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Abstract

In this thesis we study new kinds of reconstruction problems introduced by V.I.

Levenshtein. These problems are concerned with finding the minimum number of

distorted objects that are needed to restore or identify the original object. Our main

goal is to find these numbers in Cayley graphs on the symmetric and alternating

groups generated by a conjugacy class of permutations of order two. We found that

the numbers are closely related to a well-known class of numbers in combinatorics,

the Stirling numbers.
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Chapter 1

Introduction

In this thesis we are interested in reconstruction problems. These were first introduced

by V.I. Levenshtein [16, 17] and have been studied under the name efficient recon-

struction. They are also known as trace reconstruction in the area of computational

biology concerning evolutionary processes [1, 12, 21]. These problems have no con-

nection to the ‘classical problem’ that refers to the problem of reconstructing a graph

from its multiset of subgraphs obtained by deleting one vertex from the original graph.

1.1 Reconstruction Problems

Problems of our interest are quite similar to other problems in coding theory and

information theory. However, there is a small difference between efficient reconstruc-

tion and the error correction which is studied in coding theory. Normally, in coding

theory when a piece of information (or a message) encoded as a codeword is transmit-

ted through a channel from the sender S to the receiver R, the information is likely

to be distorted by noise in the channel. Here one needs a code in order to manage

these distortions and errors.

In coding theory, researchers are interested in codes which allow them to recon-
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struct an object, i.e. a codeword, from one distorted object. It is as if we had a

key book to show us the method to encode and decode the objects. As is shown in

Figure 1.1, the distorted information will be corrected by an efficient algorithm with

respect to each code used.

Noisy channel Distorted codeword

RS

Codeword

Corrected codeword

Figure 1.1: Error-correction

In the problems of efficient reconstruction (or trace reconstruction), as demon-

strated in Figure 1.2, a number of distorted pieces of information ( maybe considered

as samples ) are needed to identify the original message. It is essential that sufficiently

many distorted messages are present. Here, we need to find the minimum number of

samples that are required to help us find or identify the original message.

Of particular interest in real-world applications are ancestor DNA reconstruction

and genome rearrangement [1, 8, 12, 13, 21, 22]. For example, studies of this type

of reconstruction aim to identify the DNA sequences of a common ascestor, provided

we have sufficiently many samples of DNA from his descendants.

In order to study reconstruction problems of this kind Levenshtein [16, 17] intro-

duced error graphs. This allows us to formulate the efficient reconstruction problem

as a problem about graphs. Let us demonstrate the kind of reconstructions we are

interested in. Suppose that the problem consists of transmitting strings of length

four made from the letters in {1, 2, 3, 4, 5, 6, 7} . Here we are given that errors occur

in the form of a single positional interchange, that is, some two letters swap posi-

tions in the string, with no other changes. For example, when the string 1453 is

transmitted through this channel it may be distorted in
(

4
2

)
ways to become 1354,
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R

Information identification

Various distorted information

S

Noisy channel

Figure 1.2: An example of efficient reconstruction problems

4153, 3451, etc., or may be not distorted at all. Such errors will be called single

errors. In addition, we allow the possibility that several errors occur in succession.

For instance 1453 → 1534 is a distortion that could occur as a sequence of the single

errors 1453 → 1543 → 1534.

The notion of an error graph is now quite easy to explain: we view the strings as

the vertex set of the graph, and join two vertices by an edge if one is obtained from

the other by a single error. The precise definition of error graphs and single errors is

given in the next chapter. Here instead is what we are interested in: what is the least

number of different distortions of a string one needs to identify the original string?

Note it is possible that the original string may be included in these distorted strings.

In Figure 1.3 we show that one needs at least four different distorted strings to

reconstruct the original string that is distorted by single errors of transpositional

interchanges. Suppose that the original is distorted by three different single errors

to 1547, 1754 and 1475. To find the original string one needs to swap two letters in

these distorted strings. Clearly, the original string is one of the strings obtained by

swapping two letters in 1547, 1754 and 1475. However, as shown below, there are

three candidates left, namely 1574, 1457 and 1745.
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1547

1754

1475

7541

4517

1547

5147
1457 1574

1745

1754

7154

5714

4751
1574

1457
1745

1475
4175

1745
1574

7145
5471 1457

Distortion

1547

1754
1475

7541

4517

1547

5147
1457 1574

1745

1754
7154

5714
4751

1574

1457
1745

1475 4175
1745 1574

7145
5471 1457

5174

5174
1574

7154
4175

5714

5471

5147

1574

Figure 1.3: Reconstructing a string distorted by single positional interchanges

To reduce the number of candidates we need to be provided with more clues. As

soon as another distortion from the original string is added, here 5174, we are able

to identify or reconstruct the original string, which is 1574. That is, in this case,

one needs at least four distorted strings for tracking down the original string. This

is the typical problem of efficient reconstruction: Given units of information – here

strings – and specified errors – here single positional interchanges – what is the least

number N + 1 of distorted information units required to restore or reconstruct the
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original information? Here this number is 4, and Theorem 3.1.1 proves that this is

correct for any string and single positional errors.

In real-world applications we cannot exclude that errors are accumulated, as dis-

cussed before. So if one specifies an integer r ≥ 1, the efficient reconstruction problem

asks for the least number N +1 of strings required to uniquely reconstruct an original

string where the strings are obtained by up to r single errors from the original.

With our so far informal definition of error graphs it is now clear that the efficient

reconstruction problem can be phrased entirely in the language of graph theory, as

follows: Let Γ be a graph. For each r ≥ 0, we denote by Br(Γ, u) , or in brief Br(u) ,

the ball of radius r about the vertex u . That is,

Br(u) = {v ∈ Γ : d(u, v) ≤ r} (1.1)

where d(u, v) is the distance between u and v ( see [7] for details ). The elements in

Br(u) are the r-neighbours of u . Given r > 0 we let

N(Γ, r) := max
u 6=v

{ |Br(u) ∩ Br(v)| }. (1.2)

Hence, the number N = N(Γ, r) is the largest number of r– neighbours that two

distinct vertices can have in common. This then is exactly the number N we require

for the reconstruction problem: as soon as N + 1 or more distinct r– neighbours

are available, a unique vertex will be restored from these r– neighbours. Note the

number N = N(Γ, r) in (1.2) is called the intersection number.

The problem of ball intersection can be studied in any graph, and we will give

some references to the literature later. In this thesis we solve this problem when Γ

is a Cayley graph on the symmetric and alternating groups where the generators are

elements of order two. From the viewpoint of error correction these are precisely the

positional interchanges mentioned before.
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In our solution of intersection numbers in these Cayley graphs we found that these

parameters are very closely related to the Stirling numbers. In fact, one could say

that this thesis is also a study of the Stirling recursion which is quite independent of

the work on reconstruction. Once again it shows that interesting problems lead to

the deeper connections in mathematics.

1.2 The Structure of the Thesis and Results

We begin in Chapter 2 by providing the standard terminology of graphs needed here,

including error graphs, Cayley graphs and Stirling numbers. Most the standard ma-

terials can be found in [7]. Our main interest will in particular be the Cayley graphs

of the symmetric and alternating groups. Also, Stirling numbers of the first and the

second kind will be reviewed. This includes their generalizations, r -Stirling numbers.

Moreover, the basic background in representation theory as needed here will be pro-

vided.

In Chapter 3, as the core motivation of this thesis, the joint work [15] of Leven-

sthein and Siemons on reconstruction numbers in the transposition Cayley graph is

introduced. All significant results concerning our work will be reviewed thoroughly.

In addition, we suggest another point of view to consider the transposition Cayley

graph. With this new method we found that there is a tight relation between trans-

position Cayley graphs and Stirling numbers. Also, an important concept of ascent

and descent pattern will be introduced. This idea of pattern yields us a simple but

effective lemma, called the Cancellation Lemma. This lemma is the key to our study

of the transposition Cayley graph over the symmetric groups and its generalisations

in the next chapters. At the end we will discuss the relation between intersection

numbers and the representation theory of the symmetric groups.

In Chapter 4 we introduce the double-transposition Cayley graph G′
n(22) , which is
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the Cayley graph on the alternating group Altn generated by all double-transpositions

(α β)(γ δ) where all α, β, γ, δ are distinct. This graph is considered as a generali-

sation of the transposition Cayley graph in Chapter 3. Originally, the idea we use

in Chapter 3 is a modification of the idea we created for the double-transposition

Cayley graphs. Not surprisingly, we found that Stirling numbers, in particular those

of the first kind, still play a crucial role in our study of this type of graphs. Here is

the main theorem in this chapter:

Theorem 4.2.7 (page 69). Let r ≥ 2 and let Γn = G′
n(22) . We have

N(Γn, r) =

[
n

n − 2r

]

(1 2 3)

(1.3)

if n is sufficiently large.

We define the numbers
[

n

n−2r

]

(1 2 3)
of (1.3) in Section 4.2.2. They are closely

related to the Stirling numbers of the first kind. With some help from the computer

programming GAP we have another main result of the case when r = 2.

Theorem 4.3.1 (page 74). Let Γn = G′
n(22) . For n ≥ 5 we have

N(Γn, 2) =

[
n

n − 4

]

(1 2 3)

=
1

16
(n6 − 7n5 + 5n4 + 23n3 + 90n2 − 112n − 480).

In Chapter 5 the k-transposition Cayley graphs Gn(2k) and G′
n(2k) are intro-

duced. These are the graphs on Symn and Altn generated by all permutations of

the shape (α1 β1)(α2 β2) . . . (αk βk) with k odd and even, respectively, where all

α ’s and β ’s are distinct. The pattern of study will be the same as in Chapter 3

and Chapter 4. Most results concern the asymptotic behaviour of the intersection

numbers. However, the larger the graph becomes, the more disciplined it becomes.

It seems that when the graph is small, the metric buried inside the graph is quite

disorganised. Due to the parity of k , we need to consider the k -transposition Cayley

graph separately in two cases. The first is the case of k odd. The main theorem is

the following.
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Theorem 5.2.6 (page 87). Let r ≥ 3 and let k ≥ 3 be an odd integer. Let

Γn = Gn(2k) . Then we have

N(Γn, r) =

[
n

n − rk

]

(1 2 3)

+

[
n

n − (r − 1)k

]

(1 2 3)

(1.4)

if n is sufficiently large.

For the case of k even, here is the main result.

Theorem 5.2.7 (page 90). Let Γn = G′
n(2k) with k even and let r ≥ 2. We have

N(Γn, r) = N(G′
n(22),

rk

2
) (1.5)

if n is sufficiently large.

In the last chapter, we introduce another Cayley graph on the alternating group,

namely the 3-cycle Cayley graph where the generating set is the set of all 3-cycles.

The graph turns out to be quite different from the previous kinds of generalisation

of the transposition Cayley graph that we considered earlier on. Some results about

the 3-cycle Cayley graph will be discussed.
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Chapter 2

Preliminaries

In this chapter we first give some terminology on graph theory and then provide the

definition of error graphs and Cayley graphs. The material concerning graph theory

can be found in [7]. Also, some basic topics on group theory we need are introduced

here. Later we review Stirling numbers. These numbers play a significant role in this

thesis. At the end of this chapter we provide some background knowledge on the

representation theory of symmetric groups, especially concerning the class algebra

constants.

2.1 Basic Notation on Graphs

A graph Γ is a system consisting of a set V of vertices and a set E of edges. Usually,

such a graph is denoted by Γ = (V,E) . We call V the vertex set and E the edge set

of Γ. The edge set E is a set of unordered pairs {u, v} of distinct vertices from V .

In particular, for us graphs are simple, i.e. they are undirected, have no loops and

multi-edges. The order of a graph, denoted by |Γ| , is the number of vertices. Two

distinct vertices u and v are adjacent (or neighbours of each other), written u ∼ v ,

if {u, v} is in E . A vertex u and an edge e are incident if e = {u, v} for some v .

The degree of a vertex u is the number of vertices adjacent to u . A path of length n
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is a sequence of n + 1 distinct vertices u0, u1, . . . , un of V with {ui, ui+1} in E for

all i = 0, . . . , n − 1. A graph is connected if for every pair u, v of vertices there is

a path starting at u and ending at v . A cycle of length n is a connected graph of

order n such that every vertex has degree two. The distance between the vertices u

and v in Γ, denoted by dΓ(u, v) or briefly d(u, v) , is the length of a shortest path

joining u and v . The diameter of Γ is the maximum distance of two vertices in Γ.

For a non-negative integer r the sphere Sr(Γ, u) of radius r centred at the vertex u

of the graph Γ is the set of vertices v with d(u, v) = r , that is

Sr(Γ, u) = {v ∈ V : d(u, v) = r}. (2.1)

Similarly, we let

Br(Γ, u) = {v ∈ V : d(u, v) ≤ r} (2.2)

be the ball of radius r centred at u of the graph Γ. For instance, considering

Figure 2.1, we have B1(K3,3, a) = {a, b, c, d} and S2(K3,3, e) = {a, f} .

��

�

�

�

�

�

b

c

d

a

e

f

Figure 2.1: The complete bipartite graph K3,3 .

When there is no ambiguity we sometimes use Br(u) and Sr(u) to stand for Br(Γ, u)

and Sr(Γ, u) , respectively. An automorphism f of a graph Γ = (V,E) is a bijection

on V satisfying that {u, v} is an edge in E if and only if {f(u), f(v)} is an edge

in E for all edges. A graph is called vertex-transitive if for every pair of distinct

vertices u and v there is an automorphism f such that v = f(u) . It is then clear

10



that every vertex of a vertex-transitive graph has the same degree. A graph whose

vertices all have the same degree k is called k-regular or briefly regular. A vertex-

transitive graph is therefore regular. A connected graph Γ is distance-transitive if

for any ordered pairs (u1, v1) and (u2, v2) in V × V with d(u1, v1) = d(u2, v2) there

is an automorphism f of Γ such that (u2, v2) = (f(u1), f(v1)) . More generally, a

connected graph is distance-regular if for each i ≥ 0 there are constants ci, ai, bi

such that for all u, v with d(u, v) = i the number of neighbours of v at distances

i−1, i, i+1 from u are ci, ai, bi , respectively. By the definition of distance-transitivity,

the automorphism group of a distance-transitive graph acts transitively on the set

of ordered pairs of vertices. It follows that any distance-transitive graph is distance-

regular, but the converse is not true. Another well known class of graphs is the class of

strongly regular graphs. A graph is strongly regular with parameters (k, λ, µ) if it is

k -regular satisfying that pairs of adjacent vertices have exactly λ adjacent vertices

in common and pairs of non-adjacent vertices have exactly µ adjacent vertices in

common. It becomes clear that any connected strongly regular has diameter two.

The Petersen graph is an example of strongly regular graphs with parameters (3,0,1).

2.2 The Notion of Error Graphs

As we discussed in the previous chapter, error graphs appear for a class of recon-

struction problems related to symmetrical errors. Here we give a precise definition

of error graphs, including single errors and error sets. This material can be found in

[15, 17].

Let V be a countable non-empty set and let H be a set of partial one-to-one

functions on V whose domain is non-empty. That is, for each element h in H we

have that h : Vh → V is an injective map with non-empty domain Vh ⊆ V . The set

H is a single error set, or briefly an error set if

11



(1) h(v) 6= v for all h in H and v in VH and

(2) if h belongs to H then the inverse h−1 of h belongs to H .

Any element in an error set is called a single error.

Definition 1. The graph Γ = (V,EH) is an error graph if there is a single error set

H such that

EH = {{v, h(v)} : v ∈ V and h ∈ H}.

Remark: By Condition (1) above, every error graph has no loops, and by Condition (2)

they can be considered as undirected graphs.

From the definition, an error graph may not be connected. However, in this thesis

we are only interested in connected error graphs, that is, any two vertices u, v can

be transformed by a series of single errors, one into the other. The error graph

Γ = (V,EH) will therefore be equipped with the metric d : V ×V → Z where d(u, v)

is the minimum number of single errors used to transform u to v .

Next, we consider some interesting examples of error graphs. The Hamming space,

written F n
q , is the set of all n-tuple vectors over the alphabet Fq = {0, 1, 2, . . . , q−1} .

For convenience, one may think of vectors in F n
q as words of length n . That is

v = (v1, v2, . . . , vn) = v1v2 . . . vn

with vi in Fq for all i . The Hamming distance between two vectors u, v is the

number of positions that u and v differ in. It can be considered as an error graph

by letting the vertex set be the set F n
q . Two different vertices u and v are adjacent

if u and v exactly differ in one position. Then the edge between u and v is referred

to as an error distorting one to the other. If we let

N(F n
q , r) := max

u 6=v
|Br(u) ∩ Br(v)|

then from [16, 17] it is known that

N(F n
q , r) = q

r−1∑

i=0

(
n − 1

i

)

(q − 1)i.

12



Hence, it is straightforward that any unknown vertex u can be reconstructed from

N(F n
q , r)+1 vertices at distance at most r from u , that is, any word u in F n

q can be

identified from N(F n
q , r) + 1 words in F n

q that differ from u in at most r positions.

Another well known example is the Johnson space. For any 1 ≤ w ≤ n − 1 the

Johnson space Jn
w is the set of binary vectors of length n with Hamming weight w .

The Hamming weight is the sum of unities that appear in the binary vector. The

Johnson distance is half the Hamming distance. For example, 1111000 and 1001101

belong to J 7
4 , and the distance between these vectors is two. It is clear that the

Hamming distance between two vectors in Jn
w is even. Again, from [16, 17] we have

that

N(Jn
w, r) = n

r−1∑

i=0

(
w − 1

i

)(
n − w − 1

i

)
1

i + 1

is the maximum number of vectors at distance at most r that any two vectors can

have in common. That is, any vector u in Jn
w can be identified from its N(Jn

w, r)+1

neighbours at distance at most r .

�

�

	

blue


red red

green

blue
green

u1

u2

u3 u4

u5

u6

Figure 2.2: A 3-edge-colouring of a graph

For anyone who is interested in efficient reconstruction problem, more material

can be found in [18, 19]. We now introduce the edge colouring. Let Γ be a graph

and let K be a set. A function κ : E(Γ) → K is an edge colouring if κ(e1) 6= κ(e2)

whenever e1 and e2 are adjacent. For any positive integer k , a k -edge-colouring

is an edge colouring κ : E(Γ) → {1, 2, . . . , k} . Also, the elements in the image set

are considered as colours. Here we discuss the connection between errors and edge

13



colourings. In Figure 2.2 the graph accompanied with its colouring corresponds one-

to-one to an error graph Γ in a sense that each colour is considered as a single error.

For example, u3 is the vertex distorted from the vertex u4 by the single error ‘red’,

and vice versa. This implies that error graphs and edge colourings actually are the

same.

2.3 Cayley Graphs

Cayley graphs occur as an important class of error graphs. We survey these here.

Let G be a non-trivial group and let H be a generating set of G satisfying the

following conditions:

(1) H = H−1 with H−1 = {h−1 : h ∈ H} and

(2) H does not contain the identity element e of G .

The Cayley graph ΓH := (G,EH) on the group G with the generating set H is

the graph whose vertex set is G and the edge set EH is defined as follows: Two

vertices g and g′ are adjacent in ΓH if and only if g′ = gh for some h in H . With

Condition (1) throughout this thesis we then consider the graph ΓH as an undirected

graph with the edge set EH defined by

EH := {{g, g′} : g−1g′ ∈ H}.

Also, from Condition (2) we have that the graph ΓH has no loops. In the next

proposition we state well-known results on Cayley graphs.

