
The Design of a Contemporary
Infrastructure for Scalable and

Consistent Virtual Worlds

Umar Farooq

School of Computing Sciences

University of East Anglia

February 2012

c©This copy of the thesis has been supplied on condition that anyone who consults it is un-
derstood to recognise that its copyright rests with the author and that no quotation from the
thesis, nor any information derived therefrom, may be published without the author’s prior
written consent.

To my parents, brothers and sisters.

Abstract

Virtual worlds have recently emerged as interactive and collaborative virtual spaces
that have unique features. Existing mechanisms originally developed for games
or simulation environments are currently used to handle scalability, load distri-
bution, and consistency issues for virtual worlds, but they have key performance
issues. This dissertation examines a novel infrastructure based on inherent prop-
erties of virtual worlds targeting these issues. It uses a constrained hierarchical
approach for managing the resources of a system and a constrained P2P commu-
nication model that consults only the adjacent neighbouring nodes to maintain
the temporal order among events. It presents simulation work for scalability, load
distribution, and consistency as well as an extension to the current architecture
of OpenSimulator to incorporate scalability and consistency. It also describes a
prototype developed to implement our scalability and load distribution methods.

The Joint Hierarchical Nodes Based User Management infrastructure was devel-
oped to scale virtual worlds and applies both splitting and merging to adapt to
system load. It deals with issues in both static and dynamic infrastructures. It
aims to simplify the management of a hierarchical virtual world while maintaining
user experience. To minimise resource utilisation and communication overhead,
we developed an aggregation algorithm using a number of aggregation strategies.
This maintains regular and contiguous spaces for assignment and distributes the
load so it is as balanced as possible between two simulators. We also present a
fully decentralised synchronisation method to maintain a consistent view of a vir-
tual world represented as a complex hierarchical model. It reduces communication
overhead and maintains local causality.

We investigate the capabilities of OpenSimulator and develop a load model that
determines when to initiate a split or a merge operation. We presented an ab-
stract framework for scalability which is implemented by building on the basic
capabilities of OpenSimulator. This work is demonstrated through experiments
on both Windows and Linux platforms. It obtains the same level of scalability
as static configurations but with a reduced number of resources. It further im-

ii

iii

proves over current dynamic approaches by transferring regions in an aggregate in
turn. For evaluation purposes, we used a number of timing and system statistics.
We developed significantly more efficient algorithms for removing a region from
a simulator compared with the basic methods of OpenSimulator. Overall, we ef-
fectively developed a system that dynamically expands and contracts the set of
servers used to support a virtual world based on load estimated by tracking the
number of active players.

Acknowledgments

IN THE NAME OF ALLAH, THE MOST MERCIFUL AND BENEFICIAL!

Many thanks goes to almighty Allah, who gave me the strength and ability to

finish this work.

I would like to take this opportunity to say special thanks to my supervisors

Prof. John Glauert and Dr. Rudy Lapeer for their continuous guidance, support

and advice.

Dear John! Thanks for your hospitality, help and guidance. I am much more

confident in accepting challenges and providing viable solutions to industry prob-

lems due to the training you provided during the past few years. Thanks for

listening to me whenever I was in trouble. I can never forget your support and

the opportunities you provided me for training and presenting my work.

Special thanks to my parents, brothers and sisters for all the support they have

given over the course of the last few years.

This acknowledgment is incomplete without mentioning all my friends around the

world who shared some of the best memories of my life while studying at UEA. I

can never forget you all. Special thanks to Dr. Rafat Nabi, Mr. Muhammad Atif,

Dr. Jason Yu Liu, Dr. Osama Dorgham, Dr. Fabiola Lopez Gomez, Mr. Wayne

Henry, Mr. Adil Zaman, Miss. Hang Nguyen, Miss. Paulina Glowacka, Miss. Saima

Laiq, Miss. Kim Findlay Cooper, Dr. Khalid Shah, Dr. Sadaqat Ali, Engr. Faheem

Ullah Khan and Mr. Khaled Alotaibi for their support and company, and, to

iv

v

Catherine Baker for proof reading this thesis and helping in preparing the final

manuscript.

Finally, I would like to say thank you to the University of Science and Technology

Bannu for funding my PhD studies and, to the OpenSim community for their

help and support. The research presented in this thesis was tested on

the High Performance Computing Cluster supported by the Research

Computing Service at the University of East Anglia. Special thanks go to

Mr. Chris Collins and Dr. Miah Wadud from the E-Science project for their help

and providing special arrangements for this different but exciting project.

Contents

List of Figures x

List of Tables xvi

Publications xviii

Extension to our work xx

Acronyms xxi

1 Introduction 1
1.1 Introduction to Virtual Environments (VEs) 1
1.2 Conflicting terminologies defining VEs 2
1.3 Applications of VEs . 4
1.4 Introduction to Virtual Worlds (VWs) 6
1.5 Scalability, Load Distribution and Consistency Issues 9
1.6 Research Approach . 11
1.7 Contribution . 12
1.8 Thesis Organisation . 13

2 Background and Motivation 15
2.1 Underlying Technical Infrastructures 15
2.2 Current Scalable and Load Distribution Mechanisms 18

2.2.1 Motivation and Goals of Joint Hierarchical Nodes Based
User Management (JoHNUM) Infrastructure 29

2.2.2 Scaling and Distribution of Load 33
2.3 Existing Synchronisation Mechanisms 34

2.3.1 Motivation and goals of the consistency approach 44
2.3.2 How Consistent Virtual Worlds are achieved 45

2.4 Open Source VW Development Frameworks 46
2.5 Conclusions and Future Work . 48

vi

CONTENTS vii

3 Scalable Virtual Worlds 50
3.1 The JoHNUM Infrastructure . 50

3.1.1 Introduction . 51
3.1.2 JoHNUM Partitioning . 53
3.1.3 JoHNUM Assignment/Load Distribution 55
3.1.4 JoHNUM Merging . 57
3.1.5 Simulation Setup and Assumptions 59
3.1.6 Simulation Results and Gains 61
3.1.7 Discussion . 64

3.2 Load Distribution . 64
3.2.1 Introduction . 64
3.2.2 The Algorithm and Strategies 65
3.2.3 Simulation Results . 71
3.2.4 An Abstract Communication Model 76

3.3 Conclusions . 77

4 Consistent Virtual Worlds 79
4.1 Introduction . 79
4.2 The Proposed Synchronisation Approach 80

4.2.1 Introducing the time advance mechanism 80
4.2.2 Federate, Federation, and their time relation 82
4.2.3 Time Management Algorithm 83
4.2.4 Illustrations . 85

4.3 Evaluations and Comparisons . 89
4.3.1 Simulation Setup . 89
4.3.2 Simulation Results . 90
4.3.3 An Abstract Model for Comparison 93

4.4 Global Consistency in Virtual Worlds 95
4.4.1 The Literature . 95
4.4.2 Consistent Virtual Worlds: Examining our Current Method 98
4.4.3 Possible Extension to our Consistency Method 102

4.5 Conclusions and Future Directions 103

5 OpenSimulator: State-of-the-Art and Proposed Extension 105
5.1 Background . 105

5.1.1 Second Life (SL) . 106
5.1.2 The Current Architecture 107
5.1.3 The Extended Architecture 108

5.2 OpenSimulator (OS) and its Current Architecture 111
5.3 Interesting Features of OS . 115

5.3.1 RemoteAdmin (RAd) Functionality 115

CONTENTS viii

5.3.2 OpenSim Archive (OAR) Functionality 116
5.3.3 Megaregions . 116

5.4 Related Projects . 117
5.4.1 Load Balancer Project . 117
5.4.2 ScienceSim . 117

5.5 A Proposed Extension to the OS Architecture 118
5.6 Illustration and Discussion . 121

5.6.1 Traditional Steps in Spatial Partitioning 121
5.6.2 Our Contemporary Approach to Spatial Partitioning 122

5.7 Conclusions . 123

6 Scalable Virtual Worlds: Investigating Opensimulator 124
6.1 Introduction . 124

6.1.1 OS Operational View . 125
6.1.2 Platforms . 125
6.1.3 World Content and Interactive Players 126

6.2 Initial Tests . 127
6.3 A Generic Load Model . 129

6.3.1 Experiments on the Windows Environment 130
6.3.2 Experiments on the Linux Environment 137
6.3.3 Comparison . 141
6.3.4 SplitCapacity, SimCapacity and MergeCapacity 142
6.3.5 The Load Model . 143

6.4 Introducing the Scalability Model 144
6.4.1 Steps in Scalability . 146
6.4.2 Required Components . 147
6.4.3 Statistical Parameters . 148

6.5 Investigating Database Options . 149
6.6 Informal Time Analysis Model . 151

6.6.1 Dedicated and Non-dedicated Simulator (Sim) Servers . . . 152
6.6.2 Time Analysis on Windows Platform 154
6.6.3 Time Analysis on Linux Platform 156
6.6.4 Comparison and Discussion 159

6.7 Improved Strategies . 162
6.7.1 Introduction . 162
6.7.2 Improved Strategies . 163
6.7.3 Time Analysis and Comparison 164

6.8 System Issues/bugs and fixtures . 165
6.9 Conclusions and Future Work . 167

CONTENTS ix

7 Scalable Virtual Worlds: Implementation 169
7.1 Introduction . 169

7.1.1 Background and Motivation 170
7.1.2 VW Environment and Setup 171
7.1.3 Platforms . 175
7.1.4 Content and Players . 175
7.1.5 Statistical Metrics . 177

7.2 Abstract Scalability Framework . 178
7.3 Extended Aggregate Region Assignment (ARA) Algorithm 182
7.4 Flexibility of System and Envisioning Scalability 184
7.5 Merging Strategies . 185
7.6 Final Experiments . 186

7.6.1 Experiments with 4-Region World 188
7.6.2 Experiments with 9-Region World 189
7.6.3 Discussion . 202

7.7 Bigger VWs . 204
7.8 Comparison with Existing Systems 205

7.8.1 Static Configurations . 205
7.8.2 Dynamic Configurations . 206

7.9 Conclusions and Future Work . 207

8 Conclusions and Future Work 210
8.1 Conclusions . 210
8.2 Benefits and Limitations . 213
8.3 Future Directions . 214

A An Introduction to Grid Computing 216
A.1 Background . 216
A.2 Introduction . 216
A.3 Grid Architecture and Existing Solutions 217

Bibliography 245

List of Figures

1.1 Simulation Centric Architecture [139]. 8

2.1 Basic architecture of Butterfly Grid [103]. 19
2.2 Distributed Scene Graph (DSG) Architecture [132, 140]. 22
2.3 A screenshot of the XPU simulator. The dots represent objects,

and solid lines represent boundaries between partitions [37]. 23
2.4 Illustration of hierarchical map partitioning [125]. (a) VML based

Massively Multiplayer Online Game (MMOG) system. (b) Hierar-
chical structure of VML. 26

2.5 Hierarchical N to N (H-N2N) architecture [24]. 27
2.6 Matrix architecture [13]. 28
2.7 Illustration of static partitioning for: (a) SL Grid (normally a single

region per Sim but possibly a small fixed number); (b) OS Grid
(arbitrary number of regions per server). 32

2.8 Illustration of the proposed hybrid Grid infrastructure with an ad-
ditional layer of resources. 33

2.9 Logical view of Time Management in HLA [82]. 37
2.10 Illustration and comparison of [244] (a) traditional Time Manage-

ment, and (b) two level Time Management; 39
2.11 Illustration of [32, 156]: (a) Gateway Architecture; (b) Proxy Ar-

chitecture. 40
2.12 Hierarchical federation architecture [32]. 41
2.13 Distributed Federate Proxy architecture for hierarchical federation

communities [41]. 41
2.14 Components of the extended High Level Architecture (HLA) archi-

tecture [126]. 42
2.15 Illustration of implementation for [127] (a) Federation Execution

Processes, and (b) fully distributed federates. 43

3.1 Abstract view of JoHNUM partitioning algorithm [61]. 52

x

LIST OF FIGURES xi

3.2 Illustrating two-level splits with various combinations at different
geographic locations. 53

3.3 Illustration of JoHNUM Partitioning with uniform and hotspot sce-
narios: (a) a split of uniform scenario into 4 smaller regions; (b)
highlighting a hotspot that fails basic JoHNUM partitioning; (c)
a split using Players Considered JoHNUM Strategy that splits a
region into 9 smaller regions. 54

3.4 Illustration of JoHNUM Partitioning in to 16 smaller regions: (a)
highlighting a hotspot that fails to ease the load with RSF value
2; (b) highlighting a hotspot that fails to ease the load with RSF
value 3; (c) highlighting a split into 16 smaller regions. 55

3.5 Illustration of JoHNUM Assignment Strategy 2 (JAS2): It can be
seen that the levels in each assignment step are increased with the
introduction of additional players (3 levels in this case). 56

3.6 Illustration of JoHNUM Assignment Strategy 3 (JAS3): It should
be noted that the levels in this strategy remains the same (1 level)
for this particular example in comparison with JAS2. 58

3.7 Comparison of all JoHNUM and Matrix strategies for: (a) to-
tal number of regions after the splits; (b) Resource Management
Tree (RMT) levels; (c) Resource utilisation; (d) Degradation of in-
teractive user experience. 61

3.8 Comparison of JoHNUM and Matrix for: (a) Total number of re-
gions after the splits; (b) RMT levels; (c) Resource utilisation; (d)
Degradation of interactive user experience. 63

3.9 Illustration of aggregation strategies of ARA algorithm for root TL
and an RSF value 3 for: (a) LRRows; (b) TBColumns; (c) LRaTB;
(d) LRTBwDR. 66

3.10 Illustration of LRRows and TBColumns strategies for an RSF value
of 2 and both TL and TR. 67

3.11 The 4×4 regional grid illustration of root TL for (a) LRaTB, and
(b) LRTBwDR strategies. 68

3.12 Odd cases excluded by the ARA Algorithm. (a) Irregular content
distribution. (b) A case splitting an aggregate into two isolated
groups. (c) A case splitting an aggregate into three isolated groups.
(d) Aggregation with diagonals splitting an aggregate in 2 differ-
ent isolated groups while having no physical boundaries among the
regions of the other aggregate. (e) Aggregation with diagonal for
RSF value 2 splitting into two aggregates where regions in both
have no physical boundaries (each aggregate has isolated groups of
one region each). 70

LIST OF FIGURES xii

3.13 Example worlds considered for illustration purposes being presented
as tiled grids of 4 and 9 regions with player density. 72

3.14 Illustrations of the proposed combinations and worlds for an RSF
value 2: (a) a complete set of possible combinations; (b) a complete
set of possible unique combinations; (c)-(g) illustrations of worlds
1, 2, 3, 5, and 7 respectively. 73

3.15 Illustration of the proposed combinations and worlds for an RSF
value 3: (a) a complete set of possible combinations shown partially;
(b)-(d) Illustrations of worlds 4, 6, and 8 respectively. 75

4.1 Illustrating neighbouring regions for the selected central regions in
the hierarchy presented in Figure 4.2. 81

4.2 Hierarchy of a dynamic hierarchical model based on JoHNUM par-
titioning algorithm [61]. 81

4.3 Illustration of the proposed synchronisation approach with a con-
strained communication model. 82

4.4 The illustration of different concepts used with our decentralised
synchronisation approach. (a) The basic time advance. (b) In-
dependent federations without a common federate. (c) Federations
with a common federate (a non-blocking situation). (d) Federations
with temporary blocking states. 86

4.5 Illustration of the decentralised synchronisation approach in hierar-
chical models for: (a) A basic time advance; (b) Independent time
computation of two federations apart from each other; (c) Two fed-
erations sharing a common federate. 88

4.6 Illustrating temporary blocking states for the decentralised synchro-
nisation method. 89

4.7 The simulated world and events flow model. 90
4.8 Illustration of decentralised synchronisation method for a synchro-

nised scenario. 91
4.9 Illustration of a simulation run for the non-synchronised approach. . 92
4.10 Illustrating the neighbouring regions in a 1-dimensional grid. 97
4.11 Time advance (theoretical) using our decentralised time advance

mechanism with no delays. 99
4.12 Time advance using our decentralised time advance mechanism with

delays for a world of 3 federates. 99
4.13 Time advance using our decentralised time advance mechanism with

delays for a world of 4 federates. 100
4.14 Time advance using our decentralised time advance mechanism with

delays for a world of 5 federates. 101

LIST OF FIGURES xiii

4.15 Illustrating the violation of causality for activities spanning arbi-
trary locations. 102

5.1 The SL Grid (SLG) architectures with an interactive client [199]:
(a) the existing architecture; (b) the extended architecture. 108

5.2 Process of a viewer login to: (a) an Agent Domain (AD) [54]; (b) a
Region Domain (RD) [163]. 109

5.3 Additional scenarios based on the extended grid architecture for [200]:
(a) home content as part of world content; (b) off line content. . . . 110

5.4 Complete extended look of the SLG infrastructure, if implemented
as planned [199]. 111

5.5 The OS architecture for standalone mode [172]. 113
5.6 The OS architecture for grid mode [172]. 114
5.7 The proposed extended architecture for standalone mode of Open-

Simulator (OS). 119
5.8 The proposed extended architecture for grid mode of OpenSimula-

tor (OS). 120
5.9 Steps in traditional spatial partitioning methods to achieve a new

Simulator instance and distribute the load with it. 121

6.1 Mean and Standard Deviation (STDEV) for an increasing number
of static content for SimFPS, PhysicsFPS and CPU%. 131

6.2 Mean and STDEV for an increasing number of dynamic content
(Prims and Active Scripts (PandASs)) for (a) SimFPS and PhysicsFPS,
and (b) CPU%. 132

6.3 Mean and STDEV for an increasing number of Players/Bots logged-
in but doing nothing for SimFPS, PhysicsFPS, and CPU%. 133

6.4 Mean and STDEV for an increasing number of players/Bots running
ScriptA for (a) SimFPS and PhysicsFPS. (b) CPU% Usage. 134

6.5 Mean and STDEV for an increasing number of players/Bots running
ScriptB for (a) SimFPS and PhysicsFPS. (b) CPU%. 135

6.6 Mean and STDEV of increasing number of players/bots equally dis-
tributed among 2 regions running ScriptB for (a) SimFPS (Region
I) and SimFPS (Region II). (b) CPU%. 136

6.7 Mean and STDEV for an increasing number of dynamic content
(PandASs) for (a) SimFPS and PhysicsFPS on a Linux node, and
(b) SimFPS and PhysicsFPS on a Windows node (from Figure 6.2(a)).138

6.8 Mean and STDEV for an increasing number of players/Bots running
ScriptA for (a). SimFPS and PhysicsFPS on a Linux node, and (b)
SimFPS and PhysicsFPS on a Windows node (from Figure 6.4(a)). 139

LIST OF FIGURES xiv

6.9 Mean and STDEV for an increasing number of players/Bots running
ScriptB for (a). SimFPS and PhysicsFPS on a Linux node, and (b)
SimFPS and PhysicsFPS on a Windows node (from Figure 6.5(a)). 140

6.10 Mean and STDEV for an increasing number of players/Bots (in each
region) for a 2 Region world running ScriptB for (a) SimFPS on a
Linux node, and (b) SimFPS on a Windows node (from Figure 6.6(a)).141

6.11 The comparison of SQLite, MySQL (Centralised), and MySQL (Lo-
calised) as a prospective configuration and their impact on (a)
Delete Region (DR), and (b) Remove Region (RR). 151

6.12 The comparison of time information between dedicated and non-
dedicated servers for (a) Create Region, and (b) Load Content. . . . 153

6.13 Time taken by teleport operation for transferring an increasing
number of players on Windows environment. 157

6.14 Comparison of timing information of dynamic content (PandASs)
on both Windows and Linux environments for (a) Delete Region
(DR), and (b) Close Region (CsR). 160

6.15 Comparison of timing information of Load Content (LC) on both
Windows and Linux environments for (a) dynamic content, (b) ex-
ample worlds content. 161

6.16 Comparison of timing information for increasing number of players
transfer on both Windows and Linux environments. 161

6.17 Comparison of different methods to remove a region from a Sim on
Windows environment for (a) dynamic content, (b) example worlds. 166

6.18 Comparison of different methods to remove a region from a Sim on
Linux environment for (a) dynamic content, (b) example worlds. . . 166

7.1 World map showing adjacent placement of regions to get contiguous
spaces for (a) 4 regions grid, and (b) 9 regions grid with a transit
region. 173

7.2 Description and visibility of regions to a player in a regional grid of
(a) 4 regions, and (b) 9 regions. 173

7.3 Console window for a (a) Robust instance (for grid management),
and a (b) Region server (for managing regions). 174

7.4 The status of a parent Sim (Sim-I) showing content and interactive
players for a 4-region world. 181

7.5 The 4-region world presented in Figure 7.4 after a split jointly served
by (a) Sim-I (Parent), and (b) Sim-II (Child). 183

7.6 Illustrating the limitations in basic ARA algorithm (a) a valid out-
come for a square grid, and (b) an invalid outcome for a 3-region
world. 184

LIST OF FIGURES xv

7.7 Number of resources and inter-sim crossings with an increase in
players capacity for a world of 9 regions with players (a) populating
three region. (b) populating nine regions. 195

7.8 Illustrating (a) Sim utilisation. (b) Player disruption (disconnec-
tions/connections). 195

7.9 Illustrating transfers per player. 196
7.10 Comparison of Parent Merge (PM) and Child Merge (CM) strate-

gies for both number of resources and region transfers. 202

List of Tables

2.1 Parameters and their corresponding filters 47
2.2 Summary of filtering process showing eliminated frameworks 49

3.1 Experimental assumptions for the experiments 59
3.2 Detailed evaluation summary of experiments for all JoHNUM and

Matrix strategies. 60
3.3 The evaluation summary of JoHNUM and Matrix 62
3.4 Summary of roots and their corresponding aggregation strategies [60]. 65
3.5 Assumptions and parametric values for the illustrations. 71
3.6 Evaluation summary of the abstract communication model for cases

provided in Figure 3.12. 77

4.1 A abstract comparison of hierarchical methods with our decen-
tralised synchronisation mechanism. 94

6.1 The description of example worlds content. 127
6.2 The description of 2 Sims and a world with 2 regions 145
6.3 A comparison of time taken by different activities for three database

options (SQLite (localised), MySQL (centralised), and MySQL (lo-
calised)) hosting a Sim data on Windows environment. 149

6.4 The comparison of time information for both Create Region (CR)
and Load Content (LC) between a dedicated and a non-dedicated
Sim. 152

6.5 Summary of the time information for experiments transferring dy-
namic content (PandASs) on Windows environment. 154

6.6 Summary of the experiments showing timing information of differ-
ent activities when transferring a region populated with example
worlds content. 155

6.7 Summary of the timing information for the experiments transferring
an increasing number of players on Windows environment. 156

xvi

LIST OF TABLES xvii

6.8 Summary of timing information for experiments transferring dy-
namic content (PandASs) on Linux environment. 158

6.9 Summary of timing information for experiments transferring exam-
ple worlds content on Linux environment. 158

6.10 Summary of timing information for experiments transferring in-
creasing number of Bots on Linux environment. 159

6.11 Comparison of different Delete Region (DR) and Close Region (CsR)
strategies for dynamic content on both Windows and Linux envi-
ronments. 164

6.12 Comparison of different Delete Region (DR) and Close Region (CsR)
strategies for the example worlds on both Windows and Linux en-
vironments. 165

7.1 Description of 9 Sims with their transit regions and 9 content regions.172
7.2 Regional content for 9 regions used in our experiments 176
7.3 Description of experiments and players distribution for a 4-region

grid with GridCapacity and number of required resources. 185
7.4 Illustrating important steps during scaling a world of 9 regions. . . 191
7.5 Number of resources, inter-sim crossings and player transfers (cu-

mulative) against current capacity while scaling a 9-region world
based on population of regions (based on experiments from Table 7.4).194

7.6 Illustrating important steps during merging using Parent Merge
(PM) strategy for a world of 9 regions (continued from Table 7.4). . 197

7.7 Illustrating important steps during merging using Child Merge (CM)
strategy for a world of 9 regions (continued from Table 7.4). 200

7.8 Comparison of number of resources and number of regions trans-
ferred for both Parent Merge (PM) and Child Merge (CM) strate-
gies for a world of 9 regions. 203

Publications

The following are publications related to this work by the author:

• Umar Farooq and John Glauert. Scalable Virtual Worlds: An Extension

to the OpenSimulator Architecture. In 1st IEEE International Conference

on Computer Networks and Information Technology (ICCNIT’2011), pages

29–34, Abbotabad, Pakistan, July, 2011 [67]. [Online]: Available at: http:

//dx.doi.org/10.1109/ICCNIT.2011.6020902

• Umar Farooq and John Glauert. A Hybrid Infrastructure for Scalable and

Consistent Virtual Worlds. In Winter Simulation Conference (WSC’10),

Baltimore, USA, 2010 [65]. [Online]: Available at http://www.informs-sim.

org/wsc10papers/prog10.html

• Umar Farooq and John Glauert. Time Management for Virtual Worlds

based on Constrained Communication Model. In Proceedings of the 9th

ACM/IEEE International Workshop on Network Support for Games (Net-

Games’10), pages 19:1–6, Taipei, Taiwan, 2010 [66]. [Online]: Available at

http://dx.doi.org/10.1109/NETGAMES.2010.5679667

• Umar Farooq and John Glauert. A Decentralised Synchronisation Approach

for Complex Hierarchical Models of Virtual Worlds. In Proceedings of the

IASTED Parallel and Distributed Computing and Systems (PDCS’10), pages

218–224, California, USA, 2010 [63]. [Online]: Available at http://dx.doi.

org/10.2316/P.2010.724-024

• Umar Farooq and John Glauert. A Dynamic Load Distribution Algorithm

for Virtual Worlds. In Journal of Digital Information Management, Volume

xviii

PUBLICATIONS xix

8, Number 3, pages 181–189, June, 2010 [64]. [Online]: Available at http:

//www.dirf.org/jdim/v8i3.asp

• Umar Farooq and John Glauert. Managing Scalability and Load Distri-

bution for Large Scale Virtual Worlds. In Proceedings of the UEA School

of Computing Sciences Symposium, pages 20–27, Norwich, UK, Obtober,

2009 [62]. [Online]: Available at https://www.uea.ac.uk/polopoly_fs/

1.133529!Farooq.pdf

• Umar Farooq and John Glauert. ARA: An Aggregate Region Assignment Al-

gorithm for Resource Minimisation and Load Distribution in Virtual Worlds.

In NDT ’09: Proceedings of the first IEEE International Conference on Net-

worked Digital Technologies, pages 404–410, Ostrava, Czech Republic, July,

2009 [60]. [Online]: Available at http://dx.doi.org/10.1109/NDT.2009.

5272118

• Umar Farooq and John Glauert. Joint Hierarchical Nodes based User Man-

agement (JoHNUM) Infrastructure for the Development of Scalable and

Consistent Virtual Worlds. In DS-RT ’09: Proceedings of the 13th IEEE/-

ACM Symposium on Distributed Simulation and Real-Time Applications,

pages 105–112, Singapore, October, 2009, IEEE Computer Society [61]. [On-

line]: Available at http://dx.doi.org/10.1109/DS-RT.2009.32

Extension to our work

Our work on designing scalable virtual worlds is explored and compared with static

and dynamic strategies by a group of master students at the University of Aalborg

Denmark. They extended it for 3D environments and used these concepts to

develop a test game called Rock Pounder. Based on a number of different scenarios,

and tests, they suggested that JoHNUM infrastructure performs better than both

static and dynamic strategies. The complete report (Master Dissertation) under

a title “To Infinity and Beyond: Scaling Massively Multiplayer Games” and the

relevant material (source code and videos) are available at http://www.ejlersen.

info/index.php?page=studyprojects&id=11 for the reference.

xx

Acronyms

AD Agent Domain

ARA Aggregate Region Assignment

BG Butterfly Grid

CM Child Merge

CMS Client Multi Server

CoS Cluster of Servers

CR Create Region

CR Time Create Region Time

CS Client Server

CSCW Computer Supported Co-operative Work

CsR Close Region

CVE Collaborative VE

DIS Distributed Interactive Simulation

DR Delete Region

DSG Distributed Scene Graph

DVE Distributed VE

FPS Frames Per Second

GALT Greatest Available Logical Time

HLA High Level Architecture

JoHNUM Joint Hierarchical Nodes Based User Management

LBTS Lower Bound on Time Stamp

LC Load Content

xxi

ACRONYMS xxii

LC Time Load Content Time

LOAR Load OAR

LP Logical Process

MMOG Massively Multiplayer Online Game

MUVE Multi User VE

NVE Networked VE

OAR OpenSim Archive

OS OpenSimulator

P2P Peer-to-Peer

PADS Parallel and Distributed Simulation

PandASs Prims and Active Scripts

PDES Parallel Discrete Event Simulation

PM Parent Merge

RAd RemoteAdmin

RCT Time Region Content Transfer Time

RD Region Domain

RMT Resource Management Tree

RR Remove Region

RR Time Remove Region Time

RT Time Region Transfer Time

RTI Run Time Infrastructure

RUnAv Time Region Un-availability Time

SC Store Content

SC Time Store Content Time

Sim Simulator

SL Second Life

SLG SL Grid

SOAR Save OAR

STDEV Standard Deviation

ACRONYMS xxiii

T2R Time Transfer to Region Time

T2T Time Transfer to Transit Time

TClient TestClient

TM Time Management

VE Virtual Environment

VR Virtual Reality

VW Virtual World

WoW World of Warcraft

WWW World Wide Web

Chapter 1

Introduction

This chapter presents a brief introduction to the concept of Virtual Environments

(VEs) and highlights their conflicting terminologies used in the Literature. It

introduces scalability, load distribution, and synchronisation issues in recently

emerged interactive and collaborative social spaces called Virtual Worlds (VWs).

It outlines applications of VEs and presents the research methodology used for

this research work. It also lists our contribution and gives the organisation of this

thesis.

1.1 Introduction to VEs

Virtual Reality (VR) is a interesting area of research that changes rapidly. It

provides the foundation for defining a number of VEs with different concerns

and goals. The Literature has, therefore, a number of conflicting terminologies

to define VEs. VR has no common definition either, but the majority of these

environments share common characteristics with specialised parameters that dif-

ferentiate them from each other [12, 205]. According to Baladi et al. [12], these

parameters include application, technology, number of users and the underlying in-

frastructure. VR is all about manipulating a 3D computer-generated space based

on real or imaginary content and navigating through it. Different navigation styles

such as walking, running, or flying are used to even explore different situations

(viewpoints) that could be dangerous and expensive in the physical world as a

1

CHAPTER 1. INTRODUCTION 2

real operational system [222]. A VR can also be used to observe parts of a system

which are not observable [84]. According to Vince [222], “the real benefit of VR

is the ability to touch, animate, pickup and reposition virtual objects and create

totally new configurations”. VR systems try to mimic the real world and provide

immersion in a 3D space [205]. Fujimoto defines a VE as a simulation that often

executes a set of dynamic computer-generated entities and requires real time exe-

cution so that it appears realistic and evolves as rapidly as an actual system [84].

In these systems, time advance in simulation time is paced to occur in synchrony

with an equivalent advance in wallclock time [82].

With the passage of time, VEs gained sophistication with the introduction of new

concepts and I/O methods to represent and access a shared digital space [14, 35].

The concept of avatars re-defined the landscape of online interaction away from

text towards a more complex visual presentation of interactive and collaborative

tasks. However, this category mostly represents entertainment environments such

as games that follow pre-defined set of rules for different activities. Techniques

such as sharding are used to make these environments scalable. A shard is a copy

of a part of a virtual space [140]. Most recently, people have shown a keen interest

in interactive and collaborative social environments called Virtual Worlds (VWs).

These worlds have a number of unique features and allow users to design their

content according to their desires. Therefore, it is much more difficult to manage

these worlds compared with game environments [165]. This thesis targets VWs

and explores techniques to make them scalable and consistent while achieving a

fair distribution of load.

1.2 Conflicting terminologies defining VEs

The Literature provides a large number of confusing terminologies to define VEs

including VR, VR System, VEs, Distributed VE (DVE), Networked VE (NVE),

Collaborative VE (CVE), Multi User VE (MUVE), and VW being the most recent

one [12]. According to our observations, a number of terminologies exist as this

area is investigated from a number of different perspectives including application,

technical infrastructure, number of players, resource orientation, social abilities,

CHAPTER 1. INTRODUCTION 3

and degree of co-operation among the players. Furthermore, the same applications

are subsequently re-defined by using more advanced utilities and capabilities. VR,

VE and VR Systems are often used interchangeably in the Literature but there is a

significant difference between the three. VR is a concept while a VE is the outcome

of an application developed by using this concept. According to Baladi et al. [12],

VR can be classified on the basis of technological standpoint and functionality.

Pont [55] defines VR as a set of computer technologies including an interface to a

computer through which users believe they are actually in a computer-generated

world. For Bryson [23], VR is the use of various computer graphics systems

combined with various display and interaction devices to provide the effect of

immersion in an interactive 3D computer-generated environment where a virtual

object (an avatar) has a spatial presence. An early definition of VE by Barfield

et al. [14] describes a VE as being a computer-simulated world consisting of the

software representation of real or imagined agents (avatars), objects and processes.

Human computer interaction is an important part of the display and interaction

with these models. However, Vince [221] states that a VR System comprises four

components: a VE, a computing environment, VR technology and interaction

modes.

Andreu et al. [6] explore the early developments of co-operative and collaborative

work. According to them, a number of geographically distributed concurrent users

utilise groupware or collaborative environments to achieve common goals with

co-operation. These environments are called Computer Supported Co-operative

Work (CSCW) environments that provide shared scenarios and interaction pat-

terns. Andreu et al. argue that both cooperation and collaboration involve task

distribution. The former divides tasks into a number of independent subtasks

and the latter into entangled subtasks. A number of CSCW environments exist,

such as Basic Support for Cooperative Work (BSCW) [74] and Groove [91]. The

concept of these environments is integrated with VEs to develop more advanced

collaborative spaces. VEs can also be categorised by using resource orientation and

their underlying infrastructures, resulting in DVEs and NVEs respectively. DVEs

are distributed in nature at both physical and application levels. However, both

categories utilise network resources to provide a unified user view. Moreover, these

environments are extended to CVEs by employing complex collaboration patterns.

CHAPTER 1. INTRODUCTION 4

CVEs allow physically distributed users to collaboratively create and manipulate

content in a shared workspace. They also provide means for co-operative and so-

cial behaviours between the users. Co-operation is based on community concerns,

and social behaviours are the outcome of complex interaction patterns. Common

community interests lead us towards the construction of social spaces over the

networks that allow globally distributed users to create and share content with

each other. According to Thomas et al. [216], the World Wide Web (WWW),

MySpace, and YouTube are the outcomes of common community concerns and

goals.

VW is a relatively new terminology and includes distinguishing features over VEs,

including collaboration and persistence. VWs and VEs are generally used alterna-

tively by a number of researchers, but we believe that VWs are more sociable and

provide in-place experience, in that the inhabitants live their lives according to

their wishes. Moreover, VWs are generally multi-user imitating real worlds (such

as Second Life (SL) [201]), whereas VEs can be single-user.

1.3 Applications of VEs

Due to the tremendous popularity of VEs and the availability of communica-

tion and computation facilities at affordable prices, many people are motivated

to use different virtual applications for both fun and creativity over the Internet.

Games, Defence, Graphics, Internet, High Performance Computing (HPC) and

Social communities have leading roles in research into this area. A wide range of

applications having a virtual existence, but the most widely employed applications

include Games, Simulation, Augmented Reality, Training, Distributed Collabora-

tion, Education, Design, Web, commerce, and visualisation [84, 205].

The HPC community work has roots in synchronisation algorithms [22, 36, 120]

with a major concern to reduce execution time.

Early work of the Internet and gaming community includes a role playing

game (Dungeons and Dragons) and a textual fantasy computer game (Adven-

ture) [84]. Advanced computer graphics technologies have converted the initial

efforts of this community into a huge video game industry today.

Early work in simulation was led by the military with the development of com-

CHAPTER 1. INTRODUCTION 5

puter generated synthetic environments to simulate specific applications, and train

individuals for complex and dangerous tasks. However, these environments were

unable to handle group activities and interaction among Simulators (Sims) target-

ing specific applications [84]. The Literature shows a number of solutions to these

problems including Distributed Interactive Simulation (DIS) [85] and High Level

Architecture (HLA) [48], concentrating on the development of shared synthetic

environments and interoperability among individual Sims with an emphasis on re-

usability. The DIS and HLA are well-known standards for distributed simulation

that have been used and extended for diverse applications by different research

communities.

Education has also gained much attention from VR communities. Early systems,

using simple online methods, have recently been replaced with 3D virtual class-

rooms with an emphasis on interaction and collaboration. Currently, education

systems are using distinctive features of VR including immersion [241] and pres-

ence [227] to help support in conceptual learning and problem solving. Roussou

et al. [190] conducted experiments by simulating a school playground; children

were asked for different activities, and both qualitative and quantitative analy-

sis was performed. Their results show that full interactivity helped children in

problem-solving. These results also lead to indications of conceptual change.

In architectural design, the VR enables users to visualise a design before scale

models are built. Workplace design [50] and interactive design of manufactur-

ing processes [119, 196] have been employed as VR systems. VR has a promising

role in design visualisation and its inclusion in participatory design methodology.

Mobach [150] has explored the use of VR in architectural design and organisational

space design. He has also studied the integration of VR with participatory design.

Besides design changes, the use of VR technologies improves staff satisfaction, and

reduces costs [190].

This present study is based on interactive and collaborative social spaces that al-

low users to create and develop their content according to their wishes [165, 189],

for example SL [201] and OpenSimulator (OS) [177]. Currently a number of com-

munities, organisations and individuals are developing their virtual existence using

VWs; this includes colleges and universities, businesses, charity and community

CHAPTER 1. INTRODUCTION 6

services, and informative initiatives. Berger et al. [16] developed a collaborative

virtual space for tourism, which adopted a community-driven approach with the

basic aim of promoting a dynamic society of travelers. Travelers share travel expe-

riences, recommend tourism destinations or just listen to each other for fun. The

infrastructure is a game-like e-Business application where the e-Tourist is posed

as an avatar. Furthermore, these worlds are persistence in nature.

1.4 Introduction to VWs

The introduction of the latest communication and computation technologies, the

availability of personal computers at affordable prices, and the provision of im-

pressive online content are major factors in the success of VEs, thus encourag-

ing people to participate in a number of social and collaborative activities over

the Internet. Currently, there is a great interest in recently emerged interac-

tive and collaborative social spaces called Virtual Worlds (VWs) that imitate the

real world and give a sense of place. Users in a VW are represented by virtual

characters usually called avatars, and VWs allow users to develop content accord-

ing to their wishes on virtual land that is purchased by spending inland virtual

currency [189][165][201]. Users have many ways to become involved in creative ac-

tivities while having fun. The great success of these environments has motivated

researchers from different communities to introduce novel applications into these

exciting infrastructures [165, 189].

Second Life (SL) and OpenSimulator (OS) are metaverse-like worlds that allow

users to explore and create a dynamic 3D world. A metaverse is a shared space

in which people interact and communicate through virtual avatars [37]. VWs

are real time, interactive, and persistent in nature. They provide graphical user

interface and manage a common shared space. The whole space is divided into

square-shaped regions, typically 256m×256m and each is managed by a separate

Sim process. However, each Sim can potentially handle multiple regions. In these

worlds, regions are placed adjacent to each other to create larger virtual spaces.

SL [201] is state-of-the-art in commercial VWs and unique in the sense that it is

completely designed by its inhabitants. IBM (representing the WWW) and Lin-

den Lab (hosting SL) are working together to achieve the goals of 3D Web. Their

CHAPTER 1. INTRODUCTION 7

basic aim is to make the WWW more attractive and interesting for the users [95].

In SL, each Sim is tied to a specific region of land and cannot be re-partitioned

to cope with a changing workload. Using static assignment strategies, and due to

its commercial background, it has a number of limitations. OS, an open source

alternative to SL, has recently attracted much attention from developers and prac-

titioners. The main reasons for their increased interest include the availability of

complete source code and allowing different organisations to host their own con-

tent on their own infrastructures without paying for the service. Furthermore, it

allows a Sim to run an arbitrary number of regions; therefore, making it more

flexible and a better candidate for future 3D web. However, it has no means of

scaling dynamically. Similarly, it compromises on consistency and cannot be used

directly for applications of a conservative nature, such as for a business. Conserva-

tive applications require their activities to be processed in a correct temporal order.

Our work uses the following definition of VWs based on the description of Rosedale

et al. (a pioneer of the SL Project) [189]:

A Virtual World is an integrated and persistent virtual space based

on real and imaginary content. Users represented as virtual charac-

ters (avatars) feel immersed through tele-presence in a shared work-

space which is geographically distributed both at infrastructure as well

as application levels. Users collaboratively create and manipulate the

content of world they inhabit.

Current VWs use a simulation-centric architecture, presented in Figure 1.1, that

usually distributes simulation work to a set of Sims with homogeneous functional-

ities, where each Sim owns a shard or a region plus the complete set of simulation

and communication work [140]. The key component of a VW Sim is the software

which runs the simulation and the components that apply operations to objects

and scene called actors [132]. These actors include storing objects, handling user

interaction, simulating physics, running scripts, maintaining persistence, and gen-

erating updates for connected users. According to Lake et al. [132], the user

experience is degraded if any of these becomes overloaded. According to them,

CHAPTER 1. INTRODUCTION 8

actors are the main limitation in scaling a world and simulation-centric systems

do not scale with additional resources.

Figure 1.1: Simulation Centric Architecture [139].

Current VWs are much more sophisticated and immerse users using rich 3D graph-

ics, detailed models of objects and realistic interactions. With this increase in rich-

ness and complexity of VWs, the required computation is also greatly increased.

Online games like World of Warcraft (WoW) feature large virtual spaces, but the

environment remains largely static and interactions are pre-determined. Game-

specific optimisation techniques are applied to them and load per user is relatively

low. On the other hand, general purpose VW such as SL and OS put fewer con-

straints on real-time content creation and interaction for services such as social

networking and collaboration, scientific experimentation, e-commerce, marketing

and games. Therefore, the computation load is much higher and it is difficult to

predict it in advance. As the number of users, or scene complexity, increases, the

computation and communication load on per-user basis grows with it [132]. Cur-

rent approaches used for VW try to accommodate the limitations in architecture

that could limit the number of concurrent users.

To resolve these issues, a specialised infrastructure is required to handle these

kind of worlds. The infrastructure should be able to dynamically add and re-

move resources based on load, thus solving resource under-provisioning and over-

provisioning problems. A number of VWs with similar themes exist with different

concerns targeting different audience such as Kaneva [124], ActiveWorlds [211],

CHAPTER 1. INTRODUCTION 9

Barbie Girls [212], Club Penguin [213], There [214], Forterra Systems [208], Gaia

Online [166], Habbo Hotel [98], Neopets [157], Whyville [233], and Zwinktopia [215].

A brief introduction and a comparison of these worlds is presented in [40].

1.5 Scalability, Load Distribution and Consis-

tency Issues

Scalability and Load Distribution

Chang et al. [37] argue that a significant problem in designing a 3D virtual world

is how to develop a scalable architecture that can manage a large number of con-

current users in an interactive 3D environment. Scalability, therefore, requires

powerful computation and communication infrastructures. VWs must scale in the

following dimensions: number of concurrent users, scene complexity, and fidelity

of user interaction [140]. However, all of them can quickly overwhelm the system

and need to be carefully handled without degrading overall performance and inter-

active user-experience. VWs can be scaled by a flexible and scalable architecture,

dynamic load balancing, and reducing redundant communication and computa-

tion in delivering views to users [140]. According to Lee et al. [134], the design

of a scalable network architecture for VW needs consideration of a Communica-

tion Architecture, Interest Management, Concurrency Control, Data Replication,

and Load Distribution. Moreover, while improving scalability, a VW still need to

deliver its unique features [204].

To deal with scalability and improve performance of a VW, a number of parallel

and distributed infrastructures are currently in practice. A typical approach is

to partition a space into a number of regions and execute it with the help of a

number of systems typically called a Parallel and Distributed Simulation (PADS)

system. Common approaches to divide a VW workload across multiple servers

use either sharding or spatial partitioning. In sharding, different replicated copies

of the same virtual space are created on different servers and there is no inter-

action among the players in different shards. In spatial partitioning, each server

is statically assigned a part of the whole world. SL and OS normally run spaces

based on 256m×256m square spaces called regions. Each server is responsible for

CHAPTER 1. INTRODUCTION 10

everything that happens in the space that it is handling [132]. The Literature

shows a number of approaches dividing a space into regions of different shapes,

such as circles, triangles, rectangles or hexagons. However, the selected pattern

needs to cover the whole content with minimum effort and without overlapping.

Region-based schemes using spatial partitioning can be categorised as static or

dynamic. Both Butterfly Grid (BG) [103] and SL Grid (SLG) [197] exploit region-

based static assignment strategies. To eliminate problems in static configura-

tions, a number of local, global and adaptive dynamic strategies have been devel-

oped for load distribution that have their benefits and limitations [136, 143, 159].

Vleeschauwer et al. have achieved better load distribution but with a significant

increase in communication between cells [223]. Shirmohammadi et al. [203], Cher-

tov and Fahmy [39], and Morillo et al. [153] have also attempted to address the

issues of scalability and load distribution. A number of hierarchal infrastructures

can be found in the literature addressing the same issues [13, 24, 51, 127]. However,

they have major performance issues when used to host a VW because they are

basically developed for games. A detailed analysis and comparison of the existing

mechanisms is given in [61]. It is believed that VWs are more sophisticated than

games that lack pre-defined rules, and both latency and consistency are prime

concerns for these environments.

Consistency Management

Since PADS systems are executed with the help of a set of dedicated comput-

ers, they are scalable and provide a better interactive experience. However, they

suffer from another challenging issue of consistency and their performance is de-

graded when conservative approaches are used for time synchronisation [83]. Time

Management (TM) is the process of maintaining the temporal order of events in

a system. Synchronisation mechanisms can be broadly classified as being either

conservative or optimistic. According to Fujimoto [84], both of these have their

benefits and limitations, and selecting an approach depends on a target applica-

tion. TM can be implemented by either a centralised or distributed approach.

Further, a TM algorithm can be either synchronous or asynchronous [178, 179].

Existing algorithms have shown great success for their target applications but

CHAPTER 1. INTRODUCTION 11

they have major performance issues when used for VWs. In particular, they have

potential bottlenecks when used with complex hierarchical models representing

worlds based on partitioning algorithms. The existing VWs, therefore, restrict

their application domain and rely on traditional methods for conservative appli-

cations.

To cope with scalability and consistency issues both in current static and dynamic

systems, a contemporary infrastructure has been developed which targets these

issues using the inherent properties of VWs. This is introduced in chapter 2 after

a detailed analysis of both scalability and consistency frameworks.

1.6 Research Approach

This study focuses on scalability (load distribution) for VWs and TM for consis-

tency in VWs.

In the first phase, the existing scalability and consistency infrastructures for

VWs are investigated and their potential bottlenecks are identified.

In the second phase, the following methods are developed to resolve the iden-

tified limitations and they are validated by conducting proof-of-the-concept sim-

ulation studies.

• A Joint Hierarchical Nodes Based User Management (JoHNUM) infrastruc-

ture comprising of partitioning, assignment, and merging to dynamically

scale VWs.

• An Aggregate Region Assignment (ARA) algorithm to obtain a fair distri-

bution of load among Sims using a set of aggregation strategies.

• A decentralised synchronisation approach to maintain a consistent view of

the VW.

In the third phase, JoHNUM infrastructure and ARA algorithm were imple-

mented as a Plug-in for OS. First these were implemented on a Windows platform

using a small network, and later on, they were extended to scale them further using

a cluster environment.

CHAPTER 1. INTRODUCTION 12

1.7 Contribution

This thesis aims to make the following contributions:

• Development and Simulation Studies

– Development of a JoHNUM infrastructure to dynamically scale VWs

and resolve issues in current static and dynamic methods. A simulation

study was conducted to compare it with a game middleware Matrix [13].

JoHNUM strategies showed an improved performance over Matrix.

– To minimise resource utilisation and reduce implementation and com-

munication costs, an ARA algorithm was developed which uses a num-

ber of aggregation strategies to obtain contiguous areas for assignment.

It is compared with hierarchical models for complexity and delay based

on intermediate points using an abstract communication model. A sim-

ulation study shows that ARA algorithm and aggregation strategies

perform well for worlds of all sizes.

– A fully-decentralised TM approach was developed adopting a constrained

Peer-to-Peer (P2P) communication model using the inherent properties

of VWs to make them consistent and conducted a simulation study that

validated the correctness of our approach. It is compared with hierar-

chical models for complexity and delay based on intermediate points

using an abstract communication model.

• Implementation and Evaluations

– The current architecture of OS framework was examined and an ex-

tended architecture was presented to incorporate features for scalabil-

ity, load distribution, and consistency based on our methods.

– The ARA algorithm was extended by adding a flood-fill algorithm to

make it capable of determining valid combinations for worlds with var-

ious shapes. Merge operation also utilises it to maintain continuous

spaces.

CHAPTER 1. INTRODUCTION 13

– Based on our investigation, a load model was developed which is used to

determine the points when a split or a merge operation is initiated. A

plug-in for OS framework is developed that implements our scalability

and load distribution algorithms based on an abstract framework.

– This work is evaluated both on a simple Windows network and a Linux

cluster environment. A detailed analysis and comparison of our work

on both environments is provided, using a number of time statistics.

Two merging strategies have been developed and compared for trade-

offs between number of resources and transferring the same content

multiple times.

– Two improved strategies have been developed to remove a region from

a Sim with direct database access for cleaning up the data. These take

advantage of using OpenSim Archive (OAR) functionality to achieve

updated content, and they significantly improve a region transfer time.

– A reasonable set of experiments was conducted to compare this work

with traditional methods. It showed significant improvements over both

static and dynamic approaches. A number of bugs in the OS framework

were also fixed by writing explicit methods.

1.8 Thesis Organisation

This thesis comprises 8 chapters and is organised as follows.

Chapter 1 briefly introduces the background of this research and the scalability,

consistency, and load distribution issues for VWs. It provides a description of the

research methodology adopted for this work and of the contributions made to the

field of VWs in this thesis.

Chapter 2 examines the current scalability and consistency frameworks handling

VWs and presents their key limitations. It provides an analysis of the underlying

technical infrastructures for VWs. The scalability, load distribution and consis-

tency methods developed in this work are introduced in this chapter. It also briefly

describes a set of open source frameworks that are used for the development of

VWs, including OS which is used for the implementation of our work.

CHAPTER 1. INTRODUCTION 14

Chapter 3 presents the JoHNUM infrastructure that was developed to scale VWs.

It provides proof-of-the-concept simulation performed in MATLAB. It further ex-

plores the ARA algorithm and aggregation strategies that are used to determine a

fair distribution of load and contiguous spaces for load distribution. It illustrates

the aggregation strategies and provides simulation results for experiments carried-

out in MATLAB. To show the potential benefits of contiguous spaces, it presents

an abstract communication model.

Chapter 4 presents the novel decentralised consistency mechanism that adopts a

constrained P2P communication model. It illustrates the concepts and describes

a simple simulation model that tested the validity of this method.

