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Abstract 

Blooms of Emiliania huxleyi are responsible for the long-term trapping of carbon in 

coccolith plates, which sink to the ocean floor. In addition, E. huxleyi contains high 

concentrations of dimethylsulphoniopropionate (DMSP) the precursor of 

dimethylsulphide (DMS). In the atmosphere, DMS enhances cloud formation 

influencing climate. Thus E. huxleyi may play a significant role on global climate and 

the oceanic carbon cycle. Recently, the antioxidant function of DMSP and its breakdown 

products has been proposed. Increases in intracellular DMSP concentration (DMSPp) 

under stress conditions are documented in various phytoplankton species and strains, but 

results are not always consistent. A study on how nitrate and phosphate limitation, UV 

light, solar radiation, light deprivation and herbicide-induced oxidative stress affect 

DMSP metabolism in E. huxleyi CCMP 370, 373 and 1516 was conducted. A decrease 

in DMSPp was seen with exposure to UV radiation in all strains and under N- and P-

limitation in E. huxleyi 370 and 373 with no change in E. huxleyi 1516, whereas it 

increased in solar radiation and light-deprived cells in all strains. Also higher number of 

cells with compromised membranes (SYTOX Green staining) was noted in solar 

radiation and light-deprived conditions (50% in E. huxleyi 373, 70% in E. huxleyi 370 

and 1516 after 72 h exposure to solar radiations, while 40%, 50% and 20% in E. huxleyi 

370, 373 and 1516 respectively after 10 days of light-deprivation). Flow cytometry 

revealed two cell sub-populations in paraquat-treated cells on the basis of red 

fluorescence and were sorted in E. huxleyi 1516, but no increase in DMSPp was seen. In 

all stress treatments, a decrease in DMSPp culture concentrations and total DMSP with 

increasing dissolved DMSP and DMS concentrations was observed although cells had 

intact membranes. The data suggest that stress does not always result in increased 

DMSPp concentration in E. huxleyi. 
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Figure 3.9 Impact of nitrogen limitation (N0) in E. huxleyi 370, 373 and 1516 on per cell volume 
concentrations (mM) of DMSPp (a, b, c), DMSPd (d, e, f), DMS (g, h, i) and DMSPt 
(j, k, l). The grey symbols represent the control culture and the black symbols 
represent the culture growing in N-free media. On day 6 (vertical grey line), nitrate 
was added back to the N-free media. The average value and range of data is shown 
(n=3). Where no range bars are visible, the data range was smaller than the symbol 
size. ........................................................................................................................... 108	
  

Figure 3.10 Impact of phosphate limitation (P0) in E. huxleyi 370, 373 and 1516 on per cell 
volume concentrations (mM) of DMSPp (a, b, c), DMSPd (d, e, f), DMS (g, h, i) and 
DMSPt (j, k, l). The grey symbols represent the control culture and the black 
symbols represent the culture growing in P-free media. On day 6 (vertical grey line), 
phosphate was added back to the P-free media. The average value and range of data 
is shown (n=3). Where no range bars are visible, the data range was smaller than the 
symbol size. .............................................................................................................. 109	
  

Figure 3.11 Impact of nitrogen limitation (N0) in E. huxleyi 370, 373 and 1516 on per cell levels 
(fmol) of DMSPp (a, b, c), DMSPd (d, e, f), DMS (g, h, i) and DMSPt (j, k, l). The 
grey symbols represent the control culture and the black symbols represent the 
culture growing in N-free media. On day 6 (vertical grey line), nitrate was added 
back to the N-free media. The average value and range of data is shown (n=3). 
Where no range bars are visible, the data range was smaller than the symbol size. 113	
  

Figure 3.12 Impact of phosphate limitation (P0) in E. huxleyi 370, 373 and 1516 on per cell 
levels (fmol) of DMSPp (a, b, c), DMSPd (d, e, f), DMS (g, h, i) and DMSPt (j, k, l). 
The grey symbols represent the control culture and the black symbols represent the 
culture growing in P-free media. On day 6 (vertical grey line), phosphate was added 
back to the P-free media. The average value and range of data is shown (n=3). Where 
no range bars are visible, the data range was smaller than the symbol size. ............ 114	
  

Figure 3.13 Impact of nitrogen limitation (N0) in E. huxleyi 370, 373 and 1516 on DMSPp (a, b, 
c), DMSPd (d, e, f), DMS (g, h, i) and DMSPt (j, k, l) in the culture (µM). The grey 
symbols represent the control culture and the black symbols represent the culture 
growing in N-free media. On day 6 (vertical grey line), nitrate was added back to the 
N-free media. The average value and range of data is shown (n=3). Where no range 
bars are visible, the data range was smaller than the symbol size. ........................... 117	
  

Figure 3.14 Impact of phosphate limitation (P0) in E. huxleyi 370, 373 and 1516 on DMSPp (a, b, 
c), DMSPd (d, e, f), DMS (g, h, i) and DMSPt (j, k, l) in the culture (µM). The grey 
symbols represent the control culture and the black symbols represent the culture 
growing in P-free media. On day 6 (vertical grey line), phosphate was added back to 
the P-free media. The average value and range of data is shown (n=3). Where no 
range bars are visible, the data range was smaller than the symbol size. ................. 118	
  

Figure 4.1 Of the solar radiation penetrating the marine euphotic zone, UVA (320-400) and 
UVB (280-320) can enhance the production of reactive oxygen species (ROS) in the 
chloroplasts of phytoplankton causing oxidative stress. Cells have developed a range 
of defence mechanisms or survival strategies but if the UV dose exceeds the cellular 
antioxidant systems it can prove fatal due to inhibition of protein synthesis and loss 
of membrane integrity. The experiments in this chapter consider whether an increase 
in the intracellular osmolyte DMSP or its breakdown products could be part of the 
UV-induced response to stress in Emiliania huxleyi (Photo of E. huxleyi taken from 
the Natural History Museum, London). ................................................................... 128	
  



 

13 
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control flasks with the UVB cut-off filter (+70% UVA) and the black line represents 
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the control flasks with the UVB cut-off filter (+70% UVA) and the black line 
represents the UVA+UVB exposed flasks (100% UVA+100% UVB). BS stands for 
borosilicate flask (j; 80% UVB exposure) and all other plots show results for quartz 
flasks. The average value and range of data is shown (n=3). Where no range bars are 
visible, the data range was smaller than the symbol size. ........................................ 147	
  

Figure 4.12 Comparison of DMSP (µM) in E. huxleyi 370, 373 and 1516 exposed to artificial 
UVR in the 14L:10D cycle under low light (LL), normal light (NL) and high light 
(HL) conditions. The grey shade is the dark cycle. The grey line represents the 
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Figure 5.2 A comparison of light exposure and light deprivation effects on cell density (cells ml-

1) (a, c, e) and Ln Cell density (b, d, f) in batch cultures of Emiliania huxleyi 370, 
373 and 1516. The grey line represents the control culture grown under a 14:10 
light:dark cycle and the dark lines are the light-deprived cultures. The vertical line at 
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Figure 5.9 A comparison of light exposure and light deprivation effects on the DMSP 
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373 and 1516 respectively. The solid bars indicate effective paraquat concentration 
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Chapter 1:  General Introduction 

1.1 Overview  

On most occasions, the oceans and other water bodies present a rather challenging 

environment for phytoplankton. They are exposed to stress on varying temporal and 

spatial scales with constant changing physico-chemical factors. The response to stress 

imposed on marine algae permits us to gain information on the mechanisms that 

organisms use to exploit environmental resources or cope with environmental stress. 

This thesis is a study of the influence of stress conditions on intracellular 

dimethylsulphoniopropionate (DMSP) and dimethylsulphide (DMS) release in Emiliania 

huxleyi. 

In this chapter, I will commence with the general definitions of stress, followed by a 

brief account of various cellular responses to stress in phytoplankton. I will then 

introduce the concept of oxidative stress in the marine environment, followed by stress-

induced cell death. Next is an overview of the climatic importance of DMS, biological 

importance of its precursor DMSP and a review on the current literature focusing on the 

influence of stress conditions on the physiological role of intracellular DMSP and DMS 

release. And finally this chapter will introduce E. huxleyi the species under investigation 

and conclude with goals and objectives of this research project. 

1.2 Stress  

Stress is a term commonly used but is challenging to define in biological systems. It was 

first introduced in physics but in 1926, Walter Cannon was the first to use it in a 

biological context to refer to external factors disrupting homeostasis – that is an 

organism’s optimal condition for living (Cannon 1926). Selye continued to define stress 

as a state ‘manifested by a specific syndrome which consists of all the non-specifically 

induced changes within a biological system’ based on its physiological effects on 

mammals (Selye 1956). Modifying Selye’s broad definition, Bayne (1975) defined stress 
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as ‘a measurable alteration of a physiological (or behavioural, biogeochemical or 

cytological) steady state which is induced by an environmental change and which 

renders the individual (or the population or the community) more vulnerable to further 

environmental change’. In plants, Grime (1979) defined stress as ‘environmental 

constraints, shortages and excesses in the supply of solar energy, water and mineral 

nutrients’ and ‘sub- or supra- optimal temperatures and growth inhibiting toxins’. 

The definitions of stress used above, encompass a broad physical range of conditions 

that include climatic variables such as temperature and humidity, as well as radiation, 

food shortage, pollutants, pesticides and other environmental toxins. In the marine 

system, this would mean that all organisms are stressed most of the time because 

survival and reproduction would probably never achieve their maximum under the 

constantly changing natural conditions. Nonetheless the term ‘stress’ in ecology refers to 

circumstances where there is high mortality (or the potential for high mortality) or a 

drastic reduction in reproductive output because of changed environmental conditions. 

Changes in the physical and biotic environmental conditions such as mixing, 

temperature fluctuations, light availability, varying pH and salinity, exposure to 

ultraviolet radiation, nutrient limitation, bacterial or viral attack, zooplankton grazing 

and exposure to pollutants can often affect normal processes within a phytoplankton cell 

(Fig. 1.1). Unless a cell can cope with the constantly altering environments to which 

they are exposed, extinctions will follow. But what is fascinating in the marine world is 

the tendency for adaptation and survival of the unicellular organisms as documented by 

the geological records of the long history of life on earth, so much so that for almost a 

century, phytoplankton were believed to exist perpetually by binary fission unless 

consumed by heterotrophic zooplankton or sedimentation (Walsh 1983). However, 

recent studies have highlighted the fact that severe environmental conditions can cause 

stress and stress beyond a cell's tolerance will induce cell death. For example, six-day 

dark stress induced chlorophyte Dunaliella tertiolecta underwent catastrophic cell death 

(Berges and Falkowski 1998). Also cell death events by lysis, independent of grazing 

heterotrophs were documented in field populations especially after blooms when growth 
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conditions became suboptimal (Agusti et al. 1998; Brussaard et al. 1995; Van Boekel et 

al. 1992). 

 

Figure 1.1 Factors affecting normal processes within a phytoplankton cell. Extreme changes in the 

physical and biotic environmental conditions such as mixing, temperature fluctuations, light availability, 

varying pH and salinity, exposure to ultraviolet radiation, nutrient limitation and exposure to pollutants 

can result in cell death. Zooplankton grazing, bacterial and viral attack and sedimentation are also 

processes by which phytoplankton cell losses occur. 

1.2.1 Cellular stress responses 

A cell’s preliminary response to a stressful stimulus is counteracting it by the activation 

of survival pathways thus helping the cell to defend against and recover from the injury 

(Fulda et al. 2010). However, if the stressful conditions continue to persist beyond the 

limits of the resistance of the cell, then cells activate death-signaling pathways 

eventually eliminating damaged cells (Bidle and Falkowski 2004; Fulda et al. 2010). In 

response to environmental stress including changes in temperature, salinity, light and 

nutrients, phytoplankton will alter their cell physiology to cope with the change. 
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In the following sections, more emphasis will be given to cellular responses to light-, 

ultraviolet radiation (UVR-) and nutrient-induced stress, these being the kinds of stress 

examined in this study. 

1.2.1.1 Response to temperature and salinity stress 

Recent studies based on decades of satellite data show that the increasing sea surface 

temperatures (about 0.2°C per decade) (Doney 2006) seem to correlate with decreasing 

phytoplankton productivity (Behrenfeld et al. 2006; Boyce et al. 2010). These findings 

though arguable (Mackas 2011; McQuatters-Gollop et al. 2011; Rykaczewski and 

Dunne 2011) can raise specific concerns about increasing temperature-induced stress, as 

temperature is a very important ecological parameter that affects the phase transition of 

lipids, the conformation of macromolecules and the kinetics of physicochemical 

reactions in phytoplankton. Some of the cellular stress responses observed in marine 

algae to cope with varying temperature conditions are changes made to carbon allocation 

within the cell, particularly lipids (Kakinuma et al. 2006; Ventura et al. 2008) and an 

increase in fatty acid unsaturation is an accepted mechanism for low-temperature 

acclimation (Al-Hasan et al. 1991; Dawes et al. 1993). Furthermore, the capacity to 

tolerate changes in salinity is also an important factor to determine vertical and 

horizontal phytoplankton distributions. In response to salinity changes, a characteristic 

tolerance mechanism in marine algae is the maintenance of constant cell turgor by 

altering its osmotic potential, which is regulated by concentrations of internal inorganic 

ions and organic osmolytes (Kirst 1990; Liu et al. 2000). 

1.2.1.2 Response to light stress 

Light is one of the major limiting factors affecting phytoplankton growth due to its 

seasonal, diurnal fluctuations and varying intensity and spectral distribution with depth 

in the natural environment. Growth rate in phytoplankton increases linearly with 

increasing irradiances but at harmful supra-optimal levels of irradiance, growth rate and 

photosynthetic rate decrease. This light-induced reduction in photosynthetic capacity in 

phytoplankton is referred to as ‘photoinhibition’ and affects the photosystem II (PSII) 
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more than any other component of the photosynthetic apparatus, by generating harmful 

reactive oxygen intermediates (ROI’s) (Osmond 1994). So also, in very low light 

conditions, cellular metabolic activity is affected due to lack of energy generated via 

suppressed photosynthesis (Falkowski and LaRoche 1991). Thus in both low- and high-

light conditions, algal growth is limited due to effects on photosynthesis. 

Microalgae have evolved over many generations with protective mechanisms and 

strategies to cope with varying light stress. Some of the cellular stress responses 

observed in microalgae to date are changes in growth rate and dark respiration rate, 

alteration of pigment and fatty acid content. Cells also alter cellular proteins as a strategy 

to cope with light-induced stress. For example, the rate of protein synthesis in the marine 

diatom Phaeodactylum tricornutum increased on exposure to low-light intensity 

(Bohlin) (Morris et al. 1974), while at light saturating intensities, the marine algae 

Nannochloropsis sp. reached its maximal protein content (30% of the organic content) 

(Fábregas et al. 2004). Light stress also results in the adjustment of the cellular lipid 

content (Fábregas et al. 2004; Mock and Gradinger 2000; Mock and Kroon 2002). 

Khotimchenko and Yakovleva (2005) suggested that variations in the lipid composition 

of Tichocarpus crinitus can be considered as one of the mechanisms of adaptation to 

varying incident light intensity. The degree of tolerance to different light intensities 

varies with algal species. For example, slight photoinhibition occurred in Emiliania 

huxleyi at extremely high intensities between 1000-1500 µmol photons m-2s-1 (Nanninga 

and Tyrrell 1996) in comparison with other algal species that are photoinhibited at light 

intensities between 500-1000 µmol photons m-2s-1. 

To cope with high-light stress, it has been established that phytoplankton initiate signal 

transduction pathways like photoacclimation, photoprotection and photorepair (Niyogi 

2009; Ragni et al. 2008) as discussed below. 

Photoacclimation is a phenotypic modification in the components of the photosynthetic 

apparatus to varying light irradiances, which involves adjustments of the light and dark 

reactions to harvest and utilize light in order to optimize photosynthesis for growth 

changes (Falkowski and LaRoche 1991; MacIntyre et al. 2002; Moore et al. 2006). 

Photoacclimation to high irradiances is generally indicated by changes in the 
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macromolecular composition and ultrastructure of the photosynthetic apparatus 

(Durnford and Falkowski 1997; Falkowski and Raven 1997); for example,  in the size of 

the PSII antenna (Suggett et al. 2007), and size and/or number of the reaction centers 

(Falkowski and Owens 1980) (RCs; Falkowski and Owens 1980), decrease in the 

photosynthetic pigment content, e.g. the  chlorophyll content (Anning et al. 2000; 

MacIntyre et al. 2002), decrease in chlorophyll to carbon ratio (Geider  et al. 1997; 

MacIntyre et al. 2002) and  decrease in photosynthetic to non-photosynthetic pigment 

ratios (Leonardos and Harris 2006; MacIntyre et al. 2002). 

Photoacclimation can be a short-term or a long-term survival strategy (Humby and 

Durnford 2006). Short-term photoacclimation (seconds to minutes) involves the 

dissipation of excess light energy via carotenoids in the xanthophyll cycle (Demmig-

Adams and Adams 1996). Thus, state transitions of the light harvesting complex 

proteins in the chloroplast within the photosynthetic apparatus can aid the excitation 

energy distribution between photosystem I and II (PSI, PSII) (Haldrup et al. 2001; 

Wollman 2001). When the short-term photoacclimation responses fail to improve the 

damage caused by photoinhibition, the cells initiate long-term photoacclimation 

responses that can last from hours to days. Long-term photoacclimation involves 

extensive changes in enzyme activity and gene expression leading to reduction in the 

cell’s light-harvesting capacity via alterations in the light-harvesting antenna size, 

concentration of photosynthetic complexes and photosystem stoichiometry (Falkowski 

and LaRoche 1991; Niyogi 1999; Niyogi 2009). On the whole, photoacclimation serves 

to sustain a constant photosynthetic efficiency in varying light conditions by regulating 

the competence of the cell to harvest and utilize light. 

Photoadaptation in contrast to photoacclimation (which is a temporary phenotypic 

response to the varying light field), is a genotypic response to light at an evolutionary 

level to adapt to the particular photic environment (Falkowski and LaRoche 1991). 

Photoadaptation of phytoplankton can occur on a timescale of less than a day and is an 

effective permanent response against high irradiances and UVB radiation (Davidson 

1998). 
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Photoprotection is used to describe all mechanisms that protect the cells from 

photodamage caused by high light irradiances. Non-photochemical quenching (NPQ) is 

a well-known photoprotective mechanism in marine photoautotrophs (Falkowski and 

Raven 1997) and involves dissipation of excess light energy in the form of heat. In many 

phytoplankton groups such as prymnesiophytes and dinoflagellates, this thermal 

dissipation of light energy results in the decrease in PSII activity (Gorbunov et al. 2001; 

Moore et al. 2006) and can operate in both light-harvesting antennae via the xanthophyll 

cycle (Arsalane et al. 1994; Olaizola et al. 1994) and in the reaction centers (RCs) even 

if they are temporarily inactivated or damaged (Gorbunov et al. 2001). Alternative 

electron transport pathways can also help to remove excess absorbed light energy from 

the photosynthetic apparatus: the Assimilatory Linear Electron Transport pathway, the 

Oxygen-Dependent Electron Transport and the Cyclic Electron Transport pathway as 

described below. 

The Assimilatory Linear Electron Transport pathway involves utilization of the excess 

light energy absorbed by the light harvesting complexes (LHC’s) in the process of 

photochemistry that drives linear electron transport from H2O to NADPH, resulting in 

O2 evolution and reduction of CO2, NO3
–, and SO4

-2. 

The Oxygen-Dependent Electron Transport involves the consumption of the excess 

excitation energy by the non-assimilatory electron transport to oxygen. Oxygen can 

function as an electron acceptor either through the oxygenase reaction catalyzed by 

Rubisco (photorespiration) or by direct reduction of oxygen by electrons on the 

photosystem I (PSI) (Mehler 1951) which has been defined by various terms including 

the pseudocyclic electron transport, the Mehler-ascorbate peroxidase reaction, and the 

water-water cycle (Asada 1999). 

The Cyclic Electron Transport pathway involves the dissipation of excitation energy 

absorbed by PSII and PSI and thus plays a very important role as a photoprotection 

pathway (Niyogi 1999). This pathway is also responsible for the downregulation of PSII. 

Photorepair of the photodamaged PSII in the photosynthetic apparatus is highly 

important to decide the fate of the cell and the rate of this process must match the rate of 
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damage to avoid photoinhibition resulting from net loss of functional PSII centres. 

Photorepair involves a selective degradation of damaged proteins and incorporation of 

the newly synthesized chloroplast-encoded proteins to rebuild an operative PSII (Aro et 

al. 1993). 

1.2.1.3 Response to ultraviolet radiation (UVR) stress 

At the sea surface, sunlight will also be contain ultraviolet radiation (UVR), which can 

affect bacterial activity (Buma et al. 2003; Kaiser and Herndl 1997), primary 

productivity (Häder 2011) and photochemical degradation of dissolved organic matter 

(DOM) (Mopper and Kieber 2002). UVR is also known to cause photoinhibition in 

phytoplankton, particularly on exposure to the UVB waveband (Balseiro et al. 2008; 

Garbayo et al. 2008). In contrast to high-light photoinhibition, which is caused by down-

regulation of the PSII, UVB-induced photoinhibition is caused by protein damage and 

the recovery from UVB stress would take longer than recovery from high-light stress 

(Franklin and Forster 1997). UVR-stress causes DNA damage in both bacteria and 

phytoplankton (Häder and Sinha 2005) but photosynthetic cells have the ability to 

activate repair processes and synthesize UV-absorbing compounds to prevent severe 

damages (Boelen et al. 1999). Thus marine phytoplankton are not entirely defenceless 

against UVR stress. 

Marine plankton are recognized to have four UVR defence mechanisms, namely 

avoidance, screening, quenching and repair as discussed below. All of these mechanisms 

are noted mainly in zooplankton (Rautio and Tartarotti 2010) and motile phytoplankton 

species (Davidson 1998; Gerbersdorf and Schubert 2011). 

Avoidance is the mechanism by which plankton move vertically to a protected 

environment. This may involve changes in cell size, shape, outer covering and 

buoyancy. However, by this mechanism, the photosynthetic cells may experience a 

reduction in light exposure (Davidson 1998). 

Screening involves the production of UV-absorbing compounds including mycosporin-

like amino acids (MAA’s), flavonoids and sheath pigments (Sinha et al. 1998). These 
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compounds aid to reduce intracellular UV exposure, photodamage and support normal 

metabolic activity; however, the synthesis of the UV-absorbing compounds would 

involve utilization of the cell’s metabolic energy of production and maintenance 

(Davidson 1998). 

Quenching involves the upregulation of antioxidants, radical trapping enzymes and 

carotenoids, which protect the intracellular organelles from the toxic effects of the 

reactive oxygen intermediates (ROI’s). However, the mechanism of quenching involves 

utilization of the cell’s metabolic energy of production and maintenance (Davidson 

1998). 

Repair processes against UVR-induced damage in phytoplankton are the last line of 

defence mechanisms and are of four types depending on the environment (Davidson 

1998; Diffey 1991). Photoreactivation (PR) is one of the most important DNA repair 

mechanisms and is activated by exposure to UVA and photosynthetically active 

radiation (PAR) and is therefore light-dependent. Excision mechanisms (ER) (eg. 

nucleotide excision ‘dark’ repair) can be triggered for UVR-induced DNA damage 

(Karentz et al. 1991; Martínez et al. 2012) and these mechanisms are mainly dark-

dependent. Post-replication repair is another mechanism sorted for cell survival, where 

UV-damaged DNA can replicate. Resynthesis (RS) is a slow mechanism and involves 

repairs to the UV-damaged DNA and the permanently damaged photosystems. These 

repair mechanisms are reported in cyanobacteria (Ehling-Schulz and Scherer 1999; 

Sinha and Häder 2008). 

1.2.1.4 Response to nutrient stress 

Phytoplankton growth is often nutrient limited in surface seawaters mainly due to lack of 

macronutrients particularly nitrogen and phosphorous but extensive investigations have 

shown that other trace nutrients can also be limiting. For example, iron is the limiting 

nutrient in the equatorial Pacific and Southern ocean (Boyd et al. 1999; Timmermans et 

al. 1998), while zinc is limiting in the central North Pacific (Bruland 1989; Morel et al. 

1994). 
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Studies suggest that appropriate levels of nitrogen and phosphorus are fundamental for 

cell photosynthesis (Hu and Zhou 2010) and, in response to nutrient stress, 

phytoplankton are known to alter their cellular carbon forms. For example, in response 

to nitrogen deficiency, lipid storage is enhanced (Mutlu et al. 2011; Shifrin and 

Chisholm 1981) and protein content is reduced (Heraud et al. 2005; Lynn et al. 2000). 

Under Phosphorus starvation, the carbohydrate content in algal cells is increased and it 

has been suggested that increased carbohydrate:protein ratios are an indication of 

phosphorus deficiency (Beardall et al. 2005; Dean et al. 2008). So also, lipid content is 

increased under phosphorus limiting conditions (Heraud et al. 2005; Lynn et al. 2000; 

Sigee et al. 2007). In contrast, no significant differences in cellular carbon forms were 

detected in several algal species in phosphate-depleted conditions (Cade-Menun and 

Paytan 2010). They explained that phytoplankton in a phosphorus-limiting environment 

can re-adjust their internal cellular phosphorus needs and transfer the cellular 

phosphorus pool to maintain growth rate (Cembella et al. 1984; Ji and Sherrell 2008) 

until the cell runs out of its internal phosphorus content. This would then force it to 

elevate its rate of carbohydrate synthesis (Dean et al. 2008; Sigee et al. 2007). Under 

phosphorus-enriched conditions, algae have been reported to uptake and store the excess 

phosphorus in the form of polyphosphate (Cade-Menun and Paytan 2010; Stevenson and 

Stoermer 1982). Interestingly, phosphorus stress can also vary the response of algae to 

light and temperature stress (Gauthier and Turpin 1997; Sterner et al. 1997). 

1.2.2 Oxidative stress in marine phytoplankton 

In the marine environment the process of photosynthesis in plankton that takes place in 

the chloroplast and results in the production of oxygen, is the backbone of their 

existence. However, during the processes of photosynthesis and respiration, highly 

reactive intermediates of reduced oxygen, usually referred to as reactive oxygen 

intermediates (ROI’s) or reactive oxygen species (ROS), are formed (Apel and Hirt 

2004). They are generally toxic (Gerschman et al. 2005) and are scavenged by the 

various enzymatic and non-enzymatic defences of the cell (Apel and Hirt 2004; Mallick 

and Mohn 2000). 
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Molecular oxygen (O2) in its ground state does not react with organic molecules unless 

the molecule is ‘activated’ (Cadenas 1989). However, either by energy transfer or 

electron transfer reactions, the ground state oxygen molecule can be activated to its 

reactive forms. Energy transfer would lead to the formation of singlet oxygen (1O2), 

while electron transfer reactions would result in successive univalent reduction of the 

molecular oxygen to produce a series of reactive intermediates including superoxide 

radicals (O2
– ), hydrogen peroxide (H2O2) and hydroxyl radical (HO•) and finally water 

(H2O) (Fridovich 1998; Klotz 2002) (Fig. 1.2). 

 

Figure 1.2 Activation of ground state triplet oxygen by energy transfer or electron transfer reactions to 

produce highly reactive intermediates of oxygen (ROI’s) or also known as reactive oxygen species (ROS) 

(from Apel and Hirt (2004)) 

The common underlying setback encountered by marine phytoplankton is oxidative 

stress (Lesser 2006). This is mainly because in the marine environment phytoplankton 

are constantly exposed to varying environmental conditions such as high light irradiance, 

UV radiation, temperature fluctuation, salinity change, nutrient depletion, grazing, viral 

attack and toxic pollutants that would result in the excess production of ROS and 

accumulation beyond the cell’s capacity to quench it (Latifi et al. 2009; Xue et al. 2005).  

In seawater, phytoplankton and bacteria can be affected by the photochemical 

production of ROS, caused by the interaction between the UV radiation with dissolved 

organic matter (DOM) (Mopper and Kieber 2000), dissolved oxygen and trace metals 

(Yocis et al. 2000). Also during wet precipitation, atmospheric peroxides get deposited 

in surface seawater increasing the ROS abundance (Gerringa et al. 2004). These 

transient species readily react with cellular macromolecules, affect cell membranes and 

inhibit photosynthesis. In phytoplankton, singlet oxygen (1O2) is continuously produced 

by the photosystem II (PSII) during photosynthesis and is less stable than dioxygen (3O2; 

24 Apr 2004 19:43 AR AR213-PP55-15.tex AR213-PP55-15.sgm LaTeX2e(2002/01/18) P1: GDL

ROS 375

Figure 1 Generation of different ROS by energy transfer or sequential univalent
reduction of ground state triplet oxygen.

concentration is called “oxidative burst” (5). External conditions that adversely af-
fect the plants can be biotic, imposed by other organisms, or abiotic, arising from
an excess or deficit in the physical or chemical environment. Although plants’
responses to the various adverse environmental factors may show some common-
alities, increases in ROS concentration triggered by either biotic or abiotic stresses
are generally attributed to different mechanisms.

Biotic Strategies to Generate ROS

Oneof themost rapid defense reactions to pathogen attack is the so-called oxidative
burst, which constitutes the production of ROS, primarily superoxide and H2O2,
at the site of attempted invasion (5). Doke (1985) first reported the oxidative burst
(35), demonstrating that potato tuber tissue generated superoxide that is rapidly
transformed into hydrogen peroxide following inoculation with an avirulent race
of Phytopthera infestans. A virulent race of the same pathogen failed to induce
O•�
2 production. Subsequently, O•�

2 generation has been identified in a wide range
of plant pathogen interactions involving avirulent bacteria, fungi, and viruses (71).
Several different enzymes have been implicated in the generation of ROS.

The NADPH-dependent oxidase system, similar to that present in mammalian
neutrophils, has received the most attention. In animals the NADPH-oxidase is
found in phagocytes and B lymphocytes. It catalyzes the production of superoxide
by the one-electron reduction of oxygen using NADPH as the electron donor. The
O•�
2 generated by this enzyme serves as a starting material for the production of a
large variety of reactive oxidants, including oxidized halogens, free radicals, and
singlet oxygen. These oxidants are used by phagocytes to kill invading micro-
organisms, but at the same time they may also damage surrounding cells of the
host. The core of the PHagocyte OXidase comprises five components: p40PHOX,
p47 PHOX, p67PHOX, p22PHOX, and gp91PHOX. In the resting cell, three of these five
components, p40PHOX, p47PHOX, and p67PHOX, exist in the cytosol as a complex.
The other two components, p22PHOX and gp91PHOX, are localized in membranes
of secretory vesicles. Separating these two groups of components ensures that the
oxidase remains inactive in the resting cell. When the resting cells are stimulated,
the cytosolic component p47PHOX becomes heavily phosporylated and the entire



Chapter 1: General Introduction 

34 

ground state triplet molecular oxygen) and hence readily reacts with cellular 

macromolecules. In aqueous media, the lifetime of singlet oxygen is ~ 3.7 µs (Lesser 

2006). Superoxide radicals (O2
–) which undergo spontaneous dismutation to produce 

H2O2 and O2, which is sometimes catalyzed by the antioxidant enzyme superoxide 

dismutase (SOD) (Asada and Takahashi 1987; Moffett and Zafiriou 1990) has a lifetime 

of 50 µs in the cell (Asada and Takahashi 1987; Cadenas 1989; Fridovich 1998; Lesser 

2006) and a reported half-life in seawater ranging from seconds to minutes (Millero 

2006; Zafiriou 1990). Superoxides have a significant damaging potential (Fridovich 

1986) and can diffuse across membranes at a very slow rate (Asada and Takahashi 1987; 

Cadenas 1989; Fridovich 1998; Halliwell and Gutteridge 1999; Lesser 2006). Hydrogen 

peroxide (H2O2) an uncharged molecule, is a more stable ROS with a half-life ranging 

from hours to days (Petasne and Zika 1997; Yuan and Shiller 2001; Yuan and Shiller 

2005) and readily diffuses across biological membranes. H2O2 damages various cellular 

constituents like DNA and enzymes involved in carbon fixation and is also an important 

signaling molecule in programmed cell death (Halliwell and Gutteridge 1999). Further 

reduction of H2O2 results in the much more destructive hydroxyl radical (HO�) with a 

lifetime of 10-7 s (Lesser 2006) that can initiate a damaging chain reaction of lipid 

peroxidation in the unsaturated lipids within cell membranes and causes denaturation of 

proteins and nucleic acids. 

Phytoplankton are known to have an effective protection against the harmful effects of 

ROS in the form of antioxidant defence systems classified as scavenging enzymes and 

antioxidant molecules. The scavenging enzymes include superoxide dismutase (SOD), 

which occurs as a metalloprotein and is found as Cu-, Zn- or Fe- SOD in unicellular 

eukaryotic algae especially dinoflagellates (Dufernez et al. 2008; Lesser and Shick 1989; 

Okamoto et al. 2001). Another scavenging enzyme is catalase, which is a heme-

containing group involved in the catalytic conversion of hydrogen peroxide to water and 

oxygen. Peroxidases are also like catalases that catalyze the reduction of hydrogen 

peroxide to water and are of two kinds: Ascorbate peroxidase (APX) and Glutathione 

peroxidase. The major non-enzymatic antioxidant molecules are Ascorbate, Glutathione, 

Tocopherol and Carotenoids. The soluble antioxidant ascorbate has been measured in 

marine microalgae like the diatoms, prymnesiophytes, prasionophytes, chlorophytes and 
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in other species (Brown and Miller 1992). It scavenges not only hydrogen peroxide, but 

also singlet oxygen, superoxide and hydroxyl radicals, and lipid hydroperoxides without 

enzyme catalysts. Glutathione (GSH) is another soluble antioxidant involved in the rapid 

quenching of singlet oxygen, superoxide and hydroxyl radicals and is known to be 

produced in marine phytoplankton in response to stress (Dupont et al. 2004; Kawakami 

et al. 2006). Tocopherol can quench singlet oxygen, superoxide and hydroxyl radicals 

and occurs as α-tocopherol in phytoplankton (Durmaz 2007). Phytoplankton also contain 

carotenoids, as an accessory pigment in photosynthesis for light-harvesting, but these 

lipid-soluble molecules can also act as ROS scavengers when the photosynthetic 

apparatus is stressed by high photon flux density. In the event of photoprotection, 

carotenoids are known to dissipate the excess excitation energy via the xanthophyll 

cycle (Demmig-Adams and Adams 1996). 

Besides the damaging effects on cellular components and macromolecules caused by the 

enhanced production of ROS during stress, there are growing indications that the 

antioxidant systems of the cell regulate intracellular levels of ROS. Thus, they play an 

important role as signaling molecules for the activation of stress-response and defence 

pathways (Apel and Hirt 2004; D'Autreaux and Toledano 2007; De Pinto et al. 2006; 

Foyer and Noctor 2003; Foyer and Noctor 2005; Torres et al. 2006). Furthermore, there 

is growing evidence that phytoplankton cells can undergo programmed cell death (PCD) 

in response to environmental stress (Berman-Frank et al. 2007; Bidle and Bender 2008; 

Bidle and Falkowski 2004; Bidle et al. 2007; Franklin et al. 2006; Jiménez et al. 2009; 

Okamoto and Hastings 2003; Segovia et al. 2003; Zuppini et al. 2007). This has 

therefore meant a large significance for the involvement of oxidative stress in the 

induction of PCD. Reports of oxidative stress-driven cell death were documented in the 

cyanobacterium Microcystis aeruginosa with a simultaneous increase of a toxic 

discharge of hydrogen peroxide into the media when stressed (Ross et al. 2006) and in 

an abrupt bloom-termination of Peridinium gatunense mediated by CO2 limitation 

(Vardi et al. 1999). There is evidence that oxidative stress-driven cell death occurs 

despite the upregulation of antioxidants in the algal cells of Chlamydomonas reinhardtii 

and Peridinium gatunense (Butow et al. 1997; Murik and Kaplan 2009) suggesting the 

influence of oxidative stress in programmed cell death in marine phytoplankton. 
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1.2.3 Stress-induced cell death 

Stress beyond a cell’s tolerance can induce molecules and processes that function in 

normal cell signaling and survival responses, to play a dual role in inducing cell death. 

This has been documented in oxidative stress-induced cell death with cells possessing 

high antioxidant activity but not in cells with low antioxidant activity (Murik and Kaplan 

2009). Cell death was also augmented in cells possessing low antioxidant activity with 

the addition of the antioxidant dehydroascorbate, a product of ascorbate peroxidase 

(APX), but not by the addition of other antioxidant molecules like ascorbate or reduced 

glutathione (Murik and Kaplan 2009), suggesting the influence of the antioxidant 

molecule of APX in triggering the cell death pathway in phytoplankton. 

For a long time, cell death mechanisms were not established in phytoplankton as 

compared with other organisms like bacteria, protozoa, fungi, plants and animals. 

However, studies of algal bloom dynamics to identify the mechanisms controlling the 

abrupt termination of natural blooms led to the identification of mass cell lysis, a kind of 

loss process besides grazing and sedimentation (Agusti et al. 1998; Brussaard et al. 

1995). Cell lysis is a process of phytoplankton mortality and is determined by the 

dissolved esterase method. Cell lysis results in the rupture of the cell membrane with 

subsequent discharge of the cell contents into the surrounding medium. This represents a 

significant source of nutrient rich dissolved organic compounds in the water column, 

loss of the primary production that is directly available to herbivores and reduction in 

the total possible particulate sinking flux. Reports show that enhanced cell lysis results 

from two major factors, which include parasitic attack by viruses (Bidle and Falkowski 

2004; Brussaard 2004; Suttle 2005) and bacteria (Imai et al. 1993; Ohki 1999) and 

environmental stress like light deprivation (Berges and Falkowski 1998; Segovia and 

Berges 2009; Segovia et al. 2003), high light stress (Berman-Frank et al. 2004), UV 

exposure (Moharikar et al. 2006), high temperature (Zuppini et al. 2007), high salinity 

(Affenzeller et al. 2009), nutrient limitation (Bidle and Bender 2008) and CO2 limitation 

(Vardi et al. 1999). 
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Intensive research on the factors inducing phytoplankton cell lysis led to the discovery 

of the autocatalytic cell death pathway. Analogous to programmed cell death (PCD) in 

multicellular organisms, the autocatalytic cell death pathway is a cellular self-destruction 

mechanism (autolysis) and is independent of viral attacks. The term programmed cell 

death (PCD) refers to a genetically controlled or regulated form of cell death and is 

linked with a series of biochemical and morphological changes (Bidle and Falkowski 

2004). Apoptosis (Moharikar et al. 2006), paraptosis (Franklin and Berges 2004; 

Sperandio et al. 2000) and autophagy (Berg et al. 2005) are essentially programmed 

forms of cell death, while necrosis is a mode of cell death that does not involve gene 

expression and occurs when the cell cannot adapt to the changing environment. PCD 

involves a biochemical stimulation of a specialized cellular machinery which consists of 

receptors, adapters, signal-kinases, proteases and nuclear factors (Aravind et al. 2001). A 

PCD response is induced by environmental stress associated with enhanced oxidative 

stress. Evidence for PCD-like cell death or the autocatalytic cell death pathway in 

phytoplankton was found in the aging cultures of the cyanobacterium Trichodesmium sp. 

exposed to high irradiance, combined phosphorus and iron depletion (Berman-Frank et 

al. 2004), in the dinoflagellate Peridinium gatunense under CO2 limitation (Vardi et al. 

1999), in light deprived unicellular chlorophyte Dunaliella tertiolecta (Segovia et al. 

2003) and in nutrient-limited diatoms Ditylum brightwellii (Brussaard et al. 1997) and 

Thalassiosira weissflogii (Berges and Falkowski 1998). 

In multicellular eukaryotes, PCD is mediated by a group of protein-splitting enzymes of 

a specific class of proteases, called caspases (cysteinyl aspartate-specific proteases) that 

do not exist in prokaryotes and unicellular eukaryotes. However, an increase in caspase-

like activity and expression of caspase-like enzymes were reported in stressed 

cyanobacteria and microalgae (Lane 2008; Segovia et al. 2003). Genome sequencing has 

revealed two families of caspase-like proteins – paracaspases and metacaspases that 

mediate PCD (Tsiatsiani et al. 2011; Uren et al. 2000). Of the two caspase orthologues, 

metacaspases, though characterized in silico are found in prokaryotic and eukaryotic 

phytoplankton genomes (Bidle and Falkowski 2004). A number of metacaspase 

orthologues providing evidence for caspase-like activity (Bozhkov et al. 2010; Carmona-

Gutierrez et al. 2010; Enoksson and Salvesen 2010; Vercammen et al. 2007) are reported 
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in the model phytoplankton such as the unicellular chlorophyte Chlamydomonas 

reinhardtii (Murik and Kaplan 2009) and other marine species like the diatom 

Thalassiosira pseudonana (Bidle and Bender 2008) and the unicellular coccolithophore 

Emiliania huxleyi (Bidle and Falkowski 2004; Bidle et al. 2007). 

The process of PCD usually expected in metazoans, may have developed in 

phytoplankton cells as a strategy to eliminate specific stress-induced damaged cells 

(Bidle and Falkowski 2004). As a result of PCD, organic matter and cellular nutrients 

released into the water, are available to the surviving cells, thereby benefitting the 

phytoplankton population by increasing the chances of survival of the healthier cells 

under nutrient stress (Bidle and Falkowski 2004). PCD is also thought to play a role in 

the defence against viral infection of clonal populations (Georgiou et al. 1998) and in 

regulating cellular differentiation (Bidle and Falkowski 2004). 

1.3 Overview of the importance of DMS and DMSP 

In the following sections, this chapter will introduce a climatically and biologically 

significant sulphur compound and focus on the influence of stress conditions on its 

physiological role and release in marine phytoplankton. 

1.3.1 Role of DMS in the global sulphur cycle 

Dimethylsulphide (DMS) is a gas mainly produced in the ocean surface layers by marine 

phytoplankton. It was first revealed to be produced by marine algae by Challenger 

(1951) and based on his findings, the first measurements of DMS in a cruise over the 

Atlantic and the discovery of its abundance in surface ocean waters was the pioneering 

work of Lovelock (1972). At that time, studies of the global sulphur cycle consistently 

suggested that in order to achieve the sulphur balance there must be a substantial flux of 

volatile sulphur from the oceans into the atmosphere. The earlier sulphur budgets 

attributed this flux to hydrogen sulphide (H2S) from coastal areas. But later, it became 

clearer that H2S was highly reactive to oxygen and so with the discovery and 

measurements of DMS in the ocean and atmosphere, it was then accepted that most of 
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the flux of sulphur was from DMS with a small contribution from carbonyl sulphide 

(COS) that was formed photochemically in seawater (Ferek and Andreae 1984). 

Subsequent measurements of DMS were made throughout the Pacific (Andreae and 

Raemdonck 1983; Barnard et al. 1984; Bates and Quinn 1997; Cline and Bates 1983; 

Marandino et al. 2009; Turner et al. 1988), the Atlantic (Iverson et al. 1989; Marandino 

et al. 2008; Turner et al. 1988) and the Southern Oceans (Yang et al. 2011). Estimates of 

global sulphur emissions to the atmosphere in the late 90’s showed that out of the total 

100 Tg S yr-1, 65.6 Tg S yr-1 were of anthropogenic origin, 13.7 Tg S yr-1 originated 

from volcanoes, 18.2 Tg S yr-1 from DMS, while only 2.5 Tg S yr-1 was from biomass 

burning (Graf et al. 1997). Recently estimated DMS emissions from the ocean to the 

atmosphere reveals a higher input of ~ 28 Tg S yr-1 (Lana et al. 2011a). Thus in todays 

world, the sulphur compound DMS accounts for ~ 50% of the total natural sulphur flux 

to the atmosphere, confirming a significant role of DMS in the global sulphur cycle (Fig. 

1.3). 

 

Figure 1.3 Biogeochemical Sulphur cycle with oceanic DMS playing a significant role. Volatile 

compounds of Sulphur are released to the atmosphere from natural sources such as volcanoes and oceans 

and via anthropogenic activity. In the atmosphere, the volatile sulphur compounds are oxidized to sulphur 

dioxide, which are subsequently rained out (wet deposition) or fall back (dry deposition) to the earth’s 

surface. Plants assimilate sulphur in various forms from the soil (green arrow on land) and when they die 

or are consumed by animals, these organic compounds are returned to land or water where they are then 

dissimilated by soil microorganisms that mineralize S-compounds to sulphate. In the ocean, sulphur 

assimilation occurs in algae (blue arrows in the ocean) that release sulphur in the form of DMS, which is 

fluxed into the atmosphere (Takahashi et al. 2011). 
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Biogeochemical cycle of sulfur in nature. Sulfate is assimilated by plants ( green arrow) and algae (blue arrow). Soil microorganisms use
sulfur in dissimilative reactions and mineralize organic sulfur compounds to sulfate. Sulfur can be released to the atmosphere as volatile
compounds from oceans and volcanoes and through anthropogenic activities. The volatile sulfur compounds are oxidized to sulfate in
the atmosphere.

induce detoxifying enzymes that prevent tumor
formation (12, 138, 191). Choline-O-sulfate
is another sulfated secondary metabolite
identified as a potent osmoprotectant in some
plant species (63).

