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Abstract 

 

This thesis presents novel developments in the theory of distinct matter-radiation 

interactions, specifically resonance energy transfer (RET) and radiation-induced 

fluorescence.  These processes and all associated mechanisms are accommodated 

within a fully quantized system, founded within a quantum electrodynamical (QED) 

formulation.  The opening investigation concerns the photophysical relationship 

between electronically excited molecules and their neighbours, succeeding in 

demonstrating how such interactions differ from ground-state counterparts.  A range 

of processes are considered, including RET, all of which are dependent on 

intermolecular interactions resulting from electric dipole coupling.  Additional 

mechanisms including laser-assisted energy transfer are also assessed subject to 

interaction with off-resonant light.  A system is subsequently developed in which the 

interplay of all such interactions is characterised.  While RET is typically described 

through electric dipole (E1) coupling, exceptions exist in which the donor and/or 

acceptor exhibit E1-forbidden transitions, perhaps the result of inherent molecular 

symmetry.  An alternative transfer mechanism occurs through higher-order multipole 

transitions and the relative significance of such couplings are assessed in systems 

where such interactions may be prominent.  Progressing to laser-based studies of 

fluorescence, it is known that polarisation features of the emission convey rich 

information on structural details of a sample.  It is shown how polarisation-resolved 

measurements can secure detailed information on the degree of rotational order 

within a system of chromophores oriented in three dimensions.  The theory is 

extended, accommodating the signal produced by nonlinear polarisations, induced by 

one-, two- and three-photon absorptions.  Results indicate that multiphoton imaging 
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can discriminate micro-domains within samples that exhibit orientational correlation.  

Finally, a novel development in radiation-induced fluorescence, namely “laser-

controlled fluorescence”, is explored, whereby the character of emission is modified 

by a laser-controlled, nonlinear input.  The result is a decay rate that can be 

controllably modified, the associated change affording new, chemically-specific 

information and novel technological application via all optical switching. 
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Chapter 1 – General Introduction: Quantum Electrodynamics 

 

In a recent review addressing the current state of high precision physics, 

Karshenboim poignantly and concisely summarised a brief history of classical 

mechanics and the inevitable development of quantum mechanical theory with 

regards to bound systems.1  To elaborate, early advances in the physical theory of 

bound systems are often associated with Kepler, who studied the movement of 

planetary bodies within our solar system, theorising that such movement must 

adhere to a form of mathematical harmony.  Whilst unable to prove this by 

observation, Kepler did successfully characterise previously unknown regularities 

in planetary orbital motion and his findings, presented as Kepler’s Laws, became 

fundamental in advancing the theory of gravitation, mechanics and subsequently 

classical mechanics as a whole.   

 

Comparisons can be drawn to developments made at the molecular scale, centuries 

later.  Initially, the structure and properties of atoms were investigated within a 

model consistent with a heliocentric solar system, the nucleus (as the sun) being 

surrounded by electrons (planets) travelling in fixed orbits.  Having failed to predict 

and verify known properties of simple atomic systems utilizing this classical 

approach, scientists slowly began to establish a new theoretical framework, that of 

quantum mechanics.  Initially focussed on explaining the emission properties of 

atomic hydrogen, quantum mechanics has seen many developments since its 

inception, from Bohr theory, to both relativistic and non-relativistic quantum 
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mechanics and more recently quantum electrodynamics (QED).2-5  The latter 

establishes the framework for the work that follows, QED having been recognised 

as the single most successful quantum theory to date, tested to a higher degree of 

precision than any other in modern physics.  Notable accomplishments include the 

successful theoretical determination of the fine structure constant, the magnitude of 

the magnetic moment of the electron, and the Lamb shift.1,6  The latter describes the 

small energy difference between the 2
1 2S  and 2 1 2P  energy levels, often associated 

with the hydrogen atom, yet subsequently characterized within helium as well as so 

called super-heavy elements.1,7,8   

 

One of the hallmarks of QED, in contrast to both classical and semi-classical 

representations, is that it furnishes each mode of a fully quantized radiation field 

with a zero-point energy, consistent with quantum fluctuations in the corresponding 

electric and magnetic fields.  As a physical consequence, these vacuum fields give 

rise to electromagnetic field quanta that can contribute to the dynamical behavior of 

a system.  Cast in the framework of molecular QED, the dispersion interaction 

between electrically neutral molecules affords a good example.  Within the short-

range regime, i.e. where molecules are separated by a distance less than an optical 

wavelength, the interaction potential is known to vary with the inverse sixth power 

of the intermolecular separation, R-6.  Whilst such a result can be delivered by 

calculations performed on either a semi-classical or QED basis, only the latter form 

correctly accommodates retardation effects.  As a consequence of field quanta 

propagating at the finite speed of light, QED predicts that the form of the interaction 
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potential exhibits a change to an R-7 dependence beyond short-range molecular 

separations and the success of this interpretation is vindicated by experimental 

measurement.9  

 

Further to the unrivalled accuracy and precision of QED, the application of the 

theory also proves to be highly flexible, greatly facilitating the identification of 

fundamental links between effects that are physically different, but share a common 

form of mathematical development.  One example is the similarity in the theoretical 

constructs of Raman scattering and two-photon absorption.3,10,11  Another case is 

the formal link between fluorescence resonance energy transfer (FRET) and 

sequential Raman scattering.12  Exploiting all these advantages, a QED framework 

is now constructed in which a variety of newly theorised photophysical mechanisms 

are explored and novel developments within established processes are investigated. 

 
 
1.1 Development of a Fully Quantized System   

 

For any QED analysis, discussion generally begins with the complete system 

Hamiltonian: 

 

 ( ) ( ) ,mol int radH H H H
ξ ξ

ξ ξ= + +∑ ∑  (1.1) 

 

in which ( )molH ξ , radH  and ( )intH ξ  correspond to fully quantized molecular, 

radiation and interaction Hamiltonians respectively.  Noting the absence of any 
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term describing direct molecule-molecule interaction, equation (1.1) specifically 

represents the multipolar form of the system Hamiltonian in which all 

intermolecular interactions are deemed to occur solely through the exchange of 

photons.13,14  The general representation of ( )molH ξ  is well known, the 

Hamiltonian being expressible as the sum of all potential and kinetic quantum 

operators within the system: 

 

 ( )( ) ( )21
.

2molH V
m α

ξ α
ξ ξ = + 

 
∑ ∑ p   (1.2)  

 

In the above expression, α  labels each of the charged particles within molecules 

arbitrarily labeled ξ  and it is noted that the featured Schrödinger operators 

incorporate terms relating to both nuclei and electrons.  As previously discussed, 

the inclusion of radH  in equation (1.1) is unique to a QED formulation, as opposed 

to a classical or semi-classical interpretation.  Whilst first principle derivation of the 

quantized radiation field is beyond the remit of this introduction, the methods 

employed are discussed in detail in a number of prominent publications.5,15-19  

Proportional to the squares of both the quantized electric displacement and 

magnetic induction, radH  is defined in terms of both the transverse electric 

displacement field, ( )⊥d r  and the magnetic induction, ( )b r  as:  

 

 ( )( ) ( )( ){ }2 21 2 3
0 0

1
d ,

2radH cε ε− ⊥= +∫ d r b r r  (1.3) 
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where 0ε  is the permittivity of free space.  For brevity, it is assumed that both the 

quantized molecular and radiation terms in equation (1.1) are either known or are 

determinable, therefore it is the mutual interaction between the molecular system 

and quantized electromagnetic field, described by the interaction Hamiltonian, 

( )intH ξ , that is of primary interest.  Explicitly, ( )intH ξ  can be represented in the 

following generalized form, cast using the convention of summation over repeated 

Cartesian (subscript) indices:  

 

 ( ) ( ) ( ) ( )
1 2 2 1

1
0 ,

l l

l
int i i ...i i i iH E ... d ξ

ξ
ξ ε ξ− ⊥= − ∇ ∇∑ R  (1.4) 

 

where ( ) ( )
1 2 l

l
i i ...iE ξ  represents an l th order electric multipole operator coupled to the 

transverse electric field operator, ( )id ξ
⊥ R  at position vector ξR .  In principle it is 

necessary to consider not only electric but also magnetic multipole contributions, 

however the latter are disregarded since magnetic contributions are typically several 

orders of magnitude smaller than their electric equivalents.20-22  Whilst ( ) ( )
1 2 l

l
i i ...iE ξ  

acts on the system molecular states, ( )id ξ
⊥ R  correspondingly operates on the 

system radiation states, being expressible in the following vectorial form: 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1

2 †0 exp
2

exp

,

cp
i a i . a

V

i . .

λ λ λ λ
ξ ξ

λ

ξ

ε⊥   = −   

× − 

∑
p

d R e p p p R e p p

p R

ℏ

 (1.5) 
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Above, ( ) ( )λe p  is the electric field unit vector with complex conjugate ( ) ( )λe p , 

whilst a  and †a  respectively represent the photon annihilation and creation 

operators that act upon the eigenstates ( )n ,λp  of radH .  Specifically, a  and †a  

modify the number of photons n , each summed over all wave-vectors p  and 

polarisations λ , that exist within an arbitrary quantization volume, V through the 

following expressions:  

 

 
1

2 1 ,a n n n= −   (1.6) 

 ( ) 1
21 1†a n n n .= + +   (1.7) 

 

Subsequently since equation (1.4) is linear with respect to ( )ξ
⊥d R , each operation 

of ( )intH ξ  acts to destroy or create a single photon. 

  

1.1.1 Ideal Dipole Approximation 

 

Inclusion of ( ) ( )
1 2 l

l
i i ...iE ξ  in equation (1.4) requires that any interaction between 

matter and radiation states is expressible as a complete sum over all electric 

multipole orders.  The necessarily expanded expression for ( )intH ξ  follows as: 

 

 ( ) ( ) ( ) ( ) ( )( )1
0 ,int i i ij i jH d Q d ...ξ ξ

ξ
ξ ε µ ξ ξ− ⊥ ⊥= − + ∇ +∑ R R  (1.8) 
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in which ( )iµ ξ  and ( )ijQ ξ  feature as components of the electric dipole (E1) and 

quadrupole (E2) transition moments respectively.3,14,23,24  It is assumed that the 

molecular dimensions of a system treated by QED analysis are small relative to the 

wavelength of any interacting radiation.  As a result, whilst additional higher order 

operators including the electric octapole (E3) and hexadecapole (E4) moments can 

be incorporated into equation (1.8), such contributions become increasingly small.   

Typically under such conditions on the molecular dimensions, the ideal dipole 

approximation is implemented whereby all observed molecular state transitions are 

considered to develop exclusively through electric dipole moments and 

consequently ( )intH ξ  becomes expressible in the following simplified form: 

 

 ( ) ( ) ( )1
0int i iH d .ξ

ξ
ξ ε µ ξ− ⊥= − ∑ R  (1.9) 

    

To clarify, the ideal dipole approximation is inferred for all discussion presented 

throughout this thesis and subsequently the interaction Hamiltonian is considered to 

be completely represented by equation (1.9).  The only exception to this is in 

Section 3, where certain electric dipole transitions will be considered weak or 

entirely forbidden as a result of high molecular symmetry.  Only in this case will 

( )intH ξ  be portrayed by equation (1.8) where ( )iµ ξ  shall represent the first term 

of a multipolar series with ( )ijQ ξ  corresponding to a significant lead correction. 
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1.1.2 Media Influence 

 

To conclude laying foundations for the analyses to follow, it is appropriate to dwell 

on the influence of any host medium within which any photophysical process may 

occur.  The explicit incorporation of such a medium in the theory develops the 

system Hamiltonian portrayed in equation (1.1), duly modifying all subsequent 

expressions.  To begin, the total system is separated into two separate subsystems.  

The first such subsystem describes the “participating environment,” in which the 

observed photophysical process occurs, subsequently following the pattern of 

theory previously established, i.e. the associated Hamiltonian comprises a sum of 

the molecular quantum operators for all molecules within the participating 

environment.  The other subsystem represents all remaining matter existing outside 

this space, examples of which may include a protein scaffold, host crystal lattice or 

solvation shell etc. that modifies the total system Hamiltonian as: 

 

 ( ) ( ) ,mol int bathH H H H
ξ ξ

ξ ξ
′ ′

′ ′= + +∑ ∑   (1.10) 

 

where ξ ′  represents all molecules within the participating environment and bathH  is 

the “bath” Hamiltonian.  The latter operator comprises the radiation Hamiltonian as 

well as the Schrödinger and interaction operators for all remaining molecules 

represented by ξ ′′  existing outside the participating environment:  
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 ( ) ( )( )bath rad mol intH H H H .
ξ

ξ ξ
′′

′′ ′′= + +∑   (1.11) 

 

Any observed photophysical process is now considered to be mediated by induced 

fluctuations of the bath as opposed to the vacuum electromagnetic field.  Generally, 

intermolecular interactions within the participating environment are strong 

compared to the coupling between the two subsystems and in such instances an 

established treatment utilising perturbation theory is employed.3,5,25  It should be 

noted that the procedures required to evaluate medium effects are well established, 

their application generally leading to the inclusion of Lorentz local-field factors 

and other corrections based on the complex refractive index of the host;26 however, 

these steps shall be left implicit in order to simplify the form of all ensuing results.  

Instead, all matter-radiation interactions are considered in vacuo, with subsequent 

details of the perturbative approach to be discussed in Section 1.2.1.  

 

1.2 Quantum Probability Amplitudes 

 

In most applications, QED theory is utilized within molecular systems to determine 

transition probabilities and energy shifts that occur as a result of radiation field 

interactions.  Such factors are accordingly addressed through quantum probability 

amplitudes that determine the relative coupling strengths between defined initial 

and final system states linked through any possible combination of intermediate 

state transitions.  In the language of QED, such quantum probability amplitudes are 

commonly cast in the form of “matrix elements” as they are in principle derivable 
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for any specified initial and final state.  For diagonal matrix elements, the initial and 

final system states represented by I  and F  respectively are identical and 

assuming at least a single matter-radiation interaction occurs, such transitions 

signify observable energy shifts, the aforementioned Lamb shift being a prominent 

example.  In all off-diagonal contributions, where initial and final system states 

differ, the determined quantum probability amplitude is associated with a 

photophysical process.  In such cases, the process efficiency (determined by 

Fermi’s Golden Rule) is proportional to the modulus square of the matrix element, 

written as 
2

FIM  so that:27 

 

 
22
.F

FIM
πρΓ =
ℏ

 (1.12) 

  

In the above expression, Γ  is the rate of the observable process and Fρ  represents 

a density of states, defined as the number of molecular levels per unit energy 

associated with F .  In the development of theory relating to novel and potentially 

observable photophysical processes, the determination of associated off-diagonal 

matrix elements is significant and therefore such derivation becomes the focus of all 

following sections within this chapter. 

 

 

 

 



 

 11 

1.2.1 Time-dependent Perturbation Theory 

 

As previously established, providing that matter and field coupling remains 

sufficiently small with respect to intramolecular bond energies, i.e. propagating 

radiation regardless of its source does not disrupt the molecular structure of any 

participant within the system, the physical consequence of ( )
intH ξ  can be treated as a 

perturbation, partitioned from the unperturbed sum of all molecular and radiation 

operators, 0H , such that: 

 

 ( )0 intH H H .
ξ

ξ= +∑  (1.13) 

 

Since both ( )molH ξ  and radH  are known quantities, the basis within which the 

effect of the coupling between matter and radiation states is determined is defined 

by the eigenstates Q  of 0H  such that: 

 

 ;Q QQ mol rad .=  (1.14) 

 

The perturbation is subsequently cast as an infinite series as:  

 

 ( ) ( )( ) 1

0
1

.
q

FI int int
q

M F H T H Iξ ξ
∞ −

=
=∑  (1.15) 
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Above, ( ) 1

0 0
IT E H

−
≈ − , with IE  the initial system energy.  The parameter q , 

which denotes the power of ( )intH ξ  in each term of the expansion, has significant 

physical meaning; as an inherent result of the photon creation and annihilation 

operators present in ( )intH ξ , q  corresponds to the number of fundamental matter-

radiation interactions.   

 

In order to demonstrate the discussed approach, the process of spontaneous one-

photon emission, in which an excited state molecule undergoes transition to a 

ground state configuration whilst spontaneously emitting a photon into the vacuum 

field, is now detailed as an example.  Initial conditions for the process require that 

the associated matter exists in an excited state, having been previously excited as 

the result of a laser input that plays no further role in the process, i.e. all radiation 

modes are unoccupied prior to the spontaneous emission.  Since only a single 

matter-radiation event occurs, the necessary matrix element requires that 1q =  and 

is represented following substitution into equation (1.15) as: 

 

 ( ) ,FI intM F H Iξ=  (1.16) 

 

where specifically for one-photon emission, ( ); ,I nαξ λ= p  and 

( ) ( )0; 1 ,F nξ λ= + p .  Such details highlight an additional complication in 

constructing the matrix element for any photophysical process; that of self energy 

corrections relating to self-interaction terms.  Whilst one-photon emission has so far 
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been characterized as a ( )( ) ( )0; 1 , ; ,n nαξ λ ξ λ+ ←p p  system state transition 

involving a single matter-radiation interaction, alternative pathways between the 

initial and final states involving multiple matter-radiation events are plausible.  For 

example, the transition can be described by substitution of 3q =  into equation 

(1.15) providing that one of the three implicit matter-radiation interactions 

represents single photon annihilation.  Owing to the absence of any external laser 

input, the 3q =  component of the matrix element for one-photon emission 

describes both the creation and annihilation of a single virtual photon, originating 

from a fluctuation in the background vacuum field and also the creation of one real 

photon.  Subsequently, the 3q =  term represents an additional correction to the 

complete matrix element, which is expressible as a series of terms: 

 

 ( ) ( ) ( ) ( )
( )( ),

...int int int
FI int I R I S

R S

F H S S H R R H I
M F H I

E E E E

ξ ξ ξ
ξ= + +

− −∑
 

  (1.17) 

 

in which R  and S  relate to system intermediate states with corresponding 

energies RE  and SE .  In this and all other examples, the lead term dominates over 

subsequent contributions, the former typically in the region of three orders of 

magnitude more significant.  The 3q =  term in the above expression and all further 

self energy corrections represented by additional contributions are therefore duly 

ignored.   
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The generalized form of equation (1.17) is worthy of additional note in that the 

presented matrix element equally portrays the process of one-photon absorption.  

As previously discussed, the application of QED therefore greatly facilitates the 

identification of fundamental links between processes that are physically different, 

but share a common form of mathematical development.  Such links are explored in 

greater depth as the focus of Section 2.    

 

1.2.2 Time-ordered Diagrams 

 

Evident in processes involving multiple matter-radiation events, there is an 

additional factor in deriving required matrix elements, that all possible matter-

radiation interaction combinations are considered as required by the sum over states 

form of perturbation theory; the complete matrix element of any process being the 

sum of all such contributions.  In such cases it becomes useful to visualize all such 

combinations through the use of time-ordered “Feynman” diagrams. 

 

All time-ordered diagrams presented in this thesis share a number of common 

features.  Each represents time along the vertical dimension with the initial and final 

conditions portrayed at the bottom and top of the diagram respectively.  Solid, 

vertical lines, often referred to as “world lines,” illustrate changes to the electronic 

state of molecules during the exhibited process.  Photons are represented by wavy 

lines, the evolution of which has a component within the horizontal axis, considered 

to represent spatial dimensions.  Consequently, the intersection of a wavy line and a 
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world line represents an interaction vertex in which the processes of one-photon 

annihilation and creation are illustrated.  Accounting for all such features, Figure 

1.1 portrays one-photon emission as represented by the first term of equation (1.17). 

 

 

Figure 1.1 Time-ordered diagram of spontaneous one-photon emission. 

 

Progressing upwards, the figure initially represents ξ  in an electronically excited 

state αξ  which as a result of interaction with the vacuum radiation field, as 

characterized by ( )intH ξ , undergoes a decay transition to a ground state 

configuration 0ξ  whilst a photon of mode ( ),λp  is emitted.  The diagram is unique 

as only one matter-radiation interaction occurs, however the second term of 

equation (1.17), although considered a self energy correction, provides a example in 

which numerous matter-radiation combinations must be considered to account for 

the entire process.  Having already discussed that the self-interaction term 

incorporates three events, being the creation and annihilation of a single virtual 

photon and the emission of a single real photon, the order of such events is as yet 

ξ

( ),λp
0

α

( )intH ξ
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undefined.  The three possible combinations of events are represented by Figure 

1.2. 

 

 

Figure 1.2 Time-ordered diagrams illustrating self energy corrections to one-photon emission. 

 

As before, in all representations portrayed in Figure 1.2, the molecule ξ  begins and 

ends in molecular states αξ  and 0ξ  respectively, however, inclusion of two 

additional matter-radiation interactions determine that the transitions progress 

through two molecular intermediate states rξ  and sξ .  Being a self-interaction 

contribution, the molecular transitions coincide with both the absorption and 

emission of a single virtual photon of mode ( ),λ′ ′p .  Figures 1.2(a), 1.2(b) and 

1.2(c) portray the process of single, real photon emission occurring after, during and 

prior to the emission and subsequent absorption of the virtual photon respectively.  

The energy required to create the virtual photon is drawn from fluctuations in the 

vacuum field, and providing the energy is replaced quickly, by re-absorption of the 

same virtual photon, the time-energy uncertainty principle permits the violation of 

energy conservation.  Subsequently, the three time-orderings in Figure 1.2, each 

ξ

( ),λp

0

α

r

s( ),λ′ ′p

ξ

( ),λp
0

α

r

s

( ),λ′ ′p

ξ

( ),λp

0

α

r

s

( ),λ′ ′p

( )a ( )b ( )c



 

 17 

represent equally valid corrections to the lead matrix element contribution portrayed 

by Figure 1.1 and if self-energy corrections had not been disregarded, the resulting 

contribution of each term would feature in the complete matrix element for 

spontaneous one-photon emission.   