Chapter 5 discusses the OS framework in detail and provides its limitations. It

illustrates the extended architecture of SL as a reference. It examines the extended

OS architecture, which adds scalability and consistency features to current OS

framework based on our mechanisms.

Chapter 6 reports on OS capabilities with an extensive set of experiments for

different concerns. It presents a load model that is developed and used for taking

split and merge decisions on both Windows and Linux platforms. A scalability

model that identified the components required to implement our work is intro-

duced. An informal time analysis model was used to determine the capabilities of

both Windows and Linux environments for transferring regional content. It also

examines two improved strategies to reduce the time taken by removing a region

and compares them with basic OS operations. Bug fixtures are also presented in

this chapter.

Chapter 7 provides an abstract framework describing the way both JoHNUM

strategies and ARA algorithm are implemented. It presents the limitations in

the basic ARA algorithm and proposes an extension to fix them. Merging strate-

gies are also presented and compared for trade-offs between resources and mul-

tiple transfers. A number of experiments are detailed to illustrate both scaling

and merging processes and to compare this framework with traditional systems.

Worlds of varied sizes were used and a range of statistics were used to compare

this work with existing mechanisms.

Chapter 8 concludes this study and gives future directions for this work. It also

outlines the strengths and limitations of this work.

Chapter 2

Background and Motivation

This chapter explores the existing underlying technical infrastructures, and current

scalability and consistency mechanisms that are used to manage existing VWs.

It examines a number of mechanisms targeting load distribution in a multiuser

environments and gives the motivation and goals of the work presented in this

thesis. It also gives a brief analysis of the open source frameworks that are used to

develop VWs, including the OS framework which is used to develop a prototype

of our work.

2.1 Underlying Technical Infrastructures

A VW infrastructure encompasses three parts: a service provider, the communi-

cation infrastructure (the Internet), and client software. A service provider needs

a flexible and robust server architecture to run a scalable and consistent VW.

The Internet is used for communication purposes and a client module implements

a number of computationally intensive tasks such as rendering. Currently, the

server infrastructures are becoming a bottleneck after a tremendous increase in

bandwidth, communication speed, and the availability of cheap commodity sys-

tems. Video streaming servers such as “YouTube” and “Google Video” respond

slowly during peak hours, highlighting this fact about servers. Therefore, more

advanced, flexible and resilient server infrastructures are required. The existing

infrastructures can be classified broadly into three categories: Client Server (CS),

15

CHAPTER 2. BACKGROUND AND MOTIVATION 16

Cluster of Servers (CoS) and Distributed systems.

CS environments guarantee Quality of Service (QoS) and provide persistent,

consistent and secure worlds. However, these provide limited services to a re-

stricted number of users and are, therefore, static and not scalable. Moreover,

they are prone to single point failure. [161] discusses a number of measures for

handling these issues. As a result, the most successful highly interactive and com-

putation intensive applications use CoS infrastructures as an alternative. How-

ever, consistency and intra-server communication are the main problems of these

infrastructures, which also suffer from load balancing problems in static configu-

rations that are simple and easy to implement. [70] outlines a number of dynamic

strategies to solve these problems. A CoS environment provides a centralised user

interface that becomes a bottleneck in case of failure. Generally speaking, CoS

systems consider closely coupled resources of an organisation [103, 188, 189, 226]

and usually adopt static configurations. Zihui et al. [87] presented a dynamic CoS

architecture for multimedia applications, where they proposed a category-based

dynamic coalition of servers that achieves a high level of scalability and the ef-

ficient utilisation of resources. Since the popularities of video files are normally

skewed and unpredictable, the infrastructure needs to be highly dynamic in terms

of resource allocation in time varying workloads. Being adaptive in nature, it also

exploits temporal locality and users are served by a server already serving similar

requests.

Distributed infrastructures leverage geographically distributed resources and

provide an integrated seamless VW. According to Wang et al. [226], distributed

systems are further classified as P2P and Client Multi Server (CMS) architec-

tures. CMS systems are alternatively called Grid infrastructures (we call them

static grids, for dynamic grids, see Appendix A). P2P systems are generally based

on commodity PCs and not used for computationally intensive applications such

as games. These are more scalable and affordable but experience a highly dynamic

topology that introduces the well known neighbour discovery problem. Therefore,

topology management in P2P systems requires extra effort. The complexity for

the development and management of P2P architectures for large scale VWs is very

high. It also requires handling issues such as data security, inter-operability, and

CHAPTER 2. BACKGROUND AND MOTIVATION 17

network control [152]. The Literature shows a number of P2P architectures that

are developed for network games [17, 18, 93, 105, 128]. Similarly, the variations of

P2P infrastructures targeting their inherent problems are presented in [35, 101].

P2P networked game infrastructures generally focus on synchronisation of game

states across the hosts. These techniques normally utilise the concept of Dis-

tributed Hash Table (DHT) for this purpose. Knutsson et al. [128] proposed a

Massively Multiplayer Online Game (MMOG) model using a publish-subscribe

mechanism. Similarly, Castro et al. [34] proposed a large-scale and decentralised

application-level multicast infrastructure called Scribe. Bharambe et al. [18] de-

veloped a routing protocol similar to DHT for multi-attribute queries called Mer-

cury. They claim that MMOGs are less restrictive in terms of latency so that

multi-hop latency of underlying DHT look-ups can be tolerated. In order to speed

up searches, they subsequently proposed another mechanism called Colyseus [17],

where they employed the principles of locality and prediction in accessing data

patterns. Hu et al. [101] proposed a Voronoi-based Overlay Network (VON) that

maintains a fully distributed topology. It experiences low latency and efficiency in

messaging. Chan et al. [35] used a contemporary P2P approach as an alternative

solution for MMOGs called Hydra. It utilises a message consistency protocol and

is based on an augmented CS programming model in conjunction with a set of

protocols for realising interfaces. According to Chan et al., the adaptation of a

hybrid approach solves issues such as billing and persistence. Hydra is scalable

and introduces little message overhead.

CMS/Grid infrastructures are loosely coupled environments that use the re-

sources of different organisations and individuals based on common agreements

over the Internet. CMS architectures generally follow the grid model. Grid infras-

tructures are more dynamic and resilient, and the majority of successful MMOGs

and VWs including SL [197, 201] are hosted by these infrastructures. Multiserver

architectures are developed for scalability but they experience significant work-

load imbalance due to the dynamic and unpredictable nature of humans. They

also suffer from latency and delay, and require sophisticated dynamic load-sharing

and transferring mechanisms to achieve quick responses and maximise through-

put [27, 35, 189]. Butterfly Grid (BG) solves a number of problems of conventional

CHAPTER 2. BACKGROUND AND MOTIVATION 18

systems by providing a flexible, scalable, and resilient MMOG infrastructure for

game developers and service providers [103]. The underlying infrastructure of

SL [201] called SL Grid (SLG) [197] customises the BG model with a constrained

communication model.

2.2 Current Scalable and Load Distribution Mech-

anisms

A number of approaches have been developed which investigate scalability, consis-

tency and load balancing issues. Major contributions are based on splitting a VW,

balancing the load, and developing communication models to minimise network

flow. These mechanisms consider different parameters such as computation power

and network bandwidth. BG [103] and SLG [197] are commercial Grid infrastruc-

tures running different MMOGs and SL [201] respectively. BG is comprised of two

clusters where game and database servers are fully meshed over high speed fiber-

optic lines for transparent movement of users between servers. It divides a game

world into a number of mutually exclusive sectors known as locales and assigns

each to a specific server on the grid. It utilises the grid model to seamlessly route

contents and players to the nearest available server in case of failure or excessive

load [103]. Figure 2.1 shows the basic architecture of BG highlighting different

levels of services. It also gives a description of the activities and services at each

level. SLG is a customised form of BG that restricts the interaction of a server

to four neighbouring servers [197]. However, both decrease the interactive user

experience and the migration of users incurs processing burdens. Furthermore, no

means are provided to cope with under-provision and over-provision of resources.

In case of over-utilisation, these systems fail quite frequently.

Load distribution strategies are categorised as static and dynamic. Static strate-

gies do not provide any means to cope with excessive load and are not generally

scalable. Both BG and SLG use static assignment strategies for content. Dy-

namic load distribution strategies generally belong to one of the three classes:

local, global, and adaptive. Local approaches consider neighbouring servers to

share excessive load and minimise communication between the servers. Ng et

CHAPTER 2. BACKGROUND AND MOTIVATION 19

Figure 2.1: Basic architecture of Butterfly Grid [103].

al. [159] have developed a region based DVE called CyberWalk by exploiting a lo-

cal strategy. These are simple to implement but perform well only with a minimum

number of servers and do not scale well. Functionality decreases greatly if neigh-

bouring servers become overloaded. Global strategies utilise global information to

re-distribute the overall load uniformly among the servers as one server becomes

overloaded. Lui and Chan [143] have proposed an efficient partitioning algorithm

for DVEs using a global strategy. Migration of users and re-partitioning overhead

rises with an increase in content and number of servers that degrades interactive

user experience. Furthermore, an exponential increase in complexity renders them

unsuitable for large scale real time interactive systems. To resolve these issues,

adaptive strategies re-partition the load of selected servers only. These are more

effective and introduce less overhead. The communication costs in adaptive ap-

proaches are greater than for local, but less than for the global strategies. In

adaptive approaches, an overloaded server balances its load by utilising a set of

servers beyond the neighbouring servers if the neighbouring servers are busy. Lee

and Lee [136] have devised an adaptive strategy for load distribution in DVEs.

CHAPTER 2. BACKGROUND AND MOTIVATION 20

They presented an architecture that divides the world into a rectangular grid with

cells representing virtual spaces. A graph partitioning algorithm is used to allocate

cells to the servers. This approach is suitable for those simulations with known

scale, but difficult to adapt to an un-constrained simulation environment such as

a VW. The importance of minimum latency and the utilisation of fewer resources

is highlighted by Lee et al. [135] in their investigation of the client assignment

problem. It increases overhead by implementing the dynamic concepts described

as ‘zoom in’ and ‘zoom out’. According to Ta et al. [209], position-based client

assignment strategies degrade interactive experience and they proposed greedy

algorithms to cope with client assignment. However, greedy approaches are un-

able to serve real time systems as these require periodic re-execution that increase

system load.

According to Vleeschauwer et al. [223], the larger cell assignment strategies suffer

from player density in peak hours. They proposed a split of the VW into a large

number of interacting micro cells. These cells are dynamically assigned to a set

of servers, thus achieving better balance of the load against static and dynamic

mechanisms. However, it greatly increases communication among the cells. Cher-

tov and Fahmy [39] have proposed a load balancing layer that facilitates server

co-ordination for quick convergence to a best possible distribution of load. How-

ever, this is not scalable as they adopt a centralised approach. Shirmohammadi

et al. [203] have developed a large scale collaborative architecture that divides

the VW into multiple adjacent hexagonal regions. However, in case of further

re-partitioning, it considers the whole VW to divide it into smaller regions. The

use of a global partitioning strategy increases complexity and degrades interac-

tive user experience. Moreover, the re-partitioning could occur frequently, thus

making their approach unsuitable for large scale real time interactive and collab-

orative systems. According to Ahmed et al. [3], CS architectures are not scalable

and they proposed a dynamic interest management and collaboration model us-

ing P2P model for games. Furthermore, they presented a load balancing model

over this infrastructure [4]. However, we believe that P2P environments are not

suitable for real time interactive applications. RING [86], NetEffect [49] and Cit-

taTron [96] split a VW into subregions to make them scalable. RING uses a static

assignment strategy and the rest adopt dynamic split strategies at servers. Ac-

CHAPTER 2. BACKGROUND AND MOTIVATION 21

cording to Morillo et al. [153], region based schemes do not need synchronisation

but require intelligent load balancing mechanisms to achieve a reasonable response

time and maximise the throughput. These systems are less scalable due to highly

unpredictable user patterns in MMOGs and VWs. RING [86] provides no means

to handle excessive load. To balance the load, NetEffect [49] utilises a centralised

approach that greatly degrades interactive user experience. CittaTron [96] also

degrades performance because it allows run time resizing and transfer of users.

Moreover, factors such as object density and locality are not considered.

The Literature shows a large number of solutions for large scale simulations [84],

simulations with distributed interactions [130], and real time simulations [57, 154]

to cope with these issues. However, the VWs combine the challenges of all these

hard simulation problems including scale (order of magnitude larger than tradi-

tional PADS), being perpetual (continuous existence) and real time in nature, and

need to produce rapid responses to user inputs. According to Liu et al. [140], the

existing VWs usually adopt a simple synchronisation model to accommodate large

scale environments and therefore events are not processed in a correct order. VWs

perform both simulation and visualisation of viewpoints for a large number of users

simultaneously, and put an enormous burden on both computation and commu-

nication infrastructures. To address these challenges, researchers have developed

solutions based on Interest Management [210] and visibility computation [131].

They also incorporate a number of heterogeneous engines (“the actors”) to sim-

ulate and evolve the work, each having a different scope of operation, resource

requirements, performance constraints, and operational characteristics [180].

According to Liu et al. [139], the dynamic load balancing mechanisms such as

distributed binary space partitioning (BSP) hold the potential to scale a VW.

They are simple and effective, and have the capability to resolve hotspot issues.

However, they introduce excessive burden due to workload migration and commu-

nication between the regions. VWs have both computation and communication

bottlenecks in terms of scale. In addition, the migration of scene objects has been

overlooked by most of the previous studies. Static assignment methods avoid it by

using a static and strict partitioning method, and academic studies focus on the

migration of client connections but ignore object migration. According to Liu et

CHAPTER 2. BACKGROUND AND MOTIVATION 22

al. [139], the current VWs need to scale beyond the existing capabilities to cope

with rich user experiences, greater realism, and new dimensions. They presented

a new architecture called Distributed Scene Graph (DSG) to overcome the limi-

tations that are introduced due to the use of simulator centric architectures [139].

This architecture is presented in Figure 2.2. The key idea is to break the sim-

ulation centric architecture used for the current VWs and detach data structure

from simulation engines [140]. This also separates the client interaction from the

scene, thus reducing the scene complexity that greatly helps to scale the world.

DSG allows multiple servers to host a scene where each server is managing part of

the scene. Scene is no longer a centralised and monolithic process that manages

simulation as well as data management. It is left to focus on data management,

state synchronisation, event distribution, and persistence of the world content.

DSG prototype is developed as an extension to OS framework and it has greatly

improved the capacity compared with a basic Sim of OS. However, it introduces

an additional layer that handles an increasing number of client managers based on

load [132] that could potentially degrade interactive user experience and increase

delays. Furthermore, the overall system is more complex to implement because it

requires the provision of additional interfaces between the scene and actors [132].

Figure 2.2: Distributed Scene Graph (DSG) Architecture [132, 140].

The most common approaches to dividing a VW workload across multiple servers

use either sharding or spatial partitioning. [132]. The capacities of SL [201] and

WoW [164] are limited to well below 100 interacting users [92]. Games such as

WoW [164] and Ultima Online [217] use the concept of sharding to scale a VW,

but at the price of user interaction. It is the most popular approach that broadly

partitions the user base into disjoint copies of the world. Replication in this model

is easy as users in different shards cannot interact with each other due to the lack

CHAPTER 2. BACKGROUND AND MOTIVATION 23

of means of interaction with each other. VWs such as SL and OS use the concept

of spatial partitioning. Lu et al. [142] have presented a load balancing technique

for a CoS infrastructure. It is simple and effective and maintains the flexibility

of the cluster systems; however, grid infrastructure and dynamic strategies are

considered to be more resilient and not prone to single point failure issues. More-

over, the system spends a great deal of time in balancing the load, and the issues

regarding frequent migrations of load and communication are overlooked. Chen et

al. [38] have presented a dynamic architecture for MMOGs that hides the division

of a world from the players. Interactions between players is, therefore, not limited

to the objects in a single region or server. Their major contribution is also a load

balancing algorithm using locality awareness to improve average response time for

users. Varvello et al. [219] conducted a detailed survey about SL to determine

the worth of this exciting social collaborative environment and to investigate how

well it is utilised by users and which kind of content is favourite among the play-

ers. Based on their findings, they have presented techniques and ways of further

enhancing these worlds.

Figure 2.3: A screenshot of the XPU simulator. The dots represent
objects, and solid lines represent boundaries between partitions [37].

Francis et al. [37] presented a hierarchical CS architecture called Extremely Parti-

tioned Universe (XPU) for the development of highly scalable metaverses using a

spatial sub-division algorithm. It dynamically partitions the world and manages

network and computing resources. The basic goals of this architecture include the

CHAPTER 2. BACKGROUND AND MOTIVATION 24

use of CS environment for security reasons, using a varied number of resources

based on current load, and to manage a large and unpredictable population. It

has the ability to handle both flash crowds as well as vast unused or sparsely

populated spaces. This architecture only addresses the problems of managing 3D

virtual space and the objects contained in it. XPU architecture uses the XPU

tree, which is very similar to a k-dimensional (k-d) tree where the leaves repre-

sent virtual 3D spaces instead of objects. A k-d tree is a space partitioning data

structure for organising points in a k-dimensional space [15]. The root node in the

XPU tree represents the whole simulation process managing an entire XPU uni-

verse. Splitting and merging are the two significant operations in managing XPU

systems. When a simulation system is overwhelmed in terms of system load, it

can choose to split its workload between two child Sims by selecting them from the

available pool of resources. Merging is much simpler as, when two sibling leaf Sims

have a smaller workload, they can choose to simply synchronise their states and

revert processing to a single node. Partitioning of borders in XPU is dynamic and

reactive to load. If work is unbalanced, a child always exchanges load to balance

it. The main flaw in this system is that it takes a great deal of effort to balance

the load, thus degrading the interactive user experience and increasing complexity.

There is no limit on the levels in a Resource Management Tree (RMT). On the

other hand, a hierarchical structure could face severe synchronisation issues when

used for conservative applications. Figure 2.3 shows a snapshot from the XPU

simulator in action. It allows partitions of any size based on load that greatly

increases communication and crossings between the Sims. Furthermore, no pro-

totype has been developed to determine the actual worth and limitations of this

work.

Croquet [44] is a decentralised approach that exploits a P2P synchronisation pro-

tocol to manage the content of a virtual space spread over a number of Croquet

worlds. It allows access between different worlds, but no dynamic mechanisms are

provided to extend the number of concurrent users in an individual world and it is,

therefore, not scalable. Similarly, it is difficult to manage the environment using

a P2P model. A number of other open source VW development frameworks are

provided in section 2.4 that are briefly analysed against the requirements estab-

lished in this study to obtain the best possible framework for the implementation

CHAPTER 2. BACKGROUND AND MOTIVATION 25

of our work. Active Worlds [211] is another type of metaverse that allows dynamic

content to be created and, for this reason, provides a simplified scripting interface.

An active world universe can host hundreds of worlds that can be traversed by

a user where each world is hosted by a different server. However, neither does

it provide any dynamic solution to cope with under-utilisation or over-utilisation

of resources and is not scalable as each world can only have a limited number of

players. A number of other similar VWs are presented in section 1.4 of chapter 1.

Presetya et al. [181] compared a number of topologies for fixed grid spatial sub-

divisions such as triangular, square, and hexagonal with their own method called

brickworks for gaming environments. However, these systems are not as scalable

as spatial subdivision approaches using hierarchical approaches. They either miss

the dynamic allocation of resources or involve moving server processes around so

that unloaded servers can share a single CPU, thus degrading interactive user ex-

perience. The Sun Gamer Server technology (called the Darkstar Project) [207]

framework adopts a different approach to traditional mechanisms. It does not

utilise spatial sub-division; rather, it uses a high speed centralised database hold-

ing the whole virtual space. Each server has access to world objects and rights

to modify the objects in this database. For each operation, a server retrieves an

object, modifies it and then stores it again in the database. This architecture

introduces extra delays, especially when there are many objects involved in an in-

teraction. A centralised database might easily become a bottleneck as the system

scales. The ALVIC (Architecture for Large-Scale Virtual Interactive Communi-

ties) approach for metaverse design uses quad tree subdivision for partitioning

logic servers and employs many proxy servers to hide network topology from the

servers [184]. These introduce an additional layer, thus increasing delays and

complexity.

Kim and You [125] have proposed a hierarchical map partitioning method for

MMOGs by introducing a Virtual Map Layer (VML). Figure 2.4(a) shows the

traditional network server architecture with an additional component called VML

management server. It checks the loads of field servers and tries to divide or

merge the fields based on current load. VML is an overlaid version of map that

keeps information about hierarchy of sub-areas. It splits the VW into a hierarchy

of Fields, Sector Groups, Sectors, and Cells as shown in Figure 2.4(b). A field is

CHAPTER 2. BACKGROUND AND MOTIVATION 26

what is assigned to a server and is comprised of sectors or group sectors. The VML

management server divides or merges fields based on server load of its sectors and

sector groups. A sector is the smallest unit for partition that is comprised of the

smallest unit of VML hierarchy, called cells. A sector is a combination of adjacent

cells and greatly varies in size based on client capacity. However, it increases

overhead by introducing an additional mapping layer, and a single management

server is prone to a single point failure. Furthermore, the maintenance of the

hierarchy is complex and requires additional resources.

(a) (b)

Figure 2.4: Illustration of hierarchical map partitioning [125]. (a)
VML based MMOG system. (b) Hierarchical structure of VML.

Burlamaqui et al. [24] presented a communication infrastructure by extending the

CS model to a hierarchical one in order to scale large scale collaborative VWs

named H-N2N (hierarchical N to N). It scales the world by geographically par-

titioning it into groups where each group is managed by a server that keeps it

together. It starts with a single application server and the clients constitute the

first group hosted by the first server at level 0, as shown in Figure 2.5. When

this server becomes populated, a new group is created, which is assigned to a

new server that is placed at level 1, which establishes a link to the first server.

CHAPTER 2. BACKGROUND AND MOTIVATION 27

To balance the load between servers, the clients are often re-grouped. The lo-

calisation matrix is used to keep track of users and the proximities among the

users. H-N2N architecture is comprised of 4 components: ApplicationServer,

GroupServer, SlaveServer, and UserClient. The ApplicationServer component

awaits client connections and the GroupServer component handles message ex-

change among clients. The SlaveServer is responsible for communication with

users and UserClient represents a user. These components and their placements

at different levels are illustrated in a simple configuration adopted from [24] in

Figure 2.5. A single application server might become a bottleneck in case of fail-

ure and re-grouping of space can greatly degrade the interactive user experience.

In addition, sending messages across groups might introduce longer delays. Fur-

thermore, a client might not be able to cope with as great a massive number of

exchanged messages as a GroupServer. Similarly, it puts no restrictions on the

levels in a resource hierarchy. A similar approach is proposed by Oliveira and

Georganas [51], which manages servers in a parent child hierarchy. It also re-

distributes the load among the servers to balance the load, thus degrading the

overall performance.

Figure 2.5: Hierarchical N to N (H-N2N) architecture [24].

Wang et al. [226] proposed a novel, dynamic idea of a multi-server model based

on a grid structure. It uses the concept of “gamelet” that provides execution

logic for a server. The logic is divided into data and processing. Data include

the current state of the simulation work and performance parameters, such as

CHAPTER 2. BACKGROUND AND MOTIVATION 28

CPU and network load. Processing provides the logic that is executed to perform

activities and its control functionalities. A gamelet provides a complete scenario

that could be based on space or time, such as a meeting or a football match.

Novelli et al. [162] presented a technical mechanism that utilises the grid concept

for content distribution of multimedia applications. Grid infrastructure is used

for both Replica Storage and the computationally intensive task of transcoding

that changes content format for compatibility. Bruneo et al. [21] proposed a

grid middleware to integrate distributed computation and storage resources, thus

hiding the locations of power and data. This work also targets the utilisation of

grid for multimedia applications.

Figure 2.6: Matrix architecture [13].

Matrix is the outcome of a major contribution towards the scalable MMOGs by

Balan et al. [13]. It is a game middleware that achieves low latency while pro-

viding localised consistency based on dynamic workload compared with P2P and

static infrastructures. The authors assumed that a game can be decomposed into

different stages and only localised consistency can achieve better results. Matrix

changes a region size and the number of serving nodes at run time. The archi-

tecture of Matrix comprises three layers: game clients, game servers and matrix

servers with a matrix coordinator as shown in Figure 2.6. Matrix simply takes

local decisions for partitioning. Therefore, when an overloaded server is detected,

a new matrix server is selected which further selects a new game server and shares

the load with it. The new matrix server becomes a child of the matrix server that

initiated the split. In case of under-utilisation, a matrix server reclaims the parti-

CHAPTER 2. BACKGROUND AND MOTIVATION 29

tion and game state from the child matrix server which releases the game server.

It concentrates on achieving low latency but compromises on consistency. It de-

grades interactive experience and yields an RMT of many levels. In our opinion,

to achieve a consistent VW, the levels in RMT need to be minimised. Further, the

Matrix Coordinator (MC) is prone to failure, though its complexity is negligible.

Similarly, it uses two different levels of servers (Matrix and Game) which increases

system complexity.

The motivating factors, together with the ways to achieve the goals set for the

JoHNUM infrastructure and ARA algorithm, are presented in the next section.

2.2.1 Motivation and Goals of JoHNUM Infrastructure

This work investigates current systems using static, dynamic and hierarchical ap-

proaches to make VWs scalable and to distribute load among the participating

servers.

Current CS, CoS, and Distributed systems (classified as P2P and CMS/Grid in-

frastructures) have their strengths and limitations, which are presented in sec-

tion 2.1. Grid infrastructures are the most favourable choice for hosting appli-

cations that have high computation and communication demands, such as online

games and VWs. However, static assignment strategies limit their capabilities

by introducing both resource under-provisioning and over-provisioning problems.

Dynamic load distribution strategies (local, global and adaptive with a flat orien-

tation) are used to overcome these issues to some extent. Local strategies (in which

a server shares its load with only adjacent servers) are not scalable, and global

strategies are too complex and introduce a significant burden of player migration

and re-partitioning. Similarly, adaptive strategies increase the implementation

overhead. Dynamic hierarchical strategies (such as Matrix [13]) overcome many

issues in static and dynamic methods but put no restrictions on an RMT, which

could potentially introduce longer delays in certain situations (especially when

used with conservative applications, which are further examined in section 2.3).

Game infrastructures are currently used to host VWs that have major performance

issues. Performance issues in current static, dynamic and hierarchical strategies

and the un-availability of a specialised framework to scale VWs motivated us to

CHAPTER 2. BACKGROUND AND MOTIVATION 30

develop a Joint Hierarchical Nodes Based User Management (JoHNUM) infras-

tructure. Similarly, to overcome the complexity and implementation issues in load

distribution mechanisms, an Aggregate Region Assignment (ARA) algorithm is

presented that significantly reduces resource utilisation and communication over-

heads.

VWs (the target application in this work) are more advanced environments than

games, and both latency and consistency require special attention while scaling

a world. Therefore, game specific techniques such as sharding are of no use for

VWs as they conflict with the basic aim of these environments. Similarly, other

approaches for scalability using different aspects of a system (such as DSG ar-

chitecture [132, 140]) introduce additional layers and increase complexity. Spatial

partitioning is the most promising way to partition and transfer the content to

other systems for general purpose VWs [132]. However, it is an expensive operation

because it transfers the contents as well as players and, therefore, requires better

strategies to reduce the time taken by different activities. The OS framework

(used for the prototype development) and its modular design greatly motivated

us towards using the traditional spatial partitioning to scale the worlds. It en-

abled the transfer of regions in a delegated space in turn, which greatly reduces

the content un-availability time. It further helped to minimise the total time and

number of players that suffer from a transfer.

Currently, there is no project that dynamically scales the OS worlds using spatial

partitioning and it is believed that it would be a genuine contribution to intro-

duce this feature to OS. According to our knowledge, two attempts have been

made to extend the OS framework for scalable worlds. The first project [132, 140]

targets a different aspect (scene graph) to spatial partitioning and the second

project [141] for load balancing, is no longer maintained. This work is the only

current project extending the OS architecture for scalability using spatial parti-

tioning which transfers both the content and players. It targets and resolves the

issues in both static and dynamic approaches. Results of a survey conducted by

Vervello et al. [219] also motivated the combination of a number of OS regions to

start a parent Sim with a bigger world in the present study. According to their

observations, a limited number of regions in these worlds are highly populated,

CHAPTER 2. BACKGROUND AND MOTIVATION 31

and content creation and destruction happens quite rarely. There are many re-

gions that are never visited or visited by very few people, thus greatly leading

to resource under-utilisation. The findings of traditional studies based on spatial

partitioning further motivated us to restricting players during a transfer to certain

simple activities, rather than freezing them. Players are temporarily moved to an

intermediate region called a “transit region” that allows them to move around or

keep themselves busy with simple activities until the transfer is complete and they

are moved back to the original region.

Most of the relevant academic studies are evaluated through simulation and con-

sider transferring only client connections. To determine the actual strengths and

limitations of our work motivated us for the development of a prototype of our

work. In order to validate our research, first proof-of-the-concept simulations for

scalability and load distribution were conducted, and then a prototype was devel-

oped to implement them. The prototype was then tested on both Windows and

Linux platforms. Split and merge operations are found to happen rarely and, by

developing improved strategies, the time taken by a region transfer was greatly

reduced.

None of the existing scalability mechanisms target all the requirements of VWs

and consider one or the other aspect of these environments using either the exist-

ing games or simulation systems. Indeed, it seems the development of a robust

system requires the consideration of a number of parameters based on the inher-

ent properties of VWs. The following goals were set and expected to be achieved

through the JoHNUM infrastructure and ARA algorithm:

• to develop a simple and flexible but highly scalable infrastructure,

• to use a localised and decentralised, but dynamic, approach,

• to improve interactive user experience and overall system performance,

• to minimise resource utilisation and communication overhead,

• to solve the resource under-provisioning and over-provisioning issues,

• to minimise complexity, delays, and implementation cost,

• to minimise the time parameters for spatial partitioning,

• to obtain a fair distribution of load, and

CHAPTER 2. BACKGROUND AND MOTIVATION 32

• to reduce the number of levels in an RMT and help accommodate conserva-
tive applications.

(a) (b)

Figure 2.7: Illustration of static partitioning for: (a) SL Grid (nor-
mally a single region per Sim but possibly a small fixed number); (b)
OS Grid (arbitrary number of regions per server).

We propose a hybrid approach (a dynamic hierarchical Grid) that combines the

strengths of both Grid infrastructures and hierarchical dynamic methods. Initially,

it uses a static view of grid (used by both SL and OS as shown in Figure 2.7(a) and

Figure 2.7(b)) where each Sim (called parent Sim) is assigned a bigger continuous

space made of a number of regions in a flat orientation (as discussed for OS

in [175]). Based on excessive load, the dynamic provision of additional resources

(child Sims) at lower levels share the load with a parent Sim to scale the world as

shown in Figure 2.8. It is believed that this will potentially overcome most of the

issues. The hierarchy is managed by a parent-child relationship, and the levels in

the hierarchy could be greatly reduced by splitting a space into more than two

sub-regions and assigning a child to a parent based on the initiation of split. The

concept of grid computing could be used to obtain resources on the Internet if an

organisation has limited resources (see Appendix A).

Unlike current strategies, a fair distribution of load with a localised and decen-

tralised split and merge operations is believed to improve performance and reduce

the potential degradation of interactive user experience by avoiding frequent con-

tent and player transfers between servers. It can potentially reduce system com-

plexity and implementation cost, as well as other limitations of local, global and

CHAPTER 2. BACKGROUND AND MOTIVATION 33

Figure 2.8: Illustration of the proposed hybrid Grid infrastructure
with an additional layer of resources.

adaptive dynamic load management strategies. It is capable of solving the issue

of single point failure in existing mechanisms. The use of additional resources

solves the under-provision of resources while the merging process overcomes the

over-provision of resources. Moreover, keeping the infrastructure simple and com-

promising a little on uniform distribution of load would help to develop a flexible

system that scales well. Communication overhead could be reduced by assigning

adjacent sub-regions to a single server, and degradation of performance could be

avoided by adopting a relaxed merging strategy.

2.2.2 Scaling and Distribution of Load

This section explains how the system developed in this study scales a VW and ob-

tains a fair distribution of load. The system comprises of JoHNUM infrastructure

and ARA algorithm.

This work uses a grid model and each grid server (called a parent server in our

hybrid model) initially runs a larger part of the whole world. It is assumed that

each parent is running a square shaped space and is normally assigned against

system capacity. In our implementation model, this is achieved by placing OS

regions side by side in multiple rows. Since the basic aim is to dynamically allocate

resources against load, JoHNUM infrastructure is applied to cope with increase

CHAPTER 2. BACKGROUND AND MOTIVATION 34

and decrease in load, as explained next. It uses the ARA algorithm developed

here for load distribution purposes.

Each server (both parent and child) continuously monitors its load against a

threshold value, named SplitCapacity (based on a load model presented in sec-

tion 6.3 of chapter 6). It accepts client connections and initiates the split process

to share its load with a newly added server that is selected dynamically from

the available pool of resources when it exceeds the SplitCapacity. This process

continues until each server is hosting a smaller region that cannot be further di-

vided. All the decisions are taken locally and the framework is quite simple to

implement. It splits a space handled by a server into n2 sub regions with an

appropriate value of n for all n > 1. Starting with minimum value 2, the most

appropriate value of n is determined by increasing the value of n by 1 each time

the prospective regions based on a current value of n are unable to ease the load.

However, it combines consecutive regions to obtain larger and continuous regions

for assignment by ARA algorithm using aggregation strategies. Sub-regions keep

their identity in this case, and system based on increased load re-assigns part of

the current load to additional servers until each server is serving a single region.

Child servers are always assigned to a parent server that initiated a split, thus

greatly minimising the number of levels in an RMT. The aggregation process

reduces the number of resources used to simulate the world. It also greatly min-

imises the cost and complexity of communication and implementation. Merging,

on the other hand, integrates the regions, thus sparing some resources to minimise

resource under-utilisation. When a child notices that its current load is under

a threshold, named MergeCapacity, it determines whether it can merge its load

with its parent server. MergeCapacity is assumed to be somewhat smaller than

the SplitCapacity to avoid frequent splits after merge operations. However, the

integrated larger space is required to be contiguous. The JoHNUM infrastructure

and ARA algorithm are examined in chapter 3.

2.3 Existing Synchronisation Mechanisms

Synchronisation or Time Management (TM) is an integral part of PADS systems

that ensures the execution of timestamped events in a correct temporal order called

CHAPTER 2. BACKGROUND AND MOTIVATION 35

a local causality constraint. According to Fujimoto [84], TM algorithms usually

treat a simulation as a collection of Logical Processs (LPs) that communicate

by exchanging discrete events in time. The goal is to achieve exactly the same

results as a sequential computer that precisely ends in time sequence. Each LP

maintains a list of events (both internal and external) and in each iteration removes

the smallest timestamped event from the list, and processes it. Each LP also

maintains a simulation clock that is used for message generation. A simulation

clock is normally advanced in response to an event processing.

Initial work for synchronisation is based on conservative approaches [84]. Syn-

chronisation approaches proposed by Bryant [22] and Chandy and Misra [36] are

among the initial attempts to ensure local causality; however, they are prone to

deadlock. These methods maintain a queue for each incoming link, and when

they find the corresponding queue of a link with smallest timestamp empty, they

block the process. To resolve this issue, the concept of null messaging is used to

advance the simulation clock of an LP. Null messages are sent repeatedly between

neighbouring LPs. The timestamp of a null message is the sum of current clock

time plus a constraint value known as Lookahead. The Lookahead value is used

by a federate (a simulation entity [2]) to determine a minimum value it might

be using for a timestamped event in future [80]. It is application dependent and

has a dramatic performance effect on a TM algorithm [80]. According to Pan

et al. [178], asynchronous TM algorithms with small Lookahead values have the

“time creep” problem. The main drawback of the null message algorithm is that

it generates an excessive number of null messages, thus introducing longer delays.

In a typical synchronous algorithm, the LPs share their Lookahead values and

timestamps of smallest events with each other to solve this issue [83]. LPs de-

termine the smallest event and calculate a Lower Bound on Time Stamp (LBTS)

allowing events with timestamp less than, or equal to, LBTS to process. The

LBTS guarantees that a process will never generate a message with smaller times-

tamp than this value [82]. It is called Greatest Available Logical Time (GALT)

in IEEE 1516 [2] (an IEEE open standard). Since an LBTS value is calculated

based on next unprocessed events, it has no time creep problem. The main draw-

back of synchronous algorithms is that time advancement might be blocked by

an LP sending information with a low frequency. Similar synchronous approaches

CHAPTER 2. BACKGROUND AND MOTIVATION 36

are presented in [160, 206]. Synchronous algorithms also need to cope with tran-

sient messages, and the traditional approaches such as message counters and flush

queues are used for this purpose [81, 83].

DIS [85] is a standard networked infrastructure developed by the US Department

of Defense (DoD) for inter-connecting thousands of synthetic training and simu-

lation environments. The basic aim was to develop an integrated and collabora-

tive environment for group training and activities as a successor of an influential

technology called Simulators Networking (SIMNET) [149]. DIS is an easy and

lightweight protocol but it does not allow interest management, and load balanc-

ing is applicable only to real time simulations [85]. It is restricted to the military

domain, and limitations lead to custom modifications and implementations that

cannot be re-used. High Level Architecture (HLA) [48] was basically developed as

a common interoperability architecture to integrate different classes of simulations.

It is generalised and builds upon the results from DIS and similar approaches, such

as Aggregate Level Simulation Protocol (ALSP) [69]. HLA TM services provide

a mechanism that allows federates (an HLA compliant simulation entity [2]) to

send and receive timestamped data and advance their logical time. This allows

different approaches to maintain consistency among Sims and, therefore, handles

simulations with varied types of ordering and delivery requirements [82]. HLA pro-

vides both real time and as-fast-as-possible simulations, and its specifications are

flexible enough to accommodate a number of internal TM mechanisms generally

used for the applications such as analysis, training, and test and evaluation.

Conservative TM is the main strategy of HLA that maintains timestamp order

(TSO) delivery of temporal messages. TM for a federation is realised jointly by a

Run Time Infrastructure (RTI) and federates. RTI is a software that coordinates

the operation of federates and data exchange during the execution based on HLA

- Federate Interface Specifications [1]. RTI is responsible for the TSO delivery

and, for that reason, each federate requires an explicit time advance request to

it. RTI grants permission if it can guarantee that no messages would be received

in the federate’s past. To realise this guarantee, an RTI calculates a LBTS value

for each federate giving a minimum bound on messages a federate might receive

in future. It maintains a TSO queue, and safe intended messages are delivered

CHAPTER 2. BACKGROUND AND MOTIVATION 37

Figure 2.9: Logical view of Time Management in HLA [82].

to a federate in a non-decreasing order on a time advance request before a grant

is issued. For an event driven simulation model, the HLA provides a routine

called Next Event Request (NER) that is used to advance a federate time to T.

RTI grants a time advance to T, if no TSO messages exist in response of time

advance request. Otherwise, it delivers the smallest TSO message destined for

the federate, and advances federate time to the timestamp value of the delivered

message. Each federate in HLA uses Lookahead value in conjunction with federate

time for deadlock avoidance among the federates. The Lookahead value of a

federate promises other federates that the earliest timestamp it uses would be

greater than, or equal to, its current time plus its Lookahead value. However, the

Lookahead value depends on an application and might be changed dynamically

during execution. To keep a simulation consistent, the time advance value T must

not be greater than the LBTS value at any time. A federate’s LBTS value is

calculated with the help of time information of those federates that can generate a

TSO message (called time regulating federates). The RTI also consider timestamps

of messages in RTI and interconnection network to compute an LBTS value.

The concept of LBTS used for Parallel Discrete Event Simulation (PDES) in HLA

1.3 (a US DoD standard) [151] is replaced with a terminology of Greatest Available

Logical Time (GALT) in IEEE 1516 (an IEEE open standard) [2]. Liu et al. [138],

argue that TM in HLA is a crucial factor that restricts the size of distributed

CHAPTER 2. BACKGROUND AND MOTIVATION 38

simulation and, therefore, RTI is required to efficiently handle large number of

federates. They also argue that TM in HLA using GALT is more complex than

TM in PDES using LBTS in two major aspects. Firstly, a federate time advance in

HLA is under the control of an RTI, but a PDES entity advances its time without

an underlying infrastructure. Secondly, PDES supports modular and hierarchical

structures, but HLA lacks this feature. Our consistency work targets complex hi-

erarchical models and uses the concept of LBTS for PDES in the synchronisation

approach presented in chapter 4. Liu et al. [138] presented an efficient GALT

algorithm and developed a prototype over a cluster system that successfully man-

ages thousands of federates. However, it is complex and not tested for very large

scale distributed federates. Furthermore, it manages all the federates using a cen-

tralised approach. Pan et al. [178] presented a hybrid HLA TM algorithm based

on both conditional and unconditional information to resolve the drawbacks of

both synchronous and asynchronous algorithms. According to them, synchronous

algorithms use conditional information while asynchronous algorithms use uncon-

ditional information. Both of them have limitations, and neither of them has the

ability to manage varied types of federation scenarios. They incorporated three

algorithms into an RTI and effectively achieve the combined advantages of both

algorithms.

HLA has shown itself to be a great success for military applications; however, it

has a number of limitations regarding interoperability, scalability, and complex-

ity. It does not provide load balancing and is poorly scalable, providing only

syntactic interoperability. It is complex, difficult to learn, and difficult to adopt

and use [48]. The basic HLA standard does not support multi-level or hierarchi-

cal federations but implements all federates at one level as a single federation.

It includes no means of inter-federation communication, and the conversion of a

complex hierarchical structure into a flat one introduces several issues regarding

data exchange, security, and re-usability [127]. It does not deal with the issue

of information hiding, and the flat structure is not adequate to model complex

system with hierarchies. Some federates might not require certain information,

and due to subscription of federates for common data, it is difficult to distinguish

among different copies of data [32]. Extra checks are needed to validate the source

CHAPTER 2. BACKGROUND AND MOTIVATION 39

of data that greatly degrades the performance of a federation. Renaming data

can easily resolve this situation but requires modifications in code that damage

re-usability. Kim and Kim [127] argue that these issues can be easily resolved if

modular and hierarchical modeling methods are adopted. The Literature has a

wide range of both flat and hierarchical HLA extensions to cope with these issues.

However, in this work the discussion focuses on hierarchical solutions that are used

to manage complex models.

According to Zhang et al. [244], in a traditional HLA TM as shown in Fig-

ure 2.10(a), an RTI computes the LBTS values for all the participating federates

by collecting their logical times. It explicitly grants permission to each federate

for its time advance. Being a centralised component, RTI might become the bot-

tleneck of the system in terms of both computational complexity (with an increase

in number of federates) and overhead of messages. Therefore, RTI based federa-

tions are not scalable and could suffer from performance degradation. Zhang et

al. [244] presented a two-level TM mechanism for HLA based DVEs to overcome

these issues, and it is presented in Figure 2.10(b). It divides the federates in to sev-

eral Federate Groups (FGs) where each FG has an additional component called

FGTimeManager that is responsible for the time advance of its federates. RTI

provides communication between FGTimeManagers [244]. It greatly decreases

the computation load and intensive communication in an RTI, but it introduces

an additional level to TM that further increases complexity. It still depends on a

centralised RTI to obtain an integrated simulation environment.

(a) (b)

Figure 2.10: Illustration and comparison of [244] (a) traditional Time
Management, and (b) two level Time Management;

According to Myjak et al. [155], a federation community is a group of federations

CHAPTER 2. BACKGROUND AND MOTIVATION 40

and RTIs working together to achieve a common goal. A hierarchical federation is

a special type of a federation community in which federations are organised in a hi-

erarchy, and a federation acts as a federate in an upper-level federation. The Liter-

ature shows a number of attempts to provide interoperability between federations

to form federation communities, including Federation Gateway, Proxy/Bridge Fed-

erate, RTI Broker, and RTI-to-RTI Protocol [32, 156]. The first two approaches

provide solutions at the application level while the other two may require system

level modifications. Only the first two approaches are examined here.

A Federation Gateway, as shown in Figure 2.11(a) is a separate process inter-

connecting two or more federates of different federations and performs translation

among federations. It can be used for both interoperability among HLA compliant

federations, or between an HLA federation with a legacy simulation protocol such

as DIS and ALSP [32]. It has the capability to provide state information from

one federation to another and filter out sensitive information, thus performing

information hiding [68].

(a) (b)

Figure 2.11: Illustration of [32, 156]: (a) Gateway Architecture; (b)
Proxy Architecture.

A Proxy Federate, as shown in Figure 2.11(b), is a federate that is associated

with more than one federation simultaneously. It requires multiple interfaces to

communicate with different RTIs. It performs some similar functions to a federate

gateway such as data transformation. However, it does not provide information

hiding and cannot be trusted by the federations.

Cai et al. [32] presented a hybrid approach called the hierarchical federation ar-

CHAPTER 2. BACKGROUND AND MOTIVATION 41

Figure 2.12: Hierarchical federation architecture [32].

chitecture by combining both gateway and proxy mechanisms and it is presented

in Figure 2.12. Federates in a federation interact with each other by a dedicated

RTI session. However, they interact with federates of other federations through

gateway federates. The gateway federates constitute a gateway federation where

their interaction is managed by a dedicated RTI session which filters confidential

information and improves security and interoperability [31, 32]. However, it re-

quires additional interfaces and the structure is very complex. It has potential

performance issues because it places no restrictions on levels in a hierarchy.

Figure 2.13: Distributed Federate Proxy architecture for hierarchical
federation communities [41].

According to Cramp et al. [41], a Federate Proxy (FP) is the simplest architec-

ture for inter-federation communication. However, it might not be an ideal data

filter for geographically distributed simulation, being a single local process. Fur-

thermore, it handles a single federation with a flat orientation. To minimise the

traversal of potentially large distances, Magee et al. [144] presented the concept

CHAPTER 2. BACKGROUND AND MOTIVATION 42

of Distributed FP (DFP). Cramp and Oudshoorn [42] further extended it for the

hierarchical federation communities. They proposed splitting a FP into a number

of different components where each is assigned and processed local to a federation.

These components are called DFP Components (DFPCs) which are linked together

with the help of tree nodes called SimNodes, thus forming a hierarchical federation

community. Each SimNode represents the root of a sub-federation community and

manages communication between its child nodes. It also communicates with its

parent node if one exists. This architecture is presented in Figure 2.13. However,

hierarchical architectures impose additional LBTS constraints on TM services to

determine the correct order of execution for temporal aspects of a system [41].

These constraints are applied to system components that are federates, DFPCs,

RTIs, SimNodes, and a root SimNode (see Figure 2.13). Cramp et al. [41] con-

cluded that the LBTS value of the root SimNode is the earliest possible timestamp

assigned to a message generated by any federate in the entire hierarchical com-

munity. This implies that time advance decisions are made by the ultimate root

SimNode. We believe that this mechanism is too complex and might introduce

longer delays, making it unsuitable for real time systems in that it might block

the whole system for a time advance. The whole simulation might be stopped if

the root SimNode crashes.

Figure 2.14: Components of the extended HLA architecture [126].

Kim and Kim [126] argue that hierarchical models are essential to simulate large

complex systems, although the methods described above are temporary solutions.

These require additional interfaces that are not part of the RTI specification and,

therefore, it is difficult to achieve interoperability among the RTI systems de-

veloped by different companies. An interoperability protocol based on an open

messaging is under development but its target implementation is flat. According

CHAPTER 2. BACKGROUND AND MOTIVATION 43

to Kim and Kim [126], to improve overall performance of an RTI, hierarchical

federations need to be supported by an RTI itself. They presented a hierarchical

extension to HLA to incorporate hierarchical federations (see Figure 2.14) among

federations based on an inspiration from the formalism of PDES [243]. The PDES

characterises hierarchical and modular specifications of discrete event systems.

The same authors, developed extended HLA services called Federation Execution

(FedEx) processes to manage hierarchical federations [126]. Each federate com-

municates with its parent FedEx process and a FedEx process communicates with

both a FedEx (which might be either a child or a parent) and the federate processes

as shown in Figure 2.14. A FedEx process acts as a federate in an upper-level fed-

eration and is called a representative federate. The current time of a representative

federate (current LBTS) is the minimum of federate time plus lookahead values

among the participating federates. Therefore, a message generated by any feder-

ate would have a timestamp value greater than, or equal to, the federation time.

For the realisation of a hierarchical HLA, they proposed two possible implemen-

tations of hierarchical RTI: FedEx Processes, and fully distributed federations.

FedEx processes handle federation-related services that include synchronisation of

known federates and data exchange. The functionality and relation of federates is

simple, but it can potentially introduce longer delays because no limits are set on

the depth of FedEx processes in a hierarchy. The second approach distributes the

RTI functionality among federates and avoids FedEx processes and extra levels in

a hierarchy. However, it complicates the design of RTI libraries and is difficult to

manage [126, 127].

(a) (b)

Figure 2.15: Illustration of implementation for [127] (a) Federation
Execution Processes, and (b) fully distributed federates.

CHAPTER 2. BACKGROUND AND MOTIVATION 44

It is believed that by using the inherent properties of VWs, the second imple-

mentation option could be easily utilised, with a restriction on the number of

interacting federates. This eliminates the management issues in existing P2P sys-

tems. Motivating factors, together with mechanisms to achieve the goals set for

our synchronisation approach, are presented next.

2.3.1 Motivation and goals of the consistency approach

This work also studied and investigated the current TM systems that are used to

get a consistent view of the overall virtual space.

PADS systems basically developed for games and simulation environments are

scalable and provide better interactive user experience. They have a success-

ful history, but they put limits on the application domain and compromise on

consistency to achieve improved performance. Therefore, they face issues with ap-

plications of a conservative nature such as e-business applications. The majority

of existing synchronisation mechanisms are implemented with either a centralised

or a distributed approach. They perform well with small and medium scale envi-

ronments, but are not suitable for large scale continuous spaces such as VWs. The

existing hierarchical mechanisms are flexible but complex, and introduce longer

delays because of dependencies among their components when they are used to get

a global consistent space using conservative approaches. Centralised approaches

to manage hierarchical structures block the activities of the whole space during

certain operations such as a time advance. The complexity and, thus, the imple-

mentation cost is too high for hierarchical structures.

Current VWs rely on conventional web techniques for e-business applications on

the Internet. The limits on the application domain greatly weakens the claim of

developers of these worlds that they are evolving towards a future 3D web. The

nature of VWs is different to games and simulation environments, and both la-

tency and consistency are of prime concern. An individual or an activity is only

affected by the events in their neighbourhood. According to our knowledge, there

is no specific synchronisation method dealing with VWs of this nature. To cope

with the issues with existing mechanisms and to incorporate conservative appli-

CHAPTER 2. BACKGROUND AND MOTIVATION 45

cations in VWs, we developed a decentralised consistency management approach

in this work. It is important to mention that this consistency approach applies to

hierarchical models based on the JoHNUM split strategies [61].

The following goals are set and expected to be achieved through our decentralised

synchronisation approach:

• to use a decentralised and local control,

• to use a constrained communication model,

• to remove intermediate points, and thus reduce delays and system complex-
ity,

• to reduce implementation cost and improve performance,

• to avoid blockage of the overall system, and

• to incorporate conservative applications in VWs.

