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Abstract

In this thesis we study new kinds of reconstruction problems introduced by V.I.
Levenshtein. These problems are concerned with finding the minimum number of
distorted objects that are needed to restore or identify the original object. Our main
goal is to find these numbers in Cayley graphs on the symmetric and alternating
groups generated by a conjugacy class of permutations of order two. We found that
the numbers are closely related to a well-known class of numbers in combinatorics,

the Stirling numbers.
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Chapter 1

Introduction

In this thesis we are interested in reconstruction problems. These were first introduced
by V.I. Levenshtein [16, 17] and have been studied under the name efficient recon-
struction. They are also known as trace reconstruction in the area of computational
biology concerning evolutionary processes [1, 12, 21]. These problems have no con-
nection to the ‘classical problem’ that refers to the problem of reconstructing a graph

from its multiset of subgraphs obtained by deleting one vertex from the original graph.

1.1 Reconstruction Problems

Problems of our interest are quite similar to other problems in coding theory and
information theory. However, there is a small difference between efficient reconstruc-
tion and the error correction which is studied in coding theory. Normally, in coding
theory when a piece of information (or a message) encoded as a codeword is transmit-
ted through a channel from the sender S to the receiver R, the information is likely
to be distorted by noise in the channel. Here one needs a code in order to manage

these distortions and errors.

In coding theory, researchers are interested in codes which allow them to recon-



struct an object, i.e. a codeword, from one distorted object. It is as if we had a
key book to show us the method to encode and decode the objects. As is shown in
Figure 1.1, the distorted information will be corrected by an efficient algorithm with

respect to each code used.

Codeword Noisy channel Distorted codeword

S PY O o ":‘:1::":’}":::.;:0 — B — | R

)

Corrected codeword

Figure 1.1: Error-correction

In the problems of efficient reconstruction (or trace reconstruction), as demon-
strated in Figure 1.2, a number of distorted pieces of information ( maybe considered
as samples ) are needed to identify the original message. It is essential that sufficiently
many distorted messages are present. Here, we need to find the minimum number of

samples that are required to help us find or identify the original message.

Of particular interest in real-world applications are ancestor DNA reconstruction
and genome rearrangement [1, 8, 12, 13, 21, 22]. For example, studies of this type
of reconstruction aim to identify the DNA sequences of a common ascestor, provided

we have sufficiently many samples of DNA from his descendants.

In order to study reconstruction problems of this kind Levenshtein [16, 17] intro-
duced error graphs. This allows us to formulate the efficient reconstruction problem
as a problem about graphs. Let us demonstrate the kind of reconstructions we are
interested in. Suppose that the problem consists of transmitting strings of length
four made from the letters in {1,2,3,4,5,6,7}. Here we are given that errors occur
in the form of a single positional interchange, that is, some two letters swap posi-
tions in the string, with no other changes. For example, when the string 1453 is

transmitted through this channel it may be distorted in (3) ways to become 1354,
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Figure 1.2: An example of efficient reconstruction problems

4153, 3451, etc., or may be not distorted at all. Such errors will be called single
errors. In addition, we allow the possibility that several errors occur in succession.
For instance 1453 — 1534 is a distortion that could occur as a sequence of the single

errors 1453 — 1543 — 1534.

The notion of an error graph is now quite easy to explain: we view the strings as
the vertex set of the graph, and join two vertices by an edge if one is obtained from
the other by a single error. The precise definition of error graphs and single errors is
given in the next chapter. Here instead is what we are interested in: what is the least
number of different distortions of a string one needs to identify the original string?

Note it is possible that the original string may be included in these distorted strings.

In Figure 1.3 we show that one needs at least four different distorted strings to
reconstruct the original string that is distorted by single errors of transpositional
interchanges. Suppose that the original is distorted by three different single errors
to 1547, 1754 and 1475. To find the original string one needs to swap two letters in
these distorted strings. Clearly, the original string is one of the strings obtained by
swapping two letters in 1547, 1754 and 1475. However, as shown below, there are

three candidates left, namely 1574, 1457 and 1745.
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Figure 1.3: Reconstructing a string distorted by single positional interchanges

To reduce the number of candidates we need to be provided with more clues. As
soon as another distortion from the original string is added, here 5174, we are able
to identify or reconstruct the original string, which is 1574. That is, in this case,
one needs at least four distorted strings for tracking down the original string. This
is the typical problem of efficient reconstruction: Given units of information —here
strings — and specified errors —here single positional interchanges— what is the least

number N + 1 of distorted information units required to restore or reconstruct the



original information? Here this number is 4, and Theorem 3.1.1 proves that this is

correct for any string and single positional errors.

In real-world applications we cannot exclude that errors are accumulated, as dis-
cussed before. So if one specifies an integer r > 1, the efficient reconstruction problem
asks for the least number N +1 of strings required to uniquely reconstruct an original

string where the strings are obtained by up to r single errors from the original.

With our so far informal definition of error graphs it is now clear that the efficient
reconstruction problem can be phrased entirely in the language of graph theory, as
follows: Let I" be a graph. For each r > 0, we denote by B,(I',u), or in brief B, (u),

the ball of radius r about the vertex w. That is,
B,(u) ={v el :d(u,v) <r} (1.1)

where d(u,v) is the distance between u and v (see [7] for details ). The elements in

B, (u) are the r-neighbours of u. Given r > 0 we let
N, r) = mgx{ |B,(u) N B,(v)] }. (1.2)

Hence, the number N = N(I',r) is the largest number of r—neighbours that two
distinct vertices can have in common. This then is exactly the number N we require
for the reconstruction problem: as soon as N + 1 or more distinct r—neighbours
are available, a unique vertex will be restored from these r—neighbours. Note the

number N = N(I',r) in (1.2) is called the intersection number.

The problem of ball intersection can be studied in any graph, and we will give
some references to the literature later. In this thesis we solve this problem when I’
is a Cayley graph on the symmetric and alternating groups where the generators are
elements of order two. From the viewpoint of error correction these are precisely the

positional interchanges mentioned before.



In our solution of intersection numbers in these Cayley graphs we found that these
parameters are very closely related to the Stirling numbers. In fact, one could say
that this thesis is also a study of the Stirling recursion which is quite independent of
the work on reconstruction. Once again it shows that interesting problems lead to

the deeper connections in mathematics.

1.2 The Structure of the Thesis and Results

We begin in Chapter 2 by providing the standard terminology of graphs needed here,
including error graphs, Cayley graphs and Stirling numbers. Most the standard ma-
terials can be found in [7]. Our main interest will in particular be the Cayley graphs
of the symmetric and alternating groups. Also, Stirling numbers of the first and the
second kind will be reviewed. This includes their generalizations, r-Stirling numbers.

Moreover, the basic background in representation theory as needed here will be pro-

vided.

In Chapter 3, as the core motivation of this thesis, the joint work [15] of Leven-
sthein and Siemons on reconstruction numbers in the transposition Cayley graph is
introduced. All significant results concerning our work will be reviewed thoroughly.
In addition, we suggest another point of view to consider the transposition Cayley
graph. With this new method we found that there is a tight relation between trans-
position Cayley graphs and Stirling numbers. Also, an important concept of ascent
and descent pattern will be introduced. This idea of pattern yields us a simple but
effective lemma, called the Cancellation Lemma. This lemma is the key to our study
of the transposition Cayley graph over the symmetric groups and its generalisations
in the next chapters. At the end we will discuss the relation between intersection

numbers and the representation theory of the symmetric groups.

In Chapter 4 we introduce the double-transposition Cayley graph G (2*), which is



the Cayley graph on the alternating group Alt, generated by all double-transpositions
(o B)(y 6) where all «,3,7,d are distinct. This graph is considered as a generali-
sation of the transposition Cayley graph in Chapter 3. Originally, the idea we use
in Chapter 3 is a modification of the idea we created for the double-transposition
Cayley graphs. Not surprisingly, we found that Stirling numbers, in particular those
of the first kind, still play a crucial role in our study of this type of graphs. Here is

the main theorem in this chapter:

Theorem 4.2.7 (page 69). Let r > 2 and let T, = G’ (2?). We have

N(T,,r) = {n f% ] s (1.3)

if n is sufficiently large.

We define the numbers f (1.3) in Section 4.2.2. They are closely

[n—Qr}(l 2 3) 0
related to the Stirling numbers of the first kind. With some help from the computer

programming GAP we have another main result of the case when r = 2.

Theorem 4.3.1 (page 74). Let T, = G’ (2%). For n > 5 we have

1
(n® — 7n® + 5n* + 23n® + 90n? — 112n — 480).

N(F"’Q):{nizi]( T 16

123)

In Chapter 5 the k-transposition Cayley graphs G,(2F) and G’(2%) are intro-
duced. These are the graphs on Sym, and Alt, generated by all permutations of
the shape (a1 f1)(ag B2)...(ax Bk) with k odd and even, respectively, where all
a’s and (’s are distinct. The pattern of study will be the same as in Chapter 3
and Chapter 4. Most results concern the asymptotic behaviour of the intersection
numbers. However, the larger the graph becomes, the more disciplined it becomes.
It seems that when the graph is small, the metric buried inside the graph is quite
disorganised. Due to the parity of %k, we need to consider the k-transposition Cayley
graph separately in two cases. The first is the case of k£ odd. The main theorem is

the following.



Theorem 5.2.6 (page 87). Let r > 3 and let & > 3 be an odd integer. Let

I, = G,(2%). Then we have

N(Fn,r):[n_”rk]mg)+{n_<:_1)k](123) (1.4)

if n is sufficiently large.

For the case of k even, here is the main result.

Theorem 5.2.7 (page 90). Let T',, = G/ (2¥) with k even and let r > 2. We have

rk

N(Tn,7) = N(G,(2%), ) (1.5)

if n is sufficiently large.

In the last chapter, we introduce another Cayley graph on the alternating group,
namely the 3-cycle Cayley graph where the generating set is the set of all 3-cycles.
The graph turns out to be quite different from the previous kinds of generalisation
of the transposition Cayley graph that we considered earlier on. Some results about

the 3-cycle Cayley graph will be discussed.



Chapter 2

Preliminaries

In this chapter we first give some terminology on graph theory and then provide the
definition of error graphs and Cayley graphs. The material concerning graph theory
can be found in [7]. Also, some basic topics on group theory we need are introduced
here. Later we review Stirling numbers. These numbers play a significant role in this
thesis. At the end of this chapter we provide some background knowledge on the
representation theory of symmetric groups, especially concerning the class algebra

constants.

2.1 Basic Notation on Graphs

A graph T is a system consisting of a set V' of vertices and a set E of edges. Usually,
such a graph is denoted by I' = (V, E'). We call V' the vertex set and E the edge set
of I'. The edge set E is a set of unordered pairs {u,v} of distinct vertices from V.
In particular, for us graphs are simple, i.e. they are undirected, have no loops and
multi-edges. The order of a graph, denoted by |T'|, is the number of vertices. Two
distinct vertices u and v are adjacent (or neighbours of each other), written u ~ v,
if {u,v} isin E. A vertex u and an edge e are incident if e = {u,v} for some v.

The degree of a vertex u is the number of vertices adjacent to u. A path of length n



is a sequence of n + 1 distinct vertices wg, uq, ..., u, of V with {u;,u;;1} in E for
all i =0,...,n—1. A graph is connected if for every pair u,v of vertices there is
a path starting at u and ending at v. A cycle of length n is a connected graph of
order n such that every vertex has degree two. The distance between the vertices u
and v in I', denoted by dr(u,v) or briefly d(u,v), is the length of a shortest path
joining v and v. The diameter of T' is the maximum distance of two vertices in I'.
For a non-negative integer r the sphere S,(I',u) of radius r centred at the vertex u

of the graph T is the set of vertices v with d(u,v) = r, that is

Sy(Iu) ={veV:duv) =r} (2.1)
Similarly, we let

B,(I'u) ={veV:duv) <r} (2.2)

be the ball of radius r centred at u of the graph I'. For instance, considering

Figure 2.1, we have B;(K33,a) = {a,b,c,d} and Sy(Ks3,e) = {a, f}.

S
N

Figure 2.1: The complete bipartite graph K.

When there is no ambiguity we sometimes use B, (u) and S, (u) to stand for B,.(I",u)
and S,.(I',u), respectively. An automorphism f of a graph I' = (V, E) is a bijection
on V satisfying that {u,v} is an edge in E if and only if {f(u), f(v)} is an edge
in E for all edges. A graph is called vertex-transitive if for every pair of distinct

vertices u and v there is an automorphism f such that v = f(u). It is then clear

10



that every vertex of a vertex-transitive graph has the same degree. A graph whose
vertices all have the same degree k is called k-regular or briefly reqular. A vertex-
transitive graph is therefore regular. A connected graph I' is distance-transitive if
for any ordered pairs (u1,v1) and (ug,ve) in V X V with d(uy,v1) = d(ug,ve) there
is an automorphism f of I' such that (ug,vs) = (f(u1), f(v1)). More generally, a
connected graph is distance-regular if for each ¢ > 0 there are constants c¢;,a;,b;
such that for all uw,v with d(u,v) = ¢ the number of neighbours of v at distances
1—1,4,1+1 from u are ¢;, a;, b;, respectively. By the definition of distance-transitivity,
the automorphism group of a distance-transitive graph acts transitively on the set
of ordered pairs of vertices. It follows that any distance-transitive graph is distance-
regular, but the converse is not true. Another well known class of graphs is the class of
strongly regular graphs. A graph is strongly reqular with parameters (k, A, ) if it is
k-regular satisfying that pairs of adjacent vertices have exactly A adjacent vertices
in common and pairs of non-adjacent vertices have exactly p adjacent vertices in
common. It becomes clear that any connected strongly regular has diameter two.

The Petersen graph is an example of strongly regular graphs with parameters (3,0,1).

2.2 The Notion of Error Graphs

As we discussed in the previous chapter, error graphs appear for a class of recon-
struction problems related to symmetrical errors. Here we give a precise definition

of error graphs, including single errors and error sets. This material can be found in

[15, 17].

Let V' be a countable non-empty set and let H be a set of partial one-to-one
functions on V' whose domain is non-empty. That is, for each element A in H we
have that h:V;, — V is an injective map with non-empty domain V;, C V. The set

H is a single error set, or briefly an error set if

11



(1) A(v) # v for all A in H and v in Vg and
(2) if h belongs to H then the inverse A~ of h belongs to H .

Any element in an error set is called a single error.

Definition 1. The graph I' = (V, Ey) is an error graph if there is a single error set
H such that

Ey ={{v,h(v)}:veV and h € H}.

Remark: By Condition (1) above, every error graph has no loops, and by Condition (2)

they can be considered as undirected graphs.

From the definition, an error graph may not be connected. However, in this thesis
we are only interested in connected error graphs, that is, any two vertices u,v can
be transformed by a series of single errors, one into the other. The error graph
[' = (V, Ey) will therefore be equipped with the metric d : V x V — Z where d(u,v)

is the minimum number of single errors used to transform u to v.

Next, we consider some interesting examples of error graphs. The Hamming space,
written F", is the set of all n-tuple vectors over the alphabet Fy, = {0,1,2,...,q—1}.

For convenience, one may think of vectors in F as words of length n. That is
v = (v1,V2,...,0,) = V1V2... 0y,

with v; in F, for all ¢. The Hamming distance between two vectors u,v is the
number of positions that u and v differ in. It can be considered as an error graph
by letting the vertex set be the set F'. Two different vertices u and v are adjacent
if v and v exactly differ in one position. Then the edge between u and v is referred

to as an error distorting one to the other. If we let

N(F},r) = max |B,(u) N B.(v)]

UFV

then from [16, 17] it is known that
r—1 n—1
N(F™ r) = — 1)
(Fy.r) q;( Z. )(q )

12



Hence, it is straightforward that any unknown vertex u can be reconstructed from
N(F},r)+1 vertices at distance at most r from w, that is, any word u in F}' can be
identified from N(F}',r)+ 1 words in F}' that differ from w in at most r positions.

Another well known example is the Johnson space. For any 1 < w < n — 1 the
Johnson space J! is the set of binary vectors of length n with Hamming weight w.
The Hamming weight is the sum of unities that appear in the binary vector. The
Johnson distance is half the Hamming distance. For example, 1111000 and 1001101
belong to J,, and the distance between these vectors is two. It is clear that the

Hamming distance between two vectors in J]! is even. Again, from [16, 17] we have

that

N(Jﬁﬂ”)_”S(wzl)(nﬂ;_l)ih

1=0

is the maximum number of vectors at distance at most r that any two vectors can
have in common. That is, any vector w in J]! can be identified from its N(J],7)+1

neighbours at distance at most r.

Us
51

red

Uz

Ue

Figure 2.2: A 3-edge-colouring of a graph

For anyone who is interested in efficient reconstruction problem, more material
can be found in [18, 19]. We now introduce the edge colouring. Let I" be a graph
and let K be a set. A function k: E(I') — K is an edge colouring if k(e1) # k(es)
whenever e; and e, are adjacent. For any positive integer k, a k-edge-colouring
is an edge colouring  : E(I') — {1,2,...,k}. Also, the elements in the image set

are considered as colours. Here we discuss the connection between errors and edge

13



colourings. In Figure 2.2 the graph accompanied with its colouring corresponds one-
to-one to an error graph I' in a sense that each colour is considered as a single error.
For example, us is the vertex distorted from the vertex uy by the single error ‘red’,
and vice versa. This implies that error graphs and edge colourings actually are the

same.

2.3 Cayley Graphs

Cayley graphs occur as an important class of error graphs. We survey these here.

Let G be a non-trivial group and let H be a generating set of G satisfying the
following conditions:
(1) H=H ' with H'={h':h € H} and

(2) H does not contain the identity element e of G.