 

1.3 Rotational Averaging 

 

As previously established, all the research to follow is broadly categorized within 

two main topics, each of the subsequent chapters either representing an original 

development in molecular energy transfer or laser induced fluorescence.  Whilst 

both processes are fundamentally distinct, they share a common experimental 

variable, that each to a degree is dependent on the orientation of its associated 

chromophores.  For the former, the orientation of an energy donor relative to a 

neighbouring acceptor is a crucial factor in determining the overall efficiency of an 

observed energy migration.  In the case of the latter, the polarisation of an induced 

fluorescence output is known to vary with chromophore orientation relative to the 

polarisation of the input excitation.  As a means to keep the presented results 

general and not otherwise restricted to the description of fixed and/or highly 

ordered molecular systems, it is considered in all subsequent examples that 

molecular matter is free to rotate in response to any imposed external stimulus and 

consequently, chromophores are assumed at all times to be randomly orientated in 

three dimensions.  Under such conditions, results are typically determined by means 

of an isotropic orientational average, the basic procedure for which is now outlined. 
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In the continued example of one-photon emission, the process matrix element is 

first derived, requiring substitution of equation (1.9) into equation (1.17) and noting 

that only the lead term where 1q =  is considered in the case of the latter:  

 

 ( ) ( ) ( ) ( )0 1
0;1 , ;0 , .FI i i AM A A d Aαλ ε µ λ− ⊥= −p R p  (1.18) 

 

For simplicity, the summed contribution over an ensemble of molecules ξ  is 

dropped in favor of a matrix element specifically determined for a single molecule, 

A .  For further clarity, the matter and radiation terms are partitioned, allowing 

equation (1.18) to be re-expressed as: 

 

 ( ) ( ) ( ) ( )1 0
0 1 , 0 , .FI i i AM A A A dαε µ λ λ− ⊥= − p R p  (1.19) 

 

By substitution of equation (1.5) into the above expression, the matrix element is 

subsequently portrayed as: 

 

 ( ) ( ) ( ) ( )
1

2
0

, 0

exp . ,
2FI i i A

cp
M i e A i

V
λ α

λ
µ

ε
 

= − 
 

∑
p

p p R
ℏ

 (1.20) 

  

where the electric dipole transition moment ( )0 0
i iA A Aα αµ µ≡ , portrays the 

molecular transition 0A Aα← , in which the operator follows the convention of 

writing the initial and final molecular states as the right and left superscript 
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characters respectively.  The subscript indices associated with the electric 

polarisation and dipole moment terms can each assume the Cartesian values of x, y 

or z with respect to a chosen frame, determining that both ( ) ( )ie λ p  and ( )0
i Aαµ  are 

the salient parameters of study for the purpose of an orientational average.  For 

clarity, equation (1.20) is therefore defined as: 

 

 ( ) ( ) ( )( )0 ,FI i iM K e Aλ αµ= p   (1.21) 

 

introducing a constant of proportionality K .  The Fermi Golden Rule is utilized as 

a final step before the averaging procedure and by substitution of equation (1.21) 

into equation (1.12), the rate of spontaneous one-photon emission from A  is 

presented as:    

 

 ( ) ( ) ( ) ( ) ( ) ( )( )0 0 ,i j i jK e e A Aλ λ α αΓ µ µ′= p p  (1.22) 

 

where ( ) 1
2 FK Kπρ −′ = ℏ .  In the adopted notation, both the matter and radiation 

terms in equation (1.22) are currently portrayed within the same arbitrary space-

fixed frame of reference.  The initial step in implementing an orientational average 

is to first uncouple both sets of parameters by assigning to the former a molecule-

fixed frame of reference, labeled by Greek indices such that: 

 

  ( ) ( ) ( ) ( ) ( ) ( )( )0 0 .i j i jK e e A Aλ λ α α
λ µ λ µΓ µ µ′= p p ℓ ℓ  (1.23) 
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where angular brackets denote the rotational average.  The space- and molecule-

fixed reference frames are now linked through a product of direction cosines i jλ µℓ ℓ  

, where iλℓ  for example is the cosine of the angle between the space-fixed axis i  

and the molecule-fixed axis λ .  Conventionally, the average would proceed by re-

expressing the direction cosines in terms of Euler angles, the end result being 

determined by means of mathematical integration.  However, such methods are only 

feasible for tensors of low rank; the above example exhibiting an implicit sum over 

two separate Cartesian indices is resolved through second-rank, i.e. 2n =  

orientational averaging.  In later examples that require the deployment of averaging 

protocols up to the eighth-rank, an alternative integration free method based on 

isotropic matrix elements must instead be utilized.  The analysis requires 

implementation of fourth-, sixth- and eighth-rank tensor averages, of which only the 

former two are widely documented;3,28-30 nonetheless their calculational principles 

have been deployed across a wide range of photophysical processes, recently 

including coupled systems and interactions such as quantum dot assemblies, van der 

Waals dispersion energies and Casimir effects.31-34 

 

As a rotationally invariant parameter, it is possible to represent i jλ µℓ ℓ  as a linear 

combination of tensors, each of which is also invariant under rotation.  Such 

combinations are the product of two isotropic tensors, one referred to the space-

fixed frame and the other to the molecule-fixed frame.  In three dimensions, each 

isotropic tensor is representable as a product of at least two fundamental tensors, the 

well known Kronecker delta ijδ  and the Levi-Civita antisymmetric tensor, ijkε .  
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Since all rotational averages presented in the following work are of even rank, the 

associated isotropic tensors will each be the product of 
2

n
 Kronecker deltas, the 

Levi-Civita antisymmetric tensor featuring only in averages of odd rank that most 

often arise in quantum interference terms.  For the continued example of one-

photon emission, having already been determined as a second rank average, both 

the space- and molecule-fixed isotropic tensors are represented by a single 

Kronecker delta, the corresponding average following as: 

 

 
1

,
3i j ijλ µ λµδ δ=ℓ ℓ   (1.24) 

  

By substitution of equation (1.24) into equation (1.23), the Kronecker delta 

functions operate on the matter and radiation terms that feature in the latter, 

effecting two changes.  First, the fundamental tensor ijδ  contracts the electric 

polarisation terms, such that ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 1ij i j i ie e e eλ λ λ λδ = =p p p p .  Similarly, 

λµδ  contracts the molecular transition dipole moments so that 

( ) ( )( ) ( ) ( ) ( ) 20 0 0 0 0A A A A Aα α α α α
λµ λ µ λ λδ µ µ µ µ µ= = .  Subsequently, the rotationally 

averaged rate of single photon emission is determined as: 

 

  ( ) 201
.

3
K AαΓ ′= µ  (1.25) 
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Whilst in the above example, the second rank average presented as equation (1.24) 

clearly features only one possible product of the two isotropic tensors, higher 

ordered averages require the consideration of multiple possible combinations or 

isomers.  In the case of fourth-rank averaging for example, each of the space- and 

molecule-fixed isotropic tensors are written as the product of two Kronecker deltas, 

an isomer of each being ij klδ δ  and λµ νσδ δ  respectively.  Focusing on the former, by 

permuting the four indices, two additional isomers ik jlδ δ  and il jkδ δ  are generated.  

Following similar permutation in the molecule-fixed isotropic tensors, nine possible 

combinations of products between the two frames now exist.  In order to concisely 

represent all possible arrangements, the generalized form of all higher rank 

averages are typically presented as matrix equations, where for example the 

generalized fourth-rank average,  i j k lλ µ ν σℓ ℓ ℓ ℓ  is represented generally as:3,28 

 

 

4 1 1
1

1 4 1 ,
30

1 1 4

T

ij kl

i j k l ik jl

il jk

λµ νσ

λ µ ν ο λν µσ

λσ µν

δ δ δ δ
δ δ δ δ
δ δ δ δ

   − − 
    = − −    

     − −    

ℓ ℓ ℓ ℓ  (1.26) 

 

where T  indicates a transpose matrix.  Utilised in Sections 3, 4 and 5, the sixth rank 

orientational average i j k l m nλ µ ν σ τ ρℓ ℓ ℓ ℓ ℓ ℓ  features fifteen distinct isomers and is 

representable as:3,28 
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1

210

ij kl mn

ij km ln

ij kn lm

ik jl mn

ik jm ln

ik jn lm

il jk mn

il jm kni j k l m n

il jn km

im jk ln

im jl kn

im jn kl

in jk lm

in jl km

in jm kl

λ µ ν σ τ ρ

δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ

 
 
 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 






 

ℓ ℓ ℓ ℓ ℓ ℓ
( )6 ,M

λµ νσ τρ

λµ ντ σρ

λµ νρ στ

λν µσ τρ

λν µτ σρ

λν µρ στ

λσ µν τρ

λσ µτ νρ

λσ µρ ντ

λτ µν σρ

λτ µσ νρ

λτ µρ νσ

λρ µν στ

λρ µσ ντ

λρ µτ νσ

δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
  
  
  

 
   (1.27) 

 

requiring the 15 15×  numerical matrix, ( )6M  as follows: 
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( )6

16 5 5 5 2 2 5 2 2 2 2 5 2 2 5

5 16 5 2 5 2 2 2 5 5 2 2 2 5 2

5 5 16 2 2 5 2 5 2 2 5 2 5 2 2

5 2 2 16 5 5 5 2 2 2 5 2 2 5 2

2 5 2 5 16 5 2 5 2 5 2 2 2 2 5

2 2 5 5 5 16 2 2 5 2 2 5 5 2 2

5 2 2 5 2 2 16 5 5 5 2 2 5 2 2

2 2 5 2 5 2 5 16 5 2 5 2 2 2 5

2 5 2 2 2 5 5 5 16 2 2 5 2 5

M =
− − − − − −

− − − − − −
− − − − − −
− − − − − −

− − − − − −
− − − − − −

− − − − − −
− − − − − −

− − − − − −
.

2

2 5 2 2 5 2 5 2 2 16 5 5 5 2 2

2 2 5 5 2 2 2 5 2 5 16 5 2 5 2

5 2 2 2 2 5 2 2 5 5 5 16 2 2 5

2 2 5 2 2 5 5 2 2 5 2 2 16 5 5

2 5 2 5 2 2 2 2 5 2 5 2 5 16 5

5 2 2 2 5 2 2 5 2 2 2 5 5 5 16

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − − − − − −
 − − − − − − 
 − − − − − −
 

− − − − − − 
 − − − − − −
  − − − − − − 

   

   (1.28) 

 
Whilst both the fourth and sixth rank averages have previously been implemented 

in a host of applications, Sections 4 and 5 each also utilize the generalised eighth 

rank isotropic average, the form of which does not feature explicitly due to its size; 

the ( )8M  matrix is representable as a 105 105×  grid of characters.29 

 

1.4 Summary of Theoretical Framework  

 

It is prudent to conclude this opening chapter by means of a summary, reviewing all 

salient features of the background information presented thus far.  Any further 

development in either the established theory or employed method, including any 
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specific deviation from the general points to follow, will be addressed in detail as 

required.  

 

All novel research is founded within a recognized QED theoretical framework and 

thus accommodates a fully quantized system; both matter and radiation field are 

subject to the postulates of quantum mechanics.  The system Hamiltonian is 

presented in the multipolar form and therefore in the description of intermolecular 

interactions, no direct matter-matter coupling exists.  Instead, all such interactions 

are facilitated through the surrounding radiation field, mediated by the exchange of 

transverse photons.  Whilst both the quantized molecular and radiation 

Hamiltonians are required parameters for any complete interpretation of a given 

system, such features for brevity are assumed to be known or determinable.  It is 

therefore the mutual interaction of the molecular system and electromagnetic field, 

whose transitions are individually described by the electric multipole and transverse 

displacement field operators respectively, that are of primary concern. 

 

In addressing molecular transitions, the system dimensions in all worked examples 

are considered compatible with the ideal dipole approximation therefore generally 

excluding the need to comment further on the contribution of magnetic or higher-

order electric multipole transitions.  For the radiation field, it is assumed at all times 

that interaction photons travel at the speed of light in vacuo.  Under such 

conditions, the present work elicits clear physical behaviour of complex systems 
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whilst further providing a sound basis for developing a further tier of theory to 

account for any modifications introduced by media influences.  

 

In the development of theory pertaining to innovative photophysical processes, it is 

envisaged throughout that the strength of coupling between matter and radiation 

field is comparatively weak relative to the Coulombic fields that maintain the 

internal structure within atoms or molecules.  Matrix elements derived through 

time-dependent perturbation theory are therefore always valid and remain so even 

in later examples addressing the application upon a molecular system of high 

intensity pulsed laser inputs.  Whilst it has been shown that matrix elements may be 

represented as the sum of an infinite number of terms through the inclusion of self-

interaction contributions, it is always the lead term that dominates, such that 

subsequent higher-order additions are duly disregarded. 

 

Finally, it is well known that chromophore orientation represents a dependent 

variable for both the processes of RET and laser induced fluorescence that together 

represent the two main topics of discussion.  In all cases, such chromophores are 

assumed to be randomly orientated in three dimensions and free to rotate in 

response to any imposed external stimulus.  Under such conditions, results are 

determined by means of an isotropic average, requiring the utilisation of either the 

fourth-, sixth- or eighth-rank orientational averages as previously presented.  
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SECTION 1 – Quantum Electrodynamical Development of Resonance Energy 

Transfer 

 

The following section consists of two chapters each exploring distinct 

developments in theory pertaining to resonance energy transfer (RET); a 

mechanism of remarkable relevance across a wide range of physical, chemical and 

biological systems, described as the transportation of electronic excitation between 

donor and acceptor units (ions, atoms, molecules or chromophores) following 

photoexcitation. 

 

Chapter 2 investigates a range of photophysical processes that fundamentally 

depend on intermolecular interactions resulting from electric dipole coupling, the 

most familiar being static dipole-dipole interactions, RET, and intermolecular 

dispersion forces.  Additional forms of intermolecular interaction including 

radiation-induced energy transfer and optical binding are also considered in 

molecules subjected to off-resonant light.  Within the established QED formulation, 

all these phenomena are cast in a unified description that establishes their inter-

relationship and connectivity at a fundamental level.  Theory is then developed for 

systems in which the interplay of these forms of interaction can be readily 

identified.  Throughout this work, a primary consideration is that electronically 

excited molecules interact with their neighbors differently from their ground-state 

counterparts, therefore any migration of the excitation between molecules should 
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modify the observed intermolecular forces, reflecting changes to the local potential 

energy landscape. 

 

While RET is typically described as a coupling of electric dipole (E1) transition 

moments, a significant number of exceptions exist in which donor decay and/or 

acceptor excitation processes are E1-forbidden.  Possible alternative transfer 

mechanisms that can apply in such cases include roles for higher multipole 

transitions, exciton- or phonon-assisted interactions, and non-Coulombic 

interactions based on electron exchange.  Chapter 3 provides a rigorous basis to 

assess the first of these, deemed the most generally applicable alternative to E1-

forbidden RET.  Specifically, the significance of higher multipole contributions to 

the process of energy transfer is considered in donor-acceptor systems where E1-

transitions are precluded by symmetry.   

 

Resonance Energy Transfer 

 

The primary result of photon absorption in any complex dielectric material is the 

population of electronic excited states, in individual atomic or molecular sites.  

Typically, each such absorption is followed by a rapid but partial degradation of the 

acquired energy, dissipative losses due to intramolecular or lattice nuclear 

vibrations ultimately being manifest in the form of heat.  The majority of the 

excitation energy, held in a localized electronic excited state, may be acquired by a 
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neighboring atom or molecule with a suitably disposed electronic state, through 

RET.1-3   

 

The process of RET operates across a chemically diverse and extensive range of 

material systems.  Perhaps the most important and widely known example occurs 

naturally in plants and photosynthetic organisms as the photochemical harvesting of 

solar energy.4-8
   In an attempt to mimic such photosynthetic units and exploit the 

Sun in solving our own energy crisis, a number of synthetic alternatives have been 

proposed.  Polymer systems such as dendrimers along with dye loaded zeolite 

crystal structures are just two possible media for the efficient capture and relocation 

of optical energy to desirably located acceptor cores.8-17
   As an additional 

advantage, the one-directional nature of such energy transfers opens the technology 

to a range of applications including organic light-emitting diodes and luminescence 

detectors.18,19
   

 

Beyond energy harvesting and channelling, there has recently been a resurgence of 

interest in RET used as a structural probe utilising the mechanisms well known 

sensitivity to transfer distance.  Time-resolved decay measurements of biomaterials 

such as proteins suitably labeled with fluorescent chromophores allow the study of 

dynamic conformational changes within biological systems, exploiting the distance 

dependence as a so-called “spectroscopic ruler”.20-26
   Similar application of the 

technology is applied to elucidate physical and morphological interface properties 
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of complex polymer blends.27-31  Several ultra-sensitive molecular imaging 

applications are also based on the same underlying principles.32-38
   

 

Irrespective of the specific application, the elementary process of RET can be 

summarised by the expression 0 0A B A Bα β+ → +  featuring two, usually 

neighboring chromophores, A  and B  which operate respectively as donor and 

acceptor of the electronic excitation.   

 

 

Figure 1.3 Energetics and spectral overlap features for RET.  Electronic states for A and B and their 

vibrational manifolds are signified by the boxes.  Wavy lines indicate processes of non-radiative, 

vibrational relaxation. 

 

As portrayed in Figure 1.3, the energy transfer process through RET proceeds 

through resonance coupling between the donor and the acceptor.  The short-range 

rate equation first proposed by Förster is presented in the figure, introducing the 

fluorescence and absorption spectra, AF  and Bσ  of the donor and acceptor 
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respectively.  The refractive index of the host media is represented by n, the donor 

excited state lifetime by Aτ  and the relative orientation of donor and acceptor 

molecules is included through the orientation factor κ .  

 

After initial electronic excitation, the donor in an excited state Aα  undergoes a 

downward energy transition to the electronic ground state whilst the acceptor is 

promoted from its ground state configuration to an excited state Bβ .  In principle, 

relaxation of the donor and excitation of the acceptor can engage any available 

electronic states of the participating molecules providing that the donor and 

acceptor necessarily have emission and absorption spectra exhibiting a degree of 

overlap.  Generally a rapid internal reorganisation following the energy transfer 

usually puts the acceptor into an energy level from which its subsequent decay has 

relatively small overlap with the donor absorption profile, establishing a 

spectroscopic gradient that limits back-transfer.39  At short distances, where the 

wavefunctions of the two species have significant overlap, an electron exchange 

mechanism usually associated with the name of Dexter can operate.40  Additionally, 

the coupling of electric multipoles persists into and well beyond the point where 

wavefunction overlap can be disregarded.  The nature of the latter interaction is the 

primary focus of work in this section. 

 

The mechanism for RET is most accurately described within a QED framework, 

analysis by which delivers a rate equation for the energy migration that incorporates 

both near- and far-zone behavior as limits of a more general dependence on inter-
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chromophore separation.41  Within the short-range limit, Coulombic RET is 

commonly described as a radiationless (Förster) process linking dipole-allowed 

transitions, and the rate of transfer has an 6R−  dependence.42  As the chromophore 

separation increases to and beyond the optical wavelength scale, QED theory 

correctly establishes a seamless linkage to the far-zone limit where an 2R−  

relationship, associated with radiative transfer, is observed. 
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Chapter 2 – Dynamics of the Dispersion Potential in an Energy Transfer 

System 

 

The migration of electronic excitation between molecular units has received 

extensive experimental and theoretical study, in particular its spectroscopic 

manifestations are well characterized.  However, it appears that little regard has 

been given to changes, intrinsic to the operation of RET, that occur in the dispersion 

interaction between donor and acceptor units.  The dispersion interaction is itself 

most accurately described in terms of the Casimir-Polder potential;1 using QED, its 

explicit form emerges from calculations based on intermolecular coupling through 

virtual photon mediators.2-5  Recent work by Salam has determined the general 

formula for the dispersion potential deriving from multipolar interactions.6-8  The 

relevant equations have also been secured by implementing quantum amplitude 

calculations using a state-sequence approach;9 a device first proposed and 

developed by Jenkins et al.10  Although the long-range behaviour of the leading 

contribution to the potential runs with the inverse seventh power of the inter-particle 

distance R, the shorter-range form that operates over distances where effects are 

most pronounced exhibits an R-6 asymptotic behaviour.  The latter is well known as 

the attractive component of the Lennard-Jones potential.  Whilst the dispersion 

potential is usually considered as an interaction between molecules in their ground 

states, a potential of similar form may readily be derived for molecules in excited 

states.11-18 
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Since the form of the dispersion interaction depends on the electronic states of the 

molecular participants, the dispersion force between neutral molecules is clearly 

subject to change during the course of molecular excitation, relaxation and RET.  

Indeed, electronic environments will first experience change upon local optical 

excitation of any donor, the associated modification of electromagnetic interactions 

between the donor and other units immediately producing modified intermolecular 

forces.  In general, a degree of local movement can be expected as the system 

becomes accommodated to the new potential energy field.  If the absorbed energy 

then transfers to a neighbouring acceptor unit of another species so that the latter 

acquires the excitation, i.e. RET occurs, the local electronic environment will suffer 

further change, and once again a compensating spatial accommodation can be 

expected to occur.  In particular, in a solid-state environment where intermolecular 

forces are balanced in an equilibrium configuration, any changes associated with 

the migration of local electronic excitation should effectively act as a small 

perturbation to the equilibrium of intrinsic forces, producing potentially measurable 

displacements.  As recent preliminary studies have shown, the typical magnitude of 

such effects falls well within the current limits of experimental detection.13-16  

 

Exploiting the flexibility of the theory established in Chapter 1, the objective of the 

present analysis is to address a system in which various physical effects are not only 

mathematically, but also physically interlinked.  In Section 2.1, the theory of second 

and fourth order interactions is developed with a particular focus on elucidating the 

effects of intermolecular energy transfer through RET; a succinct treatment of the 
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dispersion pair potential is included, in which the dependence on the electronic state 

of the interacting particles is explicitly delivered.  Such calculations 

accommodating both mechanical forces and electronic processes accurate to fourth 

order in perturbation theory have not been attempted before.  The analysis is 

extended to accommodate and appraise subsidiary effects due to throughput 

radiation, specifically additional mechanical and dynamical effects that arise on the 

propagation of off-resonant light through the transfer system.  Since any adaptation 

to subtly changing force fields is most readily tested in an ensemble, rather than in 

individual particle pairs, Section 2.2 addresses a system in which the two units 

between which energy is transferred are counterpositioned on parallel one-

dimensional arrays in close proximity.  The theory is further extended, to elicit the 

dynamical behaviour, and the system response to pulsed off-resonant laser light is 

ascertained as a function of time.  The results of the model are presented in Section 

2.3, followed by concluding thoughts in Section 2.4. 

