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Abstract: This paper describes an efficient randomised sphere cover classifier
(αRSC), that reduces the training dataset size without loss of accuracy when
compared to nearest neighbour classifiers. The motivation for developing this
algorithm is the desire to have a non-deterministic, fast, instance-based classifier
that performs well in isolation but is also ideal for use with ensembles. Essentially
we trade off decreased testing time for increased training time whilst retaining the
simple and intuitive nature of instance-based classifiers. We use 24 benchmark
datasets from UCI repository and six gene expression datasets for evaluation. The
first set of experiments demonstrate the basic benefits of sphere covering. We
show that there is no significant difference in accuracy between the basic αRSC
algorithm and a nearest neighbour classifier, even though αRSC compresses the
data by up to 75%. We then describe a pruning algorithm that removes spheres
that contain α or fewer training instances and compare the results to three data
reduction algorithms. The experiments show better average data reduction (89.5%)
and improved overall accuracy. The second set of experiments demonstrate that
when we set the α parameter through cross validation, the resulting αRSC
algorithm outperforms several well known classifiers when compared using the
Friedman rank sum test. Thirdly, we test the usefulness of αRSC when used
with three attribute filtering methods on six gene expression datasets. Finally,
we highlight the benefits of pruning with a bias/variance decomposition. In
conclusion, we discuss why the randomisation inherent in αRSC makes them
an ideal ensemble component and outline our future direction.
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Anthony Bagnall

1 Introduction

Instance-based learning techniques (Kibler et al., 1991) operate by keeping a typical
sample of the training data then classifying new instances based on their similarity to the
retained sample. Instance-based learning algorithms are defined by three characteristics:
a similarity function that specifies the closeness of two instances, a selection function
that selects the samples to be kept by the algorithm, and a classification function that
decides on the class of unseen instances. The simplest and most popular IBL algorithm
is the nearest neighbour (NN) algorithm which retains the entire training set. Although
surprisingly effective, one well documented problem with NN classifiers is that
classifying a new instance requires a distance calculation for each instance in the training
set. Data reduction algorithms have been studied in great depth (Wilson and Martinez,
2000; Bezdek and Kuncheva, 2000; Kim and Oommen, 2003). In general, these
algorithms search the training data for a subset of cases and/or attributes with which
to classify new instances with the objective of achieving the maximum compression
with the minimum reduction in accuracy. Recently, development in compression scheme
rejuvenated research in compression algorithms (Shah, 2008). Compression scheme
(Floyd and Warmuth, 1995) is put forward to explain the generalisation performance of
sparse algorithms. In general, various algorithms are called sparse because they keep a
subset from the training set as part of their learning process (Laviolette et al., 2005). In
Younsi and Bagnall (2010), we proposed a new fast and efficient sparse algorithm based
on the class cover method which we call randomised sphere cover classifier (αRSC).
In this paper, we explore the generalisation and compression performance of αRSC
using several experiments. In addition, we test the usefulness of αRSC on six gene
expression datasets. Lastly, we explore the reason behind the good performance of this
simple classifier using Domingo’s bias/variance decomposition of the error (Domingos,
2000). The rest of this paper is structured as follows: Section 2 provides some further
background into data reduction and class cover problem (CCP); Section 3 describes the
αRSC algorithm and the α pruning scheme used in the experimentation; The results are
reported in Section 5 and finally, we conclude in Section 6 and discuss future direction.



An efficient randomised sphere cover classifier 3

2 Background

The sphere covering mechanism we use stems from the class covering approach to
classification (Cannon and Cowen, 2000). The CCP involves finding the smallest
number of sets covering (i.e., containing) points from one class without covering any
points from a second class. The solution to the CCP proposed in Priebe et al. (2003)
involves constructing a class cover catch digraph (CCCD), a directed graph based on
the proximity of training cases. However, finding the optimal covering via the CCCD
is NP-hard (Cannon et al., 2002). Hence (Marchette and Priebe, 2003; Marchette, 2004)
proposed a number of greedy algorithms to find an approximately optimal set covering.
Whilst covering techniques have shown to be good classifiers that effectively compress
the data (Priebe et al., 2003), these algorithms have the drawback that they are still time
consuming and that they only find pure coverings, i.e., sets that only contain cases of
a single class. An algorithm that relaxes the requirement of class purity was proposed
by Priebe et al. (2003). This algorithm introduces two parameters to alleviate this
constraint on a pure proper cover. Whilst effective, the parameters are non-intuitive and
hard to set. The greedy algorithms proposed all have a run time complexity of O(n2),
and hence (to the best of our knowledge) there has been very limited experimental
evaluation of the algorithms proposed in Marchette and Priebe (2003) and Priebe et al.
(2003) since most of them are impractical for large and complex datasets. The sphere
covering algorithm we propose follow the same principles proposed in Marchette et al.
(2003). The algorithm is computationally efficient, randomises the process of finding a
set covering and allows for pruning through the setting of a single parameter α which
directly penalise complex covers.

3 An αRSC

The reason for designing the αRSC algorithm was to develop an instance-based
classifier to use in ensembles. Hence our design criteria were that it should be
randomised (to allow for diversity), fast (to mitigate against the inevitable overhead of
ensembles) and comprehensible (to help produce meaningful interpretations from the
models produced). The αRSC algorithm has a single integer parameter, α, that specifies
the minimum size for any sphere. Informally, for any given α, αRSC works as follows.

