Application of the principle that consumers pay for goods, services and facilities they 

require, including opportunities for viewing hippopotami, would suggest that this 

might be the fairest solution to a conflict of interest between the two ecosystem 

services: those of biodiversity and food production. Such a moral dilemma is faced not 

only by the Katavi National Park authorities but also managers of many other national 

parks in East Africa, and in various guises, by conservationists worldwide. 
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1.0 Introduction 

Chapter 3 of this study on water quantity has shown that there have been no 

significant long-term changes in rainfall in Katavi over the past 60 years. However, 

there have been some reductions in water levels and duration of flow in the Katuma 

River. Among the possible causes for reduction is alteration of river flow, hence 

reduced flow duration. This chapter documents some basic water qualities that whilst 

not linked directly to hippopotami behaviour, might help to indicate possible sources 

of water, and hence their inclusion in this study.  Information on interactions between 

ground and surface waters is generally very scarce in East and Central Africa (Owor, 

2010).  Katavi is thought to receive the majority of its surface water via rainfall on the 

surface drainage catchment (Lewison, 1996; 1998; Meyer et al., 2005). However, 

contributions from groundwater should not be neglected since these have the 

potential for sustaining dry season flows and dry season sheltering, wallowing and 

resting habitat for hippopotami.   

The parameters chosen were pH, electrical conductivity and the relationship between 

air temperature and water temperature. These parameters were measured in many of 

the water bodies in the Park because deviations from general geographical or seasonal 

patterns might be indications of significant contributions of groundwater to surface 

water.   

Ground waters have higher total dissolved salts (TDS) and hence conductivity than 

surface waters and so a sudden increase in electrical conductivity along the river may 

indicate the presence of springs or seeps originating from a calcareous aquifer. 

Conductivity values in the rivers and streams reflect primarily a combination of 

watershed sources of salts and the hydrology of the system (Bruckner, 2011). 

Underlying geology (rock types) determines the chemistry of the catchment soil and 

ultimately its streams and lakes. Apart from geology, conductivity is controlled and 

influenced by size of the drainage catchment, anthropogenic influences, evaporation of 

water from the surfaces, flow volumes, temperature and bacterial metabolism. 
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Water pH depends upon geology, additional water from other sources or other 

environmental factors such as pollution. Importantly, pH also determines the solubility 

and biological availability of chemical constituents. As all waters have particular pH 

ranges, any sudden deviations from normal ranges predicted from catchment geology 

may indicate additional sources of water. Measurements of pH can therefore help in 

detecting if there are any obvious deviation (hotspots) which may indicate springs 

output and hence, its inclusion in this study. 

Ground water in the eastern Africa rift valley region has generally higher temperature 

than surface waters (Geijskes, 1942; Wolanski & Gereta, 2001; Gereta et al., 2004). 

Close to the river catchment source, water is cooler than surface drainage water 

further downstream. As ground water mixes with surface water and is warmed by air, 

water and air temperatures vary together more closely. Departures between water and 

air temperature may therefore reveal sources of ground water.  

The water quality part of the study was not designed or intended to detect pollution 

although catchment land use in the upper catchment (discussed in Chapter 3) is likely 

to cause anthropogenic impacts on water quality.  Agricultural activity in the 

catchment above the Park has been increasing (Lewison, 1996; 1998; Meyer et al., 

2005) and along with mining for gold, such changes in land use bring potential impacts 

on water quality in the Park.  Impacts may be direct or indirect but will always be 

difficult to detect over the natural ecosystem processes that occur in the seasonal 

wetlands of the Park. Low water quality may affect wildlife health but direct effects of 

low water quality on wildlife are not well documented (Wolanski and Gereta, 2001).  

Wolanski and Gereta (2001) and Gereta et al. (2004) found that increases in water 

hardness and salinity in the dry season coincided with migration of wildebeest and 

zebra. Any direct effects of increasing salinity of water on hippopotami immigration 

and emigration are unknown.   Water quality may change seasonally and on a very 

local scale, for example in the dry season, animals may congregate in remaining 

watering areas and their excreta may cause nutrient enrichment and oxygen depletion 
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(Wolanski and Gereta, 2001).   Detection and differentiation of larger-scale human 

influence on water quality from more local ecosystem processes is a challenge beyond 

the scope of this thesis.  

Katavi National Park has in place a water quality monitoring program where the basic 

parameters of pH, electrical conductivity, dissolved oxygen, temperature and turbidity 

are monitored monthly. The program records time series for these parameters and any 

departures from seasonal patterns are examined by the managers of the Park as a 

possible indication of changes in the water environment that might require 

management intervention.  

As part of the work presented here, the water quality program increased the number 

of sites monitored by the Park from eight to 26 and monitored twice per month from 

August 2009- September 2010.  Additional sites included known sources, such as 

boreholes and springs to give reference values for these sources.  

1.1 Aims and hypotheses. 

Data from the monitoring program were used to test the following hypotheses: 

Hypothesis1: Increase or decrease of water temperature indicates possible additional 

 ground to surface water flow. 

Hypothesis2: pH reflects strongly to catchment geology chemistry. 

Hypothesis3: Conductivity increases downstream in the Katuma River. 

Hypothesis4: Downstream variations in conductivity relate predominantly to the 

 diluting or concentrating effects of variations in river discharge.  
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2. Methods 

2.1 Site selection 

Twenty six stations were selected (Fig. 4.1). These were taken to represent the range of 

water bodies in the Park and the sources of flow that contribute to the main Katuma 

River, or were close to the major hippopotami feeding/resting ground/shelters. 

Positions were marked using a Garmin hand-held GPS map 60CSx (Fig. 4.1). 