It is believed that a simple but flexible synchronisation approach can be devel-

oped by adopting a constrained P2P communication model (based on inherent

properties of VWs) to maintain a consistent view of dynamic but constrained

hierarchical models [61]. By adopting decentralised control with a limited num-

ber of interacting servers, a system potentially outperforms both centralised and

distributed systems. A server with additional functionality can take purely local

decisions (such as a time advance) in direct consultation with the servers that host

adjacent regions. It has the potential to maintain the traditional constraints and

guarantee that all events are processed in their temporal order. This potentially

solves the issue of system blockage, thus allowing different groups of people to

carry out their activities. It greatly reduces communication overhead, complexity,

and delays by avoiding the intermediate points (hops) compared with traditional

distributed and hierarchical mechanisms based on conservative approaches. It is

flexible with reduced implementation cost and is very likely to improve perfor-

mance.

2.3.2 How Consistent Virtual Worlds are achieved

This section shows how our system achieves a consistent state among players based

on time information of only immediate neighbours that might possibly be handled

by a hierarchical infrastructure at different levels in a hierarchy.

CHAPTER 2. BACKGROUND AND MOTIVATION 46

This decentralised synchronisation approach uses the concepts of HLA for con-

servative discrete event simulation and exploit them to hierarchical models in a

P2P fashion with a constrained communication model. The logical time, LBTS

and Lookahead values work in a traditional way, but functionality of the RTI is

distributed among the federates and each federate has the capability to interact

with the federates surrounding it. Each federate processes the events against its

LBTS value (thus guaranteeing processing of safe events) which is the minimum

among the time information (Current LBTS + Lookahead value) of adjacent fed-

erates. Timestamped messages are delivered in an order that guarantees that

messages will never arrive in a federate’s past. This synchronisation approach and

proof-of-the-concept simulation are presented in detail in chapter 4.

2.4 Open Source VW Development Frameworks

Open sourcing has decreased the development time and cost remarkably by re-

using existing software modules and components to develop new solutions. It

has especially provided a useful way for the research communities to implement

and test their novel ideas. This section presents a number of parameters and

their corresponding filters that we used during a survey to select the most suit-

able framework for the implementation of our work. A total of twenty-two frame-

works were studied: Second Life (SL) [137, 189, 201], Croquet [43, 44], Maverik [99,

147], Arianne [109, 234], Beyond 2 [5, 110], BZ Flag [228, 235], Quack II [104, 116,

183], Genecys [88, 89], Massiv [145, 146], Crossfire [229, 236], FreeTribes [112], net-

Panzer [158], Irrlicht Engine [113, 237], WarZone 2100 [117, 239], Janthus [115],

Isotope [114], Argentum Online [108, 220], Diamonin [111], WorldForge [231, 240],

OpenArena [230, 238], OpenCobalt [169, 170] and OpenSimulator (OS) [172, 177].

Details of these frameworks are beyond the scope of this work and are, therefore,

not provided.

Parameters that were used to evaluate these frameworks against our requirements

are: Architecture, Concurrency, Status of the Project, Documentation and Help,

Operating System, Development Language(s), Level of open sourcing, the efforts

required to implement our research, and Persistence. An iterative evaluation cri-

terion is applied to these parameters in the order of presentation with their corre-

CHAPTER 2. BACKGROUND AND MOTIVATION 47

Parameter Name Filter Iteration

Number

Architecture Allow Client/Server and CMS infrastructures (Grid) 1

Concurrency Allow Multiuser/Massive Multiplayer systems 2

Project Status Allow Complete and/or projects under further development 3

Documentation and Help Allow those having forums, IRCs, Documentation and a Wiki 4

Operating System Windows and Linux 5

Development Language(s) Allow any combination of C/C++, C#, Java, and Python 6

Level of Open Sourcing Allow complete framework and games/demos 7

Efforts Required Allow those that require minimum or average efforts 8

Persistence Allow only persistent infrastructures 9

Table 2.1: Parameters and their corresponding filters

sponding filters , as shown in Table 2.1. This process rejected even state-of-the-art

projects if they were unable to fulfill one criterion or the other. For simplicity,

frameworks eliminated in each step are presented in Table 2.2

The filter for architecture (iteration 1) allowed only those projects that were

based on CS and CMS architectures. It rejected frameworks based on P2P ar-

chitectures, and those that were not applicable to any architecture. For example,

Croquet and Isotope are rejected for being P2P environments, and Maverik and

Irrlicht Engine for their specialised natures. P2P systems are not suitable for

real time graphics applications and the specialised softwares cover very narrow

domains. Therefore, a developer needs to design both a server and a client in

addition to a communication infrastructure. The second iteration (iteration

2) eliminated none of the remaining environments as all the remaining infrastruc-

tures are multiplayer in nature. Maverik is the only single user environment but

it is already removed in the first iteration. However, some environments, such as

WarZone, provide both single and multi-user environments. Though the develop-

ment of an environment using open source components minimises both time and

cost, it is convenient and easy to work with a project if it is alive and supported

by a dedicated community of developers. Therefore, the next two iterations

(iterations 3 and 4) considered the projects having their source code available for

the basic components of both the infrastructure and games. Furthermore, envi-

ronments supported by a number of ways such as Documentation, Forums, IRCs,

Mailing Lists and a Wiki are the most favourable choices. Janthus and Genecys

CHAPTER 2. BACKGROUND AND MOTIVATION 48

were removed for providing very little documentation, and Massiv for being a dead

project. Moreover, these projects offer poor support for the developers. The op-

erating system filter (iteration 5) allowed those projects that run over Linux

or Windows. Linux is best for development and Windows for easy and friendly

interfacing. The remaining projects all run over both or at least one of these op-

erating systems and, therefore, none is removed in this iteration. The criteria

for development language(s) (iteration 6) considered the integration power,

ease, and available expertise and help in our organisation. This step permitted

those projects that are solely or partially based on any set of C, C++, C#, Java,

and Python. Level of open sourcing filter (iteration 7) discarded SL which is

state-of-the-art in VWs. It is a commercial infrastructure and most relevant to

our intentions; however, only the viewer of the infrastructure is open source. The

required efforts parameter (iteration 8) filtered out OpenArena for the huge

effort required as it provides very basic functionalities, and one needs to design

both server and client modules. Persistence (iteration 9) discarded most of the

game development environments because they are normally not persistent and fol-

low pre-defined rules from the start each time. Some commercial games, such as

EverQuest and World of WarCraft provide persistence, but still follow pre-defined

narrations. Furthermore, their source codes are not available.

The filtering process returned three frameworks: Arianne, WorldForge, and

OS. This process discarded most well-known and relevant frameworks due to

their limitations. Isotope implements a similar concept presented by SL exten-

sion. However, it is no longer maintained and only a little documentation is

available for help. OS is the most relevant framework to this study that imple-

ments the extended architecture of SL, and therefore provides the basis required

for the implementation of our work. Therefore, it was selected for the prototype

development of our work.

2.5 Conclusions and Future Work

This chapter presented a detailed analysis of the existing scalable and consistent

VW development strategies. It examined the underlying technical infrastructures

CHAPTER 2. BACKGROUND AND MOTIVATION 49

Criteria Eliminated Frameworks

Architecture Croquet, Isotope, Maverik, Irrlicht Engine

Concurrency None

Project Status Massiv

Documentation and Help Janthus, Genecys

Operating System None

Development Language(s) None

Level of Open Sourcing SL

Efforts Required OpenArena

Persistence Beyond 2, BZ Flag, Quak II, Crossfire, FreeTribes, netPanzer

WarZone 2100, Argentum Online, Diamonin, OpenCobalt

Table 2.2: Summary of filtering process showing eliminated frame-
works

that are used to host VWs. It determined that Grid infrastructures are best for

computationally intensive jobs, but that P2P infrastructures are more scalable.

Hierarchical infrastructures are well-suited to model complex environments but

they have no restrictions on the levels in an RMT. It makes it difficult for these

worlds to perform better in terms of scalability, especially when they are used

to manage conservative applications. Existing mechanisms for both scalability

and consistency have performance issues when used for the VWs because they

are primarily developed for game and simulation environments. This chapter

also identified the issues in existing systems and presented the motivation for the

work undertaken in this thesis. It also outlined the way to achieve the goals set

for this study. It presented a short comparison of a number of VW development

frameworks and identified OS as the most appropriate framework for the prototype

development of our work.

Chapter 3

Scalable Virtual Worlds

In this chapter, the Joint Hierarchical Nodes Based User Management (JoHNUM)

infrastructure for scalable VWs is presented. It describes the proposed partitioning

method, a number of assignment strategies for load distribution, and a merging

mechanism. Simulation Results in MATLAB compare it with a dynamic game

middleware called Matrix [13] for evaluation purposes. It is demonstrated that

it reduces the number of levels in a Resource Management Tree (RMT), and

decreases the number of times a user is interrupted during a session.

This chapter further discusses the assignment phase of the JoHNUM infrastructure

in more detail and presents the Aggregate Region Assignment (ARA) algorithm for

achieving a fair distribution of load. The basic aim is to minimise resource under-

utilisation, and reduce communication and implementation costs by combining

individual regions into larger contiguous areas. Simulation results demonstrate

that it works well with small, medium, and large scale worlds. An abstract model

is used to identify the communication and implementation overhead reduction

through this algorithm. This chapter is based on our published work [60, 61, 64]

on this topic.

3.1 The JoHNUM Infrastructure

This section describes the components of the JoHNUM infrastructure and the way

it achieves its goals. It also provides a proof-of-concept simulation to evaluate and

50

CHAPTER 3. SCALABLE VIRTUAL WORLDS 51

compare it with Matrix.

3.1.1 Introduction

This work assumes a geographically distributed workspace with a unified user

view that is processed by a Grid infrastructure. Initially, each geographic location

starts with a server that simulates approximately the same content as other loca-

tions. In addition, each server handles no more than a number of users described

as Maximum Server Capacity (MSC). Furthermore, the world is approximately

square-shaped and a regular square pattern is followed for splitting the overloaded

regions. Each server continuously monitors the workload for the assigned region,

and splits it into a number of smaller regions in the case of excessive load. Local

decisions are made by using a split factor, named the Region Split Factor (RSF).

The number of smaller regions are determined by RSF 2 for RSF > 1, while the

boundaries are calculated by considering the height and width of the VW against

the RSF. The proposed algorithm first determines the RSF value that eases the

load and then splits the region accordingly. It starts with an initial RSF value of 2

giving four regions, but the value is incremented on the basis of players’ distribu-

tion yielding more smaller regions as explained later with the help of Figures 3.3

and 3.4. The proposed partitioning algorithm is illustrated in Figure 3.1 showing

that Server 1 and Server 4 divide their corresponding regions into four while Server

2 divides its assigned space into nine smaller regions. However, it could divide the

world into a larger number of smaller regions (such as sixteen or twenty-five) but

against a boundary condition to ease the load in case the crowd assembles at a very

small space. The load in Server 3 is normal and, hence, no split occurs in this case.

The JoHNUM infrastructure comprises three components: Partitioning, Assign-

ment (Load Distribution), and Merging. Partitioning is hierarchical in nature and

is triggered by a regional server as its capacity exceeds the MSC. Figure 3.2 shows

a number of possible splits into grids of 2×2 and 3×3 sub-regions in a two-level

hierarchy for different geographic servers. A region representing an un-partitioned

but varied size of space is divided during a split operation if it is not the ultimate

space that cannot be further partitioned. The concept of aggregate assignment

CHAPTER 3. SCALABLE VIRTUAL WORLDS 52

Figure 3.1: Abstract view of JoHNUM partitioning algorithm [61].

CHAPTER 3. SCALABLE VIRTUAL WORLDS 53

is used to minimise resource utilisation and communication between the servers.

Moreover, it tries to achieve a fair distribution of load between the two servers

by combining adjacent regions and avoiding the diagonal ones. A regional server

that triggers a split and assignment becomes the parent of the new server. The

partitioning algorithm developed in this study is simple, and better performance

is achieved by using intelligent assignment strategies. Partitioning and assignment

are two different concepts and two terms are introduced to highlight their appli-

cability. The aggregate assignment is termed “provisional assignment”, which

maintains the identity of individual smaller regions, and at a later stage, triggered

by increasing load, the aggregates are re-assigned until each server is handling

a single smaller region termed “permanent assignment”. At this point, the

smaller regions are further subdivided into yet smaller regions unless these are

too small for subdivision. We describe it as a boundary condition. The terms

split and partitioning are used interchangeably in this work, and mean dividing a

region into a set of smaller regions.

Figure 3.2: Illustrating two-level splits with various combinations at
different geographic locations.

3.1.2 JoHNUM Partitioning

The basic JoHNUM partitioning algorithm works as follows. Each server contin-

uously monitors total players against the MSC, and applies a greedy approach

that divides the space into RSF 2 smaller regions in case of excessive load. The-

CHAPTER 3. SCALABLE VIRTUAL WORLDS 54

oretically, this eases the load but it is not always practically possible due to the

unpredictable nature of the users; for example, if we assume that the cases shown

in Figure 3.3 consider the MSC of nine players and the server triggers a split as

the tenth player enters the region. Moreover, the solid lines show actual splits and

the dashed lines represent prospective regions only. The server divides the world

into four regions if the players’ distribution is uniform, as shown in Figure 3.3(a).

However, Figure 3.3(b) highlights a hotspot scenario that fails basic JoHNUM

partitioning in order to ease the load.

(a) (b) (c)

Figure 3.3: Illustration of JoHNUM Partitioning with uniform and
hotspot scenarios: (a) a split of uniform scenario into 4 smaller regions;
(b) highlighting a hotspot that fails basic JoHNUM partitioning; (c) a
split using Players Considered JoHNUM Strategy that splits a region
into 9 smaller regions.

Players Considered JoHNUM partitioning solves this issue by considering player

density in each prospective region before splitting. It increments the RSF until

the player density in each prospective region is below the MSC. The region is split

once the final RSF value is determined, which results in more smaller regions.

Figure 3.3(c) illustrates the split of hotspot scenario into nine regions instead

of four, as shown in Figure 3.3(b). In the remainder of this work, JoHNUM

partitioning is referred to as Players Considered JoHNUM partitioning. Figure 3.4

shows how the system splits the space into sixteen smaller regions when it failed to

ease the load, by dividing it into four and nine sub-regions for the same example.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 55

(a) (b) (c)

Figure 3.4: Illustration of JoHNUM Partitioning in to 16 smaller
regions: (a) highlighting a hotspot that fails to ease the load with RSF
value 2; (b) highlighting a hotspot that fails to ease the load with RSF
value 3; (c) highlighting a split into 16 smaller regions.

3.1.3 JoHNUM Assignment/Load Distribution

JoHNUM Assignment comprises two basic strategies based on individual and ag-

gregate assignments. Each of these has its benefits and limitations. To eliminate

the limitations in basic strategies, a third strategy is devised which achieves bet-

ter performance, as discussed later. Basic assignment strategies are described as

follows:

JoHNUM Assignment Strategy 1 (JAS1): assigns each smaller region to

a different server. It selects n-1 servers and assigns n-1 smaller regions to them

while keeping the nth with itself.

JoHNUM Assignment Strategy 2 (JAS2): applies aggregation at each step

in the assignment and tries to balance the load as much as possible. It first aggre-

gates smaller regions into two groups and then selects another server for sharing

its load with it in each iteration.

JAS1 is the most simple and flexible strategy, but it yields significant load im-

balance. It might assign regions to servers having no players at all and greatly

increases resource utilisation and communication overhead. JAS1 obtains lowest-

level RMT, which we believe helps to improve consistency and interactive user

experience. JAS2 applies aggregation at each stage during assignment and re-

CHAPTER 3. SCALABLE VIRTUAL WORLDS 56

Figure 3.5: Illustration of JoHNUM Assignment Strategy 2 (JAS2):
It can be seen that the levels in each assignment step are increased with
the introduction of additional players (3 levels in this case).

CHAPTER 3. SCALABLE VIRTUAL WORLDS 57

quires little effort to re-assign provisionally assigned regions to a new child server

in case of further excessive load. It achieves better resource utilisation and reduces

communication overhead. However, it increases the number of levels in the RMT,

as illustrated in Figure 3.5 with a simple example that assumes the MSC of four

players. Here, it is assumed that white and grey coloured solid circles represent

permanent and provisional assignments, while white and grey coloured dotted cir-

cles characterise a unified view of the world and intermediate logical processes

for the assignments, correspondingly. A region is represented by a square in the

diagram. Aggregate assignment tries to balance the load as much as possible be-

tween the two servers at any point while maintaining contiguous and regular areas

for allocation. This issue is investigated in detail further in section 3.2 by pre-

senting a number of aggregation strategies and an aggregation algorithm. JAS2

selects a new server in each assignment phase and makes it a child of the assign-

ment server, thus increasing the RMT levels. RMT levels are greatly reduced

if we modify server management by making a new server the child of the server

that initiates partitioning instead of an assignment. This strategy (named JAS3)

achieves better results and is explained in Figure 3.6 with the same example and

assumptions used for JAS2. However, it has suppressed the details of intermediate

logical processes for the assignments. JAS3 is similar to JAS2 in partitioning but

only different in the assignment phase.

3.1.4 JoHNUM Merging

The JoHNUM merging algorithm implements the reverse process to partitioning.

A server triggers merging when it observes a decrease in the assigned players’

density. Both parent and child can initiate the process. When a server experiences

a decline in its assigned capacity, it asks child nodes for their loads and re-computes

the load. It revokes some load and releases extra resources to minimise resource

under-utilisation against a MergeCapacity. MergeCapacity is made much smaller

than the MSC to avoid immediate splits. The child server asks its children for

their load, if any, and the re-computation is performed in a bottom-up fashion. In

case a child detects reduction in its assigned capacity, it asks its parent server for

the load and determines the cumulative load. It returns its load if the cumulative

CHAPTER 3. SCALABLE VIRTUAL WORLDS 58

Figure 3.6: Illustration of JoHNUM Assignment Strategy 3 (JAS3):
It should be noted that the levels in this strategy remains the same (1
level) for this particular example in comparison with JAS2.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 59

load is less than the MergeCapacity.

3.1.5 Simulation Setup and Assumptions

JoHNUM infrastructure is evaluated through simulation in MATLAB. A world is

represented by an n×n matrix. Experiments have been performed with worlds of

different dimensions, but this work presents and discusses the results of only a few

of those due to their similar outcomes. Table 3.1 summarises the parametric values

considered for each experiment including dimension, player distribution, number

of players initiating partitioning, and the MSC. Instead of introducing additional

players at lower levels, the MSC of each server is decreased to trigger the algorithm.

MSC was reduced four times for each experiment and the reduction pattern is

provided in the far right column of Table 3.1 from left to right. L0 represents

the initial value of MSC. We assumed that the last reduction (represented as L4)

reaches the boundary condition and stops further partitioning. It is also assumed

that a server triggers the partitioning algorithm as the number of players exceeds

the MSC.

Experiment Dimension Player Players that MSC Reduction

Number Distribution initiate (L0) (L2R):

Partitioning L1:L2:L3:L4

1 8*8 Uniform 33 30 20:10:8:4

2 8*8 Uniform 31 30 20:10:8:4

3 8*8 Hotspot 41 40 30:15:8:4

4 18*18 Hotspot 159 150 100:75:50:25

Table 3.1: Experimental assumptions for the experiments

Being a dynamic infrastructure, JoHNUM is compared with a dynamic game mid-

dleware, called Matrix, that has demonstrated better performance over previously

published static and dynamic mechanisms. The following two strategies of Matrix

are used for comparison with JoHNUM strategies:

Matrix Strategy 1 (MS1): assigns minimum load to the newly selected server

and the existing server maintains most of the load.

Matrix Strategy 2 (MS2): uniformly distributes the load and shares exactly

half of the load with a newly selected server.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 60

The experimental work used a number of metrics for evaluation purposes, which

are: Number of Regions, RMT Levels, Resource Utilisation, Degradation of Inter-

active User Experience, and Communication Overhead.

Number of Regions: provides the total number of regions after splits at different

levels for the complete span of an experiment.

RMT Levels: represents the number of levels in an RMT, determined by con-

sidering the longest of the shortest paths from root to the leaf nodes.

Resource Utilisation: determines the maximum number of resources utilised to

simulate the whole world.

Degradation of Interactive User Experience: demonstrates the average num-

ber of times a user suffers from the splits.

Communication Overhead: outlines increase in communication (over the net-

work) between servers in response to splits.

Exp Algorithm Strategy Regions RMT Resource Degradation of

No. Levels Utilisation Interactive

User Experience

1 JoHNUM JAS1 16 2 16 2

JAS2 16 3 9 2

JAS3 16 2 10 2

Matrix MS1 11 5 11 4

MS2 10 4 10 4

2 JoHNUM JAS1 13 2 13 2

JAS2 13 4 10 2

JAS3 13 2 10 2

Matrix MS1 10 5 10 4

MS2 9 4 9 4

3 JoHNUM JAS1 16 2 16 2

JAS2 16 4 12 2

JAS3 16 2 12 2

Matrix MS1 12 5 12 4

MS2 12 4 12 4

4 JoHNUM JAS1 16 2 16 2

JAS2 16 3 8 2

JAS3 16 2 8 2

Matrix MS1 9 5 9 4

MS2 9 4 9 4

Table 3.2: Detailed evaluation summary of experiments for all
JoHNUM and Matrix strategies.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 61

3.1.6 Simulation Results and Gains

Table 3.2 presents a summary of the experiments for the first four parameters. It is

observed that the results are quite similar although each experiment was performed

with completely different specifications. Communication cost is discussed but not

computed at this stage because both the mechanisms used almost the same number

of resources for each experiment. However, it is a major metric during a scalability

process and is computed during the real implementation of this work in chapter 7,

in terms of increase in number of inter-sim crossings as a system scales. Evaluation

results for the number of regions, RMT levels, resource utilisation and degradation

of interactive experience between different strategies of JoHNUM and Matrix are

graphically illustrated in Figures 3.7(a)-(d) respectively.

(a) (b)

(c) (d)

Figure 3.7: Comparison of all JoHNUM and Matrix strategies for: (a)
total number of regions after the splits; (b) RMT levels; (c) Resource
utilisation; (d) Degradation of interactive user experience.

JoHNUM strategies divide a world into more regions than Matrix. Individual

region assignment (proposed in JAS1) demands more resources and, therefore,

CHAPTER 3. SCALABLE VIRTUAL WORLDS 62

results in resource under-utilisation. Furthermore, this strategy might assign re-

gions to servers without players. However, aggregate assignment is adopted to

solve this problem. JAS1 improves interactive user experience over Matrix. JAS2

applies aggregate assignment to eliminate the limitations of JAS1, but greatly

increases the levels in an RMT. However, the interactive user experience remains

the same as JAS1. Experimental results show that JoHNUM is more flexible and

performs better than Matrix both in terms of RMT levels and interactive user

experience. Moreover, JoHNUM selects fewer resources the same as Matrix by

using aggregate assignment and, therefore, also reduces communication overhead

(inter-server communication). The management strategy used in JAS2 greatly de-

grades JoHNUM performance. However, a slight modification to the management

strategy (adopted in JAS3) outperforms Matrix and basic JoHNUM strategies.

JAS3 not only displays better performance and interactive player experience but

potentially keeps the communication overhead almost the same as that of Matrix.

The JoHNUM strategies, developed in this study, except JAS2, output RMTs of

two levels that show a significant improvement over Matrix strategies. However,

JAS2 results in a RMT of four levels at maximum while MS1 and MS2 produced

RMTs of five and four levels correspondingly. Similarly, resource utilisation in

JAS2 and JAS3 is almost the same as MS1 and MS2. Moreover, JoHNUM strate-

gies improve interactive user experience by 50 percent over that of Matrix due to

pre-processed partitions.

Experiment Algorithm Regions RMT Resource Degradation

Number Levels Utilisation of Interactive

Experience

1 JoHNUM 16 2 10 2

Matrix 10 4 10 4

2 JoHNUM 13 2 10 2

Matrix 9 4 9 4

3 JoHNUM 16 2 12 2

Matrix 12 4 12 4

4 JoHNUM 16 2 8 2

Matrix 9 4 9 4

Table 3.3: The evaluation summary of JoHNUM and Matrix

CHAPTER 3. SCALABLE VIRTUAL WORLDS 63

Summary

Simulation results show that JAS3 is a better strategy among the JoHNUM strate-

gies and MS2 gives better results than MS1 for Matrix. The rest of this work uses

the concept of JAS3 to manage a hierarchy of resources for JoHNUM infrastruc-

ture. Therefore, from now onwards, we use JoHNUM for JAS3 and Matrix for

MS2. Simplified experimental results for JoHNUM and Matrix are reproduced

again using the same metrics from Table 3.2, and their summary is presented in

Table 3.3. Best available results for number of regions, RMT levels, resource util-

isation and degradation of interactive experience for both JoHNUM and Matrix

are illustrated in Figures 3.8(a)-(d) correspondingly.

(a) (b)

(c) (d)

Figure 3.8: Comparison of JoHNUM and Matrix for: (a) Total num-
ber of regions after the splits; (b) RMT levels; (c) Resource utilisation;
(d) Degradation of interactive user experience.

Figure 3.8(a) shows that JoHNUM divides a world into more regions than Matrix.

It utilises almost the same resource as Matrix, as is shown is Figure 3.8(c) based

on the concept of aggregate assignment. JoHNUM outperforms Matrix both in

CHAPTER 3. SCALABLE VIRTUAL WORLDS 64

terms of RMT levels and degradation of interactive user experience, as illustrated

in Figure 3.8(b) and Figure 3.8(d), respectively.

3.1.7 Discussion

Proof-of-the-concept simulation only used splitting into four or nine smaller regions

based on the player distribution and obtains improved results over the traditional

hierarchical structures such as Matrix. JoHNUM helped to reduce the number of

levels in an RMT due to splitting a space into more than two regions, and improved

interactive experience due to pre-processed regions. The actual implementation

also has the benefit of transferring the smaller regions in an aggregate in turn,

which further improves the user interactive experience (this is further discussed

in chapter 7). Based on the fact that a region can even be divided into more

than nine regions, the levels in an RMT for JoHNUM would be further reduced.

It has the potential to reduce delays in hierarchical structures by reducing inter-

mediate points among the components. It would also increase the overall system

performance and user interactive experience.

3.2 Load Distribution

In this section, we examine the ARA algorithm and aggregation strategies which

try to balance the load between two servers as much as possible. It provides a set

of illustrations and simulation to evaluate its benefits.

3.2.1 Introduction

The ARA algorithm uses a number of aggregation strategies to distribute the

load in as balanced a way as possible between two servers. It combines only those

regions sharing physical boundaries, and no horizontal or vertical lines are allowed

to go out of one aggregate, into the other and back again. However, a diagonal

region is considered for aggregation if it shares boundaries with regions already in

one of the two sets of regions during the aggregation process. The main objective

is to avoid islands and peninsulas, and obtain two contiguous areas for assignment.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 65

It minimises transfers between servers when players move between regions. The

world is in the form of a tiled grid having square-shaped regions and obtained as

an output from the partitioning algorithm of JoHNUM infrastructure. The ARA

algorithm works from a starting point, named a root, in the set of regions to be

distributed. Keeping these restrictions in mind, the corner regions are chosen as

roots.

3.2.2 The Algorithm and Strategies

The Top Left (TL) and Top Right (TR) regions of the grid are selected as the

roots for this work. However, any combination of two consecutive corner regions

can be chosen which guarantees scanning all possible and unique combinations.

However, the strategies might require minor changes regarding directions with

different roots. Four strategies are proposed for each root, and these are presented

in Table 3.4. Nevertheless, the RSF value determines the number of strategies

required in each case. The first two strategies for an RSF value of 2, and all four

for an RSF value of 3 or greater, guarantee examining the entire set of unique and

valuable combinations when applied to both TL and TR.

Root initiating Strategy Aggregation strategy Applied for
scanning Number RSF Value of

Top Left Region 1 Left to Right, Row by Row 2, 3 and greater
(TL) (LRRows)

2 Top to Bottom, Column by Column 2, 3 and greater
(TBColumns)

3 Left to Right and Top to Bottom 3 and greater
(LRaTB)

4 Left to Right and Top to Bottom with 3 and greater
Diagonal Region (LRTBwDR)

Top Right Region 1 Right to Left, Row by Row 2, 3 and greater
(TR) (RLRows)

2 Top to Bottom, Column by Column 2, 3 and greater
(TBColumns)

3 Right to Left and Top to Bottom 3 and greater
(RLaTB)

4 Right to Left and Top to Bottom with 3 and greater
Diagonal Region (RLTBwDR)

Table 3.4: Summary of roots and their corresponding aggregation
strategies [60].

The proposed strategies deal with two sets of regions named Aggregate1 and Ag-

CHAPTER 3. SCALABLE VIRTUAL WORLDS 66

gregate2 during exhaustive aggregations. Aggregate1 and Aggregate2 are

coloured black and grey for illustration purposes in the diagrams used in this

work. Initially, Aggregate1 includes the root region while Aggregate2 holds the

rest of the regions. Each successive iteration of a strategy transfers one region from

Aggregate2 to Aggregate1, as shown in Figures 3.9(a)-(d) for an input matrix of

nine regions and root TL. However, different patterns are followed by the strategies

which are explained later for an RSF value of 3. Furthermore, it is observed that

some strategies repeat a number of combinations. However, the ARA algorithm

exploits a number of techniques to reduce the scanning process. Strategies 3 and 4

scan the rows and columns simultaneously by selecting one region in an iteration

from them in turn (see Figures 3.9(c)-(d)) compared with the first two strategies

which are visiting either rows or columns in a row-by-row or column-by-column

order. They add a number of valuable and unique combinations with (in strategy

4), or without (in strategy 3), considering the diagonal regions, as explained later.

Figure 3.10(a) outlines the first two strategies for an RSF value 2 and both roots

(TL and TR) with repetitions. Furthermore, a total of six unique combination are

possible in this case, as shown in Figure 3.10(b), and the repetitions are marked

as R and skipped.

(a)

(b)

(c)

(d)

Figure 3.9: Illustration of aggregation strategies of ARA algorithm
for root TL and an RSF value 3 for: (a) LRRows; (b) TBColumns; (c)
LRaTB; (d) LRTBwDR.

The LRRows strategy for root TL examines the possible combinations by visiting

the regions row by row, from left to right. It gives a total of eight unique combi-

CHAPTER 3. SCALABLE VIRTUAL WORLDS 67

nations (see Figure 3.9(a)). Similarly, TBColumns performs a column-by-column

scanning from top to bottom yielding six unique combinations (see Figure 3.9(b))

with two repetitions. RLRows and TBColumns strategies for root TR inspect the

regions row by row and column by column, from right to left correspondingly. The

third strategy for both roots (LRaTB and RLaTB) considers a single region from

rows and columns in turn, as shown in Figure 3.9(c), for root TL. It only defines

three unique combinations with a number of repeated ones (five in this case). The

fourth strategy (LRTBwDR) is similar to the third strategy but it reads the adja-

cent diagonal regions when the two regions sharing boundaries with it are already

in an aggregate. This is depicted in Figure 3.9(d) and it reads only one unique

combination with seven repeated aggregates. However, these strategies add more

unique combinations for bigger grids. The proposed technique can cutoff a num-

ber of repetitions if the aggregates initially consider regions of the first unique

combination (skipping the iterations for regions without players). Strategies for

the root TR can be visualised with the same approach with one exception, that

they move in the opposite direction.

Figure 3.10: Illustration of LRRows and TBColumns strategies for an
RSF value of 2 and both TL and TR.

Since a region can be divided into more than nine sub-regions, such as sixteen or

greater based on player orientation, we use Figure 3.11(a) and 3.11(b) to show how

strategies 3 (LRaTB) and 4 (LRTBwDR) are applied to a grid of sixteen smaller

regions. The first two strategies are straightforward and are not illustrated here.

The illustrations include repeated aggregates just for understanding purposes and

they are skipped by the ARA algorithm. Strategy 3 is illustrated iteration by

CHAPTER 3. SCALABLE VIRTUAL WORLDS 68

iteration in Figure 3.11(a), while Figure 3.11(b) illustrates strategy 4. This is not

explained further as the illustrations are self-explanatory. Larger regional grids are

also processed in the same fashion. However, it is noted that dividing into more

regions gives more unique combinations compared with 3×3 grid combinations of

the same strategies. The LRaTB strategy gives eleven unique combinations, with

only four repeated. Similarly, LRTBwDR also adds nine unique combinations,

with six repeated.

(a) (b)

Figure 3.11: The 4×4 regional grid illustration of root TL for (a)
LRaTB, and (b) LRTBwDR strategies.

The pseudocode of ARA is presented in Algorithm 1. It takes Roots[], Search-

Strategies, Players, RSF, and a Regional Players Matrix (RPM) holding player

density for the regions as input. It reads the corresponding strategies for an RSF

value and applies them in turn. The ARA algorithm performs an exhaustive search

to achieve fair distribution of load, and minimises the scanning process by avoid-

ing repetitions. It investigates the unique combinations and terminates if it finds

uniform load at any point. It also skips the remaining combinations of a strategy

if the observed difference for a combination is greater than the difference for the

previous combination. It is clear that the rest of the combinations for this strategy

cannot further achieve a better balance of load. The proposed algorithm main-

tains BestAggregate1, BestAggregate2 and BestDifference where BestDifference is

used for deciding best aggregates, and the rest hold the two sets of regions whose

difference is the minimum one. The proposed strategies and conditions greatly

CHAPTER 3. SCALABLE VIRTUAL WORLDS 69

reduce the effort of finding the best possible distribution of load, as illustrated

later in this chapter.

Algorithm 1 The Aggregate Region Assignment (ARA) Algorithm for Load Dis-
tribution
Require: Players, Roots[], SearchStrategies, RSF, RegionalPlayersMatrix
Ensure: BestAggregate1, BestAggregate2
1: Flag ← false
2: for i← 1 to Max(Roots[]) do
3: BestDifference ← Players
4: Strategies[]=Read corresponding strategies for the root considering the RSF Value
5: for j ← 1 to Max(Strategies[]) do
6: Initialise Aggregate1 and Aggregate2
7: Difference ← Players
8: while (All combinations are not visited) do
9: Determine Aggregate1 and Aggregate2 for each successive step as described by the strategy
10: if (Combination not yet visited) then
11: Compute AggregateTotal1 and AggregateTotal2
12: if (absolute(AggregateTotal1 − AggregateTotal2) > Difference) then
13: break
14: else
15: Difference ← absolute(AggregateTotal1 − AggregateTotal2)
16: end if
17: if (Difference < 2) then
18: Flag ← true
19: BestAggregate1 ← Aggregate1
20: BestAggregate2 ← Aggregate2
21: BestDifference ← Difference
22: break
23: else
24: if (Difference >= BestDifference) then
25: go to the next combination
26: else
27: BestAggregate1 ← Aggregate1
28: BestAggregate2 ← Aggregate2
29: BestDifference ← Difference
30: end if
31: end if
32: end if
33: end while
34: if (Flag == true) then
35: break
36: end if
37: end for
38: if (Flag == true) then
39: break
40: end if
41: end for

The ARA algorithm results in two sets of regions (BestAggregate1 and BestAg-

gregate2) and the server that initiates the split then assigns one set of regions to

the child server while keeping the other for its own processing. It minimises the

content un-availability time and reduces the number of players that suffer from a

transfer by sending multiple regions in an aggregate in turn (as in our implementa-

CHAPTER 3. SCALABLE VIRTUAL WORLDS 70

tion). In the worst cases, it must examine the entire set of possible and favourable

combinations for the corresponding strategies. The favourable combinations are

those that further reduce the difference and, therefore, must be examined while

maintaining regular and contiguous spaces.

(a) (b) (c) (d) (e)

Figure 3.12: Odd cases excluded by the ARA Algorithm. (a) Irregular
content distribution. (b) A case splitting an aggregate into two isolated
groups. (c) A case splitting an aggregate into three isolated groups. (d)
Aggregation with diagonals splitting an aggregate in 2 different isolated
groups while having no physical boundaries among the regions of the
other aggregate. (e) Aggregation with diagonal for RSF value 2 splitting
into two aggregates where regions in both have no physical boundaries
(each aggregate has isolated groups of one region each).

Motivation and Discussion

Two consecutive corner regions (TL and TR) have been used being roots that

have the potential to determine the complete set of valid combinations with our

aggregation strategies. It has a great impact on performance and load distribution.

The ARA algorithm uses these for load balancing while obtaining contiguous and

regular areas for assignment. The basic reasons for the selection of the proposed

roots and strategies include content visibility and disconnection, communication,

player migration and implementation concerns. These issues are relevant to each

other, and are explained with the help of Figures 3.12(a)-(e) by means of five

different cases. Content in these cases is divided into non-contiguous areas that

increase communication traffic and player migrations between servers. Moreover,

these increase implementation complexity as a server maintains isolated sets of

regions which are difficult to manage. A player requiring content information from

a neighbouring region needs to pass a request to the server and, in case a player

CHAPTER 3. SCALABLE VIRTUAL WORLDS 71

moves, they experience a number of disconnections and connections between the

same servers. Keeping these issues in mind, the proposed strategies and roots are

selected in order to achieve a fair distribution of load while maintaining regular and

continuous spaces. It minimises risks for the issues described above. An abstract

model discusses this issue with an assumed set of scenarios in section 3.2.4.

3.2.3 Simulation Results

Simulation Setup and Assumptions

A number of different cases are considered for illustrations in MATLAB and a

world is represented by an n×n matrix. The assumptions and parametric values

are summarised in Table 3.5, including dimension of the matrix representing a

world, player distribution, the MSC, and an RSF value for each case. We have

considered worlds of different dimensions and player distributions to obtain fair

results. The matrix dimensions and the MSC values which are selected can be

used with RSF values of both 2 as well as 3. Hotspot scenarios are common in

VWs and are considered for obtaining RSF values greater than 2. It is assumed

that as player density exceeds the MSC, the server triggers the partitioning algo-

rithm. Therefore, the number of total players is one more than the MSC in each

case.

Case Dimension of VW Matrix Distribution MSC RSF

1 4*4 Uniform 7 2
2 4*4 Uniform 7 2
3 6*6 Uniform 8 2
4 6*6 Hotspot 8 3
5 12*12 Uniform 30 2
6 12*12 Hotspot 30 3
7 18*18 Uniform 75 2
8 18*18 Hotspot 75 3

Table 3.5: Assumptions and parametric values for the illustrations.

The JoHNUM partitioning algorithm takes a world as an input, and returns an

CHAPTER 3. SCALABLE VIRTUAL WORLDS 72

RSF value and the corresponding regions in the form of an RSF×RSF matrix.

This matrix is described as a Regional Players Matrix (RPM) representing the

tiled grid of regional players. Figure 3.13 presents the tiled grids for the worlds

used in this simulation study. Each grid shows the regions, their boundaries and

player distribution in different regions after splitting by the JoHNUM partitioning

algorithm. The ARA algorithm takes the RPM as an input. Roots and their cor-

responding strategies are applied in the order of presentation and step-by-step il-

lustrations are presented in Figure 3.14 and Figure 3.15. It skips repeated patterns

and terminates if uniform load is achieved at any stage. If the difference between

AggregateTotal1 and AggregateTotal2 is less than 2, it declares the achievement of

uniform load and terminates. It also skips the remaining combinations for a strat-

egy when absolute difference for a combination is greater than the difference for

the previous combination, because difference between the remaining combinations

increases in further iterations. Cases where the uniform load cannot be achieved,

it examines all favourable possibilities and determines the best aggregations. It

assures the best possible load distribution with contiguous patterns. It is worth

mentioning here that better load distribution may be possible, but not with one

of these chosen partitions.

Figure 3.13: Example worlds considered for illustration purposes being
presented as tiled grids of 4 and 9 regions with player density.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 73

Illustrations and Outcomes

Figure 3.13 shows the regions and their corresponding players for different exam-

ple worlds in the form of tiled grids. These worlds have been split into two sets for

their step-by-step illustrations. The illustrations of cases for RSF value 2 are de-

picted against the possible and unique combination in Figure 3.14 for a reference.

Similarly, the cases for RSF value 3 are illustrated by Figure 3.15. Figure 3.14

provides comprehensive information while Figure 3.15 skips the details due to the

large number of possible combinations. Three tags Repetition Skipped (RS),

Strategy Skipped (SS) and Cannot Improve (CI) are used to represent

skipping combinations at different levels of the algorithm and this starts with root

TL. The terms RS, SS and CI are used to show the three cut-off conditions. The

best aggregates are modified when an aggregation with better load distribution

than the stored one is achieved. Step-by-step illustrations are sketched from left

to right in all diagrams.

Figure 3.14: Illustrations of the proposed combinations and worlds
for an RSF value 2: (a) a complete set of possible combinations; (b)
a complete set of possible unique combinations; (c)-(g) illustrations of
worlds 1, 2, 3, 5, and 7 respectively.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 74

The first set of worlds for 2×2 regional grids are shown in Figure 3.14. World1

is illustrated by Figure 3.14(c) which skips two unique combinations, marked as

CI and SS. It achieves uniform load distribution by visiting the fifth unique com-

bination and terminates. World3 (see Figure 3.14(e)) is the same as world1 and

finds the uniform load when it scans the fourth unique combination. World2 (see

Figure 3.14(d)), world5 (see Figure 3.14(f)) and world7 (see Figure 3.14(g)) can-

not achieve uniform load and, therefore, they must search for all possible and

favourable combinations. However, the actual computations are greatly reduced

by the proposed filters. These cases (world2, world5, and world7) yield load distri-

butions of 5:3, 17:14 and 33:43 for BestAggregate1:BestAggregate2, consecutively.

Nevertheless, it is clear that some combinations, such as diagonals in world2 (see

Figure 3.14(d)) and world5 (see Figure 3.14(f)), achieve better distribution of load,

but these are not considered by the ARA algorithm due to the implementation

and performance issues. It can be observed that the cut-off conditions reduce the

aggregations considered by almost 50 percent, compared with the unique combi-

nations.

World4, world6, and world8 (second set of bigger worlds) are explained with the

help of Figures 3.15(b)-(d) respectively. Figure 3.15(a) provides a partial set of

strategies for both roots TL and TR. World4 achieves uniform load distribution

on the first iteration and terminates by returning total aggregates of 4 and 5

for the best aggregates. However, the remaining two cases examine the entire

set of combinations. Some of the information is not shown in the diagrams for

these cases, but the same approach as in Figure 3.14 is used. World6 and world8

return load distribution of 19:12 and 34:42 for BestAggregate1:BestAggregate2

consecutively. These worlds also include combinations that further improve load

balancing but they are not considered by our approach. It is observed that the

aggregations are further reduced for worlds divided into nine regions. Dividing a

world into much smaller regions achieves better distribution of load but introduces

a number of different issues that are discussed next.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 75

F
ig

u
re

3
.1

5
:

Il
lu

st
ra

ti
on

of
th

e
p
ro

p
os

ed
co

m
b
in

at
io

n
s

an
d

w
or

ld
s

fo
r

an
R

S
F

va
lu

e
3:

(a
)

a
co

m
p
le

te
se

t
of

p
os

si
b
le

co
m

b
in

at
io

n
s

sh
ow

n
p
ar

ti
al

ly
;

(b
)-

(d
)

Il
lu

st
ra

ti
on

s
of

w
or

ld
s

4,
6,

an
d

8
re

sp
ec

ti
ve

ly
.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 76

Discussion

In this section, the functionality of our ARA algorithm was demonstrated with the

help of a set of experiments. We performed additional experiments with different

sizes of regional grid with varied distribution of players which identified that the

ARA algorithm is flexible and is capable of managing worlds of different sizes

with different player distributions. Other than this, they provided no further

improvements and are therefore not included.

3.2.4 An Abstract Communication Model

In this section, we present a simple communication model to show how cases ex-

cluded by the ARA algorithm introduce extra burden in terms of communication,

implementation, and user migrations. This model uses three metric parameters

for an assumed and restricted number of cases: total number of shared bound-

aries between aggregates and the interaction capacity among players of regions

in different aggregates; total number of isolated regions to manage; and number

of connections and disconnections for a user. The cases discussed in Figure 3.12

are used for evaluation and comparison purposes. The diagonal case is the only

excluded case for a tiled grid of four regions (based on an RSF value of 2) and

is discussed for fair evaluation. This model assumes that a player of a region in-

teracts with up to four neighbouring regions. Moreover, it considers the following

example mobility patterns for a player:

Case1: A player at the top left region moving row-wise with an alternate left-to-

right and right-to-left pattern visiting every region.

Case2: A player at top left region moving column-wise with an alternate top-to-

bottom and bottom-to-top pattern visiting every region.

The excluded cases are compared with equivalent aggregates having a maximum

number of possible regions, but actual scenarios might achieve better results. The

evaluation results are provided in Table 3.6 showing that these cases share more

boundaries and, therefore, increase inter-server communication among regions in

case of communication. Our method significantly reduces communication and in-

teraction compared with the excluded cases. Excluded cases greatly increase the

CHAPTER 3. SCALABLE VIRTUAL WORLDS 77

implementation complexity by managing different isolated areas than the equiva-

lent aggregates defined by the proposed mechanism. Furthermore, for the selected

mobility patterns, the number of connections and disconnections in excluded cases

are more than the aggregates achieved by our aggregation strategies, except for

the cases shown in Figure 3.12(a) and 3.12(b). They achieve a slightly better

number of connections/disconnections but share more external regions and re-

quire implementation of more isolated regions. This communication model, with

a small number of cases, shows that the proposed algorithm reduces complexity

and greatly reduces communication and implementation cost while achieving load

in as balanced a way as possible. This is simply a justification for excluding the

cases that will have a bad communication behaviour.

Serial Case Number of Number of Number of

Number shared isolated disconnections

boundaries regions Case1/Case2

1 Figure 3.12(a) 5 2 4/2

Proposed equivalent aggregates 3 2 3/3

2 Figure 3.12(b) 6 3 6/2

Proposed equivalent aggregates 3 2 3/3

3 Figure 3.12(c) 7 4 4/6

Proposed equivalent aggregates 4 2 3/3

4 Figure 3.12(d) 8 5 6/6

Proposed equivalent aggregates 3 2 3/3

5 Figure 3.12(e) 4 4 3/3

Proposed equivalent aggregates 2 2 2/2

Table 3.6: Evaluation summary of the abstract communication model
for cases provided in Figure 3.12.

3.3 Conclusions

This chapter examined the JoHNUM infrastructure (to achieve scalability) that

is a vital part of our contemporary infrastructure for the development of scalable

and consistent VWs. It is evaluated with a number of experiments, and compared

with the game middleware called Matrix. Simulation results show that JoHNUM

reduces the RMT levels and increases interactive user experience.

CHAPTER 3. SCALABLE VIRTUAL WORLDS 78

It also examined the ARA algorithm to minimise resource utilisation and commu-

nication overhead, which achieves the best possible load distribution while main-

taining contiguous and regular spaces for assignments. It constitutes an essential

part of our JoHNUM infrastructure which handles its assignment component (also

called load distribution). Results from a large set of experiments show that our

load distribution algorithm is flexible and can be used with small, medium and

large scale VWs. It is seen that uniform load distribution is not always possible

due to player distribution, and to our proposed split and aggregation strategies.

In the worst cases, it examines the entire set of possible and favourable combina-

tions, although the proposed intelligent techniques greatly reduce the aggregation

process. In certain cases, it was observed that excluded cases can balance the load

better than the proposed strategies. However, they significantly increase commu-

nication between servers as well as complexity for handling isolated areas in an

aggregate.

Chapter 4

Consistent Virtual Worlds

This chapter presents a decentralised consistency management approach using a

constrained communication model based on the inherent properties of VWs. VWs

imitate the physical world where there is no direct effect from arbitrary events

on an entity, and entities are mostly affected by activities and events generated

in the neighbourhood. It uses a P2P approach in contrast with our JoHNUM

infrastructure, which maintains a space in a hierarchical order [61]. The restriction

on P2P communicating servers makes it simple and potentially very scalable.

This chapter illustrates the relevant concepts, and proof-of-the-concept simulation

shows that it maintains the traditional causality constraint. It is based on our

published work [63, 66] on this topic.

4.1 Introduction

Parallel and Distributed Simulation (PADS) environments and large scale VWs

normally utilise a number of resources to handle a vast amount of content and

a large number of interactive players. These infrastructures are normally dis-

tributed both at infrastructure and application levels. The scheme of partitioning

a virtual space and simulating it with a large number of resources makes these

world scalable but, at the same time, introduces key consistency issues. Consis-

tency management (alternatively called synchronisation or time management) is

the process of maintaining the temporal order of events to have a uniform view of

79

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 80

the environment. Therefore, scalable systems must carefully design a synchroni-

sation method by considering the application domain of the environment. Games

and special purpose VEs use a number of optimisation techniques and normally

compromise on consistency. However, VWs that claim to be a candidate for a

future 3D web need to accommodate a diverse set of applications including those

with a conservative nature. Therefore, using a relaxed synchronisation approach

might have potential problems to deal with VWs.

In this work, we propose a fully decentralised synchronisation approach for dy-

namic, and potentially hierarchical, models of scalable VWs with restricted com-

munication based on our JoHNUM strategies [61]. It is an integral part of our

contemporary infrastructure for scalable and consistent infrastructure. It is flexible

and considers the dynamic changes happening to the partitions that are handled

by the neighbouring servers. The basic aim is to incorporate conservative appli-

cations in VWs, thus making them much stronger candidate for the 3D web and

adapts the HLA TM for discrete event systems. The assumption of constrained

communication in conjunction with a fully decentralised approach potentially re-

duces complexity and delay with a decrease in the number of interacting servers.

It, therefore, improves interactive user experience. It is important to note that the

proposed synchronisation approach uses a flat infrastructure for direct communi-

cation between the servers that might be handling parts of a world at different

levels in a hierarchy, as shown in Figure 4.1 for a hierarchical model presented in

Figure 4.2.

4.2 The Proposed Synchronisation Approach

4.2.1 Introducing the time advance mechanism

The basic aim of this work is to obtain a consistent state of a given world. It

uses both flat (Figure 4.3 and Figure 4.4) and hierarchical models (Figure 4.5 and

Figure 4.6) to illustrate our decentralised approach and its relevant concepts. Fig-

ure 4.3, which represents a simple world of 1×4 regional grid, is used to introduce

the basic time advance mechanism used by our method. It shows two examples

with respect to the regions marked with a star to highlight their neighbouring

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 81

Figure 4.1: Illustrating neighbouring regions for the selected central
regions in the hierarchy presented in Figure 4.2.

Figure 4.2: Hierarchy of a dynamic hierarchical model based on
JoHNUM partitioning algorithm [61].

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 82

regions represented by circles. It gives an idea of the regions that must be con-

sidered for a time advance of a given federate. A circle highlights a federation

with respect to a federate with a star such as a federation controlled by federate

B having A and C as its neighbouring federates. Each named region provides its

current LBTS value, Lookahead value, the latest LBTS values of adjacent regions,

and the status of its Local Queue.

This mechanism considers the time information (current LBTS + Lookahead

value) of all the required federates to calculate a new LBTS value of a federate.

