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Abstract

In this thesis we investigate several classes of directeghgr which have an

amalgamation property.

The first class we look at is a variation on a class introdugeB&vid Evans
to answer a question of Peter M. Neumann. We show that therecautinuum
many primitive permutation groups of countable degree thiave a finite
suborbit paired with a suborbit of sixg. The results here indicate that there is
no possibility of classifying the highly arc transitive ipitive digraphs with a

given isomorphism type of descendant set.

We then look at the model theoretic properties of stabilitgdependence and
two tree properties for the theory of a Fraissé-type lmfibne of the classes.
We show that this limit is unstable, having the strict ordesgerty, the inde-

pendence property, the tree property and the tree propktitye second kind.

We next look at a class of undirected graphs obtained fromushtivski con-
struction using a predimension and see that this can be dievoee naturally as
the family of undirected reducts of a class of directed gsape then restrict
this directed class by limiting the number of primitive ex¢éns any given set
can have and obtain an amalgamation lemma for the class.dirbigted ver-
sion corresponds to imposing a bound on the multiplicity afimally simply
algebraic extensions from Hrushovski’s construction afargly minimal set.
We axiomatize the theory of the Fraissé-type limit andastiat it is stable and

trivial. The reduct of this obtained by forgetting the diiea on the edges is



then considered and we finally look at stability in this seftishowing that, in

contrast to the unrestricted case, the undirected redsticsly stable.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

In this thesis we investigate several classes of directaghgr (or digraphs)
which have an amalgamation property. We start by consigexinlass of di-
graphs originally studied to answer a question posed by Rétdleumann in
[20]. He asked whethert;, n, could arise as the subdegrees of a primitive per-
mutation group foR < n; < ¥y < no. This class of digraphs was first used
in [13] to show that there is a primitive permutation groupiethhas a finite
suborbit paired with a suborbit of size for every infinite cardinak (Corol-
lary 2.10, [13]). Neumann then posed the question as to wehéftere were
uncountably many of these permutation groups of countadgess. This ques-
tion has been answered here as Theorem 2.0.2 using unbdidigcaphs. The
proof uses a similar class of digraphs as in [13] and was sigdéy David M.

Evans.



The digraphs that we construct are highly arc transitivat th the automor-
phism groups are transitive on the setedrcs for all finiten. In our examples,
the descendant set of a vertex is a directed binary tree.itRerhighly arc tran-
sitive digraphs with finite out-valency are analyzed in detg1] and [2]. It is
shown that the descendant set of a vertex is quite constrairseich a digraph,
in particular up to isomorphism there are only countably ynawssibilities for
the descendant set. Thus while results in [1] suggest tihaaytbe possible to
classify descendant sets of vertices in highly arc traresjprimitive digraphs,
the results here indicate that there is no possibility ofsifging the ones with

a given isomorphism type of descendant set.

We then explore the stability properties of these digraphis.also look at the
independence property, the tree property and the tree pyopethe second
kind for these digraphs in order to understand more fullyrtdel theoretic
properties. We originally aimed to produce a stable themmypodelM and a
type p such that the group of automorphisms inducedhoi) = {a € M :

M = p(a)} by Aut(M) is primitive with an unbalanced suborbit. We have

been unsucessful in our attempts, however we explain ounfisd

After this we look at a class obtained from a Hrushovski cart$ton using
a predimension and see that this can be viewed more nat@asléy class of
digraphs. We then restrict this class by limiting the nundifgarimitive exten-
sions any given set can have and obtain an amalgamation |éonrtiee class.
We axiomatize this theory and consider the properties oftetaness, stability
and triviality. The reduct of this class obtained by forgejtthe direction on

the edges is then considered and we again look at stabilitysrsetting.

We now summarize the contents of each of the chapters inhbssst.



In Chapter 2 we use digraphs with each vertex having two delsces and
with some extra structure, to construct many primitive pgation groups with
a finite suborbit paired with a suborbit of siRg. Firstly, we introduce some
notation and then we use it to define continuum many classisewiorphism
types of digraphs with certain properties (Definition 2)1\We then show that
these classes are amalgamation classes and that we carHaliss&-type limit
of each one. It is then shown that the automorphism groupisfstiucture is
primitive. Finally we show that the properties we used torgethe classes give
continuum many different examples of such permutation gsand thus prove

Theorem 2.0.2. The material in this chapter has been p@dish[8].

In Chapter 3 we consider the stability of the types of digeapbnstructed in
the previous chapter. Primarily we examine the case whereily relation

is the digraph relation. Here we find a formula which definesdig order

with infinite chains. This means that the theory we consudiées the strict or-
der property (Proposition 3.1.5) and so is unstable. We #tmpt to further
understand the classes we have produced by consideringraoded theoretic
properties of them, showing that the theory does have thepieradence prop-

erty, the tree property and the tree property of the secamdl ki

So the primitive structures we have produced are, perhdpsrraurprisingly,
quite bad from a model theoretic viewpoint. We thereforewalskther they can
be seen as part of a better-behaved structure. Specificaltyyld be interesting
to know whether they can appear as the induced structure ypear a stable
structure. Thus we attempt to modify the conditions on tlas<lin order to
obtain a stable theory in which the digraphs used earliefaned on the set

of realizations of some complete type. This would then givetwe wanted



as we would have a stable theory and the primitivity and wridd suborbit
conditions would not be lost. We explain one attempt thatmvade at this and
describe why it fails and the implications that this has fotHer variations of

this theory.

Finally, in Chapter 4 we explore a connection between somextid graphs
and Hrushovski constructions from [18]. The constructinrjl8] is usually

seen as a two part process : a free amalgamation constractibthen a more
difficult amalgamation known generally as ‘collapse’. 18] lthe second partis
required to obtain structures of finite Morley rank. In thimpter we first detail
the construction of a Hrushovski class which can be viewetematurally us-
ing < 2-out digraphs and show how this relates to the first part oshouski's

construction from [18]. This process introduces two classkegraphs - di-
graphs with each vertex having at most two descendan®sput digraphsand

the reduct of this obtained by removing the direction on ttiges. We show
that the reduct of the Fraissé-type limit of the class gfahs is isomorphic
to the Fraissé-type limit of the class of undirected gsaas is also shown in

[14]).

We then try to imitate the second part of Hrushovski’s cargdton (the ‘col-
lapse’) in the context of the directed graphs. We define mahimrimitive
and regular extensions in the digraph setting and studyl#iss of digraphs in
which the number of primitive extensions is restricted. Wevp amalgama-
tion lemmas for the cases of minimal and regular extensiGosdllary 4.2.8
and 4.2.10 respectively) and then use these to produce amatization of the
theory. Algebraic closure in these structures is then clamed which provides

some insight into forking. With this we see that the theorgamplete, stable



and trivial. Finally, we look at the reduct of this theory ainted by forgetting
the direction on the edges and show that it is strictly staBkethe process of
‘collapse’ does not commute with taking the reduct : the texded reduct of
the ‘collapsed’ digraphV, is not the ‘collapse’ of the undirected graph which

is given by Hrushovski’s construction in [18].

It will be useful to first outline some background materiap@mmutation groups,
graph theory, stability theory, the independence and treegties, Fraisseé lim-
its and forking and dividing. References will also be givertlsat further in-
formation on each of the topics described can be found ifreésilt will be
assumed that basic model theoretic notions such as stegctuodels and the-
ories are understood. Background model theory can be studieany sources,

including in [17] if needed.

1.2 Permutation Groups

We start with some general information about permutatiaugs. Further de-
tails on the concepts briefly introduced here can be foundliarf{[7]. Let(2 be
an arbitrary non-empty set. A bijection gfonto itself is called germutation
of Q2 and the set of all permutations forms a group with the binggration
being composition of maps. This group is called s$genmetric groupf Q2 and
is denoted bysym(£2). A permutation groug= on(2 is a subgroup obym(£)
and is often denoted ki, (2). Thedegreeof a permutation group i$2|.

An isomorphismbetween two structured, B is a bijectionf : A — B such

that bothf and its inversg¢ —! are homomorphisms (structure preserving maps).



An automorphisms an isomorphism from a structure to itself. The set of all
automorphisms of a structurd with the binary operation being composition
of maps forms a group which is called thetomorphism groupnd is denoted

by Aut(M).

Now let G be a group and2 a non-empty set. Assume that for all elements
a € Q andx € G we have defined an elementQ@fwhich we will denote by
xa. Then this defines aactionof G on Q if i = « (wherei is the identity
element ofG) and ify(za) = (yx)a foralla € Q and for allz,y € G. If G
acts o2 anda € Q thenGa = {za : z € G}, the set of elements 61 that«
gets sent to by the action 6fis theorbit of & underG. If the action ofG on (2
has only one orbit, s6&'a = (2 for all o € €2 thenG is said to actransitivelyon

Q. Equivalently,GG acts transitively o if for all o, 5 € €2 there exists € GG

such thatca = 3.

For A a non-empty subset ¢ and forz in G let xA denote the sefza :
a € A}. ThenA is called ablock for G if for each element: in G either
xA = AorzANA = (. Every action ot has(2 and the singleton$a}
for a € Q) as blocks. These blocks are calkeial blocks A groupG acting
transitively on( is primitive if G has no non-trivial blocks of2. Alternatively,
in more model theoretic terms, a groGpis primitive if there is no non-trivial

Aut(G)-invariant equivalence relation d@r.

Let G be a group acting transitively on a getand leta € 2. DefineG,, to
be the subgrougg € G : ga = o} and call theGG,-orbits on{2 suborbits
and theG-orbits onQ? = Q x Q orbitals. Then{«} is a trivial suborbit and

{(w,w) : w € Q} is the trivial orbital.



Take A C Q?, a non-trivial orbital, and consider the corresponding ajii
which is a directed graph with vertex setand edge sef\ (this is called the
orbital digraph). ThenG acts as a group of automorphisms of this digraph and
is transitive on vertices and on directed edges. If we nowligrthe direction
on the edges we obtain tloebital graphwhich has vertex se® and edge set
{{8,7} : (B,7) € A}. The suborbif" corresponding to the orbita\ is the
set of out-vertices forv (vertices coming out of, that is the se{g € Q :
(o, ) € A}) in the orbital digraph with edge sét. The paired suborbif™*

is the set of in-vertices fow (i.e. {8 € Q : (8,a) € A}). If the suborbit

[' and the paired suborbit* have different cardinalities then we say that the
permutation group has ambalanced suborhit This shows the equivalence
between orbital digraphs and permutation groups with aralamced suborbit.

This correspondence is described in more detail in [13].

There is a very useful criterion for primitivity of actionsiag these orbital di-
graphs that was discovered by D.G. Higman in [16] and waediata different
form in [13]. This restatement of the condition is the ond thidl be used later,
so that is the one expressed in the following lemma. See®ettB below for
the definition of a connected graph.

Lemma 1.2.1.([13], Lemma 1.1) The transitive permutation gro(@, Q) is

primitive if and only if all its non-trivial orbital graphs @ connected.

1.3 Graph Theory

Since we are using directed graphs throughout it will be faélio highlight

some notions from graph theory. A more detailed account @$dhconcepts



can be found in [3] and [6].

A graph, G is usually denoted by:(V, E') whereV is the set of vertices and
E is a set of subsets of size two frovy being seen as the set of edges of the
graph. Adirected graphis a graph that has a direction added to each edge,

which means that a directed graph has an asymmetric relation

A pathin the graphZ(V, E') from vertexv, to vertexv, is a sequence of vertices
starting withv; and ending withy; such that every vertex is joined by an edge
to the vertex that follows it in the sequence. A graph is callennectedf
there is a path between every pair of vertices in the grapbipArtite graphis

a graph in which the set of vertices can be split into two digjparts such that
each part has no edges between any of its elements. This capresented by
G =GV, UV, E). InagraphG = G(V, E) the set of vertices that are joined
to vertexv is N(v), thatisN(v) = {w : {v,w} € E} and similarly if X is a
set of vertices thetV (X ) = {v: {v,w} € E,w € X}. Thedegreeof a vertex
vis|N(v)|. LetG = G((V}, U V,), E) be a bipartite graph. Matchingin G is

a subset of¥ such that each vertex (in both and1;) has degree at most one.
Such a matching is callgaerfect forV; if every vertex inV; has degree exactly
one (the vertices i, will still have degree at most one). Figure 1 demonstrates

some of these definitions.

The following theorem is needed in Chapter 4.

Theorem 1.3.1(Hall's Marriage Theorem)Let G = (V; U V4, E) be a finite
bipartite graph. ThernG has a perfect matching for; if and only if | X| <
|IN(X)| forall X C 1].

This theorem is essentially Theorem 2.1.2 from [6] and tki#erent proofs of



Figure 1. Example of a bipartite graph with a matching figr (dotted lines), but not a

perfect matching

it are given there. In [6] the author has restricted to the valsere|V;| = |V5
and his definition of matching is the same as perfect matdbing; used herein

(as|V1| = |V;] is assumed).

1.4 Stability

We will now introduce some of the definitions in stability tmg which will be
needed in later chapters. For a more comprehensive discusihe topic see

[19], [17] (includes the strict order property) or [21] (keat stability using
types).

Throughout, letl. be a first-order language and [Etbe a completd.-theory.
The order property can be defined in several ways; the defindf it given
here is taken from [23]. AdL-formula¢(z, ) has theorder propertyrelative to
the theoryT if we can finda,, andb,, in a modelM of T with n, m € w such
that¢(a,, by,) is true if n < m and false ifn > m (where overlines are used
to indicate tuples). We can see that this means the formta zo, 41, 72) =
#(1, 72) orders the infinite sefab; : i < w). An L-formula$(z, j) has the

strict order propertyif we can find(b,, : n € N) in a modelM of T such that



the formula(3z)(—=¢(z, b,) A ¢(z, b,y,)) is true ifn < m and false ifn. > m. In
other words;I" has the strict order property if there is a definable partideo

on a subset ol/? for somelM/ = T andp € N, which has infinite chains. It can
be seen that if a theory has the strict order property then there is a formula
that has the order property relativefo A stable theorys a theory in which no

formula has the order property relative to the theory.

An alternative definition for a stable theory uses types. én{plete)n-type
over the theoryl’ (for n € N) is the set ofL-formulas which is satisfied by
somen-tuple in a model of the theory. Equivalently, a complete-type is a
maximal set of formulas im-variables consistent witl. A partial n-typeis

a non-maximal set of formulas imvariables consistent witlh. Now suppose
that M is an L-structure andd C M. ThenL, is the language obtained by
adding constant symbols tb for all elements ofA. Let Th(M) be the set
of all L 4-sentences that are true M. Then ann-type overA is a set ofL 4-

formulas in free variables,, . . ., x, that is consistent witi'h 4 (M).

The theoryT is said to be\-stablefor the cardinal\ if forall A C M = T
such thatA| = X and for all finiten > 1, |S,(A4)| < A, whereS,,(A) is the
set ofn-types overA. The theoryT is stableif it is \-stable for some\ and

it is w-stableif it is Ny-stable. The theory isuperstablef it is \-stable for all
A > 2Tl and it isstrictly stableif it is \-stable if and only ifA\“ = \. It can
be shown that any-stable theory is superstable, and it is trivial to see thgt a
superstable theory is stable. The statemestability implies superstability ”

can be found as (Proposition 5.28, [21]).

10



1.5 Independence and Tree Properties

We give the definitions of the independence property, trepgreperty and the

tree property of the second kind along with references fah&r information.

