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Abstract

In this thesis we investigate several classes of directed graphs which have an

amalgamation property.

The first class we look at is a variation on a class introduced by David Evans

to answer a question of Peter M. Neumann. We show that there are continuum

many primitive permutation groups of countable degree which have a finite

suborbit paired with a suborbit of sizeℵ0. The results here indicate that there is

no possibility of classifying the highly arc transitive primitive digraphs with a

given isomorphism type of descendant set.

We then look at the model theoretic properties of stability,independence and

two tree properties for the theory of a Fraı̈ssé-type limitof one of the classes.

We show that this limit is unstable, having the strict order property, the inde-

pendence property, the tree property and the tree property of the second kind.

We next look at a class of undirected graphs obtained from a Hrushovski con-

struction using a predimension and see that this can be viewed more naturally as

the family of undirected reducts of a class of directed graphs. We then restrict

this directed class by limiting the number of primitive extensions any given set

can have and obtain an amalgamation lemma for the class. Thisdirected ver-

sion corresponds to imposing a bound on the multiplicity of minimally simply

algebraic extensions from Hrushovski’s construction of a strongly minimal set.

We axiomatize the theory of the Fraı̈ssé-type limit and show that it is stable and

trivial. The reduct of this obtained by forgetting the direction on the edges is



then considered and we finally look at stability in this setting, showing that, in

contrast to the unrestricted case, the undirected reduct isstrictly stable.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

In this thesis we investigate several classes of directed graphs (or digraphs)

which have an amalgamation property. We start by considering a class of di-

graphs originally studied to answer a question posed by Peter M. Neumann in

[20]. He asked whethern1, n2 could arise as the subdegrees of a primitive per-

mutation group for2 ≤ n1 < ℵ0 ≤ n2. This class of digraphs was first used

in [13] to show that there is a primitive permutation group which has a finite

suborbit paired with a suborbit of sizeκ, for every infinite cardinalκ (Corol-

lary 2.10, [13]). Neumann then posed the question as to whether there were

uncountably many of these permutation groups of countable degree. This ques-

tion has been answered here as Theorem 2.0.2 using unbalanced digraphs. The

proof uses a similar class of digraphs as in [13] and was suggested by David M.

Evans.
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The digraphs that we construct are highly arc transitive, that is the automor-

phism groups are transitive on the set ofn-arcs for all finiten. In our examples,

the descendant set of a vertex is a directed binary tree. Primitive highly arc tran-

sitive digraphs with finite out-valency are analyzed in detail in [1] and [2]. It is

shown that the descendant set of a vertex is quite constrained in such a digraph,

in particular up to isomorphism there are only countably many possibilities for

the descendant set. Thus while results in [1] suggest that itmay be possible to

classify descendant sets of vertices in highly arc transitive primitive digraphs,

the results here indicate that there is no possibility of classifying the ones with

a given isomorphism type of descendant set.

We then explore the stability properties of these digraphs.We also look at the

independence property, the tree property and the tree property of the second

kind for these digraphs in order to understand more fully their model theoretic

properties. We originally aimed to produce a stable theory,a modelM and a

typep such that the group of automorphisms induced onp(M) = {a ∈ M :

M |= p(a)} by Aut(M) is primitive with an unbalanced suborbit. We have

been unsucessful in our attempts, however we explain our findings.

After this we look at a class obtained from a Hrushovski construction using

a predimension and see that this can be viewed more naturallyas a class of

digraphs. We then restrict this class by limiting the numberof primitive exten-

sions any given set can have and obtain an amalgamation lemmafor the class.

We axiomatize this theory and consider the properties of completeness, stability

and triviality. The reduct of this class obtained by forgetting the direction on

the edges is then considered and we again look at stability inthis setting.

We now summarize the contents of each of the chapters in this thesis.

2



In Chapter 2 we use digraphs with each vertex having two descendants and

with some extra structure, to construct many primitive permutation groups with

a finite suborbit paired with a suborbit of sizeℵ0. Firstly, we introduce some

notation and then we use it to define continuum many classes ofisomorphism

types of digraphs with certain properties (Definition 2.1.6). We then show that

these classes are amalgamation classes and that we can take aFraı̈ssé-type limit

of each one. It is then shown that the automorphism group of this structure is

primitive. Finally we show that the properties we used to define the classes give

continuum many different examples of such permutation groups and thus prove

Theorem 2.0.2. The material in this chapter has been published in [8].

In Chapter 3 we consider the stability of the types of digraphs constructed in

the previous chapter. Primarily we examine the case where the only relation

is the digraph relation. Here we find a formula which defines a partial order

with infinite chains. This means that the theory we considered has the strict or-

der property (Proposition 3.1.5) and so is unstable. We thenattempt to further

understand the classes we have produced by considering somemodel theoretic

properties of them, showing that the theory does have the independence prop-

erty, the tree property and the tree property of the second kind.

So the primitive structures we have produced are, perhaps rather surprisingly,

quite bad from a model theoretic viewpoint. We therefore askwhether they can

be seen as part of a better-behaved structure. Specifically,it would be interesting

to know whether they can appear as the induced structure on a type in a stable

structure. Thus we attempt to modify the conditions on the class in order to

obtain a stable theory in which the digraphs used earlier arefound on the set

of realizations of some complete type. This would then give what we wanted
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as we would have a stable theory and the primitivity and unbalanced suborbit

conditions would not be lost. We explain one attempt that wasmade at this and

describe why it fails and the implications that this has for further variations of

this theory.

Finally, in Chapter 4 we explore a connection between some directed graphs

and Hrushovski constructions from [18]. The construction in [18] is usually

seen as a two part process : a free amalgamation constructionand then a more

difficult amalgamation known generally as ‘collapse’. In [18], the second part is

required to obtain structures of finite Morley rank. In this chapter we first detail

the construction of a Hrushovski class which can be viewed more naturally us-

ing≤ 2-out digraphs and show how this relates to the first part of Hrushovski’s

construction from [18]. This process introduces two classes of graphs - di-

graphs with each vertex having at most two descendants,≤ 2-out digraphsand

the reduct of this obtained by removing the direction on the edges. We show

that the reduct of the Fraı̈ssé-type limit of the class of digraphs is isomorphic

to the Fraı̈ssé-type limit of the class of undirected graphs (as is also shown in

[14]).

We then try to imitate the second part of Hrushovski’s construction (the ‘col-

lapse’) in the context of the directed graphs. We define minimal, primitive

and regular extensions in the digraph setting and study the class of digraphs in

which the number of primitive extensions is restricted. We prove amalgama-

tion lemmas for the cases of minimal and regular extensions (Corollary 4.2.8

and 4.2.10 respectively) and then use these to produce an axiomatization of the

theory. Algebraic closure in these structures is then considered which provides

some insight into forking. With this we see that the theory iscomplete, stable
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and trivial. Finally, we look at the reduct of this theory obtained by forgetting

the direction on the edges and show that it is strictly stable. So the process of

‘collapse’ does not commute with taking the reduct : the undirected reduct of

the ‘collapsed’ digraphNν is not the ‘collapse’ of the undirected graph which

is given by Hrushovski’s construction in [18].

It will be useful to first outline some background material onpermutation groups,

graph theory, stability theory, the independence and tree properties, Fraı̈ssé lim-

its and forking and dividing. References will also be given so that further in-

formation on each of the topics described can be found if desired. It will be

assumed that basic model theoretic notions such as structures, models and the-

ories are understood. Background model theory can be studied in many sources,

including in [17] if needed.

1.2 Permutation Groups

We start with some general information about permutation groups. Further de-

tails on the concepts briefly introduced here can be found in [4] or [7]. LetΩ be

an arbitrary non-empty set. A bijection ofΩ onto itself is called apermutation

of Ω and the set of all permutations forms a group with the binary operation

being composition of maps. This group is called thesymmetric groupof Ω and

is denoted bySym(Ω). A permutation groupG onΩ is a subgroup ofSym(Ω)

and is often denoted by(G,Ω). Thedegreeof a permutation group is|Ω|.

An isomorphismbetween two structuresA,B is a bijectionf : A → B such

that bothf and its inversef−1 are homomorphisms (structure preserving maps).
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An automorphismis an isomorphism from a structure to itself. The set of all

automorphisms of a structureM with the binary operation being composition

of maps forms a group which is called theautomorphism groupand is denoted

byAut(M).

Now let G be a group andΩ a non-empty set. Assume that for all elements

α ∈ Ω andx ∈ G we have defined an element ofΩ which we will denote by

xα. Then this defines anaction of G on Ω if iα = α (wherei is the identity

element ofG) and if y(xα) = (yx)α for all α ∈ Ω and for allx, y ∈ G. If G

acts onΩ andα ∈ Ω thenGα = {xα : x ∈ G}, the set of elements ofΩ thatα

gets sent to by the action ofG is theorbit of α underG. If the action ofG onΩ

has only one orbit, soGα = Ω for all α ∈ Ω thenG is said to acttransitivelyon

Ω. Equivalently,G acts transitively onΩ if for all α, β ∈ Ω there existsx ∈ G

such thatxα = β.

For ∆ a non-empty subset ofΩ and forx in G let x∆ denote the set{xα :

α ∈ ∆}. Then∆ is called ablock for G if for each elementx in G either

x∆ = ∆ or x∆ ∩ ∆ = ∅. Every action onΩ hasΩ and the singletons{α}

for α ∈ Ω as blocks. These blocks are calledtrivial blocks. A groupG acting

transitively onΩ is primitive if G has no non-trivial blocks onΩ. Alternatively,

in more model theoretic terms, a groupG is primitive if there is no non-trivial

Aut(G)-invariant equivalence relation onG.

Let G be a group acting transitively on a setΩ and letα ∈ Ω. DefineGα to

be the subgroup{g ∈ G : gα = α} and call theGα-orbits onΩ suborbits

and theG-orbits onΩ2 = Ω × Ω orbitals. Then{α} is a trivial suborbit and

{(ω, ω) : ω ∈ Ω} is the trivial orbital.
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Take∆ ⊆ Ω2, a non-trivial orbital, and consider the corresponding digraph

which is a directed graph with vertex setΩ and edge set∆ (this is called the

orbital digraph). ThenG acts as a group of automorphisms of this digraph and

is transitive on vertices and on directed edges. If we now ignore the direction

on the edges we obtain theorbital graphwhich has vertex setΩ and edge set

{{β, γ} : (β, γ) ∈ ∆}. The suborbitΓ corresponding to the orbital∆ is the

set of out-vertices forα (vertices coming out ofα, that is the set{β ∈ Ω :

(α, β) ∈ ∆}) in the orbital digraph with edge set∆. The paired suborbitΓ∗

is the set of in-vertices forα (i.e. {β ∈ Ω : (β, α) ∈ ∆}). If the suborbit

Γ and the paired suborbitΓ∗ have different cardinalities then we say that the

permutation group has anunbalanced suborbit. This shows the equivalence

between orbital digraphs and permutation groups with an unbalanced suborbit.

This correspondence is described in more detail in [13].

There is a very useful criterion for primitivity of actions using these orbital di-

graphs that was discovered by D.G. Higman in [16] and was stated in a different

form in [13]. This restatement of the condition is the one that will be used later,

so that is the one expressed in the following lemma. See Section 1.3 below for

the definition of a connected graph.

Lemma 1.2.1. ([13], Lemma 1.1) The transitive permutation group(G,Ω) is

primitive if and only if all its non-trivial orbital graphs are connected.

1.3 Graph Theory

Since we are using directed graphs throughout it will be helpful to highlight

some notions from graph theory. A more detailed account of these concepts
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can be found in [3] and [6].

A graph,G is usually denoted byG(V,E) whereV is the set of vertices and

E is a set of subsets of size two fromV , being seen as the set of edges of the

graph. Adirected graphis a graph that has a direction added to each edge,

which means that a directed graph has an asymmetric relation.

A pathin the graphG(V,E) from vertexv1 to vertexv2 is a sequence of vertices

starting withv1 and ending withv2 such that every vertex is joined by an edge

to the vertex that follows it in the sequence. A graph is called connectedif

there is a path between every pair of vertices in the graph. Abipartite graphis

a graph in which the set of vertices can be split into two disjoint parts such that

each part has no edges between any of its elements. This can berepresented by

G = G(V1 ∪ V2, E). In a graphG = G(V,E) the set of vertices that are joined

to vertexv is N(v), that isN(v) = {w : {v, w} ∈ E} and similarly ifX is a

set of vertices thenN(X) = {v : {v, w} ∈ E,w ∈ X}. Thedegreeof a vertex

v is |N(v)|. LetG = G((V1 ∪ V2), E) be a bipartite graph. Amatchingin G is

a subset ofE such that each vertex (in bothV1 andV2) has degree at most one.

Such a matching is calledperfect forV1 if every vertex inV1 has degree exactly

one (the vertices inV2 will still have degree at most one). Figure 1 demonstrates

some of these definitions.

The following theorem is needed in Chapter 4.

Theorem 1.3.1(Hall’s Marriage Theorem). LetG = (V1 ∪ V2, E) be a finite

bipartite graph. ThenG has a perfect matching forV1 if and only if |X| ≤

|N(X)| for all X ⊆ V1.

This theorem is essentially Theorem 2.1.2 from [6] and threedifferent proofs of
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V1 V2

Figure 1: Example of a bipartite graph with a matching forV1 (dotted lines), but not a

perfect matching

it are given there. In [6] the author has restricted to the case where|V1| = |V2|

and his definition of matching is the same as perfect matchingfor V1 used herein

(as|V1| = |V2| is assumed).

1.4 Stability

We will now introduce some of the definitions in stability theory which will be

needed in later chapters. For a more comprehensive discussion of the topic see

[19], [17] (includes the strict order property) or [21] (looks at stability using

types).

Throughout, letL be a first-order language and letT be a completeL-theory.

The order property can be defined in several ways; the definition of it given

here is taken from [23]. AnL-formulaφ(x̄, ȳ) has theorder propertyrelative to

the theoryT if we can findān andb̄m in a modelM of T with n,m ∈ ω such

thatφ(ān, b̄m) is true if n ≤ m and false ifn > m (where overlines are used

to indicate tuples). We can see that this means the formulaϕ(x̄1, x̄2, ȳ1, ȳ2) =

φ(x̄1, ȳ2) orders the infinite set(āib̄i : i < ω). An L-formulaφ(x̄, ȳ) has the

strict order propertyif we can find(b̄n : n ∈ N) in a modelM of T such that
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the formula(∃x̄)(¬φ(x̄, b̄n) ∧ φ(x̄, b̄m)) is true ifn < m and false ifn > m. In

other words,T has the strict order property if there is a definable partial order

on a subset ofMp for someM |= T andp ∈ N, which has infinite chains. It can

be seen that if a theoryT has the strict order property then there is a formula

that has the order property relative toT . A stable theoryis a theory in which no

formula has the order property relative to the theory.

An alternative definition for a stable theory uses types. A (complete)n-type

over the theoryT (for n ∈ N) is the set ofL-formulas which is satisfied by

somen-tuple in a model of the theoryT . Equivalently, a completen-type is a

maximal set of formulas inn-variables consistent withT . A partial n-type is

a non-maximal set of formulas inn-variables consistent withT . Now suppose

thatM is anL-structure andA ⊆ M . ThenLA is the language obtained by

adding constant symbols toL for all elements ofA. Let ThA(M) be the set

of all LA-sentences that are true inM . Then ann-type overA is a set ofLA-

formulas in free variablesx1, . . . , xn that is consistent withThA(M).

The theoryT is said to beλ-stablefor the cardinalλ if for all A ⊆ M |= T

such that|A| = λ and for all finiten ≥ 1, |Sn(A)| ≤ λ, whereSn(A) is the

set ofn-types overA. The theoryT is stableif it is λ-stable for someλ and

it is ω-stableif it is ℵ0-stable. The theory issuperstableif it is λ-stable for all

λ ≥ 2|T | and it isstrictly stableif it is λ-stable if and only ifλω = λ. It can

be shown that anyω-stable theory is superstable, and it is trivial to see that any

superstable theory is stable. The statement “ω-stability implies superstability ”

can be found as (Proposition 5.28, [21]).
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1.5 Independence and Tree Properties

We give the definitions of the independence property, the tree property and the

tree property of the second kind along with references for further information.

The following definition was introduced by Shelah in [24]. AnL-formula

φ(x̄, ȳ) has theindependence propertywith respect to the theoryT if for each

n ∈ ω there is a modelM of T and sequences(b̄i : i < n) and(āw : w ⊆

{0, . . . , n−1}) fromM such thatM |= φ(āw, b̄i) if and only if i ∈ w. A theory

T has the independence property if someL-formulaφ(x̄, ȳ) has the indepen-

dence property.

The following definition again due to Shelah is based on a series of definitions

found in [26] (there is a part of the definition missing in the book), which can

be referred to for details about theories without the tree property. Note thatωω

is the set of infinite sequences of natural numbers and<ωω is the set of finite

sequences of natural numbers. Ifξ ∈ ωω andn < ω thenξ|n ∈ <ωω is the

restriction ofξ to the firstn terms. Ifν ∈ <ωω thenν∧i is the finite sequence

consisting ofν and the extra termi. Now letφ(x̄, ȳ) be anL-formula. Thenφ

has thetree propertywith respect to the theoryT if there existsk < ω and a

collection(āν : ν ∈ <ωω) of tuples in a model ofT such that for allξ ∈ ωω

the set{φ(x̄, āξ|n) : n < ω} is consistent withT and for allν ∈ <ωω the

set{φ(x̄, āν∧i) : i < ω} is k-inconsistent withT (which means that any finite

subset of{φ(x̄, āν∧i) : i < ω} of sizek is inconsistent withT ). A theoryT has

the tree property if there is a formula which has the tree property with respect

to T .

