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Abstract 

 45 

The availability of nitrogen varies greatly in the ocean and limits primary productivity over large 

areas. Diatoms, a group of phytoplankton that are responsible for about 20% of global carbon fixation, 

respond rapidly to influxes of nitrate and are highly successful in upwelling regions. Although recent 

diatom genome projects have highlighted clues as to the success of this group, very little is known 

about their adaptive response to changing environmental conditions. Here we compare the proteome 50 

of the marine diatom Thalassiosira pseudonana (CCMP 1335) at the onset of nitrogen starvation with 

that of nitrogen replete cells using 2-dimensional gel electrophoresis. In total 3310 protein spots were 

distinguishable and we identified 42 proteins increasing and 23 decreasing in abundance (fold change 

>1.5, P <0.005). Proteins involved in the metabolism of nitrogen, amino acids, proteins and 

carbohydrates, photosynthesis and chlorophyll biosynthesis were represented. Comparison of our 55 

proteomics data to the transcriptome response of this species under similar growth conditions showed 

good correlation and provided insight into different levels of response. The T. pseudonana response to 

nitrogen starvation was also compared to that of the higher plant Arabidopsis thaliana, the green alga 

Chlamydomonas reinhardtii and the cyanobacterium Proclorococcus marinus. We have found that 

the response of diatom carbon metabolism to nitrogen starvation is different to that of other 60 

photosynthetic eukaryotes and bears closer resemblance to the response of cyanobacteria.  
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Introduction 

 80 

Nitrogen is an essential nutrient for all organisms and is required for the biosynthesis of 

macromolecules, such as proteins, nucleic acids and chlorophyll. The availability of nitrogen in the 

ocean varies dramatically on spatial and temporal scales due to physical and biological processes. As 

for terrestrial plants, nitrogen is a major limiting nutrient for primary production in the ocean, with 

consequences for marine food webs (Falkowski 1997).  85 

 

Diatoms, characterised by their silica frustules, are a key group of the eukaryotic phytoplankton and 

are found throughout the world’s oceans from polar to tropical latitudes. This group is particularly 

successful in upwelling environments, where they are able to rapidly respond to nitrate influx and out-

compete other marine phytoplankton while this nutrient and silicate are abundant (Estrada and Blasco 90 

1979). As much as 20% of global net primary productivity can be accounted for by diatoms, which is 

more than all terrestrial rainforests combined (Nelson et al. 1995; Field et al. 1998), and the sheer 

magnitude of their productivity in upwelling regions provides the basis of short, energy-efficient food 

webs that support large scale coastal fisheries (Mann 1993). Diatoms are also important contributors 

to biological carbon pump that draws carbon down into the deep ocean through the settling of cells.  95 

 

Diatoms belong to the heterkont algae, which arose from a secondary endosymbiotic event when a 

photosynthetic eukaryote, thought to be a red alga, was engulfed by a heterotrophic eukaryotic host 

(Falkowski et al. 2004). The pathway of nitrate assimilation in diatoms is comparable to that of other 

eukaryotic photoautotrophs (Armbrust et al. 2004; Bowler et al. 2008) and there is evidence that some 100 

elements are of endosymbiont origin (Bowler et al. 2010).  

 

Nitrate is taken up into the diatom cell, where it is first reduced to nitrite by a cytosolic NADH-

dependent nitrate reductase (NR) (Gao et al. 1993; Berges and Harrison 1995; Allen et al. 2005). 

Nitrite is then transported into the chloroplast and further reduced to ammonium by a cyanobacterial-105 

like ferredoxin-dependent nitrite reductase (Fd-NiR) (Milligan and Harrison 2000; Bowler et al. 

2010). The joint action of glutamine synthetase (GS) and glutamate synthase (GOGAT) is thought to 

be the main route of ammonium assimilation into amino acids and other nitrogenous compounds 

(Dortch et al. 1979; Clayton and Ahmed 1986; Zehr and Falkowski 1988). Diatoms possess a plastid 

localised glutamine synthetase II (GSII) that is of red algal origin (Robertson et al. 1999; Robertson 110 

and Tartar 2006; Siaut et al. 2007) and thought to be responsible for the assimilation of ammonium 

produced by nitrate reduction. Transcript levels of glnII (encoding GSII) are higher in diatom cells 

assimilating nitrate than in those assimilating ammonium directly (Takabayashi et al. 2005). Diatoms  
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appear to have an NADH-dependent glutamate synthase (NAD(P)H-GOGAT) and also a ferredoxin-

dependent (Fd-GOGAT) form for this enzyme, that is thought to be plastid localised (Clayton and 115 

Ahmed 1986; Zadykowicz and Robertson 2005), however our knowledge on this enzyme is limited. 

The activity of the GS/GOGAT cycle requires input of carbon skeletons in the form of 2-oxoglutarate, 

while oxaloacetate is also important in the production of amino acids. These are both intermediates of 

the tricarboxylic acid (TCA) cycle and provide an important link between nitrogen assimilation and 

carbon metabolism. 120 

 

A number of genes of bacterial origin have been identified in diatom genomes (Armbrust et al. 2004; 

Bowler et al. 2008) and these are thought to have been acquired by horizontal transfer (Allen et al. 

2006). They include a cytosolic NAD(P)H-dependent nitrite reductase (NAD(P)H-NiR) which is 

homologous to nirB of bacteria and fungi, along with a mitochondrial glutamine synthetase III (GSIII) 125 

(Robertson and Alberte 1996; Armbrust et al. 2004; Allen et al. 2006; Siaut et al. 2007). Neither of 

these enzymes has been found in green algae or plants. Genome projects have also revealed that 

diatoms possess a full urea cycle (Armbrust et al. 2004; Bowler et al. 2008), which had not been 

found previously in eukaryotes outside the Metazoa. This pathway is thought to be involved in 

mobilising nitrogen and carbon produced by cell processes back into central metabolism (Allen et al. 130 

2006). The presence of other bacterial-like genes in the diatom genome, such as an ornithine 

cyclodeaminase, which catalyses the conversion ornithine to proline in arginine degradation, might 

expand the function of the urea cycle (Bowler et al. 2010). 

 

Diatoms have an evolutionary history, which is distinct from plants and green algae and this has 135 

brought together a unique combination of genes, providing the potential for novel biochemical 

processes in this group. Although genome and proteome studies offer clues as to the success of 

diatoms (Armbrust et al. 2004; Bowler et al. 2008; Nunn et al. 2009), further investigation is now 

required to understand the adaptive responses of diatoms to dynamic environmental conditions such 

as nutrient availability. 140 

 

Here we compare the proteome of the diatom Thalassiosira pseudonana (CCMP 1335) at the onset of 

nitrogen starvation to that of nitrogen replete cells with the aim of gaining insight into the global 

regulation of metabolic pathways in response to nitrogen starvation. We assess our dataset alongside 

the results of a whole genome tiling-array analysis of T. pseudonana (CCMP 1335) in which the 145 

response to a comparable nitrogen starved condition was measured in a study of biosilification (Mock 

et al. 2008). This enables us to obtain a more detailed picture of the processes affected by nitrogen 

starvation in diatoms, and also gain insight into the levels of their regulation. In addition, through 
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comparison of our findings to higher plants, green algae and cyanobacteria, we demonstrate that the 

distinct evolutionary history of the diatoms has resulted in a fundamentally different metabolic 150 

response to nitrogen starvation compared to other eukaryotic photoautotrophs studied to date.  

 

 

Results and Discussion 

 155 

Physiological Effects of Nitrogen Deprivation 

The onset of nitrogen starvation in T. pseudonana cultures grown with an initial nitrate concentration 

of 30 µM was identified by comparing daily cell counts and Fv/Fm values to nitrogen replete cultures 

grown with an initial nitrate concentration of 550 µM. Cultures grown with 30 µM nitrate were yield-

limited by nitrogen availability at a maximum density of ca. 1 x 106 cell ml-1 on day 4 of the 160 

experiment, whereas cultures with 550 µM nitrate continued to grow to ca. 3 x 106 cell ml-1. From day 

3 to 5 the growth rate of low nitrate cultures was 0.21 d-1 compared to a growth rate of 0.51 d-1 in the 

nitrogen replete control cultures. The efficiency of photosystem II (Fv/Fm) of the low nitrate cultures 

decreased as growth became yield-limited. Fv/Fm was 0.57 in low nitrate cultures on day 4 compared 

to 0.63 in the nitrogen replete cultures and continued to decline, relative to that of nitrogen replete 165 

cultures, throughout the experiment (fig. S1).  

 

Intracellular levels of nitrogenous molecules, such as free nitrate, amino acids and protein give a good 

indication of the nitrogen status of the cell. As the growth of the low nitrate cultures became yield-

limited (day 4), levels of free nitrate and free amino acids were 3-fold lower than in the nitrogen 170 

replete control cultures (fig.1) and protein content was 2.2-fold lower. For the purpose of this study 

this point is considered to be the onset of nitrogen starvation. Furthermore, assuming a total nitrogen 

content of 1 pg per T. pseudonana cell (Berges et al 2002 and S. Chollet, University of East Anglia, 

personal communication), we calculate that, based on cell numbers, the medium of the low nitrate 

cultures would have been completely depleted of nitrate and that to support the cell density achieved 175 

the total cell nitrogen must be reduced, as suggested by the decline in the cellular content of 

nitrogenous compounds reported. 

