The Design of a Contemporary
Infrastructure for Scalable and
Consistent Virtual Worlds

Umar Farooq

School of Computing Sciences
University of East Anglia

February 2012

(©This copy of the thesis has been supplied on condition that anyone who consults it is un-
derstood to recognise that its copyright rests with the author and that no quotation from the
thesis, nor any information derived therefrom, may be published without the author’s prior
written consent.

To my parents, brothers and sisters.

Abstract

Virtual worlds have recently emerged as interactive and collaborative virtual spaces
that have unique features. Existing mechanisms originally developed for games
or simulation environments are currently used to handle scalability, load distri-
bution, and consistency issues for virtual worlds, but they have key performance
issues. This dissertation examines a novel infrastructure based on inherent prop-
erties of virtual worlds targeting these issues. It uses a constrained hierarchical
approach for managing the resources of a system and a constrained P2P commu-
nication model that consults only the adjacent neighbouring nodes to maintain
the temporal order among events. It presents simulation work for scalability, load
distribution, and consistency as well as an extension to the current architecture
of OpenSimulator to incorporate scalability and consistency. It also describes a
prototype developed to implement our scalability and load distribution methods.

The Joint Hierarchical Nodes Based User Management infrastructure was devel-
oped to scale virtual worlds and applies both splitting and merging to adapt to
system load. It deals with issues in both static and dynamic infrastructures. It
aims to simplify the management of a hierarchical virtual world while maintaining
user experience. To minimise resource utilisation and communication overhead,
we developed an aggregation algorithm using a number of aggregation strategies.
This maintains regular and contiguous spaces for assignment and distributes the
load so it is as balanced as possible between two simulators. We also present a
fully decentralised synchronisation method to maintain a consistent view of a vir-
tual world represented as a complex hierarchical model. It reduces communication
overhead and maintains local causality.

We investigate the capabilities of OpenSimulator and develop a load model that
determines when to initiate a split or a merge operation. We presented an ab-
stract framework for scalability which is implemented by building on the basic
capabilities of OpenSimulator. This work is demonstrated through experiments
on both Windows and Linux platforms. It obtains the same level of scalability
as static configurations but with a reduced number of resources. It further im-

11

il

proves over current dynamic approaches by transferring regions in an aggregate in
turn. For evaluation purposes, we used a number of timing and system statistics.
We developed significantly more efficient algorithms for removing a region from
a simulator compared with the basic methods of OpenSimulator. Overall, we ef-
fectively developed a system that dynamically expands and contracts the set of
servers used to support a virtual world based on load estimated by tracking the
number of active players.

Acknowledgments

IN THE NAME OF ALLAH, THE MOST MERCIFUL AND BENEFICIAL!
Many thanks goes to almighty Allah, who gave me the strength and ability to
finish this work.

I would like to take this opportunity to say special thanks to my supervisors
Prof. John Glauert and Dr. Rudy Lapeer for their continuous guidance, support
and advice.

Dear John! Thanks for your hospitality, help and guidance. I am much more
confident in accepting challenges and providing viable solutions to industry prob-
lems due to the training you provided during the past few years. Thanks for
listening to me whenever I was in trouble. I can never forget your support and
the opportunities you provided me for training and presenting my work.

Special thanks to my parents, brothers and sisters for all the support they have
given over the course of the last few years.

This acknowledgment is incomplete without mentioning all my friends around the
world who shared some of the best memories of my life while studying at UEA. I
can never forget you all. Special thanks to Dr. Rafat Nabi, Mr. Muhammad Atif,
Dr. Jason Yu Liu, Dr. Osama Dorgham, Dr. Fabiola Lopez Gomez, Mr. Wayne
Henry, Mr. Adil Zaman, Miss. Hang Nguyen, Miss. Paulina Glowacka, Miss. Saima
Laiq, Miss. Kim Findlay Cooper, Dr. Khalid Shah, Dr. Sadaqat Ali, Engr. Faheem
Ullah Khan and Mr. Khaled Alotaibi for their support and company, and, to

v

Catherine Baker for proof reading this thesis and helping in preparing the final
manuscript.

Finally, I would like to say thank you to the University of Science and Technology
Bannu for funding my PhD studies and, to the OpenSim community for their
help and support. The research presented in this thesis was tested on
the High Performance Computing Cluster supported by the Research
Computing Service at the University of East Anglia. Special thanks go to
Mr. Chris Collins and Dr. Miah Wadud from the E-Science project for their help

and providing special arrangements for this different but exciting project.

Contents

List of Figures X

List of Tables xvi

Publications xviii

Extension to our work XX

Acronyms xxi

1 Introduction 1

1.1 Introduction to Virtual Environments (VEs) 1

1.2 Conflicting terminologies defining VEs 2

1.3 Applicationsof VEso oo 4

1.4 Introduction to Virtual Worlds (VWs) 6

1.5 Scalability, Load Distribution and Consistency Issues 9

1.6 Research Approach 11

1.7 Contribution. 12

1.8 Thesis Organisation 13

2 Background and Motivation 15

2.1 Underlying Technical Infrastructures 15

2.2 Current Scalable and Load Distribution Mechanisms 18
2.2.1 Motivation and Goals of Joint Hierarchical Nodes Based

User Management (JoHNUM) Infrastructure 29

2.2.2 Scaling and Distribution of Load 33

2.3 Existing Synchronisation Mechanisms 34

2.3.1 Motivation and goals of the consistency approach 44

2.3.2 How Consistent Virtual Worlds are achieved 45

2.4 Open Source VW Development Frameworks 46

2.5 Conclusions and Future Work 48

vi

CONTENTS vii

3 Scalable Virtual Worlds 50
3.1 The JoOHNUM Infrastructure 50
3.1.1 Introduction 51
3.1.2 JoHNUM Partitioning 53
3.1.3 JoHNUM Assignment/Load Distribution 59
3.1.4 JoHNUM Merging o7
3.1.5 Simulation Setup and Assumptions 59
3.1.6 Simulation Results and Gains 61
3.1.7 Discussion 64

3.2 Load Distribution L. 64
3.2.1 Introduction 64

3.2.2 The Algorithm and Strategies 65
3.2.3 Simulation Results 71
3.2.4 An Abstract Communication Model 76

3.3 Conclusions 7
4 Consistent Virtual Worlds 79
4.1 Introduction 79
4.2 The Proposed Synchronisation Approach 80
4.2.1 Introducing the time advance mechanism 80
4.2.2 Federate, Federation, and their time relation 82
4.2.3 Time Management Algorithm 83
4.2.4 Illustrations 85

4.3 Evaluations and Comparisons 89
4.3.1 Simulation Setup Lo 89
4.3.2 Simulation Results 90
4.3.3 An Abstract Model for Comparison 93

4.4 Global Consistency in Virtual Worlds 95
4.4.1 The Literature 95
4.4.2 Consistent Virtual Worlds: Examining our Current Method 98
4.4.3 Possible Extension to our Consistency Method 102

4.5 Conclusions and Future Directions 103
5 OpenSimulator: State-of-the-Art and Proposed Extension 105
5.1 Backgroundo 105
5.1.1 Second Life (SL) 106
5.1.2 The Current Architecture 107
5.1.3 The Extended Architecture 108

5.2 OpenSimulator (OS) and its Current Architecture 111
5.3 Interesting Features of OS 115

5.3.1 RemoteAdmin (RAd) Functionality 115

CONTENTS

5.3.2 OpenSim Archive (OAR) Functionality
5.3.3 Megaregions
5.4 Related Projects
5.4.1 Load Balancer Project
5.4.2 ScienceSim
5.5 A Proposed Extension to the OS Architecture
5.6 Ilustration and Discussion
5.6.1 Traditional Steps in Spatial Partitioning
5.6.2 Our Contemporary Approach to Spatial Partitioning
5.7 Conclusions

Scalable Virtual Worlds: Investigating Opensimulator
6.1 Introduction
6.1.1 OS Operational View
6.1.2 Platforms
6.1.3 World Content and Interactive Players
6.2 Initial Tests
6.3 A Generic Load Model L.
6.3.1 Experiments on the Windows Environment
6.3.2 Experiments on the Linux Environment
6.3.3 Comparison
6.3.4 SplitCapacity, SimCapacity and MergeCapacity
6.3.5 The Load Model,
6.4 Introducing the Scalability Model
6.4.1 Steps in Scalability00
6.4.2 Required Components
6.4.3 Statistical Parameters
6.5 Investigating Database Options
6.6 Informal Time Analysis Model
6.6.1 Dedicated and Non-dedicated Simulator (Sim) Servers . .
6.6.2 Time Analysis on Windows Platform
6.6.3 Time Analysis on Linux Platform
6.6.4 Comparison and Discussion
6.7 Improved Strategies
6.7.1 Introduction L
6.7.2 Improved Strategies.
6.7.3 Time Analysis and Comparison
6.8 System Issues/bugs and fixtures
6.9 Conclusions and Future Work

viil

116
116
117
117
117
118
121
121

. 122

123

CONTENTS

7 Scalable Virtual Worlds: Implementation

7.1

7.2
7.3
7.4
7.5
7.6

7.7
7.8

7.9

Introduction Lo
7.1.1 Background and Motivation
7.1.2 VW Environment and Setup
7.1.3 Platforms
7.1.4 Content and Players
7.1.5 Statistical Metricso
Abstract Scalability Framework
Extended Aggregate Region Assignment (ARA) Algorithm
Flexibility of System and Envisioning Scalability
Merging Strategies
Final Experiments
7.6.1 Experiments with 4-Region World
7.6.2 Experiments with 9-Region World
7.6.3 Discussion
Bigger VWso
Comparison with Existing Systems
7.8.1 Static Configurations
7.8.2 Dynamic Configurations
Conclusions and Future Work

8 Conclusions and Future Work

8.1
8.2
8.3

Conclusions
Benefits and Limitations
Future Directions

A An Introduction to Grid Computing
A.1 Background
A2 Introduction
A.3 Grid Architecture and Existing Solutions

Bibliography

X

169
169
170
171
175
175
177
178
182
184
185
186
188
189
202
204
205
205
206
207

210
210
213
214

216
216
216
217

245

List of Figures

1.1
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.9
2.10

2.11

2.12
2.13

2.14

2.15

3.1

Simulation Centric Architecture [139].. 8
Basic architecture of Butterfly Grid [103]. 19
Distributed Scene Graph (DSG) Architecture [132,140]. 22
A screenshot of the XPU simulator. The dots represent objects,
and solid lines represent boundaries between partitions [37]. 23
lustration of hierarchical map partitioning [125]. (a) VML based

Massively Multiplayer Online Game (MMOG) system. (b) Hierar-

chical structure of VML.o 00000 26
Hierarchical N to N (H-N2N) architecture [24]. 27
Matrix architecture [13]. oo 28

[lustration of static partitioning for: (a) SL Grid (normally a single
region per Sim but possibly a small fixed number); (b) OS Grid

(arbitrary number of regions per server). 32
[lustration of the proposed hybrid Grid infrastructure with an ad-
ditional layer of resources. 33
Logical view of Time Management in HLA [82]. 37
[lustration and comparison of [244] (a) traditional Time Manage-
ment, and (b) two level Time Management; 39
[lustration of [32,156]: (a) Gateway Architecture; (b) Proxy Ar-
chitecture. Lo 40
Hierarchical federation architecture [32]. 41
Distributed Federate Proxy architecture for hierarchical federation
communities [41].o 41
Components of the extended High Level Architecture (HLA) archi-
tecture [126]. 42
lustration of implementation for [127] (a) Federation Execution
Processes, and (b) fully distributed federates. 43
Abstract view of JOHNUM partitioning algorithm [61]. 52

LIST OF FIGURES xi

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

[lustrating two-level splits with various combinations at different
geographic locations. Lo oL 53
[lustration of JOHNUM Partitioning with uniform and hotspot sce-
narios: (a) a split of uniform scenario into 4 smaller regions; (b)
highlighting a hotspot that fails basic JOHNUM partitioning; (c)
a split using Players Considered JOHNUM Strategy that splits a
region into 9 smaller regions.o o4
[lustration of JOHNUM Partitioning in to 16 smaller regions: (a)
highlighting a hotspot that fails to ease the load with RSF value
2; (b) highlighting a hotspot that fails to ease the load with RSF
value 3; (c¢) highlighting a split into 16 smaller regions. 55
[lustration of JOHNUM Assignment Strategy 2 (JAS2): It can be
seen that the levels in each assignment step are increased with the
introduction of additional players (3 levels in this case). 56
[lustration of JOHNUM Assignment Strategy 3 (JAS3): It should
be noted that the levels in this strategy remains the same (1 level)
for this particular example in comparison with JAS2. 58
Comparison of all JOHNUM and Matrix strategies for: (a) to-
tal number of regions after the splits; (b) Resource Management
Tree (RMT) levels; (¢) Resource utilisation; (d) Degradation of in-
teractive user experience. 61
Comparison of JOHNUM and Matrix for: (a) Total number of re-
gions after the splits; (b) RMT levels; (c) Resource utilisation; (d)
Degradation of interactive user experience. 63
[lustration of aggregation strategies of ARA algorithm for root TL
and an RSF value 3 for: (a) LRRows; (b) TBColumns; (¢) LRaTB;

(d) LRTBwDR. 66
[lustration of LRRows and TBColumns strategies for an RSF value
of 2 and both TL and TR. 67
The 4x4 regional grid illustration of root TL for (a) LRaTB, and
(b) LRTBwDR strategies. 68

Odd cases excluded by the ARA Algorithm. (a) Irregular content
distribution. (b) A case splitting an aggregate into two isolated
groups. (c) A case splitting an aggregate into three isolated groups.
(d) Aggregation with diagonals splitting an aggregate in 2 differ-
ent isolated groups while having no physical boundaries among the
regions of the other aggregate. (e) Aggregation with diagonal for
RSF value 2 splitting into two aggregates where regions in both
have no physical boundaries (each aggregate has isolated groups of
oneregion each). 70

LIST OF FIGURES xii

3.13 Example worlds considered for illustration purposes being presented
as tiled grids of 4 and 9 regions with player density. 72
3.14 Mlustrations of the proposed combinations and worlds for an RSF
value 2: (a) a complete set of possible combinations; (b) a complete
set of possible unique combinations; (c)-(g) illustrations of worlds
1,2, 3,5, and 7 respectively. 73
3.15 TIllustration of the proposed combinations and worlds for an RSF
value 3: (a) a complete set of possible combinations shown partially;

(b)-(d) Hlustrations of worlds 4, 6, and 8 respectively. 75
4.1 TIllustrating neighbouring regions for the selected central regions in

the hierarchy presented in Figure 4.2. 81
4.2 Hierarchy of a dynamic hierarchical model based on JoHNUM par-

titioning algorithm [61]. Lo L. 81
4.3 Tllustration of the proposed synchronisation approach with a con-

strained communication model.o 82

4.4 The illustration of different concepts used with our decentralised
synchronisation approach. (a) The basic time advance. (b) In-
dependent federations without a common federate. (c) Federations
with a common federate (a non-blocking situation). (d) Federations
with temporary blocking states. 86

4.5 Illustration of the decentralised synchronisation approach in hierar-
chical models for: (a) A basic time advance; (b) Independent time
computation of two federations apart from each other; (c¢) Two fed-

erations sharing a common federate. 88
4.6 Illustrating temporary blocking states for the decentralised synchro-
nisation method. L o 89
4.7 The simulated world and events flow model. 90
4.8 Tllustration of decentralised synchronisation method for a synchro-
nised scenario. Lo 91
4.9 Tllustration of a simulation run for the non-synchronised approach. . 92
4.10 Illustrating the neighbouring regions in a 1-dimensional grid. 97
4.11 Time advance (theoretical) using our decentralised time advance
mechanism with no delays. 99
4.12 Time advance using our decentralised time advance mechanism with
delays for a world of 3 federates. 99
4.13 Time advance using our decentralised time advance mechanism with
delays for a world of 4 federates. 100

4.14 Time advance using our decentralised time advance mechanism with
delays for a world of 5 federates. 101

LIST OF FIGURES xiil

4.15 Tllustrating the violation of causality for activities spanning arbi-

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

trary locations. oo 102

The SL Grid (SLG) architectures with an interactive client [199]:

(a) the existing architecture; (b) the extended architecture. 108
Process of a viewer login to: (a) an Agent Domain (AD) [54]; (b) a
Region Domain (RD) [163]. 109
Additional scenarios based on the extended grid architecture for [200]:

(a) home content as part of world content; (b) off line content. . . . 110
Complete extended look of the SLG infrastructure, if implemented

as planned [199]. 111
The OS architecture for standalone mode [172]. 113
The OS architecture for grid mode [172]. 114
The proposed extended architecture for standalone mode of Open-
Simulator (OS). 119
The proposed extended architecture for grid mode of OpenSimula-

tor (OS). . . . o 120
Steps in traditional spatial partitioning methods to achieve a new
Simulator instance and distribute the load withit. 121

Mean and Standard Deviation (STDEV) for an increasing number

of static content for SimFPS, PhysicstFPS and CPU%. 131
Mean and STDEV for an increasing number of dynamic content
(Prims and Active Scripts (PandASs)) for (a) SimFPS and PhysicsFPS,

and (b) CPU%. 132
Mean and STDEV for an increasing number of Players/Bots logged-
in but doing nothing for SiImFPS, PhysicsFPS, and CPU%. 133
Mean and STDEV for an increasing number of players/Bots running
ScriptA for (a) SimFPS and PhysicsFPS. (b) CPU% Usage. 134
Mean and STDEYV for an increasing number of players/Bots running
ScriptB for (a) SImFPS and PhysicsFPS. (b) CPU%. 135

Mean and STDEV of increasing number of players/bots equally dis-
tributed among 2 regions running ScriptB for (a) SimFPS (Region
I) and SimFPS (Region II). (b) CPU%. 136
Mean and STDEV for an increasing number of dynamic content
(PandASs) for (a) SimFPS and PhysicsFPS on a Linux node, and
(b) SimFPS and PhysicsFPS on a Windows node (from Figure 6.2(a)).138
Mean and STDEV for an increasing number of players/Bots running
ScriptA for (a). SimFPS and PhysicsFPS on a Linux node, and (b)
SimFPS and PhysicsFPS on a Windows node (from Figure 6.4(a)). 139

LIST OF FIGURES Xiv

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

7.1

7.2

7.3

7.4

7.5

7.6

Mean and STDEV for an increasing number of players/Bots running
ScriptB for (a). SimFPS and PhysicsFPS on a Linux node, and (b)
SimFPS and PhysicsFPS on a Windows node (from Figure 6.5(a)). 140
Mean and STDEV for an increasing number of players/Bots (in each
region) for a 2 Region world running ScriptB for (a) SimFPS on a
Linux node, and (b) SimFPS on a Windows node (from Figure 6.6(a)).141
The comparison of SQLite, MySQL (Centralised), and MySQL (Lo-
calised) as a prospective configuration and their impact on (a)

Delete Region (DR), and (b) Remove Region (RR). 151
The comparison of time information between dedicated and non-
dedicated servers for (a) Create Region, and (b) Load Content. . . . 153
Time taken by teleport operation for transferring an increasing
number of players on Windows environment. 157

Comparison of timing information of dynamic content (PandASs)
on both Windows and Linux environments for (a) Delete Region
(DR), and (b) Close Region (CsR). 160
Comparison of timing information of Load Content (LC) on both
Windows and Linux environments for (a) dynamic content, (b) ex-

ample worlds content. L 161
Comparison of timing information for increasing number of players
transfer on both Windows and Linux environments. 161

Comparison of different methods to remove a region from a Sim on
Windows environment for (a) dynamic content, (b) example worlds. 166
Comparison of different methods to remove a region from a Sim on
Linux environment for (a) dynamic content, (b) example worlds. . . 166

World map showing adjacent placement of regions to get contiguous
spaces for (a) 4 regions grid, and (b) 9 regions grid with a transit

TEGION. 173
Description and visibility of regions to a player in a regional grid of
(a) 4 regions, and (b) 9regions. 173
Console window for a (a) Robust instance (for grid management),
and a (b) Region server (for managing regions). 174
The status of a parent Sim (Sim-I) showing content and interactive
players for a 4-region world. 181
The 4-region world presented in Figure 7.4 after a split jointly served
by (a) Sim-I (Parent), and (b) Sim-II (Child). 183

[lustrating the limitations in basic ARA algorithm (a) a valid out-
come for a square grid, and (b) an invalid outcome for a 3-region
world. 184

LIST OF FIGURES XV

7.7 Number of resources and inter-sim crossings with an increase in
players capacity for a world of 9 regions with players (a) populating

three region. (b) populating nine regions. 195
7.8 Illustrating (a) Sim utilisation. (b) Player disruption (disconnec-

tions/connections). 195
7.9 Illustrating transfers per player. 196

7.10 Comparison of Parent Merge (PM) and Child Merge (CM) strate-
gies for both number of resources and region transfers. 202

List of Tables

2.1
2.2

3.1
3.2

3.3
3.4

3.5
3.6

4.1

6.1
6.2
6.3

6.4

6.5

6.6

6.7

Parameters and their corresponding filters 47
Summary of filtering process showing eliminated frameworks 49
Experimental assumptions for the experiments 59
Detailed evaluation summary of experiments for all JOHNUM and

Matrix strategies.o 60
The evaluation summary of JOHNUM and Matrix 62
Summary of roots and their corresponding aggregation strategies [60]. 65
Assumptions and parametric values for the illustrations. 71
Evaluation summary of the abstract communication model for cases

provided in Figure 3.12. 7
A abstract comparison of hierarchical methods with our decen-

tralised synchronisation mechanism. 94
The description of example worlds content. 127
The description of 2 Sims and a world with 2 regions 145

A comparison of time taken by different activities for three database
options (SQLite (localised), MySQL (centralised), and MySQL (lo-
calised)) hosting a Sim data on Windows environment. 149
The comparison of time information for both Create Region (CR)
and Load Content (LC) between a dedicated and a non-dedicated

SIM. . . 152
Summary of the time information for experiments transferring dy-
namic content (PandASs) on Windows environment. 154

Summary of the experiments showing timing information of differ-
ent activities when transferring a region populated with example

worlds content. oo 155
Summary of the timing information for the experiments transferring
an increasing number of players on Windows environment. 156

Xvi

LIST OF TABLES xvii

6.8

6.9

6.10

6.11

6.12

7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8

Summary of timing information for experiments transferring dy-

namic content (PandASs) on Linux environment. 158
Summary of timing information for experiments transferring exam-
ple worlds content on Linux environment. 158
Summary of timing information for experiments transferring in-
creasing number of Bots on Linux environment. 159

Comparison of different Delete Region (DR) and Close Region (CsR)
strategies for dynamic content on both Windows and Linux envi-
ronments. ... oL L 164
Comparison of different Delete Region (DR) and Close Region (CsR)
strategies for the example worlds on both Windows and Linux en-
vironments. . o.o.o. ..o 165

Description of 9 Sims with their transit regions and 9 content regions.172

Regional content for 9 regions used in our experiments 176
Description of experiments and players distribution for a 4-region

grid with GridCapacity and number of required resources. 185
Mlustrating important steps during scaling a world of 9 regions. . . 191

Number of resources, inter-sim crossings and player transfers (cu-
mulative) against current capacity while scaling a 9-region world
based on population of regions (based on experiments from Table 7.4).194
[lustrating important steps during merging using Parent Merge
(PM) strategy for a world of 9 regions (continued from Table 7.4). . 197
[lustrating important steps during merging using Child Merge (CM)
strategy for a world of 9 regions (continued from Table 7.4). 200
Comparison of number of resources and number of regions trans-
ferred for both Parent Merge (PM) and Child Merge (CM) strate-
gies for a world of 9 regions. 203

Publications

The following are publications related to this work by the author:

e Umar Farooq and John Glauert. Scalable Virtual Worlds: An Extension
to the OpenSimulator Architecture. In 1st IEEE International Conference
on Computer Networks and Information Technology (ICCNIT’2011), pages
29-34, Abbotabad, Pakistan, July, 2011 [67]. [Online]: Available at: http:
//dx.doi.org/10.1109/ICCNIT.2011.6020902

e Umar Farooq and John Glauert. A Hybrid Infrastructure for Scalable and
Consistent Virtual Worlds. In Winter Simulation Conference (WSC’10),
Baltimore, USA, 2010 [65]. [Online]: Available at http://www.informs-sim.
org/wsclOpapers/progl0.html

e Umar Farooq and John Glauert. Time Management for Virtual Worlds
based on Constrained Communication Model. In Proceedings of the 9th
ACM/IEEE International Workshop on Network Support for Games (Net-
Games’10), pages 19:1-6, Taipei, Taiwan, 2010 [66]. [Online|: Available at
http://dx.doi.org/10.1109/NETGAMES.2010.5679667

e Umar Farooq and John Glauert. A Decentralised Synchronisation Approach
for Complex Hierarchical Models of Virtual Worlds. In Proceedings of the
TASTED Parallel and Distributed Computing and Systems (PDCS’10), pages
218-224, California, USA, 2010 [63]. [Online]: Available at http://dx.doi.
org/10.2316/P.2010.724-024

e Umar Farooq and John Glauert. A Dynamic Load Distribution Algorithm

for Virtual Worlds. In Journal of Digital Information Management, Volume

xviii

PUBLICATIONS Xix

8, Number 3, pages 181-189, June, 2010 [64]. [Online]: Available at http:
//www.dirf.org/jdim/v8i3.asp

e Umar Farooq and John Glauert. Managing Scalability and Load Distri-
bution for Large Scale Virtual Worlds. In Proceedings of the UEA School
of Computing Sciences Symposium, pages 20-27, Norwich, UK, Obtober,
2009 [62]. [Online]: Available at https://www.uea.ac.uk/polopoly_fs/
1.133529!Farooq.pdf

e Umar Farooq and John Glauert. ARA: An Aggregate Region Assignment Al-
gorithm for Resource Minimisation and Load Distribution in Virtual Worlds.
In NDT ’09: Proceedings of the first IEEE International Conference on Net-
worked Digital Technologies, pages 404-410, Ostrava, Czech Republic, July,
2009 [60]. [Online]: Available at http://dx.doi.org/10.1109/NDT.2009.
5272118

e Umar Farooq and John Glauert. Joint Hierarchical Nodes based User Man-
agement (JoOHNUM) Infrastructure for the Development of Scalable and
Consistent Virtual Worlds. In DS-RT ’09: Proceedings of the 15th IEEE/-
ACM Symposium on Distributed Simulation and Real-Time Applications,
pages 105-112, Singapore, October, 2009, IEEE Computer Society [61]. [On-
line]: Available at http://dx.doi.org/10.1109/DS-RT.2009.32

Extension to our work

Our work on designing scalable virtual worlds is explored and compared with static
and dynamic strategies by a group of master students at the University of Aalborg
Denmark. They extended it for 3D environments and used these concepts to
develop a test game called Rock Pounder. Based on a number of different scenarios,
and tests, they suggested that JOHNUM infrastructure performs better than both
static and dynamic strategies. The complete report (Master Dissertation) under
a title “To Infinity and Beyond: Scaling Massively Multiplayer Games” and the
relevant material (source code and videos) are available at http://www.ejlersen.

info/index.php?page=studyprojects&id=11 for the reference.

XX

Acronyms

AD
ARA
BG
CcM

CMS
CoS
CR

CR Time

CS
CSCw

CsR

CVE
DIS
DR

DSG

DVE
FPS
GALT

HLA
JoHNUM
LBTS

LC

Agent Domain

Aggregate Region Assignment
Butterfly Grid

Child Merge

Client Multi Server

Cluster of Servers

Create Region
Create Region Time

Client Server

Computer Supported Co-operative Work
Close Region
Collaborative VE

Distributed Interactive Simulation

Delete Region
Distributed Scene Graph
Distributed VE

Frames Per Second

Greatest Available Logical Time

High Level Architecture

Joint Hierarchical Nodes Based User Management
Lower Bound on Time Stamp

Load Content

xx1

ACRONYMS

LC Time
LOAR
LP
MMOG
MUVE
NVE
OAR

oS

P2P
PADS
PandASs
PDES
PM

RAd
RCT Time
RD
RMT

RR

RR Time
RT Time
RTI
RUnAv Time
SC

SC Time
Sim

SL

SLG
SOAR
STDEV

Load Content Time
Load OAR

Logical Process
Massively Multiplayer Online Game

Multi User VE
Networked VE
OpenSim Archive

OpenSimulator

Peer-to-Peer

Parallel and Distributed Simulation
Prims and Active Scripts
Parallel Discrete Event Simulation
Parent Merge

RemoteAdmin

Region Content Transfer Time
Region Domain

Resource Management Tree
Remove Region

Remove Region Time

Region Transfer Time

Run Time Infrastructure
Region Un-availability Time
Store Content

Store Content Time

Simulator

Second Life

SL Grid

Save OAR

Standard Deviation

xxii

ACRONYMS

T2R Time

T2T Time
TClient
™

VE

VR
vw
WoW
WWW

Transfer to Region Time
Transfer to Transit Time
TestClient

Time Management
Virtual Environment
Virtual Reality

Virtual World

World of Warcraft
World Wide Web

xxiii

Chapter 1
Introduction

This chapter presents a brief introduction to the concept of Virtual Environments
(VEs) and highlights their conflicting terminologies used in the Literature. It
introduces scalability, load distribution, and synchronisation issues in recently
emerged interactive and collaborative social spaces called Virtual Worlds (VWs).
It outlines applications of VEs and presents the research methodology used for
this research work. It also lists our contribution and gives the organisation of this

thesis.

1.1 Introduction to VEs

Virtual Reality (VR) is a interesting area of research that changes rapidly. It
provides the foundation for defining a number of VEs with different concerns
and goals. The Literature has, therefore, a number of conflicting terminologies
to define VEs. VR has no common definition either, but the majority of these
environments share common characteristics with specialised parameters that dif-
ferentiate them from each other [12,205]. According to Baladi et al. [12], these
parameters include application, technology, number of users and the underlying in-
frastructure. VR is all about manipulating a 3D computer-generated space based
on real or imaginary content and navigating through it. Different navigation styles
such as walking, running, or flying are used to even explore different situations

(viewpoints) that could be dangerous and expensive in the physical world as a

CHAPTER 1. INTRODUCTION 2

real operational system [222]. A VR can also be used to observe parts of a system
which are not observable [84]. According to Vince [222], “the real benefit of VR
is the ability to touch, animate, pickup and reposition virtual objects and create
totally new configurations”. VR systems try to mimic the real world and provide
immersion in a 3D space [205]. Fujimoto defines a VE as a simulation that often
executes a set of dynamic computer-generated entities and requires real time exe-
cution so that it appears realistic and evolves as rapidly as an actual system [84].
In these systems, time advance in simulation time is paced to occur in synchrony

with an equivalent advance in wallclock time [82].

With the passage of time, VEs gained sophistication with the introduction of new
concepts and 1/O methods to represent and access a shared digital space [14, 35].
The concept of avatars re-defined the landscape of online interaction away from
text towards a more complex visual presentation of interactive and collaborative
tasks. However, this category mostly represents entertainment environments such
as games that follow pre-defined set of rules for different activities. Techniques
such as sharding are used to make these environments scalable. A shard is a copy
of a part of a virtual space [140]. Most recently, people have shown a keen interest
in interactive and collaborative social environments called Virtual Worlds (VWs).
These worlds have a number of unique features and allow users to design their
content according to their desires. Therefore, it is much more difficult to manage
these worlds compared with game environments [165]. This thesis targets VWs
and explores techniques to make them scalable and consistent while achieving a

fair distribution of load.

1.2 Conflicting terminologies defining VEs

The Literature provides a large number of confusing terminologies to define VEs
including VR, VR System, VEs, Distributed VE (DVE), Networked VE (NVE),
Collaborative VE (CVE), Multi User VE (MUVE), and VW being the most recent
one [12]. According to our observations, a number of terminologies exist as this
area is investigated from a number of different perspectives including application,

technical infrastructure, number of players, resource orientation, social abilities,

CHAPTER 1. INTRODUCTION 3

and degree of co-operation among the players. Furthermore, the same applications
are subsequently re-defined by using more advanced utilities and capabilities. VR,
VE and VR Systems are often used interchangeably in the Literature but there is a
significant difference between the three. VR is a concept while a VE is the outcome
of an application developed by using this concept. According to Baladi et al. [12],
VR can be classified on the basis of technological standpoint and functionality.
Pont [55] defines VR as a set of computer technologies including an interface to a
computer through which users believe they are actually in a computer-generated
world. For Bryson [23], VR is the use of various computer graphics systems
combined with various display and interaction devices to provide the effect of
immersion in an interactive 3D computer-generated environment where a virtual
object (an avatar) has a spatial presence. An early definition of VE by Barfield
et al. [14] describes a VE as being a computer-simulated world consisting of the
software representation of real or imagined agents (avatars), objects and processes.
Human computer interaction is an important part of the display and interaction
with these models. However, Vince [221] states that a VR System comprises four
components: a VE, a computing environment, VR technology and interaction
modes.

Andreu et al. [6] explore the early developments of co-operative and collaborative
work. According to them, a number of geographically distributed concurrent users
utilise groupware or collaborative environments to achieve common goals with
co-operation. These environments are called Computer Supported Co-operative
Work (CSCW) environments that provide shared scenarios and interaction pat-
terns. Andreu et al. argue that both cooperation and collaboration involve task
distribution. The former divides tasks into a number of independent subtasks
and the latter into entangled subtasks. A number of CSCW environments exist,
such as Basic Support for Cooperative Work (BSCW) [74] and Groove [91]. The
concept of these environments is integrated with VEs to develop more advanced
collaborative spaces. VEs can also be categorised by using resource orientation and
their underlying infrastructures, resulting in DVEs and NVEs respectively. DVEs
are distributed in nature at both physical and application levels. However, both
categories utilise network resources to provide a unified user view. Moreover, these

environments are extended to CVEs by employing complex collaboration patterns.

CHAPTER 1. INTRODUCTION 4

CVEs allow physically distributed users to collaboratively create and manipulate
content in a shared workspace. They also provide means for co-operative and so-
cial behaviours between the users. Co-operation is based on community concerns,
and social behaviours are the outcome of complex interaction patterns. Common
community interests lead us towards the construction of social spaces over the
networks that allow globally distributed users to create and share content with
each other. According to Thomas et al. [216], the World Wide Web (WWW),
MySpace, and YouTube are the outcomes of common community concerns and
goals.

VW is a relatively new terminology and includes distinguishing features over VEs,
including collaboration and persistence. VWs and VEs are generally used alterna-
tively by a number of researchers, but we believe that VWs are more sociable and
provide in-place experience, in that the inhabitants live their lives according to
their wishes. Moreover, VWs are generally multi-user imitating real worlds (such
as Second Life (SL) [201]), whereas VEs can be single-user.

1.3 Applications of VEs

Due to the tremendous popularity of VEs and the availability of communica-
tion and computation facilities at affordable prices, many people are motivated
to use different virtual applications for both fun and creativity over the Internet.
Games, Defence, Graphics, Internet, High Performance Computing (HPC) and
Social communities have leading roles in research into this area. A wide range of
applications having a virtual existence, but the most widely employed applications
include Games, Simulation, Augmented Reality, Training, Distributed Collabora-
tion, Education, Design, Web, commerce, and visualisation [84,205].

The HPC community work has roots in synchronisation algorithms [22, 36, 120]
with a major concern to reduce execution time.

Early work of the Internet and gaming community includes a role playing
game (Dungeons and Dragons) and a textual fantasy computer game (Adven-
ture) [84]. Advanced computer graphics technologies have converted the initial
efforts of this community into a huge video game industry today.

Early work in simulation was led by the military with the development of com-

CHAPTER 1. INTRODUCTION)

puter generated synthetic environments to simulate specific applications, and train
individuals for complex and dangerous tasks. However, these environments were
unable to handle group activities and interaction among Simulators (Sims) target-
ing specific applications [84]. The Literature shows a number of solutions to these
problems including Distributed Interactive Simulation (DIS) [85] and High Level
Architecture (HLA) [48], concentrating on the development of shared synthetic
environments and interoperability among individual Sims with an emphasis on re-
usability. The DIS and HLA are well-known standards for distributed simulation
that have been used and extended for diverse applications by different research
communities.

Education has also gained much attention from VR communities. Early systems,
using simple online methods, have recently been replaced with 3D virtual class-
rooms with an emphasis on interaction and collaboration. Currently, education
systems are using distinctive features of VR including immersion [241] and pres-
ence [227] to help support in conceptual learning and problem solving. Roussou
et al. [190] conducted experiments by simulating a school playground; children
were asked for different activities, and both qualitative and quantitative analy-
sis was performed. Their results show that full interactivity helped children in
problem-solving. These results also lead to indications of conceptual change.

In architectural design, the VR enables users to visualise a design before scale
models are built. Workplace design [50] and interactive design of manufactur-
ing processes [119, 196] have been employed as VR systems. VR has a promising
role in design visualisation and its inclusion in participatory design methodology.
Mobach [150] has explored the use of VR in architectural design and organisational
space design. He has also studied the integration of VR with participatory design.
Besides design changes, the use of VR technologies improves staff satisfaction, and

reduces costs [190].

This present study is based on interactive and collaborative social spaces that al-
low users to create and develop their content according to their wishes [165, 189],
for example SL [201] and OpenSimulator (OS) [177]. Currently a number of com-
munities, organisations and individuals are developing their virtual existence using

VWs; this includes colleges and universities, businesses, charity and community

CHAPTER 1. INTRODUCTION 6

services, and informative initiatives. Berger et al. [16] developed a collaborative
virtual space for tourism, which adopted a community-driven approach with the
basic aim of promoting a dynamic society of travelers. Travelers share travel expe-
riences, recommend tourism destinations or just listen to each other for fun. The
infrastructure is a game-like e-Business application where the e-Tourist is posed

as an avatar. Furthermore, these worlds are persistence in nature.

1.4 Introduction to VWs

The introduction of the latest communication and computation technologies, the
availability of personal computers at affordable prices, and the provision of im-
pressive online content are major factors in the success of VEs, thus encourag-
ing people to participate in a number of social and collaborative activities over
the Internet. Currently, there is a great interest in recently emerged interac-
tive and collaborative social spaces called Virtual Worlds (VWs) that imitate the
real world and give a sense of place. Users in a VW are represented by virtual
characters usually called avatars, and VWs allow users to develop content accord-
ing to their wishes on virtual land that is purchased by spending inland virtual
currency [189][165][201]. Users have many ways to become involved in creative ac-
tivities while having fun. The great success of these environments has motivated
researchers from different communities to introduce novel applications into these
exciting infrastructures [165, 189].

Second Life (SL) and OpenSimulator (OS) are metaverse-like worlds that allow
users to explore and create a dynamic 3D world. A metaverse is a shared space
in which people interact and communicate through virtual avatars [37]. VWs
are real time, interactive, and persistent in nature. They provide graphical user
interface and manage a common shared space. The whole space is divided into
square-shaped regions, typically 256mx256m and each is managed by a separate
Sim process. However, each Sim can potentially handle multiple regions. In these
worlds, regions are placed adjacent to each other to create larger virtual spaces.
SL [201] is state-of-the-art in commercial VWs and unique in the sense that it is
completely designed by its inhabitants. IBM (representing the WWW) and Lin-
den Lab (hosting SL) are working together to achieve the goals of 3D Web. Their

CHAPTER 1. INTRODUCTION 7

basic aim is to make the WWW more attractive and interesting for the users [95].
In SL, each Sim is tied to a specific region of land and cannot be re-partitioned
to cope with a changing workload. Using static assignment strategies, and due to
its commercial background, it has a number of limitations. OS, an open source
alternative to SL, has recently attracted much attention from developers and prac-
titioners. The main reasons for their increased interest include the availability of
complete source code and allowing different organisations to host their own con-
tent on their own infrastructures without paying for the service. Furthermore, it
allows a Sim to run an arbitrary number of regions; therefore, making it more
flexible and a better candidate for future 3D web. However, it has no means of
scaling dynamically. Similarly, it compromises on consistency and cannot be used
directly for applications of a conservative nature, such as for a business. Conserva-

tive applications require their activities to be processed in a correct temporal order.

Our work uses the following definition of VWs based on the description of Rosedale
et al. (a pioneer of the SL Project) [189]:

A Virtual World is an integrated and persistent virtual space based
on real and imaginary content. Users represented as virtual charac-
ters (avatars) feel immersed through tele-presence in a shared work-
space which is geographically distributed both at infrastructure as well
as application levels. Users collaboratively create and manipulate the

content of world they inhabit.

Current VWs use a simulation-centric architecture, presented in Figure 1.1, that
usually distributes simulation work to a set of Sims with homogeneous functional-
ities, where each Sim owns a shard or a region plus the complete set of simulation
and communication work [140]. The key component of a VW Sim is the software
which runs the simulation and the components that apply operations to objects
and scene called actors [132]. These actors include storing objects, handling user
interaction, simulating physics, running scripts, maintaining persistence, and gen-
erating updates for connected users. According to Lake et al. [132], the user

experience is degraded if any of these becomes overloaded. According to them,

CHAPTER 1. INTRODUCTION 8

actors are the main limitation in scaling a world and simulation-centric systems

do not scale with additional resources.

Infrastructure services (authentication,
asset, inventory, etc)

£l

_— -
I [=N=]
L=
E =f=] £l
- _,,Cl. t \ I / Databases

1ents
: N=l=
& ;
= Inter-relgiorl World

ststsetielloz Blote simulators

Figure 1.1: Simulation Centric Architecture [139].

Current VWs are much more sophisticated and immerse users using rich 3D graph-
ics, detailed models of objects and realistic interactions. With this increase in rich-
ness and complexity of VWs, the required computation is also greatly increased.
Online games like World of Warcraft (WoW) feature large virtual spaces, but the
environment remains largely static and interactions are pre-determined. Game-
specific optimisation techniques are applied to them and load per user is relatively
low. On the other hand, general purpose VW such as SL and OS put fewer con-
straints on real-time content creation and interaction for services such as social
networking and collaboration, scientific experimentation, e-commerce, marketing
and games. Therefore, the computation load is much higher and it is difficult to
predict it in advance. As the number of users, or scene complexity, increases, the
computation and communication load on per-user basis grows with it [132]. Cur-
rent approaches used for VW try to accommodate the limitations in architecture

that could limit the number of concurrent users.

To resolve these issues, a specialised infrastructure is required to handle these
kind of worlds. The infrastructure should be able to dynamically add and re-
move resources based on load, thus solving resource under-provisioning and over-
provisioning problems. A number of VWs with similar themes exist with different

concerns targeting different audience such as Kaneva [124], ActiveWorlds [211],

CHAPTER 1. INTRODUCTION 9

Barbie Girls [212], Club Penguin [213], There [214], Forterra Systems [208], Gaia
Online [166], Habbo Hotel [98], Neopets [157], Whyville [233], and Zwinktopia [215].

A brief introduction and a comparison of these worlds is presented in [40].

1.5 Scalability, Load Distribution and Consis-

tency Issues

Scalability and Load Distribution

Chang et al. [37] argue that a significant problem in designing a 3D virtual world
is how to develop a scalable architecture that can manage a large number of con-
current users in an interactive 3D environment. Scalability, therefore, requires
powerful computation and communication infrastructures. VWs must scale in the
following dimensions: number of concurrent users, scene complexity, and fidelity
of user interaction [140]. However, all of them can quickly overwhelm the system
and need to be carefully handled without degrading overall performance and inter-
active user-experience. VWs can be scaled by a flexible and scalable architecture,
dynamic load balancing, and reducing redundant communication and computa-
tion in delivering views to users [140]. According to Lee et al. [134], the design
of a scalable network architecture for VW needs consideration of a Communica-
tion Architecture, Interest Management, Concurrency Control, Data Replication,
and Load Distribution. Moreover, while improving scalability, a VW still need to
deliver its unique features [204].

To deal with scalability and improve performance of a VW, a number of parallel
and distributed infrastructures are currently in practice. A typical approach is
to partition a space into a number of regions and execute it with the help of a
number of systems typically called a Parallel and Distributed Simulation (PADS)
system. Common approaches to divide a VW workload across multiple servers
use either sharding or spatial partitioning. In sharding, different replicated copies
of the same virtual space are created on different servers and there is no inter-
action among the players in different shards. In spatial partitioning, each server
is statically assigned a part of the whole world. SL and OS normally run spaces

based on 256mx256m square spaces called regions. Each server is responsible for

CHAPTER 1. INTRODUCTION 10

everything that happens in the space that it is handling [132]. The Literature
shows a number of approaches dividing a space into regions of different shapes,
such as circles, triangles, rectangles or hexagons. However, the selected pattern

needs to cover the whole content with minimum effort and without overlapping.

Region-based schemes using spatial partitioning can be categorised as static or
dynamic. Both Butterfly Grid (BG) [103] and SL Grid (SLG) [197] exploit region-
based static assignment strategies. To eliminate problems in static configura-
tions, a number of local, global and adaptive dynamic strategies have been devel-
oped for load distribution that have their benefits and limitations [136, 143, 159].
Vleeschauwer et al. have achieved better load distribution but with a significant
increase in communication between cells [223]. Shirmohammadi et al. [203], Cher-
tov and Fahmy [39], and Morillo et al. [153] have also attempted to address the
issues of scalability and load distribution. A number of hierarchal infrastructures
can be found in the literature addressing the same issues [13, 24,51, 127]. However,
they have major performance issues when used to host a VW because they are
basically developed for games. A detailed analysis and comparison of the existing
mechanisms is given in [61]. It is believed that VWs are more sophisticated than
games that lack pre-defined rules, and both latency and consistency are prime

concerns for these environments.

Consistency Management

Since PADS systems are executed with the help of a set of dedicated comput-
ers, they are scalable and provide a better interactive experience. However, they
suffer from another challenging issue of consistency and their performance is de-
graded when conservative approaches are used for time synchronisation [83]. Time
Management (TM) is the process of maintaining the temporal order of events in
a system. Synchronisation mechanisms can be broadly classified as being either
conservative or optimistic. According to Fujimoto [84], both of these have their
benefits and limitations, and selecting an approach depends on a target applica-
tion. TM can be implemented by either a centralised or distributed approach.
Further, a TM algorithm can be either synchronous or asynchronous [178,179].

Existing algorithms have shown great success for their target applications but

CHAPTER 1. INTRODUCTION 11

they have major performance issues when used for VWs. In particular, they have
potential bottlenecks when used with complex hierarchical models representing
worlds based on partitioning algorithms. The existing VWs, therefore, restrict
their application domain and rely on traditional methods for conservative appli-

cations.

To cope with scalability and consistency issues both in current static and dynamic
systems, a contemporary infrastructure has been developed which targets these
issues using the inherent properties of VWs. This is introduced in chapter 2 after

a detailed analysis of both scalability and consistency frameworks.

1.6 Research Approach

This study focuses on scalability (load distribution) for VWs and TM for consis-
tency in VWs.

In the first phase, the existing scalability and consistency infrastructures for
VWs are investigated and their potential bottlenecks are identified.

In the second phase, the following methods are developed to resolve the iden-
tified limitations and they are validated by conducting proof-of-the-concept sim-

ulation studies.

e A Joint Hierarchical Nodes Based User Management (JoHNUM) infrastruc-
ture comprising of partitioning, assignment, and merging to dynamically
scale VWs.

e An Aggregate Region Assignment (ARA) algorithm to obtain a fair distri-

bution of load among Sims using a set of aggregation strategies.

e A decentralised synchronisation approach to maintain a consistent view of

the VW.

In the third phase, JOHNUM infrastructure and ARA algorithm were imple-
mented as a Plug-in for OS. First these were implemented on a Windows platform
using a small network, and later on, they were extended to scale them further using

a cluster environment.

CHAPTER 1. INTRODUCTION 12

1.7 Contribution

This thesis aims to make the following contributions:

e Development and Simulation Studies

— Development of a JOHNUM infrastructure to dynamically scale VWs
and resolve issues in current static and dynamic methods. A simulation
study was conducted to compare it with a game middleware Matrix [13].

JoHNUM strategies showed an improved performance over Matrix.

— To minimise resource utilisation and reduce implementation and com-
munication costs, an ARA algorithm was developed which uses a num-
ber of aggregation strategies to obtain contiguous areas for assignment.
It is compared with hierarchical models for complexity and delay based
on intermediate points using an abstract communication model. A sim-
ulation study shows that ARA algorithm and aggregation strategies

perform well for worlds of all sizes.

— A fully-decentralised TM approach was developed adopting a constrained
Peer-to-Peer (P2P) communication model using the inherent properties
of VWs to make them consistent and conducted a simulation study that
validated the correctness of our approach. It is compared with hierar-
chical models for complexity and delay based on intermediate points

using an abstract communication model.
e Implementation and Evaluations

— The current architecture of OS framework was examined and an ex-
tended architecture was presented to incorporate features for scalabil-

ity, load distribution, and consistency based on our methods.

— The ARA algorithm was extended by adding a flood-fill algorithm to
make it capable of determining valid combinations for worlds with var-
ious shapes. Merge operation also utilises it to maintain continuous

spaces.

CHAPTER 1. INTRODUCTION 13

— Based on our investigation, a load model was developed which is used to
determine the points when a split or a merge operation is initiated. A
plug-in for OS framework is developed that implements our scalability

and load distribution algorithms based on an abstract framework.

— This work is evaluated both on a simple Windows network and a Linux
cluster environment. A detailed analysis and comparison of our work
on both environments is provided, using a number of time statistics.
Two merging strategies have been developed and compared for trade-
offs between number of resources and transferring the same content

multiple times.

— Two improved strategies have been developed to remove a region from
a Sim with direct database access for cleaning up the data. These take
advantage of using OpenSim Archive (OAR) functionality to achieve

updated content, and they significantly improve a region transfer time.

— A reasonable set of experiments was conducted to compare this work
with traditional methods. It showed significant improvements over both
static and dynamic approaches. A number of bugs in the OS framework

were also fixed by writing explicit methods.

1.8 Thesis Organisation

This thesis comprises 8 chapters and is organised as follows.

Chapter 1 briefly introduces the background of this research and the scalability,
consistency, and load distribution issues for VWs. It provides a description of the
research methodology adopted for this work and of the contributions made to the
field of VWs in this thesis.

Chapter 2 examines the current scalability and consistency frameworks handling
VWs and presents their key limitations. It provides an analysis of the underlying
technical infrastructures for VWs. The scalability, load distribution and consis-
tency methods developed in this work are introduced in this chapter. It also briefly
describes a set of open source frameworks that are used for the development of

VWs, including OS which is used for the implementation of our work.

CHAPTER 1. INTRODUCTION 14

Chapter 3 presents the JOHNUM infrastructure that was developed to scale VWs.
It provides proof-of-the-concept simulation performed in MATLAB. It further ex-
plores the ARA algorithm and aggregation strategies that are used to determine a
fair distribution of load and contiguous spaces for load distribution. It illustrates
the aggregation strategies and provides simulation results for experiments carried-
out in MATLAB. To show the potential benefits of contiguous spaces, it presents
an abstract communication model.

Chapter 4 presents the novel decentralised consistency mechanism that adopts a
constrained P2P communication model. It illustrates the concepts and describes
a simple simulation model that tested the validity of this method.

Chapter 5 discusses the OS framework in detail and provides its limitations. It
illustrates the extended architecture of SL as a reference. It examines the extended
OS architecture, which adds scalability and consistency features to current OS
framework based on our mechanisms.

Chapter 6 reports on OS capabilities with an extensive set of experiments for
different concerns. It presents a load model that is developed and used for taking
split and merge decisions on both Windows and Linux platforms. A scalability
model that identified the components required to implement our work is intro-
duced. An informal time analysis model was used to determine the capabilities of
both Windows and Linux environments for transferring regional content. It also
examines two improved strategies to reduce the time taken by removing a region
and compares them with basic OS operations. Bug fixtures are also presented in
this chapter.

Chapter 7 provides an abstract framework describing the way both JoHNUM
strategies and ARA algorithm are implemented. It presents the limitations in
the basic ARA algorithm and proposes an extension to fix them. Merging strate-
gies are also presented and compared for trade-offs between resources and mul-
tiple transfers. A number of experiments are detailed to illustrate both scaling
and merging processes and to compare this framework with traditional systems.
Worlds of varied sizes were used and a range of statistics were used to compare
this work with existing mechanisms.

Chapter 8 concludes this study and gives future directions for this work. It also

outlines the strengths and limitations of this work.

Chapter 2
Background and Motivation

This chapter explores the existing underlying technical infrastructures, and current
scalability and consistency mechanisms that are used to manage existing VWs.
It examines a number of mechanisms targeting load distribution in a multiuser
environments and gives the motivation and goals of the work presented in this
thesis. It also gives a brief analysis of the open source frameworks that are used to
develop VWs, including the OS framework which is used to develop a prototype

of our work.

2.1 Underlying Technical Infrastructures

A VW infrastructure encompasses three parts: a service provider, the communi-
cation infrastructure (the Internet), and client software. A service provider needs
a flexible and robust server architecture to run a scalable and consistent VW.
The Internet is used for communication purposes and a client module implements
a number of computationally intensive tasks such as rendering. Currently, the
server infrastructures are becoming a bottleneck after a tremendous increase in
bandwidth, communication speed, and the availability of cheap commodity sys-
tems. Video streaming servers such as “YouTube” and “Google Video” respond
slowly during peak hours, highlighting this fact about servers. Therefore, more
advanced, flexible and resilient server infrastructures are required. The existing

infrastructures can be classified broadly into three categories: Client Server (CS),

15

CHAPTER 2. BACKGROUND AND MOTIVATION 16

Cluster of Servers (CoS) and Distributed systems.