1 Repeat until all data are covered.

a randomly select a data point and add it to the set of covered cases
b create a new sphere centred at this point
c find the closest case in the training set of a different class to the one selected as

a centre
d set the radius of the sphere to be the distance to this case
e find all cases in the training set within the radius of this sphere
f if the number of cases in the sphere is greater than α, add all cases in the sphere

to the set of covered cases and save the sphere details (centre, class and radius).
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A more formal algorithmic description is given in Algorithm 1. For all our experiments
we use the Euclidean distance metric, although the algorithm can work with any distance
function.

Algorithm 1 A αRSC
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The parameter α allows us to smooth the decision boundary, which has been shown to
provide better generalisation by mitigating against noise and outliers, (see for instance
Liu and Motoda, 2002). Figure 1 provides an example of the smoothing effect of
removing small spheres on the decision boundary.

Figure 1 An example of the smoothing effect of removing small spheres (a) a sphere cover with
α = 1 (b) the same cover with α = 2

(a) (b)
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The αRSC algorithm classifies a new case by the following rules:

Rule 1 a test example that is covered by a sphere, takes the target class of the
sphere. If there is more than one sphere of different target class covering the
test example, the classifier takes the target class of the sphere with the closest
centre.

Rule 2 in the case where a test example is not covered by a sphere, the classifier
selects the closest spherical edge.

A case covered by Rule 2 will generally be an outlier or at the boundary of the class
distribution. Therefore, it may be preferable not to have spheres over-covering areas
where such cases may occur. These areas are either close to the decision boundary
specifically when the high overlap between classes exist [an illustration is given in
Figure 1(a)], and areas where noisy cases are within dense areas of examples of different
target class. The αRSC method of compressing through sphere covering and smoothing
via boundary setting provides a robust simple classifier that is competitive with other
commonly used classifiers.

4 Bias and variance decomposition

In general, the bias/variance theory is used successfully to analyse the generalisation
error of any classifier (Valentini and Dietterich, 2004). The main characteristic of the
bias and variance decomposition is simplicity of use. The bias/variance decomposition
essentially consists in decomposing the generalisation error into two components: bias
and variance. In this section, we discuss briefly the bias/variance decomposition for the
0/1 loss function using Domingos framework (Domingos, 2000).

The bias is attributed to the systematic part of the error, while variance to the
stochastic part of the error (Domingos, 2000). It is commonly recognised that.

1 bias arises when the classifier cannot represent the true function. That is, the
classifier underfits the data

2 variance arises when the classifier overfits the data

3 there is often a trade-off between bias and variance.

In practice, the bias and variance are computed by running the algorithm several times
on different training sets. To this end, we need to sample repeatedly from a set U in
order to make s training datasets {Di}si=1. Each bootstrap Di is made of t training
examples Di = {xj , yj}ti=1, where each point is a pair (xj , yj), yj ∈ C, x ∈ Rn, n ∈ N,
and C is the set of class labels. Di can be seen as a random variable. A learning
algorithm A produces a hypothesis fDi

using a training set Di such as fDi
= A(Di).

For each point x ∈ Rn the hypothesis produces a prediction fDi(x) = p, and L(y, p)
represents the 0/1 loss, if p = y then L(y, p) = 0, else L(y, p) = 1. The goal of our
learning algorithm A consists in minimising the expected loss EL. Thus, the expected
loss at point x can be written as: EL(A, x) = EDi[Ey[L(y, fDi(x)]], EDi[.] indicate
the expected value with respect to the distribution of Di. Ey[.] is the expectation with
respect to y since the randomness in y due to the choice of a particular test point (x, y).

The two important variables are the optimal prediction p∗ and the main prediction
(also known as central tendency) pc. Both p∗ and pc are evaluated using 0/1 loss
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function and without considering noise (Noise is only considered for theoretical analysis
as it is impossible to calculate in practice) (Domingos, 2000).

Definition 4.1 [Optimal prediction p∗ (Domingos, 2000)]: An optimal prediction p∗ is
the prediction that the optimal classification algorithm does (which is the prediction
obtained by the Bayes classifier).

In practice we cannot compute this optimal prediction p∗ so instead we replace it with
y the target value.

Definition 4.2 [Main prediction pc (Domingos, 2000)]: The main prediction pc for the
example (x, y) is the class most often predicted.

To compute pc for an example (x, y) of the test set, we need to get all the fDi
(x)

predictions for that example from different hypotheses, and then find the prediction that
appears most often, this will be pc.

The bias B(x) is the loss of the main prediction relative to the optimal prediction
p∗.

Bias measures how far are the predictions that a learning algorithm does for
an example (x, y) from the optimal prediction, p∗. For the 0/1 loss, the bias is
always 0 or 1. Thus, it is said that the learning algorithm A is biased at point x, if
B(x) = 1. The bias B(x) is:

B(x) = L(p∗, pc) (1)

Definition 4.2 [Net variance V (x) (Domingos, 2000)]: The net variance V (x) is the
average loss of the predictions relative to the main prediction.

Net variance measures how the choice of the training set affects the predictions of the
learning algorithm. In our case, it measures how the predictions of a learning algorithm
for a specific example, derived from the Di different training sets, fluctuate around the
most often prediction pc associated with that example. The variance is:

The net–variance V (x) is:

V (x) = EDi[L(pc, fDi(x))] (2)

The biased variance Vb and the unbiased variance Vu constitute the two components
of the net variance. The unbiased variance corresponds to the variance of incorrect
predictions for the case where the main prediction is correct (pc = p∗). Thus, unbiased
variance captures the extents to which the learner deviates from the correct prediction
pc. In this case, the unbiased variance is added to the error. On the other hand, the
biased variance corresponds to the variance of correct predictions for the case where
the main prediction is incorrect (pc ̸= p∗). Thus, biased variance captures the extents to
which the learner deviates from the incorrect prediction pc. As a consequence, the net
variance is the difference of the two: V = Vu − Vb. This means that variance hurts on
unbiased examples while it helps on biased examples.