 

Proteome Comparison 

Proteins are the biochemically active components that define the flux through metabolic pathways. 180 

Therefore, monitoring changes in their abundance provides good insight into how the cell is adapting 

to a specific condition. Here the proteomes of T. pseudonana cultures at the onset of nitrogen 

starvation were compared to those of nitrogen replete cultures using 2-dimensional gel electrophoresis 
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(fig. 2). Following filtering to remove speckling and background 3310 distinct protein spots were 

detected and taken for further analysis, of which 146 spots had a greater than 1.5-fold increase or 185 

decrease in relative abundance between the two treatments (P<0.005, based on t-test).  These were 

picked from the gel and their MALDI-TOF MS analysis after trypsin digestion resulted in the 

identification of 94 spots belonging to 65 unique proteins, of which 42 were increased and 23 

decreased at the onset of nitrogen starvation (table S1).  Several of these proteins were present as 

multiple spots (fig. 2), most probably due to post-translational modifications, such as phosphorylation 190 

affecting the isoelectric point (pI) of the proteins. It should also be noted that not all regulated proteins 

can be identified using this kind of analysis. For example 2-dimensional gels are not optimised for 

membrane bound proteins and very low abundance proteins might also not be detected. Also, if the 

protein mass or pI were outside the range of the gel the protein would not be seen. While a broader pH 

range was tested (data not shown), we found that pH 4-7 gave the best spot separation and the 195 

maximum number of spots detected (fig. 2). The lack of identification of a specific protein thus does 

not prove its stable abundance under the growth conditions tested. 

 

Functional Characterisation of Proteins 

We were interested in the biological significance of changes in relative protein abundance associated 200 

with the onset of nitrogen starvation and proteins were therefore grouped according to the KEGG 

(Kyoto Encyclopedia of Genes and Genomes) categorisation (fig. 3). Proteins involved in nitrogen 

and protein metabolism decreased in abundance along with those of photosynthesis and chlorophyll 

biosynthesis. Carbohydrate and amino acid metabolism were highly represented in both the increasing 

and decreasing groups of proteins, making these processes potentially important in the adaptation of 205 

the cells to nitrogen starvation.  

 

In an independent study on diatom silicon processing Mock et al (2008) compared the transcriptomes 

of the same T. pseudonana isolate grown under comparable, nitrogen starved and control, growth 

conditions by whole-genome tiling array. By assigning the same KEGG categorisation as described 210 

above to differentially regulated transcripts under nitrogen starvation (fold change>2, P<0.05) we 

demonstrate that the functional categories represented by differentially regulated transcripts (Mock et 

al 2008) are similar to those of the proteins described in the present study (fig. 3). 

 

Nitrogen Assimilation 215 

Proteins involved in the reduction of nitrate and nitrite to ammonium, such as NR (ProtID 25299), 

NADPH-NiR (ProtID 26941) and Fd-NiR (ProtID 262125) decreased by 2.5- to 9.5-fold in abundance 

in T. pseudonana at the onset of nitrogen starvation (fig. 4; table 1). Mock et al (2008), however, 
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detected no change in the transcript levels of genes encoding these proteins under comparable growth 

conditions, indicating post-transcriptional regulation of protein accumulation. Indeed, NR is known to 220 

be under multiple levels of regulation in diatoms as in other photosynthetic eukaryotes (Vergara et al. 

1998; Parker and Armbrust 2005). Using GFP fused promoter and terminator elements, it has been 

demonstrated that the transcript levels of nia (encoding NR) are maintained under nitrogen limited 

conditions in the diatom Cylindrotheca fusiformis, but that nitrate is required for its translation 

(Poulsen and Kroger 2005). The decreased abundances of Fd- and NAD(P)H-NiR and the lack of 225 

change in transcript levels of the corresponding genes implies that they might be under similar 

regulation. 

 

Despite a decrease in the abundance of proteins for nitrate and nitrite reduction, members of the 

GS/GOGAT cycle increased in abundance. We measured a 1.6- and 2.2-fold increase in GSIII (ProtID 230 

270138) and NAD(P)H-GOGAT (ProtID 269160) abundance respectively. GSIII is not thought to 

contribute to the assimilation of ammonium derived from nitrate reduction since glnN (encoding 

GSIII) does not follow the diurnal expression pattern of genes involved in nitrate assimilation (NR, 

Fd-NiR and GSII) in the diatom Skeletonema costatum (Brown et al. 2009). Interestingly, GSIII is 

also induced in the cyanobacterium Synechococcus during the early stages of nitrogen deprivation 235 

(Sauer et al. 2000). In addition, Mock et al (2008) measured increased transcript levels of two 

NAD(P)H-GOGAT genes (ProtIDs 29861 and 269160) along with a ferredoxin-dependent form of 

this enzyme (ProtID 269900). Increased capacity for ammonium assimilation thus appears to be 

important in the response of T. pseudonana to nitrogen starvation. There has been limited research 

into diatom GOGAT isoforms, but it seems possible that NAD(P)H-GOGAT and GSIII might act 240 

together in the assimilation of ammonium produced by cellular processes, such as protein catabolism 

under this growth condition. 

 

Diatoms possess a complete urea cycle, which may allow more efficient use of alternative nitrogen 

sources taken up and produced by cellular processes. The increased abundance of a urease (ProtID 245 

30193) was seen in the present study, which could enable the cell to use urea as a nitrogen source in a 

reaction that yields ammonium. However, this protein spot coincided with another protein in the gel 

making it impossible to calculate an accurate fold-change. Mock et al (2008) found decreased 

transcript levels of a carbamoyl phosphate synthase (ProtID 40323), which directs ammonium into the 

urea cycle (Mock et al. 2008).  This is in agreement with an increase in transcript level of carbamoyl 250 

phosphate synthase with the resupply of nitrogen to nitrogen starved Phaeodactylum tricornatum 

(Allen et al. 2011). Despite the decrease in transcript levels of this key enzyme of the urea cycle, an 

N-acetylornithine aminotransferase (ProtID 270136) and an N-acetyl-gamma-glutamyl-phosphate 
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reductase (21290), also members of this pathway, increased in protein abundance. These enzymes are 

considered to be involved in ornithine, and therefore arginine, biosynthesis and their increase might 255 

represent an up-regulation of this process. An upregulation in the production of ornithine may be a 

strategy to conserve reduced nitrogen since, unlike ammonium, this compound does not leak from the 

cell.  Alternatively, under certain conditions these enzymes might function in the opposite direction 

and the enzyme acetylornithine aminotransferase has been shown to catalyse the transamination of 

ornithine in Pseudomonas aeruginosa and Pseudomonas putida in the catabolism of arginine 260 

(Voellmy and Leisinger 1975). The up-regulation of these enzymes might be therefore correlated with 

the degradation of amino acids discussed above.  

 

A urea transporter (ProtID 24250) and an amino acid transporter (ProtID 262236) also increased in 

transcript level, suggesting that T. pseudonana increases its capacity to take up these alternative forms 265 

of nitrogen when nitrate availability is limited. Any source of intra- or extracellular nitrogen must first 

be converted to ammonium before assimilation to amino acids and other nitrogenous compounds. 

This may explain why although nitrate assimilation decreases at the onset of nitrogen starvation, 

ammonium assimilation remains important.  

 270 

Protein and Amino Acid Metabolism 

There is evidence for the remobilisation and redistribution of intracellular nitrogen in T. pseudonana 

at the onset of nitrogen starvation. The cellular protein content of T. pseudonana decreased and 

correspondingly, the abundance of two ribosomal proteins (ProtIDs 21235 and 15259) and a 

translation factor (ProtID 269148) decreased by 1.8- to 3.1-fold in abundance, suggesting that protein 275 

biosynthesis was decreased. Mock et al (2008) found that the transcript levels of a number of 

aminoacyl-tRNA synthetases, which bind specific amino acids to be added to the polypeptide chain 

by the ribosome, decreased under nitrogen starvation in this species. Protein degradation may also be 

increased given that a serine carboxypeptidase (ProtID 15093) increased 2-fold in protein abundance, 

and transcript levels for this gene and a further three proteases (ProtIDs 16390, 17687 and 38360) also 280 

increased (Mock et al. 2008). On the other hand, four other proteases (ProtIDs 29314, 866, 1738 and 

31930) decreased in transcript level (Mock et al. 2008); this may be a response to the reduced protein 

content of the cell or alternatively differential expression of proteases with different substrate 

specificities may play a regulatory role in the response of T. pseudonana to nitrogen starvation.  

  285 

While the total free amino acid content of T. pseudonana decreased at the onset of nitrogen starvation 

the abundance of individual amino acids showed different responses to this growth condition (fig. 5). 

