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bstract

The purpose of this study was to adapt wavelet analysis as a tool for discriminating speech samples taken from healthy subjects across
wo biological states. Speech pressure waveforms were drawn from a study on effects of hormone fluctuations across the menstrual cycle on
anguage functions. Speech samples from the vowel portion of the syllable ‘pa’, taken at the low- and high-hormone phases of the menstrual
ycle, were extracted for analysis. Initial analysis applied Fourier transforms to examine the fundamental and formant frequencies. Wavelet
nalysis was used to investigate spectral differences at a more microbehavioural level. The key finding showed that wavelet coefficients for
he fundamental frequency of speech samples taken from the high-hormone phase had larger amplitudes than those from the low-hormone

hase. This study provided evidence for differences in speech across the menstrual cycle that affected the vowel portion of syllables. This
vidence complements existing data on the temporal features of speech that characterise the consonant portion of syllables. Wavelet analysis
rovides a new tool for examination of behavioural differences in speech linked to hormonal variation.

2007 IPEM. Published by Elsevier Ltd. All rights reserved.
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. Introduction

It has been found that temporal aspects of speech vary
cross the menstrual cycle [1]. Specifically, the micro-
coustic parameter, voice onset time (VOT), was different
or specific plosive sounds (e.g., /p/ in ‘pat’ and /k/ in ‘cat’)
n a comparison of women at phases of the menstrual cycle
orresponding to low and high levels of circulating ovarian
ormones. This work also documented differences between
en and women that were consistent with the direction of

he hormonal effects hypothesised to be operating within
omen. These findings have recently been replicated and

xpanded within our laboratory [2] and are in agreement with

larger body of work showing that ovarian hormones play a
ey role in the organisation and function of motor and motor
peech behaviours. Specifically, high levels of estrogen have
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behaviour

een linked with improved performance on a range of motor
nd verbal tasks [2–4]. Results from our laboratory support
he view that ovarian hormones affect the neurocognitive,
euromuscular and articulatory systems involved in speech
roduction.

Traditionally, speech analysis of parameters such as VOT
as been conducted within the domain of acoustic phonet-
cs. In such studies, specific temporal features of the speech
ignal are extracted for analysis. Previous reports from our
aboratory have explored hormone-mediated effects on VOT
f plosive consonants [1,2]. In contrast, the aim of the current
tudy was to adapt signal processing tools to investigate the
ource of hormone effects on another part of the speech sig-
al, namely the vowel portion in the spoken CV syllable /pa/
‘pa’). Wavelet analysis is a specialist tool for deriving an in-

epth understanding of underlying components of complex
urvilinear data. It has been used to study waveforms in other
omains of research such as meteorology [5], and has also
een employed in the analysis of speech [6,7]. The objec-

reserved.
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ives of this study were to elaborate on the use of wavelet
nalysis on two-dimensional speech pressure waves, and to
pply wavelet analysis to inform the study of differences in
peech signals produced at hormonally distinct phases of the
enstrual cycle.

. The wavelet transform

One of the most well-known tools for signal process-
ng is the Fourier transform. This breaks down a signal
nto its constituent sinusoids of different frequencies. One
f the drawbacks of Fourier analysis is that in transform-
ng to the frequency domain, time information is lost. For
tationary signals, i.e., those that do not change much over
ime, this is not a serious drawback. However, for nonstation-
ry data, spectral techniques that retain information from the
ime domain are more appropriate. Nonstationary waveforms
re commonly encountered in experimental acoustics. In the
940s, Nobel prize winner Dennis Gabor adapted the Fourier
ransform in order to analyse only a small section of the sig-
al, known as the spectral window, at a time. This so-called
hort-time Fourier transform (STFT) maps a signal into a
wo-dimensional function of time and frequency, so one can
etermine approximately when an event of a particular fre-
uency occurs. However, although STFT has proved useful
n numerous applications, it is ill suited for the study of sig-
als where the frequency content ranges over several orders
f magnitude as the size of the window is the same for all fre-
uencies. For signals such as these, which typically include
ound waveforms, a more flexible approach is needed where
ne can vary the window size: longer windows are required to
etect low-frequency content, though these will be insensitive
o high-frequency sounds of short duration; shorter windows
re needed to detect high-frequency components.