The following definition was also introduced by Shelah and istaken from [5],
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which contains several results regarding theories withNTP2 (ie it does not have

the tree property of the second kind). A theoryT hasTP2 (the tree property of

the second kind) if there exists a formulaφ(x, y), a numberk < ω and an array

of elements〈aji : i, j < ω〉 in a model ofT such that :

1. every row isk-inconsistent (that is, for allj < ω and for alli1 < . . . <

ik < ω, φ(x, aji1) ∧ . . . ∧ φ(x, a
j
ik
) is inconsistent withT ), and

2. every vertical path is consistent (that is, for allf : ω → ω,
∧

j<ω φ(x, a
j

f(j))

is consistent withT ).

1.6 Fräısśe Limits

It will be useful to have an understanding of the construction method of Fraı̈ssé

limits. A brief explanation of a general version of the construction is given

here and variations of the method are used as needed in Chapter 2. This will

require some variation in usage of the terminology but we hope that this does

not cause confusion. It is also recommended to investigate ([11], Section 2) for

a more comprehensive treatment of the general version of themethod and also

for several useful examples.

Let L be a first-order language and letC = (C,≤) be a collection of countable

L-structures with a distinguished notion of embeddings (denoted by≤) which

satisfiesA ≤ A for all A ∈ C andA ≤ B ≤ C impliesA ≤ C. We say that

anL-structureA is in C to mean thatA is isomorphic to an element ofC, since

we only need to consider isomorphism types of elements ofC. Say thatC is an

amalgamation classif it has the following properties:
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1. hereditary property : ifA ∈ C andB is a≤-substructure ofA thenB ∈ C;

2. joint embedding property : ifA,B ∈ C then there existsC ∈ C such that

A,B are isomorphic to≤-substructures ofC;

3. amalgamation property : ifA,B1, B2 ∈ C andαi : A → Bi are≤-

embeddings then there existsC ∈ C and≤-embeddingsβi : Bi → C

with β1α1 = β2α2.

In the original version of Fraı̈ssé’s Theorem the classC consists of finite struc-

tures and the distinguished embedding notion≤ is just that of being a substruc-

ture.

Theorem 1.6.1.Suppose thatL is a first-order language andC = (C,≤) is an

amalgamation class of finiteL-structures. Suppose thatC has countably many

isomorphism types of structures. Then there exists a countableL-structureM

and substructures(Ai : i < ω) in C such that:

1. A0 ≤ A1 ≤ A2 ≤ . . . andM =
⋃

i<ω Ai

2. if A ≤ Ai andA ≤ B ∈ C then there is somej > i and a≤-embedding

f : B → Aj such thatf(a) = a for all a ∈ A (the extension property).

Moreover,M is uniquely determined up to isomorphism by these conditions.

We refer toM in the above as theFraı̈sśe limit of (C,≤). If for A ∈ C we write

A ≤ M to meanA ≤ Ai for somei < ω then forA,A′ ≤ M , if h : A → A′ is

an isomorphism thenh extends to an automorphism ofM (which preserves≤).

We will use a variation on this in Chapter 2 in which ‘finite’ isreplaced by

‘finitely generated’ in a suitable sense.
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1.7 Forking and Dividing

We use forking and dividing in Chapter 4 so we recall very briefly the notions

of dividing and forking in stable (or simple) theories and also some of the basic

properties of the resulting notion of independence (non-forking). A convenient

reference for this material (presented in the way in which weshall use it) is

Chapter 2 of [26].

SupposeT is a complete, stable theory andM is a large saturated model ofT .

Definition 1.7.1. Consider a sequenceai of elements of the modelM indexed

by a totally ordered setI. Say that this set isindiscernibleif for every natural

numbern, wheneveri1 < . . . < in andj1 < . . . < jn are two strictly increasing

n-tuples ofI, then-tuples(ai1, . . . ain) and(aj1, . . . , ajn) have the same type.

Definition 1.7.2. ([26], 2.2.1)

1. A formulaφ(x̄, b̄) (with parameters̄b) dividesover a setA if there is a

sequence(b̄i : i < ω) with tp(b̄i/A) = tp(b̄/A) which is indiscernible

overA and such that
∧

i<ω φ(x̄, b̄i) is inconsistent.

2. A formulaϕ(x̄) (possibly with parameters)forks over a setA if there

exist formulasφ1(x̄, c̄1), . . . , φr(x̄, c̄r) such that⊢ ϕ(x̄) →
∨

i≤r φi(x̄, c̄i)

and eachφi(x̄, c̄i) divides overA.

3. If d̄ is a tuple andB is a set we say thattp(d̄/B) dividesoverA (re-

spectivelyforksoverA) if someφ(x̄, b̄) ∈ tp(d̄/B) divides (respectively,

forks) overA.

We writed̄ |⌣A
B to mean thattp(d̄/B) does not fork overA. In a stable theory

tp(d̄/B) does not fork overA if and only if tp(d̄/B) does not divide overA.
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For a subsetD, the notionD |⌣A
B means that̄d |⌣A

B for every tupled̄ from

D. We now give some definitions and then some properties of the relation |⌣.

Definition 1.7.3. 1. The theoryT is simpleif no formula has the tree prop-

erty inT . Note that any stable theory is simple.

2. An elementa of the setA is algebraicoverA if it satisfies a formula with

parameters inA that is satisfiable by only finitely many elements.

3. Thealgebraic closureof the setA, denotedacl(A) is the set of elements

that are algebraic overA.

Theorem 1.7.4.([26], Theorem 2.3.13) SupposeT is simple andA ⊆ B ⊆ C.

Then:

1. Existence : For allc in the large saturated modelM , c |⌣A
acl(A).

2. Extension : Every partial type overB which does not fork overA has a

completion which does not fork overA.

3. Reflexivity :B |⌣A
B if and only ifB ⊆ acl(A).

4. Monotonicity : Ifp andq are types withp ⊢ q andp does not fork over

A, thenq does not fork overA.

5. Finite Character :D |⌣A
B if and only ifd̄ |⌣A

B for every finited̄ ∈ D.

6. Symmetry :D |⌣A
B if and only ifB |⌣A

D.

7. Transitivity :D |⌣A
C if and only ifD |⌣A

B andD |⌣B
C.

8. Local Character : For anyp ∈ S(A) there isA0 ⊆ A with |A0| ≤ |T |,

such thatp does not fork overA0.

From these we can deduce the following well known facts:
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Corollary 1.7.5. SupposeT is simple andA ⊆ B ⊆ C.

1. If c |⌣A
B ande ∈ acl(cA) thene |⌣A

B.

2. If c |⌣A
B thenacl(cA) ∩ acl(B) = acl(A).

Proof. (Sketch)

1. This is done by ‘forking calculus’ using the properties inthe above the-

orem. From the givenc |⌣A
B we getc |⌣A

b̄ for every finiteb̄ ∈ B by

finite character. Symmetry then givesb̄ |⌣A
c and using transitivity we

see that̄b |⌣Ac
c. Existence then gives̄b |⌣Ac

acl(Ac). We are given that

e ∈ acl(cA), so we havēb |⌣Ac
e. Usingb̄ |⌣A

c, b̄ |⌣Ac
e and transitivity

we get b̄ |⌣A
ce and sōb |⌣A

e. Finally, symmetry and finite character

givee |⌣A
B as required.

2. It is clear thatacl(cA) ∩ acl(B) ⊇ acl(A). So takee ∈ acl(cA) ∩ acl(B)

and we need to show thate ∈ acl(A). By (1) with e = c andA = B we

obtaine |⌣A
e and so by reflexivity,e ∈ acl(A) as required.
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Chapter 2

Constructing Continuum Many

Examples

In this chapter we prove the following Theorem, which is an extension of ([13],

Corollary 2.10). The proof of this theorem uses a Fraı̈ssé-type construction on

suitable amalgamation classes.

Theorem 2.0.1.There are continuum many primitive permutation groups of

countable degree which have a finite suborbit paired with a suborbit of sizeℵ0.

As is explained in the introduction (and also in [13]), this follows from Theorem

2.0.2 below.

Theorem 2.0.2.There are continuum many pairwise non-isomorphic count-

able directed graphs in which each vertex has finite out-valency and invalency

ℵ0, and whose automorphism group is primitive on vertices and transitive on

directed edges.

In this thesis we construct directed graphs with each vertexhaving out-valency
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two. This was done for simplicity and we could repeat all of the work with two

replaced by any finite natural number.

2.1 Definition of the Amalgamation Classes

The first part of the proof of Theorem 2.0.2 is to construct classes of isomor-

phism types ofLI-structures (whereLI is a first-order language) and then to

prove that these are amalgamation classes. The required digraphs will be ob-

tained from Fraı̈ssé-type limits of these classes. To start we investigate digraphs

that have some extra structure. The digraphs will have no directed cycles and

no multiple edges.

Notation 2.1.1. We use a binary relationR (which represents the digraph re-

lation) and for eachn ∈ N, n ≥ 3 we have ann-ary relationRn. For I ⊆

N\{0, 1, 2} let LI denote the language{R} ∪ {Rn : n ∈ I}. The case where

I = ∅, so with noRn relations is the arrangement considered in [13]. LetT

denote therooted binary tree, which is the directed graph with no undirected

cycles such that each vertex has out-valency two and every vertex except for the

root (which has no predecessor) has a unique predecessor.

Definition 2.1.2. If A is anLI-structure anda ∈ A then the set ofdescendants

(or thedescendant set) of a in A is the set of vertices (includinga) in A that can

be reached froma by an outward directed path, that is,

{b : ∃n ∈ N∃a1, . . . , an ∈ A, (a, a1), (a1, a2), . . . , (an, b) ∈ R}.

Denote this bydescA(a) or simply bydesc(a) if it is clear what structure we

are working in. IfX is a set of vertices inA then the set of descendants
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of X is descA(X) =
⋃

{descA(x) : x ∈ X}. If X = {x1, . . . , xn} write

descA(x1, . . . , xn) for
⋃

i=1,...,n desc
A(xi). The set ofancestorsof a vertex

a ∈ A is the set of vertices{x ∈ A : a ∈ descA(x)}.

Definition 2.1.3. LetA ⊆ B beLI -structures. Say thatA is descendant closed

in B if for all a ∈ A, descA(a) = descB(a). In this case writeA ≤ B.

Definition 2.1.4. Let A be anLI-structure. Say that a setV of vertices ofA

is finitely generatedif it is the union of the descendant sets of finitely many

elements fromA, that is if we haveV =
⋃n

i=1 desc
A(ai) for someai ∈ A and

n ∈ N.

Definition 2.1.5. Define desc(a) ≤+ A for an LI-structureA and for a ∈

A to mean thatdesc(a) ∩ desc(b) is finitely generated for anyb ∈ A, and if

desc(b)\desc(a) is finite thenb ∈ desc(a). More generally, forB ⊆ A finitely

generated say thatB ≤+ A if for all a ∈ A, desc(a)∩B is finitely generated and

if a ∈ A anddesc(a)\B is finite thena ∈ B. Note thatB ≤+ A =⇒ B ≤ A.

This relation will introduce some control over the intersections of descendant

sets of elements in the digraph that we are constructing (from the first part of

the definition), by preventing the intersection of any two elements being too big.

The second part of the definition is used to obtain primitivity. As an example,

the relation does not hold if the descendant sets are as in Figure 2.

a
B

Figure 2: Example of a graph forbidden by the relation≤+ becausedesc(a)\B is

finite buta /∈ B.
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Definition 2.1.6. Let (CI ,≤+) consist of countableLI-structuresA such thatR

gives a digraph onA and the following conditions hold:

1. the descendant set of every elementa inA forms a rooted binary tree with

no other structure (so the only relations ondesc(a) are fromR, and the

Rn are not involved);

2. we havedesc(a) ≤+ A for all a ∈ A;

3. A is finitely generated;

4. ifA |= Rn(a1, . . . , an) thendesc(ai)∩desc(aj) = ∅ for i 6= j, a1, . . . an ∈

A have no common ancestor inA anddesc(a1, . . . , an) ≤+ A;

5. the number of instances of the relationsRn onA is finite (meaning that

there are only finitely manyn for which there are anyRn relations, and

for eachn there are only finitely manȳa such thatRn(ā) holds).

We will now show that these classes of digraphs are amalgamation classes. The

following definitions are based on those used in the method ofconstructing

Fraı̈ssé limits but are slightly different to the ones in the introduction since we

are using a variation of the original construction.

Definition 2.1.7. The class(CI ,≤+) has thehereditary propertyif for all A ∈

CI , if B is a finitely generated descendant closed substructure ofA thenB ∈ CI .

Definition 2.1.8. The class(CI ,≤+) has theamalgamation propertyif when-

everA,B1, B2 ∈ CI and we have≤+-embeddingsfi : A→ Bi then there is an

LI-structureC ∈ CI and≤+-embeddingsgi : Bi → C such thatg1f1 = g2f2.

This definition is represented in Figure 3.

Definition 2.1.9. The class(CI ,≤+) is an amalgamation classif it has the

hereditary property and the amalgamation property.
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f1

f2

g1

g2

B1

B2

Figure 3: The amalgamation property

Therefore to check that the classes we have defined are amalgamation classes

we need to check that they have the two required properties.

Proposition 2.1.10.The class(CI ,≤+) has the hereditary property.

Proof. Take anyA ∈ CI and letB be a finitely generated descendant closed

substructure ofA. We need to check that Conditions 1-5 in Definition 2.1.6

hold forB.

For anyb ∈ B we haveb ∈ A and hencedesc(b) forms a rooted binary tree with

no other structure. We are given thatB is finitely generated, and therefore that

Condition 3 forB ∈ CI holds. Now letb1, b2 ∈ B, and note that we also thus

haveb1, b2 ∈ A. Then we have thatdesc(b1)∩desc(b2) is finitely generated and

thatdesc(b1)\desc(b2) being finite impliesb1 ∈ desc(b2), sincedesc(a) ≤+ A

for all a ∈ A. This shows thatdesc(b) ≤+ B for all b ∈ B. SinceB ⊆ A

and the number of instances of theRn onA is finite, we must have the same for

B. This then leaves only Condition 4 forB ∈ CI to be checked. For this, let

b1, . . . , bn ∈ B and assume thatB |= Rn(b1, . . . , bn). Now b1, . . . , bn are also

in A andB |= Rn(b1, . . . , bn) meansA |= Rn(b1, . . . , bn) as well, therefore

desc(bi) ∩ desc(bj) = ∅ if i 6= j. We also see thatb1, . . . , bn have no common

ancestor inB because if they did then they would have a common ancestor inA,

but this is impossible byA |= Rn(b1, . . . , bn). Finally,desc(b1, . . . , bn) ≤+ B
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becausedesc(b1, . . . , bn) ≤+ A andB ⊆ A. Therefore we have shown that all

the necessary conditions hold forB ∈ CI .

To prove that the classes(CI ,≤+) have the amalgamation property we need the

following two lemmas.

Lemma 2.1.11.If A,B,C ∈ CI , A,B ≤ C andA,B are finitely generated,

thenA ∩ B is finitely generated.

Proof. SinceA andB are finitely generated we can write each of them as the

descendant set of a finite number of elements ofCI . So for somem,n ∈ N write

A = descA(a1, . . . , an) andB = descB(b1, . . . , bm). We also haveA,B ≤ C

and therefore

descA(a1, . . . , an) = descC(a1, . . . , an)

and

descB(b1, . . . , bm) = descC(b1, . . . , bm).

ThenA ∩ B =
⋃

i,j

(

descC(ai) ∩ descC(bj)
)

. SinceC ∈ CI and we have each

ai, bj ∈ C Condition 2 of Definition 2.1.6 says thatdescC(ai) ∩ descC(bj) is

finitely generated for alli, j. ThereforeA ∩ B is the union of finitely many

finitely generated sets, and as such is finitely generated.

Lemma 2.1.12.LetX ⊆ Y andY ⊆ Z be inCI . If X ≤+ Y andY ≤+ Z

thenX ≤+ Z .

Proof. Let z ∈ Z and considerdescZ(z) ∩X. By definition of the relation≤+

we haveX ≤ Y andY ≤ Z. This means that forx ∈ X,

descX(x) = descY (x) = descZ(x).
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SoX can be writen asdescZ(x1, . . . , xn) (becauseX is finitely generated as it

is in CI ). Hence by the argument used in the proof of Lemma 2.1.11 we have

thatdescZ(z) ∩X is finitely generated.

Now assumedescZ(z)\descZ(X) is finite. Then we see thatdescZ(z)\descZ(Y )

must be finite sinceX ⊆ Y and so

(

descZ(z)\descZ(Y )
)

⊆
(

descZ(z)\descZ(X)
)

.

Then, becauseY ≤+ Z we getz ∈ Y . Thereforez ∈ X as we have that for

y ∈ Y , desc(y)\desc(X) being finite impliesy ∈ X. Therefore we have shown

that both properties required forX ≤+ Z hold.

The following definition is adapted from ([25], Definition 2.9).

Definition 2.1.13. Let A0 ≤+ Ai ∈ CI (i = 1, 2) andA1 ∩ A2 = A0. Then

the free amalgamof A1 andA2 overA0 is theLI-structure with underlying

setA1 ∪ A2, whose only relations are those induced fromA1 andA2 (so there

are no relations between elements ofA1 and elements ofA2). We denote it by

A1

∐

A0
A2. A diagram of this structure is given in Figure 4.

A0

A1 A2

Figure 4: Free amalgam

Proposition 2.1.14.The class(CI ,≤+) has the amalgamation property.