The steady-state levels of many amino acids decreased; notably the most abundant members such as 
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glutamate, histidine, aspartate and serine decreased by 2.9- to 22.8-fold, contributing substantially to 

the decrease of total amino acids seen. On the other hand, leucine, cysteine, isoleucine and valine 290 

increased by 2.1- to 5.4-fold. 

 

Correspondingly, the proteomics and transcriptomics analyses provide evidence for increased amino 

acid catabolism; the most highly increased protein in the current study was a branched chain 

aminotransferase (ProtID 260934) which changed 6.4-fold. This enzyme catalyses the first step in the 295 

degradation of the amino acids valine, leucine and isoleucine. Transcript levels of this gene and one 

other branched chain aminotransferase (ProtID 20816) also increased (Mock et al. 2008). Valine, 

leucine and isoleucine degradation proceeds via a number of oxidation steps, ultimately yielding the 

TCA cycle intermediates acetyl- or succinyl CoA. The transcript levels of an alpha-keto acid 

dehydrogenase complex (ProtIDs 795, 32067 and 36291), and a short-chain acyl-CoA dehydrogenase 300 

(ProtID 269127) that catalyse steps of this pathway, also increased (Mock et al. 2008). The increased 

intracellular valine, leucine and isoleucine levels in T. pseudonana at the onset of nitrogen starvation 

could be responsible for triggering the up-regulation of genes encoding enzymes catalysing their 

degradation.  

 305 

A class V aminotransferase (ProtID 22208), which may be involved in amino acid degradation, 

increased 1.9-fold in protein abundance. However, the transcript level of this gene decreased, as did a 

number of others involved in amino acid catabolism, including genes involved in glycine, serine and 

threonine metabolism and degradation (Mock et al. 2008). The cellular content of these amino acids 

decreased 3- to 4-fold at the onset of nitrogen starvation and may have reached such a level that 310 

transcription of genes involved in their degradation had ceased. The degradation of proteins and 

amino acids produces ammonium, which might be reassimilated by GS/GOGAT enzymes, as 

discussed above. Various carbon skeletons, many of which are also TCA cycle intermediates are also 

produced by this process (fig. 6).  

 315 

It is noteworthy that intracellular levels of the amino acid proline decreased 2.5-fold in T. pseudonana 

at the onset of nitrogen starvation, since this is a major osmolyte in some marine diatoms (Dickson 

and Kirst 1987). Interestingly, we measured a 2.6-fold increase in intracellular 

dimethylsulphoniopropionate (DMSP), from 1.6 mM in nitrogen replete T. pseudonana cultures to 4.3 

mM in cultures at the onset of nitrogen starvation. In addition to being the precursor of the 320 

environmentally important volatile sulphur compound, dimethylsulphide, DMSP is a compatible 

solute that does not contain nitrogen and Andreae (1986) suggested that it might replace nitrogen-

containing osmolytes under nitrogen deprivation. Keller et al (1999) also found that DMSP increased 
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in T. pseudonana under nitrogen limited conditions, whilst the nitrogenous osmolytes including 

glycine betaine and amino acids were depleted. The proteins involved in the DMSP biosynthesis 325 

pathway have yet to be identified, although it is thought that the first step involves the transamination 

of methionine, to yield the 2-oxo acid 4-methylthio-2-oxobutyrate (MTOB) (Gage et al 1997). As 

discussed above, we identified a branched chain aminotransferase (ProtID 260934) as the most highly 

increased protein at the onset of nitrogen starvation and this may therefore be a candidate for the 

enzyme catalysing this step. 330 

 

Photosynthesis 

The down-regulation of photosynthesis is a universal response to nitrogen starvation among 

photosynthetic eukaryotes and accordingly we measured a reduction in the efficiency of photosystem 

II (Fv/Fm) in T. pseudonana under this growth condition. Carbon and nitrogen metabolism are closely 335 

linked, since the assimilation of nitrate to amino acids and nitrogenous compounds is an energy 

consuming process that requires reducing equivalents and carbon skeletons. Reduced nitrate 

assimilation causes excess of these components to accumulate, and the resultant metabolic imbalance 

leads to increased oxidative stress (Logan et al. 1999). Furthermore, photosynthetic carbon fixation 

requires nitrogen in proteins that facilitate electron transport and catalyse photosynthetic reactions. 340 

Lower protein content due to nitrogen starvation could therefore limit the flow of electrons though the 

photosynthetic apparatus, causing increased production of reactive oxygen species (ROS) and thus 

oxidative stress.  

 

Chlorophyll is a nitrogenous macromolecule and reducing its synthesis reduces the nitrogen demand 345 

of the cells and also diminishes the light capturing capacity and ROS production. Therefore it is not 

surprising that five proteins involved in the synthesis of chlorophyll and its precursors decreased by 

1.5- to 2.5-fold in abundance under nitrogen starvation; including a geranylgeranyl reductase (ProtID 

10234), which has been shown to catalyse a critical step in chlorophyll synthesis in vascular plants 

(Tanaka et al. 1999). Transcript levels of six genes involved in chlorophyll biosynthesis (ProtIDs 350 

32201, 26573, 32431, 5077, 262279 and 31012) were also found to decrease (Mock et al. 2008) and 

reduced chlorophyll content (Mock and Kroon 2002) and chlorophyll degradation (D. Franklin, 

personal communication) have previously been measured in T. pseudonana under nitrogen starvation.  

 

In agreement with increased oxidative stress, a superoxide dismutase (ProtID 40713) and a 355 

mitochondrial alternative oxidase (ProtID 38428) both increased approximately 2.2-fold. The increase 

of intracellular levels of DMSP in T. pseudonana under nitrogen starvation might also be linked to 

oxidative stress. In addition to its role as a compatible solute DMSP is thought to be part of a cellular 
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antioxidant system (Sunda et al. 2002) and its synthesis and excretion might dissipate excess energy, 

carbon and reducing equivalents under nutrient limited conditions (Stefels 2000).  360 

 

Carbon Metabolism 

Reduced demand for carbon skeletons in nitrogen assimilation along with the production of carbon 

skeletons from catabolic processes, as described above, are expected to impact on central carbon 

metabolism. Indeed, in the proteome comparison we see evidence for increased glycolytic activity in 365 

T. pseudonana at the onset of nitrogen starvation that would direct carbon from intracellular 

carbohydrate stores to central carbon metabolism. The abundance of a phosphoglycerate mutase 

(ProtID 27850), enolase (ProtID 40391) and fructose-1,6-bisphosphate aldolase (ProtID 270288) 

increased by 1.5- to 2.9-fold (Fig. 6). Although these enzymes can also catalyse the reverse reactions 

of gluconeogenesis, transcript levels of a phosphofructokinase (ProtID 31232) and two pyruvate 370 

kinase genes (ProtIDs 22345 and 40393) also increased, while one pyruvate kinase (ProtID 4875) 

decreased (Mock et al. 2008). These enzymes are specific to glycolysis, indicating that this is the 

direction of carbon flow. 

 

Pyruvate, the product of glycolysis, can be converted to acetyl CoA through the activity of the multi-375 

enzyme complex pyruvate dehydrogenase. In our study the protein abundance of three subunits of this 

complex (ProtIDs 268374, 8778 and 268280) increased by around 2.0-fold. This enzyme is also 

unidirectional, further supporting an increase in glycolytic activity. Acetyl CoA is used in fatty acid 

biosynthesis and as a carbon input to the TCA cycle, which is a source of energy and reducing 

equivalents, but also provides carbon skeletons for nitrogen assimilation and the biosynthesis of 380 

compounds, including fatty acids. In this proteomics study many of the proteins of the TCA cycle 

increased by 1.6- to 2.5-fold in abundance (fig. 6), suggesting that the carbon from glycolysis might 

be channelled through acetyl CoA and then into this pathway.  

 

Regulation 385 

Regulating the balance between carbon and nitrogen metabolism is crucial, particularly under 

changing nitrogen availability, and there are a range of regulatory elements known to be involved in 

coordinating this response. The transcript levels of a number of other regulatory elements were altered 

in T. pseudonana at the onset of nitrogen starvation (Mock et al 2008). These include a NarL family 

histidine kinase (ProtID 24704), which increased in abundance, and also an alkaline phosphatase 390 

(ProtID 20880) and a phosphate transport system substrate binding protein (ProtID 262506), which 

both decreased in transcript level. These are all required for a two-component signal transduction 

pathway and might therefore act together in regulating the cell response to nitrogen starvation.  
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Inter-Species Comparison 395 

This novel combined analysis of the proteome and transcriptome of T. pseudonana at the onset of 

nitrogen starvation has revealed that nitrate assimilation is reduced, which would reduce demand for 

energy, reducing equivalents and carbon skeletons, and in response photosynthetic carbon fixation is 

decreased. In higher plants and green algae photosynthetic carbon fixation is also reduced in response 

to nitrogen deprivation and excess carbon is generally stored in molecular pools that contain little or 400 

no nitrogen. In higher plants this is usually in the form of starch (Diaz et al. 2005; Wingler et al. 2006) 

and Peng et al (2007) described increased transcript levels of two genes involved in starch 

biosynthesis in Arabidopsis thaliana under nitrogen starvation. In the fresh water green alga 

Chlamydomonas reinhardtii, on the other hand, excess carbon is reportedly directed to fatty acid 

biosynthesis (Wang et al. 2009; Moellering and Benning 2010), and Miller et al (2010) found 405 

increased expression of genes involved in lipid biosynthesis in C. reinhardtii when nitrogen was not 

available. Diatoms are known to store carbon as chrysolaminaran (a β-1,3 glucan) or as lipids 

(Armbrust et al. 2004; Kroth et al. 2008), however proteins directly related to the synthesis or 

degradation of these compounds were not identified in the present study. The increase in glycolytic 

proteins and their transcripts in T. pseudonana seems opposed to the patterns described in higher 410 

plants and green algae; while they are increasing carbon stores, T. pseudonana appears to be 

remobilising them.  

