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Abstract

This paper analyzes incidence and evolution of patent thickets. The paper provides a

modeling framework showing how competition for patent portfolios, complementarity

of patented technologies and hold-up affect patenting incentives. It is shown that lower

technological opportunity increases patenting in complex technologies, while reducing

patenting in discrete technologies. Also, more competitors increase patenting in complex

technologies and reduce it in discrete technologies. These predictions are tested using

European patent data. A new measure of technological complexity is applied for the

first time. The empirical analysis is based on a panel capturing patenting behavior of

2074 firms in 30 technology areas over 15 years. GMM estimation results confirm the

predictions of the preferred theoretical model. The results show that patent thickets exist

in 9 out of 30 technology areas. Also, decreased technological opportunity is found to be

a surprisingly strong driver of patent thicket growth.
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1 Introduction

Strong increases in the level of patent applications have been observed at the United States
Patent and Trademark Office (USPTO) (Kortum and Lerner, 1998, Hall, 2005a) and the Eu-
ropean Patent Office (EPO) (von Graevenitz et al., 2007). These “patent explosions” pose
serious challenges for existing patent systems and also for competition authorities.1

Existing explanations for this shift in patenting behavior focus on changes in the legal
environment and management practices, the complexity of some technologies, greater techno-
logical opportunities and increased strategic behavior of firms. The existing literature shows
that most of these factors play a role. Currently there are no models of patenting behavior inte-
grating these determinants.2 This paper sets out a modeling framework encompassing several
of the explanations noted above and an empirical test of the main predictions.

Kortum and Lerner (1998, 1999) investigate the explosion of patenting at the USPTO
which began around 1984 (Hall, 2005a). By a process of elimination they argue that increased
patenting mainly results from changed management practices making R&D more applied and
raising the yield of patents from R&D. Kortum and Lerner (1998, 1999) and Hall and Ziedonis
(2001) also explore whether enhanced fertility of R&D led to an increase in patent filings, but
cannot find systematic evidence for this. Hall and Ziedonis (2001) provide evidence that the
patenting surge is a strategic response to an increased threat of hold-up in complex technolo-
gies in which products depend on the combination of large numbers of patents. Complexity of
a technology implies that patents are complements, and therefore hold-up opportunities arise
once patent ownership is dispersed (Shapiro, 2001, Ziedonis, 2004). Hall (2005a) shows that
the patenting explosion at USPTO is driven by firms whose main technologies are complex.

The large volume of patenting in complex technologies and the notion of patent portfolio
races (Hall and Ziedonis, 2001) suggests that a strategic complementarity between rival firms’
patenting efforts exists in these technologies. This paper introduces a modeling framework for
patenting that encompasses complex and discrete technologies to analyze how strategic com-
plementarities arise. Within the framework we model competition for patents through two
channels of strategic interaction: a legal channel capturing hold-up and a channel capturing
technological complementarity. We confirm that in complex technologies patenting by one
firm can induce strategic complementarity by increasing the marginal benefit of patenting for
other firms. Not surprisingly, technological complementarity strengthens this effect further.
Surprisingly, we also show that hold-up can undermine these strategic complementarities.
Also, we show that the comparative statics of patenting in complex technologies are the oppo-
site to those in discrete technologies: in a complex technology firms patent less in response to

1 For extensive discussions of the policy questions surrounding current functioning of the patent systems in
the United States and in Europe refer to National Research Council (2004), Federal Trade Commission (2003),
Jaffe and Lerner (2004), von Graevenitz et al. (2007) and Bessen and Meurer (2008).

2Formal models of patenting abound, for a survey of this literature refer to Scotchmer (2005) or Gallini
and Scotchmer (2002). Formal models of patenting in patent thickets do not attempt to span both complex and
discrete technologies as we do here: Bessen (2004), Clark and Konrad (2008) and Siebert and von Graevenitz
(2010). These models build on the patent race literature pioneered by Loury (1979), Lee and Wilde (1980),
Reinganum (1989) and Beath et al. (1989).
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greater technological opportunity and more if more other firms compete for patents.
The paper also provides an empirical analysis of patenting at the EPO. This is based on a

comprehensive data set covering the years 1987 to 2002. The analysis reveals that restrictions
derived from our preferred model of patenting cannot be rejected, while alternative models of
patenting, that fall into our modeling framework, can be rejected. In undertaking the analysis
the high persistence of patenting is taken into account and we employ system GMM estimators
(Blundell and Bond, 1998, Arellano, 2003, Alvarez and Arellano, 2003) to deal with resulting
problems of endogeneity. The results indicate that decreasing technological opportunities had
a surprisingly strong effect on the rise of patent filings in Europe since the mid-1980s.

In the empirical analysis we apply a measure of complexity introduced by von Graevenitz
et al. (2011). This is a count of the number of groups of three firms, within which each firm
holds patents limiting new patents of each of the other two. They refer to such a group of firms
as a triple. Below we explain why triples can be expected to arise more frequently in complex
technologies. von Graevenitz et al. (2011) validate the measure by showing that triples arise
much more frequently in technologies classified as complex by Cohen et al. (2000). Using the
measure, we show in this paper, that patent thickets currently exist in 9 of the 30 technology
areas making up the patent system.

The remainder of this paper is structured as follows. Section 2 sets out a theoretical mod-
eling framework for the analysis of patenting strategies. We derive five empirically testable
hypotheses from this modeling framework. In Section 3 we describe our data set and the vari-
ables we employ. Section 4 provides a descriptive analysis of cross industry patenting trends
at the EPO. In Section 5 we discuss the empirical model and results. Section 6 concludes.

2 A Model of Patenting

Here we present a modeling framework to analyze patenting behavior. The framework allows
us to test a number of models of patenting behavior that differ in the assumptions we make
about the value and the costs of patenting. In each model we analyze how technological
opportunity and complexity of technology affect the levels of patenting set by firms.

In this section we begin by motivating the modeling framework and discussing assump-
tions. Then, we provide a number of definitions. Next, we solve the main model and discuss
results derived from alternative models. Then, we present several predictions. These underpin
the empirical results presented in Sections 4 and 5 below.

2.1 Motivation

The patent system covers a multitude of different technology areas. Within these we posit dis-
tinct technological opportunities that derive from separate research efforts. Each technological
opportunity consists of one or more patentable facets. Every facet corresponds to a potential
patent. Technologically related facets are grouped together in technological opportunities be-
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cause they derive from the same knowledge and science base.
The underlying model of R&D and of the patent office is kept as simple as possible: in

each technology area firms select how many opportunities to research and how many facets
of each to seek to patent. Facets and opportunities are chosen randomly by firms. Where
more than one applicant applies for a facet, it is randomly assigned to one applicant. Patent
allocation is the sole function of the patent office in the modeling framework. The main feature
of this framework is competition of firms for granted patents. The model of technological
opportunities and facets can be presented as a matrix of patents that firms compete for:
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Figure 1: Complexity and the number of patentable facets per technological opportunity.

Figure 1 shows different matrices corresponding to technology areas with growing levels of
complexity and varying levels of technological opportunity. Complexity increases with the
number of facets. With higher complexity it is increasingly probable that ownership of patents
in a technological opportunity becomes dispersed. Then the value of owning patents depends
on the relative size and composition of firms’ patent portfolios. Note, that here technological-
opportunity and -complexity are assumed to be fixed in the short to medium term.3

Consider two polar examples: first, one patent generally suffices for the applicant to protect
an ethical drug effectively against attempts to invent around the patent. This is the case of a
discrete technology in which each patent covers one technological opportunity. Second, laser
technology is used in a very wide range of applications such as eye surgery (e.g. LASIK)
or pollution monitoring and forestry management (LIDAR). This is the case of a complex
technology area within the field of optics.4 Each application of laser technology can be thought
of as a technological opportunity requiring a range of different patentable inventions that are
combined in a functioning product.5 Due to the complexity of the technology hold-up may

3In the long run technological opportunity may be affected by firms’ patenting efforts. Unravelling this
question will require a separate study with data on firms’ R&D activities over a very long period.

4To further clarify the definitions of opportunities, facets and technology areas we discuss the example of
LED technology at greater length in Appendix D.

5A product using laser technology will usually also embody some patents relating to different technological
areas outside optics. We do not model this aspect of complexity to keep our model manageable.
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arise: in the case of LASIK there was a string of court cases between VISX Inc. and Nidek
Inc. after 1998 regarding infringement of VISX patents on LASIK. The companies finally
settled their disputes world wide in April of 2003.

In a complex technology it is unlikely that any one firm holds all patents necessary for
the commercialization of a product such as a laser for eye surgery. This implies that the
value of firms’ patent portfolios depends on the size and composition of rival firms’ portfolios.
Strategic interdependencies arise, which we model below. We model two channels for these
interdependencies: a technological channel and a legal channel. To clarify how these two
channels affect our results we present an encompassing model in the main text and three
alternative models in the appendix. The alternative models isolate the channels we incorporate
in the main model. All models are based on the same modeling framework and differ only in
the functional relationships describing technological and legal interdependencies.

The technological channel is based on technological complementarity: firms owning patents
on a complex technology benefit from cooperation with rivals. For instance, firms may jointly
set a standard for a technology helping them to license this technology (Shapiro, 2001, Scotch-
mer, 2005, Lerner and Tirole, 2004). The technological channel is captured in the model by
allowing the value of patenting to increase in all firms’ patents. We find that under fragmenta-
tion6 of patent ownership, firms’ patenting choices are strategic complements.

Next, consider the legal channel: patenting firms often resort to litigation to resolve their
disputes over the distribution of profits flowing from a complex technology. In such dis-
putes, as in many cooperative settings, the size of the patent portfolio firms hold is an im-
portant determinant of the outcome of the dispute (Grindley and Teece, 1997, Shapiro, 2001,
Federal Trade Commission, 2003). To capture this effect we also model strategic interaction
through legal and bargaining costs. We allow for separate effects of the absolute and the rel-
ative size of firms’ patent portfolios. The relative size of patent portfolios, per technological
opportunity, is shown to determine whether or not strategic complementarity arises through
legal costs. Surprisingly, we find that under realistic assumptions, competition for a larger
share of patents undermines strategic complementarity.

The main model, set out below, contains both of these channels of strategic interdepen-
dence. In the analysis of this model we concentrate on identifying conditions leading to
strategic complementarity. Only under strategic complementarity will all firms caught in a
patent thicket have incentives to increase patenting efforts at the same time. This is the out-
come described in the existing empirical literature on patent thickets.

2.2 Assumptions

We study a setting in which a technology area is characterized by (O) technological opportuni-
ties each of which consists of patentable facets. A technological opportunity is an independent
source of profit to a firm and each facet is a separate patentable invention which is part of the

6Ziedonis (2004) provides empirical evidence for existence and strategic effects of fragmentation.
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opportunity. The total number of patentable inventions (facets) offered by a technological op-
portunity is F . Thus a technology area is discrete if F = 1. We assume that:7

All technological opportunities in a technology area are symmetrical; they offer the

same number of facets, and costs of R&D and of patenting are identical. (S)

The total set of patentable inventions in a technology consists of Ω = O × F facets. As F
grows the underlying technology grows more complex. If there is more technological oppor-
tunity, O grows. Variation in the two dimensions of the set of available patents Ω arises for
different reasons. Current efforts in basic R&D open additional new opportunities in the fu-
ture, raising O. The number of facets which are patentable on a given opportunity depends
mainly on the nature of technology but also on institutional and legal factors.

Each technological opportunity is associated with a maximal total value V (F ) and an
attained value V (F̃ ). The attained value depends on the number of facets of the opportunity
patented by all firms F̃ ,8 where F̃ ≤ F . To capture the complementarity of inventions in
complex technologies we assume that the value of the technological opportunity increases
in the number of facets patented by all firms: F̃ .9 While facets are complements, they are
not perfect complements in this model: licenses to the set of patented facets will allow firms
to assemble a viable product which has value V (F̃ ) < V (F ).10 We impose the following
conditions on the value function:

V (0) = 0,
∂V

∂F̃
> 0 and

∂2V

∂F̃ 2
> 0 . (V F )

Define the elasticity of the value of a technological opportunity (V ) with respect to covered
patents (F̃ ) as µ ≡ ∂V

∂F̃
F̃
V

.
There are N + 1 firms active in a given technology area. Each can apply for patent pro-

tection for all facets of a technological opportunity. A firm’s strategy consists of the number
of opportunities ok (ok ∈ [0, O]) it invests in and the number of facets fk (fk ∈ [0, F ]) per
opportunity which it seeks to patent. Subscripts index the firm. Each firm can only make one
patent application per facet and it can only patent in technological opportunities which it has
researched. The firm trades off patenting more facets per opportunity and patenting in more
different technological opportunities. The share of granted patents per opportunity ŝk that a
firm obtains from the patent office, determines its share of the attained value V (F̃ ) per oppor-
tunity. The expected value (sk) of this share depends on rivals’ patenting efforts through the
probability (pk) of obtaining a facet: sk ≡ pkfk

/
F̃ . We define and discuss the probability (pk)

in detail in the following section (Equation 4) and derive it formally in Appendix A.3.

7Note that this assumption rules out aspects of complexity that may be quite important in practice. Thus
we rule out that some facets may belong to more than one technological opportunity, making patents on them
particularly valuable blocking patents. We leave this aspect of complexity for future work.

8We define this value precisely in equation (2) in the following subsection.
9A similar assumption is made by Lerner and Tirole (2004). In Appendix B.4 we show that this assumption is

one way of introducing supermodularity into the game we study. In sections B.2 and B.3 we analyze two models
in which the value obtained by the firm depends only on patents granted to it: V (pkfk).

10In contrast Clark and Konrad (2008) analyze a setting in which patents in complex technologies are perfect
complements
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While patenting facets is assumed to be costless,11 a maintenance fee is payable (Ca) on
granted patents. Additionally, firms must undertake costly R&D (Co) on each technological
opportunity they turn to. Finally, costs of coordinating separate research projects (Cc) are
generally viewed as significant in the literature (Roberts, 2004). To summarize:

i Per opportunity a firm invests in, it faces costs of R&D: Co.

ii Per granted patent a firm faces costs of maintaining that patent: Ca.

iii The coordination of R&D on different technological opportunities imposes costsCc(ok).