Domingos decomposition is:

EL(A, x) = c1N(x) +B(x) + c2V (x)



An efficient randomised sphere cover classifier 7

Noise part c1N(x) is disregarded simplifying the decomposition to

EL(A, x) = B(x) + c2V (x)

c2 is +1 if B(x)) = 0 and −1 if B(x)) = 1.
Thus, the average loss Ex[EL(A, x)] for a learning algorithm A on all the examples

is calculated using the average bias, variance (unbiased, biased and net variance),
averaged over the entire set of the examples of the test set is:

Ex[EL(A, x)] =Ex[B(x)] + Ex[Vu(x)]− Ex[Vb(x)]
=Ex[B(x)] + Ex[(1− 2B(x))V (x)] (3)

To give a simple interpretation, we use a similar illustration presented in Webb (2000).
Let (x, y), be an example where y ∈ C = {a, b, c} is the target value of an example x.

Let say that an algorithm is run ten times on different training set. For each case
(example (x, y)), we get a prediction, for a total of ten predictions as shown in Table 1.
The main prediction for an example (x, y) is the class most often predicted. For the 0/1
loss, the bias is always 0 or 1. The contribution of bias to error depends on the loss
of the main prediction relative to the optimal prediction. The contribution of variance
to error depends on the average loss of the predictions relative to the main prediction.
Thus, the error in Domingos bias/variance decomposition is:

Case 1 Ex[B(x)] + Ex[(1− 2B(x))V (x)] = 0 + ((1− 0) ∗ 0.6) = 0.6

Case 2 Ex[B(x)] + Ex[(1− 2B(x))V (x)] = 1 + ((1− 2) ∗ 0.4) = 0.6

Case 3 Ex[B(x)] + Ex[(1− 2B(x))V (x)] = 0 + ((1− 0) ∗ 0.2) = 0.2

Table 1 Table showing an example of BV calculation

Correct class Case 1 Case2 Case3
a b c

Prediction 1 a a a
Prediction 2 a a b
Prediction 3 a a c
Prediction 4 a a c
Prediction 5 b a c
Prediction 6 b a c
Prediction 7 b b c
Prediction 8 c b c
Prediction 9 c b c
Prediction 10 c b c
Main prediction a a c
Bias 0 1 0
Variance 0.6 0.4 0.2
Error 0.6 0.6 0.2

In the second case, the error comes from both bias and variance, whereas in the two
other cases, the error comes from variance only. As stated above, the interesting point
about Domingos decomposition is that reducing unbiased variance in Case 1 will help
reduce variance. Hence, the overall error is reduced. In the other hand, reducing the
biased variance of Case 3 will increase the overall error. It becomes clear that in order
to reduce the overall error, it is required that both bias (B(x)) and unbiased variance
(Vu(x)) are reduced.
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5 Results

In this section, we perform four sets of experiments. The first set is meant to
demonstrate the general principle that we can intelligently compress the dataset
using αRSC without significantly increasing classification error. The second set of
experiments shows that the αRSC classifier performs as well as or better than other
classifiers based on similar principles. The third set of experiments investigates the
usefulness of αRSC in real domains on gene expression datasets. Finally, we show the
reason pruning (α parameter) is the main reason for the good performance of αRSC
using the bias/variance decomposition of the generalisation error.

5.1 Experimental setup

To evaluate the performance of αRSC, we used twenty four datasets from
both UCI data repository (Asuncion and Newman, 2007), and boosting repository
(http://ida.first.gmd.de/raetsch/data/benchmarks.htm). These datasets are summarised in
Table 2. They were selected because they vary in the numbers of training examples,
classes and attributes and thus provide a diverse testbed. In addition, they all have only
continuous attributes.

Table 2 Benchmark datasets used for the empirical evaluations

Dataset Examples Attributes Classes Dataset Examples Attributes Classes
Sonar 208 60 2 Vehicle 846 18 4
Glass6 214 9 6 Vowel 990 10 11
Glass2 214 9 2 German 1,000 20 2
Thyroid 215 5 2 Concentric 2,000 2 2
Heart 270 13 2 Image segment 2,310 18 2
Haberman 306 3 2 Abalone 4,177 8 3
Cancer 315 13 2 Clouds 5,000 2 2
Ecoli 336 7 8 Waveforme 5,000 40 3
Ionosphere 351 34 2 Ringnorm 7,400 20 2
wdbc 569 30 2 Twonorm 7,400 20 2
Winsconsin 699 9 2 Pendigitis 10,991 14 10
Pima diabetes 768 8 2 Magic 19,020 2 10

For the experiments in Section 5.2 we used a stratified ten-fold cross validation
(CV). In the first experiments, we compare the proposed classifier with several state
of the art data reduction algorithms. We used Wilson’s programme written in C for
Drop3, IB3, and Explore (Wilson and Martinez, 2000). For the later experiments we
performed model selection on the parameter values, in that for each fold of the overall
cross-validation we first took a test sample, then cross validated on the remainder to set
the parameter. For comparison purposes we compare to K-nearest neighbour (K-NN),
the non-nested generalised exemplar (NNge) (Martin, 1995), C4.5, Naive Bayes (NB)
and Naive Bayes tree (NBTree. K-NN and NNge are the most relevant for comparison
purposes, the other three are included for completeness. Weka implementations are used
for the standard classifiers, bespoke implementations for αRSC and NNge.
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Table 3 10-fold CV classification accuracy (in %) and standard deviation over the folds