 

In addition, in both A. thaliana (Peng et al. 2007) and C. reinhardtii (Miller et al. 2010) transcript 

levels of genes associated with the TCA cycle either decreased in abundance or remained unchanged 415 

in response to nitrogen deprivation (fig. 7; table S2). This is very different to T. pseudonana, where 

the abundance of proteins and transcripts (Mock et al. 2008) associated with the TCA cycle increased 

at the onset of nitrogen starvation (fig. 6 and fig. 7). Comparison of proteins of the TCA that changed 

in abundance with changes in their transcript level under other growth conditions tested by Mock et 

al. (2008) (-Si, -Fe, -N, -CO2 and decreased temperature) suggests that this response is specific to 420 

nitrogen starvation.   

 

If photosynthetic carbon fixation is decreased in T. pseudonana due to reduced demand for carbon 

skeletons, reducing equivalents and energy, why are glycolysis and the TCA cycle, which are a source 

of these components, up-regulated? Interestingly a similar expression pattern, with increased levels of 425 

TCA cycle transcripts, is seen in the marine cyanobacterium Prochlorococcus marinus subsp. pastoris 

(strain CCMP1986, previously MED4) under nitrogen limited conditions (fig. 7) (Tolonen et al. 

2006). These authors propose that under nitrogen limited conditions the breakdown of intracellular 
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stores is a more efficient source of carbon for the reassimilation of nitrogen than photosynthesis. As 

discussed above, photosynthesis is a nitrogen demanding process, which can also increase oxidative 430 

stress. This hypothesis fits with the proposed protein and amino acid catabolism and increased 

GS/GOGAT enzymes for ammonium assimilation seen in the current study. In common with 

cyanobacteria, diatoms possess a complete urea cycle (Armbrust et al. 2004), which has the potential 

to increase the efficiency of nitrogen reassimilation from catabolic processes (Allen et al. 2006) 

thereby leading to a higher demand for carbon skeletons than in organisms that lack a urea cycle. 435 

Changes in both protein abundance (table 1) and transcript levels of enzymes associated with the urea 

cycle were seen in T. pseudonana at the onset of nitrogen starvation. Allen et al. (2011) have 

demonstrated that in nitrogen starved P. tricornatum the urea cycle metabolites proline and urea are 

closely coupled to intermediates of the TCA cycle in their response to the addition of this nutrient. 

The authors propose that these pathways are linked through the aspartate-argininosuccinate shunt, as 440 

in animal cells, in which argininosuccinate is produced from aspartate dervived from oxaloactetate 

and citrulline. Argininosuccinate in turn is used in the production of arginine, with fumarate as a by-

product that feeds back into the TCA cycle. Accordingly the effect of RNA interference-mediated 

knockdown of the key urea cycle enzyme carbamoyl phosphate synthase on fumarate and malate in 

this diatom was similar to that of urea cycle metabolites, while upstream TCA cycle intermediates 445 

were not as severely affected (Allen et al. 2011). In T. pseudonana at the onset of nitrogen starvation 

enzymes for fumarate and malate synthesis increased in abundance and this link between the urea and 

TCA cycles may therefore also have a role in the T. pseudonana response to nitrogen starvation.  

However, the transcript level and protein abundance of TCA cycle enzymes upstream of the aspartate-

argininosuccinate shunt also increased in abundance suggesting that the TCA cycle may have 450 

additional or alternative functions in this response. 

 

There are reports of increased lipid and fatty acid production in diatoms and many other microalgae 

under nitrogen starved conditions (Collyer and Fogg 1955; Mock and Kroon 2002; Palmucci et al. 

2011). Although we found no changes in the abundance of proteins associated with this pathway and 455 

there were few changes in transcript levels (Mock et al. 2008), these studies provide an alternative 

hypothesis to explain responses to nitrogen starvation seen here. Indeed the protein and transcript data 

discussed here were collected in the early stages of nitrogen starvation and it is possible that fatty acid 

biosynthesis increases at a later stage in the response. The changes in protein abundance observed do 

suggest increased synthesis of acetyl CoA, which is a precursor for fatty acid biosynthesis.  460 

 

But why break down carbohydrates while building fatty acid stores? Palmucci et al (2011) have 

shown that the diatoms P. tricornutum and Thalassiosira weissflogii reduce carbohydrate stores whilst 
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increasing levels of fatty acids under nitrogen starvation. They propose that fatty acids are more 

energy and reductant demanding than carbohydrates and that moving between these carbon stores 465 

increases the intracellular sink for these components. No change in either carbon store was found in T. 

pseudonana, but also no change in protein content (Palmucci et al. 2011). This suggests that nitrogen 

levels were not low enough to instigate a response to nitrogen starvation, and given a more severe 

starvation treatment, as used here, changes in carbon storage might occur. 

 470 

If acetyl CoA is directed into fatty acid biosynthesis, how can the increase TCA enzymes be 

explained? It should be noted that most enzymes of the TCA cycle are not unidirectional and, under 

certain circumstances, can catalyse the reverse reaction. In their review Sweetlove et al (2010) 

propose that the flux of the TCA cycle is highly adaptable and is likely to reflect the physiological and 

metabolic demands of the cell. They discuss that in higher plants the ‘conventional’ cyclic flux of 475 

TCA, which produces reducing equivalents for ATP synthesis, is thought only to be active in the dark. 

In illuminated leaves of Spinacia oleracea the TCA cycle forms two branches, converting acetyl CoA 

to 2-oxoglutarate, for nitrogen assimilation, and oxaloacetate for aspartate biosynthesis (Hanning and 

Heldt 1993). Furthermore in Brassica napus seeds cultured with the amino acids alanine and 

glutamine as a nitrogen source, the carbon skeletons produced by their catabolism enter the TCA 480 

cycle and this directs the carbon in both the forward and, to a lesser extent, the reverse reactions to 

form citrate, which is then converted to acetyl CoA and used in fatty acid elongation (Schwender et al. 

2006; Junker et al. 2007). The suggested catabolism of amino acids in T. pseudonana under nitrogen 

starvation would yield various TCA intermediates that could feed into the TCA cycle in this way (fig. 

6) and be directed to fatty acid biosynthesis.  485 

 

Concluding Remarks 

Changes in the abundance of proteins identified in the current study, especially the increase in 

glycolytic and TCA cycle enzymes, suggest that the central carbon metabolism response of T. 

pseudonana to nitrogen starvation might differ considerably from that seen in other eukaryotic 490 

photoautotrophs studied to date. These pathways could be involved in providing carbon skeletons, for 

nitrogen reassimilation, or in the diversion of excess carbon into fatty acid biosynthesis. It is possible 

that both processes might have a place, with the TCA cycle acting as a hub, balancing the demand for 

specific carbon skeletons with the input of excess carbon from catabolic process in the cell. The 

similarity between the TCA cycle responses of T. pseudonana and the cyanobacteria P. marinus, both 495 

of which possess a urea cycle, suggests that the presence of this pathway might be closely related to 

the response of the TCA cycle seen here. The releationship between central carbon metabolism and 

the catabolic processes of the cell could play an important role in the success of diatoms in the ocean, 
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where nitrogen availability is highly dynamic. Given the potential for manipulation of nitrogen and 

carbon metabolism these findings also have relevance for algal and plant biofuels and crop nutrition 500 

research. 