Proposition 2.3.1. Let ΓH be the Cayley graph on a group G with the generating

set H . Then ΓH is a connected regular graph of degree |H| . In particular, it is

vertex-transitive.
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2.3.1 Basic Definitions from Permutation Groups, and

Symmetric Groups in particular

For any positive integer n we let [n] := {1, 2, . . . , n} . Without loss of generality a

permutation g of n letters is a bijection on the set [n] . We denote by Symn the

set of all permutations g of n letters. As is well known, the set is actually a group,

called the symmetric group Symn of degree n . Note that throughout this thesis,

the permutations act on the right. That is, α(gg′) = (αg)g′ or more customarily

αgg′ = (αg)g′ for all α in [n] and g, g′ in Symn . Hence, the product of (1 2) and

(1 3) is (1 2)(1 3) = (1 2 3) , not (1 3 2). There are quite a few ways to represent

permutations. The first method is by representing the permutations g as arrays:

g :=






1 2 . . . n

1g 2g . . . ng




 . (2.3)

The permutation g in (2.3) maps i to ig for all i = 1, . . . , n. Another common

representation of permutations is the disjoint cycle decomposition. Throughout this

thesis, we represent permutations as the disjoint cycle decomposition in the following

way: For each permutation g , put 1 in the first cycle followed by 1g , 1g2
and so on

until we get 1 again. The first cycle of g then is (1 1g 1g2
. . . ) . If there is a number

not belonging to the first cycle we then put the minimum of the remainder in a new

cycle, and then repeat the process as we did before. Continuing in this fashion, each

cycle in the cycle decomposition of g will start with the smallest number appearing

in its. Also, the leading numbers of all cycles will be arranged in ascending order.

For example,

g :=






1 2 3 4 5 6 7 8

6 3 8 5 4 1 2 7




 = (1 6)(2 3 8 7)(4 5). (2.4)

The permutation g in (2.4) consists exactly of cycles of length two and four. Let g be

a permutation in Symn . The support of g , written Supp(g) , is the set of elements in

15



[n] that are not fixed by g . The Fix(g) is the set of elements in [n] fixed by g . Also,

we let supp(g) and fix(g) be the number of non-fixed elements and fixed elements

of g , respectively.

Definition 2. Given a permutation g with hi cycles of length i for all i = 1, . . . , n ,

the cycle type of g is

ct(g) := 1h12h2 · · ·nhn .

A transposition is a permutation g containing a cycle of length two where the

other cycles are all of length one. That is, g is a transposition if and only if ct(g) =

1n−221 . Also, we denote by | g| the number of cycles appearing in the usual cycle

decomposition of g , including the cycles of length one. Hence

| g| =
n∑

i=1

hi (2.5)

and also

n =
n∑

i=1

ihi. (2.6)

Two permutations g and g′ in Symn are conjugate, written g ∼ g′ , if g = t−1g′t

for some permutation t in Symn . It is well known that the set of elements in Symn

conjugate to g is the set of elements in Symn having the same cycle type as g . If

ct(g) = 1h12h2 · · ·nhn we let gSymn = (1h12h2 · · ·nhn)Symn be the conjugacy class of

Symn to which g belongs. As is well known, any permutation g can be expressed

as a product of transpositions. A permutation g is even if g is a product of even

number of transpositions, otherwise g is odd. The set Altn of all even permutations

of n letters is a group, called the alternating group.

Theorem 2.3.2 ([23], p. 18). The number of permutations of cycle type 1h12h2 · · ·nhn

is

n!

h1!h2! · · ·hn!1h12h2 · · ·nhn
.
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2.3.2 Cayley Graphs on the Symmetric Group

Here we introduce Cayley graphs on the symmetric group. Of particular interest are

the Cayley graphs generated by the set of all transpositions. We start with a lemma.

Lemma 2.3.3. Let H be a union of conjugacy classes on Gn = Symn and let r ≥ 0 .

Suppose that C is the group of inner automorphisms of Symn , i.e. C = {σg :

g ∈ Gn } where uσg = g−1ug for all u in Gn . If ΓH is the Cayley graph of Symn

with generating set H , then the sphere Sr(ΓH , e) is a union of C – orbits.

Proof. Let ur be an element in Sr(ΓH , e) . Suppose that P := e, u1, u2, . . . , ur is a

shortest path from e to ur with uk in Sk(ΓH , e) for all 1 ≤ k ≤ r . Then, for each

g in Gn , the path

Pg := eσg = e, u1σg, . . . , urσg

must be a shortest path from e to urσg . This implies that Sr(e) is a union of

C -orbits.

From the above lemma one can see that if H is a union of Symn – conjugacy

classes then every sphere is a union of conjugacy classes of Symn . That is, it consists

exactly of all permutations having the same cycle type. Note that Lemma 2.3.3 can

be generalised to any group G and any automorphism group C of ΓH .

Remark: In any group G , the trivial conjugacy class is {e} where e is the identity

element.

Let H =
⋃

Ci be a union of conjugacy classes of Symn . If h = h1 · · ·hj with hk

in Ci for some i then g−1hg = (g−1h1g) · · · (g−1hjg) . Clearly, g−1hkg and hk have

the same cycle type, i.e. they are in the same conjugacy class. Hence g−1hg is in

〈H〉 . It follows that 〈H〉 is normal in Symn . It is well known that Altn is simple

when n ≥ 5, that is, Altn has no non-trivial normal subgroup. We then have that:
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Proposition 2.3.4. Let n ≥ 5 and let H 6= {e} be a union of conjugacy classes of

Symn . If H contains an odd permutation then 〈H〉 = Symn . Otherwise, 〈H〉 = Altn .

In order to generate the symmetric group Symn by a set of transpositions, a

smallest generating set must be of size n− 1 as the longest cycles we need to extract

are those conjugate to (1 2 . . . n) . Of collections of n−1 permutations that generate

the whole symmetric group Symn , the set Hb = {(1 2), (2 3), . . . , (n−1 n)} of bubble-

sort transpositions and the set Hst = {(1 2), (1 3), . . . , (1 n)} of prefix-transpositions

are well known. On the other extremal case, the set (21)Gn of all transpositions

clearly is the biggest collection of transpositions generating the symmetric group.

The Cayley graph ΓHb
is called the bubble-sort Cayley graph and the Cayley graph

ΓHst
is the star Cayley graph . The details of these Cayley graphs can be found

in [14].

In the remainder our work will be devoted to the Cayley graph generated by

conjugacy classes of involutions – permutations of order two. Basically, all the graphs

we are interested in are based on the transposition Cayley graph, written Gn(21) , on

Symn . More precisely, Gn(21) is the Cayley graph ΓH := (Gn, EH) where H is the

set of all transpositions and Gn = Symn . The symbols ‘21 ’ and ‘Gn ’ refer to the

set of transpositions and the symmetric group Symn , respectively. Figure 2.3 shows

the transposition Cayley graph G4(2
1) on Sym4 . It is clear that the graph is not

distance-regular and therefore not distance-transitive. Both (1 2 3) and (1 2)(3 4)

are in S2(e) . The former is adjacent to three elements in S1(e) while the latter only

has two neighbours in S1(e).

Proposition 2.3.5 ([15], p.806). Let Γn be the transposition Cayley graph Gn(21)

on Symn with identity element e . Then the sphere Si(Γn, e) consists exactly of all

permutations having n − i cycles.

Proof. Suppose that x = (α1 α2 . . . αi)(β1 β2 . . . βj) is a permutation consisting of
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Figure 2.3: The transposition Cayley graph on Sym4

two disjoint cycles. Let h = (α1 β1) be a transposition. Multiplying x by h is just

gluing the two disjoint cycles of x together, namely,

xh = (α1 α2 . . . αi β1 β2 . . . βj) =: y (2.7)

On the other hand, when y is multiplied by h then yh = xhh = x , that is,

yh = (α1 α2 . . . αi β1 β2 . . . βj)(α1 β1) = x. (2.8)

Literally, when a permutation is multiplied by a transposition this amounts to either

gluing two disjoint cycles together or separating a cycle into two cycles. The proof is

now complete by induction as we start at the identity, for which the number of cycles

is n .
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From the above proposition we have that for any permutation g the distance

d(e, g) is at most n − 1. Hence by Proposition 2.3.1 we can conclude that:

Proposition 2.3.6 ([15], p. 805). For any n ≥ 3 the transposition Cayley graph

Gn(21) on Symn is a connected
(

n

2

)
-regular graph of order n! with diameter n − 1 .

2.3.3 k-Transposition Cayley Graphs

In the previous section we have discussed the transposition Cayley graph Gn(21) ,

which is the Cayley graph on the symmetric group Gn = Symn generated by the

set (21)Gn of all transpositions. Here we introduce other kinds of Cayley graphs

on the symmetric and alternating groups. A permutation g whose cycle type is

ct(g) = 1n−2k2k is called a k-transposition. For instance, a 2-transposition is a double-

transposition (α β)(γ δ) where α, β, γ, δ are distinct. From Proposition 2.3.4 one can

see that the conjugacy class (2k)Gn of all k -transpositions will generate the symmetric

group if k is odd. On the other hand, it generates the alternating group if k is even

and greater than four. These Cayley graphs on Symn and Altn generated by (2k)Gn

are called k -transposition Cayley graphs.

2.4 Stirling Numbers

In this section the well known (signless) Stirling numbers are introduced. There are

two types of these numbers, the first and the second kind. Most of this thesis is in fact

devoted to the Stirling numbers of the first kind. The numbers provide a framework

of this thesis as they deeply relate to the transposition Cayley graph, which is the

starting point in our research. We will discuss their recursion and a generalisation of

them, the r -Stirling numbers. Note that the signed types of these numbers will be

omitted.
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We first introduce Stirling numbers of the first kind. Let n and k be positive

integers. The Stirling number
[

n

k

]
of the first kind is the number of permutations

of [ n ] consisting of k cycles, including fixed points. That is,

[ n

k

]

= | { g ∈ Symn : | g | = k } | . (2.9)

Note that in some literature the authors may use another notation for Stirling num-

bers of the first kind, for instance c(n, k) and (−1)ks(n, k) . We can express them as

the coefficients of yk in the rising factorial function

y[n] := y(y + 1)(y + 2) . . . (y + n − 1). (2.10)

That is, given a positive integer n , we have the generating function

n∑

k=1

[ n

k

]

yk = y(y + 1)(y + 2) . . . (y + n − 1) (2.11)

We next show that the numbers
[

n

k

]
are endowed with a recurrence which eventually

becomes a common recurrence for new families of numbers we invent in the next

chapters.

Proposition 2.4.1. For positive integers n and k with 2 ≤ k ≤ n the Stirling

numbers
[

n

k

]
of the first kind satisfy the recurrence

[
n

k

]

=

[
n − 1

k − 1

]

+ (n − 1)

[
n − 1

k

]

(2.12)

with the initial conditions
[

n

k

]
= 0 if k > n and

[
n

1

]
= (n − 1)! .

The recurrence (2.12) is well known but we use it many times. It would then

be nice to prove it here. Before we do this, let us introduce a simple, but beautiful

idea of embedding Symn into Symn+1 . For each j = 0, 1, . . . , n we have an insert

operation ij : Symn → Symn+1 which puts ‘n+1’ after the number j in our standard

cycle decomposition of the permutations in Symn . The operation i0 will put ‘n + 1’
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in a new cycle. For example, let g = (1 6 3)(2 5)(4) belong to Sym6 . For each j ,

considering ij : Sym6 → Sym7 , we have

i0(g) = (1 6 3)(2 5)(4)(7), i4(g) = (1 6 3)(2 5)(4 7),

i1(g) = (1 7 6 3)(2 5)(4), i5(g) = (1 6 3)(2 5 7)(4),

i2(g) = (1 6 3)(2 7 5)(4), i6(g) = (1 6 7 3)(2 5)(4),

i3(g) = (1 6 3 7)(2 5)(4).

In the other way around we have the converse operation i∗ : Symn+1 → Symn

which deletes ‘n + 1’ from the permutations in Symn+1 . These corresponding oper-

ations are highly significant for our work and the idea will be thoroughly discussed

in Section 3.2.3. Throughout this thesis, these insert operations ij will act in the

following sense: They map a permutation g to ij(g) in Γn+1 if g is in Γn . In the

other way around, i∗(g) is in Γn−1 if g belongs to Γn . For example, if g is in Γ5

then ij(g) is in Γ6 while i∗(g) is in Γ4 . Now we can prove Proposition 2.4.1.

Proof. Let n and k be positive integers. The number of permutations in Symn

consisting exactly of one cycle is equal to (n − 1)! . This accounts for
[

n

1

]
. Clearly,

[
n

k

]
= 0 if k > n . For the rest we suppose that 2 ≤ k ≤ n . Let Z be the set

counted by
[

n

k

]
. We can partition Z into two disjoint subsets. The first, say X ,

contains all permutations in Z fixing n . The other set Y consists of permutations in

Z not fixing n . Every permutation g in X corresponds one-to-one to i−1
0 (g) . This

accounts for
[

n−1
k−1

]
. In the other case, if we let T = i∗(Y ) be the set obtained from Y

by deleting n from all elements in Y then Y can be partitioned into n− 1 mutually

disjoint parts, namely i1(T ), i2(T ), . . . , in−1(T ) . This accounts for (n−1)
[

n−1
k

]
since

|T | =
[

n−1
k

]
. The proof is then complete.

In Table 2.1 we show some first Stirling numbers of the first kind. Next we

introduce another kind of Stirling numbers, those of the second kind. They are the
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k

n 1 2 3 4 5

1 1 0 0 0 0

2 1 1 0 0 0

3 2 3 1 0 0

4 6 11 6 1 0

5 24 50 35 10 1

.

.

.
.
.
.

.

.

. · · ·
.
.
.

.

.

.

Table 2.1: Stirling numbers of the first kind

number of ways that the set [n ] can be partitioned into k parts, written
{

n

k

}
.

Recall that [ n ] = {1, 2, . . . , n} . One can see that the numbers
{

n

k

}
are equal to the

number of conjugacy classes of Symn whose elements have k cycles. As is well known,

they satisfy the recursion (2.13). Some of these numbers are shown in Table 2.2.

Proposition 2.4.2. For positive integers n and k with 2 ≤ k ≤ n the Stirling

numbers
{

n

k

}
of the second kind satisfy the recurrence

{
n

k

}

=

{
n − 1

k − 1

}

+ k

{
n − 1

k

}

(2.13)

with the initial conditions
{

n

k

}
= 0 if k > n , and

{
n

1

}
= 1 .

Proof. Let 2 ≤ k ≤ n and let Z be the set of partitions of n with k parts. We

can divide Z into two piles, say X and Y . The former consists of all partitions

whose class containing n has size one. The latter contains the remainder, that is,

Y = Z \ X . Each partition λ in X corresponds to a partition of n − 1 obtained

from λ by deleting the class of n , and vice versa. This accounts for
{

n−1
k−1

}
. Let γ

belong to Y . Then after deleting n from γ the number of classes of γ is the same.

There are k partitions of n that yields the same partition of n− 1 after deleting n ,

and this accounts for k
{

n−1
k

}
. The initial conditions are clear.

Now we introduce a generalisation of Stirling numbers of the first kind, r -Stirling

numbers of the first kind. Recall that [ r ] = {1, 2, . . . , r} . Let r ≥ 1. The r -Stirling

23



k

n 1 2 3 4 5

1 1 0 0 0 0

2 1 1 0 0 0

3 1 3 1 0 0

4 1 7 6 1 0

5 1 15 25 10 1

.

.

.
.
.
.

.

.

. · · ·
.
.
.

.

.

.

Table 2.2: Stirling numbers of the second kind

number
[

n

k

]

r
of the first kind is the number of permutations in Symn having k cycles

such that all elements in [ r ] are in different cycles. Similarly, the r -Stirling number

{
n

k

}

r
of the second kind is the number of ways to partition [n] into k parts where

elements in [r] are in different parts. Clearly,
[

n

k

]

1
=

[
n

k

]
and

{
n

k

}

1
=

{
n

k

}
.

Not surprisingly, these r -Stirling numbers have the same recursion as the ordinary

Stirling numbers but with different initial conditions. That is, for any r ≤ k ≤ n we

have

[
n

k

]

r

=

[
n − 1

k − 1

]

r

+ (n − 1)

[
n − 1

k

]

r

(2.14)

with initial conditions
[

n

k

]

r
= 0 if k > n or k < r ,

[
r

r

]

r
= 1. Further,

{
n

k

}

r

=

{
n − 1

k − 1

}

r

+ k

{
n − 1

k

}

r

(2.15)

with initial conditions
{

n

k

}

r
= 0 if k > n or k < r ,

{
r

r

}

r
= 1. Good introductory

papers on these numbers are [2, 3, 4, 20]. Tables 2.3 and 2.4 show some of those

numbers collected from [4]. From the definition one needs to start at n = 2 for

2-Stirling numbers, and at n = 3 for 3-Stirling numbers.

In the next chapter we will introduce a family of numbers related to the ordinary

Stirling numbers and the r-Stirling numbers.
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k

n 2 3 4 5 6

2 1 0 0 0 0

3 2 1 0 0 0

4 6 5 1 0 0

5 24 26 9 1 0

6 120 154 71 14 1

.

.

.
.
.
.

.

.

. · · ·
.
.
.

.

.

.

Table 2.3: 2-Stirling numbers of the first kind

k

n 3 4 5 6 7

3 1 0 0 0 0

4 3 1 0 0 0

5 9 7 1 0 0

6 27 37 12 1 0

7 81 175 97 18 1

.

..
.
..

.

.. · · ·
.
..

.

..

Table 2.4: 3-Stirling numbers of the second kind

2.5 Poincaré Polynomials

For a given graph Γ and a vertex v in Γ we let

ΠΓ,v(y) :=
∑

i≥0

siy
i (2.16)

be the Poincaré polynomial of Γ. Here si is the size of the sphere Si(v) . When the

polynomial in (2.16) is independent of v we simply write

ΠΓ(y) := ΠΓ,v(y). (2.17)

For instance, in the transposition Cayley graph Γn = Gn(21) , if we let

g(y) = y[n] := y(y + 1) · · · (y + (n − 1)),
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then from Propositions 2.3.5 and 2.3.6 we have

ΠΓn
(y) =

n−1∑

i=0

siy
i =

n−1∑

i=0

[
n

n − i

]

yi. (2.18)

Recall from (2.11) that

n∑

k=1

[ n

k

]

yk = y(y + 1)(y + 2) . . . (y + n − 1).

Therefore, substituting n − i with k in (2.18), we have

ΠΓn
(y) =

n−1∑

i=0

[
n

n − i

]

yi =
n∑

k=1

[ n

k

]

yn−k = yng(y−1).

Now one can see that the Poincaré polynomial and the rising factorial function are

associated with Stirling numbers.

2.6 Ball Intersection Numbers

Let r ≥ 1. Given a graph Γ the ball intersection number, or in brief, intersection

number is

N(Γ, r) := max
u 6=v

|Br(u) ∩ Br(v)| . (2.19)

When the graphs of interest are Cayley graphs, we make use of the vertex tran-

sitivity of these graphs to reduce the index set u 6= v in (2.19). Fix r ≥ 1 and

let G be a group with generating set H . Let Γ = ΓH . Denote Br := Br(e) and

Sr := Sr(e) where e is the identity element of G . By the vertex transitivity one can

reduce (2.19) to

N(Γ, r) = max
u 6=e

|Br ∩ Br(u)| . (2.20)

Further, it is easy to see that

N(Γ, r) = max
1≤i≤2r

Ni(Γ, r) (2.21)
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where Ni(Γ, r) = maxu∈Si
|Br ∩ Br(u)| . Note that if d(e, u) > 2r then Br∩Br(u) = ∅.

Next, suppose that {v, vh} is an edge in Γ. Then

u{v, vh} := {uv, u(vh)} = {uv, (uv)h} (2.22)

clearly is an edge in Γ. Hence,

uBr := {u} · Br = Br(u) and uSr := {u} · Sr = Sr(u). (2.23)

On the other hand, if we suppose that H is a union of conjugacy classes of G then

Bru := Br · {u} = Br(u) and Sru := Sr · {u} = Sr(u). (2.24)

This is because

{v, vh}u := {vu, (vh)u} = {vu, vu(u−1hu)} (2.25)

is an edge in Γ. In addition, for any permutation g we have

g−1(Br ∩ uBr)g = (g−1Brg) ∩ (g−1uBrg) = Br ∩ (g−1ug)Br

and

g−1(Br ∩ Bru)g = (g−1Brg) ∩ (g−1Brug) = Br ∩ Br(g
−1ug).

This shows that if H is a union of conjugacy classes, then the functions f r, fr : G → C

defined by

f r(u) = |Br ∩ uBr| and fr(u) = |Br ∩ Bru| (2.26)

are class functions for any fixed r ≥ 1. Consequently, for any g in G we have

f r(u) = f r(g−1ug) = |Br ∩ Br(u)| = fr(u) = fr(g
−1ug). (2.27)

Now from (2.26) and (2.27) we can reduce (2.20) to

N(Γ, r) = max
u∈R

|Br ∩ Br(u)| (2.28)
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where R is a set of representatives of all non-trivial cycle types in Symn .