The Cayley graph T'y := (G, Ey) on the group G with the generating set H is
the graph whose vertex set is G and the edge set Eg is defined as follows: Two
vertices g and ¢ are adjacent in 'y if and only if ¢ = gh for some h in H. With
Condition (1) throughout this thesis we then consider the graph I'y as an undirected

graph with the edge set Ey defined by
Ey={{g9.9'}:97'g € H}.

Also, from Condition (2) we have that the graph I'y has no loops. In the next

proposition we state well-known results on Cayley graphs.

Proposition 2.3.1. Let I'y be the Cayley graph on a group G with the generating
set H. Then Uy is a connected regular graph of degree |H|. In particular, it is

vertex-transitive.

14



2.3.1 Basic Definitions from Permutation Groups, and

Symmetric Groups in particular

For any positive integer n we let [n] := {1,2,...,n}. Without loss of generality a
permutation g of n letters is a bijection on the set [n]. We denote by Sym,, the
set of all permutations g of n letters. As is well known, the set is actually a group,
called the symmetric group Sym, of degree m. Note that throughout this thesis,
the permutations act on the right. That is, a(gg’) = (ag)g’ or more customarily
99 = (a9)9 for all @ in [n] and g,¢’ in Sym,. Hence, the product of (1 2) and
(13)is (12)(13)=1(123), not (13 2). There are quite a few ways to represent

permutations. The first method is by representing the permutations g as arrays:

1 2 ... n
g = . (2.3)
19 29 ... nY
The permutation ¢ in (2.3) maps i to ¢ for all ¢ = 1,...,n. Another common

representation of permutations is the disjoint cycle decomposition. Throughout this
thesis, we represent permutations as the disjoint cycle decomposition in the following
way: For each permutation ¢, put 1 in the first cycle followed by 19, 19° and so on
until we get 1 again. The first cycle of g then is (1 19 19° ... ). If there is a number
not belonging to the first cycle we then put the minimum of the remainder in a new
cycle, and then repeat the process as we did before. Continuing in this fashion, each
cycle in the cycle decomposition of g will start with the smallest number appearing
in its. Also, the leading numbers of all cycles will be arranged in ascending order.

For example,

12345678
g:= = (16)(2387)(45). (2.4)
63854127

The permutation ¢ in (2.4) consists exactly of cycles of length two and four. Let g be

a permutation in Sym,,. The support of g, written Supp(g), is the set of elements in

15



[n] that are not fixed by g. The Fix(g) is the set of elements in [n] fixed by g. Also,
we let supp(g) and fiz(g) be the number of non-fixed elements and fixed elements

of g, respectively.

Definition 2. Given a permutation g with h; cycles of length ¢ forall i =1,... n,
the cycle type of g is

ct(g) := 1M2h2 .. phn,

A transposition is a permutation ¢ containing a cycle of length two where the
other cycles are all of length one. That is, g is a transposition if and only if ct(g) =
177221 Also, we denote by |g| the number of cycles appearing in the usual cycle

decomposition of ¢, including the cycles of length one. Hence

ol =3 (2.5)

and also

n

n=> ih. (2.6)

i=1

Two permutations ¢ and ¢’ in Sym, are conjugate, written g ~ ¢', if g = t71¢'t
for some permutation ¢ in Sym,,. It is well known that the set of elements in Sym,,
conjugate to ¢ is the set of elements in Sym, having the same cycle type as g. If
ct(g) = 1Mm2h2 ... phn we let gmn = (1M202...phn)Smn he the conjugacy class of
Sym,, to which g belongs. As is well known, any permutation ¢ can be expressed
as a product of transpositions. A permutation ¢ is even if g is a product of even
number of transpositions, otherwise ¢ is odd. The set Alt, of all even permutations

of n letters is a group, called the alternating group.

Theorem 2.3.2 ([23], p. 18). The number of permutations of cycle type 1122 ... phn
18
n!
hilhol« - hy\1h12h2 o phn
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2.3.2 Cayley Graphs on the Symmetric Group

Here we introduce Cayley graphs on the symmetric group. Of particular interest are

the Cayley graphs generated by the set of all transpositions. We start with a lemma.

Lemma 2.3.3. Let H be a union of conjugacy classes on G, = Sym,, and let r > 0.
Suppose that C is the group of inner automorphisms of Sym,, i.e. C = {og, :
g € G, } where usy = g~ tug for all w in G,. If Ty is the Cayley graph of Sym,

with generating set H , then the sphere S,.(U'y,e) is a union of C —orbits.

Proof. Let u, be an element in S,.(I'y,e). Suppose that P := e, uy,ug,...,u, is a
shortest path from e to w, with u; in Sg(T'g,e) for all 1 < k < r. Then, for each
g in G,,, the path

P, :=e04=e€,u104,...,u,04

must be a shortest path from e to u,0,. This implies that S,(e) is a union of

C -orbits. ]

From the above lemma one can see that if H is a union of Sym, — conjugacy
classes then every sphere is a union of conjugacy classes of Sym,, . That is, it consists
exactly of all permutations having the same cycle type. Note that Lemma 2.3.3 can

be generalised to any group G and any automorphism group C' of I'y.

Remark: In any group G, the trivial conjugacy class is {e} where e is the identity

element.

Let H =|JC; be a union of conjugacy classes of Sym,,. If h = hy---h; with hy
in C; for some i then g~'hg = (g7 hig)--- (g7 h;g). Clearly, g 'hyg and hy have
the same cycle type, i.e. they are in the same conjugacy class. Hence g~ 'hg is in
(H). It follows that (H) is normal in Sym,,. It is well known that Alt, is simple

when n > 5, that is, Alt, has no non-trivial normal subgroup. We then have that:
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Proposition 2.3.4. Let n > 5 and let H # {e} be a union of conjugacy classes of

Sym,,. If H contains an odd permutation then (H) = Sym,,. Otherwise, (H) = Alt,.

In order to generate the symmetric group Sym, by a set of transpositions, a
smallest generating set must be of size n — 1 as the longest cycles we need to extract
are those conjugate to (12 ...n). Of collections of n—1 permutations that generate
the whole symmetric group Sym,,, the set H, = {(12),(23),...,(n—1n)} of bubble-
sort transpositions and the set Hg = {(1 2),(1 3),...,(1 n)} of prefiz-transpositions
are well known. On the other extremal case, the set (21)“" of all transpositions
clearly is the biggest collection of transpositions generating the symmetric group.
The Cayley graph I'y, is called the bubble-sort Cayley graph and the Cayley graph
Iy, is the star Cayley graph. The details of these Cayley graphs can be found

in [14].

In the remainder our work will be devoted to the Cayley graph generated by
conjugacy classes of involutions — permutations of order two. Basically, all the graphs
we are interested in are based on the transposition Cayley graph, written G, (2'), on
Sym,, . More precisely, G,(2!) is the Cayley graph 'y := (G, Ey) where H is the
set of all transpositions and G,, = Sym,,. The symbols ‘2! and ‘G, refer to the
set of transpositions and the symmetric group Sym,, , respectively. Figure 2.3 shows
the transposition Cayley graph G4(2') on Sym,. It is clear that the graph is not
distance-regular and therefore not distance-transitive. Both (1 2 3) and (1 2)(3 4)
are in Sy(e). The former is adjacent to three elements in Si(e) while the latter only

has two neighbours in 5 (e).

Proposition 2.3.5 ([15], p.806). Let T',, be the transposition Cayley graph G, (2')
on Sym,, with identity element e. Then the sphere S;(I',,e) consists exactly of all

permutations having n — i cycles.

Proof. Suppose that © = (o az...0;)(B1 B2...0;) is a permutation consisting of

18



Figure 2.3: The transposition Cayley graph on Sym,

two disjoint cycles. Let h = (ay (1) be a transposition. Multiplying = by h is just

gluing the two disjoint cycles of x together, namely,

xh:(alag...aiﬁlﬁg...ﬁj)::y (27)

On the other hand, when y is multiplied by h then yh = xhh = x, that is,

yh: (Oél Qg ...04 51 52...59‘)((1/1 ﬁl) =X. (28)

Literally, when a permutation is multiplied by a transposition this amounts to either
gluing two disjoint cycles together or separating a cycle into two cycles. The proof is
now complete by induction as we start at the identity, for which the number of cycles

s n. O
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From the above proposition we have that for any permutation g the distance

d(e,g) is at most n — 1. Hence by Proposition 2.3.1 we can conclude that:

Proposition 2.3.6 ([15], p. 805). For any n > 3 the transposition Cayley graph

Gn(2') on Sym, is a connected (g) -reqular graph of order n! with diameter n — 1.

2.3.3 k-Transposition Cayley Graphs

In the previous section we have discussed the transposition Cayley graph G, (2'),
which is the Cayley graph on the symmetric group G,, = Sym,, generated by the
set (21)%" of all transpositions. Here we introduce other kinds of Cayley graphs
on the symmetric and alternating groups. A permutation g whose cycle type is
ct(g) = 1"2%2F is called a k-transposition. For instance, a 2-transposition is a double-
transposition (« 3)(y §) where «, 3,7, d are distinct. From Proposition 2.3.4 one can
see that the conjugacy class (2%)%" of all k-transpositions will generate the symmetric
group if k£ is odd. On the other hand, it generates the alternating group if k is even
and greater than four. These Cayley graphs on Sym, and Alt, generated by (2%)%»

are called k-transposition Cayley graphs.

2.4 Stirling Numbers

In this section the well known (signless) Stirling numbers are introduced. There are
two types of these numbers, the first and the second kind. Most of this thesis is in fact
devoted to the Stirling numbers of the first kind. The numbers provide a framework
of this thesis as they deeply relate to the transposition Cayley graph, which is the
starting point in our research. We will discuss their recursion and a generalisation of
them, the r-Stirling numbers. Note that the signed types of these numbers will be

omitted.
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We first introduce Stirling numbers of the first kind. Let n and k& be positive
integers. The Stirling number [Z} of the first kind is the number of permutations

of [n] consisting of k cycles, including fixed points. That is,

[Z}:ngsﬂ%:|M=k}L (2.9)

Note that in some literature the authors may use another notation for Stirling num-
bers of the first kind, for instance c(n, k) and (—1)*s(n, k). We can express them as

the coefficients of y* in the rising factorial function
Yy = y(y+ D)y +2)... (y+n—1). (2.10)

That is, given a positive integer n, we have the generating function

n

Z[Z]yk:y(y+1)(y+2)...(y+n—1) (2.11)

k=1
We next show that the numbers [ . } are endowed with a recurrence which eventually
becomes a common recurrence for new families of numbers we invent in the next

chapters.

Proposition 2.4.1. For positive integers n and k with 2 < k < n the Stirling

numbers [Z} of the first kind satisfy the recurrence

{Z]:{Z:HH”_UV;] (2.12)

with the initial conditions [7] =0 if k>n and []] = (n—1)!.

n
k

The recurrence (2.12) is well known but we use it many times. It would then
be nice to prove it here. Before we do this, let us introduce a simple, but beautiful
idea of embedding Sym,, into Sym, ;. For each j = 0,1,...,n we have an insert

operation i; : Sym, — Sym,,, which puts ‘n+1" after the number j in our standard

cycle decomposition of the permutations in Sym,,. The operation ¢y, will put ‘n+1’
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in a new cycle. For example, let g = (1 6 3)(2 5)(4) belong to Symg. For each 7,

considering %, : Symg — Sym,, we have

io(g) = (16 3)(25)(4)(7), ia(9) = (163)(25)(47),
i(g) = (1763)(25)(4), is(g) = (163)(257)(4),
ia(g) = (16 3)(275)(4), i6(g) = (167 3)(25)(4),

i3(g9) = (163 7)(25)(4).

In the other way around we have the converse operation ¢* : Sym, , — Sym,
which deletes ‘n 417 from the permutations in Sym,, ;. These corresponding oper-
ations are highly significant for our work and the idea will be thoroughly discussed
in Section 3.2.3. Throughout this thesis, these insert operations ¢; will act in the
following sense: They map a permutation g to i;(g) in I',yy if g isin I',. In the
other way around, i*(g) is in I',_; if g belongs to I',. For example, if ¢ is in T';

then i;(g) is in I'¢ while 7*(g) is in I'y. Now we can prove Proposition 2.4.1.

Proof. Let n and k be positive integers. The number of permutations in Sym,,
consisting exactly of one cycle is equal to (n — 1)!. This accounts for [’” . Clearly,
[Z} = 0 if & > n. For the rest we suppose that 2 < k < n. Let Z be the set
counted by [Z] . We can partition Z into two disjoint subsets. The first, say X,
contains all permutations in Z fixing n. The other set Y consists of permutations in
7 mot fixing n. Every permutation g in X corresponds one-to-one to iy'(g). This

accounts for [ "~ 1 ]. In the other case, if we let T = i*(Y) be the set obtained from Y’

by deleting n from all elements in Y then Y can be partitioned into n — 1 mutually

n—1

i ] since

disjoint parts, namely i1(T),42(T), ..., i,—1(T). This accounts for (n—1) |

7| = ["."]. The proof is then complete. O

In Table 2.1 we show some first Stirling numbers of the first kind. Next we

introduce another kind of Stirling numbers, those of the second kind. They are the
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k
n 2 [ 4]
1 T 0 | O | 0 | O
2 T 1 | O | O | O
3 2 | 3 | 1 | 0 | O
4 6 | 11 | 6 | 1 | O
5 24 50 35 10 | 1

Table 2.1: Stirling numbers of the first kind

number of ways that the set [n] can be partitioned into k parts, written { " }
Recall that [n] = {1,2,...,n}. One can see that the numbers { 7 } are equal to the
number of conjugacy classes of Sym,, whose elements have k cycles. Asis well known,

they satisfy the recursion (2.13). Some of these numbers are shown in Table 2.2.

Proposition 2.4.2. For positive integers n and k with 2 < k < n the Stirling

numbers { " } of the second kind satisfy the recurrence

n n—1 n—1
= k 2.1
with the initial conditions { Y } =0if k>n, and { i } =1.

Proof. Let 2 < k < n and let Z be the set of partitions of n with k& parts. We
can divide Z into two piles, say X and Y. The former consists of all partitions
whose class containing n has size one. The latter contains the remainder, that is,
Y = Z\ X. Each partition A in X corresponds to a partition of n — 1 obtained
from X\ by deleting the class of n, and vice versa. This accounts for Z:} } Let ~
belong to Y. Then after deleting n from ~ the number of classes of ~ is the same.
There are k partitions of n that yields the same partition of n — 1 after deleting n,

and this accounts for k{ ”;1 } The initial conditions are clear. O

Now we introduce a generalisation of Stirling numbers of the first kind, r-Stirling

numbers of the first kind. Recall that [r] ={1,2,...,7}. Let r > 1. The r-Stirling
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k
n 2 [ 4]
1 T 0 | O | 0 | O
2 T 1 | O | O | O
3 T 3 | 1 | 0 | O
4 T 7 | 6 | 1 | O
5 1 | 15 25 0 | 1

Table 2.2: Stirling numbers of the second kind

number [ Y L of the first kind is the number of permutations in Sym,, having k cycles

such that all elements in [r] are in different cycles. Similarly, the r-Stirling number
{ . }r of the second kind is the number of ways to partition [n] into k parts where
elements in [r] are in different parts. Clearly, [} ], = [}] and {7} = {}}.
Not surprisingly, these r-Stirling numbers have the same recursion as the ordinary
Stirling numbers but with different initial conditions. That is, for any » < k < n we

have

[ZL:H:HTH”_U[”;L (2.14)

with initial conditions [ZL =0if k>nor k<r, [:]T = 1. Further,

{Z}:{Zj}+k{n;1} (2.15)

with initial conditions { } }r =0ifk>nork<r, {! }T = 1. Good introductory
papers on these numbers are [2, 3, 4, 20]. Tables 2.3 and 2.4 show some of those
numbers collected from [4]. From the definition one needs to start at n = 2 for
2-Stirling numbers, and at n = 3 for 3-Stirling numbers.

In the next chapter we will introduce a family of numbers related to the ordinary

Stirling numbers and the r-Stirling numbers.
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k
n 2 ‘ 3 ‘ 4 5
2 1 0 0 0
3 2 1 0 0
4 6 5 1 0
5 24 26 9 1
6 120 154 71 14

Table 2.3: 2-Stirling numbers of the first kind

k
n 3 ‘ 4 ‘ 5 6
3 1 0 0 0
4 3 1 0 0
5 9 7 1 0
6 27 37 12 1
7 81 175 97 18

Table 2.4: 3-Stirling numbers of the second kind

2.5 Poincaré Polynomials

For a given graph I' and a vertex v in I' we let

M) = Y s

i>0
be the Poincaré polynomial of T'. Here s; is the size of the sphere S;(v). When the

polynomial in (2.16) is independent of v we simply write

Ir(y) == Iru(y)-

For instance, in the transposition Cayley graph ', = G,,(2!), if we let

g) =y =yly+1)-- (y+ (n—1)),
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then from Propositions 2.3.5 and 2.3.6 we have
n—1 n—1
i n i
Iy, (y) = > _siy’ = { . } Y. (2.18)

Recall from (2.11) that

Z [Z} Y =yly+Dy+2)...(y+n—1).
k=1
Therefore, substituting n — ¢ with k& in (2.18), we have
n—1 n
Ir, (y) = ZO [ni J y' = ; [Z} vt =gty ).

Now one can see that the Poincaré polynomial and the rising factorial function are

associated with Stirling numbers.

