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1 Introduction 

 

The nature and variety of optical forces that operate on particles of atomic, molecular, nano- 

or micro- scale dimensions are in principle similar to those that relate to the effect of light on 

larger particles.  When compared to the latter, however, a significant difference in practical 

terms is the greater ease, in the case of microparticles, in overcoming gravity.  This feature 

facilitates the study of suspensions or surface layers, for example, in systems comprising 

micron or nanometer sized particles.  The distinct advantage of the nanoscale, in this respect, 

is nonetheless offset against much more influential levels of thermal motion.  The latter 

problem, particularly acute in the case of atomic samples, is commonly overcome by the use 

of cold atom traps and optical molasses instrumentation – utilizing atomic cooling through 

momentum exchange with absorbed and emitted photons.  In any such context, conventional 

optical tweezers and Maxwell-Bartoli mechanisms represent the operation of optomechanical 

forces whose origins are well understood, and which characteristically operate on individual 

particles of matter.  Further distinctions in behavior can then be drawn on the basis of 

material composition, the salient response functions being cast in terms that reflect atomic, 

molecular, dielectric or metallic constitution, for example.  In the last of these, the 

distinctively complex refractive index represents a quality admitting further opportunities to 

tailor dispersive optical forces, often supplemented by an exploitation of plasmonic effects. 

 

A relatively recent flurry of activity has been prompted by the discovery and 

verification of something quite different: an optomechanical force that operates between 

particles at nanoscale separations.  The first theoretical proof that intense laser light can 

produce an optically modified potential energy surface for particle interactions was provided 

by Thirunamachandran almost thirty years ago [1] – but the laser intensities that appeared 

necessary then represented a significant deterrent.  However, before the end of the decade a 

landmark paper by Burns et al. [2] verified the effect experimentally.  This latter work also 

provided the first graphs, for the simplest case of two identical, spherical particles, of energy 
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against separation – graphs exhibiting striking landscapes of rolling potential energy maxima 

and minima, as illustrated in Fig. 1.  Recognition of the enormous potential for practical 

applications quickly came about, the prospects being almost immediately flagged in an 

influential futurology of chemistry [3].  Subsequent studies have shown that optically induced 

inter-particle forces offer a number of highly distinctive features which can be exploited for 

the controlled optical manipulation of matter.  The terms ‘optical binding’ and ‘optical 

matter’, which have gained some currency for such forces, highlight the possibilities for a 

significant interplay with other interactions, such as chemical bonding and dispersion forces.  

Exploiting such interactions, new opportunities for creating optically ordered matter have 

already been demonstrated both theoretically and experimentally [4-11].  
 

 

Figure 1:  Dependence of optically-induced potential energy, for a pair of particles separated by distance R, 

plotted against kR, where k = 2 / and  is the laser wavelength. The inter-particle axis is aligned with the 

electric field of the radiation; the locations of the energetically stable minima depend on dispersion properties 

(see later). Graphs of similar form, for example in refs [2, 8], provide a compelling motif for the subject.   

At this juncture, progress in theory is developing along several fronts, with many 

studies invoking essentially classical descriptions of the radiation field.  Some of the most 

adventurous relate to perhaps the most demanding experimental challenge – the possibility of 

engaging off-resonant laser light with Bose-Einstein condensates to achieve ‘superchemistry’, 

i.e. the coherent manipulation and assembly of atoms and molecules [12, 13].  In several 
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treatments, paraxial wave equations have been adopted to describe optical binding between 

micron-sized spherical particles, in the presence of counterpropagating beams [14-15], the 

results here being analyzed in terms of the relative refractive indices of the spheres and the 

surrounding medium.  Such studies are valid in the Mie size regime, i.e. where the sphere 

diameter exceeds the wavelength, and input fields are well approximated as paraxial.  

Considering particles of like dimensions, Chaumet and Nieto-Vesperinas [8] have derived 

results both for isolated spheres, and for spheres near a surface.  In the isolated case they have 

found that inter-particle forces depend significantly on the polarization and wavelength of the 

incident light, and the particle size.  Furthermore, Ng and Chan [16] have determined the 

equilibrium positions in an array of evenly spaced particles, aligned in parallel with the wave-

vector of the optical input.  Extending the range of applications, studies of optical trapping 

and binding of cylindrical particles have been carried out by Grzegorczyk et al. [17-18]. 

