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Abstract 

The oomycete Hyaloperonospora arabidopsidis (Hpa) is a pathogen of Arabidopsis 

thaliana and a model for dissection of A. thaliana pathogen response networks. Hpa 

suppresses plant immunity by secreting effector proteins into the host thereby interfering 

with the host defence response and facilitating its own growth. The host’s resistance 

genes are able to recognise certain alleles of some effectors and trigger an immune 

response. This interaction exerts selection pressure on effectors and resistance genes and 

has been likened to an evolutionary arms race. It has been shown that some effectors of 

Hpa that increase virulence activity and have certain alleles recognised by the host are 

under positive selection.  

 

I investigated sequence variation in Hpa using the Illumina second generation sequencing 

platform. I was involved in the Hpa genome sequencing project. Using Illumina sequenced 

reads I isolated and removed contaminations, identified and integrated 4 Mb of novel 

sequence and developed new methods to evaluate genome completeness. I then trained 

and used various gene prediction algorithms to predict gene models for Hpa. Annotation 

and analysis of the gene models revealed interesting aspects about Hpa biology, including 

incomplete nitrogen and sulphur assimilation pathways, a reduced complement of 

effectors compared to other similar pathogens and a significant increase of sequence 

variation in candidate effectors (Baxter et al., 2010). For ease of visualisation I 

implemented a genome browser, which displays the gene models, sequence variation, and 

expression data of Hpa. 

 

I developed a novel pipeline that performs phylogenetic and evolutionary analysis to 

identify genes under selection. Comparative genomics analysis using this pipeline revealed 

that some effectors and under higher selective pressure compared to other genes. 

Analysis of the most highly evolving genes reveals a novel class of effectors, providing a 

valuable resource for further elucidating mechanisms of effector biology. 
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Chapter 1 – General Introduction 

1.1 Introduction and rationale 

Since the beginning of life on earth, approximately 3.4 billion years ago (Wacey et al., 2011) 

the key to survival has been the pursuit of nutrients. Successful organisms are able to 

gather nutrients from their surroundings, but not all organisms are able to do this 

independently and therefore need to interact with other organisms to acquire nutrients. 

This interaction “between two unlike organisms” is called symbiosis (de Bary, 1879). The 

symbiotic relationship between 2 organisms can be mutually beneficially to both 

organisms (mutualistic), beneficial to one of the organisms but neutral to the other 

(commensalistic) or beneficial to one at the expense of the other (parasitic) (Douglas, 

2010). Depending on disease severity, a parasitic organism, which causes disease in its 

host, could also be considered a pathogen. These pathogens may require a living host in 

order to complete its lifecycle (biotrophy) or kill and feed on the host (necrotrophy). It is 

also possible for a pathogen to have a biotrophic phase followed by a necrotrophic phase 

(hemi-biotrophy). In order for pathogens to be successful, they must be able to colonise, 

survive and multiply on their hosts. Some pathogens are able to suppress host immunity 

by secreting so-called effector proteins into the host thereby interfering with the host 

defence response and facilitating their own growth. In order for a host to prevent disease, 

it must be able to stop the pathogen through either preformed barriers or by inducing a 

response to make the pathogen unable to colonise the host. In the case a pathogen is 

unable to colonise its target host, it must find a new host or overcome the defence 

barriers of its host to survive. When a pathogen is unable to parasitize multiple hosts, it 

becomes paramount that it specialises to overcome the host defence barriers. This 

continued co-evolutionary interaction between the host and pathogen would impose as a 

strong evolutionary selection on both the host and the pathogen.  

 

In this dissertation I examined the signatures of evolution on Hyaloperonospora 

arabidopsidis (Hpa) using second generation sequencing and comparative genomics. Hpa 

is an obligate biotrophic pathogen that causes downy mildew of its host, the dicot plant 

Arabidopsis thaliana. Downy mildew pathogens are estimated to parasitize about 15% of 

all flowering plant families, and account for about 20% of the global fungicide market (The 
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Genome Institute, 2011). The downy mildews of sugar cane and maize are listed among 

seven plant pathogens considered to be major bioterror threats by the USA (Animal and 

Plant Health Inspection Service, 2002). Oomycete pathogens have also caused much 

devastation historically, such as the Great Irish Potato famine, caused by Phytophthora 

infestans, which caused 1 million deaths over 7 years. While Hpa is not a pathogen of a 

commercial crop plant, oomycete effector biology is an emerging field and any discoveries 

in the fundamental understanding of effector biology provide a platform to further study 

conserved mechanisms between systems, with the possibility of knowledge transfer to 

applied systems. 

1.2 Evolution, variation and selection 

1.2.1 Variation 

Evolution is the cumulative change across successive generations in the characteristics of 

populations of biological organisms. Evolution leaves its signature on the genome as 

variation. Observable traits (phenotypes) of organisms result from their genetic 

constitutions (genotypes), as well as the environment. Natural selection acts on favourable 

phenotypes that are caused by variation at the DNA level, including genes encoding for 

proteins, non-coding RNA, non-coding DNA affecting expression levels and splice variation 

as well as epigenetic variation. The different types of variation in DNA sequence of 

individuals can be caused by mutations including single nucleotide polymorphisms (SNPs), 

insertions and deletions (INDELs), recombination, copy number variation (CNV), repeat 

number variation and change in ploidy.  

1.2.2 Mutation 

Mutations can be spontaneous or induced by a mutagen. Mutations can be classified as 

small scale mutations or large scale mutations. Small scale mutations are those affecting 

only a few nucleotides and include point mutations, insertions and deletions. Point 

mutations cause a change from one nucleotide to another and are often referred to as 

single nucleotide polymorphisms (SNPs) (Freese, 1959). SNPs can be classified as 

transitions (A  G, C  T) or transversions (T  G, C  G, T  A, C  A) (Freese, 1959). 

A SNP that occurs on a protein coding region of the genome can have 2 broad effects on 

the codon on which the mutation occurs: the new allele can code for the same amino acid 
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(silent mutation/synonymous polymorphism) or it can code for another (non-synonymous 

polymorphism), which can either be a different amino acid (missense mutation) or a 

premature stop codon (nonsense mutation). Over half of all known human disease 

mutations are a result of non-synonymous mutations (Stenson et al., 2009). Insertions add 

one or more nucleotides to the DNA and deletions are the removal of one or more 

nucleotides from the DNA.  Insertions and deletions are collectively referred to as INDELs. 

If an INDEL on a coding region of the genome is of a size not divisible by 3 (i.e. not a codon 

INDEL) they cause frameshifts, which can significantly modify the codons on the gene. 

Large scale mutations largely act at the level of the chromosomal structure. Examples of 

large scale mutations include gene duplications, deletions of large chromosomal sections, 

loss of heterozygosity, chromosomal inversions, interstitial deletions and chromosomal 

translocations. 

1.2.3 Modelling variation 

Variation in genes and genomic loci results in multiple forms of the gene (alleles) in the 

population. The number of distinct allele possibilities in a genomic locus (over a gene, 

genes or even a chromosome) that are transmitted together are referred to as the number 

of haplotypes. Haplotype variability encompasses the allelic variability and genetic 

recombination over a genomic locus in the population. 

1.2.3.1 Genetic drift 

The change in frequency of an allele in a population due to random sampling, rather than 

selective processes, is referred to as allelic drift (Joanna, 2011). Genetic drift is considered 

to be an evolutionary mechanism in small populations as it can be used to explain the loss 

of genetic variation in small populations due to sampling error (Zimmer, 2002).  

1.2.3.2 Hardy-Weinberg equilibrium 

Variability in genomes can be maintained through inheritance of haplotypes from parent 

to their offspring. Hardy and Weinberg (Hardy, 1908; Weinberg, 1908) described a 

principle that states that both allele and genotype frequencies in a sufficiently large 

population remain at equilibrium between generations unless disturbed by the influence 

of non-random mating, mutations, selection, limited population size, non-discrete 

generations, random genetic drift, gene flow and meiotic drive. This principle is commonly 

referred to as Hardy-Weinberg equilibrium, and describes an ideal state from which the 
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extent of departure be measured. Another source of variation in diploid sexual 

populations includes the inheritance of one set of chromosomes from each parent. The 

interaction between the inherited parental haplotypes and how they characterise the 

resultant phenotypes is referred to a Mendelian inheritance (Mendel, 1865), which 

underlies much of the work carried out in the field of genetics. 

1.2.3.3 Coalescent theory 

Since all allelic states in the population are determined by the previous genealogical and 

mutational history of these genes, it is possible to identify ancestral forms of currently 

observed alleles. Coalescent theory models genetic drift backwards in time to attempt to 

identify a most recent common ancestor (MRCA) that provides the foundation for current 

allelic variation (Hudson, 1983; Kingman, 1982; Tajima, 1983). The coalescent provides 

insights into the probability of sample allelic configurations under stationary distribution of 

various population genetic models, and allows for maximum likelihood analysis of 

polymorphism data (Nordborg, 2007). 

1.2.4 Evolution 

1.2.4.1 Natural selection 

A key mechanism of evolution is natural selection, which is the process whereby 

favourable genetic traits increase in abundance (segregate) within the population as a 

function of differential reproduction of the bearers of the traits (Darwin, 1859). Selection 

can be subcategorized as directional, stabilising, disruptive (diversifying), sexual and 

ecological. Directional selection is where a single phenotypic trait is favoured causing a 

shift in allele frequency towards this phenotypic trait. Stabilising selection is where a 

particular phenotypic trait is selected for in a population leading to decrease in genetic 

diversity. Diversifying selection is where 2 extreme phenotypic traits are preferred over an 

intermediate. Sexual selection is the process whereby phenotypic traits are favoured 

because, rather than improving survival fitness of the individual, they act to maximise 

reproductive success through mating characteristics. Finally, ecological selection is the 

favouring of phenotypic traits influenced only by the ecological processes without 

referencing mating characteristics (i.e. natural selection minus sexual selection). 



5 

1.2.4.2 Neutral theory of molecular evolution 

The neutral theory of molecular evolution states that the majority of evolutionary changes 

at the molecular level are caused by random drift of selectively neutral mutants (Kimura, 

1983). This theory has recently been shown to be compatible with the theory of natural 

selection where adaptive change is modelled as a minority of DNA sequences changes (Fay, 

2011).  

1.2.5 Evolutionary tests 

1.2.5.1 ω ratio 

There are a number of statistical tests for different types of evolution. One such test is the 

dN/dS (also referred to as Ka/Ks or ω) ratio, which is the ratio of non-synonymous 

substitutions per non-synonymous site (dN) to the number of synonymous substitutions 

per synonymous site (dS). With different ω values for genes, inferences about the 

evolutionary mechanisms acting on the gene can be made. If ω < 1 it is assumed that 

purifying selection is acting on the amino acid changes to filter out deleterious mutations. 

If ω = 1 it implies that the amino acid change is neutral. If ω > 1 it implies that the amino 

acid change offers a selective advantage, providing convincing evidence for diversifying 

selection (Yang and Bielawski, 2000). Two implementations of this test have been 

described by (Goldman and Yang, 1994) and (Yang and Nielsen, 2000) amongst others (Ina, 

1995; Nei and Gojobori, 1986). The Goldman and Yang’s (1994) method implements a 

maximum likelihood codon substitution model, while the Yang and Nielsen (2000) method 

implements counting methods for estimating dN/dS. These methods have been 

implemented in the PAML suite (Yang, 2007) as yn00 (Yang and Nielsen, 2000) and codeml 

(Goldman and Yang, 1994).  

1.2.5.2 Evolutionary modelling with variable ω  

Codeml also implements various site model tests, which treat the ω value for any codon in 

the gene as a variable, allowing for ω to vary over the gene (Nielsen and Yang, 1998; Yang 

and Bielawski, 2000). Studies have shown comparative likelihood ratio tests, comparing a 

model that does not allow for codons with ω > 1 with another model that does, to be 

effective (Anisimova et al., 2001, 2002; Anisimova et al., 2003; Wong et al., 2004). The 

different models implemented in codeml are: 
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 M0 – one ratio (uniform selective pressure among sites) 

 M3 – discrete (variable selective pressure among sites) 

 M1a – nearly neutral (variable selective pressure, but no positive selection) 

 M2a – positive selection (variable selective pressure, with positive selection) 

 M7 – beta (beta distributed selective pressure) 

 M8 – beta with ω (dN/dS or Ka/Ks) > 1 (beta plus positive selection) 

 M8a – a special case of M8 testing for neutral selection 

 

The model comparisons that can be used to infer positive selection include Model 0 (M0) - 

Model 3 (M3), Model 1a (M1a) – Model 2a (M2a) and Model 7 (M7) – Model 8 (M8) (fig 

1.1). 

 

 

 

Figure 1.1: Likelihood ratio test model comparisons modelled by codeml [reproduced from PAML: 

A program package by Ziheng Yang http://abacus.gene.ucl.ac.uk/ziheng/data/pamlDEMO.pdf]. 

Model comparisons include M0 – M3 (A), M1a – M2a (B) and M7 – M8a (C). An additional model 

comparison is used to differentiate model M8 from neutral drift (M8a – M8).   

1.2.5.3 Tests of neutrality 

Other commonly used statistical tests of neutrality are Tajima's D (Tajima, 1989), Fu & Li's 

D, D*, F & F* (1993) and Fu’s Fs (Fu, 1997), which are all implemented in the program 

DnaSP (Librado and Rozas, 2009).  

http://abacus.gene.ucl.ac.uk/ziheng/data/pamlDEMO.pdf
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1.2.5.3.1 Tajima’s D 

Tajima’s D distinguishes between DNA sequence evolving neutrally and DNA sequence 

evolving under a non-neutral model. Tajima's test is based on the fact that estimates of 

the number of polymorphic (segregating) sites and of the average number of nucleotide 

differences are correlated under the neutral model of evolution. If the value of D is too 

large or too small, the neutral 'null' hypothesis is rejected. A negative value of Tajima’s D 

indicates an excess of low frequency polymorphisms and may also signify purifying 

selection. A positive value indicates low levels of low and high frequency polymorphisms 

and may also signify balancing selection and heterozygote advantage. In general, values of 

Tajima’s D above +2 and below -2 are likely to be significant, indicating selection (Tajima, 

1989).  

 

1.2.5.3.1 Fu and Li’s D, D*, F and F*. 

Tajima did not base his test on coalescent. Fu and Li's tests are directly based on 

coalescent. The test statistics D and F require data from intraspecific polymorphism and 

sequence from a related outgroup species. The D* and F* do not require an outgroup 

species in the input. With 10 samples, values of D and D* less than -1.8 and greater than 

1.4 are significant and values for F and F* less than -2 and greater than 1.55 are significant 

(Fu and Li, 1993). 

1.2.5.3.1 Fu’s Fs 

Fu’s Fs test statistic is considerably more powerful than the previous tests, at rejecting the 

null hypothesis of neutrality of mutations in DNA samples under logistic population growth 

and genetic hitchhiking (where an allele experiences an increase in population frequency 

due to linkages with a gene positively selected for) (Fu, 1997).  

1.3 Plant-pathogen co-evolution 

Hpa has evolved only to be able to infect A. thaliana as a host (Goker et al., 2004). For this 

reason it has to overcome or evade triggering A. thaliana defence mechanisms and is 

under strong selection pressure to enhance its virulence mechanisms, while selecting 

against mechanisms that lead to recognition of the pathogen by the host. Likewise, the 

host, A. thaliana, is under similar selection pressures to enhance its resistance to Hpa 

infection. 



8 

1.3.1 Plant immunity 

The plant’s initial defence barrier is a general one, such as secretion of toxins and physical 

barriers to pathogen entry, which may be effective against a number of pathogens. Once a 

pathogen is able to overcome these barriers, more complex interactions between the host 

and pathogen become relevant. Jones and Dangl (2006) described a ‘zig-zag-zig’ model of 

defence response (fig 1.2). According to this model, the initial defence response after 

initial contact with the pathogen involves the recognition of pathogen associated 

molecular patterns (PAMPs). PAMPs are conserved molecular patterns in pathogens that 

are not easily lost by the pathogen such as bacterial flagellin, which contains a 22 amino 

acid conserved domain (flg22) (Chinchilla et al., 2006) and fungal chitin (Wan et al., 2008). 

PAMPs are bound by the host’s receptor kinases. For instance, flg22 is recognised by the 

receptor kinase FLS2 of Arabidopsis (Chinchilla et al., 2006). Upon recognition, FLS2 is 

internalised and triggers a set of immune responses referred to as PAMP triggered 

immunity (PTI, which is also sometimes referred to as pattern triggered immunity).  

 

 

 

Figure 1.2: Zig-zag-zig plant defence response mechanism, showing the amplitude of defence 

response elicited by various stages of infection [reproduced from (Jones and Dangl, 2006)]. ETS = 

effector-triggered susceptibility. Avr-R = interaction of the recognised effector (avirulence or avr 

gene) and the host resistance gene (the R-gene) 
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In order to overcome this defence response the pathogen may have evolved the ability to 

secrete effectors, which are usually small secreted proteins that facilitate growth of the 

pathogen on the host by suppressing defence or manipulating host metabolic function for 

the benefit of the pathogen. A recent study has shown that pathogen effectors have 

evolved independently to target core genes in the plant immune network (Mukhtar et al., 

2011). 

 

In an evolutionary context, one would expect the fixation of a pathogen effector that is 

particularly effective in a small population. This is a hypothesis as to why plants have 

evolved the mechanisms to directly or indirectly recognise pathogen effectors through 

resistance genes, causing effector triggered immunity (ETI) (Scofield et al., 1996; Tang et 

al., 1996; Van der Biezen and Jones, 1998). To add to this intricate system of effector–R 

gene interaction, there have been reports that effectors also suppress ETI (Tsiamis et al., 

2000) and there are plant resistance genes that recognise those effectors (Yucel et al., 

1994).  

1.3.2 Effector translocation and structure 

Both bacterial and eukaryotic pathogens have been shown to secrete effectors. Effectors 

have either cytoplasmic (e.g. (Allen et al., 2004; Orbach et al., 2000; Rehmany et al., 2005; 

Win et al., 2006)) or apoplastic (e.g. (Rooney et al., 2005; Tian et al., 2007)) localisation in 

plants. They are translocated from the pathogen to the host via a secretory mechanism. In 

bacteria this is achieved by the type 3 secretion system for effectors to be delivered to the 

host cytoplasm and the type 2 secretion system for effectors to be delivered to the host 

apoplast. In oomycete pathogens the exact mechanism of translocation is not fully 

understood. Briefly, the effectors are translocated from the pathogen into the host 

apoplast. Here, apoplastic effectors interfere with apoplastic defence responses. Another 

translocation event occurs whereby cytoplasmic effectors are translocated into the plant 

cytosol where they interfere with plant cytoplasmic defence responses (fig 1.3).  
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Figure 1.3: Principles of effector biology in oomycete, fungus and bacteria [reproduced from 

(Dodds and Rathjen, 2010)]. PAMP = Pathogen Associated Molecular Pattern, PTI = 

Pathogen/Pattern Triggered Immunity, ETI = Effector Triggered Immunity, PRR = PAMP/Pattern 

Recognition Receptor, NB-LRR = Nucleotide Leucine Rich Repeat, BAK1 = Brassinosteroid 

Insensitive 1-Associated Kinase 1,   

 

Oomycete cytoplasmic effectors have a modular structure consisting of a secretion signal 

and a hypothetical secondary translocation domain (an RXLR motif in many oomycetes), 

followed by the C-terminal functional domain (commonly referred to as the effector 

domain) (fig 1.4). Until very recently, it was considered that effectors contained conserved 

RXLR motif after the signal peptide. This RXLR motif was considered to be involved in 

translocation of the effector into the host. However, recent studies have shown that 

within Hpa, which has RXLR effectors, there are effectors which do not have the RXLR 

motif (Bailey et al., 2011), and in the oomycete pathogen Albugo laibachii the majority of 

effector candidates carry a CHXC motif (Kemen et al., 2011). 
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Figure 1.4: Domain structure of oomycete apoplastic and cytoplasmic effectors [adapted from 

(Kamoun, 2006)]. 

 

1.3.3 Hpa effector evolution 

The importance of the pathogen having functional effectors that evade recognition, and 

the plant host having resistance genes that are able to recognise effectors, is paramount 

to the fitness of these organisms. Therefore, it is expected that their interaction will 

impose a very strong evolutionary selection on these organisms. 

 

While there are more than 100 putative effector genes in Hpa, but only 3 have been 

confirmed to have avirulence activity due to recognition by an A. thaliana  resistance gene: 

ATR13 (Allen et al., 2004), ATR1 (Rehmany et al., 2005) and ATR5 (Bailey et al., 2011). Of 

these, the 2 best studied effectors in Hpa are ATR1 and ATR13. ATR1 was shown to have a 

high level of sequence polymorphism through comparative sequence analysis of 8 Hpa 

races (Rehmany et al., 2005) (fig 1.5), of which the majority of polymorphisms clustered 

towards the C-terminus of the gene, in the hypothesised functional domain. Rehmany et al. 

(2005) went on to show that the majority of the polymorphisms in the gene in this 

functional domain are non-synonymous mutations, while the few polymorphisms in the N-

terminal domain (signal peptide and RXLR region) are synonymous mutations (fig 1.6). 
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Figure 1.5: Alignment of predicted ATR1 proteins from 8 Hpa races [reproduced from (Rehmany 

et al., 2005)]. Emoy2, Hiks1, Waco9, Maks9, Emco5, Noks1, Cala2 and Emwa1 are different races 

of Hpa; dots in the sequence alignment indicate homology to the Emoy2 reference allele or ATR1. 
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Figure 1.6: Sliding window analysis of synonymous and non-synonymous substitutions across 

ATR1 in 8 Hpa races [reproduced from (Rehmany et al., 2005)]. 

 

 

This clustering of polymorphisms in the C-terminal region encoding for non-synonymous 

mutations is likely to be a signature of positive selection. A later study of ATR13 analysed 

the observed polymorphisms of Hpa effector ATR13 across 18 races of Hpa, where they 

put the polymorphisms into an evolutionary context (Allen et al., 2008). They showed that 

the dN/dS ratio of ATR13 suggests that it is being subjected to positive selection (table 1.1). 

 

 

Table 1.1: Polymorphisms in ATR13 and Ppat5 [reproduced from (Allen et al., 2008)]. 
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1.4 Genomics and Sequencing 

The secrets of the evolutionary signature left on the genome can be unravelled by DNA 

sequencing, which has become an indispensable tool in many areas of biological research. 

About 15 years after the discovery of the double helix (Watson and Crick, 1953a, b), DNA 

sequencing began in 1968 by Wu and Kaiser (1968), and 3 years later they were able to 

report a 12 base sequence (Wu and Taylor, 1971). Since this initial publication of DNA 

sequencing, sequencing technology has improved dramatically.  

 

The earliest rapid DNA sequencing technologies include Sanger’s (chain 

termination/dideoxynucleotide) enzymatic method (Sanger et al., 1977) and Maxam and 

Gilbert’s chemical method (Maxam and Gilbert, 1977).  

1.4.1 Second generation sequencing 

While Sanger sequencing was the pre-dominant method used for 30 years, it had various 

limitations which include its resource intensive library and template preparation, high 

running costs and relatively low throughput (Varshney et al., 2009). Advancements in 

microfluidics, biochemistry, nanotechnology and informatics have led to a number of new 

DNA sequencing technologies. These technologies were initially referred to as ‘next 

generation sequencing’ technologies, but since an even newer onset of DNA sequencing 

technologies, they are now more commonly referred to as ‘second generation sequencing’ 

technologies. The three most commonly used next generation sequencing technologies 

are pyrosequencing (employed by Roche, previously 454 Life Sciences, in the GS-FLX 

sequencer), sequencing by synthesis (usually referred to as Solexa sequencing, employed 

by Illumina, previously Solexa, in the Genome Analyser sequencer, HiSeq and MiSeq 

sequencers) and sequencing by ligation (employed by Applied Biosystems in the ABI SOLiD 

sequencer). 
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1.4.1.1 454 Pyrosequencing 

Developed by 454 Life Sciences (now owned by Roche), this method parallelised the 

sequencing by synthesis method (SBS) employed in pyrosequencing (Ronaghi et al., 1999). 

It was the first second generation sequencing technology to be made available. In the 

sequencing process DNA fragments anchored to beads and are amplified via emulsion PCR, 

which are then put into wells on a plate. dNTPs are washed over the wells in waves. As the 

nucleotides are incorporated into the new DNA strand, the intensity of the light given off is 

used as a measure of how many As, Ts, Cs or Gs have been incorporated (fig 1.8). 

 

 

Figure 1.7: Roche 454 GS FLX sequencing method [reproduced from (Voelkerding et al., 2009)]. PPi 

=  pyrophosphate, APS = adenosine 5 –phosphosulfate.   

 

Previous reports showed that the 454 sequencing method is capable of sequencing 400-

600 Mb of DNA over about 1 million reads of >=400 bp  per 10-hour run (Voelkerding et al., 

2009).  
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1.4.1.2 Sequencing by synthesis 

Sequencing by synthesis (SBS) (commonly referred to as Solexa sequencing) was 

developed by Solexa and was then acquired by Illumina and implemented in the Genome 

Analyser, HiSeq and MiSeq sequencers. This method uses a glass surface (flowcell) to 

capture molecules, which are subsequently bridge PCR amplified into clusters (fig 1.9). 

After this, dye labelled terminators are added and an image of the surface is taken, with 

information on fluorescence (correlation to bases) recorded. The dye is then cleaved and 

another layer of dye labelled terminators is added. This process is repeated until the whole 

fragment has been sequenced. The resultant images are processed to reveal the sequence 

of the DNA present at each cluster position.  

 

 

 

Figure 1.8: Illumina sequencing method [reproduced from (Voelkerding et al., 2009)]. POL = 

polymerase.  
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While the earlier protocols of Illumina sequencing yielded >1 Gb of 36 bp reads per run 

(Bentley et al., 2008), the newest iterations of the original machine (Illumina GAIIx) is 

capable of producing 100 Gb per run and 150 bp paired end read lengths 

(www.illumina.com). 

1.4.2 Second generation sequencing applications and tools 

While Sanger sequencing produces longer reads of higher quality than any second 

generation sequencing method, the high cost per base and lower throughput has led to 

the mass adoption of second generation sequencing for a myriad of tasks. I will discuss 

some of the applications and tools of second generation sequencing from the perspective 

of the Illumina platform. 

1.4.2.1 Genome assembly 

One would assume that genome assembly of eukaryotic organisms would be best left to 

sequencing technologies with longer reads, such as Sanger and 454. However, rapid 

advances in Illumina sequencing in throughput, read length and insert size have facilitated 

genome assemblies of, for example, Albugo laibachii (A. thaliana white rust) (Kemen et al., 

2011) and the panda genomes (Li et al., 2010). Illumina sequencing is also the preferred 

platform for sequencing of prokaryotes, as prokaryotes have a less complex genome 

compared to eukaryotes, so the read length offered by Illumina sequencing is sufficient. 

 

Recently, researchers have started to use second generation sequencing for 

metagenomics projects, such as for the sequencing of the human gut microbiome (Qin et 

al., 2010) and the human oral microbiome (Lazarevic et al., 2009). 

 

Some of the first short read assemblers (Jeck et al., 2007; Warren et al., 2007) were based 

on the overlap consensus method. This method uses overlaps between sequences to 

create links between them, whereby a contig is formed when the links are followed as far 

as possible (fig 1.11). While this method was efficient when the throughput of sequencing 

machines was still comparatively low, it has the inherent problem that the memory 

requirements scale with the number of input reads. Therefore, it soon became unfeasible 

to use the overlap consensus method for genome assembly with the large amount of data 

produced by second generation sequencing technology. 

 



18 

The next phase of short read assemblers (Butler et al., 2008; Chaisson and Pevzner, 2008; 

Zerbino and Birney, 2008) were able to overcome the issue of memory requirement 

scaling directly with the number of reads by implementing a de-Bruijn graph based 

assembly method. This method uses a unique set of k-mers (all subsequences of length k 

within the read) and the reads are represented as a path between the k-mers (fig 1.11). By 

virtue of this method, the links between the reads are established as the data is read. 

 

 

 

 

Figure 1.9: Illustration of how a read is reassembled using consensus overlap and the De-Bruijn 

principles [reproduced from (MacLean et al., 2009)]. 

 

1.4.2.2 Alignment and variant calling 

A major use of short read sequencing is to make inferences of variation between genomes 

by aligning short reads to a reference genome assembly. While there are many alignment 

algorithms, the early programs such as MAQ (Li et al., 2008a), SOAP (Li et al., 2008b) and 

SSAHA (Ning et al., 2001) have been superseded by aligners using the Burrow-Wheeler 



19 

transform (Burrows and Wheeler, 1994) such as BWA (Li and Durbin, 2010), SOAP2 (Li et 

al., 2009b) and Bowtie (Langmead et al., 2009). Recently a number of alignment programs 

have started to employ the massive parallelisation offered by modern day graphics 

processing units (GPUs), such as MUMmerGPU (Schatz et al., 2007) and SOAP3. 

 

After reads have been aligned to a reference genome, a number of inferences can be 

made by analysing differences between the reference sequence and the aligned reads: 

 

 Nucleotide variation can be identified as SNPs and INDELs through programs such 

as SAMtools (Li et al., 2009a) 

 Structural variation can be identified using programs such as BreakDancer (Chen et 

al., 2009) 

 Copy number variation can be identified through programs such as CNV-seq (Xie 

and Tammi, 2009) 

 Through bulk segregant mapping, gene mapping projects can be undertaken using 

programs such as SHOREmap (Schneeberger et al., 2009)  

 ChIP-seq and Bis-seq experiments can be scored using programs such as PeakSeq 

(Rozowsky et al., 2009) 

 

1.4.2.3 Transcriptomics 

In addition to DNA sequencing, RNA, cDNA and expression tag sequencing can be 

performed using the second generation sequencing. There are a number of programs that 

are able to assemble RNA/cDNA sequencing data allowing discovery of unannotated 

transcripts, new isoforms (e.g. Cufflinks (Trapnell et al., 2010)) and splice site junctions (e.g. 

TopHat (Trapnell et al., 2009)). 

 

Recently efforts have been made to make use of the very high throughput of Illumina 

sequencing for expression analysis. The benefit of using a sequencing based technique 

compared to microarrays is that the method is open and experiments can be designed 

more easily. Many of the methods make used of a protocol that digests the RNA/cDNA, 

ligation of barcoded adapters to allow for multiplexing and a number of repeats to infer 

statistical significance. 
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1.5 Objectives of the project 

It is apparent that successful pathogens are able to colonise plant hosts, by delivering 

effectors that are able to suppress host defence and manipulate host function, to allow 

the pathogen to complete its lifecycle. In recent years, progress has been made in 

identifying and understanding oomycete effector biology, but there are many aspects of 

effector biology that remain unknown due to the lack of known effectors. 

 

The main goal of this project is to use Illumina sequencing technology to better 

understand the nature of effectors from an evolutionary standpoint. During the start of my 

project the Hpa genome assembly project was in preliminary stages. The scope of my 

project was to use Illumina sequencing of the reference race, Hpa Emoy2, to assist with 

the genome assembly of Hpa (chapter 3). After genome assembly, expression data (Sanger 

sequenced ESTs and Illumina sequenced cDNA of Hpa Emoy2) were used to assist with 

gene model predictions, from which inferences about Hpa biology and better 

understanding of Hpa’s complement of virulence related genes can be made (chapter 4). 

After the foundations of a good reference sequence and good gene models with 

annotated effectors, I made use of Illumina reads of 8 natural Hpa races isolated from 

various geographical locations (Cala2, Emco5, Emoy2, Hind2, Maks9, Noco2 and Waco9 

sequenced in house, and Emwa1 provided by Prof Brian Staskawicz, UC Berkeley) and 

performed comparative genomics analysis on Hpa genes using a custom made generalised 

analysis pipeline (chapter 5). 
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Chapter 2 – Materials and Methods 

2.1 Biological material and sequencing 

The majority of the biological material sequenced used was that of Hpa Emoy2. The other 

races of Hpa sequenced by the lab using Illumina paired end sequencing include Noco2 

from the Jones Lab (TSL, Norwich) and Cala2, Emco5, Hind2, Maks9, and Waco9 which 

were obtained from Prof Eric Holub at HRI, Warwick. Illumina paired end sequenced reads 

of Hpa Emwa1 were provided by Prof Brian Staskawicz, UC Berkeley. 

 

The preparation and Sanger sequencing of the Hpa Emoy2 DNA, ESTs and BACs were 

coordinated by collaborators Dr Sucheta Tripathy (VBI, Virginia Tech) and Dr Laura Baxter 

(HRI, Warwick). 

 

These material and methods are the same as those published in Baxter et al. (2010), with 

additional data used for the comparative genomics (chapter 5). 

2.1.1 Sanger sequencing  

The Sanger sequencing protocols for the DNA reads, BACs and ESTs are described in Baxter 

et al., 2010. 

2.1.2 Illumina Sequencing 

2.1.2.1 DNA extraction. 

Genomic DNA was extracted from Hpa conidospores from infected A. thaliana Ws eds1-1 

plants using a Nucleon PhytoPure DNA extraction kit using the default protocol followed 

by a Phenol / Chloroform extraction and Isopropanol precipitation. 

2.1.2.2 Illumina DNA library preparation and sequencing. 

The non-paired end libraries were sequenced on the Illumina GA1 platform using 120bp 

inserts. The paired end libraries were sequenced on the Illumina GA2 platform using 

400bp (+/- 10%) inserts. The protocol used was the same as the manufacturers protocol 
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apart from the purification of the ligation of the Illumina adapters were performed on a 5% 

polyacrylamide gel and the library validation was performed a 6% polyacrylamide gel. The 

base calling was done on the Illumina GAP v1.0 pipeline for all runs before flowcell ID71 

(appendix table 2.1; appendix table 2.2) after which the GAP v1.3 pipeline was used.  

2.1.2.3 Quality checking the Illumina preparation and sequencing.  

The libraries were sequenced on a single lane initially for quality checking after which the 

decision to sequence further lanes was made. For both the paired and non-paired 

sequencing runs, a PhiX control lane was also run to eliminate mechanical error. The raw 

reads generated from the Illumina Pipeline included errors in the form of PCR duplicate 

reads, adapter contamination and Xanthomonas contamination. Contamination was dealt 

with through post analysis filtering through sequence homology analysis. The reads were 

analysed for quality using FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) 

(appendix figs 2.1). This analysis revealed certain quality issues: 

 

 The per base quality drops drastically in the last third of the read for sequencing 

runs before the implementation of the GA pipeline v1.3 

 The Emwa1 reads have high levels of Illumina paired end sequencing primer 

contamination 

 The reads for each sequenced race have between 2% and 25% PCR duplication 

 

Despite the per-base quality decrease in the last third of the read, the average read quality 

of the reads have a single peak around a Phred scaled quality score 30, which implies an 

overall error rate of 0.1%. Therefore, the reads were not filtered or trimmed before 

alignment, but instead, I modified the alignment parameters to soft-trim bad quality 

trailing bases and filtered the PCR duplicates post-alignment. The soft trimming was set 

between Phred scaled quality scores of Q10 (10% chance of the base call being incorrect) 

and Q20 (1% chance of the base call being incorrect) depending on the analysis. The 

specific values used are mentioned in each results section. PCR duplicates were removed 

after alignment to a reference genome sequence to avoid spurious variation calls. 
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2.1.3 Illumina cDNA sequencing.   

Hpa RNA was extracted from infected leaves of 7 days post inoculation (d.p.i.) A. thaliana 

Ws eds1-1 using TRI-REAGENT according to protocol (Sigma). RNA was resuspended in 

DEPC treated water. RNAse inhibitors (RNAseguard, Promega) was added and samples 

were DNAse treated (RNAse free, Roche). RNA was re-extracted with phenol/chloroform, 

EtOH precipitated and resuspended in DEPC treated water. First and second strand cDNA 

synthesis was performed using the default protocol from the Creator SMART cDNA Library 

Construction KitTM (Clontech). After the last amplification step cDNA was 

phenol/chloroform extracted followed by Isopropanol precipitation. The cDNA was then 

normalised using Duplex-specific nuclease (Evrogen) according to default protocol. The 

normalised cDNA was than prepared to be sequenced on the Illumina platform using 

120bp inserts with a 35 bp read length.  

2.1.4 454 Sequencing 

Hpa RNA was extracted from infected leaves 3 d.p.i. of 3 week-old A. thaliana Ws eds1-1 

using a protocol adapted from (White and Kaper, 1989). RNA was resuspended in DEPC 

treated water. RNAse inhibitors (RNAseguard, Promega) was added and samples were 

DNAse treated (RNAse free, Roche). RNA was re-extracted with phenol/chloroform, EtOH 

precipitated and resuspended in DEPC treated water. First and second strand cDNA 

synthesis was performed using the default protocol from the Creator SMART cDNA Library 

Construction KitTM (Clontech). After the last amplification step Proteinase K digestion was 

performed with the whole of the reaction and not just with half as in the Creator SMART 

protocol. cDNA was phenol/chloroform extracted and EtOH precipitated using 1.3 μg 

glycogen. For positive selection of Hpa cDNAs, 4 μg of genomic DNA, genomified using the 

GenomiPhi Kit (GE Healthcare), digested and biotinylated (Rougon-Cardaso, 2007) were 

mixed with the target (cDNA synthesized from RNA of infected leaves) and EtOH 

precipitated. The mixture was resuspended in 10 μl of sterile hybridization buffer after 

which the driver and target were denatured at 95oC for 10 minutes and hybridized for 36 

hours at 66oC. The biotinylated DNA was captured by Streptavidin coated beads 

(Magnasphere Paramagnetic Beads (Promega)). Hybrids were recovered using a protocol 

adapted from Bashiardes et al. (2005). Positively selected cDNA was digested with Sfi I and 

Mse I restriction enzymes. Oligonucleotide fragments and salt were removed by spin-

column chromatography through a Sephadex G-25 resin (Roche) after each digestion. The 
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following primers were ligated to form adapters 454A and 454B: Biot-

SfiAdaptor454Aoverhang, Biotin-AGCCTCCCTCGCGCCATCAGATTA; SfiAdapter454Acomp, 

PO4-TCTGATGGCGCGAGGGAGGC; Mse‐TOP, TACTGAGCGGG CTGGCAAGGC; Mse‐BOT, 

GCCTTGCCAGCCCGCTCAG. 

 

Four hundred ng of cDNA were ligated with 300 ng adapter 454A and 300 ng of adapter 

454B. Biotinylated fragments were hybridized to 20 μl Magnasphere Paramagnetic Beads 

(Promega) pre-washed as specified by the manufacturer and pre-incubated with blocking 

agents. Beads with hybridized cDNA were washed 4 times with 0.1xSSC and captured with 

a magnet (Promega) and supernatant was discarded. After preparation of cDNA with 454 

adaptors attached the sample was sent to 454 Life Sciences (Branford, Connecticut, USA) 

for further processing and sequencing with 454 GS-FLX technology. 

 

The returned 454 sequenced reads were filtered for oomycete ribosomal genes and A. 

thaliana contamination. 

2.2 Software and protocols 

2.2.1 Assembly 

2.2.1.1 Assembly of Sanger reads 

The Hpa Emoy2 v7 assembly was sequenced to 9.5x phred Q20 redundancy (9.5X 

coverage) through 1,080,646 plasmid end reads and 25,516 fosmid end reads and 13,071 

BAC end sequences. The combined sequence reads were assembled using the PCAP 

software (Huang et al., 2003). The ‘bdocs’ and ‘bclean’ commands of PCAP were then used 

to process the overlaps, and ‘bcontig’ to calculate the layout to generate the consensus 

sequence, using default parameters.  Using this dataset, a round of automated sequence 

improvement was done. 23,855 of 32,122 pre-finishing reads were incorporated into the 

initial assembly.   

 

The initial PCAP assembly, consisting of only plasmid end sequences, contained 1,053,419 

reads, yielding more than 8 fold coverage for an estimated 70 Mb shotgun assembly. A 

total of 1,014,758 reads was assembled using PCAP.  The final PCAP assembly included all 

plasmid sequences, 8346 BAC end sequences, 25,516 fosmid end sequences, and a round 
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of automated pre-finishing. Additional filtering following assembly removed contigs less 

than 2kb, as well as A. thaliana and sequencing plasmid contaminants.  5354 contigs 

(including a large number of singletons) were removed by this process, with 5473 contigs 

and 1842 scaffolded contigs remaining.  Approximately 99% of the 76 Mb shotgun 

assembly is covered. 

 

2.2.1.2 Short read assembly 

The Velvet algorithm (v0.7.55) (Zerbino and Birney, 2008) was used for short read 

assembly. Specific parameters used are described in chapter 3. 

 

2.2.1.3 Hybrid assembly 

The Hybrid assembly of the Hpa genome is described in chapter 3. It is based on the 

targeted assembly and re-integration method described by Ossowski et al. (2008), MAQ 

v0.7.1 (Li et al., 2008a), BLAT v34 (Kent, 2002), Velvet v0.7.55 (Zerbino and Birney, 2008) 

and custom scripts were used. 

2.2.2 Alignment  

2.2.2.1 DNA alignment 

In chapter 3, Illumina sequenced DNA reads are aligned to the genome and variants were 

called using MAQ v0.7.1 (Li et al., 2008a). The parameters for each alignment are 

mentioned in the appropriate sections in chapter 3.  

 

When I started the Hpa comparative genomics analysis a new selection of short read 

aligners were available, and MAQ was no longer supported. In chapter 5, BWA v0.5.8c (Li 

and Durbin, 2009) was used a primary aligner to its specificity and speed. A further round 

of alignment was done using Stampy v1.0v11 (Lunter and Goodson, 2011), which is slower 

but more sensitive than BWA. Variants were called using the SAMtools suite (Li et al., 

2009a). 

 

A simulation of SNP recall rate using various methods was performed. A total of 10,000 

SNPs and 2000 INDELs were introduced in the Hpa Emoy2 genome in regions covered by 

reads, with average depth of coverage and at least 500 bp from existing and artificial 
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variation. The SNPs were introduced as single SNPs, 2 SNPS that are 15-35 bp apart 

(simulating clustered SNPs), and 2 SNPs that are 2-15 bp apart (simulating clustered SNPs 

on the same seed). INDELs were introduced as mainly 1 bp INDELs, but also of length 2, 3, 

4, 6, 9 and 12. 

 

A number of pre-processing techniques were employed: 

 

 Removing reads with any N’s 

 Removing reads with more than 1 N 

 Read correction using HiTEC (Ilie et al., 2011) (using default parameters) 

 Quality trimming reads from the end of the read so that all bases in a read have a 

minimum PHRED scaled quality of Q13 (Q13 ~ P(0.05) of error) using SolexaQA 

(Cox et al., 2010) 

 

The alignment programs and variant call methods used were used were: 

 

 MAQ for aligning and variant calling 

 MAQ for aligning and SAMtools for variant calls 

 BWA for aligning and SAMtools for variant calls (used for unfiltered and filtered 

reads) 

 Stampy for aligning (with BWA pre-alignment) and SAMtools for variant calls 

 

Three technical replicates of the alignments were performed and the variation recall rate 

and false positive rates were taken from the averages. The average variation recall rate, 

with a minimum quality score of Q10, showed that pre-filtering of reads had a very small 

negative effect on the number of variation recalled (fig 2.1). Results also showed that on 

average, Stampy was slightly more sensitive in recalling variation compared to BWA, and 

that MAQ was significantly worse than BWA and Stampy at recalling INDELs. It was 

interesting to note that the recall rate of deletions is on average 15% more than SNPs and 

20% more than insertions. 
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Figure 2.1: Variation true positive recall rate of various mapping techniques at Q10. 

 

The average variation false positive rate (including call that were between 5-500 bp from 

inserted variation), with a minimum quality score of Q10 were 4.93% of the introduced 

variation (fig 2.2). For all methods there was a low false positives for INDEL predictions 

(averaging 2.01%), while the rate of false positive in SNPs was 5.32% on average. The 

variation between the false positives in the variation recall rate was 0.7%, so all methods 

were very similar. 

 

 

 

Figure 2.2: Variation false positive rate of various mapping techniques at Q10 
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The sensitivity (true positives / (true positives + false positive)) of each method was 

calculated (fig 2.3). 

 

 

 

Figure 2.3: Sensitivity of various mapping techniques at Q10 

 

While HiTEC read correction offered the best sensitivity, it was a very time consuming to 

compute for a single race. It was decided that using Stampy and BWA as a pre-aligner 
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the analysis performed in chapter 5. 

2.2.2.2 cDNA alignment 
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v0.7.1 (Li et al., 2008a) when evaluating the genome assembly and gene models. In order 
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for no mismatches. The reads had the sequencing primer, and barcodes removed using 

a custom script based on Hamming distances. 

 

For the genome browser, the 454 ESTs were aligned using BLAT v34 (Kent, 2002). 

2.2.3 Gene predictions 

Gene prediction software used in chapter 4 are: 

 

 Genezilla (Majoros et al., 2005) 

 Snap (Korf, 2004) 

 CEGMA (Parra et al., 2007) 

 GeneID (Guigo, 1998) 

 PASA (Haas et al., 2003) 

 Augustus (Stanke et al., 2008) 

 

Their usage is described in detail in chapter 4. 

2.2.4 Gene annotation 

The programs used for annotation of the gene models in chapter 4 are: 

 ProDom (Bru et al., 2005) using BlastProDom (Blastall) (Zdobnov and Apweiler, 

2001) 

 PRINTS (Attwood et al., 2003) using FingerPRINTScan (Scordis et al., 1999)  

 SMART (Letunic et al., 2002) using Hmmpfam (Finn et al., 2011) 

 TIGRFAMs (Haft et al., 2003) using Hmmpfam (Finn et al., 2011) 

 Pfam (Bateman et al., 2004) using Hmmpfam (Finn et al., 2011) 

 PROSITE (Hulo et al., 2004) using ScanRegExp + ProfileScan (Thompson et al., 

1994b) 

 PIRSuperFamily (Wu et al., 2004) using Hmmpfam (Finn et al., 2011) 

 SUPERFAMILY (Gough et al., 2001) using Hmmpfam (Finn et al., 2011) 

 CATH (Pearl et al., 2000) using Hmmpfam (Finn et al., 2011) 

 PANTHER (Thomas et al., 2003) using Hmmsearch (Finn et al., 2011) 

 Transmembrane using TMHMM2.0 (Sonnhammer et al., 1998)  
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 Signal peptides using SignalPHMM (Bendtsen et al., 2004) 

 Low complexity regions  using SEG (Wootton and Federhen, 1993) 

  3D Structure using Gene3D 

 Coiled coils using COILS (Lupas et al., 1991) 

 WolfPsort (Horton et al., 2007) 

 SignalP 3.0 HMM (Bendtsen et al., 2004) 

 KAAS (Moriya et al., 2007)  

There usages are described in more detail in chapter 4. 

2.2.5 Evolutionary analysis 

The evolutionary analysis of genes was performed using a combination of a customised 

pipeline, VariTale (described in chapter 5), PAML v4.0 (Yang, 2007) and DnaSP v5 (Librado 

and Rozas, 2009). The protocol used is described in chapter 5. 
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Chapter 3 – Use of sequencing by synthesis to 

evaluate and improve the Hyaloperonospora 

arabidopsidis genome assembly 

3.1 Introduction 

At the start of this project, genome sequences for 3 oomycete pathogens Phytophthora 

sojae, P. ramorum (Tyler et al., 2006) and P. infestans (Haas et al., 2009) were published.  

Comparative genomics of Hpa with these Phytophthora species might enhance our 

understanding of conserved pathogenicity mechanisms in the Peronosporales and distinct 

mechanisms unique to the Peronosporacaea and Pythiacaea. In addition, the study of Hpa 

will improve our understanding of obligate biotrophy. It is also very important to 

characterise the evolutionary pressures being exerted in plant-pathogen interaction 

systems, and the Hpa-Arabidopsis thaliana interaction system provides a model system for 

studying a plant-pathogen interaction involving an oomycete obligate biotroph. 

 

Effectors play an important part in pathogenicity. Before the publication of the Hpa 

genome sequences, only 2 effector genes had been characterised in Hpa, ATR13 (Allen et 

al., 2004) and ATR1 (Rehmany et al., 2005), which were identified through forward genetic 

approaches. The availability of the Hpa genome sequence provides the opportunity to 

identify and define the repertoire of effectors. This raises the potential for high throughput 

characterisation of effectors through targeted reverse genetic approaches to understand 

effector virulence and avirulence function.  

