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Abstract

The oomycete Hyaloperonospora arabidopsidis (Hpa) is a pathogen of Arabidopsis
thaliana and a model for dissection of A. thaliana pathogen response networks. Hpa
suppresses plant immunity by secreting effector proteins into the host thereby interfering
with the host defence response and facilitating its own growth. The host’s resistance
genes are able to recognise certain alleles of some effectors and trigger an immune
response. This interaction exerts selection pressure on effectors and resistance genes and
has been likened to an evolutionary arms race. It has been shown that some effectors of
Hpa that increase virulence activity and have certain alleles recognised by the host are

under positive selection.

| investigated sequence variation in Hpa using the Illumina second generation sequencing
platform. | was involved in the Hpa genome sequencing project. Using lllumina sequenced
reads | isolated and removed contaminations, identified and integrated 4 Mb of novel
sequence and developed new methods to evaluate genome completeness. | then trained
and used various gene prediction algorithms to predict gene models for Hpa. Annotation
and analysis of the gene models revealed interesting aspects about Hpa biology, including
incomplete nitrogen and sulphur assimilation pathways, a reduced complement of
effectors compared to other similar pathogens and a significant increase of sequence
variation in candidate effectors (Baxter et al.,, 2010). For ease of visualisation |
implemented a genome browser, which displays the gene models, sequence variation, and

expression data of Hpa.

| developed a novel pipeline that performs phylogenetic and evolutionary analysis to
identify genes under selection. Comparative genomics analysis using this pipeline revealed
that some effectors and under higher selective pressure compared to other genes.
Analysis of the most highly evolving genes reveals a novel class of effectors, providing a

valuable resource for further elucidating mechanisms of effector biology.
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Chapter 1 — General Introduction

1.1 Introduction and rationale

Since the beginning of life on earth, approximately 3.4 billion years ago (Wacey et al., 2011)
the key to survival has been the pursuit of nutrients. Successful organisms are able to
gather nutrients from their surroundings, but not all organisms are able to do this
independently and therefore need to interact with other organisms to acquire nutrients.
This interaction “between two unlike organisms” is called symbiosis (de Bary, 1879). The
symbiotic relationship between 2 organisms can be mutually beneficially to both
organisms (mutualistic), beneficial to one of the organisms but neutral to the other
(commensalistic) or beneficial to one at the expense of the other (parasitic) (Douglas,
2010). Depending on disease severity, a parasitic organism, which causes disease in its
host, could also be considered a pathogen. These pathogens may require a living host in
order to complete its lifecycle (biotrophy) or kill and feed on the host (necrotrophy). It is
also possible for a pathogen to have a biotrophic phase followed by a necrotrophic phase
(hemi-biotrophy). In order for pathogens to be successful, they must be able to colonise,
survive and multiply on their hosts. Some pathogens are able to suppress host immunity
by secreting so-called effector proteins into the host thereby interfering with the host
defence response and facilitating their own growth. In order for a host to prevent disease,
it must be able to stop the pathogen through either preformed barriers or by inducing a
response to make the pathogen unable to colonise the host. In the case a pathogen is
unable to colonise its target host, it must find a new host or overcome the defence
barriers of its host to survive. When a pathogen is unable to parasitize multiple hosts, it
becomes paramount that it specialises to overcome the host defence barriers. This
continued co-evolutionary interaction between the host and pathogen would impose as a

strong evolutionary selection on both the host and the pathogen.

In this dissertation | examined the signatures of evolution on Hyaloperonospora
arabidopsidis (Hpa) using second generation sequencing and comparative genomics. Hpa
is an obligate biotrophic pathogen that causes downy mildew of its host, the dicot plant
Arabidopsis thaliana. Downy mildew pathogens are estimated to parasitize about 15% of

all flowering plant families, and account for about 20% of the global fungicide market (The



Genome Institute, 2011). The downy mildews of sugar cane and maize are listed among
seven plant pathogens considered to be major bioterror threats by the USA (Animal and
Plant Health Inspection Service, 2002). Oomycete pathogens have also caused much
devastation historically, such as the Great Irish Potato famine, caused by Phytophthora
infestans, which caused 1 million deaths over 7 years. While Hpa is not a pathogen of a
commercial crop plant, oomycete effector biology is an emerging field and any discoveries
in the fundamental understanding of effector biology provide a platform to further study
conserved mechanisms between systems, with the possibility of knowledge transfer to

applied systems.

1.2 Evolution, variation and selection

1.2.1 Variation

Evolution is the cumulative change across successive generations in the characteristics of
populations of biological organisms. Evolution leaves its signature on the genome as
variation. Observable traits (phenotypes) of organisms result from their genetic
constitutions (genotypes), as well as the environment. Natural selection acts on favourable
phenotypes that are caused by variation at the DNA level, including genes encoding for
proteins, non-coding RNA, non-coding DNA affecting expression levels and splice variation
as well as epigenetic variation. The different types of variation in DNA sequence of
individuals can be caused by mutations including single nucleotide polymorphisms (SNPs),
insertions and deletions (INDELs), recombination, copy number variation (CNV), repeat

number variation and change in ploidy.

1.2.2 Mutation

Mutations can be spontaneous or induced by a mutagen. Mutations can be classified as
small scale mutations or large scale mutations. Small scale mutations are those affecting
only a few nucleotides and include point mutations, insertions and deletions. Point
mutations cause a change from one nucleotide to another and are often referred to as
single nucleotide polymorphisms (SNPs) (Freese, 1959). SNPs can be classified as
transitions (A & G, C < T) or transversions (T < G, C< G, T < A, C < A) (Freese, 1959).
A SNP that occurs on a protein coding region of the genome can have 2 broad effects on

the codon on which the mutation occurs: the new allele can code for the same amino acid



(silent mutation/synonymous polymorphism) or it can code for another (non-synonymous
polymorphism), which can either be a different amino acid (missense mutation) or a
premature stop codon (nonsense mutation). Over half of all known human disease
mutations are a result of non-synonymous mutations (Stenson et al., 2009). Insertions add
one or more nucleotides to the DNA and deletions are the removal of one or more
nucleotides from the DNA. Insertions and deletions are collectively referred to as INDELs.
If an INDEL on a coding region of the genome is of a size not divisible by 3 (i.e. not a codon
INDEL) they cause frameshifts, which can significantly modify the codons on the gene.
Large scale mutations largely act at the level of the chromosomal structure. Examples of
large scale mutations include gene duplications, deletions of large chromosomal sections,
loss of heterozygosity, chromosomal inversions, interstitial deletions and chromosomal

translocations.

1.2.3 Modelling variation

Variation in genes and genomic loci results in multiple forms of the gene (alleles) in the
population. The number of distinct allele possibilities in a genomic locus (over a gene,
genes or even a chromosome) that are transmitted together are referred to as the number
of haplotypes. Haplotype variability encompasses the allelic variability and genetic

recombination over a genomic locus in the population.

1.2.3.1 Genetic drift

The change in frequency of an allele in a population due to random sampling, rather than
selective processes, is referred to as allelic drift (Joanna, 2011). Genetic drift is considered
to be an evolutionary mechanism in small populations as it can be used to explain the loss

of genetic variation in small populations due to sampling error (Zimmer, 2002).

1.2.3.2 Hardy-Weinberg equilibrium

Variability in genomes can be maintained through inheritance of haplotypes from parent
to their offspring. Hardy and Weinberg (Hardy, 1908; Weinberg, 1908) described a
principle that states that both allele and genotype frequencies in a sufficiently large
population remain at equilibrium between generations unless disturbed by the influence
of non-random mating, mutations, selection, limited population size, non-discrete
generations, random genetic drift, gene flow and meiotic drive. This principle is commonly

referred to as Hardy-Weinberg equilibrium, and describes an ideal state from which the



extent of departure be measured. Another source of variation in diploid sexual
populations includes the inheritance of one set of chromosomes from each parent. The
interaction between the inherited parental haplotypes and how they characterise the
resultant phenotypes is referred to a Mendelian inheritance (Mendel, 1865), which

underlies much of the work carried out in the field of genetics.

1.2.3.3 Coalescent theory

Since all allelic states in the population are determined by the previous genealogical and
mutational history of these genes, it is possible to identify ancestral forms of currently
observed alleles. Coalescent theory models genetic drift backwards in time to attempt to
identify a most recent common ancestor (MRCA) that provides the foundation for current
allelic variation (Hudson, 1983; Kingman, 1982; Tajima, 1983). The coalescent provides
insights into the probability of sample allelic configurations under stationary distribution of
various population genetic models, and allows for maximum likelihood analysis of

polymorphism data (Nordborg, 2007).

1.2.4 Evolution

1.2.4.1 Natural selection

A key mechanism of evolution is natural selection, which is the process whereby
favourable genetic traits increase in abundance (segregate) within the population as a
function of differential reproduction of the bearers of the traits (Darwin, 1859). Selection
can be subcategorized as directional, stabilising, disruptive (diversifying), sexual and
ecological. Directional selection is where a single phenotypic trait is favoured causing a
shift in allele frequency towards this phenotypic trait. Stabilising selection is where a
particular phenotypic trait is selected for in a population leading to decrease in genetic
diversity. Diversifying selection is where 2 extreme phenotypic traits are preferred over an
intermediate. Sexual selection is the process whereby phenotypic traits are favoured
because, rather than improving survival fitness of the individual, they act to maximise
reproductive success through mating characteristics. Finally, ecological selection is the
favouring of phenotypic traits influenced only by the ecological processes without

referencing mating characteristics (i.e. natural selection minus sexual selection).



1.2.4.2 Neutral theory of molecular evolution

The neutral theory of molecular evolution states that the majority of evolutionary changes
at the molecular level are caused by random drift of selectively neutral mutants (Kimura,
1983). This theory has recently been shown to be compatible with the theory of natural
selection where adaptive change is modelled as a minority of DNA sequences changes (Fay,

2011).

1.2.5 Evolutionary tests

1.2.5.1 w ratio

There are a number of statistical tests for different types of evolution. One such test is the
dN/dS (also referred to as Ka/Ks or w) ratio, which is the ratio of non-synonymous
substitutions per non-synonymous site (dN) to the number of synonymous substitutions
per synonymous site (dS). With different w values for genes, inferences about the
evolutionary mechanisms acting on the gene can be made. If w < 1 it is assumed that
purifying selection is acting on the amino acid changes to filter out deleterious mutations.
If w =1 it implies that the amino acid change is neutral. If w > 1 it implies that the amino
acid change offers a selective advantage, providing convincing evidence for diversifying
selection (Yang and Bielawski, 2000). Two implementations of this test have been
described by (Goldman and Yang, 1994) and (Yang and Nielsen, 2000) amongst others (Ina,
1995; Nei and Gojobori, 1986). The Goldman and Yang’s (1994) method implements a
maximum likelihood codon substitution model, while the Yang and Nielsen (2000) method
implements counting methods for estimating dN/dS. These methods have been
implemented in the PAML suite (Yang, 2007) as yn00 (Yang and Nielsen, 2000) and codeml
(Goldman and Yang, 1994).

1.2.5.2 Evolutionary modelling with variable w

Codeml also implements various site model tests, which treat the w value for any codon in
the gene as a variable, allowing for w to vary over the gene (Nielsen and Yang, 1998; Yang
and Bielawski, 2000). Studies have shown comparative likelihood ratio tests, comparing a
model that does not allow for codons with w > 1 with another model that does, to be
effective (Anisimova et al., 2001, 2002; Anisimova et al., 2003; Wong et al., 2004). The

different models implemented in codeml are:



e MO - one ratio (uniform selective pressure among sites)

e M3 —discrete (variable selective pressure among sites)

e M1la - nearly neutral (variable selective pressure, but no positive selection)
e M2a - positive selection (variable selective pressure, with positive selection)
e M7 —beta (beta distributed selective pressure)

e M8 —beta with w (dN/dS or Ka/Ks) > 1 (beta plus positive selection)

e M8a — a special case of M8 testing for neutral selection

The model comparisons that can be used to infer positive selection include Model 0 (MO) -
Model 3 (M3), Model 1a (M1a) — Model 2a (M2a) and Model 7 (M7) — Model 8 (M8) (fig
1.1).

Hg: uniform selective pressure among sites (MO) Hy: variable selective pressure but NO positive selection (M1a)
A H:variable selective pressure among sites (M3) B H,: variable selective pressure with positive selection (M2a)

Compare 24! = 2(1, - ,) with a 2 distribution Compare 2Al = 2(l; - l) with a # distribution

Model 0 Model 3 Model 1a Model 2a
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C Ho: Beta distributed variable selective pressure (M7)
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Figure 1.1: Likelihood ratio test model comparisons modelled by codeml [reproduced from PAML:

A program package by Ziheng Yang http://abacus.gene.ucl.ac.uk/ziheng/data/pamIDEMO.pdf].

Model comparisons include M0 — M3 (A), M1a — M2a (B) and M7 — M8a (C). An additional model

comparison is used to differentiate model M8 from neutral drift (M8a — M8).

1.2.5.3 Tests of neutrality

Other commonly used statistical tests of neutrality are Tajima's D (Tajima, 1989), Fu & Li's
D, D*, F & F* (1993) and Fu’s Fs (Fu, 1997), which are all implemented in the program
DnaSP (Librado and Rozas, 2009).


http://abacus.gene.ucl.ac.uk/ziheng/data/pamlDEMO.pdf

1.2.5.3.1 Tajima’s D

Tajima’s D distinguishes between DNA sequence evolving neutrally and DNA sequence
evolving under a non-neutral model. Tajima's test is based on the fact that estimates of
the number of polymorphic (segregating) sites and of the average number of nucleotide
differences are correlated under the neutral model of evolution. If the value of D is too
large or too small, the neutral 'null' hypothesis is rejected. A negative value of Tajima’s D
indicates an excess of low frequency polymorphisms and may also signify purifying
selection. A positive value indicates low levels of low and high frequency polymorphisms
and may also signify balancing selection and heterozygote advantage. In general, values of
Tajima’s D above +2 and below -2 are likely to be significant, indicating selection (Tajima,

1989).

1.2.5.3.1 Fu and Li’s D, D*, F and F*.

Tajima did not base his test on coalescent. Fu and Li's tests are directly based on
coalescent. The test statistics D and F require data from intraspecific polymorphism and
sequence from a related outgroup species. The D* and F* do not require an outgroup
species in the input. With 10 samples, values of D and D* less than -1.8 and greater than
1.4 are significant and values for F and F* less than -2 and greater than 1.55 are significant

(Fu and Li, 1993).

1.2.5.3.1Fu’s Fs

Fu’s Fs test statistic is considerably more powerful than the previous tests, at rejecting the
null hypothesis of neutrality of mutations in DNA samples under logistic population growth
and genetic hitchhiking (where an allele experiences an increase in population frequency

due to linkages with a gene positively selected for) (Fu, 1997).

1.3 Plant-pathogen co-evolution

Hpa has evolved only to be able to infect A. thaliana as a host (Goker et al., 2004). For this
reason it has to overcome or evade triggering A. thaliana defence mechanisms and is
under strong selection pressure to enhance its virulence mechanisms, while selecting
against mechanisms that lead to recognition of the pathogen by the host. Likewise, the
host, A. thaliana, is under similar selection pressures to enhance its resistance to Hpa

infection.



1.3.1 Plant immunity

The plant’s initial defence barrier is a general one, such as secretion of toxins and physical
barriers to pathogen entry, which may be effective against a number of pathogens. Once a
pathogen is able to overcome these barriers, more complex interactions between the host
and pathogen become relevant. Jones and Dangl (2006) described a ‘zig-zag-zig’ model of
defence response (fig 1.2). According to this model, the initial defence response after
initial contact with the pathogen involves the recognition of pathogen associated
molecular patterns (PAMPs). PAMPs are conserved molecular patterns in pathogens that
are not easily lost by the pathogen such as bacterial flagellin, which contains a 22 amino
acid conserved domain (flg22) (Chinchilla et al., 2006) and fungal chitin (Wan et al., 2008).
PAMPs are bound by the host’s receptor kinases. For instance, flg22 is recognised by the
receptor kinase FLS2 of Arabidopsis (Chinchilla et al., 2006). Upon recognition, FLS2 is
internalised and triggers a set of immune responses referred to as PAMP triggered

immunity (PTI, which is also sometimes referred to as pattern triggered immunity).

PTI ETS ETI ETS ETI

Pathogen ® o
: effectors e
Pathogen
effectors § Avr-R

o~ PAMPS

Figure 1.2: Zig-zag-zig plant defence response mechanism, showing the amplitude of defence
response elicited by various stages of infection [reproduced from (Jones and Dangl, 2006)]. ETS =
effector-triggered susceptibility. Avr-R = interaction of the recognised effector (avirulence or avr

gene) and the host resistance gene (the R-gene)



In order to overcome this defence response the pathogen may have evolved the ability to
secrete effectors, which are usually small secreted proteins that facilitate growth of the
pathogen on the host by suppressing defence or manipulating host metabolic function for
the benefit of the pathogen. A recent study has shown that pathogen effectors have
evolved independently to target core genes in the plant immune network (Mukhtar et al.,

2011).

In an evolutionary context, one would expect the fixation of a pathogen effector that is
particularly effective in a small population. This is a hypothesis as to why plants have
evolved the mechanisms to directly or indirectly recognise pathogen effectors through
resistance genes, causing effector triggered immunity (ETI) (Scofield et al., 1996; Tang et
al.,, 1996; Van der Biezen and Jones, 1998). To add to this intricate system of effector—R
gene interaction, there have been reports that effectors also suppress ETI (Tsiamis et al.,
2000) and there are plant resistance genes that recognise those effectors (Yucel et al.,

1994).

1.3.2 Effector translocation and structure

Both bacterial and eukaryotic pathogens have been shown to secrete effectors. Effectors
have either cytoplasmic (e.g. (Allen et al., 2004; Orbach et al., 2000; Rehmany et al., 2005;
Win et al., 2006)) or apoplastic (e.g. (Rooney et al., 2005; Tian et al., 2007)) localisation in
plants. They are translocated from the pathogen to the host via a secretory mechanism. In
bacteria this is achieved by the type 3 secretion system for effectors to be delivered to the
host cytoplasm and the type 2 secretion system for effectors to be delivered to the host
apoplast. In oomycete pathogens the exact mechanism of translocation is not fully
understood. Briefly, the effectors are translocated from the pathogen into the host
apoplast. Here, apoplastic effectors interfere with apoplastic defence responses. Another
translocation event occurs whereby cytoplasmic effectors are translocated into the plant

cytosol where they interfere with plant cytoplasmic defence responses (fig 1.3).
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Figure 1.3: Principles of effector biology in oomycete, fungus and bacteria [reproduced from
(Dodds and Rathjen, 2010)]. PAMP = Pathogen Associated Molecular Pattern, PTI =
Pathogen/Pattern Triggered Immunity, ETI = Effector Triggered Immunity, PRR = PAMP/Pattern
Recognition Receptor, NB-LRR = Nucleotide Leucine Rich Repeat, BAK1 = Brassinosteroid

Insensitive 1-Associated Kinase 1,

Oomycete cytoplasmic effectors have a modular structure consisting of a secretion signal
and a hypothetical secondary translocation domain (an RXLR motif in many oomycetes),
followed by the C-terminal functional domain (commonly referred to as the effector
domain) (fig 1.4). Until very recently, it was considered that effectors contained conserved
RXLR motif after the signal peptide. This RXLR motif was considered to be involved in
translocation of the effector into the host. However, recent studies have shown that
within Hpa, which has RXLR effectors, there are effectors which do not have the RXLR
motif (Bailey et al., 2011), and in the oomycete pathogen Albugo laibachii the majority of

effector candidates carry a CHXC motif (Kemen et al., 2011).
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Figure 1.4: Domain structure of oomycete apoplastic and cytoplasmic effectors [adapted from

(Kamoun, 2006)].

1.3.3 Hpa effector evolution

The importance of the pathogen having functional effectors that evade recognition, and
the plant host having resistance genes that are able to recognise effectors, is paramount
to the fitness of these organisms. Therefore, it is expected that their interaction will

impose a very strong evolutionary selection on these organisms.

While there are more than 100 putative effector genes in Hpa, but only 3 have been
confirmed to have avirulence activity due to recognition by an A. thaliana resistance gene:
ATR13 (Allen et al., 2004), ATR1 (Rehmany et al., 2005) and ATR5 (Bailey et al., 2011). Of
these, the 2 best studied effectors in Hpa are ATR1 and ATR13. ATR1 was shown to have a
high level of sequence polymorphism through comparative sequence analysis of 8 Hpa
races (Rehmany et al., 2005) (fig 1.5), of which the majority of polymorphisms clustered
towards the C-terminus of the gene, in the hypothesised functional domain. Rehmany et al.
(2005) went on to show that the majority of the polymorphisms in the gene in this
functional domain are non-synonymous mutations, while the few polymorphisms in the N-

terminal domain (signal peptide and RXLR region) are synonymous mutations (fig 1.6).
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Figure 1.5: Alignment of predicted ATR1 proteins from 8 Hpa races [reproduced from (Rehmany
et al., 2005)]. Emoy2, Hiks1l, Waco9, Maks9, Emco5, Noks1, Cala2 and Emwal are different races

of Hpa; dots in the sequence alignment indicate homology to the Emoy2 reference allele or ATR1.
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Figure 1.6: Sliding window analysis of synonymous and non-synonymous substitutions across

ATR1 in 8 Hpa races [reproduced from (Rehmany et al., 2005)].

This clustering of polymorphisms in the C-terminal region encoding for non-synonymous

mutations is likely to be a signature of positive selection. A later study of ATR13 analysed

the observed polymorphisms of Hpa effector ATR13 across 18 races of Hpa, where they

put the polymorphisms into an evolutionary context (Allen et al., 2008). They showed that

the dN/dS ratio of ATR13 suggests that it is being subjected to positive selection (table 1.1).

(a) Average pairwise differences per site (1)

Gene Isolates No. of alleles  total ™ syn- noni
ATR13 18 15 0.042 0.015 0.05
ATR13 17 14 0.033 0.014 0.039

Ppat5 16 ik 0.002 0.010 0.00008

({b) Chi-squared test comparing observed and expected polymorphism at ATR13 and Ppat5
Gene Total no. of sites Syn. obsS Syn. exp.I Non-obs.5 Hon-exp.d x2 P-value
ATR13 528 7 21 ad 70 12.04 0.0005 Ka == Ks
ATR13E 531 7 14 55 48 480 0.0285 Ka=Ks
Ppat5 1983 12 3 1 10 4.80 0.0285 Ka=HKs

* Pairwise differences at synonymous sites.

T Pairwise differences at non-synonymous sites.

T Excluding Hindz2 allele.

& MNumber of polymaorphisms observed at synonymous (or non-synonymous) sites.

{1 Expected number of polymorphisms at synonymous (or non-synonymous) sites assuming neutral evolution.

Table 1.1: Polymorphisms in ATR13 and Ppat5 [reproduced from (Allen et al., 2008)].
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1.4 Genomics and Sequencing

The secrets of the evolutionary signature left on the genome can be unravelled by DNA
sequencing, which has become an indispensable tool in many areas of biological research.
About 15 years after the discovery of the double helix (Watson and Crick, 1953a, b), DNA
sequencing began in 1968 by Wu and Kaiser (1968), and 3 years later they were able to
report a 12 base sequence (Wu and Taylor, 1971). Since this initial publication of DNA

sequencing, sequencing technology has improved dramatically.

The earliest rapid DNA sequencing technologies include Sanger’s (chain
termination/dideoxynucleotide) enzymatic method (Sanger et al., 1977) and Maxam and

Gilbert’s chemical method (Maxam and Gilbert, 1977).

1.4.1 Second generation sequencing

While Sanger sequencing was the pre-dominant method used for 30 years, it had various
limitations which include its resource intensive library and template preparation, high
running costs and relatively low throughput (Varshney et al., 2009). Advancements in
microfluidics, biochemistry, nanotechnology and informatics have led to a number of new
DNA sequencing technologies. These technologies were initially referred to as ‘next
generation sequencing’ technologies, but since an even newer onset of DNA sequencing
technologies, they are now more commonly referred to as ‘second generation sequencing’
technologies. The three most commonly used next generation sequencing technologies
are pyrosequencing (employed by Roche, previously 454 Life Sciences, in the GS-FLX
sequencer), sequencing by synthesis (usually referred to as Solexa sequencing, employed
by Illumina, previously Solexa, in the Genome Analyser sequencer, HiSeq and MiSeq
sequencers) and sequencing by ligation (employed by Applied Biosystems in the ABI SOLiD

sequencer).
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1.4.1.1 454 Pyrosequencing

Developed by 454 Life Sciences (now owned by Roche), this method parallelised the
sequencing by synthesis method (SBS) employed in pyrosequencing (Ronaghi et al., 1999).
It was the first second generation sequencing technology to be made available. In the
sequencing process DNA fragments anchored to beads and are amplified via emulsion PCR,
which are then put into wells on a plate. dNTPs are washed over the wells in waves. As the
nucleotides are incorporated into the new DNA strand, the intensity of the light given off is

used as a measure of how many As, Ts, Cs or Gs have been incorporated (fig 1.8).

Ligation of adaptors to
DNA fragments

Emulsion PCR A, {77
& | 98
N NN
Break emulsions and deposit
beads into picotiter plate '

Ordered flow of dNTPs

Beads with clonally amplified template DNAs and sequencing enzymes

l Polymerase
Template

Ll ofiNTP

[+
Primer
PP, and APS

i:? ATP ATP-sulfurylase
Luciferase

LIGHT

Pyrosequencing
Figure 1.7: Roche 454 GS FLX sequencing method [reproduced from (Voelkerding et al., 2009)]. PP;
= pyrophosphate, APS = adenosine 5 —phosphosulfate.

Previous reports showed that the 454 sequencing method is capable of sequencing 400-

600 Mb of DNA over about 1 million reads of >=400 bp per 10-hour run (Voelkerding et al.,
20009).
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1.4.1.2 Sequencing by synthesis

Sequencing by synthesis (SBS) (commonly referred to as Solexa sequencing) was
developed by Solexa and was then acquired by Illumina and implemented in the Genome
Analyser, HiSeq and MiSeq sequencers. This method uses a glass surface (flowcell) to
capture molecules, which are subsequently bridge PCR amplified into clusters (fig 1.9).
After this, dye labelled terminators are added and an image of the surface is taken, with
information on fluorescence (correlation to bases) recorded. The dye is then cleaved and
another layer of dye labelled terminators is added. This process is repeated until the whole
fragment has been sequenced. The resultant images are processed to reveal the sequence

of the DNA present at each cluster position.
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Figure 1.8: lllumina sequencing method [reproduced from (Voelkerding et al., 2009)]. POL =

polymerase.
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While the earlier protocols of lllumina sequencing yielded >1 Gb of 36 bp reads per run
(Bentley et al., 2008), the newest iterations of the original machine (lllumina GAlIx) is
capable of producing 100 Gb per run and 150 bp paired end read lengths

(www.illumina.com).

1.4.2 Second generation sequencing applications and tools

While Sanger sequencing produces longer reads of higher quality than any second
generation sequencing method, the high cost per base and lower throughput has led to
the mass adoption of second generation sequencing for a myriad of tasks. | will discuss
some of the applications and tools of second generation sequencing from the perspective

of the lllumina platform.

1.4.2.1 Genome assembly

One would assume that genome assembly of eukaryotic organisms would be best left to
sequencing technologies with longer reads, such as Sanger and 454. However, rapid
advances in lllumina sequencing in throughput, read length and insert size have facilitated
genome assemblies of, for example, Albugo laibachii (A. thaliana white rust) (Kemen et al.,
2011) and the panda genomes (Li et al., 2010). lllumina sequencing is also the preferred
platform for sequencing of prokaryotes, as prokaryotes have a less complex genome

compared to eukaryotes, so the read length offered by Illumina sequencing is sufficient.

Recently, researchers have started to use second generation sequencing for
metagenomics projects, such as for the sequencing of the human gut microbiome (Qin et

al., 2010) and the human oral microbiome (Lazarevic et al., 2009).

Some of the first short read assemblers (Jeck et al., 2007; Warren et al., 2007) were based
on the overlap consensus method. This method uses overlaps between sequences to
create links between them, whereby a contig is formed when the links are followed as far
as possible (fig 1.11). While this method was efficient when the throughput of sequencing
machines was still comparatively low, it has the inherent problem that the memory
requirements scale with the number of input reads. Therefore, it soon became unfeasible
to use the overlap consensus method for genome assembly with the large amount of data

produced by second generation sequencing technology.
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The next phase of short read assemblers (Butler et al., 2008; Chaisson and Pevzner, 2008;
Zerbino and Birney, 2008) were able to overcome the issue of memory requirement
scaling directly with the number of reads by implementing a de-Bruijn graph based
assembly method. This method uses a unique set of k-mers (all subsequences of length k
within the read) and the reads are represented as a path between the k-mers (fig 1.11). By

virtue of this method, the links between the reads are established as the data is read.

Original sequence

GTAGTATAGTCAGTATC

' N

Sequence reads k-mers (2-mers)

GTAGTA TAGTAT AGTATA GT TA AG AT TC ChA
GTATAG TATAGT

ATAGTC TAGTCA AGTCAG

EGTCAGT TCAGTA
CAGTAT AGTATC GTATCA

¥

Consensus overlap assembly de Bruijn graph
GTAGTA o
TACTAT RGI
AGTATA
GTATAG
TATAGT rﬁT-
ATAGTC
TAGTCA
AGTCAG
GTCAGT
TCAGTA

CAGTAT
AGTATC
GTATCA

GTAGTATAGTCAGTATCA

Figure 1.9: lllustration of how a read is reassembled using consensus overlap and the De-Bruijn

principles [reproduced from (MacLean et al., 2009)].

1.4.2.2 Alignment and variant calling

A major use of short read sequencing is to make inferences of variation between genomes
by aligning short reads to a reference genome assembly. While there are many alignment
algorithms, the early programs such as MAQ (Li et al., 2008a), SOAP (Li et al., 2008b) and
SSAHA (Ning et al., 2001) have been superseded by aligners using the Burrow-Wheeler

18



transform (Burrows and Wheeler, 1994) such as BWA (Li and Durbin, 2010), SOAP2 (Li et
al., 2009b) and Bowtie (Langmead et al., 2009). Recently a number of alighment programs
have started to employ the massive parallelisation offered by modern day graphics

processing units (GPUs), such as MUMmerGPU (Schatz et al., 2007) and SOAP3.

After reads have been aligned to a reference genome, a number of inferences can be

made by analysing differences between the reference sequence and the aligned reads:

e Nucleotide variation can be identified as SNPs and INDELs through programs such
as SAMtools (Li et al., 2009a)

e Structural variation can be identified using programs such as BreakDancer (Chen et
al., 2009)

e Copy number variation can be identified through programs such as CNV-seq (Xie
and Tammi, 2009)

e Through bulk segregant mapping, gene mapping projects can be undertaken using
programs such as SHOREmap (Schneeberger et al., 2009)

e ChIP-seq and Bis-seq experiments can be scored using programs such as PeakSeq

(Rozowsky et al., 2009)

1.4.2.3 Transcriptomics

In addition to DNA sequencing, RNA, cDNA and expression tag sequencing can be
performed using the second generation sequencing. There are a number of programs that
are able to assemble RNA/cDNA sequencing data allowing discovery of unannotated
transcripts, new isoforms (e.g. Cufflinks (Trapnell et al., 2010)) and splice site junctions (e.g.

TopHat (Trapnell et al., 2009)).

Recently efforts have been made to make use of the very high throughput of Illumina
sequencing for expression analysis. The benefit of using a sequencing based technique
compared to microarrays is that the method is open and experiments can be designed
more easily. Many of the methods make used of a protocol that digests the RNA/cDNA,
ligation of barcoded adapters to allow for multiplexing and a number of repeats to infer

statistical significance.
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1.5 Objectives of the project

It is apparent that successful pathogens are able to colonise plant hosts, by delivering
effectors that are able to suppress host defence and manipulate host function, to allow
the pathogen to complete its lifecycle. In recent years, progress has been made in
identifying and understanding oomycete effector biology, but there are many aspects of

effector biology that remain unknown due to the lack of known effectors.

The main goal of this project is to use Illumina sequencing technology to better
understand the nature of effectors from an evolutionary standpoint. During the start of my
project the Hpa genome assembly project was in preliminary stages. The scope of my
project was to use lllumina sequencing of the reference race, Hpa Emoy2, to assist with
the genome assembly of Hpa (chapter 3). After genome assembly, expression data (Sanger
sequenced ESTs and lllumina sequenced cDNA of Hpa Emoy2) were used to assist with
gene model predictions, from which inferences about Hpa biology and better
understanding of Hpa’s complement of virulence related genes can be made (chapter 4).
After the foundations of a good reference sequence and good gene models with
annotated effectors, | made use of Illlumina reads of 8 natural Hpa races isolated from
various geographical locations (Cala2, Emco5, Emoy2, Hind2, Maks9, Noco2 and Waco9
sequenced in house, and Emwal provided by Prof Brian Staskawicz, UC Berkeley) and
performed comparative genomics analysis on Hpa genes using a custom made generalised

analysis pipeline (chapter 5).
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Chapter 2 — Materials and Methods

2.1 Biological material and sequencing

The majority of the biological material sequenced used was that of Hpa Emoy2. The other
races of Hpa sequenced by the lab using lllumina paired end sequencing include Noco2
from the Jones Lab (TSL, Norwich) and Cala2, Emco5, Hind2, Maks9, and Waco9 which
were obtained from Prof Eric Holub at HRI, Warwick. Illumina paired end sequenced reads

of Hpa Emwal were provided by Prof Brian Staskawicz, UC Berkeley.

The preparation and Sanger sequencing of the Hpa Emoy2 DNA, ESTs and BACs were
coordinated by collaborators Dr Sucheta Tripathy (VBI, Virginia Tech) and Dr Laura Baxter
(HRI, Warwick).

These material and methods are the same as those published in Baxter et al. (2010), with

additional data used for the comparative genomics (chapter 5).

2.1.1 Sanger sequencing

The Sanger sequencing protocols for the DNA reads, BACs and ESTs are described in Baxter

et al., 2010.

2.1.2 lllumina Sequencing

2.1.2.1 DNA extraction.

Genomic DNA was extracted from Hpa conidospores from infected A. thaliana Ws eds1-1
plants using a Nucleon PhytoPure DNA extraction kit using the default protocol followed

by a Phenol / Chloroform extraction and Isopropanol precipitation.

2.1.2.2 lllumina DNA library preparation and sequencing.

The non-paired end libraries were sequenced on the lllumina GA1 platform using 120bp
inserts. The paired end libraries were sequenced on the Illumina GA2 platform using

400bp (+/- 10%) inserts. The protocol used was the same as the manufacturers protocol
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apart from the purification of the ligation of the Illumina adapters were performed on a 5%
polyacrylamide gel and the library validation was performed a 6% polyacrylamide gel. The
base calling was done on the Illumina GAP v1.0 pipeline for all runs before flowcell ID71

(appendix table 2.1; appendix table 2.2) after which the GAP v1.3 pipeline was used.

2.1.2.3 Quality checking the lllumina preparation and sequencing.

The libraries were sequenced on a single lane initially for quality checking after which the
decision to sequence further lanes was made. For both the paired and non-paired
sequencing runs, a PhiX control lane was also run to eliminate mechanical error. The raw
reads generated from the Illlumina Pipeline included errors in the form of PCR duplicate
reads, adapter contamination and Xanthomonas contamination. Contamination was dealt
with through post analysis filtering through sequence homology analysis. The reads were
analysed for quality using FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/)

(appendix figs 2.1). This analysis revealed certain quality issues:

e The per base quality drops drastically in the last third of the read for sequencing
runs before the implementation of the GA pipeline v1.3

e The Emwal reads have high levels of lllumina paired end sequencing primer
contamination

e The reads for each sequenced race have between 2% and 25% PCR duplication

Despite the per-base quality decrease in the last third of the read, the average read quality
of the reads have a single peak around a Phred scaled quality score 30, which implies an
overall error rate of 0.1%. Therefore, the reads were not filtered or trimmed before
alignment, but instead, | modified the alighment parameters to soft-trim bad quality
trailing bases and filtered the PCR duplicates post-alignment. The soft trimming was set
between Phred scaled quality scores of Q10 (10% chance of the base call being incorrect)
and Q20 (1% chance of the base call being incorrect) depending on the analysis. The
specific values used are mentioned in each results section. PCR duplicates were removed

after alignment to a reference genome sequence to avoid spurious variation calls.
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2.1.3 lllumina cDNA sequencing.

Hpa RNA was extracted from infected leaves of 7 days post inoculation (d.p.i.) A. thaliana
Ws eds1-1 using TRI-REAGENT according to protocol (Sigma). RNA was resuspended in
DEPC treated water. RNAse inhibitors (RNAseguard, Promega) was added and samples
were DNAse treated (RNAse free, Roche). RNA was re-extracted with phenol/chloroform,
EtOH precipitated and resuspended in DEPC treated water. First and second strand cDNA
synthesis was performed using the default protocol from the Creator SMART cDNA Library
Construction KitTM (Clontech). After the last amplification step cDNA was
phenol/chloroform extracted followed by Isopropanol precipitation. The cDNA was then
normalised using Duplex-specific nuclease (Evrogen) according to default protocol. The
normalised cDNA was than prepared to be sequenced on the lllumina platform using

120bp inserts with a 35 bp read length.

2.1.4 454 Sequencing

Hpa RNA was extracted from infected leaves 3 d.p.i. of 3 week-old A. thaliana Ws eds1-1
using a protocol adapted from (White and Kaper, 1989). RNA was resuspended in DEPC
treated water. RNAse inhibitors (RNAseguard, Promega) was added and samples were
DNAse treated (RNAse free, Roche). RNA was re-extracted with phenol/chloroform, EtOH
precipitated and resuspended in DEPC treated water. First and second strand cDNA
synthesis was performed using the default protocol from the Creator SMART cDNA Library
Construction KitTM (Clontech). After the last amplification step Proteinase K digestion was
performed with the whole of the reaction and not just with half as in the Creator SMART
protocol. cDNA was phenol/chloroform extracted and EtOH precipitated using 1.3 ug
glycogen. For positive selection of Hpa cDNAs, 4 pg of genomic DNA, genomified using the
GenomiPhi Kit (GE Healthcare), digested and biotinylated (Rougon-Cardaso, 2007) were
mixed with the target (cDNA synthesized from RNA of infected leaves) and EtOH
precipitated. The mixture was resuspended in 10 pl of sterile hybridization buffer after
which the driver and target were denatured at 95°C for 10 minutes and hybridized for 36
hours at 66°C. The biotinylated DNA was captured by Streptavidin coated beads
(Magnasphere Paramagnetic Beads (Promega)). Hybrids were recovered using a protocol
adapted from Bashiardes et al. (2005). Positively selected cDNA was digested with Sfi | and
Mse | restriction enzymes. Oligonucleotide fragments and salt were removed by spin-

column chromatography through a Sephadex G-25 resin (Roche) after each digestion. The
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following primers were ligated to form adapters 454A and 454B: Biot-
SfiAdaptor454Aoverhang, Biotin-AGCCTCCCTCGCGCCATCAGATTA; SfiAdapter454Acomp,
PO,-TCTGATGGCGCGAGGGAGGC; Mse-TOP, TACTGAGCGGG CTGGCAAGGC; Mse-BOT,
GCCTTGCCAGCCCGCTCAG.

Four hundred ng of cDNA were ligated with 300 ng adapter 454A and 300 ng of adapter
454B. Biotinylated fragments were hybridized to 20 ul Magnasphere Paramagnetic Beads
(Promega) pre-washed as specified by the manufacturer and pre-incubated with blocking
agents. Beads with hybridized cDNA were washed 4 times with 0.1xSSC and captured with
a magnet (Promega) and supernatant was discarded. After preparation of cDNA with 454
adaptors attached the sample was sent to 454 Life Sciences (Branford, Connecticut, USA)

for further processing and sequencing with 454 GS-FLX technology.

The returned 454 sequenced reads were filtered for oomycete ribosomal genes and A.

thaliana contamination.

2.2 Software and protocols

2.2.1 Assembly

2.2.1.1 Assembly of Sanger reads

The Hpa Emoy2 v7 assembly was sequenced to 9.5x phred Q20 redundancy (9.5X
coverage) through 1,080,646 plasmid end reads and 25,516 fosmid end reads and 13,071
BAC end sequences. The combined sequence reads were assembled using the PCAP
software (Huang et al., 2003). The ‘bdocs’ and ‘bclean’ commands of PCAP were then used
to process the overlaps, and ‘bcontig’ to calculate the layout to generate the consensus
sequence, using default parameters. Using this dataset, a round of automated sequence
improvement was done. 23,855 of 32,122 pre-finishing reads were incorporated into the

initial assembly.

The initial PCAP assembly, consisting of only plasmid end sequences, contained 1,053,419
reads, yielding more than 8 fold coverage for an estimated 70 Mb shotgun assembly. A
total of 1,014,758 reads was assembled using PCAP. The final PCAP assembly included all

plasmid sequences, 8346 BAC end sequences, 25,516 fosmid end sequences, and a round
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of automated pre-finishing. Additional filtering following assembly removed contigs less
than 2kb, as well as A. thaliana and sequencing plasmid contaminants. 5354 contigs
(including a large number of singletons) were removed by this process, with 5473 contigs
and 1842 scaffolded contigs remaining. Approximately 99% of the 76 Mb shotgun

assembly is covered.

2.2.1.2 Short read assembly

The Velvet algorithm (v0.7.55) (Zerbino and Birney, 2008) was used for short read

assembly. Specific parameters used are described in chapter 3.

2.2.1.3 Hybrid assembly

The Hybrid assembly of the Hpa genome is described in chapter 3. It is based on the
targeted assembly and re-integration method described by Ossowski et al. (2008), MAQ
v0.7.1 (Li et al., 2008a), BLAT v34 (Kent, 2002), Velvet v0.7.55 (Zerbino and Birney, 2008)

and custom scripts were used.

2.2.2 Alignment

2.2.2.1 DNA alignment

In chapter 3, lllumina sequenced DNA reads are aligned to the genome and variants were
called using MAQ v0.7.1 (Li et al., 2008a). The parameters for each alignment are

mentioned in the appropriate sections in chapter 3.

When | started the Hpa comparative genomics analysis a new selection of short read
aligners were available, and MAQ was no longer supported. In chapter 5, BWA v0.5.8c (Li
and Durbin, 2009) was used a primary aligner to its specificity and speed. A further round
of alignment was done using Stampy v1.0v11 (Lunter and Goodson, 2011), which is slower
but more sensitive than BWA. Variants were called using the SAMtools suite (Li et al.,

2009a).

A simulation of SNP recall rate using various methods was performed. A total of 10,000
SNPs and 2000 INDELs were introduced in the Hpa Emoy2 genome in regions covered by

reads, with average depth of coverage and at least 500 bp from existing and artificial
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variation. The SNPs were introduced as single SNPs, 2 SNPS that are 15-35 bp apart
(simulating clustered SNPs), and 2 SNPs that are 2-15 bp apart (simulating clustered SNPs
on the same seed). INDELs were introduced as mainly 1 bp INDELs, but also of length 2, 3,
4,6,9and 12.

A number of pre-processing techniques were employed:

e Removing reads with any N’s

e Removing reads with more than 1 N

e Read correction using HIiTEC (llie et al., 2011) (using default parameters)

e Quality trimming reads from the end of the read so that all bases in a read have a
minimum PHRED scaled quality of Q13 (Q13 ~ P(0.05) of error) using SolexaQA
(Cox et al., 2010)

The alighment programs and variant call methods used were used were:

e MAQ for aligning and variant calling

e MAAQ for aligning and SAMtools for variant calls

e BWA for aligning and SAMtools for variant calls (used for unfiltered and filtered
reads)

e Stampy for aligning (with BWA pre-alignment) and SAMtools for variant calls

Three technical replicates of the alignments were performed and the variation recall rate
and false positive rates were taken from the averages. The average variation recall rate,
with a minimum quality score of Q10, showed that pre-filtering of reads had a very small
negative effect on the number of variation recalled (fig 2.1). Results also showed that on
average, Stampy was slightly more sensitive in recalling variation compared to BWA, and
that MAQ was significantly worse than BWA and Stampy at recalling INDELs. It was
interesting to note that the recall rate of deletions is on average 15% more than SNPs and

20% more than insertions.
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Figure 2.1: Variation true positive recall rate of various mapping techniques at Q10.

The average variation false positive rate (including call that were between 5-500 bp from
inserted variation), with a minimum quality score of Q10 were 4.93% of the introduced
variation (fig 2.2). For all methods there was a low false positives for INDEL predictions
(averaging 2.01%), while the rate of false positive in SNPs was 5.32% on average. The
variation between the false positives in the variation recall rate was 0.7%, so all methods

were very similar.
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Figure 2.2: Variation false positive rate of various mapping techniques at Q10
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The sensitivity (true positives / (true positives + false positive)) of each method was

calculated (fig 2.3).
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Figure 2.3: Sensitivity of various mapping techniques at Q10

While HIiTEC read correction offered the best sensitivity, it was a very time consuming to
compute for a single race. It was decided that using Stampy and BWA as a pre-aligner
offered the best combination of true positive recall rate and sensitivity, and was used for

the analysis performed in chapter 5.

2.2.2.2 cDNA alignment

In chapter 3 and 4, lllumina sequenced cDNA reads are aligned to the genome using MAQ
v0.7.1 (Li et al., 2008a) when evaluating the genome assembly and gene models. In order
to train splice site predictions a combination of Bowtie (Langmead et al., 2009), Tophat
(Trapnell et al., 2009) and Cufflinks (Trapnell et al., 2010) were used using default

parameters.

For the genome browser the 5’ SAGE tags were aligned using Novoalign from the

Novocraft suite v 2.05.13 (www.novocraft.com) using default parameters but allowing
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for no mismatches. The reads had the sequencing primer, and barcodes removed using

a custom script based on Hamming distances.

For the genome browser, the 454 ESTs were aligned using BLAT v34 (Kent, 2002).

2.2.3 Gene predictions

Gene prediction software used in chapter 4 are:

e Genezilla (Majoros et al., 2005)
e Snap (Korf, 2004)

e CEGMA (Parraetal., 2007)

e GenelD (Guigo, 1998)

e PASA (Haas et al., 2003)

e Augustus (Stanke et al., 2008)

Their usage is described in detail in chapter 4.

