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ABSTRACT OF THESIS

Primary and secondary liver cancer account for significant morbidity worldwide. 

Radiofrequency ablation (RFA) provides patients with a chance of cure or disease control. The 

technique however has limitations associated with the high rate of tumour recurrence, thought in 

part to be due to the inability to completely envelop the tumour in a zone of ablated dead tissue.

Bimodal Electric Tissue Ablation (BETA) combines direct current with conventional RFA with 

a resultant increase in the ablation zone size, and an effect on the needle that makes it much 

harder for tissue to adhere to it.

To explore the effects of BETA, ex vivo and in vivo studies were conducted. 

BETA was found to create larger ablation zones compared to conventional RFA (p<0.0001). 

The hypothesis for this observation is the net movement of water through tissue, a process 

termed electroosmosis. Analysis of samples treated with BETA and conventional RFA showed 

a significantly higher hydration percentage following ablation with BETA (p<0.0001).

Temperature distribution studies demonstrated cytocidal temperatures at 5, 10, 15 and 20mm 

from the electrode following BETA (p<0.0001).

In order to assess the effects of BETA in vivo, large animal studies were conducted. Twelve

pigs underwent four ‘open’ conventional RFA cycles and four BETA cycles. These studies 

showed significantly larger ablation zones following BETA compared to conventional RFA 

(p<0.0001), with no local complications observed.

The inflammatory response to BETA was investigated; pig Major Acute Phase Protein, Serum 

Amyloid A, Haptoglobin and C Reactive Protein assays were analysed pre and post ablation. 

The proteins peaked at 48 and 72 hours and all returned to normal levels at termination. 

The outcome of this research demonstrates BETA to produce significantly larger ablation zones 

due to increased hydration of the ablated tissue, with superior temperature distribution and 

comparable systemic and clinical effects in animal models.
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If you can fill the unforgiving minute

With sixty seconds' worth of distance run -

Yours is the Earth and everything that's in it, 

And - which is more - you'll be a Man my son!

Rudyard Kipling 1865-1936
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SUMMARY of FIGURES and TABLES

Chapter 1

Figures

Figure 1.1 - Charred tissue adherent to the needle following RFA.

Figure 1.2 - LeVeen multi-tine electrode (Boston Scientific, Natick, USA) and the 

StarBurst (AngioDynamics, Latham, NY, USA).

Figure 1.3 - Cool-Tip ablation electrode (Covidien, Dublin, Ireland) demonstrating 

tubing (blue and orange) required for perfusion of the needle.

Figure 1.4 – Single electrode Cool-Tip needle (top) and a cluster Cool-Tip electrode 

(bottom)

Figure 1.5 – Clockwise from top left, laboratory set-up, BETA Mark II machine, DC 

supply, digital/analog convertor.
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Chapter 2

Figures

Figure 2.1 - whole bovine liver scored in preparation to be cut into 1000cm3 blocks.

Figure 2.2 - clockwise from top left, Perspex box with holes drilled into the lid to 

accommodate temperature probes (arrowheads) and the electrode (arrow) and 

multiple holes drilled into the floor (grey arrowhead) to allow for saline contact 

during ablation, electrode insitu with a piece of liver in the box. Perspex box 

showing legs (arrows), which raise it to allow for saline to contact the liver and 

thus electrical conduction. A floating platform (arrowheads) with legs which is 

placed on the liver in order to keep the temperature probes and electrode 

perpendicular. Floating platform showing legs (grey arrow), multiple holes for 

temperature probes (arrowheads) and a hole for the electrode (whitearrow)

Figure 2.3 - software interface controlling the Mark II machine

Figure 2.4 - perspex box containing piece of liver with electrode (black rod), temperature 

probes (silver rods) in situ. Foil grounding pad placed 20cm from the liver.

Figure 2.5- demonstrates ablation zones obtained with conventional RFA (top) and BETA

(bottom)

Figure 2.6 - demonstrating conventional RFA (left) and BETA (right)

Figure 2.7 - demonstrates a central linear area of chemical necrosis representing tissue 

immediately adjacent to the electrode. No RF energy could be delivered to the 

tissue due to the extensive liquefactive necrosis along the electrode. 

Figure 2.8 - charred adherent tissue following conventional RFA (top) and the appearance of 

the needle following BETA (bottom)

Figure 2.9 - conventional RFA (left) demonstrating a smaller ablation zone with the needle 

track (arrowheads) removed completely due to adherence to the electrode. BETA 

(right) demonstrating a larger ablation zone and the blackened tissue, which 

remains insitu with electrode removal.
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Figure 2.10 - damaged liver (arrowheads) resulting from needle removal following conventional 

RFA.

Figure 2.11 - gas bubble formation at the cathode during BETA

Figure 2.12 - swelling on the surface of the liver observed with BETA

Graphs

Graph 2.1 - illustrates the graph produced by the BETA software program following an 

ablation cycle.

Graph 2.2 - illustrates the ranges and confidence intervals for BETA with 600mA and 

simultaneous DC with no pre-RF DC, 300 seconds of pre-RF DC and 600 

seconds of pre-RF DC compared to controls (RF) using 600mA alone.

Graph 2.3 - illustrates the means and confidence intervals for BETA with 600mA and 

simultaneous DC with no pre-RF DC, 300 seconds of pre-RF DC and 600 

seconds of pre-RF DC compared to controls (RF) using 600mA alone.

Schematics

Schematic 2.1 - Circuit diagram of the BETA Mark II machine.
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Tables (Appendix 1)

Table 2.1 -  shows the control sample size calculations together with the minimum, 

maximum and means for each radiofrequency energy value measured. 

The interquartile ranges and standard deviations are also shown.

Table 2.2  - shows the experimental sample size calculations together with the 

minimum, maximum and means for each radiofrequency energy value measured. 

The interquartile ranges and standard deviations are also shown.

Table 2.3 - shows the matrix of tested parameters. Each experiment is shown together with

the parameters, the size of the ablation zone (cm), the total time of the experiment 

with RF switched on (s), mean maximum short axis diameter of the ablation zone 

(cm), the standard deviation (SD) and the 95% Confidence Interval (95% CI).

Tables

Table 2.4  - shows a summary of the ablation zone sizes obtained for the initial ablation 

matrix including the range and standard deviation (SD).

Table 2.5 - shows the mean sizes of the ablations obtained with 500mA and 600mA

respectively. The standard deviation, 95% confidence interval and standard error of 

the mean (SEM) and ranges are listed in addition.

Table 2.6 - demonstrates the results using 600mA of RF power with no DC (RF), simultaneous 

DC (9V) and RF (DC/RF) and 300 and 600 seconds of pre RF DC respectively. The 

Mean, standard deviation, range and standard error of the mean are listed. 
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Chapter 3

Figures

Figure 3.1 - the Radwag MAC 50/1. Heating element (white arrow), disposable tray           

(white arrowhead) and LCD display (grey arrowhead)

Figure 3.2 - Hydration analyser during the drying process. The heating element raises        

the temperature in the drying chamber (white arrowhead), the temperature 

within the drying chamber is displayed on the LCD screen (grey arrow) 

together with the elapsed time (white arrow), mass reading (black arrow) 

and the cycle setting (white arrowhead).

Figure 3.3 - Fresh unablated liver (left) and liver following complete dehydration 

process.

Graphs

Graph 3.1 - demonstrates the range of hydration percentages for the control group, the 

experimental groups and for normal unablated liver for reference, with 

corresponding error bars.

Graph 3.2 - demonstrates the mean hydration percentages for the control group, the 

experimental groups and for normal unablated liver for reference, with 

corresponding error bars.
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Tables

Table 3.1 - demonstrates each group, with the corresponding values obtained from the 

hydration analyser. The mean percentage hydration following ablation is 

tabulated for each parameter with the associated standard deviation (SD), 

range and the standard error of the mean (SEM).

Tables (Appendix 2)

Tables 3.2 – 3.6 - demonstrate the results of each hydration experiment.

The percentage of weight loss registered during drying process - water 

content (%M), percentage of the sample which remained on the pan after 

humid evaporation - solid tissue content (%D), the humid/dry mass 

ratio - part of sample which vaporised during drying process (%R) and 

residual mass (g) are tabulated in each experiment.

Table 3.7  - explanation of the parameters for each experiment.
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Chapter 4

Figures

Figure 4.1 - demonstrates tissue reaction to thermal ablation.

Figure 4.2 - illustrates heat efficacy. In order to decrease the risk of recurrence, an effective 

heating target volume (the tumor with a margin of normal liver) is necessary. 

Increasing the amount of electric current (unidirectional arrows) can increase the 

heat deposition in tissue. Heat conduction decreases with increasing distance 

from the tip of the electrode (bidirectional arrow), microbubble formation (stars) 

and charring (dots) adjacent to the electrode. Heat sink due to the adjacent vessel 

results in insufficient heating and subsequent recurrence.

Figure 4.3- thermadata TD2C temperature logger with LCD display of current temperature, 

alternating  between the two electrodes

Figure 4.4 - graphical display of temperature data following analog-digital conversion by the 

software.

Figure 4.5 - four temperature probes (silver) placed 5, 10, 15 and 20mm from the electrode 

(black)

Graphs

Graph 2.1 - illustrates the temperature trend of the control group and the BETA group for 

  each distance (5mm, 10mm, 15mm and 20mm) from the electrode.

Tables (Appendix 3)

Table 4.1 - lists temperatures at each distance from the electrode at each 30 second time 

interval for the control (600mA RF) and the BETA (9V simultaneous DC and 

600mA RF, no pre RF DC) experiments.

Tables

Table 4.2 - lists the mean temperatures at each distance from the electrode at each 30 second 

time interval for the control (600mA RF) and the BETA (9V simultaneous DC and 

600mA RF, no pre RF DC) experiments.



14

Chapter 5

Figures

Figure 5.1 - demonstrating the operating theatre setup. Supine animal with midline 

laparotomy to expose the liver and electrode insitu.

Figure 5.2 - demonstrating midline laparotomy to expose the liver. The liver was mobilised in 

order to access the posterior aspects of the 3 lobes (right)

Figure 5.3 - demonstrating porcine liver anatomy. Left lobe (grey arrow), median lobe (grey 

arrowhead) and the right lobe (black arrowhead)

Figure 5.4 - shows the liver marked after the second control ablation

Figure 5.5 - shows an ablation site (arrowhead) and a reaction secondary to the ablation on the 

peritoneal surface of the diaphragm (arrow).

Figure 5.6 - ablation specimens. Control (top) and BETA (bottom)

Figure 5.7 - the diaphragm was adherent to the liver, however easily separated from the 

surface.

Figure 5.8 - shows a perforated gastric ulcer (arrow) and bloodstained peritonitic fluid 

(arrowhead)

Figure 5.9 - showing 28 day termination specimens, control (top) and BETA (bottom)

Figure 5.10 - shows fibrotic, shrunken ablation sites, control (top) and BETA (bottom)

Figure 5.11 - Close up of an ablation zone at 56 days. No ‘red zone’ is seen. The tissue has 

undergone fibrosis and decreased in size, with a well demarcated transition 

between treated tissue and normal liver.

Figure 5.12 - H&E staining of control (left) and BETA (right) specimens, with no histological 

difference observed.  No significant inflammatory cell infiltrate is seen.
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Figure 5.13 - shows conventional RFA (left) with a fibrotic ablation (black arrowheads) and 

BETA (right) with a larger, but similar fibrotic zone of ablation (grey arrowheads). 

Both are surrounded by normal (arrows) liver parenchyma. No intense 

inflammatory reaction is seen.

Graphs

Graph 5.1 - demonstrates the size ranges for each of the groups of animals for control and 

  corresponding BETA experiments, with standard error bars.

Graph 5.2 - demonstrates the mean sizes for each of the groups of animals for control and 

  corresponding BETA experiments, with standard error bars.

Graph 5.3 - demonstrates the mean animal weights pre and post surgery and the mean 

  difference between the two weights.

Graph 5.4 - demonstrates the individual animal weights pre and post surgery and the 

difference between the two weights. The animals have been coded 

according to the termination dates. 1 & 2 – non-recovery, 3 & 4 – 2 day, 5 

& 6 – 14 day, 7 & 8 – 28 day and 9 & 10 – 56 day termination animals.
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Tables (Appendix 4)

Table 5.1 - demonstrates the largest short axis diameter ablation zone for each control and 

corresponding BETA experiment at post mortem examination. The mean, standard 

deviation (SD) and 95% confidence intervals (95% CI) are tabulated.

Tables

Table 5.2 - demonstrates the summary of the 0d and 2d animal data, the mean, median, standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (95% 

CI) and ranges are listed.

Table 5.3 - demonstrates the summary of the 14d animal data, the mean, median, standard

deviation (SD), standard error of the mean (SEM), 95% confidence interval (95% 

CI) and ranges are listed.

Table 5.4 - demonstrates the summary of the 28d animal data, the mean, median, standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (95%

CI) and ranges are listed.

Table 5.5 - demonstrates the summary of the 56d animal data, the mean, median, standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (95% 

CI) and ranges are listed.
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Chapter 6.

Graphs

Graph 6.1 - demonstrates the Haptoglobin levels for each animal with error bars at each time 

  point.

Graph 6.2 - demonstrates the CRP levels for each animal with error bars at each time point.

Graph 6.3 - demonstrates the SAA levels for each animal with error bars at each time point.

Graph 6.4 - demonstrates the pMAP levels at each time point for each animal with error bars.

Graph 6.5 - demonstrates the ALP levels at each time point for each animal with error bars.

Graph 6.6 - demonstrates the ALT levels at each time point for each animal with error bars.

Graph 6.7 - demonstrates the AST levels at each time point for each animal with error bars.

Graph 6.8 - demonstrates the -GT levels at each time point for each animal with error bars.

Graph 6.9 - demonstrates the LDH levels at each time point for each animal with error bars.

Graph 6.10 - demonstrates the LDH levels at each time point for each animal with error bars. 

Graph 6.11 - demonstrates the Na levels at each time point for each animal with error bars.

Graph 6.12 - demonstrates the K levels at each time point for each animal with error bars.

Graph 6.13 - demonstrates the Urea levels at each time point for each animal with error bars.

Graph 6.14 - demonstrates the Creatinine levels at each time point for each animal with error 

bars.
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Tables

Table 6.1 - tabulates the results for the mean Haptoglobin levels at each time point, including 

the standard deviation (SD), standard error of the mean (SEM), 95% confidence 

interval (CI) and range.

Table 6.2 - tabulates the individual Haptoglobin levels for each animal at each time point.

Table 6.3 - tabulates the results for the mean CRP levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval 

(CI) and range.

Table 6.4 - tabulates the results for the CRP levels at each time point for each animal.

Table 6.5 - tabulates the results for the mean SAA levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval 

(CI) and range.

Table 6.6 - tabulates the results for the SAA levels at each time point for each animal.

Table 6.7 - tabulates the results for the mean pMAP levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval 

(CI) and range.

Table 6.8 - tabulates the results for the pMAP levels at each time point for each animal.

Table 6.9 - summarises the mean values for each liver function, LDH, Albumin and Bilirubin at 

each specified time point tested, with the corresponding 95% confidence interval 

(Radostits et al, 2005).

Table 6.10 - tabulates the results for the mean ALP levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence 

interval (CI) and range.

Table 6.11 - tabulates the results for the ALP levels at each time point for each animal.

tabulates the results for the ALP levels at each time point.
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Table 6.12 - tabulates the results for the mean ALT levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence 

interval (CI) and range.

Table 6.13 - tabulates the results for the ALT levels at each time point for each animal.

Table 6.14 - tabulates the results for the mean AST levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence 

interval (CI) and range.

Table 6.15 - tabulates the results for the AST levels at each time point for each animal.

Table 6.16 - tabulates the results for the mean -GT levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence 

interval (CI) and range.

Table 6.17 - tabulates the results for the -GT levels at each time point for each animal.

Table 6.18 - tabulates the results for the mean LDH levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence 

interval (CI) and range.

Table 6.19 - tabulates the results for the LDH levels at each time point for each animal.

Table 6.20 - tabulates the results for the mean Bilirubin levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence 

interval (CI) and range.

Table 6.21 - tabulates the results for the Bilirubin levels at each time point for each animal.

Table 6.22 - summarises the mean values for each marker tested (Sodium (Na), Potassium (K), 

Urea and Creatinine) at each specified time point tested, with the corresponding 

95% confidence interval (Radostits et al, 2005).
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Table 6.23 - tabulates the results for the mean Na levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence 

interval (CI) and range.

Table 6.24 - tabulates the results for the Na levels at each time point for each animal.

Table 6.25 - tabulates the results for the mean K levels at each time point, including the standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) 

and range.

Table 6.26 - tabulates the results for the K levels at each time point for each animal.

Table 6.27 - tabulates the results for the mean Urea levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence 

interval (CI) and range.

Table 6.28 - tabulates the results for the Urea levels at each time point for each animal.

Table 6.29 - tabulates the results for the mean Creatinine levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence 

interval (CI) and range.

Table 6.30 - tabulates the results for the Creatinine levels at each time point for each animal.
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Introduction.

The liver is, second only to lymph nodes, the most common site for metastatic disease 

irrespective of the primary tumour (Bruix et al, 2001). Liver metastasis from colorectal 

carcinoma is the leading cause of cancer-related morbidity and mortality in the West (Bruix et 

al, 2001). Worldwide, primary hepatocellular carcinoma (HCC) is one of the ten most common 

cancers (Bruix et al, 2001). Sub-Saharan Africa and Asia are high-risk regions, where HCC 

constitutes 10%–50% of all malignancies, occurring in 30/100,000 men annually (De Sanctis et 

al, 1998). The median survival of patients with non-resectable colorectal metastases is 6–12 

months and the majority of patients with colorectal liver metastases present with unresectable 

disease (Pereira, 2007).  For those patients presenting with organ-confined disease, surgical 

resection remains the only curative treatment (Gazelle et al, 2004, Garrean et al, 2008). Surgical 

resection has until recently been the only established treatment modality with the potential for 

cure for both primary HCC and metastatic hepatic neoplasms. Survival in patients with 

surgically resected HCC range from 55% to 80% at 1 year and 25% to 50% at 5 years (De 

Sanctis et al, 1998). Recent retrospective studies have shown surgical resection to provide 

superior survival rates compared to radiofrequency ablation (RFA) when treating HCCs 

between 3 and 5cm in diameter, however for tumours less than 3cm, RFA has comparable 

recurrence free survival rates to resection (Huang et al, 2010). A meta-analysis has reinforced 

these findings for HCC (Zhou et al, 2010). Otto et al compared RFA to hepatic resection as a 

first-line treatment of colorectal liver metastases (CRLM) and demonstrated shorter time to 

progression and higher local recurrence rates for RFA, but no difference in survival (Otto et al, 

2010).

Systemic chemotherapy can provide improvement in median survival time for some patients, 

however patients who have advanced disease not suitable for resection, rarely survive beyond 5 

years (Ahmed et al, 2004). Improved surgical and anaesthetic technique, post operative 

advancements in intensive care and an overall improvement in patient care, allows 80% of the 

liver volume to be resected with a mortality of 5% or less (Matsumata et al, 1995). Bilobar or 

bulky disease and the need to leave sufficient residual functional hepatic parenchyma after 

resection to support post hepatectomy hepatic function are the cardinal factors decreasing 

chances of complete resection, or any surgical options for that matter. With these factors in 

mind, strategies and pathways designed to increase the number of patients who are candidates 

for complete surgical treatment of liver metastases have emerged and are continuing to be 

developed. 
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Neoadjuvant chemotherapy (Adam et al, 2001), preoperative portal vein embolisation (Abdalla 

et al, 2001) and 2-stage resection procedures (Adam et al, 2000) contribute immensely to 

increasing the number of patients who are candidates for surgical curative treatment.

The techniques described, although increasing the potential of each patient for cure, still leave 

the majority of patients with liver-only metastases from colorectal carcinoma unsuitable for 

complete surgical resection. This decision is largely based on metastatic load and distribution in 

the liver. 

For patients where resection is not an option, other techniques can be used in an attempt to 

achieve complete or partial tumour destruction depending on tumour load, distribution and 

histological grade (Cascinu and Wadler, 1996, Kuvshinoff and Ota, 2002, Kim et al, 2006a, 

Gervais et al, 2009).

For those patients with hepatocellular carcinoma (HCC), liver transplantation is currently 

considered to be the best treatment for small tumours (Brillet et al, 2006) as it eliminates both 

the tumours and the underlying cirrhosis – thus preventing new tumours from developing. 

Surgical resection as in metastatic disease is otherwise the best chance of cure. However, this 

does not eliminate the causative agent and many of these patients will develop further primary 

liver tumours following resection (Kim et al, 2003). Tumour progression and co-morbidities

associated with HCC often prevents patients from undergoing transplantation or resection, thus 

necessitating a less invasive, but effective treatment. For these patients, RFA  (Choi et al, 2000, 

Galandi and Antes, 2004, Cabassa et al, 2006, Delis et al, 2006, Kim et al, 2006b, Lencioni et 

al, 2008) or transarterial chemo-embolisation (TACE) (Yamada et al, 1983, Yamada et al, 1990, 

Livraghi et al, 2000, Goldberg and Ahmed, 2002, Buijs et al, 2008) and selective intra-arterial 

radiotherapy (Kennedy et al, 2007) are the only modalities which give the patient a possible 

chance of disease control or cure.

Recently, RFA has been viewed as a first line treatment for patients with small (<5cm diameter) 

solitary hepatocellular carcinoma (HCC) and well-preserved liver function. Peng et al (Peng et 

al, 2010) treated 247 patients with a solitary HCC ≤5 cm and liver status scored as Child-Pugh 

class A. The overall 5, 7 and 10-year survival rates were 59.8%, 55.2%, 33.9% respectively.  

Similar studies by Liu et al (Liu et al, 2010a) have demonstrated RFA to provide similar 

survival outcomes compared to resection for tumours less than 5cm. This however is not 

mirrored in the literature and hepatic resection still remains the treatment of choice for these 

patients (Zhou et al, 2010).
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General.

Currently, the most widely used tumor ablative technique for treatment of colorectal liver 

metastasis is radiofrequency ablation (RFA), which has been shown to be safe and feasible in 

patients with unresectable hepatic tumors (Goldberg et al, 1996a, Goldberg et al, 1996b, 

D'Ippolito and Goldberg, 2002, Lencioni et al, 2005).  Outcomes following RFA are difficult to 

interpret, as most of the papers in the literature describing recurrence rates following RFA

report recurrence per lesion and not per patient. A further difficulty is the reporting of outcomes 

for a set group or population with mixed tumor types as well as the use of a variety of 

techniques of ablation with differing equipment (Abdalla et al, 2004, Mulier et al, 2005). One of 

the most important factors to consider however is the immature follow-up data. Abdalla et al 

reported a 1-year survival of 78% and a 3-year survival of 46% for percutaneous RFA (Abdalla 

et al, 2001). 

Livraghi et al (Livraghi et al, 1997) and Solbiati et al (Solbiati et al, 1997a, Solbiati et al,

1997b) performed the largest clinical trials in the late 1990s. Livraghi et al. treated 11 patients 

with 17 hepatic metastases and one primary cholangiocarcinoma using a single probe. On 

follow-up CT at 6 months, just under 67% of the lesions showed complete response and the 

remaining 6 lesions a partial response. The recurrence rates again were quoted per lesion rather 

than per patient, which is a common theme in the literature, making clinical and technical 

success per patient difficult to interpret.

Solbiati et al. (Solbiati et al, 2001) reported a recurrence rate of up to 40% overall, but 12% of 

patients were found to have recurrence at a treatment site at 1 year following RFA. 

Abdalla et al published data on patients treated with RFA only, RFA and resection and resection 

only. The recurrence rates were 84%, 64% and 52% respectively for each of the groups 

(Abdalla et al, 2004). These results may in part reflect the poor prognosis of the disease.

Such recurrence rates have meant RFA has been reserved as an adjunctive tool to resection,

when the chance of complete resection is not possible. RFA is used alone or in combination 

with resection. In many cases, recurrence following resection leaves the clinician with RFA as 

the only option for disease control (Choi et al, 2004, Yang et al, 2006). 

Recent retrospective studies in the literature have sought to confirm resection as the treatment of 

choice for metastatic disease and primary liver cancer. Gleisner et al (Gleisner et al, 2008) 

published retrospective data from a major hepatobiliary centre between 1999 and 2006. 258 

patients with colorectal liver metastases underwent hepatic resection alone or in conjunction 

with RFA. The median size of the largest lesion treated was 3.0 cm. One hundred and ninety-

two patients (74.4%) underwent resection alone, 55 patients (21.3%) underwent resection and 

RFA and 11 patients (4.3%) underwent RFA alone. The results showed patients who underwent 

resection alone had a better disease-free survival than those who underwent resection and RFA 

or RFA alone. However the tumour load, distribution and number were not calculated in the 
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data analysis. Given the need for resection coupled with RFA one can infer lesions were present 

which could not be resected and needed further treatment. These patients will always have 

worse outcomes than patients with single, resectable lesions. 

Recent meta-analyses by Zhou et al (Zhou et al, 2010) questioned the literature and the 

consensus of resection rather than RFA for small HCC. Zhou conducted a systematic review 

and meta-analysis of trials comparing RFA with HR for small HCC between 1997 and 2009. A 

total of 1411 patients: 744 treated with RFA and 667 treated with hepatic resection (HR) were 

included in the analysis. The overall survival for tumours larger than 3cm was significantly 

higher in patients treated with resection than in those treated with RFA at 3 and 5 years.  The 

local recurrence rate of RFA was higher than resection, however as expected, the resection 

group encountered more post-operative morbidity. For tumors ≤3 cm resection was comparable 

to RFA for survival. These findings are similar to recently published studies comparing 

resection to RFA (Huang et al, 2010, Hung et al, 2010, Kudo, 2010, Liu et al, 2010b).

Hur et al (Hur et al, 2009) compared outcomes in patients with single colorectal metastases. The 

retrospective analysis included 67 consecutive patients with solitary colorectal liver metastases 

treated by resection or RFA. Forty-two patients underwent resection and 25 patients, RFA. The 

5-year overall and local recurrence-free survival rates after resection (50.1% and 89.7%) was 

higher than following RFA (25.5% and 69.7%). The interesting finding in this study was the 

outcomes in patients with tumours smaller than 3cm (n = 38). In this subset of patients, the 5-

year survival rate for resection or RFA was similar: overall survival (56.1% vs 55.4%) and local 

recurrence-free survival (95.7% vs 85.6%). Neither of the differences was shown to be 

statistically significant. The tumour size, treatment method and primary node status were shown 

to be significant prognostic factors. These prognostic factors, coupled with resection margin, 

local extension of the tumour, response to chemotherapy and preoperative portal vein 

embolisation have also been described as significant (Nikfarjam et al, 2009). Leblanc et al 

(Leblanc et al, 2008) published a similar study design to Hur et al in 2008 comparing outcomes 

in the same 3 groups. No statistical difference in survival between the 3 groups (RFA alone vs 

RFA and resection vs resection alone) at 2 years was demonstrated.

A large retrospective study published by Gillams and Lees (Gillams and Lees, 2009) describes a 

five-year survival rate of 24-33% in 309 patients with colorectal metastases, treated with RFA. 

These results are superior to any published data relating to chemotherapy and approach the five-

year survival rates quoted for resection.

The largest retrospective study to date comparing resection to RFA for hepatic colorectal 

metastases (HCM) was published by Reuter et al (Reuter et al, 2009). This retrospective review 

of patients treated between 1995 and 2007 describes 192 patients undergoing either resection or 

RFA alone for metastatic disease.  As expected the time to recurrence for RFA patients was 
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shorter than for resection (12.2 vs. 31.1 months; p < 0.001). Recurrences at the site of treatment 

for each modality were more with ablation (17%) than with resection (2%). Distant hepatic 

recurrences were found in 33% of ablation patients vs. 14% in the resection group, however this 

may in part be due to disease load before treatment. The largest lesion in the ablation group was 

5.3cm and 3.2cm in the resection group. Nodal involvement, too, was higher in the ablation 

group (63% vs 50%); both of these have been shown to be significant prognostic factors (Hur et 

al, 2009, Nikfarjam et al, 2009) and must be borne in mind when interpreting the results. The 

results did, however confirm resection to be the treatment of choice for colorectal metastases. 

Otto et al (Otto et al, 2010) evaluated the use of RFA as first-line treatment in patients 

presenting with colorectal metastases (CRLM) within the first year after colorectal surgery. 

Resection was performed in patients who were deemed not amenable to RFA due to number, 

size, or location of metastatic lesions.  Local recurrence at the site of ablation or resection 

occurred in 32% and 4% (p<0.001), new metastases apart from the site of previous treatment in 

50% and 34% (p=0.179) and systemic recurrence in 32% and 37% (p=0.820) of the patients 

after RFA and surgery, respectively. Time to progression was significantly shorter in patients 

primarily treated with RFA (203 vs. 416 days; p=0.017). Otto demonstrated that despite striking 

differences in local tumour recurrence and shorter time to progression, survival in patients with 

early CRLM was independent of treatment modality.

Treatment of hepatocellular carcinoma (HCC) however is not as simple to define as metastatic 

disease.  HCC is associated with significant co-morbidities, which do not often accompany 

metastatic disease. These include cirrhosis, liver failure and its associated results, poor 

nutritional status, and abnormal clotting. These often have a major impact on the clinical team’s 

decision to treat and the method chosen for treatment. Consequently these factors are often the 

reason why patients are excluded from the option of transplantation.

As a result of the confounding influence of co-morbidities, data establishing RFA as an 

effective treatment for HCC compared to resection or repeat resection is scarce in the literature, 

with only a single non-randomised trial published to date (Rampone et al, 2009, Zhou et al, 

2010). 

Several observational studies have suggested that RFA may have survival benefits similar to

hepatic resection (HR; excision of diseased lobe of the liver) in cirrhotic patients affected by 

hepatocellular carcinoma (HCC) who are not candidates for liver transplantation (Shimozawa 

and Hanazaki, 2004). A paper by Molinari (Molinari and Helton, 2009) used a computer 

generated Markov model to simulate a randomised controlled trial.  This confirmed these 

findings, although the study did not have sufficient power to detect a significant difference at a 

5-year interval. In this paper a Markov model was created to simulate a randomized trial 

comparing survival in patients undergoing hepatic resection or RFA for HCCs less than 5 cm in 
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diameter. Hepatic resection was shown to be the best option overall, however RFA was shown 

to be the preferred method if the perioperative mortality of resection was more than 30%, if the 

percentage of patients with complete resection was less than 60% and if RFA could be 

performed at least 60% of the time for recurrent disease after a previous ablation.  The results of 

this model only simulate a randomised trial and the results should be viewed with reservation. 

This small study, however, did highlight the potential place of RFA in the treatment of HCCs.

A study by Liang et al (Liang et al, 2008) of 110 patients with HCC recurrence following 

resection was published in 2008. Sixty-six patients with 88 tumors were treated by RFA and 44 

patients with 55 tumors were treated by repeat hepatectomy. The one year survival rates for 

each group were 76.6% vs 78.6% respectively and the 5 year survivals 27.6% vs 39.9% 

respectively. Neither of these was found to be statistically significant. The complication rate 

was higher in the repeat hepatectomy group compared to the RFA group (75% vs 3%), which 

was significant, confirming our knowledge that surgery does carry with it inherently higher 

morbidity risks than percutaneous treatments. The interval of recurrence from the initial 

hepatectomy, diameter of the recurrent tumor and the serum albumin level were significant 

prognostic factors for overall survival, in keeping with prognostic factors of metastatic groups 

of patients (Hur et al, 2009, Nikfarjam et al, 2009). The serum albumin level refers to liver 

function and overall nutritional status of the patients, which if low indicates poor hepatic

function and or severe malnutrition.

RFA has been shown to be a relatively low risk procedure, with few complications (Livraghi et 

al, 2000, Mulier et al, 2002, Zagoria et al, 2002, Livraghi et al, 2003). Those causing delayed 

discharge, life-threatening injuries or causing significant disability or morbidity (Kong et al, 

2009) are defined as major complications. These include liver failure, and uncontrolled 

haemorrhage requiring additional procedures including surgery or embolisation, tumour seeding 

and collateral damage to adjacent structures including bile ducts, visceral organs (bowel or solid 

organs), and diaphragm, as well as pneumo/haemo or hydrothorax requiring drainage (Akahane 

et al, 2005, Head et al, 2007, Kong et al, 2009). Minor complications include biloma, portal 

vein thrombosis and skin burns (Akahane et al, 2005). Major complications are infrequent 

(2.43%) (Rhim et al, 2003) with an overall complication rate of between 8 and 12 % (Mulier et 

al, 2002, Cheung et al, 2009). 
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Modified techniques have been described in an attempt to make this occurrence even less. In 

certain cases, complications such as tumour seeding may upstage a patient’s disease (Llovet et 

al, 2001, Arienti et al, 2006). Efforts have been made to dissipate heat adjacent to the treatment 

area in an attempt to decrease collateral damage (Hinshaw et al, 2006, Laeseke et al, 2006, 

Marchal et al, 2006, Liu et al, 2008). The complications associated with radiofrequency ablation 

will be expanded on in later chapters. 

The spectrum of complications, individual rates of occurrence and most importantly its impact 

on radiofrequency ablation outcome will be discussed in later chapters in depth.
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Ablation:

Definition:

Ablation is defined as the direct application of chemical or thermal or cryotherapy from an 

energy source in an attempt to achieve eradication or substantial destruction of cells (Goldberg 

et al, 2005).

General.

Ever since the discovery of the heat and its effects on the body, medical applications have 

continued to increase in number and complexity. Initially the treatments used extremes of heat 

and cold in order to observe any visible change in the tissue. With time, and the growth of 

technology, this became more refined and controlled.

Pavy and Siau published the first paper using ablation in the liver in 1903 (Pavy and Siau, 

1903). Since then there have been over 8000 papers published on the use of ablation for 

therapeutic purposes. 

There are 4 main categories of ablation in current practice today.

1. Thermal ablation

2. Cryoablation

3. Chemical ablation

4. Irreversible electroporation
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Thermal ablation:

This category of ablation uses energy sources that destroy tissue using thermal energy.

These techniques include the following:

1. Radiofrequency

2. Laser

3. Microwave

Cryoablation:

This category of ablation uses extreme cold generated by liquid nitrogen or gases to destroy 

tissue.

Chemical Ablation:

This category of ablation uses chemicals to induce ablation of tissue.

The methods of chemical ablation are classified according to the universally accepted 

nomenclature of the primary agent used.

1. Ethanol

2. Acetic Acid

3. Direct Current

Direct Current (DC), although not a chemical agent induces tissue ablation through the 

polarisation of tissue. This polarisation of tissue is caused by the anode (positive) and the 

cathode (negative) in the tissue and liberation of various gases, along with electrode corrosion, 

causes chemically induced necrosis. This will be discussed in Chapter 2 in detail.

Irreversible Electroporation: 

This category of ablation uses short pulses (ms) of high voltage direct current to disrupt the 

cellular membrane, causing irreparable cell damage.
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Radiofrequency Ablation:

Definition:

Radiofrequency ablation (RFA) is the induction of coagulative necrosis by a source of 

alternating current whose frequency is in the Radiofrequency range: 30KHz – 30MHz

(Goldberg et al, 2005).

General.

Radiofrequency Ablation (RFA) uses electromagnetic energy, supplied by a radiofrequency 

(RF) generator to produce heat in tissue with subsequent tissue destruction. Radiofrequency 

refers to the alternating electric current that oscillates in the range of high frequency (200–1,200 

kHz) rather than the emitted wave. 

A closed-loop circuit is created by placing a generator, a large dispersive electrode (grounding 

pad), a patient, and a needle electrode in series. 

Both the dispersive electrode and needle electrode are active, with the patient acting as a 

resistor. An alternating electric field is created within the tissue of the patient. Tissue has 

relatively high electrical resistance in comparison with the metal electrodes. This causes marked 

agitation of the ions and charged molecules ions present in the tumor or liver tissue adjacent to 

that immediately surrounds the electrode. This ionic agitation creates friction and thus heat, 

which can be tightly controlled through modulation of the amount of radio-frequency energy 

deposited (Rhim et al, 2001). 
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The Bioheat equation:

The parameter governing tissue destruction is temperature.

The generation of tissue heat induces cellular death via thermal coagulation necrosis (Dupuy 

and Goldberg, 2001, Nahum Goldberg and Dupuy, 2001). 

The distribution of thermal energy in tissue is governed by the “Bioheat” equation, described by 

Pennes in 1948 (Pennes, 1998).

He described heat transfer in a human forearm, suggesting the rate of heat transfer between 

blood and tissue was proportional to the product of the volumetric perfusion rate and the 

difference between the arterial blood temperature and the local tissue temperature. 

The original equation was broken down into 11 separate equations, which explained the heat 

transfer in detail and is beyond the scope of this thesis.

The equation derived the formula to explain the loss of heat in tissue influenced by the blood 

circulation. This can be simplified as outlined below.

The loss of heat through conduction in tissues can be explained as follows:

Qgain= qstorage + qloss + W

q can be explained by heat absorption from the surrounding control volumes stored by the 

tissue, lost through the boundary of the volume and W - work performed by the tissue and 

metabolic heating.

The two main mechanisms for heat flow inside tissue is through

1. Conduction - the gradient in temperature within the tissue itself drives the flow. 

2. Convection of thermal energy by the perfusing blood.

The Fourier law of heat conduction governs the conducted heat flow. The law states that the 

amount of thermal energy conducted through a medium is proportional to the cross sectional 

area, the temperature difference and the length of time. It is inversely proportional to the length 

across the medium.
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The Fourier Law of Heat Conduction

q = Q/A = -kdT/dx

q is the heat flux, defined as the heat per unit area (w/m2). 

Q is the heat rate

dT/dx is the thermal gradient in the direction of the flow. The negative indicates flow of heat is 

from hotter to colder. If the temperature decreases with x, q will be positive and will flow in the 

direction of x. If the temperature increases with x, q will be negative, and will flow opposite to 

the direction of x. 

k is the thermal conductivity and is used to show that not all materials heat up or retain heat 

equally well. k is W/m*K, where W is watts, m is meters, and K is Kelvin.

The heat transfer or conduction rate is a scalar and is

Q = -kA ΔT/L

L is the length of the slab

ΔT is the temperature difference between two different surfaces.

These two equations show that heat can be considered to be a flow. The flow of heat depends 

upon the thickness of the material, the area, the conductivity and nature, all of which combine to 

retard or resist this flow.

The bioheat equation can be viewed in a simplified framework, which is more pertinent to 

radiofrequency ablation.

“coagulation necrosis = (energy deposited x local tissue interactions) – heat lost.”

Each of these parameters must be addressed when considering thermal ablation and tissue 

necrosis (Lobo et al, 2005).

Cellular homeostasis can continue with elevation of temperature to 40 °C. As temperature 

increases, cells become more susceptible to damage by agents such as radiotherapy and 

chemotherapy (Ahmed et al, 2003b, Ahmed et al, 2004, Ahmed et al, 2005a). With a mild 

temperature increase of 42-45 °C. (hyperthermia) prolonged heating at these temperatures will 

not induce complete cell death. Continued cell growth and function can be observed after long 
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exposures to hyperthermia. Increasing the temperature to 50-55 °C shortens the time necessary 

to induce cytotoxicity to less than 10 minutes. 4-6 minutes has been quoted as the minimum 

time needed at this temperature to induce cell death (Goldberg et al, 1996a, Goldberg et al, 

1996b, Goldberg et al, 2000). At temperatures less than 50 °C Goldberg et al 1996 showed no 

coagulation in ex vivo studies. 60-100 °C causes almost instantaneous protein coagulation, 

which irreversibly damages key cytosolic and mitochondrial enzymes (Dupuy and Goldberg, 

2001, Nahum Goldberg and Dupuy, 2001). 

Temperatures greater than 105-115 °C, result in tissue boiling, vaporisation and carbonisation 

(Kruskal et al, 2001). Carbonisation increases the impedance in tissue and limits the ability to 

deposit heat, limiting the ablation geometry (Goldberg et al, 1996a, Goldberg et al, 1996b, 

Goldberg et al, 2000). 

The “charring” effect of RFA is the ultimate limiter of ablation zone size. The charring effect of 

RFA on the tissue in immediate contact with the electrode is caused by excessive temperature 

deposition at the needle tip in a very short time frame. This results in:

1. Adhesion of the liver to the needle. This prevents the needle from sliding out of the 

tissue easily and safely. The needle is left with adherent pieces of tissue, and subsequent 

damage to the organ being treated.

Figure 1.1 Charred tissue adherent to the needle following RFA.

2. Sudden and uncontrollable rise in the impedance of the tissue. The impedance of 

the tissue is a variable that governs the amount of power deposited in the tissue. As the 

impedance increases, the RF voltage (V) must increase or the RF current (mA) must 

decrease in order to balance the equation: V = I X R.



Chapter 1 Literature Review

BETA 38

The equation rearranged: R (Ohms) = V (Volts)/I (Amps).

As the impedance increases, the power must increase in order to ensure the same amount of RF 

current (mA) is delivered to the tissue.

Once tissue reaches an impedance of 900 Ohms, the power required to generate enough heat 

becomes too great, and it is at this impedance that most commercially available machines stop 

ablating, switching themselves off as further ablation is so difficult to achieve.

This phenomenon is known as impedance “roll-off” (Lin et al, 2003). 

The key aim of ablative technology is to control the heat deposited and the local tissue 

interactions in order to achieve the desired effects in tissue. Thus the impedance roll-off is 

delayed for as long as possible in order for the maximum benefit to be gained from the ablation 

treatment (Lin et al, 2003).

The earliest use of radiofrequency ablation was primarily geared towards neurosurgical and 

cardiac applications (Taha et al, 1995, Gazelle et al, 2000). Initial studies of percutaneous RF 

tumour ablation involved the use of monopolar electrodes to induce coagulation necrosis up to 

1.6cm (McGahan et al, 1990, Rossi et al, 1990). 

Most currently available machines function in the 375-500kHz range (Dupuy and Goldberg, 

2001, Goldberg, 2001, Nahum Goldberg and Dupuy, 2001), with the majority of devices being 

monopolar. 

The goal of RF ablation is to intentionally ablate a zone of healthy tissue around the target 

tumour, analogous to the “surgical margin” described in the literature (Hong and Georgiades, 

2010). The margin should be 0.5-1 cm beyond the tumour margin, given the difficulty in 

accurately identifying the tumour margin macroscopically and to allow for microscopic tumour 

spread beyond the macroscopic tumour margin. This equates to a 3-4cm ablation created during 

treatment of a 2cm tumour.  The “ablative margin” (Goldberg et al, 2005) decreases the risk of 

local tumour recurrence, however the limitations of RFA make this margin difficult to obtain 

with monopolar RFA and a straight ablation electrode. The following describes the 

modifications used in the delivery of radiofrequency energy to tissue. Each modification 

described below attempts to increase the ablation zone size and thus decrease the risk of 

recurrence of tumour.
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Bimodal Electric Tissue Ablation (BETA).

Definition.

Applications of Direct Current (DC) to a radiofrequency ablation (RFA) circuit either 

individually or simultaneously without allowing interference of the DC in the RFA circuit.

Bimodal Electric Tissue Ablation is a novel method of applying DC and RFA to tissue either 

serially individually or simultaneously in order to increase the ablation zone in the tissue. BETA 

combines these two energies in an effort to improve the temperature distribution in the tissue. It 

has been shown that improved temperature distribution in the tissue allows a more uniform 

distribution of heat and thus increases the ablation zone (Goldberg et al, 1996a).

BETA is thought to increase the hydration of the tissue by a process termed electroosmosis 

(Reuss, 1809), which will be discussed in detail in later chapters.

These two important factors are hypothesised as critical in the larger ablation zones obtained in 

the original studies of the earlier BETA study (Cockburn et al, 2007).

In order to understand the context of BETA in ablation technologies, it is important to have an 

understanding of the modifications and advances made in RFA in an attempt to counteract the 

limitations placed on RFA by the bioheat equation. 

The remainder of this chapter will address this and includes descriptions of modifications in 

needle design, which attempt to increase the ablation zone size. In addition, adjunctive 

techniques, which target the ability of the cells to repair following a thermal insult or increasing 

the sensitivity of the cellular framework to thermal energy, are described.

Finally in this chapter, the history of BETA will be outlined together with a description of 

competing thermal technologies.
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Monopolar RFA:

Definition:

The RF generator supplies RF power to the tissue through an electrode. It is connected to the 

shaft of the electrode and to a reference electrode. The reference electrode is a large-area 

conducting pad in contact with the patient’s skin in an area of good electrical and thermal 

conductivity (Goldberg et al, 1996a).

In order for radiofrequency ablation to be deemed successful the entire tumour must be 

subjected to cytotoxic temperatures. Prior studies have shown that with monopolar 

radiofrequency ablation, temperature is not uniformly distributed within tissues (Goldberg et al, 

1996a). Goldberg et al (Goldberg et al, 1996a) demonstrated that higher electrode tip 

temperature and longer electrode tip exposures were associated with increased temperature 

variation. He also demonstrated that the diameter of local coagulation necrosis was a function of 

the local mean temperature. The ideal would therefore be to heat the tumour uniformly to 

50-60 °C, inducing uniform coagulation.

Conventional RF precludes this due to the high temperatures at the electrode tip and the rapid 

fall off of temperature at increasing distances from the electrode as described by Cosman 

(Cosman et al, 1984). Together with electrode size, tissue conductivity and blood-flow 

convection, monopolar RF ablation faces many challenging barriers to enlargement of the 

ablation volume.

Tissue cooling secondary to vascular flow is a primary determinant of coagulation necrosis size. 

This effect, known as the “heat sink” effect has been proved by Curley and Hamilton 1997, 

Goldberg et al 1998 and Patterson et al 1998 (Curley and Hamilton, 1997, Goldberg et al, 1998, 

Patterson et al, 1998). Coagulation zones obtained in ex vivo tissues have been both larger and 

more reproducible compared to results from in vivo studies (Solbiati et al, 1997a, Livraghi et al, 

1999). 

This is very likely to be a result of the heat sink effect in in vivo tissue.
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In order to try and decrease the limiting effects of the heat sink, two techniques can be used to 

alter blood flow through the tissue:

1. Mechanical occlusion

2. Pharmacological modulation of blood flow.

Mechanical occlusion refers to occlusion of the lesser omentum carrying blood to the liver, the 

porta hepatis. Mechanical occlusion interrupts the flow of blood through the hepatic artery and 

the portal vein, thus decreasing the blood flow to the liver.

The technique was described by James Hogarth Pringle, published in 1908 (Pringle, 1908). He 

described a method whereby the portal vein is compressed in the anterior boundary of the 

foramen of Winslow to arrest hepatic blood flow to allow time to repair liver trauma. The 

technique was described using ligatures in animal studies and later, mechanical occlusion in 

patients. The limitation of this technique is the need for adequate surgical access in order to 

perform the manoeuvre. The technique requires an open or laparoscopic procedure (Iannitti et 

al, 2002, Hsieh et al, 2004) and thus the advantage of percutaneous techniques are lost. The 

relatively uncontrolled mechanical occlusion of the entire vascular supply to the liver at the 

hilum does have the potential for significant morbidity such as portal vein thrombosis (Kim et 

al, 2004). The theory has been investigated, particularly in recent years with the development of 

endovascular occlusion techniques. The radiologist has at their disposal both temporary and 

permanent occlusion techniques. Temporary techniques include inflating an occlusion balloon

in the portal vein, occluding supply to the entire liver, or a portal vein branch, thus occluding 

only the supply to the specific lobe of liver being treated (de Baere et al, 2008). 

Using absorbable occlusion material such as gelfoam (Miyamoto et al, 2004) or autologous 

blood is another alternative, mostly reserved for trauma. Unfortunately mechanical form of 

external occlusion of the entire porta hepatis has not consistently proved to aid in increasing the 

ablation zone significantly, and has produced significant morbidity, including portal vein 

thrombosis (Shen et al, 2003, Hope et al, 2007).

A newer technique being evaluated is the intra-arterial administration of medication to decrease 

the blood supply to the organ being treated (Hines-Peralta et al, 2006b, Hakime et al, 2007), this 

technique remains in the pre-clinical trial phase.
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Permanent occlusion techniques include embolisation with coils or glue. This technique is used 

widely in preoperative patients for liver resection. The lobe being resected is embolised 1-2 

days prior to surgical intervention to allow the lobe to devascularise.  A further technique is also 

adopted in patients with a small unaffected lobe, where the affected lobe is embolised 6 weeks 

prior to resection, allowing the unaffected lobe to undergo compensatory hypertrophy. This 

ensures that following resection; the unaffected lobe is able to carry out normal hepatic 

function, without compromising the patient’s biochemical balance.

Horkan (Horkan et al, 2004) altered blood flow in rabbit models using halothane, adrenaline or 

arsenic trioxide. Laser Doppler flowmetry was used to monitor peri-procedural hepatic blood 

flow. Temperature probes were placed in the tissue in the region of the ablation zone and at 

predetermined distances from the portal vein and electrode to monitor temperature change. 

Halothane and Arsenic Trioxide reduced hepatic blood flow to 40.3% and 29% of normal, 

respectively. Adrenaline conversely increased blood flow to 207.8% of normal. 

Patterson et al (Patterson et al, 1998) conducted in vivo porcine experiments in eight animals to 

determine the effect of treatment time and hepatic blood flow. Patterson examined the 

specimens histologically and found vessels less than 1cm from the probe tip strongly predicted 

the lesion diameter and volume. This negative effect of blood flow on lesion size was confirmed 

when comparing the two animals that underwent ablations in exactly the same lobe of liver, 

with and without mechanical vessel occlusion. The ablation zones created with mechanical 

vessel occlusion were significantly larger than those without mechanical vessel occlusion 

(3.0cm vs 1.2cm respectively). Lesion volume increased accordingly (35.0cm3 vs 6.5cm3). This

however has not been a consistent observation in the literature (Hope et al, 2007).

De Baere et al (de Baere et al, 2008) performed targeted hepatic venous occlusion using an 

endovascular balloon rather than complete portal vein occlusion as described by Pringle in 

1908. The results of the portal blood flow occlusion revealed the technique to only be effective 

for tumours less than 35mm, abutting vessels 4mm or larger.

Further in vivo animal studies have been conducted by Horkan et al (Horkan et al, 2004) and 

Iwamoto et al (Iwamoto et al, 2008) evaluating hepatic blood flow following pharmacological 

and mechanical occlusion respectively. The findings of mechanical or chemical occlusion on 

coagulation volume have been investigated in the kidney, a growing target organ for thermal 

therapy, with similar promising results (Chang et al, 2004). 
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Radiofrequency Energy Deposition:

Bipolar Ablation:

Definition:

Bipolar radiofrequency ablation uses two active electrodes, placed in closed proximity to each 

one another to achieve contiguous ablation zones. The electrodes are placed into the tissue and 

energy is deposited at the active and ground electrodes  (Goldberg and Gazelle, 2001, Clasen et 

al, 2007).

Radiofrequency energy is deposited at both electrodes as opposed to monopolar ablation where 

the energy at the grounding pad is dissipated over a larger surface area (McGahan et al, 1996). 

Heat is thus generated at both the active and ground electrodes resulting in larger more 

confluent ablation zones. The zone of ablation is usually elliptiform, with a longer zone of 

ablation. Burdio (Burdio et al, 2003a) described a method of bipolar radiofrequency ablation 

that significantly increased the ablation zone ex vivo. The ablation zone could be as large as 

4cm depending on the distance between the electrodes. 

A paper in the same year by Burdio (Burdio et al, 2003b) described a method whereby a single 

electrode is used to deliver RF energy in a bipolar manner. Using the bipolar technique, the 

needle is exposed at two different points along the needle, separated by a non-conductive 

element. The results using bipolar RF again showed larger zones of ablation and decreased 

impedance in the tissue during and at the end of the ablation cycle.

A further benefit of bipolar ablation is the reduction of the electric field in the body and a 

decreased risk of damage to surrounding structures (Buy et al, 2006). Bipolar RFA also allows 

for use in patients with cardiac pacemakers, as there is no distant circuit created outside the liver 

as with monopolar RFA. 

Bipolar RFA however is not without potential complications, the most obvious being the use of 

two needles instead of one as opposed to a single needle with a non-conducting element as 

described above. The use of two needles adds an unnecessary potential for complications during 

insertion or during ablation. Damage to structures adjacent to the organ during insertion makes 

this technique less desirable for clinical use. A further limitation is that needles should be placed 

parallel, between 5 and 30mm form one another and should not touch in order to avoid shorting 

the electrical circuit (Frericks et al, 2005).
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Multipolar RF Ablation:

Definition:

Multipolar RFA is a technique used to apply RF to 3 or more needles placed in a single lesion 

or multiple adjacent lesions. The RF current flows between 2 electrodes in a random pattern 

generated by the machine (Callstrom and Charboneau, 2008).

Using the technique of multipolar RFA (Callstrom and Charboneau, 2008, Peng et al, 2011), 

each electrode is bipolar, with current flowing between electrodes, negating the need for a 

reference electrode or grounding pad. The system measures the tissue resistance between the 2 

electrodes in use at any time, switching between electrodes as the resistance (impedance) 

increases. A microprocessor divides the RF output between the individual electrode pairs 

according to changes in tissue resistance. The energy applied, power output, and the ablation 

time are monitored throughout. As the tissue dehydrates during ablation, the resistance 

increases. All possible electrode pairs are activated automatically one after the other in a short 

period of time. The current is therefore able to pass between one electrode of one applicator 

shaft and an electrode of another applicator shaft independently. The combination of ablations 

allowed is therefore only limited by the number is electrodes in the tissue (Lee et al, 2007a, Lee 

et al, 2007b). Once the resistance of an electrode pair increases beyond a specific limit (900 

ohms) or when the power output decreases to less than one-third of the preset power output 

(inadequate power), the electrode pair is excluded from further ablation cycles. Power output is 

stopped automatically if the resistance of all possible electrode pairs exceeds the limit three 

times, indicating that maximum energy deposition has extended along all the electrodes and that 

the coagulation process has ended (Frericks et al, 2005). Lee et al (Lee et al, 2007a, Lee et al, 

2007b) demonstrated no significant difference in ablation zone size when compared to 

monopolar RFA using multi-tine needles; however the complexity of the procedure is increased 

significantly, depending on the number of electrodes used.

Brace et al (Brace et al, 2009) compared sequential RFA in a cluster electrode setup with the 

switching technique in order to determine the ablation zone size in ex vivo bovine and in vivo

swine models. Using either sequential or switched application of three cooled electrodes in a 2-

cm triangular array in ex vivo bovine liver and in vivo swine liver models, RF ablation was 

performed. The protocol for the sequential ablations, involved 12 minutes of RF energy to each 

electrode with a 5-minute interval between activations. The 5-minute rest period was performed 

in order to simulate repositioning of the electrodes. Using a multiple-electrode switching system 

for 12 minutes created the switched ablations. The switched application of RF energy created 
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larger and more circular zones of ablation than the sequential application of RF energy (25.4cm2

vs. 18.8 cm2  cross sectional area for ex vivo studies and 17.1cm2 vs 5.1cm2 for the in vivo

studies). The switched application produced higher temperatures and more rapid heating of the 

tissue; however this method still exposes the patient to unnecessary morbidity in terms of 3 

punctures in the liver as opposed to a single puncture. 

Multipolar ablation has been shown to increase the ablation zone (Peng et al, 2011), as 

illustrated above. The use of multiple needles to achieve this however makes this technique 

unattractive, as the potential morbidity increases due to the number of needles used.

RFA is a minimally invasive technique with a favourable complication profile (Tateishi et al, 

2005). The use of multiple needles increases the potential for unnecessary morbidity and thus 

single needle techniques have been favoured.  The single greatest drawback, however, is the 

difficulty in accurately positioning multiple needles using a percutaneous approach such that a 

predictable ablation zone can be reliably achieved.
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Modification of RF Electrodes:

A key advance in RF technology is RF electrode design. This has improved the size of the 

ablation zone, without changing the RF generator parameters significantly. Many of the 

technological developments have become complimentary and part of single electrode design. 

All the design modifications are aimed at achieving acceptable tissue coagulation and larger 

ablation zones.

Multi-tine Needles:

Definition:

A single electrode shaft with retractable hooks or tines arranged in a radial manner around the 

shaft. The hooks are housed in the shaft, and can be advanced forward from the tip of the shaft 

to release the tines. (LeVeen, 1997).  

The number of tines varies depending on design.

Figure 1.2 LeVeen multi-tine electrode (Boston Scientific, Natick, USA) and the StarBurst (AngioDynamics, 

Latham, NY, USA).

The volume of necrosis created with RF energy increases with longer tip exposures (Goldberg 

et al, 1995b). The limitation however is the cylindrical ablation zone created, rather than a 

spherical ablation zone.  A sphere is the most common shape for tumours. A method was 
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needed to increase the ablation zone size and optimize the geometry.

Rossi et al (Rossi et al, 1996) demonstrated increased ablation zones in tissue by repeatedly 

inserting RF electrodes into tissue to induce coagulation. This method was cumbersome and not 

clinically viable given the multiple passes through the organ and the potential for injuring 

adjacent organs. 

Goldberg et al (Goldberg et al, 1995a) studied the use of freestanding electrodes in an array. 

Experiments using ex vivo calf liver were carried out using 3cm arrays for 6 minutes at 70-90 

°C. The spacing of the probes, probe configuration and RF application methods were varied. 

The results of the studies demonstrated that simultaneous RF energy applied to probes placed no 

more than 1.5cm apart produced larger zones of ablation. At 1.5cm, arrays of 2 probes produced 

ablation zones of 3cm long axis and 1.5cm short axis. Three probes with similar spacing 

produced a short axis diameter of 3cm. Four probes placed in a cuboid configuration with 

similar spacing produced zones of 3.2cm.  Probes placed 2cm or more apart produced separate 

zones of ablation of 1.4cm, with incomplete necrosis between the ablated tissues (Goldberg et 

al, 1995a). In this configuration residual tumour would be left and recurrence inevitable. 

The former probe configurations produced coalescent coagulation volumes of greater than 

800% when compared to single probe use. Solbiati et al however highlighted the limitation of 

this technique, in 1997 (Solbiati et al, 1997b). Accurate placement of 3 or more separate probes 

into a clinical lesion proved technically challenging, time consuming and therefore not 

clinically viable. The research however was the precursor to a single probe with multiple 

hooked arrays or tines.

In 1997 LeVeen described an “umbrella” electrode, which consisted of a single shaft with 

retractable hooks or tines, arranged in a radial manner around the shaft. The hooks were housed 

in the shaft, and could be advanced forward from the tip of the shaft to release the tines 

(LeVeen, 1997). LeVeen applied 50-80W of RF energy for a total of 10-12 minutes to produce 

spherical lesions measuring up to 3.5cm. LeVeen’s umbrella electrode housed 4 needles, which 

needed rotating to allow adequate coagulation of all the tissue. This too, proved to be clinically 

difficult due to the charring of tissue and subsequent adherence to the needle tip. 

The charring prevented successful manipulation of the needle without causing a degree of 

trauma to the tissue. The needle, although not without its shortcomings, is the most popular 

treatment method for RFA in use today (Cho et al, 2006, Kelekis et al, 2006).  Multitine needles 

are currently manufactured by three commercial companies (Angiodynamics, Queensbury, NY, 

Boston Scientific, Natick, MA and MIRAS, Invatec, Roncadelle, Italy); the newer modified 

needle is a 14 to 17G hollow needle with up to 12 tines, thus negating the need for manipulation 

in tissue. Both needles, although claimed by manufacturers to be superior to one another, 

produce very similar clinical results (Gulesserian et al, 2006).
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A recent advancement in the standard multi-tine technique has been the use of perfusion multi-

tine needles. The multi-tine needle marketed by Angiodynamics (StarBurst Xli, Queensbury, 

NY, USA) utilizes hollow multi-tine needles to infuse small amounts of saline into the tissue 

from the ends of the needles at a rate of 0.1mL per second. The theory behind the design is to 

decrease the amount of tissue charring at the needle tips by direct cooling with saline. The direct 

infusion of saline through the open electrodes was thought to be a novel method of increasing 

the efficiency of the expandable RFA-needle device by maintaining the tissue impedance at 

about 80 ohms (Abitabile and Maurer, 2010). This would therefore aid in decreasing the 

charring at the electrodes, which is encountered with conventional RFA. In this way, higher 

energy could be delivered to he tissue and thus significantly decrease the treatment time. Each 

tine is supplied by a separate infusion tube, which supplies each alternate tine on the needle. 

The tube supplying each tine must be primed before use, a lengthy process that adds time to the 

procedure. A mechanical pump, attached to the RFA device, controls the infusion. Although 

there is no randomised control trial comparing this novel technique to any other standard 

ablation technique, Abitabile and Maurer treated 159 liver tumors (median diameter - 2.0cm) 

with RFA.  54 tumors were treated according to the manufacturer’s standard protocol 

(Angiodynamics, Queensbury, NY, USA) and 105 tumors according to this novel perfusion 

technique-using multi-tine perfused open electrodes (Starburst XLi, Angiodynamics, 

Queensbury, NY) without randomising the patients. 

Follow up of the patients was by contrast enhanced computer tomography (CE-CT) at regular 

intervals post procedure (27 months for standard group vs 23 months for the perfusion group).  

Data published for the times taken for completion of the procedure (18.9 min in the standard 

group to 8.0 min in the perfusion group) were significant; however there was no difference in 

rates of incomplete ablations (Abitabile and Maurer, 2010).
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Internally Cooled Electrodes:

Definition:

A conventional RF electrode welded into a dual-lumen 18-gauge insulated cannula. 