Proof. Let A,Bi ∈ CI for i = 1, 2 and assume we have≤+-embeddings

αi : A → Bi, soαi(A) ≤+ Bi. Without loss of generality,B1 ∩ B2 = A
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andαi is the identity onA, soA ≤+ Bi. Then letC be the free amalgam

B1

∐

AB2, soC is the digraph on the disjoint unionB1 ∪ B2 overA where

the only relations are those induced fromB1 andB2, that is there are no edges

between an element ofB1\A and an element ofB2\A andRn(a1, . . . , an) does

not hold if some of theai are inB1 and others are inB2.

Claim 1. We haveBi ≤+ C.

Proof. Note that by the construction ofC if b ∈ Bi thendesc(b) ⊆ Bi. Let

b1, b2 ∈ C. We need to show thatdesc(b1) ∩ desc(b2) is finitely generated and

that if desc(b2)\desc(b1) is finite thenb2 ∈ desc(b1). For this there are two

cases to consider.

Case 1Without loss of generality,b1, b2 ∈ B1. Now B1 ∈ CI and therefore

desc(b1) ∩ desc(b2) is finitely generated anddesc(b2)\desc(b1) being finite im-

plies thatb2 ∈ desc(b1).

Case 2Without loss,b1 ∈ B1, b2 ∈ B2. Assume thatdesc(b2)\desc(b1) is finite.

Now desc(b2)∩ desc(b1) ⊆ A due to the construction ofC and so we have that

desc(b2)\A is finite. We are givenA ≤+ B2 and hence we get thatb2 ∈ A, so

b2 ∈ B1 and we are in Case 1.

Hence we have shown thatdesc(b2)\desc(b1) being finite impliesb2 ∈ desc(b1).

Now considerdesc(b1) ∩ desc(b2). As abovedesc(b1) ∩ desc(b2) ⊆ A and we

see thatdesc(bi) ∩ A (for i = 1, 2) is finitely generated by Lemma 2.1.11 (as

desc(bi), A, Bi ∈ CI anddesc(bi), A ≤ Bi for eachi). We can then use Lemma

2.1.11 inA to get thatdesc(b1) ∩ desc(b2) is finitely generated.

� Claim 1.

Claim 2. We haveC ∈ CI .
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Proof. We need to check that the five conditions in Definition 2.1.6 hold in

this structure. Letc ∈ C. Thenc ∈ B1 or c ∈ B2 sinceC = B1

∐

AB2 and

eachBi is descendant closed inC. We have that forb ∈ Bi, desc
Bi(b) forms

a rooted binary tree with no other structure becauseBi ∈ CI . HencedescC(c)

forms a rooted binary tree with no other structure. Using Claim 1 and Lemma

2.1.12 we see thatdesc(c) ≤+ C since we havedesc(c) ≤+ Bi as c ∈ Bi.

GivenC = B1

∐

AB2, eachBi is finitely generated (becauseBi ∈ CI) and the

number of instances of theRn relations on eachBi is finite, we have thatC is

finitely generated and that there are only finitely many occurrences of theRn

relations onC. Therefore conditions 1, 2, 3 and 5 hold forC to be inCI . Finally,

for Condition 4, letc1, . . . , cn ∈ C and suppose thatC |= Rn(c1, . . . , cn).

Case 1All the cj are inBi for i = 1 or i = 2 - say they are inB1, but they

are not all inA. In this caseB1 |= Rn(c1, . . . , cn) and therefore, asB1 ∈ CI

descB1(ci)∩descB1(cj) = ∅ if i 6= j, c1, . . . , cn have no common ancestor inB1

anddesc(c1, . . . , cn) ≤+ B1. SinceC is the free amalgamation ofB1 andB2

overA, c1, . . . , cn then have no common ancestor inC, and asB1 is descendant

closed inC we have thatdescC(ci) ∩ descC(cj) = ∅ if i 6= j. Also we have

desc(c1, . . . , cn) ≤+ C by Lemma 2.1.12 sincedesc(c1, . . . , cn) ≤+ B1 and

B1 ≤+ C. Hence Condition 4 holds in this case.

Case 2All of the cj are inA. The only part which is different from Case 1

for this is checking that thecj have no common ancestor inC. We know they

have no common ancestor inB1 from the above case. In this case we also

haveB2 |= Rn(c1, . . . , cn) fromC |= Rn(c1, . . . , cn) and soc1, . . . , cn have no

common ancestor inB2 either. So this givescj have no common ancestor inC.

Case 3Some of theci are inB1\A and some are inB2\A. In this case the
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definition ofRn in C givesC 6|= Rn(c1, . . . , cn).

We have therefore shown that all of the properties in Definition 2.1.6 hold and

so we haveC ∈ CI , hence we have proved the claim.

� Claim 2.

So there are≤+-embeddingsβi : Bi → C for i = 1, 2 with β1α1 = β2α2

(sinceA ⊆ Bi andBi ⊆ C for i = 1, 2 takeαi, βi to be identity maps). Hence

(CI ,≤+) has the amalgamation property.

Propositions 2.1.10 and 2.1.14 give us that the classes defined in Definition

2.1.6 are amalgamation classes. The next step in the proof ofTheorem 2.0.2 is

to construct a Fraı̈ssé-type limit of each of these amalgamation classes.

2.2 Fräısśe-type Limits

The next step is to construct a Fraı̈ssé-type limit of each of these classes, and to

do this we first need to know a countability condition.

Definition 2.2.1. A subsetD = (d1, . . . , dn) of A ∈ CI is independentif, for

i 6= j, we havedesc(di) ∩ desc(dj) = ∅.

Definition 2.2.2. ConsiderA ∈ CI as anR-structure (that is without theRn

relations). Supposēa = (a1, . . . , an), b̄ = (b1, . . . , bn) are independent subsets

of A ∈ CI and the rooted binary treeT respectively. We can see thatdesc(ā) ≃

desc(b̄) by independence and becausedesc(ai) ≃ T (asA ∈ CI) anddesc(bi) ≃

T for all i ∈ {1, . . . , n}. Hence there is an isomorphism fromdesc(ā) todesc(b̄)

which takesai to bi for i ≤ n. Define thefree amalgamof A andT over
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ā and b̄ to be the digraph with vertex set the disjoint union ofA andT over

desc(ā) ≃ desc(b̄), and edge set the union of the edge sets ofA andT .

Notation 2.2.3. (This notation is taken from ([10], Definition 2.2)). Denotethe

free amalgam ofA andT overā andb̄ by (A, ā) ∗ (T, b̄).

Lemma 2.2.4.LetA ∈ CI and consider it as anR-structure (as in the above

definition). The isomorphism type of(A, ā) ∗ (T, b̄) is independent of the choice

of isomorphism fromdesc(ā) to desc(b̄).

Proof. Any automorphism ofdesc(b̄) which fixes eachbi can be extended to an

automorphism ofT . Therefore different isomorphisms fromdesc(ā) to desc(b̄)

give isomorphic free amalgams. Hence(A, ā)∗(T, b̄) has the same isomorphism

type for any choice of isomorphism fromdesc(ā) to desc(b̄).

Definition 2.2.5. Let A,B,B′ ∈ CI and letf : A → B andf ′ : A → B′

be≤+-embeddings. Thenf is isomorphicto f ′ if there exists an isomorphism

h : B → B′ such thatf ′ = hf . Equivalently,f, f ′ are isomorphic if the

diagram in Figure 5 commutes.

+

+

f
A B

B′

hf ′

Figure 5: An isomorphism between f and f’

Proposition 2.2.6.There are countably many isomorphism types of≤+-embeddings

in the class(CI ,≤+).
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Proof. We will show that there are countably many isomorphism typesof ≤+-

embeddings of elements ofCI , if we ignore theRn relations. Then Condition

5 of Definition 2.1.6 says there are only finitely many instances of theRn rela-

tions on any element ofCI . Placing finitely many instances of theRn relations

on each countable digraph is similar to choosing finitely many tuples from a

countable set. So there are countably many arrangements of these finitely many

Rn relations and hence we see that there are countably many isomorphism types

of structures inCI . Therefore there are countably many isomorphism types of

≤+-embeddings in(CI ,≤+).

We prove by induction onn that there are countably manyn-generator struc-

tures in the classCI (recall we are only considering theR relations and not the

Rn relations for this part).

Base Step: Let n = 1, soA = desc(b1) for someb1 ∈ CI . Sincedesc(bi) ≃ T

for all bi ∈ CI , there is only one1-generator structure,A up to isomorphism.

Inductive Step : Let B = desc(b1, . . . , bk, bk+1) be a(k + 1)-generator struc-

ture in CI and letA = desc(b1, . . . , bk). By Condition 2 of Definition 2.1.6,

A ∩ desc(bk+1) is finitely generated, for example byX ⊂ A. Take|X| to be

minimal, lettingX = {c1, . . . , cr} ⊆ B.

Claim 1. The set{c1, . . . , cr} is independent.

Proof. Since{c1, . . . , cr} is minimal,ci /∈ desc(cj) for everyi, j ∈ {1, . . . r},

i 6= j. We know{c1, . . . , cr} ⊆ desc(bk+1) and that this is isomorphic to

the rooted binary tree,T . Supposedesc(ci) ∩ desc(cj) 6= ∅ for somei, j ∈

{1, . . . , r}, i 6= j. Then leta ∈ desc(ci) ∩ desc(cj). This gives an undirected

cycle indesc(bk+1) as shown in Figure 6.
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... ...

... ...

bk+1

ci cj

a

Figure 6: An undirected cycle

This contradictsdesc(bk+1) ≃ T , and hence we have that{c1, . . . , cr} is inde-

pendent.

� Claim 1.

Claim 2. B is isomorphic to the free amalgam ofA and desc(bk+1) over

desc(X).

Proof. We have≤+-embeddingsf : desc(X) → A (sincedesc(X) ⊆ A)

and g : desc(X) → desc(bk+1) (sincedesc(X) ⊆ desc(bk+1)). We also

have thatA ⊂ B anddesc(bk+1) ⊂ B. Thereforedesc(bk+1) ∪ A is the free

amalgam ofdesc(bk+1) andA overdesc(X) (since there are no edges between

desc(bk+1)\desc(X) andA\desc(X)) and it is contained inB. It is clear that

these are the only elements inB, since

B = desc(b1, . . . , bk+1) =
k+1
⋃

i=1

desc(bi)

=

(

k
⋃

i=1

desc(bi)

)

∪ desc(bk+1)

= A ∪ desc(bk+1)

� Claim 2.
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By Lemma 2.2.4 we have that the isomorphism type ofB is independent of the

choice of automorphism ofdesc(X). We also have, from the inductive hypoth-

esis that there are countably many possibilities forA and hence countably many

possibilities forX. Therefore there are countably many possibilities forB.

Now that we have Proposition 2.2.6 we can construct the Fraı̈ssé-type limits.

We do this in the following theorem.

Theorem 2.2.7.There is a countableLI -structureN I such that

1. N I is the union of substructuresN I
1 ⊆ N I

2 ⊆ . . . such that eachN I
i ∈ CI

(i ∈ N) andN I
i ≤+ N I

i+1 for all i,

2. (Extension Property) wheneverA ≤+ N I
i andA ≤+ B ∈ CI there is

s ≥ i and a≤+-embeddingf : B → N I
s with f |A = id.

The extension property is represented diagramatically in Figure 7.

+

+

+

+NIi

NIsA

B

Figure 7: The extension property

Proof. To prove this we construct theN I
i inductively, takingN I

1 = ∅ for

example. For the purposes of the proof it will be useful to fix abijection

η : N× N× N → N with the property thatη(a, b, c) ≥ a, b, c.

Suppose we have constructedN I
1 ≤+ . . . ≤+ N I

i ∈ CI . There are countably

many finitely generated≤+-substructures ofN I
i - list these as(Ai

j : j ∈ N).
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For eachAi
j there are countably many isomorphism types of≤+-embeddings

into elements ofCI - list these asθijk : Ai
j → Bk. Note that at stagei we will

have done this for eachN I
m withm ≤ i. The point is that the extension problem

(as in Property 2) corresponding toθijk will be solved at stages = η(i, j, k)+1.

So let(i′, j′, k′) = η−1(i). We haveθi
′

j′k′ : A
i′

j′ → Bk′ , Ai′

j′ ≤
+ N I

i′ ≤
+ N I

i .

Then use the amalgamation property ofCI onAi′

j′,Bk′ andN I
i to getN I

i+1 ∈ CI

with N I
i ≤+ N I

i+1 andBk′ ≤+ N I
i+1 such that the diagram commutes. We may

assume thatN I
i is a substructure ofN I

i+1 and then we have thatAi′

j′ is fixed

pointwise.

Now letN I be the union of theseN I
n. For the last part, takeA ≤+ N I

i such

thatA ≤+ B ∈ CI . From the construction ofN I there will be ans ≥ i and a

≤+-embedding fromB toN I
s , as required by Property 2.

Remark 2.2.8. For any i ∈ N N I
i ≤+ N I . To see this leta ∈ N I , then

a ∈ N I
j for somej > i by the construction ofN I . SinceN I

i ≤+ N I
j this gives

desc(a)∩N I
i is finitely generated and ifdesc(a)\N I

i is finite thena ∈ N I
i , that

isN I
i ≤ +N I .

Definition 2.2.9. TheN I defined in the above theorem is≤+-homogeneousif

for any finitely generatedA1, A2 ≤+ N I , any isomorphismθ : A1 → A2 can

be extended to an automorphism ofN I

Corollary 2.2.10. TheN I defined in the above theorem is unique up to isomor-

phism and satisfies≤+-homogeneity.

Proof. This corollary follows from the following statement : IfN I
1 , N

I
2 satisfy

the properties forN I in Theorem 2.2.7,Ai ≤+ N I
i (for i = 1, 2) are finitely

generated andθ : A1 → A2 is an isomorphism, thenθ can be extended to an
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isomorphismθ̃ : N I
1 → N I

2 . In particular, if we takeA1 = A2 = ∅ then we

obtain the uniqueness stated in Corollary 2.2.10, and takingN I
1 = N I

2 gives the

required≤+-homogeneity.

The proof of this statement is done using a ‘back and forth’ argument (which is

possible becauseN I
1 andN I

2 are countable).

For the ‘forth’ step, letb ∈ N I
1 . We have to findA′

1 ≤
+ N I

1 andA′
2 ≤

+ N I
2 with

A1 ⊆ A′
1, b ∈ A′

1 and an isomorphismθ′ : A′
1 → A′

2 extendingθ. By the first

property forN I
1 there isA′

1 ≤+ N I
1 with A1 ⊆ A′

1 andb ∈ A′
1. For example,

takeA′
1 to be someN ′I

j containingb and all the generators ofA1. There are

≤+-embeddingsf : A1 → A′
1 andθ−1 : A2 → A1 and so by composition of

maps we get a≤+-embeddingf ◦ θ−1 : A2 → A′
1. We have a≤+-embedding

g : A2 → N I
2 and so the extension property forN I

2 gives a≤+-embedding

θ′ : A′
1 → N I

2 (as shown in the Figure 8). This embedding has the properties

θ′(A′
1) = A′

2 ≤
+ N I

2 andθ′|A1 = θ. This concludes the ‘forth’ direction of the

proof. The ‘back’ direction is then symmetrical to this.

+

+

+

A2

N I
2

A′
1

Figure 8: The extension property forA2

Definition 2.2.11.Call the structureN I defined above theFraı̈sśe-type limitof

(CI ,≤+).
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2.3 Primitivity

We now need to prove that the automorphism group of each of these Fraı̈ssé-

type limits is primitive. For this we use the criterion for primitivity given in

the introduction (Lemma 1.2.1) and we will require two lemmas which will be

presented below.

Definition 2.3.1. ForA ∈ CI andX a finite subset ofA define theclosureof

X in A to beclA(X) = {y ∈ A : descA(y)\descA(X)is finite}.

Note 2.3.2. 1. If X ⊆ Y ≤+ A thenclA(X) ⊆ Y .

2. For allX,A, clA(X) ≤ A.

3. If we know thatclA(X) is finitely generated thenclA(X) ≤+ A (knowing

clA(X) to be finitely generated gives thatclA(X)∩desc(a) for anya ∈ A

is finitely generated because this is the union ofdesc(c)∩desc(a) for each

generatorc ∈ clA(X) and we know eachdesc(c) ∩ desc(a) is finitely

generated by Condition 2 of Definition 2.1.6). ThereforeclA(X) is the

smallest≤+ subset ofA containingX.

Lemma 2.3.3.LetA ∈ CI and letX be a finite subset ofA. Then the closure

ofX in A, clA(X) is finitely generated.

Proof. AsA ∈ CI we knowA is finitely generated. Leta ∈ clA(X)\desc(X),

X = {x1, . . . , xn} andh be one of the generators ofA such thata ∈ desc(h)

(note there are only finitely many suchh). This is shown in Figure 9.

Definegen(h, x1) to be the vertices which are the generators of the intersec-

tion of desc(h) anddesc(x1). Note that this set is finite since the intersection

of any two descendant sets of elements ofA is finitely generated. Using this
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ax1 xn

h
A

Figure 9: The arrangement needed to show thatclA(X) is finitely generated

definition and knowing thatdesc(h) is a tree, we can see thatgen(a, xj) ⊆

gen(h, xj) for all j (if b ∈ gen(a, xj) andb /∈ gen(h, xj) for somej then be-

causedesc(a) ∩ desc(xj) ⊆ desc(h) ∩ desc(xj) there must bec ∈ gen(h, xj)

with b ∈ desc(c), which would give a cycle indesc(h)). Therefore the number

of vertices contained in a shortest path fromh to a, dist(h, a) is at most

max{dist(h, z) : z ∈ gen(h, xj), j = 1, . . . , n}.

This says thata is closer toh than the furthest generator in the intersection of

desc(h) and
⋃n

j=1 desc(xj). Sincegen(h,X) =
⋃n

j=1 gen(h, xj) is finite this

means that there are only finitely many possibilities fora. With these finitely

many possiblea’s and with the finite number of elements ofX we get that

clA(X) must be finitely generated.