It exploits a similar approach to the basic HLA TM for discrete event simulation

systems. Figure 4.3 explains the time advance with an emphasis on executing

safe events for a federate B with an event A4 from federate A with a timestamp

four. The current LBTS value of federate B is three and to process this event, it

calculates a new LBTS value based on the LBTS values of adjacent federates. The

LBTS is the smallest among a set of LBTS values of adjacent federates (main-

tained as NRecord) and the timestamp of the smallest event in the LocalQueue.

The new LBTS value in this case is four, which allows B to execute the event with

timestamp four.

Figure 4.3: Illustration of the proposed synchronisation approach with
a constrained communication model.

4.2.2 Federate, Federation, and their time relation

The terms federate and federation are re-defined for a decentralised control and

a constrained communication model against the potential dynamic hierarchical

models. In this work, a federate is a server executing a region that could be

either a basic region or a bigger contiguous region. A federation is defined with

respect to a federate and is a collection of federates that share boundaries with it.

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 83

A federate can be involved in more than one federation.

Four different concepts are introduced that need to be carefully considered for

a mechanism using a fully decentralised synchronisation approach, due to their

potential impact on system performance. They are the basic time advance mecha-

nism, independent federations with no common federate, federations with a com-

mon federate, and temporarily blocked federations.

The time advance mechanism introduced in section 4.2.1 is the basic driving force

of our TM approach that uses a constrained P2P environment.

Our mechanism restricts the P2P infrastructure and there might be independent

federations with no common federates. Federations with no common federate,

therefore, have no direct effect on the time advance of each other.

Since a federate can be a part of more than one federation, there might be fed-

erations with common federates. However, this might, or might not, block the

federations sharing them.

The fourth concept is about federations that could temporary block the event

processing of each other. This situation occurs in those cases when an adjacent

federate for some reason is not up-to-date with other federates. However, being a

synchronous algorithm, our method has the potential to recover quickly from this

situation.

These cases are illustrated and explained in more detail later in section 4.2.4 with

the help of Figures 4.4(a)-(d) for flat models and Figures 4.5(a)-(c) and Figure 4.6

for hierarchical models. The next section discusses our TM algorithm, which

processes the events when they are safe and provides its LBTS to other federates

when it increases, even if no events are processed.

4.2.3 Time Management Algorithm

In general the federation associated with a federate must include all those regions

that might generate events which could directly affect the federate. Hence, each

federate participates in a number of different federations, and the functionality

of the RTI is distributed among federates. The concepts of LBTS and Looka-

head values are used to maintain the local causality constraint. Each federate in

the proposed mechanism processes its events when they are safe in consultation

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 84

with the adjacent federates. It is the central part of the mechanism and follows

a straightforward approach that is presented in Algorithm 2. Each federate also

provides its federate LBTS value to other federates in its federation and guaran-

tees never to generate events earlier than the federate LBTS. Hence, the local

LBTS is calculated as the minimum of the neighbouring federate LBTSs and the

earliest queued event (if any). The Lookahead is added to the local LBTS and

is then sent to its neighbours, if and only if, the LBTS increases. This definition

has a recursive nature and, especially at system startup, a number of updates

to the LBTS may occur before the local LBTS reaches the point where queued

events can be processed. A push strategy is used to send federate LBTS values to

adjacent federates with the aim of reducing potential overhead in communication

and minimising temporary blockage. A federate ensures that timestamped mes-

sages destined for a neighbouring federate are delivered before sending its LBTS

information thus guaranteeing that messages will never arrive in a federate’s past.

Being a conservative algorithm, it always considers a positive Lookahead value. It

achieves traditional guarantees and significantly reduces intermediate processing

elements (hops) and dependencies in hierarchical models by directly communicat-

ing with neighbouring regions.

Each federate executing Algorithm 2 allows a safe range of event processing based

on an LBTS value. It maintains a LocalQueue, LBTS and Lookahead values, and

an array NRecord that stores the latest LBTS values received from the adjacent

federates. A value in NRecord changes dynamically when a new LBTS value is

received. The main loop is executed while the simulation is running. To guarantee

that the events are processed in their temporal order, a new LBTS value is calcu-

lated at the start of each iteration. Later on, an event with the earliest timestamp

is processed if it is safe (when its timestamp value is less than or equal to the

LBTS), and might generate more internal and/or external events in response. It

schedules new events and repeats this process for the new earliest event. A simple

condition is used which never allows processing of an event with timestamp greater

than the current LBTS value. To simplify the consideration of transient messages

for an LBTS computation, a federate is forced to send any destined messages be-

fore sending its LBTS value. The LBTS computation in the proposed method

is straightforward in terms of transient messages that might require traversal of

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 85

Algorithm 2 Decentralised Synchronisation Mechanism
Require: LocalQueue, LBTS, Lookahead, NRecord

//Initialisations
//In general, the set of adjacent federates might change dynamically based on split and merge operations [61]

1: int n = Number of adjacent federates
2: int NRecord[n] // maintains the latest LBTS values for adjacent federates
3: for (i = 0; i < n; i++) do
4: NRecord[i] = 0 // changes dynamically with the LBTS value sent by adjacent federate i
5: end for
6: int LBTS = -1 //In order to force update the LBTS value
7: int NewLBTS = 0
8: Insert initial event(s) to LocalQueue //used for synchronisation with other federates

//Main loop of program for safe processing
9: while (System is running) do
10: NewLBTS = Minn−1

i=0 (NRecord[i]) //determines minimum of LBTS values of adjacent federates
11: if (LocalQueue has Events) then
12: NewLBTS= Min(NewLBTS, Timestamp of earliest LocalQueue event)
13: end if
14: if (NewLBTS > LBTS) then
15: LBTS = NewLBTS
16: Send (LBTS + Lookahead) value to the adjacent federates
17: end if

//Check for an event that is safe to process
18: if (LocalQueue has Events and Timestamp of earliest LocalQueue event ≤ LBTS) then
19: Process Event //Remove the event and may generate new internal and external events
20: Schedule internal and external events if any //External events are sent to adjacent federates via

messages
21: else
22: Go to Sleep
23: end if
24: end while

different components in traditional hierarchical systems. Time Management cal-

culations are simple and communication is localised. At times, there might be

no activity in some federates. The federate must maintain its LBTS value for its

neighbours but it could sleep until an event or updated neighbouring LBTS value

is received. When an LBTS update arrives, the federate updates the correspond-

ing entry in NRecord and wakes up the process if it is sleeping. Similarly, when

a new event arrives, it is added to the LocalQueue and wakes up the process if

necessary. The primary aim of this current work is to ensure a consistent world

with an emphasis on reducing communication delays. Other parameters, such as

QoS, will hopefully be investigated in future.

4.2.4 Illustrations

In this section, we illustrate our decentralised synchronisation method with the

help of a number of simple cases for the four concepts described in section 4.2.2

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 86

with the help of Figure 4.4 for flat models and using examples in Figure 4.5,

and Figure 4.6 for hierarchical models. These concepts are: basic time advance,

federations with no common federate, federations with a common federate (non-

blocking situation), and federations with temporary blocked situations. These

illustrations are based on random examples and do not provide the real state of

any system. Each region in these figures is divided into two sections with a dashed

line that represents the current LBTS value above, and LocalQueue below. A

federate with a star means that a concept is explained with respect to it, and

a circle highlights a federation with respect to a federate with a star. A static

Lookahead value of 1 is assumed for these illustrations.

(a) (b)

(c) (d)

Figure 4.4: The illustration of different concepts used with our de-
centralised synchronisation approach. (a) The basic time advance. (b)
Independent federations without a common federate. (c) Federations
with a common federate (a non-blocking situation). (d) Federations
with temporary blocking states.

Flat Models

The four concepts for flat models are illustrated with the help of 1×3 and 1×4

regional grids that are presented in Figure 4.4.

Figure 4.4(a) explains how the basic time advance executes safe events for a fed-

erate marked with a star. Its current LBTS value is two and wants to process

an event with timestamp three. A new LBTS value is computed that is smallest

among a set of LBTS values received from the adjacent federates and the times-

tamp of the smallest event in its LocalQueue. The new LBTS value in this case

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 87

is three, which allows the federate to execute the event with timestamp three.

This method does not impose global synchronisation and, therefore, the federa-

tions which are far apart from each other take independent decisions for their time

advance, as shown in Figure 4.4(b). The current LBTS value is two for both the

federates each marked with a star in these cases. The new LBTS values are three

for both the federates, which allows them to process their events with timestamp

three.

Federations having a common federate might be able to carry on with their process-

ing without blockage. Figure 4.4(c) presents a case where two federates re-calculate

their LBTS values to three and safely process their events with timestamp three.

In certain situations, a time advance might be temporarily blocked because of

adjacent federates with smaller LBTS values, as shown for the marked federates

in Figure 4.4 (d). Since each federate is continuously trying to advance its time,

these states are resolved quickly. In this case, other federates process their smallest

timestamped events, thus allowing the blocked federates to process their events

once updated LBTS values have been sent.

Hierarchical Models

The concepts for the hierarchical models are explained with the help of a system

with two repeated splits (a 2×2 split, followed by a 2×2 and a 3×3 further split for

two regions). However, each case considers a different system state for illustration

purposes. It assumes that each federate (server) is managing a basic unit region.

Although the models are hierarchical, the proposed method considers them as a

flat model and, therefore, handles them the same way as flat models.

Figure 4.5(a) shows that the federate marked with star checks against the condition

that time-to-advance must not exceed an LBTS value and, therefore, a new LBTS

value is computed with the help of adjacent federates. It gives a new safe bound

of three and allows the federate to execute the event with timestamp three and

update its CurrentTime. Figure 4.5(b) shows that two federations far apart from

each other take independent decisions for their time advance. Similarly, federations

having a common federate might be able to advance their logical times without

blocking each other, as shown in Figure 4.5(c). Figure 4.6 shows two situations

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 88

(a
)

(b
)

(c
)

F
ig

u
re

4
.5

:
Il

lu
st

ra
ti

on
of

th
e

d
ec

en
tr

al
is

ed
sy

n
ch

ro
n
is

at
io

n
ap

p
ro

ac
h

in
h
ie

ra
rc

h
ic

al
m

o
d
el

s
fo

r:
(a

)
A

b
as

ic
ti

m
e

ad
va

n
ce

;
(b

)
In

d
ep

en
d
en

t
ti

m
e

co
m

p
u
ta

ti
on

of
tw

o
fe

d
er

at
io

n
s

ap
ar

t
fr

om
ea

ch
ot

h
er

;
(c

)
T

w
o

fe
d
er

at
io

n
s

sh
ar

in
g

a
co

m
m

on
fe

d
er

at
e.

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 89

Figure 4.6: Illustrating temporary blocking states for the decen-
tralised synchronisation method.

where the time advance is temporarily blocked because of adjacent federates with

smaller values. They are quite common in decentralised environments and since

each federate is continuously advancing its time, these states are expected to

resolve quickly.

4.3 Evaluations and Comparisons

4.3.1 Simulation Setup

To demonstrate the effectiveness of the proposed mechanism, we have simulated

the temporal order of the events for a simple scenario presented in Figure 4.7.

It also shows the flow of events for a simple application that could violate local

causality where agents in regions raise flags in response to other events and an

observer should only see certain combinations. The scenario is that Region A

raises a flag. After delay, region B copies A and, later, region C copies B. Region

D observes both B and C and should never see a flag raised in C before B. However,

if messages are delayed and time management is not enforced correctly, there is a

potential threat to correct synchronisation.

Region A is only adjacent to B and has no direct impact on the activities of C and

D. The purpose of its inclusion is to show that the proposed mechanism need not

consider events from arbitrary regions. The aim of this simulation is to determine

whether the proposed scheme maintains the local causality constraint. The pro-

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 90

Figure 4.7: The simulated world and events flow model.

posed method considers the entire set of adjacent regions (hence, D considers both

B and C) and, therefore, achieves a consistent state. However, the simulation may

fail to reach a consistent state if a potential region is ignored.

4.3.2 Simulation Results

To evaluate whether the system works, both synchronised and non-synchronised

scenarios are simulated in this section.

The Synchronised Scenario

A simulation run of the proposed method is presented in Figure 4.8. It assumes an

initial value of −1 for the LBTS values, and a constant Lookahead value of 3 for

each region. The initial values of NRecord (holding the LBTS values of adjacent

regions) are all zero. The local queue of region A has an event with timestamp

value of one (represented as I1) which triggers the simulation while other queues

are initially empty. The events are marked as Xtimestamp, where X is the name of

a region and the value of a timestamp is the sum of LBTS and Lookahead of a

federate. An event generated in this simulation aims to tell the adjacent regions

that it has raised its flag. The LBTS updates are sent to neighbouring regions

via messages that might have different random delays. A newly generated event

is placed in a corresponding Event Generated queue and sent to the adjacent

regions. When these events are received by the corresponding regions, they are

placed in local Queues and processed in their temporal order. A processed event at

a given time is shown in bold and enclosed in square brackets. An LBTS value is

calculated based on the values in NRecord that is updated each time a new LBTS

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 91

for a region is calculated. Since messages between a pair of regions are delivered

in sequence, the correct temporal order is maintained at any given time. A region

updates the corresponding status as a flag set event is processed by a region. The

system shows most of the simulation steps except for some time updates, as shown

in Figure 4.8 and Figure 4.9.

Figure 4.8: Illustration of decentralised synchronisation method for a
synchronised scenario.

At the start of the simulation (see Figure 4.8), a number of LBTS updates messages

are processed before the initial event I1 at region A is processed. It generates event

A4 for region B with timestamp four which is received at step four. It updates

its LBTS value and sends a message to region B to update its NRecord value.

However, region B has to wait until time update messages are processed, thus

allowing event A4 to process at step five. Region B generates event B7 for region

C and D. After each region generate an update message, it sends an LBTS update

message which is processed by corresponding regions in temporal order. The

event B7 arrives at region C at step twelve, but it is received at region D at step

eighteen, even later than the response event C10 generated by region C for D (which

arrives at step thirteen). However, results show that the proposed mechanism does

not allow D to process event C10 until after it receives and processes B7. This

demonstrates that the events are processed in their temporal order.

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 92

The Non-Synchronised Scenarios

The same specifications are used to simulate a non-synchronised approach which

shows that it violates the local causality constraint. Two different scenarios are

possible: in the first scenario, D considers only its own time information; but

in the second scenario, D considers C (but not B), in addition to its own time

information. The simulation result for the first scenario is presented in Figure 4.9.

It is clear that at step thirteen, event C10 is processed before the arrival of event

B7; hence, a causality violation has occurred. The second scenario also violates

the temporal order giving similar behaviour and is, therefore, not included in this

work.

Figure 4.9: Illustration of a simulation run for the non-synchronised
approach.

A Non-Restricted P2P scenario

Simulating a P2P environment with no restrictions on the number of federates

considers the entire set of regional LBTS values for the LBTS computation of

a region which introduces longer delay in the computation of a new (effectively

global) LBTS value. In this approach, region A is also considered for LBTS

computations by C and D, even though it has no direct impact and significantly

increases exchange of messages over the network. A region has to wait for A’s time

advance to proceed. The P2P approach achieves the same results as the proposed

method, but it has bottlenecks for very large simulation environments. It also

increases computation as well as communication overhead (the basic management

issue in P2P systems). Further investigations on this issue are our future work.

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 93

Summary

In summary, all regions affecting a federate must be part of its federation, but no

additional regions need be included. Based on the simulation results, it can be seen

that the proposed method maintains the local causality constraint. It considers a

limited number of regions and is, therefore, more scaleable and efficient compared

with traditional centralised approaches. It potentially reduces communication

overhead compared with P2P environments. In our examples with small numbers

of regions, local calculations are based on a large proportion of the total regions

but, in a large scale simulation environment, only a very small proportion of regions

would be involved in each calculation, making the proposed method flexible and

scaleable.

4.3.3 An Abstract Model for Comparison

Our synchronisation mechanism considers a complex hierarchical model (see Fig-

ure 4.2) at a single level, as shown in Figure 4.1 based on our previous work [61].

A number of parameters might be used to compare it with traditional hierarchical

approaches with centralised and distributed control. These parameters include

dependencies, number of hops, complexity, delay, and scalability. It is worth

mentioning that some of these parameters are dependent on each other. The

dependencies among the components of hierarchical models and the intermedi-

ate processing points are the basic reasons for an increase in complexity, longer

delays, and poor scalability. The traditional hierarchical approaches with dis-

tributed control are comparatively scalable and easy to implement, but they need

to keep their interfaces as simple as possible. However, when used with conserva-

tive approaches, the dependencies among different components at multiple levels

(as discussed by Cramp et al. [41]) introduce longer delays and are therefore not

very scalable, though better than centralised approaches. A message in a hierar-

chical structure has to pass through a number of hops, thus not only increasing

complexity but also delays. Our decentralised mechanism avoids going through

intermediate points by adopting a direct communication between interacting fed-

erates. Similarly, the federates cannot proceed further due to global dependencies

among the components at different levels in existing mechanisms, thus degrading

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 94

the overall interactive experience. This method uses a restricted P2P model thus

solving the management and communication issues. It allows different federates

to process and advance their time without waiting for others having no impact on

them. It has no central point failure issues compared with centralised approaches.

Serial Levels in Algorithm Number Complexity Delay Blocking Scalability

Number Hierarchy of hops Levels

1 2 Hierarchical 3 4×X 4×Y Fully Poor

Fully Decentralised 0 X Y Partially Good

2 3 Hierarchical 5 6×X 6×Y Fully Poor

Fully Decentralised 0 X Y Partially Good

3 4 Hierarchical 7 8×X 8×Y Fully Poor

Fully Decentralised 0 X Y Partially Good

Table 4.1: A abstract comparison of hierarchical methods with our
decentralised synchronisation mechanism.

In this work, an abstract model has been adopted to compare the decentralised

approach with existing hierarchical models while detail analysis is our future work.

Table 4.1 presents the details of comparison for three different random hierarchical

models of depth two, three, and four. It is important to note that this comparison

is based on a world with a global consistent state. The traditional approaches use

the maximum number of three, five, and seven hops (intermediate points) corre-

spondingly compared with no hops involved in our method. Our method involves

only a single step to communicate with neighbours. Based on the number of hops,

we believe the complexity and delay are increased significantly. If this approach

has complexity X and Delay Y, then traditional approaches have complexity =

(X × number of links traversed) and delay = (Y × number of links traversed) in

each case. Similarly, this mechanism is partially blocked compared with current

approaches that might be blocked completely for certain decisions, such as a time

advance. We believe that the proposed approach is potentially more scalable than

the traditional schemes and is capable of resolving the blocking state efficiently.

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 95

4.4 Global Consistency in Virtual Worlds

Our current decentralised synchronisation approach employs locality and basically

targets the most general category of virtual world applications that have only lo-

cal effects. It provides global consistency for these applications but restricts the

application domain of the virtual worlds. If we allow activities spanning arbitrary

federates, there is no guarantee of global consistency. In this section, we address

the issue of maintaining globally consistent virtual worlds, and how to accom-

modate the complete set of possible applications while avoiding using a global

strategy. It briefly explores the current mechanisms using local consistency to

achieve global consistent states of their corresponding applications. Our current

approach is illustrated and its limitations are identified with the help of examples

for the extended set of applications. We then categorise the applications of vir-

tual worlds and suggest a possible dynamic adaptive strategy to obtain a global

consistent state as an extension to our current mechanism.

4.4.1 The Literature

In this section, we present the existing methods for a diverse set of applications and

explore the techniques they use to achieve global consistency. These applications

include Reasoning [52], Constraint Networks [218], Learning [245], and Diagno-

sis [123]. The Literature shows a large set of applications that have their unique

requirements and therefore a number of techniques are presented to reduce the

computation, communication, and implementation overheads. The most widely

techniques exploit the concept of locality that is used to determine the level of

consistency for obtaining a global coherent model.

Dechter [52] presented a relationship among the size of variable domains, the set of

constraints, and the level of local consistency required to obtain global consistency

for reasoning tasks involving consistent databases called constraint networks. Ac-

cording to this author, all realistic models of human reasoning use the concept

of locality such as conceptual memories where the activity spreads among neigh-

bouring entities. Locality is used in reasoning to enforce local consistency that

simplify the task to get a global consistent model of data. The conditions that

help to achieve global consistency are based on the topological properties of the

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 96

network representing the interactions among data items. A number of theorems

were developed to show the achievement and correctness of globally consistent

constraint networks. Furthermore, a number of different relevant examples were

presented to illustrate their work. Waltz [225] presented a scene labelling scheme

that often obtains global consistent objects by executing only neighbouring edges

and vertices in each step. Beek et al. [218] further expanded the constraint net-

works by using two contemporary properties (called tightness and looseness) on

restrictiveness of constraints in a network. According to them, using constraint

tightness and level of local consistency guarantee that a solution can be found in

a backtrack free manner. Constraint looseness is used to determine the level of

local consistency of a network to achieve a global consistency. They explained

and evaluated their work also with another type of consistency called relational

consistency.

Learning from labelled and un-labelled data is another general problem that em-

ploys local consistency. The labelling process is propagated through the neigh-

bouring points until a global state is achieved. This method is often called semi-

supervised learning which requires a sufficiently efficient classifying function for a

structure or model that is collectively revealed by both labelled and un-labelled

data. The Literature shows a number of semi-supervised learning that depend

and differ by the effectiveness of the classification function. Zhou et al. [245] pre-

sented an algorithm to smoothly label the un-labelled points. According to them,

the key to semi-supervised learning is the prior assumption of consistency, which

could be either local or global in scope. The former tells that the nearby points

are likely to have the same label, while the latter means that points in same struc-

ture such as a cluster typically refers to the same label. They adopted the first

approach, where each point iteratively forwards its local information neighbours

until a global state is achieved. They evaluated their approach using a number of

classification problems and demonstrated the effectiveness of un-labelled data in

learning process.

Diagnosis is another problem that is computation intensive and local consistency

is used to reduce the computation overhead. John et al. [123] presented a mecha-

nism that uses local diagnosis for discrete event system modelled using automata.

However, in local consistency, the views need to be consistent with each other.

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 97

According to them, local consistency does not ensure global consistency and the

methods to avoid global computations do not scale well. However, they argue that

the complexity of the algorithms drop when tree structures are used that help in

achieving global consistency. They therefore presented a junction tree structure to

ensure global consistency where the connections between components form a tree

which is similar to the techniques exploited by the current hierarchical approaches.

Based on the above discussion, we believe that if only local causality is maintained

and no arbitrary events are allowed such as in constraint networks, the system state

is always consistent with an appropriate level of local consistency. Most of the

activities in virtual worlds are affected by local events, but there exist a number of

activities that might be initiated from an arbitrary location and local consistency

is unable to maintain global consistency in a virtual world. However, we believe

that a global strategy is not required for virtual worlds that is computationally

intensive and therefore other adaptive methods are required to cope with the

events generated from arbitrary locations for obtaining global consistency.

We believe that an extended adaptive technique has the potential to obtain a

coherent state of the virtual world by adding the additional federate(s) involved

in an activity between federates far apart from each other in the adjacency list

that maintains the neighbouring federates. In the next section, we first explore

the level of consistency and the limitations of our approach followed by a possible

solution to overcome these issues.

Figure 4.10: Illustrating the neighbouring regions in a 1-dimensional
grid.

To illustrate the time advance and the causality management of our system, we use

Figures 4.10-4.14. The following description is applied to these figures presented

in a two dimensional space showing the time information of different federates

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 98

at different simulation steps called time steps. Labels A, B, C, D and E on the

Federates axis are representing the federates in a 1-dimensional grid of regions that

are shown in Figure 4.10. The Time Steps axis represents valuable simulation steps

but they are not covering each and every point in simulation. Each row labelled

with a name (of a federate) represents the current time during the simulation at

different steps during the simulation. Each circle provides the current time during

the corresponding simulation step and is obtained by determining the minimum

of the LBTS values of the neighbouring federates. The LBTS value is the current

time plus the Lookahead value which is assumed to be a static value of 3 for

these illustrations. An arrow is representing the messages sent to the adjacent

federates carrying the LBTS values and are sent only when the current LBTS

value is increasing. The solid arrows show that the messages are received in time

while the dashed arrows represent delays in messages delivery. The dashed arrows

are then forwarded with solid arrows to the time steps where they are received

and processed.

4.4.2 Consistent Virtual Worlds: Examining our Current

Method

Our current consistency approach advances the local time of each federate only

with respect to the neighbouring federates and achieves a consistent state of the

whole world. It has no inconsistencies because it does not allow any arbitrary

events. Theoretically, the system also progresses in a timely manner as shown in

Figure 4.11 if no delays are introduced in delivering the messages. It not only

obtains a consistent view of the system with respect to the neighbouring federates

but also to the non-neighbouring federates. A message generated at any federate

for any other federate in the system is received in future and the whole system is

globally consistent.

In practice, however, this system like most of the network systems also suffers

from network delays. Due to maintaining the temporal order with respect to only

the neighbouring federates, it is unable to stop progressing the time advance of

non-neighbouring federates immediately when a federate is unable to advance its

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 99

Figure 4.11: Time advance (theoretical) using our decentralised time
advance mechanism with no delays.

Figure 4.12: Time advance using our decentralised time advance
mechanism with delays for a world of 3 federates.

time due to certain delays. However, the system propagates this blockage towards

non-neighbouring federates through neighbouring federates iteratively. The feder-

ates at long distance from each other update their time information and process

their local events independently but suffer from the propagation of delays. How-

ever, it is demonstrated that the system does not lead to a global lockup at once

and it has the potential to resolve these situations quickly. These situations are

explained with the help of Figures 4.12-4.14 for the time advance mechanism using

environments having three, four and five federates correspondingly. The basic aim

of different scenarios was to see how the blockage propagates and up to which

level the local consistency allows federates far apart from each other to proceed

independently in time. Figure 4.12 is unable to show the time advance (for both

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 100

the federates named A, and C) more than once due to the fact that they are

directly adjacent to federate B which is unable to update its current time. It is

clear that both A and C update their time to three at time step two and then

wait until step five, where they update their current time to six after resolving the

blockage for federate B at step four. Federate D in Figure 4.13 and federate E in

Figure 4.14 advances their corresponding time twice and thrice correspondingly

before they enter into blocking state with respect to federate B in both cases. It is

interesting to note that federate D and E are at distance two and three levels from

federate B that is unable to update its time. A federate at further distance has

more independence in advancing its time which equals the distance between the

federates. However, the system has potential to resolve these situations quickly,

but requires the system to propagate the updated information iteratively as shown

in Figures 4.12-4.14.

Figure 4.13: Time advance using our decentralised time advance
mechanism with delays for a world of 4 federates.

Since, in our current method, each federate synchronises itself with neighbouring

federates, it maintains global consistency for the activities having only a local ef-

fect. However, Figure 4.15 provides a few examples showing that it violates the

causality for applications allowing arbitrary events. Figure 4.15 is an extended

form of Figure 4.14 and use an additional type of arrows (coloured blue) to repre-

sent different events. It presents three cases to illustrate the potential violation:

federate B sending events to federate D during time steps three to five; federate A

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 101

Figure 4.14: Time advance using our decentralised time advance
mechanism with delays for a world of 5 federates.

sending events to federate E during time steps four to six; and federate C sending

events to federate E during time steps four to six.

Example 1: The following steps illustrates the first case:

• An event generated at federate B at time steps three, four or five is assigned

a timestamp three (current time which is zero plus the lookahead value 3)

and is sent at the same time step.

• The recipient federate D receives the event in a successive time step which

means that an event is received at time step four if it was generated at time

step three.

• The current time of federate D is six in all the three cases and it is clear that

these events arrive in past showing the violation of the causality constraint.

Example 2: The following steps explains the second case:

• Three events are generated and sent by federate A at time steps four, five

and six for federate E with a same timestamp value of six.

• Federate E receives these events at time steps five, six and seven correspond-

ingly.

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 102

Figure 4.15: Illustrating the violation of causality for activities span-
ning arbitrary locations.

• The current time at federate E is nine during these time steps and it shows

that the events are violating the causality constraint.

Case 3 is similar to Case 2 and is therefore not further explained. Based on these

facts, we suggest that an extension to the current method is required for accom-

modating the additional applications (such as virtual phone calls) that has causal

effects beyond the adjacent federates. However, we believe that a global strategy

is not a viable solution especially for a very scalable system due to the poten-

tial computation overhead. In the next section, we suggest a dynamic adaptive

method to overcome these issues.

4.4.3 Possible Extension to our Consistency Method

The overall activities in a virtual world can be classified in to three different

categories: activities based on locality that have an effect on activities in the

neighbouring regions only; activities that pass through the neighbouring regions

towards non-neighbouring regions such as aeroplane or an avatar flying through a

space; and activities that have an effect on activities in an arbitrary federate such

as a virtual phone call or an avatar teleporting from one region to an arbitrary

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 103

region.

The first category covers the majority of the applications, and are managed well by

our current consistency mechanism giving a global consistent state of the worlds.

The activities in second category are also managed by our approach, as the objects

have only causal effects towards neighbouring regions. The concept of presence of

moving objects in the neighbouring regions is exploited to synchronise the object

movements with the local and adjacent federates thus always giving a global con-

sistent state.

To include the activities in third category, we need to extend our current approach.

Since, local approach is unable to maintain global consistency, and global strategy

is very expensive in terms of computation, communication, and implementation

overheads, we propose a dynamic adaptive strategy to accommodate these ap-

plications. We can easily extend the current consistency approach by allowing

each federate to include the other federate involved in an activity in this category

to its list of neighbouring federates. Similarly, these federates are removed from

the adjacency lists when the activity is over such as a successful termination of

a telephone call or a teleport. The component of our method dealing with the

neighbouring federates is highly dynamic that reacts to both split and merge op-

erations. However, due to the potential differences in local times, there might be a

delay until the slower federate in time reaches a synchronised state with a federate

faster in time. We believe that this extension has the potential to achieve the

required level of consistency that ensures global consistency for virtual worlds.

In future work, we intend to perform a number of different experiments to evaluate

the correctness of the existing and extended infrastructures.

4.5 Conclusions and Future Directions

This chapter presented a simple, but flexible, decentralised synchronisation in-

frastructure and illustrated it with the help of both simple flat and hierarchical

scenarios. It is scalable and allows a federation to take independent decisions with

distributed control among federates for direct consultation with the interacting

CHAPTER 4. CONSISTENT VIRTUAL WORLDS 104

federates. It depends on the realistic assumption that events can only affect a

finite and known set of adjacent regions. Simulation results supported our claim

that it achieves the correct temporal ordering for randomly generated events. Fur-

thermore, an abstract model is used to compare it with traditional approaches. It

is clear that the number of hops, and thus complexity and delay in existing mech-

anisms, rise significantly with an increase in the levels of a hierarchy. However,

these parameters have no impact on the proposed approach.

Further simulations are required to verify that the proposed system works with

and have potential to quickly resolve the temporarily blocking states and delays

compared with the traditional hierarchical infrastructures. Further simulation and

implementation of this work is our future work.

Chapter 5

OpenSimulator: State-of-the-Art

and Proposed Extension

This chapter examines the features and current architecture of an open source

VW development framework called OpenSimulator (OS) [177] with reference to

Second Life (SL) architectures. The key architectural limitations in OS architec-

ture are highlighted and an extended architecture is proposed to cope with these

limitations. The basic purpose of this extension is to make the OS scalable by

introducing dynamic and fair distribution of load based on spatial partitioning of

a virtual space. It also incorporates a consistency model based on a constrained

communication model. Modules incorporating these functionalities are explained

in terms of our previous work [61, 63]. It illustrates the traditional spatial parti-

tioning methods for adding a new Simulator (Sim), followed by an introduction to

our contemporary approach to overcome the limitations of traditional methods.

This chapter is based on our previously published work [67] on this topic.

5.1 Background

Second Life (SL) is the state of the art in VWs and has gained much attention

from end users. Due to its tremendous popularity and growth rate, the basic

architecture started experiencing instability issues right from its inception due to

central storage of data. To avoid these issues, the Architecture Working Group

105

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 106

(AWG) [196] at Linden Lab was given the task of designing a new architecture and

protocols to open up the SL Grid (SLG) to allow others to run parts of the grid.

It scales well in terms of content by adding more Sims, and it significantly reduces

messaging overhead [189, 195]. However, it suffers from both over-provisioning

and under-provisioning of resources because it statically assigns parts of the world

to different resources and lacks dynamic capabilities to manage resources. The

major issues with SL include increased latency and client crashes. Inventory loss

is an even more disturbing fact that happens without any warning, where an

inventory [118] is the collection of all the items a user owns or have access to.

Similarly, it does not incorporate the conservative TM approach.

SL was the first option to work with for the prototype development of the current

work; however, only the source code of client software is available for further de-

velopment. Since the work in this thesis deals with technical aspects of underlying

infrastructures, OS being a complete and independent open source implementa-

tion of the AWG work is used to develop a prototype. It has similar functionality

and cope with the limitations of SL. Like SL, OS has no capabilities to scale

dynamically, though it allows an arbitrary number of regions to be hosted by a

single simulator process. However, its modular structure can easily be exploited

to incorporate these features. It allows others to host parts of the world and in-

tegrate with a global grid. Similarly, it also allows organisations and individuals

to host their own private grids, and it is supported on both Windows and Linux

platforms.

In this section, therefore, SL architectures and their components are explored to

illustrate the way a viewer interacts with either a SL or OS world, before exploring

and extending the OS architecture.

5.1.1 Second Life (SL)

SL is an environment that allows individuals and organisations to develop their

content in a 3D format over a purchased piece of land. SL is a MUVE which is

not strictly a game because it lacks pre-defined rules. It is a popular virtual space

for meeting friends, doing business, and sharing knowledge [201]. Currently, many

applications are deployed in SL, broadly belonging to Education, Arts, Science,

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 107

Work Solutions, Religion, Embassies, Competitive Environments, and Relation-

ships [137]. Every activity is regulated by an evolving framework laid down by

Linden Lab [95]. IBM has been working together with Linden Lab to achieve the

goals of 3D web by extending the current web to incorporate a 3D experience. The

whole space is divided into named 256m x 256m (65,536 m2) areas called regions.

Each region is hosted by a single Sim process on a dedicated core of a multi core

server; however, each Sim can possibly host multiple regions (up to a maximum of

4). Each server runs scripts as well as providing communication between avatars

and objects in a region [137]. A script [194] adds behaviour to an object and

an avatar [10] is a 3D character representing a user in a VW. Each region can

handle up to 100 avatars and 15,000 primitives (prims) [195]. A prim is a single

part object, such as a box or cylinder, which is used to create multipart objects in

VWs [182]. These regions are combined into estates based on a particular common

set of rules, such as banned users and sun position. An estate is a group of private

regions belonging to one resident. Each region on a grid must be part of the SL

mainland (the Linden-designed continents) or privately owned estates on servers

operated by Linden Lab [195]. There are many companies that sell/rent private

estate land in SL which range from individual residents renting a single parcel to

major companies with dozens of privately owned Sims [187]. A parcel is a divided

part of a region which could be as small as 16m2 (4m×4m) and as big as the entire

region [195]. SLG is the underlying infrastructure hosting SL. It refers to an inte-

grated system that provides a networked collection of servers arranged in the form

of a rectangular mesh. Some of these servers run Sims representing the land while

others manage different independent, but integrated, services including presence,

inventory management, and asset store. SLG enables users to create content and

communicate, collaborate and engage in communal services [121, 195]. It restricts

the connections of each server to up to four neighbouring servers. Linden Lab

runs several grids for internal and external testing [195].

5.1.2 The Current Architecture

The current architecture of SLG is shown in Figure 5.1(a) [199]. It shows that

a viewer interacts with a Sim that is hosted on a server, being part of the grid

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 108

simulating a square region. Each Sim interacts with a centralised database and

acts as a proxy that tracks the movements of avatars [199].

(a) (b)

Figure 5.1: The SLG architectures with an interactive client [199]:
(a) the existing architecture; (b) the extended architecture.

The huge popularity of SL resulted in frequent system crashes due to the use of a

central database. Similarly, the current architecture is not capable of sustaining

itself against the initially envisioned statistics [197, 198]. Furthermore, to make

the VWs as ubiquitous as email and the web, the AWG at Linden Lab was given

the task of extending the current architecture of SLG [196]. The basic aim is to

develop protocols that will open up the SLG to others to run parts of the grid,

including an open grid protocol for interoperability of these virtual spaces [167].

5.1.3 The Extended Architecture

AWG proposed an extended architecture comprised of two domains: an Agent

Domain (AD) and a Region Domain (RD). The AD handles agents and the RD

manages regions. An agent is the internal representation of a viewer [53]. These

domains work together to realise system functionality [199]. A successful login and

operation requires the viewer to communicate with both domains, as shown in Fig-

ure 5.1(b). The login process is illustrated in detail with the help of Figure 5.2(a)

and Figure 5.2(b).

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 109

The AD manages user login and stores profile and inventory data. It comprises

three components called services, hosts and stores which are reached by arrows

named 1, 3, and 2 correspondingly, as shown in Figure 5.2(a). Agent services are

instantiated when required and handle stateless information such as profiles [54].

This information can be cached and publicly accessed through web services [54].

Agent hosts handle logged-in agents and their sessions. The information it man-

ages includes avatar location, and the status of an agent and its friends [54].

Agent stores maintain the actual data in databases such as inventory and profile

data [54]. These components can be used redundantly as required.

(a) (b)

Figure 5.2: Process of a viewer login to: (a) an Agent Domain
(AD) [54]; (b) a Region Domain (RD) [163].

The RD deals with regions and follows the same architecture as an AD [163]. It

is also comprised of services, hosts, and stores that are also reached by arrows

named 1, 3, and 2 correspondingly, as shown in Figure 5.2(b). Region services

handle stateless public information about regions, such as avatar positions, and

object and parcel information. Region hosts are the servers (Sims) managing

parts of the virtual space. They provide in-world avatars and objects interaction

while taking data from the region stores. A region is unavailable when its host is

down [163]. Region stores retain the actual regional data about objects, regions

and parcels [163].

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 110

The login process takes the following steps to login a client to an AD (see Fig-

ure 5.2(a)) [54]:

1. the viewer sends login information to the agent service;

2. the agent service queries agent store for validation;

3. the agent service asks an agent host to initiate a session and finally;

4. the agent host establishes a connection with the viewer.

To complete the login process and obtain region data, the following steps login a

client to an RD (see Figure 5.2(b)) [163]:

1. the agent host contacts the region service;

2. the region service queries region store to obtain region information;

3. the region service contacts region host and asks it to establish a session for
a new agent;

4. the agent host directly contacts region host to obtain the avatar;

5. the agent host returns region host to the viewer for onward direct commu-
nication;

6. the viewer now talks to the region host.

(a) (b)

Figure 5.3: Additional scenarios based on the extended grid architec-
ture for [200]: (a) home content as part of world content; (b) off line
content.

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 111

The extended architecture distributes the activities. However, it keeps a number of

central utilities that are globally required such as identity, topology, currency, and

search [202]. The global identity enables a user to be unique across all ADs, but it

requires different levels of verification and authentication. The topology identifies

connected regions, a kind of DNS for the metaverse. Since, the basic mission was

to open up the SLG to others, the extended architecture thus provides a number

of additional implementations. Figure 5.3(a) provides such a scenario showing an

individual home region (own Sim) integrated with the SL regions [200]. Similarly,

it allows users to run a completely disconnected region but it requires the existence

of both agent and region domains on a local system (see Figure 5.3(b) for this

scenario [200]). Figure 5.4 shows how the SL infrastructure looks finally with the

extended architecture [199].

Figure 5.4: Complete extended look of the SLG infrastructure, if im-
plemented as planned [199].

5.2 OS and its Current Architecture

OS is an open source multi-user 3D application development framework that sim-

ulates virtual spaces similar to SL. It supports the messaging protocol of SL, but

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 112

it does not support its game specific features. It is written in C# which uses

the .NET framework on Windows, and Mono framework on Linux machines. It is

currently pursuing innovative directions to become an extensible infrastructure for

the 3D Web, and it supports an arbitrary number of regions per Sim (server) [177].

Five major services are required to provide interaction between a region and view-

ers based on the original design of Linden Lab network. These services are called

User, Grid, Asset, Inventory, and Messaging (UGAIM) services and each has a

vital role in the OS framework. Each region must be known to only one instance

of each service [176].

UserServer is responsible for user authentication to the grid. It assigns a Univer-

sal Unique IDentifier (UUID) as a session identifier to a client that is used globally

over the grid [176].

GridServer is responsible for authenticating regions to the grid. It gives a UUID

to a region. Since all the regions belongs to a global 2D grid, each region is

assigned a particular X and Y position [176].

AssetServer describes the items (with static nature) including sounds, textures,

images, notecards, and scripts that are used by the users and organisations to

develop their content. It is a database based on the principle of ‘write few and

read more’. The current implementation restricts modifications to assets, and they

are immutable [8, 176].

InventoryServer is a database server that keeps track of the placements of assets

by linking the UUIDs of users to their InventoryRoot folders. The InventoryRoot

folder maintains a list of UUIDs for folders, and type and descriptive names for

the assets. It also manages the associated permissions of the assets [176].

MessagingServer is used for in-world communication among people and to keep

track of who can listen to conversations. It manages long distance messaging and

keeps unread messages until they are read [176].

A region with a scene is the most important component of the OS framework that

must be part of an estate similar to SL. A scene [192] is the representation of the

content of a region. It runs physics and scripts, and keeps track of objects in a

scene, and the observers connected to a scene. It provides scene updates to the

observers.

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 113

Figure 5.5: The OS architecture for standalone mode [172].

Primarily, OS has two modes of operations: Standalone mode and Grid mode. It

allows a Sim to run an arbitrary number of regions in both standalone and grid

modes. The only difference is where they get their UGAIM services from. In

standalone mode, a region provides its own UGAIM interfaces and runs them in a

single process. However, in grid mode each service is run as a separate process that

could possibly be on a different machine. The UGAIM servers are all configured

as centralised grid services [176].

In standalone mode, both region Sim and all data services run as a single

process called OpenSim.exe. The abstract architecture of OS for standalone mode

is given in Figure 5.5. In this case, a region server (Sim) is hosting two regions but

it has the capability to run an arbitrary number of regions on a single machine.

Clients are connected to the same process in standalone mode [172].

In grid mode, the UGAIM services are separated from the region server pro-

cess and implemented as a separate process called Robust.exe. The grid mode

architecture is presented in Figure 5.6. The data services can all run as a single

Robust.exe instance but they can be split and run on entirely separate machines

for improved performance. The OS instance (OpenSim.exe) is now only a region

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 114

Figure 5.6: The OS architecture for grid mode [172].

server that can host an arbitrary number of regions and communicates with sepa-

rate data services. It allows several instances of region Sims to be run on different

machines [172]. The regions simulated by different instances are known to each

other because they are controlled by a centralised grid service.

The user login in grid mode requires access to the user service that authenticates

a client and then directs it to connect to a region on a simulator based on its pre-

vious location. The login service uses the IP address of a region Sim in standalone

mode, but it uses the IP address of the host running UGAIM services (Robust.exe)

in grid mode. In case no previous location is found, it is sent to a default region.

When a user connects to a region, its avatar is added to the scene (described as a

root agent) and the neighbouring regions are informed about the user [172]. In re-

sponse, each neighbouring region adds a presence for the user (described as a child

agent) to its scene. This allows the avatars to move smoothly to the neighbouring

regions. When an avatar crosses a boundary, the state of the avatar in the current

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 115

and previous regions is swapped, and a presence is added to the new neighbouring

region while a region which is no longer a neighbouring region deletes its presence.

OS allows different database engines, such as SQLite, MySQL and MSSQL, with

varying degrees of functionality and different storage orientations. SQLite comes

bundled with OS (by default) and requires no extra configuration. However, it

is not for production use or running the OS in grid mode. MySQL is fully sup-

ported and could be used with both centralised and localised scenarios. MSSQL

is partially supported. In grid mode, OS uses databases at two levels to manage

data associated with the grid and region Sim processes. A centralised database

is normally used to manage UGAIM services but they can be managed through

separate independent servers. Each region Sim uses a separate database that man-

ages data for all regions of this instance.

OS architecture is very flexible and scales well in terms of content by just config-

uring new Sim instances. However, it has no capability to scale well dynamically

in terms of concurrent users without re-configuring the Sims. Similarly, it has

no capability to directly manage applications with conservative nature. Based on

these issues, we feel that an extension to the existing architecture is required to

add new simulators when load is increased, and reduce them to a minimum level

when the load is decreased. Recently, OS has incorporated a number of features

that can be used to improve scalability and load distribution. We believe that the

flexible and modular structure can be easily exploited to incorporate conservative

applications to VWs.

5.3 Interesting Features of OS

5.3.1 RemoteAdmin (RAd) Functionality

The RAd functionality uses a library for remote procedure calls (RPCs) builds on

XML [242] and HTTP [100] (called XML-RPC [133]) to generate a request to be

processed on a remote computer. It provides a number of methods to implement

the most common OS console commands, such as ‘create region’ and ‘save or load

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 116

the OAR files’. It has a number of flavours and works well with a number of

different platforms including C#, .NET, Python, PHP, and Perl. A number of

examples showing the use of RemoteAdmin methods and their requirements are

available at [186].

5.3.2 OpenSim Archive (OAR) Functionality

The OAR functionality is capable of storing the entire asset data of a region. It

can be used to load data on a completely different system using a different asset

database. It fully restores the terrain, region parcel data, the textures of objects,

and their inventories. OS provides two console commands to save and load OAR

files, which are also exposed through the RAd functionality for remote processing.

The default load option replaces the existing objects with the content of an OAR

file. However, if the merge option is used, then the OAR content is merged with

the existing objects in a region. The basic use case of the OAR functionality is

to share the content of entire region with others. However, its performance is not

very good, especially when used with very large archives [173].

5.3.3 Megaregions

The region is the most important component of the OS framework, and a Sim

can run an arbitrary number of regions. The Standard region size (a square

space of 256m×256m) is small, and although a Sim can run multiple regions,

it requires complex border crossings between the regions. Furthermore, there

were demands for larger regions from OS developers and users. To resolve these

issues, the concept of megaregions was recently introduced to OS. It converts a

number of regions into a larger megaregion allowing the avatars to cross regional

borders seamlessly and transparently within the same physical server. However,

this concept is not mature and has a number of limitations. Currently, it uses a

configuration file with special arrangements to set up a megaregion and dynamic

construction is not possible. The conversion of already existing regions into a

megaregion transfers all the contents into a single root region. However, regional

data could be stored and later on restored (possibly using the OAR functionality)

to overcome some of these limitations [106].

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 117

5.4 Related Projects

This section briefly introduces the previous and current work undertaken using

the OS framework for scalability and load distribution issues.

5.4.1 Load Balancer Project

Load balancing and scalability issues in OS were addressed using a project called

Load Balancer which is no longer maintained and is not part of the OS frame-

work [141]. Load balancing was achieved by re-assigning regions from an over-

loaded server to a less overloaded server dynamically, without re-starting the Sims.

To achieve this goal, it was serialising a region and creating a clone of the region on

a target server using the same stream. It then destroyed the original region after

telling client viewers about the address of the cloned region. It used the concept

of sharding (replication of regions) to scale the number of interacting users. Each

shard was responsible for updating a fraction of avatars and send state updates

to other sub-regions. Though it manages to send state updates, we believe that

it physically lacks the concept of meeting people face to face, which is the basic

theme of VWs.

5.4.2 ScienceSim

ScienceSim is a virtual environment that can be used as a tool for collaboration,

visualisation and experimentation. Intel is currently developing the hardware and

simulation infrastructure behind it. ScienceSim uses the modular components of

the OS framework and tries to leverage many Internet standards and technologies

to provide an integrated set of technologies for building applications. The most

important contribution of Intel to ScienceSim is the enhancement of the OS code

for performance and scalability. Intel uses the basic OS framework but improves

performance by fine-tuning different areas of its code, and they have contributed

a number of patches to OS. The number of objects in a scene is increased by

a factor of ten, and the memory footprints are decreased significantly. Message

processing and inner loop structures are made more efficient, and a number of core

data structures and operations are replaced with more efficient approaches. A VW

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 118

world architecture based on the concept of distributed scene graph compared with

the traditional simulator centric architecture is presented for scalability with an

additional layer for communication. According to Liu et al. [140], load balancing is

the adjustment of scene partitions to the servers, and the assignment of players to

appropriate servers. Due to Intel work on performance, OS can now support more

objects and participants than the existing VWs [20, 107]. However, their approach

is to target a completely different aspect (scene graph) of the system compared

with the current work, which is based on the concept of spatial partitioning.

5.5 A Proposed Extension to the OS Architec-

ture

OS has two modes of operation as well as two different architectures that differ

in the ways UGAIM services are implemented and accessed. We propose exten-

sions to the abstract architectures of OS based on our work that are presented

in Figure 5.7 and Figure 5.8, for standalone and grid modes respectively. Two

additional components named Load Distribution (Fair) and Time Management

are introduced in both architectures. Load Distribution is marked fair represent-

ing the fact that ARA algorithm distributes the load as balance as possible while

maintaining the continuity constraint. It does not propose any changes to the ex-

isting components and basic structure but, instead, uses the modular components

to achieve the goals. This work can be applied to both an environment with a

single parent Sim, or to a Sim as part of a grid. However, it is assumed that each

starts with a bigger space (shown as a megaregion that has four regions) based on

an arbitrary number of basic OS regions, regardless of architecture. Both architec-

tures implement the same modules to dynamically increase the capacity of a Sim

and achieve a consistent state of the whole space using a restricted communication

model. The only difference in both standalone and grid architectures is the way a

client accesses the UGAIM services, as shown in Figure 5.7 and Figure 5.8.

The Load Distribution (Fair) component continuously monitors the load and uses

the following functions to achieve scalability and implement communication among

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 119

Figure 5.7: The proposed extended architecture for standalone mode
of OpenSimulator (OS).

the servers.

The Partitioning algorithm splits a megaregion into a number of sub-regions,

based on the proposed strategies presented in section 3.1 of chapter 3, against

player distribution.

The Aggregation Algorithm (ARA) determines two contiguous larger spaces

taking input from the Partitioning algorithm in the form of a 2D grid. It uses the

aggregation strategies presented in section 3.2 of chapter 3 to obtain valid spaces.

The Resource Lookup module maintains a pool of resources and selects a

resource for sharing the load with the overloaded server.

The Assignment function delegates an aggregate (a continuous larger space)

to a newly added server. It takes the output of the aggregate algorithm as an

input and transfers the sub-regions in turn for improved performance.

The Resource Management function manages the RMT and helps the com-

munication management module to determine the location of regions and avatars

in a set of servers sharing a simulator’s load.

Communication Management manages communication activities between dif-

ferent servers jointly simulating a megaregion. It holds the messages in case of

a split operation and forwards them all together to the avatars when they are

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 120

resumed at the destination server.

The Merging process implements the reverse process to splitting which can be

initiated by either a parent or a child server. It considers the physical boundaries

and merges with a server only if it merges with the valid adjacent regions to the

region it serves.

Figure 5.8: The proposed extended architecture for grid mode of Open-
Simulator (OS).

The Time Management component uses a P2P approach together with a con-

strained communication model to implement consistency. It is comprised of two

processes: Neighbourhood Management and Synchronisation Algorithm.