These chambers communicate at the tip of the electrode, allowing internal cooling of the probe 

tip with chilled saline (Goldberg et al, 1996b).

Goldberg et al (Goldberg et al, 1996b) described increasing the ablation zone using an internally 

cooled electrode. The internally cooled electrode is a conventional RF electrode welded into a 

dual-lumen 18-gauge insulated cannula. These chambers communicate at the tip of the 

electrode, allowing internal cooling of the probe tip with chilled saline. The saline perfuses the 

chambers of the insulated needle by means of an external pump, which ensures the saline is 

continually exchanged, preventing heating of the fluid, which would negate the benefit of tip 

cooling. This phenomenon causes “heat sink” at the needle tip – whereby some heat is drawn 

away by the chilled saline within the needle. As a result, heating of the tissues nearest the RF 

electrode is reduced, allowing greater energy deposition. Greater energy deposition increases 

tissue heating and coagulation further from the electrode without tissue charring. 

Figure 1.3 Cool-Tip ablation electrode (Covidien, Dublin, Ireland) demonstrating tubing (blue and orange) 

required for perfusion of the needle.
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Studies carried out by Goldberg et al (Goldberg et al, 1996b) evaluated the efficacy of needle 

tip cooling, taking into account the effects of procedure duration (3-60 min), RF output (3-

100W; 100-1200mA), electrode tip length (1-4cm) and tip temperatures (15-90 °C). The 

experiments were performed using ex vivo liver and an 18G electrode. The results demonstrated 

a significant increase in RF energy deposited in tissue. Tip cooling prevented charring with RF 

energy below 750mA, however with tip temperatures as low was 45-55 °C, charring was still 

observed above 750mA and RF current was not permitted above 1100mA due to the impedance 

in the tissue. Decreasing the RF current or treatment duration decreased the ablated tissue 

volume, as observed with conventional electrode RFA. 

Lorentzen (Lorentzen, 1996) applied RF to ex vivo calf liver using room temperature perfusate 

(20 °C). Without using cooling, Lorentzen showed a rapid decrease in temperature from the 

electrode so that cytotoxic temperatures (>50 °C) were only observed up to 7mm from the 

needle tip at 420mA. Internal cooling however showed temperatures increasing to 90 °C 5mm 

from the needle tip using 750mA of RF current and decreased to 50 °C at 16mm. Coagulation 

diameters were consistently 14mm and 30mm for uncooled and cooled needle experiments 

respectively. Further experiments by Lorentzen et al demonstrated thermal equilibrium could 

only be reached in the larger volume of ablated liver after 36 minutes. The findings by Goldberg 

et al in 1996 were in keeping with the need for longer durations of treatment to achieve the 

greatest ablation diameters.

Freiser (Frieser et al, 2004) applied current to an electrode continuously perfused with 0.9, 5.85 

or 10% NaCl solution. The results showed no correlation between lesion diameter and saline 

concentration. Perfusion rate rather than content of the solution determined ablation size. 

Lee et al demonstrated increased ablation zone size using a perfused internally cooled electrode

compared to standard cooled electrodes, with larger ablation zones created using 14.6% NaCl 

compared to 0.9% NaCl, which highlights the unpredictability of the concentration of saline in 

determining ablation zone size (Lee et al, 2006).  

The lack of predictable correlation between ex vivo and in vivo ablation zones is well 

recognised; the addition of perfusion with differing fluid concentrations further compound the 

lack of predictability and reproducibility. There have been no studies to date demonstrating 

reproducible and reliable correlation between ablation zones obtained using a perfusate at 

varying saline concentrations.
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Cluster RF.

Definition:

Radiofrequency energy applied to a cluster of three closely placed internally cooled electrodes 

using a monopolar technique of ablation (de Baere et al, 2001).

Figure 1.4 Single electrode Cool-Tip needle (top) and a cluster Cool-Tip electrode (bottom)

This technique offers the potential of large volume coagulation necrosis for tumor ablation 

therapy (de Baere et al, 2001). 

Goldberg et al (Goldberg et al, 1998) described using electrodes, placed no more than 1cm 

apart, in order to create more spherical ablation zones than those seen in ablations using three 

electrodes placed 2cm or more apart.  This may appear contradictory, given the evidence of 

larger ablation zones with multiple needles; however the theory of having electrodes 1cm apart 

is that this close proximity creates a single RF field with the 3 electrodes significantly larger 

than individual probes. Using distances of 2cm or more creates an RF field around each 

electrode, rather than a confluent RF field (Goldberg and Gazelle, 2001). Goldberg used a 

pulsed monopolar technique in order to create the confluent ablation zones in this paper, which 

was responsible, somewhat for the larger individual ablation zones achieved with 2cm spacing.

Goldberg (Goldberg et al, 1998) applied this cluster technique to 10 patients with a solitary 

intra-hepatic metastasis ranging in size from 4.2-7cm. Each was treated for 12-15 min with RF 

energy ranging from 1600-1950mA. Post ablation imaging revealed coagulation diameters of 

5.3cm with a minimum short axis of 4.2cm. The overall shape of the coagulation zone was 

closer to the shape of the tumor i.e. spherical than to that of a cylinder. The shape of the 

tumours is an important factor in developing effective ablation protocols for large tumors (Chen 

et al, 2004). In some cases involving a system of ensuring overlapping ablations using a five-

sided prism model  (Chen et al, 2004) or computer modeling to enhance the ablation (Liu et al, 

2007).
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Pulsed RF.

Definition:

High-energy monopolar RF deposition alternated by periods of low energy monopolar RF 

depending on the impedance of the ablated tissue. If correct parameters and timing are used, 

periods of low energy RF allow cooling of tissue adjacent to the electrode without decreasing 

the heat significantly in the deeper tissue (Goldberg et al, 1999). 

Current is applied in a continuous fashion at pre-determined parameters until the first time that 

impedance increases above a predetermined level. The RF is then altered to a pulsed algorithm 

to allow tissue cooling adjacent to the needle for a period of time, after which a higher current is 

again applied to a level. The cycle is repeated until the impedance rises above 900 ohms and the 

RF is switched off. The peak current can be applied in two ways: (1) a constant peak current can 

be used, where regardless of impedance in tissue, a constant energy is delivered. (2) Variable

current strategies, where current is reduced to a minimum for a period after an increase in tissue 

impedance. Peak current can also be successively reduced if the preceding cycle of high current 

cannot be maintained for the specified minimum duration (Goldberg et al, 1999). 

Goldberg et al (Goldberg et al, 1999) conducted experiments using a high-current, 500-kHz, 

monopolar RF generator capable of 2,150 mA (150 watts) output. Internally cooled RF 

electrodes were used, with RF currents ranging from 750-2,150 mA. When the desired current 

could not be applied without an elevation in impedance, the generator automatically switched to 

a pulsed-RF technique.  

Goldberg then applied this pulsed technique to a cluster of 3 internally cooled electrodes at a 

peak current of 2000mA, producing ablation zones of 4cm (Goldberg et al, 1999).

Kettenbach et al (Kettenbach et al, 2003) performed saline-enhanced and impedance-controlled 

radiofrequency ablation cycles on twenty-six patients with fifteen hepatocellular carcinomas 

and thirty-three hepatic metastases (maximum diameter ≤ 8.6 cm) under general anaesthetic. 

Results showed increasing ablation volumes with a greater number of radiofrequency 

applications.
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Improving tissue heat conduction:

Saline Infusion.

Definition:

Saline is infused into the tissue via a hollow radiofrequency electrode at a predetermined 

infusion rate or bolus infusion in order to increase the surface area of the electrode and the 

conductivity of tissue by creating high ion concentrations at the electrode tip (Goldberg et al, 

2001). 

Improving tissue heat conduction is an important area of research for improving ablation zones 

in tissue. As discussed in earlier text, tissue heating, vaporization and charring adjacent to the 

needle limits conduction of heat through deeper tissues and is the major factor limiting ablation 

zone diameter.

Improving or maintaining the hydration of tissue is a method of increasing the ablation zone. 

The conductivity of normal saline is 12 to 15 times higher than that of tissues. In this way the 

interstitial electrolyte perfusion spreads the applied RF current further into the tissue away from 

the surface of the electrode, allowing a greater amount of RF energy to be delivered to the tissue 

without reaching the critical current density and avoiding desiccation and char formation at the 

electrode–tissue interface (Goldberg et al, 2001, Burdio et al, 2003a, Burdio et al, 2003b). A 

further possible reason put forward by Goldberg (Goldberg et al, 2001) is that the infusion of 

fluid during RF application improves the thermal conduction within the tissues by a more 

efficient rapid and effective method of heat convection over a larger tissue volume. The authors 

continued to state that the exact mechanisms responsible for the increase in coagulation had not 

been well characterized. 

Livraghi (Livraghi et al, 1997) performed experiments using a 100W, 500kHz monopolar 

generator during continuous saline infusion. The modified RF electrode was manufactured with 

three terminal side holes, which were used for saline infusion. The needles were insulated with 

a 0.1-mm layer of polyvinyl chloride for all but the distal 3 cm. 0.9% sterile saline was infused 

via a infusion pump at a constant rate of 1 mL/min. Lesion size increased with increasing saline 

volumes up to a maximum of 10 mL, above which no further increase in lesion size was 

observed. Maximum lesion diameter measured 1.4 cm in ex vivo liver, and 1.2 cm in in vivo

porcine liver. Without saline pretreatment, lesion diameters were 1.0 cm and 0.8 cm 

respectively. In his studies, the use of hypertonic saline (5%) did not further increase lesion 

diameter or length.
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Curley and Hamilton (Curley and Hamilton, 1997) infused up to 10 mL/min of normal saline in 

ex vivo liver for 4 minutes during RF application to increase the coagulation diameter from 1.4 

to 2.6 cm. Miao et al (Miao et al, 1997) infused 1 mL/min of 5.0% hypertonic NaCl solution in 

ex vivo liver for 12 minutes during RF application and achieved tissue coagulation of 5.5 cm in 

diameter.

Ahmed and Lobo (Ahmed et al, 2002, Lobo et al, 2004) have performed saline pretreatment. 

Before the application of RF energy, 6 mL of NaCl at varying concentrations (18%, 24%, or 

36%) was injected into the liver parenchyma surrounding the electrode using a 25-gauge needle. 

The control tumors (without NaCl injection) measured 3.1 cm, surrounded by viable, well-

perfused tumour. 36% NaCl alone produced 2.7cm of patchy necrosis. These findings are in 

contrast to the observations made by Livraghi et al (Livraghi et al, 1997), where no difference 

was observed when using 5% as opposed to 0.9% saline. This observation was described by 

Aube in 2007 (Aube et al, 2007), where continuous infusions of saline concentrations between 

0.9% and 25% did not produce any significant differences in ablation zone sizes.

Lobo et al (Lobo et al, 2004) demonstrated NaCl volume and concentration had significant 

effects on RF-generated heating of agar phantoms. Volumes ranging from 1 - 38mL and nine 

concentrations ranging from 0 - 35% were used. The effect of altered electrical conductivity 

was studied by varying the NaCl volume and the NaCl concentration. The mean maximum 

temperature (91.4 °C), was reached with 3.5 mL of 10% NaCl. This was significantly higher 

than the mean temperature reached in phantoms containing 0% NaCl (40.3 °C). Heat increases 

to the maximum temperature correlated strongly with the deposited RF energy, which correlates 

in theory to a larger ablation zone. 

Boehm et al (Boehm et al, 2002) compared ablation zone sizes in an aggressive rat tumour 

model using internally cooled electrodes. 13 tumors in seven animals were treated with saline 

enhancement (0.5 mL/min). No statistical difference in efficacy was detected.

Although saline infusion has been shown to increase the ablation zone, the size of the ablation 

zone is potentially unpredictable at low volume injections and becomes technically challenging 

in terms of adequate volume injection at higher volumes (Goldberg et al, 2001). Ahmed et al 

(Ahmed et al, 2002) demonstrated a larger ablation zone using saline infusion; however these 

tumors were superficial, and artificially induced tumors in subcutaneous tissue. The results of 

the research conducted by Goldberg et al (Goldberg et al, 2001) demonstrated the 

unpredictability and sometimes non-viable clinical application of saline infusion. 

Lee et al (Lee et al, 2004a) combined acetic acid and hypertonic saline with similar outcome 

measures to Goldberg’s paper in 2001; however the acetic acid-hypertonic saline combination 

caused significant peritonitis at high concentrations as the solution leaked around the needle and 

into the peritoneal cavity owing to increased tissue turgor.
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Adjuvant techniques for increased Tumour Ablation:

Intratumoral Chemotherapy:

Definition:

The combined application of chemotherapy before or after radiofrequency ablation, in order to 

increase the tumoricidal effects of both modalities (Goldberg et al, 2001).

Recent advances in delivery of chemotherapeutic agents include the development of liposomal 

carriers for compounds such as doxorubicin. Liposome particles are completely biocompatible, 

cause very little toxic or antigenic reaction and are biologically inert. Water-soluble drugs can 

be trapped in the inner aqueous compartment, whereas lipophilic compounds may be 

incorporated into the liposomal lipid membrane. Incorporation into liposomes protects the drug 

from the destructive environment in-vivo. Goldberg et al (Goldberg et al, 2001) postulated that 

combining thermal ablation with tumoricidal therapies such as chemotherapy might be 

beneficial in increasing the amount of tumor destruction and in reducing the local rate of tumor 

recurrence. 

Rats were impregnated with tumour and then treated with either 

(a) conventional monopolar radiofrequency ablation alone: 

(b) direct intratumoral doxorubicin injection; 

(c) combined therapy (doxorubicin injection immediately followed by radiofrequency ablation; 

(d) Radiofrequency ablation and injection of 250 mL of distilled water;

(e) no treatment. 

No statistical difference in coagulation zone size was found between tumours treated with RF 

alone and RF with water. Larger ablation zones were produced when RF was combined with 

doxorubicin. The coagulation zone size was found to be dependant on concentration and timing 

of doxorubicin administration. The largest coagulation zones observed were with doxorubicin 

administered within 30 minutes of RF ablation. Goldberg observed histological changes in cells 

adjacent to the ablated tissue from 0-48 hrs after ablation had occurred. Cell death continued 

after ablation had ceased, where this phenomenon had not been seen and was not known to 

occur with radiofrequency ablation alone (Goldberg et al, 2001). In comparison with the 

pathologic findings with RF ablation alone, conclusive histopathologic coagulative necrosis was 

observed in a zone adjacent to the coagulated tissue, termed the expanded treatment zone. This 

difference in morphologic appearance, coupled with the increased time to observe changes 

compatible with cell death after therapy, suggested the thermal damage from combined RF 
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ablation and chemotherapy produces cytotoxic effects through mechanisms that are different 

from the mechanisms of the thermal damage from RF ablation alone.

Kruskal (Kruskal et al, 2001) concurred with this hypothesis, when he, in the same year 

conducted experiments on live mice livers. Kruskal described five discreet zones following RF 

ablation extending outwards from the electrode surface: 

(1) tissue coagulation, 

(2) cellular edema/necrosis 

(3) sinusoidal stasis

(4) parenchymal shunting

(5) normal liver tissue.

The zone of sinusoidal stasis occurred at temperatures between 40 and 50 °C, corresponding to 

the hyperemic zone on histologic analysis described in living ablated tissue (Goldberg et al, 

2005a, Goldberg et al, 2005b).

Alterations in permeability and phagocytic activity were first identified at 43°C, where tip 

temperatures higher than 55 °C always produce local endothelial leakiness to carbon 

microparticles and inhibit phagocytic activity. It is this hyperaemic zone, which occurs at 

temperatures between 43 and 50 °C that the potential for adjuvant therapies lies. The sinusoidal 

stasis and increased endothelial permeability were thought to be potential routes for targeted 

adjuvant cytotoxic therapy such as chemotherapy to increase cell death and decrease recurrence 

at the periphery of the ablated tissue.

Monsky (Monsky et al, 2002) supported the hypothesis of the sinusoidal stasis and increased 

endothelial permeability being a route of entry for chemotherapeutic drugs. Monsky et al 

conducted experiments using an adenocarcinoma breast model in rats. Intravenous liposomal 

doxorubicin or intravenous free unencapsulated doxorubicin was administered immediately 

following RF ablation. The results showed mean intratumoral doxorubicin concentration was 

5.6g/g and 1.0 g/g in tumours treated with and without RF ablation respectively. A mean 7.1-

fold increase in intratumoral doxorubicin accumulation thus followed RF ablation compared 

with the amount without RF pretreatment (Monsky et al, 2002).

This accumulation of liposomal doxorubicin was found in a peripheral rim of tumor adjacent to 

the zone of coagulation, zone 3 as described by Kruskal (Kruskal et al, 2001). Ahmed et al 

(Ahmed et al, 2003a) proved the same concept of increased intratumoral doxorubicin 

concentrations with pretreatment RF (Ahmed and Goldberg, 2004).

Goldberg (Goldberg et al, 2002) demonstrated similar findings in clinical trials. Focal hepatic 

tumors were treated with internally cooled radiofrequency ablation. In addition to undergoing 

radiofrequency ablation, half of the patients received IV doxorubicin in a long-circulating 
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stealth liposome carrier 24 hr before ablation. Contrast-enhanced helical CT was performed 

immediately after radiofrequency ablation and 2–4 weeks after ablation.

For tumors treated with radiofrequency alone, the volume of the lesion had decreased by up to 

24% of the initial volume at 2–4 weeks after ablation. By comparison, increased tumor 

destruction at 2–4 weeks after ablation was seen in the combination group. Goldberg et al 

attributed the peripheral distribution of increased treatment effect to mechanisms such as the 

reversible damage to cellular machinery such as the multidrug-resistant membrane efflux pump 

that is responsible for actively excluding doxorubicin from the cells.

Ahmed and D’Ippolito (Ahmed et al, 2003a, D'Ippolito et al, 2003) conducted further studies on 

the effects of adjuvant chemotherapy. The results showed significantly improved survival for 

the animals with combined liposomal doxorubicin and RF ablation.

This evidence suggests that there are several mechanisms by which combination therapy could 

potentially increase tumor destruction. Latterly there has been much debate as to how to best 

administer the combination of RF ablation and transarterial chemoembolisation (TACE)

(Salman et al, 2002, Maluccio et al, 2006, Ruutiainen et al, 2007). TACE involves the selective 

catheterization of arteries supplying the tumour followed by the intra-arterial administration of 

cytotoxics. One school of thought advocates the administration of chemoembolisation first to 

minimize blood flow before RF ablation and to create higher drug concentrations present at the 

time of heating. A further alternative hypothesis is the ablation of as much tumour as possible, 

followed by concentrated deposition of chemoembolic material in the peri-ablational zone. 

A third school questions the relative benefit of chemotherapy at all. Mallucio suggests that 

bland embolisation alone is sufficient to increase ablation efficacy (Maluccio et al, 2006).

The importance and synergy of the chemotherapeutic regimen is well known, however the 

reason for chemoembolisation followed by RF ablation being more effective is not. The 

reduction of tumor blood flow following chemoembolisation, combined with the effect of 

hyperthermia and local chemotherapy was thought to be the reason (Mostafa et al, 2008), 

however sensitizing the tumor cells with chemotherapy prior to ablation was another hypothesis 

put forward.
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Takaki et al (Takaki et al, 2007) published results of combined chemoembolisation and 

radiofrequency ablation for treatment of HCC. The results suggested RF ablation combined 

with chemoembolisation increased the initial therapeutic response and reduced local tumor 

progression in HCC lesions as large as 5 cm in maximum diameter compared with RF ablation 

alone. The initial therapeutic response to RF ablation alone decreased as tumor size increased. 

A recent randomized control trial by Cheng et al (Cheng et al, 2008) treating HCCs larger than 

3cm showed TACE and RFA in combination to be superior to TACE alone or RFA alone with 

reference to the response rates at 6 months and the overall survival. 

The size of the particles for chemotherapeutic delivery has also been evaluated in determining 

the effect of TACE and RFA (Ahmed et al, 2005b). The results from this study demonstrated 

that not only the nanoparticle size but also the circulation time of the chemotherapeutic agent 

and chemotherapeutic agent itself could influence the intratumoral drug accumulation and 

consequently the size of tissue coagulation. 

The unpredictability of direct injection of any cytotoxic agent leaves the patient at high risk of 

potential catastrophic complications (Seki et al, 1998) as demonstrated recently (Chiu et al, 

2009). Although extremely rare, massive hepatic infarction described by Chiu et al illustrates a 

significant morbidity risk for an otherwise relatively safe, minimally invasive procedure.
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Bimodal Electric Tissue Ablation.

History.

Bimodal Electric Tissue Ablation (BETA) was first performed by Dr John Cockburn, a 

consultant radiologist at the Norfolk and Norwich University Hospital in a home laboratory in 

Norfolk, United Kingdom in 2005. The idea to add cathodic direct current (DC) to alternating 

current (AC) ablation occurred to him following a discussion with his father regarding DC 

electrolysis. On studying papers on DC ablation by Norderstrom (Nordenstrom, 1983) and 

Berendson (Berendson and Simonsson, 1994, Berendson and Olsson, 1998), in which the 

authors describe pale swelling of the cathodic tissue, Dr Cockburn theorised that the increased 

volume of tissue was a consequence of increased hydration. This theory was furthermore 

strengthened by authors describing desiccation of tissue at the anode during DC ablation 

(Samuelsson and Jonsson, 1980). Dr Cockburn believed opposite hydration effects were 

occurring at the cathode. Accordingly, as standard radiofrequency ablation (RFA) causes 

desiccation of tissue it would be reasonable to test the hypothesis that adding cathodic DC to the 

ablation needle circuit would cause a larger ablation zone to be formed.

In home experiments conducted in January 2005, a commercially available AC-DC transformer 

(240V AC – variable voltages from 1.5V-12V, Maplin’s Electronics, United Kingdom) was 

used to construct a circuit whereby a commercially available RFA device (RF3000, Boston 

Scientific, Natick, MA, USA) was connected in parallel to a DC circuit. A grounding pad from 

a diathermy machine was used to line a plastic dish and a tissue sample of lamb liver was 

ablated.

The needle electrode was a truncated multitine needle (Angiodynamics, Queensbury, NY, USA) 

with the tines removed. Electrical connections were made using crocodile clips. The RF3000 

was set to deliver 20W and each ablation was allowed to proceed until roll-off. In an attempt to 

prevent alternating current from destroying the DC circuit, a 1mH inductor was inserted. 

Multiple further experiments were performed over a period of months in the laboratory in 

Coltishall, Norfolk, UK. During these experiments it was found that larger ablation zones were 

created when 9V of cathodic DC was delivered to the tissue. Furthermore, pre-treating the tissue 

with cathodic DC for a period of minutes prior to starting the RF current appeared to create

even larger ablation zones.

The early findings by Dr Cockburn were discussed with Mr. Simon Wemyss-Holden, a 

consultant hepatobiliary surgeon, who had experience of DC ablation and animal experiments 

(Wemyss-Holden et al, 2000a, Wemyss-Holden et al, 2000b, Wemyss-Holden et al, 2002, 

Wemyss-Holden et al, 2003).
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It was decided that BETA should be subjected to scientific rigour in a series of animal 

experiments. Professor Guy Maddern was approached and an agreement was reached regarding 

the use the University of Adelaide animal research facility at the Queen Elizabeth Hospital in 

South Australia. Part funding for this work was gained from an Education Award awarded to Dr 

Cockburn and Mr. Wemyss-Holden by the Royal College of Radiologists in the United 

Kingdom. Dr Cockburn funded the remainder of the research personally (Cockburn et al, 2007).

There was still a need for a machine independent of feedback algorithms and Dr Cockburn 

approached the Department of Engineering at Cambridge University for assistance. Mr. Davor 

Dukic constructed an ablation machine according to Dr Cockburn’s specifications – broadly 

based on the RF3000 ablation device.

The output of the device, termed Mark I, was insufficient to ablate tissue and Dr Cockburn and 

Mr. Wemyss-Holden travelled to Australia with an RF3000 and the parallel DC circuitry to 

perform the in vivo experiments in October 2006.

Over a 2-week period, 144 ablations were performed in 12 Large White X Duroc pigs in 

compliance with the Animal Research and Ethics Committee at the University of Adelaide. The 

data was analysed by an independent statistics company affiliated to the University of Adelaide.

Using an ANOVA test, they demonstrated that BETA produced larger ablation zones compared 

to standard RFA (p<0.0001) (Cockburn et al, 2007). Further experiments were conducted at the 

animal research facility in Adelaide using the RF3000 machine under the indirect supervision of 

Dr Cockburn and Mr. Wemyss-Holden, who formulated the design and co-authored, reviewed 

and revised the peer reviewed publications (Dobbins et al, 2008, Dobbins et al, 2008a, Dobbins 

et al, 2008b). In 2006/7 Health Enterprise East (now NHS Innovations East) were approached in 

a bid to fund further experiments. BETA won the Health Enterprise East Innovation award in 

2007 and went on to claim first prize in the medical devices category of the National NHS 

Innovation Awards in 2007.

In September 2007, Dr Cockburn accepted a personal invitation from Professor S Nahum 

Goldberg to evaluate BETA in his ablation research facility at Harvard University (Boston, MA, 

USA). These experiments (unpublished data) showed BETA did not augment the effect of 

internally cooled electrodes. The effect of cooling an electrode has been discussed earlier in this 

chapter. The experiments did highlight the need for a fixed mA machine with which to test 

BETA as opposed to adding DC to a commercially available RFA device with built-in 

impedance feedback algorithms as had been the case with all BETA research until then.

In 2008 a fixed mA BETA machine, labeled Mark II was manufactured by EG Technology in 

Cambridge, United Kingdom. This machine is the mainstay of all the experiments described 

throughout this thesis and will be described in detail in Chapter 2 of this thesis.
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Figure 1.5 Clockwise from top left, laboratory set-up, BETA Mark II machine, DC supply, and digital/analog 

convertor.

BETA proved that larger ablation zones could be achieved using a simple method of increasing 

the ablation zone.

BETA does not require the complex circuitry described in bipolar and multi-polar ablation 

devices earlier in this chapter. The lack of any adjunct measure in an attempt to increase the 

ablation zone such as saline or alcohol injection, or chemotherapy provided BETA with a 

unique technological advantage in the field of thermal ablation. BETA utilises a Monopolar 

RFA circuit with the addition of a parallel DC circuit. The initial results obtained in the early ex 

vivo experiments and the animal research demonstrated the technique to be robust.

Not altering the RFA circuit, but merely adding a simple parallel circuit avoided the limitations 

of each of the techniques described previously in the chapter.

Importantly, as highlighted, a machine without impedance feedback and a fixed mA delivery 

was needed in order to test the variability and robustness of BETA and to prove the early 

theories of Dr Cockburn regarding the increased hydration.
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This required a well constructed ex vivo experimental design and a complimentary in vivo

animal study.

This thesis describes in detail the methods and results of the experimental design.

In each chapter, the background is discussed in detail, together with the results of each 

experiment conducted. Each chapter is outlined by a specific aim, which demonstrates the 

attributes of this new technology. In the later chapters, the biochemical effects and safety of 

BETA are demonstrated and discussed in detail. 

Before this research is described, it is important to understand and be familiar with competing 

technologies and their risk/benefit profile, in order to appreciate each study design and the 

rationale behind the study design.

The following are competing technologies in the field of ablation. These encompass thermal 

ablation (heat and cold), chemical ablation and irreversible electroporation.
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Microwave Ablation:

Definition:

The application of microwave radiation in the region of the electromagnetic spectrum using 

electromagnetic frequencies from 900 to 2450 MHz in order to produce thermal coagulation in 

tissue (Hamazoe et al, 1995).

The microwave tissue coagulator was developed in 1979 by Tabuse to aid in the transection of 

hepatic parenchyma during liver resection. It proved to be an excellent device for aiding in 

hemostasis. Microwave ablation, a recent development in the field of tumour ablation was 

described in 1995 by Hamazoe (Hamazoe et al, 1995) for the treatment of inoperable 

Hepatocellular Carcinoma (HCC).

Microwave radiation refers to the region of the electromagnetic spectrum with frequencies from 

900 to 2450 MHz (Carrafiello et al, 2008, Hope et al, 2009, Sun et al, 2009, Lubner et al, 2010). 

This type of radiation lies between infrared radiation and radio waves. Water molecules (H20) 

are polar and asymmetric. Electromagnetic radiation has electric charge, which flips between 

positive and negative. Microwave radiation oscillating at 9.2 x 108 Hz (920MHz), causes the 

charge to change signs nearly 2 billion times a second. With higher frequency microwave 

devices (2.5GHz), this is increased to almost 6 billion times a second, thus in theory more 

energy is deposited in the surrounding tissue.  Microwave ablation (MWA) offers many of the 

benefits of RF ablation and has several other potential advantages that may increase its 

effectiveness in the treatment of tumours (Brace et al, 2005, Brace et al, 2007a, Brace et al, 

2007b). The potential benefits of microwave technology include consistently higher 

intratumoral temperatures and faster ablation times. Compared with conventional monopolar 

radiofrequency ablation using a single needle, microwave ablation is thought to produce larger 

ablation zones (Hines-Peralta et al, 2006, Yu et al, 2010). In vivo animal and clinical studies 

however have not substantiated this. Xu and Wright both showed no significant difference in 

ablation zone size when comparing microwave and RF ablation therapies (Xu et al, 2004, 

Wright et al, 2005). Microwave therapy is thought to have the added flexibility of using 

multiple applicators and is able to heat cystic masses optimally. Microwave ablation does not 

use current for energy deposition as does RF energy and therefore does not require the 

placement of grounding pads. Recent studies have shown MWA to have a similar safety profile 

to RFA (Liang et al, 2009). Recently published data by Liang et al described a 3.6% 

complication rate in 1136 patients. Complications ranged from liver abscess and empyema, to 

pleural effusions requiring chest drain insertion. 
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The inflammatory profile of microwave has been demonstrated to be superior to RFA (Ahmad 

et al, 2010), however the study did not highlight a number of significant variables, including 

length of anaesthetic.

A further potential benefit of MW ablation was thought to be less influence by the “heat-sink” 

effect of adjacent blood vessels due to the mechanism of energy delivery. Although a theoretical 

benefit, this does not seem to have translated into larger ablation zones in practice (Wright et al, 

2005). Historically, the majority of microwave devices available were not designed for 

percutaneous use. The microwave antennae are too large to be placed safely into the tumour, 

necessitating an open approach. Until recently, this has been a major limiting factor in 

microwave ablation.  Seki et al (Seki et al, 1999) described results using microwave ablation 

with a custom designed antenna in 15 patients. Although the follow up was short (<37 months) 

and the tumour size small (< 3cm) the study did show microwave ablation to be a viable option 

for percutaneous treatment, however the results were no better than using RF energy. Brace et al 

described lesion diameters of 3.8cm using a 17G antenna (Brace et al, 2005), however due to 

the extremely high temperatures produced in the microwave cord delivery system, the needle 

requires continuous cooling via a pump in order to reduce the temperatures to an acceptable 

level (Brace et al, 2009). This extreme and potentially hazardous heating of the microwave 

antennae cord poses significant risks of additional morbidity to the patient or theatre staff due to 

inadvertent skin burns resulting from touching the cord, or the cord resting against the patient 

during the procedure (Liang et al, 2009).

Shibata et al (Shibata et al, 2000) described survival rates of patients after open microwave 

ablation, which were not significantly better than RF survival rates, but the patients were 

subjected to significantly more invasive procedures (all required laparotomy for surgical access 

to the liver). Xu et al (Xu et al, 2004) conducted a retrospective data analysis of 97 patients with 

HCC treated over 4 years with percutaneous RF or microwave ablation, with no significant 

difference in results. Similar findings were published by Wright et al (Wright et al, 2005) a year 

later showing no significant difference in ablation zone size when compared with RF ablation in 

hepatic porcine models. Hines-Peralta et al (Hines-Peralta et al, 2006) conducted ex vivo and in 

vivo experiments using a 2.4GHz microwave machine and a surgical applicator, producing large 

ablation zones. For ex vivo liver, maximum short-axis coagulation diameter achieved was 7.6 

cm (150W, 20 minutes). The in vivo studies produced short axis coagulation diameters of 5.7cm 

(100W, 8 minutes). The unusual finding in this study was the significantly larger ablation zone 

in vivo than the corresponding result for ex vivo liver following microwave ablation (150W of 

power for 8 mins). This has not been described before in the literature and the reason for the 

findings are unclear. Hines-Peralta et al (Hines-Peralta et al, 2006) attributed these findings in 

part to the lack of influence of the heat sink effect of perfused tissue to ablation zone size. 

Electrochemical composition of the tissue was thought to be another contributing factor. 
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Although promising, the study used a microwave antenna produced by the manufacturer 

(Microsulis, Denmeade Hampshire, England) which is not for percutaneous use and thus limits 

the potential use and impact of the results. The lack of the heat sink effect seen in microwave 

ablation was postulated as the reason for complete histological destruction of tumour cells seen 

with microwave ablation, compared to RF and cryoablation (Bhardwaj et al, 2009); this has 

never been proved conclusively.

Sun et al (Sun et al, 2009) compared ablation zones of two cooled shaft microwave antennae 

(KY2000-915 and KY2000-2,450, Kangyou Medical, Beijing, China). The machines operated 

at 915 MHz and 2,45 GHz respectively. Studies were carried out in in vivo porcine livers. The 

results of the study showed larger ablation zones at all power levels (40W, 60W and 80W) for 

short axis diameter measurements. The results are the first showing a 915 MHz cooled-shaft 

microwave antenna increasing the ablation zone when compared to the 2,4 GHz antennae. 

These promising results may be due to the following reasons according to the authors. (1) The 

wavelength of 915 MHz microwaves is longer than that of 2,450 MHz microwaves. This leads 

to deeper penetration into the tumour and tissues. (2) The energy attenuation of 915 MHz 

microwaves is less than that of 2,450 MHz microwaves; this means that more electromagnetic 

energy can be converted to heat energy. This translates into larger and deeper heat deposition 

and larger ablation zones (Gao et al, 2010). Shaft cooling allows a higher power output (100 W) 

to be used for tumor ablation without shaft overheating. More microwave energy can thus be 

delivered into tumor tissue. Despite the promising results by the authors, the largest ablation 

zone created with 80W of energy was 3.8cm. Kuang et al (Kuang et al, 2007) showed larger 

ablation zones using a cooled shaft antenna with a 2,4 GHz microwave machine, again no larger 

than 3.8cm.

Five studies (Marlow et al, 2006) and one randomised control trial (Shibata et al, 2002) have 

compared microwave ablation and RFA.

RFA tumours had a more complete ablation at follow-up (96%) compared to the tumours 

treated with microwave ablation (89%). These results can in part be attributed to a larger area of 

ablation achieved with RFA than with MCT. The lower rate of complete ablation in microwave 

tumours has led to a higher rate of recurrence in comparison to those treated by RFA. 

The first clinical trial using microwave ablation in the North America was conducted by Iannitti 

et al (Iannitti et al, 2007). In this particular study single and clustered antennae ablation 

volumes were measured in terms of size. The clustered ablation volumes were significantly 

larger than the volumes of the single antennae, a finding that has been noted in RFA studies.

Recently, a study (Hompes et al, 2010) comparing microwave and RF ablation with matched 

hepatic tumours concluded microwave ablation to produce highly variable and suboptimal 

ablation zones, again raising doubt as to the effectiveness of this thermal ablation technology.
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Laser Ablation

Definition:

The induction of tissue damage by heat photocoagulation. An infrared light wavelength of 

between 800 and 1100 nm is applied to tissue by means of an optical fibre (Amin et al, 1993).

Since laser photocoagulation for tumor destruction was introduced in 1983, a Neodyium 

Yttrium-Aluminum-Garnet (Nd-YAG) laser has been successfully employed to treat a wide 

range of liver malignancies by using two procedures: (1) laser-induced thermotherapy, which 

uses a single cannulation needle and (2) laser ablation (LA), where laser light is delivered to the 

tumour with multiple bare-tip 300-nm fibers inserted into thin needles. 

Nd-YAG (wavelength of 1,064 nm) and diode (wavelength of 800–980 nm) lasers are most

commonly used. Laser light delivered into tissue is absorbed by tissue-specific chromophores 

and photon energy is transferred into heat to produce thermal injury (Amin et al, 1993, van 

Hillegersberg, 1997). Tumours are thus destroyed by direct heating, using low-power laser light 

energy, with the tip of the laser fibres placed directly into the tumour, termed contact mode laser 

therapy (Izzo, 2003). Laser ablation has been shown to be effective in treating HCCs smaller 

than 4cm (Vogel et al, 1998, Pacella et al, 2008, Pompili et al, 2010). The technique, like all the 

thermal ablation therapies has a relatively low complication rate (Amin et al, 1993, Vogl et al, 

1995, Vogl et al, 2004, Vogl et al, 2008). Amin et al (Amin et al, 1993a) compared laser 

ablation to ethanol ablation. Laser-induced necrosis greater than 50% of the tumour volume was 

achieved in 87% of tumours and complete necrosis was found in 52% of tumours. None of the 

tumours, however showed complete ablation and almost 50% showed no change following laser 

ablation.

A further study of laser ablation for liver metastases by Amin in the same year (Amin et al, 

1993b) demonstrated similar findings. Tumour necrosis of greater than 50% was seen in 82% of 

the tumours. 100% necrosis was achieved in 38%. Metastases smaller than 4cm in diameter 

were treated more effectively and required fewer treatments than tumours larger than 4 cm.

Lees and Gillams 1999 compared RFA using a single or triple cluster electrode to laser ablation. 

125 nodules were treated with RFA and 49 with laser ablation. The RFA treatment times were

shorter (60 mins) than the laser ablation times (90 mins). RFA achieved 92% complete ablation 

using the single electrode. Catalano (Catalano et al, 2001) demonstrated an increase in diameter 

of 68% in nodules treated with laser ablation, compared to 58% for RFA (Marlow et al, 2006). 

A major limitation of laser ablation has been the incomplete ablation rate of tumours. Dick et al 

(Dick et al, 2003) quoted an ablation rate of 50% of tumour volume.
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Arienti (Arienti et al, 2008) published a multi-centre analysis on the rate and type of 

complication associated with laser ablation. Major complications were associated with using 

higher energies and the application of the technique in high-risk locations. The study 

recommended using laser ablation for small HCCs rather than larger tumours.

Rosenberg (Rosenberg et al, 2009) treated sixty-four patients with metastasis to the lung. The 

average tumor size was 2.0 cm and fewer than less than half of the patients (31 of 64) were 

treated completely.

Pompili et al (Pompili et al, 2010) performed laser ablation on 9 patients awaiting liver 

transplantation for HCC. A 25% recurrence rate occurred during the waiting time to liver 

transplantation. Complete necrosis was only found in 66% of the lesions, with partial necrosis 

(50-99%) in 25% and partial necrosis (1-49%) in a single nodule.

Puls et al (Puls et al, 2009) treated 180 liver metastases with laser ablation and achieved an 

effectiveness rate 85.6% demonstrated on MRI 24–48 hours after treatment. The local tumour 

progression rate was 10% after 6 months. The vast majority of patients had tumour volumes of 

less than 5cm3, which again reinforced laser ablation for small hepatic lesions.

The possible limitation of ablation zone size demonstrated using laser ablation has encouraged 

researchers to experiment with combination therapies (TACE) as has been done in the 

development of RFA. Maataoui combined Mitomycin embolisation with laser ablation in rat 

model and demonstrated reduced tumour growth using this combined therapy opposed to laser 

ablation or TACE alone (Maataoui et al, 2005). This has not translated into larger animal trials 

or clinical trials, which may be due to the inherent limited clinical application of laser ablation

for treating liver tumours.
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Cryoablation:

Definition:

The freezing of tissue to temperatures of -160 to -180 °C to achieve cell necrosis by means of a 

cryoprobe (Ravikumar et al, 1987) .

Cryoablation or cryosurgery uses the same principles as thermal ablation to cause cell 

destruction and necrosis by means of freezing.

Temperatures of -160 to -180 °C are achieved by means of liquid nitrogen or argon gas 

circulating through a cryoprobe at temperatures of -200 °C or lower (Ravikumar et al, 1987, 

Korpan, 2008). The freezing process lasts for about 8 minutes. A pioneering paper (Ravikumar 

et al, 1987) in 1987 described the use of cryoablation with or without resection. 50% of the 

patients treated had residual disease, however the use of cryoablation increased following this 

early clinical paper.

In 1991 Ravikumar et al published a retrospective 5-year study of cryosurgery in liver tumour 

treatment. 32 patients were treated predominantly for colorectal metastases. A median follow-

up of 24 months revealed a 28% cure, with 34% of patients having recurrence of the disease. 

The study did however highlight only a 9% recurrence rate at the treatment site. The remaining 

patients with recurrence had either active recurrence in another site in the liver or distant 

metastases.

Onik et al (Onik et al, 1991) described a 22% technical failure rate, and a 78% overall 

recurrence rate (including the technical failures), however a mean survival of 21 months for 

those with recurrence.

Adam et al (Adam et al, 1997) reported no recurrences for hepatocellular carcinoma at a mean 

follow-up of 16 months and a 44% local recurrence rate for metastatic disease; survivals were 

63% and 52% respectively.

In the group of patients with metastases, survival was related to the tumour size and absence of 

residual disease.

In 1997 Korpan published a retrospective study of 137 patients over a ten year period 

undergoing a variety of cryosurgical procedures for liver metastases (Korpan, 1997) with no 

documented significant morbidity; a promising paper for the use of cryosurgery for liver 

tumours, however a significant potential complication was described by Weaver et al in 1995.

Seifert and Morris (Seifert and Morris, 1999b) published a world survey on the complications of 

cryoablation, which described an infrequent, but potentially fatal complication of cryoablation, 

termed the “Cryoshock Phenomenon”. The cryoshock phenomenon is a syndrome of multiorgan 
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failure, severe coagulopathy and disseminated intravascular coagulation (DIC), similar to septic 

shock but without systemic sepsis. This potentially fatal complication was described by Weaver 

et al in 1995 (Weaver et al, 1995) and referred to as the cryoshock phenomenon by Morris et al 

in 1996 (Morris et al, 1996). The cryoshock phenomenon was responsible for two patient deaths 

that had large central lesions treated with cryoablation (Weaver et al 1995). Cryoshock causes 

severe DIC necessitating repeated infusions of fresh-frozen plasma, cryoprecipitate, platelets, 

and tranexamic acid in order to restore the normal clotting cascade. The survey on 

complications of cryosurgery evaluated both prostate and hepatic treatments. The survey 

demonstrated that cryoshock is responsible for almost 20 percent of mortalities reported with 

cryotherapy. The incidence of the cryoshock phenomenon however is extremely low (1%). In 

the survey, 6 of 21 liver patients with reported cryoshock died. It is thought the occurrence of 

cryoshock is related to the volume of freezing and to the number of freeze–thaw cycles (Seifert 

and Morris, 1999, Seifert et al, 1999). It was recommended cryotherapy be used in smaller 

tumours to avoid this uncommon but potentially fatal complication. This recommendation was 

supported by the relatively low complication rate of prostatic cryotherapy. The difference in the 

incidence of cryoshock between hepatic and prostate cryotherapy was thought to be related to 

the volume of tissue frozen and possibly the differences in tissue response to cryoablation. The 

liver is prone to release cytokines after insult, with the release of TNF-α and IL-6 within the 

liver parenchyma stimulating the clotting cascade and a severe inflammatory response. The low 

volume of ablated tissue is a significant factor in decreasing the complications associated with 

cryoablation; however cryoablation is still responsible for the largest inflammatory reaction 

compared to RFA and microwave ablation (Ahmad et al, 2010). In a recent study comparing the 

inflammatory reaction caused by cryoablation to RFA and laser ablation, cryoablation caused 

significantly higher liver transaminase levels, white blood cell count and cytokine levels 

compared to RFA or laser ablation, with comparable volumes of destruction of liver 

parenchyma. 

Seifert published a case series of 49 patients treated with cryotherapy for metastatic disease 

(Seifert et al, 2000). A 57% recurrence rate was quoted. This was preceded by a study by the 

same author in 1999 (Seifert and Morris, 1999a), where a 33% local recurrence rate at the 

cryosite was quoted. Seifert attributed the high recurrence rate in cryotherapy to a discrepancy 

between the ice ball size and the actual tissue volume treated. This high recurrence rate caused 

great concern in a patient group with a technically successful ablation. The findings contradict 

descriptions of the ice ball created being easier to see during and after treatment than with RFA 

(Jansen et al, 2005), the well formed ice ball seen may only represent that area of tissue at 

tumoricidal temperatures and not the entire treatment zone. Tumoricidal temperatures have been 

reported to be between –20°C and –50°C and incomplete treatment is followed by rapid local 
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tumour recurrence. The region of ablated tissue produced by a 3 mm cryoprobe after 20 min of 

freezing is only about 2.8 cm in diameter, although the ice ball diameter measures 4 cm which 

may be a reason for incomplete ablation and the high recurrence rate. A recent study evaluating 

the accuracy of MRI in determining the zone of cryoablation showed contrast enhanced MRI to 

be an accurate predictor of ablation zone size, compared to the majority of studies to date using 

ultrasound (van den Bosch et al, 2009).

A further complication is cracking of the ice ball (Seifert and Morris, 1999, Schmit et al, 2010); 

this may be associated with technique and the number of freeze-thaw cycles. Techniques used 

in cryotherapy are a major contributory factor to recurrence and complication rates (Martin, 

2006). Cracking of the ice ball often occurs when the cryoprobe is removed from the cryosite. 

The fracture of the ice ball can result in major hemorrhage, rebleeding from the site, bile leaks 

and recurrence (Seifert and Morris, 1999, Joosten et al, 2005, Martin, 2006). 

Overall, significant complications occur in 0–30% of patients undergoing cryotherapy. Besides 

the potentially fatal cryoshock phenomenon and the ice ball cracking, haemorrhage, subcapsular 

haematoma, abscess formation and biliary fistula have been reported (Teague et al, 2002, 

Joosten et al, 2005). 

High tumour recurrence rates after hepatic cryotherapy have been described: Yan et al (Yan et 

al, 2006) reported local recurrence rates of 85%, which, coupled with the possibility of the 

cryoshock phenomenon and significant complications, makes cryotherapy an unattractive 

treatment in the liver.

To date, there are no comparative studies evaluating the efficacy of cryoablation and 

radiofrequency ablation (Marlow et al, 2006). A study by Niu et al (Niu et al, 2007) compared 

resection to resection and cryotherapy for liver metastases. Only small lesions were treated by 

cryoablation due to the cryoshock risk associated with large volume tumours. This decision 

highlighted by the authors demonstrates the limitations of cryotherapy in treating larger tumours 

and may in part illustrate the fate of cryotherapy in treating small volume tumours in smaller 

organs. 

A study by Permpongkosol et al (Permpongkosol et al, 2007) evaluating ablation zone size and 

relative temperature of the tissues during cryoablation revealed the kidney to be the tissue with 

the most sensitivity to freezing when compared to liver and lung.

The study identified a potential use for cryotherapy – small renal tumours. Small renal tumours 

(<3cm) have an incidence of 10-40% (Dominguez-Escrig et al, 2008). The natural history and 

biological behaviour of these tumours are not yet well understood, and thus the management 

remains controversial (Dominguez-Escrig et al, 2008). Surgery remains the choice for young 

healthy patients; for increasing non-surgical candidates, cryotherapy may have a role 

(Dominguez-Escrig et al, 2008, Kunkle and Uzzo, 2008); long-term survival studies are 

awaited. 
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Chemical Ablation:

Ethanol Ablation:

Definition:

Application of 90-100% Ethanol into tissue, causing chemical necrosis/ablation of tissue

(Solbiati et al, 1985).

In the early 1980s, alcohol was described for a number of ablative techniques. 

The techniques included treatment of renal cysts, celiac plexus blocks and parathyroid ablative 

techniques (Solbiati et al, 1985, Livraghi et al, 1986, Livraghi and Vettori, 1990, Lencioni et al, 

2010). Based on the findings of these early studies, clinical application of alcohol ablation 

developed. Ethanol Ablation is used for a number of applications. It can be injected into the 

renal, bronchial and hepatic arteries to ablate the target tissue, injected into oesophageal varices 

to cause an intense inflammatory reaction, sclerosing the vessel and injected into large renal and 

hepatic cysts, ablating the cyst wall (Livraghi et al, 1986).  Alcohol has many advantages: it is 

readily available, simple to use, low in cost, non-viscous and immediately toxic. The toxicity of 

alcohol is due to dehydration and intracellular coagulation which causes immediate necrosis of 

the tissue and then a secondary fibrotic reaction, thrombosis, and vascular occlusion.

The indications for use in malignancy are similar to those for any percutaneous ablative 

procedure described previously. They include: inadequate response to systemic chemotherapy, 

refusal or unfit patient for surgery and tumours, which can easily be identified on ultrasound or 

CT (Livraghi et al, 1986). Livraghi et al (Livraghi et al, 1986) conducted an early study using 

ethanol ablation to treat tumours less than 4cm. The number of treatments needed was directly 

proportional to tumour size. 3 of the 12 tumours showed no response to treatment, but the 

remaining 9 lesions responded to treatment, with 50% showing a 100% volume reduction.

Livraghi et al (Livraghi and Vettori, 1990) conducted a larger study in 1990, treating 35 patients 

with HCC. 30 of the 35 patients had complete remission. The remaining 5 patients (14%) all 

showed residual disease on CT follow-up, and all had lesions larger than 3.5cm. Long-term 

follow up showed a recurrence rate of 29%. 

A limitation however emerged for ethanol ablation early on in its use; multiple treatments are 

needed for each tumour to attain complete ablation. Although ethanol is cheap and readily 

available, multiple treatments incur multiple admissions and multiple follow-up appointments, 

including imaging. In Livraghi’s study of 50 HCCs (Livraghi and Vettori, 1990), an average of 

10 treatments was needed for the tumours. 
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More recently, ethanol ablation has been combined with RFA to increase the ablation zone 

(Goldberg et al, 2000, Sakr et al, 2005). The uneven distribution of all injected therapies 

throughout the target tissue, both adjunct and chemical, has dramatically limited therapeutic 

efficacy for larger tumors and metastatic liver cancer (Goldberg et al, 2000). 

Brunello et al (Brunello et al, 2008) published a randomized control trial in 2008 comparing 

ethanol ablation to RFA. The majority of patients underwent a single session of treatment. A 

complete response at 1yr was seen in 25 ethanol ablation patients (36%) and 46 (65%) RFA 

patients. The limitations of this study however was the one-shot technique used for ethanol 

ablation rather than the multiple applications normally needed for treatment. This would have 

influenced the complete response rate at 1yr and the cost effectiveness of the ethanol ablation

given the need for additional admissions for treatments.

The ASERNIP review in 2006 (Marlow et al, 2006) reported on 12 studies, 7 randomised 

control trials, (Lencioni 1999; Lencioni 2003; Lin 2004; Lin 2005; Olschewski 2001; Shiina 

2000; Shiina 2005), 1 quasi-randomised control trial (Livraghi, 1999) and 4 retrospective 

comparisons (Catalano 2000, Catalano 2001, Luo 2005), and (Nakamura 2004) comparing 

ethanol ablation with RFA. 

Lencioni and Lin reported on tumour response rates for RFA vs ethanol ablation (87% vs 82% 

respectively). RFA also achieved a lower recurrence rate and fewer new lesions. During the first 

year of follow-up RFA had a 10% recurrence rate and ethanol ablation 16%, which increased to 

14% and 34% respectively at 2 years. At one and two years, the event-free survival was 86% 

and 64% respectively for each author in the RFA treatment group compared to the ethanol 

ablation treatment group (77% and 43% respectively for each author). 

A more recent meta-analysis of randomised or quasi-randomised control trials comparing RFA 

to ethanol ablation by Bouza et al (Bouza et al, 2009) showed RFA to be superior to ethanol 

ablation in terms of survival and local disease control. Six studies were included in the meta-

analysis, however the overall complication rates for RFA were higher when compared to 

ethanol ablation (19% vs. 10%), with major complication rates of 4.1% and 2.7% respectively. 

Cho et al (Cho et al, 2009) conducted a systematic review of randomised control trials 

comparing RFA and ethanol ablation, which too showed RFA to be superior to ethanol ablation

for treatment of HCCs, with improved survival of patients at 3 yrs. The most conclusive 

evidence however was published by the Cochrane Collaboration (Galandi and Antes, 2004) in 

2009 where both the overall survival and the event free survival favoured RFA over ethanol 

ablation.
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High-Intensity Focused Ultrasound (HIFU):

Definition:

The application of wideband focused ultrasound to tissue over a short period of time (0.5-1s), 

producing an acoustic wave, which is absorbed by the tissue and converted to heat (Hynynen 

and McDannold, 2004). 

High-Intensity Focused Ultrasound (HIFU) may in future provide a non-invasive therapeutic 

option and therefore it would be prudent to discuss this briefly.

HIFU utilises a focused ultrasound transducer array with approximately 200 elements, which 

generates the ultrasound beam at a frequency between 0.9–1.3MHz, which can be manually 

adjusted by the operator (Hynynen and McDannold, 2004). The diameter of the transducer can 

range from 40mm (Luo et al, 2009) to 160mm (Hynynen and McDannold, 2004), depending on 

the clinical application and the depth from the skin surface to the tumour. 

The use of ultrasound in clinical practice has historically been for diagnostic purposes and 

simple needle guidance for percutaneous biopsies and therapy. 

Ultrasound technology now allows the use of focused ultrasound energy for therapeutic 

purposes such as tissue ablation and hemostasis (Skinner et al, 1998). HIFU is being promoted 

as a noninvasive method to treat certain primary solid tumors and metastatic disease, to ablate 

foci of ectopic electrical activity in the heart, and to achieve hemostasis in acute traumatic 

injuries to the extremities and visceral organs (Dubinsky et al, 2008). HIFU differs to 

conventional diagnostic ultrasound, not in the frequency of the ultrasound waves, but in the 

focused wideband ultrasound waves produced. At high intensities, ultrasound can result in 

tissue heating and necrosis, cell apoptosis, and cell lysis (Haar and Coussios, 2007, Dubinsky et 

al, 2008). 

The focused beam means this effect can be achieved in deep tissues. At high enough acoustic 

intensities, cavitation results. Microbubbles form which interact with the ultrasound field and 

grow, eventually imploding, causing a shockwave through the tissue and mechanical damage to 

immediately adjacent structures.

Unlike radiofrequency ablation, ultrasound is completely noninvasive and can be used to reach 

tumours that are deep within the body, provided there is an acoustic window to allow the 

transmission of ultrasound energy. Without this acoustic window, successful HIFU requires rib 

resection (Jin et al, 2010), converting a non-invasive treatment into one with surgical morbidity 

risk.  Ultrasound has been used to try and increase temperature in tissues since the 1950s; the 

majority of the work must be credited to Fry et al (Fry 1954) and Lynn et al in the 1940s. 
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Most of the early attempts failed, however in the 1980s, ultrasound was used to treat renal 

calculi, a process known as extracorporeal shockwave lithotripsy (ESWL). A rediscovery of 

HIFU for the treatment of tumors occurred in the 1990s with the refinement of modern 

technology, in particular, advanced imaging methods such as MR thermometry (Dubinsky et al, 

2008). HIFU can produce almost instantaneous cell death by coagulation necrosis to selected 

regions of tissue has made it a candidate for tumour treatment. HIFU suffers all the limitations 

of ultrasound; any tissue deep to bones suffers from acoustic shadowing which limits view and 

thus treatment. Gas in bowel cannot be penetrated by HIFU, just as it cannot be with diagnostic 

sonography. The sound waves are reflected back to the transducer and are interpreted as 

acoustic impedance or acoustic noise. With diagnostic sonography, these reflected sound waves 

are of such low energy that there is no adverse effect from them. The reflected waves in HIFU 

are of very high energy and can produce burns in the tissues that lie between the transducer and 

the target. This may in part be overcome by interstitial ultrasound delivery devices (Lafon et al, 

2007), which may decrease the risk of such adverse effects of HIFU and also increase some of 

the therapeutic applications. This technology is in development (Lafon et al, 2007). The use 

however of HIFU continues to grow and to date both animal and human studies for the 

treatment of hepatocellular carcinoma (HCC) (Li et al, 2007, Zhang et al, 2009, Jin et al, 2010), 

renal cell carcinoma, pancreatic cancer, sarcomas, urinary bladder tumours, and prostate 

carcinoma have been published (Dubinsky et al, 2008). Effective treatment of hepatocellular 

carcinoma has been demonstrated when trans-arterial chemoembolisation is performed prior to 

HIFU (Leslie and Kennedy, 2007, Maruyama et al, 2008, Jin et al, 2010). This appears not only 

to reduce the vascularity of the tumour and in doing so decrease heat loss through perfusion, as 

in RFA. It also increases the acoustic absorption coefficient, allowing lower acoustic powers to 

be used (Leslie and Kennedy, 2007). Given its low cost and intrinsic therapeutic and operational 

safety, HIFU has the potential to become a popular method for both oncological and non-

oncological applications. Advances in treatment targeting, real-time treatment monitoring 

(Kopelman et al, 2006a, Kopelman et al, 2006b) and speed of ablation are needed before this 

can happen.
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Irreversible Electroporation (IRE)

Definition:

The application of short (microsecond to millisecond) high voltage direct current pulses via 

contact electrodes to cells or tissues, creating aqueous pores in the cellular membrane 

(permeabilising), leading to cell death (Rubinsky, 2007). 

In 1754 Nollet studied the release of a static electrical generator on the skin (Rubinsky, 2007). 

Fuller published the first article on irreversible electroporation in 1898 (Rubinsky, 2007), in 

which he reported the bactericidal effects caused by multiple high voltage discharges on a water 

sample.

IRE is included in non-thermal ablation techniques including electrochemotherapy and 

supraporation. The true clinical application of IRE was derived from the utilization of reversible 

electroporation for electrochemotherapy (Dev and Hofmann, 1994); a method in which genes, 

monoclonal antibodies or drug uptake into eukaryotic cells is significantly increased when 

electrical pulses (typically a sequence of eight 100 ms pulses of approximately 1000 V/cm) are 

used to temporarily increase cellular membrane porosity for insertion into cells (Al-Sakere et al, 

2007). 

Supraporation, another non-thermal method to kill tissue, is achieved by means of nanosecond 

electrical pulses in the tens of nanoseconds range and 40–80 kV/cm of field strength (Al-Sakere 

et al, 2007).

Initially, the cell death created by irreversible electroporation during reversible electroporation 

was considered highly undesirable. However, further investigations on the use of irreversible 

electroporation as a method of permanent cellular destruction for oncology have led to its 

clinical application in tumor ablation. The study of Davalos et al (Davalos et al, 2005) showed 

that IRE could ablate substantial volumes of tissue without inducing a thermal effect. This study 

provided the initial platform for the use of IRE in surgery. 

Edd et al (Edd et al, 2006) demonstrated the application of IRE in liver. In this study, single 20-

ms-long square pulse of 1000 V/cm, were applied to rat livers. Following application of IRE, 

the treated areas in exhibited microvascular occlusion, endothelial cell necrosis, and diapedeses, 

resulting in ischemic damage to parenchyma and pooling of erythrocytes in the hepatic 

sinusoids. An important observation made, was the preservation of the large blood vessel 

architecture immediately adjacent to the area of treatment. 

This observation is critical to the application of IRE in liver, given the limitations of RFA 

immediately adjacent to large vessels due to the heat sink effect. The importance of this 
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observation is the potential of IRE to treat tissue immediately adjacent to vessels without 

damaging the vessel and without the risk of an incomplete treatment zone, due to insufficient 

heating of tissue as found with thermal ablation.

In 2007 Al-Sakere et al reported the use of IRE for tumour treatment in vivo using mouse 

models. The study demonstrated IRE to be effective for tumour treatment. The authors noted 

results to be affected mainly by electric field strength. Trains of a large number of short pulses 

resulted in the best antitumor effects (up to 92% of tumor ablation). Histological specimens 

demonstrated vascular congestion induced by IRE pulses, which should contribute to tissue 

hypoxia and may thus further contribute to tumor cell death. Twenty-four hours after the 

application of the pulses, all treated tissue was necrotic.  An original observation reported is the 

detection of diffused Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP Nick End-

Labeling (TUNEL) staining first in the cytoplasm around the cell nucleus, and later, around the 

cells. TUNEL staining detects breaks in DNA strands, associated with cell apoptosis. The 

evidence of TUNEL staining initially around the nucleus and subsequently in the intercellular 

space indicates the lack of resealing of the plasma membrane. The damaged DNA spreads out 

of the nucleus and out of the cell due to the lack of the natural membrane barrier. This 

observation is the hallmark of irreversible electroporation.

Guo et al (Guo et al, 2010) demonstrated the efficacy of IRE in HCC in a rodent model. 

Hepatomas were grown in 30 rats divided into treatment and control groups. IRE (8 x 100μs 

2,500V) pulses were applied to the treatment group and magnetic resonance imaging scans were 

performed at baseline and 15-days to determine tumour reaction. Additional groups of treated 

animals were sacrificed at 1, 3, and 7 days post treatment and the livers assessed histologically.

Magnetic resonance images showed significant reductions in tumor size within 15 days 

following therapy. Pathology correlation studies demonstrated progression from viable HCC 

tissues before treatment to extensive tumor necrosis and full regression in 9 of 10 treated rats 7 

to 15 days after treatment. 

Lee et al (Lee et al, 2010) conducted studies on normal porcine liver; utilising ultrasound (US), 

magnetic resonance (MR) imaging and computed tomography (CT) for follow up with histology 

for comparison.

The mean diameter of the ablation zones was 33.5mm ± 3.0, achieved in a mean procedural 

time of 6.9 minutes per ablation. 