2.6 Ball Intersection Numbers

Let » > 1. Given a graph I' the ball intersection number, or in brief, intersection

number is

NI, r):= max |B,(u) N B,.(v)]. (2.19)

#v

When the graphs of interest are Cayley graphs, we make use of the vertex tran-
sitivity of these graphs to reduce the index set u # v in (2.19). Fix r > 1 and
let G be a group with generating set H. Let I' = I'y. Denote B, := B,.(e) and
S, := S,(e) where e is the identity element of G. By the vertex transitivity one can

reduce (2.19) to
NI, r)= max |B, N B,.(u)] . (2.20)
Further, it is easy to see that

N(T,r) = max N;(T,r) (2.21)

1<i<2r
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where N;(T',7) = max,es, | B- N B,.(u)|. Note that if d(e,u) > 2r then B.NB,(u) = 0.
Next, suppose that {v,vh} is an edge in I'. Then
u{v,vh} = {uv,u(vh)} = {uv, (uvv)h} (2.22)

clearly is an edge in I'. Hence,

uB, :={u} - B, = B.(u) and uS, = {u} - S, =S, (u). (2.23)
On the other hand, if we suppose that H is a union of conjugacy classes of G' then

Byu:= B, - {u} = B,(u) and Seu =S, - {u} = S, (u). (2.24)
This is because

{v,vh}u := {vu, (vh)u} = {vu, vu(u*hu)} (2.25)
is an edge in I'. In addition, for any permutation g we have
g~ (B NuB,)g = (97" Byg) N (g~ uB,g) = B, N (g~ 'ug) B,

and

g (B, NBuwyg = (g "'B,g) N (9~ Brug) = B, N B,(g" "ug).

This shows that if H is a union of conjugacy classes, then the functions ", f, : G — C
defined by

f"(u) = |B, NuB,| and fr(u) = |B, N Bu| (2.26)

are class functions for any fixed r > 1. Consequently, for any ¢ in G we have
frw) = (g7 ug) = |B, N B(u)| = fr(u) = fr(9™ ug). (2.27)
Now from (2.26) and (2.27) we can reduce (2.20) to

N({,r)= max |B, N B,(u)| (2.28)
ue
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where R is a set of representatives of all non-trivial cycle types in Sym,, .

As we have seen in Proposition 2.3.1, all Cayley graphs are vertex-transitive, and
hence they are regular. Before we move to the next section it would be nice to have a
glance on some bounds of intersection numbers of general regular graphs. The results
are based on a generalisation of the parameters A\ and p that are studied in strongly
regular graphs. Recall that a strongly regular graph I' is a regular graph such that
any two adjacent vertices have A neighbours in common and any two non-adjacent
vertices have p neighbours in common. Here we introduce a generalisation of this

property of strongly regular graphs to any regular graph by letting

A= max H{u: d(u,v) = d(u,v") =1}, (2.29)
p = max H{u : d(u,v) = d(u,v") =1}]. (2.30)

Then we have

Ni(I,1)=A+2 and No(I',1) = p.
Hence, from (2.21) one can see that
N(T,1) = max{\ + 2, u}. (2.31)

In [15], in order to bound intersection numbers of the graphs of interest, Levenshtein
and Siemons studied the relation between these parameters and the intersection num-

bers, and gave the results shown in the following theorems.

Theorem 2.6.1 ([15], p. 800). For any k-reqular graph T with k < |I'| — 2 we

have

N(T,1) < =(IT] + A). (2.32)

N | —

Theorem 2.6.2 ([15], p. 801). (Linear Programming Bound) For any strongly

k-regular graph T with k > 2 we have

Ny(T',2) > 4 (k: . %(M C (N1 — 2>> 42 (2.33)

28



Remark: In Inequation (2.33) above, Ny(I',2) = maxg(u,)=2 |B2(u) N Ba(v)|. This

is the general definition of N;(I',7) which is defined to be maxgy v)= | Br(u) N B, (v)].

2.7 Representation Theory

According to the definition of Cayley graphs, for each r > 1 we have
B,={eJUHUH*UH*U...UH".

Then if H is a union of conjugacy classes of the symmetric group, then B, will
concern the product of conjugacy classes of the symmetric group. To this study, we

need to deploy the representation theory.

Let G be a finite group and let F' =R or C. We denote by GL(n, F') the group
of invertible matrices with entries in F'. A homomorphism p : G — GL(n,F) is
called a representation of G over F with degree n. Further, the character x of a
representation p is the function from G into F' defined by x(g) = tr(gp) for all g in
G. That is, the value x(g) is the sum of all entries in the NW-diagonal line of gp.
Note that we write characters as functions acting on the left. Clearly, if e is the
identity of G then x(e) is equal to the degree of the representation. In the rest of

this thesis we are interested in the case F' = C.

Two representations p; and ps are equivalent if there is an invertible matrix P
such that gp; = P~ (gps)P for all g in G. A representation p is reducible if there

is an invertible matrix P such that for each ¢ in G,

for some square matrices A and B; otherwise p is irreducible. Also, if y is the

character of a representation p we say that yx is reducible if p is reducible; otherwise
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we say that y is irreducible. In representation theory, characters play a significant role
as we need to keep track only of one number instead of the n? numbers in each gp.
In the remainder of this section we provide some known results of the characters,

collecting from [11].

Proposition 2.7.1. (1) Any equivalent representations have the same character.

(2) If g1 and go are elements in G belonging to the same conjugacy class then

X(91) = x(g2) for all characters x of G.

Proposition 2.7.2. The number of all irreducible characters is equal to the number

of all conjugacy classes.

Let ¢ and ¢ be functions from G to C. The inner product of ¥ and ¢ is defined

by
1 S
(0, ¢) = e > 9(g)é(9)- (2.34)
Gl 2=
Proposition 2.7.3. Let x1,...,Xm be the wrreducible characters of G. If ¥ is a

character then

where d; = (9, x;) are non-negative integers. In addition, ¥ is irreducible if and only

if (9,0)=1.

Now we introduce systems in group theory that are called group algebras. First
we define the vector space CG over C that has all elements g in G as its basis.
The addition and scalar product are defined naturally, that is, if ¢q,..., g, are all

elements of G, and = = > \;g; and y = > p;9; then

Ty = (\i+m)g
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and

Az =" (A\i)g;

for all A in C. The group algebra CG is the vector space CG equipped with multi-

plication defined by

O X)) =Y (Agn)gh

where Ay, pp, are in C.

Next let C1,...,C,, be all the conjugacy classes of GG. For each 1 <1 < m, we

let

- Y

geC;

The element C; then is an element in the group algebra CG, and it is called the

class sum of C;. Note that <6i 1 < m> C CG is the centre of the group algebra.
Proposition 2.7.4. There exist non-negative integers a;j, such that
a@j = Z aijkék (235)
k=1
forall 1<t <m and 1 <75 <m.
The integers ag, in (2.35) are called the class algebra constants of G.

Proposition 2.7.5. Let G be a finite group and let {C;}™, be the collection of all
conjugacy classes of G. For each 1 <1 < m, we let g; be an element in C;. Then

we have

|G| x(g:)x k)
= Tl [Caley)] 2= (2.36)

where Cg(g) is the centraliser of g in G, and the sum is over the irreducible char-

acters x of G.

31



Note that the centraliser Cg(g) of g in G is the set of all elements in G that

commute with ¢, that is,

Calyg) ={r € G:ag =gz}

In Section 3.5 we will discuss this material in the transposition Cayley graph
G,(2'). Especially, we are interested in the connection between the class function
fr(u) :=|B, N Byu| and the characters. Note that the characters span the space of

all class functions.
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Chapter 3

Variation on Ball Intersection
Numbers in the Transposition

Cayley Graph

The transposition Cayley graph and its intersection numbers were thoroughly studied
in [15]. In this chapter we show that there is another point of view in studying both
the graph and its intersection numbers. Here we study in depth the results proved
by Levenshtein and Siemons. In this chapter we let I', stand for the transposition
Cayley graph G,(2') of Sym,,, so this is the Cayley graph on Sym,, generated by all

transpositions. Also, we let S, := S,.(I',,¢e) and B, := B,.(I',,€).

3.1 Current Results on Transposition
Cayley Graphs
We start with some theorems concerning N(I',,,r) for all r < 3.

Theorem 3.1.1 ([15], p. 809). Let I',, be the transposition Cayley graph on Sym,, .
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For all n > 3 we have
N(Ty,, 1) =3, (3.1)
and for all n > 5 we have
3
N(T,,2) = §(n +1)(n—2). (3.2)

Theorem 3.1.2 ([15], p. 810). Let n > 4. Then we have
(1) Ni(T'n,3) =21[So| + 2|52,
(2) No(T,3) =30 o [Si| + (n+2)(n — 3) +24(";%) +22(";%) +6(",*) and
(3) N(I'n,3) = No(I',3) for all n > 16.
Here is the main theorem in [15] concerning the asymptotic behaviour of N(I',,, 7).

Theorem 3.1.3 ([15], p. 815). Let r > 1 and let T',, be the transposition Cayley

graph G,(2') on Sym, . If n is sufficiently large then

N(T,,r) = No(Ty,7) = |Br1| + czi(n,n — 1) + czi(n,n — (r + 1)) (3.3)
where c31(n,m) is the number of permutations in I',, having m cycles such that 1,2,3
are in the same cycle.

Remark: Be aware that the numbers c3:1(n,m) are not the 3-Stirling numbers we
introduced before. The theorem above is our main motivation in order to find the
corresponding results for any k-transposition Cayley graph, defined in the previous

chapter.

3.2 Some Facts about Transposition Cayley

Graphs

In this section we slowly consider the behaviour of the transposition Cayley graph
G,(21). We also recall some results so that one can understand the canonical prop-

erties of these graphs.
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3.2.1 Edge Labelling

Any edge in the transposition Cayley graph I'), can be represented in the following
way. Suppose that {u,v} is the edge linking vertices u and v. Then there is a
transposition h such that v = wh, and on the other hand as h = h™! we have

u = vh. It then makes sense to label the edge {u,v} with {h} = {u"'v,v " u}.

Let g be a vertex (permutation) in T',,. The left multiplication o, : v — g v

for all v in T, is an automorphism on I',. Obviously, o, maps the edge {v,vh}
to {g~'v,g 'vh}. Hence {v,vh} and {g~'v, g 'vh} have the same label {h}. Note
that the map o, requires the inverse so that vo,y = voyo, for all v,g,¢ in T',.

Also, in general, the left multiplication can be extended to any other Cayley graph.

Next, taking advantage of being generated by the conjugacy class H = (21)%" of
I',, we have another automorphism, the right multiplication py : v — vg. One can
see that {v,vh} — {vg,vhg} = {vg, (vg)(g~*hg)}. Clearly, g~ hg is a transposition.
Hence, in this case, the right multiplication still preserves edges, but changes the

labels.

3.2.2 Distance Statistics in Transposition Cayley Graphs

To evaluate the intersection number
N(Ty,r) = max | B, N Bl (3.4)

with 7 > 3 one may try to guess intelligently the value N(I',,r) in (3.4) by the
number of permutations ¢g := why ... h,, where r* < r and h’s are errors belonging

to H. Recall that in the transposition Cayley graph, errors are transpositions.

Before we do this we give some useful terminology. Let I'y be a Cayley graph on

a group G accompanied by the (distance) metric d induced by the generating set
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H of GG, and let P be a path starting at the identity e, say
P = e v, vy, ..., 0.

We say that P has a descent at step k if d(e,vy) = d(e,vx—1) — 1. On the other
hand, P has an ascent at step k if d(e,v;) = d(e,vx_1) + 1. Hence, given a path
in T',, = G,(2'), it must have either descent or ascent at each step. This fact follows
directly from the parity of permutations. In other words, for any vertex v in 5;, its

neighbours must belong to either S;_; or S; ;.

Fix ¢+ > 0. Let v be a vertex in .S;. The number of the neighbours of v in S;_1,
denoted by ¢(v), is equal to the number of transpositions h that split a cycle in v
to two. If ct(v) = 1"M2h2 . nl» then we have that

=3 (D=3 <ifhj - n)
i=1 j=1
since ) jJhj=n. As we discussed in the preceding chapter, any vertex v in I',, can
be embedded into I',;; by fixing n + 1. It follows that the value ¢(v) is the same.
That is, the value ¢(v) actually does not depend on n, but is a constant. Hence, as
v has degree |H| = |(2!)%"| = @ we have that the number b(v) of neighbours

of v belonging to S;,; is
= ——= —c(v). (3.5)
Since c(v) is a constant we have b(v) = O(n?). Therefore, it follows directly that:

Proposition 3.2.1 ([15], p. 810). In I',, the number of vertices that are reachable

from a vertex v with a ascent steps is O(n*®).

Remark: The parameters ¢(v) and b(v) introduced above may be regarded as the
downward and upward degree for the vertex v. The letters ‘¢’ and ‘b’ refer to the

parameters ¢; and b; in distance-regular graphs, as defined earlier (p.11).
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Generally, in some graphs we may have to use ‘a’ referring to the parameter
a; in distance-regular graphs. Note that a(v) will be defined to be the number of
neighbours of v belonging to the same sphere as v. By this definition and the parity
of permutations, it is clear that a(v) = 0 for any permutation v in I',. In the next
proposition we provide parameters satisfying results very similar to those of distance-
regular graphs. Recall that in any distance-regular graph, for any ¢« > 0 there are
constants ¢;, a;,b; such that for any vertices u,v with d(u,v) = i, the number of
neighbours of v at distance ¢ — 1,4,7+ 1 are ¢;,a; and b;, respectively. In [5, p.72],

the author shows that for a given distance-regular graph,

01§02§...§cd* and bOZbIZ'--Zbd*—l

where d* is the diameter of the graph.

Proposition 3.2.2. Let T, = G,(2'), and let cya:(i) = max{c(g) : g € S;} and

binin (i) = min{b(g) : g € S;}. Then

Cmaz(0) < Crnax(1) < Cnae(2) < oo < Cnaz(n — 2) < Cpaa(n — 1) (3.6)

and

In addition, we have

Cmaz(1) =c((123 ... i+ 1)) and bpin(i)=0((123 ... i+1))

forall 0 <i1<n-—1.

Proof. We first observe that ¢;,4:(0) =0 and ¢pe:(1) =1, and ¢pa(n—1) = "(n2_1) .

Let © be a collection of subsets of [n]. We let

CQ):={ {a1,0} : a3 #ay and aj,ay € A for some A€ }.
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For each ¢ in I';, we let €, be the collection of subsets of [n] defined by

Q= { U {ag™} : a’s are representatives of all cycles in ¢ }

m2>0

Then {o, a2} isin C(€,) if and only if oy and as belong to the same cycle in the
decomposition of g. Clearly, C'(€2,) is the set counted by ¢(g), the downward degree
of g.

Now fix 2 <i<n—2. Let go= (123 ...ii+1) and let ¢’ belong to S; so
that ¢’ and ¢y are not conjugate. Then ¢’ has at least two cycles of length greater
than one in its cycle decomposition. Suppose that

g = (011 az... g )(Qor ... Qo) .- (1 g2 iy),
suppressing all cycles of length one. Then

C(Q)] = |C( {Han e aw}}l, )|

= ‘C( {{all o . . atkt}}le ))
< ‘C( {{ozn Q2. .. Q1 Qp Qo3+ .. Qj_1k;  Ojp Q3 ... ajkj}} )! .

Note that the last inequality holds as {2, ags} is counted by the latter, but not by

the former. Recall ¢’ now belongs to S;. Then |¢'| =n — ¢ and therefore, we have
ki+ko+...+kj—i=j.
Hence,
[{on1 ana. o augao a3 o i g o g =kt k= (= 1)
=i+l
= {123 ...ii+ 1}

This follows that

|C(Qg/)| < ‘C( {{0111 12 ... A1, Q22 (23 ... O./j_17k].710[j2 Q53 ... ajkj}} )|
= |C({{123 ...ii+1}})|
- ‘C’(ng)‘.
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Hence, ¢(¢') < ¢(go), as required. In addition, it is clear that (3.7) follows directly

from (3.5). The proof is then complete. O

Next, we give a bound of N;(T',,r). It is an extended version of a proof in

[15, p. 815).

Corollary 3.2.3. Let r > 1 and let u belong to S,, in I';, with 2j —1 < m < 275 for
some j. The number of vertices in B, reachable by a path of length r' < r starting

at u is at most O(n*r=9).

Proof. Let P be a path of length ' < r from u to a vertex v in B,. Suppose
that P has a ascents and d descents, and v belongs to S,y C B,.. We then have
a+d=7r"<r and d—a=m—m'. Since m’ <r we have 2a < 2r —m. It follows
that a < r —j + % Since a is an integer we have a < r — j. The proof follows

directly from Proposition 3.2.1. O

Remark: From Corollary 3.2.3 one can see that if u belongs to S; with i > 3,
then the number of vertices reachable from w in no more than r steps is at most
O(n*"=2) . In addition, if u is in either S; or S, then there are at most O(n?"~1)

vertices reachable from w« in at most r steps.

3.2.3 The Ascent-Descent Pattern

Let w and g belong to Sym,. We want to understand the paths from w to ug.
For this we first suppose that ¢ is a single cycle, say g = (a1 ag ...a,,). Now let

t; = (a1 ;) for all 2 <i<m. Then g = tot3---t,,. Next, consider the path
P := u,uty, utots, ..., ug, (3.8)

which is a path of length m — 1 starting at v and ending at ug. One can see that

any factorisation of g into m — 1 transpositions gives such a path, and every path
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of length m — 1 from u to ug in I',, provides a factorization of ¢, mappping u
and ug by the left multiplication o, and walking along the path from e = u~tu to

g=utug .