2.2.4 Gene annotation

The programs used for annotation of the gene models in chapter 4 are:

e ProDom (Bru et al.,, 2005) using BlastProDom (Blastall) (Zdobnov and Apweiler,
2001)

e PRINTS (Attwood et al., 2003) using FingerPRINTScan (Scordis et al., 1999)

e  SMART (Letunic et al., 2002) using Hmmpfam (Finn et al., 2011)

e TIGRFAMs (Haft et al., 2003) using Hmmpfam (Finn et al., 2011)

e Pfam (Bateman et al., 2004) using Hmmpfam (Finn et al., 2011)

e PROSITE (Hulo et al.,, 2004) using ScanRegExp + ProfileScan (Thompson et al.,
1994b)

e PIRSuperFamily (Wu et al., 2004) using Hmmpfam (Finn et al., 2011)

e SUPERFAMILY (Gough et al., 2001) using Hmmpfam (Finn et al., 2011)

e CATH (Pearl et al., 2000) using Hmmpfam (Finn et al., 2011)

e PANTHER (Thomas et al., 2003) using Hmmsearch (Finn et al., 2011)

e Transmembrane using TMHMM2.0 (Sonnhammer et al., 1998)
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e Signal peptides using SignalPHMM (Bendtsen et al., 2004)

e Low complexity regions using SEG (Wootton and Federhen, 1993)
e 3D Structure using Gene3D

e Coiled coils using COILS (Lupas et al., 1991)

e WolfPsort (Horton et al., 2007)

e SignalP 3.0 HMM (Bendtsen et al., 2004)

e KAAS (Moriya et al., 2007)

There usages are described in more detail in chapter 4.

2.2.5 Evolutionary analysis

The evolutionary analysis of genes was performed using a combination of a customised
pipeline, VariTale (described in chapter 5), PAML v4.0 (Yang, 2007) and DnaSP v5 (Librado

and Rozas, 2009). The protocol used is described in chapter 5.
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Chapter 3 — Use of sequencing by synthesis to
evaluate and improve the Hyaloperonospora

arabidopsidis genome assembly

3.1 Introduction

At the start of this project, genome sequences for 3 oomycete pathogens Phytophthora
sojae, P. ramorum (Tyler et al., 2006) and P. infestans (Haas et al., 2009) were published.
Comparative genomics of Hpa with these Phytophthora species might enhance our
understanding of conserved pathogenicity mechanisms in the Peronosporales and distinct
mechanisms unique to the Peronosporacaea and Pythiacaea. In addition, the study of Hpa
will improve our understanding of obligate biotrophy. It is also very important to
characterise the evolutionary pressures being exerted in plant-pathogen interaction
systems, and the Hpa-Arabidopsis thaliana interaction system provides a model system for

studying a plant-pathogen interaction involving an oomycete obligate biotroph.

Effectors play an important part in pathogenicity. Before the publication of the Hpa
genome sequences, only 2 effector genes had been characterised in Hpa, ATR13 (Allen et
al., 2004) and ATR1 (Rehmany et al., 2005), which were identified through forward genetic
approaches. The availability of the Hpa genome sequence provides the opportunity to
identify and define the repertoire of effectors. This raises the potential for high throughput
characterisation of effectors through targeted reverse genetic approaches to understand

effector virulence and avirulence function.

In this chapter | discuss the development of the most recent version, version 8.3, of the
Hpa Emoy2 genome assembly. This reference genome project was initially a capillary
sequencing genome project. In the later stages of the project it became clear that lllumina
short read sequences were able to contribute a lot more to the genome assembly than
simply the identification of SNPs. In this chapter | describe how we developed novel
methods to evaluate genome assemblies and improve the assembly using lllumina

sequence data.
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| also show that heterozygosity in diploid organisms is an important source of variation
that is often overlooked, and can provide useful insights into signatures of selection

pressure in organisms.

3.2 Results and discussion

3.2.1 Establishing a short read de-novo assembly for Hpa Emoy2

3.2.1.1 Hpa version 7 assembly

When | started work on the project, the Hpa Emoy2 version 7 (v7) (appendix table 3.1) was
the most recent assembly making use of only Sanger sequenced reads. The assembly was
performed by the Genome Sequencing Centre, University of Washington at St Louis,
Missouri, in December 2007. The Hpa Emoy2 v7 assembly was sequenced to 9.5x phred
Q20 redundancy (9.5X coverage) through 1,080,646 plasmid end reads, 25,516 fosmid end
reads and 13,071 BAC end sequences. The combined sequence reads were assembled
using the PCAP software (Huang et al., 2003). The ‘bdocs’ and ‘bclean’ commands of PCAP
were then used to process the overlaps, and ‘bcontig’ to calculate the layout to generate
the consensus sequence, using default parameters. Using this dataset, a round of
automated sequence improvement was performed. 23,855 of 32,122 pre-finishing reads

were incorporated into the initial assembly.

The initial PCAP assembly, consisting of only plasmid end sequences, contained 1,053,419
reads, yielding more than 8 fold coverage for an estimated 70 Mb shotgun assembly. A
total of 1,014,758 reads was assembled using PCAP. The final PCAP assembly included all
plasmid sequences, 8346 BAC end sequences, 25,516 fosmid end sequences, and a round
of automated pre-finishing. Additional filtering following assembly removed contigs less
than 2 kb, as well as Arabidopsis thaliana and sequencing plasmid contaminants. 5354
contigs (including a large number of singletons) were removed by this process, with 5473
contigs and 1842 scaffolded contigs remaining. Approximately 98-99% of the 76 Mb

shotgun assembly is covered.

The 76 Mb assembly consisted of 1585 major scaffolds (larger than 2 kb) with an N50

scaffold number (the minimum number of scaffolded contigs to represent at least 50% of
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the genome assembly) of 68. The assembly consisted of 9 Mb of ‘N’s which represent

unknown sequence between paired-end Sanger reads that were used for scaffolding.

The improvements of the Hpa Emoy2 v7 assembly over the previous version 6 (v6)
(appendix table 3.1) are that Arabidopsis thaliana contamination and plasmid vector
sequences were removed. Also, the Hpa Emoy2 v6 assembly used EST sequences in the
assembly — this was a misuse of the ESTs as they may lead to assembly artefacts due to
differences between the DNA and RNA due to splicing. This mistake of using ESTs was

avoided in the v7 assembly.

3.2.1.2 Identifying ‘uncloned’ regions of the Hpa genome

Hpa may contain elements in its genome that cannot be cloned using the vectors used for
the Sanger sequencing project of Hpa or which, due to the random sampling of shotgun

sequencing, were not included in the clones.

The lllumina sequenced paired end short reads of Hpa Emoy2 were aligned to the
1,162,037 sequences of the Hpa Emoy2 Sanger shotgun reads, from the trace archives,
using MAQ (Li et al., 2008a) (default parameters). 5,721,482 reads did not align against the
Sanger shotgun reads. These reads were assembled using Velvet 0.7.18 (Zerbino and
Birney, 2008) (k-mer length= 25, cov_cutoff=2). The assembly totalled to 1,061,433 bp
over 1226 contigs with N50 length of 1157 bp. The longest contig length was 9010 bp.

To identify what was contained in the assembly of reads not sequenced by the Sanger
shotgun sequencing method, a BLASTx (Altschul et al., 1990) search of this assembly versus
the NCBI NR proteins database (July 2009) was conducted. Much of the assembly had DNA
sequence similarity to Hpa sequences, BAC and to Arabidopsis thaliana sequences. This
indicates that the stochastic nature of shotgun assemblies failed to sample known regions
of the Hpa genome and that there is Arabidopsis contamination in the Illumina reads of
Hpa. After removing these sequences, what looked like bacterial and plant contamination
was left. However, there were several sequences that showed about 80% DNA sequence
identity with oomycete genes. These might plausibly be bona fide Hpa sequences that
were not represented in the Sanger clones. Some notable hits included a delta-1-pyrroline-
5-carboxylate reductase (P. nicotianae), a NADH dehydrogenase (P. infestans), and a

putative nuclear LIM interactor-interacting protein (NIF5) gene (P. sojae).
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A tBLASTx (Altschul et al., 1990) search against the NR nucleotide database (July 2009)
found hits with similarity to Phytophthora species. Some notable hits included a necrosis
and ethylene-inducing protein (P. megakarya), a hsf transcription factor (P. sojae), a

reverse transcriptase (P. parasitica), and a rpL41-like protein (P. sojae).

These results suggested that even with an optimal assembly of all of the Sanger reads, the
Illumina data contained novel sequence that can help improve the genome assembly of

Hpa Emoy2.

3.2.1.3 De-novo short read assembly of Hpa Emoy2 using Velvet

To evaluate the state of the Hpa Emoy2 assembly we decided to compare it to another
existing assembly. At the beginning of the project the v6 assembly was the only
comparative assembly using the same data. Unfortunately, the v6 assembly contained a
significant amount of A. thaliana contamination, vector sequence and Hpa Emoy2 EST
sequences, which made it less suitable for our comparison. Therefore, we compared the
v7 assembly to an Illumina GA2 sequenced assembly, as this provided us with a
comparative benchmark of the 2 technologies and insights into the limitations of both

technologies.

Using the Velvet algorithm (v0.7.55) (Zerbino and Birney, 2008), we derived a strategy to
assemble 8 lanes (56.7 Mb) of Hpa Emoy2 paired-end reads (appendix table 3.2). This

strategy involved performing a parameter scan over the k-mer length and coverage cut-off.

The k-mer hash was constructed using the ‘velveth’ command with default parameters.
The first assembly was performed using the ‘velvetg’ command with default parameters.

The statistics for these assemblies is shown in table 3.1:

k-mer Number of Mean contig | Median contig Sum of Longest
length contigs length length contigs contig
21 346,226 171 67 59,252,988 14,386
23 287,586 206 73 59,472,127 42,735
25 256,288 235 81 60,245,632 50,706

Table 3.1: velvetg run statistics — default parameters
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These preliminary assemblies are very fragmented, as shown by the number of contigs. In
order to improve the contiguity of the assembly we can perform a ‘velvetg’ assembly
making use of the paired end information to connect contigs together. We also expect to
see many singletons and short contigs in the assembly as a result of sequencing errors. To
remove these we performed another ‘velvetg’ run with custom parameters for expected
coverage, coverage cut-off and minimum contig length. The coverage cut-off and expected
coverage were determined using the method described in the velvet manual (by plotting
the k-mer coverage histogram and using the first minima for the cut-off and the maxima

for the expected coverage) as shown in figures 3.1, 3.2 and 3.3:
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Figure 3.1: Histogram plot of k-mer coverage in velvetg assembly with a k-mer size of 21.

Expected k-mer coverage is 16, and estimated coverage cut-off is 5.
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Figure 3.2: Histogram plot of k-mer coverage in velvetg assembly with k-mer size 23. Expected k-

mer coverage is 14, and estimated coverage cut-off is 4.
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Figure 3.3: Histogram plot of k-mer coverage in velvetg assembly with a k-mer size of 25.

Expected k-mer coverage is 12, and estimated coverage cut-off is 3.
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We then performed a scaffolded assembly using ‘velvetg’. We modified the parameters as

follows:

e cov_cutoff 5/4/3 (this was based on a histogram of coverage per contig for each k-
mer length 21,23,25)

e ins_length 410 (based on 2 x 36 bp reads, ~342 bp apart)

e ins_length_sd 20

e exp_cov 16/14/12 (this was based on a histogram of coverage per contig for each
k-mer length 21,23,25)

e min_contig_length 100

e min_pair_count4

The assembly statistics are presented in table 3.2.

Number Mean contig | Median contig | Sum of | Longest
k-mer length

of contigs | length length contigs contig
21 19,104 2980 450 56,940,038 603,164
23 19,730 3028 336 59,742,995 684,975
25 20,744 2996 272 62,153,385 596,363

Table 3.2: velvetg run statistics — scaffolding with modified parameters

At this stage, with increasing k-mer length we see a:

Reduction in the number of total contigs assembled

Increase in mean and median contig size

Increase in the sum of contig lengths

e Increase in size of longest contig

3.2.1.4 Evaluating the quality of the Velvet de-novo assemblies

The assembly statistics of the various k-mer lengths in table 3.2 suggest that increasing the
k-mer length for our dataset results in a more contiguous assembly, with more sequence
assembled. Optimising the N50 is usually considered to be the optimal strategy to improve

a genome assembly. However, these statistics do not reflect on the quality of the
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sequence assembled. To verify the accuracy of the sequence assembled we decided to see
how well 2 known effector genes of Hpa, ATR1 and ATR13, were assembled. In both
assemblies with k-mer size 21 and 23, ATR1 and ATR13 were present at full length with no
mismatches or gaps. With the assembly using a k-mer size of 25, ATR1 assembled perfectly,

but interestingly we saw an assembly artefact with the assembly of ATR13 (fig 3.4).

Query: 421 ttaggaagataataaactcgcggaagcccatcgaaaccagttattcggctaaaggcatcc 480
Frrrrerrrrerrrrrrrerrrrer e et e e et
Sbjct: 1557 ttaggaagataataaactcgcggaagcccatcgaaaccagttattcggctaaaggcatce 1616

Query: 481 acga---—------ gaagattataaaggcatacgatcgtcatgtcttcgaatctaagaagg 531

N FEEErrrrrrrrr e e e e e e e e el
Sbjct: 1617 acgannnnnnnnngaagattataaaggcatacgatcgtcatgtcttcgaatctaagaagg 1676

Query: 532 cacacgatcgtcatgtctccaaatctaagaaggcacacggtcgtcatgtctccaaatcta 591
fFrrrrerrrrererrrrrerrrrerrrrrr et e et
Sbjct: 1677 cacacgatcgtcatgtctccaaatctaagaaggcacacggtcgtcatgtctccaaatcta 1736

Figure 3.4: Extract from BLAST alignment of ATR13 to Velvet assembly of Hpa Emoy2 with a k-mer

size of 25. An assembly artefact was observed where a 9 bp insertion of n’s is observed.

We observed this assembly artefact with many preliminary assemblies utilising higher k-
mer lengths with the data. This ‘insertion artefact’ was more frequent and pronounced the
larger the k-mer length (data not shown). We believe this was due to a fault in the
assembly algorithm during the time of assembly, but we have not re-assembled the data

with a newer version of Velvet to verify this claim.

Observation of this artefact meant that we attempted no further assemblies with a k-mer

length of 25.

To evaluate the quality of assembly of the Velvet k-mer size 21 and 23 assemblies, we
downloaded a dataset of 52 amino acid sequences of known genes in the
Hyaloperonospora genus from the Genbank database (taxonomic ID 184462, July 2009)
(appendix table 3.3). 2 genes (a putative effector protein Avh341 and a MAP kinase) were

found fully assembled in the assembly with k-mer length 21 but partially assembled in the
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assembly with k-mer length 23. There were no genes found that were fully assembled in
the assembly with k-mer length 23, and partially assembled in the assembly with k-mer
length 21. For this reason, we continued to compare the Velvet assembly of k-mer length
21 to the v7 Sanger assembly, and henceforth refer to the assembly as the ‘Velvet

assembly’.

3.2.1.5 Comparing the Velvet assembly to the v7 assembly

The Velvet assembly adopted for the rest of this analysis (k-mer length 21) is 56.9 Mb (3.8
Mb N’s) over 19,104 scaffolded contigs. The longest mean scaffolded contig length is 2980
bp and the largest scaffolded contig is 603,164 bp. The number of scaffolded contigs larger
than 2 kb is 4229, and the N50 is 742.

Although at first glance, comparing the N50 values of the Velvet assembly (742) to the v7
assembly (68) (appendix table 3.1) suggests that the v7 assembly is much more contiguous
than the Velvet assembly, it is remarkable that the Velvet assembly contained a residual
55.1 Mb of sequence (calculated by subtracting the N’s from the scaffolded assembly)
compared to residual 67.5 Mb of sequence in the v7 assembly. It was hypothesised that
the 19% difference in the sequences was due the underlying De-Bruijn graphed structure
used in the Velvet algorithm not being able to correctly resolve duplicate and repetitive

regions.

We used DNAdIiff from the EMBOSS package (Rice et al., 2000) to calculate the overlap of
the v7 and Velvet assemblies (table 3.3). 94% of Velvet assembly contigs aligned to the v7
assembly with an average identity of 99%. The remaining 6% of the Velvet contigs that did
not align to the v7 accounted for 9.5 Mb of sequence. Conversely, 68% of the v7 contigs
aligned to the Velvet assembly with an average identity of 99%. The remaining 32%

accounted for 33 Mb of sequence.
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v7 Velvet
[Sequences]
Total 1842 19,104
Aligned 1260 (68.40%) 17,959 (94.01%)
Unaligned 582 (31.60%) 1145 (5.99%)
[Bases]
Total 76,549,095 56,940,038
Aligned 43,682,374 (57.06%) | 47,463,168 (83.36%)
Unaligned 32,866,721 (42.94%) 9,476,870 (16.64%)

[Alignments]

1-to-1 21,338 21,338
Total Length 48,214,454 48,271,511
Average Length 2259.56 2262.23
Average ldentity 99.14 99.14

Table 3.3: DNAdiff results between the Hpa Emoy2 v7 Sanger assembly and the Hpa Emoy2

Velvet assembly.

This data suggest that the majority of the Velvet assembled sequence is present in the v7
assembly. In addition, there may be ~6 Mb of novel sequence not present in the v7

assembly.

3.2.1.6 Using CEGMA to compare the core eukaryotic genes in the Velvet and v7

assemblies

In order to evaluate the assembly of the gene space in each of the genome assemblies, we
use the CEGMA pipeline (Parra et al., 2007) to identify the number of single copy core
eukaryotic genes (CEGs). This method has been published as a useful metric to describe
the assembled gene space (Parra et al., 2009). There are 248 CEGs, which are a subset of
the 458 set of core eukaryotic genes (KOGs) conserved across 6 eukaryotic species (A.
thaliana, Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces
cerevisiae and Schizosaccharomyces pombe). We compared the number of predicted CEGs
in the v7 and Velvet assemblies to predictions in Phytophthora infestans, Phytophthora

ramorum and Phytophthora sojae (fig 3.6).

Stein et al. (2003) performed a simulation of the effect of sequence coverage in an

assembly on percentage of CEGs identified in Caenorhabditis briggsae. They show that at
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4x coverage, it is possible to identify more than 80% of the CEGs using the CEGMA pipeline.
Therefore, given this data we would expect to identify approximately 95% of the CEGs in

an assembly with 9.5x sequence coverage such as the Hpa Emoy2 v7 assembly (fig 3.5).

Effect of assembly coverage on number of
CEGs identified (C. briggsae)
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Figure 3.5: The effect of sequence coverage and CEGs identifiable by the CEGMA pipeline

The results of the CEGMA predictions are summarised in figure 3.6. 94.8% of the CEGs
were identified in the Velvet assembly, which is what we expect based on simulations
done by Stein et al. (2003). 89.9% of the CEGs were identifiable in the v7 assembly, which
is a little less than expected. The CEGMA pipeline identified 12 more CEGs in the Velvet
assembly (235) compared to the v7 assembly (223), which implies that assembly and
identification of ~95% of the CEGs is achievable through short read assembly. This also
suggests that some of the unique sequence in the Velvet assembly has additional genes

not in the v7 assembly, and perhaps vice versa.

The average size of contigs, on which these CEGs were found, were approximately 10 fold
higher in the v7 assembly (279,518) compared to the Velvet assembly (25,387), which
suggests that although the Velvet assembly contains more of the CEG genes, the v7

assembly is much more contiguous.
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Figure 3.6: Identification of single copy core eukaryotic orthologous genes (CEGs) by the CEGMA
pipeline. Approximately 95% of the CEGs were identified in the Hpa Emoy2 Velvet assembly and
~90% in the Hpa Emoy2 v7 assembly. This is comparable to the number of CEGs identified in P.
infestans (95%), P. ramorum (96%) and P. sojae (98%). The CEGs are split into 4 groups with Group 1

being the least conserved between organisms, and Group 4 being the most conserved.

3.2.1.7 Comparing representation of genomic sequence between the Velvet and

v7 assemblies

In order to evaluate the representation of genomic sequence in each of the v7 and Velvet
assemblies, we aligned a single lane of reads and identified the number of reads aligning to
the genome (table 3.4). We observed that despite more CEGs being predicted in the Velvet
assembly, 11.6% more reads aligned to the v7 assembly. We hypothesise that the extra

reads aligning to the v7 assembly are not gene rich and mainly consist of highly repetitive
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and complex regions, as these are difficult to resolve using the de-Bruijn graph structure

used by the Velvet assembly.

Number of reads

Number of reads

Percentage of

Percentage of reads

Assembly aligned aligned as pair reads aligned aligned as pair
Velvet 7,642,044 6,242,808 78.0% 81.7%
V7 8,881,216 8,134,393 90.4% 91.6%

Table 3.4: Number and percentage of reads from a single lane (ID69 lane 39,794,370 reads)
aligning to the v7 and Velvet assemblies. The reads were aligned using MAQ v0.7.1 with map

parameters of n=1 e=60 a=650.

3.2.1.8 Comparing representation expressed sequences between the Velvet and

v7 assemblies

In order to evaluate how much of the gene space is represented in each assembly we
compare alignments of expressed sequence tags (ESTs) to each assembly (table 3.5).
31,759 EST sequences generated from Hpa. We aligned these to the Velvet and v7
assemblies using BLAT (Kent, 2002) (using parameters minldentity=80 query=rna) and post
filtering using Brian Haas’ blat_top_hit.pl to find the best alighment for each EST (table
3.5). 2.6% more ESTs (or 844 ESTs) aligned to the Velvet assembly compared to the v7
assembly. This suggests that the Velvet assembly better represents the genes expressed

during the spore stage of the lifecycle of Hpa.

Genome Assembly Number of ESTs aligned Percentage of all ESTs
Hpa Emoy2 v7 28,985 91.3%
Hpa Emoy2 Velvet 29,829 93.9%

Table 3.5: Number of ESTs aligning to the Hpa Emoy2 v7 and Velvet assemblies. Total of 31,759
ESTs

We also aligned 8,549,032 lllumina sequenced 36 bp cDNA reads of A. thaliana Ws eds1-1
plants 7 days post inoculation (d.p.i.) infected with Hpa Emoy2, to the assemblies using
MAQ (Li et al., 2008a) (version 0.7.1, n=3, e=100) (table 3.6). 2.6% more cDNA reads
(265,123 reads) aligned to the Velvet assembly compared to the v7 assembly. We come to
a similar conclusion as with the ESTs, that the Velvet assembly better represents the genes

that are expressed during the 7 d.p.i stage of infection of Hpa.
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Genome Assembly

Number of cDNA reads aligned

Percentage of all cDNA reads

Hpa Emoy2 v7

2,145,339

25.1%

Hpa Emoy2 Velvet

2,371,477

27.7%

Table 3.6: Number of cDNA reads aligning to the Hpa Emoy2 v7 and Velvet assemblies. Total of

8,549,486 reads. The reads were aligned using MAQ v0.7.1 with map parameters of n=3 e=100.

Given that we saw approximately 3% more EST sequences and cDNA reads aligning to the

Velvet assembly compared to the v7 assembly, we concluded that integrating the Illumina

sequence data into the v7 assembly increases the representation of transcribed regions by

approximately 3%. Given this rationale we proceeded with improving the v7 assembly

making use of the Illumina reads.
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3.2.2 Improving the Hpa v7 Sanger assembly using Illlumina sequenced short

reads
In the previous analysis | have shown that the v7 assembly can be improved by integrating
additional data into the assembly from the lllumina reads. It also came to light that Hpa

Emoy2 BAC sequences (provided by HRI, Warwick and sequenced by the Sanger Centre,

Cambridge) were not integrated into the genome.

We developed a 4 stage iterative pipeline with which we improved the genome assembly.

A flow chart describing the method is shown in figure 3.7

Input
Assembly SengegﬂAéS
{Ha v7) 4

NI ¢ ¢

Numina
Paired End
Reads

Align BAC Align llumina Align llumina Align lllumina
seqLence Using reads Using reads Using reads Using
BLAT MAQ WAQ MACH
Indentify Extract reads
Integrate BAC homozygous aligning within Extract regions
seqUences SMPs and 250 bp of Ns and with No coverage
INDELs ends of contigs
Assemble BLAST regions
against NCEI nr
Correct genome extracted reads e
using Yelvet database
Align (BLAT) Femove
Have the and integrate Arabidopsis and
number of assembled bacterial
correction contigs contamination
changed by less
than 5%
Were there x
any alignable Output
Velvet

assembled
contigs?

Assembly
(Ha v&8.3)

Figure 3.7: Four stage assembly improvement pipeline for incorporating BAC and Illumina
sequencing data. In stage 1 of the improvement pipeline (pale orange) 97 complete BAC
sequences were integrated; in stage 2 (green) sequencing errors were corrected using the
lllumina paired end reads; in stage 3 (blue) we used methods similar to those described by
Ossowski et al. (2008) to integrate Velvet assembled short reads; in stage 4 (yellow) we identified
and removed regions not covered by lllumina paired end reads that showed homology to possible

contaminants. The resultant assembly was the v8.3 assembly.
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3.2.2.1 Merging of full length BAC sequences with the Sanger shotgun assembly

The 95 BAC sequences were aligned to v7 using BLAT (Kent, 2002). Where the length of
the BAC sequence differed from the length of the spanned assembly by less than 1%, the
BAC sequence was automatically substituted for that region of the assembly. Where the
BAC joined two contigs, the BAC sequence was automatically used to join the contigs if the
replaced sequences differed no more than 1% from the BAC sequence. All other matches
were reviewed manually. 57 BACs were integrated into the genome. Of these 57 BAC
sequences, 28 integrated into existing contigs, 27 extended existing contigs and 2 merged
existing contigs. Furthermore, 8 BAC sequences significantly overlapped each other and
were merged into 3 larger contigs. 30 BACs were not easily integrated due to a very strict
overlap agreement criteria used in order to minimise loss of sequence data through the
integration of the BACs. These BAC sequences were appended to the assembly, and should
be considered the authoritative assembly of the relevant regions. We calculated that this
introduced 2.4 Mb of additional redundancy into the assembly. There were 58 short
Sanger assembled contigs, totalling to 321 kb of sequence, entirely contained within full

length BAC sequences. These 58 short contigs were removed from the assembly.

3.2.2.2 Iterative correction of the Sanger assembled sequence

After the BAC sequences were integrated into the genome, | developed a novel method to
iteratively correct a genome sequence. This method is based on the premise that a
reference genome assembly and deep sequenced short read data of the same or similar
species are available. Given that in most circumstances, the reference genome assembly
has low sequence coverage, this method takes advantage of the deep coverage through,
for example, second generation sequencing technologies such as the lllumina GA and Abi
SOLID. This would allow one to identify differences between the reference sequence and
the deep sequenced species with reasonable accuracy. If the deep sequenced species is
the same species and isolate as the reference sequence, any difference can be regarded as
a mistake in the reference sequence. This observation forms the basis of our consensus
based method to correct the Sanger genome sequence of Hpa Emoy2, as we also have Hpa

Emoy2 short reads.
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The strategy employed to correct sequencing errors consisted of the following steps:

1. Align short DNA reads to the genome using MAQ
o Allowing for a maximum of 1 mismatch in the first 24 bp (n=1)
o The maximum sum of qualities of mismatches over the entire read is less
than 70 (e=70)
2. Predict the homozygous SNPs and INDELs in the Hpa Emoy2 genome (which
indicate assembly errors in the Hpa Emoy2 genome assembly)
o The read coverage does not deviate more than 50% from the expected
coverage of 24x
o The aligning bases are a minimum of 80% of a single consensus base for
the SNP call
o SNPs filtered using maqg.pl command SNPfilter
=  Parameters d=12 D=36 Q=20 q=20 w=1 F=(predicted INDEL file)
o INDELs predicted using indelpe command and filtered with minimum
depth of 5 and 75% of reads agreeing with the INDEL prediction
o SNPs do not overlap with predicted INDELs
3. Correct the reference sequence based on the above predicted variation

4. Repeat steps 1-3 until the number of corrections is less than 5%

The only corrections that were not considered were to the BAC sequences, and the

location at which BAC sequences had been integrated into the genome.

Round | SNPs identified | INDELs identified
1 621 1489
2 467 253
3 976 132
4 388 99
5 230 87
6 147 75
7 399 70
8 189 62
9 103 60

Table 3.7: Number of SNPs and INDELs after each iteration of correction. Corrections were made

until the number of either SNPs or INDELs did not change by more than 5%.
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9 rounds of corrections were made before there was less than a 5% change to the number
of predicted INDELs (table 3.7). In order to evaluate the effect of each of these rounds of
corrections to the genome, we aligned a single lane of reads to the genome and identified
the number of reads aligning to the genome. With each iteration the number of reads
aligning to the modified genome increased until saturation, which suggests that the
method works correctly. There is also a correlation between the number of SNPs predicted
in each round and the number of reads aligning to the genome (an increase in the number
of predicted SNPs correlates to fewer reads aligning, and a reduction in the number of
predicted SNPs correlates with an increase in the number of reads aligning to the
assembly). After these corrections the percentage of reads aligning from a single lane of
Illumina data improved by 0.5% (table 3.8), which is remarkable given than no additional

sequence was added.

Number of Percentage of

Number of | reads aligned as Percentage of reads aligned as

Round reads aligned pairs reads aligned pairs
0 8,930,642 8,228,155 91.2% 92.1%
1 8,951,344 8,259,467 91.4% 92.3%
2 8,956,760 8,239,159 91.4% 92.0%
3 8,962,188 8,254,523 91.5% 92.1%
4 8,966,306 8,261,374 91.5% 92.1%
5 8,971,010 8,267,512 91.6% 92.2%
6 8,972,906 8,267,243 91.6% 92.1%
7 8,973,606 8,275,088 91.6% 92.2%
8 8,975,254 8,274,580 91.6% 92.2%
9 8,976,732 8,272,277 91.7% 92.2%

Table 3.8: Number and percentage of reads from a single lane (ID69 lane 39,794,370 reads)
aligning to the corrected assembly after X rounds of genome correction. Round 0 denotes the
alignment statistics to the genome with the BACs integrated with no rounds of genome sequence

correction.

This method has further potential to be adapted to modify a reference sequence to
represent the sequence of a closely related organism if SNP and INDEL prediction methods
are modified, and additional resequencing artefacts are considered to include elevated
coverage, represented possible copy number variation (CNV), or read pairs being aligned
outside of the expected distribution of read pair insert sizes, indicating larger structural

variation.
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After the Hpa genome sequence was published and the method used to improve the
genome sequence using the lllumina reads was described, a program working on the same
principles of this method was published. This program is called ‘iCorn’ (iterative correction

of reference nucleotides) and is described by Otto et al. (2010).

3.2.2.3 Integration of the Sanger and lllumina assemblies

After the 9 rounds of iterative sequence correction, the next stage in the pipeline was to
integrate novel sequence from the Illlumina reads using a targeted assembly method. The

method we used was adapted from Ossowski et al. (2008).

In order to integrate assembled Illumina reads into the genome, we first identified the
reads that were novel and had potential to be integrated. These novel reads were
identified by extracting all the reads that did not align to the reference assembly (using
MAQ, default parameters). Since the assembly of these reads would result in novel
sequence (based on how they were extracted), we had to develop a way of integrating the
sequence into the genome. We hypothesised that the novel sequence would integrate into
regions where there is unknown sequence in the reference assembly. The regions where
the sequence would be unknown include regions of ‘N’s, sequence after the end of a
contig and the sequence before the start of a contig. | therefore extracted reads, and their
other pair, that aligned within 250 bp from regions of N’s, and from the start and end of
contigs. This additional inclusion of reads aligning to 250 bp from the fore mentioned
regions will allow for overlap based integration of the subsequent generated contig

assemblies.

A total of 14,148,204 reads were extracted, and assembled into 4234 contigs, with a mean
contig length of 966 bp using Velvet (v 0.7.51, k-mer length 23). The assembly totalled to
4.1 Mb with the longest contig being 42 kb.

This assembly was then aligned back to the corrected Sanger assembly using BLAT to
identify regions where the Velvet assembled sequence could be integrated into the
genome sequence (minimum overlap of 40 bp). 313 Velvet contigs (totalling to ~500kb of
sequence) were identified that showed significant matches to the reference sequence. Of
the 313 contigs that were integrated, 148 integrated onto the ends of existing Sanger

contigs. Of these, one Velvet contig connected 2 Sanger contigs. The remaining 165
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integrated Velvet contigs integrated into the middle of contigs (over regions of Ns). The

mean size of integrated contigs was 1.5kb, with the longest being 18.8kb.

The remaining Velvet sequence would need to be appended to the genome as additional
sequence, but since the current Velvet assembled data contains reads from potential
overlap locations a reassembly of reads that do not align to the genome is required. After
these Velvet contigs were integrated into the assembly, we realigned (using the previous
alignment protocol) all the lllumina paired end reads to the genome sequence and
extracted the reads that did not align, and their pair. These reads were assembled using
Velvet (k-mer length of 23) and 1468 contigs greater than 250 bp, that were unlikely to be
contamination (determined by BLAST search against A. thaliana, the NCBI Bacterial
genomes July 2009, and the human genome sequence) were appended to the Hpa
genome sequence. The mean length of appended Velvet contigs was 1.4 kb, and the

longest was 42.6kb.

The integration of the additional lllumina sequence improved the alighment of a single
lane of Illumina reads to the assembled genome by 2.2%, which is the largest percentage
increase compared to the previous modifications made (integrating the BAC sequences

and correcting the sequencing assembly error) (table 3.9).

Number of Number of Percentage Percentage of

reads | reads aligned as of reads | reads aligned as

Genome aligned pair aligned pair

V7 8,881,216 8,134,394 90.7% 91.6%

Velvet 8,930,642 8,228,155 91.2% 92.1%

V7 + BACs 8,956,760 8,239,159 91.4% 92.0%

V7 + BACs (corrected) 8,976,732 8,272,277 91.7% 92.2%

V7 + BACS + Velvet 9,169,454 8,415,542 93.6% 91.8%
V7 + BACS + Velvet (filtered

for contamination) 9,167,148 8,405,118 93.6% 91.7%

Table 3.9: Number and percentage of reads from a single lane (ID69 lane 39,794,370 reads)

aligning to the corrected assembly after genome modifications.

3.2.2.4 Identifying and removing contamination using Illumina sequencing

The final stage of the Hpa genome improvement pipeline was to identify and remove
contamination in the genome. We initially identified regions of potential contamination as

regions that were not covered by any lllumina reads when reads were aligned to the
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genome. The basis of the hypothesis that contamination in the genome assembly would
not be covered by Illumina reads is that since the same organism was sequenced using
Illumina and Sanger sequencing, all regions of the genome should be covered by Illumina
reads. Any regions in the genome that were not covered by Illlumina reads would either be
due to contamination in the Sanger reads, or technical limitations of the protocol

employed for the Illumina sequencing.

We aligned 6 lanes of lllumina paired end sequence against the Hpa genome and extracted
3360 regions with less than 3x coverage over 100 bp. We performed a preliminary BLAST
search against the nucleotide NR database (August 2009, using blastn, no sequence
filtering and a minimum e-value of 1 x 10-6). We observed that the majority of best hits of
uncovered regions in the genome were to bacterial sequences (table 3.10). There were
only 4 hits to A. thaliana, and no hits to cloning vectors as these were identified as

contamination in the v6 assembly (by myself, using this same method) and rectified in the

v7 assembly.

Number
Best BLAST hit of hits
Methylobacillus flagellatus KT 241
Xanthomonas campestris pv. campestris 122
Ricinus communis 78
Xanthomonas oryzae pv. oryzicola BLS256 66
Xanthomonas axonopodis pv. citri str. 306 58
Xanthomonas campestris pv. vesicatoria str. 85-10 57
Xanthomonas oryzae pv. oryzae PXO99A 52
Flavobacterium johnsoniae UW101 45
Sphingomonas sp. SKA58 42
Chryseobacterium gleum ATCC 35910 25
Xanthomonas campestris pv. campestris str. 8004 23
Dechloromonas aromatica RCB 19
Acidovorax delafieldii 2AN 18
Xanthomonas oryzae pv. oryzae KACC10331 18
Novosphingobium aromaticivorans DSM 12444 17
Methylophilales bacterium HTCC2181 16
beta proteobacterium KB13 14
Cellvibrio japonicus Ueda107 14
Janthinobacterium sp. Marseille 12
Pseudomonas fluorescens Pf0-1 12
Chitinophaga pinensis DSM 2588 10
Pseudomonas putida W619 10
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Table 3.10: Best BLAST hits when extended regions of very low coverage were blasted against the
NR database. Only results with at least 10 hits are shown. The majority of the best BLAST hits

were from bacteria.

We then proceeded to download the nucleotide databases from NCBI for human, A.
thaliana and all bacteria (August 2009). We performed a BLAST search (using blastn and e-
value cut-off of 1 x 10-10) against each of the sequence databases. Each hit was filtered to
share at least 95% sequence identity over the match. Each potential contaminant region
with a hit was then compared to the NR best BLAST hit to see if both hits are from the
same phylogenetic kingdom.

We did not find any significant matches to human sequences. We found 261 contigs in 859
hits to the NCBI bacterial sequences from over 140 bacterial species. The total sum of
bacterial contamination was 185 kb, with the main source of contamination (87 kb) being
from 2 BAC sequences (Cu694975 and Cu694660, both of which originated from
Xanthamonas campestris pv. campestris) (appendix table 3.5 & 3.6). We found 7 contigs
in 13 hits to the A. thaliana TAIR 9 genome assembly. The total sum of A. thaliana

contamination was 3 kb (appendix table 3.7).

After identification of potential known contamination, each of the regions of very low
coverage with a hit to a contaminant was removed. A total of 85 contigs were removed
due to having a >85% of the bases uncovered and having significant contamination, and a

total of 119 contigs were split in order to remove contaminant regions.

This was the last stage of genome improvement utilising the lllumina reads. The resulting

assembly was the v8.3 assembly.
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3.2.3 Evaluating the v8.3 hybrid Sanger and lllumina assembly

The 82 Mb assembly consisted of 1783 major scaffolds (larger than 2 kb) with an N50
scaffold number of 75. The assembly consisted of 8.3 Mb of ‘N’s, which is 700 kb fewer
than the v7 assembly. The reduction in the number of N’s is due to the integration of the
BAC sequences and Velvet assembled lllumina reads into regions of the v7 genome

assembly, which had previously contained N’s.

3.2.3.1 Estimating genome size using read coverage

The total length of the v8.3 assembly was 82 Mb, consisting of 73.7 Mb of “non-N"
sequence. To independently estimate the total genome size, we conducted statistical

analyses of the coverage provided by the Illumina reads and by the Sanger reads.

To estimate the genome size from the coverage provided by the Illumina reads, we used
MAQ (v0.7.1 using default parameters) to align 2,393,125,128 bp of sequence from
Illumina paired-end reads (66,475,698 total reads from six lanes of paired end sequencing)
to the Hpa Emoy2 v7 Sanger read contig models (unscaffolded). The lllumina read
coverage at each nucleotide position (67,509,127 positions) was calculated and the
frequency of positions with each level of coverage was plotted (fig 3.8). A Gaussian curve
was fitted to the main peak of the distribution by least squares and used to obtain the

mean of the distribution (23.93).

To estimate the genome size (C) we used the following formula:

C=A*R/c

where A = number of aligned reads

R =read length

c = average coverage per nucleotide

The genome size was estimated by dividing the total length of the lllumina reads by the

mean coverage: 66475698 * 36 / 23.93 = 100.0 Mb.
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To estimate the genome size from the unassembled Sanger read data, the coverage of
every read was calculated from a blastn all-versus-all search of the trimmed random
shotgun reads. For each read we counted the number of matches with > 95% identify over
the length of the match, with a minimum overlap of 30 nt. The average coverage at the
nucleotide positions defined by each read can then be obtained from the following

formula:

C=1+A*R/[(R+L)-2*0]

where A =number of aligned reads
R = average length of all the trimmed trace files (720 nt)
L = length of each individual query sequence

O = minimum overlap required to call a match (30 nt)

The frequencies of reads with different coverages were then binned and plotted to
identify a peak corresponding to the single copy sequences (fig 3.8). A Gaussian curve was
fitted to the single copy peak by least squares and used to obtain the mean of the
distribution (8.39). The genome size was estimated by dividing the total length of the
Sanger reads by the mean coverage: 1140851 * 720 /8.39 =97.9 Mb.

The close agreement of the two statistical estimates suggests that the actual genome size
(mean of the two estimates = 99 Mb) is significantly larger than the assembled length of 82
Mb. An explanation for this discrepancy is suggested by the second prominent peak in
figure 3.8. The presence of this peak suggests that there are a large number of sequences
in the genome that are more than 95% identical and have an average copy number of
around 3. Such sequences would most likely be assembled as single copy sequences by the
assembly software. Plotting the sequence coverage provided by the Sanger reads against
the assembled genome did not reveal any contigs or long segments of the assembly with
elevated coverage (not shown), ruling out the presence of large triplicated regions or
chromosomes. The reads with elevated copy number also did not correspond to
contaminants such as bacteria or Arabidopsis. The reads with elevated copy number did
not correspond to gene models from Hpa, suggesting that the repeats were largely
confined to non-genic regions. The plot of the lllumina read coverage did not identify a
sharp peak of triplicated sequences, but rather a long tail corresponding to high copy

coverage. The different shapes of the two plots likely result from the fact that the lllumina
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reads were much shorter than the Sanger reads, and a perfect match for alignment was

required for the lllumina reads, compared to a 95% match for the Sanger reads.
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Figure 3.8: Genome size estimation from Illumina and Sanger read coverage

(A) Frequency of nucleotide positions in the Sanger assembly with given Illlumina read coverage.
(B) Frequency of Sanger reads with given Sanger read coverage. In both (A) and (B), to obtain the
mean coverage of the single copy sequences, a Gaussian curve was fitted to the main peak
(indicated by shaded points and horizontal bar) by fitting a quadratic function to the natural-log-
transformed frequency data (inset). From each fitted quadratic function ax’ + bx + ¢, the mean of

each Gaussian distribution was obtained as —b/2a.
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3.2.3.2 Comparing the Velvet and v8.3 assemblies

We used DNAdIiff (Kurtz et al., 2004) to compare the Velvet assembly to the v8.3. 98% of
the Velvet assembly aligns to the current v8.3 assembly (table 3.11; fig 3.9). There are 14
scaffolds >2 kb that are unique to the Velvet assembly of which the largest is 6.2 kb. 70%
of the v8.3 assembly aligns to the Velvet assembly. There are 422 scaffolds >2 kb that are
unique to the v8.3 assembly, of which the longest is 12.6 kb. The difference between the
size of the Velvet assembly and the v8.3 assembly is due to 27.2 Mb of sequence being
collapsed into 5.9 Mb of scaffold in the Velvet assembly and 2 Mb of ‘N’s captured through

the larger Sanger paired end reads.

V8.3 Velvet

[Sequences]

Total 3138 19,104
Aligned 2182 (69.53%) 18,642 (97.58%)
Unaligned 956 (30.47%) 462 (2.42%)
[Bases]

Total 82,051,642 56,940,038
Aligned 46,419,401 (56.57%) | 50,095,244 (87.98%)
Unaligned 35,632,241 (43.43%) | 6,844,794 (12.02%)
[Alignments]

1-to-1 22,750 22,750
Total Length 50,990,271 51,040,070
Average Length 2241.33 2243.52
Average ldentity 99.13 99.13

Table 3.11: DNAJIff results between the Hpa Emoy2 v8.3 hybrid assembly and the Hpa Emoy2

Velvet assembly.
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Figure 3.9: Visual representation of an alignment of the Hpa Emoy2 v8.3 assembly against the

Velvet assembly. Produced using Mauve (Darling et al., 2010).

3.2.3.3 Identifying the number of CEGs in the v8.3 assembly

236 CEGs were identified in the v8.3 assembly (fig 3.10). This represents a 6% increase in
the number of CEGs identified compared to the v7 assembly in which 223 were predicted.
This is an improvement over the v7 assembly. One CEG was predicted in the Velvet
assembly that was not in the CEGMA predictions for the v8.3 assembly. The sequence of
this CEG was extracted and aligned to the v8.3 assembly. The gene prediction was present
in full length with no differences, but was omitted from the CEGMA predictions for

unknown reasons.
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Figure 3.10: Percentage of full and partial CEGs identified by the CEGMA pipeline in the v8.3

assembly. 95% of the CEGs were identified in the Hpa Emoy2 Velvet and v8.3 assemblies.

3.2.3.4 Representation of genomic sequence in the v8.3 assembly

In order to evaluate the representation of genomic sequence in each of the v8.3 assembly,
we aligned a single lane of reads and identified the number of reads aligning to the
genome and compared this to previous results of the v7 and Velvet assemblies (table 3.12).
We observe a 3.2% increase in the reads that align to the v8.3 assembly compared to the
v7 assembly. Given that we expect the genome size to be ~100 Mb, this increase in the
number of reads aligning to the v8.3 assembly should correlate to an increase of 3.2 Mb of

unique sequence introduced through integrating the BAC and lllumina sequences.
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Number of reads Number of reads Percentage of | Percentage of reads
Assembly aligned aligned as pair reads aligned aligned as pair
Velvet 7,642,044 6,242,808 78.0% 81.7%
v7 8,881,216 8,134,393 90.4% 91.6%
v8.3 9,167,148 8,405,118 93.6% 91.7%

Table 3.12: Number and percentage of reads from a single lane (ID69 lane 39,794,370 reads)
aligning to the v7, v8.3 and Velvet assemblies. The reads were aligned using MAQ v0.7.1 using

map parameters of n=1 e=60 a=650.

3.2.3.5 Representation of expressed sequence in the v8.3 assembly

We aligned the Sanger sequenced ESTs to the Velvet and v8.3 assemblies using BLAT (using
parameters minldentity=80 query=rna) and post filtering using Brian Haas’ blat_top_hit.pl
to find the best alignment for each EST. We observed a 3.6% improvement (851 ESTs) over
the v7 assembly in the number of ESTs aligning to the genome assembly (table 3.13).
Although the number of aligning ESTs did not differ significantly between the v8.3 and the
Velvet assembly, we do capture the ESTs, and the genes to which they belong, in the v8.3

assembly in a much more contiguous genome space.

Genome Assembly Number of aligned ESTs Percentage of all ESTs
Hpa Emoy2 v7 28,985 91.3%
Hpa Emoy2 Velvet 29,829 93.9%
Hpa Emoy2 v8.3 29,836 93.9%

Table 3.13: Number of ESTs aligning to the Hpa Emoy2 v7 and Velvet assemblies based on a total
of 31,759 ESTs.

We also aligned the lllumina sequenced 36 bp cDNA reads to the v8.3 assembly using MAQ
(table 3.14). Unlike the EST alignments, we saw increases in the number of cDNA reads
aligning to the v8.3 assembly when compared to the v7 (3%) and the Velvet assembly
(0.4%). We believe the difference in the increase of lllumina cDNA reads aligning to the
v8.3 compared to the increase in ESTs aligning to the v8.3 assembly is because the ESTs
were isolated from spores whereas the lllumina cDNA was isolated from infected plant
tissue, and we would expect that different genes are expressed during these different

developmental stages.