The following definition was introduced by Shelah in [24]. Anformula
¢(z,y) has thandependence propertyith respect to the theory if for each
n € w there is a modeM of T and sequence@; : i < n) and(a, : w C
{0,...,n—1}) from M such thatV/ |= ¢(a.,, b;) if and only ifi € w. A theory
T has the independence property if soormula ¢(z, y) has the indepen-

dence property.

The following definition again due to Shelah is based on @sei definitions
found in [26] (there is a part of the definition missing in theok), which can
be referred to for details about theories without the treperty. Note thatw
is the set of infinite sequences of natural numbers<&ndis the set of finite
sequences of natural numbers.£lE “w andn < w thené|n € <“w is the
restriction of¢ to the firstn terms. Ifv € <“w thenv”i is the finite sequence
consisting ofv and the extra term Now let¢(z, y) be anL-formula. Theny
has thetree propertywith respect to the theory if there existst < w and a
collection(a, : v € <“w) of tuples in a model of" such that for alk € “w
the set{¢(7,a¢,) : n < w} is consistent withl" and for allv € <*w the
set{¢(z,a,n;) : i < w} is k-inconsistent withH” (which means that any finite
subset of ¢(z, a,~;) : i < w} of sizek is inconsistent witi"). A theoryT has
the tree property if there is a formula which has the tree @typwith respect
to7.

The following definition was also introduced by Shelah anthisen from [5],

11



which contains several results regarding theories Wiih, (ie it does not have
the tree property of the second kind). A thed@ihhasT P, (the tree property of
the second kind) if there exists a formulér, ), a numbetk < w and an array

of elementga’ : i,j < w) in a model ofT" such that :

1. every row isk-inconsistent (that is, for all < w and for alli; < ... <

ik < w,o(x, a{l) A N o(x, a{k) is inconsistent witl"), and

2. every vertical pathis consistent (that is, forfallw — w, A, ¢(z, aic(j))

is consistent with").

1.6 Fraiss Limits

It will be useful to have an understanding of the construrctieethod of Fraissé
limits. A brief explanation of a general version of the coustion is given
here and variations of the method are used as needed in CRapidis will
require some variation in usage of the terminology but weehityat this does
not cause confusion. It is also recommended to investiffhi¢ Section 2) for
a more comprehensive treatment of the general version ah#dtbod and also

for several useful examples.

Let L be a first-order language and &t= (C, <) be a collection of countable
L-structures with a distinguished notion of embeddings ¢tksth by <) which
satisfiesA < Aforall A € CandA < B < C'impliesA < C. We say that
an L-structureA is in C to mean thatd is isomorphic to an element ¢f, since
we only need to consider isomorphism types of elements &ay thatC is an

amalgamation class it has the following properties:

12



1. hereditary property : il € C andB is a<-substructure ofl thenB € C;

2. joint embedding property : ifl, B € C then there exist§' € C such that

A, B are isomorphic te<-substructures aof;

3. amalgamation property : ifl, B;,B, € C anda; : A — B; are <-
embeddings then there exigis € C and <-embeddings’; : B, — C

with ﬁlal = 620(2.

In the original version of Fraissé’s Theorem the clag®nsists of finite struc-
tures and the distinguished embedding notiois just that of being a substruc-
ture.

Theorem 1.6.1.Suppose that is a first-order language and = (C, <) is an
amalgamation class of finite-structures. Suppose thdthas countably many
isomorphism types of structures. Then there exists a cblenfastructure M/

and substructuregA; : i < w) in C such that:
1. AO SAl SAQ < ...andM:UZ—<wAi

2. ifA < A;andA < B € C then there is somg > i and a<-embedding

f: B — A; such thatf(a) = a for all « € A (the extension property).
Moreover,M is uniquely determined up to isomorphism by these condition

We refer toM in the above as theraiss limit of (C, <). If for A € C we write
A < MtomeanA < A, forsome; < wthenforA, A’ < M,ifh: A— A'is

an isomorphism theh extends to an automorphism df (which preserves.).

We will use a variation on this in Chapter 2 in which ‘finite’ ieplaced by

‘finitely generated’ in a suitable sense.

13



1.7 Forking and Dividing

We use forking and dividing in Chapter 4 so we recall veryfhyithe notions
of dividing and forking in stable (or simple) theories anscasome of the basic
properties of the resulting notion of independence (nakihg). A convenient
reference for this material (presented in the way in whichshall use it) is

Chapter 2 of [26].

Supposé€’ is a complete, stable theory and is a large saturated model of
Definition 1.7.1. Consider a sequencg of elements of the modél/ indexed
by a totally ordered set. Say that this set isdiscernibleif for every natural
numbem, whenevei, < ... < i, andj; < ... < j, are two strictly increasing
n-tuples of/, then-tuples(a;,, . ..a;,) and(a;,, ..., a;,) have the same type.

Definition 1.7.2. ([26], 2.2.1)

1. A formula¢(z,b) (with parameters) dividesover a setA if there is a
sequencéb; : i < w) with tp(b;/A) = tp(b/A) which is indiscernible
over A and such thaf\,_ #(z, b;) is inconsistent.

2. A formulap(z) (possibly with parameterdprks over a setA if there
exist formulass (7, ¢1), ..., (7, ¢.) suchthat o(z) — V.., :(7, &)
and eachy;(z, ¢;) divides overA.

3. If d is a tuple andB is a set we say thai(d/B) dividesover A (re-
spectivelyforksover A) if someq(z, b) € tp(d/B) divides (respectively,
forks) overA.

We writed | , B to mean thatp(d/B) does not fork overl. In a stable theory

tp(d/B) does not fork over if and only if tp(d/B) does not divide over.

14



For a subseD, the notionD | , B means that/ L, Bforevery tupled from
D. We now give some definitions and then some properties ofelagion | .
Definition 1.7.3. 1. The theoryl" is simpleif no formula has the tree prop-

erty in7". Note that any stable theory is simple.

2. An element; of the setA is algebraicover A if it satisfies a formula with

parameters il that is satisfiable by only finitely many elements.

3. Thealgebraic closureof the setA, denotedici(A) is the set of elements
that are algebraic ovet.
Theorem 1.7.4.([26], Theorem 2.3.13) Suppo&eéis simple andd C B C (.
Then:

1. Existence : For altin the large saturated modéll, ¢ |, acl(A).

2. Extension : Every partial type ové? which does not fork oved has a

completion which does not fork ovér
3. Reflexivity :B |, Bifand only if B C acl(A).

4. Monotonicity : Ifp andq are types withp F ¢ and p does not fork over

A, thenq does not fork oveH.
5. Finite Character:D | , Bifandonlyifd | , B for every finited € D.
6. Symmetry D | , BifandonlyifB | A D.
7. Transitivity: D |, C'ifandonlyifD | , BandD | ,C.

8. Local Character : For any € S(A) there isAq C A with |Aq| < |7,

such thatp does not fork oveH,.

From these we can deduce the following well known facts:

15



Corollary 1.7.5. Suppos€é' is simpleandd C B C C.
1. Ifc |, Bande € acl(cA) thene |, B.

2. Ifc |, Bthenacl(cA) Nacl(B) = acl(A).

Proof. (Sketch)

1. This is done by ‘forking calculus’ using the propertieshe above the-
orem. From the given | , B we getc | , b for every finiteb € B by
finite character. Symmetry then gives| , ¢ and using transitivity we
seethab | , c. Existence then gives | , acl(Ac). We are given that
e € acl(cA), sowe havé | , e. Usingb | , ¢ b | , eand transitivity
we getb | , ce and sob | , e. Finally, symmetry and finite character

givee | , B asrequired.

2. Itis clear thatcl(cA) Nacl(B) D acl(A). So takee € acl(cA) Nacl(B)
and we need to show thate acl(A). By (1) withe = candA = B we

obtaine | , e and so by reflexivitye € acl(A) as required.

16



Chapter 2

Constructing Continuum Many

Examples

In this chapter we prove the following Theorem, which is ateasion of ([13],
Corollary 2.10). The proof of this theorem uses a Fratgpé-construction on
suitable amalgamation classes.

Theorem 2.0.1.There are continuum many primitive permutation groups of

countable degree which have a finite suborbit paired withlzoshit of sizeX,.

As is explained in the introduction (and also in [13]), thodws from Theorem
2.0.2 below.

Theorem 2.0.2. There are continuum many pairwise non-isomorphic count-
able directed graphs in which each vertex has finite outrhv@teand invalency
Ny, and whose automorphism group is primitive on vertices aadsitive on

directed edges.

In this thesis we construct directed graphs with each védréang out-valency

17



two. This was done for simplicity and we could repeat all & tork with two

replaced by any finite natural number.

2.1 Definition of the Amalgamation Classes

The first part of the proof of Theorem 2.0.2 is to construcssés of isomor-
phism types ofL;-structures (wherd.; is a first-order language) and then to
prove that these are amalgamation classes. The requireaptdgywill be ob-
tained from Fraissé-type limits of these classes. To s&imvestigate digraphs
that have some extra structure. The digraphs will have rectiid cycles and
no multiple edges.

Notation 2.1.1. We use a binary relatio® (which represents the digraph re-
lation) and for eaclh € N, n > 3 we have am-ary relationR,,. ForI C
N\{0, 1,2} let L; denote the languagg?} U {R,, : n € I}. The case where
I = (), so with noR, relations is the arrangement considered in [13]. Tet
denote theooted binary tree which is the directed graph with no undirected
cycles such that each vertex has out-valency two and eveigxexcept for the
root (which has no predecessor) has a unique predecessor.

Definition 2.1.2. If Ais anL;-structure and. € A then the set oflescendants
(or thedescendant sgof a in A is the set of vertices (including in A that can

be reached from by an outward directed path, that is,
{b:3n € Nday,...,a, € A, (a,a1),(a1,a2),...,(a,,b) € R}.

Denote this bydesc” (a) or simply bydesc(a) if it is clear what structure we

are working in. If X is a set of vertices iA then the set of descendants
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of X is desc?(X) = (J{desc?(z) : z € X}. f X = {xy,...,2,} write
desc(x1, ..., x,) for U, _,desc”(z;). The set ofancestorsof a vertex
a € Alis the set of vertice$z € A : a € desc”(x)}.

Definition 2.1.3. Let A C B be L;-structures. Say that is descendant closed
in Bifforall a € A, desc”(a) = desc®(a). In this case writed < B.

Definition 2.1.4. Let A be anL;-structure. Say that a sét of vertices ofA
is finitely generatedf it is the union of the descendant sets of finitely many
elements from4, that is if we have/ = |JI_, desc”(q;) for somea; € A and
n € N.

Definition 2.1.5. Define desc(a) <* A for an L;-structureA and fora €
A to mean thatlesc(a) N desc(b) is finitely generated for any € A, and if
desc(b)\desc(a) is finite thenb € desc(a). More generally, forB C A finitely
generated say that <* Aifforall a € A, desc(a)NB is finitely generated and

if a € A anddesc(a)\B is finite thena € B. Note thatB <* A — B < A.

This relation will introduce some control over the intetsats of descendant
sets of elements in the digraph that we are constructingn(tiee first part of
the definition), by preventing the intersection of any tweneénts being too big.
The second part of the definition is used to obtain primitivAs an example,

the relation does not hold if the descendant sets are as ume=1y

a
B

Figure 2: Example of a graph forbidden by the relatisi™ becauselesc(a)\B is
finite buta ¢ B.
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Definition 2.1.6. Let (C;, <™) consist of countablé ;-structuresA such that?

gives a digraph onl and the following conditions hold:

1. the descendant set of every elemeimt A forms a rooted binary tree with
no other structure (so the only relations @sc(a) are fromR, and the

R, are not involved);
2. we havelesc(a) <t Aforalla € A;
3. Aisfinitely generated,;

4. if A= Ry(ay,...,a,) thendesc(a;)Ndesc(a;) = Ofori # j,a1,...a, €

A have no common ancestor ihanddesc(ay, . .., a,) <t A4;

5. the number of instances of the relatidis on A is finite (meaning that
there are only finitely many for which there are any,, relations, and

for eachn there are only finitely many such thatR,,(a) holds).

We will now show that these classes of digraphs are amalgamzasses. The
following definitions are based on those used in the methocoaktructing
Fraissé limits but are slightly different to the ones ia thtroduction since we
are using a variation of the original construction.

Definition 2.1.7. The clasgC;, <™) has thehereditary propertyf for all A €
C;, if Bis afinitely generated descendant closed substructuteloén B € C;.
Definition 2.1.8. The clasgC;, <*) has theamalgamation propertif when-
everA, B, B, € C; and we have<t-embeddingy; : A — B; then there is an
L;-structureC' € C; and<'-embeddingy; : B; — C such thaiy, f; = go fo.
This definition is represented in Figure 3.

Definition 2.1.9. The class(C;, <*) is anamalgamation clas# it has the

hereditary property and the amalgamation property.
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N
A e,
Eom

Figure 3: The amalgamation property

Therefore to check that the classes we have defined are ansttiga classes
we need to check that they have the two required properties.

Proposition 2.1.10.The clasgC;, <) has the hereditary property.

Proof. Take anyA € C; and letB be a finitely generated descendant closed
substructure ofA. We need to check that Conditions 1-5 in Definition 2.1.6

hold for B.

Foranyb € B we have) € A and hencelesc(b) forms a rooted binary tree with
no other structure. We are given thats finitely generated, and therefore that
Condition 3 forB € C; holds. Now leth;, b, € B, and note that we also thus
haveb,, b, € A. Then we have thatesc(b;) Ndesc(b,) is finitely generated and
thatdesc(by)\desc(b,) being finite impliesh; € desc(bs), sincedesc(a) <t A
for all « € A. This shows thatlesc(b) <* B forallb € B. SinceB C A
and the number of instances of tRe on A is finite, we must have the same for
B. This then leaves only Condition 4 f@¢ < C; to be checked. For this, let
bi,...,b, € Band assume tha® = R,(b,...,b,). Nowby,..., b, are also
in AandB = R,(by,...,b,) meansA = R,(by,...,b,) as well, therefore
desc(b;) Ndesc(b;) = 0if i # j. We also see thd, . . ., b, have no common
ancestor inB because if they did then they would have a common ancestbr in

but this is impossible by = R, (b1, ..., b,). Finally,desc(by,...,b,) <* B

21



becauselesc(by, . ..,b,) <t AandB C A. Therefore we have shown that all

the necessary conditions hold fBre C;. O

To prove that the classés;, <) have the amalgamation property we need the
following two lemmas.
Lemma 2.1.11.1f A, B,C € C;, A,B < C and A, B are finitely generated,

thenA N B is finitely generated.

Proof. SinceA and B are finitely generated we can write each of them as the
descendant set of a finite number of element$060 for somen, n € N write

A = desc?(ay, ..., a,) andB = desc®(by,...,b,). We also haved, B < C

and therefore

desc(ay, ..., a,) = desc(ay, ..., an)

and

desc®(by, ..., by) = desc(by, ... by).

ThenA N B = J;; (desc(a;) N desc®(b;)). SinceC' € C; and we have each
a;,b; € C Condition 2 of Definition 2.1.6 says thdtsc® (a;) N desc®(b;) is
finitely generated for all, ;. ThereforeA N B is the union of finitely many

finitely generated sets, and as such is finitely generated. O

Lemma 2.1.12.Let X C YandY C ZbeinC;. f X <t Y andY <t Z
thenX <+ 7.

Proof. Let z € Z and considedesc?(z) N X. By definition of the relation<

we haveX <Y andY < Z. This means that far € X,

desc™ () = desc” (z) = desc? ().
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So X can be writen adesc? (x1,...,2,) (becauseX is finitely generated as it
is in Cr). Hence by the argument used in the proof of Lemma 2.1.11 we ha

thatdesc”(2) N X is finitely generated.