As we have seen in Proposition 2.3.1, all Cayley graphs are vertex-transitive, and

hence they are regular. Before we move to the next section it would be nice to have a

glance on some bounds of intersection numbers of general regular graphs. The results

are based on a generalisation of the parameters λ and µ that are studied in strongly

regular graphs. Recall that a strongly regular graph Γ is a regular graph such that

any two adjacent vertices have λ neighbours in common and any two non-adjacent

vertices have µ neighbours in common. Here we introduce a generalisation of this

property of strongly regular graphs to any regular graph by letting

λ := max
v∼v′

|{u : d(u, v) = d(u, v′) = 1}| , (2.29)

µ := max
v 6∼v′

|{u : d(u, v) = d(u, v′) = 1}| . (2.30)

Then we have

N1(Γ, 1) = λ + 2 and N2(Γ, 1) = µ.

Hence, from (2.21) one can see that

N(Γ, 1) = max{λ + 2, µ}. (2.31)

In [15], in order to bound intersection numbers of the graphs of interest, Levenshtein

and Siemons studied the relation between these parameters and the intersection num-

bers, and gave the results shown in the following theorems.

Theorem 2.6.1 ([15], p. 800). For any k-regular graph Γ with k ≤ |Γ| − 2 we

have

N(Γ, 1) ≤
1

2
(|Γ| + λ). (2.32)

Theorem 2.6.2 ([15], p. 801). (Linear Programming Bound) For any strongly

k-regular graph Γ with k ≥ 2 we have

N2(Γ, 2) ≥ µ

(

k − 1 −
1

2
(µ − 1) (N(Γ, 1) − 2)

)

+ 2. (2.33)
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Remark: In Inequation (2.33) above, N2(Γ, 2) = maxd(u,v)=2 |B2(u) ∩ B2(v)| . This

is the general definition of Ni(Γ, r) which is defined to be maxd(u,v)=i |Br(u) ∩ Br(v)| .

2.7 Representation Theory

According to the definition of Cayley graphs, for each r ≥ 1 we have

Br = {e} ∪ H ∪ H2 ∪ H3 ∪ . . . ∪ Hr.

Then if H is a union of conjugacy classes of the symmetric group, then Br will

concern the product of conjugacy classes of the symmetric group. To this study, we

need to deploy the representation theory.

Let G be a finite group and let F = R or C . We denote by GL(n, F ) the group

of invertible matrices with entries in F . A homomorphism ρ : G → GL(n, F ) is

called a representation of G over F with degree n . Further, the character χ of a

representation ρ is the function from G into F defined by χ(g) = tr(gρ) for all g in

G . That is, the value χ(g) is the sum of all entries in the NW-diagonal line of gρ .

Note that we write characters as functions acting on the left. Clearly, if e is the

identity of G then χ(e) is equal to the degree of the representation. In the rest of

this thesis we are interested in the case F = C.

Two representations ρ1 and ρ2 are equivalent if there is an invertible matrix P

such that gρ1 = P−1(gρ2)P for all g in G . A representation ρ is reducible if there

is an invertible matrix P such that for each g in G ,

gρ = P−1

(
A C

0 B

)

P

for some square matrices A and B ; otherwise ρ is irreducible. Also, if χ is the

character of a representation ρ we say that χ is reducible if ρ is reducible; otherwise
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we say that χ is irreducible. In representation theory, characters play a significant role

as we need to keep track only of one number instead of the n2 numbers in each gρ .

In the remainder of this section we provide some known results of the characters,

collecting from [11].

Proposition 2.7.1. (1) Any equivalent representations have the same character.

(2) If g1 and g2 are elements in G belonging to the same conjugacy class then

χ(g1) = χ(g2) for all characters χ of G .

Proposition 2.7.2. The number of all irreducible characters is equal to the number

of all conjugacy classes.

Let ϑ and φ be functions from G to C . The inner product of ϑ and φ is defined

by

〈ϑ, φ〉 =
1

|G|

∑

g∈G

ϑ(g)φ(g). (2.34)

Proposition 2.7.3. Let χ1, . . . , χm be the irreducible characters of G . If ϑ is a

character then

ϑ = d1χ1 + . . . + dmχm

where di = 〈ϑ, χi〉 are non-negative integers. In addition, ϑ is irreducible if and only

if 〈ϑ, ϑ〉 = 1 .

Now we introduce systems in group theory that are called group algebras. First

we define the vector space CG over C that has all elements g in G as its basis.

The addition and scalar product are defined naturally, that is, if g1, . . . , gn are all

elements of G , and x =
∑

λigi and y =
∑

µigi then

x + y =
∑

(λi + µi)gi
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and

λx =
∑

(λλi)gi

for all λ in C. The group algebra CG is the vector space CG equipped with multi-

plication defined by

(
∑

λgg)(
∑

µhh) =
∑

(λgµh)gh

where λg, µh are in C .

Next let C1, . . . , Cm be all the conjugacy classes of G . For each 1 ≤ i ≤ m , we

let

Ci :=
∑

g ∈Ci

g.

The element Ci then is an element in the group algebra CG , and it is called the

class sum of Ci . Note that
〈
Ci : i ≤ m

〉
⊆ CG is the centre of the group algebra.

Proposition 2.7.4. There exist non-negative integers aijk such that

CiCj =
m∑

k=1

aijkCk (2.35)

for all 1 ≤ i ≤ m and 1 ≤ j ≤ m .

The integers aijk in (2.35) are called the class algebra constants of G .

Proposition 2.7.5. Let G be a finite group and let {Ci}
m
i=1 be the collection of all

conjugacy classes of G . For each 1 ≤ i ≤ m , we let gi be an element in Ci . Then

we have

aijk =
|G|

|CG(gi)| |CG(gj)|

∑

χ

χ(gi)χ(gj)χ(gk)

χ(1)
(2.36)

where CG(g) is the centraliser of g in G , and the sum is over the irreducible char-

acters χ of G .
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Note that the centraliser CG(g) of g in G is the set of all elements in G that

commute with g , that is,

CG(g) = {x ∈ G : xg = gx}.

In Section 3.5 we will discuss this material in the transposition Cayley graph

Gn(21) . Especially, we are interested in the connection between the class function

fr(u) := |Br ∩ Bru| and the characters. Note that the characters span the space of

all class functions.
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Chapter 3

Variation on Ball Intersection

Numbers in the Transposition

Cayley Graph

The transposition Cayley graph and its intersection numbers were thoroughly studied

in [15]. In this chapter we show that there is another point of view in studying both

the graph and its intersection numbers. Here we study in depth the results proved

by Levenshtein and Siemons. In this chapter we let Γn stand for the transposition

Cayley graph Gn(21) of Symn , so this is the Cayley graph on Symn generated by all

transpositions. Also, we let Sr := Sr(Γn, e) and Br := Br(Γn, e) .

3.1 Current Results on Transposition

Cayley Graphs

We start with some theorems concerning N(Γn, r) for all r ≤ 3.

Theorem 3.1.1 ([15], p. 809). Let Γn be the transposition Cayley graph on Symn .
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For all n ≥ 3 we have

N(Γn, 1) = 3, (3.1)

and for all n ≥ 5 we have

N(Γn, 2) =
3

2
(n + 1)(n − 2). (3.2)

Theorem 3.1.2 ([15], p. 810). Let n ≥ 4 . Then we have

(1) N1(Γn, 3) = 2 |S0| + 2 |S2| ,

(2) N2(Γn, 3) =
∑2

i=0 |Si| + (n + 2)(n − 3) + 24
(

n−3
2

)
+ 22

(
n−3

3

)
+ 6

(
n−3

4

)
and

(3) N(Γn, 3) = N2(Γ, 3) for all n ≥ 16 .

Here is the main theorem in [15] concerning the asymptotic behaviour of N(Γn, r) .

Theorem 3.1.3 ([15], p. 815). Let r ≥ 1 and let Γn be the transposition Cayley

graph Gn(21) on Symn . If n is sufficiently large then

N(Γn, r) = N2(Γn, r) = |Br−1| + c31(n, n − r) + c31(n, n − (r + 1)) (3.3)

where c31(n,m) is the number of permutations in Γn having m cycles such that 1, 2, 3

are in the same cycle.

Remark: Be aware that the numbers c31(n,m) are not the 3-Stirling numbers we

introduced before. The theorem above is our main motivation in order to find the

corresponding results for any k -transposition Cayley graph, defined in the previous

chapter.

3.2 Some Facts about Transposition Cayley

Graphs

In this section we slowly consider the behaviour of the transposition Cayley graph

Gn(21) . We also recall some results so that one can understand the canonical prop-

erties of these graphs.
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3.2.1 Edge Labelling

Any edge in the transposition Cayley graph Γn can be represented in the following

way. Suppose that {u, v} is the edge linking vertices u and v . Then there is a

transposition h such that v = uh , and on the other hand as h = h−1 we have

u = vh . It then makes sense to label the edge {u, v} with {h} = {u−1v, v−1u} .

Let g be a vertex ( permutation ) in Γn . The left multiplication σg : v 7→ g−1v

for all v in Γn is an automorphism on Γn . Obviously, σg maps the edge {v, vh}

to {g−1v, g−1vh} . Hence {v, vh} and {g−1v, g−1vh} have the same label {h} . Note

that the map σg requires the inverse so that vσgg′ = vσgσg′ for all v, g, g′ in Γn .

Also, in general, the left multiplication can be extended to any other Cayley graph.

Next, taking advantage of being generated by the conjugacy class H = (21)Gn of

Γn we have another automorphism, the right multiplication ρg : v 7→ vg . One can

see that {v, vh} 7→ {vg, vhg} = {vg, (vg)(g−1hg)} . Clearly, g−1hg is a transposition.

Hence, in this case, the right multiplication still preserves edges, but changes the

labels.

3.2.2 Distance Statistics in Transposition Cayley Graphs

To evaluate the intersection number

N(Γn, r) := max
u 6=e

|Br ∩ Bru| (3.4)

with r > 3 one may try to guess intelligently the value N(Γn, r) in (3.4) by the

number of permutations g := uh1 . . . hr∗ where r∗ ≤ r and h ’s are errors belonging

to H . Recall that in the transposition Cayley graph, errors are transpositions.

Before we do this we give some useful terminology. Let ΓH be a Cayley graph on

a group G accompanied by the ( distance ) metric d induced by the generating set
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H of G , and let P be a path starting at the identity e , say

P := e, v1, v2, . . . , vk.

We say that P has a descent at step k if d(e, vk) = d(e, vk−1) − 1. On the other

hand, P has an ascent at step k if d(e, vk) = d(e, vk−1) + 1. Hence, given a path

in Γn = Gn(21) , it must have either descent or ascent at each step. This fact follows

directly from the parity of permutations. In other words, for any vertex v in Si , its

neighbours must belong to either Si−1 or Si+1 .

Fix i ≥ 0. Let v be a vertex in Si . The number of the neighbours of v in Si−1 ,

denoted by c(v) , is equal to the number of transpositions h that split a cycle in v

to two. If ct(v) = 1h12h2 . . . nhn then we have that

c(v) =
n∑

j=1

(
j

2

)

hj =
1

2

(
n∑

j=1

j2hj − n

)

since
∑

j jhj = n. As we discussed in the preceding chapter, any vertex v in Γn can

be embedded into Γn+1 by fixing n + 1. It follows that the value c(v) is the same.

That is, the value c(v) actually does not depend on n , but is a constant. Hence, as

v has degree |H| =
∣
∣(21)Gn

∣
∣ =

n(n − 1)

2
we have that the number b(v) of neighbours

of v belonging to Si+1 is

b(v) =
n(n − 1)

2
− c(v). (3.5)

Since c(v) is a constant we have b(v) = O(n2). Therefore, it follows directly that:

Proposition 3.2.1 ([15], p. 810). In Γn the number of vertices that are reachable

from a vertex v with a ascent steps is O(n2a) .

Remark: The parameters c(v) and b(v) introduced above may be regarded as the

downward and upward degree for the vertex v . The letters ‘c ’ and ‘b ’ refer to the

parameters ci and bi in distance-regular graphs, as defined earlier (p. 11).
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Generally, in some graphs we may have to use ‘a ’ referring to the parameter

ai in distance-regular graphs. Note that a(v) will be defined to be the number of

neighbours of v belonging to the same sphere as v . By this definition and the parity

of permutations, it is clear that a(v) = 0 for any permutation v in Γn . In the next

proposition we provide parameters satisfying results very similar to those of distance-

regular graphs. Recall that in any distance-regular graph, for any i ≥ 0 there are

constants ci, ai, bi such that for any vertices u, v with d(u, v) = i , the number of

neighbours of v at distance i − 1, i, i + 1 are ci, ai and bi , respectively. In [5, p.72],

the author shows that for a given distance-regular graph,

c1 ≤ c2 ≤ . . . ≤ cd∗ and b0 ≥ b1 ≥ . . . ≥ bd∗−1

where d∗ is the diameter of the graph.

Proposition 3.2.2. Let Γn = Gn(21) , and let cmax(i) = max{c(g) : g ∈ Si} and

bmin(i) = min{b(g) : g ∈ Si} . Then

cmax(0) ≤ cmax(1) ≤ cmax(2) ≤ . . . ≤ cmax(n − 2) ≤ cmax(n − 1) (3.6)

and

bmin(0) ≥ bmin(1) ≥ bmin(2) ≥ . . . ≥ bmin(n − 2) ≥ bmin(n − 1). (3.7)

In addition, we have

cmax(i) = c((1 2 3 . . . i + 1)) and bmin(i) = b((1 2 3 . . . i + 1))

for all 0 ≤ i ≤ n − 1.

Proof. We first observe that cmax(0) = 0 and cmax(1) = 1, and cmax(n−1) = n(n−1)
2

.

Let Ω be a collection of subsets of [ n ] . We let

C(Ω) := { {α1, α2} : α1 6= α2 and α1, α2 ∈ A for some A ∈ Ω }.
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For each g in Γn we let Ωg be the collection of subsets of [ n ] defined by

Ωg :=
{ ⋃

m≥0

{αgm} : α’s are representatives of all cycles in g
}
.

Then {α1, α2} is in C(Ωg) if and only if α1 and α2 belong to the same cycle in the

decomposition of g . Clearly, C(Ωg) is the set counted by c(g) , the downward degree

of g .

Now fix 2 ≤ i ≤ n − 2. Let g0 = (1 2 3 . . . i i + 1) and let g′ belong to Si so

that g′ and g0 are not conjugate. Then g′ has at least two cycles of length greater

than one in its cycle decomposition. Suppose that

g′ = (α11 α12 . . . α1k1)(α21 α22 . . . α2k2) . . . (αj1 αj2 . . . αjkj
),

suppressing all cycles of length one. Then

|C(Ωg′)| =
∣
∣
∣C

( {
{αt1 αt2 . . . αtkt

}
}j

t=1

)
∣
∣
∣

=
∣
∣
∣C

( {
{α11 αt2 . . . αtkt

}
}j

t=1

)
∣
∣
∣

<
∣
∣C

( {
{α11 α12 . . . α1k1α22 α23 . . . αj−1,kj−1

αj2 αj3 . . . αjkj
}
} )∣

∣ .

Note that the last inequality holds as {α12, α22} is counted by the latter, but not by

the former. Recall g′ now belongs to Si . Then |g′| = n − i and therefore, we have

k1 + k2 + . . . + kj − i = j.

Hence,

∣
∣{α11 α12 . . . α1k1α22 α23 . . . αj−1,kj−1

αj2 αj3 . . . αjkj
}
∣
∣ = k1 + . . . + kj − (j − 1)

= i + 1

=
∣
∣{1 2 3 . . . i i + 1}

∣
∣.

This follows that

|C(Ωg′)| <
∣
∣C

( {
{α11 α12 . . . α1k1α22 α23 . . . αj−1,kj−1

αj2 αj3 . . . αjkj
}
} )∣

∣

=
∣
∣C

( {
{1 2 3 . . . i i + 1}

} )∣
∣

=
∣
∣C

(
Ωg0

)∣
∣ .
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Hence, c(g′) < c(g0) , as required. In addition, it is clear that (3.7) follows directly

from (3.5). The proof is then complete.

Next, we give a bound of Ni(Γn, r) . It is an extended version of a proof in

[15, p. 815].

Corollary 3.2.3. Let r ≥ 1 and let u belong to Sm in Γn with 2j−1 ≤ m ≤ 2j for

some j . The number of vertices in Br reachable by a path of length r′ ≤ r starting

at u is at most O(n2(r−j)).

Proof. Let P be a path of length r′ ≤ r from u to a vertex v in Br . Suppose

that P has a ascents and d descents, and v belongs to Sm′ ⊆ Br . We then have

a + d = r′ ≤ r and d − a = m − m′ . Since m′ ≤ r we have 2a ≤ 2r − m . It follows

that a ≤ r − j + 1
2
. Since a is an integer we have a ≤ r − j . The proof follows

directly from Proposition 3.2.1.

Remark: From Corollary 3.2.3 one can see that if u belongs to Si with i ≥ 3,

then the number of vertices reachable from u in no more than r steps is at most

O(n2(r−2)) . In addition, if u is in either S1 or S2 then there are at most O(n2(r−1))

vertices reachable from u in at most r steps.

3.2.3 The Ascent-Descent Pattern

Let u and g belong to Symn . We want to understand the paths from u to ug .

For this we first suppose that g is a single cycle, say g = (α1 α2 . . . αm). Now let

ti = (α1 αi) for all 2 ≤ i ≤ m. Then g = t2t3 · · · tm . Next, consider the path

P := u, ut2, ut2t3, . . . , ug, (3.8)

which is a path of length m − 1 starting at u and ending at ug . One can see that

any factorisation of g into m − 1 transpositions gives such a path, and every path
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of length m − 1 from u to ug in Γn provides a factorization of g , mappping u

and ug by the left multiplication σu and walking along the path from e = u−1u to

g = u−1ug .

The idea now is to embed the path P into Γn+1 , the transposition Cayley graph

on Symn+1 . For this we view g and the ti ’s as elements in Symn+1 that fix n+1 and

move all other points as before. For any j = 0, . . . , n let ij be the insert operation in

Section 2.4. Now the path P in Γn can be embedded into Γn+1 via P 7→ Pj where

Pj := ij(u), ij(u)t2, ij(u)t2t3, . . . , ij(u)g. (3.9)

Note that in (3.9) we consider g and ti ’s as i0(g) and i0(ti) ’s. In general, if g is

any permutation in Γn with |g| = n − k for some k , then g can be expressed as

a product of k transpositions, and therefore we will get the path P and Pj as in

(3.8) and (3.9). The function P 7→ Pj has an invariant property that we call its

ascent-descent pattern.

Definition 3. For a path P := x1, . . . , xj of length j − 1 , the ascent-descent pattern

of P , written AD(P ) , is the j − 1 tuple

AD(P ) = (∗1, ∗2, . . . , ∗j−1)

where ∗i = a if d(e, xi) = d(e, xi−1) + 1 , otherwise ∗i = d.

Let v be a vertex in Γn and let h be a transposition in Γn . Then {v, vh} is an

edge in Γn . We claim that for any j in {0, . . . , n}

ij(vh) = ij(v)i0(h). (3.10)

From the definition of ij one can see that, for any α in [n+1]

αi0(v) =







α if α = n + 1,

αv otherwise.
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Also, for any j in [n] and α in [n+1]

αij(v) =







n + 1 if α = j,

jv if α = n + 1,

αv otherwise.

Recall that iv is the image of i under v . To show that Equation (3.10) holds, we

first prove that i0(vh) = i0(v)i0(h) . Let α belong to [n] . Then

αi0(vh) = αvh = (αv)h = (αv)i0(h) = (αi0(v))i0(h) = αi0(v)i0(h).

Also, we have

(n + 1)i0(vh) = n + 1 = (n + 1)i0(h) = ((n + 1)i0(v))i0(h) = (n + 1)i0(v)i0(h).

Therefore, i0(vh) = i0(v)i0(h) . We next show that (3.10) holds for any j in [n] too.