CS environments guarantee Quality of Service (QoS) and provide persistent,
consistent and secure worlds. However, these provide limited services to a re-
stricted number of users and are, therefore, static and not scalable. Moreover,
they are prone to single point failure. [161] discusses a number of measures for
handling these issues. As a result, the most successful highly interactive and com-
putation intensive applications use CoS infrastructures as an alternative. How-
ever, consistency and intra-server communication are the main problems of these
infrastructures, which also suffer from load balancing problems in static configu-
rations that are simple and easy to implement. [70] outlines a number of dynamic
strategies to solve these problems. A CoS environment provides a centralised user
interface that becomes a bottleneck in case of failure. Generally speaking, CoS
systems consider closely coupled resources of an organisation [103, 188,189, 226]
and usually adopt static configurations. Zihui et al. [87] presented a dynamic CoS
architecture for multimedia applications, where they proposed a category-based
dynamic coalition of servers that achieves a high level of scalability and the ef-
ficient utilisation of resources. Since the popularities of video files are normally
skewed and unpredictable, the infrastructure needs to be highly dynamic in terms
of resource allocation in time varying workloads. Being adaptive in nature, it also
exploits temporal locality and users are served by a server already serving similar
requests.

Distributed infrastructures leverage geographically distributed resources and
provide an integrated seamless VW. According to Wang et al. [226], distributed
systems are further classified as P2P and Client Multi Server (CMS) architec-
tures. CMS systems are alternatively called Grid infrastructures (we call them
static grids, for dynamic grids, see Appendix A). P2P systems are generally based
on commodity PCs and not used for computationally intensive applications such
as games. These are more scalable and affordable but experience a highly dynamic
topology that introduces the well known neighbour discovery problem. Therefore,
topology management in P2P systems requires extra effort. The complexity for
the development and management of P2P architectures for large scale VWs is very

high. It also requires handling issues such as data security, inter-operability, and

CHAPTER 2. BACKGROUND AND MOTIVATION 17

network control [152]. The Literature shows a number of P2P architectures that
are developed for network games [17,18,93,105,128]. Similarly, the variations of
P2P infrastructures targeting their inherent problems are presented in [35,101].
P2P networked game infrastructures generally focus on synchronisation of game
states across the hosts. These techniques normally utilise the concept of Dis-
tributed Hash Table (DHT) for this purpose. Knutsson et al. [128] proposed a
Massively Multiplayer Online Game (MMOG) model using a publish-subscribe
mechanism. Similarly, Castro et al. [34] proposed a large-scale and decentralised
application-level multicast infrastructure called Scribe. Bharambe et al. [18] de-
veloped a routing protocol similar to DHT for multi-attribute queries called Mer-
cury. They claim that MMOGs are less restrictive in terms of latency so that
multi-hop latency of underlying DHT look-ups can be tolerated. In order to speed
up searches, they subsequently proposed another mechanism called Colyseus [17],
where they employed the principles of locality and prediction in accessing data
patterns. Hu et al. [101] proposed a Voronoi-based Overlay Network (VON) that
maintains a fully distributed topology. It experiences low latency and efficiency in
messaging. Chan et al. [35] used a contemporary P2P approach as an alternative
solution for MMOGs called Hydra. It utilises a message consistency protocol and
is based on an augmented CS programming model in conjunction with a set of
protocols for realising interfaces. According to Chan et al., the adaptation of a
hybrid approach solves issues such as billing and persistence. Hydra is scalable

and introduces little message overhead.

CMS/Grid infrastructures are loosely coupled environments that use the re-
sources of different organisations and individuals based on common agreements
over the Internet. CMS architectures generally follow the grid model. Grid infras-
tructures are more dynamic and resilient, and the majority of successful MMOGs
and VWs including SL [197,201] are hosted by these infrastructures. Multiserver
architectures are developed for scalability but they experience significant work-
load imbalance due to the dynamic and unpredictable nature of humans. They
also suffer from latency and delay, and require sophisticated dynamic load-sharing
and transferring mechanisms to achieve quick responses and maximise through-
put [27, 35, 189]. Butterfly Grid (BG) solves a number of problems of conventional

CHAPTER 2. BACKGROUND AND MOTIVATION 18

systems by providing a flexible, scalable, and resilient MMOG infrastructure for
game developers and service providers [103]. The underlying infrastructure of
SL [201] called SL Grid (SLG) [197] customises the BG model with a constrained

communication model.

2.2 Current Scalable and Load Distribution Mech-

anisms

A number of approaches have been developed which investigate scalability, consis-
tency and load balancing issues. Major contributions are based on splitting a VW,
balancing the load, and developing communication models to minimise network
flow. These mechanisms consider different parameters such as computation power
and network bandwidth. BG [103] and SLG [197] are commercial Grid infrastruc-
tures running different MMOGs and SL [201] respectively. BG is comprised of two
clusters where game and database servers are fully meshed over high speed fiber-
optic lines for transparent movement of users between servers. It divides a game
world into a number of mutually exclusive sectors known as locales and assigns
each to a specific server on the grid. It utilises the grid model to seamlessly route
contents and players to the nearest available server in case of failure or excessive
load [103]. Figure 2.1 shows the basic architecture of BG highlighting different
levels of services. It also gives a description of the activities and services at each
level. SLG is a customised form of BG that restricts the interaction of a server
to four neighbouring servers [197]. However, both decrease the interactive user
experience and the migration of users incurs processing burdens. Furthermore, no
means are provided to cope with under-provision and over-provision of resources.
In case of over-utilisation, these systems fail quite frequently.

Load distribution strategies are categorised as static and dynamic. Static strate-
gies do not provide any means to cope with excessive load and are not generally
scalable. Both BG and SLG use static assignment strategies for content. Dy-
namic load distribution strategies generally belong to one of the three classes:
local, global, and adaptive. Local approaches consider neighbouring servers to

share excessive load and minimise communication between the servers. Ng et

CHAPTER 2. BACKGROUND AND MOTIVATION 19

Architecture Level Solution Elements About Solution Elements

Gamers purchase a "massively-
End Users multiplayer” game on DVD, CD-ROM

or via download. The game includes

the Butterfly Grid client software.
Firewall

To change game elements, game

masters manipulate the databases
through an administrative portal
running on WebSphere Application
Server.

Administrative
Portals

Running on IBM xSeries x330 servers,
gateway servers perform protocol
translations and route player
connections to game servers.

Gateway
Servers

Daemon controllers are Al servers that
control game elements not directly
controlled by players' actions.

Daemon controllers interact with the
Grid’s gateway servers.

Daemon
Controllers

Game servers are responsible for
running games within the Grid. The
intelligence that determines when
players are shifted to new servers
resides on both the game and gateway
servers. When a game server
becomes overutilized or goes down,
that game server sends a controlling
message to the gateway servers,
which are ultimately responsible for
redirecting players to new game
Servers.

Game Servers

Database servers are responsible for
Database Servers i i i i i i storing all the information (physics,

geometry, game rules, etc.) needed to
maintain persistence in the game
world.

Figure 2.1: Basic architecture of Butterfly Grid [103].

al. [159] have developed a region based DVE called CyberWalk by exploiting a lo-
cal strategy. These are simple to implement but perform well only with a minimum
number of servers and do not scale well. Functionality decreases greatly if neigh-
bouring servers become overloaded. Global strategies utilise global information to
re-distribute the overall load uniformly among the servers as one server becomes
overloaded. Lui and Chan [143] have proposed an efficient partitioning algorithm
for DVEs using a global strategy. Migration of users and re-partitioning overhead
rises with an increase in content and number of servers that degrades interactive
user experience. Furthermore, an exponential increase in complexity renders them
unsuitable for large scale real time interactive systems. To resolve these issues,
adaptive strategies re-partition the load of selected servers only. These are more
effective and introduce less overhead. The communication costs in adaptive ap-
proaches are greater than for local, but less than for the global strategies. In
adaptive approaches, an overloaded server balances its load by utilising a set of
servers beyond the neighbouring servers if the neighbouring servers are busy. Lee

and Lee [136] have devised an adaptive strategy for load distribution in DVEs.

CHAPTER 2. BACKGROUND AND MOTIVATION 20

They presented an architecture that divides the world into a rectangular grid with
cells representing virtual spaces. A graph partitioning algorithm is used to allocate
cells to the servers. This approach is suitable for those simulations with known
scale, but difficult to adapt to an un-constrained simulation environment such as
a VW. The importance of minimum latency and the utilisation of fewer resources
is highlighted by Lee et al. [135] in their investigation of the client assignment
problem. It increases overhead by implementing the dynamic concepts described
as ‘zoom in’ and ‘zoom out’. According to Ta et al. [209], position-based client
assignment strategies degrade interactive experience and they proposed greedy
algorithms to cope with client assignment. However, greedy approaches are un-
able to serve real time systems as these require periodic re-execution that increase
system load.

According to Vleeschauwer et al. [223], the larger cell assignment strategies suffer
from player density in peak hours. They proposed a split of the VW into a large
number of interacting micro cells. These cells are dynamically assigned to a set
of servers, thus achieving better balance of the load against static and dynamic
mechanisms. However, it greatly increases communication among the cells. Cher-
tov and Fahmy [39] have proposed a load balancing layer that facilitates server
co-ordination for quick convergence to a best possible distribution of load. How-
ever, this is not scalable as they adopt a centralised approach. Shirmohammadi
et al. [203] have developed a large scale collaborative architecture that divides
the VW into multiple adjacent hexagonal regions. However, in case of further
re-partitioning, it considers the whole VW to divide it into smaller regions. The
use of a global partitioning strategy increases complexity and degrades interac-
tive user experience. Moreover, the re-partitioning could occur frequently, thus
making their approach unsuitable for large scale real time interactive and collab-
orative systems. According to Ahmed et al. [3], CS architectures are not scalable
and they proposed a dynamic interest management and collaboration model us-
ing P2P model for games. Furthermore, they presented a load balancing model
over this infrastructure [4]. However, we believe that P2P environments are not
suitable for real time interactive applications. RING [86], NetEffect [49] and Cit-
taTron [96] split a VW into subregions to make them scalable. RING uses a static

assignment strategy and the rest adopt dynamic split strategies at servers. Ac-

CHAPTER 2. BACKGROUND AND MOTIVATION 21

cording to Morillo et al. [153], region based schemes do not need synchronisation
but require intelligent load balancing mechanisms to achieve a reasonable response
time and maximise the throughput. These systems are less scalable due to highly
unpredictable user patterns in MMOGs and VWs. RING [86] provides no means
to handle excessive load. To balance the load, NetEffect [49] utilises a centralised
approach that greatly degrades interactive user experience. CittaTron [96] also
degrades performance because it allows run time resizing and transfer of users.

Moreover, factors such as object density and locality are not considered.

The Literature shows a large number of solutions for large scale simulations [84],
simulations with distributed interactions [130], and real time simulations [57, 154]
to cope with these issues. However, the VWs combine the challenges of all these
hard simulation problems including scale (order of magnitude larger than tradi-
tional PADS), being perpetual (continuous existence) and real time in nature, and
need to produce rapid responses to user inputs. According to Liu et al. [140], the
existing VWs usually adopt a simple synchronisation model to accommodate large
scale environments and therefore events are not processed in a correct order. VWs
perform both simulation and visualisation of viewpoints for a large number of users
simultaneously, and put an enormous burden on both computation and commu-
nication infrastructures. To address these challenges, researchers have developed
solutions based on Interest Management [210] and visibility computation [131].
They also incorporate a number of heterogeneous engines (“the actors”) to sim-
ulate and evolve the work, each having a different scope of operation, resource
requirements, performance constraints, and operational characteristics [180].

According to Liu et al. [139], the dynamic load balancing mechanisms such as
distributed binary space partitioning (BSP) hold the potential to scale a VW.
They are simple and effective, and have the capability to resolve hotspot issues.
However, they introduce excessive burden due to workload migration and commu-
nication between the regions. VWs have both computation and communication
bottlenecks in terms of scale. In addition, the migration of scene objects has been
overlooked by most of the previous studies. Static assignment methods avoid it by
using a static and strict partitioning method, and academic studies focus on the

migration of client connections but ignore object migration. According to Liu et

CHAPTER 2. BACKGROUND AND MOTIVATION 22

al. [139], the current VWs need to scale beyond the existing capabilities to cope
with rich user experiences, greater realism, and new dimensions. They presented
a new architecture called Distributed Scene Graph (DSG) to overcome the limi-
tations that are introduced due to the use of simulator centric architectures [139].
This architecture is presented in Figure 2.2. The key idea is to break the sim-
ulation centric architecture used for the current VWs and detach data structure
from simulation engines [140]. This also separates the client interaction from the
scene, thus reducing the scene complexity that greatly helps to scale the world.
DSG allows multiple servers to host a scene where each server is managing part of
the scene. Scene is no longer a centralised and monolithic process that manages
simulation as well as data management. It is left to focus on data management,
state synchronisation, event distribution, and persistence of the world content.
DSG prototype is developed as an extension to OS framework and it has greatly
improved the capacity compared with a basic Sim of OS. However, it introduces
an additional layer that handles an increasing number of client managers based on
load [132] that could potentially degrade interactive user experience and increase
delays. Furthermore, the overall system is more complex to implement because it
requires the provision of additional interfaces between the scene and actors [132].

— <--- Actors that are
@ @ coe N-Body computation intensive
-

-Scene Interface

1 ‘ <---Distributed Scene
cee
Scene Scene Scene Graph

. L <--- Actors that are
Client Managers I communication

intensive

(%0 | Q% (e

Figure 2.2: Distributed Scene Graph (DSG) Architecture [132, 140].

The most common approaches to dividing a VW workload across multiple servers
use either sharding or spatial partitioning. [132]. The capacities of SL [201] and
WoW [164] are limited to well below 100 interacting users [92]. Games such as
WoW [164] and Ultima Online [217] use the concept of sharding to scale a VW,
but at the price of user interaction. It is the most popular approach that broadly
partitions the user base into disjoint copies of the world. Replication in this model

is easy as users in different shards cannot interact with each other due to the lack

CHAPTER 2. BACKGROUND AND MOTIVATION 23

of means of interaction with each other. VWs such as SL and OS use the concept
of spatial partitioning. Lu et al. [142] have presented a load balancing technique
for a CoS infrastructure. It is simple and effective and maintains the flexibility
of the cluster systems; however, grid infrastructure and dynamic strategies are
considered to be more resilient and not prone to single point failure issues. More-
over, the system spends a great deal of time in balancing the load, and the issues
regarding frequent migrations of load and communication are overlooked. Chen et
al. [38] have presented a dynamic architecture for MMOGs that hides the division
of a world from the players. Interactions between players is, therefore, not limited
to the objects in a single region or server. Their major contribution is also a load
balancing algorithm using locality awareness to improve average response time for
users. Varvello et al. [219] conducted a detailed survey about SL to determine
the worth of this exciting social collaborative environment and to investigate how
well it is utilised by users and which kind of content is favourite among the play-
ers. Based on their findings, they have presented techniques and ways of further

enhancing these worlds.

! XPU Virtual World Simulator

File Smuation Display PartitonEngine Help

..

Simulation Time: 916700 | Object Count: 1045 [Mincross Balanced Spiit Partitioning]

Figure 2.3: A screenshot of the XPU simulator. The dots represent
objects, and solid lines represent boundaries between partitions [37].

Francis et al. [37] presented a hierarchical CS architecture called Extremely Parti-
tioned Universe (XPU) for the development of highly scalable metaverses using a
spatial sub-division algorithm. It dynamically partitions the world and manages

network and computing resources. The basic goals of this architecture include the

CHAPTER 2. BACKGROUND AND MOTIVATION 24

use of CS environment for security reasons, using a varied number of resources
based on current load, and to manage a large and unpredictable population. It
has the ability to handle both flash crowds as well as vast unused or sparsely
populated spaces. This architecture only addresses the problems of managing 3D
virtual space and the objects contained in it. XPU architecture uses the XPU
tree, which is very similar to a k-dimensional (k-d) tree where the leaves repre-
sent virtual 3D spaces instead of objects. A k-d tree is a space partitioning data
structure for organising points in a k-dimensional space [15]. The root node in the
XPU tree represents the whole simulation process managing an entire XPU uni-
verse. Splitting and merging are the two significant operations in managing XPU
systems. When a simulation system is overwhelmed in terms of system load, it
can choose to split its workload between two child Sims by selecting them from the
available pool of resources. Merging is much simpler as, when two sibling leaf Sims
have a smaller workload, they can choose to simply synchronise their states and
revert processing to a single node. Partitioning of borders in XPU is dynamic and
reactive to load. If work is unbalanced, a child always exchanges load to balance
it. The main flaw in this system is that it takes a great deal of effort to balance
the load, thus degrading the interactive user experience and increasing complexity.
There is no limit on the levels in a Resource Management Tree (RMT). On the
other hand, a hierarchical structure could face severe synchronisation issues when
used for conservative applications. Figure 2.3 shows a snapshot from the XPU
simulator in action. It allows partitions of any size based on load that greatly
increases communication and crossings between the Sims. Furthermore, no pro-
totype has been developed to determine the actual worth and limitations of this
work.

Croquet [44] is a decentralised approach that exploits a P2P synchronisation pro-
tocol to manage the content of a virtual space spread over a number of Croquet
worlds. It allows access between different worlds, but no dynamic mechanisms are
provided to extend the number of concurrent users in an individual world and it is,
therefore, not scalable. Similarly, it is difficult to manage the environment using
a P2P model. A number of other open source VW development frameworks are
provided in section 2.4 that are briefly analysed against the requirements estab-

lished in this study to obtain the best possible framework for the implementation

CHAPTER 2. BACKGROUND AND MOTIVATION 25

of our work. Active Worlds [211] is another type of metaverse that allows dynamic
content to be created and, for this reason, provides a simplified scripting interface.
An active world universe can host hundreds of worlds that can be traversed by
a user where each world is hosted by a different server. However, neither does
it provide any dynamic solution to cope with under-utilisation or over-utilisation
of resources and is not scalable as each world can only have a limited number of
players. A number of other similar VWSs are presented in section 1.4 of chapter 1.
Presetya et al. [181] compared a number of topologies for fixed grid spatial sub-
divisions such as triangular, square, and hexagonal with their own method called
brickworks for gaming environments. However, these systems are not as scalable
as spatial subdivision approaches using hierarchical approaches. They either miss
the dynamic allocation of resources or involve moving server processes around so
that unloaded servers can share a single CPU, thus degrading interactive user ex-
perience. The Sun Gamer Server technology (called the Darkstar Project) [207]
framework adopts a different approach to traditional mechanisms. It does not
utilise spatial sub-division; rather, it uses a high speed centralised database hold-
ing the whole virtual space. Each server has access to world objects and rights
to modify the objects in this database. For each operation, a server retrieves an
object, modifies it and then stores it again in the database. This architecture
introduces extra delays, especially when there are many objects involved in an in-
teraction. A centralised database might easily become a bottleneck as the system
scales. The ALVIC (Architecture for Large-Scale Virtual Interactive Communi-
ties) approach for metaverse design uses quad tree subdivision for partitioning
logic servers and employs many proxy servers to hide network topology from the
servers [184]. These introduce an additional layer, thus increasing delays and
complexity.

Kim and You [125] have proposed a hierarchical map partitioning method for
MMOGs by introducing a Virtual Map Layer (VML). Figure 2.4(a) shows the
traditional network server architecture with an additional component called VML
management server. It checks the loads of field servers and tries to divide or
merge the fields based on current load. VML is an overlaid version of map that
keeps information about hierarchy of sub-areas. It splits the VW into a hierarchy
of Fields, Sector Groups, Sectors, and Cells as shown in Figure 2.4(b). A field is

CHAPTER 2. BACKGROUND AND MOTIVATION 26

what is assigned to a server and is comprised of sectors or group sectors. The VML
management server divides or merges fields based on server load of its sectors and
sector groups. A sector is the smallest unit for partition that is comprised of the
smallest unit of VML hierarchy, called cells. A sector is a combination of adjacent
cells and greatly varies in size based on client capacity. However, it increases
overhead by introducing an additional mapping layer, and a single management
server is prone to a single point failure. Furthermore, the maintenance of the

hierarchy is complex and requires additional resources.

Internet

Laogin DR Weh ! Admin S Paich - Server .) N
el I Field SecloT Cell
— Cratewny
B AN Y T
VML 5 Communication | i R 1 1 |
Management Server : : : : ; — H O e
Server I] - | | | I
= e, BB N

EEEEEE @

I (1 = ““:

giy § sl § Dam

[. ey . o | |

L t.d L]
Map e e 4 Daemon Server
- .-
[}
N E S, - - -

|:| DB Synchronization Server I | H

(a) (b)

Figure 2.4: [Illustration of hierarchical map partitioning [125]. (a)
VML based MMOG system. (b) Hierarchical structure of VML.

Burlamaqui et al. [24] presented a communication infrastructure by extending the
CS model to a hierarchical one in order to scale large scale collaborative VWs
named H-N2N (hierarchical N to N). It scales the world by geographically par-
titioning it into groups where each group is managed by a server that keeps it
together. It starts with a single application server and the clients constitute the
first group hosted by the first server at level 0, as shown in Figure 2.5. When
this server becomes populated, a new group is created, which is assigned to a

new server that is placed at level 1, which establishes a link to the first server.

CHAPTER 2. BACKGROUND AND MOTIVATION 27

To balance the load between servers, the clients are often re-grouped. The lo-
calisation matrix is used to keep track of users and the proximities among the
users. H-N2N architecture is comprised of 4 components: ApplicationServer,
GroupServer, SlaveServer, and UserClient. The ApplicationServer component
awaits client connections and the GroupServer component handles message ex-
change among clients. The SlaveServer is responsible for communication with
users and UserClient represents a user. These components and their placements
at different levels are illustrated in a simple configuration adopted from [24] in
Figure 2.5. A single application server might become a bottleneck in case of fail-
ure and re-grouping of space can greatly degrade the interactive user experience.
In addition, sending messages across groups might introduce longer delays. Fur-
thermore, a client might not be able to cope with as great a massive number of
exchanged messages as a GroupServer. Similarly, it puts no restrictions on the
levels in a resource hierarchy. A similar approach is proposed by Oliveira and
Georganas [51], which manages servers in a parent child hierarchy. It also re-
distributes the load among the servers to balance the load, thus degrading the

overall performance.

Figure 2.5: Hierarchical N to N (H-N2N) architecture [24].

Wang et al. [226] proposed a novel, dynamic idea of a multi-server model based
on a grid structure. It uses the concept of “gamelet” that provides execution
logic for a server. The logic is divided into data and processing. Data include

the current state of the simulation work and performance parameters, such as

CHAPTER 2. BACKGROUND AND MOTIVATION 28

CPU and network load. Processing provides the logic that is executed to perform
activities and its control functionalities. A gamelet provides a complete scenario
that could be based on space or time, such as a meeting or a football match.
Novelli et al. [162] presented a technical mechanism that utilises the grid concept
for content distribution of multimedia applications. Grid infrastructure is used
for both Replica Storage and the computationally intensive task of transcoding
that changes content format for compatibility. Bruneo et al. [21] proposed a
grid middleware to integrate distributed computation and storage resources, thus
hiding the locations of power and data. This work also targets the utilisation of

grid for multimedia applications.

&, Cm A
- ¥
Game Clients” g

Game / / '@ \
I.— . ' |

SEI’V&I’S{ €r9

L I — Internet
7
Matrix / I I

Servers,
. - Matrix Cc)ordmator

. \‘

Figure 2.6: Matrix architecture [13].

Matrix is the outcome of a major contribution towards the scalable MMOGs by
Balan et al. [13]. It is a game middleware that achieves low latency while pro-
viding localised consistency based on dynamic workload compared with P2P and
static infrastructures. The authors assumed that a game can be decomposed into
different stages and only localised consistency can achieve better results. Matrix
changes a region size and the number of serving nodes at run time. The archi-
tecture of Matrix comprises three layers: game clients, game servers and matrix
servers with a matrix coordinator as shown in Figure 2.6. Matrix simply takes
local decisions for partitioning. Therefore, when an overloaded server is detected,
a new matrix server is selected which further selects a new game server and shares
the load with it. The new matrix server becomes a child of the matrix server that

initiated the split. In case of under-utilisation, a matrix server reclaims the parti-

CHAPTER 2. BACKGROUND AND MOTIVATION 29

tion and game state from the child matrix server which releases the game server.
It concentrates on achieving low latency but compromises on consistency. It de-
grades interactive experience and yields an RMT of many levels. In our opinion,
to achieve a consistent VW, the levels in RMT need to be minimised. Further, the
Matrix Coordinator (MC) is prone to failure, though its complexity is negligible.
Similarly, it uses two different levels of servers (Matrix and Game) which increases
system complexity.

The motivating factors, together with the ways to achieve the goals set for the

JoHNUM infrastructure and ARA algorithm, are presented in the next section.

2.2.1 Motivation and Goals of JOHNUM Infrastructure

This work investigates current systems using static, dynamic and hierarchical ap-
proaches to make VWs scalable and to distribute load among the participating
Servers.

Current CS, CoS, and Distributed systems (classified as P2P and CMS/Grid in-
frastructures) have their strengths and limitations, which are presented in sec-
tion 2.1. Grid infrastructures are the most favourable choice for hosting appli-
cations that have high computation and communication demands, such as online
games and VWs. However, static assignment strategies limit their capabilities
by introducing both resource under-provisioning and over-provisioning problems.
Dynamic load distribution strategies (local, global and adaptive with a flat orien-
tation) are used to overcome these issues to some extent. Local strategies (in which
a server shares its load with only adjacent servers) are not scalable, and global
strategies are too complex and introduce a significant burden of player migration
and re-partitioning. Similarly, adaptive strategies increase the implementation
overhead. Dynamic hierarchical strategies (such as Matrix [13]) overcome many
issues in static and dynamic methods but put no restrictions on an RMT, which
could potentially introduce longer delays in certain situations (especially when
used with conservative applications, which are further examined in section 2.3).
Game infrastructures are currently used to host VWs that have major performance
issues. Performance issues in current static, dynamic and hierarchical strategies

and the un-availability of a specialised framework to scale VWs motivated us to

CHAPTER 2. BACKGROUND AND MOTIVATION 30

develop a Joint Hierarchical Nodes Based User Management (JoHNUM) infras-
tructure. Similarly, to overcome the complexity and implementation issues in load
distribution mechanisms, an Aggregate Region Assignment (ARA) algorithm is
presented that significantly reduces resource utilisation and communication over-
heads.

VWs (the target application in this work) are more advanced environments than
games, and both latency and consistency require special attention while scaling
a world. Therefore, game specific techniques such as sharding are of no use for
VWs as they conflict with the basic aim of these environments. Similarly, other
approaches for scalability using different aspects of a system (such as DSG ar-
chitecture [132, 140]) introduce additional layers and increase complexity. Spatial
partitioning is the most promising way to partition and transfer the content to
other systems for general purpose VWs [132]. However, it is an expensive operation
because it transfers the contents as well as players and, therefore, requires better
strategies to reduce the time taken by different activities. The OS framework
(used for the prototype development) and its modular design greatly motivated
us towards using the traditional spatial partitioning to scale the worlds. It en-
abled the transfer of regions in a delegated space in turn, which greatly reduces
the content un-availability time. It further helped to minimise the total time and

number of players that suffer from a transfer.

Currently, there is no project that dynamically scales the OS worlds using spatial
partitioning and it is believed that it would be a genuine contribution to intro-
duce this feature to OS. According to our knowledge, two attempts have been
made to extend the OS framework for scalable worlds. The first project [132, 140]
targets a different aspect (scene graph) to spatial partitioning and the second
project [141] for load balancing, is no longer maintained. This work is the only
current project extending the OS architecture for scalability using spatial parti-
tioning which transfers both the content and players. It targets and resolves the
issues in both static and dynamic approaches. Results of a survey conducted by
Vervello et al. [219] also motivated the combination of a number of OS regions to
start a parent Sim with a bigger world in the present study. According to their

observations, a limited number of regions in these worlds are highly populated,

CHAPTER 2. BACKGROUND AND MOTIVATION 31

and content creation and destruction happens quite rarely. There are many re-
gions that are never visited or visited by very few people, thus greatly leading
to resource under-utilisation. The findings of traditional studies based on spatial
partitioning further motivated us to restricting players during a transfer to certain
simple activities, rather than freezing them. Players are temporarily moved to an
intermediate region called a “transit region” that allows them to move around or
keep themselves busy with simple activities until the transfer is complete and they
are moved back to the original region.

Most of the relevant academic studies are evaluated through simulation and con-
sider transferring only client connections. To determine the actual strengths and
limitations of our work motivated us for the development of a prototype of our
work. In order to validate our research, first proof-of-the-concept simulations for
scalability and load distribution were conducted, and then a prototype was devel-
oped to implement them. The prototype was then tested on both Windows and
Linux platforms. Split and merge operations are found to happen rarely and, by
developing improved strategies, the time taken by a region transfer was greatly

reduced.

None of the existing scalability mechanisms target all the requirements of VWs
and consider one or the other aspect of these environments using either the exist-
ing games or simulation systems. Indeed, it seems the development of a robust
system requires the consideration of a number of parameters based on the inher-
ent properties of VWs. The following goals were set and expected to be achieved
through the JOHNUM infrastructure and ARA algorithm:

e to develop a simple and flexible but highly scalable infrastructure,

e to use a localised and decentralised, but dynamic, approach,

e to improve interactive user experience and overall system performance,
e to minimise resource utilisation and communication overhead,

e to solve the resource under-provisioning and over-provisioning issues,

e to minimise complexity, delays, and implementation cost,

e to minimise the time parameters for spatial partitioning,

e to obtain a fair distribution of load, and

CHAPTER 2. BACKGROUND AND MOTIVATION 32

e to reduce the number of levels in an RMT and help accommodate conserva-

S
e gl
[] IIJE

]
]

]

W L] L]

(a

~—

(b)

Figure 2.7: Illustration of static partitioning for: (a) SL Grid (nor-
mally a single region per Sim but possibly a small fixed number); (b)
OS Grid (arbitrary number of regions per server).

We propose a hybrid approach (a dynamic hierarchical Grid) that combines the
strengths of both Grid infrastructures and hierarchical dynamic methods. Initially,
it uses a static view of grid (used by both SL and OS as shown in Figure 2.7(a) and
Figure 2.7(b)) where each Sim (called parent Sim) is assigned a bigger continuous
space made of a number of regions in a flat orientation (as discussed for OS
in [175]). Based on excessive load, the dynamic provision of additional resources
(child Sims) at lower levels share the load with a parent Sim to scale the world as
shown in Figure 2.8. It is believed that this will potentially overcome most of the
issues. The hierarchy is managed by a parent-child relationship, and the levels in
the hierarchy could be greatly reduced by splitting a space into more than two
sub-regions and assigning a child to a parent based on the initiation of split. The
concept of grid computing could be used to obtain resources on the Internet if an
organisation has limited resources (see Appendix A).

Unlike current strategies, a fair distribution of load with a localised and decen-
tralised split and merge operations is believed to improve performance and reduce
the potential degradation of interactive user experience by avoiding frequent con-
tent and player transfers between servers. It can potentially reduce system com-

plexity and implementation cost, as well as other limitations of local, global and

CHAPTER 2. BACKGROUND AND MOTIVATION 33

.JE ;E
L L -
=R

Figure 2.8: Illustration of the proposed hybrid Grid infrastructure
with an additional layer of resources.

adaptive dynamic load management strategies. It is capable of solving the issue
of single point failure in existing mechanisms. The use of additional resources
solves the under-provision of resources while the merging process overcomes the
over-provision of resources. Moreover, keeping the infrastructure simple and com-
promising a little on uniform distribution of load would help to develop a flexible
system that scales well. Communication overhead could be reduced by assigning
adjacent sub-regions to a single server, and degradation of performance could be

avoided by adopting a relaxed merging strategy.

2.2.2 Scaling and Distribution of Load

This section explains how the system developed in this study scales a VW and ob-
tains a fair distribution of load. The system comprises of JOHNUM infrastructure
and ARA algorithm.

This work uses a grid model and each grid server (called a parent server in our
hybrid model) initially runs a larger part of the whole world. It is assumed that
each parent is running a square shaped space and is normally assigned against
system capacity. In our implementation model, this is achieved by placing OS
regions side by side in multiple rows. Since the basic aim is to dynamically allocate

resources against load, JOHNUM infrastructure is applied to cope with increase

CHAPTER 2. BACKGROUND AND MOTIVATION 34

and decrease in load, as explained next. It uses the ARA algorithm developed
here for load distribution purposes.

Each server (both parent and child) continuously monitors its load against a
threshold value, named SplitCapacity (based on a load model presented in sec-
tion 6.3 of chapter 6). It accepts client connections and initiates the split process
to share its load with a newly added server that is selected dynamically from
the available pool of resources when it exceeds the SplitCapacity. This process
continues until each server is hosting a smaller region that cannot be further di-
vided. All the decisions are taken locally and the framework is quite simple to
implement. It splits a space handled by a server into n? sub regions with an
appropriate value of n for all n > 1. Starting with minimum value 2, the most
appropriate value of n is determined by increasing the value of n by 1 each time
the prospective regions based on a current value of n are unable to ease the load.
However, it combines consecutive regions to obtain larger and continuous regions
for assignment by ARA algorithm using aggregation strategies. Sub-regions keep
their identity in this case, and system based on increased load re-assigns part of
the current load to additional servers until each server is serving a single region.
Child servers are always assigned to a parent server that initiated a split, thus
greatly minimising the number of levels in an RMT. The aggregation process
reduces the number of resources used to simulate the world. It also greatly min-
imises the cost and complexity of communication and implementation. Merging,
on the other hand, integrates the regions, thus sparing some resources to minimise
resource under-utilisation. When a child notices that its current load is under
a threshold, named MergeCapacity, it determines whether it can merge its load
with its parent server. MergeCapacity is assumed to be somewhat smaller than
the SplitCapacity to avoid frequent splits after merge operations. However, the
integrated larger space is required to be contiguous. The JOHNUM infrastructure

and ARA algorithm are examined in chapter 3.

2.3 Existing Synchronisation Mechanisms

Synchronisation or Time Management (TM) is an integral part of PADS systems

that ensures the execution of timestamped events in a correct temporal order called

CHAPTER 2. BACKGROUND AND MOTIVATION 35

a local causality constraint. According to Fujimoto [84], TM algorithms usually
treat a simulation as a collection of Logical Processs (LPs) that communicate
by exchanging discrete events in time. The goal is to achieve exactly the same
results as a sequential computer that precisely ends in time sequence. Each LP
maintains a list of events (both internal and external) and in each iteration removes
the smallest timestamped event from the list, and processes it. Each LP also
maintains a simulation clock that is used for message generation. A simulation
clock is normally advanced in response to an event processing.

Initial work for synchronisation is based on conservative approaches [84]. Syn-
chronisation approaches proposed by Bryant [22] and Chandy and Misra [36] are
among the initial attempts to ensure local causality; however, they are prone to
deadlock. These methods maintain a queue for each incoming link, and when
they find the corresponding queue of a link with smallest timestamp empty, they
block the process. To resolve this issue, the concept of null messaging is used to
advance the simulation clock of an LP. Null messages are sent repeatedly between
neighbouring LPs. The timestamp of a null message is the sum of current clock
time plus a constraint value known as Lookahead. The Lookahead value is used
by a federate (a simulation entity [2]) to determine a minimum value it might
be using for a timestamped event in future [80]. It is application dependent and
has a dramatic performance effect on a TM algorithm [80]. According to Pan
et al. [178], asynchronous TM algorithms with small Lookahead values have the
“time creep” problem. The main drawback of the null message algorithm is that
it generates an excessive number of null messages, thus introducing longer delays.
In a typical synchronous algorithm, the LPs share their Lookahead values and
timestamps of smallest events with each other to solve this issue [83]. LPs de-
termine the smallest event and calculate a Lower Bound on Time Stamp (LBTS)
allowing events with timestamp less than, or equal to, LBTS to process. The
LBTS guarantees that a process will never generate a message with smaller times-
tamp than this value [82]. It is called Greatest Available Logical Time (GALT)
in IEEE 1516 [2] (an IEEE open standard). Since an LBTS value is calculated
based on next unprocessed events, it has no time creep problem. The main draw-
back of synchronous algorithms is that time advancement might be blocked by

an LP sending information with a low frequency. Similar synchronous approaches

CHAPTER 2. BACKGROUND AND MOTIVATION 36

are presented in [160,206]. Synchronous algorithms also need to cope with tran-
sient messages, and the traditional approaches such as message counters and flush

queues are used for this purpose [81,83].

DIS [85] is a standard networked infrastructure developed by the US Department
of Defense (DoD) for inter-connecting thousands of synthetic training and simu-
lation environments. The basic aim was to develop an integrated and collabora-
tive environment for group training and activities as a successor of an influential
technology called Simulators Networking (SIMNET) [149]. DIS is an easy and
lightweight protocol but it does not allow interest management, and load balanc-
ing is applicable only to real time simulations [85]. Tt is restricted to the military
domain, and limitations lead to custom modifications and implementations that
cannot be re-used. High Level Architecture (HLA) [48] was basically developed as
a common interoperability architecture to integrate different classes of simulations.
It is generalised and builds upon the results from DIS and similar approaches, such
as Aggregate Level Simulation Protocol (ALSP) [69]. HLA TM services provide
a mechanism that allows federates (an HLA compliant simulation entity [2]) to
send and receive timestamped data and advance their logical time. This allows
different approaches to maintain consistency among Sims and, therefore, handles
simulations with varied types of ordering and delivery requirements [82]. HLA pro-
vides both real time and as-fast-as-possible simulations, and its specifications are
flexible enough to accommodate a number of internal TM mechanisms generally
used for the applications such as analysis, training, and test and evaluation.

Conservative TM is the main strategy of HLA that maintains timestamp order
(TSO) delivery of temporal messages. TM for a federation is realised jointly by a
Run Time Infrastructure (RTI) and federates. RTI is a software that coordinates
the operation of federates and data exchange during the execution based on HLA
- Federate Interface Specifications [1]. RTTI is responsible for the TSO delivery
and, for that reason, each federate requires an explicit time advance request to
it. RTI grants permission if it can guarantee that no messages would be received
in the federate’s past. To realise this guarantee, an RTT calculates a LBTS value
for each federate giving a minimum bound on messages a federate might receive

in future. It maintains a TSO queue, and safe intended messages are delivered

CHAPTER 2. BACKGROUND AND MOTIVATION 37

receive time stamp
order order

=
@ Runtime

Infrastructure
logical time (RTI)

state updates
and interactions

logical time advance
requests and grants

federate

= local time and event management .
- mechanism to pace execution with wallclock time (if needed) wallclock time

- federate specific techniques (e.g., time compensation) (synchronized with
other processors)

Figure 2.9: Logical view of Time Management in HLA [82].

to a federate in a non-decreasing order on a time advance request before a grant
is issued. For an event driven simulation model, the HLA provides a routine
called Next Event Request (NER) that is used to advance a federate time to T.
RTT grants a time advance to T, if no TSO messages exist in response of time
advance request. Otherwise, it delivers the smallest TSO message destined for
the federate, and advances federate time to the timestamp value of the delivered
message. Each federate in HLA uses Lookahead value in conjunction with federate
time for deadlock avoidance among the federates. The Lookahead value of a
federate promises other federates that the earliest timestamp it uses would be
greater than, or equal to, its current time plus its Lookahead value. However, the
Lookahead value depends on an application and might be changed dynamically
during execution. To keep a simulation consistent, the time advance value T must
not be greater than the LBTS value at any time. A federate’s LBTS value is
calculated with the help of time information of those federates that can generate a
TSO message (called time regulating federates). The RTT also consider timestamps
of messages in RTI and interconnection network to compute an LBTS value.

The concept of LBTS used for Parallel Discrete Event Simulation (PDES) in HLA
1.3 (a US DoD standard) [151] is replaced with a terminology of Greatest Available
Logical Time (GALT) in IEEE 1516 (an IEEE open standard) [2]. Liu et al. [138],
argue that TM in HLA is a crucial factor that restricts the size of distributed

CHAPTER 2. BACKGROUND AND MOTIVATION 38

simulation and, therefore, RTT is required to efficiently handle large number of
federates. They also argue that TM in HLA using GALT is more complex than
TM in PDES using LBTS in two major aspects. Firstly, a federate time advance in
HLA is under the control of an RTI, but a PDES entity advances its time without
an underlying infrastructure. Secondly, PDES supports modular and hierarchical
structures, but HLA lacks this feature. Our consistency work targets complex hi-
erarchical models and uses the concept of LBTS for PDES in the synchronisation
approach presented in chapter 4. Liu et al. [138] presented an efficient GALT
algorithm and developed a prototype over a cluster system that successfully man-
ages thousands of federates. However, it is complex and not tested for very large
scale distributed federates. Furthermore, it manages all the federates using a cen-
tralised approach. Pan et al. [178] presented a hybrid HLA TM algorithm based
on both conditional and unconditional information to resolve the drawbacks of
both synchronous and asynchronous algorithms. According to them, synchronous
algorithms use conditional information while asynchronous algorithms use uncon-
ditional information. Both of them have limitations, and neither of them has the
ability to manage varied types of federation scenarios. They incorporated three
algorithms into an RTI and effectively achieve the combined advantages of both

algorithms.

HLA has shown itself to be a great success for military applications; however, it
has a number of limitations regarding interoperability, scalability, and complex-
ity. It does not provide load balancing and is poorly scalable, providing only
syntactic interoperability. It is complex, difficult to learn, and difficult to adopt
and use [48]. The basic HLA standard does not support multi-level or hierarchi-
cal federations but implements all federates at one level as a single federation.
It includes no means of inter-federation communication, and the conversion of a
complex hierarchical structure into a flat one introduces several issues regarding
data exchange, security, and re-usability [127]. It does not deal with the issue
of information hiding, and the flat structure is not adequate to model complex
system with hierarchies. Some federates might not require certain information,
and due to subscription of federates for common data, it is difficult to distinguish

among different copies of data [32]. Extra checks are needed to validate the source

CHAPTER 2. BACKGROUND AND MOTIVATION 39

of data that greatly degrades the performance of a federation. Renaming data
can easily resolve this situation but requires modifications in code that damage
re-usability. Kim and Kim [127] argue that these issues can be easily resolved if
modular and hierarchical modeling methods are adopted. The Literature has a
wide range of both flat and hierarchical HLA extensions to cope with these issues.
However, in this work the discussion focuses on hierarchical solutions that are used
to manage complex models.

According to Zhang et al. [244], in a traditional HLA TM as shown in Fig-
ure 2.10(a), an RTT computes the LBTS values for all the participating federates
by collecting their logical times. It explicitly grants permission to each federate
for its time advance. Being a centralised component, RTT might become the bot-
tleneck of the system in terms of both computational complexity (with an increase
in number of federates) and overhead of messages. Therefore, RTI based federa-
tions are not scalable and could suffer from performance degradation. Zhang et
al. [244] presented a two-level TM mechanism for HLA based DVEs to overcome
these issues, and it is presented in Figure 2.10(b). It divides the federates in to sev-
eral Federate Groups (FGs) where each FG has an additional component called
FGTimeManager that is responsible for the time advance of its federates. RTI
provides communication between FGTimeManagers [244]. It greatly decreases
the computation load and intensive communication in an RTI, but it introduces
an additional level to TM that further increases complexity. It still depends on a

centralised RTI to obtain an integrated simulation environment.

| FGL : 1 FGn :
: Federate | [Federate | Federate || |[Federate | [Federate || Federatz |
VAL A2 A il BL B I
Federate || Federate || Federate Federate || Federate || Federate | LRC LRC LRC : ILLRC LRC LRC :
| I

Al A A3 | BL B B3 o 1l R 11 _ !

LIRC Ll}C L]fc LIRC LRIC' LlfC | FGTimeManager | | FGTimeManager |

]]
| TimeManager in RTI | | TimeManager in RTL |

(a) (b)

Figure 2.10: Tllustration and comparison of [244] (a) traditional Time
Management, and (b) two level Time Management;

According to Myjak et al. [155], a federation community is a group of federations

CHAPTER 2. BACKGROUND AND MOTIVATION 40

and RTTs working together to achieve a common goal. A hierarchical federation is
a special type of a federation community in which federations are organised in a hi-
erarchy, and a federation acts as a federate in an upper-level federation. The Liter-
ature shows a number of attempts to provide interoperability between federations
to form federation communities, including Federation Gateway, Proxy/Bridge Fed-
erate, RTT Broker, and RTI-to-RTI Protocol [32,156]. The first two approaches
provide solutions at the application level while the other two may require system
level modifications. Only the first two approaches are examined here.

A Federation Gateway, as shown in Figure 2.11(a) is a separate process inter-
connecting two or more federates of different federations and performs translation
among federations. It can be used for both interoperability among HLA compliant
federations, or between an HLA federation with a legacy simulation protocol such
as DIS and ALSP [32]. It has the capability to provide state information from
one federation to another and filter out sensitive information, thus performing

information hiding [68].

Federate Federate Joined Federate Federate
al a2 Federate a al a2
[RTla] | RTla }——
Proxy
Federate Federate Joined | Federate Federate Federate
b1 b2 ***l Federate b bl b2
RTIb _[|_ RTIb)—f

(a) (b)

Figure 2.11: [Illustration of [32,156]: (a) Gateway Architecture; (b)
Proxy Architecture.

A Proxy Federate, as shown in Figure 2.11(b), is a federate that is associated
with more than one federation simultaneously. It requires multiple interfaces to
communicate with different RTIs. It performs some similar functions to a federate
gateway such as data transformation. However, it does not provide information
hiding and cannot be trusted by the federations.

Cai et al. [32] presented a hybrid approach called the hierarchical federation ar-

CHAPTER 2. BACKGROUND AND MOTIVATION 41

Federaie Federawe G.m.w.n}
al al chd. raie .4
RTla
| RTIGueway |
Fderll Fm.lml.c Guateway
Federwe b

T
|
L

RTI h ~|

Figure 2.12: Hierarchical federation architecture [32].

chitecture by combining both gateway and proxy mechanisms and it is presented
in Figure 2.12. Federates in a federation interact with each other by a dedicated
RTT session. However, they interact with federates of other federations through
gateway federates. The gateway federates constitute a gateway federation where
their interaction is managed by a dedicated RTI session which filters confidential
information and improves security and interoperability [31,32]. However, it re-
quires additional interfaces and the structure is very complex. It has potential

performance issues because it places no restrictions on levels in a hierarchy.

Distributed Federate Proxy T

| SimNode
S _‘"-x.\\
L SimMode
P \
P e
Sl // \
DFPC DFPC DFPC
]

1 RT) <| RTI)/[/F_":I)

Federation

Fedarauon Faderallcn /

Figure 2.13: Distributed Federate Proxy architecture for hierarchical
federation communities [41].

According to Cramp et al. [41], a Federate Proxy (FP) is the simplest architec-
ture for inter-federation communication. However, it might not be an ideal data
filter for geographically distributed simulation, being a single local process. Fur-
thermore, it handles a single federation with a flat orientation. To minimise the

traversal of potentially large distances, Magee et al. [144] presented the concept

CHAPTER 2. BACKGROUND AND MOTIVATION 42

of Distributed FP (DFP). Cramp and Oudshoorn [42] further extended it for the
hierarchical federation communities. They proposed splitting a FP into a number
of different components where each is assigned and processed local to a federation.
These components are called DFP Components (DFPCs) which are linked together
with the help of tree nodes called SimNodes, thus forming a hierarchical federation
community. Each SimNode represents the root of a sub-federation community and
manages communication between its child nodes. It also communicates with its
parent node if one exists. This architecture is presented in Figure 2.13. However,
hierarchical architectures impose additional LBTS constraints on TM services to
determine the correct order of execution for temporal aspects of a system [41].
These constraints are applied to system components that are federates, DFPCs,
RTIs, SimNodes, and a root SimNode (see Figure 2.13). Cramp et al. [41] con-
cluded that the LBTS value of the root SimNode is the earliest possible timestamp
assigned to a message generated by any federate in the entire hierarchical com-
munity. This implies that time advance decisions are made by the ultimate root
SimNode. We believe that this mechanism is too complex and might introduce
longer delays, making it unsuitable for real time systems in that it might block
the whole system for a time advance. The whole simulation might be stopped if

the root SimNode crashes.

Figure 2.14: Components of the extended HLA architecture [126].

Kim and Kim [126] argue that hierarchical models are essential to simulate large
complex systems, although the methods described above are temporary solutions.
These require additional interfaces that are not part of the RTT specification and,
therefore, it is difficult to achieve interoperability among the RTI systems de-
veloped by different companies. An interoperability protocol based on an open

messaging is under development but its target implementation is flat. According

CHAPTER 2. BACKGROUND AND MOTIVATION 43

to Kim and Kim [126], to improve overall performance of an RTI, hierarchical
federations need to be supported by an RTI itself. They presented a hierarchical
extension to HLA to incorporate hierarchical federations (see Figure 2.14) among
federations based on an inspiration from the formalism of PDES [243]. The PDES
characterises hierarchical and modular specifications of discrete event systems.
The same authors, developed extended HLA services called Federation Execution
(FedEx) processes to manage hierarchical federations [126]. Each federate com-
municates with its parent FedEx process and a FedEx process communicates with
both a FedEx (which might be either a child or a parent) and the federate processes
as shown in Figure 2.14. A FedEx process acts as a federate in an upper-level fed-
eration and is called a representative federate. The current time of a representative
federate (current LBTS) is the minimum of federate time plus lookahead values
among the participating federates. Therefore, a message generated by any feder-
ate would have a timestamp value greater than, or equal to, the federation time.
For the realisation of a hierarchical HLA, they proposed two possible implemen-
tations of hierarchical RTT: FedEx Processes, and fully distributed federations.
FedEx processes handle federation-related services that include synchronisation of
known federates and data exchange. The functionality and relation of federates is
simple, but it can potentially introduce longer delays because no limits are set on
the depth of FedEx processes in a hierarchy. The second approach distributes the
RTT functionality among federates and avoids FedEx processes and extra levels in
a hierarchy. However, it complicates the design of RTT libraries and is difficult to
manage [126, 127].

Federation o e
FAEECLE e
(a) (b)

Figure 2.15: Illustration of implementation for [127] (a) Federation
Execution Processes, and (b) fully distributed federates.

CHAPTER 2. BACKGROUND AND MOTIVATION 44

It is believed that by using the inherent properties of VWs, the second imple-
mentation option could be easily utilised, with a restriction on the number of
interacting federates. This eliminates the management issues in existing P2P sys-
tems. Motivating factors, together with mechanisms to achieve the goals set for

our synchronisation approach, are presented next.

2.3.1 DMotivation and goals of the consistency approach

This work also studied and investigated the current TM systems that are used to
get a consistent view of the overall virtual space.

PADS systems basically developed for games and simulation environments are
scalable and provide better interactive user experience. They have a success-
ful history, but they put limits on the application domain and compromise on
consistency to achieve improved performance. Therefore, they face issues with ap-
plications of a conservative nature such as e-business applications. The majority
of existing synchronisation mechanisms are implemented with either a centralised
or a distributed approach. They perform well with small and medium scale envi-
ronments, but are not suitable for large scale continuous spaces such as VWs. The
existing hierarchical mechanisms are flexible but complex, and introduce longer
delays because of dependencies among their components when they are used to get
a global consistent space using conservative approaches. Centralised approaches
to manage hierarchical structures block the activities of the whole space during
certain operations such as a time advance. The complexity and, thus, the imple-

mentation cost is too high for hierarchical structures.

Current VWs rely on conventional web techniques for e-business applications on
the Internet. The limits on the application domain greatly weakens the claim of
developers of these worlds that they are evolving towards a future 3D web. The
nature of VWs is different to games and simulation environments, and both la-
tency and consistency are of prime concern. An individual or an activity is only
affected by the events in their neighbourhood. According to our knowledge, there
is no specific synchronisation method dealing with VWs of this nature. To cope

with the issues with existing mechanisms and to incorporate conservative appli-

CHAPTER 2. BACKGROUND AND MOTIVATION 45

cations in VWs, we developed a decentralised consistency management approach
in this work. It is important to mention that this consistency approach applies to
hierarchical models based on the JOHNUM split strategies [61].

The following goals are set and expected to be achieved through our decentralised
synchronisation approach:

e to use a decentralised and local control,
e to use a constrained communication model,

e to remove intermediate points, and thus reduce delays and system complex-
ity,
e to reduce implementation cost and improve performance,

e to avoid blockage of the overall system, and

e to incorporate conservative applications in VWs.

It is believed that a simple but flexible synchronisation approach can be devel-
oped by adopting a constrained P2P communication model (based on inherent
properties of VWs) to maintain a consistent view of dynamic but constrained
hierarchical models [61]. By adopting decentralised control with a limited num-
ber of interacting servers, a system potentially outperforms both centralised and
distributed systems. A server with additional functionality can take purely local
decisions (such as a time advance) in direct consultation with the servers that host
adjacent regions. It has the potential to maintain the traditional constraints and
guarantee that all events are processed in their temporal order. This potentially
solves the issue of system blockage, thus allowing different groups of people to
carry out their activities. It greatly reduces communication overhead, complexity,
and delays by avoiding the intermediate points (hops) compared with traditional
distributed and hierarchical mechanisms based on conservative approaches. It is
flexible with reduced implementation cost and is very likely to improve perfor-

mance.

2.3.2 How Consistent Virtual Worlds are achieved

This section shows how our system achieves a consistent state among players based
on time information of only immediate neighbours that might possibly be handled

by a hierarchical infrastructure at different levels in a hierarchy.

CHAPTER 2. BACKGROUND AND MOTIVATION 46

This decentralised synchronisation approach uses the concepts of HLA for con-
servative discrete event simulation and exploit them to hierarchical models in a
P2P fashion with a constrained communication model. The logical time, LBTS
and Lookahead values work in a traditional way, but functionality of the RTT is
distributed among the federates and each federate has the capability to interact
with the federates surrounding it. Each federate processes the events against its
LBTS value (thus guaranteeing processing of safe events) which is the minimum
among the time information (Current LBTS + Lookahead value) of adjacent fed-
erates. Timestamped messages are delivered in an order that guarantees that
messages will never arrive in a federate’s past. This synchronisation approach and

proof-of-the-concept simulation are presented in detail in chapter 4.