Dataset 1-NN uRSC (%) Dataset 1-NN uRSC (%)
Vehicle 69.61 ± 4.62 68.13 ± 4.75 50 Glass6 70.30 ± 8.96 69.00 ± 9.49 52
Segment 97.14 ± 1.07 96.10 ± 1.21 89 Cancer 67.65 ± 7.80 68.08 ± 7.76 52
Abalone 50.13 ± 2.25 49.46 ± 2.02 32 Breastw 95.67 ± 2.48 95.36 ± 2.42 90
Waveform 85.88 ± 1.57 85.41 ± 1.55 73 Concentric 98.54 ± 0.79 98.21 ± 0.82 97
Ringnorm 72.59 ± 0.53 95.16 ± 0.49 63 Clouds 84.64 ± 1.68 84.75 ± 1.48 76
Magic 80.16 ± 0.32 79.95 ± 0.35 68 wdbc 94.01 ± 2.95 95.38 ± 2.65 88
Pendigits 98.95 ± 0.10 97.72 ± 0.25 93 Thyroid 96.80 ± 3.33 95.40 ± 4.44 88
Vowel 98.90 ± 1.05 95.70 ± 2.34 77 German 70.70 ± 4.34 70.30 ± 3.86 52
Twonorm 94.51 ± 0.29 93.78 ± 0.34 83 Diabetes 70.62 ± 4.67 68.87 ± 5.02 51
Glass2 94.25 ± 4.72 93.86 ± 5.67 87 Ionosphere 87.10 ± 5.12 92.80 ± 3.75 69
Ecoli 80.66 ± 6.16 81.75 ± 6.26 66 Heart 75.78 ± 7.34 75.26 ± 8.98 60
Haberman 65.77 ± 6.92 68.58 ± 7.38 53 Sonar 86.23 ± 7.41 82.80 ± 8.48 61

Note: The final column gives the average compression rate for unpruned RSC (uRSC).

Table 4 10-fold CV classification accuracy (in %)

Dataset K-NN αRSC Comp % IB3 Comp % Drop3 Comp % Explore Comp %
Sonar 87.02 81.22 80.28 76.57 83.07 80.38 79.49 77.45 98.88
Glass2 94.37 94.76 90.50 93.42 88.42 94.83 92.16 92.99 98.96
Glass6 72.42 70.44 75.65 64.03 67.97 67.34 76.12 67.81 96.57
Tyroid 95.76 94.26 95.32 91.65 91.27 93.94 89.20 92.90 98.50
Heart 83.33 82.81 99.09 58.89 93.21 81.85 80.16 83.33 99.18
Haberman 73.56 74.89 91.41 26.48 98.98 73.88 91.65 73.19 99.56
Cancer 74.11 74.40 93.09 39.48 95.92 74.50 90.69 68.36 99.48
Ecoli 84.84 85.09 81.29 81.86 70.08 84.24 81.25 83.03 98.08
Iono 85.75 93.40 78.74 85.49 86.17 86.03 92.97 79.77 99.02
wdbc 96.31 96.26 92.91 93.50 90.57 95.60 89.87 95.78 99.61
Wins 96.57 97.03 95.97 96.28 93.96 96.28 95.55 96.43 99.68
Diabetes 73.70 74.63 82.29 70.30 90.26 75.66 82.15 74.48 99.71
Vehicle 71.26 66.23 83.84 65.48 72.60 68.79 75.85 47.87 99.29
Vowel 99.09 93.16 79.01 93.94 79.28 94.65 70.38 71.01 93.29
German 75.30 73.87 89.30 70.50 90.19 73.60 83.60 69.40 99.78
Conc 98.68 98.64 98.33 97.00 93.00 98.28 91.11 63.16 99.96
Image 97.71 96.20 89.96 94.42 93.11 95.76 91.39 87.75 99.59
Abalone 53.77 54.44 92.16 53.05 80.37 54.78 82.86 53.00 99.92
Clouds 88.52 88.81 95.26 87.26 95.37 88.10 93.10 77.94 99.96
Waveform 88.80 89.56 99.44 86.26 96.83 89.28 87.20 85.36 99.96
Ringnorm 72.45 95.60 81.37 86.18 85.58 91.69 92.88 86.19 99.46
Twonorm 97.24 96.59 98.98 95.72 96.82 96.77 90.69 95.92 99.95
Pendigitis 99.07 97.83 94.24 97.39 94.80 97.85 94.13 95.27 98.89
Magic 83.53 83.12 89.48 80.10 95.44 83.70 89.06 76.50 79.88
Average 85.13 85.55 89.50 78.55 88.47 84.91 86.81 78.95 98.22

Note: The final column gives the average compression rate (comp) for αRSC.

5.2 Experiment 1: compression without loss of accuracy

The average compression rate for unpruned RSC was 75%. These experiments clearly
show that by using the simplest form of αRSC we can discard a large proportion of the
data whilst maintaining the same level of accuracy. In order to verify the compression
rate and the accuracy of the pruned RSC (αRSC), we used Drop3, IB3 and Explore.
Drop3 was shown to be the best reduction algorithm in terms of reduction and accuracy
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in comparison to 14 other data reduction algorithms (Wilson and Martinez, 2000). IB3
is an algorithm which was proposed to rectify shortcomings of the famous IB1 and
IB2 (Wilson and Martinez, 2000). Explore was shown to produce very good reduction
without too much deterioration in accuracy (Wilson and Martinez, 2000). The results
produced in Table 4 shows the best accuracy produced by K-NN and αRSC trained
over a range of parameter values while the reduction algorithms use internal tuning to
produce the best results.