The stations were divided as follows: 

Boreholes Four stations were boreholes. These include one at Sitalike HQ, Ikuu Spring, 

new Ikuu Spring at Flycatcher camp and a village borehole near the Park HQ. These 

are shown in Fig. 4.1   and GPS coordinates are shown in Appendix 4.1. 

Springs Three stations were springs contributing their waters to the main Katuma River 

and its associated swamps. These include Kasima Springs (discharging into 

Katisunga plains), Ikuu springs (discharging into Katuma River) and Paradise springs 

(discharging into Kapapa River). These are shown in Fig. 4.1   and GPS coordinates 

are shown in Appendix 4.1. 

Tributaries Four sites were tributaries of the main Katuma River. The sites are shown in 

Fig.4.1 and GPS locations are presented in Appendix 4.1.  

The Main River:  Fifteen stations along the main Katuma River including the upper 

catchment above the Park, sites within the Park before and downstream of three 

major water bodies (Lake Katavi, Katisunga plains and Lake Chada) and the main 

river at its outflow from the Park (Kavuu-Katavi Outflow). The sites are shown in 

Fig.4.1 and GPS locations are presented in Appendix 4.1.  
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Fig. 4.1: Location of water quality study sites in Katavi NP, Tanzania. Data source: Katavi NP and GPS data collected during this study. 
NP=National Park, R= River, S= spring. 
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A longitudinal profile of Katuma River showing the altitude of water sampling sites is 

shown in Fig. 4.2. The two sites above 1000 m.a.s.l. (Katuma Village and Iloba Village) 

are both in the upper catchment above the Park boundary.  

 

2.2 Water quality parameters 

Air temperature and water temperature just below the surface were measured in all 

sites at two week intervals over the twelve months from October 2009 to September 

2010. Measurements were made using an Extech DO600 meter. The DO600 meter 

calibrates automatically when it is fully powered. The DO600 features automated 

adjustable altitude compensation from 0-6096 m in 305 m increments as well as 

automated adjustable salinity compensation from 0-50 ppt. The DO600 has a basic 

accuracy of ± 2% full scale. Sufficient time was allowed for the temperature of the 

probe to reach the temperature of the sample before taking a reading. This was 

indicated by a stable temperature reading on the display. 

Conductivity and pH were measured using an Extech EC500 pH/conductivity meter. The 

meter uses one electrode. The Extech EC500 pH/conductivity meter has an adjustable 

conductivity to TDS ratio from 0.4 to 1.0 and a 0.5 fixed salinity ratio so TDS and salinity 
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Fig. 4.2: Longitudinal profile of the Katuma River showing 
the altitude of water sampling points and therefore 
gradient of the river channel. 
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data are not presented separately since they are both a simple function of 

conductivity. The Extech EC500 ‘renew’ feature alerts users when recalibration is 

required or when the electrode needs replacement.  The probe was immersed in water 

and moved constantly before taking a reading. Readings were taken when the reading 

on the meter was relatively stable.  

For all measurements, probes were immersed directly in the water body only when 

conditions were safe.  In unsafe circumstances, water was sampled with minimum 

stirring using a cup attached to a rod and measurements taken within one minute of 

sampling. If there were delays in measuring, another water sample was taken and 

measured. After each measurement, the probes were cleaned and stored before the 

next measurement or storage. 

2.3 Data analysis 

Data were analysed using SPSS statistical software PASW 18 and the Microsoft Excel 

data analysis tool. Results were summarised as means with their standard errors, 

correlations were performed using Pearson correlations and differences between sites 

or groups of sites were analysed using one way ANOVA. 
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3. Results 

3.1 Temperature 

Air temperature 

Annual mean air temperature over the study area varied between 27 ± 0.8oC (in the 

Park at Sitalike Bridge) and 31 ± 0.7oC (in the upper catchment at Iloba Village) (Fig. 

4.3).  Mean monthly air temperatures varied from about 26oC in August to about 31oC 

in September and October 2010. Maximum temperatures of 35oCwere recorded in 

September, October and November  

  

Water temperature 

Annual mean water temperature varied between 24 ± 0.4oC (in the upper catchment at 

Katuma Village) and 29 ± 0.7oC further downstream in the Park.  Water temperature 

increased with distance downstream from the source of the Katuma River (r = 0.82 n = 

15 p < 0.001) (Fig. 4.4a). 
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Fig. 4.3: Mean annual air temperature downstream relationship 
for Katuma River (October 2009-September 2010), Katavi NP, 

Tanzania. 
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Fig. 4.4: Plots showing (a) mean annual temperature with distance downstream; (b) 

mean wet and dry season temperature with distance downstream and (c) air-water 

temperature relationship for Katuma River October 2009-September 2010 in Katavi NP, 

Tanzania. Error bars are ± SE around annual and seasonal means. 

a) Annual water temperature

b) Seasonal water temperature

c) Water and air temperature
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Wet season mean water temperatures varied between 24 ± 0.5oC (at Katuma Village) 

to 30 ± 1.0oC at eight other sites.  Water temperature during the dry season varied 

from 24 ± 0.7oC at Katuma Village to 28 ± 1.0oC at Lake Chada (Fig. 4.4b), and were 

consistently lower in the dry season.  Water temperature in both the wet (r = 0.68 n = 

15 p < 0.01) and the dry (r = 0.82 n = 15 p < 0.001) season increased with distance 

downstream (Fig. 4.4b).  

Air vs. water temperature 

There was not a significant correlation between water temperature and air 

temperature (r = 0.19 n = 15 NS) (Fig. 4.4c).  The upper catchment (Katuma Village and 

Iloba Village) had lower water temperatures in relation to air temperature than further 

downstream. The Katuma Village site, where the lowest mean water temperature of 24 

± 0.4oC was recorded, appears as an ‘outlier’ in Fig. 4.4c.  