Therefore, we assume that ∂Cc

∂ok
> 0. (FV C)

As the number of facets per technological opportunity grows, so does the probability
that different firms own patents belonging to one opportunity. Hold-up becomes increasingly
likely. Then, firms need to disentangle ownership rights, giving rise to legal costs (LC). These
encompass the costs of monitoring, licensing, and negotiating settlements as well as court fees.
In modeling legal costs we distinguish between the expected absolute size of a firm’s patent
portfolio (γk ≡ fkpk) and the firm’s expected share of patents granted per opportunity sk.

To capture costs of litigation associated with additional patents, we assume that legal costs
increase in the absolute size of patent portfolios. However, the marginal cost of owning further
patents is assumed to be decreasing in the share of patents owned by the firm, due to increased
bargaining power. For bargaining what matters is the relative size of firms’ patent portfolios.
To capture the two mechanisms through which patenting affects legal costs we assume that:

L(γk, sk), where
∂L

∂γk
> 0,

∂2L

∂γk2
≥ 0,

∂L

∂sk
≤ 0,

∂2L

∂sk2
≥ 0,

∂2L

∂γk∂sk
= 0 . (LC)

These assumptions are further discussed in Appendix B.3.
Note that the modeling framework alluded to above subsumes all assumptions discussed

here apart from the assumption on the value function (V F ) and the legal costs function (LC).
It also contains all definitions set out in the following section. This framework is the same for
all models discussed below.

We assume throughout that the levels of N , O, F and V are known by all patenting firms.

2.3 Definitions

This subsection sets out a number of definitions that follow from our previous assumptions.
Given that the number of firms N is common knowledge, firms can compute the expected
number of rivals active within a technological opportunity, the expected number of facets on
which patents are granted and the likelihood of obtaining a patent grant.

11We make this assumption in order to simplify the model, but it can be shown that it does not affect our results
if patent filing costs are sufficiently low in comparison to the costs of maintenance. In practice, initial application
and examination fees for patents are indeed much lower than post-grant translation and renewal fees, since most
patent offices cross-subsidize the initial stages in order to encourage patent filing.
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The expected number of rivals (NO) competing for patents within a technological opportu-
nity is derived in Appendix A.1. There we show that the expected number of rivals decreases
in the level of technological opportunity (O) and increases in rivals’ R&D investments (oj):

∂NO

∂O
< 0 and

∂NO

∂oj
> 0 . (1)

To simplify notation we define the share of facets each firm k applies for per technological
opportunity as φk ≡ fk

/
F . Given our simplified model of the patent application process the

expected number of facets per technological opportunity on which patents are granted is:

F̃ (fk, f 6k, F,NO(O,o 6k, N)) = F

[
1− (1− φk)

NO∏
j 6=k,j=1

(1− φj)

]
, (2)

where f 6k,o 6k are vectors containing the choices of the number of facets and the number of
opportunities to invest in, made by all rival firms (j). This expression results from the as-
sumptions that firms randomly choose facets and that the patent office randomly selects which
application to grant. This model of patenting captures coordination failure and duplication of
applications by firms. Here, the number of facets covered by at least one applicant is one mi-
nus the number of facets attracting no applications. In Appendix A.2 we show that the number
of facets covered increases in the complexity of a technology, in the number of rivals investing
in a technological opportunity and in the number of facets each firm invests in:

∂F̃

∂F
> 0 ,

∂F̃

∂NO

> 0 and
∂F̃

∂fk
> 0 ,

∂F̃

∂fj
> 0. (3)

We also define and bound the elasticities εF̃F ≡ ∂F̃
∂F

F
F̃

and εF̃ fk ≡
∂F̃
∂fk

fk
F̃

in Appendix A.2.
We assume that the patent office will grant each application for a patent on a facet with

equal probability, but only grants one patent overall on the facet.Then the probability of patent-
ing a facet depends on the expected number of rivals seeking to patent each facet and the prob-
ability with which the particular number of rivals occurs. In Appendix A.3 we show that the
probability that firm k obtains a patent on a given facet is:

pk(f 6k, F,NO(O,o 6k, N)) =

NO∑
i=0

1

i+ 1

(
NO

i

)NO−i∏
j=0

(1− φj)
i∏
l=0

φl . (4)

This expression shows that the probability of obtaining a patent on an application is a sum
of weighted probabilities. Each element of the sum consists of the weighted probability of
obtaining a patent 1

/
(1 + i) given the number of rival firms also seeking a patent on the facet

i. The weight captures the probability of observing a given number of rivals. In Appendix A.3
we show that the probability of obtaining a patent decreases in the level of facets rival firms
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seek to patent and in the number of rival firms per technological opportunity:

∂pk
∂φj

< 0 and
∂pk
∂NO

< 0 . (5)

2.4 Results

In this section we set out a firm’s objective function and the patenting game it is involved in.
We analyze this game, show when it is supermodular and derive comparative statics results.

Given symmetry of technological opportunities (Assumption S) the expected value of
patenting for firm k in a technology area is:

πk(ok, fk) = ok

(
V (F̃ )sk − L(γk, sk)− Co − fkpkCa

)
− Cc(ok) . (6)

Firms derive revenues from each technological opportunity and face costs of coordinating
R&D across different technological opportunities (Cc). Profits per technological opportunity
depend on the share of patents granted (sk), legal costs (L) as well as costs of R&D on the
technological opportunity (Co) and costs of maintaining granted patents (Ca).

Define a game G in which:

• There are N + 1 firms.

• Each firm simultaneously chooses the number of technological opportunities ok ∈ [0, O]

and the number of facets applied for per opportunity fk ∈ [0, F ], to maximize the payoff
function πk. Firms’ strategy sets Sn are elements of R2.12

• Firms’ payoff functions πk, defined in equation (6), are twice continuously differen-
tiable and depend only on rivals’ aggregate strategies.

• Assumptions (V F ) and (LC) describe how the expected value and the expected cost of
patenting depend on the number of facets owned per opportunity.

Firms’ payoffs depend on their rivals’ aggregate strategies because the probability of ob-
taining a patent on a given facet is a function of all rivals’ patent applications. Note that the
game is symmetric as it is exchangeable in permutations of the players. This implies that
symmetric equilibria exist, if the game can be shown to be supermodular (Vives, 2005).13

In this game firms compete for granted patents on a technological opportunity. They pick
a certain number of technological opportunities and apply for patents on a share of the facets
in each opportunity. As rival firms’ applications increase, the probability of receiving a patent
grant on each application decreases. In a discrete technology this reduces incentives to patent
as the expected value and the expected costs of each patent are the same. In a complex tech-
nology the expected values and costs of marginal patents may change relative to one another

12We treat ok and fk as continuous real numbers in the paper. Both determine probabilities: that a firm will
invest in specific technological opportunities in case of ok or facets in case of fk. These probabilities are defined
in Appendix A.

13Note also that only symmetric equilibria exist as the strategy spaces of players are completely ordered.
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as rivals patent more or less and this can induce strategic complementarity. We derive the
conditions under which strategic complementarity arises in game G from Equations (33) and
(34) in Appendix B.1. These are summarized in the following proposition:

Proposition 1
The game G, defined in particular by assumptions (V F ) and (LC), is smooth supermodular if
µ > ∂L

∂sk

1
V

and if ownership of the technology is expected to be fragmented.

Next to the assumptions cited, this proposition contains two conditions for supermodularity:

• µ > ∂L
∂sk

1
V

is a lower bound on the elasticity of the value function, implying the comple-
mentarity of facets within a technological opportunity must be sufficiently strong.

• Fragmentation arises if no firm is seeking to patent more than half of the facets per
opportunity and if there are many patenting firms per opportunity.

Where game G is supermodular we characterize its comparative statics below. Otherwise,
the comparative statics cannot be analyzed with the same degree of generality.14 In the case of
a discrete technology we need only slightly more restrictive assumptions, than those we make
here. In that case there is only one facet (F = 1) per technological opportunity so that firms
only optimize over the number of opportunities. We characterize this important special case
at the end of this section, as its comparative statics differ from those of game G.

To prove Proposition 1 we show in Appendix B.1 that firms’ profit functions are supermod-
ular (i) in their own actions and (ii) in every combination of their own actions with those of
rival firms (Milgrom and Roberts, 1990, Vives, 1999, 2005, Amir, 2005). This is the case if the
cross-partial derivatives between own as well as own and rival actions are positive, indicating
that all of these actions are strategic complements.

Proposition 1 contains with a number of restrictions. It is interesting to consider why these
arise. To do this we analyze a simpler game G′ in Appendix B.2. This game is based on the
same modeling framework as game G, but assumptions (V F ) and (LC) are altered. In game
G′ we assume that the value and the costs of patenting are increasing functions of each firm’s
own patents only. We show that:

Lemma 1
A gameG′ in which the value of patenting and legal costs depend only on the expected number
of patents per opportunity held by each firm (V (γk), L(γk)) is supermodular if the legal costs
function is relatively more convex than the value function.

This result is important because it shows that complexity of the technology (F > 1) and the
curvature restriction are sufficient conditions to induce strategic complementarity of patenting
incentives. To provide an example: the curvature condition is satisfied, if the value of patenting

14In the model we analyze simultaneous optimization over two parameters. In the absence of supermodularity
a general characterization of comparative statics leads to the analysis of multiple implicit relations. We do not
pursue this line of analysis as it will require a number of additional assumptions.
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increases linearly in the number of patents a firm holds, while legal costs are strictly convex
and the derivative of legal costs at zero is smaller than the derivative of the value function.

To see the intuition for Lemma 1, note that patenting by rival firms reduces the probability
that a focal firm obtains a patent. This reduces the focal firm’s legal costs and its share of value
from the technological opportunity. In Appendix B.2 we show that firms’ patenting efforts will
be strategic complements because patenting by rivals reduces the expected costs of patenting
more than the expected benefits under the curvature condition. The different rate of reduction
in costs and benefits increases the marginal incentive to patent. This effect cannot arise in a
discrete technology as the expected value and costs of patenting are fixed across opportunities.

This simple model illustrates why stricter enforcement of patent rights by the courts in the
United States (Jaffe, 2000, Hall and Ziedonis, 2001) had such an important effect on patenting
incentives: it increased the convexity of the legal costs function dramatically.

Game G′ does not allow for the partial complementarity of patents in complex technolo-
gies nor for the logic of hold-up and patent portfolio races. Therefore, we also analyze a
game G′′ (Appendix B.3) in which we introduce the logic of bargaining based on the relative
size of patent portfolios as discussed by Grindley and Teece (1997), Cohen et al. (2000) and
Federal Trade Commission (2003). To do this we introduce assumption (LC) into game G′:

Lemma 2
A game G′′ in which there is legal interdependency of patenting efforts as in Assumption (LC)
but no technological interdependency (i.e. V (γk)) is not supermodular.

While assumption (LC) requires that legal costs (L(γk, sk)) be decreasing in the share of
patents held by the firm (sk) game G′′ can only be supermodular if legal costs are increas-
ing in the share of patents sk. This would imply that holding constant the absolute number of
patents in the portfolio, a firm would face lower legal costs, if its share of granted patents is
lower. The assumption seems implausible in the context of the literature cited above, so we
reject it.

Lemma 2 is surprising. The threat of hold-up and the reaction of increased patenting are
an important part of the explanation delivered for patent thickets in the literature. Lemma
2 shows that where a larger relative share of patents held by the firm reduces legal costs,
conditional on the absolute number of patents being constant, strategic complementarity fails.
This is because firms are now competing for the largest share of patents and as one firm pulls
ahead the marginal value of patenting for the followers decreases.

In contrast, if we allow for technological complementarities in the value function in game
G′, the resulting game is still supermodular:

Lemma 3
A game G̃′ in which there is no legal interdependency of patenting efforts (i.e. L(γk)) but
technological interdependency, as in Assumption (V F ), is supermodular, if µ > 1 and the
technology is fragmented.

This model is set out in Appendix B.4. As can be seen here the restrictions in Proposition
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1 follow from assumption (V F ). The only additional restriction in Proposition (1) comes
from ensuring that the complementarity of facets is strong enough to overcome the strategic
substitutability that derives from assumption (LC).

Finally, we show in Appendix B.5:

Proposition 2
An interior, supermodular equilibrium of game G exists, if Proposition 1 holds and the value
of the marginal patent exceeds the sum of its administrative and direct legal costs.

In contrast, if the sum of administrative and legal costs exceeds the value of the marginal patent
game G is at the corner solution with no patenting. For all positive sums of administrative and
legal costs below this threshold, game G has an interior equilibrium.

There are two main implications that we can take away from these results. First, the
modeling framework shows that simultaneous competition for patents on various technolog-
ical opportunities is not necessarily characterized by strategic complementarities. Secondly,
the conditions under which strategic complementarity arise in our modeling framework fit the
current understanding of settings in which patent thickets arise very well. These are settings in
which legal costs of patenting increase disproportionately as patent portfolios grow, in which
technologies are highly complex, in which many firms patent and in which the combination of
multiple parties’ technologies yields better standards and products.

Comparative Statics of the Model

Now we provide comparative statics assuming that Proposition 1 holds. Throughout patenting

efforts refers to the choice of fk and ok. All derivations are provided in Appendix B.

Corollary 1
If gameG is supermodular, firms’ patenting efforts increase in the number of competitors (N).

If firms’ actions are strategic complements, then additional competitors raise the number of
patents covered, increasing the expected value of all patents. At the same time the probability
of success on any given patent application will fall. Both of these effects reinforce firms’
patenting incentives and efforts. Additionally, we can show that:

Proposition 3
If game G is supermodular, firms’ patenting efforts fall with technological opportunity (O).

If firms’ actions are strategic complements, then greater technological opportunity reduces the
number of patents granted per technological opportunity and the value of each opportunity
while increasing the probability of success on any given patent application. Both of these
effects reduce firms’ patenting incentives and efforts. Finally:

Proposition 4
If game G is supermodular, greater complexity increases firms’ patenting efforts.
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Greater complexity of a technology has two effects. First, it increases the number of facets
per technological opportunity, which makes it easier to patent. Second, it reduces the share of
the value which a firm can secure with granted patents it already expects to hold. Both effects
lead firms to step up their patenting efforts.

Discrete Technologies We turn now to the case of a discrete technology where - by defi-
nition - F = 1. Additionally, legal costs of defending and exploiting a patent right are not
a function of the share of patents owned on a technological opportunity; this share is one by
definition. Similarly V does not depend on the level of applications made: one granted patent
application guarantees that a firm receives V . Then, firms’ payoffs can be simplified to:

πk = okV pk − okL− okCo − okpkCa − Cc(ok) . (7)

Define game G∗ with this payoff function. This game is no longer supermodular: firms’
choices of the number of technological opportunities to invest in are strategic substitutes.
Note that the number of opportunities to invest in is also the number of facets invested in, as
F = 1. Therefore firms only have one choice variable here.