Given the importance of sulfur compounds
for the life cycle of photosynthetic organisms,
functions of transport proteins and enzymes
involved in sulfate metabolism have been
intensively investigated over the past few
decades. Since 2000, functional genomics of
the model plant species, Arabidopsis thaliana, has
provided us with a more precise understanding
of its physiological functions and regulations.
In this review, we focus on the molecular
functions of components of sulfur transport
and metabolism (Figures 2 and 3), referring to
biochemical and genetic backgrounds. We also
describe how these metabolic pathways and
upstream regulatory processes are integrated to
balance the systems in response to changes in
environmental sulfur conditions and intrinsic
signals. A brief overview of how sulfur may
have influenced the evolution and radiation of
photosynthetic taxa is also given.

SULFATE TRANSPORT SYSTEMS

Sulfate Transport Mechanisms

Influx of sulfate through plasma membrane-
bound transport proteins occurs against the
inside-negative gradient of membrane poten-
tial, requiring a driving force for transport.
Plants primarily use proton/sulfate cotransport
systems to mediate sulfate influx (118, 185).
This system utilizes proton gradients across
the membranes as motive force, and the ki-
netic phase with a low Km value becomes active
under sulfur-limited conditions (24, 118). Sul-
fate transporters are structurally related to the
family of membrane-bound solute transporters
predicted to have 12 membrane-spanning do-
mains (185). In addition, they contain STAS
(sulfate transporters and antisigma factor an-
tagonists) domains in C termini, which may
have regulatory functions in controlling activity
and localization of transporters to membranes
(170, 180).

A completely different mechanism facilitates
acquisition of sulfate in bacteria. The bacte-
rial sulfate transporting complex consists of a

www.annualreviews.org • Sulfur Assimilation in Photosynthetic Organisms 159

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

11
.6

2:
15

7-
18

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

by
 U

ni
ve

rs
ity

 o
f E

as
t A

ng
lia

 o
n 

05
/1

3/
11

. F
or

 p
er

so
na

l u
se

 o
nl

y.



Chapter 1: General Introduction 

40 

1.3.2 Role of DMS in the radiation balance of the earth 

DMS is usually found at several orders of magnitude higher concentration in the ocean 

than in the atmosphere (Andreae 1990). This concentration gradient causes it to escape 

into the atmosphere (Andreae 1990). Once there, DMS has a short life span of about one 

day (Kloster 2006) as DMS is oxidised by hydroxide and nitrate radicals to yield acidic 

species such as sulphur dioxide, sulphuric acid and methane sulphonic acid (MSA) 

(Plane 1989). In this way, DMS influences the pH of aerosols and rainwater, especially 

in remote open oceans like the Southern ocean and the polar seas (Charlson and Rodhe 

1982). In the atmosphere, these oxidation products of DMS exist as tiny submicron size 

particles called aerosols, which reflect back the incoming solar radiation. They also act 

as cloud condensation nuclei (CCN) and are responsible for cloud formation. This 

process enhances albedo and increases rainfall. Thus DMS not only plays a role in the 

biogeochemical sulphur cycle but also plays an important role in the radiation balance of 

the earth (Fig. 1.4 A). However, recently it is suggested that there are many potential 

aerosol-cloud-rainfall interactions but many are non-linear. This means that an increase 

in particle number can lead to a different effect on rainfall if the increase occurs under 

high or low pre-existing particle loading. This is sometimes called the cloud lifetime 

indirect aerosol effect. This would therefore imply that if oxidation of DMS to produce 

CCN results in a larger number of smaller particles, then there could be some evidence 

that DMS produces less rainfall (Denman et al. 2007; Stevens and Feingold 2009). So 

also, DMS may play another contrasting role in the atmosphere in the form of a 

hypothetical ‘halogen activation’ autocatalytic cycle. Sulphuric acid derived from DMS 

oxidation in the atmosphere might catalase the release of highly reactive halogens (like 

Br and Cl) from sea salt particles into the air and destroy the ozone (Ayers and Gillett 

2000; Vogt et al. 1996). 
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Figure 1.4 Fate of oceanic DMSP and DMS controlled by biotic and abiotic factors indicated by the 

coloured ellipses; red-bacteria, green-phytoplankton, blue-zooplankton and black-abiotic. (A) DMS plays 

an important role in the radiation balance of the earth. (B) DMS from the surface seawaters, escapes into 

the atmosphere and in the seawater it undergoes bacterial and abiotic degradation to produce dimethyl 

sulphoxide (DMSO) and other molecules. (C) Dissolved DMSP in seawater is available for DMSP lyase 

activity by bacteria and phytoplankton, which results in the cleavage of DMSP to DMS and acrylic acid. 

(D) Environmental factors such as salinity, light, temperature and nutrients influence the amount of DMSP 

produced by phytoplankton, at the species level. (E) DMSP released into seawater under grazing pressure. 

(F) Bacterial activity on dissolved DMSP to produce methylmercaptopropionate (MMPA), 

mercaptopropionate (MPA) and methanethiol (MeSH). (G) Bacterial assimilation of dissolved DMSP, 

leading to no formation of DMS (Diagram modified from Stefels et al. (2007)). 

  

DMS in surface water and consequently its flux to the
atmosphere (Malin and Kirst 1997). Physical and

chemical ecosystem parameters all affect this net-

work, potentially resulting in dramatic shifts in the
DMS flux to the atmosphere. Although our knowl-

edge on the qualitative aspects of the marine sulphur

cycle has improved considerably during the past two
decades, it is still difficult to quantify the effects of

controlling factors on the various pathways.

Ecosystem modelling provides a tool for investi-
gating how the DMS concentration and subsequently

its flux to the atmosphere are regulated and what the

most critical processes are. In a recent review on DMS
and DMSP ecosystem models, Vezina (2004) con-

cluded that although all current models will greatly

benefit from improvements to the underlying ecosys-
tem model, the quantitative understanding of the

processes that drive variations in DMS and DMSP
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1.3.3 Climatic importance of DMS 

In the 1970’s, James Lovelock put forward a thought-provoking hypothesis, known as 

the ‘Gaia Hypothesis’ suggesting that life moderated the planet by the fact that the 

whole process between the biotic and abiotic systems, could create a ‘Self-Regulating 

Global Thermostat’ (Lovelock 1979; Lovelock 1972; Lovelock and Margulis 1974). 

Since then, a mechanism was proposed to imply that the natural sulphur cycle altered 

global climate (Shaw 1983). Using Lovelock’s hypothesis and Shaw’s idea of the 

sulphur cycle, a paper was published in Nature by Charlson, Lovelock, Andreae and 

Warren which until now remains the cornerstone for all research in this area and is 

known as the CLAW hypothesis (acronym taken from the authors names) (Charlson et al. 

1987). The CLAW hypothesis states that an increase in sea surface temperature by the 

penetration of sunlight through the earths atmosphere thus increasing the light 

penetration within the water column would lead to an increase in overall primary 

productivity, resulting in an increase in DMS production. This in turn would increase the 

flux of DMS across the sea surface and so raise the number of cloud condensation nuclei 

(CCN) in the atmosphere. The resulting enhanced cloudiness would tend to cool the 

atmosphere, countering the warming effects, and thus, DMS would work in reverse of 

the greenhouse gases (Fig. 1.5). 
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Figure 1.5 Lovelock’s ‘Self-regulating Global thermostat’ based on the Gaia hypothesis suggesting that 

life moderated the planet. 

1.3.4 Challenges facing the CLAW hypothesis 

The ocean surface layer influences climate through the exchange of greenhouse gases 

such as carbon dioxide and water vapour (Kiene et al. 1999). These gases absorb the 

outgoing longwave radiation and keep the average surface temperature of the earth ~ 

15°C. If not for these gases, the surface temperature of the earth would be -19°C 

(Halmann and Steinberg 1999). But, with the onset of industrialization and intense 

anthropogenic activities, there have been overwhelming emissions of the greenhouse 

gases leading to ‘Global Warming’; in effect the earth has already warmed by 0.75°C 

since 1900. It would be ground-breaking research to arrive at any conclusion pointing to 

the fact that DMS from the ocean is regulating the warming effect of the greenhouse 

gases. At present, intense research is ongoing to explore the climatic importance of DMS 

before coining DMS with the term of ‘the anti-greenhouse gas’. But the challenges 
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involved in estimating DMS flux to the atmosphere, intricacy of the interconnected 

processes involved in the climatic feedback mechanisms, the complications created as a 

result of increasing anthropogenic activity and the increasing significance of the non-

DMS sources of CCN in the marine boundary layer (Ayers and Cainey 2007; Quinn and 

Bates 2011) have delayed confirmation or denial of the simplistic CLAW hypothesis. 

Indeed the CLAW hypothesis has spun interdisciplinary research for decades improving 

our understanding of the link between ocean-derived CCN and cloud formation and that 

algae have an important role in the climate system. But at some point, unless we fully 

understand the complex biogeochemistry and cloud physics with global climate change 

affecting the marine environment, we would be unable to understand the relevance or 

correctness of the CLAW hypothesis (as originally stated or modified). 

1.3.5 Global distribution of DMS 

Several attempts have been made to study the global distribution of DMS in seawater 

and the biogeochemical processes that control its concentration and emission to the 

atmosphere (Cline and Bates 1983; Gibson et al. 1990; Iverson et al. 1989; Kiene 1992; 

Putaud and Nguyen 1996; Turner et al. 1989; Wakeham et al. 1987). DMS 

concentrations are found to be highly variable on a regional and seasonal basis (Bates et 

al. 1987; Cooper and Matrai 1989). Open ocean surface seawater DMS concentrations 

generally range from 0.5 to 5.0 nM and are lowest during the winter months in high 

latitudes (Bates et al. 1987). In general, upwelling regions appear to have the highest 

mean DMS concentration, coastal and continental waters intermediate levels and the 

oligotrophic ocean waters the lowest (Andreae 1990; Andreae and Barnard 1984; 

Holligan et al. 1987; Simó et al. 1997; Turner et al. 1996; Watanabe et al. 1995). 

Although DMS in seawater is believed to be produced mainly by marine phytoplankton 

(Andreae 1986; Barnard et al. 1984; Baumann et al. 1994; Holligan et al. 1987; Keller et 

al. 1989), some studies suggest that DMS can also be produced in sediments from the 

degradation of detritus settled on the bottom sediment (Andreae 1985). The 

concentration of DMS in seawater is the net result of the interplay of production and 

consumption processes. After production in seawater, the lifetime of DMS in surface 
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waters is of the order of one day (Kiene and Bates 1990) as it is degraded both 

microbially (Suylen et al. 1986; Taylor and Kiene 1989) and photochemically to 

dimethyl sulphoxide (DMSO) (Brimblecombe and Shooter 1986; Brugger et al. 1998; 

Kieber et al. 1996) and is lost to the atmosphere via air-sea exchange (Kieber et al. 

1996) (Fig. 1.4 B). 

Attempts are ongoing to establish global relations between chlorophyll a and DMS so as 

to facilitate mapping of DMS through satellite imagery (Kettle et al. 1999; Lana et al. 

2011a; Lana et al. 2011b; Liss et al. 1993). This has gained momentum since many 

studies have found correlations between DMS and chlorophyll a concentration (Andreae 

and Barnard 1984; Liss et al. 1994; Malin et al. 1994; Malin et al. 1993; McTaggart and 

Burton 1993; Turner et al. 1989; Turner et al. 1988; Vallina et al. 2008). On the other 

hand, other studies show no such correlations on larger regional scales (Andreae and 

Barnard 1984; Holligan et al. 1987; Watanabe et al. 1995). 

1.3.6 Dimethylsulphoniopropionate (DMSP) the precursor of DMS  

Prior to the work of Lovelock (1972), Haas (1935) reported methyl sulphide emissions 

from the seaweed Polysiphonia fastigiata. Subsequently, dimethylsulphoniopropionate 

(DMSP), the precursor of DMS was isolated from this species (Challenger and Simpson 

1948) and Greene (1962) demonstrated the biosynthesis of DMSP from its precursor 

methionine. The occurrence of DMSP in marine phytoplankton was documented by 

Ackman et al. (1966). DMS is produced by the enzymatic cleavage of DMSP (Cantoni 

and Anderson 1956), producing equimolar amounts of DMS and acrylic acid (Greene 

1962) (Equation 1; Fig. 1.4 C). 

 

 (H3C)2 S+ – CH2 – CH2 – COO- (aq) → (CH3)2S (g) + CH2 = CH – COOH (aq) 

 DMSP                   DMS               Acrylic acid 

Equation 1 Cleavage reaction of DMSP producing equimolar amounts of DMS and acrylic acid. 
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Acrylic acid is known for its anti-bacterial properties, which protects the cell against 

bacterial attack (Sieburth 1960) especially during grazing (Van Alstyne et al. 2001). 

This grazer deterrent mechanism of acrylic acid was based on several studies 

highlighting the dominance of the DMSP producer Phaeocystis species during bloom 

conditions (Estep et al. 1990; Wolfe et al. 1997). 

1.3.7 Species-specific occurrence of DMSP  

DMSP concentration within phytoplankton cells is observed to be extremely species 

specific (Keller et al. 1989) and heterotrophs are also known to contain DMSP. In 

addition, environmental factors such as salinity, temperature, physical disturbances, tidal 

exposure and nutrients may also influence the amount of DMSP produced by 

phytoplankton, even at the species level (Andreae and Barnard 1984; Leck et al. 1990; 

Turner et al. 1989; Watanabe et al. 1995) (Fig. 1.4 D). So far, studies have revealed the 

importance of certain phytoplankton groups as major contributors to DMS and its 

precursor DMSP. According to Keller, the major phytoplankton groups producing DMS 

and DMSP is in the following order:  

Prymnesiophytes > Prasinophytes > Pelagophytes (ex chrysophytes) > Chlorophytes 

Barnard et al. (1984) carried out DMS measurements in the South Eastern Bering Sea 

and have attributed the high DMS concentrations to the abundances of the 

prymnesiophyte Phaeocystis pouchetti rather than with total chlorophyll concentration 

or primary production during the diatom-dominated spring phytoplankton bloom. The 

analyses of phytoplankton species composition in nearshore waters around mainland 

Britain in summer indicated the coccolithophores (in particular Cyclococcolithus 

leptoporus), various dinoflagellates including the bloom species Gyrodinium aureolum 

and certain unidentified taxa of small flagellates (Turner et al. 1988) as the main sources 

of DMS. In another study on the monsoon-driven tropical estuarine waters of Zuari 

(Goa), a mixed bloom of diatoms and dinoflagellates were found to be the chief 

producers of DMSP and DMS (Shenoy and Patil 2003).  
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Charlson et al. (1987) previously recognized that there is no direct relationship between 

the abundance of phytoplankton and the concentration of DMS. The concentration of 

DMS in the water, which largely determines the flux of DMS to the atmosphere, is a 

complex function of production and consumption processes. The antagonism between 

DMSP production, consumption and DMS volatilization depends on the environmental 

conditions and thereby determines the net flux of DMS to the atmosphere. 

1.4 Physiological roles of DMSP in response to cell stress 

1.4.1 DMSP as a compatible solute 

The physiological function of DMSP in phytoplankton is receiving considerable 

attention in order to try to understand the biological importance of DMS and DMSP. 

DMSP production involves successive S-methylation, deamination and decarboxylation 

(Andreae 1986) in algae containing methionine (Andreae 1990) and it is found in a 

variety of marine phytoplankton as an osmolyte (Keller 1988) and as a cryoprotectant 

(anti-freeze) in ice algae (Karsten et al. 1992; Kirst et al. 1991; Nishiguchi and Somero 

1992; Vairavamurthy et al. 1985). Algae accumulate compatible solutes to regulate 

osmotic balance. Glycine betaine (GBT) acts as part of the group of osmolytes (like the 

photosynthetic products-sugars, polyols and hetrosides) maintaining osmotic balance 

and turgor pressure (difference between the cellular and external hydrostatic pressures) 

within cells. DMSP being a tertiary sulfonium analogue of the quaternary ammonium 

compound GBT provides evidence to suggest that DMSP may also help to maintain 

intracellular isotonic or hypertonic conditions (Stefels 2000; Welsh 2000). 

Phytoplankton intracellular DMSP concentration increases with high salinity conditions 

(Dickson and Kirst 1987; Vairavamurthy et al. 1985), although this may not always be 

the case (Colmer et al. 1996; Otte and Morris 1994; Van Diggelen et al. 1986). 

Interestingly, it is observed that when there is a sudden drop in salinity, DMSP can be 

released from the cell as a response to stress (Niki et al. 2007). 
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1.4.2 DMSP as a carbon source for bacteria 

Phytoplankton cells release DMSP under conditions of grazing pressure (Fig. 1.4 E) 

(Belviso et al. 1990; Dacey and Wakeham 1986; Leck et al. 1990; Morales et al. 1991), 

viral infection (Bratbak et al. 1995; Malin et al. 1992), leakage from ageing cells (Turner 

et al. 1988), bacterial activity (Ledyard and Dacey 1994; Ledyard et al. 1993) and during 

senescence (Leck et al. 1990; Nguyen et al. 1988) increasing  the amount of dissolved 

DMSP in the water and making it available for DMSP-lyase activity. However, DMSP 

concentrations in seawater are usually found to be low 1–50 nM (Kiene and Slezak 

2006), but its turnover is rapid ranging from 1–129 nMd-1 (Kettle et al. 1999; Kiene and 

Linn 2000; Turner et al. 1988). The chemical half-life of DMSP at the pH of seawater is 

about 8 years (Dacey and Blough 1987) but its conversion to DMS is not the only fate of 

DMSP in seawater. Recent works suggest that a large fraction of DMSP is 

demeythylated and demethiolated by bacterioplankton to produce methanethiol which is 

then used for methionine and eventually protein synthesis (Kiene 1996) (Fig. 1.4 F). 

Simo and Pedros-Alio (1999) have reported two major pathways of DMSP degradation. 

The first one leads to DMS production and is carried out by both algal and bacterial 

enzymes (DMSP cleavage) and the second one in which bacteria play a major role and 

utilize DMSP (DMSP assimilation) for other purposes, does not result in DMS 

formation (Fig. 1.4 G). Bacteria are important DMSP and DMS degraders (Matrai and 

Keller 1994). 

1.4.3 DMSP as an anti-grazing compound and infochemical 

DMSP and its cleavage products DMS and acrylic acid have been proposed to act as 

chemical deterrents to grazing. Dacey and Wakeham (1986) were the first to report that 

grazing on phytoplankton enhanced DMS concentration. Further, increased release rates 

of DMS and DMSP were observed when the ciliate microzooplankton Strombidium 

sulcatum grazed on the prymnesiophyte Isochrysis galbana (Christaki et al. 1996). A 

laboratory study involving the ingestion of Emiliania huxleyi by the heterotrophic 

dinoflagellate Oxyrrhis marina resulted in the rapid cleavage of DMSP to DMS and 

presumably also acrylic acid (Wolfe and Steinke 1996). Acrylic acid is suggested to act 
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as a toxin (Wolfe and Steinke 1996) and is shown to reduce bacterial production (Slezak 

et al. 1994). It was further observed that the microzooplankton grazers preferred E. 

huxleyi strains with lower DMSP lyase activity compared to strains with higher activity 

(Wolfe and Steinke 1996; Wolfe et al. 1997).  

Strom et al. (2003) showed that DMSP reduced grazing rates on phytoplankton and 

Strom and Wolfe (2001) suggested that DMSP may serve as a warning infochemical to 

grazers within the phycosphere, permitting them to identify harmful acrylate-producing 

phytoplankton and reject them. Steinke et al. (2002) suggested that DMSP acts as an 

infochemical in a tritrophic interaction, whereby under microzooplankton grazing 

pressure, phytoplankton release DMSP signaling the mesozooplankton of its prey 

location thereby decreasing the grazing pressure on the phytoplankton. At higher trophic 

levels, the DMS generated from grazing can influence the migration pattern of 

zooplankton and thus help predators such as seabirds and marine mammals to easily 

locate zooplankton-rich areas (Bonadonna et al. 2006; Nevitt 2008; Nevitt and 

Bonadonna 2005; Nevitt and Haberman 2003; Nevitt et al. 1995). 

1.4.4 DMSP as an overflow mechanism  

It has been suggested that the production of DMSP and glycine betaine (GBT) are 

related to nitrogen availability (Andreae 1986). In nitrogen replete conditions, GBT is 

produced, while under nitrogen deplete conditions DMSP is produced, due to its lower 

nitrogen requirement. DMSP has been observed to increase in nitrogen depleted cells of 

the coccolithophore Emiliania huxleyi (Turner et al. 1988), the diatom Thalassiosira 

pseudonana (Bucciarelli and Sunda 2003) and Tetraselmis subcordiformis (Gröne and 

Kirst 1992), in addition to other phytoplankton species (Keller and Bellows 1996). 

However, there are studies suggesting a down-regulation of cellular DMSP under 

nitrogen limiting conditions in batch and continuous cultures (Keller et al. 1999a; Keller 

et al. 1999b). The results from the batch and continuous culture experiments also did not 

show a reciprocal relationship between GBT and DMSP production, although coupling 

of GBT production and nitrogen availability was observed. Simó (2001) proposed that 

various phytoplankton species evolve to produce DMSP according to the N-availability 
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such that short-term fluctuations of nitrogen would have a much less effect on DMSP 

and GBT production. So those phytoplanktons like the diatoms, evolved to inhabit 

nitrogen replete environments which would favour GBT production and would end up 

being low DMSP producers, while those that thrive under nitrogen limitation would 

produce more DMSP, for example the haptophytes and small dinoflagellates which are 

high DMSP producers. 

Stefels (2000) proposed an alternative theory for increased DMSP production under 

nitrogen depleted conditions, suggesting that DMSP represents an overflow mechanism 

for excess reduced sulphur and perhaps carbon and also a way of dissipating surplus 

energy under unbalanced growth conditions. Nitrogen depletion would result in an 

unbalanced cell growth due to the increase in the ratio of S:N within the cell, thereby 

increasing the cellular concentrations of cysteine and methionine. Conversion of these 

excess sulphur compounds into DMSP would provide an explanation for the 

upregulation of DMSP in the cell and excretion of DMSP into the surrounding medium 

would thus help maintain cellular balance (Stefels 2000). Furthermore, it was suggested 

that the DMSP overflow mechanism could be involved in protein turnover mechanisms 

and amino acid reallocation as an adaptation to stress (Stefels 2000). Earlier, it was 

pointed out that methionine availability controls DMSP production (Gröne and Kirst 

1992) and the transamination pathway leads to the production of DMSP from 

methionine, which is beneficial to a cell in nitrogen depleted conditions (Gage et al. 

1997). Nitrogen deficient cells would breakdown existing proteins with proteases to 

redistribute nitrogen to other amino acids, thereby increasing the methionine 

concentration and subsequently increasing DMSP production (Gröne and Kirst 1992). 

DMSP is also proposed as an overflow for excess carbon when the cell produces more 

carbohydrate than it requires (Stefels 2000). Under high light conditions, CO2 fixation 

increases relative to nitrate assimilation, leading to an excessive production of 

carbohydrates (Turpin 1991). In iron deficient conditions, nitrogen deficiency is induced 

relative to carbon assimilation, causing DMSP production to increase. In support of this 

theory, increased intracellular DMSP concentrations were observed in Phaeocystis sp. 
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exposed to high light irradiances and in iron depleted conditions (Stefels and Van 

Leeuwe 1998). 

1.4.5 DMSP as an antioxidant system 

It has been proposed that DMSP and its breakdown products may act as an antioxidant 

system (Sunda et al. 2002) when the production of reactive oxygen species (ROS) 

exceeds the cell’s capacity to detoxify them. In support of the antioxidant hypothesis, 

DMS production via DMSP lyase activity increases in response to oxidative stress 

induced by CO2 and Fe limitation, exposure to UV radiation, H2O2 and high 

concentrations of Cu+2 ions (Sunda et al. 2002). Culture studies of the diatom 

Thalassiosira pseudonana revealed a similar upregulation in cellular DMSP under N, P, 

Si and CO2 limitation (Bucciarelli and Sunda 2003). In addition, increased activity of the 

DMSP system in response to CO2 and Fe limitation and increased solar UV radiation 

was also observed in E. huxleyi (Sunda et al. 2002). Further, Fe limitation was shown to 

increase the DMSP to carbon ratio in the diatom Skeletonema costatum (Sunda et al. 

2002), a similar result also observed in the Antartic prymnesiophyte Phaeocystis sp. 

(Stefels and Van Leeuwe 1998). Exposure to high light irradiances also causes oxidative 

stress and has resulted in an increase in DMSP concentrations in some Antarctic macro- 

and micro-algae (Karsten et al. 1992; Stefels and Van Leeuwe 1998). 

Furthermore, Sunda and co-workers (2002) demonstrated that DMSP can scavenge 

hydroxyl radicals and proposed that the enzymatic cleavage of DMSP enhances 

antioxidant protection, as DMS and acrylate are respectively 60 and 20 times more 

effective in scavenging hydroxyl radicals than DMSP itself. DMS is highly reactive 

towards singlet oxygen groups (Wilkinson et al. 1995) and since it is an uncharged 

molecule, it could potentially serve as an antioxidant within photosynthetic membranes 

where lipid peroxidation reactions occur. Further, oxidation of DMS would result in 

DMSO, a substance already credited for its antioxidant properties (Lee and De Mora 

1999) and being hydrophilic, DMSO would accumulate in the cell making it a more 

effective antioxidant. Finally, reaction of DMSO with hydroxyl radicals produces 

methane sulphinic acid (MSNA), which is an effective scavenger of the harmful 
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hydroxyl radicals (Scaduto 1995). Besides DMSP and its derived S products, there are 

other S-containing amino acids like cysteine and methionine involved in ROS quenching 

especially of the harmful singlet oxygen and hydroxyl radicals (Moller et al. 2007). 

Noctor and Foyer (1998) have also demonstrated that glutathione (GSH) is an effective 

scavenger of hydrogen peroxide. 

The antioxidant theory is further supported by the summer increase in DMS to 

chlorophyll ratios due to the oxidative stress induced by increased solar radiation (Sunda 

et al. 2002). This implies that DMS released by the activation of the DMSP antioxidant 

system would act as a negative feedback mechanism on UV oxidative stress by 

enhancing cloud albedo and thereby decreasing the incoming solar radiation (Charlson et 

al. 1987; Sunda et al. 2002). 

1.5 Emiliania huxleyi 

Research presented in this thesis, on the influence of stress conditions on intracellular 

DMSP and DMS concentration, is focused mainly on the photosynthetic unicellular 

eukaryote Emiliania huxleyi (Fig. 1.6). The fossil records of this coccolithophore species 

belonging to the class of prymnesiophytes, reveals its appearance on earth around 

268,000 years ago (Raffi et al. 2006; Thierstein et al. 1977), about the same time as 

Homo sapiens, and is common in the world oceans since 70,000 years ago (Brown and 

Yoder 1994) making this microalgae an intriguing subject of study in response to stress. 

Emiliania huxleyi (namely the CCMP1516 strain) was the first genome to be sequenced 

in phylum haptophyceae, broadening our understanding of the biology and evolution of 

the members in this group and this makes it a model organism for research.  
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Figure 1.6 Emiliania huxleyi from the western Mediterranean (image courtesy of Markus Geisen / The 

Natural History Museum, London). 

1.5.1 Cell structure, reproduction and life-cycle 

The cell structure of E. huxleyi (Fig. 1.7) is that of a typical algal cell comprising the cell 

membrane, chloroplast, nucleus, endoplasmic reticulum, golgi body and mitochondria. 

In addition, this algal cell possesses a coccolith vesicle on the inside of the cell 

responsible for the formation of the coccolith. After generating the coccolith, the vesicle 

migrates to the edge of the cell and fuses with the cell membrane to constantly extrude 

the coccolith being produced within the cell, into the coccosphere (Westbroek et al. 

1993). 

 

Figure 1.7 Cell structure of Emiliania huxleyi (Diagram from the Natural History Museum, London, 

modified from the original in Westbroek et al. (1993)) 
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Reproduction in E. huxleyi is mainly by the asexual binary fission method, where one 

parent cell divides into two identical daughter cells by the process of mitosis. Cell 

division in E. huxleyi generally occurs up to once a day depending on the environmental 

conditions (Paasche 2001). However, if light and nutrients are not at optimum levels, 

this can hamper the cellular reproduction process. 

An interesting feature of E. huxleyi is its dimorphic haplo-diploid life-cycle (Fig. 1.8), 

wherein it can switch phases via the processes of meiosis and syngamy to maintain 

genetic diversity with asexual reproduction in either phase (Green et al. 1996; Paasche 

2001). The diploid phase (2N), containing two copies of each chromosome, is the non-

motile stage bearing coccoliths. The haploid phase (N) containing one copy of each 

chromosome is the motile stage bearing two flagellae for swimming, with the absence of 

coccoliths but the formation of cellulosic scales. It also has one more cell type in its life-

cycle known as the naked non-motile cell, which has been the type of cells used in this 

study. 

 

Figure 1.8 Life-cycle of Emiliania huxleyi (Diagram from the Natural History Museum, London) 
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1.5.2 Distribution and ecology 

E. huxleyi, one of the most eurythermal (temperature-tolerant) and euryhaline (salinity-

tolerant) of all species (Winter et al. 1994), is widely distributed in the freezing and 

nutrient-rich waters of the subarctic, in equatorial waters and along the borders of the 

subtropical oceanic gyres and in upwelling zones (Flores et al. 2010; Okada and Honjo 

1975; Okada and McIntyre 1979; Winter et al. 2008). It is vertically distributed in the 

50-100 m of the water column to carry out photosynthesis. It is capable of fixing 

atmospheric carbon into both photosynthetic and biomineralized product (CaCO3, 

calcite). Further, its unique calcifying ability of over-producing coccoliths results in the 

formation of multilayered coccospheres or the release of excess coccoliths into the water 

column, when compared to the other coccolithophore species regularly producing a 

single coccolith layer. Hence, E. huxleyi may play an important ecological role in the 

carbon dioxide sink (Westbroek et al. 1993) and in the marine carbon cycle via the 

export of calcite to the seabed; sedimentation (Baumann 2004). Apart from global 

carbon cycling, E. huxleyi, being a major DMSP producer and containing DMSP lyase 

(Keller et al. 1989; Steinke et al. 1998), also plays an important role in the sulphur cycle, 

thus playing a significant role in global climate change. 

E. huxleyi can also have a significant impact on the local environment by its periodic 

bloom formation covering large areas of the sea surface (Fig. 1.9). These blooms are 

categorized by a dense cell population of 1 to 10 million cells L-1 with the loose floating 

coccoliths giving the water a milky-white appearance, in contrast to green or red 

coloration produced by other phytoplankton species. E. huxleyi blooms typically occur 

in the North sea (Holligan et al. 1993b), the Black sea (Oguz and Merico 2006), the 

Bering Sea (Sukhanova and Flint 1998), the North Atlantic ocean (Holligan et al. 1993a; 

Malin et al. 1993), the Patagonian shelf around the Falklands and Argentina, in the 

North Pacific and the seas west of Great Britain (by SeaWiFS, satellite observations). 

Several hypotheses and supporting evidence brought forward for the environmental 

conditions that facilitate E. huxleyi blooms are high light (Nanninga and Tyrrell 1996), 

low silicate, phosphate more limiting than nitrate, low dissolved CO2 concentrations, 

high carbonate ion concentrations and types of grazers in the area. 
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Figure 1.9 LANDSAT Satellite image of Emiliania huxleyi bloom in the English Channel (Latitude 

50°11ʹ′1ʺ″N and longitude 0°31ʹ′52ʺ″W) off the coast of Plymouth (Cornwall) 24, July 1999 (Photo: NASA, 

image courtesy of Andrew Wilson and Steve Groom). 

Development of E. huxleyi blooms are either prevented or terminated by viral infestation 

(Bratbak et al. 1993; Martinez et al. 2007; Wilson et al. 2002b). Based on the ‘Red 

Queen evolutionary dynamics’ originally proposed by Van Valen (1973), named after 

the Red Queen in Alice in Wonderland who said, “It takes all the running you can do, to 

keep in the same place”, it has been suggested that coccolithoviruses are responsible for 

the rapid evolution shown by E. huxleyi (Emillani 1993; Smetacek 2001). However, a 

recent study by Frada et al. (2009) proposed an alternative model, called the 'Cheshire 

Cat dynamics' after the cat in Alice in Wonderland, which escaped execution by 

gradually turning invisible. This study demonstrated that under viral attack, the diploid 

phase cells could switch to the more virus-resistant haploid phase and by this mechanism 

a proportion of the population could escape viral attack at the end of the bloom period. 

The alternate non-coccolith bearing motile haploid phase cells of the life-cycle appear to 

be immune to viral attack, possibly because it has a very different cell-surface and so is 

in effect invisible to the viruses. 

The coccolithoviruses increase the ROS production in the infected cells (Evans et al. 

2006) thereby causing rapid degradation of cellular components, a drastic drop in 

photosynthetic efficiency, an upregulation of metacaspase protein expression associated 

with the induction of caspase-like activity and subsequently activating the autocatalytic 

programmed cell death (PCD) pathway (Bidle et al. 2007). Mesocosm experiments have 
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shown DMS accumulation in response to viral-induced decline of E. huxleyi blooms 

(Darroch 2003; Evans 2004) and a culture study on viral infected axenic strains of E. 

huxleyi resulted in the cleavage of DMSP to DMS (Evans et al. 2007). In addition, there 

are several field studies reporting high DMS levels associated with blooms (Holligan et 

al. 1993a; Malin et al. 1993; Matrai and Keller 1993). In contrast, other investigations on 

E. huxleyi blooms under viral attack in the Norwegian coastal waters and in seawater 

mesocosm experiments, did not result in increased DMSP nor DMS concentrations due 

to bacterial degradation or assimilation of the sulphur compounds released during cell 

lysis in the natural environment. So also the bloom size was relatively less dense with 

maximum cell concentration of 11 x 106 L-1 (Bratbak et al. 1995). There is also evidence 

to suggest that the process of grazing is more accountable for increased DMSP and DMS 

concentrations than viral lysis (Archer et al. 2001; Evans et al. 2007; Wilson et al. 

2002a). 

E. huxleyi is usually adapted to a wide range of aquatic environments. However, there 

are serious concerns over the potential ecological threats posed by ocean acidification. 

How E. huxleyi has evolved to be a dominant and abundant species despite the varying 

environment is of great importance. Its response to stress permits us to gain information 

on the mechanisms that organisms use to exploit environmental resources or cope with 

environmental stress. 

1.6 Goals, objectives and thesis overview 

The goals and objectives of this research project evolved over time. However, the main 

goal of the research was to determine natural ways in the environment that induce cell 

lysis and cell death and whether this would trigger effects on DMSP and DMS release 

from the cells, especially because DMSP and DMS are proposed to act as an effective 

antioxidant system under stress conditions. 

To achieve this goal, I firstly had to decide on a DMSP-producing phytoplankton to 

work with, out of the rich and diverse marine phytoplankton community. Having 

possessed and read the book ‘The Ages of Gaia: A biography of our living earth’, 
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written by James Lovelock, the proposer of the ‘Gaia Hypothesis’, the large image of 

the coccolithophore Emiliania huxleyi, pictured in the book at the very beginning of the 

introduction chapter on page 2 inspired me. As explained earlier in this chapter (section 

1.5), there is no doubt of the biogeochemical importance of the E. huxleyi species. 

Various studies document changes in intracellular DMSP concentration under stress 

conditions for several phytoplankton species and strains, but results are not always 

consistent. To understand how the environment, with its ongoing natural processes, 

drives intracellular DMSP and DMS concentrations in E. huxleyi and how E. huxleyi 

may modify itself as the environment changes, it was necessary to examine the 

organisms cellular stress response patterns under a specified set of laboratory conditions. 

For this, E. huxleyi cells were subjected to a range of environmental stress conditions 

simulated in the laboratory. Natural conditions were also tested where appropriate. 

Besides the general layout of a thesis that includes an Introduction (Chapter 1) providing 

a comprehensive literature review on the subject; Methodology (Chapter 2) accounting 

for the culturing techniques and analytical methods used within the study; this thesis also 

contains four chapters revealing the kinds of stress induced in E. huxleyi, its 

physiological cellular stress response and the influence of the stress factors on DMSP 

and DMS release from the cells. Each of the four result chapters was treated as an 

objective to accomplish the research goal reviewed in the final discussion and 

conclusions (Chapter 7). 

In Chapter 3 an investigation of nutrient-limitation on E. huxleyi is reported. The 

investigation was handled in two different ways and this was the only chapter that 

included a silicifying phytoplankton group of diatoms, Thalassiosira pseudonana, 

besides the calcifying, E. huxleyi. So firstly, batch cultures of E. huxleyi and T. 

pseudonana were monitored under gradual nutrient-exhaustion over a period of 28 days 

and an add-back experiment was performed to identify the limiting nutrient in both cases. 

The results from this first part are published in Limnology and Oceanography. The 

second highlight in this chapter is the effect of N-free media and P-free media followed 

by the add-back of the nutrient on the growth and DMSP concentrations and DMS 
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release in the three strains of E. huxleyi, namely CCMP370, CCMP373 and CCMP1516. 

Changes in membrane permeability were related to cell lysis and cell death. 

In Chapter 4 a study of UV-induced stress on E. huxleyi is reported. In this chapter, the 

aforementioned three strains of E. huxleyi were monitored for physiological responses, 

cell death and changes in DMSP concentrations in different light conditions and under 

various UV treatments in artificial set-ups and in natural light conditions i.e. solar 

radiation. Recovery experiments under normal light conditions were also conducted. 

In Chapter 5 an examination of light-deprivation or dark stress on the three strains of E. 

huxleyi is reported. In this chapter, physiological responses to cell stress, cell lysis, cell 

death and changes in DMSP and DMS concentrations were recorded over a period of 10 

days in E. huxleyi 370 and 373 and 18 days in E. huxleyi 1516 placed in continuous 

darkness. At the end of the monitoring period, the cultures were re-illuminated and re-

growth tested. In addition, at various points within the prolonged darkness-monitoring 

period, the cells were re-exposed to the light-dark cycle and tested for re-growth. 

Chapter 6 covers a study on the herbicide-induced oxidative stress in E. huxleyi. This 

particular treatment, though not a natural form of stress, was used as a guaranteed way to 

induce oxidative stress. Previously many experiments have shown that exposure to 

paraquat or methyl viologen enhances the production of ROS in plants and algae (Bray 

et al. 1993; Broadbent et al. 1995; Okamoto and Hastings 2003). This treatment also 

broadens our understanding of the potential effects of pollutants that induce oxidative 

stress, on intracellular DMSP and DMS release in E. huxleyi. In this chapter, a 48, 72 

and 120 h time-series exposure to 1 mM paraquat was carried out on E. huxleyi 1516 and 

a 72 h time-series exposure was conducted on E. huxleyi 370 and 373 to monitor the 

physiological responses to cell stress, cell lysis, cell death and changes in DMSP and 

DMS concentrations. This artificially-induced oxidative stress in E. huxleyi 1516 was 

verified by hydrogen peroxide excretion. A novel method of cell sorting on the Cytopeia 

influx was developed and optimized for the first time to sort cell populations based on 

fluorescence. The sorted cell populations were then analyzed for intracellular DMSP 

concentrations. 



Chapter 1: General Introduction 

60 

This work has been a sincere attempt to understand the biological role of DMSP and 

DMS within E. huxleyi cells and the results from the study are essential to explain how 

biology and atmosphere linked in the CLAW hypothesis, may not always respond 

consistently to environmental changes. 

1.7 Hypothesis 

In view of the above, the following hypothesis was put to the test: 

“If DMSP acts as an antioxidant system, then under stress conditions that induce 

oxidative stress in Emiliania huxleyi, DMSP will increase”. 
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Chapter 2:  General Methods 

2.1 Algal cultures 

Axenic cultures of Emiliania huxleyi CCMP370, CCMP373 and CCMP1516 (Table 2.1) 

were procured from the Provasoli-Guillard National Center for the Cultivation of 

Marine Phytoplankton (CCMP, Maine, USA) recently renamed as the National Center 

for Marine Alga and Microbiota (NCMA). These phytoplankton strains were maintained 

as batch cultures in two kinds of media (see section 2.2) and were grown in 100 ml 

Erlenmeyer flasks with 50 mls of media and capped with a cotton-filled muslin bungs, 

covered with aluminium foil. The cultures were incubated in a MLR-351 Plant Growth 

Chamber (Sanyo, Loughborough, UK) at 17°C under a light:dark cycle of 14:10 h at an 

illumination of 100 µmol photons m-2 sec-1 (Scalar PAR Irradiance Sensor QSL 2101, 

Biospherical Instruments Inc., San Diego, USA) and the flasks were gently swirled once 

a day, to keep the cells in suspension. Under these culture conditions, the E. huxleyi cells 

did not produce coccoliths and remained as naked cells. 

Table 2.1 Strain information for Emiliania huxleyi. Origin and isolation information obtained from Steinke 

et al. (1998). Additional information derived from the homepages of the National Center for Marine Alga 

and Microbiota (NCMA; https://ncma.bigelow.org/). 

Emiliania huxleyi 
Strain  370 373 1516 
Synonyms 451 B BT 6 2090 
  F451 CSIRO-CS-57   
Origin North Sea Sargasso Sea North Pacific 
Collector Passche Guillard Polans 
Year of Isolation 1959 1960 1991 

 

An inoculum of the stock culture was transferred to fresh media every 8 days to maintain 

exponential growth using the aseptic technique, in the sterile environment of a Walker 

Class II laminar flow cabinet. The aseptic technique involved wiping the interior of the 

cabinet with 70% ethanol and flaming the neck of the glassware with a gas burner before 
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and after the culture transfers. Glassware and culture media were autoclaved at 120°C 

for 30 minutes. Axenicity of the cultures was monitored regularly for bacterial 

contamination especially before and at the end of an experiment, by DAPI staining and 

epifluorescence microscopy (see section 2.3). 

2.2 Media preparation 

All three strains of E. huxleyi were successfully grown in two kinds of media: ESAW-Si 

(Enriched Seawater, Artificial Water) and f/2-Si. Silicate was omitted, as it is not needed 

by Emiliania. The cultures were used according to the need and objective of the 

experiment; for example, the nutrient limitation work was carried out with cultures 

growing in ESAW so that the nitrate and phosphate concentrations could be easily 

controlled and all the other stress experiments were conducted in the f/2-Si media. 

2.2.1 ESAW-Si (Enriched Seawater, Artificial Water) medium 

The original ESAW medium was proposed by Harrison et al. (1980) and was later 

modified for a wider range of coastal and open ocean phytoplankton (Berges et al. 2001; 

Berges et al. 2004) (Table 2.2). 

Seawater Base: The seawater base is composed of two parts: the anhydrous salt solution 

and the hydrated salt solution, which were prepared separately to avoid formation of any 

precipitates. The anhydrous salt solution was made by dissolving the anhydrous salts in 

600 ml distilled water and the hydrated salt solution was made by dissolving the 

hydrated salts in 300 ml distilled water. The two salt solutions were autoclaved, cooled 

to room temperature and combined in a sterile environment with the addition of sterile 

distilled water to make a final volume of 1 L of the seawater base. The pH was noted as 

8.2 and the salinity (hand-held conductivity meter WTW LF340-B/SET) was in the 

range of 30-33. 

Macronutrients, metals and vitamins: Stock solutions of macronutrients, iron, trace 

metals and vitamins were individually prepared and stored at 4°C, except the vitamin 

solution, stored at -20°C.  
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The seawater base was enriched just before cell transfers, with 1 ml L-1 of the above 

stock solutions using a syringe filter to avoid bacterial contamination. 

Table 2.2 Recipe for ESAW-Si media (without silicate, dH2O is distilled water). 

Compounds Stock Solution 
(gL-1dH2O) Quantity in 1L Final concentration in 

the medium (M) 
Anhydrous salts     
NaCl  21.194 g 3.63 x 10-1 
Na2SO4  3.550 g 2.50 x 10-2 
KCl  0.599 g 8.03 x 10-3 
NaHCO3  0.174 g 2.07 x 10-3 
KBr  0.0863 g 7.25 x 10-4 
H3BO3  0.0230 g 3.72 x 10-4 
NaF  0.0028 g 6.67 x 10-5 
      
Hydrated salts     
MgCl2.6H2O  9.592 g 4.71 x 10-2 
CaCl2.2H2O  1.344 g 9.14 x 10-3 
SrCl2.6H2O  0.0218 g 8.18 x 10-5 
      
Macronutrients     
NaNO3 46.670 1 mL 5.49 x 10-4 
NaH2PO4.H2O 3.094 1 mL 2.24 x 10-5 
      
Iron solution  1 mL   
Na2EDTA.2H2O  2.44 g 6.56 x 10-6 
FeCl3 6H2O  1.77 g 6.55 x 10-6 
      
Trace Metal solution  1 mL   
Na2EDTA.2H2O  3.090 g 8.30 x 10-6 
ZnSO4.7H2O  0.073 g 2.54 x 10-7 
CoSO4.7H2O  0.016 g 5.69 x 10-8 
MnSO4.4H2O  0.540 g 2.42 x 10-6 
Na2MoO4.2H2O 1.48 1 mL 6.12 x 10-9 
Na2SeO3 0.173 1 mL 1.00 x 10-9 
NiCl2.6H2O 1.49 1 mL 6.27 x 10-9 
      
Vitamins solution  1 mL   
Thiamine HCL  0.1 g 2.96 x 10-7 
Biotin 1 g 1 mL 4.09 x 10-9 
B12 2 g 1 mL 1.48 x 10-9 
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2.2.2 f/2-Si medium 

The f/2 formulation is a modification of the original f medium by Guillard and Ryther 

(1962) and is represented as f/2 as it is prepared at half the strength of the f medium. The 

f/2 medium usually always contains macronutrients like nitrogen, phosphorus, and 

silicates and micronutrients such as trace metals and vitamins. The macro- and micro-

nutrient solutions were stored at 4°C and the vitamin solution was stored at -20°C. 