The Neighbourhood Management manages those regions that share physical

boundaries with the region(s) that a given server is simulating. This is a dynamic

activity and, based on an increase and decrease in load, the number of regions

might change over time. Its basic goal is to determine the regions whose time

information must be considered by our synchronisation algorithm (see chapter 4)

to maintain a global consistent state of the space.

The Synchronisation Algorithm is continuously running at every server simu-

lating part of the VW and updating its simulation clock by using the time informa-

tion of neighbouring servers. It is also responsible for sending its time information

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 121

to help others to update their clocks, thus potentially maintaining a consistent

space. Further detail on consistency is presented in chapter 4.

5.6 Illustration and Discussion

This section discusses the basic traditional steps used to add a new instance of OS

and share the load with it. Since the basic aim of this work is to achieve scalable

worlds with an emphasis on reducing resource under-utilisation, we start with a

single server simulating a bigger space, possibly based on an arbitrary number of

regions. This space offers a reasonable amount of content and is normally not

over-populated with players. However, with the passage of time, users join in the

world and ultimately, at a certain point, it exceeds the SplitCapacity. In this case,

the system initiates a split and shares the load with another server.

5.6.1 Traditional Steps in Spatial Partitioning

A generic and possible set of steps required to instantiate an additional instance

of OS and run part of the system on a child node is presented in Figure 5.9.

Figure 5.9: Steps in traditional spatial partitioning methods to achieve
a new Simulator instance and distribute the load with it.

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 122

Initially, SimulatorA is the only server simulating the whole space and it continu-

ously checks the load against the number of users and content. At a certain point,

when the overall system load exceeds a threshold (SplitCapacity), SimulatorA ini-

tiates the process to get a new server (Simulator A1 for example) to share the load

with. It determines two contiguous aggregated spaces after splitting the original

space, and selects one of the aggregates to delegate to the new Sim. SimulatorA

freezes the region(s) in the selected aggregate and holds (blocks) the messages

for the players in frozen region(s). These messages are maintained and forwarded

to the server simulating the concerned players when a transfer is over. System

uses the OAR functionality to store the contents of region(s) in a shared location.

Similarly, it serialises the clients for the region(s) to a shared location. When the

complete information is stored, the process removes these regions from Simula-

torA and tells SimulatorA1 to run an OS instance with the same specifications

of region(s). The reason for using the same specification is that the users should

get the same neighbouring regions. Regions are maintained by grid services that

use a unique X, Y location for each region. In response, SimulatorA1 instantiates

an instance of OS and loads the contents from OAR file(s). Clients are deseri-

alised and they are told to use the new Sim (giving the address of SimulatorA1

and the port it is listening to). The system forwards the blocked messages to the

regions which, in turn, hand them over to the clients. The distribution process is

completed and the space is now managed by two different Sims. Each Sim now

independently monitors its load and could share the load again with a new Sim if

it crosses the SplitCapacity.

5.6.2 Our Contemporary Approach to Spatial Partitioning

The main problem with transferring all the regions at once from a Sim and run-

ning them on a new Sim is that it takes significant time and, therefore, the user

has a negative experience of the system. An alternative method would instead

transfer one region at a time, thus considerably reducing the time a given user

suffers from a transfer. However, starting an OS instance also takes a consider-

able amount of time, though it might start with one region. Therefore, a more

efficient method could start an OS instance with a dummy region in parallel with

CHAPTER 5. OPENSIMULATOR: STATE-OF-THE-ART... 123

other activities, such as creating the OAR file(s) and client serialisation. Regions

with actual streams are then remotely generated, which takes less time and thus

reduces the total time a user suffers from this process.

We believe that freezing the clients for few minutes in traditional spatial partition-

ing techniques gives a very negative impression of the overall system. Therefore,

we used the concept of a transit region that gets two fold benefits. It could be

used instead of a dummy region to start a Sim in advance, so there is no need to

wait until a region is removed. It also gives users a fair choice to move to some

other part of the grid or keep themselves busy with some simple activities until

the original setup is resumed.

5.7 Conclusions

In this chapter, the current and extended architectures for SL were examined as

a reference. It proposed an extension that works with both OS architectures to

incorporate the features for dynamic scalability as well as consistency. The current

architecture of OS is explained, and its interesting features and related projects

are explored in detail. The modules incorporating these features are described

and the traditional abstract set of steps are used to illustrate how a system scales

in case of excessive load. It concludes with an introduction to the contemporary

approach adopted for spatial partitioning in this work.

Chapter 6

Scalable Virtual Worlds:

Investigating Opensimulator

This chapter presents the investigation of the operational capabilities and robust-

ness of OpenSimulator (OS). It outlines the operational view of the OS architec-

ture and introduces a number of worlds’ content available as OAR files that are

used to populate our worlds. It also presents a summary of initial tests for both the

capabilities and components that we wanted to use for the implementation of this

work. It details an abstract load model based on both static and dynamic content

as well as interactive clients that helps in determining when to initiate a split or

a merge operation. It also presents the evaluation of different database options

and configurations. A scalability model is introduced and a simple grid model is

used to implement it by using the RAd functionality for tranferring a region from

one Simulator (Sim) to another Sim on both Windows and Linux platforms. It

also presents improved strategies to reduce the time taken by different activities

during a transfer.

6.1 Introduction

The OS framework is the state-of-the-art in open source VW development frame-

works. It is continuously under development and many components are not ma-

ture, although the basic functionality works well. Therefore, a thorough study

124

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 125

was conducted to check the capabilities and especially the components needed to

develop our scalability work. This chapter is devoted to a number of investiga-

tive studies mostly based on load and time analysis of different activities during

a transfer.

6.1.1 OS Operational View

This section briefly details how the management functions work in both standalone

and grid modes of OS.

OS provides different commands to perform different regional and grid manage-

ment activities. The standalone mode provides all regional and managerial com-

mands to run through a regional console window. However, the grid mode sepa-

rates them into grid and regional commands where the former are applied from a

Robust console and the latter from a region console. These commands use basic

routines of the OS framework. RAd functionality is an additional OS component

that allows developers to run regional commands on a remote machine which are

accessed through Remote Procedure Calls (RPCs). It is used later for a number

of activities when transferring a region.

6.1.2 Platforms

This work is investigated and implemented on two different platforms for various

reasons including the availability of a few Windows-based systems, limited capa-

bilities of Windows systems, and in order to demonstrate scaling bigger worlds.

Windows

A private network of four Windows systems was used for the experiments. It

includes a Pentium dual core system with a combined processor speed of 3.2GHz

and 2GB RAM. The other three Pentium IV systems each has a processor speed

of 3.2GHz and 1GB RAM. However, they were used in different configurations for

different activities.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 126

Linux

A much larger Linux environment (the UEA Cluster) was also used to scale our

work. It allowed us to use a large number of nodes (dual quad core 2.66GHz, with

8GB RAM) for running the services, as well as a large number of Bots.

6.1.3 World Content and Interactive Players

Two different types of content are used to populate regions of a world for most of

our experiments. These are: dynamic content and example world content. The ex-

periments based on dynamic content use an increasing number of prims that have

attached scripts. This workload is called Prims and Active Scripts (PandASs),

and it is obtained from ScienceSim project [193]. For our examples, a prim is a

square that has an attached active script which rotates it and changes its colour

every few seconds. The other examples of dynamic content, which are normally

called non-player characters (NPCs), include moving ducks and monsters. NPCs

use server side scripts, and are different than Bots in the sense that Bots run

scripts from client software. The experiments based on worlds content use re-

gional content obtained from their developers which have different themes and

are mostly based on static content and simple scripts. These worlds are called

OpenVCE, FairieCastle, EducationSim, Maya Pyramid and CSI World, in addi-

tion to the simple world developed for this study (named Our world), and all are

briefly introduced in Table 6.1. They are available as OAR files and each is used

to populate a region, but they could be duplicated if required. The following is a

brief introduction to these worlds:

The OpenVCE (Open Virtual Collaboration Environment) is a commu-

nity project that provides free support facilities for collaborative communities and

integrates a community web portal to a VW. It can be retrieved from [168].

The FairieCastle is a castle on an island that has a hidden cave and a waterfall

behind it. It has scripts that grows trees and mushrooms and can be downloaded

from [59].

The CSI Virtual World is a VW for solving crimes by testing virtual blood

samples and inspecting collected evidence. The archive of this world can be down-

loaded at [45].

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 127

The Maya Pyramid is a virtual representation of the Temple of the Inscrip-

tions, a Mayan pyramid in Palenque, Mexico together with large houses and small

thatched huts called ‘palapas’. It is available for free download at [148].

The EducationSim is a simple space with a classroom, a conference room, a

small house and orientation land [174]. The archive can be downloaded from [56].

Our world is a simple world with a small number of prims and is used for simple

tests conducted for a variety of purposes.

Virtual World File Size Prims/Scripts Assets/Objects

OpenVCE 21MB 2148/152 385/96

FairieCastle 19.3MB 2680/116 290/194

CSI Virtual World 8.02MB 1256/184 151/307

Maya Pyramid 6MB 1227/2 56/34

EducationSim 2MB 1439/8 22/206

Our world - 8/- 3/8

Table 6.1: The description of example worlds content.

In order to access and modify the content in a VW, a user needs client software.

Since it is impractical to request a large number of online players, we used the

concept of Bots to test the behaviour of interactive clients. We used the TestClient

(TClient) application (TestClient.exe) of the OpenMetaverse[171] library to login

Bots, and we used their basic commands to develop scripts for different activities.

OpenMetaverse is a project that comprises a collection of open source building

blocks for developing VW platforms [171]. Each TClient has the capability to

login a large number of Bots. However, using a single instance for many Bots

introduces longer delays as the activities are performed in a sequence. Hence, we

used multiple TClients that login ten Bots at the maximum.

6.2 Initial Tests

This section provides a description of number of fundamental tests that were con-

ducted to determine the capabilities and flexibility of the OS framework. The

standalone mode has limited capabilities than grid mode. However, we started

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 128

with standalone mode and then moved to grid mode which is used for the imple-

mentation of our work. It was observed that RAd functionality also allowed certain

operations between Sims running in the standalone mode. These test targeted the

OS design, console and remote administration, and teleporting. Teleporting is

the process of instantly changing the position of an avatar. The basic aim was

to determine if the RAd and OAR functionalities had the potential to implement

the split and merge operations on both current and remote Sim while maintaining

system design.

The following valuable tests were conducted with a small amount of content and a

single player, and this gave us confidence in building further on this framework. All

services and OS instances (for both standalone and grid) used in these experiments

were running on a single system. These tests were performed on both Windows

and Linux platforms.

First of all, both standalone and grid modes of OS were configured. The SQLite

and MySQL options for the standalone mode and MySQL for grid mode were

tested.

The basic Create Region (CR) functionality was used to create a region on the

current Sim. Then, the RAd functionality was used to create a region on three

possible environments: the same Sim, on another standalone Sim, and on a Sim

as part of a grid.

The basic and RAd Save OAR (SOAR) functionalities were tested for storing

the complete content of a region into a shared location. Furthermore, the basic

and RAd Load OAR (LOAR) functionalities were investigated for loading the

content stored at a shared location in an OAR file to a region. We also tested

loading the content to a remote computer.

The basic and RAd functionalities for both Delete Region (DR) and Remove

Region (RR) commands were inspected firstly on current Sim, and secondly on

a remote Sim.

The boundary crossing effects for an avatar were observed while it was walking

to or flying between regions on a single Sim for both standalone and grid modes.

We further examined boundary crossings between regions on different Sims over

a grid infrastructure.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 129

The basic teleport mechanism was tested to teleport between adjacent regions on

both standalone and grid environments. We also tested teleports between non-

neighbouring regions. Moreover, we tested multiple random teleports to different

regions on a grid. The teleport mechanism of scene class was used explicitly to

transfer a player from one region to another region and then transfer it back to

its home region.

To investigate the effects of delegating a region to a new Sim on grid, we tested

an avatar walking, flying, and teleporting between the transferred region and its

neighbouring regions.

Based on the successful results of these experiments, we found that the OS is

flexible enough, and its components can easily be utilised to extend its current

architecture. A scalability framework based on our work is presented and imple-

mented in chapter 7. However, the most important issue here is to determine

the content and player capacity while keeping performance in mind. Similarly,

determining a point when a system needs to initiate a split and, conversely, when

a system requires to start a merge operation are critical factors in developing

scalable worlds. For these reasons, we conducted a number of different sets of

experiments to test the OS behaviour against both static and dynamic content as

well as interactive clients. These experiments, their analysis and an abstract load

model based on these experiments are presented in the next section.

6.3 A Generic Load Model

According to Gupta et al. [92], SL and WoW both have a capacity well below 100

interactive users over a high speed server. However, current VWs normally employ

a number of restrictions on their content players’ activities. To determine the

system behaviour against static and dynamic content as well as interactive users,

we performed different sets of experiments. The main purpose was to develop a

generic model that predicts the system capacity and determines a point in the

system when it needs to initiate a split. Similarly, it could be used to approximate

a value for initiating a merge operation. Initially, the experiments were conducted

with a single region and were then extended to see system behaviour for multiple

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 130

regions on both Windows and Linux platforms. The results are presented as

graphs based on average values of a large number of observations (collected for

approximately three minutes or more) for each experiment and on the Standard

Deviation (STDEV) that shows the variations in these observations. The measures

are based on observations taken during steady states of the OS world, and each

experiment was started with empty region(s) that were then populated using OAR

commands. The workload described in section 6.1.3 is used to populate the regions

and, to determine the impact of load introduced by the interactive clients, we used

two scripts named ScriptA and ScriptB. The former repeatedly executes a sequence

of four operations: forward 5, back 5, go home and sleep 10. It tells a Bot to go

forward for five seconds, then go backward for five seconds, followed by a teleport

to a home location and then sleep for ten seconds. The player’s home location is

assigned before running the script. The latter is a modified form of ScriptA that

removes the sleep command to further stress the system.

6.3.1 Experiments on the Windows Environment

The experiments in this section use the Windows environment described in sec-

tion 6.1.2. The dual core system is used to run both an OS instance and MySQL

database that holds regional data. The rest of the systems are used to login Bots

to the system. We initially started with three parameters (SimFPS, PhysicsFPS,

and CPU% usage) to study a system behaviour, but later on we concentrated

on SimFPS. This is because PhysicsFPS was following exactly the same pattern

as SimFPS, and CPU was never found to be a bottleneck in our experiments.

However, it was used up to its full capacity in a single set of experiments based

on in-world scripts. The sets of experiments are presented in the following order:

Static Content, Dynamic Content using In-world scripts, Logged-in Bots with no

Activities, Logged-in Bots running ScriptA, Logged-in Bots running ScriptB, and

Logged-in Bots in 2 Regions running ScriptB. The general outcomes are then

discussed before starting experiments on the Linux environment.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 131

Static Content

In this set of experiments, we examine the system behaviour for an increasing

number of static content in a single region of a Sim. The experimental data used

in these experiments are:

• Empty Region, no content

• 2000 prims

• 4000 prims

• 6000 prims

• 8000 prims

• 10000 prims

Figure 6.1 presents the Mean and STDEV for SimFPS, PhysicsFPS and CPU%.

It reveals that SimFPS is between fifty and sixty for all the experiments, with

the highest observed value of fifty-seven. The PhysicsFPS has a similar outcome

but it remains in a range of forty to fifty, with forty-seven being the maximum

observed. Figure 6.1 further shows that, in a steady state, the CPU utilisation

is almost zero since no activities are happening in the world once the content is

loaded into both the scene and database.

Figure 6.1: Mean and STDEV for an increasing number of static
content for SimFPS, PhysicsFPS and CPU%.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 132

Dynamic Content using In-world Scripts

To explore the system behaviour for the content with dynamic behavior using

in-world scripts, we performed a set of experiments with an increased number of

Prims and Active Scripts (PandASs). The number of PandASs in each experiment

are given as:

• Empty Region

• 100 PandASs

• 500 PandASs

• 1000 PandASs

• 1500 PandASs

• 2000 PandASs

• 2500 PandASs

• 3000 PandASs

Figure 6.2 shows the Mean and STDEV for SimFPS, PhysicsFPS, and CPU%. It

can be seen in Figure 6.2(a) that SimFPS gradually decreases with an increase

in number of dynamic content. However, PhysicsFPS has no noticeable decrease.

Since the dynamic content is continuously rotating each cube and changing its

colour, the CPU% (shown in Figure 6.2(b)) parameter shows a significant increase

in CPU utilisation as the capacity increases. It can be seen that CPU utilisation

is up to 200% in two cases.

(a) (b)

Figure 6.2: Mean and STDEV for an increasing number of dynamic
content (PandASs) for (a) SimFPS and PhysicsFPS, and (b) CPU%.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 133

Logged-in Bots with no Activities

In this set of experiments, we wanted to check the system performance for inter-

active Bots that are logged-in but doing nothing. Starting with no players, we

add ten players each time to a successive experiment. The Mean and STDEV for

SimFPS, PhysicsFPS, and CPU% for this set of experiments are presented in Fig-

ure 6.3. It reveals that logged-in Bots that perform no activities have no impact

on either SimFPS and PhysicsFPS, and they behave like static content. However,

the system in this case consumes CPU time because it sends regular updates to

the clients, as shown in Figure 6.3. Since updates are sent periodically at diverse

time intervals for different sets of Bots, the CPU utilisation shows big variations.

Figure 6.3: Mean and STDEV for an increasing number of Play-
ers/Bots logged-in but doing nothing for SimFPS, PhysicsFPS, and
CPU%.

Logged-in Bots running ScriptA

In this set of experiments, the experimental descriptions are the same as before

but Bots are asked to repeatedly follow the activities provided in ScriptA.

The experimental results are presented in Figure 6.4. Figure 6.4(a) reveals that

SimFPS is gradually decreased as the number of interacting players are increased.

It further shows that the PhysicsFPS is decreased with a similar rate as SimFPS.

We believe that the interactive clients have a great impact on frame rate, but

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 134

the system in this case gives better performance because the script commands are

applied to Bots in sequence and different sets of Bots are sent to sleep mode for

ten seconds, thus executing an even number of players at a given time. It also

gives long variation for frame rates due to these reasons. The CPU utilisation is

increased with the addition of more Bots in each successive experiment, as shown

in Figure 6.4(b). On average, the system processes the same number of Bots and,

therefore, CPU utilisation is almost the same in each case. To examine how the

system behaves when all the Bots are continuously involved in different activities,

we used a modified version of ScriptA for the next set of experiments. The basic

aim was to determine the point (system capacity) when the system performance

starts degrading.

(a) (b)

Figure 6.4: Mean and STDEV for an increasing number of play-
ers/Bots running ScriptA for (a) SimFPS and PhysicsFPS. (b) CPU%
Usage.

Logged-in Bots running ScriptB

In this set of experiments, we used ScriptB and asked an increasing number of

Bots in each experiments to follow the activities of the script. The number of

players in each experiment are, again, the same as before.

The results are explored in Figure 6.5. It can be seen in Figure 6.5(a) that both

SimFPS and PhysicsFPS maintain an acceptable frame rate for up to forty play-

ers. However, the frame rate drops quickly when more players are added and that

reduces the frame rate significantly, thus degrading the user interactive experience.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 135

(a) (b)

Figure 6.5: Mean and STDEV for an increasing number of play-
ers/Bots running ScriptB for (a) SimFPS and PhysicsFPS. (b) CPU%.

The CPU utilisation is normal in this case as shown in Figure 6.5(b).

Based on the experiments presented so far using a single region, we identified that

interactive clients and their activities have most impact on system performance

(described in terms of SimFPS and PhysicsFPS). The system performance de-

grades greatly with an increase in the number of players and frequency of their

activities. It was further observed that an increasing number of dynamic content

also has a gradual but slight impact on these parameters. However, CPU utilisa-

tion is greatly increased for them. These parameters are vital for the development

of a load model, but first we need to investigate how a system with multiple regions

behaves against these parameters. This is because an OS instance can host an ar-

bitrary number of regions. We used SimFPS and CPU utilisation for this set of

experiments because the PhysicsFPS always follows the same pattern as SimFPS.

To examine how a system with multiple regions behaves against presented load,

we discuss another set of experiments in the next section with a Sim with two

regions.

Logged-in Bots in 2 Regions running ScriptB

This set of experiments is different to the rest of the experiments as the players are

now equally distributed among two regions and they are increased by ten in each

region in successive experiments. They are also repeatedly executing the activities

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 136

listed in ScriptB.

(a) (b)

Figure 6.6: Mean and STDEV of increasing number of players/bots
equally distributed among 2 regions running ScriptB for (a) SimFPS
(Region I) and SimFPS (Region II). (b) CPU%.

Figure 6.6 provides the SimFPS parameters of both Region-I and Region-II as

well as CPU utilisation. It is clear that a system for up to forty players (twenty

in each region) in a Sim maintains the rate of Frames Per Second (FPS) above

30FPS, as shown in Figure 6.6(a). SL maintains a minimum FPS for an acceptable

performance [92]. However, it can be seen that its performance is degraded when

more players are added to the Sim. The SimFPS for Region I drops below 30FPS

when the system has about sixty players. Since the actual world could have

different content and interactive players, we therefore believe that when the FPS

for any of the region falls below a certain limit, the system should either stop taking

further connections or distribute the load with additional Sims. This is because

it degrades the overall performance of a system. To avoid a negative experience,

a distribution needs to be initiated at much a higher value than 30FPS as, after

a certain range, the rate goes down very quickly. The worlds with more than two

regions yield similar outcomes and are, therefore, not included in this thesis. The

CPU load is again not beyond the capabilities that is presented in Figure 6.6(b).

Discussion

We performed different sets of experiments and observed that interactive clients

have the most impact on system performance. Dynamic content also showed some

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 137

impact. We used SimFPS, PhysicsFPS, and CPU utilisation to determine a sys-

tem’s behaviour against different workloads. However, the PhysicsFPS followed

exactly the same pattern as SimFPS. SimFPS is the main measure which is ulti-

mately used for the development of our load model. The CPU utilisation is never

observed to be a bottleneck for all experiments. When a TClient was used to log

in a large number of Bots, we observed network issues such as delays and drop of

connections. We overcome these issues by restricting up to ten Bots per TClient.

Since not all sets of experiments showed an impact, it is necessary to repeat lim-

ited sets of experiments to see how additional hardware support the workload

presented in each experiment. Given that CPU is never used to its full extent for

a dual core node, it is assumed that it might not be a potential bottleneck over

a dual quad core node, and therefore it is not calculated for the experiments over

Linux environment. In the next section, we put emphasis on dynamic content

and interactive players. The main goal is to see if more resources can assist in

achieving an improved performance.

6.3.2 Experiments on the Linux Environment

This section use a more sophisticated and high speed computation facility using the

Linux platform described in section 6.1.2. Grid services (a Robust instance) and

their corresponding database are running on a dedicated node. The region server

is running on a different node while a number of other nodes are used to log in Bots

to the world. The sets of experiments that are repeated in this section include

Dynamic Content with In-world Scripts, Logged-in Bots running ScriptA, Logged-

in Bots running ScriptB, and Logged-in Bots in 2 Regions running ScriptB. The

graphical results of these experiments on the Windows environment are reproduced

for comparison purposes in this section. Only SimFPS and PhysicsFPS parameters

are considered in this section.

Dynamic Content using In-world Scripts

Since we observed that there was an impact of dynamic content (PandASs) on

SimFPS and PhysicsFPS in the Windows environment, we repeated this set of

experiments with an increasing number of PandASs by adding 500 PandASs in

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 138

each successive experiment. We performed an extended set of experiments with

up to 8000 PandASs due to the fact that the Linux node has four times more cores

compared with the Windows node used which has two cores.

Figure 6.7(a) shows the results for both SimFPS and PhysicsFPS. It demonstrates

that the system behaviour for a very large number of PandASs is stable and there is

no decrease in FPS for either of the parameters compared with the Windows node

(see Figure 6.7(b)). These results revealed that different cores of the node used

for running these experiments are handling part of the in-world activities, thus

keeping the rate of FPS stable. However, a Sim is normally assigned to a single

core in a grid environment that could possibly host multiple regions. Therefore,

the content is usually restricted up to a certain level for a region. In the next set of

experiments, we wanted to explore the behaviour of a Linux node and the impact

of different cores of a node when used against an increasing number of Bots.

(a) (b)

Figure 6.7: Mean and STDEV for an increasing number of dy-
namic content (PandASs) for (a) SimFPS and PhysicsFPS on a Linux
node, and (b) SimFPS and PhysicsFPS on a Windows node (from Fig-
ure 6.2(a)).

Logged-in Bots running ScriptA

Exactly the same set of experiments of the Windows environment was repeated on

the Linux environment, and the increasing number of players follow the commands

given in ScriptA.

Figure 6.8 (a) shows the system behaviour using both SimFPS and PhysicsFPS

and it can be seen that it provides more stable results with few variations com-

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 139

pared with the results of the same set of experiments on the Windows environment

(shown in Figure 6.8(b)). It handled up to fifty Bots without any degradation of

SimFPS but it started degrading the rate of FPS at about sixty players and

dropped considerably when more Bots were added. There is a quick decline be-

tween sixty and eighty Bots where, for eighty players, the rate of FPS drops lower

than 30FPS. This demonstrates that using multiple cores failed to help increase the

number of Bots. By comparing the results in both Figure 6.8(a) and Figure 6.8(b)

for Linux and Windows environments, we can see that both environments have

almost the same trends for handling interactive Bots. Therefore, the use of multi-

ple cores is unable to achieve better performance than the simple systems. Since

we used more nodes to log in Bots and logged in less Bots per TClient, the Linux

environment has no connection drop issues. To further stress the system and

see how the system responds to heavy load, the same set of experiments (called

Logged-in Bots running ScriptB) was repeated on the Linux environment in the

next section.

(a) (b)

Figure 6.8: Mean and STDEV for an increasing number of play-
ers/Bots running ScriptA for (a). SimFPS and PhysicsFPS on a Linux
node, and (b) SimFPS and PhysicsFPS on a Windows node (from Fig-
ure 6.4(a)).

Logged-in Bots running ScriptB

Figure 6.9(a) shows very similar results for this set of experiments on the Linux

environment compared with its results on the Windows environment presented in

Figure 6.9(b) for total number of players it can handle. The Linux environment

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 140

showed a slightly improved resistance where it managed to handle up to sixty

players before its FPS dropped below 30FPS. The Windows environment crosses

the limit a few times while handling fifty players but the average was almost

30FPSs.

(a) (b)

Figure 6.9: Mean and STDEV for an increasing number of play-
ers/Bots running ScriptB for (a). SimFPS and PhysicsFPS on a Linux
node, and (b) SimFPS and PhysicsFPS on a Windows node (from Fig-
ure 6.5(a)).

Logged-in Bots in 2 Regions running ScriptB

To determine how a Linux node behaves when there are two regions in a Sim, we

repeated this set of experiments with regions being populated equally with ten

additional players in each region in each successive experiment. The players are

again executing ScriptB.

The results of the experiments on the Linux environment are presented in Fig-

ure 6.10(a) and compared with the corresponding set of experiments on the Win-

dows environment, shown in Figure 6.10(b). It shows that it handles up to forty

Bots with a rate of FPS above 30FPS but the rate of FPS with additional Bots

dropped more quickly than the Windows environment. The Windows environ-

ment showed improved behaviour where it performed much better for Bots be-

tween forty and sixty. The Linux environment was consistently under 30FPS for

sixty and more Bots. The Windows environment had variations where it dropped

a few times, below 30FPS but it maintained an average of just above 30FPS for

sixty players.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 141

(a) (b)

Figure 6.10: Mean and STDEV for an increasing number of play-
ers/Bots (in each region) for a 2 Region world running ScriptB for (a)
SimFPS on a Linux node, and (b) SimFPS on a Windows node (from
Figure 6.6(a)).

Discussion

We performed selected sets of experiments on the Linux environment to determine

system behaviour with additional hardware resources and compared their results

with the corresponding sets of results on Windows environment. It was determined

that, with the exception of dynamic content, the rest of the experiments for both

environments gave a similar response against the same workload added to these

environments. The most interesting finding of the experiments on the Linux node

is that the provision of additional hardware failed to perform better compared

with the Windows node. We faced a number of issues with the OS framework

when used on Linux platform. It crashed frequently and showed very unstable

behaviour compared with the Windows environment. The potential reason might

be its development on .Net framework for Windows environment. However, it

works well with Linux and mono framework but the best working combination

of OS and mono frameworks needs to be found as they are continually under

development.

6.3.3 Comparison

Based on a large set of experiments on both Windows and Linux environments, we

came to the conclusion that the provision of additional hardware cannot improve

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 142

system performance. Liu et al. [140] have described this as a system bottleneck

that restricts OS worlds to scale, and is due to the simulation centric architecture

used by the OS framework. Most of the VWs using this architecture put restric-

tions on both activities and content. However, our concern is to develop a model

for the current architecture to overcome issues with both static and dynamic sys-

tems and to improve their performance. For a scalable system, the most critical

decisions are when to initiate a split and a merge operation. To initiate a split, we

need to take action before it degrades to a point which is not acceptable. Based

on these experimental results, we aim to develop a generic load model to help the

system to determine suitable decisions while maintaining good performance.

The Linux node has the capacity to hold more static and dynamic content. How-

ever, for performance reasons they need to be restricted for the following reasons:

normally a Sim is usually assigned to a single core of a node and has restricted

capabilities; content storage is a sequential process that takes a long time; static

content is stored once to the database but dynamic content needs to be stored

periodically for persistence; and region removal with much content requires a con-

siderable amount of time. Based on the results performed in both environments,

we can conclude that a system with a reasonable resources can handle a world

with reasonable amount of content and up to sixty Bots performing a variety of

different actions. However, more than sixty players will degrade system perfor-

mance and a Sim should never allow it. We suggest initiating a split when the FPS

for a region is decreased and goes below 40FPS. For most of these experiments,

this was the point where the system was supporting approximately forty players.

The following section defines a number of concepts used in our final experiments

based on the outcome of these experiments.

6.3.4 SplitCapacity, SimCapacity and MergeCapacity

For the final experiments presented and discussed in chapter 7, we take both split

and merge decisions based on the number of interactive players. Since both Win-

dows and Linux environments showed a similar behaviour, we use the same values

for the concepts defined as SplitCapcity, SimCapacity and MergeCapacity on both

platforms. SplitCapacity is taken to be an approximate value when SimFPS was

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 143

observed dropping below than 40FPS in one of the regions to avoid a negative ex-

perience and improve performance. In both cases, there were around forty players

involved in different simultaneous activities. However, a Sim can hold up to sixty

players (named as SimCapacity) with varying degrees of interactivity in addition

to a reasonable amount of static and dynamic content. It is an estimated value

based on the aforementioned experiments for which a Sim managed to maintain

30FPS for SimFPS on average. We allow up to sixty players per Sim if no further

distribution is possible. When a system reaches this capacity, it declines to accept

more connections. MergeCapacity, on the other hand, is used as a minimum

limit to initiate a merge operation. To avoid frequent splits after merge opera-

tions, we assume a MergeCapacity to be half of the SplitCapacity that is twenty

players for our experimental work.

6.3.5 The Load Model

According to Gupta et al. [92], SL maintains a frame rate of at least 30FPS for

a satisfied level of user experience. We have used this as an argument for the

development of our abstract load model. The basic purpose is to help developers

and practitioners using OS architecture to take the most vital decision about

initiating a load distribution process. Split is normally initiated at an earlier stage

to avoid worst situations and bad user experience (considered at least 40FPS for

our work). Since a Sim can host multiple regions, we initiate a split when the rate

of FPS for any region goes below 40FPS. We use only the SimFPS parameter to

define our load model because both SimFPS and PhysicsFPS degrade at the same

rate. However, if the requirements have a different effect on PhysicsFPS, it could

be included in the model.

Our abstract load model that initiates a split is presented in Algorithm 3. Each

Sim maintains a separate Queue for each scene it manages to hold the observations

based on SimFPS. Initially, each slot is assigned a maximum value of fifty-seven

for SimFPS being set by the OS framework. It maintains a number of most recent

observations recorded during a time interval and are used to take a split decision.

For our approximated values used in this work, we took an observation every

twenty seconds and used the ten most recent observations to determine an average

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 144

Algorithm 3 A Generic Load Model
Require: List<scenes>
Ensure: Alert the system to initiate partitioning
1: for i← 1 to Count(List<scenes>) do
2: Get the latest SimFPS value for the scene;
3: Update the corresponding queue for the scene; //deletes the oldest and adds a latest observation
4: Get Mean of the corresponding queue; //determines average of observations for this scene
5: if (Mean < 40) then
6: Alert the system to initiate partitioning;
7: Break;
8: end if
9: end for

value. However, different values could be selected depending on the requirements.

It is therefore left undefined and need to be decided by the developer. The Sim

initiates this model periodically which determine one of the two possible outcome.

It takes the list of scenes as input and scans the entire set of scenes as follows.

It first determines the latest value of SimFPS for a scene and then updates the

Queue for the corresponding scene. Based on an average value, it alerts the Sim

to initiate a split if the Mean value for a scene goes below 40FPS. This model

provides a point in the system at which to initiate a split and a variation of this

model can be used to determine SimCapacity of a Sim. It needs to maintain on

average, a frame rate of 30FPS instead of 40FPS. However, the merging can be

initiated against a numeric value that is normally selected against SplitCapacity

of a Sim.

6.4 Introducing the Scalability Model

This section introduces a simple scalability model and identifies activities during

both a split and merge operations between different Sims. Based on the identified

activities, we then determine the OS components that could be used to implement

this scalability model. It outlines time statistics that are used in section 6.6 for an

informal time analysis of experiments based on content and interactive players.

Introduction

To scale an OS world comprised of multiple regions hosted by a single Sim, the

traditional methods transfer some of the regions to another Sim. These scalable

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 145

systems always use a grid model which integrates the whole world by managing a

centralised map of regions. Each region on the grid has a unique place and, to give

a coherent space, the regions are arranged adjacent to each other. Keeping these

issues in mind, spatial partitioning methods always transfer regions by serialising

their content as well as players. Once the content is transferred and the region

is up, the players are de-serialised again to resume their normal activities. We

believe that the players in these methods have a bad experience, and to avoid

freezing the players and to improve their experience, we adopt a contemporary

approach in our work that transfers all the players temporarily to an intermediate

region during a region transfer. This region is called a transit region and is only

used during split and merge operations. In our case, players can move freely to

other regions or keep themselves busy with simple activities available at the transit

regions. Once their original region has been relocated, we teleport them back to

their original position and they resume their normal activities.

In this section, we introduce our approach for transferring a region from one Sim to

another Sim with the help of two Sims and a regional grid of two regions with two

additional transit regions for the Sims, as shown in Table 6.2. This simple model

is then converted into a more generalised framework in chapter 7. The parent Sim

(Sim-I) has a regional grid of two regions, named A and B, and a transit region

called T1. We have a single child Sim that is hosting no actual region but rather

a transit region called T2 and is available to share the load. Both the Sims are

connected to a grid instance. Each region presents content and players visit these

places based on interest.

Parameter Sim-I Sim-II

(Parent) (Child)

HTTP Listening Port 9000 9005

Regions(Region:X,Y Coordinates: Port) A:1000,1000:9000 Nil

B:1001,1000:9001 Nil

Transit Region(Region:X,Y Coordinates:Port) T1:1005,1005:9105 T2:1006,1006:9106

Table 6.2: The description of 2 Sims and a world with 2 regions

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 146

6.4.1 Steps in Scalability

Each Sim that has at least a real region continuously monitors the load and it can

be in any of the three states, which are: a normal state, an overloaded state, and

an under-loaded state. Each of these states requires it to take appropriate action

as described next. If there are no players in a region to transfer, it skips the two

steps that are used to transfer players.

Normal State

In this state, the system is running a normal load and no split or merge is required.

Overloaded State: Split

If a system (Parent Sim, Sim-I in this case) becomes overloaded, it delegates one

of the regions (say A) to the other Sim. The following actions in sequence are

required to transfer a region:

• Save the content of region A into a shared space

• Move the players in region A to region T1

• Obtain the region A specifications

• Remove region A from Sim-I

• Create region A on Sim-II with the same specifications

• Load the content to region A on Sim-II

• Move the players from region T1 (on Sim-I) to region A (now on Sim-II)

This ends the splitting process and normal activities for the players are resumed.

It doubles system capacity and players are given a better alternative than freezing.

Underloaded State: Merge

In case the capacity of child Sim (Sim-II) goes below a minimum threshold, it

initiates a merging process. The merging process uses the following steps in the

given order:

• Save the content of region A into a shared space

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 147

• Move the players to region T2

• Obtain the region A specifications

• Remove region A from Sim-II,

• Create region A on Sim-I using original specifications

• Load the content to region A on Sim-I

• Move the players from region T2 (on Sim-II) to region A (now on Sim-I)

This terminates the merging process and the players’ activities are resumed. Sim-

II is again available to share the load. It is important to note that activities across

different Sims require central grid services.

6.4.2 Required Components

To implement the activities described in our simple scalability model, we identified

the following components and capabilities of OS and RAd functionality:

The OAR functionality provides an advanced serialisation method that can be

used to store regional data before deleting a region. It provides methods to store

data to an OAR file and load data from an OAR file, as described earlier in

section 5.3.2 of chapter 5.

RAd functionality implements a wide range of server commands to be executed on

a remote server. The following methods can be used to implement the activities

in our scalability model.

The Save OAR (SOAR) method (admin save oar) issues a command to a

remote server to save a regional content in an OAR file. It requires the name of the

region and a file name. The Load OAR (LOAR) method (admin load oar)

sends a command to a remote server to load the content of an OAR file to a given

region. It also requires a region name and the name of the OAR file. The Create

Region (CR) method (admin create region) is used to create a region on

a remote computer. It takes the following mandatory parameters: region name,

listen ip, listen port, external address, region x, region y, and estate name. The

Close Region (CsR) method (admin close region) remotely allows to re-

move a region from a Sim and takes region name as an input. Data from the

database is not deleted in this method. The Delete Region (DR) method

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 148

(admin delete region) remotely allows a region to be deleted from a Sim and

it deletes its data from the database. It also takes region name as a parameter.

The remaining activity to suppose is transferring players from one region to an-

other region. The scene object has a teleport method that can be used explicitly

for this purpose. The grid service facilitates determining a remote region based

on region specifications.

6.4.3 Statistical Parameters

In this section, we describe the time parameters that we track to determine the

timings actually taken by different activities during a transfer. Based on the ac-

tivities identified in our scalability model, we collect the following statistics: Store

Content Time (SC Time), Load Content Time (LC Time), Remove Region Time

(RR Time) (representing both Delete Region (DR) and Close Region (CsR)), Cre-

ate Region Time (CR Time), Transfer to Transit Time (T2T Time), Transfer to

Region Time (T2R Time), Content transferred, Number of players transferred,

and Average player transfer Time.

The time to store the content of a region into an OAR file (using SOAR method)

is called Store Content Time (SC Time).

The Load Content Time (LC Time) represents time to load content from an

OAR file (using LOAR method) to a region.

The time to remove a region using either Delete Region (DR) or Close Region

(CsR) methods from a Sim is called Remove Region Time (RR Time). A

parameter, called case, then identifies a method during an experiment.

The time to create a new region on a remote Sim is called Create Region Time

(CR Time). It is usually based on the specifications of original region that is

relocated during a transfer.

The total time to explicitly teleport the players in a region to a transit region

when relocating a region is called Transfer to Transit Time (T2T Time).

The Transfer to Region Time (T2R Time) represents the total time to trans-

fer players back to a region from a transit region.

Content transferred parameter represents regional content that is transferred

when relocating a region.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 149

Number of players transferred maintains the number of players that are trans-

ferred due to a split.

Average player transfer Time is the time a player takes on average to transfer

from one region to another.

Activity Case SQLite MySQL MySQL

(Sec) (Centralised) (Localised)

(Sec) (Sec)

Create Region Any 4Sec 3Sec 2Sec

Teleport to Location Any 6Sec 5Sec 5Sec

Load Content (LC) Our world 3Sec 1Sec 1Sec

101PandASs 3Sec 2Sec 2Sec

501PandASs 7Sec 3Sec 2Sec

1002PandASs 11Sec 6Sec 6Sec

OpenCVE 114Sec 94Sec 90Sec

Store Content (SC) Our world 1Sec 1Sec 1Sec

101PandASs 1Sec 1Sec 1Sec

501PandASs 2Sec 1Sec 1Sec

1002PandASs 2Sec 2Sec 2Sec

OpenCVE 8Sec 6Sec 6Sec

Delete Region (DR) Our world 2Sec 2Sec 1Sec

101PandASs 20Sec 16Sec 12Sec

501PandASs 74Sec 62Sec 51Sec

1002PandASs 158Sec 128Sec 122Sec

OpenCVE 49Sec 19Sec 15Sec

Remove Region (RR) Our world 2Sec 2Sec 2Sec

101PandASs 16Sec 14Sec 12Sec

501PandASs 90Sec 81Sec 74Sec

1002PandASs 421Sec 201Sec 196Sec

OpenCVE 5Sec 3Sec 2Sec

Table 6.3: A comparison of time taken by different activities for three
database options (SQLite (localised), MySQL (centralised), and MySQL
(localised)) hosting a Sim data on Windows environment.

6.5 Investigating Database Options

This section investigates and compares three different databases configurations

that can be used with a grid infrastructure to store the data of regional servers.

The basic aim is to determine the best option that could be feasibly used for

large scale VWs. Grid services (implemented as a Robust.exe instance) always

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 150

use a MySQL database. The following three database options are used to store

regional data of different Sims: local SQLite data file for each Sim, using a cen-

tralised MySQL database for all Sims, and a local MySQL instance for each Sim.

To evaluate and see the behaviour of these configurations, we used a number of

different regional commands to obtain time statistics for their corresponding activ-

ities. They are applied from the console of a regional server and used to compare

the time information for different database options. Table 6.3 provides the details

of activities identified by our split model and their time information.

Create Region (CR) and teleport operations have no direct link with databases

but the MySQL options still give a better response. The teleport operation takes

various amounts of time as it might need to download the regional data to a

viewer. Load Content (LC) is basically adding the content to a scene and then

later, as a background process, it stores the data into a database. SQLite gives a

much slower response in loading the content of an OAR file to a scene compared

with MySQL options. SQLite is a lightweight system and is unable to maintain

the data of large scale VWs. The Store Content (SC) operation takes almost the

same amount of time for all the options because it has no concern with databases.

A system bottleneck was found while deleting a region from a Sim. If a DR is

called during a periodic backup, the system first completes the backup process

and then deletes the region. SQLite was taking a long time while quitting the Sim

or removing/deleting a region with large content. In some cases, when persistence

was required, MySQL also took a considerable amount of time but in steady states,

and for static content it performs better than SQLite. The main reason that each

database takes a considerable amount of time is the fact that during a delete

operation, a Sim deletes objects from both scene and database in sequence. On

the other hand, the RR operation takes a longer time when the content has a

number of dynamic objects and their states need to be updated in the database.

It also takes a long time for those regions whose data is not already stored in the

database. In general, both MySQL options take less time for both deleting a region

and removing a region from a Sim, as shown in Figure 6.11(a) and Figure 6.11(b).

Furthermore, the MySQL (localised) option shows a little improvement over the

centralised option for our simple setup. We believe that a centralised option

becomes a system bottleneck as a VW scales.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 151

(a) (b)

Figure 6.11: The comparison of SQLite, MySQL (Centralised), and
MySQL (Localised) as a prospective configuration and their impact on
(a) Delete Region (DR), and (b) Remove Region (RR).

In short, SQLite is a good option for simple experimental work and to start work-

ing with, but for further experimentation and to run a grid infrastructure, it

is recommended to use MySQL. A single centralised MySQL instance could be

utilised for a grid environment hosting regional data for all Sims, but it could

become a system bottleneck for large scale VWs. Hence, it is recommended to use

a localised database for each Sim and, from now onwards, we utilise a separate

MySQL instance for each Sim.

6.6 Informal Time Analysis Model

This section describes an informal way to transfer players and content from one

Sim to another Sim (on a grid infrastructure) with the help of RAd methods

and the teleport method of scene object of OS framework. We introduced three

additional region console commands to initiate our methods for split and merge

operations. Our methods combine the activities into a series of function calls to

implement these operations. Two different split commands are added that differ

in the way they remove a region from a Sim. One uses Delete Region (DR) and the

other accesses the Close Region (CsR) method of RAd functionality for this pur-

pose. The basic aim is to determine how much time is taken by each activity during

a transfer. We use a simple grid of two Sims, described in Table 6.2, to perform

a number of experiments varying both players and content. This is to examine

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 152

the time statistics for the activities required for split and merge operations when

they are used from a remote machine. Since both split and merge operations use

the same set of activities, we have only reported the time information of selected

activities from split operations for our investigations. We manually initiate these

commands from the console and start each experiment with empty regions, and

then populate them with either content or players depending on the experiment

concerned. We use both Windows and Linux environments (described in sec-

tion 6.1.2) to perform the same set of experiments, and then they are compared to

observe their behaviours. Each environment is introduced before the experiments

that cover three categories based on dynamic content, example worlds content,

and interactive players. We use dedicated servers to host different Sims based on

our investigation, which is presented in the following section (section 6.6.1). The

statistics defined in section 6.4.3 are used for the informal time analysis in this

chapter with the basic aim of obtaining time estimates and developing improved

strategies to minimise their timings.

Experiment Content Non-dedicated Server Dedicated Server

CR LC CR LC

Time Time Time Time

(Sec) (Sec) (Sec) (Sec)

1 Our world 8Sec 7Sec 2Sec 2Sec

2 501PandASs 7Sec 8Sec 3Sec 3Sec

3 1002PandASs 9Sec 9Sec 2Sec 4Sec

4 OpenCVE 6Sec 109Sec 2Sec 101Sec

5 FairieCastle 8Sec 96Sec 2Sec 86Sec

Table 6.4: The comparison of time information for both Create Region
(CR) and Load Content (LC) between a dedicated and a non-dedicated
Sim.

6.6.1 Dedicated and Non-dedicated Sim Servers

For a better performance, the VW Sims are normally assigned to dedicated cores

on Grid infrastructures. This is because running other activities shares the compu-

tation and communication facilities that potentially degrade system performance.

In this section, we provide a brief analysis of activities and their comparison be-

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 153

tween two Sims where the first is running on a dedicated system but the second

is running more applications in addition to the Sim. The dedicated server was

used to run the parent Sim (Sim-I) and its database instance. A dual core system

was used to run an instance of Robust and the child Sim (Sim-II), in addition to

two database instances for both grid and a regional server. It was also running

a number of other applications. Table 6.4 provides a summary of time informa-

tion for two activities using RAd methods for Create Region and Load Content

on both dedicated and non-dedicated servers. It can be observed that the non-

dedicated server takes much longer to perform these activities. Figure 6.12(a)

shows a comparison of time taken by creating a region between a dedicated and

a non-dedicated server. It can be seen that a Sim on a dedicated server creates

a region much faster than the one on a non-dedicated server. It takes two to

three seconds compared with the six to nine seconds of a non-dedicated server. A

comparison between both Sims for Load Content from an OAR file is presented

in Figure 6.12(b). It shows that a dedicated server loads the content in less time

than a non-dedicated server.

(a) (b)

Figure 6.12: The comparison of time information between dedicated
and non-dedicated servers for (a) Create Region, and (b) Load Content.

In short, dedicated servers for a Sim provide much better and quicker responses

to perform different activities, and also improve user interactive experience. From

now onwards, we use dedicated servers for running region Sims and grid services.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 154

6.6.2 Time Analysis on Windows Platform

In this section, we use our Windows environment, as described in section 6.1.2, for

three different sets of experiments. The dual core system is used to run the grid

instance and two Pentium systems are used to run two Sims (Sim-I is a parent and

Sim-II is a child Sim). The fourth system is used to log in an increasing number

of Bots in the third set of experiments.

Dynamic Content

Table 6.5 describes the set of experiments that transfer an increasing number of

dynamic content (PandASs) and shows the time information for different activities

required to transfer a region without players. RR is the only activity that takes

long time for both DR and CsR. DR takes less time than CsR but it is still a

considerable amount of time. In both cases, the time to remove a region increases

with rise in number of content, as shown in Table 6.5. The rest of the activities

(SC, CR, and LC) take an acceptable amount of time. This is because these

workloads have no complex scenarios and each object is of a single prim.

Case Exp. From To Region Prims and SC RR CR LC

No. Sim Sim Name Active Scripts Time Time Time Time

(Sec) (Sec) (Sec) (Sec)

Delete-Region 1 Sim-I Sim-II A 8Prims only 1Sec 2Sec 2Sec 2Sec

2 Sim-I Sim-II A 101 each 1Sec 12Sec 2Sec 2Sec

3 Sim-I Sim-II A 501 each 2Sec 56Sec 3Sec 3Sec

4 Sim-I Sim-II A 1002 each 2Sec 126Sec 2Sec 4Sec

5 Sim-I Sim-II A 1503 each 3Sec 170Sec 3Sec 6Sec

Close-Region 1 Sim-I Sim-II A 8Prims only 1Sec 1Sec 2Sec 2Sec

2 Sim-I Sim-II A 101 each 1Sec 12Sec 3Sec 2Sec

3 Sim-I Sim-II A 501 each 1Sec 77Sec 2Sec 3Sec

4 Sim-I Sim-II A 1002 each 2Sec 196Sec 2Sec 5Sec

5 Sim-I Sim-II A 1503 each 3Sec 343Sec 2Sec 7Sec

Table 6.5: Summary of the time information for experiments transfer-
ring dynamic content (PandASs) on Windows environment.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 155

Example Worlds

In this set of experiments, the region that is transferred to the child Sim is pop-

ulated with one of the example worlds content described in section 6.1.3. Most

of the content in these worlds are static except FairieCastle which has a number

of dynamic scripts. Table 6.6 shows the results of the experiments which show

that both SC and CR take time which falls in an acceptable range. The removal

time for DR is longer than CsR, except for FairieCastle which takes time during

the backup process before closing it. The OpenVCE content was not stored in

the database when we called CsR and, therefore, it took longer to first store the

content in the database before closing the region. However, when the content was

stored, the same operation for OpenVCE world took just a few seconds. Since the

example worlds represent proper environments with reasonable numbers of objects

and scene complexity, they took a considerable amount of time to load content

from an OAR file to the corresponding region.

Case Exp. From To Region Regional SC RR CR LC

No. Sim Sim Name Content Time Time Time Time

(Sec) (Sec) (Sec) (Sec)

Delete-Region 1 Sim-I Sim-II A OpenCVE 8Sec 13Sec 2Sec 101Sec

2 Sim-I Sim-II A FairieCastle 10Sec 19Sec 2Sec 86Sec

3 Sim-I Sim-II A Maya Pyramid 4Sec 5Sec 2Sec 18Sec

4 Sim-I Sim-II A CSI World 5Sec 25Sec 2Sec 38Sec

5 Sim-I Sim-II A EducationSim 2Sec 17Sec 2Sec 10Sec

Close-Region 1 Sim-I Sim-II A OpenCVE 7Sec 131Sec 2Sec 96Sec

2 Sim-I Sim-II A FairieCastle 8Sec 25Sec 2Sec 91Sec

3 Sim-I Sim-II A Maya Pyramid 3Sec 2Sec 3Sec 18Sec

4 Sim-I Sim-II A CSI World 4Sec 3Sec 2Sec 39Sec

5 Sim-I Sim-II A EducationSim 1Sec 3Sec 3Sec 13Sec

Table 6.6: Summary of the experiments showing timing information of
different activities when transferring a region populated with example
worlds content.