We can show that under the slightly stronger assumption that costs of coordinating techno-
logical opportunities (Cc(ok)) are strictly convex in the number of opportunities firms invest
in, we obtain a unique equilibrium for the game. We can demonstrate that:

Proposition 5
In a discrete technology, greater technological opportunity increases firms’ patenting efforts.

In a discrete technology firms’ choices of how many technological opportunities to invest in
are strategic substitutes because the value of each opportunity is not a function of the overall
level of patenting and because legal costs are constant. Then, greater technological opportunity
reduces the costs of patenting by raising the probability of obtaining a granted patent. This
increases patenting efforts. Notice that this result also implies that:

Corollary 2
In a discrete technology firms’ patenting efforts decrease in the number of competitors (N).

In this section we have shown that there can be countervailing patenting incentives in com-
plex and discrete technologies. In our modeling framework patenting efforts are strategic sub-
stitutes in a discrete technology whilst they become strategic complements in a complex tech-
nology. Strategic complementarity arises if there are sufficient numbers of competing firms,
if complexity is high enough and if additional patented facets of a technological opportunity
add value. We have shown that under strategic complementarity an increase of complexity
raises patenting incentives, while increasing technological opportunity lowers them. In a dis-
crete technology, where strategic complementarity is absent, greater technological opportunity
leads to an increase in patenting activity.

12



3 Data set and Variables

In this section the data used in this study are introduced. The section also provides discussions
of the measures for technological-opportunity, -complexity and fragmentation.

Our empirical analysis is based on the PATSTAT database (“EPO Worldwide Patent Statis-
tical Database”) provided by the EPO.15 We extracted all patent applications filed at the EPO
between 1980 and 2003: more than 1,5 million patent applications with about 4.5 million
referenced documents. Patents are classified using the IPC classification, allowing us to ana-
lyze differences in patenting activities across different technologies. The categorization used
is based on an updated version of the OST-INPI/FhG-ISI technology classification16 which
divides the domain of patentable technologies into 30 distinct technology areas.17 We also
classify all technology areas as discrete or complex as suggested by Cohen et al. (2000).

Below we discuss measures of patenting, technological opportunities and complexity.
These are the most important variables needed to test the theoretical model. Additionally,
we discuss variables that are used as covariates in the empirical model presented in Section 5.

Measures of Patenting, Complexity and Technological Opportunity

Number of Patent Applications We compute the number of patent applications Akat filed
by applicant k in year t separately for all of the 30 OST-INPI/FhG-ISI technology areas a. To
aggregate patent applications to the firm level two challenges must be overcome: firm names
provided in PATSTAT are occasionally misspelled, or different acronyms are used for parts
of the firm names. Moreover, subsidiaries of larger firms are not identified in the data set.
Therefore, we clean applicant names and consolidate ownership structures.18 The aggrega-
tion of patent applications are based on these consolidated applicant identities. The variables
discussed below are also based on this consolidation. Due to the skew distribution of patent
applications as measured by Akat we transform the variable logarithmically to derive a depen-
dent variable for the empirical analysis.

Technological Opportunity In our model, we establish a clear relationship between firms’
patenting levels in complex technologies and the extent of technological opportunities. Un-
fortunately, a direct (and time-variant) measure of technological opportunities does not exist.
To fill this gap, we use a proxy measure that is based on the number of non-patent literature
references in the search report of the patent. In the search report, the EPO examiner lists
patent and non-patent references which allow her to assess the degree novelty and of inventive
step of the invention described in the patent application. Non-patent literature consists largely

15We use the September 2006 version of PATSTAT.
16 See OECD (1994), p.77.
17These are listed in Table 8 in the appendix.
18We would like to thank Bronwyn Hall for providing us with code for name consolidation. Ownership

information was extracted from the Amadeus database and other sources. Detailed information on the cleaning
and aggregation algorithms can be obtained from the authors upon request.
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of scientific papers. A high number of such references reflects strong science-based research
efforts, and a significant inflow of new technological opportunities, leading to a relatively high
level of such opportunities for invention processes. The number of non-patent references can
thus be used as a good proxy for the strength of the science link of a technology as a num-
ber of studies have pointed out (Meyer, 2000, Narin and Noma, 1985, Narin et al., 1997).
Callaert et al. (2006) show that EPO patents contain a high proportion of scientific articles
among non-patent references, making European patent data a good source for this measure
of technological opportunity. We use the average number of non-patent references (NPR) per
patent in a technology area as a proxy for the position of a technology area in the technology
cycle and hence as a measure of technological opportunity.

In the theoretical model an increase in technological opportunity reduces competition for
remaining facets in complex technologies. This has the effect of reducing the level of patent-
ing. The measure of technological opportunity presented here will capture this effect as long
as the number of patents that can be obtained from older technological opportunities does
not change significantly and systematically in the opposite direction to the level of non-patent
references. We are not aware of any reason to expect such systematic changes.19

Complexity of Technology Areas The distinction between discrete and complex technolo-
gies is widely accepted in the literature (Cohen et al., 2000, Kusonaki et al., 1998, Hall, 2005a).
Discrete technologies are characterized by a relatively strong product-patent link (pharmaceu-
ticals or chemistry), whereas in complex industries technology is modular. This means each
technological component can be combined with different sets of additional components to
make up separate products and generally each component is protected by patent(s).

Currently direct measures of technological complexity or indirect constructs related to
complexity do not exist. Kusonaki et al. (1998) and Cohen et al. (2000) (footnote 44) classify
industries as discrete or complex based on ISIC codes. These classifications are based on
qualitative evidence. A major drawback of a classification based on industry codes is that is
does not allow us to analyze the influence of different levels of complexity within technologies
but only to distinguish between discrete and complex technologies.

An ideal measure of complexity would link patents to characteristics of products, showing
how many patents are incorporated in each product and how frequently products incorporate
patents of rival firms. The measure would also cover products that do not reach the market due
to hold-up. The information necessary for such a measure is only very rarely available and
not available consistently across technology areas and through time. However, it is possible to
come close to this ideal by using information from patent data.

The examiners at the EPO determine and record the extent to which existing prior art limits
patentability of an invention in a search report which is typically released 18 months after the

19In fact, the time-series graph of non-patent references in semiconductors closely mirrors, but anticipates, the
time series graph of various measures of the speed of technological advance in semiconductors that are provided
by Aizcorbe et al. (2008). This indicates that non-patent references are a reliable indicator of technological
opportunity for this very important technology.
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priority date of the patent application (Harhoff et al., 2006). Critical documents containing
conflicting prior art are classified as X or Y references by the EPO patent examiner.20 We use
this information to identify which firms hold patents that limit some patents of a focal firm.

Using this information we measure how many other firms have patents that limit the ap-
plication of some of the technology that a focal firm seeks to patent. An important question
arises: does limiting of a new patent by prior art in a previous patent indicate that the technol-
ogy in the new patent is a substitute or a complement to the technology in the older patent?
Unless the two patents cover the same subject matter entirely, we read such a critical reference
as an indication of a complementarity between technologies being patented by both firms.

Where a claim in an older patent overlaps with a claim in a newer patent the claims that
overlap protect substitutable technologies. If the limited patent is not wholly blocked this
indicates that the examiner believes the applicant also included technological advances in the
patent application that are related to the blocked subject matter but not previously patented.
This other subject matter is generally a complement to the subject matter conflicting with prior
art. Similarly the patents containing limiting prior art cover technology that is a complement
to the limiting claim. Thus technologies held by both firms are likely to be complements, if a
critical reference connects two patents and the newer patent is not wholly blocked.

To classify two firms’ technologies as complements we require that in the two years pre-
vious to and in the reference year each firm must have been cited as owning technology that
limits a new patent applied for by the other firm (von Graevenitz et al., 2011). By relying
on mutual critical references between firms’ patent portfolios we obtain a strong signal of
technological complementarity. Mutual critical references also arise in discrete technologies.
There they can be resolved by contract between the affected parties or through litigation. The
pernicious characteristic of patent thickets is that the modularity of the technology leads to
very many overlapping claims. Firms in a patent thicket must simultaneously contract with
many other partners, all of whom are also contracting with each other. This often leads firms
to set standards or create patent pools (Shapiro, 2001). These contractual settings are far more
complex and costly than those in discrete technologies (Federal Trade Commission, 2003).

To measure complexity we count how often three firms hold patents allowing each firm to
limit use of the other two firms’ patents. This is a triple21 of firms. Often groups of firms are
caught in many such triples and the more there are, the more complex and costly contracting
becomes. Figure 2 illustrates the measurement of triples:

20A search report contains different types of references – not all of them are critical. Often, related patents
which are not critical are also included in the search report in order to describe the general state of the art in the
respective technology. These are then classified as A-type references. X-type references point to prior patents
that on their own cast doubt on the patent’s inventive step or novelty; Y-type references do the same, but only in
conjunction with additional documents. We have found that for our purposes the distinction between X and Y
references is not important and we aggregate them in our empirical analysis.

21Triples are one element of the triad census introduced by Holland and Leinhardt (1976), a widely used
method of analyzing network structure. Patent thickets can be thought of as networks of firms where the edges
are defined by the ability of firm A to limit firm B’s use of its technology. Recently, Milo et al. (2002, 2004) define
network motifs as “recurring, significant patterns of inter-connections” in network data. Some network motifs
are elements of the triad census. Milo et al. (2002, 2004) show that triples characterize the network structure of
domains on the World Wide Web and of three social networks better than all other measures in the triad census.
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Figure 2: Identification of our measures of a technology field’s complexity.

Note that this measure is established at the level of firms’ patent portfolios.
The algorithm used to calculate triples is discussed in detail in von Graevenitz et al. (2011).

They show that the level of triples in complex and discrete technologies as defined by Cohen
et al. (2000) is not driven by the level of patenting. The measure is not distorted by the
different rates of patenting that have previously been documented for complex and discrete
technologies (Hall, 2005a, von Graevenitz et al., 2007). Note that this measure is very weakly
correlated (0.044) with measures the Fragmentation index discussed next.

Fragmentation of Prior Art Ziedonis (2004) shows that semiconductor firms increase their
patenting activities in situations where firms’ patent portfolios are fragmented. Ziedonis’
fragmentation index has predominantly been studied in complex industries (Ziedonis, 2004,
Schankerman and Noel, 2006) where increasing fragmentation raises firms’ patent applica-
tions. This is attributed to firms’ efforts to reduce potential hold-up by opportunistic patentees
owning critical or blocking patents – a situation associated with patent thickets.

We construct the index of fragmentation of patent ownership for each firm using the frag-
mentation index proposed by Ziedonis (2004):

Fragkat = 1−
n∑
j=1

s2kjat (8)

where skjat is firm k‘s share of critical references pointing to patents applications made by
firm j in area a and year t. Following Ziedonis (2004), Hall (2005b) we correct the index for
a bias arising if firms have few patents.

This index is based on the Herfindahl index of concentration. Small values of the frag-
mentation index indicate that prior art referenced in a firm’s patent portfolio is concentrated
among few rival firms and vice versa. For instance the measure takes the value zero, if all
references of one firm point to just one other firm. If the references of a firm are many and
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highly dispersed, then the index approaches the value one. The more firms patent actively on
the same technological opportunities the greater the index is likely to be. Therefore, the index
proxies intensity of competition in a technology area (N in the theoretical model).

Unlike previous studies of patenting in complex technologies relying on USPTO patent
data (Ziedonis, 2004, Schankerman and Noel, 2006, Siebert and von Graevenitz, 2010) we
compute the fragmentation index solely from critical references which are classified as lim-
iting the patentability of the invention to be patented (X and Y references). This distinction
is not available in the USPTO data. Computing the fragmentation index based on critical
references will yield a more precise measure of direct competition for similar technologies.

The fragmentation index is not as precise a measure of complexity as the triples measure.
The triples measure combines information on actual blocking relationships within techno-
logical opportunities which the fragmentation index does not. The fragmentation index cap-
tures the number of potential rivals across all technological opportunities in a technology area.
Therefore, the measures complement one another: triples capturing complexity, the fragmen-
tation index capturing the intensity of competition.22

Covariates

Technological Diversity of R&D Activities A firm’s reaction to changing technological or
competitive characteristics in a given technology area might be influenced by its opportuni-
ties to strengthen its R&D activities in other fields. For example, if a firm is active in two
technology areas it might react by a concentration of its activities in one area if competition
in the other area is increasing. If a firm is active in only one technology area, it does not
possess similar possibilities to react to increases in competitive pressure. In order to control
for potential effects of opportunities to shift R&D resources we measure the total number of
technology areas (Areask,t) with at least one patent application filed by firm k in year t.

Size Dummies. While we do not explicitly model the influence of firm size on patenting
behavior, it seems reasonable to assume that the cost of obtaining and upholding a patent
depends on the size of a firm. In particular, larger firms might face lower legal cost due
to economies of scale, increased potential to source in legal services and accumulation of
relevant knowledge which in turn might lead to a different patenting behavior than smaller
firms. For instance Somaya et al. (2007), find that the size of internal patent departments
positively influences firms’ patenting propensity.

If the economies-of-scale argument holds, the cost of patenting should not be directly
related to size characteristics such as a firm’s number of employees, its total revenues or sales.
Rather, the cost of patenting can be assumed to be a function of the total patents filed by a
firm. Therefore, we include a ’size dummy’ variable based on the number of patents filed by a
firm in a technology area in a given year in our regressions. We distinguish between small and

22In unreported results we find that the number of firms patenting in a technology area has a strong positive
correlation with the fragmentation index conditional on year and area fixed effects.
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large patentees based on annual patent applications by area a. Firms belonging to the upper
half of the distribution of patentees in a given year are coded as large firms.