The f/2-Si medium (Table 2.3) was prepared with natural seawater sampled from the 

North Atlantic open ocean or the North Sea that was aged in the dark at 12°C for at least 

a year. The seawater was filtered through a 0.2 µm pore size cellulose acetate filter to 

remove any particles. The medium was made using 97.5% filtered seawater and 2.5% 

distilled water to avoid precipitation in the medium (Mc Lachlan 1973). One drop of 

concentrated hydrochloric acid (HCl) was added to lower the pH to 7 or 7.5 to balance 

the increase of pH due to loss of CO2 during the sterilising process. The medium was 

sterilised by heating to 120°C for 30 minutes in a Priorclave autoclave. It was then left to 

cool and enriched just before cell transfers, with 1 ml L-1 of the above macro- and micro-

nutrients, trace metal solution and vitamin solution using a syringe filter to avoid 

bacterial contamination. 

Table 2.3 Recipe for f/2-Si media (without silicate, dH2O is distilled water). 

Compounds Stock solution  
(g L-1 dH2O) Quantity in 1 L 

Final 
concentration in 
the medium (M) 

Macronutrients     
NaNO3 75 1 mL 8.83 x 10-4 
NaH2PO4H2O 5 1 mL 3.63 x 10-5 
Trace Metals solution  1 mL 	
  	
  
Fe/EDTA 6.25  11.87 x 10-6 
CuSO47H2O 9.8 1 mL 4 x 10-8 
Na2MoO42H2O 6.3 1 mL 3 x 10-8 
ZnSO47H2O 22 1 mL 8 x 10-8 
CoCl26H2O 10 1 mL 5 x 10-8 
MnCl24H2O 180 1 mL 9 x 10-7 
Vitamin Solution  1 mL 	
  	
  
Vitamin B12 (cyanocobalamin) 1 1 mL 4 x 10-10 
Biotin 0.1 10 mL 2.1 x 10-9 
Thiamine HCl   200 mg 3 x 10-7 
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2.3 Culture axenicity by DAPI staining 

The blue-fluorescent DAPI nucleic acid stain was used to verify the axenicity of the E. 

huxleyi cultures. DAPI (4',6-diamidino-2-phenylindole) is a fluorochrome that binds to 

DNA forming a stable fluorescent complex which when excited with UV light (360 nm), 

fluoresces by emitting blue light (450 nm) which can be observed under a fluorescent 

microscope (Kapuscinski 1995; Porter and Feig 1980).  

Depending on the cell density of the culture, a sample of 1–4 ml was transferred in a 

sterile environment in a sterile screw-capped bijou vial and made up to 4 ml with 0.2 µm 

syringe filtered seawater. The culture sample was then fixed in a fume cupboard, with 3 

µl ml-1 of Lugol’s iodine (a mixture of 10% w/v aqueous KI and 5% w/v iodine) and 50 

µl ml-1 of neutralised formalin (20% aqueous formaldehyde with 100 g l-1 hexamine) and 

finally 1 µl ml-1 of sodium thiosulphate solution (3% w/v, stored at 4°C) was added to 

discolour the iodine colouration from the Lugol’s solution that would interfere with the 

DAPI fluorescence. All of the above reagents were syringe filtered before adding to the 

culture sample. Finally, 10 µl ml-1 of DAPI solution (1 mg ml-1 stock solution, Sigma 

Aldrich, stored at -20°C) was added and the sample was incubated in the dark at room 

temperature for 15 minutes. The DAPI stained sample was filtered under vacuum 

through two filters: a 0.2 µm pore black polycarbonate filter of 25 mm diameter placed 

on a 0.45 µm pore white cellulose nitrate backing filter, rinsed with sterile seawater. The 

black polycarbonate filter was carefully placed onto a glass slide bearing a drop of 

immersion oil, followed by another drop of the immersion oil on the filter itself and 

covered with a coverslip. The glass slide was examined under a fluorescence microscope 

(Olympus BX40, Essex, UK) at 100-fold magnification objective with epifluorescence 

light and a UV light filter. The E. huxleyi cells appear fluorescent blue and if bacteria are 

present, small bright dots or elongated sticks appear in the background and the black 

background also appears cloudy. 
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2.4 Cell density and cell volume using the particle counter 

Cell density (cells ml-1), cell diameter (µm) and the volume per ml (µm3 ml-1) from 

which the cell volume (µm3) was derived, were measured using an automated particle 

counter (Beckman Multisizer 3 Coulter Counter, High Wycombe, UK).  

The Coulter counter instrument contains two electrodes: one inside a tube with a small 

aperture and another just on the outside. Both of these are immersed into a plastic 

cuvette that contains particles suspended in a low concentration electrolyte (in this case 

the diluted culture sample) that provides a current path when an electric field is applied. 

The particle counter is based on the Coulter principle, which is a change in the electric 

field when a particle from a sample passes through the aperture. Every electrical pulse 

recorded is equivalent to a particle passing through the aperture and the amplitude of a 

pulse is proportional to the volume of the particle, which is processed to give the particle 

diameter and other particle characteristics, assuming the particle is spherical. 

Prior to cell counting, the culture samples were diluted to 1:10 or for denser cultures, 

1:20 with filtered seawater that acts as the electrolyte and this was done to prevent 

coincidence so that one cell could pass through the 100 µm aperture at a time. Samples 

were analysed in triplicate. Data was collected and interpreted using the Coulter 

Multisizer software. 

2.5 Fluorescence and photosynthetic capacity using the phyto-PAM 

Photosynthetic pigment fluorescence and photosynthetic capacity (also known as the 

‘quantum yield of photosynthesis’, or ‘photosynthetic yield’ or photosynthetic efficiency 

(FV:FM); terminology discussed in Maxwell and Johnson (2000)) were monitored on a 

phyto-PAM fluorometer, which is a pulse amplitude modulated (PAM) chlorophyll 

fluorometer. The phyto-PAM fluorometer is able to excite at four different wavelengths: 

470 nm (blue), 520 nm (green), 645 nm (light red) and 665 nm (dark red) and measure 

the corresponding fluorescence emission and also has the ability to apply saturating 

pulses of light to assess cell photosynthetic capacity.  
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The phyto-PAM fluorometer is based on the quantitative relationship between 

chlorophyll fluorescence and the efficiency of photosynthetic energy conversion and 

works on the fundamental character of this relationship. It relies on the principle that 

fluorescence originates from the same excited states created by light absorption, which 

alternatively can be photochemically converted (via photochemistry) or also dissipated 

into heat (via fluorescence quenching). Hence, the relationship between fluorescence 

and photosynthesis is a result of the first law of thermodynamics and simple calculus, 

from which an index indicating how well the cells are channelling light or excitation 

energy to photochemistry, and hence the ‘capacity’ of the cells for photosynthesis can be 

obtained.  

𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒  +   𝑝ℎ𝑜𝑡𝑜𝑐ℎ𝑒𝑚𝑖𝑠𝑡𝑟𝑦  +   ℎ𝑒𝑎𝑡   =   1  

This is done by ‘switching off’ photochemistry and measuring fluorescence and heat, 

which are determined as relative values by two fluorescence measurements. The two 

fluorescence measurements take place shortly before and during a pulse of saturating 

light i.e. within less than a second at the photosystem II reaction centre (PSII RC; on the 

thylakoid membranes of the chloroplasts), which represents the physical site of the 

measurement. Light will excite chlorophyll a into its excited state where it can then 

transfer an electron into the electron transport chain (ETC) for the production of ATP, 

the reduction of NADP and the ultimate production of glucose. As the electron is 

transferred through the ETC, the initial electron acceptor becomes open to accept a new 

electron. Under high light, this system saturates because all the reaction centers are 

closed (occupied by electrons). When the reaction centers are closed, new electrons 

cannot be accepted at the rate the chlorophyll is being excited and this results in the 

emission of the excess excitation energy in the form of fluorescence. 

The efficiency, with which light energy is utilized, is a function of how “healthy” the 

cell is. When cells are under stress, the system becomes saturated more easily and the 

system does not process light as efficiently. To measure photosynthetic efficiency, it is 

necessary to dark-adapt the culture sample for 30 minutes so that all of the electron 

acceptors in the reaction centers are “open” and able to accept electrons resulting in 
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maximum quantum yield. Measuring cells without dark-adaptation gives the effective 

quantum yield, since quenching is operating and the cells are adapted to their current 

light regime. The PAM fluorometer shines a weak light at the sample, called the 

measuring light (Grasshoff et al. 1976). The pulse modulated measuring light was 

generated by a light-emitting diode (LED) and does not have much actinic effect (i.e. it 

does not cause any reduction of the electron acceptors downstream of PSII). 

Fluorescence is measured at this point when most light energy can be accepted into the 

ETC for photochemistry. This is the minimal fluorescence yield Ft (initial fluorescence). 

When the Ft signal on the PAM stablilises, the sample is then given a saturating pulse of 

actinic light until all of the electron acceptors are saturated and the reaction centers are 

closed. The PAM uses more LEDs at a higher frequency to quickly saturate PSII (<1 s). 

Saturation is the complete reduction of the electron acceptors downstream of PSII and 

causes an immediate increase in fluorescence to a maximal level called FM (F max). All 

absorbed light energy at this point will then be given off as fluorescence. The difference 

between the initial fluorescence (Ft) and the maximum fluorescence (FM) is known as the 

variable fluorescence (FV = FM – Ft). FV normalized to FM (FV/FM) is a measure of the 

photosynthetic efficiency of photosystem II. This is the yield, or photosynthetic capacity. 

This will range between 0 and around 0.7. The lower the yield, the more PSII reaction 

centres (RCs) are closed (this could be due to photoinhibition, or nutrient limitation). 

The higher the yield, the more RCs are open. Under stress, changes in FV:FM will occur 

rapidly in cells and so this parameter is often one of the preliminary and most sensitive 

indicators of physiological stress (Suggett et al. 2009).  

A culture sample of 3 ml was dark-adapted for 30 minutes and then transferred gently 

into a clean quartz cuvette (washed with ethanol, followed by distilled water and oven 

dried at 30°C) avoiding bubbles. The cuvette was immediately placed in the emitter-

detector unit, with a light-proof hood. Since chlorophyll is the dominating pigment, 

fluorescence emission was recorded at 470 nm at gain 5. The autogain was commenced 

on the phyto-PAM to find the best gain setting when the fluorescence reading was below 

300. A saturating pulse was applied and the FV/FM was noted from the PHYTO-WIN 

software. 
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2.6 DMSP and DMS analyses using gas chromatography 

DMSP measured as particulate DMSP (DMSPp), dissolved DMSP (DMSPd) and total 

DMSP (DMSPt) along with DMS concentrations were determined in the culture samples. 

DMSPp, DMSPd and DMSPt were subjected to an overnight alkali hydrolysis to DMS 

and the headspace technique (see section 2.6.1.1) was used to acquire the DMS. The 

headspace technique involves the equilibration of liquid samples with a headspace of air 

and the partition coefficient for DMS is temperature-controlled. To measure the DMS 

dissolved in the culture sample, it was first extracted and pre-concentrated using the 

purge-and-trap system (see section 2.6.2.1). The resulting DMS was analysed using gas 

chromatography, an analytical technique used to separate, detect and quantify 

compounds that can be vaporised without chemical decomposition (see section 2.6.5).  

2.6.1 DMSPp analyses  

Five ml of the culture was sampled with a gas-tight syringe and gently filtered through a 

glass-fibre filter (25 mm, Whatman GF/F, nominal pore size 0.7 µm) using a swinnex 

unit. The filter was then placed into a 5 ml vial containing 3 ml of 0.5 M NaOH and 

immediately closed with a gas-tight screw cap containing a PTFE/silicone septa 

(Alltech), stored in the dark and later analysed by the headspace technique (see section 

2.6.1.1). The amount of DMSPp on the filter was then calculated with reference to 

calibration curves (see section 2.6.6.1) and expressed as a concentration (DMSPp) in the 

cells (Steinke et al. 2000). When DMS and DMSPd concentrations in the culture were 

not being determined, 3 ml of the culture was sufficient for DMSPp analyses. In such a 

case, 3ml of the culture was gently filtered using the hand-held vacuum pump (< 10 cm 

Hg) through a 25 mm Whatman GF/F (nominal pore size 0.7 µm) on a small-size 

filtration set-up unit and the filter was treated as explained above. 

2.6.1.1 Headspace technique 

The vials were kept in the dark and placed in a constant temperature heating block at 

30°C overnight to ensure complete hydrolysis of DMSP to DMS. The headspace of the 

vial was then analysed for DMS by piercing the septum with a gas-tight microlitre 



Chapter 2: General Methods 

71 

syringe and removing 50 µl from the headspace for direct injection onto the gas 

chromatograph column (Shimadzu GC-2010 with FPD detection) (see section 2.6.5). 

The gas chromatography (GC) settings associated with this method are detailed in Table 

2.4 (section 2.6.5). 

2.6.2 DMS analyses 

The above filtrate (see section 2.6.1) was purged with an inert gas to analyse the culture 

DMS concentration. The filtrate was purged for 15 minutes (N2, 60 ml min-1) in a 

cryogenic purge-and-trap system (see section 2.6.2.1); DMS was trapped in a Teflon 

loop (-150°C), flash evaporated by immersing the loop in boiling water and then swept 

into the GC (Turner et al. 1990). The amount of DMS in the purge tube was then 

calculated with reference to calibration curves (see section 2.6.6.2) and expressed as a 

concentration (DMS) from the culture. 

2.6.2.1 Purge-and-Trap system 

The purge-and-trap system (Fig. 2.1) was made up of a glass tube (for purging DMS out 

of the culture) with (a) a sample injection port at the top of the purge tube that was used 

to introduce the filtered culture sample via a two-way Luer valve (b) a needle valve at 

the bottom of the purge tube to receive the purging gas (N2 1, oxygen-free grade, 

purified through an activated charcoal filter; flow rate of 60 ml min-1) through a fine 

glass frit which generated streams of small bubbles and monitored by a flow meter (m). 

When not in use, the purge gas to the system was switched off using a two-way valve at 

the bottom of the purge tube. An elongated purge tube was used to increase the path 

length for nitrogen bubbles and thus enhance the purging efficiency. The outlet at the top 

of the purge tube was connected by a 1/8-inch-o.d. PTFE (polytetrafluoroethylene) 

tubing to a series of moisture traps in order to remove water vapour from the gas extract, 

thus preventing ice formation and blockages in the cryotrap (f). The first moisture trap 

was a (c) glass tubing packed with glass wool followed by (d) a Dry-Perm (Nafion) drier 

(72 inches length; MD-050, Perma Pure) as the second moisture trap. The water vapour 

was promptly carried out of the system by a counterflow of N2 (N2 2, flow rate of 150 ml 
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min-1). The sample gas containing the DMS extract is carried through the cryotrap (f, 25 

cm 1/8 inch-o.d. PTFE Teflon tubing wound halfway in a double loop), where DMS was 

collected and N2 gas passed to the flow meter (k) to monitor the counter flow rate. The 

cryotrap was suspended in the headspace of a Dewar flask (g) containing liquid nitrogen 

and the headspace temperature was maintained at -150°C ± 5°C by an automated 

temperature control unit (j, designed and built at the Environmental Sciences Workshop, 

UEA). The temperature control unit (j) consisted of a temperature sensor (i) attached to 

the cryotrap; a resistor (h) immersed in liquid N2, and an electronic control box. When 

the temperature of the headspace increased, the resistor began to heat increasing the 

vapour pressure of the liquid N2 thus generating a cooling vapour and lowering the 

temperature of the headspace to -150°C. The purge-and-trap system was prepared for 

sample analysis by immersing the cryotrap loop in liquid N2 to rapidly cool the loop and 

then suspended in the headspace of the Dewar flask, where the temperature was 

maintained at -150°C. With a sample volume of 5 ml, purging was achieved for 15 

minutes. At the end of the purging time, the cryotrap was then promptly immersed in 

boiling water while the DMS was flushed by the He carrier gas into the GC (l) by 

switching a six-port valve (e) to connect the cryotrap with the GC. The gas flow settings 

of the purge and trap system and the GC settings associated with this method are 

detailed in Table 2.4 (section 2.6.5). 
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Figure 2.1 Purge and Trap system used to extract and pre-concentrate the dissolved DMS in the culture. 

(a) sample injection port, (b) entry for purge gas N2, (c) glass wool moisture trap, (d) nafion drier, (e) 

manual six-port valve, (f) cryotrap, (g) Dewar Flask, (h) heating resistor immersed in liquid N2, (i) 

temperature sensor, (j) temperature control unit, (k) flow meter to monitor the flow rate of the counter 

flow gas, (l) gas chromatograph (GC), (m) flow meter to monitor the flow rate of purge gas. There were 

two points of entry for N2, 1 - purging gas that carries DMS and 2 - drier gas in counter flow direction 

(Diagram modified from Caruana (2010)). 

2.6.3 DMSPd analyses 

After purging the DMS out from the filtrate (obtained from section 2.6.2), the 

concentration of dissolved DMSP (DMSPd) was determined by transferring 4 ml of the 

purged filtrate into a 20 ml crimp vial, to which 10 ml distilled water and then 1 ml of 10 

M NaOH was added (Dacey and Blough 1987) ensuring a constant analytical volume of 

15 ml. The vial was immediately crimped with an aluminium seal with a Pharma-Fix 

liner (Alltech Associates Inc.) to create a gas-tight seal and stored in the dark at room 

temperature to promote hydrolysis to DMS. Later the samples were analysed by the 

headspace technique (see section 2.6.1.1). The amount of DMSPd in the filtrate was then 
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calculated with reference to calibration curves (see section 2.6.6.1) and expressed as a 

concentration (DMSPd) from the culture. 

2.6.4 DMSPt analyses 

Total DMSP (DMSPt = DMSPp + DMSPd + DMS) was measured in an unfiltered 

volume of culture (2.5 ml) hydrolysed in 0.5 ml of 10 M NaOH in a PTFE/silicone septa 

vial and later analysed by the headspace technique (see section 2.6.1.1). The amount of 

DMSPt (see section 2.6.6.1) in the culture was then calculated with reference to 

calibration curves and expressed as a concentration (DMSPt) in the culture. 

2.6.5 Gas chromatography for DMS analyses 

A gas chromatograph (Shimadzu GC-2010, Milton Keynes, UK) equipped with a 

capillary column of fused-silica (30 m × 0.53 mm CP-SIL 5CB; Varian, Oxford, UK) 

and a flame photometric detector (FPD) was used. Helium (flow rate of 35 ml min-1) 

was used as the carrier gas to deliver the injected DMS sample through the column, 

which is then eluted from the column at a specific retention time (RT). A mix of 

hydrogen (flow rate of 60 ml min-1) and air (flow rate of 70 ml min-1) supplied the flame, 

which burned the sulphur compound subsequently emitting a light signal perceived by 

the FPD. A peak appears on the computer interface and when this peak is higher than the 

background noise of the chromatograph, the software automatically integrates the peak. 

The RT and the kind of the peak (sharp and narrow) are dependent on the gas 

chromatograph (GC) settings including column temperature, gas flow rate and 

temperature. Different GC settings were used for DMS measurements via the headspace 

technique and the purge-and-trap system (Table 2.4) because the methods involved in 

the introduction of the DMS gas into the column varied.  
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Table 2.4 Gas chromatograph settings for the headspace and purge-and-trap methods of introduction of 

DMS into the column and flow settings for N2 gas through the purge-and-trap system.  

GC Components Temperature 
(°C) 

Gas Flow rate 
(ml min-1) 

Pressure 
(kPa) 

GC settings for the headspace technique 

Injector 200 Helium Total Flow 35  
Purge Flow 3 

68.4 

Column 120     
Detector 250 Hydrogen 60   
    Air 70   

GC and flow settings for the purge-and-trap system 

Injector 200 Helium Total Flow 28.4 
Purge Flow 3 

45.6 

Column 60     
Detector 250 Hydrogen 60   
   Air 70   
Purge and Trap Components     
Purge flow  Nitrogen 60   
Nafion drier flow   Nitrogen 150   

  

Within the optimum range of the detector, the response in terms of the peak is non-linear 

but is approximately a square root function. Thus, the square roots of peak areas (SQRT 

Peak area) are used for the DMS quantification by comparison with a concentration 

range of standards with which a calibration curve is obtained. 

2.6.6 Calibrations 

Individual calibrations were conducted for DMSPp, DMSPd, DMSPt and DMS because 

of the variations in the methodology (vial set-ups, concentration ranges and different GC 

settings for headspace and purge-and-trap methods) and based on the calibration curves, 

the concentrations of DMSP and DMS were acquired in the culture sample. The gas 

chromatograph (GC) was calibrated using commercially available DMSP (Centre for 

Analysis, Spectroscopy and Synthesis, University of Groningen laboratories, The 

Netherlands) that is converted to DMS by cold hydrolysis. DMSP stocks were prepared 

by dilution of the purchased commercial stock DMSP in distilled water to a 
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concentration of 0.025 moles S (equivalent to 0.8 g S ml-1) and stored at -20°C. The 

stocks were then defrosted and diluted again with distilled water to solutions of 

concentrations ranging from 0.000125 to 0.0005 moles S (equivalent to 0.004 to 0.016 g 

S ml-1). 

2.6.6.1 DMSP calibration with the headspace technique 

To calibrate the DMSP parameters like DMSPp, DMSPd and DMSPt obtained with the 

headspace technique, a series of known concentration (0.1-100 µM) of DMSP standards 

were prepared in triplicate vials identical to those used for experimental samples. To 

prepare the DMSPp and DMSPt standards, 5 ml vials were used while DMSPd standards 

were made in 20 ml vials. In each case, the appropriate volume (1-10 µl for DMSPp and 

DMSPt and 1-50 µl for DMSPd) of the DMSP working stock solution (75 µM, 7.5 mM 

and 30 mM) was pipetted on the septum inside the cap. Very carefully and rapidly, the 

cap was inverted to seal the vial for the DMSPp and DMSPt standards while the DMSPd 

standard vials were tightly crimped. Every vial for the DMSPp standards contained 3 ml 

of 0.5 M NaOH + DMSP working stock solution, for the DMSPt standards it contained 

2.5 ml distilled water  + 0.5 ml of 10 M NaOH + DMSP working stock solution and for 

the DMSPd standards, the vial contained 14 ml distilled water + 1 ml of 10 M NaOH + 

DMSP working stock solution. The vials were closed and agitated to mix the solutions 

and left in the dark to promote DMSP cleavage. Later they were analysed by the 

headspace technique (see section 2.6.1.1). The calibration was obtained by relating the 

detection signal as the square root of the peak area (y) to DMSP concentration (x) (Fig. 

2.2). The linear relationship y = mx + c, where ‘m’ is the slope and ‘c’ is the intercept, 

was used to quantify the DMSPp or DMSPd or DMSPt concentration in each sample. 

The limit of detection was calculated to be 0.035 µM based on the three standard 

deviation of the blank. 
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Figure 2.2 Calibration curve obtained via headspace technique for DMSP measurements in duplicate 

standards (ranging from 0.1 to 100 µM) by gas chromatography (example shown is from DMSPp 

calibrations; SQRT Peak area is square root of the peak area). The linear regression curve is shown with 

its correlation coefficient R2. 

2.6.6.2 DMSP calibration with the purge-and-trap system to acquire DMS 

DMS acquired via the purge and trap system was calibrated with DMSP standard 

solutions directly loaded into the purge tube. A known concentration of DMSP stock 

solution + 1 ml of 10 M NaOH and a top up of distilled water to make a total volume of 

5 ml in the purge tube is then tightly shut with the top of the purge tube. The purge gas is 

then bubbled into the standard for 15 minutes and the procedure is continued as 

described for DMS analysis via purge-and-trap (see section 2.6.2.1). The calibration was 

obtained by relating the detection signal as the square root of the peak area (y) to DMSP 

concentration (x) (Fig. 2.3). The linear relationship y = mx + c, where ‘m’ is the slope 

and ‘c’ is the intercept, was used to quantify the DMSP, which is in actual the DMS 

concentration in each sample. The limit of detection was calculated to be 0.0007 µM 

based on the three standard deviation of the blank. 
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Figure 2.3 Calibration curve obtained with the purge-and-trap system for DMS measurements in duplicate 

DMSP standards (ranging from 0.001 to 0.091 µM) by gas chromatography (SQRT Peak area is square 

root of the peak area). The linear regression curve is shown with its correlation coefficient R2. 

2.7 Membrane integrity using flow cytometry 

Membrane integrity, as a proxy for cell viability (Brussaard et al. 2001; Veldhuis et al. 

2001), was investigated in E. huxleyi cultures during the various stress experiments 

using the nucleic acid stain SYTOX Green, in combination with flow cytometry. Flow 

cytometry is based on the optical properties of single particles or cells at high speed, 

being analysed as they move with a liquid stream and a beam of laser light of single 

wavelength is directed on to the liquid stream. In algal cells, fluorescence emissions are 

associated with the photosynthetic pigments within the cells or labelled cells with 

cytoplasmic or nuclear dyes. SYTOX Green, a membrane impermeable DNA-binding 

dye is recommended as an indicator of dead cells as it does not cross the membranes of 

live cells and only stains cells with compromised plasma membranes. Thus 

compromised cells are easily detected by the large increase in green fluorescence as the 

fluorophore binds with the DNA while viable cells remain unstained. This approach is 

recently in wide use to assess the viability of phytoplankton and bacteria (Brussaard et al. 

2001; Franklin et al. 2012; Lebaron et al. 1998; Roth et al. 1997; Vardi et al. 1999; 

Veldhuis et al. 2001; Veldhuis et al. 1997). 

SYTOX Green (Invitrogen S7020; excitation 504 nm, emission 523 nm) was diluted 

from the commercial stock supplied at 5 mM in dimethylsulphoxide (DMSO) solution to 

0.1 mM in Milli-Q water. The commercial stock was stored frozen at -80°C and the 
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working stock at -20°C and was thawed in the dark prior to use, as SYTOX Green 

degrades when exposed to light. Prior to use, some initial tests were carried out to 

determine the optimum stain concentration and the optimum staining period for all the 

three strains of E. huxleyi. Cells in the mid-exponential phase were heat-killed cells 

(80°C, 5 min) and the ‘maximum fluorescence ratio’ approach was taken (Brussaard et 

al. 2001; Franklin et al. 2012). On the basis of these results, SYTOX Green was applied 

at a final concentration of 0.5 µM and the cells were left in the dark for 10 minutes. The 

SYTOX Green stained cells were compared with unstained controls via flow cytometry 

(BD FACScalibur equipped with an air-cooled argon ion laser, 15 mW; 488 nm and a 

530/30 band pass filter) (Fig. 2.4).  

 

Figure 2.4 Example of a biparametric plot of red fluorescence (650 nm) versus green fluorescence (530 

nm) showing membrane integrity using SYTOX Green staining in combination with flow cytometry 

during light deprivation in Emiliania huxleyi. (A) shows live cells in exponential growth phase before 

SYTOX Green addition (B) shows cells after SYTOX Green addition. Note that Q1 + Q2 = stained or 

cells with compromised membranes; Q3 = unstained normal or viable cells; Q4 = unstained debris and 

low-red cells. 

The FACScalibur flow cytometer was set up with Milli-Q water as the sheath fluid. The 

analyses were triggered on red fluorescence and performed at ‘‘lo’’ flow rate (~ 20 µl 

min-1) and 10,000 events were collected. To avoid coincidence, an event rate between 

100 and 400 cells s-1 was used for every culture sample (Brussaard et al. 2001). 
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Depending on the cell density, the culture samples were diluted in sterile f/2-Si medium 

prior to analysis. At the start of each experiment, Flowset beads (Beckman-Coulter) 

were analyzed and the bead fluorescence was used to normalize stain fluorescence 

(Marie et al. 2005); these were used as instrument controls. Cells were discriminated 

based on their autofluorescence (650 nm) versus the green fluorescence of the SYTOX-

Green stain (522 – 523 nm).  

2.8 Cell sorting using the Cytopeia influx cell sorter 

Cell sorting using the Cytopeia influx high-speed cell sorter (BD Biosciences) was 

exclusively carried out with E. huxleyi cells of strain CCMP1516 under herbicide-

induced oxidative stress (see Chapter 6, section 6.2.5). Singlet droplet sorting combined 

with flow cytometry has been a novel approach to study DMSP concentrations in cell 

populations having common light scattering and fluorescent characteristics.  

The most common method of sorting cells is by electrostatic deflection of charged 

droplets (Fig. 2.5). In this, the sample passes through a fluorescence measuring station 

where the fluorescent character of interest of each cell is measured. A gate is placed 

around the cells of interest in the cytogram displayed on the computer screen during 

acquisition, so that the cytometer identifies which cells to sort. Using a conductive 

sheath fluid, as the sample flows through a narrow central path, a vibrating mechanism 

causes the stream of fluid emerging from the exit nozzle to break into individual droplets 

containing one or more cells of interest. The system is adjusted so that there is a low 

probability of more than one cell per droplet, for high purity recovery of cells. The 

resulting stream of electrically-charged droplets passes through a pair of charged plates 

and are then deflected based upon their charge and collected into tubes. The uncharged 

droplets are collected separately as waste.  

Using the droplet-based cell sorting technique on the Cytopeia influx high-speed cell 

sorter, the method was optimised for sorting the cells of E. huxleyi 1516 cultures and the 

sub-populations were analysed for cell volume changes and changes in DMSPp 

concentrations (results shown in Chapter 6, section 6.2.5).  
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Figure 2.5 A single droplet-based cell sorter involves the selection of individual cells of interest by 

applying an electrical charge to a fluid stream (containing the sample). The resulting electrically-charged 

droplet containing a cell travels through an electric field between two high voltage deflection plates of 

opposite polarities. These droplets (containing the cells of interest) are eventually deflected into a 

collection tube for further use (diagram modified from http://www.appliedcytometry.com). 

2.9 Hydrogen peroxide measurements using fluorometry 

DMSP is proposed to serve as an effective antioxidant system protecting cells from the 

harmful effects of oxidative stress. This would imply that examining the activity of 

antioxidant enzymes such as superoxide dismutase (SOD) or other antioxidant 

molecules like ascorbate may not be effective methods to determine oxidative stress in 

DMSP-producing phytoplankton. Furthermore, quantifying the products of ROS damage 

to membranes, lipids and proteins may result in underestimated levels of oxidative stress 

with an effective antioxidant system (Collén and Davison 1997). Thus a more reliable 

method to determine oxidative stress in DMSP-producing phytoplankton would be the 

direct measurements of the reactive oxygen species (ROS) concentration like hydrogen 

peroxide (H2O2). 
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Hydrogen peroxide (H2O2) excreted in both micro-and macro-algae culture medium has 

been previously measured using enzymatic methods (Evans et al. 2006) or 

chemiluminescence (Collén and Pedersén 1996; Collén et al. 1995). 

Here, H2O2 excreted into the media was measured by an enzymatic assay based on the 

catalytic reduction of H2O2 by horseradish peroxidase in the presence of the H-donor 

molecule p-hydroxyphenyl acetic acid (POHPAA) to the fluorescent dimer 6,6'-

dihydroxy-3,3'-biphenyldiacetic acid (excitation 320 nm, emission 400 nm). H2O2 

concentration is directly proportional to the fluorescence intensity, as one molecule of 

the fluorescent dimer is produced for every H2O2 molecule (Guilbault et al. 1967). The 

emitted fluorescence was measured using a simple fluorometer comprising of a 

phosphor coated mercury lamp (Jelight) as the excitation source, a monochromator to 

filter out the undesired wavelengths and a photomultiplier tube (Hamamatsu R268) for 

fluorescence detection. The output of the fluorescence measurements were noted off a 

digital voltmeter attached to the instrument. 

A working stock of fluorescent reagent solution was made with 255 µM POHPAA 

(Aldrich), 0.25 M Tris and 50 units ml-1 of horseradish peroxidase (Aldrich) in distilled 

water. The pH was adjusted to 8.8 with hydrochloric acid and the fluorescent reagent 

was stored in the dark at 4°C. For the experimental assay, 0.2 ml of the fluorescent 

reagent solution was mixed with 3.8 ml of the culture sample and allowed to react for 15 

minutes in a plastic cuvette covered with a piece of aluminium foil. The background 

concentrations of H2O2 in the media were determined by measuring fluorescence with 

and without, the addition of catalase and very low levels of H2O2 were noted. A working 

stock of catalase (Aldrich) was made up to 500 units ml-1 in distilled water. For catalase 

additions, 0.1 ml of the working stock was added to 3.7 ml of the culture sample and 

allowed to react for 10 minutes before the addition of 0.2 ml fluorescent reagent solution 

with the additional waiting time of 15 minutes for the reaction to occur. Fluorescence 

measurements were conducted at exactly at the end of 15 minutes to note the H2O2 

excretions in the medium. 

The assay was calibrated using H2O2 standards made up in f/2-Si medium from a 500 

nM H2O2 stock solution (Fig. 2.6). The standards prepared contained 0, 25, 50 and 100% 
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of the stock solution (i.e. 0, 125, 250 and 500 nM H2O2). The calibration was obtained 

by relating the voltage signal (in Volts) (y) to H2O2 concentration (in nM) (x) (Fig. 2.6). 

The linear relationship y = mx + c, where ‘m’ is the slope and ‘c’ is the intercept, was 

used to quantify the H2O2 concentration in each sample. The limit of detection was 1.63 

V based on the lowest concentration used in the calibration, which in this case was a 

blank (distilled water). 

 

Figure 2.6 Calibration for H2O2 measurements using the fluorometer equipped with a digital voltmeter for 

the output signal. The linear regression curve is shown with its correlation coefficient R2. 
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Chapter 3:  The Influence of Nutrient Limitation on 

Intracellular DMSP and DMS Release 

Some of the data in this chapter are from Franklin et al. 2012 on which I am a co-author. 

I contributed the DMSP and DMS data and to the nutrient add-back experiments. Other 

data from the paper will be included in this chapter for context and this will be clearly 

indicated by appropriate citation. Alterations have been made to fit with the thesis. 

Franklin DJ, Airs RL, Fernandes M, Bell TG, Bongaerts RJ, Berges JA, Malin G. 
2012. Identification of senescence and death in Emiliania huxleyi and Thalassiosira 
pseudonana: Cell staining, chlorophyll alterations, and dimethylsulfoniopropionate 
(DMSP) metabolism. Limnology and Oceanography 57: 305-317.  
 
Abstract 

We measured membrane permeability, hydrolytic enzyme, and caspase-like activities 
using fluorescent cell stains to document changes caused by nutrient exhaustion in the 
coccolithophore Emiliania huxleyi and the diatom Thalassiosira pseudonana, during 
batch-culture nutrient limitation. We related these changes to cell death, pigment 
alteration, and concentrations of dimethylsulfide (DMS) and dimethylsulfoniopropionate 
(DMSP) to assess the transformation of these compounds as cell physiological condition 
changes. E. huxleyi persisted for 1 month in stationary phase; in contrast, T. pseudonana 
cells rapidly declined within 10 d of nutrient depletion. T. pseudonana progressively lost 
membrane integrity and the ability to metabolize 5-chloromethylfluorescein diacetate 
(CMFDA; hydrolytic activity), whereas E. huxleyi developed two distinct CMFDA 
populations and retained membrane integrity (SYTOX Green). Caspase-like activity 
appeared higher in E. huxleyi than in T. pseudonana during the post-growth phase, 
despite a lack of apparent mortality and cell lysis. Photosynthetic pigment degradation 
and transformation occurred in both species after growth; chlorophyll a (Chl a) 
degradation was characterized by an increase in the ratio of methoxy Chl a : Chl a in T. 
pseudonana but not in E. huxleyi, and the increase in this ratio preceded loss of 
membrane integrity. Total DMSP declined in T. pseudonana during cell death and DMS 
increased. In contrast, and in the absence of cell death, total DMSP and DMS increased 
in E. huxleyi. Our data show a novel chlorophyll alteration product associated with T. 
pseudonana death, suggesting a promising approach to discriminate nonviable cells in 
nature. 
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3.1 Background and significance 

Marine primary productivity is fundamentally dependent on the availability of nutrients 

and many studies have considered nutrient limitation. Several growth experiments on 

various phytoplankton species have been able to assertively isolate the limiting nutrient 

using the ‘add-back’ experimental approach (Franklin et al. 2012) or nutrient addition 

bioassay experiments on natural phytoplankton populations (Hinz et al. 2012; Moore et 

al. 2008). In many cases, nitrogen (N) is thought to be the macronutrient most frequently 

limiting marine phytoplankton growth (Downing et al. 1999; Franklin et al. 2012; 

Glibert 1988; Gruber 2004) as with the exception of N-fixing marine cyanobacteria, 

most phytoplankton require combined forms of N like ammonium, nitrate, or nitrite. 

However, there are findings that imply phosphorus, silica, iron or other factors limiting 

phytoplankton growth (Bertrand et al. 2011; Murrell et al. 2002; Sylvan et al. 2006; Wu 

and Chou 2003). Iron (Fe) has received much attention as the limiting nutrient in open 

ocean areas because it is sometimes only available in extremely low amounts. Fe derives 

mainly from leaching from rocks and can be delivered to the ocean in dust storms. N-

fixing organisms generally have a high Fe requirement and so Fe-limitation also limits 

nitrogen fixation (Moore et al. 2009). 

In near-shore and temperate waters in spring, most of the N in seawater is present as 

nitrate. During the growth season, autotrophic organisms use nitrate for growth and 

convert it into other forms of N, especially organic N and ammonium. In summer, nitrate 

is depleted in large parts of the surface waters (Glibert 1988) leading to higher 

concentrations of dissolved organic N compounds than the concentration of inorganic N 

(Antia et al. 1991; Braven et al. 1984). Affected by such conditions, it would be 

beneficial for phytoplankton to have the ability to use organic N sources in addition to 

inorganic N (Flynn and Butler 1986). Emiliania huxleyi has been shown to take up 

organic N species, such as some amino acids, purines, amides, and urea (Palenik and 

Henson 1997), although the use of dissolved organic N differs among E. huxleyi strains 

(Strom and Bright 2009). The uptake of ammonium and urea during blooms has also 

been reported from field observations in Norwegian fjords and the North Sea (Lessard et 

al. 2005). 
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Phosphorus (P) can be limiting primary producers in marine, freshwater and terrestrial 

environments (Elser et al. 2007) like the Chesapeake Bay which receives large amounts 

of freshwater (Fisher et al. 1999) and tropical coastal regions where sequestration of P in 

calcareous sediments is thought to initiate P limitation (Smith 1984). Interestingly, the 

North Pacific subtropical gyre which was previously thought to be N-limited is gaining 

attention due to recent evidence for P-limitation. It has been suggested that this change 

may have led to the dominance of the prokaryotic picophytoplankton in these 

oligotrophic waters (Karl et al. 2001). Phosphorus in the form of orthophosphate is also 

known to be limiting in the eastern Mediterranean sea (Krom et al. 2004; Thingstad et al. 

2005) and the Sargasso Sea (Cotner et al. 1997) 

In temperate regions, E. huxleyi blooms often occur after a diatom spring bloom as the 

water column becomes stratified and macronutrients such as nitrate, phosphate, and 

silicate are low (Iglesias-Rodríguez et al. 2002; Tyrrell and Taylor 1996). Several 

studies have shown that E. huxleyi outcompetes other phytoplankton at high N:P rather 

than low N:P ratios (Riegman et al. 1992), but E. huxleyi blooms have also been 

observed in both low- and high-N:P waters (Tyrrell and Merico 2004). A modelling 

study in the north east Atlantic indicated that low phosphate concentrations in 

combination with high light were most likely to cause E. huxleyi blooms (Tyrrell and 

Taylor 1996), whereas a modelling study for the Black Sea found low nitrate 

concentrations combined with high light most likely to trigger E. huxleyi blooms (Oguz 

and Merico 2006). Lessard et al. (2005) examined the environmental conditions 

associated with several E. huxleyi blooms in the North Atlantic and North Sea from 

1991-1997 and concluded that most blooms occur in NO3-limited waters. These 

observations reveal the competitive nature of E. huxleyi strains to exploit conditions 

when either nitrogen or phosphorus are in short supply.  

In aerobic organisms reactive oxygen species (ROS) are products of normal metabolism 

and in photosynthetic organisms the chloroplasts are a major source of ROS. Primary 

producers can increase the production of antioxidants and antioxidant enzymes to deal 

with ROS (Lesser and Shick 1989), but oxidative stress occurs when a cell’s capacity for 

dealing with them is exceeded. Nutrient limitation can disrupt photosynthesis and 



Chapter 3: The Influence of Nutrient Limitation on Intracellular DMSP and DMS Release 

88 

enhance oxidative stress. It also decreases in the synthesis of nitrogen-rich antioxidant 

enzymes like ascorbate peroxidase (Logan et al. 1999) and reduces the activity of 

enzymes that repair oxidative damage (Litchman et al. 2002). The D1 and D2 proteins 

are critical components of the photosystem II reaction centre. During photosynthesis 

these proteins, especially D2, turn over very rapidly due to light-induced damage and are 

constantly replaced. When the rate of repair cannot keep up with the damage due to 

photo-inactivation the result is photo-inhibition (Allakhverdiev and Murata 2004; 

Nishiyama et al. 2006; Ragni et al. 2008) and a reduction in variable to maximum 

photosystem II fluorescence (FV/FM) (Berges and Falkowski 1998).  

Sunda et al. (2002) proposed that phytoplankton may produce the N-free compound 

dimethylsulphoniopropionate (DMSP) as an antioxidant under N-limited conditions.  

Their calculations show that DMSP and its enzymatic cleavage products have high 

reaction rate constants with hydroxyl radicals and they suggested that these compounds 

would scavenge these harmful radicals under conditions of oxidative stress. Some 

studies have shown that nitrogen limitation leads to increased DMSP concentration 

(Keller and Bellows 1996; Stefels et al. 2007; Turner et al. 1988). For example, a 2.6-

fold increase in intracellular DMSP (from 1.6-4.3 mM) was observed in the nitrogen-

replete diatom Thalassiosira pseudonana CCMP 1335 cultures at the onset of nitrogen 

starvation (Hockin et al. 2012) and a further 3 days into the stationary phase resulted in 

an increase in concentration to about 18 mM (Nicola Hockin, personal communication). 

Another study on the same diatom species and strain under N-limitation, also reported 

an increase in intracellular DMSP (Bucciarelli and Sunda 2003). In addition, Harada et 

al. (2009) found that when the diatom T. oceanica grown in low-nitrate conditions 

approached stationary phase, intracellular DMSP concentration increased from 2.1 to 15 

mM in 60 h and previously a study on the unicellular alga Tetraselmis subcordiformis 

(prasinophyceae) showed a 75% increase in DMSP within 24 h, in response to nitrogen 

deficiency (Gröne and Kirst 1992). Batch cultures of Hymenomonas carterei and 

Skeletonema costatum also show increased DMS concentrations during the stationary 

phase (Vairavamurthy et al. 1985; Vetter and Sharp 1993). Also, E. huxleyi grown in 

low nitrate showed a 31% higher DMSP per cell (Turner et al. 1988). It was also seen 

that the average intracellular DMSP concentration  (95 mM) in natural phytoplankton 
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from low nitrate (NO₃ < 0.2 µM) coastal seawater samples was higher than in the 

nearby high nitrate waters (DMSP = 37 mM), even though there was no pronounced 

difference in phytoplankton species composition (Turner et al. 1988). 

Phosphate is an important component of DNA, RNA, phospholipids and ATP.  A 

significant decrease in RNA and ATP per cell was observed in P-deficient diatoms 

(Sakshaug and Holm-Hansen 1977) and decreases in membrane phospholipids under P-

limitation have been observed in the diatom Ditylum brightwellii (Brussaard et al. 1997). 

P-limitation hampers the synthesis of RNA and ATP, leading to an overall decrease in 

the rate of protein synthesis. In the case of the proteins present in the photosynthetic 

apparatus and active in the Calvin-Benson cycle, P-limitation results in a decrease in the 

rates of light utilization and carbon fixation (Falkowski and Raven 1997). The inhibition 

of protein synthesis under P-limitation may therefore lead to effects on cell metabolism 

and, whilst oxidative stress can occur, the effect is indirect and slower than that seen 

with N-limitation. P-limitation appears to cause a smaller increase in cellular DMSP 

than limitation by other nutrients (Bucciarelli and Sunda 2003). Besides under N- and P-

limitation, Sunda et al. (2002) also observed that intracellular DMSP concentration 

increases in Emiliania huxleyi, Thalassiosira pseudonana and Skeletonema costatum 

when growth is limited due to CO2 or Fe limitation. 

Nutrient limitation can often affect normal processes within a phytoplankton cell, 

thereby enhancing oxidative stress and as mentioned above, some studies suggest DMSP 

up-regulation, which has led to the proposed antioxidant role of DMSP. Here an attempt 

is made to examine cellular physiological responses to N- and P-limitation and how 

DMSP and DMS concentrations alter with nutrient limitation in three strains of E. 

huxleyi and to examine the relationship between cell death and DMSP and DMS content. 