 

Further opportunities for application, and other readily achievable areas of relevance, 

are now being identified with the benefit of a comprehensive theory based on QED – 

quantum electrodynamics [19,20].  Based on this theory, calculations on carbon nanotubes, 

for example, have already the indicated dependences on particle orientation, suggesting 

possibilities for optically modifying the morphology of deposited nanotube films [21], while 

applications to other dielectric nanoparticles in optical vortex fields have identified 

opportunities for new forms of optical patterning and clustering [22].  Some of the most 

recent work has established other, more exotic effects, such as an optically induced shift in 

the equilibrium bond length of van der Waals dimers (molecular pairs held together by weak 

hydrogen bonds) and, in molecular solids, bulk optomechanical deformation [23].  In the 

following, Section 2, we first rehearse and explain the state of the art QED theory, placing the 

various representations within a single, consistent framework.  With reference to the key 

equations and against this background, Section 3 provides a concise overview of the 

applications, and the chapter concludes with a look to the future in the Discussion, Section 4. 
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2 QED description of optically induced pair forces 

 

In the perturbative derivation of optically induced pair forces, as with more common inter-

particle coupling forces, calculations are generally performed on a system in which each 

particle resides in its lowest-energy, stable state.  For the development of a QED theory, the 

system state has to be more precisely specified – as one in which both particles and the 

radiation field are in the ground state.  This system state couples with other short-lived states 

in which the electromagnetic field has a non-zero occupation number for one or more 

radiation modes.  The dispersion interaction, traditionally interpreted as a coupling between 

mutually induced moments, emerges from a fourth-order perturbative calculation based on 

the exchange of two virtual photons, each created at one particle and annihilated at the other.  

The two virtual quanta may (but need not) overlap in time as they propagate between the two 

units.  Cast in such terms, the theory delivers a result – the Casimir-Polder formula – valid for 

all distances, correctly accounting for the retardation features which lead to a long-range R
-7

 

asymptote dependence on the pair separation R [24-30].  The virtual photon interpretation 

also lends a fresh perspective to the physics involved in the more familiar R
-6

 range 

dependence known as the van der Waals interaction – the attractive part of the Lennard-Jones 

potential, which operates at shorter distances and which is largely responsible for the 

cohesion of condensed phase matter [31].   

 

 The photonic basis for the dispersion interaction strongly suggests that other effects 

may be manifest when intense light is present, i.e. when calculations are performed on a basis 

state for which the occupation number of at least one photon mode is non-zero.  Indeed it is 

the same, fourth order of perturbation theory that gives the leading result; the annihilation and 

creation of one photon from the occupied radiation mode in principle substitute for the paired 

creation and annihilation events of one of the two virtual photons involved in the Casimir-

Polder calculation.  It is clear that the result of any such calculation on optically conferred 

pair energies will exhibit a linear dependence on the photon number of the occupied mode.  

Cast in terms of experimental quantities, this will be manifest as an energy shift indE  with a 

corresponding proportionality to the irradiance of throughput radiation.  The corresponding 

laser-induced coupling forces can be determined from the potential energy result, as the 

spatial derivative. 
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2.1 Quantum foundations 

 

To begin, consider the coupling between two particles, with no assumed symmetry, whose 

laser-induced interactions involve the absorption of a real input photon at one particle and the 

stimulated emission of a real photon at the other one, with a virtual photon acting as a 

messenger between the two.  The throughput radiation suffers no overall change in its state.  

Following the Power-Zienau–Woolley approach [32-35], writing the interactions of the 

vacuum electromagnetic fields with particle  in the electric–dipole approximation, we have 

the interaction Hamiltonian;  

 

    1

int ,oH 




     d R  (2.1) 

 

where    and R  respectively denote the electric-dipole moment operator and the 

position vector of dielectric nanoparticles labeled .  The operator  


d R  represents the 

transverse electric displacement field, expressible in the following general mode-expansion; 

 

                     
1

2
†

,

exp exp .
2

ock
i a i a i

V

   

  


          

k

d R e k k kR e k k kR  (2.2) 

 

In equation (2.2), V is the quantization volume, and summation is taken over modes indexed 

by wave-vector k and polarization ; a and a
†
 are annihilation and creation operators, 

respectively, and e represents the electric field unit vector, with e  being its complex 

conjugate.  For present purposes the distinction between e and e  can be dropped on the 

assumption that only plane polarizations are to be entertained – which is consistent with 

experimental practice.  Since the laser-induced coupling involves four matter–photon 

interactions, it requires the application of fourth–order perturbation theory (within the electric 

dipole approximation) and the energy is explicitly given by; 

 

 
   

int int int int

, ,

Re ,ind

t s r i t i s i r

i H t t H s s H r r H i
E

E E E E E E

 
   

   
  (2.3) 
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In general, an arbitrary ket   here refers to a member of the set of basis states of the 

unperturbed Hamiltonian, such that we have; 

 

 smol rad mol ; rad ,ss s
s     (2.4) 

 

where mol
s
and rad

s
 respectively define the status of all particles and radiation states 

involved.  Specifically, i  is the unperturbed system state and the kets , ,r t s  are virtual 

states.   