Now assumeesc? (z)\desc?(X) is finite. Then we see thdtsc” (z)\desc?(Y)

must be finite sinc&X C Y and so
(desc”(2)\desc”(Y)) C (desc”(z)\desc”(X)).

Then, becaus® <™ Z we getz € Y. Thereforez € X as we have that for
y € Y, desc(y)\desc(X) being finite impliegy € X. Therefore we have shown
that both properties required fof <* Z hold. O

The following definition is adapted from ([25], Definition9.

Definition 2.1.13.Let Ay <™ A, € C; (¢ = 1,2) andA; N Ay, = Ay. Then

the free amalganof A; and A, over A, is the L;-structure with underlying
setA; U A,, whose only relations are those induced framand A, (so there
are no relations between elementsAgfand elements ofl;). We denote it by
Ap 114, A2- A diagram of this structure is given in Figure 4.

A Ay

Figure 4: Free amalgam

Proposition 2.1.14.The clasgC;, <') has the amalgamation property.

Proof. Let A,B; € C; for i = 1,2 and assume we have*-embeddings

a; + A = B;, soq;(A) <t B;. Without loss of generalityB; N B, = A
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and «; is the identity onA, so A <™ B;. Then letC be the free amalgam
By [[4 B2, soC' is the digraph on the disjoint unioB; U B, over A where
the only relations are those induced frd® and B,, that is there are no edges
between an element éf,\ A and an element aB,\ A andR,,(a4, . . ., a,,) does
not hold if some of the,; are inB; and others are if3,.

Claim 1. We haveB; <t C.

Proof. Note that by the construction @f if b € B; thendesc(b) C B,. Let
by, by € C. We need to show thalesc(b;) N desc(by) is finitely generated and
that if desc(b2)\desc(by) is finite thenb, € desc(b;). For this there are two
cases to consider.

Case 1Without loss of generalityp,, b, € B;. Now B; € C; and therefore
desc(by) N desc(by) is finitely generated andesc(bs)\desc(b;) being finite im-
plies thath, € desc(by).

Case 2Withoutlossp;, € By, by € By. Assume thatlesc(bs)\desc(b) is finite.
Now desc(by) Ndesc(b;) C A due to the construction @f and so we have that
desc(by)\ A is finite. We are gived <* B, and hence we get that € A, so
by, € B; and we are in Case 1.

Hence we have shown thddsc(b.)\desc(b; ) being finite implies, € desc(by).

Now considerdesc(b; ) N desc(be). As abovedesc(by) N desc(be) € A and we
see thatlesc(b;) N A (for i = 1,2) is finitely generated by Lemma 2.1.11 (as
desc(b;), A, B; € Cr anddesc(b;), A < B; for eachi). We can then use Lemma

2.1.11inA to get thatdesc(b; ) N desc(bs) is finitely generated.
O Claim 1.

Claim 2. We haveC < C;.
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Proof. We need to check that the five conditions in Definition 2.1o&1hn
this structure. Let € C. Thenc € B, orc € B, sinceC = B, [[, B2 and
eachB; is descendant closed ifi. We have that fob € B;, desc” (b) forms
a rooted binary tree with no other structure becalise C;. Hencedescc(c)
forms a rooted binary tree with no other structure. Usingr@la and Lemma
2.1.12 we see thatesc(c) < C since we havelesc(c) <™ B; asc € B;.
GivenC = B, [[ 4 Bs, eachB; is finitely generated (becaugg < C;) and the
number of instances of thi,, relations on eacl®; is finite, we have thaf’ is
finitely generated and that there are only finitely many omnwees of thek,,
relations orC'. Therefore conditions 1, 2, 3 and 5 hold toto be inC;. Finally,
for Condition 4, letcy, . .., ¢, € C and suppose that = R, (c1,...,c,).
Case 1All the ¢; are inB, for i« = 1 or¢ = 2 - say they are in3;, but they

are not all inA. In this caseB; = R,(ci,...,c,) and therefore, a8, € C;

desc”' (¢c;)Ndesc” (¢;) = 0if i # 7, c1, ..., c, have No common ancestor i
anddesc(cy, ..., c,) <7 Bj. SinceC is the free amalgamation d@#; and B,
overA,c,...,c, then have no common ancestoinand asB; is descendant

closed inC we have thatlesc® (c;) N desc”(c;) = 0 if i # j. Also we have
desc(cy,...,c,) <7 C by Lemma 2.1.12 sincéesc(cy, . ..,¢,) <t B; and

B, <™ C. Hence Condition 4 holds in this case.

Case 2All of the ¢; are inA. The only part which is different from Case 1
for this is checking that the; have no common ancestor @ We know they
have no common ancestor i3, from the above case. In this case we also
haveB; &= R,(c1,...,c,) fromC E R,(cy,...,c,) and socq, . . ., ¢, have no
common ancestor ifs; either. So this gives; have no common ancestordn

Case 3Some of ther; are in B;\ A and some are iB,\ A. In this case the
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definition of R,, in C givesC' [~ R, (c1, ..., ¢n).
We have therefore shown that all of the properties in Deéini.1.6 hold and

so we have” € C;, hence we have proved the claim.
O Claim 2.

So there are<™-embeddingss; : B, — C fori = 1,2 with 810, = Bras
(sinceA C B;andB; C C'fori = 1,2 takeq;, f5; to be identity maps). Hence

(C;, <*) has the amalgamation property. O

Propositions 2.1.10 and 2.1.14 give us that the classesedeiimDefinition
2.1.6 are amalgamation classes. The next step in the prddfesdrem 2.0.2 is

to construct a Fraissé-type limit of each of these amadgimm classes.

2.2 Fraise-type Limits

The next step is to construct a Fraissé-type limit of edt¢hase classes, and to
do this we first need to know a countability condition.

Definition 2.2.1. A subsetD = (d,,...,d,) of A € C; isindependenif, for

i # j, we havedesc(d;) N desc(d;) = 0.

Definition 2.2.2. ConsiderA € C; as anR-structure (that is without thé&,,
relations). Suppose = (a1, ...,a,), b = (by,...,b,) are independent subsets
of A € C; and the rooted binary treé€ respectively. We can see thétsc(a) ~

desc(b) by independence and becausec(a;) ~ T (asA € C;) anddesc(b;) ~

Tforalli € {1,...,n}. Hence there is an isomorphism frelesc(a) to desc(b)

which takesa; to b; for i < n. Define thefree amalganmof A andT over
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a andb to be the digraph with vertex set the disjoint union/sfnd T over
desc(a) ~ desc(b), and edge set the union of the edge setd ahd.

Notation 2.2.3. (This notation is taken from ([10], Definition 2.2)). Denake
free amalgam ofl and7 overa andb by (A, a) * (T, b).

Lemma 2.2.4.Let A € C; and consider it as arRk-structure (as in the above
definition). The isomorphism type (©f, @) * (T, b) is independent of the choice

of isomorphism fromdesc(a) to desc(b).

Proof. Any automorphism oflesc(b) which fixes eacly; can be extended to an
automorphism of. Therefore different isomorphisms frofesc (@) to desc(b)
give isomorphic free amalgams. Her{ck a)* (T, b) has the same isomorphism

type for any choice of isomorphism frodesc(a) to desc(b). O

Definition 2.2.5. Let A, B, B’ € C;andletf : A - Bandf : A - B’
be <*-embeddings. Therf is isomorphicto f’ if there exists an isomorphism
h : B — B’ such thatf’ = hf. Equivalently, f, f are isomorphic if the

diagram in Figure 5 commutes.

Figure 5: An isomorphism between f and f’

Proposition 2.2.6.There are countably many isomorphism types 6fembeddings

in the clasqCr, <™).
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Proof. We will show that there are countably many isomorphism tygfes*-
embeddings of elements 6f, if we ignore theR, relations. Then Condition

5 of Definition 2.1.6 says there are only finitely many ins&sof theR,, rela-
tions on any element af;. Placing finitely many instances of tlig, relations

on each countable digraph is similar to choosing finitely yntuples from a
countable set. So there are countably many arrangemenss# finitely many

R, relations and hence we see that there are countably mangipbiem types

of structures irC;. Therefore there are countably many isomorphism types of

<*-embeddings iC;, <™).

We prove by induction om that there are countably mamygenerator struc-
tures in the clas§; (recall we are only considering thiérelations and not the
R, relations for this part).

Base Step Letn = 1, S0 A = desc(b;) for someb; € C;. Sincedesc(b;) ~ T
for all b; € Cy, there is only oné-generator structured up to isomorphism.
Inductive Step: Let B = desc(by, ..., bx, bry1) be a(k + 1)-generator struc-
ture inC; and letA = desc(by,...,b;). By Condition 2 of Definition 2.1.6,
A N desc(byy1) is finitely generated, for example by C A. Take|X]| to be
minimal, lettingX = {c,...,¢.} C B.

Claim 1. The set{cy, ..., ¢} is independent.

Proof. Since{ci,...,¢.} is minimal,¢; ¢ desc(c;) for everyi,j € {1,...r},

i # j. We know{cy,...,c.} C desc(bry1) and that this is isomorphic to
the rooted binary tre€]’. Supposelesc(c;) N desc(c;) # 0 for somei, j €
{1,...,7r},7 # j. Then leta € desc(c;) N desc(c;). This gives an undirected

cycle indesc(bx41) as shown in Figure 6.
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\ a/
Figure 6: An undirected cycle

This contradictslesc(b,1) ~ T, and hence we have thét,, ..., ¢} is inde-

pendent.
O Claim 1.

Claim 2. B is isomorphic to the free amalgam of and desc(by1) over
desc(X).

Proof. We have<'-embeddingsf : desc(X) — A (sincedesc(X) C A)
andg : desc(X) — desc(bry1) (Sincedesc(X) C desc(bgi1)). We also
have thatd C B anddesc(bi+1) C B. Thereforedesc(bxy1) U A is the free
amalgam oflesc(bx. 1) and A overdesc(X) (since there are no edges between
desc(byy1)\desc(X) and A\desc(X)) and it is contained irB. It is clear that
these are the only elementsih since

k+1

B =desc(by,...,bpy1) = U desc(b;)
i=1

= (U desc(bl-)> U desc(bg+1)

= AUdesc(bgs1)

J Claim 2.
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By Lemma 2.2.4 we have that the isomorphism typ&a$ independent of the
choice of automorphism efesc(X). We also have, from the inductive hypoth-
esis that there are countably many possibilities4@nd hence countably many

possibilities forX. Therefore there are countably many possibilitiesfor [J

Now that we have Proposition 2.2.6 we can construct thesgeatype limits.
We do this in the following theorem.

Theorem 2.2.7.There is a countabl&;-structure N’ such that
1. N'isthe union of substructures! C N/ C ... suchthat eacV! € C;

(i € N)andN/ <* N}, forall 4,

(2

2. (Extension Property) whenever <t N/ and A <* B € (C; there is

s >4 and a<t-embedding’ : B — NI with f|4 = id.

The extension property is represented diagramaticallygare 7.

+ NIL <+

< \

A -
< B<

Figure 7: The extension property

Proof. To prove this we construct th&! inductively, takingN{ = ( for
example. For the purposes of the proof it will be useful to fikigection

n: N x N x N — N with the property that)(a, b, c) > a, b, c.

Suppose we have constructdgd <t ... < N{ € C;. There are countably

many finitely generateet *-substructures ofV/ - list these agA’ : j € N).
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For eachA;'. there are countably many isomorphism types<df-embeddings
into elements of; - list these a§§.k : A;l — By,. Note that at stagewe will
have done this for each’ with m < i. The pointis that the extension problem
(as in Property 2) correspondingdf, will be solved at stage = (i, j, k) + 1.

So let(i',j', k') = n~'(i). We havedi,, : A%, — By, AL, <t Nj < N/.
Then use the amalgamation property’pon A§ By andN/ to getN/,, € C;
with N/ <* N/, andB,, <* N/ , such that the diagram commutes. We may
assume thaf\;/ is a substructure ol/,, and then we have that’;, is fixed

pointwise.

Now let N7 be the union of thes&/!. For the last part, taked <* N/ such
that A <t B € C;. From the construction oV’ there will be ans > i and a

<*-embedding fromB to N, as required by Property 2. O

Remark 2.2.8. For any: € N N/ <* NI. To see this letz € N, then

a € N/ for somej > i by the construction oN’. SinceN/ <* N/ this gives
desc(a) N Nl is finitely generated and ifesc(a)\ N/ is finite thena € N/, that

is NI < +NT.

Definition 2.2.9. The N' defined in the above theorem<s -homogeneoui

for any finitely generatedt;, A, <* N’, any isomorphisnd : A, — A, can

be extended to an automorphism/of

Corollary 2.2.10. The N’ defined in the above theorem is unique up to isomor-

phism and satisfies -homogeneity.

Proof. This corollary follows from the following statement : ¥/, N! satisfy
the properties forV! in Theorem 2.2.74; <* N/ (for i = 1,2) are finitely

generated and : A; — A, is an isomorphism, thef can be extended to an
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isomorphisny : NI — NI. In particular, if we taked; = A, = () then we
obtain the uniqueness stated in Corollary 2.2.10, and gakih= N/ gives the

required<*-homogeneity.

The proof of this statement is done using a ‘back and fortuarent (which is

possible becaus®¥! and N/ are countable).

For the ‘forth’ step, leb € N{. We have to findd;, <* N{ andA, <* NJ with

A; C A}, b e Al and an isomorphisréf : A] — A, extendingd. By the first
property for NI there isA; <* NI with A, C A} andb € A’. For example,
take A/ to be someNj“ containingb and all the generators of;. There are
<*-embeddingy : A; — A} andd~! : A, — A, and so by composition of
maps we get a&-embeddingf o 7! : A, — A}. We have a<"-embedding

g : Ay — NI and so the extension property for/ gives a<*-embedding

¢ : A} — NI (as shown in the Figure 8). This embedding has the properties

0'(A}) = A, <t NI and#’|A; = 6. This concludes the ‘forth’ direction of the

proof. The ‘back’ direction is then symmetrical to this. O
. A
< o,
<
A, o
< \/
Ny

Figure 8: The extension property fot,

Definition 2.2.11. Call the structureV! defined above thEraisse-type limitof
(Cfa §+) .
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2.3 Primitivity

We now need to prove that the automorphism group of each sttReaissé-
type limits is primitive. For this we use the criterion forimitivity given in
the introduction (Lemma 1.2.1) and we will require two lenaméhich will be
presented below.

Definition 2.3.1. For A € C; and X a finite subset ofd define theclosureof
X in Atobed?(X) = {y € A: desc”(y)\desc?(X)is finite}.

Note 2.3.2. 1. If X CY <t Athenc”(X)CY.

2. ForallX, 4, cd*(X) < A.

3. Ifwe know thatl*(X) is finitely generated therd (X) <* A (knowing
cI*(X) to be finitely generated gives that' (X )Ndesc(a) for anya € A
is finitely generated because this is the uniod®t:(c) Ndesc(a) for each
generatore € cI(X) and we know eacklesc(c) N desc(a) is finitely
generated by Condition 2 of Definition 2.1.6). Thereforé(X) is the
smallest<™ subset of4 containingX.

Lemma 2.3.3.Let A € C; and letX be a finite subset of. Then the closure

of X in A, c1*(X) is finitely generated.

Proof. As A € C; we know A is finitely generated. Let € cl(X)\desc(X),
X ={x1,...,x,} andh be one of the generators dfsuch thatz € desc(h)

(note there are only finitely many suéh This is shown in Figure 9.