The nutrient-limitation experiments carried out in Franklin et al. 2012 presented me with 

the challenge and the opportunity to work on, as well as compare the responses of 

another major bloom-forming silicifying phytoplankton species, namely the diatom T. 

pseudonana with a rather different ecology and intracellular DMSP concentration, with 

that of the calcifying E. huxleyi species.  
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3.2 Methodology 

3.2.1 Nutrient-limitation and nutrient add-back conditions for experiments 

with Emiliania huxleyi and Thalassiosira pseudonana (Franklin et al. 

2012) 

3.2.1.1 Culture conditions and growth measurements 

Franklin, D. grew duplicate unialgal cultures of E. huxleyi 1516 (CCMP; calcifying) and 

T. pseudonana 1335 (CCMP) in 500 mL of ESAW/5 media (enriched seawater, artificial 

water; Harrison et al. 1980) in 1 L borosilicate conical flasks and carried out the sub-

sampling and most measurements. ESAW/5 is enriched with NaNO3, NaH2PO4, 

Na2SiO3 etc). Silicate was omitted in the medium for E. huxleyi. Light was supplied at 

100 µmol photons m-2 s-1 (Biospherical Instruments QSL 2101) from cool white 

fluorescent tubes, on a 14:10 h light:dark cycle (08:00 h to 22:00 h) at a constant 

temperature of 17°C. To minimize the presence of dead cells and debris in the cultures at 

the beginning of the experiment, cultures were grown in semi-continuous mode and 

closely monitored before measurements commenced. Each day at 10:00 h biomass was 

quantified as cell volume, or coccosphere volume in the case of E. huxleyi, (Coulter 

multisizer) and fluorescence (Phyto-PAM). The efficiency of Photosystem II (FV:FM; 

30-min dark acclimation) was measured at the same time.  

3.2.1.2 Fluorescent cell staining and flow cytometry 

Franklin, D. also did the fluorescent staining analyses with three molecular probes: 

SYTOX Green a ‘dead’ cell indicator (Veldhuis et al. 1997) (also see Chapter 2.7), 5-

chloromethylfluorescein diacetate (CMFDA) a ‘live’ cell indicator, that undergoes 

enzymatic cleavage indicating the hydrolytic enzymatic activity (Garvey et al. 2007) and 

a fluorescein isothiocyanate conjugate of carbobenzoxy-valyl-alanyl-aspartyl-[O-

methyl]-fluoromethylketone to label cells containing activated caspases (CaspACE; 

Promega G7462) and detect caspase-like activity. CMFDA (Invitrogen C2925) was 

diluted to 1 mM in acetone prior to use (Peperzak and Brussaard 2011) and aliquoted 
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and stored at -20°C. It was added to a final concentration of 10 µM and incubated for 60 

min under the culture temperature and light conditions. SYTOX Green and CMFDA 

final concentration and incubation time were optimized prior to use with heat-killed cells 

(80°C, 5 min) and the maximum fluorescence ratio approach (Brussaard et al. 2001). 

Franklin, D. used an adaptation of the protocol of Bidle and Bender (2008) to detect 

caspase-like activity: CaspACE was added to cells at a final concentration of 0.5 µM and 

incubated for 30 min at culture temperature in the dark, before flow cytometric analysis. 

Working stocks of all stains were stored at -20°C before use. Milli-Q water was used as 

the sheath fluid, analyses were triggered on red fluorescence using lo flow (~ 20 µL min-

1) and 10,000 events were collected. An event rate between 100 and 400 cells s-1 was 

used to avoid coincidence and when necessary samples were diluted in 0.1-µm-filtered 

artificial seawater prior to analysis. Flowset beads (Beckman-Coulter) were analyzed at 

the beginning of each set of measurements, and bead fluorescence was used to normalize 

stain fluorescence (Marie et al. 2005). 

3.2.1.3 Other analyses 

In the nutrient-limitation growth experiment described in section 3.2.1 above, 

photosynthetic pigments were measured by Airs, R. L. (methods detailed in Franklin et 

al. 2012) while I carried out the DMSP and DMS measurements (methods detailed in 

Chapter 2.6). In addition, nutrient add-back experiments to establish the limiting nutrient 

were carried out by Bell, T. and I (detailed below in section 3.2.1.4). 

3.2.1.4 Nutrient add-back conditions 

In the nutrient add-back experiment, duplicate unialgal cultures of E. huxleyi 1516 

(CCMP; calcifying) and T. pseudonana 1335 (CCMP) were grown as described in 

section 3.2.1.1 At the onset of stationary phase when the biomass was approximately 2.5 

x 106 cells ml-1 for both species, the cultures were diluted 1 in 20. This was repeated 

twice before starting the experiment. Filter sterilised nutrients were added (see below) 

when cell density was at about 2 x 106 cells ml-1 to bring the nitrate, phosphate and/or 

silicate (T. pseudonana only) concentration back to that of standard ESAW/5 medium.  
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For each treatment, duplicate 500 ml cultures were set-up in 1 L flasks and 5 ml samples 

were drawn daily for the duration of both experiments and cell density, cell volume and 

photosynthetic capacity were monitored.  

3.2.2 Nitrate-free (N0), Phosphate-free (P0) and nutrient add-back conditions 

for experiments with three Emiliania huxleyi strains 

Triplicate cultures of E. huxleyi 370, 373 and 1516 were grown to mid-log phase in 

ESAW medium (silicate-free) in 2 L conical flasks. The cells were pre-concentrated by 

centrifugation (5000 rpm or 5310 g; 17°C for 5 mins) to reduce carry-over of nutrients in 

the ESAW medium. Coulter counter analysis showed that only about 2000 cells per ml 

remained in the supernatant which represented only ~ 3% of the original cells. The cell 

pellets were resuspended in N0 and P0 media and aliquots (10 ml) were used to 

innoculate triplicate 250 ml flasks with 140 ml of (a) standard ESAW medium (control), 

(b) nitrate-free ESAW (N0) and (c) phosphate-free ESAW (P0). The initial cell density 

was ~ 65,000. Cell counts measurements verified that cells were transferred 

quantitatively and FV:FM and fluorescence were not affected after the transfer. 

Cells were acidified to check whether the cell volume increases observed were due to 

coccolith formation during N- and P-limitation. For this, concentrated HCl was added to 

the culture sample to get a final concentration of 3.6 mM (Buitenhuis et al. 2008). The 

sample was left for one minute for the coccoliths to dissolve and immediately cell 

volume and cell diameter measurements were carried out using the Coulter multisizer 

and the cells were also examined under the microscope. 

After three days growth in the N- and P-free media, the respective nutrient was added 

back to the culture flasks to bring the media back to the 549 µM nitrate and 22.4 µM 

phosphate concentration of standard ESAW medium. 

Throughout the experiment all cultures were monitored daily for cell density, cell 

volume, fluorescence, photosynthetic capacity, membrane permeability using SYTOX 

Green staining and DMS and DMSP content (see Chapter 2 for methods). 
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3.3 Results 

3.3.1 E. huxleyi and T. pseudonana in nutrient-limited and add-back 

conditions (Franklin et al. 2012) 

3.3.1.1 Cell culture growth measurements 

Under the culture conditions used, E. huxleyi 1516 and T. pseudonana 1335 both 

achieved a specific growth rate (µ; d-1) of 0.6 and a final cell density of ~ 2.5 x 106 cells 

ml-1. Stationary phase commenced around day 8. E. huxleyi cell number remained 

constant for 20 d after this, whereas T. pseudonana cell number began to decline after 5 

d into stationary phase, and by day 28, had declined by 65% (Fig. 3.1A). The 

coccosphere volume of E. huxleyi increased from a mean of about 35 µm3 during the 

growth phase to almost 80 µm3 at the end of the stationary phase. T. pseudonana also 

increased in cell volume, but by less than E. huxleyi coccosphere volume and the 

increase in cell volume stabilized after the growth phase at about 50 µm3 (Fig. 3.1A). 

Dark-acclimated FV:FM (maximum Photosystem II efficiency [PSII efficiency] or 

photosynthetic capacity) declined from a maximum of 0.6 in early log-phase to zero in 

T. pseudonana at day 11 in stationary phase while dark-acclimated FV:FM remained in 

the range of 0.48-0.58 in E. huxleyi (Fig. 3.1B). In both species, cell fluorescence 

dropped after the onset of stationary phase (Fig. 3.1C).  
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Figure 3.1 (A) Cell density and cell volume, (B) efficiency of photosystem II (FV:FM) and (C) in vivo 

fluorescence in Emiliania huxleyi 1516 and Thalassiosira pseudonana 1335 batch cultures (duplicate 

cultures, mean and standard error shown during 28 days in batch culture from Franklin et al. (2012)). 
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3.3.1.2 SYTOX Green staining 

Throughout the whole experiment, E. huxleyi showed < 5% SYTOX labeled cells; 

signifying that almost all cells had undamaged plasma membranes. In contrast, the T. 

pseudonana cultures had low levels of labeled cells (< 2%) until the stationary phase, 

and then promptly increased to a maximum of 25% by the end of the monitoring period 

(Fig. 3.2B). 

 

Figure 3.2 SYTOX Green staining for membrane permeability in Emiliania huxleyi and Thalassiosira 

pseudonana during nutrient depletion in batch culture over 28 days (A) representative flow cytometry 

plots (day 23). (B) % of SYTOX-stained cells (mean and standard error; two replicates). In (A) and (B) 

Q1 + Q2 = stained cells, where Q1 = stained debris and cells with low red fluorescence, and Q2 = stained 

normal cells, Q3 = unstained normal cells, and Q4 = unstained debris and low-red cells (from Franklin et 

al. (2012)). 
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3.3.1.3 CMFDA and CaspACE staining 

Results from the CMFDA and CaspACE staining have been discussed at length by 

Franklin et al. (2012). Over the 28 d monitoring period, CMFDA staining resulted in two 

distinct cell populations in E. huxleyi: one with high red and high green fluorescence, 

progressively increasing their CMFDA metabolism in the stationary phase and the other 

was about 20% of cells with high red but low green fluorescence which did not 

metabolize the probe and was comparable to the unstained cells. T. pseudonana showed 

a single cell population of high red and high green fluorescence involved in 

metabolizing the probe. These cells showed a decline in CMFDA fluorescence during 

the 28 d monitoring period. CaspACE fluorescence staining increased with time in E. 

huxleyi, while no obvious trend was seen in T. pseudonana.  

3.3.1.4 Photosynthetic pigments 

Data from the photosynthetic pigment analyses is detailed in Franklin et al. (2012). T. 

pseudonana exhibited a steady increase in the ratios of methoxychlorophyll a : Chl a, 

hydroxychlorophyll a : Chl a and carotenoid : Chl a during the transition from active 

growth to stationary phase. No increase in the ratios of methoxychlorophyll a : Chl a 

and hydroxychlorophyll a : Chl a was observed in E. huxleyi, however the carotenoid : 

Chl a ratio remained constant.  

3.3.1.5 DMSP and DMS 

As anticipated, E. huxleyi displayed a higher intracellular DMSP content (DMSPp per 

cell volume; Fig. 3.3a) ranging between 100 to 120 mM, whereas in T. pseudonana there 

was a prominent increase in DMSPp per cell volume from days 0 to 10 from 0.7 to 35 

mM. Within the stationary or death phase, consistent concentrations of DMSPp per cell 

volume of ~ 120 mM in E. huxleyi and 35 mM in T. pseudonana were seen. DMSPp per 

cell displayed a definite increasing trend from 4 to 10 fmol per cell in E. huxleyi and a 

distinct increase of 0 to 2 fmol per cell from days 0 to 10 in T. pseudonana, followed by 

a very gradual increase from 2 to 3 fmol per cell in the stationary or death phase (Fig. 

3.3b). Over the whole timecourse the DMSPp concentration in the E. huxleyi culture  
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Figure 3.3 Effect of nutrient exhaustion in duplicate batch cultures of E. huxleyi 1516 and T. pseudonana 

1335 on (a) DMSPp per cell volume (mM), (b) DMSPp per cell (fmol), (c) DMSPp (µM) (d) DMSPd per 

cell volume (mM), (e) DMSPd per cell (fmol), (f) DMSPd (µM) (g) DMS per cell volume (mM), (h) DMS 

per cell (fmol), (i) DMS (µM) (j) DMSPt per cell volume (mM) (k) DMSPt per cell (fmol) and (l) DMSPt 

(µM). The average value and range of data is shown (n=2). Where no range bars are visible, the data range 

was smaller than the symbol size. 

showed an increasing trend from 2 to 25 µM, while for T. pseudonana a distinct increase 

from 0 to 5 µM was seen in the log phase of growth, the concentration remained 
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consistent at 5 µM in the stationary phase and then decreased in the death phase to 3 µM 

on the last day of the monitoring period (Fig. 3.3c).   

Dissolved DMSP (DMSPd) increased in both species after the growth phase, reaching a 

maximum of 2.26 µM in E. huxleyi and 1.36 µM in T. pseudonana (Fig. 3.3f). DMSPd 

per cell volume was below detection in T. pseudonana in the log-phase, increased to a 

consistent value of 6 mM in the stationary phase and increased further still to a 

concentration of 19 mM on day 28 (Fig. 3.3d). DMSPd per cell volume was also non-

detectable in the E. huxleyi cultures in the log phase, but it increased to 7 mM by day 7 

and then again increased to 12.5 mM at day 21 before decreasing to 10 mM in the late 

stationary phase (Fig. 3.3d). DMSPd per cell also increased after the growth phase to 

about 0.4 fmol in both species, but a more distinctive increase to 1.6 fmol per cell was 

seen in T. pseudonana, while in contrast, a decrease to 0.8 fmol per cell was observed in 

E. huxleyi in the late stationary phase (Fig. 3.3e). 

A distinct increasing trend was seen in the concentration of DMS in both cultures over 

the course of the experiment. Higher DMS concentrations increasing from 0.004 µM to 

0.095 µM were observed in T. pseudonana with a substantial jump in concentration 

between days 4 and 7, whereas in the E. huxleyi cultures, DMS exhibited an increase 

from 0.008 µM to 0.045 µM (Fig. 3.3i). DMS per cell volume was also higher in T. 

pseudonana displaying an increasing pattern from 0.1 to 1.3 mM compared to a low but 

gradual increase from 0.04 to 0.2 mM in E. huxleyi (Fig. 3.3g). The DMS per cell 

patterns displayed in both species followed the same trend as of DMS per cell volume. 

In T. pseudonana, DMS per cell increased from 0.004 to 0.11 fmol and in E. huxleyi 

from 0.002 to 0.02 fmol per cell (Fig. 3.3h). 

Over the course of the experiment, total DMSP (DMSPt) increased with time in E. 

huxleyi cultures, whereas T. pseudonana showed no substantial relationship with time 

(Fig. 3.3l). Within the T. pseudonana data set, however, a decline in DMSPt is suggested 

within the stationary or death phase (Fig. 3.3l). DMSPt per cell volume (Fig. 3.3j) as 

expected, followed a similar trend as seen in DMSPp per cell volume  (Fig. 3.3a), with 

an increase from 100 to 130 mM in E. huxleyi and from below detection to 60 mM in T. 

pseudonana. DMSPt per cell (Fig. 3.3k) in both species, as expected, followed a similar 



Chapter 3: The Influence of Nutrient Limitation on Intracellular DMSP and DMS Release 

99 

trend as seen in DMSPp per cell (Fig. 3.3b), with an increase from 4 to 11 fmol in E. 

huxleyi and from 0 to 4.5 fmol per cell in T. pseudonana.  

The increasing trend in DMSPp (Fig. 3.3c) or DMSPt (Fig. 3.3l) is not reflected in 

DMSPp per cell volume (Fig. 3.3a) in E. huxleyi perhaps due to the increasing 

coccosphere volume in stationary phase (Fig. 3.1A). Thus DMSPp per cell volume 

although observed to be constant, may be masked by the coccosphere volume increase. 

3.3.1.6 Nutrient add-back to E. huxleyi and T. pseudonana 

Bell, T. and I performed nutrient ‘add-back’ experiments to test what controlled 

limitation (Fig. 3.4; data not shown in Franklin et al. 2012). These experiments indicated 

that for T. pseudonana, nitrogen caused growth limitation; when nitrate was added back, 

cell numbers increased from 1.6 to 2.8 x 106 cells ml-1 (Fig. 3.4b). The pattern for E. 

huxleyi was less clear with cell numbers increasing from 2.15 to 2.25 x 106 cells ml-1 on 

adding back nitrate and 2.03 to 2.09 x 106 cells ml-1 on adding back phosphate (Fig. 

3.4a). By calculation, nitrogen should have been limiting in both species at this point 

assuming cells were using nutrients in the Redfield ratio (Franklin et al. 2012). 

Importantly, fluorescence increased for both species upon nitrate addition indicating 

nitrate as the limiting nutrient. There was a very slight increase in fluorescence when 

phosphate was added back to E. huxleyi, but no increase above the control when 

phosphate or silicate were added back to T. pseudonana (Fig. 3.4 e, f). Photosynthetic 

capacity did not show any differentiating trends between the control versus the nitrate or 

phosphate add-backs in E. huxleyi (Fig. 3.4c). In contrast, nitrate add-back in T. 

pseudonana delayed the decrease in cell photosynthetic capacity by 2 days compared 

with the control, phosphate and silicate addition cultures (Fig. 3.4d).  
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Figure 3.4 Examining the consequences of nutrient add-back to E. huxleyi 1516 (circles) and T. 

pseudonana 1335 (triangles) on cell density (a, b), photosynthetic capacity (c, d) and fluorescence (e, f) 

(au = arbitrary unit). The grey circles/triangles denote control cultures (no nutrient add-back); the black 

solid symbols denote nitrate add-back; the hollow symbols denote phosphate add-back and the cross 

symbols (x) denote silicate add-back (only to T. pseudonana). The nutrients were added back on day 5 in 

E. huxleyi and on day 4 in T. pseudonana, as shown by the vertical grey lines. The average value and 

range of data is shown (n=2). Where no range bars are visible, the data range was smaller than the symbol 

size. 
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3.3.2 Three E. huxleyi strains in Nitrate-free (N0), Phosphate-free (P0) media 

and add-back conditions 

3.3.2.1 Cell culture and growth measurements 

During the exponential growth phase, the specific growth rate (µ;d-1, n = 3) was 0.65 for 

all the three control strains (Fig. 3.5d, e, f and Fig. 3.6d, e, f) although the final cell 

density (Fig. 3.5a, b, c and Fig. 3.6a, b, c) varied as follows: E. huxleyi 370 = 4 x 106 

cells ml-1, E. huxleyi 373 = 3 x 106 cells ml-1 and E. huxleyi 1516 = 7 x 106 cells ml-1. In 

both N0 and P0 media, the cell density increased for a few days and then remained 

constant (Fig. 3.5a, b, c and Fig. 3.6a, b, c), more visibly reflected in the log plots (Fig. 

3.5d, e, f and 3.6d, e, f). This continued increase in cell density was probably due to 

utilisation of residual nutrients in the media or cell reserves. On day 7, following the 

nutrient add-back on day 6, only a minimal increase was seen in cell numbers after 

nitrate was added (Fig 3.5a, b, c): from 0.65 to 0.69 x 106 cells ml-1 in E. huxleyi 370; 

from 0.16 to 0.23 x 106 cells ml-1 in E. huxleyi 373 and from 0.7 to 0.93 x 106 cells ml-1 

in E. huxleyi 1516, but there was a more marked increase with phosphate addition (Fig 

3.6a, b, c): from 0.45 to 1.06 x 106 cells ml-1 in E. huxleyi 370; from 0.15 to 0.36 x 106 

cells ml-1 in E. huxleyi 373 and from 0.47 to 1.06 x 106 cells ml-1 in E. huxleyi 1516. 

Cell volume was affected differently under limitation by the two different nutrients. Cell 

volume increased in N0 and P0 cultures but this was more marked for E. huxleyi 373 

under both treatments (Fig 3.5h, 3.6h) and for phosphate across all 3 strains (Fig 3.6g, h 

and i). Under P0 conditions, cell volume in E. huxleyi 370 and 373 increased from ~ 30 

to 100 µm3 but only from ~ 25 to 60 µm3 in E. huxleyi 1516 (Fig. 3.6g, h, i). By naked 

eye, the E. huxleyi cultures turned milky-white in the P0 conditions whereas there was 

more colouration in the N0 cultures suggesting coccolith formation under P0 conditions. 

Microscopic observations confirmed this and the increase in cell diameter was seen with 

the Coulter Multisizer. Brief acidification of the P-limited cells showed a characteristic 

drop in cell volume whereas such a drop was not observed in the N-limited cells. 

However, even after the coccolith removal the P-limited cells were still bigger than 

those in the control cultures (Fig. 3.6g, h, i). Again the difference was substantial for E. 
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huxleyi 373 (Fig 3.6h). The increase in cell volume seen after acidification of the P-

limited cells was similar to the increase seen in the N-limited cells without acidification, 

indicating that nutrient limitation causes increase in cell volume. Ignoring such increases 

in cell volume when nutrients are in short supply would make a substantial difference 

when computing intracellular DMSP concentrations. The add-back of the limiting 

nutrient led to a notable decrease in cell volume in both the N0 and P0 cultures. In E. 

huxleyi 370 and 1516 cell volumes returned to those in the control cultures by day 10 

(Fig. 3.5g, i and 3.6g, i). 

 

Figure 3.5 Impact of nitrogen limitation (N0) on E. huxleyi 370, 373 and 1516 on cell density (a, b, c), 

growth curve (d, e, f) and cell volume (g, h, i). The grey symbols represent the control culture and the 

black symbols represent the culture growing in N-free media. On day 6 (vertical grey line), nitrate was 

added back to the N-free flasks. The average value and range of data is shown (n=3). Where no range bars 

are visible, the data range was smaller than the symbol size. 
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Figure 3.6 Impact of phosphate limitation (P0) on E. huxleyi 370, 373 and 1516 on cell density (a, b, c), 

growth curve (d, e, f) and cell volume (g, h, i). The grey symbols represent the control culture and the 

black symbols represent the culture growing in P-free media. In the cell volume data plots (g, h, i) 

triangles denote standard cell volume measurements and the solid circles show cell volumes after the 

addition of acid to dissolve the coccoliths. On day 6 (vertical grey line), phosphate was added back to the 

P-free media. The average value and range of data is shown (n=3). Where no range bars are visible, the 

data range was smaller than the symbol size. 
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Fluorescence in N0 and P0 cultures followed a similar trend as that of the cell density 

plots. Note that on days 9 and 10 of the experiment some of the cultures appeared to 

enter stationary phase, but this was due to fluorescence detection being saturated on the 

phyto-PAM instrument (Fig. 3.7b, c and Fig. 3.8b, c). The add-back of the respective 

nutrient led to a renewed increase in the fluorescence of the N0 and P0 cultures (Fig. 3.7a, 

b, c and Fig. 3.8a, b, c). 

Photosynthetic capacity (or photosynthetic efficiency of the photosystem II; FV/FM) in 

N0 and P0 cultures did not display a definite trend but remained almost in the range of 

0.5 to 0.6 throughout the deprivation period (Fig. 3.7d, e, f and Fig. 3.8d, e, f). The add-

back of N and P into the media, resulted in higher photosynthetic capacity of the 

previously-deprived cells compared to the cells of the control cultures of E. huxleyi 370 

and 1516, however, a decrease in photosynthetic capacity up to 0.4 was noted in E. 

huxleyi 373 (Fig. 3.7d, e, f and Fig. 3.8d, e, f). 

3.3.2.2 SYTOX Green staining 

On days 1 and 2, up to 17% of the control cells of all three strains were SYTOX Green 

labeled (Fig. 3.7j, k, l and 3.8j, k, l) and up to 20% cells of all three strains were labeled 

in the P0 condition while in the N0 condition, 23% cells had compromised membranes in 

E. huxleyi 370, 17% in E. huxleyi 373 and up to 26% in E. huxleyi 1516. Mirroring the 

labeled cells on days 1 and 2, the percentage of viable cells was low at about 70% 

increasing to over 90% by day 10 (Fig. 3.7g, h, i and Fig 3.8g, h, i) in both N0 and P0 

conditions. At the first two time points, the high number of labeled cells and low number 

of viable cells may have been due to the combined effects of centrifugation during the 

transfer of the cells to N- and P-free media and the initial shock from the change in 

media. 

Throughout the 10 days of the experiment this stain indicated similar trends in the 

percentage of viable cells for control and N0 cultures of all three E. huxleyi strains (Fig. 

3.7g, h, i). However, such a similarity was not observed between the control and P0 

cultures in either of the three E. huxleyi strains (Fig. 3.8g, h, i). The percentage of viable 

P-deprived cells followed the control, but later decreased in comparison to the viable  
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Figure 3.7 Impact of nitrogen limitation (N0) in E. huxleyi 370, 373 and 1516 on fluorescence (a, b, c), 

photosynthetic capacity (d, e, f) and membrane permeability assessed with SYTOX Green (percentage of 

viable cells - g, h, i and percentage of compromised cells - j, k, l). The grey symbols represent the control 

cultures and the black symbols the cultures in N-free medium. On day 6 (vertical grey line), nitrate was 

added back to the N-free cultures. The average value and range of data is shown (n=3). Where no range 

bars are visible, the data range was smaller than the symbol size. 
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Figure 3.8 Impact of phosphate limitation (P0) in E. huxleyi 370, 373 and 1516 on fluorescence (a, b, c), 

photosynthetic capacity (d, e, f) and membrane permeability (percentage of viable cells - g, h, i and 

percentage of compromised cells - j, k, l). The grey symbols represent the control culture and the black 

symbols represent the culture growing in P-free media. On day 6 (vertical grey line), phosphate was added 

back to the P-free media. The average value and range of data is shown (n=3). Where no range bars are 

visible, the data range was smaller than the symbol size. 
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cells in the control. This decrease was strain-specific: from days 3 to 6, an 80-75% drop 

in viable cells was seen in E. huxleyi 370 and 373, while from days 3 to 6, E. huxleyi 

1516 stabilized at ~ 82%. The decrease seen in percentage viable cells was more distinct 

when compared to the control viable cells, which was at 94% for all three strains on day 

6. 

The percentage of compromised cells of all three E. huxleyi strains in N0 and P0 media 

were similar in trends through the 10 days of the monitoring period (Fig. 3.7j, k, l and 

Fig. 3.8j, k, l). However, there were differences in percentage of compromised cells 

between the control and N0 cultures and also between the control and P0 cultures. The 

percentage of compromised cells in the N0 and P0 media reached a maximum on day 5. 

In N0 cultures, it was 6% in E. huxleyi 370, 5% in E. huxleyi 373 and 6.3% in E. huxleyi 

1516 while in the control cultures it was 3% in E. huxleyi 370, 2.5% in E. huxleyi 373 

and 3% in E. huxleyi 1516. In P0 cultures, the percentage of compromised cells was 6% 

while in control cultures it was 3% for all the three strains of E. huxleyi. 

3.3.2.3 DMSP and DMS 

3.3.2.3.1 DMSPp per cell volume 

Intracellular DMSP (DMSPp per cell volume) concentration decreased relative to the 

control between days 3 and 6 in N-free E. huxleyi 370 from 195 to 160 mM and between 

days 3 and 5 in E. huxleyi 373 from 234 to 217 mM (Fig. 3.9a, b), but in E. huxleyi 1516 

the N0 and control culture showed similar DMSPp per cell volume concentrations up to 

day 5 (Fig. 3.9c). Over the same timescale there was little difference in DMSPp per cell 

volume concentration between the control and P0 cultures of E. huxleyi 370 and 1516, 

though E. huxleyi 373 displayed a small decrease in DMSPp per cell volume between 

days 3 and 5 from 228 to 209 mM (Fig. 3.10a, b, c). The N add-back resulted in an 

increase in DMSPp per cell volume concentration in all three strains (Fig. 3.9a, b, c) and 

whilst it also increased in E. huxleyi 373 and 1516 with P add-back, a decrease back to 

the day 0 value was seen in E. huxleyi 370.  
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Figure 3.9 Impact of nitrogen limitation (N0) in E. huxleyi 370, 373 and 1516 on per cell volume 

concentrations (mM) of DMSPp (a, b, c), DMSPd (d, e, f), DMS (g, h, i) and DMSPt (j, k, l). The grey 

symbols represent the control culture and the black symbols represent the culture growing in N-free media. 

On day 6 (vertical grey line), nitrate was added back to the N-free media. The average value and range of 

data is shown (n=3). Where no range bars are visible, the data range was smaller than the symbol size. 
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Figure 3.10 Impact of phosphate limitation (P0) in E. huxleyi 370, 373 and 1516 on per cell volume 

concentrations (mM) of DMSPp (a, b, c), DMSPd (d, e, f), DMS (g, h, i) and DMSPt (j, k, l). The grey 

symbols represent the control culture and the black symbols represent the culture growing in P-free media. 

On day 6 (vertical grey line), phosphate was added back to the P-free media. The average value and range 

of data is shown (n=3). Where no range bars are visible, the data range was smaller than the symbol size. 
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3.3.2.3.2 DMSPd per cell volume 

At the start of the experiment, DMSPd per cell volume values were high in all the three 

strains in the control, N0 and P0 cultures (Fig. 3.9d, e, f and Fig. 3.10d, e, f). This could 

have been due to the centrifugation step in the preparation of the inoculum and the 

higher percentage compromised cells seen with SYTOX Green in samples taken on days 

1 and 2 also suggest this (Fig. 3.8j, k, l and Fig. 3.9j, k, l). Over the 10 days of the 

monitoring period, DMSPd per cell volume in the control cultures showed a decreasing 

trend from 523 to 15 mM in E. huxleyi 370, 415 to 28 mM in E. huxleyi 373 and 266 to 

37 mM in E. huxleyi 1516. Relative to the control concentrations, N0 and P0 cultures 

showed higher concentrations in all the three strains from days 1 to 6. On day 6 in N0 

cultures, a maximum of 122 mM in E. huxleyi 370 and 1516 and 541 mM in E. huxleyi 

373 whereas in P0 cultures, a maximum of 178 mM in E. huxleyi 370, 167 mM in E. 

huxleyi 1516 and 531 mM in E. huxleyi 373 was observed relative to the control 

concentrations of 27 mM in E. huxleyi 370, 50 mM in E. huxleyi 1516 and 83 mM in E. 

huxleyi 373 on the same day. The N and P add-back resulted in a decrease in DMSPd 

per cell volume concentration in all three strains. A decrease to control value was seen 

by day 10 in all three strains with P add-back and in E. huxleyi 1516 with the N add-

back.  

3.3.2.3.3 DMS per cell volume 

DMS per cell volume followed strain specific trends in control as well as both N- and P-

free conditions (Fig 3.9g, h, i and Fig 3.10g, h, i). From days 0 to 6, E. huxleyi 373 and 

1516 increased from 0.17 to 2.12 mM and from 0.15 to 1.24 mM in N0 cultures while 

from 0.12 to 2.08 mM and from 0.14 to 1.69 mM in P0 cultures. However under N 

deprivation, E. huxleyi 370 increased from 4.2 mM on day 0 to 8.2 mM on day 1 then 

decreased to 3 mM on day 4 and increased again to 4.5 mM on day 6, while under P-

deprivation, the concentration increased from 3.7 mM on day 0 to 8.3 mM on day 1 and 

then decreased to 4.1 mM on day 3 and increased again to 6.6 mM on day 6. Following 

the N- and P- add-back, DMS per cell volume concentration decreased in all three 

strains. But despite the decreasing trend observed in E. huxleyi 370, by day 10, DMS per 

cell volume concentration remained higher (2.2 mM in N0 culture and 1.5 mM in P0 

culture) than the control culture of 0.9 mM. By day 10, a decrease equal to control value 
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was seen in E. huxleyi 373 and 1516 (0.3 mM and 0.6 mM respectively) in N add-back 

culture and E. huxleyi 373 (0.2 mM) in P add-back culture. While the decrease was 

lower than the control in E. huxleyi 1516 (0.3 mM) in P add-back culture.  

3.3.2.3.4 DMSPt per cell volume 

At the start of the experiment, DMSPt per cell volume values were high in all the three 

strains in the control, N0 and P0 cultures (Fig 3.9j, k, l and Fig. 3.10j, k, l) similar to the 

observation in DMSPd per cell volume (Fig. 3.9d, e, f and Fig. 3.10d, e, f). This may be 

again attributed to the centrifugation step in the preparation of the inoculum. DMSPt per 

cell volume concentrations showed very strain specific behaviour especially relating N0 

and P0 cultures to the control. The N-free E. huxleyi 370 (Fig. 3.9j) followed the control 

up to day 5 and then remained at 292 mM on day 6 while the control increased to 375 

mM; the P-free E. huxleyi 370 (Fig. 3.10j) also followed the control up to day 4 and then 

increased to 450 mM on day 6 compared to the control value of 375 mM. Following the 

add-back, N-free E. huxleyi 370 continued to remain constant in the range of 292 mM to 

313 mM lower than the control (375 mM to 436 mM). N-free E. huxleyi 373 decreased 

from 716 mM on day 0 to 556 mM on day 3 and later increased to 820 mM on day 6, 

while P-free E. huxleyi 373 decreased from 615 mM on day 0 to 562 mM on day 3 and 

later increased to 950 mM on day 6 (Fig. 3.9k and Fig. 3.10k). After the N add-back 

DMSPt per cell volume continued to increase to 900 mM for a day while P add-back 

showed a rapid decrease to 753 mM the next day. By day 10, the N and P add-back to E. 

huxleyi 373 cultures followed the control concentration of 360 mM. In both N- and P- 

free E. huxleyi 1516 (Fig. 3.9l and Fig. 3.10l) DMSPt per cell volume remained higher 

than the control with the exception of the first three days in P-free E. huxleyi 1516. In 

the N-free media between days 0 and 6 the concentration dropped from 636 to 262 mM 

while in the P-free media it remained in the range of 358 to 293 mM. Following the N 

add-back E. huxleyi 1516 showed a low of 281 mM, while the P add-back showed a 

clear decrease to 248 mM compared to the control at 321 mM for both. 
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3.3.2.3.5 DMSPp per cell 

DMSP has been previously expressed on a per cell basis in culture studies (Turner et al. 

1988; Vairavamurthy et al. 1985), thus variations in DMSP per cell were also derived to 

understand the data from a different perspective.  

DMSPp per cell for all the three strains increased under N- and P-free conditions from 

days 0 to 6 (Fig. 3.11a, b, c and Fig. 3.12a, b, c). However from days 0 to 6, N-free E. 

huxleyi 373 and 1516 showed a higher increase of 6 to 12 fmol and 2.2 to 3.9 fmol per 

cell respectively (Fig. 3.11b, c) and P-free E. huxleyi 373 and 1516 also showed a higher 

increase of 8.7 to 11.3 fmol and 2.2 to 4 fmol respectively from days 0 to 6 (Fig. 3.12b, 

c) compared to the E. huxleyi 373 control cultures (6 to 4.5 fmol) and E. huxleyi 1516 

control cultures (1.7 to 2.1 fmol). But, the N-free E. huxleyi 370 showed a very less 

increase of 4.8 fmol on day 0 to 7.7 fmol on day 6 while the P-free E. huxleyi 370 

showed an increase of 4.8 fmol on day 0 to 14.6 fmol per cell on day 6, following the 

control culture of 5 fmol on day 0 to 13 fmol per cell on day 6. In E. huxleyi 370, N add-

back increased upto 8.8 fmol followed by a decrease to 6 fmol by day 10 while P add-

back rapidly reduced the DMSPp per cell levels to 6 fmol by day 10. However, in E. 

huxleyi 373 N and P add-back did not follow any clear pattern (Fig. 3.11b and Fig. 

3.12b) and the N and P add-back in E. huxleyi 1516 resulted in a decrease to 3 fmol in 

DMSPp per cell levels similar to that in the control culture. 

3.3.2.3.6 DMSPd per cell 

Dissolved DMSP (DMSPd) per cell in N0 and P0 cultures decreased at first and 

subsequently increased by day 6 in all three strains, excluding the continued decrease in 

N-free E. huxleyi 1516. In N-free E. huxleyi 370, DMSPd per cell dropped from 15.6 to 

4.7 fmol on day 4 and increased to 5.8 fmol on day 6; in N-free E. huxleyi 373 the value 

dropped from 16.5 to 14 fmol on day 2 and increased to 26.5 fmol by day 6; and in N-

free E. huxleyi 1516 the value dropped from 10.5 to 3.4 fmol on day 6. In P-free E. 

huxleyi 370, DMSPd per cell decreased from 13 to 5.6 fmol on day 3 and increased to 

8.9 fmol on day 6; in P-free E. huxleyi 373 the value dropped from 17 to 14.1 fmol on 

day 2 and increased to 26.5 fmol on day 6; and in P-free E. huxleyi 1516 the value 

dropped from 5.6 to 4 fmol on day 3 and increased to 5 fmol on day 6. Under nutrient 
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deprivation the cultures showed higher DMSPd per cell values when compared to the 

control values. The N and P add-back decreased the DMSPd per cell values in all three 

 

Figure 3.11 Impact of nitrogen limitation (N0) in E. huxleyi 370, 373 and 1516 on per cell levels (fmol) of 

DMSPp (a, b, c), DMSPd (d, e, f), DMS (g, h, i) and DMSPt (j, k, l). The grey symbols represent the 

control culture and the black symbols represent the culture growing in N-free media. On day 6 (vertical 

grey line), nitrate was added back to the N-free media. The average value and range of data is shown 

(n=3). Where no range bars are visible, the data range was smaller than the symbol size.  
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Figure 3.12 Impact of phosphate limitation (P0) in E. huxleyi 370, 373 and 1516 on per cell levels (fmol) 

of DMSPp (a, b, c), DMSPd (d, e, f), DMS (g, h, i) and DMSPt (j, k, l). The grey symbols represent the 

control culture and the black symbols represent the culture growing in P-free media. On day 6 (vertical 

grey line), phosphate was added back to the P-free media. The average value and range of data is shown 

(n=3). Where no range bars are visible, the data range was smaller than the symbol size.  

strains and by day 10 the values leveled off with the control cultures (Fig. 3.11d, e, f and 

3.12d, e, f) except in N add-back to E. huxleyi 373 where the value was as high as 3 fmol 

compared to the 0.66 fmol in the control culture.  
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3.3.2.3.7 DMS per cell 

In N0 and P0 cultures, DMS per cell was high and exhibited strain-specific patterns (Fig. 

3.11g, h, i and 3.12g, h, i). N-deprived E. huxleyi 370 showed continued variations; 

DMS per cell rose from 0.11 to 0.22 fmol on day 1, followed by a decrease to 0.12 fmol 

on day 4 with an increase again to 0.21 fmol on day 6. While P-free E. huxleyi 370 rose 

from 0.1 to 0.22 fmol on day 1, followed by a decrease to 0.17 fmol on day 3 with an 

increase again to 0.33 fmol per cell on day 6. N- and P-free E. huxleyi 373 increased 

from 0.005 to 0.11 fmol by day 6. N- and P-free E. huxleyi 1516 followed the control till 

day 3 then rose to 0.04 and 0.05 fmol respectively compared to control at 0.003 fmol on 

day 6. After the N and P add-back, a decrease was observed in all the three strains. It 

matched the control in E. huxleyi 1516 and 373 by day 10. However, although N and P 

add-back to E. huxleyi 370 showed a decrease in DMS per cell, the values still remained 

higher at 0.05 fmol than the control at 0.03 fmol on day 10. 

3.3.2.3.8 DMSPt per cell 

Total DMSP (DMSPt) per cell in N0 and P0 cultures decreased at first and subsequently 

increased by day 6 in all three strains (Fig. 3.11j, k, l and Fig. 3.12j, k, l). In N-free E. 

huxleyi 370, the value dropped from 20 to 12.5 fmol on day 4 and increased to 14 fmol 

by day 6; in N-free E. huxleyi 373, the drop was from 21.6 to 20.3 fmol on day 2 and 

increased to 40 fmol by day 6; and in E. huxleyi 1516 the value dropped from 13.8 to 5.5 

fmol on day 3 and increased to 7.3 fmol by day 6. In P-free E. huxleyi 370, DMSPt per 

cell dropped from 18.3 to 13.7 fmol on day 3 and increased to 22.4 fmol by day 6; in P-

free E. huxleyi 373 the value dropped from 21.6 to 20.3 fmol on day 2 and increased to 

40 fmol by day 6; and in E. huxleyi 1516 the value dropped from 7.5 to 6.5 fmol on day 

3 and increased to 8.8 fmol on day 6. Under N and P deprivation the cultures showed 

higher DMSPt per cell values when compared to the control except in the P-deprived E. 

huxleyi 370 and 1516. The N and P add-back decreased the DMSPt per cell values in all 

the three strains and E. huxleyi 1516 values leveled off with the control cultures by day 

10. In E. huxleyi 370 values dropped lower than the control (14.6 fmol) by day 7 and 

reached 7.6 fmol in N0 culture and 7.1 fmol in P0 culture by day 10. 
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3.3.2.3.9 DMSPp in the culture 

In N- and P-deprived cultures, DMSPp concentration followed the control for 3 days in 

E. huxleyi 370 and 373, and for 4 days in E. huxleyi 1516 (Fig. 3.13a, b, c and Fig. 3.14a, 

b, c).  It then lagged and remained low till day 6 in N0 cultures at 5.3 µM in E. huxleyi 

370, 1.8 µM in E. huxleyi 373 and 2.7 µM in E. huxleyi 1516 and in P0 cultures at 6.6 

µM in E. huxleyi 370, 1.7 µM in E. huxleyi 373 and 1.9 µM in E. huxleyi 1516 when 

compared to the control culture at 25.4 µM in E. huxleyi 370, 7.2 µM in E. huxleyi 373 

and 6.9 µM in E. huxleyi 1516. N add-back resulted in an increase to 21 µM in E. 

huxleyi 370, 14.7 µM in E. huxleyi 373 and 12.1 µM in E. huxleyi 1516 while P add-

back resulted in an increase to 18 µM in E. huxleyi 370, 18.2 µM in E. huxleyi 373 and 

14.2 µM in E. huxleyi 1516 but despite this increase, the N- and P-deprived culture 

concentration remained lower than the control on day 10. 

3.3.2.3.10 DMSPd in the culture  

High DMSPd concentration was observed across all the three N and P-deprived strains 

that rose to 4 µM in E. huxleyi 370 and 373 and 2.4 µM in E. huxleyi 1516 (Fig. 3.13d, e, 

f and 3.14d, e, f). An increase was seen in the N add-back for all the three strains; E. 

huxleyi 370 and 373 showed higher concentrations (4.8 and 4.4 µM respectively) while 

E. huxleyi 1516 showed similar concentrations when compared to the control cultures (3 

µM) on day 10. The P add-back led to a decrease in E. huxleyi 370 and 373 but E. 

huxleyi 1516 continued to show an increase and similar concentrations when compared 

to the control at 3 µM. 

3.3.2.3.11 DMS in the culture 

In N0 and P0 cultures of E. huxleyi 373 and 1516, DMS concentration followed the 

control culture initially but later increased to 0.015 µM and 0.024 µM when compared to 

the control on day 6 (Fig. 3.13g, h and Fig. 3.14g, h). While E. huxleyi 1516 showed a 

continuous increase of 0.007 to 0.148 µM from days 1 to 6 in both the cultures (Fig. 

3.13i and Fig. 3.14i). On adding back P, E. huxleyi 370 and 1516 showed a steady 

release of DMS at 0.14 µM and 0.02 µM respectively but when N was added back to E. 

huxleyi 370 a gradual increase to 0.18 µM and in E. huxleyi 1516, an initial decrease to 

0.017 µM on day 7 and then a gradual increase to 0.035 µM by day 10 was observed. 
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Figure 3.13 Impact of nitrogen limitation (N0) in E. huxleyi 370, 373 and 1516 on DMSPp (a, b, c), 

DMSPd (d, e, f), DMS (g, h, i) and DMSPt (j, k, l) in the culture (µM). The grey symbols represent the 

control culture and the black symbols represent the culture growing in N-free media. On day 6 (vertical 

grey line), nitrate was added back to the N-free media. The average value and range of data is shown 

(n=3). Where no range bars are visible, the data range was smaller than the symbol size. 
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Figure 3.14 Impact of phosphate limitation (P0) in E. huxleyi 370, 373 and 1516 on DMSPp (a, b, c), 

DMSPd (d, e, f), DMS (g, h, i) and DMSPt (j, k, l) in the culture (µM). The grey symbols represent the 

control culture and the black symbols represent the culture growing in P-free media. On day 6 (vertical 

grey line), phosphate was added back to the P-free media. The average value and range of data is shown 

(n=3). Where no range bars are visible, the data range was smaller than the symbol size. 

Meanwhile E. huxleyi 373 showed a very steady DMS release at 0.1 µM in both the N 

and P add-back conditions. 
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3.3.2.3.12 DMSPt in the culture 

A slow and gradual increase in total DMSP (DMSPt) was seen in all the three strains 

(Fig. 3.13j, k, l and Fig. 3.14j, k, l). On day 6 an increase in DMSPp in N-free E. huxleyi 

370 to 9.7 µM, in E. huxleyi 373 to 6.13 µM and E. huxleyi to 5.1 µM and in P-free E. 

huxleyi 370 to 10.2 µM, in E. huxleyi 373 to 7.2 µM and in E. huxleyi 1516 to 4.2 µM 

was less compared to the control. N and P add-back showed continued increase in 

DMSPt though the increase remained lower than the control for all the three strains. 