Interactive Clients

In this set of experiments, we investigate the time taken to transfer an increasing

number of Bots between regions. We consider an empty region with no content. It

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 156

takes a few seconds to remove a region from a Sim as well as to create a region on

another Sim. Table 6.7 shows the details of experiments that reveals interesting

information. Each player takes on average nine seconds to transfer from one region

to another. However, in the case of network overload, it could take much longer

as a system normally retries a few times before initiating a timeout signal. One

such situation can be seen in experiment 3 for T2R Time, which takes 142Sec

instead of about 90Secs for a total of ten players. It was observed that three

Bots were disconnected in this situation, and the system retries to contact them,

was the reason to increasing the total time taken by the transfer. However, the

disconnection issue was potentially due to the non-mature nature of the TClient

application and happened rarely. It normally happened when we used an instance

of TClient to log in a large number of Bots. Hence, a real environment would

have less chance of connection drops for the actual players. Figure 6.13 depicts

two sets of transfers (for both T2T Time and T2R Time) during a single transfer,

and shows that the time might be increased due to communication issues. It can

be observed that the time taken is simply the average time (9Sec) × number of

players and is quite static in normal situations.

Exp. From To Region Players T2T RR CR T2R

No. Sim Sim Name Time Time Time Time

(Sec) (Sec) (Sec) (Sec)

1 Sim-I Sim-II A 1 8Sec 1Sec 2Sec 8Sec

2 Sim-I Sim-II A 5 43Sec 2Sec 3Sec 48Sec

3 Sim-I Sim-II A 10 88Sec 1Sec 2Sec 142Sec

4 Sim-I Sim-II A 15 132Sec 2Sec 2Sec 138Sec

5 Sim-I Sim-II A 20 183Sec 2Sec 3Sec 180Sec

Table 6.7: Summary of the timing information for the experiments
transferring an increasing number of players on Windows environment.

6.6.3 Time Analysis on Linux Platform

In this section, we repeat the same sets of experiments (presented in section 6.6.2)

on the Linux environment described in section 6.1.2. The main purpose is to see

how the system behaves when dual quad core nodes are used to host different

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 157

Figure 6.13: Time taken by teleport operation for transferring an
increasing number of players on Windows environment.

Sims, and if there is any improvement in terms of time for different activities.

One node is used to run the grid services and two are hosting a parent and a child

Sim, called Sim-I and Sim-II respectively. To log in increasing number of Bots,

we used additional nodes and a number of TClient instances.

Dynamic Content

Table 6.8 provides experimental results for transferring an increasing number of

dynamic content (PandASs). It shows that SC, CR, and LC have similar outcomes

as the Windows environment and they take only a few seconds. The time taken

by both DR and CsR methods is decreased compared with corresponding exper-

imental results on the Windows environment but they still take a considerable

amount, of time which is up to a couple of minutes. The use of high speed nodes

could only improve the performance to a certain level, due to the basic structure

of both DR and CsR methods.

Example Worlds

The Linux environment for example worlds experiments failed to further decrease

the time parameter for removing a region (both DR and CsR) compared with

Windows environment and provided almost similar outcomes. This is due to the

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 158

Case Exp. From To Region Prims and SC RR CR LC

No. Sim Sim Name Active Scripts Time Time Time Time

(Sec) (Sec) (Sec) (Sec)

Delete-Region 1 Sim-I Sim-II A 8Prims only 1Sec 2Sec 2Sec 1Sec

2 Sim-I Sim-II A 101 each 1Sec 9Sec 1Sec 1Sec

3 Sim-I Sim-II A 501 each 2Sec 41Sec 3Sec 3Sec

4 Sim-I Sim-II A 1002 each 2Sec 98Sec 2Sec 3Sec

5 Sim-I Sim-II A 1503 each 4Sec 128Sec 3Sec 5Sec

Close-Region 1 Sim-I Sim-II A 8Prims only 1Sec 1Sec 2Sec 1Sec

2 Sim-I Sim-II A 101 each 2Sec 12Sec 2Sec 1Sec

3 Sim-I Sim-II A 501 each 2Sec 57Sec 3Sec 3Sec

4 Sim-I Sim-II A 1002 each 2Sec 148Sec 1Sec 3Sec

5 Sim-I Sim-II A 1503 each 3Sec 227Sec 2Sec 4Sec

Table 6.8: Summary of timing information for experiments transferring
dynamic content (PandASs) on Linux environment.

sequential approach for deleting scene objects from both scene and database. How-

ever, it greatly reduced the LC time, which is more than 60% less than the time

taken by Windows nodes (see Table 6.6). The time taken by SC and CR parame-

ters is almost the same as the Windows environment and is normally acceptable.

The results of this set of experiments are provided in Table 6.9.

Case Exp. From To Region Regional SC RR CR LC

No. Sim Sim Name Content Time Time Time Time

(Sec) (Sec) (Sec) (Sec)

Delete-Region 1 Sim-I Sim-II A OpenCVE 6Sec 13Sec 2Sec 32Sec

2 Sim-I Sim-II A FairieCastle 7Sec 21Sec 1Sec 26Sec

3 Sim-I Sim-II A Maya Pyramid 4Sec 5Sec 1Sec 6Sec

4 Sim-I Sim-II A CSI World 5Sec 27Sec 2Sec 12Sec

5 Sim-I Sim-II A EducationSim 1Sec 18Sec 1Sec 4Sec

Close-Region 1 Sim-I Sim-II A OpenCVE 7Sec 4Sec 1Sec 36Sec

2 Sim-I Sim-II A FairieCastle 8Sec 17Sec 1Sec 27Sec

3 Sim-I Sim-II A Maya Pyramid 3Sec 1Sec 2Sec 7Sec

4 Sim-I Sim-II A CSI World 6Sec 4Sec 1Sec 17Sec

5 Sim-I Sim-II A EducationSim 1Sec 1Sec 1Sec 5Sec

Table 6.9: Summary of timing information for experiments transferring
example worlds content on Linux environment.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 159

Interactive Clients

In this section, we repeat the experiments with an increasing number of players

on our Linux environment. The main emphasis is to obtain the average time

required to transfer a player from one region to another region. Table 6.10 presents

the details of experiments and shows that each player on average takes about

eight seconds. It gives a one second improvement (per player) on the Windows

environment but we observed that there were hardly any disconnections for Bots.

This is mostly due to the use of more TClient instances and using each to log in

only a few Bots.

Exp. From To Region Players T2T RR CR T2R

No. Sim Sim Name Time Time Time Time

(Sec) (Sec) (Sec) (Sec)

1 Sim-I Sim-II A 1 7Sec 1Sec 1Sec 8Sec

2 Sim-I Sim-II A 5 40Sec 3Sec 2Sec 38Sec

3 Sim-I Sim-II A 10 81Sec 2Sec 1Sec 78Sec

4 Sim-I Sim-II A 15 118Sec 2Sec 1Sec 121Sec

5 Sim-I Sim-II A 20 158Sec 2Sec 2Sec 162Sec

Table 6.10: Summary of timing information for experiments transfer-
ring increasing number of Bots on Linux environment.

6.6.4 Comparison and Discussion

In this section, we presented a number of experiments on both Windows and Linux

platforms for three different categories of load: an increasing amount of dynamic

content (PandASs), the example worlds content (described in section 6.1.3), and

an increasing number of interactive players. The same sets of experiments were

used to compare the performance of both systems. This section only presents

a comparison of those parameters where the Linux environment performs better

than the Windows environment.

The experimental results for dynamic content on the Windows environment show

that both DR and CsR methods take a considerable amount of time. The same

set of experiments on the Linux environment for both operations obtains better

results, although they still consume a large amount of time. The comparison of DR

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 160

(a) (b)

Figure 6.14: Comparison of timing information of dynamic content
(PandASs) on both Windows and Linux environments for (a) Delete
Region (DR), and (b) Close Region (CsR).

and CsR for both Windows and Linux environments for dynamic content is shown

in Figure 6.14. However, both environments showed an almost similar behaviour

against the static content with a slight improvement of the Linux environment on

Windows environment. The basic reason is that DR follows a sequential approach

to deleting the content from both a scene and database in turn. Similarly, the

CsR method uses the persistence mechanism to store the updated content before

closing it. It is observed that DR time increases with a rise in the amount of static

content. However, static content requires no periodic backups and, therefore, CsR

takes only a few seconds to remove a region. To reduce the overall transfer time

for a region, the DR time needs to be minimised.

The transfer experiments on the Windows environment for example worlds content

identified that the LC activity is also a time-consuming activity and needs a great

deal of time to load and setup regional content. The Linux node greatly improved

the time taken by LC for the same set of experiments. The comparison of both

environments for the LC against dynamic content (PandASs) and example worlds

content is presented in Figure 6.15. We believe that allowing content based on

dynamic content, the LC time is much less than the time taken by basic DR and

CsR methods. If a scene has complex objects, it needs an increased amount of

time to load the content. We believe that OAR functionality hides the complex

operations to set up regional content. On the other hand, it is easy to significantly

minimise the time taken by DR and CsR by using OAR functionality that could

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 161

(a) (b)

Figure 6.15: Comparison of timing information of Load Content (LC)
on both Windows and Linux environments for (a) dynamic content, (b)
example worlds content.

be used to back up regional data, thus potentially avoiding the basic persistence

process of objects into a database.

Figure 6.16: Comparison of timing information for increasing number
of players transfer on both Windows and Linux environments.

We also performed a number of experiments for transferring players from one re-

gion to another to determine the average time taken by each player. A player

transfer on the Windows environment takes on average approximately nine sec-

onds, compared with approximately eight seconds on the Linux environment, as

shown in Figure 6.16. The Linux system slightly improved the average player

transfer time but we might need to investigate other ways to reduce it further in

future. We believe that, though it takes a little while to transfer a player, it gives

better experience than simply freezing them.

Based on this discussion, in the next section we present two strategies that signif-

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 162

icantly minimise the total time taken by a region transfer compared with original

OS methods.

6.7 Improved Strategies

In this section, we introduce a number of potential ways to improve transfer time

for a region by applying better strategies for different activities during a transfer.

It presents two improved strategies targeting region removal from a Sim, and

provides a comparison based on time parameters for dynamic content (PandASs)

and example worlds content on both Windows and Linux environments.

6.7.1 Introduction

Two basic methods are available in both the OS framework and RAd functionality

to remove a region from a Sim: Delete Region (DR) and Close Region (CsR)(is

remove-region in OS framework). The former generally takes longer but removes

all the data from both scene and database before closing down its client server.

The latter closes both the scene and server but does not remove data from the

database. DR for a large set of content (both static and dynamic) takes a long

time to delete a region due to its sequential approach to deleting the content from

both scene and database. On the other hand, CsR for dynamic content takes a

great deal of time due to the backup process to store the most recent changes to

the content.

Using a centralised database for managing data for all region Sims can potentially

provide a more efficient way to load content when used together with CsR, thus

avoiding storing the content to an OAR file. It takes advantage of grid services

that manage all the components through unique identifiers. Even if the system

allows loading the existing content to a region when it is created with the same

specifications on a different Sim, it has a number of key limitations. Firstly, it is

only beneficial when most of the content is static, thus avoiding the persistence

process, and it closes a region promptly. However, we believe that VWs provide

both static and dynamic content. Similarly, they allow users to create and modify

their content that might require being stored before closing a region. Secondly, a

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 163

centralised system is also a potential bottleneck for large scale VWs.

On the other hand, LC also takes a considerable amount of time, though greatly

reduced by the Linux environment. However, the OAR functionality we used

provides an easy and handy way to transfer a region compared with other methods

that might require complex explicit operations. If we wanted to apply data transfer

between databases of different Sims, we need the basic persistence process to first

store updated content in a region. Moreover, the process of transferring through

database migration might be complex in the sense that it needs to transfer other

relevant information from different tables and stores. The OAR functionality

makes it much easier to restore the complete terrain, assets and prims to a region.

Based on these issues, and to help develop VWs with a reasonable amount of both

static and dynamic content, we developed two strategies which perform much

better than the basic DR and CsR methods, especially if a region has dynamic

content. They skip the persistence process of OS framework and take advantage of

OAR to relocate a region with the latest content. However, they use direct queries

to database for cleaning up the data. These strategies take the advantage of OAR

functionality to obtain a backup of regional data, thus skipping the persistence

step in CsR with explicit queries to clean up the database.

6.7.2 Improved Strategies

We have written additional procedures while keeping the original basic methods

for their general use. These strategies use direct database operations to perform

data deletion and cleanup activities which are performed implicitly by DR method.

These improved strategies are described below:

The first Improved strategy (Improved-I) deletes the objects of a regional scene

and relevant entries from the database. It then calls the delete-region method of

RAd functionality to remove the region, thus breaking up the sequential cycle of

eliminating objects from both scene and database in sequence.

The second Improved strategy (Improved-II) removes a region with persistence

operation being disabled and then explicitly deletes the relevant entries from the

database directly. The object persistence is replaced by storing regional data in

OAR files for transferring updated content.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 164

6.7.3 Time Analysis and Comparison

In this section, we present a comparison of the basic DR and CsR methods to-

gether with our improved strategies. We have performed experiments with both

dynamic content (PandASs) and example worlds on both Windows and Linux en-

vironments. We have already demonstrated that the Linux environment performs

better than Windows for certain activities. For this comparison, we have repro-

duced only a subset of experiments that we performed using our informal time

analysis model in section 6.6.

Table 6.11 presents the experimental results of an increasing number of dynamic

content for both Windows and Linux environments. It is clear that the basic

DR and CsR operations take much longer as the number of content increases.

Although, the Linux environment is faster than the Windows environment, it still

takes considerable amount of time. Improved-I greatly reduced the time required

to delete the content after breaking the sequential cycle; however, the best results

are achieved by Improved-II which minimised the removal time to just a few

seconds. However, it could be seen that for a region with very little content, the

basic DR takes less time than our improved strategies. Nevertheless, we believe

that the regions normally have a reasonable amount of content (both static and

dynamic) and, therefore, we recommend Improved-II in most of the cases.

Environment Exp Regional Basic RAd Basic RAd Improved-I Improved-II

No. Content Delete-Region Close-Region

Windows 1 0PandASs 1Sec 1Sec 2Sec 2Sec

2 100PandASs 12Sec 14Sec 3Sec 2Sec

3 500PandASs 56Sec 77Sec 5Sec 3Sec

4 1000PandASs 126Sec 196Sec 15Sec 4Sec

5 1500PandASs 170Sec 343Sec 26Sec 4Sec

Linux 1 0PandASs 2Sec 1Sec 1Sec 1Sec

2 100PandASs 9Sec 12Sec 2Sec 2Sec

3 500PandASs 41Sec 57Sec 6Sec 2Sec

4 1000PandASs 98Sec 148Sec 11Sec 3Sec

5 1500PandASs 128Sec 227Sec 22Sec 3Sec

Table 6.11: Comparison of different Delete Region (DR) and Close
Region (CsR) strategies for dynamic content on both Windows and
Linux environments.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 165

Experimental results for example worlds content are presented in Table 6.12. It is

of note that both Windows and Linux systems perform almost the same for static

content. It can be seen that it takes more time to remove FairieCastle due to

dynamic entities included in its content. The rest of the worlds are removed in a

few seconds. Both the improved strategies guarantee the removal of content from

the database and achieve better results than the DR method. Figure 6.17 shows

a comparison of four strategies on the Windows environment for both dynamic

content and example worlds. These strategies are compared for both sets of content

on the Linux system with the help of Figure 6.18.

Environment Exp. Regional BasicRAd Basic RAd Improved-I Improved-II

No. Content Delete-Region Close-Region

Windows 1 Our world 1Sec 1Sec 2Sec 2Sec

2 OpenCVE 13Sec 5Sec 4Sec 3Sec

3 FairieCastle 19Sec 25Sec 5Sec 3Sec

4 Maya Pyramid 5Sec 2Sec 2Sec 2Sec

5 CSI World 25Sec 3Sec 3Sec 3Sec

6 EducationSim 17Sec 3Sec 2Sec 2Sec

Linux 1 Our world 1Sec 1Sec 2Sec 2Sec

2 OpenCVE 13Sec 4Sec 2Sec 2Sec

3 FairieCastle 21Sec 17Sec 4Sec 3Sec

4 Maya Pyramid 5Sec 1Sec 2Sec 2Sec

5 CSI World 27Sec 4Sec 5Sec 2Sec

6 EducationSim 18Sec 2Sec 3Sec 2Sec

Table 6.12: Comparison of different Delete Region (DR) and Close
Region (CsR) strategies for the example worlds on both Windows and
Linux environments.

6.8 System Issues/bugs and fixtures

In this section, we report a number of bugs in the OS framework that we fixed to

achieve the desired functionality.

Since we initially used region console to investigate the capabilities of OS frame-

work, we found that the basic RR method was deleting a region instead of its

fundamental functionality of closing it. This issue was fixed by calling the correct

procedures to achieve the desired functionality. For our implementation work, we

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 166

(a) (b)

Figure 6.17: Comparison of different methods to remove a region from
a Sim on Windows environment for (a) dynamic content, (b) example
worlds.

(a) (b)

Figure 6.18: Comparison of different methods to remove a region
from a Sim on Linux environment for (a) dynamic content, (b) example
worlds.

used the RAd functionality that provides the correct functionality of CsR (which

is RR in OS).

While experimenting with our informal model we noticed that, when a region

is deleted from a Sim, the database entry that links a region to an estate is

not cleared. Therefore, it prevented us from re-creating a region with the same

specification while relocating them. We fixed this by writing an explicit query to

delete the corresponding entry from a regional database.

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 167

6.9 Conclusions and Future Work

We conducted a number of tests to determine the robustness of the OS capabilities

and used a number of time statistics to investigate and compare different aspects

of this work.

We presented a load model based on SimFPS parameter after a wide range of

experiments for static and dynamic content, as well as interactive clients, on both

Windows and Linux environments. We used a minimum of 30FPS and 40FPS for

SimFPS to determine SimCapacity and SplitCapacity consecutively. A value of

30FPS is used to guarantee better user experience, while 40FPS for SimFPS avoids

bad experience by initiating a split much earlier than reaching a point that might

degrade performance. The system takes decisions based on average values which

are calculated by considering a number of observations in the last few minutes.

The number of players for both Windows and Linux remained the same, and this

showed that due to the current software implementation, additional hardware was

unable to scale the world.

We presented the scalability model and determined the components that are used

to implement both split and merge operations. We started with an informal im-

plementation framework and conducted a study of three sets of experiments based

on dynamic content, example worlds content, and interactive players. OS allows

different database options (SQLite and MySQL) and orientations (centralised and

localised). We investigated both SQLite and MySQL databases for standalone

mode and examined MySQL for grid mode using both centralised and localised

orientations. To reduce communication overhead and avoid longer delays in scal-

able systems, a local MySQL server was determined to be an excellent choice.

Furthermore, it was determined that a Sim requires to be managed by a dedicated

server for improved performance.

The Windows platform revealed that both Delete Region (DR) and Close Re-

gion (CsR) are time-consuming activities to remove a region from a Sim and load

content from an OAR file. Furthermore, a player transfer (using teleport method)

on average takes approximately nine Seconds. The Linux environment was signif-

icantly faster for loading the content, which is approximately a 60% improvement

over the Windows environment. The average player transfer time is improved by

CHAPTER 6. SCALABLE VIRTUAL WORLDS: INVESTIGATING... 168

a second, taking approximately eight seconds. DR and CsR are improved sig-

nificantly but they still take a considerable amount of time. To reduce the time

taken by DR and CsR methods on both environments, we presented two improved

strategies. They used direct database access to delete regional data. In addition

to this, the best strategy (Improved-II) uses CsR instead of DR together with

by-passing the backup process to get a significant improvement over the basic

methods. We conducted an experimental study for their timings compared with

both DR and CsR operations.

We found a number of bugs and fixed them to ensure that the system worked

according to our requirements by writing explicit routines, including extended DR

and RR methods. Since VWs allow users to create and modify content, we be-

lieve that world content are mostly based on a reasonable amount of both static

and dynamic content. We therefore suggest using the Improved-II strategy that

performs well in all situations.

The following points can be further investigated:

Our load model is based on the SimFPS parameter due to a similar impact on

PhysicsFPS. Furthermore, performance tests (targeting physics) could be con-

ducted to identify the response of other parameters that might help to extend the

current load model for different requirements.

Future work might investigate the reasons why there is no improvement in system

capacity with additional resources.

We used the OAR functionality to transfer regional content which greatly reduced

the time taken by traditional methods to remove a region. However, content load

still takes a considerable amount of time, depending on scene complexity. Other

methods could be explored to further reduce the content load time.

Chapter 7

Scalable Virtual Worlds:

Implementation

This chapter examines an abstract framework for the implementation of JoHNUM

infrastructure and ARA algorithm for developing scalable VWs using an extension

to the OS framework. It expands with an increase in the number of players

by using additional resources, and it shrinks with a decrease in the number of

players by releasing under-used resources. The ARA algorithm is extended to

achieve contiguous areas of both square and non-square shaped regional grids

for assignment. It presents motivation for our implementation work and gives a

detailed analysis of different sets of experiments for regional grids of four and nine

regions. It uses modified versions of example worlds content to populate regions

and a number of different metrics were used for the evaluation and comparison of

this work.

7.1 Introduction

In this section, we present the limitations of existing VWs and the motivation for

the framework developed in this chapter, based on the investigations presented in

chapter 6. It provides a description of VWs used for the experiments conducted

in this chapter. It describes Sims and provides descriptions of the regions used for

regional grids. It also provides extended versions of example worlds and statistics

169

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 170

that are used for evaluation and comparison purposes.

7.1.1 Background and Motivation

In general, VWs use spatial partitioning to share the load with additional servers [132].

However, it is an expensive operation that transfers both content and players and

requires special attention to reduce the time taken by a distribution process. The

modular design of OS framework can be exploited to develop strategies for achiev-

ing this goal. Its potential to host bigger spaces and transfer regions in turn

greatly motivated us to use the concept of spatial partitioning. It has the poten-

tial to reduce content un-availability time, and the total time taken by a transfer.

It also reduces the number of players that suffer from a transfer, compared with

traditional methods. The basic goal is to cope with issues in both static and

dynamic approaches. Other motivating factors for combining OS regions into a

bigger space include the fact that, with a few exceptions, most SL regions are

never visited or are visited by very few people [219]. Based on results of previous

studies targeting spatial partitioning, we adopted a different approach. Instead

of freezing the players, we transfer them to a transit region while relocating their

current region. Even though it takes a few minutes, we believe that our approach

is acceptable for the following reasons: it is a rare operation and merging uses a

very relaxed strategy to re-integrate regions thus avoiding frequent splits; though

players are unable to add or modify content during splits, they normally have a

better experience; and since we are teleporting players explicitly, they will observe

the disappearance and then re-appearance of the players around them. However,

players are warned about “maintenance” work before starting a region transfer.

In the worst cases, a region might have twenty players and each takes between

eight and nine seconds to transfer.

Initially, each Sim is assigned a bigger continuous space made up of a number

of regions in a flat orientation. When it reaches an excessive load, the load is

shared with additional Sims to scale the world. On the other hand, the system

revokes under-utilised resources. Resources are, therefore, used according to the

requirements that potentially overcome most of the issues. Due to the unique

characteristics of VWs, the traditional optimisation techniques such as sharding

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 171

cannot be applied. However, we have developed better strategies to reduce the

total time taken by a transfer. Our current ARA algorithm results in fair distri-

bution of load and, in the case of excessive load, we obtain a new Sim to share

the load with. However, this work does not look into load balancing, but this is

our future work to be carried out. We believe that our merging strategy (called

Child Merge) has the potential to achieve load balancing, which is presented in

section 7.5 and demonstrated in section 7.6. In this chapter, our basic aim is to

develop an abstract framework and to show how it achieves the goals set for this

work by implementing it.

According to Liu et al. [140], the main scalability barriers constrained by resources

include CPU Utilisation, Network bandwidth, and Network Latency. The CPU

load could increase dramatically as a VW scales up in any direction. With an

increase in the number of concurrent users or scene complexity, the network can

quickly become overwhelmed by combined traffic. Furthermore, a walk-through

system requires visualisation updates much faster than a truly responsive system.

According to Lake et al. [132], when the number of connected clients increases,

the frame rate begins to decrease. Lag appears in physics and network processing.

If further clients are added, the frame rate quickly drops to a point where the

scene is not usable. To avoid these issues, and to achieve improved performance,

we have taken certain decisions based on the load model developed and described

in chapter 6. We suggest a reasonable amount of static and dynamic content and

interactive players in a Sim for which the system maintains at least 30FPS for

SimFPS. In case additional Sims are available and a Sim is managing more than

a single unit region, it initiates a split when the SimFPS reaches 40FPS. These

decisions overcome those situations that are normally managed by allowing a sys-

tem to accept plausible results or slow down execution to reduce the performance

gap that results in a degraded user performance.

7.1.2 VW Environment and Setup

In this section, we provide a description of the regions that are used to constitute

regional grids of different shapes and sizes with an upper bound of nine regions.

However, it is important to mention that much bigger worlds can be used to begin

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 172

Simulator (Sim) HTTP Regions (Region: Transit Region(Region:

Listening Port XY Co-ordinate:Port) XY Co-ordinate:Port)

Sim-I (Parent) 9000 A:1000,1000:9000 T1:1005,1005:9105

B:1001,1000:9001

C:1002,1000:9002

D:1000,1001:9003

E:1001,1001:9004

F:1002,1001:9005

G:1000,1002:9006

H:1001,1002:9007

I:1002,1002:9008

Sim-II (Child) 9005 Nil T2:1006,1006:9106

Sim-III (Child) 9010 Nil T3:1007,1007:9107

Sim-IV (Child) 9015 Nil T4:1008,1008:9108

Sim-V (Child) 9020 Nil T5:1009,1009:9109

Sim-VI (Child) 9025 Nil T6:1010,1010:9110

Sim-VII (Child) 9030 Nil T7:1011,1011:9111

Sim-VIII (Child) 9035 Nil T8:1012,1012:9112

Sim-IX (Child) 9040 Nil T9:1013,1013:9113

Table 7.1: Description of 9 Sims with their transit regions and 9 con-
tent regions.

with, based on system capabilities. Table 7.1 provides details of nine Sims, each

with a local transit region. Sim-I is the parent Sim and it initially hosts all the

regions in a VW used for an experiment. We have used square-shaped regional

grids of four and nine regions in our current experimental work, and adjacent

regions from Table 7.1 are used to obtain greater contiguous spaces, as shown in

Figure 7.1. Figure 7.1(b) shows the configuration of our parent Sim (Sim-I) with

its local transit region. Our implementation model assumes that a VW is

pre-partitioned into the number of regions in a grid and does not actually follow

our theoretical split model. It is based on the fact that dividing into more smaller

regions achieves further improvements. Each region is taken as a unit region that

is considered by ARA algorithm during the aggregation process. They cannot be

further divided and, hence, all Sims are directly connected to the parent Sim in

a RMT of a single additional level. Transit regions are only used during split

and merge operations and provide no real world content. Figure 7.2 presents

regional grids of four and nine regions and shows the visibility of regions to a

player based on their current location. Each player knows all the neighbouring

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 173

(a) (b)

Figure 7.1: World map showing adjacent placement of regions to get
contiguous spaces for (a) 4 regions grid, and (b) 9 regions grid with a
transit region.

(a) (b)

Figure 7.2: Description and visibility of regions to a player in a
regional grid of (a) 4 regions, and (b) 9 regions.

regions and a presence for it is added to adjacent regions for smooth boundary

crossings. For each experiment, child Sims are running with transit regions in

advance and waiting for the load to share with the parent Sim. The Content used

to populate regions is presented in section 7.1.4. A Robust instance is used to

provide grid services and integrate the VW. In grid mode, each region on a Sim

requires to be registered with the grid for its global presence. Figure 7.3(a) shows a

Robust console with messages showing registered regions and user creation. Each

region server allows different management functions to be performed from a region

console, as shown in Figure 7.3(b) for Sim-I.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 174

(a)

(b)

Figure 7.3: Console window for a (a) Robust instance (for grid man-
agement), and a (b) Region server (for managing regions).

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 175

7.1.3 Platforms

For the evaluation of our implementation work, we use both Windows and Linux

environments, as described in section 6.1.2 of chapter 6, with the following con-

figurations.

Windows

The Grid services (Robust instance), together with an instance of MySQL database

for grid, are running on a dual core system. Two Pentium systems are used to run

Sims (a parent (Sim-I) and a child (Sim-II)) and their regional database instances.

The dual core system is used together with a Pentium system to populate the VW

with interactive clients.

Linux

Since all Linux nodes have the same capabilities, we use one node to run grid

services and an instance of MySQL database for its data use. We have used up to

nine Sims, each running a local database instance and a region server. Regional

grid description is given in Table 7.1, which provides the specifications of Sims.

This allowed us to use many other nodes to log-in bots to the VW.

7.1.4 Content and Players

The content used to populate regions during our experiments are extended ver-

sions of the example worlds content described in section 6.1.3 of chapter 6, and

are detailed in Table 7.2 for the corresponding regions. We added an additional

500 PandASs to each content and measured them on both Windows and Linux

environments to determine timing information for different activities. The time

taken by SC and LC operations did not increase. However, there was a significant

increase in the time taken by both DR and CsR methods to remove a region from

a Sim whose average values are provided in Table 7.2. Experiments described in

this chapter use Improved-II strategy to remove a region, which greatly reduces

the overall time taken by a transfer. Even though the Windows systems take much

longer for the LC operation, we still prefer to use OAR functionality for content

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 176

transfer for the following reasons: firstly, removing a region with a very little

content (see Table 7.2) using basic operations also takes a considerable amount

of time; secondly, it hides the complexity behind the process. Our decision to

use OAR functionality is justified on Linux systems as we observe a substantial

decrease in content load time.

Region Content Windows Platform Linux Platform

Name DR CsR DR CsR

Time Time Time Time

A OpenVCE + 500 PandASs 78Sec 91Sec 63Sec 73Sec

B CSI World + 500 PandASs 93Sec 90Sec 78Sec 71Sec

C Educasim + 500 PandASs 84Sec 92Sec 68Sec 75Sec

D FairieCastle + 500 PandASs 88Sec 118Sec 64Sec 104Sec

E Maya Pyramid + 500 PandASs 68Sec 87Sec 51Sec 68Sec

F Our world + 500 PandASs 59Sec 81Sec 45Sec 60Sec

G Our world + 500 PandASs ‘’ ‘’ ‘’ ‘’

H Our world + 500 PandASs ‘’ ‘’ ‘’ ‘’

I Our world + 500 PandASs ‘’ ‘’ ‘’ ‘’

Table 7.2: Regional content for 9 regions used in our experiments

Instead of using actual players, we have used Bots to populate VWs. This uses

TClient as described earlier in section 6.1.3 of chapter 6 and each instance is used

to log in multiple Bots. To avoid issues, we logged-in a maximum of ten bots per

TClient. For each log in, system requires a unique user account and, therefore, we

created an account for each Bot. We used simple TClient commands to develop

different scripts that are executed by the Bots in sequence, using the same TClient

instance. To show an increase in the number of inter-sim crossings as a system

scales, we use a script called ScriptT. Using a random strategy, each Bot makes a

random move to a randomly selected region including its current region in the grid

using teleports. They are then asked to return to their original regions. Based

on Bots movements, we determine the total number of times players crossed Sim

boundaries.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 177

7.1.5 Statistical Metrics

We used different parameters to show the effectiveness of our dynamic framework,

and these are categorised as Time Statistics and System Statistics. Most of the

time statistics were defined in section 6.4.3 of chapter 6, and here we only define

those parameters that were not previously defined.

Time statistics are based on the time each activity, as part of a transfer, takes. It

includes SC Time, T2T Time, RR Time, CR Time, LC Time, T2R Time, Region

Content Transfer Time (RCT Time), Region Un-availability Time (RUnAv Time),

Region Transfer Time (RT Time), Total Time, and Average Player Time.

Region Content Transfer Time (RCT Time) is the time taken by content

transfer (of a region) excluding players’ transfer time.

Region Un-availability Time (RUnAv Time) is the time when a region is

locked for a transfer until it is set up on a destination Sim. It includes the time

taken by transferring players from the prospective region to the local transit region.

The time that is required to transfer both content and players is called Region

Transfer Time (RT Time). It includes both transferring players to transit and

then from transit to actual region after relocation.

Total Time is the cumulative time taken by all regions transferred, being part of

an aggregate.

System statistics include Content transferred, Number of players transferred, Num-

ber of regions migrated, Number of resources used, Number of Concurrent users,

Number of inter-sim crossings, Sim utilisation, Player disruption, and Transfers

per player.

Number of regions migrated shows the number of regions in an aggregate

being transferred.

Number of resources used is the total number of used resources.

Number of Concurrent users shows the total number of concurrent users in a

grid served by a set of Sims.

Number of inter-sim crossings shows the total number of connections and

disconnections between Sims for all users over the grid.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 178

Sim utilisation represents the average capacity of each Sim.

Player disruption means the total number of connections/disconnections per

player.

Transfers per player is the total number of times a player is transferred.

7.2 Abstract Scalability Framework

In this section, we provide an abstract framework by extending our scalability

model presented in chapter 6. The basic aim is to present how our prototype

implements both scaling and merging processes and how automatic decisions to

initiate a split or a merge are taken by each Sim. This framework is implemented

as a plug-in application in C# which works well on both Windows and Linux

environments. It uses grid mode of OS where the implementation of the activities

take the benefit of the integrated grid services. The basic steps in the main

controlling module and both distribution and merging processes are presented

with the help of Algorithms 4, 5, and 6. Each Sim is either a parent or a child

handling part of the world. Modules in the framework are defined in terms of

simple activities. We provide the abstract logic of main modules that use different

methods of RAd functionality to implement them, details of which are available

at [186] but are not discussed further. However, explicit procedures are briefly

described.

The main procedure that is taking split and merge decisions based on the values

of SplitCapacity and MergeCapacity is the heart of our framework. Each Sim con-

tinuously monitors the load and applies the logic presented in algorithm 4 until

the simulation is running. We maintain a pool of servers each running a Sim (de-

scribed in Table 7.1) that are available to share the load with overloaded Sims. If a

system load exceeds SplitCapacity, it potentially initiates DistributeLoad module

(algorithm 5) when a split is possible. It determines a list of scenes by calling

the ARA algorithm (presented in section 3.2.2 of chapter 3), and then it calls

DistributeLoad module to transfer regions to a newly selected Sim. On the other

hand, if the system load is less than, or equal to, MergeCapcity and a merge is

possible, it potentially initiates MergeLoad module (algorithm 6) to integrate its

load with a Sim, including parent among the existing Sims. Merging is only ini-

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 179

tiated by child Sims in our current implementation. It selects a Sim for merging

if, and only if, they maintain two constraints. Firstly, their combined load needs

to be less than, or equal to, MergeCapacity and secondly, their regions must get a

contiguous space. If both conditions are satisfied, the Sim initiates the MergeLoad

function with the Sim-ID (represented as RemoteSimulator) of the Sim to merge

its load with. MergeLoad then follows the steps outlined in algorithm 6 to trans-

fer its load. Our current implementation applies all or none strategy for merging

because we are interested in reducing the number of resources and not achieving

a uniform load. However, a transit region is never transferred during a split or

merge operation.

Algorithm 4 The Scalability Framework Components: Main module
1: while (VW is running) do
2: if (system load >= SplitCapacity and split is possible) then
3: List<Scene> RegionsToTransfer = DetermineAggregatedRegions(); //uses ARA algorithm
4: DistributeLoad(RegionsToTransfer);
5: else
6: if (system load <= MergeCapacity and Merge is possible) then
7: Uri RemoteSimulator = GetSimulator(system load);
8: MergeLoad(RemoteSimulator);
9: end if
10: end if
11: end while

Algorithm 5 The Scalability Framework Components: DistributeLoad Module
Require: RegionsToTransfer //List of regions to transfer
1: Get a RemoteSimulator;
2: for (int i = 0; i < RegionsToTransfer.Count; i++) do
3: Warn the players about maintenance to begin;
4: Lock the region;
5: Save content to an oar file at shared location;
6: Get region specification;
7: if (RegionsToTransfer[i] has players) then
8: Transfer players to transit region;
9: end if
10: Remove region;
11: Create region on RemoteSimulator; //provide specification
12: Load content from oar file to the region on RemoteSimulator;
13: if (transit region has players) then
14: Transfer the players back to the region on RemoteSimulator;
15: end if
16: end for

Both DistributeLoad (algorithm 5) and MergeLoad (algorithm 6) modules use the

same set of actions in a sequence and transfer the regions in turn. Players in a

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 180

Algorithm 6 The Scalability Framework Components: Merging Module
Require: Uri RemoteSimulator //Simulator to merge the load with
1: while (Region other than transit exists) do
2: Warn the players about maintenance to begin;
3: Lock the region;
4: Save content to an oar file at shared location;
5: Get region specification;
6: if (Region has players) then
7: Transfer players to transit region;
8: end if
9: Remove region;
10: Create region on RemoteSimulator; //provide specification
11: Load content from oar file to the region on RemoteSimulator;
12: if (transit region has players) then
13: Transfer the players back to the region on RemoteSimulator;
14: end if
15: end while

region are warned about the maintenance work and the scene objects are locked

before transferring it. DistributeLoad module takes a list of regions to transfer

while MergeLoad requires a Sim to merge the load with. The merge operation

selects a Sim using the merging strategies implemented in our work, which could

be a parent or another child Sim. When a merge is permitted, a Sim returns all

the regions and releases itself. In case there are players in a region while it is

being transferred, they are transferred to the local transit region. Since the tran-

sit region is only used explicitly by the system, it returns the players in transit

after relocating the region. The rest of the activities for both modules are self-

explanatory and are not further explained. Although a region transfer completes

when the players are transferred back to the actual region, the region is available

to other users when it is relocated and the content are loaded to the region.

We have implemented this framework as a plug-in to OS framework and tested

it over both Windows and Linux environments. Figure 7.4 shows a status report

of parent Sim running a VW of four regions. It provides both regional and Sim

statistics. Its current load is normal and it is accepting client connections. The

local transit region is not counted in against the load or other processes. It can be

noted that SimFPS is above 40FPS for about thirty-one players and a reasonable

amount of both static and dynamic content. Figure 7.5 presents a later stage

in the system after a split where the VW is now managed by two Sims (Sim-I

and Sim-II). Both the Sims are managing normal load and are accepting client

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 181

Figure 7.4: The status of a parent Sim (Sim-I) showing content and
interactive players for a 4-region world.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 182

connections. SimFPS is more than fifty for both the Sims showing that our system

scales with improved performance. Based on further load, both will further share

their load with additional Sims. In the case that their combined load goes below,

or equals, twenty players, Sim-II will initiate the merge operation to release a

resource.

7.3 Extended ARA Algorithm

The ARA algorithm was developed to aggregate regions based on a number of

strategies and to obtain contiguous areas for assignment. It initially takes re-

gional grids of n×n dimensions as an input normally based on split strategies of

JoHNUM infrastructure. It repeatedly assigns different parts of the pre-processed

space to additional Sims and it has to cope with varied shapes of spaces. In

theory, the basic ARA algorithm should always yield valid combinations but in

fact ‘practically’ it allowed odd combinations for non-square shaped grids. Dur-

ing implementation, it failed to discard odd cases. In other words, starting with

a square grid, the first iteration determines valid contiguous spaces but in later

iterations, when applied to non-square shaped worlds, it allows odd cases. To

illustrate these situations, we can consider a simple square grid of four regions (A,

B, D and E), as shown in Figure 7.6(a). If the first iteration divides this grid into

two aggregates having A in first and B, D, and E in the second aggregate (see

Figure 7.6(a)), the basic ARA algorithm, when applied to the second aggregate,

can potentially select BD, which is a diagonal and thus an odd case, as shown in

Figure 7.6(b). To achieve a more flexible approach, we extended the current ARA

algorithm to eliminate its limitations. In each iteration the extended algorithm

checks, if a prospective aggregated space is producing a valid contiguous space or

not by using a flood-fill algorithm, as explained below.

A flood fill algorithm determines an area connected to a given node in a multi-

dimensional array beginning with a given node. These algorithms are normally

used in bucket fill algorithms of paint programmes, and are employed in board

games such as Go and Minesweeper [72]. It has two variations based on the di-

rection of spreading, which are 4-way spreading, and 8-way spreading. In a 4-way

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 183

(a)

(b)

Figure 7.5: The 4-region world presented in Figure 7.4 after a split
jointly served by (a) Sim-I (Parent), and (b) Sim-II (Child).

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 184

(a) (b)

Figure 7.6: Illustrating the limitations in basic ARA algorithm (a)
a valid outcome for a square grid, and (b) an invalid outcome for a
3-region world.

spreading, the algorithm looks at east, west, north, and south of a node. However,

in 8-way spreading it also considers nodes in north-east, north-west, south-east,

and south-west. It can be observed that using an 8-way algorithm considers the

diagonal nodes to a node. However, we have identified that diagonals are one of

the main reasons for odd cases and, hence, do not use the 8-way variation. The

4-way variation has the potential to identify odd cases and is used with ARA Al-

gorithm to exclude them. We have implemented a variation of flood-fill algorithm

with the help of a 2D array and an explicit queue (adapted from [71, 73]). In each

step of the aggregation process, we use it to determine whether all the regions in

both prospective aggregates are giving valid contiguous spaces or not. It is used

during both split and merge operations and it has the capability to determine and

exclude odd cases against any size and shape of grid.

7.4 Flexibility of System and Envisioning Scala-

bility

In this section, we examine the flexibility of our system by considering different

numbers of resources and VWs of different sizes against user distribution. The

basic aim is to identify those factors that restrict VWs to scale. We introduce a

new parameter called GridCapacity that represents the total number of potential

concurrent users handled by our system. GridCapacity is determined using Sim-

Capacity against basic unit regions in a VW. In theory, our system deals with

a bigger world, a uniform distribution of players and the availability of required

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 185

Sims scales well and gets a GridCapacity = SimCapacity × Number of unit re-

gions. However, in practice, it is limited by three factors, which are: number of

Sims, number of unit regions in a world, and player distribution. Player distri-

bution is the most critical factor. If all players are in a single region of a bigger

world, the availability of Sims cannot help to scale the world. Similarly, if no Sim

is available to share the load, we are unable to increase capacity. Furthermore, in

a situation where each unit region is served by a Sim, additional Sims are unable

to help a system to handle more users. Our approach is dynamic and performs

better in most of the situations, thus eliminating a number of issues in both static

and dynamic systems. It has the potential to scale up to its full capacity. Ta-

ble 7.3 shows player distribution and the corresponding GridCapcity and number

of resources required in different cases for a world of four regions.

Experiment Regional Players GridCapacity Required

Number Grid Distribution (Maximum) Resources

1 D E Populating one 60 1

A B region only

2 D E Populating two 120 2

A B regions only

3 D E Populating three 180 3

A B regions

4 D E Populating four 240 4

A B regions

Table 7.3: Description of experiments and players distribution for a
4-region grid with GridCapacity and number of required resources.

7.5 Merging Strategies

In this section, we present two strategies for merging the load of different Sims

for our current implementation. It considers a single parent Sim and a number of

child Sims that are directly attached to the parent Sim. However, if a hierarchy

goes deeper, as proposed in our theoretical model, then some nodes are both child

and parent where a node can only merge if it has no children. Both the strategies

for our current environment are initiated by a child Sim and are named Parent

Merge (PM) and Child Merge (CM) strategies. They need to be validated against

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 186

two constraints. The former needs to determine that the combined load of both

Sims is less than, or equal to, MergeCapacity. The latter requires that the regions

of both Sims form a valid larger space.

In the PM strategy, each child Sim returns its regions to the parent Sim when

the integration is validated against the constraints. It is the simplest and easi-

est way to implement merging; however, regions having no players or fewer than

MergeCapacity might be waiting for parent capacity to decrease. Similarly, to val-

idate against the second constraint, it might be waiting for other Sims to integrate

first with the parent.

The CM strategy integrates its load with a potential sibling Sim if it cannot

merge with the parent Sim. It eliminates the issues in PM strategy by reduc-

ing the number of resources much quicker than PM strategy. However, it might

transfer some regions multiple times between child Sims. This might bring a bad

experience to the players in those regions. Similarly, it incurs computation and

communication burden on the system. However, CM strategy has potential to

become a vital force for implementing load balancing.

In this work, we have implemented and compared both strategies for their trade-

offs. The ultimate outcome of both strategies see all the regions integrated back

to the parent Sim. However, it depends on player distribution, which can never

be predicted.

7.6 Final Experiments

We have performed a large set of experiments on both Windows and Linux envi-

ronments to evaluate our proposed system. We tested the flexibility of our system

by applying it to worlds of both four and nine regions. In this section, we present

a summary of experiments for a world of four regions and demonstrate both the

expansion and contraction of our system with the help of a nine region world. The

basic aim is to show the flexibility of our system and to discuss a number of con-

cepts which are compared for their trade-offs. We use the numeric values identified

in section 6.3.4 (of chapter 6) for SplitCapacity, MergeCapacity, and SplitCapacity

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 187

for these experiments. Regions are populated with their corresponding content,

as described in section 7.1.4. The statistics described in section 7.1.5 are used to

evaluate and compare our system with other systems. Removing a region is using

our Improved-II strategy, as described in section 6.7.2 (of chapter 6). Regions are

populated with Bots which are asked to read ScriptT, as described in section 7.1.4.

Equations 7.1- 7.4 represent Region Content Transfer Time (RCT Time), Region

Un-availability Time (RUnAv Time), Region Transfer Time (RT Time), and Total

Time consecutively. They are based on time parameters whose values are calcu-

lated during experiments. Player transfer dominates these activities but transfer-

ring regions in turn reduces both region un-availability time and the number of

players that suffer from a split.

Equation 7.1 is used to identify the time taken by transferring regional content,

and its basic purpose is to show that player transfer is a time consuming activity.

It is the same as RUnAv Time and RT Time if a region has no players.

RCT Time = SC Time + RR Time + CR Time + LC Time (7.1)

Equation 7.2 calculates the un-availability time of a regional content. It includes

the time taken by activities, from blocking a region to setting it up on the desti-

nation Sim. Its outcome is based on the number of players in a region. If a region

has no players, its value is the same as RCT Time and RT Time.

RUnAv Time = RCT Time + T2T Time (7.2)

Equation 7.3 gives the time taken by a region transfer, including time to teleport

players back to the original region on new Sim. It takes longer but has no impact

on other regions which are not yet transferred, and whose content is still available.

RT Time = RUnAv Time + T2R Time (7.3)

Equation 7.4 is the total time taken by an aggregate transfer and its basic

purpose is to compare our system with other systems which transfer the whole

space at the same time. It is cumulative time taken by n regions in an aggregate.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 188

Total Time =
n∑

r=1

RT Timer (7.4)

Based on the experiments in this work, we observed that most of the activities

during a transfer take almost a constant amount of time, including player transfer

time. However, LC Time is different for each example world and is potentially

based on both the content and complexity of the scene. Similarly, the SC Time

varies a little with the amount of content in a region. We can easily use these

formulae to develop a prediction model for region as well as an aggregate trans-

fer. To determine a relationship between load content time and content itself,

we investigated a number of parameters such as prims, and assets/objects in a

scene, as well as file size of an OAR file, which are presented in Table 6.1 (of chap-

ter 6). The file size is more closely related to load content time, which can be used

for predicting both SC Time and LC Time. However, this will be our future work.

Our current implementation of a prototype improves over the traditional methods

due to transferring regions one at a time. It performs better, both in terms of

content un-availability time and number of players suffer from a split.

7.6.1 Experiments with 4-Region World

We tested a world of four regions on both Windows and Linux Environments with a

wide range of experiments. However, they explained little about all the concepts,

and therefore we provide the detailed expansion and contraction based on our

work for a 9-region world on the Linux environment. The Windows environment

demonstrated that our system scales and shrinks based on our strategies; however,

due to limited capabilities, we could not use them for bigger worlds such as those

based on nine regions. When nine regions were populated, players started noticing

lag during physics and network processing due to limited memory of the system.

Therefore, the Windows environment was only used for a 4-region world. However,

we could not explore it up to full capacity due to a limited number of resources.

The Linux environment overcame not only the scarcity of resources and limited

capabilities but it also improved the content load time, which greatly reduced the

total time for transferring a region (this is detailed in chapter 6). It also provided

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 189

a large number of nodes with more computation speed and memory. Therefore,

the Linux environment was used to demonstrate scaling worlds of both four and

nine regions up to a level where each Sim was running a unit region. These

environments provided the trade-offs between the number of Sims and inter-sim

crossing in response to the scaling process. It identified a number of issues such as

odd cases giving better distribution with odd combinations excluded by the ARA

algorithm and the trade-offs between merging strategies. It showed an improved

performance compared with the existing methods for transferring load due to

sending regions one at a time. These issues are demonstrated with the 9-region

world in the next section.

7.6.2 Experiments with 9-Region World

In this section, we demonstrate our system for a 3×3 grid, and explain various

issues and compare it with traditional systems using two different cases due to their

similar outcomes and shortage of space. GridCapacity in each case is constrained

by the number of regions being populated. A 9-region world can be scaled up

to 540 players when players are distributed in all regions. However, using bigger

worlds based on more unit regions can potentially scale further. The Linux nodes,

we used have the potential to host worlds based on sixteen and twenty-five regions

being tested, but not demonstrated. Uniform distribution of players is used to

demonstrate the full potential of a 9-region world initially running over parent

Sim (Sim-I) using nine Sims. Both Parent Merge (PM) and Child Merge (CM)

strategies are then used to merge the load back to Sim-I when players’ capacity

is decreased. They are compared for tradeoffs based on the outcome of merging

processes. We also present a case where three regions out of nine are populated to

identify the behaviour of our system when a sufficient number of Sims are available

to scale a world.

A). Scalability and Time Analysis

We add a new Sim as the load goes up. Table 7.4 shows the potential points dur-

ing these experiments and the ultimate capacities they achieve against possible

constraints. The SplitCapacity for this work is forty players. Experiment 1 is con-

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 190

strained by players distribution and it scales up to 180 players using three Sims.

It highlights the fact that our current implementation transfers a large number of

regions with no players; however, it has no impact on performance as it transfers

them in turn. It transfers a total of fifteen players in two regions at step one

and, therefore, reduces the number of players and total time they suffer from the

split. A traditional technique using our approach, and transferring the aggregate

at once, resumes the complete process in 425 seconds compared with the most

time consuming region H, which take 169 seconds. Similarly, fifteen players have

to wait for about 425 seconds to resume, compared with a maximum of ten players

waiting for 169 seconds. A region in our approach is un-available for a maximum

of 88 seconds, compared with 306 seconds (the sum of un-availability time of re-

gions in the aggregate) of un-availability for the aggregated content via traditional

methods. Similarly, step two also shows that our method get improvement over

existing mechanisms. Our approach takes very little time to transfer a region and

make it available when it has no players in it. However, in a traditional systems it

is unavailable until the complete aggregated content is transferred. Our approach

improves the overall performance by sending regions in turn, thus alleviating the

effect of transferring other regions or players in a region on a region transfer. We

believe that players in our current implementation have a better experience.