 

 From equations (2.1) and (2.2) it follows that each Dirac bracket in the numerator of 

(2.3) is associated with the creation or annihilation of a photon.  Details emerge on 

application to a specific system; here we consider two chemically identical particles A and B, 

the latter displaced from A by a vector R.  Assuming neither particle possesses a permanent 

electric dipole moment, it is readily shown that each must suffer two dipole transitions, and 

that 48 different cases arise – each of which generates a dynamic contribution to the energy 

shift.  As a calculational aid, these contributions are typically represented in the form of non-

relativistic Feynman diagrams, as illustrated in Fig. 2.  In the complete set, 24 entail 

absorption of the laser photon at A, and in the other 24 the same process occurs at B.  The 

latter may be deduced on the basis of mirroring the former, in the sense that A exchanges with 

B, and R changes sign. Accordingly we denote as A B

indE   the energy shift resulting from 

orderings in which the absorption of laser light occurs at A, and stimulated emission at B, 

with B A

indE   denoting the converse.  [Note; the direction indicated by the superscript does not 

determine the direction of virtual photon propagation; amongst the contributions to A B

indE  , 

for example, half involve virtual photon propagation towards B – but the other half, towards 

A.]  
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Figure 2:  Two typical Feynman diagrams (each with 23 further permutations) for calculation of dynamic 

contributions to the laser-induced interaction energy. The verticals denote world-lines of the two particles; wavy 

lines outside them denote real (laser) photons and those inside, virtual photons; time progresses upwards.  

Adapted from [19]  

 

Hence we have the following expression for the total induced energy shift, indE ;  

 

   

       

 2 ,

A B B A A B A B

ind ind ind ind ind

A B A B A B A B

ind ind ind indeven odd even odd

A B

ind even

E E E E E

E E E E

E

   

   



       

    

 

R R

R R R R

R

 

(2.5)

 

 

where even and odd denote the corresponding parts of the function  A B

indE  R  with respect 

to R .  Using expression (2.3) – and after a sequence of calculational steps detailed elsewhere 

[19], the induced energy shift A B

indE   emerges as follows, using the convention of implied 

summation over repeated subscript (Cartesian) indices;  

 

              , Re , exp .A B A B

ind i ij jk kl l

o

n ck
E k e k V k k e i

V

 
 



  
       

 
R R k R  (2.6) 

Here n is the number of laser photons within a quantization volume V, and we have 

introduced the well-known dynamic polarizability tensor ij

  and the fully retarded resonance 

dipole-dipole interaction tensor of the general form; 

(a) 
A B 

r
0

0

0

0
r

(b) 
A B 

r

0

0

0

0

r
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  
 

       2

3

exp
ˆ ˆ ˆ ˆ, 1 3 .

4
jk jk j k jk j k

o

ikR
V k ikR R R kR R R

R
 



     R  (2.7) 

 

Given that the analytically arbitrary choice of sign has no physical consequence [36] we shall 

stick with the negative sign (as generally assumed without comment in older work) and drop 

it from our notation henceforth, i.e.    , ,jk jkV k V k R R .   

2.2 Defining the geometry 

 

As a convenient starting point for an exploration, later in this Section, of various geometries 

and degrees of rotational freedom, we begin by considering the coupling of two fixed 

particles, with no assumed symmetry.  The geometry for the pair is specified as follows, 

particle A is at the origin ( A R 0 ) and B is on the z axis ( ˆ
B RR z ) such that the separation 

between the two particles is given by ˆ
B A R  R R R z ; the angles   and   denote the 

orientations of the optical polarization vector respect to R  – see Fig. 3.  The figure depicts a 

case where both particles have the same orientation; however, in a more general case, this 

will not necessarily apply. 

   

 

Figure 3:  Geometry of the particle pair and the polarization vector e of the electromagnetic field.  For 

simplicity both particles are shown with the same orientation.  In the electric-dipole approximation the direction 

of the optical propagation vector, is irrelevant, serving only as a constraint on possible directions of e. 

x 

z 

e 

  

y 

R 
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In order to fully describe the system with due regard to its internal degrees of freedom 

it is necessary to consider three frames of reference:  

 

a)  A fixed frame (or laboratory frame), denoted by  ˆ ˆ ˆ, ,x y z  as seen in Fig. 3; 

b) For each particle, A and B, a particle frame, chosen with regard to the particle 

symmetry such that the corresponding polarizability tensor is diagonalized in three non-zero 

components  ˆ ˆ ˆ, ,x y z     . 

 

The latter frames enter the calculations at a later stage; for the present we can refer all vectors 

and tensors to the fixed frame.  Thus, for example, from equation (2.7) the components of the 

tensor  ,jkV k R  are explicitly; 

 

  

 
        

 
     

2

3

3

exp
1    for jk , ,

4

exp
, 1                 for jk ,

2

0                                                otherwise.

o

jk

o

ikR
ikR kR xx yy

R

ikR
V k ikR zz

R






  




   





R  (2.8) 

From equations (2.6) and (2.8), and using the relationship 2I n c k V   for the laser 

irradiance I, we have; 

 

                 
   21 2

2 3

exp exp
, Re 1 ,

4

A B

ind i il l i il l

o

ikR iI
E k e e ikR e e kR

c R

   




   

        
   

k R
R Z Z

 

  (2.9) 

where we have introduced two pair response tensors,
 1

ilZ  and 
 2

ilZ .  The latter are defined, in 

the pair-fixed frame, as; 

 

 

   

 

1 2

2

2 ,

.