The results shown in Table 4 demonstrate once more the good performance of
αRSC in comparison of state of the art data reduction algorithms. In addition, the
average accuracy is comparable to that of K-NN.

Table 5 Classification accuracy (in %) and standard deviation of five classifiers in comparison
with αRSC

Datasets αRSC DT K-NN NB NBT NNge
Sonar 83.43 ± 5.37 73.52 ± 5.63 85.57 ± 4.11 73.38 ± 4.91 74.14 ± 3.96 58.29 ± 4.48
Heart 78.85 ± 3.62 77.19 ± 5.52 81.56 ± 2.75 85.11 ± 3.12 80.48 ± 3.70 78.74 ± 3.66
Haberman 73.37 ± 0.72 70.98 ± 4.19 74.44 ± 2.62 73.95 ± 2.32 72.61 ± 3.27 67.25 ± 3.91
Cancer 70.93 ± 1.89 69.82 ± 6.76 74.77 ± 3.22 75.05 ± 3.25 74.52 ± 3.16 68.03 ± 5.15
Ecoli 71.13 ± 2.50 81.28 ± 3.30 85.80 ± 2.78 85.33 ± 2.91 81.96 ± 2.76 83.78 ± 2.96
Liver 60.90 ± 4.44 63.88 ± 4.37 62.32 ± 3.83 64.41 ± 4.01 63.71 ± 4.14 61.48 ± 5.01
Iono 93.19 ± 1.46 75.05 ± 2.45 86.87 ± 2.58 91.99 ± 2.17 89.52 ± 1.72 91.23 ± 2.98
wdbc 92.33 ± 1.93 93.49 ± 2.05 95.11 ± 1.74 89.33 ± 5.52 93.79 ± 1.63 91.96 ± 2.91
Wins 96.65 ± 1.10 94.03 ± 1.22 96.49 ± 0.57 97.18 ± 0.77 96.14 ± 1.08 96.01 ± 1.16
Diabetes 74.09 ± 2.40 72.77 ± 2.55 74.66 ± 1.95 75.55 ± 1.88 73.87 ± 2.29 72.79 ± 2.28
Vehicle 67.32 ± 1.93 70.91 ± 2.94 68.44 ± 1.50 58.96 ± 2.56 68.00 ± 2.06 61.81 ± 4.86
Vowel 76.32 ± 1.60 74.54 ± 2.06 97.45 ± 1.09 66.37 ± 3.11 75.63 ± 3.06 83.40 ± 2.68
German 72.29 ± 1.70 70.68 ± 1.97 74.72 ± 1.64 71.16 ± 1.06 72.48 ± 2.32 63.29 ± 9.09
Yeast 55.82 ± 2.52 53.44 ± 1.52 57.01 ± 1.78 57.95 ± 2.16 56.33 ± 1.92 52.77 ± 2.93
Segment 95.48 ± 0.66 93.94 ± 0.86 96.99 ± 0.54 78.40 ± 1.84 93.37 ± 0.94 86.46 ± 2.65
Concentric 98.01 ± 0.57 98.42 ± 0.31 98.51 ± 0.32 98.19 ± 0.27 98.51 ± 0.27 89.72 ± 7.90
Abalone 53.86 ± 1.09 51.67 ± 1.39 54.20 ± 1.16 52.13 ± 0.99 53.73 ± 1.44 50.51 ± 1.75
Clouds 88.50 ± 0.75 88.29 ± 0.56 88.62 ± 0.50 86.24 ± 0.51 88.51 ± 0.59 83.22 ± 1.02
Waveform 89.31 ± 0.62 84.93 ± 0.64 89.64 ± 0.54 85.19 ± 0.65 88.12 ± 0.93 78.44 ± 3.73
Banana 89.93 ± 0.43 88.78 ± 0.64 89.83 ± 0.66 72.51 ± 0.95 88.82 ± 0.76 82.67 ± 5.53
Phono 87.35 ± 0.63 85.58 ± 0.80 88.86 ± 0.45 78.29 ± 0.74 84.20 ± 1.09 81.81 ± 1.60
Satimage 90.21 ± 0.52 85.60 ± 0.62 90.55 ± 0.40 82.00 ± 0.69 82.43 ± 1.48 86.75 ± 0.90
Twonorm 96.67 ± 0.46 84.35 ± 0.74 97.27 ± 0.31 97.53 ± 0.32 93.74 ± 1.63 79.04 ± 1.47
Ringnorm 95.41 ± 0.40 90.82 ± 0.51 73.94 ± 0.62 98.44 ± 0.19 96.77 ± 0.66 91.62 ± 1.18
Pend 98.19 ± 0.20 95.71 ± 0.30 99.08 ± 0.16 85.41 ± 0.46 94.34 ± 0.58 95.69 ± 0.65
Magic 83.63 ± 0.37 84.63 ± 0.38 83.56 ± 0.34 75.80 ± 0.42 85.09 ± 0.33 81.60 ± 0.59
F-Avg. 3.96 2.77 5.06 3.38 3.79 2.04
Ranks 2 5 1 4 3 6

Notes: αRSC is used for the baseline. F-Avg stands for Friedman averages and Ranks stands
for Friendam ranks

5.3 Experiment 2: performance equivalent to other classifiers

The accuracy results in Table 5 are based on an independent test set drawn randomly
from the dataset. We use 2/3 of the dataset for training and tested the classifiers on the
same remaining test set. However, given the randomisation nature of αRSC, we choose
to use the average of 30 runs on each algorithm in order to make a fair comparison.
Tuning the parameters for both α and K is based on the average of 15 runs using ten CV
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on the training set alone. NNge was trained based on the best parameters suggested
by its authors. The decision tree is trained without pruning (J48) using the default
parameters in WEKA. NB has no parameters.