 

In this chapter I discuss the development of the most recent version, version 8.3, of the 

Hpa Emoy2 genome assembly. This reference genome project was initially a capillary 

sequencing genome project. In the later stages of the project it became clear that Illumina 

short read sequences were able to contribute a lot more to the genome assembly than 

simply the identification of SNPs. In this chapter I describe how we developed novel 

methods to evaluate genome assemblies and improve the assembly using Illumina 

sequence data.  
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I also show that heterozygosity in diploid organisms is an important source of variation 

that is often overlooked, and can provide useful insights into signatures of selection 

pressure in organisms. 

3.2 Results and discussion 

3.2.1 Establishing a short read de-novo assembly for Hpa Emoy2 

3.2.1.1 Hpa version 7 assembly 

When I started work on the project, the Hpa Emoy2 version 7 (v7) (appendix table 3.1) was 

the most recent assembly making use of only Sanger sequenced reads. The assembly was 

performed by the Genome Sequencing Centre, University of Washington at St Louis, 

Missouri, in December 2007. The Hpa Emoy2 v7 assembly was sequenced to 9.5x phred 

Q20 redundancy (9.5X coverage) through 1,080,646 plasmid end reads, 25,516 fosmid end 

reads and 13,071 BAC end sequences. The combined sequence reads were assembled 

using the PCAP software (Huang et al., 2003). The ‘bdocs’ and ‘bclean’ commands of PCAP 

were then used to process the overlaps, and ‘bcontig’ to calculate the layout to generate 

the consensus sequence, using default parameters.  Using this dataset, a round of 

automated sequence improvement was performed. 23,855 of 32,122 pre-finishing reads 

were incorporated into the initial assembly.   

 

The initial PCAP assembly, consisting of only plasmid end sequences, contained 1,053,419 

reads, yielding more than 8 fold coverage for an estimated 70 Mb shotgun assembly. A 

total of 1,014,758 reads was assembled using PCAP.  The final PCAP assembly included all 

plasmid sequences, 8346 BAC end sequences, 25,516 fosmid end sequences, and a round 

of automated pre-finishing. Additional filtering following assembly removed contigs less 

than 2 kb, as well as Arabidopsis thaliana and sequencing plasmid contaminants.  5354 

contigs (including a large number of singletons) were removed by this process, with 5473 

contigs and 1842 scaffolded contigs remaining.  Approximately 98-99% of the 76 Mb 

shotgun assembly is covered. 

 

The 76 Mb assembly consisted of 1585 major scaffolds (larger than 2 kb) with an N50 

scaffold number (the minimum number of scaffolded contigs to represent at least 50% of 
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the genome assembly) of 68. The assembly consisted of 9 Mb of ‘N’s which represent 

unknown sequence between paired-end Sanger reads that were used for scaffolding.  

 

The improvements of the Hpa Emoy2 v7 assembly over the previous version 6 (v6) 

(appendix table 3.1) are that Arabidopsis thaliana contamination and plasmid vector 

sequences were removed. Also, the Hpa Emoy2 v6 assembly used EST sequences in the 

assembly – this was a misuse of the ESTs as they may lead to assembly artefacts due to 

differences between the DNA and RNA due to splicing. This mistake of using ESTs was 

avoided in the v7 assembly. 

 

3.2.1.2 Identifying ‘uncloned’ regions of the Hpa genome 

Hpa may contain elements in its genome that cannot be cloned using the vectors used for 

the Sanger sequencing project of Hpa or which, due to the random sampling of shotgun 

sequencing, were not included in the clones. 

 

The Illumina sequenced paired end short reads of Hpa Emoy2 were aligned to the 

1,162,037 sequences of the Hpa Emoy2 Sanger shotgun reads, from the trace archives, 

using MAQ (Li et al., 2008a) (default parameters). 5,721,482 reads did not align against the 

Sanger shotgun reads. These reads were assembled using Velvet 0.7.18 (Zerbino and 

Birney, 2008) (k-mer length= 25, cov_cutoff=2). The assembly totalled to 1,061,433 bp 

over 1226 contigs with N50 length of 1157 bp. The longest contig length was 9010 bp.   

 

To identify what was contained in the assembly of reads not sequenced by the Sanger 

shotgun sequencing method, a BLASTx (Altschul et al., 1990) search of this assembly versus 

the NCBI NR proteins database (July 2009) was conducted. Much of the assembly had DNA 

sequence similarity to Hpa sequences, BAC and to Arabidopsis thaliana sequences. This 

indicates that the stochastic nature of shotgun assemblies failed to sample known regions 

of the Hpa genome and that there is Arabidopsis contamination in the Illumina reads of 

Hpa. After removing these sequences, what looked like bacterial and plant contamination 

was left. However, there were several sequences that showed about 80% DNA sequence 

identity with oomycete genes. These might plausibly be bona fide Hpa sequences that 

were not represented in the Sanger clones. Some notable hits included a delta-1-pyrroline-

5-carboxylate reductase (P. nicotianae), a NADH dehydrogenase (P. infestans), and a 

putative nuclear LIM interactor-interacting protein (NIF5) gene (P. sojae). 
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A tBLASTx (Altschul et al., 1990) search against the NR nucleotide database (July 2009) 

found hits with similarity to Phytophthora species. Some notable hits included a necrosis 

and ethylene-inducing protein (P. megakarya), a hsf transcription factor (P. sojae), a 

reverse transcriptase (P. parasitica), and a rpL41-like protein (P. sojae). 

 

These results suggested that even with an optimal assembly of all of the Sanger reads, the 

Illumina data contained novel sequence that can help improve the genome assembly of 

Hpa Emoy2. 

3.2.1.3 De-novo short read assembly of Hpa Emoy2 using Velvet 

To evaluate the state of the Hpa Emoy2 assembly we decided to compare it to another 

existing assembly. At the beginning of the project the v6 assembly was the only 

comparative assembly using the same data. Unfortunately, the v6 assembly contained a 

significant amount of A. thaliana contamination, vector sequence and Hpa Emoy2 EST 

sequences, which made it less suitable for our comparison. Therefore, we compared the 

v7 assembly to an Illumina GA2 sequenced assembly, as this provided us with a 

comparative benchmark of the 2 technologies and insights into the limitations of both 

technologies. 

 

Using the Velvet algorithm (v0.7.55) (Zerbino and Birney, 2008), we derived a strategy to 

assemble 8 lanes (56.7 Mb) of Hpa Emoy2 paired-end reads (appendix table 3.2). This 

strategy involved performing a parameter scan over the k-mer length and coverage cut-off. 

 

The k-mer hash was constructed using the ‘velveth’ command with default parameters. 

The first assembly was performed using the ‘velvetg’ command with default parameters. 

The statistics for these assemblies is shown in table 3.1: 

 

k-mer 

length 

Number of 

contigs 

Mean contig 

length 

Median contig 

length 

Sum of 

contigs 

Longest 

contig 

21 346,226 171 67 59,252,988 14,386 

23 287,586 206 73 59,472,127 42,735 

25 256,288 235 81 60,245,632 50,706 

 

Table 3.1: velvetg run statistics – default parameters 
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These preliminary assemblies are very fragmented, as shown by the number of contigs. In 

order to improve the contiguity of the assembly we can perform a ‘velvetg’ assembly 

making use of the paired end information to connect contigs together. We also expect to 

see many singletons and short contigs in the assembly as a result of sequencing errors. To 

remove these we performed another ‘velvetg’ run with custom parameters for expected 

coverage, coverage cut-off and minimum contig length. The coverage cut-off and expected 

coverage were determined using the method described in the velvet manual (by plotting 

the k-mer coverage histogram and using the first minima for the cut-off and the maxima 

for the expected coverage) as shown in figures 3.1, 3.2 and 3.3: 
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Figure 3.1: Histogram plot of k-mer coverage in velvetg assembly with a k-mer size of 21. 

Expected k-mer coverage is 16, and estimated coverage cut-off is 5. 

 

Figure 3.2: Histogram plot of k-mer coverage in velvetg assembly with k-mer size 23. Expected k-

mer coverage is 14, and estimated coverage cut-off is 4. 

 

Figure 3.3: Histogram plot of k-mer coverage in velvetg assembly with a k-mer size of 25. 

Expected k-mer coverage is 12, and estimated coverage cut-off is 3. 



37 

We then performed a scaffolded assembly using ‘velvetg’. We modified the parameters as 

follows: 

 

 cov_cutoff 5/4/3 (this was based on a histogram of coverage per contig for each k-

mer length 21,23,25) 

 ins_length 410 (based on 2 x 36 bp reads, ~342 bp apart) 

 ins_length_sd 20  

 exp_cov 16/14/12 (this was based on a histogram of coverage per contig for each 

k-mer length 21,23,25) 

 min_contig_length 100 

 min_pair_count 4 

 

The assembly statistics are presented in table 3.2. 

 

k-mer length 
Number 

of contigs 

Mean contig 

length 

Median contig 

length 

Sum of 

contigs 

Longest 

contig 

21 19,104 2980 450 56,940,038 603,164 

23 19,730 3028 336 59,742,995 684,975 

25 20,744 2996 272 62,153,385 596,363 

 

Table 3.2: velvetg run statistics – scaffolding with modified parameters 

 

At this stage, with increasing k-mer length we see a: 

 

 Reduction in the number of total contigs assembled 

 Increase in mean and median contig size 

 Increase in the sum of contig lengths 

 Increase in size of longest contig 

 

3.2.1.4 Evaluating the quality of the Velvet de-novo assemblies 

The assembly statistics of the various k-mer lengths in table 3.2 suggest that increasing the 

k-mer length for our dataset results in a more contiguous assembly, with more sequence 

assembled. Optimising the N50 is usually considered to be the optimal strategy to improve 

a genome assembly. However, these statistics do not reflect on the quality of the 
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sequence assembled. To verify the accuracy of the sequence assembled we decided to see 

how well 2 known effector genes of Hpa, ATR1 and ATR13, were assembled. In both 

assemblies with k-mer size 21 and 23, ATR1 and ATR13 were present at full length with no 

mismatches or gaps. With the assembly using a k-mer size of 25, ATR1 assembled perfectly, 

but interestingly we saw an assembly artefact with the assembly of ATR13 (fig 3.4). 

 

 

 

 

 

 

We observed this assembly artefact with many preliminary assemblies utilising higher k-

mer lengths with the data. This ‘insertion artefact’ was more frequent and pronounced the 

larger the k-mer length (data not shown). We believe this was due to a fault in the 

assembly algorithm during the time of assembly, but we have not re-assembled the data 

with a newer version of Velvet to verify this claim. 

 

Observation of this artefact meant that we attempted no further assemblies with a k-mer 

length of 25.  

 

To evaluate the quality of assembly of the Velvet k-mer size 21 and 23 assemblies, we 

downloaded a dataset of 52 amino acid sequences of known genes in the 

Hyaloperonospora genus from the Genbank database (taxonomic ID 184462, July 2009) 

(appendix table 3.3). 2 genes (a putative effector protein Avh341 and a MAP kinase) were 

found fully assembled in the assembly with k-mer length 21 but partially assembled in the 

… 

 

Query: 421  ttaggaagataataaactcgcggaagcccatcgaaaccagttattcggctaaaggcatcc 480 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 1557 ttaggaagataataaactcgcggaagcccatcgaaaccagttattcggctaaaggcatcc 1616 

 

 

Query: 481  acga---------gaagattataaaggcatacgatcgtcatgtcttcgaatctaagaagg 531 

            ||||         ||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 1617 acgannnnnnnnngaagattataaaggcatacgatcgtcatgtcttcgaatctaagaagg 1676 

 

 

Query: 532  cacacgatcgtcatgtctccaaatctaagaaggcacacggtcgtcatgtctccaaatcta 591 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 1677 cacacgatcgtcatgtctccaaatctaagaaggcacacggtcgtcatgtctccaaatcta 1736 

 

 

… 

 
Figure 3.4: Extract from BLAST alignment of ATR13 to Velvet assembly of Hpa Emoy2 with a k-mer 

size of 25. An assembly artefact was observed where a 9 bp insertion of n’s is observed. 
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assembly with k-mer length 23. There were no genes found that were fully assembled in 

the assembly with k-mer length 23, and partially assembled in the assembly with k-mer 

length 21. For this reason, we continued to compare the Velvet assembly of k-mer length 

21 to the v7 Sanger assembly, and henceforth refer to the assembly as the ‘Velvet 

assembly’. 

3.2.1.5 Comparing the Velvet assembly to the v7 assembly 

The Velvet assembly adopted for the rest of this analysis (k-mer length 21) is 56.9 Mb (3.8 

Mb N’s) over 19,104 scaffolded contigs. The longest mean scaffolded contig length is 2980 

bp and the largest scaffolded contig is 603,164 bp. The number of scaffolded contigs larger 

than 2 kb is 4229, and the N50 is 742.  

 

Although at first glance, comparing the N50 values of the Velvet assembly (742) to the v7 

assembly (68) (appendix table 3.1) suggests that the v7 assembly is much more contiguous 

than the Velvet assembly, it is remarkable that the Velvet assembly contained a residual 

55.1 Mb of sequence (calculated by subtracting the N’s from the scaffolded assembly) 

compared to residual 67.5 Mb of sequence in the v7 assembly. It was hypothesised that 

the 19% difference in the sequences was due the underlying De-Bruijn graphed structure 

used in the Velvet algorithm not being able to correctly resolve duplicate and repetitive 

regions. 

 

We used DNAdiff from the EMBOSS package (Rice et al., 2000) to calculate the overlap of 

the v7 and Velvet assemblies (table 3.3).  94% of Velvet assembly contigs aligned to the v7 

assembly with an average identity of 99%. The remaining 6% of the Velvet contigs that did 

not align to the v7 accounted for 9.5 Mb of sequence. Conversely, 68% of the v7 contigs 

aligned to the Velvet assembly with an average identity of 99%. The remaining 32% 

accounted for 33 Mb of sequence. 
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 v7 Velvet 

[Sequences]   

Total  1842 19,104 

Aligned  1260 (68.40%) 17,959 (94.01%) 

Unaligned  582 (31.60%) 1145 (5.99%) 

   

[Bases]   

Total  76,549,095 56,940,038 

Aligned  43,682,374 (57.06%) 47,463,168 (83.36%) 

Unaligned  32,866,721 (42.94%) 9,476,870 (16.64%) 

   

[Alignments]   

1-to-1 21,338 21,338 

Total Length 48,214,454 48,271,511 

Average Length 2259.56 2262.23 

Average Identity 99.14 99.14 
 

Table 3.3: DNAdiff results between the Hpa Emoy2 v7 Sanger assembly and the Hpa Emoy2 

Velvet assembly. 

 

This data suggest that the majority of the Velvet assembled sequence is present in the v7 

assembly. In addition, there may be ~6 Mb of novel sequence not present in the v7 

assembly. 

3.2.1.6 Using CEGMA to compare the core eukaryotic genes in the Velvet and v7 

assemblies 

In order to evaluate the assembly of the gene space in each of the genome assemblies, we 

use the CEGMA pipeline (Parra et al., 2007) to identify the number of single copy core 

eukaryotic genes (CEGs). This method has been published as a useful metric to describe 

the assembled gene space (Parra et al., 2009). There are 248 CEGs, which are a subset of 

the 458 set of core eukaryotic genes (KOGs) conserved across 6 eukaryotic species (A. 

thaliana, Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces 

cerevisiae and Schizosaccharomyces pombe). We compared the number of predicted CEGs 

in the v7 and Velvet assemblies to predictions in Phytophthora infestans, Phytophthora 

ramorum and Phytophthora sojae (fig 3.6).   

 

Stein et al. (2003) performed a simulation of the effect of sequence coverage in an 

assembly on percentage of CEGs identified in Caenorhabditis briggsae. They show that at 

http://en.wikipedia.org/wiki/Caenorhabditis_briggsae
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4x coverage, it is possible to identify more than 80% of the CEGs using the CEGMA pipeline. 

Therefore, given this data we would expect to identify approximately 95% of the CEGs in 

an assembly with 9.5x sequence coverage such as the Hpa Emoy2 v7 assembly (fig 3.5). 

 

 

 

Figure 3.5: The effect of sequence coverage and CEGs identifiable by the CEGMA pipeline 

 

The results of the CEGMA predictions are summarised in figure 3.6. 94.8% of the CEGs 

were identified in the Velvet assembly, which is what we expect based on simulations 

done by Stein et al. (2003). 89.9% of the CEGs were identifiable in the v7 assembly, which 

is a little less than expected. The CEGMA pipeline identified 12 more CEGs in the Velvet 

assembly (235) compared to the v7 assembly (223), which implies that assembly and 

identification of ~95% of the CEGs is achievable through short read assembly. This also 

suggests that some of the unique sequence in the Velvet assembly has additional genes 

not in the v7 assembly, and perhaps vice versa.  

 

The average size of contigs, on which these CEGs were found, were approximately 10 fold 

higher in the v7 assembly (279,518) compared to the Velvet assembly (25,387), which 

suggests that although the Velvet assembly contains more of the CEG genes, the v7 

assembly is much more contiguous. 
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3.2.1.7 Comparing representation of genomic sequence between the Velvet and 

v7 assemblies 

In order to evaluate the representation of genomic sequence in each of the v7 and Velvet 

assemblies, we aligned a single lane of reads and identified the number of reads aligning to 

the genome (table 3.4). We observed that despite more CEGs being predicted in the Velvet 

assembly, 11.6% more reads aligned to the v7 assembly. We hypothesise that the extra 

reads aligning to the v7 assembly are not gene rich and mainly consist of highly repetitive 
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Figure 3.6: Identification of single copy core eukaryotic orthologous genes (CEGs) by the CEGMA 

pipeline. Approximately 95% of the CEGs were identified in the Hpa Emoy2 Velvet assembly and 

~90% in the Hpa Emoy2 v7 assembly. This is comparable to the number of CEGs identified in P. 

infestans (95%), P. ramorum (96%) and P. sojae (98%).  The CEGs are split into 4 groups with Group 1 

being the least conserved between organisms, and Group 4 being the most conserved. 
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and complex regions, as these are difficult to resolve using the de-Bruijn graph structure 

used by the Velvet assembly. 

 

Assembly 
Number of reads 

aligned 
Number of reads 

aligned as pair 
Percentage of 
reads aligned 

Percentage of reads 
aligned as pair 

Velvet 7,642,044 6,242,808 78.0% 81.7% 

V7 8,881,216 8,134,393 90.4% 91.6% 

 

Table 3.4: Number and percentage of reads from a single lane (ID69 lane 39,794,370 reads) 

aligning to the v7 and Velvet assemblies. The reads were aligned using MAQ v0.7.1 with map 

parameters of n=1 e=60 a=650. 

3.2.1.8 Comparing representation expressed sequences between the Velvet and 

v7 assemblies 

In order to evaluate how much of the gene space is represented in each assembly we 

compare alignments of expressed sequence tags (ESTs) to each assembly (table 3.5). 

31,759 EST sequences generated from Hpa. We aligned these to the Velvet and v7 

assemblies using BLAT (Kent, 2002) (using parameters minIdentity=80 query=rna) and post 

filtering using Brian Haas’ blat_top_hit.pl to find the best alignment for each EST (table 

3.5). 2.6% more ESTs (or 844 ESTs) aligned to the Velvet assembly compared to the v7 

assembly. This suggests that the Velvet assembly better represents the genes expressed 

during the spore stage of the lifecycle of Hpa. 

 

Genome Assembly Number of ESTs aligned Percentage of all ESTs 

Hpa Emoy2 v7 28,985 91.3% 

Hpa Emoy2 Velvet 29,829 93.9% 

 

Table 3.5: Number of ESTs aligning to the Hpa Emoy2 v7 and Velvet assemblies. Total of 31,759 

ESTs 

 

We also aligned 8,549,032 Illumina sequenced 36 bp cDNA reads of A. thaliana Ws eds1-1 

plants 7 days post inoculation (d.p.i.) infected with Hpa Emoy2, to the assemblies using 

MAQ (Li et al., 2008a) (version  0.7.1, n=3, e=100) (table 3.6). 2.6% more cDNA reads 

(265,123 reads) aligned to the Velvet assembly compared to the v7 assembly. We come to 

a similar conclusion as with the ESTs, that the Velvet assembly better represents the genes 

that are expressed during the 7 d.p.i stage of infection of Hpa. 
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Genome Assembly Number of cDNA reads aligned Percentage of all cDNA reads 

Hpa Emoy2 v7 2,145,339 25.1% 

Hpa Emoy2 Velvet 2,371,477 27.7% 

 

Table 3.6: Number of cDNA reads aligning to the Hpa Emoy2 v7 and Velvet assemblies. Total of 

8,549,486 reads. The reads were aligned using MAQ v0.7.1 with map parameters of n=3 e=100. 

 

Given that we saw approximately 3% more EST sequences and cDNA reads aligning to the 

Velvet assembly compared to the v7 assembly, we concluded that integrating the Illumina 

sequence data into the v7 assembly increases the representation of transcribed regions by 

approximately 3%. Given this rationale we proceeded with improving the v7 assembly 

making use of the Illumina reads. 
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 3.2.2 Improving the Hpa v7 Sanger assembly using Illumina sequenced short 

reads 

In the previous analysis I have shown that the v7 assembly can be improved by integrating 

additional data into the assembly from the Illumina reads. It also came to light that Hpa  

Emoy2 BAC sequences (provided by HRI, Warwick and sequenced by the Sanger Centre, 

Cambridge) were not integrated into the genome. 

 

We developed a 4 stage iterative pipeline with which we improved the genome assembly. 

A flow chart describing the method is shown in figure 3.7 

 

 

Figure 3.7: Four stage assembly improvement pipeline for incorporating BAC and Illumina 

sequencing data. In stage 1 of the improvement pipeline (pale orange) 97 complete BAC 

sequences were integrated; in stage 2 (green) sequencing errors were corrected using the 

Illumina paired end reads; in stage 3 (blue) we used methods similar to those described by 

Ossowski et al. (2008) to integrate Velvet assembled short reads; in stage 4 (yellow) we identified 

and removed regions not covered by Illumina paired end reads that showed homology to possible 

contaminants. The resultant assembly was the v8.3 assembly. 
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3.2.2.1 Merging of full length BAC sequences with the Sanger shotgun assembly 

The 95 BAC sequences were aligned to v7 using BLAT (Kent, 2002). Where the length of 

the BAC sequence differed from the length of the spanned assembly by less than 1%, the 

BAC sequence was automatically substituted for that region of the assembly. Where the 

BAC joined two contigs, the BAC sequence was automatically used to join the contigs if the 

replaced sequences differed no more than 1% from the BAC sequence. All other matches 

were reviewed manually. 57 BACs were integrated into the genome. Of these 57 BAC 

sequences, 28 integrated into existing contigs, 27 extended existing contigs and 2 merged 

existing contigs. Furthermore, 8 BAC sequences significantly overlapped each other and 

were merged into 3 larger contigs. 30 BACs were not easily integrated due to a very strict 

overlap agreement criteria used in order to minimise loss of sequence data through the 

integration of the BACs. These BAC sequences were appended to the assembly, and should 

be considered the authoritative assembly of the relevant regions. We calculated that this 

introduced 2.4 Mb of additional redundancy into the assembly. There were 58 short 

Sanger assembled contigs, totalling to 321 kb of sequence, entirely contained within full 

length BAC sequences. These 58 short contigs were removed from the assembly. 

 

3.2.2.2 Iterative correction of the Sanger assembled sequence 

After the BAC sequences were integrated into the genome, I developed a novel method to 

iteratively correct a genome sequence. This method is based on the premise that a 

reference genome assembly and deep sequenced short read data of the same or similar 

species are available. Given that in most circumstances, the reference genome assembly 

has low sequence coverage, this method takes advantage of the deep coverage through, 

for example, second generation sequencing technologies such as the Illumina GA and Abi 

SOLiD. This would allow one to identify differences between the reference sequence and 

the deep sequenced species with reasonable accuracy. If the deep sequenced species is 

the same species and isolate as the reference sequence, any difference can be regarded as 

a mistake in the reference sequence. This observation forms the basis of our consensus 

based method to correct the Sanger genome sequence of Hpa Emoy2, as we also have Hpa 

Emoy2 short reads. 
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The strategy employed to correct sequencing errors consisted of the following steps: 

 

1. Align short DNA reads to the genome using MAQ  

o Allowing for a maximum of 1 mismatch in the first 24 bp (n=1) 

o The maximum sum of qualities of mismatches over the entire read is less 

than 70 (e=70) 

2. Predict the homozygous SNPs and INDELs in the Hpa Emoy2 genome (which 

indicate assembly errors in the Hpa Emoy2 genome assembly) 

o The read coverage does not deviate more than 50% from the expected 

coverage of 24x 

o The aligning bases are a minimum of 80% of a single consensus base for 

the SNP call  

o SNPs filtered using maq.pl command SNPfilter 

 Parameters d=12 D=36 Q=20 q=20 w=1 F=(predicted INDEL file) 

o INDELs predicted using indelpe command and filtered with minimum 

depth of 5 and 75% of reads agreeing with  the INDEL prediction 

o SNPs do not overlap with predicted INDELs  

3. Correct the reference sequence based on the above predicted variation  

4. Repeat steps 1-3 until the number of corrections is less than 5% 

 

The only corrections that were not considered were to the BAC sequences, and the 

location at which BAC sequences had been integrated into the genome. 

 

Round  SNPs identified INDELs identified 

1 621 1489 

2 467 253 

3 976 132 

4 388 99 

5 230 87 

6 147 75 

7 399 70 

8 189 62 

9 103 60 
 

Table 3.7: Number of SNPs and INDELs after each iteration of correction. Corrections were made 

until the number of either SNPs or INDELs did not change by more than 5%. 
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9 rounds of corrections were made before there was less than a 5% change to the number 

of predicted INDELs (table 3.7). In order to evaluate the effect of each of these rounds of 

corrections to the genome, we aligned a single lane of reads to the genome and identified 

the number of reads aligning to the genome. With each iteration the number of reads 

aligning to the modified genome increased until saturation, which suggests that the 

method works correctly. There is also a correlation between the number of SNPs predicted 

in each round and the number of reads aligning to the genome (an increase in the number 

of predicted SNPs correlates to fewer reads aligning, and a reduction in the number of 

predicted SNPs correlates with an increase in the number of reads aligning to the 

assembly). After these corrections the percentage of reads aligning from a single lane of 

Illumina data improved by 0.5% (table 3.8), which is remarkable given than no additional 

sequence was added. 

 

Round  
Number of 

reads aligned 

Number of 
reads aligned as 

pairs 
Percentage of 
reads aligned 

Percentage of 
reads aligned as 

pairs 

0 8,930,642 8,228,155 91.2% 92.1% 

1 8,951,344 8,259,467 91.4% 92.3% 

2 8,956,760 8,239,159 91.4% 92.0% 

3 8,962,188 8,254,523 91.5% 92.1% 

4 8,966,306 8,261,374 91.5% 92.1% 

5 8,971,010 8,267,512 91.6% 92.2% 

6 8,972,906 8,267,243 91.6% 92.1% 

7 8,973,606 8,275,088 91.6% 92.2% 

8 8,975,254 8,274,580 91.6% 92.2% 

9 8,976,732 8,272,277 91.7% 92.2% 

 

Table 3.8: Number and percentage of reads from a single lane (ID69 lane 39,794,370 reads) 

aligning to the corrected assembly after X rounds of genome correction. Round 0 denotes the 

alignment statistics to the genome with the BACs integrated with no rounds of genome sequence 

correction. 

 

This method has further potential to be adapted to modify a reference sequence to 

represent the sequence of a closely related organism if SNP and INDEL prediction methods 

are modified, and additional resequencing artefacts are considered to include elevated 

coverage, represented possible copy number variation (CNV), or read pairs being aligned 

outside of the expected distribution of read pair insert sizes, indicating larger structural 

variation.  
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After the Hpa genome sequence was published and the method used to improve the 

genome sequence using the Illumina reads was described, a program working on the same 

principles of this method was published. This program is called ‘iCorn’ (iterative correction 

of reference nucleotides) and is described by Otto et al. (2010). 

3.2.2.3 Integration of the Sanger and Illumina assemblies  

After the 9 rounds of iterative sequence correction, the next stage in the pipeline was to 

integrate novel sequence from the Illumina reads using a targeted assembly method. The 

method we used was adapted from Ossowski et al. (2008). 

 

In order to integrate assembled Illumina reads into the genome, we first identified the 

reads that were novel and had potential to be integrated. These novel reads were 

identified by extracting all the reads that did not align to the reference assembly (using 

MAQ, default parameters). Since the assembly of these reads would result in novel 

sequence (based on how they were extracted), we had to develop a way of integrating the 

sequence into the genome. We hypothesised that the novel sequence would integrate into 

regions where there is unknown sequence in the reference assembly. The regions where 

the sequence would be unknown include regions of ‘N’s, sequence after the end of a 

contig and the sequence before the start of a contig. I therefore extracted reads, and their 

other pair, that aligned within 250 bp from regions of N’s, and from the start and end of 

contigs. This additional inclusion of reads aligning to 250 bp from the fore mentioned 

regions will allow for overlap based integration of the subsequent generated contig 

assemblies. 

 

A total of 14,148,204 reads were extracted, and assembled into 4234 contigs, with a mean 

contig length of 966 bp using Velvet (v 0.7.51, k-mer length 23). The assembly totalled to 

4.1 Mb with the longest contig being 42 kb. 

 

This assembly was then aligned back to the corrected Sanger assembly using BLAT to 

identify regions where the Velvet assembled sequence could be integrated into the 

genome sequence (minimum overlap of 40 bp). 313 Velvet contigs (totalling to ~500kb of 

sequence) were identified that showed significant matches to the reference sequence. Of 

the 313 contigs that were integrated, 148 integrated onto the ends of existing Sanger 

contigs. Of these, one Velvet contig connected 2 Sanger contigs. The remaining 165 
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integrated Velvet contigs integrated into the middle of contigs (over regions of Ns). The 

mean size of integrated contigs was 1.5kb, with the longest being 18.8kb. 

 

The remaining Velvet sequence would need to be appended to the genome as additional 

sequence, but since the current Velvet assembled data contains reads from potential 

overlap locations a reassembly of reads that do not align to the genome is required. After 

these Velvet contigs were integrated into the assembly, we realigned (using the previous 

alignment protocol) all the Illumina paired end reads to the genome sequence and 

extracted the reads that did not align, and their pair. These reads were assembled using 

Velvet (k-mer length of 23) and 1468 contigs greater than 250 bp, that were unlikely to be 

contamination (determined by BLAST search against A. thaliana, the NCBI Bacterial 

genomes July 2009, and the human genome sequence) were appended to the Hpa 

genome sequence. The mean length of appended Velvet contigs was 1.4 kb, and the 

longest was 42.6kb. 

 

The integration of the additional Illumina sequence improved the alignment of a single 

lane of Illumina reads to the assembled genome by 2.2%, which is the largest percentage 

increase compared to the previous modifications made (integrating the BAC sequences 

and correcting the sequencing assembly error) (table 3.9).  

 

Genome 

Number of 
reads 

aligned 

Number of 
reads aligned as 

pair 

Percentage 
of reads 
aligned 

Percentage of 
reads aligned as 

pair 

V7 8,881,216 8,134,394 90.7% 91.6% 

Velvet 8,930,642 8,228,155 91.2% 92.1% 

V7 + BACs 8,956,760 8,239,159 91.4% 92.0% 

V7 + BACs (corrected) 8,976,732 8,272,277 91.7% 92.2% 

V7 + BACS + Velvet 9,169,454 8,415,542 93.6% 91.8% 

V7 + BACS + Velvet (filtered 
for contamination) 9,167,148 8,405,118 93.6% 91.7% 

 

Table 3.9: Number and percentage of reads from a single lane (ID69 lane 39,794,370 reads) 

aligning to the corrected assembly after genome modifications. 

 

3.2.2.4 Identifying and removing contamination using Illumina sequencing 

The final stage of the Hpa genome improvement pipeline was to identify and remove 

contamination in the genome. We initially identified regions of potential contamination as 

regions that were not covered by any Illumina reads when reads were aligned to the 
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genome. The basis of the hypothesis that contamination in the genome assembly would 

not be covered by Illumina reads is that since the same organism was sequenced using 

Illumina and Sanger sequencing, all regions of the genome should be covered by Illumina 

reads. Any regions in the genome that were not covered by Illumina reads would either be 

due to contamination in the Sanger reads, or technical limitations of the protocol 

employed for the Illumina sequencing. 

 

We aligned 6 lanes of Illumina paired end sequence against the Hpa genome and extracted 

3360 regions with less than 3x coverage over 100 bp. We performed a preliminary BLAST 

search against the nucleotide NR database (August 2009, using blastn, no sequence 

filtering and a minimum e-value of 1 x 10-6). We observed that the majority of best hits of 

uncovered regions in the genome were to bacterial sequences (table 3.10). There were 

only 4 hits to A. thaliana, and no hits to cloning vectors as these were identified as 

contamination in the v6 assembly (by myself, using this same method) and rectified in the 

v7 assembly. 

 

Best BLAST hit 
Number 

of hits 

Methylobacillus flagellatus KT 241 

Xanthomonas campestris pv. campestris 122 

Ricinus communis 78 

Xanthomonas oryzae pv. oryzicola BLS256 66 

Xanthomonas axonopodis pv. citri str. 306 58 

Xanthomonas campestris pv. vesicatoria str. 85-10 57 

Xanthomonas oryzae pv. oryzae PXO99A 52 

Flavobacterium johnsoniae UW101 45 

Sphingomonas sp. SKA58 42 

Chryseobacterium gleum ATCC 35910 25 

Xanthomonas campestris pv. campestris str. 8004 23 

Dechloromonas aromatica RCB 19 

Acidovorax delafieldii 2AN 18 

Xanthomonas oryzae pv. oryzae KACC10331 18 

Novosphingobium aromaticivorans DSM 12444 17 

Methylophilales bacterium HTCC2181 16 

beta proteobacterium KB13 14 

Cellvibrio japonicus Ueda107 14 

Janthinobacterium sp. Marseille 12 

Pseudomonas fluorescens Pf0-1 12 

Chitinophaga pinensis DSM 2588 10 

Pseudomonas putida W619 10 
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Table 3.10: Best BLAST hits when extended regions of very low coverage were blasted against the 

NR database. Only results with at least 10 hits are shown. The majority of the best BLAST hits 

were from bacteria. 

 

We then proceeded to download the nucleotide databases from NCBI for human, A. 

thaliana and all bacteria (August 2009). We performed a BLAST search (using blastn and e-

value cut-off of 1 x 10-10) against each of the sequence databases. Each hit was filtered to 

share at least 95% sequence identity over the match. Each potential contaminant region 

with a hit was then compared to the NR best BLAST hit to see if both hits are from the 

same phylogenetic kingdom.  

We did not find any significant matches to human sequences. We found 261 contigs in 859 

hits to the NCBI bacterial sequences from over 140 bacterial species. The total sum of 

bacterial contamination was 185 kb, with the main source of contamination (87 kb) being 

from 2 BAC sequences (Cu694975 and Cu694660, both of which originated from 

Xanthamonas campestris pv. campestris) (appendix table 3.5 & 3.6).   We found 7 contigs 

in 13 hits to the A. thaliana TAIR 9 genome assembly. The total sum of A. thaliana 

contamination was 3 kb (appendix table 3.7). 

 

After identification of potential known contamination, each of the regions of very low 

coverage with a hit to a contaminant was removed. A total of 85 contigs were removed 

due to having a >85% of the bases uncovered and having significant contamination, and a 

total of 119 contigs were split in order to remove contaminant regions. 

 

This was the last stage of genome improvement utilising the Illumina reads. The resulting 

assembly was the v8.3 assembly. 
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3.2.3 Evaluating the v8.3 hybrid Sanger and Illumina assembly 

The 82 Mb assembly consisted of 1783 major scaffolds (larger than 2 kb) with an N50 

scaffold number of 75. The assembly consisted of 8.3 Mb of ‘N’s, which is 700 kb fewer 

than the v7 assembly. The reduction in the number of N’s is due to the integration of the 

BAC sequences and Velvet assembled Illumina reads into regions of the v7 genome 

assembly, which had previously contained N’s.  

 

3.2.3.1 Estimating genome size using read coverage 

The total length of the v8.3 assembly was 82 Mb, consisting of 73.7 Mb of “non-N” 

sequence. To independently estimate the total genome size, we conducted statistical 

analyses of the coverage provided by the Illumina reads and by the Sanger reads. 

 

To estimate the genome size from the coverage provided by the Illumina reads, we used 

MAQ (v0.7.1 using default parameters) to align 2,393,125,128 bp of sequence from 

Illumina paired-end reads (66,475,698 total reads from six lanes of paired end sequencing) 

to the Hpa Emoy2 v7 Sanger read contig models (unscaffolded). The Illumina read 

coverage at each nucleotide position (67,509,127 positions) was calculated and the 

frequency of positions with each level of coverage was plotted (fig 3.8). A Gaussian curve 

was fitted to the main peak of the distribution by least squares and used to obtain the 

mean of the distribution (23.93).  

 

To estimate the genome size (C) we used the following formula: 

 

 C = A * R / c 

 

where   A = number of aligned reads 

  R = read length 

  c = average coverage per nucleotide 

 

The genome size was estimated by dividing the total length of the Illumina reads by the 

mean coverage: 66475698 * 36 / 23.93 = 100.0 Mb. 
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To estimate the genome size from the unassembled Sanger read data, the coverage of 

every read was calculated from a blastn all-versus-all search of the trimmed random 

shotgun reads. For each read we counted the number of matches with > 95% identify over 

the length of the match, with a minimum overlap of 30 nt. The average coverage at the 

nucleotide positions defined by each read can then be obtained from the following 

formula: 

 

 C = 1 + A * R / [(R + L) – 2 * O] 

 

where   A = number of aligned reads 

  R = average length of all the trimmed trace files (720 nt) 

  L = length of each individual query sequence 

  O = minimum overlap required to call a match (30 nt) 

 

The frequencies of reads with different coverages were then binned and plotted to 

identify a peak corresponding to the single copy sequences (fig 3.8). A Gaussian curve was 

fitted to the single copy peak by least squares and used to obtain the mean of the 

distribution (8.39). The genome size was estimated by dividing the total length of the 

Sanger reads by the mean coverage:  1140851 * 720 /8.39 = 97.9 Mb. 

 

The close agreement of the two statistical estimates suggests that the actual genome size 

(mean of the two estimates = 99 Mb) is significantly larger than the assembled length of 82 

Mb. An explanation for this discrepancy is suggested by the second prominent peak in 

figure 3.8. The presence of this peak suggests that there are a large number of sequences 

in the genome that are more than 95% identical and have an average copy number of 

around 3. Such sequences would most likely be assembled as single copy sequences by the 

assembly software. Plotting the sequence coverage provided by the Sanger reads against 

the assembled genome did not reveal any contigs or long segments of the assembly with 

elevated coverage (not shown), ruling out the presence of large triplicated regions or 

chromosomes. The reads with elevated copy number also did not correspond to 

contaminants such as bacteria or Arabidopsis. The reads with elevated copy number did 

not correspond to gene models from Hpa, suggesting that the repeats were largely 

confined to non-genic regions. The plot of the Illumina read coverage did not identify a 

sharp peak of triplicated sequences, but rather a long tail corresponding to high copy 

coverage. The different shapes of the two plots likely result from the fact that the Illumina 



55 

reads were much shorter than the Sanger reads, and a perfect match for alignment was 

required for the Illumina reads, compared to a 95% match for the Sanger reads. 

 

 

 

 

Figure 3.8: Genome size estimation from Illumina and Sanger read coverage 

(A) Frequency of nucleotide positions in the Sanger assembly with given Illumina read coverage. 

(B) Frequency of Sanger reads with given Sanger read coverage. In both (A) and (B), to obtain the 

mean coverage of the single copy sequences, a Gaussian curve was fitted to the main peak 

(indicated by shaded points and horizontal bar) by fitting a quadratic function to the natural-log-

transformed frequency data (inset). From each fitted quadratic function ax
2
 + bx + c, the mean of 

each Gaussian distribution was obtained as –b/2a. 



56 

3.2.3.2 Comparing the Velvet and v8.3 assemblies 

We used DNAdiff (Kurtz et al., 2004) to compare the Velvet assembly to the v8.3. 98% of 

the Velvet assembly aligns to the current v8.3 assembly (table 3.11; fig 3.9). There are 14 

scaffolds >2 kb that are unique to the Velvet assembly of which the largest is 6.2 kb. 70% 

of the v8.3 assembly aligns to the Velvet assembly. There are 422 scaffolds >2 kb that are 

unique to the v8.3 assembly, of which the longest is 12.6 kb. The difference between the 

size of the Velvet assembly and the v8.3 assembly is due to 27.2 Mb of sequence being 

collapsed into 5.9 Mb of scaffold in the Velvet assembly and 2 Mb of ‘N’s captured through 

the larger Sanger paired end reads.  

 

 V8.3 Velvet 

[Sequences]   

Total  3138 19,104 

Aligned  2182 (69.53%) 18,642 (97.58%) 

Unaligned  956 (30.47%) 462 (2.42%) 

   

[Bases]   

Total  82,051,642 56,940,038 

Aligned  46,419,401 (56.57%) 50,095,244 (87.98%) 

Unaligned  35,632,241 (43.43%) 6,844,794 (12.02%) 

   

[Alignments]   

1-to-1 22,750 22,750 

Total Length 50,990,271 51,040,070 

Average Length 2241.33 2243.52 

Average Identity 99.13 99.13 
 

Table 3.11: DNAdiff results between the Hpa Emoy2 v8.3 hybrid assembly and the Hpa Emoy2 

Velvet assembly. 
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Figure 3.9: Visual representation of an alignment of the Hpa Emoy2 v8.3 assembly against the 

Velvet assembly. Produced using Mauve (Darling et al., 2010). 

 

3.2.3.3 Identifying the number of CEGs in the v8.3 assembly 

236 CEGs were identified in the v8.3 assembly (fig 3.10). This represents a 6% increase in 

the number of CEGs identified compared to the v7 assembly in which 223 were predicted. 

This is an improvement over the v7 assembly. One CEG was predicted in the Velvet 

assembly that was not in the CEGMA predictions for the v8.3 assembly. The sequence of 

this CEG was extracted and aligned to the v8.3 assembly. The gene prediction was present 

in full length with no differences, but was omitted from the CEGMA predictions for 

unknown reasons. 
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3.2.3.4 Representation of genomic sequence in the v8.3 assembly 

In order to evaluate the representation of genomic sequence in each of the v8.3 assembly, 

we aligned a single lane of reads and identified the number of reads aligning to the 

genome and compared this to previous results of the v7 and Velvet assemblies (table 3.12). 

We observe a 3.2% increase in the reads that align to the v8.3 assembly compared to the 

v7 assembly. Given that we expect the genome size to be ~100 Mb, this increase in the 

number of reads aligning to the v8.3 assembly should correlate to an increase of 3.2 Mb of 

unique sequence introduced through integrating the BAC and Illumina sequences. 
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Figure 3.10: Percentage of full and partial CEGs identified by the CEGMA pipeline in the v8.3 

assembly. 95% of the CEGs were identified in the Hpa Emoy2 Velvet and v8.3 assemblies. 
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Assembly 
Number of reads 

aligned 
Number of reads 

aligned as pair 
Percentage of 
reads aligned 

Percentage of reads 
aligned as pair 

Velvet 7,642,044 6,242,808 78.0% 81.7% 

v7 8,881,216 8,134,393 90.4% 91.6% 

v8.3 9,167,148 8,405,118 93.6% 91.7% 

 

Table 3.12: Number and percentage of reads from a single lane (ID69 lane 39,794,370 reads) 

aligning to the v7, v8.3 and Velvet assemblies. The reads were aligned using MAQ v0.7.1 using 

map parameters of n=1 e=60 a=650. 

 

 

3.2.3.5 Representation of expressed sequence in the v8.3 assembly 

We aligned the Sanger sequenced ESTs to the Velvet and v8.3 assemblies using BLAT (using 

parameters minIdentity=80 query=rna) and post filtering using Brian Haas’ blat_top_hit.pl 

to find the best alignment for each EST. We observed a 3.6% improvement (851 ESTs) over 

the v7 assembly in the number of ESTs aligning to the genome assembly (table 3.13). 

Although the number of aligning ESTs did not differ significantly between the v8.3 and the 

Velvet assembly, we do capture the ESTs, and the genes to which they belong, in the v8.3 

assembly in a much more contiguous genome space. 

 

Genome Assembly Number of aligned ESTs  Percentage of all ESTs 

Hpa Emoy2 v7 28,985 91.3% 

Hpa Emoy2 Velvet 29,829 93.9% 

Hpa Emoy2 v8.3 29,836 93.9% 

 

Table 3.13: Number of ESTs aligning to the Hpa Emoy2 v7 and Velvet assemblies based on a total 

of 31,759 ESTs. 

 

We also aligned the Illumina sequenced 36 bp cDNA reads to the v8.3 assembly using MAQ 

(table 3.14). Unlike the EST alignments, we saw increases in the number of cDNA reads 

aligning to the v8.3 assembly when compared to the v7 (3%) and the Velvet assembly 

(0.4%). We believe the difference in the increase of Illumina cDNA reads aligning to the 

v8.3 compared to the increase in ESTs aligning to the v8.3 assembly is because the ESTs 

were isolated from spores whereas the Illumina cDNA was isolated from infected plant 

tissue, and we would expect that different genes are expressed during these different 

developmental stages. 
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Genome Assembly Number of cDNA reads aligned Percentage of all cDNA reads 

Hpa Emoy2 v7 2,145,339 25.1% 

Hpa Emoy2 Velvet 2,371,477 27.7% 

Hpa Emoy2 v8.3 2,397,839 28.1% 

 

Table 3.14: Number of cDNA reads aligning to the Hpa Emoy2 v7 and Velvet assemblies based on 

a total of 8,549,486 reads. The reads were aligned using MAQ v0.7.1 using map parameters of n=3 

e=100. The reason for the low percentage of cDNA read alignment to the Hpa assemblies is 

because approximately 60% of the cDNA originate from the host A. thaliana (this was determined 

through aligning the cDNA to the TAIR9 genome assembly), and MAQ is unable to align split reads 

over splice sites. 

3.2.4 Heterozygosity in Hpa Emoy2 

The majority of genome sequencing project attempt to decipher the genome sequence of 

an organism. However, in diploid organisms that are not inbred differences between 

parental chromosomes may be a rich source of genome variation. This heterozygous 

variation is often not considered. I will describe how the Illumina reads were used to 

identify heterozygosity in Hpa Emoy2, and characterised the heterozygosity in all genes 

and effector genes (from a draft gene model prediction and annotation). The protocols 

used are described in Baxter et al., 2010. 

3.2.4.1 Identifying heterozygosity in Hpa Emoy2 

MAQ (Li et al., 2008) was used to align the paired-end Illumina reads to the v8.3 assembly. 

MAQ was used to predicted 59,358 high confidence SNPs (minimum of 10x nucleotide 

coverage by Illumina reads over the SNP call and a predicted SNP call accuracy of >99%). 

Of these, 8201 SNPs had a coverage of >80x. It is believe that these predicted SNPs are on 

regions of collapsed repeats, thus displaying higher than average coverage by Illumina 

reads, and are indistinguishable from real SNPs and mutations on different duplicated 

regions of the genome using this method. Furthermore, we observe that 99% of these 

predicted SNPs are heterozygous. The 1% of SNP calls that were homozygous is a 

combination of the SNP call error rate and errors in the genome sequence of Hpa. 
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3.2.4.2 Heterozygosity in genes and effectors 

It has been shown that Hpa effectors, ATR1 and ATR13, are highly polymorphic (Rehmany 

et al., 2005; Allen et al., 2004). We observe that the frequency of observation of a 

heterozygous SNP across candidate (1 per ~500bp) is five times higher than in other genes 

(1 per ~2500 bp) (fig 3.11). Under the neutral theory of evolution, one can explain that the 

rate of heterozygosity in genes being lower than the in the background rate observed in 

non coding regions as the majority of mutation are likely to be deleterious and would be 

selected against. However, the increased rate of heterozygosity in candidate effectors is 

near 5 times more than in genes, and more than twice as much as the genome, suggesting 

that there is selection for variation in candidate effectors. 