4 Descriptive Analysis of Patenting in Europe

In this section we provide descriptive aggregate statistics on patenting trends at the EPO. We
show that descriptive evidence on patenting supports the theoretical model. Also, the mea-
sure of complexity is validated by a comparison with existing measures. Figure 3 presents
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Figure 3: Annual number of patent applications filed at the EPO by priority year. Note:
Black line (diamonds) indicates total patent applications. Blue line indicates patent applica-
tions in complex technology areas. Red line (starred) indicates patent applications in discrete
technology areas.

annual patent applications filed at the EPO between 1978 and 2003. We distinguish applica-
tions filed in complex and discrete technology areas using the categorization of Cohen et al.
(2000). Patenting grew strongly over the period we plot, with the main contribution coming
from technology areas classified as complex. This development is comparable to trends at the
USPTO. Hall (2005a) shows that the strong increase in patent applications at USPTO is is
driven by firms patenting in the electrical, computing and instruments areas, all of which are
complex technology areas by the classification of Cohen et al. (2000).

Now consider explanations for the strong growth in patenting. First, in a complex tech-
nology area fragmentation of patent rights is likely to raise firms’ transactions costs as they
compete with increasing numbers of rivals in patent portfolio races. Ziedonis (2004) and
Schankerman and Noel (2006) show that increased fragmentation of patents leads to greater
patenting efforts in the semiconductor and software industries respectively. Figure 4 provides
annual averages of the fragmentation index at the EPO for the years 1980 to 2003. Two ob-
servations derived from Figure 4 are striking: First, fragmentation shows no clear upward or
downward trend over the sample period. Second, the difference in the fragmentation index in
complex and discrete technology areas is negligible.

Both observations raise the question whether the growth in patent applications can be at-
tributed to fragmentation. Therefore, we now turn to our measure of technological complexity
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Figure 4: Average fragmentation index. Note: Blue line indicates average level of fragmen-
tation index in complex technology areas. Red line indicates average level of fragmentation
index in discrete technology areas.

and to a measure of technological opportunity.
First, the measure of technological complexity (triples) is presented in Figure 5. It contains

annual averages of the number of triples in complex and in discrete areas.23 We observe very
different developments of the count of triples in these technology areas. The number of triples
is stable at values well under 10 in discrete technology areas, while it increases strongly in
complex technology areas. It is reassuring to see that our measure of complexity is greater in
complex technologies as they were previously defined by Cohen et al. (2000).
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Figure 5: Average number of triples identified. Note: The blue line indicates average number
of triples in complex technology areas. The red line (starred) indicates average number of
triples in discrete technology areas. This figure is taken from von Graevenitz et al. (2011).

Table 1 provides additional information on the distribution of triples across the 30 tech-
nology areas. It shows the significant hold-up potential, measured by triples, within ICT
technologies. There are between five and six times as many triples there as in other industries
such as Handling, Printing which still exhibit significant complexity by this measure.

23We distinguish complex and discrete using the classification suggested by Cohen et al. (2000) here.
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Table 1: The Distribution of Triples Between 1988 and 2002

Technology area Mean Median Std. dev. Minimum Maximum

Electrical machinery, Electrical energy 24.65 20 8.80 10 42
Audiovisual technology 117.70 120 16.31 74 148
Telecommunications 102.65 93 37.41 27 166
Information technology 58.38 59 9.20 28 73
Semiconductors 62.39 63 18.43 26 91
Optics 57.66 58 11.92 42 77
Analysis, Measurement, Control 6.71 3 6.46 0 21
Medical technology 4.19 4 2.11 1 8
Nuclear engineering 0.94 1 1.16 0 4
Organic fine chemistry 3.51 2 3.71 0 15
Macromolecular chemistry, Polymers 15.68 14 7.91 4 32
Pharmaceuticals, Cosmetics 3.62 4 2.64 0 8
Biotechnology 0.00 0 0.00 0 0
Agriculture, Food chemistry 0.07 0 0.26 0 1
Chemical and Petrol industry 11.01 10 5.49 4 22
Chemical engineering 1.40 1 0.84 0 3
Surface technology, Coating 3.53 3 2.79 0 9
Materials, Metallurgy 2.46 2 2.14 0 6
Materials processing, Textiles, Paper 3.80 3 2.64 1 9
Handling, Printing 20.60 16 13.50 4 50
Agricultural and Food processing, 0.37 0 0.73 0 2
Environmental technology 3.37 0 4.79 0 15
Machine tools 1.93 1 1.58 0 5
Engines, Pumps and Turbines 22.39 15 21.30 3 69
Thermal processes and apparatus 0.38 0 0.62 0 2
Mechanical elements 2.37 2 2.17 0 7
Transport 17.07 14 12.17 2 50
Space technology, Weapons 0.00 0 0.00 0 0
Consumer goods 0.76 0 1.07 0 4
Civil engineering, Building, Mining 0.00 0 0.00 0 0

Second, consider the development of technological opportunities as an explanation of the over-
all patenting trends. Proposition 3 indicates greater technological opportunity in a complex
technology should lower the pressure to patent. As noted in Section 3 we measure techno-
logical opportunity using changes in the rate of references to non patent literature within a
technology area. This measure provides information about variation in technological oppor-
tunities between and across technology areas. The left panel of Figure 6 below shows a hump
shaped pattern for technological opportunities in complex technology industries. In contrast,
technological opportunities in discrete technologies also level off, but at a later date then in
complex technologies. Note that technological opportunities in complex technology areas be-
gan to decline just after 1992, which coincides with the date at which the growth in patent
applications at the EPO picked up as Figure 3 shows. The right panel of the Figure shows
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that average non patent references in complex technology areas mask considerable variation
across and especially within technologies.
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Figure 6: The left panel presents average non patent references per patent for complex (blue
line) and discrete (red line, starred) technology areas. The right panel presents average non
patent references per patent for several complex technology areas.

5 The Empirical Model and Results

In this section we set out empirical results. To begin with we provide a discussion of our
empirical model and discuss descriptives for the sample used. Then we turn to the results
from estimation and a discussion of their implications.

5.1 An Empirical Model of Patenting

Building on the results of Section 2 we estimate a reduced form model predicting the level of
patent applications filed by a firm in a given year at the EPO. Patent applications are highly
persistent as they reflect long term investments in R&D capacity. Therefore, we include a
lagged dependent variable in our model. We estimate the following dynamic relationship:24

Ai,t = β0 + βAAi,t−1 + βACAi,t−1Ci,t + βOOi,t + βCCi,t + βOCOi,tCi,t (9)

+ βFFi,t + βFCFi,tCi,t + βX
′X i,t + Υi + ζi,t ,

where:

Ai,t − ln(Patent Applications) Oi,t − Technological Opportunity: Non Patent References

Ci,t − Complexity: Triples Fi,t − Fragmentation index: Concentration

X i,t − Control variables: Area count, Size

Υi − Firm area fixed effects ζi,t − Error term.

24Our model did not explicitly account for dynamic aspects of firms’ strategic decisions. However, it seems
appropriate to take the persistent nature of patenting decision into account when analyzing patenting over time.
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With this specification we capture effects of technological opportunity βO, complexity βC
and competition βF as well as the effects of complexity and competition in complex technolo-
gies (βOC , βFC). We also allow the effect of the lagged dependent variable to differ in complex
and discrete technology areas (βAC).

In an extension of this basic specification we also include interaction terms that allow us
to distinguish the patenting behavior of large and small firms in complex and discrete tech-
nologies. Our theoretical model indicates that firms’ patenting behavior will depend on the
share of patents they expect to receive on a given technological opportunity which may differ
systematically between large and small firms.

Estimates of this specification provide a test of the following hypotheses. These reflect
Propositions 3- 5 and Corollaries 1- 2:

H1 Greater complexity of technologies raises patent applications, βC > 0 (Proposition 4);

H2 Competition raises patent applications in complex technologies, βFC > 0 (Corollary 1);

H3 Technological opportunity reduces patent applications in complex technologies, βOC <
0 (Proposition 3);

H4 Competition reduces patent applications in discrete technologies, βF < 0 (Corollary 2);

H5 Technological opportunity raises patent applications in discrete technologies, βO > 0

(Proposition 5).

Hypotheses 1-3 capture the effects of complexity, competition and technological opportu-
nity in complex technologies. Proposition 1 shows that greater complexity of a technology is
more likely to render firms’ actions in a patenting game strategic complements. The reverse
is true in a discrete technology, here firms actions are strategic substitutes and the compara-
tive statics with respect to competition and technological opportunity are exactly reversed. By
interacting complexity with the number of competing firms and our measure of technological
opportunity in Hypotheses 2 and 3 we separate the two types of equilibria.

Notice, that if we fail to reject these hypotheses, we reject model G′′, in which there is
no technological complementarity of patents and in which legal costs depend on both the
absolute number of patents and the relative share of patents held by each firm. If we cannot
reject Hypothesis 1, then we reject model G′ together with the restriction that each firm seeks
to patent more than half the facets per technological opportunity.

5.2 Descriptive Statistics for the Sample

Our data set contains observations of patent applications by firms in specific technology areas
and covers the period between 1978 when the EPO began operating and 2003. We intend to
study patent applicants patenting over a prolonged period and possibly across several technol-
ogy areas. Therefore, we excluded small patentees from the sample.
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Table 2: Panel Descriptives for the Sample

Firm level (2074 firms) Mean Median SD
Total patents 628.27 205 1944.94
Total patents (annual) 37.02 12 111.65
Technological areas (annual) 5.54 4 4.56

Area-Year level (650 area-year observations) Mean Median SD
Total patents in area 2594.23 2310 1778.87
Total patents in area and sample 1449.35 1012 1695.86
Total firms in area 1077.62 893 668.14
Total firms in area and sample 266.84 263 253.71

Triples 14.67 2 27.69
Non Patent References 0.98 0.75 0.75
Fragmentation 0.05 0.05 0.03

Two criteria were used: first, we excluded all those patentees with fewer than 100 patent
applications between 1980 and 2002. Second, we excluded patentees with fewer than three
years of positive patent applications in a technology area in the fifteen years after 1987.

These criteria result in a sample containing 173,448 observations of patenting activity by
a firm in a technology area. Table 2 shows that these patent applications are due to 2074
distinct firms. The average size of these firms’ patent portfolios in 2002 was 628 patents
resulting from an average of 37 patent applications per firm and year across all technology
areas. 34% of observations in the data set contain a zero patent application count but only
0.05% of observations belong to firms that have no patent applications at all in a given year.
The lower half of Table 2 shows that our sample covers on average 55.8% of the annual mean
of 2594 patent applications filed within an average technology area. As the sample focuses on
large patentees the share of firms we covered by the sample is smaller: on average 1077 firms
patent per area per year and 24.8% of these are included in the sample.25

Firms operating in several technology areas are treated as distinct in each area. Hence,
our panel structure is not defined over firms’ total patent applications per year (firm-years) but
over firms’ annual patent applications within specific technology areas (firm-area-years). We
do this to control for area specific patenting behavior of individual firms and its relation to
area characteristics like complexity.26 Where we use panel data, the panel is unbalanced due
to entry and exit of firms into technology areas.

Table 3 presents descriptive statistics at the firm-area-year level. Most firms in the sam-
ple patent relative broadly across technology areas. While the number of patent applications
within a given technology area is relatively low with 5.43 application per year firms are active

25We have experimented with alternative sample selection rules and found our results to be robust.
26We find that firms in more complex technologies are very slightly more likely to be active in more technology

areas than the average firm, with a very weak positive correlation of 0.04.
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Table 3: Descriptive Statistics for the Sample (1988-2002)

Variable Aggregation Mean Median Standard Mini- Maxi-
level deviation mum mum

Patent applications per area Firm 5.431 1.000 18.594 0.000 752.000
log Patent applications per area Firm 1.051 0.693 1.052 0.000 6.624
Areas Firm 8.751 7.000 6.027 0.000 30.000
Large dummy Firm 0.504 1.000 - 0.000 1.000
Non Patent References Area 1.151 0.894 0.827 0.174 4.532
Triples Area 18.480 5.000 30.085 0.000 166.000
Fragmentation Firm 0.210 0.000 0.427 0.000 1.961

Observations = 173,448

Sample Statistics for the Year 1992
Patent applications per area Firm 4.235 1.000 14.024 0.000 387.000
log Patent applications p/a Firm 0.923 0.693 0.990 0.000 5.961
Areas Firm 7.746 6.000 5.563 0.000 27.000
Large dummy Firm 0.438 0.000 - 0.000 1.000
Non Patent References Area 1.205 0.970 0.747 0.290 3.554
Triples Area 15.761 3.000 25.348 0.000 104.000
Fragmentation Firm 0.175 0.000 0.389 0.000 1.935

Observations = 11,325

in 8 or 9 different technology areas. The average technology area contained about 18.5 triples
in a given year – however the distribution is skew with a median of 5 and a maximum of 166
triples (observed in Telecommunications in 2000). The level of non patent references in the
average technology area is 1.151. Table 3 also contains information about sample statistics
for the year 1992, after which patent applications increased markedly as Figure 3 shows. A
comparison of sample means (upper part of Table 3) and means for 1992 (lower part of 3)
shows that firms patent in more areas, face more complexity (triples) and generate fewer non
patent references after 1992 than in 1992. This confirms what we showed previously.27

5.3 Results

In this section we present results from estimation of the empirical model (Equation 9) us-
ing GMM. The lagged dependent variable and several explanatory variables which may be
expected to be endogenous are instrumented. We show that the predictions of the main theo-

27To ensure that the possible break in aggregate patent applications at EPO in 1992 did not affect the results
we report below, we also estimated our models for the period after 1992. We found no significant differences
in our results. We have found some indication that dropping the most recent years (2000-2003) from the data
weakens the effects of technological opportunity. Results are available from the authors upon request.
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retical model presented in Section 2 cannot be rejected.
We use panel estimators to avoid misspecification of the empirical model arising from

unobserved heterogeneity, such as variation in managerial ability. To capture persistence in
patenting we introduce a lagged dependent variable into our models, which introduces an
additional source of misspecification. This renders fixed and random effects estimators in-
consistent in short panels such as ours (Arellano, 2003). Instead, we employ system GMM
estimators which also allow us to address the potential endogeneity of some of our regressors.

We instrument potentially endogenous variables using lagged values. Exogeneity of these
instruments is tested using difference in Hansen tests (Roodman, 2006). All models reported
below contain the following explanatory variables: non patent references, triples, fragmen-

tation, area count, large dummy and the lagged dependent variable as well as interactions of
some of these variables. We consider fragmentation and area count to be endogenous as they
reflect decisions about how widely and where to engage in research which may be contempo-
raneous with decisions determining the level of patent applications. The remaining variables
are treated as predetermined variables since they depend in large part on the aggregated de-
cisions of rival firms. Finally note that we include only year and area dummies in the levels
equation as it is likely that the fixed effects are correlated with differences in the remaining
explanatory variables. In all specifications we instrument predetermined variables with third
order lags and endogenous variables with fourth order lags.