We are primarily interested in the relative performance of the classifiers over the
range of datasets. In order to compare the algorithms on the overall datasets, we use
Friedman ranks sum test (Janez, 2006). This test ranks the classifiers over each dataset
(with the best performing algorithm getting the Rank of 1, the second best Rank 2, etc.).
Let rij be the rank of the jth of k algorithms on the ith of N datasets. The average
rank of classifier, Rj =

1
N

∑
i rij gives a non-parametric summary of the relative

performance over all the datasets, and it has been shown that the ranking themselves
provide a fair comparison of the algorithms (Janez, 2006). αRSC has the second highest
average rank of the five classifiers tested. K-NN has the highest number of top ranks
but on some datasets it performed relatively badly. These results suggest that αRSC
can perform well on a variety of datasets in comparison to other classifiers, and that
the smoothing process reduces the tendency of αRSC to perform very badly on some
datasets.

5.4 Experiment 3: gene expression datasets

In this section we use six benchmark gene expression datasets in order to evaluate
the usefulness on the proposed algorithm in real world application. We know that
gene expression datasets contains a very large number of attributes most of which
are irrelevant for the classification task (Zhang et al., 2004). For this reason, it was
suggested that preprocessing would help to remove unnecessary attributes (Zhang et al.,
2004). The two popular preprocessing methods used for the experiments rank best
attributes according to the χ2 statistics and information gain (IG) (Molina et al., 2002;
Guyon and Elisseeff, 2003). In addition, we use the attribute filtering algorithm called
relief (RL) (Molina et al., 2002). The three methods are implemented in WEKA. We
evaluate the five classifiers on the first 5, 10, 20 30, 40 and 50 best ranked attributes.
For these experiments we divide the datasets into a training set and a testing set. We use
a stratified 10-fold CV (10CV) on the training set only to select the best values for α
and K based on the average accuracy results of 15 experiments (model selection). The
average classification accuracy of 30 experiments is calculated on each test set. For the
comparison purpose, we continue with a single Decision tree (J48), NB, K-NN, NBTree
and non-nested hyper-rectangle generalisation algorithm (NNge).

The experiments produced 648 accuracy results over the six gene expression datasets
using the six classifiers each on three attribute filtering methods (χ2, information gain
and RL). In order to collate the results into a single table we calculated the Friedman
ranking. Tables 6 shows the best performing classifier for each attribute filtering method.
It is interesting to note that αRSC has ranked first on each attribute filtering method
and, in most cases, has not ranked below third place. NNge and the decision tree
classifiers performed very badly in comparison to other classifier. These results suggest
that αRSC performed very well over the six gene expression datasets on all the three
attribute filtering methods.
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Table 6 The ranking based on classification accuracy of six datasets of αRSC , K-NN, decision
tree (J48), NBTree, NB and NNge using average results of 30 different runs on χ2, IG
and RL

Algorithms αRSC DT K-NN NB NBTree NNge
Ranked all dataset χ2

Top 5 3 5 6 4 1 2
Top 10 1 6 2 5 3 4
Top 20 3 6 4 1 2 5
Top 30 3 6 2 1 5 4
Top 40 3 6 1 2 4 5
Top 50 2 6 1 4 3 5
Avg. 2.5 5.83 2.67 2.83 3 4.17
Total ranks 1 6 2 3 4 5

Ranked all dataset IG
Top 5 2 6 5 4 1 3
Top 10 2 6 1 4 3 5
Top 20 3 6 1 4 2 5
Top 30 5 6 1 2 3 4
Top 40 4 6 1 5 3 2
Top 50 1 6 2 5 3 4
Avg. 2.83 6 1.83 4 2.5 3.83
Total ranks 3.5 6 1 5 2 3.5

Ranked all dataset relief
Top 5 2 6 4 5 5 3
Top 10 1 6 3 2 5 4
Top 20 1 6 3 2 5 4
Top 30 1 6 3 2 4 5
Top 40 2 6 3 1 5 4
Top 50 3 6 1.50 1.50 4 5
Avg. 1.67 6 2.92 2.25 4.67 4.17
Total ranks 1 6 3 2 5 4

The best results for each dataset regardless of cut-off points are shown in Tables 7, 8
and 9. In these tables we want to show which is the best performing classifier for each
dataset since each classifier may perform badly on some cut-off while better on others.
In addition, the main target of any classifiers is to find the best accuracy over a set of
cut-offs. We also show Friedman mean ranks for each attribute filtering method. The
tables show that αRSC ranked 1st for the χ2, 2nd for RL and 3rd for the Information
gain filtering methods.