Note that we can defineclNI (X) for X a finite subset ofN I . Then by the

above lemma it follows thatclNI (X) ≤+ N I
i for somei, and that it is finitely

generated.

Lemma 2.3.4.The Fräısśe-type limitN I as a digraph with relationR is con-

nected.

Proof. Let n1, n2 ∈ N I . If descN
I

(n1) ∩ descN
I

(n2) 6= ∅ then there is a

non-directed path fromn1 to n2 going via this intersection. If the intersection
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desc(n1)∩desc(n2) = ∅ then we use the extension property ofN I . LetB,C be

rooted binary trees with top verticesb, c respectively which intersect as shown

in Figure 10. Letn ∈ N I be such that fori = 1, 2, desc(n) ∩ desc(ni) = ∅

anddesc(n) ∪ desc(ni) has noRk relations on it for anyk ∈ I. The extension

property then gives thatdesc(n1) ∪ desc(n2) can be≤+-embedded intoB ∪ C

wheren1, n are two edges away fromb andn2, n are two edges away fromc (as

shown in Figure 10).

b

nn1 n2

c

Figure 10: The arrangement needed to showN I is connected

Therefore there is an undirected path of length at most eightfrom n1 to n2.

Using this approach withn3 ∈ clNI (n1) we can get a path of length at most 16

between any two vertices inN I , which is a property which can be expressed

by a first-order sentence. So we have shown that any model ofTh(N I) is

connected.

Proposition 2.3.5.The automorphism groupAut(N I) is transitive onN I .

Proof. This follows due to≤+-homogeneity and by Conditions 1 and 2 in Def-

inition 2.1.6.

Proposition 2.3.6.The automorphism groupAut(N I) is primitive onN I .

Proof. This proof is similar to the proof of ([13], Theorem 2.9), though we

have a different argument in case 3 below as the original argument appears to be
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somewhat inaccurate. From Lemma 1.2.1 we have that a transitive permutation

group is primitive if and only if all of its non-trivial orbital graphs are connected.

From the above proposition we haveAut(N I) is transitive onN I . SoAut(N I)

is a transitive permutation group and thus to prove this theorem we need to

show that all of the non-trivial orbital graphs ofAut(N I) are connected. To see

that all of the non-trivial orbital graphs are connected we prove that ifa 6= b ∈

N I then the orbital graph,G with vertex set the elements ofN I and edge set

{{fa, fb} : f ∈ Aut(N I)} is connected. AsN I is connected viaR-edges by

Lemma 2.3.4 it is enough to show that ifx, y ∈ N I are such that(x, y) is an

R-edge ofN I thenx, y lie in the same connected component ofG.

Without loss of generality, assumex = a and let

H1 = clNI (a, b) = {n ∈ N I : desc(n)\(desc(a) ∪ desc(b))is finite},

which is the closure ofa andb in N I . We have thatH1 is finitely generated by

Lemma 2.3.3 andH1 ≤+ N I .

Case 1Supposedesc(a) ∩ desc(b) = ∅. Let H2 be a copy ofH1 with a′ ∈

H2 corresponding toa ∈ H1. Recalling thaty is an out-vertex ofa, identify

descH1
(y) with descH2

(b), and take the free amalgamH1,2 of H1 andH2 over

descH1
(y) (this means not adding any newR or Rn relations). Then we have

anLI -structure withdesc(a′) ∩ desc(b) = ∅. We see from the construction of

H1,2 thatdesc(a′) ∪ desc(b) ≤+ H1,2 (by construction there are no elementsh

in H1,2 with desc(h)\desc(a′) ∪ desc(b) finite) so we can adjoin a finite setX

of new vertices toH1,2 to obtain anLI-structureP ⊇ H1,2 in which

H3 = clP (a′, b) = desc(a′, b) ∪X

is isomorphic toH1 (via an isomorphism takinga′ to a and b to b, and not
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adding any newRn relations). SoP is the union ofH1, H2 andH3, and we

haveH1 ∩ H3 = desc(b), H2 ∩ H3 = desc(a′) andH1 ∩ H2 = desc(y) as

is shown in Figure 11. Moreover, any edge (and anyRn relation) is contained

entirely within someHi.

H1 H2

H3

b a′

y

Figure 11: The arrangement of theHi’s

Claim. P ∈ CI .

Proof. It is clear thatP is finitely generated due to its construction, therefore

Condition 3 of Definition 2.1.6 holds. It is also clear that Condition 1 holds,

since for everyp ∈ P , desc(p) is contained in someHi (asHi ≤ P ) and so

is isomorphic toT . For Condition 2 note that eachHi is descendant closed in

P . We see thatdesc(y) ≤+ H1 sincedesc(b) ≤+ N I and alsodesc(y) ≤+ H2.

Then use the amalgamation property to see thatH1 ≤+ H1,2. We then get

desc(b) ∪ desc(a′) ≤+ H1,2. Using the amalgamation property again, this time

with desc(b) ∪ desc(a′) ⊆ H3 anddesc(b) ∪ desc(a′) (as shown in Figure 12)

we get thatH3 ≤+ P asP is the free amalgam ofH1,2 andH3 overdesc(a′) ∪

desc(b).

This argument can be seen to be symmetrical in1, 2, 3 (whereHi,j is the union

of Hi andHj: note that these are freely amalgamated over their intersection in

P ). So we haveHi ≤+ P for i = 1, 2, 3. Then this gives usdesc(p) ≤+ P for

everyp ∈ P , that is Condition 2 holds.
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+

+

desc(b) ∪ desc(a′)

H1,2

H3

P

Figure 12: The amalgamation property

Since the only occurrences of theRn relations are inH1, H2 or H3 disjointly

and the number of instances of theRn relations in each case is finite, the number

of instances of the relationsRn in P must also be finite. Therefore we have that

Condition 5 forp ∈ CI holds.

Finally, we need to check that Condition 4 holds, so assumeP |= Rn(p1, . . . , pn)

for p1, . . . , pn ∈ P . By the construction ofP this implies thatp1, . . . , pn ∈ Hi

for somei since this is the only way thatRn(p1, . . . , pn) can be true. Therefore

Hi |= Rn(p1, . . . , pn) and so thepj are independent,desc(p1, . . . , pn) ≤+ Hi

andp1, . . . , pn have no common ancestor inHi, since eachHi ∈ CI . By Lemma

2.1.12 we see thatdesc(p1, . . . , pn) ≤+ P (sincedesc(p1, . . . , pn) ≤+ Hi and

Hi ≤+ P ). EachHi is descendant closed since it is the closure of given ele-

ments. So suppose for a contradiction thatp1, . . . , pn have a common ancestor,

sayq ∈ P . Thenq must be inHj for somej 6= i (we knowp1, . . . , pn have

no common ancestor inHi from above). HoweverHi andHj are freely amal-

gamated over their intersection and as this is the descendant set of a single

point, not all ofp1, . . . , pn are in the intersection. AsHi ∩ Hj ≤ P we have

q /∈ Hi ∩Hj. However this contradicts the freeness of the amalgam. Therefore

Condition 4 holds and so we haveP ∈ CI .

� Claim.
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Now we use the extension property onH1 ≤+ P andH1 ≤+ N I (as shown in

Figure 13) to get that there is a copyP ′ of P overH1 with P ′ ≤+ N I .

+

+

+

H1

N I

P

Figure 13: The extension property

Sincedesc(a) ≤+ P , there is a≤+-embeddingφ : P → N I which keeps

desc(a) fixed. Any isomorphism between finitely generated≤+-substructures

of N I can be extended to an automorphism ofN I . So ifE denotes an edge in

the orbital graphG then we haveaEφ(b)Eφ(a′)Ey. Hencex = a andy are

at distance at most three in the orbital graph, and sox andy are in the same

connected component ofG.

Case 2Suppose thatb ∈ desc(a). In this case letb0 denote the predecessor ofb

in desc(a), so(b0, b) is anR-edge inN I . Then letb1 ∈ desc(a) be the other out-

vertex ofb0. Then there is an automorphism ofN I fixing a and interchangingb

andb1, sob andb1 are connected in the orbital graphG. We have thatdesc(b)∩

desc(b1) = ∅ and hence Case 1 gives that the orbital graph with{b, b1} as an

edge is connected. Therefore the orbital graphG is also connected.

Case 3Suppose thatdesc(b)\desc(a) anddesc(a)\desc(b) are infinite. In this

case letx1, . . . , xr be a minimal generating set fordesc(a)∩desc(b). Therefore

desc(xi) ∩ desc(xj) = ∅ for i 6= j and we prove that the orbital graphG is

connected in this case by induction onr, takingr = 0 as the base case (which

is given by case 1 above). We can assume thatxr is at maximal distance from

a amongst thexi. Let z be the immediate predecessor ofxr in desc(a). Note
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thatz /∈ desc(a) ∩ desc(b) by minimality of the generating set. Asdesc(a) ∩

desc(b) ≤+ desc(a), not all of the successors ofz lie in desc(a)∩desc(b). So we

can choosex′r to be one of its successors which is not amongstx1, . . . , xr. The

distance ofx′r from a in desc(a) is no smaller than the distance of that of any

of thexi. Thusx1, . . . , xr−1, x
′
r are independent anddesc(x1, . . . xr−1, x

′
r) ≤

+

desc(a).

By a free amalgam and the extension property there isb1 ∈ N I such that

desc(b1) ∩ cl(a, b) = desc(x1, . . . , xr−1, x
′
r) and there exists an isomorphism

f : cl(a, b) → cl(a, b1) with f(a, b, x1, . . . , xr−1, xr) = (a, b1, . . . , xr−1, x
′
r).

By ≤+- homogeneity, this extends to an automorphism ofN I . Thereforeb

andb1 are in the same connected component of the orbital graphG. However

we have thatdesc(b) ∩ desc(b1) = desc(x1, . . . , xr−1), and by the inductive

hypothesis the orbital graph with{b, b1} as an edge is connected. ThusG is

connected.

These are all of the possibilities sincea, b ∈ C and therefore they satisfy Con-

dition 2 which prohibits, for exampledesc(a)\desc(b) finite and non-empty.

Therefore we have shown that the automorphism groupAut(N I) is primitive

onN I .

2.4 Non-isomorphism

Finally, we show that the continuum many structures that we have produced

actually give different digraphs. To do this letN I |R be the underlying digraph

of N I (that is, take the reduct ofN I obtained by forgetting theRn relations).
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Proposition 2.4.1.Letn be a natural number. Thenn ∈ I if and only if there

exista1, . . . , an ∈ N I |R with the following properties:

1. desc(ai) ∩ desc(aj) = ∅ if i 6= j anddesc(a1, . . . , an) = A ≤+ N I |R,

2. a1, . . . , an have no common ancestor inN I |R,

3. every finite subsetX of A with clA(X) 6= A has a common ancestor in

N I |R.

Proof. First suppose thatn ∈ I. TakeA to be the graph generated by vertices

a1, . . . , an (the descendant set of each of these elements is a binary tree) such

thatdesc(ai)∩desc(aj) = ∅ if i 6= j and withA |= Rn(a1, . . . an) (and there are

no otherRk relations onA for anyk). ThenA ∈ CI by construction and so we

may assumeA ≤+ N I |R. HenceA satisfies Conditions 1 and 2. Now letX be

a finite subset ofA with clA(X) 6= A. We can assume thatdesc(X) ≤+ A and

thatX = max(clA(X)) = {x1, . . . , xr} (i.e. thatX contains only the elements

needed to generateclA(X)). Note that thexi are thus independent and therefore

clA(X) = desc(x1) ∪ . . . ∪ desc(xr). LetB be a rooted binary tree with root

b and letd be a distance fromb such that there are at least2r elements at that

distance. Letb1, . . . , br ∈ B be independent, at distance at leastd from b and

such that each pairbi, bj has no immediate common ancestor. Then there is an

isomorphism between
⋃

desc(xi) and
⋃

desc(bi) for i = 1, . . . , r. A possible

choice of thebi is shown in Figure 14.

Sodesc(X) is isomorphic todesc(b1, . . . , br), desc(bi) ∩ desc(bj) = ∅ for i 6=

j, b1, . . . , br have common ancestorb anddesc(b1, . . . , br) ≤+ desc(b). Now

use the amalgamation property to obtainA′ = A
∐

desc(X) desc(b) with A′ ≤+

N I |R. This then gives a common ancestor for the elements ofX inN I |R, which
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b

b1 b2 br

d

Figure 14: A possible arrangement of thebi in B

shows that Condition 3 also holds forA.

Now suppose thatA is as given, we have properties1, 2, 3 and, for a contra-

diction n /∈ I. Then there is no relationship between the points ofA ex-

cept digraph relations. To see this leta′1, . . . , a
′
k ∈ A for k 6= n and sup-

poseA |= Rk(a
′
1, . . . , a

′
k). Then by Condition 4 of Definition 2.1.6 we must

havea′1, . . . , a
′
k independent anddesc(a′1, . . . , a

′
k) ≤+ A. As k 6= n we have

clA(a′1, . . . , a
′
k) 6= A. Hence, by Condition 3a′1, . . . , a

′
k have a common ances-

tor inN I |R, and this contradictsA |= Rk(a
′
1, . . . , a

′
k).

Now use the extension property with the embeddingsf : A → B and g :

A → N I |R to get an embedding fromB into N I |R, whereB is a graph in

whicha1, . . . , an have a common ancestor (as Figure 15 indicates). This gives

a common ancestor ofa1, . . . , an in N I |R, which contradicts the properties of

A.

Proposition 2.4.2. If I 6= J then the digraphsN I |R andNJ |R are not isomor-

phic.

Proof. This follows from Proposition 2.4.1. For example, letn ∈ I, n /∈ J .

Then we can finda1, . . . , an ∈ N I |R so that the conditions in Proposition 2.4.1
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A =

B =
a1

a1

an

an
N I |R

Figure 15: The extension property forA

are satisfied. However there are nob1, . . . , bn in NJ |R with these conditions.

Therefore the digraphsN I |R andNJ |R cannot be isomorphic.

Remark 2.4.3.We have now constructed continuum many permutation groups

GI = Aut(N I |R) of countable degree and amongst these there are continuum

many non-isomorphic orbital digraphs (theN I |R). There is a possibility thatGI

has an orbital digraph which is isomorphic toNJ |R for someJ 6= I. However,

eachGI has only countably many orbital digraphs so there is a subsetof {GI :

I ⊆ N} of size continuum such that no two graphs in this subset are isomorphic

as permutation groups.

We have now shown that there are continuum many different primitive per-

mutation groups with an unbalanced suborbit, that is we haveproved Theorem

2.0.2. Having done this we decided to investigate their stability and other model

theoretic properties.
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Chapter 3

Stability, Independence and Tree

Properties

In this chapter we consider the stability of the digraphs constructed in Chapter

2 and then briefly the independence property, the tree property and the tree

property of the second kind. For simplicity, we consider thecase whereI = ∅,

so there are only digraph relations. Denote the class of isomorphism types

by (C0,≤+) and letN0 be the Fraı̈ssé-type limit of(C0,≤+), as constructed

in the earlier chapter. This is the original version of the construction of these

digraphs as seen in [13]. We find thatTh(N0) is unstable and, as detailed in

the introduction we would like to find a stable theoryT , a modelM |= T and a

typep such that the group of automorphisms induced on the setp(M) = {a ∈

M : M |= p(a)} by Aut(M) is primitive with an unbalanced suborbit. Thus

for the final part of this chapter we consider a variation of the digraphs we have

been considering to see if we can find what we are looking for.
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3.1 Stability

We first consider the stability of these digraphs, finding that Th(N0) is unstable.

Definition 3.1.1. Let the binary relationS(a, b) be the formula

(∃c)(∃c1)(∃c2)((c1 6= c2) ∧ (cRc1 ∧ cRc2 ∧ c1Ra ∧ c2Rb))

where we writea′Rb′ for (a′, b′) ∈ R.

This relation is shown diagramatically in Figure 16.

c1 c2

c

a b

Figure 16: A diagram of the relationS(a, b)

Lemma 3.1.2.Let a1, a2 ∈ N0. Then we havedesc(a1) ∩ desc(a2) = ∅ and

desc(a1) ∪ desc(a2) ≤+ N0 if and only ifN0 |= S(a1, a2).

Proof. Let A = desc(a1) ∩ desc(a2) andB = desc(a1) ∪ desc(a2). First

suppose thatN0 |= S(a1, a2). Then the result is clear - forc from Definition

3.1.1,desc(c) ≃ T sincec ∈ C0 and henceA = ∅. Also B ≤+ desc(c) and

desc(c) ≤+ N0 and so by Lemma 2.1.12B ≤+ N0.

Now suppose thatA = ∅ and thatB ≤+ N0. Then there is a≤+-embedding

f : B → desc(c) obtained by sendingdesc(a1) anddesc(a2) to the appropriate

places indesc(c). Hence we havec ∈ N0 which witnessesS(a1, a2).

Definition 3.1.3. Defineφ(a, b) to be∀x(S(a, x) → S(b, x)).
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Lemma 3.1.4.We haveN0 |= φ(a, b) if and only ifdesc(b) ⊆ desc(a).

Proof. Assumedesc(b) ⊆ desc(a), and henceb ∈ desc(a). If N0 |= S(a, x),

thendesc(a) ∩ desc(x) = ∅ anddesc(a) ∪ desc(x) ≤+ N0 by Lemma 3.1.2.

Since b ∈ desc(a) we then havedesc(b) ∩ desc(x) = ∅. We also know

desc(b) ≤+ desc(a) and so

desc(b) ∪ desc(x) ≤+ desc(a) ∪ desc(x) ≤+ N0,

(the first of these is by inspection ofdesc(a) ∪ desc(x)) hence Lemma 2.1.12

givesdesc(b) ∪ desc(x) ≤+ N0. ThereforeN0 |= S(b, x) and soN0 |= φ(a, b).