 

 

Figure 3.11: Rate of heterozygosity in the Hpa genome, genes and RXLR effector candidates. 
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3.3 Summary 

We were able to show that integration of short read and long read sequences can lead to a 

better genome assembly by integrating Illumina short reads into the Sanger assembly of 

Hpa Emoy2. We developed several novel methods for evaluating genome completeness, 

genome correction, novel sequence integration and to identify contamination. 

 

We improved the Hpa v7 assembly so that it contains an additional ~4 Mb (5%) of 

sequence, which should be relatively gene rich. We determined this expected gene 

richness by the increase in percentage of predicted CEGs (6%), percentage of Illumina 

sequence cDNA aligning (12%) and the percentage of ESTs aligning (3%) to the v8.3 hybrid 

assembly compared to the v8.3. 

 

We also showed that Illumina short read assemblies of eukaryotic organisms with 

genomes of 100 Mb and less can be an efficient way of representing the gene encoding 

regions of an organism at the expensive of genome contiguity. 

 

The resultant v8.3 assembly is a better representation of the true Hpa Emoy2 genome 

than either the v7 or Velvet assembly, and will thus support more reliable gene model 

predictions allowing us to better understand the biological functions of Hpa Emoy2. 

 

We show that analysis of heterozygosity captures a subset of the variation in a larger 

population. The implication of this is that genomics experiments using second generation 

sequencing technologies can make use of heterozygosity to add to observed allelic 

variation. Analysis of heterozygous SNPs over the genome, genes and candidate effectors 

reveals that the rate of heterozygosity in effectors in almost 5 times higher than observed 

in other genes, suggesting that there is selection for maintaining variation in effectors. 
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Chapter 4 – Use of Illumina sequencing to evaluate 

and improve the Hpa gene models 

4.1 Introduction 

In the previous chapter I described the establishment of the Hpa v8.3 genome assembly. 

The purpose of the genome assembly is to allow us to generate gene models from which 

we can identify gene families, predict gene function and ultimately make useful inferences 

about the underlying biology and chemistry of the organism of interest. In the case of Hpa 

it will increase our understanding of the genes involved in pathogenesis and may reveal 

clues to the obligate biotrophic nature of the pathogen. 

 

I used a number of software packages to generate gene models and various data sets that 

provide evidence for gene expression: 

 

 Sanger sequenced ESTs 

 Illumina sequenced cDNAs 

 454 sequenced ESTs 

 

I also annotated the resultant gene models and performed comparative analysis with 

other oomycete pathogens to further understand Hpa biology and pathogenicity. 
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4.2 Results and Discussion 

4.2.1 Existing gene models 

The existing gene models were compiled by the postdoctoral researchers Dr Sucheta 

Tripathy, (VBI, Virginia Tech, Virginia) and Dr Laura Baxter, (HRI, Warwick). I will describe 

briefly the rationale of design choices and methodologies employed to make the initial set 

of gene models. 

4.2.1.1 Determining the number of genes 

A whole genome BLAST search against the NR protein database was conducted (Oct 2009). 

The entire genome matched with 14,688 proteins from the NR database with >65% 

sequence identity over 100 bases. These matches were not inspected for evidence of 

pseudogenisation, which would have resulted in fewer true matches to existing genes. This 

analysis may not have shown all the Hpa specific genes, since no previous gene models for 

any Hyaloperonospora had been published. From this it is expected that the number of 

genes in Hpa will be between 14-15,000 genes. 

4.2.1.2 Genezilla 

Genezilla (Majoros et al., 2005), is an ab initio gene predictor that is based on a 

Generalised Hidden Markov Model (GHMM) (a GHMM models a continuous state space, 

as opposed to a HMM which models a discrete state space). Genezilla was chosen by Dr 

Sucheta Tripathy as the primary gene prediction method due to: 

 

 Genezilla has a state transition model that enables it to consider different types of 

exons (i.e. initial, internal, final and single exons) using different content sensors 

(fig 4.1). This was one of the novel features of Genezilla compared to existing gene 

prediction algorithms 

 independent training of exon and intron prediction 

o training using ESTs was done for prediction of exons and splice junctions 

o training using 16,999 ‘Illumina segments’ (regions where 4 or more 

Illumina 36 bp cDNA reads align at locations at least 300 bp apart) 
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Figure 4.1: Genezillas state transition model [reproduced from (Majoros et al., 2005)]. Each state 

of the HMM is represented by a shape and transitions between the states are represented by 

arrows. States include N: intergenic, Esng: single-exon gene, Einitial: initial exon, Efinal: terminal exon, 

E0–E2: exons in phase 0–2, I0–I2: introns in phases 0–2, A+D: acceptor and donor sites, TATA: 

transcription initiation site, AATAAA: transcription termination sites, UTR5+UTR3: 5’ and 3’ UTR 

regions, ATG+TAG: start and stop codon. 

 
 
3 different protocols were used for Genezilla in order to determine the best protocol. The 

mean intergenic length parameter was modified. It was reported that the mean intergenic 

length parameter need  not match the actual mean length of intergenic regions in this 

organism; values quite different from the mean could give better prediction accuracy than 

the true mean, due to the  dependencies between different parts of the underlying model. 

Increasing the mean intergenic length and the exon length parameters were reported to 

have also resulted in producing gene predictions with better EST support. A total of 16,166 

genes predicted by Genezilla were used. 
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4.2.1.3 Snap 

Snap (Korf, 2004), is a gene predictor that is based on a GHMM (fig 4.2). Snap was chosen 

to generate gene models to verify the Genezilla predictions and to provide alternative 

gene calls. 

Snap’s species-specific parameter estimation was performed using a training set derived 

from 100 manually curated Hpa genes with full-length EST support, and a HMM was built 

from these parameters. A total of 687 Snap gene predictions were used to complement 

the Genezilla models. 

 

 

Figure 4.2: The Snap transition state model [reproduced from (Korf, 2004)]. Each state of the 

HMM is represented by a shape and transitions between the states are represented by arrows. 

States include N: intergenic, Es: single-exon gene, Ei: initial exon, Et terminal exon, E0–E2: exons in 

phase 0–2, I0–I2: introns in phases 0–2 (subscript of T, TA, or TG denotes the last bp or two bp of 

the intron – this is used to prevent in-frame stop codons across splice junctions). 
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4.2.1.4 CEGMA - Core Eukaryotic Genes Mapping Approach 

 

The CEGMA pipeline (Parra et al., 2007) makes use of GeneID (Guigo, 1998), an ab-initio 

gene predictor, and Genewise (Birney et al., 2004), a homology based gene structure 

predictor, to predict 458 core eukaryotic proteins (KOGs) present in a wide range of taxa 

(H. sapiens, D. melanogaster, C. elegans, A. thaliana, S. cerevisiae and S. pombe). The 

pipeline identified 406 KOGs which were added to the gene models.  

 

4.2.1.5 Integration of gene models 

Overlaps between all the predictions and the ‘Illumina segments’ were calculated based 

on GFF coordinates. Gene predictions from Genezilla, Snap and CEGMA that overlapped 

with the ‘Illumina segments’ (with 200 bp offset) were kept as an initial set of genes. 

13,735 gene models from the different predictions resided within 200 bp of 12,368 

‘Illumina segments’. These genes were kept for the gene models (as set 1). Among the 

remaining genes that did not lie within 200 bp of ‘Illumina segments’, 158 genes had good 

BLAST homology with known genes in the NR database (set 2). The remaining gene models 

were filtered based on their length and other parameters. About 1021 genes were kept 

from this list (set 3). The CEGMA pipeline was used to build conserved eukaryotic gene 

models, resulting in 406 gene models predicted by CEGMA (set 4). The remaining ‘Illumina 

segments’ that did not overlap with any of the gene prediction programs were retrieved 

from the genome sequence with an addition 1 kb of flanking sequence on either side. A 

separate gene prediction was made on this data set. 1939 were gene models predicted 

from these extracted regions (set 5). 

 

Sets 1-5 were manually integrated based on gene coordinate overlap. This resulted in 

17,259 gene models being predicted for Hpa. 84% of the ‘Illumina segments’ lie within 200 

bp of the gene models. We will call these gene models the version 1 (v1) gene models for 

the Hpa v8.3 assembly. 
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4.2.2 Evaluating gene models 

4.2.2.1 Evidence for expression 

As described in the previous chapter, we aligned both the ESTs and Illumina sequenced 

cDNA back to the reference genomes to compare how much of the transcription data is 

represented in the different reference genome assemblies. To identify how much of the 

transcribed sequence represented in the genome is described in the gene models, I 

aligned the ESTs to the gene models (using BLAT, minimum sequence identity of 80% and 

setting the query to RNA), and also aligned the Illumina cDNA reads to the gene models 

(using MAQ, mapping parameters of 3 mismatches in the 24 bp seed, and maximum sum 

of qualities of mismatching bases to 100). 

 

We observed that 82.2% of the ESTs aligning to the v8.3 assembly also align to the v1 gene 

models presented by the VBI (table 4.1). From this analysis we would extrapolate that 80% 

of the genes of Hpa are represented by the gene models. This was considered to be 

reasonable for a draft genome assembly project. However, the 20% of the ESTs that 

aligned to the genome but not to the gene models, would suggest that 20% of the Hpa 

transcripts that are not annotated in the v1 gene models.  

 

 Aligned EST % of ESTs aligning % of alignable ESTs 

Hpa v8.3 genome assembly 29,836 93.9% - 

Hpa v8.3 gene models (v1) 24,550 77.3% 82.2% 

 

Table 4.1: The number and percentage of the 31,759 ESTs aligning to Hpa v8.3 assembly and v1 

gene models using BLAT (setting the query as RNA for the genome alignments, and setting the 

minimum sequence identity as 80% in both alignments). The percentage of alignable ESTs was 

calculated as the percentage of EST aligning to the genome that also aligned to the gene models. 

 

I also aligned the Illumina cDNA reads to the v8.3 genome assembly and the v1 gene 

models using MAQ (mapping parameters allowing for 4 mismatches in the 24 bp seed, and 

allowing for a maximum sum of qualities of mismatching bases to 100). 35.2% of the 

Illumina reads that aligned to the v8.3 assembly aligning to the v1 gene models (table 4.2). 

This is significantly less than the percentage of ESTs aligning to the v1 gene models. It was 

hypothesised that many Illumina cDNA reads would align to the untranslated regions 

(UTR) of genes and thus not align directly to the gene models as UTRs were not predicted. 
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The Illumina cDNA was obtained from A. thaliana Ws0-eds1 plants infected with Hpa 

Emoy2. In order to test the claim that much of the Illumina cDNA was aligning to the 

untranslated regions of genes, the cDNA was aligned to the: 

 

 A. thaliana TAIR9 assembly (June 2009) 

 A. thaliana TAIR9 gene models, including UTRs (June 2009) 

 A. thaliana TAIR9 gene protein coding regions (i.e. not including UTRs) (June 2009) 

 

Comparing the amount of cDNA aligning to the TAIR9 assembly and TAIR9 coding region 

provides a benchmark for comparing the Hpa genome assembly and gene models. 

Comparing the cDNA aligning to the TAIR9 gene models (including UTRs) and TAIR9 coding 

regions provides insight into how much of the cDNA is untranslated.  

 

Aligning the cDNA using the previous protocol we found that 95.3% of the cDNA aligning to 

the TAIR9 genome assembly also aligned to the TAIR9 gene models including the UTR 

regions (table 4.2). It was surprising to observe that less than half of the aligning cDNA 

(45.8%) aligned to the protein coding regions of the genes. Since reads from A. thaliana 

Ws0-eds1 were aligned to the A. thaliana Col-0 genome and gene sequences, slightly more 

reads would be expected to align to a Ws-0 assembly. From this we hypothesise that with 

‘gold standard’ gene models for Hpa we would expect at least 45% of the cDNA reads 

aligning to the genome to also align to the gene models, assuming a similar distribution of 

cDNA reads coming from UTRs and coding regions as we see in the A. thaliana Ws0-eds1 

reads. Comparing this figure to the observed figure of 35.2% aligning to the Hpa v1 gene 

models, there is still an offset of 10% to our hypothetical optimum. We hypothesise that 

the difference is primarily due to missing gene models in the v1 set (table 4.2). 

 

 Aligned cDNA % of cDNA aligning % of alignable cDNA 

A. thaliana Tair9 assembly 3,074,292 36.0% - 

A. thaliana Tair9 gene models 2,928,728 34.3% 95.3% 

A. thaliana Tair9 gene CDS regions 1,410,598 16.5% 45.8% 

Hpa v8.3 genome assembly 2,397,839 28.1% - 

Hpa v8.3 gene models (v1) 844,524 9.9% 35.2% 

 

Table 4.2: The number and percentage of the 8,549,032 cDNA reads aligning to A. thaliana and 

Hpa gene models using MAQ (allowing for a 3 bp mismatch in the 24 bp seed, and a maximum 

sum of qualities of mismatching bases to 100). The percentage of alignable cDNA was calculated 

as the percentage of ESTs aligning to the genome that also aligned to the gene models.      
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4.2.2.2 Other quality issues in the v1 gene models 

I was dubious about the use of ‘Illumina segments’ to train Genezilla for gene predictions 

for exon content of genes, because the segments were constructed from reads separated 

by 400 bp. Since we are aware that the cDNA could be obtained from UTRs as well as 

exons, there is the possibility that these ‘Illumina segments’ cover introns that are shorter 

than 400 bp, and also possibly connect 2 genes that are separated by less than 400 bp. 

This would mean that Genezilla may have been trained using non-coding sequence, which 

may lead to incorrect gene predictions. This was an argument that was acknowledged but 

did not change the opinions of the post-doctoral researcher in charge of generating the 

gene models, with regards to the correctness of the method. While this remains a 

discussion point, it was decided that any modifications made to the gene models would be 

based on the Genezilla predictions.  

 

Analysis of the gene lengths also revealed 2457 genes that were shorter than 50 amino 

acids. These were considered to the spurious gene calls. 

 

TranposonPSI (Haas, 2010) was used to identify and analyse the Hpa v1 gene models for 

sequence similarity to known transposable elements using PSI-BLAST (Altschul et al., 

1997). 1176 genes with high similarity to transposons over 75% of the length of the gene 

were identified. Both the genes less than 50 amino acids and the 1176 genes with 

homology to transposons are likely to be incorrect gene calls and should be removed. 

4.2.3 Generating version 2 of the Hpa gene models 

In the previous section problems with the current gene model predictions were identified, 

in that only approximately 80% of the expression data that aligns to the v8.3 assembly 

aligns to gene models, as well as other quality issues such as short gene models and failure 

to identify transposable elements. The aim for this part of the project was to provide a set 

of gene predictions to improve the current gene models. After each gene model prediction 

I evaluated how well they represent the transcribed sequence we have for Hpa. We 

aligned the ESTs using the previously described protocol (using BLAT with minimum 

sequence identity of 80%). We also evaluated gene models by aligning the Illumina cDNA, 

using a filtered subset of reads. Knowing that the Illumina cDNA reads contain A. thaliana 

transcribed sequence, we removed this to prevent a bias caused by reads aligning to both 

A. thaliana and Hpa, and belonging to transcribed sequence in both organisms. We 
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performed the filtering using MAQ (v0.7.1) and extracted the reads that did not align to 

the A. thaliana TAIR9 genome assembly (using strict parameters allowing for 1 mismatch 

in the 24 bp seed, and a maximum of sum of mismatching bases to 40). This reduced the 

number of Illumina cDNA reads from 8,549,032 to 5,896,757. We aligned these filtered 

reads to the newer gene model predictions using MAQ (v0.7.1) allowing for 3 mismatch in 

the 24 bp seed, and a maximum of sum of mismatching bases to 100. 

 

In the following section I will describe how additional gene prediction software was used 

to predict novel Hpa genes to identify unannotated Hpa transcripts. I will discuss how 

additional gene prediction software was used to generate additional gene models, and 

how they were integrated into the Hpa gene models. 

4.2.3.1 Geneid 

Geneid was chosen as one of the alternative gene prediction programs since it has already 

been pre-trained for predicting genes from another oomycete plant pathogen, P. infestans. 

This would then be ideal for recognising orthologous genes within the Peronosporales. 

A default run with Geneid predicted 38,530 unfiltered gene models. Many of these 

predictions were very short (15,784 were under 50 amino acids) and 623 did not start with 

a Methionine. These spurious gene models were removed. 

 

81.0% of the ESTs align to the Geneid gene models (table 4.3). This is an increase of 4.8% 

compared to the v1 gene models. However, we observed that 12.6% of the Illumina cDNA 

reads align to these gene models (table 4.4), which is 8.1% less reads aligning compared to 

the v1 gene models. This suggested that the Geneid models were able to predicted ~5% 

genes, compared to the v1 gene models, which are expressed in the zoospore stage of Hpa 

lifecycle. Similarly, Geneid predicted ~8% fewer genes, compared to the v1 gene models, 

which are expressed 7 days after infection. 

 

The median length of the predicted genes (429 bp) (fig 4.3) is closer to the median length 

of gene predicted by Snap (448 bp), and less than the Genezilla (700) and CEGMA (1042) 

predictions. Despite the large number of genes predicted, the largest gene in the 90th 

percentile was 1803 bp.  

 

It has been shown that genes have a higher GC content compared to that of the 

background (Pozzoli et al., 2008). The median GC percentage for the Geneid predictions is 
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52.6% which is similar to that of Genezilla. Despite the large number of genes predicted by 

Geneid, the distribution of GC percentages in the 90th percentile is not very large (fig 4.3), 

which is further evidence that the gene predictions by Geneid are fairly robust as the GC 

percentage across genes is consistent and higher that the background. 

4.2.3.2 Augustus 

We also decided to use Augustus (Stanke et al., 2008), which is a relatively new gene 

predictor that supports EST and Illumina cDNA training and was shown to performed well 

in the nGASP project (Coghlan et al., 2008). 

 

In order to train Augustus with the EST sequences, they needed to be assembled using 

PASA (Haas et al., 2003), a program designed to align spliced alignments. PASA assembled 

the ESTs into 3601 genes, of which 1724 were randomly chosen as a training set for 

Augustus. I followed the Augustus manual for the training procedure, and used default 

parameters and did not predict UTRs. Using the training file and default parameters for 

Augustus, 12,678 gene models were predicted. Of these, 154 did not start with a 

Methionine and were removed. In addition, 3 genes were less than 50 amino acids long, 

but due to this low number were kept. For clarity I will refer to these as the “Augustus 

models”.  

 

We aligned the ESTs to the Augustus gene models. 71.6% of the ESTs align to these gene 

models (table 4.3). This is a decrease of 7.4% compared to the v1 gene models. 13.5% of 

the Illumina cDNA reads align to these gene models (table 4.4), which is 1.5% less reads 

aligning compared to the v1 gene models.  

 

We also observed the median length of the predicted genes (876 bp) (figure 4.3) to be 

between the median length of gene predicted by CEGMA (1042 bp) and Genezilla (700), 

and more than the Snap (448) predictions. The median GC percentage for the Augustus 

predictions is 53.1%, which is very close to median GC percentage observed in Geneid 

(52.6%) and Genezilla (53.2%). The distribution of GC percentage across the genes is very 

conservative, suggesting that the Augustus gene models are also robust and a good 

candidate set of gene predictions to complement the existing v1 gene models 

 

An additional Augustus run was performed making use of the Illumina cDNA reads. We 

followed the Augustus protocol (BLAST alignment method) for generating “hints files” 
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using Illumina cDNA data (http://augustus.gobics.de/binaries/readme.rnaseq.html). Using 

the additional “hints” provided by the Illumina cDNA reads as well as the EST training file 

yielded 34,028 gene models, of which 209 were shorter than 50 amino acids and 482 

started without a Methionine. These genes were removed from the gene models. For 

clarity I will refer to these as the “Augustus hints models”. 

 

We aligned the ESTs to the Augustus hints gene models. 84.6% of the ESTs align to these 

gene models (table 4.3). This is an increase of 9.4% compared to the v1 gene models. 17.4% 

of the Illumina cDNA reads align to these gene models (table 4.4), which is 27.0% more 

reads aligning compared to the v1 gene models. This large increase in cDNA aligning is 

hypothesised to be due to the additional training of Augustus to make use of the Illumina 

cDNA. However, there is sufficient evidence in the increase in ESTs aligning to the 

Augustus hints model compared to the v1 gene models that there are a number of novel 

gene predictions with evidence of expression in the Augustus hints predictions. 

 

We also observed the median length of the predicted genes (423 bp) (fig 4.3). This is very 

similar to the median observed in the Geneid predictions (429), although it did predict a 

number of much larger genes. The majority of the genes predicted were much smaller 

than the genes predicted by Augustus without the cDNA training. This could be due to the 

“Augustus hints models” being trained to predict partial genes in regions of high 

transcriptional activity identified by the Illumina cDNA reads. 

 

The median GC percentage for the Augustus hints predictions is 50.4%. This was the lowest 

observed median GC percentage. We also saw a much larger distribution of different GC 

percentages compared to the other gene predictions (fig 4.3). This would suggest that the 

“Augustus hints model” are the least robust and should only be incorporated into the v1 

gene models where there is direct evidence for expression. The large variation in GC 

percentage is also likely due to the large number of genes predicted, of which a large 

number are likely to be spurious, 
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Gene Model ESTs aligning % of ESTs aligning % change compared to v1 

v8.3 gene models v1 24,550 77.3% - 

Augustus  22,735 71.6% -7.4% 

Augustus hints 26,863 84.6% +9.4% 

Geneid  25,726 81.0% +4.8% 

 

Table 4.3: Number and percentage of ESTs aligning to gene model predictions using BLAT to align 

31,759 ESTs with a minimum identity of 80%. The percentage change in alignment compared to 

the v8.3 gene models (v1) were calculated relative to the number of ESTs aligned to the v1 gene 

models. 

 

 

Gene Model cDNA aligning % of cDNA aligning % change compared to v1 

v8.3 gene models v1 805,562 13.7% - 

Augustus  795,443 13.5% -1.5% 

Augustus hints 1,023,688 17.4% +27.0% 

Geneid 740,541 12.6% -8.1% 

 

Table 4.4: Number and percentage of filtered Illumina cDNA reads aligning to gene model 

predictions using MAQ to align 5,896,757 reads (with mapping parameters allowing for 2 

mismatches in the 24 bp seed and allowing for a maximum of 70 as the sum of qualities of 

mismatching bases). The percentage change in alignment compared to the v8.3 gene models (v1) 

were calculated relative to the number of cDNA reads aligned to the v1 gene models. 
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Figure 4.3: Box plots of the 90
th

 percentiles of gene lengths and GC percentage. Similar lower size 

distributions were observed between Geneid, Augustus hints and Snap, and similar higher size 

distributions between Genezilla, CEGMA and Augustus. The size of the distributions of GC 

percentage is similar in all predictions apart from the Augustus hints, which has a larger 

distribution.  
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4.2.3.3 Integrating Augustus and Geneid gene predictions 

 

Our previous results show that there are a number of genes that should be removed from 

the v1 gene models and the evidence suggests that there are novel genes in the Geneid, 

Augustus and Augustus hints gene models with evidence of expression during zoospore 

and 7 d.p.i. stages. The strategy we adopted to identify gene predictions to complement 

the existing models was to identify genes predicted by Geneid and Augustus that aligned 

to expressed sequence that did not align to exisitng v1 gene predictions, and where the 

expressed sequences aligned better to the newer gene predictions compared to the v1 

gene predicitons (either indicating longer gene predictions, or representing better 

prediction of intron exon boundaries). 

 

All gene models from the Geneid, Augustus and Augustus hints models that shared the 

same coordinates as genes in the v1 gene models were removed. After this, we identified 

all gene models that shared the same coordinates in the new gene predictions and 

removed duplicate calls. These genes were then combined into a single file containing a 

redundant set of novel gene predictions. The genes were then filtered so that they did not 

contain transposable elements (identified by TranposonPSI, using the same protocol as 

described previously), were at least 50 amino acids in length and did not contain more 

than 25% interspersed repeats and low complexity DNA in the gene sequence (identified 

by RepeatMasker v3.1.6 (Smit et al., 1996-2010) using default parameters). Low 

complexity sequence is masked as this remove the majority of transposons from the 

analysis. 

 

The ESTs were aligned to the list of v1 genes and new gene predictions using BLAT 

(minimum of 80% sequence identity). The ESTs aligned better to 993 genes from the new 

set of genes compared to the v1 gene models. These genes were then removed from the 

combined set of new genes and kept as potential new genes to add to the v1 gene models. 

 

A set of “Illumina pseudo-ESTs” (cDNA that was assembled by alignment to the v8.3 

genome) by extracting regions of the genome that had greater than 2x coverage of 50 bp 

when the filtered Illumina cDNA was aligned (using MAQ, mapping parameters n=3 e=100) 

were constructed.  A total of 23,844 “Illumina pseudo-ESTs” were created. These “Illumina 

pseudo-ESTs” overcome the previously described quality issues of the “Illumina 
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segments”, as the “Illumina pseudo-ESTs” only described transcribed regions whereas the 

“Illumina segments” may also describe non transcribed regions. The “Illumina pseudo-

ESTs” were aligned to the combined gene models and found that a number preferentially 

aligned to 1652 of the newer gene predictions compared to existing genes. These genes 

were extracted and added to the 993 genes chosen for their EST alignment to make a set 

of 2645 additional gene predictions to integrate into the gene models. 

 

The following integration of these novel genes was performed by Dr Sucheta Tripathy. To 

prime the v1 gene models set for integrating the new genes, the genes less than 50 amino 

acids long (2457 genes) and genes with high identity to transposons over 75% of the gene 

(1176 genes) were removed. Checking the genomic co-ordinates of these gene predictions 

revealed 1609 new gene predictions overlapping with 2049 v1 gene predictions. The 

majority of the new overlapping predictions were in the same coding frames, had an 

extension of the 5’ and the same stop locus. There were also a number of new overlapping 

gene predictions that were in different coding frames but had extensions of the 5’ and 3’ 

regions, for which both gene models were kept. The final integration replaced 1361 v1 

gene predictions with 1321 new gene predictions, 288 new gene predictions with 

overlapping coordinates with v1 gene predictions but in different coding frames, and 1036 

new gene predictions that did not overlap with existing v1 gene models .  

 

To summarise the changes, the v1 gene models lost 2457 short genes (less than 50 amino 

acids), 1176 genes with high similarity to transposable elements and low complexity 

sequence. 1361 were replaced by newer gene predictions with better expression support. 

A total of 2645 genes from the new gene predictions were added, resulting in 14,910 gene 

predictions making the Hpa Emoy2 v8.3 assemblies “v2 gene models”. 

4.2.3.4 Evaluating the Hpa Emoy2 v2 gene models 

In order to identify how much of the transcribed sequence represented in the genome is 

described in the v2 gene models, the ESTs were aligned to the gene models (using BLAT, 

minimum sequence identity of 80% and setting the query to RNA), and also aligned the 

Illumina cDNA reads to the gene models (using MAQ, mapping parameters of 3 

mismatches in the 24 bp seed, and maximum sum of qualities of mismatches bases to 100). 

 

90.6% of the ESTs aligning to the v8.3 assembly also align to the v2 gene models which is a 

10% improvement compared to the v1 gene models presented by the VBI (table 4.5). The 
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percentage of alignable ESTs in the v2 assemblies is greater than the ESTs alignable to the 

Geneid, Augustus and Augustus hints gene models. This is a substantial improvement over 

the previous gene models in representing the genes expressed during the zoospore stage. 

 

 Aligned EST % of ESTs aligning % of alignable ESTs 

Hpa v8.3 genome assembly 29,836 93.9% - 

Hpa v8.3 gene models (v1) 24,550 77.3% 82.2% 

Hpa v8.3 gene models (v2) 27,039 85.1% 90.6% 

 

Table 4.5: The number and percentage of the 31,759 ESTs aligning to the v8.3 genome, v1 and v2 

gene models using BLAT (setting the query as RNA for the genome alignments, and setting the 

minimum sequence identity as 80% in both alignments). The percentage of alignable ESTs was 

calculated as the percentage of EST aligning to the genome that also aligned to the gene models. 

 

The filtered Illumina cDNA reads were aligned to the v8.3 genome assembly and the v2 

gene models using MAQ (mapping parameters allowing for 4 mismatches in the 24 bp 

seed, and allowing for a maximum sum of qualities of mismatching bases to 100). We 

observed a 12.4% increase in the number of alignable cDNA to the v2 gene models 

compared to the v1 gene models (table 4.6). The percentage of alignable cDNA to the v2 

gene models (45.3%) is comparable to the alignable cDNA of the ‘gold standard’ A. 

thaliana TAIR9 gene models (45.8%). However, we did observe that 13% more cDNA 

aligned to the Augustus hints model compared to the v2 gene models. From our protocol 

we deduced that the additional cDNA aligning to the Augustus hints gene models would be 

primarily singletons that were not considered when we chose additional new gene 

predictions to complement the v1 gene models. 

 

 Aligned cDNA % of cDNA aligning % of alignable cDNA 

Hpa v8.3 genome assembly 2,003,800 34.0% - 

Hpa v8.3 gene models (v1) 805,562 13.7% 35.2% 

Hpa v8.3 gene models (v2) 909,087 15.4% 45.3% 

 

Table 4.6: The number and percentage of the 5,896,757 filtered cDNA reads aligning to the v8.3 

genome, v1 and v2 gene models using MAQ (allowing for a 3 bp mismatch in the 24 bp seed, and 

a maximum sum of qualities of mismatching bases to 100). The percentage of alignable cDNA was 

calculated as the percentage of ESTs aligning to the genome that also aligned to the gene models.   

    

10 genes were randomly selected from the additional genes that had no overlap with 

genes previously predicted in the v1 models. A BLASTX search against the NCBI NR 
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database (November 2009) was performed. The best BLAST results (and species) that were 

not conserved hypothetical proteins were: 

 

 2 ADP-ribosylation factor family (P. infestans) 

 Amino acid/polyamine/organocation Family transporter protein (P. infestans) 

 Conserved hypothetical protein (similar to ring finger protein) (P. infestans) 

  

All the best hits, including the other 6 conserved hypothetical proteins, came from P. 

infestans. Although most of the hits were to conserved hypothetical proteins, these genes 

would otherwise not have been identified and thus not have been noted as potential 

genes conserved between Hpa and P. infestans or potentially even in higher orders of 

phylogeny. It was also noteworthy that 2 genes show homology to ADP-ribosylation factor 

(ARF) family proteins, as these have been shown to play a role in drug resistance and 

virulence in Candida albicans (Epp et al., 2010). It has also been shown that the Amino 

acid/polyamine/organocation Superfamily transporter, a transport system that existed 

before archaea and eukarya diverged from bacteria, have functions in amino acid and 

choline transport in eukaryotes (Jack et al., 2000) and may thus also pertain to roles in Hpa 

virulence. 

 

To summarise, after shortfalls in the Hpa v1 gene models were identified, short genes and 

transposons were removed and alternative gene models were generated using Geneid and 

Augustus. Genes predicted by these methods that had evidence for expression but were 

not predicted in the v1 gene models were identified and added to the v1 gene models. The 

number of genes predicted remained fairly constant but the evidence for expression 

increased by ~10%. Using the alignment of Illumina cDNA as a benchmark, the new v2 

gene models are comparable to the completeness of the TAIR9 gene models. 
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4.2.4 Generating version 3 of the Hpa gene models 

Version 2 of the Hpa Emoy2 gene models based on the v8.3 assembly was the version 

included in the Hpa genome paper and is available online from the VBI Microbial Database 

website (http://vmd.vbi.vt.edu/download/index.php). 

 

Post-doctoral researcher Dr Eric Kemen identified that there were still some shortfalls in 

the v2 gene models. There were a number of genes present in the sequenced oomycete 

gene models that were absent from Hpa (table 4.7). It is possible that these genes are not 

present in Hpa. However, since the majority of the sequenced oomycetes are 

Phytophthora spp., which are closely related to Hpa, it is more likely that the genes are 

missing from the annotation, but are present in the Hpa genome assembly.  

 

Gene Function Present in 
Hpa v8.3 

AlNc14C5G754    Conserved hypothetical protein N 

AlNc14C51G4016 Protein kinase putative N 

AlNc14C4G597 Conserved hypothetical protein Y 

AlNc14C970G12675 Eukaryotic translation initiation factor 3 subunit C putative - 

AlNc14C82G5339 Guanylatebinding protein putative Y 

AlNc14C2G279 Conserved hypothetical protein Y 

AlNc14C337G10741 Hypothetical protein PITG_12566 Y 

AlNc14C139G7195 Conserved hypothetical protein  Y 

AlNc14C155G7625 Flagellar associated protein putative Y 

AlNc14C114G6467 Sporangia induced deflagellation inducible protein putative N 

AlNc14C8G1072 Conserved hypothetical protein Y 

AlNc14C38G3287 RNA helicase putative Y 

AlNc14C95G5839 Annexin Family putative Y 

AlNc14C158G7697 Conserved hypothetical protein Y 

AlNc14C48G3826 Conserved hypothetical protein Y 

 

Table 4.7: List of genes (from the Albugo laibachii Nc14 gene models) identified by Dr Eric Kemen 

to be present in all published gene models of oomycete pathogens (March 2011) but not in the 
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Hpa v2 gene models. Presence in the Hpa v8.3 assembly was determined by BLAST peptide 

homology. 

It was also noted by other post-doctoral researchers that the other major exclusion from 

the v2 genome was the lack of the predicted effector genes. The effector genes were 

predicted, analysed and annotated in the “VBI Oomycete Genomic Workshops” (2007, 

2010) and were curated by Dr Rays Jiang (previously at the VBI, currently at the Broad 

Institute). However, these effector genes were never formally integrated into the v1 or v2 

gene models. 

 

Given the shortfalls of missing core oomycete genes and effectors in the gene models, I 

decided to perform a further round of gene integration. We also decided to check that all 

of the conserved eukaryotic genes (KOGs) were included as also taking another round to 

see if there were gene models removed in the integration process that removed genes 

with EST support. 

 

4.2.4.1 Identifying missing genes 

We used the “IntersectBed” utility from the BEDTools v2.11.2 Suite (Quinlan and Hall, 

2010) to identify differences between gene predictions GFF files. We compared the v2 

gene models to genes we expected to see and identified missing genes that did not have a 

reciprocal 75% overlap with a gene prediction in the v8.3. 

4.2.4.1.1 Identifying missing conserved eukaryotic genes 

So far we have mainly considered the inclusion of the 248 core eukaryotic genes present at 

single or low copy numbers (CEGs) into the genome. The CEGs are a subset of the full set 

of 458 core eukaryotic genes that are present at varying copy numbers. Comparing the v2 

gene model overlap with the predicted coordinates of 406 predicted KOGs showed that 23 

of the predicted KOGs were missing from the gene models.  

 

4.2.4.1.2 Identifying missing oomycete genes 

As previously mentioned, Dr Eric Kemen identified a number of genes that were not 

present in the Hpa v2 gene models, but were present in gene models from sequenced 

Phytophthoras and A. laibachii. Under the assumption that gene conservation is more 

likely between more phylogenetically related organisms we decided to focus on genes 
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conserved between P .infestans, P. ramorum, and P. sojae, and modifying the CEGMA 

pipeline to search for conserved single copy Phytophthora genes (PCEGs). 

The steps in the CEGMA pipeline that we would need to modify are the KOG FASTA files 

(which are used to identify regions were KOGs may lie), the KOG HMM models, (which are 

used to predict gene models by GeneWise (Birney et al., 2004)), and the cut off table for 

HMM searches (which is used to evaluate the GeneWise). 

 

A list of 7113 conserved genes present as single copy in P. infestans, P. ramorum, and P. 

sojae were computed. For this we used clustering software, OrthoMCL (Chen et al., 2005), 

to cluster the gene models (P. ramorum and P. sojae gene models were downloaded from 

http://vmd.vbi.vt.edu/download/index.php, and the P. infestans gene models were 

provided by Prof Sophien Kamoun’s group, The Sainsbury Laboratory, Norwich). Sequences 

for all genes in the gene clusters with 1 gene from each organism (i.e. single copy, 

conserved genes in the Phytophthora lineage) were extracted. Then for each gene cluster a 

HMM was constructed using hmmer3 (Finn et al., 2011) based on a ClustalW (Thompson 

et al., 1994a) alignment of the genes in each gene cluster using default parameters. The 

HMM cut-off score were set to 50% of the average score of each gene in the gene cluster 

when running a HMM search using the constructed HMM. 

 

After running this modified version of CEGMA, 5755 of the 7113 PCEGs were identified in 

Hpa. We found that 1527 of these gene predictions did not overlap with genes in the v2 

gene models. These genes are likely to be conserved oomycete genes that are not 

expressed during the zoospore stage, or in the later stages of infection. 

 

The sequences of these PCEGs were used to perform a BLAST search against the v8.3 

genome (using BLASTn, minimum e-value of 1 x 10-20, and over 75% of the length of the 

gene), and compared the coordinates of these BLAST results against the v2 gene models. 

In addition to the 1527 missing PCEGs, we identified 91 regions that may contain PCEG 

homologues where there was no existing gene prediction in the v2 gene models. 

4.2.4.1.3 Identifying missing effector genes 

The predicted effectors were aligned to the v8.3 gene models using BLAT. After comparing 

alignments of the best BLAT hits with the v2 gene models, we found 254 of 580 complete 

predicted effector were not in the v2 gene models. This included 81 of the 141 high 

confidence effector set, and 19 of the 22 predicted crinkler-like genes. 

http://vmd.vbi.vt.edu/download/index.php
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4.2.4.1.4 Identifying missing genes with PASA assembled EST support 

The coordinates of the PASA assembled ESTs, which were ESTs that aligned and assembled 

to the genome to encode for a full reading frame, were compared to the coordinates of 

the v1 gene more. 3369 PASA assembled ESTs that did not overlap with existing gene 

models were identified as additional gene candidates to integrate into Hpa gene models.  

4.2.4.2 Integrating the additional genes into the v2 gene models 

Before we started to incorporate these missing genes we performed a Genemark-ES 

(Lomsadze et al., 2005) gene prediction (using default parameters) under advice from Dr 

Eric Kemen. GeneMark-ES is an ab-intio gene predictor based on a self-training algorithm 

for eukaryotes and was successfully used as the main gene predictor for the A. laibachii 

genome project (Kemen et al., 2011).  This yielded 20,940 gene model predictions. 

 

We developed an iterative method to incorporate the missing genes from the existing 

predictions in the Augustus, Augustus hits, Geneid and Genemark-ES gene predictions. The 

pipeline is summarised as follows: 

 

1. Identify the overlapping genes between the missing gene coordinates and each 

set of the gene predictions (Augustus, Augustus hints, Geneid and Genemark-ES), 

using the IntersectBed utility with at least, e.g. reciprocal 80% overlap. 

 

2. Extract the genes from the gene predictions yielding the highest number of 

overlapping genes, and remove the genes with which they overlap from the 

missing gene coordinates. 

 

3. Repeat 1-2 for each of the other gene predictions. 

 

4. Repeat 1-3 reducing the reciprocal overlap by, e.g 10% until a minimum of 60%. 
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4.2.4.2.1 Integrating missing CEG and PCEG genes 

We combined the missing CEG and PCEG genes into a single dataset and started to look for 

overlapping genes. After 8 iterations of gene integrations we identified 1145 genes that 

had 60%-100% reciprocal overlap with the missing CEG and PCEG genes (tables 4.8). The 

remaining 441 missing genes (5 CEGs, 379 PCEGs and 57 regions with homology to PCEGs) 

were added to make 1586 potential additional genes. 

 

 

Iteration 
% reciprocal 

overlap Gene prediction 
Genes 
added    

1 80 Genemark 623    

2 80 Augustus Hints 112    

3 80 Geneid 55  Sum of Genes added   

4 80 Augustus 11  Gene prediction Total 

5 60 Genemark 234  Augustus Hints 179 

6 60 Augustus Hints 67  CEG 5 

7 60 Geneid 40  PCEG 379 

8 60 Augustus 3  PCEG homologs 57 

9 100 CEG 5  Geneid 95 

10 100 PCEG 379  Genemark 857 

11 100 PCEG homologs 57  Augustus 14 

  Total 1586  Grand Total 1586 

 

Tables 4.8: Number of (A) genes added over each integration iteration to integrate the missing 

CEG, PCEG and PCEG homolog genes; (B) genes added from each set of gene predictions. 

 

A 

B 
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4.2.4.2.2 Integrating missing effector genes 

After 19 iterations of gene integrations we identified 300 genes that had 40%-100% 

reciprocal overlap with the missing CEG and PCEG genes (tables 4.9). The remaining 207 

missing effectors were added manually to make 507 potential additional genes. 

 

 

Iteration 
% reciprocal 

overlap 
Gene prediction 

Genes 
added    

1 99 Augustus 120    

2 99 Genemark 28    

3 99 Augustus Hints 14    

4 99 Geneid 4    

5 95 Augustus 25    

6 95 Genemark 8    

7 95 Geneid 3    

8 95 Augustus Hints 1    

9 90 Augustus 20    

10 90 Genemark 5    

11 90 Augustus Hints 2    

11 100 JJ 28  Sum of Genes added 

12 100 Jamboree Effector 179   Gene prediction Total 

13 60 Augustus Hints 29   Augustus 167 

14 60 Genemark 9   Augustus Hints 62 

16 60 Geneid 6   Geneid 21 

17 40 Augustus Hints 16   Genemark 50 

18 40 Geneid 8   Jamboree Effector 179 

19 40 Augustus 2   JJ 28 

    Total 507   Grand Total 507 

 

Tables 4.9: Number of (A) genes added over each integration iteration to integrate the missing 

Effector genes; (B) genes added from each set of gene predictions. Jamboree effectors are the 

effectors that were predicted in the 2010 Jamboree at the VBI; JJ denotes effectors predicted in 

the Jones Lab, TSL. 

 

A 

B 
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4.2.4.2.3 Integrating missing PASA assembled genes 

After 12 iterations of gene integrations we identified 1145 genes that had 60%-100% 

reciprocal overlap with the missing CEG and PCEG genes (tables 4.10). The remaining 441 

missing genes (5 CEGs, 379 PCEGs and 57 regions with homology to PCEGs) were added to 

make 1586 potential additional genes. 

 

 

Iteration 
% reciprocal 

overlap 
Gene prediction 

Genes 
added    

1 90 Augustus Hints 52    

2 90 Geneid 25    

3 90 Genemark 15    

4 90 Augustus 3    

5 75 Augustus Hints 169    

6 75 Geneid 105    

7 75 Genemark 41  Sum of Genes added 

8 75 Augustus 16  Gene prediction Total 

9 60 Geneid 308  Augustus 29 

10 60 Augustus Hints 173  Augustus Hints 394 

11 60 Genemark 56  Geneid 438 

12 60 Augustus 10  Genemark 112 

  Total 973  Grand Total 973 

 

Tables 4.10: Number of genes (A) added over each integration iteration to integrate the missing 

CEG, PCEG and PCEG homolog genes; (B) genes added from each set of gene predictions. 

 

A 

B 
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4.2.4.2.4 Removing redundancy and overlap 

There was a possibility that our dataset of additional genes could contain duplicates due to 

the iterative nature of the pipeline. After collating all the genes to be added, 78 redundant 

genes, which is 2.5% of the entire set (tables 4.11). 

 

 Genes added Unique   Genes added Unique 

CEGs + PCEGs 1586 1562  Augustus 210 187 

Effectors 507 499  Augustus Hints 635 621 

PASA 973 927  Geneid 554 547 

Total 3066 2988  Genemark 1019 1004 

    CEG 5 5 

    PCEG 379 379 

    PCEG homologs 57 57 

    Jamboree Effector 179 160 

    JJ 28 28 

    Total 3066 2988 

 

Tables 4.11: Number of residual genes to add to the v2 assembly after removing redundant calls 

in each dataset with regards to (A) gene type and (B) gene predictor 

 

After removing the internal redundancy of the set, we concatenated the gene list to the v2 

gene models, and did a further round of inspection to remove redundant genes based on 

gene coordinate overlap. Genes that were completely inside another larger gene call in the 

same reading frame were deleted. It was also noted that some of the genes added to the 

v2 gene models were removed. This is due to the nature of the pipeline used to 

preferentially identify gene calls closer in size, e.g. a smaller gene may have been chosen 

over a larger gene because it had a higher reciprocal overlap with an EST, but the EST may 

only be a fraction of the real gene in which case the longer gene call is preferred. We 

removed a total of 2341 genes from the v2 gene models. 850 of these were duplicate gene 

calls, and 1491 were due to being replaced by larger genes in the additional gene set just 

generated. 976 genes from the additional set were removed due to overlapping with 

already existing larger gene calls in the v2 gene models. This reduced the number of 

additional genes to 2012 genes. The total number of genes in the new set of gene models, 

which we will refer to as the v3 gene models, is 14,582 (tables 4.12). 

 

 

 

 

A B 
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Start  
Number 
of genes  

Removed 
from 

Why/ 
overlap 

Number 
of genes  Final 

Number 
of genes 

v2 genes 14911  v2 Duplicate 850  v2 genes 12570 

   v2 CEG+PCEG 1245    

   v2 EFF 48    

   v2 PASA 198    

         

CEG + CEG 1562  CEG PCEG v2 genes 374  CEG + PCEG 1188 

Effectors 499  EFF v2 genes 240  Effectors 259 

PASA 927  PASA v2 genes 362  PASA 565 

Total 17899  Total  3307  Total 14582 

 

Tables 4.12: Summary of (A) added genes; (B) genes removed due to duplication in the existing v2 

gene models, or v2 genes being replaced with longer predictions, or removing newer predictions 

due to overlapping with larger existing v2 genes; (C) the number of genes remaining to make the 

Hpa Emoy2 v8.3 genome v3 gene models. 

 

4.2.4.3 Evaluating the Hpa Emoy2 v3 gene models 

4.2.4.3.1 Evidence of expression 

In order to identify how much of the transcribed sequence represented in the genome is 

described in the v3 gene models, I aligned the ESTs to the gene models (using BLAT, 

minimum sequence identity of 80% and setting the query to RNA), and also aligned the 

Illumina cDNA reads to the gene models (using MAQ, mapping parameters of 3 

mismatches in the 24 bp seed, and maximum sum of qualities of mismatching bases to 

100). 

 

91.8% of the ESTs align to the v8.3 assembly which is a 1% improvement over the v2 gene 

models (table 4.13).  

 

 Aligned EST % of ESTs aligning % of alignable ESTs 

Hpa v8.3 genome assembly 29,836 93.9% - 

Hpa v8.3 gene models (v1) 24,550 77.3% 82.2% 

Hpa v8.3 gene models (v2) 27,039 85.1% 90.6% 

Hpa v8.3 gene models (v3) 27,415 86.3% 91.8% 

 

Table 4.13: The number and percentage of the 31,759 ESTs aligning to the genome, v1, v2, and v3 

gene models using BLAT (setting the query as RNA for the genome alignments, and setting the 

A B C 
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minimum sequence identity as 80% in both alignments). The percentage of alignable ESTs was 

calculated as the percentage of ESTs aligning to the genome that also aligned to the gene models. 

 

The filtered Illumina cDNA reads were aligned to the v8.3 genome assembly and the v3 

gene models using MAQ (mapping parameters allowing for 4 mismatches in the 24 bp 

seed, and allowing for a maximum sum of qualities of mismatching bases to 100). We 

observed a 4.8% increase in the number of alignable cDNA to the v3 gene models 

compared to the v2 gene models (table 4.14). The percentage of alignable cDNA to the v2 

gene models (47.5%) is higher than the alignable cDNA of the ‘gold standard’ A. thaliana 

TAIR9 gene models (45.8%).  

 

 

 Aligned cDNA % of cDNA aligning % of alignable cDNA 

Hpa v8.3 genome assembly 2,003,800 34.0% - 

Hpa v8.3 gene models (v1) 805,562 13.7% 35.2% 

Hpa v8.3 gene models (v2) 909,087 15.4% 45.3% 

Hpa v8.3 gene models (v3) 951,743 16.4% 47.5% 

 

Table 4.14: The number and percentage of the 5,896,757 filtered cDNA reads aligning to the 

genome, v1, v2, and v3 gene models using MAQ (allowing for a 3 bp mismatch in the 24 bp seed, 

and a maximum sum of qualities of mismatching bases to 100). The percentage of alignable cDNA 

was calculated as the percentage of EST aligning to the genome that also aligned to the gene 

models.      