Instrument sets are collapsed28 in order to reduce the number of instruments used. Through-
out we rely on the Hansen test to determine whether the entires set of instruments used are
exogenous. Where the statistic indicates that this is not the case we reject the models.

Table 4 presents results of system GMM estimators using forward deviations transforma-
tions (Blundell and Bond, 1998, Arellano and Bover, 1995, Alvarez and Arellano, 2003).29

Reported standard errors are based on two step estimators using the correction suggested by
Windmeijer (2005). Tests for first, second and third order serial correlation (m1-m3) indicate
presence of first and second order serial correlation.

Specification SGMM A contains the lagged dependent variable, measures of technolog-
ical opportunity (non patent references (NPR)), complexity (triples), the breadth of a firms’
activities within the patent system (areas), a dummy for the size of a firms’ patent portfolio
(large) and dummies for year and main technology area.

Specification SGMM B adds the measure of fragmentation suggested by Ziedonis (2004).
This is adjusted as proposed by Hall (2005b). In specification SGMM C we add interactions
of the complexity measure (triples) with the measure of technological opportunity (NPR).
Hansen tests for these simple specifications reject their validity, indicating that the instruments
used are not exogenous.

In specification SGMM D triples are interacted with the lagged dependent variable, to

28Collapsing instrument sets reduces the number of moment conditions used for GMM (Roodman (2006)).
29All models were estimated with xtabond2 in Stata 9.2 . This package is described in Roodman (2006).
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Table 4: GMM Models for Patent Applications

Variable SGMM A SGMM B SGMM C SGMM D SGMM E

log Patentcountt−1 0.720*** 0.509*** 0.426*** 0.688*** 0.749***

(0.042) (0.039) (0.039) (0.122) (0.093)

log Patentcountt−1× Triples -0.018*** -0.017***

(0.003) (0.003)

Non Patent References (NPR) 0.226*** 0.121*** -0.152* 1.700*** 1.553***

(0.030) (0.032) (0.061) (0.344) (0.254)

NPR × Triples 0.001 -0.043*** -0.036***

(0.001) (0.007) (0.006)

NPR × Triples × Large 0.007***

(0.002)

NPR × Large -0.366***

(0.081)

Fragmentation 0.641*** 0.793*** -0.489* -0.474**

(0.065) (0.064) (0.213) (0.170)

Fragmentation × Triples 0.010 0.006

(0.006) (0.006)

Triples -0.000 0.000 -0.001 0.071*** 0.055***

(0.000) (0.000) (0.001) (0.012) (0.010)

Areas 0.067*** 0.068*** 0.073*** 0.105*** 0.096***

(0.007) (0.006) (0.006) (0.016) (0.012)

Large -0.079** -0.117*** -0.183*** 0.010 0.342**

(0.026) (0.025) (0.025) (0.078) (0.117)

Year dummies YES YES YES YES YES

Primary area dummies YES YES YES YES YES

Constant -0.403*** -0.221*** 0.044 -1.700*** -1.443***

(0.038) (0.043) (0.062) (0.314) (0.319)

N 173448 173448 173448 173448 173448

m1 -25.041 -23.908 -23.413 -7.934 -10.860

m2 18.356 13.590 10.836 3.131 4.739

m3 -1.707 -2.230 -2.285 1.606 .896

Hansen 525.187 412.714 456.374 19.221 10.988

p-value 9.1e-115 3.90e-89 2.08e-95 .004 .052

Degrees of freedom 2 3 6 6 5

* p<0.05, ** p<0.01, *** p<0.001

1. Asymptotic standard errors, asymptotically robust to heteroskedasticity are reported in parentheses

2. m1-m3 are tests for first- to third-order serial correlation in the first differenced residuals.

3. Hansen is a test of overidentifying restrictions. It is distributed as χ2 under the null of instrument

validity, with degrees of freedom reported below.

4. In all cases GMM instrument sets were collapsed and lags were limited.
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capture the possibility that firms adjust their levels of patenting differently in complex and
discrete technologies.

This specification performs better than SGMM A-C, the χ2 statistic being significantly
lower than for those specifications. Finally, specification SGMM E also includes interactions
which test the effects of firm size on non patent references. This specification performs best,
the Hansen test does not reject the model. We now focus on this model.

We find that greater technological opportunities (NPR) raise patenting levels showing that
we cannot reject Hypothesis 5. The effect of technological opportunity is highly significant
across almost all estimated specifications (see models (A) to (E) of Table 4). The inclusion of
the interaction between our measure of complexity (triples) and technological opportunities
shows that the effect differs in discrete - and complex technologies. In particular, if the num-
ber of triples in a technology area is larger than 39 (in specification (D) ) or larger than 43 in
specification (E) of Table 4, the overall effect from increasing technological opportunities is
negative as βO+βOC×Ci,t < 0. The negative coefficient on the interaction of complexity and
non patent references supports Hypothesis 3: increasing technological opportunities reduce
patenting efforts in more complex technology areas. Additionally, the significant positive co-
efficient on the effects of complexity alone supports Hypothesis 1. Table 1 shows the average
number of triples for 5 technology areas in our sample is greater than 43. For Audiovisual
technology and Optics triples are always above 43. This indicates that increased technological
opportunities always or almost always reduce patenting efforts in these areas.

With regard to the effects of the number of competitors blocking a specific firm in technol-
ogy space we fail to reject Hypothesis 4, i.e. more competition (greater fragmentation) reduces
patenting efforts in discrete technologies. The coefficient on the interaction of fragmentation
and complexity is not significant. However, the joint effect of fragmentation and complexity
is significant. Thus we have weak evidence that increased competition raises patenting efforts
in complex technologies (Hypothesis 2).

Finally, our results on the interaction of the lagged dependent variable with triples indicate
that persistence of patenting decreases as technology areas become more complex. Persistence
is entirely absent in very complex technologies. This shows that patentees are more responsive
to their competitors’ patenting behavior and to technological opportunity in complex technol-
ogy areas than in discrete technology areas.

Table 5 below provides effects of changes in complexity (triples), technological opportu-
nities (non patent references) and fragmentation for patenting rates in nine technology areas.30

The table presents effects for small and large firms where appropriate and contains mean and
median results. Five of the technology areas presented are highly likely complex as the mean
and median levels of triples are clearly above 43 in these areas (viz. Table 1). They are
Audiovisual Technology, Telecommunications, Information Technology, Semiconductors and
Optics. We also present results for four additional areas. These are more likely discrete by

30These effects are calculated taking account of the logarithmic transformation of the dependent and the lagged
dependent variable.
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this measure: Medical Technology; Electrical Machinery; Analysis, Measurement, Control;
and Pharmaceuticals.

Table 5 shows that in all discrete technologies an increase in technological opportunity
raises patenting, while in all complex technology areas it lowers patenting. These results
fit the predictions of Hypotheses 5 and 3 respectively. Most importantly the effects of a one
standard deviation change in technological opportunity are comparatively large in the complex
technologies. This is a surprising finding that indicates that technological opportunity is an
important determinant of firms’ patenting efforts.

Table 5: Mean and Median Percentage Changes in Patent Applications
in Complex and Discrete Technologies

Applications Triples Triples Non patent references Fragmentation
Technology growth SD change SD change Unit change SD
area 1990-2000 Small Large Small Large change

Complex Technologies

Audiovisual 52% 118 -2.76% 10.13% -51.59% -45.21% 26.14% 10.65%

Technology 120 6.29% 20.47% -52.66% -46.19% 27.89% 11.32%

Telecom- 253% 103 -22.38% 4.80% -34.87% -30.11% 15.25% 6.83%

munications 93 -11.40% 18.14% -30.18% -26.08% 8.76% 3.99%

Semiconductors 63% 62 -33.51% -17.04% -23.19% -21.10% -9.48% -4.14%

63 -31.09% -13.51% -23.83% -21.62% -9.15% -3.99%

Information 174% 58 -8.11% 0.04% -9.75% -9.03% -11.63% -4.99%

Technology 59 -3.83% 4.69% -10.12% -9.33% -11.31% -4.85%

Optics 41% 58 -11.07% -0.49% -7.02% -6.54% -12.02% -5.55%

58 -6.16% 5.02% -7.18% -6.67% -11.84% -5.46%

Discrete Technologies

Electrical 91% 25 7.97% 15.59% 4.28% 3.02% -27.83% -13.57%

Machinery 20 12.24% 20.27% 5.39% 3.90% -29.81% -14.64%

Analysis, 75% 7 -1.48% 3.87% 10.07% 7.53% -35.19% -17.83%

Measurement, 3 1.24% 6.63% 11.15% 8.38% -36.62% -17.87%

Control

Pharmaceu- 221% 4 -15.60% -11.26% 55.06% 39.60% -36.38% -19.43%

ticals 4 -16.29% -11.93% 54.41% 39.13% -36.24% -19.49%

Medical 148% 4 6.00% 6.54% 5.81% 4.38% -36.16% -17.99%

Technology 4 6.62% 7.19% 5.84% 4.41% -36.24% -18.02%

This table reports means (upper row) and medians (lower row) for each technology area. We report changes

in patent applications in response to standard deviation (SD) changes in each variable. For Triples and Non patent

references we report effects for small and large firms.

Hypothesis 1 states that increases in the complexity of a technology will raise firms’ levels
of patenting in the technology is complex. Table 5 shows this result generally holds at the
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median and mean for large firms in complex technology areas apart from Semiconductors.31

Interestingly, Table 5 also shows that the effect of fragmentation on firms’ patenting efforts
in very complex technology areas is positive as predicted by Hypothesis 2. Also, fragmenta-

tion has a negative effect on patenting in discrete technology areas, as predicted in Hypothesis
4. The positive effects for complex technology areas support the findings of Ziedonis (2004),
Schankerman and Noel (2006) who find that additional fragmentation of patent ownership in-
creases patenting efforts in semiconductors and software in the United States. Note however,
that fragmentation has small negative effects on patenting in the moderately complex tech-
nologies included in Table 5. In discrete technology areas fragmentation has a very strong
negative effect so that overall we confirm the prediction that firms are more likely to patent
more as fragmentation increases if technology areas are more complex.

5.4 Robustness of the Results

In a next step, we test the robustness of our results using alternative GMM estimators. Re-
sults from these tests are reported in Table 6. We vary the size of the instrument set and the
estimator used. All models reported in Table 6 are estimated using forward deviations and
reported standard errors corrected as previously noted. The models differ in the number of
overidentifying restrictions employed as well as assumptions about the correlation of the ex-
planatory variables with fixed effects. Hansen tests are used to determine which of the models
are reliable. These show that only the first three models reported in the table are not rejected.

The four models reported in the central part of Table 6 allow for correlation between all
explanatory variables with fixed effects. In two specifications on the right side of the table we
assume subsets of the explanatory variables are uncorrelated with fixed effects. The number
of observations in our data set implies that T/N → 0. Therefore, a systems GMM estimator
(Blundell and Bond, 1998) using forward deviations is asymptotically consistent (Alvarez
and Arellano, 2003, Hayakawa, 2006). We employ this estimator as the patenting series are
highly persistent in our sample: the coefficient on the lagged dependent variable in an AR1
model with time and primary area dummies is 0.92. Blundell and Bond (1998) note that
difference GMM is affected by a weak instruments problem in this context which is not the
case in the specification we report. However, the coefficient on the lagged dependent variable
is somewhat above that reported for the comparable systems estimators. It is also significantly
above the coefficients from the OLS regressions reported in Table 7. Therefore, we focus our
analysis on the results from the system estimators.

In all models reported in Table 6 the instrument sets were collapsed and instrumenting
lags were limited as described above. This was done as the Hansen test and difference in
Hansen tests rejected the overall instrument sets as well as individual instruments where larger
instrument sets were employed. Specification SGMM H illustrates how sensitive the Hansen

31The precise delineation of the areas for Information Technology and Semiconductors in the classification we
use is not clear. In von Graevenitz et al. (2007) we find that a large proportion of patents from semiconductor
firms are patented within the Information Technology area.
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Table 6: Robustness Checks for Patent Applications Estimates

Allowing correlation Assuming no correlation

with fixed effects with fixed effects

Variable SGMM F SGMM E DGMM G SGMM H SGMM I SGMM J

log Patentcountt−1 0.675*** 0.749*** 0.935*** 0.617*** 0.742*** 0.879***

(0.102) (0.093) (0.110) (0.067) (0.047) (0.054)

log Patentcountt−1× Triples -0.021*** -0.017*** -0.014*** -0.011*** -0.009*** -0.011***

(0.004) (0.003) (0.003) (0.002) (0.001) (0.001)

Non Patent References (NPR) 1.880*** 1.553*** 1.502*** 0.654*** 0.475*** 1.306***

(0.361) (0.254) (0.258) (0.112) (0.039) (0.173)

NPR × Triples -0.042*** -0.036*** -0.035*** -0.019*** -0.016*** -0.031***

(0.008) (0.006) (0.006) (0.003) (0.002) (0.004)

NPR × Triples × Large 0.008*** 0.007*** 0.006*** 0.006*** 0.005*** 0.004***

(0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

NPR × Large -0.248* -0.366*** -0.224*** -0.373*** -0.484*** -0.557***

(0.125) (0.081) (0.040) (0.057) (0.036) (0.049)

Fragmentation -0.558** -0.474** -0.490** -0.091 -0.007 -0.183

(0.211) (0.170) (0.164) (0.111) (0.081) (0.113)

Fragmentation × Triples 0.009 0.006 0.000 -0.004 -0.007* -0.000

(0.008) (0.006) (0.006) (0.004) (0.003) (0.004)

Triples 0.056*** 0.055*** 0.052*** 0.031*** 0.034*** 0.059***

(0.013) (0.010) (0.008) (0.006) (0.004) (0.007)

Areas 0.097*** 0.096*** 0.036* 0.098*** 0.082*** 0.090***

(0.014) (0.012) (0.016) (0.009) (0.008) (0.007)

Large 0.221 0.342** 0.256*** 0.349*** 0.562*** 0.562***

(0.165) (0.117) (0.065) (0.083) (0.060) (0.080)

Year dummies YES YES YES YES YES YES

Primary area dummies YES YES YES YES YES YES

Constant -1.311** -1.443*** -0.703*** -0.886*** -2.000***

(0.466) (0.319) (0.194) (0.075) (0.206)

N 173448 173448 171380 173448 173448 173448

m1 -9.878 -10.860 -8.276 -12.868 -19.934 -20.345

m2 2.651 4.739 4.881 6.166 11.269 14.863

m3 1.353 .896 .192 -1.051 -.951 .3055

Hansen 4.101 10.988 5.177 57.671 197.573 52.158

p-value .129 .052 .270 3.76e-09 2.07e-38 5.43e-09

Degrees of freedom 2 5 4 9 8 7

* p<0.05, ** p<0.01, *** p<0.001

1. Asymptotic standard errors, asymptotically robust to heteroskedasticity are reported in parentheses

2. m1-m3 are tests for first- to third-order serial correlation in the first differenced residuals.