 

2.1 Intermolecular Coupling Processes  

 

To ensure rigorous inclusion of all processes and mechanisms to a common and 

consistent level, evaluation up to the fourth order of perturbative expansion is 

implemented, to consider all relevant couplings between physically identifiable 

system states.  One over-riding condition is that the final state of every radiation 

mode is identical to its initial state, i.e. no net absorption or emission of radiation 

occurs during the course of the process under examination.  For this reason, since 
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( )intH ξ  from equation (1.4) can only create or destroy one photon on each 

operation, only even values of the power index q  arise.  Hence the leading non-

zero terms in the series expressed by equation (1.15) can be developed, through 

insertion of the state completeness relation on the right-hand side of each 0T  

operator: 
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∑
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  (2.1) 

 

To clarify, R , S  and T  represent intermediate states, each denominator term 

being the energy difference between one of these intermediates and the initial state.  

Additionally, the following assumptions are implied throughout.  All interactions 

are considered to occur beyond the region of significant wavefunction overlap.  The 

entire system is considered to be isolated and as a consequence, dynamical 

processes are uniquely associated with a response to the intermolecular migration of 

energy, and to any time-varying radiative input, such as the pulsed off-resonant 

laser radiation that proves to induce features of particular interest. 
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2.1.1 Second-order Processes 

 

Static dipole interaction:  From equation (2.1), the leading contribution represents a 

second-order perturbation, which in the short-range signifies the creation and 

annihilation of a single virtual photon.  The simplest case is the static interaction of 

two ground-state molecules with permanent electric-dipole moments, represented as 

two distinct time-ordered diagrams in Figure 2.1. 

 

 

Figure 2.1 Time-ordered diagrams for static dipole-dipole coupling 

 

These diagrams elucidate two possible contributions to the static interaction, Figure 

2.1(a) entailing the creation of a virtual photon at molecule A and subsequent 

annihilation at B, and Figure 2.1(b) portraying the reverse.  As with all subsequently 

described processes, a complete description requires a summation of the quantum 

amplitudes delivered by all such topologically distinct representations.  The result 

emerges as follows: 
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 ( ) ( ) ( )00 00 , ,i j ijE A B V pµ µ∆ = R   (2.2) 

 

where the energy shift associated with the static coupling is represented by E∆ , and 

( )00µ ξ  signifies a ground state static electric dipole moment.  The fully retarded 

coupling tensor of rank two, ( )ijV p,R  is exactly expressible as: 

 

 ( ) ( ) ( )( ) ( )( )2

3
0

exp
3 1 ,

4ij ij i j ij i j

ipR ˆ ˆ ˆ ˆV p, R R ipR R R pR
R

δ δ
πε

±  = − ± − −
 

R
∓

 (2.3) 

   

noting that whilst both positive and negative imaginary contributions are 

acceptable, the latter form is more commonly cited.19  For significantly small 

distances, i.e. where 1pR≪ , the coupling tensor in equation (2.3) essentially 

reduces to a short-range limit equivalent to the coupling of static dipoles dependent 

on 3R− , expressible as: 

 

 ( ) ( )3
0

1 ˆ ˆ0 3 ,
4ij ij i jV R R

R
δ

πε
= −  (2.4) 

 

with ( )0ijV  being the zero-frequency result.  Conventionally RET is thus described 

as being “radiationless” in the short-range, a process induced by electric dipole 

coupling.   
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Resonance energy transfer:  In terms of an experimentally observable process, the 

simplest intermolecular interaction is the transfer of energy through resonance 

coupling between molecules, one of which is in an initially prepared excited state.  

As with static dipole coupling, RET is a second order interaction exhibiting two 

photon-matter interactions, i.e. the propagation of a single virtual photon, see Figure 

2.2.   

 

 

Figure 2.2 Time-ordered diagrams for RET 

 

The matrix element for RET is again represented by the first term of equation (2.1).  

Using the labels 0, α  and β  to represent the electronic ground and corresponding 

excited states of the donor and acceptor respectively, the initial, final and 

intermediate states for RET are defined thus: 
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 In equation (2.5), the summed intermediate states R  relating to the first term of 

equation (2.1) have been explicitly cast in each of two permissible forms, one 

virtual photon being present in each.  Respectively, 1R  and 2R  relate to 

conditions where both molecules, or neither, are in the electronic ground state.  

Detailed derivation of the second-order RET matrix element is already well 

documented, leading to the following result:20-22 

 

 ( ) ( ) ( ) ( )2 0 0 ,FI i j ijM A B V p,α βµ µ= R  (2.6) 

 

where the superscript for ( )2
FIM  highlights the power order of q  utilized in the 

matrix element derivation.  Again, the short range limit of the above expression 

would instead employ the zero frequency coupling tensor given in equation (2.4).    

  

2.1.2 Fourth-order Processes 

 

Casimir-Polder (dispersion) interaction:  Considered next are interactions governed 

by a total of four matter-radiation events.  In the absence of an applied 

electromagnetic field, the simplest and most widely relevant example is the 

Casimir-Polder dispersion interaction, a process which in QED terms is mediated 

by the intermolecular propagation of two virtual photons.2-5  The interaction has a 

matrix element associated with the second term of equation (2.1) and is illustrated 

by 12 distinct Feynman diagrams, see Figure 2.3.   
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Figure 2.3 Three of twelve possible time-ordered diagrams for the Casimir-Polder dispersion 

interaction  

 

As an example, for the attractive coupling between ground state molecules, the 

following system states define the contribution from Figure 2.3(c): 

 

 
( )
( ) ( )
( )

0 0

0

0 0

0

, ;0

, ;1 ,

, ;1 , ,1 ,

, ;1 , .

r

s

I F A B

R A B

S A B

T A B

λ

λ λ

λ

= =

=

′ ′=

′ ′=

p

p p

p

 (2.7) 

 

For brevity, rather than consider all possible time-orderings, as required to define 

the complete potential for any distance, we instead consider two limits that exhibit 

strikingly different responses.  In the near-zone, where intermolecular distances are 

small compared to the longest wavelengths of absorption or fluorescence, the 

coupling is essentially instantaneous.  The Uncertainty Principle dictates that the 

short-lived virtual photons may accordingly exhibit energies that are large 

compared to the molecular transition energies.  This acts as a constraint upon the 
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time-ordered contributions that contribute significantly to the dispersion 

interaction.3,9  Conversely, in the far-zone limit, increasing propagation time allows 

the virtual photons to convey lower energies, and the calculations are dominated by 

contributions consistent with photon frequencies that are small with respect to the 

molecular absorption and emission frequencies.   

 

For calculational simplicity, all interactions are subsequently discussed within the 

near-field range; the effects to be described are certainly most prominent in this 

region.  Within this range, the key equations relating to both second-order static 

coupling and the fourth-order dispersion potential are more conventionally derived 

utilizing a dipolar coupling approximation with first- and second-order perturbation 

theory respectively.  In the case of the former, we first consider a pairwise coupling 

between A and B, both having permanent electric dipoles.  In a QED derivation of 

the coupling, it has already been established that the interaction is represented as a 

virtual photon transfer between A and B, for which there are two possible time-

orderings (see Figure 2.1).  Within the near-field range, the donor emits a photon 

that is almost instantly absorbed by the acceptor, and the coupling can be 

considered unretarded, i.e. the virtual photon creation and annihilation events in 

effect occur simultaneously.  The process is now represented by just a single time-

ordering (Figure 2.4).  The calculation is treated by first-order perturbation theory, 

utilising the pairwise operator ABW , which is derived by substitution of equation 

(2.4) into equation (2.2) and given explicitly by: 
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( ) ( ) ( )3

0

ˆ ˆ3 .
4

i j
AB ij i j

A B
W R R

R

µ µ
δ

πε
= −     (2.8) 

 

The pair interaction potential is thus determined by ABE W∆ = Λ Λ , noting that 

ABW  is an operator over only molecular states.  As such, Λ  signifies the 

unperturbed basis state involving only the donor molecule in state a and the 

acceptor in state b, therefore the interaction potential emerges from equation (2.8) 

with the diagonal matrix elements ( )aa
i Aµ  and ( )bb

j Bµ , i.e.  the static dipole 

moments substituting for the dipole operators.   

 

 

Figure 2.4 Time-ordered diagram representing near-zone static dipole-dipole coupling. The dashed 

line is symbolic of an almost instantaneous mediation between donor and acceptor  

 

The dispersion interaction is an additional form of coupling which in the 

investigation of dynamical behavior in Section 2.2 becomes the dominant form.  

The assumption of a system comprising non-polar molecules means that no role is 

played by static dipole coupling itself.  Figure 2.5 illustrates a simplified Feynman 
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diagram for evaluating the dispersion potential in its near-zone asymptote, where 

the coupling derives from two separate but instantaneous mediations between A and 

B.2,5,12   

 

 

Figure 2.5 Time-ordered diagram representing near-zone dispersion potential 

 

The coupling is treated, again through use of ABW , but this time with second-order 

perturbation theory: 
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On substitution of equation (2.8) into (2.9), with the state of each component duly 

specified, the following emerges: 
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within which, ( )arE A  and ( )bsE B  portray energy differences more generally 

represented by ( ) ( ) ( )xy x yE E Eξ ξ ξ= − , where x and y represent molecular energy 

levels of ξ .  Whilst equation (2.10) is generally valid for rigidly oriented molecules, 

a key assumption throughout is that the dipole moments of both the donor and 

acceptor are randomly oriented, in situ, therefore the key features of the physics are 

clarified by performing an orientational average.  Separate second rank averages are 

performed on A and B, each utilizing the general second order isotropic tensor 

portrayed by equation (1.26).  With the isotropic average applied to the result 

emerging from equation (2.10) the following is ascertained: 
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which reduces to the well-known London formula when a and b are ground levels.  

In the latter case each ( )raE A  and ( )sbE B  is positive, therefore the result of 

equation (2.11) is invariably a negative quantity.  With due regard to the inverse 
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power dependence on distance, the attractive nature of the dispersion potential is 

thus apparent.   

 

2.1.3 Additional Processes in the Presence of Off-resonant Laser Light 

 

In the presence of intense off-resonant laser light, additional intermolecular effects 

are manifest as a result of real photon-matter interactions.  For the identification of 

such effects, calculations are performed on a basis state for which the occupation 

number of at least one photon mode is non-zero.  In order to determine energy shifts 

arising from a coupling with throughput radiation, it is necessary to identify terms 

that are diagonal in this basis, taking the following form:  

 

 ( )0 0, ; , .I F A B n l= = p  (2.12) 

  

Optically induced pair forces:  The leading contribution to the interaction modified 

by laser input is an optically induced pair force, this fourth-order perturbation 

described as a real photon annihilation at the donor and stimulated re-emission from 

the acceptor (or vice versa), with both molecules coupled by a single virtual 

photon.23,24  Possible forms of the interaction are portrayed by Figure 2.6.   
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Figure 2.6 Two possible time-ordered diagrams representing the optically induced pair force 

 

In accordance with energy conservation, the throughput radiation suffers no overall 

change.  The analysis of an optically induced pair energy shift begins from the 

second contribution of equation (2.1), see for example work by Bradshaw and 

Andrews, leading to the following result for non-polar molecules:25 
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Here, n  defines the number of real input photons, with individual energies cpℏ  

( 2 / laser wavelengthp π= ).  The retarded dipole-dipole coupling tensor ( )jkV p,R  

takes the same form as equation (2.3).  The dynamic polarizability tensors which 

feature in equation (2.13) are specific implementations of the formula:  
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In this expression, given here in general form with a view to later calculations, 

omission of the state labels as in equation (2.13) signifies ground state evaluation, 

i.e. ( ) ( )00ξ ξ=α α . 

 

In order to fully describe the effect of optical forces on a system, it is necessary to 

consider internal degrees of freedom as defined by molecular geometry.  Based on 

equation (2.13), calculations have for example been performed for a range of 

cylindrical configurations including cases of tumbling, collinear and parallel donor-

acceptor pairs.24,25  In the case of isotropic molecules, the energy shift emerges as: 
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where x  denotes the axis of laser polarisation and accordingly, ( )0 Aα  is a scalar 

value.  The above result highlights the linear dependence on laser intensity, I .  The 

near-field distance dependence is accommodated within the near-field tensor 

element ( )xxV p,R : 

 

 ( ) 3
0

1
Re .

2xxV p,
Rπε
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Laser-assisted resonance energy transfer:  In the same way that intermolecular 

dispersion forces are modified by off-resonant laser light, fourth-order 

modifications have also been reported in connection with RET.  The corresponding 

capacity for enhancing the rate of transfer has earned the soubriquet “laser-assisted 

resonance energy transfer (LARET)”.26-28  As with the optically induced pair forces, 

the throughput radiation once again emerges in a final state that is unchanged from 

the initial state, whilst in this case the material system experiences a transfer of 

energy from A  to B .  Thus, for the initial and final states of the system as a whole 

we have:  
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p
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  (2.17) 

 

It should be emphasized that the laser beam experiences no absorptive energy loss, 

the LARET process not to be confused with “laser-induced resonance energy 

transfer”; wherein laser frequencies are specifically chosen to promote energy 

migration by bridging a donor and acceptor frequency mismatch.29  Depending on 

how the throughput radiation interacts with the donor-acceptor system, a number of 

possible LARET mechanisms emerge.  Each entails real photon absorption and 

emission, coupled by a virtual photon mediator.  First, consider processes where a 

real photon is absorbed at the donor and subsequently re-emitted from the acceptor, 

see Figure 2.7. 
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Figure 2.7 One possible time-ordered diagram representing LARET 

 

The net matrix element, accommodating all time-orderings, takes the following 

form: 
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Terms in equation (2.18) are similar in form to those describing the optically 

induced pair potential as shown in equation (2.13), but here the process of energy 

transfer from A  to B  effects a differentiation between those molecules.  The two 

parts of equation (2.18) reflect “mirrored” contributions, the first corresponding to 

the case where real photon absorption occurs at A  with emission at B , and the 

second, the reverse.  The full LARET matrix element is completed by the inclusion 

0

0

β

A B
α

( ),λp

r

s
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of two further contributions associated with intermolecular interactions where the 

real photon absorption and emission processes both occur at the same centre: 
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 (2.19) 

 

The hyperpolarizability tensor components ( )fi
ijlβ ξ  signify the effects of three 

photon interactions (two real and one virtual) at a single centre, being defined in the 

form: 
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   (2.20) 

 

where above, the virtual photon is associated with ( )ke p  and energy 2cpℏ , while 

the real photon input and output relate to ( )je p , ( )le p  and energies 1cpℏ  and 3cpℏ  

respectively.  It is interesting to observe that the above mechanism, involving the 
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occurrence of both real photon operations at a single molecular center, also has 

counterparts for the optically induced pair forces.24,25,30  However in the latter case 

the dipole moments corresponding to those in equation (2.19) are static, which in 

the context of the present work, addressing isotropic molecules, are zero.  In 

LARET, the moments are associated with transition dipoles, and such terms persist 

even for non-polar molecules. 

 

2.2 Dynamic Behaviour 

 

Intermolecular interactions are most widely understood in connection with systems 

in which molecules reside in their electronic ground states, a reasonable assumption 

when the system is in ambient conditions, and electronically excited state 

populations are vanishingly small.  Here, however, we focus upon effects that are 

uniquely exhibited by systems in which additional electronic energy is present, as a 

result of photoexcitation for example.  The nature of interactions between 

electrically neutral molecules certainly varies according to their electronic state, and 

those interactions are clearly subject to change during the course of absorption and 

RET.13-16,31 

 

2.2.1 Effect of Electronic Excitation and Energy Transfer 

 

Whilst the dispersion potential for a single donor-acceptor interaction is defined by 

equation (2.11), an ensemble of pairs incorporating donors and acceptors of any 
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electronic state, generates an effective system average pair potential E∆ , expressed 

as:  

 

 ( ) ( )
( ) ( )

2 2

2 2 6
0, , 0, , ,0
0, 0, ,

1
.

24

ar bs
a b

ra sba r
b s

A BE N N
R E A E Bα α α

β β β
π ε ∗

∗
= =
= =

∆ = −
+

∑ ∑ µ µ  (2.21) 

 

In the first summation on the right-hand side of equation (2.21), aN  and bN  are the 

fractional populations of donors in state a and acceptors in state b respectively, 

whose explicit time-dependences produce dynamical effects on E∆  as will emerge 

from subsequent population modeling in Section 2.2.2.  The second summation in 

equation (2.21) is taken over donor and acceptor molecular states, each molecule 

being treated as a three-level system to reflect its most prominent optical features.  

For the generic state labels we have { }0, ,r α α ∗∈  and { }0, ,s β β ∗∈ , perturbation 

theory precluding the combination a r=  and b s= .  The higher energy states 

aA
∗

and Bβ ∗

 are included as representatives of unpopulated, virtual electronic 

states.  The physical significance of the different forms that arise for the summed 

interactions in equation (2.21) is that the energy denominator can, according to the 

pair states for which it is evaluated, yield a negative result.  Bearing in mind the 

sign at the front of the expression and the overall dependence on an inverse power 

of R , it transpires that the potential in such cases no longer describes an attractive 

force as by contrast is always the case for neutral molecules.  
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2.2.2 Time-dependent System 

 

Represented within Figure 2.8, a sequence of photophysical interactions engaging 

the ensemble pairs is used to evaluate the time-evolving populations aN  and bN , 

subsequently to be used in determining temporal changes in the ensemble 

dispersion as a result of energy transfer.   

 

 

 Figure 2.8 Jablonski diagram illustrating relevant photophysical processes for a dynamic system. 

Excitation of A is inferred through the diagram but the initial excitation input is deliberately withheld 

from the figure.  After excitation of the donor, the input plays no further role in subsequent 

photophysical processes.      
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The initial state preparation is effected by an initial excitation of donor molecules 

through the absorption of light that is resonant with the donor but not the acceptor.  

The donor excitation leads to a population of excited vibrational levels, denoted by 

dagger superscript, of the electronic excited state Aα .  Whilst laser excitation might 

result in localized movement as a result of radiation pressure, such movement can 

be ignored in the following calculations, such that beyond initial excitation, the 

input plays no further part in subsequent events.  Without compromising energy 

conservation by the system as a whole, an immediate consequence of electronic 

excitation is the partial dissipation of electronic energy through coupling to nuclear 

vibrations, the usual process of intramolecular vibrational relaxation (IVR), 

assigned the rate constant IVRk .  In the analysis that follows, it is assumed that IVR 

reaches effective completion prior to relaxation to the electronic ground state, the 

latter proceeding through a variety of mechanisms including spontaneous emission 

etc.  For simplicity, all such electronic relaxation processes of the donor, with the 

exception of RET, are included in a representative rate constant relkα .  The separate 

distinction of RET is necessary because energy migration populates the vibrational 

levels of Bβ .  Prior to energy transfer, the preceding IVR will generally place the 

donor molecule in an energy level where its decay profile has a relatively small 

overlap with the red end of any neighboring donor’s absorption.  However, in the 

process of RET to a nearby acceptor, a much larger spectral overlap and hence a 

significantly larger transfer rate will generally apply, so that energy transfer to 

acceptors will be the dominant process.  Moreover, the spectroscopic gradient i.e. 

( ) ( )0 0E A E Bα β> , commonly associated with donor-acceptor transfer will 
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engender a high degree of directed character, such that “backward” transfer of 

energy (acceptor to donor) can be ignored.32  The final process undergone by the 

system is vibrational and electronic relaxation of the acceptor.  Here, all relaxation 

processes are accommodated by the representative rate constant relkβ .   

 

Time-resolved changes in the population of the initial excited state can be 

determined by analysis of all decay routes of Aα , as shown in Figure 2.8: 

 

 ( )d
.

d rel RETN k k N
t

α α α= − +  (2.22) 

 

The above differential equation is solved with the initial population of Aα , ( )0Nα , 

assigned an arbitrary value, such that: 

 

 ( ) ( ) ( )( )0 exp .rel RETN t N t k kα α α= − +   (2.23) 

 

Applying the physically reasonable conditions 
†

IVR RETk kβ > , 
†

N Nα β>  and 

( )0 0N β = , the growth of Nβ  is dependent solely on RET from the ground 

vibrational state of Aα .  Furthermore, the time-dependent variation in Nβ  is 

represented by the following expression:  

 

 
d

.
d RET relN k N k N
t

β α β β= −  (2.24) 
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In the presence of an auxiliary off-resonant beam, the LARET effect can 

significantly enhance the rate of donor-acceptor energy transfer compared to 

second-order RET.  To represent the rate increase due to LARET an additional rate 

term, cast in terms of a constant LARETk , is introduced to the kinetics of the donor 

molecule.  In dealing with a laser pulse of sufficiently short duration, i.e. 

comparable to the modeled excited state lifetimes, the time-dependent behaviour of 

the off-resonant pulse must also be considered.  To modulate the rate constant 

LARETk , a pulse shape of the form ( ) ( )2sechf t t tκ ′= −    is adopted with κ  being 

proportional to the pulse width.  The donor excited state decay, accounting for the 

effects of both RET and LARET, is now represented by: 

 

 ( )( )2d
sech .

d rel RET LARETN k k t t k N
t

α α ακ ′= − + + −    (2.25) 

 

The corresponding rate of acceptor excitation is as follows: 

 

 ( )( )2d
sech .

d RET LARET relN k t t k N k N
t

β α β βκ ′= + − −    (2.26) 

 

Finally, the optically induced pair forces must also be considered dependent on time 

with respect to the operation of the laser pulse.  By substitution of equations (2.14) 

and (2.16) into equation (2.15), the temporal behavior of the corresponding 

optically induced pair potential is: 
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   (2.27) 

 

the factor of nine in the denominator arising as a result of isotropic averaging. 