Now suppose thatdesc(b) 6⊆ desc(a) and thereforeb /∈ desc(a). Sincea, b ∈

N0, desc(a) ∩ desc(b) is finitely generated.

Claim. There isc ∈ desc(b) such thatdesc(a) ∪ desc(c) ≤+ desc(a) ∪ desc(b)

anddesc(a) ∩ desc(c) = ∅.

Proof. LetX be the set of generators ofdesc(a) ∩ desc(b). SinceX is a finite

set letx be the element ofX which is furthest away fromb. Let w be the

predecessor ofx in desc(b) andy the other out-vertex ofw. We are able to

choosey /∈ desc(a) for otherwise we havew ∈ desc(a)∩ desc(b) by desc(a)∩

desc(b) ≤+ desc(a). Takingx at maximal distance away fromb guarantees

thatdesc(y) ∩ desc(X) = ∅. Then choosec to be one of the out-vertices ofy.

This ensures thatdesc(X) ∩ desc(c) = ∅ and sodesc(a) ∩ desc(c) = ∅. Also

desc(a) ∪ desc(c) ≤+ desc(a) ∪ desc(b) becausedesc(X) ≤+ desc(b).

� Claim.

Now letd be the root of a rooted binary tree such thatdesc(c) ⊂ desc(d). (An

example of this arrangement is shown in Figure 17). Then by construction we
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have thatdesc(c) ≤+ desc(d). We also havedesc(c) ≤+ desc(a)∪ desc(b) and

so by the amalgamation property of(C0,≤+) the free amalgam,D of desc(a)∪

desc(b) anddesc(d) overdesc(c) is in C0 anddesc(a) ∪ desc(b) ≤+ D. By

the extension property we may assume thatD ≤+ N0. Therefore we have

desc(d) ∩ desc(a) = ∅ anddesc(d) ∪ desc(a) ≤+ N0, and hence by Lemma

3.1.2N0 |= S(d, a). Howeverdesc(b) ∩ desc(d) 6= ∅ and soN0 6|= S(d, b).

ThereforeN0 6|= φ(a, b).

a b

c

d

Figure 17: The arrangement for the proof of Lemma 3.1.4

Proposition 3.1.5.Th(N0) has the strict order property.

Proof. Lemma 3.1.4 shows thatφ defines a partial order onTh(N0) which has

infinite chains. This means thatTh(N0) has the strict order property.

We have therefore shown thatTh(N0) is unstable.

3.2 Independence Property

We then decided to understand our original theory further and so considered

whether or not the theoryTh(N0) has the independence property. The follow-

ing definition will be used in the proof.
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Definition 3.2.1. Recall that two elementsa1, a2 of N0 are called independent

if desc(a1) ∩ desc(a2) = ∅. LetA be a rooted directed binary tree with roota.

Say that an elementb ∈ A is on level i of A if there is a directed path of length

i from a to b. Define alevelled independent setin A to be a set of independent

elementsai of A (for 1 ≤ i < ω) where eachai is on leveli of A. Figure

18 gives an illustration of a levelled independent set in a rooted directed binary

tree.
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Figure 18: A levelled independent set

The following lemma shows thatTh(N0) does have the independence property.

Lemma 3.2.2.Th(N0) has the independence property.

Proof. Consider the modelN0 of Th(N0) and letψ(x, y) be the formula that

says ‘desc(x)∩desc(y) = ∅’, which is definable by Lemma 3.1.4 by the formula

6 ∃z(φ(x, z) ∧ φ(y, z)).

Claim. The formulaψ(x, y) has the independence property with respect to the

theoryTh(N0).

Proof. For n ∈ N fix b1, . . . , bn independent elements ofN0 (so desc(bi) ∩

desc(bj) = ∅ if i 6= j) with
⋃

desc(bi) ≤
+ N0. Letw ⊆ {1, . . . , n}. We show

that there isaw ∈ N0 such thatdesc(aw) ∩ desc(bi) = ∅ if and only if i ∈ w.

For example, letC be a rooted binary tree with rootc. Let z1, . . . , zn+1 be a
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levelled independent set inC and letu1, . . . , un be a levelled independent set in

desc(zn+1). A possible configuration of this is shown in Figure 19.

c

z1

z2

zn+1

u1

u2

u3

Figure 19: An arrangement for the proof of Lemma 3.2.2

Then there is an embedding ofdesc(b1, . . . , bn) into C takingbi to zi if i ∈ w

andbj to uj if j 6∈ w. By the extension property (usingdesc(b1, . . . , bn) ≤+ N0

anddesc(b1, . . . , bn) ≤+ C) we can assume that this arrangement is inN0.

Then takeaw to be the vertexzn+1 and we get thatdesc(aw) ∩ desc(bi) = ∅ if

and only ifi ∈ w which is the required condition foraw.

This arrangement can be repeated for anyaw. Hence the formulaψ(x, y) has

the independence property with respect to the theoryTh(N0).

� Claim.

We have shown that there is a formula which has the independence property
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with regard to the theoryTh(N0) and thereforeTh(N0) has the independence

property.

3.3 Tree Properties

In this section we show that the theoryTh(N0) has the tree property and the

tree property of the second kind.

Lemma 3.3.1.The theoryTh(N0) has the tree property.

Proof. To prove this we give a formulaφ(x, y), somek < ω and (aν : ν ∈

<ωω) such that for allξ ∈ ωω the set{φ(x, aξ|n) : n < ω} is consistent and for

all ν ∈ <ωω the set{φ(x, aν∧i : i < ω} is k-inconsistent. Letφ(x, y) be the

formula such thatN0 |= φ(x, y) if and only if x ∈ desc(y).

Claim. The formulaφ has the tree property withk = 2.

Proof. To prove the claim we find(aν : ν ∈ <ωω) in N0 such that for all

ν ∈ <ωω the set{φ(x, aν∧i) : i < ω} is 2-inconsistent, that is there does not

exist anx with x ∈ desc(aν∧i) ∩ desc(aν∧j) for any distincti, j < ω. We also

require that for allξ ∈ ωω the set{φ(x, aξ|n) : n < ω} is consistent, that is

there exists anx ∈ N0 with x ∈ ∩desc(aξ|n) for n < ω.

Let A be a rooted binary tree inN0 with root a0 and define the set{ai : 1 ≤

i < ω} to be a levelled independent set inA. By the definition of a levelled

independent set there are as many elements as we need and the independence

gives us the required conditions on the descendant sets up tothis point. Now

define the set{aij : j < ω} for each fixedi to be a levelled independent set in

the respectivedesc(ai), the set{aijk : k < ω} for each fixedij to be a levelled
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independent set in the respectivedesc(aij), and so on (withai0 = ai etc). Figure

20 gives an illustration of this configuration.
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a31 a4

Figure 20: An illustration to showφ has the tree property

By construction{φ(x, aξ|n) : n < ω} is consistent because
⋂

n≤m desc(aξ|n) 6=

∅ for anym < ω. This means that the consistency condition for the tree property

holds. Also, there does not exist anx with x ∈ desc(aν∧i) ∩ desc(aν∧j) for

any distincti, j < ω due to the independence of the levelled independent sets.

Hence for allν ∈ <ωω φ(x, aν∧i) ∧ φ(x, aν∧j) is inconsistent.

� Claim.

We have therefore found a formula with the tree property withrespect toTh(N0)

and henceTh(N0) has the tree property.

We now show that the theoryTh(N0) has the tree property of the second kind

(TP2).

Lemma 3.3.2.The theoryTh(N0) hasTP2.

Proof. Again, letφ(x, y) be the formula such thatN0 |= φ(x, y) if and only if
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x ∈ desc(y). To prove thatTh(N0) hasTP2 we find an array〈aji : i, j < ω〉

in N0 andk < ω such that for allj < ω and for alli0 < i1 < . . . < ik < ω,

φ(x, aji0)∧φ(x, a
j
i1
)∧ . . .∧φ(x, ajik) is inconsistent, and also for allf : ω → ω,

∧

j<ω φ(x, a
j

f(j)) is consistent.

We define the array〈aji : i, j < ω〉 with the required properties as follows.

Let a1i for eachi < ω be the root of a rooted directed binary tree inN0 such that

thea1i are independent. This gives
∧

i<ω φ(x, a
1
i ) is inconsistent: the formulas

are2-inconsistent asdesc(a1i ) ∩ desc(x, a1j) = ∅ for all i 6= j by the definition

of independent elements. This arrangement is shown in Figure 21.
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a11 a12 a13

Figure 21: The first part of the arrayaji

Let a2i for eachi < ω be the root of a rooted directed binary tree witha2i /∈

desc(a1k) for any k. Let bi1, b
i
2, . . . be a levelled independent set indesc(a2i )

for eachi. The treedesc(a2i ) intersectsdesc(a11) with generatorbi1 on leveli

of desc(a11), desc(a
1
2) with generatorbi2 on leveli of desc(a12) and so on, such

that the set of generators of the intersections ofdesc(a2i ) and eachdesc(a1k) is a

levelled independent set indesc(a1k). Notice that
∧

i<ω φ(x, a
2
i ) is2-inconsistent

as there are no elements indesc(a2i )∩desc(a2j ) for anyi 6= j by definition. Also

desc(a1j )∩desc(a2k) 6= ∅ for anyj, k so
∧

n<ω,m=1,2 φ(x, a
n
m) is consistent. This

means that the required properties are satisfied up to this point. See Figure 22

for an example of this arrangement.
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Figure 22: The second part of the arrayaji

Let a3i for eachi < ω be the root of a rooted directed binary tree witha3i /∈

desc(ajk) for any k and j < 3. Let ci1, c
i
2, . . . be a levelled independent set

in desc(a3i ) for eachi. The treedesc(a3i ) intersectsdesc(a11) with genera-

tor ci1 on level i of desc(a11) ∩ desc(a21), desc(a
1
2) with generatorci2 on level

i of desc(a12) ∩ desc(a22), and so on, such that the set of generators of the

intersections ofdesc(a3i ) and eachdesc(a1k) is a levelled independent set in

desc(a1k) ∩ desc(a2k). Again note that the required properties are satified up to

this point sincedesc(a3i ) ∩ desc(a3j ) = ∅ for all i 6= j, desc(a1j) ∩ desc(a3k) 6= ∅

anddesc(a2j) ∩ desc(a3k) 6= ∅ for all j, k.

We can continue in this way defining theaji so that for allj the intersection

desc(aji ) ∩ desc(ajk) = ∅ for all i 6= k, and withdesc(aji ) intersecting every

desc(alk) wheneveri 6= k. This means we have defined an array〈aji : i, j < ω〉

such that for allj < ω and for alli1 < . . . < ik < ω, φ(x, aji1) ∧ . . . ∧ φ(x, a
j
ik
)

is inconsistent, and also for allf : ω → ω,
∧

j<ω φ(x, a
j

f(j)) is consistent as

required.
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3.4 Variation

As stated earlier, we would like to find a stable theoryT , a modelM |= T

and a typep such that the group of automorphisms induced on the setp(M) =

{a ∈ M : M |= p(a)} by Aut(M) is primitive with an unbalanced suborbit.

Therefore we try to find a stable theory where we can find digraphs such as the

ones constructed earlier on the set of realizations of some complete type of the

theory. Note that we do not necessarily have the strict orderproperty from the

previous work sincep(M) may not be definable.

Definition 3.4.1. Let D0 be the class of finite digraphs (with digraph relation

R) where each vertex has at most two direct descendants and which forbids

directed cycles and subgraphs of the forma1Ra2R . . .Ran, b1Rb2R . . .Rbm

wherea1 = b1 andan = bm (i.e. we are forbidding cycles of the form shown in

Figure 23).

... ...

a1 = b1

a2

an−1

an = bm

b2

bm−1

Figure 23: A forbidden cycle

Definition 3.4.2. Let A ∈ D0, a ∈ A andn ∈ N. An n-path from a is a

sequencea = a0, a1, . . . , an of elements ofA where either

1. aiRai+1, or

2. ai is terminal (i.e. it has no descendants) inA andai+1 = ai.
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In this case writean ∈ desc(a)n. Equivalently,an ∈ desc(a)n if there is either

a path of lengthn from a to an or an is a terminal vertex and there is a path of

lengthm from a to an wherem ≤ n.

Definition 3.4.3. Define a binary relation∼ for elementsa, b ∈ A ∈ D0 by

a ∼ b if for somen eitherdesc(a)n ⊆ desc(a)∩desc(b) ordesc(b)n ⊆ desc(a)∩

desc(b).

Definition 3.4.4. ForX,A ∈ D0 writeX ≤+ A if X is descendant closed inA

and fora ∈ A if desc(a)n ⊆ X thena ∈ X. Fora ∈ A, desc(a) ≤+ A means

that if a ∼ b for someb ∈ A then eithera ∈ desc(b) or b ∈ desc(a).

Notation 3.4.5. This relation≤+ is similar to the relation defined in Chapter 2

hence we use the same symbol, however it is not identical since in this case we

are dealing only with finite graphs and previously we were considering infinite

graphs.

Definition 3.4.6. Define the class(D1,≤+) as the set{A ∈ D0 : desc(a) ≤+ A

for all a ∈ A}.

We want to axiomatize the Fraı̈ssé-type limit of the class(D1,≤+) and have a

full amalgamation property for the class. This would enableus to use a ‘back

and forth’ argument to prove completeness of the axiomatization. The follow-

ing lemma is a weaker version of the amalgamation property than is required,

since in this case we needX ≤+ A and not justX ⊆ A. Then we explain

that this amalgamation property is not enough to be able to axiomatizeTh(M)

whereM is the Fraı̈ssé-type limit of(D1,≤+).

Lemma 3.4.7. Let A,X, Y ∈ D1. If X ≤+ Y andX ≤+ A, then the free

amalgamZ of Y andA overX is in D1 andA, Y ≤+ Z.

Proof. Firstly, asA,X, Y ∈ D1 andZ = Y
∐

X A we can see thatZ ∈ D0
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(no edges are added to those inA, Y when the free amalgam is taken so no

forbidden cycles are created). So to ensure thatZ ∈ D1 we need to take an

elementz1 ∈ Z and check thatdesc(z1) ≤+ Z. For this takez2 ∈ Z such that

z1 ∼ z2. This gives us three cases.

Case 1Suppose thatz1, z2 ∈ A. In this case we see that eitherz1 ∈ desc(z2) or

z2 ∈ desc(z1) trivially sinceA ∈ D1 andX ≤+ A.

Case 2Suppose thatz1, z2 ∈ Y . Again it is trivial to see thatz1 ∈ desc(z2) or

z2 ∈ desc(z1) asY ∈ D1 andX ≤+ Y .

Case 3Suppose, without loss of generality thatz1 ∈ A\X andz2 ∈ Y \X.

Sincez1 ∼ z2 we knowdesc(zi)
n ⊆ desc(z1) ∩ desc(z2) for i = 1 or i = 2 and

for somen ∈ N. We also know thatdesc(z1) ∩ desc(z2) ⊆ X. Due to these

facts and due toX ≤+ A, Y we havezi ∈ X for i = 1 or i = 2, which means

we are back to one of the two cases above.

Therefore we have seen thatZ ∈ D1.

Now we must proveA, Y ≤+ Z. Since the arrangement is symmetrical we only

need to show this forA and then the proof forY will be identical. We see thatA

is descendant closed inZ sinceX ≤+ A, Y and sinceZ = A
∐

X Y . Letz ∈ Z

and suppose thatdesc(z)n ⊆ A for somen ∈ N. We need to show that if this is

the case then we actually havez ∈ A. Therefore we need to takez ∈ Y \X for

this to be non-trivial. As in the proof of the first part,desc(z)n ⊆ A requires

thatdesc(z)n ⊆ X. Then, asX ≤+ Y this meansz has to be inX and so it is

in A as required.

Using this lemma we can take a Fraı̈ssé-type limitM1 of (D1,≤+) which has
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the≤+-extension property (that is, ifX ∈ D1 andX ≤+ A then there is a≤+-

embeddingf : A→ D1). However, the conditionX ≤+ A cannot be expressed

in a first order way. Hence we cannot see how to axiomatizeM1. We would

need to haveX ⊆ A and not be restricted toX ≤+ A in the amalgamation

lemma above. However Lemma 3.4.7 with the conditionX ≤+ A replaced

by X ⊆ A does not hold. We can see that this is the case by checking the

conditions forZ to be inD1.

Let a, b ∈ Z be such thata ∼ b. We want to show that eithera ∈ desc(b) or

b ∈ desc(a). If we takea, b ∈ Y \X then we can geta 6∼ b in Y , buta ∼ b in Z.

Figure 24 shows an arrangement where this is the case (note that the dotted lines

for some edges in the diagram have no significance - they are there only to add

clarity). This means that it is impossible to forcea ∈ desc(b) or b ∈ desc(a) as

we need forZ ∈ D1.

Y

X

A

a b

Figure 24: One case wherea 6∼ b in Y buta ∼ b in Z

Note that this situation does not occur ifX is descendant closed inZ. However

we can not restrict to this case for the same reason as we cannot restrict to

X ≤+ A. This problem will also occur in any other theory where we have
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X1, X2 ∈ X with desc(X1)
n, desc(X2)

n ⊆ (desc(X1) ∩ desc(X2))\X.