3. Hansen is a test of overidentifying restrictions. It is distributed as χ2 under the null of instrument
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validity, with degrees of freedom reported below.

4. In all cases GMM instrument sets were collapsed and lags were limited.

test is to the size of the instrument set here. This specification is identical to SGMM E, we just
allow for an extra lag on the instrument sets for the endogenous variables in this specification.
The specification is rejected by the Hansen test.

We estimate two models in which we treat fragmentation (SGMM J) and non patent ref-

erences (SGMM I) as uncorrelated with fixed effects. Results from the Hansen tests for both
specifications reported in Table 6 show that these models are clearly rejected.

Our preferred models are reported as SGMM F and SGMM E in Table 6. In SGMM F we
restrict the number of instruments such that the model is just overidentified. Hayakawa (2006)
argues that such a minimum instruments specification is unbiased in settings where T is fixed
and N → ∞. Specification SGMM E includes additional instruments for the endogenous
variables. Results from these two specifications are statistically indistinguishable.

In addition to the GMM results reported here, Table 7 (Appendix C) provides results from
OLS on the pooled sample and from fixed effects regressions. These results are known to be
biased due to inclusion of the lagged dependent variable. However, they provide lower and
upper bounds on the values of the lagged dependent variable for GMM (Bond (2002)). Once
we take account of the interaction of the lagged dependent variable with triples we find that
the coefficients on the lagged dependent variable are within the range provided by OLS and
fixed effects estimates for technology areas of average complexity.

6 Conclusion

Patent applications have been increasing steeply at the USPTO and the EPO since 1984 and
1992 respectively. These increases have raised questions about the operations of the af-
fected patent offices as well as effects of these trends on economic activity more generally
(Federal Trade Commission, 2003, National Research Council, 2004, von Graevenitz et al.,
2007, Bessen and Meurer, 2008). Our paper makes a number of contributions towards a sys-
tematic explanation of recent patenting trends. There is strong evidence by now that patenting
has increased in response to evolution of the legal environment, specifically in the United
States, to changes in the management of R&D and patenting, and to increasing complexity of
technology and more strategic behavior of patent applicants (Kortum and Lerner, 1998, Hall
and Ziedonis, 2001, Ziedonis, 2004). But the contribution of technological opportunity to cur-
rent patenting trends and its interaction with other determinants has been less well understood.

This latter effect is central to our analysis. Our theoretical analysis is the first to consider
the effect of complexity and of technological opportunity jointly. Moreover, while other stud-
ies have focused on selected industries, our model and the empirical test encompass discrete
and complex technologies, providing predictions for patenting behavior in both types of tech-
nology. We provide a theoretical framework predicting that greater technological opportunity
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will raise patenting in discrete technologies but will lower it as technologies become increas-
ingly complex. Additionally, we show that a higher number of patent applicants raises firms’
patenting levels in complex technologies. The modelling framework also shows that increased
legal costs due to litigation and licensing can have contributed to increased patenting, while
competition for larger patent portfolios alone cannot explain why so many firms increased
their patenting efforts simultaneously.

To test our predictions on technological opportunity and complexity empirically, we apply
a new measure of technological complexity suggested by von Graevenitz et al. (2011). This
measure exploits information on critical references to capture the density of patent thickets
as they are reflected in European patent data. Using the measure we are able to confirm that
patent thickets are a much more serious problem in technology areas previously identified as
complex than in those previously identified as discrete.

The empirical results reported in this paper show that patenting behavior conforms to the
predictions of our preferred theoretical model. As we test a reduced form model, we cannot
exclude that alternative models may lead to similar restrictions. However, we note in the paper
that certain restrictions that would arise from alternative modeling assumptions within our
modeling framework are rejected by the data. The main limitation of our modeling framework
is that it is static. In future work introducing multiple periods into the framework will provide
an important test of the restrictions we have derived and tested in this paper.

Variation in technological opportunity affects firms’ patenting levels to a surprising extent.
Our data show that increased technological opportunity during the early 1990s counteracted
the effects of growing complexity and retarded the onset of the patenting explosion observable
after 1994. The patent explosion coincides with the decrease in technological opportunities
after 1994. We also show - for the first time with European data - that greater fragmentation of
patent ownership increases patenting in complex technologies (Ziedonis, 2004). We attribute
this to a greater number of competing patent applicants as we control for the degree of hold-up
potential with the triples measure of technological complexity.

Finally, our results show that as technology areas become more complex, firms’ patenting
activities increase. Since we use lagged values of complexity to instrument current complexity
this finding is likely to reflect a causal mechanism - as firms encounter more complexity they
respond by patenting more.

We find that patent thickets exist in nine out of thirty technology areas at the EPO. The data
indicate that the extent of patent thickets at the EPO has been increasing in recent years. These
increases are concentrated in complex technology areas. Resulting increases in transactions
costs would therefore affect exactly those technologies that have been central to large produc-
tivity increases in the recent past (Jorgenson and Wessner, 2007). Extended ”patent wars” may
threaten this source of productivity gains in the long run. In future work we therefore intend
to investigate whether strategic patenting has measurable effects on the productivity of firms’
R&D investments and how the decision variables of patent offices (fees and administrative
rules) might be used to influence patent filings.
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Our findings on the effects of technological opportunity raise important questions about
the relationship between patent breadth, the fecundity of research areas and firms’ R&D in-
vestments. We find that the contest for patent rights becomes more intense as the level of
technological opportunities decreases if a technology is complex. This raises the question
how firms’ incentives to patent more intensively interact with incentives to undertake basic re-
search which might stem the reduced fecundity of these technologies. At a more fundamental
level the findings indicate that research into the relationship between technological opportuni-
ties and R&D is important, if we are to understand the welfare implications of recent patenting
trends better.
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Appendix

A Technical Appendix for the Theoretical Model

In this section we derive several of the results which we make use of in deriving our theoret-
ical predictions in Section 2. In particular we describe the functions describing the expected
number of facets covered F̃ and the probability of patenting a facet pk.

Note that below we also employ the following definitions:

ωk ≡ ok
/
O φk ≡ fk

/
F . (10)

A.1 The Expected Number of Rival Investors

Here we derive the expected number of rival firms NO that undertake R&D on the same tech-
nology opportunity as firm k. This expected number of rivals can be expressed as a sum
of products. Each product gives the probability that a given number of rivals invest in the
same technological opportunity. All of these probabilities are then summed to give the overall
expected number of rival firms on a given technological opportunity:

NO =

(
N

1

)
ωj(1− ωj)N−1 + 2

(
N

2

)
ω2
j (1− ωj)N−2 + 3

(
N

3

)
ω3
j (1− ωj)N−3...

=
N∑
i=0

i

(
N

i

)
(1− ωj)(N−i)ωil . (11)

It can be shown that NO is increasing in ω. First rewrite NO as a function of a firm m’s choice
(ωm) and the choices of all other firms (ωl):

NO = Nω
(N−1)
l ωm +

N−1∑
i=0

[(1− ωm)i+ ωm(i+ 1)]

(
N − 1

i

)
(1− ωl)(N−1−i)ωil . (12)

Next we take the derivative with respect to firm m’s choice of level of opportunities:

∂NO

∂ωm
= Nω

(N−1)
l +

N−1∑
i=0

(
N − 1

i

)
(1− ωl)(N−1−i)ωil > 0. (13)

An increase in the number of opportunities oj which other firms invest in, increases the ex-
pected number of rivals patenting facets on the same technological opportunity.
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A.2 The Expected Number of Facets Covered

The expected number of facets covered through the joint efforts of all firms investing in a
technological opportunity is:32

F̃ = F
[
1− (1− φk)

NO∏
j=1

(1− φj)
]

(14)

As noted above, the derivatives of this expression with respect to F and fk are important for
the results there. Both of these can be shown to be positive:

∂F̃

∂F
= 1− (1− φj)NO (1 + φjNO) ≥ 0 ,

∂F̃

∂fk
=

NO∏
j=1

(1− φj) > 0 , (15)

where we impose symmetry in the choice of f across firms in the derivative w.r.t. F . This
derivative is used for comparative statics purposes, after first derivatives have been taken.

Finally note that the elasticities of F̃ with respect to F and f̃i are:

εF̃ fk =φk

[∏NO

j=1(1− φj)
]

1− (1− φk)
∏NO

j=1(1− φj)
, (16)

εF̃F =
1− (1− φj)NO (1 + φjNO)

1− (1− φj)(NO+1)
, (17)

which shows that 1 ≥ εF̃F ≥ 0 as the denominator in the fraction is always greater than the
numerator. It is useful to observe that the upper bound of the elasticity εF̃ fk is decreasing in
NO. To see this note that in equilibrium the elasticity is defined as:

εF̃ fk =φj
(1− φj)NO

1− (1− φj)NO+1
=

(1− φj)NO

(No + 1)
(

1− φj No

2!
+ φ2

j
No(NO−1)

3!
...
) . (18)

The second expression above makes clear that the upper bound of the elasticity decreases in
NO: limφj→0 εF̃ fk = 1

/
(NO + 1) ≤ 1. Here we make use of the binomial expansion of

(1−φj)No+1. From this expression it is also clear that the lower bound of the elasticity is zero
when φj = 1.

A.3 The Probability of Patenting a Facet

Now turn to the probability of obtaining a patent on a facet given NO:

pk =

NO∏
j=1

(1− φj) +
NO

2
· φj

NO−1∏
j=1

(1− φj) +
(NO)(NO − 1)

6

NO−2∏
j=1

(1− φj)
NO∏

l=NO−2

(φl)... ,

32We are grateful for the help of Professor Helmut Küchenhoff and Mr. Fabian Scheipl in deriving this ex-
pression.
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=

NO∑
i=0

1

i+ 1

(
NO

i

)NO−i∏
j=0

(1− φj)
i∏
l=0

φl (19)

The properties of this expression are not easily derived. Here we set out the derivative of
pk w.r.t. φ and we show that pk decreases in NO.

Consider first the effects of an increase in φm, i.e. an increase in the proportion of facets
covered by firm m on the probability that firm k obtains a given facet. To investigate this we
reexpress the probability of obtaining a facet as follows:

pk =

[
NO−1∑
i=0

[
(1− φm)

1

i+ 1
+ φm

1

(i+ 2)

](NO − 1

i

)NO−1−i∏
j=0

(1− φj)
i∏
l=0

φl

]
(20)

Then the derivative is:

∂pk
∂φm

=

[
NO−1∑
i=0

[
− 1

(i+ 1)(i+ 2)

](NO − 1

i

)NO−1−i∏
j=0

(1− φj)
i∏
l=0

φl

]
< 0 . (21)

Finally consider the effects of an increase in NO on the probability of patenting a facet:

pi(NO + 1)− pi(NO) =

NO∑
i=0

1

i+ 1

(
NO

i

)NO−i∏
j=1

(1− φj)
i∏
l=0

φl

−
NO−1∑
i=0

1

i+ 1

(
NO − 1

i

)NO−1−i∏
j=1

(1− φj)
i∏
l=0

φl

=

[
NO−1∑
i=0

(−φm)
1

(i+ 1)(i+ 2)

(
NO − 1

i

)NO−1−i∏
j=1

(1− φj)
i∏
l=0

φl

]
≤ 0 .

(22)

We also plot the function (Figure 7) , allowing φ and NO to vary.

B Proofs

B.1 Proof of Proposition 1

Here we derive the first order conditions that determine the equilibrium number of facets (f̂k)
and technological opportunities (ôk).

∂πk
∂ok

= V sk − L(γk, sk)− Co − γkCa −
∂Cc
∂ok

= 0 , (23)

∂πk
∂fk

=
okpk

F̃

([
V µεF̃ fk − F̃

(
∂L

∂γk
+ Ca

)]
+
[
V − ∂L

∂sk

] (
1− εF̃ fk

))
= 0 . (24)
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Figure 7: Simulation of pi for NO ∈ 0, 100 and φ ∈ 0, 1.