 

2.3 Results 

 

It is envisaged that the donor and acceptor pairs are counterpositioned on one-

dimensional arrays separated by a distance R across a vacuum or in air, see Figure 

2.9. 

 

 

Figure 2.9 One-dimensional array configuration for ensemble donor-acceptor pairs 
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To quantify the dynamically evolving energy flow within an ensemble, the 

fractional populations Nα  and N β  are first determined from equations (2.25) and 

(2.26).  From this data, numerical results for the system energy are calculated from 

equation (2.21).  Expected fluctuations in ensemble energy are subsequently 

quantified in comparison to an optically induced pair potential as represented by 

equation (2.27).   

 

2.3.1 Excited State Population Analysis 

  

Since it is only necessary to consider relative populations when addressing the 

temporal form of the intermolecular potentials, an arbitrary initial value of unity has 

been assigned to ( )0Nα . Importantly, this does not necessarily signify an initial 

fully populated electronic excited state.  Three possible experimental setups are 

considered, the results of the excited state population analyses presented as Figures 

2.10 to 2.12: 

  

The first setup, results of which are illustrated in Figure 2.10, represents a “control” 

experiment whereby no energy transfer occurs between donor and acceptor arrays.  

The result establishes that the excited state lifetime of the donor, whose decay is 

attributed only to relaxation processes incorporated within relkα , is set arbitrarily to 

approximately 3 ns.  Since the excited state Bβ  is populated only through the 

process of RET from A ,  Nβ  remains zero. 
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Figure 2.10 Donor excited state population for first model setup in which no RET occurs 

 

In the second setup, it is assumed that there is a sufficiently strong short-range 

interaction between each donor and acceptor that the electronic state decay kinetics 

will be primarily determined by fast energy transfer.  The dominant decay process 

for Aα  is RET, as is always the case for donor-acceptor pairs within the Förster 

radius.  Under such conditions, the excited state lifetime of the donor is, as 

expected, appreciably shortened; the results portrayed in Figure 2.11 indicating an 

approximate 60% reduction in the lifetime.  In relative terms, Nβ  reaches a 

maximum value of roughly 50% of the initial population of Aα  well within 1 ns of 

the initial donor decay, the rate of excited acceptor decay determined by relkβ  is set 

equal to relkα . 

 

Nα

/Time ns
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Figure 2.11 Blue data lines indicate donor and acceptor excited state populations for second model 

setup in which RET occurs.  For comparison, black data line represents donor excited state 

population as presented in Figure 2.10 

 

The final setup is identical to the second with the exception of the introduction of a 

pulse of off-resonant energy during the decay of theAα  state.  The LARET input, 

off-resonant at a wavelength of 500 nm, is represented as having an intensity of 

165 10×  W m-2 and a duration of 100 ps (full width at half maximum), delivered to 

the system with a delay of approximately 300 ps after initial donor excitation.  

Supported by recent theoretical reports on the LARET effect, an improvement in 

energy transfer efficiency of 50% is modeled. 

 

Nα N β

/Time ns /Time ns
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Figure 2.12 Red data lines indicate donor and acceptor excited state populations for third model 

setup in which RET and LARET occur.  Blue data lines represent donor and acceptor excited state 

populations as presented in Figure 2.11 for comparison. Grey lines portray modeled off-resonant 

laser pulse. 

 

2.3.2 System Energy Calculations 

 

In the subsequent determination of numerical results for the system energy, from 

equations (2.21) and (2.27), the transition dipole moments ( )ar Aµ  and ( )bs Bµ  are 

set as 2 D, and the donor–acceptor intermolecular distance as 1.0 nm.  The 

transition energies to 
*

Aα  and Aα , from 0A  are chosen to correspond with 

wavelengths of 300 nm and 350 nm respectively.  Lower energies are utilised for 

the transitions from 0B  to 
*

Bβ  and Bβ , associated with wavelengths of 400 nm and 

450 nm accordingly.  By substitution of this data into equation (2.11), the system 

energy for the initial interaction between ground state donors and acceptors is 

calculated as being 241.2 10−− ×  J; noting that this negative value, and again the 

Nα N β

/Time ns /Time ns
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inverse power dependence on donor-acceptor separation, determines the interaction 

to be attractive in nature.  

 

The ensemble-averaged variation in the donor–acceptor pair interaction energy is 

now exhibited in Figures 2.13-2.15, each figure accounting for one of the model 

setups described in Section 2.3.1.   

 

 

Figure 2.13 Time-resolved, ensemble pair interaction energy for first setup in which no RET occurs 

between donor and acceptor units. 

 

At the outset, the interaction energy as portrayed by Figure 2.13 has been increased 

to a maximum of approximately 255 10−×  J by the preceding donor excitation.  The 

most significant feature of this result is the sign change during the donor decay, the 

positive energy value duly interpreted as representing a repulsive force between 

both donor and acceptor arrays.  As the population of the donor excited state 

decreases, the system returns to the equilibrium, ground state condition.  

/Time ns

/E J∆
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Figure 2.14 Blue data line indicates time-resolved, ensemble pair interaction energy for second 

setup in which RET is observed.  For comparison, the black data line represents the interaction 

energy for the first experimental setup as presented in Figure 2.13    

 

Exhibited in Figure 2.14, calculated results are initially similar for the second model 

setup, in that the initial increase in donor excited state population following laser 

excitation results in an increase in the interaction energy between donor and 

acceptor pairs.  Since Nα decreases much more rapidly in this configuration, owing 

to efficient RET with the acceptor molecules, the system is expected to return to 

initial conditions much faster, however the increasing population of the donor 

excited state is observed to further modify the donor-acceptor interaction energy.  

As Nβ  approaches a maximum, the interaction energy reaches a minimum below 

that of the ground state configuration.  In terms of associated forces, the donor-

acceptor arrays are predicted to first separate and then draw closer to each other 

relative to an equilibrium position, which is then restored as both Nα  and Nβ  reach 

zero. 

/Time ns

/E J∆
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Figure 2.15 Red data line indicates time-resolved, ensemble pair interaction energy for third setup 

where both RET and LARET are observed.  For comparison, the blue data line represents results of 

the second setup as presented in Figure 2.14 

 

Figure 2.15 shows the ensemble-averaged variation in the donor–acceptor pair 

interaction energy as calculated for the third model setup, in which both RET and 

LARET feature.  The results follow the pattern previously established for the 

second model setup up to the point where the off-resonant laser pulse infringes 

upon the system.  Here, the increased rate of energy transfer effected by the LARET 

process results in a higher population of excited state acceptors, consequently 

lowering the interaction energy to a new minimum during this time.   

 

As a final result, the time-resolved optical pair energy is calculated using equation 

(2.27) and the excited state populations determined in Section 2.3.1.  For 

comparison, this data is plotted together with the time-resolved results presented in 

Figure 2.15.    

/Time ns

/E J∆
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Figure 2.16 Two plots over different scale axes of all 4th order interaction energies, the green line 

incorporates the time-resolved optical pair energy where both RET and LARET also feature.  For 

comparison, blue and red data lines represent results of the second and third experimental setups 

respectively, as presented in Figure 2.15 

 

A striking feature of the results presented in Figure 2.16, comparing the relative 

significance of the fourth-order interactions, is that optically induced pair forces 

appear very much more significant in their effect than expected variations in the 

donor–acceptor pair interaction energy caused by both RET and LARET.  This may 

prove a significant difficulty in experimentally verifying the more subtle variations 

in interaction energy offered by the mechanism of energy transfer.  Significantly, 

the above results suggest in principle that the interaction energy between donor and 

acceptor units can be modified by a controllable, all optical input, the benefits of 

which may be exploited in optomechanical devices. 
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2.4 Discussion/Conclusion 

 

Few areas of chemistry are not in some way linked with the underlying operation 

and influence of intermolecular forces.  In the vast majority of these areas, where 

molecular matter generally resides in its electronic ground state, it is not surprising 

to find that the familiar forms of intermolecular potential are commonly adopted 

without necessary consideration of electronic state.  The aim of this work, by 

utilizing a simple time-resolved, dynamic system has therefore been to characterise 

changes in intermolecular force that occur on photoexcitation, and to illustrate the 

practicality of measuring such shifts in energy and force in any multi-component 

system. Any variation in intermolecular pair potential, as determined in the present 

analysis, must invariably result in a localized movement that to a degree either 

closes or expands the distance between any donor and its counterpart acceptor.   

 

In a system that displays typical RET behaviour, specific calculations based on an 

array configuration have exhibited a characteristic mechanical response and 

recovery, following an initial throughput of a resonant laser pulse.  Whilst only a 

one-dimensional array system has been considered, the results of a more 

meaningfully scaled system involving two parallel square-based arrays, one 

comprising donors and the other, acceptors, has already been the focus of 

complementary investigations.13-15  It is found that for a range of E∆  values, similar 

in magnitude to those determined in Section 2.3, that the dispersion force for the 

donor-acceptor ensemble model varies in the picoNewton range.  Taken as 
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indicators of the feasibility of measurement, these figures are highly encouraging.  

With the rapidly ongoing development of techniques including atomic force 

spectroscopy (AFM), such forces should easily fall into the range of possible 

measurement.33-35  Whilst it is relatively simple to develop from the change in 

interaction energy a corresponding ensemble-averaged force, such results can only 

be regarded as indicative.  The theoretical evaluation of a measurable displacement 

remains complex, but it is in principle achievable for any chemical system of 

interest, through the deployment of a suitable molecular modeling package. 

 

One other area in which the effects described may prove of particular significance is 

in the development of micro- and nano-electromechanical systems (MEMS and 

NEMS).  These devices represent a rapidly developing technology that is already 

being used in sensors and actuators for a variety of applications, including 

integrated drug delivery systems and optical scanners.36-40  In such connections 

there is considerable interest in harnessing the variations in inter-atomic and 

intermolecular displacement that can arise as a result of quantum (Casimir force) 

effects, forces that become especially prominent as the size of such devices shrinks 

down to nanoscale dimensions.41 The results presented above show that the 

engagement of energy transfer between the components in such devices can offer 

additional means for effecting mechanical motion.  Through this and by 

consideration of the LARET effect, there is a distinct possibility of introducing 

optical force control over such nanoscale motions. 
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Chapter 3 – Resonance Energy Transfer in a Dipole-forbidden System 

 

In general, the RET interaction between chromophores proceeds through transition 

moment coupling between donor and acceptor units.  By far the most commonly 

studied interaction is that which occurs between two electric dipoles (E1-E1 

coupling), since the donor decay and acceptor excitation are usually both E1-

allowed.  Under such circumstances, any contributions associated with higher-order 

electric and magnetic multipolar coupling are comparatively very small.  

Specifically, in systems where E1-E1 coupling is the prominent term accounting for 

energy transfer, the leading magnetic dipole (M1) and electric quadrupole (E2) 

contributions to the observed transition rates are generally expected to be smaller by 

several orders of magnitude.1-3  The theoretical and experimental study of higher-

order multipole coupling nonetheless becomes relevant in instances where E1 

transitions in the donor and/or acceptor are weak or entirely precluded, the nature of 

the coupled transition moments then being dependent on several factors including 

molecular geometry and symmetry.4-7  Prior to embarking upon a detailed analysis 

and in order to highlight the additional factors that can influence the character of 

energy transfer, it is first instructive to consider real systems within which a dipole-

forbidden criterion applies,  

 

One extensively studied example of energy transfer, in which higher-order 

multipole coupling has proven significance, is the dynamic coupling of carotenoid 

and chlorophyll, or bacteriochlorophyll, pigments associated with natural light 
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harvesting.  Carotenoids are unusual chromophores in that, in the photosynthetic 

systems in which they operate as donors, optically driven electronic transitions from 

the singlet ground state 0S  usually produce a significant population of the two 

lowest energy singlet excited states, 1S  and 2S .  Transitions to the latter excited 

state result from blue/green optical absorption, whilst the former is indirectly 

populated by 2 1S S→  internal conversion, a feature best understood on symmetry 

grounds.8-14  Carotenoids are conjugated polyene derivatives of skeletal symmetry 

2hC , therefore the direct transition between ( )1
0 1 gS A  and ( )1

1 2 gS A  states is E1-

forbidden by parity.  On optical excitation to 2S , one obvious route for decay is 

through the downward, E1-allowed ( ) ( )1 1
2 01 1u gS B S A→  transition, potentially 

leading to energy transfer to a chlorophyll acceptor.  However, in many 

photosynthetic systems, a more significant route for decay is a highly efficient 

internal conversion from 2S , followed by energy transfer from 1S .  In consequence, 

extremely high (approaching 100%) transfer efficiencies can be observed.9,10   
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Figure 3.1 Simplified energy level diagram portraying possible electronic transitions for a 

carotenoid following optical excitation.  For transitions (a) and (b), blue lines depict the population 

of both the 2S  and 1S  electronic states, the former the result of blue/green absorption and the latter, 

the result of efficient internal conversion from the 2S  state.  Relaxational transitions necessary for 

RET are depicted by (c) and (d), representing the 2 0S S→  transition which is E1-allowed and the 

E1-forbidden 1 0S S→  transition respectively.    

 

Whilst the involvement of electron exchange (Dexter) mechanisms cannot be 

ignored, given that the donor and acceptor in such photosynthetic systems are in 

sufficiently close proximity for wavefunction overlap to be significant, transitions 

from 1S  may still proceed through higher-order M1 or E2 moments, both of which 

are symmetry allowed.   

 

In explaining all possible energy transfer routes portrayed in Figure 3.1, including 

the E1-allowed ( ) ( )1 1
2 01 1u gS B S A→  transition, further complications need to be 

addressed.  For any separation of the donor and acceptor chromophores that is 

2S

0S

1S

( )c ( )d( )b( )a

RET
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comparable to their physical sizes, the ideal dipole approximation breaks down and 

the shape of the molecular charge distributions becomes significant.  Recent reports 

on carotenoid-chlorophyll energy transfer have exploited extended-dipole models 

such as the transition density cube method, in which the total interaction is treated 

as a sum of all local interactions observed between regions of donor and acceptor 

transition density.7,9,12,15  Only in cases where the chromophores are sufficiently far 

apart, that the distributed interactions between their component transition densities 

occur over similar distances, can the total interaction between multipole moments 

be considered with regard to an averaged donor-acceptor separation.  Such caveats 

are much less important in the case of smaller molecules. 

 

Moving beyond the context of light absorbing pigments in plants, another type of 

system in which E1-forbidden donor-acceptor coupling is significant is afforded by 

crystals (or glasses) doped with lanthanide ions.  Exploiting the unique optical 

properties associated with the f-orbitals of these rare-earth materials, energy transfer 

between di- and tri-valent ions features in a number of applications such as 

frequency up- and down-conversion, and in an enhanced methodology for the RET 

spectroscopic ruler.16-18  Whilst a large number of optical transitions in rare-earth 

ions are E1-forbidden on parity grounds, the local structure of the solid in doped 

crystalline materials can play a decisive role in determining viable pathways for 

energy migration.  It is widely held that ions located at crystal sites without 

inversion symmetry permit mixing between the energy levels of the 4f- and 5d-

orbitals.  As a result, “forced” E1-allowed transitions are permitted, which generally 
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dominate the contribution of higher-order electric and magnetic moments.  

However, when the lanthanide ions are located at sites with inversion symmetry, 

forced E1 transitions are typically precluded, and additional forms of multipolar 

interaction are often presumed to occur.19-21   

 

The aim of the present research is to provide a basis to assess the relative 

mechanistic significance of different contributions to the rate of energy transfer, 

within a donor-acceptor pair evaluated under the following conditions.  The system 

of study utilizes chromophores that are small in size with respect to donor-acceptor 

separation, hence the ideal dipole approximation holds and the need to develop an 

extended multipole model is obviated.  Secondly, the molecular system is of 

sufficiently high symmetry that the donor decay and acceptor excitation transitions 

are rigorously E1-forbidden, but E2-allowed (and potentially M1-allowed).  To be 

concise in the analysis that follows, such a system will be referred to as E1-E1 

forbidden, the label signifying that, for example, E1-M1 and M1-E1 coupling are 

also both forbidden.  Since any transition that is E2-allowed is also permitted by 

two successive E1 couplings, it is also necessary to entertain another, seldom 

considered energy transfer mechanism based on a second order 2 2E1 -E1  coupling.  

Such a coupling clearly has the potential to feature in small molecules and 

lanthanide-based energy transfer systems.  Specifically, we shall focus on the 

interaction between a pair of centrosymmetric molecules, or a pair of ions located in 

centrosymmetric sites within a crystal lattice, the implications of which will become 

apparent during the following analysis.   
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After extending the theory of RET in Section 3.1 to accommodate higher-order 

multipole coupling, the study will focus upon a generalized donor-acceptor 

interaction that accommodates both E2-E2 and 2 2E1 -E1  couplings, allowing 

comparisons to be drawn between the two mechanisms.  The former, addressed in 

Section 3.1.1, is chosen as a representative of multipolar couplings of similar order, 

such as E2-M1, M1-E2 and M1-M1.  For present purposes the couplings that entail 

M1 transitions will be disregarded for lucidity of explanation and in recognition that 

in systems of sufficiently high local symmetry, certain optical transitions will be 

E2-allowed and yet rigorously M1-forbidden.   Here, and in Section 3.1.2 – where 

the theory of 2 2E1 -E1  coupling is presented – the ensuing rate contributions for 

each form of coupling are derived and represented in an experimentally relevant 

form by appropriate use of orientational averaging.  Results are subsequently 

summarised and discussed in Sections 3.2 and 3.3. 

 

3.1 Resonance Energy Transfer in E1-forbidden Systems 

 

In the following comparison between different forms of donor-acceptor interaction, 

the results of calculations are reported in the near-zone limit for a number of 

reasons.  First, it is a significant feature that any system’s dependence on 

chromophore separation changes markedly according to the order of intermolecular 

coupling involved.  Whilst generally smaller in magnitude than E1-E1 coupling at 

all separations, higher-order multipole interactions also diminish much more rapidly 

with donor-acceptor distance, being dependent on higher inverse powers.1-3  
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Secondly, energy transfer is usually studied in systems that satisfy the near-zone 

conditions that favor RET; it is within this regime that radiationless energy transfer 

is preferred over all other possible modes of relaxation, including fluorescence 

decay.  Finally, focusing on the near-zone limit again considerably reduces the 

complexity of the results, since donor-acceptor distances are small enough that 

retardation features can be suppressed, i.e. the coupling can be viewed as essentially 

instantaneous.  In the near-zone analysis that follows, however, it may be remarked 

that the assumption does not compromise the rigor of analysis.  On retaining the 

fully retarded form of the resonance coupling tensors, precisely the same methods 

are deployed. 

 

Having already established the theoretical foundation for near-zone, E1-E1 coupled, 

RET interactions in Section 2.1.1, the theory is now expanded to incorporate 

higher-order electric multipole coupling.  As previously discussed, the leading term 

with regard to perturbation theory, contributing to the rate of energy migration is 

second-order with respect to ( )intH ξ .  The corresponding matrix element is exactly 

expressible as the first term of equation (2.1) and is now represented as an expanded 

sum over all orders of electric multipole coupling: 

 

 
,

,l m
FI FI

l m

M M −=∑   (3.1) 

 

where for example, 1 1
FIM −  and 1 2

FIM −  respectively represent the matrix elements 

associated with E1-E1 and E1-E2 coupling.  As remarked earlier, whilst magnetic 
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counterparts are amenable to the following method of analysis and the 

corresponding calculation is straightforward, their inclusion considerably increases 

the complexity of the ensuing equations.  The physical principles that we shall 

establish are perfectly well exhibited by the electric terms.  Continuing by 

substitution of equation (1.8) into the first term of equation (2.1), followed by a 

series of well-documented calculational steps, including a summation over all 

virtual photon polarisations and wave-vectors, each term in equation (3.1) is 

developed into a form concisely expressible as follows:22-25  

  

 ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 1 2 2

0 0
... ... ... ... , .

l l l m

l ml m
FI i i i j j j i j i i j jM E A E B V pα β− = R  (3.2) 

 

The electromagnetic interaction between A  and B  is described by the retarded 

resonance coupling tensor ( ),V p R , whose rank is determined by a sum of the 

electric multipole orders of the transitions at A  and B , noting that when both l and 

m represent transition dipoles, the above matrix element represents an E1-E1 

coupling with ( ),V p R  expressible exactly as equation (2.3).  The exact form of the 

coupling tensor has previously been developed from a general formula for a number 

of transition moment interactions including E1-E1, E1-E2 and E2-E2, with 

relevant explicit results exploited later.22,24   

 

For the development that follows, higher-order perturbation correction terms should 

also be considered.  Since each such term has to accommodate paired virtual photon 

creation and annihilation events, in order to satisfy the condition of overall energy 
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conservation, these corrections are all of even order, the fourth rank being the most 

significant.  The full RET matrix element is accordingly identical to equation (2.1) 

and is presented again for convenience: 

 

 

( ) ( )
( )
( ) ( ) ( ) ( )

( )( )( ), ,

,

,

int int
FI I R

R

int int int int

I R I S I T
R S T

F H R R H I
M

E E

F H T T H S S H R R H I

E E E E E E

ξ ξ

ξ ξ ξ ξ

=
−

+ +
− − −

∑

∑ …

  

  (3.3)  

 

As previously proposed, E1 transitions associated with single-quantum energy 

transfer between A and B are considered either vanishingly small or entirely 

precluded, thus the single-photon terms in equation (3.1) including 1 1
FIM − , 1 2

FIM −  and 

2 1
FIM −  are disregarded.  The leading one-photon process is therefore treated as E2-

E2 coupling described by 2 2
FIM − .  The dominant contribution associated with two-

quantum RET, described by the second term in equation (3.3), entails two E1-

allowed transitions at both the donor and acceptor, namely 2 2E1 -E1  coupling 

described by 
2 21 1

FIM − .  Notably, symmetry selection rules impose the same 

conditions for both E2 and 2E1  transitions.  Assuming all higher-order couplings 

are of negligible magnitude, the overall matrix element becomes a sum of the first- 

and second-order contributions: 

 

 
2 22 2 1 1 .FI FI FIM M M− −= +   (3.4) 
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The rate of energy transfer between the system states I  and F  is determinable 

through Fermi’s Golden Rule by substitution of equation (3.4) into equation (1.12), 

the RET rate presented as: 

 

 
2 2 2 2 222 2 2 2 1 1 1 12

2Re ,FI FI FI FIΓ M M M M
πρ − − − − = + + 

 ℏ
 (3.5) 

 

where a quantum interaction cross term evolves in the form 
2 22 2 1 1

FI FIM M− − .  Each of 

the contributions in equation (3.5) are now separately evaluated. 