A further possible complication of using the STFT, or sim-
lar time–frequency responses, is that signals such as voiced
peech and music can exhibit a strong periodic structure
hich can give rise to a characteristic ‘bed-of-nails’ struc-

ure in the spectrum. These evenly spaced spectral spikes are
purious, being an artefact of the transform kernel design.
f the dominant frequency is known a priori, then it is pos-
ible to develop a pitch-dependent kernel to suppress such
rtefacts [8]. Use of the wavelet transform overcomes this
otential problem.

Wavelet analysis is based on a windowing technique
mploying regions of varying size and can provide the
ime and frequency information simultaneously whilst over-
oming the resolution limitations of the STFT. Long-time
ntervals are used to provide more precise information at low
requencies; shorter intervals are used to extract characteris-
ics of high-frequency components of a signal. The wavelet

ransform is a powerful signal-processing tool that has been
uccessfully used in the analysis of nonstationary data from
wide range of physical processes, for example, from engi-
eering systems and in meteorology, that exhibit multiscale
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eatures [5,9,10]. It has also been used extensively for speech
ompression and recognition [11,12] and for a number of
tudies on speech waveform analysis [6,7,13].

Whereas in Fourier analysis a signal is decomposed into
ine waves of different frequencies, wavelet analysis involves
he decomposition of a signal into shifted (i.e., translated) and
caled versions of the so-called “mother wavelet”. Sinusoids
re of infinite duration and are periodic. In contrast, the basis
unctions of the wavelet transform are of limited duration
nd tend to be irregular and asymmetric. There are many
ifferent types of mother wavelet. In general, the results of
avelet analysis are not crucially dependent on the exact type
f mother wavelet chosen, but some wavelets are better suited
o particular types of application. For example, the Mexican
at wavelet, which is popular in vision analysis, is not suitable
or analysing speech as its flat frequency response results in
ow formant resolution. The Daubechies mother wavelet [14]
s often chosen for the analysis of speech records [6]. For the
resent study the Daubechies wavelet of order 10 (db10) was
sed.

The continuous wavelet transform (CWT) of a signal is
efined as the sum over all time of the signal multiplied by
caled, shifted versions of the mother wavelet. Thus mathe-
atically, the wavelet transform Ca,b(t) of a signal f(t), where

represents any independent variable (in this study t denotes
ime), is defined as:

a,b(t) = 1

|a|1/2
∫ ∞

−∞
f (t)ψ

(
t − b

a

)
dt,

here the function ψ(t) is a mother wavelet and the real
umbers a (a /= 0) and b denote the scaling and translation
espectively. Ca,b(t) are known as the wavelet coefficients.
he constituent wavelets of the original signal can be found
y taking the product of each coefficient with the appropri-
tely scaled and shifted wavelet. This facilitates the detailed
nalysis of the signal over a range of frequencies. The scale
is related in a broad sense to frequency by:

a = �t × Fc

a
, (1)

here Fa is the pseudo-frequency in Hz corresponding to the
cale a in Hz, Fc is the centre frequency in Hz of the mother
avelet and �t is the sampling period. For the case of the
b10 mother wavelet, the centre frequency is 0.68421 Hz.

. Digitised speech data

.1. Speech data collection

.1.1. Participants
Data from three healthy women aged 20–25 years (mean
ge 20.39 ± 0.34 years) were selected for this study from a
arger scale research project designed to examine hormones,
peech and related behaviour. Participants were right-handed
ative English speakers who had regularly occurring men-
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case. A close-up of this region of the data record is provided
in Fig. 4. Both signals exhibit an underlying fundamental
with a period of approximately 0.005 s, which corresponds
to a frequency of 200 Hz.
J.M. Rees et al. / Medical Engin

trual cycles (mean duration 29.67 ± 0.88 days) and were not
sing oral contraceptives, pregnant or lactating for at least 1
ear prior to the study. All were free of health conditions
hat could adversely affect brain and behaviour. Data were
ollected with written informed consent of participants using
research protocol approved by the Department of Human
ommunication Sciences Research Ethics Committee.