 

 

4.2.4.3.2 Average length + GC 

We noticed a shift in the median and distribution of gene lengths from the v1, to the v2, to 

the newest v3 gene models. The increase in median gene length from v2 (663 bp) to the v3 

(711 bp) genes models was expected due to preferential choice of longer genes. There is 

very little change in the mean GC content of genes from the v2 to the v3 gene models, 

which suggest that the additional genes follow the expected GC content and the gene 

models are as robust. It was also noted that the distribution of the GC content in the v1 

gene models is not as tight as that in the v2 and v3, which does suggest that the quality of 

the gene calls in the v2 and v3 gene models is significantly better. (fig 4.4, tables 4.15). 
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Figure 4.4: Box plots of the 90
th

 percentiles of gene lengths and GC percentage.  

 

Length v1 v2 v3 

95 percentile 2626.3 2848.65 2964 

3rd quartile 1162 1278 1344 

Median 559 663 711 

1st quartile 226 327 342 

5 percentile 82 183 183 

    

GC v1 v2 v3 

95 percentile 59.3 59.1 58.9 

3rd quartile 55.2 55.3 55.1 

Median 52.9 53.1 52.9 

1st quartile 50.4 50.9 50.8 

5 percentile 44.39 46.8 46.5 
 

 

Table 4.15: Length and GC values for the v1, v2 and v3 gene models. The 5
th

 percentile and 95
th

 

percentile were used as the lower and upper bounds for the box plots. 
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4.2.5 Annotation 

4.2.5.1 InterproScan functional annotation 

We used the InterProScan v4.7 (Quevillon et al., 2005; Zdobnov and Apweiler, 2001), 

which annotates peptides against a number of databases: 

 

 ProDom (Bru et al., 2005) using BlastProDom (Blastall) (Zdobnov and Apweiler, 

2001) 

 PRINTS (Attwood et al., 2003) using FingerPRINTScan (Scordis et al., 1999) 

 SMART (Letunic et al., 2002) using Hmmpfam (Finn et al., 2011) 

 TIGRFAMs (Haft et al., 2003) using Hmmpfam (Finn et al., 2011) 

 Pfam (Bateman et al., 2004) using Hmmpfam (Finn et al., 2011) 

 PROSITE (Hulo et al., 2004) using ScanRegExp + ProfileScan (Thompson et al., 

1994b) 

 PIRSuperFamily (Wu et al., 2004) using Hmmpfam (Finn et al., 2011) 

 SUPERFAMILY (Gough et al., 2001) using Hmmpfam (Finn et al., 2011) 

 CATH (Pearl et al., 2000) using Hmmpfam (Finn et al., 2011) 

 PANTHER (Thomas et al., 2003) using Hmmsearch (Finn et al., 2011) 

 Transmembrane using TMHMM2.0 (Sonnhammer et al., 1998)  

 Signal peptides using SignalPHMM (Bendtsen et al., 2004) 

 Low complexity regions  using SEG (Wootton and Federhen, 1993) 

 3D Structure using Gene3D 

 Coiled coils using COILS (Lupas et al., 1991) 

 

In addition to these searches, we annotated the genes with Gene Ontology (GO) terms 

(Ashburner et al., 2000) using InterproScan. 

 

78.5% of the v3 genes (11,451 genes) were functionally annotated using InterProScan. The 

breakdown of the number of genes annotated is shown in table 4.16.  
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Annotation 
Number of genes 
Annotated 

% of all 
genes 

Coil 2020 13.9% 

GO 5431 37.2% 

HMMPfam 6143 42.1% 

HMMSmart 2329 16.0% 

InterPro 9734 66.8% 

ProfileScan 2271 15.6% 

Gene3D 4971 34.1% 

HMMPanther 5546 38.0% 

Seg 8683 59.5% 

Superfamily 5315 36.4% 

PatternScan 1480 10.1% 

SignalPHMM 2710 18.6% 

TMHMM 1967 13.5% 

HMMTigr 672 4.6% 

FPrintScan 979 6.7% 

HAMAP 165 1.1% 

All programs 11,451 78.5% 
 

Table 4.16: Number and percentage of genes annotated using various programs. 

 

4.2.5.2 GO term annotation 

Analysing the distribution of GO terms, we see that the majority of genes annotated with a 

GO function pertain to molecular function, catalytic activity, biological process and 

metabolism (fig 4.5, appendix table 4.1).  These GO terms account for more than 50% of all 

annotations. We also see a large subcomponent of GO annotation that may pertain to 

pathogenicity, for example, transferase activity, hydrolase activity and transport. 
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Figure 4.5: The distribution of GO terms identified in the Hpa v3 gene models. The full list is 

described in appendix table 4.1. 
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4.2.5.3 Localisation 

 

We predicted protein localisation using WolfPsort (Horton et al., 2007) on a fungal model 

(table 4.17).  

 

Localisation 
Number 
of genes 

cytoskeleton 439 

cytosol 2000 

cytosol-mitochondria 60 

cytosol-nuclear 533 

cytosol-peroxisome 6 

endoplasmic reticulum 31 

extracellular 1080 

Golgi apparatus 9 

mitochondria 4425 

mitochondria-nuclear 42 

nuclear 4679 

peroxisome 13 

plasma membrane 1240 

Total 14,557 

 

Table 4.17: Breakdown of localisation predictions using WolfPsort on a fungal model. 

 

4.2.5.4 Secreted and transmembrane  proteins 

 

We used SignalP 3.0 HMM eukaryotic model to predict the number of genes that are 

secreted. It was predicted that 2710 genes have a signal peptide and cleavage site using a 

cut-off of 90%. We found that 38.3% of the secreted proteins (1039 genes) also had 

predicted transmembrane domains, and 11.0% of secreted proteins (298 genes) are or are 

homologous to effectors. 

 

Using the InterproScan search we identified 1967 proteins with predicted transmembrane 

helices. Of these proteins, 52.8% (1039 genes) had a predicted signal peptide and 2.5% (50 

genes) are or are homologous to effectors. The overlap of the genes is show in figure 4.16. 
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Figure 4.6: Venn diagram of genes with overlapping annotation as secreted, transmembrane and 

effector or effector homolog genes.  

 

4.2.5.5 Metabolic Pathway Analysis.  

Pathway annotation for Hpa was done using KAAS (Moriya et al., 2007). The gene models 

were submitted to KAAS for assigning a KEGG Orthology (Ogata et al., 1999) identifier. The 

query sequences were blasted against the KEGG Genes reference database (containing 

genes from Homo sapiens, Drosophila melanogaster,  Caenorhabditis elegans, Arabidopsis 

thaliana,  Saccharomyces cerevisiae, Cryptosporidium hominis, Escherichia coli K-12 

MG1655, Neisseria meningitidis MC58, Helicobacter pylori 26695, Rickettsia prowazekii, 

Bacillus subtilis, Lactococcus lactis subsp. lactis IL1403, Clostridium acetobutylicum ATCC 

824, Mycoplasma genitalium, Mycobacterium tuberculosis H37Rv, Chlamydia trachomatis 

D/UW-3/CX, Borrelia burgdorferi B31, Bacteroides thetaiotaomicron, Synechocystis sp. 

PCC6803, Deinococcus radiodurans, Aquifex aeolicus, Methanocaldococcus jannaschii and 

Aeropyrum pernix), with homologs selected on reciprocal best blasts hits with a minimum 

sequence similarity threshold of 60%. These candidates were divided into KO groups and 

an assignment score was calculated.  A pathway diagram was constructed using the non-

organism specific option (fig 4.7). 

 

Effectors + effector homologs 

Secreted 

proteins 
Transmembrane 

proteins 

33 

49 

249 1 

990 1422 927 
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Figure 4.7: Metabolic pathways in Hpa, P. infestans, P. sojae and P. ramorum. Components 

highlighted in blue are present in Hpa and at least one Phytophthora species. Components in red 

are absent in Hpa but present in at least 2 out of three Phytophthora species. Components in 

green are present in Hpa but are absent in the Phytophthora species. Dulled lines indicate 

components absent in all four species.   
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4.2.5.6 Lack of nitrogen and sulphur assimilation pathways 

The genes for nitrate, nitrite and sulfite reductases could not be found (table 4.18) in the 

gene models, v8.3 assembly and Sanger ESTs and 454 ESTs. These genes are thus missing 

from the Hpa genome. In the case of the nitrate and nitrite reductases this conclusion is 

supported by the fact that those two genes are adjacent in the Phytophthora genome 

sequences whereas the syntenic region in the Hpa genome is simply missing the two genes, 

together with an adjacent nitrate transporter (Baxter et al., 2010). The loss of ability to 

assimilate nitrogen and sulphur was also observed in the biotrophic oomycete pathogen A. 

laibachii (Kemen et al., 2011). The same three nitrate assimilation genes are also present 

as a cluster in saprophytic fungi but are deleted in the obligate rust fungi Melampsora 

populina-larici and Puccinia graminis f.sp. tritici (Duplessis et al., 2011) and the obligate 

powdery mildew fungi Blumeria graminis, Erysiphe pisi, and Golovinomyces orontii (Spanu 

et al., 2010). The observed independent loss of genes in the nitrogen and sulphur 

assimilation pathways in various pathogens is a very important finding as it implicates 

reasons behind their obligate biotrophy. 
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 P. sojae P. ramorum P. infestans H. arabidopsidis 

Nitrate reductase * Ps140563 Pr71442 PITG_13012.1 - 

Nitrite reductase Ps140562 Pr76696 PITG_13013.1 - 

Glutamine synthetase Ps109140 

Ps109139 

Pr72153 

Pr72154 

PITG_14180.1 

PITG_14179.1 

Ha802420 

Glutamate synthase (NADH) Ps135530 Pr72102 PITG_07380.1 Ha805196 

Glutamate synthase 
(Ferridoxin) 

Ps130831 Pr78125 PITG_12037.1 

PITG_16280.1 

Ha812981 

Glutamate dehydrogenase Ps108919 Pr71959 PITG_07671.1 Ha805610; 
Ha806617 

Adenylsulfate kinase    ATP 
sulfurylase Pyrophosphotase 

Ps112102  Pr79353 PITG_04010.1 Ha813786 

Phosphoadenosine reductase Pr74880 Ps156997 PITG_04601.1 Ha809449 

Sulfite Reductase Ps139493 

Ps139488 

Pr71878 

Pr81882 

PITG_19263.1 

PITG_18187.1 

- 

Cysteine Synthetase Ps109172 

Ps109175 

Pr71225 

Pr71224 

PITG_12727.1 

PITG_12725.1 

Ha814750 

 

Table 4.18: Gene IDs for nitrogen and sulphur assimilation enzymes in Phytophthora and Hpa. P. 

infestans, P. sojae and P. ramorum genes taken from (Baxter et al., 2010), and Hpa genes 

identified through reciprocal best BLAST. * Other enzymes in the nitrogen metabolism pathway 

(KEG m00910) that are present in the Hpa gene models include glycine synthase and carbonate 

hydrolase; L-Glutamate: ammonia ligase is also present, but this is involved in other metabolic 

pathways. The presence of these other enzymes may provide insight into the form in which 

nitrogen is taken up from the host. 
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4.2.5.7 Virulence related genes 

 

We also observe a general trend of fewer genes implicated in virulence functions in Hpa 

compared to P. sojae and P. ramorum (table 4.19). There are less than half of the number 

of predicted effectors in Hpa compared to P. sojae and P. ramorum, although this 

observation may be biased towards the prediction method used in Tyler et al., 2006, 

whose method to predict RxLR encoding was primarily based on Phytophthora gene 

sequences and may thus not capture the full nature of effectors in Hpa. One example of a 

published effector gene that is not in the set of 141 high confidence effectors, but instead 

in the list of 272 less plausible effector genes, is ATR5 (Bailey et al., 2011). 

 

Gene product H. arabidopsidis P. sojae P. ramorum 

Aspartyl proteases 13 13** 14** 

Cysteine proteases 18 29** 35** 

Glycosyl hydrolases  91 125 114 

Endoglucanases (EGL12) 8  10 8 

Polygalacturonases 3 25 16 

Pectin methyl esterases 3  19 15 

Cutinases 2  16 4 

Chitinases 3  5 2 

Phospholipases  21 31** 28** 

Nonribosomal peptide synthetases 1* 4 4 

Polyketide synthases 13  1 1 

Cytochrome P450's 14  25 24 

ABC Transporters 73 140 135 

NPP1 like 21  39** 59** 

Elicitins 16  40 57 

RxLR Effectors 141 335** 309** 

Crinklers 22 100 19 

 

Table 4.19: Copy numbers of annotated Hpa genes implicated in pathogenesis. P. ramorum and P. 

sojae. Figures from (Baxter et al., 2010), Hpa figures recalculated using InterProScan annotation: 

Cysteine proteases: Superfamily SSF50494; Glycosyl hydrolases: KEGG Ko01xxx; Endoglucanases : 

Superfamily SSF50685; Polygalacturonases: Pfam PF00295; Pectin methyl esterases: Pfam 

PF00295; Cutinases: Pfam PF01083; Chitinases: GO:0004568; Phospholipases : SuperFamily 
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SSF52151, SSF56024, SSF48537); polyketide synthases: SM00822, SM00823, SM00825, SM00827. 

SM00829; Cytochrome P450's: Pfam PF00067; ABC TRANSPORTERS: Pfam PF01061, PF00005; 

NPP1 like: Pfam PF05630; Elicitins: Pfam PF00964 .**Effectors for (Haas et al., 2009). 
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4.3 Hpa genome browser 

With the availability of the Hpa v8.3 assembly, various gene models and the wealth of 

expression data available, it is important to be able to access such information in a user 

friendly manner. 

 

The Gbrowse generic genome browser system (Stein et al., 2002) framework was used to 

implement the Hpa genome browser (fig 4.8). The default protocol for uploading GFF was 

followed. The Illumina DNA coverage data was converted from MAQ pileup format to the 

WIG format to optimise loading times. The Hpa Emoy2 v8.3 Genome Browser 

(http://gbrowse2.tsl.ac.uk/cgi-bin/gb2/gbrowse/hpa_emoy2_publication/) visualises the 

v8.3 assembly and annotation. The tracks available for viewing are: global GC content 

(displays the GC content over the entire scaffold), predicted effectors (displaying the 

effectors predicted from the Hpa Jamboree held in Virginia Tech in 2007), 454 ESTs 

(extracted from 3 d.p.i infected A. thaliana WS eds1-1), Hpa Emoy2 Illumina cDNA 

(extracted from 7 d.p.i infected A. thaliana WS eds1-1), Sanger ESTs (extracted from 

spores), local 3-frame-forward, 3-frame-reverse and 6-frame translation, Hpa Emoy2 

transcript models, Hpa DNA coverage by Illumina reads, polymorphisms (heterozygous 

INDELs and SNPs) and restriction sites. The genome browser has a search facility for genes, 

effectors and scaffolds, displays customisations and facilities the uploading of user defined 

GFF3 tracks. 
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Figure 4.8: Hpa Emoy2 v8.3 genome browser 
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4.4 Summary 

In this chapter we described the progressive improvement of the Hpa Emoy2 v8.3 

assembly gene models from the v1 gene models containing many spurious genes with 

moderate evidence of expression, to the v3 gene models, which support 92% of the 

alignable ESTs, and have a higher percentage support of Illumina sequenced cDNA than we 

saw in the gold standard gene models of A. thaliana. 

 

I successfully trained and used various gene prediction programs and integrated them into 

existing gene models using novel and robust methods. I also report, for the first time in a 

genome publication, methods used to evaluate gene model robustness using various 

sources of evidence. 

 

The resulting annotations have resulted in interesting observations including the  large 

proportion of the genome encoding secreted proteins, shared and unique metabolic 

pathways between Hpa and Phytophthora, incomplete nitrogen and sulphur assimilation 

pathways that may be the reason for obligate biotrophy, and the reduced number of 

genes encoding pathogen-related proteins compared to P. ramorum and P. sojae.  

 

A genome browser was established to allow easy viewing of genomic regions, genes and 

expression data. 

 

Other elements pertaining to the biology of Hpa that arose from the establishment of the 

Hpa gene models are described in Baxter et al. (2010). 
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Chapter 5 – Use of Illumina sequencing to investigate 

signatures of evolution in Hpa  

5.1 Introduction 

In the previous chapter we made use of EST and Illumina expression data to improve the 

Hpa Emoy2 gene models. This improvement in gene models allows us to perform 

comparative genomics analysis using the Illumina sequence data of 7 other isolates (Cala2, 

Emco5, Hind2, Maks9, Noco2 and Waco9 sequenced at TSL and Emwa1 provided by Prof 

Brain Staskawicz). 

 

Two Hpa effectors, ATR1 and ATR13, have been shown to have a high level of nucleotide 

sequence variation between different races, leading to amino acid substitutions, and 

appear to be under positive selection (Allen et al., 2008; Rehmany et al., 2005). It is 

hypothesised that sequence variation is a result of selection pressures exerted by 

interaction with the plant immune system, i.e. recognition of these effectors by A. thaliana 

resistance genes RPP1 and RPP13 (Sohn et al., 2007).  

 

In this chapter we will examine sequence polymorphism in the candidate Hpa effectors 

and other secreted proteins. We expect to see a high level of sequence polymorphism in 

genes of Hpa that are involved in interactions with the resistance genes of A. thaliana. We 

will further investigate the most polymorphic secreted protein families to detect potential 

effector candidates that do not carry the RXLR motif. 
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5.2 Method development 

While there are a number of programs that are able to identify variation from second 

generation sequencing data, there are currently no computation tools that are able to 

make direct inferences about evolution from second generation sequencing data. It has 

been shown that Hpa effectors show signs of positive selection, so any method 

development comprises a significant contribution to the field of second generation 

sequencing analysis in the light of evolution. Firstly, I will describe the development of the 

algorithm, VariTale, which I use to make inferences about selection pressures acting on 

genes by processing variation predictions using second generation sequencing by 

performing tests of neutrality and selection. 

5.2.1 Pipeline 

The pipeline has been implemented as a set of Perl scripts. I decided that for this analysis 

the ability to create elaborate data structures, possible through object oriented 

programming languages, was not a necessity in this case. Scripts generated using high level 

programming languages such as Perl can be more readable and thus can be easily 

understood and modified. Perl has many existing libraries for data parsing and 

manipulation that facilitate quicker code generation and modularisation of the program. 

There are also well established Perl distributions for many platforms allowing for 

portability of code. 

5.2.1.1 Input  

The input data for the VariTale are: 

 

 Reference sequence file in FASTA format 

 Gene model file in GFF3 format 

 Sequence alignment file in BAM format 

 SNP and INDEL file in VCF-like format 

 

The input file formats chosen are the de facto standard for each data type, apart from the 

SNP and INDEL data. In contrast to other file formats, there is still no widely adopted 

sequence variance call format. However, the variant call formats all share a similar layout, 
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tab delimited, and have a minimum of 4 fields: chromosome/contig, position, reference 

base and variant call. These are the first 4 data elements of each line of the VCF format. I 

used these 4 data elements and describe the data parsing as VCF-like. The VCF-like parsing 

allows for input from very popular variant call formats including SAMtools VCF (Li et al., 

2009a) and BCF (Danecek et al., 2011) and GATK (McKenna et al., 2010).  

 

As with many data processing programs, the final output is highly reliant on the quality of 

input data. In previous chapters we have shown significant improvement in the Hpa 

Emoy2 genome assembly and gene models, which should translate to more reliable 

downstream analysis using VariTale. 

5.2.1.2 Output 

VariTale is currently a 3 stage pipeline with distinct outputs at each stage. Stage 1 is the 

minimal pre-processing required for either stage 2 or 3. 

5.2.1.2.1 Stage 1 

The first stage of the pipeline involves processing the input data (reference sequence, 

gene model co-ordinates, sequence alignments and variant calls) for each individual race. 

The data is parsed as follows: 

 

 The FASTA reference sequence contigs are parsed as a Bioperl BIO::SeqIO object 

 The GFF3 gene models are parsed using Bioperl Bio::Tool::GFF, and then stored in 

single level hash data structures for: 

o Gene direction 

o Exon start and end coordinates (stored as an array of elements) 

o UTRs (this is currently set to a fixed length of 250 nt as the UTRs for the 

gene models have not been predicted) 

 The BAM alignment file is parsed using the Bioperl Bio::DB::Sam object 

 The VCF-like variant calls split into SNPs and INDELs and are then parsed into a 2 

level hash data objects in the format (using Perl nomenclature): 

 

The output at this stage is a FASTA file containing sequences for the gene models 

(modified to incorporate the SNPs for each particular race) with additional statistics. The 

additional statistics are printed into the FASTA sequence identifier and are derived from 

the gene or the resequencing data. The statistics derived from the gene are the gene 
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length in nucleotides, the GC content of protein coding regions, the orientation of the 

gene on the contig and the number of exons. The output derived from the resequencing 

information includes coverage statistics, number, effect and types of SNPs and number 

and effect of INDELs. 

 

The mean read depth of coverage over coding regions and the percentage of the coding 

regions covered by reads (breadth of coverage) for each gene is extracted from the BAM 

alignments using the Bio::DB::Sam object. More important than the mean coverage, 

however, is to compare the observed average coverage for each gene with an expected 

coverage (calculated as the mean of all read coverage over all coding regions).  

 

To determine whether the mean read depth of coverage per gene follows a normal or 

Poisson distribution over varying read depth, 1, 2, 4 and 8 lanes of Emoy2 sequence data 

were aligned to the v8.3 assembly. The average read coverage over the coding regions of 

all genes that are 100% covered by reads was extracted. For 1, 2, 4 and 8 lanes of 

sequence data we observed 5x, 9x, 20x and 40x read depth coverage. I compared the 

observed mean read depths to a set of read depths following normal and Poisson 

distributions, generated from the mean and variance observed in the set of mean read 

depths, using Quantile-Quantile-plots (QQ-plots). I then measured the goodness of fit 

using linear regression in the form of the Adjusted R2 value. At low read depths, the QQ-

plots of the observed mean read depths with the normal and Poisson generated sets were 

hard to distinguish by eye, but the adjusted R2 value favoured the observed data following 

the Poisson distribution (fig 5.1; fig 5.2; fig 5.3; fig 5.4). At the highest read depth tested, 

the observed mean read depths followed the Poisson generated dataset much better than 

the normal generated dataset (fig 5.1; fig 5.2; fig 5.3; fig 5.4). I also compared the observed 

cumulative distribution function (CDF) to the normal and Poisson CDF. It was observed 

that with increasing read coverage that the data better fit the Poisson CDF compared to 

the expected normal CDF (fig 5.1; fig 5.2; fig 5.3; fig 5.4). Therefore, I decided to base 

calculations of deviance from expected read coverage on a Poisson distribution. In the QQ-

plots and CDF comparisons for observed data, with average read depths of 20x and 40x, 

shoulders were observed in the graph at the points of half the average read depths (fig 5.3; 

fig 5.4). These shoulders support the idea that hemizygous genes can be identified from 

the read coverage. 
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Given that the observed mean read depth follows a Poisson distribution, the VariTale 

pipeline calculates the Poisson probability density function for each gene. With this 

probability density statistic, the user can infer whether the gene is present as a single copy 

(if the probability density function is within the e.g. 95% confidence interval), the gene 

underwent a duplication event (if the probability density function is above e.g. 97.5%), or a 

single or both parental haplotype copies of the gene are lost, truncated or pseudogenised 

(if the probability density function is below e.g. 2.5%). In the case of complete loss of both 

parental haplotypes, we would simply observe no read coverage.  However it is less trivial 

to distinguish between the loss of a single parental haplotype and a gene truncation. For 

the loss of a single parental haplotype, we would expect the entire gene to be covered by 

reads but at a lower than expected mean coverage (and a lower probability density). In 

case of a truncation we would expect that the lower average read coverage is due to parts 

of the gene not being covered by reads. 
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Figure 5.1: QQ-plots of likelihood of belonging to Poisson/Normal distribution for 5x coverage  
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Figure 5.2: QQ-plots of likelihood of belonging to Poisson/Normal distribution for 9x coverage  
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Figure 5.3: QQ-plots of likelihood of belonging to Poisson/Normal distribution for 20x coverage  
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Figure 5.4: QQ-plots of likelihood of belonging to Poisson/Normal distribution for 40x coverage  
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VariTale also generates several SNP statistics. For each gene, the homozygous and 

heterozygous SNPs are reported on the 5’ and 3’ UTR (or for a fixed distance and 

downstream the gene if the UTRs are unknown), exons and introns. It is important to also 

investigate the up and downstream regions of genes as mutations may affect the 

transcriptional regulation of the gene rather than the gene sequence itself. Recording SNPs 

that are within the introns of genes are also important as this can support inferences of 

gene evolution, for example, a gene is likely to be under stabilising selection if a higher 

number of SNPs is observed in intronic regions compared to exonic regions. For each SNP 

on the exon, the codon, on which the SNP lies, is extracted and the amino acid encoded by 

this codon determined. For each gene, the number of SNPs causing synonymous and non-

synonymous mutations is reported. In addition, heterozygous SNPs may lead to the same 

gene encoding 2 different protein sequences. These SNPs are reported and I will refer to 

them as ‘heterozygous non-synonymous’ SNPs. Some of the most drastic effects of SNPs 

on gene function are those affecting the start and end of the gene sequence. Any SNP that 

mutates the start codon or introduces a premature stop codon (and hence truncated 

protein) is also reported. 

 

Up until now the majority of genome variation that has been studied using second 

generation sequencing include SNPs, CNVs and large scale chromosomal rearrangements. 

Although INDEL prediction has existed in the earliest of second generation sequence 

aligners, their implications have not been analysed as routinely as the above. I believe this 

is primarily due to the non-trivial nature of predicting INDELs and analysing their effect on 

genes, especially where INDELs result in frame shifts. For each gene, the homozygous and 

heterozygous INDELs are reported on the 5’ and 3’ UTR (or for a fixed distance and 

downstream of the gene if the UTRs are unknown), exons and introns.  

 

As mentioned previously, it is interesting to investigate the effects of INDELs at the protein 

coding level. For example, a deletion of 2 nucleotides at the beginning of a gene will lead 

to a frame shift downstream of that deletion, dramatically changing the amino acid 

sequence encoded by the gene. However, while the frameshift has a dramatic effect on 

the protein coding sequence of the gene, it is possible that a downstream INDEL can 

correct the reading frame. For instance, a deletion of 2 nucleotides in one region of the 

gene may be complemented by an insertion of 2 nucleotides elsewhere in the sequence. In 

this case we would observe a frame shift in the region lying in between the deletion and 

the insertion, while the beginning and the end of the gene sequence is retained, including 



115 

the start and stop codon. For this reason I also decided to report for each gene the ‘net 

INDEL length’, which is the sum of all the INDELs predicted in the coding region of the gene. 

When the ‘net INDEL length’ is exactly divisible by 3 we are likely to observe a 

conservation of the start and stop codons, while the internal sequence may have 

undergone a frame shift. The conservation of the start and stop codon may indicate 

selection pressures that are preserving the presence of the gene, while exerting selection 

pressure to modify the gene function (due to the effects of the internal frame shift caused 

by the INDELs). Thus, evolutionarily INDELs may be powerful tools to generate sequence 

diversity and should generally have much greater effects on protein functions than SNPs. 

We also report the numbers of INDELs that are exactly divisible by 3 over gene exons as 

this indicates exact codon loss and whether all the INDELs over the coding region are 

exactly divisible by 3. 

 

To summarise, in stage 1, for each gene we display the following information: 

 

 The gene nucleotide sequence, modified with the predicted SNPs 

o Heterozygous SNPs are displayed as IUPAC ambiguous codes 

 Length 

 GC content 

 Direction 

 Coverage 

o Mean coverage 

o Percentage covered 

o Cumulative distribution function of the observed mean coverage 

belonging to the expected Poisson distribution with mean equal to the 

observed mean over all genes 

 SNPs 

o Number of homozygous and heterozygous SNPs 

 over 5’, exons, introns, 3’ 

o Number of synonymous SNPs 

o Number of non-synonymous SNPs 

o Number of heterozygous non-synonymous SNPs 
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 INDELs 

o Number of homozygous and heterozygous INDELs 

 over 5’, exons, introns, 3’ 

o Net INDEL length 

o Number of INDELs exactly divisible by 3 

o If only INDELs exactly divisible by 3 are observed 

 

5.2.1.2.2 Stage 2 

The second stage of the pipeline performs population genetic analysis on the DNA 

sequences of genes obtained at the within species population level. The inputs are at least 

3 different FASTA files produced by the first stage of the pipeline (i.e. 3 different races 

sequenced and analysed using the first stage of the analysis pipeline) and then performs 

several tests of neutrality using DnaSP v5 (Librado and Rozas, 2009). This approach allows 

variation at a population level and divergence from neutrality for each gene to be analysed. 

This is a novel approach to analysing effector genes, and may reveal further insights to 

effector biology and other biological mechanisms. 

 

Before the tests of neutrality are performed the data have to be pre-processed. To recall, 

at the end of stage 1, the gene sequences with SNP modifications are printed. The 

heterozygous SNPs are displayed as IUPAC ambiguous codes. The DnaSP algorithm 

requires a nucleotide sequence for batch input processing and cannot currently 

disambiguate heterozygous calls to their parental haplotypes. Where the gene contains a 

single heterozygous SNP, the parental haplotypes can be determined easily.  

When the gene contains 2 or more heterozygous SNPs, discerning the parental haplotypes 

is less trivial. The parental haplotypes can be reconstructed exactly in cases where the 

heterozygous SNPs are clustered over an area shorter than the length of the read. In these 

cases the parental haplotypes can be determined by observing SNP linkage over the reads 

with the heterozygous SNPs. The parental haplotypes can also be reconstructed exactly 

when the heterozygous SNPs are exactly the distance of the fragment apart, i.e. the SNP 

linkage can be observed by looking at the read pairs on which they occur. However the 

majority of the heterozygous calls do not lie within these 2 scenarios. To reconstruct the 

parental haplotypes from population data we use PHASE v2.1.1 (Stephens and Scheet, 

2005). Although many algorithms exist for estimating haplotypes from genotype data, 

PHASE is one of the few that considers the decay of linkage equilibrium with distance and 
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the order and spacing of genotype markers. The SNPs and their positions are extracted 

and a PHASE run is performed on them (with parameters set at 100 iterations, a thinning 

interval of 1 and a burn-in of 100). From the output of PHASE, the parental haplotypes are 

extracted and printed in a FASTA file for use with DnaSP. DnaSP’s batch processing mode is 

used to process the unphased haplotype FASTA gene sequences. 

 

For each gene in each race with 100% sequence coverage and a coverage Poisson CDF of 

less than 97.5% (i.e. not within the 95% confidence interval of being a single copy gene 

based on a Poisson distribution),the statistics reported are: 

 

 The number of segregating sites (S) 

 The total number of mutations (Eta) 

 The number of haplotypes 

 Statistical test of neutral theory of molecular evolution (Kimura, 1983) 

o Tajima’s D (Tajima, 1989)  

o Fu Li’s D* (Fu and Li, 1993)  

o Fu Li’s F* (Fu and Li, 1993) 

o Fu’s Fs (Fu, 1997) 

 

S, Eta and the number of haplotypes provide insight into the amount of variation seen in 

the gene and how varied alleles are in the sample population. The various neutrality tests 

will be able to report whether genes are evolving under neutrality, or if there are selective 

pressures being applied. While some of these tests may appear to be redundant, as high 

throughput analysis of this nature has not been performed previously we are currently 

unaware of the effectiveness and redundancy of each of these tests. 

5.2.1.2.3 Stage 3 

The third stage of the pipeline performs phylogenetic and evolutionary analysis on the 

DNA sequences of genes obtained at the between species population level. The inputs are 

at least 3 different files produced by the first stage of the pipeline (i.e. 3 different races 

sequenced and analysed using the first stage of the analysis pipeline). PAML v4.0 (Yang, 

2007) is then used to perform several likelihood ratio tests of the observed sequence 

variation following various evolutionary models. Although these tests are specifically for 

between species data where there is no gene flow between species, they can be used for 

within species data as suggestive evidence as used by Haas et al. (2009). 
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PAML requires 3 input files: 

 Sequence alignment of the input 

 A PAML control file, outlining the location of input and output files and processing 

to be carried out 

 A phylogenetic tree of the organisms whose sequences are being analysed 

 

For each gene, the sequence for each isolate is extracted for each organism and converted 

into a PHYLIP format (Felsenstein, 1989). Unlike stage 2, PAML is able to process 

sequences with ambiguous nucleotides, so there is no need for the pre-processing step in 

which the parental haplotypes are resolved. Only the full sequences are printed in the 

PHYLIP file as only genes that are 100% covered by reads and without INDELs are 

processed. 

 

The control file generated declares the input file, output file and location of the tree file. It 

also defines the models to be run. 3 control files are produced to run: 

 

 codeml (codon evolution) with evolutionary models  

o M0 – one ratio (uniform selective pressure among sites) 

o M3 – discrete (variable selective pressure among sites) 

o M1a – nearly neutral (variable selective pressure, but no positive selection) 

o M2 a– positive selection (variable selective pressure, with positive 

selection) 

o M7 – beta (beta distributed selective pressure) 

o M8 – beta with ω (dN/Ds or Ka/Ks) > 1 (beta plus positive selection) 

o pairwise comparison 

 codeml with evolutionary model m8a (beta with ω = 1) 

 yn00 (protein evolution) 

 

The codeml evolutionary model analysis requires a phylogenetic tree file of all the 

organisms analysed with VariTale (super tree).  The tree has to be in Newick (New 

Hampshire tree) format. PAML is unable to process trees that contain additional tips, so 

for each gene a ‘pruned’ tree is generated. The super tree is parsed as a Bio::Phylo::IO 

object, all tips of the tree corresponding to input sequences are kept, and unnecessary tips 
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are removed. Any unbranched internal structures are removed producing a balanced tree 

that is a subtree of the original super tree. 

 

This section of the processing is computationally very time consuming but has been 

optimised for running on a cluster managed by the LSF7 job management system. 

Alternatively, processing can very easily be modified to work on the PBS Torque job 

management system as well. 

 

For each gene in each race with 100% sequence coverage and a coverage Poisson CDF of 

less 97.5% (i.e. not within the 95% confidence interval of being a single copy gene based 

on a Poisson distribution), the statistics reported are: 

 

 ω  as calculated by codeml pairwise comparisons 

 ω as calculated by yn00 

 Log likelihood difference between models (and their significance based on χ ): 

o M3 – M0 (testing for a variable ω among sites instead of a single ω for all 

sites) 

o M2a – M1a (testing for positive selection rather than nearly neutral 

evolution) 

o M8 –M7 (testing for the existence of sites with ω = 1 rather than ω < 1 for 

all sites) 

o M8 –M8a (testing for sites with ω >> 1 instead of ω = 1 as an indication of 

positive selection) 

 

The codeml evolutionary model analysis provide insights into genes that have a sections of 

the gene under positive selection, while the dN/dS calculation try to evaluate if the gene 

as a whole is under positive selection. Previous analysis of a similar nature has been done 

before (Haas et al., 2009), but there method was limited to use of just yn00. Since 

systematic analysis of this high throughput nature has not been performed before, it is 

important to consider various, possibly redundant, models to evaluate their effectiveness. 
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5.2.1.2.4 Output format for data comparison 

 

Once all the processing stages have been completed, all the statistics generated are parsed 

into as simple tab delimited format: 

 

 [Gene]  [Program]  [Statistic]  [Value]  [Note/Significance]  

 

Formatting the data in this way facilitates querying the data for different classes of genes, 

and allows for more efficient comparisons. 
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5.3 Results and discussion 

The first stage of VariTale requires: 

 

 The FASTA reference sequence contigs  

 The GFF3 gene models  

 The BAM alignment file  

 The VCF-like variant  

 

In previous chapters I have described the most recent Hpa Emoy2 genome assembly (v8.3) 

and the most recent gene models (v3). Here, I will describe how the alignment and variant 

files were produced. 

5.3.1 Alignment 

Illumina sequenced reads of 8 races of Hpa (Cala2, Emco5, Emoy2, Hind2, Maks9, Noco2 

and Waco9 that were sequenced in house, and Emwa1 provided by Prof Brian Staskawicz), 

were analysed for quality using FastQC 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) (appendix figures 2.1). This 

analysis revealed certain quality issues: 

 

 The per base quality drops drastically in the last third of the read for sequencing 

runs on the before the implementation of the GA pipeline v1.3 (before ID71) 

 The Emwa1 reads have high levels of Illumina paired end sequencing primer 

contamination 

 The reads for each sequenced race have between 2% and 25% PCR duplication 

 

 Despite the per-base quality decrease in the last third of the read, the average read 

quality of the reads have a single peak around a Phred scaled quality score 30, which 

implies an overall error rate of 0.1%. Therefore, the reads were not filtered or trimmed 

before alignment, but instead, at a later point, I modified the alignment parameters to 

soft-trim bad quality trailing bases and filtered the PCR duplicates post-alignment, using 

the Samtools rmdup command. 
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The reads were converted from Solexa and Illumina to Sanger quality scores prior to 

alignment. The reads were aligned to the Hpa v8.3 assembly using BWA v0.5.8c (Li and 

Durbin, 2009). In addition, BWA’s read trimming was used to clip trailing nucleotides with 

a quality score of less than 10. The aligned reads were converted to BAM files using BWA’s 

‘sampe’ command. I then extracted all the reads that did not align as pairs, and reads that 

did not align. After the initial BWA alignment there was a second round of alignment using 

a more sensitive aligner, Stampy v1.0v11 (Lunter and Goodson, 2011) using its ‘sensitive’ 

mode to align these extracted reads. Using Stampy on top of the BWA alignment increased 

the percentage of reads aligning by 3.72%, of which 1.31% mapped as pairs (table 5.1).  

There was a notable difference in the percentage of reads aligning to the Hpa v8.3 

assembly between races. More than 90% of the reads for Emoy2, Hind2, and Noco2 

aligning to the Hpa v8.3 assembly when Stampy was used alongside BWA, which suggests 

that these are most similar to the reference race, Emoy2, out of the races studied 

(although it may be the case that Noco2 is contaminated with another Hpa race, as this 

level of similarity with Emoy2 was unexpected – if this is the case, the effect on 

downstream analysis would reduce the number of true positives, which is more desirable 

than increasing the number of false positives). Less than 50% of the Cala2 reads aligned to 

Emoy2 reference. We performed a Velvet assembly of the Cala2 reads which did not align 

to the reference sequence, and performed a BLAST search against the NR database, 

revealing significant Xanthomonas contamination and minor Pseudomonas contamination 

in the data. I believe this was due to a sample contamination rather than library prep or 

run contamination, because other libraries prepared at the same time were free of 

contamination, as were other samples sequenced on the same flowcell. 

 

Once all the alignments were completed, they were merged, sorted and PCR duplicates 

removed using SAMtools v0.1.12a (Li et al., 2009a) rmdup command. It was noticed that as 

the total number or reads per race increased, so did the read duplicates. This could be due 

to stochastic error, or may imply that PCR duplicates are more likely to be observed with 

increasing read depth. It is possible that as the number of sequenced reads increases, the 

larger possibility of the observation of a sequenced fragment originating from same the 

genomic position as another sequenced fragment. This would, in fact, be a false positive 

PCR duplicate and an artefact caused by saturation of the system. This is a known issue of 

the Samtools rmdup command. 
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    All reads aligned Reads aligned as pairs 

 

  

 
BWA BWA + Stampy 

%
 in

cr
e

as
e

 in
 r

e
ad

al
ig

n
m

e
n

t BWA BWA + Stampy 

%
 in

cr
e

as
e

 in
 r

e
ad

al
ig

n
m

e
n

t 

Race 

N
u

m
b

er
 o

f 
re

ad
s 

D
u

p
lic

at
es

 

%
 D

u
p

lic
at

e
s 

N
u

m
b

e
r 

o
f 

re
ad

s 
al

in
ge

d
 

%
 o

f 
re

ad
s 

al
ig

n
e

d
 

N
u

m
b

e
r 

o
f 

re
ad

s 
al

in
ge

d
 

%
 o

f 
re

ad
s 

al
ig

n
e

d
 

N
u

m
b

e
r 

o
f 

re
ad

s 
al

in
ge

d
 

%
 o

f 
re

ad
s 

al
ig

n
e

d
 

N
u

m
b

e
r 

o
f 

re
ad

s 
al

in
ge

d
 

%
 o

f 
re

ad
s 

al
ig

n
e

d
 

Cala2 102,102,496 7,702,096 7.54% 41,145,830 40.30% 43,985,611 43.08% 6.90% 38,106,640 37.32% 38,354,846 37.57% 0.65% 

Emco5 154,461,266 27,129,767 17.56% 134,230,186 86.90% 138,696,656 89.79% 3.33% 124,677,522 80.72% 125,825,452 81.46% 0.92% 

Emoy2 99,616,122 8,612,719 8.65% 89,460,651 89.81% 93,188,178 93.55% 4.17% 84,392,579 84.72% 85,159,010 85.49% 0.91% 

Emwa1 69,182,800 1,754,692 2.54% 37,948,025 54.85% 39,482,681 57.07% 4.04% 35,035,648 50.64% 35,337,502 51.08% 0.86% 

Hind2 117,257,018 22,530,277 19.21% 109,017,009 92.97% 111,987,100 95.51% 2.72% 101,136,710 86.25% 102,775,426 87.65% 1.62% 

Maks9 80,982,024 10,491,395 12.96% 59,711,490 73.73% 62,385,445 77.04% 4.48% 55,106,968 68.05% 55,732,234 68.82% 1.13% 

Noco2 116,719,072 27,523,234 23.58% 104,879,442 89.86% 107,737,917 92.31% 2.73% 97,604,628 83.62% 99,265,106 85.05% 1.70% 

Waco9 113,350,294 10,007,710 8.83% 97,287,035 85.83% 101,737,256 89.75% 4.57% 89,069,816 78.58% 90,866,580 80.16% 2.02% 

Average* - - 13.33% - 81.99% - 85.00% 3.72% - 76.08% - 77.10% 1.31% 
 

Table 5.1: Number and percentage of reads from 8 Hpa races aligning to the Hpa v8.3 assembly. There is a large variation in the percentage of reads aligning to the v8.3 

assembly for each race which is indicative of how similar the sequenced race is to the Emoy2 reference race. A very similar percentage of reads from Hind2 and Noco2 

align to the reference as Emoy2, which indicates these may have very similar genomes. There is a very low percentage of reads aligning from Cala2, which is an artefact 

due to significant Xanthamonas contamination. There is an average of 3.72% of increase in reads aligning using Stampy on top of BWA, of which 1.31% align as pairs. 

* Average is the calculated mean, excluding Cala2 
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5.3.2 Variant calling 

A list of the variant calls was generated using SAMtools. The variants were filtered using 

the varFilter script in the SAMtools package. The variant calls were filtered for: 

 

 A minimum root mean squared (RMS) quality of 20 for SNPs [Q = 20] 

 A minimum RMS quality of 20 for gaps [q = 20] 

 A minimum read depth of 5 [d = 5] 

 A maximum read depth of 80 [D = 80] 

 A minimum SNP quality of 20 [S = 20] 

 A minimum INDEL quality of 20 [i = 20] 

 A window size of 3 for filtering dense SNPs [W = 3] 

 

5.3.2.1 SNP and INDEL calls 

The 8 sequenced Hpa races have approximately 150,000-200,000 SNPs (table 5.2). 

Excluding the reference race Emoy2, the lowest number of SNPs predicted was for Noco2 

(58,175), again suggesting that it is very similar to Emoy2. Hind2, the race with the highest 

percentage of reads aligning to the reference sequence, has about 3 times more SNPs than 

Noco2. This was also observed in the number of INDELs predicted in each race where 

Hind2 had a comparable number of INDELs to Cala2, Emco5 and Waco9, while Noco2 had 

about 1/3rd less INDELs. I also observed that the number of predicted insertions and 

deletions followed on average a 1:1 ratio. This indicates that there is no preference of 

insertions over deletions in Hpa. 

5.3.2.2 Heterozygosity 

The average rate of observing a heterozygous SNP among SNP sites was found to be 25.25% 

(table 5.2; appendix table 5.4). This is nearly half of the rate of observing a heterozygous 

INDEL among INDEL sites, which is 44.72%. From this I concluded that ~35% of Hpa 

variation is heterozygous. It is also important to note that the high rates of heterozygous 

variants in Emoy2 are because of it being the reference strain. Any homozygous SNP would 

be due to a combination of errors in the reference sequence and error rate in the SNP 

calling. It was observed that the rate of heterozygous SNPs in Emoy2 (98.95%) was higher 

than the rate of heterozygous INDELs (87.79%). This is because the Hpa v8.3 assembly was 
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corrected for SNP and INDEL errors with iterative variant calls using MAQ. While MAQ is 

very good at predicting SNPS, the INDEL prediction is not as accurate as the methods used 

in the BWA + Stampy alignment. Noco2 displayed a very high rate of heterozygosity in 

SNPs (77.01%) and INDELs (79.14%), making it the most heterozygous Hpa race in this 

study. It was also interesting to note that the rate of heterozygosity in the SNPs of Emwa1 

was very low (0.24%), but extremely high in the INDELs (90.28%). The full list heterozygous 

INDELS on genes can be seen in appendix table 5.7. 

 

Table 5.2: Table of predicted SNPs and INDELs in the 8 sequenced races of Hpa. Het = 

heterozygous.  

* The average was calculated as the mean without values from Emoy2, as it is the reference strain, 

and Emwa1 as this race had very few predicted heterozygous SNPs. 