Table 7 The best test set accuracy (in %) of αRSC , K-NN, decision tree (J48), NBTree, NB and
NNge using average results of 30 different runs on χ2

Dataset αRSC NBTree K-NN NB NNge DT
BreastCancer 77.58 76.16 75.35 71.11 71.01 72.42
Prostate 91.01 90.87 94.35 70.00 89.35 90.22
Lungcancer 99.13 99.23 99.07 100.00 99.95 95.63
Ovarian 98.86 97.96 99.33 98.59 98.55 97.10
ColonTumor 85.24 88.10 84.29 87.46 84.29 83.81
CentralNervous 80.33 80.67 78.83 78.17 74.00 76.67
Mean rank 4.67 4.50 4.08 3.50 2.42 1.83
Ranks 1 2 3 4 5 6
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Table 8 The best test set accuracy (in %) of αRSC , K-NN, Decision tree (J48), NBTree, NB and
NNge using average results of 30 different runs on RL

Dataset NB αRSC K-NN NNge NBTree DT
BreastCancer 81.62 77.37 80.40 73.84 74.65 71.52
Prostate 76.09 91.96 95.07 87.75 89.13 89.71
Lungcancer 99.29 99.23 98.31 99.07 98.69 95.96
Ovarian 98.78 97.88 99.18 98.59 97.84 97.10
ColonTumor 85.08 86.03 80.79 82.7 82.86 79.68
CentralNervous 78.33 77.17 76.83 70.83 70.67 71.17
Mean rank 4.83 4.67 4.17 2.83 2.67 1.83
Ranks 1 2 3 4 5 6

Table 9 The best test set accuracy (in %) of αRSC , K-NN, decision tree (J48), NBTree, NB and
NNge using average results of 30 different runs on IG

Dataset K-NN NBTree αRSC NNge NB DT
BreastCancer 75.35 76.87 78.38 69.90 69.9 72.63
Prostate 90.51 88.99 89.49 87.61 67.25 89.71
Lungcancer 99.18 99.67 99.34 100.00 100.00 95.63
Ovarian 99.53 98.04 98.90 98.59 98.59 97.06
ColonTumor 85.40 86.51 85.87 84.92 84.44 82.22
CentralNervous 77.83 82.83 74.00 75.33 75.67 74.50
Mean ranks 4.50 4.33 4.00 3.08 2.92 2.17
Ranks 1 2 3 4 5 6

The overall ranking results of the three attribute filtering methods is calculated by
summing the mean ranks of the three tables as shown in Table 10. αRSC has ranked
first while K-NN ranked 2nd. These results show that αRSC is a good classifier for
these gene expression datasets, and that it works well with attribute filters.

Table 10 All ranks over the three attribute filtering methods

Classifiers Sum ranks All ranks
αRSC 13.33 1
K-NN 12.75 2
NBTree 11.50 3
NB 11.25 4
NNge 8.33 5
DT 5.83 6

5.5 Experiment 4: bias/variance decomposition of αRSC

For these experiments, we employ ten different datasets, four synthetic (clouds,
concentric, twonorm and ringnorm) and the remaining datasets are taken from the UCI
repository. In bias/variance decomposition, small training set and large test sets are used
to perform the evaluation of bias and variance. For both synthetic and real datasets
we used bootstrapping to replicate the data. In both cases we computed the mean
prediction, bias, unbiased and biased variance, net-variance according to the procedures
found in Valentini and Dietterich (2004). That is, the data is divided into a training set
Tr and a test set Ts. The training bootstrap samples are much smaller than |Ts|. That is,
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200 datasets are made from Tr, each one consisting of 200 examples uniformly drawn
with replacement from Tr. Except for two datasets twonorm and waveform, we used
300 training datasets each made of 300 examples.

Table 11 Comparing best bias and variance results of αRSC on various datasets

Dataset Avg. error Bias Net var. Var. unb. Var. bias.
Diabetes

α = 0 0.3124 0.2500 0.0624 0.1374 0.0750
α = 3 0.2780 0.2367 0.0413 0.1006 0.0594
Diff % ↑ 11.01 ↑ 5.32 ↑ 33.81 ↑ 26.78 ↑ 20.80

Heart
α = 0 0.2599 0.1833 0.0765 0.1274 0.0509
α = 7 0.2138 0.1667 0.0471 0.0872 0.0400
Diff % ↑ 17.74 ↑ 9.06 ↑ 38.43 ↑ 31.55 ↑ 21.41

Clouds
α = 0 0.1613 0.1107 0.0507 0.0812 0.0306
α = 3 0.1354 0.1196 0.0158 0.0397 0.0240
Diff % ↑ 16.06 ↓ 8.04 ↑ 68.84 ↑ 51.11 ↑ 21.57

Waveform
α = 0 0.1626 0.0934 0.0692 0.1043 0.0352
α = 11 0.1387 0.0961 0.0426 0.0722 0.0296
Diff % ↑ 14.70 ↓ 2.89 ↑ 38.44 ↑ 30.78 ↑ 15.91

Concentric
α = 0 0.0616 0.0131 0.0485 0.0544 0.0059
α = 5 0.0630 0.0295 0.0335 0.0453 0.0118
Diff % ↓ 2.27 ↓ 125.19 ↑ 30.93 ↑ 16.73 ↓ 100

Twonorm
α = 0 0.0730 0.0227 0.0504 0.0586 0.0082
α = 10 0.0515 0.0222 0.0293 0.0366 0.0073
Diff % ↑ 29.45 ↑ 2.20 ↑ 41.86 ↑ 37.54 ↑ 10.97

Pendigitis
α = 0 0.1206 0.0355 0.0850 0.0956 0.0106
α = 1 0.1398 0.0652 0.0745 0.0913 0.0167
Diff % ↓ 15.92 ↓ 83.66 ↑ 12.35 ↑ 4.50 ↓ 100

Magic
α = 0 0.2510 0.1751 0.0759 0.1298 0.0539
α = 4 0.2151 0.1937 0.0215 0.0556 0.0341
Diff % ↑ 14.30 ↓ 10.62 ↑ 71.67 ↑ 57.16 ↑ 36.73