.1.2. Procedure
Testing took place across two test sessions for each par-

icipant using a within-subjects repeated measures design.
articipants were tested across two phases of the menstrual
ycle, once during the menstrual phase (Day 2–5 when ovar-
an hormone levels were low (menstrual low-EP phase); mean
ay 4.00 ± 0.58) and once during the midluteal phase (Day
8–25 when ovarian hormone levels were high (high-EP
hase); mean day 19.33 ± .88). The midluteal phase was con-
rmed by counting backwards from the onset of the next
enstrual cycle (mean 10.33 ± 1.67 days).
Test sessions included an interview to collect demographic

nformation, family, hormonal, medical and educational his-
ory. Baseline testing for manual laterality and IQ (mean
19.33 ± 5.23) was conducted. The same speech tasks were
dministered at high EP and low EP. Administration of the
rst test session was counterbalanced, such that two of the
ubjects were first tested during the low-EP phase, and the
emaining was first tested during the high-EP phase. The
peech task consisted of speeded repetition of a single sylla-
le 10 times as quickly and as accurately as possible. Four
ersions of the task were conducted so that 10 repetitions
f the following consonant–vowel (CV) syllables were pro-
uced, /pa/, /ka/, /ba/ and /ga/. Speech data were recorded
nto a digital recorder (Marantz Portable Professional Solid
tate Recorder, Model PMD670) using a sampling rate of
4100 Hz (file type PCM .wav file, stereo 16 bit). The digi-
ised audio files were transferred into Adobe® AuditionTM

version 1.5) for further editing and analysis.

.2. Speech samples and signal pre-processing

In the current study, the aim was to characterise hormone
ffects on speech through detailed analysis of the vowel por-
ion of CV syllables using wavelet analysis. The syllable /pa/
‘pa’) was chosen for further analysis because it had already
een shown to be particularly sensitive to VOT differences
cross the menstrual cycle [1,2].

Six digitised samples representing the speeded syllables
epetition task for /pa/ (‘pa’) were selected for analysis. These
amples represented data from three subjects at low EP and
t high EP. The women whose digitised speech patterns were
elected for this study are referred to as Subject 1, Subject
and Subject 3. Further to this, the third and eighth repeti-
ions were selected from each of the speeded 10 repetitions
or wavelet analysis. These samples were chosen in order to
inimise ‘warm up’ and fatigue effects in the speeded syl-

ables. This resulted in the wavelet analysis of 12 syllables
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third and eighth repetitions from three speakers at high-EP
nd at low-EP).

Each of the 12 digitised syllables was then visually
nspected to edit the samples for wavelet analysis. The burst
nd aspiration phases of the plosive /p/ were removed at zero-
rossings to leave the quasi-periodic phase of the CV syllable
hich represented the vowel ‘a’.

. Results of signal processing and wavelet analysis

Each of the 12 digitised data records had a total dura-
ion of 0.1–0.2 s. For consistency, the vowel cycles occurring
etween 0.03 and 0.06 s were selected for detailed wavelet
nalysis.

Fig. 1 shows the speech signal for Subject 1 for the third
yllable repetition of /pa/ at high EP. The signal comprises
n irregular wavelike pattern which has duration of approx-
mately 0.09 s. The section selected for wavelet analysis has
uration of 0.03 s and is indicated by the boxed region. This
ection of the signal is shown in more detail in Fig. 2. By
hoosing this section of the signal, the initial plosive /p/ was
xcluded to allow focused analysis on the more regularly
epeating cycles of the vowel /a/. Latter portions of the syl-
able, where the amplitude of the wave packet decays, were
lso excluded.