The current literature describing the effects of IRE on tissue is limited to animal models, 

however the promising results and lack of complications (Lee et al, 2010), together with the 

independence of the technique from the bioheat equation and thus the heat sink effects 

encountered with thermal ablation techniques provides IRE with a significant platform to 

challenge thermal ablation techniques.
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Conclusions:

Radiofrequency ablation is a safe technique with good results when compared to resection as 

outlined in this chapter.

It does however suffer a number of limitations, which inevitably limit its ability to create large 

ablation zones and thus its clinical effectiveness. The heat created at the tip of the needle rapidly 

rises in excess of 80 °C Celsius, leading to vaporisation and charring of tissue, which is a 

significant factor limiting its efficacy, as well as causing tissue to adhere to the needle. As 

outlined and described in this chapter, various methods have been adopted in an attempt to 

increase the ablation zone; the majority have proved unsuccessful.

The multi-tine needle (LeVeen, 1997) and the cool-tip needle are currently commercially 

available needles, which have been successful in increasing the ablation zone. The multitine 

needle however has limitations in that rather than creating a large spherical ablation zone with a 

single needle, each tine creates an ablation zone, which coalesce to form a larger ablation zone, 

however this is not ideal. The cool-tip needle requires continuous perfusion, which is an added 

potential complication in the ablation process. 

Multiple needles require accurate positioning for an effective ablation and also increase the 

complexity of the procedure and potential for increased morbidity due to multiple liver 

punctures.

Saline, water or acetic acid infusion, although in theory should provide larger ablation zones

due to the maintenance of hydration in the tissue during the ablation cycle, suffers form an 

erratic distribution in the tissue and although available commercially, have fallen out of favour.

Adjunct chemotherapy improves the zone of ablation, however has not been adopted as a 

routine procedure in loco regional tumour therapy.
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Objectives for this research:

The main objective for this research at its inception was to prove BETA produced larger 

ablation zones than conventional RFA. We however elected to do this using a custom made 

ablation machine in order to ensure the results were not influenced by complex algorithms 

incorporated in the commercially available ablation generators.

The purpose of this research was not to just prove the concept of BETA, but to prove the 

hypothesis of electroosmosis (movement of water from the cathode to the anode) and examine 

the distribution of heat in tissue. 

Following the ex vivo studies, in vivo studies were conducted to prove BETA produced larger 

ablation zones in vivo. In addition, our objectives were to determine if BETA caused a 

significant inflammatory response or significant hepatic or renal biochemical derangements.

In summary this researched aimed to meet the following objectives:

1. Prove BETA produced larger ablation zones than conventional RFA.

2. Determine the parameters that produced the largest ablation zones.

3. Examine the hydration in ablated ex vivo tissue following BETA and conventional RFA 

in order to prove the hypothesis of electroosmosis occurring during electrolysis.

4. Examine the temperature distribution in ex vivo tissue at fixed distances from the 

electrode.

5. Replicate the results of BETA in animal models in order to establish BETA as being 

safe in vivo.

6. Examine the biochemical and physiological response of the animal models to BETA 

and RFA.

7. Examine the hepatic and renal biochemical response to BETA and conventional RFA.
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Chapter 2:

Bimodal Electric Tissue Ablation:

Ex Vivo Studies for optimisation of Ablation Parameters.
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Introduction:

Electrolysis.

Hopsley first described electrolysis of human tissue in 1908. The effects of direct current on the 

human body were studied and indeed became the life work of BE Nordenstrom (Nordenstrom, 

1985, Nordenstrom, 1992, Nordenstrom, 1994a, Nordenstrom, 1994b). He described the body as 

being made up of a circulatory system, comprising the vascular system, and a separate, but 

critically important electrical circuit. Described as Biologically Closed Electrical Circuits 

(BCEC), the Vascular Closed Circuit (VCC) represents the first BCEC identified. The walls of 

blood vessels are electrical resistors. Arteries and veins can therefore function as relatively 

closed conducting cables for ions in the blood. An external moving magnetic field can induce 

flow of these ions in the loops or vessels. The Vascular-Interstitial Closed Circuit (VICC) is an 

important additional circulation between the blood circulation (Harvey 1628) and lymphatic

circulation (Rudbeckius 1653, Nordenstrom, 1992). In his early work, Nordenstrom applied 

voltage between two electrodes in tissue and found that 10V of direct current applied to a 

tumour which is polarised anodic, leads to a series of electrochemical changes, which leads to 

either partial or complete resorption of the tumour. Azavedo et al (Azavedo et al, 1991) 

published a single case of complete radiological resolution of a breast tumour after applying 

10V of direct current (DC) for 2 hours. The tumour showed signs of regression at 2 days and 

mammography bi-annually and at 2 years demonstrated no radiological evidence of the tumour. 

The mechanism behind this phenomenon was thought to be polarisation of the tissue. The 

charge at the electrode will attract ions of the opposite charge, and attraction of some of the 

anions or cations will lead to an overshoot excess of ions of equal polarity at the electrode. The 

resultant charging of the body results in blocking of the Sodium and Potassium pumps, and 

consequent cellular function is impaired.

Charging the peritoneal fluid in rats tested this principle. The purpose – to create an uphill 

electrostatic force that was too large for the Sodium pump to work against, thus impairing its 

function and creating an electric field in the peritoneal fluid (Nordenstrom, 1994a). The charge 

created in the peritoneal fluid by a platinum electrode eventually equalled the electrode charge. 

An electrode placed in the subcutaneous tissue, too, reached the same charge as the electrode.

These experiments were conducted between 1984 and 1986, after which 3 voluntary patients 

with inoperable cancer volunteered for clinical experiments.

Theoretically it was assumed that blocking the ions pumps would interfere with cellular 

function. Cancer cells being more susceptible to changes would be affected more than normal 

cells, and thus the spread of cancer would be arrested. The patients had electrodes placed in a 
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subcutaneous location close to the tumour. The treatment involved using direct current 

increased in a stepped method. The current ranged from -83 to -200 volts and then was 

increased stepwise to 230 volts in patient 1, to 400V in patient 3. The results differed, but the 

patients exposed to higher voltages underwent larger volumes of tumour regression, with minor 

clinical symptoms related to the high voltages.

Electrolysis in tissue causes decomposition of water and oxidation or reduction of substances 

dissolved in the water (Berendson and Simonsson, 1994, Berendson and Olsson, 1998). 

At the anode, hydrochloric acid, oxygen and chlorine gas form according to the following 

equation:

2H2O = O2 + 4H+ + 4e- (1)

2Cl- = Cl2 + 2e- (2)

Chlorine spreads to surrounding tissue by diffusion, causing bleaching of the tissue. Liberated 

hydrogen ions spread by migration and diffusion. Hydrogen chloride and Chlorine are known to 

be toxic to tissue.

At the cathode, Sodium Hydroxide (NaOH) and Hydrogen gas (H2) are formed (Wemyss-

Holden et al, 2000a). 

More recently electrolysis has been used in the treatment of tumours in rat (Wemyss-Holden et 

al, 2000, Wemyss-Holden et al, 2000a) and porcine models (Wemyss-Holden et al, 2000, 

Wemyss-Holden et al, 2000b). Electrolysis uses a small direct current (80-100mA) passed 

between two electrodes, the anode (positive) and cathode (negative) thus polarising the tissue 

and causing the formation of the toxic gases described by Berendson. The electrolytic process 

itself causes small changes in tissue temperature, but not enough to cause cell death secondary 

to the thermal effects (David et al, 1985, Baxter et al, 1998). The electrolytic process is long; 

treatment times are up to 3hrs depending on the tumour size. 

Shorter treatment times would require larger currents (Teague et al, 2002).

With the results published by Nordenstrom and Azavedo (Azavedo et al, 1991, Nordenstrom, 

1994a) work was carried out on the feasibility of electrolysis and its effects on rat livers by 

Wemyss-Holden et al (Wemyss-Holden et al, 2000a). Within thirty seconds of starting 

electrolysis, gas production was observed in the form of bubbles emanating from both the anode 

and cathode. This is the toxic gas formation described by Berendson. A discrete zone of 

discolouration was evident in the liver surrounding the anode, which is due to the chemical 

necrosis caused by the chlorine gas production (Berendson and Simonsson, 1994). The areas of 

discolouration increased in size as treatment progressed. 
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The results of the study showed no severe effects on liver function, and no severe systemic 

complications during the electrolytic procedures. The electrolytic areas were seen as discrete 

foci of fibrosis at 6 months. The time for treatment however was in excess of 40 minutes, a 

significant limitation.

The findings of this study lead to a larger study on the effects in pigs (Wemyss-Holden et al, 

2002b). The electrolytic lesions increased with dose and separation of electrodes, with 

predictable healing at 6 months, and no systemic complications reported. The findings again 

were similar to a smaller study conducted by Wemyss-Holden et al (Wemyss-Holden et al, 

2000).

Wemyss-Holden et al (Wemyss-Holden et al, 2002a) conducted a pilot study on 5 patients 

undergoing liver resection for colorectal metastases. The purpose of the study was to 

demonstrate the clinical safety and effectiveness of electrolysis in patients. A single metastasis 

was treated with electrolysis before being resected. The treated metastasis was examined 

following liver resection to determine the degree of necrosis. The study showed electrolysis to 

be well tolerated and safe. Additionally, it demonstrated total destruction of the malignant tissue 

at the site of electrolysis.

A study examining the effects of electrolysis in inoperable pancreatic lesions (Wemyss-Holden 

et al, 2003) showed electrolysis to be safe and well tolerated.

BETA combines the effects of direct current (DC) and radiofrequency energy in order to 

increase the ablation zone (Cockburn et al, 2007). The effects of both direct current and 

radiofrequency energy as separate treatment modalities have been described in detail in the 

literature and have been highlighted in Chapter 1 of this thesis. The effects of BETA have been 

described using a commercially available RF device coupled to a DC transformer (Cockburn et 

al, 2007). The effects of BETA however have not been evaluated using a range of DC values, 

using DC pre treatment prior to RFA and at a variety of DC voltages. In order to determine the 

effectiveness of BETA a machine needed to be designed which allowed both DC and RFA to be 

administered simultaneously as well as separately. The commercially available machine used by 

Cockburn et al included an impedance feedback algorithm, which modulated the RF power 

delivered to the tissue. This power modulation allows for fluctuations in the RF delivery to 

ensure the RF power delivered to the tissue did not cause excessive heating early in the 

treatment cycle. This impedance feedback algorithm had to be removed in order for more 

precise monitoring of ablation zone size at specific RF power levels.

The design of the machine will be discussed in more detail in the materials and methods section.
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Objectives of the Study:

To determine the parameters which produce the largest ablation zones in ex vivo liver. 

The DC time before RFA, the DC voltage and the RF power was examined.



Ex Vivo Studies Chapter 2

BETA 85

Materials and Methods:

Ex vivo Liver

Ex vivo livers for the laboratory experiments were obtained from a local butcher (JC Fines & 

Sons, Coltishall, Norfolk UK).

The fresh bovine livers were delivered to the local butcher from a local abattoir.

Immediately following slaughter of the animal, the livers were excised en-bloc and placed in a 

sealed vacuum packed bag ready for delivery.

The livers were stored in the abattoir at 0 to 4 °C, the industry standard for refrigeration of 

meats (Foods Standards Agency, UK) and delivered to the butcher the following day, ready for 

collection.

Before beginning experiments, each liver was washed and prepared in the same way.

 Each liver was cleaned by removing the falciform ligament and adherent 

omentum to the visceral side of the liver. 

 The redundant free edge of the portal vein in the porta hepatis was dissected

free and discarded.

 The liver was then placed on a large PVC cutting board for preparation.

Discussions regarding the use of the whole bovine liver for experiments were discussed 

amongst the chief investigator and both supervisors.

All ex vivo experiments published in peer reviewed journals conduct ex vivo ablations in a large 

plastic container with a shallow saline solution in order to allow the electrical circuit to be 

completed (Goldberg et al, 1998b). Placing the liver directly onto the reference-grounding pad 

creates a bipolar circuit, which in itself is a modification on the essential monopolar technique 

used in this research. This important factor necessitates that in order for the electrical circuit to 

be completed, the saline must act as a conductor of electricity to the reference-grounding pad, 

placed at least 20cm from the liver.

This point was discussed with Dr SN Goldberg of the University of Harvard, Boston, 

Massachusetts, USA. Dr Goldberg has published a number of papers on radiofrequency ablation 

and designed the Cool-tip needle. Dr Goldberg is regarded as the world authority on 

Radiofrequency Ablation. He stressed the need for the grounding pad to be placed a distance 

from the liver and for the solution to be normal (0.9%) saline.
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The liver itself however can either be ablated as a whole liver (Goldberg et al, 1998b), or as 

individual blocks of liver dissected into cubes (Lee et al, 2006). Both of these methods are 

accepted by peer-reviewed journals.

The purpose of our research includes proving the theory that electroosmosis, which will be 

discussed in later chapters, has a synergistic effect on radiofrequency ablation. 

The investigator and supervisors felt it would be prudent to cut the liver into blocks measuring 

10 x 10 x 10cm in order to ensure that:

1. There was no risk of causing overlapping ablations in the liver. This may be 

problematic if the electrode is placed into the liver at an angle, and a subsequent 

ablation, although 10cm away is influenced by this previous ablation.

2. There was no risk of affecting the relative hydration in the liver post ablation. If two 

ablations were close to one another, this may influence the relative hydration in the 

liver, as RFA causes desiccation. Surrounding factors would therefore have influenced 

the subsequent hydration measurements discussed in later chapters.

The liver was initially scored with a sharp knife, in order to mark out equal blocks of tissue. 

(Figure 2.1)

Figure 2.1 whole bovine liver scored in preparation to be cut into 1000cm3 blocks.
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The liver was then dissected into equal blocks measuring 10 x 10 x 10 cm (Lee et al, 2004a, Lee 

et al, 2004b, Lee et al, 2004b). The left lobe of the bovine liver, as in a human one is much 

thinner than the right lobe and proved to be unsuitable in many instances for production of 

suitable blocks of liver. These were discarded.

The pieces of liver were then immersed in a warm saline bath of 30 °C (Lee et al, 2005). The 

bath was changed regularly throughout the day once the temperature decreased to below 27 °C . 

This was in order to ensure the livers were kept at between 26 and 30 °C (Lee et al, 2004b, 

Haemmerich et al, 2005).

The saline bath prevented the liver blocks from drying out and also ensured each block of liver 

used was at the same temperature for each experiment.

Large veins traversing the liver were avoided to ensure the blocks used were of homogenous 

density.

In ex vivo liver, the relative low impedance of large cavernous venous channels creates an 

artificially larger ablation zone, and therefore to ensure reproducible results, these were avoided.

Saline Solution:

In order to complete the circuit ex vivo, the block of liver used for each experiment was placed 

into a large shallow PVC container with a shallow volume of 0.9% Sodium Chloride solution 

(Saline).

The concentration of the saline, although not important in terms of conduction of electricity, is 

essential in maintaining the intracellular concentration of Sodium in the bovine livers.

Each litre of 0.9% saline contains 154mmol of Sodium, an essential ion in both humans and 

animals. As in human blood, the normal Sodium concentration range in bovine blood is 130-

155mEq/L. This has a 10% error value to allow for laboratory fluctuations.

Ensuring the saline used at all times was 0.9%, ensured the liver would not be subjected to 

fluctuations of intracellular sodium concentrations which may influence how the liver reacted to 

ablation.

For BETA to occur there must be a closed electrical circuit, and with the grounding pad not in 

contact with the liver the saline provides a medium of electrical transport. The grounding pad 

used in the experiments was placed at least 20cm from the liver in order to prevent a bipolar 

effect from occurring.

The saline solution was produced using normal table salt, measured out to 9g of salt dissolved 

into 1L of tap water. The salt was measured to 9g on a commercially available digital scale and 

dissolved into 1L of water at 26 °C.



Ex Vivo Studies Chapter 2

BETA 88

The temperature of the water was monitored using a commercially available digital 

thermometer, produced for the food industry.

The thermometer is waterproof and can be left in a solution for continual temperature 

measurement.

Perspex Container for cut Liver Blocks:

The cut liver blocks proved to be extremely difficult to work with initially.

Without support from the surrounding liver, fresh liver is extremely mobile and difficult to 

immobilise in order for an electrode to be inserted, and for the electrode to be placed 

perpendicularly into the tissue.

A Perspex box was thus commissioned for manufacture by the engineering department at the 

University of East Anglia (Figure 2.2).

Specifications:

 Internal dimensions of the box 10 x 10 x 10cm.

 Floor of the box was to have multiple holes drilled into the Perspex measuring

1cm in diameter each, at equidistant intervals. The holes allowed the saline to flow into 

the box and complete the electrical circuit.

 The sides of the box were solid, and glued to one another.

 Removable lid with a hole drilled into the centre to allow the electrode to be 

inserted through it (Figure 2.2).

 A “floating platform, a mirror of the removable lid which had a hole drilled into the 

centre to allow for the electrode to be placed through it. The Medical Engineering 

department and the Norfolk and Norwich University Hospital manufactured the 

platform.

The floating platform had Perspex spacers glued to the underside of the platform to 

allow the platform to be placed onto the liver, but not be flush with the liver surface. 

The electrode could then be placed through the two holes and into the liver, thus 

ensuring that the needle was perpendicular to the liver surface for each ablation. (Figure

2.4)
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 4 Perspex spacers were glued to the underside of the Perspex box in order for the 

underside to “float” 0.5cm above the PVC container holding the saline. 

The reason for this addition to the Perspex box was to ensure a gap between the box 

under surface and the container. Having these two surfaces in close contact may have 

prevented saline from entering the holes in the floor of the Perspex box. (Figure 2.2)

The Perspex box was then used for each experiment in the ex vivo study and ensured each 

experiment was reproducible and accurate.
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Figure 2.2 clockwise from top left, Perspex box with holes drilled into the lid to accommodate temperature probes 

(white arrowheads) and the electrode (black arrow) and multiple holes drilled into the floor (grey arrowheads) to 

allow for saline contact during ablation, electrode insitu with a piece of liver in the box. Perspex box showing legs 

(white arrows), which raise it to allow for saline to contact the liver and thus electrical conduction. A floating 

platform (white arrowheads) with legs, which is placed on the liver in order to keep the temperature probes and 

electrode perpendicular. Floating platform showing legs (grey arrows), multiple holes for temperature probes (black 

arrowheads) and a hole for the electrode (white arrow)
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The BETA Machine:

The BETA device was manufactured for purpose by EG Technology, Cambridge, UK.

The prototype BETA system (Mark II) allows controlled amounts of radiofrequency (RF) and 

DC electrical current to flow through tissue, resulting in tissue ablation. The machine creates a 

circuit by inserting a probe into tissue, directing electrical current on the effected area, which

travels to a grounding pad attached to the patient, providing the return path.

The DC signal at the probe is negative when referenced to the grounding pad.

The RF generator box produces an RF signal at 470 kilohertz (kHz), produced by the RF 

generator box.

The RF current and voltage are monitored by outputs from the box providing DC signals in 

proportion to the RF signals.

Circuit description:

The 470 (kHz) RF source feeds four 50 watt (W) amplifiers arranged in parallel (U3, U4, U5, 

U6). The outputs are combined in two stages (in L1 and L5 initially and then in L3) and the 

200W output is then transferred to the probe via an impedance matching transformer (L4). 

There is no impedance feedback algorithm built into the circuit.

The DC is inserted into the circuit across the RF decoupling capacitor (C3). This capacitor 

protects the DC power supply from the RF signal by effectively shorting out the DC terminals at 

the RF operating frequency. The remainder of the RF circuit is employed purely to measure the 

RF current through, and the voltage across the ablation probe.

L2 is a current transformer whose output is rectified (D3) and filtered before being buffered and 

temperature compensated by U2.

The RF voltage level is rectified (D1) and filtered before being buffered and temperature 

compensated by U7.

Not shown on the schematic (Schematic 2.1) is the input to the power amplifiers to allow 

control of the output power. The ‘input’ is a current source, which has to be pulled down in 

order to decrease the output voltage. The connection to the box is made using a 25 way D 

connector (Schematic 2.1).
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Schematic 2.1 Circuit diagram of the BETA Mark II machine
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Control Method:

The prototype machine (Mark II) (Figure 1.5) is controlled from a PC/laptop running specially 

developed software (EG Technology, Cambridge, UK). An analogue to digital converter 

captures the current and voltage signals. An algorithm then calculates the required setting and 

provides a signal to the power control (pin 7) input on the RF amplifier based on the desired RF 

power setting (mA).

The user is able to adjust the RF power (0-2000mA), the DC voltage (0-50V) and the DC and 

RF times (0-2000 seconds).

The software program (Figure 2.3) allows the user to program up to 15 steps for each ablation 

cycle.

Each step requires the user to input 3 variables – time (seconds), RF power (mA) and DC 

(volts).

Figure 2.3 software interface controlling the Mark II machine
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For DC to be delivered alone the RF power must be 0mA, and for RF power to be delivered 

alone the DC voltage must be 0V.

Similarly DC and RF may be delivered simultaneously by adding a DC value and RF value. The 

cycle will not begin if a time for the RF cycle is not inputted.

The user must also choose a maximum impedance value, which will end the ablation cycle, 

effectively simulating ‘roll-off’.

The impedance value is measured in ohms with a range of 0-2000 ohms.

For each ablation cycle, 900 ohms was chosen as above 900 ohms was the value accepted in the 

literature for roll-off. Above 900 ohms the impedance is too high for any amount of RF energy 

to be deposited in tissue and indicates ablated tissue (Lin et al, 2003).

The user can also control the cycle and the RFA can then be shut off - based on elapsed time 

rather than roll-off. This is particularly important when pre treating tissue with DC prior to the 

ablation cycle.

The Ablation Cycle:

The hypothesis for this research required comparison of BETA to standard radiofrequency 

ablation (RFA) using the same RF power for the control (RF alone) and for the BETA 

experiment.

Early studies evaluating BETA have done so using a commercially available RFA generator, the 

Radionics RF3000 (Boston Scientific, Natick, MA). This RFA generator had a DC transformer 

connected in parallel (Cockburn et al, 2007). 

The current BETA generator as described has not been evaluated previously and a large 

research matrix was designed in order to determine the parameters needed to produce the largest 

ablation zone.

A matrix was designed using the following parameters:

1. Time of DC current application before standard RF ablation is commenced. This is 

referred to as the pre-RF DC. DC is applied to the liver using the electrode as the 

cathode and the reference-grounding pad as the anode (Nordenstrom, 1983, Probstein, 

1994). The measurements for this phase of the experiments were 0, 300, 600, 900 and 

1800 seconds of pre-RF DC.
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2. Strength of DC current (Volts)

3, 9, 18 and 36 volts were chosen as the variables for DC magnitude. The values chosen 

are based on work done by Nordenstrom (Nordenstrom, 1985), which was presented at 

the Fleischner Lecture in 1985. (Table).

3. Strength of AC current (mAmps)

A variety of current strengths were chosen for the study based on the literature and 

described in chapter 1. The radiofrequency currents chosen initially, 500, 750, 1000, 

1500 and 2000mA can be attributed to work by Solazzo et al (Solazzo et al, 2007) in ex 

vivo bovine studies, however this pertains to the higher currents, namely 1000, 1500 

and 2000mA (Table 2.3, Appendix 1).

Given the variables, a matrix was designed using each of the variables in each group to produce 

a matrix (Table 2.3, Appendix 1).

The parameters used where no DC voltage was applied represent the control group of 

experiments.

105 combinations were used initially to determine the largest ablation zone.

A meeting was held early on in the research, during the study design stages with Dr P Musonda, 

Medical Statistician, University of East Anglia in order to discuss power calculations for the 

above research matrix.

Dr Musonda recommended dividing the ex vivo study into two separate phases in order to 

determine power calculations for the entire research matrix and once satisfactory results were 

produced, to begin a second phase of the ex vivo study.

Phase I:

Conduct each experiment in the research matrix (n=4) in order for power calculations to be 

determined.

The following measurements would be recorded for each experiment.

 DC Pre-time

 DC Voltage

 RF Power

 Time of roll-off

 Largest diameter of the ablation zone.
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Phase II:

Identify the set of parameters, which produce the largest ablation diameter and produce a large 

number of experiments for each parameter (n > 15).

In addition the volume of the ablation would be calculated.

The standard in the literature for volume calculation for RFA is the volume of an ellipse or of a 

sphere (Mulier et al, 2003, Ahmad, 2004, Stippel et al, 2004).

A spherical volumetric calculation was used for these experiments as the geometry of the 

lesions produced, had 2 similar measurements for the axis perpendicular to the long axis of the 

ablation probe r1 and r2. The measurement for the ablation zone along the long axis of the 

electrode r3 was often considerably larger than r1 and r2 and thus proved to be unsuitable for 

these calculations.

Volume of a sphere:

V = 4/3πr3

Volume of an ellipse:

V =  (4/3) π.r1.r2.r3

In phase II of the experiments, in addition to the generator parameters and the roll-off time, each 

of the 3 radii were measured and documented for volume measurements. Each radius was 

measured 3 times and the average of the 3 measurements was used as the final measurement. 

This was to ensure the final measurements recorded for each ablation zone represented a 

reliable measurement.

The technique for each experiment conducted was exactly the same, in order to produce reliable 

and reproducible data.

Each block of tissue was placed into the Perspex box, which was positioned in the large PVC 

container with a shallow volume of 0.9% sodium chloride solution (Figure 2.4). The level of the 

sodium chloride solution was measured out to a depth of 1cm from the floor of the Perspex box. 

This ensured that 1cm of the block of the liver was submerged in the saline solution, allowing 

for electrical conduction.

The foil grounding pad was placed at the opposite end of the container, immersed in the saline. 

The foil grounding pad measured 100cm3 .

The electrode was then inserted into the centre of the block of liver with at least 1cm of 

insulated electrode placed into the liver in addition to the 3cm exposed active electrode tip.
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Figure 2.4 Perspex box containing piece of liver with electrode (black rod), temperature probes (silver rods) in situ. 

Foil grounding pad placed 20cm from the liver.

The parameters for each experiment were then entered into the software program. 

Each experiment conducted was assigned a file name according to the parameters used and the 

date of the experiment.

A control experiment had no DC and there for was labelled according to the time assigned to the 

experiment in seconds, the RF power (mA) and the DC voltage. As each experiment continued 

until there was roll off of the RF power, a random time was selected in order to ensure the 

experiment never continued to this time; 3600 seconds was chosen.

For each control experiment referred to in this thesis, the control refers to RFA with no DC, 

using the same RF power (mA) as the corresponding BETA experiments.

The format of assigning labels to each BETA experiment was as follows.

DC pre(s). RF pre(mA) . DC power pre(V) . RF time(s). RF power(mA). DC(V)

Using this format, a BETA experiment with 300s of pre-DC at 9V with 600mA of RF would be 

written as follows:

300 . 0 . 9 . 3600 . 600 . 9
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A control RF ablation that did not have a DC component was shortened to exclude the DC 

parameters and was written in the following format.

RF time(s) . RF power(mA) . DC(V)

A control RF ablation using 600mA would therefore be assigned a label a label as follows.

3600 . 600 . 0

If the BETA experiment involved no pre-DC time, but DC was used in conjunction with RF 

immediately at the onset of the experiment, the format above was used.

For an experiment with no pre-DC, but RF and DC running simultaneously with parameters of 

600mA RF power and 9V of DC, the experiment was labelled as follows.

3600 . 600 . 9

Each experiment was automatically saved by the software program with a date and time stamp, 

however in order for the information stored to be easily accessed and referenced, each ablation 

was assigned a further number at the end of the label in order to record the number of ablations 

conducted on a particular day using the same parameters.

The first ablation using specific parameters was not assigned a number, in other words regarded 

as the first.

Each subsequent experiment was assigned a number after a hyphen, indicating the number of 

times the experiment was conducted in a single day.

This was recorded by the software was follows.

300 . 0. 9 . 3600 . 600 . 9

300 . 0. 9 . 3600 . 600 . 9 - 1

300 . 0. 9 . 3600 . 600 . 9 - 2

This format indicated that 3 experiments using the same parameters were conducted in a single 

day.

The BETA experiment was then commenced. The software program monitored the impedance 

of the liver continually during the entire cycle of RFA.

With only DC being applied to the liver, the impedance was not measured.

Current was delivered to the liver at 70mA and a set voltage.
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Once RFA is commenced, the software program measures the impedance in the tissue and 

adjusts the RF power (Watts) and RF Voltage according to the impedance, to ensure the 

programmed mA remains constant.

Once the impedance increases to above 900 ohms, the program terminates and generates an 

excel file containing the parameters described and a graph incorporating each of the parameters 

(Graph 2.1).

The 900 is the value at which roll-off occurs (Lin et al, 2003) during RFA in the liver as 

described in chapter 1.

This is where the impedance in the liver is too large to enable any transfer of heat into the liver 

and further ablation.

The impedance value where the machine automatically ends the ablation can be adjusted before 

commencing the ablation. The value ranges from 1 to 2000 ohms. 

Experience in the literature dictates that above 900 ohms, no ablation takes place and 

commercially available ablation machines have 900 ohms preset as the roll-off value.

Immediately after ablation, the block of liver was removed from the Perspex box in preparation 

for dissection and measurement of the ablation diameters.

A rigid brass rod was inserted into the block of liver before it was removed from the Perspex 

box, along the electrode tract in order for the block to be cut exactly parallel to the direction of 

the electrode. This ensured that the measurements are taken in the middle of the ablated tissue 

and that each measurement was identical and reproducible.

3 separate measurements were taken of each diameter and the average of the 3 was recorded in a 

research notebook and on the excel spreadsheet generated by the software program.

The data was recorded in the following manner in the research notebook under the date for that 

day.

Assigned label ablation dimensions (d1.d2.d3 cm) impedance time to roll-off  

A typical entry into the research notebook would be as follows.

300 . 0 . 9 . 3600 . 600 . 9          2.6 x 2.4 x 5.2 cm     85 ohms   1268 s

300 . 0 . 9 . 3600 . 600 . 9 - 1     2.4 x 2.2 x 4.8 cm     90 ohms   1198 s

300 . 0 . 9 . 3600 . 600 . 9 - 2     2.9 x 2.9 x 5.8 cm     75 ohms   1318 s
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This data was the recorded on a large spreadsheet with each parameter in order from control to 

experiments.

The parameters were recorded and a mean of the largest ablation diameter was calculated for 

each experiment.

Volumes were calculated for those experimental parameters, which produced the largest 

ablation zones.

Once each experiment had been performed four times (n = 4), it was decided to include 600mA 

to the RF power group for selected parameters. 600mA produced a large ablation zone in a 

reasonable period of time, compared to 500mA

The reasons for this will be expanded upon in the results section of this chapter.

The parameters chosen were based on the largest ablation zone sizes overall using a set mA. To 

expand on this further, regardless of the mA, the parameters for a given MA, i.e. Pre DC and 

DC voltage were analysed and those parameters producing the largest ablation size were then 

chosen for the 600mA set of experiments (Table 2.3, Appendix 1).

Each of these parameters were performed four times (n = 4) and included in the results 

submitted for statistical analysis to Dr P Musonda for power calculation.

600mA was not included in the initial matrix of parameters however experiments were 

conducted at 300mA, 400mA, 450mA, 600mA and 650mA in addition to the parameters set out 

in the original matrix.

The addition of the 5 combinations above increased the total combination number to 110.
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Results:

In total 1017 experiments were conducted in order to determine the set of parameters, which

produced the largest ablation zone.

Initially, each parameter was tested (n=4) in order to perform power calculations.

This data was examined in conjunction with Dr P Musonda and power calculations performed.

Following power calculations, each parameter was examined (n=6) in order to determine the 

parameter, which produced the largest ablation zone.

The results are expressed as means ± standard deviation (SD) for normally distributed variables 

or the median and the interquartile range for non-normal variables. Differences in maximum 

short axis diameter between tissue receiving standard RFA or BETA were tested with ANOVA. 

A P value <0.05 was considered statistically significant. SPSS 17 was used for all statistical 

data analysis. The sizes quoted refer to the maximum short axis measurement unless specified.

Phase I:

Initial experiments were carried out (n=4) and power calculations performed. Following power 

calculations, each experiment was conducted to a total (n=6) according to the power 

calculations.

Appendix 1:

Table 2.1 shows the control sample size calculations together with the minimum, maximum and 

means for each radiofrequency energy value measured. The interquartile ranges and standard 

deviations are also shown.

Table 2.2 shows the experimental sample size calculations together with the minimum, 

maximum and means for each radiofrequency energy value measured. The interquartile ranges

and standard deviations are also shown.
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Overall Estimates:

Sample Size 1.33 and 2.09

p (0.8) 

SD1 (0.23) 

SD2 (0.48)

Estimated sample size for two-sample comparison of means

Test Ho: m1 = m2, where m1 is the mean in population 1

                    and m2 is the mean in population 2

Assumptions:

         alpha = 0.0500  (two-sided)

         power = 0.9000

            m1 = 1.33

            m2 = 2.09

           sd1 = .23

           sd2 = .48

         n2/n1 = 1.00

Estimated required sample sizes:

            n1 =        6

            n2 =        6

A total of 12 experiments are needed at 80% power (JM, 1993, B, 2005).
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Phase 2:

Following the results of the power calculations, each parameter was tested a minimum of 6 

times (Table 2.3, Appendix 1).

Table 2.3 shows the matrix of tested parameters. Each experiment is shown together with the 

parameters, the size of the ablation zone (cm), the total time of the experiment with RF switched 

on (s), mean maximum short axis diameter of the ablation zone (cm), the standard deviation 

(SD) and the 95% Confidence Interval (95% CI).

Figure 2.1 shows graphical representation of all the experiments conducted at each parameter.

The RF power at 1500 and 2000mA was too excessive and caused almost immediate roll-off, 

with no definable ablation zone. These experiments will be expressed as N/A in the tabulated 

results (Appendix 1-Table 2.3).

Similarly DC voltages of 18 and 36V with pretreatment times of 1800 seconds did not allow 

any ablation to take place. This will be discussed later in the chapter – these are also expressed 

as N/A in the results table (Appendix 1-Table 2.3).

500mA initially produced larger ablation zones sizes (Table 2.4), when compared to 600mA, 

however the mean ablation times for simultaneous RF and DC was significantly longer than 

those experiments using 600mA (1809 seconds vs 891 seconds; p < 0.0001).

mA 
Ranges Mean (cm) N SD Min (cm) Max (cm) Range Variance

400mA 1.2 6 0.06 1.1 1.3 0.2 0.004

450mA 1.27 6 0.08 1.2 1.4 0.2 0.007

500mA 1.64 6 0.17 1.4 1.9 0.5 0.03

600mA 1.58 6 0.12 1.5 1.8 0.3 0.014

650mA 1.42 6 0.12 1.3 1.6 0.3 0.014

750mA 1.29 6 0.08 1.2 1.4 0.2 0.006

1000mA 1.05 6 0.1 0.9 1.2 0.3 0.011

Total 1.35 42 0.22 0.9 1.8 0.9 0.05

Table 2.4 shows a summary of the ablation zone sizes obtained for the initial ablation matrix 

including the range and standard deviation (SD).
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Figure 2.5 demonstrates ablation zones obtained with conventional RFA (top) and BETA (bottom)

Figure 2.6 demonstrating conventional RFA (left) and BETA (right)
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The use of 500mA equates to a mean ablation time of over 30 minutes compared to just over 14 

minutes for 600mA using sequential DC/RF with no pretreatment.

600mA was therefore chosen as the RF power, which produced the largest ablation zone (p < 

0.0001).

This decision was confirmed later with larger comparative groups of 500mA and 600mA using 

simultaneous 9V of DC with no pre-RF DC (Table 2.3, Appendix 1)

N Mean (cm) SD SEM

95% CI for Mean (cm) Min 
(cm)

Max 
(cm)Lower Upper

500mA BETA 15 2.68 0.26 0.07 2.53 2.83 2.5 3.6

600mA BETA 82 2.84 0.42 0.05 2.74 2.93 2 4.4

Total 97 2.81 0.4 0.04 2.73 2.89 2 4.4

Table 2.5 shows the mean sizes of the ablations obtained with 500mA and 600mA respectively. 

The standard deviation, 95% confidence interval and standard error of the mean (SEM) and 

ranges are listed in addition.

The difference between the ablation zone sizes using 500mA compared to 600mA was not 

statistically significant (p=0.168). An interesting observation was the larger mean ablation zone 

obtained with 600mA compared to 500mA when a larger group was sampled, however this was 

not significant (p=0.168) and is therefore probably due to chance.

Table 2.5 shows the mean sizes of the ablations obtained with 500mA and 600mA respectively. 

The standard deviation, 95% confidence interval and standard error of the mean (SEM) and 

ranges are listed in addition.

The results of the experiments showed 9V of DC to produce the largest ablation zones, with a 

decrease in ablation diameter with increasing DC voltage. This conflicts with the data obtained 

by Cockburn et al (Cockburn et al, 2007). This will be discussed later in the chapter (Table 2.3).

No statistical difference was detected between the size of the ablation zone with no DC pre 

treatment, compared to 300s (p= 0.591) and 600s (p=0.624) of DC pre treatment (Graph 2.2 and 

2.3).
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Mean (cm) N SD Min (cm) Max (cm) SEM

RF 1.586 85 0.17 1.2 2.1 0.02

DC/RF 2.837 82 0.42 2 4.4 0.05

300s DC 2.794 31 0.23 2.1 3.3 0.04

600s DC 2.797 30 0.23 2.4 3.4 0.04

Table 2.6 demonstrates the results using 600mA of RF power with no DC (RF), simultaneous 

DC (9V) and RF (DC/RF) and 300 and 600 seconds of pre RF DC respectively. The Mean, 

standard deviation, range and standard error of the mean are listed. 

Graph 2.1 illustrates the graph produced by the BETA software program following an ablation 

cycle.

Graph 2.2 illustrates the ranges and confidence intervals for BETA with 600mA and 

simultaneous DC with no pre-RF DC, 300 seconds of pre-RF DC and 600 seconds of pre-RF 

DC

Graph 2.3 illustrates the means and confidence intervals for BETA with 600mA and 

simultaneous DC with no pre-RF DC, 300 seconds of pre-RF DC and 600 seconds of pre-RF 

DC

The ablation zones decreased slightly in size when DC was applied for 900 seconds and 1800 

seconds respectively, which will be discussed later in the chapter.

BETA produces significantly larger ablation zones using 9V of DC compared to standard RFA 

(600mA) (p < 0.0001).

BETA produces an ablation zone 1.8 times the diameter of that produced by of standard RFA 

(p <0.0001). 

BETA produces an ablation zone 1.8 times the diameter of that produced by standard RFA (p 

<0.0001) when 9V of DC is applied to RF with no DC pretreatment (Graphs 2.2 and 2.3).
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Graph 2.1 illustrates the graph produced by the BETA software program following an ablation cycle.
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Graph 2.2 illustrates the ranges and confidence intervals for BETA with 600mA and simultaneous DC with no pre-

RF DC, 300 seconds of pre-RF DC and 600 seconds of pre-RF DC compared to controls (RF) using 600mA with no 

DC.
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Graph 2.3 illustrates the means and confidence intervals for BETA with 600mA and simultaneous DC with no pre-

RF DC, 300 seconds of pre-RF DC and 600 seconds of pre-RF DC compared to controls (RF) using 600mA alone.
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Discussion:

General:

In chapter 1 Radiofrequency Ablation was defined and discussed in detail.

The inherent disadvantages of the technique were highlighted with reference to the literature. 

Modifications on the technique of radiofrequency ablation were discussed and reference made 

to improvements in technique. Emerging procedures using radiofrequency ablation and adjunct 

techniques such as chemoembolisation in order to increase the ablation zone demonstrated the 

need for a technique, which produced reliable, and reproducible ablation zones, which were 

larger than the standard ablation zones achieved with radiofrequency alone.

Radiofrequency ablation and its uses are well known, as are the uses of direct current.

Combining direct current and radiofrequency ablation in order for the simultaneous use in a 

single circuit had not been described in the literature prior to 2007.

Cockburn and Wemyss-Holden, the inventors of BETA trialled BETA using a commercially 

available RF device (Cockburn et al, 2007) and a DC transformer. This research represents the 

first attempt to evaluate BETA using a purpose built device.  Many have described 

modifications of RF, few have succeeded in producing reliable ablation zones larger than 

standard RF, and no paper has been found which describes detailed data on the effects of BETA 

using a machine designed for this use.

It is proposed this research gives a unique insight into the effects and workings of BETA in 

producing large ablation zones.

This discussion will address DC in relation to RFA, including DC power, time for DC, RF 

power and simultaneous RF and DC application.
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Parameters of BETA:

General

BETA can be divided into two separate phases.

Phase 1 is that phase of the ablation where direct current is applied to the tissue, with the 

electrode acting as the cathode and the grounding pad as the anode.  As described this causes 

the release of gases at the cathodic electrode and reference anodic grounding pad (Samuelsson 

and Jonsson, 1980, Samuelsson and Jonsson, 1981, Samuelsson, 1981), establishing an 

electrical osmotic gradient referred to as an electro-osmotic gradient by Nordenstrom 

(Nordenstrom, 1983, Nordenstrom, 1998). No radiofrequency energy is applied at this point. 

The operator determines the amount of direct current and the time for DC delivery.

Phase 2 is the combination of radiofrequency energy and direct current applied to the electrode 

simultaneously the duration of this phase is dependent on the roll-off of the radiofrequency 

ablation.

Effect of direct current: The pre – RF phase

The effects of direct current applied to tissue have been described (Samuelsson and Jonsson, 

1980, Samuelsson and Jonsson, 1981, Samuelsson, 1981) in detail in the literature. The 

electrochemical gradient created by DC in the tissue causes electro-osmosis (Reuss, 1809, 

Nordenstrom, 1983) and chemical necrosis through the creation of gases and sodium hydroxide

at the cathode.

The amount of direct current and the time of application of direct current in the pre – RF phase 

have an impact on the size of the ablation zone, as demonstrated by the results of the ex-vivo 

study (Appendix 1-Table 2.3). This relationship is not a linear one and the size of the ablation 

zone is impacted by the time of DC application to a certain extent, however more importantly is 

influenced by the DC power applied (volts).

Cockburn et al (Cockburn et al, 2007) demonstrated a linear relationship of ablation zone size 

and time of pre – RF DC up to 600 seconds, thereafter there was no significant difference in 

ablation zone size when DC was applied for longer than 600 seconds. 

9 volts of DC was applied in the study.

The purpose of this study was to determine the parameters, which would create the largest 

ablation zone, varying both the DC pre time and the DC voltage. The size of the ablation zone 

increased with increasing DC voltage to 9 volts, however the ablation zone decreased in size 

when 18 and 36 volts were applied to the tissue, irrespective of the time of pre DC (Appendix1-

Table 2.3).
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The size of the ablation zone increased with increasing pre – RF DC time to 10 minutes, but 

there was no increase in the ablation zone sizes with 15 and 30 minutes respectively (Appendix 

1-Table 2.3). An interesting observation was the destruction of the tissue immediately adjacent

to the electrode. The destruction of the tissue was not due to excessive charring or burning of 

the tissue, but rather it appeared the destruction was due to chemical necrosis of the tissue 

(Figure 2.7).

Figure 2.7 demonstrates a central linear area of chemical necrosis representing tissue immediately adjacent to the 

electrode. No RF energy could be delivered to the tissue due to the extensive liquefactive necrosis along the 

electrode. 

This only appeared to occur with high DC voltages (18 and 36 volts) and long DC times (15 and 

30 minutes). This correlates with the chemical necrosis described (Wemyss-Holden et al, 

2000b) in the literature, however this phenomenon associated with DC application and 

subsequent RF ablation has not been described previously. The most likely cause of this 

phenomenon is the chemical necrosis caused by the DC followed by heating of the tissue 

(Samuelsson and Jonsson, 1980, Samuelsson and Jonsson, 1981), causing the tissue 

immediately adjacent to the electrode to liquefy. A theory for the decreasing ablation zone sizes 

at these high DC voltages with long pre – RF DC times may be a result of excessive toxic gas 

release at the cathode causing rapid necrosis of the tissue adjacent to the electrode. 
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The most extreme of these observations was at 36 volts with 30 minutes of pre – RF DC. At this 

extreme, no radiofrequency energy was deposited in the tissue, and roll – off occurred within 

seconds of radiofrequency energy being applied. Dissection of the block of liver revealed a 

large ‘cavernous’ tube along the length of the electrode (Figure 2.7) with no ablated liver tissue. 

The liver adjacent to the electrode appeared discoloured with thick liquid replacing the normal 

liver adjacent to the electrode. This had the appearance of necrotic liquefied liver parenchyma.

The results of the ex vivo study demonstrate the ablation zones to be the largest with no pre –

RF DC at 9 volts which is in contradiction to the results published by Cockburn et al  (Cockburn 

et al, 2007) where the ablation zone was larger following 600 seconds of pre - RF DC. In this 

study the mean ablation diameters for 300 seconds and 600 seconds of pre – RF DC were not 

significantly different,. This finding does not decrease the significance of Cockburn et al’s early 

work with BETA; it must be borne in mind, the number of experiments performed using the

parameters in the current study were larger than those published in the 2007 paper.

The most significant observation in the study was the effect of applying no pre – RF DC to the 

tissue, and applying DC and RF simultaneously.

This observation proved to be statistically significant when compared to the controls for the 

same RF power (Table 2.10), but no statistical significance was observed between the ablation 

zones where no pre – RF DC was delivered and where 300 and 600 seconds of pre – RF DC 

was delivered (Tables 2.11 and 2.12).

This observation means the treatment time could be decreased by at least 5 minutes without 

decreasing the size of the ablation zone significantly. 

This important observation may prove to be extremely important in the application of BETA in 

the clinical scenario. Electrolysis is a slow process, which is one of the cardinal reasons for it 

not being adopted as a method of tumour ablation.

Effect of RF Power

RF power refers to the amount of milli-ampheres (mA) delivered to the tissue. The mA 

delivered is dependant on Ohm’s Law, which described mathematically:

V = I x R

The RF power or current (I) is dependant on the relationship between the voltage of RF 

delivered and the resistance in the liver tissue. The computer software adjusts the RF wattage 
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and the RF voltage according to the impedance in the liver in order to maintain the current 

delivered.

The impedance of the liver fluctuated depending on the temperature of the liver and the age of 

the liver. A high impedance in the liver resulted in a high RF wattage and RF voltage for a 

given RF current. With a very high RF wattage, the liver ablated too quickly and the resultant 

ablation zone was smaller than expected. Cool liver temperatures (<20 °C) resulted in high liver 

impedances (>100 ohms) and livers, which were older than 3 days, resulted in high impedances 

(>100 ohms). The reasons for this are unknown. However, given the findings early in the study, 

only livers a maximum of 48 hrs old were used. This was relayed to the butcher supplying livers 

and this was then conveyed to the abattoir. Later in the study, the livers were vacuum packed as 

soon as they were removed from the animal, ensuring maximum preservation of the tissue. The 

temperature findings, however relate to the literature in terms of temperatures of the ex vivo

liver. Lee et al (Lee et al, 2005, Lee et al, 2006, Lee et al, 2006) utilised the same methodology 

for his ex vivo experiments as was used throughout the ex vivo work of this research. Room 

temperature saline baths were utilised throughout the study and the livers, once cut into the 

blocks to be used for the experiments warmed up to room temperature extremely quickly. 

Some authors used frozen livers, which were thawed overnight and used for experiment at 

temperatures of 18-22 °C (Mertyna et al, 2007). I did not need to freeze livers as I had a 

dependable source of fresh, chilled livers.

The RF parameters set out in the matrix were modified early on in the study, as the largest mA 

achieved given liver impedances of between 70 and 80 ohms was 1000mA. 1500 and 200mA 

were not achievable due to the design of the BETA machine and a lack of sufficient RF voltage 

in the machine needed to achieve these high powers.

Radiofrequency settings of 500, 750 and 1000mA were tested (Table 2.4). As radiofrequency 

power increased, above 600mA, the size of the ablation zone decreased. This finding is not in 

keeping with the findings of Solazzo (Solazzo et al, 2007) or Goldberg (Goldberg et al, 1998a), 

however Solazzo et al achieved large ablation diameters using a pulsed algorithm. Rhim et al 

(Rhim et al, 2001) described a new generation of ablation machines which had RF power 

capabilities of more than 150 W, in order to deposit more energy in the tissue, however the 

findings in this study demonstrate a decreasing ablation zone size with RF power of 750 and 

1000mA. This may be due to the lack of impedance feedback algorithms present in all of the 

commercially available ablation devices. Impedance feedback allows the machine to adjust its 

settings in order to continue to deliver a set amount of RF power (watts) to the tissue. In this 

way, the RF current and RF voltage will be reduced in order for the machine to deliver adequate 

RF power. Our machine allowed only the RF current to be set and once the ablation cycle had 
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commenced, the software program adjusted the RF power and voltage in accordance with the 

changing impedance of the liver.

500mA produced the largest ablation zones, however the roll off using 500mA was often 

extremely lengthy (>45 minutes). This in a clinical context would not be clinically effective, 

given an ablation zone using 600mA would be of similar size, but taking half the time to 

achieve (Appendix 1-Table 2.3).  Following completion of each parameter of the original matrix 

(n = 6), achieving an 80% power statistically, parameters were repeated using 600mA as the RF 

power.

This proved to produce a large ablation zone (Table 2.10) compared with controls, with no 

statistical difference between the mean ablation diameter produced at 500mA and 600mA 

(Table 2.7).

Parameters at 600mA were then repeated in order to determine whether any statistical difference 

could be determined between simultaneous RF and DC only, and pre – RF DC deliver for 300 

and 600 seconds.

The results of this revealed no statistical difference (Table 2.11-2.13).

The Effect of simultaneous RF and DC delivery

Simultaneous RF and DC delivery alone, without any pre – RF DC delivery produced similar 

ablation zone sizes to those ablations where DC was delivered in the pre – RF phase and then 

simultaneously with RF. The difference in ablation zone sizes was not significant (Table 2.11-

2.13).

Simultaneous RF and DC delivery appeared to produce the same effects in the liver regarding 

electroosmosis with simultaneous RF delivery as long as the ablation continued for a sufficient 

period of time. The period of time needed for the effects of the DC to become apparent was 600 

seconds. Ablation that rolled off before 600 seconds were smaller and there was resistance to 

the electrode being removed from the tissue. In these instances, adherent liver was found on the 

electrode, similar to the observations in the control group, where RF was applied in isolation 

without any DC. In these groups, the charred liver adhered to the electrode and only through 

force and damage to the liver could the electrode be removed, however significant liver tissue 

adhered to the electrode in these controls (Figure 2.8).
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Figure 2.8 charred adherent tissue following conventional RFA (top) and the appearance of the needle following 

BETA (bottom)

This finding is common with conventional RFA and was highlighted by Cockburn et al 

(Cockburn et al, 2007). This often leads to trauma to the liver tissue and although not described 

in the paper, Wemyss-Holden described the site of needle entry into the liver bleeding post 

ablation, whereas this did not occur following BETA. 

Figure 2.9 Conventional RFA (left) demonstrating a smaller ablation zone with the needle track (arrowheads) 

removed completely due to adherence to the electrode. BETA (right) demonstrating a larger ablation zone and the 

blackened tissue, (white arrows) which remains insitu with electrode removal.
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Figure 2.10 damaged liver (arrowheads) resulting from needle removal following conventional RFA.

The haemorrhage was not significant and was easily controlled. However, in percutaneous 

treatments, direct visualisation of the surface of the liver does not occur and therefore any 

haemorrhage will not be clinically apparent until it causes signs such as hypotension and 

tachycardia.

Given the effects of DC, ablations with a run off of less than 600 seconds, encountered with RF 

parameters of 750 and 1000mA had similar results with liver adherent to the needle, however 

this was significantly less than the effects seen with RF ablation alone. This was not seen using 

RF parameters of 500 and 600mA as the run off for these parameters was in excess of 600

seconds. The chemical reaction occurring at the cathode as described by Samuelsson and 

Jonsson (Samuelsson and Jonsson, 1980, Samuelsson, 1981) with hydrogen formation occurred 

in all experiments. This reaction could be observed visually with gas bubble formation at the 

cathode (Figure 2.11).
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Figure 2.11 gas bubble formation at the cathode during BETA

Ablation zone sizes were not statistically significant when 18 or 36 volts of DC was applied 

simultaneously with RF ablation. The damage observed with long periods of 36 volts as 

described earlier was not seen (Figure 2.7). Given the potential for tissue damage with high 

voltages and the results of the ablations using 9, 18 and 36 volts (Appendix 1-Table 2.3), no 

benefit to using more than 9 volts is seen. This is in keeping with finding by Nordenstrom 

(Nordenstrom, 1983).  A further phenomenon described by Cockburn et al (Cockburn et al, 

2007) is the swelling of the liver adjacent to the electrode (Figure 2.12). This is again only seen 

with BETA and not conventional RFA.
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Figure 2.12 Swelling on the surface of the liver observed with BETA

A hypothesis for this is the increase in hydration of the liver due to electroosmosis. This is 

discussed in Chapter 3 in more detail.



Ex Vivo Studies Chapter 2

BETA 119

Limitations of Research:

Limitations to this research model were identified, however I did not feel the results were 

influenced significantly by these limitations.

1. The tissue used for the ex vivo studies was bovine liver. The tissue used for the in vivo 

work was porcine. Although the tissue type differed, the reason for using the bovine 

livers as opposed to porcine livers was primarily the larger size of the bovine livers and 

therefore the ability to utilize more tissue for ablation per liver.

2. The porcine liver, as discussed in chapter 5 has 3 lobes, which limits the amount of 

tissue available to create large ablation zones. The bovine liver has a large right lobe, 

similar to the human liver, which allows for larger ablation zones.

3. The fluid medium used for transmission of current in the bath during all experiments 

was tap water with NaCl added, in order to obtain 0.9% saline. This fluid medium is not 

physiological and therefore could, in theory affect the results, due to conventional 

osmosis into the liver. The livers were placed in the saline bath, only to allow for 

electrical conduction and each experiment was conducted in the same way, each control 

ablation and BETA was performed using the same experimental design and therefore 

each liver was exposed to the same amount of fluid medium. The reason I decided to 

use normal saline was due to the fact that the water needed changing regularly 

throughout the day in order to maintain the temperature and replacing it with 

physiological saline was not thought to be practical.

The saline bath was maintained between 26 and 30 °C. This is not core body 

temperature, however the temperature dropped in the saline bath relatively quickly and 

it was not felt to be practical to maintain the water at 37 °C due to the added complexity 

of a water heater and the lack of water circulation in the batch, which would lead to vast 

temperature differences in different parts of the saline bath. 
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During the study design I decided on the 26-30 range for practicality, however a 

number of studies in the literature use cool water (Mertyna et al, 2007), which 

undoubtedly affect the ablation zone size as discussed earlier in this chapter. 

The convention in the literature is to utilise liver in the temperature range 25-30 °C (Lee 

et al, 2005, Lee et al, 2006, Lee et al, 2006), and I thought this to be the most practical, 

although the ideal would have been body temperature livers.



Ex Vivo Studies Chapter 2

BETA 121

Conclusions:

1) BETA produces larger ablation zones in ex vivo liver compared to controls using the 

same RF power.

2) There is no statistically significant difference between the ablation zone sizes produced 

with simultaneous RF and DC alone compared to those produced with 300 or 600 

seconds of pre – RF DC.

3) 9 Volts of DC current produces the largest ablation zones. 18 and 36 volts cause 

chemical necrosis of the tissue immediately adjacent to the electrode, with this 

becoming significant with long periods of pre – RF DC (30 mins).

4) No statistical difference is seen comparing the ablation zone sizes produced with 18 and 

36 volts with no pre – RF DC, compared to 9 volts.

5) 600mA produced similar BETA zone sizes to 500mA BETA zones, but the ablation is 

completed in almost half the time with 600mA compared to 500mA.

6) The ideal parameter for producing a large ablation zone in reasonable time is 9 volts of 

direct current combined with 600mA of RF power simultaneously, with no pre – RF 

direct current delivery.
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Chapter 3:

Bimodal Electric Tissue Ablation:

Hydration Studies.
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Introduction:

General.

BETA combines direct current and radiofrequency ablation increasing the resultant ablation 

volume when compared to controls.

The hypothesis of this study is based on the evidence described by Nordenstrom (Nordenstrom, 

1983). Direct current applied to the radiofrequency circuit polarises the electrode and the 

grounding pad, creating an anode and a cathode. The electrical current passing between the 

anode and cathode creates an electrochemical gradient known as an electroosmotic gradient 

(Nordenstrom, 1983). This electroosmotic gradient was first described by FF Reuss (Reuss, 

1809) in 1809.

Electroosmosis:

Frederick Reuss first described the process of movement of water molecules from the cathode to 

the anode - termed Electroosmosis (Reuss, 1809) in 1809 in the Proceedings of the Imperial 

Society of Naturalists of Moscow. Reuss demonstrated that when influenced by an externally 

applied electric field, water migrated through porous clay diaphragms to the cathode. This 

finding was understood then to be the result of clay, sand and other mineral particles carrying 

negative surface charges when in contact with water. A charged surface will attract positive ions 

present in water and repel negative ions. The positive ions predominate next to the charged 

surface, hence application of an electric field results in a net migration towards the cathode. 

Electroosmosis has been used extensively in mining and construction, as a method of 

dewatering soil (Probstein, 1994).

It is its qualities of attracting of water to the cathode that provides the basis of BETA.

Nordenstrom described in detail the theory of electroosmosis in necrotic tissue (Nordenstrom, 

1983). Necrotic tissue increases in weight early on in the autolytic process due to accumulation 

of calcium in the tissue. Measurements of ionic concentration in necrotic tissue show that the 

weight and the swelling seen are due to an influx of water, sodium and chloride ions. Necrosis 

leads to the release of proteolytic enzymes, which increase the osmotic properties of the tissue, 

this causes water to enter the tissue due to the osmotic gradient created. A space between cells 

(the intercellular space) allows water and solutes to accumulate and is essential to cellular 

function. As water and solutes move into cells from the intercellular space, the space is filled by 

further water and solutes. Attractive forces between cells decrease as cells begin to undergo 

autolysis, which further increases the intercellular spaces. The structural features of water 

depend greatly on its ability to form bonds between the electrons of its hydrogen and oxygen 

atoms. In ice, the lowest energy level of water, the hydrogen bonded clusters form tetrahedrons. 
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As ice melts the tetrahedron bonds decrease with the increasing energy content of liquid water. 

Triple, double and unbonded water molecules increase in number as the tetrahedron bonds 

break, as water approaches vapour these decrease even more in number to the highest energy 

state of water vapour. There is a significant difference in energy between a tetra bonded water 

molecule and an unbonded one; the estimate is in the region of 2.7kcal/mole (Nordenstrom, 

1983). Water possesses a permanent dipole moment and orientates itself in an electric field. 

This dipole moment also develops when the molecule is exposed to an electric field. 

Water transport by means of fixed electrical charges was demonstrated by an experiment using 

cotton wool in a glass U-tube. The cotton wool was packed in the bend of the tube to form small 

“capillaries”. The spaces between the cotton fibres served as channels, similar to intercellular 

spaces. Water is poured into the tube and platinum electrodes immersed in the water. As an 

electrical potential is applied between the two electrodes, water moves from the positive to the 

negative side of the system until equilibrium is reached between the hydrostatic and 

electroosmotic pressures. The flow of water against the hydrostatic pressure is a form of 

“active” transport (transport against an energy gradient). This transport of water (referred to as 

Type I electroosmotic water transport by Nordenstrom) is able to take place without the 

concomitant electrolysis of the water molecules.

Type I Electroosmosis.

If an electric field is strong enough to break up water molecules clustered together, the 

molecules undergo “structuring” or field orientation. The dimensions of the matrix of 

“capillaries” are important, as they must be small enough to prevent hydrostatic return of the 

water molecules. If these conditions are met, water will move with the electrical field in a 

predictable way. The direction of water flow in electroosmosis is determined by the surplus 

of fixed charges of the capilliaries in the electric field. The rate of transport of the water 

however depends on several factors: the magnitude of the electric field, the porosity of the 

membrane (the number and size of the pores) and the magnitude, density and geometry of the 

fixed charges. If the electric field is placed close to the membrane or matrix, the electric field 

is strengthened. Capillary channels also play an important role in water transport and 

equilibrium. If capillary channels are too large, the hydrostatic pressure will cause water 

return. This effect will lengthen the time to achieve equilibrium or may prevent it completely.
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Type II Electroosmosis.

Type II electroosmosis is more complex than type I, diffusion and electrophoretic migration of 

ions in an electric field determine where the recombined water molecules will be found. The 

transport mechanism of migration depends on the mobility of ions. In an experiment using 

litmus paper, Nordenstrom proved protons were produced at the anode and hydroxyl ions at the 

cathode using 10V of direct current applied to platinum electrodes soaked in water. The ions 

migrate in the electric field and recombine to form water. The differing mobility of the ions 

result in a net transport of water to the cathode. Water transport in type II electroosmosis 

increases as the voltage increases and occurs immediately as an electrical field is created. The 

dielectric induction and structure of water molecules adjacent to the anode and cathode serve as 

the initial prerequisites for the oxidation and reduction reactions taking place. Water molecules 

become orientated in an optimal way to consume electrons from the cathode and donate 

electrons to the anode. 

The products then diffuse into the electric field, a mechanism compatible with the slow 

transport of OH- and H+ from the respective electrodes to the area of recombination, which is a 

barrier resistant to the passage of protons and hydroxyl ions. In the case of tissue, this area of 

recombination represents the cellular membrane and the intercellular space.

Type III Electroosmosis.

Type III electroosmosis depends on the behavioural differences of anions and cations. 