 

3.1.1 First-order Quadrupole-quadrupole (E2-E2) Coupling 

 

As discussed, first-order energy transfer effected by E2-E2 coupling proceeds by 

mediation of a single virtual photon between A and B.  The donor decay and 

acceptor excitation engage E2 transition moments which are now cast specifically 

as ( )0
ijQ Aα  and ( )0

klQ Bβ .  The coupling is illustrated completely by two time-

ordered diagrams, Figures 3.2(a) and 3.2(b), each portraying one of two possible 

time-orderings for the interaction.  In the case of near-zone coupling, the interaction 

is treated as unretarded, the corresponding static limit duly illustrated by Figure 

3.2(c).  
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Figure 3.2 All possible time-ordered diagrams for E2-E2 energy transfer. The two retarded time 

orderings are represented by (a) and (b), whilst the near zone, unretarded coupling is portrayed by 

(c)  

 

The matrix element determined from equation (3.2) is exactly expressible as: 

 

 ( ) ( ) ( )2 2 0 0 ,FI ij kl ikjlM Q A Q B V p,α β− = R   (3.6) 

 

featuring a first-order engagement with the near-zone, fully index symmetric fourth 

rank interaction tensor,  ( )ikjlV p,R : 

 

 
( ) ( ) (

)
5

0

3
5

4

35 .

ikjl ik jl ij kl il jk ik j l ij k l il j k

jk i l kl i j jl i k i k j l

ˆ ˆ ˆ ˆ ˆ ˆV p, R R R R R R
R

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆR R R R R R R R R R

δ δ δ δ δ δ δ δ δ
πε

δ δ δ

= + + − + +


+ + + +


R
  

   (3.7) 

  

The contribution to the rate of energy transfer as required by equation (3.5), invokes 

the modulus square of equation (3.6), and to represent conditions in which 

( )c

( )0
ijQ Aα

( )0
ijQ Aα

( )0
ijQ Aα

ββ

α

A

0

α

( ),λp

0

( )a ( )b

0

B

( ),λp

0

A B

β

α

A

0

B

0

( )0
klQ Bβ

( )0
klQ Bβ

( )0
klQ Bβ
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transition moments are randomly oriented, the result is expressed following an 

isotropic average: 

 

 ( ) ( ) ( ) ( ) ( ) ( )22 2 0 0 0 0 ,FI ij i j kl k l ikjl i k j lM Q A Q A Q B Q B V p, V p,α α β β−
′ ′ ′ ′ ′ ′ ′ ′= R R  (3.8) 

 

where ( )0
i jQ Aα
′ ′ , ( )0

k lQ Bβ
′ ′  and ( )i k j lV p,′ ′ ′ ′ R  signify the complex conjugates of the 

parameters featured in equation (3.6).  The orientational averages in equation (3.8) 

involve freely rotating the transition moments of both A and B independently of 

each other.  The two fourth-rank averages utilize the general isotropic tensor 

presented previously as equation (1.26) and are evaluated separately, first for A :  

 

 

( ) ( ) ( ) ( ) ( )
( )
( )

0 0
0 0 4

30

4

4 ,

ij i j ij i j

ii jj

ij i j

Q A Q A
Q A Q A

α α
λµ λ µα α

λµ λ µ λλ µµ λµ µλ

λµ λ µ λλ µµ λµ µλ

λµ λ µ λλ µµ λµ µλ

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ

′ ′
′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′

= − −

+ − + −

+ − − + 

 (3.9) 

 

which rotationally decouples the donor by referring its quadrupole tensor 

components to a donor-fixed frame denoted by Greek subscripts.  Exploiting the 

traceless and index-symmetric properties of electric quadrupole moments, equation 

(3.9) can be recast in the following simplified form: 

  

 ( ) ( ) ( ) ( )
20

0 0 2 3 3 .
30ij i j ij i j ii jj ij i j

Q A
Q A Q A

α
α α δ δ δ δ δ δ′ ′ ′ ′ ′ ′ ′ ′= − + +  (3.10) 
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The same method is applied to resolve the rotational average of B .  The ensuing, 

fully averaged result is therefore: 

 

 
( ) ( ) ( )

( ) ( ) ( )

2 20 0
22 2 2 3 3

900
2 3 3 .

FI ij i j ii jj ij i j

kl k l kk ll kl k l ikjl i k j l

Q A Q B
M

V p, V p,

α β

δ δ δ δ δ δ

δ δ δ δ δ δ

−
′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′

= − + +

× − + + R R

 (3.11) 

   

We observe in passing that the above representation of E2-E2 rotational averaging 

differs from the form displayed in equation (A12) of reference [24], in that 

additional terms appear in equation (3.11), specifically the delta products 2 ij i jδ δ ′ ′−  

and 2 kl k lδ δ ′ ′− .  However, in the contraction of equation (3.11) with the E2-E2 

interaction tensor and its conjugate, inclusion of these additional delta products 

yield vanishing terms.  Both approaches therefore lead to identical expressions for 

the measurable, rotationally averaged rate of energy transfer between two electric 

quadrupoles, succinctly written as: 

 

 
( ) ( )2 20 0

2 2
2 10

0

63
.

5

Q A Q B
Γ =

R

α βρ
πε

−

ℏ
  (3.12) 

 

3.1.2 Second-order Dipole-dipole (E12-E12) Coupling 

 

When considering the interaction over all donor-acceptor separations, 2 2E1 -E1  

coupling is properly considered a two-quantum process, i.e. one in which two 
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virtual photons mediate the energy exchange.  The coupling is represented by 12 

distinct time-ordered diagrams, an example of which is presented as Figure 3.3(a).  

However, within the near-zone, 2 2E1 -E1  coupling can be described as two 

separately occurring, essentially instantaneous interactions between donor and 

acceptor.  The previously stated 12 contributions to the energy transfer now contract 

to a single representation as in Figure 3.3(b).  

 

 

Figure 3.3 Time-ordered diagrams of E12-E12 energy transfer. Figure (a) portrays one of twelve 

possible representations of the full, retarded interaction.  Figure (b) depicts the near zone, unretarded 

coupling.  

 

Similar to previous developments discussed in Chapter 2, both the donor and 

acceptor transitions progress through a time interval in which each exists in a 

superposition of intermediate states.  With reference back to equation (3.3) such 

intermediate states are addressed through a summation over both sets of molecular 

eigenstates, r and s respectively, these state superpositions being weighted by 

inverse energies that represent the offset from exact energy conservation during the 

time interval.  It emerges that the matrix element of 2 2E1 -E1  is expressible as: 

( )0s
k Bµ

( )0r
j Aµ

( )r
i Aαµ

α
A B

( ),λp

0
( )a

0

β
( ),λ′ ′p

r

s ( )s
l Bβµ

A B

r s

( )b

( )r
i Aαµ

( )0r
j Aµ ( )0s

k Bµ

( )s
l Bβµ

α

0

0

β
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
2 2

0 0
1 1

0
0
0

,
r r s s
i j k l ik jl

FI r s
r ,
s ,

A A B B V p, V p,
M

E A E B

α β

α
α
β

µ µ µ µ−

≠
≠

=
+∑

R R
 (3.13) 

 

To explain the above restrictions in the sums over r and s, reference is made to 

figure 3.3(b).  If for example the intermediate state r were allowed to be identical to 

the donor excited state configuration, i.e. r α= , the first photon interaction at A 

would engage an E1 transition moment ( )i Aααµ , which is in fact the static moment 

of the excited state.  Such static moments vanish for centrosymmetric molecules 

and consequently, only transition moments in which the molecular state changes 

can be entertained.  The inclusion of a single static dipole coupling in A would also 

require that the molecular decay transition proceeds via the other E1-interaction.  

The overall mechanism would therefore invalidate the E1-forbidden property of the 

system under consideration.   

 

The matrix element, equation (3.13) is clearly second-order in the E1-E1 interaction 

tensor, the general near-zone limit of which has already been presented as equation 

(2.4).  As previously established by equation (3.5), the isotropically averaged 

modulus square of equation (3.13) is required to determine the transition rate for a 

randomly oriented ensemble:   
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

2 2 2
1 1 0 0

0
0

0 0

20

r r r r
FI i i j j

r ,
s ,

s s s s
k k l l ik i k

r s
jl j l

M A A A A

B B B B V p, V p,

V p, V p, E A E B .

α α

α
β

β β

α

µ µ µ µ

µ µ µ µ

−
′ ′

≠
≠

′ ′ ′ ′

−

′ ′

=

×

× +

∑

R R

R R

 (3.14) 

 

Separate fourth order rotational averages of both A  and B  are again utilized, the 

result of the former being: 

 

 
( ) ( ) ( ) ( ) ( )(

( ) ( ))

0 0
1

0

2 3

1
Π

30

Π Π ,

r r r r
i i j j ij i j

r ,

ii jj ij i j

A A A A A

A A

α α

α
µ µ µ µ δ δ

δ δ δ δ

′ ′ ′ ′
≠

′ ′ ′ ′

=

+ +

∑
 (3.15) 

 

with the parameters ( )1Π A , ( )2Π A  and ( )3Π A  representing the following 

functions of molecular transition moments in A : 

 

 

( )

( )

( )

2 2 2 20 0 0
1

0

2 2 2 20 0 0
2

0

2 2 2 20 0 0
3

0

Π 4

Π 4

Π 4 .

r r r r r r

r ,

r r r r r r

r ,

r r r r r r

r ,

A

A

A

α α α

α

α α α

α

α α α

α

µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ

≠

≠

≠

= − ⋅ − ⋅

= − + ⋅ − ⋅

= − − ⋅ + ⋅

∑

∑

∑

 (3.16) 

 

Repeating the method for B  conveys the result of fully averaging over both A and 

B, and consequently equation (3.14) can be re-expressed: 
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( ) ( ) ( ) ( )(

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

2 2 2
1 1

1 1 1 2
0
0

1 3 2 1

2 2 2 3

3 1

1
Π Π Π Π

900

Π Π Π Π

Π Π Π Π

Π Π

FI ii jj kk ll ii jj kl k l
r ,
s ,
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ij i j kk ll ij i j kl k

M A B A B

A B A B

A B A B

A B

α
β

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ

−
′ ′ ′ ′ ′ ′ ′ ′

≠
≠
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( ) ( )
( ) ( )) ( ) ( ) ( ) ( )

( ) ( )( )

3 2

3 3

20

Π Π

Π Π

,

l

ij i j kl k l ik jl i k j l

r s

A B

A B V p, V p, V p, V p,

E A E Bα

δ δ δ δ
′

′ ′ ′ ′ ′ ′ ′ ′

−

+

× +

R R R R

   

   (3.17) 

 

where ( )1Π B , ( )2Π B  and ( )3Π B  are analogous to the results in equation (3.16): 

 

 

( )
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2 2 2 20 0 0
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0
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3

0
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B

β β β

β

β β β

β

β β β
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µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ

≠

≠

≠

= − ⋅ − ⋅

= − + ⋅ − ⋅

= − − ⋅ + ⋅

∑

∑

∑

 (3.18) 

 

Finally, full contraction of the interaction tensors in equation (3.17), followed by 

substitution of this result into equation (3.5), reveals the transition rate due to near-

zone 2 2E1 -E1  coupling as: 
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( ) ( ) ( ) ( ) ( ) ( )(

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )
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β

α

ρΓ
π ε

−

≠
≠

−

+ + +

+ + +

+ + +

∑=
ℏ

   

   (3.19) 

 

3.1.3 Contribution of Quantum Interference 

 

Derivation of the overall energy transfer rate presented in equation (3.5) is 

concluded by assessing the contribution of the cross-term, a quantum interference 

of the E2-E2 and 2 2E1 -E1  couplings.  The cross term 
2 22 2 1 1

FI FIM M− −  evolves as a 

product of the matrix elements for 2E1  and E2 coupling as represented by equations 

(3.6) and (3.13) respectively, such that:  
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The rotational average of both A  and B  is again fourth order in the Cartesian 

indices and the former is expressible as: 
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once more exploiting the traceless property of the quadrupole transition moment.  

Following the equivalent average of B , and contraction of the interaction tensor 

terms, the following quantum interference rate contribution emerges: 
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  (3.22) 

 

Both for the donor and the acceptor, this coupling therefore depends on an inner 

tensor product of transition quadrupole and paired transition dipole components.  

The total donor-acceptor energy transfer rate is the sum of equations (3.12), (3.19) 

and (3.22). 

 

3.2 Discussion 

 

Whilst E2-E2 coupling has already been determined within a QED framework, the 

2 2E1 -E1  mechanism has seldom been considered, perhaps owing to the 

mechanisms’ relatively small contribution for the majority of E1-allowed systems.  
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As discussed in the introduction prior to Section 3.1, certain criteria need to be 

satisfied if such mechanisms are not to be over-ridden by other means of energy 

transfer; small molecules of reasonably high symmetry, held in close proximity, 

offer one likely arrangement.  However, in the context of RET in lanthanide-doped 

media, specific realizations can already be identified.  Insightful work by Chua and 

Tanner19 has highlighted a small number of specific examples in which 2 2E1 -E1  

energy migration from the 5
0D  states of rare earth dopants might prove significant; 

one presented case features Sm2+ as the donor within SrF2 crystals.  The magnitude 

of an exchange interaction contribution could not be ascertained, but the results 

suggested that the lead contribution for Sm2+ energy transfer is a second-order 

2 2E1 -E1  coupling; the lead first-order interaction is believed to be a comparatively 

weak hexadecapole-hexadecapole (E4-E4) coupling.   It was further proposed that 

2 2E1 -E1  coupling in Sm2+ doped crystals should be favored by the low-lying 

configuration of the 14 5nf d−  orbital relative to 4 nf , conducive to the two-step 

mechanism by which 14 5nf d−  acts as a populated intermediate.  It is notable that, 

whereas “intermediate” states within the presented QED analysis are a consequence 

of virtual photon propagation, and they need not represent physically populated 

configurations, the positioning of such energy levels does have a significant bearing 

on transition rates, warranting further discussion.  

 

Whilst difficult to directly measure without designed experimentation, the relative 

significance of energy transfer via E2-E2 and 2 2E1 -E1  coupling can be assessed by 

comparison of equations (3.12) and (3.19).  A key difference between the two 



 

 97 

mechanisms is that the higher-order perturbation result is shown to be dependent on 

the energy difference between ground and intermediate states of both the donor and 

acceptor.  From equation (3.19), the inverse square dependence on 

( ) ( )0r sE A E Bα +  shows that the rate of transition due to 2 2E1 -E1  is highest when 

either there are states r and s whose energies are close to Eα  and 0E  respectively, 

or alternatively when they are close to 0E  and Eβ  respectively, the latter condition 

established by application of overall energy conservation, i.e. ( ) ( )0 0E A E Bα β=  

such that ( ) ( ) ( ) ( )0 0r s r sE A E B E A E Bα β+ = + .  More generally, since the 

acceptor intermediate state will have a higher energy level than the ground state, 

( )0sE B  will always yield a negative result and the rate of 2 2E1 -E1  energy transfer 

will therefore be high if ( ) ( )0r sE A E Bα ≈ , with the further condition that 

( ) ( )0r sE A E Bα > .  The present analysis concludes that the 2 2E1 -E1  mechanism is 

most effective when both intermediate states r and s have energy levels between the 

ground and excited states of the donor and acceptor respectively, so that the donor 

and acceptor levels directly involved in energy transfer, i.e. Aα  and Bβ , are not the 

lowest unoccupied states. 

 

3.3 Conclusion 

 

Working within the near-zone limit, the above analysis highlights the contributions 

of both E2-E2 coupling and the seldom considered second-order 2 2E1 -E1  coupling.  

For both forms of interaction, experimentally meaningful rate equations are secured 
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by the use of orientational averaging and the mechanisms analyzed with reference 

to systems in which E1-forbidden transitions are commonly reported.  The total 

system energy transfer rate also entails a quantum interference term.  Following a 

complete QED analysis, the contribution of each form of coupling is evaluated in 

terms of its dependence on chromophore separation, the latter generally proving the 

factor most readily amenable to verification by experimental means.  The energy 

transfer rate for E2-E2 and 2 2E1 -E1  interactions are confirmed to decay with 10R−  

and 12R−  dependences, respectively.  Because of their different power law indices, 

there is a short-range regime, whose extent is ultimately determined by the 

magnitudes of the transition moments, in which both mechanisms will have similar 

levels of significance and in this case the cross-term with an 11R−  dependence will 

also come into play.  It has also been demonstrated that the second-order 2 2E1 -E1  

coupling will contribute most significantly within systems that possess suitably 

disposed virtual state configurations. 

 

Moving beyond a single donor-acceptor pair interaction, an extension of this 

general theory is envisaged in which ensembles of chromophores are considered.  

Ensemble modeling methods can be applied to quantify the total interaction of a 

single donor with a number of acceptors within a given coordination shell, these 

methods being more representative of practical experimental application.26,27  As 

discussed in Chapter 2, the effects of mounting both donors and acceptors as 

surface substrates on juxtaposed 1- or 2D lattices could also be considered.28-31  All 

directly opposing as well as diagonal chromophore interactions between donor and 
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acceptor plates could then be determined.  As both E2-E2 and 2 2E1 -E1  transitions 

can be significant in lanthanide ions doped in crystal structures, an analysis in 

which donor and acceptor chromophores are constructed within 3D lattices may 

prove insightful.32,33  Such a system may necessarily require additional factors to be 

entertained, such as phonon-assisted or spin-forbidden triplet state energy transfer.  

Depending on the structure of the lattice environment and the proximity of 

neighboring donor or acceptor chromophores, the possible involvement of third-

body interactions might also need to be accounted for.34-36  Current results and the 

framework in which they presented are robust enough to support any such 

modification.  
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SECTION 2 – Quantum Electrodynamical Development of Radiation 

Induced Fluorescence 

 

The following section, consisting of two chapters, introduces novel theory and 

results relating to radiation induced fluorescence.  In laser-based studies of 

fluorescence, it is well known that polarisation features of the emission convey 

rich information on structural details of the sample, particularly in condensed 

phase molecular media.  The character of emission from fluorescent species 

owes its origin to both the properties of the input light and the internal 

configuration of transitions and molecular energy levels.  Consequently, the 

findings of each chapter are drawn from theoretically determined electric 

polarisation properties of the output signal.   

 

Chapter 4 develops the theory of multiphoton, i.e. two- and three-photon, 

induced fluorescence, the application of which is particularly prevalent in 

modern research owing primarily to the technique’s unparalleled ability to 

deliver high-resolution, three dimensional imaging of heterogeneous samples.  

In general terms, the capture of high quality images aids the investigation of 

chemically specific information, since fluorescence intensity distributions allow 

the determination of the relative location, concentration and structure of specific 

molecular species in situ.  However, the attendant advantages offered by 

multiphoton methods include further features that have as yet received relatively 

little attention.  For example, detailed information can be secured on the degree 

of chromophore orientational order through polarisation-resolved measurements.  

Note that throughout this section, the term “chromophore” is used to signify a 
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molecular component or label that can both absorb light and fluoresce, however, 

the term “fluorophore” is equally valid.  This chapter reports the equations that 

are required for any such investigation.  The general analysis, addressing a 

system of chromophores oriented in three dimensions, determines the 

fluorescence signal produced by the linear and nonlinear polarisations that are 

induced by one-, two- and three-photon absorptions, allowing for any rotational 

relaxation.  The results indicate that multiphoton imaging can be further 

developed as a diagnostic tool, to selectively discriminate micro-domains within 

a sample that exhibit a degree of orientational correlation.  Any such technique 

could equally monitor dynamical changes in this localised order, perhaps 

resulting from a chemical interaction or acting in response to an externally 

applied stimulus. 