The corresponding digitised speech signal for Subject 1
or low EP is shown in Fig. 3. Again, the section of the sig-
al chosen for detailed analysis has duration of 0.03 s and is
ndicated by the boxed region. The same criteria were used
n selecting this section of data as those used for the high-EP
ig. 1. Digitised speech signal for Subject 1, third syllable /pa/ repetition at
igh EP. The horizontal axis shows the time in seconds, and the vertical axis
epicts a relative amplitude scale. The boxed region indicates the section of
he data record used for detailed analysis.
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ig. 2. Data section within boxed region of Fig. 1 expanded to in order to
how fine details.

Each signal was then imported into Matlab® for the pur-
ose of applying signal analysis routines. The aim was to
xtract information about signals’ harmonic and wavelet
tructures, and related statistical properties. The first proce-
ure applied in each case was the calculation of the Fourier
pectrum. Although this technique has limitations for the
tudy of nonstationary data, it was found to be useful in
he current study for the determination of the fundamental
requency and the corresponding harmonic frequencies.

The Fourier spectrum for Subject 1 during the high-EP

hase is shown in Fig. 5(a), and that for low-EP phase is
epicted in Fig. 5(b).

For both cases, the fundamental frequency was close to
00 Hz, but the signal amplitude was approximately doubled

ig. 3. Digitised speech signal for Subject 1, third syllable /pa/ repetition at
ow EP. The boxed region indicates the section of the data record used for
etailed analysis.
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ig. 4. Data section within boxed region of Fig. 3 expanded to in order to
how fine details.

or the high-EP sample for Subject 1 (Fig. 5a). Since the fun-
amental frequency is determined by the rate of vibration
f the vocal folds, it is therefore possible that the difference
n hormone levels between low EP and high EP contributed
o this effect. The harmonic frequencies occur at intervals
f approximately 200 Hz (i.e., 400 Hz, 600 Hz, 800 Hz, etc.).
owever, these modes are poorly resolved by the Fourier
ecomposition. It should be mentioned that the Fourier spec-
ra of some of the data records studied exhibited the spurious
bed-of-nails’ structure as described in Section 2. This is
ikely to be caused by the predominantly periodic structure
f the vowel /a/.

In order to examine spectral differences on the micro-
cale, we used the continuous wavelet transform (CWT)
sing the Matlab® wavelet toolbox. The Daubechies mother

avelet of order 10 (db10) was chosen for this study. The
b10 mother wavelet is plotted in Fig. 6, together with the
inusoidal wave corresponding to the approximate central
requency of 0.68421 Hz.

ig. 5. (a) Fourier spectrum for the data shown in Fig. 2, i.e., from Subject
at high EP. (b) Fourier spectrum for the data shown in Fig. 4, i.e., from

ubject 1 at low EP.
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ig. 6. The continuous line indicates the Daubechies mother wavelet of order
0 (db10). The dashed line shows the sinusoid corresponding to the centre
requency of 0.68421 Hz.

The relationship between wavelet scale and pseudo-
requency (see Eq. (1)), allowed the Fourier spectrum to
e used as a guide for determining which wavelet fre-
uencies should be examined further. Information about the
requency that revealed the maximum energy was avail-
ble; thus, the scale used for the CWT analysis could be
asily chosen. For example, from the relationship between
cale and pseudo-frequency, a frequency of 200 Hz (which in
his case corresponded to the fundamental frequency) will
e associated with a wavelet scale of approximately 151
Fig. 7).