Cations may become hydrated, but anions do not (Nordenstrom, 1983). Cations carry water 

molecules absorbed on their surfaces when ions migrate in the electropositive part of an 

electric field. This is not mirrored by the anions in the opposite direction. There is thus a net 

electrophoretic water transport, which may be viewed as a basic form of “mediated” 

transport. Mediated transport refers to transport across a membrane by a membrane transport 

protein. In this case the cation serves as the “mediator” or carrier of the water molecule. Once 

the cation and water molecule enters a region of high pH (the region surrounding the 

cathode), the water molecule is released from the cation carrier.

Type IV Electroosmosis.

Type IV electroosmosis refers to a partial function of electroosmosis. This type of

electroosmosis occurs in molecules close to a charged electrode within a matrix, which does 

not need to be lined with fixed charges. These inductions cause a net attraction of water to 

any charged electrode, regardless of its polarity.
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Pressure changes and Electroosmosis.

An important question is whether electroosmosis can occur at low voltages, voltages low 

enough not to create electrolysis of water. Helmholtz observed electrolysis at 1.64V in 1879 

and Bartoli at 1.23V in 1978 (Nordenstrom, 1983). H3O
+ and its polymers form with type III 

electroosmosis that are connected with the transport of water during electrolysis, transport 

pressures play an important role during electrolysis and Nordenstrom conducted experiments 

in order to understand this behaviour further. His experiments using cotton wool in a U tube 

revealed a linear relationship between the rising voltage and hydrostatic pressure. 

Nordenstrom applied 20V of current for 2 minutes each to electrodes in the U-tube. The 

results showed two pressure phases, the first, a slow pressure phase that occurred due to gas 

formation at the electrodes as discussed previously. The slow pressure phase is only observed 

at higher voltages. The second phase, the rapid pressure phase is observed at both high and 

low voltages (0.4V up to 20V) (Nordenstrom, 1983).

Given these findings related to pressure change, Nordenstrom described the four types of 

electroosmosis in terms of pressure.

Type I is characterised by its dependence on a surplus of fixed negative or positive charges, 

otherwise referred to as “fixed charge electroosmosis”. The rapid change of pressure correlates 

directly with the magnitude of the voltage applied across a matrix.

Type II electroosmosis can also be described as “electroosmosis by ionic recombination” and 

does not require fixed charges in the matrix. Type II involves electrolysis of water, diffusion 

and migration of H+ and OH- and the recombination into water. The elevation of pressure in type 

II is slow and not related to the magnitude of the voltage applied.

Type III electroosmosis is closely related to type II; its mechanism is based on ionic hydration 

of cations only. Cations carry water and water polymers from the electropositive to the 

electronegative part of the field. Type III electroosmosis can be described as “cationic 

electroosmosis”.

Type IV electroosmosis occurs close to charged electrodes which produce an attractive force on 

close water molecules by induction. In this type of electroosmosis the water molecules move to 

the closest electrode regardless of the polarity. Type IV electroosmosis can be described as

“field-induced osmosis” and can be regarded as a special case of type I electroosmosis, where in 

type IV electroosmosis, the charged electrodes include the functions of the applied field and 

fixed charges. 

Nordenstrom went on to prove this in human and animal tissue, using lung tissue to replace the 

cotton wool in his initial experiments. These electroosmotic experiments revealed the human 

and animal lung behaved in exactly the same way as cotton wool.
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BETA produces a significantly larger ablation zone than standard RFA (Chapter 2). The 

hypothesis of this is the production of a cathodic electrode and the net movement of water to the 

cathode during the ablation cycle. This net movement of water keeps the tissue hydrated and 

thus allows for larger ablation zones.

The theory of electroosmosis has been proven by Nordenstrom et al, but demonstration of 

ablated tissue of higher hydration post ablation compared to standard RF was essential in 

proving our hypothesis of electroosmosis as a cause for the larger ablation zone observed with 

BETA. The effects of DC on tissue have been described in chapter 2. These observations are 

well described in the literature (Samuelsson and Jonsson, 1980, Nordenstrom, 1983). The 

hydration of tissue post ablation, has only recently been described in the literature (Brace et al, 

2010).
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Objective:

The objective of this study is to prove electroosmosis to be responsible for the increased size of 

the ablation zone obtained with BETA, by proving an increase in mean tissue hydration of 

ablated tissue following the application of BETA.
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Materials and Methods:

Liver.

The liver used in this study was prepared for the ablation process as outlined in Chapter 2.

Following the ablation process as outlined in Chapter 2, a brass rod was placed along the 

ablation path in the liver created by the ablation electrode. The 10 x 10 x 10 cm block of liver 

was removed from the Perspex box with the brass rod in situ and placed onto a plastic cutting 

board.

A sharp knife was used to cut along the brass rod, parallel to the direction of the ablation 

electrode in order to determine the longest ablation diameter.

Following measurement for volume calculation, a sharp scalpel (no. 11) was used to remove 

four equal sizes of ablated tissue for hydration analysis 0.5 cm from the centre of the trough 

created by the ablation electrode at 12, 3, 6 and 9 o’clock. 

The measurement was taken perpendicular to the long axis of the ablation volume, at the level 

of the longest short axis measurement.

Four equal sizes of ablated liver were removed from the ablated liver volume, each piece from a 

distance of 0.5cm from the centre of the trough created by the ablation needle. This was to 

ensure enough tissue could be taken for hydration analysis and that the areas of sample could be 

reproduced in either control or experimental liver samples.

Each of the four samples measured 0.5 x 0.5 x 2cm and had a combined minimum weight of 

5 grams.

The samples were placed immediately into the sample pan of the hydration analyser for 

hydration measurement. The remainder of the liver was then discarded.

Moisture Analyser.

The device used for moisture analysis is a commercially available moisture analyser (MAC 

50/1, Radwag, Radom, Poland) (Figure 5.1).

The MAC series of moisture analysers are designed to provide the user with a variety of 

maximum weights of samples for analysis, with a differing degree of accuracy at each extreme 

for each of the MAC analysers.

Following discussion with the technical department in Poland a MAC 50/1 moisture analyser 

was purchased for moisture analysis of the ablated liver samples.

The MAC 50/1 (Figure 5.1) has a maximum drying capacity of 50g, which also represents the 

calibration weight of the machine. The reading unit measures to 0.1mg (0.0001g) with an 

accuracy of 0.001% for measurements greater than 1.5g. The drying chamber measures 120 x 

120 x 20mm with a disposable aluminum drying pan measuring 90mm in diameter. The 
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maximum drying temperature is 160 °C, with the option of increasing the drying temperature to

250 °C, however the manufacturer did not recommend this. The moisture analyser is sold with 

both a conformity declaration for safety and electromagnetic stability. The MAC analyser has a 

large LCD which provides the user with information regarding ambient temperature within the 

drying chamber, elapsed time of the drying process, the program number and information 

regarding the sample itself including weight changes and hydration status expressed in 

percentages (Figure 5.2), this will be discussed in more detail.

Figure 5.1 the Radwag MAC 50/1. Heating element (white arrow), disposable tray (white arrowhead) and LCD 

display (grey arrowhead)



Hydration Studies Chapter 3

BETA 132

Figure 5.2 Hydration analyser during the drying process. The heating element raises the temperature in the drying 

chamber (white arrowhead); the temperature within the drying chamber is displayed on the LCD screen (grey arrow) 

together with the elapsed time (white arrow), mass reading (black arrow) and the cycle setting (white arrowhead).
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Machine Calibration.

Prior to first use, the manufacturer recommends calibration of the machine regarding 

temperature measurement and weight measurement. Following initial calibration of the 

machine, the analyser is to be placed on a level surface. Individually raising or lowering the 

back footrests of the machine can adjust the exact position of the analyser. The machine 

contains a small circular spirit level, which indicates the exact orientation of the machine on the 

surface. The machine footrests must be adjusted until the spirit level is in the centre of the 

circle, indicating an exact level position. The machine has an optimum function with an ambient 

room temperature of 15 – 40 °C and humidity not in excess of 80% at 31 °C and 50% at 40 °C. 

The temperature and humidity of the laboratory are centrally controlled and do not exceed these 

recommendations.

Temperature.

The manufacturer, on initial use and weekly recommends temperature calibration. Thereafter or 

following prolonged inactivity of the machine (more than 3 weeks) or following transport of the 

machine. On initial setup, the analyser undergoes a temperature stabilisation period or self-

heating period, which may last up to 4 hours. This is an automated feature.

Temperature calibration requires a separate thermometer, which can withstand temperatures in 

excess of 160 °C. A thermometer is placed into the drying chamber through a small aperture in 

the drying chamber window. The temperature calibration process is initiated on the machine and 

the user is required to increase or decrease the temperature display on the machine according to 

the external thermometer reading in order to calibrate the internal thermometer. This process 

lasts 15 minutes.

Following temperature calibration, the data must be saved and the analyser recalibrated weekly.

Weight.

The scale of the analyser was calibrated daily due to the importance of weight measurement in 

the hydration analysis. A machined 50g weight was used for this purpose. The weight 

calibration process was initiated on the machine and the 50g weight placed in the centre of the 

drying pan. The machine self calibrated according to the known weight of the machined 50g 

weight. The accuracy of the scale could be easily checked thereafter throughout the day by 

means of a calibration test. This was conducted after each hydration analysis. The 50g weight is 

placed in the centre of the drying pan and the machine calculates a difference between the 

known weight and the measured weight and displays this difference to an accuracy of 0.0001g. 

If the accuracy is less than 0.00001g, the machine scale must be recalibrated. 
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Hydration Analysis.

Three separate drying programs are available to the user on the MAC series: manual, automatic 

and time defined. The automatic setting ends the moisture analysis once the sample does not 

undergo a weight change for intervals of 20, 50, 120, 180 or 240 seconds, depending on the 

degree of accuracy required. An interval of 120 seconds is recommended for solid foods, 

achieving an accuracy of 0.001%. The automatic analysis must be further defined by means of 

the maximum chamber drying temperature and the drying profile. The maximum drying 

temperature was not adjusted and was left at 160 °C. The drying profiles consist of the 

following:

1. Standard profile – rapid heating to 160 °C.

2. Quick profile – rapid intense heating in a short period of time. The drying temperature 

is increased to 30 °C above the maximum set (160 °C) for 180 seconds, after which the 

temperature decreases to the set temperature chosen.

3. Mild Profile – Temperature increases to maximum in t1, where the user predefines t1.

4. Step Profile – Temperature increases in steps tmp1, tmp2, tmpmax, at intervals t1, t2, t3. 

The user determines each of these variables.

A standard drying profile was chosen for the hydration analysis.

Hydration Analysis Display.

An LCD (Figure 5.2) displayed the elapsed time of the drying process, the drying profile, the 

maximum temperature and the weight interval setting chosen.

A large set of LCD numbers in the centre of the display changed continually throughout the 

drying process indicating the following changes to the sample:

 %M  - Percentage weight loss of the sample

 %D – Part of dry mass received in drying process in percent. This is part of the sample, 

which remained on the pan following humid evaporation.

 %R – Humid/dry mass ratio in percent. This is the part of the sample, which vaporised 

during drying and correlates with the %M.

 g – mass change. The mass of change registered during the drying process.

The most important of these parameters is the %M. This indicates the percentage of weight loss 

of the sample, through the drying process, which correlates with the water content of the 

sample. The larger the %M, the greater the moisture content of the sample.
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Drying Process.

Following removal of the four pieces of ablated liver from the block of liver, the hydration 

analyser was zeroed and the four pieces placed in the centre of the drying pan. As soon as the 

lid of the drying chamber was closed, the drying process was initialised automatically. A 

circular halogen lamp heated the sample continually (Figure 5.1). The machine measures 

changes in weight of the sample continually with an accuracy of 0.0001g. For this study an 

automatic cut-off setting of 3 was chosen. This setting dictates the machine measures the sample 

continually, until there is no weight change in the sample for 120 seconds. The lack of weight 

change indicates complete desiccation of the sample (Figure 5.3). The program terminates and 

the results of the drying process, namely %M, %R, %D and g are displayed on the LCD. These 

results were recorded in the research folder and on an excel spreadsheet.

Figure 5.3 Fresh unablated liver (left) and liver following complete dehydration process

The following ablation parameters were tested for percentage hydration.

 Normal unablated liver as reference.

 600mA of RFA – Control

 No pre – RF DC, 600mA of RFA with 9V of simultaneous DC.

 300 seconds of pre – RF DC and 600mA of RFA with 9V of simultaneous DC.

 600 seconds of pre – RF DC and 600mA of RFA with 9V of simultaneous DC.
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Results.

The results are expressed as means ± standard deviation (SD) for normally distributed variables 

or the median and the interquartile range for non-normal variables. Differences in hydration 

percentage between tissue receiving standard RFA or BETA were tested with ANOVA. A P 

value <0.05 was considered statistically significant. SPSS 17 was used for all statistical data 

analysis. The hydration is quoted in percentage and sizes quoted refer to the maximum short 

axis measurement of the ablation zone unless specified.

A total of 75 experiments were conducted (n=15).

Normal liver hydration was tested in addition to each ablation group (n=15).

Prior to each hydration analysis, the ablation zone was measured for maximum short axis 

diameter and scrutinised using the ANOVA test.

Hydration Studies 

Groups N
Mean 
(%) SD SEM

95% Confidence 
Interval for 

Mean
Min 
(%)

Max 
(%)

Lower 
Bound

Upper 
Bound

Normal Liver 15 72.19 2.65 0.68 70.73 73.66 68.16 77.99

Standard RFA Control 15 46.91 2.91 0.75 45.29 48.52 42.38 53.31

9V-600mA BETA 15 51.54 3.98 1.03 49.33 53.74 40.44 56.57

300s 9V-600mA BETA 15 51.61 3.16 0.82 49.86 53.36 46.53 57.01

600s 9V-600mA BETA 15 52.25 2.62 0.68 50.8 53.7 47.72 56.39

Total 75 54.9 9.41 1.09 52.73 57.06 40.44 77.99

Table 3.1 demonstrates each group, with the corresponding values obtained from the hydration 

analyser. The mean percentage hydration following ablation is tabulated for each parameter 

with the associated standard deviation (SD), range and the standard error of the mean (SEM).
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The intergroup analysis demonstrated a significant difference between the control group and the 

group with no DC pre-treatment (p < 0.001) (Table 3.3).

The intergroup analysis did not demonstrate a significant difference between the groups treated 

with 300 seconds or 600 seconds of pre RF DC (p = 0.55) or between the 600 seconds pre-

treatment group and the group with no pre RF DC (p = 0.56) and between the 300 seconds pre-

treatment group and the group with no pre-treatment (p = 0.953).

Graph 3.1 demonstrates the range of hydration percentages for the control group, the 

experimental groups and for normal unablated liver for reference, with corresponding error bars.

Graph 3.2 demonstrates the mean hydration percentages for the control group, the experimental 

groups and for normal unablated liver for reference, with corresponding error bars.

Appendix 2:

Tables 3.2 – 3.6 demonstrate the results of each hydration experiment.

The percentage of weight loss registered during drying process – water content (%M), 

percentage of the sample which remained on the pan after humid evaporation  - solid tissue 

content (%D), the humid/dry mass ratio  - part of sample which vaporised during drying process 

(%R) and residual mass (g) are tabulated in each experiment.

Table 3.7  - explanation of the parameters for each experiment.
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Hydration Ranges
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Graph 3.1 The range of hydration percentages for the control group, the experimental groups 

and for normal unablated liver for reference, with corresponding error bars.
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Graph 3.2 The mean hydration percentages for the control group, the experimental groups and 

for normal unablated liver for reference, with corresponding error bars.
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Discussion.

Introduction.

In Chapter 2, the results of ex vivo BETA compared to control RFA were described.

The ability of BETA to produce large ablation zones is due to the polarisation of the ablation 

electrode and its effects on the surrounding tissue (Samuelsson and Jonsson, 1980, Samuelsson 

and Jonsson, 1981, Nordenstrom, 1983). The chemical necrosis caused in the tissue is due to the 

formation of gases at both the anode and cathode (Samuelsson and Jonsson, 1980, Samuelsson 

and Jonsson, 1981) and has been discussed. The effects of electrolysis in inducing chemical 

necrosis have been described (Wemyss-Holden et al, 2000a, Wemyss-Holden et al, 2000b, 

Wemyss-Holden et al, 2002) in detail in the literature. The role of electroosmosis in maintaining 

the hydration of liver during ablation with radiofrequency energy however has not been 

described in the literature.

General. 

Electrolysis in tissue polarises the tissue at the anode and cathode causing liberation of gases at 

each electrode (Samuelsson and Jonsson, 1980). The paper in 1980 described the volumes and 

relationship of gas formation to the current delivered. The minimum voltage for chlorine gas 

formation at the anode was 1.5V (Samuelsson and Jonsson, 1980).

Electroosmosis was well described by Nordenstrom (Nordenstrom, 1983) using a series of 

experiments in a U-tube and later in tissue.

The key limitation of radiofrequency ablation is the charring of tissue immediately adjacent to 

the needle (Goldberg et al, 1996a, Goldberg et al, 1996b). The initial observation of BETA by 

Cockburn and Wemyss-Holden was the lack of charring of the needle and the ease of removal 

of the needle from the tissue. This finding was highlighted in their paper in 2007 (Cockburn et 

al, 2007). The theory behind this lack of charring was that of electroosmosis. 

During the development of the Mark II machine, it was thought the hydration could be 

measured during the ablation cycle.

The ablation machine manufactured by EG Technology (Cambridge, United Kingdom) 

originally had specifications which included four hydration analysers. These analysers consisted 

of four stainless steel rods, arranged in parallel, which acted as resistors in the tissue. The 

software program could be manipulated to measure the resistance in the tissue at specified 

intervals from every second, to 200-second intervals. During the resistance measurements, the 
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radiofrequency and the direct current were switched off; this interval lasted 100 milliseconds 

(ms) and allowed the tissue resistance to be determined between each of the rods. The 

measurements were expressed as numbers, but no units were attached to these measurements, as 

there was no calibration performed for the analysers. This proved to be a major stumbling block 

for hydration analysis initially. The lack of calibration meant that before any measurement 

could be taken, a constant reading would have to be quantified and regarded as the standard for 

which each measurement after this could be measured. Water was first used in order to obtain a 

reading, which was thought to be constant. The hydration/resistance analysers were placed in 

shallow tap water during a series of radiofrequency experiments in order to determine the 

resistance in water. The readings were extremely variable between each experiment and varied 

between each resistance electrode. The lack of a calibration device in the machine itself meant 

that even with reliable measurements in water, the significance of a difference in the readings 

received from the hydration analysers could not be interpreted.

A further limitation encountered during the hydration measurements was the temporary 

suspension of the ablation cycle in order to obtain a resistance measurement. The effect of this 

extremely short but possibly significant break in the ablation cycle was unknown, however did 

not appear to be compatible with a clinical scenario. The lack of calibration or consistent data 

readings in a constant test medium such as water lead to discussion regarding the scientific 

reliability of the hydration measurements obtained from the machine itself.

For this reason a request was made to the manufacturer to disconnect the hydration analysers 

from the machine and alternatives were looked into.

The MAC analyser proved to be the most reliable and most suited device for the hydration 

analysis. The machine can be easily calibrated and checked to ensure correct measurement and 

the data is easy to interpret.

The results of the hydration analysis show a significant difference in the hydration of the ablated 

tissue between control and BETA experiments. This proved the theory of electroosmosis 

occurring with electrolysis and the simultaneous application of radiofrequency used in BETA.

We believe, given the results of Nordenstrom’s work (Nordenstrom, 1983), type II 

electroosmosis is responsible for the hydration changes in the tissue. As the time of DC voltage 

application is increased, the hydration in the ablated tissue increases significantly when 

compared to the control ablations, however the observed increase in hydration is not significant 

within the groups of experiments treated with BETA, regardless of the amount of time pre-RF 

DC is applied to the tissue. The observations are consistent with the observations in chapter 2 

with regards to the size of the ablation zone when either simultaneous DC and RF are applied or 

if 300 seconds or 600 seconds of pre-RF DC are applied to the tissue prior to the application of 

simultaneous DC and RFA. These findings, too, are in keeping with the findings of 
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Nordenstrom (Nordenstrom, 1983) and thus support the theory of electroosmosis in BETA.

An important observation with BETA however is the relatively consistent hydration 

measurements and corresponding size measurements.

The results however show no significant difference in the degree of hydration of the ablated 

tissue between simultaneous DC and RF only, 300 seconds of pre-RF DC and 600 seconds of 

pre-RF DC. This is entirely consistent with the results of the size and volume analysis of the 

three groups. Although there is a gradual increase in size as DC is applied for longer to the 

tissue, this is not statistically significant, and no scientific inference can be made from the 

results. The difference is purely an observational one.

Attempts to maintain the hydration in tissue during ablation have been described in the 

literature. These range from pretreatment with varying concentrations of saline (Livraghi et al, 

1997, Ahmed et al, 2002) to the instillation of saline through an infusion electrode (Boehm et al, 

2002, Burdio et al, 2003).

These techniques have been described with varying degrees of success. Ahmed et al (Ahmed et 

al, 2002) described pre ablation saline instillation as a bolus, however the benefits of the 

technique seem to only become evident with highly concentrated volumes of saline. This 

technique demonstrates the impact of increasing the hydration of the ablated tissue, however a 

significant increase in the size of the ablation zone was only evident in tumours treated with 

36% saline.

This observation was not demonstrated by Freiser or Aube et al (Frieser et al, 2004, Aube et al, 

2007), in contrast, both Freiser and Aube demonstrated no effect when the concentration was 

increased, however Freiser did demonstrate an increase in the ablation zone when the perfusion 

rate of saline was increased.

Boehm et al (Boehm et al, 2002) compared saline infusion to internally cooled electrodes and 

showed no significant difference in outcomes in animals treated with either technique.

The literature demonstrates the lack of consensus regarding whether the saline infusion rate or 

the concentration of saline are responsible for the increase in the size of the ablation zone. 

Increasing the hydration of the tissue however, does increase the size of the resultant ablation 

zone.

BETA, in contrast to saline infusion does not require complex infusion pumps, accurate 

placement of irrigation catheters or the risk of morbidity associated with multiple punctures of 

tissue. The debate regarding the exact mechanism of action of the saline infusion however 

leaves a significant question regarding its clinical application. A manufacturer (Angiodynamics, 

Latham, NY, USA) has adopted this saline infusion technique into their clinical application of 

RFA, however, to date, there is no conclusive data to support saline infusion and improved 

survival.
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Although the exact composition of the change in electrolytes in the tissue following BETA was 

not examined, this does not seem to be an important factor.

The consistency of the hydration data and the correlation with the ablation zone size proves 

BETA to be reliable and reproducible.
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Limitations of this Research:

Limitations to this research model were identified; however I did not feel the results were 

influenced significantly by these limitations.

The same limitations as outlined in chapter 2, with regard to the temperature of the livers and 

the use of normal saline as opposed to physiological saline were encountered.

The use of normal saline, particularly in this aspect of the research study may have had a more 

influential effect on the outcomes of the hydration studies due to the potential for osmosis and 

thus increased hydration in the liver. Both the control ablations using 600mA alone and the 

BETA experiments were conducted using the same experimental design and thus were subject 

to the same potential osmotic gradients. I did not feel this limitation affected the results 

significantly, particularly as the purpose was to determine the relationship of hydration between 

the experiments and the controls, rather than the absolute hydration values.
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Conclusions. 

1. BETA causes an increase in the hydration of ablated tissue due to type II 

electroosmosis.

2. The degree of hydration increases as the duration of the direct current application 

increases when compared to the control radiofrequency ablation hydration percentage. 

This is in keeping with the findings of Nordenstrom 1983.

3. There is no significant difference in the degree of hydration in liver treated with 

simultaneous DC and RFA, 300 seconds of pre DC or 600 seconds of pre DC.

4. The increase in hydration due to electroosmosis results in larger ablation zones.

5. The increase in hydration due to electroosmosis decreases the charring of tissue at the 

cathode and hence adherence of tissue to the electrode.
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Chapter 4:

Bimodal Electric Tissue Ablation:

Temperature Distribution Studies.



Temperature Studies Chapter 4

BETA
147

Introduction:

General:

The distribution of heat through tissues during radiofrequency ablation (RFA) varies between 

tissue types (Mertyna et al, 2007). The same parameters used to ablate liver and muscle will 

produce differing coagulation zones. This is due to the inherent properties of the tissues and 

their response to heat (Figure 4.1). The margin of ablated tissue is a common site for recurrence 

as this region of tissue is often exposed to temperatures below 50 °C, which is the minimum 

amount of heat necessary to cause coagulation necrosis (Goldberg et al, 1996a, Goldberg et al, 

1996b, Goldberg et al, 2000). However, this does not occur immediately in ablated tissue. 

Increasing the temperature to 50-55 °C shortens the time necessary to induce cytotoxicity to less 

than 10 minutes. 

Figure 4.1 demonstrates tissue reaction to thermal ablation (Rhim et al, 2001).
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Effects of heat distribution on coagulation zones:

Mertyna et al (Mertyna et al, 2007) describes varying degrees of heat distribution in tissues 

treated with RFA. The higher the temperature at the margin, the larger the ablation zone.

The ablation margin is the most common site for tumour recurrence due to the lowering of 

temperatures at the periphery of the ablation zone (Figure 4.2).

The tissue at the periphery of the ablation zone reaches temperature of about 46 °C (Goldberg et 

al, 1998). At these temperatures, cellular homeostasis can continue, however cells become more 

susceptible to damage by agents such as radiotherapy and chemotherapy (Ahmed et al, 2003b, 

Ahmed et al, 2004, Ahmed et al, 2005)(Figure 4.1). With a mild temperature increase of 42-45 

°C (hyperthermia) prolonged heating at these temperatures will not induce complete cell death. 

Continued cell growth and function can be observed after long exposures to hyperthermia 

(Goldberg et al, 1998). The tissue may appear discoloured, however the hyperthermic status 

does not result in cell death.

Figure 4.2 illustrates heat efficacy. In order to decrease the risk of recurrence, an effective heating target volume 

(the tumor with a margin of normal liver) is necessary. Increasing the amount of electric current (unidirectional 

arrows) can increase the heat deposition in tissue. Heat conduction decreases with increasing distance from the tip of 

the electrode (bidirectional arrow), microbubble formation (stars) and charring (dots) adjacent to the electrode. Heat 

sink due to the adjacent vessel results in insufficient heating and subsequent recurrence (Rhim et al, 2001).
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A number of techniques have been employed in an attempt to increase the temperature at the 

periphery of the tumour. The most commonly adopted technique has been modulation of blood 

flow through the liver (Goldberg et al, 1998). The modulation of blood flow has been shown to 

increase the ablation zone (Goldberg et al, 1998, Shen et al, 2003, Horkan et al, 2004, 

Miyamoto et al, 2004, Hakime et al, 2007, de Baere et al, 2008, Iwamoto et al, 2008) in tissue 

by mechanical techniques, such as the Pringle manoeuvre (Pringle, 1908, Shen et al, 2003), 

pharmacological modulation of blood flow (Goldberg et al, 1998, Horkan et al, 2004) or 

endovascular occlusion of the hepatic artery (Goldberg et al, 1998, Horkan et al, 2004). These 

techniques all increase the ablation zones, when compared to RFA alone, however altering the 

portal blood flow by means of pharmacological means poses a risk of morbidity to the patient, 

which could be avoided.

BETA increases the ablation zone significantly when compared to controls as described in 

chapter 2. The ablation zone measurements however included only that tissue completely 

ablated by the RF energy (white zone), and not the surrounding tissue exposed to hyperthermic 

temperatures (red zone) (Goldberg et al, 2005a). The degree of hyperthermia experienced by 

these tissues may lead to delayed cellular necrosis, however this could not be determined in the 

ex vivo setting.

Measurement of the tissue temperatures in the ablated liver was necessary in order to determine 

the extent and degree of tissue heating caused by BETA and to evaluate the temperature 

distribution of BETA in tissues compared to conventional RFA.
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Objective:

The objective of this study is to determine the temperature distribution within ex vivo liver 

during BETA compared to conventional RFA.
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Materials and Methods:

Liver.

The liver used in this study was prepared for the ablation process as outlined in Chapter 2.

Following the ablation process (Chapter 2), a brass rod was placed along the ablation path in the 

liver created by the ablation electrode. The 10 x 10 x 10 cm block of liver was removed from 

the Perspex box with the brass rod in situ and placed onto a plastic cutting board.

A sharp knife was used to cut along the brass rod, parallel to the direction of the ablation 

electrode in order to determine the longest ablation diameter.

Perspex Box.

The Perspex box was utilised as described in Chapter 2.

Holes were drilled into the lid and platform to ensure the temperature probes could be 

positioned exactly the same distance form the electrode each ablation cycle and to ensure that 

the probes were placed into the liver parallel to the ablation electrode (Figure 2.3). A slight 

angle toward or away from the electrode would result in falsely increased or decreased 

temperature readings for each ablation cycle. The temperature probes were placed 1.5cm into 

the liver in order for the tip to be at the centre of the active electrode tip in the liver and at 5, 10, 

15 and 20 mm from the active electrode (Figures 2.2 and Figure 2.4).

Temperature Probes.

The temperature probes used for the study are commercially available temperature probes, 

attached to a digital data logger.

The Thermadata Temperature Data Logger TD2C MKII (ETI Ltd) is a portable data logger 

housed in a waterproof case (Figure 4.3).  The data logger has a range of -40 to +125 °C Celsius 

with a resolution of 0.1 degree Celsius and an accuracy of ±0.5 °C. The data logger has a 

memory capacity of 2000 readings per temperature probe. The temperature can be sampled 

from 10 seconds to every 255 minutes. A 10mm Liquid Crystal Display (LCD) alternates 

between the temperature probe readings every 10 seconds and allows the user to monitor live 

temperature readings. The data logger is designed to meet EN 12830, S & T, C & D 

specifications.

Following a single experiment, the temperature probes were removed from the liver and the data 

logger attached to a PVC cradle, which connected to a software program on the laptop used for 

the ablation settings.
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Courtesy of http://thermometer.co.uk

Figure 4.3 Thermadata TD2C temperature logger with LCD display of current temperature, alternating between the 

two electrodes

The data obtained through the ablation cycle is then displayed as a Graph (Figure 4.4), with 

each temperature probe assigned a separate colour. The analog data is then displayed in a table 

format which can be saved as a text or an excel document for analysis.

Courtesy of http://thermometer.co.uk

Figure 4.4 Graphical display of temperature data following analog-digital conversion by the software.



Temperature Studies Chapter 4

BETA
153

The software program of the data logger automatically synchronises with the time and date of 

the computer to allow for accurate time determination according to the times generated by the 

BETA software program.

Following the download of the temperatures for a particular ablation cycle, the data logger was 

reset in preparation for the next ablation cycle.

Each data logger has 2 temperature probes (Figure 4.3) and thus 2 data loggers were used in 

order to obtain data at four set distances from the electrode (5, 10, 15 and 20mm, Figure 4.5). 

Each temperature probe was inserted 15mm into the liver in order for the tip of the probe to be 

level with the centre of the long axis of the active electrode, in order to obtain reproducible, 

reliable readings throughout the data collection.

Figure 4.5 four temperature probes (silver) placed 5, 10, 15 and 20mm from the electrode (black)
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Results.

The results are expressed as means ± standard deviation (SD) for normally distributed variables 

or the median and the interquartile range for non-normal variables. Differences in temperature 

at each distance from the electrode (5mm, 10mm, 15mm and 20mm) at each time interval (30 

seconds) between tissue receiving standard RFA or BETA were tested with a linear regression 

model. 

A P value <0.05 was considered statistically significant. SPSS 17 was used for all statistical 

data analysis. The temperature data is quoted in °C unless stated and distances from the 

electrode are quoted in millimetres (mm).

The experiments were conducted comparing RF alone (600mA control) to BETA using 

simultaneous DC and RF (9V DC and 600mA) with no pre RF DC (n=20).

Temperature readings were recorded at 30 second intervals at 5mm, 10mm, 15mm and 20mm 

from the probe (Appendix 3).

In addition, each ablation zone was measured for comparative analysis.

The temperature data was analysed using SPSS 17 software.

Each data point was compared to the corresponding data point at each distance from the probe. 

Each data point demonstrated a significant difference at each distance from the probe (p < 

0.0001).

Initially the BETA data was subjected to statistical scrutiny to determine the significance of 

temperature variance at the four points. The temperature difference at each distance from the 

electrode was statistically significant when each of the distances were compared (p<0.0001).

Appendix 3:

Table 4.1 lists temperatures s at each distance from the electrode at each 30 second time interval 

for the control (600mA RF) and the BETA (9V DC and 600mA) experiments at 5, 10, 15 and 

20mm from the electrode.

Table 4.2 lists the mean temperatures at each distance from the electrode at each 30 second time 

interval for the control (600mA RF) and the BETA (9V simultaneous DC and 600mA RF, no 

pre RF DC) experiments.
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Graph 2.1 illustrates the temperature trend of the control group and the BETA group for each 

distance (5mm, 10mm, 15mm and 20mm) from the electrode.

Each temperature experiment yielded an ablation zone (n=20). The ablation zone was examined 

and the maximum short axis diameter was recorded and the ablation volume calculated. The 

mean maximum short axis diameter for the control group was 1.56cm and 3.01cm for the BETA 

group (p<0.0001).

The mean ablation volume for the control group was 5.03cm3 and 26.79cm3 for the BETA 

group (P<0.0001).
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Graph 2.1 illustrates the temperature trend of the control group and the BETA group for each distance (5mm, 10mm, 15mm and 20mm) from 
the electrode.
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Discussion:

The results of the ex vivo study (Chapter 2) showed BETA produced statistically larger ablation 

zones than control experiments.

The poor temperature distribution of RFA due to the limitations of the bioheat equation is 

thought to be a cause of recurrence at the periphery of tumours (Ke et al, 2010). Ke et al created 

residual areas of tumour in rabbits implanted with VX2 by ablating the tumours with RFA at 55, 

70 and 85 °C. The study demonstrated an increase in local tumour volume and metastatic 

disease in subjects treated with 55 °C of RFA compared to the 70 and 85 °C animals. Although 

this study highlights a limitation of RFA, the ablation times used for the study were 5 mins in 

each group. At temperatures of 50-55 °C, a minimum of 6 minutes is required to induce cell 

death (Goldberg et al, 1996a, Goldberg et al, 1996b, Goldberg et al, 2000), this may in part be 

the reason for the rapid recurrence at such low temperatures.

Temperature distribution in the tissue provides an objective determination of the ablative 

technique to heat the tissue sufficiently to cause coagulative necrosis. Mertyna et al (Mertyna et 

al, 2007) compared the temperature distribution in 3 different types of normal tissue, including 

liver. The tissue temperature was monitored at 5mm, 10mm, 15mm and 20mm from the active 

electrode. Following ten minutes of RF application, the maximum temperature at the margin of 

the ablative zone was 51.6 °C. At this temperature a minimum of 6 minutes would be needed in 

order to cause cell death (Goldberg et al, 1996a, Goldberg et al, 1996b, Goldberg et al, 2000). 

The temperature at the ablative margin is an important factor in determining the probability of 

recurrence. If the temperature is below 50 °C, the risk of recurrence is high, as the cellular 

enzymes are much less likely to be denatured. Above 50 °C, for 6 minutes or more is the 

minimum needed to cause cellular necrosis, and thus decrease the risk of recurrence.

Liu et al (Liu et al, 2010) treated 107 hepatic tumours with RFA (HCC group - 69 lesions and 

colorectal liver metastases group 38 lesions). The post-ablation margins were calculated using 

CT and MRI at 1-month post treatment then 3 monthly for a year and biannually thereafter. The 

results showed a minimum post-ablative margin of 0.4cm (P=0.020) and tumour size smaller 

than 2.5 cm (P=0.001) significantly correlated with local control for the HCC group. This was 

not seen in the colorectal liver metastases group, where a 0.4cm margin showed recurrence rates 

higher than HCC. This finding suggests a “safety margin” larger than 0.5cm, which correlates 

with the accepted 1cm safety margin following surgical resection.

Goldberg et al (Goldberg et al, 1998) compared the temperatures in tissues following 

pharmacological modulation of blood flow into the liver in an attempt to determine whether 

decreasing the blood flow to the liver would result in higher temperatures in the ablation zone. 

Goldberg compared the ablation zone size and temperatures in tissue at 5mm, 10mm, 15mm and 
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20mm from the electrode using Halothane to decrease the blood flow, Vasopressin to increase 

the blood flow, normal blood flow and ex vivo livers. These were compared to normal flow 

through the liver during RFA. The temperature in the tissues was measured after 10 minutes of 

RF ablation. Increased temperatures were observed 10 and 15 mm from the electrode following 

Halothane administration, and decreased temperatures were observed at these distances with the 

administration of Vasopressin. At 5mm from the electrode the temperatures were higher in the 

Halothane experiments than normal blood flow, but this was not significant. The reason for this 

is probably due to the degree of ablation at 5mm from the electrode being similar. A significant

decrease in temperature was observed 5 mm from the electrode after vasopressin administration 

compared to normal blood flow (62.5 °C vs 87 °C). Temperatures at all distances in ex vivo

tissue were slightly higher than those observed in the in vivo studies, however the differences 

were not statistically significant when compared to the Halothane results. This important 

observation demonstrates a correlation between the ex vivo temperature measurements and in 

vivo modulated experiments.

The temperature measurements in the ex vivo liver at 5mm, 10mm and 15mm from the electrode 

measured 95 °C, 76 °C and 60 °C respectively using a cool-tip electrode. These temperature 

measurements correlated with a mean coagulation diameter of 3.4cm.

The results of the BETA study show a statistically significant difference at 15mm and 20mm 

from the electrode compared to the control experiments.

The temperature at 20mm from the electrode tip reached a maximum temperature of 59.4 °C at 

1140 seconds and a maximum of 84.4 °C at 1140 seconds 15mm from the electrode. This 

distance translates to an ablation diameter of 3cm, which given the average ablation zone 

diameter would correlate with the ablative margin.

At 15mm the temperature reached 50 °C after 210 seconds and 60 °C after 300 seconds. At 

20mm, the temperature reached 50 °C after 690 seconds and remained above 50 °C until roll-off 

at 1140 seconds.

An interesting observation during this study was the apparent higher temperatures obtained with 

the control RFA at specific time points compared to BETA.

At 5mm – The temperature increased faster using BETA than the control (Graph 4.1, Table 4.1) 

to 400 seconds, thereafter the control ablation temperature was higher until roll-off, however the 

roll-off temperature for BETA was higher than the roll-off temperatures for the control group.

At 10mm - The temperature increased faster using BETA than the control (Graph 4.1, Table 

4.1) to 500 seconds, thereafter the control ablation temperature was higher until roll-off, 

however the roll-off temperature for BETA was higher than the roll-off temperature for the 

control group.

The reason for this observation is uncertain. It may be due to rapid heating initially with BETA, 

however the difference was not significant at these time points and the sudden increase in the 
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temperature observed with the control group demonstrates the rapid rise in temperature caused 

by RFA causing charring and vaporization of tissue, thus limiting the effects of RFA and poor 

heat conduction. The effects of this are observed in these experiments where the tissue 

temperature at 15 and 20mm failed to reach cytocidal temperatures.

At 15mm and 20mm – This was not observed and BETA remained significantly higher at all 

time points during the ablation cycle. An important observation is the lack of cytocidal 

temperatures at 15 and 20mm in the control group, demonstrating the poor tissue conductivity 

using conventional RFA. The temperatures at 15 and 20mm remained abovea cytocidal 

temperature of 50 °C for a mean time of 8 minutes (Graph 4.1, Table 4.1).

The mean ablation zone diameter measured 3.01cm, however this is the “white” ablation zone 

(Goldberg et al, 2005a, Goldberg et al, 2005b) and does not take into account the “red” zone of 

hyperemia surrounding the “white” coagulation zone. The area of tissue between 15mm and 

20mm is likely to correspond to the “red” ablation zone described as the hyperaemic zone 

surrounding the ablation zone. With temperatures of above 50 °C at the 20mm margin 

(corresponding to a 4cm diameter ablation zone), BETA may provide a potentially larger area of 

treatment when using adjunctive therapies such as IV doxorubicin (Goldberg et al, 2001, 

Goldberg et al, 2002, Ahmed et al, 2003a, Ahmed and Goldberg, 2004, Ahmed et al, 2005). A 

heat sensitive encapsulated endovascular chemotherapeutic agent (Celsion Corporation, 2010) is 

currently undergoing clinical trials regarding efficacy and patient tolerance. The drug -

encapsulated doxorubicin covered with a heat sensitive liposome (Thermodox, Celsion, NY, 

USA). Thermodox is designed to deliver high concentrations of anti-cancer drugs directly to 

those cancer cells that survive RFA (Celsion Corporation, 2010). In conjunction with ablating 

the centre of the tumour, RFA simultaneously activates Thermodox to release its encapsulated 

doxorubicin, killing the remaining viable cancer cells throughout the heated region, including 

the tumour margins. An important advancement in the development of ThermoDox is the heat 

sensitive delivery of the drug to those cells exposed to temperatures of 40 °C and above. 

ThermoDox increases the delivery of the drug at the desired tumour site has the potential to 

reduce drug exposure distant to the tumour site and thus decrease associated side effects of 

endovascular chemotherapy. 

The advantage that BETA has is the high temperatures at 20mm from the electrode tip. 

Although the ablation zone is limited to 3cm, the adjacent tissue is exposed to hyperthermic 

temperatures in excess of the 40 °C needed to activate the heat sensitive liposome.

A number of studies have been conducted measuring ablation zone size and temperature in 

tissue using either a monopolar or bipolar technique using cooled electrodes with or without 

saline perfusion (Lee et al, 2004a, Haemmerich et al, 2005, Lee et al, 2005, Lee et al, 2006, 

Aube et al, 2007, Mertyna et al, 2007). Lee et al (Lee et al, 2005) conducted a study to 
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determine ablation zone size and temperature using a combination of monopolar, simultaneous 

mono-polar and bipolar modes. The temperature readings were taken at 15mm from the 

electrode in the monopolar modes and at equidistant points (15mm) between the multipolar and 

bipolar modes. The mean final-temperature values were 89°C and 91°C for the conventional 

monopolar modes respectively. The mean final temperature for sequential monopolar mode was 

67°C and in the bipolar group 105°C. Importantly using the multipolar and bipolar technique 

requires precise placement of electrodes and increases the morbidity risk associated with the 

procedure. The mean final temperature at 15mm for BETA was 84.4°C compared with the 

monopolar modes, and significantly higher than the sequential monopolar modes. The bipolar 

mode reached 60°C in the fastest time, whereas monopolar RFA with 0.9% NaCl reached 60°C 

after 9 minutes, with 6% NaCl after 6 minutes and with sequential monopolar RFA after 16 

minutes.

The BETA experiments reached 60°C after 5 minutes with a single electrode and no saline 

infusion. Although the saline infusion does increase the ablation zone and improve tissue 

heating, saline infusion can be unpredictable (Goldberg et al, 2001, Ahmed et al, 2002). BETA 

is reproducible and does not require additional techniques to maintain hydration or improve 

tissue heating as the DC circuit fulfills this by electroosmosis (Reuss, 1809, Nordenstrom, 1983, 

Probstein, 1994).
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The importance of tissue temperature during thermal ablation has been reinforced by a number 

of studies in the literature, both laboratory based and clinical, using computer modeling not only 

to determine tissue heating with regard to safety of adjacent structures (Liu et al, 2008), but also 

the importance of tissue temperature during MR guided procedures (Chung et al, 1999, Keserci 

et al, 2006, Lepetit-Coiffe et al, 2010). The temperature of the ablated tissue and the 

transmission of heat through the tissue are essential in determining the effectiveness of thermal 

treatments and predicting possible recurrences (Ke et al, 2010).

BETA transmits heat through tissue more efficiently than standard RFA as demonstrated by this 

study. The mean temperatures 20mm from the active electrode in this study demonstrate 

hyperthermia in the tissue, which has not reached complete ablation, making this a prospect for 

thermal sensitive adjuvant therapies. The omission of saline infusions to increase tissue 

conductivity makes BETA more predictable and decreases the morbidity risks associated with 

multi-polar techniques.
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Limitations of this research:

Limitations to this research model were identified; however I did not feel the results were 

influenced significantly by these limitations.

The same limitations as outlined in chapter 2 and 3, with regard to the temperature of the livers 

and the use of normal saline as opposed to physiological saline were encountered.

The liver temperatures remained similar throughout the experiments evaluating the temperature 

distribution in both controls and the BETA models. The aim of this study was to study the 

temperature distribution in the liver during ablation and therefore the temperature of the liver at 

the commencement of the ablations was not influenced particularly by the decision to keep the 

saline bath at 26-30 °C and I did not think the experiments were compromised by the saline bath 

temperature.
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Conclusions:

1. BETA reaches cyitocidal temperatures in ablated tissue faster than control RFA.

2. The mean temperatures at 5mm, 10mm, 15mm and 20mm are significantly higher 

following BETA compared to standard RFA.

3. Tissue remains above cytocidal temperatures up to 20mm from the active 

electrode for longer than standard RFA due to the longer time needed to produce a 

BETA lesion.

4. BETA provides a larger potential cyitocidal zone for thermosensitive 

chemotherapeutic agents, increasing the ablation zone.

5. BETA produces a similar mean end-temperature profile to multipolar and bipolar 

techniques, but with decreased potential morbidity given the single electrode needed.

6. BETA reaches temperatures in excess of 60°C up to 15mm from the active 

electrode faster than multipolar and bipolar modalities described in the literature.
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Chapter 5:
Bimodal Electric Tissue Ablation:

In Vivo Porcine studies.
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Introduction.

General.

The in vivo animal experimental research on BETA is discussed in this chapter. The results of 

the ablation zone sizes in terms of maximum diameter and volume and the histological 

appearance are discussed in detail.

The animals’ reaction to the surgery is presented in terms of biochemical blood analysis and 

inflammatory marker measurement in chapter 6. The immediate, short and intermediate term 

morbidity of the animals post procedure are discussed in detail with special reference made to 

complications arising at surgery due to BETA. These include local and systemic complications. 

In vivo data on BETA has been published (Cockburn et al, 2007, Dobbins et al, 2008, Dobbins 

et al, 2008a, Dobbins et al, 2008b), however this is work using a commercially available 

radiofrequency ablation device and an externally attached DC transformer as described in 

chapter 1. The data presented below is the first published using a custom made BETA machine, 

designed specifically for the purpose of providing RF ablation without internal feedback 

circuitry, combined with an optional direct current circuit. Data regarding the animals’

inflammatory response to BETA has not been previously described in the literature however. It 

is against this background that my research began on 1 January 2009.

The Heat Sink Effect.

In Chapter 1, the effects of the heat sink effect were discussed in detail. The heat sink effect 

described by Curley (Curley and Hamilton, 1997) and Goldberg (Goldberg et al, 1998a, 

Goldberg et al, 1998b) has an important effect on the size of the ablation zone (Figure 4.2). The 

results from ex vivo and in vivo studies show a consistent decrease in the size and volume of the 

ablation zone when comparing the same modality in ex vivo and in vivo experiments (Cha et al, 

2009). The effects of heat sink are important to this research. There has been no direct 

comparison of BETA ex vivo and in vivo. Cockburn et al (Cockburn et al, 2007) described 

findings in in vivo porcine models, however the ex vivo findings have not been published in a 

peer reviewed journal. The results of the in vivo BETA research will provide invaluable data 

regarding the influences of the surrounding vessels in the liver on BETA and the resultant 

ablation zones.
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Morbidity Studies.

Short and intermediate term morbidity studies will be conducted in order to assess the effects of 

the surgical intervention, complications related to tissue heating and the response of the liver to 

the ablation (Dobbins et al, 2008a). The studies will be conducted post mortem following 

termination of 2 animals at specific intervals following ablation. The intervals will be 

immediately (terminal anaesthesia), 2 days, 2 weeks, 4 weeks and 8 weeks.

An essential aspect of the in vivo research is the possible complications of BETA in a live 

animal. These complications may be systemic or local. Radiofrequency ablation is known to be 

a safe technique with few systemic or local complications. 

a.  Systemic Complications:

Systemic complications are few and consist of potential cardiac complications from direct 

current and the inflammatory reaction caused by BETA. There have been no significant cardiac 

complications observed with electrolysis. However, Nordenstrom did describe cardiac 

symptoms including chest discomfort and breathlessness in a patient treated with electrolysis 

(Nordenstrom, 1994). This occurred at high (>50 volts) voltages and as soon as the voltage was 

decreased, the symptoms ceased. The inflammatory response in animals to electrolysis has been 

described, with no adverse effects noted in the literature (Teague et al, 2004a, Teague et al, 

2004b). Teague et al used C-reactive protein (CRP) a well known and common acute phase 

protein as a marker for an acute inflammatory reaction. This marker is well known and widely 

accepted for this use. Tumour Necrosis Factor alpha (TNF - ) and Interleukin - 1 Beta (IL - 1) 

are further markers of acute inflammation which have been used for assessment of 

inflammatory response in the porcine species (Kruse et al, 2008). Inflammatory marker analysis 

requires careful preparation of the blood sample and are analysed by means of enzyme linked 

immunosorbent assays (ELISA) (Hiss et al, 2003). The ELISA is an expensive assay and 

requires specialist laboratory services as well as trained veterinary pathologists. The markers 

provide an objective measurable and reliable determinant of the animals’ response to the 

intervention.
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b.  Local Complications.

The local complications encountered in radiofrequency ablation relate largely to electrode 

placement or the thermal therapy itself (Rhim et al, 2004).

The placement of the electrode and complications related to it are mainly encountered in 

percutaneous image guided interventions (Rhim et al, 2004). The in vivo animal experiments are 

largely performed on superficial tissue specifically implanted for purpose (Ahmed et al, 2002) 

or are performed on the liver using an open surgical approach (Cockburn et al, 2007).

Bleeding following electrode placement occurs in less than 2% of cases, and is more common 

with multiple electrode insertions and bleeding disorders (Rhim et al, 2004). Infection is a 

further complication infrequently seen, and less so with percutaneous procedures.

Non-target organ damage is a local complication associated with larger ablation zones and 

ablation procedures close to vital structures. Immediate structures at risk of thermal damage 

include the gallbladder, bile ducts and bowel.

Careful pre-ablation planning is essential to ensure that the risk of thermal damage to adjacent 

structures is minimalised (Rhim et al, 2004).

Damage to the diaphragm is a further complication, which may cause severe pain, hinder the 

cough mechanism and cause a post ablation pneumonia, or pleural effusion (Wong et al, 2009).

Grounding pad burns are a potential significant complication (Rhim et al, 2004). In the case of 

BETA, burns may result from the high energy delivered by the radiofrequency device or the 

direct current. The risk of burns from the radiofrequency energy is thought to be small, as the 

proposed energies to be used (600mA) are significantly lower than high energy RFA (Solazzo et 

al, 2007) used by Solazzo et al. A risk does exist regarding the grounding pad and the effects of 

the anodic polarity of the pad. As described in chapter 2, the electrode is assigned a negative 

(cathodic) polarity and the reference grounding pad a positive (anodic) polarity. The toxic gas 

formation at the anode, namely chlorine (Samuelsson and Jonsson, 1980), combined with the 

desiccation cause by type II electroosmosis (Nordenstrom, 1983) may cause significant burns at 

the grounding pad site. 
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Objectives:

The objectives of this study were to determine the ablation zone size and volume of BETA 

experiments compared to standard RF ablation; the associated local and systemic complications 

caused by the intervention and the intermediate morbidity of the study subjects.
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Materials and Methods.

In vivo Porcine Experiments Ethical Approval.

The in vivo experimental procedures undertaken during the course of this study are subject to 

the United Kingdom Animals (Scientific Procedures) Act 1986 (the Act). The Act, administered 

by the UK Home Office, regulates all scientific procedures in living animals which may cause 

pain, suffering, distress or lasting harm and provides for the designation of establishments 

where procedures may be undertaken, the licensing of trained individuals who perform the 

practical techniques and the issue of project licenses for specified programs of work.

This study complied with all applicable sections of the Act and the associated Codes of Practice 

for the Housing and Care of Animals used in Scientific Procedures and the Humane Killing of 

Animals under Schedule 1 to the Act, issued under section 21 of the Act.

The number of animals used were the minimum that is consistent with both scientific integrity 

and regulatory acceptability, consideration having been given to the welfare of individual 

animals in terms of the number and extent of procedures to be carried out on each animal. On 

the basis of physiological similarities to man and its general suitability as a surgical model and 

on comparative in vivo and ex vivo investigations, the domestic pig was chosen (Cockburn et al, 

2007, Dobbins et al, 2008a).

Site of in vivo porcine studies.

The in vivo porcine studies took place at Huntingdon Life Sciences, Huntingdon, United 

Kingdom in the Department of Large Animal and Avian Studies led by study director Mrs V 

Ross. Huntingdon Life Sciences provides a comprehensive range of integrated development 

services to the pharmaceutical, biopharmaceutical, chemical, crop protection, and veterinary and 

food industries. Originally the company concentrated upon nutrition, veterinary and 

biochemical research, however expanding services led to the incorporation of pharmaceuticals, 

crop protection products, food additives and industrial and consumer chemicals. 

The Huntingdon Life Sciences site houses animal maintenance buildings, surgical suites large 

enough to accommodate large livestock with fully equipped surgical suites with the ability to 

conduct procedures under general anaesthetic. The surgical team consists of eight Veterinary 

surgeons and anaesthetists and a full theatre staff team. 

The site houses facilities for post mortem examination, including pathologists examining both 

gross pathological and histological specimens. The chemical pathology services on site provide 

blood analysis of biochemistry and hematology. 
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Animal Subjects:

Ten domestic large White hybrid female pigs were used for the in vivo experiments, obtained 

from Huntingdon Life Sciences Stock. The pigs were aged between four and five months with 

mean weight of 66.7 kg (Range 60-80.5kg). The pigs were selected from a pool of animals on 

the basis of bodyweight, with the aim of using pigs close to the target bodyweight of an average 

human subject (60-70 kg). All animals received the same experimental treatment apart from the 

two terminal anesthesia animals, which arrived on the day of surgery with no acclimatisation. 

The subsequent animals arrived at the testing site 14 days prior to surgery to allow for 

aclimatisation.

The animals were identified by means of numbered ear tags, initially by a temporary number 

and subsequently by the allocated permanent individual animal number for this study.  The 

study number in conjunction with the (temporary or permanent) animal number constituted a 

unique identification. 

The pigs followed exactly the same experimental treatment (discussed later in the chapter), 

however the times of termination differed as follows:

Each group consisted of 2 pigs:

Group 1 were terminated immediately post procedure and will be referred to as non-recovery 

animals

Group 2 were terminated at 2 days.

Group 3 were terminated at 2 weeks (14d).

Group 4 were terminated at 4 weeks (28d).

Group 5 were terminated at 8 weeks (56d)

Animal Management.

The two non-recovery animals used initially were delivered directly to the operating theatre 

without any formal pre-surgery acclimatisation.  All other animals were allowed an 

acclimatisation period of at least 14 days prior to surgery.  Only healthy animals were allocated 

to the study.

The animals were group-housed in floor pens, which are of concrete construction, in a building, 

which provides a satisfactory range of environmental conditions for the species. At the time of 

surgery, pigs were selected from the pool of animals available on the basis of bodyweight, with 

the aim of using pigs close to the target bodyweight of 60-70 kg.

Each pen contained concentrate feed containers and an automatic valve drinker for the supply of 

drinking water. In the period from immediately before surgery (at the time of premedication) 

until the surgical wounds were considered to have sufficiently healed by attending veterinary 

surgeons, the animals were housed individually. All the large animal housing buildings have 
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natural lighting, which may be supplemented with fluorescent strip lighting as necessary. 

Ventilation fans control ambient humidity and can be adjusted as necessary. 

During the post-operative recovery period, the animals were provided with supplementary heat 

by means of overhead infrared lamps if they showed signs of hypothermia or had a prolonged 

post-operative recovery.

Diet and Water Supply.

Pigs were fed twice daily, on an individual basis from Day 7, with a pelleted concentrate ration 

which nominally contains no antibiotics, growth promoters or other non-nutritional additives. 

Those pigs undergoing surgery were fasted on the morning of surgery. The amount of feed 

offered was adjusted as necessary on a group or individual basis in accordance with standard 

husbandry practice and with the Study Director’s authorisation. The concentrate feed did not 

contain any chemical contaminants or microorganisms of types, or at concentrations, which 

could interfere with the integrity of the study, and therefore no general contaminant analyses 

were conducted o the feeds. A 200g sample of each batch of feed used in the study was retained

at -20°C for possible subsequent analysis in the event of equivocal findings. This sample was 

never needed for analysis.

Fresh drinking water (Anglian Water mains supply) was supplied ad libitum throughout the 

study. The water is supplied by Anglian Water; its guidelines on water quality from the EEC 

directive relating to water for human consumption (80/778/EEC), and conforms to the United 

Kingdom Water Act 1989 and subsequent amendments. Results of routine physical and 

chemical examination of drinking water at consumers’ taps as conducted by the supplier, are 

made available to Huntingdon Life Sciences as regular summaries.

Veterinary Care.

From the time of allocation until termination of the study the animals were inspected by a 

veterinary surgeon if there was a health related query relating to the general health of the animal 

or resulting from the surgical procedure. In addition a review of relevant clinical health records, 

bodyweight, food consumption data, etc. was undertaken by the Study Director and documented 

prior to surgery. Details of all routine prophylactic or therapeutic treatments given, and any 

peri- and post-operative treatments given (including antibiotics and analgesics in the form of 

opioids and/or NSAIDs such as meloxicam), were entered in the study records. All treatments 

needed for the animals post operatively were considered as approporiate to the integrity of the 

animal study. This however did not pertain to the two non-recovery animals delivered directly 

to the operating theatre. Each of the animals however was inspected by a veterinary surgeon on 

delivery to assess their general health and condition.
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Inclusion/Exclusion criteria and removal of animals from the study.

Only clinically healthy animals were selected for surgery as determined by a veterinary surgeon 

prior to delivery to the operating theatre. This again did not include the two non-recovery 

animals; these animals were examined on delivery to the operating theatre by a veterinary 

surgeon. Any subsequent perioperative complications such as compromised wound integrity 

(wound dehiscence); anaesthetic death or stroke excluded the animal from the study. If this was 

the case, the animal was immediately replaced, however this did not occur in this study. 

Inclusion in the study was confirmed by a successful surgical procedure and application of both 

BETA and standard radiofrequency ablation, in addition to a successful, uneventful recovery 

from anaesthesia  (except in the case of the two non-recovery animals).

If an animal that satisfied the inclusion criteria initially developed illness, injury, complication 

(including wound infection, haematoma or wound dehiscence), or another adverse event, which 

prevented the animal from completing the study; this animal could be removed from the study 

on the basis of consultation between the Study Director, the attending veterinary surgeon and/or 

myself. 

If this decision were taken without my presence, notification would be made as soon as 

possible. It was agreed that this would, if practical be done before the test animal was removed. 

In such a case the Study Director following consultation with the attending veterinary surgeon 

and myself would replace the animal upon approval.

Experimental Procedures.

Anaesthetic Administration.

Surgical procedures were conducted on two pigs in any one-day, one pig in the morning and one 

in the afternoon.  At the time of surgery, each pig was premedicated with the following: 

Midazolam 0.1mg/kg, Medetomidine 0.03mg/kg, Ketamine 20mg/kg via intra-muscular 

injection in the housing building. Once sedated, the animal was transferred to the operating 

theatre.  Peripheral venous access was obtained via a vein in the ear. The venous access was 

used for induction and maintenance of anaesthesia, analgesia, bolus anaesthesia and intravenous 

fluid administration. In the case of the non-recovery animals, the peripheral cannula was used to 

administer terminal Phenobarbitone. The animal was intubated with a 6.5 – 7.5mm (mean 

7.0mm) cuffed endotracheal tube in the supine position following induction of anaesthesia. In 

all animals except for the non-recovery animals, 20mg/kg of Co-Amoxiclav was administered 

intravenously for anti-biotic prophylaxis and all animals received 0.4mg/kg of Meloxicam, a 

non-steroidal anti-inflammatory as pre-emptive analgesia via intra-muscular injection. When 

deemed stable, transferred to the operating theatre. General anaesthesia was induced and 

maintained via the intravenous route. The following anaesthetic agents were used: Propofol 

(10mg/mL) infused at a rate of between 15.8mL/hr and 63.0mL/hr, Remifentanil (4mcg/mL) 



In vivo Porcine Studies Chapter 5

BETA 174

infused at a rate of between 37.8 and 378mL/hr and Midazolam (1mg/mL) infused at a rate of 

72.45ml/hr to 170.1mL/hr. The rates of infusion were titrated by the anaesthetist according to 

the non-invasive blood pressure, exhaled carbon dioxide, pulse and oxygen saturation 

measurements and the animals’ response to pain. 

Midazolam is an ultra short-acting Benzodiazepine with anxiolytic, hypnotic, amnestic, anti-

convulsant, skeletal muscle relaxant and sedative properties. It is fat soluable and has a half-life 

of approximately 2 hrs, making it a commonly used sedative and pre-anaesthetic agent.

Metomidine is a synthetic drug used as both a surgical anaesthetic and analgesic. It is a 

crystalline white alpha-two adrenergic antagonist that can be administered as an intravenous 

drug solution with sterile water. It is often used in combinations with opioids as premedication 

used in combination with Butorphanol and Ketamine via intramuscular route to produce general 

anaesthesia for short periods.

Ketamine is classified as an NMDA receptor antagonist. At high, fully anesthetic level doses, 

Ketamine has also been found to bind to opioid  and  receptors. It induces a state referred to 

as dissociative anaesthesia as well analgesia, hallucinations, elevated blood pressure and 

bronchodilation. Ketamine is primarily used for the induction and maintenance of general 

anaesthesia, usually in combination with some sedative drug such as Midazolam.