3.4 Discussion 

In this chapter, two different approaches were taken to study the effect of nutrient 

limitation on cell growth and DMSP metabolism; (1) cultures of E. huxleyi 1516 and T. 

pseudonana 1335 were grown through to nutrient exhaustion (Franklin et al. 2012) (2) 

cultures of three strains of E. huxleyi 370, 373 and 1516 were transferred to medium 

without nitrate or phosphate. In both cases nutrients were added back to confirm the 

nutrient limitation observed. Alongside DMS and DMSP measurements, cell density, 

cell volume, the efficiency of PSII (FV/FM), fluorescence and membrane permeability 

were analysed to give an indication of the physiological state of the cultures. 

The results from the 1st approach (Franklin et al. 2012) established the fact that the 

coccolithophore E. huxleyi is a higher DMSP producer than the diatom T. pseudonana. 

Maximum intracellular DMSP concentration seen in E. huxleyi was 120 mM and 35 mM 

in T. pseudonana (Fig. 3.3a). The results also highlighted the dissimilar responses 

between the two species under prolonged nutrient deprivation. In the 28 d monitoring 

period, E. huxleyi continued in stationary phase (Fig. 3.1A), with only < 5% cells having 

lost their cell membranes (Fig. 3.2B), while T. pseudonana demonstrated all the three 

phases of growth: exponential stationary and senescence (Fig. 3.1A) with only < 2% 

cells having lost their cell membrane in the stationary phase rising to about 25% by the 

end of the monitoring period (Fig. 3.2B). E. huxleyi developed two distinct cell 

populations with CMFDA staining unlike the single cell population seen in T. 

pseudonana indicating a difference between the two species in hydrolytic activity. Also, 

caspase-like activity emerged higher in E. huxleyi than in T. pseudonana although there 
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were no obvious signs of cell lysis or mortality during nutrient depletion. The 

concentration of methoxychlorophyll a and hydroxychlorophyll a relative to Chlorophyll 

a increased in T. pseudonana during senescence which was marked by the decline in 

PSII efficiency from 0.6 to 0.1 and the rise in the percentage of cells labeled with 

SYTOX Green. In contrast to T. pseudonana, the concentration of methoxychlorophyll a 

and hydroxychlorophyll a relative to Chlorophyll a remained constant in E. huxleyi, just 

as the consistency seen in PSII efficiency and the percentage of cells labeled with 

SYTOX Green. DMS increased and Total DMSP decreased in T. pseudonana during 

cell death while in E. huxleyi total DMSP and DMS increased in the absence of cell 

death. The add-back data indicated N as the limiting nutrient to the growth of T. 

pseudonana while it was not very clear in E. huxleyi perhaps due to the timing of the 

add-back. 

The results from the 2nd approach highlighted the general variation in growth, DMSP 

and DMS responses between different E. huxleyi strains that has been observed in other 

studies (e.g. Steinke et al 1998). This sort of variation is not unique to E. huxleyi; a 

recent study on symbiotic dinoflagellates of the genus Symbiodinium also showed strain-

specific differences in DMSP concentrations and sensitivity to temperature-induced 

oxidative stress (Steinke et al. 2011). 

In this study, the absence of external inorganic nitrogen and inorganic phosphates in E. 

huxleyi resulted in cell growth arrest (Fig. 3.5a, b, c and Fig. 3.6a, b, c), which was 

observed after a few days when the cells must have exploited the stored nutrients within 

the cells. Such an observation is commonly noted when cells growing in batch cultures 

are faced with nutrient exhaustion after the onset of the stationary phase. In this situation, 

the viable cells compromise on the use of energy and other cellular resources by 

arresting cell division and divert resources towards cell survival strategies. Loebl et al. 

(2010) used a similar type of experimental manipulation (centrifugation of cells and re-

suspension in nitrogen-free media) with E. huxleyi (isolated from the North Sea coast at 

Bergen, Norway), to induce nitrogen limitation and also observed an increase in cell 

number for several days followed by cell growth arrest. 
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In N- and P-free media cells increased in cell volume (Fig. 3.5g, h, i and Fig. 3.6g, h, i). 

The increase recorded in the P-limited condition was substantial though strain specific. 

This increase observed in cell volume may be explained by the inability to produce 

nucleic acids under phosphate limitation which would inhibit cell division (Bucciarelli 

and Sunda 2003). Acidification of the samples resulted in no change in cell volume to 

the N-limited cells but a substantial decrease in cell volume of P-limited cells due to the 

removal of coccoliths, but even after acidification the naked cell volume was higher than 

that of cells in the control medium. Various studies examining the roles of nitrogen and 

phosphorus in coccolith formation in E. huxleyi have shown that calcification is 

stimulated in P-deficient conditions and suppressed in P-sufficient conditions (Kayano 

and Shiraiwa 2009; Paasche 1998; Paasche and Brubak 1994). We also reported an 

increase in coccosphere volume in batch cultures of E. huxleyi 1516 under nutrient 

exhaustion conditions in Franklin et al. (2012). In contrast, Stefels et al. (2007), 

observed cell volume reduction in batch cultures of the Antarctic prymnesiophyte 

Phaeocystis sp. under nitrate and iron limitation, while cell volume remained constant 

under phosphate-limitation. However, this conclusion was drawn from sonicated (to 

break up colonies) acid Lugol’s iodine fixed samples cultured under combined iron and 

light stress (Stefels and Van Leeuwe 1998). Several studies have reported that 

preservatives like Lugol’s iodine minimize cell loss but cause cells to shrink (Stoecker et 

al. 1994) thereby reducing cell volume (Montagnes et al. 1994). Bucciarelli and Sunda 

(2003) observed a decrease in cell volume in T. pseudonana (CCMP1335) under nitrate-

limitation, in agreement with our data for the same species and identical-strain (Franklin 

et al. 2012). 

In general, any process that impedes the proper functioning of the cellular components 

involved in the transfer of excitation energy or electrons within the photosynthetic 

apparatus and metabolic activity would increase the production of reactive oxygen 

species (ROS) and have the potential to increase oxidative stress within the cell. The 

formation of active oxygen species increases under stress conditions, such as low 

temperature, high salinity and CO2 limitation (Butow et al. 1998; Noctor and Foyer 

1998). Nitrogen limitation should increase oxidative stress within algal cells because of 

decreased photosynthetic efficiency, as evidenced by lower variable to maximum 
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photosystem II fluorescence (FV/FM) (Berges and Falkowski 1998). However, in the data 

presented here E. huxleyi maintained PSII activity over at least 28 d of nitrogen 

depletion, as indicated by maintenance of FV:FM, whereas it declined in T. pseudonana 

(Fig 3.1 B). Loebl et al. 2010 found that FV:FM dropped to marginal levels after 7–10 d 

in T. pseudonana and Coscinodiscus sp suggesting that this might be common in 

diatoms. This capacity of E. huxleyi to sustain photosynthetic function under nitrogen-

depleted conditions relative to the diatoms may explain its ability to form large blooms 

under low-nitrogen, high-light conditions (Loebl et al. 2010). Under phosphorus 

depletion, Loebl et al. (2010) reported that PSII function declined sharply within 7 d in E. 

huxleyi and within 3 d in T. pseudonana, indicating that E. huxleyi is adapted to maintain 

PSII function under long-term nitrogen depletion but not under phosphorus depletion. 

However in contrast, my data for E. huxleyi 1516 show increasing FV:FM levels in late 

log phase under phosphate-limiting conditions in E. huxleyi (Fig. 3.8f). These results 

combined with the add-back data from Franklin et al. (2012) suggest that N-limitation 

and P-limitation may not consistently have adverse effects on the photosynthetic 

apparatus of E. huxleyi. Another key point supporting the above observations was that 

SYTOX Green labeling (Fig. 3.7j, k, l and Fig. 3.8j, k, l) suggested intact cell 

membranes; < 20% cells lost their membrane integrity on transfer to N- and P-limited 

media and < 5% lost integrity with prolonged nutrient deprivation (Fig. 3.2B) (Franklin 

et al. (2012). This might suggest that E. huxleyi can tolerate oxidative stress associated 

with nutrient-limited conditions.  

A number of enzymes and small molecules like ascorbic acid and glutathione are 

involved in antioxidant protection, either in preventing the over-reduction of the 

photosynthetic apparatus or in scavenging harmful ROS. Among important antioxidant 

enzymes are superoxide dismutase and ascorbate peroxidase, which remove superoxide 

radicals and hydrogen peroxide (Asada 1999). Under increased oxidative stress, 

antioxidants and antioxidant systems are generally up-regulated. For example, under 

CO2 limitation the cellular activities of catalase (Butow et al. 1998) and ascorbate 

peroxidase (Sunda et al. 2002) increase. Similarly under nitrogen limitation, ascorbic 

acid concentrations increase relative to chlorophyll (Logan et al. 1999). An up-

regulation of intracellular DMSP concentration or of enzymatic conversion of DMSP to 
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DMS also occurs under increased oxidative stress linked to solar ultraviolet radiation 

exposure or to CO2 and Fe-limitation (Sunda et al. 2002). Very few studies have been 

carried out on the effect of phosphate limitation on the production of DMSP and DMS. 

A seawater mesocosm experiment in a Norwegian fjord (June 1995) concluded that 

phosphate limitation did not affect the production of DMSP and DMS (Wilson et al. 

1998). In another study, phosphate-limited batch cultures of the coastal diatom T. 

pseudonana showed a very small increase in intracellular DMSP concentrations 

(Bucciarelli and Sunda 2003). 

In 2002, Sunda et al. reported that the enzymatic cleavage of DMSP could theoretically 

enhance antioxidant capacity, as DMS and acrylate are 60 and 20 times respectively 

more effective in scavenging hydroxyl radicals than DMSP itself. They also showed that 

the putative DMSP/DMS antioxidant system is up-regulated in increased oxidative stress 

situations (Sunda et al. 2002). There have been reports of increased intracellular DMSP 

concentrations under N-limitation like in the diatom Thalassiosira pseudonana 

(Bucciarelli and Sunda 2003; Keller et al. 1999b). DMSP increased from ~ 2 mM to 50 

mM in nitrogen limited conditions (Bucciarelli and Sunda 2003) and in N-limited 

chemostat cultures of E. huxleyi CCMP 378, an 88% increase in intracellular DMSP 

concentration (from 59 to 111 mM) was reported (Keller et al. 1999b). However in 

contrast to the above, the data presented here shows a decrease in intracellular DMSP, 

though strain specific. In both N0 and P0 conditions, E. huxleyi 370 and 373 showed a 

decrease in intracellular DMSP (Fig. 3.9a, b and Fig. 3.10a, b) while no change was 

observed in E. huxleyi 1516 (Fig. 3.9c and Fig. 3.10c). The variations seen in 

intracellular DMSP (DMSPp per cell volume) may be due to the cell volume variations 

seen between the E. huxleyi strains. The DMSPp concentrations in both the N0 and P0 

cultures (µM; Fig. 3.13a, b, c and 3.14a, b, c) clearly show evidence for a decrease in 

DMSP concentration in all three strains. However under both N- and P-free conditions, 

an increase in DMS (Fig. 3.13g, h, i and Fig. 3.14g, h, i) and the DMSPd (Fig. 3.13d, e, f 

and Fig. 3.14d, e, f) fraction was observed in all three E. huxleyi strains even with its cell 

membranes intact suggesting active transport. A similar kind of result was observed in 

an investigation on the effect of nitrogen limitation on intracellular DMSP and its 

enzymatic cleavage to DMS in semi-continuous cultures of E. huxleyi (CCMP 374), no 
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increase in DMSP was observed, but DMSP lyase activity increased which resulted in a 

20-fold increase in the quantity of DMS in the culture per unit cell volume, and a 40- to 

80- fold increase in the DMS:chl a ratio (Sunda et al. 2007). Assuming enough stress 

being produced to E. huxleyi cells growing in N0 and P0 media resulting in enhanced 

DMSPd and DMS, it can be proposed that the photosynthetic efficiency of PSII was 

constantly repaired thereby keeping the ROS production under control and maintaining 

cell membrane integrity. 

Sunda et al. (2002) proposed the antioxidant hypothesis based on the elevated 

concentrations of intracellular DMSP observed under stress conditions. But, it can be 

reasoned that in the process of mopping up radicals, DMSP would be converted into one 

of its breakdown products resulting in a loss of DMSP, unless the stress reaction results 

in increased de novo synthesis (up-regulation) of DMSP. In such cases, a consequent 

excess production may lead to increased intracellular concentrations of DMSP and/or 

one of the breakdown products or a decrease in DMSP as it is cleaved in the absence of 

new synthesis (Stefels et al. 2007). Until now, there is no study to suggest a definite link 

between increased DMSP and oxidative stress or that DMSP reduces oxidative stress. 

3.5 Conclusions 

Considering the two different approaches to study the impact of nutrient limitation on 

cell growth and DMSP metabolism, this study highlights the observation that the 

response to stress conditions may be species-specific and strain-specific. The relative 

importance of the different DMSP functions in phytoplankton cells may thus vary 

among species and be highly dependent on environmental conditions. In Franklin et al. 

(2012) we concluded that E. huxleyi is much better able to cope with nutrient deprivation 

than T. pseudonana, through a cellular reorganization that may involve caspase-like 

activity and DMSP production. In response to nitrogen limitation, T. pseudonana 

showed a substantial increase in DMSP concentration and died and lysed rapidly. The 

differences in the responses in the two species suggest the ecological importance of their 

groups in nature. 
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In addition, the experiments reported here involving the growth of E. huxleyi 370, 373 

and 1516 in N-free and P-free media, showed strain-specific responses but showed a 

decrease in intracellular DMSP concentrations accompanied by an increase in DMSPd 

and DMS release. A key point to raise here is that examining cell volume is a very 

important parameter to be considered while comparing intracellular concentrations. Here, 

naked cells of E. huxleyi increased in cell volume in N-deprived and in P-deprived 

conditions. Also, coccolith formation occurred in response to P-deprivation, which was 

not encountered in N-deprived conditions. 

It is critical to assess the linkage between nutrient limitation and oxidative stress in order 

to determine DMSP and its breakdown products competing for the role in an antioxidant 

system within a phytoplankton cell. However, nutrient limitation may play an important 

role in regulating the dynamics of DMSP and DMS in marine surface waters. 
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Chapter 4:  The Influence of Ultraviolet Light on 

Intracellular DMSP in Emiliania huxleyi 

4.1 Background and significance 

Ultraviolet radiation (UVR, 100-400 nm) is the most photochemically reactive 

component of solar radiation. It is generally subdivided into 3 wavebands: UVA 320-

400 nm, UVB 280-320 nm and UVC < 280 nm (Fig. 4.1). UVC radiation is absorbed by 

the Earth’s atmosphere and is not generally considered to be of biological relevance 

(Holzinger and Lutz 2006; McKenzie et al. 2003), although some experimental lighting 

systems do include a small quantity of the UVC waveband (Hannen and Gons 1997). 

With the exception of a small portion in the UVA region, UVR is not photosynthetically 

active but it impedes phytoplankton growth and photosynthetic activity (Davidson et al. 

1994; Gao et al. 2007a; Gao and Ma 2008). UVR can damage and/or alter the 

composition of cell membranes (Llabres and Agusti 2006) and intracellular 

macromolecules like proteins and DNA (Bouchard et al. 2005; Goes et al. 1995). 

Various reports suggest that UVB radiation causes DNA damage, lipid peroxidation, 

inhibition of carbon fixation and photosystem II damage in phytoplankton (Garde and 

Cailliau 2000; Van De Poll et al. 2001) and that UVB is more detrimental than UVA 

(Häder 1997; Vernet 2000). UVR stress can also promote the production of reactive 

oxygen species (ROS) in photosynthetic cells (Beardall et al. 2009; Häder et al. 2007; 

He and Häder 2002a; He and Häder 2002b). 

Algae and cyanobacteria have evolved various mechanisms to protect and repair 

themselves against the damage caused by UVB and can adjust or acclimate to tolerate 

enhanced UVB doses (Xue et al. 2005). It has also been recognized that UVA can 

stimulate photo repair of UVB-induced DNA damage in algae (Karentz et al. 1991) and 

enhance photosynthetic carbon fixation (Gao et al. 2007b). In plants, UVR may help 

secondary metabolite formation like flavonoids which is needed especially for pathogen 

resistance (Holzinger and Lutz 2006). 
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Figure 4.1 Of the solar radiation penetrating the marine euphotic zone, UVA (320-400) and UVB (280-

320) can enhance the production of reactive oxygen species (ROS) in the chloroplasts of phytoplankton 

causing oxidative stress. Cells have developed a range of defence mechanisms or survival strategies but if 

the UV dose exceeds the cellular antioxidant systems it can prove fatal due to inhibition of protein 

synthesis and loss of membrane integrity. The experiments in this chapter consider whether an increase in 

the intracellular osmolyte DMSP or its breakdown products could be part of the UV-induced response to 

stress in Emiliania huxleyi (Photo of E. huxleyi taken from the Natural History Museum, London). 

In addition to climate change, stratospheric ozone depletion and the associated increase 

in UVR have also attracted substantial research attention (Caldwell et al. 2007). Under 

clear skies, at temperate, subtropical and equatorial latitudes, total surface UVA is as 

high as 45-50 Wm-² and UVB is as high as 7-8 Wm-² (Holzinger and Lutz 2006). In the 

marine environment, these wavelengths of light penetrate into the euphotic zone 

(Obernosterer et al. 2001; Smith et al. 1992; Tedetti and Sempere 2006) and in clear 

waters, UVB penetrates to tens of meters (Boelen et al. 1999). In a study conducted in 

the central subtropical Atlantic ocean, Piazena et al. (2002) concluded that solar UVA 

penetrates to about 75-93% while UVB penetrates to about 25% of the depth of the 

photic zone. Recently, an attempt was made to determine the penetration of UVR 

through the water column based on a new global ocean-atmosphere model (Smyth 2011). 

The results from this model showed that the calculated UV doses varied in terms of the 

spectrum and season. The highest UV doses were calculated in the eastern 

Mediterranean Sea, the Sargasso Sea, the eastern Equatorial Pacific, the northern 

Patagonian Shelf, the northern Indian Ocean, and the latitude band of 20°S and 35°S in 
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the Southern hemisphere (Smyth 2011). When the mixed layer depth was shallow in 

July, the eastern Mediterranean Sea recorded the highest UV doses of ~ 0.5, 4, 7, and 10 

kJ m-2 d-1 nm-1 at 305, 325, 340 and 380 nm, respectively (Smyth 2011). 

Coccolithophores are widely distributed in the open oceans and are exposed to solar 

UVR especially when the mixed layer depth becomes shallower in the summertime 

(Nanninga and Tyrrell 1996). It is important to consider the effects of UVR on 

coccolithophores as these are one of the major living phytoplankton groups and they 

influence the global carbon cycle through calcification and photosynthetic carbon 

fixation and the sulphur cycle through the production of DMSP and its breakdown to 

DMS (Malin and Steinke 2004). The bloom-forming species Emiliania huxleyi is the 

most numerically abundant of the coccolithophore species and is found in all marine 

waters except the polar oceans. It appears to be able to adapt to varying light and 

temperature conditions inspite of sensitivity to UVR (Van Rijssel and Buma 2002). 

Studies suggest that E. huxleyi are tolerant to high light intensities (Nanninga and Tyrrell 

1996). The function of the calicum carbonate coccoliths surrounding the cell is not 

certain, but it has been suggested that they might provide a protective cover to disperse 

light energy under high light irradiances (Paasche 2001). Conversely, other studies 

explain that the photoinhibition-tolerance of this organism is independent of coccoliths 

(Harris et al. 2005). It has been reported that UVA damages the calcifying machinery 

while UVB damages the photosynthetic apparatus in E. huxleyi cells (Guan and Gao 

2010). 

Long-term exposure to UVR, results in the acclimation of the E. huxleyi cells, forcing 

the cells to compromise on growth and invest energy into accumulating UV-absorbing 

compounds and calcification (Guan and Gao 2010). When E. huxleyi strain L was 

exposed to UVA, 10 to 25% increase in DMSP per cell (fmol) content was seen 

compared to the DMSP in cells exposed to only photosynthetically active radiation 

(PAR) (Slezak and Herndl 2003). Sunda et al. (2002) have shown that intracellular 

DMSP concentration increases in E. huxleyi 373 on exposure to solar UVR. These 

authors further hypothesised that because DMSP and its breakdown products are 

theoretically effective antioxidants they would therefore quench the harmful free 
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radicals produced in excess in the cell when exposed to UVR. However in contrast, there 

was no increase in intracellular DMSP when E. huxleyi strain L was subjected to UV 

light (Van Rijssel and Buma 2002).  It could be that increased DMSP concentration due 

to oxidative stress differs between E. huxleyi strains, length of UV exposure or UV 

dosage dependent. 

The aim of this study was to examine how E. huxleyi responds to artificial and natural 

UVR in terms of growth, efficiency of PSII (FV:FM), cell viability, intracellular DMSP 

concentration and DMS release. Investigating cell death or survival of three different E. 

huxleyi strains under UV induced stress gave the opportunity to examine the potential 

reach of the Sunda et al. (2002) hypothesis. 

4.2 Methodology  

4.2.1 Lighting conditions  

In many published studies examining the effects of UV light, the light field is poorly 

characterised or simply assumed. Here the 240-700 nm spectrum of our in-house 

constructed UV cabinet with UVA lamps (Q-Panel lab UVA-340, 40W) and UVB lamps 

(Q-Panel lab UVB-313, 40W) was measured using a Macam SR9910 Spectroradiometer 

with version 7.07.1 software. PAR was recorded for 400-700 nm, UVA 320-400 nm, 

UVB 280-320 nm and UVC was 240-280 nm. The spectroradiometer could not detect 

wavelengths below 240 nm in the UVC region. PAR light was delivered by cool 

fluorescent light tubes (Philips Master TLD Reflex, 58W 840 Cool White). For the low, 

normal and high light conditions (hereafter referred to by the abbreviations: LL, NL and 

HL respectively), either 3, 6 and 17 light tubes were used. The light intensities achieved 

are shown in Table 4.1. The cultures were acclimatized for two generations under the 

experimental light intensity before exposing them to UVA+UVB light. For UVA 

exposure, one UVA lamp was used and for UVA+UVB exposure, one UVA lamp and 

one UVB lamp were switched on. In all cases a 14:10 light:dark cycle was applied. 

Control flasks were incubated under identical conditions but covered by a UVB cut-off 

filter (Mylar film-Secol Ltd) mounted on a wooden frame. The transmission of light 
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through the UVB cut-off filter was also tested using a scanning UV-Visible 

spectrophotometer. 

Table 4.1 PAR light intensity conditions 

Light intensity 
condition abbreviation µmol photons m-2 s-1 W/m² 

Low Light LL 50 10 

Normal Light  NL  100 20 

High Light HL 1000 250 

 

Attempts were also made to expose Emiliania huxleyi 370, 373 and 1516 to solar UV 

radiation (see section 4.3.4). For this, batch cultures of the strains in mid-log phase were 

exposed to direct sunlight in quartz and borosilicate flasks placed on the roof. Due to the 

uncertainty of the weather conditions these experiments were done opportunistically so 

the cultures were not acclimated beforehand. The UVB cut-off filter described above 

was used for the control flasks. 

4.2.2 Cell culture and growth measurements 

Three strains of Emiliania huxleyi CCMP370, CCMP373 and CCMP1516 were grown; 

each in 1 L of f/2-Si medium in 2 L borosilicate conical flasks. Cultures were grown to 

mid-log phase in an incubator under a 14:10 light:dark cycle at 15°C. The acclimated 

cells were then dispensed into 500 ml quartz and borosilicate flasks. For each culture 

strain, the experiments were conducted with three control flasks (covered by a UVB cut-

off filter) and three treated flasks. The various experimental treatments with different 

light conditions and different UV conditions are listed in Table 4.2. 

Biomass was quantified as cell number and cell volume (Chapter 2, section 2.4); 

fluorescence and efficiency of PSII (FV:FM) were also measured (Chapter 2, section 2.5). 

DMS, DMSPd, DMSPp and DMSPt were measured by GC (Chapter 2, section 2.6) and 
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membrane permeability (‘viability’) was determined with SYTOX Green using the flow 

cytometer (Chapter 2, section 2.7). 

Table 4.2 Experimental treatments with different light conditions and different UV conditions 

UVR	
  exposure	
  in	
  artificial	
  light	
  conditions	
  
Label	
   UVA	
   UVB	
  	
  

Light	
  
intensity	
  

UVA	
  exposure	
   	
  	
   (Wm-­‐2)	
   (Wm-­‐2)	
  	
   (Wm-­‐2)	
  	
  
1	
   Quartz	
   NL	
  +	
  100%	
  UVA	
   a	
   1.17	
   0.073	
   18.8	
  
	
  	
   Quartz	
  +	
  filter	
   NL	
  +	
  70%	
  UVA	
   b	
   0.82	
   0.011	
  	
   18.7	
  
2	
   Borosilicate	
   NL	
  +	
  100%	
  UVA	
   a	
   1.17	
   0.058	
   19.2	
  
	
  	
   Borosilicate	
  +	
  filter	
   NL	
  +	
  70%	
  UVA	
   b	
   0.82	
   0.010	
  	
   18.8	
  
UVA+UVB	
  exposure	
  under	
  a	
  range	
  of	
  light	
  intensities	
  

	
   	
   	
  
	
  	
  

3	
   Quartz	
   NL	
  +	
  100%	
  UVA	
  +	
  100%	
  UVB	
   c	
   2	
   1	
   22	
  
	
  	
   Quartz	
  +	
  filter	
   NL	
  +	
  70%	
  UVA	
   b	
   1.4	
   0.068	
  	
   18.8	
  
4	
   Borosilicate	
   NL	
  +	
  100%	
  UVA	
  +	
  80%	
  UVB	
   d	
   2	
   0.8	
   19.5	
  
	
  	
   Borosilicate	
  +	
  filter	
   NL	
  +	
  70%	
  UVA	
   b	
   1.4	
   0.088	
  	
   19.8	
  
5	
   Quartz	
   LL	
  +	
  100%	
  UVA	
  +	
  100%	
  UVB	
   f	
   nd	
   nd	
   10	
  
	
  	
   Quartz	
  +	
  filter	
   LL	
  +	
  70%	
  UVA	
  	
   e	
   nd	
  	
   nd	
  	
   10	
  
6	
   Quartz	
   HL	
  +	
  100%	
  UVA	
  +	
  100%	
  UVB	
   h	
   	
  	
  	
  	
  nd	
   nd	
   250	
  
	
  	
   Quartz	
  +	
  filter	
   HL	
  +	
  70%	
  UVA	
   g	
   nd	
  	
   	
  nd	
   250	
  
UVA+UVB	
  exposure	
  under	
  natural	
  light	
  conditions	
   i	
  

	
   	
  
	
  	
  

7	
   Quartz	
   SR	
  
	
   	
   	
  

	
  	
  
	
  	
   Quartz	
  +	
  filter	
   SR	
  -­‐	
  UVB	
  

	
  
	
  	
   	
  	
   	
  	
  

8	
   Borosilicate	
   SR	
  
	
  

	
  	
  	
  	
  	
  
	
  

	
  	
  
	
  	
   Borosilicate	
  +	
  filter	
   SR	
  -­‐	
  UVB	
  

	
  
	
  	
  

	
  
	
  	
  

Note:	
  The	
  filter	
  used	
  was	
  a	
  UVB	
  cut-­‐off	
  filter.	
  Borosilicate	
  was	
  transparent	
  to	
  100%	
  UVA	
  and	
  80%	
  
UVB.	
  Where	
  readings	
  were	
  not	
  recorded,	
  nd	
  (not	
  determined)	
  is	
  mentioned	
  in	
  the	
  table.	
  For	
  UVA	
  
and	
  UVB	
  under	
  natural	
  light	
  conditions,	
  refer	
  to	
  Figure	
  4.14.	
  These	
  values	
  are	
  not	
  recorded	
  in	
  the	
  
above	
  table	
  due	
  to	
  the	
  varying	
  natural	
  conditions.	
  
	
  	
  

 

4.3 Results 

4.3.1 UVB-cut off filter 

Figure 4.2 shows a spectrum of the percentage transmittance for the UV cut-off filter. 

This clearly shows that the filter cuts off wavelengths in the UVB and UVC wavebands 

but transmits 70% light in the UVA waveband. Thus the control cultures were exposed 

to some portions of the UVA waveband. Without the use of the filter, 100% 
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transmittance of PAR, UVA and UVB was achieved. These observations were also 

confirmed by the spectroradiometer results in Fig. 4.3 (section 4.3.2).  

 

Figure 4.2 Transmittance Spectrum of the UV cut-off filter obtained using a scanning UV-Visible 

spectrophotometer. 

4.3.2 PAR and UVR irradiance conditions  

The spectroradiometer data (Fig. 4.3) revealed an interesting feature of the light sources 

used for this study. Under NL intensity conditions and without the UV light tubes in the 

cabinet, about 20 W/m2 PAR was available but small quantities of UVA (0.22 W/m2), 

UVB (0.02 W/m2) and UVC (0.00024 W/m2) were also recorded. With NL conditions 

and the UVA lamp, the spectroradiometer indicated UVA radiation of 1.17 W/m2 and 

detected UVB and UVC region wavelengths giving intensities of 0.083 W/m2 and 

0.00052 W/m2 respectively in the cabinet. With NL, UVA and UVB lamps switched on, 

the total UVA in the cabinet was 1.89 W/m2 and UVB was 0.95 W/m2. Extremely small 

quantities of UVC radiations of 0.0075 W/m2 were detected in these artificial light 

sources, which may perhaps be ignored. 

Another feature to note was that even though the total PAR in the cabinet was 20 W/m2, 

the irradiance measured within the quartz flasks showed higher values. This was not the 

case with borosilicate flasks. This was probably due to light reflections within the walls 

of the quartz flask. Thus, under NL the total light intensity measured within quartz flasks 

was 22 W/m2 and in borosilicate flasks was 20 W/m2. The total UVA measured within 
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the quartz and borosilicate flasks was the same at 2 W/m2, whilst UVB was 1 W/m2 in 

the quartz flasks and 0.8 W/m2 in the borosilicate flasks. This indicates that the 

borosilicate flasks were transparent to 100% UVA and 80% UVB. 

 

 

Figure 4.3 Irradiance (W/m²) from cool white fluorescent tubes (NL), alone or in combination with UVA 

and UVB lamps measured using a Macam SR990 Spectroradiometer. The bars represent the following: 

grey–the total available irradiance; light grey– the irradiance with a UVB cut-off filter; red–the irradiance 

within a quartz flask; pink–the irradiance in a quartz flask with a UVB cut-off filter; blue–irradiance in a 

borosilicate flask; and light blue–irradiance in a borosilicate flask with a UVB cut-off filter. The average 

value and range of data is shown (n=3). Where no range bars are visible, the data range was smaller than 

the symbol size. 
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The spectroradiometer data confirmed that the UVB cut-off filter efficiently transmitted 

20 W/m2 light in the PAR region of the spectrum and absorbed most of the UVB 

radiation. The quartz flask with a UVB cut-off filter is exposed to about 0.068 W/m2 

UVB whereas in a borosilicate flask with the UVB cut-off filter, UVB is about 0.088 

W/m2, which may perhaps be ignored. With the NL conditions and the UVA lamp, the 

UVB cut-off filter transmits 0.82 W/m2 UVA which in effect is 70% of the 1.17 W/m2 

UVA received by a quartz or a borosilicate flask without the UV cut-off filter. Also, 

with the NL, UVA and UVB lamps switched on, the UVB cut-off filter transmits 1.4 

W/m2 UVA which in effect is 70% of the 2 W/m2 UVA received by a quartz flask and a 

borosilicate flask without the UV cut-off filter. 

4.3.3 UV light exposure in artificial light conditions  

4.3.3.1 UVA exposure  

E. huxleyi 1516 was exposed to UVA radiation with and without the UVB cut-off filter  

in NL in quartz and borosilicate flasks (both NL+70% UVA with filter control and 

NL+100% UVA without filter) for 7 days. All cultures illustrated essentially the same 

growth patterns in terms of cell density, cell volume and fluorescence (Fig. 4.4a-f). From 

day 3 to day 7, cell volume (Fig. 4.4 c, d) was slightly increased from 21 to 19 µm3 in 

the NL+100% UVA exposed culture. Photosynthetic capacity (PC; FV:FM) (Fig. 4.4g, h) 

showed more variation between replicates and was slightly elevated on days 0 and 1 at 

0.54 and 0.52 in the quartz NL+70% UVA with filter treatment. However, otherwise it 

remained quite similar in the 2 treatments. Intracellular DMSP concentration (Fig. 4.5a, 

b) also did not vary much despite the slightly elevated amount of DMSP per cell at 5.12 

to 4.40 µM between days 2 to 7 in the quartz NL+100% UVA treatment (Fig. 4.5c). 

SYTOX Green staining also did not show any distinct differences between the control 

NL+70% UVA treatments and the NL+100% UVA exposed cultures. 
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Figure 4.4 E. huxleyi 1516 exposed to UVA radiation in normal light (NL) conditions. (a, b) Cell density 

(cells ml-1 x 106), (c, d) cell volume (µm3), (e, f) Fluorescence (F, arbitrary unit) (g, h) Photosynthetic 

capacity (PC). The grey line represents the control flasks covered with UVB cut-off filter NL+70% UVA, 

and the black line represents the NL+100% UVA exposed quartz flasks. The plots on the left are for 

quartz flasks and those on the right for borosilicate flasks. The average value and range of data is shown 

(n=3). Where no range bars are visible, the data range was smaller than the symbol size. 
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Figure 4.5 E. huxleyi 1516 exposed to UVA radiation in normal light (NL) conditions. (a, b) DMSP per 

cell volume (mM), (c, d) DMSP per cell (fmol), (e, f) DMSPp in the culture (µM) (g, h) SYTOX Green 

stained cells (%)–the open symbols show percentage of viable cell (cells unstained by SYTOX Green) and 

the closed symbols show percentage of cells with compromised cell membranes (SYTOX Green stained 

cells). The grey line represents the control flasks covered with UVB cut-off filter NL+70% UVA, and the 

black line represents the NL+100% UVA exposed quartz flasks. The plots on the left are for quartz flasks 

and those on the right for borosilicate flasks. The average value and range of data is shown (n=3). Where 

no range bars are visible, the data range was smaller than the symbol size. 
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4.3.3.2 UVA+UVB exposure under a range of light intensities 

In this experiment three strains, E. huxleyi 370, 373 and 1516 were exposed to 

UVA+UVB radiation in quartz flask under LL, NL and HL conditions. Additionally, E. 

huxleyi 1516 was exposed to UVA+UVB radiation under NL conditions in borosilicate 

flasks. The spectroradiometer data (Fig. 4.3) revealed that borosilicate glass efficiently 

allowed the available PAR light and UVA to penetrate, but reduced the UVB-exposure 

to 80% UVB (0.8 Wm-2) in contrast to the 100% UVB exposure of the cultures in quartz 

flasks. This reduced level of UVB exposure in E. huxleyi 1516 in borosilicate flask gave 

simultaneously one more condition to observe in the experiment.  

4.3.3.2.1 Cell culture and growth measurements 

The control UVB-filter cultures continued to grow throughout the experiment under NL, 

LL and HL conditions, but the three E. huxleyi strains varied in their specific growth 

rates (Table 4.3). Specific growth rates showed an increase from 0.45 to 0.70 in LL to 

HL conditions in E. huxleyi 370 and 373, while the specific growth rate in E. huxleyi 

1516 increased from 0.45 to 0.62 in LL to NL conditions and remained unchanged at 

0.61 in HL conditions. Table 4.3 also shows the specific growth rates for the three 

strains in NL, LL and HL conditions without UV radiation. These data were obtained 

after acclimation of the cells in the different light conditions at 15°C before exposing the 

cells to the UV treatments (growth curves not shown here) and are presented here only 

for comparison with specific growth rates of the UVB filter cultures. 

Table 4.3 Specific Growth rates for acclimatized cells of E. huxleyi 370, 373 and 1516 under low light (LL, 

50 µmol photons m-2 s-1), normal light (NL, 100 µmol photons m-2 s-1) and high light (HL, 1000 µmol 

photons m-2 s-1) conditions at 15°C and specific growth rates for all the three strains with the UVB cut-off 

filter which would mean exposure to 70% UVA under the different light conditions. 

Specific growth rate 
(µ, d-1) 

E. huxleyi 370 E. huxleyi 373 E. huxleyi 1516 

LL NL HL LL NL HL LL NL HL 

With 70% UVA 0.46 0.57 0.70 0.45 0.53 0.70 0.45 0.62 0.61 

Only PAR 0.50 0.62 0.80 0.50 0.62 0.80 0.52 0.65 0.80 
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Exposure of E. huxleyi 370, 373 and 1516 to UVA+UVB radiation for 72 hours under 

NL, LL and HL conditions in quartz flasks resulted in cell growth arrest with a steady 

decline in cell density (Fig. 4.6a-i). This suggests that the cells simply failed to tolerate 

the UV irradiance they were exposed to and it was clear to the naked eye that the 

cultures lost their pigmentation and turned colourless in 24 h. The cell growth in quartz 

flasks dropped between 24 to 72 hours from 370,000 to 70,000 in LL; 480,000 to 

370,000 in NL and 270,000 to 90,000 cells ml-1 in HL conditions in UVB exposed E. 

huxleyi 370; from 100,000 to 44,000 in LL; 590,000 to 470,000 in NL and 200,000 to 

145,000 cells ml-1 in HL in UVB exposed E. huxleyi 373 and from 150,000 to 74,000 in 

LL, 347,000 to 230,000 in NL and 360,000 to 184,000 cells ml-1 in HL conditions in 

UVB exposed E. huxleyi 1516. E. huxleyi 1516 exposed to UVA+UVB in borosilicate 

flask with reduced level of UVB exposure on the other hand showed growth inhibition 

and cell growth arrest (Fig. 4.6j). There was an increase in cell number at 0h from 

500,000 to 983,000 cells ml-1 at 24 h in the borosilicate flasks after which the values 

remained consistent at ~ 980,000 cells ml-1 (Fig. 4.6 j). This contrasted with the gradual 

decline seen in cultures growing in quartz flasks. 

Cell volume (Fig. 4.7) remained higher in the UVA+UVB exposed cultures than the 

control cultures. Cell volume in all the three UVA+UVB-exposed strains increased: to 

40 and 60 µm3 in E. huxleyi 370, 45 and 83 µm3 in E. huxleyi 373 and 27 and 38 µm3 in 

E. huxleyi 1516 at 72 h in LL and NL conditions respectively. But under HL conditions 

the cell volume remained similar to that of the control cultures at 27, 6 and 11 µm3 for E. 

huxleyi 370, 373 and 1516. Cell volume of the UVB-exposed E. huxleyi 1516 cells in 

borosilicate flasks showed a higher increase of 52 µm3 at 72 h than that seen in quartz 

flasks. This would indicate that reducing the UVB by only 20% allowed the cells to 

remain sufficiently active to increase in cell volume. Cell volume did not vary much in 

the control cultures of E. huxleyi 370 and 1516 under NL, LL and HL conditions, but E. 

huxleyi 373 increased in cell volume under NL and HL conditions. 
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Figure 4.6 Comparison of cell density in E. huxleyi 370, 373 and 1516 exposed to UVA + UVB radiation 

with a 14L:10D cycle under low light (LL), normal light (NL) and high light (HL) conditions. The grey 

shading denotes the dark cycle. The grey line represents the control flasks with the UVB cut-off filter 

(+70% UVA) and the black line represents the UVA+UVB exposed flasks (100% UVA+100% UVB). BS 

stands for borosilicate flask (j; 80% UVB exposure) and all other plots show results for quartz flasks. The 

average value and range of data is shown (n=3). Where no range bars are visible, the data range was 

smaller than the symbol size.  
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Figure 4.7 Comparison of cell volume in E. huxleyi 370, 373 and 1516 exposed to artificial UVR in the 

14L:10D cycle under low light (LL), normal light (NL) and high light (HL) conditions. The grey shade is 

the dark cycle. The grey line represents the control flasks with the UVB cut-off filter (+70% UVA) and 

the black line represents the UVA+UVB exposed flasks (100% UVA+100% UVB). BS stands for 

borosilicate flask (j; 80% UVB exposure) and all other plots show results for quartz flasks. The average 

value and range of data is shown (n=3). Where no range bars are visible, the data range was smaller than 

the symbol size. 
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Alongside the lack of growth (Fig. 4.6) fluorescence also declined in the UVA+UVB 

exposed cultures (Fig. 4.8a-i). Maximum fluorescence value of 422 was observed in E. 

huxleyi 373 and 146 for E. huxleyi 370 under NL conditions while it mostly ranged 

between 20 and 2 under LL, NL and HL conditions for all the three strains. E. huxleyi 

1516 in borosilicate flask remained unaltered at 520 since 24 hours of exposure till the 

last reading at 72 h (Fig. 4.8j). Fluorescence values in the control cultures under NL 

conditions appeared much higher than under the LL and HL conditions. 

Photosynthetic capacity (Fig. 4.9a-i) dropped considerably to ~ 0.1 after 24 h in the 

UVA+UVB exposed quartz flask cultures for all the three strains under LL, NL and HL 

conditions. However, at 48 h the cell photosynthetic capacity had improved, it was noted 

at ~ 0.2 for E. huxleyi 370, 373 and 1516 under LL, E. huxleyi 373 under NL and E. 

huxleyi 370 and 373 under HL conditions. Although increasing it still remained lower 

than the photosynthetic capacity for cells in the control culture flask. Photosynthetic 

capacity did not appear to differ much in the control cultures under the different light 

conditions. 

E. huxleyi 1516 exposed to UVA+UVB in borosilicate dropped only to 0.39 at 24 h and 

increased to match control culture at 0.42 at 48 h. This would indicate reducing the UVB 

by only 20% allowed the cells to remain sufficiently active to even increase in cell 

volume (Fig. 4.7j). This retention of activity is evident when comparing the substantial 

drop in photosynthetic capacity in the 100% UVB cultures (Fig 4.9 h) with the similar 

values for the 80% UVB and UVB-screened borosilicate glass cultures (Fig 4.9j). With 

80% UVB fluorescence was retained at the initial value (Fig. 4.8 j).  
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Figure 4.8 Comparison of fluorescence in E. huxleyi 370, 373 and 1516 exposed to artificial UVR in the 

14L:10D cycle under low light (LL), normal light (NL) and high light (HL) conditions. The grey shade is 

the dark cycle. The grey line represents the control flasks with the UVB cut-off filter (+70% UVA) and 

the black line represents the UVA+UVB exposed flasks (100% UVA+100% UVB). BS stands for 

borosilicate flask (j; 80% UVB exposure) and all other plots show results for quartz flasks. The average 

value and range of data is shown (n=3). Where no range bars are visible, the data range was smaller than 

the symbol size. 
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Figure 4.9 Comparison of cell photosynthetic capacity in E. huxleyi 370, 373 and 1516 exposed to 

artificial UVR in the 14L:10D cycle under low light (LL), normal light (NL) and high light (HL) 

conditions. The grey shade is the dark cycle. The grey line represents the control flasks with the UVB cut-

off filter (+70% UVA) and the black line represents the UVA+UVB exposed flasks (100% UVA+100% 

UVB). BS stands for borosilicate flask (j; 80% UVB exposure) and all other plots show results for quartz 

flasks. The average value and range of data is shown (n=3). Where no range bars are visible, the data 

range was smaller than the symbol size. 
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4.3.3.2.2 Intracellular DMSP concentrations and cellular DMSP 

Intracellular DMSP concentration (per cell volume mM; Fig. 4.10), DMSP per cell 

(fmol; Fig. 4.11) and the culture DMSP (µM; Fig. 4.12) in the UVA+UVB-exposed 

cultures decreased by 24 h. DMSP per cell volume was noted at 80, 34 and 188 mM in E. 

huxleyi 370; 93, 19 and 219 mM in E. huxleyi 373 and 105, 83 and 268 mM in E. huxleyi 

1516 at 72 h under LL, NL and HL conditions respectively. DMSP per cell was 3.1, 2 

and 5.1 fmol in E. huxleyi 370; 4, 1.6 and 1.3 fmol in E. huxleyi 373 and 2.9, 3.2 and 2.9 

fmol in E. huxleyi 1516 at 72 h under LL, NL and HL conditions respectively. While 

DMSP value in the culture was noted at 0.2, 0.7 and 0.5 µM in E. huxleyi 370; 0.2, 0.7 

and 0.2 µM in E. huxleyi 373 and 0.2, 0.7 and 0.5 µM in E. huxleyi 1516 at 72 h under 

LL, NL and HL conditions respectively. 

Although there was no increase in DMSP concentrations when the cells were exposed to 

UVA+UVB, the acclimatized control cultures in LL and HL conditions showed higher 

intracellular DMSP (300-400 mM), in contrast with the lower intracellular DMSP (150-

200 mM) in the NL condition. 

In borosilicate flasks, DMSP per cell in E. huxleyi 1516 was higher after 24 h at 5.9 fmol 

and remained consistent till 72 h compared to the control culture (Fig 4.11j). 