A B

il il iz zl

A B A B

il ix xl iy yl

 

   

 

 

Z Z

Z
 (2.10) 
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When the real part of the square bracket is taken in expression (2.9) the induced energy shift 

is expressible as; 

 

 

             
        

2 3

22

,
4

cos sin cos

2 cos sin .

A B

ind

o

i il l

A B

i iz zl l

I
E k

cR

e e kR kR kR kR kR

e e kR kR kR

 

 



 

  
   

 

        
 

       

R

Z k R k R k R

k R k R

 (2.11) 

 

Securing the complete result, using expression (2.5), it is apparent that the induced energy 

shift is given by; 

 

               
       

2

2 3

2 2 2

, 2 cos sin
2

cos cos( )

A B

ind i il l i iz zl l

o

i il l

I
E k e e e e kR kR kR

cR

e e k R kR

   

 

 


 
         

 

 

R Z

Z k R

 (2.12) 

 

The inter-particle force can be found by simply taking the derivative of the energy shift with 

respect to the separation of the particles; 

 

         

          
            

2

2 4

2 2 2

2 2 2 3 3 2 3

2
2

3cos 3 sin cos cos( ) cos sin sin( )

cos sin cos( ) cos sin( )

ind
ind

A B

i il l i iz zl l

o

z z

i il l z

E

I
e e e e

cR

kR kR kR k R kR k R kR k kR kR

e e k R kR k R kR k k R kR

   

 

 



 



 
      

 

           

      

F
R

Z

k R k R

Z k R k R

 

  (2.13) 

We now analyze particular cases, deriving explicit results for other systems of physical 

interest.  Particles of cylindrical symmetry are assumed, accommodating the more usual case 

of spherical symmetry, but also delivering results that have validity for nanotubes and most 

other significantly anisotropic nanoparticles. 
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y 

x 



(b) 

 

2.3 Tumbling cylindrical pair 

 

First we address a system in which the two particles freely rotate in the incident light as a 

binary system, each particle maintaining a fixed distance and orientation with respect to its 

counterpart.  In this case we not only have the angles that define the direction of the 

polarization vector respect to the pair, as introduced in Fig. 3; it is also necessary to introduce 

three angles which will determine the relative orientations of the two components.  As shown 

in Fig. 4, these internal angles are defined as  , ,A B   ; 
A  is the angle between the particle 

A and the z axis (assuming that the ˆ Az  lies on the xz-plane); B  is the angle between the z-

axis and the molecular principal axis Bz  (which may or may not lie on the xz-plane); while 

angle  is the angle between ˆ Az  and Bz  axes projected on to the xy-plane   

 

 

  

Figure 4:  Geometry of the tumbling pair system, for a pair of cylindrical particles 

 

As before, the polarization of the incoming and outgoing radiation is considered to be linear.  

Representing the polarization in the laboratory frame, generally we have; 

 

 
  ˆ ˆ ˆsin cos sin sin cosi


      e x y z   . (2.14) 

 

R 

y 

x 

z 

e 

A B 

(a) 
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In the case of the tumbling cylindrical pair, the polarizability tensor of each particle is 

diagonal when expressed with respect to the corresponding particle’s reference frame; 

 

 

0 0

0 0

0 0



 













 
 

  
 
 

α  (2.15) 

 

However this frame rotates with the tumbling pair.  It makes more sense to refer all vector 

and tensor components in the general energy expression (2.6) to a laboratory-fixed frame in 

which the polarization components are static, and to this end the polarizability for each 

particle must be recast in the laboratory-fixed frame.  By appropriate unitary transformations, 

we find the following results for particles A and B: 

 

2

2

1 cos 0 cos sin

0 1 0

cos sin 0 1 sin

A A

A A A

A A A

Fixed
frame A A

A A A

    

  

    

 
 

  
  

 (2.16.a) 

and 

   

   

 

2 2 2 2

2 2 2 2

2

1 cos cos 1 sin sin cos sin cos sin cos

sin sin cos 1 cos sin 1 cos cos sin cos .

cos sin cos cos sin sin 1 sin

B B B B

B B B B

B B B B B B

Fixedij B B B B
frame

B B B

B B B B B

            

              

         

   
 
    
 
 
 

 

  (2.16.b) 

Here we have introduced the anisotropy factors           to simplify the 

expressions.  Given the complexity that ensues, we restrict consideration to that of an 

isotropic average with respect to the incoming light, the calculation of which requires the use 

of a phase-average method [37].  In this case the induced energy shift is given by, 

 

         

  

1 1
0 23 6

1
22
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  (2.17) 
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where we have used Fixedij ij
frame

   to simplify notation, with the explicit components for each 

particle determined by equation (2.16).  The resulting expression can be explicitly calculated 

by using equation (2.8), giving; 
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   (2.18) 

 

The corresponding laser-induced force, directly deducible from this expression, is explicitly 

given in the original papers [19,21].   