There were significant differences in mean water temperatures between study sites (F 

2, 25 = 7.56, p = 0.003), with tributary rivers having significantly lower mean water 

temperatures than the main river, springs and boreholes (Table 4.1). The main Katuma 

River, springs and boreholes did not show significant differences between them.  

Table 4.1: Mean water temperatures for study sites along the main river, springs and 
boreholes and river tributaries in Katavi NP, Tanzania 

 

Mean Water temp Mean Water temp Mean Water temp

Site  ( 
o
C) Site  ( 

o
C) Site  ( 

o
C)

Katuma Village 23.5 Paradise Spring 26.8 Chorangwa 22.8

Iloba Village 26.0 Kasima Spring 27.8 Kabenga 25.3

Katavi Inflow 26.7 New Ikuu borehole 28.4 Kapapa 24.7

Lake Katavi 27.2 Ikuu spring 28.0 Kapapa/Paradise Confl. 26.4

Lake  Katavi exit 26.9 Ikuu borehole 28.1

Airstrip 25.6 HQ borehole 27.1

Sitalike Bridge 25.9 Village borehole 27.4

Inflow to Katisunga 27.5

Katsunga Plains 27.5

Flycatcher Camp 27.4

Ikuu Bridge 27.3

Lake Chada Inflow 28.3

lake Chada 28.4

Lake Chada exit 28.5

Kavuu outflow 27.9

Mean Temperature ( 
o
C) 27.0 27.7 24.8

Main River Springs and boreholes Tributaries
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3.2 Water pH 

Spatial variations of pH in the main river, tributaries, springs and boreholes 

Mean annual water pH varied between 7.4 ± 0.2 and 8.2 ± 0.2 (at Lake Katavi outflow 

and Katisunga Plains) and pH was therefore slightly to moderately alkaline. The pH for 

named sampling sites on the main river is given in Table 4.2.  

Table 4.2: Mean annual pH (October 2009 – September 2010) measured in the Katuma 
River and its tributaries, associated springs and boreholes, Katavi, Tanzania. 

 
Site Estimated Distance 

Downstream (km) 
Mean annual pH 

 
± SE  

Katuma River:    

Katuma village 15 7.8 0.1 

Iloba Village 17 7.5 0.1 

Katavi inflow 40 7.6 0.2 

Lake Katavi 50 7.6 0.2 

Lake Katavi exit 55 7.4 0.2 

Airstrip 60 7.6 0.1 

Sitalike Bridge 66 7.5 0.1 

Inflow to Katisunga  84 8.1 0.3 

Katisunga Plains 89 8.2 0.2 

Flycatcher camp 95 8.0 0.1 

Ikuu Bridge 105 7.8 0.1 

Lake Chada Inflow 112 8.0 0.1 

Lake Chada 117 8.0 0.3 

Lake Chada exit 120 7.7 0.2 

Kavuu (Katavi) Corner 125 7.6 0.2 

Tributaries:    

Kabenga  8.8 0.1 

Kapapa  7.8 0.1 

Chorangwa  7.7 0.1 

Kapapa/Paradise confluence  8.4 0.3 

Springs:    

Ikuu Spring  7.5 0.1 

Kasima Spring  7.4 0.1 

Paradise Spring  7.5 0.2 

Boreholes:    

Ikuu Spring borehole  6.9 0.2 

Sitalike HQ borehole  7.3 0.1 

Flycatcher borehole  8.5 0.1 

Village borehole  7.3 0.1 
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There were significant differences between sampling sites on the main river (F14, 179 = 

2.175 p < 0.011).  Although the five sites on the main river that had a pH of ≥ 8.0 were 

all downstream, there was no correlation between annual mean pH and distance 

downstream (r = 0.45, n = 15 NS) (Fig. 4.5).   

 

The mean annual pH of underground waters from boreholes and springs varied 

between 6.9 ± 0.2 at Ikuu Spring borehole to 8.5 ± 0.1 at New Ikuu borehole (Fig. 4.6). 

All other boreholes and springs were within the same neutral to slightly alkaline range 

as the Katuma River. The New Ikuu borehole was the only site that had a pH above that 

of Katuma River.  At 6.9 ± 0.2, water from Ikuu Springs had a significantly lower pH 

than the more alkaline water from the neighboring Ikuu Spring borehole. 
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Fig. 4.5: Mean annual pH downstream Katuma River, October 
2009 - September 2010 in Katavi NP, Tanzania. Error bars are ± 
SE around annual mean. 

r = 0.45 n = 15 NS 
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Mean annual pH of tributaries varied from 7.7 ± 0.1 at Chorangwa River to 8.8 ± 0.1 in 

the Kabenga tributary (Fig. 4.7).  The only sites where pH was above that of the main 

Katuma River were at the confluence of waters from Kapapa River and Paradise Spring 

and the Kabenga tributary. The remaining sites were slightly alkaline and within the 

range of the main Katuma River. 
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Fig. 4.6: Mean annual pH of boreholes and springs in 
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mean. 
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Seasonal variation in pH 

Water pH varied significantly between sampling months (F11, 179 = 13.966 p < 0.001). 

Fig. 4.8 gives an example of how pH changed over the study period at Ikuu Bridge, a 

river used intensively by hippopotami, especially in the dry season. Here, mean 

monthly, pH varied between 6.89 ± 0.03 in April 2010 and 8.44 ± 0.03 in July 2010. 

Major variations within a single month were observed in June 2010.  