Intracellular DMSP concentrations decreased on exposure to 80% UVB for 48 hours 

where values at ~ 140 mM were close to those of the control cultures, but then dropped 

to 98 mM at 72 h (Fig. 4.10j). Overall higher DMSP concentrations, DMSP per cell and 

DMSP per cell volume values were noted with 80% UVB when compared to the 100% 

UVB exposed cultures (Fig 4.10 h, j; Fig 4.11 h, j and Fig. 4.12h, j). The total DMSP 

concentration in the screened control cultures showed similar concentrations in the 

quartz and borosilicate flasks (Fig. 4.12 h, j), but the 100% UVB-exposed cultures in the 

quartz flasks showed low 1-3 µM DMSP compared to 3-6 µM DMSP in the 80% UVB-

exposed cultures in the borosilicate flasks. This suggests that UVB irradiation decreases 

DMSP production. 
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Figure 4.10 Comparison of DMSP per cell volume (mM) in E. huxleyi 370, 373 and 1516 exposed to 

artificial UVR in the 14L:10D cycle under low light (LL), normal light (NL) and high light (HL) 

conditions. The grey shade is the dark cycle. The grey line represents the control flasks with the UVB cut-

off filter (+70% UVA) and the black line represents the UVA+UVB exposed flasks (100% UVA+100% 

UVB). BS stands for borosilicate flask (j; 80% UVB exposure) and all other plots show results for quartz 

flasks. The average value and range of data is shown (n=3). Where no range bars are visible, the data 

range was smaller than the symbol size. 



Chapter 4: The Influence of Ultraviolet Light on Intracellular DMSP in Emiliania huxleyi 

147 

 

Figure 4.11 Comparison of DMSP per cell (fmol) in E. huxleyi 370, 373 and 1516 exposed to artificial 

UVR in the 14L:10D cycle under low light (LL), normal light (NL) and high light (HL) conditions. The 

grey shade is the dark cycle. The grey line represents the control flasks with the UVB cut-off filter (+70% 

UVA) and the black line represents the UVA+UVB exposed flasks (100% UVA+100% UVB). BS stands 

for borosilicate flask (j; 80% UVB exposure) and all other plots show results for quartz flasks. The 

average value and range of data is shown (n=3). Where no range bars are visible, the data range was 

smaller than the symbol size. 
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Figure 4.12 Comparison of DMSP (µM) in E. huxleyi 370, 373 and 1516 exposed to artificial UVR in the 

14L:10D cycle under low light (LL), normal light (NL) and high light (HL) conditions. The grey shade is 

the dark cycle. The grey line represents the control flasks with the UVB cut-off filter (+70% UVA) and 

the black line represents the UVA+UVB exposed flasks (100% UVA+100% UVB). BS stands for 

borosilicate flask (j; 80% UVB exposure) and all other plots show results for quartz flasks. The average 

value and range of data is shown (n=3). Where no range bars are visible, the data range was smaller than 

the symbol size. 
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4.3.3.2.3 SYTOX Green Staining 

The SYTOX Green staining data revealed that of the cells exposed to UVR under LL 

conditions E. huxleyi 370 showed 24%, E. huxleyi 373 showed 26% and E. huxleyi 1516 

showed 23%; while under NL conditions E. huxleyi 370 showed 14%, E. huxleyi 373 

showed 13% and E. huxleyi 1516 showed 17%; and under HL conditions E. huxleyi 370 

showed 20%, E. huxleyi 373 showed 22% and E. huxleyi 1516 showed 12% of cells with 

compromised cell membranes at 72 h (Fig. 4.13). These values show a lower percentage 

of cells with compromised membranes under NL conditions when compared to the 

percentage of compromised cells under LL and HL conditions at 72 h. This effect is also 

mirrored in the percentages of viable cells which is 82, 86 and 81% in E. huxleyi 370, 

373 and 1516 under NL conditions when compared to the 70, 71 and 72% in E. huxleyi 

370, 373 and 1516 under LL conditions and 73, 73, and 79% in E. huxleyi 370, 373 and 

1516 under HL conditions, respectively. SYTOX Green staining did not show any 

noticeable variation in the percentage of compromised cells in the control cultures under 

different light conditions in all the three strains. In comparison to the E. huxleyi 1516 

cultures in the UVB-exposed quartz flasks, the cultures in the borosilicate flasks (Fig. 

4.13j) showed lower percentage of compromised cells 14% at 72 h and a slightly higher 

number of viable cells of 83% at 72 h in E. huxleyi 1516. This was probably due to the 

reduced 20% UVB in the borosilicate flask. 
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Figure 4.13 Comparison of percentage SYTOX Green stained cells- compromised and viable cells in E. 

huxleyi 370, 373 and 1516 exposed to artificial UVR in the 14L:10D cycle under low light (LL), normal 

light (NL) and high light (HL) conditions. The grey shade is the dark cycle. The grey line represents the 

control flasks with the UVB cut-off filter (+70% UVA) and the black line represents the UVA+UVB 

exposed flasks (100% UVA+100% UVB). The open symbols show percentage of viable cell (cells 

unstained by SYTOX Green) and the closed symbols show percentage of cells with compromised cell 

membranes (SYTOX Green stained cells). BS stands for borosilicate flask (j; 80% UVB exposure) and all 

other plots show results for quartz flasks. The average value and range of data is shown (n=3). Where no 

range bars are visible, the data range was smaller than the symbol size. 
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4.3.4 UVA+UVB exposure under natural light conditions 

An experiment was carried out in May 2010 where cultures were exposed to direct 

sunlight for 72 hours. A rapid decline in cell numbers was seen within the first few hours 

of exposure. Fluorescence and photosynthetic capacity decreased dramatically and 

SYTOX Green staining revealed almost 90% cells with compromised cell membranes 

indicating mass cell death. Cell volume could not be measured as the remains of cells in 

the flasks clumped together as white fluffy masses. On analyzing DMSP in the culture, a 

decrease from 3 to 0.3 µM was found over a 72 h period. 

The experiment was repeated from 23-26 August 2010. During this period E. huxleyi 

370, 373 and 1516 cultures were exposed to short sunny intervals with most of the day 

being moderately cloudy with a few rain spells. As it was not possible to deploy the 

spectroradiometer during this experiment, Figure 4.14a, b shows solar radiation and air 

temperature data from (WeatherQuest, UEA) for 23-26 August 2010 from Morley 

station (near Wymondham, ~ 7 miles SW of UEA). Alongside this data UVA and 

UVReff (Fig. 4.14c, d) was obtained from the Health Protection Agency’s Chilton 

Station (near Oxford, ~ 157 miles SW of UEA). UVReff is effective UVR, or 

erythemally effective UVR, and it is measured using a detector that has its spectral 

sensitivity biased towards those wavelengths that cause erythema (skin reddening). 

Hence, the detector gives most weight to the UVB and less to the UVA although it 

detects both. The spectral weighting is inherent in the detector, and so cannot be 

‘unpicked’ to give a UVB value, but erythemal efficacy has been used as a surrogate 

measure for other biological effects where the appropriate spectral weighting is 

unknown. There were no exclusive measurements for UVB, but UVReff can be 

considered to include the risky UVB radiations. 

Throughout the day, the air temperature varied between 10 to 20°C with an average of 

about 15°C (Fig. 4.14a). On the roof, the cultures were also exposed to an average of 

250 Wm-2 solar radiation with varying intensity up to a maximum of 850 Wm-2 (Fig. 

4.14b). The mean UVA < 10 Wm-2 with a maximum of 40 Wm-2 (Fig. 4.14c) and mean 

UVReff (includes UVB) was < 0.02 Wm-2 with a maximum of 0.1 Wm-2 (Fig. 4.14d). 
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Figure 4.14 Data from 23rd to 26th August 2010 for (a) air temperature (°C), (b) solar radiation (Wm-2) 

from Morley station and (c) UVA (Wm-2) and (d) UVReff (Wm-2) obtained from Chilton station. Average 

data for the day is shown and the bars represent the range of the parameter through out the day. 

Batch cultures of E. huxleyi 370, 373 and 1516 in quartz flasks and E. huxleyi 1516 in 

borosilicate flasks were grown to mid-log phase in controlled laboratory conditions with 

a 14:10 L:D cycle and 20 Wm-2 PAR at 17 °C, and then exposed to natural solar 

radiation without acclimatising the cells. Control cultures with the UVB cut-off filter 

(SR–UVB) showed increasing cell density (0.6, 0.4 and 0.42 x 106 cells ml-1 in E. 

huxleyi 370, 373 and 1516 respectively) in contrast with the distinct decline (0.36, 0.3 

and 0.27 x 106 cells ml-1 in E. huxleyi 370, 373 and 1516 respectively) in cell number in 

the SR-exposed cultures at 24 h (Fig. 4.15 a, c, e, g). On prolonged exposure, control 

cultures showed further growth to 1.2, 0.9 and 1 x 106 cells ml-1 in E. huxleyi 370, 373 

and 1516 respectively while SR exposed cells showed further decrease to 0.16 and 0.13 

x 106 cells ml-1 in E .huxleyi 370 and 373 while it remained almost consistent at 0.25 x 

106 cells ml-1 in E. huxleyi 1516 from 24 to 72 h. The SR exposed E. huxleyi 1516 in the 

borosilicate flasks followed the same trend when compared to SR exposed E. huxleyi 

1516 in quartz flasks but declined to a low of 0.16 x 106 cells ml-1 at 24 h and then 

stabilized at 0.12 x 106 cells ml-1 from 48 to 72 h. 
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Figure 4.15 Comparison of cell density and cell volume in E. huxleyi 370, 373 and 1516 exposed to solar 

radiation (SR). The grey line represents the control flasks covered with the UVB cut-off filter and the 

black line represents the unscreened flasks exposed to solar radiation (SR-UVB). BS stands for 

borosilicate flask and all other plots show results in quartz flasks. The average value and range of data is 

shown (n=3). Where no range bars are visible, the data range was smaller than the symbol size. 
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Figure 4.16 Comparison of cell fluorescence and cell photosynthetic capacity in E. huxleyi 370, 373 and 

1516 exposed to solar radiation (SR). The grey line represents the control flasks covered with the UVB 

cut-off filter and the black line represents the unscreened flasks exposed to solar radiation (SR-UVB). BS 

stands for borosilicate flask and all other plots show results in quartz flasks. The average value and range 

of data is shown (n=3). Where no range bars are visible, the data range was smaller than the symbol size. 
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The cell volume of the SR-exposed cells did not show a clear pattern (Fig. 4.15b, d, f, h), 

remaining broadly similar to the control cultures with the exception of the E. huxleyi 373 

control value of 47 µm3 at 48 hours and the E. huxleyi 1516 control value of 32 µm3 at 

24 hours in borosilicate flask. Fluorescence (Fig. 4.16a, c, e, g) decreased dramatically 

in all the SR-exposed cultures and was noted at 5, 24 and 13 in E. huxleyi 370, 373 and 

1516 in quartz flasks at 72 h while E. huxleyi 1516 in borosilicate flask dropped to 1 in 

24 h and remained 1 till 72 h. It also declined in the UVB-screened cultures after 24 

hours to 237, 187, 138 and 117 in E. huxleyi 370, 373, 1516 in quartz and E. huxleyi 

1516 in borosilicate flasks but subsequently increased to values of 352, 302, 325 and 

378 at 72 h in all the four cultures respectively. 

Photosynthetic capacity (Fig. 4.16b, d, f, h) declined in the screened cultures at 24 hours 

to 0.24, 0.29, 0.35 and 0.37 in E. huxleyi 370, 373 and 1516 in quartz flask and E. 

huxleyi 1516 in borosilicate flask before increasing at the subsequent time points to 

reach higher than 0.45 at 72 h in all the cultures. In the SR-exposed E. huxleyi 370 and 

borosilicate flask 1516 cultures it dropped to 0.19 and 0.24 at 24 h and further kept 

decreasing to 0.11 and 0.16 at 72 h. On the other hand, in E. huxleyi 373 and quartz flask 

1516 cultures it dropped to 0.12 and 0.15 at 48 h and then slightly increased to 0.14 and 

0.25 at 72 h. 

These results showed that E. huxleyi 1516 in borosilicate flask though screening 20% 

UVB showed more pronounced results for cell growth, cell volume, fluorescence and 

photosynthetic capacity when compared to the E. huxleyi 1516 in quartz flask.  

Interestingly, DMSP per cell volume and DMSP per cell for all the three strains of the 

SR-exposed cultures in quartz flasks showed higher values compared to the screened 

cultures (Fig. 4.17a, c, e) and compared to the lower values in borosilicate flasks (Fig. 

4.17g). DMSP per cell volume was higher in exposed quartz flasks at 562, 482 and 434 

mM compared to screened quartz flasks at 200, 190 and 222 mM in E. huxleyi 370, 373 

and 1516 while it was lower in exposed borosilicate flasks at 230 mM compared to the 

screened borosilicate flasks at 519 mM at 72 h. DMSP per cell was higher in exposed 

quartz flasks at 19, 20 and 13 fmol compared to screened quartz flasks at 7 fmol in E. 

huxleyi 370, 373 and 1516 while it was lower in the exposed borosilicate flasks at 6 fmol 
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Figure 4.17 Comparison of DMSP per cell volume (mM) and DMSP per cell (fmol) in E. huxleyi 370, 373 

and 1516 exposed to solar radiation (SR). The grey line represents the control flasks covered with the 

UVB cut-off filter and the black line represents the unscreened flasks exposed to solar radiation (SR-

UVB). BS stands for borosilicate flask and all other plots show results in quartz flasks. The average value 

and range of data is shown (n=3). Where no range bars are visible, the data range was smaller than the 

symbol size. 
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Figure 4.18 Comparison of DMSP in the culture (µM) and SYTOX Green stained cells (%) in E. huxleyi 

370, 373 and 1516 exposed to solar radiation (SR). In plots b, d, f and h-the open symbols show 

percentage of viable cell (cells unstained by SYTOX Green) and the closed symbols show percentage of 

cells with compromised cell membranes (SYTOX Green stained cells). The grey line represents the 

control flasks covered with the UVB cut-off filter and the black line represents the unscreened flasks 

exposed to solar radiation (SR-UVB). BS stands for borosilicate flask and all other plots show results in 

quartz flasks. The average value and range of data is shown (n=3). Where no range bars are visible, the 

data range was smaller than the symbol size. 
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compared to screened borosilicate flasks at 15 fmol at 72 h. Such an increase was not 

observed in the artificial UVA+UVB radiation experiment described earlier (section 

4.3.3.2). An overall decrease was seen in the culture concentration of DMSP in the SR-

exposed cultures in both quartz and borosilicate flasks (Fig. 4.18a, c, e, g). These values 

were seen to drop in the initial 48 h in the SR-exposed quartz flasks of E. huxleyi 373 

and 1516 from 4.9 to 2.6 and 5.4 to 3.3 µM and stabilized for the next 24 hours while it 

dropped in the initial 24 hours in the SR-exposed quartz flasks of E. huxleyi 370 and SR-

exposed borosilicate flasks of E. huxleyi 1516 from 5.4 to 3 µM in both and then 

stabilized for the next 48 hours. 

SYTOX-staining exhibited higher percentages of compromised cells in the SR-exposed 

cultures with 80% in E. huxleyi 370; 55% in E. huxleyi 373; 73% in E. huxleyi 1516 in 

quartz and 76% in E. huxleyi 1516 in borosilicate flask at 72 h (Fig. 4.18 b, d, f, h). This 

was also reflected in the lower percentages of viable cells at 16% in E. huxleyi 370; 35% 

in E. huxleyi 373; 17% in E. huxleyi 1516 in quartz and 22% in E. huxleyi 1516 in 

borosilicate flasks at 72 h (Fig. 4.18 b, d, f, h). 

4.3.5 Recovery in normal light (NL) conditions following UVA+UVB 

exposure 

At the end of the 72 h exposure to artificial UVA+UVB and NL and the solar radiation 

experiment, the incubations were continued under NL and the cultures were monitored 

for re-growth. Figures 4.20 and 4.21 show that after a long lag phase cells began to grow 

normally in terms of cell numbers and cell volume reached a normal range. DMSP 

concentrations also seem to increase to its normal concentrations. This was a small test 

intended only to establish cell survival following exposure to UV radiation. Whilst the 

results were positive it is impossible to know whether this signifies that UVR damage 

can be reversed in the absence of UV and the presence of PAR. 
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Figure 4.19 The re-growth of UVA+UVB-exposed cells of E. huxleyi 370, 373 and 1516 switched to 

normal light conditions. Data for cell density, cell volume, photosynthetic capacity and DMSP 

concentration are shown for single cultures. The purple, blue and red lines are for E. huxleyi 370, 373 and 

1516 respectively. 
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Figure 4.20 The re-growth of solar radiation-exposed cells of E. huxleyi 370, 373 and 1516 switched to 

normal light conditions. Data for cell density, cell volume, photosynthetic capacity and DMSP 

concentrations are shown for single cultures. The purple, blue and red lines are for E. huxleyi 370, 373 and 

1516 respectively. 

4.4 Discussion 

In this investigation, nine scenarios described in Table 4.2 (see section 4.2.2) were 

considered: (a) exposure to NL+100% UVA; (b) exposure to NL+70% UVA; (c) 

exposure to NL+100% UVA+100% UVB; (d) exposure to NL+100% UVA+80% UVB 

(borosilicate v/s quartz); (e) exposure to LL+70% UVA; (f) exposure to LL+100% 

UVA+100% UVB; (g) exposure to HL+70% UVA; (h) exposure to HL+100% 

UVA+100% UVB; and (i) exposure to UVA+UVB in natural light conditions. 
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4.4.1 UVA exposure 

Under scenarios (a) and (b), the 30% difference in the percentage of UVA exposure 

between the 2 treatments did not make a difference to cell division, fluorescence, 

photosynthetic capacity and DMSP content in the E. huxleyi cultures, even though the 

higher exposure to UVA radiation resulted in lower specific growth rates (Table 4.3). In 

addition SYTOX Green staining revealed < 10% cells with compromised membranes, 

suggesting the lack of cell death with UVA exposure enhanced by 30%. 

Studies assert that phytoplankton photosynthesis is considerably hindered by solar UVA 

radiation (320-400 nm) in the upper euphotic zone in the marine and freshwater 

environment (Kim and Watanabe 1993), with the decrease in photosynthetic rate 

hindering the growth of phytoplankton populations and primary productivity in aquatic 

environments. In lakes and marine environments a thermocline sometimes forms in the 

upper euphotic zone. Vincent et al. (1984) suggested through measurement of 

chlorophyll a fluorescence, that photoinhibition in surface phytoplankton commonly 

occurs in lakes when the wind is weak and the water stratifies at a shallow depth, 

because surface phytoplankton are exposed to high levels of UVA radiation. 

When assessing the effect of UVA on primary productivity in aquatic environments it is 

important to understand whether UVA inhibition of phytoplankton photosynthesis is a 

short-term and reversible response or an irreversible one leading to significant 

retardation of cellular growth and ultimately cell death. Kim and Watanabe (1994) 

highlighted the importance of the light history of the cells, which is decided by their 

position within the water column, and concluded that the process of inhibition of 

photosynthesis by UVA and subsequent recovery are not managed by a simple 

mechanism. These authors studied the inhibitory effects of UVA on a diatom and other 

cultured algae and found that the photosynthetic rate recovered, with prolonged 

exposure to UVA. In addition, they found that the short-term response to UVA, 

indicated by rapid inhibition of the photosynthetic rate and DCMU-induced fluorescence, 

was species specific. Further, they observed that the long-term response to UVA, 

suggested by the increase in the lag growth phase of the algae Chlorella ellipsoidea, was 
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caused by inhibition of photosynthesis. Growth recovered by means of enhancement of 

chlorophyll a content under prolonged exposure to UVA, implying that continuous 

exposure to UVA encouraged recovery and acclimation mechanisms to develop in algal 

cells. Acclimation is sufficiently protective against UVA damage and primary 

productivity is not depressed. In this context, persistence of the phytoplankton in the 

upper photic zone, where UVA is sufficient to induce acclimation, is not necessarily 

disadvantageous for primary production. This suggests that adaptive mechanisms occur 

among natural phytoplankton in the water column. Such information is important for 

assessing the effect of UVA on phytoplankton ecology and primary productivity in 

natural environments. However, in the aquatic system, if phytoplankton cells move 

through the mixing water column and are exposed occasionally to UVA, acclimation 

may not occur. 

In this study, it can be concluded that the UVA light levels were not sufficient to cause 

any damage and that the 30% reduced UVA light levels did not make any difference on 

cell growth and intracellular DMSP. 

4.4.2 UVA+UVB exposure under a range of light intensities 

Phytoplankton cells exist in a fluctuating physical environment and are exposed to 

different light regimes depending on their position in the water column. The UVB dose 

to which the organisms are exposed within the water column depends on the distribution 

of the phytoplankton cells and this is controlled by vertical mixing. The decisive factors 

in terms of UV exposure are the time phytoplankton cells spend in the surface waters 

where the UVB intensity is highest, compared to time at depth where UVB is attenuated 

and PAR levels may or may not be sufficient to sustain growth. Phytoplankton cells 

react differently to varying PAR intensities. Under light-saturated conditions, growth 

rates are high, and the cellular concentration of light-capturing pigments (e.g. 

chlorophyll a and fucoxanthin) are low, while the opposite is found under low light 

conditions (Falkowski and Owens 1980; Goericke and Welschmeyer 1992). Excessive 

irradiance can inhibit growth rates and induce production of photoprotective pigments 

(Demers et al. 1991). 
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The aim of the present study was to assess the responses of algal cells to UVA+UVB 

radiation and different PAR intensities. The impact of the different light regimes and 

light intensities on growth, cell morphology, fluorescence, membrane integrity and 

DMSP content was studied. E. huxleyi was chosen as a test organism because this algae 

is widely distributed in oceanic waters (Brown and Yoder 1994) including tropical and 

sub-tropical waters where UVA+UVB radiation is high. It is possible that this species 

might also serve as a model for species found at high latitudes, where the influence of 

increased UVB radiation due to ozone depletion is believed to be most evident (Björn et 

al. 1998; Vernet and Smith 1997). 

Here UVB radiation supplied at an intensity of 0.8 Wm-2 and 1 Wm-2 and PAR 

intensities of 50, 100 and 1000 µmol photons m-2 s-1 resulted in cell growth inhibition 

and increased cell volume in E. huxleyi. Garde and Cailliau (2000) exposed E. huxleyi to 

a UVB dose of 0.52 Wm-2 in different PAR intensities (53, 106 and 176 µmol photons 

m-2 s-1) and observed reduced growth rates and changes in the incorporation and 

excretion rate of 14C and indications of DNA damage in the form of cell division arrest 

and enlarged cell volume. 

Specific growth rate of non-UV exposed E. huxleyi cells increased with increasing PAR 

intensity (Table 4.3; i.e. at 50, 100 and 1000 µmol photons m-2 s-1; µ ~ 0.5, 0.6 and 0.8 d-

1 respectively). However, whilst exposure to 70% UVA decreased the specific growth 

rate, SYTOX Green did not indicate any cell damage. Similarly, Harris et al. (2005) 

examined the growth rate, pigment composition, and noninvasive chlorophyll a 

fluorescence parameters for a non-calcifying strain of E. huxleyi grown at different light 

intensities. They observed that the specific growth rate increased with increase in photon 

flux density: at 50, 100, 200, and 800 µmol photons m-2 s-1; the growth rate µ was 0.38, 

0.62, 0.70 and 0.82 d-1 respectively. 

Moving on to consider scenarios (b) to (g) listed in section 4.4, it can be concluded that 

UVB radiation had a greater affect on E. huxleyi than UVA radiation. With UVA+UVB 

exposure, photosynthetic capacity decreased dramatically, cell division ceased, cell 

numbers declined on prolonged exposure and ~ 20% cells had compromised cell 

membranes. Another interesting feature noted in this study was that reducing the 
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exposure to 80% UVB (0.8 Wm-2) made a difference to the cells. In this case cell growth 

arrest was observed, but cell numbers did not decline and cell volume showed a higher 

increase than in cultures exposed to 1 Wm-2 UVB. This would imply that an increase in 

cell volume indicates metabolic activity but no cellular division. This feature was also 

observed when E. huxleyi was exposed to high UVB in natural light (section 4.3.4). Also, 

fluorescence of the 80% UVB exposed cells did not increase and remained rather 

consistent (Fig. 4.8j), while photosynthetic capacity (Fig. 4.9j) of the 80% UVB exposed 

cells remained slightly low in the range of 0.35-0.45, unlike the non-UVB exposed cells 

consistent at 0.45. Intracellular DMSP of the cells exposed to 80% UVB decreased after 

exposure for 24 hours whereas at 72 hours the DMSP concentration levelled off in the 

treated and control cultures. Such an increase was not seen in cells exposed to 100% 

UVB (1 Wm-2): DMSP concentrations (1-3 µM) were lower in cultures exposed to 100% 

UVB compared to the 80% UVB-exposed cultures (3-6 µM). This suggests that the 

higher intensity UVB irradiation decreased DMSP production. The cells exposed to 

100% UVB also had reduced cell membrane integrity (value% with compromised 

membranes). Thus, the 20% difference in UVB intensity had a much greater impact on E. 

huxleyi cells than the 30% difference in UVA exposure (section 4.4.1). 

The UVB doses used in this study were representative of the UVB doses found in the 

top layer of clear oceanic waters and were also used previously in culture studies (Braga 

et al. 2002). Also, E. huxleyi is a common bloom-forming algae with a wide geographic 

distribution, it may be therefore suggested that current UVB intensities have an impact 

on primary production and phytoplankton biomass. 

4.4.3 UVA+UVB exposure under natural light conditions  

Gao et al. (2007a) studied the dinoflagellate, Heterosigma akashiwo exposed to solar 

radiation. They observed a significant decrease in the effective quantum yield was 

observed during high irradiance periods (i.e., local noon), but the cells partially 

recovered during the evening hours. They further suggested that although H. akashiwo is 

a sensitive species, it was able acclimate relatively within 3-5 days by synthesizing UV-

absorbing compounds and thus reducing the impact on photosystem II or growth. Also, 
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studies conducted on natural phytoplankton assemblages exposed to natural UVR in 

Lake Erie showed that UV radiation inhibited electron transport and decreased the 

efficiency of photosystem II (FV/FM) (Marwood et al. 2000). In eutrophic waters with 

high concentrations of phytoplankton, the UVB radiation is attenuated within the first 

meter of the water column (Häder 1997; Kirk 1994), while UVB in more oligotrophic 

regions can penetrate several meters into the water column (Smith et al. 1992). 

When exposing cultures to solar radiation, an increase in the range of 500-600 mM in 

DMSP per cell volume concentrations and DMSP per cell to 20 fmol was observed in 

the three strains whereas with artificial UV-light conditions DMSP concentration was 

reduced. There may be some other factor involved in the synthesis of DMSP, which 

needs to be isolated in future experiments. Perhaps the uncontrolled temperature, 

induced DMSP synthesis in the cultures exposed to solar radiation. This may be more 

apparent by the overall increased DMSPp concentrations observed in the control cultures 

exposed to solar radiation when compared with the cultures exposed to artificial light 

and UV conditions. 

4.4.4 Recovery in normal light (NL) 

Several researchers have demonstrated that UV exposure primarily affects photosystem 

II (Grzymski et al. 2001) and that the damage may be reversible (Vass et al. 2000). 

Recovery from UV damage has been observed for cyanobacterial cells incubated under 

visible light (Kumar et al. 2003), in dim light for natural phytoplankton, cyanobacteria 

and green algae (Vincent and Roy 1993) and in the dark (Braga et al. 2002). It has been 

shown that cells may also overcome damage by protection or acclimation mechanisms 

that relieve the lethal impact of UV (Vincent and Roy 1993). The mechanisms for 

preventing harmful effects of UV include enhanced cellular carotenoid synthesis in the 

cyanobacteria Microcystis aeruginosa (Paerl et al. 1983), production of UV-absorbing 

pigments or mycosporine-like compounds in dinoflagellates (Carreto et al. 1990; Garcia-

Pichel and Castenholz 1993; Negri et al. 1992) and increased cell volume in diatoms 

(Behrenfeld et al. 1992). In the experiments presented here, recovery and repair of the 

cellular mechanisms in the presence of PAR led to cell regrowth and normal DMSP 
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synthesis. This suggests that E. huxleyi has the ability to repair the damage caused by 

UVB. 

4.4.5 Overall effects on DMSP content 

The quantity and quality of light received by phytoplankton may partially control DMS 

concentrations in the oceans through their impact on DMSP synthesis and 

transformation. The influence of irradiance on DMS concentrations is derived from the 

hypothesized function of DMSP and its breakdown products as scavengers of reactive 

oxygen species in phytoplankton (Sunda et al. 2002), or alternatively from a proposed 

role as a secondary metabolite, channeling photosynthetic overcapacity (Stefels 2000). 

However, clear understanding and direct evidence for either the presumed antioxidant 

role or for the proposed metabolic overflow mechanism are lacking.   

Various studies document changes in intracellular DMSP concentration under UV-stress 

conditions for several phytoplankton species and strains, but results are not always 

consistent (Table 4.4). Hefu and Kirst (1997) showed that DMSP production in 

laboratory cultures of Phaeocystis antarctica was inhibited by UV radiation. They 

observed a decrease in the production of DMSP under PAR+UVA+UVB and a marked 

depression in total DMSP concentration with UVA+UVB after 3 h, however, the 

conversion rate of DMSP dissolved to DMS was significantly increased with UV 

radiation. On the other hand, a recent study on the response in terms of intracellular 

DMSP, dissolved DMSP and DMS concentrations involved E. huxleyi exposed to acute 

(1 h) increases in photon flux densities of PAR and UVR was examined in cells 

acclimated to low light (LL, 30 µmol m-2 s-1) and high light (HL, 300 µmol m-2 s-1) 

(Archer et al. 2010). They observed greater photoinhibition in LL-acclimated cells 

which corresponded with increased accumulation of DMSP to a level 21% higher than 

the initial concentration, contrasting with a 5% decrease in HL-acclimated cells. Archer 

et al. (2010) further showed that the exposure to UV decreased the rates of intracellular 

accumulation of DMSP and conversely, PAR + UV exposure stimulated the net 

production of dissolved DMSP and DMS in both HL-acclimated and LL-acclimated 

cultures, compared with high PAR alone. These results indicate a direct link between 
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acute photo-oxidative stress and DMSP synthesis in E. huxleyi, however the 

physiological basis for increased release of DMSP and DMS from cells due to high 

PAR+UV exposure is uncertain. Another such study investigating the influence of PAR 

intensities similar to those at 15 m (700 µmol m-2 s-1) and 25 m depth (400 µmol m-2 s-1) 

in the subtropical Atlantic Ocean and the effect of short-term exposure to UVR showed 

a 10 to 25% increase in the per-cell amount and intracellular DMSP as compared to E. 

huxleyi (strain L) exposed to only PAR (Slezak and Herndl 2003). Furthermore they 

observed that the intracellular DMSP concentration was always higher in PAR+UV-

exposed E. huxleyi than in PAR-exposed E. huxleyi, despite the small but significant 

increase in cell volume of E. huxleyi after exposure to PAR+UV as compared to PAR 

exposure only. Van Rijssel and Buma (2002) have reported that UVR-induced stress 

does not affect DMSP synthesis in E. huxleyi. They observed that with increasing UVR 

dose, cellular DMSP content increased but the intracellular DMSP concentrations 

remained constant at the level typical for the applied temperature and salinity conditions, 

due to accompanying increase in cell size. They further explained that the increased 

cellular DMSP content did not compensate, for the decreased growth rates, resulting in 

an overall decrease in the total amount of DMSP produced in the cultures. 

In this study, the different PAR intensities and exposure to UVA+UVB did not show an 

increase in DMSP concentration and per cell amount, perhaps due to the instantaneous 

breakdown to DMS, however, there is no evidence to show this. Yet the presented 

results imply that when UV causes growth rate reduction of E. huxleyi in situ, DMSP 

fluxes are likely to be reduced too. 

 



 

 

Table 4.4 Table summarising previous studies documenting effects of UVA+UVB+PAR or solar radiation on DMSP concentrations and DMS release.  

Authors 
UV-A UV-B PAR 

Remarks Species DMSP and DMS 
observations Wm-² µmol 

photons/m²/s Wm-² 

Archer et al. 
2010 

70 µmol 
photons/m²/s 

1 µmol 
photons/m²/s 

30 7 Acute light stress and recovery 
laboratory experiments E. huxleyi 

(B92/11) 

Intracellular 
DMSP, DMSPd 
and DMS 
increased. 

300 65 E. huxleyi from Plymouth 
culture collection 500 110 

Slezak and 
Herndl 2003 

0.035-0.124 0.005 400 90 
PAR intensity similar to that at 
15 m (700 µmol PAR/m²/s) and 
25 m depth (400 µmol 
PAR/m²/s) in subtropical 
atlantic ocean. 

E. huxleyi 
strain L 

10 to 25 % 
increase in per 
cell DMSP 0.079-0.285 0.01 700 150 

Sunda et al. 
2002 Solar radiation Culture experiment E. huxleyi 

CCMP 374 

Intracellular 
DMSP and DMS 
per cell volume 
increased 

Harada et al. 
2009 

8.65 1.55 450 100 

50 % higher UV:PAR than 
natural radiation based on 
measurements taken at Dauphin 
island. 

A. carterae 
(dinoflagellate)  

No change in 
DMS/Chl nor 
DMSOp/Chl 

3.4 0.6 600 130 approx 15 % higher UV:PAR 

Van Rijsell 
and Buma, 
2002 

0.075 0.01 200 40 UVA and UVB spectrum shown 
in paper 

E. huxleyi 
strain L 

Intracellular 
DMSP remained 
constant. DMSP 
per cell increased. 
DMSPt 
decreased. 

Hefu and 
Kirst, 1997 

21 3.1 

80 20 Laboratory studies P. antarctica 

DMSPt 
decreased, 
conversion rate of 
DMSPd to DMS 
increased. 

11.47 2.53 
9.06 0.51 
7.6 0.1 

3.31 0.02 
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4.5 Conclusions 

UV-induced stress did not result in an increase in intracellular DMSP concentration in 

the artificial light set-up but an increase occurred on exposure to solar radiation just like 

in Sunda et al. 2002. There is a substantial difference in the intracellular DMSP 

concentrations seen in these 2 experiments. It is possible that any additional DMSP in 

the artificial UV condition might have undergone lysis to form DMS and acrylate, both 

more effective antioxidants than DMSP according to Sunda et al 2002. Alternatively, 

enhanced DMSP production might be strain-dependant. Under the artificial UVA 

radiation used here, cells grew normally and there was no measureable variations 

observed in intracellular DMSP concentrations. This may have occurred due to pre-

acclimation of cells to UVA light. How the recovery and acclimation mechanisms occur 

in natural situations provides an interesting target for future study. The inhibition and 

recovery processes should also be studied in relation to DMSP synthesis and diurnal 

changes in UVR dose and vertical mixing of phytoplankton cells. 



 

 

 

 

 

 

 

 

 

Chapter 5 
 

Light Deprivation and Re-illumination: 
Effects on DMSP and DMS in Emiliania 

huxleyi 
 



	
   Chapter	
  5:	
  Light	
  Deprivation	
  and	
  Re-­‐illumination:	
  Effects	
  on	
  DMSP	
  and	
  DMS	
  in	
  Emiliania	
  huxleyi 

 171 

Chapter 5:  Light Deprivation and Re-illumination: Effects 

on DMSP and DMS in Emiliania huxleyi 

5.1 Background and significance 

Photosynthesis and other processes leading to cellular growth are essentially light-

dependent processes. Marine phytoplankton generally have to cope with a fluctuating 

light environment due to diel variations in irradiance that drive daily rhythms in various 

physiological parameters. Light also varies on longer temporal scales, for instance, it is 

not uncommon for phytoplankton to face up to 6 months of long nights or long days in 

the natural environment at the higher latitudes (Barnes and Hughes 1999). Additionally, 

sea ice can significantly reduce light penetration into the upper ocean affecting the 

phytoplankton communities below the ice (Hollibaugh et al. 2007). There are growing 

implications for Emiliania huxleyi expanding its regime into the higher latitudes (Balch 

et al. 2011; Winter et al. 2008) causing them to face light limitation or total light 

deprivation at certain times of year. When deep water mixing occurs a surface water 

mass can be subducted along a convergent front causing a sudden transfer of 

phytoplankton to darkness or the case of a storm event where the phytoplankton are 

mixed into the aphotic zone. In some species coccoliths might alter buoyancy, helping 

cells maintain access to sunlight or nutrients; for example, heavy coccoliths could 

increase a cell’s density allowing the coccolithophere to sink to deeper waters where 

nutrients are plentiful, thus reaching light deprived ocean areas (Klaveness and Paasche 

1979; Young 1987; Young 1994). E. huxleyi is a bloom-forming coccolithophore and 

aggregates of these blooms may sink into the aphotic zone. The ability to survive in the 

dark is also a parameter that changes in different phytoplankton groups for example, 

silicifiers can survive for weeks in darkness (Peters 1996; Peters and Thomas 1996) 

unlike calcifiers. This difference should be considered especially during winter, when 

the mixing depth is deeper than the euphotic zone.  

Here I investigated whether darkness could be used as a tool to cause cell lysis and 

ultimately induce cell death with or without the release of DMS or whether the cells 
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would initiate the release of DMSP as a response to the light-deprivation stress. The 

observations would highlight a link between DMSP metabolism and cell death. DMSP is 

produced and released in stress conditions and there are various reports that suggest that 

light fluctuations cause increase in intracellular DMSP in response to oxidative stress 

(see Chapter 1). The effect of re-exposure to a light:dark cycle after prolonged darkness 

and the differences between three different E. huxleyi strains was also considered. 

5.2 Methodology 

Three strains of Emiliania huxleyi - 370, 373 and 1516 (CCMP) were investigated. In 

each case an inoculum of 100,000 cells ml-1 was dispensed into 1 L Erlenmeyer flasks 

(Fig. 5.1) containing 750 ml of the medium. The flasks were fitted with a glass tube 

sealed within a cotton bung with one end dipped into the culture and the other end fitted 

with a 0.22 µm sterile Acrodisc filter (manufacturer) and a 2-way luer lock to enable 

subsampling under dark conditions. Sub-sampling was done using 10 ml gas-tight 

syringes at the same time each day i.e. one hour after the light cycle commenced. Before 

collecting the first subsample for analyses, a small amount of culture was removed from 

the flask to avoid using any liquid previously trapped in the tubing.  Great care was 

taken to keep the cultures axenic throughout the experiment and a DAPI stain (Chapter 2, 

section 2.3) was done at the start and end of each experiment.  

 

Figure 5.1 Schematic of Erlenmeyer flask set-up to allow routine sub-sampling whilst minimising 

exposure to light while subsampling culture aliquots for experimental measurements. 
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The growth experiments were conducted for different lengths of time according to the 

growth of each strain: 10 days for E. huxleyi 370 and 373, and 18 days for E. huxleyi 

1516 which had a longer log phase. All strains were grown to mid-log phase at 17°C 

with a 14:10 light:dark cycle and photosynthetically active radiation supplied at 100 

µmol m-2 s-1. For each strain 3 replicates were grown under the light:dark cycle (control) 

and 3 under continuous darkness. The dark flasks were wrapped in several layers of 

aluminium foil and switched to total darkness on day 3 in E. huxleyi 370 and 373 and 

day 5 in E. huxleyi 1516) and remained in the dark for 7 days for E. huxleyi 370 and 373 

and 13 days for E. huxleyi 1516. 

Alongside the growth experiment, 9 standard 1 L cultures with identical inoculum were 

incubated to mid-log phase, switched to total darkness and then re-exposed to the control 

light-dark conditions after various days to monitor for any re-growth. After being in 

prolonged darkness for 2, 3 and 4 days in the E. huxleyi 370 and 373 cultures and 3, 6 

and 9 days in E. huxleyi 1516, a set of three flasks on days 5, 6 and 7 in E. huxleyi 370 

and 373 and on days 8, 11 and 14 in E. huxleyi 1516 were re-exposed to the light-dark 

cycle and cell density was further monitored for another few more days (Results in 

section 5.3.6). So also, at the end of the experiment on day 10 with E. huxleyi 370 and 

373 and on day 18 with E. huxleyi 1516 cultures, the darkened flasks were re-exposed to 

the light-dark cycle and cell density was further monitored for a few more days. 

Biomass was quantified as cell number (cells ml-1) and cell volume and fluorescence, 

and the efficiency of photosystem II was measured (Chapter 2, sections 2.4 and 2.5). 

DMS, DMSPd, DMSPp and DMSPt were measured by GC (Chapter 2, section 2.6). 

Membrane permeability (‘viability’) was determined with SYTOX Green using the flow 

cytometer (Chapter 2, section 2.7). 
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5.3 Results  

5.3.1 Cell culture and growth measurements 

The growth rates of the three strains were: E. huxleyi 370, 0.82 d-1, E. huxleyi 373, 0.65 

d-1 and E. huxleyi 1516 0.57 d-1. At mid-log phase, day 3 in E. huxleyi 370 and 373 and 

day 5 for E. huxleyi 1516 cell density was ~ 0.5 x 106 cells ml-1 in E. huxleyi 370 and E. 

huxleyi 1516 and ~ 0.3 x 106 cells ml-1 in E. huxleyi 373 (Fig. 5.2 a, c, e). Cell numbers 

continued to increase daily in the control flasks under light-dark conditions and reached 

6.7 and 5.1 x 106 cells ml-1 on day 10 for E. huxleyi 370 and 373 and 4.5 x 106 cells ml-1 

on day 18 for E. huxleyi 1516. After day 3 in E. huxleyi 370 (Fig. 5.2 a) and 373 (Fig. 

5.2 c) and after day 5 in E. huxleyi 1516 (Fig. 5.2 e) the cultures were switched to dark 

conditions. The cell density followed the controls for a day, but subsequently growth 

ceased and cell numbers stabilised at ~ 1.2 x 106 cells ml-1 in E. huxleyi 370 and 1516 

while cell numbers in E. huxleyi 373 decreased to 0.3 x 106 cells ml-1 on day 10. These 

observations are reflected distinctly in Ln cell density plots (Fig. 5.2 b, d, e). 

Fluorescence in the control cultures continued to increase to 1656, 1656 and 1869 

whereas it declined to 98, 243 and 13 in all the three light-deprived E. huxleyi 370, 373 

and 1516 cultures (Fig. 5.3a, c, e). Also, as seen in Figure 5.3 b, d, f, there was a notable 

decrease in the photosynthetic capacity of the three light-deprived cultures. The control 

cultures usually maintained their photosynthetic capacity in the range of 0.5 to 0.6 but 

the light-deprived cultures decreased to 0.1 under prolonged darkness. However, it is 

worth noting that E. huxleyi 1516 followed control for 6 days after being in the dark 

when compared to only 1 and 2 days in E. huxleyi 373 and 370 before all started to 

decrease. 

These being naked cells, calcification was not an issue here. Cell volume decreased to 

12 and 8 µm3 in light-deprived cultures of E. huxleyi 373 and 1516, but this was not so 

distinct in E. huxleyi 370 following culture at 16 µm3 (Fig. 5.4 a, b, c). Cell volume in 

the light-exposed cultures ranged between 18 to 25 µm3 in E. huxleyi 370, 33 to 47 µm3 

in E. huxleyi 373 and 18 to 30 µm3 in E. huxleyi 1516. 
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Figure 5.2 A comparison of light exposure and light deprivation effects on cell density (cells ml-1) (a, c, e) 

and Ln Cell density (b, d, f) in batch cultures of Emiliania huxleyi 370, 373 and 1516. The grey line 

represents the control culture grown under a 14:10 light:dark cycle and the dark lines are the light-

deprived cultures. The vertical line at day 3 in E. huxleyi 370 and 373 and at day 5 in E. huxleyi 1516 

depicts when the experimental flasks were put in the dark. In this and all subsequent figures in this chapter, 

the average value and range of data is shown (n=3). Where no range bars are visible, the data range was 

smaller than the symbol size. 
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Figure 5.3 A comparison of light exposure and light deprivation effects on the fluorescence (arbitrary 

units) (a, c, e) and Photosynthetic capacity (b, d, f) in batch cultures of Emiliania huxleyi 370, 373 and 

1516. The grey line represents the control culture grown under a 14:10 light:dark cycle and the dark lines 

are the light-deprived cultures. The vertical line at day 3 in E. huxleyi 370 and 373 and at day 5 in E. 

huxleyi 1516 depicts when the experimental flasks were put in the dark 
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Figure 5.4: A comparison of light exposure and light deprivation effects on the cell volume (µm3) in batch 

cultures of Emiliania huxleyi strains (a) 370, (b) 373 and (c) 1516. The grey line represents the control 

culture grown under a 14:10 light:dark cycle and the dark lines are the light-deprived cultures. The vertical 

line at day 3 in E. huxleyi 370 and 373 and at day 5 in E. huxleyi 1516 depicts when the experimental 

flasks were put in the dark. 

5.3.2 Intracellular DMSP and DMS concentration 

In this section, we discuss per cell volume data for DMS, dissolved DMSP (DMSPd) 

and total DMSP (DMSPt) in comparison to intracellular DMSP (DMSPp per cell 

volume) data (Fig. 5.5 and 5.6). 
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Figure 5.5 A comparison of the light exposure versus light deprivation effects on DMSP parameters 

(referenced to biovolume; mM) particulate DMSP (a, c, e) and dissolved DMSP (b, d, f) in batch cultures 

of Emiliania huxleyi CCMP370, CCMP373 and CCMP1516. The grey line represents the control culture 

grown under a 14:10 light:dark cycle and the dark lines are the light-deprived cultures. The vertical line at 

day 3 in E. huxleyi 370 and 373 and at day 5 in E. huxleyi 1516 depicts when the experimental flasks were 

put in the dark. 
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Figure 5.6 A comparison of light exposure and light deprivation effects on the intracellular DMS and 

DMSP parameters (mM) - DMS per cell volume (a, c, e) and total DMSP per cell volume (b, d, f) in batch 

cultures of Emiliania huxleyi 370, 373 and 1516. The grey line represents the control culture grown under 

a 14:10 light:dark cycle and the dark lines are the light-deprived cultures. The vertical line at day 3 in E. 

huxleyi 370 and 373 and at day 5 in E. huxleyi 1516 depicts when the experimental flasks were put in the 

dark. 