Yeast
α = 0 0.5360 0.4170 0.1190 0.2045 0.0855
α = 1 0.5159 0.4152 0.1007 0.1776 0.0768
Diff % ↑ 3.75 ↑ 0.43 ↑ 15.38 ↑ 10.17 ↑ 10.01

wdbc
α = 0 0.0978 0.0563 0.0415 0.0580 0.0165
α = 8 0.0898 0.0784 0.0114 0.0275 0.0161
Diff % ↑ 8.18 ↓ 39.25 ↑ 72.53 ↑ 52.59 ↑ 2.42

Notes: Var. unb. and var. bias. stand for unbiased and biased variance. Diff stands for the
percentage difference between the pruned and unpruned values. The up arrow ↑ means
an increase while a down arrow ↓ means a decrease.
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The results in Table 11 show a pattern on the bias and variance performance of αRSC
classifier:

1 If pruning improves performance, which it does for the majority of cases in our
experiment, there is a substantial decrease in net variance. However, there are two
trends in relation to bias.

• Increase in bias is shown on clouds (8.04%), waveform (2.89%), magic
(10.62%), and wdbc (39.25%). However, unbiased variance is significantly
decreased in these datasets, as shown on cloud (51.11%), waveform (30.78%),
magic (57.16%), and wdbc (52.59%), which explains the decrease in average
error.

• Decrease in bias is shown on diabetes (5.32%), heart (9.06%), twonorm (2.20%),
and yeast (0.43%). In all these cases both unbiased and biased variance are both
decreased.

2 If pruning degrades performance, then we notice an increase in bias. This is shown
on Pendigitis dataset with 15.92% increase in average error for α = 1, and a
substantial increase in bias (83.66%). Pruning, for this dataset, has also increased
substantially the biased variance (100%). Similarly, Concentric dataset shows an
increase in average error (2.27%) and a massive increase in bias (125.10%). We
notice also a big increase for biased variance (100%). This should not be a
surprise because Concentric dataset is rather unusual; removing spheres that are close
to the decision boundary will significantly underfit the data because no separation
exist between the two classes. As for Pendigitis dataset, it is made of ten classes
which could be an issue for choosing the same α values for each class. Obviously,
for both Concentric and Pendigitis datasets we see a decrease in net variance caused
by the decrease in unbiased variance which emphasises the role of pruning in
reducing the net variance.

The important observation that can be made from the bias/variance results is that pruning
significantly reduces unbiased variance. However, in only a few cases do we notice a
small decrease in bias. Therefore, the decrease of αRSC average error is caused mainly
by the decrease of unbiased variance resulting in the overall error reduction.

6 Conclusions

The classification accuracy of our proposed randomised classifier is competitive in
comparison to various deterministic algorithms. In addition, the classification accuracy
is significantly improved by pruning, to the extent that on average it outranks five other
classifiers. The reason for this improvement is the result of unbiased variance reduction
as demonstrated by the bias/variance experiments. Pruning is only responsible for the
reduction of unbiased variance, which indicates that further improvement is possible by
reducing bias. Feature selection is known to reduce bias for IBL classifiers. We intend
to investigate the effect of attribute selection on αRSC and assess the usefulness of
the classifier when used in ensembles. Several variation are possible with the sphere
cover classifier. For instance, sphere can be allowed to be inside other spheres, and
to find the optimum radius of each sphere. Other possibilities might be investigated in
regards to sphere positioning. In the future, we will examine the relationships between
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α, the accuracy and the cardinality of cover using probabilistic bound based on the
compression scheme. Manipulating these three quantities in a compression bound should
result in an accurate prediction of the true error, which can be used as an efficient
model selection technique. In addition, we will investigate whether further compression
is better achieved using kernel methods.

References
Asuncion, A. and Newman, D.J. (2007) Uci. Machine Learning Repository.
Bezdek, J.C. and Kuncheva, L. (2000) ‘Some notes on twenty one (21) nearest prototype classifiers’,

in SSPR/SPR, pp.1–16.
Cannon, A. and Cowen, L. (2000) ‘Approximation algorithms for the class cover problem’, AMAI.
Cannon, A.J., Ettinger, M., Hush, D. and Scovel, C. (2002) ‘Machine learning with data dependent

hypothesis classes’, The Journal of Machine Learning Research, Vol. 2, pp.335–358.
Domingos, P. (2000) ‘A unified bias-variance decomposition for zero-one and squared loss’,

in AAAI/IAAI, pp.564–569.
Floyd, S. and Warmuth, M.K. (1995) ‘Sample compression, learnability, and the vapnik-chervonenkis

dimension’, Machine Learning, Vol. 21, No. 3, pp.269–304.
Guyon, I. and Elisseeff, A. (2003) ‘An introduction to variable and attribute selection’, Journal of

Machine Learning Research, Vol. 3, pp.1157–1182.
Janez, D. (2006) ‘Statistical comparisons of classifiers over multiple data sets’, The Journal of

Machine Learning Research, Vol. 7, pp.1–30.
Kibler, D., Aha, D. and Albert, M.K. (1991) ‘Instance-based learning algorithms’, Machine Learning,

Vol. 6, No. 1, pp.37–36.
Kim, S-W. and Oommen, B.J. (2003) ‘A brief taxonomy and ranking of creative prototype reduction

schemes’, Pattern Anal. Appl., Vol. 6, No. 3, pp.232–244.
Laviolette, F., Marchand, M. and Shah, M. (2005) ‘Margin-sparsity trade-off for the set covering

machine’, in João Gama, Rui Camacho, Pavel Brazdil, Aĺıpio Jorge and Lúıs Torgo (Ed.):
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