 

 

Materials and Methods 

 505 

Culturing  

Axenic cultures of Thalassiosira pseudonana (CCMP 1335) were grown in batch culture in ESAW 

(enriched seawater, artificial water) medium (Harrison and Berges 2005) at 15 oC, with a 14:10 

light:dark cycle, at 115 µmol photons m-2 s-1 based on an immersed measurement with a Scalar PAR 

Irradiance Sensor QSL 2101 (Biospherical Instruments Inc., San Diego, USA). Cultures were 510 

regularly checked for bacterial contamination by 4’,6-diamidino-2-phenylindoledihydrochloride 

(DAPI) staining (Porter and Feig 1980). Cell number and volume were measured with a Beckman 

Coulter Multisizer 3 Analyser (Beckman Coulter Ltd, High Wycombe, UK) and variable to maximum 

fluorescence ratio (Fv/Fm) with a Walz Phyto-Pam phytoplankton analyser (Heinz Walz GmbH, 

Effeltrich, Germany). Preliminary tests showed that when T. pseudonana cultures with an initial 515 

concentration of 550 µM nitrate were still in logarithmic growth cultures started with 30 µM nitrate 

were yield-limited at ca. 1x106 cell ml-1. Hence, triplicate cultures were started with initial 

concentrations of 550 µM nitrate (standard ESAW) or 30 µM nitrate. Samples were taken as low 

nitrate cultures reached the onset of nitrogen starvation (around 1x106 cell ml-1), with 250 ml filtered 

onto a 1.0 µm pore, 47 mm diameter nucleopore membrane (Whatman Plc, Maidstone, UK) at a 520 

pressure of 40 Kpa. Filters were immediately snap frozen in liquid nitrogen and stored at -80 oC.  

 

Amino Acid Measurements 

Cells were washed from the filter with 410 µl of methanol:buffer (3.5:0.6 v/v; buffer: 20 mM HEPES, 

pH 7.0, 5 mM EDTA, 10 mM NaF) and 150 µl chloroform was added. Samples were shaken at 4 oC 525 

for 30 min and 300 µl water was added, before shaking for a further 30 min at 37 oC. Samples were 

then centrifuged for 15 min at 11100 g at room temperature and the upper aqueous phase was taken. 

The lower chloroform phase was re-extracted with 300 µl water. Samples were dried in a speed vac at 

37 oC and resuspended in 500 µl water. Of this, 15 µl was derivatised according to the AccQ Tag 

chemistry package (Waters Ltd, Elstree, UK) and 10 µl of the final solution was injected into a 530 

Waters 2695 HPLC, fitted with an AccQ-Tag (3.9 x 150mm) column and a 474 fluorescence detector 

(Waters). The values were calculated as intercellular concentration using the cell number and cell 

volume data. 
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Nitrate Measurements 535 

Twenty five mg aliquots of polyvinylpolypyrrolidone (PVPP) were incubated with 1 ml deionised 

water over night at 4 °C. Diatom cells were washed from the filter with 500 µl of deionised water and 

centrifuged at 1500 g at 4 °C for 5 min. The supernatant was removed and cells were resuspended in 

500 µl of the PVPP water mix. They were then disrupted by sonication (three times for 10 sec at ca. 

15 microns on ice with a Soniprep 150 probe; MSE, London, UK). The homogenised sample was 540 

returned to the water-PVPP mix. Samples were shaken at 4 °C for 1 hour and then heated at 95 °C for 

15 min. Finally they were centrifuged at 11100 g for 15 min at 4 °C and 100 µl was injected into a 

Waters 2695 HPLC, fitted with an ION-Pack ion exchange column (Waters). The ions were resolved 

in an isocratic flow (0.8 ml-1 min-1) of Li-gluconate buffer and detected with a conductivity detector 

(Waters) as described in (North et al. 2009). The values were calculated as intercellular concentration 545 

using the cell number and cell volume data. 

 

Protein extraction 

Proteins were extracted based on Contreras et al (2008). Cells were washed from the filter with 800 µl 

extraction buffer (1.5 % w/v polyvinyl pyrrolidone, 0.7 M sucrose, 0.1 M potassium chloride, 0.5 M 550 

Tris-HCl pH 7.5, 250 mM EDTA and 0.5 % 3-[(3-cholamidopropyl)dimethylammonio]-1-

propanesulfonate (CHAPS)) and 8 µl protease inhibitor cocktail for plant and tissue extracts (Sigma-

Aldrich Company Ltd, Dorset, UK) was added. Cells were disrupted by sonication (detail above), 

followed by the addition of 16 µl mercaptoethanol. An equal volume of Tris-HCL pH 8 saturated 

phenol was added and samples were shaken on ice for 20 minutes. Samples were then centrifuged at 555 

6600 g and 4 oC for 30 minutes. The upper phenol phase was removed to a 15 ml glass tube and kept 

on ice, while the lower buffer layer was re-extracted with phenol. Protein was precipitated by addition 

of 7.5 ml ice cold 0.1 M ammonium acetate in methanol and 3 hours incubation at -20 oC, followed by 

20 min centrifugation at 10000 g and 4 oC. The supernatant was removed and the pellet was 

resuspended in 2 ml ice cold 0.1 M ammonium acetate in methanol, and incubated for a further 20 560 

minutes at -20 oC. The protein was collected by 5 min centrifugation at 6600 g and 4oC. The pellet 

was rinsed 4 times in ice cold acetone and stored at -80oC.  

 

Two-dimensional gel electrophoresis and protein identification  

For the first dimension, 100 μg protein (extracted as above and quantified with an Ettan 2-D Quant 565 

kit; GE Healthcare, Chalfont, UK) were mixed with immobilized pH gradient (IPG) rehydration 

buffer (7 M urea, 2 M thiourea, 2% CHAPS, 18 mM dithiothreitol (DTT), bromophenol blue (trace 

amount to give blue colour) and 2% pH 4-7 IPG buffer; final volume 450 μl) before loading onto 
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24 cm pH 4-7 Immobiline DryStrips (GE Healthcare). Following overnight rehydration, isoelectric 

focusing was performed for 44.7 kVh at 20 °C over 8 h 45 min using the IPGphor system (GE 570 

Healthcare). Prior to the second dimension the focussed strips were conditioned in 122 mM Tris-

acetate equilibration buffer supplemented with 5 mg ml−1 SDS, 360 mg ml−1 urea and 300 mg ml−1 

glycerol. To reduce and alkylate cysteine residues, the strips were sequentially treated with 

equilibration buffer containing 8 mg ml−1 DTT, and then equilibration buffer containing 25 mg ml−1 

iodoacetamide (each treatment consisted of 9 ml of buffer, 30 min with gentle shaking). For the 575 

second dimension, 10% Duracryl gels (28 x 23 cm; 1 mm thick) were prepared for use in the 

Investigator 2nd Dimension Running System (Genomic Solutions, Huntington, UK); with cathode 

buffer (200 mM Tris base, 200 mM Tricine, 14 mM SDS,) and anode buffer (25 mM Tris/acetate 

buffer, pH 8·3). Electrophoresis was carried out using 20 W per gel. Proteins were stained with Sypro-

Ruby (Invitrogen Ltd, Paisley, UK), according to the manufacturer’s instructions, and gel images 580 

were captured with a Pharos FX+ Molecular Imager with Quantity One imaging software 

(Invitrogen). A 532 nm excitation laser was used with a 605 nm band pass emission filter and gels 

were scanned at 100 µm resolution to produce a 16 bit image. Gel images were compared using 

Progenesis SameSpots analysis software (v4.1; Nonlinear Dynamics Ltd, Newcastle Upon Tyne, UK) 

and protein spots with altered levels of expression under nitrogen limitation versus control conditions 585 

were excised from the gel using a ProPick excision robot (Genomic Solutions).  

 

The protein was then manually in-gel trypsin digested by first washing in 100 µl 400 mM ammonium 

bicarbonate : 100% acetonitrile (1:1) for 20 min to equilibrate the gel to pH 8 and to remove the stain. 

This was repeated. Aqueous solutions were then removed by washing briefly with 100 µl acetonitrile. 590 

The gel was then washed again in 100 µl acetonitrile for 15 min to shrink the gel before air drying for 

10 min. The protein was digested by the addition of 50 ng Trypsin in 5 µl 10 mM ammonium 

bicarbonate (Modified porcine trypsin, Promega, Madison, USA) and samples were incubated at 37 

°C for 3 h. Samples were acidified by incubating with 5 µl 5% formic acid for 10 min, before flash 

freezing and storing at -80oC. 595 

 

Tryptic digests were analysed by peptide mass fingerprinting (Pappin et al. 1993). The acidified 

digests were spotted directly onto a pre-spotted anchor chip (PAC) target plate (Bruker UK Ltd, 

Coventry, UK) which is pre-coated with α-cyano-4-hydroxycinnamic acid matrix. Mass analysis was 

carried out on an Ultraflex MALDI-ToF/ToF mass spectrometer (Bruker UK). A 50 Hz nitrogen laser 600 

was used to desorb/ionise the matrix/analyte material, and ions were automatically detected in 

positive ion reflectron mode first with and then without the use of fuzzy logic programming. The 
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calibrated spectra were searched against a monthly updated copy of the SPtrEMBL database, using an 

in-house version (v2.2) of the MASCOT search tool (reference: http://www.matrixscience.com). 

 605 

Supplemental Data 

The following materials are available in the online version of this article. 

Supplemental Figure 1. Growth and photosystem II efficiency (Fv/Fm) of nitrogen starved T. 

pseudonana cultures compared to nitrogen replete cultures. 

Supplemental Table 1. Proteins that changed in abundance in nitrogen starved T. pseudonana, 610 

compared to nitrogen replete cultures.  