  

The final chapter of this thesis explores a novel development in radiation 

induced fluorescence, namely “laser-controlled fluorescence”, a process 

whereby the character of fluorescent emission is modified by a laser controlled, 

optically nonlinear input.  In operation, a pulse of off-resonant probe laser beam 

of sufficient intensity is applied to a system exhibiting fluorescence during the 

interval of excited state decay following the initial excitation.  The result is a 

rate of decay that can be controllably modified, the associated changes in 

fluorescence behaviour affording new, chemically-specific information and 

novel technological application via all optical switching.  Chapter 5 investigates 

a two-level emission model in the further analysis of this process.  The results 

prove especially relevant in the imaging of physical systems employing 

fluorescent markers, these ranging from quantum dots to green fluorescence 
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protein.  Expressions are presented for the laser-controlled fluorescence 

anisotropy exhibited by samples in which the fluorophores are randomly 

oriented.  It is also shown that, in systems with suitably configured electronic 

levels and symmetry properties, fluorescence emission can be produced from 

energy levels that would normally decay non-radiatively.   
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Chapter 4 – Insight into Chromophore Orientation through Multiphoton 

Fluorescence 

 

Polarisation-resolved measurements afford key information on molecular structure, 

and the degree or extent of local orientational order.1,2  The elucidation of such 

information is widely exploited in fluorescence imaging, where the objective to 

secure quality, three-dimensionally resolved images is supplemented by a scope to 

accurately distinguish the location, concentration and structure of specific 

chromophores.3-5  In connection with conventional (single-photon) fluorescence, 

such principles are well known and widely applied across a diverse range of 

physical systems.  Numerous studies have focused on confined, highly ordered 

materials where chromophores are held in crystalline structures, or samples such as 

cell membranes, molecular films or fiber, where they are less rigidly bound to a 

physical matrix.6-10  In such instances, the rotational freedom of the targeted species 

is commonly restricted, enforcing a degree of orientational order relative to the 

external structure.  Whereas polarisation-derived information is often restricted to 

two spatial dimensions, the determination of three-dimensional orientation can also 

be explored.11  Numerous investigations have extended the scope of such studies 

into the single-molecule regime, to elucidate information that is obscured in 

ensemble studies.12-14   

 

An ever-increasing number of studies now exploit the advantages inherent in 

multiphoton excitation.  Experimental applications are particularly prevalent in 
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biological studies, where they afford a capability for imaging to sub-cellular 

resolution, with limited photodamage, and without any need to suppress light 

scattering.15-21  One of the most appealing features of multiphoton-induced imaging 

is its adaptability, and the fact that the associated instrumentation is also often well 

suited to additional means of sample interrogation.  Commonly used, 

complementary modes of measurement include second-harmonic generation, sum-

frequency generation, coherent anti-Stokes Raman scattering, and Raman 

spectroscopy, all of which are frequently combined with two-photon 

fluorescence.22-24  Whilst three-photon microscopy in particular has been less 

commonly studied than its two-photon counterpart, it is recognized that image 

contrast can be enhanced as the number of concerted photon interactions 

increases.25,26  The incorporation of additional techniques can permit the visual 

sectioning of specific molecular domains within bulk material, expanding the 

potential for applying multiphoton imaging as a tool in structural diagnostics.  

Nonetheless, securing all of the orientational information that is latent in 

multiphoton fluorescence is technically demanding, and at present it is 

compromised by the lack of a complete understanding – certainly in the case of 

three-photon excitation studies – of how the polarisation response from a fully 

disordered system relates to the detailed electronic properties of the constituent 

chromophores. 

 

This chapter presents the results of an investigation aiming to secure a robust, 

thorough and comprehensive representation of the fluorescence polarisation 
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properties generated in response to one-, two- and three-photon excitation of 

molecular chromophores.  The single-photon case is included both as a means of 

introducing the theoretical formalism, and to help elicit patterns of response 

between the different orders, established subsequently.  Although two-photon 

studies are more common, the selection rules for three-photon excitation offer the 

possibility of access to states that are not amenable to one- or two-photon 

excitation.27-31  Results established by means of an isotropic orientational average 

determine the induced fluorescence response generated within a fully disordered 

molecular environment, meaning a complete system, or micro-domains within a 

complete system, in which all chromophores are randomly oriented in three 

dimensions.  It can be anticipated that the averaged results will prove their value in 

determining the random orientation limit of a dynamic spectrum, providing a means 

by which multiphoton imaging can be further developed to monitor and quantify 

variations in chromophore orientation.  In a system with some orientational order, 

for example one that is undergoing a chemical or biological function, or responding 

to a controlled external stimulus, the extent of deviation in the fluorescence 

response, compared to that expected from an isotropic sample, will quantifiably 

register the degree of order.   

 

In Section 4.1, essential details relating to the theoretical representation of one-, 

two- and three-photon induced fluorescence are established, casting the output 

signals in terms of their associated electric polarisation and molecular transition 

moment properties through standard methods of QED.  Whilst the general methods 
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have already been established, orientational averaging procedures are detailed in 

Section 4.2, the results of which define the fully disordered limits of both the single 

and multiphoton fluorescence processes.  The analysis requires implementation of 

fourth-, sixth- and eighth-rank tensor averages.32,33  The complexity of the 

averaging procedure escalates rapidly with the tensor rank, and it is not surprising 

that eighth rank averaging has rarely been utilized, having only recently been 

deployed in the context of laser-controlled fluorescence.34  The significance, 

patterns and applications of these results are discussed in Section 4.3. 

 

4.1 Multiphoton Fluorescence  

 

To approach the key polarisation issues, it is appropriate to begin with a 

representation of the optical process in its entirety, subsuming the single- or multi-

photon absorption of laser input, and the emission of fluorescent radiation.  Each 

stage occurs with an efficiency that is determined by the strength of coupling 

between the ground and relevant excited electronic levels.  As implemented in 

previous chapters, the coupling is described through matrix elements that feature 

component values of the relevant transition dipoles and multiphoton tensors.  The 

process efficiency, once more determined by Fermi’s rule, is in each case 

proportional to the modulus square of such matrix elements, noting that the 

excitation and emission events will be treated as mutually independent, since in 

practice they occur in a step-wise fashion.  For our purposes we shall assume the 

validity of a Born-Oppenheimer separation of wavefunctions and focus upon 



 

 109 

electronic transitions; the corresponding vibrational energies are generally small 

compared to the electronic state energy differences.  Also we assume a development 

through molecular states that is typically associated with electric dipole transitions; 

the contribution from both magnetic and higher order electric contributions 

throughout this chapter is deemed insignificant.  The theory that follows will 

provide a means for interrogating the extent of correlation between the transition 

moments associated with absorption and emission.  Specific attention will be given 

to the extent to which fluorescence retains a directionality of polarisation from the 

initial excitation. 

 

To achieve fluorescence intensity results amenable to experimental application, the 

output fluorescence signal, ( ) ( )n
fluI φ , is defined as a function of the experimentally 

controllable angle between the polarisation vector of the incident light and the 

resolved polarisation of the emission, φ , and it can be cast in general terms of the 

separate matrix elements for nth order multiphoton absorption and single-photon 

emission, namely ( ) ( )0
nMν ξ  and ( )0M α ξ  respectively.  Our representation allows 

the possibility for excited state processes such as internal conversion, hindered 

rotation, rotational diffusion, intramolecular energy transfer etc. to intervene 

between the excitation and radiative decay.  Adopting labels 0 and ν  to denote the 

molecular ground and initially excited energy levels, and α  for the level from 

which emission occurs, the intensity of fluorescence can be cast as follows: 
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 ( ) ( ) ( ) ( ) ( )
2 2( )

0 0 .n nn
fluI K M Mν α

ξ
φ ξ ξ= ∑   (4.1) 

 

The fluorescence signal in equation (4.1) is thus portrayed in terms of the physically 

separable efficiencies of the absorption and emission processes; the constant of 

proportionality ( )nK  is itself dependent on experimental parameters including the 

nth power of the mean laser irradiance, and the degree of nth order coherence.35  To 

assess the relationship between ( )n
fluI  and φ  for a fully disordered system in which 

molecular chromophores, or more specifically the transition moments associated 

with multiphoton absorption and single photon emission, are randomly oriented 

relative to the input propagation, the angular brackets in equation (4.1) are again 

implemented in terms of an orientational average.  First, to determine the results for 

one-, two- and three-photon induced fluorescence, it is necessary to define the form 

of all associated matrix elements.  Each is derived by standard methods, with the 

underlying principles introduced in a detailed description of single-photon induced 

fluorescence that follows.  

 

4.1.1 One-photon Induced Fluorescence 

 

It is expedient to concisely review the simplest, familiar case of one-photon induced 

fluorescence, as it establishes the methods to be used for the more intricate 

multiphoton cases that follow.  Theory for the process of single-photon induced 

fluorescence is characterized by the development of two distinct matter-radiation 
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interactions.  The first describes the optical excitation of a chromophore by single-

photon absorption, inducing an electronic transition from the ground to an 

accessible excited state configuration.  The second interaction entails molecular 

relaxation and photon emission, usually returning the chromophore to its ground 

electronic state.  For the complete process of one-photon induced fluorescence, the 

initial, intermediate and final system states are thus described as: 
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  (4.2) 

 

Noting that the transition between I  and F
 

progresses through two real, 

physically identifiable intermediate states, A  and A′  – the latter allowed to 

differ by accommodating any ultrafast intramolecular redistribution processes that 

might precede emission, such relaxation typically manifest in a Stokes shift.  To 

clarify, p  and λ  respectively represent the wave-vectors and polarisations of the 

input beam, distinct from ′p  and λ′  which serve as properties of the output 

fluorescence.  The input mode conveys m photons within a quantization volume that 

encloses the absorbing chromophore.  For simplicity the state of the optical output 

mode is omitted from the state descriptions of I  and A  because that mode 

suffers no change in the intervening (absorption) transition; equally the state of the 
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input beam, thereafter unchanged, is omitted from the designations of A′  and F  

as their coupling only concerns the fluorescence output.  

 

Initial Absorption:  The initial photon absorption drives evolution between the 

system states I  and A  of equation (4.2), the photon promoting an electronic 

transition between molecular states 0ξ  and νξ .  The required matrix element 

utilizes first-order perturbation theory and is derived following substitution of 

equation (1.9) into equation (1.15), where 1q = .  The substitution deploys the 

photon annihilation operator within the interaction Hamiltonian, the resulting 

matrix element for one-photon absorption following as:   

 

 ( ) ( ) ( ) ( ) ( ) ( )
1

2
1 0
0

, 0

exp .
2 i i

m cp
M i e i

V
λ ν

ν ξ
λ

ξ µ ξ
ε

 
= − ⋅ 

 
∑
p

p p R
ℏ

 (4.3) 

 

Single-Photon Emission:  The emission engages electronic decay of the excited 

chromophore and creation of a single photon into the vacuum radiation field, the 

process expressed by equation (4.2) as a transition between system states A′  and 

F .  The matrix element now engages the photon creation operator in equation 

(1.5), giving: 

 

 ( ) ( ) ( ) ( ) ( )
1

2
0

0
, 0

exp .
2 i i

cp
M i e i

V
λ α

α ξ
λ

ξ µ ξ
ε

′

′ ′

 ′ ′ ′= − ⋅ 
 

∑
p

p p R
ℏ

 (4.4) 
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On substitution of the derived matrix elements for both absorption and emission 

into equation (4.1), a complete expression for the signal output following single 

photon excitation emerges: 

 

 ( ) ( ) ( ) ( ) ( ) ( )( )1 (1) 0 0 0 0

, , ,

,flu i j k l i j k lI K e e e eλ λ λ λ ν α ν α

ξ λ λ
φ µ µ µ µ′ ′

′ ′
= ∑ ∑

p p

 (4.5) 

 

where the modulus squares of equations (4.3) and (4.4) have been employed and the 

product of parameters within the parentheses of each matrix element is incorporated 

into the proportionality constant (1)K .  Starting above and continuing for all 

relevant expressions to follow, a number of labels including the wave-vectors ( )p  

and ( )′p  of the electric polarisation terms, as well as the molecule identity ( )ξ  

associated with the dipole transition moments, have been suppressed for clarity.  

For additional convenience, in the orientational averaging procedure to be utilized 

in Section 4.2, a new notation is now introduced in which the products of the unit 

electric polarisation vectors, and those of the molecular transition moments, are 

each incorporated into second rank tensors as follows: 

 

 ( ) ( )1 (1)

, , ,

,flu ij kl ij klI K S S T T
ξ λ λ

φ
′ ′

= ∑ ∑
p p

  (4.6) 
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where specifically ijS  and ijS  denote ( ) ( ) ( ) ( )i je eλ λ ′ ′p p  and ( ) ( ) ( ) ( )i je eλ λ ′ ′p p .  

Likewise, the molecular transition moment products described by ijT  and  ijT  

correspond to ( ) ( )0 0
i j
ν αµ ξ µ ξ  and ( ) ( )0 0

i j
ν αµ ξ µ ξ .  In these examples, and in all 

subsequent applications of this notation presented in this chapter, the last index in 

the electric polarisation and molecular transition tensors relates to photon emission.  

Equation (4.6) thus expresses a result that embraces, in the term within angular 

brackets, the angular disposition of the chromophore transition moments with 

respect to the input and output polarisation vectors.  In a rigidly oriented system, by 

forgoing the orientational average the result would thus exhibit a dependence on 

2 2cos cosη γ , where η is the angle between the absorption moment and the input 

polarisation, γ  that between the emission moment and the fluorescence 

polarisation. 

 

4.1.2 Two-photon Induced Fluorescence 

 

Two-photon induced fluorescence is characterized by the development of three 

distinct matter-radiation interactions, specifically the concerted absorption of two 

photons followed by one-photon emission.  The initial, intermediate and final 

system states are defined as:   
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 (4.7) 

 

First, we focus on the matrix element for the two-photon transition between I  and 

B . 

 

Two-Photon Absorption:  The acquisition of two photon energies by the 

chromophore in its excitation to level νξ , leads to a system state B .  The 

associated matrix element entails a progression through a virtual intermediate 

system state R , in which one photon has been annihilated and the chromophore, 

lacking a resonant level to match the photon energy, is accordingly in a 

superposition of virtual molecular states rξ :  
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( ) ( )

0; , ,

; 1 , ,

; 2 , .

r

I m

R m

B mν

ξ λ
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ξ λ
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 (4.8) 

 

Any energy non-conserving state R  can be sustained as long as it is allowed by 

the time-energy uncertainty principle and this will again be reflected in a weighting 

factor, varying with the inverse of the mismatch energy.   The necessary second-
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order matrix element describing the transition between I  and B  through R  is 

derived by substitution of equation (1.9) into equation (1.15), where 2q = , noting 

that the initial and evolved intermediate system energies are 0E m cp+ ℏ  and 

( )1rE m cp+ − ℏ  respectively: 

  

 ( ) ( ) ( ) ( ) ( ) ( )12 1 2 0 0 0
0 2

, 0

1
.

2 2
r r r r r

i j i j j i
r

cp
M m e e E cp

V
λ λ ν ν

ν
λ

ξ µ µ µ µ
ε

− 
= + + 

 
∑ ∑
p

ℏ
ℏ  (4.9) 

 

Here, the quantization volume initially contains the chromophore and two photons 

of the incident radiation, the factor of ( ) 1 21 2
2 1m m m≡ −    correspondingly arises 

from the successive operations of the photon annihilation operator.  The above 

expression exploits the symmetry of the electric polarisation terms ( ) ( ) ( ) ( )i je eλ λp p  

with respect to exchange of the indices i and j.  Similar to theory presented in 

Chapter 2, the two dipole product contributions in equation (4.9) relate to each of 

the possible time-orderings in which the two, indistinguishable input photons can be 

annihilated, noting that the factor of 1
2  is introduced to preclude over-counting.  The 

above two-photon absorption matrix element can thus be presented as: 

 

 ( ) ( ) ( ) ( )
( )

1 2
2 02
0

, 0

,
2 i j ij

m cp
M e e

V
λ λ ν

ν
λ

ξ α
ε

 
=  

 
∑
p

ℏ

  
 (4.10) 
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where, in the above expression, bracketed subscripts denote symmetry in the 

enclosed indices.  The second rank molecular response tensor ( )
0

ij
να  is defined as: 

 

 ( ) ( ) ( )10 0 0 01
,

2
r r r r r

i j j iij
r

E cpν ν να µ µ µ µ
−

= + +∑ ℏ

 
 (4.11) 

 

being a specific implementation of a more general formula presented earlier as 

equation (2.14).   

 

Full process:  Returning to equation (4.4), the matrix element for one-photon 

emission is now deployed, and substitution of this and equation (4.10) into equation 

(4.1) determines the two-photon induced fluorescence signal.  In the following 

expression the proportionality constant (2)K contains a factor m2, which in general 

conveys a quadratic dependence on the intensity, and which is also a function of the 

photon statistics of the input beam.35  Thus, the following expression is derived:  

 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2

, , ,

,flu ij k lm n ij k lm nI K S S T T
ξ λ λ

φ
′ ′

= ∑ ∑
p p

 (4.12) 

 

here expressing the electric vector and molecular transition moment products as 

third rank tensors such that ( )ij kS  and ( )ij kS  correspond to ( ) ( ) ( ) ( ) ( ) ( )i j ke e eλ λ λ ′ ′p p p  

and ( ) ( ) ( ) ( ) ( ) ( )i j ke e eλ λ λ ′ ′p p p , whilst ( )ij kT  and ( )ij kT  signify ( ) ( ) ( )0 0
kij

ν αα ξ µ ξ  and 

( ) ( ) ( )0 0
kij

ν αα ξ µ ξ  respectively.  In this case, for an oriented sample, the dependence 
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on emission angle is again 2cos γ .  However the dependence on input polarisation 

is considerably more intricate, being determined by a weighted combination of 

2cos  functions for each angle between the input polarisation vector and one of a 

selection of transition moments, i.e. rν
µ , 0r

µ , for each level r.  

 

4.1.3 Three-photon Induced Fluorescence 

 

For three-photon induced fluorescence, the initial, intermediate excited and final 

system states are: 
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There are four photon-matter interactions, one of which is one-photon emission, 

again characterized by equation (4.4).  

 

Three-Photon Absorption:  For the three-photon transition between I  and C  

there are two distinct virtual intermediate system states, R  and  S  as follows: 



 

 119 

 

( )
( ) ( )
( ) ( )
( )( )

0; , ,

; 1 , ,

; 2 , ,

; 3 , .

r

s

I m

R m

S m

C mν

ξ λ

ξ λ

ξ λ

ξ λ

=

= − 


= − 


= − 

p

p

p

p  

 (4.14) 

 

Utilising the above conditions, the three-photon matrix element emerges following 

substitution of equation (1.9) into equation (1.15) where 3q = , such that:  
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   (4.15) 

   

the factor of 1
6  again to offset over-counting.  In terms of radiation quanta, V 

initially contains three photons of the input light, therefore 

( ) ( ) 1 21 2
3 1 2m m m m≡ − −    as a result of the three successive operations of the 

photon annihilation operator.   The above result can be recast in terms of a third 

rank molecular response tensor ( )
0

ijk
νβ , being a specific implementation of equation 

(2.20), the former defined as: 
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 (4.16)  
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Full process:  The fluorescence due to three-photon excitation can now be presented 

as: 

   

 ( ) ( ) ( )
( ) ( ) ( ) ( )

3 3

, , ,

,flu ijk l mno p ijk l mno pI K S S T T
ξ λ λ

φ
′ ′

= ∑ ∑
p p

 (4.17) 

 

where ( )3K  subsumes a factor (3) 3
3m g m⇒ , conveying a cubic dependence on the 

input beam intensity and a linear dependence on its degree of third order 

coherence.35  In equation (4.17), the electric polarisation and molecular transition 

moments are described in terms of fourth rank tensors, where ( )ijk lS  and  ( )ijk lS  

respectively represent ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i j k le e e eλ λ λ λ ′ ′p p p p  and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i j k le e e eλ λ λ λ ′ ′p p p p , whilst ( )ijk lT  and ( )ijk lT  correspond to 

( ) ( ) ( )0 0
lijk

ν αβ ξ µ ξ  and ( ) ( ) ( )0 0
lijk

ν αβ ξ µ ξ , the final index of each again being 

associated with the one-photon emission.  While the index l and p contractions in 

equation (4.17) associated with the molecular invariants ( )ijk lT  and ( )mno pT  would 

again deliver the 2cos γ  factor for a rigid sample, the orientation relative to the 

input polarisation depends on a multitude of angles, corresponding to the 

orientations of the transition moments sν
µ , sr

µ , 0r
µ , summed over states r and s. 
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4.2 Rotational Averaging of Single- and Multiphoton Fluorescence Signals 

 

Before the implementation of a rotational average, the general results for the 

fluorescence output in one-, two- and three-photon induced systems, represented by 

equations (4.6), (4.12) and (4.17) respectively, are applicable to systems in which 

the responsible chromophores have arbitrary orientations with respect to 

experimentally determined input and detection configurations.  As such, these 

results are directly applicable to all ordered samples in which individual 

chromophores are held in a fixed orientation, or others comprising domains with 

significant local orientational correlations.  To address substantially less ordered 

systems it is expedient to secure corresponding results for an opposite extreme, 

namely systems of completely random orientation.  To this end, the above results 

are now subjected to an orientational averaging protocol.  One-photon induced 

fluorescence is addressed first, highlighting procedures within the method in detail, 

although the simplicity of this case belies the significantly greater technical 

complexity in securing results for the higher-order interactions.  The latter 

calculations are extremely complex, and in the case of three-photon fluorescence 

they are only viable by the use of the specialized, not widely familiar techniques, as 

reported below. 
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4.2.1 Orientational Average for One-photon Induced Fluorescence 

 

From equation (4.6), the one-photon induced fluorescence signal exhibits an 

implicit sum over four separate Cartesian indices, each of which are known to 

assume x, y or z values with respect to a chosen frame.  The results are resolved 

through fourth-rank orientational averaging.  Summarising the procedure first 

outlined in Chapter 1, the molecular and radiation components of the system are 

first uncoupled by assigning to the latter a laboratory-fixed frame of reference, 

denoted by Latin indices.  The molecular transition moments within ijT  and klT  are 

similarly referred to a molecule-fixed frame, labeled by Greek indices, and the 

output signal is re-expressed: 
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flu ij kl ij kl
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K S S T T
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ξ λ λ

φ
′ ′

′ ′

=

=

∑ ∑

∑ ∑
p p

p p

ℓ ℓ ℓ ℓ
 (4.18) 

 

where the molecular and radiation reference frames are linked through the product 

of direction cosines between the frame axes, represented within the angular 

brackets.  As the only parameters of equation (4.18) that are now dependent on 

molecular orientation, the orientational average is implemented over i j k lλ µ ν σℓ ℓ ℓ ℓ , 

the general result for which is presented as equation (1.26).  The inherent Kronecker 

delta functions operate on the molecular and radiation tensors featured in equation 

(4.18), for example ij klδ δ  effects tensor contractions in the radiation frame, with 
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ij klS S  yielding ii kkS S .  All of the ensuing results are then expressible in terms of 

scalar products between input and output polarisation components.  In the 

commonly utilized deployment of plane-polarised input laser light, the polarisation 

vectors are real and the scalar product of two polarisation vectors is concisely 

summarized by: 

 

 
( ) ( ) ( )( ) ( )

1 cos ,
λ λ

λλ λλδ δ φ
′

′ ′⋅ = + −e e
 

 (4.19) 

 

the angle φ  having already been established as that between the input and output 

polarisation vectors.  The final result for the orientationally averaged single-photon 

induced fluorescence output emerges in terms of φ  as: 
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incorporating three molecular invariants, T Tλλ µµ , T Tλµ µλ  and T Tλµ λµ .  For this case 

of one-photon induced fluorescence, it is further possible to express the molecular 

tensors in equation (4.20) relative to the magnitude of the molecular transition 

moments 0ν
µ  and 0α

µ , and the angle between them, β , such that: 
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where the identities 
2 20 0 2cosT T T T ν α

λλ µµ λµ µλ β= = µ µ ,  and 
2 20 0T T ν α

λµ λµ = µ µ  

apply.  Resolving equation (4.21) for fluorescence components parallel or 

perpendicular to the input polarisation leads to the familiar degree of fluorescence 

anisotropy for a randomly oriented sample, specifically 

( ) ( ) ( )21
5 3cos 1β⊥ ⊥− = −

� �
r = I I I + 2I .1,2

  The equivalent, general results for 

two- and three-photon induced fluorescence, derived in the following, have not 

been determined before. 