DMSPp per cell volume ranged from 212 to 375, 212 to 230 and 256 to 321 mM 

concentrations in the light-exposed E. huxleyi 370, 373 and 1516 cultures compared to 

353 to 550, 280 to 530 and 280 to 1660 mM concentrations in light deprived E. huxleyi 

370, 373 and 1516 (Fig. 5.5a, c, e). From day 3 when the cultures were placed in total 

darkness, DMSPp per cell volume showed an increase in all the three strains but E. 

huxleyi 1516 strain showed a dramatic increase to 1660 mM. 
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DMSPd per cell volume (mM units) ranged widely from 12 to 400, 12 to 341 and 20 to 

108 mM in E. huxleyi 370, 373 and 1516 under normal light-dark conditions (Fig. 5.5b, 

d, f). In E. huxleyi 370 and 373 DMSPd decreased from 400 and 341 mM on day 1 to 

about 106 and 125 mM on day 3 respectively and from day 3 onwards, DMSPd 

continued to decrease from 106 and 125 mM to 12 mM at day 10 under normal light-

dark cycle. On the other hand on switching to total darkness, DMSPd showed the 

opposite trend and increased from 106 to 176, 125 to 1073 and 108 to 566 mM in E. 

huxleyi 370, 373 and 1516. 

In the light-dark cycle, DMS per cell volume (mM units) was extremely low compared 

to DMSPp and DMSPd per cell volume (Fig. 5.6a, c, e). The light-deprived cultures 

showed an increase in DMS per cell volume with highest increase recorded at 20 mM 

for E. huxleyi 1516. In the light-exposed condition only E. huxleyi 370 showed a 

decrease in DMS per cell volume from 6 mM on day 1, to about 2 mM on day 3 and 

down to 0.8 mM by day 10. In E. huxleyi 373 and1516 the DMS per cell volume 

concentration remained low at < 0.1 and 1 mM, respectively for the duration of the 

experiment. Culture flasks switched to total darkness showed the opposite trend with an 

increase in DMS per cell volume ranging from 2 to 12, 0.1 to 7 and 1.4 to 20 mM in E. 

huxleyi 370, 373 and 1516. 

DMSPt per cell volume (mM units) varied between 380 to 680 mM in E. huxleyi 370, 

222 to 568 mM in E. huxleyi 373 and 284 to 378 mM in E. huxleyi 1516 under normal 

light-dark conditions (Fig. 5.6b, d, f). A gradual decrease in DMSPt per cell volume 

concentration was seen in the first three days of the experiment in all three strains. On 

switching to total darkness, DMSPt per cell volume then showed the opposite trend 

increasing from 463 to 761, 395 to 1556 and 379 to 2284 mM in E. huxleyi 370, 373 

and1516. Thus all three strains varied substantially in their intracellular DMSPt 

concentrations in the dark treatment. 

5.3.3 Cellular DMSP and DMS concentration 

In the previous section, I presented DMSPp, DMSPd, DMS and DMSPt data referenced 

to the biovolume of cells and expressed as a mM value. Here I discuss the results in 
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terms of quantity of DMSPp, DMSPd, DMS and DMSPt on a per cell basis expressed as 

a fmol value.  

In Figure 5.7 and 5.8, DMSPp, DMSPd, DMS and DMSPt are calculated per cell 

number to determine cellular DMSP and DMS amounts. An overall increase in per cell 

DMSP and DMS was seen in the light-deprived cultures with a few exceptions observed 

in DMSPp per cell in E. huxleyi 370 and 373. 

DMSPp per cell in light-deprived E. huxleyi 370 and 373 did not vary much in the light-

exposed cultures (Fig. 5.7a, c, e). DMSPp per cell was noted to range from 6 to 10 and 4 

to 10 fmol in E. huxleyi 370 and 373 in both light-exposed and light deprived cultures 

after day 3. On the other hand, an increase was seen from 4 to 14 fmol in the DMSPp per 

cell amounts in the light-deprived E. huxleyi 1516. The light-exposed culture was 

consistent at about 5 fmol after day 7 of the experiment. 

From Figure 5.7 (b, d, f) DMSPd per cell values show an overall increase in the light-

deprived cultures. Under normal light conditions cellular DMSPd per cell ranged widely 

from 0.2 to 10 fmol in E. huxleyi 370, 0.4 to 18 fmol in E. huxleyi 373 and 0.3 to 3 fmol 

in E. huxleyi 1516. A drop in DMSPd per cell from 10 to 2.7 and 18 to 5 fmol was seen 

in the first three days of the experiment in E. huxleyi 370 and 373. From day 3 onwards, 

cellular DMSPd has continued to decrease from 2.7 fmol to 0.2 fmol in E. huxleyi 370 

and from 5 to 0.4 in E. huxleyi 373. On switching to total darkness, DMSPd per cell was 

consistent in the range of about 2 to 3 fmol in E. huxleyi 370. While DMSPd per cell 

value in E. huxleyi 373 when darkened decreased from 5 to 2 fmol in 1 day and then 

increased to 12.5 fmol on day 10 which is almost 30 times the value seen in the light-

exposed cultures (0.4 fmol) for the same day. Light-deprived E. huxleyi 1516 culture 

also first decreased from 2.8 to 1.5 fmol in 1 day, then stabilised at ~ 1.5 fmol till day 14 

and then increased to 4.5 fmol on day 18. 
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Figure 5.7 A comparison of light exposure and light deprivation effects on the cellular DMSP content 

(fmol) –particulate DMSP per cell (a, c, e) and dissolved DMSP per cell (b, d, f) in batch cultures of 

Emiliania huxleyi 370, 373 and 1516. The grey line represents the control culture grown under a 14:10 

light:dark cycle and the dark lines are the light-deprived cultures. The vertical line at day 3 in E. huxleyi 

370 and 373 and at day 5 in E. huxleyi 1516 depicts when the experimental flasks were put in the dark. 
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Figure 5.8 A comparison of light exposure and light deprivation effects on the cellular DMS and DMSP 

content (fmol) –DMS per cell (a, c, e) and total DMSP per cell (b, d, f) in batch cultures of Emiliania 

huxleyi 370, 373 and 1516. The grey line represents the control culture grown under a 14:10 light:dark 

cycle and the dark lines are the light-deprived cultures. The vertical line at day 3 in E. huxleyi 370 and 373 

and at day 5 in E. huxleyi 1516 depicts when the experimental flasks were put in the dark. 

A strain-specific increase in DMS per cell amounts was recorded in the light-deprived 

cultures. Under the light-dark conditions, DMS per cell (Fig. 5.8a, c, e) ranged from 0.01 

to 0.14, 0.002 to 0.009 and 0.01 to 0.03 fmol in E. huxleyi 370, 373 and 1516. In E. 

huxleyi 370 a sharp decrease from 0.14 to 0.05 fmol was seen in the first 3 days of the 

experiment. On switching to total darkness, DMS per cell showed an increasing trend 

from 0.05 to 0.2, 0.006 to 0.1 and 0.03 to 0.16 fmol in E. huxleyi 370, 373 and 1516. 
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In prolonged darkness, DMSPt per cell was known to increase very slightly in all the 

three strains (Fig. 5.8b, d, f). In the light-dark cycle, DMSPt per cell ranged from 7 to 16, 

7 to 25 and 3 to 12 fmol in E. huxleyi 370, 373 and 1516 respectively.  A decrease from 

16 to 12 and 25 to 16 fmol DMSPt per cell was seen in the first three days. In total 

darkness, DMSPt per cell showed a gradual increase to 13, 18 and 18 fmol in E. huxleyi 

370, 373 and 1516. While E. huxleyi 370 followed control for only a day, E. huxleyi 373 

followed control from days 3 to 8. 

5.3.4 DMSP and DMS in the culture 

In Figures 5.9 and 5.10 the DMSPp, DMSPd, DMS and DMSPt data are shown as 

straightforward concentrations per litre of culture expressed as µM. Overall, for the 

light-deprived cultures increase in the DMSPd and DMS and on the other hand, decrease 

in DMSPp and DMSPt concentrations were observed. 

In the light-exposed cultures, DMSPp (Fig. 5.9a, c, e) ranged from 1 to 50, 2 to 40 and 5 

to 22 µM in E. huxleyi 370, 373 and 1516. After the switchover to darkness, DMSPp 

showed a much lower but gradually increasing concentration from about 6 to 10 µM in E. 

huxleyi 370 compared to 5 to 50 µM increase in the light-exposed E. huxleyi 370. In 

light-deprived E. huxleyi 373, DMSPp decreased from 12 to 5 µM while the light-

exposed culture increased from 12 to 40 µM. The light-deprived E. huxleyi 1516 culture 

increased from 5 to 15 µM lower than the increase of 5 to 23 µM in the light-exposed E. 

huxleyi 1516. 

In all three strains, cultures exposed to the light-dark cycle showed a consistent DMSPd 

concentrations varying between 1 to 2 µM (Fig. 5.9b, d, f). A steady increase in DMSPd 

was seen in the light-deprived cultures where DMSPd approximately doubled in E. 

huxleyi 370 and 373 from 1.4 to 3.3 and 1.7 to 3.8 µM by day 10 and from 1.4 to 3.8 µM 

by day 18 in E. huxleyi 1516.  

DMS concentrations varied among the three strains with E. huxleyi 373 having the 

lowest DMS concentrations of ~ 0.001 to 0.01µM, and E. huxleyi 370 and 1516 ranging 

between 0.01 to 0.1 and 0.01 to 0.05 µM respectively under the light-dark cycle (Figure  
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Figure 5.9 A comparison of light exposure and light deprivation effects on the DMSP concentration in the 

culture media (µM) – particulate DMSP (a, c, e) and dissolved DMSP (b, d, f) in batch cultures of 

Emiliania huxleyi 370, 373 and 1516. The grey line represents the control culture grown under a 14:10 

light:dark cycle and the dark lines are the light-deprived cultures. The vertical line at day 3 in E. huxleyi 

370 and 373 and at day 5 in E. huxleyi 1516 depicts when the experimental flasks were put in the dark. 

Data for days 0 to 5 in E. huxleyi 1516 was not collected. 

5.10a, c, e). In contrast with the other two strains, the light-deprived E. huxleyi 373 

cultures did not show much increase in DMS. DMS increased from 0.03 to 0.24 µM in 

the light-deprived E. huxleyi 370 while in E. huxleyi 1516, little increase in DMS was 

seen up to the day 12 after which, DMS increased to a high of 0.13 µM. 
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Figure 5.10 A comparison of light exposure and light deprivation effects on the DMS and total DMSP 

concentration in the culture media (µM) –DMS (a, c, e) and total DMSP (b, d, f) in batch cultures of 

Emiliania huxleyi 370, 373 and 1516. The grey line represents the control culture grown under a 14:10 

light:dark cycle and the dark lines are the light-deprived cultures. The vertical line at day 3 in E. huxleyi 

370 and 373 and at day 5 in E. huxleyi 1516 depicts when the experimental flasks were put in the dark. 

Data for days 0 to 5 in E. huxleyi 1516 was not collected. 

DMSPt concentrations also varied amongst the three strains (Fig. 5.10b, d, f). Under the 

light-dark cycle, the data for E. huxleyi 370 displayed the maximum range of 1 to 50 µM, 

whereas for E. huxleyi 373 it increased up to 40 µM. For E. huxleyi 1516 the range was 5 

to 25 µM. DMSPt values in the light-deprived cultures were lower than the 

concentrations seen in the light-exposed cultures. After the switch to darkness, E. 
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huxleyi 370 followed the control for a day and then lagged, on day 10 the DMSPt was 

low at 14 µM; E. huxleyi 373 followed the control for 2 days and then decreased and 

lagged behind at 5.6 µM on day 10 and E. huxleyi 1516 also followed the control for 2 

days but then increased very slightly and lagged behind to read 15.5 µM on day 18. 

5.3.5 Membrane permeability using SYTOX Green stain 

Before the cultures were switched to total darkness (i.e. from days 1 to 3 in E. huxleyi 

370 and 373 and days 1 to 5 in E. huxleyi 1516), cell densities were almost equal in all 

the cultures and the percentage of compromised cells was low at around 1%, indicating 

high percentage of cell membrane integrity (Fig. 5.11). When the cultures were placed in 

total darkness cell numbers remained constant for E. huxleyi 370 and 1516, but reduced 

in E. huxleyi 373 (section 5.3.1). From this point, the percentage of compromised cells 

also began to increase suggesting that membrane integrity diminished with light 

limitation. As already seen, photosynthetic capacity (FV:FM) decreased rapidly in the 

light-deprived cultures (Fig. 5.3b, d, f). On the final day of sampling for each strain, the 

E. huxleyi 370 and 373 cultures had 40% and 50% and E. huxleyi 1516 had 60% of 

compromised cells. Once the light-dark cycle cultures reached the stationary growth 

phase (Fig. 5.2b, d, f) the cultures began to exhibit decreases in cell photosynthetic 

capacity indicating that the photosynthetic efficiency of photosystem II had decreased 

(Fig. 5.3b, d, f), however, there was significant change in the fraction of compromised 

cells detected at this time. At the last sampling point less than 10% of the cells were 

stained in the E. huxleyi 370 and 373 cultures, and less than 6% in E. huxleyi 1516 (Fig. 

5.11). 

5.3.6 Light re-exposure on the growth of Emiliania huxleyi 

Cultures in prolonged darkness were re-exposed to light-dark conditions to monitor for 

any re-growth. After being in darkness for 2, 3, 4 and 7 days, cell density failed to 

increase in E. huxleyi 370 and 373 cultures, rather the data show a steady decrease 

indicating no capacity for recovery when exposed to normal light-dark cycle conditions 

(Fig 5.12 a, b). On the other hand, when E. huxleyi 1516 cultures were placed in 
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complete darkness and re-exposed to light-dark conditions after 3, 6, 9 and 13 days, a 

normal increase in cell number was noted suggesting cell regrowth. 

 

Figure 5.11 A comparison of the light exposure and light deprivation effects on membrane permeability in 

batch cultures of Emiliania huxleyi (a) 370, (b) 373 and (c) 1516. The plots show percentage SYTOX-

Green stained cells. The grey line represents the control culture grown under a 14:10 light:dark cycle and 

the dark lines are the light-deprived cultures. The vertical line at day 3 in E. huxleyi 370 and 373 and at 

day 5 in E. huxleyi 1516 depicts when the experimental flasks were put in the dark. 
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Figure 5.12 Effect of light-dark re-exposure on the growth of Emiliania huxleyi (a) 370, (b) 373 and (c) 

1516. Plots show cell density (cells ml-1). The open circles represent the control culture grown under a 

14:10 light:dark cycle and the closed circles are the light-deprived cultures. The line at day 3 in E. huxleyi 

370 and 373 and at day 5 in E. huxleyi 1516 depicts when the experimental flasks were darkened. The 

coloured circles are the light re-exposed culture flasks and the arrows indicate the day on which the flasks 

were re-exposed to the light-dark conditions. 
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5.4 Discussion 

Effect of light deprivation and re-illumination on the cultures: The three E. huxleyi 

strains exhibited variable responses when deprived of light. The three strains differed 

greatly in their specific growth rate, cell volume and quantitative responses to dark stress 

in terms of DMSP and DMS (Table 5.1). Not surprisingly, fluorescence and 

photosynthetic efficiency of the cells of all the three strains were adversely affected by 

darkness (Fig. 5.3), with E. huxleyi 373 affected the most in terms of growth in cell 

number (Fig. 5.2). 

Re-exposing the light-deprived cultures to light-dark conditions revealed that only E. 

huxleyi 1516 was able to re-grow (Fig. 5.12) and although the photosynthetic capacity 

gradually declined after 6 days (Fig. 5.3) the cell numbers were maintained in the dark. 

Similar survival and re-growth has also been reported for the pelagophyte Aureococcus 

anophagefferens and in this case there was no significant damage to its photosynthetic 

apparatus after 2 weeks in continuous darkness (Popels et al. 2007). Findings on growth 

parameters described in this chapter match well with Wolfe et al. (2002) where cell 

division arrest and a 30% reduction in cell volume was seen in E. huxleyi CCMP 373 

after 24 h of dark stress. They further observed that cell growth recommenced and cell 

volumes increased within a day of re-exposure to light. 

In another study on the freshwater chlorophyte Scenedesmus placed at low temperature 

in continuous darkness for 30 days, cell density and photosynthetic activity were 

affected but regrowth occurred when re-exposed to the light:dark cycle at 25°C though 

at a slightly lower growth rate. (Wu et al. 2007) Here, it is possible that the sudden 

exposure to light could not be tolerated by the light-deprived E. huxleyi 370 and 373 

despite there being more than 50% viable cells (results from SYTOX Green staining-not 

shown). 

It was previously shown that non-spore forming diatom species Thalassiosira gravida is 

insensitive to light deprivation and can survive several weeks in a good physiological 

condition (Smayda and Mitchell-Innes 1974). Thalassiosira weissflogii is also known to 

be tolerant to light-deprivation (Berges and Falkowski 1998).  
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Table 5.1 Comparison of growth and DMSP parameters in Emiliania huxleyi in the light-dark cycle and 

prolonged darkness. 

Parameter 

Light-Dark cycle Prolonged darkness 

Emiliania huxleyi 

370 373 1516 370 373 1516 

Specific Growth Rate  
µ (d-1) 0.82 0.65 0.57 - - - 

Final Cell Density  
(x106 cells ml-1) 5.1 6.7 4.5 1.2 0.31 0.83 

Cell diameter  
(µm) 3.3-3.6 3.9-4.6 3.3-3.9 3.1-3.4 2.7-4.3 2.5-3.5 

Cell volume 
(µm3) 18-25 30-50 18-30 16-20 10-42 8-22 

DMSPp/Cell volume 
(mM) 212-390 210-310 100-321 350-550 260-530 160-1660 

DMSPd/Cell volume 
(mM) 12-400 12-341 15-120 95-176 45-1073 60-566 

DMS/Cell volume 
(mM) 0.4-6 0.08-0.2 0.33-1.30 1.6-12 0.09-7 0.8-20 

DMSPt/Cell volume 
(mM) 350-680 220-568 120-450 460-761 300-1600 220-2300 

DMSPp/Cell 
(fmol) 6-10 4-13 2-5 6-10 4-11 4-14 

DMSPd/Cell 
(fmol) 0.2-10 0.4-18 0.3-3 2-3 2-12.5 1.3-4.6 

DMS/Cell 
(fmol) 0.01-0.14 0.002-0.01 0.01-0.03 0.03-0.2 0.006-0.1 0.02-0.16 

DMSPt/Cell 
(fmol) 7-16 7-25 3-12 8-12 7-18 5-19 

DMSPp 
(µM) 1-50 2-40 4-22 5-11 2-12 3-15 

DMSPd 
(µM) 1.54-1.75 1.5-2 1.6-1.7 1.4-3.3 1.7-3.8 1.4-3.8 

DMS 
(µM) 0.02-0.1 0.002-0.01 0.01-0.06 0.03-0.24 0-0.02 0.02-0.14 

DMSPt 
(µM) 1-50 1-40 5-25 5-15 5-12 5-15.5 

       
Note: Approximate values for E. huxleyi 370 and 373 are over a growth period of 10 days and from day 3 
onwards while, values for E. huxleyi 1516 are over a growth period of 18 days and from day 5 onwards in 

order to compare the light-exposed and light-deprived cultures. 
 

Light deprivation weakens the ability of cells to metabolise and carry out new cell 

synthesis (Berges and Falkowski 1998). In this study, all three strains faced cell division 

arrest thus cell growth was inhibited under light-deprived conditions. This indicates that 
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Emiliania huxleyi 370, 373 and 1516 have a low tolerance to light deprivation due to 

limited ability to divide using the cell resources acquired previously. A few studies 

associating darkness with cell death have been reported e.g. for the chlorophyte 

Dunaliella tertiolecta (Berges and Falkowski 1998) and the dinoflagellate Amphidinium 

carterae (Franklin and Berges 2004). On another note, Peters (1996) conducted a 

detailed study on three species of temperate diatoms in continuous darkness and 

observed cell survival in Ditylum brightwellii and Thalassiosira punctigera for up to 35 

days and Rhizosolenia setigeru survived 21 days. Later after 49 days in prolonged 

darkness, mass cell mortality occurred in all species. 

Survival in prolonged darkness seems to be mainly related to the period the 

photosynthetic apparatus is maintained intact. Viability has been previously associated 

with the preservation of the photosynthetic apparatus (Dehning and Tilzer 1989; Peters 

and Thomas 1996) and a decline in FV/FM ratio is usually inferred as an indication of 

stress to the photosynthetic apparatus (Allakhverdiev et al. 2008).  In the present study, 

the three Emiliania huxleyi strains were able to continue photosynthesis as soon as light 

was deprived but after being in prolonged darkness, photosynthetic ability decreased 

(Fig. 5.3). This indicates that the photosynthetic apparatus was impaired and in 

prolonged darkness, the photosynthetic apparatus did not recover. A study on Dunaliella 

euchlora revealed complete loss of photosynthetic ability after a 5 day dark period 

(Yentsch and Reichert 1963). Similar observations were also reported by Dehning and 

Tilzer (1989) for the green alga Scenedesmus acuminatus, where a decrease of cellular 

chlorophyll a fluorescence caused a reduction in photosynthetic capacity.  

Effect of light deprivation on membrane permeability: SYTOX Green staining and flow 

cytometry established that by day 10, only about 40% in E. huxleyi 370, 50% in E. 

huxleyi 373 and 20% in E. huxleyi 1516 of the cells in light-deprived cultures lost cell 

membrane integrity. The increase in compromised membranes is probably an important 

preliminary stage to complete cell lysis and may need to be an important consideration 

when examining the impact of stress on marine biogeochemistry. For instance loss of 

membrane integrity could initiate the release of biogeochemically relevant compounds 

like DMSP and DMS to the environment. Such a mechanism has been suggested as the 



	
   Chapter	
  5:	
  Light	
  Deprivation	
  and	
  Re-­‐illumination:	
  Effects	
  on	
  DMSP	
  and	
  DMS	
  in	
  Emiliania	
  huxleyi 

 193 

cause of DMS generation during microzooplankton grazing on phytoplankton (Wolfe 

and Steinke 1996). Fredrickson and Strom (2008) have shown that DMSP deters grazing 

rates and proposed DMSP to work as a microzooplankton grazing deterrent. Previous 

studies have suggested that loss of membrane integrity may facilitate the release of 

cellular contents and be responsible for phytoplankton exudates and some proportion of 

the soluble DNA found in the ocean (Bjornsen 1988). Furthermore, as leaky cell 

membranes will affect the exchange of ions and metabolites across the cell wall 

(Veldhuis et al. 2001), cellular enzymes with specific physiochemical requirements for 

optimum activity may be influenced by the change in cellular conditions. Therefore 

when attempting to budget the distribution of compounds between the particulate and 

dissolved phase, an estimate of cell integrity is important so as not to underestimate 

particulate content of the intact cells. 

Effect of light deprivation on DMSP and DMS: This study revealed an increase in 

intracellular DMSP, DMSPd and DMS, though a decrease in DMSPt (µM) in the culture 

was seen in light-deprived E. huxleyi 370, 373 and 1516. 

The pie charts in Figure 5.13 are provided to better visualise the data presented in 

figures 5.5 to 5.10. In a culture, total DMSP (DMSPt) is calculated by adding DMSP 

particulate (DMSPp), dissolved DMSP (DMSPd) and DMS. This calculated DMSPt 

ideally will be equal to observed DMSPt but technical and practical limitations do create 

a marginal difference (error) between these two values. Thus we can arrive at the 

following equation:  

DMSPt (calculated) = DMSPp + DMSPd + DMS  +/– error 

In the pie charts we have represented this equation in the form of 4 wedges: DMSPp, 

DMSPd, DMS and the error.  



 

 

Figure 5.13 Comparison of the various DMS and DMSP fractions in E. huxleyi 370, 373 and 1516 incubated under a L:D cycle or prolonged darkness. Each pie 

chart represents average total DMSP from day 3 onwards in E. huxleyi 370 and 373 and day 5 onwards in E. huxleyi 1516: the timepoints when the cultures were 

darkened. Row A represents per cell volume concentrations. Row B represents per cell amounts and Row C gives concentrations in the culture media. The blue 

fraction is DMSPp, the red fraction is DMSPd, yellow fraction is DMS and the purple fraction is the analytical error (minus error is when the addition of the 

fractions > total DMSP and plus error is when the addition of the fractions < total DMSP). 
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These pie charts exhibit the difference in composition of DMSP and DMS in a culture 

with and without darkness. It can be seen that in prolonged darkness, the average 

DMSPd fraction doubles in E. huxleyi 370 and quadruples in E. huxleyi 373, but remains 

similar to the light-exposed culture in the case of E. huxleyi 1516. The DMS fraction is 4 

times greater in E. huxleyi 370, 50 times more in E. huxleyi 373 and doubles in E. 

huxleyi 1516. This suggests that in prolonged darkness there is an overall increase in the 

production of DMSP, but a portion of this goes to the dissolved DMSP and DMS 

fractions.  

A study was conducted with exponential-phase E. huxleyi transferred to continuous 

darkness (Wolfe et al. 2002), cells decreased in cell volume and DMSP content within 

24 h but DMSP content per unit cell volume remained relatively steady. DMS 

accumulated as long as cells remained in the dark, but on re-exposing to a light:dark 

cycle DMS accumulation ceased within 24 h (Wolfe et al. 2002). However, E. huxleyi 

CCMP 373, which contains a highly active in vitro DMSP lyase (refer to Steinke et al 

1998), produced only transient accumulations of DMS in the dark. Wolfe et al. (2002) 

concluded that this was due to production and associated oxidation or uptake of DMS, 

because cells of this strain rapidly removed DMS added to cultures. Wolfe et al. (2002) 

also tested three strains of the dinoflagellate Alexandrium tamarense with high in vitro 

DMSP lyase activity but this showed no DMS production in the dark, and all strains 

appeared to remove additions of DMS. Alexandrium tamarense CCMP 1771 also 

removed dimethyl disulfide, an inhibitor of bacterial DMS consumption. The results 

discussed in this study do not completely correlate to the data presented in the above-

mentioned study by Wolfe et al. (2002). 

In this study, darkness was examined as a trigger of cell death and DMSP cleavage in E. 

huxleyi, which certainly impaired the photosynthetic capacity and increased the number 

of cells with compromised membranes. It also induced increased intracellular DMSP 

and DMS levels in the cultures. But this light deprivation experiment raises an important 

argument as to why exactly DMSP would be produced by the cell when faced with light 

deprivation. Ultimately all discussion simply leads to a very important question as to 

where exactly would DMSP be produced in the cell. Is it being produced in the 
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chloroplast or in the mitochondria or in the endoplasmic reticulum at optimum light 

conditions?  The evidence in higher plants points to production in the chloroplasts, but it 

may not necessarily remain in the chloroplast as it is an osmolyte and needs to be in the 

cytoplasm. The cleavage of DMSP by marine phytoplankton is not clearly elucidated. 

Although DMSP and DMSP lyase occurs in marine algae, the net DMS production 

during active growth is low (Wolfe and Steinke 1996). It has been hypothesized that 

DMSP and DMSP lyase enzyme are physically separated within a cell (Wolfe and 

Steinke 1996) and stress perhaps triggers DMSP cleavage by compromising intracellular 

membranes and  bringing previously compartmentalised spaces together. 

When cells are in darkness or in the night cycle, they respire and use the sugars that are a 

by-product of photosynthesis giving out carbon dioxide, water and energy. In this study, 

cells that were previously under a 14:10 light:dark cycle before going into darkness, 

produced intracellular DMSP, some of which may have been cleaved by DMSP lyase to 

produce DMS. Reallocation of carbon to DMSP may be a strategy to help keep cells 

alive or a mechanism that is triggered in order to relax the cells from the overburden of 

respiration. Thus when photosynthesis has been disabled in the cells and the sugars are 

not being produced for respiration to occur, biosynthesis of methionine would lead to 

DMSP production, which would be an excellent antioxidant. But the process in which 

the cell has no light to perform photosynthesis, directs the cells to continue respiration 

finally using up all the stored sugars and other bigger molecules like lipids, with the 

remaining oxygen left for the cell to carry out respiration. This would put the cells under 

intense stress and cause cell lysis. 

Wolfe et al. (2002) suggest algal DMS accumulation according to a light-dark pattern. 

They further explain that DMS accumulates in the dark and is removed in the light by 

the reactive oxygen by-products of photosynthesis. They proposed two ways in which 

DMS accumulation occurs; up-regulation of DMSP cleavage (DMS production) and 

down-regulation of DMS removal by radicals produced from photosynthesis. From their 

experimental data involving E. huxleyi 370 and 373, Wolfe et al. (2002) concluded that 

up-regulation of DMSP cleavage in dark-stressed cells was responsible for the 

accumulated DMS seen only after the cells remained in prolonged darkness. 
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Hydroxyl radicals produced during photosynthesis (Niyogi 1999) is proposed to be 

dissipated by interaction with DMSP (Sunda et al. 2002). They further propose that the 

products of DMSP enzymatic cleavage react at a faster rate with the hydroxyl radical 

than DMSP and that this could combat oxidative stress. Stefels (2000) suggested that 

biosynthesis of DMSP could represent an overflow mechanism. In this study, darkness 

induced an increase in DMSP biosynthesis and cleavage resulting in higher intracellular 

DMSP concentration in all three strains but lower cellular DMSP content in E. huxleyi 

370 and 373, however, DMS increased. Perhaps DMSP biosynthesis and its cleavage 

help cells survive in darkness experienced due to being mixed into the aphotic zone or at 

higher latitudes where prolonged seasonal darkness occurs. 

5.5 Conclusions 

There are very few reports concerning how haptophytes respond to darkness. The aim of 

this study was to consider the possible role of DMSP in E. huxleyi in cells under light 

deprivation. The results highlight DMSP biosynthesis and DMSP cleavage as adaptive 

responses to light-deprivation as evidenced by the production and accumulation of DMS 

in light-deprived cultures. There is a distinct difference between strains in terms of 

growth and DMSP characteristics. The E. huxleyi 1516 strain has the lowest range of 

DMSP per cell volume concentrations among the 3 strains and the highest 

concentrations in the dark and this may indicate the involvement in general cellular 

metabolism during dark stress. 
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Chapter 6:  Herbicide-induced Oxidative Stress: Effects on 

DMSP and DMS in Emiliania huxleyi 

6.1 Background and significance  

All biological systems produce reactive oxygen species (ROS) such as the superoxide 

radical (O2ˉ), singlet oxygen (¹O2), hydrogen peroxide (H2O2) and the hydroxyl radical 

(HO·) (Gadjev et al. 2008). However, the production and accumulation of ROS beyond 

the capacity of an organism to quench these reactive species can be damaging or even 

fatal (Lesser 2006). In photosynthetic organisms both photosynthesis and respiration can 

result in oxidative stress (Apel and Hirt 2004; Foyer and Noctor 2003). Oxidative stress 

can be combated by the various enzymatic and non-enzymatic antioxidant defence 

mechanisms (refer Chapter 1, section 1.2.2) (Apel and Hirt 2004; Mallick and Mohn 

2000) in biological systems by quenching the ¹O2 at the site of production and quenching 

or reducing the flux of reduced oxygen intermediates like O2ˉ and H2O2 to prevent the 

production of HO·, the most damaging of the ROS. This project investigates one such 

potential antioxidant system: The DMSP antioxidant system.  

It has been proposed that DMSP could be the key compound in an antioxidant cascade in 

marine phytoplankton (Sunda et al 2002). Theoretical data suggests that the osmolyte 

DMSP, and especially its breakdown products DMS, acrylic acid dimethylsulphoxide 

(DMSO) and methane sulphanic acid (MSA), could be highly effective antioxidants 

(Sunda et al. 2002). The function of these compounds would be to scavenge harmful 

cytotoxic oxygen free radicals such as the superoxide anion and hydroxyl radicals under 

conditions that cause oxidative stress. Sunda et al. (2002) suggested the antioxidant 

function for DMSP in marine algae and showed that solar ultraviolet radiation, CO2 

limitation, Fe limitation, Cu+² elevation and H2O2 elevation led to the upregulation in 

activity of the well known antioxidant enzyme ascorbate peroxidase (APX) alongside 

substantial increases in intracellular DMSP concentration, and in some cases DMS 

production. 
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In this study, paraquat (also known as methyl viologen) a well-known non-selective 

herbicide was used to artificially and directly catalyze the formation of reactive oxygen 

species in the bloom-forming coccolithophore E. huxleyi in the presence of light and 

oxygen. 

Action of paraquat (methyl viologen):  

 

 
   

Figure 6.1 Paraquat also known as methyl viologen (IUPAC name- 1,1'-Dimethyl-4,4'-bipyridinium 

dichloride), is a dication (PQ2+) that undergoes univalent reduction to produce a paraquat radical (PQ·+), 

which then reacts rapidly with oxygen to produce superoxide (O2ˉ), a harmful reactive oxygen species. 

(Diagram from Cochemé and Murphy (2009)). 

Paraquat (Fig. 6.1) is widely used in higher plant research (Bonilla et al. 1998; 

Broadbent et al. 1995; Bus and Gibson 1984; Donahue et al. 1997; Franqueira et al. 

1999; Franqueira et al. 2000; Qiao et al. 2002). Paraquat interacts with the electron 

transfer components associated with photosystem I (PSI) (Devine et al. 1993) (Fig. 6.2). 

Under normal circumstances, when light hits the chlorophyll reaction centre in the 

chloroplast, the electron is excited and transferred to ferredoxin (Fd), which in turn is 

then sent to the primary electron acceptor NADP+, forming NADPH. These high-energy 

electrons are the source of energy for cellular biosynthesis. Paraquat is very 

electronegative and binds to the protein ferredoxin near PSI and competes with NADP+ 

as an electron acceptor. Thus, rather than the electron entering the electron transport 

pathway, it is acquired by paraquat and as a result no NADPH is produced. When the 
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herbicide is reduced by an electron, it rapidly transfers the electron to oxygen, forming 

highly ROS including the superoxide anions and hydroxyl ions (Bus and Gibson 1984). 

This initiates a cascade of free radical reactions that causes extensive cellular damage. 

Thus the herbicide uncouples the energy of photosynthesis from the cellular biosynthetic 

machinery and if the concentration of paraquat is high enough and the cell cannot 

combat the ROS with its antioxidant systems, the energy can prove lethal.  

 

 

Figure 6.2 Mode of action of paraquat in chloroplast.  

It is important to note that Fytizas (1980) has reported that in marine ecosystems there 

can be 50 to 70% loss of paraquat from seawater within 24 h, perhaps due to paraquat-

resistant bacterial breakdown. Nonetheless paraquat continues to find use in studies of 

oxidative stress in marine ecology. Mayer (1987) reported in the acute toxicity handbook 

of chemicals to estuarine organisms, that marine algae are relatively resistant to paraquat 

and require higher dosages to produce significant growth inhibition compared to fresh 

water algae. 

Given that DMSP is proposed to act as an antioxidant, I used paraquat to cause oxidative 

stress and then monitored the aspects of the stress response in E. huxleyi and looked for 
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changes in the DMSP system to see if further support could be found for the antioxidant 

function hypothesis. The expectation was that under stress intracellular DMSP 

production and DMS release would increase as part of an upregulation of the cellular 

antioxidant systems. 

6.2 Methodology 

Most of the work presented in this chapter was conducted on E. huxleyi 1516, though 

strains 370 and 373 were examined to establish whether paraquat-induced oxidative 

stress was strain dependent. 

6.2.1 Culture conditions 

Batch cultures of E. huxleyi (CCMP 370 and 373; naked cells and CCMP 1516; 

originally calcifying but lost its liths with culture in f/2 medium) were in grown seawater 

enriched with f/2 nutrients with the omission of Si, at 17°C under a 14:10 light:dark 

cycle at 100 µmol m-2 s-1. More details are given in Chapter 2. 

6.2.2 Parameters measured 

Cell counts and cell volume were monitored on the Coulter counter and in vivo 

fluorescence and the efficiency of Photosystem II were measured with a phytoPAM (see 

details in Chapter 2). Given that the cells were naked, there was no need for an 

acidification step to remove coccoliths before estimating cell volume. DMS, DMSPd, 

DMSPp and DMSPt were all measured on the GC (Chapter 2, section 2.6), membrane 

permeability (‘viability’) was determined with SYTOX-green using the flow cytometer 

(Chapter 2, section 2.7). Hydrogen peroxide was also measured (Chapter 2, section 2.9). 

Utmost care was taken to keep the cultures axenic throughout the experiment and this 

was checked with a DAPI stain (Chapter 2, section 2.3) at the start and end of each 

experiment. 
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6.2.3 Establishing the effective paraquat concentration 

In this study, various concentrations of paraquat (0.05 to 5 mM) were tested to decide an 

effective working concentration of paraquat. The strains were exposed to paraquat for 24 

h and cell numbers, cell volume, fluorescence, photosynthetic capacity and intracellular 

DMSP were measured. On the basis of these results (Results 6.3.1), a final working 

concentration of 1 mM paraquat was selected, as at this concentration cell death was not 

induced. 

6.2.4 Electronic trigger setting on the flow cytometer 

A test was conducted to determine the electronic trigger parameter. This is essential to 

limit the signals to those derived from the particles of interest (for example, a cell) and 

ignore debris and 'spikes' from electronic noise. In studies on phytoplankton, data 

acquisition is triggered on red fluorescence (FL3) to reduce interference from non-

fluorescent particles (Brussaard et al. 2001), but there could be higher chances of losing 

key information like dead cells while studying cell death processes. Since oxidative 

stress can result in the death of some cells, the use of light scatter as the trigger was 

tested. A series of various triggers was applied (Side scatter - SSC, Forward scatter - 

FSC, Red - FL3, Green - FL1 and orange – FL2 fluorescence) at values ranging from 0 

to 750 (0, 52, 100, 250, 500 and 750). Based on the potential detection of all events 

collected, SSC was found to be more sensitive at a threshold of 0. Thus cell sorting was 

triggered at SSC. 

6.2.5 Cell sorting: protocol and optimization 

Since paraquat inhibits cell growth, it may be proposed that a subpopulation of 

oxidatively stressed cells are upregulating DMSP than the population as a whole, such 

that the elevation is masked. This idea was tested by flow cytometric cell sorting. Cells 

of E. huxleyi 1516 were sorted using a Cytopeia influx (Chapter 2, section 2.8) after 72 h 

exposure to paraquat. The control sample and the paraquat-exposed E. huxleyi 1516 

samples were first passed through a 30 µm Partec filter to avoid clogging in the cell 

sorting system. The sorted cell populations were collected into 15 ml Falcon tubes 
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containing 3 ml filtered seawater (FSW) at room temperature. The experimental plan 

was to use 0.1 µm FSW of 33 psu as the sheath fluid in the BD influx cell sorter, but this 

led to high background being detected, so sorting was done with a low saline sheath 

fluid (10 mM NaCl). Cell sorting analysis was triggered on side scatter = 20; 488 nm 20 

mW and 635 nm 30 mW. 

The sorting process involved a long time, like even up to 60 minutes to collect 3 x 106 

cells, so it was crucial to know the minimum number of cells required for the detection 

of intracellular DMSP and DMSP per cell. A test was therefore conducted to determine 

the minimum number of cells that were needed for a DMS signal on the GC. For this, 

various volumes of the control and the 72 h paraquat-treated cultures were gently filtered 

through 25 mm GF/F filters using a hand pump. The total volume filtered was kept a 

constant 3 ml, adjusting the volume of FSW for each of the culture volumes. The results 

from this test suggested that although a decent DMS signal could be acquired from 

100,000 cells, sorting more than 1,000,000 cells was more advisable (see section 6.3.3). 

Cell volume measurements of the sorted cells were done on the Coulter counter to allow 

calculation of intracellular DMSP values. 

6.2.5.1 The pre-concentration step 

A constant number of 1.5 x 106 cells were sorted and each sample was sorted in 

biological triplicate. Cell sorting was based on the emission of red fluorescence (670 

nm), as the number of cells emitting red fluorescence was high and so the sorting time 

was reduced and triplicate sorts were possible. 

The time involved in sorting 1.5 x 106 cells for the paraquat-treated samples was 40 

mins compared to 20 mins for the control culture samples. Thus a pre-concentration step 

was adopted to again reduce sorting time and achieve triplicate sorts. For this, two cell 

pre-concentration techniques were tried: a centrifugation method and a plate-

concentration method. Out of the two, based on the flow cytometric data profiles, the 

plate-concentration method achieved the best results in terms of the least loss of cells 

due to pre-concentration and there being no significant difference in the cell emissions. 

The centrifugation method caused greater losses in cell number, especially in the 
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paraquat exposed cells. Finally, the time involved in sorting 1.5 x 106 cells for the 

paraquat-treated samples was 10 mins compared to 5 mins for the control culture 

samples. 

A. Centrifugation Method: Initial tests with different timings involved and 

rotation speeds were carried out to establish the best settings for the centrifugation 

method. Loss of cells using flow cytometric analyses was noted above 15 mins and at 

speeds above 5310 g (5000 rpm) for the paraquat treated samples. Based on the results 

of these tests, 2 ml of the control and treated cultures were centrifuged for 10 mins at a 

speed of 3398 g (4000 rpm) at 21°C. After centrifugation, the sample was divided into 

three portions: Supernatant 1 (top 0.2 ml), Supernatant 2 (1.4 ml below the supernatant 

1) and the re-suspended pellet (bottom 0.4 ml). A non-centrifuged control sample and a 

vortex re-suspended centrifuged sample were also examined on the flow cytometer. Cell 

numbers did not match up indicating loss of cells during centrifugation. Losses were 

greater (30%) for the paraquat treated culture than the control culture suggesting that the 

paraquat-exposed cells could not withstand centrifugation stress. 

B. Plate-concentration Method: In the plate concentration method, 3 sequential 

200 µl aliquots of the culture sample were placed in the well of a multi-well plate. Each 

well containing the sample was concentrated by gently sucking through the filter at the 

base of the well with a syringe. The filter was not allowed to go dry such that the cells 

were concentrated in a 200 µl volume. This volume was then re-suspended in 3 ml FSW 

and ready for sorting. 

  

Figure 6.3 Plate-Concentration Method with top view and side view of the plate. 
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Prior to sorting, the pre-concentrated cells were run through the FACS calibur to 

examine any changes in fluorescence of the cells, which may have occurred as a 

negative effect of the plate-concentration method (Results 6.3.3). Overall the plate-

concentration method proved suitable for cell pre-concentration and was adopted to 

reduce sorting time. 

6.2.6  Reaction between DMSP and paraquat 

Two conical flasks capped with cotton bungs and two borosilicate tubes with screw-

capped lids were set up under sterile conditions to test the reaction between DMSP and 

paraquat. A known concentration of DMSP (60 µM) was prepared from a DMSP 

standard diluted in f/2-Si media and dispensed into the flasks and tubes. To one of the 

flask and tube, a known concentration of paraquat was added to a final concentration of 

1 mM. The main difference in the flask and tube set-up was that, sterility was 

maintained in the tube set-up by the use of sterile glassware and DMSP and paraquat 

solutions were prepared in sterile conditions ensuring no inclusion of bacteria, while in 

the flask set-up, the sterile technique was not followed. This was done to see the effect 

of bacterial action on DMSP and DMSP + paraquat. The flasks and tubes were all placed 

in an incubator for about 5 days under the same light and temperature conditions used 

for the paraquat-induced oxidative stress experiments. The results of this experiment are 

shown in Results 6.3.8. 

6.3 Results 

6.3.1 Effective concentration of paraquat 

Batch cultures of initial cell density of ~ 500,000 cells ml-1 of E. huxleyi 370, 373 and 

1516, were exposed to various concentrations of paraquat ranging from 0.05, 0.1, 0.5, 1, 

2, 3, 4 and 5 mM for 24 h (Fig. 6.4 and 6.5). Measurements were made at 0 h and then at 

24 h. With increasing concentration of paraquat the cell densities reduced relative to 

those of the controls after the 24 h exposure and with 1 mM paraquat there was 

essentially no growth suggesting cell growth arrest (Table 6.1). The initial cell volume at 
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0 h, was 30 µm3 for E. huxleyi 370, and 25 µm3 for 373 and 1516 (Table 6.1), but after 

24 h exposure to various concentrations of paraquat, a clear and well-replicated increase 

in cell volume at 39, 37 and 36 µm3 for E. huxleyi 370, 373 and 1516 (Table 6.1) was 

observed in all three strains exposed to 1 mM paraquat, while no increase in cell volume 

was seen at < 1 mM. At concentrations above 1 mM the replication of the data was poor 

even when a repeat testing was carried out. SYTOX Green staining of cells exposed to > 

1 mM paraquat revealed 50% or more compromised cells after 24 h exposure (Fig. 6.5). 

With 1 mM SYTOX Green indicated 18% of the E. huxleyi 370 and 1516 and 29% of 

the E. huxleyi 373 cells with compromised membranes. The main aim with paraquat 

exposure was not to induce cell death but enhance oxidative stress and to test its effect 

on intracellular DMSP. In this context, figure 6.4 shows a clear decrease in 

photosynthetic capacity, indicating stress, at 1 mM paraquat for all three strains. 