 

 

In general, surface water pH was lower in the wet season months than in the dry 

season. Wet season mean pH ranged from 7.0 ± 0.1 to 7.8 ± 0.1 (Fig. 4.9).  Sites with 

relatively low pH included Katavi Park inflow, Kavuu (Katavi) outflow, Sitalike Bridge 

and Lake Chada outflow.  More alkaline waters were at Katuma Village, Katisunga 

Plains and Lake Chada inflow.  There was no correlation between wet season pH and 

distance downstream (r = 0.03 n = 15 NS) (Fig. 4.9). 

Mean dry season water pH ranged from 7.6 ± 0.2 in the upper catchment (at Iloba 

Village) to 8.8 ± 0.3 lower in the Park in the Katisunga Plains (Fig. 4.9) with an overall 

direct correlation between dry season pH and distance downstream (r = 0.58 n = 15 p < 

0.05) (Fig.4.9). 
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Fig. 4.8: Mean monthly water pH at Ikuu River Bridge site 
July 2009-September 2010 in Katavi NP, Tanzania. 
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There was more variation between sites during the dry season, with a range of 1.2 pH 

units compared with a range of 0.8 units during the wet season.  

 

 
3.3 Electrical conductivity 

Spatial variations of conductivity in the main river, tributaries, springs and boreholes 

Annual mean conductivity of water varied significantly between river sites (F14, 179 = 

5.223 p < 0.0001) and ranged between the very low values of 76 ± 4.7 µS cm-1 in the 

upper catchment to its maximum value of 392 ± 80.8 µS cm-1 in the Park at the inflow 

to Lake Chada (Table 4.3).  
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Fig. 4.9: Mean seasonal water pH variations at study sites 
downstream Katuma River (2009-2010) in Katavi NP, Tanzania. 
Error bars are ± SE around seasonal mean. 
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Table 4.3: Annual mean (October 2009 – September 2010) electrical conductivity (Ec) 
measured in the Katuma River and its tributaries, associated springs and boreholes, 
Katavi, Tanzania. 

Site Estimated 
Distance 
Downstream 
(km) 

Annual mean Ec 
(µS cm-1) 

± SE  

Katuma River    

Katuma village 15 76 4.7 

Iloba Village 17 120 5.9 

Katavi inflow 40 184 22.6 

Lake Katavi 50 290 54.8 

Lake Katavi exit 55 243 42.0 

Airstrip 60 195 22.5 

Sitalike Bridge 66 195 22.6 

Inflow to Katisunga  84 246 39.0 

Katisunga Plains 89 356 29.7 

Flycatcher camp 95 300 36.7 

Ikuu Bridge 105 338 67.0 

Lake Chada Inflow 112 392 80.8 

Lake Chada 117 276 36.4 

Lake Chada exit 120 211 20.6 

Kavuu (Katavi) Corner 125 192 19.2 

Tributaries:    

Kabenga  606 97 

Kapapa  90 4 

Chorangwa  14 1 

Kapapa/Paradise confluence  120 5 

Springs:    

Ikuu Spring  168 12 

Kasima Spring  306 18 

Paradise Spring  104 18 

Boreholes:    

Ikuu Spring borehole  140 27 

Park HQ borehole  310 40 

New Ikuu borehole  1971 29 

Village borehole  622 5 
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Conductivity increased with distance downstream the Katuma River (r = 0.63 n = 15 p < 

0.05) (Fig. 4.10).   

 

Mean annual water electrical conductivity in spring outcrops and ground water 

pumped from boreholes varied between 104 ± 18 µS cm-1 at Paradise Springs to 1971 ± 

29 µS cm-1 at the New Ikuu borehole (Fig. 4.11).   Water from the New Ikuu borehole 

had a much higher conductivity than any of the other sites although conductivity was 

also high in water pumped from a borehole in Sitalike Village. Spring outcrops had 

conductivity values within the range recorded along Katuma River (Fig. 4.11). 
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Fig. 4.10: Mean annual electrical conductivity downstream Katuma 
River from October 2009-September 2010 in Katavi, Tanzania. Error 

bars are ± SE around annual mean 

r= 0.63 n= 15 p < 0.05 
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Mean annual electrical conductivity in tributaries varied between 14 ± 1.0 in the 

Chorangwa River to 606 ± 97 in the Kabenga (Fig. 4.12). Kabenga River had higher 

values than the main Katuma River and Chorangwa River water much less conductive 

than water from any of the other sites in Katavi.  
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Seasonal variation in conductivity 

Conductivity varied between sampling months (F11, 179 = 7.603 p < 0.0001), with dry 

season months having higher conductivity than wet season months (Fig.4.13).  

 

During the wet season, mean electrical conductivity varied between 85 ± 7.9 µs cm-1 at 

Katuma Village and 299 ± 27.7 µs cm-1 in the Katisunga Plains. There was a positive 

correlation between wet season electrical conductivity and distance downstream (r = 

0.6 n = 15 p < 0.02), (Fig.4.13).  

Dry season conductivity varied between 68 ± 2.2 µs cm-1 at Katuma Village to 514 ± 

123.9 µs cm-1 at the inflow to Lake Chada (Fig.4.13) with increasing conductivity with 

distance downstream (r = 0.59 n = 15 p < 0.02) (Fig.4.13).  
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4.0 Discussion 

4.1 Temperature 

Water temperatures increased downstream from the source of the Katuma River. 

Water temperatures varied between 24°C and 30°C which is typical for tropical rivers 

(Geijskes, 1942; Wolanski & Gereta, 2001; Gereta et al., 2004; Epaphras et al., 2008). In 

Ruaha NP, Tanzania, which has a similar climate to Katavi, water temperatures varied 

between 20°C and 33°C along the Great Ruaha River and associated waterholes 

(Epaphras et al., 2008).  