59




Genome Assembly | Number of cDNA reads aligned | Percentage of all cDNA reads
Hpa Emoy2 v7 2,145,339 25.1%
Hpa Emoy2 Velvet | 2,371,477 27.7%
Hpa Emoy2 v8.3 2,397,839 28.1%

Table 3.14: Number of cDNA reads aligning to the Hpa Emoy2 v7 and Velvet assemblies based on
a total of 8,549,486 reads. The reads were aligned using MAQ v0.7.1 using map parameters of n=3
e=100. The reason for the low percentage of cDNA read alignment to the Hpa assemblies is
because approximately 60% of the cDNA originate from the host A. thaliana (this was determined
through aligning the cDNA to the TAIR9 genome assembly), and MAQ is unable to align split reads

over splice sites.

3.2.4 Heterozygosity in Hpa Emoy2

The majority of genome sequencing project attempt to decipher the genome sequence of
an organism. However, in diploid organisms that are not inbred differences between
parental chromosomes may be a rich source of genome variation. This heterozygous
variation is often not considered. | will describe how the lllumina reads were used to
identify heterozygosity in Hpa Emoy2, and characterised the heterozygosity in all genes
and effector genes (from a draft gene model prediction and annotation). The protocols

used are described in Baxter et al., 2010.

3.2.4.1 Identifying heterozygosity in Hpa Emoy2

MAQ (Li et al., 2008) was used to align the paired-end lllumina reads to the v8.3 assembly.
MAQ was used to predicted 59,358 high confidence SNPs (minimum of 10x nucleotide
coverage by Illumina reads over the SNP call and a predicted SNP call accuracy of >99%).
Of these, 8201 SNPs had a coverage of >80x. It is believe that these predicted SNPs are on
regions of collapsed repeats, thus displaying higher than average coverage by lllumina
reads, and are indistinguishable from real SNPs and mutations on different duplicated
regions of the genome using this method. Furthermore, we observe that 99% of these
predicted SNPs are heterozygous. The 1% of SNP calls that were homozygous is a

combination of the SNP call error rate and errors in the genome sequence of Hpa.
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3.2.4.2 Heterozygosity in genes and effectors

It has been shown that Hpa effectors, ATR1 and ATR13, are highly polymorphic (Rehmany
et al.,, 2005; Allen et al., 2004). We observe that the frequency of observation of a
heterozygous SNP across candidate (1 per ~500bp) is five times higher than in other genes
(1 per ~2500 bp) (fig 3.11). Under the neutral theory of evolution, one can explain that the
rate of heterozygosity in genes being lower than the in the background rate observed in
non coding regions as the majority of mutation are likely to be deleterious and would be
selected against. However, the increased rate of heterozygosity in candidate effectors is
near 5 times more than in genes, and more than twice as much as the genome, suggesting

that there is selection for variation in candidate effectors.
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Figure 3.11: Rate of heterozygosity in the Hpa genome, genes and RXLR effector candidates.
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3.3 Summary

We were able to show that integration of short read and long read sequences can lead to a
better genome assembly by integrating lllumina short reads into the Sanger assembly of
Hpa Emoy2. We developed several novel methods for evaluating genome completeness,

genome correction, novel sequence integration and to identify contamination.

We improved the Hpa v7 assembly so that it contains an additional ~4 Mb (5%) of
sequence, which should be relatively gene rich. We determined this expected gene
richness by the increase in percentage of predicted CEGs (6%), percentage of Illlumina
sequence cDNA aligning (12%) and the percentage of ESTs aligning (3%) to the v8.3 hybrid

assembly compared to the v8.3.

We also showed that Illumina short read assemblies of eukaryotic organisms with
genomes of 100 Mb and less can be an efficient way of representing the gene encoding

regions of an organism at the expensive of genome contiguity.

The resultant v8.3 assembly is a better representation of the true Hpa Emoy2 genome
than either the v7 or Velvet assembly, and will thus support more reliable gene model

predictions allowing us to better understand the biological functions of Hpa Emoy?2.

We show that analysis of heterozygosity captures a subset of the variation in a larger
population. The implication of this is that genomics experiments using second generation
sequencing technologies can make use of heterozygosity to add to observed allelic
variation. Analysis of heterozygous SNPs over the genome, genes and candidate effectors
reveals that the rate of heterozygosity in effectors in almost 5 times higher than observed

in other genes, suggesting that there is selection for maintaining variation in effectors.
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Chapter 4 — Use of lllumina sequencing to evaluate

and improve the Hpa gene models

4.1 Introduction

In the previous chapter | described the establishment of the Hpa v8.3 genome assembly.
The purpose of the genome assembly is to allow us to generate gene models from which
we can identify gene families, predict gene function and ultimately make useful inferences
about the underlying biology and chemistry of the organism of interest. In the case of Hpa
it will increase our understanding of the genes involved in pathogenesis and may reveal

clues to the obligate biotrophic nature of the pathogen.

| used a number of software packages to generate gene models and various data sets that

provide evidence for gene expression:
e Sanger sequenced ESTs
e lllumina sequenced cDNAs

e 454 sequenced ESTs

| also annotated the resultant gene models and performed comparative analysis with

other oomycete pathogens to further understand Hpa biology and pathogenicity.
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4.2 Results and Discussion

4.2.1 Existing gene models

The existing gene models were compiled by the postdoctoral researchers Dr Sucheta
Tripathy, (VBI, Virginia Tech, Virginia) and Dr Laura Baxter, (HRI, Warwick). | will describe
briefly the rationale of design choices and methodologies employed to make the initial set

of gene models.

4.2.1.1 Determining the number of genes

A whole genome BLAST search against the NR protein database was conducted (Oct 2009).
The entire genome matched with 14,688 proteins from the NR database with >65%
sequence identity over 100 bases. These matches were not inspected for evidence of
pseudogenisation, which would have resulted in fewer true matches to existing genes. This
analysis may not have shown all the Hpa specific genes, since no previous gene models for
any Hyaloperonospora had been published. From this it is expected that the number of

genes in Hpa will be between 14-15,000 genes.

4.2.1.2 Genezilla

Genezilla (Majoros et al., 2005), is an ab initio gene predictor that is based on a
Generalised Hidden Markov Model (GHMM) (a GHMM models a continuous state space,
as opposed to a HMM which models a discrete state space). Genezilla was chosen by Dr

Sucheta Tripathy as the primary gene prediction method due to:

e Genezilla has a state transition model that enables it to consider different types of
exons (i.e. initial, internal, final and single exons) using different content sensors
(fig 4.1). This was one of the novel features of Genezilla compared to existing gene
prediction algorithms
e independent training of exon and intron prediction
o training using ESTs was done for prediction of exons and splice junctions
o training using 16,999 ‘lllumina segments’ (regions where 4 or more

Illumina 36 bp cDNA reads align at locations at least 300 bp apart)
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Figure 4.1: Genezillas state transition model [reproduced from (Majoros et al., 2005)]. Each state
of the HMM is represented by a shape and transitions between the states are represented by
arrows. States include N: intergenic, E;,;: single-exon gene, E;.,: initial exon, Egn,: terminal exon,
Eo—E,: exons in phase 0-2, l,~l,: introns in phases 0-2, A+D: acceptor and donor sites, TATA:
transcription initiation site, AATAAA: transcription termination sites, UTR;+UTR;3: 5’ and 3’ UTR

regions, ATG+TAG: start and stop codon.

3 different protocols were used for Genezilla in order to determine the best protocol. The
mean intergenic length parameter was modified. It was reported that the mean intergenic
length parameter need not match the actual mean length of intergenic regions in this
organism; values quite different from the mean could give better prediction accuracy than
the true mean, due to the dependencies between different parts of the underlying model.
Increasing the mean intergenic length and the exon length parameters were reported to
have also resulted in producing gene predictions with better EST support. A total of 16,166

genes predicted by Genezilla were used.
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4.2.1.3 Snap

Snap (Korf, 2004), is a gene predictor that is based on a GHMM (fig 4.2). Snap was chosen
to generate gene models to verify the Genezilla predictions and to provide alternative
gene calls.

Snap’s species-specific parameter estimation was performed using a training set derived
from 100 manually curated Hpa genes with full-length EST support, and a HMM was built
from these parameters. A total of 687 Snap gene predictions were used to complement

the Genezilla models.

Figure 4.2: The Snap transition state model [reproduced from (Korf, 2004)]. Each state of the
HMM is represented by a shape and transitions between the states are represented by arrows.
States include N: intergenic, E;: single-exon gene, E;: initial exon, Et terminal exon, E,—E,: exons in
phase 0-2, I,—l,: introns in phases 0-2 (subscript of T, TA, or TG denotes the last bp or two bp of

the intron - this is used to prevent in-frame stop codons across splice junctions).
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4.2.1.4 CEGMA - Core Eukaryotic Genes Mapping Approach

The CEGMA pipeline (Parra et al., 2007) makes use of GenelD (Guigo, 1998), an ab-initio
gene predictor, and Genewise (Birney et al., 2004), a homology based gene structure
predictor, to predict 458 core eukaryotic proteins (KOGs) present in a wide range of taxa
(H. sapiens, D. melanogaster, C. elegans, A. thaliana, S. cerevisiae and S. pombe). The

pipeline identified 406 KOGs which were added to the gene models.

4.2.1.5 Integration of gene models

Overlaps between all the predictions and the ‘lllumina segments’ were calculated based
on GFF coordinates. Gene predictions from Genezilla, Snap and CEGMA that overlapped
with the ‘lllumina segments’ (with 200 bp offset) were kept as an initial set of genes.
13,735 gene models from the different predictions resided within 200 bp of 12,368
‘Illumina segments’. These genes were kept for the gene models (as set 1). Among the
remaining genes that did not lie within 200 bp of ‘lllumina segments’, 158 genes had good
BLAST homology with known genes in the NR database (set 2). The remaining gene models
were filtered based on their length and other parameters. About 1021 genes were kept
from this list (set 3). The CEGMA pipeline was used to build conserved eukaryotic gene
models, resulting in 406 gene models predicted by CEGMA (set 4). The remaining ‘lllumina
segments’ that did not overlap with any of the gene prediction programs were retrieved
from the genome sequence with an addition 1 kb of flanking sequence on either side. A
separate gene prediction was made on this data set. 1939 were gene models predicted

from these extracted regions (set 5).

Sets 1-5 were manually integrated based on gene coordinate overlap. This resulted in
17,259 gene models being predicted for Hpa. 84% of the ‘lllumina segments’ lie within 200
bp of the gene models. We will call these gene models the version 1 (v1) gene models for

the Hpa v8.3 assembly.
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4.2.2 Evaluating gene models

4.2.2.1 Evidence for expression

As described in the previous chapter, we aligned both the ESTs and lllumina sequenced
cDNA back to the reference genomes to compare how much of the transcription data is
represented in the different reference genome assemblies. To identify how much of the
transcribed sequence represented in the genome is described in the gene models, |
aligned the ESTs to the gene models (using BLAT, minimum sequence identity of 80% and
setting the query to RNA), and also aligned the Illumina cDNA reads to the gene models
(using MAQ, mapping parameters of 3 mismatches in the 24 bp seed, and maximum sum

of qualities of mismatching bases to 100).

We observed that 82.2% of the ESTs aligning to the v8.3 assembly also align to the v1 gene
models presented by the VBI (table 4.1). From this analysis we would extrapolate that 80%
of the genes of Hpa are represented by the gene models. This was considered to be
reasonable for a draft genome assembly project. However, the 20% of the ESTs that
aligned to the genome but not to the gene models, would suggest that 20% of the Hpa

transcripts that are not annotated in the v1 gene models.

Aligned EST % of ESTs aligning | % of alignable ESTs
Hpa v8.3 genome assembly 29,836 93.9% B
Hpa v8.3 gene models (v1) 24,550 77.3% 82.2%

Table 4.1: The number and percentage of the 31,759 ESTs aligning to Hpa v8.3 assembly and v1
gene models using BLAT (setting the query as RNA for the genome alignments, and setting the
minimum sequence identity as 80% in both alignments). The percentage of alignable ESTs was

calculated as the percentage of EST aligning to the genome that also aligned to the gene models.

| also aligned the Illumina cDNA reads to the v8.3 genome assembly and the vl gene
models using MAQ (mapping parameters allowing for 4 mismatches in the 24 bp seed, and
allowing for a maximum sum of qualities of mismatching bases to 100). 35.2% of the
Illumina reads that aligned to the v8.3 assembly aligning to the v1 gene models (table 4.2).
This is significantly less than the percentage of ESTs aligning to the v1 gene models. It was
hypothesised that many Illumina cDNA reads would align to the untranslated regions

(UTR) of genes and thus not align directly to the gene models as UTRs were not predicted.
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The lllumina cDNA was obtained from A. thaliana Ws0-edsl plants infected with Hpa
Emoy2. In order to test the claim that much of the lllumina cDNA was aligning to the

untranslated regions of genes, the cDNA was aligned to the:

e A thaliana TAIR9 assembly (June 2009)
e A thaliana TAIR9 gene models, including UTRs (June 2009)

e A thaliana TAIR9 gene protein coding regions (i.e. not including UTRs) (June 2009)

Comparing the amount of cDNA aligning to the TAIR9 assembly and TAIR9 coding region
provides a benchmark for comparing the Hpa genome assembly and gene models.
Comparing the cDNA aligning to the TAIR9 gene models (including UTRs) and TAIR9 coding

regions provides insight into how much of the cDNA is untranslated.

Aligning the cDNA using the previous protocol we found that 95.3% of the cDNA aligning to
the TAIR9 genome assembly also aligned to the TAIR9 gene models including the UTR
regions (table 4.2). It was surprising to observe that less than half of the aligning cDNA
(45.8%) aligned to the protein coding regions of the genes. Since reads from A. thaliana
Ws0-eds1 were aligned to the A. thaliana Col-0 genome and gene sequences, slightly more
reads would be expected to align to a Ws-0 assembly. From this we hypothesise that with
‘gold standard’ gene models for Hpa we would expect at least 45% of the cDNA reads
aligning to the genome to also align to the gene models, assuming a similar distribution of
cDNA reads coming from UTRs and coding regions as we see in the A. thaliana Ws0-eds1
reads. Comparing this figure to the observed figure of 35.2% aligning to the Hpa v1 gene
models, there is still an offset of 10% to our hypothetical optimum. We hypothesise that

the difference is primarily due to missing gene models in the v1 set (table 4.2).

Aligned cDNA % of cDNA aligning | % of alignable cDNA
A. thaliana Tair9 assembly 3,074,292 36.0% -
A. thaliana Tair9 gene models 2,928,728 34.3% 95.3%
A. thaliana Tair9 gene CDS regions 1,410,598 16.5% 45.8%
Hpa v8.3 genome assembly 2,397,839 28.1% -
Hpa v8.3 gene models (v1) 844,524 9.9% 35.2%

Table 4.2: The number and percentage of the 8,549,032 cDNA reads aligning to A. thaliana and
Hpa gene models using MAQ (allowing for a 3 bp mismatch in the 24 bp seed, and a maximum
sum of qualities of mismatching bases to 100). The percentage of alignable cDNA was calculated

as the percentage of ESTs aligning to the genome that also aligned to the gene models.
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4.2.2.2 Other quality issues in the vl gene models

| was dubious about the use of ‘Illumina segments’ to train Genezilla for gene predictions
for exon content of genes, because the segments were constructed from reads separated
by 400 bp. Since we are aware that the cDNA could be obtained from UTRs as well as
exons, there is the possibility that these ‘Illumina segments’ cover introns that are shorter
than 400 bp, and also possibly connect 2 genes that are separated by less than 400 bp.
This would mean that Genezilla may have been trained using non-coding sequence, which
may lead to incorrect gene predictions. This was an argument that was acknowledged but
did not change the opinions of the post-doctoral researcher in charge of generating the
gene models, with regards to the correctness of the method. While this remains a
discussion point, it was decided that any modifications made to the gene models would be

based on the Genezilla predictions.

Analysis of the gene lengths also revealed 2457 genes that were shorter than 50 amino

acids. These were considered to the spurious gene calls.

TranposonPSI (Haas, 2010) was used to identify and analyse the Hpa v1 gene models for
sequence similarity to known transposable elements using PSI-BLAST (Altschul et al.,
1997). 1176 genes with high similarity to transposons over 75% of the length of the gene
were identified. Both the genes less than 50 amino acids and the 1176 genes with

homology to transposons are likely to be incorrect gene calls and should be removed.

4.2.3 Generating version 2 of the Hpa gene models

In the previous section problems with the current gene model predictions were identified,
in that only approximately 80% of the expression data that aligns to the v8.3 assembly
aligns to gene models, as well as other quality issues such as short gene models and failure
to identify transposable elements. The aim for this part of the project was to provide a set
of gene predictions to improve the current gene models. After each gene model prediction
| evaluated how well they represent the transcribed sequence we have for Hpa. We
aligned the ESTs using the previously described protocol (using BLAT with minimum
sequence identity of 80%). We also evaluated gene models by aligning the lllumina cDNA,
using a filtered subset of reads. Knowing that the Illumina cDNA reads contain A. thaliana
transcribed sequence, we removed this to prevent a bias caused by reads aligning to both

A. thaliana and Hpa, and belonging to transcribed sequence in both organisms. We
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performed the filtering using MAQ (v0.7.1) and extracted the reads that did not align to
the A. thaliana TAIR9 genome assembly (using strict parameters allowing for 1 mismatch
in the 24 bp seed, and a maximum of sum of mismatching bases to 40). This reduced the
number of lllumina cDNA reads from 8,549,032 to 5,896,757. We aligned these filtered
reads to the newer gene model predictions using MAQ (v0.7.1) allowing for 3 mismatch in

the 24 bp seed, and a maximum of sum of mismatching bases to 100.

In the following section | will describe how additional gene prediction software was used
to predict novel Hpa genes to identify unannotated Hpa transcripts. | will discuss how
additional gene prediction software was used to generate additional gene models, and

how they were integrated into the Hpa gene models.

4.2.3.1 Geneid

Geneid was chosen as one of the alternative gene prediction programs since it has already
been pre-trained for predicting genes from another oomycete plant pathogen, P. infestans.
This would then be ideal for recognising orthologous genes within the Peronosporales.

A default run with Geneid predicted 38,530 unfiltered gene models. Many of these
predictions were very short (15,784 were under 50 amino acids) and 623 did not start with

a Methionine. These spurious gene models were removed.

81.0% of the ESTs align to the Geneid gene models (table 4.3). This is an increase of 4.8%
compared to the vl gene models. However, we observed that 12.6% of the lllumina cDNA
reads align to these gene models (table 4.4), which is 8.1% less reads aligning compared to
the vl gene models. This suggested that the Geneid models were able to predicted ~5%
genes, compared to the vl gene models, which are expressed in the zoospore stage of Hpa
lifecycle. Similarly, Geneid predicted ~8% fewer genes, compared to the v1 gene models,

which are expressed 7 days after infection.

The median length of the predicted genes (429 bp) (fig 4.3) is closer to the median length
of gene predicted by Snap (448 bp), and less than the Genezilla (700) and CEGMA (1042)
predictions. Despite the large number of genes predicted, the largest gene in the 9o™

percentile was 1803 bp.

It has been shown that genes have a higher GC content compared to that of the

background (Pozzoli et al., 2008). The median GC percentage for the Geneid predictions is

71



52.6% which is similar to that of Genezilla. Despite the large number of genes predicted by
Geneid, the distribution of GC percentages in the 90" percentile is not very large (fig 4.3),
which is further evidence that the gene predictions by Geneid are fairly robust as the GC

percentage across genes is consistent and higher that the background.

4.2.3.2 Augustus

We also decided to use Augustus (Stanke et al., 2008), which is a relatively new gene
predictor that supports EST and lllumina cDNA training and was shown to performed well

in the nGASP project (Coghlan et al., 2008).

In order to train Augustus with the EST sequences, they needed to be assembled using
PASA (Haas et al., 2003), a program designed to align spliced alignments. PASA assembled
the ESTs into 3601 genes, of which 1724 were randomly chosen as a training set for
Augustus. | followed the Augustus manual for the training procedure, and used default
parameters and did not predict UTRs. Using the training file and default parameters for
Augustus, 12,678 gene models were predicted. Of these, 154 did not start with a
Methionine and were removed. In addition, 3 genes were less than 50 amino acids long,
but due to this low number were kept. For clarity | will refer to these as the “Augustus

models”.

We aligned the ESTs to the Augustus gene models. 71.6% of the ESTs align to these gene
models (table 4.3). This is a decrease of 7.4% compared to the vl gene models. 13.5% of
the lllumina cDNA reads align to these gene models (table 4.4), which is 1.5% less reads

aligning compared to the v1 gene models.

We also observed the median length of the predicted genes (876 bp) (figure 4.3) to be
between the median length of gene predicted by CEGMA (1042 bp) and Genezilla (700),
and more than the Snap (448) predictions. The median GC percentage for the Augustus
predictions is 53.1%, which is very close to median GC percentage observed in Geneid
(52.6%) and Genezilla (53.2%). The distribution of GC percentage across the genes is very
conservative, suggesting that the Augustus gene models are also robust and a good

candidate set of gene predictions to complement the existing vl gene models

An additional Augustus run was performed making use of the lllumina cDNA reads. We

followed the Augustus protocol (BLAST alignment method) for generating “hints files”
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using Illumina cDNA data (http://augustus.gobics.de/binaries/readme.rnaseqg.html). Using
the additional “hints” provided by the Illumina cDNA reads as well as the EST training file
yielded 34,028 gene models, of which 209 were shorter than 50 amino acids and 482
started without a Methionine. These genes were removed from the gene models. For

clarity | will refer to these as the “Augustus hints models”.

We aligned the ESTs to the Augustus hints gene models. 84.6% of the ESTs align to these
gene models (table 4.3). This is an increase of 9.4% compared to the vl gene models. 17.4%
of the lllumina cDNA reads align to these gene models (table 4.4), which is 27.0% more
reads aligning compared to the vl gene models. This large increase in cDNA aligning is
hypothesised to be due to the additional training of Augustus to make use of the lllumina
cDNA. However, there is sufficient evidence in the increase in ESTs aligning to the
Augustus hints model compared to the vl gene models that there are a number of novel

gene predictions with evidence of expression in the Augustus hints predictions.

We also observed the median length of the predicted genes (423 bp) (fig 4.3). This is very
similar to the median observed in the Geneid predictions (429), although it did predict a
number of much larger genes. The majority of the genes predicted were much smaller
than the genes predicted by Augustus without the cDNA training. This could be due to the
“Augustus hints models” being trained to predict partial genes in regions of high

transcriptional activity identified by the [llumina cDNA reads.

The median GC percentage for the Augustus hints predictions is 50.4%. This was the lowest
observed median GC percentage. We also saw a much larger distribution of different GC
percentages compared to the other gene predictions (fig 4.3). This would suggest that the
“Augustus hints model” are the least robust and should only be incorporated into the v1
gene models where there is direct evidence for expression. The large variation in GC
percentage is also likely due to the large number of genes predicted, of which a large

number are likely to be spurious,
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Gene Model ESTs aligning % of ESTs aligning % change compared to v1
v8.3 gene models v1 24,550 77.3% -
Augustus 22,735 71.6% -7.4%
Augustus hints 26,863 84.6% +9.4%
Geneid 25,726 81.0% +4.8%

Table 4.3: Number and percentage of ESTs aligning to gene model predictions using BLAT to align

31,759 ESTs with a minimum identity of 80%. The percentage change in alignment compared to

the v8.3 gene models (v1) were calculated relative to the number of ESTs aligned to the v1 gene

models.
Gene Model cDNA aligning % of cDNA aligning % change compared to vl
v8.3 gene models v1 805,562 13.7% B
Augustus 795,443 13.5% -1.5%
Augustus hints 1,023,688 17.4% +27.0%
Geneid 740,541 12.6% -8.1%

Table 4.4: Number and percentage of filtered Illlumina cDNA reads aligning to gene model

predictions using MAQ to align 5,896,757 reads (with mapping parameters allowing for 2

mismatches in the 24 bp seed and allowing for a maximum of 70 as the sum of qualities of

mismatching bases). The percentage change in alignment compared to the v8.3 gene models (v1)

were calculated relative to the number of cDNA reads aligned to the vl gene models.
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Figure 4.3: Box plots of the 90™ percentiles of gene lengths and GC percentage. Similar lower size
distributions were observed between Geneid, Augustus hints and Snap, and similar higher size
distributions between Genezilla, CEGMA and Augustus. The size of the distributions of GC
percentage is similar in all predictions apart from the Augustus hints, which has a larger

distribution.
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4.2.3.3 Integrating Augustus and Geneid gene predictions

Our previous results show that there are a number of genes that should be removed from
the v1 gene models and the evidence suggests that there are novel genes in the Geneid,
Augustus and Augustus hints gene models with evidence of expression during zoospore
and 7 d.p.i. stages. The strategy we adopted to identify gene predictions to complement
the existing models was to identify genes predicted by Geneid and Augustus that aligned
to expressed sequence that did not align to exisitng vl gene predictions, and where the
expressed sequences aligned better to the newer gene predictions compared to the vl
gene predicitons (either indicating longer gene predictions, or representing better

prediction of intron exon boundaries).

All gene models from the Geneid, Augustus and Augustus hints models that shared the
same coordinates as genes in the vl gene models were removed. After this, we identified
all gene models that shared the same coordinates in the new gene predictions and
removed duplicate calls. These genes were then combined into a single file containing a
redundant set of novel gene predictions. The genes were then filtered so that they did not
contain transposable elements (identified by TranposonPSl, using the same protocol as
described previously), were at least 50 amino acids in length and did not contain more
than 25% interspersed repeats and low complexity DNA in the gene sequence (identified
by RepeatMasker v3.1.6 (Smit et al., 1996-2010) using default parameters). Low
complexity sequence is masked as this remove the majority of transposons from the

analysis.

The ESTs were aligned to the list of vl genes and new gene predictions using BLAT
(minimum of 80% sequence identity). The ESTs aligned better to 993 genes from the new
set of genes compared to the vl gene models. These genes were then removed from the

combined set of new genes and kept as potential new genes to add to the vl gene models.

A set of “lllumina pseudo-ESTs” (cDNA that was assembled by alighment to the v8.3
genome) by extracting regions of the genome that had greater than 2x coverage of 50 bp
when the filtered lllumina cDNA was aligned (using MAQ, mapping parameters n=3 e=100)
were constructed. A total of 23,844 “lllumina pseudo-ESTs” were created. These “Illumina

pseudo-ESTs” overcome the previously described quality issues of the “lllumina
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segments”, as the “lllumina pseudo-ESTs” only described transcribed regions whereas the
“Illumina segments” may also describe non transcribed regions. The “lllumina pseudo-
ESTs” were aligned to the combined gene models and found that a number preferentially
aligned to 1652 of the newer gene predictions compared to existing genes. These genes
were extracted and added to the 993 genes chosen for their EST alignment to make a set

of 2645 additional gene predictions to integrate into the gene models.

The following integration of these novel genes was performed by Dr Sucheta Tripathy. To
prime the vl gene models set for integrating the new genes, the genes less than 50 amino
acids long (2457 genes) and genes with high identity to transposons over 75% of the gene
(1176 genes) were removed. Checking the genomic co-ordinates of these gene predictions
revealed 1609 new gene predictions overlapping with 2049 vl gene predictions. The
majority of the new overlapping predictions were in the same coding frames, had an
extension of the 5’ and the same stop locus. There were also a number of new overlapping
gene predictions that were in different coding frames but had extensions of the 5’ and 3’
regions, for which both gene models were kept. The final integration replaced 1361 v1
gene predictions with 1321 new gene predictions, 288 new gene predictions with
overlapping coordinates with v1 gene predictions but in different coding frames, and 1036

new gene predictions that did not overlap with existing vl gene models .

To summarise the changes, the vl gene models lost 2457 short genes (less than 50 amino
acids), 1176 genes with high similarity to transposable elements and low complexity
sequence. 1361 were replaced by newer gene predictions with better expression support.
A total of 2645 genes from the new gene predictions were added, resulting in 14,910 gene

predictions making the Hpa Emoy2 v8.3 assemblies “v2 gene models”.

4.2.3.4 Evaluating the Hpa Emoy2 v2 gene models

In order to identify how much of the transcribed sequence represented in the genome is
described in the v2 gene models, the ESTs were aligned to the gene models (using BLAT,
minimum sequence identity of 80% and setting the query to RNA), and also aligned the
llumina cDNA reads to the gene models (using MAQ, mapping parameters of 3

mismatches in the 24 bp seed, and maximum sum of qualities of mismatches bases to 100).

90.6% of the ESTs aligning to the v8.3 assembly also align to the v2 gene models which is a

10% improvement compared to the vl gene models presented by the VBI (table 4.5). The
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percentage of alignable ESTs in the v2 assemblies is greater than the ESTs alignable to the
Geneid, Augustus and Augustus hints gene models. This is a substantial improvement over

the previous gene models in representing the genes expressed during the zoospore stage.

Aligned EST % of ESTs aligning % of alignable ESTs
Hpa v8.3 genome assembly 29,836 93.9% B
Hpa v8.3 gene models (v1) 24,550 77.3% 82.2%
Hpa v8.3 gene models (v2) 27,039 85.1% 90.6%

Table 4.5: The number and percentage of the 31,759 ESTs aligning to the v8.3 genome, v1 and v2
gene models using BLAT (setting the query as RNA for the genome alignments, and setting the
minimum sequence identity as 80% in both alignments). The percentage of alignable ESTs was

calculated as the percentage of EST aligning to the genome that also aligned to the gene models.

The filtered Illlumina cDNA reads were aligned to the v8.3 genome assembly and the v2
gene models using MAQ (mapping parameters allowing for 4 mismatches in the 24 bp
seed, and allowing for a maximum sum of qualities of mismatching bases to 100). We
observed a 12.4% increase in the number of alignable cDNA to the v2 gene models
compared to the vl gene models (table 4.6). The percentage of alignable cDNA to the v2
gene models (45.3%) is comparable to the alignable cDNA of the ‘gold standard’” A.
thaliana TAIR9 gene models (45.8%). However, we did observe that 13% more cDNA
aligned to the Augustus hints model compared to the v2 gene models. From our protocol
we deduced that the additional cDNA aligning to the Augustus hints gene models would be
primarily singletons that were not considered when we chose additional new gene

predictions to complement the v1 gene models.

Aligned cDNA | % of cDNA aligning | % of alignable cDNA
Hpa v8.3 genome assembly 2,003,800 34.0% -
Hpa v8.3 gene models (v1) 805,562 13.7% 35.2%
Hpa v8.3 gene models (v2) 909,087 15.4% 45.3%

Table 4.6: The number and percentage of the 5,896,757 filtered cDNA reads aligning to the v8.3
genome, v1 and v2 gene models using MAQ (allowing for a 3 bp mismatch in the 24 bp seed, and
a maximum sum of qualities of mismatching bases to 100). The percentage of alignable cDNA was

calculated as the percentage of ESTs aligning to the genome that also aligned to the gene models.

10 genes were randomly selected from the additional genes that had no overlap with

genes previously predicted in the vl models. A BLASTX search against the NCBI NR
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database (November 2009) was performed. The best BLAST results (and species) that were

not conserved hypothetical proteins were:

e 2 ADP-ribosylation factor family (P. infestans)
e Amino acid/polyamine/organocation Family transporter protein (P. infestans)

e Conserved hypothetical protein (similar to ring finger protein) (P. infestans)

All the best hits, including the other 6 conserved hypothetical proteins, came from P.
infestans. Although most of the hits were to conserved hypothetical proteins, these genes
would otherwise not have been identified and thus not have been noted as potential
genes conserved between Hpa and P. infestans or potentially even in higher orders of
phylogeny. It was also noteworthy that 2 genes show homology to ADP-ribosylation factor
(ARF) family proteins, as these have been shown to play a role in drug resistance and
virulence in Candida albicans (Epp et al., 2010). It has also been shown that the Amino
acid/polyamine/organocation Superfamily transporter, a transport system that existed
before archaea and eukarya diverged from bacteria, have functions in amino acid and
choline transport in eukaryotes (Jack et al., 2000) and may thus also pertain to roles in Hpa

virulence.

To summarise, after shortfalls in the Hpa v1 gene models were identified, short genes and
transposons were removed and alternative gene models were generated using Geneid and
Augustus. Genes predicted by these methods that had evidence for expression but were
not predicted in the v1 gene models were identified and added to the v1 gene models. The
number of genes predicted remained fairly constant but the evidence for expression
increased by ~10%. Using the alignment of Illumina cDNA as a benchmark, the new v2

gene models are comparable to the completeness of the TAIR9 gene models.
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4.2.4 Generating version 3 of the Hpa gene models

Version 2 of the Hpa Emoy2 gene models based on the v8.3 assembly was the version

included in the Hpa genome paper and is available online from the VBI Microbial Database

website (http://vmd.vbi.vt.edu/download/index.php).

Post-doctoral researcher Dr Eric Kemen identified that there were still some shortfalls in

the v2 gene models. There were a number of genes present in the sequenced oomycete

gene models that were absent from Hpa (table 4.7). It is possible that these genes are not

present in Hpa. However, since the majority of the sequenced oomycetes are

Phytophthora spp., which are closely related to Hpa, it is more likely that the genes are

missing from the annotation, but are present in the Hpa genome assembly.

Gene Function Presentin
Hpa v8.3
AINc14C5G754 Conserved hypothetical protein N
AINc14C51G4016 Protein kinase putative N
AINc14C4G597 Conserved hypothetical protein Y
AINc14C970G12675 Eukaryotic translation initiation factor 3 subunit C putative -
AINc14C82G5339 Guanylatebinding protein putative Y
AINc14C2G279 Conserved hypothetical protein Y
AINc14C337G10741 Hypothetical protein PITG_12566 Y
AINc14C139G7195 Conserved hypothetical protein Y
AINc14C155G7625 Flagellar associated protein putative Y
AINc14C114G6467 Sporangia induced deflagellation inducible protein putative N
AINc14C8G1072 Conserved hypothetical protein Y
AINc14C38G3287 RNA helicase putative Y
AINc14C95G5839 Annexin Family putative Y
AINc14C158G7697 Conserved hypothetical protein Y
AINc14C48G3826 Conserved hypothetical protein Y

Table 4.7: List of genes (from the Albugo laibachii Nc14 gene models) identified by Dr Eric Kemen

to be present in all published gene models of oomycete pathogens (March 2011) but not in the
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Hpa v2 gene models. Presence in the Hpa v8.3 assembly was determined by BLAST peptide
homology.

It was also noted by other post-doctoral researchers that the other major exclusion from
the v2 genome was the lack of the predicted effector genes. The effector genes were
predicted, analysed and annotated in the “VBlI Oomycete Genomic Workshops” (2007,
2010) and were curated by Dr Rays Jiang (previously at the VBI, currently at the Broad
Institute). However, these effector genes were never formally integrated into the v1 or v2

gene models.

Given the shortfalls of missing core oomycete genes and effectors in the gene models, |
decided to perform a further round of gene integration. We also decided to check that all
of the conserved eukaryotic genes (KOGs) were included as also taking another round to
see if there were gene models removed in the integration process that removed genes

with EST support.

4.2.4.1 Identifying missing genes

We used the “IntersectBed” utility from the BEDTools v2.11.2 Suite (Quinlan and Hall,
2010) to identify differences between gene predictions GFF files. We compared the v2
gene models to genes we expected to see and identified missing genes that did not have a

reciprocal 75% overlap with a gene prediction in the v8.3.

4.2.4.1.1 Identifying missing conserved eukaryotic genes

So far we have mainly considered the inclusion of the 248 core eukaryotic genes present at
single or low copy numbers (CEGs) into the genome. The CEGs are a subset of the full set
of 458 core eukaryotic genes that are present at varying copy numbers. Comparing the v2
gene model overlap with the predicted coordinates of 406 predicted KOGs showed that 23

of the predicted KOGs were missing from the gene models.

4.2.4.1.2 Identifying missing oomycete genes

As previously mentioned, Dr Eric Kemen identified a number of genes that were not
present in the Hpa v2 gene models, but were present in gene models from sequenced
Phytophthoras and A. laibachii. Under the assumption that gene conservation is more

likely between more phylogenetically related organisms we decided to focus on genes
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conserved between P .infestans, P. ramorum, and P. sojae, and modifying the CEGMA
pipeline to search for conserved single copy Phytophthora genes (PCEGs).

The steps in the CEGMA pipeline that we would need to modify are the KOG FASTA files
(which are used to identify regions were KOGs may lie), the KOG HMM models, (which are
used to predict gene models by GeneWise (Birney et al., 2004)), and the cut off table for

HMM searches (which is used to evaluate the GeneWise).

A list of 7113 conserved genes present as single copy in P. infestans, P. ramorum, and P.
sojae were computed. For this we used clustering software, OrthoMCL (Chen et al., 2005),
to cluster the gene models (P. ramorum and P. sojae gene models were downloaded from

http://vmd.vbi.vt.edu/download/index.php, and the P. infestans gene models were

provided by Prof Sophien Kamoun’s group, The Sainsbury Laboratory, Norwich). Sequences
for all genes in the gene clusters with 1 gene from each organism (i.e. single copy,
conserved genes in the Phytophthora lineage) were extracted. Then for each gene cluster a
HMM was constructed using hmmer3 (Finn et al., 2011) based on a ClustalW (Thompson
et al., 1994a) alignment of the genes in each gene cluster using default parameters. The
HMM cut-off score were set to 50% of the average score of each gene in the gene cluster

when running a HMM search using the constructed HMM.

After running this modified version of CEGMA, 5755 of the 7113 PCEGs were identified in
Hpa. We found that 1527 of these gene predictions did not overlap with genes in the v2
gene models. These genes are likely to be conserved oomycete genes that are not

expressed during the zoospore stage, or in the later stages of infection.

The sequences of these PCEGs were used to perform a BLAST search against the v8.3
genome (using BLASTn, minimum e-value of 1 x 10%°, and over 75% of the length of the
gene), and compared the coordinates of these BLAST results against the v2 gene models.
In addition to the 1527 missing PCEGs, we identified 91 regions that may contain PCEG

homologues where there was no existing gene prediction in the v2 gene models.

4.2.4.1.3 Identifying missing effector genes

The predicted effectors were aligned to the v8.3 gene models using BLAT. After comparing
alignments of the best BLAT hits with the v2 gene models, we found 254 of 580 complete
predicted effector were not in the v2 gene models. This included 81 of the 141 high

confidence effector set, and 19 of the 22 predicted crinkler-like genes.
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4.2.4.1.4 Identifying missing genes with PASA assembled EST support

The coordinates of the PASA assembled ESTs, which were ESTs that aligned and assembled
to the genome to encode for a full reading frame, were compared to the coordinates of
the vl gene more. 3369 PASA assembled ESTs that did not overlap with existing gene

models were identified as additional gene candidates to integrate into Hpa gene models.

4.2.4.2 Integrating the additional genes into the v2 gene models

Before we started to incorporate these missing genes we performed a Genemark-ES
(Lomsadze et al., 2005) gene prediction (using default parameters) under advice from Dr
Eric Kemen. GeneMark-ES is an ab-intio gene predictor based on a self-training algorithm
for eukaryotes and was successfully used as the main gene predictor for the A. laibachii

genome project (Kemen et al., 2011). This yielded 20,940 gene model predictions.

We developed an iterative method to incorporate the missing genes from the existing
predictions in the Augustus, Augustus hits, Geneid and Genemark-ES gene predictions. The
pipeline is summarised as follows:

1. Identify the overlapping genes between the missing gene coordinates and each
set of the gene predictions (Augustus, Augustus hints, Geneid and Genemark-ES),
using the IntersectBed utility with at least, e.g. reciprocal 80% overlap.

2. Extract the genes from the gene predictions yielding the highest number of
overlapping genes, and remove the genes with which they overlap from the
missing gene coordinates.

3. Repeat 1-2 for each of the other gene predictions.

4. Repeat 1-3 reducing the reciprocal overlap by, e.g 10% until a minimum of 60%.
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4.2.4.2.1 Integrating missing CEG and PCEG genes

We combined the missing CEG and PCEG genes into a single dataset and started to look for
overlapping genes. After 8 iterations of gene integrations we identified 1145 genes that
had 60%-100% reciprocal overlap with the missing CEG and PCEG genes (tables 4.8). The
remaining 441 missing genes (5 CEGs, 379 PCEGs and 57 regions with homology to PCEGs)

were added to make 1586 potential additional genes.

% reciprocal Genes
Iteration overlap Gene prediction added
1 80 Genemark 623 B
2 80 Augustus Hints 112
3 80 Geneid 55 Sum of Genes added
4 80 Augustus 11 Gene prediction Total
5 60 Genemark 234 Augustus Hints 179
6 60 Augustus Hints 67 CEG 5
7 60 Geneid 40 PCEG 379
8 60 Augustus 3 PCEG homologs 57
9 100 CEG 5 Geneid 95
10 100 PCEG 379 Genemark 857
11 100 PCEG homologs 57 Augustus 14
Total 1586 Grand Total 1586

Tables 4.8: Number of (A) genes added over each integration iteration to integrate the missing

CEG, PCEG and PCEG homolog genes; (B) genes added from each set of gene predictions.
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4.2.4.2.2 Integrating missing effector genes

After 19 iterations of gene integrations we identified 300 genes that had 40%-100%

reciprocal overlap with the missing CEG and PCEG genes (tables 4.9). The remaining 207

missing effectors were added manually to make 507 potential additional genes.

A
Iteration % reciprocal Gene prediction Genes
overlap added

1 99 | Augustus 120

2 99 | Genemark 28

3 99 | Augustus Hints 14

4 99 | Geneid 4

5 95 | Augustus 25

6 95 | Genemark

7 95 | Geneid

8 95 | Augustus Hints

9 90 | Augustus 20
10 90 | Genemark B
11 90 | Augustus Hints
11 100 | JJ 28 Sum of Genes added
12 100 | Jamboree Effector 179 Gene prediction Total
13 60 | Augustus Hints 29 Augustus 167
14 60 | Genemark Augustus Hints 62
16 60 | Geneid 6 Geneid 21
17 40 | Augustus Hints 16 Genemark 50
18 40 | Geneid 8 Jamboree Effector 179
19 40 | Augustus 2 J 28

Total 507 Grand Total 507

Tables 4.9: Number of (A) genes added over each integration iteration to integrate the missing

Effector genes; (B) genes added from each set of gene predictions. Jamboree effectors are the

effectors that were predicted in the 2010 Jamboree at the VBI; JJ denotes effectors predicted in

the Jones Lab, TSL.
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4.2.4.2.3 Integrating missing PASA assembled genes

After 12 iterations of gene integrations we identified 1145 genes that had 60%-100%
reciprocal overlap with the missing CEG and PCEG genes (tables 4.10). The remaining 441
missing genes (5 CEGs, 379 PCEGs and 57 regions with homology to PCEGs) were added to

make 1586 potential additional genes.

A
Iteration % reciprocal Gene prediction Genes
overlap added
1 90 | Augustus Hints 52
2 90 | Geneid 25
3 90 | Genemark 15
4 90 | Augustus 3
5 75 | Augustus Hints 169 B
6 75 | Geneid 105
7 75 | Genemark 41 Sum of Genes added
8 75 | Augustus 16 Gene prediction Total
9 60 | Geneid 308 Augustus 29
10 60 | Augustus Hints 173 Augustus Hints 394
11 60 | Genemark 56 Geneid 438
12 60 | Augustus 10 Genemark 112
Total 973 Grand Total 973

Tables 4.10: Number of genes (A) added over each integration iteration to integrate the missing

CEG, PCEG and PCEG homolog genes; (B) genes added from each set of gene predictions.
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4.2.4.2.4 Removing redundancy and overlap

There was a possibility that our dataset of additional genes could contain duplicates due to

the iterative nature of the pipeline. After collating all the genes to be added, 78 redundant

genes, which is 2.5% of the entire set (tables 4.11).

Genes added | Unique Genes added Unique
CEGs + PCEGs 1586 | 1562 Augustus 210 187
Effectors 507 | 499 Augustus Hints 635 621
PASA 973 | 927 Geneid 554 547
Total 3066 | 2988 Genemark 1019 1004
CEG 5 5
PCEG 379 379
PCEG homologs 57 57
Jamboree Effector 179 160
JJ 28 28
Total 3066 2988

Tables 4.11: Number of residual genes to add to the v2 assembly after removing redundant calls

in each dataset with regards to (A) gene type and (B) gene predictor

After removing the internal redundancy of the set, we concatenated the gene list to the v2
gene models, and did a further round of inspection to remove redundant genes based on
gene coordinate overlap. Genes that were completely inside another larger gene call in the
same reading frame were deleted. It was also noted that some of the genes added to the
v2 gene models were removed. This is due to the nature of the pipeline used to
preferentially identify gene calls closer in size, e.g. a smaller gene may have been chosen
over a larger gene because it had a higher reciprocal overlap with an EST, but the EST may
only be a fraction of the real gene in which case the longer gene call is preferred. We
removed a total of 2341 genes from the v2 gene models. 850 of these were duplicate gene
calls, and 1491 were due to being replaced by larger genes in the additional gene set just
generated. 976 genes from the additional set were removed due to overlapping with
already existing larger gene calls in the v2 gene models. This reduced the number of
additional genes to 2012 genes. The total number of genes in the new set of gene models,

which we will refer to as the v3 gene models, is 14,582 (tables 4.12).
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Number | B | Removed Why/ Number |C Number
Start of genes from overlap of genes Final of genes
v2 genes 14911 v2 Duplicate 850 v2 genes 12570
v2 CEG+PCEG 1245
v2 EFF 48
v2 PASA 198
CEG + CEG 1562 CEG PCEG | v2 genes 374 CEG + PCEG 1188
Effectors 499 EFF v2 genes 240 Effectors 259
PASA 927 PASA v2 genes 362 PASA 565
Total 17899 Total 3307 Total 14582

Tables 4.12: Summary of (A) added genes; (B) genes removed due to duplication in the existing v2

gene models, or v2 genes being replaced with longer predictions, or removing newer predictions

due to overlapping with larger existing v2 genes; (C) the number of genes remaining to make the

Hpa Emoy2 v8.3 genome v3 gene models.

4.2.4.3 Evaluating the Hpa Emoy2 v3 gene models

4.2.4.3.1 Evidence of expression

In order to identify how much of the transcribed sequence represented in the genome is

described in the v3 gene models, | aligned the ESTs to the gene models (using BLAT,

minimum sequence identity of 80% and setting the query to RNA), and also aligned the

Illumina cDNA reads to the gene models (using MAQ, mapping parameters of 3

mismatches in the 24 bp seed, and maximum sum of qualities of mismatching bases to

100).

91.8% of the ESTs align to the v8.3 assembly which is a 1% improvement over the v2 gene

models (table 4.13).

Aligned EST % of ESTs aligning % of alignable ESTs
Hpa v8.3 genome assembly 29,836 93.9% B
Hpa v8.3 gene models (v1) 24,550 77.3% 82.2%
Hpa v8.3 gene models (v2) 27,039 85.1% 90.6%
Hpa v8.3 gene models (v3) 27,415 86.3% 91.8%

Table 4.13: The number and percentage of the 31,759 ESTs aligning to the genome, v1, v2, and v3

gene models using BLAT (setting the query as RNA for the genome alignments, and setting the
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minimum sequence identity as 80% in both alignments). The percentage of alignable ESTs was

calculated as the percentage of ESTs aligning to the genome that also aligned to the gene models.