Definegen(h, x1) to be the vertices which are the generators of the intersec-
tion of desc(h) anddesc(z;). Note that this set is finite since the intersection

of any two descendant sets of elementsiok finitely generated. Using this
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Figure 9: The arrangement needed to show tﬁét(X ) is finitely generated

definition and knowing thadlesc(h) is a tree, we can see thgén(a,z;) C
gen(h,z;) for all j (if b € gen(a,z;) andb ¢ gen(h,z;) for somej then be-
causedesc(a) N desc(z;) € desc(h) Ndesc(z;) there must be € gen(h, x;)
with b € desc(c), which would give a cycle irlesc(h)). Therefore the number

of vertices contained in a shortest path frérto a, dist(h, a) is at most
max{dist(h, z) : z € gen(h,z;),j =1,...,n}.

This says that: is closer toh than the furthest generator in the intersection of
desc(h) andJ}_, desc(z;). Sincegen(h, X) = UJj_, gen(h, z;) is finite this
means that there are only finitely many possibilitiesdoWith these finitely
many possible:’s and with the finite number of elements af we get that

1 (X)) must be finitely generated. O

Note that we can definely:(X) for X a finite subset ofV:. Then by the
above lemma it follows thatly: (X) <™ N, for somei, and that it is finitely
generated.

Lemma 2.3.4.The Fras®-type limitN! as a digraph with relation? is con-

nected.

Proof. Let ny,no € NI, If desc™ (n1) N desc™' (ny) # 0 then there is a

non-directed path from, to n, going via this intersection. If the intersection
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desc(ny)Ndesc(ny) = 0 then we use the extension property\of. Let B, C be
rooted binary trees with top verticésc respectively which intersect as shown
in Figure 10. Letn € N! be such that foi = 1,2, desc(n) N desc(n;) = 0
anddesc(n) U desc(n;) has noRy relations on it for anyc € I. The extension
property then gives thatesc(n;) U desc(ng) can be<t-embedded intd3 U C
wheren,, n are two edges away frommandn,, n are two edges away from(as

shown in Figure 10).

ni n U

Figure 10: The arrangement needed to shaW is connected

Therefore there is an undirected path of length at most drght n; to n,.
Using this approach with; € cly:(n;) we can get a path of length at most 16
between any two vertices i/, which is a property which can be expressed
by a first-order sentence. So we have shown that any mod&hoN') is

connected. O

Proposition 2.3.5. The automorphism groupiut(N7) is transitive onV'.

Proof. This follows due to<*-homogeneity and by Conditions 1 and 2 in Def-

inition 2.1.6. O

Proposition 2.3.6. The automorphism groufiut(N7) is primitive onN”.

Proof. This proof is similar to the proof of ([13], Theorem 2.9), tlgh we

have a different argument in case 3 below as the originahaegdi appears to be
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somewhat inaccurate. From Lemma 1.2.1 we have that a tixengé@rmutation
group is primitive if and only if all of its non-trivial orb&l graphs are connected.
From the above proposition we hadet(N') is transitive onV’. SoAut(N7)

is a transitive permutation group and thus to prove this rém@owe need to
show that all of the non-trivial orbital graphs afit(N') are connected. To see
that all of the non-trivial orbital graphs are connected wavp that ifa # b €
NT then the orbital graph with vertex set the elements af’ and edge set
{{fa, fb} : f € Aut(NT)} is connected. AsV! is connected vidz-edges by
Lemma 2.3.4 it is enough to show thatiify € N! are such thatz,y) is an

R-edge ofN! thenz, y lie in the same connected componentof

Without loss of generality, assume= a and let
H, = clyir(a,b) = {n € N’ : desc(n)\(desc(a) U desc(b))is finite},

which is the closure of andb in N. We have thaf{, is finitely generated by
Lemma 2.3.3 and{; <t N'.

Case 1Supposelesc(a) N desc(b) = (). Let H, be a copy ofH; with o’ €
H, corresponding t@ € H;. Recalling thaty is an out-vertex ofi, identify
descy, (y) with descp, (b), and take the free amalgafh, , of H, and H, over
descy, (y) (this means not adding any nelor R, relations). Then we have
an L-structure withdesc(a’) N desc(b) = (). We see from the construction of
H, 5 thatdesc(a’) U desc(b) <t H; » (by construction there are no elements
in Hy o with desc(h)\desc(a’) U desc(b) finite) so we can adjoin a finite set

of new vertices td; » to obtain anL;-structureP 2 H, , in which
Hs = cl”(a’,b) = desc(d’,b) U X

is isomorphic toH; (via an isomorphism taking’ to a« andb to b, and not
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adding any newR, relations). SoP is the union ofH,, H, and H3, and we
have Hy N H3 = desc(b), Ho N H3 = desc(a’) and H; N Hy = desc(y) as
is shown in Figure 11. Moreover, any edge (and &hyrelation) is contained

entirely within somef;.

Figure 11: The arrangement of th&;’s

Claim. P € C;.

Proof. It is clear thatP is finitely generated due to its construction, therefore
Condition 3 of Definition 2.1.6 holds. It is also clear thatr@dion 1 holds,
since for everyp € P, desc(p) is contained in somé/; (as H; < P) and so

is isomorphic tal'. For Condition 2 note that eadt; is descendant closed in
P. We see thadlesc(y) <* H, sincedesc(b) <™ N’ and alsalesc(y) <* H,.
Then use the amalgamation property to see ffiat<* H;,. We then get
desc(b) U desc(a’) < Hi 5. Using the amalgamation property again, this time
with desc(b) U desc(a’) € Hs anddesc(b) U desc(a’) (as shown in Figure 12)
we get that; <™ P asP is the free amalgam adf; , and H3 overdesc(a’) U

desc(b).

This argument can be seen to be symmetrical in 3 (whereH, ; is the union
of H; and H;: note that these are freely amalgamated over their inteoseo
P). So we haved; <t P fori = 1,2,3. Then this gives udesc(p) <* P for

everyp € P, thatis Condition 2 holds.
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desc(b) U desc(a’) P

Figure 12: The amalgamation property

Since the only occurrences of tl#g, relations are inH,, H, or H; disjointly
and the number of instances of tRg relations in each case is finite, the number
of instances of the relation®, in P must also be finite. Therefore we have that

Condition 5 forp € C; holds.

Finally, we need to check that Condition 4 holds, so assBimee R,,(p1, - - . , pn)
for p1,...,p, € P. By the construction oP this implies that;, ..., p, € H;
for somei since this is the only way that, (py, . . ., p,) can be true. Therefore
H; = R,(p1,...,p,) and so thep; are independentlesc(p, ..., p,) <* H;
andp, .. ., p, have no common ancestor i, since eaclt/; € C;. By Lemma
2.1.12 we see thatesc(py, . ..,p,) < P (sincedesc(py,...,p,) <* H; and
H; <* P). EachH, is descendant closed since it is the closure of given ele-
ments. So suppose for a contradiction that . . , p,, have a common ancestor,
sayq € P. Theng must be inH; for somej # i (we knowp;, ..., p, have
no common ancestor iff; from above). However{; and H; are freely amal-
gamated over their intersection and as this is the desceséanf a single
point, not all ofp,,...,p, are in the intersection. A&; N H; < P we have
q ¢ H; N H;. However this contradicts the freeness of the amalgam.eftwer

Condition 4 holds and so we hayee C;.

J Claim.
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Now we use the extension property &h <* P andH, <* N (as shown in

Figure 13) to get that there is a copy of P over H; with P’ <t N7,

P

< o

L <

H -
v

< N

Figure 13: The extension property

Sincedesc(a) <t P, there is a<'-embeddingy : P — N! which keeps
desc(a) fixed. Any isomorphism between finitely generated-substructures
of N' can be extended to an automorphism\&f. So if £ denotes an edge in
the orbital graphGG then we havetE¢(b)E¢(a')Ey. Hencer = a andy are
at distance at most three in the orbital graph, and smdy are in the same
connected component 6f.

Case 2Suppose that € desc(a). In this case leb, denote the predecessortof
in desc(a), so(b, b) is anR-edge inN’. Then leth; € desc(a) be the other out-
vertex ofby. Then there is an automorphism®f fixing a and interchanging
andb;, sob andb, are connected in the orbital graph We have thatlesc(b) N
desc(b;) = 0 and hence Case 1 gives that the orbital graph Wétf, } as an
edge is connected. Therefore the orbital grapis also connected.

Case 3Suppose thatesc(b)\desc(a) anddesc(a)\desc(b) are infinite. In this
case lety, ..., z, be a minimal generating set fdesc(a) Ndesc(b). Therefore
desc(x;) N desc(z;) = 0 for i # j and we prove that the orbital gragh is
connected in this case by induction ontakingr = 0 as the base case (which
is given by case 1 above). We can assume thas at maximal distance from

a amongst ther;. Let z be the immediate predecessorgfin desc(a). Note
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thatz ¢ desc(a) N desc(b) by minimality of the generating set. Aksc(a) N
desc(b) <™ desc(a), not all of the successors ofie in desc(a)Ndesc(b). Sowe
can choose’. to be one of its successors which is not amongst. . , z,.. The
distance ofr]. from a in desc(a) is no smaller than the distance of that of any
of thex;. Thusxy, ...z, 1,2, are independent antbsc(z1, ...z, 1, 2.) <t

desc(a).

By a free amalgam and the extension property thery i€ N’ such that
desc(by) Ncl(a,b) = desc(zy,...,x.—1,2.) and there exists an isomorphism
f :cl(a,b) — cl(a,by) with f(a,b,z1,...,2—1,2,) = (a,by,...,x._1,2.).
By <*- homogeneity, this extends to an automorphism\df Thereforeb
andb; are in the same connected component of the orbital géapHowever
we have thatlesc(b) N desc(by) = desc(zy,...,x,—1), and by the inductive
hypothesis the orbital graph witfb, b, } as an edge is connected. Thuss

connected.

These are all of the possibilities sineg) € C and therefore they satisfy Con-
dition 2 which prohibits, for exampl@esc(a)\desc(b) finite and non-empty.
Therefore we have shown that the automorphism grbug( N7) is primitive

onN'. O

2.4 Non-isomorphism

Finally, we show that the continuum many structures that asxehproduced
actually give different digraphs. To do this I8t | be the underlying digraph
of N (that is, take the reduct df/ obtained by forgetting th&,, relations).
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Proposition 2.4.1.Letn be a natural number. Them € I if and only if there

existay, ..., a, € N|r with the following properties:
1. desc(a;) Ndesc(a;) = 0 if i # j anddesc(ay, ..., a,) = A <t NT|g,
2. ay,...,a, have no common ancestor ¥ |,

3. every finite subseX of A with c1*(X) # A has a common ancestor in

N|g.

Proof. First suppose that € I. Take A to be the graph generated by vertices
ay,...,a, (the descendant set of each of these elements is a binaystee
thatdesc(a;)Ndesc(a;) = 0if i # jand withA = R, (a4, ... a,) (and there are
no otherR,, relations onA for anyk). ThenA € C; by construction and so we
may assumel <* N'|z. HenceA satisfies Conditions 1 and 2. Now [&tbe

a finite subset oft with c1*(X) # A. We can assume thdesc(X) <* A and
thatX = maz(cl*(X)) = {z1,...,z,} (i.e. thatX contains only the elements
needed to generat’ (X)). Note that the:; are thus independent and therefore
I (X) = desc(z1) U ... U desc(x,). Let B be a rooted binary tree with root
b and letd be a distance from such that there are at least elements at that
distance. Leb,,...,b. € B be independent, at distance at lea$tom b and
such that each pair, b, has no immediate common ancestor. Then there is an
isomorphism betweel) desc(z;) and(J desc(b;) fori = 1,...,r. A possible

choice of the,; is shown in Figure 14.

Sodesc(X) is isomorphic todesc(by, . . ., b,), desc(b;) N desc(b;) = 0 for i
Jy b1, ..., b. have common ancestéranddesc(by, ..., b.) <™ desc(b). Now
use the amalgamation property to obtaih= A ][, x, desc(b) with A" <*

N1|g. This then gives a common ancestor for the element iof N| z, which
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AN

bbb

Figure 14: A possible arrangement of thhein B

shows that Condition 3 also holds fdr

Now suppose thatl is as given, we have propertiés2, 3 and, for a contra-
dictionn ¢ I. Then there is no relationship between the pointsioéx-
cept digraph relations. To see this tét...,a}, € A for k& # n and sup-
poseA | Ry(dl,...,a}). Then by Condition 4 of Definition 2.1.6 we must
haved!, ..., a independent andesc(a},...,a}) < A. Ask # n we have
c?(dy, ..., a,) # A. Hence, by Condition 3/, ..., d, have a common ances-

tor in N!|g, and this contradictd = Ry (d}, ..., a,).

Now use the extension property with the embeddifigs A — B andg :

A — N!|p to get an embedding fron® into N’|;, whereB is a graph in

whichay, ..., a, have a common ancestor (as Figure 15 indicates). This gives
a common ancestor af;, . .., a, in N’|z, which contradicts the properties of
A. O

Proposition 2.4.2.1f I # J then the digraphsV!|z and N/| are not isomor-
phic.

Proof. This follows from Proposition 2.4.1. For example, tetc I, n ¢ J.

Then we can find.,, . .., a, € N'| so that the conditions in Proposition 2.4.1
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Nl|g

T

Figure 15: The extension property fod

are satisfied. However there are ho. .., b, in N’|z with these conditions.

Therefore the digraph®’|z and N’ | cannot be isomorphic. O

Remark 2.4.3. We have now constructed continuum many permutation groups
G; = Aut(N!|r) of countable degree and amongst these there are continuum
many non-isomorphic orbital digraphs (th€ | ). There is a possibility tha®;

has an orbital digraph which is isomorphickt’ | for someJ # I. However,
eachG; has only countably many orbital digraphs so there is a sudfsgt; :

I C N} of size continuum such that no two graphs in this subset areasphic

as permutation groups.

We have now shown that there are continuum many differemipvie per-
mutation groups with an unbalanced suborbit, that is we paveed Theorem
2.0.2. Having done this we decided to investigate theirsyaand other model

theoretic properties.
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Chapter 3

Stability, Independence and Tree

Properties

In this chapter we consider the stability of the digraphsstarcted in Chapter
2 and then briefly the independence property, the tree proped the tree
property of the second kind. For simplicity, we considerd¢hse wherd = (),

so there are only digraph relations. Denote the class of asphism types
by (Co, <*) and let N, be the Fraissé-type limit aiCy, <*), as constructed
in the earlier chapter. This is the original version of thastouction of these
digraphs as seen in [13]. We find tHAL(V,) is unstable and, as detailed in
the introduction we would like to find a stable thedfya modelM = 7 and a
typep such that the group of automorphisms induced on the(S€t) = {a €
M : M E p(a)} by Aut(M) is primitive with an unbalanced suborbit. Thus
for the final part of this chapter we consider a variation efdigraphs we have

been considering to see if we can find what we are looking for.
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3.1 Stability

We first consider the stability of these digraphs, finding #a N, ) is unstable.

Definition 3.1.1. Let the binary relatior5(a, b) be the formula
(3e)(Fer)(Fe2)((eq # e2) A (cRey A cRea A ciRa N caRb))

where we writer’ Rb' for (a/, V') € R.

This relation is shown diagramatically in Figure 16.

C

C1 Co

Figure 16: A diagram of the relatior(a, b)

Lemma 3.1.2.Letay,as € Ny. Then we havéesc(a;) N desc(ay) = () and

desc(ay) Udesc(ag) < Ny if and only if Ny = S(aq, as).