Propofol is a short acting intravenously administered hypnotic agent. It is commonly used in 

veterinary practice for the induction and maintenance of general anaesthesia and sedation for 

mechanically ventilated animals and procedural sedation. Chemically, Propofol is unrelated to 

barbiturates, and has largely replaced Sodium Thiopentone for induction of anaesthesia, as 

recovery from Propofol is more rapid and "clear" as compared to thiopental. Propofol is not 

considered an analgesic, so opioids such as Fentanyl may be combined with Propofol to 

alleviate pain. 

Remifentanil is a potent ultra short-acting synthetic opioid analgesic drug. It is administered 

during surgery to relieve pain and as an adjunct to an anaesthetic, often in combination with 

Propofol as in the case with all of the animals in this study. The use of Remifentanil has made 

possible the use of high dose opioid and low dose hypnotic anesthesia, due to synergism 

between Remifentanil and various hypnotic drugs and volatile anesthetics.

Co-Amoxiclav is a combination anti-biotic containing amoxicillin, a -lactam anti-biotic with 

potassium clavulanate, a -lactamase inhibitor. With increased use of the penicillins, bacteria 

developed an enzyme on their cell walls called -lactamase, rendering them resistant to all 

penicillinase antibiotics. The addition of a -lactamase has however increased spectrum of 

action and restored efficacy against amoxicillin-resistant bacteria that produce β-lactamase. The 

increased spectrum of Co-Amoxiclav includes some anaerobic bacteria in addition to the gram-

positive bacteria in the spectrum. This makes Co-Amoxiclav an ideal anti-biotic for surgical 



In vivo Porcine Studies Chapter 5

BETA 175

prophylaxis in clean abdominal wounds (no perforation of the bowel) as it is effective against 

skin commensial organisms, commonly gram positive and some bowel organisms, commonly 

gram negative or anaerobic.

The pigs were supported on a warming pad in the supine position (dorsal recumbency) (Figure 

5.1).  Body temperature was continually maintained within a physiological range using heating 

blankets if necessary. However, in all cases heating of the animal was noted rather than cooling. 

Just before beginning the surgical procedure, pre-dose blood samples were drawn for Acute 

Phase Proteins (APPs) and biochemical markers.

Figure 5.1 demonstrating the operating theatre setup. Supine animal with midline laparotomy to expose the liver 

and electrode insitu.

Blood Analysis.

An important aspect of the in vivo porcine studies is the animals’ reaction to the insult of BETA. 

The anaesthetist monitored the animals’ physiological reaction to the general anaesthetic, 

laparotomy and series of ablative procedures intra-operatively continually. Temperature, blood 

pressure and heart rate were documented. The physiological monitoring continued in the 

recovery period until the animal was deemed safe to return to the animal housing. Following 

return to the animal housing the animals were monitored daily until termination. General health 
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status, food consumption and wound care were assessed daily. The blood analysis provided an 

objective measurable assessment of the animals’ reaction to the surgery and the ablative 

procedures. 

A biochemical profile and a series of inflammatory markers specific to the porcine species 

(Alava et al, 1997, Eckersall et al, 1999, Hiss et al, 2003, Grau-Roma et al, 2009, Pineiro et al, 

2009) were obtained for analysis. The nature of the biochemical profile and Acute Phase 

Proteins (APPs) will be discussed in detail in Chapter 6.

Surgical Approach.

Under full general anaesthesia, in the dorsal supine position, the abdominal skin was cleaned 

with anti-septic and a site immediately overlying the position of the liver, over the upper aspect 

of the right abdomen was shaved for application of the grounding pad needed for the BETA 

(90cm2). A further small grounding pad was placed on the medial aspect of the hind leg for 

surgical cautery. 

An upper abdominal midline laparotomy was performed from the xiphfisternum caudally for 

15-20 cm to expose the liver (Figure 5.2). The size of the midlne laparotomy incision was based 

on adequate exposure of the liver in order to complete 8 ablations and also to decrease the 

incidence of incisional hernias post surgery. Mr Wemyss-Holden encountered this problem 

during his work in Adelaide (unpublished data). Careful consideration was made regarding the 

surgical incision for the animals. A too large an incision would increase the risk of surgical 

morbidity such as infection, delayed recovery, increased analgesic requirements post surgery, 

increased risk of incisional hernia formation, wound dehiscence and abscess formation. A small 

incision would limit the surgical access to the liver and prolong the surgery, increasing the risk 

of anaesthetic complications. Poor access to the liver increases the risk of damage to adjacent 

structures and possible ablation of non-visualised vital strictures such as the porta hepatis, 

bowel, diaphragm and gallbladder. Given the times to termination, careful planning of the 

incision was considered in order to decrease the associated surgical and anaesthetic risk without 

compromising the access to the liver for the ablations.

The rectus sheath was incised alone the linea alba and the peritoneum exposed. The liver was 

mobilised, however no ligaments were incised. 
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Figure 5.2 demonstrating mildine laparotomy to expose the liver. The liver was mobilised in order to access the 

posterior aspects of the 3 lobes (right)

The pig liver is conventionally described as having three main lobes: the right lateral, the 

median and the left lateral lobes. Deep interlobular fissures divide the lobes. The median lobe is 

further subdivided by a deep umbilical fissure, which extends almost up to the hilum, giving the 

appearance of two separate median lobes, which can be assigned the terms left and right median 

lobes (Court et al, 2003, Court et al, 2004)(Figure 5.3). 

Figure 5.3 demonstrating porcine liver anatomy. Left lobe (grey arrow), median lobe (grey arrowhead) and the 

right lobe (black arrowhead)

The median lobes were treated as separate lobes for the purpose of this study and allowed a 

control and a BETA cycle to be performed in each. Unlike the human liver, the left lateral lobe 

is consistently the largest of all the lobes – if the median lobe is to be considered as two separate 

halves. 
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The caudate lobe adjoins the right lateral lobe on the visceral surface and is usually identified by 

the presence of a small fissure, which partially separates it from the right lateral lobe. The 

inferior vena cava (IVC) is intra-parenchymal and runs through the caudate lobe. The 

gallbladder lies partly within the substance of the right median lobe, and poses potential 

problems with regard to thermal injury when ablations are performed in this lobe. This potential 

hazardous area was avoided during the ablations. Saline soaked swabs were placed lateral to the 

right lateral lobe to improve access to the liver by pushing the lobe anteriorly and medially. The 

swab was placed between the liver and the abdominal wall and ribcage. 

Specific sites were chosen in the liver in order to avoid overlapping ablation zones, to improve 

examination post mortem and importantly to avoid vital structures such as bowel, kidney, portal 

vein, gallbladder and diaphragm.

The abdominal incision was held open by self-retaining retractors.

During the surgical procedure, the abdominal viscera were kept moist by frequent saline 

irrigation. If danger of possible thermal damage to adjacent viscera was encountered, a moist 

saline swab was placed between the liver to be ablated and the visceral structure for protection.

Two suitable sites were identified in each lobe in order to perform a control and a cycle of 

BETA. The anterior segment of the lobe that is thinner than the posterior segment of the lobe 

was chosen for the control and the posterior, larger segment of the lobe was chosen for the 

BETA cycles (Court et al, 2003). The sites of ablation were documented on a diagram of a 

porcine liver to ensure the sites of each ablation could be easily identified at post mortem 

examination. Each ablation was individually annotated according to a predetermined symbol 

indicating a control RFA or a BETA site. 

The control RFA sites were marked as follows (Figure 5.4):

Control 1: Single line

Control 2: Two parallel lines

Control 3: Three parallel lines

Control 4: Four parallel lines

The BETA sites were marked as follows:

Test 1: Single dot

Test 2: Two dots

Test 3: Three dots

Test 4: Four dots
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Figure 5.4 shows the liver marked after the second control ablation

Ablation Procedures.

The results of the ex vivo ablations described in chapter 2 were the basis for the parameters used 

in the initial ablation planning for the in vivo studies.

No pre-RF DC was to be used and a DC voltage of 9V combined with RF current of 600mA 

produced the largest ablation zones in a reasonable timeframe.

The mark II ablation machine used for the ex vivo studies was used for the in vivo animal 

studies. The mark II machine has no impedance feedback algorithm and is an impedance based 

ablation machine. The impedance in the ex vivo livers ranged from about 80 ohms to 120 ohms 

depending on the age of the liver and temperature of the liver. For this impedance, RF current of 

600mA produced RF power of between 25 and 30 Watts, this was deemed to be the ideal power 

range for BETA in ex vivo liver.
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Day 1:

The first day of the scheduled in vivo animal studies consisted of two animals, one in the 

morning and one in the afternoon undergoing terminal anaesthesia.

Following preparation of the animals as described above, the electrode was prepared for use in 

the first animal. As in the ex vivo studies, a brass electrode was used for all the ablations. The 

brass electrode was insulated with 3cm of exposed electrode for the ablations. A 2.5mm solid 

brass rod was used for all the ex vivo studies, however this was deemed too large for use in the 

animals and after consultation with the supervisors, a 2mm brass rod was used to decrease the 

potential injury to the liver.

The brass rod was placed in cold sterilisation solution for 15 minutes prior to use.

Two sites were identified in each lobe of the liver prior to commencement of the series of 

ablations.

A small incision was made in the liver capsule and the electrode placed into the liver, 

perpendicular to the liver surface, in order to aid in dissection of the ablation zones post 

mortem. The electrode was inserted into the liver with careful observation to ensure the entire 

exposed length of needle entered the liver. A commercially available grounding pad was placed 

on the animal’s skin, immediately overlying the liver on the right side of the abdomen as 

described previously.

The parameters were then entered into the machine and the ablation cycle started by a member 

of the veterinary team in accordance with Home Office guidance. 

The veterinary surgeon performed all the procedures to ensure continuity of technique and to 

decrease the potential for surgical error or incorrect use of the electrode. In accordance with 

Home Office guidance, the researcher is allowed to assistant the licensed veterinary surgeon but 

may not partake in any practice which may harm the animal in any way. For this reason it was 

decided I assist in surgery for the first animal to ensure adequate mobilisation of the liver and to 

identify the sites for ablation. This was only performed in the first animal and all the subsequent 

surgeries were performed by the veterinary surgeon with no assistant.

The first control ablation revealed the impedance in the liver to be considerably lower than the 

ex vivo liver. An impedance of between 50 to 60 ohms was recorded during the ablation cycle. 

The machine did not adjust for the low impedance as is found in commercially available 

ablation machines and thus the ablation cycle continued with an RF current of 600mA and a 

resultant power of between 15 and 18 Watts. Two cycles of a control ablation and BETA were 

performed and only a single control ablation reached roll-off. Both the BETA cycles and a 

control ablation did not reach roll-off and were terminated at 40 minutes (2400 seconds) by the 

machine. The decision to terminate the ablation cycle at 40 minutes was due to time constraints 

and the clinical inappropriateness of an ablation cycle taking almost an hour to roll off. 
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Both supervisors and I agreed to this and the remaining ablations were carried out with a 

maximum of 40 minutes per cycle if roll-off was not achieved. 

The long ablations resulted in the first surgery taking over 6 hours to complete and thus the 

second animal was postponed for the following week. 

Day 2:

The postponed animal surgery took place with only a single animal scheduled for surgery on 

this particular day; the reason for this was to ensure all the subsequent ablations would continue 

as per the study protocol.

The animal was prepared in the same way as described for the first animal.

In order to overcome the impedance and subsequent low RF power encountered with the first 

animal, 3 separate parameters we tested as 3 separate controls in animal two. The anterior 

aspects of the lobes were used for this purpose in order to preserve the larger posterior lobes for 

the BETA cycles. RF currents of 750mA, 675mA and 700mA were tested initially. 750mA 

resulted in over 30 watts of RF power being delivered to the liver; this caused a very fast roll-

off of 126 seconds. 

675mA resulted in RF power of 23 watts, which produced run-off at 782 seconds. 700mA 

produced roll-off at 435 seconds, similar times to the ex vivo control experiments and this 

parameter was attempted again with a similar roll-off time (510 seconds). The results of the 

parameters were discussed by telephone with the supervisors and it was agreed for 700mA to 

remain the RF current for the remainder of the BETA cycles. The liver was to be examined post 

mortem and if the ablation zones appeared suitable and comparable to the ex vivo studies, 

700mA would remain as the RF current parameter for the in-life animal studies. A further 

control ablation at 700mA was performed and subsequently four BETA cycles using 9V of DC 

and 700mA of RF power. 

Day 3:

Two surgeries consisting of 8 ablations per animal were scheduled for day 3. The animals 

ablated would be terminated at 2 days post ablation and the liver examined for ablation zone 

measurement and assessed for visceral thermal injury. The animals were prepared as per 

protocol and 8 ablations were carried out in each experimental animal. Following the results of 

the first 2 animals, the technique used for ablations was discussed in detail by the researcher and 

supervisors. The impedance was discussed at length to ensure reliable reproducible results. The 

Mark II machine used in the in-life animal studies has no impedance feedback algorithm, 

resulting in a constant RF current being applied to the tissue and the RF power (watts) and RF 

voltage changing to compensate for impedance changes. High impedance was observed in the 

animal liver immediately following application of both BETA and standard RF. The reason for 
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this is unknown and there is no documented evidence in the literature on this phenomenon. This 

problem may well have been encountered in research, however the impedance feedback 

algorithm in commercially available RFA machines would compensate for this and thus not be 

an observed phenomenon, however this was noted during the ex vivo research, but had no 

observable consequence on the ablation cycle or size of the resultant ablation zone. The high 

impedance was only observed for the first 20-30 seconds of the ablation cycle and the 

impedance then rapidly decreased to settle at 50-60 ohms as described. Given this observed 

impedance phenomenon, the RF current was “stepped” rapidly from 600mA to 700mA in order 

to prevent premature burning of the tissue during the first 30 seconds of standard RFA and 

BETA. 600mA of RF current was delivered for 30 seconds and then automatically increased to 

700mA by the software. Pulsed RFA has been described (Goldberg et al, 1999) in an attempt to 

increase the ablation zone. 

This method of “stepping” follows similar principles, but the intention is to protect the liver 

during the short high impedance stage encountered immediately following application of BETA 

and standard RFA. The low RF current delivered will have very little effect on the overall 

ablation zone size, but allows for the impedance to settle before maximum RF current is 

delivered to the tissue. This method was then employed for the remainder of the animal studies. 

The ablations were completed as planned in both animals and both were returned to their pens 

post surgery for recovery and subsequent termination at 48 hours.

Day 4:

Two surgeries consisting of 8 ablations per animal were carried out according to the protocol. 

The animals were to be terminated at 2 weeks post liver ablation. During the ablation cycles of 

the second animal, erratic cycles were observed with BETA, however the standard RF cycles 

were stable throughout. All connections to the DC transformer were checked and the grounding 

pad was inspected for adequate contact and to ensure no thermal burns had occurred (Goldberg 

et al, 2000b). A commercially available voltmeter was used to check the output from the DC 

transformer to ensure the output was consistent from the machine. The DC voltage at the 

grounding pad was checked to ensure the electrode was cathodic and the grounding pad anodic. 

The results were satisfactory and the ablations were continued.

Both animals returned to the pen for recovery following surgery.

The erratic ablation cycles encountered with BETA during the second animal were discussed 

with both supervisors following completion of the surgery.
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Day 5:

Two surgeries consisting of 8 ablations per animal were carried out according to the protocol. 

The animals were to be terminated at 4 weeks post liver ablation. The ablation cycles were 

stable throughout the control RFA and the BETA cycles.

The animals were returned to the pen post surgery for recovery.

Day 6:

Two surgeries consisting of 8 ablations per animal were carried out according to the protocol. 

The animals were to be terminated at 8 weeks post liver ablation. The ablation cycles were 

stable throughout the control RFA and the BETA cycles.

The animals were returned to the pen post surgery for recovery.

Day 7:

Two surgeries consisting of 8 ablations per animal were carried out according to the protocol. 

This additional; surgery day was included in order to perform the experiments on the two 

replacement animals due to the animal death which occurred in animal 19 (2 week termination) 

and animal 22 (4 week termination) (This is discussed in detail in this chapter). Each animal

was to be terminated according to the original termination schedule. The ablation cycles were 

stable throughout the control RFA and the BETA cycles.

The animals were returned to the pen post surgery for recovery.

Termination Procedures.

1. Scheduled termination.

All animals surviving to the scheduled termination times (2 animals immediately post-ablation, 

and 2 animals each at 2 days, 2 weeks, 4 weeks and 8 weeks post-ablation) were killed by 

intravenous injection of sodium pentobarbitone and exsanguination by transection of the 

carotid/jugular vessels according to Home Office guidance.  The animals were fasted overnight 

prior to post mortem examination.

2.  Non-scheduled termination

If during the study any animal was to die, or had to be killed for humane reasons in the event of 

severe ill health or clinical intolerance, the animal would be subjected to a detailed macroscopic 

post mortem examination and full histopathological examination. This agreement was only if 

the animal did not fulfill criteria for study exclusion, if this was the case, no post mortem 

examination was performed. If an agreement by the study director and myself was reached and 

it was decided to include the animal in the study, this animal was then subjected to full post 
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mortem examination as described. 

Macroscopic examination focused on the liver only, however any gross abnormalities observed 

incidentally in any other tissues immediately adjacent to the liver, or at the grounding pad site 

were recorded. Samples of such abnormalities would be preserved at the discretion of the 

pathologist and/or the Study Director. The necropsy team under the guidance and observance of 

myself excised the liver. Following incision into the peritoneal cavity, the abdomen was 

examined immediately for blood and free fluid. The free fluid may be a consequence of an 

ongoing inflammatory reaction, or may be ascites secondary to portal vein thrombosis – an 

uncommon but described consequence of RFA. The organs immediately adjacent to the liver 

were examined for injury and the liver was then removed for examination. In all cases the liver 

was inspected and handled by myself as well as the ablation zone excisions and measurements. 

The diaphragm was examined for burns and defects, but none were observed and the adherent 

diaphragm was then discarded (Figure 5.5). 

Figure 5.5 shows an ablation site (arrowhead) and a reaction secondary to the ablation on the peritoneal surface of 

the diaphragm (arrow).

Prior to incision of the liver, the surface of the liver was observed for any abnormality. The 

annotated sites of ablation were easily identifiable in the non-recovery, 2 day and 2 week 

terminations, however the markings on the liver in the 4 week and 8 week animals were less 
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conspicuous and the annotated diagram was used as an adjunct in order to ensure the correct 

ablation was examined.

Each individual area of ablation was examined and excised. Samples were collected in such a 

way as to allow subsequent preparation of sections including the centre of the lesion through to 

normal hepatic tissue beyond the border of the lesion, to allow for accurate measurement of the 

dimensions of the necrotic, ablated tissue to the border with normal liver parenchyma. The 

samples were placed on a PVC tray with separate annotations for control and test samples. Once 

the samples had been examined and measured, the samples were then photographed for 

macroscopic comparison. The samples were preserved in 10% neutral buffered formalin. 

Samples were routinely processed (embedded in paraffin wax, sectioned at approximately 4 m 

and stained with haematoxylin and eosin) and examined microscopically. Additional stains 

could be required at the discretion of the study pathologist. Should the standard staining not be 

sufficient for sample analysis. Photomicrographs of each area of ablation were taken for 

analysis and subsequent publication.
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Results:

Gross Pathological Examination:

The surgical wounds healed well, with no dehiscence or evidence of infection. None of the 

animals developed abdominal ascites of haemorrhage into the abdominal cavity. The grounding 

pad sites were unremarkable post surgery in all animals and no thermal burns, either partial or 

full thickness were observed. No thermal injury was observed in the adjacent organs in any of 

the experimental animals.

The livers were all intact at removal with no macroscopic evidence of lobar infarction.

Non-Recovery:

The surface of the liver at each of the ablation sites was unremarkable. Each of the ablation sites 

were excised and examined macroscopically and described according to accepted terminology 

(Goldberg et al, 2005a, Goldberg et al, 2005b) (Figure 5.6). A clear distinction between the 

ablated “white zone” and hyperaemic ‘red zone” was observed. Careful consideration was taken 

when measuring the ablation zones in order to ensure the “red zone” was not incorporated into 

the measurement (Goldberg et al, 2005a, Goldberg et al, 2005b). Three measurements were 

recorded for data analysis. The measurements consisted of the following:

D1: Diameter of the longest measurement perpendicular to the axis of the electrode.

D2: Diameter of the shortest measurement at the level of the D1 measurement, perpendicular to 

the axis of the electrode.

D3: Length of the long axis of the ablation, parallel to the axis of the electrode at the site of 

electrode insertion.

These measurements were used throughout the study, in all experimental animals.

The measurements were validated by two laboratory technicians at Huntingdon Life Sciences 

present throughout the post mortem examination of the livers as outlines in the study design.
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Figure 5.6 ablation specimens. Control (top) and BETA (bottom)

2-day terminations:

The surface of the liver was unremarkable. The sites of ablation were easily identifiable, with 

only a small incision in the capsule visible. No clot was present at the site of the ablations, but a 

small amount of fibrinous adhesions between the liver and diaphragm were observed. No 

hepatic abscesses, biliary thermal injury, or portal vein thrombosis was observed. The stomach, 

pancreas, right kidney, colon and spleen were normal. Each ablation site was identified and 

excised for macroscopic examination. The ablation zones were measured according to the 

terminology described. The ablation zones were well demarcated and easily distinguishable 

from the surrounding normal liver.

2-week terminations:

Two hours following ablation, the first of the two 2 week termination animals died during 

recovery in its pen. A post mortem examination was held immediately which was attended by 

the researcher. The surgical operative notes and anaesthetic notes were examined, however the 

anaesthetic and surgical notes revealed no significant events peri-operatively. The macroscopic 

examination of the abdominal cavity was unremarkable, a small amount of blood stained fluid 

was present however this was due to irrigation during surgery. There was no large peritoneal 

haematoma and the liver appeared unremarkable. 

The liver was excised and examined for evidence of portal vein thrombosis. Biopsies were taken 

from the lungs, heart, liver and kidneys for histological analysis. The liver was then inspected 
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for ablation zone measurement and ablation zones recorded.

Following consultation with the study director and according to the approved study protocol, the 

animal was replaced.

The second and subsequent replacement procedures for 2-week termination animals were 

uneventful and both animals recovered from surgery and were terminated at 2 weeks according 

to the study protocol.

In the case of termination at 2 weeks, the diaphragm was adherent to the liver surface and was 

excised en-bloc to ensure this could be examined more closely following removal. This was 

probably due to the inflammatory reaction caused by the RFA and BETA. The diaphragm was 

easily separated from the liver surface by blunt finger dissection (Figure 5.7). The diaphragm 

did not display any evidence of thermal injury and no perforations were noted. No hepatic 

abscesses, biliary thermal injury or portal vein thrombosis was observed. The stomach, 

pancreas, right kidney, colon and spleen were normal. The ablation sites were easily 

identifiable, as the liver immediately adjacent to the ablated liver appeared to have retracted 

slightly and revealed the ablate tissue. The ablated tissue was extremely firm, with no evidence 

of the “red zone” present. Each of the ablation zones was measured as previously described and 

documented. The size of both the control ablations and BETA appeared to have decreased in 

size (Table 5.1). The likeliest cause for this is the animals’ response to the ablation. Following 

an insult the process of healing involves absorption of oedema and of necrotic tissue, in this 

case the ablated liver. This may have been a factor, but this is purely a hypothesis. 
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Figure 5.7 the diaphragm was adherent to the liver, however easily separated from the surface.

4-week terminations:

Animal 22 was found dead in its pen on day 4 post surgery. The animal tolerated both the 

general anaesthetic and the surgery without any clinical concern and with an unremarkable 

immediate post-operative recovery. On day 1 the animal became unwell, with pyrexia and rigors 

and was unable to stand. The animal was attended by a veterinary surgeon and the clinical state 

was deemed stable and probably related to the surgery and anaesthetic.  The animal recovered 

on day 2 and began eating. On day 3 the animal developed anorexia, abnormal gait and began 

vomiting. The animal was again attended by a veterinary surgeon and analgesia was 

administered. The animal was deemed stable, but unwell, however the clinical state was not 

deemed critical, to warrant hospitalisation.

On the morning of day 4, the animal was found dead. A necropsy was conducted the same 

morning and a large perforated gastric ulcer (4cm) with associated peritonitis was found (Figure 

5.8). 
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The peritoneal cavity was contaminated with partially digested food, with a significant amount 

of inflammatory ascites. The perforated gastric ulcer and associated peritonitis was considered 

to be the likely cause of death, and this animal was rejected from the study and replaced. The 

ulcer was examined histologically and both Neutrophils and Lymphocytes were noted at the 

ulcer edge. The Neutrophils are acute inflammatory cells, however the Lymphocytes are chronic 

inflammatory cells, suggesting a chronic ulcer rather than an acute stress ulcer related to the 

recent surgery. The ulcer primarily involved the mucosa and submucosa, with perforation of the 

muscularis mucosa. Gastric ulcers occur spontaneously in the pig and can be induced or 

exacerbated by stress.  This observation was made, too by Mr S Wemyss-Holden during his 

research into electrolysis in pigs (unpublished data). This lesion was thus considered unrelated 

to the experimental procedure.

Figure 5.8 shows a perforated gastric ulcer (arrow) and bloodstained peritoneal fluid (arrowhead)
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The remaining 4 week termination animal and the subsequent replacement animal underwent 

successful surgical procedures and recovery and gained weight throughout the 1 month post 

surgical period. No adverse reactions were encountered. The wounds both healed well with no 

short or intermediate term complications. At no stage did the animals become unwell and no 

concerns were raised at any stage by the veterinary staff regarding the animal’s recovery and 

clinical stage throughout the 1month postoperative period. 

At post mortem similar observations were documented for both the animals: the diaphragm was 

adherent to the liver surface and was excised en-bloc to ensure this could be examined more 

closely following removal. The diaphragm appeared adherent at each site of ablation, but could 

be separated from the liver with blunt finger dissection. The diaphragm did not display any 

evidence of thermal injury and no perforations were noted (Figure 5.5). No hepatic abscesses, 

biliary thermal injury or portal vein thrombosis was observed. The stomach, pancreas, right 

kidney, colon and spleen were normal. The ablation sites were easily identifiable, as the liver 

immediately adjacent to the ablated liver appeared to have retracted significantly around the 

ablation scar, with a small residual scar noted. The ablated tissue was extremely firm, with no 

evidence of the “red zone” present (Figure 5.9). Each of the ablation zones was measured as 

previously described and documented. The size of both the control ablations and BETA 

appeared to have decreased in size compared to the 1 month ablation zones (Table 5.1). The 

likeliest cause for this is the animals’ response to the ablation. Following an insult the process of 

healing involves absorption of oedema and of necrotic tissue, in this case the ablated liver. This 

may have been a factor, but this is purely a hypothesis. No evidence of infection, hepatic 

abscess formation or abnormal inflammatory response was documented.
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Figure 5.9 showing 28 day termination specimens, control (top) and BETA (bottom)

8-week terminations:

The 8 week termination animals underwent successful surgical procedure and recovery and 

gained weight throughout the 2 month post surgical period. No adverse reactions were 

encountered. The wounds both healed well with no short or intermediate term complications. At 

no stage did the animals become unwell and no concerns were raised at any stage by the 

veterinary staff regarding the animal’s recovery and clinical stage throughout the 2 month 

postoperative period. 

At post mortem similar observations were documented for both the animals: the diaphragm was 

adherent to the liver surface and was excised en-bloc to ensure this could be examined more 

closely following removal. The diaphragm appeared adherent at each site of ablation, but could 

be separated from the liver with blunt finger dissection, however the diaphragm was damaged 

during this procedure. The reason for this adherent tissue is the intense inflammatory reaction 

stimulated by the ablations, the difficulty in separating the diaphragmatic surface from the liver 

was due to established fibrosis following the initial insult (Figure 5.5).

The diaphragm did not display any evidence of thermal injury and no perforations were noted. 

No hepatic abscesses, biliary thermal injury or portal vein thrombosis was observed. The 

stomach, pancreas, right kidney, colon and spleen were normal. 

The ablation sites were easily identifiable, as the liver immediately adjacent to the ablated liver 

appeared to have retracted significantly around the ablation scar, with a small residual scar 

noted (Figure 5.10). The ablated tissue was extremely firm, with no evidence of the “red zone” 
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present. Each of the ablation zones was measured as previously described and documented. The 

size of both the control ablations and BETA appeared to have decreased in size compared to the 

1 month ablation zones (Table 5.1). The likeliest cause for this is the animals’ response to the 

ablation. Following an insult the process of healing involves absorption of oedema and of 

necrotic tissue, in this case the ablated liver. No evidence of infection, hepatic abscess formation 

or abnormal inflammatory response was documented. The decrease in size of the ablation zones 

however is in contradiction to the results obtained by Dobbins et al (Dobbins et al, 2008a).

Figure 5.10 shows fibrotic, shrunken ablation sites, control (top) and BETA (bottom)
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Figure 5.11 Close up of an ablation zone at 56 days. No ‘red zone’ is seen. The tissue has undergone fibrosis and 

decreased in size, with a well-demarcated transition between treated tissue and normal liver.

All the histological analysis performed with H and E staining demonstrated cellular necrosis, 

with no difference in appearance between BETA and conventional RFA. No significant giant 

cell reaction was noted in the specimens 
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Figure 5.12 H&E staining of control (left) and BETA (right) specimens, with no histological difference observed.  

No significant inflammatory cell infiltrate is seen.

Figure 5.13 shows conventional RFA (left) with a fibrotic ablation (black arrowheads) and BETA (right) with a 

larger, but similar fibrotic zone of ablation (grey arrowheads). Both are surrounded by normal (arrows) liver 

parenchyma. No inflammatory cell infiltrate is seen.
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The results of the size of each ablation zone in the in vivo tissue are expressed as means ± 

standard deviation (SD) for normally distributed variables or the median and the interquartile 

range for non-normal variables. Differences in ablation zone size between tissue receiving 

standard RFA or BETA were tested with ANOVA. A P value <0.05 was considered statistically 

significant. SPSS 17 was used for all statistical data analysis. The size is quoted in millimetres 

and sizes quoted refer to the maximum short axis measurement of the ablation zone unless 

specified.

The initial base data will tabulate two sizes for each ablation zone; these refer to the two 

maximum short axis diameter measurements. The largest of these measurements has been used 

for all data analysis.

A total of 94 experiments were conducted; Control (n=48) and BETA (n=46).

The each group of animals were scrutinised independently of each other regarding ablation 

diameter, this is due to the shrinkage of the ablation zone sequentially over time. For this 

reason, the terminal anaesthesia and 2 day termination animals were assessed as one group, and 

each subsequent group was assessed independently of each other.

Appendix 4:

Table 5.1 demonstrates the largest short axis diameter ablation zone for each control and 

corresponding BETA experiment at post mortem examination. The mean, standard deviation 

(SD) and 95% confidence intervals (95% CI) are tabulated.

For each group of animals (0d and 2d, 14d, 28d and 56d), the BETA zone sizes were 

significantly larger than the corresponding control RFA zones (p<0.0001).
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Table 5.2 demonstrates the summary of the 0d and 2d animal data, the mean, median, standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (95% CI) and 

ranges are listed.

0d and 2d Animals

Animals N
Mean 
(mm) SD SEM

95% CI for Mean
Min 

(mm)
Max 
(mm)

Lower 
Bound

Upper 
Bound

0d & 2d Control 24 13.33 2.48 0.51 12.29 14.38 9 18
0d & 2d BETA 22 22.55 4.01 0.85 20.77 24.32 11 29
Total 46 17.74 5.68 0.84 16.05 19.43 9 29

Table 5.2 Summary of the 0d and 2d animal data, the mean, median, standard deviation (SD), 

standard error of the mean (SEM), 95% confidence interval (95% CI) and ranges are listed.

Table 5.3 demonstrates the summary of the 14d animal data, the mean, median, standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (95% CI) and 

ranges are listed.

14d Animals

Groups N
Mean 
(mm) SD SEM

95% Confidence 
Interval for Mean

Min 
(mm)

Max 
(mm)

Lower 
Bound

Upper 
Bound

14d Control 8 11.38 1.2 0.42 10.38 12.37 10 13
14d BETA 8 14.88 1.81 0.7 13.37 16.39 12 17
Total 16 13.13 2.33 0.58 11.88 14.37 10 17

Table 5.3 Summary of the 14d animal data, the mean, median, standard deviation (SD), standard 

error of the mean (SEM), 95% confidence interval (95% CI) and ranges are listed.
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Table 5.4 demonstrates the summary of the 28d animal data, the mean, median, standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (95% CI) and 

ranges are listed.

28d Animals

Group N
Mean 
(mm) SD SEM

95% Confidence 
Interval for Mean

Min 
(mm)

Max 
(mm)

Lower 
Bound

Upper 
Bound

28d Control 8 7.75 2.05 0.73 6.03 9.47 4 9
28d BETA 8 11.5 1.69 0.6 10.09 12.91 9 14
Total 16 9.63 2.66 0.66 8.21 11.04 4 14

Table 5.4 Summary of the 28d animal data, the mean, median, standard deviation (SD), standard 

error of the mean (SEM), 95% confidence interval (95% CI) and ranges are listed.

Table 5.5 demonstrates the summary of the 56d animal data, the mean, median, standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (95% CI) and 

ranges are listed.

56d Animals

Groups N
Mean 
(mm) SD SEM

95% Confidence 
Interval for Mean

Min 
(mm)

Max 
(mm)

Lower 
Bound

Upper 
Bound

56d Control 8 5.13 2.03 0.718 3.43 6.82 2 8
56d BETA 8 10.38 1.6 0.56 9.04 11.71 7 12
Total 16 7.75 3.24 0.81 6.03 9.47 2 12

Table 5.5 Summary of the 56d animal data, the mean, median, standard deviation (SD), standard 

error of the mean (SEM), 95% confidence interval (95% CI) and ranges are listed.
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Each of the groups of animals demonstrated a statistically significant difference between the 

control and the BETA zones. 

The 0d and 2d termination animals followed a normal distribution of data, with a statistically 

significant difference between the control and the BETA groups (p<0.0001). 

The 14d, 28d and 56d data did not follow a normal distribution and thus logarithmic 

transformation was performed and ANOVA analysis to determine the significance of the 

findings.

In each group – 14d, 28d and 56d the results were significant, 14d - p<0.0001, 28d - p<0.005, 

56d - p<0.001 when analysed with ANOVA.

Graph 5.1 demonstrates the size ranges for each of the groups of animals for control and 

corresponding BETA experiments, with standard error bars.
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Graph 5.1 The size ranges for each of the groups of animals for control and corresponding 

BETA experiments, with standard error bars are illustrated.

The control groups are listed as days without the BETA annotation.
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Graph 5.2 demonstrates the mean sizes for each of the groups of animals for control and 

corresponding BETA experiments, with standard error bars.
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Graph 5.2 The mean sizes for each of the groups of animals for control and corresponding 

BETA experiments, with standard error bars are illustrated.

(The control groups are listed as days without the BETA annotation).
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The animals gained weight following the surgery, mean 19.25 kg (Range 0-30 kg). 

The non-recovery animals and 2 day animals were excluded from the weight gain calculations, 

as the time from intervention to termination was not sufficient to elicit any meaningful change. 

Graph 5.3 demonstrates the mean animal weights pre and post surgery and the mean difference 

between the two weights.

Graph 5.4 demonstrates the individual animal weights pre and post surgery and the difference 

between the two weights. The animals have been coded according to the termination dates. 1 & 

2 – non-recovery, 3 & 4 – 2 day, 5 & 6 – 14 day, 7 & 8 – 28 day and 9 & 10 – 56 day 

termination animals.
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Graph 5. The mean animal weights pre and post surgery and the mean difference between the 

two weights.

Graph 5.4 demonstrates the individual animal weights pre and post surgery and the difference 

between the two weights. The animals have been coded according to the termination dates. 1 & 

2 – non-recovery, 3 & 4 – 2 day, 5 & 6 – 14 day, 7 & 8 – 28 day and 9 & 10 – 56 day 

termination animals.
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Discussion:

General:

In vivo animal experiments are an essential component to the development of any new medical 

device or treatment. In the case of medical devices, ex vivo experiments provide a safe 

environment for the researcher to perform a series of experiments in order to determine the 

efficacy and safety of a device. In the case of BETA, the ex vivo experimental work allowed the 

mark II machine to be tested using a large variety of ablation parameters in order to determine 

the parameters producing the largest ablation zone. The effects of perfusion of the liver are well 

documented in the literature (Goldberg et al, 1998b, Nikfarjam et al, 2006, de Baere et al, 2008, 

Iwamoto et al, 2008), it is accepted the perfusion of tissue and issues relating to the “heat-sink” 

effect play an cardinal role in ablation zone discrepancy. The safety of devices cannot be tested 

completely in the laboratory setting and in vivo animal studies are essential in order to 

determine any adverse effects of treatment or unforeseen morbidity associated with a new

device or treatment. The effects on perfusion in the liver and the influence of the ‘heat-sink’ 

effect on BETA have not been tested using a machine specifically designed for BETA.

During the planning of this research, discussions were held between me and the supervisors 

regarding methods of access for the ablations. A percutaneous or open approach was considered 

for the in vivo studies. Although percutaneous ablation would replicate clinical practice, we did 

not feel we would be able to utilise the full liver for ablations, due to the inherent limitations of 

percutaneous ablation in accessing the subcostal region of the liver and the inherent degradation 

of the acoustic window when using ultrasound following ablation. During the ablation cycle, 

gas is formed within the tissue, which limits the transmission of sound through the tissue and 

degrades the ultrasound image. This limitation would be compounded significantly as 8 

ablations were performed in each liver. I felt the possibility of performing inadvertent 

overlapping ablations due to the limitations of the ultrasound image would potentially 

compromise the study significantly and therefore, although more invasive, open approach was 

chosen as the preferred method.
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Effects of BETA:

The effects of BETA have been described in the literature (Cockburn et al, 2007, Dobbins et al, 

2008, Dobbins et al, 2008a, Dobbins et al, 2008b) since its invention in 2005. A major obstacle 

in the initial research was the need to place a grounding pad in the subcutaneous tissue rather 

than on the surface of the skin in order to complete the DC circuit.

Initial animal experiments were unsuccessful when the grounding pad was placed a significant 

distance from the electrode as with conventional RFA. This was overcome by placing a scalpel 

blade into the subcutaneous tissue, which was then attached to the anodic DC. The limitations of 

this meant that this obstacle would have to be overcome in order for this to be accepted as a 

viable clinical treatment. Placing the grounding pad immediately adjacent to the liver on the 

skin surface appears to have circumvented this problem. On the first day of in vivo ablations, the 

grounding pad was placed immediately adjacent to the liver on the skin surface and BETA 

applied to the liver. The DC circuit was completed; however there appeared to be a loss of 

voltage (1 volt) of DC between the DC transformer and the grounding pad. 

This relationship was tested using varying DC voltage to determine whether this loss of DC 

voltage was a linear, exponential or plateau relationship. Varying voltages from 3 volts to the 

machine maximum of 50 volts were tested using a commercially available voltmeter to 

determine the voltage at the grounding pad site. 

The relationship appeared to be a stable plateau as the loss of voltage appeared to be 1 volt 

regardless of the strength of DC voltage applied.

An important observation throughout this research was the lack of any adverse effects caused by 

polarising the grounding pad (anodic). The adverse effects of anodic polarisation were well 

described by Dobbins et al (Dobbins et al, 2008a).

The effects of BETA compliment the results obtained in the ex vivo experiments and in the 

published BETA literature to date (Cockburn et al, 2007, Dobbins et al, 2008, Dobbins et al, 

2008a). 

Following application of standard RFA, the needle chars the tissue and is difficult to remove. 

As the needle is removed from the tissue, adherent liver from the needle track is removed with 

the needle (Figure 5.14). This often leads to bleeding from the ablation site, which was easily 

controlled with manual pressure. This problem however increases the risk of morbidity when 

the percutaneous method of treatment is used, as the operator is unable to manually control 

haemorrhage. 
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This problem was encountered throughout the in vivo experiments, with post ablation 

haemorrhage requiring some manual compression. Following application of BETA, the needle 

was easily removed from the liver, with little or no adherent tissue (Figure 5.14). The only 

bleeding encountered from the access site was if a vascular structure was inadvertently injured 

during the insertion of the electrode. This was easily controlled with manual compression of the 

bleeding site.

Figure 5.14 the needle following BETA (top), with little adherent tissue compared to conventional RFA (bottom) 

with a significant amount of adherent tissue

The effects of cathodic DC (Samuelsson, 1981, Berendson and Simonsson, 1994) were evident 

in the in vivo studies as in the ex vivo studies. Bubbles were seen at the electrode due to the 

gaseous liberation described in earlier chapters (Figure 2.11). This confirmed the successful 

application of cathodic DC to the liver during the BETA experiments. 

BETA produced larger zones of ablation when compared to standard RFA; methods have been 

adopted and tested in order to create larger more confluent zones of ablation with varying 

results. 
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Laeseke et al (Laeseke et al, 2005, Laeseke et al, 2006) used multiple electrodes to initially 

create simultaneous single zones of ablation and then single larger more confluent zones of 

ablation. This method requires the insertion of multiple needles, which increases the morbidity. 

Insertion of multiple needles increases the risk of damage to vital structures and removal of 

multiple needles following conventional RFA increases the risk of haemorrhage following 

ablation. Laeseke (Laeseke et al, 2007) conducted further studies evaluating multi-tine and 

multiple needle ablations. 

The multiple needle ablations produced larger zones of ablation, but again the risk of increased 

morbidity with multiple needle insertions.

BETA is able to produce larger ablation zones using a single electrode rather than the needle for 

multiple needles. Adjunct treatments using ethanol (Goldberg et al, 2000a, Sakr et al, 2005) as 

an adjunct to RFA have showed promising results, however the effects are often unpredictable 

and ethanol instillation is not without risk (Chiu et al, 2009). Saline infusion has been widely 

described in the literature (Livraghi et al, 1997, Burdio et al, 2003) but the efficacy and 

reproducibility has not been proved conclusively.

Long Term Morbidity:

The long-term morbidity studies are an essential outcome measure when evaluating a new 

technology. If severe complications develop following the application of a new technology, its 

safety is brought into question and regardless of the immediate benefits; new medical 

technology must be proved to be safe with no long-term risks. Before BETA can be considered 

safe for human trials, the destructive effects as demonstrated in both the ex vivo and in vivo data 

must be accompanied by appropriate healing of the treated tissue (Dobbins et al, 2008a). A 

delayed response to healing or an excessive production of fibrotic tissue may have adverse side 

effects. The purpose of the study extending the post ablation survival of the animal subjects to 2 

weeks, 4 weeks and 8 weeks, provided essential data with regard to the physiological response 

of the animals to BETA. Radiofrequency ablation has a long established safety profile with very 

little long term morbidity directly related to RFA, indeed the complications of RFA reported in 

the literature relate directly to the immediate morbidity associated with the procedure, rather 

than the long term sequelae thereof (Rhim et al, 2003, Arienti and Pretolani, 2006, Kong et al, 

2009). Electrolysis similarly carries an extremely low complication profile (Kinn et al, 1991, 

Wemyss-Holden et al, 2000, Wemyss-Holden et al, 2002, Finch et al, 2004). The researchers of 

BETA believed that the combination of these two relatively safe treatments would not alter that 

safety profile in any way and BETA was expected to behave in a similar way to each of the 

ablative techniques incorporated into BETA. The purpose of the 2 week, 1 month and 2 month 

ablations was to demonstrate the safety of BETA and to ensure comparable healing between the 

control RFA and BETA zones. Data published on the long-term morbidity and hepatic 
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pathological change demonstrated a favourable safety profile of BETA (Dobbins et al, 2008a). 

The only complication observed was secondary to the scalpel blade in the subcutaneous tissue. 

The effect of the scalpel blade was a full thickness burn in the subcutaneous tissue, which 

progressed to abscess formation. The abscess did not cause any systemic complications, 

however the abscesses required incision and drainage. The cause of the effects in the 

subcutaneous tissue were not known and may have been due to “leakage” of RF power from the 

RF circuit into the DC circuit, resulting in heating of the tissue. Another hypothesis was the 

effects of the anodic electrode in the subcutaneous tissue (Robertson et al, 1998). The anodic 

electrode produces hydrochloric acid, chlorine gas and oxygen (Fosh et al, 2002), the cytotoxic

effects of the hydrochloric acid and chlorine gas may well be the cause of the necrosis observed 

at the cathodic electrode site (Dobbins et al, 2008a). No adverse effects were seen at the 

“anodic” grounding pad site in any of the animal studies conducted during this research.  The 

grounding pad sites did not demonstrate any erythema or burns related to heat production at the 

sites. No reported sloughing of skin or skin loss was reported in any of the animals.

The healing of the BETA lesions appeared comparable to the standard RFA lesions (Figures 

5.9-5.13), the shrinkage of the lesions over time and fibrosis observed from 2 weeks, continuing 

to the 8 week terminations are entirely consistent with literature of RFA healing (McGahan et

al, 1990, Ni et al, 2005, Nikfarjam et al, 2005) and healing following electrolysis (Wemyss-

Holden et al, 2000). 

The observed healing of BETA lesions observed by Dobbins et al (Dobbins et al, 2008a) was 

not entirely consistent with the findings in this research. Dobbins et al did not note a significant 

difference in size of the ablation zones at 2 months compared to the 2 day lesions, however a 

consistent decrease in the size of the all the lesions was demonstrated consistently throughout 

this study. The reason for this is uncertain, however a decrease in size is expected following 

ablation, due to a combination of healing and fibrosis. Dobbins did, however comment on a 

thick fibrous capsule around the ablation zones at 2 months (Dobbins et al, 2008a). No comment 

was made regarding the measurement technique.



In vivo Porcine Studies Chapter 5

BETA 208

Animal Deaths:

Two animals died during the study.

Animal 19 (2 week termination) died within 2 hours of the surgery. The animal did not recover 

from the anaesthesia and post mortem examination did not reveal any cause for the death. The 

liver itself appeared normal and each of the ablation sites were examined for signs of adjacent 

visceral or vascular damage, none were found.

Tissue samples were obtained from the heart, lungs, liver and kidneys for routine independent 

histological analysis. The liver tissue specifically did not demonstrate any signs of hepatic 

infarction. The cause of death was attributed to the anaesthetic.

Animal 22 (1 month termination) died 4 days after the surgery. Post mortem examination 

revealed a large (4cm) perforated gastric ulcer (Figure 5.8). The peritoneum was contaminated 

with partially digested food and a significant amount of inflammatory ascites. On initial 

inspection, the size of the ulcer suggested it was chronic, however had perforated acutely 

following the stress of the surgery. The development of gastric ulcers was observed by Mr 

Wemyss-Holden during his research into electrolysis (unpublished data) and is well recognised.

The ulcer occurred on the anterior wall of the stomach a significant distance from the liver and 

was not secondary to thermal injury form a misplaced ablation electrode.

Samples of the gastric wall and ulcer were obtained for histological analysis.

The histological analysis revealed the prescence of Neutrophils and Lymphocytes.

Neutrophils are acute inflammatory cells, however Lymphocytes are chronic inflammatory 

cells, indicating chronicity of the ulcer. The size of the ulcer, too suggested chronicity – large 

perforated ulcers are unusual acutely.

The results of this animal study demonstrate BETA to be a safe technique of thermal ablation. 

The adverse effects of the positive electrode have been overcome by adjusting the site of the 

grounding pad and the lack of an invasive mechanism needed for circuit completion as has been 

demonstrated (Cockburn et al, 2007, Dobbins et al, 2008, Dobbins et al, 2008a, Dobbins et al, 

2008b) shows significant advances in the development of BETA for human use. The lack of any 

significant complications observed during the study demonstrates BETA to be a robust thermal 

ablation technique with significant advantages over multi-tine RFA techniques. The two deaths 

encountered during this trial, although notable, was not attributed to the ablations directly. The 

post mortem results revealed no significant intra-abdominal pathology related to thermal injury 

and although passed fit for surgery by the veterinary team, the causes of death were related to, 

but no directly caused by thermal ablation. A single death was reported by Dobbins et al 

(Dobbins et al, 2008a) and was similarly attributed the anaesthetic rather than directly related to 

BETA.
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Limitations of this Research:

I accept there are a number of limitations with research.

1. Normal liver was utilised and not a tumour model does raise the question of the efficacy 

of BETA to ablate tumours rather than normal liver.

This point was discussed and considered extremely carefully prior to making the 

decision to proceed with the study design.

2. In order to demonstrate BETA’s efficacy in vivo, an animal model had to be chosen that 

would simulate a clinical patient. For this reason the White hybrid porcine model was 

chosen. In order to perform the experiments on a tumour model, VX2 colony would 

serve as the most appropriate tumour model. This model is costly to initiate and is 

subject to the United Kingdom Animals (Scientific Procedures) Act 1986 (the Act). The 

Act, administered by the UK Home Office, regulates all scientific procedures in living 

animals which may cause pain, suffering, distress or lasting harm and provides for the 

designation of establishments where procedures may be undertaken, the licensing of 

trained individuals who perform the practical techniques and the issue of project 

licenses for specified programs of work. The time and financial constraints on this 

research made this impossible. A further reason for choosing this particular model was 

to prove BETA to be safe in vivo and to replicate the in vivo results as outlined in 

chapter 2. Although this technology requires validation in tumour models, we felt this 

was not the primary objective of the animal research. As outlined in Chapter 7, the aim 

is to validate the technology in a tumour model in the clinical setting, with the ablation 

parameters used and validated during this research.

3. The use of open ablation as opposed to percutaneous ablation exposed the animals to a 

laparotomy; however we felt this to be the safest technique in order to ablate the liver 

according to the study design. Although minimally invasive, percutaneous ablation 

would have limited the number of potential ablations in each liver and had the potential 

for overlapping ablations as outlined in the discussion.
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Conclusions:

1. BETA produces significantly larger ablation zones compared to standard RFA in vivo.

2. BETA can be successfully applied to an animal model using a single grounding pad 

placed adjacent to the liver on the skin.

3. No significant morbidity is associated with BETA when compared to the literature.

4. BETA demonstrates a favourable long-term morbidity, with no evidence of a delayed 

adverse event at 2 months.

5. BETA lesions heal in a predictable fashion and are comparable to standard RFA, with 

no abscess or fistula formation.

6. There is a small loss of DC voltage between the transformer and the grounding pad, 

however this is constant and does not fluctuate with fluctuating DC voltages.

7. No adverse effects are observed at the ”anodic” grounding pad site due to the formation 

of hydrochloric acid, chlorine gas or oxygen.
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Chapter 6:

Bimodal Electric Tissue Ablation:

Response to BETA –

Biochemical Markers and Acute Phase Proteins
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Introduction:

Surgical resection has been shown to be one of the best treatment options for patients with 

hepatocellular carcinoma (HCC) and colorectal liver metastases as discussed in chapter 1. Only 

a small number of patients are, however suitable for curative surgical resection at time of 

diagnosis (Cheung et al, 2009). The commonest cause of the low resectability in this subset of 

patients are the number of metastases present in the liver, distant metastases (commonly in the 

lungs), the proximity to vital structures in the liver, such as portal vein and IVC, preventing 

adequate, safe resection and the inability to preserve amount enough liver to afford normal 

hepatic function post resection. In a small group of patients, associated comorbidities place the 

patient at risk of significant postoperative morbidity. Patients with HCC have a further surgical 

alternative, should liver reserve prove an obstacle for liver resection – liver transplantation. A 

significant small number of patients however are lucky enough to be successful recipients of 

donor livers. Ablative techniques provide an alternative in those patients deemed unresectable. 

The complications of alternative ablation methods to radiofrequency ablation have been 

discussed in chapter 1. Cryotherapy carries the complication of the cryoshock phenomenon 

(Seifert and Morris, 1999), which, although low is associated with the volume of tumour treated 

and can stimulate catastrophic inflammatory cascades, with fatal results (Seifert and Morris, 

1999). Seifert et al (Seifert et al, 1999) showed a significant association between serum 

Aspartate Transaminase (AST) levels and raised plasma TNF- (Tumour Necrosis Factor –

alpha) and IL-6 (Interleukin – 6) levels post procedure in patients undergoing cryotherapy or 

resection with cryotherapy. The volume of the ice ball and duration of freezing were 

significantly associated with the AST, TNF- and IL-6 levels at various times postoperatively. 

Seifert demonstrated hepatic cryotherapy to be related to cytokine release and hence elevated 

plasma TNF- and IL-6 levels which were directly associated with the degree of hepatic 

cryotrauma. He postulated the mediators were one of the causes of the inflammatory cascade 

causing cryoshock following large-volume hepatic freezing. Ethanol Injection, although 

regarded as a safe procedure has recently been associated with complete hepatic infarction 

(Chiu et al, 2009). Again the volume of tumour treated has a significant influence on the 

complication rate, however a recent meta-analysis (Bouza et al, 2009) demonstrated RFA to be 

more effective than percutaneous ethanol injection (PEI) for treatment of HCC. 

With the potential complications of other ablative techniques and the reported superior 

effectiveness of RFA compared with many of the ablative techniques (Marlow et al, 2006), 

RFA is currently the most common method of ablation for HCC and colorectal metastases 

(Malczyk and Sutherland, 2009). 
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RFA is being used on an increasing number of patients, especially those with more advanced 

underlying liver disease with more tumours and in challenging locations in the liver, which 

previously were thought to be beyond the safety of successful RFA (Head et al, 2007, Brennan 

et al, 2008). 

This, inevitably, leads to increased complications, some of which have been major (Mulier et al, 

2002). A large-scale review of complications of RFA administered to different liver tumors has 

concluded that the morbidity and mortality associated with RFA is, in fact, higher than 

previously reported. Marlow et al. (Marlow et al, 2006) demonstrated an overall complication 

rate associated with RFA to be less than 5% in the referenced literature, however this conflicts 

with an overall complication rate of 8.9% among 3670 patients described by Mulier et al 

(Mulier et al, 2002) in literature review to December 2001. The ASERNIP Report No. 56, 

however contained strict inclusion and exclusion criteria for literature and therefore did not 

include all papers published regarding radiofrequency ablation to 2006, however 5% or less has 

been the quoted in the literature. The review evaluated percutaneous, laparoscopic, simple open 

and combined open approach with an increasing complication rate as the intervention increased 

in complexity. The review was not limited to HCC and colorectal metastases treatment and 

included all radiofrequency ablation procedures.

The most common complication quoted in the literature was intraperitoneal bleeding, which 

encompassed subcapsular haematomas and free intraperitoneal blood. This bleeding is generally 

not significant, however it highlights the trauma caused when the needle is removed from the 

liver. Charred liver, which occurs at the needle tip, is adherent and when the needle is removed;

it brings amounts of liver tissue with it through the track. This may well contribute to bleeding.  

In addition documented cardiac complications, range from vasovagal syncopal episodes to 

ventricular fibrillation. The vasovagal syncopal episodes may have been related to pain rather 

than RFA, the 2 ventricular fibrillation episodes were encountered with ablation of carcinoid 

metastases – a well-known sequelae of treatment of carcinoid tumours by ablation or surgery. 

The single cardiac death occurred 20 days post RFA and cannot be attributed to RFA directly. 

This review of complications is the largest to date (Mulier et al, 2002) and although the overall 

complication rate is higher than many in the quoted literature, most complications were minor 

and had little or no influence on the outcome of the treatment. Indeed with more careful scrutiny 

of the complications, the results are extremely encouraging for RFA and demonstrate the overall 

safety of this ablative method.

BETA increases the hydration of the ablated tissue by electroosmosis. This decreases the 

charring at the needle tip and subsequently decreases the amount of adherent tissue at the needle 

tip following ablation.
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The ex vivo studies consistently demonstrated little or no adherent tissue at the needle tip upon 

removal of the electrode from the tissue. These finding were mirrored in the in vivo studies.

The lack of trauma associated with removal of the electrode from ablated tissue decreases the 

risk of haemorrhage from tissue following removal of the electrode. 

An important question in this research regarding in life animal studies is the inflammatory 

response to BETA. When researching a new medical device, the physiological response to

trauma is important, an inflammatory response may be initiated with little or no observed 

complications during the procedure, manifesting late with possible fatal consequences. This 

may be due to a number of factors, namely the insult of the ablation on the tissue being treated 

and the physiological response of the body to the insult. Cryoshock (Seifert and Morris, 1999, 

Seifert et al, 1999) may develop with no observed complications during the procedure, however 

this potentially catastrophic event may be detected only following analysis of biochemical and 

inflammatory markers (Seifert et al, 1999). Abnormal or normal biochemical and inflammatory 

markers do not in any way substitute for diligent postoperative care. The pulse, blood pressure, 

respiratory rate and temperature are all key in determining a developing inflammatory response 

and in essence, elevated blood markers can only aid in diagnosis are not in any way diagnostic 

of a severe inflammatory response. 

BETA has been shown to be safe in animal studies (Cockburn et al, 2007), however no 

biochemical analysis was performed to confirm the response to BETA.



Response to BETA Chapter 6

BETA 216

Objective:

The objective of this research is to determine the in vivo response to BETA.

Biochemical markers related to both liver and kidney function and inflammatory factors 

including specific porcine inflammatory markers will be analysed and discussed.
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Materials and Methods.

In vivo Porcine Experiments.

Animal Subjects:

Ten domestic pigs, large White hybrid females were used for the in vivo experiments. The 

animals described in chapter 5 are the same subjects referred to in this chapter, with the same 

termination schedule. The pigs were aged between four and five months with a mean weight of 

66.7 kg (Range 60 – 80.5kg). The pigs followed exactly the same experimental treatment, 

however the times of termination differed as follows.

Each group consisted of 2 pigs:

Group 1 were terminated immediately post procedure and will be referred to as non-recovery 

animals

Group 2 were terminated at 2 days.

Group 3 were terminated at 2 weeks.

Group 4 were terminated at 4 weeks.

Group 5 were terminated at 8 weeks.

Blood Analysis.

An important aspect of the in vivo porcine studies is the animals’ reaction to the insult of BETA. 

A biochemical profile examining the liver and renal functions (Table 6.5 & 6.6) and a series of 

inflammatory markers specific to the porcine species (Table 6.1-6.4) (Alava et al, 1997, 

Eckersall et al, 1999a, Hiss et al, 2003, Grau-Roma et al, 2009, Pineiro et al, 2009) were tested. 

The Group 1 animals were not acclimatised for 2 weeks prior to ablation procedures, as were 

groups 2-5, however all blood samples were obtained according to the same protocol (-1 to -2 

days pre ablation).

The following protocol was used for blood sample acquisition for the animal groups.

Pretreatment: Day -1 or -2 All animals

Immediately post-ablation All animals

24 hours post-ablation Animals in Groups 2, 3, 4 and 5

48 hours post-ablation Animals in Groups 2, 3, 4 and 5

72 hours post-ablation Animals in Groups 3, 4 and 5

The initial analysis of the inflammatory markers was obtained following ablation of animal 24. 

Consultation with the supervisors and Dr L Bence (ReactivLab) suggested additional samples 
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should be obtained for inflammatory marker analysis pretermination. The pre-termination 

bloods were extended to include biochemical markers to ensure the liver and renal functions had 

returned to normal.

The protocol for the additional blood samples were as follows:

Pretermination Animals in Groups 3, 4 and 5.

C-Reactive Protein (CRP):

Background:

C-reactive protein (CRP) is a protein found in the blood, which rises in response to 

inflammation (an acute phase protein). It is synthesised in the liver in response to a rise in the 

plasma concentration of IL-6, which is produced predominantly by macrophages as well as 

adipocytes (Pepys and Hirschfield, 2003). CRP binds to phosphocholine expressed on the 

surface of dead or dying cells in order to activate the complement system, which in turn 

stimulates an inflammatory response. It is a member of the Pentraxin family of proteins but is 

not related to C-Peptide or Protein C. It is thought to assist in complement binding to foreign 

and damaged cells and enhances phagocytosis by macrophages (opsonin mediated 

phagocytosis), which express a receptor for CRP. CRP rises up to 50,000-fold in acute 

inflammation, such as infection. It rises above normal limits within 6 hours, and peaks at 48 

hours. Its half-life is constant, and therefore its level is mainly determined by the rate of 

production (and hence the severity of the precipitating cause) (Pepys and Hirschfield, 2003). 

Method:

The porcine CRP assay is performed using an enzyme linked immunosorbent assay (ELISA) 

developed and validated at Reactivlab. 

Sample and Standards  

Serum samples were obtained from the 10 domestic large white hybrid pigs. Each serum sample 

was labelled, detailing the animal, the unique identifier code and the nature of the sample for 

analysis. All samples were frozen and transported as a batch to the ReactivLab laboratory. On 

receipt, the frozen samples were stored in a -80oC freezer for analysis.

All samples were diluted 1:10000 in assay buffer prior to use. 

Standards were prepared to give a range from 70ug/ml. 

Calculation of Results:

The assay was read using a Fluostar Optima platereader pre-programmed with the assay details 

so that standard curve and sample concentrations were calculated automatically applying the 
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dilution factor. CRP concentration in unknown samples was calculated by comparison with the 

standard curve. Results from the control samples were assessed and confirmed to be within an 

acceptable range. All samples were analysed twice.