Supplemental Table 2.  Interspecies comparison of changes in transcript levels of genes involved in 

C-metabolism associated with nitrogen deprivation.  

 

Acknowledgments 615 

We thank Gareth Lee and Rob Utting (University of East Anglia) and Anna Koprivova (John Innes 

Centre) for their technical support and Lynn Olivier (Institute of Food Research) for advising on 2d-

gel electrophoresis methods. We are also grateful to Mike Naldrett (John Innes Centre) for conducting 

mass spectrometry analysis and to Baldeep Kular (John Innes Centre) for measuring amino acid. 

 620 

Literature Cited 

Allen AE,Dupont CL,Obornik M,Horak A,Nunes-Nesi A,McCrow JP,Zheng H,Johnson DA,Hu 
HH,Fernie AR,Bowler C (2011) Evolution and metabolic significance of the urea cycle in 
photosynthetic diatoms. Nature 473: 203-207. 

Allen AE,Vardi A,Bowler C (2006) An ecological and evolutionary context for integrated nitrogen 625 

metabolism and related signaling pathways in marine diatoms. Curr. Opin. Plant Biol. 9: 264-
273. 

Allen AE,Ward BB,Song BK (2005) Characterization of diatom (Bacillariophyceae) nitrate 
reductase genes and their detection in marine phytoplankton communities. J. Phycol. 41: 95-
104. 630 

Andreae MO (1986) The ocean as a source of atmospheric sulphur compounds. In P Buat-Menard, 
eds, The role of air-sea exchange in geochemical cycling. Reidel, New York, pp 331-362  

Armbrust EV,Berges JA,Bowler C,Green BR,Martinez D,Putnam NH,Zhou SG,Allen AE,Apt 
KE,Bechner M,Brzezinski MA,Chaal BK,Chiovitti A,Davis AK,Demarest MS,Detter 
JC,Glavina T,Goodstein D,Hadi MZ,Hellsten U,Hildebrand M,Jenkins BD,Jurka 635 

J,Kapitonov VV,Kroger N,Lau WWY,Lane TW,Larimer FW,Lippmeier JC,Lucas 
S,Medina M,Montsant A,Obornik M,Parker MS,Palenik B,Pazour GJ,Richardson 
PM,Rynearson TA,Saito MA,Schwartz DC,Thamatrakoln K,Valentin K,Vardi 
A,Wilkerson FP,Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: 
Ecology, evolution, and metabolism. Science 306: 79-86. 640 

Berges JA,Harrison PJ (1995) Nitrate reductase-activity quantitatively predicts the rate of nitrate 
incorporation under steady-state light limitation - A revised assay and characterization of the 
enzyme in 3 species of marine-phytoplankton. Limnol. Oceanogr. 40: 82-93. 

Bowler C,Allen AE,Badger JH,Grimwood J,Jabbari K,Kuo A,Maheswari U,Martens 
C,Maumus F,Otillar RP,Rayko E,Salamov A,Vandepoele K,Beszteri B,Gruber A,Heijde 645 



 

 

 

21 

 

M,Katinka M,Mock T,Valentin K,Verret F,Berges JA,Brownlee C,Cadoret JP,Chiovitti 
A,Choi CJ,Coesel S,De Martino A,Detter JC,Durkin C,Falciatore A,Fournet J,Haruta 
M,Huysman MJJ,Jenkins BD,Jiroutova K,Jorgensen RE,Joubert Y,Kaplan A,Kroger 
N,Kroth PG,La Roche J,Lindquist E,Lommer M,Martin-Jezequel V,Lopez PJ,Lucas 
S,Mangogna M,McGinnis K,Medlin LK,Montsant A,Oudot-Le Secq MP,Napoli 650 

C,Obornik M,Parker MS,Petit JL,Porcel BM,Poulsen N,Robison M,Rychlewski 
L,Rynearson TA,Schmutz J,Shapiro H,Siaut M,Stanley M,Sussman MR,Taylor AR,Vardi 
A,von Dassow P,Vyverman W,Willis A,Wyrwicz LS,Rokhsar DS,Weissenbach 
J,Armbrust EV,Green BR,Van De Peer Y,Grigoriev IV (2008) The Phaeodactylum genome 
reveals the evolutionary history of diatom genomes. Nature 456: 239-244. 655 

Bowler C,Vardi A,Allen AE (2010) Oceanographic and biogeochemical insights from diatom 
genomes. Annual Review of Marine Science 2: 333-365. 

Brown KL,Twing KI,Robertson DL (2009) Unraveling the regulation of nitrogen assimilation in the 
marine diatom Thalassiosira pseudonana (Bacillariophyceae): Diurnal variations in transcript 
levels for five genes involved in nitrogen assimilation. J. Phycol. 45: 413-426. 660 

Clayton JR,Ahmed SI (1986) Detection of glutamate synthase (GOGAT) activity in phytoplankton - 
Evaluation of cofactors and assay optimization. Mar. Ecol. Prog. Ser. 32: 115-122. 

Collyer DM,Fogg GE (1955) Studies on fat accumulation by algae. J. Exp. Bot. 6: 256-275. 
Contreras L,Ritter A,Dennett G,Boehmwald F,Guitton N,Pineau C,Moenne A,Potin P,Correa 

JA (2008) Two-dimensional gel electrophoresis analysis of brown algal protein extracts. J. 665 

Phycol. 44: 1315-1321. 
Diaz C,Purdy S,Christ A,Morot-Gaudry JF,Wingler A,Masclaux-Daubresse CL (2005) 

Characterization of markers to determine the extent and variability of leaf senescence in 
Arabidopsis. A metabolic profiling approach. Plant Physiol. 138: 898-908. 

Dickson DMJ,Kirst GO (1987) Osmotic adjustment in marine eukaryotic algae - The role of 670 

inorganic-ions, quaternary ammonium, tertiary sulfonium and carbohydrate solutes 1. Diatoms 
and a Rhodophyte. New Phytol. 106: 645-655. 

Dortch Q,Ahmed SI,Packard T (1979) Nitrate reductase and glutamate dehydrogenase activities in 
Skeletonema costatum as measures of nitrogen assimilation rates J. Plankton Res. 1: 169-186. 

Estrada M,Blasco D (1979) 2 phases of the phytoplankton community in the Baja California 675 

upwelling. Limnol. Oceanogr. 24: 1065-1080. 
Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration 

of CO2 in the ocean. Nature 387: 272-275. 
Falkowski PG,Katz ME,Knoll AH,Quigg A,Raven JA,Schofield O,Taylor FJR (2004) The 

evolution of modern eukaryotic phytoplankton. Science 305: 354-360. 680 

Field CB,Behrenfeld MJ,Randerson JT,Falkowski P (1998) Primary production of the biosphere: 
Integrating terrestrial and oceanic components. Science 281: 237-240. 

Gao Y,Smith GJ,Alberte RS (1993) Nitrate reductase from the marine diatom Skeletonema costatum 
- Biochemical and immunological characterization. Plant Physiol. 103: 1437-1445. 

Hanning I,Heldt HW (1993) On the function of mitochondrial metabolism during photosynthesis in 685 

Spinach (Spinacia-oleracea L) leaves - partitioning between respiration and export of redox 
equivalents and precursors for nitrate assimilation products. Plant Physiol. 103: 1147-1154. 

Harrison PJ,Berges JA (2005) Marine culture medium. In RA Andersen, eds, Algal Culturing 
Techniques. Academic Press, San Diego, pp 21-33. 

Junker BH,Lonien J,Heady LE,Rogers A,Schwender J (2007) Parallel determination of enzyme 690 

activities and in vivo fluxes in Brassica napus embryos grown on organic or inorganic nitrogen 
source. Phytochemistry 68: 2232-2242. 

Keller MD,Kiene RP,Matrai PA,Bellows WK (1999) Production of glycine betaine and 
dimethylsulfoniopropionate in marine phytoplankton. II. N-limited chemostat cultures. Mar. 
Biol. 135: 249-257. 695 

Kroth PG,Chiovitti A,Gruber A,Martin-Jezequel V,Mock T,Parker MS,Stanley MS,Kaplan 
A,Caron L,Weber T,Maheswari U,Armbrust EV,Bowler C (2008) A Model for 



 

 

 

22 

 

Carbohydrate Metabolism in the Diatom Phaeodactylum tricornutum Deduced from 
Comparative Whole Genome Analysis. Plos One 3. 

Logan BA,Demmig-Adams B,Rosenstiel TH,Adams WW (1999) Effect of nitrogen limitation on 700 

foliar antioxidants in relationship to other metabolic characteristics. Planta 209: 213-220. 
Mann KH (1993) Physical oceanography, food chains, and fish stocks - A review. ICES J. Mar. Sci. 

50: 105-119. 
Miller R,Wu GX,Deshpande RR,Vieler A,Gartner K,Li XB,Moellering ER,Zauner S,Cornish 

AJ,Liu BS,Bullard B,Sears BB,Kuo MH,Hegg EL,Shachar-Hill Y,Shiu SH,Benning C 705 

(2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen 
deprivation predict diversion of metabolism. Plant Physiol. 154: 1737-1752. 