2.4 Open Source VW Development Frameworks

Open sourcing has decreased the development time and cost remarkably by re-
using existing software modules and components to develop new solutions. It
has especially provided a useful way for the research communities to implement
and test their novel ideas. This section presents a number of parameters and
their corresponding filters that we used during a survey to select the most suit-
able framework for the implementation of our work. A total of twenty-two frame-
works were studied: Second Life (SL) [137, 189, 201], Croquet [43, 44], Maverik [99,
147], Arianne [109, 234], Beyond 2 [5,110], BZ Flag [228, 235], Quack 1T [104, 116,
183], Genecys [88,89], Massiv [145, 146], Crossfire [229, 236], FreeTribes [112], net-
Panzer [158], Irrlicht Engine [113,237], WarZone 2100 [117,239], Janthus [115],
Isotope [114], Argentum Online [108,220], Diamonin [111], WorldForge [231, 240],
OpenArena [230, 238], OpenCobalt [169, 170] and OpenSimulator (OS) [172,177].
Details of these frameworks are beyond the scope of this work and are, therefore,
not provided.

Parameters that were used to evaluate these frameworks against our requirements
are: Architecture, Concurrency, Status of the Project, Documentation and Help,
Operating System, Development Language(s), Level of open sourcing, the efforts
required to implement our research, and Persistence. An iterative evaluation cri-

terion is applied to these parameters in the order of presentation with their corre-

CHAPTER 2. BACKGROUND AND MOTIVATION 47

Parameter Name Filter Iteration
Number
Architecture Allow Client/Server and CMS infrastructures (Grid) 1
Concurrency Allow Multiuser/Massive Multiplayer systems 2
Project Status Allow Complete and/or projects under further development 3
Documentation and Help Allow those having forums, IRCs, Documentation and a Wiki 4
Operating System Windows and Linux 5
Development Language(s) | Allow any combination of C/C++, C#, Java, and Python 6
Level of Open Sourcing Allow complete framework and games/demos 7
Efforts Required Allow those that require minimum or average efforts 8
Persistence Allow only persistent infrastructures 9

Table 2.1: Parameters and their corresponding filters

sponding filters , as shown in Table 2.1. This process rejected even state-of-the-art
projects if they were unable to fulfill one criterion or the other. For simplicity,
frameworks eliminated in each step are presented in Table 2.2

The filter for architecture (iteration 1) allowed only those projects that were
based on CS and CMS architectures. It rejected frameworks based on P2P ar-
chitectures, and those that were not applicable to any architecture. For example,
Croquet and Isotope are rejected for being P2P environments, and Maverik and
Irrlicht Engine for their specialised natures. P2P systems are not suitable for
real time graphics applications and the specialised softwares cover very narrow
domains. Therefore, a developer needs to design both a server and a client in
addition to a communication infrastructure. The second iteration (iteration
2) eliminated none of the remaining environments as all the remaining infrastruc-
tures are multiplayer in nature. Maverik is the only single user environment but
it is already removed in the first iteration. However, some environments, such as
WarZone, provide both single and multi-user environments. Though the develop-
ment of an environment using open source components minimises both time and
cost, it is convenient and easy to work with a project if it is alive and supported
by a dedicated community of developers. Therefore, the next two iterations
(iterations 3 and 4) considered the projects having their source code available for
the basic components of both the infrastructure and games. Furthermore, envi-
ronments supported by a number of ways such as Documentation, Forums, IRCs,

Mailing Lists and a Wiki are the most favourable choices. Janthus and Genecys

CHAPTER 2. BACKGROUND AND MOTIVATION 48

were removed for providing very little documentation, and Massiv for being a dead
project. Moreover, these projects offer poor support for the developers. The op-
erating system filter (iteration 5) allowed those projects that run over Linux
or Windows. Linux is best for development and Windows for easy and friendly
interfacing. The remaining projects all run over both or at least one of these op-
erating systems and, therefore, none is removed in this iteration. The criteria
for development language(s) (iteration 6) considered the integration power,
ease, and available expertise and help in our organisation. This step permitted
those projects that are solely or partially based on any set of C, C++, C#, Java,
and Python. Level of open sourcing filter (iteration 7) discarded SL which is
state-of-the-art in VWs. It is a commercial infrastructure and most relevant to
our intentions; however, only the viewer of the infrastructure is open source. The
required efforts parameter (iteration 8) filtered out OpenArena for the huge
effort required as it provides very basic functionalities, and one needs to design
both server and client modules. Persistence (iteration 9) discarded most of the
game development environments because they are normally not persistent and fol-
low pre-defined rules from the start each time. Some commercial games, such as
EverQuest and World of WarCraft provide persistence, but still follow pre-defined

narrations. Furthermore, their source codes are not available.

The filtering process returned three frameworks: Arianne, WorldForge, and
OS. This process discarded most well-known and relevant frameworks due to
their limitations. Isotope implements a similar concept presented by SL exten-
sion. However, it is no longer maintained and only a little documentation is
available for help. OS is the most relevant framework to this study that imple-
ments the extended architecture of SL, and therefore provides the basis required
for the implementation of our work. Therefore, it was selected for the prototype

development of our work.

2.5 Conclusions and Future Work

This chapter presented a detailed analysis of the existing scalable and consistent

VW development strategies. It examined the underlying technical infrastructures

CHAPTER 2. BACKGROUND AND MOTIVATION 49

Criteria Eliminated Frameworks

Architecture Croquet, Isotope, Maverik, Irrlicht Engine

Concurrency None

Project Status Massiv

Documentation and Help Janthus, Genecys

Operating System None

Development Language(s) | None

Level of Open Sourcing SL

Efforts Required OpenArena

Persistence Beyond 2, BZ Flag, Quak II, Crossfire, FreeTribes, netPanzer

WarZone 2100, Argentum Online, Diamonin, OpenCobalt

Table 2.2: Summary of filtering process showing eliminated frame-
works

that are used to host VWs. It determined that Grid infrastructures are best for
computationally intensive jobs, but that P2P infrastructures are more scalable.
Hierarchical infrastructures are well-suited to model complex environments but
they have no restrictions on the levels in an RMT. It makes it difficult for these
worlds to perform better in terms of scalability, especially when they are used
to manage conservative applications. Existing mechanisms for both scalability
and consistency have performance issues when used for the VWs because they
are primarily developed for game and simulation environments. This chapter
also identified the issues in existing systems and presented the motivation for the
work undertaken in this thesis. It also outlined the way to achieve the goals set
for this study. It presented a short comparison of a number of VW development
frameworks and identified OS as the most appropriate framework for the prototype

development of our work.

Chapter 3

Scalable Virtual Worlds

In this chapter, the Joint Hierarchical Nodes Based User Management (JOHNUM)
infrastructure for scalable VWs is presented. It describes the proposed partitioning
method, a number of assignment strategies for load distribution, and a merging
mechanism. Simulation Results in MATLAB compare it with a dynamic game
middleware called Matrix [13] for evaluation purposes. It is demonstrated that
it reduces the number of levels in a Resource Management Tree (RMT), and
decreases the number of times a user is interrupted during a session.

This chapter further discusses the assignment phase of the JOHNUM infrastructure
in more detail and presents the Aggregate Region Assignment (ARA) algorithm for
achieving a fair distribution of load. The basic aim is to minimise resource under-
utilisation, and reduce communication and implementation costs by combining
individual regions into larger contiguous areas. Simulation results demonstrate
that it works well with small, medium, and large scale worlds. An abstract model
is used to identify the communication and implementation overhead reduction
through this algorithm. This chapter is based on our published work [60, 61, 64]

on this topic.

3.1 The JoHNUM Infrastructure

This section describes the components of the JOHNUM infrastructure and the way

it achieves its goals. It also provides a proof-of-concept simulation to evaluate and

20

CHAPTER 3. SCALABLE VIRTUAL WORLDS 51

compare it with Matrix.

3.1.1 Introduction

This work assumes a geographically distributed workspace with a unified user
view that is processed by a Grid infrastructure. Initially, each geographic location
starts with a server that simulates approximately the same content as other loca-
tions. In addition, each server handles no more than a number of users described
as Maximum Server Capacity (MSC). Furthermore, the world is approximately
square-shaped and a regular square pattern is followed for splitting the overloaded
regions. Each server continuously monitors the workload for the assigned region,
and splits it into a number of smaller regions in the case of excessive load. Local
decisions are made by using a split factor, named the Region Split Factor (RSF).
The number of smaller regions are determined by RSF? for RSF > 1, while the
boundaries are calculated by considering the height and width of the VW against
the RSF. The proposed algorithm first determines the RSF value that eases the
load and then splits the region accordingly. It starts with an initial RSF value of 2
giving four regions, but the value is incremented on the basis of players’ distribu-
tion yielding more smaller regions as explained later with the help of Figures 3.3
and 3.4. The proposed partitioning algorithm is illustrated in Figure 3.1 showing
that Server 1 and Server 4 divide their corresponding regions into four while Server
2 divides its assigned space into nine smaller regions. However, it could divide the
world into a larger number of smaller regions (such as sixteen or twenty-five) but
against a boundary condition to ease the load in case the crowd assembles at a very

small space. The load in Server 3 is normal and, hence, no split occurs in this case.

The JoHNUM infrastructure comprises three components: Partitioning, Assign-
ment (Load Distribution), and Merging. Partitioning is hierarchical in nature and
is triggered by a regional server as its capacity exceeds the MSC. Figure 3.2 shows
a number of possible splits into grids of 2x2 and 3x3 sub-regions in a two-level
hierarchy for different geographic servers. A region representing an un-partitioned
but varied size of space is divided during a split operation if it is not the ultimate

space that cannot be further partitioned. The concept of aggregate assignment

CHAPTER 3. SCALABLE VIRTUAL WORLDS 52

Continuous Workspace:
A Unified User Perspective

Distributed View:

Multiserver Architecture; A Technical Perspective

Figure 3.1: Abstract view of JOHNUM partitioning algorithm [61].

CHAPTER 3. SCALABLE VIRTUAL WORLDS 53

is used to minimise resource utilisation and communication between the servers.
Moreover, it tries to achieve a fair distribution of load between the two servers
by combining adjacent regions and avoiding the diagonal ones. A regional server
that triggers a split and assignment becomes the parent of the new server. The
partitioning algorithm developed in this study is simple, and better performance
is achieved by using intelligent assignment strategies. Partitioning and assignment
are two different concepts and two terms are introduced to highlight their appli-
cability. The aggregate assignment is termed “provisional assignment”, which
maintains the identity of individual smaller regions, and at a later stage, triggered
by increasing load, the aggregates are re-assigned until each server is handling
a single smaller region termed “permanent assignment”. At this point, the
smaller regions are further subdivided into yet smaller regions unless these are
too small for subdivision. We describe it as a boundary condition. The terms
split and partitioning are used interchangeably in this work, and mean dividing a

region into a set of smaller regions.

Figure 3.2: Illustrating two-level splits with various combinations at
different geographic locations.

3.1.2 JoHNUM Partitioning

The basic JOHNUM partitioning algorithm works as follows. Each server contin-
uously monitors total players against the MSC, and applies a greedy approach

that divides the space into RSF? smaller regions in case of excessive load. The-

CHAPTER 3. SCALABLE VIRTUAL WORLDS 54

oretically, this eases the load but it is not always practically possible due to the
unpredictable nature of the users; for example, if we assume that the cases shown
in Figure 3.3 consider the MSC of nine players and the server triggers a split as
the tenth player enters the region. Moreover, the solid lines show actual splits and
the dashed lines represent prospective regions only. The server divides the world
into four regions if the players’ distribution is uniform, as shown in Figure 3.3(a).
However, Figure 3.3(b) highlights a hotspot scenario that fails basic JOHNUM

partitioning in order to ease the load.

S ©
I 06]3]
© © e © 8 o|lo ©
o |9 !
°l [@2@3—_@_6:3 @© o ©
|
© 1
© o :
Q@ &) "

(a) (b) ()

Figure 3.3: [Illustration of JOHNUM Partitioning with uniform and
hotspot scenarios: (a) a split of uniform scenario into 4 smaller regions;
(b) highlighting a hotspot that fails basic JOHNUM partitioning; (c) a
split using Players Considered JOHNUM Strategy that splits a region
into 9 smaller regions.

Players Considered JoHNUM partitioning solves this issue by considering player
density in each prospective region before splitting. It increments the RSF until
the player density in each prospective region is below the MSC. The region is split
once the final RSF value is determined, which results in more smaller regions.
Figure 3.3(c) illustrates the split of hotspot scenario into nine regions instead
of four, as shown in Figure 3.3(b). In the remainder of this work, JOHNUM
partitioning is referred to as Players Considered JoHNUM partitioning. Figure 3.4
shows how the system splits the space into sixteen smaller regions when it failed to

ease the load, by dividing it into four and nine sub-regions for the same example.

CHAPTER 3. SCALABLE VIRTUAL WORLDS %)

T ® © © I le e ¢ e © ¢
R B 8 %
I e oe _ o __le _e¢ e o9
1 | |

_____ T | I
| I |
1 L=
| I |
| I |
| | |

(a) (b) (c)

Figure 3.4: [Illustration of JOHNUM Partitioning in to 16 smaller
regions: (a) highlighting a hotspot that fails to ease the load with RSF
value 2; (b) highlighting a hotspot that fails to ease the load with RSF
value 3; (c¢) highlighting a split into 16 smaller regions.

3.1.3 JoHNUM Assignment/Load Distribution

JoHNUM Assignment comprises two basic strategies based on individual and ag-
gregate assignments. Each of these has its benefits and limitations. To eliminate
the limitations in basic strategies, a third strategy is devised which achieves bet-
ter performance, as discussed later. Basic assignment strategies are described as

follows:

JoHNUM Assignment Strategy 1 (JAS1): assigns each smaller region to
a different server. It selects n-1 servers and assigns n-1 smaller regions to them
while keeping the nth with itself.

JoHNUM Assignment Strategy 2 (JAS2): applies aggregation at each step
in the assignment and tries to balance the load as much as possible. It first aggre-
gates smaller regions into two groups and then selects another server for sharing

its load with it in each iteration.

JAS1 is the most simple and flexible strategy, but it yields significant load im-
balance. It might assign regions to servers having no players at all and greatly
increases resource utilisation and communication overhead. JAS1 obtains lowest-
level RMT, which we believe helps to improve consistency and interactive user

experience. JAS2 applies aggregation at each stage during assignment and re-

CHAPTER 3. SCALABLE VIRTUAL WORLDS

4)
S’
l Introduction of 2 players that triggers a split

4 s

‘; Regions after Split 1

Assignment 1 after Split 1

l Introduction of 2 players that triggers an assignment

s TS

N
AY

~.,

il I Same Regions after Split 1

NEAE : \Wlthmoreplayers

I-,__.f
,y
{] 2
||I\ 1 Assignment 2

l Introduction of 2 players that triggers an assignment

-u-'

LS

L4 N
4 \
122

Same Regions after Split 1
v 33 r‘ W|th more players

s.__a
"y
/
'aa)
\ J Assignment 3
N E
I\s _a
"¥~.
,' =]
1
Ny
\
h3

Figure 3.5: Illustration of JOHNUM Assignment Strategy 2 (JAS2):
It can be seen that the levels in each assignment step are increased with
the introduction of additional players (3 levels in this case).

CHAPTER 3. SCALABLE VIRTUAL WORLDS 57

quires little effort to re-assign provisionally assigned regions to a new child server
in case of further excessive load. It achieves better resource utilisation and reduces
communication overhead. However, it increases the number of levels in the RMT,
as illustrated in Figure 3.5 with a simple example that assumes the MSC of four
players. Here, it is assumed that white and grey coloured solid circles represent
permanent and provisional assignments, while white and grey coloured dotted cir-
cles characterise a unified view of the world and intermediate logical processes
for the assignments, correspondingly. A region is represented by a square in the
diagram. Aggregate assignment tries to balance the load as much as possible be-
tween the two servers at any point while maintaining contiguous and regular areas
for allocation. This issue is investigated in detail further in section 3.2 by pre-
senting a number of aggregation strategies and an aggregation algorithm. JAS2
selects a new server in each assignment phase and makes it a child of the assign-
ment server, thus increasing the RMT levels. RMT levels are greatly reduced
if we modify server management by making a new server the child of the server
that initiates partitioning instead of an assignment. This strategy (named JAS3)
achieves better results and is explained in Figure 3.6 with the same example and
assumptions used for JAS2. However, it has suppressed the details of intermediate
logical processes for the assignments. JAS3 is similar to JAS2 in partitioning but

only different in the assignment phase.

3.1.4 JoHNUM Merging

The JoOHNUM merging algorithm implements the reverse process to partitioning.
A server triggers merging when it observes a decrease in the assigned players’
density. Both parent and child can initiate the process. When a server experiences
a decline in its assigned capacity, it asks child nodes for their loads and re-computes
the load. It revokes some load and releases extra resources to minimise resource
under-utilisation against a MergeCapacity. MergeCapacity is made much smaller
than the MSC to avoid immediate splits. The child server asks its children for
their load, if any, and the re-computation is performed in a bottom-up fashion. In
case a child detects reduction in its assigned capacity, it asks its parent server for

the load and determines the cumulative load. It returns its load if the cumulative

CHAPTER 3. SCALABLE VIRTUAL WORLDS 58

)

l Introduction of 2 players that triggers a split

R ~,

/o2 \\

[1 Regions after Split 1
vla]s|/

§ S==

P!
IO

l Introduction of 2 players that triggers an

—

Assignment 1 after Split 1

assignment

'5\
/ \
i

Same Regions after Split 1
J \\(\/ith more players

assignment

2|3 \“ Same Regions after Split 1

L _with more players
313, ~

-
-~
-

Assighment 3

Figure 3.6: Illustration of JOHNUM Assignment Strategy 3 (JAS3):
It should be noted that the levels in this strategy remains the same (1
level) for this particular example in comparison with JAS2.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 59

load is less than the MergeCapacity.

3.1.5 Simulation Setup and Assumptions

JoHNUM infrastructure is evaluated through simulation in MATLAB. A world is
represented by an nxn matrix. Experiments have been performed with worlds of
different dimensions, but this work presents and discusses the results of only a few
of those due to their similar outcomes. Table 3.1 summarises the parametric values
considered for each experiment including dimension, player distribution, number
of players initiating partitioning, and the MSC. Instead of introducing additional
players at lower levels, the MSC of each server is decreased to trigger the algorithm.
MSC was reduced four times for each experiment and the reduction pattern is
provided in the far right column of Table 3.1 from left to right. LO represents
the initial value of MSC. We assumed that the last reduction (represented as L4)
reaches the boundary condition and stops further partitioning. It is also assumed

that a server triggers the partitioning algorithm as the number of players exceeds
the MSC.

Experiment | Dimension | Player Players that | MSC Reduction
Number Distribution initiate (LO) (L2R):

Partitioning L1:L2:L3:L4
1 8*8 | Uniform 33 30 20:10:8:4
2 8*8 | Uniform 31 30 20:10:8:4
3 8*8 | Hotspot 41 40 30:15:8:4
4 18*18 | Hotspot 159 150 | 100:75:50:25

Table 3.1: Experimental assumptions for the experiments

Being a dynamic infrastructure, JOHNUM is compared with a dynamic game mid-
dleware, called Matrix, that has demonstrated better performance over previously
published static and dynamic mechanisms. The following two strategies of Matrix
are used for comparison with JOHNUM strategies:

Matrix Strategy 1 (MS1): assigns minimum load to the newly selected server
and the existing server maintains most of the load.

Matrix Strategy 2 (MS2): uniformly distributes the load and shares exactly

half of the load with a newly selected server.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 60

The experimental work used a number of metrics for evaluation purposes, which
are: Number of Regions, RMT Levels, Resource Utilisation, Degradation of Inter-
active User Experience, and Communication Overhead.

Number of Regions: provides the total number of regions after splits at different
levels for the complete span of an experiment.

RMT Levels: represents the number of levels in an RMT, determined by con-
sidering the longest of the shortest paths from root to the leaf nodes.

Resource Utilisation: determines the maximum number of resources utilised to
simulate the whole world.

Degradation of Interactive User Experience: demonstrates the average num-
ber of times a user suffers from the splits.

Communication Overhead: outlines increase in communication (over the net-

work) between servers in response to splits.

Exp | Algorithm | Strategy | Regions RMT Resource Degradation of
No. Levels | Utilisation Interactive
User Experience

1 | JoHNUM JAS1 16 2 16 2
JAS2 16 3 9 2

JAS3 16 2 10 2

Matrix MS1 11 5 11 4
MS2 10 4 10 4

2 | JoHNUM JAS1 13 2 13 2
JAS2 13 4 10 2

JAS3 13 2 10 2

Matrix MS1 10 5 10 4
MS2 9 4 9 4

3 | JoHNUM JAS1 16 2 16 2
JAS2 16 4 12 2

JAS3 16 2 12 2

Matrix MS1 12 5 12 4
MS2 12 4 12 4

4 | JoHNUM JAS1 16 2 16 2
JAS2 16 3 8 2

JAS3 16 2 8 2

Matrix MS1 9 5 9 4
MS2 9 4 9 4

Table 3.2: Detailed evaluation summary of experiments for all
JoHNUM and Matrix strategies.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 61

3.1.6 Simulation Results and Gains

Table 3.2 presents a summary of the experiments for the first four parameters. It is
observed that the results are quite similar although each experiment was performed
with completely different specifications. Communication cost is discussed but not
computed at this stage because both the mechanisms used almost the same number
of resources for each experiment. However, it is a major metric during a scalability
process and is computed during the real implementation of this work in chapter 7,
in terms of increase in number of inter-sim crossings as a system scales. Evaluation
results for the number of regions, RMT levels, resource utilisation and degradation

of interactive experience between different strategies of JOHNUM and Matrix are

graphically illustrated in Figures 3.7(a)-(d) respectively.

18 3
= 16
3 5
g I_i_i\T \ /\m—
F12 - wd m
@
§ 10 N : /
B N —+—Experiment 1 : 3 —4+—Experiment 1
o
% 6 == Experiment 2 EZ == Experiment 2
% 4 Experiment 3 1 Experiment 3
é 2 —=—Experiment 4 —=—Experiment 4
o] 0
JASL JAS2 JAS3 Ms1 MSs2 JAS1 JAS2 JAS3 MS1 MS2
JoHNUM MATRIX JoHNUM MATRIX
Strategies applied Strategies applied
(a) (b)
18
16 6
N 3
M T m 5 s
F 12 A\ —— :
& =
= o 4 n—
Z 10 o
2 —e—Experiment 1 g g f
g s 23 —4—Experiment 1
5 —m—Experiment 2 =3
g ° g £2 +— 2 == Experiment 2
£ 4 Experiment 3 o
® 1 Experiment 3
2 ——Experiment 4 B
o ===Experiment 4
[} & [}
JASL JAS2 JAS3 Ms1 MS2 JASL JAS2 JAS3 Ms1 MS2
JoHNUM MATRIX JoHNUM MATRIX
Strategiesapplied Strategies applied

()

(d)

Figure 3.7: Comparison of all JOHNUM and Matrix strategies for: (a)
total number of regions after the splits; (b) RMT levels; (¢) Resource
utilisation; (d) Degradation of interactive user experience.

JoHNUM strategies divide a world into more regions than Matrix.

Individual

region assignment (proposed in JAS1) demands more resources and, therefore,

CHAPTER 3. SCALABLE VIRTUAL WORLDS 62

results in resource under-utilisation. Furthermore, this strategy might assign re-
gions to servers without players. However, aggregate assignment is adopted to
solve this problem. JASI improves interactive user experience over Matrix. JAS2
applies aggregate assignment to eliminate the limitations of JAS1, but greatly
increases the levels in an RMT. However, the interactive user experience remains
the same as JAS1. Experimental results show that JOHNUM is more flexible and
performs better than Matrix both in terms of RMT levels and interactive user
experience. Moreover, JOHNUM selects fewer resources the same as Matrix by
using aggregate assignment and, therefore, also reduces communication overhead
(inter-server communication). The management strategy used in JAS2 greatly de-
grades JOHNUM performance. However, a slight modification to the management
strategy (adopted in JAS3) outperforms Matrix and basic JOHNUM strategies.
JAS3 not only displays better performance and interactive player experience but
potentially keeps the communication overhead almost the same as that of Matrix.
The JoHNUM strategies, developed in this study, except JAS2, output RMTs of
two levels that show a significant improvement over Matrix strategies. However,
JAS2 results in a RMT of four levels at maximum while MS1 and MS2 produced
RMTs of five and four levels correspondingly. Similarly, resource utilisation in
JAS2 and JAS3 is almost the same as MS1 and MS2. Moreover, JOHNUM strate-
gies improve interactive user experience by 50 percent over that of Matrix due to

pre-processed partitions.

Experiment | Algorithm | Regions RMT Resource Degradation
Number Levels | Utilisation | of Interactive
Experience

1 | JoHNUM 16 2 10 2
Matrix 10 4 10 4

2 | JoHNUM 13 2 10 2
Matrix 9 4 9 4

3 | JoHNUM 16 2 12 2
Matrix 12 4 12 4

4 | JoHNUM 16 2 8 2
Matrix 9 4 9 4

Table 3.3: The evaluation summary of JOHNUM and Matrix

CHAPTER 3. SCALABLE VIRTUAL WORLDS 63

Summary

Simulation results show that JAS3 is a better strategy among the JOHNUM strate-
gies and MS2 gives better results than MS1 for Matrix. The rest of this work uses
the concept of JAS3 to manage a hierarchy of resources for JOHNUM infrastruc-
ture. Therefore, from now onwards, we use JOHNUM for JAS3 and Matrix for
MS2. Simplified experimental results for JOHNUM and Matrix are reproduced
again using the same metrics from Table 3.2, and their summary is presented in
Table 3.3. Best available results for number of regions, RMT levels, resource util-
isation and degradation of interactive experience for both JOHNUM and Matrix

are illustrated in Figures 3.8(a)-(d) correspondingly.

18 6

«

~

w
I

— MEJoHNUM W JoHNUM

! -] :I :I 1 N
1 2 3 4

Experiment Number Experiment Number

(a) (b)

18 6
16
14
12

after Splits
(RMT) Levels

Number of Regions
~

Resource Management Tree

[

(=]

10
B — mJoHNUM W JoHNUM
T 1 Matrix P 2~ — Matrix
| 5 1] :I :I 1
d o -
1 2 3 4 1 2 3 4

Experiment Number Experiment Number

() (d)

Figure 3.8: Comparison of JOHNUM and Matrix for: (a) Total num-
ber of regions after the splits; (b) RMT levels; (c¢) Resource utilisation;
(d) Degradation of interactive user experience.

Resource Utilisation
Experience
w

Degradation of Interactive User

o N B @

Figure 3.8(a) shows that JOHNUM divides a world into more regions than Matrix.
It utilises almost the same resource as Matrix, as is shown is Figure 3.8(c) based

on the concept of aggregate assignment. JOHNUM outperforms Matrix both in

CHAPTER 3. SCALABLE VIRTUAL WORLDS 64

terms of RMT levels and degradation of interactive user experience, as illustrated

in Figure 3.8(b) and Figure 3.8(d), respectively.

3.1.7 Discussion

Proof-of-the-concept simulation only used splitting into four or nine smaller regions
based on the player distribution and obtains improved results over the traditional
hierarchical structures such as Matrix. JOHNUM helped to reduce the number of
levels in an RMT due to splitting a space into more than two regions, and improved
interactive experience due to pre-processed regions. The actual implementation
also has the benefit of transferring the smaller regions in an aggregate in turn,
which further improves the user interactive experience (this is further discussed
in chapter 7). Based on the fact that a region can even be divided into more
than nine regions, the levels in an RMT for JOHNUM would be further reduced.
It has the potential to reduce delays in hierarchical structures by reducing inter-
mediate points among the components. It would also increase the overall system

performance and user interactive experience.

3.2 Load Distribution

In this section, we examine the ARA algorithm and aggregation strategies which
try to balance the load between two servers as much as possible. It provides a set

of illustrations and simulation to evaluate its benefits.

3.2.1 Introduction

The ARA algorithm uses a number of aggregation strategies to distribute the
load in as balanced a way as possible between two servers. It combines only those
regions sharing physical boundaries, and no horizontal or vertical lines are allowed
to go out of one aggregate, into the other and back again. However, a diagonal
region is considered for aggregation if it shares boundaries with regions already in
one of the two sets of regions during the aggregation process. The main objective

is to avoid islands and peninsulas, and obtain two contiguous areas for assignment.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 65

It minimises transfers between servers when players move between regions. The
world is in the form of a tiled grid having square-shaped regions and obtained as
an output from the partitioning algorithm of JoHNUM infrastructure. The ARA
algorithm works from a starting point, named a root, in the set of regions to be
distributed. Keeping these restrictions in mind, the corner regions are chosen as

roots.

3.2.2 The Algorithm and Strategies

The Top Left (TL) and Top Right (TR) regions of the grid are selected as the
roots for this work. However, any combination of two consecutive corner regions
can be chosen which guarantees scanning all possible and unique combinations.
However, the strategies might require minor changes regarding directions with
different roots. Four strategies are proposed for each root, and these are presented
in Table 3.4. Nevertheless, the RSF value determines the number of strategies
required in each case. The first two strategies for an RSF value of 2, and all four
for an RSF value of 3 or greater, guarantee examining the entire set of unique and

valuable combinations when applied to both TL and TR.

Root initiating Strategy | Aggregation strategy Applied for
scanning Number RSF Value of
Top Left Region 1 | Left to Right, Row by Row 2, 3 and greater
(TL) (LRRows)
2 | Top to Bottom, Column by Column 2, 3 and greater
(TBColumns)
3 | Left to Right and Top to Bottom 3 and greater
(LRaTB)
4 | Left to Right and Top to Bottom with | 3 and greater
Diagonal Region (LRTBwDR)
Top Right Region 1 | Right to Left, Row by Row 2, 3 and greater
(TR) (RLRows)
2 | Top to Bottom, Column by Column 2, 3 and greater
(TBColumns)
3 | Right to Left and Top to Bottom 3 and greater
(RLaTB)
4 | Right to Left and Top to Bottom with | 3 and greater
Diagonal Region (RLTBwDR)

Table 3.4: Summary of roots and their corresponding aggregation
strategies [60].

The proposed strategies deal with two sets of regions named Aggregatel and Ag-

CHAPTER 3. SCALABLE VIRTUAL WORLDS 66

gregate2 during exhaustive aggregations. Aggregatel and Aggregate2 are
coloured black and grey for illustration purposes in the diagrams used in this
work. Initially, Aggregatel includes the root region while Aggregate2 holds the
rest of the regions. Each successive iteration of a strategy transfers one region from
Aggregate2 to Aggregatel, as shown in Figures 3.9(a)-(d) for an input matrix of
nine regions and root TL. However, different patterns are followed by the strategies
which are explained later for an RSF value of 3. Furthermore, it is observed that
some strategies repeat a number of combinations. However, the ARA algorithm
exploits a number of techniques to reduce the scanning process. Strategies 3 and 4
scan the rows and columns simultaneously by selecting one region in an iteration
from them in turn (see Figures 3.9(c)-(d)) compared with the first two strategies
which are visiting either rows or columns in a row-by-row or column-by-column
order. They add a number of valuable and unique combinations with (in strategy
4), or without (in strategy 3), considering the diagonal regions, as explained later.
Figure 3.10(a) outlines the first two strategies for an RSF value 2 and both roots
(TL and TR) with repetitions. Furthermore, a total of six unique combination are
possible in this case, as shown in Figure 3.10(b), and the repetitions are marked

as R and skipped.
H HEE EEN =II =II

EEN NN
HE B BN EENEEN
E B B Em

(d)

Figure 3.9: [Illustration of aggregation strategies of ARA algorithm
for root TL and an RSF value 3 for: (a) LRRows; (b) TBColumns; (c)
LRaTB; (d) LRTBwDR.

The LRRows strategy for root TL examines the possible combinations by visiting

the regions row by row, from left to right. It gives a total of eight unique combi-

CHAPTER 3. SCALABLE VIRTUAL WORLDS 67

nations (see Figure 3.9(a)). Similarly, TBColumns performs a column-by-column
scanning from top to bottom yielding six unique combinations (see Figure 3.9(b))
with two repetitions. RLRows and TBColumns strategies for root TR inspect the
regions row by row and column by column, from right to left correspondingly. The
third strategy for both roots (LRaTB and RLaTB) considers a single region from
rows and columns in turn, as shown in Figure 3.9(c), for root TL. It only defines
three unique combinations with a number of repeated ones (five in this case). The
fourth strategy (LRTBwDR) is similar to the third strategy but it reads the adja-
cent diagonal regions when the two regions sharing boundaries with it are already
in an aggregate. This is depicted in Figure 3.9(d) and it reads only one unique
combination with seven repeated aggregates. However, these strategies add more
unique combinations for bigger grids. The proposed technique can cutoff a num-
ber of repetitions if the aggregates initially consider regions of the first unique
combination (skipping the iterations for regions without players). Strategies for
the root TR can be visualised with the same approach with one exception, that

they move in the opposite direction.

Figure 3.10: Hlustration of LRRows and TBColumns strategies for an
RSF value of 2 and both TL and TR.

Since a region can be divided into more than nine sub-regions, such as sixteen or
greater based on player orientation, we use Figure 3.11(a) and 3.11(b) to show how
strategies 3 (LRaTB) and 4 (LRTBwDR) are applied to a grid of sixteen smaller
regions. The first two strategies are straightforward and are not illustrated here.
The illustrations include repeated aggregates just for understanding purposes and

they are skipped by the ARA algorithm. Strategy 3 is illustrated iteration by

CHAPTER 3. SCALABLE VIRTUAL WORLDS 68

iteration in Figure 3.11(a), while Figure 3.11(b) illustrates strategy 4. This is not
explained further as the illustrations are self-explanatory. Larger regional grids are
also processed in the same fashion. However, it is noted that dividing into more
regions gives more unique combinations compared with 3x3 grid combinations of
the same strategies. The LRaTB strategy gives eleven unique combinations, with
only four repeated. Similarly, LRTBwDR also adds nine unique combinations,

with six repeated.

Figure 3.11: The 4x4 regional grid illustration of root TL for (a)
LRaTB, and (b) LRTBwDR strategies.

The pseudocode of ARA is presented in Algorithm 1. It takes Roots[], Search-
Strategies, Players, RSF, and a Regional Players Matrix (RPM) holding player
density for the regions as input. It reads the corresponding strategies for an RSF
value and applies them in turn. The ARA algorithm performs an exhaustive search
to achieve fair distribution of load, and minimises the scanning process by avoid-
ing repetitions. It investigates the unique combinations and terminates if it finds
uniform load at any point. It also skips the remaining combinations of a strategy
if the observed difference for a combination is greater than the difference for the
previous combination. It is clear that the rest of the combinations for this strategy
cannot further achieve a better balance of load. The proposed algorithm main-
tains BestAggregatel, BestAggregate2 and BestDifference where BestDifference is
used for deciding best aggregates, and the rest hold the two sets of regions whose

difference is the minimum one. The proposed strategies and conditions greatly

CHAPTER 3. SCALABLE VIRTUAL WORLDS 69

reduce the effort of finding the best possible distribution of load, as illustrated

later in this chapter.

Algorithm 1 The Aggregate Region Assignment (ARA) Algorithm for Load Dis-

tribution

Require: Players, Roots[], SearchStrategies, RSF, RegionalPlayersMatrix

Ensure: BestAggregatel, BestAggregate2

1: Flag « false

2: for i < 1 to Max(Roots[]) do

3: BestDifference <+ Players

4 Strategies[|=Read corresponding strategies for the root considering the RSF Value
5 for j «— 1 to Max(Strategies|[]) do

6: Initialise Aggregatel and Aggregate2
7.
8

Difference < Players
while (All combinations are not visited) do

9: Determine Aggregatel and Aggregate2 for each successive step as described by the strategy
10: if (Combination not yet visited) then

11: Compute AggregateTotall and AggregateTotal2

12: if (absolute(AggregateTotall — AggregateTotal2) > Difference) then
13: break

14: else

15: Difference < absolute(AggregateTotall — AggregateTotal2)
16: end if

17 if (Difference < 2) then

18: Flag < true

19: BestAggregatel «— Aggregatel

20: BestAggregate2 «— Aggregate2

21: BestDifference < Difference

22: break

23: else

24: if (Difference >= BestDifference) then

25: go to the next combination

26: else

27: BestAggregatel «— Aggregatel

28: BestAggregate2 «— Aggregate2

29: BestDifference < Difference

30: end if

31: end if

32: end if

33: end while

34: if (Flag == true) then

35: break

36: end if

37: end for
38: if (Flag == true) then

39: break
40: end if
41: end for

The ARA algorithm results in two sets of regions (BestAggregatel and BestAg-
gregate2) and the server that initiates the split then assigns one set of regions to
the child server while keeping the other for its own processing. It minimises the
content un-availability time and reduces the number of players that suffer from a

transfer by sending multiple regions in an aggregate in turn (as in our implementa-

CHAPTER 3. SCALABLE VIRTUAL WORLDS 70

tion). In the worst cases, it must examine the entire set of possible and favourable
combinations for the corresponding strategies. The favourable combinations are
those that further reduce the difference and, therefore, must be examined while

maintaining regular and contiguous spaces.

(a) (b) () (d) ()

Figure 3.12: Odd cases excluded by the ARA Algorithm. (a) [rregular
content distribution. (b) A case splitting an aggregate into two isolated
groups. (c) A case splitting an aggregate into three isolated groups. (d)
Aggregation with diagonals splitting an aggregate in 2 different isolated
groups while having no physical boundaries among the regions of the
other aggregate. (e) Aggregation with diagonal for RSF value 2 splitting
into two aggregates where regions in both have no physical boundaries
(each aggregate has isolated groups of one region each).

Motivation and Discussion

Two consecutive corner regions (TL and TR) have been used being roots that
have the potential to determine the complete set of valid combinations with our
aggregation strategies. It has a great impact on performance and load distribution.
The ARA algorithm uses these for load balancing while obtaining contiguous and
regular areas for assignment. The basic reasons for the selection of the proposed
roots and strategies include content visibility and disconnection, communication,
player migration and implementation concerns. These issues are relevant to each
other, and are explained with the help of Figures 3.12(a)-(e) by means of five
different cases. Content in these cases is divided into non-contiguous areas that
increase communication traffic and player migrations between servers. Moreover,
these increase implementation complexity as a server maintains isolated sets of
regions which are difficult to manage. A player requiring content information from

a neighbouring region needs to pass a request to the server and, in case a player

CHAPTER 3. SCALABLE VIRTUAL WORLDS 71

moves, they experience a number of disconnections and connections between the
same servers. Keeping these issues in mind, the proposed strategies and roots are
selected in order to achieve a fair distribution of load while maintaining regular and
continuous spaces. It minimises risks for the issues described above. An abstract

model discusses this issue with an assumed set of scenarios in section 3.2.4.

3.2.3 Simulation Results
Simulation Setup and Assumptions

A number of different cases are considered for illustrations in MATLAB and a
world is represented by an nxn matrix. The assumptions and parametric values
are summarised in Table 3.5, including dimension of the matrix representing a
world, player distribution, the MSC, and an RSF value for each case. We have
considered worlds of different dimensions and player distributions to obtain fair
results. The matrix dimensions and the MSC values which are selected can be
used with RSF values of both 2 as well as 3. Hotspot scenarios are common in
VWs and are considered for obtaining RSF values greater than 2. It is assumed
that as player density exceeds the MSC, the server triggers the partitioning algo-
rithm. Therefore, the number of total players is one more than the MSC in each

case.

’ Case ‘ Dimension of VW Matrix | Distribution ‘ MSC ‘ RSF ‘

1| 4*4 Uniform 7 2
2 | 4%4 Uniform 7 2
3| 6%6 Uniform 8 2
4] 6%6 Hotspot 8 3
5| 12*12 Uniform 30 2
6 | 12*12 Hotspot 30 3
7| 18*18 Uniform 75 2
8 | 18*18 Hotspot 75 3

Table 3.5: Assumptions and parametric values for the illustrations.

The JoHNUM partitioning algorithm takes a world as an input, and returns an

CHAPTER 3. SCALABLE VIRTUAL WORLDS 72

RSF value and the corresponding regions in the form of an RSFxRSF matrix.
This matrix is described as a Regional Players Matrix (RPM) representing the
tiled grid of regional players. Figure 3.13 presents the tiled grids for the worlds
used in this simulation study. Each grid shows the regions, their boundaries and
player distribution in different regions after splitting by the JOHNUM partitioning
algorithm. The ARA algorithm takes the RPM as an input. Roots and their cor-
responding strategies are applied in the order of presentation and step-by-step il-
lustrations are presented in Figure 3.14 and Figure 3.15. It skips repeated patterns
and terminates if uniform load is achieved at any stage. If the difference between
AggregateTotall and AggregateTotal2 is less than 2, it declares the achievement of
uniform load and terminates. It also skips the remaining combinations for a strat-
egy when absolute difference for a combination is greater than the difference for
the previous combination, because difference between the remaining combinations
increases in further iterations. Cases where the uniform load cannot be achieved,
it examines all favourable possibilities and determines the best aggregations. It
assures the best possible load distribution with contiguous patterns. It is worth
mentioning here that better load distribution may be possible, but not with one

of these chosen partitions.

2 4 2 3 3 3 B

2 1 0

1 1 1 2 2 1 ololo
World 1 World 2 World 3 World 4

10 9 0 8 11 17 29 0 1] 0

0 4 8 15 9 0

7 5 0o 0 0 Lo 14 34 18 | 0
World 5 World 6 World 7 World 8

Figure 3.13: Example worlds considered for illustration purposes being
presented as tiled grids of 4 and 9 regions with player density.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 73

Illustrations and Outcomes

Figure 3.13 shows the regions and their corresponding players for different exam-
ple worlds in the form of tiled grids. These worlds have been split into two sets for
their step-by-step illustrations. The illustrations of cases for RSF value 2 are de-
picted against the possible and unique combination in Figure 3.14 for a reference.
Similarly, the cases for RSF value 3 are illustrated by Figure 3.15. Figure 3.14
provides comprehensive information while Figure 3.15 skips the details due to the
large number of possible combinations. Three tags Repetition Skipped (RS),
Strategy Skipped (SS) and Cannot Improve (CI) are used to represent
skipping combinations at different levels of the algorithm and this starts with root
TL. The terms RS, SS and CI are used to show the three cut-off conditions. The
best aggregates are modified when an aggregation with better load distribution
than the stored one is achieved. Step-by-step illustrations are sketched from left

to right in all diagrams.

Top Left Region N) TJop-Right Region
P PS

t=)
< LRRows H](TBColumns %< RLRows HF TBColumns———

HENEEE B BN BEEEE B EEm

H |] H N
.. RS RS . RS .. RS RS RS
|| __

2 n
RS Balanced, program terminated. (©)
1|1

=

RS

3
P nn SS RS Cl RS Cl RS SS RS RS RS (d)
1|2 1|2
; H:
5 |2 cl SS RS n . Balanced (approximately), program terminated. ... (e)
9 10 9
F nn SS RS . RS c RS SS RS RS RS ..(f)
7 5 7 - B
29 17 i
nﬂ ss RS . RS cl RS ss RS RS RS .. (g)
16 14 16 14 14

Figure 3.14: Illustrations of the proposed combinations and worlds
for an RSF value 2: (a) a complete set of possible combinations; (b)
a complete set of possible unique combinations; (c)-(g) illustrations of
worlds 1, 2, 3, 5, and 7 respectively.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 74

The first set of worlds for 2x2 regional grids are shown in Figure 3.14. World1
is illustrated by Figure 3.14(c) which skips two unique combinations, marked as
CI and SS. It achieves uniform load distribution by visiting the fifth unique com-
bination and terminates. World3 (see Figure 3.14(e)) is the same as world1 and
finds the uniform load when it scans the fourth unique combination. World2 (see
Figure 3.14(d)), world5 (see Figure 3.14(f)) and world7 (see Figure 3.14(g)) can-
not achieve uniform load and, therefore, they must search for all possible and
favourable combinations. However, the actual computations are greatly reduced
by the proposed filters. These cases (world2, world5, and world7) yield load distri-
butions of 5:3, 17:14 and 33:43 for Best Aggregatel:BestAggregate2, consecutively.
Nevertheless, it is clear that some combinations, such as diagonals in world2 (see
Figure 3.14(d)) and world5 (see Figure 3.14(f)), achieve better distribution of load,
but these are not considered by the ARA algorithm due to the implementation
and performance issues. It can be observed that the cut-off conditions reduce the
aggregations considered by almost 50 percent, compared with the unique combi-

nations.

World4, world6, and world8 (second set of bigger worlds) are explained with the
help of Figures 3.15(b)-(d) respectively. Figure 3.15(a) provides a partial set of
strategies for both roots TL and TR. World4 achieves uniform load distribution
on the first iteration and terminates by returning total aggregates of 4 and 5
for the best aggregates. However, the remaining two cases examine the entire
set of combinations. Some of the information is not shown in the diagrams for
these cases, but the same approach as in Figure 3.14 is used. World6 and world8
return load distribution of 19:12 and 34:42 for BestAggregatel:BestAggregate2
consecutively. These worlds also include combinations that further improve load
balancing but they are not considered by our approach. It is observed that the
aggregations are further reduced for worlds divided into nine regions. Dividing a
world into much smaller regions achieves better distribution of load but introduces

a number of different issues that are discussed next.

75

CHAPTER 3. SCALABLE VIRTUAL WORLDS

‘A[oaryoedsar g pue ‘g ‘f spriom jo suonyenysnyl] (p)-(q) :Aqerred umoys suorjeulquuod a[qissod Jo 1os
ojo[dwion e () :¢ onfeA JSQY UR I0J SP[IOM pue suoljeurquiod pasodord oy jo uoreIsny[] :GI ¢ In3Ig

(p) HE ve o= H al Bl | I il umoys 10U aJe siahe|d
“““ "AJUO UMOYS 318 PEo| 40 uolNqLISIp aAoIdwi 1By} sase) | o | 6 m m““ mm“ Soﬁ_gmcﬂ_mumhLofwga:mr.
o 0
AUV B 0 0 0 0 0 0

" S5 JE[IWIS PUE SIY} Ul SUOIIEUIqWIOD 3|qISSOd pue d|qeINOAE) [[B SOUIWEXS WYIIOS|e Ing ‘PaASIYIE PEO| JO UOIINGLISIP d|qe|leAe}sag | s | v o | s

v o
E0R - On
o

0
‘pajeulwual wesdold ‘padsueleg o Tz
k4

0

I |
(e) | | | || || [[| || [[|
” 1T\ VAMGIMT 7 alpeul 4 _______ al * SMOMMT
— wamaLy | arew SUWIRIEIEL | 't
© uoigeywySydop | voiSay 3yt dor

CHAPTER 3. SCALABLE VIRTUAL WORLDS 76

Discussion

In this section, the functionality of our ARA algorithm was demonstrated with the
help of a set of experiments. We performed additional experiments with different
sizes of regional grid with varied distribution of players which identified that the
ARA algorithm is flexible and is capable of managing worlds of different sizes
with different player distributions. Other than this, they provided no further

improvements and are therefore not included.

3.2.4 An Abstract Communication Model

In this section, we present a simple communication model to show how cases ex-
cluded by the ARA algorithm introduce extra burden in terms of communication,
implementation, and user migrations. This model uses three metric parameters
for an assumed and restricted number of cases: total number of shared bound-
aries between aggregates and the interaction capacity among players of regions
in different aggregates; total number of isolated regions to manage; and number
of connections and disconnections for a user. The cases discussed in Figure 3.12
are used for evaluation and comparison purposes. The diagonal case is the only
excluded case for a tiled grid of four regions (based on an RSF value of 2) and
is discussed for fair evaluation. This model assumes that a player of a region in-
teracts with up to four neighbouring regions. Moreover, it considers the following
example mobility patterns for a player:

Casel: A player at the top left region moving row-wise with an alternate left-to-
right and right-to-left pattern visiting every region.

Case2: A player at top left region moving column-wise with an alternate top-to-

bottom and bottom-to-top pattern visiting every region.

The excluded cases are compared with equivalent aggregates having a maximum
number of possible regions, but actual scenarios might achieve better results. The
evaluation results are provided in Table 3.6 showing that these cases share more
boundaries and, therefore, increase inter-server communication among regions in
case of communication. Our method significantly reduces communication and in-

teraction compared with the excluded cases. Excluded cases greatly increase the

CHAPTER 3. SCALABLE VIRTUAL WORLDS 7

implementation complexity by managing different isolated areas than the equiva-
lent aggregates defined by the proposed mechanism. Furthermore, for the selected
mobility patterns, the number of connections and disconnections in excluded cases
are more than the aggregates achieved by our aggregation strategies, except for
the cases shown in Figure 3.12(a) and 3.12(b). They achieve a slightly better
number of connections/disconnections but share more external regions and re-
quire implementation of more isolated regions. This communication model, with
a small number of cases, shows that the proposed algorithm reduces complexity
and greatly reduces communication and implementation cost while achieving load
in as balanced a way as possible. This is simply a justification for excluding the

cases that will have a bad communication behaviour.

Serial | Case Number of | Number of Number of
Number shared isolated | disconnections
boundaries regions Casel/Case2

1 | Figure 3.12(a) 5 2 4/2
Proposed equivalent aggregates 3 2 3/3

2 | Figure 3.12(b) 6 3 6/2
Proposed equivalent aggregates 3 2 3/3

3 | Figure 3.12(c) 7 4 4/6
Proposed equivalent aggregates 4 2 3/3

4 | Figure 3.12(d) 8 5 6/6
Proposed equivalent aggregates 3 2 3/3

5 | Figure 3.12(e) 4 4 3/3
Proposed equivalent aggregates 2 2 2/2

Table 3.6: Evaluation summary of the abstract communication model
for cases provided in Figure 3.12.

3.3 Conclusions

This chapter examined the JOHNUM infrastructure (to achieve scalability) that
is a vital part of our contemporary infrastructure for the development of scalable
and consistent VWs. It is evaluated with a number of experiments, and compared
with the game middleware called Matrix. Simulation results show that JOHNUM

reduces the RMT levels and increases interactive user experience.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 78

It also examined the ARA algorithm to minimise resource utilisation and commu-
nication overhead, which achieves the best possible load distribution while main-
taining contiguous and regular spaces for assignments. It constitutes an essential
part of our JOHNUM infrastructure which handles its assignment component (also
called load distribution). Results from a large set of experiments show that our
load distribution algorithm is flexible and can be used with small, medium and
large scale VWs. It is seen that uniform load distribution is not always possible
due to player distribution, and to our proposed split and aggregation strategies.
In the worst cases, it examines the entire set of possible and favourable combina-
tions, although the proposed intelligent techniques greatly reduce the aggregation
process. In certain cases, it was observed that excluded cases can balance the load
better than the proposed strategies. However, they significantly increase commu-
nication between servers as well as complexity for handling isolated areas in an

aggregate.

Chapter 4

Consistent Virtual Worlds

This chapter presents a decentralised consistency management approach using a
constrained communication model based on the inherent properties of VWs. VWs
imitate the physical world where there is no direct effect from arbitrary events
on an entity, and entities are mostly affected by activities and events generated
in the neighbourhood. It uses a P2P approach in contrast with our JoOHNUM
infrastructure, which maintains a space in a hierarchical order [61]. The restriction
on P2P communicating servers makes it simple and potentially very scalable.
This chapter illustrates the relevant concepts, and proof-of-the-concept simulation
shows that it maintains the traditional causality constraint. It is based on our
published work [63,66] on this topic.

4.1 Introduction

Parallel and Distributed Simulation (PADS) environments and large scale VWs
normally utilise a number of resources to handle a vast amount of content and
a large number of interactive players. These infrastructures are normally dis-
tributed both at infrastructure and application levels. The scheme of partitioning
a virtual space and simulating it with a large number of resources makes these
world scalable but, at the same time, introduces key consistency issues. Consis-
tency management (alternatively called synchronisation or time management) is

the process of maintaining the temporal order of events to have a uniform view of

79

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 80

the environment. Therefore, scalable systems must carefully design a synchroni-
sation method by considering the application domain of the environment. Games
and special purpose VEs use a number of optimisation techniques and normally
compromise on consistency. However, VWs that claim to be a candidate for a
future 3D web need to accommodate a diverse set of applications including those
with a conservative nature. Therefore, using a relaxed synchronisation approach
might have potential problems to deal with VWs.

In this work, we propose a fully decentralised synchronisation approach for dy-
namic, and potentially hierarchical, models of scalable VWs with restricted com-
munication based on our JOHNUM strategies [61]. It is an integral part of our
contemporary infrastructure for scalable and consistent infrastructure. It is flexible
and considers the dynamic changes happening to the partitions that are handled
by the neighbouring servers. The basic aim is to incorporate conservative appli-
cations in VWs, thus making them much stronger candidate for the 3D web and
adapts the HLA TM for discrete event systems. The assumption of constrained
communication in conjunction with a fully decentralised approach potentially re-
duces complexity and delay with a decrease in the number of interacting servers.
It, therefore, improves interactive user experience. It is important to note that the
proposed synchronisation approach uses a flat infrastructure for direct communi-
cation between the servers that might be handling parts of a world at different
levels in a hierarchy, as shown in Figure 4.1 for a hierarchical model presented in
Figure 4.2.