Clearly,

(n + 1)ij(vh) = jvh = (jv)h = (jv)i0(h) = ((n + 1)ij(v))i0(h) = (n + 1)ij(v)i0(h),

and

jij(vh) = n + 1 = (n + 1)i0(h) = (jij(v))i0(h) = jij(v)i0(h).

Moreover, if α does not belong to { j, n + 1 } , then

αij(vh) = αvh = (αv)h = (αv)i0(h) = (αij(v))i0(h).

That is,

ij(vh) = ij(v)i0(h)

for any j in [n] . This follows that for any j in {0,1,2,. . . ,n}

ij(vh) = ij(v)i0(h) (3.11)

41



and hence, we have

ij({v, vh}) = {ij(v), ij(vh)} = {ij(v), ij(v)i0(h)}.

Note from the definition of ij that

dΓn+1(e, ij(v)) =







dΓn
(e, v) if j = 0,

dΓn
(e, v) + 1 otherwise,

(3.12)

since adding n + 1 in a cycle of v in Γn is the reduction of the number of cy-

cles of ij(v) in Γn+1 by one. Hence, from Proposition 2.3.5 we have that (3.12)

holds. Recall that dΓ(u, v) is the distance between vertices u and v in Γ. Hence,

considering i0(h) = h , since each ij preserves edges and increases the distance

dΓn+1(e, ij(v)h) from dΓn
(e, vh) by at most one, we have that both of paths P := v, vh

and Pj := ij(v), ij(v)h have either ascent or descent at step one, that is, AD(P ) =

AD(Pj) . Recall that in the transposition Cayley graphs, there is no edge linking two

vertices in the same sphere.

Proposition 3.2.4. Let g = t1t2 . . . tm be a product of m transpositions and let v

be a vertex in Γn . Suppose that

P := v, vt1, vt1t2, vt1t2t3, . . . , vg

be a path from v to vg in Γn . For each j = 0, 1 . . . , n , let

Pj := ij(v), ij(v)t1, ij(v)t1t2, . . . , ij(v)g.

Then AD(P ) = AD(Pj) .

Proof. This follows directly by comparing each step of P and Pj .

In Figure 3.1 we illustrate this manoeuvre. Let u = (1 5)(2 4)(3) and g = (1 2 3 4)

belong to Γ5 = G5(2
1) . Then u1 := i1(u) = (1 6 5)(2 4)(3) is the permutation
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Figure 3.1: The A − D pattern of paths and their embedding

in Γ6 = G6(2
1) obtained from u by adding 6 after 1 . Also, suppose that g is

decomposed as g = (1 2)(1 3)(1 4) . By Proposition 2.3.5 we have that u is in

S2(Γ5, e) and u1 is in S3(Γ6, e) . Let

P := u, u(1 2), u(1 2)(1 3), u(1 2)(1 3)(1 4)

and

P1 := u1, u1(1 2), u1(1 2)(1 3), u1(1 2)(1 3)(1 4)

be paths in Γ5 and Γ6 , respectively. One can see that

AD(P ) = AD(P1) = (a, a, d)

as shown in Figure 3.1.

3.3 The Stirling Recursion in Transposition

Cayley Graphs

In the preceding section we have seen how to embed a path P in Γn into Γn+1 .

Using this method, the ascent-descent pattern is an invariant under the embeddings

ij : P 7→ Pj we defined before. Conversely, a given path P in Γn+1 might be expected
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to provide a path in Γn having the same ascent-descent pattern as P . One strategy

would be to delete ‘n+1’ from the vertices in P . But this does not always work.

For instance, suppose that v = (1 2 3)(4) and t = (1 4) . Then vt = (1 2 3 4) and

P := v, vt is a path of length one in Γ4 . Deleting 4 from v and vt , we get the same

permutation, namely (1 2 3) . That is, in general, the method seems not to be a good

one. In fact, this is because 4 belongs to the support of t .

To distill a path in Γn+1 into Γn one needs to choose the paths whose adjacent

vertices u, v satisfy (n + 1)u−1v = n + 1, that is, n + 1 is fixed by u−1v . Note that

u−1v is now considered as the edge between u and v . Under this condition we need

to find a path P satisfying that all vertices in P either fix n + 1 or move n + 1.

Before going to the next lemma let us recall that the ij ’s are the insert opera-

tions. Also, for any positive integers m and k , the spheres Sm and Sk in (3.13) are

considered as spheres in Γn+1 while Sm−t and Sk−t refer to spheres in Γn .

Lemma 3.3.1 (Cancellation Lemma). Let g be a permutation in Γn+1 fixing

n + 1 . If v = ij(u) for some u in Γn and j in {0, 1, 2, . . . , n} then

(v, vg) ∈ Sm × Sk if and only if (i−1
j (v), i−1

j (vg)) ∈ Sm−t × Sk−t (3.13)

for some t = 0, 1 .

Proof. Suppose that g = t1t2 · · · tp is expressed as a product of p transpositions. Let

v0 = v and let vf = vf−1tf for all f = 1 . . . , p . Assume that (v, vg) is in Sm × Sk .

From the above discussion, n + 1 is either fixed by the vf ’s or moved by the vf ’s.

From Proposition 3.2.4, we have that the paths P := v, v1, . . . , vf and i−1
j (P ) have

the same ascent-descent pattern, i.e. AD(P ) = AD(i−1
j (P )) for all j . Due to the

construction of ij we have t = 0 or 1. The converse is clear by applying the insert

function ij .
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3.3.1 Ball Intersection Numbers for Permutations

A function f has the Stirling recursion if there are n0 and k0 such that

f(n, k) = f(n − 1, k − 1) + (n − 1)f(n − 1, k) (3.14)

for all n ≥ n0 and k ≥ k0 . Then it is clear that the ordinary Stirling numbers of the

first kind and the r−Stirling numbers of the first kind have the Stirling recursion.

We now turn our attention to the ball intersection number N(Γn, r) , and then show

that these numbers have the Stirling recursion too.

Let r ≥ 0. For a permutation g in Γn = Gn(21) we let

Ig(n, r) := |Br ∩ Brg| . (3.15)

Recall that Brg := Br · {g} = {g} · Br = Br(Γn, g) as shown in (2.24). Obviously,

we have that Ig(n, 0) = 0 if g is not the identity and Ig(n, r) = n! if r ≥ n − 1.

Also, from (2.26), fixing n and r , the function g 7→ Ig(n, r) is a class function.

Then, throughout this thesis, we can pay our attention to permutations g with

Supp(g) = [ supp(g) ] . Recall that [n ] = {1, 2, . . . , n} .

For any positive integers n and r , suppose that g is a vertex in Γn fixing n . Let

Br := Br(Γn) . The set Z := Br ∩Brg can be divided to two subsets, say X and Y .

The set X consists of permutations in Z fixing n , and Y is the set of those not fixing

n . Since every permutation in X fixes n , and since i∗ is the function from Γn to

Γn−1 that deletes n from the disjoint cycle decomposition of permutations in Γn , we

have | i∗(X)| = |X| . Further, if we let T = i∗(Y ) then {ij(T )}n−1
j=1 is a partition of

Y . Therefore, from the Cancellation Lemma, for each v in Z we have that i∗(vg−1)

and i∗(v) belong to Br(Γn−1) if v is in X ; otherwise, they are in Br−1(Γn−1) . Note

that i∗(vg−1) = i∗(v)i∗(g−1) = i∗(v)i∗(g)−1 . Hence,

Ig(n, r) = |X| + |Y | = |X| + (n − 1) |T | = Ig(n − 1, r) + (n − 1)Ig(n − 1, r − 1).
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Here we collect these facts.

Proposition 3.3.2. Let n and s be positive integers with n > s . If g is a permu-

tation in Γn such that Supp(g) = [ s ] , then

Ig(n, r) = Ig(n − 1, r) + (n − 1)Ig(n − 1, r − 1) (3.16)

for any r ≥ 1.

Remark: The permutation g on the right-hand side of the equation in (3.16), and

also in (3.18), is a permutation in Γn−1 .

Having a glance at (3.16), it is almost the same as the Stirling recursion (3.14)

with only a small difference. What we may say is that they are defined in reverse to

each other: the reason is that the sphere Si consists exactly of permutations having

n − i cycles (not i cycles). Therefore, for all r ≥ 0 if we instead let

|Br ∩ Brg| =:

[
n

n − r

]

g

(3.17)

then the recurrence in (3.16) should become the Stirling recursion.

Theorem 3.3.3. Let n and s be positive integers with n > s . If g is a permutation

in Γn such that Supp(g) = [ s ] , then

[
n

k

]

g

=

[
n − 1

k − 1

]

g

+ (n − 1)

[
n − 1

k

]

g

. (3.18)

for any integer 1 ≤ k ≤ n .

Remark: If we let s = supp(g) in Theorem 3.3.3 then
[

n

k

]

g
in (3.18) is fully

determined by s initial values, namely
[

s

1

]

g
,

[
s

2

]

g
, . . . ,

[
s

s−1

]

g
,
[

s

s

]

g
. From

Definition (3.17) and Proposition 2.3.5 we have
[

s

s

]

g
= 1 if g = e ; otherwise

[
s

s

]

g
= 0. Moreover,

[
s

m

]

g
= |Γn| = n! for all m ≤ 1.
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Proof. By Proposition 3.3.2 and Definitions (3.15) and (3.17) we have that

[
n

n − r

]

g

= Ig(n, r)

= Ig(n − 1, r) + (n − 1)Ig(n − 1, r − 1)

=

[
n − 1

n − 1 − r

]

g

+ (n − 1)

[
n − 1

(n − 1) − (r − 1)

]

g

=

[
n − 1

n − r − 1

]

g

+ (n − 1)

[
n − 1

n − r

]

g

,

and then substituting n − r by k , we have

[
n

k

]

g

=

[
n − 1

k − 1

]

g

+ (n − 1)

[
n − 1

k

]

g

as required.

Corollary 3.3.4. Let g1 and g2 be non-identity permutations. If there exist positive

integers m and t such that
[

m

k

]

g1
≥

[
m

k

]

g2
for all t ≤ k ≤ m then

[
n

k

]

g1
≥

[
n

k

]

g2

for all m ≤ n and t + (n − m) ≤ k ≤ n . Moreover, if t = 1 then
[

n

k

]

g1
≥

[
n

k

]

g2

for all n ≥ m and all k .

Proof. This follows from Theorem 3.3.3 and the fact that, fixing n and k , the function

g 7→
[

n

k

]

g
is a class function.

3.3.2 Generating Functions

From Theorem 3.3.3 and Proposition 2.4.1 we see that
[

n

k

]

g
and

[
n

k

]
satisfy the

Stirling recursion, with different initial conditions. Recall that in Γn = Gn(21) we

have |Si| =
[

n

n−i

]
and

n∑

k=1

[ n

k

]

yk = y(y + 1)(y + 2) · · · (y + n − 1). (3.19)

It makes sense to think of
[

n

k

]

g
having a generating fuction that would be similar

to that of
[

n

k

]
.
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Let n and s be integers with n > s and let g be a non-identity permutation in

Γn such that Supp(g) = [ s ] . For any k > n we define
[

n

k

]

g
by letting

[
n

k

]

g
= 0.

Let Ψ(Γn, g; y) :=
∑∞

k=−∞

[
n

k

]

g
yk . Note that the case k ≤ 0 means that we con-

sider the ball whose radius is larger than the diameter of the graph Γn . Recall that

diam(Gn(21)) = n − 1. This implies that all vertices are counted in this case. That

is,
[

n

k

]

g
= n! if k ≤ 0. Multiplying both sides with yk and summing over k in

(3.18) we get

∞∑

k=−∞

[ n

k

]

g
yk =

∞∑

k=−∞

[
n − 1

k − 1

]

g

yk + (n − 1)
∞∑

k=−∞

[
n − 1

k

]

g

yk

and hence

Ψ(Γn, g; y) = yΨ(Γn−1, g; y) + (n − 1)Ψ(Γn−1, g; y)

= (y + (n − 1))Ψ(Γn−1, g; y). (3.20)

For instance, let g = (1 2 3) . One can get that
[

3
1

]

(1 2 3)
=

[
3

3−2

]

(1 2 3)
= 6 which

counts all elements in Sym3 . Also, by (3.1) we have
[

3
2

]

(1 2 3)
=

[
3

3−1

]

(1 2 3)
= 3.

Hence

Ψ(Γ3, (1 2 3); y) = 3y2 + 6y + 6 +
6

y
+

6

y2
+ · · · .

Recall that we let y[n] := y(y + 1) · · · (y + (n − 1)) . By (3.20) it follows that:

Theorem 3.3.5. Let g = (1 2 3) and n ≥ 3 . Then

Ψ(Γn, (1 2 3); y) := (y + 3)[n−3](3y2 + 6y + 6 +
6

y
+

6

y2
+ · · · )

is the generating function of
[

n

k

]

g
.

Remark: In the same way, Ψ(Γn, g; y) can be defined from (3.20) for all g .

3.3.3 Intersection Tables

For a fixed m and a permutation g in Γm , let s = supp(g) . One can construct a

table listing the values of
[

n

k

]

g
for all k, n with k ≤ n and n ≥ s as in Table 3.1.
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This table is called the intersection table INg of g . It stores the information about

the initial conditions of
[

n

k

]

g
. Note that we ignore the value

[
n

k

]

g
for all k ≤ 0

since it is equal to
[

n

1

]

g
= n!.

k

n 1 2 . . . s − 1 s s + 1 s + 2 s + 3 · · ·

s
[

s

1

]

g

[
s

2

]

g
· · ·

[
s

s−1

]

g

[
s

s

]

g
0 0 0 · · ·

s + 1
[

s+1
1

]

g

[
s+1
2

]

g
. . .

[
s+1
s−1

]

g

[
s+1

s

]

g

[
s+1
s+1

]

g
0 0 · · ·

s + 2
[

s+2
1

]

g

[
s+2
2

]

g
. . .

[
s+2
s−1

]

g

[
s+2

s

]

g

[
s+2
s+1

]

g

[
s+2
s+2

]

g
0 · · ·

.

.

.
.
.
.

.

.

. · · ·
.
.
.

.

.

.
.
.
.

.

.

.
. . .

Table 3.1: INg

It is clear that permutations with the same cycle type produce the same table.

Also, if g does not belong to B2t(Γs) we have
[

n

k

]

g
= 0 for all s − t ≤ k ≤ s .

On the other hand, if g belongs to B2j(Γs) for some j then
[

n

k

]

g
> 0 for all

k ≤ s − j . From (3.18) we see that the value of
[

n

n−r

]

g
in INg is obtained from

two directions. The first is by summing the values in vertical lines, which is equal to

O(n2(r−j−1)+1) = O(n2r−2j−1) by induction on m := r−j , and the second is summing

those of the first in n − ck times for some constant ck . Hence

Lemma 3.3.6. Let g be a permutation in Γn . Suppose that j is the smallest integer

such that g belongs to B2j . Then
[

n

n−r

]

g
= O(n2(r−j)) .

Remark: Translating Corollary 3.2.3 into the language of intersection numbers, we

have that O(n2(r−j)) is an upper bound for
[

n

n−r

]

g
if g belongs to S2j ∪ S2j−1 , and

by Lemma 3.3.6 this bound is sharp.

3.3.4 Domination from Cycles of Length Three

By Corollary 3.3.4, for any two permutations g1, g2 whose cycle types are different, we

may find some useful information linking the intersection numbers
[

n

k

]

g1
and

[
n

k

]

g2
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by comparing certain rows in their intersection tables. For example, let Γ4 = G4(2
1)

on Sym4 and let g1 = (1 2 3) , g2 = (1 2)(3 4) and g3 = (1 2) . We have that in the

4th rows of INg1 , INg2 and INg3 we have the entries

[
4

1

]

g1

= 24

[
4

2

]

g1

= 15

[
4

3

]

g1

= 3

[
4

4

]

g1

= 0

and
[

4

1

]

g2

= 24

[
4

2

]

g2

= 14

[
4

3

]

g2

= 2

[
4

4

]

g2

= 0,

and also

[
4

1

]

g3

= 24

[
4

2

]

g3

= 12

[
4

3

]

g3

= 2

[
4

4

]

g3

= 0.

It then follows by Corollary 3.3.4 that
[

n

k

]

g1
≥

[
n

k

]

g2
≥

[
n

k

]

g3
for all n ≥ 4 and

1 ≤ k ≤ n as shown for example in Tables 3.2, 3.3 and 3.4.

In [15, p. 813 ] the authors showed that N2(Γn, r) > N1(Γn, r) when n is suffi-

ciently large. Comparing Table 3.2 with Table 3.4 we have by Corollary 3.3.4 that

Corollary 3.3.7. Let Γn be the transposition Cayley graph on Symn . We have

N2(Γn, r) > N1(Γn, r)

for all n ≥ 3 where Ni(Γ, r) = maxg∈Si
|Br(Γn, e) ∩ Br(Γn, g)| .

3.3.5 The Closed Formula for Intersection Numbers

Now we take advantage of the computer programming language GAP to figure out

N(Γn, 2) for Γn = Gn(21) . From (2.28) we have

N(Γn, 2) = max
g∈R∩B4

[
n

n − 2

]

g

,

where R is a collection of representatives of non-trivial cycle types in Symn . For ease

of computing, since the mapping g 7→
[

n

k

]

g
is a class function, when fixing n and k ,

we choose R to be a collection of permutations g such that Supp(g) = [ supp(g) ] .
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k

n 1 2 3 4 5 6 7 8 · · ·

3 6 3 0 0 0 0 0 0 · · ·

4 24 15 3 0 0 0 0 0 · · ·

5 120 84 27 3 0 0 0 0 · · ·

6 720 540 219 42 3 0 0 0 · · ·

7 5040 3960 1854 471 60 3 0 0 · · ·

.

.

.
.
.
.

.

.

. · · ·
.
.
.

.

.

.
.
.
.

. . .
. . .

Table 3.2: The table INg with g = (1 2 3)

k

n 1 2 3 4 5 6 7 8 · · ·

4 24 14 2 0 0 0 0 0 · · ·

5 120 80 22 2 0 0 0 0 · · ·

6 720 520 190 32 2 0 0 0 · · ·

7 5040 3840 1660 382 44 2 0 0 · · ·

..

.
..
.

..

. · · ·
..
.

..

.
..
.

. . .
. . .

Table 3.3: The table INg with g = (1 2)(3 4)

Note for any permutation g in S3 ∪S4 we have, by Lemma 3.3.6, that
[

n

n−2

]

g
is

a constant for any n ≥ supp(g). Using GAP, we have that
[

n

n−2

]

g
≤ 20 for any g

in R∩ (S3 ∪S4) and any n ≥ 5. Recall that we have
[

n

n−2

]

(1 2 3)
≥

[
n

n−2

]

(1 2)(3 4)
≥

[
n

n−2

]

(1 2)
for all n ≥ 4. Hence, since

[
n

n−2

]

(1 2 3)
≥

[
5
3

]

(1 2 3)
= 27 we have

N(Γn, 2) =
[

n

k

]

(1 2 3)
for all n ≥ 5. Further, by induction, for any n ≥ 3 we have

[
n

n − 2

]

(1 2 3)

= 6 + 3(3 + 4 + · · · + (n − 1)) =
3

2
(n + 1)(n − 2),

which is the closed formula shown in Theorem 3.1.1. Also, using the Stirling recursion

for
[

n

k

]

g
with g = (1 2 3) , where r = 3 one can find the closed formula for

[
n

n−3

]

g

that is eventually equal to N(Γn, 3) .

Let at :=
[

t

t−2

]

g
with g = (1 2 3) . The sequence (at)t≥3 lies on the second

diagonal line of non-zero entries in INg . By the induction and the Stirling recursion
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k

n 1 2 3 4 5 6 7 8 · · ·

2 2 0 0 0 0 0 0 0 · · ·

3 6 2 0 0 0 0 0 0 · · ·

4 24 12 2 0 0 0 0 0 · · ·

5 120 72 20 2 0 0 0 0 · · ·

6 720 480 172 30 2 0 0 0 · · ·

7 5040 3600 1512 352 42 2 0 0 · · ·

.

.

.
.
.
.

.

.

. · · ·
.
.
.

.

.

.
.
.
.

. . .
. . .