Milligan AJ,Harrison PJ (2000) Effects of non-steady-state iron limitation on nitrogen assimilatory 
enzymes in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J. Phycol. 36: 78-
86. 710 

Mock T,Kroon BMA (2002) Photosynthetic energy conversion under extreme conditions - I: 
important role of lipids as structural modulators and energy sink under N-limited growth in 
Antarctic sea ice diatoms. Phytochemistry 61: 41-51. 

Mock T,Samanta MP,Iverson V,Berthiaume C,Robison M,Holtermann K,Durkin C,BonDurant 
SS,Richmond K,Rodesch M,Kallas T,Huttlin EL,Cerrina F,Sussmann MR,Armbrust EV 715 

(2008) Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana 
identifies genes involved in silicon bioprocesses. PNAS 105: 1579-1584. 

Moellering ER,Benning C (2010) RNA interference silencing of a major lipid droplet protein affects 
lipid droplet size in Chlamydomonas reinhardtii. Eukaryot. Cell 9: 97-106. 

Nelson DM,Treguer P,Brzezinski MA,Leynaert A,Queguiner B (1995) Production and dissolution 720 

of biogenic silica in the ocean - Revised global estimates, comparison with regional data and 
relationship to biogenic sedimentation. Global Biogeochem. Cy. 9: 359-372. 

North KA,Ehlting B,Koprivova A,Rennenberg H,Kopriva S (2009) Natural variation in 
Arabidopsis adaptation to growth at low nitrogen conditions. Plant Physiol. Biochem. 47: 912-
918. 725 

Nunn BL,Aker JR,Shaffer SA,Tsai YH,Strzepek RF,Boyd PW,Freeman TL,Brittnacher 
M,Malmstrom L,Goodlett DR (2009) Deciphering diatom biochemical pathways via whole-
cell proteomics. Aquat. Microb. Ecol. 55: 241-253. 

Palmucci M,Ratti S,Giordano M (2011) Ecological and evolutionary implications of carbon 
allocation in marine phytoplankton as a function of nitrogen availability: A fourier transform 730 

infrared spectroscopy approach. J. Phycol. 47: 313-323. 
Pappin DJC,Hojrup P,Bleasby AJ (1993) Rapid identification of proteins by peptide-mass 

fingerprinting. Curr. Biol. 3: 327-332. 
Parker MS,Armbrust EV (2005) Synergistic effects of light, temperature, and nitrogen source on 

transcription of genes for carbon and nitrogen metabolism in the centric diatom Thalassiosira 735 

pseudonana (Bacillariophyceae). J. Phycol. 41: 1142-1153. 
Peng MS,Bi YM,Zhu T,Rothstein SJ (2007) Genome-wide analysis of Arabidopsis responsive 

transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA. Plant 
Mol. Biol. 65: 775-797. 

Porter KG,Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol. 740 

Oceanogr. 25: 943-948. 
Poulsen N,Kroger N (2005) A new molecular tool for transgenic diatoms - Control of mRNA and 

protein biosynthesis by an inducible promoter-terminator cassette. FEBS J. 272: 3413-3423. 
Robertson DL,Alberte RS (1996) Isolation and characterization of glutamine synthetase from the 

marine diatom Skeletonema costatum. Plant Physiol. 111: 1169-1175. 745 

Robertson DL,Smith GJ,Alberte RS (1999) Characterization of a cDNA encoding glutamine 
synthetase from the marine diatom Skeletonema costatum (Bacillariophyceae). J. Phycol. 35: 
786-797. 



 

 

 

23 

 

Robertson DL,Tartar A (2006) Evolution of glutamine synthetase in heterokonts: Evidence for 
endosymbiotic gene transfer and the early evolution of photosynthesis. Mol. Biol. Evol. 23: 750 

1048-1055. 
Sauer J,Dirmeier U,Forchhammer K (2000) The Synechococcus strain PCC 7942 glnN product 

(glutamine synthetase III) helps recovery from prolonged nitrogen chlorosis. J. Bacteriol. 182: 
5615-5619. 

Schwender J,Shachar-Hill Y,Ohlrogge JB (2006) Mitochondrial metabolism in developing 755 

embryos of Brassica napus. J. Biol. Chem. 281: 34040-34047. 
Siaut M,Heijde M,Mangogna M,Montsant A,Coesel S,Allen A,Manfredonia A,Falciatore 

A,Bowler C (2007) Molecular toolbox for studying diatom biology in Phaeodactylum 
tricornutum. Gene 406: 23-35. 

Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and 760 

higher plants. J. Sea Res. 43: 183-197. 
Sunda W,Kieber DJ,Kiene RP,Huntsman S (2002) An antioxidant function for DMSP and DMS in 

marine algae. Nature 418: 317-320. 
Sweetlove LJ,Beard KFM,Nunes-Nesi A,Fernie AR,Ratcliffe RG (2010) Not just a circle: Flux 

modes in the plant TCA cycle. Trends Plant Sci. 15: 462-470. 765 

Takabayashi M,Wilkerson FP,Robertson D (2005) Response of glutamine synthetase gene 
transcription and enzyme activity to external nitrogen sources in the diatom Skeletonema 
costatum (Bacillariophyceae). J. Phycol. 41: 84-94. 

Tanaka R,Oster U,Kruse E,Rudiger W,Grimm B (1999) Reduced activity of geranylgeranyl 
reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated 770 

chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl 
reductase. Plant Physiol. 120: 695-704. 

Tolonen AC,Aach J,Lindell D,Johnson ZI,Rector T,Steen R,Church GM,Chisholm SW (2006) 
Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen 
availability. Mol. Syst. Biol. 2: 53. 775 

Vergara JJ,Berges JA,Falkowski PG (1998) Diel periodicity of nitrate reductase activity and 
protein levels in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J. Phycol. 34: 
952-961. 

Voellmy R,Leisinger T (1975) Dual role for N2-acetylornithine 5-aminotransferase from 
Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. J. Bacteriol. 122: 780 

799-809. 
Wang ZT,Ullrich N,Joo S,Waffenschmidt S,Goodenough U (2009) Algal lipid bodies: Stress 

induction, purification, and biochemical characterization in wild-type and starchless 
Chlamydomonas reinhardtii. Eukaryot. Cell 8: 1856-1868. 

Wingler A,Purdy S,MacLean JA,Pourtau N (2006) The role of sugars in integrating environmental 785 

signals during the regulation of leaf senescence. J. Exp. Bot. 57: 391-399. 
Zadykowicz E,Robertson D (2005). Phylogenetic relationships amongst glutamate synthase 

enzymes. 44th Northeast Algal Symposium, Rockland, Maine, pp 41. 
Zehr JP,Falkowski PG (1988) Pathway of ammonium assimilation in a marine diatom determined 

with the radiotracer 13N. J. Phycol. 24: 588-591. 790 

 
 

Figure Legends 

 

Figure 1. Intracellular concentration of free nitrate, amino acids, and protein in nitrogen replete (550 795 

µM nitrate) and nitrogen starved (30 µM nitrate) T. pseudonana cultures at the onset of nitrogen 

starvation. Results are shown as means of 3 biological replicates ± standard deviation. 
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Figure 2. Effect of nitrogen starvation on the proteome of T. pseudonana. Soluble proteins were 

isolated from T. pseudonana cultures grown in nitrogen replete (550 µM nitrate) and nitrogen starved 800 

(30 µM nitrate) conditions and resolved by 2-D electrophoresis. Gels of three biological replicates 

were used for quantitative analysis and for this illustration representative gels from each treatment 

were overlaid. Equal protein abundance is represented by black spots, blue spots represent proteins 

more abundant in N starved cells while orange represents proteins more abundant in N replete cells. 

Examples of proteins of interest (A-L) are expanded. A. Citrate synthase (ProtID 11411). B. 805 

Aconitase hydratase (ProtID 268965). C. Isocitrate dehydrogenase (ProtID 21640). D. Pyruvate 

dehydrogenase (ProtID 8778). E. Pyruvate dehydrogenase (ProtID 268374). F. NADPH-dependent 

nitrite reductase (ProtID 26941). G. Branched-chain aminotransferase (ProtID 260934). H. 

Phosphoenolpyruvate carboxylase (ProtID 268546). I. Nitrate reductase (ProtID 25299). J. 

Ferredoxin-dependent nitrite reductase (ProtID 262125). K. NAD(P)H-dependent glutamate synthase 810 

(ProtID 269160). L. Type III glutamine synthetase (ProtID 270138). Where multiple spots are circled 

the same protein occurs as more than one spot on the gel most likely due to pI differences caused by 

post-translational modifications. 