Question 3.4.8.Is it possible to use these methods to find a stable theory with

the properties that we were looking for?
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Chapter 4

Directed Graphs and Hrushovski

Constructions

In this chapter we describe the connection between a Hrushovski construction

using a predimension (as set out in [18]) and general digraphs where each ver-

tex has at most two out-vertices (note that these digraphs are allowed to have

directed circuits unlike the ones in the preceeding chapters). We show that the

Fraı̈ssé-type limit of the Hrushovski class(C,≤) and the reduct of the Fraı̈ssé-

type limit of the class(D,⊑) of finite≤ 2-oriented digraphs obtained by forget-

ting the directions on the edges are isomorphic. This is donein a more general

form in [14]. We then define minimal, primitive and regular extensions which

correspond roughly with simply algebraic and minimally simply algebraic ex-

tensions in [18]. With these definitions we define a new class of digraphs in

which the number of primitive extensions is limited. We prove an amalgamation

lemma for this class which is similar to Lemma 3 (Algebraic amalgamation) in

[18]. Using this result we axiomatize the theory of these directed graphs. We
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then consider algebraic closure in these structures which gives us some infor-

mation about forking and allows us to show that the theory is complete, stable

and trivial. We finally look at the undirected reduct of the Fraı̈ssé-type limit

of this directed class and show that although it is a proper reduct, it is strictly

stable.

4.1 Comparing a Hrushovski Construction and Di-

rected Graphs

We begin this section by defining the predimension from whichthe Hrushovski

class is obtained. We then define a class of finite digraphs andshow that the

reduct of the Fraı̈ssé-type limit of this class and that of the Hrushovski class are

isomorphic.

Definition 4.1.1. Take a language,L with a binary relation,E. Let T be the

theory of graphs in this language. For a finite graphA, |E[A]| is the number of

edges in the graphA and|A| is the number of vertices. Define apredimension

for this theory to beδ(A) = 2|A|−|E[A]|. Then the classC is the class of finite

modelsA of T whereδ(A′) ≥ 0 for all A′ ⊆ A.

Definition 4.1.2. If D ∈ C andA ⊆ D writeA ≤ D if δ(D′) ≥ δ(A) whenever

A ⊆ D′ ⊆ D. Hence for allD ∈ C we have∅ ≤ D.

The following lemma is essentially the same as ([18], Lemma 1) but the defini-

tion of δ that we are using is slightly different so we give the proof here.

Lemma 4.1.3. LetA ≤ B ∈ C beL-structures andX ⊆ B. Then we have

δ(A ∩X) ≤ δ(X).
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Proof. FromA ≤ B andA ⊆ A ∪X ⊆ B we haveδ(A ∪X) ≥ δ(A). Now

δ(A ∪X) = 2|A ∪X| − |E[A ∪X ]|

≤ 2(|A|+ |X| − |A ∩X|)− (|E[A]|+ |E[X ]| − |E[A ∩X ]|).

Putting this together withδ(A) = 2|A| − |E[A]| andδ(A ∪X) ≥ δ(A) gives

2(|A|+ |X| − |A ∩X|)− |E[A]| − |E[X ]|+ |E[A ∩X ]| ≥ 2|A| − |E[A]|,

and then rearranging gives

2|X| − |E[X ]| ≥ 2|A ∩X| − |E[A ∩X ]|,

which is

δ(X) ≥ δ(A ∩X).

Definition 4.1.4. Let A be an undirected graph. A2-orientationof A is a

directed graphA′ with the same vertex and edge sets asA where the edges

are given directions in such a way that each vertex inA′ has at most two out-

vertices. If such a 2-orientation ofA exists then say thatA can be2-oriented.

Lemma 4.1.5. If A is a finite graph thenA ∈ C if and only if there is a 2-

orientation ofA.

Note that this means any graph inC can be represented as a digraph with at

most two out-vertices for each vertex.

Proof. ⇐ Assume thatA can be 2-oriented. Then there is a directed graphA′

with the same vertex and edge sets asA where the edges are given directions

in such a way that each vertex has at most two out-vertices. Sothere are no
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more than two edges coming away from each vertex and since this is a finite

graph this gives that there are at most2|A| edges in the graph, henceδ(A) =

2|A| − |E[A]| ≥ 0. The same is true for all induced subgraphs ofA, therefore

δ(A′) ≥ 0 for all A′ ⊆ A.

⇒ Next we use Hall’s Marriage Theorem to show that every graph in C can be

2-oriented. To use Hall’s Marriage Theorem we construct a bipartite graph. For

the first part takeE[A] (so the vertices in this part of the graph are the edges

from the original graph). Then take two copies of the set of vertices ofA, V (A)

andV (A)′ to form the second part of the bipartite graph needed. So the graph

hasE[A] for one part andV (A)∪V (A)′ for the other and has edges from vertex

{vi, vj} in E[A] to verticesvi andvj in V (A) and to verticesv′i andv′j in V (A)′.

This arrangement is shown in Figure 25. If we can obtain a perfect matching for

E[A] in this graph then if the matching choosesvi or v′i to be joined to{vi, vj}

then makevi the initial vertex of the directed edge(vi, vj) in the oriented graph.

Since we have two copies ofV (A) eachvi could then be the initial vertex of at

most two edges, and since the matching is perfect forE[A] every edge will be

directed. Thus we will be able to orient every graph inC as required.

Let X ⊆ E[A] and check to see whether there are at least|X| elements in

N(X), the set of vertices in the bipartite graph that are joined toelements of

X. Define the graphY ⊆ A to be the induced subgraph ofA with vertex set

{vi : ∃vj{vi, vj} ∈ X}. Then |N(X)| = 2|Y | and also|X| ≤ |E[Y ]|. As

Y ⊆ A and from the definition ofA ∈ C we haveδ(Y ) = 2|Y | − |E[Y ]| ≥ 0.

Therefore we have

|X| ≤ |E[Y ]| ≤ 2|Y | = |N(X)|,
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and hence by Hall’s Marriage Theorem we get the matching as required.

{vi, vj}
vivj

v′i
v′j

E[A] V (A)V (A)′

Figure 25: The bipartite graph used in Hall’s Marriage Theorem in the proof of Lemma

4.1.5

Definition 4.1.6. LetB ⊆ A be finite graphs which can be 2-oriented. Then we

say there is a2-orientation ofA in whichB is closedif A has a 2-orientation

A′ in which there are no edges pointing out ofB′ (using the notation from the

previous chapters, this is equivalent todescA
′

(B′) = B′). An example of this

definition is shown in Figure 26).

A′

B′

Figure 26: An orientation ofA in whichB is closed

The following lemma is a generalization of Lemma 4.1.5 and isfrom ([14],

Lemma 1.5) withr = 2.

Lemma 4.1.7. If A is a finite graph andB ⊆ A then∅ ≤ B ≤ A if and only if

there is a 2-orientation ofA in whichB is closed.

Proof. ⇐ Suppose that there is a 2-orientation ofA in whichB is closed. So

there is a 2-orientation ofA and hence by Lemma 4.1.5A ∈ C and so we have
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δ(A) = 2|A| − |E[A]| ≥ 0. The existence of a 2-orientation ofA in whichB is

closed means that there is a 2-orientation ofB and so we haveδ(B) ≥ 0 again

by Lemma 4.1.5, which gives∅ ≤ B as stated in Definition 4.1.2. We see that

2|A\B| ≥ |E[A]\E[B]| (each edge inE[A]\E[B] has at least one of its end

vertices inA\B) which givesδ(A) ≥ δ(B). The same argument works for any

subgraphA′ of A containingB (sinceA′ also has a 2-orientation in whichB

is closed, taking the same orientation as forA) and hence we haveB ≤ A as

required.

⇒ For this direction we again use Hall’s Marriage Theorem. Assume thatA is

a finite graph,B ⊆ A and∅ ≤ B ≤ A. TakeE[A]\E[B] for one part of the

bipartite graph, and take two copies ofV (A)\V (B) (calledV (A)\V (B) and

(V (A)\V (B))′) for the other part. Ifvi, vj /∈ B, put edges between{vi, vj} in

E[A]\E[B] andvi, vj in V (A)\V (B) andv′i, v
′
j in (V (A)\V (B))′. If vm ∈ B

andvn /∈ B then put edges between{vm, vn} andvn, v′n. This then gives the

bipartite graph that we use in Hall’s Marriage Theorem and itis shown in Figure

27. TakeX ⊆ E[A]\E[B] and defineY ⊆ A to be the induced graph on the

set of vertices{vi : ∃vj , {vi, vj} ∈ X}. Then|N(X)| = 2|Y \B| and |X| ≤

|E[Y ]\E[B]|. We have assumedB ≤ A and so we haveδ(B ∩ Y ) ≤ δ(Y ) by

Lemma 4.1.3, that is

2|B ∩ Y | − |E[B ∩ Y ]| ≤ 2|Y | − |E[Y ]|.

We can split the vertices ofY into two sets so|Y | = |Y \B| + |Y ∩ B|. This

and rearranging gives

2|B ∩ Y | − |E[B ∩ Y ]| ≤ 2|Y \B|+ 2|Y ∩B| − |E[Y ]|

|E[Y ]| − |E[B ∩ Y ]| ≤ 2|Y \B|.
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It is clear that|E[Y \B]| ≤ |E[Y ]| − |E[Y ∩ B]|. Putting everything together

then gives

|X| ≤ |E[Y \B]| ≤ 2|Y \B| = |N(X)|.

Thus Hall’s Marriage Theorem gives a perfect matching forE[A]\E[B] in this

graph. This gives a 2-orientation ofE[A]\E[B] wherevi ∈ B is not the

first vertex of any edge. Since∅ ≤ B we can use Lemma 4.1.5 to give a 2-

orientation ofB, and putting this together with the orientation above we have a

2-orientation ofA in whichB is closed.

(V(A)\V(B))’E[A]\E[B] V(A)\V(B)
vi
vj

v′i
v′j

vn

{vi, vj}

{vm, vn} v′n

Figure 27: The bipartite graph used in Hall’s Marriage Theorem in the proof of Lemma

4.1.7

Now we have shown that Hrushovski’s class(C,≤) arises by considering the

rather more natural class of finite≤ 2-out digraphs.

For the last part of this section we are going to consider the Fraı̈ssé-type limit

of two classes of graphs. The first of these classes is(C,≤), as we considered

above. The other is(D,⊑), the class of finite≤ 2-out digraphs (where each

vertex has at most two out-vertices) without self loops where A ⊑ B means

thatA is closed inB. This definition of⊑ is equivalent to that given in ([14],
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Definition 1.4). We will require the following amalgamationlemma for the

class(D,⊑).

Lemma 4.1.8.LetA,B1, B2 ∈ D such thatA ⊆ B1 andA ⊑ B2. Then the

free amalgamC = B1

∐

AB2 ofB1 andB2 overA is inD andB1 ⊑ C.

Proof. SinceB1, B2 ∈ D andC is the free amalgam (i.e. there are no edges

other than those fully contained inB1 or fully contained inB2) it is clear thatC

is a finite graph where each vertex has at most two out-vertices, that isC ∈ D.

FromA ⊑ B2 and the definition of the free amalgam we getB1 ⊑ C, since if

this was not the case then it would contradictA ⊑ B2.

By Lemma 4.1.7 we see that taking the reduct of the class(D,⊑) where we

forget the direction on the edges gives the class(C,≤). We would therefore like

to know whether the reduct of the Fraı̈ssé-type limit of(D,⊑) is isomorphic to

the Fraı̈ssé-type limit of(C,≤).

Notation 4.1.9. Denote the Fraı̈ssé-type limit of(C,≤) byM and the Fraı̈ssé-

type limit of (D,⊑) by N . Call the reduct ofN obtained by forgetting the

direction on the edgesM ′.

Remark 4.1.10.The Fraı̈ssé-type limitN has directed cycles and each element

has infinite in-degree and out-degree at most2.

We are going to prove the following theorem.

Theorem 4.1.11.M is isomorphic toM ′

To prove this we prove the two lemmas below.

Lemma 4.1.12.Let X ⊑ Y ∈ D andX ′ be a reorientation ofX such that

X ′ ∈ D. If Y ′ is the result of replacingX by X ′ in Y thenY ′ ∈ D and

X ′ ⊑ Y ′.
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Proof. If X ⊑ Y thenX is closed inY . ReorientingX does not affect the

edges which come fromY into X. ThereforeY ′ is given a 2-orientation in

whichX ′, the reorientedX is closed by givingY ′\X ′ the same orientation as

Y \X.

Definition 4.1.13. Let A ⊆ B ∈ D. Then theclosureof A in B is the set

clB(A) of b ∈ B such thatb can be reached from somea ∈ A by an outward

directed path (soclB(A) = descB(A) in the notation of Chapter 2).

Lemma 4.1.14.If A is a finite subset ofM ′ andA ≤ B ∈ C then there is an

embeddingf : B → M ′ with f(B) ≤ M ′ and f |A = id, i.e. M ′ has the

extension property.

Proof. Take an orientationA′ of A in D and letA1 = clN(A
′), which is finite

becauseA is finite and due to the definition of the Fraı̈ssé-type limitN . As

A ≤ B Lemma 4.1.12 then says thisA′ can be extended to an orientationB′ of

B in whichA′ is closed. Figure 28 shows this arrangement. The class(D,⊑)

has full amalgamation (as proved in Lemma 4.1.8), so the freeamalgamC ′ of

B′ andA1 overA′ is in D andA1 ⊑ C ′. Now use the⊑-extension property in

N to obtain a⊑-embedding ofB′ intoN . Finally, forget the directions on the

edges to get the required result.

Lemma 4.1.14 shows thatM is isomorphic toM ′ (using uniqueness of the

Fraı̈ssé-type limit from Lemma 1.6.1) and so proves Theorem 4.1.11.

It has been shown, for example in [14], that the limit structureN is stable, but

not superstable. It is also possible to check that this is a trivial theory (for the

definition of a trivial theory see Definition 4.3.5) and that the reduct described

here is non-trivial (see [9] where several model theoretic properties of these
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A1A1

M ′ N

AB A′B′

Figure 28: The arrangement for the proof of Lemma 4.1.14

theories are considered).

4.2 Limiting Primitive Extensions

We now define minimal, primitive and regular extensions and consider the class

of directed graphs where the number of primitive extensionsis limited. We then

prove amalgamation lemmas and axiomatize the theory.

Definition 4.2.1. Let the class(D̄,⊑) be the class of possibly infinite≤ 2-out

digraphs. LetA ⊆ B be directed graphs in̄D. ThenA is descendant closedin

B,A ⊑ B if clB(A) ⊆ A (with the definition ofcl from Definition 4.1.13 in the

previous section). Note that we had the same definition in Chapter 2 but here

we are using different notation to fit in with other notation that we need in this

section. A vertexa in A is calledfull in A if it has two out-vertices inA.

Definition 4.2.2. ForA ⊆ B ∈ D̄ (possibly infinite), the extensionA ⊑ B

is minimal if B\A is finite and whenevery ∈ B\A theny is full in B and

B\A ⊆ clB(y) (an example is shown in Figure 29). The extensionA ⊑ B is

primitive if it is minimal and everya ∈ A is an out-vertex of some vertex in

B\A (an example is shown in Figure 30). The extensionA ⊑ B is regular if
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there is noB′ ⊆ B with A ⊏ B′ (A 6= B′) minimal.

A

B

Figure 29: An example of a minimal extension

A

B

Figure 30: An example of a primitive extension

Remark 4.2.3. These definitions are motivated by Hrushovski’s definition of

a minimally simply algebraic extension in [18]. In fact it can be shown (see

[14]) that if the extensionA ⊑ B ∈ D is minimal in the above sense then the

undirected reductA− ≤ B− ∈ C is simply algebraic in Hrushovski’s sense.

Moreover, ifA ⊑ B is primitive thenA− ≤ B− is minimally simply algebraic.

Thus in what follows, controlling the multiplicities of primitive extensions cor-

responds to imposing a boundµ on the multiplicity of minimally simply alge-

braic extensions in Hrushovski’s construction of a strongly minimal set in [18].

Definition 4.2.4. Let A ⊑ B ∈ D be a primitive extension andν(B/A)

be a function from isomorphism types of primitive extensions to the natural

numbers. LetDν be the class of finite directed graphsC in D, such that if
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A0 ⊑ Bi ⊑ C for i = 1, . . . r with Bi ∩ Bj = A0 for all i 6= j and there is a

primitive extensionA ⊑ B and isomorphismsfi : Bi → B with fi(A0) = A

thenr ≤ ν(B/A). This means that there are at mostν(B/A) primitive exten-

sions isomorphic to each primitive extensionA ⊑ B overA in C. Let D̄ν be the

class of directed graphs as above, but allowing infinite graphs.

Remark 4.2.5. Note that ifA ⊑ B is minimal then there is a uniqueA0 ⊆ A

such thatA0 ⊑ A0 ∪ (B\A) is primitive. Call thisA0 thebaseof A ⊑ B. In

this case,B is the free amalgam ofA0 ∪ (B\A) andA overA0. An example of

the base of a minimal extension is shown in Figure 31.

A

B

A0

Figure 31: An example to illustrate the base of a minimal extension

Lemma 4.2.6.SupposeA ⊑ B andY ⊆ B is such thatY ∩A ⊑ Y is primitive.

ThenY ∪ A ⊑ B andY ∪A is the free amalgam ofA andY overY ∩ A.

Proof. By definition of primitivity, y ∈ Y \A is full in Y and henceclB(y) ⊆

Y ∪ A. The lemma is then immediate.

Lemma 4.2.7(Amalgamation Lemma). SupposeC ∈ D̄ν , A ⊆ C is finite

andA ⊑ B ∈ D̄ν . Let F be the free amalgamF = B
∐

A C. If F is not

in D̄ν then there is a primitive extensionX ⊑ Y with X ⊆ A and there are

r = ν(Y/X) + 1 copiesY1, . . . , Yr of Y overX insideF such that

1. Y1 6⊆ C andY2 6⊆ B, and
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2. A ∪ Y1 is the free amalgam ofA andY1 overX andA ∪ Y1 ⊑ B.