 

2.4 Collinear pair 

 

In this case we consider two cylindrically symmetric particles aligned collinearly, i.e., their 

principal axes of symmetry coincide, serving to define the axis z as shown in Fig. 5; owing to  
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Figure 5:  Geometry for a pair of collinear and cylindrical symmetric particles 

the symmetry of the system it is readily seen that the induced energy shift is independent of 

the angle  shown in Fig. 3.  Therefore the polarization vector now takes the simpler form; 

 

 ˆ ˆsin cos  e x z . (2.19) 

 

In this case we have that the polarisability tensor for each particle is given by   
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, (2.20) 

 

where we chose the molecular frame to coincide with that of the particles 

(      , , , , , ,A A A B B Bx y z x y z x y z  .  From equations (2.19) and (2.20) , the induced energy 

shift can be expressed as; 
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(2.21)

 

 

and the induced force as; 

R 

y 

x 

z 

e 

 B  A A 
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  (2.22) 

 

If the particles have spherical symmetry, then 0

       , and the induced energy shift and 

the induced force are more simply expressible as; 
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(2.23.a)
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  (2.23.b) 

 

In this case it is interesting to demonstrate the considerable simplification that can be effected 

if we consider 1kR , and therefore  cos 1 k R , cos 1kR  , and sin kR kR .  Then the 

above expressions reduce to; 
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R  (2.24.a) 
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which in turn become even more compact for the spherically symmetric case; 
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Finally, consider a pair that can freely tumble, whilst retaining a fixed collinear orientation of 

its component particles.  Then by averaging over all possible directions for the radiation we 

have; 
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  (2.26) 

 

and in the short range; 
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  . (2.27) 

 

The laser-induced force can be calculated in a similar manner.  Clearly, in the spherical case, 

    , giving vanishing results for both the energy shift and force.  However, this short-

range asymptote is not representative of the complex patterning of energy and force observed 

at longer distances.  The behavior beyond the short-range is itself of considerable interest, 

and it is a subject we explore in due detail in Sect. 2.6.  
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2.5 Cylindrical parallel pair 

 

 

Figure 6:  Geometry for a pair of parallel and cylindrical symmetric particles 

Another interesting case is where the two cylindrically-symmetric particles are parallel to 

each other, and perpendicular to their relative displacement vector R – see Fig. 6.  In this 

case, given the geometry of the system, it is necessary to retain both angular degrees of 

freedom, and in equation (2.14).  The polarizability for this system is given by; 
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 (2.28) 

 

Note the difference from the previous case, equation (2.20), due to the effective rotation of 

the particles in the xz-plane (from the definition of the molecular angles in the tumbling pair 

section, we can see that in this case the polarizability can be obtain from expressions (2.16a) 

and (2.16b) for 2A B
   , 0  ).  The induced energy shift  ,indE k R  is now given by; 
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  (2.29) 
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and the induced force is; 
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  (2.30) 

 

In the short range approximation ( 1kR ) the corresponding expressions are; 
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Again, if the parallel pair freely tumbles with respect to the electromagnetic field, it is 

necessary to consider the isotropic average case, and we can see from equation (2.27) that  
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In a case where the particles have spherical symmetry, it is readily verified that the above 

results reduce to the same limiting expressions as those given in previous sections. 

 

The above results, for cylindrical particles in various configurations, have been applied to 

single-walled carbon nanotubes.  These particles are of interest not only for their intrinsic 

properties and applications; since they are strongly polarizable species, they also afford ideal 

opportunities to exploit the quadratic dependence on polarizability featured in the force 
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equations.  Assuming that the 
 and   values are consistent with the corresponding static 

polarizabilities, then for nanotubes 200 nm in length and 0.4 nm in radius, separated by a 

distance R = 2 nm, and with an incident intensity I  1×10
16

 W m
-2

, the results deliver forces 

ranging between 10
-12

 and 10
-5

 N, according to the geometry [21].  Significantly, this full 

range of values is amenable to determination by atomic force microscopy.  However, there 

may be a more important consequence: the wide variation in values, and the scale of the 

highest values, suggests that there is a realistic possibility for the nanomanipulation of carbon 

nanotubes, based on laser control of the optomechanical forces.    