Several factors may influence values for water temperature particularly the depth at 

which water is sampled.  In the Serengeti, Wolanski & Gereta (1999) found a marked 

difference between surface water and underlying water temperatures with a decrease 

of up to 2°C per 0.9 m difference in depth.  For uniformity, water in Katavi was all 

sampled at the same depth. Katuma River is less than 2 m deep even during the wet 

season and at its maximum depth, there was little evidence of temperature variations 

with depth. It is therefore thought that the water column was well mixed.  

Diurnal variations may also affect results. For example, in the Seronera River, 

Serengeti, diurnal variation in water temperature is up to 6°C (Wolanski & Gereta, 

1999).  This range is greater or equal to the variation between all the sampling sites in 

Katavi measured over a distance of over 120 km.  Although the exact time of sampling 

each site did vary between months, effort was made to keep to morning time sampling 

throughout the study period. 

Environmental factors that may affect water temperatures include altitude, vegetation 

cover and openness of the area, shading and the time of sampling (Geijskes, 1942; 

Gereta & Wolanski, 1999; Wolanski & Gereta, 2001). These influences, particularly 

altitude and shading by trees are thought to explain the lower water temperatures in 

the upper forested catchment at Katuma Village.  Downstream increases in water 

temperature were probably due to decreasing altitude, increasing openness of the 

river environment and longer opportunity for daytime warming of water.  Highest 
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water temperatures were recorded in the open plains with low or no tree cover. 

Similar observations by Gereta et al., (2004b) showed increasing downstream 

temperatures in the Serengeti due lack of shading by trees and other vegetation. 

The reason for presenting temperature data as part of this work is to detect anomalies 

in the relationship between water and air temperature that might be due to additions 

of warmer ground water.  With exception of Katuma Village where shading seemed to 

explain the lower than expected water temperature, any impacts of ground water on 

temperature were not detectable. This is because there was no unexplained variation 

in the relationship between air and water temperature over the study area.  

Seasonal variation in water temperature was expected but was not detected. During 

the dry season, water volumes and flows in the river were lower than in wetter months 

and temperatures were therefore expected to rise more quickly and to a higher 

temperature during the day (and cool more quickly overnight) than in the wet season.  

Ground water inputs would make a higher proportionate contribution to water volume 

in the dry than in the wet season so locally higher than expected water temperatures 

would occur in the dry season although were not observed. 

Seasonal variations in water temperature broadly corresponded to air temperature. 

Minimum monthly mean air temperature was recorded in August during the dry 

season while the highest was recorded in December. December is at the start of wet 

season.  Water temperature therefore reflected the prevailing air temperatures and 

Hypothesis 1 is therefore rejected.  

4.2 Water pH 

Most of the Park and its neighboring areas are underlain by metamorphic rocks of 

Palaeproterozoic age, gneisses and metamorphic grades of the Ubendian super group. 

These have been intruded by several phases of granitic rocks (Waltert et al., 2008; 

Meyer et al., 2007; Rukwa, 2011). The pH of natural waters is therefore predicted to be 

neutral to slightly acidic.  
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Katavi waters were neutral or slightly to moderately alkaline with values similar to 

those recorded in Katavi by Lewison (1996) where pH varied between 6.9 to 7.7 in 

Lakes Katavi and Chada and the Katuma River.   

Shallow rift valley wetlands and lakes in East Africa are typically more alkaline than 

their geology predicts because of salt input from ground water and hot springs 

(Yuretich, 1982) and high evaporative water loss (Peterson, 1973; Rodgers, 1982; 

Shorrocks, 2007; Wilhelm 1993 as quoted in Meyer et al., 2005; Yuretich, 1982).  Katavi 

waters were generally less alkaline than in rift valley lakes of East Africa. In Kenya, 

Olago et al. (2009) found that rift lakes had pH values ranging from 7.7 to 10.7.   The 

Ruaha River with its associated natural springs and watering holes also appears more 

alkaline than Katavi with pH varying between 7.2 and 9.4 (Epaphras et al., 2008).  In the 

Serengeti, pH in the rivers and swamps ranged from 5.9 to 10 (Wolanski & Gereta, 

2001) and thus spanned a wider range than in Katavi.  There were spatial and temporal 

variations in pH within the Serengeti with alkaline conditions (pH > 10) in the plains and 

acidic conditions (pH = 5.9) in the wooded areas (Gereta, 2004).  In Tarangire NP, 

Tanzania, pH varied between 7 and > 11 with higher pH during the dry than wet season 

(Gereta et al., 2004b). In both Tarangire and Serengeti, data were collected over more 

than one year.  High pH in other East African waters may be seasonal and relate to 

their higher fertility and the effects of intense photosynthesis by algae on the alkalinity 

and hence pH of water.  The generally low conductivity of waters in Katavi suggests 

that the nutrient status of water in Katavi is relatively low compared to waters 

elsewhere. 

Water pH varied significantly between study sites and months and was more site 

specific than other variables, with no overall downstream trend.  Some large variations 

were very local, for example, in the river site at Ikuu.  Ikuu is one of the animal 

recording sites and large pH variations in June 2010 may have been linked to increasing 

hippopotamus abundance over the transition between the wet and dry season. Any 

effects of additions of groundwater on pH would have been hidden by the probably 
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much larger influences of drying, disturbance of the sediment and nutrient enrichment 

by dung. 

Several other sites had higher than average pH.  These were Paradise Springs, the New 

Ikuu borehole and the Kabenga tributary. High alkalinity at Paradise Springs and in 

water pumped from the New Ikuu borehole is likely to be linked to ground water from 

locally calcareous geology. The Kabenga may also be fed by calcareous ground water 

but may also be influenced by human activity outside the Park boundary since the 

tributary through human settlement and farmed land outside the Park boundary.   