4.2 The Proposed Synchronisation Approach

4.2.1 Introducing the time advance mechanism

The basic aim of this work is to obtain a consistent state of a given world. It
uses both flat (Figure 4.3 and Figure 4.4) and hierarchical models (Figure 4.5 and
Figure 4.6) to illustrate our decentralised approach and its relevant concepts. Fig-
ure 4.3, which represents a simple world of 1x4 regional grid, is used to introduce
the basic time advance mechanism used by our method. It shows two examples

with respect to the regions marked with a star to highlight their neighbouring

CHAPTER 4. CONSISTENT VIRTUAL WORLDS

81

)
(/

P N
[
AN

Figure 4.1: [Illustrating neighbouring regions for the selected central
regions in the hierarchy presented in Figure 4.2.

I I I I
[afledlcllo] [ellrfolnl

T T T T T T T — T T
Lalloflcllaleleileln]i] Ll e ffm |

Figure 4.2: Hierarchy of a dynamic hierarchical model based on
JoHNUM partitioning algorithm [61].

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 82

regions represented by circles. It gives an idea of the regions that must be con-
sidered for a time advance of a given federate. A circle highlights a federation
with respect to a federate with a star such as a federation controlled by federate
B having A and C as its neighbouring federates. Each named region provides its
current LBTS value, Lookahead value, the latest LBTS values of adjacent regions,
and the status of its Local Queue.

This mechanism considers the time information (current LBTS + Lookahead
value) of all the required federates to calculate a new LBTS value of a federate.
It exploits a similar approach to the basic HLA TM for discrete event simulation
systems. Figure 4.3 explains the time advance with an emphasis on executing
safe events for a federate B with an event A, from federate A with a timestamp
four. The current LBTS value of federate B is three and to process this event, it
calculates a new LBTS value based on the LBTS values of adjacent federates. The
LBTS is the smallest among a set of LBTS values of adjacent federates (main-
tained as NRecord) and the timestamp of the smallest event in the LocalQueue.
The new LBTS value in this case is four, which allows B to execute the event with

timestamp four.

LBTS:3 LBTS: 3 \ |LBTS: 3 7 |LBTS: 3 \
_________________ R T Lo == |
7

Lookahead: 3 [Lookahead : 3 \\ Lookahead : 3 / Lookahead : 3 \\
afFZ2ToTe A e [s Flop=-Fe-=-- |

NRecord: |6] \l NRecord: |6]6] Il NRecord: |6]6] \A NRecord: |8] I]

________ | preoss=ss|| flressss=s i

LocalQueue: | | N LocalQueue: [Aj]]» [LocalQueue: || N LocalQueue: | | //

~ ~ ~ -~

S - SN~ _ -

Figure 4.3: Illustration of the proposed synchronisation approach with
a constrained communication model.

4.2.2 Federate, Federation, and their time relation

The terms federate and federation are re-defined for a decentralised control and
a constrained communication model against the potential dynamic hierarchical
models. In this work, a federate is a server executing a region that could be
either a basic region or a bigger contiguous region. A federation is defined with

respect to a federate and is a collection of federates that share boundaries with it.

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 83

A federate can be involved in more than one federation.

Four different concepts are introduced that need to be carefully considered for
a mechanism using a fully decentralised synchronisation approach, due to their
potential impact on system performance. They are the basic time advance mecha-
nism, independent federations with no common federate, federations with a com-
mon federate, and temporarily blocked federations.

The time advance mechanism introduced in section 4.2.1 is the basic driving force
of our TM approach that uses a constrained P2P environment.

Our mechanism restricts the P2P infrastructure and there might be independent
federations with no common federates. Federations with no common federate,
therefore, have no direct effect on the time advance of each other.

Since a federate can be a part of more than one federation, there might be fed-
erations with common federates. However, this might, or might not, block the
federations sharing them.

The fourth concept is about federations that could temporary block the event
processing of each other. This situation occurs in those cases when an adjacent
federate for some reason is not up-to-date with other federates. However, being a
synchronous algorithm, our method has the potential to recover quickly from this
situation.

These cases are illustrated and explained in more detail later in section 4.2.4 with
the help of Figures 4.4(a)-(d) for flat models and Figures 4.5(a)-(c) and Figure 4.6
for hierarchical models. The next section discusses our TM algorithm, which
processes the events when they are safe and provides its LBTS to other federates

when it increases, even if no events are processed.

4.2.3 Time Management Algorithm

In general the federation associated with a federate must include all those regions
that might generate events which could directly affect the federate. Hence, each
federate participates in a number of different federations, and the functionality
of the RTT is distributed among federates. The concepts of LBTS and Looka-
head values are used to maintain the local causality constraint. Each federate in

the proposed mechanism processes its events when they are safe in consultation

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 84

with the adjacent federates. It is the central part of the mechanism and follows
a straightforward approach that is presented in Algorithm 2. Each federate also
provides its federate LBTS value to other federates in its federation and guaran-
tees never to generate events earlier than the federate LBTS. Hence, the local
LBTS is calculated as the minimum of the neighbouring federate LBTSs and the
earliest queued event (if any). The Lookahead is added to the local LBTS and
is then sent to its neighbours, if and only if, the LBTS increases. This definition
has a recursive nature and, especially at system startup, a number of updates
to the LBTS may occur before the local LBTS reaches the point where queued
events can be processed. A push strategy is used to send federate LBTS values to
adjacent federates with the aim of reducing potential overhead in communication
and minimising temporary blockage. A federate ensures that timestamped mes-
sages destined for a neighbouring federate are delivered before sending its LBTS
information thus guaranteeing that messages will never arrive in a federate’s past.
Being a conservative algorithm, it always considers a positive Lookahead value. It
achieves traditional guarantees and significantly reduces intermediate processing
elements (hops) and dependencies in hierarchical models by directly communicat-
ing with neighbouring regions.

Each federate executing Algorithm 2 allows a safe range of event processing based
on an LBTS value. It maintains a LocalQueue, LBTS and Lookahead values, and
an array NRecord that stores the latest LBTS values received from the adjacent
federates. A value in NRecord changes dynamically when a new LBTS value is
received. The main loop is executed while the simulation is running. To guarantee
that the events are processed in their temporal order, a new LBTS value is calcu-
lated at the start of each iteration. Later on, an event with the earliest timestamp
is processed if it is safe (when its timestamp value is less than or equal to the
LBTS), and might generate more internal and/or external events in response. It
schedules new events and repeats this process for the new earliest event. A simple
condition is used which never allows processing of an event with timestamp greater
than the current LBTS value. To simplify the consideration of transient messages
for an LBTS computation, a federate is forced to send any destined messages be-
fore sending its LBTS value. The LBTS computation in the proposed method

is straightforward in terms of transient messages that might require traversal of

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 85

Algorithm 2 Decentralised Synchronisation Mechanism

Require: LocalQueue, LBTS, Lookahead, NRecord
//Initialisations
//In general, the set of adjacent federates might change dynamically based on split and merge operations [61]
. int n = Number of adjacent federates
: int NRecord[n] // maintains the latest LBTS values for adjacent federates
: for (i=0;i< n;i++) do
NRecord[i] = 0 // changes dynamically with the LBTS value sent by adjacent federate i
: end for
¢ int LBTS = -1 //In order to force update the LBTS value
. int NewLBTS =0
: Insert initial event(s) to LocalQueue //used for synchronisation with other federates
//Main loop of program for safe processing
9: while (System is running) do
10: NewLBTS = Minzzl(NRecord[i}) //determines minimum of LBTS values of adjacent federates

0
11: if (LocalQueue has Events) then

00 =T U Lo D =

12: NewLBTS= Min(NewLBTS, Timestamp of earliest LocalQueue event)
13: end if

14: if (NewLBTS > LBTS) then

15: LBTS = NewLBTS

16: Send (LBTS + Lookahead) value to the adjacent federates

17: end if

//Check for an event that is safe to process
18: if (LocalQueue has Events and Timestamp of earliest LocalQueue event < LBTS) then

19: Process Event //Remove the event and may generate new internal and external events

20: Schedule internal and external events if any //External events are sent to adjacent federates via
messages

21: else

22: Go to Sleep

23: end if

24: end while

different components in traditional hierarchical systems. Time Management cal-
culations are simple and communication is localised. At times, there might be
no activity in some federates. The federate must maintain its LBTS value for its
neighbours but it could sleep until an event or updated neighbouring LBTS value
is received. When an LBTS update arrives, the federate updates the correspond-
ing entry in NRecord and wakes up the process if it is sleeping. Similarly, when
a new event arrives, it is added to the LocalQueue and wakes up the process if
necessary. The primary aim of this current work is to ensure a consistent world
with an emphasis on reducing communication delays. Other parameters, such as

QoS, will hopefully be investigated in future.

4.2.4 Illustrations

In this section, we illustrate our decentralised synchronisation method with the

help of a number of simple cases for the four concepts described in section 4.2.2

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 86

with the help of Figure 4.4 for flat models and using examples in Figure 4.5,
and Figure 4.6 for hierarchical models. These concepts are: basic time advance,
federations with no common federate, federations with a common federate (non-
blocking situation), and federations with temporary blocked situations. These
illustrations are based on random examples and do not provide the real state of
any system. Each region in these figures is divided into two sections with a dashed
line that represents the current LBTS value above, and LocalQueue below. A
federate with a star means that a concept is explained with respect to it, and
a circle highlights a federation with respect to a federate with a star. A static

Lookahead value of 1 is assumed for these illustrations.

e o =
N\

\
2 / 2 \ 3 / 2 \ 2 2 / 2 \
---------- o ERR ¥ e NN S S XSS SR § R S
Bl N B4l T A N e

N\ 7 |/
/ 2 N2 ! 2 \ 2 { 3) 2 7 3 \
! *—————I‘r -------- hpe=== K-) ---------- p===s L P L
\ 1313 1B 131 / 1314] |4(4| N 1T 14| /
N 4

Figure 4.4: The illustration of different concepts used with our de-
centralised synchronisation approach. (a) The basic time advance. (b)
Independent federations without a common federate. (c) Federations
with a common federate (a non-blocking situation). (d) Federations
with temporary blocking states.

Flat Models

The four concepts for flat models are illustrated with the help of 1x3 and 1x4
regional grids that are presented in Figure 4.4.

Figure 4.4(a) explains how the basic time advance executes safe events for a fed-
erate marked with a star. Its current LBTS value is two and wants to process
an event with timestamp three. A new LBTS value is computed that is smallest
among a set of LBTS values received from the adjacent federates and the times-

tamp of the smallest event in its LocalQueue. The new LBTS value in this case

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 87

is three, which allows the federate to execute the event with timestamp three.
This method does not impose global synchronisation and, therefore, the federa-
tions which are far apart from each other take independent decisions for their time
advance, as shown in Figure 4.4(b). The current LBTS value is two for both the
federates each marked with a star in these cases. The new LBTS values are three
for both the federates, which allows them to process their events with timestamp
three.

Federations having a common federate might be able to carry on with their process-
ing without blockage. Figure 4.4(c) presents a case where two federates re-calculate
their LBTS values to three and safely process their events with timestamp three.
In certain situations, a time advance might be temporarily blocked because of
adjacent federates with smaller LBTS values, as shown for the marked federates
in Figure 4.4 (d). Since each federate is continuously trying to advance its time,
these states are resolved quickly. In this case, other federates process their smallest
timestamped events, thus allowing the blocked federates to process their events

once updated LBTS values have been sent.

Hierarchical Models

The concepts for the hierarchical models are explained with the help of a system
with two repeated splits (a 2x2 split, followed by a 2x2 and a 3x3 further split for
two regions). However, each case considers a different system state for illustration
purposes. It assumes that each federate (server) is managing a basic unit region.
Although the models are hierarchical, the proposed method considers them as a
flat model and, therefore, handles them the same way as flat models.

Figure 4.5(a) shows that the federate marked with star checks against the condition
that time-to-advance must not exceed an LBTS value and, therefore, a new LBTS
value is computed with the help of adjacent federates. It gives a new safe bound
of three and allows the federate to execute the event with timestamp three and
update its CurrentTime. Figure 4.5(b) shows that two federations far apart from
each other take independent decisions for their time advance. Similarly, federations
having a common federate might be able to advance their logical times without

blocking each other, as shown in Figure 4.5(c). Figure 4.6 shows two situations

88

CHAPTER 4. CONSISTENT VIRTUAL WORLDS

Vv (®) :10] spppowt [eotypIeIaly Ul yoroIdde UOIJRSTUOIYIUAS PISI[RIJUSISD 9] JO UOTJRISTI[]

"9)eIopa] UOWWOD B SULIRYS SUOI}RIdPI]
omJ, (9) ‘10130 yoee woly jrede suorjeIapaj om) Jjo uoreinduoo awry juepuadepu] (q) :@durAPR SWII) ISR

(®)

16§ 2an31q

vl Trlel I Iyl iZ0] I vl Irlel Il
vl £ z [vl £ z [€ z €
Irl
vl _m_m_] Ivl Ivlel 1l Ivl Ivlel]
z 14 € z z € z z €
[
£ lel Iyl i€l € lel Ivl i€l el Ivl Ivlel
¢ z - z z £ z z ¢ z
vl Irlel Ivl Ivlel vl Irlel
................] i - i T — "
€ z g z € z
Irlel vl llel Iyl Ivlel Irlyl
““““““““““““““ z R e z e e N
z € . e € z €

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 89

1414 13141

14141 14l

Figure 4.6: Illustrating temporary blocking states for the decen-
tralised synchronisation method.

where the time advance is temporarily blocked because of adjacent federates with
smaller values. They are quite common in decentralised environments and since
each federate is continuously advancing its time, these states are expected to

resolve quickly.

4.3 Evaluations and Comparisons

4.3.1 Simulation Setup

To demonstrate the effectiveness of the proposed mechanism, we have simulated
the temporal order of the events for a simple scenario presented in Figure 4.7.
It also shows the flow of events for a simple application that could violate local
causality where agents in regions raise flags in response to other events and an
observer should only see certain combinations. The scenario is that Region A
raises a flag. After delay, region B copies A and, later, region C copies B. Region
D observes both B and C and should never see a flag raised in C before B. However,
if messages are delayed and time management is not enforced correctly, there is a
potential threat to correct synchronisation.

Region A is only adjacent to B and has no direct impact on the activities of C and
D. The purpose of its inclusion is to show that the proposed mechanism need not
consider events from arbitrary regions. The aim of this simulation is to determine

whether the proposed scheme maintains the local causality constraint. The pro-

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 90

N

A

Figure 4.7: The simulated world and events flow model.

posed method considers the entire set of adjacent regions (hence, D considers both
B and C) and, therefore, achieves a consistent state. However, the simulation may

fail to reach a consistent state if a potential region is ignored.

4.3.2 Simulation Results

To evaluate whether the system works, both synchronised and non-synchronised

scenarios are simulated in this section.

The Synchronised Scenario

A simulation run of the proposed method is presented in Figure 4.8. It assumes an
initial value of —1 for the LBTS values, and a constant Lookahead value of 3 for
each region. The initial values of NRecord (holding the LBTS values of adjacent
regions) are all zero. The local queue of region A has an event with timestamp
value of one (represented as [;) which triggers the simulation while other queues
are initially empty. The events are marked as Xiimestamp, Where X is the name of
a region and the value of a timestamp is the sum of LBTS and Lookahead of a
federate. An event generated in this simulation aims to tell the adjacent regions
that it has raised its flag. The LBTS updates are sent to neighbouring regions
via messages that might have different random delays. A newly generated event
is placed in a corresponding Event Generated queue and sent to the adjacent
regions. When these events are received by the corresponding regions, they are
placed in local Queues and processed in their temporal order. A processed event at
a given time is shown in bold and enclosed in square brackets. An LBTS value is

calculated based on the values in NRecord that is updated each time a new LBTS

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 91

for a region is calculated. Since messages between a pair of regions are delivered
in sequence, the correct temporal order is maintained at any given time. A region
updates the corresponding status as a flag set event is processed by a region. The
system shows most of the simulation steps except for some time updates, as shown

in Figure 4.8 and Figure 4.9.

Region A Region B Region C Region D (Observer)
Event (s) Event Event (s)
Generated Generated Generated
-0 - 0 0 0 -
0 0 0/0 1 Empty 0 0[0,0,0 Empty |Empty 0 00,0 Empty |Empty 0 0[0,0 Empty
1 1 13 [11] Ay 0 00,3,3 Empty |[Empty 0 03,3 Empty |Empty 0 03,3 Empty
2 1 33 Empty |Empty 0 03,33 Empty |[Empty 0 33,3 Empty |[Empty 0 33,3 Empty
3 1 33 Empty |Empty 0 33,3,6 Empty |[Empty 0 33,6 Empty |[Empty 0 33,3 Empty
4 1 33 Empty |[Empty 0 33,6,6 Agq Empty 0 33,6 Empty |Empty 0 33,6 Empty
5, 1 33 Empty |[Empty 1 404,6,6 [A4] B; 0 33,6 Empty |[Empty o 33,6 Empty
6-11! 1 919 Empty |Empty 1 6(9,6,9 Empty |[Empty 0 6(7,6 Empty |Empty 0 6(7,6 Empty
12, 1 99 Empty |[Empty 1 69,6,9 Empty [Empty 1 717,9 [B7]l [Cio o 6/7,6 Empty
13 1 919 Empty |Empty 1 9/10,9,9 Empty |[Empty 1 77,9 Empty |Empty 0 77,9 Cio
14 1 919 Empty |Empty 1 9/10,10,9 [Empty |[Empty 1 99,9 Empty |Empty 0 7|7,10 Cio
15-17 1 12|12 Empty |Empty 1 1012,12,10 [Empty |Empty 1 10[12,10 Empty |Empty 0 7|7,10 Cio
18, 1 1212 Empty |[Empty 1 10/12,12,10 [Empty |[Empty 1 10/12,10 Empty |Empty B 79,10 [B7], C10
19, 1 1212 Empty [Empty 1 10/12,12,10 [Empty |[Empty 1 10/12,10 Empty |Empty C 10/12,10 [C10]

Figure 4.8: Illustration of decentralised synchronisation method for a
synchronised scenario.

At the start of the simulation (see Figure 4.8), a number of LBTS updates messages
are processed before the initial event I; at region A is processed. It generates event
Ay for region B with timestamp four which is received at step four. It updates
its LBTS value and sends a message to region B to update its NRecord value.
However, region B has to wait until time update messages are processed, thus
allowing event A, to process at step five. Region B generates event B; for region
C and D. After each region generate an update message, it sends an LBTS update
message which is processed by corresponding regions in temporal order. The
event By arrives at region C at step twelve, but it is received at region D at step
eighteen, even later than the response event C'o generated by region C for D (which
arrives at step thirteen). However, results show that the proposed mechanism does
not allow D to process event Cjy until after it receives and processes B7;. This

demonstrates that the events are processed in their temporal order.

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 92

The Non-Synchronised Scenarios

The same specifications are used to simulate a non-synchronised approach which
shows that it violates the local causality constraint. Two different scenarios are
possible: in the first scenario, D considers only its own time information; but
in the second scenario, D considers C (but not B), in addition to its own time
information. The simulation result for the first scenario is presented in Figure 4.9.
It is clear that at step thirteen, event ('}, is processed before the arrival of event
B7; hence, a causality violation has occurred. The second scenario also violates

the temporal order giving similar behaviour and is, therefore, not included in this

work.
Region A Region B Region C Region D (Observer)
NRecord |Local Event (s) NRecord |Local |Event (s) NRecord |Local |[Event (s) NRecord |Local
Step |Flag LBTS Queue |Generated |Flag |LBTS|A,C,D Queue |Generated | Flag LBTS B,D Queue |Generated [Flag |LBTS B,C Queue
1 0
o 1 1 [11] Aq o -1 Empty |[Empty o -1 Empty |Empty o -1 Empty
1-3] 1 1 Empty |Empty 0 -1 Empty |[Empty 0 -1] Empty |Empty 0 -1 Empty
4 1 1 Empty |Empty 1 4 [Ag] By 0 -1 Empty |Empty o -1 Empty
5-11] 1 1 Empty |Empty 1] 4 Empty |[Empty 0l -1 Empty |Empty 0 -1 Empty
12 1 1 Empty |Empty 1 4 Empty |[Empty 1 7 [B7] Ci0 o -1 Empty
13 1] 1] Empty |Empty 1| 4 Empty |[Empty 1 7 Empty |[Empty C 10 [C10]
14-17 1] 1 Empty |Empty 1 4 Empty |Empty 1 7 Empty |[Empty C 10 Empty
18, 1] 1] Empty |Empty 1 4 Empty |Empty 1 7 Empty |[Empty B| 7 [B7]

Figure 4.9: Illustration of a simulation run for the non-synchronised
approach.

A Non-Restricted P2P scenario

Simulating a P2P environment with no restrictions on the number of federates
considers the entire set of regional LBTS values for the LBTS computation of
a region which introduces longer delay in the computation of a new (effectively
global) LBTS value. In this approach, region A is also considered for LBTS
computations by C and D, even though it has no direct impact and significantly
increases exchange of messages over the network. A region has to wait for A’s time
advance to proceed. The P2P approach achieves the same results as the proposed
method, but it has bottlenecks for very large simulation environments. It also
increases computation as well as communication overhead (the basic management

issue in P2P systems). Further investigations on this issue are our future work.

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 93

Summary

In summary, all regions affecting a federate must be part of its federation, but no
additional regions need be included. Based on the simulation results, it can be seen
that the proposed method maintains the local causality constraint. It considers a
limited number of regions and is, therefore, more scaleable and efficient compared
with traditional centralised approaches. It potentially reduces communication
overhead compared with P2P environments. In our examples with small numbers
of regions, local calculations are based on a large proportion of the total regions
but, in a large scale simulation environment, only a very small proportion of regions
would be involved in each calculation, making the proposed method flexible and

scaleable.

4.3.3 An Abstract Model for Comparison

Our synchronisation mechanism considers a complex hierarchical model (see Fig-
ure 4.2) at a single level, as shown in Figure 4.1 based on our previous work [61].
A number of parameters might be used to compare it with traditional hierarchical
approaches with centralised and distributed control. These parameters include
dependencies, number of hops, complexity, delay, and scalability. It is worth
mentioning that some of these parameters are dependent on each other. The
dependencies among the components of hierarchical models and the intermedi-
ate processing points are the basic reasons for an increase in complexity, longer
delays, and poor scalability. The traditional hierarchical approaches with dis-
tributed control are comparatively scalable and easy to implement, but they need
to keep their interfaces as simple as possible. However, when used with conserva-
tive approaches, the dependencies among different components at multiple levels
(as discussed by Cramp et al. [41]) introduce longer delays and are therefore not
very scalable, though better than centralised approaches. A message in a hierar-
chical structure has to pass through a number of hops, thus not only increasing
complexity but also delays. Our decentralised mechanism avoids going through
intermediate points by adopting a direct communication between interacting fed-
erates. Similarly, the federates cannot proceed further due to global dependencies

among the components at different levels in existing mechanisms, thus degrading

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 94

the overall interactive experience. This method uses a restricted P2P model thus
solving the management and communication issues. It allows different federates
to process and advance their time without waiting for others having no impact on

them. It has no central point failure issues compared with centralised approaches.

Serial Levels in | Algorithm Number | Complexity | Delay | Blocking | Scalability
Number | Hierarchy of hops Levels

1 2 | Hierarchical 3 4xX 4XY Fully Poor

Fully Decentralised 0 X Y | Partially Good

2 3 | Hierarchical 5 6xX 6xXY Fully Poor

Fully Decentralised 0 X Y | Partially Good

3 4 | Hierarchical 7 8xX 8xXY Fully Poor

Fully Decentralised 0 X Y | Partially Good

Table 4.1: A abstract comparison of hierarchical methods with our
decentralised synchronisation mechanism.

In this work, an abstract model has been adopted to compare the decentralised
approach with existing hierarchical models while detail analysis is our future work.
Table 4.1 presents the details of comparison for three different random hierarchical
models of depth two, three, and four. It is important to note that this comparison
is based on a world with a global consistent state. The traditional approaches use
the maximum number of three, five, and seven hops (intermediate points) corre-
spondingly compared with no hops involved in our method. Our method involves
only a single step to communicate with neighbours. Based on the number of hops,
we believe the complexity and delay are increased significantly. If this approach
has complexity X and Delay Y, then traditional approaches have complexity =
(X x number of links traversed) and delay = (Y x number of links traversed) in
each case. Similarly, this mechanism is partially blocked compared with current
approaches that might be blocked completely for certain decisions, such as a time
advance. We believe that the proposed approach is potentially more scalable than

the traditional schemes and is capable of resolving the blocking state efficiently.

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 95

4.4 Global Consistency in Virtual Worlds

Our current decentralised synchronisation approach employs locality and basically
targets the most general category of virtual world applications that have only lo-
cal effects. It provides global consistency for these applications but restricts the
application domain of the virtual worlds. If we allow activities spanning arbitrary
federates, there is no guarantee of global consistency. In this section, we address
the issue of maintaining globally consistent virtual worlds, and how to accom-
modate the complete set of possible applications while avoiding using a global
strategy. It briefly explores the current mechanisms using local consistency to
achieve global consistent states of their corresponding applications. Our current
approach is illustrated and its limitations are identified with the help of examples
for the extended set of applications. We then categorise the applications of vir-
tual worlds and suggest a possible dynamic adaptive strategy to obtain a global

consistent state as an extension to our current mechanism.

4.4.1 The Literature

In this section, we present the existing methods for a diverse set of applications and
explore the techniques they use to achieve global consistency. These applications
include Reasoning [52], Constraint Networks [218], Learning [245], and Diagno-
sis [123]. The Literature shows a large set of applications that have their unique
requirements and therefore a number of techniques are presented to reduce the
computation, communication, and implementation overheads. The most widely
techniques exploit the concept of locality that is used to determine the level of
consistency for obtaining a global coherent model.

Dechter [52] presented a relationship among the size of variable domains, the set of
constraints, and the level of local consistency required to obtain global consistency
for reasoning tasks involving consistent databases called constraint networks. Ac-
cording to this author, all realistic models of human reasoning use the concept
of locality such as conceptual memories where the activity spreads among neigh-
bouring entities. Locality is used in reasoning to enforce local consistency that
simplify the task to get a global consistent model of data. The conditions that

help to achieve global consistency are based on the topological properties of the

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 96

network representing the interactions among data items. A number of theorems
were developed to show the achievement and correctness of globally consistent
constraint networks. Furthermore, a number of different relevant examples were
presented to illustrate their work. Waltz [225] presented a scene labelling scheme
that often obtains global consistent objects by executing only neighbouring edges
and vertices in each step. Beek et al. [218] further expanded the constraint net-
works by using two contemporary properties (called tightness and looseness) on
restrictiveness of constraints in a network. According to them, using constraint
tightness and level of local consistency guarantee that a solution can be found in
a backtrack free manner. Constraint looseness is used to determine the level of
local consistency of a network to achieve a global consistency. They explained
and evaluated their work also with another type of consistency called relational
consistency.

Learning from labelled and un-labelled data is another general problem that em-
ploys local consistency. The labelling process is propagated through the neigh-
bouring points until a global state is achieved. This method is often called semi-
supervised learning which requires a sufficiently efficient classifying function for a
structure or model that is collectively revealed by both labelled and un-labelled
data. The Literature shows a number of semi-supervised learning that depend
and differ by the effectiveness of the classification function. Zhou et al. [245] pre-
sented an algorithm to smoothly label the un-labelled points. According to them,
the key to semi-supervised learning is the prior assumption of consistency, which
could be either local or global in scope. The former tells that the nearby points
are likely to have the same label, while the latter means that points in same struc-
ture such as a cluster typically refers to the same label. They adopted the first
approach, where each point iteratively forwards its local information neighbours
until a global state is achieved. They evaluated their approach using a number of
classification problems and demonstrated the effectiveness of un-labelled data in
learning process.

Diagnosis is another problem that is computation intensive and local consistency
is used to reduce the computation overhead. John et al. [123] presented a mecha-
nism that uses local diagnosis for discrete event system modelled using automata.

However, in local consistency, the views need to be consistent with each other.

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 97

According to them, local consistency does not ensure global consistency and the
methods to avoid global computations do not scale well. However, they argue that
the complexity of the algorithms drop when tree structures are used that help in
achieving global consistency. They therefore presented a junction tree structure to
ensure global consistency where the connections between components form a tree

which is similar to the techniques exploited by the current hierarchical approaches.

Based on the above discussion, we believe that if only local causality is maintained
and no arbitrary events are allowed such as in constraint networks, the system state
is always consistent with an appropriate level of local consistency. Most of the
activities in virtual worlds are affected by local events, but there exist a number of
activities that might be initiated from an arbitrary location and local consistency
is unable to maintain global consistency in a virtual world. However, we believe
that a global strategy is not required for virtual worlds that is computationally
intensive and therefore other adaptive methods are required to cope with the
events generated from arbitrary locations for obtaining global consistency.

We believe that an extended adaptive technique has the potential to obtain a
coherent state of the virtual world by adding the additional federate(s) involved
in an activity between federates far apart from each other in the adjacency list
that maintains the neighbouring federates. In the next section, we first explore
the level of consistency and the limitations of our approach followed by a possible

solution to overcome these issues.

Figure 4.10: [Illustrating the neighbouring regions in a 1-dimensional
grid.

To illustrate the time advance and the causality management of our system, we use
Figures 4.10-4.14. The following description is applied to these figures presented

in a two dimensional space showing the time information of different federates

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 98

at different simulation steps called time steps. Labels A, B, C, D and E on the
Federates axis are representing the federates in a 1-dimensional grid of regions that
are shown in Figure 4.10. The Time Steps axis represents valuable simulation steps
but they are not covering each and every point in simulation. Each row labelled
with a name (of a federate) represents the current time during the simulation at
different steps during the simulation. Each circle provides the current time during
the corresponding simulation step and is obtained by determining the minimum
of the LBTS values of the neighbouring federates. The LBTS value is the current
time plus the Lookahead value which is assumed to be a static value of 3 for
these illustrations. An arrow is representing the messages sent to the adjacent
federates carrying the LBTS values and are sent only when the current LBTS
value is increasing. The solid arrows show that the messages are received in time
while the dashed arrows represent delays in messages delivery. The dashed arrows
are then forwarded with solid arrows to the time steps where they are received

and processed.

4.4.2 Consistent Virtual Worlds: Examining our Current
Method

Our current consistency approach advances the local time of each federate only
with respect to the neighbouring federates and achieves a consistent state of the
whole world. It has no inconsistencies because it does not allow any arbitrary
events. Theoretically, the system also progresses in a timely manner as shown in
Figure 4.11 if no delays are introduced in delivering the messages. It not only
obtains a consistent view of the system with respect to the neighbouring federates
but also to the non-neighbouring federates. A message generated at any federate
for any other federate in the system is received in future and the whole system is

globally consistent.

In practice, however, this system like most of the network systems also suffers
from network delays. Due to maintaining the temporal order with respect to only
the neighbouring federates, it is unable to stop progressing the time advance of

non-neighbouring federates immediately when a federate is unable to advance its

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 99

Federates

Time Steps

Figure 4.11: Time advance (theoretical) using our decentralised time
advance mechanism with no delays.

Federates

Time Steps

Figure 4.12: Time advance using our decentralised time advance
mechanism with delays for a world of 3 federates.

time due to certain delays. However, the system propagates this blockage towards
non-neighbouring federates through neighbouring federates iteratively. The feder-
ates at long distance from each other update their time information and process
their local events independently but suffer from the propagation of delays. How-
ever, it is demonstrated that the system does not lead to a global lockup at once
and it has the potential to resolve these situations quickly. These situations are
explained with the help of Figures 4.12-4.14 for the time advance mechanism using
environments having three, four and five federates correspondingly. The basic aim
of different scenarios was to see how the blockage propagates and up to which
level the local consistency allows federates far apart from each other to proceed

independently in time. Figure 4.12 is unable to show the time advance (for both

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 100

the federates named A, and C) more than once due to the fact that they are
directly adjacent to federate B which is unable to update its current time. It is
clear that both A and C update their time to three at time step two and then
wait until step five, where they update their current time to six after resolving the
blockage for federate B at step four. Federate D in Figure 4.13 and federate E in
Figure 4.14 advances their corresponding time twice and thrice correspondingly
before they enter into blocking state with respect to federate B in both cases. It is
interesting to note that federate D and E are at distance two and three levels from
federate B that is unable to update its time. A federate at further distance has
more independence in advancing its time which equals the distance between the
federates. However, the system has potential to resolve these situations quickly,
but requires the system to propagate the updated information iteratively as shown
in Figures 4.12-4.14.

Federates

Time Steps

Figure 4.13: Time advance using our decentralised time advance
mechanism with delays for a world of 4 federates.

Since, in our current method, each federate synchronises itself with neighbouring
federates, it maintains global consistency for the activities having only a local ef-
fect. However, Figure 4.15 provides a few examples showing that it violates the
causality for applications allowing arbitrary events. Figure 4.15 is an extended
form of Figure 4.14 and use an additional type of arrows (coloured blue) to repre-
sent different events. It presents three cases to illustrate the potential violation:

federate B sending events to federate D during time steps three to five; federate A

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 101

|- O- O
Ao o o¥oTo0
.
picietstotee
OO

Federates

Time Steps

Figure 4.14: Time advance using our decentralised time advance
mechanism with delays for a world of 5 federates.

sending events to federate E during time steps four to six; and federate C sending

events to federate E during time steps four to six.

Example 1: The following steps illustrates the first case:

e An event generated at federate B at time steps three, four or five is assigned
a timestamp three (current time which is zero plus the lookahead value 3)

and is sent at the same time step.

e The recipient federate D receives the event in a successive time step which
means that an event is received at time step four if it was generated at time

step three.

e The current time of federate D is six in all the three cases and it is clear that

these events arrive in past showing the violation of the causality constraint.
Example 2: The following steps explains the second case:

e Three events are generated and sent by federate A at time steps four, five

and six for federate E with a same timestamp value of six.

e Federate E receives these events at time steps five, six and seven correspond-

ingly.

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 102

5
“:
t‘!’
5
Yo
to
o
o
S

Time Steps

Figure 4.15: Illustrating the violation of causality for activities span-
ning arbitrary locations.

e The current time at federate E is nine during these time steps and it shows

that the events are violating the causality constraint.

Case 3 is similar to Case 2 and is therefore not further explained. Based on these
facts, we suggest that an extension to the current method is required for accom-
modating the additional applications (such as virtual phone calls) that has causal
effects beyond the adjacent federates. However, we believe that a global strategy
is not a viable solution especially for a very scalable system due to the poten-
tial computation overhead. In the next section, we suggest a dynamic adaptive

method to overcome these issues.

4.4.3 Possible Extension to our Consistency Method

The overall activities in a virtual world can be classified in to three different
categories: activities based on locality that have an effect on activities in the
neighbouring regions only; activities that pass through the neighbouring regions
towards non-neighbouring regions such as aeroplane or an avatar flying through a
space; and activities that have an effect on activities in an arbitrary federate such

as a virtual phone call or an avatar teleporting from one region to an arbitrary

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 103

region.

The first category covers the majority of the applications, and are managed well by
our current consistency mechanism giving a global consistent state of the worlds.
The activities in second category are also managed by our approach, as the objects
have only causal effects towards neighbouring regions. The concept of presence of
moving objects in the neighbouring regions is exploited to synchronise the object
movements with the local and adjacent federates thus always giving a global con-
sistent state.

To include the activities in third category, we need to extend our current approach.
Since, local approach is unable to maintain global consistency, and global strategy
is very expensive in terms of computation, communication, and implementation
overheads, we propose a dynamic adaptive strategy to accommodate these ap-
plications. We can easily extend the current consistency approach by allowing
each federate to include the other federate involved in an activity in this category
to its list of neighbouring federates. Similarly, these federates are removed from
the adjacency lists when the activity is over such as a successful termination of
a telephone call or a teleport. The component of our method dealing with the
neighbouring federates is highly dynamic that reacts to both split and merge op-
erations. However, due to the potential differences in local times, there might be a
delay until the slower federate in time reaches a synchronised state with a federate
faster in time. We believe that this extension has the potential to achieve the

required level of consistency that ensures global consistency for virtual worlds.

In future work, we intend to perform a number of different experiments to evaluate

the correctness of the existing and extended infrastructures.

4.5 Conclusions and Future Directions

This chapter presented a simple, but flexible, decentralised synchronisation in-
frastructure and illustrated it with the help of both simple flat and hierarchical
scenarios. It is scalable and allows a federation to take independent decisions with

distributed control among federates for direct consultation with the interacting

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 104

federates. It depends on the realistic assumption that events can only affect a
finite and known set of adjacent regions. Simulation results supported our claim
that it achieves the correct temporal ordering for randomly generated events. Fur-
thermore, an abstract model is used to compare it with traditional approaches. It
is clear that the number of hops, and thus complexity and delay in existing mech-
anisms, rise significantly with an increase in the levels of a hierarchy. However,
these parameters have no impact on the proposed approach.

Further simulations are required to verify that the proposed system works with
and have potential to quickly resolve the temporarily blocking states and delays
compared with the traditional hierarchical infrastructures. Further simulation and

implementation of this work is our future work.

Chapter 5

OpenSimulator: State-of-the-Art

and Proposed Extension

This chapter examines the features and current architecture of an open source
VW development framework called OpenSimulator (OS) [177] with reference to
Second Life (SL) architectures. The key architectural limitations in OS architec-
ture are highlighted and an extended architecture is proposed to cope with these
limitations. The basic purpose of this extension is to make the OS scalable by
introducing dynamic and fair distribution of load based on spatial partitioning of
a virtual space. It also incorporates a consistency model based on a constrained
communication model. Modules incorporating these functionalities are explained
in terms of our previous work [61,63]. It illustrates the traditional spatial parti-
tioning methods for adding a new Simulator (Sim), followed by an introduction to
our contemporary approach to overcome the limitations of traditional methods.

This chapter is based on our previously published work [67] on this topic.

5.1 Background

Second Life (SL) is the state of the art in VWs and has gained much attention
from end users. Due to its tremendous popularity and growth rate, the basic
architecture started experiencing instability issues right from its inception due to

central storage of data. To avoid these issues, the Architecture Working Group

105

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 106

(AWG) [196] at Linden Lab was given the task of designing a new architecture and
protocols to open up the SL Grid (SLG) to allow others to run parts of the grid.
It scales well in terms of content by adding more Sims, and it significantly reduces
messaging overhead [189,195]. However, it suffers from both over-provisioning
and under-provisioning of resources because it statically assigns parts of the world
to different resources and lacks dynamic capabilities to manage resources. The
major issues with SL include increased latency and client crashes. Inventory loss
is an even more disturbing fact that happens without any warning, where an
inventory [118] is the collection of all the items a user owns or have access to.
Similarly, it does not incorporate the conservative TM approach.

SL was the first option to work with for the prototype development of the current
work; however, only the source code of client software is available for further de-
velopment. Since the work in this thesis deals with technical aspects of underlying
infrastructures, OS being a complete and independent open source implementa-
tion of the AWG work is used to develop a prototype. It has similar functionality
and cope with the limitations of SL. Like SL, OS has no capabilities to scale
dynamically, though it allows an arbitrary number of regions to be hosted by a
single simulator process. However, its modular structure can easily be exploited
to incorporate these features. It allows others to host parts of the world and in-
tegrate with a global grid. Similarly, it also allows organisations and individuals
to host their own private grids, and it is supported on both Windows and Linux
platforms.

In this section, therefore, SL architectures and their components are explored to
illustrate the way a viewer interacts with either a SL or OS world, before exploring

and extending the OS architecture.

5.1.1 Second Life (SL)

SL is an environment that allows individuals and organisations to develop their
content in a 3D format over a purchased piece of land. SL is a MUVE which is
not strictly a game because it lacks pre-defined rules. It is a popular virtual space
for meeting friends, doing business, and sharing knowledge [201]. Currently, many

applications are deployed in SL, broadly belonging to Education, Arts, Science,

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 107

Work Solutions, Religion, Embassies, Competitive Environments, and Relation-
ships [137]. Every activity is regulated by an evolving framework laid down by
Linden Lab [95]. IBM has been working together with Linden Lab to achieve the
goals of 3D web by extending the current web to incorporate a 3D experience. The
whole space is divided into named 256m x 256m (65,536 m?) areas called regions.
Each region is hosted by a single Sim process on a dedicated core of a multi core
server; however, each Sim can possibly host multiple regions (up to a maximum of
4). Each server runs scripts as well as providing communication between avatars
and objects in a region [137]. A script [194] adds behaviour to an object and
an avatar [10] is a 3D character representing a user in a VW. Each region can
handle up to 100 avatars and 15,000 primitives (prims) [195]. A prim is a single
part object, such as a box or cylinder, which is used to create multipart objects in
VWs [182]. These regions are combined into estates based on a particular common
set of rules, such as banned users and sun position. An estate is a group of private
regions belonging to one resident. Each region on a grid must be part of the SL
mainland (the Linden-designed continents) or privately owned estates on servers
operated by Linden Lab [195]. There are many companies that sell/rent private
estate land in SL which range from individual residents renting a single parcel to
major companies with dozens of privately owned Sims [187]. A parcel is a divided
part of a region which could be as small as 16m? (4mx4m) and as big as the entire
region [195]. SLG is the underlying infrastructure hosting SL. It refers to an inte-
grated system that provides a networked collection of servers arranged in the form
of a rectangular mesh. Some of these servers run Sims representing the land while
others manage different independent, but integrated, services including presence,
inventory management, and asset store. SLG enables users to create content and
communicate, collaborate and engage in communal services [121,195]. It restricts
the connections of each server to up to four neighbouring servers. Linden Lab

runs several grids for internal and external testing [195].

5.1.2 The Current Architecture

The current architecture of SLG is shown in Figure 5.1(a) [199]. It shows that

a viewer interacts with a Sim that is hosted on a server, being part of the grid

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 108

simulating a square region. Each Sim interacts with a centralised database and

acts as a proxy that tracks the movements of avatars [199].

Second Life Simulators Agent Domain

HE0EE S

c] A E E]
|

£l k|
! .
Viewer
Viewer / \\
L L B E |
p ;
L"' — — Region Domain

(a) (b)

L

Figure 5.1: The SLG architectures with an interactive client [199]:
(a) the existing architecture; (b) the extended architecture.

The huge popularity of SL resulted in frequent system crashes due to the use of a
central database. Similarly, the current architecture is not capable of sustaining
itself against the initially envisioned statistics [197,198]. Furthermore, to make
the VWs as ubiquitous as email and the web, the AWG at Linden Lab was given
the task of extending the current architecture of SLG [196]. The basic aim is to
develop protocols that will open up the SLG to others to run parts of the grid,

including an open grid protocol for interoperability of these virtual spaces [167].

5.1.3 The Extended Architecture

AWG proposed an extended architecture comprised of two domains: an Agent
Domain (AD) and a Region Domain (RD). The AD handles agents and the RD
manages regions. An agent is the internal representation of a viewer [53]. These
domains work together to realise system functionality [199]. A successful login and
operation requires the viewer to communicate with both domains, as shown in Fig-
ure 5.1(b). The login process is illustrated in detail with the help of Figure 5.2(a)
and Figure 5.2(b).

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 109

The AD manages user login and stores profile and inventory data. It comprises
three components called services, hosts and stores which are reached by arrows
named 1, 3, and 2 correspondingly, as shown in Figure 5.2(a). Agent services are
instantiated when required and handle stateless information such as profiles [54].
This information can be cached and publicly accessed through web services [54].
Agent hosts handle logged-in agents and their sessions. The information it man-
ages includes avatar location, and the status of an agent and its friends [54].
Agent stores maintain the actual data in databases such as inventory and profile

data [54]. These components can be used redundantly as required.

Agent Domain

E i [
i g E
d

Agent Domain

B B |
[t [
3

3
i EE
Region Domain

(a) (b)

Viewer

Figure 5.2: Process of a viewer login to: (a) an Agent Domain
(AD) [54]; (b) a Region Domain (RD) [163].

The RD deals with regions and follows the same architecture as an AD [163]. It
is also comprised of services, hosts, and stores that are also reached by arrows
named 1, 3, and 2 correspondingly, as shown in Figure 5.2(b). Region services
handle stateless public information about regions, such as avatar positions, and
object and parcel information. Region hosts are the servers (Sims) managing
parts of the virtual space. They provide in-world avatars and objects interaction
while taking data from the region stores. A region is unavailable when its host is
down [163]. Region stores retain the actual regional data about objects, regions

and parcels [163].

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 110

The login process takes the following steps to login a client to an AD (see Fig-
ure 5.2(a)) [54]:

Ll

the viewer sends login information to the agent service;
the agent service queries agent store for validation;
the agent service asks an agent host to initiate a session and finally;

the agent host establishes a connection with the viewer.

To complete the login process and obtain region data, the following steps login a
client to an RD (see Figure 5.2(b)) [163]:

1.
2.
3.

the agent host contacts the region service;
the region service queries region store to obtain region information;

the region service contacts region host and asks it to establish a session for
a new agent;

. the agent host directly contacts region host to obtain the avatar;

. the agent host returns region host to the viewer for onward direct commu-

nication;

. the viewer now talks to the region host.

Joe's Garage

Second Life Agent

All On Your Laptop Second Life Agents
| C B © me B
‘ KK
Local Agent _ .- ------ h
Viewelﬁ
E=] B |"=";| 1 a R—
. g e t Local Region .
L £ "Bl Tl E
Second Life Mainland Second Life Self-Host Second Life Mainland

(a) (b)

Figure 5.3: Additional scenarios based on the extended grid architec-
ture for [200]: (a) home content as part of world content; (b) off line
content.

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 111

The extended architecture distributes the activities. However, it keeps a number of
central utilities that are globally required such as identity, topology, currency, and
search [202]. The global identity enables a user to be unique across all ADs, but it
requires different levels of verification and authentication. The topology identifies
connected regions, a kind of DNS for the metaverse. Since, the basic mission was
to open up the SLG to others, the extended architecture thus provides a number
of additional implementations. Figure 5.3(a) provides such a scenario showing an
individual home region (own Sim) integrated with the SL regions [200]. Similarly,
it allows users to run a completely disconnected region but it requires the existence
of both agent and region domains on a local system (see Figure 5.3(b) for this
scenario [200]). Figure 5.4 shows how the SL infrastructure looks finally with the
extended architecture [199].

Central Utilities
Second Life Agents

£ i - @' identity
X¥Z Co. Employees l I' l' &
. g‘ﬁ:mmm

&Ls Currency
g Psearch

Viewer £ e N —
RN
TR 5
- BN BN Second Life Mainland _
il KK E
XYZ Co. Research Land L u’ 3 \-v—/
i Open Land
= L '! J
E - .
\ EEE / Second Life Self-Hast 5
Alt, Continent ;nm; L]

Figure 5.4: Complete extended look of the SLG infrastructure, if im-
plemented as planned [199].

5.2 0OS and its Current Architecture

OS is an open source multi-user 3D application development framework that sim-

ulates virtual spaces similar to SL. It supports the messaging protocol of SL, but

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 112

it does not support its game specific features. It is written in C# which uses
the .NET framework on Windows, and Mono framework on Linux machines. It is
currently pursuing innovative directions to become an extensible infrastructure for
the 3D Web, and it supports an arbitrary number of regions per Sim (server) [177].
Five major services are required to provide interaction between a region and view-
ers based on the original design of Linden Lab network. These services are called
User, Grid, Asset, Inventory, and Messaging (UGAIM) services and each has a
vital role in the OS framework. Each region must be known to only one instance
of each service [176].

UserServer is responsible for user authentication to the grid. It assigns a Univer-
sal Unique IDentifier (UUID) as a session identifier to a client that is used globally
over the grid [176].

GridServer is responsible for authenticating regions to the grid. It gives a UUID
to a region. Since all the regions belongs to a global 2D grid, each region is
assigned a particular X and Y position [176].

AssetServer describes the items (with static nature) including sounds, textures,
images, notecards, and scripts that are used by the users and organisations to
develop their content. It is a database based on the principle of ‘write few and
read more’. The current implementation restricts modifications to assets, and they
are immutable [8, 176].

InventoryServer is a database server that keeps track of the placements of assets
by linking the UUIDs of users to their InventoryRoot folders. The InventoryRoot
folder maintains a list of UUIDs for folders, and type and descriptive names for
the assets. It also manages the associated permissions of the assets [176].
MessagingServer is used for in-world communication among people and to keep
track of who can listen to conversations. It manages long distance messaging and

keeps unread messages until they are read [176].

A region with a scene is the most important component of the OS framework that
must be part of an estate similar to SL. A scene [192] is the representation of the
content of a region. It runs physics and scripts, and keeps track of objects in a
scene, and the observers connected to a scene. It provides scene updates to the

observers.

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 113

J—— Otrer Seoes I

Figure 5.5: The OS architecture for standalone mode [172].

Primarily, OS has two modes of operations: Standalone mode and Grid mode. It
allows a Sim to run an arbitrary number of regions in both standalone and grid
modes. The only difference is where they get their UGAIM services from. In
standalone mode, a region provides its own UGAIM interfaces and runs them in a
single process. However, in grid mode each service is run as a separate process that
could possibly be on a different machine. The UGAIM servers are all configured
as centralised grid services [176].

In standalone mode, both region Sim and all data services run as a single
process called OpenSim.exe. The abstract architecture of OS for standalone mode
is given in Figure 5.5. In this case, a region server (Sim) is hosting two regions but
it has the capability to run an arbitrary number of regions on a single machine.
Clients are connected to the same process in standalone mode [172].

In grid mode, the UGAIM services are separated from the region server pro-
cess and implemented as a separate process called Robust.exe. The grid mode
architecture is presented in Figure 5.6. The data services can all run as a single
Robust.exe instance but they can be split and run on entirely separate machines

for improved performance. The OS instance (OpenSim.exe) is now only a region

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 114

Simulator Simulator

Region

Figure 5.6: The OS architecture for grid mode [172].

server that can host an arbitrary number of regions and communicates with sepa-
rate data services. It allows several instances of region Sims to be run on different
machines [172]. The regions simulated by different instances are known to each

other because they are controlled by a centralised grid service.

The user login in grid mode requires access to the user service that authenticates
a client and then directs it to connect to a region on a simulator based on its pre-
vious location. The login service uses the IP address of a region Sim in standalone
mode, but it uses the IP address of the host running UGAIM services (Robust.exe)
in grid mode. In case no previous location is found, it is sent to a default region.
When a user connects to a region, its avatar is added to the scene (described as a
root agent) and the neighbouring regions are informed about the user [172]. In re-
sponse, each neighbouring region adds a presence for the user (described as a child
agent) to its scene. This allows the avatars to move smoothly to the neighbouring

regions. When an avatar crosses a boundary, the state of the avatar in the current

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 115

and previous regions is swapped, and a presence is added to the new neighbouring

region while a region which is no longer a neighbouring region deletes its presence.

OS allows different database engines, such as SQLite, MySQL and MSSQL, with
varying degrees of functionality and different storage orientations. SQLite comes
bundled with OS (by default) and requires no extra configuration. However, it
is not for production use or running the OS in grid mode. MySQL is fully sup-
ported and could be used with both centralised and localised scenarios. MSSQL
is partially supported. In grid mode, OS uses databases at two levels to manage
data associated with the grid and region Sim processes. A centralised database
is normally used to manage UGAIM services but they can be managed through
separate independent servers. Each region Sim uses a separate database that man-

ages data for all regions of this instance.

OS architecture is very flexible and scales well in terms of content by just config-
uring new Sim instances. However, it has no capability to scale well dynamically
in terms of concurrent users without re-configuring the Sims. Similarly, it has
no capability to directly manage applications with conservative nature. Based on
these issues, we feel that an extension to the existing architecture is required to
add new simulators when load is increased, and reduce them to a minimum level
when the load is decreased. Recently, OS has incorporated a number of features
that can be used to improve scalability and load distribution. We believe that the
flexible and modular structure can be easily exploited to incorporate conservative

applications to VWs.

5.3 Interesting Features of OS

5.3.1 RemoteAdmin (RAd) Functionality

The RAd functionality uses a library for remote procedure calls (RPCs) builds on
XML [242] and HTTP [100] (called XML-RPC [133]) to generate a request to be
processed on a remote computer. It provides a number of methods to implement

the most common OS console commands, such as ‘create region” and ‘save or load

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 116

the OAR files’. It has a number of flavours and works well with a number of
different platforms including C#, .NET, Python, PHP, and Perl. A number of
examples showing the use of RemoteAdmin methods and their requirements are
available at [186].

5.3.2 OpenSim Archive (OAR) Functionality

The OAR functionality is capable of storing the entire asset data of a region. It
can be used to load data on a completely different system using a different asset
database. It fully restores the terrain, region parcel data, the textures of objects,
and their inventories. OS provides two console commands to save and load OAR
files, which are also exposed through the RAd functionality for remote processing.
The default load option replaces the existing objects with the content of an OAR
file. However, if the merge option is used, then the OAR content is merged with
the existing objects in a region. The basic use case of the OAR functionality is
to share the content of entire region with others. However, its performance is not

very good, especially when used with very large archives [173].

5.3.3 Megaregions

The region is the most important component of the OS framework, and a Sim
can run an arbitrary number of regions. The Standard region size (a square
space of 256mx256m) is small, and although a Sim can run multiple regions,
it requires complex border crossings between the regions. Furthermore, there
were demands for larger regions from OS developers and users. To resolve these
issues, the concept of megaregions was recently introduced to OS. It converts a
number of regions into a larger megaregion allowing the avatars to cross regional
borders seamlessly and transparently within the same physical server. However,
this concept is not mature and has a number of limitations. Currently, it uses a
configuration file with special arrangements to set up a megaregion and dynamic
construction is not possible. The conversion of already existing regions into a
megaregion transfers all the contents into a single root region. However, regional
data could be stored and later on restored (possibly using the OAR functionality)

to overcome some of these limitations [106].