The idea now is to embed the path P into I',;, the transposition Cayley graph
on Sym,,_ ;. For this we view g and the ¢;’s as elements in Sym,,; that fix n+1 and
move all other points as before. For any j = 0,...,n let 7; be the insert operation in

Section 2.4. Now the path P in I'), can be embedded into I',;; via P +— P; where

Pji=i;(u),i;(u)ts, ij(u)tats, ..., 1;(u)g. (3.9)

Note that in (3.9) we consider ¢ and ¢;’s as iyp(g) and io(t;)’s. In general, if ¢ is
any permutation in I, with |g| = n — k for some k, then g can be expressed as
a product of k transpositions, and therefore we will get the path P and P; as in

(3.8) and (3.9). The function P — P; has an invariant property that we call its

ascent-descent pattern.

Definition 3. For a path P := z1,...,x; of length j—1, the ascent-descent pattern

of P, written AD(P), is the j — 1 tuple
AD(P) = (*1’ X9y e eny *j—l)
where x; = a if d(e,x;) = d(e,x;—1) + 1, otherwise *; = d.

Let v be a vertex in I';, and let h be a transposition in I';,. Then {v,vh} is an

edge in I',,. We claim that for any j in {0,...,n}
From the definition of 4; one can see that, for any « in [n+1]

o) a if a=n+1,
o) —

v

o’  otherwise.
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Also, for any j in [n| and « in [n+1]
(
n+1 if a=yjy,

o= & i g =41,

v

o'  otherwise.

\

Recall that ¢V is the image of ¢ under v. To show that Equation (3.10) holds, we

first prove that ig(vh) = ig(v)ig(h). Let « belong to [n]. Then

aio(vh) _ avh _ (av)h _ (av)io(h) — (aio(v))io(h) — OéiO(U)iO(h)'
Also, we have
(TL + 1>io(vh) —n+1= (n + 1)io(h) _ ((TL + 1)io(v))io(h) _ (n + 1)io(v)i0(h)‘

Therefore, ig(vh) = ig(v)ig(h). We next show that (3.10) holds for any j in [n] too.

Clearly,
(n+ 1)ij(vh) = j*h = (j°) = (jv>i0(h) = ((n+ 1)ij(v))io(h) = (n+ 1)ij(v)io(h)7
and
jij(vh) —n+1=(n+ 1)z‘o(h) _ (jij(v))io(h) — ji]’("’)io(h)'
Moreover, if o does not belong to {j, n+ 1}, then
olivh) — b — (a”)h _ (av)io(h) — (aij(v))io(h).

That is,

ij(vh) = i;(v)io(h)
for any j in [n]. This follows that for any j in {0,1,2,...,n}

i5(vh) = i (v)io(h) (3.11)
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and hence, we have

ij({v, vh}) = {i;(v),i;(vh) } = {i;(v), 7;(v)io(h)}.

Note from the definition of i; that

dr, (e,v) if 7 =0,
dr,,, (e i;(v)) = (3.12)

dr,(e,v) +1 otherwise,

since adding n + 1 in a cycle of v in T',, is the reduction of the number of cy-
cles of i;(v) in I',1y by one. Hence, from Proposition 2.3.5 we have that (3.12)
holds. Recall that dr(u,v) is the distance between vertices u and v in I'. Hence,
considering ig(h) = h, since each i; preserves edges and increases the distance
dr,..(e,i;(v)h) from dr, (e, vh) by at most one, we have that both of paths P := v, vh
and Pj :=1;(v),i;(v)h have either ascent or descent at step one, that is, AD(P) =
AD(P;). Recall that in the transposition Cayley graphs, there is no edge linking two

vertices in the same sphere.

Proposition 3.2.4. Let g = tity...t,, be a product of m transpositions and let v

be a vertex in I',,. Suppose that
P = v, vty, vlity, vtqisots, ..., vg
be a path from v to vg in I',,. For each 7 =0,1...,n, let
P, =1i;(v),ij(v)t1,i;(v)tite, ..., i;(v)g.
Then AD(P) = AD(F;).

Proof. This follows directly by comparing each step of P and F;. O

In Figure 3.1 we illustrate this manoeuvre. Let u = (15)(24)(3) and g = (123 4)

belong to T's = G5(2'). Then u; := i1(u) = (1 6 5)(2 4)(3) is the permutation
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Figure 3.1: The A — D pattern of paths and their embedding

in Ts = Gg(2') obtained from u by adding 6 after 1. Also, suppose that ¢ is
decomposed as g = (1 2)(1 3)(1 4). By Proposition 2.3.5 we have that u is in

SQ(F5,6) and Uy is in Sg(Fﬁ,e). Let
P :=wu,u(l2),u(l 2)(13),u(l2)(13)(14)

and

Pri=up,un(12),u(12)(1 3),ur (1 2)(1 3)(1 4)

be paths in I's and I'g, respectively. One can see that
AD(P) = AD(P) = (a,a,d)

as shown in Figure 3.1.

3.3 The Stirling Recursion in Transposition
Cayley Graphs

In the preceding section we have seen how to embed a path P in I',, into I[',,;.
Using this method, the ascent-descent pattern is an invariant under the embeddings

ij : P — P; we defined before. Conversely, a given path P in I',;; might be expected
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to provide a path in I',, having the same ascent-descent pattern as P. One strategy
would be to delete ‘n+1’ from the vertices in P. But this does not always work.
For instance, suppose that v = (1 2 3)(4) and ¢t = (1 4). Then vt = (123 4) and
P := v, vt is a path of length one in I'y. Deleting 4 from v and wvt, we get the same
permutation, namely (12 3). That is, in general, the method seems not to be a good
one. In fact, this is because 4 belongs to the support of ¢.

To distill a path in I',,4; into I',, one needs to choose the paths whose adjacent
vertices u,v satisfy (n + 1)“71” =n+1, that is, n+ 1 is fixed by v 'v. Note that
1

u~ v is now considered as the edge between u and v. Under this condition we need

to find a path P satisfying that all vertices in P either fix n 4+ 1 or move n + 1.

Before going to the next lemma let us recall that the i;’s are the insert opera-
tions. Also, for any positive integers m and k, the spheres S,, and Sy in (3.13) are

considered as spheres in I',,.; while S,,_; and Si_; refer to spheres in [',.

Lemma 3.3.1 (Cancellation Lemma). Let g be a permutation in T, fizing

n+1. If v=1i;(u) for some u in Iy, and j in {0,1,2,...,n} then
(v,v9) € Sy X Sk if and only if (ij_l(v),ij_l(vg)) € Sm—t X Sk (3.13)
for some t =0,1.

Proof. Suppose that g = t1t5-- -1, is expressed as a product of p transpositions. Let
vo =v and let vy = vp_qty for all f =1...,p. Assume that (v,vg) isin S,, x Sk.
From the above discussion, n + 1 is either fixed by the v;’s or moved by the v;’s.
From Proposition 3.2.4, we have that the paths P := v, vy,...,v; and ij_l(P) have
the same ascent-descent pattern, i.e. AD(P) = AD(i;'(P)) for all j. Due to the
construction of ¢; we have t =0 or 1. The converse is clear by applying the insert

function i;. ]
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3.3.1 Ball Intersection Numbers for Permutations

A function f has the Stirling recursion if there are ng and ko such that

for all n > ng and k > ky. Then it is clear that the ordinary Stirling numbers of the
first kind and the r— Stirling numbers of the first kind have the Stirling recursion.
We now turn our attention to the ball intersection number N(I',,, ), and then show

that these numbers have the Stirling recursion too.

Let » > 0. For a permutation g in T, = G, (2') we let
I,(n,r) :=|B, N B,g|. (3.15)

Recall that B,.g := B, - {9} = {9} - B, = B.(I's,9) as shown in (2.24). Obviously,
we have that I;(n,0) = 0 if g is not the identity and I ,(n,r) = n! if r > n — 1.
Also, from (2.26), fixing n and r, the function g — I,(n,r) is a class function.
Then, throughout this thesis, we can pay our attention to permutations g with

Supp(g) = [supp(g)]. Recall that [n] ={1,2,...,n}.

For any positive integers n and r, suppose that ¢ is a vertex in I',, fixing n. Let
B, := B,.(T';). The set Z := B, N B,g can be divided to two subsets, say X and Y .
The set X consists of permutations in Z fixing n, and Y is the set of those not fixing
n. Since every permutation in X fixes n, and since ¢* is the function from I',, to
[',,_1 that deletes n from the disjoint cycle decomposition of permutations in I',,, we
have |i*(X)| = | X|. Further, if we let 7" = i*(Y") then {i;(T) ;‘:_11 is a partition of
Y . Therefore, from the Cancellation Lemma, for each v in Z we have that *(vg™!)

and *(v) belong to B,(I',,_1) if v is in X ; otherwise, they are in B,_1(I',_1). Note

that i*(vg™!) = i*(v)i*(¢g~') = i*(v)i*(g) . Hence,

L(n,r) = |X|+ V] = |X|+ (n— 1) |T| = L(n— 1,7) + (n — 1)L, (n — 1,r — 1).
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Here we collect these facts.

Proposition 3.3.2. Let n and s be positive integers with n > s. If g is a permu-

tation in T, such that Supp(g) = [s], then
I(n,r)=1,(n—1,r)+(n—1)l,(n—1,r—1) (3.16)
for any r > 1.

Remark: The permutation g on the right-hand side of the equation in (3.16), and

also in (3.18), is a permutation in I',_;.

Having a glance at (3.16), it is almost the same as the Stirling recursion (3.14)
with only a small difference. What we may say is that they are defined in reverse to
each other: the reason is that the sphere S; consists exactly of permutations having

n — 1 cycles (not i cycles). Therefore, for all » > 0 if we instead let

n—r

B, B.g| = { " ] (3.17)

then the recurrence in (3.16) should become the Stirling recursion.

Theorem 3.3.3. Let n and s be positive integers with n > s. If g is a permutation

in Iy, such that Supp(g) = [s], then

[ZL:{Z:HQH”_”V;IL- (3.18)

for any integer 1 < k <mn.

Remark: If we let s = supp(g) in Theorem 3.3.3 then [ . } in (3.18) is fully
9

w0

determined by s initial values, namely [ 1 } , [ 5 } ey [ 4 } , [ i } . From
g g g g
1

Definition (3.17) and Proposition 2.3.5 we have [ : } =1 if g = e; otherwise

g

|:Z:| =0. Moreover, [Tsn] :|Fn\:n! for all m <1.
g g
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Proof. By Proposition 3.3.2 and Definitions (3.15) and (3.17) we have that

{nfrl = I,(n,7)

= I,(n—1,7r)+ (n— DI,(n—1,7r—1)
- {niirh””‘”[(n—f;:?r—nL
o R R K

and then substituting n —r by k, we have

n n—l] n—1
= +(n—1)[ }
s )
as required. l

Corollary 3.3.4. Let g1 and go be non-identity permutations. If there exist positive

integers m and t such that [T]Z]gl > [’,’;]gQ forall t <k <m then [:]gl > [:]92

forall m <n and t+ (n —m) < k < n. Moreover, if t =1 then [ZLH > [2]92

for all n>m and all k.

Proof. This follows from Theorem 3.3.3 and the fact that, fixing n and &, the function

g [ZL] is a class function. N

3.3.2 Generating Functions

From Theorem 3.3.3 and Proposition 2.4.1 we see that [’Hg and [m satisfy the

Stirling recursion, with different initial conditions. Recall that in T, = G,(2') we

have [S;| =] " ] and

n—i

n

Z[Z]y’“Zy(y+1)(y+2)--~(y+n—1). (3.19)

It makes sense to think of [’Hg having a generating fuction that would be similar

to that of [Z]
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Let n and s be integers with » > s and let g be a non-identity permutation in

I[',, such that Supp(g) = [s]. For any k > n we define [Z}g by letting [Z]g =0.

Let U(Tp,q;9) == > 00 [Z]gyk. Note that the case k < 0 means that we con-

sider the ball whose radius is larger than the diameter of the graph I',,. Recall that

diam(G,(2')) = n — 1. This implies that all vertices are counted in this case. That

is, [Z]g = n! if £ < 0. Multiplying both sides with y* and summing over k in

(3.18) we get

= n i =~ [n—-1 i = [n—-1 i
k;@[k}gy - kzzoo[k—ng +(”_1)k;m{ k Ly

and hence

V(T g5y) = yU (T, 959) + (n — 1)U(Cy, g5 9)

=W+ n-1))¥C01,99) (3.20)
For instance, let ¢ = (1 2 3). One can get that [‘H(l 23) = [, ](1 29 = 6 which
counts all elements in Sym,. Also, by (3.1) we have [3}(1 23 = [331 ](1 23 = 3.

Hence

6 6
‘P(Fsy(l23);y):3y2+6y+6+§+?+..._

Recall that we let yI" ;== y(y +1)---(y + (n — 1)). By (3.20) it follows that:

Theorem 3.3.5. Let g =(123) and n > 3. Then
[n—3] (e, 2 6 6
U(, (123);y) = (y+3) (3y +6y+6+§+ﬁ+...)

1s the generating function of [Z}g.

Remark: In the same way, W([',,, g;y) can be defined from (3.20) for all g.

3.3.3 Intersection Tables

For a fixed m and a permutation g in T',,, let s = supp(g). One can construct a

table listing the values of [Z}g for all k,n with £ <n and n > s as in Table 3.1.
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This table is called the intersection table IN, of g. It stores the information about

the initial conditions of [Z]g. Note that we ignore the value [Z]g for all £ <0

since it is equal to [’f]g =nl

k
n 1 ‘ 2 ‘ ‘ s—1 ‘ s ‘ s+1 ‘ s+2 s+3‘---
s (11, | 130, [.22], ] (2], 0 0 0
G PO S P N O o P I 5 A I
2 IR BN RN

Table 3.1: IN,

It is clear that permutations with the same cycle type produce the same table.
Also, if g does not belong to By (I's) we have [Z]g =0 foral s—t <k <s.
On the other hand, if g belongs to Bs;(I's) for some j then [ZL, > 0 for all
k < s—j. From (3.18) we sce that the value of | " }g in IN, is obtained from
two directions. The first is by summing the values in vertical lines, which is equal to

O(nr==U+1) = O(n*~%~1) by induction on m :=r—j, and the second is summing

those of the first in n — ¢;, times for some constant c¢;. Hence

Lemma 3.3.6. Let g be a permutation in T',,. Suppose that j is the smallest integer

such that g belongs to By;. Then [nir ]g = O(n2r=9)),

Remark: Translating Corollary 3.2.3 into the language of intersection numbers, we
have that O(n*"=7)) is an upper bound for [n’jr ]g if g belongs to Sy; U Sy;_1, and

by Lemma 3.3.6 this bound is sharp.

3.3.4 Domination from Cycles of Length Three

By Corollary 3.3.4, for any two permutations ¢;, go whose cycle types are different, we

may find some useful information linking the intersection numbers [ 7] —and [} ]

91 g2
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by comparing certain rows in their intersection tables. For example, let T'y = G4(2')
on Sym, and let g =(123), go=(12)(34) and g3 = (1 2). We have that in the

4th rows of IN,

g1

A Y I M

INy, and INy, we have the entries

and

and also

It then follows by Corollary 3.3.4 that [” ]gl > [n

; > k]gzz[Z]gS for all n > 4 and

1 <k <n as shown for example in Tables 3.2, 3.3 and 3.4.

In [15, p.813] the authors showed that No(I',,7) > Ny(I'n,7) when n is suffi-

ciently large. Comparing Table 3.2 with Table 3.4 we have by Corollary 3.3.4 that
Corollary 3.3.7. Let I',, be the transposition Cayley graph on Sym,, . We have
NQ(Fn, 7”) > Nl(Fn, T)

for all n >3 where N;(I',r) = maxges, | B, ([, e) N B.(I'y, 9)]-

3.3.5 The Closed Formula for Intersection Numbers
Now we take advantage of the computer programming language GAP to figure out
N(T,,2) for T'), = G,(2'). From (2.28) we have

geERNBs | n — 2

N(T,,2) = max { " L,

where R is a collection of representatives of non-trivial cycle types in Sym,, . For ease
of computing, since the mapping g — [ Y }g is a class function, when fixing n and £,

we choose R to be a collection of permutations g such that Supp(g) = [supp(g)].
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k
n s [ 75 ]
3 6 3 0 0 0 0 0 0
4 24 15 3 0 0 0 0 0
5 120 84 27 3 0 0 0 0
6 720 540 219 42 3 0 0 0
7 5040 3960 1854 471 60 3 0 0

Table 3.2: The table IN, with g = (1 2 3)

k
n T e[ s[5+
4 24 14 2 0 0 0 0 0
5 120 80 22 2 0 0 0 0
6 720 520 190 32 2 0 0 0
7 5040 3840 1660 382 44 2 0 0

Table 3.3: The table IN, with g = (1 2)(3 4)

Note for any permutation ¢ in S3U.S; we have, by Lemma 3.3.6, that [nﬁ2 ]g is

a constant for any n > supp(g). Using GAP, we have that [ < 20 for any g

n7—l2}g
>

in RN(S3USy) and any n > 5. Recall that we have | "

n—2 } (123) [ nﬁQ } (12)34) Z

[ " ](1 2 for all n > 4. Hence, since [ " > = 27 we have

n—29 n—2](123) Z [3}(123)

N(Ty,,2) = [Z}(l 2 3) for all n > 5. Further, by induction, for any n > 3 we have

n 3
ln_2:|(123)_6+3(3+4+'”+(n_1))_§<n+1)(n_2)’

which is the closed formula shown in Theorem 3.1.1. Also, using the Stirling recursion
for [Z}g with g = (1 2 3), where r = 3 one can find the closed formula for [ni?) }g

that is eventually equal to N (I, 3).