Table 3.4: The Table INg with g = (1 2)

we have that for all n ≥ 4,

[
n

n − 3

]

g

= 6 + 3a3 + 4a4 + · · · + (n − 1)a(n−1) (3.21)

since
[

3
0

]

g
=

[
3
1

]

g
= a3 = 6. Recall that at =

[
t

t−2

]

g
= 3

2
(t+1)(t− 2) for all t ≥ 3.

Then

[
n

n − 3

]

g

= 6 +
n−1∑

t=3

tat (3.22)

= 6 +
n−1∑

t=3

3

2
t(t + 1)(t − 2) (3.23)

= 6 +
n−1∑

t=3

3

2
t(t2 − t − 2) (3.24)

= 6 +
3

2

[
n−1∑

t=3

t3 −
n−1∑

t=3

t2 − 2
n−1∑

t=3

t

]

. (3.25)

Simplifying (3.25) gives us the closed formula for
[

n

n−3

]

g
. That is, for all n ≥ 3,

[
n

n − 3

]

g

=
1

8
(3n4 − 10n3 − 3n2 + 10n + 72) (3.26)

which is the closed formula for (2) in Theorem 3.1.2.

Now, by induction, one can extend the idea to the case r ≥ 4 to get the closed

formula of
[

n

n−r

]

g
. Recall that g = (1 2 3) and that

[
3

3−k

]

g
= 6 for all k ≥ 2.
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Then, by the Stirling recursion (3.18) and the induction on r we get

[
n

n − r

]

g

= 6 +
n−1∑

t=3

t

[
t

t − (r − 1)

]

g

. (3.27)

In the last step, simplifying (3.27) we have

Theorem 3.3.8. Fix r ≥ 1 . There exists a polynomial Fr(x) :=
∑2r−2

t=0 ftx
t so that

Fr(n) = N(Gn(21), r) for all sufficiently large n .

The above theorem holds as when n is large enough we have

[
n

n − r

]

(1 2 3)

= N(Gn(21), r) (3.28)

and also by the induction on n in (3.27), we have that
[

n

n−r

]

(1 2 3)
is a polynomial

of n . Here are some examples. Let g = (1 2 3) . From (3.27) we have

[
n

n − 4

]

g

= 6 +
n−1∑

t=3

t

[
t

t − 3

]

g

(3.29)

and then by (3.26) we get

[
n

n − 4

]

g

= 6 +
1

8

n−1∑

t=3

(3t5 − 10t4 − 3t3 + 10t2 + 72t)

= 6 +
1

8
(3

n−1∑

t=3

t5 − 10
n−1∑

t=3

t4 − 3
n−1∑

t=3

t3 + 10
n−1∑

t=3

t2 + 72
n−1∑

t=3

t). (3.30)

Simplifying (3.30), we have

[
n

n − 4

]

g

=
1

16
(n6 − 7n5 + 11n4 + 3n3 + 60n2 − 68n − 240).
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From the recurrence (3.27) and using Mathematica we have for example

[
n

n − 5

]

g

=
1

1920
(15n8 − 180n7 + 710n6 − 1008n5 + 2135n4 − 6060n3 − 8620n2

+ 13008n + 63360),
[

n

n − 6

]

g

=
1

3840
(3n10 − 55n9 + 380n8 − 1238n7 + 2527n6 − 5399n5 + 3130n4

+ 13508n3 + 45800n2 − 58656n − 241920),
[

n

n − 7

]

g

=
1

967680
(63n12 − 1638n11 + 17199n10 − 94094n9 + 306369n8 − 706890n7

+ 1117557n6 − 262122n5 + 1373148n4 − 9398872n3 − 20232576n2

+ 27881856n + 124830720),
[

n

n − 8

]

g

=
1

1935360
(9n14 − 315n13 + 4641n12 − 37583n11 + 186599n10

− 614273n9 + 1399179n8 − 1957077n7 + 1656900n6 − 4912432n5

+ 34720n4 + 32416400n3 + 86712192n2 − 114888960n − 493516800).

3.4 Connection between Ball and Sphere

Intersection

In this section we show that for a given permutation g in Γn the number
[

n

k

]

g
can

be considered as a sum of functions satisfying the Stirling recursion. These functions

will provide us the numbers later called sphere intersection numbers.

As we have seen before, the Stirling number
[

n

k

]
of the first kind is the number

of permutations in Symn having k cycles in their disjoint cycle decomposition. Fur-

thermore, the sphere Sn−k is the set counted by
[

n

k

]
, that is, |Sn−k| =

[
n

k

]
or the

other way around, |Sk| =
[

n

n−k

]
. Suppose that g is a permutation in Symn with

|g| = n − k for some 0 ≤ k ≤ n − 1. Recall that |g| is the number of cycles of g .

Since |g| = n−k we have that g is in Sk and therefore can be expressed as a product

54



of k transpositions. It then follows that

Sig ⊆
⋃

i−k≤j≤i+k

Sj.

for all 0 ≤ i ≤ n − 1. Let

Z(n, i, j; g) = Sj(Γn) ∩ Si(Γn)g

and let z(n, i, j; g) = |Z(n, i, j; g)| . Given a fixed integer t , the numbers

z(n, i) := z(n, i, i + t; g)

satisfy the Stirling recursion. Using the Cancellation Lemma, the proof is straight-

forward as before. Clearly, z(n, i, i; e) =
[

n

n−i

]
, the Stirling number of the first kind.

In addition, for any fixed integer r ≥ 1 we have

∑

i,j

z(n, i, j; g) =

[
n

n − r

]

g

(3.31)

where 0 ≤ i ≤ r and 0 ≤ j ≤ r . Therefore, the number
[

n

n−r

]

g
has the z(n, i, j; g) ’s

as its building blocks, and the latter depend on the initial conditions z(s, i, i + t; g)

with s = supp(g) and −k ≤ t ≤ k . Also, we have z(n, i, i + t; g) = 0 if k and t do

not have the same parity. Recall that k = n− |g| , and this means that g belongs to

Sk(Γn) . Note from the definition of r -Stirling numbers, one can see that

[ n

k

]

r
= z(n, n − k, n − k + r − 1; (1 2 3 . . . r)).

Next, we observe a relation between z(n, r, r; g) and
[

n

n−r

]

g
for any integer r ≥ 1.

Suppose that v is in Z(n, r, r; g) . Then

v = . . . (. . . α . . .) . . .
︸ ︷︷ ︸

exactly n−r cycles

and v · g = . . . (. . . α . . .) . . . · g
︸ ︷︷ ︸

exactly n−r cycles

. (3.32)

In particular, if g = e then Z(n, r, r; g) = Sr(Γn) . Moreover, if we let 0 ≤ i ≤ r and

0 ≤ j ≤ r then

r⋃

i,j=0

Z(n, i, j; g) = Br(Γn) ∩ Br(Γn)g, (3.33)
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and hence we have (3.34) obtained from (3.32) by changing the word ‘exactly’ to

‘at least’. That is, if v belongs to Br ∩ Brg then

v = . . . (. . . α . . .) . . .
︸ ︷︷ ︸

at least n−r cycles

and v · g = . . . (. . . α . . .) . . . · g
︸ ︷︷ ︸

at least n−r cycles

. (3.34)

In Figure 3.2, the single lines refer to the connection between the ball (or sphere)

and its multiplication with a permutation, while the double lines refer to swapping

between the words exaxtly and at least. Further, if we choose g = e then Bi · g = Bi

and Si · g = Si , which means that there is nothing being moved.

Sr

Br ∩ Brg

Br
Sr ∩ Srg

Figure 3.2: Relation between ball and sphere intersection

3.5 Comments from the Point of View of

Representation Theory

In this section we look at a property of the intersection numbers of the transposition

Cayley graph Γn = Gn(21) .

Fix r ≥ 0 and n ≥ 3. Suppose that g is a permutation in Gn := Symn . Then

the function fn,r : Gn → C defined by

fn,r(g) :=

[
n

n − r

]

g

= |Br ∩ Brg|

56



g (1) (1 2) (1 2)(3 4) (1 2 3) (1 2 3 4)

f4,0 1 0 0 0 0

f4,1 7 2 2 3 0

f4,2 18 12 14 15 12

f4,3 24 24 24 24 24

Table 3.5: The value of fn,r on each conjugacy class

g (1) (1 2) (1 2)(3 4) (1 2 3) (1 2 3 4)

χ1 1 1 1 1 1

χ2 1 -1 1 1 -1

χ3 2 0 -1 2 0

χ4 3 1 0 -1 -1

χ5 3 -1 0 -1 1

Table 3.6: The character table of Sym4

is a class function, that is,
[

n

n−r

]

g
=

[
n

n−r

]

g′
for every g′ in the conjugacy class

containing g . It is known in representation theory that any class function is a linear

combination of the irreducible characters. Here an interesting problem arises: Is the

class function fn,r a character? More generally, what is the connection between fn,r

and the irreducible characters of Symn ? Computing by GAP, we have the value of

f4, r as shown in Table 3.5. Note that if k ≥ n then fn,k(g) = |Gn| = n! for all g in

Gn . To this end, let us recall Proposition 2.7.3. It states that:

Proposition 3.5.1. Let χ1, . . . , χm be the irreducible characters of G . If ϑ is a

character then

ϑ = d1χ1 + . . . + dmχm

where di = 〈ϑ, χi〉 are non-negative integers.

Consider the character table of the symmetric group Sym4 , shown in Figure 3.6.

The number of all irreducible characters is equal to the number of all conjugacy classes

of Symn . This is also equal to the number of ways to partition a set of size n , which
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is known as the nth Bell number (see [25] for details). This is equal to
∑n

i=1

{
n

i

}

where
{

n

i

}
’s are Stirling numbers of the second kind.

Recall that for any group G and functions ϑ, φ : G → C the inner product of ϑ

and φ is defined by

〈ϑ, φ〉 =
1

|G|

∑

g∈G

ϑ(g)φ(g). (3.35)

From Tables 3.5 and 3.6 and (3.35) we have

f4, 0 =
1

24
χ1 +

1

24
χ2 +

1

12
χ3 +

1

8
χ4 +

1

8
χ5,

f4, 1 =
49

24
χ1 +

25

24
χ2 +

1

12
χ3 +

9

8
χ4 +

1

8
χ5,

f4, 2 =
27

2
χ1 +

3

2
χ2 +

1

2
χ4 +

1

2
χ5,

f4, 3 = 24χ1

By Proposition 3.5.1, since the coefficient of χ1 is not a non-negative integer, none

of f4,0, f4,1 and f4,2 is a character. Note that f4,3 is a character of the representation

g 7→ I24 ∈ GL(24, C) where I24 is the identity matrix in GL(24, C) . Also, by GAP,

we have that for all 3 ≤ n ≤ 7 and 1 ≤ r ≤ n − 2, none of the fn,r ’s is a character.

We conjecture that this is true for any n ≥ 3. Nevertheless, since all coefficients are

positive, we have that 24 · f4,r is a character for all r . In addition, it is clear that if

k ≥ n − 1 then fn,k is the character of the representation g 7→ I ∈ GL(n!, C) where

I is the identity of GL(n!, C) . This is because the diameter of Γn equals n! .

In Section 2.7 we introduced the class sums of conjugacy classes of groups. We

next show how these class sums in the symmetric group Gn relate to the transposition

Cayley graph Γn = Gn(21) . Suppose that u is a vertex in Si for some i . Then the

downward degree c(u) is the number of edges {v, u} incident to the vertex u with

v in Si−1 , or in other words, it is equal to the number of vertices v in Si−1 that are

adjacent to u . A question arises here: Given vertices v in Si−1 and u in Si , what

is the number of vertices in the conjugacy class vGn adjacent to u?
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g (1) (1 2) (1 2)(3 4) (1 2 3) (1 2 3 4) (1 2 3)(4 5) (1 2 3 4 5)

χ1 1 1 1 1 1 1 1

χ2 1 -1 1 1 -1 -1 1

χ3 4 2 1 0 0 -1 -1

χ4 4 -2 1 0 0 1 -1

χ5 6 0 0 -2 0 0 1

χ6 5 1 -1 1 -1 1 0

χ7 5 -1 -1 1 1 -1 0

Table 3.7: The character table of Sym5

Example: Let G5 = Sym5 . Suppose that C0 = H = (1 2)G5 , C1 = (1 2 3 4)G5 , C2 =

(1 2 3)G5 and C3 = (1 2)(3 4)G5 . From (2.36) we have that the number of vertices

in C2 adjacent to (1 2 3 4) is equal to the class algebra constant a201 and we know

that

a201 =
|G|

|CG(g2)| |CG(g0)|

∑

χ

χ(g2)χ(g0)χ(g1)

χ(1)
.

with g0 = (1 2), g1 = (1 2 3 4) and g2 = (1 2 3). From the character table of Sym5

shown in Table 3.7, we have

a201 =
5!

6 · 12

[

1 + 1 + 0 + 0 + 0 +
1

5
+

1

5

]

= 4.

Similarly, we have that the number of vertices in gG5
3 adjacent to (1 2 3 4) , with

g3 = (1 2)(3 4) , is equal to a301 = 2. Further, we know that c((1 2 3 4)) =
(
4
2

)
= 6 =

4 + 2. In the graph’s point of view,

c(g1) = |Si−1 ∩ S1g1| =
∣
∣gG5

2 ∩ S1g1

∣
∣ +

∣
∣gG5

3 ∩ S1g1

∣
∣ = a201 + a301, (3.36)

and in general (3.36) holds for any n ≥ 4 since the downward degree is independent

of n .
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Chapter 4

Double-Transposition Cayley

Graphs

Throughout this chapter we devote our attention to Cayley graphs on the alternating

group that are generated by the conjugacy class of all double-transpositions, that is,

all elements of the shape (α β)(γ δ) where α, β, γ, δ are mutually different. In the

remainder, Gn is referred to as the symmetric group Symn , and G′
n is referred to as

the derived subgroup of Gn , the alternating group Altn . In G4 = Sym4 the subgroup

of G4 generated by the conjugacy class H = (22)G4 of all double-transposition is the

Klein four-group V . For n ≥ 5 we have already shown in Proposition 2.3.4 that the

subgroup 〈H〉 is the alternating group Altn . Therefore, for n ≥ 5 we let G′
n(22) be

the Cayley graph on Altn generated by the set of all double-transpositions. We call

G′
n(22) the double-transposition Cayley graph of Altn . Unless stated otherwise, we

let Γn be G′
n(22) and let H = (22)Gn be the set of all double-transpositions.

4.1 Sphere Classification

We start with a short survey of this new graph. Obviously, |H| = 1
2

(
n

2

)(
n−2

2

)
. Then,

by its construction, Γn is a 1
2

(
n

2

)(
n−2

2

)
-regular graph. Also, it contains triangles, for
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instance (1) → (1 2)(3 4) → (2 3)(1 4) = (1 2)(3 4) · (1 3)(2 4) → (1). Hence Γn

cannot be embedded into any transposition Cayley graph since the latter contains

no triangle. However, on their own the vertices of G′
n(22) can be viewed as group

elements in Gn(21) . This gives us an opportunity to use our powerful equipment

from Gn(21) , the Cancellation Lemma. As customary we let Sr = Sr(Γn, e) and

Br = Br(Γn, e) with Γn = G′
n(22) . Recall that |g| is the number of cycles in the cycle

decomposition of g , including cycles of length one. Also, a k-cycle is a permutation

whose cycle type is 1n−kk1 .

Here we give a proposition that allows one to determine which sphere a given

vertex belongs to.

Proposition 4.1.1. Let n ≥ 5 . We have that g belongs to S2 if and only if either

|g| = n−4 or g is a 3 -cycle. If r ≥ 3 then g belongs to Sr if and only if |g| = n−2r.

Proof. Clearly, it suffices to show that this holds for a representative of each cycle

type as permutations with the same cycle type must be in the same sphere. This is

an earlier result. Let g belong to Γn . If g = (1 2 3) then g = (1 2)(4 5) · (1 3)(4 5).

Hence g belongs to S2 . Suppose that |g| = n − 4. If g = (1 2 3 4)(5 6) then

g = a · b with a = (1 2)(3 4) and b = (1 3)(5 6) . There are four other cycle types

with n− 4 cycles, namely 1n−824, 1n−551, 1n−632 and 1n−72231. The following shows

how to express such permutations as a product of two double-transpositions.

(1 2)(3 4) · (5 6)(7 8) = (1 2)(3 4)(5 6)(7 8), (1 2)(3 4) · (1 3)(2 5) = (1 5 2 3 4),

(1 2)(3 4) · (1 5)(3 6) = (1 2 5)(3 4 6), (1 2)(3 4) · (1 5)(6 7) = (1 2 5)(3 4)(6 7).

Verifying through these representatives, we have proved that if g is a 3-cycle or

|g| = n− 4 then g must be in S2 . Next, suppose that g belongs to S2 . Considering

g as a group element in Gn(21) we have that g is contained in the ball of radius

four of Gn(21) , as g is a product of two double-transpositions. Since g is an even

permutation we have |g| = n − 2i with i = 0, 1, 2. As H = S1 and {e} = S0 , we

have proved the first part.
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In general, any permutation g in Br is a product of at most 2r transpositions,

by the definition. Therefore, every permutation g in Br has at least n − 2r cycles.

Since Sr = Br \ Br−1 we have that for r ≥ 3, if g is in Sr , then |g| = n − 2r . Next

assume that g is in S3 . Then there exist h in S1 and x in S2 such that g = xh .

Since multiplication by a transposition is either gluing or splitting two disjoint cycles

together, multiplying by a double-transposition in Γn either increases or decreases

the number of cycles by two, or leaves the number of cycles constant. Since x belongs

to S2 and g belongs to S3 we have |x| = n − 4. Hence we get |g| = n − 6, n − 4

or n − 2. Since g is not in B2 we have |g| = n − 6. We leave the proof now as

the inductive step can be proved similarly, considering any permutation g in Sr as

a product of some permutations x in Sr−1 and h in S1 .

The above proposition provides us a way to determine the diameter of a given

double-transposition Cayley graph.

Corollary 4.1.2. For n ≥ 5 the graph G′
n(22) has diameter

⌊
n−1

2

⌋
.

Proof. Let n ≥ 5 and let g be a vertex in G′
n(22) . From Proposition 4.1.1, we have

that for all i ≥ 2 if |g| = n−2i then g belongs to Si . Suppose that n = 2k for some

k . Then the value of |g| is at least two since any permutation having only one cycle is

not an even permutation. Hence the distance d(e, g) is at most 2k−2
2

= k−1. On the

other hand, if n = 2k + 1 then |g| ≥ 1. Therefore d(e, g) is at most 2k+1−1
2

= k .

4.2 Intersection Numbers of Double-Transposition

Cayley Graphs

As we said before in Chapter 1, the idea of considering the intersection number

N(Gn(21), r) originally came up when we began to study the double-transposition
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Cayley graphs G′
n(22) and their intersection numbers. In the rest of this chapter,

the pattern of studying the graphs and the intersection numbers will be similar to

the preceding chapter. Recall that in this chapter we let Γn = G′
n(22) be the double-

transposition Cayley graph on Altn .

4.2.1 The Case of Radius One

Here we find the value of N(Γn, 1) for all n ≥ 5.

Theorem 4.2.1. We have N(Γ5, 1) = 5 and N(Γn, 1) = 3
2
(n2 − 7n+ 12) for n ≥ 6 .

Proof. To determine N(Γ5, 1) it suffices to consider only three cycle types, namely

1n−422, 1n−331 and 1n−551 . Let N(g) = |B1 ∩ B1g| . Then N(Γ5, 1) = max
g=g1,g2,g3

N(g)

with g1 = (1 2)(3 4), g2 = (1 2 3) and g3 = (1 2 3 4 5) . Using GAP we have that

N(g1) = 4, N(g2) = 3 and N(g3) = 5. Hence N(Γ5, 1) = 5.

Next, we let n ≥ 6. Suppose that g belongs to S2 with |g| = n − 4. Then

there are three possible cycle types of g , namely 1n−632, 1n−62141 and 1n−551 . It is

not hard to see that N((1 2 3)(4 5 6)) =
(
3
2

)(
3
2

)
= 9 and N((1 2 3 4 5)) = 5, and

N((1 2)(3 4 5 6) = 4. Clearly, these numbers are independent of n . It then remains

to compare N((1 2 3)(4 5 6)) with N(g1) and N(g2) where g1 = (1 2)(3 4) and

g2 = (1 2 3) . Suppose that there is h = (α β)(γ δ) such that g1 ·h is in S1 . As (α β)

and(γ δ) commute, we may suppose that g1(α β) is a transposition and g1(α β)(γ δ)

becomes a double-transpostion again. Then (α β) must be one of (1 2) or (3 4) and

after that we have
(

n−4
2

)
choices for (γ δ) . Hence, including e and g1 itself, we have

that

N(g1) = 2

(
n − 4

2

)

+ 2 = n2 − 9n + 22.