Apart from the three sites discussed above, there is little detectable evidence of any 

significant point sources of ground water to the Katuma River or its associated swamps 

and lakes.  The range of values between sites was generally small and this also suggests 

that the runoff from the surface catchment is the major source of water for the Park.  

This is broadly similar to the Ruaha NP where Epaphras et al. (2008) found no 

significant differences between the pH of river water, springs or artificial watering 

holes. There is thus no evidence from this part of the study to suppose that the open 

waters of Katavi are any different from other Rift Valley lakes in that their major 

sources of water are rainfall, perennial/ephemeral streams and un-channeled runoff 

(Olago et al., 2009).  This is consistent with the drying of the Katuma River in 2004; flow 

would have been sustained had significant perennial ground water originating in the 

Park contributed to flow.  

The starting hypothesis is not accepted because although pH largely reflected the 

metamorphic geology of the catchment area, it did not reflect geology alone. pH also 

varied locally perhaps because local ecological processes increased the alkalinity of 

more fertile water. 

4.3 Electrical conductivity 

There are very many influences on the total ion concentration in natural waters. These 

include larger-scale influences such as climate and bedrock geology, more local 

influences such soils, plants and animals, and anthropogenic influences such as land 
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use (Bruckner, 2011). Flow volumes, run-off, ground water inflows, temperature, 

evaporation and dilution may also add, concentrate or dilute ions in water.  

Conductivities of between 0-800 µS cm-1 are usual in freshwaters with values of up to 

800-1600 µS cm-1 in river margins (Suttar, 1990).   The electrical conductivity of waters 

in Katavi National Park was within the range expected in fresh water environments 

with very low conductivities in the upper catchment indicating base poor water arising 

from the metamorphic or granitic bedrock. Conductivity was also low in the Chorangwa 

and Kapapa tributaries that both flow from an upper granitic escarpment. A general 

pattern of increasing conductivity downstream indicates ion accumulation due to 

transport of weathered materials from the catchment to the river and the indirect 

ecological effects of accumulation of organic matter in the lower alluvial plains. 

Hypothesis 3 was thus largely supported. 

Dry season conductivities in Katavi were higher than in the wet season suggesting an 

important overall influence of evaporation in the dry season and dilution in the wet 

season. The seasonal patterns support Hypothesis 4. In this work, however, the effect 

of evaporation cannot be separated from any increased proportion of ground water in 

low dry-season flows.  

Ground water in the region has a higher conductivity than surface water (Bruckner, 

2011).  Epaphras et al. (2008) found that electrical conductivity in the Great Ruaha 

River and its associated waterholes and springs varied between 302 µS cm-1 and 1990 

µS cm-1. Most of the stations in Great Ruaha had much higher conductivity than in 

Katavi.  Of the 27 stations sampled, only six had conductivity below 450 µS cm-1.  

Relatively high conductivities could have been explained in the Ruaha by inputs from 

natural springs, but this explanation was discounted because springs there were not 

considered deep enough. Lack of any significance differences in conductivity in the 

river, natural springs or artificial waterholes was observed and this suggested that 

conductivity was mainly influenced by the uniform catchment geology. The same 



 

311 
 

argument may be relevant for Katavi where there were also no convincing differences 

between river and spring water.  

Waters with conductivity between 1600 and 4800 µS cm-1are considered brackish. Only 

one borehole site (the New Ikuu borehole) in Katavi had usually high conductivity at 

1990 µS cm-1.  This was likely to have been saline ground water pumped from the Parks 

deepest borehole. Several boreholes exist in Katavi to serve accommodation for Park 

staff, an administrative office and tourist camps and all are more shallow and ‘fresh’ 

than at New Ikuu.  Generally low conductivities elsewhere suggest that groundwater 

contributions to surface flow are small. 

Ecological processes can also affect conductivity. In Katavi, higher conductivities were 

recorded in alluvial swamps (Lake Katavi, Katisunga plains, Lake Chada) and where flow 

velocity decreased at bridges (e.g. at Ikuu Bridge) and where the river left or entered 

swamps (Flycatcher camp and Lake Chada inflow). Ion accumulation in swamps 

perhaps linked to mineralization of organic matter was probably occurring and reduced 

oxygen concentration in swamp sediments may have retained ammonium and 

increased the solubility of some elements such as phosphorus and iron which would 

then have diffused into the water column and contributed to conductivity. This 

observation is consistent with Estevez & Nogueira (1995) who found that shallow lakes 

and flood plains influenced water chemistry and functioned as nutrient storage 

compartments when rivers flow through them. Similar observations were made by 

Boar (2006) for swamps that intercepted and transformed materials as they moved 

from catchment to receiving water.  In contrast to the present study, Lewison (1996) 

found that Katuma River water had higher conductivities than Lakes Katavi and Chada. 

Work by Lewison was conducted over five months mainly in the wet season when 

dilution would have affected and reduced conductivity so the differences between the 

two studies give some additional support for Hypothesis 4.  
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5.0 Conclusions 

Temperature measurements made in Katavi waters have shown little deviation from 

the expected patterns in relation to air temperature and gave little or no evidence of 

significant addition of ground water to the Katuma River.  The usefulness of water 

temperature is, however, in doubt because of the overriding local effects of shading 

and because there was little consistent difference between the temperature of water 

from the river and from the deepest borehole (the New Ikuu borehole) and from 

spring-fed sites.  Only the tributaries showed variations with the rest. 

With the exception of one borehole, the pH and electrical conductivity of the main 

river, its tributaries, boreholes and springs varied little between sites within the Park 

and downstream changes were predictable.  This gave little evidence of groundwater 

contribution to the main river. 

pH was generally slightly higher than that predicted from catchment geology. Strong 

ecological processes particularly in seasonal swamps are likely to have had local effects 

on conductivity and perhaps pH that superimposed on the background influence of 

catchment geology.   

