Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments

Adams, C. A., Andrews, J. E. and Jickells, T. (2012) Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Science of the Total Environment, 434. pp. 240-251. ISSN 1879-1026

Full text not available from this repository. (Request a copy)

Abstract

Carbon (C), nitrogen (N) and phosphorous (P) burial rates were determined within natural saltmarsh (NSM) and ‘managed realignment’ (MR) sediments of the Blackwater estuary, UK. Methane (CH4) and nitrous oxide (N2O) fluxes were measured along with their ability to offset a portion of the C burial to give net C sequestration. C and N densities (Cρ and Nρ) of NSM sediments (0.022 and 0.0019 g cm− 3) are comparable to other UK NSM sediments. Less vegetationally developed MR sediments have lower Cρ and Nρ (0.012 and 0.0011 g cm− 3) while the more vegetationally developed sites possess higher Cρ and Nρ (0.023 and 0.0030 g cm− 3) than NSM. Both NSM and MR areas were small CH4 (0.10–0.40 g m− 2 yr− 1) and N2O (0.03–0.37 g m− 2 yr− 1) sources. Due to their large Global Warming Potentials, even these relatively small greenhouse gas (GHG) fluxes reduced the net C sequestration within MR marshes by as much as 49%, but by only 2% from NSM. Potential MR areas within the Blackwater estuary (29.5 km2 saltmarsh and 23.7 km2 intertidal mudflat) could bury 5478 t C yr− 1 and 695.5 t N yr− 1, with a further 476 t N yr− 1 denitrified. The saltmarsh MR would also sequester 139.4 t P yr− 1. GHG fluxes would reduce the C burial benefit by 24% giving a C sequestration rate of 4174 t C yr− 1. Similar areas within the Humber estuary (74.95 km2) could bury 3597 t C yr− 1 and 180 t N yr− 1, with a further 442 t N yr− 1 denitrified. GHG fluxes would reduce the C burial benefit by 31% giving a C sequestration rate of 2492 t C yr− 1. Overall, MR sites provide sustainable coastal defence options with significant biogeochemical value and, despite being net sources of CH4 and N2O, can sequester C and reduce estuarine nutrient loads.

Item Type: Article
Faculty \ School: Faculty of Science > School of Environmental Sciences
University of East Anglia Research Groups/Centres > Theme - ClimateUEA
UEA Research Groups: Faculty of Science > Research Groups > Geosciences
Faculty of Science > Research Groups > Centre for Ocean and Atmospheric Sciences
Depositing User: Users 2731 not found.
Date Deposited: 26 Nov 2012 15:44
Last Modified: 13 Apr 2023 13:31
URI: https://ueaeprints.uea.ac.uk/id/eprint/40198
DOI: 10.1016/j.scitotenv.2011.11.058

Actions (login required)

View Item View Item