Let a; := [th]g with ¢ = (1 2 3). The sequence (a;):>3 lies on the second

diagonal line of non-zero entries in I N,. By the induction and the Stirling recursion
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k
n s [ 75 ]
2 2 0 0 0 0 0 0 0
3 6 2 0 0 0 0 0 0
4 24 12 2 0 0 0 0 0
5 120 72 20 2 0 0 0 0
6 720 480 172 30 2 0 0 0
7 5040 3600 1512 352 42 2 0 0

Table 3.4: The Table IN, with g = (1 2)

we have that for all n > 4,

n
|:n_3} :6+3a3+4a4+---+(n—1)a(n,1) (3.21)
g

since [3}9 = [‘Hg = ag = 6. Recall that a; = [tjz]g =3(t+1)(t—2) forall t > 3.

{nig}gzﬁ—knz_:ltat (3.22)

t=3
n—1 3

=6+ SHE+ 1)t - 2) (3.23)
t=3
n—1 3

=6+ ) SLGEE) (3.24)
t=3
3 n—1 n—1 n—1

=6+3 SN2y ¢ (3.25)

t=3 t=3 t=3

Simplifying (3.25) gives us the closed formula for [nﬁS ]g. That is, for all n > 3,
" = 1(3n4 — 10n® — 3n* + 10n + 72) (3.26)
n—3 p 8 '

which is the closed formula for (2) in Theorem 3.1.2.

Now, by induction, one can extend the idea to the case r > 4 to get the closed

formula of [nfr}g. Recall that ¢ = (1 2 3) and that [3Ek]g =6 for all k > 2.
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Then, by the Stirling recursion (3.18) and the induction on r we get

{”ﬁr]g:6+§t{t—(:—n}g' (3.27)

t=3

In the last step, simplifying (3.27) we have

Theorem 3.3.8. Fiz r > 1. There exists a polynomial F,(x) := 3" fixt so that

F.(n) = N(G,(2"),7) for all sufficiently large n.

The above theorem holds as when n is large enough we have

[n " i 1 e N(Gn(2Y),7) (3.28)

and also by the induction on n in (3.27), we have that [ " ]

rlaag 82 polynomial

of n. Here are some examples. Let g = (1 2 3). From (3.27) we have

{nﬁ4}g:6+§t{tf3}g (3.29)

t=3

and then by (3.26) we get

n—1
1
{ " ] =6+ ) (3" — 10" — 3% + 10 + 72t)
g 8t:3

n—1 n—1 n—1 n—1
1
=6+ 303 £ — 102}4 3Y £94+10) £2472) £).  (3.30)
t=3 t=3 t=3

t=3

Simplifying (3.30), we have

1
" —(n® — n® + 11n* + 3n® + 60n? — 68n — 240).
n—4], ~ 16

23



From the recurrence (3.27) and using Mathematica we have for example

1
{ " } = ﬁ(mﬁ —180n" 4 710n° — 1008n° + 2135n* — 6060n° — 8620n
n—5], 1920

+ 13008n + 63360),

1
{ " } = M(Bnlo — 55n° + 380n°® — 1238n" + 2527n° — 5399n° + 3130n*
g

+ 13508n* + 45800n* — 586561 — 241920),

1
{ " 1 = (63n'"* — 1638n'" + 17199n'% — 94094n° + 306369n° — 706890n
, 967680

+ 1117557n8 — 262122n° + 1373148n* — 9398872n% — 202325762

+ 27881856n + 124830720),

n 1
= (9™ — 3150 + 4641n'? — 37583n'" + 186599n'°
{ L 1935360

— 614273n° + 1399179n% — 1957077n" + 1656900n° — 4912432n°

4 34720n* + 324164001 + 86712192n% — 1148889601 — 493516800).

3.4 Connection between Ball and Sphere

Intersection

n

In this section we show that for a given permutation ¢ in I',, the number [ ;

} can
g

be considered as a sum of functions satisfying the Stirling recursion. These functions
will provide us the numbers later called sphere intersection numbers.

As we have seen before, the Stirling number [Z] of the first kind is the number
of permutations in Sym, having k cycles in their disjoint cycle decomposition. Fur-
thermore, the sphere S, is the set counted by [Z] , that is, |S,_x| = [Z} or the
other way around, |Sk| = [nfk} Suppose that g is a permutation in Sym, with

lg| = n — k for some 0 < k < n—1. Recall that |g| is the number of cycles of ¢.

Since |g| = n—k we have that ¢ isin Sy and therefore can be expressed as a product
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of k transpositions. It then follows that

Sig C U S;.

i—k<j<itk

forall 0 <i<mn-—1. Let
Z(n,i, 5 9) = Si(I'n) N Si(Tn)g
and let z(n,i,j;9) = |Z(n,i,j;g)|. Given a fixed integer t, the numbers
z(n,i) == z(n,i,i+t; g)

satisfy the Stirling recursion. Using the Cancellation Lemma, the proof is straight-
forward as before. Clearly, z(n,i,i;e) = [ o } , the Stirling number of the first kind.
In addition, for any fixed integer r > 1 we have

> n,iGig) = [nT_LTL (3.31)

i,
where 0 <7 <r and 0 < j < r. Therefore, the number [n’ir }g has the z(n,i,7;9)’s
as its building blocks, and the latter depend on the initial conditions z(s,i,i + t; g)
with s = supp(g) and —k <t < k. Also, we have z(n,i,i +t;g) =0 if k and ¢ do
not have the same parity. Recall that k = n — |g|, and this means that g belongs to

Sk(T',). Note from the definition of r-Stirling numbers, one can see that

[m —z(nn—kn—k+r—1;(123 ... 7).

Next, we observe a relation between z(n,r,r; g) and [nfr }g for any integer r > 1.

Suppose that v isin Z(n,r,r;g). Then

v=...(..a...)... and vog=.....a...)...-g. (3.32)
. ~ ~/ A ~~ -
exactly n—r cycles exactly n—r cycles

In particular, if g = e then Z(n,r,r;g) = S.(I',). Moreover, if we let 0 < i < r and

0 <7 <r then

U Z(n.i.ji9) = B,(I') N B.(I'y)g, (3.33)

1,7=0
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and hence we have (3.34) obtained from (3.32) by changing the word ‘exactly’ to

‘at least’. That is, if v belongs to B, N B,.g then

v=...(..a.). . and v-g=...(..a...)...-g (3.34)
Vv Vv
at least m—r cycles at least m—r cycles

In Figure 3.2, the single lines refer to the connection between the ball (or sphere)
and its multiplication with a permutation, while the double lines refer to swapping
between the words exaxtly and at least. Further, if we choose g = e then B;-g = B;

and S; - g = S;, which means that there is nothing being moved.

/ST\BT
/

S, N S.g

N

B,.N B,g

Figure 3.2: Relation between ball and sphere intersection

3.5 Comments from the Point of View of

Representation Theory

In this section we look at a property of the intersection numbers of the transposition

Cayley graph T',, = G, (2').

Fix r > 0 and n > 3. Suppose that g is a permutation in G,, := Sym,,. Then

the function f,,, : G;, — C defined by

frr(g) = {nir} = |B, N B,yg|



g (1) (12) (12)(34) | (123) | (1234)
f4,0 1 0 0 0 0
fan 7 2 2 3 0
Ja2 18 12 14 15 12
fa3 24 24 24 24 24

Table 3.5: The value of f,, on each conjugacy class

‘ g H (1) ‘ (12) ‘ (12)(34) ‘ (123) ‘ (1234) ‘
X1 1 1 1 1 1
X2 1 -1 1 1 -1
X3 2 0 -1 2 0
X4 3 1 0 -1 -1
X5 3 -1 0 -1 1

Table 3.6: The character table of Sym,

is a class function, that is, [n’ir }g = [nfT ]g, for every ¢’ in the conjugacy class
containing ¢g. It is known in representation theory that any class function is a linear
combination of the irreducible characters. Here an interesting problem arises: Is the
class function f,, a character? More generally, what is the connection between f,, ,
and the irreducible characters of Sym, ? Computing by GAP, we have the value of
fa,» as shown in Table 3.5. Note that if &k > n then f,x(g) = |G| =n! for all g in

G, . To this end, let us recall Proposition 2.7.3. It states that:

Proposition 3.5.1. Let x1,...,Xm be the wrreducible characters of G. If ¥ is a
character then

where d; = (J,x;) are non-negative integers.

Consider the character table of the symmetric group Sym,, shown in Figure 3.6.
The number of all irreducible characters is equal to the number of all conjugacy classes

of Sym,,. This is also equal to the number of ways to partition a set of size n, which
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is known as the n'™™ Bell number (see [25] for details). This is equal to Y. {7 }

where { v } ’s are Stirling numbers of the second kind.

Recall that for any group G and functions ¢, ¢ : G — C the inner product of ¢

and ¢ is defined by

1 -
(0,6) = 17 > " 9(g9)é(g)-

geG

From Tables 3.5 and 3.6 and (3.35) we have

fa0=

1 n 1 n 1 n 1 n 1
24Xl 24X2 12X3 8X4 8X5’
49 25 1 9 1
X1 57 Xe T X3+ gXa 5 X5,

a1 =5 24 12 8 8
fig= 27 n 3 L 1 n 1
4,2 5 X1 5 X2 2X4 2X5,
f4,3 24x

(3.35)

By Proposition 3.5.1, since the coefficient of y; is not a non-negative integer, none
of fio, fa1 and fao is a character. Note that fy3 is a character of the representation
g — Iy € GL(24,C) where Iy4 is the identity matrix in GL(24,C). Also, by GAP,
we have that for all 3 <n <7 and 1 <7 <n — 2, none of the f,,’s is a character.
We conjecture that this is true for any n > 3. Nevertheless, since all coefficients are
positive, we have that 24 - f,, is a character for all r. In addition, it is clear that if
k> mn—1 then f, is the character of the representation g — I € GL(n!,C) where

I is the identity of GL(n!,C). This is because the diameter of I', equals n!.

In Section 2.7 we introduced the class sums of conjugacy classes of groups. We
next show how these class sums in the symmetric group G,, relate to the transposition
Cayley graph T',, = G,(2'). Suppose that u is a vertex in S; for some 7. Then the
downward degree c¢(u) is the number of edges {v,u} incident to the vertex u with
v in S;_1, or in other words, it is equal to the number of vertices v in S;_; that are
adjacent to u. A question arises here: Given vertices v in S;_; and u in S;, what

is the number of vertices in the conjugacy class v“* adjacent to u?
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g (1) (12) (12)34) | (123 | (1234 [(123)45)|(12345)
X1 1 1 1 1 1 1 1
x2 1 1 1 1 1 1 1
X3 4 2 1 0 0 -1 -1
X4 4 2 1 0 0 1 1
X5 6 0 0 -2 0 0 1
X6 5 1 -1 1 -1 1 0
X7 5 -1 -1 1 1 -1 0

Table 3.7: The character table of Sym;y

EXAMPLE: Let G5 = Symy. Suppose that Cy = H = (12)%5,C) = (123 4)%.Cy =
(123)% and C3 = (1 2)(3 4)%. From (2.36) we have that the number of vertices
in Cy adjacent to (1 2 3 4) is equal to the class algebra constant asy and we know

that

G| x(g2)x go )
|Ca(g2)|1Ca(90) IZ

with go = (1 2),91 = (123 4) and g2 = (1 2 3). From the character table of Sym;

201 =

shown in Table 3.7, we have

5! 1 1
1+14+0+0+4+0 =4.
@201 = 55 l +1+0+0+0+ 2 5 + 5}

Similarly, we have that the number of vertices in g:? ° adjacent to (1 2 3 4), with
g5 = (12)(34), is equal to azy; = 2. Further, we know that c((1234)) = (}) =6 =

4 4 2. In the graph’s point of view,
C(gl) = |Si—1 N Slgl| = ‘gf"’ N 5191’ + |93G5 N Slgl| = 201 + asoi, (336)

and in general (3.36) holds for any n > 4 since the downward degree is independent

of n.
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Chapter 4

Double-Transposition Cayley

Graphs

Throughout this chapter we devote our attention to Cayley graphs on the alternating
group that are generated by the conjugacy class of all double-transpositions, that is,
all elements of the shape (« 5)(y 0) where «, 3,7,d are mutually different. In the
remainder, G, is referred to as the symmetric group Sym,, , and G, is referred to as
the derived subgroup of G,,, the alternating group Alt,,. In G4 = Sym, the subgroup
of G4 generated by the conjugacy class H = (22)%* of all double-transposition is the
Klein four-group V. For n > 5 we have already shown in Proposition 2.3.4 that the
subgroup (H) is the alternating group Alt,. Therefore, for n > 5 we let G/,(2?) be
the Cayley graph on Alt, generated by the set of all double-transpositions. We call
G’ (2?) the double-transposition Cayley graph of Alt,. Unless stated otherwise, we

let T, be G7,(22) and let H = (22)% be the set of all double-transpositions.

4.1 Sphere Classification

We start with a short survey of this new graph. Obviously, |H| = %(g) (";2) Then,

by its construction, I, is a 1(

n

2) (”;2) -regular graph. Also, it contains triangles, for
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instance (1) — (12)(34) — (23)(14) =(12)(34)-(13)(24) — (1). Hence T,
cannot be embedded into any transposition Cayley graph since the latter contains
no triangle. However, on their own the vertices of GZ,(2?) can be viewed as group
elements in G,(2'). This gives us an opportunity to use our powerful equipment
from G, (2'), the Cancellation Lemma. As customary we let S, = S,(I'y,e) and
B, = B,(T,,,e) with T, = G/,(2?). Recall that |g| is the number of cycles in the cycle
decomposition of g, including cycles of length one. Also, a k-cycle is a permutation

whose cycle type is 1" *k!.

Here we give a proposition that allows one to determine which sphere a given

vertex belongs to.

Proposition 4.1.1. Let n > 5. We have that g belongs to Ss if and only if either
lg| =n—4 or g is a 3-cycle. If r > 3 then g belongs to S, if and only if |g| = n—2r.
Proof. Clearly, it suffices to show that this holds for a representative of each cycle
type as permutations with the same cycle type must be in the same sphere. This is
an earlier result. Let g belong to I';,. If g = (12 3) then g = (12)(45)- (1 3)(4 5).
Hence g belongs to Sy. Suppose that |g] = n—4. If g = (1 2 3 4)(5 6) then
g=a-bwith a=(12)(34) and b = (1 3)(5 6). There are four other cycle types
with n — 4 cycles, namely 177824 177551 177632 and 1777223, The following shows
how to express such permutations as a product of two double-transpositions.
(12)34)-(56)(7T8)=(12)(34)(56)(7T8), (12)(34)-(13)(25)=(15234),

(12)(34)-(15)(36)=(125)(346), (12)(34)-(15)(67)=(125)(34)(67).

Verifying through these representatives, we have proved that if g is a 3-cycle or
|lg| = n—4 then g must be in Sy. Next, suppose that g belongs to Sy. Considering
g as a group element in G,(2') we have that g is contained in the ball of radius
four of G, (2'), as g is a product of two double-transpositions. Since g is an even
permutation we have |g| = n —2¢ with ¢ = 0,1,2. As H = S} and {e} = Sy, we

have proved the first part.
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In general, any permutation ¢ in B, is a product of at most 2r transpositions,
by the definition. Therefore, every permutation ¢ in B, has at least n — 2r cycles.
Since S, = B, \ B,_; we have that for r > 3, if g isin S,, then |g| =n — 2r. Next
assume that ¢ is in S3. Then there exist A in S; and x in Sy such that g = zh.
Since multiplication by a transposition is either gluing or splitting two disjoint cycles
together, multiplying by a double-transposition in I',, either increases or decreases
the number of cycles by two, or leaves the number of cycles constant. Since x belongs
to Sy and ¢ belongs to S3 we have |z| = n — 4. Hence we get |g| =n —6,n —4
or n — 2. Since ¢ is not in By we have |g| = n — 6. We leave the proof now as
the inductive step can be proved similarly, considering any permutation g in S, as

a product of some permutations = in S,_; and h in 5. O

The above proposition provides us a way to determine the diameter of a given

double-transposition Cayley graph.
Corollary 4.1.2. For n >5 the graph G,(2?) has diameter |"*|.

Proof. Let n > 5 and let g be a vertex in G/,(2?). From Proposition 4.1.1, we have
that for all i > 2 if |g| = n—2i then g belongs to S;. Suppose that n = 2k for some
k. Then the value of |g| is at least two since any permutation having only one cycle is
not an even permutation. Hence the distance d(e, g) is at most 22 = k—1. On the

2

other hand, if n = 2k +1 then |g| > 1. Therefore d(e, g) is at most 2t=L = k. [

4.2 Intersection Numbers of Double-Transposition
Cayley Graphs

As we said before in Chapter 1, the idea of considering the intersection number

N(G,(2'),r) originally came up when we began to study the double-transposition
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Cayley graphs G/,(2%) and their intersection numbers. In the rest of this chapter,
the pattern of studying the graphs and the intersection numbers will be similar to
the preceding chapter. Recall that in this chapter we let T',, = G/,(2?) be the double-

transposition Cayley graph on Alt,,.

4.2.1 The Case of Radius One
Here we find the value of N(I',,,1) for all n > 5.
Theorem 4.2.1. We have N(I's,1) =5 and N (T, 1) = 3(n* —Tn+12) for n > 6.

Proof. To determine N(I'5,1) it suffices to consider only three cycle types, namely
177422 177331 and 1"755'. Let N(g) = |B; N Big|. Then N(I'5,1) = max N(g)
9=91,92,93

with g1 = (1 2)(34), g2 =(123) and g3 = (1 234 5). Using GAP we have that

N(g1) =4, N(g2) =3 and N(g3) =5. Hence N(I'5,1) = 5.