Serum Amyloid A (SAA):

Background:

Serum amyloid A (SAA) proteins are a family of apolipiproteins associated with high-density 

lipoprotein (HDL) in plasma and are synthesised predominantly in the liver. Different isoforms 

of SAA are expressed at different levels or in response to inflammatory stimuli (acute phase 

SAAs). The conservation of these proteins throughout invertebrates and vertebrates suggests 

that SAAs play a highly essential role in all animals. Acute-phase serum amyloid A proteins (A-

SAAs) are secreted during the acute phase of inflammation. These proteins have several roles: 

transport of cholesterol to the liver for secretion into the bile, recruitment of immune cells to 

inflammatory sites, and the induction of enzymes that degrade extracellular matrix. SAA genes 

are regulated in liver cells by the proinflammatory cytokines IL-1, IL-6, and TNF- (Uhlar and 

Whitehead, 1999). 

Method:

The SAA assay was performed using an enzyme linked immunosorbent assay (ELISA) 

provided by Tridelta (Dublin, Ireland), on a Triturus automatic ELISA processor (Grifols, UK). 

A qualified engineer services this machine annually. A record of annual service visits is kept for 

laboratory compliance purposes.

Samples and Standards:

Serum samples were obtained from the 10 domestic large white hybrid pigs. Each serum sample 

was labelled, detailing the animal, the unique identifier code and the nature of the sample for 

analysis. All samples were frozen and transported as a batch to the ReactivLab laboratory. On 

receipt, the frozen samples were stored in a -80oC freezer for analysis. 

All samples were initially diluted 1:500 in assay buffer prior to use then, if necessary depending 

on results, further diluted to 1:5000 or rediluted at 1:100. Standards were prepared to give a 

range from 2000ng/ml. 
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Calculation of Results:

The assay was read on the Triturus automatic ELISA processor pre-programmed with the assay 

details so that standard curve and sample concentrations were calculated automatically applying 

the dilution factor. pMAP concentrations in unknown samples was calculated by comparison 

with the standard curve. Results from the control samples were assessed and confirmed to be 

within an acceptable range. All samples were analysed twice.

Pig – Major Acute Phase Protein (Pig-MAP)

Background:

Pig-MAP is an acute phase protein, which is the pig counterpart of a recently cloned human 

serum protein denominated PK-120, which is a putative substrate for kallikrein (Gonzalez-

Ramon et al, 1995). The protein exists in other mammalian species and it is also an acute phase 

protein, at least in the rat. Pig-MAP shows homology, as PK-120, with the heavy chain 2 (HC-

2) of the inter-α-trypsin inhibitor superfamily but does not possess trypsin inhibitory activity 

(Alava et al, 1997). The protein rises following stimulation of the inflammatory cascade, 

reaching maximum concentration at 24-48 hours after the initial insult. Pig-MAP is induced in a 

variety of experimental models and under different physiological and pathological conditions, 

such as inflammation and small bowel surgery. Pig-MAP concentration exhibits the most 

obvious increase in pigs, which show more severe symptoms following inflammation and 

surgical trauma (Gonzalez-Ramon et al, 1995).

Method:

The pig MAP assay was performed using an enzyme linked immunosorbent assay (ELISA) 

provided by PigChamp (Spain), on a Triturus automatic ELISA processor (Grifols, UK). A 

qualified engineer services this machine annually. A record of annual service visits is kept for 

laboratory compliance purposes

Sample and Standards

Serum samples were obtained from the 10 domestic large white hybrid pigs. Each serum sample 

was labelled, detailing the animal, the unique identifier code and the nature of the sample for 

analysis. 

All samples were frozen and transported as a batch to the ReactivLab laboratory. On receipt, the 

frozen samples were stored in a -80oC freezer for analysis. 

All samples were diluted 1:1000 in assay buffer prior to use. Standards were prepared to give a 

range from 3.5ug/ml.
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Calculation of Results

The assay was read on the Triturus automatic ELISA processor pre-programmed with the assay 

details so that standard curve and sample concentrations were calculated automatically applying 

the dilution factor. pMAP concentrations in unknown samples was calculated by comparison 

with the standard curve. Results from the control samples were assessed and confirmed to be 

within an acceptable range. All samples were analysed twice.

Haptoglobin (Hp):

Background:

Haptoglobin (abbreviated as Hp) is a protein encoded by the HP gene in human subjects. In 

blood plasma, haptoglobin binds free hemoglobin (Hb) released from erythrocytes with high 

affinity and thereby inhibits its oxidative activity (Dobryszycka, 1997). The haptoglobin-

haemoglobin complex is then removed by the retuculoendothelial system (mostly the spleen but 

also in the liver). In clinical setting, the haptoglobin assay is used to screen for and monitor 

intravascular hemolytic anaemia; the reticuloendothelial system removes the haptoglobin-

haemoglobin complex from the body and thus haptoglobin levels are decreased in haemolytic 

anaemia. In the process of binding haemoglobin, haptoglobin sequesters the iron within 

haemoglobin, preventing iron-utilising bacteria from benefiting from haemolysis. It is theorised 

that, because of this, haptoglobin has evolved into an acute phase protein. Eckersall et al 

(Eckersall et al, 1996) investigated the most appropriate proteins as markers of inflammation. 

The study demonstrated C-reactive protein and haptoglobin likely to be the best markers for the 

identification of inflammatory lesions in pigs. 

Method:

Haptoglobin (Hp) present in the samples provided for biochemical analysis combines with 

haemoglobin and at low pH preserves the peroxidase activity of the bound haemoglobin. 

Preservation of the peroxidase activity of haemoglobin is directly proportional to the amount of 

haptoglobin present in the sample. This method is described and validated by Eckersall et al 

(Eckersall et al, 1996). 

The haptoglobin assay is performed on an automated biochemical analyser – the Pentra 400. 

This machine was calibrated before use and is serviced bi-annually by a qualified engineer. 

ReactivLab keeps a record of service visits for Laboratory compliance purposes.
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Standards and Samples

Serum samples were obtained from the 10 domestic large white hybrid pigs. Each serum sample 

was labelled, detailing the animal, the unique identifier code and the nature of the sample for 

analysis. All samples were frozen and transported as a batch to the ReactivLab laboratory. On 

receipt, the frozen samples were stored in a -80oC freezer for analysis. 

All samples were analysed in the same laboratory by ReactivLab. A stock pool of serum with a 

haptoglobin concentration of 1.48g/L was aliquoted and stored at -20oC. This material was 

thawed and diluted in 2% Bovine serum albumin (BSA), to give standards at haptoglobin 

concentrations of 1.48, 0.73 and 0.38g/L. A zero standard (2% BSA) was also included.

Pools of serum with known Hp concentration were kept aliquoted at -20oC. 

Serum samples were applied to the assay neat and if necessary analysis was repeated with 

samples diluted to 1:5 in saline.

Calculation of Results

The increase in absorbance at 600nm over the 50s after substrate addition was used to calculate 

the standard curve by the Pentra 400 computer program. Haptoglobin concentration in unknown 

samples was calculated by comparison with the standard curve. Results from the control 

samples were assessed and confirmed to be within an acceptable range. All samples were 

analysed twice.
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Biochemical Profile:

Liver Functions:

Alkaline Phosphatase (ALP)

Alkaline Phosphatase (ALP) is an enzyme in the cells lining the biliary ducts of the liver. ALP 

levels in plasma increase with large bile duct obstruction, intrahepatic cholestasis or infiltrative 

diseases of the liver. ALP originates in bones and is therefore increased in growing animals.

Alanine Transaminase (ALT)

Alanine Transaminase (ALT), also called Serum Glutamic Pyruvate Transaminase (SGPT) or 

Alanine aminotransferase (ALAT) is an enzyme present in functioning hepatocytes. When a 

hepatocyte is damaged, the enzyme is release into the extracellular space and is absorbed by the 

circulatory system, where it is measured. ALT rises dramatically in acute liver damage and a 

raised ALT is entirely consistent with surgery or thermal ablation of the liver. The degree of 

increase is dependant on the volume of hepatocytes damaged and is therefore in this context 

related to the amount of tissue ablated. The use of Propofol for total intravenous anaesthetic 

(TIVA) influences the liver functions, specifically ALT due to the breakdown of hepatocytes 

during metabolism of the anaesthetic agent (Chen et al, 2000).

Aspartate Transaminase (AST)

Aspartate Transaminase (AST) also called Serum Glutamic Oxaloacetic Transaminase (SGOT) 

or aspartate aminotransferase (ASAT) is similar to ALT in that it is another enzyme associated 

with liver parenchymal cells. It is raised in acute liver damage, but is also present in red blood 

cells, and cardiac and skeletal muscle and is therefore not specific to the liver. Elevated AST 

levels are not specific for liver damage, and AST has also been used as a cardiac marker. Given 

the non-specific nature of the enzyme, it is difficult to differentiate liver damage cause by 

thermal ablation, the effects of Propofol anaesthetic agent and the contribution of both red blood 

cells and skeletal muscles. All the animals underwent general anaesthesia and laparotomy – the 

results obtained during this study must be evaluated with caution, as the aetiology of the 

enzyme abnormality is multi-factorial.
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Gamma Glutamyl Transpeptidase (-GT)

Gamma Glutamyl Transpeptidase is reasonably specific to the liver and is an indicator of 

cholestatic damage, more specific than ALP. It may be elevated with even minor, sub-clinical 

levels of liver dysfunction. An important function of -GT in the context of possible liver 

damage is that, when evaluated in conjunction with ALP, indicates specific liver damage. 

The levels of -GT are often raised following propofol administration most commonly reaching 

their peak at 24 hours following surgery (Ture et al, 2009).

Lactate Dehydrogenase (LDH).

LDH is an enzyme found in many tissues in animals including the liver. LDH is commonly 

elevated following haemolysis and is also elevated following liver damage.  It is not specific 

and is probably related to haemolysis in this context rather than liver damage.

Bilirubin.

Bilirubin is a breakdown product of haemolysis and is metabolized by the liver to remove it 

from circulating blood. An increased bilirubin is an indicator of liver failure; this may be due to 

excessive bilirubin production (pre-hepatic), liver damage (hepatic) or due to obstruction of the 

liver (post-hepatic). In this context, the presence of raised bilirubin indicates liver failure, which 

may be due to direct effects of thermal ablation, or be related to the surgery itself or the 

anaesthetic.

Renal Function.

Sodium.

Sodium is an essential serum electrolyte, responsible for nerve conduction and active transport 

in cell membranes. It is filtered by the renal glomerulus and reabsorbed in the proximal 

convoluted tubule, the descending Loop of Henle and in the distal convoluted tubule. Renal 

failure causes a decrease in the reabsorbtion of sodium resulting in hyponatremia. Although 

serum sodium levels are not a diagnostic marker of renal failure, the importance of sodium on 

cell function makes it an important electrolyte for postoperative evaluation of renal function, 

rather than renal function specifically.
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Potassium.

Potassium is an electrolyte essential to the active transport system in the cell membrane and cell 

function. It is reabsorbed from the proximal convoluted tubule and descending Loop of Henle. 

Acute renal failure results in a raised potassium (hyperkalemia), which may result in cardiac 

rhythm disturbances. It is for this reason that potassium is closely monitored in renal failure and 

must be treated if levels rise significantly.

Urea.

Urea is a waste product of protein metabolism. It is produced in the liver and excreted by the 

kidney. The levels of serum urea are a direct indicator of acute renal failure.

Elevated urea levels may cause a coagulopathy or a pericardial effusion.

Creatinine.

Creatinine is the most commonly quoted marker of renal function as it is both filtered and

secreted by the kidney for excretion. It is a breakdown product of creatine found in muscles. 

Creatinine is produced at a fairly constant rate in the body depending on muscle mass. For this 

reason is an extremely sensitive marker for renal failure.

Creatinine should be interpreted in relation to the urea concentration in blood with regards to 

determining a possible cause. An elevated urea out of proportion to the creatinine level 

indicated a pre-renal cause of failure, such as dehydration or fluid depletion.

Standards and Samples for Biochemical Markers

Serum samples were obtained from the 10 domestic large white hybrid pigs. Each serum sample 

was labelled, detailing the animal, the unique identifier code and the nature of the sample for 

analysis. All samples were collected in a standard Serum Separator Tube (SST) containing clot 

activator and a gel for separation of the serum and blood cells.

All samples were analysed in the same laboratory by Huntingdon Life Sciences. 

Calculation of Results

The blood analysis was performed with reference to normal serum levels in pigs. Each sample 

was analysed twice to ensure accurate analysis. The samples were tested using proprietary 

chemical pathology equipment at Huntingdon Life Sciences. All machines are regularly 

calibrated and serviced according to the minimum recommendations set out by the 

manufacturer.



Response to BETA Chapter 6

BETA 226

Regulatory compliance 

The assays were not conducted in accordance with the OECD Principles of GLP, however the 

work was performed generally following the principles of GLP.
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Results:

The results are expressed as means ± standard deviation (SD) for normally distributed variables 

or the median and the interquartile range for non-normal variables (Appendix 5). Differences in 

both APP and biochemical values in each animal at each specified time point were tested with 

paired student’s t-test. A P value <0.05 was considered statistically significant. SPSS 17 was 

used for all statistical data analysis. The values of each APP and biochemical marker are quoted 

according to the standard international unit for each specific marker unless specified.

Haptoglobin (Hp) Results

In pigs, an Hp concentration of 1.0g/L and above is considered to be biologically relevant. The 

results show that in animal numbers 15, 16 and 20 there was an elevated Hp level at 

pretreatment. This could be attributed to an underlying subclinical infection or to stress. 

Animals 15 and 16 were not acclimatised prior to surgery and the elevated Hp levels may be 

attributed to transport. This was also reflected in a high CRP concentration in these animals at 

pretreatment. In the remaining animals, there was an overall trend for the Hp to increase up 2-4x 

from 24 hours to 72 hours (maximum Hp 2.16g/L with animal 22 at 72 hours) then decreased to 

below reference level by termination. The increase in Hp post treatment was statistically 

significant at 48 hrs (p=0.034).  The immediate post procedure value, 24 hrs and 72 hrs were not 

significant (p=0.168, p=0.205, p=0.115)

No animal showed any signs of a systemic inflammatory response (SIRS) post surgery.
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Table 6.1 tabulates the results for the mean Haptoglobin levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and 

range.

Table 6.2 tabulates the individual Haptoglobin levels for each animal at each time point.

Graph 6.1 demonstrates the Haptoglobin levels for each animal with error bars at each time 

point.

Haptoglobin (g/L)

N Mean SD SEM
95% CI for Mean

Min MaxLower Bound Upper Bound

Pre (PT) 10 0.521 0.44079 0.13939 0.2057 0.836 0 1.48

0hrs post (IAD) 10 0.385 0.27265 0.08622 0.19 0.58 0.13 1

24hrs post 8 0.8312 0.27663 0.09781 0.6 1.063 0.46 1.27

48hrs post 8 1.105 0.37306 0.1319 0.7931 1.417 0.59 1.78

72hrs post 6 1.1983 0.38928 0.15892 0.7898 1.607 0.83 1.85

Termination 4 0.3275 0.0943 0.04715 0.1775 0.478 0.26 0.46

Total 46 0.7185 0.45956 0.06776 0.582 0.855 0 1.85

Table 6.1 The results for the mean Haptoglobin levels at each time point, including the standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and range.
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C-Reactive Protein (CRP) Results

In pigs, a CRP concentration of <100mg/L is considered to be biologically relevant. As stated 

above the results show that in animal numbers 15, 16 and 20 there was an elevated CRP (and 

Hp) level at pretreatment which could be attributed to an underlying subclinical infection or to 

stress. Animals 15 and 16 were not acclimatised prior to surgery and the elevated Hp levels may 

be attributed to transport.  The overall trend in the remaining animals showed CRP to increase 

from 24 hours up to 72 hours (p=0.018, p=0.015 and p=0.01; Tables 6.23-6.25) exception was 

animal 23 (56d termination); the CRP peaked at 24 hours post surgery and then decreased at 48 

and 72 hours. The immediate post procedure CRP was not elevated significantly (p=0.952; 

Table 6.22).  Several of the animals showed a >10x increase in CRP levels from pre-treatment 

(PT) to 72 hours, with a maximum CRP concentration of 387mg/L with animal 24 at 72 hours. 

By termination date CRP levels had reduced to slightly above reference level. No animal 

showed any signs of a systemic inflammatory response (SIRS) post surgery.

Table 6.3 tabulates the results for the mean CRP levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and 

range.

Table 6.4 tabulates the results for the CRP levels at each time point for each animal.

Graph 6.2 demonstrates the CRP levels for each animal with error bars at each time point.

CRP (mmol/L)

N Mean SD SEM

95% CI for Mean

Min Max
Lower 
Bound

Upper 
Bound

Pre (PT) 10 338.31 323.41692 102.27341 106.9515 569.6685 67 936.3

0hrs post (IAD) 10 343.82 318.27273 100.64667 116.1414 571.4986 56 1103.1

24hrs post 8 1471.125 742.72746 262.59381 850.1893 2092.0607 544.5 2806.6

48hrs post 8 1613.6125 868.51224 307.06545 887.5181 2339.7069 591 3192.4

72hrs post 6 2051.1333 1114.8761 455.14626 881.1426 3221.124 734.5 3877.3

Termination 4 126.6 31.58681 15.79341 76.3383 176.8617 95.4 169.1

Total 46 963.313 946.37414 139.53525 682.2746 1244.3515 56 3877.3

Table 6.3 The Mean CRP levels at each time point are tabulated, including the standard 

deviation (SD), standard error of the (SEM), 95% confidence interval (CI) and range.
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Serum Amyloid A (SAA) Results

In pigs, an SAA concentration of  >50mg/L is considered to be biologically relevant. In animals 

17-26 (2d-56d terminations) the SAA level peaked at 24 hours, decreased by 72 hours and 

returned to below reference level by termination. Most of the animals showed a >200 times 

increase in SAA levels from PT to 24 hours with a maximum SAA response of 776.5mg/L seen 

with animal 17 (14d termination) at 24 hours. The elevated SAA level was not statistically 

significant immediately post surgery (p=0.471), but was statistically significant at 24, 48 and 72 

hrs post surgery (p=0.001, p=0.001, p=0.01) and were normal at termination. 

No animal showed any signs of a systemic inflammatory response (SIRS) post surgery.

Table 6.5 tabulates the results for the mean SAA levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and 

range.

Table 6.6 tabulates the results for the SAA levels at each time point for each animal.

Graph 6.3 demonstrates the SAA levels for each animal with error bars at each time point.

Table 6.5 The mean SAA levels at each time point, including the standard deviation (SD), 

standard error of the mean (SEM), 95% confidence interval (CI) and range.

SAA (mg/L)

N Mean SD SEM

95% CI for Mean

Min Max
Lower 
Bound

Upper 
Bound

Pre 10 9.133 9.14827 2.89294 2.5887 15.677 0.23 29.73

0hrs post 10 14.975 24.51846 7.75342 -2.5644 32.514 2.02 82.25

24hrs post 8 536 252.07262 89.12113 325.262 746.74 67.75 776.5

48hrs post 8 402.8438 207.33569 73.30424 229.507 576.18 69.75 652.5

72hrs post 6 144.5417 76.50285 31.23216 64.2569 224.83 55 284.25

Termination 4 5.735 5.88263 2.94132 -3.6256 15.096 0.23 13.68

Total 46 187.87 253.10736 37.31864 112.706 263.03 0.23 776.5
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Pig – Major Acute Phase (pMAP) Results

In pigs a pMAP concentration of  >0.6g/L is considered to be biologically relevant. 

In animals 17-26 (2d-56d terminations) the overall trend showed pMAP to increase from 24 

hours up to 48-72 hours. Most of the animals showed a >5-20 times increase in pMAP levels 

from PT to 72 hours, with a maximum pMAP concentration of 2.45g/L with animal 25 (2d 

termination) at 48 hours. The elevated pMAP was statistically significant at each time point post 

surgery (p=0.003, p<0.0001, p<0.0001, p=0.1). By termination date pMAP levels had reduced 

to below reference level. No animal showed any signs of a systemic inflammatory response 

(SIRS) post surgery.

Table 6.7 tabulates the results for the mean pMAP levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and 

range.

Table 6.8 tabulates the results for the pMAP levels at each time point for each animal.

Graph 6.4 demonstrates the pMAP levels at each time point for each animal with error bars.

pMAP (g/L)

N Mean SD SEM

95% CI for Mean

Min Max
Lower 
Bound

Upper 
Bound

Pre 10 0.304 0.14385 0.04549 0.2011 0.4069 0.13 0.61

0hrs post 10 0.167 0.12239 0.0387 0.0794 0.2546 0.02 0.37

24hrs post 8 1.39 0.46081 0.16292 1.0048 1.7752 0.46 1.91

48hrs post 8 1.7438 0.61558 0.21764 1.2291 2.2584 0.85 2.45

72hrs post 6 1.5233 0.43385 0.17712 1.068 1.9786 0.99 2.03

Termination 4 0.1675 0.14683 0.07341 -0.0661 0.4011 0.03 0.36

Total 46 0.8607 0.76613 0.11296 0.6331 1.0882 0.02 2.45

Table 6.7 The mean pMAP levels at each time point, including the standard deviation (SD), 

standard error of the mean (SEM), 95% confidence interval (CI) and range
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Biochemical Results

Liver Function.

Table 6.9 summarises the mean values for each liver function, LDH, Albumin and Bilirubin at 

each specified time point tested, with the corresponding 95% confidence interval (Radostits et 

al, 2005).

Alkaline Phosphatase (ALP)

In pigs the normal reference range for ALP is 120-400 U/L.

The ALP increased above the pre treatment PT range in animal 25 (2d termination) and 26 (28d 

termination), peaking at 48hrs but overall there was no significant increase in the levels of ALP 

at 24hrs, 48hrs or 72hrs (p=0.829, p=0.06, p=0.089). The ALP showed a significant increase 

immediately post surgery (p=0.016), however this enzyme is affected by anaesthetic agents and 

therefore the transient significant increase is probably due to a combination of the surgery and 

anaesthetic, given the values of ALP at 24, 48 and 72 hrs post surgery.

All levels of ALP returned to the pre-treatment levels at termination.

Table 6.10 tabulates the results for the mean ALP levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and 

range.

Table 6.11 tabulates the results for the ALP levels at each time point for each animal.

tabulates the results for the ALP levels at each time point.

Graph 6.5 demonstrates the ALP levels at each time point for each animal with error bars.

ALP (U/L)

N Mean (U/L) SD SEM

95% CI for Mean

Min MaxLower Bound Upper Bound

Pre 10 148.6 40 12.66 119.96 177.24 96 211

0hrs post 10 124.5 27.8 8.79 104.61 144.39 76 180

24hrs post 8 143.88 31 10.98 117.92 169.83 99 189

48hrs post 8 112.25 19.1 6.747 96.3 128.2 84 139

72hrs post 6 97.5 14 5.731 82.77 112.23 77 119

Termination 4 118.5 20.2 10.12 86.29 150.71 100 147

Total 46 126.93 32.4 4.772 117.32 136.55 76 211

Table 6.10 The mean pMAP levels at each time point, including the standard deviation (SD), 

standard error of the mean (SEM), 95% confidence interval (CI) and range.
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Alanine Transaminase (ALT) Results

In pigs the normal reference range for ALT is 31-58 U/L.

The ALT demonstrated significant increases above the pre-treatment level at 24, 48 and 72hrs 

(P=0.001, p=0.001, p=0.001), peaking at 24-48hrs. No significant difference was noted at 0hrs 

(p=1.00). 

All the enzyme levels returned to normal at termination.

Table 6.12 tabulates the results for the mean ALT levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and 

range.

Table 6.13 tabulates the results for the ALT levels at each time point for each animal.

Graph 6.6 demonstrates the ALT levels at each time point for each animal with error bars.

ALT U/L

N Mean SD SEM

95% Confidence Interval for Mean

Min MaxLower Bound Upper Bound

Pre 10 44.4 7.71 2.437 38.89 49.91 35 61

0hrs post 10 44.4 9.4 2.971 37.68 51.12 33 62

24hrs post 8 104.5 32 11.33 77.71 131.29 55 150

48hrs post 8 109.3 34.4 12.15 80.51 137.99 59 157

72hrs post 6 95.83 18.7 7.635 76.21 115.46 70 116

Termination 6 58.83 8.91 3.637 49.48 68.18 48 70

Total 48 73.46 35.1 5.073 63.25 83.66 33 157

Table 6.12 The mean ALT levels at each time point, including the standard deviation (SD), 

standard error of the mean (SEM), 95% confidence interval (CI) and range.
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Aspartate Transaminase (AST) Results

In pigs the normal reference range for AST is 32-84 U/L.

The AST demonstrated significant increases at 0hrs, 24hrs, 48hrs and 72hrs (p<0.0001, 

p=0.001, p=0.024, p=0.006), peaking at 24 hours post treatment. The initial rise and peak 24 hrs 

may in part be due to the combination of general anaesthetic, surgery and ablations, however it 

is not possible to quantify this and it is beyond the scope of this research.

The enzymes returned to normal pre-treatment levels at termination.

Table 6.14 tabulates the results for the mean AST levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and 

range.

Table 6.15 tabulates the results for the AST levels at each time point for each animal.

Graph 6.7 demonstrates the AST levels at each time point for each animal with error bars.

AST (U/L)

N Mean SD SEM

95% CI for Mean

Min MaxLower Bound Upper Bound

Pre 10 41.9 15.989 5.056 30.46 53.34 22 67

0hrs post 10 246.8 76.947 24.333 191.76 301.84 116 379

24hrs post 8 625.88 275.29 97.33 395.73 856.02 211 1130

48hrs post 8 370.38 320.48 113.31 102.44 638.31 97 889

72hrs post 6 160.33 57.158 23.335 100.35 220.32 101 243

Termination 6 54 16.358 6.678 36.83 71.17 29 70

Total 48 252.98 264.19 38.132 176.27 329.69 22 1130

Table 6.14 The results for the mean AST levels at each time point, including the standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and range.
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Gamma Glutamyl Transpeptidase (-GT) Results

In pigs the normal reference range for -GT is 10-60 U/L.

The γ-GT demonstrated an increase in animal 16 (0d termination) at 0hrs post surgery, but this 

was the only observed significant increase in any animal and may be spurious. There was no 

significant increase in the -GT level at 0hrs, 24hrs, 48hrs or 72hrs (p=0.894, p=0.920, p=0.889, 

p=0.613). 

The levels overall remained within the normal reference range.

Table 6.16 tabulates the results for the mean -GT levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and 

range.

Table 6.17 tabulates the results for the -GT levels at each time point for each animal.

Graph 6.8 demonstrates the -GT levels at each time point for each animal with error bars.

γ - GT (U/L)

Mean SD SEM

95% CI for Mean

Min MaxLower Bound Upper Bound

Pre 10 45.7 16.59 5.247 33.83 57.57 18 73

0hrs post 10 45 23.32 7.374 28.32 61.68 23 103

24hrs post 8 44.62 13.74 4.858 33.14 56.11 21 61

48hrs post 8 44.38 15.1 5.338 31.75 57 21 70

72hrs post 6 41.33 7.005 2.86 33.98 48.68 31 50

Termination 6 40.17 7.468 3.049 32.33 48 28 49

Total 48 43.92 15.29 2.207 39.48 48.36 18 103

Table 6.16 The results for the mean -GT levels at each time point, including the standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and range.
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Lactate Dehydrogenase (LDH) Results

In pigs the normal reference range for LDH is 380-630 U/L.

The LDH demonstrated a significant increase at 0hrs, 24hrs, 48 hrs and 72hrs  (p<0.010, 

p<0.003, p<0.024, p<0.014), peaking at 24 hours. The causes of an elevated LDH are numerous 

and the likely reason for the observed rise is a combination of general anaesthetic, surgery, 

thermal ablation and haemolysis associated with the surgery. 

Table 6.18 tabulates the results for the mean LDH levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and 

range.

Table 6.19 tabulates the results for the LDH levels at each time point for each animal.

Graph 6.9 demonstrates the LDH levels at each time point for each animal with error bars.

LDH (U/L)

N Mean SD SEM
95% CI for Mean

Min MaxLower Bound Upper Bound

Pre 10 1313.3 417.074 131.89 1014.94 1611.66 957 2239

0hrs post 10 1785.8 310.427 98.165 1563.73 2007.87 1354 2271

24hrs post 8 5338.6 2601.87 919.9 3163.41 7513.84 2728 9903

48hrs post 8 3497 2278.42 805.54 1592.2 5401.8 2153 8606

72hrs post 6 2243.7 469.495 191.67 1750.96 2736.37 1846 2965

Termination 6 1157.7 219.036 89.421 927.8 1387.53 949 1566

Total 48 2543.4 2011.74 290.37 1959.27 3127.57 949 9903

Table 6.18 The results for the mean LDH levels at each time point, including the standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and range.
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Bilirubin Results

In pigs the normal reference range for Bilirubin is 0-17.1 mol/L. 

The bilirubin demonstrated a significant increase at 0hrs (p<0.004; Table 6.62), however 

returned to normal levels by 24 hours (Tables 6.63-6.65).

Table 6.20 tabulates the results for the mean Bilirubin levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and 

range.

Table 6.21 tabulates the results for the Bilirubin levels at each time point for each animal.

Graph 6.10 demonstrates the Bilirubin levels at each time point for each animal with error bars.

Bilirubin (U/L)

N Mean SD SEM
95% CI for Mean

Min MaxLower Bound Upper Bound

Pre 10 1.5 1.269 0.401 0.59 2.41 1 5

0hrs post 10 3.9 2.132 0.674 2.38 5.42 1 8

24hrs post 8 1.38 0.518 0.183 0.94 1.81 1 2

48hrs post 8 1 0.535 0.189 0.55 1.45 0 2

72hrs post 6 0.5 0.548 0.224 -0.07 1.07 0 1

Termination 6 1 0 0 1 1 1 1

Total 48 1.71 1.637 0.236 1.23 2.18 0 8

Table 6.20 The results for the mean Bilirubin levels at each time point, including the standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and range.
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Renal Function.

Table 6.22 summarises the mean values for each marker tested (Sodium (Na), Potassium (K), 

Urea and Creatinine) at each specified time point tested, with the corresponding 95% 

confidence interval (Radostits et al, 2005).

Serum Sodium Results

In pigs the normal reference range for serum Sodium is 140-150 mmol/L.

The serum sodium concentration levels remained stable throughout in all animals apart from 

animal 25 (2d) and 26 (28d) where a single elevated sodium level was observed. 

No statistically significant elevations were seen at 24, 48 or 72 hrs post procedure (p=0.542, 

p=0.747, p=0.292). The levels immediately post procedure were significantly elevated 

(p=0.041), however this may be in part due to the intravenous administration of 0.9% Saline 

during the procedure for maintenance. In part, the mildly elevated levels observed in some 

animals (Animals 25 and 26) may be due to the accepted laboratory reference error of 10%. In 

the clinical context, these isolated results would not be regarded as a true value and would in all 

likelihood be repeated.

All results were normal at termination.

Table 6.23 tabulates the results for the mean Na levels at each time point, including the standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and range.

Table 6.24 tabulates the results for the Na levels at each time point for each animal.

Graph 6.11 demonstrates the Na levels at each time point for each animal with error bars.

Na (mmol/L)

N Mean SD SEM
95% CI for Mean

Min MaxLower Bound Upper Bound
Pre (PT) 10 145.5 3.342 1.057 143.11 147.89 142 153
0hrs post (IAD) 10 142.3 1.418 0.448 141.29 143.31 140 145
24hrs post 8 145 2.507 0.886 142.9 147.1 142 149
48hrs post 8 146.5 3.817 1.35 143.31 149.69 143 153
72hrs post 6 145 2.757 1.125 142.11 147.89 142 149
Termination 6 144.7 3.983 1.626 140.49 148.85 141 152
Total 48 144.8 3.172 0.458 143.83 145.67 140 153

Table 6.23 tabulates the results for the mean Na levels at each time point, including the standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and range.
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Serum Potassium Results

In pigs the normal reference range for serum Potassium is 4.7-7.1 mmol/L.

The serum potassium concentration levels remain stable throughout in all animals apart from 

animal 26 (28d) where elevated serum potassium levels were measured at 24 and 48 hrs post 

treatment. The levels were not associated with any clinical symptoms and the levels may be due 

to trauma associated with the phlebotomy procedure. The potassium levels at 24, 48 and 72hrs 

were not significantly elevated (p=0.285, p=0.284, p=0.717).

The serum potassium (K) was seen to decrease significantly immediately post procedure 

(p=0.038), however this is still within normal limits for potassium and again may reflect 

intravenous administration of potassium poor crystalloid solution as maintenance fluids.

This phenomenon is seen commonly in the clinical context and unless the decrease in potassium 

is significant (below 3mmol/L), this biochemical abnormality is not corrected with medication, 

rather by reabsorbtion of potassium in the kidney.

All serum potassium levels were normal at termination.

Table 6.25 tabulates the results for the mean K levels at each time point, including the standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and range.

Table 6.26 tabulates the results for the K levels at each time point for each animal.

Graph 6.12 demonstrates the K levels at each time point for each animal with error bars.

K (mmol/L)

N Mean SD SEM

95% CI for Mean

Min MaxLower Bound Upper Bound
Pre (PT) 10 5.15 0.409 0.129 4.86 5.44 4 6
0hrs post (IAD) 10 4.8 0.245 0.077 4.62 4.98 4 5
24hrs post 8 5.8 1.376 0.487 4.65 6.95 4 9
48hrs post 8 5.8 1.429 0.505 4.61 6.99 4 9
72hrs post 6 5.35 1.084 0.443 4.21 6.49 4 7
Termination 6 4.68 0.488 0.199 4.17 5.19 4 6
Total 48 5.26 0.985 0.142 4.97 5.55 4 9

Table 6.25 The results for the mean K levels at each time point, including the standard deviation 

(SD), standard error of the mean (SEM), 95% confidence interval (CI) and range.
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Urea Results

In pigs the normal reference range for urea is 3-8.5 mmol/L.

The serum urea levels remained stable throughout, peaking at 24hrs post surgery, however this 

was not significant (p=0.079) and all urea measurements remained within the normal reference 

range at 0, 24, 48, 72 hrs post procedure and at termination.

Table 6.27 tabulates the results for the mean Urea levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and 

range.

Table 6.28 tabulates the results for the Urea levels at each time point for each animal.

Graph 6.13 demonstrates the Urea levels at each time point for each animal with error bars.

Urea (mmol/L)

N Mean SD SEM
95% CI for Mean

Min MaxLower Bound Upper Bound

Pre (PT) 10 4.3 0.539 0.171 3.91 4.68 4 5

0hrs post (IAD) 10 4.28 0.874 0.276 3.65 4.9 3 5

24hrs post 8 5.28 1.381 0.488 4.13 6.44 4 8

48hrs post 8 3.67 0.961 0.34 2.87 4.47 2 5

72hrs post 6 4.1 0.917 0.374 3.14 5.07 3 6

Termination 6 4.67 1.317 0.538 3.29 6.05 3 7

Total 48 4.37 1.071 0.155 4.06 4.69 2 8

Table 6.27 The results for the mean Urea levels at each time point, including the standard 

deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and range.
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Creatinine Results

In pigs the normal reference range for creatinine is 90-240 mol/L.

The serum Creatinine levels remained within normal limits throughout the study, with all the 

serum creatinine levels improving from the pre-treatment levels apart from animal 26 (28d 

termination). The improved levels of Creatinine may be due to the controlled living conditions 

of the animals throughout the study and the careful dietary requirements set out by the study 

protocol.

The statistically significant observation at 0 hrs and 72 hrs was an improvement in Creatinine 

levels (p=0.006, p=0.034).

Table 6.29 tabulates the results for the mean Creatinine levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and 

range.

Table 6.30 tabulates the results for the Creatinine levels at each time point for each animal.

Graph 6.14 demonstrates the Creatinine levels at each time point for each animal with error 

bars.

Creatinine (mmol/L)

N Mean SD SEM
95% CI for Mean

Min MaxLower Bound Upper Bound

Pre 10 141.2 18.546 5.865 127.93 154.47 102 163

0hrs post 10 125.2 11.593 3.666 116.91 133.49 104 142

24hrs post 8 121 19.603 6.931 104.61 137.39 87 141

48hrs post 8 121.5 13.213 4.671 110.45 132.55 97 135

72hrs post 6 106.17 31.429 12.831 73.18 139.15 61 136

Termination 6 125.67 13.292 5.426 111.72 139.62 109 146

Total 48 124.9 20.117 2.904 119.05 130.74 61 163

Table 6.29 tabulates the results for the mean Creatinine levels at each time point, including the 

standard deviation (SD), standard error of the mean (SEM), 95% confidence interval (CI) and 

range.



Response to BETA Chapter 6

BETA 242

Haptoglobin g/L
Sample PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean Mean Mean Mean Mean Mean

15-0d 0.52 0.25 NS NS NS NS

16-0d 1.48 0.22 NS NS NS NS

18-2d 0.58 0.48 0.79 1.20 NS NS

25-2d 0.16 0.13 0.59 0.76 NS NS

20-14d 0.94 1.00 1.27 1.78 1.85 0.54

17-14d 0.11 0.19 0.62 0.91 0.98 0.43

21-28d 0.34 0.35 1.00 1.31 1.27 0.33

26-28d 0.56 0.31 0.46 0.59 0.83 0.26

23-56d 0.37 0.22 0.82 1.00 0.87 0.46

24-56d 0.67 0.70 1.10 1.29 1.39 0.26

Table 6.2 tabulates the individual Haptoglobin levels for each animal at each time point for each 

animal.
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Graph 6.1 Haptoglobin levels for each animal with error bars at each time point.
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CRP mg/L
Sample PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean Mean Mean Mean Mean Mean

15-0d 540.7 570.7 NS NS NS NS

16-0d 936.3 223.7 NS NS NS NS

18-2d 96.9 190.1 1183.7 1318.7 NS NS

25-2d 67.0 213.3 568.4 1032.1 1032.5 NS

17-14d 101.4 207.4 1453.8 1847.6 1879.6 69.5

20-14d 705.7 1103.1 1996.3 2555.9 2570.2 88.3

21-28d 206.2 179.1 1543.2 1247.7 2112.6 129.6

26-28d 67.2 56.0 544.5 591.0 734.5 95.4

23-56d 77.1 123.8 1672.5 1123.5 1132.6 112.3

24-56d 584.6 571.0 2806.6 3192.4 3877.3 169.1

Table 6.4 tabulates the individual CRP levels for each animal at each time point for each 

animal.
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Graph 6.2 CRP levels for each animal with error bars at each time point.
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SAA mg/L
Sample PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean Mean Mean Mean Mean Mean

15-0d 9.28 82.25 NS NS NS NS

16-0d 18.98 3.26 NS NS NS NS

18-2d 2.34 2.66 744.25 508.50 NS NS

25-2d 3.54 12.53 476.50 506.25 NS NS

20-14d 29.73 23.50 665.75 290.25 128.50 NS

17-14d 1.57 8.55 776.50 611.00 110.25 NS

21-28d 0.23 7.23 684.50 652.50 284.25 13.68

26-28d 4.73 4.71 67.75 69.75 55.00 6.44

23-56d 2.75 13.67 612.50 404.75 132.50 0.23

24-56d 4.54 2.02 260.25 179.75 156.75 2.59

Table 6.6 tabulates the individual SAA levels for each animal at each time point for each 

animal.
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Graph 6.3 SAA levels for each animal with error bars at each time point.
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pMAP g/L
Sample PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean Mean Mean Mean Mean Mean

15-0d 0.34 0.36 NS NS NS NS

16-0d 0.61 0.37 NS NS NS NS

25-2d 0.23 0.09 1.60 2.45 NS NS

18-2d 0.34 0.19 1.91 2.16 NS NS

20-14d 0.25 0.04 1.80 2.08 1.56 NS

17-14d 0.18 0.02 0.46 1.02 1.20 NS

21-28d 0.13 0.09 1.61 2.13 2.03 0.03

26-28d 0.22 0.16 1.13 0.85 0.99 0.36

23-56d 0.18 0.12 1.24 1.20 1.33 0.20

24-56d 0.36 0.23 1.37 2.06 2.03 0.08

Table 6.8 The mean pMAP levels at each time point, including the standard deviation (SD), 

standard error of the mean (SEM), 95% confidence interval (CI) and range.
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Graph 6.4 SAA levels for each animal with error bars at each time point.
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Table 6.9 Summarises the mean values for each liver function, LDH, Albumin and Bilirubin at each specified time point tested, with the corresponding 95% 

confidence interval (Radostits et al, 2005).

Renal Function Summary
Marker PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Na mmol/L 145.5 1.96 142.3 0.833 145 1.62 146.5 2.47 145 2.01 144.67 2.91

K mmol/L 5.15 0.24 4.8 0.15 5.8 0.95 5.8 0.92 5.35 0.86 4.68 0.39

Urea mmol/L 4.3 0.33 4.28 0.54 5.28 0.96 3.67 0.62 4.11 0.67 4.67 1.05

Creat mmol/L 141.2 11.5 125.2 7.18 121 13.58 121.5 9.15 106.17 25.14 125.67 10.63

Table 6.22 Summarises the mean values for each marker tested (Sodium (Na), Potassium (K), Urea and Creatinine) at each specified time point tested, with 

the corresponding 95% confidence interval (Radostits et al, 2005).

Liver Function Summary
Marker PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI
ALP (U/L) 148.6 23.54 124.5 16.34 143.88 20.12 112.25 12.37 97.5 10.25 117.17 11.83
ALT (U/L) 44.4 4.53 44.4 5.52 104.50 22.20 109.25 23.82 95.83 14.96 58.83 7.12
AST (U/L) 41.9 9.91 246.8 47.7 625.88 190.76 370.375 222.08 160.33 45.73 54 13.08
GGT (U/L) 45.7 10.28 45 14.45 44.63 9.52 44.38 10.47 41.3 5.6 40.17 5.98
LDH (U/L) 1313.3 258.5 1785.8 192.4 5338.63 1802.97 3497 1578.83 2243.67 375.67 1224.75 193.13

Bilirubin (U/L) 1.5 0.79 3.9 1.27 1.375 0.36 1 0.37 0.5 0.44 1 0
Albumin (g/L) 39 2.02 31.3 1.7 37.5 3.5 37.5 2.85 37.5 2.76 40.5 2.13
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ALP U/L
Sample PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean Mean Mean Mean Mean Mean

15-0d 211 180 NS NS NS NS

16-0d 109 105 NS NS NS NS

18-2d 205 141 189 139 NS NS

25-2d 114 127 146 122 NS NS

20-14d 96 76 99 84 77 120

17-14d 165 117 135 102 90 109

21-28d 157 116 138 100 96 147

26-28d 124 139 167 110 104 110

23-56d 173 138 170 137 119 117

24-56d 132 106 107 104 99 100

Table 6.11 tabulates the results for the ALP levels at each time point for each animal.
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Graph 6.5 demonstrates the ALP levels at each time point for each animal with error bars.
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ALT U/L
Sample PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean Mean Mean Mean Mean Mean

15-0d 50 46 NS NS NS NS

16-0d 46 48 NS NS NS NS

18-2d 38 41 67 59 NS NS

25-2d 44 42 150 129 NS NS

20-14d 41 37 100 149 110 48

17-14d 36 36 95 82 78 56

21-28d 61 58 119 106 108 70

26-28d 48 62 118 82 70 68

23-56d 35 33 132 157 116 60

24-56d 45 41 55 110 93 51

Table 6.13 The results for the ALT levels at each time point for each animal.
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Graph 6.6 The ALT levels at each time point for each animal with error bars
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AST U/L
Sample PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean Mean Mean Mean Mean Mean

15-0d 67 303 NS NS NS NS

16-0d 50 249 NS NS NS NS

18-2d 27 185 211 97 NS NS

25-2d 26 176 826 212 NS NS

20-14d 48 271 506 183 116 55

17-14d 37 222 658 862 101 68

21-28d 39 321 662 221 178 70

26-28d 22 379 605 145 119 29

23-56d 36 116 1130 889 205 62

24-56d 67 246 409 354 243 40

Table 6.15 tabulates the results for the AST levels at each time point for each animal.
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Graph 6.7 demonstrates the AST levels at each time point for each animal with error bars.
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GGT U/L
Sample PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean Mean Mean Mean Mean Mean

15-0d 49 34 NS NS NS NS

16-0d 61 103 NS NS NS NS

18-2d 73 59 59 70 NS NS

25-2d 18 23 21 21 NS NS

20-14d 33 32 40 47 43 38

17-14d 43 40 47 41 44 40

21-28d 38 34 36 34 35 39

26-28d 49 47 56 51 45 49

23-56d 31 26 37 35 31 28

24-56d 62 52 61 56 50 47

Table 6.17 tabulates the results for the -GT levels at each time point for each animal.
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Graph 6.8 demonstrates the -GT levels at each time point for each animal with error bars.
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LDH U/L
Sample PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean Mean Mean Mean Mean Mean

15-0d 1735 1734 NS NS NS NS

16-0d 1504 2035 NS NS NS NS

18-2d 1423 1377 3136 2475 NS NS

25-2d 979 1756 7600 2153 NS NS

20-14d 957 1541 3325 8606 1876 986

17-14d 1095 2271 4177 2217 1846 1102

21-28d 1161 1687 4561 2340 2965 1566

26-28d 1000 2081 9903 2515 2239 1165

23-56d 1040 1354 7279 5103 2647 997

24-56d 2239 2022 2728 2567 1889 1171

Table 6.19 tabulates the results for the LDH levels at each time point for each animal.
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Graph 6.9 demonstrates the LDH levels at each time point for each animal with error bars.
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Bilirubin mol/L 
Sample PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean Mean Mean Mean Mean Mean

15-0d 5 7 NS NS NS NS

16-0d 1 4 NS NS NS NS

18-2d 1 4 1 1 NS NS

25-2d 1 3 1 1 NS NS

20-14d 1 4 2 1 1 1

17-14d 2 2 1 2 1 1

21-28d 1 1 1 1 1 1

26-28d 1 8 1 1 1 1

23-56d 1 3 2 1 1 1

24-56d 1 3 2 1 1 1

Table 6.19 tabulates the results for the Bilirubin levels at each time point for each animal.
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Graph 6.10 demonstrates the Bilirubin levels at each time point for each animal with error bars.
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Na mmol/L
Sample PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean Mean Mean Mean Mean Mean

15-0d 149 140 NS NS NS NS

16-0d 145 142 NS NS NS NS

18-2d 153 141 146 153 NS NS

25-2d 146 143 148 152 NS NS

20-14d 145 143 144 146 143 144

17-14d 143 143 142 145 143 143

21-28d 142 142 149 144 147 142

26-28d 145 145 143 143 146 152

23-56d 145 141 145 145 149 141

24-56d 142 143 143 144 142 146

Table 6.24 tabulates the results for the Na levels at each time point for each animal.
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Graph 6.11 demonstrates the Na levels at each time point for each animal with error bars.
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K mmol/L
Sample PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean Mean Mean Mean Mean Mean

15-0d 6 5.2 NS NS NS NS

16-0d 4.9 4.9 NS NS NS NS

18-2d 4.5 4.9 4.3 4.9 NS NS

25-2d 5.1 4.9 5.5 6.3 NS NS

20-14d 5.2 4.6 5.4 5 4.2 4.1

17-14d 5 5.1 5 6.1 4.9 4.3

21-28d 5.5 4.4 6.3 4.5 7.3 4.6

26-28d 5 4.7 8.9 9 5.3 5.5

23-56d 5.4 4.7 5.3 5.5 5.7 4.8

24-56d 4.9 4.6 5.7 5.1 4.7 4.8

Table 6.26 tabulates the results for the K levels at each time point for each animal.
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Graph 6.12 demonstrates the K levels at each time point for each animal with error bars.
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Urea mmol/L
Sample PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean Mean Mean Mean Mean Mean

15-0d 4.88 3.79 NS NS NS NS

16-0d 4.05 2.81 NS NS NS NS

18-2d 4.31 3.57 4.01 2.21 NS NS

25-2d 3.51 3.7 4.6 4.48 NS NS

20-14d 4.81 5.46 6.05 2.94 3.01 3.43

17-14d 5.17 5.14 4.76 3.01 4.73 3.65

21-28d 4.13 3.85 7.51 5.08 5.5 4.24

26-28d 3.58 5.03 4.91 3.51 4.3 4.73

23-56d 4.14 5.15 6.83 4.5 3.53 7.09

24-56d 4.38 4.25 3.58 3.62 3.56 4.89

Table 6.28 tabulates the results for the Urea levels at each time point for each animal.
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Graph 6.13 demonstrates the Urea levels at each time point for each animal with error bars.
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Creatinine mmol/L
Sample PT IAD 24 Hrs 48 Hrs 72 Hrs Termination

Mean Mean Mean Mean Mean Mean

15-0d 146 119 NS NS NS NS

16-0d 130 111 NS NS NS NS

18-2d 162 125 102 135 NS NS

25-2d 123 134 87 123 NS NS

20-14d 149 122 134 97 112 109

17-14d 163 142 132 132 121 115

21-28d 151 135 141 120 61 122

26-28d 102 104 110 107 74 129

23-56d 145 132 140 130 133 146

24-56d 141 128 122 128 136 133

Table 6.30 tabulates the results for the Creatinine levels at each time point for each animal.
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Graph 6.14 demonstrates the Creatinine levels at each time point for each animal with error 

bars.
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Discussion:

General.

RFA has a low complication rate (Rhim et al, 2003, Tateishi et al, 2005) when compared to 

cryoablation (Seifert and Morris, 1999, Seifert et al, 1999) and similar complication rates when 

compared to ethanol ablation (Di Stasi et al, 1997, Livraghi et al, 1998) despite the recent

complication reported using ethanol ablation (Chiu et al, 2009).

Establishing the safety profile of BETA is essential before embarking on clinical trials. The 

clinical response of the animal models together with the biochemical and Acute Phase Protein 

(APP) analysis provides important information regarding the response to BETA. The results 

however must be viewed with the knowledge that the insult to the animals was not just BETA;

the animals were subjected to surgical laparotomy and 8 ablation cycles, including a general 

anaesthetic which was over 6 hours duration in one animal (Animal 15). The length of general 

anaesthetic itself stimulates the inflammatory cascade, the animal’s respiratory system is 

compromised in the supine position, the abdominal contents splint the diaphragm, often causing 

lower lobe consolidation. This can in turn lead to infection or lobar collapse, which can often 

manifest as non specific respiratory symptoms, which may not be clinically significant, but may 

cause an elevated acute phase response, becoming apparent with raised inflammatory markers. 

The volume of tissue ablated during these studies in each animal is significantly very much 

larger than would be ablated in a clinical situation. This volume of necrotic tissue therefore 

initiates a greater inflammatory response in the tissue, with release of inflammatory cytokines. 

The results therefore represent the combination of these procedures and must be evaluated 

accordingly. 

The inflammatory response to ablation is well documented in the literature in both clinical (Ng 

et al, 2004, Jansen et al, 2008) and research contexts (Teague et al, 2002, Teague et al, 2004a, 

Teague et al, 2004b).

Systemic Inflammatory Response:

Cryoablation has a well-documented complication profile, the most serious complication being 

the “cryoshock phenomenon” (Seifert and Morris, 1999). This significant, but relatively rare 

complication consists of thrombocytopenia, disseminated intravascular coagulation (DIC), renal 

failure and adult respiratory distress syndrome. The cryoshock phenomenon was observed in 21 

of 2173 patients following cryotherapy. Of these 21 patients, 6 patients died during the 
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postoperative period (Seifert and Morris, 1999). The incomplete syndrome however, is observed 

more frequently and consists of one or more of the complications described. The safety profile 

of RFA and electrolysis is considerably more favourable than cryotherapy, however RFA is 

associated with an inflammatory response, similar to surgical resection; this is only observed on 

a biochemical level, the clinical manifestations are considerably less (Jansen et al, 2008). Jansen 

et al compared the inflammatory response in 39 patients undergoing RFA, major resection (MR) 

or minor hepatic resection (mR). RFA induced an elevation of CRP higher than MR and mR (77 

mg/L vs 50 mg/L and 59 mg/L). IL-6 levels were elevated earlier in the RFA group compared to 

the mR group (96 pg/ml vs 4 pg/ml). A further protein; serum Plasma Secretory Phospholipase 

A2 (sPLA2) was measured in addition in order to determine an overall inflammatory response. 

This inflammatory protein however appears unreliable when comparing the inflammatory 

response (sPLA2) using different treatments (Jansen et al, 2008). These results highlight the 

inflammatory response of RFA being similar to surgical resection, despite it being a minimally 

invasive procedure. However Jansen’s patients underwent open RFA performed at open 

surgery. The results therefore are a combination of the response to surgical laparotomy and 

RFA, rather than response to percutaneous RFA. 

Ng et al (Ng et al, 2004) evaluated the inflammatory response following RFA, cryoablation and 

surgical resection in porcine models. Peak tumor necrosis factor - α (TNF-α) and interleukin-1β 

(IL-1β) in the RFA group were significantly lower than in the cryotherapy group (96.4pg/mL vs 

>225pg/mL for TNF-α and ≤90pg/mL vs ≥180pg/mL for IL-1β). 

The safety of electrolysis is well described in the literature (Wemyss-Holden et al, 2000, Teague 

et al, 2004a, Teague et al, 2004b). Teague et al (Teague et al, 2004a) performed electrolytic 

liver ablation in 16 pigs. Platelet count and serum levels of urea, creatinine, liver enzymes, C-

reactive protein (CRP), TNF-α and IL-1β were measured before treatment and for 72 h post 

procedure. There were significant dose-related increases in CRP levels with liver electrolysis, 

however this was not seen in the serum TNF-α and IL-1β levels. The rise in CRP levels 

appeared to plateau at 72 hours and there was no documented clinical abnormalities detected, 

despite the elevated CRP levels.

The inflammatory response of BETA has not previously been evaluated to date and the acute 

phase marker proteins were discussed with HLS. The measurement of acute phase proteins is 

not a routine procedure, as it requires ELISA and expert analysis. HLS did not provide this 

service and thus a laboratory had to be found which would be able to analyse the blood samples 

and return reliable results.

Professor D. Eckersall of the University of Glasgow has a special interest in inflammatory 

proteins and his expertise was sought in order to determine which proteins would be most 

appropriate for inflammatory marker analysis in porcine models. Following discussions with 

Prof D Eckersall, it was agreed to measure CRP (C Reactive Protein), Serum Amyloid A 
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(SAA), Pig MAP and serum Haptoglobin. Studies by Eckersall et al (Eckersall et al, 1996, 

Eckersall et al, 1999a, Eckersall et al, 1999b, Eckersall, 2000, Bence et al, 2004, Eckersall, 

2004) have shown these to be more reliable than TNF-α and IL-1β. These inflammatory 

markers have not been described in the medical literature as markers for the inflammatory 

response in animals, but are well described in the veterinary literature as reliable markers for the 

inflammatory response measurement (Alava et al, 1997, Horadagoda et al, 1999, Hiss et al, 

2003, Ceron et al, 2005, Jonasson et al, 2006, Gutierrez et al, 2008, Grau-Roma et al, 2009, 

Gutierrez et al, 2009b). CRP, however is the most commonly quoted marker of inflammation in 

both medical and veterinary literature (Gutierrez et al, 2008, Gutierrez et al, 2009b).

The results of the CRP analysis demonstrated a marked rise in the CRP at 24 hours, peaking at 

48 hours, with a small rise at 72 hours post ablation, however the pattern demonstrated a plateau 

appearance at 72 hours rather than a sustained rise in the CRP levels. The results of the CRP 

analysis are comparable with the literature (Teague et al, 2004a) with the levels returning to 

normal pre-termination.

An interesting observation was the pre ablation CRP levels noted in a number of animals. A 

normal CRP value is less than 100mg/L, however animals 15, 16, 20 and 24 had abnormal CRP 

levels pre ablation. Animals 15 and 16 were not acclimatised for 2 weeks prior to treatment and 

the stress of transportation from the commercial pig farm in Shropshire may be a contributing 

factor in the abnormal results. Animals 20 and 24 were acclimatised for 2 weeks prior to the 

procedure and were deemed clinically suitable for general anaesthetic prior to the procedure. 

None of the animals demonstrated clinical signs of infection and were examined by the treating 

veterinary surgeon on the day of the procedure and deemed well. The reason for the abnormal 

CRP is unknown, however an important observation is the normal Haptoglobin levels in all the 

animals prior to the procedure, apart from animal 16, however again this abnormal marker may 

well be due to the stress following transportation.

The encouraging plateau of the CRP and Haptoglobin levels at 72 hours demonstrates an 

inflammatory response, which appears to settle biochemically at 72 hours and by 1 month, has 

completely resolved and returned to normal levels. It is not possible to compare BETA to 

standard RFA with regards to the inflammatory response as there were no control animals in 

this study, however the response to BETA appears to similar to the response to electrolysis 

(Teague et al, 2004a, Teague et al, 2004b) and RFA (Ng et al, 2004, Jansen et al, 2008). None 

of the animals developed a systemic inflammatory response to BETA and the inflammatory 

response observed clinically and biochemically in Animal 22 must be directly attributed to the 

morbidity and mortality resulting from the perforated gastric ulcer. Alava et al (Alava et al, 

1997) described a 5-7 times increase in the concentration of CRP following trauma and a 10-30 

times increase in Haptoglobin. Both of these markers peaked at 48 hours, similar results to those 

obtained during this research. If each of the CRP and Haptoglobin values are analysed using this 



Response to BETA Chapter 6

BETA 260

trend of 5-7 times for CRP and 10-30 times for Haptoglobin, the results of the APP analysis 

following BETA demonstrates a CRP elevation of over 100 times the normal, however the 

corresponding Haptoglobin results reached a peak of 1.78g/L at 72 hours which corresponds to 

a rise of less than 2 times the normal value (<1g/L). Haptoglobin is the most studied APP in 

pigs (Pineiro et al, 2007). A mean value of 1.24g/L in animals 18-24 weeks of life was reported 

by Pineiro et al (Pineiro et al, 2009) and therefore the laboratory value of less than 1g/L are not 

species-specific levels. Pineiro et al however concluded that levels above 1g/L could be found 

in commercially available farm animals, without evidence of clinical disease. 

The levels of CRP in this research study were extremely variable without any animal displaying 

signs of clinical disease. The CRP levels in both the non-recovery animals were 540mg/L and 

1213mg/L respectively, however these animals were not acclimatised for 2 weeks prior to the 

procedure and the abnormal CRP may well be due to stress of the road transport (Pineiro et al, 

2007). The abnormal CRP levels observed in animals 20 and 24 however cannot be attributed to 

the stress of road transport as groups 2-5 were all acclimatised for 2 weeks prior to ablation. 

None of the pigs displayed clinical signs of infection or inflammation and both had normal 

Haptoglobin levels pre treatment. Given the normal serum values of HP, SAA and pig-MAP, 

the abnormal levels of the CRP may indicate this to be a poor marker of specific inflammation, 

or CRP may well have a poor correlation with clinical signs, however this a hypothesis of 

observed results and the sample size is too small to make any significant observations. 

Serum Amyloid-A (SAA) is considered to be a clinically relevant acute phase protein in pigs 

(Jacobson et al, 2004, Jonasson et al, 2006). A biochemical response of SAA is most commonly 

observed during the first 3 days following an insult (Heegaard et al, 2000, Jacobson et al, 2004, 

Jonasson et al, 2006) and is rarely seen in chronic inflammation (Horadagoda et al, 1999), 

making it another favourable APP in evaluating an acute phase response. In pigs, an SAA 

concentration of <50mg/L is considered to be biologically relevant. In animals 17-26 (2d-56d 

terminations) the SAA level peaked at 24 hours, decreased by 72 hours and returned to below 

reference level by termination. This is entirely consistent with the published literature (Jacobson 

et al, 2004, Jonasson et al, 2006). Most of the animals showed a >200 times increase in SAA 

levels from PT (pre-test) to 24 hours with a maximum SAA response of 776.5mg/L seen with 

animal 17 (14d termination) at 24 hours. Although this rise in the baseline SAA levels is 

significant, no animal showed any signs of a systemic inflammatory response (SIRS) post 

surgery.

The porcine Major Acute Phase Protein (pMAP) has been identified and shown to be the most 

sensitive protein to use as a marker of inflammation in this species (Alava et al, 1997, Eckersall 

et al, 1999a). Both pMAP and haptoglobin have been shown to be valid markers of disease in 

animals (Pineiro et al, 2009) and display similar kinetics of induction following inflammation or 
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bacterial infection (Grau-Roma et al, 2009, Pineiro et al, 2009). Both the proteins are classified 

as intermediate fast and protracted responders.

In pigs, a pMAP concentration of <0.6g/L is considered to be biologically relevant. 

In animals 17-26 (2d-56d terminations) the overall trend showed pMAP to increase from 24 

hours up to 48-72 hours. Most of the animals showed a >5-20 times increase in pMAP levels 

from PT to 72 hours, with a maximum pMAP concentration of 2.45g/L with animal 25 (2d 

termination) at 48 hours. By termination date pMAP levels had reduced to below reference 

level. No animal showed any signs of a systemic inflammatory response (SIRS) post surgery.

The trend of pMAP both pre and post surgery demonstrated a favourable profile, similar to that 

observed with Hp. The levels of Hp may rise over 10 times in different acute-phase models, 

with a 10 fold rise noted in animals injected with turpentine, surgical trauma or acute bacterial 

and viral infection (Eckersall et al, 1996, Eckersall et al, 1999b, Horadagoda et al, 1999, Grau-

Roma et al, 2009, Gutierrez et al, 2009a, Pineiro et al, 2009, Skovgaard et al, 2009).

The body’s response to trauma however is both a clinical and subclinical one. Often, the 

subclinical response to trauma is a precursor to the observed clinical manifestations. The 

clinical and gross pathological abnormalities, although few were discussed in the previous 

chapter. The purpose of the staggered termination profiles of the in vivo studies was to observe 

ay immediate, intermediate or delayed response to the insult of BETA. This was evaluated in 3

ways; the clinical state of the animals throughout the post operative course, the biochemical 

state, observed with both APPs and the liver and renal function of the pigs. Finally the 

postmortem findings confirmed these clinical and biochemical observations.