Similarly, we have that

N(g2) = 3

(
n − 3

2

)

=
3

2
(n2 − 7n + 12).
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Hence for all n ≥ 6 we have N(g2) ≥ max{N(g1), 9} . Therefore,

N(Γn, 1) =
3

2
(n2 − 7n + 12).

4.2.2 The Stirling Recursion in Double-Transposition

Cayley Graphs

We first introduce notation to enable us to link the graphs Gn(21) and G′
n(22) ,

and then to apply (3.15) in a very natural way to determine the value N(Γn, r) of

Γn = G′
n(22) . In Proposition 4.2.3 we show that the numbers N(Γn, r) , considered

in another form, satisfy the Stirling recursion too.

Let Sr and Br be the sphere Sr(Gn(21), e) and the ball Br(Gn(21), e) in the

transposition Cayley graph Gn(21) on Symn , respectively. We let Zr := Zn,r be the

set of vertices in Gn(21) of Symn defined by

Zr :=







Br ∩ Altn if r is even,

Br ∩ (Symn \ Altn) if r is odd.

(4.1)

That is, Zr can be obtained from the ball Br of radius r in Gn(21) by omitting Si

for all i 6≡ r (mod 2).

For each g in Γn and r ≥ 0 we let

Ig(n, r; 22) :=
∣
∣Br ∩ Zrg

∣
∣ . (4.2)

Obviously, if r ≥ 2 then, by Proposition 4.1.1, we have

Ig(n, 2r; 22) =
∣
∣B2r ∩ Brg

∣
∣ = |Br ∩ Brg| (4.3)

with Br = Br(G
′
n(22), e).
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Remark: (1) Ig(n, 2; 22) > |B1 ∩ B1g| since (31)Gn * B1 .

(2) Instead of studying the double-transposition Cayley graph G′
n(22) , we now think

of the vertices in G′
n(22) as vertices in Gn(21) so that we can use our facilities

provided for the transposition Cayley graphs, for instance the Cancellation Lemma.

(3) Note that the symbol ‘22 ’ is added so that there will be no ambiguity.

Next we show that the numbers Ig(n, r; 22) satisfy a familiar recursion.

Proposition 4.2.2. Let n and s be positive integers with n > s and let g be a

permutation in Γn such that Supp(g) = [ s ] . Then

Ig(n, r; 22) = Ig(n − 1, r; 22) + (n − 1)Ig(n − 1, r − 1; 22). (4.4)

Note that the permutation g on the right-hand side of the equation in (4.4), and also

in (4.6), is a permutation in Γn−1 .

Proof. Let Z be the set counted by Ig(n, r; 22) . As we proved in Proposition 3.3.2,

Z is divided into two sets, one of which, say X , consists exactly of those permutations

fixing n . The other set Y is composed of those moving n . Using the same arguments

as before, by the Cancellation Lemma we have

|X| = Ig(n − 1, r; 22) and |Y | = (n − r)Ig(n − 1, r − 1; 22).

The proof is complete as X and Y are disjoint.

Here we provide a function defined analogously to (3.17) in the preceding chapter.

For each r ≥ 0 we let

[
n

n − r

]

g

:=
∣
∣Br ∩ Zrg

∣
∣ . (4.5)

Remark: In this chapter
[

n

n−r

]

g
is defined for the graph G′

n(22) , not for Gn(21).

With the same arguments we used in Proposition 3.3.3 we have:
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Proposition 4.2.3. Let n and s be positive integers with n > s . If g is a permu-

tation in Γn such that Supp(g) = [ s ] , then

[
n

k

]

g

=

[
n − 1

k − 1

]

g

+ (n − 1)

[
n − 1

k

]

g

(4.6)

for any integer 1 ≤ k ≤ n.

Remark: As in Theorem 3.3.3, one can determine the value
[

n

k

]

g
by the s initial

conditions
[

s

1

]

g
,

[
s

2

]

g
, . . . ,

[
s

s−1

]

g
,
[

s

s

]

g
. Also, from Definition (4.5) and

Proposition 4.1.1 we have
[

s

s

]

g
= 1 if g = e ; otherwise

[
s

s

]

g
= 0. Moreover,

[
s

m

]

g
=

∣
∣
∣ Γn

∣
∣
∣ =

n!

2
for all m ≤ 1.

4.2.3 Ball Intersection Numbers for Vertices

in the Ball of Radius Two

In this section we show in Theorem 4.2.5 that the vertex (1 2 3) still dominates

(1 2)(3 4) in the same way as it does in the transposition Cayley graph.

We now consider
[

n

k

]

g
. It is clear that

[
n

k

]

g
is a class function. From (4.5),

given an element g in Γn , one can construct Table IN22

g listing the values of
[

n

k

]

g

as we did in Chapter 3. These were computed by GAP.

k

n 1 2 3 4 5 6 7 8 · · ·

5 60 60 24 3 0 – – – · · ·

6 360 360 180 39 3 0 – – · · ·

7 2520 2520 1440 414 57 3 0 – · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

. . .
. . .

Table 4.1: IN22

g with g = (1 2 3)

From (4.6), we have:
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Corollary 4.2.4. Let g1 and g2 be non-identity vertices in Γn . If there exist positive

intergers m and t such that
[

m

k

]

g1
≥

[
m

k

]

g2
for all t ≤ k ≤ m then

[
n

k

]

g1
≥

[
n

k

]

g2

for all n ≥ m and t + (n − m) ≤ k ≤ n . Moreover, if t = 1 then
[

n

k

]

g1
≥

[
n

k

]

g2

for all n ≥ m and k ≥ 1 .

Theorem 4.2.5. For any n ≥ 5 and r ≥ 2 we have N2(Γn, r) ≥ N1(Γn, r). Further,

if r <
⌊

n−1
2

⌋
then N2(Γn, r) > N1(Γn, r).

Proof. Let g1 = (1 2 3) and g2 = (1 2)(3 4). Using GAP, the initial values of
[

n

k

]

g1

and
[

n

k

]

g2
are provided below.

[
5

1

]

g1

= 60

[
5

2

]

g1

= 60

[
5

3

]

g1

= 24

[
5

4

]

g1

= 3

[
5

5

]

g1

= 0

and

[
5

1

]

g2

= 60

[
5

2

]

g2

= 60

[
5

3

]

g2

= 20

[
5

4

]

g2

= 2

[
5

5

]

g2

= 0.

From Corollary 4.2.4 we have

[
n

n − m

]

g1

≥

[
n

n − m

]

g2

for all n ≥ 5 and m ≥ 0. Hence,

N2(Γn, r) ≥

[
n

n − 2r

]

g1

≥

[
n

n − 2r

]

g2

≥ N1(Γn, r)

since g1 belongs to S2 and since S1 = (22)Gn , not (22)Gn ∪ (31)Gn .

Recall that

Ni(Γn, r) = max

{[
n

n − 2r

]

g

: g ∈ Si

}

(4.7)

for any r ≥ 2 and i ≥ 2. From the initial conditions shown above one can see, by

Corollary 4.2.4, that

[ n

k

]

g1

>
[ n

k

]

g2

(4.8)
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for any k ≥ 3. Clearly,
[

n

k

]

g1
=

[
n

k

]

g2
for any k = 1, 2 as they count all vertices in

Γn . The last inequality follows from (4.7) and (4.8), and also from the fact that the

diameter of Γn is
⌊

n−1
2

⌋
.

4.2.4 The Asymptotic Behaviour of Ball Intersection

Numbers

We first recall that Bi and Si are the ball Bi(Gn(21), e) and the sphere Si(Gn(21), e) ,

respectively. Also, in the remainder of this thesis
[

n

n−r

]

g
is as defined in (4.5).

From Lemma 3.3.6 in the previous chapter we have that for any permutation g in

S2j ∪ S2j−1 ,

∣
∣Br ∩ Brg

∣
∣ = O(n2(r−j)). (4.9)

Here, we claim that
[

n

n−r

]

g
= O(n2(r−j)) too, when g is in S2j .

Lemma 4.2.6. Let Γn = G′
n(22) and let g belong to S2j . Then

[
n

n − r

]

g

= O(n2(r−j)). (4.10)

Proof. Let r ≥ 1. From the definitions of Br and Zr one can see that

Br = Zr ∪ Zr−1

where Zr is as defined in (4.1). Since g is an even permutation we get

Br ∩ Brg = (Zr ∩ Zrg) ∪̇ (Zr−1 ∩ Zr−1g),

and then

∣
∣Br ∩ Brg

∣
∣ = |Zr ∩ Zrg| + |Zr−1 ∩ Zr−1g| . (4.11)

Since Zr−1 ⊆ Br−1 , by (4.9) we have

|Zr−1 ∩ Zr−1g| ≤
∣
∣Br−1 ∩ Br−1g

∣
∣ = O(n2(r−1−j)).
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From (4.11), it follows that

[
n

n − r

]

g

=
∣
∣Br ∩ Zrg

∣
∣ = |Zr ∩ Zrg| = O(n2(r−j)),

as
∣
∣Br ∩ Brg

∣
∣ = O(n2(r−j)) .

Now by Theorem 4.2.5, Proposition 4.1.1 and Lemma 4.2.6 we have that for all

r ≥ 2

N(Γn, r) = N2(Γn, r) =

[
n

n − 2r

]

(1 2 3)

(4.12)

if n is sufficiently large. Hence we have

Theorem 4.2.7. Let r ≥ 2 and let Γn = G′
n(22) . We have

N(Γn, r) =

[
n

n − 2r

]

(1 2 3)

(4.13)

if n is sufficiently large.

We believe that the above theorem holds for any n ≥ 5. We try to assert this by

showing that it is true for r = 2 in Section 4.3.

Conjecture 4.2.8. Let r ≥ 2 and let Γn = G′
n(22) . Then

N(Γn, r) =

[
n

n − 2r

]

(1 2 3)

for all n ≥ 5 .

4.2.5 Generating Functions in Double-Transposition

Cayley Graphs

From the previous theorem we know that when n gets bigger, the vertex g = (1 2 3) is

likely to give us the ball intersection number. Actually, this means that any vertices

u, v satisfying that u−1v is a 3-cycle will give us the maximum size of the ball

intersection between any two vertices, when n is large enough. Here we provide the

generating function for the size of ball intersection of those vertices.
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Theorem 4.2.9. Let g = (1 2 3) and n ≥ 5 . Then

Ψ(Γn, g; y) := (y + 5)[n−5](3y4 + 24y3 + 60y2 + 60y + 60 +
60

y
+

60

y2
+ · · · )

is the generating function for
[

n

k

]

g
where y[n] := y(y + 1) . . . (y + (n − 1)) is the

ascending factorial.

Proof. Let g = (1 2 3) and let Ψ(Γn, g; y) =
∑∞

−∞

[
n

k

]

g
yk be the generating function

of
[

n

k

]

g
where

[
n

k

]

g
= 0 if k > n . Then, by Proposition 4.2.3, we have

Ψ(Γn, g; y) = yΨ(Γn−1, g; y) + (n − 1)Ψ(Γn−1, g; y)

= (y + (n − 1))Ψ(Γn−1, g; y).

By Table 4.1 we have that Ψ(Γ5, g; y) = 3y4 +24y3 +60y2 +60y +60+ 60
y

+ 60
y2 + · · · .

The proof is then complete.

4.3 The Case of Radius Two

In this section our main purpose is to determine N(Γn, r) when r = 2. To do so we

need to find the value of
[

n

n−4

]

g
for all g in B4 = B4(G

′
n(22)) .

4.3.1 Computational Results from the Spheres of Radius

One, Two and Three

Using GAP, we know the value of
[

8
m

]
for all g in B2(Γn) and all 4 ≤ m ≤ 8

as listed in Table 4.2. Therefore, from Corollary 4.2.4 it follows that
[

n

n−4

]

(1 2 3)
≥

[
n

n−4

]

g
for all n ≥ 8 and g in B2(Γn) . Note that n = 8 is needed as it is the

smallest number such that the graph Γn = G′
n(22) contains all vertices g satisfying

|g| = n−4. Recall that for all i ≥ 2 any permutation g with |g| = n−2i belongs to

Si . It is not hard to see that if |g| = n− 2i then supp(g) is at most 4i and only the
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permutations g with ct(g) = 1n−4i22i have supp(g) = 4i . Similarly, we need n = 12

to get all possible permutation types that will exist in S3. Again, using GAP we

list in Table 4.3 the value of
[

12
m

]

g
for all 8 ≤ m ≤ 12 and all g in S3 , including

g = (1 2 3) .

k

g 4 5 6 7 8

(1 2 3) 4338 813 78 3 0

(1 2)(3 4) 3700 634 56 2 0

(1 2 3 4 5) 3280 420 20 0 0

(1 2 3)(4 5 6) 2850 299 11 0 0

(1 2 3 4)(5 6) 2840 308 12 0 0

(1 2 3)(4 5)(6 7) 2438 226 8 0 0

(1 2)(3 4)(5 6)(7 8) 2052 176 6 0 0

Table 4.2: The valule of
[

8
k

]

g
with |g| = n − 4

k

g 8 9 10 11 12

(1 2 3) 87420 5394 192 3 0

(1 2 3 4 5 6 7) 9135 175 0 0 0

(1 2 3 4 5 6)(7 8) 5930 100 0 0 0

(1 2 3 4 5)(6 7 8) 5187 80 0 0 0

(1 2 3 4)(5 6 7 8) 4956 74 0 0 0

(1 2 3 4 5)(6 7)(8 9) 3872 60 0 0 0

(1 2 3 4)(5 6 7)(8 9) 3400 50 0 0 0

(1 2 3)(4 5 6)(7 8 9) 3117 45 0 0 0

(1 2 3 4)(5 6)(7 8)(9 10) 2586 38 0 0 0

(1 2 3)(4 5 6)(7 8)(9 10) 2364 34 0 0 0

(1 2 3)(4 5)(6 7)(8 9)(10 11) 1810 26 0 0 0

(1 2)(3 4)(5 6)(7 8)(9 10)(11 12) 1410 20 0 0 0

Table 4.3: The valule of
[

12
k

]

g
with |g| = n − 6
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Now from Tables 4.2 and 4.3, Theorem 4.2.5 and Corollary 4.2.4 we have

[
n

n − 4

]

(1 2 3)

≥ Ni(Γn, 2) (4.14)

for all i = 1, 2, 3.

4.3.2 Results from the Sphere of Radius Four

To determine N4(Γn, 2) we need to find the value of
[

n

n−4

]

g
for every g in S4 .

Unfortunately, we have a problem in using GAP , since to get all permutations in

S4 we need to compute at n = 16 and this is too big. Instead, for any g in S4 we

estimate
[

n

n−4

]

g
by computing the downward degree of g . Recall that if g belongs

to Sr then the downward degree c(g) of g is the number of permutations g′ in Sr−1

that are adjacent to g . This is the number of double-transpositions h such that g ·h

is in Sr−1 .

Next we show how to find in general the downward degree c(g) for any g in Sr

when r ≥ 3. Let us suppose that ct(g) = 1h12h2 . . . nhn . The first case to consider

occurs by choosing any two letters a and b from a single cycle of g , and by choosing

another two letters c and d from a different cycle. For this choice g · h is in the

sphere Sr−1 . There are

∑

2≤i≤n

(
hi

2

)(
i

2

)

+
∑

2≤i<j≤n

hihj

(
i

2

)(
j

2

)

(4.15)

choices to do so. The first term in (4.15) is the number of choices when we choose

a, b and c, d from cycles of the same length while the second is when we choose them

from cycles whose length are different.

The only other way for g · h to be in Sr−1 is to choose four letters a, b, c and d

from a single cycle of g . Suppose that (a · · · b · · · c · · · d · · · ) is such a cycle. Then

there are two ways to get h , namely (a b)(c d) and (a d)(c b) . We cannot let h be
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(a c)(b d) , because we will have |g · (a c)(b d)| = |g| , that is, they are in the same

sphere. Hence there are

∑

4≤i≤n

2hi

(
i

4

)

(4.16)

choices for the second case. In conclusion, for each g in Sr and r ≥ 3, the downward

degree c(g) of g can be computed as

c(g) =
∑

2≤i

(
hi

2

)(
i

2

)

+
∑

2≤i<j≤n

hihj

(
i

2

)(
j

2

)

+
∑

4≤i≤n

2hi

(
i

4

)

(4.17)

with ct(g) = 1h1 . . . nhn .

From Equation (4.17) we have that

max{c(g) : g ∈ S3} = 70 (4.18)

and

max{c(g) : g ∈ S4} = 252. (4.19)

This gives directly that

[
n

n − 4

]

g

≤ 70 · 252 = 17640 (4.20)

for all n ≥ 9 and g in S4 . Note that the number c(g) does not depend on n and

that n = 9 is the smallest number such that the sphere S4 is not empty. Fortunately,

using GAP we computed that
[

10
6

]

(1 2 3)
= 23775 (we cannot use

[
9
6

]

(1 2 3)
as it is

less than 17640). Hence, we have

[
n

n − 4

]

(1 2 3)

> N4(Γn, 2) (4.21)

for all n ≥ 10.
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4.3.3 The Conclusion for Double-Transposition

Cayley Graphs

Here we show that the maximum of the ball intersection numbers occurs on the

3-cycles.

From (4.14) and (4.21) we have

N(Γn, 2) =

[
n

n − 4

]

(1 2 3)

(4.22)

for all n ≥ 12. Again, computing by GAP we obtain N(Γn, 2) =
[

n

n−4

]

(1 2 3)
for all

5 ≤ n ≤ 11. Hence we can conclude that

Theorem 4.3.1. Let Γn = G′
n(22) . For n ≥ 5 we have

N(Γn, 2) =

[
n

n − 4

]

(1 2 3)

=
1

16
(n6 − 7n5 + 5n4 + 23n3 + 90n2 − 112n − 480).

Proof. It remains to verify the second equality. Let g = (1 2 3). By the Stirling

recursion (4.6) we have that for a fixed r ,

[
n

n − r

]

g

=

[
5

5 − r

]

g

+
n−1∑

t=5

t

[
t

t − (r − 1)

]

g

(4.23)

with
[

k

k

]

g
= 0 for all k ≥ 5. The proof is complete by substituting the initial

conditions.

Recall that N(Γn, 1) 6=
[

n

n−2

]

(1 2 3)
since no 3-cycle is in B1 . Then we cannot apply

(4.23) to get the closed formula for N(Γn, 1).

Lastly, we list for example the closed formulas of
[

n

n−2r

]

g
with g = (1 2 3)

for r = 3, 4. Recall that from Theorem 4.2.7 they agree with N(Γn, r) when n is
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sufficiently large. From (4.23), using mathematical induction we have

[
n

n − 6

]

g

=
1

3840
(3n10 − 55n9 + 350n8 − 878n7 + 1347n6

− 5063n5 + 60n4 − 31148n3 + 84640n2 − 111552n − 483840),
[

n

n − 8

]

g

=
1

1935360
(9n14 − 315n13 + 4515n12 − 34307n11 + 153713n10

− 453805n9 + 962841n8 − 985809n7 + 100674n6 − 6939940n5 − 2681336n4

+ 66912736n3 + 169835904n2 − 226874880n − 987033600).
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Chapter 5

The Cayley Graphs Generated by

k-Transpositions

In this chapter, we study the class of Cayley graphs on Symn and Altn whose gen-

erating set is the set of k -transpositions. Recall that a permutation g in Symn

is a k -transposition if g has the cycle type 1n−2k2k . For example, any ordinary

transposition is a 1-transposition, and a double-transposition is a 2-transposition.