Next, we let n > 6. Suppose that g belongs to Sy with |g| = n — 4. Then
there are three possible cycle types of g, namely 177632 17762141 and 1"7°5!. It is

not hard to see that N((12 3)(4 5 6)) = (g

)(E) =9 and N((12345)) =5, and
N((12)(3456) =4. Clearly, these numbers are independent of n. It then remains
to compare N((1 2 3)(4 5 6)) with N(g1) and N(g2) where g = (1 2)(3 4) and
g2 = (12 3). Suppose that there is h = (a §)(y 9) such that ¢g;-h isin S;. As («a 3)
and (v §) commute, we may suppose that g;(« [3) is a transposition and g;(« 3)(7y 9)

becomes a double-transpostion again. Then (« () must be one of (1 2) or (3 4) and

n—4

;") choices for (v §). Hence, including e and g; itself, we have

after that we have (
that

.y
N(gl):2<n2 >+2:n2—9n—|—22.

Similarly, we have that

N(gs) = 3(” R 3) = g(ﬁ — Tn+12).



Hence for all n > 6 we have N(g2) > max{N(g;1),9}. Therefore,

N(T,,1) = g(nQ — Tn + 12).

4.2.2 The Stirling Recursion in Double-Transposition
Cayley Graphs

We first introduce notation to enable us to link the graphs G,(2') and G/ (2%),
and then to apply (3.15) in a very natural way to determine the value N(I',,r) of
I, = G/,(2?). In Proposition 4.2.3 we show that the numbers N(T',,7), considered

in another form, satisfy the Stirling recursion too.

Let S, and B, be the sphere S,(G,(2'),e) and the ball B,(G,(2'),e) in the
transposition Cayley graph G, (2') on Sym,,, respectively. We let Z, := Z,, be the

set of vertices in G,,(2') of Sym,, defined by

B, NAlt, if r is even,
Z = (4.1)

B, N (Sym,, \ Alt,,) if r is odd.
That is, Z, can be obtained from the ball B, of radius r in G, (2') by omitting S;

for all i Z r (mod 2).
For each ¢ in I', and r > 0 we let
I,(n,r;2%) = ‘Er NZ.g|. (4.2)
Obviously, if » > 2 then, by Proposition 4.1.1, we have
I,(n,2r;2%) = ‘EQT N B,,g} = |B, N B,g| (4.3)
with B, = B,.(G!(2%),€).

64



Remark: (1) I,(n,2;2%) > |B; N Byg| since (3")% ¢ By .

(2) Instead of studying the double-transposition Cayley graph G’ (22), we now think
of the vertices in G/,(2?) as vertices in G,(2') so that we can use our facilities
provided for the transposition Cayley graphs, for instance the Cancellation Lemma.

(3) Note that the symbol ‘22" is added so that there will be no ambiguity.

Next we show that the numbers I,(n,r;2?) satisfy a familiar recursion.

Proposition 4.2.2. Let n and s be positive integers with n > s and let g be a

permutation in I',, such that Supp(g) = [s]. Then
I(n,r;2%) = I,(n —1,7;2%) + (n — ) I,(n — 1,7 — 1;2%). (4.4)

Note that the permutation g on the right-hand side of the equation in (4.4), and also

in (4.6), is a permutation in I',,_;.

Proof. Let Z be the set counted by I,(n,r;2%). As we proved in Proposition 3.3.2,
Z is divided into two sets, one of which, say X, consists exactly of those permutations
fixing n. The other set Y is composed of those moving n. Using the same arguments

as before, by the Cancellation Lemma we have
1 X|=1I,(n—1,7;2%) and |Y|= (n—7r)I,(n—1,r—1;2%),

The proof is complete as X and Y are disjoint. Il

Here we provide a function defined analogously to (3.17) in the preceding chapter.

For each r > 0 we let

n—r

{ " L = |B, N Zg|. (4.5)

Remark: In this chapter [ " }g is defined for the graph G7,(2?), not for G,(2').

With the same arguments we used in Proposition 3.3.3 we have:
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Proposition 4.2.3. Let n and s be positive integers with n > s. If g is a permu-

tation in T, such that Supp(g) = [s], then

[Z}g:[z:”ﬁ(n—l){ngl}g (4.6)

for any integer 1 < k < n.

Remark: As in Theorem 3.3.3, one can determine the value [ . ] by the s initial
g
1 2 s—1

conditions [ g } , [ ; ] ey [ 3 } ,[ : ] . Also, from Definition (4.5) and
9 g g g

=1 if g = e; otherwise [ : } = 0. Moreover,

Proposition 4.1.1 we have [ : }
9

o], =l

g

|
:%forallmgl.

4.2.3 Ball Intersection Numbers for Vertices

in the Ball of Radius Two

In this section we show in Theorem 4.2.5 that the vertex (1 2 3) still dominates

(1 2)(3 4) in the same way as it does in the transposition Cayley graph.

We now consider [’Hg. It is clear that [Z}g is a class function. From (4.5),

given an element ¢ in I'),, one can construct Table IN, 922 listing the values of [Z’}g

as we did in Chapter 3. These were computed by GAP.

k
n T2 a7 ]5+]
5 60 60 24 3 0 - - -
6 360 360 180 39 3 0 - -
7 2520 2520 1440 414 57 3 0 -

Table 4.1: INZ with g = (12 3)

From (4.6), we have:
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Corollary 4.2.4. Let g; and go be non-identity vertices in 1',,. If there exist positive

2], forallt <k <m then [}] >

intergers m and t such that [’;;}g g w2 Z]m

forall m >m and t + (n —m) < k < n. Moreover, if t =1 then [mgl > [:]gz

foralln>m and k> 1.

Theorem 4.2.5. For any n > 5 and r > 2 we have No(T',,r) > Ni(T'y, 7). Further,
if r < |25L] then No(Ty,r) > Ni(Ty, ).
Proof. Let g = (12 3) and g2 = (1 2)(3 4). Using GAP, the initial values of [Z]gl

and [Z]gz are provided below.

From Corollary 4.2.4 we have

bl 2 L),

for all n > 5 and m > 0. Hence,

Ny > | " =] > M)
n—2r n—2r
91 9
since g; belongs to Sy and since S; = (22)%", not (22)%» U (31)%".

Recall that

Ni(Fn,r):max{{ " L:gESl} (4.7)

n—2r
for any r > 2 and ¢ > 2. From the initial conditions shown above one can see, by

Corollary 4.2.4, that

k], > [, (48
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for any k£ > 3. Clearly, [Z}gl = [2}92 for any k = 1,2 as they count all vertices in

[',,. The last inequality follows from (4.7) and (4.8), and also from the fact that the

diameter of T',, is L”T’lj ) O

4.2.4 The Asymptotic Behaviour of Ball Intersection
Numbers

We first recall that B; and S; are the ball B;(G,,(2'),e) and the sphere S;(G,,(21),¢),
respectively. Also, in the remainder of this thesis [n’ir }g is as defined in (4.5).
From Lemma 3.3.6 in the previous chapter we have that for any permutation ¢ in

S9; U Sy 1,

|B, N B,g| = O(n?r=9). (4.9)

n

o ]g = O(n*"=9) too, when g is in So;.

Here, we claim that [

Lemma 4.2.6. Let I',, = G/,(2%) and let g belong to Sy;. Then
{ " ] = O(n2r=9). (4.10)
n—r
g9
Proof. Let r > 1. From the definitions of B, and Z, one can see that
Er - Zr U erl
where Z, is as defined in (4.1). Since ¢ is an even permutation we get
B,NB.g=(Z,NZ.9) U (Z,_10 Z,_19),
and then
|B, N B.g| =12, N Z,g| + |Z,-1 N Z,_19]. (4.11)
Since Z,_; C B,_1, by (4.9) we have

|Zr—1 N Zr—lg| < |§7~_1 N Er_lg‘ = O(nQ(r_l_j)),
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From (4.11), it follows that

[ " ] = }BT ﬂZ,,g} =1|Z.NZ.g| = ()(nQ(T j)),
n-—r
g

as |B, N B,g| = O(n*"=9). O

Now by Theorem 4.2.5, Proposition 4.1.1 and Lemma 4.2.6 we have that for all

r>2
n
N(Tp,7) = No(T,7) = { } (4.12)

if n is sufficiently large. Hence we have

Theorem 4.2.7. Let r > 2 and let T, = G’ (2?). We have
n
N(T,,r) = { } (4.13)

if n is sufficiently large.

We believe that the above theorem holds for any n > 5. We try to assert this by
showing that it is true for » = 2 in Section 4.3.
Conjecture 4.2.8. Let r > 2 and let T, = G,(2%). Then

n—2r

N(Tp, 1) = [ " L .

forallmn>5.

4.2.5 Generating Functions in Double-Transposition
Cayley Graphs

From the previous theorem we know that when n gets bigger, the vertex g = (12 3) is
likely to give us the ball intersection number. Actually, this means that any vertices
u,v satisfying that u='v is a 3-cycle will give us the maximum size of the ball
intersection between any two vertices, when n is large enough. Here we provide the

generating function for the size of ball intersection of those vertices.
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Theorem 4.2.9. Let g=(123) and n>5. Then

60 60
U, g5y) = (y + 5)" % (3y* + 244° + 60y* + 60y + 60 + " + 7 +--0)

is the generating function for [Z}g where Yy = y(y +1)...(y + (n — 1)) is the

ascending factorial.

Proof. Let g = (123) andlet U(I',, g;y) = > [Z}g y* be the generating function

of [Z}g where | ]g =0 if £ > n. Then, by Proposition 4.2.3, we have

(T, 0:y) = y¥(Cnor,giy) + (n— D)V(T1, g5 y)

= (y+ (n— 1) ¥(Too1, g57).

By Table 4.1 we have that W(TI's, g;y) = 3y* + 24y® +60y” + 60y + 60 + & + 5 +- - .

The proof is then complete. O

4.3 The Case of Radius Two

In this section our main purpose is to determine N(I',,r) when r = 2. To do so we

need to find the value of [ ", }g for all g in By = B4(G.,(2?)).

4.3.1 Computational Results from the Spheres of Radius
One, Two and Three

Using GAP, we know the value of [:1] for all g in By(T',) and all 4 < m < 8
as listed in Table 4.2. Therefore, from Corollary 4.2.4 it follows that [nﬁ 4 } (123 >

[n:}g for all n > 8 and ¢ in By(I',). Note that n = 8 is needed as it is the

smallest number such that the graph T',, = G’,(2%) contains all vertices g satisfying
lg| = n—4. Recall that for all ¢ > 2 any permutation g with |g| = n — 2i belongs to

S;. It is not hard to see that if |g| = n — 2i then supp(g) is at most 4i and only the
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permutations g with ct(g) = 177422 have supp(g) = 4i. Similarly, we need n = 12
to get all possible permutation types that will exist in S3. Again, using GAP we
list in Table 4.3 the value of “j ]g for all 8 < m < 12 and all g in S3, including

g=(123).

k

g s s e 7] s
(123) 4338 | 813 78 3 0
(12)(3 4) 3700 | 634 56 2 0
(12345) 3280 | 420 20 0 0
(123)(456) 2850 | 299 11 0 0
(1234)(56) 2840 | 308 12 0 0
(123)(45)(67) 2438 | 226 8 0 0
(12)(34)(56)(78) || 2052 | 176 6 0 0

Table 4.2: The valule of [2]5; with |g| =n —4

k

g 8 ‘ 9 ‘ 10 ‘ 11 ‘ 12
(123) 87420 | 5394 | 192 3 0
(1234567) 9135 | 175 0 0 0
(123456)(78) 5930 | 100 0 0 0
(12345)(678) 5187 80 0 0 0
(1234)(5678) 4956 74 0 0 0
(12345)(67)(89) 3872 60 0 0 0
(1234)(567)(89) 3400 50 0 0 0
(123)(456)(7809) 3117 45 0 0 0
(123 4)(5 6)(7 8)(9 10) 2586 38 0 0 0
(12 3)(456)(7 8)(9 10) 2364 34 0 0 0
(12 3)(45)(6 7)(8 9)(10 11) 1810 26 0 0 0
(12)(3 4)(5 6)(7 8)(9 10)(11 12) || 1410 20 0 0 0

Table 4.3: The valule of [ ]g with g =n—6
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Now from Tables 4.2 and 4.3, Theorem 4.2.5 and Corollary 4.2.4 we have

[ " ] > NI, 2) (4.14)
n—41143

for all + = 1,2, 3.

4.3.2 Results from the Sphere of Radius Four

To determine N4(I',,2) we need to find the value of [n: ]g for every g in 9j.
Unfortunately, we have a problem in using GAP, since to get all permutations in
S, we need to compute at n = 16 and this is too big. Instead, for any ¢ in Sy we
estimate [nﬁ A ]g by computing the downward degree of g. Recall that if g belongs
to S, then the downward degree ¢(g) of ¢ is the number of permutations ¢' in S,_;
that are adjacent to ¢g. This is the number of double-transpositions h such that g-h

isin S,_;.

Next we show how to find in general the downward degree ¢(g) for any ¢ in S,
when r > 3. Let us suppose that ct(g) = 1722 nhn_ The first case to consider
occurs by choosing any two letters a and b from a single cycle of g, and by choosing
another two letters ¢ and d from a different cycle. For this choice ¢ - h is in the

sphere S,_;. There are

Q;n (Z) (;> ’ 2<§<n il (;) (‘;) (4.15)

choices to do so. The first term in (4.15) is the number of choices when we choose
a,b and c,d from cycles of the same length while the second is when we choose them

from cycles whose length are different.

The only other way for ¢g-h to be in S,_; is to choose four letters a,b,c and d
from a single cycle of g. Suppose that (a--+b---¢c---d---) is such a cycle. Then

there are two ways to get h, namely (a b)(c d) and (a d)(c b). We cannot let h be
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(a ¢)(b d), because we will have |g- (a ¢)(b d)| = |g|, that is, they are in the same

sphere. Hence there are

> 2m (jl) (4.16)

4<i<n
choices for the second case. In conclusion, for each ¢ in S, and r > 3, the downward

degree ¢(g) of g can be computed as

c(g) = ; (Z) (;) + ZS;SH hih; (;) (‘;) + g;ﬂ 2h,; (;) (4.17)

with ct(g) = 1M ... n"n.

From Equation (4.17) we have that

max{c(g) : g € S3} =70 (4.18)
and
max{c(g) : g € Sy} = 252. (4.19)
This gives directly that
{ " ] <70 252 = 17640 (4.20)
n—4],

for all n > 9 and ¢ in S;. Note that the number ¢(g) does not depend on n and

that n =9 is the smallest number such that the sphere S, is not empty. Fortunately,

using GAP we computed that | 160 }(1 23) = 23775 (we cannot use [2}(1 g3 A it is
less than 17640). Hence, we have
{ " } > Ny(T'y,2) (4.21)
n—4 (12 3)

for all n > 10.
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4.3.3 The Conclusion for Double-Transposition
Cayley Graphs

Here we show that the maximum of the ball intersection numbers occurs on the

3-cycles.

From (4.14) and (4.21) we have

N(T,,2) = {n " ) ] e (4.22)

for all n > 12. Again, computing by GAP we obtain N(I',,2) = [ "

n74](1 2 3) for all

5 <n <11. Hence we can conclude that

Theorem 4.3.1. Let T',, = G/, (2%). For n > 5 we have

1
—(n® — Tn® + 5n* + 23n® 4+ 90n* — 112n — 480).

NT,,2) =] "
YT n—4] ~ 16

Proof. 1t remains to verify the second equality. Let g = (1 2 3). By the Stirling
recursion (4.6) we have that for a fixed r,

LSS ] e

t=5
with [ﬂg = 0 for all £ > 5. The proof is complete by substituting the initial

conditions. ]

Recall that N(I',,, 1) # [nr_Lz ](1 2 3)

(4.23) to get the closed formula for N (T, 1).

since no 3-cycle is in By . Then we cannot apply

Lastly, we list for example the closed formulas of [nf?r}g with ¢ = (1 2 3)

for r = 3,4. Recall that from Theorem 4.2.7 they agree with N(I',,,r) when n is
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sufficiently large. From (4.23), using mathematical induction we have
n
= ——(3n'" — 55n° + 350n° — 878n" 4 1347n°
[n—ﬁ]g 3840(n n” + 350n n' + n

— 5063n° + 60n* — 31148n° + 84640n> — 111552n — 483840),

n
= (9n'* — 315n'® + 451502 — 343070 + 153713n"°
{ n—8 L 1935360

— 4538051 + 962841n% — 98580917 + 100674n° — 6939940n° — 2681336n*

+ 66912736n° 4 169835904n> — 2268748801 — 987033600).

75



Chapter 5

The Cayley Graphs (GGenerated by

k-Transpositions

In this chapter, we study the class of Cayley graphs on Sym, and Alt,, whose gen-
erating set is the set of k-transpositions. Recall that a permutation g in Sym,
is a k-transposition if g has the cycle type 1"72¥2%  For example, any ordinary
transposition is a 1-transposition, and a double-transposition is a 2-transposition.
Given positive integers n and k, we let H(n,k), or in brief H, be the set of all
k—transpositions in Sym,,. If n # 4 then the subset of G, generated by H(n,k)
is either the symmetric group G,, = Sym,, or the alternating group G, = Alt,,. We
denote by G, (2%) and G!,(2%) the k-transposition Cayley graph with k odd and
even, respectively. As is usual, throughout this chapter we let B, = B,.(I',,e) and

S, = S,(T,,e) where I', = G,,(2%) or G’ (2¥). We also use B, and S, to refer to the

ball and the sphere at distance r about e in the transposition Cayley graph G, (21).