The filtered lllumina cDNA reads were aligned to the v8.3 genome assembly and the v3
gene models using MAQ (mapping parameters allowing for 4 mismatches in the 24 bp
seed, and allowing for a maximum sum of qualities of mismatching bases to 100). We
observed a 4.8% increase in the number of alignable cDNA to the v3 gene models
compared to the v2 gene models (table 4.14). The percentage of alignable cDNA to the v2
gene models (47.5%) is higher than the alignable cDNA of the ‘gold standard’ A. thaliana
TAIR9 gene models (45.8%).

Aligned cDNA | % of cDNA aligning | % of alignable cDNA
Hpa v8.3 genome assembly 2,003,800 34.0% -
Hpa v8.3 gene models (v1) 805,562 13.7% 35.2%
Hpa v8.3 gene models (v2) 909,087 15.4% 45.3%
Hpa v8.3 gene models (v3) 951,743 16.4% 47.5%

Table 4.14: The number and percentage of the 5,896,757 filtered cDNA reads aligning to the
genome, vl1, v2, and v3 gene models using MAQ (allowing for a 3 bp mismatch in the 24 bp seed,
and a maximum sum of qualities of mismatching bases to 100). The percentage of alignable cDNA
was calculated as the percentage of EST aligning to the genome that also aligned to the gene

models.

4.2.4.3.2 Average length + GC

We noticed a shift in the median and distribution of gene lengths from the v1, to the v2, to
the newest v3 gene models. The increase in median gene length from v2 (663 bp) to the v3
(711 bp) genes models was expected due to preferential choice of longer genes. There is
very little change in the mean GC content of genes from the v2 to the v3 gene models,
which suggest that the additional genes follow the expected GC content and the gene
models are as robust. It was also noted that the distribution of the GC content in the v1
gene models is not as tight as that in the v2 and v3, which does suggest that the quality of

the gene calls in the v2 and v3 gene models is significantly better. (fig 4.4, tables 4.15).
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Figure 4.4: Box plots of the 90" percentiles of gene lengths and GC percentage.

Table 4.15: Length and GC values for the v1, v2 and v3 gene models. The 5™ percentile and 95"

Length vl v2 v3

95 percentile 2626.3 | 2848.65 2964
3rd quartile 1162 1278 1344
Median 559 663 711
1st quartile 226 327 342
5 percentile 82 183 183
GC vl v2 v3

95 percentile 59.3 59.1 58.9
3rd quartile 55.2 55.3 55.1
Median 52.9 53.1 52.9
1st quartile 50.4 50.9 50.8
5 percentile 44.39 46.8 46.5

percentile were used as the lower and upper bounds for the box plots.
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4.2.5 Annotation

4.2.5.1 InterproScan functional annotation

We used the InterProScan v4.7 (Quevillon et al., 2005; Zdobnov and Apweiler, 2001),

which annotates peptides against a number of databases:

ProDom (Bru et al.,, 2005) using BlastProDom (Blastall) (Zdobnov and Apweiler,

2001)

e  PRINTS (Attwood et al., 2003) using FingerPRINTScan (Scordis et al., 1999)

e SMART (Letunic et al., 2002) using Hmmpfam (Finn et al., 2011)

e TIGRFAMs (Haft et al., 2003) using Hmmpfam (Finn et al., 2011)

e Pfam (Bateman et al., 2004) using Hmmpfam (Finn et al., 2011)

e PROSITE (Hulo et al.,, 2004) using ScanRegExp + ProfileScan (Thompson et al.,
1994b)

e  PIRSuperFamily (Wu et al., 2004) using Hmmpfam (Finn et al., 2011)

e SUPERFAMILY (Gough et al., 2001) using Hmmpfam (Finn et al., 2011)

e CATH (Pearl et al., 2000) using Hmmpfam (Finn et al., 2011)

e PANTHER (Thomas et al., 2003) using Hmmsearch (Finn et al., 2011)

e Transmembrane using TMHMM2.0 (Sonnhammer et al., 1998)

e Signal peptides using SignalPHMM (Bendtsen et al., 2004)

e Low complexity regions using SEG (Wootton and Federhen, 1993)

e 3D Structure using Gene3D

e Coiled coils using COILS (Lupas et al., 1991)

In addition to these searches, we annotated the genes with Gene Ontology (GO) terms

(Ashburner et al., 2000) using InterproScan.

78.5% of the v3 genes (11,451 genes) were functionally annotated using InterProScan. The

breakdown of the number of genes annotated is shown in table 4.16.
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Number of genes | % of all

Annotation Annotated genes

Coil 2020 13.9%
GO 5431 37.2%
HMMPfam 6143 42.1%
HMMSmart 2329 16.0%
InterPro 9734 66.8%
ProfileScan 2271 15.6%
Gene3D 4971 34.1%
HMMPanther 5546 38.0%
Seg 8683 59.5%
Superfamily 5315 36.4%
PatternScan 1480 10.1%
SignalPHMM 2710 18.6%
TMHMM 1967 13.5%
HMMTigr 672 4.6%
FPrintScan 979 6.7%
HAMAP 165 1.1%
All programs 11,451 78.5%

Table 4.16: Number and percentage of genes annotated using various programs.

4.2.5.2 GO term annotation

Analysing the distribution of GO terms, we see that the majority of genes annotated with a
GO function pertain to molecular function, catalytic activity, biological process and
metabolism (fig 4.5, appendix table 4.1). These GO terms account for more than 50% of all
annotations. We also see a large subcomponent of GO annotation that may pertain to

pathogenicity, for example, transferase activity, hydrolase activity and transport.
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Go Term Annotation

B GO:0003674 - molecular_function

B GO:0003824 - catalytic activity

B GO:0008150 - biclogical_process

B GO:0008152 - metabolism

B GO:0016740 - transferase activity

M GO:0009058 - biosynthesis

W GO:0005575 - cellular_component

B GO:0005623 - cell

B GO:0016787 - hydrolase activity

M GO:0006138 - nucleobase, nucleoside, nucleotide and
nucleic acid metabolism

B GO:0005622 - intrace llular

B GO:0005488 - binding

B GO:0019538 - protein metabolism

B GO:0005737 - cytoplasm

B GO:0006810 - transport

B GO:0005215 - transporter activity

B GO:0016301 - kinase activity

B GO:0016043 - cell organization and biogenesis

B GO:0002056 - catabolism

B GO:0005975 - carbohydrate metabolism

W GO:0006412 - protein biosynthesis

B GO:0006996 - organelle organization and bicgenesis

B GO:0006464 - protein modification

M GO:0006629 - lipid metabolism

B GO:0006259 - DNA metabolism

B GO:0003676 - nucleic acid binding

M GO:0008233 - peptidase activity

B GO:0005634 - nucleus

B GO:0030234 - enzyme regulator activity
GO:0006950 - response to stress

B GO:0004518 - nuclease activity

¥ GO:0006811 - ion transport
G0O:0005515 - protein binding

B GO:0007154 - cell communication
GO:0007 165 - signal transduction
G0D:0005739 - mitochondrion
GO:0003723 - RNA binding
GO:0000166 - nucleotide binding
GO:0D05856 - cytoskeleton
GO:0004871 - signal transducer activity
GO:0003677 - DNA binding
G0:0015031 - protein transport

Other

Figure 4.5: The distribution of GO terms identified in the Hpa v3 gene models. The full list is

described in appendix table 4.1.
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4.2.5.3 Localisation

We predicted protein localisation using WolfPsort (Horton et al., 2007) on a fungal model

(table 4.17).

Number
Localisation of genes
cytoskeleton 439
cytosol 2000
cytosol-mitochondria 60
cytosol-nuclear 533
cytosol-peroxisome 6
endoplasmic reticulum 31
extracellular 1080
Golgi apparatus 9
mitochondria 4425
mitochondria-nuclear 42
nuclear 4679
peroxisome 13
plasma membrane 1240
Total 14,557

Table 4.17: Breakdown of localisation predictions using WolfPsort on a fungal model.

4.2.5.4 Secreted and transmembrane proteins

We used SignalP 3.0 HMM eukaryotic model to predict the number of genes that are
secreted. It was predicted that 2710 genes have a signal peptide and cleavage site using a
cut-off of 90%. We found that 38.3% of the secreted proteins (1039 genes) also had
predicted transmembrane domains, and 11.0% of secreted proteins (298 genes) are or are

homologous to effectors.
Using the InterproScan search we identified 1967 proteins with predicted transmembrane

helices. Of these proteins, 52.8% (1039 genes) had a predicted signal peptide and 2.5% (50

genes) are or are homologous to effectors. The overlap of the genes is show in figure 4.16.
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Figure 4.6: Venn diagram of genes with overlapping annotation as secreted, transmembrane and

effector or effector homolog genes.

4.2.5.5 Metabolic Pathway Analysis.

Pathway annotation for Hpa was done using KAAS (Moriya et al., 2007). The gene models
were submitted to KAAS for assigning a KEGG Orthology (Ogata et al., 1999) identifier. The
query sequences were blasted against the KEGG Genes reference database (containing
genes from Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis
thaliana, Saccharomyces cerevisiae, Cryptosporidium hominis, Escherichia coli K-12
MG1655, Neisseria meningitidis MC58, Helicobacter pylori 26695, Rickettsia prowazekii,
Bacillus subtilis, Lactococcus lactis subsp. lactis 1L1403, Clostridium acetobutylicum ATCC
824, Mycoplasma genitalium, Mycobacterium tuberculosis H37Rv, Chlamydia trachomatis
D/UW-3/CX, Borrelia burgdorferi B31, Bacteroides thetaiotaomicron, Synechocystis sp.
PCC6803, Deinococcus radiodurans, Aquifex aeolicus, Methanocaldococcus jannaschii and
Aeropyrum pernix), with homologs selected on reciprocal best blasts hits with a minimum
sequence similarity threshold of 60%. These candidates were divided into KO groups and
an assignment score was calculated. A pathway diagram was constructed using the non-

organism specific option (fig 4.7).
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Figure 4.7: Metabolic pathways in Hpa, P. infestans, P. sojae and P. ramorum. Components
highlighted in blue are present in Hpa and at least one Phytophthora species. Components in red
are absent in Hpa but present in at least 2 out of three Phytophthora species. Components in
green are present in Hpa but are absent in the Phytophthora species. Dulled lines indicate

components absent in all four species.
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4.2.5.6 Lack of nitrogen and sulphur assimilation pathways

The genes for nitrate, nitrite and sulfite reductases could not be found (table 4.18) in the
gene models, v8.3 assembly and Sanger ESTs and 454 ESTs. These genes are thus missing
from the Hpa genome. In the case of the nitrate and nitrite reductases this conclusion is
supported by the fact that those two genes are adjacent in the Phytophthora genome
sequences whereas the syntenic region in the Hpa genome is simply missing the two genes,
together with an adjacent nitrate transporter (Baxter et al., 2010). The loss of ability to
assimilate nitrogen and sulphur was also observed in the biotrophic oomycete pathogen A.
laibachii (Kemen et al., 2011). The same three nitrate assimilation genes are also present
as a cluster in saprophytic fungi but are deleted in the obligate rust fungi Melampsora
populina-larici and Puccinia graminis f.sp. tritici (Duplessis et al., 2011) and the obligate
powdery mildew fungi Blumeria graminis, Erysiphe pisi, and Golovinomyces orontii (Spanu
et al.,, 2010). The observed independent loss of genes in the nitrogen and sulphur
assimilation pathways in various pathogens is a very important finding as it implicates

reasons behind their obligate biotrophy.
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P. sojae P. ramorum | P. infestans H. arabidopsidis
Nitrate reductase * Ps140563 Pr71442 PITG_13012.1 | -
Nitrite reductase Ps140562 Pr76696 PITG_13013.1 | -
Glutamine synthetase Ps109140 Pr72153 PITG_14180.1 | Ha802420
Ps109139 Pr72154 PITG_14179.1
Glutamate synthase (NADH) Ps135530 Pr72102 PITG_07380.1 | Ha805196
Glutamate synthase Ps130831 Pr78125 PITG_12037.1 | Ha812981
(Ferridoxin)
PITG_16280.1
Glutamate dehydrogenase Ps108919 Pr71959 PITG_07671.1 | Ha805610;
Ha806617
Adenylsulfate kinase ATP Ps112102 Pr79353 PITG_04010.1 | Ha813786
sulfurylase Pyrophosphotase
Phosphoadenosine reductase Pr74880 Ps156997 PITG_04601.1 | Ha809449
Sulfite Reductase Ps139493 Pr71878 PITG_19263.1 | -
Ps139488 Pr81882 PITG_18187.1
Cysteine Synthetase Ps109172 Pr71225 PITG_12727.1 | Ha814750
Ps109175 Pr71224 PITG_12725.1

Table 4.18: Gene IDs for nitrogen and sulphur assimilation enzymes in Phytophthora and Hpa. P.

infestans, P. sojae and P. ramorum genes taken from (Baxter et al., 2010), and Hpa genes

identified through reciprocal best BLAST. * Other enzymes in the nitrogen metabolism pathway

(KEG m00910) that are present in the Hpa gene models include glycine synthase and carbonate

hydrolase; L-Glutamate: ammonia ligase is also present, but this is involved in other metabolic

pathways. The presence of these other enzymes may provide insight into the form in which

nitrogen is taken up from the host.
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4.2.5.7 Virulence related genes

We also observe a general trend of fewer genes implicated in virulence functions in Hpa
compared to P. sojae and P. ramorum (table 4.19). There are less than half of the number
of predicted effectors in Hpa compared to P. sojae and P. ramorum, although this
observation may be biased towards the prediction method used in Tyler et al., 2006,
whose method to predict RXxLR encoding was primarily based on Phytophthora gene
sequences and may thus not capture the full nature of effectors in Hpa. One example of a
published effector gene that is not in the set of 141 high confidence effectors, but instead

in the list of 272 less plausible effector genes, is ATR5 (Bailey et al., 2011).

Gene product H. arabidopsidis P. sojae P. ramorum
Aspartyl proteases 13 13** 14%**
Cysteine proteases 18 29%* 35%*
Glycosyl hydrolases 91 125 114
Endoglucanases (EGL12) 8 10 8
Polygalacturonases 3 25 16
Pectin methyl esterases 3 19 15
Cutinases 2 16 4
Chitinases 3 5 2
Phospholipases 21 31** 28%*
Nonribosomal peptide synthetases 1* 4 4
Polyketide synthases 13 1 1
Cytochrome P450's 14 25 24
ABC Transporters 73 140 135
NPP1 like 21 39** 59**
Elicitins 16 40 57
RxLR Effectors 141 335%* 309**
Crinklers 22 100 19

Table 4.19: Copy numbers of annotated Hpa genes implicated in pathogenesis. P. ramorum and P.
sojae. Figures from (Baxter et al., 2010), Hpa figures recalculated using InterProScan annotation:
Cysteine proteases: Superfamily SSF50494; Glycosyl hydrolases: KEGG KoO1xxx; Endoglucanases :
Superfamily SSF50685; Polygalacturonases: Pfam PF00295; Pectin methyl esterases: Pfam
PF00295; Cutinases: Pfam PF01083; Chitinases: G0:0004568; Phospholipases : SuperFamily
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SSF52151, SSF56024, SSF48537); polyketide synthases: SM00822, SM00823, SM00825, SM00827.
SM00829; Cytochrome P450's: Pfam PF00067; ABC TRANSPORTERS: Pfam PF01061, PF00005;
NPP1 like: Pfam PF05630; Elicitins: Pfam PF00964 .**Effectors for (Haas et al., 2009).
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4.3 Hpa genome browser

With the availability of the Hpa v8.3 assembly, various gene models and the wealth of
expression data available, it is important to be able to access such information in a user

friendly manner.

The Gbrowse generic genome browser system (Stein et al., 2002) framework was used to
implement the Hpa genome browser (fig 4.8). The default protocol for uploading GFF was
followed. The Illlumina DNA coverage data was converted from MAQ pileup format to the
WIG format to optimise loading times. The Hpa Emoy2 v8.3 Genome Browser
(http://gbrowse2.tsl.ac.uk/cgi-bin/gb2/gbrowse/hpa_emoy2_ publication/) visualises the
v8.3 assembly and annotation. The tracks available for viewing are: global GC content
(displays the GC content over the entire scaffold), predicted effectors (displaying the
effectors predicted from the Hpa Jamboree held in Virginia Tech in 2007), 454 ESTs
(extracted from 3 d.p.i infected A. thaliana WS edsl-1), Hpa Emoy2 lllumina cDNA
(extracted from 7 d.p.i infected A. thaliana WS eds1-1), Sanger ESTs (extracted from
spores), local 3-frame-forward, 3-frame-reverse and 6-frame translation, Hpa Emoy2
transcript models, Hpa DNA coverage by lllumina reads, polymorphisms (heterozygous
INDELs and SNPs) and restriction sites. The genome browser has a search facility for genes,
effectors and scaffolds, displays customisations and facilities the uploading of user defined

GFF3 tracks.
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Figure 4.8: Hpa Emoy2 v8.3 genome browser
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4.4 Summary

In this chapter we described the progressive improvement of the Hpa Emoy2 v8.3
assembly gene models from the vl gene models containing many spurious genes with
moderate evidence of expression, to the v3 gene models, which support 92% of the
alignable ESTs, and have a higher percentage support of Illumina sequenced cDNA than we

saw in the gold standard gene models of A. thaliana.

| successfully trained and used various gene prediction programs and integrated them into
existing gene models using novel and robust methods. | also report, for the first time in a
genome publication, methods used to evaluate gene model robustness using various

sources of evidence.

The resulting annotations have resulted in interesting observations including the large
proportion of the genome encoding secreted proteins, shared and unique metabolic
pathways between Hpa and Phytophthora, incomplete nitrogen and sulphur assimilation
pathways that may be the reason for obligate biotrophy, and the reduced number of

genes encoding pathogen-related proteins compared to P. ramorum and P. sojae.

A genome browser was established to allow easy viewing of genomic regions, genes and

expression data.

Other elements pertaining to the biology of Hpa that arose from the establishment of the

Hpa gene models are described in Baxter et al. (2010).
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Chapter 5 — Use of lllumina sequencing to investigate

signatures of evolution in Hpa

5.1 Introduction

In the previous chapter we made use of EST and Illumina expression data to improve the
Hpa Emoy2 gene models. This improvement in gene models allows us to perform
comparative genomics analysis using the lllumina sequence data of 7 other isolates (Cala2,
Emco5, Hind2, Maks9, Noco2 and Waco9 sequenced at TSL and Emwal provided by Prof

Brain Staskawicz).

Two Hpa effectors, ATR1 and ATR13, have been shown to have a high level of nucleotide
sequence variation between different races, leading to amino acid substitutions, and
appear to be under positive selection (Allen et al.,, 2008; Rehmany et al., 2005). It is
hypothesised that sequence variation is a result of selection pressures exerted by
interaction with the plant immune system, i.e. recognition of these effectors by A. thaliana

resistance genes RPP1 and RPP13 (Sohn et al., 2007).

In this chapter we will examine sequence polymorphism in the candidate Hpa effectors
and other secreted proteins. We expect to see a high level of sequence polymorphism in
genes of Hpa that are involved in interactions with the resistance genes of A. thaliana. We
will further investigate the most polymorphic secreted protein families to detect potential

effector candidates that do not carry the RXLR motif.
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5.2 Method development

While there are a number of programs that are able to identify variation from second
generation sequencing data, there are currently no computation tools that are able to
make direct inferences about evolution from second generation sequencing data. It has
been shown that Hpa effectors show signs of positive selection, so any method
development comprises a significant contribution to the field of second generation
sequencing analysis in the light of evolution. Firstly, | will describe the development of the
algorithm, VariTale, which | use to make inferences about selection pressures acting on
genes by processing variation predictions using second generation sequencing by

performing tests of neutrality and selection.

5.2.1 Pipeline

The pipeline has been implemented as a set of Perl scripts. | decided that for this analysis
the ability to create elaborate data structures, possible through object oriented
programming languages, was not a necessity in this case. Scripts generated using high level
programming languages such as Perl can be more readable and thus can be easily
understood and modified. Perl has many existing libraries for data parsing and
manipulation that facilitate quicker code generation and modularisation of the program.
There are also well established Perl distributions for many platforms allowing for

portability of code.

5.2.1.1 Input

The input data for the VariTale are:

e Reference sequence file in FASTA format
e Gene model file in GFF3 format
e Sequence alignment file in BAM format

e SNP and INDEL file in VCF-like format

The input file formats chosen are the de facto standard for each data type, apart from the
SNP and INDEL data. In contrast to other file formats, there is still no widely adopted

sequence variance call format. However, the variant call formats all share a similar layout,
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tab delimited, and have a minimum of 4 fields: chromosome/contig, position, reference
base and variant call. These are the first 4 data elements of each line of the VCF format. |
used these 4 data elements and describe the data parsing as VCF-like. The VCF-like parsing
allows for input from very popular variant call formats including SAMtools VCF (Li et al.,

2009a) and BCF (Danecek et al., 2011) and GATK (McKenna et al., 2010).

As with many data processing programs, the final output is highly reliant on the quality of
input data. In previous chapters we have shown significant improvement in the Hpa
Emoy2 genome assembly and gene models, which should translate to more reliable

downstream analysis using VariTale.

5.2.1.2 Output

VariTale is currently a 3 stage pipeline with distinct outputs at each stage. Stage 1 is the

minimal pre-processing required for either stage 2 or 3.

5.2.1.2.1 Stage 1

The first stage of the pipeline involves processing the input data (reference sequence,
gene model co-ordinates, sequence alignments and variant calls) for each individual race.

The data is parsed as follows:

o The FASTA reference sequence contigs are parsed as a Bioperl BIO::SeqlO object
e The GFF3 gene models are parsed using Bioperl Bio::Tool::GFF, and then stored in
single level hash data structures for:
o Gene direction
o Exon start and end coordinates (stored as an array of elements)
o UTRs (this is currently set to a fixed length of 250 nt as the UTRs for the
gene models have not been predicted)
e The BAM alignment file is parsed using the Bioperl Bio::DB::Sam object
e The VCF-like variant calls split into SNPs and INDELs and are then parsed into a 2

level hash data objects in the format (using Perl nomenclature):

The output at this stage is a FASTA file containing sequences for the gene models
(modified to incorporate the SNPs for each particular race) with additional statistics. The
additional statistics are printed into the FASTA sequence identifier and are derived from

the gene or the resequencing data. The statistics derived from the gene are the gene
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length in nucleotides, the GC content of protein coding regions, the orientation of the
gene on the contig and the number of exons. The output derived from the resequencing
information includes coverage statistics, number, effect and types of SNPs and number

and effect of INDELs.

The mean read depth of coverage over coding regions and the percentage of the coding
regions covered by reads (breadth of coverage) for each gene is extracted from the BAM
alignments using the Bio::DB::Sam object. More important than the mean coverage,
however, is to compare the observed average coverage for each gene with an expected

coverage (calculated as the mean of all read coverage over all coding regions).

To determine whether the mean read depth of coverage per gene follows a normal or
Poisson distribution over varying read depth, 1, 2, 4 and 8 lanes of Emoy2 sequence data
were aligned to the v8.3 assembly. The average read coverage over the coding regions of
all genes that are 100% covered by reads was extracted. For 1, 2, 4 and 8 lanes of
sequence data we observed 5x, 9x, 20x and 40x read depth coverage. | compared the
observed mean read depths to a set of read depths following normal and Poisson
distributions, generated from the mean and variance observed in the set of mean read
depths, using Quantile-Quantile-plots (QQ-plots). | then measured the goodness of fit
using linear regression in the form of the Adjusted R’ value. At low read depths, the QQ-
plots of the observed mean read depths with the normal and Poisson generated sets were
hard to distinguish by eye, but the adjusted R>value favoured the observed data following
the Poisson distribution (fig 5.1; fig 5.2; fig 5.3; fig 5.4). At the highest read depth tested,
the observed mean read depths followed the Poisson generated dataset much better than
the normal generated dataset (fig 5.1; fig 5.2; fig 5.3; fig 5.4). | also compared the observed
cumulative distribution function (CDF) to the normal and Poisson CDF. It was observed
that with increasing read coverage that the data better fit the Poisson CDF compared to
the expected normal CDF (fig 5.1; fig 5.2; fig 5.3; fig 5.4). Therefore, | decided to base
calculations of deviance from expected read coverage on a Poisson distribution. In the QQ-
plots and CDF comparisons for observed data, with average read depths of 20x and 40x,
shoulders were observed in the graph at the points of half the average read depths (fig 5.3;
fig 5.4). These shoulders support the idea that hemizygous genes can be identified from

the read coverage.
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Given that the observed mean read depth follows a Poisson distribution, the VariTale
pipeline calculates the Poisson probability density function for each gene. With this
probability density statistic, the user can infer whether the gene is present as a single copy
(if the probability density function is within the e.g. 95% confidence interval), the gene
underwent a duplication event (if the probability density function is above e.g. 97.5%), or a
single or both parental haplotype copies of the gene are lost, truncated or pseudogenised
(if the probability density function is below e.g. 2.5%). In the case of complete loss of both
parental haplotypes, we would simply observe no read coverage. However it is less trivial
to distinguish between the loss of a single parental haplotype and a gene truncation. For
the loss of a single parental haplotype, we would expect the entire gene to be covered by
reads but at a lower than expected mean coverage (and a lower probability density). In
case of a truncation we would expect that the lower average read coverage is due to parts

of the gene not being covered by reads.
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Figure 5.1: QQ-plots of likelihood of belonging to Poisson/Normal distribution for 5x coverage
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QQ-coverage-polt: 2 lanes vs Poisson QQ-coverage-polt: 2 lanes vs Normal
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Figure 5.2: QQ-plots of likelihood of belonging to Poisson/Normal distribution for 9x coverage
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Figure 5.3: QQ-plots of likelihood of belonging to Poisson/Normal distribution for 20x coverage
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QQ-coverage-polt: 8 lanes vs Poisson QQ-coverage-polt: 8 lanes vs Normal
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Figure 5.4: QQ-plots of likelihood of belonging to Poisson/Normal distribution for 40x coverage
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VariTale also generates several SNP statistics. For each gene, the homozygous and
heterozygous SNPs are reported on the 5 and 3’ UTR (or for a fixed distance and
downstream the gene if the UTRs are unknown), exons and introns. It is important to also
investigate the up and downstream regions of genes as mutations may affect the
transcriptional regulation of the gene rather than the gene sequence itself. Recording SNPs
that are within the introns of genes are also important as this can support inferences of
gene evolution, for example, a gene is likely to be under stabilising selection if a higher
number of SNPs is observed in intronic regions compared to exonic regions. For each SNP
on the exon, the codon, on which the SNP lies, is extracted and the amino acid encoded by
this codon determined. For each gene, the number of SNPs causing synonymous and non-
synonymous mutations is reported. In addition, heterozygous SNPs may lead to the same
gene encoding 2 different protein sequences. These SNPs are reported and | will refer to
them as ‘heterozygous non-synonymous’ SNPs. Some of the most drastic effects of SNPs
on gene function are those affecting the start and end of the gene sequence. Any SNP that
mutates the start codon or introduces a premature stop codon (and hence truncated

protein) is also reported.

Up until now the majority of genome variation that has been studied using second
generation sequencing include SNPs, CNVs and large scale chromosomal rearrangements.
Although INDEL prediction has existed in the earliest of second generation sequence
aligners, their implications have not been analysed as routinely as the above. | believe this
is primarily due to the non-trivial nature of predicting INDELs and analysing their effect on
genes, especially where INDELs result in frame shifts. For each gene, the homozygous and
heterozygous INDELs are reported on the 5’ and 3’ UTR (or for a fixed distance and

downstream of the gene if the UTRs are unknown), exons and introns.

As mentioned previously, it is interesting to investigate the effects of INDELs at the protein
coding level. For example, a deletion of 2 nucleotides at the beginning of a gene will lead
to a frame shift downstream of that deletion, dramatically changing the amino acid
sequence encoded by the gene. However, while the frameshift has a dramatic effect on
the protein coding sequence of the gene, it is possible that a downstream INDEL can
correct the reading frame. For instance, a deletion of 2 nucleotides in one region of the
gene may be complemented by an insertion of 2 nucleotides elsewhere in the sequence. In
this case we would observe a frame shift in the region lying in between the deletion and

the insertion, while the beginning and the end of the gene sequence is retained, including
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the start and stop codon. For this reason | also decided to report for each gene the ‘net
INDEL length’, which is the sum of all the INDELs predicted in the coding region of the gene.
When the ‘net INDEL length’ is exactly divisible by 3 we are likely to observe a
conservation of the start and stop codons, while the internal sequence may have
undergone a frame shift. The conservation of the start and stop codon may indicate
selection pressures that are preserving the presence of the gene, while exerting selection
pressure to modify the gene function (due to the effects of the internal frame shift caused
by the INDELs). Thus, evolutionarily INDELs may be powerful tools to generate sequence
diversity and should generally have much greater effects on protein functions than SNPs.
We also report the numbers of INDELs that are exactly divisible by 3 over gene exons as
this indicates exact codon loss and whether all the INDELs over the coding region are

exactly divisible by 3.

To summarise, in stage 1, for each gene we display the following information:

The gene nucleotide sequence, modified with the predicted SNPs
o Heterozygous SNPs are displayed as IUPAC ambiguous codes
e Llength
e GCcontent
e Direction
e (Coverage
o Mean coverage
o Percentage covered
o Cumulative distribution function of the observed mean coverage
belonging to the expected Poisson distribution with mean equal to the
observed mean over all genes
e SNPs
o Number of homozygous and heterozygous SNPs
= over5’, exons, introns, 3’
o Number of synonymous SNPs
o Number of non-synonymous SNPs

o Number of heterozygous non-synonymous SNPs
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e INDELs
o Number of homozygous and heterozygous INDELs
=  over 5’, exons, introns, 3’
o Net INDEL length
o Number of INDELs exactly divisible by 3
o If only INDELs exactly divisible by 3 are observed

5.2.1.2.2 Stage 2

The second stage of the pipeline performs population genetic analysis on the DNA
sequences of genes obtained at the within species population level. The inputs are at least
3 different FASTA files produced by the first stage of the pipeline (i.e. 3 different races
sequenced and analysed using the first stage of the analysis pipeline) and then performs
several tests of neutrality using DnaSP v5 (Librado and Rozas, 2009). This approach allows
variation at a population level and divergence from neutrality for each gene to be analysed.
This is a novel approach to analysing effector genes, and may reveal further insights to

effector biology and other biological mechanisms.

Before the tests of neutrality are performed the data have to be pre-processed. To recall,
at the end of stage 1, the gene sequences with SNP modifications are printed. The
heterozygous SNPs are displayed as IUPAC ambiguous codes. The DnaSP algorithm
requires a nucleotide sequence for batch input processing and cannot currently
disambiguate heterozygous calls to their parental haplotypes. Where the gene contains a
single heterozygous SNP, the parental haplotypes can be determined easily.

When the gene contains 2 or more heterozygous SNPs, discerning the parental haplotypes
is less trivial. The parental haplotypes can be reconstructed exactly in cases where the
heterozygous SNPs are clustered over an area shorter than the length of the read. In these
cases the parental haplotypes can be determined by observing SNP linkage over the reads
with the heterozygous SNPs. The parental haplotypes can also be reconstructed exactly
when the heterozygous SNPs are exactly the distance of the fragment apart, i.e. the SNP
linkage can be observed by looking at the read pairs on which they occur. However the
majority of the heterozygous calls do not lie within these 2 scenarios. To reconstruct the
parental haplotypes from population data we use PHASE v2.1.1 (Stephens and Scheet,
2005). Although many algorithms exist for estimating haplotypes from genotype data,

PHASE is one of the few that considers the decay of linkage equilibrium with distance and
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the order and spacing of genotype markers. The SNPs and their positions are extracted
and a PHASE run is performed on them (with parameters set at 100 iterations, a thinning
interval of 1 and a burn-in of 100). From the output of PHASE, the parental haplotypes are
extracted and printed in a FASTA file for use with DnaSP. DnaSP’s batch processing mode is

used to process the unphased haplotype FASTA gene sequences.

For each gene in each race with 100% sequence coverage and a coverage Poisson CDF of
less than 97.5% (i.e. not within the 95% confidence interval of being a single copy gene

based on a Poisson distribution),the statistics reported are:

The number of segregating sites (S)

The total number of mutations (Eta)

The number of haplotypes

Statistical test of neutral theory of molecular evolution (Kimura, 1983)
o Tajima’s D (Tajima, 1989)
o Fuli’s D* (Fuand Li, 1993)
o Fuli’s F* (Fuand Li, 1993)
o Fu’s Fs(Fu, 1997)

S, Eta and the number of haplotypes provide insight into the amount of variation seen in
the gene and how varied alleles are in the sample population. The various neutrality tests
will be able to report whether genes are evolving under neutrality, or if there are selective
pressures being applied. While some of these tests may appear to be redundant, as high
throughput analysis of this nature has not been performed previously we are currently

unaware of the effectiveness and redundancy of each of these tests.

5.2.1.2.3 Stage 3

The third stage of the pipeline performs phylogenetic and evolutionary analysis on the
DNA sequences of genes obtained at the between species population level. The inputs are
at least 3 different files produced by the first stage of the pipeline (i.e. 3 different races
sequenced and analysed using the first stage of the analysis pipeline). PAML v4.0 (Yang,
2007) is then used to perform several likelihood ratio tests of the observed sequence
variation following various evolutionary models. Although these tests are specifically for
between species data where there is no gene flow between species, they can be used for

within species data as suggestive evidence as used by Haas et al. (2009).
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PAML requires 3 input files:
e Sequence alignment of the input
e A PAML control file, outlining the location of input and output files and processing
to be carried out

e A phylogenetic tree of the organisms whose sequences are being analysed

For each gene, the sequence for each isolate is extracted for each organism and converted
into a PHYLIP format (Felsenstein, 1989). Unlike stage 2, PAML is able to process
sequences with ambiguous nucleotides, so there is no need for the pre-processing step in
which the parental haplotypes are resolved. Only the full sequences are printed in the
PHYLIP file as only genes that are 100% covered by reads and without INDELs are

processed.

The control file generated declares the input file, output file and location of the tree file. It

also defines the models to be run. 3 control files are produced to run:

e codeml (codon evolution) with evolutionary models
o MO - one ratio (uniform selective pressure among sites)
o M3 —discrete (variable selective pressure among sites)
o Mila - nearly neutral (variable selective pressure, but no positive selection)
o M2 a— positive selection (variable selective pressure, with positive
selection)
o M7 - beta (beta distributed selective pressure)
o M8 - beta with w (dN/Ds or Ka/Ks) > 1 (beta plus positive selection)
O pairwise comparison
e codeml with evolutionary model m8a (beta with w = 1)

e yn0O (protein evolution)

The codeml evolutionary model analysis requires a phylogenetic tree file of all the
organisms analysed with VariTale (super tree). The tree has to be in Newick (New
Hampshire tree) format. PAML is unable to process trees that contain additional tips, so
for each gene a ‘pruned’ tree is generated. The super tree is parsed as a Bio::Phylo::I0

object, all tips of the tree corresponding to input sequences are kept, and unnecessary tips
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are removed. Any unbranched internal structures are removed producing a balanced tree

that is a subtree of the original super tree.

This section of the processing is computationally very time consuming but has been
optimised for running on a cluster managed by the LSF7 job management system.
Alternatively, processing can very easily be modified to work on the PBS Torque job

management system as well.

For each gene in each race with 100% sequence coverage and a coverage Poisson CDF of
less 97.5% (i.e. not within the 95% confidence interval of being a single copy gene based

on a Poisson distribution), the statistics reported are:

e w as calculated by codeml pairwise comparisons
e W as calculated by yn00
e Log likelihood difference between models (and their significance based on ¥ ):
o M3 - MO (testing for a variable w among sites instead of a single w for all
sites)
o M2a - Mla (testing for positive selection rather than nearly neutral
evolution)
o M8 -M7 (testing for the existence of sites with w = 1 rather than w < 1 for
all sites)
o M8 -M8a (testing for sites with w >> 1 instead of w =1 as an indication of

positive selection)

The codeml evolutionary model analysis provide insights into genes that have a sections of
the gene under positive selection, while the dN/dS calculation try to evaluate if the gene
as a whole is under positive selection. Previous analysis of a similar nature has been done
before (Haas et al.,, 2009), but there method was limited to use of just yn0O0. Since
systematic analysis of this high throughput nature has not been performed before, it is

important to consider various, possibly redundant, models to evaluate their effectiveness.
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5.2.1.2.4 Output format for data comparison

Once all the processing stages have been completed, all the statistics generated are parsed

into as simple tab delimited format:

[Gene] [Program] [Statistic] [Value] [Note/Significance]

Formatting the data in this way facilitates querying the data for different classes of genes,

and allows for more efficient comparisons.
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5.3 Results and discussion

The first stage of VariTale requires:

e The FASTA reference sequence contigs
e The GFF3 gene models

e The BAM alignment file

e The VCF-like variant

In previous chapters | have described the most recent Hpa Emoy2 genome assembly (v8.3)
and the most recent gene models (v3). Here, | will describe how the alignment and variant

files were produced.

5.3.1 Alignment

Illumina sequenced reads of 8 races of Hpa (Cala2, Emco5, Emoy2, Hind2, Maks9, Noco2
and Waco9 that were sequenced in house, and Emwal provided by Prof Brian Staskawicz),
were analysed for quality using FastQC
(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) (appendix figures 2.1). This

analysis revealed certain quality issues:

e The per base quality drops drastically in the last third of the read for sequencing
runs on the before the implementation of the GA pipeline v1.3 (before ID71)

e The Emwal reads have high levels of lllumina paired end sequencing primer
contamination

e The reads for each sequenced race have between 2% and 25% PCR duplication

Despite the per-base quality decrease in the last third of the read, the average read
quality of the reads have a single peak around a Phred scaled quality score 30, which
implies an overall error rate of 0.1%. Therefore, the reads were not filtered or trimmed
before alignment, but instead, at a later point, | modified the alighment parameters to
soft-trim bad quality trailing bases and filtered the PCR duplicates post-alignment, using

the Samtools rmdup command.
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The reads were converted from Solexa and Illumina to Sanger quality scores prior to
alignment. The reads were aligned to the Hpa v8.3 assembly using BWA v0.5.8c (Li and
Durbin, 2009). In addition, BWA’s read trimming was used to clip trailing nucleotides with
a quality score of less than 10. The aligned reads were converted to BAM files using BWA's
‘sampe’ command. | then extracted all the reads that did not align as pairs, and reads that
did not align. After the initial BWA alignment there was a second round of alignment using
a more sensitive aligner, Stampy v1.0v11 (Lunter and Goodson, 2011) using its ‘sensitive’
mode to align these extracted reads. Using Stampy on top of the BWA alignment increased
the percentage of reads aligning by 3.72%, of which 1.31% mapped as pairs (table 5.1).

There was a notable difference in the percentage of reads aligning to the Hpa v8.3
assembly between races. More than 90% of the reads for Emoy2, Hind2, and Noco2
aligning to the Hpa v8.3 assembly when Stampy was used alongside BWA, which suggests
that these are most similar to the reference race, Emoy2, out of the races studied
(although it may be the case that Noco2 is contaminated with another Hpa race, as this
level of similarity with Emoy2 was unexpected — if this is the case, the effect on
downstream analysis would reduce the number of true positives, which is more desirable
than increasing the number of false positives). Less than 50% of the Cala2 reads aligned to
Emoy2 reference. We performed a Velvet assembly of the Cala2 reads which did not align
to the reference sequence, and performed a BLAST search against the NR database,
revealing significant Xanthomonas contamination and minor Pseudomonas contamination
in the data. | believe this was due to a sample contamination rather than library prep or
run contamination, because other libraries prepared at the same time were free of

contamination, as were other samples sequenced on the same flowcell.

Once all the alignments were completed, they were merged, sorted and PCR duplicates
removed using SAMtools v0.1.12a (Li et al., 2009a) rmdup command. It was noticed that as
the total number or reads per race increased, so did the read duplicates. This could be due
to stochastic error, or may imply that PCR duplicates are more likely to be observed with
increasing read depth. It is possible that as the number of sequenced reads increases, the
larger possibility of the observation of a sequenced fragment originating from same the
genomic position as another sequenced fragment. This would, in fact, be a false positive
PCR duplicate and an artefact caused by saturation of the system. This is a known issue of

the Samtools rmdup command.
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All reads aligned

Reads aligned as pairs

BWA BWA + Stampy ‘a&: BWA BWA + Stampy ‘s‘

5 B ° & ° % S ° & ] 'TE:

8 0 5 2 5 2 % 5 g C N

@ & 2 b ) b ) o b ) b ) o

S © S 3 © s © £ E: © s © £

5 s g < 3 . 5 8 < 5 < B3

2 S a 5 o S @ 3 S @ 5 o 8

£ ° S 3 5 3 5 2 3 5 2 5| 2

Race = € ° £ ° X E ° E ° ®
2 2 2 2

Cala2 102,102,496 | 7,702,096 | 7.54% | 41,145,830 | 40.30% | 43,985,611 | 43.08% | 6.90% | 38,106,640 | 37.32% | 38,354,846 | 37.57% | 0.65%

Emco5 154,461,266 | 27,129,767 | 17.56% | 134,230,186 | 86.90% | 138,696,656 | 89.79% | 3.33% | 124,677,522 | 80.72% | 125,825,452 | 81.46% | 0.92%

Emoy2 99,616,122 | 8,612,719 | 8.65% | 89,460,651 | 89.81% | 93,188,178 | 93.55% | 4.17% | 84,392,579 | 84.72% | 85,159,010 | 85.49% | 0.91%

Emwal 69,182,800 | 1,754,692 | 2.54% | 37,948,025 | 54.85% | 39,482,681 | 57.07% | 4.04% | 35,035,648 | 50.64% | 35,337,502 | 51.08% | 0.86%

Hind2 117,257,018 | 22,530,277 | 19.21% | 109,017,009 | 92.97% | 111,987,100 | 95.51% | 2.72% | 101,136,710 | 86.25% | 102,775,426 | 87.65% | 1.62%

Maks9 80,982,024 | 10,491,395 | 12.96% | 59,711,490 | 73.73% | 62,385,445 | 77.04% | 4.48% | 55,106,968 | 68.05% | 55,732,234 | 68.82% | 1.13%

Noco2 116,719,072 | 27,523,234 | 23.58% | 104,879,442 | 89.86% | 107,737,917 | 92.31% | 2.73% | 97,604,628 | 83.62% | 99,265,106 | 85.05% | 1.70%

Waco9 | 113,350,294 | 10,007,710 | 8.83% | 97,287,035 | 85.83% | 101,737,256 | 89.75% | 4.57% | 89,069,816 | 78.58% | 90,866,580 | 80.16% | 2.02%

Average* - - 13.33% - 81.99% - 85.00% | 3.72% - 76.08% - 77.10% | 1.31%

Table 5.1: Number and percentage of reads from 8 Hpa races aligning to the Hpa v8.3 assembly. There is a large variation in the percentage of reads aligning to the v8.3

assembly for each race which is indicative of how similar the sequenced race is to the Emoy2 reference race. A very similar percentage of reads from Hind2 and Noco2

align to the reference as Emoy2, which indicates these may have very similar genomes. There is a very low percentage of reads aligning from Cala2, which is an artefact

due to significant Xanthamonas contamination. There is an average of 3.72% of increase in reads aligning using Stampy on top of BWA, of which 1.31% align as pairs.

* Average is the calculated mean, excluding Cala2
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5.3.2 Variant calling

A list of the variant calls was generated using SAMtools. The variants were filtered using

the varFilter script in the SAMtools package. The variant calls were filtered for:

e A minimum root mean squared (RMS) quality of 20 for SNPs [Q = 20]
e A minimum RMS quality of 20 for gaps [q = 20]

e A minimum read depth of 5 [d = 5]

e A maximum read depth of 80 [D = 80]

e A minimum SNP quality of 20 [S = 20]

e A minimum INDEL quality of 20 [i = 20]

e A window size of 3 for filtering dense SNPs [W = 3]

5.3.2.1 SNP and INDEL calls

The 8 sequenced Hpa races have approximately 150,000-200,000 SNPs (table 5.2).
Excluding the reference race Emoy2, the lowest number of SNPs predicted was for Noco2
(58,175), again suggesting that it is very similar to Emoy2. Hind2, the race with the highest
percentage of reads aligning to the reference sequence, has about 3 times more SNPs than
Noco2. This was also observed in the number of INDELs predicted in each race where
Hind2 had a comparable number of INDELs to Cala2, Emco5 and Waco9, while Noco2 had
about 1/3" less INDELs. | also observed that the number of predicted insertions and
deletions followed on average a 1:1 ratio. This indicates that there is no preference of

insertions over deletions in Hpa.

5.3.2.2 Heterozygosity

The average rate of observing a heterozygous SNP among SNP sites was found to be 25.25%
(table 5.2; appendix table 5.4). This is nearly half of the rate of observing a heterozygous
INDEL among INDEL sites, which is 44.72%. From this | concluded that ~35% of Hpa
variation is heterozygous. It is also important to note that the high rates of heterozygous
variants in Emoy2 are because of it being the reference strain. Any homozygous SNP would
be due to a combination of errors in the reference sequence and error rate in the SNP
calling. It was observed that the rate of heterozygous SNPs in Emoy2 (98.95%) was higher
than the rate of heterozygous INDELs (87.79%). This is because the Hpa v8.3 assembly was
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corrected for SNP and INDEL errors with iterative variant calls using MAQ. While MAQ_is
very good at predicting SNPS, the INDEL prediction is not as accurate as the methods used
in the BWA + Stampy alignment. Noco2 displayed a very high rate of heterozygosity in
SNPs (77.01%) and INDELs (79.14%), making it the most heterozygous Hpa race in this
study. It was also interesting to note that the rate of heterozygosity in the SNPs of Emwal
was very low (0.24%), but extremely high in the INDELs (90.28%). The full list heterozygous

INDELS on genes can be seen in appendix table 5.7.