The CWT for the high-EP case is shown in Fig. 8 and

hat for low EP is shown in Fig. 9. The lighter the image
t a particular point in time–scale space, the more energy
here is in that particular domain of the wavelet spectrum.
he maximum wavelet amplitude scale for the high-EP case

ig. 7. Relationship between the wavelet scale and the pseudo-frequency.
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ig. 8. The continuous wavelet transform for Subject 1 at high EP. The
rey-scale key indicates the wavelet coefficients.

s approximately twice that for the low-EP case, which sup-
orts the evidence gained by the amplitude of the fundamental
ode of the Fourier spectra shown in Fig. 5. In Fig. 9, across

he lower wavelet scales, the spectrum is markedly lighter
han that for the high-EP case shown in Fig. 8. This indi-
ates that at low EP there was relatively more activity at
maller scales than at larger scales compared to the situa-
ion for high EP, where the fundamental frequency was more
ominant.

We examined cross-sections of the wavelet spectrum for
he fundamental frequency (Fig. 10) and the harmonics. For
peech signals obtained during the high-EP phase, wavelet
oefficients for the fundamental frequency exhibited consis-
ently larger amplitudes than those for low EP. This effect
s examined in more detail in Section 5 where quantitative
ifferences are observed to evaluate whether this effect can
e applied as a tool for investigating the influence of estro-
en and progesterone on the spectral properties of speech
aves. However, as can be seen in Fig. 5(b), typically the har-
onic frequencies for low EP show no consistent trend. It is

lso worth mentioning that some harmonic frequencies have

ore energy during low EP than during high EP, although no

onsistent trend has been identified.

Fig. 9. The continuous wavelet transform for Subject 1 at low EP.
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Fig. 10. Cross-sections of the wavelet coefficients corresponding to the fun-
damental frequency of 200 Hz for Subject 1 for (a) high EP and (b) low
EP.

Table 1
The variance of the wavelet coefficients for the fundamental frequency for
each of the three subjects, for the third and eight vowel repetitions at both
high EP and low EP

Subject Vowel
repetition

Variance at
high EP

Variance at
low EP

F-test statistic

1 3rd 0.0682 0.0241 1.5600
1 8th 0.0586 0.0143 42.5000
2 3rd 0.0165 0.0156 6.0625
2 8th 0.0189 0.0116 1.0714
3 3rd 0.0137 0.0052 3.2308
3
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8th 0.0081 0.0029 5.8462

he F-test statistic calculated from the data in columns 3 and 4 is also shown.

. Conclusions and discussion

For each of the 12 data records examined, the variances
f the wavelet coefficients associated with the fundamental
requency, between times of 0.03 and 0.06 s, were calculated.
revious studies on digitised wave data from a variety of
hysical systems have successfully exploited the variance of
he wavelet coefficients for distinguishing different regimes
f the underlying processes [5,9].

For each of the three subjects, the variance at high EP was
reater than the corresponding value for low EP. The one-
ailed F-test can be used to make a statistical comparison
etween the variances of two data sets. The hypotheses for
he F-test were:

Ho: there is no difference between the two variances.
Ha: larger variance s21 is significantly different than the
smaller variance s22.

At the 5% confidence level, the critical F-test value is
.0947 for our data sets. For five out the six cases presented

n Table 1, the F-test statistic calculated from the data was
learly greater than the critical value. For the remaining case
i.e., Subject 2, eighth vowel repetition) the F-test statistic is
lose to the critical value. From these statistics, we conclude

[

[
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hat the wavelet variance of the fundamental mode at high EP
s generally greater than that at low EP.

Typically it was found that the variance was lower for
he eighth vowel repetition than it is for the third (the only
xception being for the high-EP case for Subject 2). This
eature can probably be accounted by a fatigue effect by the
ime the eighth repetition is reached.

The effects of hormones on vocalisation have been doc-
mented in a range of species, including humans [15].
owever, the specific role of ovarian hormone fluctuations
n the human voice across the menstrual cycle has received
elatively little scientific attention. Using traditional meth-
ds of musical performance and voice analysis, it has been
ossible to study very specialised examples of voice from
rofessional singers to detect changes related to ovarian hor-
ones [16]. The development of wavelet analysis offers an

lternative probe that is sensitive enough to measure changes
n voicing from any healthy adult female in the context of
peech production.
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