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 117

5.4 Related Projects

This section briefly introduces the previous and current work undertaken using

the OS framework for scalability and load distribution issues.

5.4.1 Load Balancer Project

Load balancing and scalability issues in OS were addressed using a project called
Load Balancer which is no longer maintained and is not part of the OS frame-
work [141]. Load balancing was achieved by re-assigning regions from an over-
loaded server to a less overloaded server dynamically, without re-starting the Sims.
To achieve this goal, it was serialising a region and creating a clone of the region on
a target server using the same stream. It then destroyed the original region after
telling client viewers about the address of the cloned region. It used the concept
of sharding (replication of regions) to scale the number of interacting users. Each
shard was responsible for updating a fraction of avatars and send state updates
to other sub-regions. Though it manages to send state updates, we believe that
it physically lacks the concept of meeting people face to face, which is the basic
theme of VWs.

5.4.2 ScienceSim

ScienceSim is a virtual environment that can be used as a tool for collaboration,
visualisation and experimentation. Intel is currently developing the hardware and
simulation infrastructure behind it. ScienceSim uses the modular components of
the OS framework and tries to leverage many Internet standards and technologies
to provide an integrated set of technologies for building applications. The most
important contribution of Intel to ScienceSim is the enhancement of the OS code
for performance and scalability. Intel uses the basic OS framework but improves
performance by fine-tuning different areas of its code, and they have contributed
a number of patches to OS. The number of objects in a scene is increased by
a factor of ten, and the memory footprints are decreased significantly. Message
processing and inner loop structures are made more efficient, and a number of core

data structures and operations are replaced with more efficient approaches. A VW

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 118

world architecture based on the concept of distributed scene graph compared with
the traditional simulator centric architecture is presented for scalability with an
additional layer for communication. According to Liu et al. [140], load balancing is
the adjustment of scene partitions to the servers, and the assignment of players to
appropriate servers. Due to Intel work on performance, OS can now support more
objects and participants than the existing VWs [20, 107]. However, their approach
is to target a completely different aspect (scene graph) of the system compared

with the current work, which is based on the concept of spatial partitioning.

5.5 A Proposed Extension to the OS Architec-

ture

OS has two modes of operation as well as two different architectures that differ
in the ways UGAIM services are implemented and accessed. We propose exten-
sions to the abstract architectures of OS based on our work that are presented
in Figure 5.7 and Figure 5.8, for standalone and grid modes respectively. Two
additional components named Load Distribution (Fair) and Time Management
are introduced in both architectures. Load Distribution is marked fair represent-
ing the fact that ARA algorithm distributes the load as balance as possible while
maintaining the continuity constraint. It does not propose any changes to the ex-
isting components and basic structure but, instead, uses the modular components
to achieve the goals. This work can be applied to both an environment with a
single parent Sim, or to a Sim as part of a grid. However, it is assumed that each
starts with a bigger space (shown as a megaregion that has four regions) based on
an arbitrary number of basic OS regions, regardless of architecture. Both architec-
tures implement the same modules to dynamically increase the capacity of a Sim
and achieve a consistent state of the whole space using a restricted communication
model. The only difference in both standalone and grid architectures is the way a

client accesses the UGAIM services, as shown in Figure 5.7 and Figure 5.8.

The Load Distribution (Fair) component continuously monitors the load and uses

the following functions to achieve scalability and implement communication among

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 119

UGAIM Services

Simulator Load Distribution (Fair) Time

Management

ey A
€1 HOLLL

M

Resource
sl =rrs Assignment Merging

Resource Communication Synchronisation
Management Management Algorithm

Figure 5.7: The proposed extended architecture for standalone mode
of OpenSimulator (OS).

the servers.

The Partitioning algorithm splits a megaregion into a number of sub-regions,
based on the proposed strategies presented in section 3.1 of chapter 3, against
player distribution.

The Aggregation Algorithm (ARA) determines two contiguous larger spaces
taking input from the Partitioning algorithm in the form of a 2D grid. It uses the
aggregation strategies presented in section 3.2 of chapter 3 to obtain valid spaces.
The Resource Lookup module maintains a pool of resources and selects a
resource for sharing the load with the overloaded server.

The Assignment function delegates an aggregate (a continuous larger space)
to a newly added server. It takes the output of the aggregate algorithm as an
input and transfers the sub-regions in turn for improved performance.

The Resource Management function manages the RMT and helps the com-
munication management module to determine the location of regions and avatars
in a set of servers sharing a simulator’s load.

Communication Management manages communication activities between dif-
ferent servers jointly simulating a megaregion. It holds the messages in case of

a split operation and forwards them all together to the avatars when they are

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 120

resumed at the destination server.

The Merging process implements the reverse process to splitting which can be
initiated by either a parent or a child server. It considers the physical boundaries
and merges with a server only if it merges with the valid adjacent regions to the

region it serves.

Simulator Load Distribution (Fair) Time

M t

= Neighbourhood
e
Resource Communication Synchronisation
Management Management Algorithm

Figure 5.8: The proposed extended architecture for grid mode of Open-
Simulator (OS).

The Time Management component uses a P2P approach together with a con-
strained communication model to implement consistency. It is comprised of two
processes: Neighbourhood Management and Synchronisation Algorithm.

The Neighbourhood Management manages those regions that share physical
boundaries with the region(s) that a given server is simulating. This is a dynamic
activity and, based on an increase and decrease in load, the number of regions
might change over time. Its basic goal is to determine the regions whose time
information must be considered by our synchronisation algorithm (see chapter 4)
to maintain a global consistent state of the space.

The Synchronisation Algorithm is continuously running at every server simu-
lating part of the VW and updating its simulation clock by using the time informa-

tion of neighbouring servers. It is also responsible for sending its time information

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 121

to help others to update their clocks, thus potentially maintaining a consistent

space. Further detail on consistency is presented in chapter 4.

5.6 Illustration and Discussion

This section discusses the basic traditional steps used to add a new instance of OS
and share the load with it. Since the basic aim of this work is to achieve scalable
worlds with an emphasis on reducing resource under-utilisation, we start with a
single server simulating a bigger space, possibly based on an arbitrary number of
regions. This space offers a reasonable amount of content and is normally not
over-populated with players. However, with the passage of time, users join in the
world and ultimately, at a certain point, it exceeds the SplitCapacity. In this case,

the system initiates a split and shares the load with another server.

5.6.1 Traditional Steps in Spatial Partitioning

A generic and possible set of steps required to instantiate an additional instance

of OS and run part of the system on a child node is presented in Figure 5.9.

Simulator A (Main host)

While (Systemis up && (new users || new contents))
If (load < Threshold) then

Continue;

Else = =
Get a new server Simulator A1 (Chlld 1)
Determine two contiguous spaces Ready to start an OpenSiminstance
Select an aggregate to delegate to a new server Waiting for Simulator A response

Freeze the region (s) inthe aggregate

Block client messages for the region (s)

Save region (s) to OAR file (s) /at shared space
Serialise clients of region (s) //at shared space
Delete the region (s)

Tell Simulator A; to Instantiate (send details) Run an OpenSim Instance
continue; Load OAR file(s) //from shared place
Endif De-serialise clients //from shared space
Update clients about the new address
EndWhile Unblock client messages

Figure 5.9: Steps in traditional spatial partitioning methods to achieve
a new Simulator instance and distribute the load with it.

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 122

Initially, SimulatorA is the only server simulating the whole space and it continu-
ously checks the load against the number of users and content. At a certain point,
when the overall system load exceeds a threshold (SplitCapacity), SimulatorA ini-
tiates the process to get a new server (Simulator A; for example) to share the load
with. It determines two contiguous aggregated spaces after splitting the original
space, and selects one of the aggregates to delegate to the new Sim. SimulatorA
freezes the region(s) in the selected aggregate and holds (blocks) the messages
for the players in frozen region(s). These messages are maintained and forwarded
to the server simulating the concerned players when a transfer is over. System
uses the OAR functionality to store the contents of region(s) in a shared location.
Similarly, it serialises the clients for the region(s) to a shared location. When the
complete information is stored, the process removes these regions from Simula-
torA and tells SimulatorA; to run an OS instance with the same specifications
of region(s). The reason for using the same specification is that the users should
get the same neighbouring regions. Regions are maintained by grid services that
use a unique X, Y location for each region. In response, SimulatorA; instantiates
an instance of OS and loads the contents from OAR file(s). Clients are deseri-
alised and they are told to use the new Sim (giving the address of SimulatorA;
and the port it is listening to). The system forwards the blocked messages to the
regions which, in turn, hand them over to the clients. The distribution process is
completed and the space is now managed by two different Sims. Each Sim now
independently monitors its load and could share the load again with a new Sim if

it crosses the SplitCapacity.

5.6.2 Our Contemporary Approach to Spatial Partitioning

The main problem with transferring all the regions at once from a Sim and run-
ning them on a new Sim is that it takes significant time and, therefore, the user
has a negative experience of the system. An alternative method would instead
transfer one region at a time, thus considerably reducing the time a given user
suffers from a transfer. However, starting an OS instance also takes a consider-
able amount of time, though it might start with one region. Therefore, a more

efficient method could start an OS instance with a dummy region in parallel with

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 123

other activities, such as creating the OAR file(s) and client serialisation. Regions
with actual streams are then remotely generated, which takes less time and thus

reduces the total time a user suffers from this process.

We believe that freezing the clients for few minutes in traditional spatial partition-
ing techniques gives a very negative impression of the overall system. Therefore,
we used the concept of a transit region that gets two fold benefits. It could be
used instead of a dummy region to start a Sim in advance, so there is no need to
wait until a region is removed. It also gives users a fair choice to move to some
other part of the grid or keep themselves busy with some simple activities until

the original setup is resumed.

5.7 Conclusions

In this chapter, the current and extended architectures for SL. were examined as
a reference. It proposed an extension that works with both OS architectures to
incorporate the features for dynamic scalability as well as consistency. The current
architecture of OS is explained, and its interesting features and related projects
are explored in detail. The modules incorporating these features are described
and the traditional abstract set of steps are used to illustrate how a system scales
in case of excessive load. It concludes with an introduction to the contemporary

approach adopted for spatial partitioning in this work.

Chapter 6

Scalable Virtual Worlds:

Investigating Opensimulator

This chapter presents the investigation of the operational capabilities and robust-
ness of OpenSimulator (OS). It outlines the operational view of the OS architec-
ture and introduces a number of worlds’ content available as OAR files that are
used to populate our worlds. It also presents a summary of initial tests for both the
capabilities and components that we wanted to use for the implementation of this
work. It details an abstract load model based on both static and dynamic content
as well as interactive clients that helps in determining when to initiate a split or
a merge operation. It also presents the evaluation of different database options
and configurations. A scalability model is introduced and a simple grid model is
used to implement it by using the RAd functionality for tranferring a region from
one Simulator (Sim) to another Sim on both Windows and Linux platforms. It
also presents improved strategies to reduce the time taken by different activities

during a transfer.

6.1 Introduction

The OS framework is the state-of-the-art in open source VW development frame-
works. It is continuously under development and many components are not ma-

ture, although the basic functionality works well. Therefore, a thorough study

124

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 125

was conducted to check the capabilities and especially the components needed to
develop our scalability work. This chapter is devoted to a number of investiga-
tive studies mostly based on load and time analysis of different activities during

a transfer.

6.1.1 OS Operational View

This section briefly details how the management functions work in both standalone
and grid modes of OS.

OS provides different commands to perform different regional and grid manage-
ment activities. The standalone mode provides all regional and managerial com-
mands to run through a regional console window. However, the grid mode sepa-
rates them into grid and regional commands where the former are applied from a
Robust console and the latter from a region console. These commands use basic
routines of the OS framework. RAd functionality is an additional OS component
that allows developers to run regional commands on a remote machine which are
accessed through Remote Procedure Calls (RPCs). It is used later for a number

of activities when transferring a region.

6.1.2 Platforms

This work is investigated and implemented on two different platforms for various
reasons including the availability of a few Windows-based systems, limited capa-

bilities of Windows systems, and in order to demonstrate scaling bigger worlds.

Windows

A private network of four Windows systems was used for the experiments. It
includes a Pentium dual core system with a combined processor speed of 3.2GHz
and 2GB RAM. The other three Pentium IV systems each has a processor speed
of 3.2GHz and 1GB RAM. However, they were used in different configurations for

different activities.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 126

Linux

A much larger Linux environment (the UEA Cluster) was also used to scale our
work. It allowed us to use a large number of nodes (dual quad core 2.66GHz, with

8GB RAM) for running the services, as well as a large number of Bots.

6.1.3 World Content and Interactive Players

Two different types of content are used to populate regions of a world for most of
our experiments. These are: dynamic content and example world content. The ex-
periments based on dynamic content use an increasing number of prims that have
attached scripts. This workload is called Prims and Active Scripts (PandASs),
and it is obtained from ScienceSim project [193]. For our examples, a prim is a
square that has an attached active script which rotates it and changes its colour
every few seconds. The other examples of dynamic content, which are normally
called non-player characters (NPCs), include moving ducks and monsters. NPCs
use server side scripts, and are different than Bots in the sense that Bots run
scripts from client software. The experiments based on worlds content use re-
gional content obtained from their developers which have different themes and
are mostly based on static content and simple scripts. These worlds are called
OpenVCE, FairieCastle, EducationSim, Maya Pyramid and CSI World, in addi-
tion to the simple world developed for this study (named Our world), and all are
briefly introduced in Table 6.1. They are available as OAR files and each is used
to populate a region, but they could be duplicated if required. The following is a
brief introduction to these worlds:

The OpenVCE (Open Virtual Collaboration Environment) is a commu-
nity project that provides free support facilities for collaborative communities and
integrates a community web portal to a VW. It can be retrieved from [168].

The FairieCastle is a castle on an island that has a hidden cave and a waterfall
behind it. It has scripts that grows trees and mushrooms and can be downloaded
from [59].

The CSI Virtual World is a VW for solving crimes by testing virtual blood
samples and inspecting collected evidence. The archive of this world can be down-

loaded at [45].

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 127

The Maya Pyramid is a virtual representation of the Temple of the Inscrip-
tions, a Mayan pyramid in Palenque, Mexico together with large houses and small
thatched huts called ‘palapas’. It is available for free download at [148].

The EducationSim is a simple space with a classroom, a conference room, a
small house and orientation land [174]. The archive can be downloaded from [56].
Our world is a simple world with a small number of prims and is used for simple

tests conducted for a variety of purposes.

Virtual World File Size | Prims/Scripts | Assets/Objects
OpenVCE 21MB 2148/152 385/96
FairieCastle 19.3MB 2680/116 290/194

CSI Virtual World | 8.02MB 1256/184 151/307

Maya Pyramid 6MB 1227/2 56/34
EducationSim 2MB 1439/8 22/206

Our world - 8/- 3/8

Table 6.1: The description of example worlds content.

In order to access and modify the content in a VW, a user needs client software.
Since it is impractical to request a large number of online players, we used the
concept of Bots to test the behaviour of interactive clients. We used the TestClient
(TClient) application (TestClient.exe) of the OpenMetaverse[171] library to login
Bots, and we used their basic commands to develop scripts for different activities.
OpenMetaverse is a project that comprises a collection of open source building
blocks for developing VW platforms [171]. Each TClient has the capability to
login a large number of Bots. However, using a single instance for many Bots
introduces longer delays as the activities are performed in a sequence. Hence, we

used multiple TClients that login ten Bots at the maximum.

6.2 Initial Tests

This section provides a description of number of fundamental tests that were con-
ducted to determine the capabilities and flexibility of the OS framework. The

standalone mode has limited capabilities than grid mode. However, we started

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 128

with standalone mode and then moved to grid mode which is used for the imple-
mentation of our work. It was observed that RAd functionality also allowed certain
operations between Sims running in the standalone mode. These test targeted the
OS design, console and remote administration, and teleporting. Teleporting is
the process of instantly changing the position of an avatar. The basic aim was
to determine if the RAd and OAR functionalities had the potential to implement
the split and merge operations on both current and remote Sim while maintaining

system design.

The following valuable tests were conducted with a small amount of content and a
single player, and this gave us confidence in building further on this framework. All
services and OS instances (for both standalone and grid) used in these experiments
were running on a single system. These tests were performed on both Windows
and Linux platforms.

First of all, both standalone and grid modes of OS were configured. The SQLite
and MySQL options for the standalone mode and MySQL for grid mode were
tested.

The basic Create Region (CR) functionality was used to create a region on the
current Sim. Then, the RAd functionality was used to create a region on three
possible environments: the same Sim, on another standalone Sim, and on a Sim
as part of a grid.

The basic and RAd Save OAR (SOAR) functionalities were tested for storing
the complete content of a region into a shared location. Furthermore, the basic
and RAd Load OAR (LOAR) functionalities were investigated for loading the
content stored at a shared location in an OAR file to a region. We also tested
loading the content to a remote computer.

The basic and RAd functionalities for both Delete Region (DR) and Remove
Region (RR) commands were inspected firstly on current Sim, and secondly on
a remote Sim.

The boundary crossing effects for an avatar were observed while it was walking
to or flying between regions on a single Sim for both standalone and grid modes.
We further examined boundary crossings between regions on different Sims over

a grid infrastructure.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 129

The basic teleport mechanism was tested to teleport between adjacent regions on
both standalone and grid environments. We also tested teleports between non-
neighbouring regions. Moreover, we tested multiple random teleports to different
regions on a grid. The teleport mechanism of scene class was used explicitly to
transfer a player from one region to another region and then transfer it back to
its home region.

To investigate the effects of delegating a region to a new Sim on grid, we tested
an avatar walking, flying, and teleporting between the transferred region and its

neighbouring regions.

Based on the successful results of these experiments, we found that the OS is
flexible enough, and its components can easily be utilised to extend its current
architecture. A scalability framework based on our work is presented and imple-
mented in chapter 7. However, the most important issue here is to determine
the content and player capacity while keeping performance in mind. Similarly,
determining a point when a system needs to initiate a split and, conversely, when
a system requires to start a merge operation are critical factors in developing
scalable worlds. For these reasons, we conducted a number of different sets of
experiments to test the OS behaviour against both static and dynamic content as
well as interactive clients. These experiments, their analysis and an abstract load

model based on these experiments are presented in the next section.

6.3 A Generic Load Model

According to Gupta et al. [92], SL and WoW both have a capacity well below 100
interactive users over a high speed server. However, current VWs normally employ
a number of restrictions on their content players’ activities. To determine the
system behaviour against static and dynamic content as well as interactive users,
we performed different sets of experiments. The main purpose was to develop a
generic model that predicts the system capacity and determines a point in the
system when it needs to initiate a split. Similarly, it could be used to approximate
a value for initiating a merge operation. Initially, the experiments were conducted

with a single region and were then extended to see system behaviour for multiple

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 130

regions on both Windows and Linux platforms. The results are presented as
graphs based on average values of a large number of observations (collected for
approximately three minutes or more) for each experiment and on the Standard
Deviation (STDEV) that shows the variations in these observations. The measures
are based on observations taken during steady states of the OS world, and each
experiment was started with empty region(s) that were then populated using OAR
commands. The workload described in section 6.1.3 is used to populate the regions
and, to determine the impact of load introduced by the interactive clients, we used
two scripts named Script A and ScriptB. The former repeatedly executes a sequence
of four operations: forward 5, back 5, go home and sleep 10. It tells a Bot to go
forward for five seconds, then go backward for five seconds, followed by a teleport
to a home location and then sleep for ten seconds. The player’s home location is
assigned before running the script. The latter is a modified form of ScriptA that

removes the sleep command to further stress the system.

6.3.1 Experiments on the Windows Environment

The experiments in this section use the Windows environment described in sec-
tion 6.1.2. The dual core system is used to run both an OS instance and MySQL
database that holds regional data. The rest of the systems are used to login Bots
to the system. We initially started with three parameters (SimFPS, PhysicsFPS,
and CPU% usage) to study a system behaviour, but later on we concentrated
on SimFPS. This is because PhysicsFPS was following exactly the same pattern
as SImFPS, and CPU was never found to be a bottleneck in our experiments.
However, it was used up to its full capacity in a single set of experiments based
on in-world scripts. The sets of experiments are presented in the following order:
Static Content, Dynamic Content using In-world scripts, Logged-in Bots with no
Activities, Logged-in Bots running ScriptA, Logged-in Bots running ScriptB, and
Logged-in Bots in 2 Regions running ScriptB. The general outcomes are then

discussed before starting experiments on the Linux environment.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 131

Static Content

In this set of experiments, we examine the system behaviour for an increasing
number of static content in a single region of a Sim. The experimental data used

in these experiments are:
e Empty Region, no content
e 2000 prims

4000 prims

6000 prims

8000 prims

e 10000 prims

Figure 6.1 presents the Mean and STDEV for SimFPS, PhysicsFPS and CPU%.
It reveals that SimFPS is between fifty and sixty for all the experiments, with
the highest observed value of fifty-seven. The PhysicsFPS has a similar outcome
but it remains in a range of forty to fifty, with forty-seven being the maximum
observed. Figure 6.1 further shows that, in a steady state, the CPU utilisation
is almost zero since no activities are happening in the world once the content is

loaded into both the scene and database.

70 200
. - 180
o W - 160
[
L s5p - T
= 140 g
5 T 10 —= ~g——a | 120 £ | —#=SimFPs
(*]
] g . 100 = | —#—PhysicsFPS
E 330 _gg R CPU %age
w T]
£ 20 - 60 &
= o - 40
- 20
0 +— — 0

Q O O O O L
O O N N N
™) o & ‘bQ \90

Prims (static content)

Figure 6.1: Mean and STDEV for an increasing number of static
content for SImFPS, PhysicsFPS and CPU%.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 132

Dynamic Content using In-world Scripts

To explore the system behaviour for the content with dynamic behavior using
in-world scripts, we performed a set of experiments with an increased number of
Prims and Active Scripts (PandASs). The number of PandASs in each experiment
are given as:

e FEmpty Region

e 100 PandASs

e 500 PandASs

e 1000 PandASs

e 1500 PandASs

e 2000 PandASs

e 2500 PandASs

e 3000 PandASs

Figure 6.2 shows the Mean and STDEV for SimFPS, PhysicsFPS, and CPU%. It
can be seen in Figure 6.2(a) that SImFPS gradually decreases with an increase
in number of dynamic content. However, PhysicsFPS has no noticeable decrease.
Since the dynamic content is continuously rotating each cube and changing its
colour, the CPU% (shown in Figure 6.2(b)) parameter shows a significant increase
in CPU utilisation as the capacity increases. It can be seen that CPU utilisation

is up to 200% in two cases.

0 =——SimFPS 200 T
—f— PhysicsFPS 180
. 60 -—+
2 160 1
S 50 I T b
= T 140
2 ® /
ow 5 120
S w40 T g /
3% < 100
4 =
g 230 B
8 2
g 20 g 60 /
= 40
< 10 /
20 3’
0 o o—1
T T > T T T T
N O o o o N o o N o o O N N O N
S N} N N} N S O N N} O N L S N
~ R 2 ¥ ? > N AP X
Prims and Active Scripts Prims and Active Scripts

(a) (b)

Figure 6.2: Mean and STDEV for an increasing number of dynamic
content (PandASs) for (a) SimFPS and PhysicsFPS, and (b) CPU%.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 133

Logged-in Bots with no Activities

In this set of experiments, we wanted to check the system performance for inter-
active Bots that are logged-in but doing nothing. Starting with no players, we
add ten players each time to a successive experiment. The Mean and STDEV for
SimFPS, PhysicsFPS, and CPU% for this set of experiments are presented in Fig-
ure 6.3. It reveals that logged-in Bots that perform no activities have no impact
on either SimFPS and PhysicsFPS, and they behave like static content. However,
the system in this case consumes CPU time because it sends regular updates to
the clients, as shown in Figure 6.3. Since updates are sent periodically at diverse

time intervals for different sets of Bots, the CPU utilisation shows big variations.

70 200

60 - 180
E W’-—.\; - 160
= 50 = - 140 5
T _ i g 5 na g)
8% 40 - 120 §
2 g - 100 < =—4—SImFPS
K i 30 I I]] L 80 3:2’ ——PhysicsFPS
wi
g 20 _7L_J_ _]__ 60 5 CPU %age
& | |-
“ 10 l l l | | L e

- 20
0 -+ 0

e
O AR PEA P

Players/Bots {doing nothing)

Figure 6.3: Mean and STDEV for an increasing number of Play-
ers/Bots logged-in but doing nothing for SimFPS, PhysicsFPS, and
CPU%.

Logged-in Bots running ScriptA

In this set of experiments, the experimental descriptions are the same as before
but Bots are asked to repeatedly follow the activities provided in ScriptA.

The experimental results are presented in Figure 6.4. Figure 6.4(a) reveals that
SimFPS is gradually decreased as the number of interacting players are increased.
It further shows that the PhysicsF'PS is decreased with a similar rate as SimFPS.

We believe that the interactive clients have a great impact on frame rate, but

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 134

the system in this case gives better performance because the script commands are
applied to Bots in sequence and different sets of Bots are sent to sleep mode for
ten seconds, thus executing an even number of players at a given time. It also
gives long variation for frame rates due to these reasons. The CPU utilisation is
increased with the addition of more Bots in each successive experiment, as shown
in Figure 6.4(b). On average, the system processes the same number of Bots and,
therefore, CPU utilisation is almost the same in each case. To examine how the
system behaves when all the Bots are continuously involved in different activities,
we used a modified version of ScriptA for the next set of experiments. The basic
aim was to determine the point (system capacity) when the system performance

starts degrading.

70 ——SimFps 200
60 —M—PhysicsFPS 180
g .—.\’_\ 160
£ 50 o 3 140
- ® 10
m o
S 840 - g —
©
25 ’ & 100 =
&30 ~h ® 80
8 2
E 20 3 60
i 40
“ 10 /
20 /
0 0 ¢
o

R A R S R T S

Players/Bots (running ScriptA) Players/Bots {running ScriptA)

(a) (b)

Figure 6.4: Mean and STDEV for an increasing number of play-
ers/Bots running ScriptA for (a) SimFPS and PhysicsFPS. (b) CPU%
Usage.

Logged-in Bots running ScriptB

In this set of experiments, we used ScriptB and asked an increasing number of
Bots in each experiments to follow the activities of the script. The number of
players in each experiment are, again, the same as before.

The results are explored in Figure 6.5. It can be seen in Figure 6.5(a) that both
SimFPS and PhysicsFPS maintain an acceptable frame rate for up to forty play-
ers. However, the frame rate drops quickly when more players are added and that

reduces the frame rate significantly, thus degrading the user interactive experience.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 135

~
(=]
N
=1
=1

—4—SimFPS ‘
——PhysicsFPS

o
=]

=1
—
[
=
=]

FramesPer Second (FPS)
= ~ w S w
(=] Q (=] (=]
CPU % (Average
[
NOE @ ® O B
o O O O O o o
g
\h
g

=]
o

: ; ; ” . ‘ ‘ ‘ ‘ ‘ ‘
RN T S S RN . A A - G

Players/Bots (running ScriptB) Players/Bots {running ScriptB)

(a) (b)

Figure 6.5: Mean and STDEV for an increasing number of play-
ers/Bots running ScriptB for (a) SimFPS and PhysicsFPS. (b) CPU%.

The CPU utilisation is normal in this case as shown in Figure 6.5(b).

Based on the experiments presented so far using a single region, we identified that
interactive clients and their activities have most impact on system performance
(described in terms of SimFPS and PhysicsFPS). The system performance de-
grades greatly with an increase in the number of players and frequency of their
activities. It was further observed that an increasing number of dynamic content
also has a gradual but slight impact on these parameters. However, CPU utilisa-
tion is greatly increased for them. These parameters are vital for the development
of a load model, but first we need to investigate how a system with multiple regions
behaves against these parameters. This is because an OS instance can host an ar-
bitrary number of regions. We used SimFPS and CPU utilisation for this set of
experiments because the PhysicsFPS always follows the same pattern as SimFPS.
To examine how a system with multiple regions behaves against presented load,
we discuss another set of experiments in the next section with a Sim with two

regions.

Logged-in Bots in 2 Regions running ScriptB

This set of experiments is different to the rest of the experiments as the players are
now equally distributed among two regions and they are increased by ten in each

region in successive experiments. They are also repeatedly executing the activities

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 136

listed in ScriptB.

70 200
—#—SimFPS (Region I)
180

@
=}

@ —a 160
& T
= 50 = 140
8 Tao £ 120 e e S
8¢ 1 g &
5 230 < /1
22 1 8 20
g 20 & /
£ | S e0 /
o 10 40 /
20
¢ N o S I o 0 ‘v/ ; ; ‘
© » D S ®

Player/Bots (in each Region)
Players/Bots (in each Region)

() (b)

Figure 6.6: Mean and STDEV of increasing number of players/bots
equally distributed among 2 regions running ScriptB for (a) SimFPS
(Region I) and SimFPS (Region II). (b) CPU%.

Figure 6.6 provides the SIimFPS parameters of both Region-I and Region-II as
well as CPU utilisation. It is clear that a system for up to forty players (twenty
in each region) in a Sim maintains the rate of Frames Per Second (FPS) above
30FPS, as shown in Figure 6.6(a). SL maintains a minimum FPS for an acceptable
performance [92]. However, it can be seen that its performance is degraded when
more players are added to the Sim. The SimFPS for Region I drops below 30FPS
when the system has about sixty players. Since the actual world could have
different content and interactive players, we therefore believe that when the FPS
for any of the region falls below a certain limit, the system should either stop taking
further connections or distribute the load with additional Sims. This is because
it degrades the overall performance of a system. To avoid a negative experience,
a distribution needs to be initiated at much a higher value than 30FPS as, after
a certain range, the rate goes down very quickly. The worlds with more than two
regions yield similar outcomes and are, therefore, not included in this thesis. The

CPU load is again not beyond the capabilities that is presented in Figure 6.6(b).

Discussion

We performed different sets of experiments and observed that interactive clients

have the most impact on system performance. Dynamic content also showed some

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 137

impact. We used SimFPS, PhysicsFPS, and CPU utilisation to determine a sys-
tem’s behaviour against different workloads. However, the PhysicsFPS followed
exactly the same pattern as SimFPS. SimFPS is the main measure which is ulti-
mately used for the development of our load model. The CPU utilisation is never
observed to be a bottleneck for all experiments. When a TClient was used to log
in a large number of Bots, we observed network issues such as delays and drop of
connections. We overcome these issues by restricting up to ten Bots per TClient.
Since not all sets of experiments showed an impact, it is necessary to repeat lim-
ited sets of experiments to see how additional hardware support the workload
presented in each experiment. Given that CPU is never used to its full extent for
a dual core node, it is assumed that it might not be a potential bottleneck over
a dual quad core node, and therefore it is not calculated for the experiments over
Linux environment. In the next section, we put emphasis on dynamic content
and interactive players. The main goal is to see if more resources can assist in

achieving an improved performance.

6.3.2 Experiments on the Linux Environment

This section use a more sophisticated and high speed computation facility using the
Linux platform described in section 6.1.2. Grid services (a Robust instance) and
their corresponding database are running on a dedicated node. The region server
is running on a different node while a number of other nodes are used to log in Bots
to the world. The sets of experiments that are repeated in this section include
Dynamic Content with In-world Scripts, Logged-in Bots running ScriptA, Logged-
in Bots running ScriptB, and Logged-in Bots in 2 Regions running ScriptB. The
graphical results of these experiments on the Windows environment are reproduced
for comparison purposes in this section. Only SimFPS and PhysicsFPS parameters

are considered in this section.

Dynamic Content using In-world Scripts

Since we observed that there was an impact of dynamic content (PandASs) on
SimFPS and PhysicsFPS in the Windows environment, we repeated this set of
experiments with an increasing number of PandASs by adding 500 PandASs in

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 138

each successive experiment. We performed an extended set of experiments with
up to 8000 PandASs due to the fact that the Linux node has four times more cores
compared with the Windows node used which has two cores.

Figure 6.7(a) shows the results for both SImFPS and PhysicsFPS. It demonstrates
that the system behaviour for a very large number of PandASs is stable and there is
no decrease in FPS for either of the parameters compared with the Windows node
(see Figure 6.7(b)). These results revealed that different cores of the node used
for running these experiments are handling part of the in-world activities, thus
keeping the rate of FPS stable. However, a Sim is normally assigned to a single
core in a grid environment that could possibly host multiple regions. Therefore,
the content is usually restricted up to a certain level for a region. In the next set of
experiments, we wanted to explore the behaviour of a Linux node and the impact

of different cores of a node when used against an increasing number of Bots.

==SimFPS
60 ——PhysicsFPS)

MR T T SN S

70 ‘ 70 ‘—O—S\mFPS

60 —— PhysicsFPS

[0
=}
«
o
—
"

[N
o

s}
w
S

H

o

(Average)

~
o

~
=]

Frames Per Second (FPS)
Frames Per Second (FPS)
(Average)

=
o

.
o
<

o

\\\\\\\\\\\\\\\\\\
Q $

‘
O O O O O N
S O N O S O

S R U

Prims and Active Scripts
Prims and Active Scripts

(a) (b)

Figure 6.7: Mean and STDEV for an increasing number of dy-
namic content (PandASs) for (a) SimFPS and PhysicsFPS on a Linux
node, and (b) SimFPS and PhysicsFPS on a Windows node (from Fig-
ure 6.2(a)).

Logged-in Bots running ScriptA

Exactly the same set of experiments of the Windows environment was repeated on
the Linux environment, and the increasing number of players follow the commands
given in ScriptA.

Figure 6.8 (a) shows the system behaviour using both SimFPS and PhysicsFPS

and it can be seen that it provides more stable results with few variations com-

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 139

pared with the results of the same set of experiments on the Windows environment
(shown in Figure 6.8(b)). It handled up to fifty Bots without any degradation of
SimFPS but it started degrading the rate of FPS at about sixty players and
dropped considerably when more Bots were added. There is a quick decline be-
tween sixty and eighty Bots where, for eighty players, the rate of FPS drops lower
than 30FPS. This demonstrates that using multiple cores failed to help increase the
number of Bots. By comparing the results in both Figure 6.8(a) and Figure 6.8(b)
for Linux and Windows environments, we can see that both environments have
almost the same trends for handling interactive Bots. Therefore, the use of multi-
ple cores is unable to achieve better performance than the simple systems. Since
we used more nodes to log in Bots and logged in less Bots per TClient, the Linux
environment has no connection drop issues. To further stress the system and
see how the system responds to heavy load, the same set of experiments (called
Logged-in Bots running ScriptB) was repeated on the Linux environment in the

next section.

70 ——SimFPs ‘ 70 ——SimPPS ‘
60 == PhysicsFPS 60 —fl—PhysicsFPS
@ Q—Q—Q—._._.* @ ._‘\
a a
L 50 L 50 <>
E ——————\ E
g & ao 3 &40
2 I 30 2 < 30 T
o 3
£ 20 £ 20
& &
= I
10 10
0 T T T T T T T T o] T T T T T T
I T S N S S LS S Y S S
Players/Bots {running ScriptA) Players/Bots (running ScriptA)

(a) (b)

Figure 6.8: Mean and STDEV for an increasing number of play-
ers/Bots running ScriptA for (a). SimFPS and PhysicsFPS on a Linux
node, and (b) SimFPS and PhysicsFPS on a Windows node (from Fig-
ure 6.4(a)).

Logged-in Bots running ScriptB

Figure 6.9(a) shows very similar results for this set of experiments on the Linux
environment compared with its results on the Windows environment presented in

Figure 6.9(b) for total number of players it can handle. The Linux environment

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 140

showed a slightly improved resistance where it managed to handle up to sixty
players before its FPS dropped below 30FPS. The Windows environment crosses
the limit a few times while handling fifty players but the average was almost
30FPSs.

70

-
=]

—4—SimFPS —4—SimFPS

60 ——PhysicsFPS =M= PhysicsFPS
&—__}__—\L T

e ——— Y T

\§ \\
BaN

o)
=]

]

Frames Per Second (FPS)

.
)

=

5}

o

w B
o

=}

=

(Average)

N

FramesPer Second (FPS)

Noow B
o

~
=]
=]

o
o

L S N S SR\~ BUS ~ ST ~ BP N Q o o © < S o &
Players/Bots (running ScriptB) Players/Bots (running ScriptB)

(a) (b)

Figure 6.9: Mean and STDEV for an increasing number of play-
ers/Bots running ScriptB for (a). SimFPS and PhysicsFPS on a Linux
node, and (b) SimFPS and PhysicsFPS on a Windows node (from Fig-
ure 6.5(a)).

Logged-in Bots in 2 Regions running ScriptB

To determine how a Linux node behaves when there are two regions in a Sim, we
repeated this set of experiments with regions being populated equally with ten
additional players in each region in each successive experiment. The players are
again executing ScriptB.

The results of the experiments on the Linux environment are presented in Fig-
ure 6.10(a) and compared with the corresponding set of experiments on the Win-
dows environment, shown in Figure 6.10(b). It shows that it handles up to forty
Bots with a rate of FPS above 30FPS but the rate of FPS with additional Bots
dropped more quickly than the Windows environment. The Windows environ-
ment showed improved behaviour where it performed much better for Bots be-
tween forty and sixty. The Linux environment was consistently under 30FPS for
sixty and more Bots. The Windows environment had variations where it dropped
a few times, below 30FPS but it maintained an average of just above 30FPS for

sixty players.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 141

~
o
~
(=]

== SimFPS (Region I)
== SimFPS (Region |1}

‘—O—S\mFPS(Regwon 1) ‘

o)
=]
=
=]

imFPS (Region)

w
=]
I

o
o

e

AN

s

° o Y 9 ©

w s
S

(Average)
w B
o
(Average)
(=]

=}

o
=1

~
=]

FramesPer Second {FPS)
Frames Per Second (FPS)

=
o

=
o

(=]

o

Player/Bots (in each Region)
Players/Bots (in each region)

(a) (b)

Figure 6.10: Mean and STDEV for an increasing number of play-
ers/Bots (in each region) for a 2 Region world running ScriptB for (a)
SimFPS on a Linux node, and (b) SimFPS on a Windows node (from
Figure 6.6(a)).

Discussion

We performed selected sets of experiments on the Linux environment to determine
system behaviour with additional hardware resources and compared their results
with the corresponding sets of results on Windows environment. It was determined
that, with the exception of dynamic content, the rest of the experiments for both
environments gave a similar response against the same workload added to these
environments. The most interesting finding of the experiments on the Linux node
is that the provision of additional hardware failed to perform better compared
with the Windows node. We faced a number of issues with the OS framework
when used on Linux platform. It crashed frequently and showed very unstable
behaviour compared with the Windows environment. The potential reason might
be its development on .Net framework for Windows environment. However, it
works well with Linux and mono framework but the best working combination
of OS and mono frameworks needs to be found as they are continually under

development.

6.3.3 Comparison

Based on a large set of experiments on both Windows and Linux environments, we

came to the conclusion that the provision of additional hardware cannot improve

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 142

system performance. Liu et al. [140] have described this as a system bottleneck
that restricts OS worlds to scale, and is due to the simulation centric architecture
used by the OS framework. Most of the VWs using this architecture put restric-
tions on both activities and content. However, our concern is to develop a model
for the current architecture to overcome issues with both static and dynamic sys-
tems and to improve their performance. For a scalable system, the most critical
decisions are when to initiate a split and a merge operation. To initiate a split, we
need to take action before it degrades to a point which is not acceptable. Based
on these experimental results, we aim to develop a generic load model to help the
system to determine suitable decisions while maintaining good performance.

The Linux node has the capacity to hold more static and dynamic content. How-
ever, for performance reasons they need to be restricted for the following reasons:
normally a Sim is usually assigned to a single core of a node and has restricted
capabilities; content storage is a sequential process that takes a long time; static
content is stored once to the database but dynamic content needs to be stored
periodically for persistence; and region removal with much content requires a con-
siderable amount of time. Based on the results performed in both environments,
we can conclude that a system with a reasonable resources can handle a world
with reasonable amount of content and up to sixty Bots performing a variety of
different actions. However, more than sixty players will degrade system perfor-
mance and a Sim should never allow it. We suggest initiating a split when the FPS
for a region is decreased and goes below 40FPS. For most of these experiments,
this was the point where the system was supporting approximately forty players.
The following section defines a number of concepts used in our final experiments

based on the outcome of these experiments.

6.3.4 SplitCapacity, SimCapacity and MergeCapacity

For the final experiments presented and discussed in chapter 7, we take both split
and merge decisions based on the number of interactive players. Since both Win-
dows and Linux environments showed a similar behaviour, we use the same values
for the concepts defined as SplitCapcity, SimCapacity and MergeCapacity on both

platforms. SplitCapacity is taken to be an approximate value when SimFPS was

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 143

observed dropping below than 40FPS in one of the regions to avoid a negative ex-
perience and improve performance. In both cases, there were around forty players
involved in different simultaneous activities. However, a Sim can hold up to sixty
players (named as SimCapacity) with varying degrees of interactivity in addition
to a reasonable amount of static and dynamic content. It is an estimated value
based on the aforementioned experiments for which a Sim managed to maintain
30FPS for SimFPS on average. We allow up to sixty players per Sim if no further
distribution is possible. When a system reaches this capacity, it declines to accept
more connections. MergeCapacity, on the other hand, is used as a minimum
limit to initiate a merge operation. To avoid frequent splits after merge opera-
tions, we assume a MergeCapacity to be half of the SplitCapacity that is twenty

players for our experimental work.

6.3.5 The Load Model

According to Gupta et al. [92], SL maintains a frame rate of at least 30FPS for
a satisfied level of user experience. We have used this as an argument for the
development of our abstract load model. The basic purpose is to help developers
and practitioners using OS architecture to take the most vital decision about
initiating a load distribution process. Split is normally initiated at an earlier stage
to avoid worst situations and bad user experience (considered at least 40FPS for
our work). Since a Sim can host multiple regions, we initiate a split when the rate
of FPS for any region goes below 40FPS. We use only the SimFPS parameter to
define our load model because both SimFPS and PhysicsFPS degrade at the same
rate. However, if the requirements have a different effect on PhysicsFPS, it could
be included in the model.

Our abstract load model that initiates a split is presented in Algorithm 3. Each
Sim maintains a separate Queue for each scene it manages to hold the observations
based on SimFPS. Initially, each slot is assigned a maximum value of fifty-seven
for SIMFPS being set by the OS framework. It maintains a number of most recent
observations recorded during a time interval and are used to take a split decision.
For our approximated values used in this work, we took an observation every

twenty seconds and used the ten most recent observations to determine an average

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 144

Algorithm 3 A Generic Load Model

Require: List<scenes>
Ensure: Alert the system to initiate partitioning
1: for i < 1 to Count(List<scenes>) do

2: Get the latest SImFPS value for the scene;

3: Update the corresponding queue for the scene; //deletes the oldest and adds a latest observation
4: Get Mean of the corresponding queue; //determines average of observations for this scene

5: if (Mean < 40) then

6: Alert the system to initiate partitioning;

7. Break;

8: end if

9: end for

value. However, different values could be selected depending on the requirements.
It is therefore left undefined and need to be decided by the developer. The Sim
initiates this model periodically which determine one of the two possible outcome.
It takes the list of scenes as input and scans the entire set of scenes as follows.
It first determines the latest value of SImFPS for a scene and then updates the
Queue for the corresponding scene. Based on an average value, it alerts the Sim
to initiate a split if the Mean value for a scene goes below 40FPS. This model
provides a point in the system at which to initiate a split and a variation of this
model can be used to determine SimCapacity of a Sim. It needs to maintain on
average, a frame rate of 30FPS instead of 40FPS. However, the merging can be
initiated against a numeric value that is normally selected against SplitCapacity

of a Sim.

6.4 Introducing the Scalability Model

This section introduces a simple scalability model and identifies activities during
both a split and merge operations between different Sims. Based on the identified
activities, we then determine the OS components that could be used to implement
this scalability model. It outlines time statistics that are used in section 6.6 for an

informal time analysis of experiments based on content and interactive players.

Introduction

To scale an OS world comprised of multiple regions hosted by a single Sim, the

traditional methods transfer some of the regions to another Sim. These scalable

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 145

systems always use a grid model which integrates the whole world by managing a
centralised map of regions. Each region on the grid has a unique place and, to give
a coherent space, the regions are arranged adjacent to each other. Keeping these
issues in mind, spatial partitioning methods always transfer regions by serialising
their content as well as players. Once the content is transferred and the region
is up, the players are de-serialised again to resume their normal activities. We
believe that the players in these methods have a bad experience, and to avoid
freezing the players and to improve their experience, we adopt a contemporary
approach in our work that transfers all the players temporarily to an intermediate
region during a region transfer. This region is called a transit region and is only
used during split and merge operations. In our case, players can move freely to
other regions or keep themselves busy with simple activities available at the transit
regions. Once their original region has been relocated, we teleport them back to
their original position and they resume their normal activities.

In this section, we introduce our approach for transferring a region from one Sim to
another Sim with the help of two Sims and a regional grid of two regions with two
additional transit regions for the Sims, as shown in Table 6.2. This simple model
is then converted into a more generalised framework in chapter 7. The parent Sim
(Sim-I) has a regional grid of two regions, named A and B, and a transit region
called T1. We have a single child Sim that is hosting no actual region but rather
a transit region called T2 and is available to share the load. Both the Sims are
connected to a grid instance. Each region presents content and players visit these

places based on interest.

Parameter Sim-I Sim-II
(Parent) (Child)
HTTP Listening Port 9000 9005
Regions(Region:X,Y Coordinates: Port) A:1000,1000:9000 Nil
B:1001,1000:9001 Nil
Transit Region(Region:X,Y Coordinates:Port) | T1:1005,1005:9105 | T2:1006,1006:9106

Table 6.2: The description of 2 Sims and a world with 2 regions

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 146

6.4.1 Steps in Scalability

Each Sim that has at least a real region continuously monitors the load and it can
be in any of the three states, which are: a normal state, an overloaded state, and
an under-loaded state. Each of these states requires it to take appropriate action
as described next. If there are no players in a region to transfer, it skips the two

steps that are used to transfer players.

Normal State

In this state, the system is running a normal load and no split or merge is required.

Overloaded State: Split

If a system (Parent Sim, Sim-I in this case) becomes overloaded, it delegates one
of the regions (say A) to the other Sim. The following actions in sequence are

required to transfer a region:

e Save the content of region A into a shared space

Move the players in region A to region T1

Obtain the region A specifications

Remove region A from Sim-I

Create region A on Sim-II with the same specifications

Load the content to region A on Sim-II

Move the players from region T1 (on Sim-I) to region A (now on Sim-II)

This ends the splitting process and normal activities for the players are resumed.

It doubles system capacity and players are given a better alternative than freezing.

Underloaded State: Merge

In case the capacity of child Sim (Sim-II) goes below a minimum threshold, it
initiates a merging process. The merging process uses the following steps in the

given order:

e Save the content of region A into a shared space

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 147

Move the players to region T2

Obtain the region A specifications

e Remove region A from Sim-II,

Create region A on Sim-I using original specifications

Load the content to region A on Sim-I

Move the players from region T2 (on Sim-II) to region A (now on Sim-I)

This terminates the merging process and the players’ activities are resumed. Sim-
IT is again available to share the load. It is important to note that activities across

different Sims require central grid services.

6.4.2 Required Components

To implement the activities described in our simple scalability model, we identified
the following components and capabilities of OS and RAd functionality:

The OAR functionality provides an advanced serialisation method that can be
used to store regional data before deleting a region. It provides methods to store
data to an OAR file and load data from an OAR file, as described earlier in
section 5.3.2 of chapter 5.

RAd functionality implements a wide range of server commands to be executed on
a remote server. The following methods can be used to implement the activities
in our scalability model.

The Save OAR (SOAR) method (admin _save_oar) issues a command to a
remote server to save a regional content in an OAR file. It requires the name of the
region and a file name. The Load OAR (LOAR) method (admin_load _oar)
sends a command to a remote server to load the content of an OAR file to a given
region. It also requires a region name and the name of the OAR file. The Create
Region (CR) method (admin_create_region) is used to create a region on
a remote computer. It takes the following mandatory parameters: region_name,
listen_ip, listen_port, external address, region x, region_y, and estate_name. The
Close Region (CsR) method (admin_close region) remotely allows to re-
move a region from a Sim and takes region_name as an input. Data from the
database is not deleted in this method. The Delete Region (DR) method

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 148

(admin_delete_region) remotely allows a region to be deleted from a Sim and
it deletes its data from the database. It also takes region name as a parameter.

The remaining activity to suppose is transferring players from one region to an-
other region. The scene object has a teleport method that can be used explicitly
for this purpose. The grid service facilitates determining a remote region based

on region specifications.

6.4.3 Statistical Parameters

In this section, we describe the time parameters that we track to determine the
timings actually taken by different activities during a transfer. Based on the ac-
tivities identified in our scalability model, we collect the following statistics: Store
Content Time (SC Time), Load Content Time (LC Time), Remove Region Time
(RR Time) (representing both Delete Region (DR) and Close Region (CsR)), Cre-
ate Region Time (CR Time), Transfer to Transit Time (T2T Time), Transfer to
Region Time (T2R Time), Content transferred, Number of players transferred,
and Average player transfer Time.

The time to store the content of a region into an OAR file (using SOAR method)
is called Store Content Time (SC Time).

The Load Content Time (LC Time) represents time to load content from an
OAR file (using LOAR method) to a region.

The time to remove a region using either Delete Region (DR) or Close Region
(CsR) methods from a Sim is called Remove Region Time (RR Time). A
parameter, called case, then identifies a method during an experiment.

The time to create a new region on a remote Sim is called Create Region Time
(CR Time). It is usually based on the specifications of original region that is
relocated during a transfer.

The total time to explicitly teleport the players in a region to a transit region
when relocating a region is called Transfer to Transit Time (T2T Time).
The Transfer to Region Time (T2R Time) represents the total time to trans-
fer players back to a region from a transit region.

Content transferred parameter represents regional content that is transferred

when relocating a region.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 149

Number of players transferred maintains the number of players that are trans-
ferred due to a split.
Average player transfer Time is the time a player takes on average to transfer

from one region to another.

Activity Case SQLite | MySQL MySQL
(Sec) (Centralised) | (Localised)
(Sec) (Sec)
Create Region Any 4Sec 3Sec 2Sec
Teleport to Location Any 6Sec 5Sec 5Sec
Load Content (LC) Our world 3Sec 1Sec 1Sec
101PandASs 3Sec 2Sec 2Sec
501PandASs 7Sec 3Sec 2Sec
1002PandASs | 11Sec 6Sec 6Sec
OpenCVE 114Sec | 94Sec 90Sec
Store Content (SC) Our world 1Sec 1Sec 1Sec
101PandASs 1Sec 1Sec 1Sec
501PandASs 2Sec 1Sec 1Sec
1002PandASs | 2Sec 2Sec 2Sec
OpenCVE 8Sec 6Sec 6Sec
Delete Region (DR) Our world 2Sec 2Sec 1Sec
101PandASs 20Sec 16Sec 12Sec
501PandASs 74Sec 62Sec 51Sec
1002PandASs | 158Sec | 128Sec 122Sec
OpenCVE 49Sec 19Sec 15Sec
Remove Region (RR) | Our world 2Sec 2Sec 2Sec
101PandASs 16Sec 14Sec 12Sec
501PandASs 90Sec 81Sec 74Sec
1002PandASs | 421Sec | 201Sec 196Sec
OpenCVE 5Sec 3Sec 2Sec

Table 6.3: A comparison of time taken by different activities for three
database options (SQLite (localised), MySQL (centralised), and MySQL
(localised)) hosting a Sim data on Windows environment.

6.5 Investigating Database Options

This section investigates and compares three different databases configurations
that can be used with a grid infrastructure to store the data of regional servers.
The basic aim is to determine the best option that could be feasibly used for

large scale VWs. Grid services (implemented as a Robust.exe instance) always

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 150

use a MySQL database. The following three database options are used to store
regional data of different Sims: local SQLite data file for each Sim, using a cen-
tralised MySQL database for all Sims, and a local MySQL instance for each Sim.
To evaluate and see the behaviour of these configurations, we used a number of
different regional commands to obtain time statistics for their corresponding activ-
ities. They are applied from the console of a regional server and used to compare
the time information for different database options. Table 6.3 provides the details
of activities identified by our split model and their time information.

Create Region (CR) and teleport operations have no direct link with databases
but the MySQL options still give a better response. The teleport operation takes
various amounts of time as it might need to download the regional data to a
viewer. Load Content (LC) is basically adding the content to a scene and then
later, as a background process, it stores the data into a database. SQLite gives a
much slower response in loading the content of an OAR file to a scene compared
with MySQL options. SQLite is a lightweight system and is unable to maintain
the data of large scale VWs. The Store Content (SC) operation takes almost the
same amount of time for all the options because it has no concern with databases.
A system bottleneck was found while deleting a region from a Sim. If a DR is
called during a periodic backup, the system first completes the backup process
and then deletes the region. SQLite was taking a long time while quitting the Sim
or removing/deleting a region with large content. In some cases, when persistence
was required, MySQL also took a considerable amount of time but in steady states,
and for static content it performs better than SQLite. The main reason that each
database takes a considerable amount of time is the fact that during a delete
operation, a Sim deletes objects from both scene and database in sequence. On
the other hand, the RR operation takes a longer time when the content has a
number of dynamic objects and their states need to be updated in the database.
It also takes a long time for those regions whose data is not already stored in the
database. In general, both MySQL options take less time for both deleting a region
and removing a region from a Sim, as shown in Figure 6.11(a) and Figure 6.11(b).
Furthermore, the MySQL (localised) option shows a little improvement over the
centralised option for our simple setup. We believe that a centralised option

becomes a system bottleneck as a VW scales.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 151

450 450
400 —4—5Qlite ==5QLite P .1
—m—MySQL (Centralised) 400 | —g—Mysqr (Centralised) / \
& 350 MySQL (Localised) 350 | MySQL (Localised)
3 m
< 300 T 300 / \
H 2
8 250 % 250 / \
£ 200 N £ 500 // n\ \\
= =
2 150]
F 100 LN E 150 / \
o \ " 100 / \
] = N Y
. ~Na 50
0 - k ; . T T T — - 7,/4-'/ \
wot® OP5° 5° O NEE 0 ’4‘6 ‘ ‘ ‘ o
ovf *? 2 °? o wot e AS° O NG
N) A0! o @&‘? 2V 60\’? 2 R 0’1—?6 o09°
Content Content

(a) (b)

Figure 6.11: The comparison of SQLite, MySQL (Centralised), and
MySQL (Localised) as a prospective configuration and their impact on
(a) Delete Region (DR), and (b) Remove Region (RR).