Race

SNPs
Het SNPs
% Het SNPs
INDELSs
Het INDELs
% Het INDELs

Insertions:Deletions
Total Variation

%Het SNP: % Het INDELS
Insertions
Deletions

D

Cala2 208,602 | 35,470 | 17.00% | 25,132 7083 28.18% | 0.60 | 12,295 | 12,837 | 0.96 | 233,734

Emco5 182,716 | 10,128 5.54% 25,734 5672 22.04% | 0.25 | 12,859 | 12,875 1 208,450

Emoy2 54,283 53,626 | 98.79% 9810 8612 87.79% 1.13 4881 4929 0.99 64,093

Emwal 146,530 350 0.24% 53,259 | 48,084 | 90.28% | 0.00 | 30,916 | 22,343 | 1.38 | 199,789

Hind2 193,858 | 17,178 8.86% 25,692 6529 25.41% | 0.35 | 12,816 | 12,876 1 219,550

Maks9 224,793 | 33,181 | 14.76% | 29,366 8386 28.56% | 0.52 | 14,512 | 14,854 | 0.98 | 254,159

Noco2 58,175 44,798 | 77.01% | 16,098 | 12,740 | 79.14% 0.97 7674 8424 0.91 74273

Waco9 209,629 | 59,320 | 28.30% | 26,901 | 10,596 | 39.39% | 0.72 | 13,181 | 13,720 | 0.96 | 236,530

Average* 25.25% 37.12% 0.57 1.02

Table 5.2: Table of predicted SNPs and INDELs in the 8 sequenced races of Hpa. Het =
heterozygous.
* The average was calculated as the mean without values from Emoy2, as it is the reference strain,

and Emwal as this race had very few predicted heterozygous SNPs.

5.3.2.3 Preferential SNP mutation

For each race, the homozygous SNPs were extracted. A significant balance between
reciprocal nucleotide changes was observed, which implies that the Hpa genome is under
pressure to maintain its nucleotide compositions (tables 5.3). Preferential A/T < G/C
transitional mutation were observed, which accounted for ~65% of all SNPs (outside of
Emwal). A/T < G/C transitional mutation has been described to be the most commonly
observed point mutation and was also seen in 80 accessions of A. thaliana (Cao et al.,
2011). A reciprocal balance of A/T 2C/G with G/C2>T:A and A/T>T/A with C/G>G/C was

also observed.
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Cala2 A C G T Balance A C G T Preferenc A C G T
A 0 9739 28,31 6027 A - 1.0 1.0 0.9 A - 11.07 32.57 7.04%
C 9420 0 5007 27,803 C 0.9 - 1.0 0.9 C - - 5.77% 32.34%
G 28,07 4983 0 9546 G 0.9 1.0 - 0.9 G - = = 11.21%
T 6159 28,17 9866 0 T 1.0 1.0 1.0 - T = = - -
Total 173,11 Std Dev 0.0 Total 100.00
Emco5 A C G T Balance A C G T Preferenc A C G T
A 0 9818 28,00 6276 A - 1.0 1.0 0.9 A - 11.26 32.37 7.33%
C 9615 0 4923 27,447 C 0.9 - 0.9 0.9 C - - 5.73% 32.16%
G 27,83 4970 0 9469 G 0.9 1.0 - 0.9 G - - - 11.14%
T 6370 28,04 9756 0 T 1.0 1.0 1.0 - T - - - -
Total 172,53 Std Dev 0.0 Total 100.00
Emoy2 A C G T Balance A C G T Preferenc A C G T
A 0 51 74 40 A - 0.9 ildl 0.6 A - 16.12 21.86 15.50%
C 53 0 31 77 C 1.0 - 0.8 11 C - - 10.23 22.79%
G 67 35 0 45 G 0.9 kil - 1.0 G - - = 13.49%
T 60 70 42 0 T 15 0.9 0.9 - T = = - -
Total 645 Std Dev 0.1 Total 100.00
Emwa A C G T Balance A C G T Preferenc A C G T
A 0 12,20 12,11 13,365 A - 1.0 1.0 1.0 A - 16.39 16.49 18.15%
C 11,64 0 11,93 11,848 C 0.9 - 1.0 0.9 C - - 16.27 16.46%
G 11,87 11,74 0 11,423 G 0.9 0.9 - 0.9 G - - - 16.25%
T 13,04 12,09 12,22 0 T 0.9 1.0 1.0 - T - - - B
Total 145,51 Std Dev 0.0 Total 100.00
Hind2 A C G T Balance A C G T Preferenc A C G T
A 0 9733 28,80 6399 A - 1.0 1.0 1.0 A - 10.97 32.41 7.26%
C 9637 0 5184 28,715 C 0.9 - 1.0 1.0 C - - 5.84% 32.51%
G 28,45 5128 0 9601 G 0.9 0.9 - 0.9 G - - - 11.02%
T 6428 28,70 9858 0 T 1.0 1.0 1.0 - T - - - -
Total 176,64 Std Dev 0.0 Total 100.00
Maks9 A C G T Balance A C G T Preferenc A C G T
A 0 11,04 31,30 6686 A - 1.0 1.0 0.9 A - 11.34 32.43 7.05%
C 10,69 0 5537 30,603 C 0.9 - 1.0 0.9 C - - 5.76% 32.24%
G 30,83 5497 0 10,449 G 0.9 0.9 - 0.9 G - - - 11.17%
T 6818 31,17 10,95 0 T 1.0 1.0 1.0 - T - - - -
Total 191,58 Std Dev 0.0 Total 100.00
Noco2 A C G T Balance A C G T Preferenc A C G T
A 0 801 2225 504 A - 1.1 1.0 0.9 A - 11.20 32.49 7.91%
C 693 0 405 2031 C 0.8 - 0.9 0.9 C - - 6.17% 31.31%
G 2108 418 0 662 G 0.9 1.0 - 0.8 G - - - 10.91%
T 551 2145 793 0 T 1.0 1.0 1.2 - T - - - -
Total 13,336 Std Dev oL Total AL
Waco9 A C G T Balance A C G T Preferenc A C G T
A 0 8603 24,97 5360 A - 1.0 1.0 0.9 A - 11.10 32.48 7.19%
C 8086 0 4315 23,782 C 0.9 - 1.0 0.9 C - - 5.73% 32.36%
G 23,84 4299 0 8077 G 0.9 1.0 - 0.9 G - - - 11.13%
T 5451 24,84 8650 0 T 1.0 1.0 1.0 - T - - - -
Total 150,28 Std Dev 00 Total 100.00
9 5 %
Averag A C G T Average A C G T
A - 1.0 1.0 0.9 A - 11.16 32.46 7.30%
C 0.9 - 1.0 0.9 C - - 5.83% 32.15%
G 0.9 1.0 - 0.9 G = = = 11.10%
T 1.0 1.0 1.0 - T = = = =
Std Dev 0.0 Total 100.00

Tables 5.3: Table of mutational spectrum of Hpa. The ‘Balance’ tables display the ratio of
reciprocal changes, e.g. from C> A and A->C, indicative of changes in nucleotide composition bias;
they should be read across the diagonal from bottom left to top right. The ‘Preferential’ tables
are calculated as the combined, e.g. A>C and TG, mutations indicative of mutational

preference. Std Dev = standard deviation.
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5.3.2.4 Distribution of INDEL sizes

The distribution of INDEL sizes follows an exponential-like decay curve, with many small

and very few large INDELs (fig 5.5 A). On closer inspection, many minor peaks can be seen

in the decay, which aggregate on sizes that are exactly divisible by 3 (fig 5.5 B). These

observed minor peaks are likely due to the retention of ‘codon INDELs’ on coding regions

of the genome.
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Figure 5.5: Distribution of INDEL sizes. Only the INDELs between 1 and 30 bases are shown, and

the percentage distribution is calculated as a percentage of the INDELs of size 1-30 (A). INDEL size

distribution of INDEL sizes with axis set to 3% (B).
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5.3.3 Resequencing analysis of Hpa genes for 8 races of Hpa

5.3.3.1 Coverage

5.3.3.1.1 Percentage covered

Analysing the percentage of each nucleotide of each gene covered by reads allows us to
identify possible presence/absence polymorphisms and genes that are so divergent that
the reads cannot align back to the reference sequence (appendix table 5.1). By comparing
the number of genes that have a high percentage of their nucleotides covered by reads,
we can postulate how similar the sequenced races are to the reference race, Emoy2. For
Noco2 99.9% of genes are covered between 99%-100% (table 5.4) relative to Emoy2. This
is the highest among the 8 races of Hpa. Cala2 has the lowest coverage with 98.3% of
genes covered between 99%-100%. Analysing the genes that have high percentage
coverage (90%-98%), but are not fully covered by reads, may give an indication of genes
that are slightly divergent. Again we see a similar trend of Noco2 being most similar to
Emoy2 and Cala2 being most divergent from Emoy2. This pattern is conserved for genes
with 50%-89% coverage. Genes exhibiting less than 50% coverage are likely to be missing
or are very highly diverged from Emoy2, and as the percentage coverage approaches 0%,
the probability increases that the gene is not present in the race. Hind2 displays the most
genes with less than 50% coverage (157), which is approximately twice as much as Cala2
(81), Emco5 (90), Emwal (58), Maks9 (82) and Noco2 (82) and 30% more than Waco9
(117).

Pi:::::ge Cala2 | Emco5 | Emoy2 | Emwal | Hind2 | Maks9 | Noco2 | Waco9
99to 100 | 14,031 | 14,202 | 14,271 | 14,227 | 14,053 | 14,170 | 14,257 | 14,118
90 to 98 288 160 125 161 238 200 130 199
50 to 89 178 127 102 130 127 129 105 144
11to 49 72 78 65 39 117 72 65 92

0to 10 9 12 11 19 40 10 17 25

Table 5.4: Frequency distribution of percentage of nucleotides of genes covered in each Hpa race.
The data was filtered to remove any genes predicted with 0% sequence coverage for Emoy2 as

they are likely to be erroneous gene calls.
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The genes displaying the most variation in the percentage coverage in Hpa include 2
predicted effector genes (HaRxL63 and HaRxLL435) and one gene with homology to an
effector (table 5.5). Another 2 genes showed sequence homology to known genes. Gene
806362 showed homology to a 1,3-beta-glucanosyltransferase, which has been implicated
in cell wall biosynthesis (Mouyna et al., 2000), and the other gene, 807641, was
homologous to a hypothetical effector as well as to a chromobox protein homolog 5,
which encodes a highly conserved non-histone protein of the heterochromatin protein
family. 3 out of the 10 genes with most variation in percentage coverage were predicted to
be secreted and 1 had a predicted transmembrane domain. This is an overrepresentation
of the secreted genes (with genes with a signal peptide accounting for 14.4% of all Hpa
genes), while the expected number of transmembrane genes were observed (with

transmembrane genes accounting for 13.5% of all Hpa genes).

©
3
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n ~ = o ~ o H ] € <
s 8| %] 8| g & %8| 8| S| 5 2 g
2 £ £ g < S 3 d 2| ¢ 2 S &
o fir} fir] fir} T = z ES & ] o o @
Gene
- 1,3-beta- -
806362 21 0| 100 | 100 o| 100 | 100 13| 4938 glucanosyltransferase
805120 12| 26| 100 | 100 0 6 | 100 0| 47.90 - -
HaRxL63 0| 100 | 100 | 100 0| 100 | 100 | 100 | 4629 | HOoRXLE3 - sP
HaRxLL54 chromobox protein -
807641 100 | 100 | 100 | 100 0| 100 | 100 4 | 4538 (partial) homolog 5
814385 20 2| 90 5| 100 14| o5 2 | 4521 - -
805206 21 | 100 | 100 8 1| 84| 26| 100 | 44.78
805119 37| 15| 100 | 100 4| 100 | 100 | 18| 44.48 - - SP
806374 16 | 100 | 100 | 100 8| 20| 100 | 100 | 44.28
810059 10 | 100 | 100 | 100 0| 100 | 100 | 100 | 44.06 - | ™
eff 11049.g | 27 | 21| 100 | 100 9| 11| 100 | 14| 4363 | MoRXLL43S - SP

Table 5.5: Table of genes displaying most variation in the percentage coverage between 8 Hpa
races. The best BLAST hits were identified through a tblastn search against NCBI NR; Signal
peptides (SP) were predicted using SignalP 3 HMM (Bendtsen et al., 2004), and transmembrane

helices (TM) were predicted using TMHMM (Sonnhammer et al., 1998).
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5.3.3.1.2 Mean coverage of each gene for each race

Analysing the coverage of each gene relative to the observed mean coverage over all
genes allows us to identify possible copy number variation (CNV). For each gene the
relative mean coverage was calculated as the gene’s mean coverage divided by the
expected mean coverage. The majority of genes display a low variation in the maximum
and minimum relative mean coverage and have very similar read coverage between races
the 8 races of Hpa (fig 5.6). However, a secondary peak can be observed, suggesting that

there is a subset of genes that are subject to CNV.

Distribution of difference between highest and lowest
coverage

6880

954
544 o409 >EE
97272097152 150 1437405 54 17 9 16 38 7

0 01 02 03 04 0506 070809 1 2 3 4 5 10 100

difference between maximum and minimum relative gene coverage between
8 Hpa races

Figure 5.6: Frequency distribution of difference between maximum and minimum relative gene
coverage between 8 races of Hpa. The majority of genes are distributed around 0.1, suggesting
most genes are of similar copy number. There is a secondary peak around 1, and a long tail

indicating that there are a number of genes that have CNV polymorphisms.
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The genes displaying the most variation in relative mean coverage are also among the
genes with the highest relative mean coverage (table 5.6). The 3 genes with the highest
relative mean coverage are conserved in A. laibachii, Plasmodium berghei and

Caenorhabditis briggsae. The other genes were not homologous to known proteins.

Gene Cala2 Emco5 Emoy2 Emwal Hind2 Maks9 Noco2 Waco0 Std Dev

804802 464.5 331.1 410.7 432.2 333.9 313.4 424.0 200.1 86.12
800931 119.5 59.1 40.7 23.8 117.2 142.5 50.2 88.6 43.00
811772 34.1 50.7 109.4 128.1 44.0 23.9 121.5 87.6 41.68
800737 144.6 92.5 43.9 56.7 136.0 85.5 55.0 141.3 41.49
811584 1.1 83.3 73.8 75.9 1.1 1.1 83.7 19.0 39.93
814590 148.7 43.1 43.4 47.9 41.2 47.8 49.2 20.9 38.80
808660 165.6 59.7 139.9 156.4 116.8 123.5 159.7 178.4 37.79
814122 91.8 86.6 88.0 178.3 60.6 81.3 105.4 94.0 34.78
812642 98.0 113.9 131.4 145.1 108.4 189.6 154.6 133.2 29.27
814774 104.6 41.2 81.6 92.3 51.4 35.3 94.2 34.7 29.19

Table 5.6: Genes with the most variation in the relative mean coverage. The 3 genes showing the
most variation displayed homology to A. laibachii, Plasmodium berghei and Caenorhabditis

briggsae (blastp against NCBI NR, e-value cut-off of 0.01). Std Dev = standard deviation.
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This analysis (identifying genes with the most variance in relative mean coverage) was
repeated with genes that had an average minimum relative mean coverage of 10 between
races to analyse the genes with the most variation among consistently high copy number
genes (table 5.7). The most variable gene is homologous to an A. laibachii putative
integrase, which is known to be a multicopy gene in oomycetes (Kemen et al., 2011).

Given that this gene mean coverage is 73.8 times higher than expected in the
reference isolate, it is likely that the assembly of this gene family has been

collapsed at this genomics region.

Gene Cala2 Emco5 Emoy2 Emwal Hind2 Maks9 Noco2 Waco0 | Std Dev
811584 1.1 83.3 73.8 75.9 1.1 1.1 83.7 19.0 39.93
eff_g9604 70.4 25.7 14.4 19.9 15.4 16.6 13.5 9.7 19.67
813013 43.2 324 27.1 28.7 26.6 9.7 27.8 68.4 17.00
807483 20.6 29.4 13.8 25.1 20.7 53.8 6.3 15.8 14.23
803782 7.9 16.0 29.3 39.8 40.2 41.1 33.7 19.7 12.59
801561 8.3 7.0 20.6 25.9 20.7 2.6 22.6 39.4 11.97
814620 7.0 8.5 6.3 18.9 31.8 31.6 9.2 19.5 10.63
814857 6.7 3.5 13.6 5.2 1.8 9.5 12.9 28.7 8.57
810181 0.5 4.5 22.4 15.0 5.2 2.3 6.4 0.6 7.69
pasa_g19713 4.8 8.9 11.8 8.6 22.5 21.4 5.5 18.3 7.05

Table 5.7: Genes with the most variation in the relative mean coverage, where the minimum
mean coverage between the 8 races of Hpa is 10. The genes showing the most variation, gene
811584, displayed homology (blastp against NR, e-value cutoff of 1x10'6) to A. laibachii putative

integrases, which are known to be multicopy genes. Std Dev = standard deviation.
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Many genes with a large variance in relative mean coverage and with the expected mean
relative coverage (0.5-1.5) in Emoy2, are related to virulence function (table 5.8). For
instance, the third most variable gene is the elongation factor TU, which has been
described as a PAMP (Zipfel et al., 2006). It was also interesting to see the effector
candidate HaRxL133, and 2 genes homologous to it, showing high variability in copy
number. This could suggest that it may be recognised by some accession of A. thaliana so
selection for loss of the gene would be advantages in Hpa where the host population

consists of resistant ecotypes of A.thaliana.

n ~ l oy e} 2 Homology
¥ 8| 5| £l 22| %8| g S
S| §| 5| &5 £| 2| 2| 2| B
Gene

802776 2.3 1.6 1.4 14 5.4 1.3 1.5 1.1 1.43 )
CENPB protein Homeodomain-like

802778 2.4 1.5 1.5 2.0 5.2 1.6 1.6 1.1 1.30
elongation factor Tu

809897 4.2 1.0 0.9 2.9 0.9 1.6 1.1 0.8 1.23
Fis family two component sigma 54
813537 1.0 4.0 0.8 0.8 09| 1.7 0.9 2.2 1.13 specific transcriptional regulator
HaRxL133

806770 1.5 1.5 0.7 0.3 01| 34 0.9 2.4 1.10
ATP synthase subunit beta

804929 3.5 1.0 0.9 1.8 0.8 1.1 0.9 0.9 0.93

Fis family two component sigma 54
814554 2.7 0.1 0.1 0.7 00 | 04 0.1 0.1 0.92 specific transcriptional regulator
Mitochondrial Carrier (MC) Family

803764 0.7 0.6 0.6 3.2 05| 06| 06| 06| 0.90

HaRxL133
HaRxL133 1.1 1.1 0.7 0.5 04 | 3.2 0.8 1.4 | 0.90

HaRxL133
806769 0.7 0.8 0.7 0.7 0.7 | 3.0 0.8 0.3 0.85

Table 5.8: Genes with the most variation in the relative mean coverage, where they are single

copy in the Emoy2. Std Dev = standard deviation.
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5.3.3.1.3 Copy number variation

| have previously shown that read coverage follows a Poisson distribution. The distribution

of coverage modelled as the Poisson CDF based on the observed mean over all genes,

showed that a significant number of genes present as multiple copies (fig 5.7). It can also

be seen that the distribution towards the lower end of the CDF spectrum is higher than

expected. This is most likely due to a combination of:

e not having very high sequence coverage (a cleaner peak would be seen when read

coverage is 100 fold);

e hemizygous regions of the genome having genuinely lower coverage;

e sequencing bias, where automated correction by the sequencing pipeline

compensates for a genuine variance in genome nucleotide composition.
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Figure 5.7: Frequency distribution of the Poisson CDF for coverage. A general bell shaped curved

can be observed, and is more pronounced for races Cala2 and Emwal, with the other races having

a higher frequency for the lower end of the CDF spectrum, possibly indicating more hemizygous

genes.
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While observing a general picture of expected coverage distribution, it is also interesting
to note that among the 10 genes showing most variance in Poisson CDF coverage, there is
a hypothetical effector gene, HaRxLL117 (appendix tables 5.2). Among the genes showing
the most variance in expected copy number, while expected to be single copy genes in the
reference race, Emoy2, we also observed the presence of another hypothetical effector
gene, HaRxL133 (appendix tables 5.2). This suggests that CNV and presence/absence

polymorphisms may be a general trait of effectors.

5.3.3.1.3.1 Hemizygosity

Here, hemizygous regions of the genome are defined as regions with a low expected
coverage and which are likely to belong to the distribution of expected single copy
coverage. This can be defined as the genes/regions with a Poisson CDF for coverage of 0-1%
(this falls outside the 98% confidence interval of being a single copy gene). Using this
threshold, 1645 genes were identified to be hemizygous. To estimate the error rate of
hemizygous calls, one can observe the number of heterozygous SNP calls made over the
gene. Of the 1645 predicted hemizygous genes, 40 contained heterozygous SNPs on the
coding region, and 69 contained SNPs over the gene +/-250 bp up and downstream of the
gene. This equates to an accuracy of 96% for making true hemizygous calls. This 4%
discrepancy is a combination of SNP calling error rate and possibility that these regions are

caught in the tail of actual diploid distribution.

We observed 2 effector genes (RXLR87 and RXLR35) that showed evidence of being
hemizygous in some races of Hpa (appendix tables 5.2). Since hemizygosity is a by-product
of presence/absence polymorphisms during sexual reproduction, this further supports our

notion that effectors exhibit CNV polymorphisms.
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5.3.3.2 SNPs

The observed variation in the number of SNPs per race vaguely correlates the SNPs on
exons in each race (table 5.9). A general ratio of 3:1 for Exon:Intron SNPs is observed as is
a 1:1 Exon:Intron+UTRs. These ratios suggest that there is a selective balance in the
number of SNPs in Hpa or that the majority of SNPs are accumulating through neutral drift.
Alternatively, there may be a balanced selection pressure that prevents the acquisition of
deleterious mutations exerted in protein coding regions (exons), regions affecting splice
efficacy (introns) and expression (UTRs). However, this balance does not seem to be
maintained in Emwal, where the ratio of coding SNPs to non-coding SNPs is 1.63:1. The
extent to which these ratios are conserved, despite the variation in the number of SNPs
over coding and non-coding regions, is illustrated by the ration of heterozygous SNPs

(table 5.10).

SNP Position Cala2 Emco5 Emoy2 Emwal Hind2 Maks9 Noco2 Waco9

5" UTR 9028 7777 2368 7715 8216 9286 2372 8970
Exon 26,709 21,713 7383 36,077 | 24,880 28,005 7166 27,000
Intron 7786 6502 2433 6744 7150 7933 2350 7489
3’ UTR 9379 7916 2536 7694 8817 9822 2523 9594
Exon:Intron 3.43 3.34 3.03 5.35 3.48 3.53 3.05 3.61
Coding:Non-coding 1.02 0.98 1.01 1.63 1.03 1.04 0.99 1.04

Table 5.9: Number of coding and non-coding SNPs in Hpa races. Despite the variation in the
number of total SNPs predicted on and near coding regions, the ration of coding:non-coding SNPs

is maintained in most of the races (with the exception of Emwal)

Het SNP Position Cala2 Emco5 Emoy2 Emwal Hind2 Maks9 Noco2 Waco9

5" UTR 1256 304 2342 16 571 1043 1820 2393
Exon 3908 676 7341 67 1701 3453 5367 7431
Intron 889 205 2400 17 407 881 1866 1772
3’ UTR 1290 290 2472 23 575 1128 1909 2633
Exon:Intron 4.40 3.30 3.06 3.94 4.18 3.92 2.88 4.19
Coding:Non-coding 1.14 0.85 1.02 1.20 1.10 1.13 0.96 1.09

Table 5.10: Number of coding and non-coding heterozygous (Het) SNPs in Hpa races. Despite the
variation in the number of total SNPs predicted on and near coding regions, the ration of

coding:non-coding SNPs is maintained.
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As mentioned previously, positive selection leaves its signature in form of sequence
variation at the genome level. The accumulating SNPs is important for functional and
evolutionary changes and identifying SNPs is one of the easier ways to make inferences
about the selection pressure on genes. For example, ATR1 is one such gene that displays a
very high rate of SNPs over the coding region of the gene (on average 16.75 SNPs per race)
(appendix tables 5.3). In addition, the variation in the number of SNPs observed between
the races is an indication of the variation between the sampled populations. ATR1 exhibits
the highest variance in the number of SNPs on the coding region. However, ATR1 also has
a number of SNPs in the nearby non-coding region, which implies that there are certain
genome dynamics leading to elevated variation in the ATR1 region. This trend does not

extend to heterozygous SNP positions.

5.3.3.2.1 Protein coding effects of SNPs

While cataloguing sequence variation is important, it is the effect of SNPs on the protein
code that leads to differentiation of function. The protein coding effect of each SNP over
gene coding regions for each race was determined. A general ~4:1 ratio of non-
synonymous : synonymous SNPs was observed (table 5.11). It was also interesting to note
that ~60% of all heterozygous SNPs were ‘heterozygous non-synonymous SNPs’, where the
heterozygous SNP leads to 2 different proteins being encoded). Conversely, this implies

that ~40% of all heterozygous SNPs in Hpa do not alter the proteins encoded by the genes.

Other, more drastic, mutations caused by SNPs include mutated start codons and
formation of premature stop codons. Apart from Emwal and Noco2 (which is
hypothesised to be very similar to Emoy2), we observed approximately 60 mutated start

codons and 200 premature stop codons per race due to SNPs.
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Emco Maks Noco Waco

Cala2 5 Emoy2 Emwal Hind2 9 2 9
Synonymous SNPs 6006 4913 1600 18,416 5643 6197 1521 6140
20,61 16,70 19,18 21,73
Non-synonymous SNPs 8 0 5658 17,593 0 5 5565 | 20,740
Heterozygous
non-synonymous SNPs 2429 470 3778 42 1125 2240 2942 4070
Non-synonymous:Synonymous SNPs 3.433 3.399 3.536 0.955 3.399 3.507 3.66 3.378

All non-synonymous:Synonymous SNPs 3.837 3.495 5.898 0.958 3.598 3.869 5.59 4.041

Mutated start codon 69 47 0 0 66 76 6 64

Premature stop codon 234 219 0 92 232 252 16 188

Table 5.11: Number of synonymous and non-synonymous SNPs in Hpa races. An approximate 4:1
ratio of non-synonymous SNPs to synonymous SNPs can be observed, where all non-synonymous:
synonymous SNPs refers to both the homozygous and heterozygous SNPs. On average, ~60% of
all heterozygous SNPs lead to the encoding on 2 different proteins at the same locus. There is an
observable trend of ~60 SNPs causing mutations in the start codon and ~200 SNPs causing

premature stop codons in each race.

We observe that ATR1 has one of the highest non-synonymous:synonymous SNP ratios,
and the highest variance in this category. These ratios provide further evidence that
pathogen effectors, which have possible avirulence functions (recognised by the plant
host), can leave signatures of accelerated evolution through elevated levels of SNPs with
protein modifying effects (appendix tables 5.5). While ATR1 exhibits a high level of
variation, a small number of mutations is sufficient to modify the function of effectors as
demonstrated by studies of the Phytophthora infestans effector Avr3a, where 2
modification are sufficient to switch from a resistant to susceptible allele of the effector

(Armstrong et al., 2005).

Given the very low number of genes with modified start codons, | was interested to find an
effector (HaRxLL55) to be among them (appendix tables 5.5). A total of 10 putative
effectors were identified with premature stop codons introduced by SNPs (HaRxLL447,
HaRxLL105, HaRxLL181, HaRxLL14, HaRxLL53, HaRxLL100, HaRxLL115, HaRxLL133,
HaRxLL89 and HaRxLL176). Given that 662 genes were predicted to be affected by SNPs
causing premature stop codons (¥4% of all genes), we would expect to see around 10
effectors to have premature stop codons (based on an estimate of 200-300 putative

effectors), agreeing with the observations.
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5.3.3.3 INDELs

The observed variation in the number of INDELs per race is conserved in the INDELs on
exons in each race (table 5.12). A general ratio of 1:1 for Exon:Intron INDELs is observed,
as is a 1:3 coding:non-coding ratio. This suggests that there is a selective balance in the
number of INDELs in Hpa, as was observed with the SNPs. This balance does not seem to
be maintained in Emwal, where the ratio of coding:non-coding INDELs is approximately 4
times more. Despite the variation in the number of INDELs over coding and non-coding
regions between Hpa races, their ratios in each race are very similar. This is true to a lesser
extent with heterozygous INDELs where a general ratio of 1.5:1 of Exon:Intron (with more

variance than was observed with all INDEL positions), and 1:3 for coding:non-coding (table

5.13).

All INDEL positions Cala2 Emco5 Emoy2 Emwal Hind2 Maks9 Noco2 Waco9

Up 1576 1539 547 2943 1529 1761 893 1652
Exon 1399 1290 617 9660 1270 1600 935 1354
Intron 1331 1238 523 2414 1230 1449 849 1283
Down 1410 1285 491 2604 1402 1551 796 1504
Exon:Intron 1.05 1.04 1.18 4.00 1.03 1.10 1.10 1.06
Coding:Non-coding 0.32 0.32 0.40 1.21 0.31 0.34 0.37 0.31

Table 5.12: Number of coding and non-coding INDELs in Hpa races showing both homozygous and
heterozygous INDELs. Non-coding regions are the 5’ UTR, 3’ UTR and Introns. Despite the
variation in the number of total INDELs predicted on and near coding regions, the ratio of

coding:non-coding INDELs is maintained in most of the races (with the exception of Emwal).

Heterozygous INDEL

positions Cala2 Emco5 Emoy2 Emwal Hind2 Maks9 Noco2 Waco9
Up 338 263 478 2682 309 381 706 604
Exon 545 344 528 8810 443 590 746 641
Intron 284 221 456 2199 255 330 656 422
Down 301 217 440 2365 259 336 651 540
Exon:Intron 1.90 1.55 1.16 4.01 1.74 1.79 1.14 1.52
Coding:Non-coding 0.59 0.49 0.38 1.22 0.54 0.56 0.37 0.41

Table 5.13: Number of coding and non-coding heterozygous INDELs in Hpa races. Non-coding
regions are the 5’ UTR, 3’ UTR and Introns. Despite the variation in the number of total
heterozygous INDELs predicted on and near coding regions, the ratio of coding:non-coding INDELs

is maintained, with the exception of Emwal.
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INDELs, especially if not a codon INDEL, are likely to have a much greater effect on the
function of proteins than SNPs. HaRxLCRN4, a hypothetical crinkler protein, is one such
gene that displays a very high rate of INDELs over its coding region (on average 2.25
INDELs per race) (appendix tables 5.6). This high level of variation is maintained when
comparing the coding to non-coding INDEL ratio and when considering heterozygous

INDELs (appendix tables 5.6).

5.3.3.3.1 Protein coding effects of INDELs

While it is important to catalogue sequence variation, it is the effect of the INDEL on the
protein code that allows for differentiation of gene function. INDELs may only have small
effects on the amino acid sequence (e.g. loss of a single codon), but in general are likely to
cause frameshift mutations, which often lead to a loss of the original gene function. There
may also be a situation where 2 INDELs that lead to internal frameshift, with conserved
start and stop codon, where the net INDEL length is exactly divisible by 3. It was observed
that the majority of net INDEL lengths larger than 1 are exactly divisible by 3 (fig 5.8).
Observing the frequency distribution of net INDEL lengths over coding regions only also
revealed that the distribution of net INDEL lengths greater than 6 are highly similar, with
the exception of Emoy2 (which is the reference strain) and Cala2. The percentage
distribution of net INDEL lengths also showed that the net INDEL lengths are divisible by 3

and that the distribution of higher INDEL lengths is similar between Hpa races (fig 5.9).
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Figure 5.8: Frequency distribution of the INDEL length over coding regions of genes with full
frequency spectrum (A) and partial frequency spectrum (B). A general trend of a power law
distribution can be observed, with additional peaks of net INDEL lengths divisible by 3, indicating
net codon loss/gain and/or internal frameshifts. In addition, with an increase in the net INDEL
length, the convergence in the variation in frequency between the Hpa races increases. It was
also observed that in Emoy2 and Cala2, there are peaks at 14 and 16 and not at 15; | believe these

are due to prediction errors,
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Figure 5.9: Percentage distribution of the INDEL length over coding regions of genes with full
percentage spectrum (A) and partial percentage spectrum (B). A general trend of a power law-like
distribution can be observed, with additional peaks of net INDEL lengths divisible by 3, indicating
net codon loss/gain and/or internal frameshifts. In addition, with an increase in the net INDEL
length, the convergence in the variation in frequency between the Hpa races increases. The
average peak is less pronounced at 15, due to possible prediction errors in Emoy2 and Cala2,

which form peaks at net INDEL lengths of 14 and 16.
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5.3.4 DnaSP Analysis

DnaSP is a software package for the analysis of nucleotide polymorphisms from aligned
DNA sequences (Librado and Rozas, 2009). Using the second stage of the VariTale pipeline,
all the parental haplotype gene sequences, fully covered and lacking INDELs, over each
race are generated. Since the analysis is based only on genes that are fully covered and
lack INDELs, gene sequences will align without gaps. The calculations from this section of
the analysis provide a base minimum of the true results, as we do not consider genes with

INDELs, and parental haplotypes are predicted and not the actual parental haplotypes.

5.3.4.1 Analysis of sample size

In all comparative genomics analyses, the accuracy and significance of the described
variation increases with the size of the sample population. To illustrate this point, | plotted
the change in the percentage of genes that were analysed against the number of races
analysed, where the number of races were selected randomly from the 8 Hpa races (fig
5.10). With just 2 races (equating to a maximum of 4 haplotypes) 98.8% of the genes had
at least 1 parental haplotype identified. Using data from 5 races, every gene had at least 1
haplotype identified. The total number of segregating sites (S) and the total number of
mutations (Eta) increase significantly with an increase in the percentage of genes analysed
up to 5 races, after which subsequent increases in the number of analysed genes increase
by less than 2% with each additional race. | therefore concluded that a minimum of 5 races

(or 10 haplotypes) should be used for this type of comparative genomics analysis.
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Figure 5.10: Effect of increasing the sample size on the percentage of genes for which S, Eta and
the number of haplotypes can be analysed. S is the number of segregating sites and Eta is the

number of mutations.

The frequency distribution of the predicted number of haplotypes per gene shows a
similar trend, according to which changes in the distribution of predicted number of

haplotypes per gene have a less significant effect at samples sizes above 5 races (fig 5.11).

Frequency distribution of number of
haplotypes per gene
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Figure 5.11: Frequency distribution of predicted number of haplotypes per gene with increasing

sample population. The change in the distribution becomes less significant after 5 races.
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Analysing the frequency distributions of S and Eta, shows that a minimum of 4-5 samples

should be considered for this type of analysis (fig 5.12; fig 5.13). With this, | concluded that

the analysis of the 8 races of Hpa should bring about meaningfull results for most of the

genes in Hpa.

Frequency distribution of number of S

per gene
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e 5 races
1000 -~
500 6 races
0 T T T T T T T T T T T 1 1 1 1 1 1 T 1 1 1 T T T 1 1 7races
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 = ------- 8 races

S

Figure 5.12: Frequency distribution of predicted number of segregating sites (S) per gene with

increasing sample population. The change in the distribution becomes less significant after 4-5

samples.
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Figure 5.13 Frequency distribution of predicted number of mutations (Eta) per gene with

increasing sample population. The change in the distribution becomes less significant after 4-5

samples.
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5.3.4.2 S, Eta and the number of haplotypes

The frequency distribution of the number of predicted haplotypes per gene shows that
most genes have a small number of haplotypes, with approximately 11% of all genes (1669)
having 6 or more parental haplotypes between the 8 races of Hpa (i.e. from a set of 16
parental haplotypes) (fig 5.14). There was also a tight correlation between the distribution
of S, the number of segregating sites, and Eta, the number of mutations, with both

distributions following an exponential-like distribution.
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Figure 5.14: Frequency distribution of the number of segregating sites (S), the number of

mutations (Eta) and the number of haplotypes.

Previously we have investigated the observed SNP and INDEL rate over genes. However,
this would be a naive method of analysing variation of a gene in a given population. For
instance, if there are only 2 alleles in the population, but these alleles are very different
from each other, a SNP/INDEL analysis may consider this gene to be variable due to the
high average number of SNPs/INDELs and the large variation between the two alleles.
Instead, considering the number of haplotypes, total segregating sites and the total

number of mutations that are observed over the estimated parental haplotypes provides a
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more accurate measure of the variation in the sample population. Of the 15 genes with
the highest number of segregating sites we find 5 effector genes, including ATR1 (table
5.14). The gene with the highest number of segregating sites is also an effector candidate
(HaRxL19). These 5 effector genes are also in the list of the 15 genes with the highest
number of total mutations, which follows my previous suggestion that the number of

segregating sites and the number of total mutations are tightly coupled (table 5.15).

g * * 3

slsl 5| 5| z|g| 3| s i

(U] 2 (7, w = = [7) w 7] w 7} w w
ceg 12014 g 16 | 67 | 67 7 1.1715 | n.s. 1.6985 | ** 1.79 | ** 8.664 HaRxL19
803035 16 | 63 | 65 8 0.6639 | n.s. 1.4529 | * 1.42 | ns 5.959
ATR1_Emoy2 12 | 62 | 64 5 0.2156 | n.s. 1.6512 | ** 1.452 | # 8.821 ATR1
pasa_gi_SuperContig2
7_149 10 | 61 | 61 | 10 | -0.0573 | ns. 0.7494 | ns. 0.6186 | n.s -1.683
808490 8| 61| 64 4 1.1647 | n.s. 1.6543 | ** 1.7182 | * 8.354 | HaRxL128
eff 911103 8| 61| 64 4 1.1647 | n.s. 1.6543 | ** 1.7182 | * 8.354
801867 12 | 60 | 62 5 0.1941 | n.s. 1.6495 | ** 1.4442 | n.s. 8.611
eff g11210 12 | 60 | 62 5 0.1941 | ns. 1.6495 | ** 1.4442 | n.s. 8.611
801132 16 | 56 | 56 6 1.1628 | n.s. 1.6858 | ** 1.7765 | ** 9.612
eff_g7948 16 | 56 | 56 6 1.1628 | n.s. 1.6858 | ** 1.7765 | ** 9.612
808092 16 | 50 | 56 | 10 0.2705 | n.s. 1.5921 | ** 1.4062 | n.s. 2.189
811590 16 | 50 | 50 9 | -05228 | ns. 1.2594 | n.s 0.8711 | n.s. 2.185 HaRxL72
eff 5465 g 16 | 50 | 50 9 | -0.5228 | ns. 1.2594 | n.s 0.8711 | n.s. 2.185
807858 16 | 48 | 48 7 0.719 | ns. 1.5647 | ** 1.5308 | # 6.056
805640 16 | 48 | 50 6 | -0.0403 | ns. 1.6767 | ** 1.3746 | n.s. 7.141 HaRxL73

Table 5.14: The 15 genes with the highest number of segregating sites (S). Most of these genes
have high values for the number of analysable haplotypes (Hap) and total number of mutations
(Eta). There is less coupling between Eta and Hap compared to Eta and S. However this could be
an artefact introduced by the method, which ignores genes with INDELs. Including genes with
INDELs may increase the number of observed haplotypes. N = number of samples, n.s. = not

significant, * = significant at p=0.05, ** = significant at p=0.01 and *** = significant at p=0.001.
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ceg 12014 g 16 | 67 | 67 7 1.1715 | n.s. | 1.6985 | ** 1.79 | ** 8.664 | HaRxL19
803035 16 | 63 | 65 8 | 06639 | ns. | 1.4529 | * 142 | ns 5.959
ATR1_Emoy2 12| 62| 64 5 0.2156 | n.s. | 1.6512 | ** 1.452 | # 8.821 ATR1
808490 8| 61| 64 4 1.1647 | n.s. | 1.6543 | ** 1.7182 8.354 | HaRxL128
eff 911103 8| 61| 64 4 1.1647 | n.s. | 1.6543 | ** 1.7182 | * 8.354
801867 12 | 60 | 62 5| 01941 | ns. | 1.6495 | ** 1.4442 | n.s. 8.611
eff 911210 12 | 60 | 62 5| 01941 | ns. | 1.6495 | ** 1.4442 | n.s. 8.611
pasa_gi_SuperContig27_149 10 61 61 10 -0.0573 | n.s. 0.7494 | n.s. 0.6186 | n.s. -1.683
801132 16 | 56 | 56 6 1.1628 | n.s. | 1.6858 | ** 1.7765 | ** 9.612
eff 97948 16 | 56 | 56 6 1.1628 | n.s. | 1.6858 | ** 1.7765 | ** 9.612
808092 16 | 50 | 56 10 | 0.2705 | n.s. | 1.5921 | ** 1.4062 | n.s. 2.189
811590 16 | 50 | 50 9 | -05228 | ns. | 1.2594 | ns. | 0.8711 | ns. 2.185 | HaRxL72
eff 5465_g 16 | 50 | 50 9 | -0.5228 | n.s. | 1.2594 | ns. | 0.8711 | ns. 2.185
805640 16 | 48 | 50 6 | -0.0403 | n.s. | 1.6767 | ** 1.3746 | n.s. 7.141 | HaRxL73
eff g7740 16 | 48 | 50 6 | -0.0403 | n.s. | 1.6767 | ** 1.3746 | n.s. 7.141

Table 5.15 The 15 genes with the highest number of total mutations (Eta). Most of these genes
have high values for the number of analysable haplotypes (Hap) and total segregating sites (S).
There is less coupling between Eta and Hap compared to Eta and S. However this could be an
artefact introduced by the method, which ignores genes with INDELs. Including genes with INDELs
may increase the number of observed haplotypes. N = number of samples, n.s. = not significant, *

= significant at p=0.05, ** = significant at p=0.01 and *** = significant at p=0.001.

5.3.4.3 Tajima’s D

One way to infer positive selection on a gene is to show that the gene is not evolving
neutrally. There are various hypothesis tests for neutrality, including Tajima’s D, Fu and Li’s
D* and F* and Fu’s Fs. Positive values for Tajima’s D indicate low levels of both low and
high frequency polymorphisms suggesting a decrease in population size and potentially
balancing selection (Tajima, 1989). A negative value for Tajima’s D indicates a large
number of low frequency polymorphisms suggesting population size expansion and
possibly purifying selection. While calculating p-values for this Tajima’s D statistic is
impossible for samples, it is generally accepted that values greater than +2 and values less
than -2 are likely to be significant (Tajima, 1989). The observed frequency variation of the
values calculated for Tajima’s D follows a rough bell shaped curve with a median at around
0 (fig 5.15). The mean of 0.2 and variance of 0.8 are similar to the expected beta
distribution around a mean of 0 with variance of 1 (Tajima, 1989). Only 10 genes show
values of Tajima’s D lower than -2 (an excess of low frequency polymorphisms) of which 2

are effectors (appendix table 5.8). 273 genes have values greater than 2 (indicating low
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levels of low and high frequency polymorphisms) of which 9 are effectors (appendix table
5.8). These results suggest that effectors may be among the most diverse and at the same
time among the most conserved genes in Hpa, which supports the possibility of conserved
core effectors and effectors that are highly diverse due to interactions with the host

leading to a differential fitness.

Frequency distribution of Tajima's D, Fu &Li's D and Fu
&Li'sF
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3.4 -3 -2.6-2.2-1.8-1.4 -1 -0.6-0.20.2 0.6 1 1.418222.6 3
Tajima's D, Fu & Li's D, Fu & Li's F

Figure 5.15: Frequency distribution of Tajima’s D, Fu & Lis D* and F*. Significance values for

Tajima’s D are +/- 2, and for Fu and Li’s the are -1.8/+1.4 for D* and -2/+1.55 for F*.

5.3.44Fu & Li’sDand Fu & Li’s F

While Fu and Li’s statistics (Fu and Li, 1993) follow a similar principle to Tajima’s, they also
consider that some parts of the gene share a much longer ancestry than others. Applying
Fu and Li’s tests revealed a larger number of genes with test values of less than -1.8
(critical value for D*) and -1.4 (critical value for F*) (172 for Fu and Li’'s D*, and 478 for Fu
and Li’s F*, compared to only 10 for Tajima’s D). For the Fu and Li D test these low valued
genes include 5 effector genes (HaRxLL27, HaRxLL27 homologue, HaRxLL441, HaRxLL180
and RxLRNEE3) (appendix table 5.8) and for Fu and Li’s F* 6 effectors (HaRxLL27, HaRxLL27
homologue, HaRxL89, HaRxLL441, RXLRNEE3 and HaRxLL180) (appendix table 5.8). It was
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also observed that 5 effectors are in the genes with the highest values for Fu and Li’'s D
(HaRxL123, HaRxL73, HaRxL128, ATR1 and HaRxL19) (appendix table 5.8), suggesting that
a low value of Fu and Li’s D may indicate effectors that are highly diverse. There was only 1

effector among the 20 highest values of Fu and Li’s F (HaRxL21) (appendix table 5.8).

5.3.4.5Fu’s Fs

Fu Fs (Fu, 1997) is a statistical test based on the infinite sites model of mutation, with a
negative value being evidence for an excessive number of alleles expected from a recent
population expansion and a positive value being evidence for a deficiency of alleles from a
population bottleneck or over dominant selection (Fu, 1997). The distribution of Fu’s Fs
statistic seem normally distributed with a peak around 0 (fig 5.16). Among the genes with
the 20 lowest values of Fu’s Fs there are 5 effectors (HaRxL51, HaRxLL163, HaRxLL133,
HaRxLL15 and HpRXLR104) (appendix table 5.8). In the 20 highest scoring genes there are
3 effectors (HaRxLL38, ATR1 and HaRxL21). This supports the idea of multiple selection

pressures acting on effector genes.
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Figure 5.16: Frequency distribution of Fu’s Fs. The empirical significance cutoffs (P < 0.02) are -

2.423 and 6.062
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5.3.5 PAML analysis

PAML consists of a suite of programs that are directly able to infer positive selection using
direct dN/dS calculation, or modelling the gene using a number of sites to identify the
likelihood of appositive selection acting on one of those sites. While these test are usually
used to between species analysis and not interspecies analysis (like in this study), it may be

possible to make inferences from the outcome as done so previously in Haas et al. (2009).

5.3.5.1 Tree construction

Some of the programs in the PAML suite require a phylogenetic tree of the input samples.
Since there is currently no tree available for Hpa races, Mr Bayes v 3.1.2 (Ronquist and
Huelsenbeck, 2003) was used to generate 2 phylogenetic trees. The first tree was
constructed from the alignment of a region of Hpa that is homologous to the
Phytophthora infestans mitochondrion over a Ribosomal L2 gene. The region had 30
segregating sites. Mr Bayes was run using the General Time Reversible models with
gamma-shaped rate variation with a portion of invariable sites. The simulation was run
over 1,000,000 generations with a sample frequency of 100 and diagnostics printed every
1000™ generations. 9 heated chains are used in the Metropolis coupling to improve MCMC
sampling of the dataset. A default of 25% was used for the burning (2500). The resultant
tree clusters Emwal, Emoy2 and Noco2 in one cluster and Waco9, Maks9, Emco5 and

Hind2 in another cluster, while Cala2 clusters on its own (fig 5.17).

cala2
wacod
1.00 maks9
0.96
emcob
1.00
hind2
— emwal
0.97
— emoy2
0.98
noco2

0.001

Figure 5.17: Phylogenetic tree of Hpa races based on sequence homologous to P. infestans

mitochondria. The tree was generated using Mr Bayes and bootstrap values are shown.
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A second tree was generated using all 11,570 segregating sites on the largest Hpa contig.
Since only the segregating sites were used in the analysis, the Mr Bayes parameters were
modified to model the variation rate as equal. In principle, the generated tree agreed with
the previous tree, apart from Waco9, which did not cluster (compare fig 5.18 and fig 5.17

above). The bootstrap values were slightly higher than those of the previous tree.