 

4.2.2 Orientational Average for Two-photon Induced Fluorescence 

 

The established averaging methods are now applied to equation (4.12) for the two-

photon induced fluorescence output, decoupling the molecular and radiation frames 

as before: 
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Delivery of the result now requires the implementation of a sixth-rank orientational 

average, the general form of which is presented as equation (1.27).  It transpires that 
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the fluorescence signal is now generally expressible in terms of fifteen molecular 

invariants (terms contracting T and T tensors) which are distinct, though generally 

they are not all linearly independent: 
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 (4.23) 

 

Each of the above molecular invariants is a scalar, expressing one particular aspect 

of the overall propensity of the chromophore to generate two-photon fluorescence.  

Each is expressible as a sum of four separate terms entailing specific transition 

moments, for example: 
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in which the state labels r  and rɶ  identify two virtual states which must be allowed 

to be different, since each appears in a separate sum.  These summations preclude 

factorizing out the absorption and emission transition moments, without further 

assumptions that would compromise the generality of the result.  It is, however, 
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possible to re-define equation (4.23) in a more concise form by considering index 

symmetry properties, since a number of the invariants are equal, for example 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4T T T T T T T T T Tλλ µ µν ν λλ µ νµ ν λµ λ νν µ λµ µ νν λ λλ µ µν ν+ + + ≡ .  In consequence, the 

15 molecular invariants in equation (4.23) reduce to just 4 distinct terms:  
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φ φ
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 (4.25)

 

 

Despite the simple form of equation (4.25), it should be remembered that each 

invariant is in fact a sum of distinct products of components of the tensor T, since in 

each case the Cartesian indices λ, µ and ν can each take x, y or z values.  Moreover, 

each of those tensor components is in general determined by combinations of 

transition moments that involve a tier of intermediate levels r, that tier being in 

principle of unlimited extent.  The experimental determination of these individual 

parameters is impossible, because the above result provides for no more than two 

linearly independent polarisation measurements.  Moreover, calculational methods 

cannot assist, since even the most sophisticated molecular software cannot usually 

secure the necessary convergence in the sums over states, even for relatively small 

molecules.   However, there is sufficient information in the result of equation (4.25) 

to yield physically meaningful interpretations, as will be shown in the discussion in 

Section 4.3.  The value of the present method is still more evident in the following 

three-photon case.  Although the procedure for securing the following result is 
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significantly more complex, it does in fact produce concisely expressible and 

tractable results.    

 

4.2.3 Orientational Average for Three-photon Induced Fluorescence 

 

The orientationally averaged output signal for three-photon induced fluorescence is 

now considered, beginning with a re-expression of equation (4.17) as: 

 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

3 3

, , ,

,flu i j k l m n o pijk l mno pI K S S T T λ µ ν σ τ ρ π ηλµν σ τρπ η
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= ∑ ∑
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ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ
 

  
 (4.26) 

 

requiring an eighth-rank average.  In contrast to the fourth and sixth rank 

orientational averages already utilized, the general form of the eighth-rank 

expression, specifically applied as i j k l m n o pλ µ ν σ τ ρ π ηℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ , is rarely reported 

owing to the extreme complexity in presenting and resolving the matrix result.  

However, following the same methodology, a general result has now been 

determined in which the three-photon induced fluorescence signal is described in 

terms of 105 molecular invariants.  In order to present a more manageable result, it 

is necessary to again exploit the index-symmetrized form of the molecular tensors, 

allowing the output signal then to be expressed much more simply in terms of just 5 

unique molecular invariants:  
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 (4.27) 

 

Each invariant, again comprises a sum of tensor component products.  As with two-

photon induced fluorescence, the inherent summation over accessible intermediate 

states, in this case r , rɶ , s  and sɶ , precludes further simplification of equation 

(4.27).   

 

4.3 Discussion 

 

A striking feature of the equations determining both single- and multiphoton 

fluorescence response, namely equations (4.20), (4.25) and (4.27), is that they all 

prove to be expressible in a relatively simple, generic form.  In fact, the multiphoton 

fluorescence output associated with randomly disposed chromophores can be 

described through the following formula: 

 

 ( ) ( ) ( ) ( )( )( ) ( ) 2 ( ) 2
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fluI K n n
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φ φ φ
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 (4.28) 

 

with both ( )nΛ  and ( )nϒ  representable as a sum of distinct molecular invariants, the 

former featuring as a coefficient of the second Legendre polynomial ( )23cos 1φ − , 
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characteristic of time-resolved fluorescence anisotropy.  There is no angle at which 

the ( )nϒ   term can be made to vanish.  However, under “magic angle” conditions 

where φ  is 54.7º, the ( )nΛ  terms do disappear, so that the corresponding 

measurement should enable the identification, at least in relative terms, of ( )nϒ .   

 

To proceed with the more general case, it is helpful to cast the above expression in 

the form: 

 

  ( ) ( ) ( )( ) 2

, , ,

1 3 cos ,n n
fluI K n y y n

ξ λ λ
φ φ

′ ′

′  = + − + − ∑ ∑
p p

 (4.29)  

 

where ( ) ( ) ( ) ( ) ( ),n n n n nK K y′ = ϒ = Λ ϒ .  The latter parameter is a scalar that 

characterises the relative values of the molecular invariant groupings in equations 

(4.20), (4.25) and (4.27).  Although the precise value of y will depend on the 

component values of the transition tensors, it can be shown that y is positive and 

limited to an upper bound of ( )1n+ .  The graphs of Figures 4.1-4.3 exhibit the 

functional form of the fluorescence polarisation, for one-, two- and three-photon 

induced fluorescence, over the range ( )0 2φ π≤ ≤ , the behavior over the next 

quadrant being a mirror image in the ordinate axis in each case.   
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Figure 4.1 The relative angular disposition of polarisation in fluorescence produced by single-

photon absorption ( )1n = .  The blue, red and black curves correspond to 3y/n = 0.1, 3y/n = 1 and 

3y/n = 3 respectively. 

 

 

Figure 4.2 The relative angular disposition of polarisation in fluorescence produced by two-photon 

absorption ( )2n = .  The blue, red and black curves correspond to 3y/n = 0.1, 3y/n = 1 and 3y/n = 3 

respectively 
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Figure 4.3 The relative angular disposition of polarisation in fluorescence produced by three-photon 

absorption ( )3n = .  The blue, red and black curves correspond to 3y/n = 0.1, 3y/n = 1 and 3y/n = 3 

respectively. 
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3y/n = 0.1, 1.0 and 3.0.  The curves corresponding to the case, 3y/n = 0.1, represent 

an extreme condition, ( ) ( )n nΛ ϒ≪ , characterized by strongly depolarised emission.  

The curves drawn for 3y/n = 1.0 are of special interest because the fluorescence 

proves in each case to be independent of the resolving polarisation, a general 

feature that has not to our knowledge been discovered before.  This is a condition 

under which the fluorescence produced through the concerted absorption of any 

number of photons becomes completely unpolarised.  The results for 3y/n = 3.0 are 

perhaps the most interesting, being indicative of the statistically most likely 

outcome.  This condition arises within each of the relevant general equations, 
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(4.20), (4.25) and (4.27), when the featured molecular invariants are of 

approximately equal value, for example in the two-photon case where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T T T T Tλλ µ µν ν λµ λ µν ν λλ µ νν µ λµ ν λµ ν= = = .  Here there is a strong retention of 

polarisation and it is remarkable that this condition leads in every case to 

( ) ( )n n y nΛ ϒ = = , a further, previously unreported result.   

 

Emission anisotropies are determined by ( ) ( )⊥ ⊥−
� �

r = I I I + 2 I , where 

�
I  and ⊥I  are the components of the rotationally averaged fluorescence 

intensity polarised parallel and perpendicular, respectively, to the electric vector of 

the input.  The result conforms to the simple formula ( )2 / 2 3r n n= +  and yields 

the following specific values: (i) 1; 2 5 0.4n r= = = , the familiar result; also (ii) 

2; 4 7 0.57n r= = = ; and (iii) 3; 6 9 0.67n r= = = .  These limiting case results 

are in precise agreement with values that arise specifically when all transition 

moments are considered parallel, a special case previously reported by Lakowicz et 

al.36  The correlation serves to verify a limiting case of the present, more general 

results, but it is also notable that the conditions under which such behavior arises 

are not only associated with parallel transition moments.  The same observations 

will result, for example if all of the molecular transition tensor elements have 

similar magnitudes.  Although fluorescence anisotropies can be determined in 

principle even from fully oriented domains, samples of the latter kind may readily 

be distinguished on the basis of an anisotropy that varies with rotation of the sample 

itself.  
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4.4 Conclusion 

 

The results of the above theory represent tools that can be applied in the analysis of 

polarisation-determined features in two- and three-photon fluorescence from 

samples of considerable molecular complexity.  By determining how either type of 

multiphoton-induced fluorescence signal responds to the orientation of a polarizer, 

it is in principle possible to distinguish and quantify any departure from local 

orientational order or disorder within a bulk sample.  Key to this discrimination is 

the difference in angular disposition of the fluorescence polarisation. 

 

In samples whose chromophores are rigidly oriented, the fluorescence signal from 

an ensemble with common orientation takes the form of a 2cos φ   distribution with 

respect to the angle φ  between the emission moment and the resolved polarisation.  

On rotation of the polarizer through 180�  there will be an angle at which the signal 

is extinguished, both for single- and multi-photon induced fluorescence, although 

the angular positions for the minimum and maximum fluorescence intensities, ( )
min
nI  

and ( )
max
nI  respectively, may of course not necessarily correspond to 0φ =  and 90� .  

However, as shown, the behavior from a randomly oriented sample is in general 

distinctively different.  In the cases considered above, all satisfy the condition that 

the ratio ( ) ( )
min max
n nI I  lies in the interval ( )( )1,1 2 1n+ .  This suggests that in a general 

case the measured value of ( ) ( )
min max
n nI I  registered against the scale ( )( )1,1 2 1n+  
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should represent a robust, easily determined single-value indicator of the degree of 

disorder in fluorescence produced by n-photon excitation.  
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Chapter 5 – Laser-modified and Laser-controlled Fluorescence in Two-level 

Systems 

 

In any molecular system that exhibits fluorescence, the primary result of 

ultraviolet/visible absorption is the electronic excitation of individual 

chromophores.  Typically, ultrafast intramolecular vibrational redistribution 

processes produce a degree of immediate relaxation and partial degradation of the 

acquired energy, with subsequent fluorescence typically occurring from the lowest 

vibrational level of the electronic excited state.  Consequently, the characteristics of 

emission in “conventional” molecular fluorescence are relatively insensitive to the 

optical frequency of any monochromatic source used to create the initial electronic 

excitation.  Whilst the input has to be encompassed by an absorption band of the 

target chromophore, the rapid relaxation processes that occur prior to fluorescence 

mean that the decay usually occurs from around the energy threshold of the 

electronically excited state, irrespective of the precise input frequency.  There is 

therefore limited scope to explore dispersion properties of the material beyond the 

simple line-shape of the emission itself.  In technical terms, the transition dipole 

moment for fluorescence emission is considered a frequency independent property.  

  

As is well known, the throughput of a laser beam in such photo-activated systems 

can produce stimulated emission when the optical frequency matches the 

fluorescence, a phenomenon that has found analytical applications in stimulated 

emission depletion spectroscopy.1-6  However, in the newly discovered process of 

laser-controlled fluorescence, innovated by Bradshaw and Andrews, a passive, 
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completely off-resonant laser beam of moderate intensity interacts with the 

emission.  Under such conditions the probe engages with the fluorescent emission 

through a third-order response tensor that is indeed strongly dependent on optical 

frequency.  In this sense, the transition moment for the emission acquires a 

frequency dependence and in consequence each excited-state lifetime, τ , is 

appreciably modified.7-10  

  

The essence of the effect can be captured in a very simple general formula, 

1 1 1
flu nr KIτ τ τ− − −= + + , where the first two terms on the right correspond to inverses of 

the excited-state lifetimes for fluorescence and competing non-radiative decay 

respectively.  The effect of the probe emerges in the form of the additional term 

proportional to I, the irradiance of the off-resonant probe.  In a heterogeneous 

sample the above constant of proportionality, K , which is determined by detailed 

molecular nonlinearity, will generally take a different value for each chemically 

distinct component.  Initial estimates suggest that fluorescence lifetimes, under 

specified conditions, can be reduced by 10% or more, for an input laser irradiance 

of 1011 W cm-2, with typical values of 16 × 10-30 C m for the magnitude of the 

transition dipole moment and a photonic energy as 10-19 J, so that the effect should 

be readily amenable to measurement with modulation-based instrumentation.7  One 

can draw some analogy with the well-known enhancement of emission, which can 

occur through coupling with strong electric fields.11-13  However, the mechanism of 

laser-controlled fluorescence proceeds through direct interaction with the oscillating 



 

 139 

electric field of throughput electromagnetic radiation, as opposed to a nearby 

surface or static field.  

 

In the limiting case, where the probe-induced term dominates the expression for 

inverse lifetime, laser-controlled fluorescence represents more than just a 

mechanism to modify the rate of emission.  Such a system would possess weak or 

entirely forbidden “conventional” transition pathways between the ground and 

lowest excited electronic states, i.e. both 1
fluτ −  and 1

nrτ −  are small or equal to zero.  

Fluorescence would subsequently occur only as a result of the mutual interaction 

between excited state chromophores and the off-resonant throughput, the latter 

conferring optical nonlinearity on the system, providing an alternative allowed 

pathway.  Due to the pulsed nature of the input, there is a significant capacity for 

the probe light to act as a switch for the fluorescence in such cases.  Numerous 

examples of such systems containing E1-forbidden relaxation transitions are cited 

in the introduction to Chapter 3.  

 

The following chapter details how in systems of randomly oriented chromophores, 

the effects of laser-controlled fluorescence will manifest as changes to the emission 

anisotropy.  The theoretical foundations of laser-controlled fluorescence are 

presented in Section 5.1.  In Section 5.2, it is shown how a two-level formulation of 

theory can be implemented using an expedient, entirely rigorous procedural 

algorithm that highlights the twin dependence on static and transition dipole 

moments.  Using this method, tractable expressions are secured whose broad 
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validity extends to any material whose emission spectrum is dominated by one 

excited electronic state.14-17  As a topical example, the present analysis focuses 

particular attention on quantum dots, where there is additional scope to exploit a 

well-characterized size-dependence in the dispersion properties.18,19  In section 5.3, 

rotational averages are implemented and precise expressions are duly presented for 

the modified fluorescence anisotropy, characterizing and quantifying the probe 

control mechanism.   The analysis is concluded in Section 5.4.  

 

5.1. Laser-modified Fluorescence 

 

As previously discussed in Chapter 1, fluorescence that occurs through spontaneous 

emission, as further depicted by Figure 5.1, generally involves a single matter-

radiation interaction, and its representation in theory is cast in terms of first-order 

time-dependent perturbation theory.   
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Figure 5.1  Energy level representation for spontaneous one-photon fluorescence.  Electronic states 

and their vibrational manifolds are signified by the boxes.  The vertical arrow represents the 

“downward” electronic transition instigating the emission of a photon of energy ω′ℏ .  The ground 

and excited molecular states are again labeled as 0ξ  and αξ  respectively, and the filled dot 

symbolizes a single matter-radiation interaction. 

 

Once the radiation responsible for the initial electronic excitation has passed out of 

the system, and assuming that no other light is present, the higher order, odd-rank 

perturbation terms that may in principle contribute, are instead deemed 

insignificant, only denoting self-energy corrections.  However, these higher-order 

interactions will also arise on application of an off-resonant probe laser, namely 

where a laser wavelength is chosen at which the chromophores are optically 

transparent.  There is no net absorption or stimulated emission of such a beam, yet 

elastic forward-scattering events do occur as the photons are annihilated and created 

into the same radiation mode.  Such events can engage by nonlinear coupling with 

αξ

0ξ

ω′ℏ

ξ
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the fluorescence emission, resulting in three concerted matter-radiation interactions, 

see Figure 5.2.  The quantum amplitude of such a process is now determined by 

third-order perturbation theory, i.e. the form of the required matrix element is 

determined from substitution of 3q =  into equation (1.15).  Similar effects are 

observed in connection with RET.20-27  

 

 

Figure 5.2  Energy level representation for the nonlinear coupling mechanism.  The off-resonant 

laser beam with photon energy ωℏ  is included and the un-filled dot represents two concerted 

matter-radiation interactions (i.e. elastic forward-scattering). 

 

The intensity of fluorescence, ( )fluI ′ ′Ω , or power per unit solid angle, ′Ω , is 

derived from equation (1.12), where the associated rate determined from Fermi’s 

Golden Rule is multiplied by the energy of a fluorescence photon, cp ω′ ′=ℏ ℏ .  The 

result represents the signal that is produced by a single molecule initially in the 

αξ

0ξ

ξ

ω′ℏ

ωℏ
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relevant excited state.  By inclusion of the mechanism under present scrutiny, the 

net intensity is hence determined from 

( ) ( ) ( ) ( ) ( )
2

1 3
0 02fluI d M Mα α

ξ
πρω ξ ξ′ ′ ′ ′Ω Ω = +∑ �, where ( ) ( )1

0M α ξ  and ( ) ( )3
0aM ξ  are 

the quantum amplitudes for the first- and third-order interaction processes, 

respectively, and the density of radiation states is ( )2 38p V hc dρ π′ ′= Ω .10  

Assuming all laser sources and fluorescence outputs are plane polarised, a general 

representation for the intensity of laser-modified fluorescence follows: 

 

 

( ) ( )

( )

4
0 0 0 0

02
0

2 2 2 0 0
0

8

4 ,

flu i j i j i j k l ijk l

i j k l m n ijk lmn

cp
I e e I c e e e e

I c e e e e e e

α α α α

α α

µ µ ε χ µ
π ε

ε χ χ

 ′′ ′ ′ ′ ′ ′Ω = +  
 

′ ′+   (5.1)

 

 

where again, the usual labels associated with the polarisation vectors of the 

fluorescence and probe photons, ( )e′ ′p  and ( )e p  respectively, have been 

suppressed for clarity.  The irradiance of the laser probe is denoted as I and the 

nonlinear transition susceptibility ( )0
ijk

αχ ξ  represents a specific implementation of 

the general third-rank response tensor defined earlier as equation (2.20). Explicitly 

exhibiting the frequency dispersion, ( )0
ijk

αχ ξ
 
is represented as:   
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   (5.2) 

 

With reference to later comments, it is worth noting here that there is no assumption 

of Kleinman symmetry at this stage, this being a simplifying device commonly 

made for calculational expediency that would impose complete index symmetry for 

the above tensor.28  

 

The initial term on the right-hand side of equation (5.1) corresponds to spontaneous 

emission, intrinsic to the system and independent of the probe laser beam.  The last 

term signifies a coupling of the elastically forward-scattered probe beam with the 

fluorescence emission.  The middle term, linear in I, signifies a quantum 

interference of these two concurrent processes.  The overall multiplier of I in this 

term can be identified with ω′ℏ  times the K that appeared in the equation for 

excited state lifetime discussed prior to Section 5.1.  In principle, measuring the 

effect of the passive beam at varying levels of intensity should enable the value of K 

to be experimentally determined.  In general, it may be assumed that the leading 

term in equation (5.1) is non-zero and the middle one is the leading correction, 

although a configuration is possible in which the third term exists on its own, i.e. 
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when the first and second terms are null.  This concept forms the basis of a 

proposed optical switch mechanism to be discussed in detail in Section 5.3.   