In short, SQLite is a good option for simple experimental work and to start work-
ing with, but for further experimentation and to run a grid infrastructure, it
is recommended to use MySQL. A single centralised MySQL instance could be
utilised for a grid environment hosting regional data for all Sims, but it could
become a system bottleneck for large scale VWs. Hence, it is recommended to use
a localised database for each Sim and, from now onwards, we utilise a separate
MySQL instance for each Sim.

6.6 Informal Time Analysis Model

This section describes an informal way to transfer players and content from one
Sim to another Sim (on a grid infrastructure) with the help of RAd methods
and the teleport method of scene object of OS framework. We introduced three
additional region console commands to initiate our methods for split and merge
operations. Our methods combine the activities into a series of function calls to
implement these operations. Two different split commands are added that differ
in the way they remove a region from a Sim. One uses Delete Region (DR) and the
other accesses the Close Region (CsR) method of RAd functionality for this pur-
pose. The basic aim is to determine how much time is taken by each activity during
a transfer. We use a simple grid of two Sims, described in Table 6.2, to perform

a number of experiments varying both players and content. This is to examine

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 152

the time statistics for the activities required for split and merge operations when
they are used from a remote machine. Since both split and merge operations use
the same set of activities, we have only reported the time information of selected
activities from split operations for our investigations. We manually initiate these
commands from the console and start each experiment with empty regions, and
then populate them with either content or players depending on the experiment
concerned. We use both Windows and Linux environments (described in sec-
tion 6.1.2) to perform the same set of experiments, and then they are compared to
observe their behaviours. Each environment is introduced before the experiments
that cover three categories based on dynamic content, example worlds content,
and interactive players. We use dedicated servers to host different Sims based on
our investigation, which is presented in the following section (section 6.6.1). The
statistics defined in section 6.4.3 are used for the informal time analysis in this
chapter with the basic aim of obtaining time estimates and developing improved

strategies to minimise their timings.

Experiment | Content Non-dedicated Server | Dedicated Server
CR LC CR LC
Time Time Time Time
(Sec) (Sec) (Sec) (Sec)
1 Our world 8Sec 7Sec 2Sec 2Sec
2 501PandASs 7Sec 8Sec 3Sec 3Sec
3 1002PandASs | 9Sec 9Sec 2Sec 4Sec
4 OpenCVE 6Sec 109Sec 2Sec 101Sec
5 FairieCastle 8Sec 96Sec 2Sec 86Sec

Table 6.4: The comparison of time information for both Create Region
(CR) and Load Content (LC) between a dedicated and a non-dedicated
Sim.

6.6.1 Dedicated and Non-dedicated Sim Servers

For a better performance, the VW Sims are normally assigned to dedicated cores
on Grid infrastructures. This is because running other activities shares the compu-
tation and communication facilities that potentially degrade system performance.

In this section, we provide a brief analysis of activities and their comparison be-

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 153

tween two Sims where the first is running on a dedicated system but the second
is running more applications in addition to the Sim. The dedicated server was
used to run the parent Sim (Sim-I) and its database instance. A dual core system
was used to run an instance of Robust and the child Sim (Sim-II), in addition to
two database instances for both grid and a regional server. It was also running
a number of other applications. Table 6.4 provides a summary of time informa-
tion for two activities using RAd methods for Create Region and Load Content
on both dedicated and non-dedicated servers. It can be observed that the non-
dedicated server takes much longer to perform these activities. Figure 6.12(a)
shows a comparison of time taken by creating a region between a dedicated and
a non-dedicated server. It can be seen that a Sim on a dedicated server creates
a region much faster than the one on a non-dedicated server. It takes two to
three seconds compared with the six to nine seconds of a non-dedicated server. A
comparison between both Sims for Load Content from an OAR file is presented
in Figure 6.12(b). It shows that a dedicated server loads the content in less time

than a non-dedicated server.

ﬁ [[—e—Dedicated Server | 120 T Dedicated Server
10 L.=#=Non-dedicated Server | 100 - =

9

8 80

o /

Time (in Seconds)

I
Time (in Seconds)

orRrNWRUGON

g g g . g 20
T T T T 1 0 J T l T I T
& 3 w N\ © > 2] 23 & &
& F ¥ O & S K N & &
< s & 3 & 0) S &
o L & R N o N L oR N
Y & < o & <

Content Content

(a) (b)

Figure 6.12: The comparison of time information between dedicated
and non-dedicated servers for (a) Create Region, and (b) Load Content.

In short, dedicated servers for a Sim provide much better and quicker responses
to perform different activities, and also improve user interactive experience. From

now onwards, we use dedicated servers for running region Sims and grid services.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 154

6.6.2 Time Analysis on Windows Platform

In this section, we use our Windows environment, as described in section 6.1.2, for
three different sets of experiments. The dual core system is used to run the grid
instance and two Pentium systems are used to run two Sims (Sim-I is a parent and
Sim-IT is a child Sim). The fourth system is used to log in an increasing number

of Bots in the third set of experiments.

Dynamic Content

Table 6.5 describes the set of experiments that transfer an increasing number of
dynamic content (PandASs) and shows the time information for different activities
required to transfer a region without players. RR is the only activity that takes
long time for both DR and CsR. DR takes less time than CsR but it is still a
considerable amount of time. In both cases, the time to remove a region increases
with rise in number of content, as shown in Table 6.5. The rest of the activities
(SC, CR, and LC) take an acceptable amount of time. This is because these

workloads have no complex scenarios and each object is of a single prim.

Case Exp. | From | To Region | Prims and SC RR CR LC
No. | Sim Sim Name Active Scripts | Time | Time Time | Time
(Sec) | (Sec) (Sec) | (Sec)
Delete-Region 1 | Sim-I | Sim-IT | A 8Prims only 1Sec 2Sec 2Sec 2Sec
2 | Sim-I | Sim-IT | A 101 each 1Sec 12Sec 2Sec 2Sec
3 | Sim-I | Sim-II | A 501 each 2Sec 56Sec 3Sec 3Sec
4 | Sim-I | Sim-II | A 1002 each 2Sec 126Sec | 2Sec 4Sec
5 | Sim-I | Sim-II | A 1503 each 3Sec 170Sec | 3Sec 6Sec
Close-Region 1 | Sim-I | Sim-IT | A 8Prims only 1Sec 1Sec 2Sec 2Sec
2 | Sim-I | Sim-IT | A 101 each 1Sec 12Sec 3Sec 2Sec
3 | Sim-I | Sim-IT | A 501 each 1Sec 77Sec 2Sec 3Sec
4 | Sim-I | Sim-IT | A 1002 each 2Sec 196Sec | 2Sec 5Sec
5 | Sim-I | Sim-IT | A 1503 each 3Sec 343Sec | 2Sec 7Sec

Table 6.5: Summary of the time information for experiments transfer-
ring dynamic content (PandASs) on Windows environment.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 155

Example Worlds

In this set of experiments, the region that is transferred to the child Sim is pop-
ulated with one of the example worlds content described in section 6.1.3. Most
of the content in these worlds are static except FairieCastle which has a number
of dynamic scripts. Table 6.6 shows the results of the experiments which show
that both SC and CR take time which falls in an acceptable range. The removal
time for DR is longer than CsR, except for FairieCastle which takes time during
the backup process before closing it. The OpenVCE content was not stored in
the database when we called CsR and, therefore, it took longer to first store the
content in the database before closing the region. However, when the content was
stored, the same operation for OpenVCE world took just a few seconds. Since the
example worlds represent proper environments with reasonable numbers of objects
and scene complexity, they took a considerable amount of time to load content

from an OAR file to the corresponding region.

Case Exp. | From | To Region | Regional SC RR CR LC
No. Sim Sim Name Content Time | Time Time | Time
(Sec) | (Sec) (Sec) | (Sec)
Delete-Region | 1 Sim-I | Sim-IT | A OpenCVE 8Sec 13Sec 2Sec 101Sec
2 Sim-I | Sim-IT | A FairieCastle 10Sec | 19Sec 2Sec 86Sec
3 Sim-I | Sim-II | A Maya Pyramid | 4Sec 5Sec 2Sec 18Sec
4 Sim-I | Sim-IT | A CSI World 5Sec 25Sec 2Sec 38Sec
5 Sim-I | Sim-IT | A EducationSim 2Sec 17Sec 2Sec 10Sec
Close-Region 1 Sim-I | Sim-IT | A OpenCVE 7Sec 131Sec | 2Sec 96Sec
2 Sim-I | Sim-IT | A FairieCastle 8Sec 25Sec 2Sec 91Sec
3 Sim-I | Sim-II | A Maya Pyramid | 3Sec 2Sec 3Sec 18Sec
4 Sim-I | Sim-IT | A CSI World 4Sec 3Sec 2Sec 39Sec
5 Sim-I | Sim-1T | A EducationSim 1Sec 3Sec 3Sec 13Sec

Table 6.6: Summary of the experiments showing timing information of
different activities when transferring a region populated with example
worlds content.

Interactive Clients

In this set of experiments, we investigate the time taken to transfer an increasing

number of Bots between regions. We consider an empty region with no content. It

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 156

takes a few seconds to remove a region from a Sim as well as to create a region on
another Sim. Table 6.7 shows the details of experiments that reveals interesting
information. Each player takes on average nine seconds to transfer from one region
to another. However, in the case of network overload, it could take much longer
as a system normally retries a few times before initiating a timeout signal. One
such situation can be seen in experiment 3 for T2R Time, which takes 142Sec
instead of about 90Secs for a total of ten players. It was observed that three
Bots were disconnected in this situation, and the system retries to contact them,
was the reason to increasing the total time taken by the transfer. However, the
disconnection issue was potentially due to the non-mature nature of the TClient
application and happened rarely. It normally happened when we used an instance
of TClient to log in a large number of Bots. Hence, a real environment would
have less chance of connection drops for the actual players. Figure 6.13 depicts
two sets of transfers (for both T2T Time and T2R Time) during a single transfer,
and shows that the time might be increased due to communication issues. It can
be observed that the time taken is simply the average time (9Sec) x number of

players and is quite static in normal situations.

Exp. | From | To Region | Players | T2T RR CR T2R

No. | Sim Sim Name Time Time | Time | Time

(Sec) (Sec) | (Sec) | (Sec)

1 | Sim-1 | Sim-IT | A 1 | 8Sec 1Sec 2Sec 8Sec

2 | Sim-I | Sim-1T | A 5 | 43Sec 2Sec 3Sec 48Sec
3 | Sim-I | Sim-1T | A 10 | 88Sec 1Sec 2Sec 142Sec
4 | Sim-I | Sim-II | A 15 | 132Sec | 2Sec 2Sec 138Sec
5 | Sim-I | Sim-1I | A 20 | 183Sec | 2Sec 3Sec 180Sec

Table 6.7: Summary of the timing information for the experiments
transferring an increasing number of players on Windows environment.

6.6.3 Time Analysis on Linux Platform

In this section, we repeat the same sets of experiments (presented in section 6.6.2)
on the Linux environment described in section 6.1.2. The main purpose is to see

how the system behaves when dual quad core nodes are used to host different

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 157

200 —4—MNormal Transfer

180 |=m=Transferwith Timeouts /
160 t

100 / /
/)
Yy

=
I
<

=
[
o

ca
o

Time (In Seconds)

[I)]
o O o
I

(=]

S 5 40 45 20
Players/Bots

Figure 6.13: Time taken by teleport operation for transferring an
increasing number of players on Windows environment.

Sims, and if there is any improvement in terms of time for different activities.
One node is used to run the grid services and two are hosting a parent and a child
Sim, called Sim-I and Sim-II respectively. To log in increasing number of Bots,

we used additional nodes and a number of TClient instances.

Dynamic Content

Table 6.8 provides experimental results for transferring an increasing number of
dynamic content (PandASs). It shows that SC, CR, and LC have similar outcomes
as the Windows environment and they take only a few seconds. The time taken
by both DR and CsR methods is decreased compared with corresponding exper-
imental results on the Windows environment but they still take a considerable
amount, of time which is up to a couple of minutes. The use of high speed nodes

could only improve the performance to a certain level, due to the basic structure
of both DR and CsR methods.

Example Worlds

The Linux environment for example worlds experiments failed to further decrease
the time parameter for removing a region (both DR and CsR) compared with

Windows environment and provided almost similar outcomes. This is due to the

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 158

Case Exp. | From | To Region | Prims and SC RR CR LC

No Sim Sim Name Active Scripts | Time | Time Time | Time

(Sec) | (Sec) (Sec) | (Sec)

Delete-Region 1 | Sim-I | Sim-II | A 8Prims only 1Sec 2Sec 2Sec 1Sec

2 | Sim-I | Sim-IT | A 101 each 1Sec 9Sec 1Sec 1Sec

3 | Sim-I | Sim-IT | A 501 each 2Sec 41Sec 3Sec 3Sec

4 | Sim-I | Sim-IT | A 1002 each 2Sec 98Sec 2Sec 3Sec

5 | Sim-I | Sim-IT | A 1503 each 4Sec 128Sec | 3Sec 5Sec

Close-Region 1 | Sim-I | Sim-IT | A 8Prims only 1Sec 1Sec 2Sec 1Sec

2 | Sim-I | Sim-1I | A 101 each 2Sec 12Sec 2Sec 1Sec

3 | Sim-I | Sim-II | A 501 each 2Sec 57Sec 3Sec 3Sec

4 | Sim-I | Sim-1I | A 1002 each 2Sec 148Sec | 1Sec 3Sec

5 | Sim-I | Sim-IT | A 1503 each 3Sec 227Sec | 2Sec 4Sec

Table 6.8: Summary of timing information for experiments transferring
dynamic content (PandASs) on Linux environment.

sequential approach for deleting scene objects from both scene and database. How-

ever, it greatly reduced the LC time, which is more than 60% less than the time
taken by Windows nodes (see Table 6.6). The time taken by SC and CR parame-

ters is almost the same as the Windows environment and is normally acceptable.

The results of this set of experiments are provided in Table 6.9.

Case Exp. | From | To Region | Regional SC RR CR LC

No. | Sim Sim Name Content Time | Time | Time | Time

(Sec) | (Sec) | (Sec) | (Sec)
Delete-Region 1 | Sim-I | Sim-1T | A OpenCVE 6Sec 13Sec | 2Sec 32Sec
2 | Sim-I | Sim-1I | A FairieCastle 7Sec 21Sec | 1Sec 26Sec

3 | Sim-I | Sim-II | A Maya Pyramid | 4Sec 5Sec 1Sec 6Sec
4 | Sim-I | Sim-1I | A CSI World 53ec 27Sec | 2Sec 12Sec

5 | Sim-I | Sim-1I | A EducationSim 1Sec 18Sec | 1Sec 4Sec
Close-Region 1 | Sim-I | Sim-IT | A OpenCVE 7Sec 4Sec 1Sec 36Sec
2 | Sim-I | Sim-1I | A FairieCastle 8Sec 17Sec | 1Sec 27Sec

3 | Sim-I | Sim-II | A Maya Pyramid | 3Sec 1Sec 2Sec 7Sec
4 | Sim-I | Sim-1I | A CSI World 6Sec 4Sec 1Sec 17Sec

5 | Sim-I | Sim-II | A EducationSim 1Sec 1Sec 1Sec 5Sec

Table 6.9: Summary of timing information for experiments transferring
example worlds content on Linux environment.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 159

Interactive Clients

In this section, we repeat the experiments with an increasing number of players
on our Linux environment. The main emphasis is to obtain the average time
required to transfer a player from one region to another region. Table 6.10 presents
the details of experiments and shows that each player on average takes about
eight seconds. It gives a one second improvement (per player) on the Windows
environment but we observed that there were hardly any disconnections for Bots.
This is mostly due to the use of more TClient instances and using each to log in

only a few Bots.

Exp. | From | To Region | Players | T2T RR CR T2R

No. | Sim Sim Name Time Time | Time | Time

(Sec) (Sec) | (Sec) | (Sec)

1 | Sim-I | Sim-IT | A 1 | 7Sec 1Sec 1Sec 8Sec

2 | Sim-I | Sim-II | A 5 | 40Sec 3Sec 2Sec 38Sec
3 | Sim-I | Sim-II | A 10 | 81Sec 2Sec 1Sec 78Sec
4 | Sim-I | Sim-IT | A 15 | 118Sec | 2Sec 1Sec 121Sec
5 | Sim-I | Sim-II | A 20 | 158Sec | 2Sec 2Sec 162Sec

Table 6.10: Summary of timing information for experiments transfer-
ring increasing number of Bots on Linux environment.

6.6.4 Comparison and Discussion

In this section, we presented a number of experiments on both Windows and Linux
platforms for three different categories of load: an increasing amount of dynamic
content (PandASs), the example worlds content (described in section 6.1.3), and
an increasing number of interactive players. The same sets of experiments were
used to compare the performance of both systems. This section only presents
a comparison of those parameters where the Linux environment performs better
than the Windows environment.

The experimental results for dynamic content on the Windows environment show
that both DR and CsR methods take a considerable amount of time. The same
set of experiments on the Linux environment for both operations obtains better

results, although they still consume a large amount of time. The comparison of DR

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 160

400
—&4—Delete Region (Windows) ‘ —#—Close Region (Windows) ‘
350

—fi—Delete Region (Linux) ‘ —fli—Close Region (Linux) ‘ /'

= 300 = 300
) T
E § 250 /
g 2 200
4 200 < P
@ 150 _—* @ 150
£ / £ 100 S
F 100
50 -
K J
0 : :

g0 1pand™® 14pandE ppandhE (apandt®

my

dhS® nahS®

Se
4,01P2! o

ndRS® ndRSS

SOLPATT 4 002PeTT 4 503P?

Regional Content Regional Content

(a) (b)

Figure 6.14: Comparison of timing information of dynamic content
(PandASs) on both Windows and Linux environments for (a) Delete
Region (DR), and (b) Close Region (CsR).

8Pl

and CsR for both Windows and Linux environments for dynamic content is shown
in Figure 6.14. However, both environments showed an almost similar behaviour
against the static content with a slight improvement of the Linux environment on
Windows environment. The basic reason is that DR follows a sequential approach
to deleting the content from both a scene and database in turn. Similarly, the
CsR method uses the persistence mechanism to store the updated content before
closing it. It is observed that DR time increases with a rise in the amount of static
content. However, static content requires no periodic backups and, therefore, CsR
takes only a few seconds to remove a region. To reduce the overall transfer time
for a region, the DR time needs to be minimised.

The transfer experiments on the Windows environment for example worlds content
identified that the LC activity is also a time-consuming activity and needs a great
deal of time to load and setup regional content. The Linux node greatly improved
the time taken by LC for the same set of experiments. The comparison of both
environments for the LC against dynamic content (PandASs) and example worlds
content is presented in Figure 6.15. We believe that allowing content based on
dynamic content, the LC time is much less than the time taken by basic DR and
CsR methods. If a scene has complex objects, it needs an increased amount of
time to load the content. We believe that OAR functionality hides the complex
operations to set up regional content. On the other hand, it is easy to significantly
minimise the time taken by DR and CsR by using OAR functionality that could

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 161

10 120
—4—Load Content (Windows)

—fli—Load Content (Linux)

=4—Load Content (Windows)

1:2 \\ | =l oad Content (Linux) |
/ . \

AR>S 501"“‘“55

©

»>

o

IS

Time (in Seconds)
(Average)
Time (in Seconds)
{Average)

|
o3 - caste 1) \d {onSim
grand®® 1 pandhS® 1002020 (apand®® ope™ et arve ™S ool cavon®

Regional Content Regional Content

(a) (b)

Figure 6.15: Comparison of timing information of Load Content (LC)
on both Windows and Linux environments for (a) dynamic content, (b)
example worlds content.

be used to back up regional data, thus potentially avoiding the basic persistence

process of objects into a database.

1

I 3

—

Player Average Time
(Seconds)

Ok N WEU N ® OO

1 5 10 15 20
| ——Windows 8 8.6 8.8 8.8 9.2
| —m—Linux 7 8 8.1 7.9 7.9
Players/Bots

Figure 6.16: Comparison of timing information for increasing number
of players transfer on both Windows and Linux environments.

We also performed a number of experiments for transferring players from one re-
gion to another to determine the average time taken by each player. A player
transfer on the Windows environment takes on average approximately nine sec-
onds, compared with approximately eight seconds on the Linux environment, as
shown in Figure 6.16. The Linux system slightly improved the average player
transfer time but we might need to investigate other ways to reduce it further in
future. We believe that, though it takes a little while to transfer a player, it gives
better experience than simply freezing them.

Based on this discussion, in the next section we present two strategies that signif-

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 162

icantly minimise the total time taken by a region transfer compared with original
OS methods.

6.7 Improved Strategies

In this section, we introduce a number of potential ways to improve transfer time
for a region by applying better strategies for different activities during a transfer.
It presents two improved strategies targeting region removal from a Sim, and
provides a comparison based on time parameters for dynamic content (PandASs)

and example worlds content on both Windows and Linux environments.

6.7.1 Introduction

Two basic methods are available in both the OS framework and RAd functionality
to remove a region from a Sim: Delete Region (DR) and Close Region (CsR)(is
remove-region in OS framework). The former generally takes longer but removes
all the data from both scene and database before closing down its client server.
The latter closes both the scene and server but does not remove data from the
database. DR for a large set of content (both static and dynamic) takes a long
time to delete a region due to its sequential approach to deleting the content from
both scene and database. On the other hand, CsR for dynamic content takes a
great deal of time due to the backup process to store the most recent changes to
the content.

Using a centralised database for managing data for all region Sims can potentially
provide a more efficient way to load content when used together with CsR, thus
avoiding storing the content to an OAR file. It takes advantage of grid services
that manage all the components through unique identifiers. Even if the system
allows loading the existing content to a region when it is created with the same
specifications on a different Sim, it has a number of key limitations. Firstly, it is
only beneficial when most of the content is static, thus avoiding the persistence
process, and it closes a region promptly. However, we believe that VWs provide
both static and dynamic content. Similarly, they allow users to create and modify

their content that might require being stored before closing a region. Secondly, a

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 163

centralised system is also a potential bottleneck for large scale VWs.

On the other hand, LC also takes a considerable amount of time, though greatly
reduced by the Linux environment. However, the OAR functionality we used
provides an easy and handy way to transfer a region compared with other methods
that might require complex explicit operations. If we wanted to apply data transfer
between databases of different Sims, we need the basic persistence process to first
store updated content in a region. Moreover, the process of transferring through
database migration might be complex in the sense that it needs to transfer other
relevant information from different tables and stores. The OAR functionality
makes it much easier to restore the complete terrain, assets and prims to a region.
Based on these issues, and to help develop VWs with a reasonable amount of both
static and dynamic content, we developed two strategies which perform much
better than the basic DR and CsR methods, especially if a region has dynamic
content. They skip the persistence process of OS framework and take advantage of
OAR to relocate a region with the latest content. However, they use direct queries
to database for cleaning up the data. These strategies take the advantage of OAR
functionality to obtain a backup of regional data, thus skipping the persistence

step in CsR with explicit queries to clean up the database.

6.7.2 Improved Strategies

We have written additional procedures while keeping the original basic methods
for their general use. These strategies use direct database operations to perform
data deletion and cleanup activities which are performed implicitly by DR method.
These improved strategies are described below:

The first Improved strategy (Improved-I) deletes the objects of a regional scene
and relevant entries from the database. It then calls the delete-region method of
RAd functionality to remove the region, thus breaking up the sequential cycle of
eliminating objects from both scene and database in sequence.

The second Improved strategy (Improved-II) removes a region with persistence
operation being disabled and then explicitly deletes the relevant entries from the
database directly. The object persistence is replaced by storing regional data in

OAR files for transferring updated content.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 164

6.7.3 Time Analysis and Comparison

In this section, we present a comparison of the basic DR and CsR methods to-
gether with our improved strategies. We have performed experiments with both
dynamic content (PandASs) and example worlds on both Windows and Linux en-
vironments. We have already demonstrated that the Linux environment performs
better than Windows for certain activities. For this comparison, we have repro-
duced only a subset of experiments that we performed using our informal time
analysis model in section 6.6.

Table 6.11 presents the experimental results of an increasing number of dynamic
content for both Windows and Linux environments. It is clear that the basic
DR and CsR operations take much longer as the number of content increases.
Although, the Linux environment is faster than the Windows environment, it still
takes considerable amount of time. Improved-I greatly reduced the time required
to delete the content after breaking the sequential cycle; however, the best results
are achieved by Improved-II which minimised the removal time to just a few
seconds. However, it could be seen that for a region with very little content, the
basic DR takes less time than our improved strategies. Nevertheless, we believe
that the regions normally have a reasonable amount of content (both static and

dynamic) and, therefore, we recommend Improved-IT in most of the cases.

Environment | Exp | Regional Basic RAd Basic RAd Improved-I | Improved-II
No. | Content Delete-Region | Close-Region

Windows 1 | OPandASs 1Sec 1Sec 2Sec 2Sec
2 | 100PandASs 12Sec 14Sec 3Sec 2Sec
3 | 500PandASs 56Sec 77Sec 5Sec 3Sec
4 | 1000PandASs | 126Sec 196Sec 15Sec 4Sec
5 | 1500PandASs | 170Sec 343Sec 26Sec 4Sec

Linux 1 | OPandASs 2Sec 1Sec 1Sec 1Sec
2 | 100PandASs 9Sec 12Sec 2Sec 2Sec
3 | 500PandASs 41Sec 57Sec 6Sec 2Sec
4 | 1000PandASs | 98Sec 148Sec 11Sec 3Sec
5 | 1500PandASs | 128Sec 227Sec 22Sec 3Sec

Table 6.11: Comparison of different Delete Region (DR) and Close
Region (CsR) strategies for dynamic content on both Windows and
Linux environments.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 165

Experimental results for example worlds content are presented in Table 6.12. It is
of note that both Windows and Linux systems perform almost the same for static
content. It can be seen that it takes more time to remove FairieCastle due to
dynamic entities included in its content. The rest of the worlds are removed in a
few seconds. Both the improved strategies guarantee the removal of content from
the database and achieve better results than the DR method. Figure 6.17 shows
a comparison of four strategies on the Windows environment for both dynamic
content and example worlds. These strategies are compared for both sets of content

on the Linux system with the help of Figure 6.18.

Environment | Exp. | Regional BasicRAd Basic RAd Improved-I | Improved-II
No. | Content Delete-Region | Close-Region

Windows 1 | Our world 1Sec 1Sec 2Sec 2Sec
2 | OpenCVE 13Sec 5Sec 4Sec 3Sec
3 | FairieCastle 19Sec 25Sec 5Sec 3Sec
4 | Maya Pyramid | 5Sec 2Sec 2Sec 2Sec
5 | CSI World 25Sec 3Sec 3Sec 3Sec
6 | EducationSim 17Sec 3Sec 2Sec 2Sec

Linux 1 | Our world 1Sec 1Sec 2Sec 2Sec
2 | OpenCVE 13Sec 4Sec 2Sec 2Sec
3 | FairieCastle 21Sec 17Sec 4Sec 3Sec
4 | Maya Pyramid | 5Sec 1Sec 2Sec 2Sec
5 | CSI World 27Sec 4Sec 5Sec 2Sec
6 | EducationSim 18Sec 2Sec 3Sec 2Sec

Table 6.12: Comparison of different Delete Region (DR) and Close
Region (CsR) strategies for the example worlds on both Windows and
Linux environments.

6.8 System Issues/bugs and fixtures

In this section, we report a number of bugs in the OS framework that we fixed to
achieve the desired functionality.

Since we initially used region console to investigate the capabilities of OS frame-
work, we found that the basic RR method was deleting a region instead of its
fundamental functionality of closing it. This issue was fixed by calling the correct

procedures to achieve the desired functionality. For our implementation work, we

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 166
400 50
350
) 40
— 300 8
S / 830
—4—Delete-Region o ——Delete-Region
: 200 / _» ~—Close-Region % 20 A /\\ —@— Close-Region
@ 150 // Improved-| E /.A / Improved-|
¥ 100 /V —=—|mproved-I| 10 ; : } : == |mproved-I|
50 0 ; ‘ ; ; ; :
0 p— 7 " ! & & ae WS R
© kY & x@Q ,@“0 0‘“\“‘0‘ Ooe(\\‘ Qa“‘.\&::a%v\‘(a«\ CS\\N:;\x&‘.‘O‘\S\
Content (Prims and Active Scripts) Content {(Example worlds)

(a)

(b)

Figure 6.17: Comparison of different methods to remove a region from
a Sim on Windows environment for (a) dynamic content, (b) example

worlds.
400 50
350 0
— 300 =
g £
§ 250 o 30
E) == Delete-Region @ /\ == Delete-Region
< 200 - Close-Region :u-—; 20 A Y —fli— Close-Region
g 150 Improved-| E //A\ / Improved-|
= == |mproved-Il —<—Improved-I|
T S © N
50 0 T T T T LE—
0 - S T e
W e AP <@ WO o™
ot R Gl N\ AN
) \90 %QQ '\000 ,\:.PQ I3} ov e \4\3““ &) P o

Content (Scripts and Active Prims)

Content {(Example worlds)

(a)

(b)

Figure 6.18: Comparison of different methods to remove a region
from a Sim on Linux environment for (a) dynamic content, (b) example
worlds.

used the RAd functionality that provides the correct functionality of CsR (which
is RR in OS).

While experimenting with our informal model we noticed that, when a region
is deleted from a Sim, the database entry that links a region to an estate is
not cleared. Therefore, it prevented us from re-creating a region with the same
specification while relocating them. We fixed this by writing an explicit query to

delete the corresponding entry from a regional database.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 167

6.9 Conclusions and Future Work

We conducted a number of tests to determine the robustness of the OS capabilities
and used a number of time statistics to investigate and compare different aspects
of this work.

We presented a load model based on SimFPS parameter after a wide range of
experiments for static and dynamic content, as well as interactive clients, on both
Windows and Linux environments. We used a minimum of 30FPS and 40FPS for
SimFPS to determine SimCapacity and SplitCapacity consecutively. A value of
30FPS is used to guarantee better user experience, while 40FPS for SimFPS avoids
bad experience by initiating a split much earlier than reaching a point that might
degrade performance. The system takes decisions based on average values which
are calculated by considering a number of observations in the last few minutes.
The number of players for both Windows and Linux remained the same, and this
showed that due to the current software implementation, additional hardware was
unable to scale the world.

We presented the scalability model and determined the components that are used
to implement both split and merge operations. We started with an informal im-
plementation framework and conducted a study of three sets of experiments based
on dynamic content, example worlds content, and interactive players. OS allows
different database options (SQLite and MySQL) and orientations (centralised and
localised). We investigated both SQLite and MySQL databases for standalone
mode and examined MySQL for grid mode using both centralised and localised
orientations. To reduce communication overhead and avoid longer delays in scal-
able systems, a local MySQL server was determined to be an excellent choice.
Furthermore, it was determined that a Sim requires to be managed by a dedicated
server for improved performance.

The Windows platform revealed that both Delete Region (DR) and Close Re-
gion (CsR) are time-consuming activities to remove a region from a Sim and load
content from an OAR file. Furthermore, a player transfer (using teleport method)
on average takes approximately nine Seconds. The Linux environment was signif-
icantly faster for loading the content, which is approximately a 60% improvement

over the Windows environment. The average player transfer time is improved by

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 168

a second, taking approximately eight seconds. DR and CsR are improved sig-
nificantly but they still take a considerable amount of time. To reduce the time
taken by DR and CsR methods on both environments, we presented two improved
strategies. They used direct database access to delete regional data. In addition
to this, the best strategy (Improved-II) uses CsR instead of DR together with
by-passing the backup process to get a significant improvement over the basic
methods. We conducted an experimental study for their timings compared with
both DR and CsR operations.

We found a number of bugs and fixed them to ensure that the system worked
according to our requirements by writing explicit routines, including extended DR
and RR methods. Since VWs allow users to create and modify content, we be-
lieve that world content are mostly based on a reasonable amount of both static
and dynamic content. We therefore suggest using the Improved-II strategy that

performs well in all situations.

The following points can be further investigated:

Our load model is based on the SimFPS parameter due to a similar impact on
PhysicsFPS. Furthermore, performance tests (targeting physics) could be con-
ducted to identify the response of other parameters that might help to extend the
current load model for different requirements.

Future work might investigate the reasons why there is no improvement in system
capacity with additional resources.

We used the OAR functionality to transfer regional content which greatly reduced
the time taken by traditional methods to remove a region. However, content load
still takes a considerable amount of time, depending on scene complexity. Other

methods could be explored to further reduce the content load time.

Chapter 7

Scalable Virtual Worlds:

Implementation

This chapter examines an abstract framework for the implementation of JOHNUM
infrastructure and ARA algorithm for developing scalable VWs using an extension
to the OS framework. It expands with an increase in the number of players
by using additional resources, and it shrinks with a decrease in the number of
players by releasing under-used resources. The ARA algorithm is extended to
achieve contiguous areas of both square and non-square shaped regional grids
for assignment. It presents motivation for our implementation work and gives a
detailed analysis of different sets of experiments for regional grids of four and nine
regions. It uses modified versions of example worlds content to populate regions
and a number of different metrics were used for the evaluation and comparison of

this work.

7.1 Introduction

In this section, we present the limitations of existing VWs and the motivation for
the framework developed in this chapter, based on the investigations presented in
chapter 6. It provides a description of VWs used for the experiments conducted
in this chapter. It describes Sims and provides descriptions of the regions used for

regional grids. It also provides extended versions of example worlds and statistics

169

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 170

that are used for evaluation and comparison purposes.

7.1.1 Background and Motivation

In general, VWSs use spatial partitioning to share the load with additional servers [132].
However, it is an expensive operation that transfers both content and players and
requires special attention to reduce the time taken by a distribution process. The
modular design of OS framework can be exploited to develop strategies for achiev-
ing this goal. Its potential to host bigger spaces and transfer regions in turn
greatly motivated us to use the concept of spatial partitioning. It has the poten-
tial to reduce content un-availability time, and the total time taken by a transfer.
It also reduces the number of players that suffer from a transfer, compared with
traditional methods. The basic goal is to cope with issues in both static and
dynamic approaches. Other motivating factors for combining OS regions into a
bigger space include the fact that, with a few exceptions, most SL regions are
never visited or are visited by very few people [219]. Based on results of previous
studies targeting spatial partitioning, we adopted a different approach. Instead
of freezing the players, we transfer them to a transit region while relocating their
current region. Even though it takes a few minutes, we believe that our approach
is acceptable for the following reasons: it is a rare operation and merging uses a
very relaxed strategy to re-integrate regions thus avoiding frequent splits; though
players are unable to add or modify content during splits, they normally have a
better experience; and since we are teleporting players explicitly, they will observe
the disappearance and then re-appearance of the players around them. However,
players are warned about “maintenance” work before starting a region transfer.
In the worst cases, a region might have twenty players and each takes between
eight and nine seconds to transfer.

Initially, each Sim is assigned a bigger continuous space made up of a number
of regions in a flat orientation. When it reaches an excessive load, the load is
shared with additional Sims to scale the world. On the other hand, the system
revokes under-utilised resources. Resources are, therefore, used according to the
requirements that potentially overcome most of the issues. Due to the unique

characteristics of VWs, the traditional optimisation techniques such as sharding

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 171

cannot be applied. However, we have developed better strategies to reduce the
total time taken by a transfer. Our current ARA algorithm results in fair distri-
bution of load and, in the case of excessive load, we obtain a new Sim to share
the load with. However, this work does not look into load balancing, but this is
our future work to be carried out. We believe that our merging strategy (called
Child Merge) has the potential to achieve load balancing, which is presented in
section 7.5 and demonstrated in section 7.6. In this chapter, our basic aim is to
develop an abstract framework and to show how it achieves the goals set for this
work by implementing it.

According to Liu et al. [140], the main scalability barriers constrained by resources
include CPU Utilisation, Network bandwidth, and Network Latency. The CPU
load could increase dramatically as a VW scales up in any direction. With an
increase in the number of concurrent users or scene complexity, the network can
quickly become overwhelmed by combined traffic. Furthermore, a walk-through
system requires visualisation updates much faster than a truly responsive system.
According to Lake et al. [132], when the number of connected clients increases,
the frame rate begins to decrease. Lag appears in physics and network processing.
If further clients are added, the frame rate quickly drops to a point where the
scene is not usable. To avoid these issues, and to achieve improved performance,
we have taken certain decisions based on the load model developed and described
in chapter 6. We suggest a reasonable amount of static and dynamic content and
interactive players in a Sim for which the system maintains at least 30FPS for
SimEPS. In case additional Sims are available and a Sim is managing more than
a single unit region, it initiates a split when the SimFPS reaches 40FPS. These
decisions overcome those situations that are normally managed by allowing a sys-
tem to accept plausible results or slow down execution to reduce the performance

gap that results in a degraded user performance.

7.1.2 VW Environment and Setup

In this section, we provide a description of the regions that are used to constitute
regional grids of different shapes and sizes with an upper bound of nine regions.

However, it is important to mention that much bigger worlds can be used to begin

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 172

Simulator (Sim) HTTP Regions (Region: Transit Region(Region:
Listening Port | XY Co-ordinate:Port) | XY Co-ordinate:Port)

Sim-I (Parent) 9000 A:1000,1000:9000 T1:1005,1005:9105
B:1001,1000:9001
C:1002,1000:9002
D:1000,1001:9003
E:1001,1001:9004
F:1002,1001:9005
G:1000,1002:9006
H:1001,1002:9007
1:1002,1002:9008

Sim-IT (Child) 9005 Nil T2:1006,1006:9106
Sim-IIT (Child) 9010 Nil T3:1007,1007:9107
Sim-IV (Child) 9015 Nil T4:1008,1008:9108
Sim-V (Child) 9020 Nil T5:1009,1009:9109
Sim-VI (Child) 9025 Nil T6:1010,1010:9110
Sim-VII (Child) 9030 Nil T7:1011,1011:9111
Sim-VIII (Child) | 9035 Nil T8:1012,1012:9112
Sim-IX (Child) 9040 Nil T9:1013,1013:9113

Table 7.1: Description of 9 Sims with their transit regions and 9 con-
tent regions.

with, based on system capabilities. Table 7.1 provides details of nine Sims, each
with a local transit region. Sim-I is the parent Sim and it initially hosts all the
regions in a VW used for an experiment. We have used square-shaped regional
grids of four and nine regions in our current experimental work, and adjacent
regions from Table 7.1 are used to obtain greater contiguous spaces, as shown in
Figure 7.1. Figure 7.1(b) shows the configuration of our parent Sim (Sim-I) with
its local transit region. Our implementation model assumes that a VW is
pre-partitioned into the number of regions in a grid and does not actually follow
our theoretical split model. It is based on the fact that dividing into more smaller
regions achieves further improvements. Each region is taken as a unit region that
is considered by ARA algorithm during the aggregation process. They cannot be
further divided and, hence, all Sims are directly connected to the parent Sim in
a RMT of a single additional level. Transit regions are only used during split
and merge operations and provide no real world content. Figure 7.2 presents
regional grids of four and nine regions and shows the visibility of regions to a

player based on their current location. Each player knows all the neighbouring

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 173

Figure 7.1: World map showing adjacent placement of regions to get
contiguous spaces for (a) 4 regions grid, and (b) 9 regions grid with a
transit region.

Figure 7.2: Description and visibility of regions to a player in a
regional grid of (a) 4 regions, and (b) 9 regions.

regions and a presence for it is added to adjacent regions for smooth boundary
crossings. For each experiment, child Sims are running with transit regions in
advance and waiting for the load to share with the parent Sim. The Content used
to populate regions is presented in section 7.1.4. A Robust instance is used to
provide grid services and integrate the VW. In grid mode, each region on a Sim
requires to be registered with the grid for its global presence. Figure 7.3(a) shows a
Robust console with messages showing registered regions and user creation. Fach
region server allows different management functions to be performed from a region

console, as shown in Figure 7.3(b) for Sim-I.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 174

o[B

@ Scalable Virtual Worlds: Grid Services

e

MM e e T

Figure 7.3: Console window for a (a) Robust instance (for grid man-
agement), and a (b) Region server (for managing regions).

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 175

7.1.3 Platforms

For the evaluation of our implementation work, we use both Windows and Linux
environments, as described in section 6.1.2 of chapter 6, with the following con-

figurations.

Windows

The Grid services (Robust instance), together with an instance of MySQL database
for grid, are running on a dual core system. Two Pentium systems are used to run
Sims (a parent (Sim-I) and a child (Sim-II)) and their regional database instances.
The dual core system is used together with a Pentium system to populate the VW

with interactive clients.

Linux

Since all Linux nodes have the same capabilities, we use one node to run grid
services and an instance of MySQL database for its data use. We have used up to
nine Sims, each running a local database instance and a region server. Regional
grid description is given in Table 7.1, which provides the specifications of Sims.

This allowed us to use many other nodes to log-in bots to the VW.

7.1.4 Content and Players

The content used to populate regions during our experiments are extended ver-
sions of the example worlds content described in section 6.1.3 of chapter 6, and
are detailed in Table 7.2 for the corresponding regions. We added an additional
500 PandASs to each content and measured them on both Windows and Linux
environments to determine timing information for different activities. The time
taken by SC and LC operations did not increase. However, there was a significant
increase in the time taken by both DR and CsR methods to remove a region from
a Sim whose average values are provided in Table 7.2. Experiments described in
this chapter use Improved-II strategy to remove a region, which greatly reduces
the overall time taken by a transfer. Even though the Windows systems take much

longer for the LC operation, we still prefer to use OAR functionality for content

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 176

transfer for the following reasons: firstly, removing a region with a very little
content (see Table 7.2) using basic operations also takes a considerable amount
of time; secondly, it hides the complexity behind the process. Our decision to
use OAR functionality is justified on Linux systems as we observe a substantial

decrease in content load time.

Region | Content Windows Platform | Linux Platform
Name DR CsR DR CsR
Time | Time Time | Time
A OpenVCE + 500 PandASs 78Sec | 91Sec 63Sec | 73Sec
B CSI World + 500 PandASs 93Sec | 90Sec 78Sec | 71Sec
C Educasim + 500 PandASs 84Sec | 92Sec 68Sec | 75Sec
D FairieCastle + 500 PandASs 88Sec | 118Sec 64Sec | 104Sec
E Maya Pyramid + 500 PandASs | 68Sec | 87Sec 51Sec | 68Sec
F Our world + 500 PandASs 59S8ec | 81Sec 458ec | 60Sec
G Our world + 500 PandASs < ¢ @ <
H Our world + 500 PandASs < ¢ < <
I Our world + 500 PandASs < ¢ @ <

Table 7.2: Regional content for 9 regions used in our experiments

Instead of using actual players, we have used Bots to populate VWs. This uses
TClient as described earlier in section 6.1.3 of chapter 6 and each instance is used
to log in multiple Bots. To avoid issues, we logged-in a maximum of ten bots per
TClient. For each log in, system requires a unique user account and, therefore, we
created an account for each Bot. We used simple TClient commands to develop
different scripts that are executed by the Bots in sequence, using the same TClient
instance. To show an increase in the number of inter-sim crossings as a system
scales, we use a script called ScriptT. Using a random strategy, each Bot makes a
random move to a randomly selected region including its current region in the grid
using teleports. They are then asked to return to their original regions. Based
on Bots movements, we determine the total number of times players crossed Sim

boundaries.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 177

7.1.5 Statistical Metrics

We used different parameters to show the effectiveness of our dynamic framework,
and these are categorised as Time Statistics and System Statistics. Most of the
time statistics were defined in section 6.4.3 of chapter 6, and here we only define

those parameters that were not previously defined.

Time statistics are based on the time each activity, as part of a transfer, takes. It
includes SC Time, T2T Time, RR Time, CR Time, LC Time, T2R Time, Region
Content Transfer Time (RCT Time), Region Un-availability Time (RUnAv Time),
Region Transfer Time (RT Time), Total Time, and Average Player Time.
Region Content Transfer Time (RCT Time) is the time taken by content
transfer (of a region) excluding players’ transfer time.

Region Un-availability Time (RUnAv Time) is the time when a region is
locked for a transfer until it is set up on a destination Sim. It includes the time
taken by transferring players from the prospective region to the local transit region.
The time that is required to transfer both content and players is called Region
Transfer Time (RT Time). It includes both transferring players to transit and
then from transit to actual region after relocation.

Total Time is the cumulative time taken by all regions transferred, being part of

an aggregate.

System statistics include Content transferred, Number of players transferred, Num-
ber of regions migrated, Number of resources used, Number of Concurrent users,
Number of inter-sim crossings, Sim utilisation, Player disruption, and Transfers
per player.

Number of regions migrated shows the number of regions in an aggregate
being transferred.

Number of resources used is the total number of used resources.

Number of Concurrent users shows the total number of concurrent users in a
grid served by a set of Sims.

Number of inter-sim crossings shows the total number of connections and

disconnections between Sims for all users over the grid.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 178

Sim utilisation represents the average capacity of each Sim.
Player disruption means the total number of connections/disconnections per
player.

Transfers per player is the total number of times a player is transferred.

7.2 Abstract Scalability Framework

In this section, we provide an abstract framework by extending our scalability
model presented in chapter 6. The basic aim is to present how our prototype
implements both scaling and merging processes and how automatic decisions to
initiate a split or a merge are taken by each Sim. This framework is implemented
as a plug-in application in C# which works well on both Windows and Linux
environments. It uses grid mode of OS where the implementation of the activities
take the benefit of the integrated grid services. The basic steps in the main
controlling module and both distribution and merging processes are presented
with the help of Algorithms 4, 5, and 6. Each Sim is either a parent or a child
handling part of the world. Modules in the framework are defined in terms of
simple activities. We provide the abstract logic of main modules that use different
methods of RAd functionality to implement them, details of which are available
at [186] but are not discussed further. However, explicit procedures are briefly
described.

The main procedure that is taking split and merge decisions based on the values
of SplitCapacity and MergeCapacity is the heart of our framework. Each Sim con-
tinuously monitors the load and applies the logic presented in algorithm 4 until
the simulation is running. We maintain a pool of servers each running a Sim (de-
scribed in Table 7.1) that are available to share the load with overloaded Sims. If a
system load exceeds SplitCapacity, it potentially initiates DistributeLoad module
(algorithm 5) when a split is possible. It determines a list of scenes by calling
the ARA algorithm (presented in section 3.2.2 of chapter 3), and then it calls
DistributeLoad module to transfer regions to a newly selected Sim. On the other
hand, if the system load is less than, or equal to, MergeCapcity and a merge is
possible, it potentially initiates MergeLoad module (algorithm 6) to integrate its

load with a Sim, including parent among the existing Sims. Merging is only ini-

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 179

tiated by child Sims in our current implementation. It selects a Sim for merging
if, and only if, they maintain two constraints. Firstly, their combined load needs
to be less than, or equal to, MergeCapacity and secondly, their regions must get a
contiguous space. If both conditions are satisfied, the Sim initiates the MergeLoad
function with the Sim-ID (represented as RemoteSimulator) of the Sim to merge
its load with. MergeLoad then follows the steps outlined in algorithm 6 to trans-
fer its load. Our current implementation applies all or none strategy for merging
because we are interested in reducing the number of resources and not achieving
a uniform load. However, a transit region is never transferred during a split or

merge operation.

Algorithm 4 The Scalability Framework Components: Main module

1: while (VW is running) do
if (system load >= SplitCapacity and split is possible) then
List<Scene> RegionsToTransfer = DetermineAggregatedRegions(); //uses ARA algorithm
DistributeLoad(RegionsToTransfer);
else
if (system load <= MergeCapacity and Merge is possible) then
Uri RemoteSimulator = GetSimulator(system load);
MergeLoad (RemoteSimulator);
end if
end if
11: end while

SOXADUE WY

Algorithm 5 The Scalability Framework Components: DistributeLoad Module

Require: RegionsToTransfer //List of regions to transfer

1: Get a RemoteSimulator;

2: for (int i = 0; i < RegionsToTransfer.Count; i++) do
: ‘Warn the players about maintenance to begin;

3
4 Lock the region;

5: Save content to an oar file at shared location;
6: Get region specification;

7 if (RegionsToTransfer[i] has players) then

8 Transfer players to transit region;

9

end if
10: Remove region;
11: Create region on RemoteSimulator; //provide specification
12: Load content from oar file to the region on RemoteSimulator;
13: if (transit region has players) then
14: Transfer the players back to the region on RemoteSimulator;
15: end if
16: end for

Both DistributeLoad (algorithm 5) and MergeLoad (algorithm 6) modules use the

same set of actions in a sequence and transfer the regions in turn. Players in a

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 180

Algorithm 6 The Scalability Framework Components: Merging Module

Require: Uri RemoteSimulator //Simulator to merge the load with
1: while (Region other than transit exists) do

2: ‘Warn the players about maintenance to begin;

3 Lock the region;

4 Save content to an oar file at shared location;

5: Get region specification;

6: if (Region has players) then
7.

8

9

Transfer players to transit region;

end if
: Remove region;
10: Create region on RemoteSimulator; //provide specification
11: Load content from oar file to the region on RemoteSimulator;
12: if (transit region has players) then
13: Transfer the players back to the region on RemoteSimulator;
14: end if

15: end while

region are warned about the maintenance work and the scene objects are locked
before transferring it. DistributeLoad module takes a list of regions to transfer
while MergeLoad requires a Sim to merge the load with. The merge operation
selects a Sim using the merging strategies implemented in our work, which could
be a parent or another child Sim. When a merge is permitted, a Sim returns all
the regions and releases itself. In case there are players in a region while it is
being transferred, they are transferred to the local transit region. Since the tran-
sit region is only used explicitly by the system, it returns the players in transit
after relocating the region. The rest of the activities for both modules are self-
explanatory and are not further explained. Although a region transfer completes
when the players are transferred back to the actual region, the region is available

to other users when it is relocated and the content are loaded to the region.

We have implemented this framework as a plug-in to OS framework and tested
it over both Windows and Linux environments. Figure 7.4 shows a status report
of parent Sim running a VW of four regions. It provides both regional and Sim
statistics. Its current load is normal and it is accepting client connections. The
local transit region is not counted in against the load or other processes. It can be
noted that SimFPS is above 40FPS for about thirty-one players and a reasonable
amount of both static and dynamic content. Figure 7.5 presents a later stage
in the system after a split where the VW is now managed by two Sims (Sim-I

and Sim-II). Both the Sims are managing normal load and are accepting client

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 181

TR ——— = e

Figure 7.4: The status of a parent Sim (Sim-I) showing content and
interactive players for a 4-region world.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 182

connections. SimFPS is more than fifty for both the Sims showing that our system
scales with improved performance. Based on further load, both will further share
their load with additional Sims. In the case that their combined load goes below,
or equals, twenty players, Sim-II will initiate the merge operation to release a

resource.

7.3 Extended ARA Algorithm

The ARA algorithm was developed to aggregate regions based on a number of
strategies and to obtain contiguous areas for assignment. It initially takes re-
gional grids of nxn dimensions as an input normally based on split strategies of
JoHNUM infrastructure. It repeatedly assigns different parts of the pre-processed
space to additional Sims and it has to cope with varied shapes of spaces. In
theory, the basic ARA algorithm should always yield valid combinations but in
fact ‘practically’ it allowed odd combinations for non-square shaped grids. Dur-
ing implementation, it failed to discard odd cases. In other words, starting with
a square grid, the first iteration determines valid contiguous spaces but in later
iterations, when applied to non-square shaped worlds, it allows odd cases. To
illustrate these situations, we can consider a simple square grid of four regions (A,
B, D and E), as shown in Figure 7.6(a). If the first iteration divides this grid into
two aggregates having A in first and B, D, and E in the second aggregate (see
Figure 7.6(a)), the basic ARA algorithm, when applied to the second aggregate,
can potentially select BD, which is a diagonal and thus an odd case, as shown in
Figure 7.6(b). To achieve a more flexible approach, we extended the current ARA
algorithm to eliminate its limitations. In each iteration the extended algorithm
checks, if a prospective aggregated space is producing a valid contiguous space or

not by using a flood-fill algorithm, as explained below.

A flood fill algorithm determines an area connected to a given node in a multi-
dimensional array beginning with a given node. These algorithms are normally
used in bucket fill algorithms of paint programmes, and are employed in board
games such as Go and Minesweeper [72]. It has two variations based on the di-

rection of spreading, which are 4-way spreading, and 8-way spreading. In a 4-way

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 183

#P Scalable Virtual World.

Figure 7.5: The 4-region world presented in Figure 7.4 after a split
jointly served by (a) Sim-I (Parent), and (b) Sim-II (Child).