In experiment 2, players are uniformly distributed among nine regions and it scales

up to full potential reaching a player capacity of 540 players. Each region has a

small number of players, and Sim-I transfers three regions at step one and two

to Sim-II and Sim-III, respectively. In step one, a total of nineteen players are

transferred, which are distributed among regions A, D and G with A having ten

players. However, only ten players are restricted for the duration of region A being

transferred taking about 215 seconds, compared with nineteen suffering for about

413 seconds. However, the content of region A is only un-available for about 131

seconds compared with the un-availability of the aggregated content of A, D and G

for about 256 seconds. The region unavailability time and region transfer time for

regions D and G are considerably improved. In step two, Sim-I transfers regions C,

F and I with thirteen , four and three players correspondingly to Sim-III. Region

C takes much longer among these regions due to transferring a large portion of

total players, but this still improves the overall performance. Regions F and I are

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 191
T

a
b
le

7
.4

:
Il

lu
st

ra
ti

n
g

im
p

or
ta

n
t

st
ep

s
d
u
ri

n
g

sc
al

in
g

a
w

or
ld

of
9

re
gi

on
s.

E
x
p

./
R

eg
io

n
a
l

F
ro

m
T

o
R

eg
-

R
eg

.
S

C
T

2
T

R
R

C
R

L
C

T
2
R

R
C

T
R

U
n

A
v

R
T

T
o
ta

l

S
te

p
P

la
y
er

s
S

im
S

im
io

n
s

N
a
m

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

1
/
1

G
:0

0
H

:1
0

I:
2
5

S
im

-I
S

im
-I

I
8

A
7
S

ec
-

6
S

ec
2
S

ec
3
8
S

ec
-

5
3
S

ec
5
3
S

ec
5
3
S

ec
4
2
5
S

ec

D
:0

0
E

:0
0

F
:0

5
B

6
S

ec
-

7
S

ec
1
S

ec
1
1
S

ec
-

2
5
S

ec
2
5
S

ec
2
5
S

ec

A
:0

0
B

:0
0

C
:0

0
C

3
S

ec
-

5
S

ec
2
S

ec
5
S

ec
-

1
5
S

ec
1
5
S

ec
1
5
S

ec

D
8
S

ec
-

7
S

ec
2
S

ec
3
2
S

ec
-

4
9
S

ec
4
9
S

ec
4
9
S

ec

E
4
S

ec
-

5
S

ec
1
S

ec
5
S

ec
-

1
5
S

ec
1
5
S

ec
1
5
S

ec

F
2
S

ec
4
1
S

ec
3
S

ec
2
S

ec
3
S

ec
3
8
S

ec
1
0
S

ec
5
1
S

ec
8
9
S

ec

G
3
S

ec
-

4
S

ec
1
S

ec
2
S

ec
-

1
0
S

ec
1
0
S

ec
1
0
S

ec

H
2
S

ec
7
8
S

ec
3
S

ec
2
S

ec
3
S

ec
8
1
S

ec
1
0
S

ec
8
8
S

ec
1
6
9
S

ec

1
/
2

G
:0

0
H

:1
5

I:
4
0

S
im

-I
I

S
im

-I
II

2
G

2
S

ec
-

3
S

ec
2
S

ec
3
S

ec
-

1
0
S

ec
1
0
S

ec
1
0
S

ec
2
5
9
S

ec

D
:0

0
E

:0
0

F
:2

5
H

2
S

ec
1
1
8
S

ec
4
S

ec
1
S

ec
3
S

ec
1
2
1
S

ec
1
0
S

ec
1
2
8
S

ec
2
4
9
S

ec

A
:0

0
B

:0
0

C
:0

0
-

-
-

-
-

-
-

-
-

1
/
3

G
:0

0
H

:6
0

I:
6
0

-
-

-
-

-
-

-
-

-
-

-

D
:0

0
E

:0
0

F
:6

0
-

A
:0

0
B

:0
0

C
:0

0
-

-
-

-
-

-
-

-

2
/
1

G
:0

4
H

:0
5

I:
0
3

S
im

-I
S

im
-I

I
3

A
7
S

ec
8
2
S

ec
5
S

ec
1
S

ec
3
6
S

ec
8
4
S

ec
4
9
S

ec
1
3
1
S

ec
2
1
5
S

ec
4
1
3
S

ec

D
:0

5
E

:0
2

F
:0

4
D

8
S

ec
4
0
S

ec
6
S

ec
2
S

ec
3
0
S

ec
4
2
S

ec
4
6
S

ec
8
6
S

ec
1
2
8
S

ec

A
:1

0
B

:0
4

C
:0

3
G

2
S

ec
3
0
S

ec
2
S

ec
2
S

ec
3
S

ec
3
1
S

ec
9
S

ec
3
9
S

ec
7
0
S

ec

2
/
2

G
:0

9
H

:1
5

I:
0
3

S
im

-I
S

im
-I

II
3

C
3
S

ec
1
0
6
S

ec
4
S

ec
2
S

ec
6
S

ec
1
0
2
S

ec
1
5
S

ec
1
2
1
S

ec
2
2
3
S

ec
3
5
2
S

ec

D
:1

0
E

:0
2

F
:0

4
F

2
S

ec
3
3
S

ec
2
S

ec
1
S

ec
3
S

ec
3
2
S

ec
8
S

ec
4
1
S

ec
7
3
S

ec

A
:1

5
B

:0
4

C
:1

3
I

3
S

ec
2
5
S

ec
2
S

ec
2
S

ec
2
S

ec
2
2
S

ec
9
S

ec
3
4
S

ec
5
6
S

ec

2
/
3

G
:1

5
H

:1
5

I:
1
3

S
im

-I
I

S
im

-I
V

1
A

7
S

ec
1
1
8
S

ec
7
S

ec
3
S

ec
3
8
S

ec
1
2
2
S

ec
5
5
S

ec
1
7
3
S

ec
2
9
5
S

ec
2
9
5
S

ec

D
:1

0
E

:1
2

F
:0

4
-

A
:1

5
B

:0
4

C
:1

3
-

2
/
4

G
:2

5
H

:1
5

I:
1
3

S
im

-I
I

S
im

-V
1

D
8
S

ec
1
1
6
S

ec
6
S

ec
2
S

ec
2
8
S

ec
1
2
1
S

ec
4
4
S

ec
1
6
0
S

ec
2
8
1
S

ec
2
8
1
S

ec

D
:1

5
E

:1
2

F
:0

4
-

A
:2

5
B

:0
4

C
:1

3
-

2
/
5

G
:4

0
H

:2
5

I:
1
3

S
im

-I
S

im
-V

I
2

B
7
S

ec
3
5
S

ec
5
S

ec
1
S

ec
1
3
S

ec
3
3
S

ec
2
6
S

ec
6
1
S

ec
9
4
S

ec
2
9
9
S

ec

D
:2

5
E

:1
2

F
:0

4
E

3
S

ec
9
4
S

ec
4
S

ec
2
S

ec
4
S

ec
9
8
S

ec
1
3
S

ec
1
0
7
S

ec
2
0
5
S

ec

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 192
T
a
b
le

7
.4

–
c
o
n
ti

n
u
e
d

fr
o
m

p
r
e
v
io

u
s

p
a
g
e

E
x
p

./
R

eg
io

n
a
l

F
ro

m
T

o
R

eg
-

R
eg

.
S

C
T

2
T

R
R

C
R

L
C

T
2
R

R
C

T
R

U
n

A
v

R
T

T
o
ta

l

S
te

p
P

la
y
er

s
S

im
S

im
io

n
s

N
a
m

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

A
:4

0
B

:0
4

C
:1

3
-

2
/
6

G
:4

0
H

:2
5

I:
1
3

S
im

-V
I

S
im

-V
II

1
B

5
S

ec
1
4
8
S

ec
6
S

ec
1
S

ec
1
2
S

ec
1
5
3
S

ec
2
4
S

ec
1
7
2
S

ec
3
2
5
S

ec
3
2
5
S

ec

D
:2

5
E

:2
2

F
:0

4
-

A
:4

0
B

:1
9

C
:1

3
-

2
/
7

G
:4

0
H

:2
5

I:
2
3

S
im

-I
II

S
im

-V
II

I
2

C
4
S

ec
1
0
2
S

ec
6
S

ec
2
S

ec
7
S

ec
1
0
8
S

ec
1
9
S

ec
1
2
1
S

ec
2
2
9
S

ec
3
0
5
S

ec

D
:2

5
E

:2
2

F
:0

4
F

2
S

ec
3
3
S

ec
4
S

ec
2
S

ec
4
S

ec
3
1
S

ec
1
2
S

ec
4
5
S

ec
7
6
S

ec

A
:4

0
B

:1
9

C
:1

3
-

2
/
8

G
:4

0
H

:2
5

I:
2
3

S
im

-V
II

I
S

im
-I

X
1

C
3
S

ec
1
4
1
S

ec
5
S

ec
1
S

ec
5
S

ec
1
4
8
S

ec
1
4
S

ec
1
5
5
S

ec
3
0
3
S

ec
3
0
3
S

ec

D
:2

5
E

:2
2

F
:2

4
-

A
:4

0
B

:1
9

C
:1

8
-

2
/
9

G
:6

0
H

:6
0

I:
6
0

-
-

-
-

-
-

-

D
:6

0
E

:6
0

F
:6

0
-

A
:6

0
B

:6
0

C
:6

0
-

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 193

un-available for only 41 and 34 seconds in this case and this gives a much better

performance. Sim-II at step three and four delegates regions A and D with fifteen

players each to Sim-IV and Sim-V consecutively. In these cases, both mechanisms

take a similar amount of time to complete a transfer, and no improvement is

achieved. However, it minimises the region unavailability time. Assignment at

lower stages, when the Sims are handling a small number of regions, has similar

outcomes; however, we believe that these cases are normally rare. Transfers in

these cases are dominated by player transfer time, though the content transfer

time is quite reasonable. Step five and seven show an improved performance.

However, step six and eight are unable to achieve improved performance and

take a considerable amount of time by transferring nineteen and eighteen players

(almost the worst possible case). The split at step eight completes the assignment

process and no further splits are possible due to each Sim hosting a unit region.

However, each Sim accepts connections until it reaches its SplitCapacity, which is

sixty players in this work.

B). System Statistics and Analysis

In this section, we present a summary of experiments presented in Table 7.4 in

terms of number of used resources, inter-sim crossings, and total number of trans-

fers during the scaling process. These parameters are presented in Table 7.5, which

also shows the maximum capacities obtained against the constraints in each case.

Figure 7.7 provides trends for resource utilisation and inter-sim crossings against

capacity. It can be noted that we can possibly scale a world under constraints up

to certain limits. The most vital constraint is player distribution, which limits the

scaling process even if a world is based on a large number of regions and additional

Sims are available to share the load (see experiment 1 in Table 7.4). However, we

utilise a limited number of resources compared with static infrastructures. Since it

handles a limited number of players using a few resources, the inter-sim crossings

are minimum. When more resources are used to cope with an increasing number

of players, it increases inter-sim crossings greatly, as shown in Figure 7.7(b). The

inter-sim crossings are further increased if odd cases are allowed.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 194

Experiment No. Step Current Capacity Inter-Sim Crossings Player Transfers Number of Sims

(Cumulative)

1 1 0 0 0 1

2 40 44 15 2

3 80 112 30 3

4 180 238 30 3

2 1 0 0 0 1

2 40 46 19 2

3 75 100 39 3

4 101 146 54 4

5 126 182 69 5

6 176 296 85 6

7 201 346 104 7

8 211 372 121 8

9 236 420 139 9

11 540 960 139 9

Table 7.5: Number of resources, inter-sim crossings and player trans-
fers (cumulative) against current capacity while scaling a 9-region world
based on population of regions (based on experiments from Table 7.4).

We use three other metrics to show the performance of our system: Sim utilisation,

Player disruption, and Transfers per player during the scalability process. We use

the statistics of experiment 2, presented in Table 7.4, for these illustrations.

Sim Utilisation demonstrates that our system never allows more players than

its SimCapacity and, therefore, it always maintains the minimum frame rate for

SimFPS, which is thirty as described previously. Figure 7.8(a) shows that on

average each Sim serves a lesser number of players than SplitCapacity except when

each unit region was assigned to a single Sim (see the last observation regarding

having 560 players).

Player disruption presents a slight variation as we used a very simple mobility

model where each Bot makes only two moves during the whole duration. We

believe that player disruptions (connections/disconnections) will greatly increase

if more dynamic mobility models are simulated for longer. However, it still shows

that average player disruptions increased when we added more Sims, as shown in

Figure 7.8(b).

Transfers per player shows that our system transfers a very small number of

players on average compared with other load balancing techniques. It is clear

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 195

that player transfers only happen until each unit region is assigned to a single

Sim. Figure 7.9 shows that, during the split processes based on current scenarios,

almost every second player is transferred. However, after getting to a point where

each region is assigned to a single Sim, no further splits are permitted. This

illustrates that our system is efficient and transfers a very small number of the

total players. For our system to be completely populated, on average the fourth

player is transferred throughout the given cases. It can been seen in Table 7.5

that the cumulative player transfers are usually less than the maximum possible

limit. It demonstrates that our ARA algorithm reduces the number of players

which suffer from transfers.

(a) (b)

Figure 7.7: Number of resources and inter-sim crossings with an
increase in players capacity for a world of 9 regions with players (a)
populating three region. (b) populating nine regions.

(a) (b)

Figure 7.8: Illustrating (a) Sim utilisation. (b) Player disruption
(disconnections/connections).

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 196

Figure 7.9: Illustrating transfers per player.

C). Merging and Time Analysis

In this section, we present a summary of the merging process for both PM and CM

strategies applied to the final stage of experiment 2, obtained by the scaling process

that is presented in Table 7.4. The PM strategy is demonstrated using Table 7.6,

and CM strategy is presented in Table 7.7. Table 7.8 presents a summary of both

merging strategies in terms of number of resources and transfer of regions that are

used to compare them.

Table 7.6 presents important steps during merging using PM strategy. Parent Sim

(Sim-I) is hosting region H. Table 7.8 gives a clear picture of the regions served by

each Sim during the merging process. No merge operation is possible due to the

first constraint during the first two steps. In step three, Sim-VI and Sim-I satisfy

the first condition but fail the second one. Similarly, the cumulative load of Sim-

IV, Sim-VII, and Sim-IX with Sim-I is less than, or equal to, MergeCapacity but

their combined spaces are not contiguous and, therefore, no merge is permitted.

However, it can be noted that there are a number of points where merge could be

allowed by the CM strategy. In the PM strategy, each Sim is waiting for other

Sims to merge first, which would help them to integrate. In step five, Sim-II

integrates its load with Sim-I after satisfying both constraints. Each child Sim in

the following steps, except step six, integrates its load with Sim-I after validating

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 197
T

a
b
le

7
.6

:
Il

lu
st

ra
ti

n
g

im
p

or
ta

n
t

st
ep

s
d
u
ri

n
g

m
er

gi
n
g

u
si

n
g

P
ar

en
t

M
er

ge
(P

M
)

st
ra

te
gy

fo
r

a
w

or
ld

of
9

re
gi

on
s

(c
on

ti
n
u
ed

fr
om

T
ab

le
7.

4)
.

E
x
p

./
R

eg
io

n
a
l

F
ro

m
T

o
R

eg
-

R
eg

.
S

C
T

2
T

R
R

C
R

L
C

T
2
R

R
C

T
R

U
n

A
v

R
T

T
o
ta

l

S
te

p
P

la
y
er

s
S

im
S

im
io

n
s

N
a
m

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

2
/
1

G
:6

0
H

:6
0

I:
6
0

-
-

-
-

-
-

-
-

-
-

D
:6

0
E

:6
0

F
:6

0

A
:6

0
B

:6
0

C
:6

0

2
/
2

G
:2

0
H

:1
8

I:
2
0

-
-

-
-

-
-

-
-

-
-

D
:2

0
E

:1
5

F
:2

0

A
:1

0
B

:2
0

C
:1

6

2
/
3

G
:2

0
H

:1
0

I:
2
0

-
-

-
-

-
-

-
-

-
-

D
:2

0
E

:1
5

F
:2

0

A
:0

5
B

:1
5

C
:1

6

2
/
4

G
:2

0
H

:1
0

I:
2
0

-
-

-
-

-
-

-
-

-
-

D
:2

0
E

:1
5

F
:1

5

A
:0

5
B

:0
5

C
:1

0

2
/
5

G
:1

0
H

:1
0

I:
2
0

S
im

-I
I

S
im

-I
1

G
3
S

ec
8
2
S

ec
4
S

ec
2
S

ec
4
S

ec
7
8
S

ec
1
3
S

ec
9
5
S

ec
1
7
3
S

ec
1
7
3
S

ec

D
:2

0
E

:1
5

F
:1

5

A
:0

5
B

:0
5

C
:1

0

2
/
6

G
:1

0
H

:1
0

I:
2
0

-
-

-
-

-
-

-
-

-
-

D
:2

0
E

:1
5

F
:0

5

A
:0

5
B

:0
5

C
:0

5

2
/
7

G
:0

5
H

:0
5

I:
2
0

S
im

-V
S

im
-I

1
D

8
S

ec
7
9
S

ec
5
S

ec
1
S

ec
2
9
S

ec
8
1
S

ec
4
3
S

ec
1
2
2
S

ec
2
0
3
S

ec
2
0
3
S

ec

D
:1

0
E

:1
5

F
:0

5
-

A
:0

5
B

:0
5

C
:0

5
-

2
/
8

G
:0

5
H

:0
0

I:
1
5

S
im

-I
V

S
im

-I
1

A
7
S

ec
4
0
S

ec
7
S

ec
2
S

ec
3
6
ec

4
2
S

ec
5
2
S

ec
9
2
S

ec
1
3
4
S

ec
1
3
4
S

ec

D
:0

5
E

:1
5

F
:0

5
-

A
:0

5
B

:0
0

C
:0

0

2
/
9

G
:0

5
H

:0
0

I:
1
0

S
im

-V
II

S
im

-I
1

B
5
S

ec
-

6
S

ec
1
S

ec
1
1
S

ec
-

2
3
S

ec
2
3
S

ec
2
3
S

ec
2
3
S

ec

D
:0

5
E

:1
0

F
:0

5
-

A
:0

5
B

:0
0

C
:0

0
-

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 198
T
a
b
le

7
.6

–
c
o
n
ti

n
u
e
d

fr
o
m

p
r
e
v
io

u
s

p
a
g
e

E
x
p

./
R

eg
io

n
a
l

F
ro

m
T

o
R

eg
-

R
eg

.
S

C
T

2
T

R
R

C
R

L
C

T
2
R

R
C

T
R

U
n

A
v

R
T

T
o
ta

l

S
te

p
P

la
y
er

s
S

im
S

im
io

n
s

N
a
m

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

2
/
1
0

G
:0

5
H

:0
0

I:
1
0

S
im

-I
X

S
im

-I
1

C
3
S

ec
-

5
S

ec
2
S

ec
6
S

ec
-

1
6
S

ec
1
6
S

ec
1
6
S

ec
1
6
S

ec

D
:0

5
E

:1
0

F
:0

5
-

A
:0

5
B

:0
0

C
:0

0
-

2
/
1
1

G
:0

5
H

:0
0

I:
1
0

S
im

-V
II

I
S

im
-I

1
F

3
S

ec
3
9
S

ec
3
S

ec
2
S

ec
4
S

ec
4
1
S

ec
1
2
S

ec
5
1
S

ec
9
2
S

ec
9
2
S

ec

D
:0

0
E

:1
0

F
:0

5
-

A
:0

0
B

:0
0

C
:0

0
-

2
/
1
2

G
:0

5
H

:0
0

I:
1
0

S
im

-V
I

S
im

-I
1

E
3
S

ec
7
6
S

ec
4
S

ec
1
S

ec
5
S

ec
8
2
S

ec
1
3
S

ec
8
9
S

ec
1
7
1
S

ec
1
7
1
S

ec

D
:0

0
E

:1
0

F
:0

5
-

A
:0

0
B

:0
0

C
:0

0
-

2
/
1
3

G
:0

5
H

:0
0

I:
0
5

S
im

-I
II

S
im

-I
1

I
2
S

ec
4
2
S

ec
3
S

ec
2
S

ec
3
S

ec
4
3
S

ec
1
0
S

ec
5
2
S

ec
9
5
S

ec
9
5
S

ec

D
:0

0
E

:0
5

F
:0

5
-

A
:0

0
B

:0
0

C
:0

0
-

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 199

the constraints and releases itself. Since each Sim returns its region straight to

the parent, there are no additional transfers involved. It is important to note at

step eleven that the merging process allowed a contiguous space that is never used

by the ARA algorithm for assignment; however, it introduces no issues identified

by odd cases. Since the merging process is normally initiated when player capac-

ity decreases, it can be noted that each transfer involves less players than in the

scaling process. Merging, therefore, reduces the region un-availability time. Since

we observed a number of places where the CM strategy can potentially merge

with its sibling Sim, the system might release under-utilised Sims quicker than

the PM strategy. Therefore, we apply the CM strategy to the same distribution

and compare it with the PM strategy.

Table 7.7 presents the significant steps during the merging process using the CM

strategy. Table 7.8 manages regions to Sim assignment during the process for

clarity. No integration is possible at step one and two due to the combined capacity

constraint. In step three, Sim-IV integrates with Sim-VII after validation against

the constraints. It can be seen that both Sim-IV and Sim-VI maintain the capacity

constraint, but fail the continuity test. In step four, Sim-VII transfers two regions

to Sim-IX including region A transferred to Sim-VII in the previous step. It

transferred ten players, each region having five players. Sim-II transferred its

region with ten players to Sim-I at step five. Sim-VIII relocated a single region to

Sim-IX with five players. Our current implementation allows each Sim to merge

with a sibling Sim by taking local decisions. If Sim-IX had initiated the process

to move its load to Sim-VIII, then we would have more additional transfers by

transferring a space comprises of three regions. Sim-V integrated its load with

Sim-I at step seven with ten players in a single region. In step eight, Sim-IX

moved four regions to Sim-I with ten players equally distributed in two regions.

No integrations were possible due to first constraint at steps nine and ten. Sim-

VI in step eleven and Sim-III in step thirteen return their regions to Sim-I, which

concludes the merging process. The whole world is now again hosted by the parent

Sim. It was observed that, as capacity decreased and Sims could perform a merge

satisfying the constraints, they did so, thus releasing a resource. However, multiple

transfers were observed for different regions such as A and B, that were transferred

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 200
T

a
b
le

7
.7

:
Il

lu
st

ra
ti

n
g

im
p

or
ta

n
t

st
ep

s
d
u
ri

n
g

m
er

gi
n
g

u
si

n
g

C
h
il
d

M
er

ge
(C

M
)

st
ra

te
gy

fo
r

a
w

or
ld

of
9

re
gi

on
s

(c
on

ti
n
u
ed

fr
om

T
ab

le
7.

4)
.

E
x
p

./
R

eg
io

n
a
l

F
ro

m
T

o
R

eg
-

R
eg

.
S

C
T

2
T

R
R

C
R

L
C

T
2
R

R
C

T
R

U
n

A
v

R
T

T
o
ta

l

S
te

p
P

la
y
er

s
S

im
S

im
io

n
s

N
a
m

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

2
/
1

G
:6

0
H

:6
0

I:
6
0

-

D
:6

0
E

:6
0

F
:6

0

A
:6

0
B

:6
0

C
:6

0

2
/
2

G
:2

0
H

:1
8

I:
2
0

-

D
:2

0
E

:1
5

F
:2

0

A
:1

0
B

:2
0

C
:1

6

2
/
3

G
:2

0
H

:1
0

I:
2
0

S
im

-I
V

S
im

-V
II

1
A

8
S

ec
4
1
S

ec
7
S

ec
2
S

ec
3
8
S

ec
4
3
S

ec
5
5
S

ec
9
6
S

ec
1
3
9
S

ec
1
3
9
S

ec

D
:2

0
E

:1
5

F
:2

0
-

A
:0

5
B

:1
5

C
:1

6
-

2
/
4

G
:2

0
H

:1
0

I:
2
0

S
im

-V
II

S
im

-I
X

2
A

7
S

ec
3
8
S

ec
8
S

ec
1
S

ec
3
6
S

ec
4
2
S

ec
5
2
S

ec
9
0
S

ec
1
3
2
S

ec
2
4
0
S

ec

D
:2

0
E

:1
5

F
:1

5
B

6
S

ec
4
1
S

ec
6
S

ec
2
S

ec
1
3
S

ec
4
0
S

ec
2
7
S

ec
6
8
S

ec
1
0
8
S

ec

A
:0

5
B

:0
5

C
:1

0
-

2
/
5

G
:1

0
H

:1
0

I:
2
0

S
im

-I
I

S
im

-I
1

G
2
S

ec
8
2
S

ec
4
S

ec
2
S

ec
3
S

ec
7
8
S

ec
1
1
S

ec
9
3
S

ec
1
7
1
S

ec
1
7
1
S

ec

D
:2

0
E

:1
5

F
:1

5
-

A
:0

5
B

:0
5

C
:1

0
-

2
/
6

G
:1

0
H

:1
0

I:
2
0

S
im

-V
II

I
S

im
-I

X
1

F
2
S

ec
3
9
S

ec
3
S

ec
1
S

ec
3
S

ec
4
2
S

ec
9
S

ec
4
8
S

ec
9
0
S

ec
9
0
S

ec

D
:2

0
E

:1
5

F
:0

5
-

A
:0

5
B

:0
5

C
:0

5
-

2
/
7

G
:0

5
H

:0
5

I:
2
0

S
im

-V
S

im
-I

1
D

8
S

ec
8
2
S

ec
7
S

ec
2
S

ec
3
2
S

ec
8
4
S

ec
4
9
S

ec
1
3
1
S

ec
2
1
5
S

ec
2
1
5
S

ec

D
:1

0
E

:1
5

F
:0

5
-

A
:0

5
B

:0
5

C
:0

5
-

2
/
8

G
:0

5
H

:0
0

I:
1
5

S
im

-I
X

S
im

-I
4

A
8
S

ec
3
8
S

ec
6
S

ec
1
S

ec
3
8
S

ec
4
1
S

ec
5
3
S

ec
9
1
S

ec
1
3
2
S

ec
2
6
3
S

ec

D
:0

5
E

:1
5

F
:0

5
B

4
S

ec
-

5
S

ec
2
S

ec
1
1
S

ec
-

2
2
S

ec
2
2
S

ec
2
2
S

ec

A
:0

5
B

:0
0

C
:0

0
C

5
S

ec
-

5
S

ec
2
S

ec
6
S

ec
-

1
8
S

ec
1
8
S

ec
1
8
S

ec

F
2
S

ec
4
2
S

ec
3
S

ec
1
S

ec
3
S

ec
4
0
S

ec
9
S

ec
5
1
S

ec
9
1
S

ec

2
/
9

G
:0

5
H

:0
0

I:
1
0

-
-

-
-

-
-

-
-

-
-

-
-

D
:0

5
E

:1
0

F
:0

5
-

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 201
T
a
b
le

7
.7

–
c
o
n
ti

n
u
e
d

fr
o
m

p
r
e
v
io

u
s

p
a
g
e

E
x
p

./
R

eg
io

n
a
l

F
ro

m
T

o
R

eg
-

R
eg

.
S

C
T

2
T

R
R

C
R

L
C

T
2
R

R
C

T
R

U
n

A
v

R
T

T
o
ta

l

S
te

p
P

la
y
er

s
S

im
S

im
io

n
s

N
a
m

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

(S
ec

)
(S

ec
)

A
:0

5
B

:0
0

C
:0

0
-

2
/
1
0

G
:0

5
H

:0
0

I:
1
0

-
-

-
-

-
-

-
-

-
-

-
-

D
:0

5
E

:1
0

F
:0

5
-

A
:0

5
B

:0
0

C
:0

0
-

2
/
1
1

G
:0

5
H

:0
0

I:
1
0

S
im

-V
I

S
im

-I
1

E
3
S

ec
8
1
S

ec
4
S

ec
2
S

ec
4
S

ec
7
9
S

ec
1
3
S

ec
9
4
S

ec
1
7
3
S

ec
1
7
3
S

ec

D
:0

0
E

:1
0

F
:0

5
-

A
:0

0
B

:0
0

C
:0

0
-

2
/
1
2

G
:0

5
H

:0
0

I:
1
0

-
-

-
-

-
-

-
-

-
-

-
-

-

D
:0

0
E

:1
0

F
:0

5
-

A
:0

0
B

:0
0

C
:0

0
-

2
/
1
3

G
:0

5
H

:0
0

I:
0
5

S
im

-I
II

S
im

-I
1

I
2
S

ec
4
0
S

ec
3
S

ec
2
S

ec
2
S

ec
3
8
S

ec
9
S

ec
4
9
S

ec
8
7
S

ec
8
7
S

ec

D
:0

0
E

:0
5

F
:0

5
-

A
:0

0
B

:0
0

C
:0

0
-

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 202

three and two times respectively. We believe that it brings a bad experience to

players although there are normally small numbers of them during the merging

process.

Table 7.8 summarises the merging process for both PM and CM strategies. It pro-

vides the number of resources and cumulative region transfers against current ca-

pacity and provides a clear picture for Sims hosting different regions. Figure 7.10

shows the trends between resources and region transfers for both strategies. It

suggests that CM strategy minimises the number of resources and achieves an

improved utilisation of resources; however, some regions were transferred multi-

ple times. PM strategy has no additional transfers, but more than the required

number of resources were used for longer durations.

Figure 7.10: Comparison of Parent Merge (PM) and Child Merge
(CM) strategies for both number of resources and region transfers.

7.6.3 Discussion

In this section, we demonstrated that our system is flexible that expands and

contracts based on system capacity. It uses additional Sims during expansion,

which are reduced later in response of merging. A region is only un-available when

it is transferred, compared with traditional systems keeping it off limits until the

whole space is transferred. Based on the fact that we never transfer more than

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 203

Exp./ Players PM Strategy CM Strategy

Step Sims Regions Resources No. of Sims Regions Resources No. of

Transfers Transfers

2/1 540 II I III 9 0 II I III 9 0

V VI VIII V VI VIII

IV VII IX IV VII IX

2/2 159 II I III 9 0 II I III 9 0

V VI VIII V VI VIII

IV VII IX IV VII IX

2/3 146 II I III 9 0 II I III 8 1

V VI VIII V VI VIII

IV VII IX VII VII IX

2/4 120 II I III 9 0 II I III 7 3

V VI VIII V VI VIII

IV VII IX IX IX IX

2/5 110 I I III 8 1 I I III 6 4

V VI VIII V VI VIII

IV VII IX IX IX IX

2/6 95 I I III 8 1 I I III 5 5

V VI VIII V VI IX

IV VII IX IX IX IX

2/7 75 I I III 7 2 I I III 4 6

I VI VIII I VI IX

IV VII IX IX IX IX

2/8 50 I I III 6 3 I I III 3 10

I VI VIII I VI I

I VII IX I I I

2/9 40 I I III 5 4 I I III 3 10

I VI VIII I VI I

I I IX I I I

2/10 40 I I III 4 5 I I III 3 10

I VI VIII I VI I

I I I I I I

2/11 30 I I III 3 6 I I III 2 11

I VI I I I I

I I I I I I

2/12 30 I I III 2 7 I I III 2 11

I I I I I I

I I I I I I

2/13 20 I I I 1 8 I I I 1 12

I I I I I I

I I I I I I

Table 7.8: Comparison of number of resources and number of regions
transferred for both Parent Merge (PM) and Child Merge (CM) strate-
gies for a world of 9 regions.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 204

twenty players, the region un-availability time on the Linux environment never

exceeds 220 seconds in our experiments with the OpenVCE world loaded in the

region that has the most expensive content in terms of loading the content. On

the other hand, current methods takes a very long time based on the number of

regions and players in an aggregate. In the worst cases, our approach requires

the same time as traditional systems, mostly when a world has fewer regions.

For bigger worlds with players being distributed in multiple regions, we obtain a

considerable amount of improvement both in terms of number of players and total

time they suffer from a split. Players are never unavailable, thus giving them a

better experience.

Two merging strategies (PM and CM) are implemented and compared in this

work and each has value and limitations. Both of them ultimately return the

whole world back to the parent Sim. The PM strategy takes more time and holds

resources for longer than the CM strategy. However, the CM strategy potentially

transfers regions between Sims multiple times and degrades performance. Nor-

mally, a merge operation is initiated when player capacity is not high. However,

in the worst cases, it might need to transfer up to twenty players, same as in

scaling process that happens rarely. The PM strategy is simple but Sims might

be waiting for a parent Sim, handling nothing at certain stages. The CM strategy

copes with the issues in PM strategy and release resources much quicker. However,

it possibly transfers a large number of players and introduces additional transfer

of content. Because of multiple transfers, it brings a bad experience to the users.

We have demonstrated both the strategies, and both could be adopted according

to requirements. Odd combinations are rejected by both the strategies. To man-

age bigger worlds and the un-predictable nature of users, we suggest using CM

strategy as PM might be blocked for longer. However, both have the potential to

cope with resource under-utilisation issues.

7.7 Bigger VWs

The Linux nodes used in this work have the potential to host bigger worlds over

a single Sim based on a large number of regions such as sixteen, twenty-five or

greater. However, it depends on the content populating world regions. We have

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 205

tested it for worlds up to sixteen regions but we demonstrated it for square shaped

worlds of four and nine regions. We believe that our system is flexible and is

capable of managing worlds of any size and shape, but of a coherent space. We

have demonstrated that, for uniform distribution, it scales up to potential capacity

which is greatly increased for further larger systems. For sixteen and twenty-

five region worlds, it could be scaled up to sixteen and twenty-five Sims with

a maximum capacity of 960 and 1500 players consecutively. Since our current

model uses a single parent Sim with the a large number of child Sims, it maintains

parent-child relationship at a single level. We believe that it has the potential

to reduce delays and complexities compared with hierarchical methods for the

implementation of our consistency model in future. Based on our observations, we

believe that bigger worlds greatly improve performance by normally transferring

a small number of players in each region. For worlds based on a small number

of regions, we noticed that our system gives little improvement over traditional

systems compared with worlds with a large number of regions.

7.8 Comparison with Existing Systems

In this section, we provide a comparison of our infrastructure with the static

and dynamic configurations used for well-known infrastructures, such as SL and

Matrix.

7.8.1 Static Configurations

Our current implementation of JoHNUM infrastructure starts a Sim (called par-

ent) with a large number of regions, compared with methods that statically assign

a limited number of regions. It provides resources based on load, and solves both

over-provision and under-provision issues of resources. The scaling process with

additional Sims overcomes resource under-provisioning problems while the merg-

ing process resolves the over-provisioning problem.

Our method scales up to exactly the same capacity as static infrastructures. Since

the population of VWs is unpredictable and constrained by player distribution,

our method is significantly improved over static infrastructure by using fewer

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 206

resources.

Since our ARA algorithm potentially distributes a non-uniform load, it is similar to

static infrastructures with some regions having fewer players than others. However,

we apply the merging process to reduce extra resources in order to avoid resource

under-utilisation, and we never dedicate resources to host regions without players.

7.8.2 Dynamic Configurations

Our current implementation of JoHNUM infrastructure assumes a world being

pre-partitioned into a number of regions and transfers regions in an aggregate in

turn which greatly minimises the number of players and the total time they suffer

from a split. It also greatly reduces the content un-availability time.

Since we maintain a single parent Sim, additional resources are all managed in

a single additional level. We believe it keeps our model simple and potentially

reduces system complexity and communication overhead by minimising the num-

ber of levels in a hierarchy. For applications with conservative nature, a system

with multiple levels introduces longer delays and, therefore, our model will help

to implement our consistency model in the future.

Our approach is simple and takes purely local decisions with no central component,

like Matrix Controller, that could become a system bottleneck. Each child Sim is

totally independent and directly controlled by grid services, which allows it to keep

serving the part of space it hosts on behalf of the parent Sim even if the parent

is down for some reason. Furthermore, it has no additional management levels

such as those needed for managing Matrix Servers in Matrix. Both scaling and

merging processes are initiated directly by a Sim based on increase and decrease

in its load.

Our infrastructure distributes and accepts non-uniform load to provide a bet-

ter experience than complex systems which spend most of their time obtaining

uniform load generally based on global strategies. Our current implementation

uses merging strategies to overcome resource under-utilisation issues where a Sim

can integrate its load and release itself. However, full load balancing is not yet

implemented.

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 207

7.9 Conclusions and Future Work

In this chapter, we presented an abstract framework for scalable VW based on

our informal model, whose development and investigation was detailed in chap-

ter 6, using the OS architecture together with RAd and OAR functionalities.

We used numeric values for SplitCapacity and MergeCapacity based on our load

model. SplitCapacity takes an earlier decision to avoid a bad experience, and

MergeCapacity uses a very small value to avoid frequent splits, thus improving

performance.

We extended the basic ARA algorithm to make it flexible by adding a flood-fill

algorithm that is used to validate an aggregate against odd cases at each level

of assignment. This method of validation is also used during merge operations.

Our current implementation of the ARA algorithm selects the best aggregate for

transfer that has the least number of players. It normally improves performance,

but, it might transfer a large number of regions with players only in a small number

of regions.

A bigger OS world is constructed by placing a number of regions side by side,

where the number of regions a Sim can handle depends on system capabilities.

The Windows environment was used to determine that our implementation works.

Due to its limited capabilities, we used it only for a world based on four regions.

This demonstrated that Load Content (LC) operation is the most time consuming

activity that greatly increases a region transfer time. Linux nodes greatly reduced

the time taken by LC process and slightly improved player transfer time to reduce

the overall time taken by transferring a region. It allowed us to test our work for

worlds based on both four and nine regions.

We implemented our work as a Plug-in application over .NET framework using

C# language. However, it also works well with Linux/Mono framework. It used

grid mode to give a coherent view of a world hosted jointly by different Sims at

later stages, but initially started with a parent Sim running the whole world. The

modular structure of OS helped us to transfer regions in an aggregate indepen-

dently, thus reducing the number of players that suffers from a transfer as well

as total time taken by a transfer. Players are transferred to a local transit region

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 208

during a transfer instead of freezing them. It allows players to teleport to other

regions or keep themselves busy with simple activities until the maintenance is

over. Transit regions provide very little content and have no real impact on sys-

tem performance. Since they are managed locally, they put no burden on the

grid.

Our framework assigns resources based on need, and achieves the same level of

scalability as static configurations. Since we assume a world being pre-partitioned

into the number of regions in a world, regions are all assigned to child Sims at

a single additional level. Our current work implemented two merging strategies

to cope with over-provision of resources. Both strategies maintain merging con-

straints and result in contiguous areas. They have their worth and limitations and

could be used according to requirements.

For evaluation and comparison purposes, we used a number of time and sys-

tem statistics. Time statistics such as content transfer time (RCT Time), region

un-availability time (RUnAv Time), region transfer time (RT Time), and Total

Time are based on time information of the different activities used during a trans-

fer operation. It used a number of system statistics such as number of regions

transferred, content transferred, number of players transferred, number of used

resources, number of inter-sim crossings, Sim utilisation, player disruptions, and

transfers per player.

The experimental results demonstrated that our proposed methods improve sys-

tem performance in terms of Sim utilisation, and number of times a player is

transferred.

The following points are identified as future work:

In future, we intend to explore much bigger worlds. Our current implementation

sends players of a region into a transit region during a region transfer. However, it

was seen to be a bottleneck after considerably reducing the RCT Time. In future,

we will look into ways to reduce player transfer time. It could be interesting to

compare our current method with traditional methods such as freeze and restore.

In our current implementation, we have used an OS region as a basic unit region,

and this has limitations in handling large numbers of players. It might be in-

teresting to investigate the trade-offs between scalability and inter-sim crossings

CHAPTER 7. SCALABLE VIRTUAL WORLDS: IMPLEMENTATION 209

by reducing the size of an OS basic region. The OS architecture manages each

region as a single entity and it involves complex intra-sim crossings. Our current

implementation of the ARA algorithm maintains contiguous spaces that minimise

inter-sim crossings, but the concept of megaregions can be extended to make it

dynamic and this has the potential to overcome communication and intra-sim

crossings issues.

Our current implementation uses OAR functionality to transfer a region with cur-

rent state with the basic OS persistence step being disabled. The LC operation

is the only operation that takes a considerable amount of time. More intelli-

gent and improved methods could be developed to reduce LC Time. We need to

identify how load content time is related to the content. Since there is a huge

difference in timings for loading content and storing content operations, we might

investigate and look into improving the load content algorithm. Direct database

transfers might have the potential to achieve improved times but they might need

to carefully consider the backup process as this is a time consuming activity.

Since our implementation improves performance when players are distributed

among multiple regions, more intelligent strategies based on trade-offs between

the number of regions and players for the ARA algorithm might be interesting to

investigate and develop. We have used a greedy approach for the CM strategy,

and a child Sim merges with another child Sim when both the constraints are

validated, and might transfer a large number of players. It might be interesting

to investigate shifting load from a Sim that has fewer players and regions to one

that has more players and regions.

Our CM strategy could be further investigated as a load balancing method to

reduce resource under-utilisation. Similarly, instead of using a new additional

Sim for an overloaded Sim, load balancing can give better distribution of load.

Further detailed analysis of trade offs between balancing the load and performance

degradation due to multiple transfers of the same content might be interesting to

study.

We also intend to develop a prediction model for predicting the timing information

for the transfer function.

Chapter 8

Conclusions and Future Work

This chapter summarises the work undertaken during this study and discusses

the value and limitations of our scalable and consistent infrastructure for VWs.

It recommends a number of areas that could be investigated in future to further

improve the performance of these systems.

8.1 Conclusions

This thesis examined a novel approach that combines two contemporary infras-

tructures to solve the issues in the mechanisms that are currently used to develop

scalable and consistent VWs. The limitations of these approaches are presented in

detail in chapter 2. This new approach uses a constrained hierarchical approach to

manage system resources while targeting scalability and load distribution. It uses

a P2P infrastructure with a constrained communication model based on inherent

properties of VWs, while managing the temporal order among events. The con-

sistency approach extends the basic capabilities of VWs to support conservative

applications, thus making it a strong candidate for the future 3D web. This work

used simulation studies to investigate the existing mechanisms for targeting scala-

bility, load distribution, and consistency in VWs, and then developed a prototype

to implement scalability and load distribution as an extension to OS.

The following goals were achieved during this study:

210

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 211

Scalability and Load Distribution

The JoHNUM infrastructure achieved scalable VWs with dynamic allocation of

resources, and solved the issues of both over-provisioning and under-provisioning

of resources. Simulation results showed that it performs better than game mid-

dleware Matrix in terms of levels in an RMT and interactive user experience. It

further reduced resource utilisation and communication overhead in the same way

as Matrix (see section 3.1 of chapter 3 for further detail).

Our ARA algorithm is capable of choosing contiguous and regular spaces for as-

signment based on aggregation strategies. It balances the load as much as possible,

and speeds up the aggregation process using intelligent strategies. It has demon-

strated that the communication and implementation cost and inter-sim crossings

are reduced by excluding odd cases that might balance the load better than the

proposed strategies (see section 3.2 of chapter 3). It is flexible and assigns resources

strictly on requirements which greatly minimise them.

This work investigated the capabilities of the OS framework in detail and presented

an extension to it to incorporate features for both scalability and consistency (see

chapter 5 for further detail).

This study presented a generic load model based on our investigations that is

capable of determining the points when a system needs to initiate a split or stop

accepting more connections using different values of SimFPS. It can be used to

determine approximated numeric values for different concepts such as splitting

and merging. During this work, it was found that systems using simulation centric

architecture do not scale with additional resources.

We studied different database options and suggest that a localised MySQL provides

an excellent choice that has the potential to reduce communication overhead and

avoid longer delays.

Our investigations revealed that removing a region from a Sim and loading con-

tent from an OAR file take a considerable amount of time. We presented two

improved strategies that compared with the OS basic methods, significantly re-

duced the time taken by removing a region (see section 6.7 of chapter 6 for further

detail).

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 212

We developed a prototype for implementing the scalability and load distribution

strategies as a Plug-in to the OS framework and tested it on both Windows/.Net

and Linux/Mono platforms. It used the concept of transferring players to a tran-

sit region during a transfer instead of freezing them to improve user interactive

experience. Our implementation achieved improvements over traditional systems

by transferring regions in an aggregate in turn, both in terms of content unavail-

ability time and the number of players that suffer from a split. We tested our

system for worlds of up to nine regions for both expansion and contraction, and

demonstrated that it achieves the same level of scalability as a static configura-

tion but uses fewer resources based on player distribution. Dividing a VW into

more regions, as in our implementation, demonstrated that levels in an RMT are

significantly improved.

We used a number of time and system statistics for evaluation and comparison

purposes. We investigated the number of Sims being used and the number of

inter-sim crossings being introduced due to the scaling process. It was shown that

our approach performs better in terms of Sim utilisation, and reduces the average

number of transfers per player.

We wrote additional methods to fix a number of bugs in the OS architecture.

To cope with resource under-utilisation, our current implementation presented two

merging strategies. We have provided trade-offs between the two and they could

be utilised according to requirements.

We also presented an extension to our basic ARA algorithm by incorporating a

flood-fill algorithm to make it capable of choosing valid contiguous spaces when

applied to any shape of world. Merging also utilises the flood-fill algorithm to

maintain contiguous spaces (see chapter 7 for further detail).

Consistency Management

This thesis also presented a decentralised synchronisation approach. It utilises the

inherent properties of VWs, and each federate directly interacts with its neigh-

bouring federates. This is illustrated with the help of both simple flat and hierar-

chical scenarios. Simulation results showed that it achieves the correct temporal

ordering for randomly generated events. Furthermore, an abstract model demon-

strated that it has the potential to perform better than hierarchical approaches

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 213

(see chapter 4 for further detail).

8.2 Benefits and Limitations

Our work has the following main strengths and limitations:

Both under-provisioning and over-provisioning issues in static assignment systems

are fixed with our dynamic split and merge strategies. It achieves the same capac-

ity as static infrastructures such as SL but with fewer resources. Our approach is

simple, dynamic and it has proved that it greatly reduce the number of levels in

an RMT compared with current dynamic methods.

The performance is significantly improved over the existing methods based on

spatial partitioning with our improved strategies and using the OS capabilities

for transferring regions in turn. It reduces the content un-availability time, but

the content load operation still takes considerable amount of time. Transferring

players into a transit region gives a better user experience but currently it takes a

long time to transfer. Our system needs to maintain an additional transit region

by each Sim, but this has no impact on system performance as it provides very

little content.

The ARA algorithm distributes the load by selecting a lower number of players

to transfer. However, it potentially transfers a large number of regions in certain

situations. It uses a localised approach to provide better interactive experience and

achieve better performance, but it distributes a non-uniform load. Furthermore,

it reduces inter-sim crossings.

Merging strategies minimises resource under-utilisation, but full load balancing is

not yet implemented.

Unlike similar studies, this work has developed a prototype to evaluate system

capabilities by using real world content.

Our work is the only current project using the OS framework targeting the issues

of over-provision and under-provision of resources in VW. It is compatible with

the current release of the OS framework and we aim to introduce it as a component

to the OS framework.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 214

Our consistency mechanism is simple and decentralised in nature, which accom-

modate conservative applications in VWs. It maintains the consistent state of a

space but it is not implemented. Our system might be blocked temporarily at

different spots but these situations are potentially resolved quickly.

8.3 Future Directions

The following areas are identified for future research, based on the current study:

This work demonstrated that transferring players is an expensive operation. In

our future work, we will look into different ways to reduce this time. It might

be interesting to investigate and compare alternative methods, such as freeze and

restore, with our approach.

Our current implementation used the standard size of an OS region that could

potentially hold a large number of players. It could be further investigated if the

basic region size can be reduced to a smaller one than 256m×256m. Trade-offs

between scalability and inter-sim crossings would also be interesting to investigate.

A load model was developed based on testing the scene parameters SimFPS and

PhysicsFPS, using static and dynamic content as well as interactive users. Further

performance tests could be conducted to identify the response of other parameters

that might help to extend the current load model for different requirements.

Our approach with aggregation strategies greatly reduced inter-sim crossings, but

the concept of megaregions could be extended to reduce intra-sim crossings. It

would be interesting to investigate improvements of megaregions over the standard

representation of multiple regions.

Other intelligent strategies for the ARA algorithm need to be investigated to avoid

situations that transfer a large number of regions, or a minimum number of players

but in a very small number of regions. The trade-off between the number of regions

and players might also be valuable to investigate.

The Load Balancing issue is of vital importance for improving resource under-

utilisation, which is not yet implemented. Our merging strategies could be ex-

tended to implement load balancing. Trade-offs between Sims and both com-

munication overhead and degradation of interactive experience due to potential

transfer of the same regions multiple times would be interesting to examine. More-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 215

over, future work would include developing more intelligent merging strategies to

overcome the limitations of existing strategies.

Our current implementation uses OAR functionality to transfer a region. It is de-

termined that loading content is an expensive operation and we intend to develop

improved algorithms to minimise their timing information in our future work.

Other alternative methods could be interesting to investigate compared with our

current methods.

In the future, we intend to develop a prediction model for predicting both region

and aggregate transfer time.

The grid mode of OpenSim provides UGAIM (User, Grid, Asset, Inventory, and

Messaging) services as a centralised application that is a possible bottleneck, and

this could be extended to a distributed one for better performance.

We intend to incorporate our prototype as a component to the OS framework and

work with the OS community to further develop load balancing strategies.

Communication as a vital part of VW systems needs to be investigated against

the communication overhead introduced by the number of clients, as well as scene

complexity, that usually have a negative effect on performance.

Our consistency management approach needs to be simulated for bigger worlds.

In our future work, we intend to develop a prototype using the OS framework

to investigate how it behaves in a real world example. It would be interesting

to investigate the impact of federates on each other and find out how quickly

this resolves the temporarily blocking states. Furthermore, it seems fascinating to

compare it with hierarchical approaches for parameters such as delay, complexity

and communication overhead.

Appendix A

An Introduction to Grid

Computing

A.1 Background

The work in this thesis used Grid infrastructures and presented techniques to

introduce dynamic abilities to scale virtual worlds. Most of the Grids used for

the environments (such as SL Grid) in this work are of static nature. Our work

introduced an additional level of resources to share an excessive load with a Sim

hosting an arbitrary number of regions from an available pool of resources. Since

in general an individual or an organisation might not be able to obtain enough

resources, the concept of dynamic grids can help to overcome this limitation.

Therefore, we include an introduction to the concept of grid computing, its base

architecture, and the existing solutions in this thesis for a reference.

A.2 Introduction

Grid computing, in original concern, was devised to solve computation and data

extensive problems. It emerged as an inspiration from the electric power grid

and is an alternative to cluster computing [11, 75]. Instead of the homogeneous

resources of an organisation, it utilises the heterogeneous resources of different

organisations or individuals. The Literature broadly visualises two views of grid

216

A. AN INTRODUCTION TO GRID COMPUTING 217

environments named static and dynamic. A static grid integrates resources of

partner organisations. The resources it uses are heterogeneous in nature, and

these systems are mostly classified as Client Multi Server (CMS) systems that are

integrated by high bandwidth links using advanced communication and manage-

ment patterns. The core of a dynamic Grid is called virtual organisation (VO),

a temporary alliance of distributed heterogeneous resources of different organisa-

tions and individuals over the Internet. These resources are used to solve problems

by adopting common usage policies [77, 78, 122]. The important characteristics

of a Grid include multiple administrative domains and autonomy, heterogeneity,

scalability, and dynamicity/adaptability [78]. Resource management and schedul-

ing are the most primitive and challenging issues in Grid Computing and need

special attention to better utilise the Grid Infrastructure [46, 94, 129].