Predictable downstream increases in conductivity (with few anomalies) suggest that 

ions are transported by runoff from the surface drainage catchment with catchment 

area increasing with distance downstream.  Lower wet season conductivities indicate 

dilution of ions in larger flow volumes and higher dry-season values suggest 

concentration through evaporation.  Dilution, concentration and mixing all confound 

conductivity as an indicator of groundwater.   

None of the three parameters used provided any convincing evidence of significant 

groundwater contributions to the flow in the Katuma River. This conclusion is 

consistent with the drying of the river in 2004; flow would have been sustained had 

perennial ground water originating in the Park contributed base flow.  Water was 

slightly more alkaline in some of the spring-fed sites which are consistent with 

groundwater contributions. These spring-fed areas are thus major dry-season wildlife 

refuges. 
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A main conclusion of this Chapter is therefore that the Katuma River is highly 

dependent on runoff from its surface drainage catchment, much of which is above the 

Park’s northern boundary.  Since Katuma River is the Park’s major water resource, any 

upstream impacts on its flow volume and duration will have rapid, major and very 

damaging effects on the Park.  
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Appendix II 
 

Table 2.1: GPS locations of water quantity and quality study sites and their 
estimated distance downstream Katuma River in Katavi NP, Tanzania. 
S/No Site Name Est. distance 

downstream 
(km) 

GPS location 

1 Katuma Village 15 36M 0246800 
UTM 9301464 Alt 1094 m 

2 Iloba Village 18 36M 0261919 
UTM 9281260 Alt 1010 m 

3 Katavi inflow to park 40 36M 0277024 
UTM 9263437 Alt 972 m 

4 Lake Katavi 50 36M 0280131 
UTM 9257676 Alt 971 m 

5 Lake Katavi exit 55 36M 0281481 
UTM 9259279 Alt 969 m 

6 Airstrip 60 36M 0292490 
UTM 9266421 Alt 963 m 

7 Sitalike Bridge 66 36M 0294723 
UTM 9266730 Alt 944 m 

8 Katisunga entrance 84 36M 0295326 
UTM 9257106 Alt 944 m 

9 Katisunga plains 89 39M 0296440 
UTM 9238346 Alt 923 m 

10 Flycatcher Camp 95 36M 0297039 
UTM 9236711 Alt 914 m 

11 Ikuu Bridge 105 36M 0303007 
UTM 9236110 Alt 919 m 

12 Lake Chada inflow 112 36M 0305582 
UTM 9235693 Alt 926 m 

13 Lake Chada 117 36M 0307464 
UTM 9233962 Alt 921 m 

14 Lake Chada exit 120 36M 0308492 
UTM 9227622 Alt 918 m 

15 Kavuu (Katavi) outflow 125 36M 0306553 
UTM 9223665 Alt 916 m 

1 Kasima Springs Springs 36M 0301732  
UTM 9241805 Alt 926 m 

2 Ikuu Springs Springs 36M 0299625 
UTM 9237125 Alt 924 m 

3 Paradise Springs Springs 36M 0323694 
UTM 9233964 Alt 925 m 

1 Kabenga Tributary Tributary 36M 0292490 
UTM 9266421 Alt 963 m 

2 Kapapa Tributary Tributary 36M 0320294 
UTM 9248365 Alt 961 m 

3 Paradise-Kapapa confluence Tributary 36M 0321600 
UTM 9233438 Alt 925 m 

4 Chorangwa Tributary 36M 0339063 
UTM 9231668 Alt 913 m 
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Appendix III 

Table 3.1: Summarised abundance table for hippopotami in the five study sites in Katavi NP, 

Tanzania (May 2009 – September 2010) 

 Paradise 
Springs 

Ikuu Springs Lake Katavi Ikuu Bridge Lake Chada 

Months Ads. Juv. Ads. Juv. Ads. Juv. Ads. Juv. Ads. Juv. 

May'09 53 7 77 3 21 4 9 2 16 5 

Jun'09 55 7 77 3 34 6 11 2 25 7 

Jul'09 56 8 102 17 68 7 14 3 25 7 

Aug'09 52 4 147 15 105 15 18 3 30 9 

Sep'09 63 11 368 18 203 17 60 11 31 5 

Oct'09 104 24 482 18 307 43 214 36 98 22 

Nov'09 104 26 233 17 560 40 215 35 96 19 

Dec'09 105 25 166 14 165 35 129 21 96 19 

Jan'10 81 17 115 13 77 13 103 17 84 9 

Feb'10 - - 53 7 63 8 59 8 51 6 

Mar'10 - - 56 7 60 7 61 13 53 6 

Apr'10 - - 58 7 56 14 59 13 53 7 

May'10 67 24 13 3 31 8 21 6 15 6 

Jun'10 67 27 16 2 28 7 24 5 15 8 

Jul'10 73 32 25 2 34 7 19 9 17 8 

Aug'10 119 31 180 8 175 24 90 24 70 16 

Sep'10 127 37 240 9 190 32 107 32 94 19 

Total 1126 280 2408 163 2177 287 1213 240 868 177 

Mean 80 20 142 10 128 17 71 14 51 10 

SE 6.99 2.89 31.27 1.46 33.26 3.14 15.89 2.81 7.83 1.41 

Key: Ads=Adults Juv. =Juveniles 
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Appendix IV 

Table 4.1: Mean monthly frequencies (%) for adult and juvenile hippopotami activity 
budget in Katavi NP, Tanzania. Errors are ± SE around monthly mean. 