5.1 Spheres in k-Transposition Cayley Graphs

As we have seen in the transposition Cayley graph G, (2'), the distance between e

and a vertex u in G,(2!) is equal to n — |u| where |u| is the number of cycles in the
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cycle decomposition of w. With the natural embedding iy defined in Chapter 3 this
distance is preserved when we embed G,(2') to G,41(2'). This phenomenon is the
same in the double-transposition Cayley graphs. However, in general the situation
becomes quite different in the k—transposition Cayley graph when k is greater than

two.

For a fixed k the graphs G,(2F) and G,1(2F) may contain a vertex (permuta-
tion) w in different spheres. For instance, using GAP, we have that (1 2 3) and
(123 45) belong to S4(Gs(2%),¢e), and that (1 2 3)(4 5) belongs to S5(Gs(23),¢).
However, for any n > 7, we have that (12 3) and (1234 5) belong to Sa(G,(2%),¢),
and that (1 2 3)(4 5) belongs to S3(G,(2%),¢e) instead. In Proposition 5.1.3 and
Proposition 5.1.4 we show that if n > 4k every conjugacy class will be held in a

certain distance from the identity e in the graphs G,(2%) and G’ (2*).

Here, we start with a little lemma.

Lemma 5.1.1. Let k > 1. Any permutation g in Sym, with |g| = n — 2k can be

expressed as a product of two permutations whose cycle type is 1" ~2k2k
Proof. Let g be a permutation with |g| = n — 2k. Suppose that
g = 10203 - - - Qg 1azdrdy - - - dj—ldj
where
a; = (Oéil Q2 ... Oéi,?mi) and d; = (ﬁzl Bia - . -ﬁi,2q¢+1>

for all 7. Obviously, a’s are the cycles of even length, and d’s are the cycles of odd

length. The number of even cycles must be even since |g| = n — 2k. Here, we have

2t

2k = (2m; — 1)+ EJ:Q%

i=1 =1
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and therefore

2t J
i=1 i=1

Then for each ¢, we have a; = b; - ¢; and d; = ¢; - f; with

If we let

b, = (041‘1 ai,Qmi—l)(aiQ O-/i,Qmi—2) e (ai,mi—l Oéi,mi+1),
C; = (Oéﬂ Oéz’,2mi)(0@2 ai,2mi—1) . (Oéi,mi Oéz‘,mi+1)7

ei = (B @',2%)(@2 6@',2%71) cee (ﬂi,qi ﬁi,qﬂrl)a

fi= (B Biagr1)(Biz Bizg:) - - - (Bigi Bigiva)-

r = blbg Ce bgt,102C4 <. C9t€1€9...€5 and

Yy = baby...bycicz...co—1fifa. '-fj

then from (5.1) we have

z| = (m1—1)+ (ms — 1)+ -+ (ma — 1)
~|—m2+m4—|—---+m2t+q1+---~l—qj

= k.

Also, we have |y| = k. Since = and y are products of transpositions we have that x

and y are of cycle type 1"2*2¥ and g = z -y, as required. Il

Proposition 5.1.2. For any k >3 and n > 4k, let T, = G,,(2¥) or G!(2%). Then

So={g:|g| =n—2t for somet=1,2...,k}.

Proof. Let H = (2%)%" be the generating set of I',. Any product g of two elements

in H has at least n — 2k cycles. Also, |g| and n must have the same parity. The

case |g| =mn — 2k is done by Lemma 5.1.1. Let g be an element having |g| = n — 2t

for some t < k. Suppose that £ = t 4+ p for some p. By Lemma 5.1.1 we have
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that g = g1¢, for some g1, go of cycle type 122!, Since n > 4k there exist disjoint
transpositions tq,ts, ..., t, such that Supp(t;) does not intersect Supp(g:1)USupp(g2)

forall i=1,...,p. As g and g, are of cycle type 1"22! and k =t + p, we have

g = (gltltg e tp) . (ggtltg e tp)
is a product of permutations of cycle type 2¥ The proof is then complete. O
Extending the above proposition to other spheres, we have

Proposition 5.1.3. Let k > 3 be an odd number and let n > 4k. Let S; be the

sphere of radius i centred at e in G,(2%). Then
So={(1)}, Si=H= (2",
So ={g: |g| =n(mod 2) and n —2 > |g| > n — 2k},
Sy=1{g: 9 & (2%, lgl £ n (mod2) andn—1> g > n — 3k},
Soiv1y = {9: lg| =n (mod 2) and n — 2ik > |g| > n —2(i + 1)k},
Soivzs = {g: lg| Zn (mod 2) and n — (2i + 1)k > |g| > n — (2i + 3)k},

for all i > 1.

Proof. The statement about S is true by Proposition 5.1.2. Considering each per-
mutation as a group element in G,,(2!), for each element g in B, we have |g| > n—rk
since H is the set of k-transpositions. We then have a lower bound for each sphere 5.
Since H is a set of odd permutations we have that for each g in B, , the parities of

lg| and n are the same if and only if r is even. Further,
(12)=(12)(34)(56)=(12)(35)(46)=(12)(45)(36).

Hence S3 certainly contains the set of transpositions.

Next, let g be an odd permutation not belonging to H with n—3 > |g| > n—3k.

We claim that g isin S3. Clearly |g| # n (mod 2). Suppose first that |g| < n—2k—1.
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Then there exist g; in Sy and ¢ < k such that g = g1z with || =n—1¢ and |z| #n
(mod 2). Since ¢; belongs to Sy we have g = hyhox with hy, hy in H. Moreover,
\hoz| = n — (k+1t) < n—2k and |hex| = n (mod 2). Hence hyx is in Sy and
therefore hox = hzhy for some hs, hy in H. Then we have g = hihox = hihghy is

in Sg.

On the other hand, if n — 3 > |g| > n — 2k + 1 then g has a cycle of length
at least two in its cycle decomposition, say (aj...as). Therefore g = g1(aq )
for some ¢, with n —2 > |g;| > n — 2k + 2. This shows that ¢; belongs to S,
and hence g; = hihy for some hy,hy in H. It follows that ¢ = hihs(aq as) and
n—2 < |ha(ag a5)] < n —2k. Hence hy(ay o) = hshy for some hs, hy in H.
Therefore, g = hihs(ay ag) = hihshy, therefore g belongs to Bs. Clearly, g does

not belong to By. Then we have

Sy ={g: g & (2")%", |g| #n(mod 2) and n — 1 > |g| > n — 3k}.

For the case of Sy(;11) with ¢ > 1, it is easy to see that any permutation in So(i11)

has at least n — 2(i + 1)k cycles. It then remains to show that
A(i+1):={g : |9/ =n (mod 2) and n — 2ik > |g| > n —2(i + 1)k} C Saiy1).

We prove this by the induction on ¢ > 0. The basic step ¢ = 0 is done. Let g be in
A(i+1). Then |g| = n—2ik—2t for some t = 1,..., k. By the induction hypothesis,
we have g = gyo where |r| = n — 2t and g¢; belongs to A(i). Hence g; belongs to
Soi and therefore g = hihg---houx. Also, we have that n — 1 > |hyz| > n — 3k,
which implies that hyx = h|h) for some k|, h, in H = (2¥). Hence, g belongs to
So(it1) -

The case S35 for any ¢ > 1 can be proved similarly. Note that the parities of

lg| and n agree automatically. O
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Proposition 5.1.4. Let k > 2 be an even number and let n > 4k. Let T,, = G/, (2%).

We have that

So=A{(1)}, Si=(2",
Sy ={g e Alty: g & (2)9" andn — 2> |g| > n — 2k},

Si={geAlty:n—(i— 1k > |g| >n—ik}.
Proof. For each ¢ > 3, it is clear that

It then suffices to show that any even permutation g with |g| > n — ik belongs
to B; for all © > 2. We prove this by induction on ¢ > 2. The case when ¢ = 2
is true by Proposition 5.1.2. Suppose that ¢ > 3. Let g be a permutation with
lgl = n—(G—1k—m with 2 < m < k and m = 0 (mod 2). Hence there
must be permutations g; and z such that ¢ = gix with |g1] = n — (i — 1)k and
|z| = n —m. By the induction hypothesis we have that g; belongs to B;_;. Hence,
g = hihy ... hi_oh;_ for some hy, hy,... h;_y in H. Since |h;_1z| > n — 2k, again
by the induction hypothesis, there exist hf, h such that h;_jx = h{hf. Therefore,

g = g1 = hiho ... hi_oh;_1x = hihs ... h;_oh|h}, so g belongs to B;. O

5.2 Intersection Numbers in k-Transposition
Cayley Graphs

This section is devoted to the intersection numbers in the k—transposition Cayley
graphs. There are two cases to consider. The first is the case when k is an odd
number, and the other is the situation when £ is an even number. Before moving

to the next lemmas, let us recall that for any permutation ¢ in G,, and any subset
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A of G, welet Ag = A-{g}. That is, in the next lemmas, H N Hg will stand for

HN(H-{g}).

Lemma 5.2.1. Let n and k be positive integers with k > 2 and n > 2k and let

H = (2¥)%. Then

3-(n—23)! , ok
HﬂH(l 2 3) — (TL — 2k — 1)' (/{Z — 1)!2k_1 Zf "= ’ (52>
0 if n=2k.

Proof. Suppose that h; and hy are elements in H such that hy = hy(1 2 3). Let
P = hl,hl(l 2),h1(1 2)(]_ 3)

be a path in G,(2') starting at h; and ending at hy. Then AD(P) = (a,d) or
(d,a) where AD(P) is the ascent-descent pattern of P. If AD(P) = (a,d) then
1 and 2 must belong to different cycles in h;, and therefore to have a descent at
the next step, 3 must belong to the cycle containing either 1 or 2 in hy. Hence hy
contains (1 3)(2),(1)(2 3),(1 3)(2m) or (1 m)(2 3) for some m # 1,2,3. However,
the last two cases do not exist as hq(1 2 3) will be a 3-cycle, not a k— transposition.
If AD(P) = (d,a) then 1 and 2 must belong to the same cycle, and to get an
ascent step, 3 and 1 must be in different cycles of hy. Hence, hy contains (1 2)(3) or
(12)(3m) for some m # 1,2,3. But clearly the latter case does not exist. This forces
that hy has either (1 2)(3),(1 3)(2) or (2 3)(1) as part of its cycle decomposition.
This is impossible when n = 2k. Hence |HNH(123)| =0 if n = 2k. We next
suppose that n > 2k and that h; contains either (1 2)(3),(1 3)(2) or (2 3)(1).

Assume that h; contains (1 2)(3), say

hy = (12)(3)(0n1 a12) -+ (k1,1 ag—12)(01) () - - - (vg)

with ¢ = n — 2k — 1. The number of ways to proportion 4,5,6,...,n to those a’s

is equal to the number of permutations of [n — 3] whose cycle type is 177 2k=12k=1
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From Theorem 2.3.2, this number is equal to

(n —3)!
(n—2k — 1)I(k — 1)12k—1

The proof is now complete. O

Remark: From Proposition 2.3.5 and Lemma 5.2.1, we have that every 3-cycle

belongs to Sy(T'y,e) with T, = G,,(2%) or G/ (2%) for any k > 1 and n > 2k.

Lemma 5.2.2. Let n and k be positive numbers with k > 2 and n > 2k and let
H = (2¥)% . Then

2-(n—4(n—2k)?— (n—4k+2)]
(n —2k)! (kK — 1)12k-1
2. (n—4)!
(0 — 2k)! (k — 2)12+2

if n>2k+2,
HNH(12)(34) =

if n=2k 2k +1.
(5.3)
Proof. Let h belong to HN H(12)(34). Suppose that P := h,h(12),h(12)(34) is
a path in G,(2') with h,h(12)(3 4) belonging to H. Then we have AD(P) = (a,d)
or (d,a), and this implies that h has either (1 2)(3)(4),(1)(2)(3 4),(1 3)(2 4) or
(1 4)(2 3) as part of its cycle decomposition. Then the set H N H(1 2)(3 4) can be
divided into two classes, say X and Y. The set X consists of elements in H having
(12)(3)(4) or (1)(2)(3 4) in their cycle decompositions. Clearly, this set exists only
if n > 2k + 2. The other set Y is composed of those in H having (1 3)(2 4) or
(14)(2 3) in their cycle decompositions. Using the same arguments as in the previous

lemma, we have
2-(n—4)!
(n—2k—=2)1(k—1)!2

and

Hence, if n > 2k + 2 then

[HNH(12)34) = [X[+][Y],
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and therefore, the proof is complete, simplifying | X |+ | Y. O

Remark: From Lemma 5.2.1 and Lemma 5.2.2 one can see that if g = (1 2 3) or
(12)(34) and H = (2¥)%" for a fixed positive integer k then we have that |H N Hyg|

asymtotically is a polynomial of degree 2k — 2.

Proposition 5.2.3. Let n and k be positive integers with n > 2k. If H = (2F)&»
then

HNH12)(34)| <2 [HNH(123)|.

Wl N

Proof. The case when k = 1 is shown at Table 3.2 and Table 3.3 in Chapter 3. Then
we suppose that k > 2. Let m; = |[HN H(123)| and my = |[HNH(12)(34)]. If

n = 2k 4+ 1 then we have

3(n —3)!
(n— 2k — 1)I(k — 1)12+-1
0 3-2-(k—=1)(2k — 3)!
C 2(k—1)-(k—2)12k-2
3

= img.

myp =

Hence, my = %ml. Next, suppose that n > 2k + 2. Then

2m1 2
= —2k)* — (n — 2k 2k — 2
e 3(n—3)(n—2k:)[(n ) = (n=2k)+ (2k = 2)
2m1 2k — 2
= — —2k)—1
mn—@[m ) +n—2k}
2m1
—_— —2k) -1 2k — 2
<3(n—3)[(n ) + )}
~ 2my(n —3)
~ 3(n—23)
2
= Zmi.
Hence, we can conclude that if n > 2k then my < 3 my. O
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5.2.1 The Case of k Odd

Here the intersection number N (T, r) of the k— transposition Cayley graph I',, = G,,(2%),
with k£ odd, are given. We first start with the case when r = 1.
Theorem 5.2.4. Let T, = G,,(2%) with k odd. Then

3-(n—3)!
(n— 2k — 1) (k — 1)1 261

N(T,, 1) = (5.4)

when n is sufficiently large.

Proof. Because k is an odd number, S; = H = (2%)% is a set of odd permutations.
Then the product S;g with g in S is a set of even permutations. Since there are no
edges between vertices in S; and since the identity e is the only even permutation
in By, we have B; N Byg = {e,g} for any g in H. Next, suppose that ¢ isin Sy. It

is clear that ¢ is an even permutation, and hence
B1 N Blg = Sl N Slg g Ek ﬂpkg.

From Corollary 3.2.3, |B; ﬂ§k9| is a polynomial of degree 2(k — j) if ¢ is in

Syj-1U Sy;. Hence, from Proposition 5.2.3, if n is large enough then

|Bi N By| = max{|S1NSig| : g=(123),(12)(34)}

= |S1nSi(123).

Therefore, the proof is finished. O

Next we consider for the case when r = 2.

Theorem 5.2.5. Let T, = G,,(2%) with k odd and greater than one. Then we have
N(T2) = N(T, 1) + NG, (22), k) (5.5)
for any n sufficiently large.
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Proof. Let B, = B,(G,(2'),e) and S, = S,(G,(2!),e). If g is an odd permutation

then, by Proposition 5.1.3, we have that
|B> N Bag| < 2|H| (5.6)

since ({e}USy)gN By €S and (S1gN By)g~t € S; = H. Recall that H = (2F)%»
Then from Theorem 2.3.2 we have

n!
.2k (n—2k)l- 102k~

H| =+ (5.7)

Hence, by (5.6) and (5.7) one can conclude that |By N Byg| is bounded by 2|H|,

which is a polynomial of degree at most 2k when ¢ is an odd permutation.

Next, we let g be a non-identity even permutation. Then S;g N By C S; and

(SpUS2)gN By C (SoUSs). Hence we have
By N Bag = (510 519) U ((So U 52) N (So U S2)g).
Therefore
|B2 N Bag| = |51 N S1g] + [(So U S2) N (So U S2)g| (5.8)

since 51N S1g and (Sy U S2) N (So U Sy)g are disjoint.

From Proposition 5.1.3, we have

2k

1=0

for every n > 4k. Recall that By(G,(2%)) = Bx(G,(2%),¢€). Further, from the previ-

ous chapter we know that
|(So U S2) N (S U Sa)gl = | Be(Gr(2%)) N (Bi(Gr(2%)) - 9)] - (5.9)
Therefore, from (5.8) and (5.9) we can conclude that if n is sufficiently large, then
N(T,,2) = N(I'y,1) + N(G(2%), k). (5.10)
[
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Remark: From the proof shown above it is clear that the 3-cycles still provide us

the intersection number N(I',,,2) in (5.10).

Next, we compute N(G,(2%),r) with k odd and r > 3. Here, we let [ " ]g be

n—m

as defined in (4.5) for G/,(2%), not for G, (2').

Theorem 5.2.6. Let r > 3 and let k > 3 be an odd integer. Let ', = Gn(Qk). If n

1s sufficiently large then we have

N(Ty,7) = [ " " L " (5.11)

n—rk](123)+{n—(r—1)k

Proof. From Proposition 5.1.3, the ball B, in ', can be divided into two disjoint
sets. The first set X comprises all even permutations in B, and the other Y consists

of the remaining odd permutations, that is,
X =B, NAlt, and Y = B,N(Sym, \ Alt,).