5.3.2.3 Preferential SNP mutation 

For each race, the homozygous SNPs were extracted. A significant balance between 

reciprocal nucleotide changes was observed, which implies that the Hpa genome is under 

pressure to maintain its nucleotide compositions (tables 5.3). Preferential A/T  G/C 

transitional mutation were observed, which accounted for ~65% of all SNPs (outside of 

Emwa1). A/T  G/C transitional mutation has been described to be the most commonly 

observed point mutation and was also seen in 80 accessions of A. thaliana (Cao et al., 

2011). A reciprocal balance of A/T C/G with G/CT:A and A/TT/A with C/GG/C was 

also observed.  
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Cala2 208,602 35,470 17.00% 25,132 7083 28.18% 0.60 12,295 12,837 0.96 233,734 

Emco5 182,716 10,128 5.54% 25,734 5672 22.04% 0.25 12,859 12,875 1 208,450 

Emoy2 54,283 53,626 98.79% 9810 8612 87.79% 1.13 4881 4929 0.99 64,093 

Emwa1 146,530 350 0.24% 53,259 48,084 90.28% 0.00 30,916 22,343 1.38 199,789 

Hind2  193,858 17,178 8.86% 25,692 6529 25.41% 0.35 12,816 12,876 1 219,550 

Maks9  224,793 33,181 14.76% 29,366 8386 28.56% 0.52 14,512 14,854 0.98 254,159 

Noco2 58,175 44,798 77.01% 16,098 12,740 79.14% 0.97 7674 8424 0.91 74273 

Waco9 209,629 59,320 28.30% 26,901 10,596 39.39% 0.72 13,181 13,720 0.96 236,530 

Average*     25.25%     37.12% 0.57     1.02   
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Cala2 A C G T  Balance A C G T  Preferenc
e 

A C G T 

A 0 9739 28,31
7 

6027  A - 1.0
3 

1.0
1 

0.9
8 

 A - 11.07
% 

32.57
% 

7.04% 

C 9420 0 5007 27,803  C 0.9
7 

- 1.0
0 

0.9
9 

 C - - 5.77% 32.34% 

G 28,07
2 

4983 0 9546  G 0.9
9 

1.0
0 

- 0.9
7 

 G - - - 11.21% 

T 6159 28,17
9 

9866 0  T 1.0
2 

1.0
1 

1.0
3 

-  T - - - - 

Total       173,11
8 

 Std Dev       0.0
2 

 Total       100.00
%                  

Emco5 A C G T  Balance A C G T  Preferenc
e 

A C G T 

A 0 9818 28,00
3 

6276  A - 1.0
2 

1.0
1 

0.9
9 

 A - 11.26
% 

32.37
% 

7.33% 

C 9615 0 4923 27,447  C 0.9
8 

- 0.9
9 

0.9
8 

 C - - 5.73% 32.16% 

G 27,83
9 

4970 0 9469  G 0.9
9 

1.0
1 

- 0.9
7 

 G - - - 11.14% 

T 6370 28,04
6 

9756 0  T 1.0
1 

1.0
2 

1.0
3 

-  T - - - - 

Total       172,53
2 

 Std Dev       0.0
2 

 Total       100.00
%                  

Emoy2 A C G T  Balance A C G T  Preferenc
e 

A C G T 

A 0 51 74 40  A - 0.9
6 

1.1
0 

0.6
7 

 A - 16.12
% 

21.86
% 

15.50% 

C 53 0 31 77  C 1.0
4 

- 0.8
9 

1.1
0 

 C - - 10.23
% 

22.79% 

G 67 35 0 45  G 0.9
1 

1.1
3 

- 1.0
7 

 G - - - 13.49% 

T 60 70 42 0  T 1.5
0 

0.9
1 

0.9
3 

-  T - - - - 

Total       645  Std Dev       0.1
7 

 Total       100.00
%                  

Emwa
1 

A C G T  Balance A C G T  Preferenc
e 

A C G T 

A 0 12,20
0 

12,11
8 

13,365  A - 1.0
5 

1.0
2 

1.0
2 

 A - 16.39
% 

16.49
% 

18.15% 

C 11,64
9 

0 11,93
1 

11,848  C 0.9
5 

- 1.0
2 

0.9
8 

 C - - 16.27
% 

16.46% 

G 11,87
4 

11,74
3 

0 11,423  G 0.9
8 

0.9
8 

- 0.9
3 

 G - - - 16.25% 

T 13,04
9 

12,09
7 

12,22
1 

0  T 0.9
8 

1.0
2 

1.0
7 

-  T - - - - 

Total       145,51
8 

 Std Dev       0.0
4 

 Total       100.00
%                  

Hind2 A C G T  Balance A C G T  Preferenc
e 

A C G T 

A 0 9733 28,80
5 

6399  A - 1.0
1 

1.0
1 

1.0
0 

 A - 10.97
% 

32.41
% 

7.26% 

C 9637 0 5184 28,715  C 0.9
9 

- 1.0
1 

1.0
0 

 C - - 5.84% 32.51% 

G 28,45
1 

5128 0 9601  G 0.9
9 

0.9
9 

- 0.9
7 

 G - - - 11.02% 

T 6428 28,70
7 

9858 0  T 1.0
0 

1.0
0 

1.0
3 

-  T - - - - 

Total       176,64
6 

 Std Dev       0.0
1 

 Total       100.00
%                  

Maks9 A C G T  Balance A C G T  Preferenc
e 

A C G T 

A 0 11,04
2 

31,30
8 

6686  A - 1.0
3 

1.0
2 

0.9
8 

 A - 11.34
% 

32.43
% 

7.05% 

C 10,69
3 

0 5537 30,603  C 0.9
7 

- 1.0
1 

0.9
8 

 C - - 5.76% 32.24% 

G 30,83
2 

5497 0 10,449  G 0.9
8 

0.9
9 

- 0.9
5 

 G - - - 11.17% 

T 6818 31,17
1 

10,95
1 

0  T 1.0
2 

1.0
2 

1.0
5 

-  T - - - - 

Total       191,58
7 

 Std Dev       0.0
3 

 Total       100.00
%                  

Noco2 A C G T  Balance A C G T  Preferenc
e 

A C G T 

A 0 801 2225 504  A - 1.1
6 

1.0
6 

0.9
1 

 A - 11.20
% 

32.49
% 

7.91% 

C 693 0 405 2031  C 0.8
7 

- 0.9
7 

0.9
5 

 C - - 6.17% 31.31% 

G 2108 418 0 662  G 0.9
5 

1.0
3 

- 0.8
3 

 G - - - 10.91% 

T 551 2145 793 0  T 1.0
9 

1.0
6 

1.2
0 

-  T - - - - 

Total       13,336  Std Dev       0.1
1 

 Total       100.00
% 

                 

Waco9 A C G T  Balance A C G T  Preferenc
e 

A C G T 

A 0 8603 24,97
8 

5360  A - 1.0
6 

1.0
5 

0.9
8 

 A - 11.10
% 

32.48
% 

7.19% 

C 8086 0 4315 23,782  C 0.9
4 

- 1.0
0 

0.9
6 

 C - - 5.73% 32.36% 

G 23,84
2 

4299 0 8077  G 0.9
5 

1.0
0 

- 0.9
3 

 G - - - 11.13% 

T 5451 24,84
6 

8650 0  T 1.0
2 

1.0
4 

1.0
7 

-  T - - - - 

Total       
150,28

9 
 Std Dev       

0.0
5 

 Total       
100.00

% 
                 

      Averag
e 

A C G T  Average A C G T 

      A - 1.0
5 

1.0
2 

0.9
7 

 A - 11.16
% 

32.46
% 

7.30% 

      C 0.9
5 

- 1.0
0 

0.9
8 

 C - - 5.83% 32.15% 

      G 0.9
8 

1.0
0 

- 0.9
4 

 G - - - 11.10% 

      T 1.0
3 

1.0
3 

1.0
7 

-  T - - - - 

      Std Dev       0.0
4 

 Total       100.00
%  

Tables 5.3: Table of mutational spectrum of Hpa. The ‘Balance’ tables display the ratio of 

reciprocal changes, e.g. from CA and AC, indicative of changes in nucleotide composition bias; 

they should be read across the diagonal from bottom left to top right. The ‘Preferential’ tables 

are calculated as the combined, e.g. AC and TG, mutations indicative of mutational 

preference. Std Dev = standard deviation. 
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5.3.2.4 Distribution of INDEL sizes 

The distribution of INDEL sizes follows an exponential-like decay curve, with many small 

and very few large INDELs (fig 5.5 A). On closer inspection, many minor peaks can be seen 

in the decay, which aggregate on sizes that are exactly divisible by 3 (fig 5.5 B). These 

observed minor peaks are likely due to the retention of ‘codon INDELs’ on coding regions 

of the genome. 

 

 

 

Figure 5.5: Distribution of INDEL sizes. Only the INDELs between 1 and 30 bases are shown, and 

the percentage distribution is calculated as a percentage of the INDELs of size 1-30 (A). INDEL size 

distribution of INDEL sizes with axis set to 3% (B). 
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5.3.3 Resequencing analysis of Hpa genes for 8 races of Hpa 

5.3.3.1 Coverage 

5.3.3.1.1 Percentage covered  

Analysing the percentage of each nucleotide of each gene covered by reads allows us to 

identify possible presence/absence polymorphisms and genes that are so divergent that 

the reads cannot align back to the reference sequence (appendix table 5.1). By comparing 

the number of genes that have a high percentage of their nucleotides covered by reads, 

we can postulate how similar the sequenced races are to the reference race, Emoy2. For 

Noco2 99.9% of genes are covered between 99%-100% (table 5.4) relative to Emoy2. This 

is the highest among the 8 races of Hpa. Cala2 has the lowest coverage with 98.3% of 

genes covered between 99%-100%. Analysing the genes that have high percentage 

coverage (90%-98%), but are not fully covered by reads, may give an indication of genes 

that are slightly divergent. Again we see a similar trend of Noco2 being most similar to 

Emoy2 and Cala2 being most divergent from Emoy2.  This pattern is conserved for genes 

with 50%-89% coverage. Genes exhibiting less than 50% coverage are likely to be missing 

or are very highly diverged from Emoy2, and as the percentage coverage approaches 0%, 

the probability increases that the gene is not present in the race. Hind2 displays the most 

genes with less than 50% coverage (157), which is approximately twice as much as Cala2 

(81), Emco5 (90), Emwa1 (58), Maks9 (82) and Noco2 (82) and 30% more than Waco9 

(117). 

 

Percentage 
Covered  

Cala2 Emco5 Emoy2 Emwa1 Hind2 Maks9 Noco2 Waco9 

99 to 100 14,031 14,202 14,271 14,227 14,053 14,170 14,257 14,118 

90 to 98 288 160 125 161 238 200 130 199 

50 to 89 178 127 102 130 127 129 105 144 

11 to 49 72 78 65 39 117 72 65 92 

0 to 10 9 12 11 19 40 10 17 25 
 

Table 5.4: Frequency distribution of percentage of nucleotides of genes covered in each Hpa race. 

The data was filtered to remove any genes predicted with 0% sequence coverage for Emoy2 as 

they are likely to be erroneous gene calls.  
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The genes displaying the most variation in the percentage coverage in Hpa include 2 

predicted effector genes (HaRxL63 and HaRxLL435) and one gene with homology to an 

effector (table 5.5). Another 2 genes showed sequence homology to known genes. Gene 

806362 showed homology to a 1,3-beta-glucanosyltransferase, which has been implicated 

in cell wall biosynthesis (Mouyna et al., 2000), and the other gene, 807641, was 

homologous to a hypothetical effector as well as to a chromobox protein homolog 5, 

which encodes a highly conserved non-histone protein of the heterochromatin protein 

family. 3 out of the 10 genes with most variation in percentage coverage were predicted to 

be secreted and 1 had a predicted transmembrane domain. This is an overrepresentation 

of the secreted genes (with genes with a signal peptide accounting for 14.4% of all Hpa 

genes), while the expected number of transmembrane genes were observed (with 

transmembrane genes accounting for 13.5% of all Hpa genes). 
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806362 21 0 100 100 0 100 100 13 49.38 
- 1,3-beta-

glucanosyltransferase 
- 

805120 12 26 100 100 0 6 100 0 47.90 - - - 

HaRxL63 0 100 100 100 0 100 100 100 46.29 HaRxL63 - SP 

807641 100 100 100 100 0 100 100 4 45.38 
HaRxLL54 

(partial) 
chromobox protein 

homolog 5 
- 

814385 20 2 90 5 100 14 95 2 45.21 - - - 

805206 21 100 100 8 1 84 26 100 44.78 - - - 

805119 37 15 100 100 4 100 100 18 44.48 - - SP 

806374 16 100 100 100 8 20 100 100 44.28 - - - 

810059 10 100 100 100 0 100 100 100 44.06 - - TM 

eff_11049_g 27 21 100 100 9 11 100 14 43.63 
HaRxLL435 - SP 

 

Table 5.5: Table of genes displaying most variation in the percentage coverage between 8 Hpa 

races. The best BLAST hits were identified through a tblastn search against NCBI NR; Signal 

peptides (SP) were predicted using SignalP 3 HMM (Bendtsen et al., 2004), and transmembrane 

helices (TM) were predicted using TMHMM (Sonnhammer et al., 1998). 
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5.3.3.1.2 Mean coverage of each gene for each race 

 

Analysing the coverage of each gene relative to the observed mean coverage over all 

genes allows us to identify possible copy number variation (CNV). For each gene the 

relative mean coverage was calculated as the gene’s mean coverage divided by the 

expected mean coverage. The majority of genes display a low variation in the maximum 

and minimum relative mean coverage and have very similar read coverage between races 

the 8 races of Hpa (fig 5.6). However, a secondary peak can be observed, suggesting that 

there is a subset of genes that are subject to CNV. 

 

 

 

 

Figure 5.6: Frequency distribution of difference between maximum and minimum relative gene 

coverage between 8 races of Hpa. The majority of genes are distributed around 0.1, suggesting 

most genes are of similar copy number. There is a secondary peak around 1, and a long tail 

indicating that there are a number of genes that have CNV polymorphisms. 
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The genes displaying the most variation in relative mean coverage are also among the 

genes with the highest relative mean coverage (table 5.6). The 3 genes with the highest 

relative mean coverage are conserved in A. laibachii, Plasmodium berghei and 

Caenorhabditis briggsae. The other genes were not homologous to known proteins. 

 

 

 

Gene Cala2 Emco5 Emoy2 Emwa1 Hind2 Maks9 Noco2 Waco0 Std Dev 

804802 464.5 331.1 410.7 432.2 333.9 313.4 424.0 200.1 86.12 

800931 119.5 59.1 40.7 23.8 117.2 142.5 50.2 88.6 43.00 

811772 34.1 50.7 109.4 128.1 44.0 23.9 121.5 87.6 41.68 

800737 144.6 92.5 43.9 56.7 136.0 85.5 55.0 141.3 41.49 

811584 1.1 83.3 73.8 75.9 1.1 1.1 83.7 19.0 39.93 

814590 148.7 43.1 43.4 47.9 41.2 47.8 49.2 20.9 38.80 

808660 165.6 59.7 139.9 156.4 116.8 123.5 159.7 178.4 37.79 

814122 91.8 86.6 88.0 178.3 60.6 81.3 105.4 94.0 34.78 

812642 98.0 113.9 131.4 145.1 108.4 189.6 154.6 133.2 29.27 

814774 104.6 41.2 81.6 92.3 51.4 35.3 94.2 34.7 29.19 

 

Table 5.6: Genes with the most variation in the relative mean coverage. The 3 genes showing the 

most variation displayed homology to A. laibachii, Plasmodium berghei and Caenorhabditis 

briggsae (blastp against NCBI NR, e-value cut-off of 0.01). Std Dev = standard deviation. 
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This analysis (identifying genes with the most variance in relative mean coverage) was 

repeated with genes that had an average minimum relative mean coverage of 10 between 

races to analyse the genes with the most variation among consistently high copy number 

genes (table 5.7). The most variable gene is homologous to an A. laibachii putative 

integrase, which is known to be a multicopy gene in oomycetes (Kemen et al., 2011). 

Given that this gene mean coverage is 73.8 times higher than expected in the 

reference isolate, it is likely that the assembly of this gene family has been 

collapsed at this genomics region. 

 

 

 

Gene Cala2 Emco5 Emoy2 Emwa1 Hind2 Maks9 Noco2 Waco0 Std Dev 

811584 1.1 83.3 73.8 75.9 1.1 1.1 83.7 19.0 39.93 

eff_g9604 70.4 25.7 14.4 19.9 15.4 16.6 13.5 9.7 19.67 

813013 43.2 32.4 27.1 28.7 26.6 9.7 27.8 68.4 17.00 

807483 20.6 29.4 13.8 25.1 20.7 53.8 6.3 15.8 14.23 

803782 7.9 16.0 29.3 39.8 40.2 41.1 33.7 19.7 12.59 

801561 8.3 7.0 20.6 25.9 20.7 2.6 22.6 39.4 11.97 

814620 7.0 8.5 6.3 18.9 31.8 31.6 9.2 19.5 10.63 

814857 6.7 3.5 13.6 5.2 1.8 9.5 12.9 28.7 8.57 

810181 0.5 4.5 22.4 15.0 5.2 2.3 6.4 0.6 7.69 

pasa_g19713 4.8 8.9 11.8 8.6 22.5 21.4 5.5 18.3 7.05 

 

Table 5.7: Genes with the most variation in the relative mean coverage, where the minimum 

mean coverage between the 8 races of Hpa is 10. The genes showing the most variation, gene 

811584, displayed homology (blastp against NR, e-value cutoff of 1x10
-6

)  to A. laibachii putative 

integrases, which are known to be multicopy genes. Std Dev = standard deviation. 
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Many genes with a large variance in relative mean coverage and with the expected mean 

relative coverage (0.5-1.5) in Emoy2, are related to virulence function (table 5.8). For 

instance, the third most variable gene is the elongation factor TU, which has been 

described as a PAMP (Zipfel et al., 2006). It was also interesting to see the effector 

candidate HaRxL133, and 2 genes homologous to it, showing high variability in copy 

number. This could suggest that it may be recognised by some accession of A. thaliana so 

selection for loss of the gene would be advantages in Hpa where the host population 

consists of resistant ecotypes of A.thaliana. 
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Homology 

802776 2.3 1.6 1.4 1.4 5.4 1.3 1.5 1.1 1.43 
- 

802778 2.4 1.5 1.5 2.0 5.2 1.6 1.6 1.1 1.30 
CENPB protein Homeodomain-like 

809897 4.2 1.0 0.9 2.9 0.9 1.6 1.1 0.8 1.23 
elongation factor Tu 

813537 1.0 4.0 0.8 0.8 0.9 1.7 0.9 2.2 1.13 
Fis family two component sigma 54 

specific transcriptional regulator 

806770 1.5 1.5 0.7 0.3 0.1 3.4 0.9 2.4 1.10 
HaRxL133 

804929 3.5 1.0 0.9 1.8 0.8 1.1 0.9 0.9 0.93 
ATP synthase subunit beta 

814554 2.7 0.1 0.1 0.7 0.0 0.4 0.1 0.1 0.92 
Fis family two component sigma 54 

specific transcriptional regulator 

803764 0.7 0.6 0.6 3.2 0.5 0.6 0.6 0.6 0.90 
Mitochondrial Carrier (MC) Family 

HaRxL133 1.1 1.1 0.7 0.5 0.4 3.2 0.8 1.4 0.90 
HaRxL133 

806769 0.7 0.8 0.7 0.7 0.7 3.0 0.8 0.3 0.85 
HaRxL133 

 

Table 5.8: Genes with the most variation in the relative mean coverage, where they are single 

copy in the Emoy2. Std Dev = standard deviation. 
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5.3.3.1.3 Copy number variation 

I have previously shown that read coverage follows a Poisson distribution. The distribution 

of coverage modelled as the Poisson CDF based on the observed mean over all genes, 

showed that a significant number of genes present as multiple copies (fig 5.7). It can also 

be seen that the distribution towards the lower end of the CDF spectrum is higher than 

expected. This is most likely due to a combination of: 

 not having very high sequence coverage (a cleaner peak would be seen when read 

coverage is 100 fold); 

 hemizygous regions of the genome having genuinely lower coverage; 

 sequencing bias, where automated correction by the sequencing pipeline 

compensates for a genuine variance in genome nucleotide composition. 

 

 

 

Figure 5.7: Frequency distribution of the Poisson CDF for coverage. A general bell shaped curved 

can be observed, and is more pronounced for races Cala2 and Emwa1, with the other races having 

a higher frequency for the lower end of the CDF spectrum, possibly indicating more hemizygous 

genes. 
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While observing a general picture of expected coverage distribution, it is also interesting 

to note that among the 10 genes showing most variance in Poisson CDF coverage, there is 

a hypothetical effector gene, HaRxLL117 (appendix tables 5.2). Among the genes showing 

the most variance in expected copy number, while expected to be single copy genes in the 

reference race, Emoy2, we also observed the presence of another hypothetical effector 

gene, HaRxL133 (appendix tables 5.2). This suggests that CNV and presence/absence 

polymorphisms may be a general trait of effectors. 

 

5.3.3.1.3.1 Hemizygosity 

Here, hemizygous regions of the genome are defined as regions with a low expected 

coverage and which are likely to belong to the distribution of expected single copy 

coverage. This can be defined as the genes/regions with a Poisson CDF for coverage of 0-1% 

(this falls outside the 98% confidence interval of being a single copy gene). Using this 

threshold, 1645 genes were identified to be hemizygous. To estimate the error rate of 

hemizygous calls, one can observe the number of heterozygous SNP calls made over the 

gene. Of the 1645 predicted hemizygous genes, 40 contained heterozygous SNPs on the 

coding region, and 69 contained SNPs over the gene +/-250 bp up and downstream of the 

gene. This equates to an accuracy of 96% for making true hemizygous calls. This 4% 

discrepancy is a combination of SNP calling error rate and possibility that these regions are 

caught in the tail of actual diploid distribution. 

 

We observed 2 effector genes (RXLR87 and RXLR35) that showed evidence of being 

hemizygous in some races of Hpa (appendix tables 5.2). Since hemizygosity is a by-product 

of presence/absence polymorphisms during sexual reproduction, this further supports our 

notion that effectors exhibit CNV polymorphisms.  
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5.3.3.2 SNPs 

 

The observed variation in the number of SNPs per race vaguely correlates the SNPs on 

exons in each race (table 5.9). A general ratio of 3:1 for Exon:Intron SNPs is observed as is 

a 1:1 Exon:Intron+UTRs. These ratios suggest that there is a selective balance in the 

number of SNPs in Hpa or that the majority of SNPs are accumulating through neutral drift. 

Alternatively, there may be a balanced selection pressure that prevents the acquisition of 

deleterious mutations exerted in protein coding regions (exons), regions affecting splice 

efficacy (introns) and expression (UTRs). However, this balance does not seem to be 

maintained in Emwa1, where the ratio of coding SNPs to non-coding SNPs is 1.63:1. The 

extent to which these ratios are conserved, despite the variation in the number of SNPs 

over coding and non-coding regions, is illustrated by the ration of heterozygous SNPs 

(table 5.10). 

 

SNP Position Cala2 Emco5 Emoy2 Emwa1 Hind2 Maks9 Noco2 Waco9 

5’ UTR 9028 7777 2368 7715 8216 9286 2372 8970 

Exon 26,709 21,713 7383 36,077 24,880 28,005 7166 27,000 

Intron 7786 6502 2433 6744 7150 7933 2350 7489 

3’ UTR 9379 7916 2536 7694 8817 9822 2523 9594 

Exon:Intron 3.43 3.34 3.03 5.35 3.48 3.53 3.05 3.61 

Coding:Non-coding 1.02 0.98 1.01 1.63 1.03 1.04 0.99 1.04 

 

Table 5.9: Number of coding and non-coding SNPs in Hpa races. Despite the variation in the 

number of total SNPs predicted on and near coding regions, the ration of coding:non-coding SNPs 

is maintained in most of the races (with the exception of Emwa1) 

 

 

Het SNP Position Cala2 Emco5 Emoy2 Emwa1 Hind2 Maks9 Noco2 Waco9 

5’ UTR 1256 304 2342 16 571 1043 1820 2393 

Exon 3908 676 7341 67 1701 3453 5367 7431 

Intron 889 205 2400 17 407 881 1866 1772 

3’ UTR 1290 290 2472 23 575 1128 1909 2633 

Exon:Intron 4.40 3.30 3.06 3.94 4.18 3.92 2.88 4.19 

Coding:Non-coding 1.14 0.85 1.02 1.20 1.10 1.13 0.96 1.09 

 

Table 5.10: Number of coding and non-coding heterozygous (Het) SNPs in Hpa races. Despite the 

variation in the number of total SNPs predicted on and near coding regions, the ration of 

coding:non-coding SNPs is maintained.  
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As mentioned previously, positive selection leaves its signature in form of sequence 

variation at the genome level. The accumulating SNPs is important for functional and 

evolutionary changes and identifying SNPs is one of the easier ways to make inferences 

about the selection pressure on genes. For example, ATR1 is one such gene that displays a 

very high rate of SNPs over the coding region of the gene (on average 16.75 SNPs per race) 

(appendix tables 5.3). In addition, the variation in the number of SNPs observed between 

the races is an indication of the variation between the sampled populations. ATR1 exhibits 

the highest variance in the number of SNPs on the coding region. However, ATR1 also has 

a number of SNPs in the nearby non-coding region, which implies that there are certain 

genome dynamics leading to elevated variation in the ATR1 region. This trend does not 

extend to heterozygous SNP positions. 

 

5.3.3.2.1 Protein coding effects of SNPs 

While cataloguing sequence variation is important, it is the effect of SNPs on the protein 

code that leads to differentiation of function. The protein coding effect of each SNP over 

gene coding regions for each race was determined. A general ~4:1 ratio of non-

synonymous : synonymous SNPs was observed (table 5.11). It was also interesting to note 

that ~60% of all heterozygous SNPs were ‘heterozygous non-synonymous SNPs’, where the 

heterozygous SNP leads to 2 different proteins being encoded). Conversely, this implies 

that ~40% of all heterozygous SNPs in Hpa do not alter the proteins encoded by the genes. 

 

Other, more drastic, mutations caused by SNPs include mutated start codons and 

formation of premature stop codons. Apart from Emwa1 and Noco2 (which is 

hypothesised to be very similar to Emoy2), we observed approximately 60 mutated start 

codons and 200 premature stop codons per race due to SNPs. 
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 Cala2 
Emco

5 Emoy2 Emwa1 Hind2 
Maks

9 
Noco

2 
Waco

9 

Synonymous SNPs 6006 4913 1600 18,416 5643 6197 1521 6140 

Non-synonymous SNPs 
20,61

8 
16,70

0 5658 17,593 
19,18

0 
21,73

5 5565 20,740 

Heterozygous  
non-synonymous SNPs 2429 470 3778 42 1125 2240 2942 4070 

Non-synonymous:Synonymous SNPs 3.433 3.399 3.536 0.955 3.399 3.507 3.66 3.378 

All non-synonymous:Synonymous SNPs 3.837 3.495 5.898 0.958 3.598 3.869 5.59 4.041 

Mutated start codon 69 47 0 0 66 76 6 64 

Premature stop codon 234 219 0 92 232 252 16 188 

 

Table 5.11: Number of synonymous and non-synonymous SNPs in Hpa races. An approximate 4:1 

ratio of non-synonymous SNPs to synonymous SNPs can be observed, where all non-synonymous: 

synonymous SNPs refers to both the homozygous and heterozygous SNPs. On average, ~60% of 

all heterozygous SNPs lead to the encoding on 2 different proteins at the same locus. There is an 

observable trend of ~60 SNPs causing mutations in the start codon and ~200 SNPs causing 

premature stop codons in each race. 

 

We observe that ATR1 has one of the highest non-synonymous:synonymous SNP ratios, 

and the highest variance in this category. These ratios provide further evidence that 

pathogen effectors, which have possible avirulence functions (recognised by the plant 

host), can leave signatures of accelerated evolution through elevated levels of SNPs with 

protein modifying effects (appendix tables 5.5). While ATR1 exhibits a high level of 

variation, a small number of mutations is sufficient to modify the function of effectors as 

demonstrated by studies of the Phytophthora infestans effector Avr3a, where 2 

modification are sufficient to switch from a resistant to susceptible allele of the effector 

(Armstrong et al., 2005).  

 

Given the very low number of genes with modified start codons, I was interested to find an 

effector (HaRxLL55) to be among them (appendix tables 5.5). A total of 10 putative 

effectors were identified with premature stop codons introduced by SNPs (HaRxLL447, 

HaRxLL105, HaRxLL181, HaRxLL14, HaRxLL53, HaRxLL100, HaRxLL115, HaRxLL133, 

HaRxLL89 and HaRxLL176). Given that 662 genes were predicted to be affected by SNPs 

causing premature stop codons (~4% of all genes), we would expect to see around 10 

effectors to have premature stop codons (based on an estimate of 200-300 putative 

effectors), agreeing with the observations.  
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5.3.3.3 INDELs 

 

The observed variation in the number of INDELs per race is conserved in the INDELs on 

exons in each race (table 5.12). A general ratio of 1:1 for Exon:Intron INDELs is observed, 

as is a 1:3 coding:non-coding ratio. This suggests that there is a selective balance in the 

number of INDELs in Hpa, as was observed with the SNPs. This balance does not seem to 

be maintained in Emwa1, where the ratio of coding:non-coding INDELs is approximately 4 

times more. Despite the variation in the number of INDELs over coding and non-coding 

regions between Hpa races, their ratios in each race are very similar. This is true to a lesser 

extent with heterozygous INDELs where a general ratio of 1.5:1 of Exon:Intron (with more 

variance than was observed with all INDEL positions), and 1:3 for coding:non-coding (table 

5.13). 

 

All INDEL positions Cala2 Emco5 Emoy2 Emwa1 Hind2 Maks9 Noco2 Waco9 

Up 1576 1539 547 2943 1529 1761 893 1652 

Exon 1399 1290 617 9660 1270 1600 935 1354 

Intron 1331 1238 523 2414 1230 1449 849 1283 

Down 1410 1285 491 2604 1402 1551 796 1504 

Exon:Intron 1.05 1.04 1.18 4.00 1.03 1.10 1.10 1.06 

Coding:Non-coding 0.32 0.32 0.40 1.21 0.31 0.34 0.37 0.31 

 

Table 5.12: Number of coding and non-coding INDELs in Hpa races showing both homozygous and 

heterozygous INDELs. Non-coding regions are the 5’ UTR, 3’ UTR and Introns. Despite the 

variation in the number of total INDELs predicted on and near coding regions, the ratio of 

coding:non-coding INDELs is maintained in most of the races (with the exception of Emwa1).  

 

Heterozygous INDEL 
positions Cala2 Emco5 Emoy2 Emwa1 Hind2 Maks9 Noco2 Waco9 

Up 338 263 478 2682 309 381 706 604 

Exon 545 344 528 8810 443 590 746 641 

Intron 284 221 456 2199 255 330 656 422 

Down 301 217 440 2365 259 336 651 540 

Exon:Intron 1.90 1.55 1.16 4.01 1.74 1.79 1.14 1.52 

Coding:Non-coding 0.59 0.49 0.38 1.22 0.54 0.56 0.37 0.41 

 

Table 5.13: Number of coding and non-coding heterozygous INDELs in Hpa races. Non-coding 

regions are the 5’ UTR, 3’ UTR and Introns. Despite the variation in the number of total 

heterozygous INDELs predicted on and near coding regions, the ratio of coding:non-coding INDELs 

is maintained, with the exception of Emwa1. 
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INDELs, especially if not a codon INDEL, are likely to have a much greater effect on the 

function of proteins than SNPs. HaRxLCRN4, a hypothetical crinkler protein, is one such 

gene that displays a very high rate of INDELs over its coding region (on average 2.25 

INDELs per race) (appendix tables 5.6). This high level of variation is maintained when 

comparing the coding to non-coding INDEL ratio and when considering heterozygous 

INDELs (appendix tables 5.6).  

 

 

5.3.3.3.1 Protein coding effects of INDELs 

While it is important to catalogue sequence variation, it is the effect of the INDEL on the 

protein code that allows for differentiation of gene function. INDELs may only have small 

effects on the amino acid sequence (e.g. loss of a single codon), but in general are likely to 

cause frameshift mutations, which often lead to a loss of the original gene function. There 

may also be a situation where 2 INDELs that lead to internal frameshift, with conserved 

start and stop codon, where the net INDEL length is exactly divisible by 3. It was observed 

that the majority of net INDEL lengths larger than 1 are exactly divisible by 3 (fig 5.8). 

Observing the frequency distribution of net INDEL lengths over coding regions only also 

revealed that the distribution of net INDEL lengths greater than 6 are highly similar, with 

the exception of Emoy2 (which is the reference strain) and Cala2. The percentage 

distribution of net INDEL lengths also showed that the net INDEL lengths are divisible by 3 

and that the distribution of higher INDEL lengths is similar between Hpa races (fig 5.9). 
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Figure 5.8: Frequency distribution of the INDEL length over coding regions of genes with full 

frequency spectrum (A) and partial frequency spectrum (B). A general trend of a power law 

distribution can be observed, with additional peaks of net INDEL lengths divisible by 3, indicating 

net codon loss/gain and/or internal frameshifts. In addition, with an increase in the net INDEL 

length, the convergence in the variation in frequency between the Hpa races increases. It was 

also observed that in Emoy2 and Cala2, there are peaks at 14 and 16 and not at 15; I believe these 

are due to prediction errors, 
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Figure 5.9: Percentage distribution of the INDEL length over coding regions of genes with full 

percentage spectrum (A) and partial percentage spectrum (B). A general trend of a power law-like 

distribution can be observed, with additional peaks of net INDEL lengths divisible by 3, indicating 

net codon loss/gain and/or internal frameshifts. In addition, with an increase in the net INDEL 

length, the convergence in the variation in frequency between the Hpa races increases. The 

average peak is less pronounced at 15, due to possible prediction errors in Emoy2 and Cala2, 

which form peaks at net INDEL lengths of 14 and 16. 
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5.3.4 DnaSP Analysis 

DnaSP is a software package for the analysis of nucleotide polymorphisms from aligned 

DNA sequences (Librado and Rozas, 2009). Using the second stage of the VariTale pipeline, 

all the parental haplotype gene sequences, fully covered and lacking INDELs, over each 

race are generated. Since the analysis is based only on genes that are fully covered and 

lack INDELs, gene sequences will align without gaps. The calculations from this section of 

the analysis provide a base minimum of the true results, as we do not consider genes with 

INDELs, and parental haplotypes are predicted and not the actual parental haplotypes. 

 

5.3.4.1 Analysis of sample size 

In all comparative genomics analyses, the accuracy and significance of the described 

variation increases with the size of the sample population. To illustrate this point, I plotted 

the change in the percentage of genes that were analysed against the number of races 

analysed, where the number of races were selected randomly from the 8 Hpa races (fig 

5.10). With just 2 races (equating to a maximum of 4 haplotypes) 98.8% of the genes had 

at least 1 parental haplotype identified. Using data from 5 races, every gene had at least 1 

haplotype identified. The total number of segregating sites (S) and the total number of 

mutations (Eta) increase significantly with an increase in the percentage of genes analysed 

up to 5 races, after which subsequent increases in the number of analysed genes increase 

by less than 2% with each additional race. I therefore concluded that a minimum of 5 races 

(or 10 haplotypes) should be used for this type of comparative genomics analysis. 
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Figure 5.10: Effect of increasing the sample size on the percentage of genes for which S, Eta and 

the number of haplotypes can be analysed. S is the number of segregating sites and Eta is the 

number of mutations.  

 

The frequency distribution of the predicted number of haplotypes per gene shows a 

similar trend, according to which changes in the distribution of predicted number of 

haplotypes per gene have a less significant effect at samples sizes above 5 races (fig 5.11). 

 

 

 

Figure 5.11: Frequency distribution of predicted number of haplotypes per gene with increasing 

sample population. The change in the distribution becomes less significant after 5 races.  
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Analysing the frequency distributions of S and Eta, shows that a minimum of 4-5 samples 

should be considered for this type of analysis (fig 5.12; fig 5.13). With this, I concluded that 

the analysis of the 8 races of Hpa should bring about meaningfull results for most of the 

genes in Hpa. 

 

 

Figure 5.12: Frequency distribution of predicted number of segregating sites (S) per gene with 

increasing sample population. The change in the distribution becomes less significant after 4-5 

samples.  

 

 

Figure 5.13 Frequency distribution of predicted number of mutations (Eta) per gene with 

increasing sample population. The change in the distribution becomes less significant after 4-5 

samples.  
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5.3.4.2 S, Eta and the number of haplotypes 

The frequency distribution of the number of predicted haplotypes per gene shows that 

most genes have a small number of haplotypes, with approximately 11% of all genes (1669) 

having 6 or more parental haplotypes between the 8 races of Hpa (i.e. from a set of 16 

parental haplotypes) (fig 5.14). There was also a tight correlation between the distribution 

of S, the number of segregating sites, and Eta, the number of mutations, with both 

distributions following an exponential-like distribution. 

 

 

 

Figure 5.14: Frequency distribution of the number of segregating sites (S), the number of 

mutations (Eta) and the number of haplotypes. 
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more accurate measure of the variation in the sample population. Of the 15 genes with 

the highest number of segregating sites we find 5 effector genes, including ATR1 (table 

5.14). The gene with the highest number of segregating sites is also an effector candidate 

(HaRxL19). These 5 effector genes are also in the list of the 15 genes with the highest 

number of total mutations, which follows my previous suggestion that the number of 

segregating sites and the number of total mutations are tightly coupled (table 5.15). 
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ceg_12014_g 16 67 67 7 1.1715 n.s. 1.6985 **   1.79 **   8.664 HaRxL19 

803035 16 63 65 8 0.6639 n.s. 1.4529 *    1.42 n.s. 5.959  

ATR1_Emoy2 12 62 64 5 0.2156 n.s. 1.6512 **   1.452 #    8.821 ATR1 

pasa_gi_SuperContig2
7_149 10 61 61 10 -0.0573 n.s. 0.7494 n.s. 0.6186 n.s. -1.683 

 

808490 8 61 64 4 1.1647 n.s. 1.6543 **   1.7182 *    8.354 HaRxL128 

eff_g11103 8 61 64 4 1.1647 n.s. 1.6543 **   1.7182 *    8.354  

801867 12 60 62 5 0.1941 n.s. 1.6495 **   1.4442 n.s. 8.611  

eff_g11210 12 60 62 5 0.1941 n.s. 1.6495 **   1.4442 n.s. 8.611  

801132 16 56 56 6 1.1628 n.s. 1.6858 **   1.7765 **   9.612  

eff_g7948 16 56 56 6 1.1628 n.s. 1.6858 **   1.7765 **   9.612  

808092 16 50 56 10 0.2705 n.s. 1.5921 **   1.4062 n.s. 2.189  

811590 16 50 50 9 -0.5228 n.s. 1.2594 n.s. 0.8711 n.s. 2.185 HaRxL72 

eff_5465_g 16 50 50 9 -0.5228 n.s. 1.2594 n.s. 0.8711 n.s. 2.185  

807858 16 48 48 7 0.719 n.s. 1.5647 **   1.5308 #    6.056  

805640 16 48 50 6 -0.0403 n.s. 1.6767 **   1.3746 n.s. 7.141 HaRxL73 

 

Table 5.14: The 15 genes with the highest number of segregating sites (S). Most of these genes 

have high values for the number of analysable haplotypes (Hap) and total number of mutations 

(Eta). There is less coupling between Eta and Hap compared to Eta and S.  However this could be 

an artefact introduced by the method, which ignores genes with INDELs. Including genes with 

INDELs may increase the number of observed haplotypes. N = number of samples, n.s. = not 

significant, * = significant at p=0.05, ** =  significant at p=0.01 and *** = significant at p=0.001. 
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ceg_12014_g 16 67 67 7 1.1715 n.s. 1.6985 **   1.79 **   8.664 HaRxL19 

803035 16 63 65 8 0.6639 n.s. 1.4529 *    1.42 n.s. 5.959  

ATR1_Emoy2 12 62 64 5 0.2156 n.s. 1.6512 **   1.452 #    8.821 ATR1 

808490 8 61 64 4 1.1647 n.s. 1.6543 **   1.7182 *    8.354 HaRxL128 

eff_g11103 8 61 64 4 1.1647 n.s. 1.6543 **   1.7182 *    8.354  

801867 12 60 62 5 0.1941 n.s. 1.6495 **   1.4442 n.s. 8.611  

eff_g11210 12 60 62 5 0.1941 n.s. 1.6495 **   1.4442 n.s. 8.611  

pasa_gi_SuperContig27_149 10 61 61 10 -0.0573 n.s. 0.7494 n.s. 0.6186 n.s. -1.683  

801132 16 56 56 6 1.1628 n.s. 1.6858 **   1.7765 **   9.612  

eff_g7948 16 56 56 6 1.1628 n.s. 1.6858 **   1.7765 **   9.612  

808092 16 50 56 10 0.2705 n.s. 1.5921 **   1.4062 n.s. 2.189  

811590 16 50 50 9 -0.5228 n.s. 1.2594 n.s. 0.8711 n.s. 2.185 HaRxL72 

eff_5465_g 16 50 50 9 -0.5228 n.s. 1.2594 n.s. 0.8711 n.s. 2.185  

805640 16 48 50 6 -0.0403 n.s. 1.6767 **   1.3746 n.s. 7.141 HaRxL73 

eff_g7740 16 48 50 6 -0.0403 n.s. 1.6767 **   1.3746 n.s. 7.141  

 

Table 5.15 The 15 genes with the highest number of total mutations (Eta). Most of these genes 

have high values for the number of analysable haplotypes (Hap) and total segregating sites (S). 

There is less coupling between Eta and Hap compared to Eta and S.  However this could be an 

artefact introduced by the method, which ignores genes with INDELs. Including genes with INDELs 

may increase the number of observed haplotypes. N = number of samples, n.s. = not significant, * 

= significant at p=0.05, ** =  significant at p=0.01 and *** = significant at p=0.001. 

 

5.3.4.3 Tajima’s D 

One way to infer positive selection on a gene is to show that the gene is not evolving 

neutrally. There are various hypothesis tests for neutrality, including Tajima’s D, Fu and Li’s 

D* and F* and Fu’s Fs. Positive values for Tajima’s D indicate low levels of both low and 

high frequency polymorphisms suggesting a decrease in population size and potentially 

balancing selection (Tajima, 1989). A negative value for Tajima’s D indicates a large 

number of low frequency polymorphisms suggesting population size expansion and 

possibly purifying selection. While calculating p-values for this Tajima’s D statistic is 

impossible for samples, it is generally accepted that values greater than +2 and values less 

than -2 are likely to be significant (Tajima, 1989). The observed frequency variation of the 

values calculated for Tajima’s D follows a rough bell shaped curve with a median at around 

0 (fig 5.15). The mean of 0.2 and variance of 0.8 are similar to the expected beta 

distribution around a mean of 0 with variance of 1 (Tajima, 1989). Only 10 genes show 

values of Tajima’s D lower than -2 (an excess of low frequency polymorphisms) of which 2 

are effectors (appendix table 5.8). 273 genes have values greater than 2 (indicating low 
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levels of low and high frequency polymorphisms) of which 9 are effectors (appendix table 

5.8). These results suggest that effectors may be among the most diverse and at the same 

time among the most conserved genes in Hpa, which supports the possibility of conserved 

core effectors and effectors that are highly diverse due to interactions with the host 

leading to a differential fitness. 

 

 

Figure 5.15: Frequency distribution of Tajima’s D, Fu & Lis D* and F*. Significance values for 

Tajima’s D are +/- 2, and for Fu and Li’s the are -1.8/+1.4 for D* and -2/+1.55 for F*.  

 

5.3.4.4 Fu & Li’s D and Fu & Li’s F 

While Fu and Li’s statistics (Fu and Li, 1993) follow a similar principle to Tajima’s, they also 

consider that some parts of the gene share a much longer ancestry than others. Applying 

Fu and Li’s tests revealed a larger number of genes with test values of less than -1.8 

(critical value for D*) and -1.4 (critical value for F*) (172 for Fu and Li’s D*, and 478 for Fu 

and Li’s F*, compared to only 10 for Tajima’s D). For the Fu and Li D test these low valued 

genes include 5 effector genes (HaRxLL27, HaRxLL27 homologue, HaRxLL441, HaRxLL180 

and RxLRNEE3) (appendix table 5.8) and for Fu and Li’s F* 6 effectors (HaRxLL27, HaRxLL27 

homologue, HaRxL89, HaRxLL441, RXLRNEE3 and HaRxLL180) (appendix table 5.8). It was 
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also observed that 5 effectors are in the genes with the highest values for Fu and Li’s D 

(HaRxL123, HaRxL73, HaRxL128, ATR1 and HaRxL19) (appendix table 5.8), suggesting that 

a low value of Fu and Li’s D may indicate effectors that are highly diverse. There was only 1 

effector among the 20 highest values of Fu and Li’s F (HaRxL21) (appendix table 5.8). 

5.3.4.5 Fu’s Fs 

Fu Fs (Fu, 1997) is a statistical test based on the infinite sites model of mutation, with a 

negative value being evidence for an excessive number of alleles expected from a recent 

population expansion and a positive value being evidence for a deficiency of alleles from a 

population bottleneck or over dominant selection (Fu, 1997). The distribution of Fu’s Fs 

statistic seem normally distributed with a peak around 0 (fig 5.16). Among the genes with 

the 20 lowest values of Fu’s Fs there are 5 effectors (HaRxL51, HaRxLL163, HaRxLL133, 

HaRxLL15 and HpRXLR104) (appendix table 5.8). In the 20 highest scoring genes there are 

3 effectors (HaRxLL38, ATR1 and HaRxL21). This supports the idea of multiple selection 

pressures acting on effector genes. 

 

 

Figure 5.16: Frequency distribution of Fu’s Fs. The empirical significance cutoffs (P < 0.02) are -

2.423 and 6.062 
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5.3.5 PAML analysis 

PAML consists of a suite of programs that are directly able to infer positive selection using 

direct dN/dS calculation, or modelling the gene using a number of sites to identify the 

likelihood of appositive selection acting on one of those sites. While these test are usually 

used to between species analysis and not interspecies analysis (like in this study), it may be 

possible to make inferences from the outcome as done so previously in Haas et al. (2009). 

5.3.5.1 Tree construction 

Some of the programs in the PAML suite require a phylogenetic tree of the input samples. 

Since there is currently no tree available for Hpa races, Mr Bayes v 3.1.2 (Ronquist and 

Huelsenbeck, 2003) was used to generate 2 phylogenetic trees. The first tree was 

constructed from the alignment of a region of Hpa that is homologous to the 

Phytophthora infestans mitochondrion over a Ribosomal L2 gene. The region had 30 

segregating sites. Mr Bayes was run using the General Time Reversible models with 

gamma-shaped rate variation with a portion of invariable sites. The simulation was run 

over 1,000,000 generations with a sample frequency of 100 and diagnostics printed every 

1000th generations. 9 heated chains are used in the Metropolis coupling to improve MCMC 

sampling of the dataset. A default of 25% was used for the burning (2500). The resultant 

tree clusters Emwa1, Emoy2 and Noco2 in one cluster and Waco9, Maks9, Emco5 and 

Hind2 in another cluster, while Cala2 clusters on its own (fig 5.17). 

 

 

Figure 5.17: Phylogenetic tree of Hpa races based on sequence homologous to P. infestans 

mitochondria. The tree was generated using Mr Bayes and bootstrap values are shown. 
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A second tree was generated using all 11,570 segregating sites on the largest Hpa contig. 

Since only the segregating sites were used in the analysis, the Mr Bayes parameters were 

modified to model the variation rate as equal. In principle, the generated tree agreed with 

the previous tree, apart from Waco9, which did not cluster (compare fig 5.18 and fig 5.17 

above). The bootstrap values were slightly higher than those of the previous tree. 

 

 

Figure 5.18: Phylogenetic tree of Hpa races based on 11,570 segregating sites on the largest Hpa 

contig. The tree was generated using Mr Bayes and bootstrap values are shown. 

 

Both trees showed an overall good agreement. However, the tree generated using the 

11,570 segregating sites on the largest Hpa contig generated slightly higher bootstrap 

values and was therefore used for further analysis. 
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5.3.5.2 dN/dS 

PAML is able to calculate the dN/dS, the rate of non-synonymous substitutions per non-

synonymous site divided by the number of synonymous substitutions per synonymous site, 

using numerous methods. In previous studies (Haas et al., 2009), the dN/dS values have 

been calculated using yn00. In this study, I also considered dN/dS calculations using 

codeml. The analysis is performed for each gene, which is present fully in at least 3 races 

without CNV or INDELs. The dN/dS values reported for each gene are presented as an 

average of dN/dS for each pairwise comparison. The results show that while the majority 

of dN/dS values lie between 0 and 1, a number of genes have dN/dS values of greater than 

1 (fig 5.19).  

 

 

 

Figure 5.19: Frequency distribution of dN/dS values calculated by yn00 and codeml. While the 

general trend of dN/dS distribution is the same for both methods, a clearer secondary peak of 

genes with dN/dS values higher than 1 are calculated using the codeml method. Yn00 predicted 

many more genes with a dN/dS of 0 (not shown on the graph and thus having lower area under 

the curve).  
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The major difference between the yn00 and codeml calculation is that for each dN/dS 

range, more genes are identified  to have a dN/dS value greater than 0 using codeml, and a 

clearer peak of dN/dS values greater than 1 (indicating positive selection) is present using 

codeml. This is also maintained when analysing the percentage distribution of the dN/dS 

values (fig 5.20). 

 

 

 

 

Figure 5.20: Percentage distribution of dN/dS values calculated by yn00 and codeml. While the 

general trend of dN/dS distribution is the same by both methods a larger percentage of genes 

with dN/dS values higher than 1 are calculated using the codeml method.  

 

 

Plotting the frequency of the difference between the yn00 and codeml dN/dS calculations, 

it can be seen that for the majority of genes a similar dN/dS value is obtained with the two 

methods. However, for a number of genes the codeml calculated dN/dS is 1 to 3 units 

higher than that predicted by yn00 (fig 5.21). This is an important finding as it is possible 

that the yn00 method may incorrectly predict lower dN/dS values for genes compared to 

the codeml method and vice or versa. 
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Figure 5.21: Frequency distribution of the difference in dN/dS calculation between the yn00 and 

codeml method. There is little difference for most of the genes, but there is a large number of 

genes for which the dN/dS values calculated by codeml are 1-4 units higher than using the yn00 

method. 

 

Among the genes with the 30 highest values for dN/dS calculated by yn00, there are 5 

effector genes (appendix table 5.9). Out of the genes with the 30 highest values for dN/dS 

calculated by codeml, there are 3 effectors (appendix table 5.9). The effectors present in 

either list are mutually exclusive. 