Proof. If F is not in D̄ν then by Lemma 4.1.8 there is a primitive extension

X ⊑ Y with X ⊆ F and there arer = ν(Y/X) + 1 copiesY1, . . . , Yr of Y

overX in F . Note thatC ⊑ F becauseA ⊑ B.

Claim X ⊆ A.

Proof. We prove this by eliminating the other possibilities forX.

Case 1X ∩ (B\A) 6= ∅. SinceB ∈ D̄ν someYi is not completely contained

in B. There can not be an elementy ∈ (Yi\X) ∩ (B\A) by the definition of a

primitive extension: letz ∈ Yi\B thenYi\X ⊆ cl⊑Yi
(z) contradictsA ⊑ B as

y ∈ cl⊑Yi
(z) . By the primitivity of the extension everyx ∈ X is an out-vertex

of somey ∈ Yi\X. However we have just shownYi\X ⊆ C and this again

contradictsA ⊑ B. Therefore we can not have this case.

Case 2X ∩ (C\A) 6= ∅. We see that there is somei such thatYi 6⊆ C by

C ∈ D̄ν . Due to the closure property of primitivity andA ⊑ B, we have

(Yi\X) ∩ A = ∅ (because withz ∈ (Yi\X) ∩ A the primitivity condition

Yi\X ⊆ cl⊑Yi
(z), knowing thatYi\C 6= ∅ contradictsA ⊑ B). We also

have(Yi\X) ∩ (C\A) = ∅ because the closure condition of primitivity would

require a relation between an element ofC\A and an element ofB\A which is

forbidden by the definition of a free amalgam. By primitivityeveryx ∈ X and

in particular everyx ∈ X ∩ (C\A) is an out-vertex of some vertex inYi\X.

However this too gives a relation between an element inB\A and an element

in C\A which is forbidden by the definition of a free amalgam. So thiscase is

not valid either.

The only other option is thatX ⊆ A and since neither of the above cases can
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occur, we must have this situation.

� Claim.

Therefore we now have that there is a primitive extensionX ⊆ Y in F with

X ⊆ A andr copiesY1 . . . , Yr of Y overX in F . SinceX ⊆ A it is clear that,

without loss of generalityY1 6⊆ C andY2 6⊆ B. It follows thatY1 ⊆ B and

Y2 ⊆ C. AlsoA∪ Y1 is the free amalgam ofA andY1 overX andA ∩ Y1 ⊑ B

by Lemma 4.2.6.

Corollary 4.2.8. SupposeC ∈ D̄ν , A ⊆ C is finite andA ⊑ B ∈ D̄ν is a

minimal extension with baseX. Let F be the free amalgamF = B
∐

A C.

Then one of the following occurs:

1. F ∈ D̄ν ,

2. there exists an embeddingα : B → C overA,

3. there is a primitive extensionX ⊑ Y in F and k = ν(Y/X) copies

Y1, . . . , Yk of Y overX in C such that for eachi ≤ k either

(a) there isa ∈ A with some element ofYi\X as one of its out-vertices,

or

(b) (Yi\X) ∩A 6= ∅.

Proof. Assume thatF 6∈ D̄ν . Then by Lemma 4.2.7 there is a primitive exten-

sionW ⊑ Z withW ⊆ A andr = ν(Z/W )+1 copiesZ1, . . . , Zr of Z overW

in F such thatZ1 6⊆ C,Z2 6⊆ B,A∪Z1 is the free amalgam ofA andZ1 overW

andA ∪ Z1 ⊑ B. By the minimality ofA ⊑ B and the uniqueness of the base

X we haveW = X andZ = Z1 = X∪(B\A). We now letYi = Zi+1 for i ≤ r
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andYk+1 = Z1 (note this is simply renaming) which givesν(Z/W ) = ν(Y/X)

andr = k + 1. So we haveν(Y/X) + 1 copiesY1, . . . , Yk+1 of the primitive

extensionX ⊑ Y overX in F . SinceY = Yk+1 = X ∪ (B\A) we have

ν(Y/X) copiesY1, . . . Yk of the primitive extensionX ⊑ Y overX in C. Now

assume that 3 does not hold, hence there is ani ≤ k such that both(a) and(b)

do not happen. So we have somei with (Yi\X)∩A = ∅ andA∪Yi = A
∐

X Yi.

ThereforeA ∪ Yi andB are isomorphic overA. Thus there is an embedding

α : B → C overA, that is 2 holds.

Note 4.2.9.If A ⊑ B from the above corollary is a primitive extension (that is

X = A) then Conditions 3(a) and 3(b) do not hold sinceA ⊑ Y . Therefore if

A ⊑ B is a primitive extension then either the free amalgamF ∈ D̄ν or there

exists an embeddingα : B → C overA.

Corollary 4.2.10. SupposeC ∈ D̄ν , A ⊆ C is finite andA ⊑ B ∈ D̄ν is

regular. LetF be the free amalgamF = B
∐

AC. ThenF ∈ D̄ν .

Proof. SinceA ⊑ B is regular there does not existB′ ⊆ B with A ⊏ B′

(A 6= B′) minimal. Therefore there is no primitive extensionX ⊑ Y in F with

X ⊆ A andY 6⊆ C. Hence Lemma 4.2.7 givesF ∈ D̄ν .

Corollary 4.2.11. The class(Dν ,⊑) has the amalgamation property.

Proof. We need to show that forA,B,C ∈ Dν if A ⊑ B andA ⊑ C then we

can amalgamate to a structureE ∈ Dν with B,C ⊑ E. Arguing by induction

on |B\A|, we may assume that the extensionA ⊑ B is either minimal or

regular. If it is regular then Corollary 4.2.10 shows that wecan takeE to be

the free amalgam ofB andC overA. So now suppose thatA ⊑ B is minimal

and the free amalgamF is not inDν . As A ⊑ C, Case 3 in Corollary 4.2.8
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does not occur and so Case 2 of Corollary 4.2.8 must occur. This gives what we

need.

Thus(Dν ,⊑) is an amalgamation class in the sense of Section 1.6 and we de-

note byNν the Fraı̈ssé-type limit of this class (as in Theorem 1.6.1). We would

now like to axiomatize the theoryTh(Nν).

Definition 4.2.12. For a setA of vertices in a directed graph letA→ be the set

of immediate out-vertices ofA, that is the set of elements reached from any

element inA by a directed edge.

In the following∆A(x̄) denotes the basic diagram ofA (that is the quantifier

free formula which specifies that thēx have the same isomorphism type asA)

and∆A,B(x̄, ȳ) is the basic diagram ofB with the variables arranged so that

∆A,B(x̄, ȳ) implies∆A(x̄).

SupposeA ⊑ B is a finite minimal extension which has baseX ⊆ A. Then let

Y = X ∪ (B\A) andr = ν(Y \X) and defineθA,B (using Corollary 4.2.8) as

follows

∀ā∆A(ā) → ∃ȳ∆A,B(āȳ)∨

(

∃x̄∆X(x̄) ∧ ∃ȳ1, . . . , ȳr∆X,Y (x̄ȳi) ∧
∧

i

ϕ(āȳi)

)

whereϕ(āȳi) says that there is an element of the tupleȳi which is inA or there

is an element of the tuplēyi which is inA→ (as in Case 3 of Corollary 4.2.8).

ForA ⊑ B a finite regular extension defineτA,B (using Corollary 4.2.10) to be

∀ā∆A(ā) → ∃ȳ∆A,B(āȳ) ∧ φ(āȳ)

whereφ says that out-vertices of̄y are only ināȳ, which can be written in a first

order way.
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LetΣ be the collection of allθA,B andτA,B.

Lemma 4.2.13.We haveNν |= Σ.

Proof. Let A ⊆ Nν be finite,A ⊑ B ∈ Dν andC = cl⊑(A). Note thatC

is finite. To show thatNν |= Σ it is enough to considerA ⊑ B being either

a minimal extension or a regular extension and proving thatNν |= θA,B or

Nν |= τA,B in the respective cases.

Case 1A ⊑ B is a minimal extension. Let the extension have baseX and let

Y = X ∪ (B\A). Assume that̄a in Nν is such that∆A(ā) holds. By Corollary

4.2.8 we have that either the free amalgamF (of B andC overA) is in Dν ,

or there is an embedding fromB into C overA, or there areν(Y/X) copies

Y1, . . . , Yr of Y overX in C such that for eachi one of two conditions hold.

In the first case (F ∈ D̄ν) we haveC ⊑ F (by definition of the free amalgam)

andC ⊑ Nν (sinceC is the closure ofA in Nν) so we can use the extension

property of the Fraı̈ssé-type limit to get an embedding ofF into Nν . This

clearly gives us an embedding ofB intoNν overA. In the second case we have

an embedding ofB into C ∈ Nν and so we have an embedding ofB into Nν

overA. Thus, in either of the first two cases we have an embedding ofB into

Nν overA, that is∆A,B(āȳ) holds for somēy ∈ Nν and thereforeNν |= θA,B.

In the third case we haveY1, . . . , Yr such that for eachi either somea ∈ A has

an element ofYi\X as one of its out-vertices or(Yi\X) ∩ A 6= ∅. This means

we have the second part of the conclusion toθA,B and so againNν |= θA,B.

Case 2A ⊑ B is a regular extension. In this case, Corollary 4.2.10 givesthat

the free amalgam ofB andC overA is in D̄ν . As in a part of the previous

case, we haveC ⊑ F andC ∈ Nν so using the extension property of the

Fraı̈ssé-type limit gives an embedding ofF into Nν such thatF ⊑ Nν . In
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particular there is an embedding ofB into Nν overA, so there is therefore

someȳ ∈ Nν such that∆A,B(āȳ) holds. We also have to check thatφ(āȳ)

holds, that means out-vertices ofȳ are only ināȳ. Since we haveF ⊑ Nν

andF is a free amalgam (so there are no edges betweenB\A andC\A) it is

clear that out-vertices of elements ofB\A are withinB. That givesφ(āȳ) as

required. HenceNν |= τA,B.

Definition 4.2.14. For a vertexx in a directed graphD let x⇒ be the descen-

dants ofx in D, that is the set of vertices inD that can be reached fromx by an

outward directed path. Letx⇒n for n ∈ N be the set of vertices inD that can

be reached fromx by an outward directed path of length at mostn.

Notation 4.2.15.Let T be the theory of≤ 2-oriented digraphs in the language

L which has a binary relation symbolR(x, y) for ‘there is a directed edge from

x to y’. Let Tν beT together with the axiomsΣ.

Lemma 4.2.16.LetN |= Tν beω1-saturated (N is not required to have cardi-

nalityℵ1). If C ⊑ N is finitely generated andC ⊑ D ∈ D̄ν is finitely generated

then there is a⊑-embeddingf : D → N overC.

Proof. Without loss of generality, we may assumeD = d⇒ ∪ C for some

d. For everyn ∈ N let Dn = d⇒n andCn = Dn ∩ C. We first prove by

induction on|Dn\Cn| that we have an embeddingf : Dn → N overCn with

(C ∪ f(Dn)) ⊑ N andf(Dn)∩C = Cn. The base case|Dn\Cn| = 0 is trivial.

For the inductive step, first consider the case ofCn ⊑ Dn being a regular exten-

sion. Letc̄ be the generators ofC and letA be c̄⇒m for somem such thatCn ⊆

A. LetB = Dn

∐

Cn
A. ThenA ⊑ B is a regular extension (if it were not regu-

lar thenCn ⊑ Dn could not be a regular extension). By the axiomτA,B there is
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an embeddingg : B → N overA such that out-vertices ofg(B)\Cn are only in

g(B) ∪ Cn. This givescl⊑(g(B)) = cl⊑(A) ∪ g(B) = C ∪ g(B). We can thus

find an embeddingf : Dn → N overCn with cl⊑(f(Dn)) = cl⊑(Cn) ∪ f(Dn)

(which means(C ∪ f(Dn)) ⊑ N) andf(Dn) ∩ C = Cn, as required.

Now if Cn ⊑ Dn is not a regular extension then there is someD′
n ⊆ Dn

such thatCn ⊑ D′
n is a minimal extension. By the inductive hypothesis we

may assume thatD′
n = Dn. Let X ⊆ Cn be the base of this extension, so

X ⊑ X ∪ (Dn\Cn) = Y is primitive. LetA ⊆ C be such that any copyYi

(i ≤ ν(Y/X)) of Y overX in C is contained inA. By minimality, Y \X is

finite and so each copyYi is finite. Hence we can chooseA to be finite. Let

B = Dn

∐

Cn
A. ThenA ⊑ B is a minimal extension becauseCn ⊑ Dn is a

minimal extension. There is then someX ′ ⊆ A such thatX ′ ⊑ X ′ ∪ (B\A) is

a primitive extension, and since this base is uniqueX ′ = X. SinceN |= Σ we

use the axiomθA,B to give that either

1. there is an embedding ofB intoN overA, or

2. there arer = ν(Y ′/X ′) copiesY ′
1 , . . . , Y

′
r of Y ′ overX ′ in N such that

for eachi

(a) Y ′
i \X

′ ∩A 6= ∅ or

(b) A→ ∩ (Y ′
i \X

′) 6= ∅.

Claim Case 2 cannot occur.

To see this assume that there areY ′
1 , . . . , Y

′
r copies ofY ′ overX ′ in N . Since
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C ∈ D̄ν there must be at least one of these copies ofY ′ not contained com-

pletely inC. Let Y ′
1 , . . . , Y

′
k (for k < r) be the copies ofY ′ contained com-

pletely inC (and so inA), andY ′
k+1, . . . , Y

′
r be the other copies. SinceC ⊑ N

andY ′
i \X

′ ⊆ cl⊑(y′i) for anyy′i ∈ Y ′
i \X by minimality, we get that for anyi ∈

{k+1, . . . , r} the intersection(Y ′
i \X

′)∩C is empty (hence(Y ′
i \X

′)∩A = ∅).

AlsoC ⊑ N shows thatA→ ∩ (Y ′
i \X

′) = ∅ for any i ∈ {k + 1, . . . , r}. Thus

(a) and (b) do not hold for any of the copiesY ′
k+1, . . . , Y

′
r and hence case 2

cannot occur.

Therefore case 1 must occur and there is an embeddingh : B → N overA.

SinceA ⊑ B is a minimal extension, the imageh(B) of B in N must also be a

minimal extension ofA. Thereforecl⊑(h(B)) = h(B) ∪ cl⊑(A) = h(B) ∪ C.

We also haveh(B)∩C = A since if this were not the case there would be some

x ∈ B\A with h(x) ∈ C. This would then forceh(B) ⊆ C asC ⊑ N and

B\A ⊆ cl⊑(x). However, that would contradict the choice ofA. Hence there

is an embeddingf : Dn → N overCn with cl⊑(f(Dn)) = cl⊑(Cn) ∪ f(Dn)

(which means that(C ∪ f(Dn)) ⊑ N) andf(Dn) ∩ C = Cn.

We therefore have an embeddingf from Dn intoN overCn for everyn such

that(C ∪ f(Dn)) ⊑ N andf(Dn) ∩ C = Cn.

Using the saturation ofN and compactness we see that we have a⊑-embedding

fromD intoN overC.

Finally in the axiomatization ofTh(Nν) we look at types in this theory and use

this to show that the theory is complete.

Lemma 4.2.17.Let M,N |= Tν and let ā and b̄ be n-tuples inM andN

respectively. Then̄a and b̄ have the same type if and only if the mapā 7→ b̄
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extends to an isomorphism betweencl⊑M(ā) andcl⊑N(b̄).

Proof. If the types of̄a andb̄ are the same then there is clearly an isomorphism

between their closures. For the converse, it is enough to show that ifM,N are

ω1-saturated models ofTν then the set of isomorphisms between closures of

finite subsets ofM,N is a back and forth system. This follows from Lemma

4.2.16. LetS be the set of partial isomorphisms between finitely generated

substructures ofM andN , let ā, b̄ generate isomorphic substructures andf :

cl⊑(ā) → cl⊑(b̄) be an isomorphism. Thusf ∈ S. Take c ∈ M and let

A = cl⊑M(ā) andB = cl⊑N(b̄). Sof gives a⊑-embedding fromB intoA ∪

cl⊑M(c). Hence, by Lemma 4.2.16 we can find ad ∈ N such thatA ∪ cl⊑M(c)

is isomorphic toB ∪ cl⊑N(d), extending the isomorphismf . This completes

the ‘forth’ direction, and the ‘back’ direction is similar.

Lemma 4.2.18.The theoryTν is complete.

Proof. This follows from Lemma 4.2.17 with̄a, b̄ empty tuples.

Theorem 4.2.19.The theoryTν axiomatizesTh(Nν).

Proof. This follows from Lemmas 4.2.13, 4.2.16 and 4.2.18.

4.3 Stability and Triviality

We now consider two further model theoretic properties, showing that the the-

ory Tν defined above is stable and trivial.

Theorem 4.3.1.The theoryTν is stable.
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Proof. SupposeN is a highly saturated model ofTν . If B ⊑ N is small (which

means of cardinality less than the degree of saturation) of size λ and ā is a

tuple of elements ofN then, by the above lemmatp(ā/B) is determined by

cl⊑(āB). Howevercl⊑(āB) is the free amalgam ofcl⊑(ā) andB over their

intersection. Note thatcl⊑(ā) is countable and so the number of possibilities

for the intersection is|B|ℵ0 . The number of possibilities for the isomorphism

type of cl⊑(ā) over cl⊑(ā) ∩ B is at most2ℵ0 . Hence the number ofn-types

overB is at mostmax(2ℵ0 , |B|ℵ0) = |B|ℵ0 = λℵ0 . Thus the theory isλ-stable

for λ = λℵ0 , which means it is stable.

We now give a description of algebraic closure in a modelN |= Tν and then

look briefly at forking in the theoryTν .