 

5.2 Theory Pertaining to Two-level Systems 

 

Considering the dependence of the fluorescence signal on the optical frequency of 

the probe, it is evident that the denominators within the third-rank tensor of 

equation (5.2) are primarily responsible for determining any degree of enhancement 

or suppression of the optical emission.  These factors are ultimately determined by 

the relative positioning of the chromophore energy levels, relative to the magnitude 

of the probe photon energy.  To discover more, it is convenient to assume that the 

probe light is delivered in the form of a tunable beam with optical frequency 

ω ω′< , a condition that specifically precludes single-photon excitation of ground-

state molecules.  It will also be assumed that the chosen range of probe frequencies 

cannot produce multiphoton excitation.  The main challenge in evaluating the 

nonlinear response characterized by the transition tensors within equation (5.2) now 

lies with implementing the required sum over intermediate states.  There is a 

potentially infinite number of energy levels associated with r and s, and to ease 

calculational complexity it is common to reduce such sets to a small, finite number 

by approximation.  In the present context, it is defensible to consider only the states 

through which the majority of the optical transitions occur, which in the case of 

many fluorescent systems limits the selection to just the ground and lowest energy 

excited states, i.e. a two-state model may be applied.  To be clear, the assumption is 
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that the character of the fluorescence emission process, including the effect of the 

probe radiation, is dominated by two electronic levels.  It is not to be presumed that 

the state from which the fluorescence decay occurs is necessarily the same as the 

state initially populated by photoexcitation. 

 

Restricting both intermediate states featured within equation (5.2) to just 0ξ  and 

αξ , only four unique routes can describe virtual transition sequences from the 

excited to ground molecular states progressing through both r and s, the 

0r sαξ ξ ξ ξ→ → →  sequences specifically expressible as 0 0 0αξ ξ ξ ξ→ → → , 

0 0α αξ ξ ξ ξ→ → → , 0 0α αξ ξ ξ ξ→ → →  and 0α α αξ ξ ξ ξ→ → → .  Each 

sequence generates a combination of 0 αξ ξ↔  transition dipole moments, ( )0α ξµ  

and ( )0α ξµ , in combination with the static dipole moments of the ground and 

excited energy levels, ( )ξµ
00  and ( )αα ξµ  respectively.  It can be assumed that the 

former transition electric moments ( )0α ξµ  and ( )0α ξµ  are real and also equal.  

Detailed analysis reveals that the dependence on static moments emerges only in 

terms of their vector difference, ( ) ( ) ( )00ααξ ξ ξ= −d µ µ , i.e. the shift in dipole 

moment that accompanies the transition.  This feature applies to all nonlinear 

optical susceptibilities, treated by a two-level model.  With the benefit of an 

algorithmic method, the following prescription can be adopted:29-31 

 

 ( ) ( ) ( ) ( ) ( )00 00; 0.αα ααξ ξ ξ ξ ξ→ − = →µ µ µ d µ  (5.3) 
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Applying this protocol requires application of an associated rule, that any 

transitional mechanism that connects the initial and final system states (here, for the 

emission process) through a ground state static dipole is to be discarded, and hence 

only two of the originally proposed four sequences, namely 0 0α αξ ξ ξ ξ→ → →  

and 0α α αξ ξ ξ ξ→ → →  persist.  Applied to the six terms within equation (5.2), the 

two-level third-rank response tensor is generally expressible as a sum of 12 separate 

contributions.  Further simplification ensues because a number of these terms, when 

0r =  and/or s α= , are precluded by the conditions of perturbation theory.  The 

two-state form of ( )αχ ξijk
0  thus re-emerges as: 

 

 

( ) ( ) ( ) ( )
( )

( ) ( )0 0 0 0 0

2 2 22 2

2
= .

i j k i j k j i kd d d d
αα α α α

α
µ µ µ µµξ ξ ξ ξ ξ

χ ξ
ωω ωωω ω

+ −
′ ′′−ℏ ℏ ℏ

ijk
0

 (5.4)

 

 

It may be observed that the second and third terms on the right in equation (5.4) 

exhibit an antisymmetry with respect to interchange of the indices i and j.  

However, in the physical observable delivered by equation (5.1), this tensor is 

index-contracted with a i,j-symmetric product of polarisation vectors.  

Consequently, since only the i,j-symmetric part of equation (5.4) can contribute to 

the fluorescence signal, it is expedient to replace ( )k
αχ ξij

0 , without further 

approximation, by an index-symmetrised form, ( ) ( )k
αχ ξ
ij

0 , that is defined as follows: 
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 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( )

0 0 0

2 2 2

1 2
= .

2
i j k

k

α α α
α α α

µ µµξ ξ ξ
χ ξ χ ξ χ ξ

ω ω
≡ +

′−ℏ
ijk jikij

0 0 0  (5.5) 

 

It is notable that the result of the above expression is in fact fully index-symmetric, 

meaning symmetric with respect to interchange of any pair of indices.  It is 

therefore noted that the two-level model delivers a result that is consistent with the 

adoption of Kleinman symmetry, even though the latter condition has not been 

artificially imposed.  Furthermore, there is a significant physical consequence, as it 

emerges that the physical mechanism for the laser-controlled emission depends only 

on transition dipoles, and not on the static moments.  In passing it should be 

observed that a low-frequency, ω → 0, limit of the above analysis requires caution, 

because in this limit some of the intermediate system states, allowed for a finite ω, 

become identifiable with the initial or final state of the process, and are necessarily 

removed from the sum over states.  However, the ensuing result is of little interest 

since it represents only a correction to the more prominent response, which arises in 

second order perturbation theory, as noted earlier. 

 

5.2.1 Two-level Quantum Dot Systems 

 

Applicable to a diverse range of applications, quantum dots are exploited as highly 

efficient chromophores, typically possessing excellent quantum yields and 

photostability as well as size-tunable and therefore highly selectable optical 

properties.32-34  The ease with which such systems can now be manufactured, 
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chemically manipulated and structurally ordered, as well as their relative simplicity, 

also makes quantum dots the ideal prototype media in which to observe new 

nonlinear optical processes.  Amongst the wide-ranging investigations into such 

materials, a number of recent studies have focused on RET, nonlinear optical 

response and all-optical switching.35-41  Addressing quantum dots within the 

established theory requires further assessment of the fully symmetric, third-rank 

response tensor presented as equation (5.5).  This expression can be re-defined 

relative to the energy difference between the ground and excited states through the 

relationship 0Eα ω′≡ ℏ , such that: 

 

 
( ) ( ) ( ) ( ) ( )

( )
0 0 0

22 2 0
=2 ,

i j kQD QD QD

QDk
E

α α α
α

α

µ µµξ ξ ξ
χ ξ

ω −ℏ
ij

0   (5.6) 

 

where QDξ  represents the molecular label for any fluorescent, two-level quantum 

dot media.  Exploiting a unique property of quantum dots, the same energy 

difference is itself dependent on particle size through the following expression:42 

 

 ( )0 0 2
0 ,E E K Rα α −′= +    (5.7) 

 

where 0
0Eα  represents the difference in energy between excited and ground states of 

the bulk semi-conductor material i.e. on scales outside the quantum size regime, 

where the energy gap becomes insensitive to particle size.  The second term in 

equation (5.7) represents a correction term highlighting the well-known blue-shift in 
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emission wavelength with decreasing quantum dot radius, R.  By substitution of 

equation (5.7) into the right hand side of equation (5.6):        

 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0

122 0 0 2 2 4
0 0

2

2 .

i j kQD QD QD QD

E K E R K R

α α αα

α α

µ µµχ ξ ξ ξ ξ

ω
−

− −

=

 ′ ′× − − −
  
ℏ

i jk

0

 (5.8) 

  

As a correction term, it can generally be assumed that ( )2K R−′  is small in 

comparison to both ( )0
0Eαω +ℏ  and ( )0

0Eαω −ℏ , and therefore by extension, the 

( )2 4K R−′   term within equation (5.8) represents an insignificant contribution that is 

subsequently discarded.  Moreover, following a Taylor series expansion, the two-

level, third-rank response tensor can be presented in a final form as: 

 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1220 0 0 0
0

2220 2 0
0 0

2

2 .

i j kQD QD QD QD E

K E R E

α α αα α

α α

µ µµ ωχ ξ ξ ξ ξ

ω

−

−
−

= −


′+ − 


ℏ

ℏ

i jk

0

 (5.9) 

 

Essentially, the first term in equation (5.9) is equal to equation (5.5) and represents 

the nonlinear response to any bulk material undergoing fluorescence decay, whilst 

subject to an input of non-resonant light.   Unique to quantum dots, the second term 

represents a lead correction displaying a dependence on 2R− .  
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5.3 Fluorescence Anisotropy 

 

As is well established, there is a great deal of important information, highly relevant 

to speciation and structure determination, which can be derived from fluorescence 

anisotropy.  Specifically, the anisotropy parameters signify the degree to which 

fluorescence retains a directionality of polarisation from the initial excitation.43  The 

associated experimental measurements can also inform on excited state 

photophysical processes such as internal conversion, rotational diffusion and 

intramolecular energy transfer etc.  Each of these processes represents one of the 

means by which the character of fluorescent emission can differ from that of the 

preceding absorption, quite apart from the Stokes shift in wavelength that is 

normally apparent.  The former processes all provide situations in which the 

emission dipole moment need not be parallel to the absorption moment.  To 

accommodate such features in the present theory, the initial absorption must now be 

incorporated into our analysis.  Since the probe beam is only delivered to the system 

after the initial excitation, we have: 

 

 ( ) ( ) ( ) ( ) ( ) ( )
22 1 3 ,flu abs flu fluM M Mξ ξ ξ′ ′Ω +∼I     (5.10) 

 

where the subscript abs denotes the single-photon absorption mechanism.  As 

before, the angular brackets denote an orientational average accounting for the 

molecular transition moments associated with absorption and emission (the latter 

duly modified by the probe), that although correlated within the molecular frame, 



 

 152 

are together randomly oriented relative to the input propagation.  The structure of 

equation (5.10) provides for the excitation and emission processes to be separable in 

time.  In more detail, the quantum amplitude ( )absM ξ  corresponding to the initial 

absorption is proportional to ( ) ( )0
ν ξ⋅e p µ

0

0
, where ( )0e p

0
 represents the input 

polarisation vector aligned in the z-direction by definition, and νξ  designates the 

state initially populated by the excitation.  As indicated above, the latter may or 

may not be the same as the electronic state from which subsequently emission 

occurs, depending on factors such as the possibility of intervening relaxation or 

intramolecular energy transfer.   

 

Identical to the method utilized in Chapter 4, the fluorescence anisotropy is now 

determined from the general expression ( ) ( )⊥ ⊥′ ′ ′ ′ ′−
� �

r = I I I + 2 I .  In the 

present context, this requires the detailed examination of the tensor contractions 

within equation (5.1) following the inclusion of the initial excitation parameters and 

the performance of necessary orientational averages.   

 

5.3.1 First-order Correction 

 

After the inclusion of ( )0e p
0

 and ( )ν ξµ
0  factors into equation (5.1), the first term 

represents single-photon induced fluorescence, the last term corresponds to the 

process modified by the off-resonant laser throughput and the second term, the lead 

correction, signifies a quantum interference of these two processes.  For present 
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purposes it is assumed that the third term under these conditions represents a 

comparatively small contribution to be considered later.  The most computationally 

effective procedure for implementing the necessary orientational averages is now 

well established.  The leading term associated with conventional fluorescence 

requires only a fourth-rank tensor average, whilst the lead correction requires a 

sixth-rank average.  On completion, the following result emerges: 

 

 

( ) ( ) ( ) ( )

( ) ( )(
( ) ( )

( ) ( )
( )

0 0 2 2

2 2 2
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2 2 2
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flu ii jj ij ij

kki ij j
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kji ij k

kki jj i

I
I T T T T

I
T T

c

T T

T T

T T

ω
φ φ

θ ϕ φ θ ϕ φ
ε

θ ϕ φ θ ϕ φ

θ ϕ φ θ ϕ φ

Ξ
′ ′Ω = − − −

+ − − − +

+ − + + + −

+ − − − +

+ ( )
( ) ( )
( ) ( ))

2 2 2

2 2 2

2 2 2

12cos cos cos 4cos 4cos 11cos 5

8cos cos cos 5cos 5cos 5cos 8

12cos cos cos 4cos 11cos 4cos 5 ,

iki jj k

iki jk j

T T

T T

θ ϕ φ θ ϕ φ

θ ϕ φ θ ϕ φ

θ ϕ φ θ ϕ φ

− + + + −

+ − − − +

+ − + + + −


    

   (5.11) 

 

where ( )0 0,I ωΞ  is a constant of proportionality incorporating the initial excitation 

beam irradiance, 0I , and its corresponding optical frequency 0ω , noting that 

overbars again denote complex conjugation.  In the above expression, the first two 

terms are essentially identical to equation (4.20) and as before, signify the expected 

response for one-photon fluorescence, whilst subsequent terms represent the leading 

corrections produced by the probe.  The equation is explicitly cast in terms of the 
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three distinct angles between each pair of polarisation vectors, for the incident, off-

resonant probe and emitted light: ( ) ( )( )1
0 0cosθ −= ⋅e p e p , 

( ) ( )( )1cosϕ − ′ ′= ⋅e p e p  and ( ) ( )( )1
0 0cosφ − ′ ′= ⋅e p e p .  To describe the products 

of molecular transition moments, the result utilizes a similar shorthand notation to 

that established in Chapter 4, where for example ijT  represents ( ) ( )0 0
i j
ν αµ ξ µ ξ , 

whilst ( )i ij jT  corresponds to ( ) ( ) ( )0 0
i ij j
ν αµ ξ χ ξ , noting that the first index of each T 

tensor is associated with the initial molecular excitation.  It is worth highlighting 

that the third-rank response tensor in this and all ensuing expressions, relates to the 

form of equation (5.5).  The equivalent quantum dot response tensor presented as 

equation (5.9) represents a significant and relevant result, but its inclusion for now 

would significantly complicate the analysis to follow.  

 

As shown in the previous Section, taking the two-level form of the nonlinear 

response tensors has the effect of introducing Kleinman symmetry in each of the 

optically nonlinear response tensor contributions.  It emerges that the six nonlinear 

response tensor products that feature in equation (5.11) are no longer linearly 

independent under such conditions, and the result can be recast in a simpler form 

involving just three such products: 

 



 

 155 

  

( ) ( ) ( ) ( )

( ) ( )(
( ) ( )
( ) ( ))

0 0 2 2

2 2 2

0

2 2 2

2 2 2

,
3cos 1 cos 2

15

6cos cos cos 2cos 2cos 5cos 1
7

6cos cos cos 5cos 2cos 2cos 1

4cos cos cos cos 6cos cos 3 ,

flu ii jj ij ij

kki ijj

jki ijk

iki jjk

I
I T T T T

I
T T

c

T T

T T

ω
φ φ

θ ϕ φ θ ϕ φ
ε

θ ϕ φ θ ϕ φ

θ ϕ φ θ ϕ φ

Ξ
′ ′Ω = − − −

+ − − + −

+ + − − −

+ − − + − +


  

 (5.12) 

 

where the following have been applied, ( ) ( ) ( )2kk kk kki ij j i jj i i ijjT T T T T T+ = , 

( ) ( ) ( )2jk kj jki ij k i ij k i ijkT T T T T T+ =  and ( ) ( ) ( )2ik ik iki jj k i jk j i jjkT T T T T T+ = .  In deriving specific 

results for independent polarisation components, further simplification can now be 

achieved by writing each of the above molecular tensors explicitly in terms of 

components of the two transition dipole moments, the photo-selected ( )0ν ξµ , the 

emission ( )0α ξµ  and the angle between these two moments, β.  Assuming that the 

initial excitation has plane polarisation and remembering that it is arbitrarily aligned 

in the z-direction, the resulting fluorescence is now resolved for polarisations 

( )z ze p′ ′  and ( )x xe p′ ′ respectively.  Utilizing equation (5.12), the results where 

0, 2, 2φ ϕ π θ π= = = , define the probe input alignment in the x-direction, and are 

as follows: 
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and for 2, 0, 2φ π ϕ θ π= = = : 

 

 

( ) ( ) ( ) ( )

( ) ( )
( )

2 2

0 0

2 2

2 2 2
0

,

15

9 6 cos
2 .
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cos

I
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  (5.14) 

 

Hence, upon substitution of equations (5.13) and (5.14) into the general anisotropy 

expression, the following is determined: 

 

 
( ) ( )

( ) ( )

2 2

2 2

1 1
,

5 20 11cos 7

α

α

β ξ β

ξ β

− + −
′

+ −

µ

µ

KI
r =

KI

2 0

0

3cos cos
     (5.15) 

 

where ( )( ) 1
2 2 2

02K ε ω ω
−

′= −ℏc .  In the limiting case where 0I = , the well-known 

expression ( )1
5r β= −2

3cos 1  is recovered.  Generally, however, a change in 

fluorescence anisotropy can be seen to result from the interaction with the probe 

beam, although it is to be re-emphasized that the state of the latter beam is 

unaffected.   

 

5.3.2 Inclusion of Higher-order Correction 

 

Up to this point, the third term in equation (5.1), quadratically dependent on probe 

laser intensity, has not been considered in detail as its contribution to the overall 
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fluorescence intensity is generally expected to be negligible.  Nevertheless, there 

can be circumstances in which the third term alone provides the fluorescence 

response, typically when the first and second contributions are null.  Addressing 

this case requires the theory to progress beyond the two-level approximation.  

Consider for example a system where following optical excitation, population is 

efficiently transferred to a state αξ  that might
 
normally decay non-radiatively, 

transitions from αξ  to 0ξ  being weak or entirely precluded, for example as a 

result of inherent geometric or symmetry constraints.  Terms in equation (5.1) that 

feature ( )α ξµ
0  will no longer contribute to the observed emission, which instead is 

activated solely in response to the off-resonant throughput.  Clearly, such a two-

level model would also predict a vanishing response from the probe laser, due to the 

associated structure of the third-rank response tensor portrayed as equation (5.5).  

However, the more general analysis accommodating higher energy levels in the 

sum over states, allows the possibility of a decay transition that is symmetry 

allowed by three-photon selection rules.   

 

An outline for an all-optical switch based on laser-controlled fluorescence may be 

described as follows: (i) an individual molecule is indirectly excited to a “dark” 

state, i.e. one whose direct dipolar excitation from the ground state is forbidden; (ii) 

precluded by the one-photon dipole selection rules, fluorescence occurs from this 

“dark” state through optical nonlinear activation only; (iii) this activation arises due 

to the presence of the intense non-resonant laser field, the relevant molecular 

transitions are therefore assumed three-photon allowed, but single-photon 
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forbidden.  Whilst specific systems described in the introduction of Chapter 3 may 

be suitable, more general examples are afforded by excited states of A2 symmetry, 

in molecules of C2v or C3v symmetry, or states of Au symmetry in D2h species.  In 

such cases, the switching action is enabled since the throughput or absence of the 

laser input will cause activation or deactivation of the fluorescence, respectively.  

Clearly it is necessary for the radiation to be delivered in a pulse whose duration 

and delay, both with respect to the initial excitation, are sufficiently short that it can 

engage with the system before there is significant non-radiative dissipation of the 

excited state.  

 

The result for this case is secured on completion of a rotational-average requiring 

the eighth-rank isotropic tensor average.  The calculation leads to the result: 
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  (5.16) 

 

Here, the T tensors accommodate sums over products of transition moments that 

specifically exclude ( )α ξµ
0 , on the basis of the decay transition being symmetry-
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forbidden under electric dipole selection rules, however for simplicity we retain the 

assumption of Kleinman index symmetry in the embedded ( )0α ξχ  tensors.   

 

5.3.3 Complete Result for a Two-level System 

 

For completeness, although the above expression must apply to emission from an 

indirectly excited state, one can adopt the corresponding result for a case of E1-

allowed emission and thereby provide a completely general result for the probe-

modified fluorescence anisotropy, accommodating all of the terms arising from 

equation (5.1).  Taking once again the two-level model for the emission, we then 

have: 
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   (5.17) 

 

In a case where the absorption and transition moments are parallel, we secure the 

very simple result: 
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showing that with increasing intensity of the probe beam, the first departures from 

the probe-free result, r′ = 0.4, can be anticipated in the linear-response regime 

 

5.4 Conclusion 

 

Developing earlier pioneering work by Bradshaw and Andrews, the theory of laser-

modified molecular fluorescence has been developed in order to elicit a number of 

features of particular experimental significance.7-10  Use of the two-level emission 

model is widely valid for systems including those that incorporate common 

fluorescent markers, such as quantum dots, and here it proves to offer succinct and 

experimentally tractable results of broad applicability, whose simplified form 

without further approximation is consistent with the adoption of Kleinman 

symmetry.  Whilst commonly adopted, the casual interchangeability of indices 

within nonlinear polarisability tensors, such as in those described above, should be 

cautioned.  A number of recent reports highlight the general failure of Kleinman 

symmetry when applied to practical nonlinear systems.44,45  The method still proves 

valid in multiple applications, for example in the case of SHG, provided there is no 

significant dispersion in the nonlinear response over the entire range of frequencies 

involved.  Consequently, many will consider the benefits afforded by the simplicity 

of the theory greatly outweigh the potential for error.  

 

Equations have been derived for the anisotropy of fluorescence that can be expected 

from a system responding to the passage of off-resonant light, its leading correction 
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being linearly dependent on the probe irradiance and manifest as a reduction of the 

measured anisotropy.  It has also been shown that, for some electronic states that 

normally decay non-radiatively, it is possible to optically switch fluorescent 

emission using the off-resonance probe.  In all such respects, the capacity to engage 

with and to optically control the fluorescence process offers significant new 

grounds for the interrogation of fluorescent materials. 
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