In Grid Computing, a problem solution is initiated by a user via a Grid Resource

Broker. On behalf of a user, the broker performs resource discovery and schedul-

ing, and assigns application jobs to distributed resources [78]. A resource owner

registers resources with Grid Information Service (GIS) with their usage poli-

cies [47]. The Grid Resource Broker accesses GIS to find suitable resources for a

solution to a problem against deadline and budget constraints. The introduction

of economy to grid infrastructure brings additional challenging aspects that need

to be resolved. It provides incentives for resource owners to participate in grid

environment. It also leads the grid computing (using the Internet as an underlying

technology) from being a computing infrastructure to a business platform. Differ-

ent computational economy frameworks and algorithms for resource management

are presented to cope with these challenges [27, 29, 224]. Service oriented grids

have shown a great impact on Grid Computing [232]. A revolutionary approach

of grid infrastructure is presented in [9].

A.3 Grid Architecture and Existing Solutions

To define and integrate system components, a number of architectural design is-

sues need proper attention. A Grid uses cross-organisational resource sharing via

a VO and, therefore, a Grid architecture requires ways to establish and manage

A. AN INTRODUCTION TO GRID COMPUTING 218

resources [19]. Interoperability issues between resource owners and users are given

special attention. Resource management at both individual and integration levels

also needs special attention. Trading, security and QoS must be addressed. Dis-

covery services, co-allocation, scheduling, and monitoring and diagnostic services

issues need special considerations. To realise flexibility and reliability, data repli-

cation services and workload management must be given proper attention. Mate-

rialising these issues often result in a layered architecture that implement them as

low level and high level services [75]. The architecture of grid presented by Global

Grid Forum (GGF) comprises of five layers called: Application Layer, Collective

Layer, Resource Layer, Connectivity Layer, and Fabric Layer [75]. Application

Layer manages the construction of domain specific applications and utilises lower

layer services. To facilitate layered integration, a number of Application Provider

Interfaces (APIs) and Software Development Kits (SDKs) are provided at differ-

ent layers, including application layer. Collective Layer is responsible for global

resource management and interaction with resources. It implements a variety of

shared behaviours. Resource Layer handles issues of a single resource by utilising

communication, information, and management protocols to control issues such

as accounting, monitoring and secure negotiation. Connectivity Layer manages

core communication issues. It requires communication and authentication pro-

tocols. Communication protocols assist in data exchange between fabric layers

of resources. Authentication protocols guarantee secure authentication and data

exchange between a user and resources. Fabric Layer defines shared physical and

logical resources. Logical resources (such as a computer cluster) utilise their own

internal protocols for distributed networks.

Different implementations exist that manage the issues in different numbers of

layers. Baker et al. [11] describe such an implementation in terms of Applications,

User Level Middleware, Core Middleware and Fabric layers. Application layer

handles applications and portals. User Level Middleware performs resource selec-

tion, management, and aggregation. It implements resource broker and provides

developmental environments and tools. Core Middleware implements distributed

coupling services such as security, information, data, trading and QoS. Fabric

Layer concerns heterogeneous resources and their local management. A number

A. AN INTRODUCTION TO GRID COMPUTING 219

of services and infrastructures are implemented based on these layers, such as

schedulers, brokers, trading servers, and programming environments. The cur-

rent implementations of integrated grid environments include NetSolve [33], Ninf

[191] and Unicore [58]. Globus [76], Gridbus [26, 28] and Legion [90] are the im-

plementations of core middleware services. Condor-G [79] and Nimrod-G [29] are

user level implementations of scheduling services. Programming environments in-

clude MPICH G, Nimrod Parameter Programming tools and Cactus [25]. The

well known grid application development efforts include European DataGrid [97],

SETI@Home [7] and Virtual Laboratory [30]. A number of other architectures for

similar issues are presented with different orientations in [9, 102, 185].

Bibliography

[1] IEEE Std 1516.1-2000. IEEE standard for modeling and simulation (M&S)

high level architecture (HLA) - Federate Interface Specifications. Technical

report, IEEE., Piscataway, NJ, USA, 2001.

[2] IEEE Std 1516.1-2000. IEEE standard for modeling and simulation (M&S)

high level architecture (HLA) - Framework and Rules. Technical report,

IEEE., Piscataway, NJ, USA, 2001.

[3] Dewan Tanvir Ahmed and Shervin Shirmohammadi. A Dynamic Area of

Interest Management and Collaboration Model for P2P MMOGs. In DS-RT

’08: Proceedings of the 2008 12th IEEE/ACM International Symposium on

Distributed Simulation and Real-Time Applications, pages 27–34, Washing-

ton, DC, USA, 2008. IEEE Computer Society.

[4] Dewan Tanvir Ahmed and Shervin Shirmohammadi. A Microcell Ori-

ented Load Balancing Model for Collaborative Virtual Environments. In

IEEE Conference on Virtual Environments, Human-Computer Interfaces

and Measurement Systems, 2008., pages 86 –91, July 2008.

[5] Thor Alexander, editor. Massively Multiplayer Game Development 2.

Charles River Media, 2005.

[6] R. M. Andreu, P. G. Lopez, C. P. Gavalda, and A. F. G. Skarmeta. Tracking

the Evaluation of Collaborative Virtual Environments. UPGRADE, 8(2),

2006.

[7] SETI@HOME (A Grid Application). http://setiathome.berkeley.edu/.

last accesed in December, 2011.

220

BIBLIOGRAPHY 221

[8] AssetServer. http://opensimulator.org/wiki/AssetServer. last accesed

in December, 2011.

[9] Malcolm Atkinson, David DeRoure, Alistair Dunlop, Geoffrey Fox, Peter

Henderson, Tony Hey, Norman Paton, Steven Newhouse, Savas Parasta-

tidis, Anne Trefethen, Paul Watson, and Jim Webber. Web Service Grids:

An Evolutionary Approach. Concurrency and Computation: Practice and

Experience, 17(2-4):377–389, 2005.

[10] Avatar. http://wiki.secondlife.com/wiki/Avatar. last accesed in

February, 2012.

[11] M. Baker, R. Buyya, and D. Laforenza. Grids and Grid Technologies

for Wide-Area Distributed Computing. International Journal of Software:

Practice and Experience, 32(15):1437–1466, 2002.

[12] Miranda Baladi, Henry Vitali, Georges Fadel, Joshua Summers, and Andrew

Duchowski. A Taxonomy for the Design and Evaluation of Networked Vir-

tual Environments: Its Application to Collaborative Design. International

Journal on Interactive Design and Manufacturing, 2(1):17–32, 2008.

[13] Rajesh Krishna Balan, Maria Ebling, Paul Castro, and Archan Misra. Ma-

trix: Adaptive Middleware for Distributed Multiplayer Games. volume

3790/2005 of Lecture Notes in Computer Science, pages 390–400. Springer

Berlin/Heidelberg, 2005.

[14] Woodrow Barfield and Thomas A. Furness III, editors. Virtual Environments

and Advanced Interface Design. Oxford University Press, Inc., New York,

NY, USA, 1995.

[15] Jon Louis Bentley. Multidimensional Divide-and-Conquer. Communications

of the ACM, 23(4):214–229, April 1980.

[16] Helmut Berger, Michael Dittenbach, Dieter Merkl, Anton Bogdanovych,

Simeon Simoff, and Carles Sierra. Opening New Dimensions for e-Tourism.

Virtual Reality, 11(2):75–87, June 2007.

BIBLIOGRAPHY 222

[17] Ashwin Bharambe, Jeffrey Pang, and Srinivasan Seshan. Colyseus: A Dis-

tributed Architecture for Online Multiplayer Games. In Proceedings of the

3rd conference on Networked Systems Design & Implementation - Volume

3, NSDI’06, pages 12–12, Berkeley, CA, USA, 2006. USENIX Association.

[18] Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan. Mercury:

Supporting Scalable Multi-Attribute Range Queries. SIGCOMM Computer

Communication Review, 34(4):353–366, August 2004.

[19] David Hilley Bikash Agarwalla, Nova Ahmed and Umakishore Ramachan-

dran. Streamline: Scheduling Streaming Applications in a Wide Area Envi-

ronment. Multimedia Systems, 13(1):69–85, 2007.

[20] C. M. Bowman, D. Lake, and J. Hurliman. Designing Extensible and

Scalable Virtual World Platforms. In Extensible Virtual Worlds Workshop

(X10), 2010.

[21] D. Bruneo, A. Zaia, and A. Puliafito. Agent-based Middleware to Access

Multimedia Services in a Grid Environment. Multiagent and Grid Systems,

1(1):41–59, January 2005.

[22] R. E. Bryant. Simulation of Packet Communication Architecture Computer

Systems. Technical report, Massachusetts Institute of Technology, Cam-

bridge, MA, USA, 1977.

[23] Steve Bryson. Virtual Reality Applications. chapter Approaches to the Suc-

cessful Design and Implementation of VR Applications, pages 3–15. Aca-

demic Press Ltd., London, UK, 1995.

[24] A. M. Burlamaqui, M. A. M.S. Oliveira, A. M. G. Goncalves, G. Lemos,

and J. C. De Oliveira. A Scalable Hierarchical Architecture for Large Scale

Multi User Virtual Environments. In IEEE International Conference on Vir-

tual Environment, Human Computer Interfaces and Measurement Systems,

pages 114–119, 2006.

BIBLIOGRAPHY 223

[25] R. Buyya. Economic Based Distributed Resource Management and Schedul-

ing for Grid Computing. PhD in Computer Science, School of CS&SE -

Monash University, Melbourne, Australia, 2002.

[26] R. Buyya. The Gridbus Toolkit: Enabling Grid Computing and Business.

http://www.cloudbus.org/middleware/, 2008.

[27] R. Buyya, D. Abramson, and J. Giddy. An Economy Driven Resource Man-

agement Architecture for Global Computation Power Grids. In Proceedings

of the 2000 International Conference on Parallel and Distributed Process-

ing Techniques and Applications (PDPTA 2000), pages 239–248, Las Vegas,

USA, 2000. CSREA Press.

[28] R. Buyya and S. Venugopal. The Gridbus Toolkit for Service Oriented Grid

and Utility Computing: An Overview and Status Report. In Proceedings of

1st IEEE International Workshop on Grid Economics and Business Models,

(GECON 2004), pages 19–66, 2004.

[29] Rajkumar Buyya, David Abramson, and Jonathan Giddy. Nimrod/G:

An Architecture for a Resource Management and Scheduling System in a

Global Computational Grid. In The Fourth International Conference on

High-Performance Computing in the Asia-Pacific Region-Volume 1, Beijing,

China, 2000.

[30] Rajkumar Buyya, Kim Branson, Jon Giddy, and David Abramson. The

Virtual Laboratory: A Toolset to Enable Distributed Molecular Modelling

for Drug Design on the World-Wide Grid. Concurrency and Computation:

Practice and Experience, 15(1):1–25, 2003.

[31] W. Cai, G. Li, S. J. Turner, B.-S. Lee, and L. Liu. Automatic Construc-

tion of Hierarchical Federations Architecture. In DS-RT ’02: Proceedings

of the Sixth IEEE International Workshop on Distributed Simulation and

Real-Time Applications, pages 50–58, Washington, DC, USA, 2002. IEEE

Computer Society.

[32] Wentong Cai, Stephen J. Turner, and Boon Ping Gan. Hierarchical Federa-

tions: An Architecture for Information Hiding. In PADS ’01: Proceedings of

BIBLIOGRAPHY 224

the fifteenth workshop on Parallel and distributed simulation, pages 67–74,

Washington, DC, USA, 2001. IEEE Computer Society.

[33] Henri Casanova and Jack Dongarra. Netsolve: a Network-Enabled Server

for Solving Computational Science Problems. The International Journal of

High Performance Computing Applications, 11(3):212–223, 1997.

[34] M. Castro, P. Druschel, A.-M. Kermarrec, and A.I.T. Rowstron. Scribe: A

Large-Scale and Decentralized Application-Level Multicast Infrastructure.

IEEE Journal on Selected Areas in Communications, 20(8):1489–1499, 2002.

[35] Luther Chan, James Yong, Jiaqiang Bai, Ben Leong, and Raymond Tan.

Hydra: A Massively-Multiplayer Peer-to-Peer Architecture for the Game

Developer. In Proceedings of the 6th ACM SIGCOMM workshop on Network

and system support for games, NetGames ’07, pages 37–42, New York, NY,

USA, 2007. ACM.

[36] K. M. Chandy and J. Misra. Distributed Simulations: A Case Study in

Design and Verifications of Distributed Programs. IEEE Transactions on

Software Engineering, 5(5):440–452, 1978.

[37] F. Chang, C.M. Bowman, and W. Feng. XPU: A Distributed Architecture

for Metaverses. Technical report, Department of Computer Science, Portland

State University, 2010. Technical Report 10-04.

[38] Jin Chen, Baohua Wu, Margaret Delap, Björn Knutsson, Honghui Lu, and

Cristiana Amza. Locality Aware Dynamic Load Management for Massively

Multiplayer Games. In Proceedings of the tenth ACM SIGPLAN symposium

on Principles and practice of parallel programming, PPoPP ’05, pages 289–

300, New York, NY, USA, 2005. ACM.

[39] Roman Chertov and Sonia Fahmy. Optimistic Load Balancing in a DVE.

In 16th International Workshop on Network and Operating System Support

for Digital Audio and Video, Newport, Rhode Island, 2006. ACM New York,

NY, USA.

BIBLIOGRAPHY 225

[40] Comparison of Virtual Worlds. http://www.virtualenvironments.info. last

accesed in December, 2011.

[41] Anthony Cramp, John P. Best, and Michael J. Oudshoorn. Time Man-

agement in Hierarchical Federation Communities. In 2002 Fall Simulation

Interoperability Workshop, 2002.

[42] Anthony Cramp and Michael J. Oudshoorn. Employing Hierarchical Feder-

ation Communities in the Virtual Ship Architecture. In Twenty-Fifth Aus-

tralasian Computer Science Conference, pages 41–50, Melbourne, Australia,

2002.

[43] Croquet: Current Release. http://www.opencroquet.org/index.php/

System_Overview. last accesed in December, 2011.

[44] Croquet: Introduction. http://en.wikipedia.org/wiki/Croquet_

project. last accesed in December, 2011.

[45] CSI Virtual World Archive. http://labs.greenbush.us/CSI-Opensim.

zip. last accesed in December, 2011.

[46] Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kesselman, Stuart Martin,

Warren Smith, and Steven Tuecke. A Resource Management Architecture for

Metacomputing Systems. Job Scheduling Strategies for Parallel Processing,

1459/1998:62–82, 1998.

[47] Karl Czajkowski, Carl Kesselman, Steven Fitzgerald, and Ian Foster. Grid

Information Services for Distributed Resource Sharing. In (HPDC ’01): 10th

IEEE International Symposium on High Performance Distributed Comput-

ing, page 0181, San Francisco, California, USA, 2001.

[48] Judith S. Dahmann, Richard M. Fujimoto, and Richard M. Weatherly. The

Department of Defense High Level Architecture. In WSC ’97: Proceedings

of the 29th conference on Winter simulation, pages 142–149, Washington,

DC, USA, 1997. IEEE Computer Society.

BIBLIOGRAPHY 226

[49] Tapas K. Das, Gurminder Singh, Alex Mitchell, P. Senthil Kumar, and

Kevin McGee. NetEffect: A Network Architecture for Large-Scale Multi-

User Virtual World. In ACM Symposium on Virtual Reality Software and

Technology, pages 157–163. ACM New York, NY, USA, 1997.

[50] Roy C. Davies. Adapting Virtual Reality for the Participatory Design of

Work Environments. Computer Supported Cooperative Work, 13(1):1–33,

January 2004.

[51] Jauvane C. de Oliveira and Nicolas D. Georganas. VELVET: An Adap-

tive Hybrid Architecture for Very Large Virtual Environments. Presence:

Teleoperators and Virtual Environments, 12(6):555–580, 2003.

[52] Rina Dechter. From Local to Global Consistency. Artificial Intelligence,

55(1):87–108, 1992.

[53] OpenSim: Definitions. http://opensimulator.org/wiki/Talk:

Definitions. last accesed in December, 2011.

[54] Second Life: Agent Domain. https://wiki.secondlife.com/wiki/Agent_

Domain. last accesed in December, 2011.

[55] P. du Pont. Virtual Reality in Engineering. chapter Applied Virtual Reality,

pages 153–167. Institution of Electrical Engineers, Stevenage, UK, 1993.

[56] EducationSim Archive. http://odomia.com/educasim.tar.gz. last ac-

cesed in December, 2011.

[57] Tulga Ersal, Mark Brudnak, Ashwin Salvi, Jeffrey L. Stein, Zoran Filipi,

and Hosam K. Fathy. Development of an Internet-Distributed Hardware-

in-the-Loop Simulation Platform for an Automotive Application. ASME

Conference Proceedings, 2009:73–80, 2009.

[58] Dietmar W. Erwin. UNICORE: A Grid computing environment. Con-

currency and Computation: Practice and Experience, 14(13-15):1395–1410,

2002.

BIBLIOGRAPHY 227

[59] FairieCastle Archive. http://www.mediafire.com/file/

l70hqvtcb8ub7z6/FairieCastle-v0.1.oar. last accesed in Decem-

ber, 2011.

[60] Umar Farooq and John Glauert. ARA: An Aggregate Region Assignment Al-

gorithm for Resource Minimisation and Load Distribution in Virtual Worlds.

In NDT ’09: Proceedings of the first IEEE International Conference on Net-

worked Digital Technologies, pages 404–410, 2009.

[61] Umar Farooq and John Glauert. Joint Hierarchical Nodes based User

Management (JoHNUM) Infrastructure for the Development of Scalable

and Consistent Virtual Worlds. In DS-RT ’09: Proceedings of the 13th

IEEE/ACM Symposium on Distributed Simulation and Real-Time Applica-

tions, pages 105–112, Washington, DC, USA, 2009. IEEE Computer Society.

[62] Umar Farooq and John Glauert. Managing Scalability and Load Distribu-

tion for Large Scale Virtual Worlds. In Proceedings of the UEA School of

Computing Sciences Symposium, pages 20–27, 2009.

[63] Umar Farooq and John Glauert. A Decentralised Synchronisation Approach

for Complex Hierarchical Models of Virtual Worlds. In PDCS ’10: Proceed-

ings of the IASTED International Conference on Parallel and Distributed

Computing and Systems, pages 218–224, 2010.

[64] Umar Farooq and John Glauert. A Dynamic Load Distribution Algorithm

for Virtual Worlds. Journal of Digital Information Management, 8(3):181–

189, June 2010.

[65] Umar Farooq and John Glauert. A Hybrid Infrastructure for Scalable and

Consistent Virtual Worlds. In WSC ’10: Proceedings of the IEEE 42nd

Winter Simulation Conference, 2010.

[66] Umar Farooq and John Glauert. Time Management for Virtual Worlds based

on Constrained Communication Model. In NetGames ’10: Proceedings of

the 9th ACM/IEEE Annual Workshop on Network and System Support for

Games, pages 18:1–6, 2010.

BIBLIOGRAPHY 228

[67] Umar Farooq and John Glauert. Scalable Virtual Worlds: An Extension

to the OpenSim Architecture. In ICCNIT ’11: Proceedings of the IEEE In-

ternational Conference on Computer Networks and Information Technology,

pages 29–34, 2011.

[68] J. Filsinger. HLA Security Guard Federate. In 1997 Spring Simulation

Interoperability Workshop, Orlando, Florida, USA, March 1997.

[69] M.C. Fischer. Aggregate Level Simulation Protocol (ALSP) Managing Con-

federation Development. In Winter Simulation Conference Proceedings,

1994., pages 775 – 780, Dec 1994.

[70] Xavier Fischer and Daniel Coutellier. Editorial. International Journal on

Interactive Design and Manufacturing, 1(1):1–4, 2007.

[71] Flash Flood Fill Implementation. http://www.emanueleferonato.com/

2008/06/06/flash-flood-fill-implementation/. last accesed in Decem-

ber, 2011.

[72] Flood Fill Algorithm. http://en.wikipedia.org/wiki/Flood_fill. last

accesed in December, 2011.

[73] Flood Fill: Lode’s Computer Graphics Tutorial. http://lodev.org/

cgtutor/floodfill.html. last accesed in December, 2011.

[74] Basic Support for Cooperative Work. http://www.bscw.de/english/index.html.

last accesed in December, 2011.

[75] I. Foster. What is the Grid: A Three Point CheckList. GRIDToday, 2002.

[76] Ian Foster and Carl Kesselman. Globus: a Metacomputing Infrastructure

Toolkit. The International Journal of High Performance Computing Appli-

cations, 11(2):115–128, 1997.

[77] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New

Computing Infrastructure. 1999.

BIBLIOGRAPHY 229

[78] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid

- Enabling Scalable Virtual Organizations. International Journal of Super-

computer Applications, 15(3):290–315, 2001.

[79] James Frey, Todd Tannenbaum, Miron Livny, Ian Foster, and Steven Tuecke.

Condor-G: A Computation Management Agent for Multi-Institutional

Grids. Cluster Computing, 5(3):237–246, 2002.

[80] R. M. Fujimoto. Lookahead in Parallel Discrete Event Simulation. In Inter-

national Conference on Parallel Processing, pages 34–41, 1988.

[81] R. M. Fujimoto, T. Mclean, K. Perumalla, and I. Tacic. Design of High

Performance RTI Software. In International Workshop on Distributed Sim-

ulation and Real Time Applications, pages 89–96, 2000.

[82] Richard M. Fujimoto. Time Management in the High Level Architecture.

Simulation, 71(6):388–400, 1998.

[83] Richard M. Fujimoto. Parallel and Distributed Simulation Systems. Wiley

Interscience, 2000.

[84] Richard M. Fujimoto. Parallel and Distribution Simulation Systems. In 2001

Winter Simulation Conference, pages 147–157, 2001.

[85] Deborah A. Fullford. Distributed Interactive Simulation: Its Past, Present,

and Future. In WSC ’96: Proceedings of the 28th conference on Winter

simulation, pages 179–185, Washington, DC, USA, 1996. IEEE Computer

Society.

[86] T. Funkhouser. RING: A Client-Server System for Multi-User Virtual En-

vironments. In Symposium on Interactive 3D Graphics, pages 85–92, 1995.

[87] Zihui Ge, Ping Ji, and Prashant Shenoy. Design and Analysis of a Demand

Adaptive and Locality Aware Streaming Media Server Cluster. Multimedia

Systems, 13(3):235–249, 2007.

BIBLIOGRAPHY 230

[88] Genecys: Introduction and Downloads.

http://sourceforge.net/projects/genecys/. last accesed in December,

2011.

[89] Genecys: The Official Website. http://www.genecys.org/. last accesed in

December, 2011.

[90] Andrew S. Grimshaw, Wm. A. Wulf, and CORPORATE The Legion Team.

The Legion Vision of a Worldwide Virtual Computer. Communications of

the ACM, 40(1):39–45, January 1997.

[91] Groove 2007: A P2P Co-operative Environment (Upgraded to “SharePoint

Workspace 2010”). http://office.microsoft.com/en-us/groove/default.aspx.

last accesed in December, 2011.

[92] N. Gupta, A. Demers, J. Gehrke, P. Unterbrunner, and W. White. Scal-

ability for Virtual Worlds. In Proceedings of the 2009 IEEE International

Conference on Data Engineering (ICDE ’09), pages 1311–1314, 2009.

[93] Thorsten Hampel, Thomas Bopp, and Robert Hinn. A Peer-to-Peer Ar-

chitecture for Massive Multiplayer Online Games. In Proceedings of 5th

ACM SIGCOMM Workshop on Network and System Support for Games,

NetGames ’06, New York, NY, USA, 2006. ACM.

[94] Gernot Heiser, Fondy Lam, and Stephen Russell. Resource Management

in the Mungi Single-Address-Space Operating System. In Proceedings of

Australasian Computer Science Conference, Perth, Australia, 1998.

[95] J. Helmer. Second Life and Virtual Worlds. Technical report, Learning Light

Limited, UK., 2007.

[96] M. Hori, T. Iseri, K. Fujikawa, S. Shimojo, and H. Miyahara. Scalability

Issues of Dynamic Space Management for Multiple-Server Networked Vir-

tual Environments. In IEEE Pacific Rim Conference on Communications,

Computers and Signal Processing, volume 1, pages 200–203, 2001.

BIBLIOGRAPHY 231

[97] Wolfgang Hoschek, Javier Jaen-Martinez, Asad Samar, Heinz Stockinger,

and Kurt Stockinger. Data Management in an International Data Grid

Project. In Grid Computing - Grid 2000, volume 1971/1997, pages 333–361,

2000.

[98] The Virtual Environment: Habbo Hotel. http://www.habbohotel.com. last

accesed in December, 2011.

[99] Toby Howard, Roger Hubbold, and Alan Murta. MAVERIK: A Virtual

Reality System for Research and Teaching. Presence: Teleoperators and

Virtual Environments, 10(1):22–34, 2006.

[100] HTTP. http://www.w3.org/Protocols/rfc2616/rfc2616.html. last ac-

cesed in April, 2012.

[101] Shun-Yun Hu, Jui-Fa Chen, and Tsu-Han Chen. VON: A Scalable Peer-to-

Peer Network for Virtual Environments. IEEE Network, 20(4):22–31, 2006.

[102] Jiung Yao Huang, Yi Chang Du, and Chien Min Wang. Design of the Server

Cluster to Support Avatar Migration. In IEEE Virtual Reality, pages 7–14.

IEEE Computer Society Washington, DC, USA, 2003.

[103] IDC. Butterfly.net: Powering next generation gaming with on-demand com-

puting. Technical report, IBM: An IDC e-Business Case Study, 2004.

[104] Quake II. http://www.idsoftware.com/games/quake/quake2/. last accesed

in December, 2011.

[105] Takuji Iimura, Hiroaki Hazeyama, and Youki Kadobayashi. Zoned Feder-

ation of Game Servers: a Peer-to-Peer Approach to Scalable Multi-player

Online Games. In Proceedings of 3rd ACM SIGCOMM Workshop on Net-

work and System Support for Games, NetGames ’04, pages 116–120, New

York, NY, USA, 2004. ACM.

[106] Importing OARs into megaregions. http://www.metaverseink.com/blog/

?p=28. last accesed in December, 2011.

BIBLIOGRAPHY 232

[107] Intel Research Labs. ScienceSim: A Virtual Environment for Collaborative

Visualization and Experimentation. White paper, Intel Labs, 2010.

[108] Argentum Online: Introduction and Downloads. http://sourceforge.

net/project/showfiles.php?group_id=67718. last accesed in December,

2011.

[109] Arianne: Introduction. http://arianne.sourceforge.net/. last accesed in De-

cember, 2011.

[110] Beyond 2: Introduction. http://asbahr.com/beyond.html. last accesed in

December, 2011.

[111] Diamonin: Introduction and Downloads. http://www.daimonin.com/. last

accesed in December, 2011.

[112] FreeTribes: Introduction. http://developer.berlios.de/projects/freetribes/.

last accesed in December, 2011.

[113] Irrlicht Engine: Introduction and Downloads. http://irrlicht.sourceforge.net.

last accesed in December, 2011.

[114] Isotope: Introduction, Downloads, and Documentation.

http://isotope.sourceforge.net/. last accesed in December, 2011.

[115] Janthus: Introduction and Downloads. http://janthus.sourceforge.net/. last

accesed in December, 2011.

[116] Quake II: Introduction. http://en.wikipedia.org/wiki/Quake_II. last

accesed in December, 2011.

[117] WarZone: Introduction. http://wz2100.net/. last accesed in December,

2011.

[118] Inventory. http://wiki.secondlife.com/wiki/Inventory. last accesed

in April, 2012.

BIBLIOGRAPHY 233

[119] Sankar Jayaram, Uma Jayaram, Young Jun Kim, Charles DeChenne,

Kevin W. Lyons, Craig Palmer, and Tatsuki Mitsui. Industry Case Studies

in the Use of Immersive Virtual Assembly. Virtual Reality, 11(4):217–228,

2007.

[120] D. Jefferson. Virtual Time. ACM Transactions on Programming Languages

and Systems, 7(2):404–425, 1985.

[121] N. Johnson. The Educational Potential of SecondLife. The Ohio State

University, USA, 2006.

[122] Joshy Joseph and Craig Fellenstein, editors. Grid Computing. IBM Series,

2004.

[123] Priscilla Kan John and Alban Grastien. Local Consistency and Junction

Tree for Diagnosis of Discrete-Event Systems. In Proceedings of the 2008

conference on ECAI 2008: 18th European Conference on Artificial Intelli-

gence, pages 209–213, Amsterdam, The Netherlands, The Netherlands, 2008.

IOS Press.

[124] The Virtual Environment: Kaneva. http://www.keneva.com. last accesed

in December, 2011.

[125] Beob Kyun Kim and Kang Soo You. A Hierarchical Map Partition Method

in MMORPG based on Virtual Map. In Frontiers of High Performance Com-

puting and Networking - ISPA 2006 Workshops, volume 4331/2006 of Lec-

ture Notes in Computer Science, pages 813–822. Springer Berlin/Heidelberg,

2006.

[126] Jae-Hyun Kim and Tag Gon Kim. Proposal of High Level Architecture

Extension. In Artificial Intelligence and Simulation, pages 128–137. Springer

Berlin / Heidelberg, 2005.

[127] Jae-Hyun Kim and Tag Gon Kim. Hierarchical HLA: Mapping Hierarchical

Model Structure into Hierarchical Federation. M&S-MTSA’06, pages 75 –

80, July 2006.

BIBLIOGRAPHY 234

[128] Björn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins. Peer-to-Peer

Support for Massively Multiplayer Games. In IEEE INCOMM, pages 107–

112, 2004.

[129] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A Tax-

onomy and Survey of Grid Resource Management Systems for Distributed

Computing. Software: Practice and Experience, 32(2):135–164, 2000.

[130] F. Kuhl, R. Weatherly, and J. Dahmann. Creating Computer Simulation

Systems: An introduction to the High Level Architecture. Prentice Hall PTR,

1999.

[131] Sanjeev Kumar, Jatin Chhugani, Changkyu Kim, Daehyun Kim, Anthony

Nguyen, Pradeep Dubey, Christian Bienia, and Youngmin Kim. Second

Life and the New Generation of Virtual Worlds. Computer, 41(9):46–53,

September 2008.

[132] Dan Lake, Mic Bowman, and Huaiyu Liu. Distributed Scene Graph to

Enable Thousands of Interacting Users in a Virtual Environment. In Pro-

ceedings of the 9th Annual Workshop on Network and Systems Support for

Games, NetGames ’10, pages 19:1–19:6, Piscataway, NJ, USA, 2010. IEEE

Press.

[133] Simon St. Laurent, Joe Johnston, Edd Dumbill, and Dave Winer. Program-

ming Web Services with XML-RPC. O’Reilly Media, 2001.

[134] Dongman Lee, Mingyu Lim, and Seyunhyun Han. ATLAS: A Scalable Net-

work Framework for Distributed Virtual Environments. Presence: Teleop-

erators and Virtual Environments, 16(2):125–156, 2007.

[135] Kang-Won Lee, Bong-Jun Ko, and Seraphin Calo. Adaptive Server Selection

for Large Scale Interactive Online Games. In 14th International Workshop

on Network and Operating System Support for Digital Audio and Video,

pages 152–157, Cork, Ireland, 2004. ACM New York, NY, USA.

[136] Kyungmin Lee and Dongman Lee. A Scalable Dynamic Load Distribution

Scheme for Multi-Server Distributed Virtual Environment Systems With

BIBLIOGRAPHY 235

Highly-Skewed User Distribution. In ACM Symposium on Virtual Reality

Software and Technology, pages 160–168, Osaka, Japan, 2003. ACM New

York, NY, USA.

[137] Second Life. http://en.wikipedia.org/wiki/Second_Life. last accesed

in December, 2011.

[138] Buquan Liu, Yiping Yao, and Huaimin Wang. An Efficient Algorithm in

the HLA Time Management. In Proceedings of the 2007 Winter Simulation

Conference, pages 585–593, 2007.

[139] H. Liu and M. Bowman. Scale Virtual Worlds through Dynamic Load Bal-

ancing. In DS-RT ’10: Proceedings of the 2010 14th IEEE/ACM Interna-

tional Symposium on Distributed Simulation and Real-Time Applications,

pages 43–52, Washington, DC, USA, 2010. IEEE Computer Society.

[140] H. Liu, M. Bowman, R. Adams, J. Hurliman, and D. Lake. Scaling Virtual

Worlds: Simulation Requirements and Challenges. In Proceedings of the

2010 Winter Simulation Conference (WSC ’10), pages 778–790, 2010.

[141] Load Balancer Project. http://forge.opensimulator.org/gf/project/

loadbalancer/. last accesed in December, 2011.

[142] Fengyun Lu, Simon Parkin, and Graham Morgan. Load Balancing for Mas-

sively Multiplayer Online Games. In Proceedings of 5th ACM SIGCOMM

Workshop on Network and System Support for Games, NetGames ’06, New

York, NY, USA, 2006. ACM.

[143] John C. S. Lui and M. F. Chan. An Efficient Partitioning Algorithm for

Distributed Virtual Environment Systems. IEEE Transaction on Parallel

and Distribution Systems, 13(3):193–211, 2002.

[144] Gerry Magee, Graham Shanks, and Pete Hoare. Hierarchical Federations.

In Simulation Interoperability Spring Workshop, Orlando, Florida, March

1999.

[145] Massiv: Documentation and Downloads. http://forge.objectweb.org/

project/showfiles.php?group_id=149. last accesed in December, 2011.

BIBLIOGRAPHY 236

[146] Massiv (Massively Multiplayer Online Game Middleware).

http://massiv.ow2.org/. last accesed in December, 2011.

[147] Maverik: A MicroKernal for Large Scale VEs. http://linuxjournal.com/

article/4035. last accesed in December, 2011.

[148] Maya Pyramid Archive. http://www.gomaya.com/glyph/opensim_dp/

maya3.oar. last accesed in December, 2011.

[149] D. C. Miller and J. A. Thorpe. SIMNET: The Advent of Simulator Net-

working. Proceedings of the IEEE, 83(8):1114–1123, 1995.

[150] Mark P. Mobach. Do Virtual Worlds Create Better Real Worlds? Virtual

Reality, 12(3):163–179, 2008.

[151] Björn Möller and Lennart Olsson. Practical Experiences from HLA 1.3 to

HLA IEEE 1516 Interoperability. In 2004 Fall Simulation Interoperability

Workshop, Orlando, Florida, USA, September 2004.

[152] P. Morillo, M. Fernandez, and N. Pelechano. A Grid Representation

for Distributed Virtual Environments. In GRID COMPUTING, volume

2970/2004 of Lecture Notes in Computer Science, pages 182–189. Springer

Berlin/Heidelberg, 2004.

[153] P. Morillo, J. M. Orduna, and J. Duato. A Scalable Synchronization Tech-

nique for Distributed Virtual Environments based on Networked Server Ar-

chitecture. In International Conference on Parallel Processing Workshops,

pages 74–81, 2006.

[154] Matthias Müller, Leonard McMillan, Julie Dorsey, and Robert Jagnow.

Real-time Simulation of Deformation and Fracture of Stiff Materials. In

Proceedings of the Eurographic workshop on Computer animation and sim-

ulation, pages 113–124, New York, NY, USA, 2001. Springer-Verlag New

York, Inc.

[155] Michael D. Myjak, Duncan Clark, and Tom Lake. RTI Interoperability Study

Group Final Report. In 1999 Fall Simulation Interoperability Workshop,

Orlando, Florida, USA, September 1999.

BIBLIOGRAPHY 237

[156] Michael D. Myjak and Sean T. Sharp. Implementation of Hierarchical Feder-

ations. In 1999 Fall Simulation Interoperability Workshop, Orlando, Florida,

USA, September 1999.

[157] The Virtual Environment: Neopets. http://www.neopets.com. last accesed

in December, 2011.

[158] netPanzer. http://www.netpanzer.org/. last accesed in December, 2011.

[159] Beatrice Ng, Antonio Si, Rynson W. H. Lau, and Frederick Li. A Multi-

server Architecture for Distributed Virtual Walkthrough. In ACM Sympo-

sium on Virtual Reality Software and Technology, pages 163–170. ACM New

York, NY, USA, 2002.

[160] D. M. Nicol. The Cost of Conservative Synchronization in Parallel Discrete

Event Simulations. Journal of the Association for Computing Machinery,

40(2):304–333, 1993.

[161] GU Ning and MAHER Mary Lou. Dynamic Designs of 3D Virtual Worlds

using Generative Design Agents. In Computer Aided Architectural Design

Futures, pages 239–248, 2005.

[162] Giovanni Novelli, Giuseppe Pappalardo, Corrado Santoro, and Emiliano Tra-

montana. A Grid-based Infrastructure to Support Multimedia Content Dis-

tribution. In Proceedings of the second workshop on Use of P2P, GRID

and agents for the development of content networks, UPGRADE ’07, pages

57–64, New York, NY, USA, 2007. ACM.

[163] Second Life: Structure of Region Domain. https://wiki.secondlife.com/

wiki/Region_Domain. last accesed in December, 2011.

[164] World of Warcraft. http://us.battle.net/wow/en/. last accesed in December,

2011.

[165] Cory Ondrejka. A PIECE OF PLACE: Modeling the Digital on the Real in

Second Life. Working Paper Series. University of South California, 2004.

BIBLIOGRAPHY 238

[166] The Virtual Environment: Gaia Online. http://www.gaiaonline.com. last

accesed in December, 2011.

[167] Open Grid Protocol. http://wiki.secondlife.com/wiki/Open_Grid_

Protocol. last accesed in December, 2011.

[168] Open Virtual Collaboration Environment (OpenVCE.net). http://

openvce.net. last accesed in December, 2011.

[169] OpenCobalt. http://en.wikipedia.org/wiki/Open_Cobalt. last accesed

in December, 2011.

[170] OpenCobalt: The Official Website. http://www.opencobalt.org/. last

accesed in December, 2011.

[171] OpenMetaverse. http://openmetaverse.org/. last accesed in December,

2011.

[172] OpenSim Architectures. http://opensimulator.org/wiki/

Configuration. last accesed in December, 2011.

[173] OpenSim Archive (OAR) Functionality. http://opensimulator.org/

wiki/OpenSim_Archives. last accesed in December, 2011.

[174] OpenSim: Existing Worlds Content. http://www.opensimworlds.com/.

last accesed in December, 2011.

[175] OpenSim: Megaregions. http://opensimulator.org/wiki/Setting_Up_

Mega-Regions. last accesed in December, 2011.

[176] OpenSim: UGAIM Services and Region Server. http://opensimulator.

org/wiki/OpenSim:Introduction_and_Definitions. last accesed in De-

cember, 2011.

[177] OpenSimulator (OpenSim): An introduction. http://opensimulator.org/

wiki/Main_Page. last accesed in December, 2011.

BIBLIOGRAPHY 239

[178] Ke Pan, Stephen John Turner, Wentong Cai, and Zengxiang Li. A Hybrid

HLA Time Management Algorithm Based on Both Conditional and Uncon-

ditional Information. In PADS ’08: Proceedings of the 22nd Workshop on

Principles of Advanced and Distributed Simulation, pages 203–211, Wash-

ington, DC, USA, 2008. IEEE Computer Society.

[179] Ke Pan, Stephen John Turner, Wentong Cai, and Zengxiang Li. A Hybrid

HLA Time Management Algorithm Based on Both Conditional and Uncon-

ditional Information. Simulation, 85(9):559–573, 2009.

[180] Kalyan S. Perumalla. Parallel and Distributed Simulation: Traditional Tech-

niques and Recent Advances. In Proceedings of the 38th conference on Win-

ter simulation, WSC ’06, pages 84–95, 2006.

[181] K. Prasetya and Z. D. Wu. Performance Analysis of Game World Parti-

tioning Methods for Multiplayer Mobile Gaming. In Proceedings of the 7th

ACM SIGCOMM Workshop on Network and System Support for Games,

NetGames ’08, pages 72–77, New York, NY, USA, 2008. ACM.

[182] Primitive (Prim). http://wiki.secondlife.com/wiki/Primitive. last

accesed in February, 2012.

[183] Quake II: Manual. http://quakebase.ktu.edu/quake_stuff/quake2/

manual/Manual.html. last accesed in December, 2011.

[184] Peter Quax, Jeroen Dierckx, Bart Cornelissen, Gert Vansichem, and Wim

Lamotte. Dynamic Server Allocation in a Real-life Deployable Commu-

nications Architecture for Networked Games. In Proceedings of the 7th

ACM SIGCOMM Workshop on Network and System Support for Games,

NetGames ’08, pages 66–71, New York, NY, USA, 2008. ACM.

[185] Vytautas Reklaitis, Kazys Baniulis, and Toshio Okamoto. Shaping e-

Learning Applications for a Service-Oriented Grid. In Proceeding of the

2005 conference on Towards the Learning Grid: Advances in Human Learn-

ing Services, pages 98–104, Amsterdam, The Netherlands, The Netherlands,

2005. IOS Press.

BIBLIOGRAPHY 240

[186] RemoteAdmin Functionality. http://opensimulator.org/wiki/

RemoteAdmin. last accesed in December, 2011.

[187] Renting/Buying Land in OpenSim. http://wiki.secondlife.com/wiki/

Private_Estate_Management_Companies. last accesed in December, 2011.

[188] Abdennour El Rhalibi, Madjid Merabti, and Yuanyuan Shen. AoIM in

Peer-to-Peer Multiplayer Online Games. In ACM SIGCHI International

conference on Advances in computer entertainment technology, Hollywood,

California, 2006. ACM New York, NY, USA.

[189] P. Rosedale and C. Ondrejka. Enabling Player Created Online Worlds with

Grid Computing and Streaming. Gamasutra, 2003.

[190] Maria Roussou, Martin Oliver, and Mel Slater. The Virtual Playground: an

Educational Virtual Reality Environment for Evaluating Interactivity and

Conceptual Learning. Virtual Reality, 10(2):227–240, 2006.

[191] Mitsuhisa Sato, Hidemoto Nakada, Satoshi Sekiguchi, Satoshi Matsuoka,

Umpei Nagashima, and Hiromitsu Takagi. Ninf: A Network based Infor-

mation Library for Global World-wide Computing Infrastructure. In High-

Performance Computing and Networking, volume 1225/1997, pages 491–502,

San Diego, CA, 1997.

[192] Scene. http://opensimulator.org/wiki/Getting_Started_with_

Region_Modules. last accesed in April, 2012.

[193] ScienceSim Performance Tests. http://sciencesim.com/wiki/doku.php/

opensim/performance_tests. last accesed in December, 2011.

[194] Script. http://secondlife.wikia.com/wiki/Script. last accesed in

April, 2012.

[195] Second Life Grid: Concepts. http://wiki.secondlife.com/wiki/Grid#

Grid. last accesed in December, 2011.

BIBLIOGRAPHY 241

[196] Second Life Grid Extension: Architecture Working Group. https://wiki.

secondlife.com/wiki/Architecture_Working_Group. last accesed in De-

cember, 2011.

[197] Second Life Grid: Introduction. http://wiki.secondlife.com/wiki/

Second_Life_Grid. last accesed in December, 2011.

[198] Second Life Grid: Motivation for Extension. http://wiki.secondlife.

com/wiki/Project_Motivation. last accesed in December, 2011.

[199] Second Life Grid: Today and Tomorrow. https://wiki.secondlife.com/

wiki/Structural_Design_Overview. last accesed in December, 2011.

[200] Second Life: Local and Offline Content. https://wiki.secondlife.com/

wiki/Running_at_Home_and_Offline. last accesed in December, 2011.

[201] Second Life: The Official Website. http://www.secondlife.com/. last accesed

in December, 2011.

[202] Second Life: Central Services. http://wiki.secondlife.com/wiki/

Central_Services. last accesed in December, 2011.

[203] Shervin Shirmohammadi, Ihab Kazem, Dewan Tanvir Ahmed, Madeh El-

Badaoui, and Jauvane C. De Oliveira. A Visibility-Driven Approach for

Zone Management in Simulations. Simulation, 84(5):215–229, 2008.

[204] S. Singhal and M. Zyda. Networked Virtual Environments: Design and

Implementation. ACM Press/Addison-Wesley Publishing Co., 1999.

[205] Kay M. Stanney, Ronald R. Mourant, and Robert S. Kennedy. Human Fac-

tors Issues in Virtual Environments: A Review of the Literature. Presence:

Teleoperators and Virtual Environments, 7(4):327–351, August 1998.

[206] J. Steinman. SPEEDES: Synchronous Parallel Environment for Emulation

and Discrete Event Simulation. In Advances in Parallel and Distributed

Simulation, pages 95–103, 1991.

BIBLIOGRAPHY 242

[207] SUN. Game Server Technology. White paper, SUN Microsystems Inc., June

2004.

[208] The Virtual Environment: Forterra Systems. http://www.forterrainc.

com. last accesed in December, 2011.

[209] Duong Nguyen Binh Ta, Suiping Zhou, and Haifeng Shen. Greedy Algo-

rithms for Client Assignment in Large Scale Distributed Virtual Environ-

ments. Simulation, 84(10-11):521–533, 2008.

[210] Simon J. E. Taylor, Jon Saville, and Rajeev Sudra. Developing Interest

Management Techniques in Distributed Interactive Simulation using Java.

In Proceedings of the 31st conference on Winter simulation: Simulation—a

bridge to the future - Volume 1, WSC ’99, pages 518–523, New York, NY,

USA, 1999. ACM.

[211] The Virtual Environment: ActiveWorlds. http://www.activeworlds.com/.

last accesed in December, 2011.

[212] The Virtual Environment: Barbie Girls. http://www.barbiegirls.com.

last accesed in December, 2011.

[213] The Virtual Environment: Club Penguin. http://www.clubpenguin.com.

last accesed in December, 2011.

[214] The Virtual Environment: There. http://www.there.com. last accesed in

December, 2011.

[215] The Virtual Environment: Zwinky. http://www.zwinky.com. last accesed

in December, 2011.

[216] Douglas Thomas and John Seely Brown. Why Virtual Worlds Can Mat-

ter. Working Paper: Institute of Network Culture, University of Southern

California, 2007.

[217] Ultima Online. http://www.uoherald.com/. last accesed in December, 2011.

BIBLIOGRAPHY 243

[218] Peter van Beek and Rina Dechter. Constraint Tightness and Looseness

Versus Local and Global Consistency. Journal of the ACM, 44(4):549–566,

July 1997.

[219] Matteo Varvello, Fabio Picconi, Christophe Diot, and Ernst Biersack. Is

There Life in Second Life? In Proceedings of the 2008 ACM CoNEXT

Conference, CoNEXT ’08, pages 1:1–1:12, New York, NY, USA, 2008. ACM.

[220] Argentum Online (Non English Version). http://ao.alkon.com.ar/. last

accesed in December, 2011.

[221] John Vince. Virtual Reality Systems. ACM Press/Addison-Wesley Publish-

ing Co., New York, NY, USA, 1995.

[222] John Vince. Introduction to Virtual Reality. Springer, 2004.

[223] Bart De Vleeschauwer, Bruno Van Den Bossche, Tom Verdickt, Filip De

Turck, Bart Dhoedt, and Piet Demeester. Dynamic Microcell Assignment for

Massively Multiplayer Online Gaming. In 4th ACM SIGCOMM workshop

on Network and System Support for Games, pages 1–7, Hawthorne, NY,

2005. ACM New York, NY, USA.

[224] C.A. Waldspurger, T. Hogg, B.A. Huberman, J.O. Kephart, and W.S. Stor-

netta. Spawn: A Distributed Computational Economy. IEEE Transactions

on Software Engineering, 18(2):103–117, 1992.

[225] D. Waltz. Understanding Line Drawings of Scenes with Shadows. In Patrick

Winston, editor, The Psychology of Computer Vision, pages 19–91. McGraw-

Hill, 1975.

[226] Tianqi Wang, Cho-Li Wang, and Francis C. Lau. An Architecture to Sup-

port Scalable Distributed Virtual Environment Systems on Grid. Journal of

Supercomputing, 36(3):249–264, June 2006.

[227] John A. Waterworth and Eva L. Waterworth. Presence and Absence in

Education VR: The Role of Perceptual Seduction in Conceptual Learning.

Themes in Education, 1(1):7–38, 2000.

BIBLIOGRAPHY 244

[228] BZ Flag: The Official Website. http://bzflag.org/. last accesed in December,

2011.

[229] Crossfire: The Official Website. http://crossfire.real-time.com/. last accesed

in December, 2011.

[230] OpenArena: The Official Website. http://openarena.ws/. last accesed in

December, 2011.

[231] WorldForge: The Official Website. http://worldforge.org/. last accesed in

December, 2011.

[232] Jon B. Weissman and Byoung-Dai Lee. The Service Grid: Supporting Scal-

able Heterogeneous Services in Wide-Area Networks. In Proceedings of 2001

Symposium on Applications and the Internet (SAINT’01), San Diego, CA,

2001.

[233] The Virtual Environment: Whyville. http://www.whyville.com. last ac-

cesed in December, 2011.

[234] Arianne: Wiki. http://stendhalgame.org/wiki/Main_Page. last accesed

in December, 2011.

[235] BZ Flag: Wiki. http://my.bzflag.org/w/. last accesed in December, 2011.

[236] Crossfire: Wiki. http://wiki.metalforge.net/doku.php. last accesed in De-

cember, 2011.

[237] Irrlicht Engine: Wiki. http://www.irrlicht3d.org/wiki/. last accesed in De-

cember, 2011.

[238] OpenArena: Wiki. http://openarena.wikia.com/wiki/Main_Page. last

accesed in December, 2011.

[239] WarZone: Wiki. http://warzone2100.wikia.com/wiki/Main_Page. last

accesed in December, 2011.

[240] WorldForge: Wiki. http://wiki.worldforge.org/wiki/Main_Page. last

accesed in December, 2011.

BIBLIOGRAPHY 245

[241] W. Winn, M. Windschitl, R. Fruland, and Y. Lee. When Does Immer-

sion in a Virtual Environment help Students Construct Understanding? In

International Conference on Learning Sciences, pages 497–503, 2002.

[242] XML. http://www.w3.org/XML/. last accesed in April, 2012.

[243] J. H. Zeigler, H. Praehoper, and T. G. Kim. Theory of Modeling and Simu-

lation. Academic Press, 2000.

[244] Yan Zhang, Zhong Zhou, and Wei Wu. A Hierarchical Time Management

Mechanism for HLA-Based Distributed Virtual Environment. Journal of

Computational Information Systems, 10(2):7–15, 2006.

[245] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and

Bernhard Schölkopf. Learning with Local and Global Consistency. In NIPS,

2003.