Proof. Let A = desc(ay) N desc(ag) and B = desc(a;) U desc(az). First
suppose thaiVy = S(ay,az). Then the result is clear - farfrom Definition
3.1.1,desc(c) ~ T sincec € Cy and henced = (). Also B < desc(c) and
desc(c) <t Ny and so by Lemma 2.1.12 <* N,.

Now suppose thatl = () and thatB <* N,. Then there is & -embedding

f : B — desc(c) obtained by sendindesc(a;) anddesc(az) to the appropriate

places indesc(c). Hence we have € N, which witnesse$'(a;, as). O

Definition 3.1.3. Define¢(a, b) to beVz(S(a,x) — S(b, x)).
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Lemma 3.1.4.We haveN, | ¢(a, b) if and only ifdesc(b) C desc(a).

Proof. Assumedesc(b) C desc(a), and hencé € desc(a). If Ny = S(a,x),
thendesc(a) N desc(z) = @ anddesc(a) U desc(z) <T N, by Lemma 3.1.2.
Sinceb € desc(a) we then havedesc(b) N desc(z) = 0. We also know

desc(b) <* desc(a) and so
desc(b) U desc(z) <* desc(a) U desc(z) <T Ny,

(the first of these is by inspection désc(a) U desc(x)) hence Lemma 2.1.12
givesdesc(b) U desc(x) <* Ny. ThereforeN, = S(b, z) and soN, | ¢(a,b).

Now suppose thatesc(b) Z desc(a) and thereforé ¢ desc(a). Sincea,b €
Ny, desc(a) N desc(b) is finitely generated.

Claim. There isc € desc(b) such thatlesc(a) U desc(c) <* desc(a) U desc(b)
anddesc(a) N desc(c) = 0.

Proof. Let X be the set of generators @ésc(a) N desc(b). SinceX is a finite
set letz be the element oX which is furthest away fromd. Let w be the
predecessor aof in desc(b) andy the other out-vertex ofv. We are able to
choosey ¢ desc(a) for otherwise we haver € desc(a) N desc(b) by desc(a) N
desc(b) <* desc(a). Takingz at maximal distance away frolnguarantees
thatdesc(y) N desc(X) = (. Then choose to be one of the out-vertices gf
This ensures thatesc(X) N desc(c) = () and sodesc(a) N desc(c) = 0. Also

desc(a) U desc(c) <™ desc(a) U desc(b) becauselesc(X) <* desc(d).
O Claim.

Now letd be the root of a rooted binary tree such thedc(c) C desc(d). (An

example of this arrangement is shown in Figure 17). Then Imgtrtoction we
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have thatlesc(c) <™ desc(d). We also havelesc(c) <* desc(a) U desc(b) and
so by the amalgamation property (@}, <*) the free amalgant) of desc(a) U
desc(b) anddesc(d) overdesc(c) is in Cy anddesc(a) U desc(b) <* D. By
the extension property we may assume that<* N,. Therefore we have
desc(d) Ndesc(a) = () anddesc(d) U desc(a) <* Ny, and hence by Lemma
3.1.2N, | S(d,a). Howeverdesc(b) N desc(d) # 0 and soNy (= S(d,b).
ThereforeN, t~ ¢(a,b). O

Figure 17: The arrangement for the proof of Lemma 3.1.4

Proposition 3.1.5.7'h(Ny) has the strict order property.

Proof. Lemma 3.1.4 shows thdtdefines a partial order dfih(N,y) which has
infinite chains. This means that.(N,) has the strict order property. O

We have therefore shown th&f(N,) is unstable.

3.2 Independence Property

We then decided to understand our original theory further sm considered
whether or not the theoryh(Ny) has the independence property. The follow-

ing definition will be used in the proof.
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Definition 3.2.1. Recall that two elements;, a, of N, are called independent
if desc(a;) Ndesc(ay) = 0. Let A be a rooted directed binary tree with raot
Say that an elemeidte A is onlevel iof A if there is a directed path of length
i from a to b. Define alevelled independent set A to be a set of independent
elementsy; of A (for 1 < i < w) where each; is on leveli of A. Figure
18 gives an illustration of a levelled independent set inded directed binary

tree.

A XA

Figure 18: A levelled independent set

The following lemma shows th&th (V) does have the independence property.

Lemma 3.2.2.Th(Ny) has the independence property.

Proof. Consider the modeN, of Th(Ny) and lety(z,y) be the formula that
says desc(z)Ndesc(y) = (", which is definable by Lemma 3.1.4 by the formula
Az(o(z,2) Noly, 2)).

Claim. The formulay(z, y) has the independence property with respect to the
theoryT'h(Ny).

Proof. Forn € N fix b,...,b, independent elements &f, (so desc(b;) N
desc(b;) = 0if i # j7) with |Jdesc(b;) <t Ny. Letw C {1,...,n}. We show
that there is1,, € Ny such thaidesc(a,,) N desc(b;) = 0 if and only ifi € w.

For example, leC be a rooted binary tree with roet Let zy,...,z,,1 be a
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levelled independent set @i and letu,, . . . , u,, be a levelled independent set in

desc(z,+1). A possible configuration of this is shown in Figure 19.

C

21

Zn+1

U
Qﬂs
o
U3 o
L[]

Figure 19: An arrangement for the proof of Lemma 3.2.2

Then there is an embedding @ésc(b,, . .., b,) into C takingb; to z; if i € w
andb; tou; if j ¢ w. By the extension property (usingsc(bi, ..., b,) < Ny
anddesc(by,...,b,) <T () we can assume that this arrangement isVin
Then taken,, to be the vertex,, . ; and we get thaflesc(a,,) N desc(b;) = 0 if

and only ifi € w which is the required condition far,,.

This arrangement can be repeated for apy Hence the formula)(z, y) has

the independence property with respect to the th&arf/\,).
O Claim.

We have shown that there is a formula which has the indepeedermperty
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with regard to the theor§'h(Ny) and thereford'h(Ny) has the independence

property. ]

3.3 Tree Properties

In this section we show that the thedfi(NVy) has the tree property and the
tree property of the second kind.

Lemma 3.3.1. The theoryl'h(Ny) has the tree property.

Proof. To prove this we give a formula(z,y), somek < w and(a, : v €
<“w) such that for alt € “w the set{¢(z, agn) : n < w} is consistent and for
all v € ~“w the set{¢(z,a,~; : i < w} is k-inconsistent. Let(z,y) be the
formula such thatVy = ¢(z,y) if and only if z € desc(y).

Claim. The formulag has the tree property with = 2.

Proof. To prove the claim we finda, : v € <“w) in N, such that for all

v € “Ywthe set{¢(z,a,r;) : i < w} is 2-inconsistent, that is there does not
exist anz with = € desc(a,;) N desc(a,~;) for any distincti, j < w. We also
require that for al € “w the set{¢(z, agn) : n < w} is consistent, that is

there exists am € Ny with z € Ndesc(ag,) forn < w.

Let A be a rooted binary tree iV, with root a, and define the sdta; : 1 <

i < w} to be a levelled independent setin By the definition of a levelled
independent set there are as many elements as we need anddpendence
gives us the required conditions on the descendant sets thgstpoint. Now
define the sefa;; : j < w} for each fixed to be a levelled independent set in

the respectivéesc(a;), the set{a;;;, : k < w} for each fixed;j to be a levelled
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independent setin the respectic(a;;), and so on (withu;, = a, etc). Figure
20 gives an illustration of this configuration.

(0%}

CL13. Q22 G31 Q4

Figure 20: An illustration to showyp has the tree property

By construction{¢(z, ag|n) : n < w} is consistent becauge, ., desc(ag),) #

() for anym < w. This means that the consistency condition for the treeqatgp
holds. Also, there does not exist arwith z € desc(a,;) N desc(a,n;) for

any distincti, ; < w due to the independence of the levelled independent sets.

Hence for ally € <“w ¢(x, a,n;) A ¢(x, a,n;) is inconsistent.
O Claim.

We have therefore found a formula with the tree property végpect td"h(Ny)

and hencé@'h(N,) has the tree property. O

We now show that the theoffji(N,) has the tree property of the second kind
(T'PR,).
Lemma 3.3.2. The theoryl'h(Ny) hasT Ps.

Proof. Again, let¢(z,y) be the formula such tha¥, = ¢(z,y) if and only if
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z € desc(y). To prove thatl'h(Ny) hasT P, we find an arraya’ : i, j < w)
in Ny andk < w such that for allj < w and for allip < i1 < ... < i, < w,
¢(x,al ) Np(z,al ) A...Ad(z,al,) is inconsistent, and also for fl: w — w,

Nj<. 9@, a} ;) is consistent.
We define the arraYa{ : 1,7 < w) with the required properties as follows.

Leta! for eachi < w be the root of a rooted directed binary tree\ipsuch that
thea; are independent. This gives,_ &#(z,q}) is inconsistent: the formulas
are2-inconsistent agesc(a; ) N desc(z,a;) = () for all i # j by the definition

of independent elements. This arrangement is shown in &@lr

Figure 21: The first part of the array;

Let «? for eachi < w be the root of a rooted directed binary tree with ¢
desc(a}) for any k. Let bi,bi, ... be a levelled independent set diesc(a?)
for eachi. The treedesc(a?) intersectsdesc(al) with generatoi on leveli
of desc(at), desc(a}) with generaton’, on leveli of desc(al) and so on, such
that the set of generators of the intersectiondesé(a?) and eachlesc(ay,) is a
levelled independent setdfesc(a;,). Notice that)\,_ ¢(x, a?) is 2-inconsistent
as there are no elementsdesc(a;) Ndesc(a?) for anyi # j by definition. Also
desc(aj) Ndesc(ag) # 0 foranyj, k SOA,,_,, 1.2 ¢(2, ay,) is consistent. This
means that the required properties are satisfied up to tims$. f@ee Figure 22

for an example of this arrangement.
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Figure 22: The second part of the array

Let a? for eachi < w be the root of a rooted directed binary tree with ¢
desc(al) for any k andj < 3. Letci,ci, ... be a levelled independent set
in desc(a?) for eachi. The treedesc(a?) intersectsdesc(al) with genera-

tor ¢{ on level: of desc(ai) N desc(a?), desc(a}) with generatorc;, on level

i of desc(a}) N desc(a3), and so on, such that the set of generators of the
intersections oflesc(a?) and eachdesc(a}) is a levelled independent set in
desc(a;) N desc(a). Again note that the required properties are satified up to
this point sincelesc(a?) N desc(a?) = O for all i # j, desc(a;) N desc(a}) # 0
anddesc(a?) N desc(ai) # 0 for all j, k.

We can continue in this way defining thé so that for allj the intersection
desc(al) N desc(al) = 0 for all i # k, and withdesc(a?) intersecting every
desc(al) whenever # k. This means we have defined an artay: i, j < w)
such that for allj < w and foralli; < ... < i, < w, ¢(z, “) A oz, Zk)
is inconsistent, and also for afl : w — w, A,;_, (x,af(j)) is consistent as

required. 0
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3.4 Variation

As stated earlier, we would like to find a stable the@tya modelM = T
and a typep such that the group of automorphisms induced on the(Sét) =

{a € M : M |= p(a)} by Aut(M) is primitive with an unbalanced suborbit.
Therefore we try to find a stable theory where we can find diggauch as the
ones constructed earlier on the set of realizations of samplete type of the
theory. Note that we do not necessarily have the strict gudgperty from the
previous work since(M) may not be definable.

Definition 3.4.1. Let D, be the class of finite digraphs (with digraph relation
R) where each vertex has at most two direct descendants arath idrbids
directed cycles and subgraphs of the fotnRasR . .. Ra,,biRbyR ... Rb,,
wherea; = b; anda,, = b,, (i.e. we are forbidding cycles of the form shown in

Figure 23).

i
S

An—1 1
N
an = by,

Figure 23: A forbidden cycle

Definition 3.4.2. Let A € Dy, a € A andn € N. An n-pathfroma is a

sequence = ag, aq, ..., a, Of elements ofA where either
1. aiRaiH, or

2. a; is terminal (i.e. it has no descendants)iranda; ; = a;.
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In this case writer,, € desc(a)”. Equivalently,a,, € desc(a)™ if there is either
a path of lengtl from « to a,, or a,, is a terminal vertex and there is a path of
lengthm from a to a,, wherem < n.

Definition 3.4.3. Define a binary relation- for elements:, b € A € D, by

a ~ biffor somen eitherdesc(a)” C desc(a)Ndesc(b) ordesc(b)™ C desc(a)N
desc(b).

Definition 3.4.4. For X, A € Dy write X <t A if X is descendant closed if
and fora € A if desc(a)” C X thena € X. Fora € A, desc(a) <* A means
that if a ~ b for someb € A then either € desc(b) orb € desc(a).

Notation 3.4.5. This relation<* is similar to the relation defined in Chapter 2
hence we use the same symbol, however it is not identicat smihis case we
are dealing only with finite graphs and previously we weresaering infinite
graphs.

Definition 3.4.6. Define the claséD;, <*) asthe sefA € D, : desc(a) <t A

foralla € A}.

We want to axiomatize the Fraissé-type limit of the clgBs, <*) and have a
full amalgamation property for the class. This would enalddo use a ‘back
and forth” argument to prove completeness of the axiomi@izaThe follow-
ing lemma is a weaker version of the amalgamation propegw th required,
since in this case we need <™ A and not justX C A. Then we explain
that this amalgamation property is not enough to be ableitmeatizeT 1 (M)
whereM is the Fraissé-type limit ¢fD;, <*).

Lemma 3.4.7.Let A, X, Y € D;. If X <t Y andX <' A, then the free
amalgamZ of Y and A overX isinD; andA,Y <t Z.

Proof. Firstly, asA, X, Y € D, andZ = Y [[, A we can see that € D,
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(no edges are added to thoseAnY when the free amalgam is taken so no
forbidden cycles are created). So to ensure that D; we need to take an
elementz; € Z and check thadlesc(z1) <* Z. For this takez, € Z such that
21 ~ 2. This gives us three cases.

Case 1Suppose that;, z; € A. In this case we see that eithgre desc(z;) or
29 € desc(z) trivially since A € D; andX <t A.

Case 2Suppose that;, z, € Y. Again itis trivial to see that; € desc(zy) or
29 € desc(z;) asY € Dy andX <t Y.

Case 3Suppose, without loss of generality that € A\X andz, € Y\X.
Sincez; ~ z, we knowdesc(z;)™ C desc(z;) Ndesc(zq) fori =1 ori =2 and
for somen € N. We also know thatlesc(z;) N desc(z2) € X. Due to these
facts and due t& <t A,Y we havez; € X fori = 1 ori = 2, which means

we are back to one of the two cases above.
Therefore we have seen thate D;.

Now we must proved, Y <* Z. Since the arrangement is symmetrical we only
need to show this fod and then the proof for” will be identical. We see that

is descendant closed isinceX <™ A Y andsinceZ = A[[, Y. Letz € Z
and suppose thalesc(z)" C A for somen € N. We need to show that if this is
the case then we actually havez A. Therefore we need to takec Y\ X for
this to be non-trivial. As in the proof of the first padesc(z)" C A requires
thatdesc(z)™ C X. Then, asX <* Y this means has to be inX and so it is

in A as required. O

Using this lemma we can take a Fraissé-type litijtof (D;, <*) which has
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the <*-extension property (thatis, X € D; andX <* A then thereis a -
embedding’ : A — D,). However, the conditioX <™ A cannot be expressed

in a first order way. Hence we cannot see how to axiomatize We would
need to haveX C A and not be restricted t& <* A in the amalgamation
lemma above. However Lemma 3.4.7 with the conditton<* A replaced

by X C A does not hold. We can see that this is the case by checking the

conditions forZ to be inD;.