Next, consider the cross-partial derivatives which must be positive if the game G is supermod-
ular. First, we derive the cross partial derivative with respect to firms’ own actions:

∂2πk
∂ok∂fk

=
pk

F̃

([
V µεF̃ fk − F̃

(
∂L

∂γk
+ Ca

)]
+
[
V − ∂L

∂sk

] (
1− εF̃ fk

))
= 0 . (25)

This expression corresponds to the first order condition (24) for the optimal number of facets.
Now consider effects of rivals’ actions on firms’ own actions:

∂2πk
∂ok∂om

=
∂F̃

∂om

sk

F̃

[
V (µ− 1) +

∂L

∂sk

]
+
∂pk
∂om

fk

F̃

[(
V − ∂L

∂sk

)
− F̃

(
∂L

∂γk
+ Ca

)]
, (26)

∂2πk
∂ok∂fm

=
∂F̃

∂fm

sk

F̃

[
V (µ− 1) +

∂L

∂sk

]
+
∂pk
∂fm

fk

F̃

[(
V − ∂L

∂sk

)
− F̃

(
∂L

∂γk
+ Ca

)]
, (27)

∂2πk
∂fk∂om

=
∂F̃

∂om

[
∂V

∂F̃
+
∂2V

∂F̃ 2
F̃ εF̃ fk −

∂L

∂γk
− Ca +

∂2L

∂sk2
sk

F̃
(1− εF̃ fk)

]

−
∂εF̃ fk
∂om

(
V − ∂L

∂sk
− F̃ ∂V

∂F̃

)
− ∂pk
∂om

[
∂2L

∂γk2
fk +

∂2L

∂sk2
fk

F̃
(1− εF̃ fk)

]
, (28)

∂2πk
∂fk∂fm

=
∂F̃

∂fm

[
∂V

∂F̃
+
∂2V

∂F̃ 2
F̃ εF̃ fk −

∂L

∂γk
− Ca +

∂2L

∂sk2
sk

F̃
(1− εF̃ fk)

]

−
∂εF̃ fk
∂fm

(
V − ∂L

∂sk
− F̃ ∂V

∂F̃

)
− ∂pk
∂fm

[
∂2L

∂γk2
fk +

∂2L

∂sk2
fk

F̃
(1− εF̃ fk)

]
. (29)

The game is supermodular if the equations (26)-(29) are non-negative. The following results
show that the conditions noted in Proposition 1 must hold simultaneously if the game is su-
permodular.
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Using the first order condition (24), which will hold for any interior equilibrium, it can be
shown that: [(

V − ∂L

∂sk

)
− F̃

(
∂L

∂γk
+ Ca

)]
= −εF̃ fk

(
V (µ− 1) +

∂L

∂sk

)
. (30)

If
(
V (µ− 1) + ∂L

∂sk

)
> 0, then the second term in the cross-partial derivatives (26) and (27) is

the product of two negative expressions, and then these cross-partial derivatives are positive.
Turning to equations (28) and (29) we can show that:

∂εF̃ fk
∂om

=
∂2F̃

∂fk∂om

fk

F̃
− ∂F̃

∂fk

∂F̃

∂om

fk

F̃ 2
= −F̃−1 ∂F̃

∂om

(
φk

1− φk
+ εF̃ fk

)
(31)

∂εF̃ fk
∂fm

=
∂2F̃

∂fk∂fm

fk

F̃
− ∂F̃

∂fk

∂F̃

∂fm

fk

F̃ 2
= −F̃−1 ∂F̃

∂fm

(
φk

1− φk
+ εF̃ fk

)
(32)

This result allows us to rewrite equations (28) and (29) as follows:

∂2πk
∂fk∂om

=
1

F̃

∂F̃

∂om

[(
V (µ− 1) +

∂L

∂sk

)(
1− 2ε− φ

1− φ

)
+
∂2V

∂F̃ 2
F̃ εF̃ fk +

∂2L

∂sk2
sk

F̃
(1− εF̃ fk)

]

− ∂pk
∂om

[
∂2L

∂γk2
fk +

∂2L

∂sk2
fk

F̃
(1− εF̃ fk)

]
, (33)

∂2πk
∂fk∂fm

=
1

F̃

∂F̃

∂fm

[(
V (µ− 1) +

∂L

∂sk

)(
1− 2ε− φ

1− φ

)
+
∂2V

∂F̃ 2
F̃ εF̃ fk +

∂2L

∂sk2
sk

F̃
(1− εF̃ fk)

]

− ∂pk
∂fm

[
∂2L

∂γk2
fk +

∂2L

∂sk2
fk

F̃
(1− εF̃ fk)

]
. (34)

Given assumptions (V F ) and (LC) these two equations will be positive if
(
V (µ−1)+ ∂L

∂sk

)
> 0

and
(

1− 2ε− φ
1−φ

)
> 0. We discuss each condition in turn here:

1. The term
(
V (µ − 1) + ∂L

∂sk

)
arises in all the cross-partial derivatives (26)- (29) above,

that we need to sign. The cross-partials (26) and (27) will only be positive if the term
is positive. Given our assumptions about the legal cost function (LC) this requires that
V (µ− 1) > − ∂L

∂sk
, which will require at least that µ > 1.

2. We can shown that (1 − 2εF̃ fk) − φk
1−φk

> 0 ⇔ (1 − 2φ) > (1 − φ)(NO+1). This holds
for any φ < 1

2
and N sufficiently large. These conditions imply a setting in which the

ownership of patents belonging to each opportunity is fragmented amongst many firms.
It is more likely to arise if the technology is highly complex, otherwise the condition
that φ < 1

2
is less likely to hold.

Thus we have now shown, that the game we analyze is supermodular if the value of the
technology is increasing in the total number of patents granted per facet (µ > 1), the tech-
nology is sufficiently complex and there are sufficiently large numbers of firms competing for
patents on each technological opportunity.
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B.2 Proof of Lemma 1

Define a game G′, which differs from game G in that the following assumptions hold:

γk ≡ pkfk, and V (γk), where
∂V

∂γk
> 0; L(γk), where

∂L

∂γk
> 0 . (35)

These assumptions capture the idea that firms benefit only from patents granted to them. How-
ever, these patents also raise firms’ legal costs.

Objective function:

πk(ok, fk) = ok (V (γk)− L(γk)− Co − γkCa)− Cc(ok) . (36)

First Order Conditions:

∂πk
∂ok

= V (γk)− L(γk)− Co − γkCa −
∂Cc
∂ok

= 0,
∂πk
∂fk

= okpk

(
∂V

∂γk
− ∂L

∂γk
− Ca

)
= 0 .

(37)

Second Order Conditions:

∂2πk
∂ok∂fk

= pk

(
∂V

∂γk
− ∂L

∂γk
− Ca

)
= 0 (38)

∂2πk
∂ok∂om

= fk
∂pk
∂om

( ∂V
∂γk
− ∂L

∂γk
− Ca

)
= 0 (39)

∂2πk
∂ok∂fm

= fk
∂pk
∂fm

( ∂V
∂γk
− ∂L

∂γk
− Ca

)
= 0 (40)

∂2πk
∂fk∂om

= okpkfk
∂pk
∂om

(
∂2V

∂γk2
− ∂2L

∂γk2

)
(41)

∂2πk
∂fk∂fm

= okpkfk
∂pk
∂fm

(
∂2V

∂γk2
− ∂2L

∂γk2

)
. (42)

Analysis of the first and second order conditions reveals that this simple model is supermodular
under certain conditions. To see this note that the assumptions we impose here (35) and the
first oder condition imply that ∂V

∂γk
> ∂L

∂γk
. Supermodularity requires that ∂2V

∂γk2 < ∂2L
∂γk2 (Viz.

equations 41 and 42). These conditions hold if the legal cost function is relatively more convex
than the value function. Palmer and Kreutz-Delgado (2003) define greater relative convexity of
a twice differentiable function g(x) over a function h(x) as: g′′/g′ > h′′/h′. If both the above
conditions hold, then the cost function is relatively more convex than the value function. The
intuition for this condition is discussed below Lemma 1 in Section 2.4 above.

Apart from the curvature condition this model only requires that the number of facets
per technological opportunity is greater than two, i.e. some technological complexity is a
precondition for strategic complementarity.
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B.3 Proof of Lemma 2

Define a game G′′ in which the following assumptions hold:

V (γk), where
∂V

∂γk
> 0; and assumption (LC).

We impose the restriction on the cross-partial effect in assumption (LC) to keep the interpre-
tation of the model simple. Note that sk(γk), so that an interaction of sk and γk would be hard
to interpret.

Assumption (LC) implies that legal costs are a function of the absolute number of patents
held by a firm (γk) and the share of all patents on an opportunity which the firm holds (sk).
The direct effect of holding more patents is to raise costs as more litigation is likely to result.
Understanding the effects of share of patents owned on an opportunity is more subtle. It is
useful to focus on a setting in which all firms raise patent applications simultaneously. This
can lead to an outcome in which the focal firm still obtains the same absolute number of
granted patents as before, but holds a lower share of all patents on an opportunity. In this case
assumption (LC) implies that the focal firm’s bargaining power falls, raising legal costs. This
happens although the absolute number of patents remains constant.

Objective Function:

πk(ok, fk) = ok (V (γk)− L(γk, sk)− Co − γkCa)− Cc(ok) . (43)

First Order Conditions:

∂πk
∂ok

= V (γk)− L(γk, sk)− Co − γkCa −
∂Cc
∂ok

= 0, (44)

∂πk
∂fk

= okpk

(
∂V

∂γk
− ∂L

∂γk
− Ca

)
− ok

∂L

∂sk

∂sk
∂fk

= 0 . (45)

Second Order Conditions:

∂2πk
∂ok∂fk

= pk

(
∂V

∂γk
− ∂L

∂γk
− Ca

)
− ∂L

∂sk

(
pk

F̃
− sk

F̃

∂F̃

∂fk

)
= 0 (46)

∂2πk
∂ok∂om

= fk
∂pk
∂om

( ∂V
∂γk
− ∂L

∂γk
− Ca

)
− ∂L

∂sk

(
fk

F̃

∂pk
∂om

− sk

F̃

∂F̃

∂om

)
> 0 (47)

∂2πk
∂ok∂fm

= fk
∂pk
∂fm

( ∂V
∂γk
− ∂L

∂γk
− Ca

)
− ∂L

∂sk

(
fk

F̃

∂pk
∂fm

− sk

F̃

∂F̃

∂fm

)
> 0 (48)

∂2πk
∂fk∂om

= ok
∂pk
∂om

(
∂V

∂γk
− ∂L

∂γk
− Ca

)
+ okpkfk

∂pk
∂om

(
∂2V

∂γk2
− ∂2L

∂γk2

)
− ok

∂2L

∂sk2
∂sk
∂fk

∂sk
∂om

− ok
∂L

∂sk

∂2sk
∂fk∂om

(49)
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∂2πk
∂fk∂fm

= ok
∂pk
∂fm

(
∂V

∂γk
− ∂L

∂γk
− Ca

)
+ okpkfk

∂pk
∂fm

(
∂2V

∂γk2
− ∂2L

∂γk2

)
− ok

∂2L

∂sk2
∂sk
∂fk

∂sk
∂fm

− ok
∂L

∂sk

∂2sk
∂fk∂fm

(50)

Analyzing this model requires more additional calculations than previously. First, we use the
first order condition (45) to substitute terms in the cross-partial equations (47,48):

∂2πk
∂ok∂om

= fk
∂pk
∂om

( 1

pk

∂L

∂sk

∂sk
∂fk

)
− ∂L

∂sk

(
fk

F̃

∂pk
∂om

− sk

F̃

∂F̃

∂om

)
=
∂L

∂sk

(
fk

F̃

∂pk
∂om

(
−εF̃ fk

)
+
sk

F̃

∂F̃

∂om

)
∂2πk
∂ok∂fm

= fk
∂pk
∂fm

( 1

pk

∂L

∂sk

∂sk
∂fk

)
− ∂L

∂sk

(
fk

F̃

∂pk
∂fm

− sk

F̃

∂F̃

∂fm

)
=
∂L

∂sk

(
fk

F̃

∂pk
∂fm

(
−εF̃ fk

)
+
sk

F̃

∂F̃

∂fm

)

Both of the expressions are positive if ∂L
∂sk

> 0 as εF̃ fk ≥ 0 and ∂pk
∂fm

< 0, ∂pk
∂om

< 0.
Equations (49, 50) can be reorganized in the same way:

∂2πk
∂fk∂om

= ok
∂pk
∂om

(
1

pk

∂L

∂sk

∂sk
∂fk

)
+ okpkfk

∂pk
∂om

(
∂2V

∂γk2
− ∂2L

∂γk2

)
− ok

∂2L

∂sk2
∂sk
∂fk

∂sk
∂om

− ok
∂L

∂sk

∂2sk
∂fk∂om

⇔okpk

F̃ 2

∂F̃

∂om

(
1− εF̃ fk

) [
1 + sk

∂2L

∂sk2

]
+ okpkfk

∂pk
∂om

(
∂2V

∂γk2
− ∂2L

∂γk2
− 1

F̃ 2

∂2L

∂sk2

)
(51)

∂2πk
∂fk∂fm

= ok
∂pk
∂fm

(
1

pk

∂L

∂sk

∂sk
∂fk

)
+ okpkfk

∂pk
∂fm

(
∂2V

∂γk2
− ∂2L

∂γk2

)
− ok

∂2L

∂sk2
∂sk
∂fk

∂sk
∂fm

− ok
∂L

∂sk

∂2sk
∂fk∂fm

⇔okpk

F̃ 2

∂F̃

∂fm

(
1− εF̃ fk

) [
1 + sk

∂2L

∂sk2

]
+ okpkfk

∂pk
∂fm

(
∂2V

∂γk2
− ∂2L

∂γk2
− 1

F̃ 2

∂2L

∂sk2

)
(52)

The results in this section are interesting: we find that if the share of patents a firm holds
on a given technological opportunity reduces legal costs directly ∂L

∂sk
< 0, as assumed at

(LC) above, then the game we analyze here is not supermodular. Similarly, if legal costs are
concave in the share of patents and if the concavity of the legal cost function is very strong,
then equations (51) and (52) are not positive and supermodularity will fail.

The cross-partial derivatives (47)- (50) are positive if legal costs are concave in the share
of patents a firm holds and as long as 1 > −sk ∂

2L
∂sk2 and ∂2V

∂γk2− ∂2L
∂γk2− 1

F̃ 2

∂2L
∂sk2 < 0. This requires

that the concavity of legal costs with respect to the share of patents held be sufficiently weak.
Then, the game we analyze here is supermodular. Note, that the smaller the equilibrium share
of patents or the higher the number of facets granted by the patent office, the more easily the
model admits concavity of legal costs in the share of patents held by each firm.
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While the assumption that legal costs are concave in the share of patents which a firm holds
ensures supermodularity of the game, it implies that legal costs fall if the focal firm’s share of
patents decreases, holding constant the focal firm’s absolute stock of granted patents. We do
not believe this assumption reflects competition for patents in patent portfolio races.

B.4 Proof of Lemma 3

Define a game G̃′ in which the following assumptions hold:

Assumption (V F ) and L(γk), where
∂L

∂γk
> 0 .