We may assume that the modelN |= Tν is sufficiently saturated. It is clear

that if X ⊆ N thenacl(X) ⊑ N . SupposeA ⊑ N andB ⊆ N is such that

A ∩ B ⊑ B is a primitive extension. ThenA ∪ B ⊑ N (by the definition of

primitivity) and B ⊆ acl(A) (by theν-function). LetÃ be the closure ofA

under the operation of taking primitive extensions. We claim thatÃ = acl(A).

The previous observation gives thatÃ ⊆ acl(A). On the other hand, ifb ∈

N\Ã andB = cl(Ã ∪ {b}) = Ã ∪ cl(b), thenÃ ⊑ B is a regular extension

and it follows (by free amalgamation as in Lemma 4.3.2 below)that there are

infinitely many copies ofB over Ã in N . So, in particularb 6∈ acl(Ã). This

establishes the claim.

Lemma 4.3.2.LetN |= Tν , A ⊑ B ⊑ N andc ∈ N . Suppose that we have

acl(cA) ∩ acl(B) = acl(A). Thentp(c/acl(B)) does not divide overacl(A).

Proof. Let Ã = acl(A), B̃ = acl(B) andC̃ = acl(cA). Note that for any set
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X of N we havecl⊑(X) ⊆ acl(X) and so these sets (Ã, B̃, C̃) are descendant

closed inN . By the hypothesis̃C andB̃ are freely amalgamated over̃A. Since

C̃, B̃ ⊑ N we getC̃ ∪ B̃ ⊑ N . Now suppose(B̃i : i < ω) is a sequence

of translates ofB̃ over Ã and letX = acl(
⋃

B̃i). SinceÃ is ⊑-embedded in

X and also inC̃ we can form the free amalgamF of C̃ andX over Ã with

⊑-embeddingsf : C̃ → F andg : X → F . As Ã is algebraically closed iñC,

Ã ⊑ C̃ is a regular extension. Hence we get thatF ∈ D̄ν by Lemma 4.2.7 and

we can assume thatN is sufficiently saturated so thatF ⊑ N . Let f(C̃) = C̃ ′

and note that by construction we havetp(C̃ ′/Ã) = tp(C̃/Ã). Also by the

construction we have that for everyi, C̃ ′ ∪ B̃i ⊑ F , henceC̃ ′ ∪ B̃i ⊑ N and

C̃ ′∪ B̃i is the free amalgam of̃C ′ andB̃i overÃ. Lemma 4.2.17 says that types

are determined purely by descendant closure and hence we seetp(C̃ ′B̃i) =

tp(C̃B̃) for all i. This givestp(c/acl(B)) does not divide overacl(A).

Corollary 4.3.3. LetA ⊑ B ⊑ N |= Tν andc ∈ N . Thenc |⌣A
B if and only

if acl(cA) ∩ acl(B) = acl(A).

Proof. ⇒ SinceN is a stable structure, this is given by Corollary 1.7.5.

⇐ Since the theory is stable, forking and dividing coincide and hence this is

given by Lemma 4.3.2 above.

We note the following additional property of algebraic closure.

Lemma 4.3.4.For A,B ⊑ N |= Tν we haveacl(A) ∩ acl(B) = acl(A ∩B).

Proof. Firstly, it is clear thatacl(A∩B) ⊆ acl(A)∩ acl(B). So consider some

x ∈ acl(A) ∩ acl(B), x /∈ A∩B (if x ∈ A ∩B thenx ∈ acl(A ∩B) trivially).

If, without loss of generalityx ∈ A \ B thenx ∈ acl(B) gives a sequence of

81



minimal extensionsB ⊑ B1, B1 ⊑ B2, . . ., Bn−1 ⊑ Bn such thatx ∈ Bn

wheren is the least such. Note thatB ⊑ N sox /∈ cl⊑(B) asx /∈ B. We

definedBn so thatx ∈ Bn andx /∈ Bn−1. The minimality of this extension

thus givesBn\Bn−1 ⊆ cl⊑Bn
(x) which together withx ∈ A andA ⊑ N gives

Bn\A = ∅. This means thatBj ⊆ A for all j and hence the sequence of

minimal extensions is overA ∩ B, that isx ∈ acl(A ∩ B).

So we can now assume thatx /∈ A andx /∈ B. Hence there are sequences of

minimal extensionsA ⊑ A1,A1 ⊑ A2, . . .,An−1 ⊑ An andB ⊑ B1,B1 ⊑ B2,

. . ., Bm−1 ⊑ Bm such thatx ∈ An andx ∈ Bm andn,m are the least such. By

the fullness property of minimal extensions, each of the twoout-vertices ofx

is inAn and is also inBm. More specifically, each is inAn\An−1, Ai\Ai−1 for

somei < n orA, and is inBm\Bm−1, Bj\Bj−1 for somej < m orB. Let us

now consider the possibilities for one of these out-vertices, call ity within An.

If y ∈ An\An−1 then we can repeat the above conditions for the two out-

vertices ofy due to the minimality of the extension. By definition of minimal

extensionsAn\An−1 is finite and so we can find a descendant ofx which is not

inAn\An−1. Thus we can assume without loss of generality thaty /∈ An\An−1.

Now consider the possibility ofy ∈ Ai\Ai−1 for somei < n. Repeating

the argument from above gives that we will eventually (possibly after passing

through several of theAi) come to a descendant ofx which lies inA. Therefore

let z be a descendant ofx in A such that it is the out-vertex of an element which

is not inA. We can assume thatz /∈ A ∩ B (if there is no suchz then we

havecl⊑(x) ∩ A ⊆ A ∩ B, meaning that the sequence of minimal extensions

A ⊑ A1, A1 ⊑ A2, . . ., An−1 ⊑ An is overA ∩ B, hencex ∈ acl(A ∩ B) and

we are done). We now consider thisz with regards to theBj extensions. Since
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z is a descendant ofx and the extensions are all minimal the fullness condition

means we must havez ∈ B or z ∈ Bj\B for somej ≤ m. We have assumed

that z /∈ B so we havez ∈ Bj\B for somej ≤ m, which we shall say is

the least suchj. Using the closure property of the minimality definition we see

Bj\Bj−1 ⊆ cl⊑(z). RecallingA ⊑ N then givesBj\Bj−1 ⊆ cl⊑(z) ⊆ A and

henceBj ⊆ A. SinceBj is an extension overB contained inA it must be an

extension overA ∩ B. Thus the whole chain ofBk extensions is overA ∩ B

giving x ∈ acl(A ∩ B) as required.

Note that in generalacl(A) ∪ acl(B) = acl(A ∪ B) is not true for allA,B ⊑

N . For example ifA andB are disjoint sets then there could be a primitive

extension overA ∪B consisting of a single vertex with an edge to some vertex

in A and an edge to some vertex inB. This is not a primitive extension over

eitherA orB, henceacl(A) ∪ acl(B) 6= acl(A ∪ B) in this case.

Definition 4.3.5. A complete stable theoryT is trivial if whenevera, b, c are

tuples of elements from a model ofT andA is a set of parameters, thena, b, c

being pairwise independent overA implies thata |⌣A
b, c.

Lemma 4.3.6.The theoryTν is trivial.

Proof. From Corollary 4.3.3 we can see thata, b, c being pairwise independent

overA is equivalent to the properties

acl(aA) ∩ acl(bA) = acl(A),

acl(bA) ∩ acl(cA) = acl(A)

and

acl(aA) ∩ acl(cA) = acl(A).
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Now consideracl(aA) ∩ acl(bcA). This can be rewritten

acl(aA) ∩ acl(bcA) = acl(cl⊑(aA)) ∩ acl(cl⊑(bcA)).

By Lemma 4.3.4

acl(cl⊑(aA)) ∩ acl(cl⊑(bcA)) = acl(cl⊑(aA) ∩ cl⊑(bcA))

= acl(cl⊑(aA) ∩ (cl⊑(bA ∪ cA))).

Since the descendant closure is disintegrated we get

acl(cl⊑(aA) ∩ (cl⊑(bA ∪ cA))) = acl(cl⊑(aA) ∩ (cl⊑(bA) ∪ cl⊑(cA)))

= acl((cl⊑(aA) ∩ cl⊑(bA)) ∪ (cl⊑(aA) ∩ cl⊑(cA))).

It is clear that

cl⊑(aA) ∩ cl⊑(bA) ⊆ acl(aA) ∩ acl(bA)

and by the hypothesis we have

acl(aA) ∩ acl(bA) = acl(A).

Therefore

cl⊑(aA) ∩ cl⊑(bA) ⊆ acl(A)

and similarly we see that

cl⊑(aA) ∩ cl⊑(cA) ⊆ acl(A).

Hence

(cl⊑(aA) ∩ cl⊑(bA)) ∪ (cl⊑(aA) ∩ cl⊑(cA)) ⊆ acl(A)

which gives

acl((cl⊑(aA) ∩ cl⊑(bA)) ∪ (cl⊑(aA) ∩ cl⊑(cA))) ⊆ acl(A),
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that is

acl(aA) ∩ acl(bcA) ⊆ acl(A).

The other inclusion is trivial and so we haveacl(aA) ∩ acl(bcA) = acl(A)

which, by Corollary 4.3.3 is equivalent toa |⌣A
b, c.

4.4 Non-superstability

In what followsNν is a large saturated model ofTν . We now consider the

reductMν of Nν which is obtained by disregarding the directions on the edges.

Note thatMν is saturated as it is the reduct of a saturated model. We show that

Th(Mν) is strictly stable (recall this meansλ-stable if and only ifλω = λ),

which is in contrast to the reduct in Section 4.1.

Definition 4.4.1. Define adirected triadto be a triplea, b, c in Nν such that

there are directed edges froma to b and froma to c and no other edges. If we

disregard the direction on the edges of a directed triad thenwe will call it an

undirected triad.

Note 4.4.2.A directed triad is made up of the primitive extension{b, c} ⊑

{a, b, c}.

Lemma 4.4.3. Let ν(P/Q) = 1 for the primitive extensionQ ⊑ P where

P = {p, q, r}, Q = {q, r} and p, q, r is a directed triad. Then for any two

elementse, f in Nν there must be an elementd in Nν such thatd, e, f is a

directed triad.

Proof. Recall thatθA,B for a minimal extensionA ⊑ B with baseX ⊆ A and

Y = X ∪ (B\A) is defined as
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∀ā∆A(ā) → ∃ȳ∆A,B(āȳ)∨

(

∃x̄∆X(x̄) ∧ ∃ȳ1, . . . , ȳr∆X,Y (x̄ȳi) ∧
∧

i

ϕ(āȳi)

)

whereϕ(āȳi) says that there is an element of the tupleȳi which is inA or

there is an element of the tuplēyi which is inA→. In this caseA = {e, f},

B = {d, e, f}, X = A andY = B. The axiom therefore says that for any set

isomorphic toA there is an extension ofA isomorphic toA ⊑ B or there is an

elementy inNν such thaty, e, f is a directed triad and eithery ∈ A or y ∈ A→.

As we haveX = A Note 4.2.9 says that the second option cannot occur and so

there must be an extension ofA isomorphic toA ⊑ B. That is, there is ad in

Nν such thatd, e, f is a directed triad.

Lemma 4.4.4. Let ν(P/Q) = 1 for the primitive extensionQ ⊑ P where

P = {p, q, r}, Q = {q, r} andp, q, r is a directed triad. LetT be the rooted

directed binary tree and letA = {a ∈ Nν : desc(a) ≃ T}. Then for any

α ∈ Aut(Mν) we haveα(A) ⊆ A (that is, the directions of binary trees inNν

are preserved by automorphisms ofMν).

Proof. Leta, a0, a1 be a directed triad in a rooted binary tree inNν , soa, a0, a1 ∈

A and consider the result of applying the automorphismα. Since there is a

unique path of length two betweena0 anda1 there must also be a unique path

of length two betweenα(a0) andα(a1). Automorphisms preserve relations and

so this unique path passes through the vertexb = α(a). By Lemma 4.4.3 there

is a b′ in Nν such thatb′, α(a0), α(a1) is a directed triad. Therefore we must

have thatb′ = b and thusα(a), α(a0), α(a1) is a directed triad. This means that

the direction on a directed triad in a rooted binary tree inNν is preserved by

any automorphism ofMν , and soα(A) ⊆ A.
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Lemma 4.4.5. Let ν(P/Q) = 1 for the primitive extensionQ ⊑ P where

P = {p, q, r},Q = {q, r} andp, q, r is a directed triad. Then the reductMν is

strictly stable.

Proof. Note thatMν is stable because it is the reduct ofNν which is stable. Let

A = {a ∈ Nν : desc(a) ≃ T} whereT is the rooted binary tree. By Lemma

4.4.4,α(A) ⊆ A for anyα ∈ Aut(Mν). We know thatMν is saturated so we

now consider the number of1-types over a set of sizeλ that are realized inA.

We show that for each infinite cardinalλ there is a setC ⊆ A with |C| = λ and

λℵ0 1-types overC in Mν . To do this let(ai : i < λ) be independent elements

of Nν with ai ∈ A and letC = cl(
⋃

ai). Let I : ω → λ be any countable

increasing sequence of elements ofλ. Then there isbI ∈ A with the following

properties:

1. desc(bI) ∩ desc(ai) 6= ∅ if and only if i is in the image ofI,

2. if i = I(n) thendesc(bI) ∩ desc(ai) = desc(cI,n) wherecI,n is in thenth

level ofdesc(ai).

It is clear that ifI 6= I ′ then noα ∈ Aut(Mν/C) can haveα(bI) = bI′ . Thus the

number of1-types overC in Mν is at leastλℵ0 (the number of such functions

I).

Now let us consider the general case whenν(P/Q) = n for the primitive ex-

tensionQ ⊑ P whereP = {p, q, r}, Q = {q, r} andp, q, r is a directed triad.

We get lemmas that generalise Lemmas 4.4.3, 4.4.4 and 4.4.5 as follows.

Lemma 4.4.6.For any two elementse, f in Nν there are exactlyn elements in
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Nν ,d1, . . . , dn such thatdi, e, f is a directed triad for eachi.

Proof. We prove by induction that form ≤ n there ared1, . . . , dm ∈ Nν such

thatdi, e, f is a directed triad for eachi. To do this we consider the axiomθA,B

for appropriateA,B.

The base step is wherem = 1 and this is given by the proof of Lemma 4.4.3.

For the inductive step assume that the statement is true form − 1, so there are

d1, . . . , dm−1 in Nν such thatdi, e, f is a directed triad fori = 1, . . . , m − 1.

Now letA = {d1, . . . , dm−1, e, f} andB = {d1, . . . , dm, e, f}, soA ⊑ B is a

minimal extension with baseX = {e, f} and letY = {dm, e, f}. The axiom

θA,B then says that for every set isomorphic toA there is an extension ofA

isomorphic toA ⊑ B unless there arey1, . . . , ym (with yi 6= yj for all i 6= j)

in Nν such thatyi, e, f is a directed triad (that is{yi, e, f} is isomorphic toY )

such that eitheryi ∈ A or yi ∈ A→ for everyi. If there is an extension of every

set isomorphic toA isomorphic toA ⊑ B then we are done, so assume that

this is not the case. Therefore there arey1, . . . , ym such thatyi, e, f is a directed

triad and eitheryi ∈ A or yi ∈ A→ for everyi. First let us consideryi ∈ A.

If yi = e or yi = f for any i then this creates a self loop ate or f respectively

which is not allowed. Therefore ifyi ∈ A thenyi = dj for somej. Them yi’s

are all unique and there are onlym − 1 dj ’s so there must be at least oneyi,

ym say such thatym /∈ A. Therefore we must haveym ∈ A→. Thedj are full,

that is they can not have any descendants other thane andf . Hence we must

have thatym is a descendant ofe or f . However this gives{e, f} 6⊑ {ym, e, f}

which contradicts{ym, e, f} isomorphic toY . So we must have an extension

isomorphic toA ⊑ B, that is for any two elementse, f in Nν there arem

elementsd1, . . . , dm in Nν such thatdi, e, f is a directed triad for eachi.
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Lemma 4.4.7.LetA = {a ∈ Nν : desc(a) ≃ T} whereT is the rooted directed

binary tree. Then for anyα ∈ Aut(Mν) α(A) ⊆ A (that is, the directions of

the edges inT in Nν are preserved by automorphisms ofMν).

Proof. The proof follows that from Lemma 4.4.4. Letν(P/Q) = n for P =

{p, q, r}, Q = {q, r} andp, q, r a directed triad. Leta1, b, c be a directed triad

in A. Then by Lemma 4.4.6 there area2, . . . , an in Nν such thatai, b, c is a

directed triad for alli. Now consider the result of applying the automorphism

α. Since there are exactlyn paths of length two betweenb andc there must

also be exactlyn paths of length two betweenα(b) andα(c). Automorphisms

preserve relations and so these paths pass through the verticesdi = α(ai) for

i = 1, . . . , n. Using Lemma 4.4.6 again we see there ared′i for i = 1, . . . , n

in Nν such thatd′i, α(b), α(c) are directed triads. Therefore we must have that

{d′i} = {di} and thusα(ai), α(b), α(c) for i = 1, . . . , n are directed triads.

This means that the directions of the edges ofT in Nν are preserved by any

automorphism ofMν , and soα(A) ⊆ A.

Lemma 4.4.8. Let ν(P/Q) = n for the primitive extensionQ ⊑ P where

P = {p, q, r},Q = {q, r} andp, q, r is a directed triad. Then the theory of the

reductMν is strictly stable.

Proof. The proof is exactly the same as the proof of Lemma 4.4.5.

Hence we have shown that the theory ofMν is not superstable. This means that

the undirected reduct of the ‘collapsed’ digraphNν is not the ‘collapse’ of the

undirected graph which is given by Hrushovski’s construction in [18].
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