We claim that if ¢ is an even permutation, then

n n
B,N B, ) - < O(n¥*-2), 5.12
‘ g [n—rk}g—i_{n—(r—l)k}g_ (n ) (5.12)
and that if ¢ is an odd permutation, then
’ B, N Brg‘ < O(n2h=2), (5.13)

Note from (4.10) we know that [ " }g = O(n*™=9)) if g belongs to Sa;, where
S = Sp(Gn(2Y),€). Hence, if both of (5.12) and (5.13) hold, then, since k > 3 we

have

N(Fn,r):max{{n_nrkL—l— [n_(:_l)k}g:g:(mza) or (12)(3 4)}.

Recall that (1 2 3) and (1 2)(3 4) belong to So = S»(Gn(2!),€). Moreover, by

and[ "

considering the initial values of [nfm} o ] 1 2)3 4

(12 3) ) shown in Theorem

4.2.5 we have that

N(F"’T)_{n—rk}(lzg)—'—{n—(:’l—l)k}(lQ?))’ (5.14)



which is a polynomial of degree 2(rk — 1) = 2rk — 2. Hence, it remains to show that

(5.12) and (5.13) hold.

First, we suppose that ¢ is an even permutation. By the parity of permutations
one can see that

XNYg=YNXg=10

and
B,NB.,g=(XNXg)U (Y NYy). (5.15)

If r is an even number, then by Proposition 5.1.3 we have

— rk
X = {5} (5.16)
and
_ (r—1)k+1
Y= J{Saimrhici® (5.17)
Similarly, if r is odd, then
. (r=1k
X = J{Sa}ig (5.18)
and
- rk+41
Y = {82} (5.19)

Note that (5.17) and (5.19) will not hold if r < 2. Also, recall that S; is the sphere

Si(Gn(2'),e). Therefore, from (5.16)-(5.19), it follows that
: n n
XNXg)U(YnYg)|= .
)( NXgu ¥y nYyg) {n—rk} +{n—(r—1)k]
g g
Hence, from (5.15) we have
n n

BN By |- .

’ N5y {n—rk}g—i_{n—(r—l)k}g
Recall that [ " }g is the function we defined in (4.5).
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Next, suppose that g is an odd permutation. Then by the parity of permutations

we have

XNXg=YNYg=0,

and then

B.NB.g=(XNYg) U (Y NXg).

Suppose that r is an even number. Then
(XNYg)-g'CY and YNXgCY.
Since r is even and Y = B, N (Sym,, \ Alt,,) we have
Y =JGEHL"
Similarly, if r is an odd number, then
(YNXg)-g'CX and XNYgCX,
and also, since r is odd we have

X =S

(5.20)

(5.21)

(5.22)

(5.23)

Note that (5.21) and (5.23) will not hold if » < 2. Also, recall that for any m > 1,

|B| = O(n®™),

(5.24)

since the degree of any vertex in the transposition Cayley graph G,(2') is equal to

n(n —1)
2

that |(2m)%| = !

m!2m(n — 2m)!

= O(n*™).

and since (2™)¢ C S,, C B,,. In addition, by Theorem 2.3.2 we know

Hence, from (5.20)—(5.24), it follows that for any r greater than or equal to three,

|B7" N Brg| <2 }E(r—l)k‘ = O(nQ(T_l)k)y
when ¢ is an odd permutation.
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Therefore, we can now conclude that if n is sufficiently large then

n n

N(T,,r) = BTHBT(123)‘:[ } +{ ] .
n—rk (12 3) n—(r—1)k (12 3)

5.2.2 The Case of k Even

If k is an even positive number then the Cayley graph 'y with H = (2¥)%" has
the alternating group as its vertex set. As in G’ (2?), the graph G’ (2*) contains

triangles. For instance,
(1) = (12)(34)(56)(78) — (13)(24)(57)(68)— (1)
is a triangle in G%(2%). In the remainder of this chapter we let T',, = G/ (2").

Comparing to the case of k odd, it is far easier to get the ball intersection number

N(G!(2%),r) with k even.

Theorem 5.2.7. Let T, = G (2%) with k even and let r > 2. We have

N(T,,r) = N(G’ (2?), %) (5.25)

and

3-(n—3)!

N(Tn,1) = (n—2k — 1) (k— 1)1251

(5.26)
if n is sufficiently large.
Proof. Let r > 2. From Proposition 5.1.4 we have

B, = B.(I'n,e) ={g : |9 = n—rk},

and in another sense it is equal to B%k(G;l(22), e). Then N(I',,r) = N(G,(2%),%)

when n is sufficiently large. Next, consider N(I',,1). As usual, we have
ByN Byg C Fk ﬂﬁkg.
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This implies that |B; N Big| is a polynomial of degree at most 2(k—1). Again, when
n is sufficiently large, we have |B; N Big| < |B; N By(1 2 3)| for all non-identity ¢.

Hence, by Proposition 5.2.3 and Corollary 3.2.3, the proof is now complete. Il
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Chapter 6

Three-Cycle Cayley Graphs

In this chapter we try to generalise our results for the transposition Cayley graph
G,(2') to other Cayley graphs on the alternating group G/, = Alt,,. We would like
to look at the Cayley graph that is generated by all 3-cycles. A permutation ¢ in
the symmetric group G, = Sym,, is a 3-cycle if it has the cycle type 1"733'. That
is, it belongs to the the conjugacy class (3')¢". Throughout this chapter we let
H = (34)%.

In the remainder we pay attention to this Cayley graph, denoted by G’ (3').
This graph has the set H = (3!)“" as generating set. As is well known, the set H
generates the alternating group Alt,, for all n > 3. This means that the vertex set
is the alternating group G}, = Alt,,. We call this graph the 3-cycle Cayley graph. Its
edge set is the set of unordered pairs {u,v} such that v = uh (or w='v = h) for

some h in H = (31)%". That is,
Ey = {{u,v} : v = uh for some h € H = (3")°"}. (6.1)

In general, we call any permutation g or a cycle in its decomposition k-cycle if it is
of the form (a; ay ... ai). For example, there are only two 3-cycles in Altg, namely
(123) and (1 3 2). Also, we consider (12345)in(12345)(6 78)(910)asa

5-cycle. Furthermore, ¢ is an odd cycle if g is a k-cycle with k£ odd. Similarly, g
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is an even cyle if g is a k-cycle and k is even. As is usual, throughout this chapter
we let S; and B; be the sphere S;(G’(3'),e) and the ball B;(G’ (3"),e) of radius i

about the identity e := (1), respectively.

6.1 Spheres in Three-Cycle Cayley Graphs

Here we start with some basic properties of the graph G’ (3).

Proposition 6.1.1. Let T',, = G’ (3') be the 3-cycle Cayley graph on Alt,. We have
that
(1) T, contains triangles, and

(2) T is a 2(}) -regular graph.

Recall that for any permutation g in Sym, we let |g| be the number of cycles in
the disjoint cycle notation of g, including cycles of length one, and supp(g) is the
number of elements in [n] moved by g. Now we denote by |g|, the number of odd

cycles in ¢. Similarly, we let |g|, be the number of even cycles in g¢. It is clear that

19l = lgl, +19l. (6.2)

for any ¢ in Sym,. Also, we denote by |g| the number of odd cycles of length

greater than one in g.

Proposition 6.1.2. Let n > 3 and let T,, = G!(3'). For any i >0, if g belongs to

I',, then
g €S, if and only if supp(g) — |g|, = 2i. (6.3)

Proof. For convenience, throughout this proof we let s, = supp(g) and m, = |g|;.
Recall that H = (3!)% is the generating set of I',,. Fix n > 3. We prove this by

induction on i. Note that it is clear when ¢ = 0,1. Let ¢ > 1. Assume that (6.3)
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holds for all ¢ = 0,...,t. Then by the induction hypothesis we have that for any g

in I,
g €S; if and only if s, —m, =21 (6.4)
whenever 0 <17 <t¢.

We claim that
g € Si41 if and only if s, —m, = 2(t + 1). (6.5)

First, we assume that g belongs to S;; ;. To prove the necessary condition, since
Si+1 € S H, by (6.4) it suffices to show that s, —m, is equal to either 2(t —1),2t
or 2(t + 1) for any element g in S;H. Let g belong to S;H and suppose that

g=¢ - (ap~) with ¢ in S; and (o f ) in H.

Case 1: Supp(g') N (a B v) = 0.

In this case we have s, = sy +3 and m, = my+1. Then s;—my = sy +2—my =
2(t+1).

Case 2: Only one of «, 3,7 belongs to Supp(q’).

Then s, = s, +2 and m, = my . Hence s, —my = sy +2 —my = 2(t + 1).

Case 3: Two of «a, 3,y are in Supp(g'). Without loss of generality we assume
that a, 3 are in Supp(g').

Case 3.1: «a, (0 are in the same cycle of ¢'.

If 8¢ = a then ¢ and g have the same cycle type and therefore ¢ is in S;.
Suppose not. Then we have s; = s +1 and my = my £1. So s, —my = 2t or
2(t+1).

Case 3.2: «, 3 are in different cycles.

We have s, = sy +1 and m, = my £ 1. Hence, s, —m, =2t or 2(t + 1).

Case 4: All «, 3,v are in Supp(g’).

Case 4.1: All «, 3,~ are in the same cycle of ¢'.
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If v appears in the cycle containing § in ¢'(o §) then ¢ and g have the same
cycle type. This means that g belongs to S;. Suppose not. Then + is in the cycle

containing « in ¢'(« ). Hence, there exist positive integers ki, ko, k3 such that

d=(aay ..., VY2 - Y B B2 .. Brs) g’

for some permutation ¢” with a; = o, = 8,1 = . If ky = ks = k3 = 1 then
Sg = sy —3 and my =my — 1, so s, —my = sy —my — 2 =2(t — 1). If only one
of ki, ks, ks is 1 then s, = sy —1 and my = my £ 1. Hence we have s, — my, = 2t
or 2(t —1). If only two of ky, ko, k3 are 1 then s, = s, —2 and m, = my . Then we
get s, —my = 2(t — 1). If none of ki, ko, ks is 1 then s, = s, and my is either m,
or my — 2. Therefore, s, —my, =2t or 2(t + 1).

Case 4.2: Only two of «, 3,7 are in the same cycle of ¢'. Without loss of gen-
erality, assume that «, are in the same cycle. If 8¢’ = a then s, = s, — 1 and
mg = my £1. So we have s, —m, = 2(t — 1) or 2t. If not, then s, = sy and
mgy =mg or my + 2. Hence, s, —my, =2(t —1),2t or 2(t + 1).

Case 4.3: None of «a, 3,7 appears in the same cycle. Then s, = s, and m, = my
or mg — 2, and hence s, —my =2t or 2(t +1).

Then from these arguments we have proved that if g belongs to Siy1 then s, —m, =

2t+1).

Conversely, assume that s, —m, = 2(t + 1). Since g is an even permutation we

have that ¢ contains

(o ... agjt1) or (a1 ... ag)(B1 B2)

with j > 1 in its disjoint cycle decomposition. First, if g contains (o ... agji1)
then g = ¢'(a1 ag; agj41) for some ¢’ in I',, with ¢’ # e. Hence, sy = s, — 2 and
mg = my, and therefore s, —my = s;—2—m, = 2(t+1)—2 = 2¢. Then ¢’ belongs

to Sy, by (6.4). This forces, again by (6.4), that g belongs to S;;. Similarly, if g

95



contains (ay ... ag;)(B1 B2) then

9=4d(xu ;) (B1 Ba) = g'(an 1 az)(a B2 Br)

for some ¢'. Let go = ¢'(a1 /1 a2). Then g = go(aa B2 $1), and therefore s,y = s,—1
and mg, = my + 1. Hence, s,0 — my, = s, —my, —2 =2(t+1) — 2 = 2t. From (6.4)

it follows that g belongs to Sy, . O

From (6.3), when one includes those cycles of length one in g we have the following

result.

Proposition 6.1.3 ([24], p. 162). Let T, = G’ (3') and let S; = S;(Ty,e) be the

sphere of radius i. We have
Si ={g € Alt, : |g|, =n — 2i} (6.6)
where |g|, is the number odd cycles in g.

Remark: At first when we tried to find parameters to determine which kind of (even)
permutations belongs to S;, we came up with the condition in (6.3). After that we
realised that this problem was proposed by Bogdan Suceava and solved by Richard
Stong in [24]. For the rest of this chapter we will use (6.6) to determine the vertices
that belong to S; as this form relates to the parameters n and 7; these are likely to

be more practical than the parameters appearing in (6.3) in our work.

Before moving to the next Corollary, let us recall that, for any permutation g in
Sym,, we define |g|, to be the number of odd cycles in the disjoint cycle decomposition

of g.

Corollary 6.1.4. Let n > 3 and let T, = G/,(3'). We have

n—1

5 if n s odd,
diam(T',) = (6.7)
g if n is even.
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Proof. Suppose that n is an even number. Then I',, contains a permutation g whose
cycle type ct(g) is either 2% or 2”7 4! and therefore lg], = 0. Hence, from (6.6) the

diameter of T, is 5 if n is even.

For the other case, suppose that n is an odd number. If there is a permutation g
with |g|, = 0 then g has only cycles of even length in its disjoint cycle decomposition,
and therefore n must be even, a contradiction. Hence, for any v in I';, we have |v| > 1

and it is clear that this is the greatest lower bound as I';, contains (12 ... n). This

n—1

shows that if n is an odd number then the diameter of T'), is . The proof is

now complete. Il

Theorem 6.1.5. Let I',, = G (3'). We have N(I'y,1) =8. Ifn >5 then N(T,,,1) =

3(n—2).

Proof. From Proposition 6.1.3 we have that any permutation in S; has one of the
following cycle types, namely (22)% (5% and (3%)%". It is obvious that such a

permutation exists when n is greater than or equal to four, five and six, respectively.

For each non-identity element ¢ in By, we let N(g) = |B; N Big| . Clearly, there
are only five 3-cycles h such that (1234 5)-h isin By, namely (154), (215),
(321), (432) and (54 3). Hence N((1 23 4 5)) = 5. Further, it is easy to see

that N((123)(4 5 6)) =2 and N((12)(3 4)) = 8.

Next we determine N((1 2 3)). Let h be a 3-cycle such that (12 3)-h belongs to
By = {e} U (31)%". Clearly, |Supp(h) n{1,2,3} < 3. If [Supp(h) N{1,2,3} = 0,1
then (12 3)-h has cycle type 1"763% or 17551, If |Supp(h) N {1,2,3}| = 3, then
(123)-h is either e or (1 32). Suppose that |Supp(h)N{1,2,3}| = 2 and that
h = (lp ly l3) where only Iy does not belong to {1,2,3}. There are n — 3 possible
choices of ly. Since (1 2 3)-h belongs to (3!')%" we have [;(1 3 2) = I, ( if not,

then (12 3)-h will belong to (22)%» ). Hence there are 3(n — 3) possible choices to
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choose h. This shows that
N({(123)=3n—-3)+2+1=3(n—2), (6.8)

where ‘17 in (6.8) accounts for the vertex (12 3) itself. The proof is now complete. [J

6.2 Further Research on Three-Cycle
Cayley Graphs

At this moment, the intersection number N(G/(3'),r) with r > 2 is far beyond
our understanding. Comparing to k-transposition Cayley graphs, the 3-cycle Cayley
graph seems to have its own character that is different from other Cayley graphs we
have considered before. Not only are its intersection numbers complicated to figure

out, but also the size of each sphere is not simple to determine.

What we could say is that one may take advantage of generatingfunctionology (see
[25] for details) to find the size of spheres in the graph; however, we now do not know
any connection between spheres’ sizes (or even balls’ sizes) and intersection numbers.
We believe that in the 3-cycle Cayley graph the recursion of intersection numbers,
if it has, should be composed of three terms, not just two terms as it occurs in the
transposition Cayley graph. Moreover, we conjectured that for any positive integer
n and 7r,

N(Gn(3"),7) = |B, N B,(1 2 3)]

when n is large enough.
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Appendix A

Glossary

Notation Page
AD(P) The ascent-descent pattern of the path P 40
Qijk A class algebra constant 31
Alt,, The alternating group of [n ] 16
B, (T, u) The ball of radius r centred at w in I' 10
C The class sum of the conjugacy class C' 31
ct(g) The cycle type of the permutation g 16
dr(u,v) The distance between v and v in the graph I' 10
Fiz(g) The set of letters fixed by ¢ 16
fiz(g) The number of letters fixed by ¢ 16
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Notation Page(s)
lg| The number of cycles in the disjoint cycle

decomposition of g 16
I'y The Cayley graph generated by H 14
Gn(2Y) A transposition Cayley graph 18
G (2?) A double-transposition Cayley graph 60
Gn(2) A k — transposition Cayley graph, with £ odd 76
G’ (2%) A k — transposition Cayley graph, with k even 76
i An insert operation 21
i The converse operation of i, 22
(n] The set {1,2,3,...,n} 15
N(T,r) An intersection number of the graph I' 26
: Z A Stirling number of the first kind 21
: Z ) An r — Stirling number of the first kind 24
: Z , A Stirling-type number, defined differently

in two ways for the permutation ¢ 46,65
{ Z } A Stirling number of the second kind 23
{ Z }T An r — Stirling number of the second kind 24
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Notation Page

Supp(g) The set of letters moved by ¢ 15
supp(g) The number of letters moved by g 16
Se(T u) The sphere of radius r centred at w in I' 10
Sym,, The symmetric group of [n] 15
y! The rising factorial y(y + 1)(y +2)...(y + (n — 1)) 21
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