 

2.6 Spherical particles 

For spherical particles, the energy shift may be obtained by setting o

       in equations 

(2.21) or (2.29).  This shift may be expressed as a function of the geometric parameters 

illustrated in Fig. 7 as follows;  

      A B

0 0

0

2
, Re ( , ) cos sin cos ,xx

I
E V k kR

c
   



 
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 
k R R  (2.34) 

Contour plots can be obtained of the energy surface determined by equation (2.34), giving 

detailed information about the location of the system’s stability points – see Fig. 8.  A host of 

interesting features emerge even from the examples exhibited here [38, 39].  In each energy 

landscape, local minima distinguish optical binding configurations.  The contours intersect 

the abscissa scale orthogonally, reflecting an even dependence on each angular variable; the 

  /2) is notionally revealed by unfolding along the distance 

axis.  The physical significance is that a system whose (kR,  ,  ) configuration has   = 0 or 

 = 0, but not situated at a local minimum, is always subject to a force drawing it towards a 

neighboring minimum without change of orientation.  For the same reason, there is no torque 

when  = /2 or  = /2.  However a system in an arbitrary configuration will generally be 

subject to forces leading to both forces and torques.  For example, inspection of Fig. 8(a) 

shows that whilst a pair in the configuration (6.0, /4, 0) is subject to a torque tending to 

increase  to /2, its trajectory will be accompanied by forces that tend to first increase and 

then decrease R.  The details, which will additionally involve changes in , can of course be 

determined from the total derivative of (2.34).  Other features, also exemplified in Fig. 8(a), 

are off-axis islands of stability such as the one that can be identified at (10, /10, 0).  In 
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general the optically induced pair potential provides a prototypical template for the optical 

assembly of larger numbers of particles, facilitating the optical fabrication of structures of 

molecules, nanoparticles, microparticles, and colloidal particles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 7:  Particles A and B, displaced by R, trapped in a polarised laser beam. The polarization vector, e, 

defines the x-axis, forming an angle   R . Together, these vectors define the x,z-plane, the beam 

propagation vector k  subtending an angle   on to z. 
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Figure 8: Contour maps of optically induced pair energy.  Plots of E as a function of  and kR: (a)  = 0; (b)  

= /2. The variation of E with kR along the abscissa, = 0, shows its first two maxima at kR ~ 4.0, 10.5, the 

first (non-proximal) minimum, at kR ~ 7.5 (compare Fig. 1).  The horizontal scale typically spans distances R of 

several hundred nanometers, depending on the value of k (see text). The units of the color scale are 

    3 22 /(4 )
A B

o o oIk c   .  Adapted from refs [38, 39]. 

2.7 Spherical particles in a Laguerre-Gaussian beam 

 

The nature and form of optically induced forces between particles in an optical vortex are of 

special interest.  Here, we entertain the possibilities afforded by having two or more particles 

(for simplicity assumed to be spherical) trapped in a Laguerre-Gaussian (LG) beam – or two 

such beams, counterpropagating to offset Maxwell-Bartoli forces.  First, consider particles A 

and B trapped in the annular high-intensity region of an LG beam with arbitrary l and  p = 0, 

i.e. an optical vortex with one radial node at the beam centre.  For significant forces to arise, 

the inter-particle distance R will usually be small compared to the radius of the optical trap, 

and it is helpful to recast the energy and force equations in terms of the angular displacement 

  between A and B; see Fig. 9 (a).  The general result (for arbitrary p) is as follows; 
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(a)                                                              (b)                                                               (c) 

 

Figure 9:  (a) Geometry of a particle pair in a Laguerre-Gaussian beam (p = 0); (b) Clustering of nanoparticles 

in an LG beam; (c) Contour graphs of 
0

ABC
E  against 

1
  (x-axis) and 

2
  (y-axis) for three particles in an 

LG beam with  l = 20; lighter shading denotes higher values of 
0

ABC
E .  Adapted from refs [22, 40, 41] 
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  (2.35) 

 

where flp and Alp are standard LG beam functions as defined in chapter 1, and usually 0  is 

the polarisability of a spherical nanoparticle (the same for A and B), ck  denotes the input 

photon energy,  is again the angle between the polarization of the input radiation and R, and 

B A      is the azimuthal displacement angle.  In the short-range region ( 1kR ), the 

leading term of equation (1) is determined from Taylor series expansions of  sin kR  and 

 cos kR .  By the use simple trigonometry, the result 
ind

E  can be expressed as [22, 40, 41]; 
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 . (2.36) 

 

Here,  is a damping factor whose introduction, in place of the unity that emerges from 

simple trigonometry precludes a singularity at  = 0.   
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 The result has a number of interesting features: (i) at l = 0 – i.e. for a conventional 

Gaussian laser beam –  a single energy minimum occurs at  =180°, illustrating that the 

energetically most favorable position of the particles in the beam cross-section is where they 

are diametrically opposite each other, as might be expected; (ii) for odd values of l > 1, only 

a local minimum (not the energetically most favorable) arises for this configuration; (iii) for 

even values of l, a local maximum occurs at 180°; (iv) generally, for l ≠ 0, there are l angular 

minima and (l – 1) maxima.  Additional features reflect the behavior associated with 

increasing values of l: (v) the number of positions for which the particle pair can be mutually 

trapped increases, becoming less energetically favorable as the angular disposition increases 

towards diametric opposition, and; (vi) absolute minima are found at decreasing values of  

physically signifying a progression towards particle clustering.   