Given positive integers n and k , we let H(n, k) , or in brief H , be the set of all

k−transpositions in Symn . If n 6= 4 then the subset of Gn generated by H(n, k)

is either the symmetric group Gn = Symn or the alternating group G′
n = Altn . We

denote by Gn(2k) and G′
n(2k) the k -transposition Cayley graph with k odd and

even, respectively. As is usual, throughout this chapter we let Br = Br(Γn, e) and

Sr = Sr(Γn, e) where Γn = Gn(2k) or G′
n(2k) . We also use Br and Sr to refer to the

ball and the sphere at distance r about e in the transposition Cayley graph Gn(21).

5.1 Spheres in k-Transposition Cayley Graphs

As we have seen in the transposition Cayley graph Gn(21) , the distance between e

and a vertex u in Gn(21) is equal to n− |u| where |u| is the number of cycles in the
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cycle decomposition of u . With the natural embedding i0 defined in Chapter 3 this

distance is preserved when we embed Gn(21) to Gn+1(2
1) . This phenomenon is the

same in the double-transposition Cayley graphs. However, in general the situation

becomes quite different in the k−transposition Cayley graph when k is greater than

two.

For a fixed k the graphs Gn(2k) and Gn+1(2
k) may contain a vertex (permuta-

tion) u in different spheres. For instance, using GAP, we have that (1 2 3) and

(1 2 3 4 5) belong to S4(G6(2
3), e) , and that (1 2 3)(4 5) belongs to S5(G6(2

3), e) .

However, for any n ≥ 7, we have that (1 2 3) and (1 2 3 4 5) belong to S2(Gn(23), e) ,

and that (1 2 3)(4 5) belongs to S3(Gn(23), e) instead. In Proposition 5.1.3 and

Proposition 5.1.4 we show that if n ≥ 4k every conjugacy class will be held in a

certain distance from the identity e in the graphs Gn(2k) and G′
n(2k) .

Here, we start with a little lemma.

Lemma 5.1.1. Let k ≥ 1 . Any permutation g in Symn with |g| = n − 2k can be

expressed as a product of two permutations whose cycle type is 1n−2k2k .

Proof. Let g be a permutation with |g| = n − 2k . Suppose that

g = a1a2a3 · · · a2t−1a2td1d2 · · · dj−1dj

where

ai = (αi1 αi2 . . . αi,2mi
) and di = (βi1 βi2 . . . βi,2qi+1)

for all i . Obviously, a ’s are the cycles of even length, and d ’s are the cycles of odd

length. The number of even cycles must be even since |g| = n − 2k . Here, we have

2k =
2t∑

i=1

(2mi − 1) +

j
∑

i=1

2qi
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and therefore

k =
2t∑

i=1

mi +

j
∑

i=1

qi − t. (5.1)

Then for each i , we have ai = bi · ci and di = ei · fi with

bi = (αi1 αi,2mi−1)(αi2 αi,2mi−2) . . . (αi,mi−1 αi,mi+1),

ci = (αi1 αi,2mi
)(αi2 αi,2mi−1) . . . (αi,mi

αi,mi+1),

ei = (βi1 βi,2qi
)(βi2 βi,2qi−1) . . . (βi,qi

βi,qi+1),

fi = (βi1 βi,2qi+1)(βi2 βi,2qi
) . . . (βi,qi

βi,qi+2).

If we let

x = b1b3 . . . b2t−1c2c4 . . . c2te1e2 . . . ej and

y = b2b4 . . . b2tc1c3 . . . c2t−1f1f2 . . . fj

then from (5.1) we have

|x| = (m1 − 1) + (m3 − 1) + · · · + (m2t − 1)

+ m2 + m4 + · · · + m2t + q1 + · · · + qj

= k.

Also, we have |y| = k . Since x and y are products of transpositions we have that x

and y are of cycle type 1n−2k2k and g = x · y , as required.

Proposition 5.1.2. For any k ≥ 3 and n ≥ 4k , let Γn = Gn(2k) or G′
n(2k) . Then

S2 = { g : |g| = n − 2t for some t = 1, 2 . . . , k } .

Proof. Let H = (2k)Gn be the generating set of Γn . Any product g of two elements

in H has at least n − 2k cycles. Also, |g| and n must have the same parity. The

case |g| = n − 2k is done by Lemma 5.1.1. Let g be an element having |g| = n − 2t

for some t < k . Suppose that k = t + p for some p . By Lemma 5.1.1 we have
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that g = g1g2 for some g1, g2 of cycle type 1n−2t2t . Since n ≥ 4k there exist disjoint

transpositions t1, t2, . . . , tp such that Supp(ti) does not intersect Supp(g1)∪Supp(g2)

for all i = 1, . . . , p . As g1 and g2 are of cycle type 1n−2t2t and k = t + p , we have

g = (g1t1t2 . . . tp) · (g2t1t2 . . . tp)

is a product of permutations of cycle type 2k The proof is then complete.

Extending the above proposition to other spheres, we have

Proposition 5.1.3. Let k ≥ 3 be an odd number and let n ≥ 4k . Let Si be the

sphere of radius i centred at e in Gn(2k). Then

S0 = {(1)}, S1 = H = (2k)Gn ,

S2 = {g : |g| ≡ n(mod 2) and n − 2 ≥ |g| ≥ n − 2k},

S3 = {g : g 6∈ (2k)Gn , |g| 6≡ n (mod 2) and n − 1 ≥ |g| ≥ n − 3k},

S2(i+1) = {g : |g| ≡ n (mod 2) and n − 2ik > |g| ≥ n − 2(i + 1)k},

S2i+3 = {g : |g| 6≡ n (mod 2) and n − (2i + 1)k > |g| ≥ n − (2i + 3)k},

for all i ≥ 1.

Proof. The statement about S2 is true by Proposition 5.1.2. Considering each per-

mutation as a group element in Gn(21) , for each element g in Br we have |g| ≥ n−rk

since H is the set of k -transpositions. We then have a lower bound for each sphere Sr .

Since H is a set of odd permutations we have that for each g in Br , the parities of

|g| and n are the same if and only if r is even. Further,

(1 2) = (1 2)(3 4)(5 6) ∗ (1 2)(3 5)(4 6) ∗ (1 2)(4 5)(3 6).

Hence S3 certainly contains the set of transpositions.

Next, let g be an odd permutation not belonging to H with n−3 ≥ |g| ≥ n−3k .

We claim that g is in S3 . Clearly |g| 6≡ n (mod 2). Suppose first that |g| ≤ n−2k−1.
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Then there exist g1 in S2 and t ≤ k such that g = g1x with |x| = n− t and |x| 6≡ n

(mod 2). Since g1 belongs to S2 we have g = h1h2x with h1, h2 in H . Moreover,

|h2x| = n − (k + t) ≤ n − 2k and |h2x| ≡ n (mod 2). Hence h2x is in S2 and

therefore h2x = h3h4 for some h3, h4 in H . Then we have g = h1h2x = h1h3h4 is

in S3 .

On the other hand, if n − 3 ≥ |g| ≥ n − 2k + 1 then g has a cycle of length

at least two in its cycle decomposition, say (α1 . . . αs) . Therefore g = g1(α1 αs)

for some g1 with n − 2 ≥ |g1| ≥ n − 2k + 2. This shows that g1 belongs to S2

and hence g1 = h1h2 for some h1, h2 in H . It follows that g = h1h2(α1 αs) and

n − 2 ≤ |h2(α1 αs)| ≤ n − 2k . Hence h2(α1 αs) = h3h4 for some h3, h4 in H .

Therefore, g = h1h2(α1 αs) = h1h3h4 , therefore g belongs to B3. Clearly, g does

not belong to B2 . Then we have

S3 = {g : g 6∈ (2k)Gn , |g| 6≡ n( mod 2) and n − 1 ≥ |g| ≥ n − 3k}.

For the case of S2(i+1) with i ≥ 1, it is easy to see that any permutation in S2(i+1)

has at least n − 2(i + 1)k cycles. It then remains to show that

A(i + 1) := {g : |g| ≡ n ( mod 2) and n − 2ik > |g| ≥ n − 2(i + 1)k} ⊆ S2(i+1).

We prove this by the induction on i ≥ 0. The basic step i = 0 is done. Let g be in

A(i+1). Then |g| = n−2ik−2t for some t = 1, . . . , k . By the induction hypothesis,

we have g = g1x where |x| = n − 2t and g1 belongs to A(i) . Hence g1 belongs to

S2i and therefore g = h1h2 · · ·h2ix . Also, we have that n − 1 ≥ |h2ix| ≥ n − 3k ,

which implies that h2ix = h′
1h

′
2 for some h′

1, h
′
2 in H = (2k) . Hence, g belongs to

S2(i+1) .

The case S2i+3 for any i ≥ 1 can be proved similarly. Note that the parities of

|g| and n agree automatically.

80



Proposition 5.1.4. Let k ≥ 2 be an even number and let n ≥ 4k . Let Γn = G′
n(2k) .

We have that

S0 = {(1)}, S1 = (2k)Gn ,

S2 = {g ∈ Altn : g 6∈ (2k)Gn and n − 2 ≥ |g| ≥ n − 2k},

Si = {g ∈ Altn : n − (i − 1)k > |g| ≥ n − ik}.

Proof. For each i ≥ 3, it is clear that

Si ⊆ Bi ⊆ {g ∈ Altn : |g| ≥ n − ik}.

It then suffices to show that any even permutation g with |g| ≥ n − ik belongs

to Bi for all i ≥ 2. We prove this by induction on i ≥ 2. The case when i = 2

is true by Proposition 5.1.2. Suppose that i ≥ 3. Let g be a permutation with

|g| = n − (i − 1)k − m with 2 ≤ m ≤ k and m ≡ 0 ( mod 2 ). Hence there

must be permutations g1 and x such that g = g1x with |g1| = n − (i − 1)k and

|x| = n − m. By the induction hypothesis we have that g1 belongs to Bi−1 . Hence,

g = h1h2 . . . hi−2hi−1 for some h1, h2, . . . , hi−1 in H . Since |hi−1x| ≥ n − 2k , again

by the induction hypothesis, there exist h′
1, h

′
2 such that hi−1x = h′

1h
′
2 . Therefore,

g = g1x = h1h2 . . . hi−2hi−1x = h1h2 . . . hi−2h
′
1h

′
2 , so g belongs to Bi .

5.2 Intersection Numbers in k-Transposition

Cayley Graphs

This section is devoted to the intersection numbers in the k−transposition Cayley

graphs. There are two cases to consider. The first is the case when k is an odd

number, and the other is the situation when k is an even number. Before moving

to the next lemmas, let us recall that for any permutation g in Gn and any subset
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A of Gn we let Ag = A · {g} . That is, in the next lemmas, H ∩ Hg will stand for

H ∩ (H ·{g}).

Lemma 5.2.1. Let n and k be positive integers with k ≥ 2 and n ≥ 2k and let

H = (2k)Gn . Then

∣
∣
∣H ∩ H(1 2 3)

∣
∣
∣ =







3 · (n − 3)!

(n − 2k − 1)! (k − 1)! 2k−1
if n > 2k,

0 if n = 2k.

(5.2)

Proof. Suppose that h1 and h2 are elements in H such that h2 = h1(1 2 3) . Let

P := h1, h1(1 2), h1(1 2)(1 3)

be a path in Gn(21) starting at h1 and ending at h2 . Then AD(P ) = (a, d) or

(d, a) where AD(P ) is the ascent-descent pattern of P. If AD(P ) = (a, d) then

1 and 2 must belong to different cycles in h1 , and therefore to have a descent at

the next step, 3 must belong to the cycle containing either 1 or 2 in h1 . Hence h1

contains (1 3)(2), (1)(2 3), (1 3)(2 m) or (1 m)(2 3) for some m 6= 1, 2, 3. However,

the last two cases do not exist as h1(1 2 3) will be a 3-cycle, not a k−transposition.

If AD(P ) = (d, a) then 1 and 2 must belong to the same cycle, and to get an

ascent step, 3 and 1 must be in different cycles of h1 . Hence, h1 contains (1 2)(3) or

(1 2)(3 m) for some m 6= 1, 2, 3. But clearly the latter case does not exist. This forces

that h1 has either (1 2)(3), (1 3)(2) or (2 3)(1) as part of its cycle decomposition.

This is impossible when n = 2k . Hence |H ∩ H(1 2 3) | = 0 if n = 2k . We next

suppose that n > 2k and that h1 contains either (1 2)(3), (1 3)(2) or (2 3)(1) .

Assume that h1 contains (1 2)(3) , say

h1 = (1 2)(3)(α11 α12) · · · (αk−1,1 αk−1,2)(α1)(α2) · · · (αt)

with t = n − 2k − 1. The number of ways to proportion 4, 5, 6, . . . , n to those α ’s

is equal to the number of permutations of [n − 3 ] whose cycle type is 1n−2k−12k−1 .
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From Theorem 2.3.2, this number is equal to

(n − 3)!

(n − 2k − 1)!(k − 1)!2k−1
.

The proof is now complete.

Remark: From Proposition 2.3.5 and Lemma 5.2.1, we have that every 3-cycle

belongs to S2(Γn, e) with Γn = Gn(2k) or G′
n(2k) for any k ≥ 1 and n > 2k .

Lemma 5.2.2. Let n and k be positive numbers with k ≥ 2 and n ≥ 2k and let

H = (2k)Gn . Then

∣
∣
∣H ∩ H(1 2)(3 4)

∣
∣
∣ =







2 · (n − 4)![(n − 2k)2 − (n − 4k + 2)]

(n − 2k)! (k − 1)! 2k−1
if n ≥ 2k + 2,

2 · (n − 4)!

(n − 2k)! (k − 2)! 2k−2
if n = 2k, 2k + 1.

(5.3)

Proof. Let h belong to H ∩H(1 2)(3 4) . Suppose that P := h, h(1 2), h(1 2)(3 4) is

a path in Gn(21) with h, h(1 2)(3 4) belonging to H . Then we have AD(P ) = (a, d)

or (d, a) , and this implies that h has either (1 2)(3)(4), (1)(2)(3 4), (1 3)(2 4) or

(1 4)(2 3) as part of its cycle decomposition. Then the set H ∩ H(1 2)(3 4) can be

divided into two classes, say X and Y . The set X consists of elements in H having

(1 2)(3)(4) or (1)(2)(3 4) in their cycle decompositions. Clearly, this set exists only

if n ≥ 2k + 2. The other set Y is composed of those in H having (1 3)(2 4) or

(1 4)(2 3) in their cycle decompositions. Using the same arguments as in the previous

lemma, we have

|X| =
2 · (n − 4)!

(n − 2k − 2)! (k − 1)! 2k−1
,

and

|Y | =
2 · (n − 4)!

(n − 2k)! (k − 2)! 2k−2
.

Hence, if n ≥ 2k + 2 then

|H ∩ H(1 2)(3 4)| = |X| + |Y | ,
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and therefore, the proof is complete, simplifying |X| + |Y | .

Remark: From Lemma 5.2.1 and Lemma 5.2.2 one can see that if g = (1 2 3) or

(1 2)(3 4) and H = (2k)Gn for a fixed positive integer k then we have that |H ∩ Hg|

asymtotically is a polynomial of degree 2k − 2.

Proposition 5.2.3. Let n and k be positive integers with n > 2k . If H = (2k)Gn

then

|H ∩ H(1 2)(3 4)| ≤
2

3
|H ∩ H(1 2 3)| .

Proof. The case when k = 1 is shown at Table 3.2 and Table 3.3 in Chapter 3. Then

we suppose that k ≥ 2. Let m1 = |H ∩ H(1 2 3)| and m2 = |H ∩ H(1 2)(3 4)| . If

n = 2k + 1 then we have

m1 =
3(n − 3)!

(n − 2k − 1)!(k − 1)!2 k−1

=
3 · 2 · (k − 1)(2k − 3)!

2(k − 1) · (k − 2)!2 k−2

=
3

2
m2.

Hence, m2 = 2
3
m1. Next, suppose that n ≥ 2k + 2. Then

m2 =
2m1

3(n − 3)(n − 2k)

[

(n − 2k)2 − (n − 2k) + (2k − 2)
]

=
2m1

3(n − 3)

[

(n − 2k) − 1 +
2k − 2

n − 2k

]

<
2m1

3(n − 3)

[

(n − 2k) − 1 + (2k − 2)
]

=
2m1(n − 3)

3(n − 3)

=
2

3
m1.

Hence, we can conclude that if n > 2k then m2 ≤
2

3
m1 .
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5.2.1 The Case of k Odd

Here the intersection number N(Γn, r) of the k−transposition Cayley graph Γn = Gn(2k) ,

with k odd, are given. We first start with the case when r = 1.

Theorem 5.2.4. Let Γn = Gn(2k) with k odd. Then

N(Γn, 1) =
3 · (n − 3)!

(n − 2k − 1)! (k − 1)! 2k−1
(5.4)

when n is sufficiently large.

Proof. Because k is an odd number, S1 = H = (2k)Gn is a set of odd permutations.

Then the product S1g with g in S1 is a set of even permutations. Since there are no

edges between vertices in S1 and since the identity e is the only even permutation

in B1 , we have B1 ∩B1g = {e,g} for any g in H . Next, suppose that g is in S2 . It

is clear that g is an even permutation, and hence

B1 ∩ B1g = S1 ∩ S1g ⊆ Bk ∩ Bkg.

From Corollary 3.2.3,
∣
∣Bk ∩ Bkg

∣
∣ is a polynomial of degree 2(k − j) if g is in

S2j−1 ∪ S2j . Hence, from Proposition 5.2.3, if n is large enough then

∣
∣Bk ∩ Bg

∣
∣ = max{ |S1 ∩ S1g| : g = (1 2 3), (1 2)(3 4) }

= |S1 ∩ S1(1 2 3)| .

Therefore, the proof is finished.

Next we consider for the case when r = 2.

Theorem 5.2.5. Let Γn = Gn(2k) with k odd and greater than one. Then we have

N(Γn, 2) = N(Γn, 1) + N(G′
n(22), k) (5.5)

for any n sufficiently large.
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Proof. Let Br = Br(Gn(21), e) and Sr = Sr(Gn(21), e) . If g is an odd permutation

then, by Proposition 5.1.3, we have that

|B2 ∩ B2g| ≤ 2 |H| (5.6)

since ({e} ∪ S2)g ∩ B2 ⊆ S1 and (S1g ∩ B2)g
−1 ⊆ S1 = H . Recall that H = (2k)Gn .

Then from Theorem 2.3.2 we have

|H| =
n!

k! · 2k · (n − 2k)! · 1n−2k
. (5.7)

Hence, by (5.6) and (5.7) one can conclude that |B2 ∩ B2g| is bounded by 2 |H| ,

which is a polynomial of degree at most 2k when g is an odd permutation.

Next, we let g be a non-identity even permutation. Then S1g ∩ B2 ⊆ S1 and

(S0 ∪ S2)g ∩ B2 ⊆ (S0 ∪ S2) . Hence we have

B2 ∩ B2g = (S1 ∩ S1g) ∪̇ ((S0 ∪ S2) ∩ (S0 ∪ S2)g).

Therefore

|B2 ∩ B2g| = |S1 ∩ S1g| + |(S0 ∪ S2) ∩ (S0 ∪ S2)g| (5.8)

since S1 ∩ S1g and (S0 ∪ S2) ∩ (S0 ∪ S2)g are disjoint.

From Proposition 5.1.3, we have

S0 ∪ S2 =
2k⋃

i=0

Si = Bk(G
′
n(22))

for every n ≥ 4k. Recall that Bk(G
′
n(22)) = Bk(G

′
n(22), e) . Further, from the previ-

ous chapter we know that

|(S0 ∪ S2) ∩ (S0 ∪ S2)g| =
∣
∣Bk(G

′
n(22)) ∩ (Bk(G

′
n(22)) · g)

∣
∣ . (5.9)

Therefore, from (5.8) and (5.9) we can conclude that if n is sufficiently large, then

N(Γn, 2) = N(Γn, 1) + N(G′
n(22), k). (5.10)
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Remark: From the proof shown above it is clear that the 3-cycles still provide us

the intersection number N(Γn, 2) in (5.10).

Next, we compute N(Gn(2k), r) with k odd and r ≥ 3. Here, we let
[

n

n−m

]

g
be

as defined in (4.5) for G′
n(22) , not for Gn(21).