Leta,b € Z be such that ~ b. We want to show that either € desc(b) or
b € desc(a). If we takea, b € Y\ X thenwe canget o binY, buta ~ bin Z.
Figure 24 shows an arrangement where this is the case (ot édotted lines
for some edges in the diagram have no significance - they are tnly to add
clarity). This means that it is impossible to forees desc(b) orb € desc(a) as

we need forZ € D;.

Figure 24: One case where 2 binY buta ~ bin Z

Note that this situation does not occurkifis descendant closed . However
we can not restrict to this case for the same reason as we tcesinct to

X <* A. This problem will also occur in any other theory where weéav
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X1, Xy € X with desc(X7)"™, desc(X2)™ C (desc(X7) N desc(X3))\X.
Question 3.4.8.1s it possible to use these methods to find a stable theory with

the properties that we were looking for?
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Chapter 4

Directed Graphs and Hrushovski

Constructions

In this chapter we describe the connection between a Hrgg&hownstruction
using a predimension (as set out in [18]) and general digragitere each ver-
tex has at most two out-vertices (note that these digraphsllowed to have
directed circuits unlike the ones in the preceeding chapt&¥e show that the
Fraissé-type limit of the Hrushovski cla@ <) and the reduct of the Fraissé-
type limit of the clas$D, C) of finite < 2-oriented digraphs obtained by forget-
ting the directions on the edges are isomorphic. This is doaenore general
form in [14]. We then define minimal, primitive and regulatexsions which
correspond roughly with simply algebraic and minimally plynalgebraic ex-
tensions in [18]. With these definitions we define a new cldsdigraphs in
which the number of primitive extensions is limited. We pg@n amalgamation
lemma for this class which is similar to Lemma 3 (Algebraicadgamation) in

[18]. Using this result we axiomatize the theory of thesedid graphs. We
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then consider algebraic closure in these structures whigs gis some infor-
mation about forking and allows us to show that the theorpmmete, stable
and trivial. We finally look at the undirected reduct of thaissé-type limit
of this directed class and show that although it is a propauct it is strictly

stable.

4.1 Comparing a Hrushovski Construction and Di-

rected Graphs

We begin this section by defining the predimension from witehHrushovski
class is obtained. We then define a class of finite digraphshod that the
reduct of the Fraissé-type limit of this class and thahefldrushovski class are
isomorphic.

Definition 4.1.1. Take a language; with a binary relationF. LetT be the
theory of graphs in this language. For a finite graphE/[A]| is the number of
edges in the grapH and|A| is the number of vertices. Definepaedimension
for this theory to be&(A) = 2|A| — | E[A]|. Then the clas§ is the class of finite
modelsA of T"whered(A’) > 0 forall A’ C A.

Definition 4.1.2.1f D € CandA C Dwrite A < D if §(D’) > 6(A) whenever
A C D' C D. Hence for allD € C we have) < D.

The following lemma is essentially the same as ([18], Leminaut the defini-
tion of § that we are using is slightly different so we give the proakhe
Lemma 4.1.3.Let A < B € C be L-structures andX C B. Then we have

S(ANX) < 86(X).
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Proof. FromA < BandA C AU X C Bwe havesy(AU X) > §(A). Now

J(AUX) = 2/AUX| - |E[AUX]

< 2041+ [ X[ = (AN X)) = ([E[A]l + [EIX]] = [E[AN X]]).

Putting this together with(A) = 2|A| — |E[A]| andd(A U X) > §(A) gives

2(]A] + [ X[ = [AN X]) — [E[A]| - |E[X]| + |[E[AN X]| = 2[A] — | E[A]],

and then rearranging gives

21X| - |E[X]| = 2]An X| - |E[AN X].
which is
§(X) > 6(ANX).

L

Definition 4.1.4. Let A be an undirected graph. 2-orientationof A is a
directed graphd’ with the same vertex and edge sets/Asvhere the edges
are given directions in such a way that each verteX’inas at most two out-
vertices. If such a 2-orientation of exists then say that can be2-oriented
Lemma 4.1.5.1f A is a finite graph thend € C if and only if there is a 2-

orientation of A.
Note that this means any graph@ncan be represented as a digraph with at

most two out-vertices for each vertex.

Proof. <= Assume thatd can be 2-oriented. Then there is a directed grdph
with the same vertex and edge setsdawhere the edges are given directions

in such a way that each vertex has at most two out-verticesh&e are no
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more than two edges coming away from each vertex and sinsastlai finite
graph this gives that there are at m@st| edges in the graph, henééA) =
2|A| — |E[A]| > 0. The same is true for all induced subgraphsiotherefore
§(A")y > 0forall A" C A.

= Next we use Hall's Marriage Theorem to show that every graghcan be
2-oriented. To use Hall's Marriage Theorem we construcpatbite graph. For
the first part take[A] (so the vertices in this part of the graph are the edges
from the original graph). Then take two copies of the set dfiees of A, V' (A)
andV (A)’ to form the second part of the bipartite graph needed. Sortyghg
hasFE[A] for one partand’(A) UV (A)’ for the other and has edges from vertex
{vi, v;} in E[A] to verticesy; andv; in V(A) and to vertices; andv’; in V(A)".
This arrangement is shown in Figure 25. If we can obtain aggerhatching for
E[A] in this graph then if the matching choose®r v; to be joined to{v;, v, }
then make; the initial vertex of the directed edge;, v;) in the oriented graph.
Since we have two copies 6f(A) eachv; could then be the initial vertex of at
most two edges, and since the matching is perfectfot] every edge will be

directed. Thus we will be able to orient every grapltias required.

Let X C FE[A] and check to see whether there are at l¢&stelements in
N(X), the set of vertices in the bipartite graph that are joinedléments of
X. Define the grap” C A to be the induced subgraph dfwith vertex set
{v; © Fvi{v;,v;} € X}. Then|N(X)| = 2|Y]| and also|X| < |E[Y]|. As
Y C A and from the definition oA € C we haves(Y) = 2|Y| — |E[Y]| > 0.

Therefore we have

[ X| < [EIY] <2[Y] = [N(X)],
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and hence by Hall's Marriage Theorem we get the matchingqened. [

E[A] V(A) V(A

—_— T
{Uhvj} T

Figure 25: The bipartite graph used in Hall's Marriage Theorem in theopof Lemma
4.15

Definition 4.1.6. Let B C A be finite graphs which can be 2-oriented. Then we
say there is &-orientation ofA in which B is closedif A has a 2-orientation
A’ in which there are no edges pointing out®f (using the notation from the
previous chapters, this is equivalentdesc® (B') = B’). An example of this
definition is shown in Figure 26).

A/

Figure 26: An orientation ofA in which B is closed

The following lemma is a generalization of Lemma 4.1.5 anétosn ([14],
Lemma 1.5) withr = 2.
Lemma 4.1.7.If Ais a finite graph and3 C A then) < B < A if and only if

there is a 2-orientation ofl in which B is closed.

Proof. <= Suppose that there is a 2-orientationffn which B is closed. So

there is a 2-orientation ol and hence by Lemma 4.146 € C and so we have
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d(A) = 2|A| — |E]A]| > 0. The existence of a 2-orientation dfin which B is
closed means that there is a 2-orientatiolBaind so we havé(B) > 0 again
by Lemma 4.1.5, which givek < B as stated in Definition 4.1.2. We see that
2|A\B| > |E[A]\E[B]| (each edge irE[A]\ E[B] has at least one of its end
vertices inA\ B) which givesi(A) > §(B). The same argument works for any
subgraphA’ of A containingB (since A’ also has a 2-orientation in which

is closed, taking the same orientation as fgrand hence we havB < A as

required.

= For this direction we again use Hall's Marriage Theorem.uhss thatA is

a finite graph,B C A and() < B < A. TakeE[A]\E|[B] for one part of the
bipartite graph, and take two copies6fA)\V (B) (calledV (A)\V(B) and
(V(A)\V(B))") for the other part. It;,v; ¢ B, put edges betweefv;, v,} in
E[A]\E[B] andv;, v; in V(A)\V(B) andv;, v} in (V(A\V(B)). If v,, € B
andv, ¢ B then put edges betwedn,,,v,} andv,,v,,. This then gives the
bipartite graph that we use in Hall's Marriage Theorem aigishown in Figure
27. TakeX C E[A]\FE[B] and definey” C A to be the induced graph on the
set of vertices{v; : Jv;, {v;,v;} € X}. Then|N(X)| = 2|Y\B| and|X| <
|E[Y]\E[B]|. We have assumell < A and so we havé(BNY) < 4(Y) by
Lemma 4.1.3, that is

2BNY| - [E[BNY]| < 2Y| - |E]Y].

We can split the vertices df into two sets sdY'| = |Y\B| + |Y N B|. This

and rearranging gives

2ABNY| - |[E[BNY]| < 2Y\B|+2Y nB| - |E[Y]]

|E[Y]| - |E[BNY] < 2|Y\B]|.
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It is clear that E[Y'\B]| < |E[Y]| — |E]Y N B]|. Putting everything together
then gives

[X| < [EYAB]| < 2[YAB| = [N(X)].

Thus Hall’s Marriage Theorem gives a perfect matchingfod|\ £[B] in this
graph. This gives a 2-orientation d[A]\ E[B] wherev; € B is not the
first vertex of any edge. Sindk < B we can use Lemma 4.1.5 to give a 2-
orientation ofB, and putting this together with the orientation above weshav

2-orientation of4 in which B is closed. O

E[A]\E[B] V(A\V(B) (V(A\V(B))

oo f————

—

— | Un
{Um7 UTL} I /

Figure 27: The bipartite graph used in Hall's Marriage Theorem in treopof Lemma
4.1.7

Now we have shown that Hrushovski’s clggs <) arises by considering the

rather more natural class of finité 2-out digraphs.

For the last part of this section we are going to consider théské-type limit
of two classes of graphs. The first of these classéS,is ), as we considered
above. The other i§D, C), the class of finite< 2-out digraphs (where each
vertex has at most two out-vertices) without self loops whérC B means

that A is closed inB. This definition ofC is equivalent to that given in ([14],
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Definition 1.4). We will require the following amalgamatiéemma for the
class(D, ).

Lemma 4.1.8.Let A, By, B, € D such thatA C B, and A C B,. Then the
free amalganC' = B, [ [, B, of By and B, overAisinD andB; C C.

Proof. SinceB;, B, € D and( is the free amalgam (i.e. there are no edges
other than those fully contained 8y, or fully contained inBs) itis clear that”
is a finite graph where each vertex has at most two out-vertibat isC' € D.
From A C B, and the definition of the free amalgam we @gtC C, since if

this was not the case then it would contradict_ Bs. O

By Lemma 4.1.7 we see that taking the reduct of the c{@s$=) where we
forget the direction on the edges gives the cl@ss<). We would therefore like

to know whether the reduct of the Fraissé-type limitDf C) is isomorphic to
the Fraissé-type limit ofC, <).

Notation 4.1.9. Denote the Fraissé-type limit ¢f, <) by M and the Fraissé-
type limit of (D,C) by N. Call the reduct ofV obtained by forgetting the
direction on the edge&!/’.

Remark 4.1.10.The Fraissé-type limiv has directed cycles and each element

has infinite in-degree and out-degree at nst

We are going to prove the following theorem.

Theorem 4.1.11.M is isomorphic taM’

To prove this we prove the two lemmas below.

Lemma 4.1.12.Let X C Y € D and X’ be a reorientation ofX such that
X' € D. If Y'is the result of replacingX by X’ in Y thenY’ € D and
X' CY.
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Proof. If X C Y thenX is closed inY. ReorientingX does not affect the
edges which come frorir into X. ThereforeY”’ is given a 2-orientation in
which X”, the reorientedX is closed by givingr’\ X’ the same orientation as

Y\ X. O

Definition 4.1.13. Let A C B € D. Then theclosureof A in B is the set
clg(A) of b € B such that can be reached from somec A by an outward
directed path (solz(A) = descg(A) in the notation of Chapter 2).

Lemma 4.1.14.1f A is a finite subset o}/’ and A < B € C then there is an
embeddingf : B — M’ with f(B) < M’ and f|A = id, i.e. M’ has the

extension property.

Proof. Take an orientationl’ of A in D and let4; = cly(A’), which is finite
becauseA is finite and due to the definition of the Fraissé-type lirMit As
A < B Lemma 4.1.12 then says thi8 can be extended to an orientatiBhof
B in which A’ is closed. Figure 28 shows this arrangement. The ¢lRsS)
has full amalgamation (as proved in Lemma 4.1.8), so thedmnealgam(C"’ of
B’ andA; overA’isinD andA; C C'. Now use the_-extension property in
N to obtain a_-embedding of3’ into N. Finally, forget the directions on the

edges to get the required result. O

Lemma 4.1.14 shows that/ is isomorphic toM’ (using unigueness of the

Fraissé-type limit from Lemma 1.6.1) and so proves Theotel.11.

It has been shown, for example in [14], that the limit struetly is stable, but
not superstable. It is also possible to check that this ig/alttheory (for the
definition of a trivial theory see Definition 4.3.5) and thia¢ reduct described

here is non-trivial (see [9] where several model theoretapprties of these
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Figure 28: The arrangement for the proof of Lemma 4.1.14

theories are considered).

4.2 Limiting Primitive Extensions

We now define minimal, primitive and regular extensions amubser the class
of directed graphs where the number of primitive extensishsiited. We then
prove amalgamation lemmas and axiomatize the theory.

Definition 4.2.1. Let the clasgD, C) be the class of possibly infinite 2-out
digraphs. Letd C B be directed graphs if?. ThenA is descendant closeid
B, AC Bif clg(A) C A (with the definition ofcl from Definition 4.1.13 in the
previous section). Note that we had the same definition irp@n& but here
we are using different notation to fit in with other notatibwat we need in this
section. A vertex: in A is calledfull in A if it has two out-vertices iri.
Definition 4.2.2. For A C B ¢ D (possibly infinite), the extensiod C B
is minimal if B\ A is finite and whenevey € B\A theny is full in B and
B\A C clg(y) (an example is shown in Figure 29). The extensibi B is
primitive if it is minimal and everya € A is an out-vertex of some vertex in

B\ A (an example is shown in Figure 30). The extensibA. B is regular if
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there isnoB’ C B with A C B’ (A # B’) minimal.

Figure 29: An example of a minimal extension

Figure 30: An example of a primitive extension

Remark 4.2.3. These definitions are motivated by Hrushovski’'s definitién o
a minimally simply algebraic extension in [18]. In fact itrche shown (see
[14]) that if the extensio®l C B € D is minimal in the above sense then the
undirected reductd~ < B~ € C is simply algebraic in Hrushovski’'s sense.
Moreover, if A C B is primitive thenA~ < B~ is minimally simply algebraic.
Thus in what follows, controlling the multiplicities of pnitive extensions cor-
responds to imposing a boupdon the multiplicity of minimally simply alge-
braic extensions in Hrushovski’s construction of a strgmginimal set in [18].
Definition 4.2.4. Let A T B € D be a primitive extension and(B/A)

be a function from isomorphism types of primitive extensida the natural

numbers. LetD, be the class of finite directed graphsin D, such that if



Ay C B, C Cfori=1,...rwith B;N B; = A, forall ¢ # j and there is a
primitive extensionA C B and isomorphismg; : B; — B with f;(Ay) = A
thenr < v(B/A). This means that there are at mosB/A) primitive exten-
sions isomorphic to each primitive extensidri_ B overA in C. LetD, be the
class of directed graphs as above, but allowing infinite lyggsap

Remark 4.2.5. Note that if A C B is minimal then there is a uniqué, C A
such that4d, C Ay U (B\A) is primitive. Call thisA, thebaseof A C B. In
this casep is the free amalgam of, U (B\ A) and A over A,. An example of

the base of a minimal extension is shown in Figure 31.