 

To identify the possibilities for stable formations of more than two particles, as 

illustrated in Fig. 9 (b), the two-particle analysis is readily extended to a system of three (or 

more) particles.  In this case 0

ABC
E  is determined by summing the pairwise laser-induced 

interactions of the three particles with each other, employing variables 
1

  and 
2

  as the 

azimuthal displacements between particles A-B and B-C respectively.  A typical contour plot 

of 0

ABC
E  against 

1
  and 

2
  is exhibited in Fig. 9 (c).  Such results are indicative of a rich 

scope for further theoretical and experimental exploration. 

 

3 Overview of applications 

 

The body of experimental work on optical binding, and related studies, is growing apace.  We 

here summarize just a fragment of the novel work being done by a number of different 

research groups working in this area.  Most experimental research has been stimulated by an 

interest in applying optical binding to the organization and manipulation of matter at scales 

comparable to the wavelength of light.  In such a context, it has to be borne in mind that 

optical binding forces will have a profound effect, modifying the outcome of all optical 

manipulation techniques where more than one particle is involved [42].  Obvious examples 

are processes involving the assembly of optical structures using holographic optical traps 

[43]; equally, the two-dimensional assembly of particles in the presence of 

counterpropagating beams results from the combined effects of optical trapping and binding 
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[44].  Although the systems used and the setup designs vary significantly, these and other 

such studies have common goals – principally to understand the nature of the binding forces 

due to the presence of an electromagnetic field, and to develop tools for the non-contact 

control of matter on the micron- and sub-micron/nano-scale.   

 

One of the most common systems used to demonstrate optical binding comprises 

micron-sized essentially spherical polyethylene beads in a liquid suspension.  In two of the 

first reports by Burns et al. [2,4], it was noted that the relative position of a pair of such 

spheres were influenced by each other when placed in an optical trap.  When the spheres 

were well separated in the trap their motions along the trap appeared random, but as they 

approached each other they appeared to depart from diffusive behavior, tending to spend 

more time in relatively close proximity.  The relative motion of the pair was recorded by 

studying the diffraction patterns thereby created in the scattered field.  Significantly, it was 

shown that there are discrete separations at which the particles are more likely to be found, 

and that the positions of the inferred neighboring energy minima differ by distances 

approximately equal to the wavelength of the light.  

 

In later work [45,46], it was demonstrated that optical binding forces are at least 

partly responsible for the self-arrangement of optically trapped particles separated by 

distances ranging up to a few wavelengths.  Several different cases have been reported, as 

illustrated in Fig. 10, and it has been shown that the binding force can dominate over the 

usual (optical tweezer) gradient trapping force in systems where one expects a large number 

of particles to arrange according to a trapping template.  When a free particle approaches an 

already formed structure, being subject to a potential energy landscape already patterned by 

many-body optical interference, the added sphere becomes accommodated within the whole 

ensemble – which then re-organizes until it reaches a new minimum energy configuration.  It 

is important to emphasize that it is extremely difficult to disentangle optical forces due to 

gradient and scattering forces in most of these experiments, and that the generation of ‘optical 

crystals’ as shown in these examples is generally due to contributions from both types of 

interaction, as is specifically shown in Figure 11.   
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                                   (a)                                                                 (b) 

 

Figure 10: (a) Self-assembled 2D ‘optical crystal’ formed in a 30 m  Gaussian trap generated by a single laser 

beam.  The multiple coherent scattering of the polystyrene spheres ( 3 m ) generates sinusoidal fringes through 

its interference with the trap. Adapted from [45]; (b) 1D optical crystals formed in fringes created by 

interference of two plane waves, 3 m  polystyrene beads self-organize along each trap, optical binding forces 

promoting a regular, equidistant placement.  Adapted from [46]. 

It is worth noting that the experimental setup used in the studies whose results are 

exemplified above is commonly referred to as ‘transverse optical binding’ [47], meaning that 

the wave-vector of the electromagnetic field is perpendicular to the plane containing the 2D 

optical crystal, or the axis of a 1D optical chain.  As illustrated in Fig. 11, this setup takes 

advantage of a container cell to confine the optical crystal.  Nonetheless such a configuration 

admits numerous possibilities of scattering from the cell, making it difficult to analyze the 

optical binding contribution.  A different approach is to achieve ‘longitudinal optical binding’ 

[48-51], Fig. 12, where two counterpropagating (non-coherent) beams impinge on the system.   