Hpa cala2

Hpa waco9

Hpa hind2

1.00

Hpa emcob

1.00

Hpa maks3

Hpa emoy?2

Hpa emwa
0.99

Hpa noco2
0.1

Figure 5.18: Phylogenetic tree of Hpa races based on 11,570 segregating sites on the largest Hpa

contig. The tree was generated using Mr Bayes and bootstrap values are shown.
Both trees showed an overall good agreement. However, the tree generated using the

11,570 segregating sites on the largest Hpa contig generated slightly higher bootstrap

values and was therefore used for further analysis.
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5.3.5.2dN/dS

PAML is able to calculate the dN/dS, the rate of non-synonymous substitutions per non-
synonymous site divided by the number of synonymous substitutions per synonymous site,
using numerous methods. In previous studies (Haas et al., 2009), the dN/dS values have
been calculated using yn00. In this study, | also considered dN/dS calculations using
codeml. The analysis is performed for each gene, which is present fully in at least 3 races
without CNV or INDELs. The dN/dS values reported for each gene are presented as an
average of dN/dS for each pairwise comparison. The results show that while the majority
of dN/dS values lie between 0 and 1, a number of genes have dN/dS values of greater than

1 (fig 5.19).
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Figure 5.19: Frequency distribution of dN/dS values calculated by yn00 and codeml. While the
general trend of dN/dS distribution is the same for both methods, a clearer secondary peak of
genes with dN/dS values higher than 1 are calculated using the codeml method. Yn00 predicted
many more genes with a dN/dS of 0 (not shown on the graph and thus having lower area under

the curve).
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The major difference between the yn00 and codeml calculation is that for each dN/dS
range, more genes are identified to have a dN/dS value greater than 0 using codeml, and a
clearer peak of dN/dS values greater than 1 (indicating positive selection) is present using
codeml. This is also maintained when analysing the percentage distribution of the dN/dS

values (fig 5.20).
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Figure 5.20: Percentage distribution of dN/dS values calculated by yn00 and codeml. While the
general trend of dN/dS distribution is the same by both methods a larger percentage of genes

with dN/dS values higher than 1 are calculated using the codeml method.

Plotting the frequency of the difference between the yn00 and codem| dN/dS calculations,
it can be seen that for the majority of genes a similar dN/dS value is obtained with the two
methods. However, for a number of genes the codeml calculated dN/dS is 1 to 3 units
higher than that predicted by yn00 (fig 5.21). This is an important finding as it is possible
that the yn00 method may incorrectly predict lower dN/dS values for genes compared to

the codeml method and vice or versa.
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Figure 5.21: Frequency distribution of the difference in dN/dS calculation between the yn00 and
codeml method. There is little difference for most of the genes, but there is a large number of
genes for which the dN/dS values calculated by codeml are 1-4 units higher than using the yn00

method.

Among the genes with the 30 highest values for dN/dS calculated by yn00, there are 5
effector genes (appendix table 5.9). Out of the genes with the 30 highest values for dN/dS
calculated by codeml, there are 3 effectors (appendix table 5.9). The effectors present in

either list are mutually exclusive.

5.3.5.3 Evolutionary models

The frequency distribution of each set of model comparisons (M3-MO0, M2a-M1a and M8-
M7) share similarities (fig 5.22). While for the majority of genes it is unlikely that there is a
difference between the models, for each significance level of 95%, 99% and 99.9% (5.99,
9.21, 13.82) the difference between the number of genes between the M2a-M1a and M8-
M7 comparison is very small (~25 genes more for M8-M7 at each significance level), while
the M3-MO comparison predicted ~300 more genes at each significance level. This is due
to the M3-MO comparison yielding many genes at a 99.9% level of significance. For 95%
and 99% significance values, the number of genes predicted by each method does not vary

more than 3%.
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Frequency distribution of evolutionary
model likelihoods
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Figure 5.22: Frequency distribution of evolutionary model testing using PAML showing full

frequency spectrum (A) and partial frequency spectrum (B).
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5.3.6 Comparison of effectors

To better understand the evolutionary pressures acting on effectors, | compared the
generated statistics between predicted effectors (including secreted proteins with
homology to effectors), genes with predicted transmembrane domains and KOGs. 472

genes were selected randomly for each set for comparative analysis.

5.3.6.1 S, Eta and the number of haplotypes

In each sample effectors have a larger number of segregating sites compared to
transmembrane genes and KOGs (fig 5.23). There are significantly more effectors with 13-
30 and 48-63 segregating sites compared to transmembrane genes and KOGs. This trend
was also observed with the total number of mutations per gene (fig 5.24), in agreement
with the previous observation of correlation between the number of segregating sites and
the number of total mutations per gene. The distribution of the number of haplotypes per
gene show that effectors are more likely to have a higher number of haplotypes, with a

secondary peak around 7-10 haplotypes (fig 5.25).
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Figure 5.23: Percentage distribution of S, the number of segregating sites, for the 472 sampled
effectors, transmembrane genes and KOGs. The effectors have more genes with a higher S

compared to transmembrane genes and KOGs.
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Percentage distribution of Eta
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Figure 5.24: Percentage distribution of Eta, the total number of mutations, for the 472 sampled
effectors, transmembrane genes and KOGs. The effectors have more genes with a higher Eta

compared to transmembrane genes and KOGs, correlating with observations for S.
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Figure 5.25: Percentage distribution of the number of haplotypes per gene for the 472 sampled
effectors, transmembrane genes and KOGs. The effectors show an elevated number of genes with

higher number of haplotypes (7-10 haplotypes) compared to transmembrane genes and KOGs.
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5.3.6.2 Tajima’s D

No significant differences were detcted in the percentage distribution of Tajima’s D for the
effectors, transmembrane proteins and KOGs (fig 5.26). For lower values of Tajima’s D (< -
1.41), there are approximately twice as many effectors, but this represents only 2.5% of

the entire set of effectors.
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Figure 5.26: Percentage distribution of Tajima’s D per gene for the 472 sampled effectors,
transmembrane genes and KOGs. The effectors show a slightly elevated number of genes with

Tajima’s D less than -1.41.

5.3.6.3 Fu & Li’s statistics and Fu’s Fs

There are no significant differences between the distribution of Fu and Li’s D and for Fu
and Li’s F between the different sets of genes (fig 5.27; fig 5.28). The distributions of Fu’s
Fs is similar for the majority of the distribution of the different sets of genes, but the
effectors have a large percentage of genes with Fu’s Fs being larger than 4.4 with a

secondary peak forming around 5.3 (fig 5.29).
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Figure 5.27: Percentage distribution of Fu and Li’s D per gene for the 472 sampled effectors,

transmembrane genes and KOGs. The effectors show a slightly elevated number of genes with Fu

and Li’s D less than -0.84.
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Figure 5.28: Percentage distribution of Fu and Li’s F per gene for the 472 sampled effectors,

transmembrane genes and KOGs. The effectors show a slightly elevated number of genes with Fu

and Li’s F less than -1.05.
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Figure 5.29: Percentage distribution of Fu’s F per gene for the 472 sampled effectors,
transmembrane genes and KOGs. The effectors show an elevated number of genes with Fu’s F

greater than 4.41 and a secondary peak around 5.33.
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5.3.6.4 dN/dS — yn00 and codeml

The distribution of the dN/dS values as calculated by codeml show a clear secondary peak
around 0.75 to 2.5 for effectors (fig 5.30). While this would be considered a modest value
for dN/dS if inferring positive selection, the peak is clear and distinct from the other genes.
The distribution of dN/dS values as calculate by yn00, does not have this same peak but
instead has a few effectors with a dN/dS of greater than 1 (fig 5.31). This suggest that
codeml is more suited to identify the selection acting on effectors, compared to yn00. This
observation also suggest that the analysis done by Haas et al. (2009), which used yn00,

may not be optimal.

Percentage distribution of Dn/Ds (codeml)

80%

70%

60%

50% -

40% -

= Effectors

Percentage

30% - = Transmembrane genes

20% +—\\ KOGs

10% - \ -
0% \«\ - ——

S O O O 8 &8 &8 & & & &

Dn/Ds (codeml)

Figure 5.30: Percentage distribution of dN/dS calculated by codeml for the 472 sampled effectors,
transmembrane genes and KOGs. There is a clear peak between 0.75 and 2.5 for the effector

genes, while the other genes follow exponential decay.
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Figure 5.31: Percentage distribution of dN/dS calculated by yn00 for the 472 sampled effectors,
transmembrane genes and KOGs. There is a peak that was identified by codeml is not present,
but on closer inspection it can be seen that a small number of effectors have a dN/dS value

greater than 1.
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5.3.6.5 PAML evolutionary models

The distributions of the likelihoods of the different sets of genes following the various
PAML evolutionary models look very similar (fig 5.32; fig 5.33; fig 5.34). While the M3-MO0
model comparison has the most similar distribution for the different genes, the M2a-M1la
and M8-M7 model comparisons contain fewer effectors in the main peak (where positive
selection is not implied), and slightly more genes distributing for higher likelihood values of

being positively selected.
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Figure 5.32: Percentage distribution of 2 * In (M2a —M1a) model comparison likelihoods for the

472 sampled effectors, transmembrane genes and KOGs.
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Figure 5.33: Percentage distribution of 2 * In (M3 —MO0) model comparison likelihoods for the 472

sampled effectors, transmembrane genes and KOGs.
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Figure 5.34: Percentage distribution of 2 * In (M8 —M7) model comparison likelihoods for the 472

sampled effectors, transmembrane genes and KOGs.
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5.3.6.6 Genes evolving like effectors

In order to identify the genes evolving like effectors, one must understand information
about known effectors. Since we are analysing within-species data and not between-
species data, more robust inferences can be made from statistics generated from DNAsp
rather than PAML. The DNAsp statistics for the 3 known Hpa effector genes, ATR1, ATR13

and ATRS5 are shown in table 5.16.

e a

] © [a) * = * 5

3 o | £ Hl 8 = e

i clo | &2 512 512 il
ATR1 12 62 64 5 0.2156 | n.s 1.6512 | ** 1.452 | # 8.821
ATR13 10 15 15 3 | 0.3358 | n.s. | 1.5205 | ** 1.3815 | n.s. 5.4
ATR5 16 21 25 8 1.2807 | n.s. 0.5893 | n.s. 0.9041 | n.s. 0.144

Table 5.16 — DNAsp neutrality statistics for ATR1, ATR13 and ATR5

Analysing the 3 known effectors with DNAsp neutrality tests it can be seen that ATR5 has
no significant test scores. ATR1 and ATR13 have high scores for Fu & Li’s D* and F*, and
Fu’s Fs. They also have positive values for Tajima’s D. It is interesting to note that the
number of sequences sampled is 10 and 12 — this means that there were 5 and 6 races (of

8) for which sequences could be analysed. All the genes were filtered using the following

criteria:

e Fu'sFs>4

e Fu&Li'sF*>1

e Fu&li'sD*>1.2

e Tajima’sD>0

e Number of samples (n) < 14

15 genes meet these criteria (table 5.17). 13 of the 15 genes are predicted to be secreted
and 9 are highly similar to, or are predicted to be Hpa effectors. There are 3 groups of
homologous genes. One group, containing genes 808594, 808490 (the most distant) and
eff g11324, are amongst the genes with the highest values of Fu’s Fs. They also show
homology to Phytophthora effectors, but have lost the RXLR motif as shown in an
alignment with PiTG_09732, and RXLR effector gene from P. infestans (fig 5.35). This could
suggest that there is strong selection against the effector so it lost the hypothetical RXLR

translocation mechanism, or that the RXLR motif is not required for translocation but
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instead a more general conserved region is required for translocation. The second group of
homologous secreted proteins, containing genes803332, 802865,
pasa_gi_SuperContigl4 289 and eff_gl17825, are all annotated effectors or effectors
homologs. The third set of homologous effectors was ATR1 and ATR13 which shared
distant homology over the first 100 amino acids. There were 3 genes that were not
predicted to be secreted. One of the non-secreted genes, 811161, showed homology to
Phytophthora choline/Carnitine O-acyltransferase, which was also confirmed by
InterproScan predictions. Another non-secreted gene, 903729, was homologous to
Phytophthora tRNA nucleotidyltransferase, again confirmed by InterproScan predictions.
The last of the non-secreted genes, ceg_gi_SuperContig67_104, was homologous to
myosin-like proteins. Myosins are a family of ATP-dependent motor proteins and are
responsible for actin-based motility (Wessells et al.,, 1971). Interestingly, InterproScan
results revealed that the gene contained a Phox homologous domain which a molecular
function of phosphoinositide binding. It has recently been suggested that oomycete RXLR
motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (Kale et al.,
2010). This could suggest that ceg_gi_SuperContigb7_104 could also be involved in the

virulence mechanism.

o
%
«n 3
o - 2 [
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g £ g s | 8|53 ]3]|% 3 g
[U) i 3 c I i I = 2 2 2 o I
808594 HaRxLL38_like S 14 36 36 4 1.2 1.6 1.7 | 10.3 | Pitg_09732 (RXLR) - Lost RXLR +
ATR1_Emoy2 ATR1 S 12 62 64 5 0.2 1.7 15 8.8 | ATR1 $
808490 S 8 61 64 4 1.2 1.7 1.7 8.4 | Pitg_09732 (RXLR) - Lost RxLR +
Avh153al (Ps); PITG 15110 (RxLR);
eff_g11324 S 14 34 34 5 14 16 1.8 7.7 Pitg_09732 (RXLR) - Lost RxLR +
809253 HaRxL95 S 14 18 18 4 14 15 1.7 6.2 | Avh347 (Ps)
807906 HaRxLL434 S 12 16 16 3 0.2 15 13 6.1 | HaRxL89 like
803332 Emoy2cDNA_HpRXLR91 | S 14 26 26 5 1.0 16 16 5.7 | Emoy2cDNA_HpRXLR91 *
802865 HaRxL53_like S 12 17 17 4 1.6 15 1.8 5.5 | HaRxL56 like *
811161 14 14 14 4 19 15 18 5.4 Phytophthora choline/Carnitine O-
acyltransferase
813534 ATR13 S 10 15 15 3 0.3 15 14 5.4 | ATR13 S
803729 14 16 20 5 14 16 17 48 tRN/.A nucleotidyltransferase (sojae
and infestans)
pasa_gi_SuperContigl4_289 | HaRxL53 S 12 14 14 4 1.5 1.5 1.7 4.5 | HaRxL53 *
eff_g17825 HaRxL78_like S 10 12 12 3 0.0 15 13 4.3 | HaRxL78 like *
802512 S 14 21 21 5 0.4 1.6 1.4 4.2 | Conserved hypothetical protein
ceg_gi_SuperContig67_104 8 11 11 3 0.9 1.5 1.5 4.0 | myosin-like protein

Table 5.17: List of genes showing similar values to those of ATR1 and ATR13 from DNAsp analysis.
N = number of samples; S = number of segregation sites; Eta = total number of mutations; BLAST

= best blast results; Homologous? = shows homologous groups.
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Pitg 09732 MRLYSIAFLVAVALLA--KVDRATPS--ELTTADY----PTLTHSITGRQNDVTPRLLRR
eff gl1324 MRLHAIELWAALTLVSIEGDSAATAS--ELPAAKSRPPPPSSAYNSIDFQSEITSRKAES
808594 MRLHAIELWAALTLVSIEGDSAATAS--ELPAAKSRPPPPSSAYNSIDFQSEITSRKAES
808490 MRVHCLVFLASSALSA-RGDGVLEPADPDVAAPYSSSVARSLTENDNDNVPATMSFKSEG
T T T, PR ..
Pitg 09732 MEEDDEERGIGGTAISDLAAKLKSRTSSLVDKAVNLKAREMKAARAMRFGEIDDTLASSN
eff gl11324 PAAISEER---GTDRVSFAASWIRQAAEVEDTAWTTRA-———————-—-—— VDKLQLEDN
808594 PAAISEER---GTDRVSFAASWIRQAAEVEDTAWTTRA-———————-—-—— VDKLQLEDN
808490 PVNDDERI - - -MTGVSSLVGKVQERIHTAVQ-~————--—-———————-—— GEKQKTFNF
x % . . . .
Pitg 09732 INNLITKLKEINDKNRLVK-===-=-— Voo SLLGTLTTKYGDDAVAAALVTAKRS
eff gl1324 ISAAVLKLKSPTPLNKVLRIGNEKKPGV-=-—--~— PLNEDSTERYALQONAVDDLVHASQS
808594 ISAAVLKLKSPTPLNKVLRIGNEKKPGV-=-—--~— PLNEDSTERYALQNAVDDLVHASQS
808490 LAQSRTESNTQTFIENALKTKEWKALSVRYERSGGSMITPLLARYDCAEVARVLAPALKFE
. .. L x . . x x|k
Pitg 09732 ADS—-—--- PSVAQQOIQKLOTEQLMK-WKDSGKSLGSVSKLLNFR-—====-—~ YNRGLG
eff gll1324 TSE-—---- KE--KRIADMWWKQLCALFVRYDQPIAGVAELLNVD-—-=-=--~— GLKGLT
808594 TSE--—--- KE--KRIADMWWKQLCALFVRYDQPIAGVAELLNVD-—--—=-—--~- GLKGLT
808490 NKDGVLQLPKKPASVKEKLAVDMLKH-WGEEKRPIRTLFTDLELNVQTETSPLYYNLG-G
. * . L x . *
Pitg 09732 QKFQVLDEYAKLVKQS-DDTLLTTLIKSVGGEDNLGGVLYGARTNSAATKNKATKLENIL
eff gl1324 EKLEMLKYYIGVSPTSGPNTFLETMTANLGSEKDLVSFIGRAKLNDDVER-RATELEGLQ
808594 EKLEMLKYYIGVSPTSGPNTFLETMTANLGSEKDLVSFIGRAKLNDDVER-RATELEGLQ
808490 SRMRVLEAYRQYAKID-DQSYLDAVKTGFGGKTIFLEHLGNAKTFWNTAD-KADELEKIA
LhLx T x_ . . .k Lk Lk
Pitg 09732 IERWTRGEQLPANVFQWLRLSGDVDDAFTASNLNRFMKYVDDFNAKNPGQKKPVLKLYTQ
eff gl1324 IAKWQAENKDPVELLNSMQMDKSM-DALISPALYTVMKYIAEHNLEHPDKKFSVLTPVRE
808594 IAKWQAENKDPVELLNSMQMDKSM-DALISPALYTVMKY IAEHNLEHPDKKFSVLTPVRE
808490 L---NTPSLNPLDVLKKTKPNSLRELIFDTDTFRLVSKYVE----ANPARKTTVLKVMMD
. X aaae s Lo Kk Lk ek Kk .
Pitg 09732 AFG-DAPVMRKLLSAMDDSTTNVA---AKKLLVE--RGVQKDNQSLGSMLRALNIDINQP
eff gll1324 RLG-DTHVMGALVAARSNGQSKVTEGFANELLSEMKKLWKGEGKSKREFLAA-——-——-———
808594 RLG-DTHVMGALVAARSNGQSKVTEGFANELLSEMKKLWKGEGKSKREFLAA-——-——-———
808490 SLGGEAHLLQALADFR----GKPTDAWLSCRLALFNQWRTTDKVTSTSGLQ--~--—-—-~—
ke e .. x . P .
Pitg 09732 TSIVNQKIDVLEQLAEVKEVRQVFIKAMSTQVGGNKMLAKILEGAEAATLQKKQFATWIG
eff gl1324
808594
808490
Pitg 09732 EGVTPENFWKMIYKTETASNPVEEKIMAKFTAFYQSQKPGN-———-—-—-————-—————————
eff gl1324 W oo NWAKHR--AKHELKRN----—
808594 EGDVPME--TVMYRAAEATR-VEVKPCRELGLFFRGSAHPKLGDHRFICTDDMQRGQSAS
808490 0000 e ITRMYTAFFEGHQ*--———-———————————————
Pitg 09732 e
eff gl1324 oo
808594 FARRRPFPVTYSFCATL*
808490 oo

Figure 5.35: Sequence alignment of 3 highly evolving secreted Hpa genes with a P. infestans

effector. The RXLR-EER amino acid motif region is highlighted in yellow.

The gene models were searched to identify genes with a similar 5’ regions using BLASTp,
but no genes were found. The family of 3 novel effector candidates identified using this
method are similar to ATRS5 in that they have lost the RXxLR motif but maintain the EE motif.
ATR5 was shown to contain the W-Y motif. | performed a hidden Markov model search
using the HMM from Boutemy et al., (2011) which reveals that 2 of the homologous genes
(eff_g11324 and 808594) also contain the W-Y motif. This strongly suggests that these 2

genes are likely to be real effector candidates with possible.
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5.4 Summary

In this chapter | presented the VariTale pipeline. While there are a number of pipelines
that are able to identify synonymous and non-synonymous mutations in coding regions
(Cingolani, 2011; Schneeberger et al., 2009), there are no pipelines that are able to make
evolutionary inferences from resequencing data. The method builds on pervious manual

methods used by Haas et al. (2009) and extends these methods to additionally consider:

e Breadth of coverage

e INDELs

e CNV

e Haplotype information

e Divergence from neutral evolution
e dN/dS calculations using codeml

e PAML evolutionary model analysis

| have shown that the Poisson distribution can be used to model coverage at varying read

depths in Hpa, confirming previous findings (Xie and Tammi, 2009).

| also showed that the use of Stampy to align discordant read pairs improves the number
of reads mapped to the genome by 3.72%, allowing for better variant calling. The
alignment of 8 races of Hpa to the reference genome has revealed regions of the genome
that have variable breadth and relative depths of coverage indicating duplicated, missing
and hemizygous regions in the genome. The alignment has also revealed a number of
caveats of the Hpa Emoy2 v8.3 genome assembly, in regions that are not covered by reads

and therefore may be contamination, and other regions that have been collapsed.

| have shown that the number of variant calls differs between Hpa races, while they show
consistency in their difference from the reference strain for the variant types. | have
reported the homozygous and heterozygous SNPs, INDELs and their protein coding effects.
The analysis revealed a 1:1 ratio insertions to deletions within each race which suggests an
equal rate of insertion and deletion accumulation. A nucleotide composition equilibrium
was revealed by analysing the rate of nucleotide mutations. We found that A/T & C/G

mutations account for ~65% of all mutations. | also observed that the ratio of SNPs on
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exons to introns was 3:1, and the ratio of SNPs on coding regions to non-coding regions

was 1:1 for most Hpa races.

| presented the protein coding effects of the variation on the genes. An elevated level of
non-synonymous to synonymous SNPs (3.5:1) was observed, suggesting that there is
evolutionary pressure acting to change gene functionality. | observed an
overrepresentation of INDELs that lead to codon insertions and deletions, and the same

overrepresentation is maintained for net INDEL length over coding regions of genes.

| also characterised the effect of SNPs on Hpa genes in an evolutionary framework,
analysing divergence from neutrality and directional selection using DnaSP and PAML. |
showed that at least 10 haploid samples are required for reliable analysis of this nature. |
also revealed differences in the dN/dS calculations between yn00 and codeml, which may

reveal additional information about selection on genes that is not always analysed.

This analysis has allowed for high-throughput characterisation of effectors, revealing that
effector genes are likely to have a high number of segregating sites and total number of
mutations, a higher Fu’s F statistic and exhibit higher dN/dS values compared to
transmembrane genes and KOGs. | also show that amongst the 15 genes showing signs of
accelerated evolution sharing traits with ATR1 and ATR13, there are 12 secreted genes of
which 11 are homologous to known effectors, providing further evidence that effectors
are amongst the fastest evolving group of effectors. In these 12 effector like genes, there
were 3 genes that show homology to Phytophthora effectors and share the classical
characteristics of an effector but do not have an RXLR motif. This suggests that these may
have been selected against as being effectors in Hpa, or that the RXLR motif is a
specialisation of a more general effector motif. If it is the case that these genes are real
effectors, they may contribute to understanding the effector translocation mechanism in

Hpa and other oomycetes.
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Chapter 6 — General discussion and outlook

6.1 Modern day genome assembly

Genome assembly projects were expensive and time consuming. The onset of second
generation sequencing has enabled the transition into a new era of genomics. Traditionally
genome assemblies have employed Sanger sequencing technologies, but the trend is
moving towards the usage of short read assemblies for small genomes (Farrer et al., 2009)
and complex eukaryotic genomes alike (Li et al.,, 2010; Kemen et al., 2011). While the
accuracy and length of Sanger sequenced reads are far superior to all second generation
sequencing technologies, the cost and throughput of second generation sequencing
techniques have enabled it to become the main contributor of genome sequences in data

repositories.

In chapter 3 | described a pseudo-hybrid genome assembly method that was employed for
the Hpa genome assembly. This hybrid approach makes use of the advantages of 2
different technologies: the read length and accuracy of Sanger reads, to resolve complex
regions and optimise contiguity, and the depth of Illumina sequencing, to correct 3520
sequencing errors and provide an additional 4 Mb of Hpa sequence. It would also have
been possible to combine two different second generation sequencing technologies,
utilising the longer reads of 454 sequencing in combination with the high throughput of
Illumina. By combining 2 sequencing technologies | have demonstrated that their strength
can be combined and the weaknesses of the individual technologies can be overcome. The
weaknesses in the technologies does not only include the previously mentioned read
length, accuracy, throughput and cost but also other factors, which are not often
considered, such as limitations in library preparation, bias in the sequencing methods and
contamination. | have shown that an additional 4 Mb of sequence in the Hpa genome
assembly was discovered using lllumina reads and Velvet assembly. Within these 4 Mb,
there are genes that do not have homology to any other known sequence — these could be
genomic regions truly unique to Hpa or could be highlighting a limitation of the previous
sequencing technologies. While in-depth analysis was not performed on genomic regions
that were present in the Sanger sequence but not the lllumina sequence, it is possible that

during fragment size selection certain genomic regions did not fractionate to the selected
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size due to the physical properties of the DNA. By using this hybrid method | also showed

that contamination in the reads can be identified.

Genome sequencing projects thus far do not usually consider heterozygous variation
within the organism. | have shown that analysing heterozygosity in a single organism can
reveal insights into interesting aspect of biology and provide naive estimates of selective
pressure. In chapter 1 | discovered that effector genes were 5 times more heterozygous
than other genes, from which | hypothesised that effector genes are accumulating

mutations due to selection pressures, which | prove later in chapter 5.

The method described in chapter 3 was not what | consider a true hybrid assembly, since
both sequencing technologies were not used from the start of the assembly, but rather the
Illumina sequencing was used to improve the existing Sanger assembly. Although the
method did add 4 Mb of new sequence, it had the limitation that it was based on an
existing assembly and may not be able to resolve complex errors. One such error is
collapsed regions in the genome. These regions can be identified by a higher than
expected depth of coverage of Illumina reads over a genomic region, but they cannot be
resolved easily using this technology. | have been able to identify a number of genomic loci
where gene paralogues have been collapsed into a single region due to high sequence
similarity, including the HaRxL79 gene family (data not shown). This gene family was
assembled correctly in previous versions of the genome, but was collapsed in the v7
assembly, on which the v8.3 assembly was based. | have attempted to assemble the Hpa
genome de novo using a hybrid assembly program, Mira3 (Chevreux et al., 2004). With this
method | was able to correctly assemble the HaRxL79 gene family, but at the expense of
genome contiguity (results not shown). There is also additional complexity in that Hpa
Emoy2 is a heterozygous wild organism with variation between the parental haploid
genomes. Since resolving collapsed repeats using lllumina sequencing is not a trivial
computational problem and programs do not exist to resolve this issue, | did not include

this problem in the scope of my project.

DNA sequencing techniques are improving at an ever faster rate. At the start of my project
the 3 major second generation sequencing technologies were Solexa, 454 and SOLID.
During the project, the evolution of the sequencing machine saw transitions from the
Solexa to the lllumina Genome Analyser (GA), to the Genome Analyser 2 (GA2), to the

Genome Analyser 2x (GA2x). lllumina now also has 4 other sequencing machines in
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addition to the GA2x — the MiSeq, HiSeq1000, HiSeq2000 and HiScanSQ. There has also
been an increase in the number of sequencing technologies: single molecule sequencing,
nanopore sequencing, ion semiconductor sequencing and DNA nanoball sequencing. While
the rate of emergence and availability of all these sequencing technologies is further
empowering the genomics era, enabling projects such as the 1000 genomes and 1001

genomes projects, it does make for a very dynamic current best practice.

6.2 The nature of obligate biotrophy

In chapter 4 | used Sanger sequenced ESTs and lllumina sequenced cDNA to assist with
gene model prediction and evaluation. With the semi-automated combining of gene
predictions from 6 methods, over 3 iterations of improvement, we establish the current
Hpa gene models. While the gene models are dependent on the caveats of the genome
sequence (e.g. not correctly predicting genes in the collapsed regions of the genome), they

are the most complete to date, based on the expression data available to us.

With these gene models we were able to make inferences about obligate biotrophy. The
current dogma dictates that obligate biotrophy is caused by a combination of a loss of
biosynthetic pathway elements and the acquisition of mechanisms that facilitate growth
on a host by evading recognition, suppressing defence and/or reprogramming nutrient
trafficking (Kemen et al., 2011). With the Hpa gene models we were able to identify
impaired nitrogen and sulphur assimilation pathways, which explains the obligate
biotrophic nature of Hpa (Baxter et al., 2010). Similar observations of impaired nitrogen
and sulphur metabolism were made by Duplessis et al. (2011) in the obligate biotrophic
rust fungi, Melamspora larici-populina, and Kemen et al. (2011) in the obligate biotrophic
white rust oomycete, A. laibachii, which are remarkable observation of independent
convergent evolution towards obligate biotrophy. While many families of virulence related
proteins that are present in Phytophthoras are also in Hpa, we see a dramatic reduction
(or an expansion in Phytophthora species) in the number of genes encoding for RxLR
effectors and other classes of virulence related proteins. There is further evidence that
Hpa evolves toward a biotrophic lifestyle in the loss of pectin meythyl esterases, which
have been implicated in host cell wall modification (Pelloux et al., 2007), and may be
involved in triggering host defence. It is also interesting to note that while some of the
more closely related species to Hpa such as Phytophthora and Pythium are able to induce

host necrosis, Hpa shares many traits with biotrophic fungi that have lost degradative
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enzymes and nitrogen and sulphur assimilation pathways (Kamper et al., 2006; Martin et
al., 2008; Spanu et al., 2010). This suggests independent but convergent evolution toward

obligate biotrophy in both fungal and oomycete lineages.

The onset of the genomics era has shed new light on obligate biotrophy in recent years,
and with more genome sequences becoming available there is the scope to investigate
further the relationship between saprotrophy, necrotrophy, hemi-biotrophy, biotrophy,

commensalism and mutualistic symbiosis.

6.3 High throughput analysis of evolutionary signatures

The signature of evolution appears as variation in the genome, so identifying and analysing
sequence variation allows us to elucidate evolutionary mechanisms acting on the genome,
genomic regions and genes of interest. Newer sequencing technologies have led to
unprecedented levels of sequence data generation. Tools to analyse this type of data have
progressed from being able to identify SNPs to presence/absence polymorphisms, INDELs,
recombination, CNV, and most recently the ability to infer the protein coding effect of
SNPs. In chapter 5, | took this a step further and put the predicted sequence variation into
an evolutionary context in an automated pipeline termed VariTale. While studies exist
where dN/dS is calculated using yn00 from the PAML package (Haas et al., 2009) the
VariTale pipeline considers more tests including tests to resolve parental haplotypes,
neutral evolutionary models and nucleotide divergence using DnaSP, and PAML selection-

based evolutionary models.

Among existing programs used to test for selection (Tamura et al., 2011), DnaSP has the
most functionality for testing for neutrality and nucleotide divergence and PAML
implements the most sophisticated evolutionary selection models. The inclusion of DnaSP
in the pipeline is not ideal, due to its inability to resolve phased data in the batch
processing mode, the issue of cross platform compatibility (DnaSP runs only on Microsoft
Windows, while PAML runs on all platforms), and most importantly its semi-automated
running procedure require manual intervention making it impossible to script the entire
pipeline. Ideally |1 would implement my own methods to perform the neutrality and

divergence tests, but this would require significantly more time investment.
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While these types of hypothesis testing are insightful, it is important to have a sufficiently
large sample size to generate robust and meaningful results. My analysis revealed that
robust results are generated at a minimum of 5 diploid samples or, by extension, 10
haploid samples, while there is little increase in robustness at more than 5 samples.
Another unique feature of the VariTale pipeline is its ability to resolve parental haplotypes.
This is a novel feature that has not previously been considered in second generation
sequencing analysis. It is important that future resequencing analysis pays more attention
to heterozygosity and treating diploid non-inbred wild organisms as 2 haploid samples to
maximise the added value of high throughout sequencing in effectively providing twice as
much population data. While | have implemented this method successfully for SNPs, | have
yet to do so for INDELs. This was not attempted during the project as the INDEL prediction
accuracy is significantly lower than the SNP prediction accuracy (data not shown). To
improve INDEL prediction a better INDEL caller should be used. In this analysis | used the
SAMtools pipeline. Using a program such as DINDEL (Albers et al., 2011), which
reconstructs the genomic region around the potential INDEL to confirm whether it is real,
would lead to more accurate INDEL calling and hence more reliable evolutionary
inferences based on genes with predicted INDELs. Extending this further, it may be
possible to reconstruct genes which have highly dissimilar regions, but identifying the
region of interest, and then attempt a local assembly of the region, as was implemented in
my genome improvement pipeline in chapter 3 inspired by Ossowski et al. (2008). This
would improve the significance of the results as it enables comparison of genes from races

that would otherwise have been left out of the analysis.

6.4 Effector characterisation and evolution

Despite the onset of the genomics era and the access to numerous genome assemblies of
pathogens, it is not trivial to characterise effectors. In the oomycetes it was expected that
effectors would be short secreted proteins carrying the RxLR domain (Birch et al., 2006).
This was soon shown not to be the case for all oomycetes after it was found that the
oomycete A. laibachii had CHxC effector genes (Kemen et al., 2011), suggesting that the
RxLR motif is limited to the Peronosporales. However, the genome sequence of Pythium
revealed that it also had genes encoding effector-like genes carrying the RxLR motif,
suggesting that the Albugonales lost the ability to translocate effectors via the RxLR

mechanism, or the RxLR translocation mechanism was gained in other oomycetes. The
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comparative analysis of effectors both within as well as between species is complex. Two
characterised effectors of Hpa, ATR1 and ATR13 carry the expected RxLR motif. However
the most recently characterised Hpa effector, ATR5 (Bailey et al., 2011) carries a GRVR-EE
domain, instead of the expected RXLR-EE. On closer analysis ATR5 carries the C-terminal W
and Y domains (Jiang et al., 2008), which suggests that the RXLR motif may not be the main
element involved in the translocation of effectors to the host. ATR5 despite not having
sufficient evidence of divergence from neutrality did have 21 polymorphic sites, which is
more than ATR13. It was also observed that ATR5 was present in full in all ecotypes tests.
This could be because of (i) random choice of Hpa isolates sequenced (ii) ATR5 being an
essential effector that Hpa cannot lose, or (iii) that there is sufficient diversity in ATR5 to
usually avoid recognition by the host thus not presenting significant negative selection

pressure for loss of the gene.

Despite only having identified 3 effectors in Hpa with avirulence function, we have been
able to predict 141 ‘good’ candidate effectors among a list of 647 potential effector
candidates. For the analysis performed in chapter 5 | increased the sample set of effectors
to 472 candidates showing no negative traits of being an effector, as by doing so | was able
to include ATR5, and its 2 homologs. Comparative analysis of the effectors,
transmembrane genes and KOGs revealed that the majority of the genes in each set fall
into similar distributions for the majority of evolutionary test statistics. However, there
were significant subsets of effector genes that were different from the other genes, in
number of segregating sites, total number of mutations and predicted number of
haplotypes per gene, Fu’s Fs (Fu, 1997) and dN/dS as calculated by codeml. This is an
improvement from describing effectors as polymorphic. Equally enlightening is that we
observe many effector candidates that nevertheless do not have evidence for positive
selection. This was observed repeatedly in the different evolutionary models tested. It is
possible that different effectors are under different selection pressures — a subset of
effectors may be functional but is not recognised by the host in which case they are
selected for conservation while other effectors may be functional but do trigger an
immune response in the host. This can be illustrated with examples from Fabro et al.,
(2011) who show that the candidate effectors contributing most to virulence include
HaRxL66, for which Fu’s Fs is 5.6 (higher than ATR13, and suggesting positive selection),
and HaRxL44, for which Fu’s Fs is 0.03 (no evidence for positive selection). In the co-
evolutionary system, the effectors that are recognised have additional selection pressures

acting on them due to the epispastic interaction with the host. One would expect to see
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these effectors in two forms in the Hpa population. One of those types of effectors
includes those that are present in nearly all races due the effector being a key contributor
to Hpa fitness. In this case it would be beneficial to keep the functionality of the effector
but also have high levels of polymorphisms to avoid recognition in the host. The second
form of effectors would be one with many presence/absence polymorphisms due to the
effector being recognised in some accessions of the host. In this scenario it is possible that
resistance gene alleles recognising this effector are in low frequency in the host population,
so that there is significant enough negative selection to remove the effector from the
pathogen population, with perturbation in the resistant gene frequency determining the
frequency of the effector. In the extreme case where the majority of hosts are able to
recognise the majority of alleles of the effector there may be enough negative selection
pressure for complete loss of the effector. This type of analysis can only be performed

when more avirulent effectors of Hpa have been identified.

With this improved understanding of effector evolution, | analysed a set of genes sharing
similar levels of high selection pressure with ATR1 and ATR13. 15 genes were identified, of
which 12 were secreted and 11 shared homology to known effectors. Among the genes
showing homology to effectors, there are 3 genes that also show homology to
Phytophthora RXLR effector gene candidates, but do not carry the RXLR motif. This
suggests that not all translocated effectors carry an exact RXLR motif, an interpretation
supported by three other pieces of evidence. ATR5 does not carry the RXLR motif (Bailey et
al., 2011). The RXLR motif is not present in the major class of candidate effectors in A.
laibachii (Kemen et al.,, 2011), and in a recent study by Yaeno et al. (2011) the
phosphatidylinositol monophosphate mediated translocation system suggested by Kale et
al. (2010) is not dependent on the RxLR motif but instead on a positive charged region
found downstream of the RxLR corresponding to the W and Y motif regions, that is also
present in ATR1, ATR5 and 2 of the 3 homologs of the Phytophthora effector genes
(808594 and eff _g11324). This strongly suggests that genes 808594 and eff g11324, and
their P. infestans homologs, are real effectors and they provide an exciting opportunity to
investigate a novel class of effector genes and help unravel the nature of effector

translocation into the host.
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Appendices

Appendices for Chapter 2

Appendix table 2.1: Cluster density of paired end reads

FlowCell ID Lane Hpa race pM Clusters Clusters/pM

1D62 Lane 1 Hpa Waco9 6 107 17.8
1D62 Lane 2 Hpa Hind2 6 119 19.8
D62 Lane 3 Hpa Emco5 6 116 19.3
1D64 Lane 1 Hpa Hind2 6 87 145
D64 Lane 2 Hpa Hind2 6 77 12.8
D64 Lane 3 Hpa Hind2 6 89 14.8
1D64 Lane 5 Hpa Emco5 6 83 13.8
1D64 Lane 6 Hpa Emco5 6 83 13.8
1D64 Lane 7 Hpa Emco5 6 82 13.7
1D64 Lane 8 Hpa Emoy2 6 69 115
D66 Lane 3 Hpa Emoy2 6 74 123
1D69 Lane 1 Hpa Emoy2 6 82 13.7
ID69 Lane 2 Hpa Emoy2 6 71 11.8
1D69 Lane 3 Hpa Emoy2 6 66 11.0
ID69 Lane 5 Hpa Emoy2 6 85 14.2
D69 Lane 6 Hpa Cala2 6 99 16.5
1D69 Lane 7 Hpa Cala2 6 100 16.7
ID69 Lane 8 Hpa Cala2 6 91 15.2
ID71 Lane 1 Hpa Cala2 6 93 15.5
ID71 Lane 2 Hpa Maks9 6 79 13.2
ID71 Lane 3 Hpa Maks9 6 87 14.5
ID71 Lane 5 Hpa Maks9 6 86 14.3
ID74 Lane 1 Hpa Noco2 6 ? ?
ID74 Lane 2 Hpa Noco2 6 ? ?
ID74 Lane 3 Hpa Noco2 6 ? ?
ID74 Lane 5 Hpa Noco2 6 ? ?
ID74 Lane 8 Hpa Maks9 6 ? ?
ID75 Lane 1 Hpa Waco9 6 91 15.2
ID75 Lane 2 Hpa Waco9 6 94 15.7
ID75 Lane 3 Hpa Waco9 6 91 15.2
ID75 Lane 5 Hpa Waco9 6 96 16.0
ID75 Lane 6 Hpa Waco9 6 94 15.7
ID79 Lane 2 Hpa Emoy2 6 69 11.5
D79 Lane 3 Hpa Emoy2 6 70 11.7
D80 Lane 1 Hpa Noco2 6 81 135
1D80 Lane 2 Hpa Noco2 6 76 12.7
1D80 Lane 3 Hpa Cala2 6 61 10.2
1D87 Lane 3 Hpa Waco9 8 78 9.8
1D87 Lane 4 Hpa Waco9 8 74 9.3
1D87 Lane 5 Hpa Hind2 8 67 8.4
D87 Lane 6 Hpa Hind2 8 69 8.6
D87 Lane 7 Hpa Hind2 8 70 8.8
1D88 Lane 1 Hpa Emco5 9 99 11.0
1D88 Lane 2 Hpa Emco5 9 101 11.2
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D88 Lane 3 Hpa Emco5 101 11.2
D88 Lane 4 Hpa Emco5 106 11.8
D88 Lane 5 Hpa Hind2 106 11.8
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Appendix table 2.2: Reads Summary

Date ID Lane PE/SE | Insert Size Race Type Concentration Length Number of Reads Total bases sequenced
2007-09-19 | ID19 6 | SE emoy2 cdna 4.5pM 35 939,355 32,877,425
2007-09-19 | ID19 7 | SE emoy2 cdna 4.5pM 35 1,153,202 40,362,070
2007-10-02 | ID21 7 | SE emoy2 cdna 5pM 35 429,007 15,015,245
2007-10-02 | ID21 8 | SE emoy2 cdna 5pM 35 503,955 17,638,425
2007-10-11 | ID23 7 | SE emoy2 cdna 5pM 35 1,029,001 36,015,035
2007-10-11 | ID23 8 | SE emoy2 cdna 5pM 35 1,946,103 68,113,605
2008-01-23 | ID32 8 | SE emoy2 cdna 5pM 35 2,548,409 89,194,315
2008-10-22 | ID62 1| PE 334.305772 +/- 45.584579 waco9 dna 6pM 36 16,685,148 600,665,328
2008-10-22 | ID62 2 | PE 352.198133 +/- 43.512337 hind2 dna 6pM 36 18,790,428 676,455,408
2008-10-22 | ID62 3 | PE 359.373364 +/- 48.609409 emco5 dna 6pM 36 18,497,806 665,921,016
2008-11-03 | ID64 1| PE 348.531576 +/- 46.663678 hind2 dna 6pM 36 13,339,720 480,229,920
2008-11-03 | ID64 2 | PE 348.368804 +/- 47.207299 hind2 dna 6pM 36 11,995,426 431,835,336
2008-11-03 | ID64 3 | PE 348.436872 +/- 47.151158 hind2 dna 6pM 36 14,346,168 516,462,048
2008-11-03 | ID64 5 | PE 355.161022 +/- 53.034060 emco5 dna 6pM 36 13,642,658 491,135,688
2008-11-03 | ID64 6 | PE 355.096081 +/- 53.164785 emco5 dna 6pM 36 13,705,996 493,415,856
2008-11-03 | ID64 7 | PE 355.052176 +/- 53.120832 emco5 dna 6pM 36 13,377,394 481,586,184
2008-11-03 | ID64 8 | PE 339.052529 +/- 43.744176 emoy?2 dna 6pM 36 11,044,778 397,428,480
2008-11-14 | 1D66 3 | PE 338.813991 +/- 43.742254 emoy?2 dna 6pM 36 12,340,546 443,439,000
2008-12-02 | ID69 1| PE 338.685350 +/- 43.706918 emoy2 dna 6pM 36 12,997,822 458,173,584
2008-12-02 | ID69 2 | PE 338.568591 +/- 44.134278 emoy2 dna 6pM 36 11,107,194 399,083,112
2008-12-02 | ID69 3 | PE 338.675867 +/- 43.822840 emoy?2 dna 6pM 36 10,424,806 352,597,320
2008-12-02 | ID69 5 | PE 338.877557 +/- 43.778193 emoy?2 dna 6pM 36 13,791,734 495,940,896
2008-12-02 | ID69 6 | PE 327.371724 +/- 46.945084 cala2 dna 6pM 36 14,797,458 532,708,488
2008-12-02 | ID69 7 | PE 327.443553 +/- 46.651466 cala2 dna 6pM 36 14,879,458 535,660,488
2008-12-02 | ID69 8 | PE 327.378922 +/- 46.903094 cala2 dna 6pM 36 12,956,184 466,422,624
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Appendix table 2.2: Reads Summary