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 184

(a) (b)

Figure 7.6: Illustrating the limitations in basic ARA algorithm (a)
a valid outcome for a square grid, and (b) an invalid outcome for a
3-region world.

spreading, the algorithm looks at east, west, north, and south of a node. However,
in 8-way spreading it also considers nodes in north-east, north-west, south-east,
and south-west. It can be observed that using an 8-way algorithm considers the
diagonal nodes to a node. However, we have identified that diagonals are one of
the main reasons for odd cases and, hence, do not use the 8-way variation. The
4-way variation has the potential to identify odd cases and is used with ARA Al-
gorithm to exclude them. We have implemented a variation of flood-fill algorithm
with the help of a 2D array and an explicit queue (adapted from [71,73]). In each
step of the aggregation process, we use it to determine whether all the regions in
both prospective aggregates are giving valid contiguous spaces or not. It is used
during both split and merge operations and it has the capability to determine and

exclude odd cases against any size and shape of grid.

7.4 Flexibility of System and Envisioning Scala-
bility

In this section, we examine the flexibility of our system by considering different
numbers of resources and VWs of different sizes against user distribution. The
basic aim is to identify those factors that restrict VWs to scale. We introduce a
new parameter called GridCapacity that represents the total number of potential
concurrent users handled by our system. GridCapacity is determined using Sim-
Capacity against basic unit regions in a VW. In theory, our system deals with

a bigger world, a uniform distribution of players and the availability of required

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 185

Sims scales well and gets a GridCapacity = SimCapacity x Number of unit re-
gions. However, in practice, it is limited by three factors, which are: number of
Sims, number of unit regions in a world, and player distribution. Player distri-
bution is the most critical factor. If all players are in a single region of a bigger
world, the availability of Sims cannot help to scale the world. Similarly, if no Sim
is available to share the load, we are unable to increase capacity. Furthermore, in
a situation where each unit region is served by a Sim, additional Sims are unable
to help a system to handle more users. Our approach is dynamic and performs
better in most of the situations, thus eliminating a number of issues in both static
and dynamic systems. It has the potential to scale up to its full capacity. Ta-
ble 7.3 shows player distribution and the corresponding GridCapcity and number

of resources required in different cases for a world of four regions.

Experiment | Regional | Players GridCapacity Required
Number | Grid Distribution (Maximum) | Resources
1| DE Populating one 60 1
AB region only
2| DE Populating two 120 2
AB regions only
3| DE Populating three 180 3
AB regions
4 | DE Populating four 240 4
A B regions

Table 7.3: Description of experiments and players distribution for a
4-region grid with GridCapacity and number of required resources.

7.5 Merging Strategies

In this section, we present two strategies for merging the load of different Sims
for our current implementation. It considers a single parent Sim and a number of
child Sims that are directly attached to the parent Sim. However, if a hierarchy
goes deeper, as proposed in our theoretical model, then some nodes are both child
and parent where a node can only merge if it has no children. Both the strategies
for our current environment are initiated by a child Sim and are named Parent
Merge (PM) and Child Merge (CM) strategies. They need to be validated against

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 186

two constraints. The former needs to determine that the combined load of both
Sims is less than, or equal to, MergeCapacity. The latter requires that the regions

of both Sims form a valid larger space.

In the PM strategy, each child Sim returns its regions to the parent Sim when
the integration is validated against the constraints. It is the simplest and easi-
est way to implement merging; however, regions having no players or fewer than
MergeCapacity might be waiting for parent capacity to decrease. Similarly, to val-
idate against the second constraint, it might be waiting for other Sims to integrate
first with the parent.

The CM strategy integrates its load with a potential sibling Sim if it cannot
merge with the parent Sim. It eliminates the issues in PM strategy by reduc-
ing the number of resources much quicker than PM strategy. However, it might
transfer some regions multiple times between child Sims. This might bring a bad
experience to the players in those regions. Similarly, it incurs computation and
communication burden on the system. However, CM strategy has potential to

become a vital force for implementing load balancing.

In this work, we have implemented and compared both strategies for their trade-
offs. The ultimate outcome of both strategies see all the regions integrated back
to the parent Sim. However, it depends on player distribution, which can never

be predicted.

7.6 Final Experiments

We have performed a large set of experiments on both Windows and Linux envi-
ronments to evaluate our proposed system. We tested the flexibility of our system
by applying it to worlds of both four and nine regions. In this section, we present
a summary of experiments for a world of four regions and demonstrate both the
expansion and contraction of our system with the help of a nine region world. The
basic aim is to show the flexibility of our system and to discuss a number of con-
cepts which are compared for their trade-offs. We use the numeric values identified

in section 6.3.4 (of chapter 6) for SplitCapacity, MergeCapacity, and SplitCapacity

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 187

for these experiments. Regions are populated with their corresponding content,
as described in section 7.1.4. The statistics described in section 7.1.5 are used to
evaluate and compare our system with other systems. Removing a region is using
our Improved-II strategy, as described in section 6.7.2 (of chapter 6). Regions are

populated with Bots which are asked to read ScriptT, as described in section 7.1.4.

Equations 7.1- 7.4 represent Region Content Transfer Time (RCT Time), Region
Un-availability Time (RUnAv Time), Region Transfer Time (RT Time), and Total
Time consecutively. They are based on time parameters whose values are calcu-
lated during experiments. Player transfer dominates these activities but transfer-
ring regions in turn reduces both region un-availability time and the number of
players that suffer from a split.

Equation 7.1 is used to identify the time taken by transferring regional content,
and its basic purpose is to show that player transfer is a time consuming activity.

It is the same as RUnAv Time and RT Time if a region has no players.

RCT Time = SC Time + RR Time+ CR Time + LC Time (7.1)

Equation 7.2 calculates the un-availability time of a regional content. It includes
the time taken by activities, from blocking a region to setting it up on the desti-
nation Sim. Its outcome is based on the number of players in a region. If a region

has no players, its value is the same as RCT Time and RT Time.

RUnAv Time = RCT Time + T2T Time (7.2)

Equation 7.3 gives the time taken by a region transfer, including time to teleport
players back to the original region on new Sim. It takes longer but has no impact

on other regions which are not yet transferred, and whose content is still available.

RT Time = RUnAv Time + T2R Time (7.3)

Equation 7.4 is the total time taken by an aggregate transfer and its basic
purpose is to compare our system with other systems which transfer the whole

space at the same time. It is cumulative time taken by n regions in an aggregate.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 188

Total Time = Y RT Time, (7.4)

r=1
Based on the experiments in this work, we observed that most of the activities
during a transfer take almost a constant amount of time, including player transfer
time. However, LC Time is different for each example world and is potentially
based on both the content and complexity of the scene. Similarly, the SC Time
varies a little with the amount of content in a region. We can easily use these
formulae to develop a prediction model for region as well as an aggregate trans-
fer. To determine a relationship between load content time and content itself,
we investigated a number of parameters such as prims, and assets/objects in a
scene, as well as file size of an OAR file, which are presented in Table 6.1 (of chap-
ter 6). The file size is more closely related to load content time, which can be used

for predicting both SC Time and LC Time. However, this will be our future work.

Our current implementation of a prototype improves over the traditional methods
due to transferring regions one at a time. It performs better, both in terms of

content un-availability time and number of players suffer from a split.

7.6.1 Experiments with 4-Region World

We tested a world of four regions on both Windows and Linux Environments with a
wide range of experiments. However, they explained little about all the concepts,
and therefore we provide the detailed expansion and contraction based on our
work for a 9-region world on the Linux environment. The Windows environment
demonstrated that our system scales and shrinks based on our strategies; however,
due to limited capabilities, we could not use them for bigger worlds such as those
based on nine regions. When nine regions were populated, players started noticing
lag during physics and network processing due to limited memory of the system.
Therefore, the Windows environment was only used for a 4-region world. However,
we could not explore it up to full capacity due to a limited number of resources.
The Linux environment overcame not only the scarcity of resources and limited
capabilities but it also improved the content load time, which greatly reduced the

total time for transferring a region (this is detailed in chapter 6). It also provided

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 189

a large number of nodes with more computation speed and memory. Therefore,
the Linux environment was used to demonstrate scaling worlds of both four and
nine regions up to a level where each Sim was running a unit region. These
environments provided the trade-offs between the number of Sims and inter-sim
crossing in response to the scaling process. It identified a number of issues such as
odd cases giving better distribution with odd combinations excluded by the ARA
algorithm and the trade-offs between merging strategies. It showed an improved
performance compared with the existing methods for transferring load due to
sending regions one at a time. These issues are demonstrated with the 9-region

world in the next section.

7.6.2 Experiments with 9-Region World

In this section, we demonstrate our system for a 3x3 grid, and explain various
issues and compare it with traditional systems using two different cases due to their
similar outcomes and shortage of space. GridCapacity in each case is constrained
by the number of regions being populated. A 9-region world can be scaled up
to 540 players when players are distributed in all regions. However, using bigger
worlds based on more unit regions can potentially scale further. The Linux nodes,
we used have the potential to host worlds based on sixteen and twenty-five regions
being tested, but not demonstrated. Uniform distribution of players is used to
demonstrate the full potential of a 9-region world initially running over parent
Sim (Sim-I) using nine Sims. Both Parent Merge (PM) and Child Merge (CM)
strategies are then used to merge the load back to Sim-I when players’ capacity
is decreased. They are compared for tradeoffs based on the outcome of merging
processes. We also present a case where three regions out of nine are populated to
identify the behaviour of our system when a sufficient number of Sims are available

to scale a world.

A). Scalability and Time Analysis

We add a new Sim as the load goes up. Table 7.4 shows the potential points dur-
ing these experiments and the ultimate capacities they achieve against possible

constraints. The SplitCapacity for this work is forty players. Experiment 1 is con-

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 190

strained by players distribution and it scales up to 180 players using three Sims.
It highlights the fact that our current implementation transfers a large number of
regions with no players; however, it has no impact on performance as it transfers
them in turn. It transfers a total of fifteen players in two regions at step one
and, therefore, reduces the number of players and total time they suffer from the
split. A traditional technique using our approach, and transferring the aggregate
at once, resumes the complete process in 425 seconds compared with the most
time consuming region H, which take 169 seconds. Similarly, fifteen players have
to wait for about 425 seconds to resume, compared with a maximum of ten players
waiting for 169 seconds. A region in our approach is un-available for a maximum
of 88 seconds, compared with 306 seconds (the sum of un-availability time of re-
gions in the aggregate) of un-availability for the aggregated content via traditional
methods. Similarly, step two also shows that our method get improvement over
existing mechanisms. Our approach takes very little time to transfer a region and
make it available when it has no players in it. However, in a traditional systems it
is unavailable until the complete aggregated content is transferred. Our approach
improves the overall performance by sending regions in turn, thus alleviating the
effect of transferring other regions or players in a region on a region transfer. We
believe that players in our current implementation have a better experience.

In experiment 2, players are uniformly distributed among nine regions and it scales
up to full potential reaching a player capacity of 540 players. Each region has a
small number of players, and Sim-I transfers three regions at step one and two
to Sim-II and Sim-III, respectively. In step one, a total of nineteen players are
transferred, which are distributed among regions A, D and G with A having ten
players. However, only ten players are restricted for the duration of region A being
transferred taking about 215 seconds, compared with nineteen suffering for about
413 seconds. However, the content of region A is only un-available for about 131
seconds compared with the un-availability of the aggregated content of A, D and G
for about 256 seconds. The region unavailability time and region transfer time for
regions D and G are considerably improved. In step two, Sim-I transfers regions C,
F and I with thirteen , four and three players correspondingly to Sim-III. Region
C takes much longer among these regions due to transferring a large portion of

total players, but this still improves the overall performance. Regions F and I are

191

IMPLEMENTATION

CHAPTER 7. SCALABLE VIRTUAL WORLDS

a8ed jxou wo penurjuo))

298607 | 998L0T | 998E€T | 99886 | 998% | 998 | 998F | 99S¥6 | 99Sg | $0:d oT:d S5:d
29866 | 29816 29819 | 99897 | 998E€E | 99SET | 9981 | 998G | 998GE | 99GL d|c IA-WIS [wig | €T SEH 07D | §/¢
- €10 ¥0:d S5V
- v0:d oT:d ST:d
008T8Z | 998187 | 995091 | 90SFF | 99STGT | 29887 | 99Sg | 9089 | 998911 | 9088 alrt A-uig [Iwig | €I ST:H S&D | ¥/¢
- e1:D $0:d STV
- $0:4 oT:d 01:d
998G6G | 99SG6T | 99SELT | 99SGCG | 098ZEL | 99S8E | 998E | 99GL | 99GRIT | 998L V|1 AI-WIg WIS | €T ST:H SO | €/¢
2989¢ 29GFE | 9986 | 998ZT | 998T | 9987 | 9987 | 998G | 998E I €10 ¥0:d STV
298€L 29GTH | 9988 | 998gE | 098¢ | 929G | 9087 | 908gE | 9987 A 70:d ¢0:H 01:d
998ZGE | 998ETT | 99STITT | 998GT | 99SZ0T | 9989 | 9987 | 998 | 998901 | 99S¢€ D |e TII-wIg [-wis | €01 ST:H 60D | &/a
2980 2986E | 9986 | 99G8IE | 998E | 9987 | 098¢ | 9980€ | 99S% 1) €0:D ¥0:d 01°V
298871 29898 | 9989 | 9098y | 99S0€ | 09S¢ | 9989 | 9980F | 9988 a $0:4 20:d S0:A
29GET | 998GTg | 99STIET | 9986F | 99SF8 | 9989€ | 99GT | 998G | 029878 | 998L V| € 1wt [wig | €0 SOH ¥0:D | 1/2
- - - - - - - - 00:D 00:d 00:V
- 09:d 00:d 00:A
- - - - - - - - |- - - | 09T 09:H 00D | €/T
- - - - - - - - - 00:D 00:d 00:V
2986%¢ | 9988GT | 2980T | 99STgl | 99S¢ | 9981 | 998%F | 2988TT | 99Sg H ¢z:d 00:d 00:d
9986GC | 29S0T 2980T | 29S0T - | 298¢ | 9987 | 9egE - | 998t D¢ 11-us [-wis | 0% ST:H 00:D | &/1
298691 298988 | 2980T | 9988 | 298¢ | 929G | 298¢ | 9088L | 9987 H
2980T 2980T | 2980T - | 998z | 99GQT | 9908¥ - | o9gg 9]
29568 298TG | 9980T | 9988¢ | 998g | 9987 | 298¢ | 99GT¥ | 99T A
298¢T 298GT | 908¢T - | 998G | 99GQT | 9e8¢ - | 998y |
2986¥ 29867 | 99S6¥ - | 998ge | 9987 | 998 - | 9988 a
20861 298GT | 998¢T - | 998G | 9987 | 098¢ - | 99gg o) 00:D 00:d 00V
29867 298GT | 998G% - | 99GTT | 9981 | 908 - | 92989 q €0:d 00:" 00:
298¢Ty | 098e¢ 2986G | 998€S - | 9988¢ | 998z | 9989 - | 998, V|8 [1-wig wig | Qg OT:H 002D | T/T
(998) (998) (00g) | (998) (908) | (998) | (998) | (998) (00g) | (098)
QuILT, ouwIl T, QuILT, QuII T, QuILT, QuwIL], | owlLy, | ouwlL], QwIL], | QwWIL], | awe)N | Suol wirg wig s1ofeq | deig
[e30L, Id | AVUNY | ILDY bl 01 gifo) ud LTl DS 8oy | Sy oL woig [euotsey | /-dxy

"SUOISaI § JO priom ' gurpess Surmp sdejs juejroduar Surjerysny[:§°2 9[qelL,

192

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION

- 09:D 094 09°V
- 09:4 09:d 09:d
- - - - - - - 09:1 09°H 09:D | 6/
- 8T:D 61:d 0F:V
- ve:d ¢l e d
09GE0E | 99SE0E | D9SGET | 99SFT | 99G8FT | 998G | 98T | 998G | 29STPT | 098¢ D1 XI-Wig | IIIA-WIS | €21 GTH 0vD | 8/¢
- €T:D 619 07V
2989/, 298G | 99STT | 998TE | 99GF | 0987 | 098F | 998gg | 098¢ K| v0:d gl e d
998G0E | 99S6ET | 99STLT | 99S6T | 99S80T | 998L | 9987 | 9989 | 29870T | 9987 D¢ [IA-WIS | I[-WIS | €271 S2°H 07D | L/¢
- €T:D 61:d 07V
- v0:d ¢l Se:d
09GGTE | 998GTE | 99STLT | 99SHE | O9SEGT | O9STI | 998T | 9989 | 00S8pT | 998G a|r1 TTA-WIS TA-WIS | €T SCH 0F:D | 9/
- €1:D v0'd 07V
(098) (993) (09s) | (993) (09g) | (998) | (998) | (098) (9s) | (098)
QuILT, ouwIl T, QuILT, QuIIT, QuILT, QwIL], | ewlLy, | ouwlL], QWIL], | QwWIL], | awe)N | Suol wig wig s1oke]q | deig
[e10], Id | Avunyd | IDY YTl o)1 LEfe) gy IZL DS | 8oy | Sy oF, wol] [euorsey | /-dxyg

a3ed snorasad wioay penuijuod — §°L S[qe],

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 193

un-available for only 41 and 34 seconds in this case and this gives a much better
performance. Sim-II at step three and four delegates regions A and D with fifteen
players each to Sim-IV and Sim-V consecutively. In these cases, both mechanisms
take a similar amount of time to complete a transfer, and no improvement is
achieved. However, it minimises the region unavailability time. Assignment at
lower stages, when the Sims are handling a small number of regions, has similar
outcomes; however, we believe that these cases are normally rare. Transfers in
these cases are dominated by player transfer time, though the content transfer
time is quite reasonable. Step five and seven show an improved performance.
However, step six and eight are unable to achieve improved performance and
take a considerable amount of time by transferring nineteen and eighteen players
(almost the worst possible case). The split at step eight completes the assignment
process and no further splits are possible due to each Sim hosting a unit region.
However, each Sim accepts connections until it reaches its SplitCapacity, which is

sixty players in this work.

B). System Statistics and Analysis

In this section, we present a summary of experiments presented in Table 7.4 in
terms of number of used resources, inter-sim crossings, and total number of trans-
fers during the scaling process. These parameters are presented in Table 7.5, which
also shows the maximum capacities obtained against the constraints in each case.
Figure 7.7 provides trends for resource utilisation and inter-sim crossings against
capacity. It can be noted that we can possibly scale a world under constraints up
to certain limits. The most vital constraint is player distribution, which limits the
scaling process even if a world is based on a large number of regions and additional
Sims are available to share the load (see experiment 1 in Table 7.4). However, we
utilise a limited number of resources compared with static infrastructures. Since it
handles a limited number of players using a few resources, the inter-sim crossings
are minimum. When more resources are used to cope with an increasing number
of players, it increases inter-sim crossings greatly, as shown in Figure 7.7(b). The

inter-sim crossings are further increased if odd cases are allowed.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 194

Experiment No. | Step | Current Capacity | Inter-Sim Crossings | Player Transfers | Number of Sims
(Cumulative)

1 1 0 0 0 1

2 40 44 15 2

3 80 112 30 3

4 180 238 30 3

2 1 0 0 0 1

2 40 46 19 2

3 75 100 39 3

4 101 146 54 4

5 126 182 69 5

6 176 296 85 6

7 201 346 104 7

8 211 372 121 8

9 236 420 139 9

11 540 960 139 9

Table 7.5: Number of resources, inter-sim crossings and player trans-
fers (cumulative) against current capacity while scaling a 9-region world
based on population of regions (based on experiments from Table 7.4).

We use three other metrics to show the performance of our system: Sim utilisation,
Player disruption, and Transfers per player during the scalability process. We use
the statistics of experiment 2, presented in Table 7.4, for these illustrations.

Sim Utilisation demonstrates that our system never allows more players than
its SimCapacity and, therefore, it always maintains the minimum frame rate for
SimFPS, which is thirty as described previously. Figure 7.8(a) shows that on
average each Sim serves a lesser number of players than SplitCapacity except when
each unit region was assigned to a single Sim (see the last observation regarding
having 560 players).

Player disruption presents a slight variation as we used a very simple mobility
model where each Bot makes only two moves during the whole duration. We
believe that player disruptions (connections/disconnections) will greatly increase
if more dynamic mobility models are simulated for longer. However, it still shows
that average player disruptions increased when we added more Sims, as shown in
Figure 7.8(b).

Transfers per player shows that our system transfers a very small number of

players on average compared with other load balancing techniques. It is clear

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 195

that player transfers only happen until each unit region is assigned to a single
Sim. Figure 7.9 shows that, during the split processes based on current scenarios,
almost every second player is transferred. However, after getting to a point where
each region is assigned to a single Sim, no further splits are permitted. This
illustrates that our system is efficient and transfers a very small number of the
total players. For our system to be completely populated, on average the fourth
player is transferred throughout the given cases. It can been seen in Table 7.5
that the cumulative player transfers are usually less than the maximum possible
limit. It demonstrates that our ARA algorithm reduces the number of players

which suffer from transfers.

10 1000 10 1200
== Used Sims ‘ |—0—Used5|ms ‘
9 | —m—Inter- 900 9 - o—
[W= Tnter-Sim Crossings | ——Inter-Sim Crossings / | 1000

8 800 8 o r
w 7 700 & 0 7 &
€ = £ / / 800 £
2 6 600 3 5 6 @
s 5 5 el / S
5 0 500 ¢ 5 5 600
: : i ozl / £
<= @ 4 @
E 4 400 @ £ D
= g 3 ol L4003
z 3 /: & 300 £ 3 / £

2 — 200 2 L 200

1 - L 100 1 ﬁrd./{

0 - T T T 0 0 - T T T T T T T T 0

[\ 0 ® o) O 0 45 B b 416 O b 0 o
Players/Bots Players/Bots

(a) (b)

Figure 7.7: Number of resources and inter-sim crossings with an
increase in players capacity for a world of 9 regions with players (a)
populating three region. (b) populating nine regions.

. / 5

40 //)

30 {

o/ S
/ e

¢

Sim Utilisation
(Average)
Player Disruption
(Average)

w

¢ T T T T T T T T T T T T T T T
0 a0 1% A0 ,&16 ,&16 20% 1'56 b0 o I\ 1% A0% 0’6 {]6 20 136 0
Players/Bots Players/Bots

() (b)

Figure 7.8: Illustrating (a) Sim utilisation. (b) Player disruption
(disconnections/connections).

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 196

0.9
0.8

207
T

T 06 *
g

05

804

c
c 0.3
= / »
0.2 /
0.1
0 J T T T T T T T T T 1
Q0 no 1% A0 ﬂﬁ’ .&16 101 'L\"\' 136 o0

Players/Bots

Figure 7.9: Illustrating transfers per player.

C). Merging and Time Analysis

In this section, we present a summary of the merging process for both PM and CM
strategies applied to the final stage of experiment 2, obtained by the scaling process
that is presented in Table 7.4. The PM strategy is demonstrated using Table 7.6,
and CM strategy is presented in Table 7.7. Table 7.8 presents a summary of both
merging strategies in terms of number of resources and transfer of regions that are
used to compare them.

Table 7.6 presents important steps during merging using PM strategy. Parent Sim
(Sim-T) is hosting region H. Table 7.8 gives a clear picture of the regions served by
each Sim during the merging process. No merge operation is possible due to the
first constraint during the first two steps. In step three, Sim-VI and Sim-I satisfy
the first condition but fail the second one. Similarly, the cumulative load of Sim-
IV, Sim-VII, and Sim-IX with Sim-I is less than, or equal to, MergeCapacity but
their combined spaces are not contiguous and, therefore, no merge is permitted.
However, it can be noted that there are a number of points where merge could be
allowed by the CM strategy. In the PM strategy, each Sim is waiting for other
Sims to merge first, which would help them to integrate. In step five, Sim-II
integrates its load with Sim-I after satisfying both constraints. Each child Sim in

the following steps, except step six, integrates its load with Sim-I after validating

197

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION

a8ed 9xou UO penuUIIUO))

995€¢

995€C

995€¢

995€0

99STT

29ST

2959

298¢

[-urs

ITA-WIS

00:D 00:d S0°V
¢0:d 0T:H S0:d
0TI 00-H €0:D

6/t

29SPET

29SVET

99526

29504

2950y

299¢

2987

295,

2950%

PEIYA

[-wuis

AI-WIS

00:D 00:d S0°V
G0:d ST:H ¢0:d
ST:I 00°H 90D

8/¢

295¢€0¢

995€0¢

995631

995€EY

99518

99560

29ST

298¢

99561

0988

[-urs

A-WIg

€0:D 40°d S0°V
¢0:d ST:H 0T:d
021 G0°H S0:D

L/

G0-D G0-d 90°V
G0:d ST°H 02:d
0¢:I OT'H 0T:D

9/t

O9SELT

995ELT

99566

995€ET

9958L

298y

2957

208y

995C8

298¢

[-urs

IT-wig

01D G0°d S0°V
¢1:d ST:H 0c:d
021 0T:H 0T+D

¢/e

0T-D G0-d 90°V
G¢T:d ST°™ 02:d
0¢:I 0T°H 02D

v/c

91:D ST°d S0°V
0¢:d ST:H 0¢:d
021 OT*H 02D

¢/t

91:D 0¢'d 0T'V
02-4 ST:H 0T:d
021 8T:H 02D

e/t

09:D 09°d 09°V
09:4 09:H 09:d
091 09°H 09:D

1/¢

(008)

ou,

[e10L,

(00g)

o,

IY

(00g)

our,

AVUNY

(00g)

oury,

LOY

(00g)

o,

HeL

(008)

ow,

01

(008)
owry,

Ls10)

(00g)

our,

qd

(00g)

oury,

LeL

(00g)

o,

OS

aure N

8oy

suor

-8oyg

wig

OL

wis

woLy

SREVAI PR |
Teuoi8oy

degg
/dxg

(¥ 9[qe], WOIJ PaNUIU0D) SUOLSAI G
Jo priom ® 10j A399eI)s (JNJ) 9S8Io]\ Juare Sursn Surdiowr Sunmp sdejs juejtoduwr Surjensny] :9°. a[qelL

198

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION

- 00:D 00:d 00°V
- S0 S0°H 00:d
208G6 | 99896 09GgG | 29S0T | 998EY | 998E | 298¢ | 998E | 99Sgy | 9987 I [-urg [I-WiS | G071 00:H S0:D | €1/¢
- 00:D 009 00°V
- G0 OT*H 00:d
99GTLT | 99STLL 29868 | 99SET | 99878 | 998G | 99GT | 998 | 9989) | 098E q4 |1 [-urg IA-WIS | OTI 00°H S0°D | ¢1/¢
- 00:D 00:d 00°V
- S0 0T:" 00:d
208g6 | 998G6 99GTG | 998TT | 99ST¥ | 998 | 298¢ | 29S¢ | 9986E | 09SE d |1 [wis | IIIA-WIS | 0TI 00:H S0:D | 11/2
- 00:D 00:d S0°V
- G0 OT*H S0:d
29G9T | 99891 29891 | 99891 - | 9989 | 92987 | 998¢ - | oogg DT g XI-Wi§ | 0TI 00°H ¢0°D | 01/¢
(093) (098) (998) | (998) | (998) | (998) | (998) | (998) | (998) | (998)
QuILT, eleig QuILT, QuII T, elenig QuWILY, | owlL[, | oulL], QWIT, | 9WIL], | awRN | Suorl wirg wrIg s1okelg | deig
[e0], I | AVUNY | IDY | ¥el D1 o ud | 1ol DS | Soy | -8y oF, woly [euorsey | /-dxgy

a3ed snoiasid wioJj penuIjuOd — 9°) S[qE],

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 199

the constraints and releases itself. Since each Sim returns its region straight to
the parent, there are no additional transfers involved. It is important to note at
step eleven that the merging process allowed a contiguous space that is never used
by the ARA algorithm for assignment; however, it introduces no issues identified
by odd cases. Since the merging process is normally initiated when player capac-
ity decreases, it can be noted that each transfer involves less players than in the
scaling process. Merging, therefore, reduces the region un-availability time. Since
we observed a number of places where the CM strategy can potentially merge
with its sibling Sim, the system might release under-utilised Sims quicker than
the PM strategy. Therefore, we apply the CM strategy to the same distribution
and compare it with the PM strategy.

Table 7.7 presents the significant steps during the merging process using the CM
strategy. Table 7.8 manages regions to Sim assignment during the process for
clarity. No integration is possible at step one and two due to the combined capacity
constraint. In step three, Sim-IV integrates with Sim-VII after validation against
the constraints. It can be seen that both Sim-IV and Sim-VI maintain the capacity
constraint, but fail the continuity test. In step four, Sim-VII transfers two regions
to Sim-IX including region A transferred to Sim-VII in the previous step. It
transferred ten players, each region having five players. Sim-II transferred its
region with ten players to Sim-I at step five. Sim-VIII relocated a single region to
Sim-I1X with five players. Our current implementation allows each Sim to merge
with a sibling Sim by taking local decisions. If Sim-IX had initiated the process
to move its load to Sim-VIII, then we would have more additional transfers by
transferring a space comprises of three regions. Sim-V integrated its load with
Sim-I at step seven with ten players in a single region. In step eight, Sim-IX
moved four regions to Sim-I with ten players equally distributed in two regions.
No integrations were possible due to first constraint at steps nine and ten. Sim-
VI in step eleven and Sim-III in step thirteen return their regions to Sim-I, which
concludes the merging process. The whole world is now again hosted by the parent
Sim. It was observed that, as capacity decreased and Sims could perform a merge
satisfying the constraints, they did so, thus releasing a resource. However, multiple

transfers were observed for different regions such as A and B, that were transferred

200

IMPLEMENTATION

CHAPTER 7. SCALABLE VIRTUAL WORLDS

98ed 1xou uO panuIIUO))

- ¢0:d 0T:d S0:A
- - - - - - - - - - - - | 0TI 00:H S0:D | 6/¢
20816 29GTG | 9986 | 2950F | 298¢ | 99GT | 298¢ | 298zh | 998T d
20881 20G8T | 20881 - | 9089 | 998z | 998G - | oegg o) 00:D 00:d G0V
2987¢ 2987z | 998%z - | 99QIT | 9087 | 908¢ - | oogy d c0:d ST ¢0:A
208£9g | 298zET 20GT6 | 998€G | 998TY | 0088¢ | 00ST | 0959 | 2988¢ | 9988 V| ¥ [wig XI-WIS | ST:1 00:H S0:D | 8/%
- G0:D S0:d G0V
- ¢0:d ST:H 0T:A
99GGTg | 998GTE | 99STET | 9986% | 99GF8 | 998E | 998 | 99GL | 298g8 | 0088 alr RS ATWIS |0z GOTH S0:D | L/T
- €0:D 50:d G0'V
- ¢0:d ST:d 02:d
29506 | 90506 20G8F | 9986 | 098Th | 908¢ | 908T | 09S¢ | 2986¢ | 998g d [T XI-wig | IIIA-WS | 0z 0T:H 01:D | 9/¢
- 01:D §0:d G0:V
- ¢T:d ST:H 05:d
99GTLT | 998TLT 29866 | 99GTT | 9988L | 298¢ | 9087 | 09GF | 9988 | 998g DT RS I-wis | 0z OT:H 015D | 6/¢
- 01:D 0'd G0V
208801 29G89 | 9984z | 9980F | °0SET | 9087 | 2989 | 29GTF | 9989 d ¢T:d ST 0%:d
2080¥g | 908zET 20506 | 998%G | 998Th | 0089¢ | 00ST | 0088 | 2988¢ | 99GL V|¢ XIWi§ | IIA'WIS | 0% 0T:H 03D | ¥/¢
- 91:D ST:d G0V
- 0z:d ST:d 0z:d
2986ET | 9986€T 29896 | 998G | 998EY | 9088¢ | 9087 | 99GL | 99GQTF | 9988 VT IIA-UIS AI'WIS | 0z 0T:H 02D | €/2
91:D 0%:d 01:V
0z:d ST:d 03:d
- 0Z:I 8T'H 02D | ¢/t
09:D 09:d 09:V
09:4 09:d 09:d
- 091 09°H 09:D | 1/2
(00g) (098) (00g) | (@98) | (99g) | (@8) | (@@8) | (@@8) | (998) | (998)
ouILT, QuILT, ouILT, Elesin QuILT, QwIly, | owry, | owIlf, QwIL[, | owL], | owreyN | Ssuor wrg wig s1ohe[q | deig
[e10L, Id | AVUNY | IDY | Y2l ola! ao by | 1ol oS 8oy | -8y or, woxg [euotdoy | /-dxy

(¥ 9[qe], WO PaNUIU0D) SUOISAI 6
JO pliom ® 10} A3oyel)s (D) 98I0\ Py Suisn Surdiewr Surmp sdoys quejtodur SuryeI)sny[] :L°L 9[qeL

201

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION

9958

9958

99567

2056

9958¢€

298¢0

2987

298¢

2080%

298¢

[-uns

IIT-wig

00:D 00:d 00°V
G0:d G0°H 00:A
G0:I 00-H S0:D

€1/¢

00:D 00:d 00°V
G0:d 0TH 00:d
0TI 00:H S0:D

avké

O9SELT

995€ELT

99576

995€ET

99561

09S¥

298¢0

J9S¥

99518

298¢

[-urs

IA-WIS

00:D 00:d 00°V
G0:d OT:H 00:A
0TI 00°H S0

11/3

00:D 00:d S0°V
G0:d 0T S0:d
0TI 00:H S0:D

01/%

00-D 00:d S0°V

(098)

oury,

[e30L

(00g)

oLy,

IY

(008)

oy,

AVUNY

(008)

our,

LOY

(00g)

oy,

HeL

(008)

oury,

01

(008)

ourry,

LS 10)

(008)

oLy,

gy

(008)

oLy,

LeL

(00g)

oLy,

S

aureN

8oy

suor

-8oyg

wig

OL

g

woIg

s1aAR[J
[euoi8eoy

deng
/-dxg

a3ed snoiasid wioIy penuIjUOd — L°) SIqE],

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 202

three and two times respectively. We believe that it brings a bad experience to
players although there are normally small numbers of them during the merging

process.

Table 7.8 summarises the merging process for both PM and CM strategies. It pro-
vides the number of resources and cumulative region transfers against current ca-
pacity and provides a clear picture for Sims hosting different regions. Figure 7.10
shows the trends between resources and region transfers for both strategies. It
suggests that CM strategy minimises the number of resources and achieves an
improved utilisation of resources; however, some regions were transferred multi-
ple times. PM strategy has no additional transfers, but more than the required

number of resources were used for longer durations.

—e—PMerge Resources
| —m—CMerge Resources
16 -=s==PNerge Transfers 16

14 i C N eroe Transfers 14

Number of Transfers
{Accumulative)

Number of Resources
=
o

8 8
6 5
4 4

5&0 ,\.cﬁ ‘\.'5‘6 .&10 ’X'LO g2 19 &0 a0 O 20 20 10

Players/Bots (decreasing order)

Figure 7.10: Comparison of Parent Merge (PM) and Child Merge
(CM) strategies for both number of resources and region transfers.

7.6.3 Discussion

In this section, we demonstrated that our system is flexible that expands and
contracts based on system capacity. It uses additional Sims during expansion,
which are reduced later in response of merging. A region is only un-available when
it is transferred, compared with traditional systems keeping it off limits until the

whole space is transferred. Based on the fact that we never transfer more than

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 203

Exp./ | Players PM Strategy CM Strategy
Step Sims Regions Resources No. of Sims Regions Resources No. of
Transfers Transfers
2/1 540 I I 11 9 0 I 1 111 9 0
A% VI VIII A% VI VIII
v VII IX v VII IX
2/2 159 11 I 111 9 0 11 I 111 9 0
A% VI VIII A% VI VIII
v VI IX v VII IX
2/3 146 11 I 111 9 0 11 I 111 8 1
A% VI VIII A% VI VIII
v VII IX VII VII IX
2/4 120 11 I 11T 9 0 11 1 11T 7 3
A% VI VIII A% VI VIII
v VII IX X X X
2/5 110 I I 111 8 1 I 1 111 6 4
Y VI VIII \% VI VIII
v VI IX X X X
2/6 95 I I 111 8 1 I 1 111 5 5
A% VI VIII A% VI X
IV VII IX IX IX IX
2/7 75 1 1 11T 7 2 1 I 11T 4 6
I VI VIII I VI X
v VII IX X X X
2/8 50 I I 111 6 3 I 1 111 3 10
I VI VIII 1 VI 1
I VII IX I 1 1
2/9 40 I I 111 5 4 I 1 111 3 10
I VI VIII I VI I
1 1 IX 1 1 1
2/10 40 I I 111 4 5 I 1 11T 3 10
I VI VIII I VI 1
I I I I I 1
2/11 30 I I 111 3 6 I I 111 2 11
I VI I I I I
I I I I I 1
2/12 30 I I 11 2 7 I I 111 2 11
I I I I I I
I I 1 I 1 1
2/13 20 I I 1 1 8 I 1 1 1 12
I 1 I 1 1 1
I I I I I 1

Table 7.8: Comparison of number of resources and number of regions
transferred for both Parent Merge (PM) and Child Merge (CM) strate-
gies for a world of 9 regions.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 204

twenty players, the region un-availability time on the Linux environment never
exceeds 220 seconds in our experiments with the OpenVCE world loaded in the
region that has the most expensive content in terms of loading the content. On
the other hand, current methods takes a very long time based on the number of
regions and players in an aggregate. In the worst cases, our approach requires
the same time as traditional systems, mostly when a world has fewer regions.
For bigger worlds with players being distributed in multiple regions, we obtain a
considerable amount of improvement both in terms of number of players and total
time they suffer from a split. Players are never unavailable, thus giving them a
better experience.

Two merging strategies (PM and CM) are implemented and compared in this
work and each has value and limitations. Both of them ultimately return the
whole world back to the parent Sim. The PM strategy takes more time and holds
resources for longer than the CM strategy. However, the CM strategy potentially
transfers regions between Sims multiple times and degrades performance. Nor-
mally, a merge operation is initiated when player capacity is not high. However,
in the worst cases, it might need to transfer up to twenty players, same as in
scaling process that happens rarely. The PM strategy is simple but Sims might
be waiting for a parent Sim, handling nothing at certain stages. The CM strategy
copes with the issues in PM strategy and release resources much quicker. However,
it possibly transfers a large number of players and introduces additional transfer
of content. Because of multiple transfers, it brings a bad experience to the users.
We have demonstrated both the strategies, and both could be adopted according
to requirements. Odd combinations are rejected by both the strategies. To man-
age bigger worlds and the un-predictable nature of users, we suggest using CM
strategy as PM might be blocked for longer. However, both have the potential to

cope with resource under-utilisation issues.

7.7 Bigger VWs

The Linux nodes used in this work have the potential to host bigger worlds over
a single Sim based on a large number of regions such as sixteen, twenty-five or

greater. However, it depends on the content populating world regions. We have

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 205

tested it for worlds up to sixteen regions but we demonstrated it for square shaped
worlds of four and nine regions. We believe that our system is flexible and is
capable of managing worlds of any size and shape, but of a coherent space. We
have demonstrated that, for uniform distribution, it scales up to potential capacity
which is greatly increased for further larger systems. For sixteen and twenty-
five region worlds, it could be scaled up to sixteen and twenty-five Sims with
a maximum capacity of 960 and 1500 players consecutively. Since our current
model uses a single parent Sim with the a large number of child Sims, it maintains
parent-child relationship at a single level. We believe that it has the potential
to reduce delays and complexities compared with hierarchical methods for the
implementation of our consistency model in future. Based on our observations, we
believe that bigger worlds greatly improve performance by normally transferring
a small number of players in each region. For worlds based on a small number
of regions, we noticed that our system gives little improvement over traditional

systems compared with worlds with a large number of regions.

7.8 Comparison with Existing Systems

In this section, we provide a comparison of our infrastructure with the static
and dynamic configurations used for well-known infrastructures, such as SL and
Matrix.

7.8.1 Static Configurations

Our current implementation of JOHNUM infrastructure starts a Sim (called par-
ent) with a large number of regions, compared with methods that statically assign
a limited number of regions. It provides resources based on load, and solves both
over-provision and under-provision issues of resources. The scaling process with
additional Sims overcomes resource under-provisioning problems while the merg-
ing process resolves the over-provisioning problem.

Our method scales up to exactly the same capacity as static infrastructures. Since
the population of VWs is unpredictable and constrained by player distribution,

our method is significantly improved over static infrastructure by using fewer

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 206

resources.
Since our ARA algorithm potentially distributes a non-uniform load, it is similar to
static infrastructures with some regions having fewer players than others. However,
we apply the merging process to reduce extra resources in order to avoid resource

under-utilisation, and we never dedicate resources to host regions without players.

7.8.2 Dynamic Configurations

Our current implementation of JoOHNUM infrastructure assumes a world being
pre-partitioned into a number of regions and transfers regions in an aggregate in
turn which greatly minimises the number of players and the total time they suffer
from a split. It also greatly reduces the content un-availability time.

Since we maintain a single parent Sim, additional resources are all managed in
a single additional level. We believe it keeps our model simple and potentially
reduces system complexity and communication overhead by minimising the num-
ber of levels in a hierarchy. For applications with conservative nature, a system
with multiple levels introduces longer delays and, therefore, our model will help
to implement our consistency model in the future.

Our approach is simple and takes purely local decisions with no central component,
like Matrix Controller, that could become a system bottleneck. Each child Sim is
totally independent and directly controlled by grid services, which allows it to keep
serving the part of space it hosts on behalf of the parent Sim even if the parent
is down for some reason. Furthermore, it has no additional management levels
such as those needed for managing Matrix Servers in Matrix. Both scaling and
merging processes are initiated directly by a Sim based on increase and decrease
in its load.

Our infrastructure distributes and accepts non-uniform load to provide a bet-
ter experience than complex systems which spend most of their time obtaining
uniform load generally based on global strategies. Our current implementation
uses merging strategies to overcome resource under-utilisation issues where a Sim
can integrate its load and release itself. However, full load balancing is not yet

implemented.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 207

7.9 Conclusions and Future Work

In this chapter, we presented an abstract framework for scalable VW based on
our informal model, whose development and investigation was detailed in chap-
ter 6, using the OS architecture together with RAd and OAR functionalities.
We used numeric values for SplitCapacity and MergeCapacity based on our load
model. SplitCapacity takes an earlier decision to avoid a bad experience, and
MergeCapacity uses a very small value to avoid frequent splits, thus improving
performance.

We extended the basic ARA algorithm to make it flexible by adding a flood-fill
algorithm that is used to validate an aggregate against odd cases at each level
of assignment. This method of validation is also used during merge operations.
Our current implementation of the ARA algorithm selects the best aggregate for
transfer that has the least number of players. It normally improves performance,
but, it might transfer a large number of regions with players only in a small number
of regions.

A bigger OS world is constructed by placing a number of regions side by side,
where the number of regions a Sim can handle depends on system capabilities.
The Windows environment was used to determine that our implementation works.
Due to its limited capabilities, we used it only for a world based on four regions.
This demonstrated that Load Content (LC) operation is the most time consuming
activity that greatly increases a region transfer time. Linux nodes greatly reduced
the time taken by LC process and slightly improved player transfer time to reduce
the overall time taken by transferring a region. It allowed us to test our work for

worlds based on both four and nine regions.

We implemented our work as a Plug-in application over .NET framework using
C+# language. However, it also works well with Linux/Mono framework. It used
grid mode to give a coherent view of a world hosted jointly by different Sims at
later stages, but initially started with a parent Sim running the whole world. The
modular structure of OS helped us to transfer regions in an aggregate indepen-
dently, thus reducing the number of players that suffers from a transfer as well

as total time taken by a transfer. Players are transferred to a local transit region

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 208

during a transfer instead of freezing them. It allows players to teleport to other
regions or keep themselves busy with simple activities until the maintenance is
over. Transit regions provide very little content and have no real impact on sys-
tem performance. Since they are managed locally, they put no burden on the
grid.

Our framework assigns resources based on need, and achieves the same level of
scalability as static configurations. Since we assume a world being pre-partitioned
into the number of regions in a world, regions are all assigned to child Sims at
a single additional level. Our current work implemented two merging strategies
to cope with over-provision of resources. Both strategies maintain merging con-
straints and result in contiguous areas. They have their worth and limitations and
could be used according to requirements.

For evaluation and comparison purposes, we used a number of time and sys-
tem statistics. Time statistics such as content transfer time (RCT Time), region
un-availability time (RUnAv Time), region transfer time (RT Time), and Total
Time are based on time information of the different activities used during a trans-
fer operation. It used a number of system statistics such as number of regions
transferred, content transferred, number of players transferred, number of used
resources, number of inter-sim crossings, Sim utilisation, player disruptions, and
transfers per player.

The experimental results demonstrated that our proposed methods improve sys-
tem performance in terms of Sim utilisation, and number of times a player is

transferred.

The following points are identified as future work:

In future, we intend to explore much bigger worlds. Our current implementation
sends players of a region into a transit region during a region transfer. However, it
was seen to be a bottleneck after considerably reducing the RCT Time. In future,
we will look into ways to reduce player transfer time. It could be interesting to
compare our current method with traditional methods such as freeze and restore.
In our current implementation, we have used an OS region as a basic unit region,
and this has limitations in handling large numbers of players. It might be in-

teresting to investigate the trade-offs between scalability and inter-sim crossings

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 209

by reducing the size of an OS basic region. The OS architecture manages each
region as a single entity and it involves complex intra-sim crossings. Our current
implementation of the ARA algorithm maintains contiguous spaces that minimise
inter-sim crossings, but the concept of megaregions can be extended to make it
dynamic and this has the potential to overcome communication and intra-sim
crossings issues.

Our current implementation uses OAR functionality to transfer a region with cur-
rent state with the basic OS persistence step being disabled. The LC operation
is the only operation that takes a considerable amount of time. More intelli-
gent and improved methods could be developed to reduce LC Time. We need to
identify how load content time is related to the content. Since there is a huge
difference in timings for loading content and storing content operations, we might
investigate and look into improving the load content algorithm. Direct database
transfers might have the potential to achieve improved times but they might need
to carefully consider the backup process as this is a time consuming activity.
Since our implementation improves performance when players are distributed
among multiple regions, more intelligent strategies based on trade-offs between
the number of regions and players for the ARA algorithm might be interesting to
investigate and develop. We have used a greedy approach for the CM strategy,
and a child Sim merges with another child Sim when both the constraints are
validated, and might transfer a large number of players. It might be interesting
to investigate shifting load from a Sim that has fewer players and regions to one
that has more players and regions.

Our CM strategy could be further investigated as a load balancing method to
reduce resource under-utilisation. Similarly, instead of using a new additional
Sim for an overloaded Sim, load balancing can give better distribution of load.
Further detailed analysis of trade offs between balancing the load and performance
degradation due to multiple transfers of the same content might be interesting to
study.

We also intend to develop a prediction model for predicting the timing information

for the transfer function.

Chapter 8
Conclusions and Future Work

This chapter summarises the work undertaken during this study and discusses
the value and limitations of our scalable and consistent infrastructure for VWs.
It recommends a number of areas that could be investigated in future to further

improve the performance of these systems.

8.1 Conclusions

This thesis examined a novel approach that combines two contemporary infras-
tructures to solve the issues in the mechanisms that are currently used to develop
scalable and consistent VWs. The limitations of these approaches are presented in
detail in chapter 2. This new approach uses a constrained hierarchical approach to
manage system resources while targeting scalability and load distribution. It uses
a P2P infrastructure with a constrained communication model based on inherent
properties of VWs, while managing the temporal order among events. The con-
sistency approach extends the basic capabilities of VWs to support conservative
applications, thus making it a strong candidate for the future 3D web. This work
used simulation studies to investigate the existing mechanisms for targeting scala-
bility, load distribution, and consistency in VWs, and then developed a prototype

to implement scalability and load distribution as an extension to OS.

The following goals were achieved during this study:

210

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 211

Scalability and Load Distribution

The JoHNUM infrastructure achieved scalable VWs with dynamic allocation of
resources, and solved the issues of both over-provisioning and under-provisioning
of resources. Simulation results showed that it performs better than game mid-
dleware Matrix in terms of levels in an RMT and interactive user experience. It
further reduced resource utilisation and communication overhead in the same way
as Matrix (see section 3.1 of chapter 3 for further detail).

Our ARA algorithm is capable of choosing contiguous and regular spaces for as-
signment based on aggregation strategies. It balances the load as much as possible,
and speeds up the aggregation process using intelligent strategies. It has demon-
strated that the communication and implementation cost and inter-sim crossings
are reduced by excluding odd cases that might balance the load better than the
proposed strategies (see section 3.2 of chapter 3). It is flexible and assigns resources
strictly on requirements which greatly minimise them.

This work investigated the capabilities of the OS framework in detail and presented
an extension to it to incorporate features for both scalability and consistency (see
chapter 5 for further detail).

This study presented a generic load model based on our investigations that is
capable of determining the points when a system needs to initiate a split or stop
accepting more connections using different values of SimFPS. It can be used to
determine approximated numeric values for different concepts such as splitting
and merging. During this work, it was found that systems using simulation centric
architecture do not scale with additional resources.

We studied different database options and suggest that a localised MySQL provides
an excellent choice that has the potential to reduce communication overhead and
avoid longer delays.

Our investigations revealed that removing a region from a Sim and loading con-
tent from an OAR file take a considerable amount of time. We presented two
improved strategies that compared with the OS basic methods, significantly re-
duced the time taken by removing a region (see section 6.7 of chapter 6 for further
detail).

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 212

We developed a prototype for implementing the scalability and load distribution
strategies as a Plug-in to the OS framework and tested it on both Windows/.Net
and Linux/Mono platforms. It used the concept of transferring players to a tran-
sit region during a transfer instead of freezing them to improve user interactive
experience. Our implementation achieved improvements over traditional systems
by transferring regions in an aggregate in turn, both in terms of content unavail-
ability time and the number of players that suffer from a split. We tested our
system for worlds of up to nine regions for both expansion and contraction, and
demonstrated that it achieves the same level of scalability as a static configura-
tion but uses fewer resources based on player distribution. Dividing a VW into
more regions, as in our implementation, demonstrated that levels in an RMT are
significantly improved.

We used a number of time and system statistics for evaluation and comparison
purposes. We investigated the number of Sims being used and the number of
inter-sim crossings being introduced due to the scaling process. It was shown that
our approach performs better in terms of Sim utilisation, and reduces the average
number of transfers per player.

We wrote additional methods to fix a number of bugs in the OS architecture.

To cope with resource under-utilisation, our current implementation presented two
merging strategies. We have provided trade-offs between the two and they could
be utilised according to requirements.

We also presented an extension to our basic ARA algorithm by incorporating a
flood-fill algorithm to make it capable of choosing valid contiguous spaces when
applied to any shape of world. Merging also utilises the flood-fill algorithm to

maintain contiguous spaces (see chapter 7 for further detail).

Consistency Management

This thesis also presented a decentralised synchronisation approach. It utilises the
inherent properties of VWs, and each federate directly interacts with its neigh-
bouring federates. This is illustrated with the help of both simple flat and hierar-
chical scenarios. Simulation results showed that it achieves the correct temporal
ordering for randomly generated events. Furthermore, an abstract model demon-

strated that it has the potential to perform better than hierarchical approaches

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 213

(see chapter 4 for further detail).

8.2 Benefits and Limitations

Our work has the following main strengths and limitations:

Both under-provisioning and over-provisioning issues in static assignment systems
are fixed with our dynamic split and merge strategies. It achieves the same capac-
ity as static infrastructures such as SL but with fewer resources. Our approach is
simple, dynamic and it has proved that it greatly reduce the number of levels in
an RMT compared with current dynamic methods.

The performance is significantly improved over the existing methods based on
spatial partitioning with our improved strategies and using the OS capabilities
for transferring regions in turn. It reduces the content un-availability time, but
the content load operation still takes considerable amount of time. Transferring
players into a transit region gives a better user experience but currently it takes a
long time to transfer. Our system needs to maintain an additional transit region
by each Sim, but this has no impact on system performance as it provides very

little content.

The ARA algorithm distributes the load by selecting a lower number of players
to transfer. However, it potentially transfers a large number of regions in certain
situations. It uses a localised approach to provide better interactive experience and
achieve better performance, but it distributes a non-uniform load. Furthermore,
it reduces inter-sim crossings.

Merging strategies minimises resource under-utilisation, but full load balancing is
not yet implemented.

Unlike similar studies, this work has developed a prototype to evaluate system
capabilities by using real world content.

Our work is the only current project using the OS framework targeting the issues
of over-provision and under-provision of resources in VW. It is compatible with
the current release of the OS framework and we aim to introduce it as a component
to the OS framework.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 214

Our consistency mechanism is simple and decentralised in nature, which accom-
modate conservative applications in VWs. It maintains the consistent state of a
space but it is not implemented. Our system might be blocked temporarily at

different spots but these situations are potentially resolved quickly.

8.3 Future Directions

The following areas are identified for future research, based on the current study:
This work demonstrated that transferring players is an expensive operation. In
our future work, we will look into different ways to reduce this time. It might
be interesting to investigate and compare alternative methods, such as freeze and
restore, with our approach.

Our current implementation used the standard size of an OS region that could
potentially hold a large number of players. It could be further investigated if the
basic region size can be reduced to a smaller one than 256mx256m. Trade-offs
between scalability and inter-sim crossings would also be interesting to investigate.
A load model was developed based on testing the scene parameters SimFPS and
PhysicsFPS, using static and dynamic content as well as interactive users. Further
performance tests could be conducted to identify the response of other parameters
that might help to extend the current load model for different requirements.

Our approach with aggregation strategies greatly reduced inter-sim crossings, but
the concept of megaregions could be extended to reduce intra-sim crossings. It
would be interesting to investigate improvements of megaregions over the standard
representation of multiple regions.

Other intelligent strategies for the ARA algorithm need to be investigated to avoid
situations that transfer a large number of regions, or a minimum number of players
but in a very small number of regions. The trade-off between the number of regions
and players might also be valuable to investigate.