All the animals in the study recovered well from the surgery apart from the anaesthetic-

associated death and the animal, which developed peritonitis secondary to a perforated gastric 

ulcer. Both of these deaths can not reasonably be ascribed to BETA as discussed earlier. All the 

animals gained weight throughout the postoperative period and no observed complications were 

noted at post mortem. The favourable biochemical profile of the animals demonstrates BETA to 

have a similar profile to conventional RFA and electrolysis (Teague et al, 2004a, Teague et al, 

2004b).

In a clinical setting, the Haptoglobin (Hp) assay is used to screen for and monitor intravascular 

hemolytic anaemia; the reticuloendothelial system removes the haptoglobin-haemoglobin 

complex from the body and thus haptoglobin levels are decreased in haemolytic anaemia. This 

process has lead to a theory of Haptoglobin being associated with the inflammatory response 

and therefore a sensitive APP. Eckersall et al (Eckersall et al, 1996) investigated the most 

appropriate proteins as markers of inflammation. The study demonstrated C-reactive protein and 

haptoglobin likely to be the best markers for the identification of inflammatory lesions in pigs. 
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In pigs, an Hp concentration of 1.0g/L is considered to be biologically relevant. The results of 

this study show that in animal numbers 15, 16 and 20 (0d, 0d and 2 week terminations 

respectively) the Hp level was raised at pretreatment. This could be attributed to an underlying 

subclinical infection or to stress. Animals 15 and 16 were not acclimatised prior to surgery and 

the elevated Hp levels may be attributed to transport. This was also reflected in a high CRP 

concentration in these animals at pretreatment. The elevated Hp level in animal 20 cannot be 

attributed to transport as all the animals apart from the 0d terminations were acclimatised for 14 

days prior to treatment. This single result is probably spurious, given the normal Hp levels in all 

the remaining animals pre-treatment. In all animals apart from animals 15, 16 and 20, there was 

an overall trend for the Hp to increase 2-4 times from 24 hours to 72 hours (maximum Hp 

2.16g/L with animal 22 at 72 hours) then decrease to below reference level by termination. No 

animal showed any signs of a systemic inflammatory response (SIRS) post surgery.

Biochemical Markers.

Both liver function and renal function biochemical markers demonstrated some evaluation 

during this study, however not all markers were elevated.

The liver functions included hepatic enzymes (ALT, AST, ALP, GGT), bilirubin, albumin and 

LDH. The LDH is the least reliable of all the hepatic markers evaluated, as it is influenced by a 

large number of factors, including surgery, the ablation cycles, the anaesthetic agents and 

haemolysis.

The liver enzymes provide a representative analysis of hepatic function before and after the 

ablations. The ALT and AST showed significant increases up to 72 hours post ablation, which is 

expected following 8 ablation cycles, importantly the ALP and GGT, which are markers of 

biliary obstruction did not increase significantly following the ablations. The Bilirubin 

decreased significantly at 24 hours post ablation, but returned to normal at 48 hours. This 

observation is probably related to the volume of hepatocytes affected by the ablations, however 

the rapid recovery demonstrates this to be a transient abnormality. 

The LDH levels increased significantly following ablation but returned to normal at termination. 

This data must be viewed in the context of a surgical laparotomy and when viewed together 

with the other liver enzymes, does not demonstrate a significantly abnormal trend.

Bilirubin demonstrated a significant increase immediately post procedure (Table 6.61), however 

this was the single significant observation and given the time frame following the procedure, the 

Bilirubin levels were influenced by not only the ablations, but by the anaesthetic agent 

administration. Propofol, the anaesthetic drug used for intravenous anaesthesia during this study 

is rapidly metabolised by the liver and excreted by the kidney. This, in part may have influenced 

the immediate post procedural Bilirubin level. The reassuring decrease and normal values 

observed at 24, 48, 72 hrs post procedure and at termination reinforce this hypothesis.
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The biochemical markers for renal function used in this study (Na, K, Urea and Creatinine) did 

not demonstrate any significant increase following the procedure. In contrast, the Creatinine 

levels improved following the procedure. However this is probably due to the strict dietary 

control and the constant supply of fresh drinking water for all the animals during the study 

(Chapter 5).

The trends in liver function observed during this study are similar to observations made by 

Teague et al following RFA in porcine subjects (Teague et al, 2004).

Although used in combination in all animals, the lack of any significant adverse incidents 

regarding the liver function during the study demonstrate BETA to have similar effects on the 

liver as RFA. The transient rises in liver enzymes post procedure occur following and insult to 

the liver, BETA does not appear to increase this any more than other thermal ablation 

techniques.

The stable renal function following the procedures is similar to the published literature for RFA 

and BETA appears to have similar effects in vivo as RFA.

The addition of DC does not cause a significant biochemical abnormality.

Elcetrolysis has been proven to be a safe modality, as has RFA. The combination of these two 

ablation techniques does not have a detrimental synergistic effect.

The lack of any clinical observation of SIRS during the study compliments is in accordance 

with the biochemical and inflammatory marker results.
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Limitation of this Research:

I accept there are a number of limitations with this research.

1. All the animals underwent general anaesthetic, laparotomy, 4 BETA cycles and 4 

conventional RFA cycles. The inflammatory markers measured in this research 

therefore reflect a multitude of clinical insults to each animal and therefore not just the 

insult of BETA.

Due to the study design, it would not have been possible to assess the animals’ response 

to BETA alone. The use of a ‘sham’ animal in order to create a control for the ablations, 

where an animal would undergo general anaesthetic and laparotomy only, in order to 

compare the inflammatory response to those animals exposed to BETA and control 

RFA was discussed prior to the research study. Due to financial constraints, this was not 

deemed feasible. The aim of this study was to determine the significance of the 

inflammatory response as a trend rather than an absolute value. The inflammatory 

response to ablation is well documented in the literature in both clinical (Ng et al, 2004, 

Jansen et al, 2008) and research contexts (Teague et al, 2002, Teague et al, 2004a, 

Teague et al, 2004b). The use of a ‘sham’ animal would have provided greater 

information regarding the contribution of ablation to the inflammatory response in this 

study; the general anaesthetic and the laparotomy alone cause a significant 

inflammatory response and I accept the values for each inflammatory marker measured 

cannot assess each aspect of the intervention, it does provide essential information 

regarding a sustained inflammatory response or the lack thereof. The information 

obtained and analysed during this research demonstrates BETA to have greater effects 

on the inflammatory response that conventional RFA, given the similar trends obtained 

in this study to the literature (Teague et al, 2002, Teague et al, 2004a, Teague et al, 

2004b). A sustained inflammatory response may well have required deeper analysis into 

the individual contribution of BETA, however the results obtained were in keeping with

the findings of Teague et al.

2. The results of the biochemical marker analysis, as with the inflammatory markers were 

influenced by the general anaesthetic, laparotomy and the ablation cycles. The ALT and 

AST were the only liver enzymes, which demonstrated a significant rise post treatment, 

however these had returned to normal by termination. The ALP and γ-GT levels 

increased, but this was not significant.

3. The renal function analysis remained normal throughout despite the surgery and 

ablation cycles and in some cases improved, almost certainly due to the controlled diet 

and water supply.
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As with the hepatic biochemical analysis, the renal biochemical analysis suffered the 

same limitations, but again, the lack of a significant abnormality was reassuring.

The lack of a ‘sham’ animal for this study does raise questions regarding the validity of the 

study, however the use of ‘sham’ animals is not well described in the literature & with ‘sham’

animals, the experimental animals would have received the same protocol (4 control and 4 

BETA cycles). This still would have left the question of the individual contributions of 

conventional RFA and BETA to the inflammatory and biochemical response. The only way to 

have answered this question would have been to have 3 groups of animals; 1 group undergoing 

RFA, one control RFA and a third ‘sham’ group, this model, I think would have been rejected 

by the ethical committee given the lack of data to support the use of ‘sham’ animals for this 

study design.

If the inflammatory marker and biochemical analysis had revealed a significant abnormality, 

which translated into clinical signs, leading to animal death, the study would have been stopped 

immediately had the post mortem results attributed the death to BETA. This did not occur and 

the animals all recovered well, apart from the two unrelated deaths.



Response to BETA Chapter 6

BETA 266

Conclusions:

1. Significant elevations in Acute Phase Protein (APP) levels are observed at 24 and 48 

hours post procedure.

2. The elevated APPs are not associated with a clinical Systemic Inflammatory Response 

(SIR).

3. All inflammatory markers return to normal levels by the time of termination.

4. The liver transaminase enzymes demonstrated a significant increase post procedure, 

peaking at 24-48 hours post procedure, but returned to normal levels by the time of

termination. No biochemical sign of biliary obstruction was observed.

5. The renal function did not demonstrate any significant transient or permanent renal 

impairment. In contrast, an improvement in certain biochemical markers was observed 

during the study.

6. BETA does not appear to cause a significant, sustained impairment in liver function.

7. The transient impairment in liver function peaks at 24-48 hrs post procedure and is not 

associated with any clinical signs. 
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Chapter 1

Radiofrequency Ablation and Competing Therapies

Conclusions.

Chapter 1 discussed ablation therapies and their development for use in the treatment of HCC 

and colorectal metastases to the liver. The development of ablation therapies has progressed 

rapidly and tumours previously deemed untreatable are now suitable for percutaneous, 

laparoscopic or occasionally open ablation therapies. 

The varieties of ablation therapies and their impact on treatment have been discussed in detail. 

Each of the ablation therapies available has been researched with a single aim – increasing the 

size of the ablation zone. The size of the ablation zone has a direct influence on the rate of 

recurrence of treated tumours (Glaiberman et al, 2005). Increasing the size of the ablation zone 

allows a margin of normal tissue to be ablated adjacent to the tumour (Liu et al, 2010c) thus 

decreasing the risk of recurrence. However, recent literature describes differing “safe” margins 

of ablation of HCC and colorectal metastases (Liu et al, 2010c). Each ablation technique 

discussed in Chapter 1 has been modified or manipulated in order to increase the size of the 

ablation zone. Some of the techniques described in Chapter 1 have proved successful, 

specifically:

(1) Electrode design; Expandable electrodes by LeVeen (LeVeen, 1997, Rossi et al, 1998) 

and the internally cooled electrode, the Cool-Tip Needle (Covidien plc, Dublin, Irl) has

become commonplace in current practice.

(2) Adjuvant chemotherapy in the form of direct injection or TACE (Ahmed and Goldberg, 

2004, Goldberg et al 2004, Goldberg et al, 2002) which shows promising results in both animal 

tumour models and in small clinical cohorts of patients. 

Very little research has been conducted on the RF generator compared to the published 

literature on needle modification techniques. Work has been conducted on the use of pulsed 

RFA (Goldberg et al, 1999, Goldberg and Gazelle, 2001) and the use of multi-polar RFA 

combining the switching generator technique (Weisbrod et al, 2007, Brace et al, 2009). 

However, these techniques require multiple needles and thus an increase in the morbidity risk.

BETA is the first technique, which modifies the RF generator in order to achieve larger ablation 

zones (Cockburn et al, 2007). The combination of DC and AC influences the bio-heat equation 

discussed in Chapter 1, allowing longer times for ablation and subsequently larger ablation 

zones. 
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The competing therapies discussed in Chapter 1 include thermal ablation (MW ablation and 

laser ablation), cryoablation and chemical ablation (Acetic Acid, Ethanol and Chemotherapy). 

RFA has been shown to be a superior method of ablation compared to all of these competing 

therapies specifically:

(1) Ethanol ablation has been discussed in detail in Chapter 1 regarding its complication 

profile and effectiveness. Until 2005 this technique was probably the most widely used 

treatment for inoperable HCC (Dodd et al, 2000, Barnett and Curley, 2002). A number of RCTs 

have shown RFA to be superior to ethanol ablation for the treatment of hepatic tumours 

(Marlow et al, 2006), this may be due to the relatively poor efficacy of ethanol ablation for 

metastatic tumours and the relative increase in the incidence of hepatic metastatic disease this 

decade (Cancer Research UK, 2009). 

Ethanol ablation carries a similar complication profile (Livraghi et al, 1998) but a higher re-

intervention rate when compared to RFA (Livraghi et al, 1999, Dodd et al, 2000), however its 

use an as adjunct to RFA has been evaluated (Goldberg et al, 2000) in the laboratory setting 

with promising results.

(2) Microwave ablation was discussed in detail in Chapter 1, including risks associated 

with treatment and developing techniques. RFA has been shown to have a superior efficacy 

profile to MW ablation following results of randomised control trials (RCTs)(Marlow et al, 

2006). A debate continues as to the ideal microwave frequency required in order to generate the 

largest ablation zones (Sun et al, 2009), which, together with the size of the antenna and the 

heating generated in the antenna cord have left MW ablation with a number of unanswered 

questions. MW ablation has been shown to be free of effects caused by “heat-sink” discussed in 

Chapter 1 (Wright et al, 2005), which may prove beneficial. 

(3) Laser Ablation has shown promising results for the treatment of hepatic tumours (Vogl 

et al, 2008), however there is little data comparing laser ablation to RFA (Marlow et al, 2006). 

(4) The lack of RCT data comparing RFA to cryoablation does not detract from published 

data comparing these techniques in non-randomised patients, however some of the data series 

are small (Marlow et al, 2006). Cryoablation however has demonstrated a favourable safety 

profile in treating smaller tumours such as renal cell carcinoma (RCC) (Dominguez-Escrig et al, 

2008). The long-term outcome of treating patients with small renal tumours has yet to be 

evaluated and the natural history of these tumours is not yet completely understood 

(Dominguez-Escrig et al, 2008). The reported data for cryoablation is relatively small compared 

to RFA for the treatment of renal tumours, however cryoablation is increasing for the treatment 

of RCC (Brown, 2005) in a select group of patients. 
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Published data historically has favoured surgical resection superior to RFA (Abdalla et al, 2004, 

Stang et al, 2009); this is accepted as the treatment of choice for colorectal liver metastases and 

HCC- making the primary role for ablation limited to those patients who are unfit for curative 

surgery (Kudo, 2010, Liu et al, 2010a).

Recently, however RFA has shown similar mortality outcomes to surgical resection for small 

(<3cm) hepatocellular tumours (Huang et al, 2010, Hung et al, 2010) and colorectal liver 

metastases (CRLM) (Otto et al, 2010). Favourable outcomes following RFA for multiple 

colorectal liver metastases (≤ 3.5cm) have been shown with a 5-year survival of 33%. 

Future Work.

Resection.

The lack of quality randomised control trials comparing RFA to resection and to competing 

therapies indicates a necessity for large multi-centre trials comparing these techniques. The 

historical published data however does demonstrate resection to be superior to RFA (Abdalla et 

al, 2004, Marlow et al, 2006, Stang et al, 2009) and this is accepted as the treatment of choice 

for colorectal liver metastases and HCC.

Recently, retrospective studies have shown comparable 5-year survival in patients following 

resection of RFA for HCCs less than 3cm (Huang et al, 2010). Huang et al demonstrated similar 

survivals at 5 years in patients with tumours less than 3cm, however for tumours >3 ≤5cm, 

surgical resection remained the treatment of choice. Recent meta-analyses (Liu et al, 2010a, Liu 

et al, 2010b, Zhou et al, 2010) have confirmed this, however have made note of the higher 

recurrence rate following RFA. Importantly, RFA carries significantly lower peri-procedural 

morbidity compared to surgical resection. Zhou et al highlighted the lack of good evidence in 

the literature to date, comparing RFA and surgical resection. Hung et al (Hung et al, 2010) 

showed comparable survival in patients with tumours ≤ 5cm, however a higher recurrence rate 

following RFA. Peng et al (Peng et al, 2010) demonstrated favourable outcomes in patients with 

HCCs ≤5cm treated with RFA as first line treatment. The literature demonstrates a lack of well-

constructed randomised control trials, assessing these treatments in potentially curable patients.

Microwave Ablation.

The size of the antenna currently marketed for percutaneous use may be too large for use in the 

lung, due to the increased risk of pneumothorax (Simon et al, 2005), a further limitation is the 

lack of in vivo data comparing ablative techniques in the lung (Dupuy, 2009). Randomised 

control trials comparing RFA and MW ablation are needed in order to evaluate the use of MW 

ablation for hepatic tumours (Carrafiello et al, 2008). 
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Recent pre-clinical experiments have demonstrated MWA to have promising potential for 

thermal treatment of tumours (Yu et al, 2010), however to date there are no clinical studies 

supporting this.

Cryoablation.

Further research into the benefit of treating small renal tumour is needed in order to determine 

the risk-benefit profile of this treatment. The complication profile of cryoablation appears to 

preclude it from treating large hepatic tumours, however. Recent literature suggests (Brown, 

2005) that it is of benefit in the kidney. An RCT comparing cryoablation to RFA in renal 

tumours would provide important data. The risks associated with cryotherapy, including 

cryoshock, however limit the clinical application of this modality (Jansen et al, 2010, 

Sandomirsky et al, 2010).

Adjuvant Chemotherapy.

The benefits of adjuvant chemotherapy are well described in laboratory animals, but less so in a 

clinical context. The favourable data from animal studies suggest this combination therapy to be 

of benefit in patients with HCC (Ahmed et al, 2003). Newer therapies using a heat sensitive 

polymer (Celsion Corporation, 2010) show great promise, and Phase III trials are currently 

underway evaluating this new product. 
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Chapter 2

Ex vivo studies for optimisation of ablation parameters.

Conclusions.

Chapter 2 describes the ex vivo studies carried out in order to determine the parameters, which 

would produce the largest ablation zone. Previous work conducted into BETA utilised 

(Cockburn et al, 2007, Dobbins et al, 2008, Dobbins et al, 2008a, Dobbins et al, 2008b) a 

commercially available RFA generator and a DC transformer to perform the ablations. A Mark 

II machine specifically designed for this research was manufactured with no impedance 

feedback algorithm. An ablation matrix was designed (Appendix 1) and ablations performed at 

a variety of RF and DC settings (n=6) initially.

Following the results an RF setting of 600mA using 9V of DC were used to determine the 

combination which would produce the largest ablation zone without prolonging the time of 

ablation significantly. The results demonstrated this parameter to produce the largest ablation 

zone. Initially it was thought that pretreatment with DC alone prior to a DC and RF combination 

would produce larger ablation zones (Cockburn et al, 2007). The research described in this 

thesis did not reproduce the results by Cockburn et al, as it did not demonstrate a statistical 

difference between the ablation zones obtained with BETA and no pre-treatment compared to 

BETA with 300 and 600 seconds of pre-RF DC.

Future Work.

The time taken to produce BETA lesions is longer than for standard RFA, however this may be 

in part due to the larger ablation zones. Time for ablation remains a factor for radiologists when 

deciding on an ablation technique (Malczyk and Sutherland, 2009). However this does not 

translate into a change of practice given the faster ablation times achieved with MW ablation 

(Simon et al, 2005). The effect of electroosmosis may allow for smaller ablation zones of a 

given size to be achieved in a shorter time frame when compared to standard RFA. This 

possibility fell beyond the scope of this thesis but future studies may show a significant 

improvement in ablation times using BETA for smaller tumours.



Conclusions and Future Work Chapter 7

BETA 274

Chapter 3

Hydration Studies.

Conclusions.

Chapter 3 describes the results of hydration studies comparing BETA zones to standard RFA 

zones. Electroosmosis, described in 1809 by Reuss (Reuss, 1809) and detailed in laboratory 

experiments by Nordenstrom (Nordenstrom, 1983) is the theoretical basis for the results 

achieved with BETA (Chapter 2). The net movement of water from the anode to the cathode 

increases the hydration in the liver, thus allowing for longer ablation times by decreasing the 

charring of tissue at the needle. The hydration experiments conducted provide proof of 

electroosmosis during BETA with statistically significant differences in the hydration of liver 

following ablation using BETA and standard RFA, specifically:

(1) The degree of hydration increases as the duration of the direct current 

application increases when compared to the control radiofrequency ablation hydration 

percentage. 

(2) There is no significant difference in the degree of hydration in liver treated 

with simultaneous DC and RFA, 300 seconds of pre DC or 600 seconds of pre DC.

(3) The increase in hydration due to electroosmosis decreases the charring of 

tissue at the cathode and hence adherence of tissue to the electrode, with resultant larger 

ablation zones.

Future Work.

A principal aim of this research was to examine the theory of electroosmosis induced by BETA, 

causing a larger ablation zone by increasing the degree of hydration at the needle tip, 

minimising the negative effects of desiccation on ablation zone size. The process of 

electroosmosis is described in detail by Nordenstrom (Nordenstrom, 1983) through a series of 

experiments whereby four types of electroosmosis were described. The hydration changes 

occurring with BETA are due to type II electroosmosis. This increased hydration in the tissue 

allows the RF energy to be distributed for longer in the tissue, by decreasing the degree of 

charring at the needle tip. This allows for increased ablation zones without changing the needle 

design or RF parameters. The experiments conducted described in this thesis have shown a 

significant difference in tissue hydration post ablation as described in chapter 3.  While this 

does not determine cause and effect, it allows a reasonable conclusion to be made: the anti-

desiccating effect of direct current is associated with larger ablation zones caused by RF 

ablation. 
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Planned future work is based on a phenomenon associated with improved hydration at the 

needle tip – namely less tissue adherence associated with a ‘slippier’ needle.  This will be 

examined ex vivo initially.  The clinical importance of this finding lies in the potential to reduce 

the ‘seeding’ of live tumour cells along the needle track, using BETA.  
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Chapter 4

Temperature Distribution Studies.

Conclusions.

Chapter 4 describes the results of temperature analysis at fixed distances from the electrode (5, 

10, 15 and 20mm). The results of the analysis are described and demonstrated. The results 

described in Chapter 4 compare favourably with the literature. The effects of temperature on 

cellular function during RFA are well described in the literature (Goldberg et al, 1996a, 

Goldberg et al, 1996b, Goldberg et al, 2000, Dupuy and Goldberg, 2001, Nahum Goldberg and 

Dupuy, 2001, Mertyna et al, 2008). The effects of BETA on tissue temperature are described in 

Chapter 4, specifically:

(1) BETA reaches cytocidal temperatures in ablated 

tissue faster than control RFA. 4-6 minutes has been quoted as the minimum time needed at this 

temperature to induce cell death (Goldberg et al, 1996a, Goldberg et al, 1996b, Goldberg et al, 

2000), however temperatures at the margin of the ablation zone remain above the minimum 

temperature required for necrosis for longer than standard RFA.

(2) The mean temperatures at 5mm, 10mm, 15mm and 20mm are significantly higher 

following BETA compared to standard RFA.

(3) Tissue remains above cyitocidal temperatures up to 20mm from the active 

electrode for longer than standard RFA due to the longer time needed to produce a BETA 

lesion. This larger cytocidal zone may prove beneficial for thermosensitive chemotherapeutic 

agents (Celsion Corporation, 2010), increasing the area of necrosis beyond the ablation zone. 

The cells exposed to hyperthermic temperatures may be sensitised to adjuvant chemotherapeutic 

agents, which in turn decrease blood supply to the affected liver (Padhani, 2009).

(4) BETA produces a similar mean end-temperature profile to multipolar (Lee et 

al, 2006) and bipolar techniques (Lee et al, 2004a), but with decreased potential morbidity given 

the single electrode needed. The higher temperatures obtained with BETA may be due to the 

longer ablation times and the favourable heat distribution through the tissue due to decreased 

charring of tissue adjacent to the electrode.

Future Work.

The results of this research provide important data regarding temperature distribution in the 

tissue during BETA. Thermosensitive adjuvant chemotherapeutic agents show promise in 

increasing the ablation zone following thermal therapy (Celsion Corporation, 2010). 

The temperature distribution of BETA shows favourable results, with potential cytocidal effects 

at 2cm from a single electrode.



Conclusions and Future Work Chapter 7

BETA 277

Further work has been conducted into adjuvant therapies to complement RFA, namely radiation 

therapy (Horkan et al, 2005). The study evaluated external-beam radiotherapy and RFA with 

promising results, however significant advances have been made in the filed of radio-

embolisation (Lewandowski et al, 2007, Bilbao et al, 2010) using Yttrium-90 microspheres. The 

results of external beam radiotherapy by Horkan et al (Horkan et al, 2005) were promising, 

however RFA with adjunct targeted endovascular radiation treatment remains an exciting 

prospect. There have been no papers in the literature to date describing this technique, however 

the results of hyperthermia in tissue using BETA may prove to be a catalyst in the development 

of Yttrium-90 embolisation and RFA as a treatment for inoperable HCC or a bridging procedure 

to transplant.

The treatment of HCC or colorectal liver metastases by percutaneous methods relies on imaging 

following the ablation in order to determine the likelihood of recurrence, depending on the zone 

of ablation. It is often difficult to be sure of the exact dimensions of the ablation zone post 

ablation as the enhancement of the tumour changes due to the application of heat to the tissue. 

Follow-up is characteristically performed from 1 month onwards depending on the operator 

preference (Liu et al, 2010b). The use of temperature monitoring during RFA may provide the 

operator with information on temperature distribution during the treatment, allowing changes to 

be made to electrode position (Chung et al, 1999, Keserci et al, 2006, Vigen et al, 2006). This 

real-time feedback may allow for more accurate localisation of the ablation zone (Breen et al, 

2004) thus allowing for change in position of the electrode during open MRI ablation 

procedures (Steiner et al, 1997, Steiner et al, 1998). Vigen et al (Vigen et al, 2006) 

demonstrated successful in vivo temperature monitoring during RF ablation. The temperature 

maps generated were consistent with the dimensions of the RF ablation probe however some 

asymmetry occurred, which was likely due to ventilation. The research however demonstrated 

the feasibility of temperature monitoring during RFA. Terraz et al (Terraz et al, 2009) described 

the use of temperature monitoring in 16 malignant nodules in the liver, with results comparable 

to Vigen et al (Vigen et al, 2006). The use of MRI temperature monitoring requires further 

investigation in order to determine the potential clinical benefits.

Phase III trials into the efficacy of a thermally controlled release of Doxorubicin (Celsion 

Corporation, 2010) are being conducted at present. The favourable temperature distribution 

profile of BETA as demonstrated in Chapter 4 suggests BETA to have a wider thermal 

distribution in tissue compared to RFA alone. This may benefit a thermally controlled 

Doxorubicin based release platform, the ‘red zone’ of ablation, where cells are exposed to 

hyperthermic temperatures, but not sufficient temperatures to induce cell necrosis will then be 

exposed to an endovascular dose of chemotherapy, thus increasing the ablation zone.

Work into this hypothesis is required, in order to determine the extent of necrosis, which could 

potentially be created using a combination of BETA and Thermodox (Celsion Corporation, 
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2010). The potential of cell necrosis, using the temperature data obtained in chapter 4, would be 

significantly larger than using BETA alone. The temperature at 2cm from the electrode was in 

excess of 55 °C, which would equate to a greater than 4cm ablation diameter. 

This however is a hypothesis and the effects would need to be correlated with both macroscopic 

and microscopic pathological findings.
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Chapter 5 and 6

In Vivo Porcine studies

Conclusions.

Chapter 5 describes the results of in vivo comparison of BETA and conventional RFA.

In this study 10 White Hybrid pigs were used in order to evaluate the ablation created by BETA 

compared to conventional RFA.

For this study, each animal was treated with four conventional RFA cycles and four BETA 

cycles during a laparotomy conducted under general anaesthesia.

The immediate and intermediate term effects were evaluated, with interval termination at 

terminal anaesthesia, 2 days, 2 weeks, 1 month and 2 months post procedure.

Each of the termination intervals were used to evaluate the size of the BETA zone compared to 

the conventional RFA zones and to evaluate the effect of BETA on the tissue response at both 

gross pathological level and histological level.

The results obtained compare favourably with the results from earlier BETA studies (Cockburn 

et al, 2007, Dobbins et al, 2008, Dobbins et al, 2008a, Dobbins et al, 2008b) and with the 

published literature comparing the ex vivo and in vivo results (Cha et al, 2009).

The results by Cha et al demonstrated a 34% reduction in the size of the ablation zone in in vivo

tissue compared to ex vivo tissue. These results demonstrate a 12% reduction in the maximum 

mean ablation zone size in in vivo liver compared to ex vivo liver. The reasons for the size 

reduction are in part due to the heat sink effect in liver and the use of a 2mm diameter needle in 

in vivo testing compared to a 2.5mm needle in ex vivo testing (Patterson et al, 1998, Goldberg et 

al, 1995).

The lengths of the BETA treatments were longer than the conventional RFA treatments 

(Chapter 2), which can be explained by the production of a larger ablation zone, however this 

contradicts the findings of Patterson et al (Patterson et al, 1998). However this research 

demonstrates a relationship between lesion diameter and ablation zone size. This is beyond the 

scope of the research, but the lack of an impedance feedback algorithm may in part explain the 

reason for this finding.

The intermediate term morbidity data (14, 28 and 56 days) did not reveal an abnormal 

inflammatory response, with comparable macroscopic and microscopic findings when 

comparing BETA to conventional RFA.

The results of the in vivo study are similar to those described by Dobbins et al (Dobbins et al, 

2008a), the macroscopic appearance of the ablation zones at each time point decreased. 

However, there remained a significant difference in size in each treatment group when 

comparing BETA and conventional RFA.
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The Acute Phase Proteins and biochemical profiles demonstrate similar trends to the published 

literature. Teague et al (Teague et al, 2004) reported significantly elevated CRP levels post 

procedure, peaking at 24 hours and remaining raised at 72 hours, the TNF- α levels showed a 

similar trend.

The use of porcine specific APPs for this study, together with the CRP has not been described in 

the medical literature, but extensively in the veterinary literature (Alava et al, 1997, Eckersall et 

al, 1999, Eckersall, 2000, Pepys and Hirschfield, 2003, Eckersall, 2004, Pineiro et al, 2009).

SAA peaked at 24 hours, p-MAP at 48 hours and CRP at 72 hours, Haptoglobin peaked at 48-72 

hours, however all returned to normal levels at termination.

The biochemical markers for liver function remained stable apart from the transaminase 

enzymes, which were significantly elevated post procedure, peaking at 24-48 hours, but 

returning to normal at termination. Similar observations were described by Wemyss-Holden et 

al (Wemyss-Holden et al, 2000), where transaminase increased post treatment, but the bilirubin 

and  -GT did not. The theory for this is due to the volume of tissue ablated, in combination 

with the effects of the anaesthetic agents administered for the procedure (Chen et al, 2000, Ture 

et al, 2009).

The renal function remained stable throughout the study, with no adverse biochemical events, 

similar to the safety profile described by Kinn et al (Kinn et al, 1991).

Future Work:

1) The promising results obtained from the in vivo study demonstrate BETA to be a safe 

and predictable ablation technique, with similar biochemical and clinical effects to conventional 

RFA and electrolysis.

In man studies need to be conducted in order to replicate the data obtained from the animal data.

The animal and ex vivo data however do have a limitation in that only healthy tissue was 

ablated. BETA has not been tested in tumour tissue (Cockburn et al, 2007, Dobbins et al, 2008, 

Dobbins et al, 2008a, Dobbins et al, 2008b).

In order for BETA to progress, however, its efficacy must be tested in human subjects and in 

tumour tissue. For research to continue to this stage, a mark III machine must be designed, 

which meets with industry standard for human use. A safety circuit must be incorporated into 

the machine, to prevent voltage or current surges being transmitted to the patient and the 

limitations described in chapter 5 must be addressed.

The initial impedance encountered in liver on commencement of an ablation cycle must be 

compensated for in order to decrease the risk of early roll-off of the ablation cycle.
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Research and Ethics approval for the first-in-man BETA study will be sought in order to 

determine the efficacy of BETA in liver tumours.

The research will be conducted at the Norfolk and Norwich University Hospital under the 

direction of Mr SA Wemyss-Holden and Dr. JF Cockburn. Patients will, after informed consent 

be treated with BETA prior to completion of a hemi-hepatectomy for a curable liver tumour.

BETA will not be administered as a definitive treatment, but rather as an adjunct for research 

purposes prior to resection, however the ablation will take place at the time of the resection as 

an open procedure. The purpose of this study will be to determine the efficacy of BETA in 

tumour tissue and to determine the effects of BETA at a microscopic level. Acute phase 

reactants will be measured and the overall safety and outcome will be monitored.

2) The effects of BETA and adjunctive therapies has promising potential, given the

temperature distribution profile of BETA in tissue (chapter 4).

New technologies such as temperature-controlled doxorubicin chemotherapeutic endovascular 

agents (Celsion Corporation, 2010) have the potential to significantly increase the ablation zone 

of BETA with the higher tissue temperature distribution of BETA compared to conventional 

RFA.

3) BETA has been shown to produce significantly larger ablation zones than conventional

RFA using a smaller gauge needle (unpublished data), which may have a place in lung ablation 

(Lee et al, 2004). The smaller gauge needle may decrease the potential for complications such 

as pneumothorax and pulmonary haemorrhage compared to the 14G needle used currently. 

BETA has never been tested in pulmonary tissue where the effects of electroosmosis are 

unknown. The potential, however for BETA to produce an ablation zone similar in diameter to 

conventional RFA with a 14G needle is encouraging, given that that BETA produces 

comparable ablation zone diameters using a 19G needle (unpublished data).

This however is theoretical and requires both ex vivo and in vivo studies in order to determine 

the efficacy of BETA in pulmonary tissue.

BETA produces larger ablation zones than conventional RFA, with a similar systemic response 

encountered in porcine subjects, to the published literature for both RFA and electrolysis.

It has the potential to significantly impact on the current management of liver tumours and may, 

in certain instances provide a curative option in cases where conventional RFA or any ablation 

technique was limited by the size of the tumour.

It is for this reason that in-man studies are essential for this technology to progress.
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ABBREVIATIONS:

AC Alternating Current

ALP Alkaline Phosphatase

ALT Alanine Transaminase

APP Acute Phase Proteins

AST Aspartartate Transaminase

CI Confidence Interval

CRP C Reactive Protein

CT Computer Tomography

BETA Bimodal Electric Tissue Ablation

CLRM Colorectal metastases

DC Direct Current

ESWL Extra Corporeal Shockwave Lithotripsy

GGT Gamma Glutamyl Transpeptidase

HCC Hepatocellular Carcinoma

HIFU High-Intensity Focused Ultrasound

HLS Huntingdon Life Sciences

Hp Haptoglobin

IL Interleukin

INR International Normalised Ratio

IRE Irreversible Electroporation

IVC Inferior Vena Cava

K Potassium
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LITT Laser Interstitial Thermotherapy

mH milliHenry (unit of inductance)

MRI Magnetic Resonance Imaging

ms milliseconds

MWA Microwave Ablation

Na Sodium

pMAP pig-Major Acute Phase Protein

PT pre treatment

PV Portal vein

RF Radiofrequency

RFA Radiofrequency Ablation

SAA Serum Amyloid A

SD Standard Deviation

SEM Standard Error of the Mean

TAE Transarterial Embolisation

TACE Transarterial Chemoembolisation

TIVA Total Intravenous Anaesthetic

TNF- Tumour Necrosis Factor-alpha

TUNEL Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP Nick 

End-Labeling

US Ultrasound
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RF (mA) min (cm) p25 (cm) p50 (cm) p75 (cm) max (cm) mean (cm) SD

500 1.1 1.5 1.5 1.7 1.8 1.55 0.17

600 1.2 1.4 1.5 1.5 1.6 1.45 0.09

650 1.3 1.3 1.4 1.5 1.6 1.43 0.12

750 0.8 1.2 1.2 1.3 1.4 1.14 0.19

1000 0.9 1 1 1.1 1.2 1.05 0.07

Table 2.1  control sample size calculations together with the minimum, maximum and 

means for each radiofrequency energy value measured. The interquartile ranges and standard 

deviations are also shown.

RF (mA) min (cm) p25 (cm) p50 (cm) p75 (cm) max (cm) mean (cm) SD

500 1.2 2.25 2.4 2.6 3.5 2.38 0.33

600 2.1 2.3 2.4 2.7 2.9 2.48 0.22

650 2.2 2.3 2.4 2.6 3.3 2.43 0.23

750 1.1 1.8 2 2.2 2.5 1.96 0.32

1000 1 1.3 1.4 1.8 2.1 1.5 0.32

Table 2.2  experimental sample size calculations together with the minimum, maximum and 

means for each radiofrequency energy value measured. The interquartile ranges and standard 

deviations are also shown.
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DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

0 0 400 1.2 688

1.2 0.07 0.01

0 0 400 1.3 785

0 0 400 1.2 584

0 0 400 1.2 687

0 0 400 1.1 689

0 0 450 1.2 587

1.24 0.0554 0.05

0 0 450 1.2 667

0 0 450 1.3 654

0 0 450 1.2 701

0 0 450 1.3 599

0 0 500 1.5 639

1.57 0.166 0.07

0 0 500 1.7 547

0 0 500 1.6 609

0 0 500 1.5 499

0 0 500 1.7 565

0 0 500 1.1 392

0 0 500 1.7 696

0 0 500 1.5 501

0 0 500 1.7 579

0 0 500 1.5 503

0 0 500 1.4 460

0 0 500 1.5 489

0 0 500 1.4 467

0 0 500 1.7 540

0 0 500 1.8 602

0 0 500 1.5 676

0 0 500 1.5 600

0 0 500 1.8 807

0 0 500 1.6 758

0 0 500 1.7 776

Table 2.3 Matrix of tested parameters. 



Appendix 1

BETA 287

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

0 0 600 1.6 635

1.58 0.1662 0.04

0 0 600 1.5 361

0 0 600 1.4 328

0 0 600 1.5 419

0 0 600 1.2 276

0 0 600 1.4 349

0 0 600 1.5 401

0 0 600 1.4 359

0 0 600 1.5 388

0 0 600 1.4 374

0 0 600 1.5 482

0 0 600 1.5 425

0 0 600 1.4 202

0 0 600 1.4 282

0 0 600 1.6 511

0 0 600 1.5 328

0 0 600 1.4 263

0 0 600 1.4 281

0 0 600 1.6 518

0 0 600 1.5 468

0 0 600 1.5 435

0 0 600 1.4 301

0 0 600 1.5 446

0 0 600 1.5 389

0 0 600 1.8 401

0 0 600 1.7 581

0 0 600 1.6 550

0 0 600 1.6 559

0 0 600 1.8 651

0 0 600 1.7 601

0 0 600 1.7 476

0 0 600 1.8 359

0 0 600 1.7 337

0 0 600 1.7 377

0 0 600 1.6 366

0 0 600 1.6 301

0 0 600 1.4 278

0 0 600 1.6 244

0 0 600 1.6 458

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 288

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

0 0 600 1.5 247

1.58 0.1662 0.04

0 0 600 1.5 457

0 0 600 1.7 508

0 0 600 1.8 554

0 0 600 1.8 486

0 0 600 1.6 231

0 0 600 1.9 480

0 0 600 1.4 262

0 0 600 2 485

0 0 600 1.8 387

0 0 600 1.7 326

0 0 600 1.5 307

0 0 600 1.8 391

0 0 600 1.5 327

0 0 600 1.7 337

0 0 600 1.5 257

0 0 600 1.8 458

0 0 600 1.6 318

0 0 600 1.5 435

0 0 600 1.6 355

0 0 600 1.4 312

0 0 600 2.1 718

0 0 600 1.9 465

0 0 600 2 527

0 0 600 1.4 321

0 0 600 1.6 397

0 0 600 1.6 463

0 0 600 1.6 479

0 0 600 1.8 863

0 0 600 1.7 688

0 0 600 1.9 896

0 0 600 1.6 627

0 0 600 1.5 593

0 0 600 1.6 807

0 0 600 1.4 541

0 0 600 1.4 502

0 0 600 1.5 654

0 0 600 1.5 528

0 0 600 1.6 508

0 0 600 1.6 446

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 289

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

0 0 600 1.5 518

1.58 0.662 0.04

0 0 600 1.5 400

0 0 600 1.5 398

0 0 600 1.4 362

0 0 600 1.5 533

0 0 600 1.5 403

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

0 0 650 1.5 286

1.41 0.115 0.05

0 0 650 1.6 321

0 0 650 1.5 311

0 0 650 1.4 239

0 0 650 1.3 231

0 0 650 1.6 320

0 0 650 1.5 266

0 0 650 1.4 238

0 0 650 1.4 248

0 0 650 1.3 245

0 0 650 1.3 287

0 0 650 1.4 300

0 0 650 1.6 321

0 0 650 1.3 297

0 0 650 1.3 300

0 0 650 1.5 473

0 0 650 1.3 376

0 0 650 1.3 381

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 290

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

0 0 750 1.1 131

1.16 0.1998 0.09

0 0 750 0.9 101

0 0 750 0.9 117

0 0 750 1 113

0 0 750 0.8 101

0 0 750 0.9 98

0 0 750 1.3 134

0 0 750 1.3 126

0 0 750 1.4 237

0 0 750 1.2 104

0 0 750 1.3 98

0 0 750 1.2 94

0 0 750 1.2 96

0 0 750 1.3 167

0 0 750 1.2 110

0 0 750 1.3 206

0 0 750 1.5 215

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

0 0 1000 1.1 85

1.05 0.073 0.04

0 0 1000 1 101

0 0 1000 0.9 78

0 0 1000 1.1 106

0 0 1000 1.2 112

0 0 1000 1 88

0 0 1000 1 78

0 0 1000 1.1 97

0 0 1000 1 88

0 0 1000 1.1 91

0 0 1000 1 78

0 0 1000 1.1 56

0 0 1000 1 47

0 0 1000 1.1 123

0 0 1000 1 56

0 0 1000 1.1 101

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 291

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

0 3 500 1.4 535

1.333 0.121 0.1

0 3 500 1.5 529

0 3 500 1.4 619

0 3 500 1.2 343

0 3 500 1.2 368

0 3 500 1.3 401

0 3 750 1.3 98

1.2 0.075 0.06

0 3 750 1.2 88

0 3 750 1.2 75

0 3 750 1.1 78

0 3 750 1.2 80

0 3 750 1.1 75

0 3 1000 1 56

1.025 0.052 0.04

0 3 1000 1 45

0 3 1000 1.1 78

0 3 1000 1 65

0 3 1000 1 69

0 3 1000 1.1 71

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

0 9 500 2.6 1458

2.69 0.262 0.13

0 9 500 2.6 2000

0 9 500 2.7 2192

0 9 500 2.6 2093

0 9 500 2.6 1509

0 9 500 2.7 2193

0 9 500 2.6 1239

0 9 500 2.6 1588

0 9 500 2.7 1889

0 9 500 2.5 1567

0 9 500 2.6 2001

0 9 500 2.6 2049

0 9 500 2.7 1249

0 9 500 3.6 2915

0 9 500 2.5 1201

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 292

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

0 9 550 3.3 1087

2.65 0.264 0.15

0 9 550 2.7 806

0 9 550 2.8 897

0 9 550 2.4 527

0 9 550 2.5 675

0 9 550 2.9 829

0 9 550 2.5 629

0 9 550 2.3 599

0 9 550 2.7 883

0 9 550 2.5 818

0 9 550 2.6 845

0 9 550 2.7 890

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 293

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

0 9 600 3 1179

2.83 0.4212 0.09

0 9 600 2.5 989

0 9 600 2 537

0 9 600 2 469

0 9 600 2 383

0 9 600 2 297

0 9 600 2.5 459

0 9 600 2.3 651

0 9 600 2.8 891

0 9 600 3 1020

0 9 600 2.5 758

0 9 600 2.9 951

0 9 600 2.5 778

0 9 600 2.5 925

0 9 600 2 582

0 9 600 2.5 777

0 9 600 2.5 758

0 9 600 2.7 1097

0 9 600 2.6 836

0 9 600 2.6 803

0 9 600 2.7 823

0 9 600 2.8 895

0 9 600 2.6 617

0 9 600 2.9 569

0 9 600 3 668

0 9 600 3 826

0 9 600 3 759

0 9 600 2.9 671

0 9 600 3 872

0 9 600 2.4 535

0 9 600 2.7 589

0 9 600 2.5 611

0 9 600 3 1079

0 9 600 2.5 586

0 9 600 2.8 972

0 9 600 2.7 860

0 9 600 3.4 1128

0 9 600 3 1544

0 9 600 3 879

0 9 600 2.7 585

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 294

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

0 9 600 3.3 1772

2.83 0.4212 0.09

0 9 600 3.6 1936

0 9 600 3 678

0 9 600 2.9 955

0 9 600 2.8 781

0 9 600 2.5 488

0 9 600 3 797

0 9 600 2.8 796

0 9 600 2.5 664

0 9 600 3.6 2261

0 9 600 2.7 693

0 9 600 2.7 750

0 9 600 2.4 601

0 9 600 3.6 3007

0 9 600 2.6 616

0 9 600 4.4 2812

0 9 600 2.8 781

0 9 600 3.3 962

0 9 600 3.1 988

0 9 600 2.7 715

0 9 600 2.8 788

0 9 600 3.4 797

0 9 600 3.1 802

0 9 600 2.5 589

0 9 600 3.2 708

0 9 600 2.6 589

0 9 600 3 970

0 9 600 2.9 992

0 9 600 2.6 772

0 9 600 3.5 1518

0 9 600 3.1 977

0 9 600 2.9 797

0 9 600 3.6 1011

0 9 600 3.3 1101

0 9 600 3.5 1106

0 9 600 2.8 761

0 9 600 3.6 1096

0 9 600 2.6 752

0 9 600 2.6 4.7

0 9 600 2.8 893

0 9 600 3 917

0 9 600 2.9 892

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 295

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

0 9 750 1.8 364

2.26 0.46 0.25

0 9 750 2.2 369

0 9 750 2 358

0 9 750 2 371

0 9 750 1.8 350

0 9 750 1.8 370

0 9 750 3 426

0 9 750 2.2 398

0 9 750 3 431

0 9 750 2.1 261

0 9 750 3 425

0 9 750 2.5 514

0 9 750 2.5 543

0 9 1000 1 132

1.13 0.121 0.1

0 9 1000 1 109

0 9 1000 1.3 110

0 9 1000 1.2 98

0 9 1000 1.2 105

0 9 1000 1.1 99

0 18 500 2.5 1352

2.37 0.186 0.15

0 18 500 2.6 1188

0 18 500 2.4 1005

0 18 500 2.4 875

0 18 500 2.1 565

0 18 500 2.2 368

0 18 750 2.2 197

2.15 0.122 0.1

0 18 750 2.3 201

0 18 750 2.2 176

0 18 750 2 184

0 18 750 2.2 200

0 18 750 2 193

0 18 1000 1.2 50

1.07 0.082 0.07

0 18 1000 1 47

0 18 1000 1 57

0 18 1000 1.1 77

0 18 1000 1 60

0 18 1000 1.1 88

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 296

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

0 36 500 2 729

2.08 0.075 0.06

0 36 500 2 735

0 36 500 2.1 439

0 36 500 2.2 754

0 36 500 2.1 457

0 36 500 2.1 512

0 36 750 2 180

1.9 0.098 0.08

0 36 750 2 169

0 36 750 1.8 149

0 36 750 1.8 175

0 36 750 1.9 145

0 36 750 1.8 167

0 36 1000 1.4 105

1.5 0.098 0.8

0 36 1000 1.6 128

0 36 1000 1.6 132

0 36 1000 1.4 109

0 36 1000 1.5 128

0 36 1000 1.4 115

300 3 500 2.6 1544

2.5 0.179 0.14

300 3 500 2.2 2343

300 3 500 2.6 2500

300 3 500 2.7 2375

300 3 500 2.4 2301

300 3 500 2.5 2332

300 3 750 1.8 138

1.9 0.133 0.11

300 3 750 2 550

300 3 750 2 546

300 3 750 1.7 581

300 3 750 1.8 286

300 3 750 2 505

300 3 1000 1.4 95

1.27 0.082 0.7

300 3 1000 1.2 135

300 3 1000 1.2 89

300 3 1000 1.3 90

300 3 1000 1.2 138

300 3 1000 1.3 140

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 297

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

300 9 500 2.1 535

2.32 0.268 0.14

300 9 500 1.8 568

300 9 500 2.5 1022

300 9 500 1.9 544

300 9 500 2.4 1101

300 9 500 2.1 698

300 9 500 2.3 874

300 9 500 2.6 1321

300 9 500 2.3 1109

300 9 500 2.4 1087

300 9 500 2.1 889

300 9 500 2.6 1219

300 9 500 2.7 1512

300 9 500 2.5 1206

300 9 500 2.5 1363

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 298

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

300 9 600 2.5 768

2.55 0.269 0.09

300 9 600 2.1 432

300 9 600 2.4 724

300 9 600 2.3 585

300 9 600 2.4 756

300 9 600 2.9 907

300 9 600 2.5 871

300 9 600 2.9 871

300 9 600 2.2 608

300 9 600 2.5 726

300 9 600 2.5 789

300 9 600 2.7 889

300 9 600 2.7 876

300 9 600 2.6 803

300 9 600 2.7 875

300 9 600 2.5 593

300 9 600 2.2 451

300 9 600 3 651

300 9 600 2.5 529

300 9 600 2.3 617

300 9 600 2.6 689

300 9 600 2.6 694

300 9 600 2.5 546

300 9 600 2.5 600

300 9 600 2.7 675

300 9 600 3 998

300 9 600 3.3 790

300 9 600 2.5 662

300 9 600 2.9 570

300 9 600 2.8 801

300 9 600 2.9 820

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 299

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

300 9 750 1.6 98

1.96 0.353 0.2

300 9 750 1.7 117

300 9 750 1.8 121

300 9 750 2.1 132

300 9 750 1.8 88

300 9 750 1.7 112

300 9 750 1.8 128

300 9 750 1.6 121

300 9 750 1.9 149

300 9 750 2.5 471

300 9 750 2.5 482

300 9 750 2.5 608

300 9 1000 1.6 223

1.67 0.076 0.06

300 9 1000 1.8 50

300 9 1000 1.6 140

300 9 1000 1.7 156

300 9 1000 1.6 137

300 9 1000 1.7 159

300 9 1000 1.7 161

300 18 500 2.5 789

2.3 0.103 0.08

300 18 500 2.4 701

300 18 500 2.3 698

300 18 500 2.3 676

300 18 500 2.2 640

300 18 500 2.3 680

300 18 750 1.4 98

1.35 0.105 0.08

300 18 750 1.5 136

300 18 750 1.3 129

300 18 750 1.2 143

300 18 750 1.3 138

300 18 750 1.4 128

300 18 1000 1.2 88

1.27 0.05 0.04

300 18 1000 1.3 76

300 18 1000 1.3 64

300 18 1000 1.3 98

300 18 1000 1.2 77

300 18 1000 1.3 89

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 300

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

300 36 500 2 696

2.25 0.164 0.13

300 36 500 2.3 783

300 36 500 2.2 598

300 36 500 2.5 697

300 36 500 2.2 609

300 36 500 2.3 703

300 36 750 2.1 276

1.75 0.25 0.2

300 36 750 1.7 301

300 36 750 1.4 289

300 36 750 1.8 268

300 36 750 1.6 265

300 36 750 1.5 226

300 36 1000 1.5 143

1.3 0.133 0.2

300 36 1000 1.3 187

300 36 1000 1.3 157

300 36 1000 1.1 196

300 36 1000 1.2 201

300 36 1000 1.3 189

600 3 500 2.4 1348

2.55 0.235 0.19

600 3 500 3 2012

600 3 500 2.4 2077

600 3 500 2.6 1876

600 3 500 2.4 1321

600 3 500 2.5 1804

600 3 750 1.8 200

1.75 0.055 0.04

600 3 750 1.8 188

600 3 750 1.7 150

600 3 750 1.7 165

600 3 750 1.8 191

600 3 750 1.7 162

600 3 1000 1 50

1.05 0.055 0.04

600 3 1000 1.1 58

600 3 1000 1 54

600 3 1000 1.1 61

600 3 1000 1 63

600 3 1000 1.1 70

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 301

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

600 9 500 2.4 700

2.75 0.302 0.15

600 9 500 2.7 1090

600 9 500 2.5 1056

600 9 500 2.5 1093

600 9 500 2.7 1211

600 9 500 3.1 1398

600 9 500 3.5 2409

600 9 500 2.4 970

600 9 500 3.1 1812

600 9 500 2.7 1987

600 9 500 2.7 1954

600 9 500 2.8 1652

600 9 500 2.5 1016

600 9 500 2.9 2012

600 9 500 2.7 1987

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 302

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

600 9 600 2.8 789

2.73 0.157 0.06

600 9 600 2.4 594

600 9 600 2.5 511

600 9 600 2.9 788

600 9 600 2.7 589

600 9 600 2.7 781

600 9 600 2.6 657

600 9 600 2.7 826

600 9 600 2.7 611

600 9 600 2.8 665

600 9 600 2.7 534

600 9 600 2.7 667

600 9 600 2.8 689

600 9 600 2.7 711

600 9 600 2.8 694

600 9 600 2.6 939

600 9 600 2.7 559

600 9 600 2.7 800

600 9 600 2.5 540

600 9 600 3 611

600 9 600 3 1036

600 9 600 2.6 764

600 9 600 3 703

600 9 600 3 927

600 9 600 2.7 673

600 9 600 2.7 617

600 9 600 2.7 623

600 9 600 2.8 654

600 9 600 3 698

600 9 600 2.9 701

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 303

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

600 9 650 3.3 505

2.57 0.247 0.12

600 9 650 2.2 467

600 9 650 2.4 589

600 9 650 2.7 489

600 9 650 2.4 646

600 9 650 2.4 397

600 9 650 2.7 490

600 9 650 2.6 472

600 9 650 2.8 501

600 9 650 2.4 399

600 9 650 2.6 418

600 9 650 2.6 437

600 9 650 2.5 502

600 9 650 2.4 401

600 9 650 2.6 456

600 9 650 2.5 666

600 9 750 2 200

2.1 0.183 0.15

600 9 750 1.9 189

600 9 750 2.4 207

600 9 750 2 196

600 9 750 2.2 201

600 9 750 2.2 200

600 9 1000 1.8 62

1.5 0.197 0.16

600 9 1000 1.3 44

600 9 1000 1.3 48

600 9 1000 1.5 59

600 9 1000 1.3 52

600 9 1000 1.4 60

600 18 500 2.5 1098

2.4 0.19 0.12

600 18 500 2.4 554

600 18 500 2.4 576

600 18 500 2.3 497

600 18 500 2.5 548

600 18 500 2.4 835

600 18 500 2.2 516

600 18 500 2.5 1019

600 18 500 2.7 838

600 18 500 2 536

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 304

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

600 18 600 2.2 425

2.33 0.107 0.05

600 18 600 2.4 515

600 18 600 2.2 489

600 18 600 2.3 478

600 18 600 2.2 489

600 18 600 2.4 519

600 18 600 2.5 554

600 18 600 2.2 407

600 18 600 2.5 583

600 18 600 2.2 401

600 18 600 2.3 438

600 18 600 2.3 459

600 18 600 2.4 501

600 18 600 2.3 427

600 18 600 2.3 532

600 18 600 2.3 401

600 18 600 2.5 901

600 18 600 2.4 528

600 18 650 2.2 387

2.3 0.08 0.04

600 18 650 2.4 378

600 18 650 2.2 275

600 18 650 2.3 362

600 18 650 2.4 493

600 18 650 2.2 289

600 18 650 2.3 371

600 18 650 2.4 367

600 18 650 2.3 563

600 18 650 2.2 354

600 18 650 2.3 389

600 18 650 2.3 328

600 18 650 2.4 601

600 18 650 2.3 538

600 18 650 2.2 512

600 18 750 2.4 227

2.275 0.122 0.1

600 18 750 2.4 110

600 18 750 2.2 161

600 18 750 2.1 198

600 18 750 2.2 221

600 18 750 2.2 219

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 305

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

600 18 1000 1.5 98

1.35 0.105 0.08

600 18 1000 1.2 86

600 18 1000 1.3 101

600 18 1000 1.4 88

600 18 1000 1.3 89

600 18 1000 1.4 93

600 36 500 2.4 954

2.36 0.05 0.04

600 36 500 2.3 525

600 36 500 2.4 798

600 36 500 2.3 898

600 36 500 2.4 967

600 36 500 2.4 994

600 36 750 2 308

2.1 0.109 0.09

600 36 750 2.2 276

600 36 750 2 367

600 36 750 2.2 267

600 36 750 2.2 301

600 36 1000 1.7 185

1.55 0.187 0.15

600 36 1000 1.3 121

600 36 1000 1.4 115

600 36 1000 1.8 187

600 36 1000 1.6 137

600 36 1000 1.5 123

900 3 500 2.4 1010

2.375 0.098 0.08

900 3 500 2.3 988

900 3 500 2.5 1210

900 3 500 2.3 1023

900 3 500 2.3 1029

900 3 500 2.5 1226

900 3 750 1.9 344

2.025 0.126 0.1

900 3 750 2.1 566

900 3 750 2.2 500

900 3 750 1.9 387

900 3 750 2 499

900 3 750 1.9 476

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 306

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

900 3 1000 1.4 88

1.325 0.018 0.01

900 3 1000 1.2 108

900 3 1000 1.4 118

900 3 1000 1.3 97

900 3 1000 1.4 126

900 3 1000 1.3 99

900 9 500 2.1 1350

2.45 0.204 0.16

900 9 500 2.5 1109

900 9 500 2.7 1345

900 9 500 2.5 1258

900 9 500 2.6 1301

900 9 500 2.5 1278

900 9 750 2.2 501

2.2 0.147 0.12

900 9 750 2 368

900 9 750 2.3 398

900 9 750 2.3 458

900 9 750 2 401

900 9 750 2.3 539

)

900 9 1000 1.4 260

1.65 0.213 0.17

900 9 1000 2 251

900 9 1000 1.7 219

900 9 1000 1.5 247

900 9 1000 1.5 259

900 9 1000 1.6 276

900 18 500 2.4 1174

2.45 0.147 0.12

900 18 500 2.4 1169

900 18 500 2.3 1181

900 18 500 2.7 1261

900 18 500 2.3 1193

900 18 500 2.4 1221

900 18 750 2.4 401

2.275 0.103 0.08

900 18 750 2.3 376

900 18 750 2.1 298

900 18 750 2.3 456

900 18 750 2.2 301

900 18 750 2.3 436

Table 2.3 Matrix of tested parameters



Appendix 1

BETA 307

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

900 18 1000 1.9 187

1.95 0.05 0.4

900 18 1000 2 173

900 18 1000 2 166

900 18 1000 1.9 165

900 18 1000 2 171

900 18 1000 1.9 156

900 36 500 2.4 606

2.275 0.117 0.09

900 36 500 2.4 616

900 36 500 2.1 587

900 36 500 2.2 678

900 36 500 2.3 626

900 36 500 2.3 619

900 36 750 2 486

2.175 0.103 0.08

900 36 750 2.3 356

900 36 750 2.2 198

900 36 750 2.2 397

900 36 750 2.2 201

900 36 750 2.1 188

900 36 1000 2 400

1.875 0.018 0.01

900 36 1000 1.8 340

900 36 1000 1.8 298

900 36 1000 1.9 308

900 36 1000 1.8 287

900 36 1000 1.9 301

1800 3 500 2.3 889

2.275 0.015 0.01

1800 3 500 2.3 978

1800 3 500 2.2 859

1800 3 500 2.3 937

1800 3 500 2.2 847

1800 3 500 2.3 926

1800 3 750 2.1 243

2.2 0.075 0.06

1800 3 750 2.2 189

1800 3 750 2.3 201

1800 3 750 2.2 223

1800 3 750 2.3 199

1800 3 750 2.2 181

Table 2.3 Matrix of tested parameters
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BETA 308

DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

1800 3 1000 1.9 136

1.9 0.075 0.06

1800 3 1000 2 101

1800 3 1000 1.9 127

1800 3 1000 1.8 176

1800 3 1000 1.8 171

1800 3 1000 1.9 191

1800 9 500 2.7 1210

2.575 0.103 0.08

1800 9 500 2.4 1361

1800 9 500 2.6 1288

1800 9 500 2.6 1274

1800 9 500 2.5 1288

1800 9 500 2.6 1301

1800 9 750 2.5 657

2.43 0.075 0.06

1800 9 750 2.5 588

1800 9 750 2.4 598

1800 9 750 2.3 607

1800 9 750 2.4 601

1800 9 750 2.4 623

1800 9 1000 2 188

2.025 0.04 0.03

1800 9 1000 2 229

1800 9 1000 2 246

1800 9 1000 2.1 215

1800 9 1000 2 230

1800 9 1000 2 238

1800 18 500 2.3 1354

2.425 0.08 0.06

1800 18 500 2.5 1544

1800 18 500 2.4 1267

1800 18 500 2.5 1301

1800 18 500 2.4 1276

1800 18 500 2.5 1301

Table 2.3 Matrix of tested parameters
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DC-Pre (s) DC (V) RF (mA) Size (cm) Run-off (s) Mean (cm) SD 95% CI

1800 18 750 2.1 327

1.975 0.103 0.08

1800 18 750 2 527

1800 18 750 1.8 516

1800 18 750 2 489

1800 18 750 1.9 501

1800 18 750 2 523

1800 18 1000 1.8 92

1.75 0.104 0.08

1800 18 1000 1.7 100

1800 18 1000 1.6 89

1800 18 1000 1.9 109

1800 18 1000 1.7 101

1800 18 1000 1.8 110

1800 36 500 N/A

1800 36 500 N/A

1800 36 500 N/A

1800 36 750 N/A

1800 36 750 N/A

1800 36 750 N/A

1800 36 1000 N/A

1800 36 1000 N/A

1800 36 1000 N/A

Table 2.3 Matrix of tested parameters
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BETA 310

No. Parameter % D % R g % M
Mean 

%

1

600mA 
Control RFA

51.228 63.32 0.421 48.772

46.904

2 55.22 66.07 0.72 44.783

3 57.62 73.53 0.606 42.384

4 56.19 55.77 0.656 43.813

5 54.964 12.2047 0.4885 43.035

6 53.9748 92.8881 0.601 46.0252

7 52.2587 95.0888 0.6414 47.7413

8 51.9834 92.3692 0.3748 48.0166

9 55.8459 69.9352 0.5405 44.1541

10 50.5886 73.6456 0.3138 49.4114

11 53.0274 70.2947 0.5587 46.9726

12 51.1212 95.6136 0.2371 48.8788

13 46.6941 11.4159 0.7267 53.3059

14 52.7188 25.9826 0.6534 47.2812

15 51.0018 18.2391 0.9182 48.9982

Table 3.2

No. Parameter % D % R g % M
Mean 

%

1

600mA - 9v -
No pre RF 

DC

50.368 12.04 0.467 50.362

51.67

2 45.534 18.217 0.5042 54.646

3 59.5647 67.8847 0.2846 40.435

4 50.1186 99.5268 0.6974 49.8814

5 48.9551 11.7751 0.7816 51.0449

6 45.9263 11.774 0.8461 54.0737

7 53.2803 87.6867 0.3748 48.0166

8 49.6634 14.3519 0.4575 50.366

9 49.0024 20.0028 0.9176 50.9976

10 44.2094 14.2663 0.4566 55.7906

11 42.2524 14.3519 0.4142 57.7476

12 44.3421 12.0545 0.385 52.6579

13 43.4278 15.3628 0.565 56.5722

14 48.1139 22.1181 0.6862 51.8861

15 49.4739 22.1816 0.9684 50.5261

Table 3.3
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No. Parameter % D % R g % M
Mean 

%

1

300.0.9 -
600mA

50.067 99.73 0.4505 49.932

51.631

2 49.11 20.71 0.7913 50.892

3 45.82 26.71 0.7112 54.183

4 43.646 15.8759 1.0897 56.354

5 48.335 11.1878 0.6143 51.665

6 51.6145 76.6332 1.3669 48.3855

7 53.3903 80.5368 0.5215 46.6097

8 53.4745 87.0049 0.5833 46.5255

9 45.0124 79.8998 0.8976 54.9876

10 42.9902 75.2912 0.7936 57.0098

11 47.9631 18.9843 0.8326 52.0369

12 49.0072 16.7172 0.6917 50.9928

13 47.9521 77.8987 0.4332 52.453

14 52.8745 12.6765 0.5992 44.3434

15 50.4543 81.9982 0.5412 51.3216

Table 3.4

No. Parameter % D % R g % M
Mean 

%

1

600.0.9 -
600mA

50.78 11.839 0.5084 50.214

52.34

2 51.8066 93.025 0.1993 48.193

3 45.605 14.035 0.3767 54.394

4 43.61 18.232 0.4584 56.39

5 52.2767 91.287 0.7761 47.723

6 48.0062 14.3865 0.4855 51.993

7 44.4107 14.1483 0.9411 55.589

8 47.0493 14.9692 0.6989 52.9507

9 46.2716 13.6565 0.6301 53.7284

10 47.6223 12.0984 0.7577 52.3777

11 48.3326 12.0164 0.7827 51.6674

12 47.1388 18.0936 0.9921 52.8612

13 48.8675 14.912 0.4098 55.9876

14 52.5434 13.2123 0.5567 47.5645

15 47.9843 14.8978 0.6098 52.3387

Table 3.5
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No. Parameter % D % R g % M
Mean 

%

1

Normal Liver

22.0079 13.805 0.8042 77.9921

72.193

2 27.292 26.6407 1.1467 72.708

3 30.8018 20.4861 1.2013 69.1982

4 24.4311 23.5672 0.9876 75.5689

5 31.9834 17.1415 0.5559 68.1561

6 27.5846 26.252 2.1113 72.4154

7 28.9025 15.3874 1.0192 71.0975

8 26.0124 20.1098 0.9987 73.9876

9 30.5773 21.6683 0.7804 69.4227

10 30.7806 17.948 0.4508 69.2194

11 29.1395 22.135 0.9103 70.8605

12 27.2645 26.6777 0.72 72.7355

13 27.6608 26.1522 0.8566 72.3392

14 25.8103 28.7442 1.169 74.1897

15 26.9977 25.9976 0.7993 73.0023

Table 3.6

% M percentage weight loss  
displays change of mass registered during drying process in percents

% D  part of dry mass received in drying process in percents. 
part of sample which remained on the pan after humid evaporation is the 
result

% R  humid / dry mass ratio received in drying process in percents
part of sample which vaporized during drying process is the result,

g   mass change
mass of change registered during drying process is the result.