Date | ID Lane | PE/SE | Insert Size Race Type Concentration Length Number of Reads Total bases sequenced
2008-12-12 | ID71 1| PE 327.043908 +/- 46.746053 cala2 dna 6pM 36 12,591,470 453,292,920
2008-12-12 | ID71 2 | PE 333.627462 +/- 39.240630 maks9 dna 6pM 36 11,398,246 410,336,856
2008-12-12 | ID71 3 | PE 333.914869 +/- 38.790438 maks9 dna 6pM 36 12,808,634 461,110,824
2008-12-12 | ID71 5 | PE 334.095602 +/- 38.827157 maks9 dna 6pM 36 12,943,886 465,979,896
2009-01-05 | ID74 1| PE 336.995617 +/- 34.091977 noco2 dna 6pM 36 12,692,042 456,913,512
2009-01-05 | ID74 2 | PE 337.123654 +/- 34.208484 noco2 dna 6pM 36 13,959,594 502,545,384
2009-01-05 | ID74 3 | PE 337.087019 +/- 34.268842 noco2 dna 6pM 36 14,078,192 506,814,912
2009-01-05 | ID74 5 | PE 337.310454 +/- 34.094262 noco2 dna 6pM 36 14,282,786 514,180,296
2009-01-05 | ID74 8 | PE 334.466367 +/- 37.941812 maks9 dna 6pM 36 13,410,342 482,772,312
2009-01-12 | ID75 1| PE 330.821535 +/- 50.870072 waco9 dna 6pM 36 13,330,010 479,880,360
2009-01-12 | ID75 2 | PE 330.629955 +/- 51.417488 waco9 dna 6pM 36 14,006,684 504,240,624
2009-01-12 | ID75 3 | PE 329.992848 +/- 52.163552 waco9 dna 6pM 36 9,837,618 354,154,248
2009-01-12 | ID75 5 | PE 331.021138 +/- 50.880626 waco9 dna 6pM 36 13,552,462 487,888,632
2009-01-12 | ID75 6 | PE 331.167094 +/- 51.013012 waco9 dna 6pM 36 14,329,742 515,870,712
2009-02-16 | ID79 2 | PE 339.291135 +/- 42.760396 emoy2 dna 6pM 36 13,849,592 498,585,312
2009-02-16 | ID79 3 | PE 339.348849 +/- 42.578734 emoy?2 dna 6pM 36 14,059,650 506,147,400
2009-02-17 | 1D80 1| PE 337.236591 +/- 33.780184 noco2 dna 6pM 36 16,274,756 585,891,216
2009-02-17 | D80 2 | PE 337.119928 +/- 33.892590 noco2 dna 6pM 36 14,117,014 508,212,504
2009-02-17 | D80 3 | PE 327.009732 +/- 46.690504 cala2 dna 6pM 36 9,715,162 349,745,832
2009-04-15 | D87 3 | PE 332.110200 +/- 50.398237 waco9 dna 8pM 36 14,153,536 509,527,296
2009-04-15 | 1D87 4 | PE 331.922077 +/- 50.975731 waco9 dna 8pM 36 13,976,824 503,165,664
2009-04-15 | 1D87 5 | PE 349.398150 +/- 46.992682 hind2 dna 8pM 36 13,518,100 486,651,600
2009-04-15 | D87 6 | PE 349.466094 +/- 46.938720 hind2 dna 8pM 36 13,838,710 498,193,560
2009-04-15 | D87 7 | PE 349.527070 +/- 46.807906 hind2 dna 8pM 36 14,034,950 505,258,200
2009-04-21 | ID88 1| PE 355.199558 +/- 53.455711 emco5 dna 9pM 36 16,440,814 591,869,304
2009-04-21 | ID88 2 | PE 355.669794 +/- 52.755553 emco5 dna 9pM 36 16,900,940 608,433,840
2009-04-21 | D88 3 | PE 355.876003 +/- 52.436018 emco5 dna 9pM 36 16,038,510 577,386,360
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Appendix table 2.2: Reads Summary

Date | ID Lane | PE/SE | Insert Size Race Type Concentration Length Number of Reads Total bases sequenced
2009-04-21 | ID88 4 | PE 355.857802 +/- 52.516396 emco5 dna 9pM 36 15,969,604 574,905,744
2009-04-21 | ID88 5 | PE 349.195154 +/- 46.825088 hind2 dna 9pM 36 16,978,272 611,217,792
2009-11-30 | ID106 4 | PE 356.988865 +/- 48.284072 emco5 dna 12pM 76 29,750,734 2,261,055,784
2009-11-30 | ID106 5 | PE 328.725489 +/- 43.721368 cala2 dna 12pM 76 36,247,384 2,754,801,184
2009-12-16 | ID108 2 | PE 338.662604 +/- 32.772048 noco2 dna 12pM 76 30,669,042 2,330,847,192
2009-12-16 | ID108 3 | PE 335.986928 +/- 36.052768 maks9 dna 12pM 76 29,857,228 2,269,149,328

42009 5 | PE 291.462540 +/- 23.736702 emwal dna ? 76 18,662,002 1,418,312,152
42009 6 | PE 484.961356 +/- 48.770805 emwal dna ? 76 20,105,712 1,528,034,112
42009 7 | PE 484.938850 +/- 48.799756 emwal dna ? 76 13,729,394 1,043,433,944
1E+05 6 | PE 259.937447 +/- 38.686330 emwal dna ? 76 16,685,692 1,268,112,592
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Appendix figure 2.1 FastQC Read statistics

The FastQC read statistics are available in a separate Word and PDF document on the

accompanying CD.
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Appendices for Chapter 3

Appendix table 3.1: Genome version history. Release history and assembly

statistics for the H. arabidopsidis genome. * includes 35.5x nucleotide coverage

by lllumina paired end reads
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1 April 2006 1,053,419 - - 1,053,419 70 8.0x
2 April 2006 1,053,419 - - - 1,053,419 70 8.0x
3 July 2007 1,055,973 | 18,814 - - 1,074,767 75 9.0x 2140 171
4 November 2007 | 1,080,646 | 25,516 - - 1,106,162 75 9.2x 2073 174
5 November 2007 | 1,080,646 | 25,516 - - 1,106,162 75 9.2x 2073 174
6 December 2007 | 1,080,646 | 25,516 | 13,071 - 1,151,387 77 9.2x 1739 71
7 August 2008 1,080,646 | 25,516 | 13,071 - 1,119,233 | 76.5 9.5x 1585 68
Velvet | February 2009 - - - 56,727,498 | 56,727,498 | 56.9 | 35.5x* | 4429 742
v8.3 September 2009 | 1,080,646 | 25,516 | 13,071 | 56,727,498 | 57,846,731 82 45x* 1783 75
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Appendix table 3.2: Hpa Emoy2 lllumina reads
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ID16 N 4pM 35 | 1,011,420
ID16 8| N 4pM 35 499,363
D45 1 N 5pM 35 4,667,054 3,781,889 81.0%
D45 2| N 5pM 35 4,849,873 3,900,266 80.4%
D45 3| N 5pM 35 4,907,559 3,924,460 | 80.0%
D45 5| N 5pM 35 4,927,486 3,929,169 | 79.7%
D45 6 | N 5pM 35 4,806,600 3,828,554 | 79.7%
1D45 7| N 5pM 35 3,976,253 3,202,218 | 80.5%
D45 8| N 5pM 35 3,858,756 3,108,958 | 80.6%
D64 8|Y 339.052529 6pM 36 | 11,039,680 10,371,172 93.9% 9,606,994 92.6%
+/- 43.744176
D66 31Y 338.813991 6pM 36 | 12,317,750 11,577,286 | 94.0% | 10,789,809 93.2%
+/- 43.742254
D69 11Y 338.685350 6pM 36 | 12,727,044 11,983,134 | 94.2% | 11,164,556 93.2%
+/- 43.706918
ID69 21Y 338.568591 6pM 36 | 11,085,642 10,421,860 | 94.0% 9,697,772 93.1%
+/- 44.134278
ID69 3|Y 338.675867 6pM 36 9,794,370 9,208,542 | 94.0% 8,539,768 92.7%
+/- 43.822840
ID69 5|Y 338.877557 6pM 36 | 13,776,136 12,969,038 | 94.1% | 12,094,156 93.3%
+/- 43.778193
ID79 2|lY 339.291135 6pM 36 | 13,849,592 13,013,004 | 94.0% | 12,074,329 92.8%
+/- 42.760396
ID79 3|Y 339.348849 6pM 36 | 14,059,650 13,126,898 | 93.4% | 12,115,612 92.3%

+/- 42.578734

The non-paired reads were sequenced on the Illumina Genome Analyzer | and the paired

end reads were sequenced on the Genome Analyzer 2 platforms. The total coverage of the

H. arabidopsidis Emoy2 v8.3 assembly is 46.0x nucleotide coverage through 10.5x non-

paired read coverage and 35.5x nucleotide coverage through paired end reads. For the

paired ends Y =yes and N = no.
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Appendix table 3.3: List of genes used to evaluate assemblies

911224993523 | gb|ACN76441
gi|222144621|gb|ACM46122
911209573498 |gb |ACI62835
gi171879818|gb|ACB55623
gil167047082|gb|ABZ10809
gi|152963459|gb|ABS50086
911108885465 |gb|ABG23238
91193139267 gb|ABE99946.
9i193139088|gb|ABE99881.
9i189146243|gb|ABD62107.

911108885471 |gb|ABG23241.
911108885467 |gb|ABG23239.
911108885463 |gb|ABG23237.
911108885461 |gb|ABG23236.
911108885459 |gb | ABG23235.
911108885457 |gb | ABG23234.
9i1108885455|gb | ABG23233.
911108885453 |gb | ABG23232.

parasitical
gi|66934640|gb|AAY58912.

L1
.1
L1
L1
L1
.1
L1
1]

1]

1]

1]
1]
1]
1]
1]
1]
1]
1]

1]

heat shock transcription factor [Hyaloperonospora parasitical
MAP kinase [Hyaloperonospora parasitica]

CFZl-like protein [Hyaloperonospora parasitica]

avirulence protein [Hyaloperonospora parasitica]

RXL96 [Hyaloperonospora parasitica]

putative effector protein Avh341 [Hyaloperonospora parasitica]
unknown [Hyaloperonospora parasitica]
NADH dehydrogenase subunit 1 [Hyaloperonospora parasitica]
beta-tubulin [Hyaloperonospora parasitical]
cytochrome oxidase subunit II [Hyaloperonospora parasitical
putative small cys-rich protein [Hyaloperonospora parasitica]
retrotransposon element [Hyaloperonospora parasitical

unknown [Hyaloperonospora parasitica]

putative small cys-rich protein [Hyaloperonospora parasitica]
putative membrane protein [Hyaloperonospora parasitical
putative membrane protein [Hyaloperonospora parasitical
unknown [Hyaloperonospora parasitica]
putative N-acetyltransferase-like protein [Hyaloperonospora

putative 3-isopropylmalate dehydratase large subunit

[Hyaloperonospora parasitica]

gi|66934639|gb|AAY58911.
gi|66934638|gb|AAY58910.
gi|66934637|gb|AAY58909.
gi|66934636|gb|AAY58908.
parasitical

gi|66934635|gb|AAY58907.
parasitical

gi|66934634|gb|AAY58906.
gi|66934633|gb|AAY58905.
gi|66934632|gb|AAY58904.
gi|66934628|gb|AAY58903.
gi|66934627|gb|AAY58902.
gi|66934626|gb|AAY58901.
gi|66934624|gb|AAY58900.
gi|58042874|gb|ARW63774.
gi|58042862|gb|ARW63768.
gi|34922241|gb|ARQ83522.
gi|34922215|gb|AAQ83519.
gi|34922209|gb|AAQ83518.
gi|34922199|gb|AAQ83517.
gi|34922186|gb|AAQ83516.
gi|34922176|gb|AARQ83515.
gi|34922153|gb|AAQ83514.
gi|34922145|gb|AAQ83513.
gi|34922136|gb|AAQ83512.
gi|34922130|gb|AAQ83511.
gi|34922121|gb|AAQ83510.
gi|34922115|gb|AAQ83509.
parasitical

gi|34922091|gb|AAQ83506.
parasitical

gi|34922077|gb|ARQ83505.
gi|34922067|gb|AAQ83504.
gi|34922055|gb|AAQ83503.
parasitical

gi|34922040|gb|AAQ83501.
gi|34922033|gb|AAQ83500.
gi|33350990|gb|AAP49016.

1]
1]
1]
1]

1]
1]
1]

1]
1]
1]

putative
ras-like
putative
putative

F-actin capping protein [Hyaloperonospora parasitica]
protein [Hyaloperonospora parasitical]

RXLR protein 12I13.1 [Hyaloperonospora parasitica]
methylene tetrahydrofolate dehydrogenase [Hyaloperonospora
putative dimeric dihydrodiol dehydrogenase [Hyaloperonospora
avirulence protein-like protein [Hyaloperonospora parasitica]
putative Myb-like protein [Hyaloperonospora parasitica]

avirulence protein [Hyaloperonospora parasitica]

putative LON protease [Hyaloperonospora parasitica]

putative CDC48/ATPase [Hyaloperonospora parasitical]

putative BAX inhibitor [Hyaloperonospora parasitica]

avirulence protein [Hyaloperonospora parasitica]

PPATS5 [Hyaloperonospora parasitical

avirulence protein ATR13 [Hyaloperonospora parasitical

cysteine rich [Hyaloperonospora parasitical

unknown [Hyaloperonospora parasitica]

putative carboxylase [Hyaloperonospora parasitical

putative dehydrogenase [Hyaloperonospora parasitica]

putative homogentisate 1,2-dioxygenase [Hyaloperonospora parasitica]

unknown [Hyaloperonospora parasitica]
putative ATPase [Hyaloperonospora parasitical
unknown [Hyaloperonospora parasitica]
unknown [Hyaloperonospora parasitica]

putative carboxyltransferase [Hyaloperonospora parasitica]
putative beta-glucosidase [Hyaloperonospora parasitica]
putative fatty acid synthase alpha subunit [Hyaloperonospora
putative serine/threonine protein kinase [Hyaloperonospora

unknown [Hyaloperonospora parasitica]

putative dnaK-type molecular chaperone [Hyaloperonospora parasitica]
putative H+ translocating inorganic pyrophosphatase [Hyaloperonospora

unknown [Hyaloperonospora parasitica]
putative exo-1,3-beta-glucanase [Hyaloperonospora parasitical
cytochrome oxidase subunit II [Hyaloperonospora parasitical

List of genes used to evaluate the quality of Velvet assemblies using a k-mer lengths of 21

and 23. The genes highlighted in red were found full length in the assembly using a k-mer

length of 21 and partially in the assembly of k-mer length 23. There were no genes that

were complete in the k-mer 23 assembly and partially assembled in the k-mer 21

assembly.
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Appendix table 3.4: Final v8.3 assembly scaffold (AGP)

Contig0 1 .. 360550 + NODE_1260_length_184_cov_18.402174 1. 67 + ContigO 360618 .. 596263 + NODE_1359_length_453_cov_3.960265

Contig0 168 .. 477 + Contig0 596572 .. 1494027 + NODE_3875_length_453 cov_4.039735 151 .. 477 + Contig0 1494353 .. 2274569
Contig1 1 .. 81705 + rev NODE_5373_length_2156_cov_8.420222 1 .. 2029 + Contig1 83735 .. 846734 + NODE_4843_length_554_cov_2.187726

Contig1 1..578 + Contig1 856266 .. 1003983 + rev NODE_15761_length_1234 cov_7.220421 1 .. 1079 + Contig1 1005063 .. 1243756

Contig10 Contig10 1 ..466923 + CU681819 1..106602 + Contig10 613066 ..end
Contig100 1 .. 192300 + NODE_4687_length_424_cov_2.448113 167 .. 448 + Contig100 192581 .. 223720 +

Contig100 NODE_97 length 484 cov_8.770661 173 .. 508 + Contig100 224055 .. 249180
Contig103 1 .. 161684 + rev NODE_2829_length_509_cov_3.504912 1 .. 356 + Contig103 162041 .. 162141 +

Contig103 NODE_16332_length 839 _cov_5.582837 1 .. 683 + Contig103 162825 .. 209324

Contig1030 Contig1030 1 .. 2313 + NODE_4475_length_887_cov_3.993236 187 .. 911 + Contig1030 2313 .. 2313
Contig105 1 .. 111126 + NODE_1726_length_926_cov_8.438445 185 .. 950 + Contig105 111891 .. 233890 +

Contig105 NODE_1321_length_473_cov_4.175476 165 .. 497 + Contig105 234222 .. 248440

Contig106 CUB94540 1..94388 + Contig106 66699 ..239699 + rev NODE_14441 length 581 cov_4.843373 1 .. 454 + Contig106 239649 .. End
Contig107 1 .. 32775 + rev NODE_21751_length_732_cov_3.777322 1 .. 495 + Contig107 33191 .. 266073 +

Contig107 NODE_2155_length 522 cov_3.963602 232 .. 546 + Contig107 266387 .. 267334

Contig108 Contig108 1 .. 43451 + NODE_903 _length 1344 cov_8.246280 161 .. 1368 + Contig108 44658 .. 271342

Contig1086 Contig1086 1 .. 1994 + rev NODE_8762_length 518 cov_4.820463 1 .. 390 + Contig1086 1994 .. 1994
CUB55856 1..89035 + Contig11 23947 .. 139076 + NODE_5432_length_459_cov_3.289760 157 .. 483 + Contig11 139402 .. 418829 +
NODE_202_length_436_cov_3.683486 161 .. 460 + Contig11 484216 .. 486217 + NODE_16417_length_18822_cov_7.432313 159 .. 18846 +
Contig11 504904 .. 728412 + rev NODE_12193_length_566_cov_3.275618 1 .. 384 + Contig11 728797 .. 810063 +

Contig11 NODE_10815_length 819 _cov_5.318681 152 .. 843 +

Contig110 Contig110 1 .. 124736 + NODE_4998_length_837_cov_6.221027 165 .. 861 + Contig110 125432 .. 226695

Contig1101 Contig1101 1 .. 2539 + rev NODE_2735_length_890_cov_8.229214 1 .. 700 + Contig1101 2539 .. 2539

Contig114 Contig114 1..63194 + CU694290 1 ..104779 + NODE_11682_length_642_cov_6.291277 267 .. 666

Contig116 Contig116 1 .. 165748 + NODE_185_length 358 cov_88.776535 312 .. 382 + Contig116 165818 .. 168596

Contig1162 Contig1162 1 .. 2254 + NODE_5508_length_453 cov_2.346578 156 .. 477 + Contig1162 2254 .. 2254

Contig117 Contig117 1..93883 + CU611059 1..117161 + Contig117 211053 ..211182

Contig1171 Contig1171 1.. 1 + NODE_1644_length_913 cov_25.886089 1 .. 165 + Contig1171 24 .. 2110

Contig1173 Contig1173 1 .. 3338 + NODE_2914 _length_570_cov_2.647368 260 .. 594 + Contig1173 3338 .. 3338

Contig1175 Contig1175 1 .. 2833 + rev NODE_15069_length 574 cov_3.900697 1 .. 439 + Contig1175 2833 .. 2833

Contig118 Contig118 1 .. 168962 + rev NODE_15181_length_824 cov_4.258495 1 .. 679 + Contig118 169642 .. 171330

Contig12 Contig12 1 .. 549888 + NODE_5701_length_950_cov_4.801053 174 .. 974 + Contig12 550688 .. 710758
Contig120 1 .. 83491 + NODE_14842_length_9445_cov_10.180731 164 .. 9469 + Contig120 92796 .. 159163 + rev

Contig120 NODE_18724_length_4059_cov_7.507514 1 .. 3882 + Contig120 163046 .. 233050

Contig1205 Contig1205 1 .. 4896 + NODE_7763_length_140_cov_2.771429 156 .. 164 + Contig1205 4896 .. 4896

Contig121 Contig121 1 .. 78816 + NODE_111_length 241 _cov_90.585060 1 .. 113 + Contig121 78930 .. 210927

Contig123 Contig123 1 .. 69998 + rev NODE_10824_length 2433 cov_7.838471 1.. 2295 + Contig123 72044 .. 148978

Contig124 Contig124 1 .. 285585 + rev NODE_8740_length_1156_cov_3.957613 1 .. 1020 + Contig124 285585 .. 285585

Contig125 Contig125 1 .. 68642 + rev NODE_16547_length_586_cov_3.849829 1 .. 458 + Contig125 69101 .. 282133

Contig126 Contig126 1 .. 34807 + NODE_19981_length_13774_cov_9.950269 244 .. 13798 + Contig126 48361 .. 189320

Contig127 Contig127 2 .. 2 + rev NODE_10953 length_1721_cov_35.972691 223 .. 1745 + Contig127 2 .. 142654

Contig1271 Contig1271 1 .. 2625 + rev NODE_10560_length_2317_cov_7.077687 1 .. 1598 + Contig1271 2625 .. 2625
Contig129 1 .. 6794 + NODE_3210_length_512_cov_3.671875 198 .. 536 + Contig129 7132 .. 90119 + CU611060 1 ..87205 +

Contig129 NODE_15149_length_970 cov_5.123711 156 .. 994
Contig13 1.. 1 + NODE_673_length_135_cov_70.481483 1 .. 28 + Contig13 1 .. 8840 + rev NODE_16754_length_5480_cov_8.888868 1 .. 5344 +
Contig13 14185 .. 150510 + rev NODE_14331_length_1013_cov_6.566634 1 .. 880 + Contig13 150941 .. 173180 + rev
NODE_16384_length_596_cov_4.365772 1 .. 465 + Contig13 173646 .. 375899 + NODE_15321_length_1199_cov_7.063386 1 .. 1223 + Contig13
380434 .. 382543 + NODE_6651_length_629_cov_3.855326 1 .. 653 + Contig13 383653 .. 495818 + NODE_3625_length_817_cov_2.410037 166
.. 841 + Contig13 496658 .. 567628 + rev NODE_14804_length_3122_cov_7.659193 1 .. 2939 + Contig13 570568 .. 677457 +
NODE_3145_length_570_cov_4.177193 158 .. 594 + Contig13 677893 .. 735227 + rev NODE_1942_length_552_cov_4.353261 1 .. 415 +

Contig13 Contig13 735227 .. 735227

Contig130 Contig130 1..183574 + CU694979 1..71487
Contig131 1 .. 177771 + NODE_15152_length_1186_cov_6.473019 1 .. 1210 + Contig131 182830 .. 230277 + rev

Contig131 NODE_17398_length_8173 cov_10.797381 1 .. 8040 + Contig131 230277 .. 230277

Contig1320 Contig1320 1 .. 4497 + NODE_5512_length_676_cov_8.042899 216 .. 700 + Contig1320 4497 .. 4497

Contig134 Contig134 1 .. 74068 + rev NODE_1914_length_476_cov_3.495798 1 .. 349 + Contig134 74143 .. 154543

Contig136 Contig136 1 .. 148251 + rev NODE_2519_length_639_cov_5.893584 1 .. 511 + Contig136 148251 .. 148251

Contig137 Contig137 1 .. 114733 + NODE_6069_length_441_cov_2.342404 151 .. 465 + Contig137 114733 .. 114733

Contig1374 Contig1374 1 .. 2516 + rev NODE_1939_length_483_cov_3.627329 1 .. 318 + Contig1374 2516 .. 2516

Contig140 CUB94305 1..90238 30318 ..88118 + Contig140 53553 ..end

Contig1400 Contig1400 1 .. 2882 + rev NODE_15924 _length_1379_cov_5.123278 1 .. 1239 + Contig1400 2882 .. 2882

Contig141 Contig141 1 .. 96985 + rev NODE_14154_length_562_cov_3.096085 1 .. 426 + Contig141 97412 .. 169079
Contig142 1 .. 1+ NODE_5_length_628_cov_25.616241 1 .. 39 + Contig142 1 .. 2346 + NODE_166_length_1878_cov_29.269968 392 .. 1902 +

Contig142 Contig142 3206 .. 126722
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Contig1429

Contig1429 1 .. 4705 + rev NODE_14497_length 5534 _cov_10.494579 1 .. 5402 + Contig1429 4705 .. 4705

Contig144 1 .. 19295 + NODE_6851_length_256_cov_4.273438 148 . 280 + Contig144 19427 .. 158184 + rev

Contig144 NODE_7470_length_3907_cov_9.310469 1 .. 3749 + Contig144 158184 .. 158184
Contig145 Contig145 1 .. 139773 + rev NODE_18070_length 2015_cov_9.157816 1 .. 1878 + Contig145 141652 .. 177339
Contig1487 Contig1487 1 .. 2252 + NODE_4170_length_966_cov_8.107660 169 .. 990 + Contig1487 2252 .. 2252
Contig15 1..361830 + rev NODE_14482_length_6646_cov_10.322148 1 .. 6511 + Contig15 368342 ..480077 + CU694978 1 ..87635 + Contig15
Contig15 564182 ..585209 + CU6722411 ..97518
Contig153 1 .. 100681 + rev NODE_14557_length_1463_cov_6.264525 1 .. 1316 + Contig153 101998 .. 149020 +
Contig153 NODE_4460_length 947 cov_3.472017 155 .. 971 +
Contig1550 1 .. 1 + NODE_1245_length_1908_cov_16.900944 1 .. 1690 + Contig1550 1 .. 2611 + NODE_1929_length_489_cov_5.288343 216 ..
Contig1550 513 +
Contig1556 Contig1556 1 .. 2670 + rev NODE_22940_length 699 cov_3.616595 1 .. 529 + Contig1556 2670 .. 2670
Contig1562 Contig1562 1 .. 1 + NODE_6932_length_150_cov_14.326667 1 .. 16 + Contig1562 1 .. 5779
Contig1568 Contig1568 1 .. 4145 + rev NODE_16781_length_1425_cov_5.206316 1 .. 1293 + Contig1568 4145 .. 4145
Contig157 1 .. 22456 + rev NODE_14473_length_967_cov_4.770424 1 .. 774 + Contig157 23231 .. 79499 + rev
Contig157 NODE_8623 length 1012 cov_6.389328 1 .. 878 + Contig157 80378 .. 199122
Contig1588 Contig1588 1 .. 2573 + NODE_14455_length_9009_cov_10.351315 163 .. 9033 + Contig1588 2573 .. 2573
Contig16 1 .. 363036 + NODE_2589_length_449_cov_2.723831 167 .. 473 + Contig16 363342 .. 503995 + NODE_599_length_476_cov_3.207983
Contig16 160 .. 500 + Contig16 504335 .. 635027
Contig162 Contig162 1 .. 74894 + NODE_921_length 1251 cov_5.250999 153 .. 1275 + Contig162 76016 .. 128175
Contig163 1 .. 46260 + NODE_4512_length_1378_cov_7.321480 196 .. 1402 + Contig163 47466 .. 156115 +
Contig163 NODE_8672_length_475_cov_3.225263 201 .. 499 + Contig163 156413 .. 159641
Contig165 1 .. 106154 + NODE_16105_length_2188_cov_9.011883 178 .. 2212 + Contig165 108188 .. 144739 + rev
Contig165 NODE 14398 length 1141 cov_8.914110 1.. 1014 + Contig165 145654 .. 207316
Contig167 1 .. 24803 + rev NODE_5751_length_448_cov_2.770089 1 .. 317 + Contig167 25121 .. 132510 +
Contig167 NODE_1596_length 455 _cov_3.991209 189 .. 479 +
Contig168 Contig168 1 .. 92631 + NODE_11270_length_754_cov_3.249337 187 .. 778 + Contig168 93222 .. 140950
Contig169 rev CU694534 1..112195 + Contig132 72011 -128769 + rev CU611061 1..103983 + Contig169 1 ..25405
Contig1697 Contig1697 1 .. 5140 + rev NODE_2413_length_563_cov_3.753108 1 .. 425 + Contig1697 5140 .. 5140
Contig17 1..94921 + CU694961 1 ..109339 + Contig17 230767 ..467896 + NODE_1776_length_463_cov_4.142549 151 .. 487 + Contig17 494739
Contig17 .. End
Contig171 rev Contig150 48264 .. end + CU672242 1 ..111115 + Contig171 46174 .. end
Contig172 Contig172 1 .. 1 + NODE_14713_length_1597 cov_17.507828 1 .. 1427 + Contig172 1 .. 108195
Contig177 1 .. 56325 + rev NODE_16963_length_9998_cov_10.462193 1 .. 9863 + Contig177 59889 .. 110834 +
NODE_197_length_379_cov_34.398418 308 .. 403 + Contig177 110929 .. 114000 + rev NODE_173_length_972_cov_19.322016 1 .. 462 +
Contig177 Contig177 114000 .. 114000
Contig178 Contig178 1 — 86198 + rev CU694995 1..127294
Contig18 1 .. 427586 + rev NODE_14363_length_927_cov_5.319310 1 .. 753 + Contig18 428340 .. 466965 +
Contig18 NODE_518 length 445 cov_3.489888 155 .. 469 + Contig18 467279 .. 619892
Contig182 Contig182 1 .. 98351 + rev NODE_18487_length 4403 cov_9.712242 1 .. 4224 + Contig182 98351 .. 98351
Contig183 1 .. 66926 + rev NODE_14529_length_2216_cov_7.519855 1 .. 2087 + Contig183 68364 .. 121939 + rev
Contig183 NODE_14488 length 550 _cov_3.300000 1 .. 416 + Contig183 121939 .. 121939
Contig1833 Contig1833 1 .. 3009 + rev NODE_14637_length_1316_cov_10.629939 1 .. 1165 + Contig1833 3009 .. 3009
Contig185 Contig185 1 .. 73148 + rev NODE_23407_length_559 cov_3.688730 1 .. 430 + Contig185 73579 .. 94000
Contig1861 Contig1861 1 .. 2061 + rev NODE_16436_length_516_cov_1.891473 1 .. 389 + Contig1861 2061 .. 2061
Contig187 Contig187 1 ..75567 + CU694661 1 ..81981
Contig1875 Contig1875 1 .. 2169 + rev NODE_16353_length_1679_cov_5.949375 1 .. 1493 + Contig1875 2169 .. 2169
Contig19 1 .. 491528 + rev NODE_3462_length_651_cov_11.815668 1 .. 218 + Contig19 491747 .. 520455 + CU855827 1 ..77273 + Contig19
Contig19 596202 ..end
Contig2 1 .. 270750 + NODE_7416_length_463_cov_2.267819 199 .. 487 + Contig2 271038 ..458054 + rev CU694980 1 ..125054 + CU633974
8627 ..80422 + Contig2 689796 ..698255 + rev NODE_14692_length_1397_cov_7.984252 1 .. 1270 + + Contig2 699526 .. 800808 +
Contig2 NODE_1518_length_494 cov_3.611336 175 .. 518 + Contig2 801151 .. 1013382 + rev CU469389 + Contig2 1144127 ..end
Contig20 NODE_7577_length_1084_cov_5.682657 1 .. 918 + Contig20 1 ..447093 + CU694536 1 ..98191
Contig2023 Contig2023 1 .. 2681 + NODE_2793 length_873 cov_5.423826 193 .. 897 + Contig2023 2681 .. 2681
Contig205 Contig205 1 .. 81309 + NODE_113_length_197_cov_43.746193 151 .. 221 + Contig205 81309 .. 81309
Contig206 Contig206 1 .. 12190 + NODE_5994 length_176_cov_4.835227 1 .. 95 + Contig206 12286 .. 74709
Contig2068 Contig2068 1 .. 2651 + NODE_17117_length_3584 cov_7.075614 151 .. 3608 + Contig2068 2651 .. 2651
Contig21 Contig21 1 .. 362966 + rev NODE_821_length_481_cov_3.532224 1 .. 341 + Contig21 363308 .. 647099
Contig212 Contig212 1 .. 77616 + NODE_1_length_438_cov_2.413242 151 .. 462 + Contig212 77616 .. 77616
Contig214 Contig214 1 .. 71605 + NODE_2650_length_503_cov_4.980119 193 .. 527 + Contig214 71605 .. 71605
Contig217 Contig217 1 ..47233 + CU638820 1 ..100007
Contig218 Contig218 1 .. 47278 + rev NODE_19452_length_1930_cov_5.424352 1 .. 1758 + Contig218 47278 .. 47278
Contig2191 Contig2191 1.. 2182 + rev NODE_17793 length_591_cov_4.228426 1 .. 432 + Contig2191 2182 .. 2182
Contig22 Contig22 1 .. 153674 + rev NODE_313_length_471_cov_5.766454 1 .. 344 + Contig22 154019 .. 584877
Contig220 1 .. 37380 + NODE_6471_length_492_cov_4.264228 157 .. 516 + Contig220 37739 .. 39033 +
Contig220 NODE_14678_length_1753_cov_6.051911 238 .. 1777 + Contig220 40572 .. 72659
Contig222 Contig222 1 .. 40233 + rev NODE_7630_length_683_cov_5.256223 1 .. 532 + Contig222 40446 .. 55851
Contig225 Contig225 1 .. 52862 + NODE_450_length_560_cov_3.657143 253 .. 584 + Contig225 52862 .. 52862
Contig23 Contig23 1 .. 379862 + rev NODE_2366_length 2653 cov_7.867320 1 .. 2489 + Contig23 381952 .. 596662
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Contig2361 1 .. 1 + rev NODE_907_length_1688_cov_7.479265 540 .. 1712 + Contig2361 1 .. 2384 + rev

Contig2361 NODE_15679 length 1433 cov_3.371249 1 .. 1297 + Contig2361 2384 .. 2384
Contig24 Contig24 1 .. 35558 + rev NODE_18212_length 4374 _cov_3.618656 1 .. 4241 + Contig24 39800 .. 454541
Contig2454 Contig2454 1 .. 4305 + NODE_510_length 463 cov_3.053996 173 .. 487 + Contig2454 4305 .. 4305
Contig248 Contig248 1 .. 40993 + NODE_2121_length_451_cov_3.170732 159 .. 475 + Contig248 40993 .. 40993
Contig25 Contig25 1 .. 205574 + NODE_4588_length_443 cov_2.090293 154 .. 467 + Contig25 205887 .. 565665
Contig26 1 .. 390489 + rev NODE_14341_length_1960_cov_21.487246 172 .. 1984 + Contig26 392302 .. 492606 + rev
Contig26 NODE 404 _length 529 cov_7.674858 318 .. 19815 + Contig266 1 .. 17428
Contig27 1 .. 205677 + NODE_1954_length_558_cov_4.743728 215 .. 582 + Contig27 206044 .. 217495 +
NODE_14848_length_5464_cov_10.145498 1 .. 5488 + Contig27 225654 .. 359562 + NODE_7075_length_560_cov_5.392857 161 .. 584 +
Contig27 Contig27 359985 .. 600462
Contig273 Contig273 1 .. 1+ NODE_194_length 273 cov_18.494505 1 .. 122 + Contig273 1 .. 30874
Contig276 1 .. 20623 + NODE_8636_length_449_cov_2.665924 153 .. 473 + Contig276 20943 .. 34795 + rev
Contig276 NODE_15662_length_872_cov_6.877294 1 .. 691 + Contig276 34795 .. 34795
Contig277 1 .. 19644 + NODE_6017_length_482_cov_2.201245 1 .. 505 + Contig277 38258 .. 50896 + rev
Contig277 NODE_6778_length_3639 _cov_10.760098 1 .. 3511 + Contig277 50896 .. 50896
Contig28 Contig28 1 ..139059 + CU855855 1 ..90842 + Contig28 249950 ..end
Contig281 Contig281 1 .. 1+ NODE_1025_length 176 _cov_5.210227 1 .. 14 + Contig281 1 .. 14704
Contig288 Contig288 1 .. 23612 + rev NODE_18215_length 1053 cov_6.152896 1 .. 910 + Contig288 24523 .. 50717
Contig289 Contig289 1 .. 21179 + NODE_4738_length_724_cov_5.578729 168 .. 748 + Contig289 21759 .. 31437
Contig29 1..53101 + CU469394 1 ..94703 + Contig29 119034 .. 127032 + NODE_8469_length_1395_cov_8.497491 184 .. 1419 + Contig29
128267 .. 195517 + NODE_1420_length_473_cov_4.350951 159 .. 497 + Contig29 195855 .. 553050 + rev
Contig29 NODE_3037_length 3430 _cov_10.689795 1 .. 3259 + Contig29 553050 .. end
Contig2969 Contig2969 1..4128 + NODE_1607_length 1260_cov_17.555555 287 .. 1284 + Contig2969 4128 .. 4128
Contig297 1 .. 1343 + NODE_183_length_635_cov_7.535433 398 .. 659 + Contig297 1604 .. 25642 + NODE_3869_length_820_cov_6.934146
Contig297 157 .. 844 +
Contig298 Contig298 1 .. 26872 + NODE 2209 length 398 cov_8.100503 161 .. 422 + Contig298 26872 .. 26872
Contig3 1 .. 487012 + rev NODE_1492_length_508_cov_3.267717 1 .. 357 + Contig3 487370 .. 513388 + rev CU694971 1 .. 99582 + Contig3
Contig3 584628 .. 1101443 + rev NODE_5744_length_665_cov_4.942857 1 .. 534 + Contig3 1101443 .. 1101443
Contig30 Contig30 1 .. 71785 + NODE_2953 _length_438 cov_3.100457 155 .. 462 + Contig30 72092 .. 475048
Contig300 Contig300 1 .. 20996 + NODE 4553 length 380_cov_5.907895 154 .. 404 + Contig300 20996 .. 20996
Contig302 Contig302 1 .. 32456 + rev NODE_14806_length 1283 cov_5.076384 1 .. 196859
Contig304 Contig304 1 .. 28811 + rev NODE_13616_length 971 _cov_7.786818 1 .. 839 + Contig304 28811 .. 28811
Contig3093 Contig3093 1 .. 4482 + rev NODE_8201_length_662_cov_3.252266 1 .. 510 + Contig3093 4482 .. 4482
Contig247 1 ..22880 + rev CU694967 1 ..79556 + Contig31 50686 .. 395994 + NODE_29_length_410_cov_26.929268 231 .. 13874 + Contig31
Contig31 409638 .. end
Contig311 Contig311 1 .. 29808 + NODE 14409 length 2558 cov_7.649726 151 .. 2582 + Contig311 29808 .. 29808
Contig314 Contig314 1 .. 24874 + rev NODE_14809_length 1026 _cov_3.161793 1 .. 885 + Contig314 24874 .. 24874
Contig319 Contig319 1 .. 1+ NODE_126_length_514_cov_14.714007 1 .. 339 + Contig319 1 .. 8040
Contig320 Contig320 1 .. 24609 + rev NODE_14250_length_12494_cov_10.207219 1 .. 12365 + Contig320 24609 .. 24609
Contig325 Contig325 1 .. 1 + rev NODE_15163_length_2859_cov_7.077300 184 .. 2883 + Contig325 1 .. 21795
Contig33 Contig33 1..16824 + CU694981 1 ..104149 + Contig33 120975 ..537736
Contig331 Contig331 1 .. 14497 + rev NODE_2540_length 797 cov_11.115433 1 .. 664 + Contig331 14497 .. 14497
Contig34 Contig34 1 .. 366792 + NODE_4365_length_465_cov_3.135484 188 .. 489 + Contig34 367093 .. 496322
Contig344 Contig344 1 .. 1 + NODE_4_length_609_cov_9.159278 1 .. 107 + Contig344 1 .. 25673 + NODE_17461_length_1074_cov_2.853817 167 .. 1098 +
Contig348 Contig348 1 .. 18496 + rev NODE_40_length_273_cov_9.593407 1 .. 145 + Contig348 18496 .. 18496
Contig35 Contig35 1 ..4444 + rev CU856318 1..95046 + Contig35 122119 ..371820 + CU694969 1..99415 + Contig35 421351 ..end
Contig360 Contig360 1 .. 20124 + rev NODE_95_length_305_cov_98.324593 1 .. 102 + Contig360 20227 .. 22956
Contig3624 Contig3624 1.. 792 + NODE_6964_length_603 cov_4.396351 261 .. 627 + Contig3624 1158 .. 4220
Contig368 Contig368 1 .. 12713 + NODE_15945_length_860_cov_6.098837 175 .. 884 + Contig368 12713 .. 12713
Contig37 Contig37 1 ..163042 + CU469400 1 ..76478 + Contig37 214366 ..316261 + CU469399 1 ..74137 + Contig37 367109 ..end
Contig3713 Contig3713 1.. 2677 + rev NODE_15390_length_3855_cov_9.522438 1 .. 3719 + Contig3713 2677 .. 2677
Contig375 Contig375 1 .. 18900 + rev NODE_14327_length_7204_cov_10.817463 1 .. 12098 +
Contig376 Contig376 1 .. 12234 + rev NODE_5996_length_1195_cov_7.857740 1 .. 1046 + Contig376 12234 .. 12234
Contig38 rev CU694291 1 ..98065 + Contig38 124120 ..end
Contig381 Contig381 1 .. 7907 + NODE_231_length_2455 cov_18.198370 2307 .. 2479 + Contig381 7907 .. 7907
Contig386 Contig386 1 .. 18175 + rev NODE_19030_length_3462_cov_7.522531 1 .. 3236 + Contig386 18175 .. 18175
Contig4 1 .. 227908 + rev NODE_6936_length_1336_cov_4.700599 1 .. 1158 + Contig4 229067 .. 698377 + rev
NODE_7354_length_445_cov_2.777528 1 .. 298 + Contig4 698676 .. 888725 + rev NODE_15515_length_1254_cov_3.856459 1 .. 1127 + Contig4
Contig4 889553 .. 1101618
Contig40 Contig40 1 .. 43280 + NODE_4016_length_484 cov_2.291322 190 .. 508 + Contig40 43598 .. 341184
Contig400 Contig400 1 .. 15663 + rev NODE_18803_length_1280_cov_5.189063 1 .. 1148 + Contig400 15663 .. 15663
Contig403 Contig403 1 .. 19815 + NODE_1752_length_338_cov_27.875740 307 .. 362 + Contig403 19815 .. 19815
Contig405 Contig405 1 .. 15792 + rev NODE_8707_length_495_cov_2.846465 1 .. 346 + Contig405 15792 .. 15792
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Contig408

Contig408 1 .. 13313 + rev NODE_6170_length_509 cov_3.911591 1 .. 367 + Contig408 13313 .. 13313

Contig41 Contig41 1 .. 403002 + rev NODE_1401_length 947 cov_1.885956 1 .. 820 + Contig41 403763 .. 459702
Contig4148 Contig4148 1 .. 4150 + NODE_5270_length_1027_cov_64.281403 155 .. 1051 + Contig4148 4150 .. 4150
Contig417 Contig417 1 .. 21320 + rev NODE_10144_length_607_cov_4.341022 1 .. 474 + Contig417 21320 .. 21320
Contig42 Contig42 1 .. 264262 + NODE_17133_length_1436_cov_7.683147 209 .. 1460 + Contig42 265513 .. 421951
Contig421 Contig421 1 .. 17897 + rev NODE_6062_length 473 cov_2.756871 1 .. 334 + Contig421 18132 .. 20192
Contig425 Contig425 1 .. 18055 + rev NODE_22337_length 579 _cov_3.170985 1 .. 422 + Contig425 18055 .. 18055
Contig426 Contig426 1 .. 14412 + rev NODE_14428 length 5722 cov_10.105732 1 .. 5578 + Contig426 14412 .. 14412
Contig427 Contig427 1 .. 12424 + rev NODE_159_length_1934_cov_74.370735 1 .. 1627 + Contigd27 12424 .. 12424
Contig428 Contig428 1 .. 17826 + rev NODE_16882_length 2436_cov_6.986042 1 .. 2309 + Contig428 17826 .. 17826
Contigd3 1.. 311438 + rev NODE_8971_length_735_cov_3.473469 1 .. 564 + Contig43 312003 .. 314510 + rev
Contig43 NODE_16026_length 1676 cov_4.460024 1 .. 1357 + Contig43 315638 .. 424029
Contig433 Contig433 1 .. 15193 + NODE_3929 length_433_cov_3.422633 152 .. 457 + Contig433 15193 .. 15193
Contig44 Contig44 1 .. 81289 + rev NODE_6450_length_565_cov_3.194690 1 .. 383 + Contig44 81673 .. 301395 + CU694966 1 ..89842
Contig45 Contig45 1..183185 + CU469398 1 ..102410 + Contig45 284211 ..end
Contig456 Contig456 1 .. 470 + NODE_5201_length_595_cov_4.863865 198 .. 619 + Contigd56 891 .. 14190
Contig46 Contig46 1 .. 223023 + rev NODE_15347_length 1758 cov_7.529579 1 .. 1608 + Contig46 224632 .. 430272
Contig463 Contig463 1 .. 14184 + rev NODE_4746 _length 509 _cov_3.341847 1 .. 369 + Contig463 14184 .. 14184
Contig47 1 .. 161095 + NODE_7366_length_580_cov_4.091379 159 .. 604 + Contigd7 161540 .. 291716 +
Contig47 NODE_5325_length_440_cov_2.700000 153 .. 464 + Contig47 292027 .. 421817
Contigd77 Contig477 1 .. 13758 + NODE_1064_length_489_cov_3.433538 194 .. 513 + Contig477 13758 .. 13758
Contig48 1.. 191047 + rev NODE_16025_length_1373_cov_6.369265 1 .. 1197 + Contig48 192245 .. 278537 + CU469405 1 ..78006 +
Contig48 NODE_157_length_613_cov_94.970634 35 .. 6659
Contig484 Contig484 1.. 1+ NODE_672_length 424 cov_19.028301 1 .. 292 + Contig484 1 .. 7388
Contig49 Contig49 1 .. 331478 + rev NODE_7376_length 758 cov_5.889182 1 .. 617 + Contig49 332096 .. 358873
Contig491 Contig491 1 .. 8758 + NODE_4774_length_545_cov_4.724771 164 .. 569 + Contig491 8758 .. 8758
Contig493 Contig493 1 .. 12429 + rev NODE_14610_length_4792_cov_10.597245 1 .. 4629 + Contig493 12429 .. 12429
Contig5 1 .. 285699 + rev NODE_8829_length_706_cov_4.325779 1 .. 538 + Contig5 286238 .. 310010 + rev
NODE_21192_length_2880_cov_8.858334 1 .. 2741 + Contig5 312752 .. 613894 + rev NODE_1626_length_1749_cov_4.488851 1 .. 1593 +
Contigs Contig5 615488 .. 835074 + NODE_3345_length_431_cov_2.190255 166 .. 455 + Contig5 835363 .. 879806
Contig50 CUB94287 1..41447 + Contig50 1 ..407448
Contig503 Contig503 1 .. 11355 + NODE_15842_length_1746_cov_6.022337 159 .. 1770 + Contig503 11355 .. 11355
Contig51 Contig51 1 .. 375428 + NODE_18596_length_840_cov_2.229762 171 .. 864 + Contig51 375428 .. 375428
Contig516 Contig516 1 .. 6496 + NODE_3006_length_475_cov_3.305263 179 .. 499 + Contig516 6496 .. 6496
Contig517 Contig517 1 .. 10704 + rev NODE_20130_length_1934_cov_5.732162 1 .. 1804 + Contig517 10704 .. 10704
Contig52 Contig52 1 .. 110128 + NODE_6946_length 534 cov_3.404494 260 .. 558 + Contig52 110426 .. 305086 + CU672240 90046 ..109627
Contig53 Contig53 1 .. 191711 + NODE_1587_length_450_cov_4.173333 151 .. 474 + Contig53 192034 .. 305567 + CU855859 1..96477
Contig535 Contig535 1 .. 6465 + NODE_16523 length 2819 cov_6.350833 151 .. 2843 + Contig535 6465 .. 6465
Contig536 1 .. 1+ NODE_812_length_1713_cov_25.736135 1 .. 1188 + Contig536 1 .. 9922 + NODE_19258_length_5867_cov_7.049088 155 ..
Contig536 5891 +
Contig54 1 .. 158997 + rev NODE_1232_length_451_cov_5.971175 1 .. 317 + Contig54 159315 .. 193638 + rev
Contig54 NODE_1425 length_600_cov_3.035000 1 .. 402 + Contig54 194041 .. 357926
Contig546 Contig546 1 — 3064 + rev CU694974 1 — 115766
Contig55 1 .. 118040 + rev NODE_22541_length_535_cov_2.796262 1 .. 405 + Contig55 118386 .. 231324 + rev
Contig55 NODE_16001_length_3402_cov_9.982364 1 .. 3253 + Contig55 234578 .. 350972
Contig555 Contig555 1 .. 5813 + NODE_8781_length_1029_cov_4.029154 153 .. 1053 + Contig555 5813 .. 5813
Contig56 1 .. 74134 + rev NODE_15378_length_1820_cov_5.259890 1 .. 1643 + Contig56 75778 .. 360670 +
Contig56 NODE_13662_length_849 cov_4.440518 427 .. 873 +
Contig563 1 .. 3042 + rev NODE_4221_length_488_cov_6.399590 1 .. 328 + Contig563 3371 .. 11335 + rev
Contig563 NODE_15583 length 1275 _cov_6.377255 1 .. 1079 + Contig563 11335 .. 11335
Contig577 Contig577 1 .. 1+ rev NODE_8515_length_2031_cov_10.483013 529 .. 2055 + Contig577 1 .. 5444
Contig58 Contig58 1 .. 175610 + NODE_14760_length_1979 cov_8.186963 173 .. 2003 + Contig58 177440 .. 415316
Contig583 Contig583 1 .. 1049 + rev NODE_8938_length_469_cov_3.882729 1 .. 293 + Contig583 1343 .. 11663
Contig59 Contig59 1 ..57252 + rev CU633976 1 ..89791 + Contig59 162575 ..306602 + CU855832 1 ..62978 + Contig59 360959 ..end
Contig6 1..179815 + rev CU633880 1 ..84452 + Contig6 271630 ..436793 + CU694993 1 ..95704 + Contig6 542523 .. 626158 + rev
NODE_6117_length_477_cov_2.559748 1 .. 335 + Contig 626494 .. 644888 + rev NODE_8339_length_520_cov_2.911538 1 .. 366 + Contigé
Contig6 645255 .. end
Contig60 CUB94962 1..57507 + Contig60 37145 ..end
Contig605 Contig605 1 .. 5777 + NODE_3221_length_729_cov_12.895747 283 .. 753 + Contig605 5777 .. 5777
Contig61 1 .. 83644 + NODE_14339_length_1425_cov_4.524210 216 .. 1449 + Contig61 84877 .. 170306 + rev
Contigé1 NODE_6993_length_1627_cov_4.542717 1 .. 1481 + Contig61 171788 .. 414948
Contig628 Contig628 1 .. 7554 + NODE_14511_length_3119_cov_10.034947 183 .. 3143 + Contig628 7554 .. 7554
Contig630 Contig630 1 .. 6355 + rev NODE_21838_length_844 cov_7.751185 1 .. 687 + Contig630 6355 .. 6355
Contig633 CUB94760 1..210875 + Contig633 1269 ..4357
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Contig634