The Load Balancing issue is of vital importance for improving resource under-
utilisation, which is not yet implemented. Our merging strategies could be ex-
tended to implement load balancing. Trade-offs between Sims and both com-
munication overhead and degradation of interactive experience due to potential

transfer of the same regions multiple times would be interesting to examine. More-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 215

over, future work would include developing more intelligent merging strategies to

overcome the limitations of existing strategies.

Our current implementation uses OAR functionality to transfer a region. It is de-
termined that loading content is an expensive operation and we intend to develop
improved algorithms to minimise their timing information in our future work.
Other alternative methods could be interesting to investigate compared with our
current methods.

In the future, we intend to develop a prediction model for predicting both region
and aggregate transfer time.

The grid mode of OpenSim provides UGAIM (User, Grid, Asset, Inventory, and
Messaging) services as a centralised application that is a possible bottleneck, and
this could be extended to a distributed one for better performance.

We intend to incorporate our prototype as a component to the OS framework and
work with the OS community to further develop load balancing strategies.
Communication as a vital part of VW systems needs to be investigated against
the communication overhead introduced by the number of clients, as well as scene

complexity, that usually have a negative effect on performance.

Our consistency management approach needs to be simulated for bigger worlds.
In our future work, we intend to develop a prototype using the OS framework
to investigate how it behaves in a real world example. It would be interesting
to investigate the impact of federates on each other and find out how quickly
this resolves the temporarily blocking states. Furthermore, it seems fascinating to
compare it with hierarchical approaches for parameters such as delay, complexity

and communication overhead.

Appendix A

An Introduction to Grid
Computing

A.1 Background

The work in this thesis used Grid infrastructures and presented techniques to
introduce dynamic abilities to scale virtual worlds. Most of the Grids used for
the environments (such as SL Grid) in this work are of static nature. Our work
introduced an additional level of resources to share an excessive load with a Sim
hosting an arbitrary number of regions from an available pool of resources. Since
in general an individual or an organisation might not be able to obtain enough
resources, the concept of dynamic grids can help to overcome this limitation.
Therefore, we include an introduction to the concept of grid computing, its base

architecture, and the existing solutions in this thesis for a reference.

A.2 Introduction

Grid computing, in original concern, was devised to solve computation and data
extensive problems. It emerged as an inspiration from the electric power grid
and is an alternative to cluster computing [11,75]. Instead of the homogeneous
resources of an organisation, it utilises the heterogeneous resources of different

organisations or individuals. The Literature broadly visualises two views of grid

216

A. AN INTRODUCTION TO GRID COMPUTING 217

environments named static and dynamic. A static grid integrates resources of
partner organisations. The resources it uses are heterogeneous in nature, and
these systems are mostly classified as Client Multi Server (CMS) systems that are
integrated by high bandwidth links using advanced communication and manage-
ment patterns. The core of a dynamic Grid is called virtual organisation (VO),
a temporary alliance of distributed heterogeneous resources of different organisa-
tions and individuals over the Internet. These resources are used to solve problems
by adopting common usage policies [77,78,122]. The important characteristics
of a Grid include multiple administrative domains and autonomy, heterogeneity,
scalability, and dynamicity /adaptability [78]. Resource management and schedul-
ing are the most primitive and challenging issues in Grid Computing and need
special attention to better utilise the Grid Infrastructure [46, 94, 129].

In Grid Computing, a problem solution is initiated by a user via a Grid Resource
Broker. On behalf of a user, the broker performs resource discovery and schedul-
ing, and assigns application jobs to distributed resources [78]. A resource owner
registers resources with Grid Information Service (GIS) with their usage poli-
cies [47]. The Grid Resource Broker accesses GIS to find suitable resources for a
solution to a problem against deadline and budget constraints. The introduction
of economy to grid infrastructure brings additional challenging aspects that need
to be resolved. It provides incentives for resource owners to participate in grid
environment. It also leads the grid computing (using the Internet as an underlying
technology) from being a computing infrastructure to a business platform. Differ-
ent computational economy frameworks and algorithms for resource management
are presented to cope with these challenges [27,29,224]. Service oriented grids
have shown a great impact on Grid Computing [232]. A revolutionary approach

of grid infrastructure is presented in [9].

A.3 Grid Architecture and Existing Solutions

To define and integrate system components, a number of architectural design is-
sues need proper attention. A Grid uses cross-organisational resource sharing via

a VO and, therefore, a Grid architecture requires ways to establish and manage

A. AN INTRODUCTION TO GRID COMPUTING 218

resources [19]. Interoperability issues between resource owners and users are given
special attention. Resource management at both individual and integration levels
also needs special attention. Trading, security and QoS must be addressed. Dis-
covery services, co-allocation, scheduling, and monitoring and diagnostic services
issues need special considerations. To realise flexibility and reliability, data repli-
cation services and workload management must be given proper attention. Mate-
rialising these issues often result in a layered architecture that implement them as
low level and high level services [75]. The architecture of grid presented by Global
Grid Forum (GGF) comprises of five layers called: Application Layer, Collective
Layer, Resource Layer, Connectivity Layer, and Fabric Layer [75]. Application
Layer manages the construction of domain specific applications and utilises lower
layer services. To facilitate layered integration, a number of Application Provider
Interfaces (APIs) and Software Development Kits (SDKs) are provided at differ-
ent layers, including application layer. Collective Layer is responsible for global
resource management and interaction with resources. It implements a variety of
shared behaviours. Resource Layer handles issues of a single resource by utilising
communication, information, and management protocols to control issues such
as accounting, monitoring and secure negotiation. Connectivity Layer manages
core communication issues. It requires communication and authentication pro-
tocols. Communication protocols assist in data exchange between fabric layers
of resources. Authentication protocols guarantee secure authentication and data
exchange between a user and resources. Fabric Layer defines shared physical and
logical resources. Logical resources (such as a computer cluster) utilise their own

internal protocols for distributed networks.

Different implementations exist that manage the issues in different numbers of
layers. Baker et al. [11] describe such an implementation in terms of Applications,
User Level Middleware, Core Middleware and Fabric layers. Application layer
handles applications and portals. User Level Middleware performs resource selec-
tion, management, and aggregation. It implements resource broker and provides
developmental environments and tools. Core Middleware implements distributed
coupling services such as security, information, data, trading and QoS. Fabric

Layer concerns heterogeneous resources and their local management. A number

A. AN INTRODUCTION TO GRID COMPUTING 219

of services and infrastructures are implemented based on these layers, such as
schedulers, brokers, trading servers, and programming environments. The cur-
rent implementations of integrated grid environments include NetSolve [33], Ninf
[191] and Unicore [58]. Globus [76], Gridbus [26, 28] and Legion [90] are the im-
plementations of core middleware services. Condor-G [79] and Nimrod-G [29] are
user level implementations of scheduling services. Programming environments in-
clude MPICH G, Nimrod Parameter Programming tools and Cactus [25]. The
well known grid application development efforts include European DataGrid [97],
SETI@Home [7] and Virtual Laboratory [30]. A number of other architectures for

similar issues are presented with different orientations in [9, 102, 185].

Bibliography

1]

IEEE Std 1516.1-2000. IEEE standard for modeling and simulation (M&S)
high level architecture (HLA) - Federate Interface Specifications. Technical
report, IEEE., Piscataway, NJ, USA, 2001.

IEEE Std 1516.1-2000. IEEE standard for modeling and simulation (M&S)
high level architecture (HLA) - Framework and Rules. Technical report,
IEEE., Piscataway, NJ, USA, 2001.

Dewan Tanvir Ahmed and Shervin Shirmohammadi. A Dynamic Area of
Interest Management and Collaboration Model for P2P MMOGs. In DS-RT
'08: Proceedings of the 2008 12th IEEE/ACM International Symposium on
Distributed Simulation and Real-Time Applications, pages 27-34, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

Dewan Tanvir Ahmed and Shervin Shirmohammadi. A Microcell Ori-
ented Load Balancing Model for Collaborative Virtual Environments. In
IEEE Conference on Virtual Environments, Human-Computer Interfaces
and Measurement Systems, 2008., pages 86 —91, July 2008.

Thor Alexander, editor. Massively Multiplayer Game Development 2.
Charles River Media, 2005.

R. M. Andreu, P. G. Lopez, C. P. Gavalda, and A. F. G. Skarmeta. Tracking
the Evaluation of Collaborative Virtual Environments. UPGRADE, 8(2),
2006.

SETIQHOME (A Grid Application). http://setiathome.berkeley.edu/.

last accesed in December, 2011.

220

BIBLIOGRAPHY 221

8]

[9]

[13]

[14]

[15]

[16]

AssetServer. http://opensimulator.org/wiki/AssetServer. last accesed
in December, 2011.

Malcolm Atkinson, David DeRoure, Alistair Dunlop, Geoffrey Fox, Peter
Henderson, Tony Hey, Norman Paton, Steven Newhouse, Savas Parasta-
tidis, Anne Trefethen, Paul Watson, and Jim Webber. Web Service Grids:
An Evolutionary Approach. Concurrency and Computation: Practice and
FEzperience, 17(2-4):377-389, 2005.

Avatar. http://wiki.secondlife.com/wiki/Avatar. last accesed in
February, 2012.

M. Baker, R. Buyya, and D. Laforenza. Grids and Grid Technologies
for Wide-Area Distributed Computing. International Journal of Software:
Practice and Experience, 32(15):1437-1466, 2002.

Miranda Baladi, Henry Vitali, Georges Fadel, Joshua Summers, and Andrew
Duchowski. A Taxonomy for the Design and Evaluation of Networked Vir-
tual Environments: Its Application to Collaborative Design. International
Journal on Interactive Design and Manufacturing, 2(1):17-32, 2008.

Rajesh Krishna Balan, Maria Ebling, Paul Castro, and Archan Misra. Ma-
trix: Adaptive Middleware for Distributed Multiplayer Games. volume
3790/2005 of Lecture Notes in Computer Science, pages 390-400. Springer
Berlin/Heidelberg, 2005.

Woodrow Barfield and Thomas A. Furness I11, editors. Virtual Environments
and Advanced Interface Design. Oxford University Press, Inc., New York,
NY, USA, 1995.

Jon Louis Bentley. Multidimensional Divide-and-Conquer. Communications
of the ACM, 23(4):214-229, April 1980.

Helmut Berger, Michael Dittenbach, Dieter Merkl, Anton Bogdanovych,
Simeon Simoff, and Carles Sierra. Opening New Dimensions for e-Tourism.

Virtual Reality, 11(2):75-87, June 2007.

BIBLIOGRAPHY 222

[17]

[18]

[19]

[20]

[21]

[22]

[24]

Ashwin Bharambe, Jeffrey Pang, and Srinivasan Seshan. Colyseus: A Dis-
tributed Architecture for Online Multiplayer Games. In Proceedings of the
3rd conference on Networked Systems Design & Implementation - Volume
3, NSDI'06, pages 12—12, Berkeley, CA, USA, 2006. USENIX Association.

Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan. Mercury:
Supporting Scalable Multi-Attribute Range Queries. SIGCOMM Computer
Communication Review, 34(4):353-366, August 2004.

David Hilley Bikash Agarwalla, Nova Ahmed and Umakishore Ramachan-
dran. Streamline: Scheduling Streaming Applications in a Wide Area Envi-
ronment. Multimedia Systems, 13(1):69-85, 2007.

C. M. Bowman, D. Lake, and J. Hurliman. Designing Extensible and
Scalable Virtual World Platforms. In FExtensible Virtual Worlds Workshop
(X10), 2010.

D. Bruneo, A. Zaia, and A. Puliafito. Agent-based Middleware to Access
Multimedia Services in a Grid Environment. Multiagent and Grid Systems,
1(1):41-59, January 2005.

R. E. Bryant. Simulation of Packet Communication Architecture Computer

Systems. Technical report, Massachusetts Institute of Technology, Cam-
bridge, MA, USA, 1977.

Steve Bryson. Virtual Reality Applications. chapter Approaches to the Suc-
cessful Design and Implementation of VR Applications, pages 3-15. Aca-
demic Press Ltd., London, UK, 1995.

A. M. Burlamaqui, M. A. M.S. Oliveira, A. M. G. Goncalves, G. Lemos,
and J. C. De Oliveira. A Scalable Hierarchical Architecture for Large Scale
Multi User Virtual Environments. In IEEFE International Conference on Vir-

tual Environment, Human Computer Interfaces and Measurement Systems,
pages 114-119, 2006.

BIBLIOGRAPHY 223

[25]

28]

[29]

[30]

[31]

[32]

R. Buyya. Economic Based Distributed Resource Management and Schedul-
ing for Grid Computing. PhD in Computer Science, School of CS&SE -
Monash University, Melbourne, Australia, 2002.

R. Buyya. The Gridbus Toolkit: Enabling Grid Computing and Business.
http://www.cloudbus.org/middleware/, 2008.

R. Buyya, D. Abramson, and J. Giddy. An Economy Driven Resource Man-
agement Architecture for Global Computation Power Grids. In Proceedings
of the 2000 International Conference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA 2000), pages 239248, Las Vegas,
USA, 2000. CSREA Press.

R. Buyya and S. Venugopal. The Gridbus Toolkit for Service Oriented Grid
and Utility Computing: An Overview and Status Report. In Proceedings of
1st IEEE International Workshop on Grid Economics and Business Models,

(GECON 2004), pages 19-66, 2004.

Rajkumar Buyya, David Abramson, and Jonathan Giddy. Nimrod/G:
An Architecture for a Resource Management and Scheduling System in a
Global Computational Grid. In The Fourth International Conference on
High-Performance Computing in the Asia-Pacific Region-Volume 1, Beijing,
China, 2000.

Rajkumar Buyya, Kim Branson, Jon Giddy, and David Abramson. The
Virtual Laboratory: A Toolset to Enable Distributed Molecular Modelling
for Drug Design on the World-Wide Grid. Concurrency and Computation:
Practice and Ezxperience, 15(1):1-25, 2003.

W. Cai, G. Li, S. J. Turner, B.-S. Lee, and L. Liu. Automatic Construc-
tion of Hierarchical Federations Architecture. In DS-RT °02: Proceedings
of the Sizth IEEE International Workshop on Distributed Simulation and
Real-Time Applications, pages 50-58, Washington, DC, USA, 2002. IEEE

Computer Society.

Wentong Cai, Stephen J. Turner, and Boon Ping Gan. Hierarchical Federa-
tions: An Architecture for Information Hiding. In PADS ’01: Proceedings of

BIBLIOGRAPHY 224

[33]

[34]

[35]

[37]

[39]

the fifteenth workshop on Parallel and distributed simulation, pages 67-74,
Washington, DC, USA, 2001. IEEE Computer Society.

Henri Casanova and Jack Dongarra. Netsolve: a Network-Enabled Server
for Solving Computational Science Problems. The International Journal of
High Performance Computing Applications, 11(3):212-223, 1997.

M. Castro, P. Druschel, A.-M. Kermarrec, and A.I.'T. Rowstron. Scribe: A
Large-Scale and Decentralized Application-Level Multicast Infrastructure.
IEEE Journal on Selected Areas in Communications, 20(8):1489-1499, 2002.

Luther Chan, James Yong, Jiagiang Bai, Ben Leong, and Raymond Tan.
Hydra: A Massively-Multiplayer Peer-to-Peer Architecture for the Game
Developer. In Proceedings of the 6th ACM SIGCOMM workshop on Network
and system support for games, NetGames ‘07, pages 37-42, New York, NY,
USA, 2007. ACM.

K. M. Chandy and J. Misra. Distributed Simulations: A Case Study in
Design and Verifications of Distributed Programs. IEEE Transactions on
Software Engineering, 5(5):440-452, 1978.

F. Chang, C.M. Bowman, and W. Feng. XPU: A Distributed Architecture
for Metaverses. Technical report, Department of Computer Science, Portland
State University, 2010. Technical Report 10-04.

Jin Chen, Baohua Wu, Margaret Delap, Bjorn Knutsson, Honghui Lu, and
Cristiana Amza. Locality Aware Dynamic Load Management for Massively
Multiplayer Games. In Proceedings of the tenth ACM SIGPLAN symposium
on Principles and practice of parallel programming, PPoPP 05, pages 289—
300, New York, NY, USA, 2005. ACM.

Roman Chertov and Sonia Fahmy. Optimistic Load Balancing in a DVE.
In 16th International Workshop on Network and Operating System Support
for Digital Audio and Video, Newport, Rhode Island, 2006. ACM New York,
NY, USA.

BIBLIOGRAPHY 225

[40]

[41]

[43]

[44]

[45]

[46]

[47]

Comparison of Virtual Worlds. http://www.virtualenvironments.info. last

accesed in December, 2011.

Anthony Cramp, John P. Best, and Michael J. Oudshoorn. Time Man-
agement in Hierarchical Federation Communities. In 2002 Fall Simulation
Interoperability Workshop, 2002.

Anthony Cramp and Michael J. Oudshoorn. Employing Hierarchical Feder-
ation Communities in the Virtual Ship Architecture. In Twenty-Fifth Aus-
tralasian Computer Science Conference, pages 41-50, Melbourne, Australia,
2002.

Croquet: Current Release. http://www.opencroquet.org/index.php/

System_QOverview. last accesed in December, 2011.

Croquet: Introduction. http://en.wikipedia.org/wiki/Croquet_

project. last accesed in December, 2011.

CSI Virtual World Archive. http://labs.greenbush.us/CSI-Opensim.

zip. last accesed in December, 2011.

Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kesselman, Stuart Martin,
Warren Smith, and Steven Tuecke. A Resource Management Architecture for
Metacomputing Systems. Job Scheduling Strategies for Parallel Processing,
1459/1998:62-82, 1998.

Karl Czajkowski, Carl Kesselman, Steven Fitzgerald, and Ian Foster. Grid
Information Services for Distributed Resource Sharing. In (HPDC' "01): 10th
IEEE International Symposium on High Performance Distributed Comput-
ing, page 0181, San Francisco, California, USA, 2001.

Judith S. Dahmann, Richard M. Fujimoto, and Richard M. Weatherly. The
Department of Defense High Level Architecture. In WSC' ’97: Proceedings

of the 29th conference on Winter simulation, pages 142-149, Washington,
DC, USA, 1997. IEEE Computer Society.

BIBLIOGRAPHY 226

[49]

[50]

[51]

[55]

[56]

[57]

Tapas K. Das, Gurminder Singh, Alex Mitchell, P. Senthil Kumar, and
Kevin McGee. NetEffect: A Network Architecture for Large-Scale Multi-
User Virtual World. In ACM Symposium on Virtual Reality Software and
Technology, pages 157-163. ACM New York, NY, USA, 1997.

Roy C. Davies. Adapting Virtual Reality for the Participatory Design of
Work Environments. Computer Supported Cooperative Work, 13(1):1-33,
January 2004.

Jauvane C. de Oliveira and Nicolas D. Georganas. VELVET: An Adap-
tive Hybrid Architecture for Very Large Virtual Environments. Presence:
Teleoperators and Virtual Environments, 12(6):555-580, 2003.

Rina Dechter. From Local to Global Consistency. Artificial Intelligence,
55(1):87-108, 1992.

OpenSim: Definitions. http://opensimulator.org/wiki/Talk:

Definitions. last accesed in December, 2011.

Second Life: Agent Domain. https://wiki.secondlife.com/wiki/Agent_

Domain. last accesed in December, 2011.

P. du Pont. Virtual Reality in Engineering. chapter Applied Virtual Reality,
pages 153-167. Institution of Electrical Engineers, Stevenage, UK, 1993.

EducationSim Archive. http://odomia.com/educasim.tar.gz. last ac-

cesed in December, 2011.

Tulga Ersal, Mark Brudnak, Ashwin Salvi, Jeffrey L. Stein, Zoran Filipi,
and Hosam K. Fathy. Development of an Internet-Distributed Hardware-
in-the-Loop Simulation Platform for an Automotive Application. ASME
Conference Proceedings, 2009:73-80, 2009.

Dietmar W. Erwin. UNICORE: A Grid computing environment. Con-
currency and Computation: Practice and Experience, 14(13-15):1395-1410,
2002.

BIBLIOGRAPHY 227

[59]

[60]

[61]

[63]

[64]

[65]

FairieCastle Archive. http://www.mediafire.com/file/
170hqvtcb8ub7z6/FairieCastle-v0.1.o0ar. last accesed in Decem-
ber, 2011.

Umar Farooq and John Glauert. ARA: An Aggregate Region Assignment Al-
gorithm for Resource Minimisation and Load Distribution in Virtual Worlds.
In NDT ’09: Proceedings of the first IEEE International Conference on Net-
worked Digital Technologies, pages 404-410, 2009.

Umar Farooq and John Glauert. Joint Hierarchical Nodes based User
Management (JoHNUM) Infrastructure for the Development of Scalable
and Consistent Virtual Worlds. In DS-RT ’09: Proceedings of the 13th
IEEE/ACM Symposium on Distributed Simulation and Real-Time Applica-
tions, pages 105-112, Washington, DC, USA, 2009. IEEE Computer Society.

Umar Farooq and John Glauert. Managing Scalability and Load Distribu-
tion for Large Scale Virtual Worlds. In Proceedings of the UEA School of
Computing Sciences Symposium, pages 20-27, 2009.

Umar Farooq and John Glauert. A Decentralised Synchronisation Approach
for Complex Hierarchical Models of Virtual Worlds. In PDCS ’10: Proceed-
ings of the IASTED International Conference on Parallel and Distributed
Computing and Systems, pages 218-224, 2010.

Umar Farooq and John Glauert. A Dynamic Load Distribution Algorithm
for Virtual Worlds. Journal of Digital Information Management, 8(3):181-
189, June 2010.

Umar Farooq and John Glauert. A Hybrid Infrastructure for Scalable and
Consistent Virtual Worlds. In WSC ’10: Proceedings of the IEEE 42nd

Winter Simulation Conference, 2010.

Umar Farooq and John Glauert. Time Management for Virtual Worlds based
on Constrained Communication Model. In NetGames ’10: Proceedings of
the 9th ACM/IEEE Annual Workshop on Network and System Support for
Games, pages 18:1-6, 2010.

BIBLIOGRAPHY 228

[67] Umar Farooq and John Glauert. Scalable Virtual Worlds: An Extension
to the OpenSim Architecture. In ICCNIT ’11: Proceedings of the IEEE In-
ternational Conference on Computer Networks and Information Technology,
pages 29-34, 2011.

[68] J. Filsinger. HLA Security Guard Federate. In 1997 Spring Simulation
Interoperability Workshop, Orlando, Florida, USA, March 1997.

[69] M.C. Fischer. Aggregate Level Simulation Protocol (ALSP) Managing Con-
federation Development. In Winter Simulation Conference Proceedings,
1994., pages 775 — 780, Dec 1994.

[70] Xavier Fischer and Daniel Coutellier. FEditorial. International Journal on
Interactive Design and Manufacturing, 1(1):1-4, 2007.

[71] Flash Flood Fill Implementation. http://www.emanueleferonato.com/
2008/06/06/flash-flood-fill-implementation/. last accesed in Decem-
ber, 2011.

[72] Flood Fill Algorithm. http://en.wikipedia.org/wiki/Flood_fill. last

accesed in December, 2011.

[73] Flood Fill: Lode’s Computer Graphics Tutorial. http://lodev.org/
cgtutor/floodfill.html. last accesed in December, 2011.

[74] Basic Support for Cooperative Work. http://www.bscw.de/english /index.html.

last accesed in December, 2011.
[75] 1. Foster. What is the Grid: A Three Point CheckList. GRIDToday, 2002.

[76] Tan Foster and Carl Kesselman. Globus: a Metacomputing Infrastructure
Toolkit. The International Journal of High Performance Computing Appli-
cations, 11(2):115-128, 1997.

[77] Tan Foster and Carl Kesselman, editors. The Grid: Blueprint for a New
Computing Infrastructure. 1999.

BIBLIOGRAPHY 229

[78]

[79]

[82]

[83]

[84]

lan Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid
- Enabling Scalable Virtual Organizations. International Journal of Super-
computer Applications, 15(3):290-315, 2001.

James Frey, Todd Tannenbaum, Miron Livny, lan Foster, and Steven Tuecke.
Condor-G: A Computation Management Agent for Multi-Institutional
Grids. Cluster Computing, 5(3):237-246, 2002.

R. M. Fujimoto. Lookahead in Parallel Discrete Event Simulation. In Inter-

national Conference on Parallel Processing, pages 34-41, 1988.

R. M. Fujimoto, T. Mclean, K. Perumalla, and I. Tacic. Design of High
Performance RTI Software. In International Workshop on Distributed Sim-

ulation and Real Time Applications, pages 89-96, 2000.

Richard M. Fujimoto. Time Management in the High Level Architecture.
Simulation, 71(6):388-400, 1998.

Richard M. Fujimoto. Parallel and Distributed Simulation Systems. Wiley

Interscience, 2000.

Richard M. Fujimoto. Parallel and Distribution Simulation Systems. In 2001
Winter Simulation Conference, pages 147-157, 2001.

Deborah A. Fullford. Distributed Interactive Simulation: Its Past, Present,
and Future. In WSC ’96: Proceedings of the 28th conference on Winter
simulation, pages 179-185, Washington, DC, USA, 1996. IEEE Computer
Society.

T. Funkhouser. RING: A Client-Server System for Multi-User Virtual En-
vironments. In Symposium on Interactive 3D Graphics, pages 8592, 1995.

Zihui Ge, Ping Ji, and Prashant Shenoy. Design and Analysis of a Demand
Adaptive and Locality Aware Streaming Media Server Cluster. Multimedia
Systems, 13(3):235-249, 2007.

BIBLIOGRAPHY 230

3]

[91]

[92]

[93]

[94]

[95]

[96]

Genecys: Introduction and Downloads.
http://sourceforge.net /projects/genecys/ . last accesed in December,
2011.

Genecys: The Official Website. http://www.genecys.org/. last accesed in

December, 2011.

Andrew S. Grimshaw, Wm. A. Wulf, and CORPORATE The Legion Team.
The Legion Vision of a Worldwide Virtual Computer. Communications of

the ACM, 40(1):39-45, January 1997.

Groove 2007: A P2P Co-operative Environment (Upgraded to “SharePoint
Workspace 2010”). http://office.microsoft.com/en-us/groove/default.aspx.

last accesed in December, 2011.

N. Gupta, A. Demers, J. Gehrke, P. Unterbrunner, and W. White. Scal-
ability for Virtual Worlds. In Proceedings of the 2009 IEEE International
Conference on Data Engineering (ICDE '09), pages 1311-1314, 2009.

Thorsten Hampel, Thomas Bopp, and Robert Hinn. A Peer-to-Peer Ar-
chitecture for Massive Multiplayer Online Games. In Proceedings of 5th
ACM SIGCOMM Workshop on Network and System Support for Games,
NetGames '06, New York, NY, USA, 2006. ACM.

Gernot Heiser, Fondy Lam, and Stephen Russell. Resource Management
in the Mungi Single-Address-Space Operating System. In Proceedings of

Australasian Computer Science Conference, Perth, Australia, 1998.

J. Helmer. Second Life and Virtual Worlds. Technical report, Learning Light
Limited, UK., 2007.

M. Hori, T. Iseri, K. Fujikawa, S. Shimojo, and H. Miyahara. Scalability
Issues of Dynamic Space Management for Multiple-Server Networked Vir-
tual Environments. In IEFE Pacific Rim Conference on Communications,

Computers and Signal Processing, volume 1, pages 200-203, 2001.

BIBLIOGRAPHY 231

[97]

[100]

[101]

[102]

103]

[104]

[105]

[106]

Wolfgang Hoschek, Javier Jaen-Martinez, Asad Samar, Heinz Stockinger,
and Kurt Stockinger. Data Management in an International Data Grid
Project. In Grid Computing - Grid 2000, volume 1971/1997, pages 333-361,
2000.

The Virtual Environment: Habbo Hotel. http://www.habbohotel.com. last

accesed in December, 2011.

Toby Howard, Roger Hubbold, and Alan Murta. MAVERIK: A Virtual
Reality System for Research and Teaching. Presence: Teleoperators and
Virtual Environments, 10(1):22-34, 2006.

HTTP. http://www.w3.org/Protocols/rfc2616/rfc2616.html. last ac-
cesed in April, 2012.

Shun-Yun Hu, Jui-Fa Chen, and Tsu-Han Chen. VON: A Scalable Peer-to-
Peer Network for Virtual Environments. IEEE Network, 20(4):22-31, 2006.

Jiung Yao Huang, Yi Chang Du, and Chien Min Wang. Design of the Server
Cluster to Support Avatar Migration. In IEEFE Virtual Reality, pages 7-14.
IEEE Computer Society Washington, DC, USA, 2003.

IDC. Butterfly.net: Powering next generation gaming with on-demand com-
puting. Technical report, IBM: An IDC e-Business Case Study, 2004.

Quake II. http://www.idsoftware.com/games/quake/quake2/. last accesed
in December, 2011.

Takuji Iimura, Hiroaki Hazeyama, and Youki Kadobayashi. Zoned Feder-
ation of Game Servers: a Peer-to-Peer Approach to Scalable Multi-player
Online Games. In Proceedings of 3rd ACM SIGCOMM Workshop on Net-
work and System Support for Games, NetGames ‘04, pages 116-120, New
York, NY, USA, 2004. ACM.

Importing OARs into megaregions. http://www.metaverseink.com/blog/
7p=28. last accesed in December, 2011.

BIBLIOGRAPHY 232

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

116]

[117]

[118]

Intel Research Labs. ScienceSim: A Virtual Environment for Collaborative

Visualization and Experimentation. White paper, Intel Labs, 2010.

Argentum Online: Introduction and Downloads. http://sourceforge.
net/project/showfiles.php?group_id=67718. last accesed in December,
2011.

Arianne: Introduction. http://arianne.sourceforge.net/. last accesed in De-
cember, 2011.

Beyond 2: Introduction. http://asbahr.com/beyond.html. last accesed in
December, 2011.

Diamonin: Introduction and Downloads. http://www.daimonin.com/. last

accesed in December, 2011.

FreeTribes: Introduction. http://developer.berlios.de/projects/freetribes/.

last accesed in December, 2011.

Irrlicht Engine: Introduction and Downloads. http://irrlicht.sourceforge.net.

last accesed in December, 2011.

Isotope: Introduction, Downloads, and Documentation.

http://isotope.sourceforge.net/. last accesed in December, 2011.

Janthus: Introduction and Downloads. http://janthus.sourceforge.net/. last

accesed in December, 2011.

Quake II: Introduction. http://en.wikipedia.org/wiki/Quake_II. last

accesed in December, 2011.

WarZone: Introduction. http://wz2100.net/. last accesed in December,
2011.

Inventory. http://wiki.secondlife.com/wiki/Inventory. last accesed
in April, 2012.

BIBLIOGRAPHY 233

119]

[120]

[121]

[122]

123]

[124]

[125]

[126]

[127]

Sankar Jayaram, Uma Jayaram, Young Jun Kim, Charles DeChenne,
Kevin W. Lyons, Craig Palmer, and Tatsuki Mitsui. Industry Case Studies
in the Use of Immersive Virtual Assembly. Virtual Reality, 11(4):217-228,
2007.

D. Jefferson. Virtual Time. ACM Transactions on Programming Languages

and Systems, 7(2):404-425, 1985.

N. Johnson. The Educational Potential of SecondLife. The Ohio State
University, USA, 2006.

Joshy Joseph and Craig Fellenstein, editors. Grid Computing. IBM Series,
2004.

Priscilla Kan John and Alban Grastien. Local Consistency and Junction
Tree for Diagnosis of Discrete-Event Systems. In Proceedings of the 2008
conference on ECAI 2008: 18th European Conference on Artificial Intelli-
gence, pages 209-213, Amsterdam, The Netherlands, The Netherlands, 2008.
IOS Press.

The Virtual Environment: Kaneva. http://www.keneva.com. last accesed
in December, 2011.

Beob Kyun Kim and Kang Soo You. A Hierarchical Map Partition Method
in MMORPG based on Virtual Map. In Frontiers of High Performance Com-
puting and Networking - ISPA 2006 Workshops, volume 4331/2006 of Lec-
ture Notes in Computer Science, pages 813-822. Springer Berlin/Heidelberg,
2006.

Jae-Hyun Kim and Tag Gon Kim. Proposal of High Level Architecture
Extension. In Artificial Intelligence and Simulation, pages 128-137. Springer
Berlin / Heidelberg, 2005.

Jae-Hyun Kim and Tag Gon Kim. Hierarchical HLA: Mapping Hierarchical
Model Structure into Hierarchical Federation. M&éS-MTSA 06, pages 75 —
80, July 2006.

BIBLIOGRAPHY 234

128]

[129]

[130]

[131]

[132]

133

[134]

[135]

[136]

Bjorn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins. Peer-to-Peer
Support for Massively Multiplayer Games. In IEEE INCOMM, pages 107—
112, 2004.

Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A Tax-
onomy and Survey of Grid Resource Management Systems for Distributed
Computing. Software: Practice and Experience, 32(2):135-164, 2000.

F. Kuhl, R. Weatherly, and J. Dahmann. Creating Computer Simulation
Systems: An introduction to the High Level Architecture. Prentice Hall PTR,
1999.

Sanjeev Kumar, Jatin Chhugani, Changkyu Kim, Dachyun Kim, Anthony
Nguyen, Pradeep Dubey, Christian Bienia, and Youngmin Kim. Second
Life and the New Generation of Virtual Worlds. Computer, 41(9):46-53,
September 2008.

Dan Lake, Mic Bowman, and Huaiyu Liu. Distributed Scene Graph to
Enable Thousands of Interacting Users in a Virtual Environment. In Pro-
ceedings of the 9th Annual Workshop on Network and Systems Support for
Games, NetGames '10, pages 19:1-19:6, Piscataway, NJ, USA, 2010. IEEE

Press.

Simon St. Laurent, Joe Johnston, Edd Dumbill, and Dave Winer. Program-
ming Web Services with XML-RPC. O’Reilly Media, 2001.

Dongman Lee, Mingyu Lim, and Seyunhyun Han. ATLAS: A Scalable Net-
work Framework for Distributed Virtual Environments. Presence: Teleop-
erators and Virtual Environments, 16(2):125-156, 2007.

Kang-Won Lee, Bong-Jun Ko, and Seraphin Calo. Adaptive Server Selection
for Large Scale Interactive Online Games. In 14th International Workshop
on Network and Operating System Support for Digital Audio and Video,
pages 152-157, Cork, Ireland, 2004. ACM New York, NY, USA.

Kyungmin Lee and Dongman Lee. A Scalable Dynamic Load Distribution
Scheme for Multi-Server Distributed Virtual Environment Systems With

BIBLIOGRAPHY 235

137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

Highly-Skewed User Distribution. In ACM Symposium on Virtual Reality
Software and Technology, pages 160-168, Osaka, Japan, 2003. ACM New
York, NY, USA.

Second Life. http://en.wikipedia.org/wiki/Second_Life. last accesed
in December, 2011.

Buquan Liu, Yiping Yao, and Huaimin Wang. An Efficient Algorithm in
the HLA Time Management. In Proceedings of the 2007 Winter Simulation
Conference, pages 585-593, 2007.

H. Liu and M. Bowman. Scale Virtual Worlds through Dynamic Load Bal-
ancing. In DS-RT ’10: Proceedings of the 2010 14th IEEE/ACM Interna-
tional Symposium on Distributed Simulation and Real-Time Applications,
pages 43-52, Washington, DC, USA, 2010. IEEE Computer Society.

H. Liu, M. Bowman, R. Adams, J. Hurliman, and D. Lake. Scaling Virtual
Worlds: Simulation Requirements and Challenges. In Proceedings of the
2010 Winter Simulation Conference (WSC ’10), pages 778-790, 2010.

Load Balancer Project. http://forge.opensimulator.org/gf/project/

loadbalancer/. last accesed in December, 2011.

Fengyun Lu, Simon Parkin, and Graham Morgan. Load Balancing for Mas-
sively Multiplayer Online Games. In Proceedings of 5th ACM SIGCOMM
Workshop on Network and System Support for Games, NetGames '06, New
York, NY, USA, 2006. ACM.

John C. S. Lui and M. F. Chan. An Efficient Partitioning Algorithm for
Distributed Virtual Environment Systems. [FEEE Transaction on Parallel
and Distribution Systems, 13(3):193-211, 2002.

Gerry Magee, Graham Shanks, and Pete Hoare. Hierarchical Federations.
In Simulation Interoperability Spring Workshop, Orlando, Florida, March
1999.

Massiv: Documentation and Downloads. http://forge.objectweb.org/
project/showfiles.php?group_id=149. last accesed in December, 2011.

BIBLIOGRAPHY 236

[146]

[147)

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

Massiv ~ (Massively ~ Multiplayer ~ Online ~ Game Middleware).
http://massiv.ow2.org/. last accesed in December, 2011.

Maverik: A MicroKernal for Large Scale VEs. http://linuxjournal.com/
article/4035. last accesed in December, 2011.

Maya Pyramid Archive. http://www.gomaya.com/glyph/opensim_dp/

maya3.oar. last accesed in December, 2011.

D. C. Miller and J. A. Thorpe. SIMNET: The Advent of Simulator Net-
working. Proceedings of the IEEFE, 83(8):1114-1123, 1995.

Mark P. Mobach. Do Virtual Worlds Create Better Real Worlds? Virtual
Reality, 12(3):163-179, 2008.

Bjorn Moller and Lennart Olsson. Practical Experiences from HLA 1.3 to
HLA IEEE 1516 Interoperability. In 2004 Fall Simulation Interoperability
Workshop, Orlando, Florida, USA, September 2004.

P. Morillo, M. Fernandez, and N. Pelechano. A Grid Representation
for Distributed Virtual Environments. In GRID COMPUTING, volume
2970/2004 of Lecture Notes in Computer Science, pages 182-189. Springer
Berlin/Heidelberg, 2004.

P. Morillo, J. M. Orduna, and J. Duato. A Scalable Synchronization Tech-
nique for Distributed Virtual Environments based on Networked Server Ar-

chitecture. In International Conference on Parallel Processing Workshops,
pages 74-81, 2006.

Matthias Miiller, Leonard McMillan, Julie Dorsey, and Robert Jagnow.
Real-time Simulation of Deformation and Fracture of Stiff Materials. In
Proceedings of the Eurographic workshop on Computer animation and sim-
ulation, pages 113-124, New York, NY, USA, 2001. Springer-Verlag New
York, Inc.

Michael D. Myjak, Duncan Clark, and Tom Lake. RTI Interoperability Study
Group Final Report. In 1999 Fall Simulation Interoperability Workshop,
Orlando, Florida, USA, September 1999.

BIBLIOGRAPHY 237

[156]

[157]

[158]

[159]

[160]

[161]

[162]

163

[164]

[165]

Michael D. Myjak and Sean T. Sharp. Implementation of Hierarchical Feder-
ations. In 1999 Fall Simulation Interoperability Workshop, Orlando, Florida,
USA, September 1999.

The Virtual Environment: Neopets. http://www.neopets.com. last accesed
in December, 2011.

netPanzer. http://www.netpanzer.org/. last accesed in December, 2011.

Beatrice Ng, Antonio Si, Rynson W. H. Lau, and Frederick Li. A Multi-
server Architecture for Distributed Virtual Walkthrough. In ACM Sympo-
sium on Virtual Reality Software and Technology, pages 163-170. ACM New
York, NY, USA, 2002.

D. M. Nicol. The Cost of Conservative Synchronization in Parallel Discrete
Event Simulations. Journal of the Association for Computing Machinery,
40(2):304-333, 1993.

GU Ning and MAHER Mary Lou. Dynamic Designs of 3D Virtual Worlds
using Generative Design Agents. In Computer Aided Architectural Design
Futures, pages 239-248, 2005.

Giovanni Novelli, Giuseppe Pappalardo, Corrado Santoro, and Emiliano Tra-
montana. A Grid-based Infrastructure to Support Multimedia Content Dis-
tribution. In Proceedings of the second workshop on Use of P2P, GRID
and agents for the development of content networks, UPGRADE ’07, pages
57-64, New York, NY, USA, 2007. ACM.

Second Life: Structure of Region Domain. https://wiki.secondlife.com/

wiki/Region_Domain. last accesed in December, 2011.

World of Warcraft. http://us.battle.net/wow /en/. last accesed in December,
2011.

Cory Ondrejka. A PIECE OF PLACE: Modeling the Digital on the Real in
Second Life. Working Paper Series. University of South California, 2004.

BIBLIOGRAPHY 238

[166]

[167]

[168]

[169]

[170]

[171]

172]

[173]

[174]

[175]

[176]

[177]

The Virtual Environment: Gaia Online. http://www.gaiaonline.com. last

accesed in December, 2011.

Open Grid Protocol. http://wiki.secondlife.com/wiki/Open_Grid_

Protocol. last accesed in December, 2011.

Open Virtual Collaboration Environment (OpenVCE.net). http://

openvce.net. last accesed in December, 2011.

OpenCobalt. http://en.wikipedia.org/wiki/Open_Cobalt. last accesed
in December, 2011.

OpenCobalt: The Official Website. http://www.opencobalt.org/. last

accesed in December, 2011.

OpenMetaverse. http://openmetaverse.org/. last accesed in December,
2011.

OpenSim Architectures. http://opensimulator.org/wiki/

Configuration. last accesed in December, 2011.

OpenSim Archive (OAR) Functionality. http://opensimulator.org/

wiki/OpenSim_Archives. last accesed in December, 2011.

OpenSim: Existing Worlds Content. http://www.opensimworlds.com/.

last accesed in December, 2011.

OpenSim: Megaregions. http://opensimulator.org/wiki/Setting_Up_

Mega-Regions. last accesed in December, 2011.

OpenSim: UGAIM Services and Region Server. http://opensimulator.
org/wiki/OpenSim:Introduction_and_Definitions. last accesed in De-
cember, 2011.

OpenSimulator (OpenSim): An introduction. http://opensimulator.org/

wiki/Main_Page. last accesed in December, 2011.

BIBLIOGRAPHY 239

[178]

[179]

[180]

[181]

[182]

[183]

184]

[185]

Ke Pan, Stephen John Turner, Wentong Cai, and Zengxiang Li. A Hybrid
HLA Time Management Algorithm Based on Both Conditional and Uncon-
ditional Information. In PADS ’08: Proceedings of the 22nd Workshop on
Principles of Advanced and Distributed Simulation, pages 203-211, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

Ke Pan, Stephen John Turner, Wentong Cai, and Zengxiang Li. A Hybrid
HLA Time Management Algorithm Based on Both Conditional and Uncon-
ditional Information. Simulation, 85(9):559-573, 2009.

Kalyan S. Perumalla. Parallel and Distributed Simulation: Traditional Tech-
niques and Recent Advances. In Proceedings of the 38th conference on Win-

ter simulation, WSC 06, pages 84-95, 2006.

K. Prasetya and Z. D. Wu. Performance Analysis of Game World Parti-
tioning Methods for Multiplayer Mobile Gaming. In Proceedings of the 7th
ACM SIGCOMM Workshop on Network and System Support for Games,
NetGames '08, pages 72-77, New York, NY, USA, 2008. ACM.

Primitive (Prim). http://wiki.secondlife.com/wiki/Primitive. last

accesed in February, 2012.

Quake II: Manual. http://quakebase.ktu.edu/quake_stuff/quake2/

manual/Manual.html. last accesed in December, 2011.

Peter Quax, Jeroen Dierckx, Bart Cornelissen, Gert Vansichem, and Wim
Lamotte. Dynamic Server Allocation in a Real-life Deployable Commu-
nications Architecture for Networked Games. In Proceedings of the 7th
ACM SIGCOMM Workshop on Network and System Support for Games,
NetGames '08, pages 66—71, New York, NY, USA, 2008. ACM.

Vytautas Reklaitis, Kazys Baniulis, and Toshio Okamoto. Shaping e-
Learning Applications for a Service-Oriented Grid. In Proceeding of the
2005 conference on Towards the Learning Grid: Advances in Human Learn-
ing Services, pages 98-104, Amsterdam, The Netherlands, The Netherlands,
2005. IOS Press.

BIBLIOGRAPHY 240

[186]

[187]

[188)]

[189)]

[190]

[191]

[192]

193]

[194]

[195]

RemoteAdmin Functionality. http://opensimulator.org/wiki/

RemoteAdmin. last accesed in December, 2011.

Renting/Buying Land in OpenSim. http://wiki.secondlife.com/wiki/

Private_Estate_Management_Companies. last accesed in December, 2011.

Abdennour El Rhalibi, Madjid Merabti, and Yuanyuan Shen. AoIM in
Peer-to-Peer Multiplayer Online Games. In ACM SIGCHI International

conference on Advances in computer entertainment technology, Hollywood,

California, 2006. ACM New York, NY, USA.

P. Rosedale and C. Ondrejka. Enabling Player Created Online Worlds with
Grid Computing and Streaming. Gamasutra, 2003.

Maria Roussou, Martin Oliver, and Mel Slater. The Virtual Playground: an
Educational Virtual Reality Environment for Evaluating Interactivity and
Conceptual Learning. Virtual Reality, 10(2):227-240, 2006.

Mitsuhisa Sato, Hidemoto Nakada, Satoshi Sekiguchi, Satoshi Matsuoka,
Umpei Nagashima, and Hiromitsu Takagi. Ninf: A Network based Infor-
mation Library for Global World-wide Computing Infrastructure. In High-
Performance Computing and Networking, volume 1225/1997, pages 491-502,
San Diego, CA, 1997.

Scene. http://opensimulator.org/wiki/Getting_Started_with_
Region_Modules. last accesed in April, 2012.

ScienceSim Performance Tests. http://sciencesim.com/wiki/doku.php/

opensim/performance_tests. last accesed in December, 2011.

Script. http://secondlife.wikia.com/wiki/Script. last accesed in
April, 2012.

Second Life Grid: Concepts. http://wiki.secondlife.com/wiki/Grid#

Grid. last accesed in December, 2011.

BIBLIOGRAPHY 241

[196]

[197]

[198]

[199]

200]

201]

[202]

[203]

204]

[205]

[206]

Second Life Grid Extension: Architecture Working Group. https://wiki.

secondlife.com/wiki/Architecture_Working_Group. last accesed in De-
cember, 2011.

Second Life Grid: Introduction. http://wiki.secondlife.com/wiki/

Second_Life_Grid. last accesed in December, 2011.

Second Life Grid: Motivation for Extension. http://wiki.secondlife.

com/wiki/Project_Motivation. last accesed in December, 2011.

Second Life Grid: Today and Tomorrow. https://wiki.secondlife.com/

wiki/Structural_Design_Overview. last accesed in December, 2011.

Second Life: Local and Offline Content. https://wiki.secondlife.com/

wiki/Running_at_Home_and_0ffline. last accesed in December, 2011.

Second Life: The Official Website. http://www.secondlife.com/. last accesed
in December, 2011.

Second Life: Central Services. http://wiki.secondlife.com/wiki/

Central_Services. last accesed in December, 2011.

Shervin Shirmohammadi, Thab Kazem, Dewan Tanvir Ahmed, Madeh El-
Badaoui, and Jauvane C. De Oliveira. A Visibility-Driven Approach for
Zone Management in Simulations. Simulation, 84(5):215-229, 2008.

S. Singhal and M. Zyda. Networked Virtual Environments: Design and
Implementation. ACM Press/Addison-Wesley Publishing Co., 1999.

Kay M. Stanney, Ronald R. Mourant, and Robert S. Kennedy. Human Fac-
tors Issues in Virtual Environments: A Review of the Literature. Presence:
Teleoperators and Virtual Environments, 7(4):327-351, August 1998.

J. Steinman. SPEEDES: Synchronous Parallel Environment for Emulation
and Discrete Event Simulation. In Advances in Parallel and Distributed
Simulation, pages 95-103, 1991.

BIBLIOGRAPHY 242

[207]

[208]

[209)]

[210]

211]

[212]

[213]

[214]

215

[216]

[217]

SUN. Game Server Technology. White paper, SUN Microsystems Inc., June
2004.

The Virtual Environment: Forterra Systems. http://www.forterrainc.

com. last accesed in December, 2011.

Duong Nguyen Binh Ta, Suiping Zhou, and Haifeng Shen. Greedy Algo-
rithms for Client Assignment in Large Scale Distributed Virtual Environ-
ments. Simulation, 84(10-11):521-533, 2008.

Simon J. E. Taylor, Jon Saville, and Rajeev Sudra. Developing Interest
Management Techniques in Distributed Interactive Simulation using Java.
In Proceedings of the 31st conference on Winter simulation: Simulation—a
bridge to the future - Volume 1, WSC ’99, pages 518-523, New York, NY,
USA, 1999. ACM.

The Virtual Environment: ActiveWorlds. http://www.activeworlds.com/.

last accesed in December, 2011.

The Virtual Environment: Barbie Girls. http://www.barbiegirls.com.

last accesed in December, 2011.

The Virtual Environment: Club Penguin. http://www.clubpenguin.com.

last accesed in December, 2011.

The Virtual Environment: There. http://www.there.com. last accesed in
December, 2011.

The Virtual Environment: Zwinky. http://www.zwinky.com. last accesed
in December, 2011.

Douglas Thomas and John Seely Brown. Why Virtual Worlds Can Mat-
ter. Working Paper: Institute of Network Culture, University of Southern
California, 2007.

Ultima Online. http://www.uoherald.com/. last accesed in December, 2011.

BIBLIOGRAPHY 243

218]

219]

[220]

[221]

222]

223]

[224]

[225]

[226]

[227]

Peter van Beek and Rina Dechter. Constraint Tightness and Looseness
Versus Local and Global Consistency. Journal of the ACM, 44(4):549-566,
July 1997.

Matteo Varvello, Fabio Picconi, Christophe Diot, and Ernst Biersack. Is
There Life in Second Life? In Proceedings of the 2008 ACM CoNEXT
Conference, CONEXT ’08, pages 1:1-1:12, New York, NY, USA, 2008. ACM.

Argentum Online (Non English Version). http://ao.alkon.com.ar/. last

accesed in December, 2011.

John Vince. Virtual Reality Systems. ACM Press/Addison-Wesley Publish-
ing Co., New York, NY, USA, 1995.

John Vince. Introduction to Virtual Reality. Springer, 2004.

Bart De Vleeschauwer, Bruno Van Den Bossche, Tom Verdickt, Filip De
Turck, Bart Dhoedt, and Piet Demeester. Dynamic Microcell Assignment for
Massively Multiplayer Online Gaming. In 4th ACM SIGCOMM workshop

on Network and System Support for Games, pages 1-7, Hawthorne, NY,
2005. ACM New York, NY, USA.

C.A. Waldspurger, T. Hogg, B.A. Huberman, J.O. Kephart, and W.S. Stor-
netta. Spawn: A Distributed Computational Economy. IEEE Transactions
on Software Engineering, 18(2):103-117, 1992.

D. Waltz. Understanding Line Drawings of Scenes with Shadows. In Patrick
Winston, editor, The Psychology of Computer Vision, pages 19-91. McGraw-
Hill, 1975.

Tiangi Wang, Cho-Li Wang, and Francis C. Lau. An Architecture to Sup-
port Scalable Distributed Virtual Environment Systems on Grid. Journal of
Supercomputing, 36(3):249-264, June 2006.

John A. Waterworth and Eva L. Waterworth. Presence and Absence in
Education VR: The Role of Perceptual Seduction in Conceptual Learning.
Themes in Education, 1(1):7-38, 2000.

BIBLIOGRAPHY 244

228]

[229]

230]

[231]

232]

233

[234]

[235]

[236]

[237]

[238)]

[239)]

240

BZ Flag: The Official Website. http://bzflag.org/. last accesed in December,
2011.

Crossfire: The Official Website. http://crossfire.real-time.com/. last accesed
in December, 2011.

OpenArena: The Official Website. http://openarena.ws/. last accesed in
December, 2011.

WorldForge: The Official Website. http://worldforge.org/. last accesed in
December, 2011.

Jon B. Weissman and Byoung-Dai Lee. The Service Grid: Supporting Scal-
able Heterogeneous Services in Wide-Area Networks. In Proceedings of 2001
Symposium on Applications and the Internet (SAINT’01), San Diego, CA,
2001.

The Virtual Environment: Whyville. http://www.whyville.com. last ac-

cesed in December, 2011.

Arianne: Wiki. http://stendhalgame.org/wiki/Main_Page. last accesed
in December, 2011.

BZ Flag: Wiki. http://my.bzflag.org/w/. last accesed in December, 2011.

Crossfire: Wiki. http://wiki.metalforge.net/doku.php. last accesed in De-
cember, 2011.

Irrlicht Engine: Wiki. http://www.irrlicht3d.org/wiki/. last accesed in De-
cember, 2011.

OpenArena: Wiki. http://openarena.wikia.com/wiki/Main_Page. last

accesed in December, 2011.

WarZone: Wiki. http://warzone2100.wikia.com/wiki/Main_Page. last

accesed in December, 2011.

WorldForge: Wiki. http://wiki.worldforge.org/wiki/Main_Page. last

accesed in December, 2011.

BIBLIOGRAPHY 245

[241] W. Winn, M. Windschitl, R. Fruland, and Y. Lee. When Does Immer-
sion in a Virtual Environment help Students Construct Understanding? In

International Conference on Learning Sciences, pages 497-503, 2002.
[242] XML. http://www.w3.org/XML/. last accesed in April, 2012.

[243] J. H. Zeigler, H. Praehoper, and T. G. Kim. Theory of Modeling and Simu-
lation. Academic Press, 2000.

[244] Yan Zhang, Zhong Zhou, and Wei Wu. A Hierarchical Time Management
Mechanism for HLA-Based Distributed Virtual Environment. Journal of
Computational Information Systems, 10(2):7-15, 2006.

[245] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and
Bernhard Scholkopf. Learning with Local and Global Consistency. In NIPS,
2003.