5.3.5.3 Evolutionary models 

The frequency distribution of each set of model comparisons (M3-M0, M2a-M1a and M8-

M7) share similarities (fig 5.22). While for the majority of genes it is unlikely that there is a 

difference between the models, for each significance level of 95%, 99% and 99.9% (5.99, 

9.21, 13.82) the difference between the number of genes between the M2a-M1a and M8-

M7 comparison is very small (~25 genes more for M8-M7 at each significance level), while 

the M3-M0 comparison predicted ~300 more genes at each significance level. This is due 

to the M3-M0 comparison yielding many genes at a 99.9% level of significance. For 95% 

and 99% significance values, the number of genes predicted by each method does not vary 

more than 3%. 
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Figure 5.22: Frequency distribution of evolutionary model testing using PAML showing full 

frequency spectrum (A) and partial frequency spectrum (B). 
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5.3.6 Comparison of effectors 

To better understand the evolutionary pressures acting on effectors, I compared the 

generated statistics between predicted effectors (including secreted proteins with 

homology to effectors), genes with predicted transmembrane domains and KOGs. 472 

genes were selected randomly for each set for comparative analysis. 

5.3.6.1 S, Eta and the number of haplotypes 

In each sample effectors have a larger number of segregating sites compared to 

transmembrane genes and KOGs (fig 5.23). There are significantly more effectors with 13-

30 and 48-63 segregating sites compared to transmembrane genes and KOGs. This trend 

was also observed with the total number of mutations per gene (fig 5.24), in agreement 

with the previous observation of correlation between the number of segregating sites and 

the number of total mutations per gene. The distribution of the number of haplotypes per 

gene show that effectors are more likely to have a higher number of haplotypes, with a 

secondary peak around 7-10 haplotypes (fig 5.25). 

 

 

 

 

Figure 5.23: Percentage distribution of S, the number of segregating sites, for the 472 sampled 

effectors, transmembrane genes and KOGs. The effectors have more genes with a higher S 

compared to transmembrane genes and KOGs. 
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Figure 5.24: Percentage distribution of Eta, the total number of mutations, for the 472 sampled 

effectors, transmembrane genes and KOGs. The effectors have more genes with a higher Eta 

compared to transmembrane genes and KOGs, correlating with observations for S. 

 

 

 

Figure 5.25: Percentage distribution of the number of haplotypes per gene for the 472 sampled 

effectors, transmembrane genes and KOGs. The effectors show an elevated number of genes with 

higher number of haplotypes (7-10 haplotypes) compared to transmembrane genes and KOGs. 
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5.3.6.2 Tajima’s D 

No significant differences were detcted in the percentage distribution of Tajima’s D for the 

effectors, transmembrane proteins and KOGs (fig 5.26). For lower values of Tajima’s D (< -

1.41), there are approximately twice as many effectors, but this represents only 2.5% of 

the entire set of effectors. 

 

 

 

Figure 5.26: Percentage distribution of Tajima’s D per gene for the 472 sampled effectors, 

transmembrane genes and KOGs. The effectors show a slightly elevated number of genes with 

Tajima’s D less than -1.41. 

 

5.3.6.3 Fu & Li’s statistics  and Fu’s Fs 

There are no significant differences between the distribution of Fu and Li’s D and for Fu 

and Li’s F between the different sets of genes (fig 5.27; fig 5.28). The distributions of Fu’s 

Fs is similar for the majority of the distribution of the different sets of genes, but the 

effectors have a large percentage of genes with Fu’s Fs being larger than 4.4 with a 

secondary peak forming around 5.3 (fig 5.29). 
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Figure 5.27: Percentage distribution of Fu and Li’s D per gene for the 472 sampled effectors, 

transmembrane genes and KOGs. The effectors show a slightly elevated number of genes with Fu 

and Li’s D less than -0.84. 

 

 

Figure 5.28: Percentage distribution of Fu and Li’s F per gene for the 472 sampled effectors, 

transmembrane genes and KOGs. The effectors show a slightly elevated number of genes with Fu 

and Li’s F less than -1.05. 
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Figure 5.29: Percentage distribution of Fu’s F per gene for the 472 sampled effectors, 

transmembrane genes and KOGs. The effectors show an elevated number of genes with Fu’s F 

greater than 4.41 and a secondary peak around 5.33. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0%

5%

10%

15%

20%

25%

30%

P
e

rc
e

n
ta

ge
 

Fu's Fs 

Percentage distribution of Fu's Fs 

Effectors

Transmembrane genes

KOGs



162 

5.3.6.4 dN/dS – yn00 and codeml 

The distribution of the dN/dS values as calculated by codeml show a clear secondary peak 

around 0.75 to 2.5 for effectors (fig 5.30). While this would be considered a modest value 

for dN/dS if inferring positive selection, the peak is clear and distinct from the other genes. 

The distribution of dN/dS values as calculate by yn00, does not have this same peak but 

instead  has a few effectors with a dN/dS of greater than 1 (fig 5.31). This suggest that 

codeml is more suited to identify the selection acting on effectors, compared to yn00. This 

observation also suggest that the analysis done by Haas et al. (2009), which used yn00, 

may not be optimal. 

 

 

 

Figure 5.30: Percentage distribution of dN/dS calculated by codeml for the 472 sampled effectors, 

transmembrane genes and KOGs. There is a clear peak between 0.75 and 2.5 for the effector 

genes, while the other genes follow exponential decay. 
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Figure 5.31: Percentage distribution of dN/dS calculated by yn00 for the 472 sampled effectors, 

transmembrane genes and KOGs. There is a peak that was identified by codeml is not present, 

but on closer inspection it can be seen that a small number of effectors have a dN/dS value 

greater than 1. 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0.00 0.20 0.40 0.60 0.80 1.00 2.00 3.00 4.00 5.00 7.00

P
e

rc
e

n
ta

ge
 

Dn/Ds (yn00) 

Percentage distribution of Dn/Ds (yn00) 

Effectors

Transmembrane genes

KOGs

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0.00 0.20 0.40 0.60 0.80 1.00 2.00 3.00 4.00 5.00 7.00

P
e

rc
e

n
ta

ge
 

Dn/Ds (yn00) 

Percentage distribution of Dn/Ds (yn00) 

Effectors

Transmembrane genes

KOGs



164 

5.3.6.5 PAML evolutionary models 

The distributions of the likelihoods of the different sets of genes following the various 

PAML evolutionary models look very similar (fig 5.32; fig 5.33; fig 5.34). While the M3-M0 

model comparison has the most similar distribution for the different genes, the M2a-M1a 

and M8-M7 model comparisons contain fewer effectors in the main peak (where positive 

selection is not implied), and slightly more genes distributing for higher likelihood values of 

being positively selected. 

 

 

 

Figure 5.32: Percentage distribution of 2 * ln (M2a –M1a) model comparison likelihoods for the 

472 sampled effectors, transmembrane genes and KOGs. 
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Figure 5.33: Percentage distribution of 2 * ln (M3 –M0) model comparison likelihoods for the 472 

sampled effectors, transmembrane genes and KOGs. 

 

 

 

Figure 5.34: Percentage distribution of 2 * ln (M8 –M7) model comparison likelihoods for the 472 

sampled effectors, transmembrane genes and KOGs. 
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5.3.6.6 Genes evolving like effectors 

In order to identify the genes evolving like effectors, one must understand information 

about known effectors. Since we are analysing within-species data and not between-

species data, more robust inferences can be made from statistics generated from DNAsp 

rather than PAML. The DNAsp statistics for the 3 known Hpa effector genes, ATR1, ATR13 

and ATR5 are shown in table 5.16.  
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ATR1 12 62 64 5 0.2156 n.s. 1.6512 **   1.452 #    8.821 

ATR13 10 15 15 3 0.3358 n.s. 1.5205 **   1.3815 n.s. 5.4 

ATR5 16 21 25 8 
-

1.2807 n.s. 
-

0.5893 n.s. 
-

0.9041 n.s. 0.144 

Table 5.16 – DNAsp neutrality statistics for ATR1, ATR13 and ATR5 

 

Analysing the 3 known effectors with DNAsp neutrality tests it can be seen that ATR5 has 

no significant test scores. ATR1 and ATR13 have high scores for Fu & Li’s D* and F*, and 

Fu’s Fs. They also have positive values for Tajima’s D. It is interesting to note that the 

number of sequences sampled is 10 and 12 – this means that there were 5 and 6 races (of 

8) for which sequences could be analysed. All the genes were filtered using the following 

criteria: 

 

 Fu’s Fs > 4 

 Fu & Li’s F* > 1 

 Fu & Li’s D* > 1.2 

 Tajima’s D > 0 

 Number of samples (n) < 14 

 

15 genes meet these criteria (table 5.17). 13 of the 15 genes are predicted to be secreted 

and 9 are highly similar to, or are predicted to be Hpa effectors. There are 3 groups of 

homologous genes. One group, containing genes 808594, 808490 (the most distant) and 

eff_g11324, are amongst the genes with the highest values of Fu’s Fs. They also show 

homology to Phytophthora effectors, but have lost the RXLR motif as shown in an 

alignment with PiTG_09732, and RXLR effector gene from P. infestans (fig 5.35). This could 

suggest that there is strong selection against the effector so it lost the hypothetical RXLR 

translocation mechanism, or that the RXLR motif is not required for translocation but 
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instead a more general conserved region is required for translocation. The second group of 

homologous secreted proteins, containing genes803332, 802865, 

pasa_gi_SuperContig14_289 and eff_g17825, are all annotated effectors or effectors 

homologs. The third set of homologous effectors was ATR1 and ATR13 which shared 

distant homology over the first 100 amino acids. There were 3 genes that were not 

predicted to be secreted. One of the non-secreted genes, 811161, showed homology to 

Phytophthora choline/Carnitine O-acyltransferase, which was also confirmed by 

InterproScan predictions. Another non-secreted gene, 903729, was homologous to 

Phytophthora tRNA nucleotidyltransferase, again confirmed by InterproScan predictions. 

The last of the non-secreted genes, ceg_gi_SuperContig67_104, was homologous to 

myosin-like proteins. Myosins are a family of ATP-dependent motor proteins and are 

responsible for actin-based motility (Wessells et al., 1971). Interestingly, InterproScan 

results revealed that the gene contained a Phox homologous domain which a molecular 

function of phosphoinositide binding. It has recently been suggested that oomycete RXLR 

motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (Kale et al., 

2010). This could suggest that ceg_gi_SuperContig67_104 could also be involved in the 

virulence mechanism. 
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808594 HaRxLL38_like S 14 36 36 4 1.2 1.6 1.7 10.3 Pitg_09732 (RXLR) - Lost RxLR + 

ATR1_Emoy2 ATR1 S 12 62 64 5 0.2 1.7 1.5 8.8 ATR1 $ 

808490   S 8 61 64 4 1.2 1.7 1.7 8.4 Pitg_09732 (RXLR) - Lost RxLR + 

eff_g11324   S 14 34 34 5 1.4 1.6 1.8 7.7 
Avh153a1 (Ps); PITG 15110 (RxLR); 
Pitg_09732 (RXLR) - Lost RxLR 

+ 

809253 HaRxL95 S 14 18 18 4 1.4 1.5 1.7 6.2 Avh347 (Ps)   
807906 HaRxLL434 S 12 16 16 3 0.2 1.5 1.3 6.1 HaRxL89 like   
803332 Emoy2cDNA_HpRXLR91 S 14 26 26 5 1.0 1.6 1.6 5.7 Emoy2cDNA_HpRXLR91 * 

802865 HaRxL53_like S 12 17 17 4 1.6 1.5 1.8 5.5 HaRxL56 like * 

811161     14 14 14 4 1.9 1.5 1.8 5.4 
Phytophthora choline/Carnitine O-
acyltransferase   

813534 ATR13 S 10 15 15 3 0.3 1.5 1.4 5.4 ATR13 $ 

803729     14 16 20 5 1.4 1.6 1.7 4.8 
tRNA nucleotidyltransferase (sojae 
and infestans)   

pasa_gi_SuperContig14_289 HaRxL53 S 12 14 14 4 1.5 1.5 1.7 4.5 HaRxL53 * 

eff_g17825 HaRxL78_like S 10 12 12 3 0.0 1.5 1.3 4.3 HaRxL78 like * 

802512   S 14 21 21 5 0.4 1.6 1.4 4.2 Conserved hypothetical protein   
ceg_gi_SuperContig67_104     8 11 11 3 0.9 1.5 1.5 4.0 myosin-like protein    
 

Table 5.17: List of genes showing similar values to those of ATR1 and ATR13 from DNAsp analysis.  

N = number of samples; S = number of segregation sites; Eta =  total number of mutations; BLAST 

= best blast results; Homologous? = shows homologous groups. 
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Figure 5.35: Sequence alignment of 3 highly evolving secreted Hpa genes with a P. infestans 

effector. The RXLR-EER amino acid motif region is highlighted in yellow. 

 

The gene models were searched to identify genes with a similar 5’ regions using BLASTp, 

but no genes were found. The family of 3 novel effector candidates identified using this 

method are similar to ATR5 in that they have lost the RxLR motif but maintain the EE motif. 

ATR5 was shown to contain the W-Y motif. I performed a hidden Markov model search 

using the HMM from Boutemy et al., (2011) which reveals that 2 of the homologous genes 

(eff_g11324 and 808594) also contain the W-Y motif. This strongly suggests that these 2 

genes are likely to be real effector candidates with possible. 

Pitg_09732      MRLYSIAFLVAVALLA--KVDRATPS--ELTTADY----PTLTHSITGRQNDVTPRLLRR 

eff_g11324      MRLHAIELWAALTLVSIEGDSAATAS--ELPAAKSRPPPPSSAYNSIDFQSEITSRKAES 

808594          MRLHAIELWAALTLVSIEGDSAATAS--ELPAAKSRPPPPSSAYNSIDFQSEITSRKAES 

808490          MRVHCLVFLASSALSA-RGDGVLEPADPDVAAPYSSSVARSLTENDNDNVPATMSFKSEG 

                **::.: : .: :* :    .   .:  ::.:.       : : .  .      .   .  

 

Pitg_09732      MEEDDEERGIGGTAISDLAAKLKSRTSSLVDKAVNLKAREMKAARAMRFGEIDDTLASSN 

eff_g11324      PAAISEER---GTDRVSFAASWIRQAAEVEDTAWTTRA-------------VDKLQLEDN 

808594          PAAISEER---GTDRVSFAASWIRQAAEVEDTAWTTRA-------------VDKLQLEDN 

808490          PVNDDERI---MTGVSSLVGKVQERIHTAVQ--------------------GEKQKTFNF 

                    .*.     *   .:...   :     :                     :.    .  

 

Pitg_09732      INNLITKLKEINDKNRLVK--------V-------SLLGTLTTKYGDDAVAAALVTAKRS 

eff_g11324      ISAAVLKLKSPTPLNKVLRIGNEKKPGV-------PLNEDSTERYALQNAVDDLVHASQS 

808594          ISAAVLKLKSPTPLNKVLRIGNEKKPGV-------PLNEDSTERYALQNAVDDLVHASQS 

808490          LAQSRTESNTQTFIENALKTKEWKALSVRYERSGGSMITPLLARYDCAEVARVLAPALKF 

                :     : :  .  :. ::        *       .:      :*    ..  *. * :  

 

Pitg_09732      ADS------PSVAQQIQKLQTEQLMK-WKDSGKSLGSVSKLLNFR---------YNRGLG 

eff_g11324      TSE------KE--KRIADMWWKQLCALFVRYDQPIAGVAELLNVD---------GLKGLT 

808594          TSE------KE--KRIADMWWKQLCALFVRYDQPIAGVAELLNVD---------GLKGLT 

808490          NKDGVLQLPKKPASVKEKLAVDMLKH-WGEEKRPIRTLFTDLELNVQTETSPLYYNLG-G 

                 ..       .  .   .:  . *   :    :.:  :   *:.             *   

 

Pitg_09732      QKFQVLDEYAKLVKQS-DDTLLTTLIKSVGGEDNLGGVLYGARTNSAATKNKATKLENIL 

eff_g11324      EKLEMLKYYIGVSPTSGPNTFLETMTANLGSEKDLVSFIGRAKLNDDVER-RATELEGLQ 

808594          EKLEMLKYYIGVSPTSGPNTFLETMTANLGSEKDLVSFIGRAKLNDDVER-RATELEGLQ 

808490          SRMRVLEAYRQYAKID-DQSYLDAVKTGFGGKTIFLEHLGNAKTFWNTAD-KADELEKIA 

                .::.:*. *      .  :: * ::  ..*.:  :   :  *:    .   :* :** :  

 

Pitg_09732      IERWTRGEQLPANVFQWLRLSGDVDDAFTASNLNRFMKYVDDFNAKNPGQKKPVLKLYTQ 

eff_g11324      IAKWQAENKDPVELLNSMQMDKSM-DALISPALYTVMKYIAEHNLEHPDKKFSVLTPVRE 

808594          IAKWQAENKDPVELLNSMQMDKSM-DALISPALYTVMKYIAEHNLEHPDKKFSVLTPVRE 

808490          L---NTPSLNPLDVLKKTKPNSLRELIFDTDTFRLVSKYVE----ANPARKTTVLKVMMD 

                :      .  * ::::  : .      : :  :  . **:      :* :* .**.   : 

  

Pitg_09732      AFG-DAPVMRKLLSAMDDSTTNVA---AKKLLVE--RGVQKDNQSLGSMLRALNIDINQP 

eff_g11324      RLG-DTHVMGALVAARSNGQSKVTEGFANELLSEMKKLWKGEGKSKREFLAA-------- 

808594          RLG-DTHVMGALVAARSNGQSKVTEGFANELLSEMKKLWKGEGKSKREFLAA-------- 

808490          SLGGEAHLLQALADFR----GKPTDAWLSCRLALFNQWRTTDKVTSTSGLQ--------- 

                 :* :: ::  *         : :    .  *    :    :  :  . *           

 

Pitg_09732      TSIVNQKIDVLEQLAEVKEVRQVFIKAMSTQVGGNKMLAKILEGAEAATLQKKQFATWIG 

eff_g11324      -----------SGLLDGQERKK----------------KK----------KKKK------ 

808594          -----------SGLLDGQERRNGIPGSASQRVTGCTVFSS----------TKRKF---VP 

808490          --------DRLNSLSDAKQKRR-------------------------------------- 

                           . * : :: :.                                       

 

Pitg_09732      EGVTPENFWKMIYKTETASNPVEEKIMAKFTAFYQSQKPGN------------------- 

eff_g11324      ----------------------------------------NWAKHR--AKHELKRN---- 

808594          EGDVPME--TVMYRAAEATR-VEVKPCRELGLFFRGSAHPKLGDHRFICTDDMQRGQSAS 

808490          -------------------------ITRMYTAFFEGHQ*--------------------- 

                                                                             

 

Pitg_09732      ------------------ 

eff_g11324      ------------------ 

808594          FARRRPFPVTYSFCATL* 

808490          ------------------ 
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5.4 Summary 

In this chapter I presented the VariTale pipeline. While there are a number of pipelines 

that are able to identify synonymous and non-synonymous mutations in coding regions 

(Cingolani, 2011; Schneeberger et al., 2009), there are no pipelines that are able to make 

evolutionary inferences from resequencing data. The method builds on pervious manual 

methods used by Haas et al. (2009) and extends these methods to additionally consider: 

 

 Breadth of coverage 

 INDELs 

 CNV 

 Haplotype information 

 Divergence from neutral evolution 

 dN/dS calculations using codeml 

 PAML evolutionary model analysis 

 

I have shown that the Poisson distribution can be used to model coverage at varying read 

depths in Hpa, confirming previous findings (Xie and Tammi, 2009). 

 

I also showed that the use of Stampy to align discordant read pairs improves the number 

of reads mapped to the genome by 3.72%, allowing for better variant calling. The 

alignment of 8 races of Hpa to the reference genome has revealed regions of the genome 

that have variable breadth and relative depths of coverage indicating duplicated, missing 

and hemizygous regions in the genome. The alignment has also revealed a number of 

caveats of the Hpa Emoy2 v8.3 genome assembly, in regions that are not covered by reads 

and therefore may be contamination, and other regions that have been collapsed. 

 

I have shown that the number of variant calls differs between Hpa races, while they show 

consistency in their difference from the reference strain for the variant types. I have 

reported the homozygous and heterozygous SNPs, INDELs and their protein coding effects. 

The analysis revealed a 1:1 ratio insertions to deletions within each race which suggests an 

equal rate of insertion and deletion accumulation. A nucleotide composition equilibrium 

was revealed by analysing the rate of nucleotide mutations. We found that A/T  C/G 

mutations account for ~65% of all mutations. I also observed that the ratio of SNPs on 
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exons to introns was 3:1, and the ratio of SNPs on coding regions to non-coding regions 

was 1:1 for most Hpa races. 

 

I presented the protein coding effects of the variation on the genes. An elevated level of 

non-synonymous to synonymous SNPs (3.5:1) was observed, suggesting that there is 

evolutionary pressure acting to change gene functionality. I observed an 

overrepresentation of INDELs that lead to codon insertions and deletions, and the same 

overrepresentation is maintained for net INDEL length over coding regions of genes.  

 

I also characterised the effect of SNPs on Hpa genes in an evolutionary framework, 

analysing divergence from neutrality and directional selection using DnaSP and PAML. I 

showed that at least 10 haploid samples are required for reliable analysis of this nature. I 

also revealed differences in the dN/dS calculations between yn00 and codeml, which may 

reveal additional information about selection on genes that is not always analysed. 

 

This analysis has allowed for high-throughput characterisation of effectors, revealing that 

effector genes are likely to have a high number of segregating sites and total number of 

mutations, a higher Fu’s F statistic and exhibit higher dN/dS values compared to 

transmembrane genes and KOGs. I also show that amongst the 15 genes showing signs of 

accelerated evolution sharing traits with ATR1 and ATR13, there are 12 secreted genes of 

which 11 are homologous to known effectors, providing further evidence that effectors 

are amongst the fastest evolving group of effectors.   In these 12 effector like genes, there 

were 3 genes that show homology to Phytophthora effectors and share the classical 

characteristics of an effector but do not have an RXLR motif. This suggests that these may 

have been selected against as being effectors in Hpa, or that the RXLR motif is a 

specialisation of a more general effector motif. If it is the case that these genes are real 

effectors, they may contribute to understanding the effector translocation mechanism in 

Hpa and other oomycetes. 
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Chapter 6 – General discussion and outlook 

6.1 Modern day genome assembly 

Genome assembly projects were expensive and time consuming. The onset of second 

generation sequencing has enabled the transition into a new era of genomics. Traditionally 

genome assemblies have employed Sanger sequencing technologies, but the trend is 

moving towards the usage of short read assemblies for small genomes (Farrer et al., 2009) 

and complex eukaryotic genomes alike (Li et al., 2010; Kemen et al., 2011). While the 

accuracy and length of Sanger sequenced reads are far superior to all second generation 

sequencing technologies, the cost and throughput of second generation sequencing 

techniques have enabled it to become the main contributor of genome sequences in data 

repositories.  

 

In chapter 3 I described a pseudo-hybrid genome assembly method that was employed for 

the Hpa genome assembly. This hybrid approach makes use of the advantages of 2 

different technologies: the read length and accuracy of Sanger reads, to resolve complex 

regions and optimise contiguity, and the depth of Illumina sequencing, to correct 3520 

sequencing errors and provide an additional 4 Mb of Hpa sequence. It would also have 

been possible to combine two different second generation sequencing technologies, 

utilising the longer reads of 454 sequencing in combination with the high throughput of 

Illumina. By combining 2 sequencing technologies I have demonstrated that their strength 

can be combined and the weaknesses of the individual technologies can be overcome. The 

weaknesses in the technologies does not only include the previously mentioned read 

length, accuracy, throughput and cost but also other factors, which are not often 

considered, such as limitations in library preparation, bias in the sequencing methods and 

contamination. I have shown that an additional 4 Mb of sequence in the Hpa genome 

assembly was discovered using Illumina reads and Velvet assembly. Within these 4 Mb, 

there are genes that do not have homology to any other known sequence – these could be 

genomic regions truly unique to Hpa or could be highlighting a limitation of the previous 

sequencing technologies. While in-depth analysis was not performed on genomic regions 

that were present in the Sanger sequence but not the Illumina sequence, it is possible that 

during fragment size selection certain genomic regions did not fractionate to the selected 
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size due to the physical properties of the DNA. By using this hybrid method I also showed 

that contamination in the reads can be identified.  

 

Genome sequencing projects thus far do not usually consider heterozygous variation 

within the organism. I have shown that analysing heterozygosity in a single organism can 

reveal insights into interesting aspect of biology and provide naïve estimates of selective 

pressure. In chapter 1 I discovered that effector genes were 5 times more heterozygous 

than other genes, from which I hypothesised that effector genes are accumulating 

mutations due to selection pressures, which I prove later in chapter 5. 

 

The method described in chapter 3 was not what I consider a true hybrid assembly, since 

both sequencing technologies were not used from the start of the assembly, but rather the 

Illumina sequencing was used to improve the existing Sanger assembly. Although the 

method did add 4 Mb of new sequence, it had the limitation that it was based on an 

existing assembly and may not be able to resolve complex errors. One such error is 

collapsed regions in the genome. These regions can be identified by a higher than 

expected depth of coverage of Illumina reads over a genomic region, but they cannot be 

resolved easily using this technology. I have been able to identify a number of genomic loci 

where gene paralogues have been collapsed into a single region due to high sequence 

similarity, including the HaRxL79 gene family (data not shown). This gene family was 

assembled correctly in previous versions of the genome, but was collapsed in the v7 

assembly, on which the v8.3 assembly was based. I have attempted to assemble the Hpa 

genome de novo using a hybrid assembly program, Mira3 (Chevreux et al., 2004). With this 

method I was able to correctly assemble the HaRxL79 gene family, but at the expense of 

genome contiguity (results not shown). There is also additional complexity in that Hpa 

Emoy2 is a heterozygous wild organism with variation between the parental haploid 

genomes. Since resolving collapsed repeats using Illumina sequencing is not a trivial 

computational problem and programs do not exist to resolve this issue, I did not include 

this problem in the scope of my project. 

 

DNA sequencing techniques are improving at an ever faster rate. At the start of my project 

the 3 major second generation sequencing technologies were Solexa, 454 and SOLiD. 

During the project, the evolution of the sequencing machine saw transitions from the 

Solexa to the Illumina Genome Analyser (GA), to the Genome Analyser 2 (GA2), to the 

Genome Analyser 2x (GA2x). Illumina now also has 4 other sequencing machines in 
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addition to the GA2x – the MiSeq, HiSeq1000, HiSeq2000 and HiScanSQ. There has also 

been an increase in the number of sequencing technologies: single molecule sequencing, 

nanopore sequencing, ion semiconductor sequencing and DNA nanoball sequencing. While 

the rate of emergence and availability of all these sequencing technologies is further 

empowering the genomics era, enabling projects such as the 1000 genomes and 1001 

genomes projects, it does make for a very dynamic current best practice. 

6.2 The nature of obligate biotrophy 

In chapter 4 I used Sanger sequenced ESTs and Illumina sequenced cDNA to assist with 

gene model prediction and evaluation. With the semi-automated combining of gene 

predictions from 6 methods, over 3 iterations of improvement, we establish the current 

Hpa gene models. While the gene models are dependent on the caveats of the genome 

sequence (e.g. not correctly predicting genes in the collapsed regions of the genome), they 

are the most complete to date, based on the expression data available to us.  

 

With these gene models we were able to make inferences about obligate biotrophy. The 

current dogma dictates that obligate biotrophy is caused by a combination of a loss of 

biosynthetic pathway elements and the acquisition of mechanisms that facilitate growth 

on a host by evading recognition, suppressing defence and/or reprogramming nutrient 

trafficking (Kemen et al., 2011). With the Hpa gene models we were able to identify 

impaired nitrogen and sulphur assimilation pathways, which explains the obligate 

biotrophic nature of Hpa (Baxter et al., 2010). Similar observations of impaired nitrogen 

and sulphur metabolism were made by Duplessis et al. (2011) in the obligate biotrophic 

rust fungi, Melamspora larici-populina, and Kemen et al. (2011) in the obligate biotrophic 

white rust oomycete, A. laibachii, which are remarkable observation of independent 

convergent evolution towards obligate biotrophy. While many families of virulence related 

proteins that are present in Phytophthoras are also in Hpa, we see a dramatic reduction 

(or an expansion in Phytophthora species) in the number of genes encoding for RxLR 

effectors and other classes of virulence related proteins. There is further evidence that 

Hpa evolves toward a biotrophic lifestyle in the loss of pectin meythyl esterases, which 

have been implicated in host cell wall modification (Pelloux et al., 2007), and may be 

involved in triggering host defence. It is also interesting to note that while some of the 

more closely related species to Hpa such as Phytophthora and Pythium are able to induce 

host necrosis, Hpa shares many traits with biotrophic fungi that have lost degradative 
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enzymes and nitrogen and sulphur assimilation pathways (Kamper et al., 2006; Martin et 

al., 2008; Spanu et al., 2010). This suggests independent but convergent evolution toward 

obligate biotrophy in both fungal and oomycete lineages. 

 

The onset of the genomics era has shed new light on obligate biotrophy in recent years, 

and with more genome sequences becoming available there is the scope to investigate 

further the relationship between saprotrophy, necrotrophy, hemi-biotrophy, biotrophy, 

commensalism and mutualistic symbiosis. 

6.3 High throughput analysis of evolutionary signatures 

The signature of evolution appears as variation in the genome, so identifying and analysing 

sequence variation allows us to elucidate evolutionary mechanisms acting on the genome, 

genomic regions and genes of interest. Newer sequencing technologies have led to 

unprecedented levels of sequence data generation. Tools to analyse this type of data have 

progressed from being able to identify SNPs to presence/absence polymorphisms, INDELs, 

recombination, CNV, and most recently the ability to infer the protein coding effect of 

SNPs. In chapter 5, I took this a step further and put the predicted sequence variation into 

an evolutionary context in an automated pipeline termed VariTale. While studies exist 

where dN/dS is calculated using yn00 from the PAML package (Haas et al., 2009) the 

VariTale pipeline considers more tests including tests to resolve parental haplotypes, 

neutral evolutionary models and nucleotide divergence using DnaSP, and PAML selection-

based evolutionary models.  

 

Among existing programs used to test for selection (Tamura et al., 2011), DnaSP has the 

most functionality for testing for neutrality and nucleotide divergence and PAML 

implements the most sophisticated evolutionary selection models. The inclusion of DnaSP 

in the pipeline is not ideal, due to its inability to resolve phased data in the batch 

processing mode, the issue of cross platform compatibility (DnaSP runs only on Microsoft 

Windows, while PAML runs on all platforms), and most importantly its semi-automated 

running procedure require manual intervention making it impossible to script the entire 

pipeline. Ideally I would implement my own methods to perform the neutrality and 

divergence tests, but this would require significantly more time investment. 
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While these types of hypothesis testing are insightful, it is important to have a sufficiently 

large sample size to generate robust and meaningful results. My analysis revealed that 

robust results are generated at a minimum of 5 diploid samples or, by extension, 10 

haploid samples, while there is little increase in robustness at more than 5 samples. 

Another unique feature of the VariTale pipeline is its ability to resolve parental haplotypes. 

This is a novel feature that has not previously been considered in second generation 

sequencing analysis. It is important that future resequencing analysis pays more attention 

to heterozygosity and treating diploid non-inbred wild organisms as 2 haploid samples to 

maximise the added value of high throughout sequencing in effectively providing twice as 

much population data. While I have implemented this method successfully for SNPs, I have 

yet to do so for INDELs. This was not attempted during the project as the INDEL prediction 

accuracy is significantly lower than the SNP prediction accuracy (data not shown). To 

improve INDEL prediction a better INDEL caller should be used. In this analysis I used the 

SAMtools pipeline. Using a program such as DINDEL (Albers et al., 2011), which 

reconstructs the genomic region around the potential INDEL to confirm whether it is real, 

would lead to more accurate INDEL calling and hence more reliable evolutionary 

inferences based on genes with predicted INDELs. Extending this further, it may be 

possible to reconstruct genes which have highly dissimilar regions, but identifying the 

region of interest, and then attempt a local assembly of the region, as was implemented in 

my genome improvement pipeline in chapter 3 inspired by Ossowski et al. (2008). This 

would improve the significance of the results as it enables comparison of genes from races 

that would otherwise have been left out of the analysis. 

 

6.4 Effector characterisation and evolution 

Despite the onset of the genomics era and the access to numerous genome assemblies of 

pathogens, it is not trivial to characterise effectors. In the oomycetes it was expected that 

effectors would be short secreted proteins carrying the RxLR domain (Birch et al., 2006). 

This was soon shown not to be the case for all oomycetes after it was found that the 

oomycete A. laibachii had CHxC effector genes (Kemen et al., 2011), suggesting that the 

RxLR motif is limited to the Peronosporales. However, the genome sequence of Pythium 

revealed that it also had genes encoding effector-like genes carrying the RxLR motif, 

suggesting that the Albugonales lost the ability to translocate effectors via the RxLR 

mechanism, or the RxLR translocation mechanism was gained in other oomycetes. The 
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comparative analysis of effectors both within as well as between species is complex. Two 

characterised effectors of Hpa, ATR1 and ATR13 carry the expected RxLR motif. However 

the most recently characterised Hpa effector, ATR5 (Bailey et al., 2011) carries a GRVR-EE 

domain, instead of the expected RXLR-EE. On closer analysis ATR5 carries the C-terminal W 

and Y domains (Jiang et al., 2008), which suggests that the RxLR motif may not be the main 

element involved in the translocation of effectors to the host. ATR5 despite not having 

sufficient evidence of divergence from neutrality did have 21 polymorphic sites, which is 

more than ATR13. It was also observed that ATR5 was present in full in all ecotypes tests. 

This could be because of (i) random choice of Hpa isolates sequenced (ii) ATR5 being an 

essential effector that Hpa cannot lose, or (iii) that there is sufficient diversity in ATR5 to 

usually avoid recognition by the host thus not presenting significant negative selection 

pressure for loss of the gene.  

 

Despite only having identified 3 effectors in Hpa with avirulence function, we have been 

able to predict 141 ‘good’ candidate effectors among a list of 647 potential effector 

candidates. For the analysis performed in chapter 5 I increased the sample set of effectors 

to 472 candidates showing no negative traits of being an effector, as by doing so I was able 

to include ATR5, and its 2 homologs. Comparative analysis of the effectors, 

transmembrane genes and KOGs revealed that the majority of the genes in each set fall 

into similar distributions for the majority of evolutionary test statistics. However, there 

were significant subsets of effector genes that were different from the other genes, in 

number of segregating sites, total number of mutations and predicted number of 

haplotypes per gene, Fu’s Fs (Fu, 1997) and dN/dS as calculated by codeml. This is an 

improvement from describing effectors as polymorphic. Equally enlightening is that we 

observe many effector candidates that nevertheless do not have evidence for positive 

selection. This was observed repeatedly in the different evolutionary models tested. It is 

possible that different effectors are under different selection pressures – a subset of 

effectors may be functional but is not recognised by the host in which case they are 

selected for conservation while other effectors may be functional but do trigger an 

immune response in the host. This can be illustrated with examples from Fabro et al., 

(2011) who show that the candidate effectors contributing most to virulence include 

HaRxL66, for which Fu’s Fs is 5.6 (higher than ATR13, and suggesting positive selection), 

and HaRxL44, for which Fu’s Fs is 0.03 (no evidence for positive selection). In the co-

evolutionary system, the effectors that are recognised have additional selection pressures 

acting on them due to the epispastic interaction with the host. One would expect to see 
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these effectors in two forms in the Hpa population. One of those types of effectors 

includes those that are present in nearly all races due the effector being a key contributor 

to Hpa fitness. In this case it would be beneficial to keep the functionality of the effector 

but also have high levels of polymorphisms to avoid recognition in the host. The second 

form of effectors would be one with many presence/absence polymorphisms due to the 

effector being recognised in some accessions of the host. In this scenario it is possible that 

resistance gene alleles recognising this effector are in low frequency in the host population, 

so that there is significant enough negative selection to remove the effector from the 

pathogen population, with perturbation in the resistant gene frequency determining the 

frequency of the effector. In the extreme case where the majority of hosts are able to 

recognise the majority of alleles of the effector there may be enough negative selection 

pressure for complete loss of the effector. This type of analysis can only be performed 

when more avirulent effectors of Hpa have been identified. 

 

With this improved understanding of effector evolution, I analysed a set of genes sharing 

similar levels of high selection pressure with ATR1 and ATR13. 15 genes were identified, of 

which 12 were secreted and 11 shared homology to known effectors. Among the genes 

showing homology to effectors, there are 3 genes that also show homology to 

Phytophthora RXLR effector gene candidates, but do not carry the RXLR motif. This 

suggests that not all translocated effectors carry an exact RXLR motif, an interpretation 

supported by three other pieces of evidence. ATR5 does not carry the RXLR motif (Bailey et 

al., 2011). The RXLR motif is not present in the major class of candidate effectors in A. 

laibachii (Kemen et al., 2011), and in a recent study by Yaeno et al. (2011) the 

phosphatidylinositol monophosphate mediated translocation system suggested by Kale et 

al. (2010) is not dependent on the RxLR motif but instead on a positive charged region 

found downstream of the RxLR corresponding to the W and Y motif regions, that is also 

present in ATR1, ATR5 and 2 of the 3 homologs of the Phytophthora effector genes 

(808594 and eff_g11324). This strongly suggests that genes 808594 and eff_g11324, and 

their P. infestans homologs, are real effectors and they provide an exciting opportunity to 

investigate a novel class of effector genes and help unravel the nature of effector 

translocation into the host. 
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Appendices 

Appendices for Chapter 2 

Appendix table 2.1: Cluster density of paired end reads 

FlowCell ID Lane Hpa race pM Clusters Clusters/pM 

ID62 Lane 1 Hpa Waco9 6 107 17.8 

ID62 Lane 2 Hpa Hind2 6 119 19.8 

ID62 Lane 3 Hpa Emco5 6 116 19.3 

ID64 Lane 1 Hpa Hind2 6 87 14.5 

ID64 Lane 2 Hpa Hind2 6 77 12.8 

ID64 Lane 3 Hpa Hind2 6 89 14.8 

ID64 Lane 5 Hpa Emco5 6 83 13.8 

ID64 Lane 6 Hpa Emco5 6 83 13.8 

ID64 Lane 7 Hpa Emco5 6 82 13.7 

ID64 Lane 8 Hpa Emoy2 6 69 11.5 

ID66 Lane 3 Hpa Emoy2 6 74 12.3 

ID69 Lane 1 Hpa Emoy2 6 82 13.7 

ID69 Lane 2 Hpa Emoy2 6 71 11.8 

ID69 Lane 3 Hpa Emoy2 6 66 11.0 

ID69 Lane 5 Hpa Emoy2 6 85 14.2 

ID69 Lane 6 Hpa Cala2 6 99 16.5 

ID69 Lane 7 Hpa Cala2 6 100 16.7 

ID69 Lane 8 Hpa Cala2 6 91 15.2 

ID71 Lane 1 Hpa Cala2 6 93 15.5 

ID71 Lane 2 Hpa Maks9 6 79 13.2 

ID71 Lane 3 Hpa Maks9 6 87 14.5 

ID71 Lane 5 Hpa Maks9 6 86 14.3 

ID74 Lane 1 Hpa Noco2 6 ? ? 

ID74 Lane 2 Hpa Noco2 6 ? ? 

ID74 Lane 3 Hpa Noco2 6 ? ? 

ID74 Lane 5 Hpa Noco2 6 ? ? 

ID74 Lane 8 Hpa Maks9 6 ? ? 

ID75 Lane 1 Hpa Waco9 6 91 15.2 

ID75 Lane 2 Hpa Waco9 6 94 15.7 

ID75 Lane 3 Hpa Waco9 6 91 15.2 

ID75 Lane 5 Hpa Waco9 6 96 16.0 

ID75 Lane 6 Hpa Waco9 6 94 15.7 

ID79 Lane 2 Hpa Emoy2 6 69 11.5 

ID79 Lane 3 Hpa Emoy2 6 70 11.7 

ID80 Lane 1 Hpa Noco2 6 81 13.5 

ID80 Lane 2 Hpa Noco2 6 76 12.7 

ID80 Lane 3 Hpa Cala2 6 61 10.2 

ID87 Lane 3 Hpa Waco9 8 78 9.8 

ID87 Lane 4 Hpa Waco9 8 74 9.3 

ID87 Lane 5 Hpa Hind2 8 67 8.4 

ID87 Lane 6 Hpa Hind2 8 69 8.6 

ID87 Lane 7 Hpa Hind2 8 70 8.8 

ID88 Lane 1 Hpa Emco5 9 99 11.0 

ID88 Lane 2 Hpa Emco5 9 101 11.2 
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ID88 Lane 3 Hpa Emco5 9 101 11.2 

ID88 Lane 4 Hpa Emco5 9 106 11.8 

ID88 Lane 5 Hpa Hind2 9 106 11.8 
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Appendix table 2.2: Reads Summary 

Date ID Lane PE/SE Insert Size Race Type Concentration Length Number of Reads Total bases sequenced 

2007-09-19 ID19 6 SE 

 

emoy2 cdna 4.5pM 35 939,355 32,877,425 

2007-09-19 ID19 7 SE 

 

emoy2 cdna 4.5pM 35 1,153,202 40,362,070 

2007-10-02 ID21 7 SE 

 

emoy2 cdna 5pM 35 429,007 15,015,245 

2007-10-02 ID21 8 SE 

 

emoy2 cdna 5pM 35 503,955 17,638,425 

2007-10-11 ID23 7 SE 

 

emoy2 cdna 5pM 35 1,029,001 36,015,035 

2007-10-11 ID23 8 SE 

 

emoy2 cdna 5pM 35 1,946,103 68,113,605 

2008-01-23 ID32 8 SE 

 

emoy2 cdna 5pM 35 2,548,409 89,194,315 

2008-10-22 ID62 1 PE 334.305772 +/- 45.584579 waco9 dna 6pM 36 16,685,148 600,665,328 

2008-10-22 ID62 2 PE 352.198133 +/- 43.512337 hind2 dna 6pM 36 18,790,428 676,455,408 

2008-10-22 ID62 3 PE 359.373364 +/- 48.609409 emco5 dna 6pM 36 18,497,806 665,921,016 

2008-11-03 ID64 1 PE 348.531576 +/- 46.663678 hind2 dna 6pM 36 13,339,720 480,229,920 

2008-11-03 ID64 2 PE 348.368804 +/- 47.207299 hind2 dna 6pM 36 11,995,426 431,835,336 

2008-11-03 ID64 3 PE 348.436872 +/- 47.151158 hind2 dna 6pM 36 14,346,168 516,462,048 

2008-11-03 ID64 5 PE 355.161022 +/- 53.034060 emco5 dna 6pM 36 13,642,658 491,135,688 

2008-11-03 ID64 6 PE 355.096081 +/- 53.164785 emco5 dna 6pM 36 13,705,996 493,415,856 

2008-11-03 ID64 7 PE 355.052176 +/- 53.120832 emco5 dna 6pM 36 13,377,394 481,586,184 

2008-11-03 ID64 8 PE 339.052529 +/- 43.744176 emoy2 dna 6pM 36 11,044,778 397,428,480 

2008-11-14 ID66 3 PE 338.813991 +/- 43.742254 emoy2 dna 6pM 36 12,340,546 443,439,000 

2008-12-02 ID69 1 PE 338.685350 +/- 43.706918 emoy2 dna 6pM 36 12,997,822 458,173,584 

2008-12-02 ID69 2 PE 338.568591 +/- 44.134278 emoy2 dna 6pM 36 11,107,194 399,083,112 

2008-12-02 ID69 3 PE 338.675867 +/- 43.822840 emoy2 dna 6pM 36 10,424,806 352,597,320 

2008-12-02 ID69 5 PE 338.877557 +/- 43.778193 emoy2 dna 6pM 36 13,791,734 495,940,896 

2008-12-02 ID69 6 PE 327.371724 +/- 46.945084 cala2 dna 6pM 36 14,797,458 532,708,488 

2008-12-02 ID69 7 PE 327.443553 +/- 46.651466 cala2 dna 6pM 36 14,879,458 535,660,488 

2008-12-02 ID69 8 PE 327.378922 +/- 46.903094 cala2 dna 6pM 36 12,956,184 466,422,624 
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Appendix table 2.2: Reads Summary 
 

Date ID Lane PE/SE Insert Size Race Type Concentration Length Number of Reads Total bases sequenced 

2008-12-12 ID71 1 PE 327.043908 +/- 46.746053 cala2 dna 6pM 36 12,591,470 453,292,920 

2008-12-12 ID71 2 PE 333.627462 +/- 39.240630 maks9 dna 6pM 36 11,398,246 410,336,856 

2008-12-12 ID71 3 PE 333.914869 +/- 38.790438 maks9 dna 6pM 36 12,808,634 461,110,824 

2008-12-12 ID71 5 PE 334.095602 +/- 38.827157 maks9 dna 6pM 36 12,943,886 465,979,896 

2009-01-05 ID74 1 PE 336.995617 +/- 34.091977 noco2 dna 6pM 36 12,692,042 456,913,512 

2009-01-05 ID74 2 PE 337.123654 +/- 34.208484 noco2 dna 6pM 36 13,959,594 502,545,384 

2009-01-05 ID74 3 PE 337.087019 +/- 34.268842 noco2 dna 6pM 36 14,078,192 506,814,912 

2009-01-05 ID74 5 PE 337.310454 +/- 34.094262 noco2 dna 6pM 36 14,282,786 514,180,296 

2009-01-05 ID74 8 PE 334.466367 +/- 37.941812 maks9 dna 6pM 36 13,410,342 482,772,312 

2009-01-12 ID75 1 PE 330.821535 +/- 50.870072 waco9 dna 6pM 36 13,330,010 479,880,360 

2009-01-12 ID75 2 PE 330.629955 +/- 51.417488 waco9 dna 6pM 36 14,006,684 504,240,624 

2009-01-12 ID75 3 PE 329.992848 +/- 52.163552 waco9 dna 6pM 36 9,837,618 354,154,248 

2009-01-12 ID75 5 PE 331.021138 +/- 50.880626 waco9 dna 6pM 36 13,552,462 487,888,632 

2009-01-12 ID75 6 PE 331.167094 +/- 51.013012 waco9 dna 6pM 36 14,329,742 515,870,712 

2009-02-16 ID79 2 PE 339.291135 +/- 42.760396 emoy2 dna 6pM 36 13,849,592 498,585,312 

2009-02-16 ID79 3 PE 339.348849 +/- 42.578734 emoy2 dna 6pM 36 14,059,650 506,147,400 

2009-02-17 ID80 1 PE 337.236591 +/- 33.780184 noco2 dna 6pM 36 16,274,756 585,891,216 

2009-02-17 ID80 2 PE 337.119928 +/- 33.892590 noco2 dna 6pM 36 14,117,014 508,212,504 

2009-02-17 ID80 3 PE 327.009732 +/- 46.690504 cala2 dna 6pM 36 9,715,162 349,745,832 

2009-04-15 ID87 3 PE 332.110200 +/- 50.398237 waco9 dna 8pM 36 14,153,536 509,527,296 

2009-04-15 ID87 4 PE 331.922077 +/- 50.975731 waco9 dna 8pM 36 13,976,824 503,165,664 

2009-04-15 ID87 5 PE 349.398150 +/- 46.992682 hind2 dna 8pM 36 13,518,100 486,651,600 

2009-04-15 ID87 6 PE 349.466094 +/- 46.938720 hind2 dna 8pM 36 13,838,710 498,193,560 

2009-04-15 ID87 7 PE 349.527070 +/- 46.807906 hind2 dna 8pM 36 14,034,950 505,258,200 

2009-04-21 ID88 1 PE 355.199558 +/- 53.455711 emco5 dna 9pM 36 16,440,814 591,869,304 

2009-04-21 ID88 2 PE 355.669794 +/- 52.755553 emco5 dna 9pM 36 16,900,940 608,433,840 

2009-04-21 ID88 3 PE 355.876003 +/- 52.436018 emco5 dna 9pM 36 16,038,510 577,386,360 
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Appendix table 2.2: Reads Summary 

 

Date ID Lane PE/SE Insert Size Race Type Concentration Length Number of Reads Total bases sequenced 

2009-04-21 ID88 4 PE 355.857802 +/- 52.516396 emco5 dna 9pM 36 15,969,604 574,905,744 

2009-04-21 ID88 5 PE 349.195154 +/- 46.825088 hind2 dna 9pM 36 16,978,272 611,217,792 

2009-11-30 ID106 4 PE 356.988865 +/- 48.284072 emco5 dna 12pM 76 29,750,734 2,261,055,784 

2009-11-30 ID106 5 PE 328.725489 +/- 43.721368 cala2 dna 12pM 76 36,247,384 2,754,801,184 

2009-12-16 ID108 2 PE 338.662604 +/- 32.772048 noco2 dna 12pM 76 30,669,042 2,330,847,192 

2009-12-16 ID108 3 PE 335.986928 +/- 36.052768 maks9 dna 12pM 76 29,857,228 2,269,149,328 

 

42009 5 PE 291.462540 +/- 23.736702 emwa1 dna ? 76 18,662,002 1,418,312,152 

 

42009 6 PE 484.961356 +/- 48.770805 emwa1 dna ? 76 20,105,712 1,528,034,112 

 

42009 7 PE 484.938850 +/- 48.799756 emwa1 dna ? 76 13,729,394 1,043,433,944 

 

1E+05 6 PE 259.937447 +/- 38.686330 emwa1 dna ? 76 16,685,692 1,268,112,592 
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Appendix figure 2.1 FastQC Read statistics 

The FastQC read statistics are available in a separate Word and PDF document on the 

accompanying CD. 