Contig634 1 .. 5870 + NODE_3390_length_877 cov_20.280502 209 .. 901 + Contig634 5870 .. 5870

Contig64 Contig64 1..93731 + rev CU694537 1 ..73946 + Contig64 201331 ..end
Contig651 Contig651 1 .. 2257 + NODE_8425_length 668 cov_6.769461 156 .. 692 + Contig651 2257 .. 2257
Contig652 Contig652 1 .. 1 + NODE_328_length_149 cov_56.013424 1 .. 11 + Contig652 1 .. 5412 + NODE_558 length_776_cov_42.896908 220 .. 800 +
Contig66 1 .. 132303 + rev NODE_15593_length_1145_cov_5.543231 1 .. 1169 + Contig66 174027 .. 195876 + rev
Contig66 NODE_9587_length_1151_cov_3.461338 1 .. 985 + Contig66 196862 .. end
Contig67 1 .. 42087 + NODE_4033_length_1090_cov_13.867890 158 .. 1114 + Contig67 43043 .. 96779 + rev
NODE_14351_length_4131_cov_10.676834 1 .. 3990 + Contig67 100470 .. 142561 + rev NODE_4542_length_471_cov_3.895966 1 .. 342 +
Contig67 Contig67 142904 .. end
Contig670 Contig670 1 .. 4887 + rev NODE_592 length 462 cov_2.448052 1 .. 328 + Contig670 5216 .. 6466
Contig68 Contig68 1 .. 47902 + NODE_14222 length_905_cov_6.382320 151 .. 929 + Contig68 48680 .. 339720
Contig682 Contig682 1 .. 5750 + rev NODE_9776_length_654 cov_3.660550 1 .. 517 + Contig682 6268 .. 7841
Contig69 1 .. 136245 + NODE_110_length_464_cov_3.030172 151 .. 488 + Contig69 136582 .. 349856 + rev
Contig69 NODE_6644_length_464_cov_3.553879 1 .. 331 + Contig69 349856 .. 349856
Contig697 Contig697 1 .. 2838 + NODE_20545 length 4837 cov_5.825511 233 .. 4861 + Contig697 2838 .. 2838
Contig70 1 .. 28866 + NODE_9917_length_687_cov_4.344978 324 .. 711 + Contig70 29193 .. 182126 + NODE_669_length_442_cov_1.737557
Contig70 157 .. 466 + Contig70 182435 .. 263256
Contig704 Contig704 1 .. 3304 + rev NODE_4846_length 516_cov_4.172481 1 .. 386 + Contig704 3304 .. 3304
Contig712 Contig712 1 .. 1 + rev NODE_250_length_199_cov_27.703518 187 .. 223 + Contig712 1 .. 4532
Contig73 CUB94289 1 ..92391 + Contig73 100949 ..end
Contig734 Contig734 1 .. 2235 + rev NODE_979 length 875 cov_15.531428 1 .. 582 + Contig734 2818 .. 5444
Contig74 Contig74 1 ..162837 + CU469396 1 ..109766
Contig744 Contig744 1 .. 2705 + rev NODE_4146_length_187_cov_5.620321 1 .. 101 + Contig744 2705 .. 2705
Contig75 1 .. 53501 + rev NODE_10034_length_1076_cov_4.166357 1 .. 945 + Contig75 54447 .. 102861 +
Contig75 NODE_218_length_434 cov_2.481567 151 .. 458 + Contig75 103168 .. 121409 + CU694973 1 ..147660 + Contig75 211709 ..end
Contig76 Contig76 1 .. 137076 + rev NODE_1209_length_469_cov_2.648188 1 .. 325 + Contig76 137402 .. 349624
Contig763 Contig763 1 .. 2450 + NODE_477 length 468 cov_4.472222 166 .. 492 + Contig763 2450 .. 2450
Contig782 Contig782 1 .. 1715 + NODE_263 length_455_cov_3.597802 151 .. 479 + Contig782 2043 .. 5357
Contig790 Contig790 1 .. 1 + rev NODE_15486_length_1328 cov_19.017319 248 .. 1352 + Contig790 1 .. 3804
rev CU694972 1..87649 + Contig8 33698 ..596124 + CU694663 1 ..12551 + rev CU855831 1..77771 + CU694976 46770 ..112370 + Contig8
Contig8 789381 ..end
Contig805 Contig805 1 .. 2094 + NODE_3_length_442_cov_4.106335 167 .. 466 + Contig805 2094 .. 2094
Contig815 Contig815 1 .. 495 + NODE_14462_length_2430_cov_7.737037 273 .. 2454 + Contig815 2676 .. 3678
Contig823 Contig823 1 .. 5520 + rev NODE_16145_length_4748 cov_7.206824 1 .. 4592 + Contig823 5520 .. 5520
Contig824 Contig824 1 .. 2447 + NODE_7518_length_474 cov_4.388186 156 .. 498 + Contig824 2447 .. 2447
Contig829 Contig829 1 .. 1+ NODE_951_length_1075_cov_94.086510 1 .. 800 + Contig829 1 .. 5492
Contig84 Contig84 1 .. 20234 + rev NODE_14460_length_807_cov_5.354399 1 .. 676 + Contig84 20911 .. 237125
Contig849 1 .. 1 + NODE_935_length_748_cov_8.784760 1 .. 272 + Contig849 1 .. 3186 + rev NODE_16443_length_736_cov_5.957880 1 .. 453 +
Contig849 Contig849 3186 .. 3186
Contig85 1..106054 + CU469395 1 .. 99525 + rev NODE_4246_length_599_cov_4.176961 1 .. 471 + CU469395 99697 .. 99915 + Contig85
204267 .. 234167 + rev CU469391 1 ..101110 + Contig85 332408 ..366117 + NODE_3332_length_461_cov_3.455531 160 .. 485 + Contig85
Contig85 366442 .. end
Contig86 Contig86 1 .. 147102 + rev NODE_14504_length_2196_cov_7.049181 1 .. 2066 + Contig86 149169 .. 283757
Contig867 Contig867 1 .. 1240 + NODE_195_length_531_cov_78.436913 444 .. 555 + Contig867 1351 .. 4591
Contig87 Contig87 1 .. 95692 + NODE_5703_length_632_cov_3.813291 306 .. 656 + Contig87 96042 .. 189393
Contig88 Contig88 1 ..115787 + CU855849 1 ..101004 + NODE_212_length_463_cov_3.153348 180 .. 487
Contig898 Contig898 1 .. 4661 + NODE_4070_length 472 _cov_2.563559 156 .. 496 + Contig898 4661 .. 4661
Contig9 1 .. 421407 + NODE_19464_length_662_cov_2.889728 155 .. 686 + Contig9 421938 .. 730399 + rev
Contig9 NODE_10648_length_578 cov_4.174740 1 .. 444 + Contig9 730844 .. 788031
Contig90 rev CU694960 1..84167 + Contig90 52642 ..end
Contig908 Contig908 1 .. 2153 + NODE_1684_length 690 _cov_5.473913 158 .. 714 + Contig908 2153 .. 2153
Contig918 Contig918 1 .. 2949 + rev NODE_6769_length_569_cov_2.644991 1 .. 422 + Contig918 2949 .. 2949
Contig92 Contig92 1 .. 125077 + rev NODE_2948 length 456_cov_2.539474 1 .. 296 + Contig92 125374 .. 227751
Contig93 1 .. 90769 + NODE_6980_length_1044_cov_4.462644 200 .. 1068 + Contig93 91637 .. 286667 +
Contig93 NODE_15694_length_3257 cov_10.260670 184 .. 3281 +
Contig938 Contig938 1 .. 1 + NODE_882_length_396_cov_8.035354 1 .. 235 + Contig938 1 .. 2231
Contig94 Contig94 1 .. 267283 + NODE_4344_length_781_cov_4.618438 203 .. 805 + Contig94 267885 .. 281273
Contig945 Contig945 1 .. 1260 + NODE_5483 _length 478 cov_2.523013 160 .. 502 + Contig945 1602 .. 5202
Contig948 Contig948 1 .. 2041 + NODE_5136_length_472_cov_2.546610 158 .. 496 + Contig948 2041 .. 2041
Contig949 Contig949 1 .. 8025 + rev NODE_18477_length_1807_cov_6.795241 1 .. 1679 + Contig949 8025 .. 8025
Contig95 1 .. 19929 + NODE_16536_length_2120_cov_7.550000 177 .. 2144 + Contig95 21896 .. 42883 + rev
Contig95 NODE_19117_length_6155_cov_7.971080 1 .. 6021 + Contig95 45305 .. 288207 + NODE_1691_length_452_cov_3.475664 155 .. 476 +
Contig960 Contig960 1 .. 1301 + rev NODE_12728 length _562_cov_3.049822 1 .. 374 + Contig960 1676 .. 4775
Contig97 1 .. 112333 + NODE_17945_length_8351_cov_10.547599 166 .. 8375 + Contig97 120542 .. 140751 + rev
Contig97 NODE_14657_length_6702_cov_10.688451 1 .. 6547 + Contig97 147299 .. 329294
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Contig977 Contig977 1 .. 2670 + rev NODE_3598_length_992_cov_4.484879 1 .. 854 + Contigd77 2670 .. 2670
Contig983 Contig983 1 .. 5312 + NODE_1192_length_10230_cov_10.357380 163 .. 10254 + Contig983 5312 .. 5312
Contig990 Contig990 1 .. 3597 + rev NODE_14389_length_650_cov_16.389231 1 .. 516 + Contig990 3597 .. 3597
Contig991 Contig991 1 .. 3138 + NODE_21273_length_2069_cov_5.269212 162 .. 2093 + Contig991 3138 .. 3138
Contig992 Contig992 1 .. 1+ NODE_17086_length_1456_cov_5.812500 1 .. 954 + Contigd92 1 .. 2993

Contig995 Contig995 1 .. 2053 + NODE_3157_length_584_cov_6.989726 153 .. 608 + Contigd95 2053 .. 20532
SuperCU469403 | rev CU469403 2001 ..98732 + CU469388 1 ..117284 + CU469392 900 ..114210 + CUB94662 13653 ..106040
SuperCUB94965 | CUG94965 1..132537 + rev CU469401 12588 ..103744

SuperCUB94970 | CUB94970 1..75255 + rev CU856298 66845 ..77235

192




Appendix table 3.5: Bacterial contamination on contigs (top 50 contigs)

Contig Count of Hit E::cj;fhf
Cu694975 321 66,621
Cu694660 138 20,528
SuperContig28 1 3791
SuperContig3669 4 2028
SuperContig3704 1 2014
SuperContig2186 2 1552
SuperContig1743 3 1543
SuperContig2681 2 1170
SuperContigd760 1 1160
SuperContig2675 | 2 1128
SuperContig3569 1 1128
SuperContig2234 | 2 1109
SuperContig4133 | 3 1104
SuperContig779 3 1103
SuperContig3136 2 1072
SuperContig3910 2 1064
SuperContig4139 2 1053
SuperContig4648 2 1009
SuperContig3695 | 2 982
SuperContig2810 | 2 943
SuperContig3812 | 2 908
SuperContig3932 | 2 906
SuperContig3644 | 2 895
SuperContig4575 | 2 892
SuperContig1461 4 864
SuperContig2778 6 854
SuperContig3010 2 835
SuperContig4463 2 834
SuperContig1805 1 831
SuperContig2642 2 829
SuperContig4419 2 823
SuperContig4169 2 819
SuperContig1305 2 809
SuperContig3068 | 1 793
SuperContig4602 1 782
SuperContig1291 5 777
SuperContig1423 4 766
SuperContig3103 2 766
SuperContig3595 2 759
SuperContig2267 2 756
SuperContig2346 3 743
SuperContig4 199 2 743
SuperContig219 1 736
SuperContig2046 1 718
SuperContig3694 | 2 77
SuperContig2134 3 706
SuperContig4281 1 680
SuperContig3165 2 670
SuperContig2593 | 3 657
SuperContig3524 1 655
Grand Total 859 185,062
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Appendix table 3.6: Bacterial contaminants (top 50 contigs)

Best Hit

Total

Xanthomonas campestris pv. campestris str. B100, complete genome

Xanthomonas axonopodis pv. citri str. 306, complete genome

Xanthomonas pestris pv. icatoria str. 85-10, complete genome
Xanthomonas oryzae pv. oryzae PXO99A, complete genome
Methylobacillus flagellatus KT, complete genome

p is pv. p is str. ATCC 33913, complete genome

Xanthomonas
Flavobacterium johnsoniae UW101, complete genome
Xanthomonas oryzae pv. oryzae MAFF 311018, complete genome
Acidovorax avenae subsp. citrulli AAC00-1, complete genome
Janthinobacterium sp. Marseille, complete genome

Pseudomonas fluorescens Pf0-1, complete genome

Variovorax paradoxus S110 chromosome 1, complete genome
Polaromonas naphthalenivorans CJ2, complete genome
Sphingomonas wittichii RW1, complete genome

Methylibium petroleiphilum PM1, complete genome

Leptothrix cholodnii SP-6, complete genome

Thiobacillus denitrificans ATCC 25259, complete genome
Pseudomonas fluorescens Pf-5, complete genome

Agrobacterium tumefaciens str. C58 chromosome linear, complete sequence
Azotobacter vinelandii DJ, complete genome

Pseudomonas entomophila L48, complete genome
Novosphingobium aromaticivorans DSM 12444, complete genome
Sphingopyxis alaskensis RB2256, complete genome
Xanthomonas campestris pv. campestris str. 8004, complete genome
Bordetella pertussis Tohama |, complete genome

Delftia acidovorans SPH-1, complete genome

Ralstonia pickettii 12J chromosome 1, complete sequence
Laribacter hongkongensis HLHK9, complete genome

Thauera sp. MZ1T, complete genome

Pseudomonas fluorescens SBW25, complete genome
Verminephrobacter eiseniae EF01-2, complete genome
Xanthomonas oryzae pv. oryzae KACC10331, complete genome
Pseudomonas putida GB-1, complete genome

Pseudomonas putida F1, complete genome

Burkholderia phytofirmans PsJN chromosome 1, complete genome
Erythrobacter litoralis HTCC2594, complete genome

Rhodoferax ferrireducens T118, complete genome

Nitrosomonas eutropha C91, complete genome

Chromobacterium violaceum ATCC 12472, complete genome
Nitrosospira multiformis ATCC 25196 chromosome 1, complete sequence
Rhizobium sp. NGR234, complete genome

Phenylobacterium zucineum HLK1, complete genome
Diaphorobacter sp. TPSY, complete genome

Burkholderia glumae BGR1 chromosome 1, complete genome
Cellvibrio japonicus Ueda107, complete genome

Pseudomonas putida KT2440, complete genome

Azoarcus sp. BH72, complete genome

Aromatoleum aromaticum EbN1, complete genome
Rhodopseudomonas palustris HaA2, complete genome

Herminiimonas arsenicoxydans, complete genome

120
108
100
92
58
41
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Grand Total

859
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Appendix table 3.7: Arabidopsis thaliana contamination

Count of Sum of
Contig Hit Length
SuperContig2363 1 97
SuperContig4001 2 1392
SuperContig4406 2 339
SuperContig591 2 128
SuperContig657 1 94
SuperContig84 2 572
SuperCu856152 3 476
Grand Total 13 3098
Hit Total
3 5
4 1
5 1
chloroplast 2
mitochondria 4
Grand Total 13
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Appendices for Chapter 4

Appendix table 4.1: Go Terms

GO Class ID Definitions Counts Fractions

G0:0003674 molecular_function 9837 17.9%
G0:0008150 biological_process 6576 12.0%
G0:0005488 binding 5176 9.4%
G0:0005575 cellular_component 4243 7.7%
GO0:0003824 catalytic activity 4030 7.3%
G0:0008152 metabolism 3972 7.2%
G0:0005623 cell 2100 3.8%
G0:0005622 intracellular 1460 2.7%
G0:0016787 hydrolase activity 1421 2.6%
GO0:0005515 protein binding 1321 2.4%
G0:0000166 nucleotide binding 1206 2.2%
GO0:0019538 protein metabolism 1153 2.1%
GO0:0016740 transferase activity 1117 2.0%
G0:0009058 biosynthesis 1055 1.9%
G0:0003676 nucleic acid binding 959 1.8%
GO0:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism 904 1.7%
G0:0006810 transport 809 1.5%
GO0:0016301 kinase activity 573 1.0%
G0:0005737 cytoplasm 551 1.0%
GO0:0004672 protein kinase activity 485 0.9%
G0:0006464 protein modification 407 0.7%
G0:0003677 DNA binding 369 0.7%
GO0:0005215 transporter activity 362 0.7%
G0:0006412 protein biosynthesis 312 0.6%
G0:0005634 nucleus 307 0.6%
G0:0009056 catabolism 261 0.5%
GO0:0008233 peptidase activity 249 0.5%
G0:0006259 DNA metabolism 245 0.5%
G0:0007154 cell communication 239 0.4%
GO0:0005975 carbohydrate metabolism 234 0.4%
G0:0003723 RNA binding 217 0.4%
GO0:0016043 cell organization and biogenesis 185 0.3%
G0:0015031 protein transport 165 0.3%
G0:0007165 signal transduction 161 0.3%
G0:0006629 lipid metabolism 149 0.3%
G0:0005198 structural molecule activity 144 0.3%
G0:0005840 ribosome 143 0.3%
G0:0006996 organelle organization and biogenesis 139 0.3%
G0:0006950 response to stress 130 0.2%
GO0:0006811 ion transport 126 0.2%
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Appendix table 4.1: Go Terms

GO Class ID Definitions Counts | Fractions
G0:0008289 lipid binding 93 0.2%
G0:0004518 nuclease activity 88 0.2%
G0:0005694 chromosome 72 0.1%
G0:0005856 cytoskeleton 68 0.1%
GO0:0030234 enzyme regulator activity 67 0.1%
G0:0005509 calcium ion binding 64 0.1%
G0:0004721 phosphoprotein phosphatase activity 62 0.1%
G0:0004871 signal transducer activity 56 0.1%
GO0:0003700 transcription factor activity 56 0.1%
G0:0003774 motor activity 55 0.1%
G0:0005739 mitochondrion 51 0.1%
G0:0019725 cell homeostasis 50 0.1%
GO0:0005783 endoplasmic reticulum 43 0.1%
GO0:0006091 generation of precursor metabolites and energy 42 0.1%
G0:0005794 Golgi apparatus 41 0.1%
G0:0003682 chromatin binding 35 0.1%
G0:0008135 translation factor activity, nucleic acid binding 34 0.1%
GO0:0005576 extracellular region 32 0.1%
G0:0005216 ion channel activity 29 0.1%
G0:0004872 receptor activity 28 0.1%
G0:0016209 antioxidant activity 26 0.1%
G0:0030246 carbohydrate binding 26 0.1%
GO0:0030528 transcription regulator activity 25 0.1%
G0:0007049 cell cycle 25 0.1%
GO0:0005654 nucleoplasm 23 0.0%
G0:0007010 cytoskeleton organization and biogenesis 22 0.0%
G0:0008092 cytoskeletal protein binding 21 0.0%
G0:0003779 actin binding 17 0.0%
G0:0016023 cytoplasmic membrane-bound vesicle 16 0.0%
G0:0005829 cytosol 15 0.0%
GO0:0005886 plasma membrane 14 0.0%
G0:0005777 peroxisome 14 0.0%
G0:0005635 nuclear membrane 11 0.0%
G0:0040029 regulation of gene expression, epigenetic 11 0.0%
G0:0030312 external encapsulating structure 9 0.0%
G0:0007005 mitochondrion organization and biogenesis 9 0.0%
G0:0005773 vacuole 9 0.0%
G0:0005618 cell wall 7 0.0%
G0:0005764 lysosome 6 0.0%
GO0:0030313 cell envelope 5 0.0%
G0:0009628 response to abiotic stimulus 5 0.0%

197




Appendix table 4.1: Go Terms

GO Class ID Definitions Counts | Fractions
GO0:0005815 microtubule organizing center 5 0.0%
G0:0005730 nucleolus 4 0.0%
G0:0000228 nuclear chromosome 4 0.0%
G0:0016265 death 3 0.0%
G0:0008219 cell death 3 0.0%
G0:0009607 response to biotic stimulus 2 0.0%
G0:0009653 morphogenesis 2 0.0%
G0:0008283 cell proliferation 2 0.0%
G0:0009605 response to external stimulus 1 0.0%
G0:0019748 secondary metabolism 1 0.0%
GO0:0005615 extracellular space 1 0.0%
G0:0030154 cell differentiation 1 0.0%
Total 54,903 100.0%
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Appendices for Chapter 5

Distribution of percentage coverage (Perc cov) of genes

Appendix table 5.1
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Waco9

11
14,582

Noco2

14,582

Maks9

14,582

Hind2

18
14,582

Emwal

11
14,582

Emoy2

14,582

Emco5

14,582

Cala2

14,582

Perc cov

50
49
48
47
46
45

44
43
42
41

40
39
38

37
36
35

34

33
32

31

30
29
28
27
26
25

24
23
22
21

20
19
18
17
16
15
14
13
12
11
10

Total

200



Appendix table 5.2: Multi copy genes

The full of percentage coverage, mean coverage and Poisson CDF coverage can be found in

attached file: “Appendix table 5.2: Multi copy genes.xlsx”

Gene Cala2 Emco5 Emoy2 Emwal Hind2 Maks9 Noco2 Waco9 Std Dev
pasa_g28450 97.08 0 99.99 100 0 0 99.99 0 53.06794
HaRxLL107 0.89 0 99.99 92.32 99.02 0.01 99.87 0.77 52.10976
805568 99.93 99.62 2.14 7.14 4.7 94.03 0.12 96.41 50.30372
803972 0.48 0.01 99.95 99.99 0.48 17.07 99.97 0 50.19579
814281 99.87 99.99 25.14 3.19 99.97 0.61 0 99.99 50.18138
810011 4.95 99.99 91.21 99.98 6.41 0.81 98.07 2.9 50.10177
806880 4.17 0 97.58 93.05 0 0 99.99 0 49.76072
808490 9.62 0.82 99.83 99.15 2.96 6.84 99.84 1.51 49.38215
806813 0.05 99.05 99.57 99.3 0.01 36.84 97.16 0 49.36307
800333 0.5 0 99.34 92.58 1.83 0.22 82.72 95.45 49.33684

Appendix table 5.2.11: Table of the genes displaying the most variance in expected Poisson CDF

for coverage. Std Dev = standard deviation.

Gene Cala2 Emco5 Emoy2 Emwal Hind2 Maks9 Noco2 Waco9 Std Dev
814281 99.87 99.99 25.14 3.19 99.97 0.61 0 99.99 50.18137617
810011 4.95 99.99 91.21 99.98 6.41 0.81 98.07 2.9 50.10177271
808693 0 99.79 71.35 1.45 0 99.96 88.88 0.08 48.70677056
806770 99.81 99.99 5.7 0.01 0 100 52.45 100 48.5910171
805266 9.62 2.41 93.26 99.99 1.96 1.31 93.71 0.59 47.98286121
807909 0 97.69 93.41 64.27 0 99.99 95.62 2.51 47.56984968
801959 97.48 99.99 10.74 56.46 99.98 0 99.99 0 47.52614168
807217 1.84 0.61 15.15 0.08 43.11 99.58 99.59 99.99 47.40193334
HaRxL133 91.99 96.99 11.96 0.76 0.01 100 28.37 99.92 47.34252513
814216 83.57 99.99 75.02 0 0 0 99.6 88.02 46.89017686

Appendix table 5.2.2: Table of the genes displaying the most variance in expected Poisson CDF for

coverage, where the gene is expected to be single copy in the reference strain, Emoy2. Std Dev =

standard deviation.

Gene Cala2 Emco5 Emoy2 Emwal Hind2 Maks9 Noco2 Waco9 Std Dev
809919 4.65 90.43 0.06 6.04 99.3 99.9 0.49 0.38 48.89147134
812547 99.97 0 0.83 0 83.67 99.7 15.33 14.11 46.40758203
803007 98.49 0 0.01 0.07 0 0 0 99.99 45.93477674
804317 84.82 81.17 0.54 0.02 99.86 99.99 65.73 99.99 42.5571619
804786 89.31 99.04 0.66 0 80.41 44.61 0 68.95 42.52956274
RXLR87 6.64 99.99 0.74 49.24 99.99 20.18 0 11.59 42.44680433
814239 96.69 1.42 0.95 69.16 0.99 19.83 2.02 1.09 37.64354486
RXLR35 67.29 0 0.55 0 94.38 36.77 0 49.79 36.89845516
809198 76.83 53.18 0.4 25 21.09 98.46 2.22 10.36 36.39590352
812075 74.93 83.58 0 0.02 1.78 1.76 0 2.6 36.2995899

Appendix table 5.2.3: Table of the genes displaying the most variance in expected Poisson CDF for

coverage, where the gene is expected to be hemizygous in the reference strain, Emoy2. Std Dev =

standard deviation
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Appendix table 5.3: SNP gene tables (top 20)

c
N g

& S a

8 z s

T Q =

< c o c

] o =3 o

& s§| E| 5| =

) c =] c =] c

[] o c o c ]

o £ < e X e <

o] Q - c w c w c w

g | € S 2 3 2 3 2 3

e | 2 S| 9| 2] 9l 2| 9l 2

g | & £ 2] 2| £ =| £ =

(%] = w} < V21 < (V2 < V2]

808490 Y - - 334 | 143 | 334 | 143 | 223 | 13.1
801090 - - - 244 | 134 | 244 | 134 4.5 2.9
808092 - - - 21.3 49 | 21.3 49 | 17.8 9.1
814172 Y - - 21.0 | 13.7 | 21.0 | 13.7 | 15.7 | 10.9
802192 Y - - 20.9 | 15.0 | 20.9 | 15.0 7.7 6.6
eff 15410 g | Y 1 - 209 | 144 | 209 | 144 7.4 5.8
ceg_12014 g | Y 3 - 20.3 | 16.6 5.8 4.2 2.7 2.1
814613 - - - 19.5 9.6 6.0 5.4 3.3 5.2
814861 - - - 19.5 9.4 | 19.5 9.4 3.9 2.3
813648 - - - 183 | 19.1 | 183 | 19.1 | 136 | 17.2
813379 - - - 18.0 6.9 | 18.0 6.9 | 154 9.3
803035 Y - - 179 | 151 | 179 | 15.1 | 124 | 123
807859 - - - 17.1 | 114 | 116 9.7 4.9 5.1
808876 - - - 16.9 4.1 | 169 4.1 | 13.7 7.0
ATR1_Emoy2 | Y - ATR1 | 16.8 | 21.5 | 16.8 | 21.5 6.1 6.5
803927 - - - 16.4 5.4 8.5 2.2 4.5 3.4
800520 - - - 16.3 6.3 | 16.3 6.3 | 155 7.3
807858 - - - 16.3 | 10.4 5.2 4.0 3.0 2.2
808811 Y - - 16.3 | 129 | 16.3 | 12.9 4.0 4.4
804775 - - - 16.1 6.0 | 16.1 6.0 6.0 4.5

Full list of genes can be found in appendix file: “Appendix table 5.3, 5.4, 5.5 - SNPs.xIsx”
under SNP tab.
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Appendix table 5.4: Heterozygous SNP gene table (top 20)

c

o 2

I IS o

g 2 =

3 Q 2

= c o c

o s| 2| ¢

g s| £E| 5| E

) c ’é c 42 c

~ £ 2 = 2 = 2

o] Q o c w c w c w

g | £ S 2 3 2 3 2 3

el 2 T = T - i

S| s & g = g b g | =

(%) = ] << [¥2) << n < n

801090 - - - 231 | 141 | 231 | 141 | 48| 45
802192 Y - - 200 | 160 | 200 | 160 | 70| 6.9
814172 Y - - 175 | 11.1 | 175 | 11.1 | 150 | 11.8
eff 15410 g | Y 1 - 16.4 | 125 | 164 | 125 | 63 | 6.1
814613 - - - 16.4 | 120 | 40| 48| 11| 05
814861 - - - 148 | 80| 148 | 80| 30| 20
806792 - - - 145 | 104 | 145 | 104 | 94 | 88
814802 - - - 141 | 145 | 141 | 145 | 9.4 | 105
813648 - - - 13.8 | 11.9 | 13.8 | 11.9 | 94 | 85
808811 Y - - 126 | 98| 126 | 98| 48| 71
808716 - - - 120|106 | 10| 07| 05| 05
811880 Y - - 105| 69| 105| 69| 70| 6.1
813542 - - - 103 | 78103 | 78| 51| 46
810634 Y - - 98| 76| 98| 76| 35| 3.7
PHYT9337.2 | - - - 96| 50| 65| 49| 50| 47
807678 - - - 91| 68| 91| 68| 75| 68
812044 Y - - 89| 152 | 89| 152 | 85| 14.4
PHYT4874.8 | - - - 89| 96| 30| 29| 25| 26
808490 Y - - 88 | 16.0 | 88| 16.0 | 86 | 150
811478 Y - HaRxLL36 | 88 | 59| 88| 59| 48| 4.9

Full list of genes can be found in appendix file: “Appendix table 5.3, 5.4, 5.5 - SNPs.xIsx”

under Hets tab.
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Appendix table 5.5: Protein coding effect of SNPs (top 20)

E a
2 a P
(] c +
: | | 8 A
E < g 5 5| =
o I -~ a < c 5 =
2l E| 5|89 ) & E| 3
[ 2 5 © © © €| €
3 o e 2| a g a g a 3 3
(%) = ] < %) < %) < n O O
808490 Y - - 04 ] 11 8.5 15.5 33.0 15.2 | 0.0 | 0.0
802192 Y - - 0.1 ]| 0.4 9.0 7.5 20.8 15.1 | 0.0 | 0.0
808092 - - - 09 | 1.0 1.5 2.8 | 204 51 00| 0.0
814172 Y - - 16 | 1.5 16.3 10.2 19.4 134 | 0.0 | 0.0
814861 - - - 0.6 | 0.5 12.9 6.9 | 189 9.2 | 0.0 | 0.0
803035 Y - - 01 | 0.4 0.6 14 | 17.8 15.1 | 0.0 | 0.0
eff_15410_g Y 1 - 33| 20 12.9 10.1 17.6 13.3 | 0.0 | 0.0
813379 - - - 0.5 | 0.5 3.1 49 | 175 6.5 0.0 | 0.0
ceg 12014 g |Y |3 |- 29 |20| 01| 04| 174 | 156 | 00 | 4.0
807859 - - - 04 | 0.7 0.0 0.0 | 16.8 115 | 0.0 | 0.0
ATR1_Emoy2 | Y - ATR1 | 0.0 | 0.0 0.0 0.0 | 16.8 | 215 | 0.0 | 0.0
803927 - - - 04 | 05 1.8 49 | 16.0 56 | 0.0 | 0.0
801090 - - - 88 | 3.5 15.0 9.8 | 15.6 10.1 | 0.0 | 0.0
800520 - - - 0.6 | 0.5 0.3 0.5 15.6 58| 0.0 | 0.0
814613 - - - 4.1 | 1.7 13.0 9.2 15.4 87| 20| 0.0
814292 - - - 0.3 | 05 13 2.3 15.0 6.6 | 0.0 | 0.0
804775 - - - 1.3 | 0.7 1.0 2.1 14.9 57 ] 0.0 | 0.0
811796 - - - 0.0 | 0.0 0.0 0.0 | 149 10.7 | 0.0 | 0.0
809040 - - - 04 | 11 4.8 5.6 | 14.6 6.7 | 0.0 | 0.0
807858 - - - 1.6 | 1.2 0.1 04 | 146 94 | 00 | 0.0

Full list of genes can be found in appendix file: “Appendix table 5.3, 5.4, 5.5 - SNPs.xIsx”

under Syn tab.
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Appendix table 5.6: INDEL gene tables (top 20)

c

3
a c
c S 3
o )
c| E|2| 2
c| S| E|E] 2
<] = o c c
3 = < = o
c w c w c “_-,
S|z 8| 2| 8 |3¢
E '; ° '; -] '-: ° S

a [T b 2] °

wn (= w | | 3|2 | &8 2|83
801090 - - - 49 | 16 | 49| 16 | 35 1.6
803674 - - - 46 | 3.2 |1 0.7 | 0.3 | 0.7 0.3
814172 Y - - 44 1 09| 44| 09 | 41 1.2
811880 Y - - 39 (12 ]39] 12| 39 1.2
807247 - - - 33 |17 ]33] 17|33 1.6
804903 Y - - 30|18 | 30| 18| 3.0 1.7
812377 - - - 3013 ]22] 13|22 1.2
PHYT2811.3 Y - - 29 (22| 14] 07| 14 0.7
PHYT9337.2 - - - 29 | 15| 16| 1.0 | 09 0.4
ceg 3124 g Y - - 28 | 35|28 | 35| 28 3.3
813447 Y 1| - 26 | 20| 26| 20 | 24 1.8
809897 - - - 25|52 | 25]| 52|25 4.8
806792 - - - 25|16 | 25|16 | 24 1.6
808490 Y - - 25 15| 25| 15| 20 1.1
808716 - - - 25|12 |22] 07|20 0.7
PHYT2459.8 - - - 25|08 | 25| 08| 25 0.7
801705 - - - 25|05 | 25| 05| 23 0.6
809705 - - - 25109 | 25|09 |09 0.5
802220 - - - 25|09 25|09 | 1.0 0.4
PHYT4874.8 - - - 24 | 1.8 | 24|18 | 20 1.1

A full list of genes can be found in

under INDELs tab.

attached file: “Appendix table 5.6, 57 - INDELs.xlsx”
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Appendix table 5.7: Heterozygous INDEL gene tables (top 20)

c

3
a c
c a 3
) °
sl £ 2| &
s 2| g| 5
s = H £ <
X = < = )
c w c w c “_—,
23| 2| 3| &|3%
E ‘:: -] '-: ° '-: -] g

o [T ° o °

W R | w2 a3 |8 2|8
801090 - - - 49| 16| 49| 16 2.8 1.6
803674 - - - 46 | 32| 07| 0.3 0.6 0.3
814172 Y - - 4.3 1.2 4.3 1.2 3.4 1.8
811880 Y - - 35| 14| 35| 14 3.1 1.8
807247 - - - 3.1 1.4 3.1 1.4 2.9 1.6
804903 Y - - 30| 18| 3.0 1.8 2.6 1.9
PHYT9337.2 - - - 2.9 1.5 1.9 0.9 1.2 0.9
813447 Y 1] - 2.6 2.0 2.6 2.0 1.9 1.8
809897 - - - 25| 52| 25| 5.2 2.5 4.8
806792 - - - 2.5 1.6 2.5 1.6 2.1 1.8
809705 - - - 25| 09| 25| 09 0.7 0.5
802220 - - - 25| 09| 25| 09 0.9 0.4
pasa_gi_SuperContigl0_291 | - - - 24| 07| 24| 07 2.1 1.0
HaRxLCRN4 Y - - 23| 18| 23| 1.8 2.1 1.8
805490 - - - 2.3 1.4 2.1 1.4 1.8 1.5
808811 Y - - 23| 16| 23| 1.6 1.7 1.2
812153 - - - 2.3 1.4 2.3 1.4 1.9 1.1
807750 - - - 21| 45| 21| 45 2.2 4.2
810634 Y - - 2.1 1.4 2.1 1.4 1.8 1.4
808716 - - - 2.1 1.4 1.8 0.8 1.5 0.8

A full list of genes can be found in attached file: “Appendix table 5.6, 57 - INDELs.xIsx”

under Hets tab.
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Appendix table 5.8:

DnaSP tables (top and bottom 20 Fu'’s Fs)

%
c
2
o | E
- % z| S| .| ,
g g § E © =3 :- :g. g E e
61 3| E Eleclna 22| F| 2| 2 2
ceg_g20448 - - - 16 | 33| 41 4103 1.0 0.5 0.8 12.0
eff_g3498 Y - HaRxL21 16 | 21| 21 3|02 2.6 1.6 2.1 11.8
807780 | - - - 16 | 12| 12 2|01 2.5 1.5 2.0 10.9
808682 | - - - 16 | 18 | 18 3|02 2.4 1.5 2.1 10.4
803642 | - - - 16 | 19 | 19 3|02 2.0 1.6 1.9 10.3
808594 | Y - HaRxLL38 14 | 36 | 36 4|03 1.2 1.6 1.7 10.3
807859 | - - - 16 | 43| 43 503 1.3 1.7 1.8 10.2
814245 | - - - 16 | 13| 13 2|01 1.3 1.5 1.6 9.9
801132 | Y - - 16 | 56 | 56 6 | 0.4 1.2 1.7 1.8 9.6
eff_g7948 Y - - 16 | 56 | 56 6 | 0.4 1.2 1.7 1.8 9.6
800248 | - 1] - 16 | 24 | 24 4103 2.2 1.6 2.0 9.5
801226 | - - - 16 9 9 2|01 2.8 1.4 2.0 9.4
800673 | Y - - 16 | 35| 39 4103 -0.3 1.7 1.3 9.4
809692 | - - - 16 | 32| 32 4103 0.5 1.6 1.5 9.3
811507 | - - - 16 | 15| 15 3] 0.2 2.5 1.5 2.1 9.2
807947 | - - - 16 | 16 | 16 3] 0.2 2.1 1.5 1.9 9.2
807060 | - - - 16 | 14| 14 31]0.2 2.7 1.5 2.1 9.0
807061 | - - - 16 | 14 | 14 31]0.2 2.7 1.5 2.1 9.0
ATR1_Emoy?2 Y - ATR1 12 | 62 | 64 51| 04 0.2 1.7 1.5 8.8
805211 | - - - 16 | 22| 26 4103 1.1 0.6 0.9 8.8
804837 | - - - 16 4 5 8 |05 -0.2 0.5 0.3 -4.2
804910 | - - - 16 | 10| 10| 10 | 0.6 -0.4 0.5 0.3 -4.3
ceg_9280 g | - - - 16 4 6 9| 0.6 0.2 0.0 0.0 -4.4
PHYT5312.14 | - - - 16 | 16 | 16 | 12 | 0.8 -0.1 0.0 0.0 -4.4
ceg_14750_g | Y 13 Emoy2_HpRXLR104 16 | 15| 15| 12 | 0.8 0.0 -0.1 0.0 -4.7
804903 | Y - - 16 | 15| 17 | 11 | 0.7 -1.4 -0.4 -0.8 -4.8
eff g19502 | Y - - 16 | 15| 17 | 11 | 0.7 -1.4 -0.4 -0.8 -4.8
eff g7027 | Y - - 16 | 15| 17 | 11 | 0.7 -1.4 -0.4 -0.8 -4.8
808661 | - - - 14 3 5 8 | 0.6 -0.6 -0.2 -0.4 -5.2
801127 | - - - 16 3 5 8 | 05 -0.8 0.5 0.1 -5.2
pasa_gi_SuperContig2_159 | - - - 16 9 9 11 | 0.7 0.3 0.9 0.9 -5.3
806421 | - - - 16 | 24 | 24 | 14 | 0.9 0.1 1.0 0.8 -5.5
pasa_883_g | - - - 16 | 15| 17 | 13 | 0.8 0.0 0.4 0.4 -5.6
802816 | - 8 - 16 7 8| 11 | 0.7 0.5 0.8 0.8 -5.7
HaRxLL15 | - - - 16 | 13| 14| 12 | 0.8 -0.7 -0.2 -0.4 -6.2
809011 | - - - 16 7 8| 11 | 0.7 0.1 0.8 0.7 -6.3
HaRxLL133 | - - - 16 | 15| 16 | 13 | 0.8 -0.4 0.0 -0.1 -6.6
811403 | - - - 16 | 17 | 20 | 13 | 0.8 -1.4 -1.6 -1.8 -7.2
812038 | - - HaRxLL163 16 7 9| 12| 0.8 -0.1 0.4 0.3 -7.8
808717 | - - - 16 7 9| 13| 0.8 0.4 0.9 0.9 -9.1

A full list of genes can be found in attached file: “Appendix table 5.8 - DnaSP tables.xlIsx”

under the All tab.
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Appendix table 5.9: PAML tables (top 20 codeml dN/dS)

T »
s _*E T é % =] 3 ) 3
18] & 8|z |32 |3|2|3
o 3
=
ceg_13464_g - - - 0.00 | 97.001 | 000 | 075| 075 | 0.75
810037 - - - 0.00 | 50.50 0.00 0.00 0.00 0.00
810267 - - - 0.00 | 48.42 0.00 0.00 0.00 0.00
811885 - - - 0.00 | 46.40 0.00 0.00 0.00 0.00
801186 - - - 0.00 | 36.19 0.00 1.27 1.27 1.27
807911 Y - HaRxLL108 0.00 | 34.95 0.00 1.23 1.23 1.23
811640 - - - 0.00 | 34.33 | 13.62 | 18.41 | 18.41 | 1841
ceg_15480_g - - - 0.00 | 3226 | 0.00 | 0.00| 000 | 0.00
802815 - - - 0.00 | 31.95 0.00 0.00 0.00 0.00
808320 - 1 - 0.00 | 28.05 0.00 0.00 0.00 0.00
800545 - - - 0.00 | 24.99 0.00 0.00 0.00 0.00
pasa_gi_SuperContigl57_18 | - - - 0.00 | 24.78 0.00 1.33 1.33 1.33
811033 - - - 0.00 | 24.25 0.00 4.47 4.47 4.47
812953 - - - 0.00 | 23.81 0.00 1.82 1.82 1.83
805928 - - - 0.00 | 23.57 0.00 0.00 0.00 0.00
807000 - - - 0.00 | 23.37 0.00 0.00 0.00 0.00
HaRxLL447 Y - HaRxLL447 0.00 | 23.34 0.00 0.00 0.00 0.00
806586 - 3 - 0.00 | 23.08 0.00 0.00 0.00 0.00
805043 - - - 0.00 | 22.61 0.00 0.00 0.00 0.00
804639 - - - 0.00 | 22.48 0.00 0.76 0.76 0.76

A full list of genes can be found in attached file: “Appendix table 5.9 - PAML tables.xlsx”

under the All tab.
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Abbreviations

A. laibachii - Albugo laibachii

A. thaliana - Arabidopsis thaliana

ADP - adenosine diphosphate

ARF - ADP Ribosylation Factors

BAC - bacterial artificial chromosome

bp - base pair

C. elegans - Caenorhabditis elegans

CDF - cumulative distribution function

cDNA - complementary deoxyribonucleic acid

CEG - core eukaryotic genes present at single or low copy numbers
CEGMA - Core Eukaryotic Genes Mapping Approach
CHXC - CHXC motif

CNV - copy number variation

D. melanogaster - Drosophila melanogaster

d.p.i - days post inoculation

DEPC - diethylpyrocarbonate

DNA - deoxyribonucleic acid

EST - expressed sequence tags

ETI - effector-triggered immunity.

ETS - effector-triggered susceptibility

flg22 - 22-amino acid sequence of the conserved N-terminal part of flagellin is known to activate plant
defence mechanisms

FLS2 - FLAGELLIN SENSITIVE 2

GA - Genome Analyser

GFF3 - general feature format 3

GO - Gene Ontology

H. sapiens - Homo sapiens

HMM - hidden Markov model

Hpa - Hyaloperonospora arabidopsidis

HRI - Horticulture Research International

INDEL - insertion and/or deletion

IPTG - isopropyl B-D-1-thiogalactopyranoside

IUPAC - International Union of Pure and Applied Chemistry
KOG - core eukaryotic protein

MCMC - Monte Carlo Markov chain

MRCA - most recent common ancestor

NADH - nicotinamide adenine dinucleotide

NCBI - National Centre for Biotechnology Information
NR - non redundant

nt - nucleotide

P. infestans - Phytophthora infestans
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P. ramorum - Phytophthora ramorum

P. sojae - Phytophthora sojae

PAMP - pathogen associated molecular patterns
PCEG - conserved single copy Phytophthora genes
PCR - polymerase chain reaction

PTI - PAMP triggered immunity

QQ-plots - quantile-quantile-plots

RNA - ribonucleic acid

RXLR - RXLR motif

S. cerevisiae - Saccharomyces cerevisiae

S. pombe - Schizosaccharomyces pombe

SNP - single nucleotide polymorphism

TAIR - The Arabidopsis Information Resource
TSL - The Sainsbury Laboratory

UTR - untranslated region

VBI - Virginia Bioinformatics Institute

VCF - variant call format
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