 

Figure 3. Categories of genes and proteins altered in expression between nitrogen starved and replete 815 

T. pseudonana cells. Categorisation is based on KEGG, some categories were split to subcategories to 

illustrate points of specific interest, whereas categories that were under represented were merged with 

related groups. A. Proteins increased in abundance. Of 42 proteins increasing in abundance 32 could 

be assigned a function, of which 4 are not represented by this categorisation. B. Proteins decreased in 

abundance. From 23 proteins decreased in abundance, 18 could be assigned a function. C. Transcripts 820 

more highly expressed in N starved cells (Mock et al 2008). Of 305 transcripts that increased in 

abundance 101 could be assigned a function, of which 23 are not represented. D. Transcripts 

decreased in expression. 362 transcripts decreased in abundance and 167 were assigned a function, of 

which 27 are not represented.  

 825 

Figure 4. Representation of the changes in the abundance of proteins associated with nitrogen 

assimilation in T. pseudonana, brought on by the onset of nitrogen starvation. Increases are shown by 

bold arrows and decreases by dashed arrows. 

 

Figure 5. Intracellular concentration of individual amino acids in nitrogen replete (550 µM nitrate) 830 

and nitrogen starved (30 µM nitrate) T. pseudonana cells. A. The most abundant and B. the least 
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abundant amino acids were determined by HPLC. Results are shown as means of 3 biological 

replicates ± standard deviation. 

Figure 6. Representation of the changes in the abundance of proteins associated with carbon 

metabolism in T. pseudonana at the onset of nitrogen starvation. Increases are shown by bold arrows 835 

and no decreases were seen. Boxes show where carbon skeletons from amino acid degradation feed 

into the pathway.  

 

Figure 7. A comparison of changes in transcript levels associated with nitrogen deprivation in A. T. 

pseudonana, grown under conditions comparable to the current study (Mock et al 2008). B. C. 840 

reinhardtii, 48 h after the transfer of cells from 10 mM ammonium to nitrogen free medium. (Miller et 

al 2010). C. A. thaliana, at the onset of nitrogen limitation in plants grown with 3 mM nitrate (Peng et 

al 2007). D. P. marinus (MED4), 24 h after transfer from 800 µM ammonium into nitrogen free 

medium (Tolonen et al. 2006). Genes for each enzyme were identified using the genome databases for 

each species (T. pseudonana: http://genome.jgi-psf.org/Thaps3/Thaps3.home.html; C. reinhardtii: 845 

http://genome.jgi-psf.org/Chlre4/Chlre4.home.html; A. thaliana: www.arabidopsis.org; P. marinus: 

http://img.jgi.doe.gov/cgi-bin/w/main.cgi) and these were searched against the expression profiles 

presented in the four publications above to identify the degree of change in transcript level. Each box 

represents an isoform and multiple rows show that there is more than one enzyme responsible for a 

specific step. See Supplemental Table 2 for EC numbers and accession numbers. Red shows that 850 

transcript increased, green shows a decrease and blue shows stable transcript level.  
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Table 1. Proteins involved in nitrogen, protein and amino acid metabolism with a greater than 1.5 fold change 
(P<0.05) in T. pseudonana at the onset of nitrogen starvation, compared to nitrogen replete cultures. Values are 
based on three biological replicates. Protein name is based on UniProtKB unless otherwise stated and Protein 
IDs are from the Joint Genome Institute T. pseudonana genome version 3 (http://genome.jgi-
psf.org/Thaps3/Thaps3.home.html). Multiple values are given for any protein represented by more than one spot 
on the 2-D gels. Microarray Log2 gives the fold change in transcript level of the corresponding gene under 
comparable nitrogen starved conditions as described by Mock et al (2008). 

Protein ID Protein Name Fold 
Change p Microarray 

Log2 

Nitrogen Assimilation 
25299 Nitrate reductasembc -10.72 

-9.69 
-8.81 

0.00001 
0.00002 
0.00005 

ND 

26941 NADPH nitrite reductase -3.01 0.00012 ND 

262125 Nitrite reductase-ferredoxin dependent -3.67 
-3.04 
-1.95 
-1.71 

0.00010 
0.00001 
0.00095 
0.00108 

ND 

269160 NAD(P)H Glutamate Synthase 2.93 
1.80 
1.74 

0.00124 
0.00310 
0.00031 

1.71 

270138 Glutamine synthetase type III mbc 1.63 
1.61 
1.51 

0.00090 
0.00233 
0.00063 

ND 

Amino Acid Metabolism 
260934 Branched-chain-amino-acid aminotransferase 6.39 0.00008 3.08 

28544 Dihydrodipicolinate reductasembc 1.62 0.00211 1.48 

25130 D-isomer specific 2-hydroxyacid dehydrogenasembc -1.73 0.00214 ND 

23175 Acetolactate synthasemb -1.97 0.00478 ND 

22208 Class V aminotransferasembc 1.86 0.00203 - 2.56 

bd1806l  DegT/DnrJ/EryC1/StrS aminotransferasembc 1.67 
-2.26 

0.00156 
0.00001 

ND 

Protein Metabolism 
21235 S1 ribosomal proteinmc -2.01 0.00054 ND 

15259 S1 ribosomal protein -3.36 
-2.93 

0.00002 
0.00137 

ND 

31912 Peptidyl-prolyl cis-trans isomerase 1.65 0.00463 ND 

13254 RNA helicase -2.28 0.00115 ND 

269148 Translation factor tu domain 2 -1.94 
-1.66 

0.00266 
0.00500 

ND 

15093 Serine carboxypeptidase 2.03 0.00093 1.1 

Urea Cycle and Arginine Metabolism 
270136 N-acetylornithine aminotransferase 2.37 0.00006 1.77 

21290 N-acetyl-gamma-glutamyl-phosphate reductase 1.74 0.00048 ND 

30193 Urease 1.62z 0.00271 ND 
m Manual Annotation. b Supported by BlastP (E<1x10-50). c Supported by conserved domains identified through 
Pfam. l Location: bd_10x65:12123-13902. z Combined with another protein, making fold change imprecise. ND 
not detected.  
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Table 2. Proteins involved in photosynthesis and carbon metabolism, that had a greater than 1.5 fold change 
(P<0.05) in T. pseudonana at the onset of nitrogen starvation, compared to nitrogen replete cultures. Values are 
based on three biological replicates Protein name is based on UniProtKB unless otherwise stated and Protein 
IDs are from the Joint Genome Institute T. pseudonana genome version 3 (http://genome.jgi-
psf.org/Thaps3/Thaps3.home.html). Multiple values are given for any protein represented by more than one spot 
on the 2-D gels. Microarray Log2 gives the fold change in transcript level of the corresponding gene under 
comparable nitrogen starved conditions as described by Mock et al (2008). 

Protein ID Protein Name Fold 
Change p Microarray 

Log2 

Chlorophyll Biosynthesis 
258111 Glutamate-1-semialdehyde aminotransferasemb -1.61 0.00469 ND 

270378 Magnesium-protoporphyrin IX methyltransferasembc -2.69 0.00013 ND 

270312 1-deoxy-D-xylulose-5-phosphate synthasembc -2.14 0.00043 ND 

29228 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate 
synthasembc 

-1.98 0.00050 ND 

10234 Geranyl-geranyl reductasemb -2.33 
-1.92 

0.00059 
0.00248 

-3.98 

Antioxidant 
40713 Superoxide dismutase 1.89 0.00307 ND 

38428 Mitochondrial alternative oxidase 2.24 0.00106 ND 

Glycolysis and Gluconeogenesis 
40391 Enolase 1.52 0.00249 1.83 

27850 Phosphoglycerate mutase 1.83 0.00241 2.99 

270288 Fructose-bisphosphate aldolasembc 1.83 
1.80 
1.72 

0.00056 
0.00356 
0.00188 

ND 

31636 Aldose-1-epimerase -2.37 0.00106 -1.57 

26678 Transketolase 1.63 0.00254 ND 

21175 Transketolase -1.55 0.00450 -5.62 

22301 Phosphomannomutase 1.68 0.00040 ND 

Pyruvate Metabolism 
268546 Phosphoenolpyruvate carboxylase  2.53 

2.52 
1.79 
1.62z 

0.00104 
0.00013 
0.00206 
0.00271 

ND 

268374 Pyruvate dehydrogenase  2.27 
1.78 

0.00218 
0.00077 

2.49 

8778 Pyruvate dehydrogenase  2.09 
1.76 

0.00013 
0.00004 

2.99 

268280 Dihydrolipoamide s-acetyltransferase 1.95 0.00064 ND 

TCA Cycle 
11411 Citrate synthase  2.24 

1.76 
0.00429 
0.00037 

2.09 

268965 Aconitase hydratase 2 1.70 
1.62 

0.00069 
0.00089 

1.96 

1456 Isocitrate Dehydrogenase 1.62 0.00354 -1.38 

21640 Isocitrate dehydrogenasembc 1.66 
1.53 

0.00015 
0.00418 

1.73 

42475 Succinate dehydrogenase flavoprotein subunit  1.89 
1.79 

0.00417 
0.00196 

ND 

22464 Fumarate hydratase  2.49 0.00014 ND 
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m Manual Annotation. b Supported by BlastP (E<1x10-50). c Supported by conserved domains identified through 
Pfam. z Combined with another protein, making fold change imprecise. ND not detected. 
