B

Figure 31: An example to illustrate the base of a minimal extension

Lemma4.2.6.Supposel C B andY C Bissuchthat"nA C Y is primitive.
ThenY U A C BandY U Ais the free amalgam of andY overY N A.

Proof. By definition of primitivity, y € Y\ A is full in Y and hencelz(y) C
Y U A. The lemma is then immediate. O

Lemma 4.2.7 (Amalgamation Lemma)SupposeC € D,, A C C is finite
andA C B € D,. LetF be the free amalgant’ = B[], C. If F is not
in D, then there is a primitive extensioki C Y with X C A and there are

r=v(Y/X)+ 1copiesy,..., Y, of Y overX insideF' such that

1. Y7 € CandY; € B, and
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2. AUY] isthe free amalgam of andY; overX andAU Y; C B.

Proof. If F is not in Dv then by Lemma 4.1.8 there is a primitive extension
X C Y with X C F and there are = v(Y/X) + 1 copiesYy,...,Y, of Y
overX in F. Note that”' C F' becaused C B.

Claim X C A.

Proof. We prove this by eliminating the other possibilities for

Case 1X N (B\A) # (. SinceB € D, someY; is not completely contained
in B. There can not be an element (Y;\X) N (B\A) by the definition of a
primitive extension: let € Y;\ B thenY;\ X C cl=y(z) contradictsA C B as

y € cl=y.(2) . By the primitivity of the extension every € X is an out-vertex
of somey € Y;\ X. However we have just showri\ X C C and this again

contradictsd C B. Therefore we can not have this case.

Case 2X N (C\A) # 0. We see that there is soniesuch thaty; ¢ C by

C € D,. Due to the closure property of primitivity and = B, we have
(Y\X) N A = 0 (because with: € (Y;\X) N A the primitivity condition
Yi\X C cl5y.(z), knowing thatY;\C # 0 contradictsA C B). We also
have(Y;\X) N (C\A) = () because the closure condition of primitivity would
require a relation between an elementtfA and an element aB\ A which is
forbidden by the definition of a free amalgam. By primitivéyeryx € X and

in particular everyr € X N (C\A) is an out-vertex of some vertex i\ X.
However this too gives a relation between an eleme®?\al and an element
in C'\ A which is forbidden by the definition of a free amalgam. So taise is

not valid either.

The only other option is thak C A and since neither of the above cases can
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occur, we must have this situation.
O Claim.

Therefore we now have that there is a primitive extenstor Y in F' with
X C Aandr copiesY;...,Y,of Y overX in F. SinceX C A itis clear that,
without loss of generality; ¢ C andY, ¢ B. It follows thatY; C B and
Y, C C. Also AU Y; is the free amalgam od andY; overX andANY; C B
by Lemma 4.2.6. O

Corollary 4.2.8. Suppos&” € D,, A C Cis finiteandA = B € D, is a
minimal extension with bas&. Let F' be the free amalgant’ = B[], C.

Then one of the following occurs:

1. FeD,,
2. there exists an embedding B — C over A,

3. there is a primitive extensioX’ C Y in F andk = v(Y/X) copies

Y1, ..., Y, of Y overX in C such that for each < k either

(a) thereisa € A with some element af\ X as one of its out-vertices,

or

(b) (Y;\X) N A #0.

Proof. Assume tha# ¢ D,. Then by Lemma 4.2.7 there is a primitive exten-
sionW C ZwithW C Aandr = v(Z/W)+1 copiesZ, ..., Z, of Z overiW
in FFsuchthatZ; & C, 7, ¢ B, AUZ isthe free amalgam of andZ; overiW'
andA U Z; C B. By the minimality ofA C B and the uniqueness of the base

X we havell/ = X andZ = Z; = XU(B\A). WenowletY; = Z; ., fori <r
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andY;;, = Z; (note this is simply renaming) which give$Z /W) = v(Y/X)
andr = k£ + 1. So we have/(Y/X) + 1 copiesYi, ..., Y, of the primitive
extensionX C Y overX in F. SinceY = Y., = X U (B\A) we have
v(Y/X) copiesYy, ... Y} of the primitive extensiotX’ C Y over X in C. Now
assume that 3 does not hold, hence there is<rk such that bottia) and(b)
do not happen. So we have sonwith (Y;\X)NA = § andAUY; = A[[, Y.
ThereforeA U Y; and B are isomorphic oved. Thus there is an embedding

a: B — CoverA, thatis 2 holds. O

Note 4.2.9.1f A C B from the above corollary is a primitive extension (that is
X = A) then Conditions 3(a) and 3(b) do not hold sinté- Y. Therefore if

A C B is a primitive extension then either the free amalgéng D, or there
exists an embedding : B — C' over A.

Corollary 4.2.10. Suppose&” € D,, A C C'is finite andA T B € D, is
regular. LetF be the free amalgai = B[], C. ThenF € D,.

Proof. Since A C B is regular there does not exi®f C B with A C— B’
(A # B’) minimal. Therefore there is no primitive extensi&@nC Y in F with

X C AandY ¢ C. Hence Lemma 4.2.7 givds € D,,. O

Corollary 4.2.11. The clasgD,, C) has the amalgamation property.

Proof. We need to show that fod, B.C € D, if A C BandA C C then we
can amalgamate to a structufec D, with B, C T E. Arguing by induction
on |B\A|, we may assume that the extensidnC B is either minimal or
regular. If it is regular then Corollary 4.2.10 shows that vem takeE' to be
the free amalgam aB andC over A. So now suppose that C B is minimal

and the free amalgarf is not inD,. As A C C, Case 3 in Corollary 4.2.8
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does not occur and so Case 2 of Corollary 4.2.8 must occus.givees what we

need. O

Thus(D,, C) is an amalgamation class in the sense of Section 1.6 and we de-
note byN, the Fraissé-type limit of this class (as in Theorem 1.8/l would

now like to axiomatize the theof§h(N,,).

Definition 4.2.12. For a setA of vertices in a directed graph lgt™ be the set

of immediate out-vertices afi, that is the set of elements reached from any

element inA by a directed edge.

In the following A 4(Z) denotes the basic diagram df(that is the quantifier
free formula which specifies that thiehave the same isomorphism type As
and A, 5(Z,7) is the basic diagram aB with the variables arranged so that

A p(Z,y) impliesA4 (7).

Supposed C B is a finite minimal extension which has bak¥eC A. Then let
Y = XU (B\A) andr = v(Y'\X) and definé 4 5 (using Corollary 4.2.8) as

follows
VaAa(a) = 3yAap(ay)V <3iAX(i) ANFYis - YrDxy (Z8i) A /\ @(@Uz))

wherep(ay;) says that there is an element of the tuplevhich is in A or there

is an element of the tuplg which isin A~ (as in Case 3 of Corollary 4.2.8).

For A C B afinite regular extension defing z (using Corollary 4.2.10) to be
YaAa(a) — IgAasay) A o(ay)

whereg says that out-vertices gfare only inay, which can be written in a first

order way.
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Let ¥ be the collection of alf 4 5 and74 5.

Lemma 4.2.13.We haveV,, | .

Proof. Let A C W, be finite, A T B € D, andC = cl=(A). Note thatC

is finite. To show thatV, = X it is enough to consided T B being either
a minimal extension or a regular extension and proving Mat= 04 5 or
N, E 74,5 in the respective cases.

Case 1A C B is a minimal extension. Let the extension have h&sand let
Y = X U (B\A). Assume thati in V, is such thatA 4 (a) holds. By Corollary
4.2.8 we have that either the free amalganfof B andC over A) is in D,

or there is an embedding frof into C' over A, or there are/(Y/X) copies
Yy,..., Y, of Y over X in C such that for each one of two conditions hold.
In the first case{ € D,) we haveC' C F (by definition of the free amalgam)
andC C N, (sinceC is the closure ofd in V,) so we can use the extension
property of the Fraissé-type limit to get an embeddingrFointo N,. This
clearly gives us an embedding Bfinto V,, over A. In the second case we have
an embedding oB into C' € N, and so we have an embedding®finto \,,
over A. Thus, in either of the first two cases we have an embeddirig)ioto
N, over A, that isA 4 g(ay) holds for some; € N, and thereforeV, |= 04 5.

In the third case we havg,, . ... Y, such that for eacheither some: € A has
an element of;\ X as one of its out-vertices @;\ X ) N A # (. This means
we have the second part of the conclusiofitg; and so agaitV, = 04 5.

Case 2A C B is a regular extension. In this case, Corollary 4.2.10 gilias
the free amalgam of8 andC over A is in D,. As in a part of the previous
case, we have’ C F andC € N, so using the extension property of the

Fraissé-type limit gives an embedding Bfinto ,, such thatF” T N,,. In
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particular there is an embedding &f into V, over A, so there is therefore
somey € N, such thatA, z(ay) holds. We also have to check thatay)
holds, that means out-vertices @fare only inajy. Since we havd’ C N,
and F' is a free amalgam (so there are no edges betviBeth andC\ A) it is
clear that out-vertices of elements Bi\ A are within B. That givesp(ay) as

required. HenceV, = 74 5. O

Definition 4.2.14. For a vertexz in a directed graptD let = be the descen-
dants ofr in D, that is the set of vertices iR that can be reached fromby an
outward directed path. Let™ for n € N be the set of vertices i that can
be reached from by an outward directed path of length at most

Notation 4.2.15.Let T be the theory oK 2-oriented digraphs in the language
L which has a binary relation symbg&l(z, y) for ‘there is a directed edge from
xtoy'. Let T, beT together with the axioms.

Lemma 4.2.16.Let N = T, bew;-saturated (V is not required to have cardi-
nality X,). If C C N is finitely generated an@ C D € D, is finitely generated

then there is a--embeddingf : D — N over(C.

Proof. Without loss of generality, we may assume = 4~ U C' for some
d. For everyn € Nlet D, = d7» andC,, = D, N C. We first prove by
induction on|D,,\ C,| that we have an embeddirfg: D,, — N overC,, with

(CUf(D,)) C Nandf(D,)NC = C,. The base cagd,,\C,,| = 0 is trivial.

For the inductive step, first consider the casé€'pf= D,, being a regular exten-
sion. Lete be the generators @f and letA bec= for somem such thatC,, C
A. LetB = D,]]., A. ThenA C B is aregular extension (if it were not regu-

lar thenC,, C D,, could not be a regular extension). By the axioms there is
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an embedding : B — N over A such that out-vertices af( B)\C,, are only in
g(B) U C,. This givescl=(g(B)) = cl5(A) U g(B) = C' U g(B). We can thus
find an embedding : D,, — N overC,, with cI=(f(D,,)) = cI=(C,,) U f(D,,)
(which meangC U f(D,,)) C N)andf(D,)NC = C,, as required.

Now if C,, C D, is not a regular extension then there is soe C D,
such thatC,, C D! is a minimal extension. By the inductive hypothesis we
may assume thab), = D,,. Let X C C, be the base of this extension, so
X C XU (D,\C,) =Y is primitive. LetA C C be such that any copy;
(e < v(Y/X))of Y over X in C is contained inA. By minimality, Y\ X is
finite and so each copy; is finite. Hence we can chooséto be finite. Let
B =D, ]_[C" A. ThenA C B is a minimal extension becausg C D, is a
minimal extension. There is then som{é C A such thatX’ C X' U (B\A) is
a primitive extension, and since this base is unigie= X. SinceN |= ¥ we

use the axionf4 5 to give that either
1. there is an embedding &f into N over A, or

2. there are = v(Y’/X’) copiesY/,.... Y/ of Y over X' in N such that

for each:
(@ Y/\X'NA=#Dor
(b) A™ N (Y/\X') # 0.
Claim Case 2 cannot occur.

To see this assume that there &fe. .., Y, copies ofY’ over X’ in N. Since
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C € D, there must be at least one of these copie¥ ofiot contained com-
pletely inC. LetY/,...,Y] (for k < r) be the copies ot”’ contained com-
pletely inC' (and so ind), andY} . ,, ..., Y, be the other copies. SinceC N
andY;/\ X’ C cl=(y!) for anyy! € Y/\ X by minimality, we get that for any €
{k+1,...,r}the intersectioY/\ X’)NC is empty (hencé¢Y;/\ X') N A = ().
Also C' C N shows thatd™ N (Y/\X’') = 0 foranyi € {k+1,...,r}. Thus
(a) and(b) do not hold for any of the copieg/, ,,...,Y; and hence case 2

cannot occur.

Therefore case 1 must occur and there is an embeddingg — N over A.
SinceA C B is a minimal extension, the imagg¢B) of B in N must also be a
minimal extension ofd. Thereforecl=(h(B)) = h(B) Ucl=(A) = h(B) U C.

We also havé:(B) N C = A since if this were not the case there would be some
x € B\A with h(xz) € C. This would then forcéi(B) C C asC C N and
B\A C cl=(z). However, that would contradict the choice 4f Hence there

is an embedding : D,, — N overC,, with cI=(f(D,)) = cI5(C,,) U f(D,,)
(which means thatC' U f(D,,)) C N)andf(D,)NC = C,.

We therefore have an embeddifigrom D,, into N over C,, for everyn such

that(C' U f(D,)) C N andf(D,)NC = C,.

Using the saturation oV and compactness we see that we haveembedding

from D into N overC. O

Finally in the axiomatization of'h(N,) we look at types in this theory and use
this to show that the theory is complete.
Lemma 4.2.17.Let M, N |= T, and leta and b be n-tuples inM and N

respectively. Thea andb have the same type if and only if the map- b
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extends to an isomorphism betweg,;(a) andcl= v (b).

Proof. If the types ofa andb are the same then there is clearly an isomorphism
between their closures. For the converse, it is enough te shat if A/, N are
wi-saturated models df, then the set of isomorphisms between closures of
finite subsets of\/, IV is a back and forth system. This follows from Lemma
4.2.16. LetS be the set of partial isomorphisms between finitely gendrate
substructures o/ and N, let a, b generate isomorphic substructures gnd
cl=(@) — cl=(b) be an isomorphism. Thug € S. Takec € M and let

A = cl5y(a) and B = cl=n(b). So f gives aC-embedding fromB into A U
cl=(c). Hence, by Lemma 4.2.16 we can find & N such thatd U cl=j,(c)

is isomorphic toB U cl=y(d), extending the isomorphisth This completes

the ‘forth’ direction, and the ‘back’ direction is similar. O

Lemma 4.2.18.The theoryl, is complete.

Proof. This follows from Lemma 4.2.17 with, b empty tuples. O

Theorem 4.2.19.The theoryl,, axiomatizeg h(N,,).

Proof. This follows from Lemmas 4.2.13, 4.2.16 and 4.2.18. O

4.3 Stability and Triviality

We now consider two further model theoretic propertiesywshg that the the-
ory T, defined above is stable and trivial.

Theorem 4.3.1.The theoryr, is stable.
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Proof. SupposeéV is a highly saturated model @f,. If B C N is small (which
means of cardinality less than the degree of saturation)zef)sanda is a
tuple of elements ofV then, by the above lemma(a/B) is determined by
cl=(aB). Howevercl=(aB) is the free amalgam aofl=(a) and B over their
intersection. Note thatl=(a) is countable and so the number of possibilities
for the intersection i$B|*. The number of possibilities for the isomorphism
type ofcl=(a) overcl=(a) N B is at most2®°. Hence the number of-types
over B is at mostnax (2%, |B|*0) = | B[N = \®, Thus the theory is--stable

for A = A\®, which means it is stable. O

We now give a description of algebraic closure in a madlel= 7, and then

look briefly at forking in the theor{,.