  



184 

Appendices for Chapter 3 

Appendix table 3.1: Genome version history. Release history and assembly 

statistics for the H. arabidopsidis genome. * includes 35.5x nucleotide coverage 

by Illumina paired end reads 
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1 April 2006 1,053,419 - - - 1,053,419 70 8.0x   

2 April 2006 1,053,419 - - - 1,053,419 70 8.0x   

3 July 2007 1,055,973 18,814 - - 1,074,767 75 9.0x 2140 171 

4 November 2007 1,080,646 25,516 - - 1,106,162 75 9.2x 2073 174 

5 November 2007 1,080,646 25,516 - - 1,106,162 75 9.2x 2073 174 

6 December 2007 1,080,646 25,516 13,071 - 1,151,387 77 9.2x 1739 71 

7 August 2008 1,080,646 25,516 13,071 - 1,119,233 76.5 9.5x 1585 68 

Velvet February 2009 - - - 56,727,498 56,727,498 56.9 35.5x* 4429 742 

v8.3 September 2009 1,080,646 25,516 13,071 56,727,498 57,846,731 82 45x* 1783 75 

  
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Appendix table 3.2: Hpa Emoy2 Illumina reads 
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ID16 7 N  4pM 35 1,011,420     

ID16 8 N  4pM 35 499,363     

ID45 1 N  5pM 35 4,667,054 3,781,889 81.0%   

ID45 2 N  5pM 35 4,849,873 3,900,266 80.4%   

ID45 3 N  5pM 35 4,907,559 3,924,460 80.0%   

ID45 5 N  5pM 35 4,927,486 3,929,169 79.7%   

ID45 6 N  5pM 35 4,806,600 3,828,554 79.7%   

ID45 7 N  5pM 35 3,976,253 3,202,218 80.5%   

ID45 8 N  5pM 35 3,858,756 3,108,958 80.6%   

ID64 8 Y 339.052529 

+/- 43.744176 

6pM 36 11,039,680 10,371,172 93.9% 9,606,994 92.6% 

ID66 3 Y 338.813991 

+/- 43.742254 

6pM 36 12,317,750 11,577,286 94.0% 10,789,809 93.2% 

ID69 1 Y 338.685350 

+/- 43.706918 

6pM 36 12,727,044 11,983,134 94.2% 11,164,556 93.2% 

ID69 2 Y 338.568591 

+/- 44.134278 

6pM 36 11,085,642 10,421,860 94.0% 9,697,772 93.1% 

ID69 3 Y 338.675867 

+/- 43.822840 

6pM 36 9,794,370 9,208,542 94.0% 8,539,768 92.7% 

ID69 5 Y 338.877557 

+/- 43.778193 

6pM 36 13,776,136 12,969,038 94.1% 12,094,156 93.3% 

ID79 2 Y 339.291135 

+/- 42.760396 

6pM 36 13,849,592 13,013,004 94.0% 12,074,329 92.8% 

ID79 3 Y 339.348849 

+/- 42.578734 

6pM 36 14,059,650 13,126,898 93.4% 12,115,612 92.3% 

The non-paired reads were sequenced on the Illumina Genome Analyzer I and the paired 

end reads were sequenced on the Genome Analyzer 2 platforms. The total coverage of the 

H. arabidopsidis Emoy2 v8.3 assembly is 46.0x nucleotide coverage through 10.5x non-

paired read coverage and 35.5x nucleotide coverage through paired end reads. For the 

paired ends Y = yes and N = no.  
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Appendix table 3.3: List of genes used to evaluate assemblies 

gi|224993523|gb|ACN76441.1| heat shock transcription factor [Hyaloperonospora parasitica] 

gi|222144621|gb|ACM46122.1| MAP kinase [Hyaloperonospora parasitica] 

gi|209573498|gb|ACI62835.1| CFZ1-like protein [Hyaloperonospora parasitica] 

gi|171879818|gb|ACB55623.1| avirulence protein [Hyaloperonospora parasitica] 

gi|167047082|gb|ABZ10809.1| RXL96 [Hyaloperonospora parasitica] 

gi|152963459|gb|ABS50086.1| putative effector protein Avh341 [Hyaloperonospora parasitica] 

gi|108885465|gb|ABG23238.1| unknown [Hyaloperonospora parasitica] 

gi|93139267|gb|ABE99946.1| NADH dehydrogenase subunit 1 [Hyaloperonospora parasitica] 

gi|93139088|gb|ABE99881.1| beta-tubulin [Hyaloperonospora parasitica] 

gi|89146243|gb|ABD62107.1| cytochrome oxidase subunit II [Hyaloperonospora parasitica] 

gi|108885471|gb|ABG23241.1| putative small cys-rich protein [Hyaloperonospora parasitica] 

gi|108885467|gb|ABG23239.1| retrotransposon element [Hyaloperonospora parasitica] 

gi|108885463|gb|ABG23237.1| unknown [Hyaloperonospora parasitica] 

gi|108885461|gb|ABG23236.1| putative small cys-rich protein [Hyaloperonospora parasitica] 

gi|108885459|gb|ABG23235.1| putative membrane protein [Hyaloperonospora parasitica] 

gi|108885457|gb|ABG23234.1| putative membrane protein [Hyaloperonospora parasitica] 

gi|108885455|gb|ABG23233.1| unknown [Hyaloperonospora parasitica] 

gi|108885453|gb|ABG23232.1| putative N-acetyltransferase-like protein [Hyaloperonospora 

parasitica] 

gi|66934640|gb|AAY58912.1| putative 3-isopropylmalate dehydratase large subunit 

[Hyaloperonospora parasitica] 

gi|66934639|gb|AAY58911.1| putative F-actin capping protein [Hyaloperonospora parasitica] 

gi|66934638|gb|AAY58910.1| ras-like protein [Hyaloperonospora parasitica] 

gi|66934637|gb|AAY58909.1| putative RXLR protein 12I13.1 [Hyaloperonospora parasitica] 

gi|66934636|gb|AAY58908.1| putative methylene tetrahydrofolate dehydrogenase [Hyaloperonospora 

parasitica] 

gi|66934635|gb|AAY58907.1| putative dimeric dihydrodiol dehydrogenase [Hyaloperonospora 

parasitica] 

gi|66934634|gb|AAY58906.1| avirulence protein-like protein [Hyaloperonospora parasitica] 

gi|66934633|gb|AAY58905.1| putative Myb-like protein [Hyaloperonospora parasitica] 

gi|66934632|gb|AAY58904.1| avirulence protein [Hyaloperonospora parasitica] 

gi|66934628|gb|AAY58903.1| putative LON protease [Hyaloperonospora parasitica] 

gi|66934627|gb|AAY58902.1| putative CDC48/ATPase [Hyaloperonospora parasitica] 

gi|66934626|gb|AAY58901.1| putative BAX inhibitor [Hyaloperonospora parasitica] 

gi|66934624|gb|AAY58900.1| avirulence protein [Hyaloperonospora parasitica] 

gi|58042874|gb|AAW63774.1| PPAT5 [Hyaloperonospora parasitica] 

gi|58042862|gb|AAW63768.1| avirulence protein ATR13 [Hyaloperonospora parasitica] 

gi|34922241|gb|AAQ83522.1| cysteine rich [Hyaloperonospora parasitica] 

gi|34922215|gb|AAQ83519.1| unknown [Hyaloperonospora parasitica] 

gi|34922209|gb|AAQ83518.1| putative carboxylase [Hyaloperonospora parasitica] 

gi|34922199|gb|AAQ83517.1| putative dehydrogenase [Hyaloperonospora parasitica] 

gi|34922186|gb|AAQ83516.1| putative homogentisate 1,2-dioxygenase [Hyaloperonospora parasitica] 

gi|34922176|gb|AAQ83515.1| unknown [Hyaloperonospora parasitica] 

gi|34922153|gb|AAQ83514.1| putative ATPase [Hyaloperonospora parasitica] 

gi|34922145|gb|AAQ83513.1| unknown [Hyaloperonospora parasitica] 

gi|34922136|gb|AAQ83512.1| unknown [Hyaloperonospora parasitica] 

gi|34922130|gb|AAQ83511.1| putative carboxyltransferase [Hyaloperonospora parasitica] 

gi|34922121|gb|AAQ83510.1| putative beta-glucosidase [Hyaloperonospora parasitica] 

gi|34922115|gb|AAQ83509.1| putative fatty acid synthase alpha subunit [Hyaloperonospora 

parasitica] 

gi|34922091|gb|AAQ83506.1| putative serine/threonine protein kinase [Hyaloperonospora 

parasitica] 

gi|34922077|gb|AAQ83505.1| unknown [Hyaloperonospora parasitica] 

gi|34922067|gb|AAQ83504.1| putative dnaK-type molecular chaperone [Hyaloperonospora parasitica] 

gi|34922055|gb|AAQ83503.1| putative H+ translocating inorganic pyrophosphatase [Hyaloperonospora 

parasitica] 

gi|34922040|gb|AAQ83501.1| unknown [Hyaloperonospora parasitica] 

gi|34922033|gb|AAQ83500.1| putative exo-1,3-beta-glucanase [Hyaloperonospora parasitica] 

gi|33350990|gb|AAP49016.1| cytochrome oxidase subunit II [Hyaloperonospora parasitica] 

 

List of genes used to evaluate the quality of Velvet assemblies using a k-mer lengths of 21 

and 23. The genes highlighted in red were found full length in the assembly using a k-mer 

length of 21 and partially in the assembly of k-mer length 23. There were no genes that 

were complete in the k-mer 23 assembly and partially assembled in the k-mer 21 

assembly. 
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Appendix table 3.4: Final v8.3 assembly scaffold (AGP) 

Contig0 
Contig0 1 .. 360550 + NODE_1260_length_184_cov_18.402174 1 .. 67 + Contig0 360618 .. 596263 + NODE_1359_length_453_cov_3.960265 
168 .. 477 + Contig0 596572 .. 1494027 + NODE_3875_length_453_cov_4.039735 151 .. 477 + Contig0 1494353 .. 2274569 

Contig1 
Contig1 1 .. 81705 + rev NODE_5373_length_2156_cov_8.420222 1 .. 2029 + Contig1 83735 .. 846734 + NODE_4843_length_554_cov_2.187726 
1 .. 578 + Contig1 856266 .. 1003983 + rev NODE_15761_length_1234_cov_7.220421 1 .. 1079 + Contig1 1005063 .. 1243756 

Contig10 Contig10 1 ..466923 + CU681819 1 ..106602 + Contig10 613066 ..end  

Contig100 
Contig100 1 .. 192300 + NODE_4687_length_424_cov_2.448113 167 .. 448 + Contig100 192581 .. 223720 + 
NODE_97_length_484_cov_8.770661 173 .. 508 + Contig100 224055 .. 249180 

Contig103 
Contig103 1 .. 161684 + rev NODE_2829_length_509_cov_3.504912 1 .. 356 + Contig103 162041 .. 162141 + 
NODE_16332_length_839_cov_5.582837 1 .. 683 + Contig103 162825 .. 209324 

Contig1030 Contig1030 1 .. 2313 + NODE_4475_length_887_cov_3.993236 187 .. 911 + Contig1030 2313 .. 2313 

Contig105 
Contig105 1 .. 111126 + NODE_1726_length_926_cov_8.438445 185 .. 950 + Contig105 111891 .. 233890 + 
NODE_1321_length_473_cov_4.175476 165 .. 497 + Contig105 234222 .. 248440 

Contig106 CU694540 1 ..94388 + Contig106 66699 ..239699 + rev NODE_14441_length_581_cov_4.843373 1 .. 454 + Contig106 239649 .. End 

Contig107 
Contig107 1 .. 32775 + rev NODE_21751_length_732_cov_3.777322 1 .. 495 + Contig107 33191 .. 266073 + 
NODE_2155_length_522_cov_3.963602 232 .. 546 + Contig107 266387 .. 267334 

Contig108 Contig108 1 .. 43451 + NODE_903_length_1344_cov_8.246280 161 .. 1368 + Contig108 44658 .. 271342 

Contig1086 Contig1086 1 .. 1994 + rev NODE_8762_length_518_cov_4.820463 1 .. 390 + Contig1086 1994 .. 1994 

Contig11 

CU855856 1 ..89035 + Contig11 23947 .. 139076 + NODE_5432_length_459_cov_3.289760 157 .. 483 + Contig11 139402 .. 418829 + 
NODE_202_length_436_cov_3.683486 161 .. 460 + Contig11 484216 .. 486217 + NODE_16417_length_18822_cov_7.432313 159 .. 18846 + 
Contig11 504904 .. 728412 + rev NODE_12193_length_566_cov_3.275618 1 .. 384 + Contig11 728797 .. 810063 + 
NODE_10815_length_819_cov_5.318681 152 .. 843 +   

Contig110 Contig110 1 .. 124736 + NODE_4998_length_837_cov_6.221027 165 .. 861 + Contig110 125432 .. 226695 

Contig1101 Contig1101 1 .. 2539 + rev NODE_2735_length_890_cov_8.229214 1 .. 700 + Contig1101 2539 .. 2539 

Contig114 Contig114 1 ..63194 + CU694290 1 ..104779 + NODE_11682_length_642_cov_6.291277 267 .. 666 

Contig116 Contig116 1 .. 165748 + NODE_185_length_358_cov_88.776535 312 .. 382 + Contig116 165818 .. 168596 

Contig1162 Contig1162 1 .. 2254 + NODE_5508_length_453_cov_2.346578 156 .. 477 + Contig1162 2254 .. 2254 

Contig117 Contig117 1 ..93883 + CU611059 1 ..117161 + Contig117 211053 ..211182 

Contig1171 Contig1171 1 .. 1 + NODE_1644_length_913_cov_25.886089 1 .. 165 + Contig1171 24 .. 2110 

Contig1173 Contig1173 1 .. 3338 + NODE_2914_length_570_cov_2.647368 260 .. 594 + Contig1173 3338 .. 3338 

Contig1175 Contig1175 1 .. 2833 + rev NODE_15069_length_574_cov_3.900697 1 .. 439 + Contig1175 2833 .. 2833 

Contig118 Contig118 1 .. 168962 + rev NODE_15181_length_824_cov_4.258495 1 .. 679 + Contig118 169642 .. 171330 

Contig12 Contig12 1 .. 549888 + NODE_5701_length_950_cov_4.801053 174 .. 974 + Contig12 550688 .. 710758 

Contig120 
Contig120 1 .. 83491 + NODE_14842_length_9445_cov_10.180731 164 .. 9469 + Contig120 92796 .. 159163 + rev 
NODE_18724_length_4059_cov_7.507514 1 .. 3882 + Contig120 163046 .. 233050 

Contig1205 Contig1205 1 .. 4896 + NODE_7763_length_140_cov_2.771429 156 .. 164 + Contig1205 4896 .. 4896 

Contig121 Contig121 1 .. 78816 + NODE_111_length_241_cov_90.585060 1 .. 113 + Contig121 78930 .. 210927 

Contig123 Contig123 1 .. 69998 + rev NODE_10824_length_2433_cov_7.838471 1 .. 2295 + Contig123 72044 .. 148978 

Contig124 Contig124 1 .. 285585 + rev NODE_8740_length_1156_cov_3.957613 1 .. 1020 + Contig124 285585 .. 285585 

Contig125 Contig125 1 .. 68642 + rev NODE_16547_length_586_cov_3.849829 1 .. 458 + Contig125 69101 .. 282133 

Contig126 Contig126 1 .. 34807 + NODE_19981_length_13774_cov_9.950269 244 .. 13798 + Contig126 48361 .. 189320 

Contig127 Contig127 2 .. 2 + rev NODE_10953_length_1721_cov_35.972691 223 .. 1745 + Contig127 2 .. 142654 

Contig1271 Contig1271 1 .. 2625 + rev NODE_10560_length_2317_cov_7.077687 1 .. 1598 + Contig1271 2625 .. 2625 

Contig129 
Contig129 1 .. 6794 + NODE_3210_length_512_cov_3.671875 198 .. 536 + Contig129 7132 .. 90119 + CU611060 1 ..87205 + 
NODE_15149_length_970_cov_5.123711 156 .. 994   

Contig13 

Contig13 1 .. 1 + NODE_673_length_135_cov_70.481483 1 .. 28 + Contig13 1 .. 8840 + rev NODE_16754_length_5480_cov_8.888868 1 .. 5344 + 
Contig13 14185 .. 150510 + rev NODE_14331_length_1013_cov_6.566634 1 .. 880 + Contig13 150941 .. 173180 + rev 
NODE_16384_length_596_cov_4.365772 1 .. 465 + Contig13 173646 .. 375899 + NODE_15321_length_1199_cov_7.063386 1 .. 1223 + Contig13 
380434 .. 382543 + NODE_6651_length_629_cov_3.855326 1 .. 653 + Contig13 383653 .. 495818 + NODE_3625_length_817_cov_2.410037 166 
.. 841 + Contig13 496658 .. 567628 + rev NODE_14804_length_3122_cov_7.659193 1 .. 2939 + Contig13 570568 .. 677457 + 
NODE_3145_length_570_cov_4.177193 158 .. 594 + Contig13 677893 .. 735227 + rev NODE_1942_length_552_cov_4.353261 1 .. 415 + 
Contig13 735227 .. 735227 

Contig130 Contig130 1 ..183574 + CU694979 1 ..71487 

Contig131 
Contig131 1 .. 177771 + NODE_15152_length_1186_cov_6.473019 1 .. 1210 + Contig131 182830 .. 230277 + rev 
NODE_17398_length_8173_cov_10.797381 1 .. 8040 + Contig131 230277 .. 230277 

Contig1320 Contig1320 1 .. 4497 + NODE_5512_length_676_cov_8.042899 216 .. 700 + Contig1320 4497 .. 4497 

Contig134 Contig134 1 .. 74068 + rev NODE_1914_length_476_cov_3.495798 1 .. 349 + Contig134 74143 .. 154543 

Contig136 Contig136 1 .. 148251 + rev NODE_2519_length_639_cov_5.893584 1 .. 511 + Contig136 148251 .. 148251 

Contig137 Contig137 1 .. 114733 + NODE_6069_length_441_cov_2.342404 151 .. 465 + Contig137 114733 .. 114733 

Contig1374 Contig1374 1 .. 2516 + rev NODE_1939_length_483_cov_3.627329 1 .. 318 + Contig1374 2516 .. 2516 

Contig140 CU694305 1 ..90238  30318 ..88118 + Contig140 53553 ..end 

Contig1400 Contig1400 1 .. 2882 + rev NODE_15924_length_1379_cov_5.123278 1 .. 1239 + Contig1400 2882 .. 2882 

Contig141 Contig141 1 .. 96985 + rev NODE_14154_length_562_cov_3.096085 1 .. 426 + Contig141 97412 .. 169079 

Contig142 
Contig142 1 .. 1 + NODE_5_length_628_cov_25.616241 1 .. 39 + Contig142 1 .. 2346 + NODE_166_length_1878_cov_29.269968 392 .. 1902 + 
Contig142 3206 .. 126722 
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Contig1429 Contig1429 1 .. 4705 + rev NODE_14497_length_5534_cov_10.494579 1 .. 5402 + Contig1429 4705 .. 4705 

Contig144 
Contig144 1 .. 19295 + NODE_6851_length_256_cov_4.273438 148 .. 280 + Contig144 19427 .. 158184 + rev 
NODE_7470_length_3907_cov_9.310469 1 .. 3749 + Contig144 158184 .. 158184 

Contig145 Contig145 1 .. 139773 + rev NODE_18070_length_2015_cov_9.157816 1 .. 1878 + Contig145 141652 .. 177339 

Contig1487 Contig1487 1 .. 2252 + NODE_4170_length_966_cov_8.107660 169 .. 990 + Contig1487 2252 .. 2252 

Contig15 
Contig15 1 ..361830 + rev NODE_14482_length_6646_cov_10.322148 1 .. 6511 + Contig15 368342 ..480077 + CU694978 1 ..87635 + Contig15 
564182 ..585209 + CU6722411 ..97518 

Contig153 
Contig153 1 .. 100681 + rev NODE_14557_length_1463_cov_6.264525 1 .. 1316 + Contig153 101998 .. 149020 + 
NODE_4460_length_947_cov_3.472017 155 .. 971 +   

Contig1550 
Contig1550 1 .. 1 + NODE_1245_length_1908_cov_16.900944 1 .. 1690 + Contig1550 1 .. 2611 + NODE_1929_length_489_cov_5.288343 216 .. 
513 +   

Contig1556 Contig1556 1 .. 2670 + rev NODE_22940_length_699_cov_3.616595 1 .. 529 + Contig1556 2670 .. 2670 

Contig1562 Contig1562 1 .. 1 + NODE_6932_length_150_cov_14.326667 1 .. 16 + Contig1562 1 .. 5779 

Contig1568 Contig1568 1 .. 4145 + rev NODE_16781_length_1425_cov_5.206316 1 .. 1293 + Contig1568 4145 .. 4145 

Contig157 
Contig157 1 .. 22456 + rev NODE_14473_length_967_cov_4.770424 1 .. 774 + Contig157 23231 .. 79499 + rev 
NODE_8623_length_1012_cov_6.389328 1 .. 878 + Contig157 80378 .. 199122 

Contig1588 Contig1588 1 .. 2573 + NODE_14455_length_9009_cov_10.351315 163 .. 9033 + Contig1588 2573 .. 2573 

Contig16 
Contig16 1 .. 363036 + NODE_2589_length_449_cov_2.723831 167 .. 473 + Contig16 363342 .. 503995 + NODE_599_length_476_cov_3.207983 
160 .. 500 + Contig16 504335 .. 635027 

Contig162 Contig162 1 .. 74894 + NODE_921_length_1251_cov_5.250999 153 .. 1275 + Contig162 76016 .. 128175 

Contig163 
Contig163 1 .. 46260 + NODE_4512_length_1378_cov_7.321480 196 .. 1402 + Contig163 47466 .. 156115 + 
NODE_8672_length_475_cov_3.225263 201 .. 499 + Contig163 156413 .. 159641 

Contig165 
Contig165 1 .. 106154 + NODE_16105_length_2188_cov_9.011883 178 .. 2212 + Contig165 108188 .. 144739 + rev 
NODE_14398_length_1141_cov_8.914110 1 .. 1014 + Contig165 145654 .. 207316 

Contig167 
Contig167 1 .. 24803 + rev NODE_5751_length_448_cov_2.770089 1 .. 317 + Contig167 25121 .. 132510 + 
NODE_1596_length_455_cov_3.991209 189 .. 479 +   

Contig168 Contig168 1 .. 92631 + NODE_11270_length_754_cov_3.249337 187 .. 778 + Contig168 93222 .. 140950 

Contig169 rev CU694534 1 ..112195 + Contig132 72011 -128769 +  rev CU611061 1 ..103983 + Contig169 1 ..25405 

Contig1697 Contig1697 1 .. 5140 + rev NODE_2413_length_563_cov_3.753108 1 .. 425 + Contig1697 5140 .. 5140 

Contig17 
Contig17 1 ..94921 + CU694961 1 ..109339 + Contig17 230767 ..467896 + NODE_1776_length_463_cov_4.142549 151 .. 487 + Contig17 494739 
.. End 

Contig171 rev Contig150 48264  .. end + CU672242 1 ..111115 + Contig171 46174  .. end  

Contig172 Contig172 1 .. 1 + NODE_14713_length_1597_cov_17.507828 1 .. 1427 + Contig172 1 .. 108195 

Contig177 

Contig177 1 .. 56325 + rev NODE_16963_length_9998_cov_10.462193 1 .. 9863 + Contig177 59889 .. 110834 + 
NODE_197_length_379_cov_34.398418 308 .. 403 + Contig177 110929 .. 114000 + rev NODE_173_length_972_cov_19.322016 1 .. 462 + 
Contig177 114000 .. 114000 

Contig178 Contig178 1 – 86198 + rev CU694995 1 ..127294 

Contig18 
Contig18 1 .. 427586 + rev NODE_14363_length_927_cov_5.319310 1 .. 753 + Contig18 428340 .. 466965 + 
NODE_518_length_445_cov_3.489888 155 .. 469 + Contig18 467279 .. 619892 

Contig182 Contig182 1 .. 98351 + rev NODE_18487_length_4403_cov_9.712242 1 .. 4224 + Contig182 98351 .. 98351 

Contig183 
Contig183 1 .. 66926 + rev NODE_14529_length_2216_cov_7.519855 1 .. 2087 + Contig183 68364 .. 121939 + rev 
NODE_14488_length_550_cov_3.300000 1 .. 416 + Contig183 121939 .. 121939 

Contig1833 Contig1833 1 .. 3009 + rev NODE_14637_length_1316_cov_10.629939 1 .. 1165 + Contig1833 3009 .. 3009 

Contig185 Contig185 1 .. 73148 + rev NODE_23407_length_559_cov_3.688730 1 .. 430 + Contig185 73579 .. 94000 

Contig1861 Contig1861 1 .. 2061 + rev NODE_16436_length_516_cov_1.891473 1 .. 389 + Contig1861 2061 .. 2061 

Contig187 Contig187 1 ..75567 + CU694661 1 ..81981 

Contig1875 Contig1875 1 .. 2169 + rev NODE_16353_length_1679_cov_5.949375 1 .. 1493 + Contig1875 2169 .. 2169 

Contig19 
Contig19 1 .. 491528 + rev NODE_3462_length_651_cov_11.815668 1 .. 218 + Contig19 491747 .. 520455 + CU855827 1 ..77273 + Contig19 
596202 ..end 

Contig2 

Contig2 1 .. 270750 + NODE_7416_length_463_cov_2.267819 199 .. 487 + Contig2 271038 ..458054  + rev CU694980 1 ..125054 + CU633974 
8627 ..80422 + Contig2 689796 ..698255 + rev NODE_14692_length_1397_cov_7.984252 1 .. 1270 + + Contig2 699526 .. 800808 + 
NODE_1518_length_494_cov_3.611336 175 .. 518 + Contig2 801151 .. 1013382 + rev CU469389 + Contig2 1144127 ..end  

Contig20 NODE_7577_length_1084_cov_5.682657 1 .. 918 + Contig20 1 ..447093 + CU694536 1 ..98191 

Contig2023 Contig2023 1 .. 2681 + NODE_2793_length_873_cov_5.423826 193 .. 897 + Contig2023 2681 .. 2681 

Contig205 Contig205 1 .. 81309 + NODE_113_length_197_cov_43.746193 151 .. 221 + Contig205 81309 .. 81309 

Contig206 Contig206 1 .. 12190 + NODE_5994_length_176_cov_4.835227 1 .. 95 + Contig206 12286 .. 74709 

Contig2068 Contig2068 1 .. 2651 + NODE_17117_length_3584_cov_7.075614 151 .. 3608 + Contig2068 2651 .. 2651 

Contig21 Contig21 1 .. 362966 + rev NODE_821_length_481_cov_3.532224 1 .. 341 + Contig21 363308 .. 647099 

Contig212 Contig212 1 .. 77616 + NODE_1_length_438_cov_2.413242 151 .. 462 + Contig212 77616 .. 77616 

Contig214 Contig214 1 .. 71605 + NODE_2650_length_503_cov_4.980119 193 .. 527 + Contig214 71605 .. 71605 

Contig217 Contig217 1 ..47233 + CU638820 1 ..100007 

Contig218 Contig218 1 .. 47278 + rev NODE_19452_length_1930_cov_5.424352 1 .. 1758 + Contig218 47278 .. 47278 

Contig2191 Contig2191 1 .. 2182 + rev NODE_17793_length_591_cov_4.228426 1 .. 432 + Contig2191 2182 .. 2182 

Contig22 Contig22 1 .. 153674 + rev NODE_313_length_471_cov_5.766454 1 .. 344 + Contig22 154019 .. 584877 

Contig220 
Contig220 1 .. 37380 + NODE_6471_length_492_cov_4.264228 157 .. 516 + Contig220 37739 .. 39033 + 
NODE_14678_length_1753_cov_6.051911 238 .. 1777 + Contig220 40572 .. 72659 

Contig222 Contig222 1 .. 40233 + rev NODE_7630_length_683_cov_5.256223 1 .. 532 + Contig222 40446 .. 55851 

Contig225 Contig225 1 .. 52862 + NODE_450_length_560_cov_3.657143 253 .. 584 + Contig225 52862 .. 52862 

Contig23 Contig23 1 .. 379862 + rev NODE_2366_length_2653_cov_7.867320 1 .. 2489 + Contig23 381952 .. 596662 
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Contig2361 
Contig2361 1 .. 1 + rev NODE_907_length_1688_cov_7.479265 540 .. 1712 + Contig2361 1 .. 2384 + rev 
NODE_15679_length_1433_cov_3.371249 1 .. 1297 + Contig2361 2384 .. 2384 

Contig24 Contig24 1 .. 35558 + rev NODE_18212_length_4374_cov_3.618656 1 .. 4241 + Contig24 39800 .. 454541 

Contig2454 Contig2454 1 .. 4305 + NODE_510_length_463_cov_3.053996 173 .. 487 + Contig2454 4305 .. 4305 

Contig248 Contig248 1 .. 40993 + NODE_2121_length_451_cov_3.170732 159 .. 475 + Contig248 40993 .. 40993 

Contig25 Contig25 1 .. 205574 + NODE_4588_length_443_cov_2.090293 154 .. 467 + Contig25 205887 .. 565665 

Contig26 
Contig26 1 .. 390489 + rev NODE_14341_length_1960_cov_21.487246 172 .. 1984 + Contig26 392302 .. 492606 + rev 
NODE_404_length_529_cov_7.674858 318 .. 19815 + Contig266 1 .. 17428 

Contig27 

Contig27 1 .. 205677 + NODE_1954_length_558_cov_4.743728 215 .. 582 + Contig27 206044 .. 217495 + 
NODE_14848_length_5464_cov_10.145498 1 .. 5488 + Contig27 225654 .. 359562 + NODE_7075_length_560_cov_5.392857 161 .. 584 + 
Contig27 359985 .. 600462 

Contig273 Contig273 1 .. 1 + NODE_194_length_273_cov_18.494505 1 .. 122 + Contig273 1 .. 30874 

Contig276 
Contig276 1 .. 20623 + NODE_8636_length_449_cov_2.665924 153 .. 473 + Contig276 20943 .. 34795 + rev 
NODE_15662_length_872_cov_6.877294 1 .. 691 + Contig276 34795 .. 34795 

Contig277 
Contig277 1 .. 19644 + NODE_6017_length_482_cov_2.201245 1 .. 505 + Contig277 38258 .. 50896 + rev 
NODE_6778_length_3639_cov_10.760098 1 .. 3511 + Contig277 50896 .. 50896 

Contig28 Contig28 1 ..139059 + CU855855 1 ..90842 + Contig28 249950 ..end 

Contig281 Contig281 1 .. 1 + NODE_1025_length_176_cov_5.210227 1 .. 14 + Contig281 1 .. 14704 

Contig288 Contig288 1 .. 23612 + rev NODE_18215_length_1053_cov_6.152896 1 .. 910 + Contig288 24523 .. 50717 

Contig289 Contig289 1 .. 21179 + NODE_4738_length_724_cov_5.578729 168 .. 748 + Contig289 21759 .. 31437 

Contig29 

Contig29 1 ..53101 + CU469394 1 ..94703 + Contig29 119034 .. 127032 + NODE_8469_length_1395_cov_8.497491 184 .. 1419 + Contig29 
128267 .. 195517 + NODE_1420_length_473_cov_4.350951 159 .. 497 + Contig29 195855 .. 553050 + rev 
NODE_3037_length_3430_cov_10.689795 1 .. 3259 + Contig29 553050 .. end 

Contig2969 Contig2969 1 .. 4128 + NODE_1607_length_1260_cov_17.555555 287 .. 1284 + Contig2969 4128 .. 4128 

Contig297 
Contig297 1 .. 1343 + NODE_183_length_635_cov_7.535433 398 .. 659 + Contig297 1604 .. 25642 + NODE_3869_length_820_cov_6.934146 
157 .. 844 +   

Contig298 Contig298 1 .. 26872 + NODE_2209_length_398_cov_8.100503 161 .. 422 + Contig298 26872 .. 26872 

Contig3 
Contig3 1 .. 487012 + rev NODE_1492_length_508_cov_3.267717 1 .. 357 + Contig3 487370 .. 513388 + rev CU694971 1 .. 99582 + Contig3 
584628 .. 1101443 + rev NODE_5744_length_665_cov_4.942857 1 .. 534 + Contig3 1101443 .. 1101443 

Contig30 Contig30 1 .. 71785 + NODE_2953_length_438_cov_3.100457 155 .. 462 + Contig30 72092 .. 475048 

Contig300 Contig300 1 .. 20996 + NODE_4553_length_380_cov_5.907895 154 .. 404 + Contig300 20996 .. 20996 

Contig302 Contig302 1 .. 32456 + rev NODE_14806_length_1283_cov_5.076384 1 .. 196859    

Contig304 Contig304 1 .. 28811 + rev NODE_13616_length_971_cov_7.786818 1 .. 839 + Contig304 28811 .. 28811 

Contig3093 Contig3093 1 .. 4482 + rev NODE_8201_length_662_cov_3.252266 1 .. 510 + Contig3093 4482 .. 4482 

Contig31 
Contig247 1 ..22880 + rev CU694967 1 ..79556 + Contig31 50686 .. 395994 + NODE_29_length_410_cov_26.929268 231 .. 13874 + Contig31 
409638 .. end 

Contig311 Contig311 1 .. 29808 + NODE_14409_length_2558_cov_7.649726 151 .. 2582 + Contig311 29808 .. 29808 

Contig314 Contig314 1 .. 24874 + rev NODE_14809_length_1026_cov_3.161793 1 .. 885 + Contig314 24874 .. 24874 

Contig319 Contig319 1 .. 1 + NODE_126_length_514_cov_14.714007 1 .. 339 + Contig319 1 .. 8040 

Contig320 Contig320 1 .. 24609 + rev NODE_14250_length_12494_cov_10.207219 1 .. 12365 + Contig320 24609 .. 24609 

Contig325 Contig325 1 .. 1 + rev NODE_15163_length_2859_cov_7.077300 184 .. 2883 + Contig325 1 .. 21795 

Contig33 Contig33 1 ..16824 + CU694981 1 ..104149 + Contig33  120975 ..537736  

Contig331 Contig331 1 .. 14497 + rev NODE_2540_length_797_cov_11.115433 1 .. 664 + Contig331 14497 .. 14497 

Contig34 Contig34 1 .. 366792 + NODE_4365_length_465_cov_3.135484 188 .. 489 + Contig34 367093 .. 496322 

Contig344 Contig344 1 .. 1 + NODE_4_length_609_cov_9.159278 1 .. 107 + Contig344 1 .. 25673 + NODE_17461_length_1074_cov_2.853817 167 .. 1098 +   

Contig348 Contig348 1 .. 18496 + rev NODE_40_length_273_cov_9.593407 1 .. 145 + Contig348 18496 .. 18496 

Contig35 Contig35 1 ..4444 + rev CU856318 1 ..95046 + Contig35 122119 ..371820 + CU694969 1 ..99415 + Contig35 421351 ..end 

Contig360 Contig360 1 .. 20124 + rev NODE_95_length_305_cov_98.324593 1 .. 102 + Contig360 20227 .. 22956 

Contig3624 Contig3624 1 .. 792 + NODE_6964_length_603_cov_4.396351 261 .. 627 + Contig3624 1158 .. 4220 

Contig368 Contig368 1 .. 12713 + NODE_15945_length_860_cov_6.098837 175 .. 884 + Contig368 12713 .. 12713 

Contig37 Contig37 1 ..163042 + CU469400 1 ..76478 + Contig37 214366 ..316261 + CU469399 1 ..74137 + Contig37 367109 ..end 

Contig3713 Contig3713 1 .. 2677 + rev NODE_15390_length_3855_cov_9.522438 1 .. 3719 + Contig3713 2677 .. 2677 

Contig375 Contig375 1 .. 18900 + rev NODE_14327_length_7204_cov_10.817463 1 .. 12098 +   

Contig376 Contig376 1 .. 12234 + rev NODE_5996_length_1195_cov_7.857740 1 .. 1046 + Contig376 12234 .. 12234 

Contig38 rev CU694291 1 ..98065 + Contig38 124120 ..end 

Contig381 Contig381 1 .. 7907 + NODE_231_length_2455_cov_18.198370 2307 .. 2479 + Contig381 7907 .. 7907 

Contig386 Contig386 1 .. 18175 + rev NODE_19030_length_3462_cov_7.522531 1 .. 3236 + Contig386 18175 .. 18175 

Contig4 

Contig4 1 .. 227908 + rev NODE_6936_length_1336_cov_4.700599 1 .. 1158 + Contig4 229067 .. 698377 + rev 
NODE_7354_length_445_cov_2.777528 1 .. 298 + Contig4 698676 .. 888725 + rev NODE_15515_length_1254_cov_3.856459 1 .. 1127 + Contig4 
889553 .. 1101618 

Contig40 Contig40 1 .. 43280 + NODE_4016_length_484_cov_2.291322 190 .. 508 + Contig40 43598 .. 341184 

Contig400 Contig400 1 .. 15663 + rev NODE_18803_length_1280_cov_5.189063 1 .. 1148 + Contig400 15663 .. 15663 

Contig403 Contig403 1 .. 19815 + NODE_1752_length_338_cov_27.875740 307 .. 362 + Contig403 19815 .. 19815 

Contig405 Contig405 1 .. 15792 + rev NODE_8707_length_495_cov_2.846465 1 .. 346 + Contig405 15792 .. 15792 
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Contig408 Contig408 1 .. 13313 + rev NODE_6170_length_509_cov_3.911591 1 .. 367 + Contig408 13313 .. 13313 

Contig41 Contig41 1 .. 403002 + rev NODE_1401_length_947_cov_1.885956 1 .. 820 + Contig41 403763 .. 459702 

Contig4148 Contig4148 1 .. 4150 + NODE_5270_length_1027_cov_64.281403 155 .. 1051 + Contig4148 4150 .. 4150 

Contig417 Contig417 1 .. 21320 + rev NODE_10144_length_607_cov_4.341022 1 .. 474 + Contig417 21320 .. 21320 

Contig42 Contig42 1 .. 264262 + NODE_17133_length_1436_cov_7.683147 209 .. 1460 + Contig42 265513 .. 421951 

Contig421 Contig421 1 .. 17897 + rev NODE_6062_length_473_cov_2.756871 1 .. 334 + Contig421 18132 .. 20192 

Contig425 Contig425 1 .. 18055 + rev NODE_22337_length_579_cov_3.170985 1 .. 422 + Contig425 18055 .. 18055 

Contig426 Contig426 1 .. 14412 + rev NODE_14428_length_5722_cov_10.105732 1 .. 5578 + Contig426 14412 .. 14412 

Contig427 Contig427 1 .. 12424 + rev NODE_159_length_1934_cov_74.370735 1 .. 1627 + Contig427 12424 .. 12424 

Contig428 Contig428 1 .. 17826 + rev NODE_16882_length_2436_cov_6.986042 1 .. 2309 + Contig428 17826 .. 17826 

Contig43 
Contig43 1 .. 311438 + rev NODE_8971_length_735_cov_3.473469 1 .. 564 + Contig43 312003 .. 314510 + rev 
NODE_16026_length_1676_cov_4.460024 1 .. 1357 + Contig43 315638 .. 424029 

Contig433 Contig433 1 .. 15193 + NODE_3929_length_433_cov_3.422633 152 .. 457 + Contig433 15193 .. 15193 

Contig44 Contig44 1 .. 81289 + rev NODE_6450_length_565_cov_3.194690 1 .. 383 + Contig44 81673 .. 301395 + CU694966 1 ..89842 

Contig45 Contig45 1 ..183185 + CU469398 1 ..102410 + Contig45 284211 ..end 

Contig456 Contig456 1 .. 470 + NODE_5201_length_595_cov_4.863865 198 .. 619 + Contig456 891 .. 14190 

Contig46 Contig46 1 .. 223023 + rev NODE_15347_length_1758_cov_7.529579 1 .. 1608 + Contig46 224632 .. 430272 

Contig463 Contig463 1 .. 14184 + rev NODE_4746_length_509_cov_3.341847 1 .. 369 + Contig463 14184 .. 14184 

Contig47 
Contig47 1 .. 161095 + NODE_7366_length_580_cov_4.091379 159 .. 604 + Contig47 161540 .. 291716 + 
NODE_5325_length_440_cov_2.700000 153 .. 464 + Contig47 292027 .. 421817 

Contig477 Contig477 1 .. 13758 + NODE_1064_length_489_cov_3.433538 194 .. 513 + Contig477 13758 .. 13758 

Contig48 
Contig48 1 .. 191047 + rev NODE_16025_length_1373_cov_6.369265 1 .. 1197 + Contig48 192245 .. 278537 + CU469405 1 ..78006 + 
NODE_157_length_613_cov_94.970634 35 .. 6659 

Contig484 Contig484 1 .. 1 + NODE_672_length_424_cov_19.028301 1 .. 292 + Contig484 1 .. 7388 

Contig49 Contig49 1 .. 331478 + rev NODE_7376_length_758_cov_5.889182 1 .. 617 + Contig49 332096 .. 358873 

Contig491 Contig491 1 .. 8758 + NODE_4774_length_545_cov_4.724771 164 .. 569 + Contig491 8758 .. 8758 

Contig493 Contig493 1 .. 12429 + rev NODE_14610_length_4792_cov_10.597245 1 .. 4629 + Contig493 12429 .. 12429 

Contig5 

Contig5 1 .. 285699 + rev NODE_8829_length_706_cov_4.325779 1 .. 538 + Contig5 286238 .. 310010 + rev 
NODE_21192_length_2880_cov_8.858334 1 .. 2741 + Contig5 312752 .. 613894 + rev NODE_1626_length_1749_cov_4.488851 1 .. 1593 + 
Contig5 615488 .. 835074 + NODE_3345_length_431_cov_2.190255 166 .. 455 + Contig5 835363 .. 879806 

Contig50 CU694287 1 ..41447 + Contig50 1 ..407448 

Contig503 Contig503 1 .. 11355 + NODE_15842_length_1746_cov_6.022337 159 .. 1770 + Contig503 11355 .. 11355 

Contig51 Contig51 1 .. 375428 + NODE_18596_length_840_cov_2.229762 171 .. 864 + Contig51 375428 .. 375428 

Contig516 Contig516 1 .. 6496 + NODE_3006_length_475_cov_3.305263 179 .. 499 + Contig516 6496 .. 6496 

Contig517 Contig517 1 .. 10704 + rev NODE_20130_length_1934_cov_5.732162 1 .. 1804 + Contig517 10704 .. 10704 

Contig52 Contig52 1 .. 110128 + NODE_6946_length_534_cov_3.404494 260 .. 558 + Contig52 110426 .. 305086 + CU672240 90046 ..109627 

Contig53 Contig53 1 .. 191711 + NODE_1587_length_450_cov_4.173333 151 .. 474 + Contig53 192034 .. 305567 + CU855859 1 ..96477 

Contig535 Contig535 1 .. 6465 + NODE_16523_length_2819_cov_6.350833 151 .. 2843 + Contig535 6465 .. 6465 

Contig536 
Contig536 1 .. 1 + NODE_812_length_1713_cov_25.736135 1 .. 1188 + Contig536 1 .. 9922 + NODE_19258_length_5867_cov_7.049088 155 .. 
5891 +   

Contig54 
Contig54 1 .. 158997 + rev NODE_1232_length_451_cov_5.971175 1 .. 317 + Contig54 159315 .. 193638 + rev 
NODE_1425_length_600_cov_3.035000 1 .. 402 + Contig54 194041 .. 357926 

Contig546 Contig546 1 – 3064 + rev CU694974 1 – 115766  

Contig55 
Contig55 1 .. 118040 + rev NODE_22541_length_535_cov_2.796262 1 .. 405 + Contig55 118386 .. 231324 + rev 
NODE_16001_length_3402_cov_9.982364 1 .. 3253 + Contig55 234578 .. 350972 

Contig555 Contig555 1 .. 5813 + NODE_8781_length_1029_cov_4.029154 153 .. 1053 + Contig555 5813 .. 5813 

Contig56 
Contig56 1 .. 74134 + rev NODE_15378_length_1820_cov_5.259890 1 .. 1643 + Contig56 75778 .. 360670 + 
NODE_13662_length_849_cov_4.440518 427 .. 873 +   

Contig563 
Contig563 1 .. 3042 + rev NODE_4221_length_488_cov_6.399590 1 .. 328 + Contig563 3371 .. 11335 + rev 
NODE_15583_length_1275_cov_6.377255 1 .. 1079 + Contig563 11335 .. 11335 

Contig577 Contig577 1 .. 1 + rev NODE_8515_length_2031_cov_10.483013 529 .. 2055 + Contig577 1 .. 5444 

Contig58 Contig58 1 .. 175610 + NODE_14760_length_1979_cov_8.186963 173 .. 2003 + Contig58 177440 .. 415316 

Contig583 Contig583 1 .. 1049 + rev NODE_8938_length_469_cov_3.882729 1 .. 293 + Contig583 1343 .. 11663 

Contig59 Contig59 1 ..57252 + rev CU633976 1 ..89791 + Contig59 162575 ..306602 + CU855832 1 ..62978 + Contig59 360959 ..end 

Contig6 

Contig6 1 ..179815 + rev CU633880 1 ..84452 + Contig6 271630 ..436793 + CU694993 1 ..95704 + Contig6 542523 .. 626158 + rev 
NODE_6117_length_477_cov_2.559748 1 .. 335 + Contig6 626494 .. 644888 + rev NODE_8339_length_520_cov_2.911538 1 .. 366 + Contig6 
645255 .. end 

Contig60 CU694962 1 ..57507 + Contig60 37145 ..end 

Contig605 Contig605 1 .. 5777 + NODE_3221_length_729_cov_12.895747 283 .. 753 + Contig605 5777 .. 5777 

Contig61 
Contig61 1 .. 83644 + NODE_14339_length_1425_cov_4.524210 216 .. 1449 + Contig61 84877 .. 170306 + rev 
NODE_6993_length_1627_cov_4.542717 1 .. 1481 + Contig61 171788 .. 414948 

Contig628 Contig628 1 .. 7554 + NODE_14511_length_3119_cov_10.034947 183 .. 3143 + Contig628 7554 .. 7554 

Contig630 Contig630 1 .. 6355 + rev NODE_21838_length_844_cov_7.751185 1 .. 687 + Contig630 6355 .. 6355 

Contig633 CU694760 1 ..210875 + Contig633 1269 ..4357 
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Contig634 Contig634 1 .. 5870 + NODE_3390_length_877_cov_20.280502 209 .. 901 + Contig634 5870 .. 5870 