 

 

Table 4.2: Spatial variations in frequencies (%) of activity budget for adult and juvenile 
hippopotami in Katavi NP, Tanzania. Errors are ±SE around annual mean. 

 

 
 

Adult Juveniles Adult Juveniles Adult Juveniles Adult Juveniles Adult Juveniles

Sep-09 39.5 ± 6.5 29.5 ± 2.5 10.1 ± 2.5 12.7 ± 3.3 26.3 ± 2.5 29.8 ± 5.0 16.9 ± 2.8 14.2 ± 3.1 7.2 ± 1.5 13.7 ± 3.1

Oct-09 52.2 ± 2.9 50.3 ± 4.5 9.0 ± 1.0 9.2 ± 2.2 23.1 ± 1.9 18.6 ± 3.2 9.3 ± 2.6 11.0 ± 3.1 6.4 ± 1.0 10.9 ± 2.2

Nov-09 40.1 ± 5.4 35.7 ± 2.2 11.6 ± 2.1 13.0 ± 3.3 20.6 ± 2.4 19.1 ± 3.9 20.3 ± 2.9 15.4 ± 2.3 7.3 ± 1.1 16.8 ± 2.6

Dec-09 41.3 ± 2.6 39.1 ± 3.0 10.3 ± 1.3 14.3 ± 1.7 23.7 ± 2.2 17.4 ± 0.6 19.1 ± 3.2 17.7 ± 1.9 5.5 ± 1.2 11.5 ± 1.6

Jan-10 44.2 ± 2.3 32.5 ± 4.4 10.9 ± 1.2 13.0 ± 1.6 20.0 ± 0.5 17.9 ± 2.3 21.2 ± 2.4 20.8 ± 2.0 3.7 ± 0.8 15.8 ± 2.1

Feb-10 51.3 ± 4.3 44.4 ± 2.0 10.0 ± 2.0 12.4 ± 2.2 16.0 ± 2.2 15.5 ± 2.1 20.8 ± 2.8 18.1 ± 2.3 2.0 ± 0.7 9.6 ± 1.7

Mar-10 52.7 ± 2.4 43.4 ± 2.9 7.1 ± 1.0 11.7 ± 2.4 17.1 ± 1.2 16.9 ± 0.6 22.0 ± 1.9 19.4 ± 1.5 1.3 ± 0.1 8.6 ± 2.3

Apr-10 51.1 ± 1.8 45.1 ± 1.8 7.5 ± 1.5 10.1 ± 2.1 18.3 ± 1.1 16.5 ± 0.5 22.2 ± 1.9 21.3 ± 1.2 1.0 ± 0.1 7.2 ± 1.6

May-10 51.6 ± 3.2 46.0 ± 4.1 7.5 ± 1.1 7.2 ± 1.5 15.1 ± 2.8 15.3 ± 3.3 22.0 ± 1.2 18.0 ± 2.0 3.9 ± 0.4 13.5 ± 1.5

Jun-10 47.3 ± 2.6 37.5 ± 2.3 7.6 ± 1.6 7.2 ± 1.0 13.5 ± 1.2 13.4 ± 3.2 26.9 ± 3.5 20.9 ± 3.3 4.7 ± 0.4 21.0 ± 1.6

Jul-10 48.2 ± 3.8 37.8 ± 2.0 8.4 ± 0.7 9.9 ± 0.8 12.7 ± 1.3 12.8 ± 1.6 26.7 ± 3.1 21.6 ± 3.1 4.0 ± 1.3 18.0 ± 2.3

Aug-10 46.5 ± 5.2 38.7 ± 3.3 7.7 ± 1.4 11.1 ± 2.3 18.8 ± 1.9 15.6 ± 2.2 23.3 ± 4.5 20.2 ± 5.0 3.7 ± 0.7 14.4 ± 2.1

Sep-10 43.0 ± 5.4 36.8 ± 4.8 9.9 ± 2.0 13.9 ± 3.5 22.8 ± 1.3 22.3 ± 2.3 18.8 ± 2.4 13.7 ± 1.8 5.5 ± 1.3 13.3 ± 2.4

Months

Resting Standing Walking Feeding Touching

Adults Juveniles Adults Juveniles Adults Juveniles Adults Juveniles Adults Juveniles

Resting 51.2 ± 1.3 44.7 ± 2.1 41.4 ± 2.1 35.7 ± 2.4 40.6 ± 2.6 37.0 ± 2.2 43.5 ± 2.7 39.8 ± 3.5 55.7 ± 1.4 40.5 ± 1.8

Standing 9.1 ± 0.9 8.9 ± 0.9 10.1 ± 0.7 13.1 ± 1.3 8.2 ± 1.1 11.2 ± 1.8 9.1 ± 1.2 10.1 ± 1.6 8.9 ± 1.1 12.5 ± 1.3

Walking 18.2 ± 1.5 16.5 ± 1.2 20.9 ± 1.4 17.2 ± 1.3 21.4 ± 1.6 17.9 ± 1.7 17.1 ± 1.6 17.0 ± 2.8 17.8 ± 1.6 20.5 ± 2.8

Feeding 17.3 ± 1.6 14.3 ± 1.3 22.6 ± 1.3 18.3 ± 1.3 25.6 ± 2.2 22.1 ± 1.9 24.0 ± 1.7 20.0 ± 2.3 14.6 ± 1.5 14.7 ± 1.5

Touching 4.1 ± 0.8 15.6 ± 1.1 5.1 ± 0.7 15.7 ± 1.6 4.2 ± 0.7 11.8 ± 1.7 6.3 ± 0.9 13.1 ± 1.1 3.0 ± 0.5 11.9 ± 2.0

Ikuu River Lake Chada Lake Katavi Paradise Springs Ikuu springs