Objective Function:

πk(ok, fk) = ok

(
V (F̃ )sk − L(γk)− Co − γkCa

)
− Cc(ok) . (53)

First Order Conditions:

∂πk
∂ok

= V (F̃ )sk − L(γk)− Co − γkCa −
∂Cc
∂ok

= 0, (54)

∂πk
∂fk

=
okpk

F̃

(
V (F̃ )(1− εF̃ fk) + F̃

(
∂V

∂F̃
εF̃ fk −

∂L

∂γk
− Ca

))
= 0 . (55)

Second Order Conditions:

∂2πk
∂ok∂fk

=
pk

F̃
V (F̃ )(1− εF̃ fk(1− µ))− pk

(
∂L

∂γk
+ Ca

)
= 0 (56)

∂2πk
∂ok∂om

=
fk

F̃

(
pk

F̃
V (F̃ )(µ− 1)

∂F̃

∂om
+
[
V − F̃ ∂L

∂γk
− F̃Ca

] ∂pk
∂om

)
, (57)

∂2πk
∂ok∂fm

=
fk

F̃

(
pk

F̃
V (F̃ )(µ− 1)

∂F̃

∂fm
+
[
V − F̃ ∂L

∂γk
− F̃Ca

] ∂pk
∂fm

)
, (58)

∂2πk
∂fk∂om

=
V

F̃
(µ− 1)(1− εF̃ fk)

∂F̃

∂om
−
∂εF̃ fk
∂om

V (1− µ) + F̃

(
εF̃ fk

∂2V

∂F̃ 2

∂F̃

∂om
− fk

∂2L

∂γk2
∂pk
∂om

)
(59)

∂2πk
∂fk∂fm

=
V

F̃
(µ− 1)(1− εF̃ fk)

∂F̃

∂fm
−
∂εF̃ fk
∂fm

V (1− µ) + F̃

(
εF̃ fk

∂2V

∂F̃ 2

∂F̃

∂fm
− fk

∂2L

∂γk2
∂pk
∂fm

)
.

(60)

From the first order condition it may be shown that the term in square brackets in equations
(57 and 58) is negative. This implies that these two derivatives are positive if the elasticity of
the value of patenting w.r.t. the number of covered facets (µ) is greater than one.

Turning to the remaining two second order conditions (59 and 60) we can show that these
are also positive if µ > 1, φk < 1

2
and ∂2L

∂γk2 ≥ 0.

45



Using the results we derived at (31) above we can then show that:

V

F̃
(µ− 1)(1− εF̃ fk)

∂F̃

∂fm
−
∂εF̃ fk
∂fm

V (1− µ) =
V

F̃
(µ− 1)

∂F̃

∂fm

(
(1− 2εF̃ fk)− φk

1− φk

)
V

F̃
(µ− 1)(1− εF̃ fk)

∂F̃

∂om
−
∂εF̃ fk
∂om

V (1− µ) =
V

F̃
(µ− 1)

∂F̃

∂om

(
(1− 2εF̃ fk)− φk

1− φk

)
.

(61)

As discussed above at 2. under equations (33) and (34) the term in brackets here is positive if
φk <

1
2

andN is sufficiently high. The remaining terms in equations (59) and (60) are positive
if µ > 1 and if ∂2L

∂γk2 ≥ 0.

B.5 Proof of Proposition 2

Rewriting the first order condition (24) we can show that:

V − ∂L
∂sk
− F̃

(
∂L
∂γk

+ Ca

)
V − ∂L

∂sk
− V µ

= εF̃ fk (62)

Notice that numerator and denominator of the fraction above correspond to the terms in the
square brackets in the cross-partials (26) and (27). Both terms must be negative if the equilib-
rium of the supermodular game is to exist. Equation (62) shows that one term is a multiple of
the other. We have also noted that 1 ≥ εF̃ fk ≥ 0 (Appendix A.2). All this implies that:

F̃

(
∂L

∂γk
+ Ca

)
< µV (F̃ )⇔ ∂L

∂γk
+ Ca <

∂V
∂F̃

. (63)

B.6 Proof of Corrolary 1

This result arises because a higher number of firms (N ) increases the number of firms per
opportunity ∂NO

∂N
> 0. Also, from the definition of F̃ in equation (14) it can be seen that

∂F̃
∂NO

> 0. The effect of more competitors on the probability of obtaining a patent on a facet
[ ∂pi
∂NO

< 0] is derived in equation (22). Given these sign restrictions, we can show that:

∂2πk
∂ok∂N

=
fk

F̃

∂NO

∂N

(
pk

F̃

∂F̃

∂NO

[
V (µ− 1) +

∂L

∂sk

]
+

∂pk
∂NO

[(
V − ∂L

∂sk

)
− F̃

(
∂L

∂γk
+ Ca

)])
> 0,

(64)

∂2πk
∂fk∂N

=
1

F̃

∂F̃

∂NO

∂NO

∂N

[(
V (µ− 1) +

∂L

∂sk

)(
1− 2ε− φ

1− φ

)
+
∂2V

∂F̃ 2
F̃ εF̃ fk +

∂2L

∂sk2
sk

F̃
(1− εF̃ fk)

]

− ∂pk
∂NO

∂NO

∂N

[
∂2L

∂γk2
fk +

∂2L

∂sk2
fk

F̃
(1− εF̃ fk)

]
> 0 . (65)

Note that equation (64) has the same structure as equation (26) while equation (65) has the
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same structure as equation (33). This implies that the terms in the square brackets of equations
(64) and (65) are the same as in equations (26) and (33). Therefore these terms have the same
signs. Also, the derivatives mutliplying these terms in brackets have the same signs as the
derivatives in the proof for Proposition 1. For instance, ∂pk

∂om
< 0 and ∂pk

∂NO
< 0 and these

derivatives both multiply a term in brackets that we have shown is negative. As all of these
expressions consist of sums of positive terms, this shows that the expressions above have the
same signs as those in that proof even though the derivative terms are not identical. This shows
that Corollary 1 holds if Proposition 1 holds.

B.7 Proof of Proposition 3

To determine the effects of an increase in technological opportunity O we investigate the
following cross-partial derivatives:

∂2π̃i
∂oi∂O

and
∂2π̃i

∂f̃i∂O
. (66)

If the game set out above is smooth supermodular, it follows from equations (26) and (33)
that both cross-derivatives here are negative. To see this note that oj and O only enter this
model as a ratio: an increase in O is equivalent to a reduction in oj .33 Equations (26) and (33)
are both positive if the game G is smooth supermodular. Their signs are determined by the
derivatives ∂F̃

∂oj
> 0 and ∂pi

∂oj
< 0. The derivatives ∂F̃

∂O
< 0 and ∂pi

∂O
> 0 have exactly opposite

signs, reversing the signs of the cross-partial derivatives above.

B.8 Proof of Proposition 4

Greater complexity of a technology reduces competition for individual patents and this in-
creases patenting incentives:

∂2πk
∂ok∂F

=
∂F̃

∂F

sk

F̃

[
V (µ− 1) +

∂L

∂sk

]
+
∂pk
∂F

fk

F̃

[(
V − ∂L

∂sk

)
− F̃

(
∂L

∂γk
+ Ca

)]
> 0, (67)

∂2πk
∂fk∂F

=
1

F̃

∂F̃

∂F

[(
V (µ− 1) +

∂L

∂sk

)(
1− ε+

φ(NO + 1 + F
F̃

)

1− φ

)
+
∂2V

∂F̃ 2
F̃ εF̃ fk (68)

+
∂2L

∂sk2
sk

F̃
(1− εF̃ fk)

]
− ∂pk
∂F

[
∂2L

∂γk2
fk +

∂2L

∂sk2
fk

F̃
(1− εF̃ fk)

]
> 0 .

Note that equation (67) has the same structure as equation (26) while equation (68) has the
same structure as equation (33). The terms in square brackest are again identical, apart from

the term

(
1− ε+

φ(NO+1+
F
F̃
)

1−φ

)
which is positive, just as the term it replaces. Now consider

33Compare the discussion of the expected number of rivals investing in the same technological opportunity
(NO) in Appendix A.1.
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the derivatives in equations (67) and (68). In Section A.2 we show that ∂F̃
∂F

> 0. Next, the
definition of pk shows that this expression consists of products of φ and (1 − φ). We have
already shown that game G is only supermodular if φ < 1/2. In this case the derivative of pk
with respect to F is negative by the definition of φ. This implies that the derivatives in both
expressions above have the same signs as the corresponding derivatives in equations (26) and
(33) and so both expressions above are positive whenever Proposition 1 holds.

B.9 Proof of Proposition 5

To see that this is true consider the first and second order derivatives of the payoff function
with respect to technological opportunities invested in:

∂π

∂ok
= (V − L− Ca)pk −

∂Cc
∂ok

= 0
∂2π̃

∂ok2
= −∂

2Cc
∂ok2

. (69)

If we assume that costs of coordinating technological opportunities are strictly convex:
∂2Cc

∂ok2 > 0, then Proposition 5 can be proved with the help of the implicit function theorem:

∂ok
∂O

= − ∂2π̃

∂ok∂O

/
∂2π̃

∂ok2
> 0 , (70)

where ∂2π̃
∂ok∂O

= (V − L− Ca) ∂p∂O > 0.

B.10 Proof of Corrolary 2

To see this is true note that ∂2π̃
∂ok∂N

= (V − L− Ca) ∂pk
∂NO

∂NO

∂N
< 0. Then:

∂ok
∂N

= − ∂2π̃

∂ok∂N

/
∂2π̃

∂ok2
< 0 . (71)
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C Results from OLS and Fixed Effects Regressions

Table 7: Patent Applications Estimates using OLS and Fixed Effects

OLS models Fixed effects models

Variable OLS 1 OLS 2 OLS 3 FE 1 FE 2 FE 3

log Patentcountt−1 0.586*** 0.562*** 0.560*** 0.170*** 0.155*** 0.154***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

log Patentcountt−1× Triples 0.001*** 0.001*** 0.001*** 0.001***

(0.000) (0.000) (0.000) (0.000)

Non Patent References (NPR) 0.057*** 0.067*** 0.058*** 0.004 0.012 -0.011

(0.002) (0.002) (0.003) (0.007) (0.008) (0.009)

NPR × Triples -0.001*** -0.001*** 0.000* 0.001**

(0.000) (0.000) (0.000) (0.000)

NPR × Triples × Large -0.000*** -0.000*

(0.000) (0.000)

NPR × Large 0.022*** 0.036***

(0.003) (0.006)

Fragmentation 0.569*** 0.546*** 0.544*** 0.456*** 0.432*** 0.431***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Fragmentation × Triples 0.001*** 0.001*** 0.001*** 0.001***

(0.000) (0.000) (0.000) (0.000)

Triples 0.000*** 0.001*** 0.001*** 0.001*** -0.001** -0.001**

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Areas 0.018*** 0.018*** 0.018*** 0.082*** 0.082*** 0.082***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Large 0.183*** 0.189*** 0.174*** 0.259*** 0.259*** 0.226***

(0.004) (0.004) (0.005) (0.005) (0.005) (0.008)

Year dummies YES YES YES YES YES YES

Primary area dummies YES YES YES YES YES YES

Constant 0.106*** 0.105*** 0.116*** 0.031* 0.041** 0.066***

(0.011) (0.011) (0.011) (0.015) (0.015) (0.016)

R-squared 0.686 0.688 0.688 0.323 0.324 0.324

N 173448 173448 173448 173448 173448 173448

*p<0.05, ** p<0.01, *** p<0.001
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D LED Technology

Light emitting diodes (LED) are based on physical principles that were discovered in the early
20th century and were first introduced as a practical electronic component by Holonyak and
Bevacqua (1962). LEDs consist of semiconducting material that has been impregnated with
impurities to create so-called p-n-junctions that generate the physical characteristic of diodes,
i.e., current is flowing only from the anode-side to the cathode-side, but not in the reverse
direction. Depending on the materials used to impregnate the chip underlying the diode and
the way of applying it to the supporting material, different wavelengths of light are emitted
by LEDs. Historically, the first usable LEDs were infrared and red devices based on gallium
arsenide.

Since the emergence of the first red LEDs, major research paths in LED-technology can
be classified in two broad categories comprising (i) the identification of different materials to
produce different colours and (ii) improvement of efficiency and operational parameters. The
combination of the results from R&D in these two dimensions led to the gradual improvement
of this technology.

The nature of the research conducted within the realm of LEDs is a good example of how
we think about technology areas in terms of technology opportunity and patentable facets.
First, the different materials that are used to impregnate semiconducting materials can be
thought of as separate technological opportunities in the technology area of LEDs. Discovery
of novel materials that can be used in the production of LEDs stems from basic research that
can be conducted within firms or within universities.

Second, different materials require novel production techniques since efficient impregna-
tion of the semiconducting base of LEDs largely depends on the characteristics of the material
used (Yam and Hassan, 2005). Therefore, the emergence of novel materials opens up a certain
number of patentable facets. Once a novel material has been discovered, firms have to adapt
their production techniques to efficiently manufacture LEDs using that material and they have
to invest in opportunity-specific R&D to do so. We model these specific R&D efforts as Co in
our theoretical model. Note that such opportunity specific R&D can also lead to more efficient
LEDs over time.

Both novel manufacturing techniques as well as efficiency gains can be protected by patent
rights and therefore can be considered as examples of patentable facets. If separate firms en-
gage in R&D activities within opportunities it is likely that more than one firm obtains patents
on crucial production steps. This might give rise to situations where firms need to access
competitors property rights - which we consider to be a hallmark of a complex technology. In
fact, patents are crucial in the LED industry and a high degree of cross-licensing and infringe-
ment law-suits among can be observed. A list of relevant deals and disputes can be found on
http://www.ledsmagazine.com/features/1/8/21/1.
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E Complex and Discrete Technologies

Table 8: Classification of technology areas according to OST-INPI/FhG-ISI

Area Code Description Classification

1 Electrical machinery, electrical energy Complex

2 Audiovisual technology Complex

3 Telecommunications Complex

4 Information technology Complex

5 Semiconductors Complex

6 Optics Complex

7 Analysis, measurement, control technology Complex

8 Medical technology Complex

9 Nuclear engineering Complex

10 Organic fine chemistry Discrete

11 Macromolecular chemistry, polymers Discrete

12 Pharmaceuticals, cosmetics Discrete

13 Biotechnology Discrete

14 Agriculture, food chemistry Discrete

15 Chemical and petrol industry, basic mat Discrete

16 Chemical engineering Discrete

17 Surface technology, coating Discrete

18 Materials, metallurgy Discrete

19 Materials processing, textiles paper Discrete

20 Handling, printing Discrete

21 Agricultural and food processing, machin Discrete

22 Environmental technology Complex

23 Machine tools Complex

24 Engines, pumps and turbines Complex

25 Thermal processes and apparatus Complex

26 Mechanical elements Complex

27 Transport Complex

28 Space technology, weapons Complex

29 Consumer goods and equipments Complex

30 Civil engineering, building, mining Complex

Description of the 30 technology areas contained in the OST-INPI/FhG-ISI technology nomenclature.

We classified the 30 technology areas as complex or discrete attempting to replicate the classification

of Cohen et al. (2000).
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