Contig64 Contig64 1 ..93731 + rev CU694537 1 ..73946 + Contig64 201331 ..end 

Contig651 Contig651 1 .. 2257 + NODE_8425_length_668_cov_6.769461 156 .. 692 + Contig651 2257 .. 2257 

Contig652 Contig652 1 .. 1 + NODE_328_length_149_cov_56.013424 1 .. 11 + Contig652 1 .. 5412 + NODE_558_length_776_cov_42.896908 220 .. 800 +   

Contig66 
Contig66 1 .. 132303 + rev NODE_15593_length_1145_cov_5.543231 1 .. 1169 + Contig66 174027 .. 195876 + rev 
NODE_9587_length_1151_cov_3.461338 1 .. 985 + Contig66 196862 .. end 

Contig67 

Contig67 1 .. 42087 + NODE_4033_length_1090_cov_13.867890 158 .. 1114 + Contig67 43043 .. 96779 + rev 
NODE_14351_length_4131_cov_10.676834 1 .. 3990 + Contig67 100470 .. 142561 + rev NODE_4542_length_471_cov_3.895966 1 .. 342 + 
Contig67 142904 .. end 

Contig670 Contig670 1 .. 4887 + rev NODE_592_length_462_cov_2.448052 1 .. 328 + Contig670 5216 .. 6466 

Contig68 Contig68 1 .. 47902 + NODE_14222_length_905_cov_6.382320 151 .. 929 + Contig68 48680 .. 339720 

Contig682 Contig682 1 .. 5750 + rev NODE_9776_length_654_cov_3.660550 1 .. 517 + Contig682 6268 .. 7841 

Contig69 
Contig69 1 .. 136245 + NODE_110_length_464_cov_3.030172 151 .. 488 + Contig69 136582 .. 349856 + rev 
NODE_6644_length_464_cov_3.553879 1 .. 331 + Contig69 349856 .. 349856 

Contig697 Contig697 1 .. 2838 + NODE_20545_length_4837_cov_5.825511 233 .. 4861 + Contig697 2838 .. 2838 

Contig70 
Contig70 1 .. 28866 + NODE_9917_length_687_cov_4.344978 324 .. 711 + Contig70 29193 .. 182126 + NODE_669_length_442_cov_1.737557 
157 .. 466 + Contig70 182435 .. 263256 

Contig704 Contig704 1 .. 3304 + rev NODE_4846_length_516_cov_4.172481 1 .. 386 + Contig704 3304 .. 3304 

Contig712 Contig712 1 .. 1 + rev NODE_250_length_199_cov_27.703518 187 .. 223 + Contig712 1 .. 4532 

Contig73 CU694289 1 ..92391 + Contig73 100949 ..end 

Contig734 Contig734 1 .. 2235 + rev NODE_979_length_875_cov_15.531428 1 .. 582 + Contig734 2818 .. 5444 

Contig74 Contig74 1 ..162837 + CU469396 1 ..109766 

Contig744 Contig744 1 .. 2705 + rev NODE_4146_length_187_cov_5.620321 1 .. 101 + Contig744 2705 .. 2705 

Contig75 
Contig75 1 .. 53501 + rev NODE_10034_length_1076_cov_4.166357 1 .. 945 + Contig75 54447 .. 102861 + 
NODE_218_length_434_cov_2.481567 151 .. 458 + Contig75 103168 .. 121409 + CU694973 1 ..147660 + Contig75 211709 ..end 

Contig76 Contig76 1 .. 137076 + rev NODE_1209_length_469_cov_2.648188 1 .. 325 + Contig76 137402 .. 349624 

Contig763 Contig763 1 .. 2450 + NODE_477_length_468_cov_4.472222 166 .. 492 + Contig763 2450 .. 2450 

Contig782 Contig782 1 .. 1715 + NODE_263_length_455_cov_3.597802 151 .. 479 + Contig782 2043 .. 5357 

Contig790 Contig790 1 .. 1 + rev NODE_15486_length_1328_cov_19.017319 248 .. 1352 + Contig790 1 .. 3804 

Contig8 
rev CU694972 1 ..87649 + Contig8 33698 ..596124 + CU694663 1 ..12551 + rev CU855831 1 ..77771 + CU694976 46770 ..112370 + Contig8 
789381 ..end 

Contig805 Contig805 1 .. 2094 + NODE_3_length_442_cov_4.106335 167 .. 466 + Contig805 2094 .. 2094 

Contig815 Contig815 1 .. 495 + NODE_14462_length_2430_cov_7.737037 273 .. 2454 + Contig815 2676 .. 3678 

Contig823 Contig823 1 .. 5520 + rev NODE_16145_length_4748_cov_7.206824 1 .. 4592 + Contig823 5520 .. 5520 

Contig824 Contig824 1 .. 2447 + NODE_7518_length_474_cov_4.388186 156 .. 498 + Contig824 2447 .. 2447 

Contig829 Contig829 1 .. 1 + NODE_951_length_1075_cov_94.086510 1 .. 800 + Contig829 1 .. 5492 

Contig84 Contig84 1 .. 20234 + rev NODE_14460_length_807_cov_5.354399 1 .. 676 + Contig84 20911 .. 237125 

Contig849 
Contig849 1 .. 1 + NODE_935_length_748_cov_8.784760 1 .. 272 + Contig849 1 .. 3186 + rev NODE_16443_length_736_cov_5.957880 1 .. 453 + 
Contig849 3186 .. 3186 

Contig85 

Contig85 1 ..106054 + CU469395 1 .. 99525 + rev NODE_4246_length_599_cov_4.176961 1 .. 471 + CU469395 99697 .. 99915 + Contig85 
204267 .. 234167 + rev CU469391 1 ..101110 + Contig85 332408 ..366117 + NODE_3332_length_461_cov_3.455531 160 .. 485 + Contig85 
366442 .. end 

Contig86 Contig86 1 .. 147102 + rev NODE_14504_length_2196_cov_7.049181 1 .. 2066 + Contig86 149169 .. 283757 

Contig867 Contig867 1 .. 1240 + NODE_195_length_531_cov_78.436913 444 .. 555 + Contig867 1351 .. 4591 

Contig87 Contig87 1 .. 95692 + NODE_5703_length_632_cov_3.813291 306 .. 656 + Contig87 96042 .. 189393 

Contig88 Contig88 1 ..115787 + CU855849 1 ..101004 + NODE_212_length_463_cov_3.153348 180 .. 487 

Contig898 Contig898 1 .. 4661 + NODE_4070_length_472_cov_2.563559 156 .. 496 + Contig898 4661 .. 4661 

Contig9 
Contig9 1 .. 421407 + NODE_19464_length_662_cov_2.889728 155 .. 686 + Contig9 421938 .. 730399 + rev 
NODE_10648_length_578_cov_4.174740 1 .. 444 + Contig9 730844 .. 788031 

Contig90 rev CU694960 1 ..84167 + Contig90 52642 ..end 

Contig908 Contig908 1 .. 2153 + NODE_1684_length_690_cov_5.473913 158 .. 714 + Contig908 2153 .. 2153 

Contig918 Contig918 1 .. 2949 + rev NODE_6769_length_569_cov_2.644991 1 .. 422 + Contig918 2949 .. 2949 

Contig92 Contig92 1 .. 125077 + rev NODE_2948_length_456_cov_2.539474 1 .. 296 + Contig92 125374 .. 227751 

Contig93 
Contig93 1 .. 90769 + NODE_6980_length_1044_cov_4.462644 200 .. 1068 + Contig93 91637 .. 286667 + 
NODE_15694_length_3257_cov_10.260670 184 .. 3281 +   

Contig938 Contig938 1 .. 1 + NODE_882_length_396_cov_8.035354 1 .. 235 + Contig938 1 .. 2231 

Contig94 Contig94 1 .. 267283 + NODE_4344_length_781_cov_4.618438 203 .. 805 + Contig94 267885 .. 281273 

Contig945 Contig945 1 .. 1260 + NODE_5483_length_478_cov_2.523013 160 .. 502 + Contig945 1602 .. 5202 

Contig948 Contig948 1 .. 2041 + NODE_5136_length_472_cov_2.546610 158 .. 496 + Contig948 2041 .. 2041 

Contig949 Contig949 1 .. 8025 + rev NODE_18477_length_1807_cov_6.795241 1 .. 1679 + Contig949 8025 .. 8025 

Contig95 
Contig95 1 .. 19929 + NODE_16536_length_2120_cov_7.550000 177 .. 2144 + Contig95 21896 .. 42883 + rev 
NODE_19117_length_6155_cov_7.971080 1 .. 6021 + Contig95 45305 .. 288207 + NODE_1691_length_452_cov_3.475664 155 .. 476 +   

Contig960 Contig960 1 .. 1301 + rev NODE_12728_length_562_cov_3.049822 1 .. 374 + Contig960 1676 .. 4775 

Contig97 
Contig97 1 .. 112333 + NODE_17945_length_8351_cov_10.547599 166 .. 8375 + Contig97 120542 .. 140751 + rev 
NODE_14657_length_6702_cov_10.688451 1 .. 6547 + Contig97 147299 .. 329294 
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Contig977 Contig977 1 .. 2670 + rev NODE_3598_length_992_cov_4.484879 1 .. 854 + Contig977 2670 .. 2670 

Contig983 Contig983 1 .. 5312 + NODE_1192_length_10230_cov_10.357380 163 .. 10254 + Contig983 5312 .. 5312 

Contig990 Contig990 1 .. 3597 + rev NODE_14389_length_650_cov_16.389231 1 .. 516 + Contig990 3597 .. 3597 

Contig991 Contig991 1 .. 3138 + NODE_21273_length_2069_cov_5.269212 162 .. 2093 + Contig991 3138 .. 3138 

Contig992 Contig992 1 .. 1 + NODE_17086_length_1456_cov_5.812500 1 .. 954 + Contig992 1 .. 2993 

Contig995 Contig995 1 .. 2053 + NODE_3157_length_584_cov_6.989726 153 .. 608 + Contig995 2053 .. 20532 

SuperCU469403 rev CU469403 2001 ..98732 + CU469388 1 ..117284 + CU469392 900 ..114210 + CU694662 13653 ..106040 

SuperCU694965 CU694965 1 ..132537 + rev CU469401 12588 ..103744 

SuperCU694970 CU694970 1 ..75255 + rev CU856298 66845 ..77235 
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Appendix table 3.5: Bacterial contamination on contigs (top 50 contigs) 

Contig Count of Hit 
Sum of 
Length 

Cu694975 321 66,621 

Cu694660 138 20,528 

SuperContig28 1 3791 

SuperContig3669 4 2028 

SuperContig3704 1 2014 

SuperContig2186 2 1552 

SuperContig1743 3 1543 

SuperContig2681 2 1170 

SuperContig4760 1 1160 

SuperContig2675 2 1128 

SuperContig3569 1 1128 

SuperContig2234 2 1109 

SuperContig4133 3 1104 

SuperContig779 3 1103 

SuperContig3136 2 1072 

SuperContig3910 2 1064 

SuperContig4139 2 1053 

SuperContig4648 2 1009 

SuperContig3695 2 982 

SuperContig2810 2 943 

SuperContig3812 2 908 

SuperContig3932 2 906 

SuperContig3644 2 895 

SuperContig4575 2 892 

SuperContig1461 4 864 

SuperContig2778 6 854 

SuperContig3010 2 835 

SuperContig4463 2 834 

SuperContig1805 1 831 

SuperContig2642 2 829 

SuperContig4419 2 823 

SuperContig4169 2 819 

SuperContig1305 2 809 

SuperContig3068 1 793 

SuperContig4602 1 782 

SuperContig1291 5 777 

SuperContig1423 4 766 

SuperContig3103 2 766 

SuperContig3595 2 759 

SuperContig2267 2 756 

SuperContig2346 3 743 

SuperContig4199 2 743 

SuperContig219 1 736 

SuperContig2046 1 718 

SuperContig3694 2 717 

SuperContig2134 3 706 

SuperContig4281 1 680 

SuperContig3165 2 670 

SuperContig2593 3 657 

SuperContig3524 1 655 

… … … 
Grand Total 859 185,062 

 



194 

Appendix table 3.6: Bacterial contaminants (top 50 contigs) 

Best Hit Total 

Xanthomonas campestris pv. campestris str. B100, complete genome 120 

Xanthomonas axonopodis pv. citri str. 306, complete genome 108 

Xanthomonas campestris pv. vesicatoria str. 85-10, complete genome 100 

Xanthomonas oryzae pv. oryzae PXO99A, complete genome 92 

Methylobacillus flagellatus KT, complete genome 58 

Xanthomonas campestris pv. campestris str. ATCC 33913, complete genome 41 

Flavobacterium johnsoniae UW101, complete genome 41 

Xanthomonas oryzae pv. oryzae MAFF 311018, complete genome 11 

Acidovorax avenae subsp. citrulli AAC00-1, complete genome 9 

Janthinobacterium sp. Marseille, complete genome 9 

Pseudomonas fluorescens Pf0-1, complete genome 7 

Variovorax paradoxus S110 chromosome 1, complete genome 7 

Polaromonas naphthalenivorans CJ2, complete genome 7 

Sphingomonas wittichii RW1, complete genome 6 

Methylibium petroleiphilum PM1, complete genome 6 

Leptothrix cholodnii SP-6, complete genome 6 

Thiobacillus denitrificans ATCC 25259, complete genome 6 

Pseudomonas fluorescens Pf-5, complete genome 5 

Agrobacterium tumefaciens str. C58 chromosome linear, complete sequence 5 

Azotobacter vinelandii DJ, complete genome 5 

Pseudomonas entomophila L48, complete genome 5 

Novosphingobium aromaticivorans DSM 12444, complete genome 5 

Sphingopyxis alaskensis RB2256, complete genome 4 

Xanthomonas campestris pv. campestris str. 8004, complete genome 4 

Bordetella pertussis Tohama I, complete genome 4 

Delftia acidovorans SPH-1, complete genome 4 

Ralstonia pickettii 12J chromosome 1, complete sequence 4 

Laribacter hongkongensis HLHK9, complete genome 4 

Thauera sp. MZ1T, complete genome 4 

Pseudomonas fluorescens SBW25, complete genome 4 

Verminephrobacter eiseniae EF01-2, complete genome 4 

Xanthomonas oryzae pv. oryzae KACC10331, complete genome 4 

Pseudomonas putida GB-1, complete genome 4 

Pseudomonas putida F1, complete genome 4 

Burkholderia phytofirmans PsJN chromosome 1, complete genome 3 

Erythrobacter litoralis HTCC2594, complete genome 3 

Rhodoferax ferrireducens T118, complete genome 3 

Nitrosomonas eutropha C91, complete genome 3 

Chromobacterium violaceum ATCC 12472, complete genome 3 

Nitrosospira multiformis ATCC 25196 chromosome 1, complete sequence 3 

Rhizobium sp. NGR234, complete genome 3 

Phenylobacterium zucineum HLK1, complete genome 3 

Diaphorobacter sp. TPSY, complete genome 3 

Burkholderia glumae BGR1 chromosome 1, complete genome 3 

Cellvibrio japonicus Ueda107, complete genome 3 

Pseudomonas putida KT2440, complete genome 3 

Azoarcus sp. BH72, complete genome 2 

Aromatoleum aromaticum EbN1, complete genome 2 

Rhodopseudomonas palustris HaA2, complete genome 2 

Herminiimonas arsenicoxydans, complete genome 2 

… … 

Grand Total 859 

 



195 

Appendix table 3.7: Arabidopsis thaliana contamination 

Contig 
Count of 

Hit 
Sum of 
Length 

SuperContig2363 1 97 

SuperContig4001 2 1392 

SuperContig4406 2 339 

SuperContig591 2 128 

SuperContig657 1 94 

SuperContig84 2 572 

SuperCu856152 3 476 

Grand Total 13 3098 

 

Hit Total 

3 5 

4 1 

5 1 

chloroplast 2 

mitochondria 4 

   

Grand Total 13 
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Appendices for Chapter 4 

Appendix table 4.1: Go Terms 

GO Class ID Definitions Counts Fractions 

GO:0003674 molecular_function 9837 17.9% 

GO:0008150 biological_process 6576 12.0% 

GO:0005488 binding 5176 9.4% 

GO:0005575 cellular_component 4243 7.7% 

GO:0003824 catalytic activity 4030 7.3% 

GO:0008152 metabolism 3972 7.2% 

GO:0005623 cell 2100 3.8% 

GO:0005622 intracellular 1460 2.7% 

GO:0016787 hydrolase activity 1421 2.6% 

GO:0005515 protein binding 1321 2.4% 

GO:0000166 nucleotide binding 1206 2.2% 

GO:0019538 protein metabolism 1153 2.1% 

GO:0016740 transferase activity 1117 2.0% 

GO:0009058 biosynthesis 1055 1.9% 

GO:0003676 nucleic acid binding 959 1.8% 

GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism 904 1.7% 

GO:0006810 transport 809 1.5% 

GO:0016301 kinase activity 573 1.0% 

GO:0005737 cytoplasm 551 1.0% 

GO:0004672 protein kinase activity 485 0.9% 

GO:0006464 protein modification 407 0.7% 

GO:0003677 DNA binding 369 0.7% 

GO:0005215 transporter activity 362 0.7% 

GO:0006412 protein biosynthesis 312 0.6% 

GO:0005634 nucleus 307 0.6% 

GO:0009056 catabolism 261 0.5% 

GO:0008233 peptidase activity 249 0.5% 

GO:0006259 DNA metabolism 245 0.5% 

GO:0007154 cell communication 239 0.4% 

GO:0005975 carbohydrate metabolism 234 0.4% 

GO:0003723 RNA binding 217 0.4% 

GO:0016043 cell organization and biogenesis 185 0.3% 

GO:0015031 protein transport 165 0.3% 

GO:0007165 signal transduction 161 0.3% 

GO:0006629 lipid metabolism 149 0.3% 

GO:0005198 structural molecule activity 144 0.3% 

GO:0005840 ribosome 143 0.3% 

GO:0006996 organelle organization and biogenesis 139 0.3% 

GO:0006950 response to stress 130 0.2% 

GO:0006811 ion transport 126 0.2% 
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Appendix table 4.1: Go Terms 

GO Class ID Definitions Counts Fractions 

GO:0008289 lipid binding 93 0.2% 

GO:0004518 nuclease activity 88 0.2% 

GO:0005694 chromosome 72 0.1% 

GO:0005856 cytoskeleton 68 0.1% 

GO:0030234 enzyme regulator activity 67 0.1% 

GO:0005509 calcium ion binding 64 0.1% 

GO:0004721 phosphoprotein phosphatase activity 62 0.1% 

GO:0004871 signal transducer activity 56 0.1% 

GO:0003700 transcription factor activity 56 0.1% 

GO:0003774 motor activity 55 0.1% 

GO:0005739 mitochondrion 51 0.1% 

GO:0019725 cell homeostasis 50 0.1% 

GO:0005783 endoplasmic reticulum 43 0.1% 

GO:0006091 generation of precursor metabolites and energy 42 0.1% 

GO:0005794 Golgi apparatus 41 0.1% 

GO:0003682 chromatin binding 35 0.1% 

GO:0008135 translation factor activity, nucleic acid binding 34 0.1% 

GO:0005576 extracellular region 32 0.1% 

GO:0005216 ion channel activity 29 0.1% 

GO:0004872 receptor activity 28 0.1% 

GO:0016209 antioxidant activity 26 0.1% 

GO:0030246 carbohydrate binding 26 0.1% 

GO:0030528 transcription regulator activity 25 0.1% 

GO:0007049 cell cycle 25 0.1% 

GO:0005654 nucleoplasm 23 0.0% 

GO:0007010 cytoskeleton organization and biogenesis 22 0.0% 

GO:0008092 cytoskeletal protein binding 21 0.0% 

GO:0003779 actin binding 17 0.0% 

GO:0016023 cytoplasmic membrane-bound vesicle 16 0.0% 

GO:0005829 cytosol 15 0.0% 

GO:0005886 plasma membrane 14 0.0% 

GO:0005777 peroxisome 14 0.0% 

GO:0005635 nuclear membrane 11 0.0% 

GO:0040029 regulation of gene expression, epigenetic 11 0.0% 

GO:0030312 external encapsulating structure 9 0.0% 

GO:0007005 mitochondrion organization and biogenesis 9 0.0% 

GO:0005773 vacuole 9 0.0% 

GO:0005618 cell wall 7 0.0% 

GO:0005764 lysosome 6 0.0% 

GO:0030313 cell envelope 5 0.0% 

GO:0009628 response to abiotic stimulus 5 0.0% 
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Appendix table 4.1: Go Terms 

GO Class ID Definitions Counts Fractions 

GO:0005815 microtubule organizing center 5 0.0% 

GO:0005730 nucleolus 4 0.0% 

GO:0000228 nuclear chromosome 4 0.0% 

GO:0016265 death 3 0.0% 

GO:0008219 cell death 3 0.0% 

GO:0009607 response to biotic stimulus 2 0.0% 

GO:0009653 morphogenesis 2 0.0% 

GO:0008283 cell proliferation 2 0.0% 

GO:0009605 response to external stimulus 1 0.0% 

GO:0019748 secondary metabolism 1 0.0% 

GO:0005615 extracellular space 1 0.0% 

GO:0030154 cell differentiation 1 0.0% 

Total  54,903 100.0% 
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Appendices for Chapter 5 

Appendix table 5.1: Distribution of percentage coverage (Perc cov) of genes 

Perc cov Cala2 Emco5 Emoy2 Emwa1 Hind2 Maks9 Noco2 Waco9 

100 13,883 14,078 14,199 14,120 13,853 13,993 14,176 13,939 
99 148 124 72 107 200 177 81 179 
98 95 38 35 45 68 58 37 57 
97 48 38 22 24 46 34 22 37 
96 31 19 20 28 43 27 19 24 
95 35 15 17 15 20 29 16 22 
94 27 17 5 15 18 11 12 22 
93 18 8 9 13 15 9 8 12 
92 14 9 7 7 12 10 5 12 
91 10 8 3 6 7 12 3 6 
90 10 8 7 8 9 10 8 7 
89 7 7 4 5 6 7 5 5 
88 8 4 6 6 7 6 9 6 
87 10 8 4 7 9 7 5 3 
86 8 6 4 6 7 2 3 2 
85 5 5 2 2 4 3 5 6 
84 7 4 4 9 5 4 3 5 
83 12 7 6 5 3 6 7 5 
82 5 3 4 5 3 4 4 2 
81 6 5 3 4 3 5 5 8 

80 5 4 4 3 7 2 4 6 
79 7 3 2 3 4 3 2 4 
78 7 4 3 3 1 2 4 10 
77 4 7 2 3 7 1 1 3 
76 2 4 2 4 4 4 2 0 
75 5 3 2 3 4 6 4 6 
74 3 1 1 3 1 1 4 1 
73 6 0 3 3 5 4 5 6 
72 6 6 1 2 3 0 1 5 
71 4 0 2 2 1 2 2 2 
70 3 3 2 1 3 2 2 2 
69 4 6 1 1 2 5 0 6 
68 4 1 1 1 3 3 7 1 
67 5 4 3 6 2 4 1 5 
66 0 3 2 6 2 2 2 6 
65 2 1 0 2 1 3 3 3 
64 4 4 2 5 2 2 1 2 
63 5 3 2 3 3 7 1 2 
62 7 2 1 2 1 1 0 2 
61 3 0 2 3 0 2 2 3 

60 1 1 1 2 4 2 1 2 
59 1 4 3 2 5 2 1 2 
58 3 2 2 2 3 2 2 1 
57 2 4 4 4 1 3 1 2 
56 0 1 5 2 3 2 2 3 
55 5 1 3 1 1 4 2 1 
54 2 1 2 3 1 4 0 3 
53 2 1 2 2 1 4 0 4 
52 3 2 2 2 2 0 1 2 
51 3 0 1 1 2 4 0 5 
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Perc cov Cala2 Emco5 Emoy2 Emwa1 Hind2 Maks9 Noco2 Waco9 

50 2 2 2 1 1 2 1 2 
49 0 0 0 2 2 1 2 1 
48 5 2 1 0 3 2 0 1 
47 1 4 1 1 2 3 2 1 
46 2 3 0 2 1 6 1 3 
45 3 3 0 0 3 1 1 5 
44 0 2 1 1 4 1 2 6 
43 1 2 0 1 2 2 2 2 
42 0 2 4 1 3 2 2 1 
41 2 2 3 0 4 2 2 1 

40 1 3 1 0 3 0 0 1 
39 3 5 4 2 3 3 3 0 
38 3 0 5 3 3 1 2 0 
37 6 3 1 1 3 1 0 1 
36 0 3 2 0 0 3 2 1 
35 0 2 1 1 5 2 0 5 
34 2 1 1 0 2 2 1 2 
33 1 2 5 2 2 2 4 4 
32 2 0 1 2 7 1 1 0 
31 2 1 3 2 6 2 2 6 
30 2 1 2 1 2 1 0 5 
29 5 0 1 0 3 0 2 3 
28 1 2 1 1 2 3 2 4 
27 3 2 2 3 2 1 3 0 
26 2 3 2 0 5 1 1 4 
25 0 2 4 3 4 1 2 2 
24 2 1 4 1 4 5 2 0 
23 4 3 0 2 4 2 2 0 
22 0 6 1 2 3 2 1 1 
21 2 3 2 0 2 2 1 2 

20 5 0 2 0 3 7 3 2 
19 1 1 1 1 2 0 3 2 
18 2 2 1 1 4 0 5 3 
17 0 1 0 0 3 0 0 2 
16 5 2 0 2 7 3 3 5 
15 1 3 2 0 2 0 0 1 
14 0 3 2 0 2 1 0 4 
13 0 1 1 0 1 1 0 5 
12 2 1 2 1 1 2 3 3 
11 1 1 1 0 3 3 3 3 
10 2 1 2 1 5 0 2 4 
9 0 1 0 0 2 3 1 0 
8 2 2 3 3 4 4 3 4 
7 0 1 1 4 2 1 1 3 
6 0 2 2 2 2 2 0 2 
5 1 1 2 4 5 0 5 2 
4 0 0 0 0 5 0 1 2 
3 0 0 0 0 1 1 3 0 
2 2 1 1 0 2 0 0 1 
1 0 0 0 0 1 0 0 0 
0 6 6 8 11 18 0 9 11 

Total 14,582 14,582 14,582 14,582 14,582 14,582 14,582 14,582 
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Appendix table 5.2: Multi copy genes  

The full of percentage coverage, mean coverage and Poisson CDF coverage can be found in 

attached file: “Appendix table 5.2: Multi copy genes.xlsx” 

Gene Cala2 Emco5 Emoy2 Emwa1 Hind2 Maks9 Noco2 Waco9 Std Dev 

pasa_g28450 97.08 0 99.99 100 0 0 99.99 0 53.06794 

HaRxLL107 0.89 0 99.99 92.32 99.02 0.01 99.87 0.77 52.10976 

805568 99.93 99.62 2.14 7.14 4.7 94.03 0.12 96.41 50.30372 

803972 0.48 0.01 99.95 99.99 0.48 17.07 99.97 0 50.19579 

814281 99.87 99.99 25.14 3.19 99.97 0.61 0 99.99 50.18138 

810011 4.95 99.99 91.21 99.98 6.41 0.81 98.07 2.9 50.10177 

806880 4.17 0 97.58 93.05 0 0 99.99 0 49.76072 

808490 9.62 0.82 99.83 99.15 2.96 6.84 99.84 1.51 49.38215 

806813 0.05 99.05 99.57 99.3 0.01 36.84 97.16 0 49.36307 

800333 0.5 0 99.34 92.58 1.83 0.22 82.72 95.45 49.33684 

Appendix table 5.2.11: Table of the genes displaying the most variance in expected Poisson CDF 

for coverage. Std Dev = standard deviation. 

 

Gene Cala2 Emco5 Emoy2 Emwa1 Hind2 Maks9 Noco2 Waco9 Std Dev 

814281 99.87 99.99 25.14 3.19 99.97 0.61 0 99.99 50.18137617 

810011 4.95 99.99 91.21 99.98 6.41 0.81 98.07 2.9 50.10177271 

808693 0 99.79 71.35 1.45 0 99.96 88.88 0.08 48.70677056 

806770 99.81 99.99 5.7 0.01 0 100 52.45 100 48.5910171 

805266 9.62 2.41 93.26 99.99 1.96 1.31 93.71 0.59 47.98286121 

807909 0 97.69 93.41 64.27 0 99.99 95.62 2.51 47.56984968 

801959 97.48 99.99 10.74 56.46 99.98 0 99.99 0 47.52614168 

807217 1.84 0.61 15.15 0.08 43.11 99.58 99.59 99.99 47.40193334 

HaRxL133 91.99 96.99 11.96 0.76 0.01 100 28.37 99.92 47.34252513 

814216 83.57 99.99 75.02 0 0 0 99.6 88.02 46.89017686 

Appendix table 5.2.2: Table of the genes displaying the most variance in expected Poisson CDF for 

coverage, where the gene is expected to be single copy in the reference strain, Emoy2. Std Dev = 

standard deviation. 

 

Gene Cala2 Emco5 Emoy2 Emwa1 Hind2 Maks9 Noco2 Waco9 Std Dev 

809919 4.65 90.43 0.06 6.04 99.3 99.9 0.49 0.38 48.89147134 

812547 99.97 0 0.83 0 83.67 99.7 15.33 14.11 46.40758203 

803007 98.49 0 0.01 0.07 0 0 0 99.99 45.93477674 

804317 84.82 81.17 0.54 0.02 99.86 99.99 65.73 99.99 42.5571619 

804786 89.31 99.04 0.66 0 80.41 44.61 0 68.95 42.52956274 

RXLR87 6.64 99.99 0.74 49.24 99.99 20.18 0 11.59 42.44680433 

814239 96.69 1.42 0.95 69.16 0.99 19.83 2.02 1.09 37.64354486 

RXLR35 67.29 0 0.55 0 94.38 36.77 0 49.79 36.89845516 

809198 76.83 53.18 0.4 25 21.09 98.46 2.22 10.36 36.39590352 

812075 74.93 83.58 0 0.02 1.78 1.76 0 2.6 36.2995899 

Appendix table 5.2.3: Table of the genes displaying the most variance in expected Poisson CDF for 

coverage, where the gene is expected to be hemizygous in the reference strain, Emoy2. Std Dev = 

standard deviation 
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Appendix table 5.3: SNP gene tables (top 20) 
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808490 Y - - 33.4 14.3 33.4 14.3 22.3 13.1 

801090 - - - 24.4 13.4 24.4 13.4 4.5 2.9 

808092 - - - 21.3 4.9 21.3 4.9 17.8 9.1 

814172 Y - - 21.0 13.7 21.0 13.7 15.7 10.9 

802192 Y - - 20.9 15.0 20.9 15.0 7.7 6.6 

eff_15410_g Y 1 - 20.9 14.4 20.9 14.4 7.4 5.8 

ceg_12014_g Y 3 - 20.3 16.6 5.8 4.2 2.7 2.1 

814613 - - - 19.5 9.6 6.0 5.4 3.3 5.2 

814861 - - - 19.5 9.4 19.5 9.4 3.9 2.3 

813648 - - - 18.3 19.1 18.3 19.1 13.6 17.2 

813379 - - - 18.0 6.9 18.0 6.9 15.4 9.3 

803035 Y - - 17.9 15.1 17.9 15.1 12.4 12.3 

807859 - - - 17.1 11.4 11.6 9.7 4.9 5.1 

808876 - - - 16.9 4.1 16.9 4.1 13.7 7.0 

ATR1_Emoy2 Y - ATR1 16.8 21.5 16.8 21.5 6.1 6.5 

803927 - - - 16.4 5.4 8.5 2.2 4.5 3.4 

800520 - - - 16.3 6.3 16.3 6.3 15.5 7.3 

807858 - - - 16.3 10.4 5.2 4.0 3.0 2.2 

808811 Y - - 16.3 12.9 16.3 12.9 4.0 4.4 

804775 - - - 16.1 6.0 16.1 6.0 6.0 4.5 

 

Full list of genes can be found in appendix file: “Appendix table 5.3, 5.4, 5.5 - SNPs.xlsx” 

under SNP tab. 
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Appendix table 5.4: Heterozygous SNP gene table (top 20) 
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801090 - - - 23.1 14.1 23.1 14.1 4.8 4.5 

802192 Y - - 20.0 16.0 20.0 16.0 7.0 6.9 

814172 Y - - 17.5 11.1 17.5 11.1 15.0 11.8 

eff_15410_g Y 1 - 16.4 12.5 16.4 12.5 6.3 6.1 

814613 - - - 16.4 12.0 4.0 4.8 1.1 0.5 

814861 - - - 14.8 8.0 14.8 8.0 3.0 2.0 

806792 - - - 14.5 10.4 14.5 10.4 9.4 8.8 

814802 - - - 14.1 14.5 14.1 14.5 9.4 10.5 

813648 - - - 13.8 11.9 13.8 11.9 9.4 8.5 

808811 Y - - 12.6 9.8 12.6 9.8 4.8 7.1 

808716 - - - 12.0 10.6 1.0 0.7 0.5 0.5 

811880 Y - - 10.5 6.9 10.5 6.9 7.0 6.1 

813542 - - - 10.3 7.8 10.3 7.8 5.1 4.6 

810634 Y - - 9.8 7.6 9.8 7.6 3.5 3.7 

PHYT9337.2 - - - 9.6 5.0 6.5 4.9 5.0 4.7 

807678 - - - 9.1 6.8 9.1 6.8 7.5 6.8 

812044 Y - - 8.9 15.2 8.9 15.2 8.5 14.4 

PHYT4874.8 - - - 8.9 9.6 3.0 2.9 2.5 2.6 

808490 Y - - 8.8 16.0 8.8 16.0 8.6 15.0 

811478 Y - HaRxLL36 8.8 5.9 8.8 5.9 4.8 4.9 

 

Full list of genes can be found in appendix file: “Appendix table 5.3, 5.4, 5.5 - SNPs.xlsx” 

under Hets tab. 
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Appendix table 5.5: Protein coding effect of SNPs (top 20) 
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808490 Y - - 0.4 1.1 8.5 15.5 33.0 15.2 0.0 0.0 

802192 Y - - 0.1 0.4 9.0 7.5 20.8 15.1 0.0 0.0 

808092 - - - 0.9 1.0 1.5 2.8 20.4 5.1 0.0 0.0 

814172 Y - - 1.6 1.5 16.3 10.2 19.4 13.4 0.0 0.0 

814861 - - - 0.6 0.5 12.9 6.9 18.9 9.2 0.0 0.0 

803035 Y - - 0.1 0.4 0.6 1.4 17.8 15.1 0.0 0.0 

eff_15410_g Y 1 - 3.3 2.0 12.9 10.1 17.6 13.3 0.0 0.0 

813379 - - - 0.5 0.5 3.1 4.9 17.5 6.5 0.0 0.0 

ceg_12014_g Y 3 - 2.9 2.0 0.1 0.4 17.4 15.6 0.0 4.0 

807859 - - - 0.4 0.7 0.0 0.0 16.8 11.5 0.0 0.0 

ATR1_Emoy2 Y - ATR1 0.0 0.0 0.0 0.0 16.8 21.5 0.0 0.0 

803927 - - - 0.4 0.5 1.8 4.9 16.0 5.6 0.0 0.0 

801090 - - - 8.8 3.5 15.0 9.8 15.6 10.1 0.0 0.0 

800520 - - - 0.6 0.5 0.3 0.5 15.6 5.8 0.0 0.0 

814613 - - - 4.1 1.7 13.0 9.2 15.4 8.7 2.0 0.0 

814292 - - - 0.3 0.5 1.3 2.3 15.0 6.6 0.0 0.0 

804775 - - - 1.3 0.7 1.0 2.1 14.9 5.7 0.0 0.0 

811796 - - - 0.0 0.0 0.0 0.0 14.9 10.7 0.0 0.0 

809040 - - - 0.4 1.1 4.8 5.6 14.6 6.7 0.0 0.0 

807858 - - - 1.6 1.2 0.1 0.4 14.6 9.4 0.0 0.0 

 

Full list of genes can be found in appendix file: “Appendix table 5.3, 5.4, 5.5 - SNPs.xlsx” 

under Syn tab. 
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Appendix table 5.6: INDEL gene tables (top 20) 
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801090 - - - 4.9 1.6 4.9 1.6 3.5 1.6 

803674 - - - 4.6 3.2 0.7 0.3 0.7 0.3 

814172 Y - - 4.4 0.9 4.4 0.9 4.1 1.2 

811880 Y - - 3.9 1.2 3.9 1.2 3.9 1.2 

807247 - - - 3.3 1.7 3.3 1.7 3.3 1.6 

804903 Y - - 3.0 1.8 3.0 1.8 3.0 1.7 

812377 - - - 3.0 1.3 2.2 1.3 2.2 1.2 

PHYT2811.3 Y - - 2.9 2.2 1.4 0.7 1.4 0.7 

PHYT9337.2 - - - 2.9 1.5 1.6 1.0 0.9 0.4 

ceg_3124_g Y - - 2.8 3.5 2.8 3.5 2.8 3.3 

813447 Y 1 - 2.6 2.0 2.6 2.0 2.4 1.8 

809897 - - - 2.5 5.2 2.5 5.2 2.5 4.8 

806792 - - - 2.5 1.6 2.5 1.6 2.4 1.6 

808490 Y - - 2.5 1.5 2.5 1.5 2.0 1.1 

808716 - - - 2.5 1.2 2.2 0.7 2.0 0.7 

PHYT2459.8 - - - 2.5 0.8 2.5 0.8 2.5 0.7 

801705 - - - 2.5 0.5 2.5 0.5 2.3 0.6 

809705 - - - 2.5 0.9 2.5 0.9 0.9 0.5 

802220 - - - 2.5 0.9 2.5 0.9 1.0 0.4 

PHYT4874.8 - - - 2.4 1.8 2.4 1.8 2.0 1.1 

 

A full list of genes can be found in attached file: “Appendix table 5.6, 57 - INDELs.xlsx” 

under INDELs tab. 
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Appendix table 5.7: Heterozygous INDEL gene tables (top 20) 
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801090 - - - 4.9 1.6 4.9 1.6 2.8 1.6 

803674 - - - 4.6 3.2 0.7 0.3 0.6 0.3 

814172 Y - - 4.3 1.2 4.3 1.2 3.4 1.8 

811880 Y - - 3.5 1.4 3.5 1.4 3.1 1.8 

807247 - - - 3.1 1.4 3.1 1.4 2.9 1.6 

804903 Y - - 3.0 1.8 3.0 1.8 2.6 1.9 

PHYT9337.2 - - - 2.9 1.5 1.9 0.9 1.2 0.9 

813447 Y 1 - 2.6 2.0 2.6 2.0 1.9 1.8 

809897 - - - 2.5 5.2 2.5 5.2 2.5 4.8 

806792 - - - 2.5 1.6 2.5 1.6 2.1 1.8 

809705 - - - 2.5 0.9 2.5 0.9 0.7 0.5 

802220 - - - 2.5 0.9 2.5 0.9 0.9 0.4 

pasa_gi_SuperContig10_291 - - - 2.4 0.7 2.4 0.7 2.1 1.0 

HaRxLCRN4 Y - - 2.3 1.8 2.3 1.8 2.1 1.8 

805490 - - - 2.3 1.4 2.1 1.4 1.8 1.5 

808811 Y - - 2.3 1.6 2.3 1.6 1.7 1.2 

812153 - - - 2.3 1.4 2.3 1.4 1.9 1.1 

807750 - - - 2.1 4.5 2.1 4.5 2.2 4.2 

810634 Y - - 2.1 1.4 2.1 1.4 1.8 1.4 

808716 - - - 2.1 1.4 1.8 0.8 1.5 0.8 

 

A full list of genes can be found in attached file: “Appendix table 5.6, 57 - INDELs.xlsx” 

under Hets tab. 
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Appendix table 5.8: DnaSP tables (top and bottom 20 Fu’s Fs) 
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ceg_g20448 - - - 16 33 41 4 0.3 1.0 0.5 0.8 12.0 

eff_g3498 Y - HaRxL21 16 21 21 3 0.2 2.6 1.6 2.1 11.8 

807780 - - - 16 12 12 2 0.1 2.5 1.5 2.0 10.9 

808682 - - - 16 18 18 3 0.2 2.4 1.5 2.1 10.4 

803642 - - - 16 19 19 3 0.2 2.0 1.6 1.9 10.3 

808594 Y - HaRxLL38 14 36 36 4 0.3 1.2 1.6 1.7 10.3 

807859 - - - 16 43 43 5 0.3 1.3 1.7 1.8 10.2 

814245 - - - 16 13 13 2 0.1 1.3 1.5 1.6 9.9 

801132 Y - - 16 56 56 6 0.4 1.2 1.7 1.8 9.6 

eff_g7948 Y - - 16 56 56 6 0.4 1.2 1.7 1.8 9.6 

800248 - 1 - 16 24 24 4 0.3 2.2 1.6 2.0 9.5 

801226 - - - 16 9 9 2 0.1 2.8 1.4 2.0 9.4 

800673 Y - - 16 35 39 4 0.3 -0.3 1.7 1.3 9.4 

809692 - - - 16 32 32 4 0.3 0.5 1.6 1.5 9.3 

811507 - - - 16 15 15 3 0.2 2.5 1.5 2.1 9.2 

807947 - - - 16 16 16 3 0.2 2.1 1.5 1.9 9.2 

807060 - - - 16 14 14 3 0.2 2.7 1.5 2.1 9.0 

807061 - - - 16 14 14 3 0.2 2.7 1.5 2.1 9.0 

ATR1_Emoy2 Y - ATR1 12 62 64 5 0.4 0.2 1.7 1.5 8.8 

805211 - - - 16 22 26 4 0.3 1.1 0.6 0.9 8.8 

... ... ... ... ... ... ... .... ... ... ... ... ... 

804837 - - - 16 4 5 8 0.5 -0.2 0.5 0.3 -4.2 

804910 - - - 16 10 10 10 0.6 -0.4 0.5 0.3 -4.3 

ceg_9280_g - - - 16 4 6 9 0.6 0.2 0.0 0.0 -4.4 

PHYT5312.14 - - - 16 16 16 12 0.8 -0.1 0.0 0.0 -4.4 

ceg_14750_g Y 13 Emoy2_HpRXLR104 16 15 15 12 0.8 0.0 -0.1 0.0 -4.7 

804903 Y - - 16 15 17 11 0.7 -1.4 -0.4 -0.8 -4.8 

eff_g19502 Y - - 16 15 17 11 0.7 -1.4 -0.4 -0.8 -4.8 

eff_g7027 Y - - 16 15 17 11 0.7 -1.4 -0.4 -0.8 -4.8 

808661 - - - 14 3 5 8 0.6 -0.6 -0.2 -0.4 -5.2 

801127 - - - 16 3 5 8 0.5 -0.8 0.5 0.1 -5.2 

pasa_gi_SuperContig2_159 - - - 16 9 9 11 0.7 0.3 0.9 0.9 -5.3 

806421 - - - 16 24 24 14 0.9 0.1 1.0 0.8 -5.5 

pasa_883_g - - - 16 15 17 13 0.8 0.0 0.4 0.4 -5.6 

802816 - 8 - 16 7 8 11 0.7 0.5 0.8 0.8 -5.7 

HaRxLL15 - - - 16 13 14 12 0.8 -0.7 -0.2 -0.4 -6.2 

809011 - - - 16 7 8 11 0.7 0.1 0.8 0.7 -6.3 

HaRxLL133 - - - 16 15 16 13 0.8 -0.4 0.0 -0.1 -6.6 

811403 - - - 16 17 20 13 0.8 -1.4 -1.6 -1.8 -7.2 

812038 - - HaRxLL163 16 7 9 12 0.8 -0.1 0.4 0.3 -7.8 

808717 - - - 16 7 9 13 0.8 0.4 0.9 0.9 -9.1 

 

 

A full list of genes can be found in attached file: “Appendix table 5.8 - DnaSP tables.xlsx” 

under the All tab.  
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Appendix table 5.9: PAML tables (top 20 codeml dN/dS) 
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ceg_13464_g - - - 0.00 97.01 0.00 0.75 0.75 0.75 

810037 - - - 0.00 50.50 0.00 0.00 0.00 0.00 

810267 - - - 0.00 48.42 0.00 0.00 0.00 0.00 

811885 - - - 0.00 46.40 0.00 0.00 0.00 0.00 

801186 - - - 0.00 36.19 0.00 1.27 1.27 1.27 

807911 Y - HaRxLL108 0.00 34.95 0.00 1.23 1.23 1.23 

811640 - - - 0.00 34.33 13.62 18.41 18.41 18.41 

ceg_15480_g - - - 0.00 32.26 0.00 0.00 0.00 0.00 

802815 - - - 0.00 31.95 0.00 0.00 0.00 0.00 

808320 - 1 - 0.00 28.05 0.00 0.00 0.00 0.00 

800545 - - - 0.00 24.99 0.00 0.00 0.00 0.00 

pasa_gi_SuperContig157_18 - - - 0.00 24.78 0.00 1.33 1.33 1.33 

811033 - - - 0.00 24.25 0.00 4.47 4.47 4.47 

812953 - - - 0.00 23.81 0.00 1.82 1.82 1.83 

805928 - - - 0.00 23.57 0.00 0.00 0.00 0.00 

807000 - - - 0.00 23.37 0.00 0.00 0.00 0.00 

HaRxLL447 Y - HaRxLL447 0.00 23.34 0.00 0.00 0.00 0.00 

806586 - 3 - 0.00 23.08 0.00 0.00 0.00 0.00 

805043 - - - 0.00 22.61 0.00 0.00 0.00 0.00 

804639 - - - 0.00 22.48 0.00 0.76 0.76 0.76 

 

A full list of genes can be found in attached file: “Appendix table 5.9 - PAML tables.xlsx” 

under the All tab.  
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Abbreviations 

A. laibachii - Albugo laibachii 

A. thaliana - Arabidopsis thaliana 

ADP - adenosine diphosphate 

ARF - ADP Ribosylation Factors 

BAC  - bacterial artificial chromosome 

bp - base pair 

C. elegans  - Caenorhabditis elegans 

CDF - cumulative distribution function 

cDNA - complementary deoxyribonucleic acid 

CEG - core eukaryotic genes present at single or low copy numbers  

CEGMA - Core Eukaryotic Genes Mapping Approach 

CHXC - CHXC motif 

CNV - copy number variation 

D. melanogaster  - Drosophila melanogaster 

d.p.i  - days post inoculation 

DEPC - diethylpyrocarbonate 

DNA - deoxyribonucleic acid 

EST - expressed sequence tags  

ETI - effector-triggered immunity.   

ETS  - effector-triggered susceptibility 
flg22 - 22-amino acid sequence of the conserved N-terminal part of flagellin is known to activate plant 
defence mechanisms 

FLS2  - FLAGELLIN SENSITIVE 2 

GA - Genome Analyser 

GFF3 - general feature format 3 

GO - Gene Ontology  

H. sapiens  - Homo sapiens 

HMM - hidden Markov model 

Hpa - Hyaloperonospora arabidopsidis 

HRI - Horticulture Research International 

INDEL - insertion and/or deletion 

IPTG - isopropyl β-D-1-thiogalactopyranoside 

IUPAC - International Union of Pure and Applied Chemistry 

KOG - core eukaryotic protein 

MCMC - Monte Carlo Markov chain 

MRCA - most recent common ancestor  

NADH - nicotinamide adenine dinucleotide 

NCBI - National Centre for Biotechnology Information  

NR - non redundant 

nt - nucleotide 

P. infestans - Phytophthora infestans 
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P. ramorum - Phytophthora ramorum 

P. sojae - Phytophthora sojae 

PAMP - pathogen associated molecular patterns  

PCEG - conserved single copy Phytophthora genes 

PCR - polymerase chain reaction 

PTI - PAMP triggered immunity  

QQ-plots - quantile-quantile-plots 

RNA - ribonucleic acid 

RXLR - RXLR motif 

S. cerevisiae - Saccharomyces cerevisiae 

S. pombe - Schizosaccharomyces pombe 

SNP - single nucleotide polymorphism 

TAIR - The Arabidopsis Information Resource 

TSL - The Sainsbury Laboratory 

UTR - untranslated region 

VBI - Virginia Bioinformatics Institute 

VCF - variant call format 
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