 

  

 

Figure 11:  2D optical crystals resulting from the combination of binding and trapping in a Gaussian trap 

produced by 1 Watt laser power at 532 nm.  Adapted from [46] 
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Figure 12:  Counterpropagating light fields (CP1 and CP2: 1070 nm) are delivered by optical fibers with a 

separation Df.  A pair array forms in the gap between the two fibers; R is the equilibrium separation of the 

sphere centers and z1, z2 indicate small displacements from equilibrium along the axis.  The array center of 

symmetry coincides with half the fiber separation. The two normal modes of the bound pair are indicated: the 

dashed line represents the potential related to the center of mass motion of the two-sphere system; the zig-zag 

between the two spheres indicates the optically induced pair potential, determining relative motion within the 

system.  Adapted from [51].   

 

Completing the picture, there have also been studies of optical binding between nano-

metallic particles trapped in electromagnetic fields [52-55].  Indeed the detection of light-

induced aggregation in 10 nm gold clusters was first reported over ten years ago [52].  At the 

time, this was attributed to van der Waals-like forces between closely approaching clusters 

and cluster aggregates.  A subsequent theoretical study [53] showed that the inter-particle 

interaction energy is a sensitive function of the particle size.  More recent theoretical work 

has shown that such optical binding forces are significantly stronger that traditional van der 

Waals forces, and that there are realistic possibilities to exploit optically induced forces for 

the non-contact organization of novel metallic structures [54] such as the metallic necklaces 

reported in [55].   
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4 Discussion 

 

Relating theory to experiment in this field is perhaps more than usually difficult, but it is a 

challenge that carries a promise of rich rewards, in the form of new techniques for the 

nanomanipulation of matter.  Part of the problem is that producing suitable conditions for the 

sought effects generally necessitates the use of specialized cells or optical traps, each of 

which can generate additional, partly contributory optical effects – which can then compete 

with optical binding in most cases.  Another difficulty is that many existing descriptions of 

optical binding mechanism are a little vague, and it is not always clear whether two different 

descriptions amount to the same, or to potentially competing phenomena.  In the hope of 

bringing more clarity and precision to the field, the theoretical methods and results we have 

presented in this chapter are based on a robust and thorough quantum electrodynamical 

analysis of optically induced inter-particle interactions.  In this framework it is understood 

that laser-induced forces and torques between nanoparticles occur by pairwise processes of 

stimulated photon scattering.  The analysis clarifies the fundamental involvement of quantum 

interactions with the throughput radiation, and also the form of electromagnetic coupling 

between particles.  It further reveals that additional torque features arise in an optical vortex.   

 

In applying the results to nanoparticles (such as polystyrene beads) whose electronic 

properties are neither those of one large molecule, nor those of a chromophore aggregate, the 

molecular properties that appear in the given equations have to be translated into bulk 

quantities; the polarizability becomes the linear susceptibility, for example.  Moreover, 

account has to be taken of the optical properties of the medium supporting the particles.  In 

most of the experiments discussed in Section 3, it has been shown that the relative values of 

the refractive index between the beads and the surrounding medium significantly influence 

the optical binding phenomena, modifying the bead positions of stability.  In fact, proper 

registration by the theory of the responsible local field effects is also straightforward; it is 

already known how the retarded potential of equation (2.7) is affected [56].  Alongside the 

incorporation of Lorentz field factors, the dependence on kR changes to a dependence on 

n(ck)kR, where the multiplier is the complex refractive index.  For example in a liquid 

illuminated by 800 nm radiation, when the refractive index at that wavelength is 1.40, the 

potential energy minimum registered in Fig. 1 at kR ~ 7.5 signifies a pair separation of 670 

nm rather than 960 nm. 
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Recently, there has been fresh interest in the angular properties of the force fields 

resulting from optical binding.  Multi-dimensional potential energy surfaces have been 

derived and shown to exhibit unexpected turning points, producing intricate patterns of local 

force and torque.  Numerous local potential minimum and maximum can be identified, and 

islands of stability conducive to the formation of rings have been identified [38, 39].  The 

major challenge now to be addressed is to account for the effects of particle numbers, namely 

the additional and distinctive features that must arise when more than two isolated particles 

are involved.  There are three distinct aspects to this.  First and simplest, there is a need to 

identify those effects which will very obviously arise as a consequence of the superposition 

of optically modified pair potentials.  Secondly, a full analysis needs to be made of the 

contributions from multi-particle processes of stimulated scattering, involving the entangled 

near-field interactions of more than two particles.  And finally, since stimulated scattering 

releases throughput radiation essentially unchanged, multiple processes of stimulated 

scattering have to be entertained in order to properly address the kind of 1D arrays and 2D 

optical crystal structures that experiments have so beautifully revealed.  We are confident that 

these challenges for the future will soon bear the fruit of establishing still better and clearer 

links between theory and experiment. 
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