We may assume that the mod¥l = 7, is sufficiently saturated. It is clear
that if X C N thenacl(X) C N. Supposed C N andB C N is such that
AN B C B is a primitive extension. Thed U B = N (by the definition of
primitivity) and B C acl(A) (by thev-function). LetA be the closure ofd
under the operation of taking primitive extensions. Wernlgtiat A = acl(A).
The previous observation gives thatC acl(A). On the other hand, i €
N\A andB = cl(AU {b}) = AUcl(b), thenA C B is a regular extension
and it follows (by free amalgamation as in Lemma 4.3.2 belihaj there are
infinitely many copies of3 over A in N. So, in particulab ¢ acl(A). This
establishes the claim.

Lemma4.3.2.LetN = 1T,, AC BLC N andc € N. Suppose that we have
acl(cA) Nacl(B) = acl(A). Thentp(c/acl(B)) does not divide oveicl(A).

Proof. Let A = acl(A), B = acl(B) andC' = acl(cA). Note that for any set
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X of N we havecl=(X) C acl(X) and so these setsl( B, C') are descendant
closed inV. By the hypothesi§’ and B are freely amalgamated over Since
C,B C N wegetCUB C N. Now supposéB; : i < w) is a sequence
of translates of3 over A and letX = acl(|J B;). SinceA is C-embedded in
X and also inC' we can form the free amalgaii of C' and X over A with
C-embeddings : C — F andg : X — F. As A is algebraically closed if,
A C Cis aregular extension. Hence we get that D, by Lemma 4.2.7 and
we can assume thaf is sufficiently saturated so th&t C N. Let f(C) = C"
and note that by construction we hawg(C’/A) = tp(C/A). Also by the
construction we have that for everyC’ U B; C F, henceC’ U B; C N and
C'U B, is the free amalgam a&f” and B; over A. Lemma 4.2.17 says that types
are determined purely by descendant closure and hence V\@({é’@i) =

tp(C B) for all 7. This givestp(c/acl(B)) does not divide ovescl(A). O
Corollary 4.3.3. LetAC BC N =T, andc € N. Thenc J/A B if and only
if acl(cA) Nacl(B) = acl(A).

Proof. = SinceN is a stable structure, this is given by Corollary 1.7.5.

< Since the theory is stable, forking and dividing coincidel &ence this is

given by Lemma 4.3.2 above. O

We note the following additional property of algebraic cloes

Lemma4.3.4.For A, BC N =T, we haveacl(A) Nacl(B) = acl(A N B).

Proof. Firstly, it is clear thatcl(AN B) C acl(A) Nacl(B). So consider some
x € acl(A) Nacl(B),x ¢ AN B (if z € AN B thenz € acl(A N B) trivially).

If, without loss of generalityy € A\ B thenz € acl(B) gives a sequence of
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minimal extension3 C By, B; C B, ..., B,_; C B, such thatr € B,
wheren is the least such. Note th@& = N sox ¢ cl=(B) asz ¢ B. We
definedB, so thatr € B, andx ¢ B,_;. The minimality of this extension
thus givesB,\ B,,_; C cl=p, (x) which together withr € A andA C N gives
B,\A = 0. This means thaB; C A for all j and hence the sequence of

minimal extensions is ovet N B, thatisx € acl(AN B).

So we can now assume that¢ A andx ¢ B. Hence there are sequences of
minimal extensionsi C A, A, C A,,...,A,_1 C A,andB C By, B, C B,

.. Bm_1 € B,, suchthatr € A, andz € B,, andn, m are the least such. By
the fullness property of minimal extensions, each of the dwbvertices ofr
isin A, and is also inB,,. More specifically, each is id,,\ A,,_1, A;\ A;_; for
somei < n or A, and is inB,,\ B,,—1, B;\B;_; for somej < m or B. Let us

now consider the possibilities for one of these out-vesticall ity within A,,.

If y € A,\A,_; then we can repeat the above conditions for the two out-
vertices ofy due to the minimality of the extension. By definition of mirdam
extensionsi,,\ A, is finite and so we can find a descendant @fhich is not

in A,\A,_1. Thus we can assume without loss of generality thatA, \ A,,_;.

Now consider the possibility of € A;\A;_; for somei < n. Repeating
the argument from above gives that we will eventually (pogsafter passing
through several of thd;) come to a descendantofwhich lies inA. Therefore

let = be a descendant afin A such that it is the out-vertex of an element which
is not in A. We can assume that ¢ A N B (if there is no such: then we
havecl=(z) N A C AN B, meaning that the sequence of minimal extensions
ACALA C Ay, ... A,1 C A, isoverAN B, hencer € acl(AN B) and

we are done). We now consider thisvith regards to the3; extensions. Since
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z is a descendant of and the extensions are all minimal the fullness condition
means we must havee B or z € B;\ B for somej < m. We have assumed
thatz ¢ B so we have: € B;\B for somej < m, which we shall say is
the least such. Using the closure property of the minimality definition wees
B\B;_; C cl=(z). RecallingA C N then givesB;\B,_; C cl=(z) C A and
henceB; C A. SincebB; is an extension oveB contained inA it must be an
extension overd N B. Thus the whole chain aB;, extensions is oved N B

giving x € acl(A N B) as required. O

Note that in generalcl(A) U acl(B) = acl(A U B) is not true for allA, B C

N. For example ifA and B are disjoint sets then there could be a primitive
extension overl U B consisting of a single vertex with an edge to some vertex
in A and an edge to some vertexih This is not a primitive extension over
either A or B, henceacl(A) U acl(B) # acl(A U B) in this case.

Definition 4.3.5. A complete stable theory is trivial if whenevera, b, c are
tuples of elements from a model @fand A is a set of parameters, thenb, ¢
being pairwise independent ovérimplies thata |, b, c.

Lemma 4.3.6. The theoryr), is trivial.

Proof. From Corollary 4.3.3 we can see thab, c being pairwise independent

over A is equivalent to the properties
acl(aA) Nacl(bA) = acl(A),

acl(bA) Nacl(cA) = acl(A)

and

acl(aA) Nacl(cA) = acl(A).

83



Now considercl(aA) Nacl(bcA). This can be rewritten
acl(aA) Nacl(bcA) = acl(cl=(aA)) Nacl(cl=(bcA)).
By Lemma 4.3.4
acl(cl=(aA)) Nacl(cl=(bcA)) = acl(cl=(aA) N cl=(bcA))
= acl(cl=(ad) N (cl=(bA U cA))).
Since the descendant closure is disintegrated we get

acl(cl=(aA) N (cI=(bA U cA))) = acl(cl=(aA) N (cI=(bA) U cl=(cA)))

= acl((cI=(aA) N cl=(bA)) U (cI=(aA) N cl=(cA))).

It is clear that

cl=(aA) Ncl=(bA) C acl(aA) Nacl(bA)
and by the hypothesis we have
acl(aA) Nacl(bA) = acl(A).
Therefore
cl=(aA) Ncl=(bA) C acl(A)
and similarly we see that
cl=(aA) Ncl=(cA) C acl(A).

Hence

(cI=(aA) Ncl=(bA)) U (cI=(aA) Ncl=(cA)) C acl(A)
which gives

acl((cl=(aA) Ncl=(bA)) U (cI=(aA) Ncl=(cA))) C acl(A),
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that is
acl(aA) Nacl(bcA) C acl(A).

The other inclusion is trivial and so we hawel(aA) N acl(bcA) = acl(A)

which, by Corollary 4.3.3 is equivalentto |, b, c. O

4.4 Non-superstability

In what follows N, is a large saturated model @f. We now consider the
reduct)M, of N, which is obtained by disregarding the directions on the sdge
Note that), is saturated as it is the reduct of a saturated model. We dtaiw t
Th(M,) is strictly stable (recall this meansstable if and only ifAY = )),
which is in contrast to the reduct in Section 4.1.

Definition 4.4.1. Define adirected triadto be a triplea, b, c in N, such that
there are directed edges franto b and froma to ¢ and no other edges. If we
disregard the direction on the edges of a directed triad wemvill call it an
undirected triad

Note 4.4.2. A directed triad is made up of the primitive extensignec} C
{a,b,c}.

Lemma 4.4.3.Let v(P/Q) = 1 for the primitive extensiod) C P where
P = {p,q,r}, Q@ = {q,7} andp,q,r is a directed triad. Then for any two
elements, f in N, there must be an elemedtin N, such thatd, e, f is a

directed triad.

Proof. Recall thatd4 5 for a minimal extensiom C B with baseX C A and

Y = X U (B\A) is defined as
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VaA(a) — IyAa p(ay)V <3$AX($) ATYr, . G Ax y (ZG:) A /\ SD(Clyi))

where p(ay;) says that there is an element of the tuplenhich is in A or
there is an element of the tuple which is in A~. In this cased = {e, f},

B ={d,e, f}, X = AandY = B. The axiom therefore says that for any set
isomorphic toA there is an extension of isomorphic toA C B or there is an
elementy in N, such that, e, f is a directed triad and eithgre Aory € A™.

As we haveX = A Note 4.2.9 says that the second option cannot occur and so
there must be an extension dfisomorphic toA C B. That is, there is @ in

N, such thati, e, f is a directed triad. ]

Lemma 4.4.4.Let v(P/Q) = 1 for the primitive extensiod) C P where
P =A{p,q,r}, Q@ = {q,r} andp, q,r is a directed triad. Lef" be the rooted
directed binary tree and letl = {a € N, : desc(a) ~ T'}. Then for any
a € Aut(M,) we haven(A) C A (that is, the directions of binary trees N,

are preserved by automorphismsiaf).

Proof. Leta, ag, a; be a directed triad in a rooted binary treé\ip, soa, ag, a; €

A and consider the result of applying the automorphismSince there is a
unique path of length two betweely anda, there must also be a unique path
of length two between(aq) anda(a, ). Automorphisms preserve relations and
so this unique path passes through the vetexa(a). By Lemma 4.4.3 there
isab’ in N, such thatt, a(ag), a(ay) is a directed triad. Therefore we must
have that’ = b and thusxy(a), a(ap), a(ay) is a directed triad. This means that
the direction on a directed triad in a rooted binary treéVinis preserved by

any automorphism af/,,, and sox(A) C A. O
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Lemma 4.4.5.Let v(P/Q)) = 1 for the primitive extensiod) C P where
P={p,q,r}, Q= {q,r}andp,q,ris adirected triad. Then the redugdt, is

strictly stable.

Proof. Note that)/, is stable because it is the reduct’df which is stable. Let
A ={a € N, : desc(a) ~ T} whereT is the rooted binary tree. By Lemma
4.4.4,0(A) C Aforanya € Aut(M,). We know that)/, is saturated so we
now consider the number dftypes over a set of sizethat are realized inl.
We show that for each infinite cardinathere is a set’ C A with |C| = X and
AN 1-types overC' in M,,. To do this let(a; : i < \) be independent elements
of N, with a; € A and letC' = cl({Ja;). LetI : w — X be any countable
increasing sequence of elements\ofThen there i$; € A with the following

properties:

1. desc(by) Ndesc(a;) # ( if and only if i is in the image of,

2. ifi = I(n) thendesc(b;) Ndesc(a;) = desc(cy ) Wherecy ,, is in thenth

level of desc(a;).

Itis clear that if/ # I’ then nox € Aut(M, /C') can havex(b;) = by. Thusthe
number ofl-types overC in M, is at least\™ (the number of such functions

D). O

Now let us consider the general case wh¢R/(Q) = n for the primitive ex-
tensionQ C P whereP = {p,q,r}, Q = {q,r} andp, ¢, r is a directed triad.
We get lemmas that generalise Lemmas 4.4.3, 4.4.4 and 4. 408@ws.

Lemma 4.4.6.For any two elements, f in IV, there are exactly. elements in
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N,,dq,...,d, suchthatd;, e, f is a directed triad for each.

Proof. We prove by induction that forn < n there ared;,...,d,, € N, such
thatd,, e, f is a directed triad for each To do this we consider the axiof
for appropriated, B.

The base step is where = 1 and this is given by the proof of Lemma 4.4.3.
For the inductive step assume that the statement is true ferl, so there are
dy,...,dn_1in N, such thatd;, e, f is a directed triad foi = 1,...,m — 1.
Now letA = {d;,...,dn_1,¢, f} andB = {d,...,dn,e, f},SOAC Bisa
minimal extension with bas& = {e, f} and letY = {d,,, e, f}. The axiom
04 5 then says that for every set isomorphicAathere is an extension o
isomorphic toA T B unless there arg,, . .., y,, (With y; # y; for all i # j)

in N, such thaty;, e, f is a directed triad (that i§y;, e, f} is isomorphic toY")
such that eithey;, € A ory; € A~ for everyi. If there is an extension of every
set isomorphic to4d isomorphic toA T B then we are done, so assume that
this is not the case. Therefore theregre . ., y,, such thaty;, e, f is a directed
triad and either; € A ory; € A~ for everyi. First let us considey; € A.

If y; = e ory; = f for anyi then this creates a self loopabr f respectively
which is not allowed. Therefore if; € A theny, = d; for somej. Them y,’s
are all unique and there are only — 1 d,’s so there must be at least opg
ym Say such thag,, ¢ A. Therefore we must havg, € A~. Thed; are full,
that is they can not have any descendants otherdleard f. Hence we must
have thaty,, is a descendant efor f. However this givege, f} Z {ym,e, f}
which contradictqy,,, e, f} isomorphic toY. So we must have an extension
isomorphic toA T B, that is for any two elements, f in N, there arem

elementsiy, ..., d,, in N, such thatl;, e, f is a directed triad for each O
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Lemma4.4.7.LetA = {a € N, : desc(a) ~ T} whereT is the rooted directed
binary tree. Then for any € Aut(M,) a(A) C A (that is, the directions of

the edges i7" in IV, are preserved by automorphismsiaf).

Proof. The proof follows that from Lemma 4.4.4. LetP/Q) = n for P =
{p,q,7}, Q = {q,r} andp, ¢, r a directed triad. Let,, b, c be a directed triad

in A. Then by Lemma 4.4.6 there ate, ..., a, in N, such thata;, b, c is a
directed triad for all. Now consider the result of applying the automorphism
«. Since there are exactly paths of length two betwednand ¢ there must
also be exactly: paths of length two between(b) anda(c). Automorphisms
preserve relations and so these paths pass through theeedfti= a(a;) for

i =1,...,n. Using Lemma 4.4.6 again we see theredréori = 1,...,n

in IV, such thatd}, a(b), «(c) are directed triads. Therefore we must have that
{d}} = {d;} and thusa(a;), a(b),a(c) for i = 1,... n are directed triads.
This means that the directions of the edged’'ah N, are preserved by any

automorphism of\/,, and son(A) C A. O

Lemma 4.4.8.Let v(P/Q)) = n for the primitive extensiod) = P where
P ={p,q,r}, Q= {q,r} andp, q,ris a directed triad. Then the theory of the

reductM,, is strictly stable.

Proof. The proof is exactly the same as the proof of Lemma 4.4.5. O

Hence we have shown that the theory\df is not superstable. This means that
the undirected reduct of the ‘collapsed’ digraph is not the ‘collapse’ of the

undirected graph which is given by Hrushovski’s constutin [18].
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