Theorem 5.2.6. Let r ≥ 3 and let k ≥ 3 be an odd integer. Let Γn = Gn(2k) . If n

is sufficiently large then we have

N(Γn, r) =

[
n

n − rk

]

(1 2 3)

+

[
n

n − (r − 1)k

]

(1 2 3)

. (5.11)

Proof. From Proposition 5.1.3, the ball Br in Γn can be divided into two disjoint

sets. The first set X comprises all even permutations in Br and the other Y consists

of the remaining odd permutations, that is,

X = Br ∩ Altn and Y = Br ∩ (Symn \ Altn).

We claim that if g is an even permutation, then

∣
∣
∣ Br ∩ Brg

∣
∣
∣ =

[
n

n − rk

]

g

+

[
n

n − (r − 1)k

]

g

≤ O(n2rk−2), (5.12)

and that if g is an odd permutation, then

∣
∣
∣ Br ∩ Brg

∣
∣
∣ ≤ O(n2rk−2k). (5.13)

Note from (4.10) we know that
[

n

n−m

]

g
= O(n2(m−j)) if g belongs to S2j , where

Sm = Sm(Gn(21), e) . Hence, if both of (5.12) and (5.13) hold, then, since k ≥ 3 we

have

N(Γn, r) = max

{[
n

n − rk

]

g

+

[
n

n − (r − 1)k

]

g

: g = (1 2 3) or (1 2)(3 4)

}

.

Recall that (1 2 3) and (1 2)(3 4) belong to S2 = S2(Gn(21), e). Moreover, by

considering the initial values of
[

n

n−m

]

(1 2 3)
and

[
n

n−m

]

(1 2)(3 4)
shown in Theorem

4.2.5 we have that

N(Γn, r) =

[
n

n − rk

]

(1 2 3)

+

[
n

n − (r − 1)k

]

(1 2 3)

, (5.14)
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which is a polynomial of degree 2(rk − 1) = 2rk − 2. Hence, it remains to show that

(5.12) and (5.13) hold.

First, we suppose that g is an even permutation. By the parity of permutations

one can see that

X ∩ Y g = Y ∩ Xg = ∅

and

Br ∩ Brg = (X ∩ Xg) ∪̇ (Y ∩ Y g). (5.15)

If r is an even number, then by Proposition 5.1.3 we have

X =
⋃

{S2i}
rk
2

i=0 (5.16)

and

Y =
⋃

{S2i−1}
(r−1)k+1

2
i=1 . (5.17)

Similarly, if r is odd, then

X =
⋃

{S2i}
(r−1)k

2
i=0 (5.18)

and

Y =
⋃

{S2i−1}
rk+1

2
i=1 . (5.19)

Note that (5.17) and (5.19) will not hold if r ≤ 2. Also, recall that Si is the sphere

Si(Gn(21), e). Therefore, from (5.16)–(5.19), it follows that

∣
∣
∣ (X ∩ Xg) ∪̇ (Y ∩ Y g)

∣
∣
∣ =

[
n

n − rk

]

g

+

[
n

n − (r − 1)k

]

g

.

Hence, from (5.15) we have

∣
∣
∣ Br ∩ Brg

∣
∣
∣ =

[
n

n − rk

]

g

+

[
n

n − (r − 1)k

]

g

.

Recall that
[

n

n−m

]

g
is the function we defined in (4.5).
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Next, suppose that g is an odd permutation. Then by the parity of permutations

we have

X ∩ Xg = Y ∩ Y g = ∅,

and then

Br ∩ Brg = (X ∩ Y g) ∪̇ (Y ∩ Xg).

Suppose that r is an even number. Then

(X ∩ Y g) · g−1 ⊆ Y and Y ∩ Xg ⊆ Y. (5.20)

Since r is even and Y = Br ∩ (Symn \ Altn) we have

Y =
⋃

{Si}
(r−1)k
i=1 . (5.21)

Similarly, if r is an odd number, then

(Y ∩ Xg) · g−1 ⊆ X and X ∩ Y g ⊆ X, (5.22)

and also, since r is odd we have

X =
⋃

{Si}
(r−1)k
i=0 . (5.23)

Note that (5.21) and (5.23) will not hold if r ≤ 2. Also, recall that for any m ≥ 1,

∣
∣Bm

∣
∣ = O(n2m), (5.24)

since the degree of any vertex in the transposition Cayley graph Gn(21) is equal to

n(n − 1)

2
and since (2m)Gn ⊆ Sm ⊆ Bm . In addition, by Theorem 2.3.2 we know

that
∣
∣(2m)Gn

∣
∣ =

n!

m!2m(n − 2m)!
= O(n2m) .

Hence, from (5.20)–(5.24), it follows that for any r greater than or equal to three,

|Br ∩ Brg| ≤ 2
∣
∣B(r−1)k

∣
∣ = O(n2(r−1)k),

when g is an odd permutation.
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Therefore, we can now conclude that if n is sufficiently large then

N(Γn, r) =
∣
∣
∣ Br ∩ Br(1 2 3)

∣
∣
∣ =

[
n

n − rk

]

(1 2 3)

+

[
n

n − (r − 1)k

]

(1 2 3)

.

5.2.2 The Case of k Even

If k is an even positive number then the Cayley graph ΓH with H = (2k)Gn has

the alternating group as its vertex set. As in G′
n(22) , the graph G′

n(2k) contains

triangles. For instance,

(1) → (1 2)(3 4)(5 6)(7 8) → (1 3)(2 4)(5 7)(6 8) → (1)

is a triangle in G′
8(2

4). In the remainder of this chapter we let Γn = G′
n(2k).

Comparing to the case of k odd, it is far easier to get the ball intersection number

N(G′
n(2k), r) with k even.

Theorem 5.2.7. Let Γn = G′
n(2k) with k even and let r ≥ 2 . We have

N(Γn, r) = N(G′
n(22),

rk

2
) (5.25)

and

N(Γn, 1) =
3 · (n − 3)!

(n − 2k − 1)! (k − 1)! 2k−1
(5.26)

if n is sufficiently large.

Proof. Let r ≥ 2. From Proposition 5.1.4 we have

Br := Br(Γn, e) = {g : |g| ≥ n − rk},

and in another sense it is equal to B rk
2
(G′

n(22), e) . Then N(Γn, r) = N(G′
n(22), rk

2
)

when n is sufficiently large. Next, consider N(Γn, 1) . As usual, we have

B1 ∩ B1g ⊂ Bk ∩ Bkg.
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This implies that |B1 ∩ B1g| is a polynomial of degree at most 2(k−1) . Again, when

n is sufficiently large, we have |B1 ∩ B1g| ≤ |B1 ∩ B1(1 2 3)| for all non-identity g .

Hence, by Proposition 5.2.3 and Corollary 3.2.3, the proof is now complete.
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Chapter 6

Three-Cycle Cayley Graphs

In this chapter we try to generalise our results for the transposition Cayley graph

Gn(21) to other Cayley graphs on the alternating group G′
n = Altn . We would like

to look at the Cayley graph that is generated by all 3-cycles. A permutation g in

the symmetric group Gn = Symn is a 3-cycle if it has the cycle type 1n−331 . That

is, it belongs to the the conjugacy class (31)Gn . Throughout this chapter we let

H = (31)Gn .

In the remainder we pay attention to this Cayley graph, denoted by G′
n(31) .

This graph has the set H = (31)Gn as generating set. As is well known, the set H

generates the alternating group Altn for all n ≥ 3. This means that the vertex set

is the alternating group G′
n = Altn . We call this graph the 3-cycle Cayley graph. Its

edge set is the set of unordered pairs {u, v} such that v = uh (or u−1v = h) for

some h in H = (31)Gn . That is,

EH := {{u, v} : v = uh for some h ∈ H = (31)Gn}. (6.1)

In general, we call any permutation g or a cycle in its decomposition k-cycle if it is

of the form (α1 α2 . . . αk). For example, there are only two 3-cycles in Alt3 , namely

(1 2 3) and (1 3 2) . Also, we consider (1 2 3 4 5) in (1 2 3 4 5)(6 7 8)(9 10) as a

5-cycle. Furthermore, g is an odd cycle if g is a k -cycle with k odd. Similarly, g
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is an even cyle if g is a k -cycle and k is even. As is usual, throughout this chapter

we let Si and Bi be the sphere Si(G
′
n(31), e) and the ball Bi(G

′
n(31), e) of radius i

about the identity e := (1) , respectively.

6.1 Spheres in Three-Cycle Cayley Graphs

Here we start with some basic properties of the graph G′
n(31) .

Proposition 6.1.1. Let Γn = G′
n(31) be the 3-cycle Cayley graph on Altn . We have

that

(1) Γn contains triangles, and

(2) Γn is a 2
(

n

3

)
-regular graph.

Recall that for any permutation g in Symn we let |g| be the number of cycles in

the disjoint cycle notation of g , including cycles of length one, and supp(g) is the

number of elements in [ n ] moved by g . Now we denote by |g|o the number of odd

cycles in g . Similarly, we let |g|e be the number of even cycles in g . It is clear that

|g| = |g|o + |g|e (6.2)

for any g in Symn . Also, we denote by |g|∗o the number of odd cycles of length

greater than one in g .

Proposition 6.1.2. Let n ≥ 3 and let Γn = G′
n(31) . For any i ≥ 0, if g belongs to

Γn then

g ∈ Si if and only if supp(g) − |g|∗o = 2i. (6.3)

Proof. For convenience, throughout this proof we let sg = supp(g) and mg = |g|∗o .

Recall that H = (31)Gn is the generating set of Γn . Fix n ≥ 3. We prove this by

induction on i . Note that it is clear when i = 0, 1. Let t ≥ 1. Assume that (6.3)
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holds for all i = 0, . . . , t. Then by the induction hypothesis we have that for any g

in Γn ,

g ∈ Si if and only if sg − mg = 2i (6.4)

whenever 0 ≤ i ≤ t.

We claim that

g ∈ St+1 if and only if sg − mg = 2(t + 1). (6.5)

First, we assume that g belongs to St+1 . To prove the necessary condition, since

St+1 ⊆ StH , by (6.4) it suffices to show that sg − mg is equal to either 2(t − 1), 2t

or 2(t + 1) for any element g in StH . Let g belong to StH and suppose that

g = g′ · (α β γ) with g′ in St and (α β γ) in H .

Case 1: Supp(g′) ∩ (α β γ) = ∅.

In this case we have sg = sg′+3 and mg = mg′+1. Then sg−mg′ = sg′+2−mg′ =

2(t + 1).

Case 2: Only one of α, β, γ belongs to Supp(g′) .

Then sg = sg′ + 2 and mg = mg′ . Hence sg − mg′ = sg′ + 2 − mg′ = 2(t + 1).

Case 3: Two of α, β, γ are in Supp(g′) . Without loss of generality we assume

that α, β are in Supp(g′).

Case 3.1: α, β are in the same cycle of g′ .

If βg′ = α then g′ and g have the same cycle type and therefore g is in St .

Suppose not. Then we have sg = sg′ + 1 and mg = mg′ ± 1. So sg − mg = 2t or

2(t + 1).

Case 3.2: α, β are in different cycles.

We have sg = sg′ + 1 and mg = mg′ ± 1. Hence, sg − mg = 2t or 2(t + 1).

Case 4: All α, β, γ are in Supp(g′).

Case 4.1: All α, β, γ are in the same cycle of g′ .
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If γ appears in the cycle containing β in g′(α β) then g′ and g have the same

cycle type. This means that g belongs to St . Suppose not. Then γ is in the cycle

containing α in g′(α β) . Hence, there exist positive integers k1, k2, k3 such that

g′ = (α α2 . . . αk1 γ γ2 . . . γk2 β β2 . . . βk3) g′′

for some permutation g′′ with α1 = α, β1 = β, γ1 = γ . If k1 = k2 = k3 = 1 then

sg = sg′ − 3 and mg = mg′ − 1, so sg − mg = sg′ − mg′ − 2 = 2(t − 1). If only one

of k1, k2, k3 is 1 then sg = sg′ − 1 and mg = mg′ ± 1. Hence we have sg − mg = 2t

or 2(t− 1) . If only two of k1, k2, k3 are 1 then sg = sg′ − 2 and mg = mg′ . Then we

get sg − mg = 2(t − 1) . If none of k1, k2, k3 is 1 then sg = sg′ and mg is either mg′

or mg′ − 2. Therefore, sg − mg = 2t or 2(t + 1).

Case 4.2: Only two of α, β, γ are in the same cycle of g′ . Without loss of gen-

erality, assume that α, β are in the same cycle. If βg′ = α then sg = sk − 1 and

mg = mg′ ± 1. So we have sg − mg = 2(t − 1) or 2t . If not, then sg = sg′ and

mg = mg′ or mg′ ± 2. Hence, sg − mg = 2(t − 1), 2t or 2(t + 1).

Case 4.3: None of α, β, γ appears in the same cycle. Then sg = sg′ and mg = mg′

or mg′ − 2, and hence sg − mg = 2t or 2(t + 1).

Then from these arguments we have proved that if g belongs to St+1 then sg −mg =

2(t + 1).

Conversely, assume that sg − mg = 2(t + 1). Since g is an even permutation we

have that g contains

(α1 . . . α2j+1) or (α1 . . . α2j)(β1 β2)

with j ≥ 1 in its disjoint cycle decomposition. First, if g contains (α1 . . . α2j+1)

then g = g′(α1 α2j α2j+1) for some g′ in Γn with g′ 6= e . Hence, sg′ = sg − 2 and

mg′ = mg , and therefore sg′ −mg′ = sg −2−mg = 2(t+1)−2 = 2t . Then g′ belongs

to St , by (6.4). This forces, again by (6.4), that g belongs to St+1 . Similarly, if g
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contains (α1 . . . α2j)(β1 β2) then

g = g′(α1 α2j)(β1 β2) = g′(α1 β1 α2)(α2 β2 β1)

for some g′ . Let g0 = g′(α1 β1 α2) . Then g = g0(α2 β2 β1) , and therefore sg0 = sg−1

and mg0 = mg + 1. Hence, sg0 − mg0 = sg − mg − 2 = 2(t + 1) − 2 = 2t. From (6.4)

it follows that g belongs to St+1 .

From (6.3), when one includes those cycles of length one in g we have the following

result.

Proposition 6.1.3 ([24], p. 162). Let Γn = G′
n(31) and let Si = Si(Γn, e) be the

sphere of radius i . We have

Si = {g ∈ Altn : |g|o = n − 2i} (6.6)

where |g|o is the number odd cycles in g .

Remark: At first when we tried to find parameters to determine which kind of (even)

permutations belongs to Si , we came up with the condition in (6.3). After that we

realised that this problem was proposed by Bogdan Suceavǎ and solved by Richard

Stong in [24]. For the rest of this chapter we will use (6.6) to determine the vertices

that belong to Si as this form relates to the parameters n and i ; these are likely to

be more practical than the parameters appearing in (6.3) in our work.

Before moving to the next Corollary, let us recall that, for any permutation g in

Symn we define |g|o to be the number of odd cycles in the disjoint cycle decomposition

of g .

Corollary 6.1.4. Let n ≥ 3 and let Γn = G′
n(31) . We have

diam(Γn) =







n − 1

2
if n is odd,

n

2
if n is even.

(6.7)
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Proof. Suppose that n is an even number. Then Γn contains a permutation g whose

cycle type ct(g) is either 2
n
2 or 2

n−4
2 41 and therefore |g|o = 0. Hence, from (6.6) the

diameter of Γn is
n

2
if n is even.

For the other case, suppose that n is an odd number. If there is a permutation g

with |g|o = 0 then g has only cycles of even length in its disjoint cycle decomposition,

and therefore n must be even, a contradiction. Hence, for any v in Γn we have |v| ≥ 1

and it is clear that this is the greatest lower bound as Γn contains (1 2 . . . n). This

shows that if n is an odd number then the diameter of Γn is
n − 1

2
. The proof is

now complete.

Theorem 6.1.5. Let Γn = G′
n(31). We have N(Γ4, 1) = 8 . If n ≥ 5 then N(Γn, 1) =

3(n − 2) .

Proof. From Proposition 6.1.3 we have that any permutation in S2 has one of the

following cycle types, namely (22)Gn , (51)Gn and (32)Gn . It is obvious that such a

permutation exists when n is greater than or equal to four, five and six, respectively.

For each non-identity element g in B2 , we let N(g) = |B1 ∩ B1g| . Clearly, there

are only five 3-cycles h such that (1 2 3 4 5) · h is in B1 , namely (1 5 4), (2 1 5),

(3 2 1), (4 3 2) and (5 4 3) . Hence N((1 2 3 4 5)) = 5. Further, it is easy to see

that N((1 2 3)(4 5 6)) = 2 and N((1 2)(3 4)) = 8.

Next we determine N((1 2 3)) . Let h be a 3-cycle such that (1 2 3) ·h belongs to

B1 = {e} ∪ (31)Gn . Clearly, |Supp(h) ∩ {1, 2, 3}| ≤ 3. If |Supp(h) ∩ {1, 2, 3}| = 0,1

then (1 2 3) · h has cycle type 1n−632 or 1n−551 . If |Supp(h) ∩ {1, 2, 3}| = 3, then

(1 2 3) · h is either e or (1 3 2) . Suppose that |Supp(h) ∩ {1, 2, 3}| = 2 and that

h = (l0 l1 l2) where only l0 does not belong to {1, 2, 3} . There are n − 3 possible

choices of l0 . Since (1 2 3) · h belongs to (31)Gn we have l1(1 3 2) = l2 ( if not,

then (1 2 3) · h will belong to (22)Gn ). Hence there are 3(n− 3) possible choices to
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choose h . This shows that

N((1 2 3)) = 3(n − 3) + 2 + 1 = 3(n − 2), (6.8)

where ‘1’ in (6.8) accounts for the vertex (1 2 3) itself. The proof is now complete.

6.2 Further Research on Three-Cycle

Cayley Graphs

At this moment, the intersection number N(G′
n(31), r) with r ≥ 2 is far beyond

our understanding. Comparing to k -transposition Cayley graphs, the 3-cycle Cayley

graph seems to have its own character that is different from other Cayley graphs we

have considered before. Not only are its intersection numbers complicated to figure

out, but also the size of each sphere is not simple to determine.

What we could say is that one may take advantage of generatingfunctionology (see

[25] for details) to find the size of spheres in the graph; however, we now do not know

any connection between spheres’ sizes (or even balls’ sizes) and intersection numbers.

We believe that in the 3-cycle Cayley graph the recursion of intersection numbers,

if it has, should be composed of three terms, not just two terms as it occurs in the

transposition Cayley graph. Moreover, we conjectured that for any positive integer

n and r ,

N(Gn(31), r) = |Br ∩ Br(1 2 3)|

when n is large enough.
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Appendix A

Glossary

Notation Page

AD(P ) The ascent-descent pattern of the path P 40

aijk A class algebra constant 31

Altn The alternating group of [n ] 16

Br(Γ, u) The ball of radius r centred at u in Γ 10

C The class sum of the conjugacy class C 31

ct(g) The cycle type of the permutation g 16

dΓ(u, v) The distance between u and v in the graph Γ 10

Fix(g) The set of letters fixed by g 16

fix(g) The number of letters fixed by g 16
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Notation Page(s)

| g | The number of cycles in the disjoint cycle

decomposition of g 16

ΓH The Cayley graph generated by H 14

Gn(21) A transposition Cayley graph 18

G′
n(22) A double-transposition Cayley graph 60

Gn(2k) A k − transposition Cayley graph, with k odd 76

G′
n(2k) A k − transposition Cayley graph, with k even 76

ij An insert operation 21

i∗ The converse operation of ij 22

[ n ] The set {1, 2, 3, . . . , n} 15

N(Γ, r) An intersection number of the graph Γ 26

[ n

k

]

A Stirling number of the first kind 21

[ n

k

]

r
An r − Stirling number of the first kind 24

[ n

k

]

g
A Stirling-type number, defined differently

in two ways for the permutation g 46, 65

{ n

k

}

A Stirling number of the second kind 23

{ n

k

}

r
An r − Stirling number of the second kind 24
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Notation Page

Supp(g) The set of letters moved by g 15

supp(g) The number of letters moved by g 16

Sr(Γ, u) The sphere of radius r centred at u in Γ 10

Symn The symmetric group of [ n ] 15

y[n] The rising factorial y(y + 1)(y + 2) . . . (y + (n − 1)) 21
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