Samples exposed to paraquat concentrations > 1 mM showed lower FV/FM ratio and very 

low fluorescence suggesting low photosynthetic capacity and a high level of stress (Fig. 

6.4).  There was no matching pattern in the intracellular DMSP concentration data, 

rather a decrease in DMSPp was observed. From the above results, 1 mM was selected 

as the effective concentration of paraquat. 

Table 6.1 Comparison of the effect of 1 mM paraquat on E. huxleyi 370, 373 and 1516 versus a control. 

Data are shown for time 0 and 24 h. 

 
Parameter 

E. huxleyi 370 E. huxleyi 373 E. huxleyi 1516 

0 h 
24 h 

0 h 
24 h 

0 h 
24 h 

0 mM 1 mM 0 mM 1 mM 0 mM 1 mM 
Cell density  

(cells ml-1x 103) 500 1,078 512 500 944 519 500 1,071 502 

Cell Volume  
(µm3) 30 31 39 25 25 37 25 26 36 

Fluorescence 
(arbitrary unit) 200 376 191 150 280 148 150 279 147 

Photosynthetic 
Capacity 0.6 0.60 0.41 0.58 0.57 0.41 0.59 0.59 0.48 

Intracellular DMSP 
(mM) 200 214 180 400 417 251 200 254 189 

DMSP/Cell  
(fmol) 6 2.76 3.52 6.00 6.36 5.11 4.08 4.58 3.78 

SYTOX Green 
stained cells (%) < 1 1 18 < 1 1 29 < 1 1 18 

Viable cells (%) 95 89 75 95 89 67 95 89 75 
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Figure 6.4 Three strains of E. huxleyi were exposed to various concentrations of paraquat and the effect on 

cell density, cell volume, fluorescence and photosynthetic capacity was measured after exposure for 24 h. 

Purple, blue and red bars denote E. huxleyi 370, 373 and 1516 respectively. The solid bars indicate 

effective paraquat concentration selected as a working concentration. The error bars represent range of 

data (n=3). 
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Figure 6.5 Three strains of E. huxleyi were exposed to various concentrations of paraquat and the effect on 

intracellular DMSPp, DMSPp per cell, sytox-stained cells and viable cells after exposure for 24 h. Purple, 

blue and red bars denote E. huxleyi 370, 373 and 1516 respectively. The solid bars indicate effective 

paraquat concentration selected as a working concentration. The error bars represent range of data (n=3). 
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6.3.2 Paraquat exposure time-series experiments 

A 72 h time-series exposure to 1 mM paraquat with intermittent measurements was 

carried out on E. huxleyi 370 and 373 (Fig. 6.6 and 6.7) and 48, 72 and 120 h time-series 

exposures were carried out using E. huxleyi 1516 (Fig. 6.8 to 6.14).  

In the 48 h time-series exposure experiment, the various parameters were measured at 0, 

1 and 2 h followed by 2 h time intervals for the first 24 hours and at 6 h intervals for the 

next 24 hours. In the 72 h time-series experiment, the various parameters were recorded 

on a daily basis while the measurements for the 120 h time-series exposure were done at 

0, 2 and 12 h followed by 12 h time intervals. The 120 h time-series was conducted with 

the culture in its exponential growth phase for the first three days, but then it reached the 

stationary phase after 72 h. 

6.3.2.1 Cell culture and growth measurements 

Within all time-series exposures, cell growth inhibition was noted with paraquat after 24 

h. Cell density did not decrease over time but it was clear that after 48 h the cell density 

in the control cultures was almost double at 1.5 and 2.2 x 106 cells ml-1 in E. huxleyi 370 

and 373 and at 1.5, 1.8 and 1.9 x 106 cells ml-1 in 120, 72 and 48 h exposed E. huxleyi 

1516 than compared to the paraquat-exposed cultures at 0.6 x 106 cells ml-1 in E. huxleyi 

370 and 373 and at 0.6, 1.2 and 1.1 x 106 cells ml-1 in 120, 72 and 48 h exposed E. 

huxleyi 1516 respectively (Fig. 6.6, 6.7 and 6.8).  

In the 120 h time-series, cell aggregation was visual after 72 hours in the control culture 

while, since paraquat arrests cell cycle, growth in the paraquat-exposed culture was 

inhibited. Cell volume was generally higher in the paraquat-exposed cultures at 37 and 

39 µm3 in E. huxleyi 370 and 373 at 72 h and at 37, 21 and 44 µm3 in 120, 72 and 48 h 

paraquat-exposed E. huxleyi 1516 (Fig. 6.6, 6.7 and 6.8). 
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Figure 6.6 A 72 h time series exposure on E. huxleyi 370 to 1 mM paraquat in the L:D cycle. The above 

plots display cell density, cell volume, fluorescence, photosynthetic capacity, DMSPp per cell volume 

(mM), DMSPp per cell (fmol) and DMSPp in the culture (µM). The bottom plot on the right shows 

percentage of (a) viable cells (open symbols) and (b) cells with compromised membranes (closed 

symbols) after SYTOX Green stain addition The grey line denotes the control (not exposed to paraquat) 

and the black line denotes the paraquat-exposed cultures. The average value and range of data is shown 

(n=3). Where no range bars are visible, the data range was smaller than the symbol size. 
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Figure 6.7 A 72 h time series exposure on E. huxleyi 373 to 1 mM paraquat in the L:D cycle. The above 

plots display cell density, cell volume, fluorescence, photosynthetic capacity, DMSPp per cell volume 

(mM), DMSPp per cell (fmol) and DMSPp in the culture (µM). The bottom plot on the right shows 

percentage of (a) viable cells (open symbols) and (b) cells with compromised membranes (closed 

symbols) after SYTOX Green stain addition The grey line denotes the control (not exposed to paraquat) 

and the black line denotes the paraquat-exposed culture. The average value and range of data is shown 

(n=3). Where no range bars are visible, the data range was smaller than the symbol size. 
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Figure 6.8 Time series exposure of E. huxleyi 1516 to 1 mM paraquat over 48, 72 and 120 h with a L:D 

cycle. Plots a, c and e show cell density and plots b, d and f show cell volume. The grey line denotes the 

control (not exposed to paraquat) and the black line denotes the paraquat-exposed culture. The average 

value and range of data is shown (n=3). Where no range bars are visible, the data range was smaller than 

the symbol size. 

Fluorescence in the paraquat exposed culture remained fairly constant in the range of 

100 to 200 and 360 to 430 for E. huxleyi 370 and 373 over the 72 h time series and in the 

range of 60 to 220, 150 to 290 and 250 to 300 for E. huxleyi 1516 over the 120, 72 and 

48 h time series respectively when compared to increasing control cultures reaching a 

maximum of 1320 value in E. huxleyi 373 at 72 h (Fig. 6.6, 6.7 and 6.9).  
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A sharp decrease was seen in the photosynthetic capacity within 24 h at 0.41 in E. 

huxleyi 370 and 373 and at 0.41, 0.48 and 0.53 in E. huxleyi 1516 over the 120, 72 and 

48 h time series respectively (Fig. 6.6, 6.7 and 6.9). All the cultures were seen with some 

recovery after 24 h except E. huxleyi 373 which decreased further and reached 0.3 by 72 

h. The fairly stabilized fluorescence and photosynthetic capacity does suggest chances of 

regrowth and recovery in absence of stressor. 

 

Figure 6.9 Time series exposure of E. huxleyi 1516 to 1 mM paraquat over 48, 72 and 120 h with a L:D 

cycle. Plots a, c and e show fluorescence and plots b, d and f show photosynthetic capacity. The grey line 

denotes the control (not exposed to paraquat) and the black line denotes the paraquat-exposed culture. The 

average value and range of data is shown (n=3). Where no range bars are visible, the data range was 

smaller than the symbol size. 
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6.3.2.2 SYTOX Green staining 

Increase in membrane permeability in E. huxleyi 370, 373 and 1516 during oxidative 

stress on exposure to paraquat was revealed with SYTOX Green staining and flow 

cytometry (Fig. 6.6, 6.7, 6.10 and 6.11). The percentage of compromised cells were 

noted to be 30% in E. huxleyi 370 and 373 at 72 h and at 55, 32 and 20% in 120, 72 and 

48 h exposed E. huxleyi 1516, compared to 3% in E. huxleyi 370 and 373 at 72 h and at 

4, 3 and 0.1% in 120, 72 and 48 h exposed E. huxleyi 1516, last reading in the control 

culture. 

Cultures exposed to paraquat showed a decrease in the percentage of viable cells. The 

percentage of viable cells were noted to be 60% in E. huxleyi 370 and 373 at 72 h and at 

40, 65 and 70% in 120, 72 and 48 h exposed E. huxleyi 1516, compared to 93% in E. 

huxleyi 370 and 373 at 72 h and at 85, 95 and 95% in 120, 72 and 48 h exposed E. 

huxleyi 1516, in the control culture. 

The cell viability of the control cultures i.e. without paraquat, remained constant, in the 

range of almost 80 to 100% over the time period. In the 48 h time series, it is interesting 

to note that a higher percentage of control cells are SYTOX Green stained (Fig. 6.6, 6.7, 

6.10 and 6.11) over the course of the light period and the cell volume is at its peak (Fig. 

6.6, 6.7 and 6.8). 
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Figure 6.10 Time series exposure of E. huxleyi 1516 to 1 mM paraquat over 48, 72 and 120 h with a L:D 

cycle. Plots a, c and e show percentage viable cells and plots b, d and f show percentage of cells with 

compromised membranes after SYTOX Green stain addition. The grey line denotes the control (not 

exposed to paraquat) and the black line denotes the paraquat-exposed culture. The average value and range 

of data is shown (n=3). Where no range bars are visible, the data range was smaller than the symbol size.  
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Figure 6.11 Snapshot of cytograms after SYTOX Green additions at 12 h and 24 h. On the top left, 

Control + SYTOX at 12 h (R7-viable cells and R6-compromised cells). On the bottom left, Control + 

SYTOX at 24 h (R8-viable cells and R9-compromised cells). On the top right, Paraquat + SYTOX at 12 h 

(R13-viable cells and R14-compromised cells). On the bottom right, Paraquat +SYTOX at 24 h (R15-

viable cells and R16-compromised cells). At 12 h an increase in SYTOX-Green stained cells was observed 

and this has been noted at every interval of 12 h in a time series. The above snapshot is only an example. 

6.3.2.3 Particulate DMSP analyses 

In all the time-series for paraquat exposed E. huxleyi 370, 373 and 1516 the DMSP 

particulate (DMSPp) has been calculated and represented as DMSPp per cell volume 

(mM) (Fig. 6.6, 6.7 and 6.12), DMSPp per cell (fmol) (Fig. 6.6, 6.7 and 6.12) and 

DMSPp (µM) (Fig. 6.6, 6.7 and 6.13). 

DMSPp per cell volume showed a decreasing trend for all the time exposures and strains 

with concentrations at 111 and 256 mM in E. huxleyi 370 and 373 at 72 h and at 77, 257 

and 60 mM in 120, 72 and 48 h exposed E. huxleyi 1516, compared to control at 265 and 

410 mM in E. huxleyi 370 and 373 at 72 h and at 197, 445 and 342 mM in 120, 72 and 

48 h exposed E. huxleyi 1516, at same time points (Fig. 6.6, 6.7 and 6.12). 
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Figure 6.12 Time series exposure of E. huxleyi 1516 to 1 mM paraquat over 48, 72 and 120 h with a L:D 

cycle. Plots a, c and e show DMSPp per cell volume (mM) and plots b, d and f show DMSPp per cell 

(fmol). The grey line denotes the control (not exposed to paraquat) and the black line denotes the 

paraquat-exposed culture. The average value and range of data is shown (n=3). Where no range bars are 

visible, the data range was smaller than the symbol size. 
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Figure 6.13 Time series exposure of E. huxleyi 1516 to 1 mM paraquat over 48, 72 and 120 h with a L:D 

cycle. Plots a, b and c show DMSPp (µM) in the culture. The grey line denotes the control (not exposed to 

paraquat) and the black line denotes the paraquat-exposed culture. The average value and range of data is 

shown (n=3). Where no range bars are visible, the data range was smaller than the symbol size. 

DMSPp per cell also followed the decreasing trend for all the 120, 72 and 48 h time 

exposures in E. huxleyi 1516 with values at 2.9, 5.3 and 2.6 fmol respectively when 

compared to the control values at 4.3, 6.4 and 10.8 fmol. While 72 h exposed E. huxleyi 

370 and 373 after decreasing initially increased at 4.11 and 9.4 fmol compared to the 

control at 3.4 and 5.2 fmol at 72 h (Fig. 6.6, 6.7 and 6.12). 

DMSPp in the culture too followed the decreasing trend for all the time exposures and 

strains with low concentrations at 3.4 and 7.6 µM in E. huxleyi 370 and 373 at 72 h and 

at 2.5, 6.8 and 3 µM in 120, 72 and 48 h exposed E. huxleyi 1516, when compared to 
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14.8 and 15.8 µM in E. huxleyi 370 and 373 at 72 h and at 12.7, 17.2 and 20.4 µM in 

120, 72 and 48 h exposed E. huxleyi 1516, at same points (Fig. 6.6, 6.7 and 6.13). 

6.3.2.4 Total DMSP, dissolved DMSP and DMS analyses 

DMS, DMSPd and DMSPt analyses were conducted only with E. huxleyi 1516 in the 72 

h time-series exposure experiment (Fig. 6.14 and 6.15). This analysis was conducted 

mainly to test any increased levels of DMS or DMSPd observed in the paraquat-exposed 

condition (Fig. 6.14). There was no increase in DMS in the culture, but dissolved DMSP 

was higher in concentration compared to the control culture. DMS for paraquat-exposed 

cultures was noted to be low at 0.1 mM per cell volume concentration, 0.002 fmol per 

cell and 0.01 µM in the culture compared to control at 0.8 mM per cell volume 

concentration, 0.01 fmol per cell and 0.06 µM in the culture whereas DMSPd was noted 

to be high at 79 mM per cell volume concentration, 1.5 fmol per cell or 3.2 µM in the 

culture compared to control at 30 mM per cell volume concentration, 0.4 fmol per cell 

and 2.3 µM in the culture. 

The overall total production of DMSP as seen from the DMSPt (Fig. 6.15) 

measurements was still found to be lower at 230 mM per cell volume concentration, 4.4 

fmol per cell and 9.3 µM in the paraquat-exposed culture than in the control at 316.4 

mM per cell volume concentration, 4.6 fmol per cell and 23.9 µM in the culture.  

Thus there was no increase in intracellular DMSP concentrations with paraquat-induced 

oxidative stress and DMS production was also lower in the paraquat-exposed culture.  
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Figure 6.14 A 72 h time series exposure on E. huxleyi 1516 to 1 mM paraquat in the L:D cycle. The plots 

on the left display DMSPd per cell volume (mM), DMSPd per cell (fmol) and DMSPd in the culture (µM) 

and on the right, DMS per cell volume (mM), DMS per cell (fmol) and DMS in the culture (µM). The 

grey line denotes the control (not exposed to paraquat) and the black line denotes the paraquat-exposed 

culture. The average value and range of data is shown (n=3). Where no range bars are visible, the data 

range was smaller than the symbol size.  
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Figure 6.15 A 72 h time series exposure on E. huxleyi 1516 to 1 mM paraquat in the L:D cycle. The above 

plots display DMSPt per cell volume (mM), DMSPt per cell (fmol) and DMSPt in the culture (µM). The 

grey line denotes the control (not exposed to paraquat) and the black line denotes the paraquat-exposed 

culture. The average value and range of data is shown (n=3). Where no range bars are visible, the data 

range was smaller than the symbol size. 
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6.3.3 Cell sorting optimization 

As mentioned before in section 6.2.5, it was crucial to know the minimum number of 

cells required for the detection of DMSP per cell to minimise the long sorting times 

required for the paraquat-treated cells (Fig. 6.16). Experiments revealed that when the 

cell numbers were 100,000 per 3 ml sample or less, DMSP per cell levels tended 

towards a very high value, which may not have been the actual DMSP levels in the 

sample but an artifact of the instrumental analyses. Thus it was not advisable to sort cells 

as low as a 100,000 in number.  

 

Figure 6.16 DMSP per cell for non-sorted control and paraquat-exposed E. huxleyi cells v/s Number of 

cells filtered per 3 ml sample. Plot B is the magnified view of Plot A. In plot B, the highest values are 

omitted.  The open circles denote control and the closed circles denote paraquat exposed culture. Only 

average data values have been shown. 

Figure 6.17 shows the volume range (0.01 – 3 ml) of the culture used in filtration, with 

the total volume kept constant at 3 ml. This plot clearly shows that culture volumes 

lower than 0.5 ml filtered, result in very high DMSP/cell content. It could be the 

inaccuracies in counting a very low number of cells in culture volumes less than 0.5 ml 

introduced in 3 ml FSW. 
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Figure 6.17 DMSP per cell for non-sorted control and treated E. huxleyi cells v/s Volume of culture 

filtered. Plot B is the magnified view of Plot A. In plot B, the highest values have been omitted. The open 

circles denote control and the closed circles denote paraquat exposed culture. Only average data values 

have been shown. 

Sorting 1.5 x 106 cells from paraquat-treated cultures took 20 mins to sort as opposed to 

10 mins for the control culture samples. Thus a pre-concentration step was necessary to 

reduce sorting time and achieve triplicate sorts. For this, two pre-concentration 

techniques were tried: the centrifugation method and the plate-concentration method. 

Out of the two, based on the flow cytometric data profiles, the plate-concentration 

method achieved the best results in terms of the least loss of cells (< 3%) due to pre-

concentration and there was also no change in the cell fluorescence emissions. The 

centrifugation method resulted in substantial losses in cell number (30%), especially in 

the paraquat-exposed cells. The pre-concentration method reduced the sorting times to 

half the time i.e. 10 mins for the paraquat-treated cultures and 5 mins for the control 

culture samples. 

At 72 h, cell sorting of the control culture sample resulted in one major cell population 

emitting red fluorescence (670 nm) whereas the paraquat-exposed culture had two 

distinct populations: one with high red fluorescence (Red +ve) and the other with low 

red fluorescence (Red -ve). 

As seen below in Figure 6.18, there was no significant effect on the sorted cells in terms 

of DMSP per cell concentrations due to the pre-concentration step using the plate-
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concentration method. Thus the plate-concentration method was suitable for pre-

concentration of cells and this reduced sorting time. 

 

Figure 6.18 Comparison of DMSP per cell (fmol) from the sorted cells without the pre-concentration step 

(bars with dashed outline) and sorting done with the pre-concentration step using the plate-concentration 

method (bars with solid outline). The error bars denote the range of the biological triplicates. 

6.3.4 Effects of sorting  

It was also necessary to determine whether sorting would have any effect on the volume 

of a cell, as deriving intracellular DMSP values is essentially dependent on cell volume. 

For this, cell volume was measured on the Coulter counter before and after sorting the 

cells of the control and paraquat-exposed cultures (Fig. 6.19). It can be concluded that 

cell volume apparently undergoes a change during sorting. After sorting the cells, the 

cell volume increased by 15% with the control cells and decreased by 5% with the 

paraquat-exposed cells.  

 

Figure 6.19 Changes in cell volume in control and paraquat exposed cell populations of E. huxleyi 1516. 

The white and the grey bars denote the average value for the control and paraquat-exposed cell 

populations respectively. The error bars show the range of data (n=3). 
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Another interesting feature was observed in the control cell population after the cells 

were being sorted. On observing the cells with side scatter, two populations were 

distinguishable from each other although their emissions remained the same (Fig. 6.20). 

This was not noted in the paraquat-exposed cells. This may be attributed to the fact that 

the cells in the control culture were in their late exponential phase and cell sorting may 

have forced the cells on the verge of cell division to divide. This observation could have 

been verified further with microscope pictures but was not feasible at that time. 

 

Figure 6.20 The cytogram on the left shows the control cell population at 72 h before cell sorting and on 

the right, the cytogram represents the control cell population after cell sorting as seen from side scatter 

(SSC) v/s red fluorescence (670). 

6.3.5 DMSP content in sorted cells 

After sorting cells based on fluorescence emissions, decreases in intracellular DMSP 

concentrations and per cell DMSP amounts were observed in the paraquat sorted cell 

populations (Fig. 6.21 and 6.22). The paraquat-exposed cells seem to have lower DMSP 

levels exactly as seen in the DMSP bulk measurements (Fig. 6.11 and 6.12). The major 

difference between figures 6.21 and 6.22 is the number of cells sorted and the ‘type’ of 

cell volume values used in deriving the intracellular DMSP concentration and DMSP per 

cell amount. The ‘type’ of cell volume values essentially means cell volume before cell 

sorting or cell volume after cell sorting. 

In figure 6.21, 1.5 x 106 cells were sorted and the cell volume was measured on the 

Coulter counter after sorting. This may account for the higher intracellular DMSP values 
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seen in figure 6.21(a). In figure 6.22, 1.0 x 106 cells were sorted and the cell volume 

used in deriving intracellular DMSP was taken before the cells were sorted. The 

difference in cell volume after sorting (see section 6.3.4) resulted in magnified values of 

intracellular DMSP, whereas DMSP per cell and DMSP (µM) values were not hugely 

affected. 

 

Figure 6.21 DMSP content in sorted E. huxleyi 1516 cells. (a) Intracellular DMSP (mM) is derived from 

cell volume values after sorting (b) DMSP per cell (fmol) and (c) DMSP (µM). Here 1.5 x 106 cells were 

sorted. The white and the grey bars denote the average value for the control and paraquat-exposed cell 

populations respectively. The error bars show the range of data (n=3). 

 

Figure 6.22 DMSP content in sorted E. huxleyi 1516 cells. (a) Intracellular DMSP (mM) is derived from 

cell volume values before sorting (b) DMSP per cell (fmol) and (c) DMSP (µM). Here 1.0 x 106 cells were 

sorted. The white and the grey bars denote the average value for the control and paraquat-exposed cell 

populations respectively. The error bars show the range of data (n=3). 
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6.3.6 Re-growth experiment 

An aliquot of paraquat-exposed cells from E. huxleyi 370, 373 and 1516 was dispensed 

in fresh f/2-Si media after 72 h. Figure 6.23 shows that cells began to grow normally in 

terms of cell numbers and cell volume quickly dropped to a normal range. DMSP 

concentrations seem to increase to its normal concentrations. This was a small test to 

establish that paraquat was not killing the cells and that some cells were in a state to re-

grow when normal conditions returned. 

 
Figure 6.23 Influence of paraquat-exposed cells of E. huxleyi 370, 373 and 1516 dispensed in fresh media 

after 72 h on cell density, cell volume, photosynthetic capacity and DMSP concentrations. The purple, 

blue and red lines show average values and represents E. huxleyi 370, 373 and 1516 respectively. 

6.3.7 Hydrogen peroxide measurements  

Hydrogen peroxide (H2O2) analyses were done to give a measure of oxidative stress in 

paraquat-exposed cultures. A clear increase was seen in H2O2 in the medium of the 



	
   Chapter	
  6:	
  Herbicide-­‐induced	
  Oxidative	
  stress:	
  Effects	
  on	
  DMSP	
  and	
  DMS	
  in	
  Emiliania	
  huxleyi 

 229 

paraquat-exposed culture over the 72 h time series. The first 3 hours did not show any 

distinct variation in H2O2 between the control and paraquat-exposed cultures (Fig. 6.24). 

It may be noted that with the increasing cell numbers in the control culture, the H2O2 

excretions actually decreased suggesting that either production slowed or there was an 

increased chemical loss of H2O2. 

 

Figure 6.24 Hydrogen peroxide (H2O2) excretion in E. huxleyi 1516 exposed to 1 mM paraquat. Plot B is 

the magnified view of the first 3 hours of the time course. The grey line denotes the control (not exposed 

to paraquat) and the black line denotes the paraquat-exposed culture. The average value and range of data 

is shown (n=3). Where no range bars are visible, the data range was smaller than the symbol size.  

6.3.8 Reaction between DMSP and paraquat 

The flask containing 60 µM DMSP showed a decrease in DMSP concentrations over a 

period of 5 days (Fig. 6.25). This must be due to bacterial breakdown of DMSP to DMS 

or DMSP uptake occurring over the 5-day period. However, the flask containing 1 mM 

paraquat + DMSP did not show the same decrease in DMSP, suggesting that paraquat is 

not responsible for breaking down a DMSP molecule and that probably paraquat has 

anti-bacterial properties. In the sterile tubes there was no decrease in the DMSP 

concentration over 5 days. It can be concluded that the decrease in DMSP concentrations 

observed and reported in this study are not due to any reaction with paraquat. 
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Figure 6.25 Testing for potential reaction of DMSP with paraquat. The grey solid and dotted lines are the 

control DMSP solution without paraquat and the black solid and dotted line represents the DMSP + 

paraquat. The circle symbols denote the reaction in the presence of bacteria and the triangle symbols 

denotes sterile conditions. The average values are shown and error bars represent the range of data (n=3). 

Where no error bars are seen, the data range was smaller than the symbol size. 

6.4 Discussion 

In this study, paraquat was used to catalyze the formation of reactive oxygen species 

(ROS) in the presence of light and oxygen thus causing oxidative stress on the 

photosynthetic nanoeukaryote Emiliania huxleyi strains CCMP 370, 373 and 1516. The 

objective was to artificially induce oxidative stress in order to test the proposed link 

between oxidative stress and DMSP metabolism. One mM Paraquat was chosen as the 

effective concentration (effective concentration being the concentration of a substance 

that causes a defined magnitude of response in a given system). Here E. huxleyi was 

exposed to various concentrations of paraquat ranging from 0.05 to 5 mM for 24 hours 

and a reduction in cell number and increase in cell volume was seen. Such growth 

inhibition is also seen in the freshwater microalga Chlamydomonas eugametos when it is 

exposed to paraquat (Franqueira et al. 2000). The authors also further proposed that 

DMSP is oxidized during times of stress, such as that caused by natural tissue necrosis 

or by administration of an oxidative stressor such as paraquat. It has been widely 

reported that cell volume increases on exposure to paraquat. For example, Bray et al. 

(1993) studied the ultrastructure of Chlamydomonas reinhardtii after paraquat exposure 
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and explained that cells may appear swollen due to the incapacity to complete cell 

division and due to failures in regulation of cellular volume as a consequence of the high 

levels of oxidative radicals formed. They also explained that damage to the membranes 

of the contractile vacuole apparatus in these cells can result in water retention by the cell 

and hence cells appear swollen under the electron microscope.  

In this study, up to ~ 30% of cells had compromised cell membranes after 72 h as 

indicated by SYTOX Green staining. Loss of membrane integrity during exposure to 1 

mM paraquat has also been shown to occur in E. huxleyi CCMP 1516 (Evans 2004). On 

a 12-hourly basis in the time-series experiments, it was interesting to note that a high 

number of control cells were SYTOX Green stained and the cell volume was at its peak. 

This may be because larger cells are at their point of dividing the cell wall and 

membranes may stretch in such a way that the nucleic acid stain SYTOX Green, is able 

to penetrate the membrane. SYTOX Green stain is recommended as an indicator of dead 

cells (Brussaard et al. 2001; Lebaron et al. 1998; Roth et al. 1997) and is not supposed to 

cross the membranes of live cells (Roth et al. 1997; Veldhuis et al. 1997, 2001). 

However, the data presented here strongly suggests that viable cells in the state of 

division have permeable membranes (Fig. 6.10 and 6.11). At 24 h and 48 h within the 

assay, the number of live cells in the control culture increased and with most cells 

having already completed their division cycle, cells with compromised membranes are 

almost negligible. On the other hand, cells exposed to paraquat allow the SYTOX Green 

stain to access the cells because oxidative stress induces the production of reactive 

oxygen species (ROS), and with the production of superoxide radicals, hydrogen 

peroxide and hydroxyl radical (the most damaging of the ROS) they lose their 

membrane integrity. Chlorophyll a fluorescence (red fluorescence) also decreases with 

prolonged exposure to paraquat and this might be a deliberate adaptation to limit further 

ROS production.  

In this study, there was no increase in intracellular DMSP (DMSPp) concentration or 

DMSPp per cell nor any increase in DMS levels. However, DMSPd was higher 

compared to the control. Overall, the total DMSP measurements were lower in the 

treated sample than in the control. Such an observation was also reported by Van Rijssel 
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and Buma (2002) when E. huxleyi strain L was subjected to UV light. Recently, an 

experiment using paraquat on the leaves of Spartina alterniflora (Smooth cordgrass) 

also did not result in DMSP synthesis nor accumulation but DMSO increased suggesting 

increased oxidation of DMSP to DMSO (Husband et al. 2012). Based on increased 

DMSPd levels observed in this study, it could be the case that DMSP may be 

immediately lysed to DMS, which is then quickly oxidized to DMSO, methane sulphinic 

acid and other products due to the over-production of free radicals under oxidative stress 

conditions. Perhaps, the rate at which DMSP lyases operate under oxidative stress may 

be strain-specific. Environmental stress is thought to increase the intracellular 

concentration of DMSP in several marine algae. Sunda et al. (2002) have shown 

increased intracellular DMSP in E. huxleyi 373 subjected to UV radiation, increased Cu 

ions, carbon dioxide limitation and iron deficiency. Intracellular DMSP and DMSO 

concentrations were also significantly higher in leaves of Spartina alterniflora when 

treated with paraquat than untreated control leaves suggesting that they may be able to 

rapidly increase synthesis of DMSP in response to oxidative stress (Kiene and Husband 

2003). 

Since paraquat inhibits cell growth it may be proposed that a few oxidatively stressed 

cells are upregulating DMSP and most cells are not, such that the elevation is masked. 

This idea was tested by flow cytometric cell sorting. At 72 h, the cells were sorted using 

a Cytopeia inFlux and a single cell population was identified for the control population, 

whereas the paraquat exposed cells had developed two distinct sub-populations 

distinguished by their relative amounts of red fluorescence. A pre-concentration step 

was necessary to reduce sorting time and achieve triplicate sorts. For this, two pre-

concentration techniques were tested involving centrifugation and a filter well plate- 

concentration method. Out of the two, based on the flow cytometric data profiles, the 

plate-concentration method achieved the best results with the least loss of cells and no 

changes in cell fluorescence emissions. The centrifugation method caused cell losses, 

especially in the paraquat-exposed cells. Sorted cells based on fluorescence emissions 

showed no significant increase in intracellular DMSP concentrations and per cell DMSP 

amounts. 
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High concentrations of hydrogen peroxide indicated that oxidative stress was 

successfully induced. When paraquat exposed cells were transferred to fresh media, re-

growth occurred and DMSP levels were in the normal range thus establishing the fact 

that paraquat was not causing total mortality and that some cells were in a suitable 

physiological state for re-growth when normal conditions were returned.  

6.5 Conclusions 

The data suggest that, contrary to the hypothesis of Sunda et al 2002, oxidative stress 

does not always result in increased DMSPp concentration in E. huxleyi. Alternatively 

there is a balance between enhanced DMSP production and its use as an antioxidant in 

cells under oxidative stress. 
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Chapter 7:  General Discussion and Conclusions 

7.1 Summary 

This thesis describes the influence of stress conditions on intracellular 

dimethylsulphoniopropionate (DMSP) and dimethylsulphide (DMS) release in Emiliania 

huxleyi. With the opportunity to work on a diatom species and three different strains of 

E. huxleyi, the data also highlights the observation that the response to stress conditions 

varied between diatoms and coccolithophores (Chapter 3) and within the E. huxleyi 

strains (Chapters 3 to 6). 

Cells were examined in batch cultures during nutrient limitation, exposure to artificial 

UV radiation, natural solar radiation, under light deprivation and with the application of 

the herbicide paraquat (also known as methyl viologen). In response to these stress 

conditions, E. huxleyi cells demonstrated cell growth arrest (no increase in cell number) 

and on return to normal conditions, regrowth and recovery of the cells occurred. This 

has been a key outcome of the physiological mechanisms that E. huxleyi uses to cope 

with environmental stress. 

The major findings of this project include the transformation of particulate DMSP 

(DMSPp) to dissolved DMSP (DMSPd), with the release of DMS and loss of total 

DMSP (DMSPt) under stress conditions. This would suggest how rapidly DMSP or 

DMS is ‘exuded’ when cell lysis occurs. However within this study, although various 

severe, but ecologically important physiological stresses were applied, mass cell 

membrane lysis leading to mass cell death did not occur. This outcome strongly suggests 

DMSP metabolism as part of the stress response of E. huxleyi from cells that had intact 

cell membranes and were therefore viable, perhaps indicating active exudation under 

light deprivation and on exposure to solar radiation. 
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7.2 Discussion 

Very little is known about cell survival mechanisms in unicellular organisms. E. huxleyi 

are particularly important DMSP producers among pelagic unicellular algae, as they 

form large blooms during spring and summer (Malin et al. 1993; Marandino et al. 2008; 

Oguz and Merico 2006). There are several field studies reporting high DMS levels 

associated with blooms (Holligan et al. 1993a; Malin et al. 1993; Matrai and Keller 

1993), but what controls the conversion of DMSP to DMS in E. huxleyi is not fully 

understood. DMS and acrylic acid are formed in E. huxleyi by a group of isozymes 

known as DMSP lyases, which are naturally present in DMSP-producing phytoplankton 

(Steinke et al. 1998) but what triggers the DMSP lyase activity has not been adequately 

investigated. Various studies document changes in intracellular DMSP (DMSPp per cell 

volume) concentration under stress conditions for several phytoplankton species and 

strains, but results are not always consistent. 

Here in all of the stress conditions, cells of E. huxleyi 370, 373 and 1516 underwent cell 

growth arrest but varied in other physiological responses (Table 7.1). Cell volume 

increased in N- and P-limitation, on exposure to UV and in herbicide-induced oxidative 

stress in all three strains. This increased cell volume and cell growth arrest may indicate 

metabolic activity but no cellular division. Exposure to solar radiation did not show a 

change in cell volume in all three strains and light deprivation resulted in no change in E. 

huxleyi 370, while a decrease in E. huxleyi 370 and 1516. In addition, under stress 

conditions, a decrease in photosynthetic capacity (FV:FM; photosynthetic efficiency of 

the PSII) was observed (Table 7.1), which is known to be a sensitive parameter 

indicating physiological stress (Suggett et al. 2009). However, under nutrient limiting 

conditions no change in photosynthetic capacity was seen in the three E. huxleyi strains, 

also reported in E. huxleyi 1516 in Franklin et al. (2012). 

A decrease in intracellular DMSP concentration (DMSPp per cell volume) was seen 

with exposure to UV radiation in all three strains and under N- and P-limitation in E. 

huxleyi 370 and 373 with no change in E. huxleyi 1516, whereas it increased on 

exposure to solar radiation in all three strains (Table 7.2). Light-deprived cultures also 
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showed a substantial increase in intracellular DMSP and DMS after ~ 5 days in all three 

strains. Paraquat addition (1 mM), which promotes the formation of reactive oxygen 

species, resulted in up to ~ 30% of cells with compromised membranes after 72 h 

(SYTOX Green staining) in all three strains. Flow cytometry revealed two cell sub-

populations in paraquat-treated cells on the basis of red fluorescence and these were 

sorted in the case of E. huxleyi 1516 and analysed but no increase in intracellular DMSP 

concentration was seen. The data suggest that stress does not always result in increased 

intracellular DMSPp concentration in E. huxleyi. In all of the above stress treatments, it 

was interesting to observe a decrease in DMSPp culture concentrations emphasising the 

decrease observed in the DMSPt culture concentrations (excluding UVR exposure-

DMSPt data not collected) with increasing DMSPd and DMS concentrations (Table 7.2). 

Table 7.1 Comparing the physiological growth responses in E. huxleyi 370, 373 and 1516 to various stress 

conditions. The dark grey shade denotes ‘an increase’, the medium grey shade denotes ‘no change’ and the 

light grey shade denotes ‘a decrease’. Numbers inserted in every box represents the number of times the 

experiments were conducted.  
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E. huxleyi 370 E. huxleyi 373 E. huxleyi 1516
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Table 7.2 Comparing the effect of various stresses on DMSP and DMS concentrations in E. huxleyi 370, 

373 and 1516. The dark grey shade denotes ‘an increase’, the medium grey shade denotes ‘an almost equal 

to’ and the light grey shade denotes ‘a decrease’ in values compared to the control cultures. Numbers 

inserted in every box represents the number of times the experiments were conducted. Boxes without 

numbers show expected data based on findings within this work or results from published literature. 

  

 

Various theories have been proposed for the physiological roles of DMSP and DMS and 

the environmental factors that regulate their production in marine algae, though most 

remain unverified. In this project, I have reconsidered the recently proposed antioxidant 

role for DMSP and its cleavage product DMS. Sunda et al. (2002) suggested the 

antioxidant function of the DMSP system, based on elevated concentrations of 

intracellular DMSP under stress conditions. Intracellular DMSP increased under N, P, Si 

and CO2 limitations, in the coastal diatom Thallassiosira pseudonana (Bucciarelli and 

Sunda 2003), under Fe limitation in Phaeocystis species (Stefels and Van Leeuwe 1998) 

and in E. huxleyi on exposure to solar UV radiation (Sunda et al. 2002), artificial UV 

radiation (Archer et al. 2010), high Cu+2 and H2O2 (Sunda et al. 2002). But, no change in 
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intracellular DMSP concentrations and little or no dissolved DMSP was reported for E. 

huxleyi CCMP 374 under nitrogen limitation although DMSP lyase activity increased, 

resulting in elevated DMS concentrations, thus upholding the antioxidant function for 

the DMSP system (Sunda et al. 2007). Stefels et al. (2007) argues that DMSP would be 

expected to decline while mopping up the reactive oxygen species. She further adds that 

if the stress reaction results in increased de novo synthesis (up-regulation) of DMSP then, 

a subsequent overshoot production of DMSP would lead to increased intracellular 

concentrations of DMSP and/or one of the breakdown products. Such an overshoot 

production in intracellular DMSP and DMSP per cell was observed in E. huxleyi under 

light deprivation and on exposure to solar radiation. But total DMSP in the culture 

remained low in comparison to the control culture. It may be highlighted that among all 

stress treatments, higher number of cells with compromised cell membranes was noted 

with exposure to solar radiation and under light-deprived conditions (up to 50% 

compromised cells in E. huxleyi 373 and up to 70% in E. huxleyi 370 and 1516 after 72 

h exposure to solar radiations, while 40%, 50% and 20% compromised cells in E. 

huxleyi 370, 373 and 1516 respectively after 10 days of light deprivation). 

The data displays elevated concentrations of the cleavage product DMS with a decline in 

intracellular concentrations of DMSP in E. huxleyi under N-limitation and P-limitation, 

suggesting support for the antioxidant function of the DMSP system but the decrease in 

total DMSP raises doubt, although the only explanation here for a loss in total DMSP 

would be the involvement of the DMSP system in effectively scavenging the harmful 

radicals resulting in its loss or breakdown. 

Also in another attempt to enhance oxidative stress (demonstrated by elevated 

concentrations of H2O2 – Chapter 6, section 6.3.7) in E. huxleyi cells, with the use of the 

herbicide paraquat, a decrease in intracellular DMSP and DMS was repeatedly observed. 

So also, the work of sorting based on fluorescence clearly showed a decrease in 

intracellular DMSP concentrations in the sub-populations of paraquat-induced oxidative 

stressed cells. This may have occurred due to the possible rapid oxidation of DMS to 

dimethylsulphoxide (DMSO) or other oxidised sulphur species. DMSO is a more 

effective antioxidant (Lee and De Mora 1999) than the proposed DMSP (Sunda et al. 
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2002) and is found in the chloroplast (Jakob and Heber 1996). The DMSP data here 

shows a consistent increase in dissolved DMSP also reported by Archer et al. (2010) and 

a consistent decrease in total DMSP in the culture under stress conditions, which might 

suggest an alternative role or additional explanation to the antioxidant function of the 

DMSP system. 

7.3 Alternative explanations 

Advanced research in this field with cutting-edge technologies have broadened our 

insight into the various processes taking place in a cell but hypothesis put forward on the 

phytoplankton cell survival pathways and cell death processes remain as non-established 

facts. In these experiments, re-growth or recovery of the cells occurred after prolonged 

periods of stress and a higher percentage of E. huxleyi cells had intact cell membranes 

although challenged with oxidative stress. This would reveal DMSP as a cellular 

response to stress implying that DMSP acts as a signalling molecule exuded by cells 

afflicted by stress to the nearby viable or cells with intact membrane. 

Under stress conditions, not all cells would react at the same time and in the same way 

but would have different responses and response times based on the extent of the stress. 

In all of the stress treatments here, DMSPd per cell volume, DMSPd per cell and 

DMSPd in the culture increased as a function of time, which may have occurred from 

the lysed cells and the small percentage of cells with compromised cell membranes 

revealed by SYTOX Green staining. This transformation of the DMSP content to 

DMSPd within these cells with compromised cell membranes is due to the antioxidant 

mechanism to scavenge the enhanced ROS. The DMSPd released out of the cells 

accompanied by DMS from these cells with compromised membranes extends out to the 

neighbouring cells warning them of stress. This response of elevated DMSPd and DMS 

by the stressed cells triggers defence mechanisms in other non-stressed cells to stay on 

guard to protect the photosynthetic apparatus in the chloroplast. This is reflected in the 

photosynthetic capacity of the cells. The cells increase in cell volume but refrain from 

cell division in order to conserve cellular energy. In this way, DMSPd and DMS 
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function as a signalling molecule to other cells not directly affected by the stress and 

subsequently survive and re-grow or recover when normal conditions return. 

7.4 Limitations and suggestions for further research 

Cell sorting based on fluorescence has been a new technique used in this study and more 

research and development would be necessary to optimise the technique. Cell sorting 

can have effects on the cell volume as shown in Chapter 6, section 6.3.4, therefore it 

would be necessary to devise a method by which sorting would have minimum effects 

on cell volume. So also, a thorough study would be advisable to list other physiological 

changes related to the sorting technique. 

Another observation noted after the cells were being sorted, was the development of two 

populations distinguishable from each other in the control cell population, although their 

emissions remained the same in side scatter (Chapter 6, section 6.3.4, Fig. 6.20). This 

may be attributed to the fact that the cells in the control culture were in their late 

exponential phase and cell sorting may have forced the cells on the verge of cell division 

to divide. This observation could not be verified further with microscope pictures as it 

was not feasible at that time, but it would be necessary to know if the sorting technique 

also results in forcibly splitting cells on the verge of cell division or simply to learn that 

cell sorting technique can also be used to sort cells at the point of division.  

Measuring DMSP lyase activity in sorted and non-sorted cells would be an interesting 

observation for future research. On sorting the physiologically stressed cells based on 

fluorescence, if an increase in DMSP lyase activity is measured, then it can proposed 

that DMSP lyases are involved in cellular protection against oxidative stress. This will 

also provide explanation of the decrease in intracellular DMSP and the viability of the 

cells of E. huxleyi. 

Filtration of cells under gentle vacuum pressure for particulate DMSP may result in loss 

of intracellular DMSP caused by cell lysis, which also explains the increased DMSPd. 

But this was not the case here, as the total DMSP in the culture was found to be low in 

comparison with the control cultures. It would be generally very important to devise a 
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new method for filtration of the cells to avoid filtration artefacts when quantifying 

intracellular DMSP or per cell DMSP as discussing processes within a cell would 

require accurate measurements. Sunda et al. (2002) have reported elevated intracellular 

DMSP concentrations in E. huxleyi under CO2 limitation using gravity filtration with a 

small filtration volume of 1 – 2 ml. 

During the herbicide-induced stress, on E. huxleyi 1516, DMS was not observed unlike 

under N- and P-limitations and light-deprivation. It is hypothesised that DMS may have 

been oxidised to DMSO. If this were the case, it would be relatively important to 

measure and quantify the concentrations of DMSO. If conversion of DMS to DMSO 

actually took place, it would raise questions if the other strains also showed a decrease in 

DMS or an increase. 

ROS quantification is another very important measurement when discussing oxidative 

stress. Flow cytometry combined with fluorescent stains and other intracellular ROS 

stains could be applied to determine the other oxidative species besides hydrogen 

peroxide. 

In the 48 h time-series paraquat exposure experiments (Chapter 6, section 6.3.2.2), 

SYTOX Green measurements on a 12-hourly basis, showed a high number of control 

cells being labeled and the cell volume was also high. This may explain that when viable 

cells are at the point of division, the membranes may stretch in such a way that the 

nucleic acid stain SYTOX Green, is able to penetrate the membrane. SYTOX Green 

stain is recommended as an indicator of dead cells (Brussaard et al. 2001; Lebaron et al. 

1998; Roth et al. 1997) and is not supposed to cross the membranes of live cells (Roth et 

al. 1997; Veldhuis et al. 1997, 2001). However, the data presented here strongly 

suggests that viable cells in the state of division have permeable membranes (Fig. 6.10 

and 6.11). This needs further testing with live stain indicators like the CMFDA stain 

used in Franklin et al. 2012. 
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7.5 Conclusions 

It can be concluded that environmental stress does not always increase intracellular 

DMSP and DMS concentration in Emiliania huxleyi and that responses to stress can be 

species-specific and strain-specific. This may indicate that DMSP and its breakdown 

product DMS may not always act as an antioxidant system. Alternatively, there is a 

balance between enhanced DMSP production and its use as an antioxidant in cells under 

oxidative stress. Thus the work presented in this thesis refutes the hypothesis presented 

in Chapter 1 (section 1.7). 
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