Table 3.7
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Temperature Base Data Experiments 1 & 2 (˚c)
Control BETA Control BETA

1 1 2 2
Time 
(sec) 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

0 23.2 15.7 23.2 16.9 17.8 26.5 18.7 21.8 18.6 20.8 14.4 20.5 20.0 27.7 19.4 23.6

30 24.6 15.8 24.3 16.9 17.9 49.9 18.8 22.8 27.8 21.4 15.1 20.7 28.2 34.8 22.9 25.9

60 24.3 15.9 24.6 17.0 28.8 55.6 20.3 23.1 35.4 26.0 16.0 21.4 38.7 37.6 27.6 27.5

90 14.1 16.1 16.3 17.0 53.1 60.2 25.7 23.6 41.5 31.0 17.0 22.1 48.3 42.1 32.5 29.3

120 13.8 16.5 14.5 17.2 63.3 64.7 32.3 24.0 46.0 36.3 18.2 22.9 55.5 47.4 36.7 32.9

150 13.9 19.4 14.6 18.1 68.1 68.3 38.3 24.6 50.0 42.4 19.4 23.8 61.1 51.2 40.7 36.0

180 16.3 22.9 15.6 19.0 72.0 71.0 43.5 25.4 53.9 46.9 20.7 24.7 65.2 53.9 44.4 38.1

210 19.8 26.1 16.8 19.9 76.1 73.5 48.0 25.4 57.8 50.9 22.0 25.7 68.3 54.7 47.5 39.2

240 23.6 28.9 18.0 20.9 77.4 75.4 51.5 27.0 62.1 55.8 23.3 26.7 70.7 55.3 50.2 39.7

270 27.0 31.3 19.4 21.9 77.7 78.1 54.1 29.0 65.8 60.5 24.6 27.8 72.8 56.0 52.7 40.6

300 38.2 33.5 25.4 23.0 77.9 79.9 56.4 30.9 69.8 61.6 25.9 28.9 74.5 58.5 54.9 42.9

330 40.7 35.6 27.0 24.1 78.8 81.2 58.4 41.4 73.3 63.3 27.1 30.0 76.3 61.0 56.9 43.4

360 45.1 37.6 28.6 25.1 76.6 81.6 60.0 45.0 76.4 65.3 28.4 31.1 78.0 63.7 58.8 44.5

390 50.6 39.5 30.2 26.2 75.6 82.5 61.3 47.1 78.7 66.9 29.6 32.3 79.6 64.9 60.6 45.0

420 55.2 41.3 31.9 27.3 75.6 83.3 62.5 48.8 80.9 68.6 30.7 33.4 81.0 66.7 62.2 46.7

450 59.5 43.0 33.3 28.4 75.9 84.3 63.6 50.2 83.5 70.4 31.7 34.5 82.3 68.7 63.7 47.3

480 65.4 44.6 36.8 29.5 76.5 85.2 64.7 51.5 84.6 72.4 33.9 35.5 83.5 69.8 65.1 48.4

510 68.0 46.3 38.5 30.6 77.0 85.7 65.7 52.7 85.7 74.6 35.8 36.4 84.6 72.9 66.4 49.6

540 72.5 47.9 40.4 31.6 77.4 85.9 66.7 53.8 86.4 76.8 41.7 37.7 85.7 74.7 67.6 50.0

570 77.9 49.6 42.6 32.9 77.9 86.8 67.7 54.7 87.6 78.3 42.5 39.4 86.9 75.8 68.8 51.5

600 81.9 51.7 44.7 35.3 78.1 87.0 68.6 55.7 87.8 76.8 69.9 52.7

630 83.7 52.2 44.9 36.6 78.5 86.7 69.4 56.6 88.6 78.6 71.0 53.5

660 85.8 53.6 45.4 36.9 78.9 87.5 70.1 57.4 89.3 80.2 71.9 54.7

690 88.4 58.5 45.9 37.5 81.4 87.4 71.2 58.3 89.8 82.9 72.8 55.9

720 90.3 60.3 46.1 38.6 83.5 87.4 72.5 59.1 90.3 83.6 73.7 56.7

750 92.7 62.4 46.5 40.0 85.1 87.8 73.7 59.9 90.9 84.7 74.5 58.1

780 86.0 88.3 74.8 60.6 91.4 85.6 75.5 59.7

810 86.7 88.8 75.8 61.2 92.1 87.8 76.5 60.4

840 87.4 89.3 76.8 61.8 92.9 88.3 77.1 61.3

870 88.1 89.7 77.8 62.3 92.7 88.9 78.0 62.5

900 89.0 90.0 78.7 62.9 93.4 90.2 81.2 63.0

930 89.8 90.1 79.6 62.9 94.5 90.3 82.3 63.1

960 90.3 87.6 80.0 59.7 95.1 87.0 82.9 59.9

990 91.2 89.5 80.6 60.4 96.4 87.8 83.7 55.3

1020 91.4 86.3 81.2 56.8 97.8 88.5 84.6 56.3

1050 91.8 86.7 81.8 57.5 98.6 89.2 85.7 57.2

1080 92.0 91.1 82.5 58.8 99.7 90.1 85.9 58.2

1110 92.2 91.5 83.0 59.2 101.0 90.9 86.1 58.5

1140 92.3 91.9 83.5 59.7 102.6 91.7 86.4 59.1

Table 4.1 Temperatures at each distance from the electrode at each 30 second time interval for 

the control (600mA RF) and the BETA (9V DC and 600mA) experiments at 5, 10, 15 and 

20mm from the electrode.
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Temperature Base Data Experiments 3 & 4 (˚c)
No. Control BETA Control BETA
Time 
(sec)

3 3 4 4

0 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

30 24.0 22.3 17.6 22.5 21.7 25.9 21.7 25.9 18.7 27.8 17.5 23.1 21.6 34.4 21.4 26.9

60 32.7 22.4 19.3 22.5 28.6 25.7 23.1 25.5 24.1 32.5 18.7 23.5 28.9 48.9 22.2 33.3

90 39.1 24.5 21.1 23.0 45.1 22.6 28.3 22.8 28.9 34.8 20.1 23.5 48.4 59.1 26.1 35.6

120 44.5 34.6 23.0 24.1 55.0 23.8 34.3 22.9 32.7 37.9 21.8 23.8 60.8 66.0 31.5 36.4

150 49.2 42.9 25.1 25.1 60.3 29.5 39.0 24.0 35.9 40.7 23.7 24.0 67.5 71.1 36.8 37.6

180 53.0 49.3 27.1 26.0 63.5 35.0 42.5 25.2 38.8 43.6 25.8 24.2 71.3 74.4 41.5 39.9

210 56.3 54.5 29.1 27.0 66.0 39.5 45.2 26.8 41.4 46.5 27.9 24.7 73.4 76.8 45.3 40.7

240 59.2 56.5 31.1 27.3 68.2 43.8 47.4 28.9 43.7 48.3 30.0 24.8 75.0 78.0 48.5 42.0

270 61.9 57.6 32.9 27.9 69.7 47.1 49.4 31.0 45.8 50.3 31.9 24.9 76.5 78.0 51.2 43.6

300 64.5 58.7 34.8 28.2 71.0 50.1 51.1 33.1 47.8 52.6 33.7 25.2 78.3 78.4 53.6 44.7

330 67.1 62.5 36.6 29.4 72.1 52.7 52.6 35.0 50.0 55.5 35.5 25.7 79.6 79.0 55.9 45.1

360 69.6 64.6 38.3 30.2 73.2 55.0 53.9 36.7 52.2 57.5 37.2 26.0 81.1 80.2 58.0 46.7

390 72.7 66.3 40.1 30.8 74.0 56.9 55.1 38.3 54.4 59.9 38.7 26.6 82.3 81.2 59.8 47.6

420 74.9 68.9 41.6 31.4 74.9 58.5 56.2 39.7 56.1 63.9 40.0 27.5 83.9 82.1 61.6 48.1

450 75.5 70.3 42.0 32.3 75.6 60.0 57.2 41.1 59.1 65.8 41.4 28.0 84.3 82.7 63.5 49.0

480 77.8 72.4 42.6 33.1 76.2 61.3 58.1 42.2 64.9 67.3 41.7 28.5 85.3 82.7 65.7 50.7

510 79.8 73.5 42.9 33.8 76.8 62.5 58.9 43.5 73.3 70.0 42.6 29.5 85.9 83.3 67.8 51.6

540 81.7 76.6 43.2 35.4 77.5 63.7 59.7 44.8 75.7 73.1 43.1 30.6 86.6 84.0 70.0 51.9

570 83.6 79.7 43.5 36.9 78.2 65.0 60.3 45.8 77.9 75.2 43.7 31.6 87.0 84.4 71.2 52.3

600 85.9 81.9 43.8 38.4 79.1 66.5 61.0 47.0 80.1 77.0 43.9 32.6 87.9 84.7 72.1 53.3

630 88.4 82.4 43.9 38.7 79.9 68.2 61.6 48.3 81.7 80.9 44.1 35.4 89.3 86.2 73.2 54.5

660 80.9 69.8 62.2 49.5 83.6 81.5 44.5 36.3 91.9 87.5 74.0 55.1

690 82.0 71.1 62.9 50.6 88.6 82.1 44.7 37.9 94.2 88.2 74.6 56.6

720 83.1 72.3 63.8 51.6 90.4 82.6 45.1 38.6 95.1 88.9 75.8 57.8

750 84.5 73.8 64.8 52.6 91.9 83.7 45.5 39.6 96.4 90.1 76.2 58.6

780 85.6 75.3 65.7 53.8 93.9 85.5 45.9 40.6 98.0 90.5 76.8 59.6

810 86.9 77.8 66.5 54.7 99.3 90.7 78.0 60.4

840 87.9 79.1 67.3 55.7 101.0 91.3 79.2 61.2

870 88.4 81.3 68.1 56.2 103.2 92.7 80.6 61.9

900 89.0 82.5 69.1 56.9 103.8 92.8 82.1 52.6

930 87.9 83.9 69.5 57.4 103.6 93.2 84.3 57.5

960 88.3 85.7 71.5 58.3 103.7 93.9 85.1 58.8

990 90.1 85.9 73.2 54.9 103.7 94.6 85.6 55.2

1020 91.5 80.6 74.3 55.8 103.7 95.7 85.7 60.0

1050 92.5 82.9 75.1 60.8 103.9 96.9 86.1 52.6

1080 94.6 83.7 76.3 61.2 104.2 97.5 86.2 53.8

1110 96.8 83.2 77.9 61.4 104.6 97.9 96.8 55.7

1140 97.9 86.9 79.4 58.4 105.8 98.3 86.9 57.2

1170 99.6 87.0 79.7 58.7 106.3 98.6 86.9 57.3

Table 4.1 Temperatures at each distance from the electrode at each 30 second time interval for 

the control (600mA RF) and the BETA (9V DC and 600mA) experiments at 5, 10, 15 and 

20mm from the electrode.
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Table 4.1 Temperatures at each distance from the electrode at each 30 second time interval for 

the control (600mA RF) and the BETA (9V DC and 600mA) experiments at 5, 10, 15 and 

20mm from the electrode.

Temperature Base Data Experiments 5 & 6 (˚c)
No. Control BETA Control BETA
Time 
(sec)

5 5 6 6

0 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

30 19.3 20.4 20.0 18.6 21.7 18.3 21.7 16.4 19.7 21.6 22.3 19.4 24.9 22.3 22.1 20.6

60 22.5 22.8 22.3 18.6 28.6 23.7 23.1 17.7 25.8 25.4 23.5 19.8 39.8 31.2 27.2 22.0

90 28.6 23.0 22.7 19.7 45.1 29.7 28.3 19.0 30.1 31.7 24.7 20.0 49.8 42.0 36.4 23.6

120 33.4 24.5 23.1 29.9 55.0 35.6 34.3 20.5 35.4 37.4 25.6 20.4 53.6 48.9 42.1 24.7

150 38.7 31.2 24.0 20.0 60.3 40.5 39.0 22.1 47.6 42.5 26.6 21.3 55.9 53.3 45.5 25.1

180 40.3 37.9 24.9 20.1 63.5 44.2 42.5 23.7 54.9 46.8 27.6 22.3 57.2 56.2 52.1 25.6

210 45.8 43.2 25.9 21.3 66.0 47.2 45.2 25.4 60.0 50.3 28.7 23.3 50.3 58.7 52.8 26.8

240 50.9 48.0 26.9 22.2 68.2 49.9 47.4 27.1 64.0 53.1 29.8 24.3 63.2 60.2 53.5 27.8

270 54.1 52.3 28.0 23.6 69.7 52.3 49.4 28.8 67.4 55.9 31.0 25.3 65.9 61.5 54.2 28.0

300 57.8 56.4 29.3 24.4 71.0 54.3 51.1 30.4 70.4 58.7 32.2 26.4 67.5 62.5 54.8 30.5

330 63.0 59.3 30.6 26.7 72.1 56.4 52.6 31.9 73.2 61.3 33.4 27.5 70.5 63.3 55.3 32.8

360 67.3 61.8 31.9 29.0 73.2 58.3 53.9 33.4 75.7 63.5 34.6 28.5 73.9 64.3 55.8 35.1

390 71.0 64.4 33.4 31.1 74.0 60.1 55.1 34.7 78.0 65.8 35.8 29.6 75.6 65.3 56.3 36.8

420 74.2 66.0 34.4 33.1 74.9 61.7 56.2 35.9 80.2 67.5 36.3 30.6 77.6 65.9 57.9 37.4

450 77.0 68.9 35.6 35.1 75.6 63.0 57.2 37.1 82.1 69.4 36.9 31.6 78.8 66.6 58.5 38.6

480 79.6 71.3 35.9 37.0 76.2 64.4 58.1 38.2 83.7 71.3 37.4 32.6 79.6 67.3 58.9 39.8

510 82.2 73.6 38.6 38.9 76.8 65.6 58.9 39.2 85.3 72.6 38.2 33.5 80.6 68.0 59.2 41.4

540 84.9 76.8 41.3 39.2 77.5 66.7 59.7 40.1 86.6 75.9 38.7 34.5 81.5 68.6 59.6 42.2

570 87.8 79.2 41.5 39.6 78.2 67.7 60.3 41.1 88.0 78.3 39.1 35.5 82.4 69.2 59.9 43.6

600 88.6 80.2 41.6 39.9 79.1 68.9 61.0 42.0 89.5 79.7 39.6 36.4 83.5 69.8 60.3 44.9

630 89.7 81.7 42.1 40.1 79.9 70.1 61.6 43.0 91.0 80.1 40.0 37.4 84.7 70.2 61.1 46.0

660 90.8 82.6 42.5 40.3 80.9 70.8 62.2 43.9 85.3 70.7 61.9 47.3

690 91.6 82.8 42.8 40.4 82.0 71.9 62.9 44.7 86.3 71.2 62.6 49.6

720 92.4 84.9 43.2 40.7 83.1 72.8 63.8 45.3 87.3 71.5 63.2 52.3

750 93.6 85.9 43.9 40.9 84.5 74.0 64.8 46.0 87.6 71.0 63.7 55.3

780 94.8 86.8 44.3 41.0 85.6 75.1 65.7 46.6 89.9 71.2 64.1 59.9

810 86.9 78.3 66.5 47.6 89.5 71.4 64.5 64.1

840 87.9 81.4 67.3 48.9 89.9 71.6 64.8 66.4

870 88.4 82.7 68.1 51.4 84.7 71.8 65.3 55.3

900 89.0 85.1 69.1 56.8 89.9 71.8 65.7 55.4

930 87.9 86.7 69.5 56.3 90.9 72.3 66.1 53.7

960 88.4 87.9 70.8 56.6 91.6 74.3 66.7 54.0

990 90.1 81.1 71.9 59.3 85.3 75.4 67.7 58.6

1020 91.6 86.5 72.7 55.9 82.7 76.2 69.0 51.7

1050 93.5 84.6 72.5 57.1 92.0 76.8 70.1 56.1

1080 95.8 85.4 73.8 57.6 92.8 76.9 71.4 56.7

1110 97.9 86.7 74.9 56.9 93.7 77.0 73.9 56.9

1140 98.6 87.1 75.4 57.2 94.8 77.0 76.3 57.3

1170 99.4 87.2 76.0 57.5 96.8 77.4 77.3 57.9
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Temperature Base Data Experiments 7 & 8 (˚c)
No. Control BETA Control BETA
Time 
(sec)

7 7 8 8

0 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

30 23.9 24.7 24.0 23.9 22.0 22.0 24.1 22.0 24.1 24.7 24.1 24.0 25.0 25.0 22.5 21.7

60 31.5 27.8 24.3 24.1 32.0 28.0 27.8 23.6 31.4 27.8 24.3 24.3 28.5 26.3 29.3 22.5

90 35.3 33.5 24.7 24.5 37.5 34.0 31.9 25.6 35.6 33.5 25.2 24.7 33.4 30.2 36.7 23.3

120 40.1 38.7 25.1 24.7 44.7 41.7 35.8 28.0 40.2 38.7 26.2 25.1 37.2 35.7 38.6 24.3

150 46.0 43.5 25.6 25.6 58.5 51.3 39.2 30.5 45.7 43.5 27.1 25.6 41.6 40.7 40.9 25.6

180 50.6 47.4 26.1 25.9 67.4 58.5 42.1 31.7 51.2 47.4 28.0 26.1 52.1 50.2 42.7 27.0

210 54.0 50.6 26.7 26.4 72.1 62.4 44.6 32.8 57.8 50.6 28.6 26.7 60.9 57.7 47.5 28.6

240 57.2 53.3 27.4 27.4 75.5 65.7 46.9 33.6 62.9 53.3 29.5 27.4 66.6 63.4 51.8 30.1

270 60.0 56.5 28.1 28.5 77.9 68.3 48.9 34.6 67.0 56.5 30.8 28.1 70.2 67.4 55.4 31.7

300 62.4 61.1 28.8 29.1 80.0 70.3 50.7 35.1 70.4 61.1 31.4 28.8 73.2 71.8 58.6 33.2

330 64.6 64.1 29.6 30.7 81.8 72.2 52.4 35.9 73.4 64.1 32.1 29.6 75.1 74.8 61.7 34.6

360 66.5 65.4 30.3 31.2 83.3 73.9 53.9 36.6 75.8 65.4 33.4 30.3 76.3 76.7 64.6 36.0

390 68.5 66.8 31.1 32.0 84.6 75.3 55.3 37.4 78.0 66.8 34.7 31.1 77.4 78.1 67.0 37.2

420 70.2 68.2 31.9 33.1 86.9 77.1 56.7 38.6 79.7 68.2 35.9 31.9 78.5 80.1 69.5 38.5

450 71.9 70.6 32.6 34.2 89.4 79.0 58.0 39.8 81.4 69.7 36.1 33.6 79.8 81.8 72.0 39.7

480 73.5 72.5 33.9 35.4 92.0 80.9 59.3 40.7 82.9 72.5 37.1 33.9 81.3 83.3 73.5 40.9

510 75.0 75.7 35.1 36.5 94.1 82.6 60.6 41.5 84.2 74.1 38.2 34.8 82.8 83.4 74.4 41.8

540 78.2 77.1 36.8 37.5 95.1 82.7 61.7 42.2 85.3 74.6 39.3 36.8 84.2 83.6 75.8 42.6

570 80.6 78.6 38.0 38.6 95.9 83.0 62.8 43.6 86.3 75.0 40.4 38.7 85.2 83.9 76.7 43.9

600 82.4 81.7 39.7 39.5 95.5 83.4 63.8 44.9 87.2 75.3 41.4 39.3 86.3 84.2 76.9 44.5

630 84.9 82.3 41.0 40.5 96.1 83.6 65.1 45.8 88.1 75.9 42.4 40.2 89.4 84.5 77.8 45.6

660 96.6 83.9 68.7 47.3 89.4 76.1 43.4 40.5 92.0 85.5 78.3 46.8

690 96.8 84.2 71.4 49.6 89.6 76.5 44.1 40.2 94.1 86.8 78.9 47.9

720 96.9 84.5 73.6 50.4 91.0 76.9 45.2 41.3 95.1 86.9 79.1 48.8

750 97.0 85.5 75.9 51.7 92.3 77.1 46.5 42.7 96.3 87.3 79.4 49.5

780 98.1 86.8 78.0 52.7 92.5 77.2 47 43.6 97.1 87.6 79.8 51.3

810 99.2 86.9 80.2 53.8 98.2 88.1 80.0 52.7

840 100.2 87.3 83.5 54.9 98.5 88.3 80.3 53.8

870 98.3 87.6 89.7 54.9 98.8 89.1 81.2 55.5

900 99.8 88.1 85.2 55.9 99.1 90.2 81.4 53.3

930 100.3 88.3 85.1 53.8 99.7 91.0 81.6 54.2

960 100.6 88.9 86.0 54.3 100.1 91.4 81.8 54.8

990 100.8 89.1 85.3 54.7 100.3 91.5 81.9 51.2

1020 100.8 89.3 84.0 56.7 100.4 91.8 82.0 55.0

1050 101.5 90.6 87.3 57.4 101.5 92.8 82.1 55.7

Table 4.1 Temperatures at each distance from the electrode at each 30 second time interval for 

the control (600mA RF) and the BETA (9V DC and 600mA) experiments at 5, 10, 15 and 

20mm from the electrode.
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Temperature Base Data Experiments 9 & 10 (˚c)
No. Control BETA Control BETA
Time 
(sec)

9 9 10 10

0 5 10 15 20 5 10 15 9.2 5 10 15 20 5 10 15 20

30 25.8 20.5 17.2 23.9 25.1 26.2 25.1 22.6 14.8 23.1 11.0 18.8 19.2 14.5 22.4 21.7

60 30.3 24.9 25.0 24.1 28.3 34.0 27.5 24.7 26.2 24.3 11.3 24.5 38.3 23.2 33.2 22.5

90 35.8 26.4 25.8 24.4 29.4 39.8 28.3 27.0 35.7 29.3 13.2 25.4 51.7 36.2 44.4 23.6

120 40.1 32.6 26.9 24.9 33.4 44.0 31.2 29.3 42.4 34.4 15.4 26.3 59.9 47.3 47.6 24.8

150 43.8 38.9 27.7 25.3 35.2 47.3 33.1 31.4 47.3 38.5 17.7 27.5 63.1 55.4 49.3 26.2

180 48.5 44.2 28.5 25.8 35.2 50.0 33.7 33.4 51.2 41.8 19.9 28.8 66.2 61.6 51.7 27.6

210 55.3 48.4 29.3 26.3 37.0 52.0 35.6 35.1 54.7 44.4 22.1 30.1 68.9 65.8 53.5 29.1

240 62.6 52.1 30.1 26.8 37.6 53.8 36.1 36.7 57.9 46.8 24.5 31.4 71.6 68.9 55.7 30.7

270 67.2 55.3 31.0 27.4 41.6 55.3 40.2 38.1 60.8 48.9 27.1 32.6 73.6 71.4 57.8 32.2

300 70.8 58.2 31.9 28.0 47.8 56.7 44.3 39.4 63.3 50.8 29.6 33.9 75.3 73.4 59.1 33.9

330 73.1 60.6 32.9 28.6 53.4 58.1 48.8 40.5 65.4 52.6 32.1 35.1 76.5 74.8 61.8 35.2

360 75.7 62.7 34.0 29.2 57.9 59.5 52.5 41.6 67.4 54.4 34.3 36.2 77.4 75.7 63.7 36.5

390 78.2 64.8 35.1 29.8 61.5 61.1 55.8 42.7 69.3 56.4 36.4 37.3 78.2 76.7 64.3 37.7

420 80.7 65.2 36.1 30.4 64.4 62.8 58.8 43.6 71.8 58.6 38.5 38.4 79.1 77.6 66.1 38.9

450 83.0 67.8 37.9 31.6 66.9 64.2 61.4 44.6 74.7 61.5 40.3 39.5 80.1 78.4 67.7 40.1

480 84.7 70.2 38.6 32.2 69.1 65.6 63.6 45.5 77.5 65.5 42.2 40.4 81.2 79.4 70.6 41.2

510 86.3 73.1 39.2 33.4 70.9 67.1 65.5 46.3 80.3 68.3 43.3 41.2 82.4 80.3 73.0 42.3

540 87.7 75.2 39.7 34.0 72.4 68.8 67.0 47.1 82.6 70.1 44.1 41.9 84.9 80.5 76.8 43.4

570 89.0 76.7 40.1 34.6 73.8 70.3 68.3 48.0 84.4 72.4 45.1 42.4 88.5 80.8 77.6 44.5

600 90.1 79.1 40.7 35.1 75.1 71.6 69.5 48.8 86.3 74.8 45.5 42.8 91.0 81.8 78.9 45.6

630 76.3 72.8 70.4 49.6 88.2 75.6 45.9 43.0 92.5 83.1 79.5 46.7

660 77.5 73.7 71.1 50.5 89.1 76.8 46.0 43.2 93.5 83.8 80.3 47.8

690 78.6 74.6 71.8 51.5 90.1 77.0 46.2 43.3 94.4 84.6 81.7 48.2

720 79.7 75.8 72.6 52.6 90.9 77.2 46.5 43.5 95.2 85.3 82.7 48.9

750 80.7 77.3 73.3 53.9 91.6 77.4 46.8 43.6 95.9 85.7 82.9 49.3

780 81.8 78.5 74.1 54.1 93 77.5 47 43.6 96.7 85.9 83.0 50.2

810 82.8 79.6 74.8 54.5 97.0 86.0 83.1 51.5

840 83.7 80.2 75.4 55.1 97.6 86.3 83.4 52.1

870 84.3 81.2 76.0 55.9 98.0 86.9 83.7 51.7

900 84.9 82.6 76.6 56.0 98.4 87.1 83.9 53.9

930 85.2 83.5 77.0 56.7 99.2 87.5 84.0 55.8

960 88.9 83.9 77.3 56.9 100.4 88.1 84.2 57.1

990 90.1 83.3 77.6 57.1 101.0 88.3 84.3 53.9

1020 91.7 84.1 77.9 57.8 101.6 88.6 84.7 57.1

1050 92.6 84.3 78.3 58.2

1080 93.9 84.8 78.7 58.4

1110 94.9 85.1 79.1 58.6

1140 96.2 85.6 79.6 58.8

1170 98.2 86.8 80.0 59.0

Table 4.1 Temperatures at each distance from the electrode at each 30 second time interval for 

the control (600mA RF) and the BETA (9V DC and 600mA) experiments at 5, 10, 15 and 

20mm from the electrode.
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Temperature Base Data Experiments 11 & 12 (˚c)
No. Control BETA Control BETA
Time 
(sec)

11 11 12 12

0 5 10 15 20 5 10 15 20 5 10 15 20 5 15 10 20

30 12.7 20.1 18.7 12.7 18.8 23.6 18.8 23.4 15.5 21.4 19.0 15.3 14.0 13.5 28.6 25.1

60 33.8 28.4 20.1 15.0 26.9 24.7 21.9 23.6 29.2 27.2 20.9 16.3 19.4 18.3 32.2 26.7

90 47.5 35.7 21.6 17.0 37.2 27.0 26.2 25.6 36.7 32.4 22.9 16.9 27.5 26.4 35.5 28.4

120 54.9 41.3 23.2 18.4 42.8 29.3 30.2 28.0 40.2 36.6 25.1 17.3 39.7 43.5 38.3 30.2

150 61.0 45.6 25.0 19.6 47.3 36.7 32.3 30.5 47.8 40.0 27.3 18.3 47.8 54.3 40.8 32.0

180 65.9 49.5 26.7 20.7 49.2 38.1 38.1 31.7 53.6 43.0 29.5 19.3 54.4 60.1 43.1 33.7

210 69.8 53.2 28.5 21.8 51.2 39.4 40.2 32.8 58.0 45.6 31.7 20.5 59.0 64.5 45.0 34.5

240 73.2 56.6 30.3 22.9 53.7 40.5 42.1 33.6 61.4 47.9 33.8 21.7 62.3 68.0 46.9 35.1

270 75.8 57.8 31.5 23.9 54.8 51.7 43.5 34.6 64.5 50.0 35.9 22.9 65.1 70.9 48.6 35.7

300 77.9 59.6 31.8 24.8 55.8 53.5 50.3 35.1 67.1 51.9 37.8 24.1 67.0 73.5 50.4 36.8

330 79.6 61.6 32.0 25.8 61.4 55.7 55.6 35.9 69.6 53.7 39.8 25.4 68.4 75.7 52.2 37.2

360 81.1 64.7 32.6 26.7 62.7 57.8 56.7 36.6 72.0 55.4 41.6 26.6 70.2 77.9 53.9 37.9

390 82.6 68.8 32.9 27.6 64.3 59.1 57.1 37.4 74.4 57.0 41.9 27.8 72.0 80.6 55.5 38.3

420 84.0 69.4 33.5 28.4 65.8 61.8 57.8 38.6 76.8 58.6 42.2 28.9 73.6 82.9 57.1 39.7

450 85.1 70.4 34.7 29.3 66.9 63.7 58.4 39.8 78.8 60.3 42.4 30.0 75.6 85.2 58.7 40.2

480 86.1 71.6 35.8 30.1 67.8 64.3 59.8 40.7 80.6 62.6 42.6 31.0 77.6 86.8 60.1 40.8

510 87.0 72.7 36.8 30.9 68.9 66.1 61.4 41.2 82.3 64.7 42.9 32.0 80.1 88.3 61.4 41.1

540 87.8 73.4 37.4 31.7 70.1 69.3 63.6 41.5 83.8 65.6 43.7 32.9 83.1 88.6 62.7 42.5

570 88.6 75.6 38.9 32.5 71.6 71.4 66.1 42.2 85.3 66.8 44.8 33.9 85.7 89.5 63.8 43.9

600 72.8 73.1 68.4 43.6 86.8 67.8 44.9 34.7 86.9 86.3 65.0 44.3

630 73.7 74.8 69.6 44.1 88.2 68.9 45.0 35.6 88.5 84.7 66.0 45.2

660 76.3 76.4 72.4 44.9 90.1 70.5 45.1 36.4 89.1 85.3 66.7 45.4

690 79.9 78.2 73.3 45.8 90.6 72.6 45.6 37.1 90.2 85.9 67.5 46.6

720 83.1 79.5 73.9 46.3 91.2 74.8 45.7 38.2 92.4 86.0 69.9 47.7

750 86.4 82.5 74.0 47.3 91.8 76.3 45.8 39.6 93.6 87.4 71.6 48.6

780 88.8 83.6 74.2 48.4 92.7 77.9 46 41.1 94.1 88.5 73.0 49.9

810 90.7 84.3 74.6 49.6 95.2 88.9 74.1 51.2

840 90.2 84.3 74.8 50.4 96.7 89.4 75.1 52.6

870 91.3 85.7 75.0 53.2 97.8 89.9 77.4 56.9

900 91.8 86.2 75.6 57.3 98.3 90.4 77.6 53.6

930 93.0 86.9 75.7 53.4 99.4 90.3 77.5 50.0

960 94.2 87.0 76.0 53.9 99.8 90.5 78.1 50.6

990 96.3 87.3 76.5 54.9 100.2 90.5 78.2 56.9

1020 97.4 87.5 76.8 55.2 101.3 90.6 78.6 57.0

1050 98.4 87.9 77.0 56.0

Table 4.1 Temperatures at each distance from the electrode at each 30 second time interval for 

the control (600mA RF) and the BETA (9V DC and 600mA) experiments at 5, 10, 15 and 

20mm from the electrode.
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Temperature Base Data Experiments 13 & 14 (˚c)
No. Control BETA Control BETA
Time 
(sec)

13 13 14 14

0 5 10 15 20 5 10 15 20 5 10 15 20 5 15 10 20

30 19.5 19.7 19.7 18.7 17.8 23.8 18.3 24.0 22.4 21.3 23.4 20.9 20.8 20.8 21.8 18.3

60 30.2 23.6 20.9 19.9 19.0 16.5 19.3 20.2 24.3 25.3 22.1 22.1 24.6 20.5 25.9 19.2

90 40.4 28.5 21.9 20.8 26.1 16.2 23.8 16.5 34.2 30.8 23.6 23.1 27.9 27.9 30.0 20.3

120 46.9 33.2 23.0 21.6 35.4 16.1 28.4 16.4 42.1 35.6 24.7 23.9 27.9 28.0 33.9 21.5

150 52.2 37.5 24.1 22.2 42.7 17.8 32.3 17.0 47.5 39.6 25.9 24.7 27.9 27.9 37.4 22.8

180 56.6 41.2 25.3 22.8 48.2 23.7 35.8 18.7 51.6 42.8 27.1 25.6 38.5 39.7 40.4 25.5

210 60.0 44.4 26.7 23.5 53.1 31.9 39.1 20.7 55.0 45.7 28.3 26.6 54.5 53.5 43.1 26.8

240 65.4 47.5 28.1 24.7 57.9 39.5 42.0 23.1 57.8 48.2 29.6 27.6 63.2 59.6 45.5 28.0

270 67.5 50.7 29.5 25.4 60.7 44.9 44.6 25.7 60.3 50.5 30.8 28.6 68.8 63.7 47.5 29.2

300 69.3 56.9 30.9 26.0 62.8 48.9 46.9 28.4 62.4 52.7 32.0 29.7 74.7 67.8 49.3 30.4

330 72.2 62.0 32.3 27.3 64.5 52.1 49.2 31.3 64.3 54.9 33.2 30.7 79.7 71.8 50.9 31.5

360 74.6 63.2 32.5 28.6 66.1 54.7 51.2 33.9 66.0 57.1 34.3 31.8 81.3 73.4 52.4 32.5

390 76.8 65.2 33.0 29.8 67.6 56.9 53.1 36.2 67.5 59.3 35.4 32.9 81.4 73.8 53.7 33.5

420 78.7 66.9 33.3 31.0 69.0 58.7 55.0 38.3 74.8 61.8 36.4 33.9 82.6 75.1 55.0 34.5

450 79.5 68.4 33.4 31.6 70.2 60.1 56.8 40.1 78.9 64.9 37.4 35.0 83.4 76.2 56.3 35.4

480 80.4 70.1 33.8 32.1 71.2 61.4 58.7 41.7 80.6 67.0 38.4 35.3 84.6 77.7 57.7 36.3

510 83.2 71.6 34.0 33.3 72.2 62.5 60.6 43.4 84.9 68.9 39.3 35.8 85.2 78.9 58.9 37.2

540 84.7 72.6 34.4 33.8 73.2 63.5 62.3 45.0 87.8 70.3 40.1 36.0 86.0 80.6 60.1 38.8

570 86.9 73.5 36.4 34.4 74.2 64.6 64.0 46.6 88.4 72.8 41.0 36.6 86.6 82.4 61.3 40.5

600 88.1 74.6 38.5 35.4 75.1 65.8 65.6 47.8 89.6 73.1 42.6 36.9 87.3 83.8 64.6 42.0

630 89.3 75.7 40.1 37.8 75.8 67.5 67.0 49.1 90.1 73.9 43.1 37.2 88.3 83.6 67.9 42.7

660 90.4 79.8 40.6 38.3 76.4 69.1 68.2 50.4 90.5 74.2 44.7 37.9 88.9 84.1 69.0 43.4

690 91.4 80.2 41.4 39.1 76.7 70.5 69.3 51.6 91.0 75.0 45.3 38.4 89.3 85.1 70.7 44.2

720 91.6 81.3 42.6 39.3 77.2 72.0 70.4 52.4 91.4 75.8 46.1 39.0 90.5 85.8 72.9 45.0

750 92.0 82.6 43.4 39.6 77.5 73.2 71.6 53.7 92.0 76.5 46.5 40.4 91.4 87.0 73.9 46.5

780 92.5 78.8 45.3 41.1 75.8 74.4 70.7 55.1 92.7 77.5 47 41.6 92.6 87.5 75.8 47.8

810 77.9 75.4 72.3 55.7 93.7 87.9 76.8 48.2

840 79.0 76.4 73.8 56.8 94.8 88.4 77.9 50.3

870 82.5 80.6 75.1 51.9 95.4 88.8 81.6 51.4

900 84.6 82.6 76.0 52.9 97.0 89.7 79.4 52.6

930 86.3 82.0 77.4 55.0 98.3 90.1 84.7 54.8

960 88.0 82.7 78.3 55.6 99.1 90.4 85.2 56.9

990 89.3 84.3 78.9 56.1 100.5 90.8 85.6 58.4

1020 90.4 86.0 79.4 56.5 101.2 91.0 85.8 60.0

Table 4.1 Temperatures at each distance from the electrode at each 30 second time interval for 

the control (600mA RF) and the BETA (9V DC and 600mA) experiments at 5, 10, 15 and 

20mm from the electrode.
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Temperature Base Data Experiments 15 & 16 (˚c)
No. Control BETA Control BETA
Time 
(sec)

15 15 16 16

0 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

30 24.0 21.8 21.0 21.6 23.3 24.6 23.0 22.4 20.9 21.7 20.7 21.8 24.8 26.3 23.7 20.9

60 32.4 25.8 21.8 22.5 27.8 26.4 27.4 23.2 27.7 23.3 21.0 22.9 26.7 26.6 26.9 21.2

90 39.3 31.3 22.9 23.5 28.3 28.1 28.5 24.1 34.7 31.4 21.8 24.9 35.3 32.8 30.3 21.5

120 44.8 36.0 24.1 24.6 33.3 29.6 29.1 25.1 40.5 38.9 22.9 26.1 44.6 39.8 33.6 22.0

150 49.0 40.1 25.5 25.7 45.1 31.1 30.5 26.2 45.6 44.9 24.1 27.0 51.3 45.7 37.1 22.7

180 52.2 43.7 27.0 26.9 53.3 32.5 32.3 27.4 49.6 49.6 25.5 28.0 56.3 51.0 40.7 23.5

210 57.2 47.0 29.8 28.1 58.2 33.8 34.1 28.5 52.7 53.4 27.0 29.0 60.3 55.4 43.9 24.4

240 59.5 49.9 31.1 29.3 61.4 37.2 35.5 29.7 55.6 56.7 28.4 30.0 63.2 58.7 47.0 25.5

270 61.5 52.6 32.4 30.5 63.3 38.3 36.7 30.9 58.2 59.6 29.8 31.2 65.3 60.7 50.1 26.7

300 63.4 55.3 33.6 31.7 64.6 39.3 37.9 32.0 60.7 62.5 31.1 32.3 67.1 63.7 52.8 28.0

330 68.5 58.0 36.8 32.9 66.0 42.6 38.9 33.1 63.1 65.9 32.4 33.4 69.5 65.1 55.0 29.2

360 70.0 60.4 37.7 34.0 67.5 43.3 39.7 34.1 67.2 69.8 33.6 33.9 70.4 66.1 57.4 30.6

390 71.3 61.7 38.6 34.5 68.8 44.9 40.4 35.2 70.9 71.3 34.7 34.2 71.1 66.7 59.8 32.0

420 73.4 62.6 40.2 34.7 70.2 49.2 41.1 36.1 72.8 72.6 35.8 34.7 73.4 68.8 62.0 33.4

450 77.4 64.8 41.0 34.9 71.7 50.8 43.7 37.0 76.5 73.8 36.8 35.0 74.7 70.2 63.8 34.8

480 81.3 68.4 42.4 35.2 73.6 52.1 44.5 37.9 80.3 74.7 37.7 35.7 76.3 72.0 65.5 36.1

510 83.2 69.7 43.0 35.8 75.8 53.4 45.3 38.7 82.0 76.8 38.6 36.0 78.8 74.0 66.9 37.3

540 87.0 71.3 44.9 36.0 78.3 56.2 46.2 39.6 85.0 78.0 39.4 36.2 79.4 74.5 68.3 38.6

570 89.7 73.1 45.5 36.2 81.6 57.8 47.1 40.5 86.3 81.3 40.2 36.4 81.1 75.8 69.6 39.7

600 91.5 75.6 46.2 36.8 84.1 59.5 48.0 41.9 88.9 82.0 41.0 37.0 82.6 77.1 70.7 40.8

630 92.9 77.9 47.4 37.0 86.1 62.8 51.4 42.9 92.0 82.9 41.7 37.8 83.3 77.6 71.7 41.8

660 87.8 64.1 53.0 43.8 83.7 77.8 72.8 42.8

690 89.8 67.3 58.2 44.7 84.5 78.4 73.9 43.8

720 90.2 70.2 61.4 45.7 85.6 79.4 74.6 44.7

750 92.9 72.6 63.3 46.7 86.1 81.3 75.1 45.6

780 94.4 74.1 64.6 47.8 87.8 81.4 75.8 46.4

810 97.9 76.8 66.0 49.0 89.8 82.6 76.2 47.2

840 98.5 78.2 68.8 50.2 90.2 83.4 76.7 47.9

870 99.2 78.9 70.9 48.6 92.9 84.6 76.9 53.8

900 100.4 81.1 73.6 54.4 94.4 85.2 77.0 52.3

930 101.2 88.1 75.9 55.6 97.9 86.0 77.2 56.5

960 102.0 89.5 77.5 58.9 98.5 87.3 77.9 56.9

990 103.5 90.2 78.3 60.2 99.2 88.3 78.0 57.2

1020 105.7 90.6 79.0 60.5 100.4 88.9 78.1 57.4

Table 4.1 Temperatures at each distance from the electrode at each 30 second time interval for 

the control (600mA RF) and the BETA (9V DC and 600mA) experiments at 5, 10, 15 and 

20mm from the electrode.
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Temperature Base Data Experiments 17 & 18 (˚c)
No. Control BETA Control BETA
Time 
(sec)

17 17 18 18

0 5 10 15 20 5 10 15 20 5 10 15 20 5 15 10 20

30 21.2 22.4 21.8 22.2 24.3 21.8 22.3 21.3 23.0 22.0 23.0 21.9 24.7 23.9 23.0 23.3

60 27.2 24.1 23.3 22.6 29.6 28.6 25.8 22.6 29.6 24.5 23.0 22.3 28.7 25.6 23.3 23.6

90 35.0 29.1 25.5 23.4 48.0 35.6 29.5 24.3 34.8 29.9 23.5 23.1 40.7 29.3 23.6 23.7

120 41.5 34.2 28.0 24.2 59.9 38.4 34.0 26.1 42.2 35.0 23.8 23.9 51.0 34.0 24.1 23.9

150 46.7 38.5 30.7 25.2 66.7 41.1 38.3 27.8 46.9 39.6 24.0 24.7 56.7 38.3 30.0 24.8

180 51.1 42.1 31.5 26.3 70.8 45.5 41.6 29.6 50.6 43.2 24.6 25.6 60.0 41.7 37.3 25.9

210 54.8 45.1 31.2 27.5 74.1 49.4 44.2 31.4 57.0 46.2 25.3 26.5 62.8 40.5 43.4 27.1

240 57.9 47.7 32.0 28.7 76.1 52.6 46.4 33.2 62.5 49.0 26.2 27.6 65.5 57.9 48.0 28.5

270 60.6 50.0 32.8 30.0 77.2 55.4 48.3 35.1 67.1 51.8 27.0 28.7 68.2 55.1 51.5 30.0

300 62.9 52.1 33.5 31.1 78.9 57.7 50.3 36.9 71.3 54.5 27.9 30.0 71.6 57.1 54.1 31.6

330 65.2 54.0 34.2 32.2 79.3 59.6 52.1 38.5 75.1 57.0 28.9 31.6 75.3 59.2 56.3 33.1

360 67.5 55.8 34.9 33.2 79.5 61.4 53.9 40.0 78.6 59.1 29.9 33.5 79.0 61.4 57.9 34.6

390 71.0 57.7 35.5 34.2 82.1 62.9 55.4 41.4 82.4 61.5 30.9 35.2 83.0 63.8 59.4 36.0

420 74.3 59.4 36.2 35.1 82.7 64.3 56.8 42.6 84.4 63.6 31.9 36.9 87.0 65.8 60.6 37.3

450 77.5 61.2 36.8 36.1 83.6 65.8 58.2 43.8 85.9 65.2 33.0 38.6 87.2 71.0 61.7 38.5

480 80.2 63.0 37.5 37.0 84.5 67.1 59.5 44.8 86.9 66.4 33.6 40.8 87.6 71.0 62.8 39.6

510 83.0 64.9 38.1 37.9 84.9 68.4 61.0 45.7 88.0 67.3 34.0 41.3 89.4 72.0 64.1 40.7

540 85.4 66.8 38.4 38.7 85.1 69.6 62.7 46.6 90.2 69.4 35.1 41.7 91.7 73.0 65.2 41.7

570 86.7 68.7 39.1 39.7 85.4 70.8 64.4 47.4 91.5 70.6 35.7 41.9 92.1 73.1 66.3 42.7

600 86.4 70.5 40.0 40.5 85.1 71.9 66.5 48.2 92.2 72.4 36.2 42.6 92.1 73.2 67.4 43.6

630 86.8 72.1 41.8 41.3 84.9 72.9 68.5 48.9 94.1 75.8 37.4 43.4 92.6 73.3 68.5 44.4

660 86.6 73.7 43.5 42.1 86.8 73.8 69.6 49.6 95.7 79.0 38.9 45.0 93.5 75.0 69.8 45.3

690 86.1 75.2 45.1 43.0 88.6 74.7 70.1 50.2 94.4 77.1 71.5 46.1

720 87.0 76.6 46.6 43.9 90.2 75.7 71.4 50.8 94.5 78.4 71.4 47.0

750 89.3 79.1 46.9 44.9 91.8 76.6 72.6 51.4 95.7 79.2 71.9 47.9

780 93.1 80.4 47.0 45.0 93.0 77.5 73.2 52.0 96.9 80.6 72.6 48.8

810 94.6 78.4 74.3 52.6 98.1 81.7 73.1 49.7

840 95.3 79.3 74.8 53.2 98.8 82.4 73.0 50.6

870 97.9 80.1 75.3 51.2 99.5 83.2 73.6 52.5

900 99.3 82.4 75.8 53.2 100.1 83.7 74.0 53.5

930 100.6 84.1 74.7 54.6

960 101.5 84.9 75.0 55.2

990 102.9 85.3 75.2 55.5

1020 104.7 85.8 75.5 55.7

1050 112.6 86.1 75.9 55.9

Table 4.1 Temperatures at each distance from the electrode at each 30 second time interval for 

the control (600mA RF) and the BETA (9V DC and 600mA) experiments at 5, 10, 15 and 

20mm from the electrode.



Appendix 3

BETA 322

Temperature Base Data Experiments 19 & 20 (˚c)
No. Control BETA Control BETA
Time 
(sec)

19 19 20 20

0 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

30 22.9 24.2 24.3 22.3 25.8 23.0 25.4 22.5 17.6 22.4 22.4 16.0 26.0 25.3 24.0 24.3

60 29.4 27.0 24.8 23.5 42.4 31.5 28.3 23.4 25.9 23.3 22.7 17.0 26.9 26.3 26.6 25.0

90 36.2 30.6 25.3 25.0 52.1 35.7 32.7 24.4 33.2 27.0 24.3 18.2 36.0 33.3 29.7 25.6

120 41.4 34.1 25.9 26.5 57.5 39.9 37.0 25.6 38.5 30.6 26.1 19.5 46.2 41.2 32.8 26.0

150 45.6 37.3 26.5 28.2 61.6 43.8 40.6 26.8 42.9 33.7 28.1 20.9 51.8 45.2 37.8 26.9

180 49.1 40.2 27.2 29.9 64.6 48.9 43.4 28.3 46.8 36.5 30.2 22.5 56.6 48.2 40.0 27.4

210 54.4 42.8 27.9 32.9 67.2 51.2 46.2 29.8 50.0 38.9 32.1 24.2 60.2 50.8 43.7 28.4

240 56.5 45.1 28.7 34.2 70.2 53.7 48.6 31.3 52.8 40.9 33.9 25.8 63.3 52.9 45.3 29.0

270 60.0 47.2 29.5 36.6 72.9 55.6 51.2 32.7 55.3 42.7 35.5 27.5 66.2 55.4 48.0 30.1

300 61.4 49.3 30.3 37.7 75.4 57.8 53.5 34.1 57.5 44.4 37.1 29.0 68.7 57.5 49.3 30.7

330 64.0 51.4 31.2 39.7 77.6 60.3 55.8 35.4 59.6 45.9 38.5 30.6 71.0 59.5 52.6 32.6

360 65.2 53.5 32.1 40.7 79.8 62.8 58.4 36.7 62.0 47.1 39.8 32.1 73.2 61.3 53.5 33.3

390 67.8 55.5 33.0 42.4 81.6 64.2 60.0 37.9 74.0 48.3 36.7 33.5 75.1 63.1 54.5 34.1

420 69.5 57.6 33.9 43.2 83.3 67.2 61.2 39.0 77.1 49.2 34.5 35.0 76.7 64.7 57.0 36.9

450 71.4 59.8 34.9 44.1 84.5 69.8 62.7 40.2 78.7 50.6 36.0 36.4 78.3 66.2 60.8 38.4

480 73.6 62.1 36.1 45.0 85.9 70.9 64.0 41.2 82.8 52.1 37.3 37.9 79.9 67.6 61.9 39.8

510 76.6 64.7 37.2 45.9 87.3 72.2 65.2 42.2 86.5 53.6 38.4 39.3 81.4 69.0 62.3 41.1

540 81.1 68.0 38.4 43.3 88.5 74.6 66.3 43.2 88.5 55.3 39.6 39.9 83.1 70.3 64.2 42.4

570 83.0 68.2 39.0 43.4 89.7 75.9 67.4 44.1 89.9 57.2 40.7 40.4 85.0 71.5 66.1 43.7

600 85.7 70.2 39.3 43.6 90.6 76.5 68.5 44.9 91.0 60.7 41.9 40.9 86.8 72.4 67.7 44.9

630 88.9 73.2 39.4 43.9 91.5 77.9 69.8 45.7 91.7 65.7 43.0 41.3 88.3 73.6 69.2 46.1

660 90.2 76.8 40.1 44.1 92.1 78.2 71.3 46.3 92.1 68.6 44.1 41.8 89.4 74.6 70.6 47.3

690 93.1 79.7 72.5 46.9 92.5 71.7 45.3 42.6 91.3 75.7 72.4 48.7

720 94.1 81.0 73.7 47.5 93.7 74.6 46.4 42.8 92.4 77.4 73.1 50.2

750 94.9 82.6 74.9 48.0 94.8 77.9 46.8 43.0 94.5 78.8 73.9 51.5

780 95.7 83.8 75.7 49.0 95.9 80.2 47.0 43.2 95.8 79.9 74.3 52.5

810 97.1 84.9 77.1 50.2 96.2 80.2 74.8 53.7

840 98.2 85.6 78.2 51.4 97.4 80.9 75.6 54.9

870 98.9 86.8 78.5 55.8 98.7 81.3 75.8 55.6

900 99.7 87.0 78.7 56.6 98.9 81.9 76.2 56.1

930 99.5 82.4 76.4 56.2

960 100.1 82.9 76.7 56.7

Table 4.1 Temperatures at each distance from the electrode at each 30 second time interval for 

the control (600mA RF) and the BETA (9V DC and 600mA) experiments at 5, 10, 15 and 

20mm from the electrode.
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BETA MEAN Control Mean
Time 
(sec) 5-BETA 10-BETA 15-BETA 20-BETA 5-Control 10-Control 15-Control 20-Control

0 22 24.5 21.6 22.4 20.6 21.9 26.6 21.1

30 28.2 30.5 24.5 23.5 28.3 24.9 28 22.5

60 37.8 35 30.5 24.3 35.4 29.3 29.1 23.3

90 46.4 38.2 36.4 25.4 40 34.1 31 24.3

120 52 42 41.1 27 45 38.6 32 25.2

150 57.3 45.4 46 28.3 49 42.6 33.3 26.3

180 61.4 48.1 49.5 30 53.2 46.3 34.5 27.4

210 64.4 51.4 53 31 57 48.9 35.6 28.4

240 66.8 54.2 55.2 32.3 60 51.5 36.6 29.5

270 69 56 57.7 33.7 62.7 54.4 37.7 30.5

300 71 58.4 60 35.1 66 57 38.5 31.6

330 72.2 60.3 61.7 37 68.3 59 39.4 32.6

360 74.1 62 63.1 38.2 71.3 61 40.2 33.3

390 75.6 64 64.7 39.5 74 62.4 41.1 34

420 76.7 65.4 66.3 41 76 64.1 41.8 34

450 77.7 67 68 42 78 65.7 42.6 35.8

480 79.2 68 68.9 43 80.5 67.7 43.2 36.6

510 80.4 70 70 44 82.4 69.4 44.2 37.4

540 81.6 71 71 45 84 71.6 45 38.3

570 82.5 72.2 71.7 46 85.6 73.8 44.4 39

600 83.5 74 72.6 47 87.2 75 44.5 39.7

630 84.5 75 75 48 88.4 76.8 44.4 39.7

660 85.9 76.2 76 49 89 77.2 44.6 40.8

690 86.9 78 77.1 50 90 78.1 44.8 41.1

720 88 79.1 77.8 51 91.3 78.6 45 40.9

750 88.9 80.4 78.6 52.2 92.5 79.1 45.3 41.1

780 90 82 79.4 53.3

810 90.8 83 80.2 54.4

840 91.7 83.7 81.1 54.6

870 92.5 84.1 82 55.1

900 93.4 84.7 82.5 55.9

930 94.2 85.7 82.5 56.5

960 94.4 85 83.3 56.3

990 94.7 85.7 83.6 56.3

1020 95.1 85.4 83.8 56.7

1050 95.2 85.8 83.9 57.3

1080 95.4 87.6 84.1 58.7

1110 95.6 89.3 84.2 58.3

1140 95.8 90 84.4 59.4

Table 4.2 The mean temperatures at each distance from the electrode at each 30 second time 

interval for the control (600mA RF) and the BETA (9V simultaneous DC and 600mA RF) 

experiments at 5, 10, 15 and 20mm from the electrode.
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Animal
Control 
(mm)

Control 
(mm)

Mean 
(mm) SD

95% 
CI

BETA 
(mm)

BETA 
(mm)

Mean 
(mm) SD 

95% 
CI

Terminal 
Anaesthesia 
(0D)

10 x 8 10

11.25 1.28 0.89

21 x 18 24

20.9 3.91 2.71

10 x 8 10 23 x 19 23
11 x 9 11 24 x 21 24
11 x 10 11 24 x 23 24
11 x 8 11 22 x 21 22
11 x 9 11 21 x 19 21
12 x 10 12 11 x 7 11
14 x 12 14 23 x 18 23

20 x 18 20
20 x 15 20

Animal
Control 
(mm)

Control 
(mm)

Mean 
(mm) SD

95% 
CI

BETA 
(mm)

BETA 
(mm)

Mean 
(mm) SD

95% 
CI

2 day 
Termination 
(2D)

15 x 13 15

15.13 1.21 0.84

18 x 16 18

25 3.96 2.75

13 x 10 13 28 x 26 28
11 x 10 11 22 x 18 22
16 x 14 16 22 x 20 22
18 x 15 18 25 x 22 25
16 x 13 16 28 x 28 28
16 x 15 16 29 x 27 29
16 x 15 16 28 x 26 28

Animal
Control 
(mm)

Control 
(mm)

Mean 
(mm) SD

95% 
CI

BETA 
(mm)

BETA 
(mm)

Mean 
(mm) SD

95% 
CI

1 week 
Termination 
(14D)

11 x 9 11

11.38 1.19 0.82

15 x 13 15

14.88 1.8 1.25

10 x 8 10 17 x 16 17
11 x 9 11 13 x 11 13
13 x 8 13 17 x 15 17
10 x 9 10 16 x 14 16
13 x 11 13 14 x 12 14
11 x 9 11 15 x 13 15
12 x 9 12 12 x 10 12

Animal
Control 
(mm)

Control 
(mm)

Mean 
(mm) SD

95% 
CI

BETA 
(mm)

BETA 
(mm)

Mean 
(mm) SD

95% 
CI

4 week 
termination 
(28D)

5 x 5 5

7.75 2.05 1.42

12 x 9 12

11.5 1.69 1.17

4 x 3 4 9 x 9 9
9 x 6 9 12 x 11 12
9 x 9 9 14 x 12 14
9 x 7 9 13 x 11 13
8 x 8 8 10 x 7 10
9 x 7 9 10 x 7 10
9 x 8 9 12 x 9 12

Animal
Control 
(mm)

Control 
(mm)

Mean 
(mm) SD

95% 
CI

BETA 
(mm)

BETA 
(mm)

Mean 
(mm) SD

95% 
CI

8 week 
termination 
(56D)

6 x 4 6

5.13 2.03 1.41

12 x 11 12

10.38 1.6 1.11

6 x 5 6 10 x 9 10
8 x 4 8 10 x 9 10
3 x 3 3 7 x 6 7
5 x 5 5 10 x 10 10
7 x 6 7 11 x 10 11
2 x 1 2 12 x 11 12
4 x 4 4 11 x 9 11

Table 5.1 demonstrates the largest short axis diameter ablation zone for each control (600mA 

RF only) and corresponding BETA experiment (600mA, 9V DC) at post mortem examination. 

The mean, standard deviation (SD) and 95% confidence intervals (95% CI) are tabulated.
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